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RÉSUMÉ EN FRANÇAIS

Contexte

Les techniques de réalité virtuelle et de réalité augmentée se développent aujourd’hui
massivement dans nos sociétés. La raison de cet engouement est aisément compréhensible :
elles proposent en effet aux utilisateurs des expériences plus immersives, et spectaculaires
qui trouvent un grand intérêt, notamment auprès des férus de produits culturels tels que
le jeu vidéo ou le cinéma. Ainsi, en France, la vente annuelle de casques de réalité virtuelle
a par exemple été multipliée par 5.5 entre 2015 et 2019, passant de 60 000 à près de 330
000 unités vendues (Source : IDATE DigiWorld). On peut dire la même chose des marchés
de la réalité augmentée et de la réalité mixte, porteurs et en forte croissance notamment
grâce aux investissements colossaux réalisés par les GAFAM.

La pandémie de Covid-19, qui sévit partout dans le monde entier à l’heure de la
réalisation de cette thèse, est également annonciatrice probable de mutations profondes
à venir. Si le télétravail et la distanciation sociale se sont imposés comme de nouvelles
normes sociales lors de ces derniers mois, de nombreux instituts et centres ont également
dû repenser leur organisation et leur offre à un public contraint de rester à son domicile.
En premier lieu les acteurs culturels, privés de recettes, qui ont dû et su s’adapter à la
nouvelle donne en proposant des services de visites de musées à distance, ou de spec-
tacles vivants en diffusion sur Internet. De même, de nombreuses entreprises, telles que
les agences immobilières, ont su faire face aux restrictions en s’engageant dans le déve-
loppement de technologies innovantes, telles que la visite virtuelle d’appartements. Si ces
investissements ont bien entendu été accélérés par un contexte dramatique, il ne fait guère
de doutes qu’ils survivront, au moins en partie, à la pandémie, et constituent une première
pierre du monde de l’après Covid. Il y a fort à parier que cette crise aura des conséquences
profondes relatives au développement de ces technologies sur le long terme.

Tous ces développements reposent, d’un point de vue technique, sur 2 piliers essentiels.
D’abord, ces technologies sont aujourd’hui construites sur des méthodes d’intelligence arti-
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Résumé en français

ficielle (ou apprentissage profond), qui trouvent leur efficacité de l’analyse d’une multitude
de données. Ces données sont omniprésentes aujourd’hui, notamment grâce à Internet et
aux réseaux sociaux. Ce n’est ainsi pas une coïncidence si on retrouve les GAFAM en me-
neurs actuels du mouvement : les autres services qu’ils dirigent et détiennent par ailleurs
sont utiles pour la collecte de données et d’images permettant la mise au point de ces
technologies innovantes. Ainsi en est-il de Facebook à la pointe de la réalité virtuelle
grâce à ses casques Oculus, de Google développant aujourd’hui des techniques de capture
en réalité virtuelle basée sur les champs de lumière au niveau de l’état de l’art, ou de
Microsoft et son Hololens, meneur du domaine de la réalité mixte.

Un autre élément sur lequel s’appuient ces technologies est la capacité à capturer dif-
férents points de vue d’une même scène, pour la reconstruire ensuite efficacement dans
son intégralité. Cette contrainte est significative, dans la mesure où elle limite les possi-
bilités de capture à des équipements plutôt sophistiqués et difficiles à acquérir en 2021
pour un particulier. Si ce constat est indéniable, il convient tout de même de le nuancer,
en évoquant l’omniprésence des smartphones aujourd’hui. De plus en plus vendus avec
plusieurs capteurs photo présents simultanément, ils peuvent constituer dans les années
à venir une réponse intéressante aux problèmes de complexité d’équipement. Ils restent
toutefois toujours limités par la taille désirée du smartphone, ne permettant pas de traiter
des scènes prises de points de vue radicalement distants.

Nos travaux décrits ci-après s’inscrivent pleinement dans ce contexte et dans cette
dynamique.

Motivations et objectifs

Dans cette thèse, nous nous sommes intéressés en particulier à un certain type de
données multivues : les champs de lumière. Nous y trouvons un intérêt particulier car ces
données sont utilisées d’une part dans le champ industriel (par des entreprises telles que
Raytrix), d’autre part pour l’amélioration des technologies en réalité virtuelle et augmen-
tée (voir la démonstration de Google Welcome to Light Fields).

Sur le plan formel, on peut présenter ces champs de lumière comme la mesure de l’in-
tensité de l’ensemble des rayons de lumière circulant par l’ensemble des points d’une même
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Résumé en français

Figure 1 – Double représentation des champs de lumière : sur la gauche, la représentation
par micro-lentilles ; sur le droite, la représentation par sous-images.

scène. Ils sont décrits mathématiquement en particulier par la fonction plénoptique, qui
associe à chaque paramétrisation de rayon lumineux au sein d’une scène une intensité (la
radiance). La connaissance fine de la trajectoire de ces différents rayons lumineux ouvre
la voie à de nombreuses applications utiles, spécifiques aux champs de lumière. D’une
part, la technologie plénoptique nous permet de générer une collection de points de vues,
dans laquelle il est possible de simuler un déplacement (voir figure 1). D’autre part, elle
nous donne davantage d’éléments sur la géométrie de la scène, et est un outil utile pour
estimer la profondeur des différents objets à partir d’une seule capture. Enfin, d’autres
applications, telles que la refocalisation numérique (refocaliser après capture) sont égale-
ment accessibles. Du fait de sa meilleure capacité à capturer les différentes trajectoires de
rayons, elle peut également constituer un atout significatif dans la capture des contenus
de réalité augmentée et virtuelle.

Les champs de lumière ne peuvent être capturés en utilisant un appareil photo conven-
tionnel : en effet, pour de tels appareils, l’information obtenue lors de la capture photo
représente la somme des rayons lumineux ayant transité dans l’appareil et ayant convergé
sur un pixel donné du photocapteur. Il est donc impossible, pendant ou après la capture,
de faire la distinction entre les différents rayons lumineux qui contribuent à l’intensité de
ce pixel. Il est alors impératif d’utiliser un équipement spécifique pour la capture de tels
dispositifs.

9
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Figure 2 – A gauche, la caméra plénoptique Lytro Illum (source : Wikipedia), à droite
la matrice de caméras Stanford.

Pour cela, deux types de dispositifs existent, comme illustré en figure 2 : d’abord, les
caméras plénoptiques, similaires aux appareils photo traditionnels, à la différence qu’une
grille de microlentilles est disposée devant le photocapteur. Ainsi, les rayons lumineux se
verront réfractés par les microlentilles avant d’atteindre le capteur, et seront donc discri-
minés en fonction de leur direction d’incidence. De tels appareils sont confrontés à ce que
l’on appelle le compromis spatio-angulaire : puisque le nombre de pixels capturable par
notre capteur est par essence limité, un compromis doit être réalisé entre la résolution des
images que l’on souhaite synthétiser, et le nombre de rayons lumineux que l’on souhaite
être en mesure de traiter. Ceci conduit habituellement les caméras plénoptiques à soit né-
cessiter des photocapteurs à très haute résolution ; amenant des prix de vente prohibitifs
pour le grand public. Ou à réduire la résolution des images produites, créant de ce fait
des différences de qualité d’image significatives et problématiques pour les amateurs de
photographie.

Un autre type de dispositif existe : les matrices de caméras. Il s’agit de dispositifs
regroupant un grand nombre de caméras au sein d’une même structure. Si elles évitent
l’essentiel des écueils des caméras plénoptiques, elles ont un défaut évident pour un usage
grand public : elles sont extrêmement encombrantes, et de plus difficiles à régler, notam-
ment car la synchronicité des différentes caméras est essentielle.

Un des objectifs de cette thèse est de s’intéresser à cette problématique en cherchant
à répondre à la question suivante :

Dans quelle mesure et sous quelles conditions est-il possible de reconstruire un champ

10
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de lumières à partir de captures avec une unique caméra 2D ?

De cette problématique émanent plusieurs contraintes, puisque l’on souhaite en effet
restreindre au maximum les exigences du point de vue utilisateur. Ainsi, on souhaite que
les méthodes développées aient une barrière d’entrée aussi basse que possible pour les
utilisateurs. On souhaite également que les algorithmes et méthodes proposés puissent
être utilisables pour des smartphones, ce qui implique donc une complexité à réduire au
maximum.

Lors de cette thèse, nous envisageons le problème par le biais de la synthèse de vues :
nous cherchons à mener une reconstruction efficace d’un champ de lumière, en utilisant un
nombre extrêmement restreint de vues d’entrée et cherchons à générer le reste du champ
de lumière ainsi. Là où en théorie, 4 vues bien choisies sont habituellement nécessaires
pour reconstruire fidèlement un champ de lumière (puisque par ce choix, l’ensemble des
points tridimensionnels constituant la scène peuvent être retrouvés), nous nous plaçons
volontairement dans un cadre plus accessible pour un utilisateur lambda, mais beaucoup
plus complexe sur le plan technique, en prenant pour référence encore moins de vues
d’entrée (une seule dans les chapitres 3 et 4, de 1 à 4 dans le chapitre 5). A l’instant du
test, nous sommes donc confrontés à un manque d’informations pour pouvoir regénérer
fidèlement le champ de lumière.

Comment parvenir alors à travailler sur ces informations sans y avoir accès au moment
du test ? Pour faire cela, nous utilisons des techniques d’apprentissage profond. L’idée es-
sentielle est qu’au moment de l’apprentissage, nos réseaux de neurone devront apprendre
les informations qu’il leur manquera nécessairement au moment du test, pour être en
mesure de traiter le cas test efficacement. Il est également bon de noter que pour le cas
où une seule image est utilisée en entrée, cette problématique est d’autant plus notable.

Dans notre processus d’apprentissage profond, nous souhaitons donc adopter une com-
plexité aussi faible que possible, et nous cherchons à réduire au maximum tant le temps
d’apprentissage que la quantité de données d’entraînement nécessaire.

Nos contributions
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Nous présentons dans les chapitres qui suivent nos réponses à la problématique fixée.
Dans un premier temps (chapitre 1), nous nous penchons sur la question des champs de
lumière, et nous en décrivons leurs caractéristiques, leur importance et leurs limitations.
Ceci permet de comprendre la pertinence des méthodes déployées lors de cette thèse, et
donne une idée des travaux déjà réalisés dans la littérature des champs de lumière.

Dans un deuxième temps, (chapitre 2) nous nous intéressons davantage aux tech-
niques d’apprentissage profond pour la synthèse d’images qui ont pu être proposées et
développées par le passé, et qui ont nourri nos travaux.

Le chapitre 3 est notre premier chapitre de contributions. Dans ce chapitre, nous
décrivons une méthode capable de générer une gamme de nouvelles vues d’une scène, en
partant d’une simple image non-annotée. Les vues sont générées latéralement autour de
l’image d’entrée. Partant de cette image, notre méthode est capable, en plus de la syn-
thèse de ces nouvelles vues, d’estimer la profondeur de la scène, et de mesurer un score
de confiance par pixel quant à sa propre prédiction. Pour ce faire, la méthode repose sur
la combinaison avantageuse de 2 types de réseaux de neurones.

D’abord, la méthode cherche à estimer la profondeur de l’image donnée, par le biais
d’un réseau convolutionnel (Disparity-Based Predictor). Pendant le processus d’appren-
tissage, la carte de profondeur ainsi estimée est utilisée comme vecteur de disparité pour
transformer la vue d’entrée ; on obtient ainsi une première prédiction basée sur l’analyse
géométrique de la scène. Si cette première prédiction, qui est exclusivement construite
par copie des pixels existants dans l’image d’entrée, donne déjà des résultats intéressants,
elle est par nature limitée : en effet, elle ne peut pas traiter efficacement les zones qui
n’étaient pas présentes dans l’image de départ (régions occultées).

Pour dépasser cette limite, on décide d’appliquer une méthode spécifique dans ces
régions occultées. Puisque l’entrée n’est rien d’autre qu’une image non-annotée, on ne
connaît pas a priori les pixels qui correspondent à ces zones occultées. On construit donc
une mesure de confiance, apprise par un deuxième réseau de neurones (Confidence-Based
Merger) guidée par les incohérences de profondeur mesurées. Finalement, dans ces zones
ainsi identifiées, on applique un troisième réseau de neurones, qui va se focaliser exclusi-
vement sur ces zones pour en améliorer l’apparence.
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Résumé en français

Le système ainsi construit est appris sur des données stéréoscopiques, et retourne des
résultats convaincants, sur des jeux de données complexes tels que les jeux d’images pour
voiture autonome KITTI, et se compare favorablement à l’état de l’art. D’importantes
limites subsistent néanmoins, notamment liées à la sémantique très contrainte de notre
méthode. Nous finissons le chapitre en explorant les limites de cette méthode et dressons
une perspective quant aux possibles pistes d’amélioration.

Le chapitre 4 étend la contribution du chapitre précédent aux champs de lumière
en générant des vues selon un axe vertical en plus des vues synthétisées horizontalement
dans le chapitre 3. De plus, un composant adversarial est ajouté pour augmenter la qualité
perceptuelle du champ de lumière ainsi créé, en particulier dans les zones d’occultation, et
le processus de calcul de confiance est amélioré. La méthode ainsi mise à jour se compare
favorablement à l’état de l’art sur un jeu de données de champs de lumière.

Du fait de la difficulté de trouver des jeux de données de champs de lumière ayant des
caractéristiques adaptées à notre problème, on cherche également à accroître la généricité
de notre méthode en générant des champs de lumière à partir de données stéréo via un
module d’adaptation stéréo - champ de lumière. Là aussi, notre modèle se compare favo-
rablement à l’état de l’art sur le plan des métriques et sur le plan visuel. On conclut là
aussi en évoquant des pistes d’amélioration envisageables.

Enfin, dans le chapitre 5, nous relâchons légèrement nos contraintes, et travaillons
cette fois pour générer un champ de lumière entier à partir d’un sous-échantillonnage de
1 à 4 vues. Du fait de l’accroissement de la quantité d’informations présente en entrée,
nous décidons d’adopter une architecture récurrente et encore plus légère, s’appuyant sur
les LSTMs (Long Short-Term Memory). Nous construisons ainsi une méthode capable
de prendre pour entrée un nombre libre de vues et de générer efficacement un champ
de lumière entier dans ces conditions. La méthode est ainsi capable de s’adapter à di-
verses configurations d’entrée pour générer au final le champ de lumière, en s’appuyant
sur une représentation MPI (Multi-Plane Images). Pour ce faire, nous avons recours à
une architecture récurrente, en associant à chaque boucle de notre récurrence un plan de
profondeur à considérer. Du fait de cette modélisation, nous sommes capables d’appliquer
notre méthode dans une distribution libre de plans de profondeur de la scène au moment
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Résumé en français

du test. Cette modélisation constitue une perspective intéressante, puisque la méthode
peut ainsi être utilisée "à la main" pour traiter des scènes ayant des distributions de pro-
fondeur spécifiques. Nous finissons le chapitre en explorant une fois de plus les limites
relatives à l’approche présentée.

Dans ce document, nous présentons ainsi des méthodes performantes pour la synthèse
de nouvelles vues dans un cadre champ de lumière, en particulier dans un contexte où
le nombre de vues d’entrée est clairement sous-optimal. Le cas monoculaire (une image
d’entrée seulement) est traité dans les 2 premiers chapitres de contribution, alors que
le dernier chapitre de contribution s’intéresse plus particulièrement au cas où davantage
d’images sont envoyées en entrée (4 ou moins). A travers les méthodes ainsi présentées,
nous construisons des méthodologies et présentons des pistes qui pourront faire l’objet
d’explorations ultérieures pour traiter ces problèmes avec encore davantage d’efficacité à
l’avenir.
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INTRODUCTION

Context

AR, VR and multi-view techniques have been getting increasingly relevant these past
few years. In video games, movies, or theme parks, they have managed to captivate a
new generation of users thanks to the immersive experience they provide. In the United
States, the market valuation for Virtual Reality has significantly soared, object of a mul-
tiplication by 78 in 4 years, from around 205 million dollars in 2016 to nearly 16 billion
in 2020. The predictions for the coming years only seem to confirm this trend.

Besides, the ongoing context, with the Covid-19 pandemic striking the whole world,
comes with its likely to be deep transformations. Faced with stay-at-home orders, most
of the global population has resorted to online activities a lot more. Most companies and
institutes also had to adjust their activities to take into account this new dramatic situa-
tion. Cultural institutions have moved part of their production online, with broadcasted
concerts and plays, as well as museums offering online visits to their customers. Other
workplaces, such as estate agencies for instance, also had to adjust to the new reality of
the pandemic, by providing with innovative new experiences, such as 360 visit of flats to
replace on-site visits. Of course, most of these evolutions have been driven by the pan-
demic and its toll on societies; but they are likely to be long-lasting changes that will still
be there long after Covid.

These developments mostly rely on two pillars: first, the access to data. Indeed, these
technologies are built upon deep learning and data-driven techniques in general. Data is
everywhere today, on Internet and in the social networks. Such data is then harvested
by large companies, allowing them to build data-driven techniques (notably for imaging)
with an extremely high level of efficiency.

Another founding block of these technologies is their ability to capture different view-
points from the same scene, so as to be able to reconstruct it efficiently in its entirety.
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Introduction

This constraint is an important one, given that it restricts the possibilities of capturing
this type of contents to specific and sophisticated equipment, that is not easy to acquire
by individuals in 2021. This is though to be qualified, due to the widespread presence of
smartphones, more and more of them having besides several photosensors. If such devices
can constitute a valuable response to the precited concerns, they remain somewhat limited
with the distance between the camera devices, necessarily bounded with the size of the
smartphone itself. It implies it seems difficult to envision the processing of scenes from
significantly different viewpoints.

Our contributions address these concerns, and are within the scope of the context we
just described.

Motives and objectives

In this thesis, we decided to study in particular a certain type of multi-view data type:
light fields. We believe processing this type of data is an interesting task, for they can be
used both in an industrial framework (notably for companies like

Light fields, as explained further in chapter 1 of the present document, can be de-
scribed as the representation of the intensity for every single ray of light passing through
every point in space in a given scene. They can be captured using specific equipment,
such as plenoptic cameras (as shown in figure 3) or camera arrays, which are in both
cases impractical for everyday use.

The crux of the issue in this thesis is then as follows:

Can we reproduce light field features and behaviors, in a very accessible use case for
everyday users?

Several constraints are born from this question. First, it means that we want to have
a barrier of entry as low as possible for a random user who would be interested in using
the method. For that reason, in all the contributions of this thesis, training and testing is
systematically made from unannotated images. In the first two chapters, only 2 images are
necessary for training, and only one during test time. In the last chapter, a free number
of input images (between 1 and 4) can be used, and at least one more image is required
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Figure 3 – The Lytro Illum plenoptic camera (source: Wikipedia)

during training. One of the consequences of it is that our methods can be easily employed
in every day uses.

Another constraint we have decided to set is related to the complexity of the meth-
ods. Given that we want our methods to be as easy to use as possible, it implies we are
interested in developing our methods while keeping a low complexity. In particular, we
are very careful regarding the number of parameters we use in our methods. We are also
interested in making our approaches as generic as possible, and in particular to make sure
that our methods can be quickly re-trained on diverse datasets and semantics.

In this thesis, we envision the problem of light field reconstruction by the means of
view synthesis: we want to be able to generate the light field given a subset of input im-
ages. We want to synthesize all the rest of the images from the light field. Theoretically,
and in most cases, light field reconstruction is carried out from 4 input images, the four
corner views. This is usually decided because from these 4 corner images, a significant
majority of 3D points from the scene can be identified. From the 4 corner views, it is thus
realistic to expect a very high reconstruction quality of the light field. In this thesis, we
have decided to put ourselves in a situation where fewer views were considered. For the
first two contributions, we work in the field of monocular view synthesis, i.e., we only have
one input image at test time. For the third contribution, we freely have between 1 and 4
input images. When the number of accessible views is lower than 4, we lack information
to accomplish a fully faithful light field reconstruction. One key question is then: how can
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we make up for the missing information? We answer this question by using deep learning
techniques.

Indeed, the key idea is that during training, our neural networks will have to learn
the relevant information that will be missing at test time, so as to be able to process
efficiently the test case. Of course, for the monocular case where only one single image is
sent, this is even more true.

Our contributions

We address in the subsequent chapters the question asked above. As a starting point
(in chapter 1), we focus on light fields, and we describe their features, their importance
and their limitations. This enables us to understand the relevance of the methods that
were implemented throughout this thesis. It also gives an idea of already existing works
in research for light fields.

Then, in chapter 2, we present the state-of-the-art on deep learning techniques for
image synthesis that were proposed and developed in the past, and which significantly
guided our own work.

Chapter 3 is our first contribution chapter. In this chapter, we describe a method able
to generate a range of new views from a scene, starting from a single unannotated image.
Views are generated laterally around the input image. From this image, our method is also
capable of estimating the depth of the scene, and to measure a pixelwise confidence score
related to its own prediction. To do so, the method relies on an advantageous combination
of two types of neural networks.

First, the methods aims at estimating the depth of the input image by the means
of a Convolutional Neural Network (the Disparity-Based predictor). During training, the
depth map is used for warping the input view; a first prediction built on the geometrical
analysis of the scene is then obtained. If this first prediction, exclusively built by copying
preexisting pixels in the input image, already gives interesting results, it is naturally lim-
ited: indeed, it cannot process efficiently occluded regions.
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To go beyond this limit, we decide to apply a specific method in the occluded regions.
Since we only have an unannotated image as input, it is not possible to know the pixels
associated with these occluded areas. We then decide to build a confidence measure, learnt
by a second neural network (the Confidence-based Merger), guided by the inconsistencies
between measured depth estimates. Finally, in the areas identified as low-confidence, we
apply a third neural network, which is going to target only these regions to improve the
visual appearance of it.

The pipeline is learnt on stereo data, and outputs convincing results on complex
datasets such as the KITTI dataset, and outperforms state-of-the-art methods. Some
significant limits still exist, though, notably due to the very constrained semantics in the
scene. We finish the chapter by exploring the limits of our method and draw a perspective
as for the possible improvements.

Chapter 4 extends the contribution from the previous chapter to a complete light
field reconstruction from monocular input views, by generating views alongside a vertical
axis besides the horizontally synthesized views from chapter 3. Besides, an adversarial
component is added to increase the perceptual quality of the light field, and the confi-
dence measure process is improved. The updated method achieves good performance on
a specific light field dataset.

Due to the difficulty of finding light field datasets with features adapted to our prob-
lem, we also seek to increase the genericity of our method by generating light fields from
stereo contents, by the means of a stereo-light fields adaptation module. Our model also
compares favorably to state-of-the-art methods, metric-wise and visually. We conclude by
mentioning possible future directions for our work.

Finally, in chapter 5, we relax our constraints and we work this time to generate a
full light field from a subsample of 1 to 4 input views. Due to the increase in amount of
information present at the input, we decide to adopt a recurrent and even more lightweight
architecture, based on LSTMs (Long Short-Term Memory). We thus build a method that
can take as input a free number of input views (between 1 and 4) and that can efficiently
generate a full light field in these conditions. The network constructs a MPI light field
representation. We also design branches that can adapt to diverse input configurations to
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generate at last our light field. We finish the chapter by exploring once more the limits of
the presented approach.
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Chapter 1

LIGHT FIELD IMAGING

1.1 The plenoptic function

1.1.1 General plenoptic function

Light fields, conceptually introduced in the founding paper [1], can be defined as the
representation of the light flowing within a scene. The light field function describes the
amount of light flowing for every single ray of light for every point in space.

Figure 1.1 – Coordinates of a specific point for a given ray of light, used to determine input
coordinates for the plenoptic function. (x, y, z) stand for the position of the considered
point, we call θ the angle between the axis Ay and the ray, and φ the angle between the axis
Az and the projection of the ray. This parameterization is akin to spherical coordinates.

From a mathematical point of view, it is usually modelled using the plenoptic function
P, which assigns to every point of every ray of light in a scene its current light magnitude
(i.e. the radiance R), and can be defined as:

R = P (x, y, z, θ, φ, λ, t) (1.1)
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Chapter 1 – Light field Imaging

where:
— x, y, z are parameters defining the position of the considered point in space.
— θ and φ stand for the angles between the incident direction and orientation of the

ray of light, through the usual angular measures of spherical coordinates. They
discriminate the different rays of light passing through this specific point in space
(see figure 1.1).

— λ stands for the wavelength and t stands for the temporal dimension, representing
the evolution of the plenoptic function over time.

In this thesis, we make two assumptions:
— The sensors of capture devices subsample the wavelength, by recording light inten-

sity in 3 color channels by using color filters.
— The considered light fields are all static, we consider no dependency in time.

Consequently, the plenoptic function P can be simplified as:

R = P (x, y, z, θ, φ) (1.2)

and does not have to explicitly depend on wavelength or time in this setting.

1.1.2 2-plane representation

When capturing light fields, we particularly want to measure the plenoptic function
for a given subset of rays flowing through the acquisition device. In this case, a simpler
representation, first introduced in [2], can be adopted, and is shown in figure 1.2. Inside the
acquisition device, every ray of light can indeed be parameterized through its intersected
position with 2 defined parallel planes. Following the notations from figure 1.2, we can
then define the plenoptic function as:

R = P (s, t, u, v) (1.3)

It can thus be considered as a 4-parameter function, which constitutes a simpler rep-
resentation for this problem. Among these 4 parameters, we thus have 2 paramaeters
associated with spatial coordinates, and 2 parameters associated with angular coordi-
nates.
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Figure 1.2 – The 2-plane representation of the light field. Inside a given volume (acquisition
device), rays of light can be fully distinguished by 4 parameters: the spatial coordinates
(s, t) and (u, v) of their intersections with two arbitrarily chosen parallel planes.

1.2 Acquisition devices

Capturing light fields is a challenging task, for it requires an ability to measure and
store heavy and precise information. Plenoptic cameras are compact devices that can be
constructed from classical 2D cameras by placing a micro-lens array between the main
lens and the sensor.

1.2.1 Conventional photography

The process of capturing a scene using a traditional camera is described in figure 1.3.
The incident rays of light are refracted by the main lens of the camera before reaching
the photosensor. The final image obtained is the result of the convergence of rays onto
the photosensor ; the final image I can indeed be obtained as the summation of all the
rays converging to a specific position (x, y) in the photosensor.

Modifying the distance between the main lens and the photosensor allows us to focus
our image onto different depth planes in the original scene. Moving the photosensor closer
to the main lens indeed pushes the world focal plane further from the camera.
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Figure 1.3 – Trajectories of the rays of light captured by a conventional camera. Points
from the world planes (P2 being the focal plane) have different trajectories, and can have
different starting points, but can still converge on the same pixel of the photosensor. Given
that the only available information is what is arriving onto the photosensor, we cannot
distinguish the contributing rays.

After capture, saved information on the photosensor is the summation, for every pixel,
of the incident rays, and it is impossible to discriminate between the various contributing
rays of light. Conventional cameras are therefore not suited for capturing light fields; more
specific equipment is required.

1.2.2 Plenoptic cameras

Plenoptic cameras are a commonly employed equipment to capture light fields. If they
are relatively recent in their current design ([4], [5]), they actually embody ideas that were
developed as soon as 1908 by Lippmann. An example of such a camera (a Lytro camera)
is shown on the left side of figure 1.4.

The main idea behind plenoptic cameras is to add an array of microlenses in front of
the photosensor, as depicted in figure 1.5. This way, the various incident rays that would
have converged onto the same point of the photosensor are consequently refracted by the
microlenses, depending on their initial incidence. Thanks to this process, we have access
to information related to the trajectories of the specific rays of light. Light field samples
can then be captured by the camera.
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1.2. Acquisition devices

Figure 1.4 – Plenoptic devices: on the left, a Lytro plenoptic camera; on the right, the
Stanford camera array, presented in [3].

Figure 1.5 – Trajectories of the rays of light captured by a plenoptic camera. Adding an
extra array of microlenses before the photosensor causes a supplementary refraction to
the incident rays of light. They are refracted depending on their incidence direction, and
we can then save on the photosensor information related to the origin of the rays of light.

As reminded in [6], two different designs for the optical system of the plenoptic camera
have been considered and are displayed in figure 1.7: for the "plenoptic 1.0" design, or un-
focused plenoptic camera, the focus takes place at the level of the lenslet array. Conversely,
in the "plenoptic 2.0" format, or focused plenoptic camera, the image plane of the main
lens is the object plane of the lenslet array.
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Figure 1.6 – Zoom on 3 samples of a light field captured by a plenoptic camera.

Figure 1.7 – The plenoptic camera design: on the left, the plenoptic 1.0 optical design /
on the right, the plenoptic 2.0 optical design. Source of the image: [6]

When using plenoptic cameras, we usually are faced with the spatio-angular trade-
off. The resolution of the photosensor is indeed a limiting factor; a trade-off has to be
found between the resolution of the view, and the number of rays of light per pixel
that is processed. It entails that a very high resolution photosensor needs to be used
for plenoptic cameras, making the design impractical at times and very expensive for
high-quality captures.

1.2.3 Camera arrays

Another way to capture light fields is to use camera arrays (see the right side of figure
1.4): a 2-dimensional grid of synchronized cameras, along the same plane, and with an
equal distance between them (the baseline). The captured light field can then be repre-
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sented as a 2-dimensional grid of views with a slight difference in viewpoint.

Camera arrays are challenging set-ups to build in practice, and bulky which makes
them not suitable for consumer applications; plenty of difficulties arise when using them,
notably related to the synchronous calibration of all the cameras simultaneously. For this
reason, such set-ups are rather uncommon. Some of these camera array structures were
presented in [7] and [8]. In [7], the light field is captured from a large number of cameras
streaming live video, and the light field can be obtained by post-processing the significant
amount of data that is obtained this way. More lightweight, the system presented in [8]
can capture dynamic light fields in real time. In both cases, though, the significant base-
line leads to some spatial aliasing.

More recently, commercialized cameras arrays for light fields have mostly been tar-
geted towards 360 or virtual reality applications, such as the Google Light Field Camera.
The presence of several cameras in many modern smartphones can also be assimilated to
camera arrays, making light field capture potentially less cumbersome and more comfort-
able to use in an everyday life setting.

Other processes were also developed to produce light field contents without requiring
such a bulky equipment. One possible process is to use a single conventional camera with
moving gantries. For static scenes, the camera motion can mimic a full camera array, for
an overall less cumbersome system. Light fields can also be obtained by placing a coded
mask in front of the camera sensor of a conventional camera. This way, incoming rays
of light are optically modulated. It was shown, notably in [9], that light fields can be
efficiently reconstructed, from a compression viewpoint, by using such coded masks.

1.2.4 Different light field representations

The two types of acquisition devices capture light fields in a different way and with a
different structure, as shown in figure 1.4. They are dual representations of light fields:

— On the right of figure 1.9, we can see the sub-aperture representation. The light
field is here represented as a 2-dimensional grid of successive images of the same
scene, all captured with a slightly different original position and viewpoint.

— On the left of figure 1.9, we can see the lenslet representation. The light field is here
considered as a 2-dimensional grid of images (microimages), that group together
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Figure 1.8 – Representation of the x − y − u − v description of the light field. Source of
the image: [10]

Figure 1.9 – Dual representations of the light field: on the left, the lenslet representation;
on the right, the set of all subaperture images in the light field.
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the same pixel position for every view. Moving from one representation to another
is rather straightforward, as evidenced by figure 1.8.

Another possible representation of light fields is by the means of epipolar planes.
Epipolar images are obtained by freezing an angular coordinate and a spatial coordinate;
an example of such a representation is displayed in figure 1.10.

Figure 1.10 – Elements of the epipolar representation of a light field

1.3 Plenoptic applications

Thanks to the supplementary amount of information, capturing light fields brings
several significant benefits when compared with conventional photography.

1.3.1 Changing viewpoints

Knowing the trajectory of the rays of light enables to simulate a virtual displacement
of our camera, as shown in figure 1.9. This way, from one capture, we can predict the
new views for a slight camera displacement. This application is straightforward when
considering the camera array as the acquisition device, but it can also be easily achieved
by recombining pixels obtained through the microlenses of a plenoptic camera.

1.3.2 Geometrical analysis and depth estimation

Light fields can be represented as a multi-view capture of the same scene. Thanks to
this representation, depth prediction can be an efficient and straightforward application.
Most recent light field depth estimation methods have relied on Convolutional Neural
Networks to achieve this task, such as in [11], [12], [13]. Other ideas have been used to
perform efficient depth estimation, such as resorting to low-rank completion, notably in
[14].

The supplementary information conveyed by the plenoptic process has interesting
potential developments. It naturally leads to a deeper geometrical and structural un-
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derstanding of the scene. This is helpful in many applications, notably industrial ones
(Raytrix,...). Besides, knowing with details the trajectory of the rays of light is helpful for
other applications, notably within the framework of augmented and virtual reality.

1.3.3 Digital refocusing

In conventional photography, refocusing can be easily carried out by modifying the
distance between the photosensor and the lens, shifting regions of the scene in and out
of focus. For plenoptic cameras, the knowledge gained from analysing the trajectories of
the various rays of light allows us to predict the hypothetically formed image for possible
photosensor displacements.

Thanks to this, we can then perform digital refocusing, i.e. refocus the image after it
was captured. Digital refocusing can be easily performed using a shift-and-add procedure
on the light field, as presented in [4]. Other more efficient methods have relied on the
Fourier slice theorem to perform this digital refocusing, by analyzing the light field in the
Fourier domain ([15]). These methods perform digital refocusing with efficiency and good
quality.

1.3.4 Other applications

We can also make advantage of the plenoptic information to tackle with more efficiency
classical challenges in computer vision.

Light fields are notably convenient to improve the quality of segmentation methods, as
shown in [16] and [17]. In particular, in [18], the light field structure was notably used to
expand superpixels to the 4D space, in superrays. By exploiting the consistency between
the corresponding pixels in the various views, better segmentation results are reported.

Light fields can also be used to perform more efficient inpainting. Light field recoloriza-
tion and inpainting have been tackled in [19]. The work in [20] also resorts to diffusion
from a structure tensor to fill in the inpainted regions of the light field efficiently.

Finally, light field-based methods have also been developed for object and face recog-
nition, as summarized in [21]. The richer information obtained from plenoptic camera
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sensors can be used in order to improve the results in this field of research, even if pos-
sibly detrimental in terms of pure complexity. Among relevant methods in this field, we
can cite [22], [23], [24].

1.4 Light field processing problems

As shown in previous sections, light fields are powerful tools for improving scene anal-
ysis. Though, a significant limit of light fields is the tremendous amount of data to be
stored for every capture. Besides, there is significant data redundancy between various
elements of the light field. This clearly shows the interest of performing light field com-
pression: maintaining the best possible light field features all while significantly reducing
the amount of saved data. 2 examples of methods are described in the sections below.

1.4.1 Light field compression

Fourier-based compression

The redundancy of light fields in the spatial domain implies that their Fourier spectra
are usually sparse. This sparsity is exploited in [25].

In this work, light fields are reconstructed from an initial randomly sampled signal
in the Fourier domain. To reconstruct the full 4-dimensional signal, the frequences that
will optimize, distortion-wise, the modelling of the known samples are iteratively selected.
The approach is based on a pre-fixed sampling rate, and can easily be adjusted to the
nature of the pre-selected samples. This method is a good and efficient way to tackle this
difficult problem.

Deep learning-based compression

In [26], light field compression is carried out through the means of deep learning: an
autoencoder and a 4D CNN are jointly used to recover 4D light fields from a single image,
all while reducing reconstruction time.

View synthesis-based compression

Works in view synthesis can also lead to interesting developments for light field com-
pression. Indeed, if few input images are enough to obtain a faithful reconstruction of a
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light field, this is also an interesting development from a compression viewpoint.

In particular, the JPEG Pleno framework is an integral part of this field of research.
The work in [27] is also an interesting work for this task. In the article, a light field
compression process is shown, relying on the compression of a subset of views using
HEVC inter-coding. The residual of the light field is then modeled as a video sequence,
and is encoded with HEVC inter-coding, with very convincing results.

1.4.2 Light field spatio-angular super-resolution

The difficulties related to the spatio-angular tradeoff described in subsection 1.2.2
makes the problem of light field spatio-angular super-resolution extremely relevant; if we
are able to generate a full light field given only a few input views, it can help us store and
save light fields more efficiently. Bibliography on the domain was extensively presented in
[6].

In the recent years, machine learning has been employed to perform efficient light field
super-resolution. In [28], neural networks are used. First, a spatial CNN is used to restore
sub-aperture images separately; then, we resort to a second CNN to generate other views.
One issue with the method is the inconsistency between the separately reconstructed sub-
aperture images.

One very important work in the field of view synthesis for light fields was published
by Kalantari et al. in 2016 ([29]). To output high-quality images, the authors employ a
cascade of two convolutional neural networks: the first CNN is used for disparity estima-
tion, while the second CNN is efficient for color estimation. The combination of these two
networks allows to process efficiently the light field. This was one of the earliest works
using neural networks for producing very high-quality results in light field view synthesis.

In [30], the authors use techniques such as Principal Component Analysis and Ridge
Regression to learn a matching between high and low resolution patch-volume. By exploit-
ing the particularities of the light field structure, the method manages to return consistent
results. This work was extended in [31], in which low-rank models were coupled with deep
learning for superresolution.
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1.4.3 Light field synthesis for view navigation

First works for multi-view synthesis were DIBR methods: the main objective of these
methods was to perform view synthesis by having a prior estimation of geometry and
depth for the given scene. Early works in the field include [32] (2003), [33] (2004), [34]
(2008) and [35] (2010), which focus on performing multi-view synthesis through, respec-
tively, specific texture mapping techniques and point cloud analysis. These early works
led to interesting results for view synthesis, but many improvements have been observed
since the publication of these methods, putting them far from the state-of-the-art today.

Among early reference DIBR methods, we can also cite the work by Chaurasia et al.,
published in 2013 ([36]). In this paper, an image-based rendering method was presented,
based on a prior oversegmentation of the input image through superpixel analysis. The
superpixels present in the various input images are connected through a graph structure,
which allows to check consistencies between similar elements in various images. Besides,
a depth-synthesis approach is also deployed on poorly reconstructed regions. Thanks to
these ideas, the approach was able to provide an immersive navigation into an environ-
ment.

A good framework for light field reconstruction and depth prediction in light fields was
also built by Wanner et al. in 2012 ([37]). In this article, the problem of stereo matching
was reformulated in an attempt to take into account the specific structure of the light
field, and in particular its epipolar lines. The approach was able to predict accurate depth
values even for non-Lambertian regions using this particular way to model light fields. In
2014, the work was extended and improved ([38]). Here, the problem of view synthesis
was framed as an inverse continuous problem, that is optimized using then state-of-the-
art techniques. In particular, depth estimation is built by constraining the consistency
of the epipolar lines of the depth prediction based on the consistency of the input light
field. Once depth estimates are obtained, an objective function is minimized in order to
optimize the quality of the produced images. If good results are obtained on most data
elements, the method encounters more difficulties when processing sparse data contents.
Besides, their model assumes the absence of noise or of problems in the capture, which is
practically rarely true.

Another work to estimate depth was proposed in [39]. The article presents a method
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that estimates depth by combining the use of defocus cues and correspondance cues from
light fields. To do so, the method also exploits the epipolar structure of the light field. If
the method is efficient at estimating disparities, it is not directly optimized for view syn-
thesis, and for that reason returns suboptimal results for this task. Besides, that method
being purely based on depth estimation, it is not able to process occlusions, and requires
a precise prior estimation of depth.

To account for this issue, Wang et al. published in [40] a method for depth estimation
that is also able to process occlusions. To identify those regions, the method analyses depth
discontinuities. The method separately processes the foreground regions and background
regions, improving the results of then state-of-the-art methods both in depth estimation
and view synthesis.

Penner et al. published in 2017 a method for view synthesis from an unstructured set
of views, called Soft3D ([41]). The method first works by estimating the geometry of the
scene, and producing multiple depth maps using a stereo method. These various predic-
tions naturally have inconsistencies for both depth estimation and occlusion processing.
These inconsistencies are sorted out using a confidence from voting process. Depth uncer-
tainty is then maintained throughout all the stages of 3D reconstruction and rendering,
meaning that improvements can be performed iteratively to improve the overall result.

Methods based on spectral analysis

For light field view synthesis, a common way to proceed is to extract and exploit light
field signals in specific domains, such as the Fourier domain or the shearlet domain.

Shi et al. notably exploit the sparsity of the light field continuous Fourier spectrum
([42]) to enhance the reconstruction quality of the newly produced views. Through analy-
ses, the authors show that the sparsity of the light field is much greater in the continuous
Fourier domain than in the discrete Fourier domain, due to a windowing effect. Account-
ing for this observation, they propose an approach to optimize for sparsity the continuous
Fourier spectrum, leading to high reconstruction quality. This method for reconstruction
is extremely interesting, notably for being the founding block for other methods in light
field compression ([43]). Besides, its results are impressive; using this method is neverthe-
less not as convenient as having a set of input images set in a constant position throughout
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training and testing.

The approach presented in [44] uses sparse representations of epipolar structures within
light fields, by the means of adaptive shearlet transform. Using this type of representation
enables the authors to efficiently reconstruct light fields.

Another example of spectral representation for light field reconstruction is presented
in [45], by the resort to Fourier Disparity Layers. The FDL representation samples light
fields according to their depth in the Fourier domain and allow efficient light field pro-
cessing, for view synthesis, interpolation as well as extrapolation.

Those methods are usually built on very elegant models with impressive results. But
they often also require a significant quantity of input elements for them to be efficient,
that has to be chosen as relevant, unlike our methods which mostly rely on a few input
natural images for training and testing.

1.4.4 Our goal

We also want to reduce the amount of light field contents that has to be saved and
stored, by working on angular and spatial super-resolution. In particular:

— We will model for the rest of the thesis light fields as 2 dimensional arrays of images
with slight changes in viewpoints.

— We will seek to predict all the views within the light field, given a subset of input
views. In particular, the first 2 sections of our manuscript focus on the monocular
case, i.e. reconstructing a full light field from one single image. The third chapter
is devoted to light field reconstruction given several input images (between 1 and
4).

We use deep learning in our work; the next section will be devoted to descriptions of
the deep learning founding blocks for view synthesis that are used throughout the thesis.
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Chapter 2

DEEP LEARNING-BASED VIEW

SYNTHESIS

2.1 Deep learning methods

2.1.1 Fundamentals

Learning from data

Machine learning stems from the idea to build structures that can learn from data.
In this context, we design models to shape the problem, with parameters to be tuned.
These parameters P are set by checking the consistency between the predictions θ̃(P) of
our model and the ground truth elements θ, applied on the input elements I. We thus
want to compute:

arg min
P

L(P , I) (2.1)

where

L(P , I) = ||θ̃(P , I)− θ(I)|| (2.2)

The goal is then to find the set of parameters P that minimizes the objective function
L. This definition implies that machine learning problems can be fully understood as
optimization problems. How to tackle them fully depends on the structure of the input
set I, as well as on how we build our model θ̃ and on how we define the role of the
parameters P .
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Figure 2.1 – Representation of the perceptron (source: Wikipedia). The prediction o is
obtained by applying a nonlinear activation function to the weighted sum (by coefficients
W ) of the input elements i.

Structure of the model

One of the founding works in machine learning algorithm was built as soon as 1957, and
is called the perceptron ([46]). The prediction for the model is first built as the weighted
sum (by coefficients W , predicted by the method) of input elements i. A nonlinear acti-
vation function is then applied. A representation of it is depicted in figure 2.1.

If the perceptron has proven effective on many tasks, to tackle more complex tasks on
relatively high-dimensional data, more sophisticated structures need to be designed. In
the recent years, deeper and much more efficient structures such as neural networks have
been used instead, which require careful optimization algorithms to efficiently learn from
data.

2.1.2 Optimization and backpropagation

This section is devoted to describing the optimization algorithms that are used to
minimize the metrics.
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Figure 2.2 – Illustration of the impact of momentum on gradient dynamics. The yellow
innermost circle represents the minimum of the surface, that we try and reach using 2 types
of gradient descent methods. On the left, using standard gradient descent, the constant
step size makes the function miss the minimum. On the right side, the momentum-based
gradient descent is able to adjust its dynamics to previous steps, and is thus capable of
converging towards the minimum.

2.1.3 Backpropagation and gradient descent

To train neural networks, backpropagation algorithms are used. Gradient backpropaga-
tion consists in computing the gradient of the final metrics as a chain rule of the gradients
of all the layers of the network in a backward fashion until the input. Considering the
problem this way allows us to use gradient descent to minimize the metrics, as long as
every layer and activation function is differentiable.

Gradient descent algorithms rely on the idea to use the gradient of the target function
to update the parameters at every iteration, following the equation:

θ = θ − lr∇L(θ) (2.3)

where θ represents the parameters of the problem, lr the learning rate, and L stands
for the optimization metrics.

2.1.4 Momentum terms

Gradient descent is a powerful algorithm, that still finds its limits when faced with un-
usual data structure. Indeed, on regions close to local minima similar to the one described
in figure 2.2, , the "vanilla" gradient descent cannot easily find the global minimum. For
that reason, a new term, the momentum, is usually added, which is associated with the
previous value of the step size. The momentum term increases when the gradient keeps
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the same direction for several successive steps, and on the contrary is reduced when the
gradient changes directions. This way, it automatically reduces the step value around local
minima, and increases it when it is distant from global minima. This can be mathemati-
cally expressed as:

 mt = β1mt−1 + lr∇L(θ)
θt+1 = θt −mt

where β1 corresponds to the decaying rate and mt is the estimation of the first moment
at iteration t.

A similar expression can be used for the second momentum term, associated with the
variance:

vt = β2vt−1 + lr∇2L(θ) (2.4)

2.1.5 RMSprop

We would like our updates to also depend on the parameters, according to their impor-
tance. The RMSprop algorithm by Geoff Hinton (unpublished) is a good way to achieve
this result. The updates are written as:


E[∇2L(θ)]t = 0.9E[∇2L(θ)]t−1 + 0.1∇2L(θ)
θt+1 = θt − lr√

E[∇2L(θ)]t+ε
∇L(θ)

with ε being a term only used to avoid any zero situation in the numerical computation.

We can note that in this case, the update step is conditioned with the root mean
squared error criterion of the gradient on the considered batch. The learning rate in
RMSprop is then divided with the average of squared gradients, which are themselves
decaying exponentially. This leads to significantly improved convergence.
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2.1.6 The Adam algorithm

The Adam algorithm, first presented in [47], is today the most commonly optimization
algorithm used in deep learning. Its main idea is to combine efficiently momentum-based
convergence with ideas from RMSprop. In their case, they first update the first and second
momentum terms as:

 mt = β1mt−1 + (1− β1)∇L(θ)
vt = β2vt−1 + (1− β2)∇2L(θ)

β1 and β2 are usually chosen close to 1, while mt and vt are usually initialized with
zero values. This naturally leads to a bias towards the zero values for these terms. Bias-
corrected terms m̂t and v̂t for first and second-moment estimates are then computed as:

 m̂t = mt

1−β1

v̂t = vt

1−β2

The final parameter update can then be written as:

θt+1 = θt −
lr√
v̂t + ε

m̂t (2.5)

It has been shown ([48]) that the Adam algorithm was in general the most efficient
for backpropagation in deep learning, notably for image processing tasks. Following this
analysis, we have decided to use the Adam algorithm to optimize the networks in all the
contributions of this thesis.

2.1.7 Convolutional Neural Networks

To tackle view synthesis problems, we use neural networks, for more complex model-
ing, and better data exploitation. These neural networks are built on successive layers;
input to the network will be transformed as it is modified through its passage through
the layers, ultimately giving a prediction. When confronted with data and ground truth
elements during training, the various layers and filters applied throughout the network
will gradually be optimized to minimize the final metrics. Layers that are employed in the
contributions of this thesis will be presented in the subsequent sections.
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Convolutional layers

The key component of such networks is convolutional layers. By passing through such
a layer, the input elements are spatially convolved with a filter, the parameters of which
are estimated during training. Using convolutional filters entails that decisions regarding
one pixel has to take into account the contributions of its spatial neighbors, which is a
natural behavior in imaging; for this reason, such layers are massively employed in the
field. If convolutions are powerful tools, they are nevertheless quite parameter-heavy, in
particular when the input depth grows. Performing this convolution on an input element
of size W × H × D (where W stands for width, H stands for height and D for depth),
using N filters of resolution w × h, we have a computational cost CCcost of:

CCcost = DWHwhN (2.6)

Indeed, we convolve N filters of resolution w× h×D alongside every spatial element (of
resolution W ×H).

Depthwise separable convolutions

Depthwise separable convolutions, first presented in [49], rely on the idea to reduce the
parameter burden of standard convolutions, all while keeping their useful contributions.

The core idea is to factorize a standard convolution into 2 steps:

— first, a depthwise convolution is applied, i.e. one single filter is applied to each
input depth channel.

— Then, as a second step, a pointwise convolution is applied, i.e. a 1 × 1 spatial
convolution is applied, merging the various elements obtained from the depthwise
convolution.

This implies a significant reduction in the computational cost: indeed, performing this
computation on an input element of size W ×H ×D, using N filters of resolution w× h,
we have this time a computational cost CScost of:

CScost = DwhWH +NDWH = DWH(wh+N) (2.7)
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Leading to a computational reduction rate rcomp:

rcomp = CScost
CCcost

= 1
N

+ 1
wh

(2.8)

We can this way quantify rcomp. We note that given that we assume N,w, and h as
integers higher than 1, we always have rcomp ≤ 1, and that this rate gets more significant
as N,w, and h increase. Analyses and comparisons, carried out in [50], have besides
shown that this reduction in computational cost does not usually lead to a significant
loss in performance and efficiency when used in the right framework and architecture.
Depthwise separable convolutions are thus interesting tools to reduce the computational
cost all while keeping high efficiency.

Fully connected layers

Fully connected layers are layers for which every output element is obtained by weighted
summation of all the input elements, and not just spatial neighbors. When applied on an
input element of resolution W ×H ×D, using N filters, it will lead to a computational
cost CfcCost of:

CfcCost = N ×H2 ×W 2 ×D2 (2.9)

It allows to model connections between remote regions of the input unlike convolutional
layers, but to the price of a significantly higher computational cost, given that in general
HW >> hw. For this reason, a classical way to expand the receptive field (i.e. the range of
input pixels that will end up connected in the graph structure) in deep image processing
is to include a succession of convolutional layers instead.

Other layers

Other layers that are also commonly used in this setting include:
— Pooling layers: Pooling layers reduce the resolution of the input element by com-

puting known local transformations between its elements. Max-pooling are, in par-
ticular, interesting when seeking for maximal response, while average-pooling is a
convenient way to smoothen the values while downsampling.

— Upsampling layers: On the contrary, upsampling layers increase the resolution of
the input element by computing a variety of transformations.
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Figure 2.3 – Outline of a GAN architecture

— Concatenating layers can also be a useful tool to highlight information to the
network, or to merge processed information.

2.2 Generative Adversarial Networks

2.2.1 Core idea

Adversarial learning is a specific branch of deep learning, introduced in 2014 by Good-
fellow et al ([51]), that is particularly efficient at reproducing the same statistics as the
training set. In image processing, it can notably be used to produce plausible contents
and textures.

The main idea is to have two neural networks competing with each other in a zero-sum
game, as described in figure 2.3:

— The generator outputs contents, aiming to be as realistic as possible. Its main role
is to fool the other network (the discriminator) into believing the output contents
is ground truth.

— Two propositions are then offered to the other network, the discriminator : the
prediction by the generator and its ground truth equivalent. The role of the dis-
criminator is to distinguish accurately between the ground truth and the prediction.

This indeed builds a zero-sum game: if the generator manages to fool the discriminator,
it has won and the discriminator has lost. If on the other hand the discriminator was able
to classify accurately, the discriminator wins. If the training process of these two meth-
ods is efficient, they are jointly trained, and can gain from the insight of the other network.

One key issue is the convergence stability of such an approach. Indeed, if the generator
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is "too good" and manages to fool the discriminator every time, it has no "incentive" to
improve its performance, and the discriminator is not able to distinguish and to progress,
leading to a totally inefficient training process. This is also true in the reciprocal case of
a "too strong" discriminator.

2.2.2 Mathematical derivation of an adversarial approach

In the original paper introducing GANs ([51]), the metrics behind such a process is
described as:

L = Ex[log(D(x)] + Ez[log(1−D(G(z))] (2.10)

D returns values between 0 and 1, that can be associated with a confidence measure
as to how likely its input is to be plausible. In particular, D(x) accounts for the dis-
criminator decision when real data is sent as input, G(z) is the generator prediction. As
displayed in figure 2.3, x stands for the real data fed to the Discriminator, while z stands
for the random input that is fed to the Generator. The adversarial problem can then be
understood as an optimization problem on this metrics. The generator tries to minimize
it, by guiding D(G(z)) towards 1, while the discriminator tries to maximize it, by pushing
D(x) towards 1 and D(G(z)) towards 0. D and G are alternatively trained to try and
reach this result.

However, GANs are often faced with difficulties in their training. Notably, one key
problem of GAN training is what we call mode collapse: if the generator is able to produce
a very plausible output, the discriminator might never be able to distinguish them, leading
to the absence of efficient training for both networks. In order to improve the training
quality, several ideas have been developed.

2.2.3 Improving the stability of GAN training

Wasserstein loss

One way to fight mode collapse in GANs is to modify the GAN structure, for Wasser-
stein GANs (orWGANs) ([52]). In this case, the discriminator outputs a number assessing
a confidence in the decision (not necessarily between 0 and 1). The point of the discrim-
inator in this case is to output the highest possible number for a real element, and the
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lowest possible one for a generated element. To train a WGAN, two loss functions are
then jointly used:

 Ld = D(x)−D(G(z))
Lg = D(G(z))

where we keep the same notations as in the previous section, and where Ld stands for
the discriminator metrics, and Lg stands for the generator metrics. The discriminator tries
to maximize the discriminator metrics, in order to obtain the highest possible difference
between its assessment of a generated prediction, and its assessment of a real element. At
the same time, the generator tries to maximize the generator metrics, in order to try and
fool the discriminator as much as possible.

Full details and analyses are shown in [52]; the Wasserstein GANs are powerful tools
to improve the convergence quality of GANs.

Spectrally normalized layers

Spectral normalization for layers in Generative Adversarial Networks was first pro-
posed in [53]. The overall idea behind the process is to normalize the spectral norm of the
weight matrices.

The spectral norm of a matrix A can be written as:

σ(A) = maxh:h6=0
||Ah||2
||h||2

= max||h||2≤1||Ah||2 (2.11)

In other words, the spectral norm of a matrix A is the square root of the maximum
eigenvalue of ATA, where AT stands for the conjugate transpose of A. The constraint we
then set for every weight W of the layer is as follows: σ(W ) = 1. In [53], it was shown
that setting this constraint for every layer of the discriminator ensured that the Lipschitz
norm of the discriminator function is bounded from above by 1, as long as the Lipschitz
norm of the activation functions are also bounded by 1 from above. This was shown to
be an efficient way to improve convergence of the overall adversarial approach.
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Figure 2.4 – Global outline of an unfolded Recurrent Neural Network architecture. The
Recurrent Neural Network at his state ht considers as input the element It of the input
sequence [I0, ..., It, ...IN−1], processes it, returns an output ot and communicates informa-
tion C to the next iteration step to update its state. The process is repeated N times (the
length of the sequence).

2.3 Recurrent Neural Networks

2.3.1 Core idea

Recurrent Neural Networks (RNNs) constitute a specific class of neural networks that
can be iteratively applied on a given sequence of inputs. The global outline of a Recurrent
Neural Network architecture is described in figure 2.4.

RNNs are notably interesting for they allow to process efficiently sequences, no matter
their length, with the same weights for every iteration (usually leading to lightweight ar-
chitectures), all while taking into account teachings from every loop to update the weights
of the network. With this strength, they are very commonly used in the fields of speech
recognition and language processing.

The main issues for RNNs are related to their computational time: indeed, when
training and testing a RNN, the same architecture needs to be applied sequentially; no
parallel computation is possible in this case. This naturally leads to a higher computational
time. Another problem that we face when using "standard" RNN is the vanishing gradient
problem. When the gradient backpropagation algorithm goes through many layers, either
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Figure 2.5 – Description of a Long Short-Term Memory architecture. Source: Wikipedia

because the neural network is very deep or either, like in this case, because the layers
are passed through once per iteration, the gradient obtained by multiplying (through the
chain rule) the gradients for every layer can end up being extremely small, notably if the
activation functions outputs values below 1. It significantly reduces the efficiency of the
learning process. To address this issue, the main idea in the literature has been to resort
to LSTMs ([54]).

2.3.2 LSTM

The structure of LSTMs (Long Short-Term Memory) is described in figure 2.5.
LSTMs are made of a cell, an input gate, an output gate and a forget gate. For a

view synthesis application, convolutional LSTMs are particularly used. The convolutional
LSTM equations can be written as:



ft = σg(Wf ∗ xt + Uf ∗ ht−1 + bf )
it = σg(Wi ∗ xt + Ui ∗ ht−1 + bi)
ot = σg(Wo ∗ xt + Uo ∗ ht−1 + bo)
c̃t = tanh(Wc ∗ xt + Uc ∗ ht−1 + bc)
ct = ft.ct−1 + it.c̃t

ht = ot. tanh(ct)

where xt is the input element to the LSTM, ft represents the forget gate, it stands for
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the input gate, ot stands for the output gate, ht is the hidden state vector, c̃t is the cell
input, ct is the cell state, W,U and b respectively stand for the weight matrices and biases
learnt during training, σg stands for the sigmoid function, * represents a convolutional
operation while . designs a Hadamard product.

For every iteration, the LSTM chooses to "forget" elements from previous iterations,
and retains other useful information to update its hidden state. Such a process is a con-
venient way to prevent the vanishing gradient problem, and to make sure that long-term
connections are still taken into account by the method

2.4 Classical architectures

It makes sense, when working in an image processing framework, to consider connec-
tions between spatially neighbouring regions to make decisions. For that reason, classical
architectures for image processing mostly rely on a succession of convolutional layers.

2.4.1 Autoencoder structure

The autoencoder structure is a very common structure in image processing, and is
displayed in figure 2.6. First, in the "encoder" branch, the input goes through a succession
of convolutional layers, in which convolutional filters with a given stride are used. Passing
through such an architecture, the input is processed and downsampled. Adding more con-
volutional layers allows to go deeper in the analysis by seeking for more global connections
within the image. As for the downsampling process, it is carried out for several reasons:

— It allows to reduce the computational cost of these successive convolutional layers.
— It leads the network to compress and select the most relevant spatial data elements

for the task at hand.
In the case of view synthesis, we want the output of the network to have the same

resolution as the input. This is the logic behind the second branch, the "decoder", which
will be tasked with upsampling the result to the original input resolution. It is usually
made by combining convolutional layers with upsampling layers. At the end of these two
branches, we obtain a neural network, which, when it is fed with a given input, returns a
final prediction with the same resolution as the input resolution.

51



Chapter 2 – Deep learning-based view synthesis

Figure 2.6 – An Autoencoder architecture with a 6-layers Encoder and a 6-layers De-
coder. The input is processed with a first Neural Network (the Encoder), in which it is
downsampled and convolved. Then, it is processed and upsampled with a second Neural
Network (the Decoder). To make sure no relevant bit of information is lost in the whole
process, we usually use Skip-Connections, i.e. we concatenate layers from the Encoder
into the Decoder.

Figure 2.7 – The VGG architecture. Source: Wikipedia.

Nevertheless, when downsampling, then upsampling, some information is necessarily
lost along the way. For that reason, we resort to skip-connections: layers that are part of
the "encoder" branch are concatenated with layers of the "decoder" branch, as shown in
figure 2.6. This way, we both have the advantages of the downsampling listed above, all
while losing no bit of information in the process.

2.4.2 The VGG architecture

The VGG architecture is a canonical neural network in image classification, first pro-
posed in [55]. Its architecture is depicted in figure 2.7. It is a very deep neural network that
achieved extremely high performance on the Large Scale Visual Recognition Challenge
2014, and was widely considered as the reference neural network for image processing,
replacing AlexNet ([56]) in this role.

Among its strengths compared with AlexNet, state-of-the-art at the time, we can men-
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tion the resort to more layers with fewer parameters and smaller convolutional filters, as
well as the resort to the ReLU activation function between every layer block.

The results obtained at the time were groundbreaking and led to its widespread use
in most areas of image processing. The network was trained on ImageNet ([56]) for weeks
to get this result, and is a very deep network with over 100M parameters.

2.4.3 The MobileNet architecture

MobileNet ([50]) was designed in 2017 as a response to VGG, building an alternative
with equivalent performance and a much smaller number of parameters, usable in a mo-
bile setting. To achieve this performance, the architecture relies on depthwise separable
convolutions, described in section 2.1.7.

In particular, the authors suggest 4 different MobileNet architectures, depending on
the value of an α hyperparameter, impacting the number of input and output channels
for every layer and thus the number of parameters. In particular, they show that the
approach in its largest configuration (5.2M parameters) is able to compete with VGG
networks (138M parameters).

More recently, in [57], an version 2 of MobileNet was presented, modifying the structure
of the various convolutional blocks to make the overall approach even more efficient with
even fewer parameters.

2.5 View synthesis based on deep learning

The problem of view synthesis can be set as: how can we generate new images corre-
sponding to new viewpoints, given access to input images from specific viewpoints? To
address this issue, many different research processes have been adopted in the past.

2.5.1 Models for view synthesis

In this first section, we are going to discuss the methods, processes and deep learning
layers that have been used to model problems of view synthesis in the recent years.
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Figure 2.8 – Outline of an architecture using a Spatial Transformer Layer. This architec-
ture allows to estimate the optimal parameters for a given spatial transformation coded
in the Spatial Transformer Layer. For instance, coding the Spatial Transformer Layer as
a warping process can allow to estimate disparity in an unsupervised way.

Spatial transformer layers

With the emergence of deep learning as a powerful tool, layers were designed to perform
efficient view synthesis. Among them, a class of modules, called spatial transformer layers,
was introduced in [58]. Spatial transformer layers are differentiable modules, usually with
no extra learnable parameter, applying a specific spatial transformation on their input.
The output Y of a spatial transformer layer ST when applied an input X can then be
usually expressed as:

Y = Tθ(X) (2.12)

where Tθ is a specific spatial transformation, defined by a set of parameters θ.

These layers are a powerful transcription from DIBR methods to deep learning. In-
deed, if we know the set of transformations from the input views to the target view,
adopting such a structure can lead the network to predict the transformation parameters
that optimize the quality of the final image produced, as shown in figure 2.8.

A specific case, that can be used in view synthesis, is to have the transformation T
defined as a translation. In this case, the transformation-related parameters make up a
disparity map or an optical flow that can be used for warping, similar to DIBR methods.
The strength of such methods is to build the new views through accurate geometrical
analysis, all while not having any geometrical information even during training: geometri-
cal information is learnt in an unsupervised way. Furthermore, the image formation model
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Figure 2.9 – Example of a MPI representation for a given scene. For the MPI representa-
tion, parallel planes are placed at some depth (in the figure, 4 deoth planes d1, d2, d3 and
d4). We associate with each one of these planes a couple (α,C). α is the visibility map,
and designates how visible the pixel at this depth level actually is. C is the colormap,
giving the information regarding the color of the pixel.

is rather straightforward.

Spatial Transformer Layers are very commonly used layers in view synthesis: they have
notably been used for frame interpolation in a video setting ([59], [60]), for monocular
view synthesis ([61]), or depth and ego-motion learning from video ([62]).

The main issues for this class of methods are twofold: first, given that it is purely
a transformation of input pixels and input views, it means that occluded regions are
not explicitly processed. Besides, it also means that a small error in the transformation
estimation process can lead to a strong distortion in the finally produced image. Occlusion
estimation and geometrical refining are useful processes to circumvent the associated flaws,
which is one of our objectives in this thesis.

Multi-Plane Imaging

Multiplanes imaging is a way to represent scenes, introduced in [63], and presented in
figure 2.9. The scene is in this case modelled as a set of parallel planes at specific depths.
Every plane in the representation is associated with a couple (α,C). For every plane i, αi
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is the visibility map of the pixels for this specific depth plane, ranging between 0 and 1.
ci stands for the pixel values on this specific depth plane. The final image Î can then be
obtained by using the over operator on all the D layers, as:

Î =
D∑
i=1

ciαi
D∏

j=i+1
(1− αj) (2.13)

The disparity map D̂ can then be obtained as:

D̂ =
D∑
i=1

αi
∏D
j=i+1(1− αj)

di
(2.14)

where di stands for the depth of plane i. The MPI model of a scene is then a collection
of D depth planes (as shown in figure 2.9), each associated with a couple (α,C). This
is a model that is very suitable for handling occlusions, given that pixel and visibility
values for every depth plane have to be estimated. Notably, it was efficiently used for
view extrapolation ([63])), light field view synthesis ([64]) and monocular view synthesis
([65]).

MPI-based predictions have nevertheless the issue of being rather complex structures,
with a lot of elements to predict. When there is a scarcity of training data, it is not always
easy to optimize this entire structure efficiently. And reducing the number of depth planes
D to reduce the complexity of the model is not a solution, given that it forces a simpler
representation of the scene, that is not necessarily accurate.

Plane-Sweep Volumes

Multi-plane imaging methods are often built upon a specific input image processing
step, called Plane Sweep Volumes (or PSV ). The core idea of PSVs is to provide to the
network all possible disparity values for all pixels, so that it selects the best disparity
associated for every pixel. Practically, it is usually performed by sending the method a
sequence of input, that represent the original image shifted towards the direction of the
target view with transformation vectors of increasing magnitude. The network can then
build a pixelwise map for all shifted images, that can be associated with a selection mask
for these pixels at this specific disparity value.
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Figure 2.10 – Description of a Channel Attention Module. The input first goes through
Channelwise Max-Pooling and Average Pooling. The two tensors are then fed to a Multi-
Layer Perceptron. They are then added and a sigmoid function is applied. This way, the
most salient features of every channel is highlighted.

Attention modules

Attention modules are CNN layers and processes that are used to lead the neural
network to focus on the most relevant bit of information within the network. They are
commonly employed in the literature to efficiently tackle a wide variety of tasks in com-
puter vision, such as object detection ([66], [67]), view synthesis ([68]) or face recognition
([69]).

The attention module CBAM (Convolutional Block-Attention Module) employed in the
thesis was first described in [70]. It is built on the combination of two specific attention
modules: a channel-attention module (highlighting the most relevant elements channel-
wise) and a spatial-attention module (highlighting the most relevant elements spatially
across the channels). Attention modules are usually added as a residual block inside the
architecture.

Channel-attention module

The Channel-attention module is described in figure 2.10. The input feature first goes
through both max-pooling and average-pooling spatially to keep only one element channel-
wise. Both are then passed through a Multi-Layer Perceptron, added, and go through a
sigmoid activation function to obtain a Channel Attention mapMc. Multiplying the input
feature with this Channel Attention tensor allows to select the most relevant and signifi-
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Figure 2.11 – Description of a Spatial-Attention Module. The input first goes through
spatial Max-Pooling and Average Pooling; the two outputs are concatenated before being
convolved. A sigmoid is finally applied. The end result is a tensor which highlights the
most salient features spatially, across all channels.

cant channels for further analyses and experiments.

Spatial-attention module

The Spatial-attention module is described in figure 2.11. The input element goes
through both max-pooling and average-pooling once more, but this time channel-wise
to keep only one channel. After using convolutional filters, a sigmoid function is used, to
give a Spatial Attention Map Mc. Multiplying the input feature with this Spatial Atten-
tion tensor allows to select the most relevant and significant spatial regions across the
channels for further analyses and experiments.

2.5.2 Literature on deep learning-based view synthesis

The problem of synthesizing new viewpoints of a given scene is not new by any means.
First techniques for view synthesis (Depth Image Based Rendering or DIBR) mostly relied
on an efficient estimation of the geometry of the scene, and in particular of its depth, in
order to warp new views. The efficiency of such methods is deeply dependent on the qual-
ity of the depth prediction; indeed, a small error in the depth estimation process can lead
to significant distortions in the image finally produced. Besides, such an approach is not
able to handle occluded regions correctly. For that reason, new approaches based on MPI
and a layered description of the scene (as explained in section 2.5.1) were presented and
obtained state-of-the-art results. Due to the specific structure of light fields, other classes
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of methods were also developed to exploit the light field signal in various configurations
(Fourier domain, shearlet domain, or in the epipolar domain).

The analysis carried out in the subsequent sections aims at describing this literature,
first for view synthesis when several input views are fed to the network (multi-view syn-
thesis), then when only one input image is given (monocular view synthesis).

View synthesis from multiple inputs

The method [64] relied on a MPI-based method. The method considers as input ele-
ments 5 images, estimates their MPI, and builds the final full light field by combining the
MPI estimates, guided by the pose estimation process. The results displayed are impres-
sive; the method is nevertheless suboptimal when working with rather small disparities.
Besides, the method is highly dependent on the quality of the pose estimation process, and
a small error in the pose estimation can lead to very significant errors in the end result.
Besides, the method is optimized for a certain number of input views, and cannot be eas-
ily adjusted to a variable number of input views, unlike our method described in chapter 5.

In [71], the authors show a method able to reconstruct light fields by considering their
epipolar structure. A CNN is trained to evaluate the quality of sheared epipolar images.
The EPIs are then merged in order to reconstruct the final light field. The method re-
turns impressive results when working for dense light fields, but its reliance on the epipolar
structure naturally leads to more difficulties when the baseline increases, and in particular
when distance between views becomes significant.

In [72], the authors present a new reference method for light field view synthesis,
from a subset of input views. Two reconstruction modules, one based on pixels and one
based on features, are used in a complementary way to reconstruct the full light field
with high quality. Fusing the information obtained from applying a depth estimator to
the subset of views, the approach is able to obtain significantly better results than state-
of-the-art on light field datasets. If the results of this method are impressive, it is also a
parameter-heavy method, which requires significant training time and parameters, as well
as pretrained networks for depth estimation. Conversely, our methods are usually more
lightweight, more flexible, and require a short training time, and can be trained from
scratch.
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The authors in [73] also address the problem of view synthesis, by first regressing from
a continuous 5D representation of the scene to a volumetric representation with volume
densities and view-dependent colors. This volumetric scene function is then used together
with volume rendering techniques to generate novel light field views.

GANs ([51]) have also been shown to be very useful, e.g. in [74] where an unknown
region is completed with a mix of pixel-wise and adversarial-based predictions, as well as
for video generation [75].

View synthesis from one input

Monocular view synthesis can be defined as the aim to synthesize new viewpoints
when only one image is provided as input. This problem has very interesting potential
applications, but is also significantly ill-posed. Indeed, to generate those new views, the
method needs to understand the geometry of the scene, as well as its semantics. Precisely,
at test time, the elements present in the input image are clearly not sufficient to per-
form this task. As a consequence, the only way to obtain satisfying results is to define
strong data priors that will be used to segment and synthesize the image finally produced.

Monocular depth estimation

Many monocular view synthesis techniques were also built on DIBR methods, meaning
that we can find a clear connection between monocular depth estimation and monocular
view synthesis. The first part of the section will be a non-exhaustive description of meth-
ods aiming at performing depth estimation, given only one single image at test time.

One of the early works in the field was conducted by Saxena et al. ([76]) in 2009. The
results are obtained by segmenting the image into a superpixel structure. From there, they
infer the 3D position and orientation of every superpixel using Markov Random Fields.
This approach brought significant advancements to the research field, but is faced with
the following issue: given that most decisions are carried out locally, it is very difficult to
meet the objectives of global consistency that disparity maps should have.
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As soon as 2014, in [77], Eigen et al. managed to show that neural networks were
powerful tools for this kind of problem. In this work, an architecture was trained to learn
disparity from raw pixels. The method was further improved in more recent articles ([78],
[79]). More recently, in [80], depth estimation from one single image was efficiently tackled
using defocus blur and semantics. These methods work in a supervised way: it is required
to have access to a database of ground truth depth maps to train the network. Conversely,
our method learns disparity in an unsupervised way; it implies that our depth estimation
is likely less efficient, but on the other hand our methods can be trained on more generic
datasets, without requiring ground truth depth maps.

Another whole range of methods can be described as unsupervised depth estimation
methods: they aim at producing depth maps, but do not require any ground truth depth
map for training. In those cases, two or more images of the same scene are usually sent
as input, and depth is obtained from the comparison of these images. One noteworthy
example of it is the work by Godard et al. ([81]), which seeks to generate two dispar-
ity maps from each image in the pair, and adds a consistency metrics to guide the final
prediction. In [82], monocular depth estimation is also performed by means of a combi-
nation of supervised learning on ground truth disparity maps and unsupervised learning
on pairs of images. The disparity maps obtained in both cases are very good quality, but
the approaches are not themselves optimized for view synthesis and are in particular not
able to process occlusions accurately. When working on datasets with significant base-
lines, such as KITTI, disparity gaps and thus occluded regions are significant, this can
drastically change the realism of the final output. Besides, the networks in the field are
usually parameter-heavy, and they are not fit for mobile applications.

View synthesis from one single image

As soon as 1997, the work in [83] dealt with this topic, using a reference method called
TIP (Tour Into the Picture). In this method, the data priors are directly specified by the
user: given an input image, the user is requested to add a fitting vanishing point for the
perspective, as well as a mask specifying which pixels belong to the background, and which
ones belong to the foreground. Furthermore, the user also needs to model the background
and foreground scenes with a collection of simple polygons. The methods leads to good
results, but it is obviously very much restricted by the need to have user input. Unlike
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this one, the methods we have designed in this thesis are automatically able to process
the image to perform view synthesis without requiring any human interaction.

Another work for monocular view synthesis was presented in 2005 in [84]. This method
handles this time the problem in a fully automatic way. To accomplish this task, every
image is assumed to be built from a single ground plane, elements sticking out and the
sky. Through this representation, every pixel is going to be associated with one of the
"ground", "vertical" or "sky" categories, and the horizon line can also be estimated. The
classification is carried out using decision trees, by keeping labels constant in the various
superpixels of the image. Thus, the algorithm can in the end return a "pop-up" version of
the picture. The method is an automatic take on the challenging problem of monocular
view synthesis, and returns interesting results. Still, the representation of the image is
obviously fairly restricted, and is severely constrained to a certain type of image. Besides,
many unpleasant artifacts are present as soon as the images slightly deviate from the
chosen representation model.

The emergence of deep learning as a powerful tool for computer vision clearly was, for
this specific task, a game changer. The hardest part of methods before then was the priors
definition. Indeed, how is it possible to handcraft priors that will be as generic and as
efficient as possible? Deep learning-based methods are in this regard attractive candidates
to address the issue. Thanks to deep learning, the required priors can indeed be directly
inferred from data, and do not need to be handcrafted or explicitly modelled. This way,
more complex and more accurate scene representations can be learnt.

In this regard, the work by Kulkarni et al. in 2015 ([85]) was a noteworthy step for-
ward. In this paper, the authors present what they call the DC-IGN (Deep Convolution
Inverse Graphics Network), a model that is able to learn a specific representation of im-
ages. In particular, when given an input image of faces or 3D objects, the method is able
to return a prediction of its appearance should it be perceived from a different viewpoint.
To achieve such a result, the method relies on an encoder-decoder architecture. By pass-
ing the input image through the encoder, a "code group" is obtained, coding for scene
latent variables, such as pose, light, texture or shape. At test time, modifying the value
of the latent variables allows to generate new viewpoints from different poses or shapes.
New views are efficiently synthesized using this approach and the ability to modify the
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latent variables even at test time give significant interest to the approach; but it is still
somewhat restricted to relatively simple datasets. Besides, the range of transformations
that can be performed are mostly rotations with a slight angle.

Another related method was presented in [86]. The objective of this work is to syn-
thesize new viewpoints of the input 3D object or input scene. In this case, the pixels are
not learnt from scratch, but are copied from the input image. Notably, a 2-dimensional
vector called appearance flow is predicted, to decide which pixels should be copied from
input. The approach displays positive visual results, which were clearly state-of-the-art at
the time of publishing. One of its limits is though the fact that all pixels are copied from
the input image, meaning that occluded regions are not processed by the approach. Plus,
the approach is very efficient at processing new viewpoints of 3D objects, but encounters
more difficulties when processing natural images.

An iteration over this work was shown in [87], which is devoted to novel view synthesis,
i.e. synthesizing a target image with an arbitrary camera pose, sent as a 6 degree of free-
dom vector, and input by the user. In particular, the model is built on the combination of a
flow prediction module, copying existing pixels, and a pixel generation module, hallucinat-
ing missing pixels, by the means of a computed confidence measure. The approach is able
to work from one single image, but is particularly interesting in its ability to aggregate
more information and views for the analysis. Most efforts in the article are notably devoted
to making this aggregation as useful and efficient as possible. Conversely, our method is
specifically focused on the monocular case, and makes design choices that particularly try
to take into account the scarcity of information available during training; the methods
are built with a different philosophy in mind. Besides, their method returns impressive
results within a specific range of transformations, present in the training data, and in
particular when several images are sent as input. The method struggles when the target
image is obtained thanks to a category of transformation absent from the training set.
Besides, the network described in the method relies on a significant number of parameters.

In [88], the problem of novel view synthesis from a single image is once more tackled
through homography estimation. Indeed, the scene is modelled in this case with a fixed
number of planes. Then, homographies are predicted to model the transformation into the
target view. The article presents vastly improved results when compared with previous

63



Chapter 2 – Deep learning-based view synthesis

methods, but blur and artifacts are still present when working on natural images, notably
in the stereo case. Besides, the method considers a pre-trained depth estimator for full
efficiency, which implies the presence and availability of ground truth depth maps, which
is uncommon when working with natural images. Besides, it also means that when chang-
ing training dataset, this depth estimator also needs to be re-trained, which drastically
increases the training time. Our methods are more flexible, and can be quickly re-adjusted
(with a training time ≤ 1 day) to new data if required.

Interesting works were also more specifically carried out in a stereo setting. Among
them, the pioneering and reference method Deep3D ([89]) was presented in 2016. At train-
ing time, the method takes input pairs of stereo images, and produces a right-side view
whenever an image is sent as input. Learning is carried out through the means of a proba-
bilistic disparity map. The approach is efficient, but still has several drawbacks, including
the inability to explicitly handle occluded regions, and its high number of parameters
(about 60 million for a wide baseline and a 256 × 512 image), especially when the input
is high resolution. Besides, the approach is not really scalable, since the size of elements
of the architecture both depends on the input resolution and the target disparity range.

In [61], Cun et al. also deployed a method for monocular view generation, relying on
a pre-trained depth estimator, allowing to obtain good results. Yet, the occlusions are
not handled explicitly in the approach, leading to the conclusion that on sparse datasets,
the method encounters difficulties; in particular, the presented method mostly focuses
on multi-view dense datasets, in which disparities remain small. On the other hand, the
methods described in this thesis are capable of explicitly process occlusions.

In [90], the authors deploy a method for light field generation from one single view,
using a 2-stage learning process: by estimating geometry first, and then proceeding with
occluded rays estimation. To build its prediction, the method learns the epipolar con-
straints on light fields to be able to replicate them. The method is an extremely interesting
take on the subject, but remains limited with simple settings with very strong similarities
(such as flower images). Besides, the resort to respecting the epipolar constraint implies
that the method is clearly not optimized for high-disparity or stereo contents: in partic-
ular, the method mostly relies on the aggregation and check for consistency between the
various input views during training. The architecture then requires a significant number
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of input views and information during training; conversely, our method only requires 2
input images during training to output significant results.

The authors in [91] also utilize an appearance flow and spatio-angular consistent loss
functions and show that their model can produce novel views of good quality in the case
of densely sampled light fields as those captured by Lytro Illum cameras.

We can also cite the approach in [92] which converts a RGB-D input image into a
layered depth image (LDI) representation with explicit pixel connectivity. The authors
then use a learning-based inpainting model to synthesize content in the occluded regions.
While the addressed problem has some similarities with the work presented in this thesis,
in particular concerning occlusion handling, the authors assume a RGB-D input image
while we consider a simple RGB input image.

The problem of light field view synthesis from one single image has also been recently
addressed in [65] where the authors first construct a MPI representation from the input
image, and then warp this MPI to generate new light field viewpoints. While this ap-
proach gives today state-of-the-art results, the network is quite heavy (around 47 million
parameters). Besides, when the amount of input training data is scarce, the performance
of the method tends to be sub optimal.

MPI-based approaches correspond to a certain problem modelling imposing the defi-
nition of a significant number of depth planes, that have their color and visibility maps
defined by the network. Given we usually have access to no prior information regarding
the data, the general way forward is to hypothesize a constant distance between depth
planes. This is suboptimal; depending on the contents of the scene, it would be beneficial
to have more depth planes for some depth ranges with more contents, and fewer depth
planes in empty ranges.

To address this issue, a monocular approach ([93]) was proposed, in a work, ulterior
to our own publications. It aims at estimating the full light field from one single image.
To do so, it relies on a Variable Multi-Plane Imaging. As an input to the network, one
image is sent, associated with a depth prediction. The analysis of the depth map gives
insight as to which depth values are the most represented within the scene. Thanks to
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this analysis, the authors are able to decide the sampling of the MPI to have a better
scene representation. Furthermore, the method reconstructs the scene by combining 2
MPI-based networks, one devoted to visible pixels, and one devoted to occluded regions.
The end result is impressive, and is a valuable step forward for the problem of monocular
view synthesis. It nevertheless requires a pre-trained depth estimator, given that an esti-
mated depth map of the scene is necessary for making the approach efficient.

In the monocular case, specific methods have also been used to tackle specifically oc-
cluded regions. MPI-based methods are an efficient way to tackle the problem, but other
classes of methods have also been proposed.

Notably, in [94], Park et al. use a specific encoder-decoder network aiming at handling
the occluded regions. This approach yields impressive results, but the occluded regions
are not automatically identified by the network; they need to be given as ground truth
occlusion maps during the training process. This implies that ground truth occlusion
maps need to be easily accessible during training, which is uncommon when working with
natural images, and restricts the number of training datasets that can actually be used.

Tulsiani et al. in [95] also predict the disoccluded pixels from the image they produce.
To achieve this task, they use a DispNet architecture (of around 40M parameters) and
a 2-layer-based view synthesis process so as to capture both the visible points and the
occluded regions. It builds the estimation from a LDI structure, with a very convincing
handling of the occlusions. Such a structure nevertheless comes with limits: the approach
can only process occlusions inside the image, and not at the boundary, forcing the input
image to be cropped. Besides, the splatting process to generate the new image imposes
to halve the output resolution and leads to very significant artifacts in the image finally
produced. Conversely, our methods are lighter in terms of parameters, able to handle
boundary regions, and to keep input resolution in the final output.

Note that GANs have also been used in [96] to synthesize a light field from one single
image, however the problem is posed as a problem of image super-resolution and the
solution is therefore based on image super-resolution approaches.
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Chapter 3

MONOCULAR VIEW SYNTHESIS FOR

STEREO OUTPUT

Figure 3.1 – Results of our approach on 3 examples from the KITTI test set. From top to
bottom: input to the network, ground truth image, prediction carried out by the network,
l1 error, estimated disparity map.

3.1 Introduction

Being able to synthesize new viewpoints for a given scene is a classical objective in
computer vision, and it has been the subject of intense research over the past two decades.
Most approaches for this task ([97], [41], [98], [99]) seek to generate those new views from
multiple input frames of the scene. By contrast, synthesizing new viewpoints when given
only one input image is a more challenging problem, which has garnered less attention
from the vision community.
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Yet, techniques aiming at generating new views from one single image can have very
useful applications. First, they naturally entail a better understanding of the 3D scene
from one image, which is crucial for 3D reconstruction. Besides, the past advancements
and predicted developments in the coming years of multi-view formats, such as 3D, VR
or light field contents, give a significant importance to these techniques. They can indeed
be seen as an efficient way to compress these memory-consuming formats. Since more and
more of these contents are consumed on mobile devices, it could also prove to be very
beneficial for the related methods to be as computationally efficient and lightweight as
possible.

Even though research on the subject is not new by any means ([83], [84]), the emer-
gence of machine-learning based methods in the recent years has dramatically changed
the prospects of the field; indeed, due to the significantly ill-posed nature of the problem,
they can be especially relevant. In particular, neural networks permitted several major
breakthroughs in the field of computer vision in the recent years, and they are thus tools
that we prioritize for this kind of problem.

Several recent works have managed to obtain results for monocular view synthesis
using deep learning techniques ([89], [61]). They often rely on a geometrical estimation
of the scene from the given image, through the prediction of the pixelwise flow between
the input image and the ground truth image at training time. Most of these methods are
very parameter-heavy, have a hard time handling synthesis in tricky areas (occlusions,
non-Lambertian surfaces,...), and capturing accurately the global structures of the image.
Methods were proposed to complete the geometrical analysis with occlusion processing
([94], [88]), but most of them either are not able to process natural images yet, or require
ground truth occlusion maps in the training set, which makes a generalization to more
diverse data elements complicated.

In this chapter, we present a lightweight architecture able to perform view synthesis
with occlusion handling in a stereo context, from one single, unlabelled and unannotated
image, beyond state-of-the-art performance. Besides, it only requires a small amount of
data for training. In particular, it is able, at training and at test time, to estimate the
disparity map corresponding to the problem at hand, and to evaluate a confidence in its
prediction when using the estimated disparity map for the synthesis. Knowing this con-
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fidence measure, it is then able to refine the value of the pixels wrongly estimated, with
a refinement network. The end result is a prediction built from a geometrical analysis of
the scene, which is filled in wrongly predicted areas using a occlusion handling technique.
Since 3D scene information is extracted in the course of the analysis, multiple new views
can then be generated by interpolation. The architecture is composed of three compo-
nents, a Disparity-Based Predictor (DBP), a Refiner (REF) and a Confidence-Based
Merger (CBM).

We show the efficiency of our approach by notably applying it on the challenging, wide-
baseline stereo dataset KITTI ([100], [101], [102]), with convincing and realistic-looking
results for our synthesized images. We show that our method visually and metric-wise
outperforms the state-of-the-art methods Deep3D ([89]) and [81] on stereo view gener-
ation, while having far fewer parameters (around 6M). We also show that it is able to
perform view synthesis accurately even for scenes with large occluded regions, with no
requirement to have any ground truth occlusion map for the training. Besides, it is also
scalable, and can be applied efficiently on images of various resolutions. The source code
as well as the trained network are publicly available.

In summary, our contributions are:
— An architecture able to outperform state-of-the-art monocular stereo view synthesis

approaches, with a number of parameters reduced by an order of magnitude (5 to
10 times when compared with state-of-the-art methods in the field).

— A way of handling occlusions in a monocular setting through the learning of
forward-backward consistency.

— A training schedule in 3 steps, which is key to guiding the output towards a good
prediction in spite of the relatively reduced number of parameters.

— A scalable architecture, that can be applied to images of various resolutions, and
that can naturally interpolate a set of high-quality views in-between the input view
and the stereo predicted one.

3.2 Relevance of the problem

The starting point for this contribution was to study the field of monocular view
synthesis. We decided to study this domain in particular for several reasons:
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— We were interested in developing a method with a low barrier of entry for the user
at test time. Capturing one image is very easy, in particular with the widespread
presence of cameras in phones, and we wanted to design a method that could be
used easily, quickly and practically by a random user from this simple experience.
Monocular view synthesis was then in this framework an interesting research field.

— We were also interested in working on a problem that had to rely on deep learning
methods as solutions. Indeed, methods based on monocular view synthesis require
image understanding and segmentation from only one image, and can thus hardly
be processed without resorting to data-driven methods. We were thus interested in
using deep learning for a class of problems where alternatives to deep learning could
clearly not compete in any way. Monocular view synthesis was then an interesting
field in that regard.

— We also wanted to develop an approach that would have to draw as much infor-
mation as possible from a minimal amount of available input data. Here, from one
image, the method is able to return new views produced within a given range, a
depth prediction, as well as a confidence in its own prediction. We felt like this
task of producing all these information from one image only at test time was an
interesting problem to tackle, from a learning perspective.

— Finally, we were interested in studying this problem all while having as few param-
eters as possible. We wanted to optimize an architecture for a tricky, ill-posed and
difficult learning-based problem, that would be as lightweight as possible.

From these objectives, we drew more conclusions. First, in spite of the limitations
of monocular-based methods, we wanted the method to be semantically as generic as
possible. It is out-of-reach today to have one global network that could tackle this task
with all semantics and geometric configurations, but we felt it was important to evaluate
the method in real-life situations. For that reason, we trained our method on 3 different
datasets and semantics. We also evaluated the network trained on automatic driving, on
other datasets, as well as on natural images captured using a smartphone.

But genericity has its limits. So, we also wanted to design a method that could ad-
just quickly, by adapting to various, relatively small datasets during training in a short
amount of time. This way, a user could fine-tune or retrain the method quickly on the new
semantics and data type, using a relatively small number of input training elements. For
that reason, we prioritised datasets, when possible, with several hundreds of images at
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most; and we also made sure our training process only relied on pairs of images, and did
not require complex ground truth elements to build, such as depth maps, or annotations.

The method described in this chapter was built to address these issues the best way
possible, and the goals that were just set may help understanding design choices that were
made throughout the contribution.

3.3 Preliminary research experiments

3.3.1 Image quality assessment

Once we have decided to work on monocular view synthesis, one question stands: how
can we actually evaluate and assess the quality of an image? This is a tricky question,
that is an ongoing research field. Following the literature and our own experiments, we
decided to use 3 image metrics to evaluate our results throughout this work.

PSNR

The PSNR (Peak Signal to Noise Ratio) is a metrics used within the framework of
view synthesis, in most works ([60], [59]). It measures the pixelwise distance between two
images with the following expression:

PSNR = 10 log10(
d2

MSE
) (3.1)

where d is the color range of the pixels in the given image, and MSE stands for the
mean square error.

The PSNR is a useful metrics to evaluate the faithfulness of our image compared with
one ground truth element. Given that it is a pixelwise measure, it is not able to evaluate
as a whole the reconstruction quality of the image and can only express a local distance
between equivalent pixels. For the PSNR, the higher, the better.

SSIM

To address the concerns of a too local image metrics, we also decide to use SSIM
(Structural Similarity) throughout this thesis (introduced in [103]). The key idea of such
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an image metrics is, instead of having a pixelwise comparison, to have a measure of the
structural similarity between two images. The SSIM metrics is computed on sliding win-
dows X and Y applied on the images, and for every window, has the following expression:

SSIM(X, Y ) = (2µXµY + c1)(2σXσY + c2)(covXY + c3)
(µ2

X + µ2
Y + c1)(σ2

X + σ2
Y + c2)(σXσY + c3)

(3.2)

where µX , µY stand for the means of X and Y, σ2
X , σ

2
Y stand for their variance, and

covXY their covariance, and c1, c2, c3 three variables. This metrics performs a block-wise
comparison between two images, which allows to have a more global assessment of image
quality. For SSIM, the higher, the better.

Throughout this thesis, we have noticed that PSNR and SSIM were particularly rel-
evant image metrics for comparing generated views of already high quality. When the
image synthesis task gets more difficult, we can assume the best way to evaluate image
quality is through its perceptual quality, and not through pixelwise and blockwise com-
parisons. For that reason, we decide to resort, in particular when we know the problem
to be very difficult, to a perceptual metrics, LPIPS. For the SSIM, the higher, the better.

LPIPS

LPIPS (Learned Perceptual Image Patch Similarity), is a deep feature based metrics,
trained to efficiently evaluate the perceptual quality of an image. It has been shown in
our own analyses and experiments, as well as in works from the literature ([104]) that
such a metrics was more efficient to evaluate the perceptual quality of an image, through
a distance metrics to be minimized. We have noticed in particular that when working for
very challenging problems where it is difficult to have a very good reconstruction quality,
LPIPS was a better metrics, given it also evaluates how likely and realistic the image
finally produced is. For the LPIPS, the lower, the better.

We can perform an analysis from figure 3.2, which displays one ground truth element
(GT ) as well as 2 predictions (P1 and P2) carried out. Naturally, one would be inclined
to favour P2, because even with its flaws, it is a more realistic-looking image. Comparing
PSNRs, we nevertheless notice that PSNR(P1, GT ) = 18.39 > PSNR(P2, GT ) = 18.11,
while the image quality of P1 is drastically lower. We draw the conclusion that in those
circumstances, the PSNR might not be the best metrics to evaluate image quality. Eval-
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Figure 3.2 – An example to illustrate the relevance of using the LPIPS metrics when
working on challenging problems such as monocular view synthesis. From left to right:
ground truth element and respectively predictions P1 and P2.

uating those two predictions with LPIPS, we notice that we have a significantly higher
LPIPS for P1 comparison than for P2 comparison: 0.326 vs 0.126, showing efficiently
that P2 is a better prediction. We notice then that LPIPS seems to be a much more
fitting metrics for evaluating image quality, in particular when the task of view synthesis
is challenging.

Nevertheless, just sending the untransformed input image as prediction returns a
LPIPS of 0.255, which is a better result than our P1 prediction. It implies that LPIPS
does not evaluate completely efficiently the accuracy of the prediction, and clearly prior-
izes the quality of the produced image. Given that we want for this challenging task to
have both images as faithful as possible to the ground truth elements, and with the best
reconstruction quality, we want to be able to increase, as much as possible, both PSNR
(faithfulness) and LPIPS (image quality).

We have noted, though, that the disagreement between the two metrics mostly took
place when the problem was really challenging, and was clearly not as pronounced when
the views produced were higher quality. For that reason, throughout the thesis, we have
used LPIPS (with PSNR and SSIM) as a reference metrics when working on particularly
challenging problems, such as monocular view synthesis on tricky datasets, but have only
relied on PSNR and SSIM for problems which had easier high-quality solutions.
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3.3.2 Choosing the colorspace

Another set of experiments aimed at defining which colorspace to choose for this work.
The standard choice is to use the RGB colorspace for image-related applications, but we
wanted to evaluate whether other, more perceptual colorspaces such as HSV or CIELab*
could prove to be more interesting.

HSV (Hue Saturation Value) is a colorspace decomposed into 3 different channels
(HSV) than RGB. The first channel (hue) H codes for the color as an angular value. This
allows to make sure that distance between colors are closer to actual perception than in
the RGB colorspace. Saturation S (2nd channel) stands for color intensity, while value V
(3rd channel) stands for color brightness (those two channels ranging from 0 to 100 value-
wise). Due to the non-continuity of the hue channel, we instead consider in our analysis
a 4-channel input with (cos(H), sin(H), S, V).

The CIE L*a*b* is a colorspace that also aims at proposing a color scale closer to
human perception. It is also built from 3 channels, L*, ranging from 0 to 100 (on a black-
white axis), a* representing the intensity on a green-red axis and finally b* representing
the intensity on a blue-yellow axis.

Our analyses have shown that it seemed beneficial to use the RGB colorspace. First,
given that most existing approaches rely on the RGB colorspace, keeping the same col-
orspace allows to directly re-use pre-trained weights or approaches in our framework. For
this reason, the RGB colorspace already has a significant advantage over using other col-
orspaces.

More importantly, we significantly failed to reach equivalent performance when work-
ing with non-RGB datasets. We hypothesize several reasons for it:

— RGB data seems to be an efficient and "natural" colorspace for image representation
and processing.

— Having a colorspace in which the 3 channels code for the same nature of informa-
tion, and with the same range (when unnormalized) seems to be beneficial for the
training process. Re-normalizing information from HSV or CIELab colorspaces to
make sure they belong to the same range did not seem to help.
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3.3.3 Defining the architecture of the Disparity-Based Predictor

Another important question we decided to address was related to the architecture of
our Disparity-Based Predictor, which performs the first estimation by estimating a depth
map. The architecture has in the end a Spatial Transformer Layer ([58]) with a transla-
tion, and we were interested in finding which architecture backbone could be the most
useful for this task.

We first studied and reimplemented the work presented in [60]. The method aims at
performing video frame interpolation given 2 input images. The method relies in particu-
lar on the succession of several scales within the network to address the problem. Through
the aggregation of these different scales, the method is able to process the task efficiently
with a relatively low number of parameters (see figure 3.3). We were interested in eval-
uating whether or not the architecture presented in the article could be easily extended
to our problem. In this work, we show the results for two cases: the one-scale example,
and the 7-scales example, where up to 7 successive scales are employed to produce the
final image. A multiscale approach is in this setting equivalent to using several times our
approach on gradually upsampled input.

We also evaluated the efficiency of MobileNet architectures ([50]), for various α values,
given that these architectures are presented as efficient tools to perform various imaging-
related tasks with a reduced number of parameters. We also checked a more recent version
of MobileNet, MobileNet 2.0 ([57]), to see whether it was fit for our problem, as well as a
more classical VGG16 architecture ([55]). These architectures are meant for image classi-
fication; each time, we build the architecture as an autoencoder structure, with a decoder
built as the symmetrical counterpart to the encoder. We systematically train our network
on the KITTI dataset ([100]) and evaluate it in this analysis on the corresponding test
set. We use for every encoder architecture pre-trained weights on the ImageNet dataset
([105]). We use for all networks the same metrics, made up of 80 % of a pixelwise metrics,
and of 20 % of a gradient-based metrics (difference between gradient values). We also
resort to similar data augmentation for every method. What we are showing here is the
metric values obtained when using such architectures, followed by a Spatial Transformer
Layer, in order to warp our image prediction on the KITTI test set. We perform this
analysis in the present document in order to justify the choice of our architecture. We
present analyses on the test set to make sure the evaluation process is consistently carried
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Figure 3.3 – Outline of the architecture defined in [60]

out on the same data for better comparison throughout the chapter.
The numerical results are shown in table 3.1, and some visual results are shown in

figure 3.4.

We can note that metric-wise, the resort to a MobileNet 1.0 architecture seems to
return the best results for our problem, with slight improvement in PSNR, and a good
value of SSIM. More importantly, we can note that in LPIPS, the improvement using
MobileNet 1.0 over other architectures is more significant. Besides, taking a look at the
visual results, we note that MobileNet 1.0 seems to produce images with the best un-
derstanding of depth and geometry from the scene. This analysis justifies the resort to
MobileNet 1.0 as the backbone for our architecture. It should be noted that we validated
the architecture choice during the thesis by evaluating the performance of these various
architectures on our chosen validation set. On the validation set, we had obtained a slight
advantage for VGG16, but ended up choosing MobileNet 1.0 anyway due to its far more
reduced number of parameters.
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Figure 3.4 – From left to right: ground truth image, prediction and predicted depth map.
For, respectively from top to bottom: [60] 1 scale, [60] 7 scales, MobileNet 0.25, MobileNet
0.5, MobileNet 0.75, MobileNet 1.0, VGG16, MobileNet 2.0. We note that MobileNet 1.0
(6th column) provides with the best depth estimation (before any further refinement) and
the best visual result of all.
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KITTI PSNR SSIM LPIPS
[60] (1 scale) 15.70 0.64 0.217
[60] (7 scales) 16.79 0.68 0.188
MobileNet 0.25 18.00 0.71 0.162
MobileNet 0.5 18.34 0.72 0.154
MobileNet 0.75 18.55 0.72 0.148
MobileNet 1.0 18.76 0.72 0.144

VGG16 18.44 0.72 0.150
MobileNet 2.0 17.95 0.71 0.157

Table 3.1 – Numerical comparison of the values obtained on KITTI for warping from
several architectures for depth estimation. We can note that MobileNet 1.0 outperforms all
other chosen reference architectures for our problem. Besides, due to its lightweightedness,
it seems to be the network to favour to tackle this task.

3.3.4 Using a pre-trained depth estimator?

Instead of re-training a depth estimator from scratch, we have also pondered using a
pre-trained depth estimator to tackle this problem. From this idea, we have drawn the
following analysis:

— We want the method to be able to adjust quickly to diverse datasets and seman-
tics through training; in particular, we want our method to be able to work on
datasets when we only have access to 2 images, and no complex ground truth el-
ement to build. For that reason, we only consider unsupervised depth estimators:
neural networks that can estimate depth without requiring any ground truth depth
element. Setting this constraint for our method allows us to use the method in a
more generic way

— One constraint we have also set ourselves is to have a short training time for our
method. We are in particular interested in methods that converge quickly towards
the result. We also want the method to be as lightweight as possible, implying
that the depth estimator also needs to respect this constraint. De facto, this means
that we are not interested in using some of the state-of-the-art methods in depth
estimation, given some are very parameter-heavy. Plus, they lack total generality,
meaning they would need to be retrained or at least fine-tuned to be efficient in
the setting we are interested in, with long training times in some cases. This adds
significant constraints to our depth estimator, which are not easy to reconcile with
the use of a pre-trained depth estimator.

— We have evaluated in table 3.2, for view synthesis, the positive contribution of using
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KITTI PSNR SSIM LPIPS
MobileNet 1.0 18.76 0.72 0.144

[81] 18.44 0.71 0.148

Table 3.2 – Numerical comparison of the view synthesis performance values, with prior
depth estimation with [81] and without prior depth estimation, but using the view pre-
dictor based on MobileNet 1.0, both trained on KITTI. For evaluation, the method [81]
was obtained from the available network provided by the authors, and fine-tuned on our
own split. We can note that this evaluation process may lead to overrated results for [81],
and that in spite of this possible bias, our architecture is able to outperform it.

a pre-trained depth estimator instead of using a network trained "from scratch".
In other words, what we evaluate is the comparison between using our depth-
based predictor when the encoder weights are pre-trained on ImageNet, and using
a then-state-of-the-art approach for monocular depth estimation already trained
on KITTI, [81]. We can then note that for pure view synthesis, using a "trained
from scratch" architecture does not lead to a decrease in performance when com-
pared with pre-trained depth estimators. This can be explained by the fact that
the targets of the two approaches are notably different; if the pre-trained depth
estimator is clearly optimized for depth estimation (which is not our primary goal),
we optimize our networks for novel view synthesis. Given that the difference in per-
formance does not seem significant, that using a MobileNet architecture requires in
our case a short training time, a relatively reduced number of parameters,favouring
the design of an estimator "trained from scratch" seems like a good choice.

3.3.5 Pre-trained weights on ImageNet?

Another question that may come to mind is related to the benefits of pre-training the
encoder weights on ImageNet. The first benefit we gain from it is the training time to
reach convergence, considerably shorter when weights are pre-trained on ImageNet (a few
hours for pre-trained weigths, while the method usually takes one or two days to reach
convergence otherwise). This is useful because it means that our method is able to adapt
to new data elements quickly. Besides, performance-wise, as shown in figure 3.5 and in
table 3.3, we have a clear benefit in pre-training these weights on ImageNet. Interestingly,
we notice a particular improvement in LPIPS when pre-training the weights, showing the
perceptual benefits of the process.
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KITTI PSNR SSIM LPIPS
Pre-trained weights on ImageNet 18.76 0.72 0.144

Training from scratch 18.11 0.72 0.156

Table 3.3 – Evaluating the benefits of using pre-trained encoder weights on ImageNet for
our network. We notice that pre-training the encoder weights leads to a higher PSNR.
More importantly, we notice we have a significant reduction in LPIPS, due to the increase
in perceptual information coming with pre-training.

Figure 3.5 – Evaluating the relevance of pre-training the encoder weights on ImageNet
(from left to right: ground truth image, prediction, estimated depth map; top row: no
pre-training, bottom row: ImageNet pre-training). We notice we have a better scene rep-
resentation when the weights actually go through this pre-training process.

3.4 Notations

— L, R: left and right ground truth images.
— LDBP , RDBP : left and right DBP-based predictions.
— LREF , RREF : left and right REF-based predictions.
— L∗, R∗: left and right final predictions.
— dLR, dRL: estimated disparity map for left-to-right (respectively right-to-left) view
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Figure 3.6 – Graph of the overall structure of our approach. Dark red blocks represent
DBP, the blue block represents REF, and the green block CBM.

synthesis.
— CLR, CRL: confidence depth maps for left-to-right (respectively right-to-left) view

synthesis as obtained by the network from the disparity estimations, only computed
during training.

— VLR, VRL: estimated confidence depth maps for left-to-right (respectively right-to-
left) view synthesis, as estimated by the network from CLR and CRL, so as to be
used at test time.

3.5 Description of the method

In this chapter, we introduce an end-to-end differentiable approach for monocular view
generation, able to synthesize new viewpoints from one single image. The work is per-
formed in a stereo setting, meaning that the training dataset is made up of stereo pairs,
with a significant disparity gap between them. Before delving into the in-depth description
of every component, and into the way the learning proceeds, let us first focus on the overall
structure of our approach, which is also depicted in figure 3.6. The exact architecture of
every component (with number of filters, kernel sizes, strides for every single layer enumer-
ated) is shown on http://clim.inria.fr/research/MonocularSynthesis/monocular.
html.
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3.5.1 Overall structure

The architecture can be decomposed into 3 main component networks (more details
are given in their specific sections):

— The Disparity-based Predictor (DBP), which seeks to estimate the disparity
map between the two images at training time, by learning to warp one image from
the pair onto the other viewpoint. This gives us a first prediction based on disparity
map estimation. Yet, this prediction is not able to handle occlusions, and is prone
to errors since the global structure of the image can hardly be captured by this
pixelwise estimation.

— The Refiner (REF) seeks to enhance the DBP-based prediction by means of fil-
tering. Since the main objective of this network is to cope with the flaws of the
disparity-based prediction, the intuition is that it will be important for the areas
that cannot be matched by disparity and for which significant information is miss-
ing at test time, such as occluded areas. The role of this network is essentially to
provide a realistic and plausible output in these regions.

— The Confidence-Based Merger (CBM) learns the best way to combine the
two complementary predictions obtained by DBP and REF, in order to obtain a
good-quality final view.

Since many of these elements are actually interrelated, the learning schedule is key to
guaranteeing the stability and efficiency of the approach.

3.5.2 Disparity-based Predictor (DBP)

First, we want to learn how to generate a disparity map from one given image, and
then use it to predict the new view by warping the input view. We want to make sure
that at test time, it can be done automatically using only one input image.

To do so, we consider a convolutional neural network, in which the last layer is a
spatial transformer layer ([58]).
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Learning architecture

The learning architecture is built as an encoder-decoder structure, with skip-connections
so that no information is lost in the downsampling part of the encoder. The intuition be-
hind this architecture is to consider the encoder part of the network as a feature extractor
from the input, and the decoder part as a section which processes these features to gen-
erate the actual disparity map.

Following the analysis from section 3.3.3, the encoder is made of a MobileNet 1.0
architecture ([50]), where the last layers devoted to classification have been removed.
The MobileNet networks are a class of lightweight neural networks which, despite their
low number of parameters, are able to compete with most state-of-the-art approaches in
image classification. They are characterized by the replacement of standard convolution
filters within the network with a succession of depthwise convolutional filters and 1 × 1
pointwise convolution filters. This allows to greatly reduce the number of parameters at
hand, all while maintaining a high number of feature maps. The architecture is made up
of 13 successive -convolution 1 × 1, depthwise convolution 3 × 3- blocks with a gradually
increasing number of filters at every block. We also initialize the weights of the encoder
with pre-trained weights on ImageNet ([105]). Initializing the encoder with pre-trained
weights mirrors the fact that this part of the architecture is devoted to feature extraction.
As stated in section 3.3.4, we found that it brought major improvements when compared
with random initialization.

We then simply design the decoder as a symmetrical counterpart to the encoder, with
5 blocks, where every block is in this case -depthwise convolution 3 × 3, convolution 1
× 1, upsampling of 2, skip-connection-. At the end of the decoder, the network returns
a matrix with the same resolution as the input image, and we want this matrix to be
an estimation of the disparity map of our input image. The last layer of the DBP is
then a spatial transformer layer ([58]), which, similarly to [59] and [60], has no trainable
parameters and uses the output of the learning architecture as a motion field to warp the
input image and form the prediction. The network can then be trained directly on the
images, and generate the disparity as an intermediate result.
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Overall learning structure

The key idea of DBP is to use as much data as possible at training time. Since we have
a pair of images accessible during training, we thus learn to perform a left-to-right, and a
right-to-left view synthesis at the same time, with two independent branches (see figure
3.6). We consider that the feature extraction process is common to both tasks ; we share
the weights of the encoder process in the two branches. However, we train independently
the decoder (disparity estimator) in both branches. This gives us as output an access
to two disparity maps dLR and dRL which have been independently trained from each
other on their respective branches. The point of having these two disparity maps learned
separately is that it will allow us to check their consistency and evaluate the confidence
that we may have in our prediction for every pixel (see section 3.4). Besides, sharing the
encoder weights between the two branches is also helpful since it means that the feature
extractor will be fed with twice as many data elements as it would have if only one branch
existed.

At test time, any of the two branches can be used individually, allowing us, depending
on the chosen path, to generate a left-side or right-side view from any input image. The
component, including both branches, contains around 6M parameters.

Limits of DBP

This component gives us a first prediction, based on the estimated disparity map.
Now, a prediction entirely built on disparity maps has inherent flaws.

Indeed, the areas that are occluded in the input image have to be filled in the synthe-
sized view, and the way to inpaint those pixels cannot be given by a sole disparity map.
The non-Lambertian surfaces, and more globally the differences in lighting can make the
matching process difficult. Besides, the performed pixelwise prediction may suffer from
a loss in spatial coherence. A small error on the position of the candidate pixel can also
lead to very visible artifacts.

For those reasons, we add a new component network, the Refiner (REF) which takes
as input the prediction synthesized by DBP, and which has for objective to fix the issues
listed above.
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3.5.3 Refiner (REF)

Before we describe the architecture of REF, let us discuss the design philosophy of it.

Optimizing for a direct error metrics

We want to be able to post-process the regions where the disparity-based prediction
fails. For many of these pixels, the information is actually unavailable at test time (notably
in occluded areas). At this stage, we will then, in these regions, directly perform a l1
minimization. The network will seek to remove the artifacts and the errors produced, by
refining them with neighbouring pixels. The end result runs the risk of being blurry, and
of losing some important details of the scene. For that reason, we only want the Refiner
to operate in areas where the DBP is not sufficiently accurate. The detection of these
regions where DBP fails will be done thanks to a confidence map estimated by the third
component CBM.

Architecture of REF

REF is designed as a very simple architecture made up of a succession of 8 con-
volutional layers, all of them (except for the last one) having 64 3 × 3 filters (see
http://clim.inria.fr/research/MonocularSynthesis/monocular.html for more de-
tails).

3.5.4 Confidence-Based Merger (CBM)

The DBP and REF based predictions are both imperfect, but complementary. Indeed,
DBP retains all details from the input image, but presents very strong and unpleasant
artifacts when the matching is not accurate. Notably, disocclusions cannot be handled by
this component. On the opposite side, REF produces an image with less artifacts, but
details are lost in the process. The main objective of the CBM is to be able to combine
these two predictions into one optimized final prediction. To do so, we want to be able
to estimate a pixelwise confidence measure in our DBP. Indeed, if for one pixel we have
a high confidence in our DBP, we will prefer the DBP pixel, since it carries more details.
Conversely, if the confidence is low, the REF pixel will be preferred, with fewer visible
artifacts. This will help us improve the result of our approach in occluded regions.
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Confidence measure - Identification

To define this confidence measure on the DBP, we use the fact that at training time we
have two estimated disparity maps: from left-to-right (dLR) and right-to-left (dRL) view
synthesis. The following forward-backward consistency relations can be defined:

dRL(x, y) = dLR(x− dRL(x, y), y)

dLR(x, y) = dRL(x+ dLR(x, y), y)
(3.3)

The confidence measure is built to check whether the relations are verified for every
pixel of the two disparity maps. If so, there is a consistency between the two predictions.
Otherwise, it means that there was a problem in the disparity estimation process for this
pixel. These relations lead us to define two confidence maps (one per branch), where γ is
a parameter controlling the decay rate of the confidence measure function of the warping
error :

CRL(x, y) = exp(−γ|dRL(x, y)− dLR(x− dRL(x, y), y)|)

CLR(x, y) = exp(−γ|dLR(x, y)− dRL(x+ dLR(x, y), y)|)
(3.4)

This way, if the relations are verified, the value for the corresponding estimated confidence
will be close to 1. Conversely, if they are not, the confidence values will tend to get closer
to 0.

Final synthesis - Combination

This confidence measure is available at training time, because we have access to the
two images, and thus the two estimated disparities, but it cannot be used as such at test
time. For that reason, a third part of the network (see figure 3.6) is devoted to learning the
overall appearance of these confidence maps, from one prediction only. The architecture
for learning this map is made up of 5 successive convolutional layers with (except for the
last one) 32 3 × 3 filters (see http://clim.inria.fr/research/MonocularSynthesis/
monocular.html for more details). It should be noted that we do not expect our approx-
imation of the confidence maps to seek for the exact same values, but instead to be able
to discriminate low-confidence from high-confidence pixels.

Considering the notations from section 3, the final predictions L∗ and R∗ can be
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written as:

L∗ = VRLLREF + (1− VRL)LDBP
R∗ = VLRRREF + (1− VLR)RDBP

(3.5)

where VRL and VLR are respectively the estimations of (1 − CRL) and (1 − CLR) carried
out by CBM. Since VLR and VRL are initialized with values close to 0, it allows us to have
as a starting point, for our final prediction, LDBP and RDBP . This way, we pick pixels
from the disparity-based prediction when the confidence is high, and from REF when it is
low. At test time, choosing either one of the two branches allows to produce a left-side or
right-side view from any input image. The last activation function of the CBM is sharp,
leading VLR and VLR to values very close to 0 or 1 ; this way we will tend to reduce the
blurriness of the final result.

3.6 Learning process

Many of the components presented in the previous section are obviously interrelated,
and thus a joint learning of all these components would risk to be unstable and ineffi-
cient. For that reason, a specific learning schedule needs to be specified to optimize its
performance.

3.6.1 Phase I: DBP

As a starting point, we only learn the disparity-based prediction. Using the notations
of section 3, we define the learning metrics as:

λ0(||LDBP − L||1 + ||RDBP −R||1)

+ λ1(||∇LDBP −∇L||1 + ||∇RDBP −∇R||1)
(3.6)

We choose the l1 metrics, following notably the analysis carried out in [106]. We jointly
train the two branches, and in order to better capture the structure of the image, we add
a gradient-based loss.
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3.6.2 Phase II: Geometrical restructuring of DBP

To make sure that the estimated disparity map captures with as much accuracy as
possible the various structures of the input image, we add a regularization step (drawing
inspiration from [107]). In other words, we use the following learning metrics:

λ2(||
2

max(dRL)∇dRL −∇L||1

+ || 2
max(dLR)∇dLR −∇R||1)

+ λ3(||LDBP − L||1 + ||RDBP −R||1)

(3.7)

We constrain the normalized (to keep its value between -2 and 2) gradient of our disparity
maps to be as close as possible to the gradient of our ground truth images, in order to
better capture the various structures of the image. Besides, we retain a pixelwise term in
the learning metrics to make sure that the prediction remains close to the ground truth
element. Unlike many works ([59], [60]), we do not resort to a multi-scale approach to
tackle the geometrical structuring, for the sake of reducing the number of parameters of
the network.

3.6.3 Phase III: REF and CBM

We finally focus on the REF and CBM pipelines. In this last step, we freeze the weights
of DBP. We do it because we do not want the whole process to interfere with the quality
of the disparity maps that were produced so far. Besides, the first two steps allow to gen-
erate two disparity maps, which can then be used to generate corresponding confidence
maps. By freezing the learning weights for disparity, we make sure that the confidence
measure is fixed, making its estimation possible and stable.

We use the following learning metrics for our final prediction:

λ4(||LREF − L||1 + ||RREF −R||1)

+ λ5(||∇LREF −∇L||1 + ||∇RREF −∇R||1)

+ λ6(||L∗ − L||1 + ||R∗ −R||1)

+ λ7(||∇L∗ −∇L||1 + ||∇R∗ −∇R||1)

+ λ8(||VLR − (1− CLR)||1 + ||VRL − (1− CRL)||1)

(3.8)
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In the end, we obtain estimated inverted confidence maps (VLR and VRL), as well as the
final predictions L∗ and R∗.

3.7 Experiments

Figure 3.7 – Qualitative evaluation of the predictions carried out. From left to right:
ground truth image, our prediction, L1 error between the prediction and the ground
truth image.

In this section, we show the results, strengths and limits of our model. In order to
evaluate its efficacy, we perform the comparison on stereo datasets with wide baselines,
mostly in the context of automatic driving. The results are thus evaluated metric-wise
and visually on the KITTI dataset ([100], [101], [102]). Visual results are presented in
figures 3.1 and 3.7. We also advise the reader to check http://clim.inria.fr/research/
MonocularSynthesis/monocular.html, which displays more numerous and more diverse
high-resolution examples of comparisons.

3.7.1 Implementation

Before feeding them into the network, following the preprocessing steps from [59], we
normalize all the images into a [−1, 1] range. During training, we extract patches (with
a 256 × 256 resolution) from the pair of images as input. We also perform color data
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augmentation on-the-fly randomly for 20 % of the input elements, with random gamma
and brightness transformations. Our model is trained with a batch size of 16 using Adam
([47]) as the optimization algorithm, with β1 = 0.9 and β2 = 0.999.

The network, which was implemented in TensorFlow ([108]) and Keras ([109]), has
around 6.5 million parameters as a whole, and takes only a few hours to be fully trained
on a Tesla P100 GPU. The learning rate is chosen as 0.0001, and is halved when there
is no improvement after 10 epochs. The learning is stopped when the validation metrics
has not improved after 20 epochs. When unspecified, all weights are initialized following
a random normal distribution. We opt for the following values for our hyperparameters:
γ = 0.07, λ0 = 0.80, λ1 = 0.20, λ2 = 0.85, λ3 = 0.15, λ4 = 0.25, λ5 = 0.05, λ6 = 0.50,
λ7 = 0.13, λ8 = 0.035.

3.7.2 Evaluation

We evaluate the quality of our method using different metrics. First, we consider PSNR
as a reference measure. PSNR allows to measure the pixelwise error between the predic-
tion and the ground truth image (the higher, the better). It is indeed a canonical measure,
but it has its flaws: for one, it is not really able to measure the structural reconstruction
quality of the prediction, for every pixel is considered independently from its neighbors.
Besides, it can not evaluate the perceptual quality of the image produced, since a small
offset of a few pixels in the prediction can drastically reduce the PSNR score, all while
having a perceptual impact close to none.

To address the two precited drawbacks, we decide to use two more metrics. We resort
to SSIM, since it is a metrics (the higher, the better) that is more fitting to evaluate
the structural quality of the prediction, and is thus an interesting complement to PSNR
evaluation. We also use LPIPS ([104]), which is a deep feature-based distance well suited
for evaluating the ’perceptiveness’ of our prediction (the lower, the better). Following the
analysis in [104], we specifically choose the Alex-lin network for evaluation. Combining
these three metrics for our prediction is a good way to have a full comparison between
the various methods.

Finally, we want to evaluate the quality of our method specifically on disoccluded
regions to quantify the contribution brought by our occlusion handling component. To
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KITTI Test set PSNR SSIM LPIPS params
Ours 19.24 0.74 0.139 6.5M

Deep3D ([89]) 19.08 0.74 0.220 61M
Godard et al. ([81]) 18.44 0.71 0.148 30M

Table 3.4 – Statistical evaluations. The higher the PSNR and SSIM, the better. The lower
the LPIPS ([104]), the better.

identify these regions on the unannotated KITTI test set, following the protocol from [95],
we use an off-the-shelf stereo matching algorithm ([110]). We consider the disoccluded
pixels as the pixels that could not be matched with this method. We then compute the
pixelwise error only on those pixels. This allows us to evaluate the performance of the
method on regions that are tricky to predict.

To evaluate our approach, we compare it with 2 reference methods: Deep3D ([89])
and Godard et al.’s approach from [81]. Deep3D aims at producing automatically a right-
side image from a left-side image. Godard et al.’s work is focused on monocular disparity
estimation, and we want to show that the disparity maps that we produce are better
suited for warping than the output of the method that is deployed in [81].

3.7.3 Statistical results

To highlight the lightweight aspect of our network, we train our network using only
the 400 pairs of frames from the training KITTI 2012 and 2015 stereo challenges. The
KITTI dataset is a stereo automatic driving dataset with wide baselines. Among these
400 pairs of images, 35 are kept as validation. For evaluation, we use the 400 images from
the test sets of the challenge, and perform the evaluations when working with a right-side
image as input, and a left-side image to be predicted. Since Deep3D needs to be trained
for a specific input resolution and disparity range, and Godard et al.’s available network
is optimized for 512 × 256 images, we decide to center-crop the images from the KITTI
test set so as to obtain 512 × 256 images for evaluation. The evaluation in the case of
Godard et al. is the average over the pixels that were actually predicted, when using the
warped disparity map predicted by the method. The statistical results are displayed in
table 3.4. We can see that we obtain slightly better results in terms of PSNR and SSIM
than Deep3D (and clearly above Godard et al.’s approach).
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We notice that our approach significantly outperforms the other methods in terms of
perceptual quality. In particular, we note that Deep3D, while close in PSNR, is very distant
when looking at this perceptual metrics. We conclude that with a number of parameters
very clearly lower than these state-of-the-art methods, we manage to outperform them
both in PSNR/SSIM, and significantly in more perceptual measures such as LPIPS.

3.7.4 Visual comparison on KITTI

The visual difference in terms of quality of our method with the other techniques is
much more significant than the numerical difference. A good way to evaluate the quality
of the algorithm is thus to look at the generated images themselves, and see how realistic
they are. Some results on the KITTI test set are shown in figure 3.8.

We note that visually, the images produced by Deep3D are usually more blurry and
have less accurate details than in our approach. This blurring can have a pronounced ef-
fect, and it leads to the fading of certain structures (such as the sign in the second image
from figure 3.8). Our approach is much sharper, and thus provides a more realistic and
plausible appearance to our predicted images.

When compared with Godard et al.’s approach, we note that our method is better
at handling structures and disoccluded pixels. This is particularly notable when looking
at the disoccluded regions from the cars, which are not handled correctly by Godard’s
approach. Besides, we note that the trees in the third image are also not processed ac-
curately by the algorithm. Generally speaking, we note that our approach is better at
processing structures within the image and handling disoccluded regions.

3.7.5 Ablation study

Contribution of the various steps of the training schedule

Now, let us perform an ablation study of our approach, so as to show the benefits
of using the various components of our method, and this specific training schedule. To
perform these evaluations, we use the metrics defined in section 3.7.2.

The quantitative evaluations of the various components are displayed in table 3.5.
Looking at PSNR and SSIM, we would be inclined to think that training the network
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Figure 3.8 – Comparison of the approaches on three examples from the KITTI test set
(from top to bottom: input image, ground truth image, our method, Deep3D ([89]) and
Godard et al. ([81])).

Figure 3.9 – Details from KITTI views, (from left to right:) ground truth detail, detail
from our prediction, detail from Deep3D, detail from Godard et al.
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Figure 3.10 – Detail from views to illustrate the contribution of the Refiner. From left to
right: prediction from DBP, final prediction, inverted confidence map.

end-to-end or setting no constraint on the confidence map would be the best way forward.
In a way, since these two approaches are directly optimized for a pixelwise metrics, with
no deviating constraint (the training schedule or the structure of the blending weights),
this should come as no surprise. Yet, when taking a look at the LPIPS metrics, which
accounts for the perceptual quality of the output image produced, we note that doing
this actually contributes to a significant degradation of our image. We conclude from this
analysis that the training schedule, defined in the article, is the best possible course of
action to obtain good results from a perceptual viewpoint.

Now, taking a look at the occlusion-related metrics, we can note that understandably,
adding phase II in the training schedule does not lead to a significant improvement to
handle occluded regions. On the contrary, we can see that phase III brings very significant
improvements in these tricky regions, which tends to validate the positive contribution of
the REF.

We can now take a look at several of the images that are produced by our algorithm
(see figure 3.11).

We can outline several elements:

1. Comparing columns b and c, we note at several occasions that phase II indeed
improves by a significant margin the structural appearance of the produced images.
This is particularly noteworthy when looking at the white truck from row 1, or the
yellow building in the background from row 3.
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Figure 3.11 – Elements of comparison for the ablation study. In each column, from left to
right: a) Input image. b) Result from phase I. c) Result from phases I then II. d) Result
from phases I, II then III. e) Result from phases I then III (with phase II skipped). f)
Result when trained end-to-end using the metrics from phase III.

2. Comparing columns c and d, we note that phase III improves significantly the way
occlusions are handled ; this is shown in the artifacts around the foreground car
in row 1, or the artifacts from the rightmost car in row 2, which are fixed by the
phase III of training. This can also be noticed when looking at figure 3.10, which
zooms onto an occluded region (around the car) where artifacts are removed by
the process.

3. Looking at column e, we note that skipping phase II usually produces results which
are more blurry and less structurally sound. This is understandable by the fact that
since the REF operates on a prediction which is far less accurate, it will tend to
have a very strong effect to correct the flaws. We see clearly from these images
that phase II is an essential component to our learning process, for by improving
the quality of the intermediate prediction, it helps REF to be applied to relevant
areas only.

4. Looking at column f, we can clearly understand the advantages of using our training
schedule over an end-to-end learning process. Although in terms of PSNR and
SSIM, the end-to-end output is very close to the result based on our own training
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KITTI PSNR SSIM LPIPS PSNR disocc.
Phase I 18.76 0.72 0.144 14.84

Phases I-II 18.87 0.72 0.144 14.85
Phases I-II-III 19.24 0.74 0.139 15.32
Phases I-III 19.11 0.73 0.206 15.04
Phase III 19.23 0.74 0.345 15.35

No confidence 19.40 0.75 0.190 15.48

Table 3.5 – Statistical justification of the training schedule. The higher the PSNR and
SSIM, the better. The lower the LPIPS ([104]), the better. PSNR disocc accounts for the
PSNR on the disoccluded pixel regions only. The comparisons are carried out between
networks that have been trained for the mentioned phases of the training schedule. ’Phase
III’ shows the case where the network is fully trained end-to-end with the metrics from
phase III. ’No confidence’ shows the result when, during phase III of the training sched-
ule, the metrics constraining the blending weights to be based on the consistency of the
disparity maps is removed.

schedule (see table 3.5), we can see that visually, the difference is very significant:
our training schedule allows us to obtain a result which is less blurry and far more
accurate. By forcing the training process to follow a certain schedule, we thus make
sure that our result remains convincing from a perceptual viewpoint.

Constraining the confidence map

We now compare the results that we obtain when setting a forward-backward confi-
dence constraint in the definition of our blending weights, and when we set no constraint.
The comparisons are performed in figure 3.12.

We see that the images that we end up obtaining when we do not specify any con-
straint over the confidence map are usually much more blurry, which is confirmed by the
significant difference in terms of LPIPS shown in table 3.5. Besides, figure 3.12 shows
that confidence maps are good representations of occluded or non-Lambertian regions,
and that by removing the constraint, we also lose this valuable information.

3.7.6 Interpolation process

One of the interesting features of the approach is that it is not only able to produce
stereo views, but that it can also generate a sequence of good-quality interpolated views
between the input image and the prediction.
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Figure 3.12 – Elements of comparison for constraint set on the confidence map (yellow
in confidence maps means low-confidence in DBP prediction). (from left to right: a)
Prediction when FB-constraint is set. b) Corresponding confidence map. c) Prediction
when no FB-constraint is set. d) Corresponding confidence map.)

Figure 3.13 – Diagram showing the interpolation process. We scale the disparity map
obtained as an output of the pre-trained DBP. Warping the input view with the scaled
disparity map yields a first interpolated view Rα. The pre-trained Refiner (and the rest
of the network) will then deal with the artifacts, and a confidence map will be generated,
so as to produce the final interpolation Vα with good quality.

To do so, we use an already trained network. We scale the disparity map that is ob-
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Figure 3.14 – Interpolation results (top row) and confidence maps.

V0 V1 V2 V4 V5 V6
Ours (PSNR) 37.05 39.55 43.39 43.36 39.45 36.94

(SSIM) 0.96 0.97 0.99 0.99 0.97 0.96
[90] (PSNR) 33.74 35.65 41.04 40.87 36.58 34.25

(SSIM) 0.92 0.94 0.98 0.98 0.94 0.92

Table 3.6 – Metric-wise comparisons between our method and [23] on the Flowers test set.
Vi represents the i-th view in the central line of the light field. V3 is the central view (so,
the input), and is thus not evaluated. V0 and V6 are the target views, while all the other
ones are obtained through our interpolation process. We note that our approach clearly
outperforms the work from [90], metric-wise, on all views, even for the interpolated views.

tained as output of the DBP. We use the scaled disparity map to compute by warping a
first approximation of the interpolated view. Using the rest of our pre-trained pipeline on
the warped views allows us to obtain a good-quality sequence of views around the input
image.

Visual results of this interpolation process are shown in figure 3.14, as well as the cor-
responding confidence maps built for every interpolated image, when working with large
baseline stereo sets, such as KITTI. Visual examples are also shown in the supplementary
video on: http://clim.inria.fr/research/MonocularSynthesis/monocular.html.

In addition, we evaluate quantitatively this interpolation process by working on light
field content (the smaller-baseline Flowers dataset, introduced in [90]). We train our net-
work on the Flowers training set, by considering stereo pairs (either ’leftmost view - central
view’ or ’central view’ - ’rightmost view’) on the central line of the light field. We then
evaluate our approach on all the views from this central line, by performing our interpo-
lation process. This way, we are able to evaluate visually and metric-wise the quality of
the images that we produce when the central view of the light field is used as input. We
compare our results with [90], a method generating a full 4D light field from one single
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image, using the code provided by the authors. The comparisons are only performed on
the central line, and are displayed in table 3.6. We note that our approach clearly out-
performs [90] on these interpolated views. This shows that our interpolation process is
efficient in producing good-quality interpolated views. Besides, it also shows that our ap-
proach is able to work efficiently on various datasets, with various baselines and semantics.

3.7.7 Results on other datasets

The network has been trained on the KITTI training set and evaluated on the KITTI
test set, but it can be applied efficiently on any kind of images from urban scenes when
trained on KITTI. This is shown in figure 3.15.

Figure 3.15 – Results when the approach, still trained on KITTI, is applied on other urban
scenes datasets (from top to bottom: Driving ([111]), Cityscapes ([112]) and pictures taken
in Rennes). From left to right: a) Input image. b) Network prediction. c) Estimated
disparity map. d) Estimated confidence map (yellow means low-confidence).

We can indeed see that our approach, while trained on KITTI only, is able to return
plausible disparity maps and to synthesize convincing new views from a synthetic dataset
(Driving [111], first row), another automatic driving dataset (Cityscapes [112], row 2) and
from images captured in natural conditions using a smartphone (Rennes, row 3).

The network was also trained on other datasets, with variable baselines and semantics
(such as the small-baseline light field dataset Flowers [90] and the 3D movie database
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Hollywood [113]), with convincing visual predictions. Visual results on these datasets are
shown in figure 3.16 and in the supplementary video (http://clim.inria.fr/research/
MonocularSynthesis/monocular.html).

Figure 3.16 – Images produced when the network is applied on other datasets (Hollywood
[113] and Flowers [90]). From left to right: left image produced, input image, right image
produced.

3.7.8 Pushing the semantics

In this section, we are interested in studying the limits of the usable semantics for
our network. We know that our method cannot work in a fully generic setting, with any
random semantics, due to its training procedure. We also know that our method can be
used efficiently on urban scenes. We are interested in evaluating how generic it is on a
variety of related, but different scenes. We choose one of them to illustrate the strengths
and the limits of our approach, in figure 3.17.

We searched for toy car images online and applied our method on them. We want
to see if our method trained on urban scenes is able to extend to toy cars, similar but
different objects.

We notice that our method is able to extend efficiently to different elements (even
though the result is not as efficient as it is for urban scenes). We also note that the geo-
metrical configuration of the considered scene is an important factor in its quality; working
from images with significantly different geometrical configurations from the training set
usually leads to unsatisfying results for our method.
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Figure 3.17 – Result when the method is applied on a toy car scene. From left to right:
input image, estimated depth map and prediction

3.7.9 Limits of the approach

If the approach is able to perform convincing view synthesis in many cases, limits
have to be highlighted. Since the geometrical refiners are all based on the color gradient,
it means that they notably have a hard time segmenting unusual structures for which the
color greatly varies (see figure 3.18). It is noteworthy, though, that since the network is
not able to process this region correctly, it classifies it as a low-confidence region.

If our method shows an ability to be trained on a specific semantics dataset and tested
on another dataset with similar semantics, it is far from being generic, and encounters
difficulties when it has to predict images and objects that were never perceived before in
the training set. For instance, in figure 3.20, we test our network trained only on urban
scenes on a scene with totally different semantics; we conclude that the results are really
distorted and unconvincing. It comes as no surprise and is totally expected, due to the
requirement of pre-defined strong priors we had mentioned, and this property is true of
all state-of-the-art monocular methods when trained on KITTI and tested on this im-
age. This is still an important point to mention: the network can be extended to similar
semantics and geometrical configurations, but faces a very significant struggle when the
input element drastically varies from what it was used to perceiving during training.

As a whole, we can also note that the method also encounters difficulties when working
on thin structures in front of a background with a strong color gradient (see figure 3.18).

Finally, in some situations, notably when faced with significantly textured contents,
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the method can output a final image with good quality, but based on erroneous depth
estimation. Indeed, as shown in figure 3.19, when working with pixels with a similar color,
several possible depth maps, and even totally inaccurate ones, can lead to a similar image
synthesized in the end. It should be noted that those depth estimation errors are mostly
present when working on some natural images.

The problem of boundary pixels

When changing viewpoints and simulating a camera displacement, new areas, totally
absent from the image, and which can hardly be guessed most of the time, have to be
produced near the boundary. We notice that our Refiner is not able to come up with some-
thing efficient in these regions; it is mostly geared towards inpainting occluded regions
within the image. Using our depth estimation process, we can easily spot the boundary
pixels corresponding to entirely new regions that will have to be generated in the novel
view. We then decide not to set these pixels as low-confidence, but instead only encourage
the confidence map regularity relative to their neighborhood in these new regions. This
constraint makes sense because we know that our Refiner not able to design a new region
from scratch faithfully. In these regions, the problem is more tricky, and we have the idea
that considering adversarial-based methods can be a way to improve the appearance in
these areas. This is one of the main motivations going into the next chapter.

Figure 3.18 – Failure cases for our approach. From left to right: Input image, ground truth
image, network prediction, estimated disparity map, confidence map.
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Figure 3.19 – Another example of view synthesis result using our network on natural
images captured using a smartphone. From left to right: input image, prediction, depth
estimation. We can note that the depth estimation is inaccurate in the foreground, notably
in surfaces of the same texture. This error in the depth estimation process has nevertheless
few consequences on the finally synthesized image.

Figure 3.20 – Example when testing our approach, trained for urban scenes, on a semantics
vastly different from the contents of the training set. We can see that, unsurprisingly, our
approach is clearly unable to handle the problem.
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3.7.10 Conclusion

We have presented in this chapter a supervised CNN-based approach able to per-
form monocular view synthesis. The MobileNet based-encoder allows us to obtain a good
disparity-based prediction with a low number of parameters. This prediction is then re-
fined in regions where artifacts are still present, occluded areas and mispredicted parts
using the Refiner. The network is also able to estimate the confidence that it has in its own
disparity-based prediction, and is able to identify the structures that it has not predicted
correctly. The method outperforms state-of-the-art approaches metric-wise and visually
in the domain of monocular view generation on the KITTI dataset. In the next chapter,
we will focus on extending this work to light fields, and we will aim at improving the flaws
of the method.
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LIGHT FIELD RECONSTRUCTION FROM

ONE SINGLE IMAGE

4.1 Introduction

In this chapter, we tackle a specific problem: to synthesize an entire light field from
one single image. This problem has a variety of applications, such as generating several
views of a scene, extracting depth and automatically identifying occluded regions from
images captured with regular 2D cameras.

We have seen in the previous chapter that working from one single image is a very chal-
lenging problem, for at test time, the approach lacks information, e.g. on scene geometry.
The method hence needs strong priors on scene geometry and semantics. Learning-based
methods are therefore very good candidates for these tasks, since priors can be automat-
ically learnt from data. In this chapter, we describe a method that is able to produce
an entire light field, estimate scene depth and identify occluded regions from just one
single image. This way, we can benefit from light field features without requiring a light
field capture set-up, e.g., simulating perspective shift and post-capture digital re-focusing.

We propose a lightweight architecture based on what was described previously, but
enhanced to be able to generate an entire light field and to better handle occlusions using
an adversarial approach. The network is trained on pairs of images and learns to perform
a forward and backward view synthesis, with two independent branches, thanks to the
estimation of two disparity maps. Checking the consistency of the two independent pre-
dictions allows us to identify occluded regions and compute a disparity confidence map.
At test time, the network only needs one image to compute the two disparity maps that
are then used to identify the occluded regions. This disparity confidence map is used to
control the application of an adversarial technique for occlusion handling. We show that
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Figure 4.1 – A light field generated from one single image (input is the central view in
the figure). The approach is trained on KITTI stereo contents, and is augmented using
our method at test time to generate the light field.
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the network can be trained on light field data, and that it outperforms reference tech-
niques trained on light field datasets, such as [90], in terms of reconstructed light field
quality.

Now, training on light field data as in [90] necessarily restricts the scope of the ap-
proach, as this requires a large amount of data that is not easy to capture. Besides, such
monocular approaches are also bound a lot by semantics of the training data, making it
hard to train a network that can be usable for a variety of scene geometry and semantics,
unless a sufficient number of examples of diverse scenes is present in the training set.
Existing light field datasets are in general too limited to meet that requirement. We show
that the proposed architecture can be trained on stereo content. This drastically increases
the amount of possible training data that can be exploited by our approach. We show that
the proposed network produces plausible and good-quality light fields even when trained
from stereo images with large baselines as in the KITTI dataset ([100]), and this way
produces light fields with large fields of view.

In summary, our contributions are:
— A lightweight neural network based on the work described in the previous chapter,

extended to be able to generate a full light field from one single view, with occlusion
handling relying on both a computed disparity confidence map and an adversarial
approach.

— A light field synthesis method from one single image that not only outperforms
reference methods when trained and tested on light field data, but that can also
generalize to much more diverse scenes, thanks to its ability to be trained on stereo
datasets. The method hence enables convincing light field features (e.g., digital
refocusing, virtual camera motion) from only single 2D images.

4.2 Context and objectives

4.2.1 Motivation

The main objective of this second contribution was to extend the work from the
previous chapter, carried out on stereo data, to light field data. This may seem like a
straightforward extension, given that light fields can be efficiently represented using the
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central view and a depth map. Hence, once the depth map is computed and the process of
view prediction is carried out, the problem seems to be similar. Besides, if we have access to
light field data, just using the Disparity-Based Predictor to estimate a 2-channel disparity
map seems like an obvious and efficient extension to light fields. There are nonetheless
significant obstacles that make this extension not as straightforward:

— First, as specified in the previous chapter, the method relies on the existence of a
dataset with enough similarity in both semantics and geometrical configuration. If
these datasets are relatively easy to find for stereo data, they are much harder to
capture for light fields. In this framework, the problem of generality is then really
more significant, because it is much harder to find relevant datasets.

— The method described in the previous chapter performs an interpolation process
to generate intermediary views between the input and the target images. This
interpolation process is not without flaw; and it is crucial to make it more precise
when working on light fields, given a 2D range of consistent images needs to be
estimated at this time.

— The confidence process also needs to be updated with the change in nature for the
input images available during training.

Another objective of this new contribution is to improve over the flaws of the method
described in the previous chapter. Notably:

— We are interested in improving the quality of reconstruction for occluded regions,
and in particular for areas near the boundary of the images. We want to investigate
whether adding an adversarial component to it can prove to beneficial.

— Our confidence map estimation has several flaws. First, it is not 100% accurate,
for it usually includes all poorly-reconstructed or non-Lambertian regions together;
we believe that there is a way to be more precise in the definition of regions to
be processed. Besides, the confidence training method is efficient, but makes the
training process a bit complex, and we are also eager to simplify the whole process.
Doing away with this process is also a way to reduce the number of parameters
of our overall method. Finally, our confidence map is, from an implementation
viewpoint, directly linked to the network, and has a graph connection with the
result produced by the Refiner, meaning that our network can not use ground truth,
or handcrafted confidence maps to generate its final result. We aim at tackling these
problems with our new process.
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4.2.2 Addressing the lack of generality in semantics

Monocular view synthesis usually requires a dataset with strong similarities in geo-
metrical configuration, as well as in semantics. Such datasets are commonplace and easy
to capture for stereo contents, but are more tricky to capture as light fields. The reference
light field dataset for monocular view synthesis is Flowers ([90]), a dataset with rather
simple semantics, few depth planes within scenes and with a rather small baseline. Eval-
uating our method on this dataset only does not seem sufficient to validate it. We were
thus interested in evaluating it in more diverse and challenging datasets.

When training and evaluating our network on more generic datasets such as the one
first presented in [29], we noticed that our method struggled. In particular, we noted a
strong correlation between the presence of one class of objects in the training set and
the efficiency of the method on the same kind of object on the test set. In other words,
significant gaps of performance could be noted between two views of the same test set,
notably depending on the semantics of the image. We felt like it was then not totally
satisfying; in the previous chapter, our methods also had limitations as for which kind of
semantics they could be applied on, but those limitations were well-known and easy to
delimit. Here, the strong dependency in the contents of the training set made the anal-
ysis far more complicated. Adding more elements to the training set is then of course a
potential valid answer: theoretically, the more elements the method has processed during
training, the better it will be for more generic use. Capturing a totally generic database
of light fields is nevertheless a difficult process, and for that reason we decided to follow
another route, and instead tried to harvest results that were achieved for view synthesis
in non-light field frameworks.

To address this concern, we notably focused on considering a proxy task. The key idea
was to begin the analysis with a "guidance" network that has managed to address a proxy
task in the most generic way possible. To do so, we studied the field of image segmentation,
and tried to combine a segmentation-based method with the guidance network strategy
through self-supervised learning, as described in [114]. Proceeding this way would have
allowed us, hopefully, to add a guidance network already trained for these tasks on our
own network, to tackle our own problem. Experimentally, we have found that it was very
difficult to find methods and proxy tasks that were able to obtain good performance on
a wide variety of semantics, when it is trained from one single image. We thus decided to
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Figure 4.2 – Outline of the DBP section of our architecture

follow a slightly different route: using stereo contents as a proxy task, to generate a full
light field. Given stereo datasets are easier to capture, we believe this is a good way to
go beyond the semantics of light field data, all while harvesting the positive contributions
presented so far.

4.3 Description of the method

While the proposed method builds upon the architecture presented in the previous
chapter designed for generating new views from one single image in a stereo setting, it is
extended here in order to be able to generate an entire light field from one single input
view. In addition, the network is designed in such a way that it can be trained either with
stereo content or using pairs of light field views. While the network can be trained from
stereo content as well as from pairs of light field views, when using classical stereo content
to train the network, the pipeline is adapted to account for naturally missing information,
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e.g., related to scene geometry, through the resort to the Refiner, as explained in sections
2.3 and 2.5.

4.3.1 Disparity-Based Predictor (DBP)

TheDisparity-Based Predictor (DBP) is a neural network made up of two branches,
accounting for both the Feature Extractor and the Decoder, as shown in figure 4.2. It re-
ceives one single input image and estimates a disparity map. Trained with a pair of views,
the two branches of the DBP take one image of the pair as input, and consider the other
image as ground truth. In each branch, the Feature Extractor is used to extract fea-
tures of the input image, using a MobileNet architecture, with weights shared with the
other branch. The weights are initialized with ImageNet ([105]) weights. A second part
in each branch, the Decoder, produces a disparity map through upsampling layers and
using skip-connections. Finally, a spatial transformer layer is used to warp the disparity
map to predict a view. This first prediction is based on the warping of pixels, hence the
result is usually sharp, but artifacts may remain due to disparity errors, in particular in
occluded regions.

4.3.2 Estimating the prediction confidence

The next step consists in identifying the regions not well handled by DBP and the
warping process. In order to compute the confidence we have in our first prediction, we
use the already trained DBP, and we follow the protocol defined in figure 4.3. We send as
input of our two branches the same input image Isource. This will give us two independent
predictions in disparity, centered on two different target views (dtarget1 and dtarget2). We
then re-warp these disparities back onto the source view (giving us dsource1 and dsource2),
and we take as confidence measure Cγ their difference, using the following expression:

Cγ = exp(−γ|dsource1 − dsource2|) (4.1)

We can note that in contrast with the method presented in the previous chapter, the
error is directly computed and not estimated using a trained network. Doing this simplifies
the learning process, and allows us to reduce the number of parameters. It is also a way
to improve the confidence map, so that occluded regions are better identified, as shown
in the Results section.
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Figure 4.3 – Diagram depicting the employed confidence method.
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4.3.3 Refiner based on a GAN

To correct errors in lower confidence regions, and to account for the fact that the cor-
responding information is not available at test time, we use a Refiner network trained
using an adversarial loss combined with a pixel-wise metrics. This leads to plausible esti-
mates of the pixels in the occluded regions. The refiner network is actually the generator
of a Wasserstein GAN ([52]), and adversarial learning is carried out only in regions of low
confidence.

The refiner is built as an encoder-decoder structure with skip-connections. It is made
up of a succession of Spectrally Normalized convolutional layers (as first described in
[53]). The discriminator is also built using these layers. To make sure that the learned
distribution remains faithful to the input and ground truth data, we also add pixelwise
and gradient-wise metrics besides the Wasserstein loss. This allows us to fill occluded
regions with synthesized contents, which will be both realistic (thanks to the adversarial
loss) and as faithful as possible (thanks to the pixelwise metrics).

At test time, we only use the generator part of the adversarial process to synthesize
our view. It takes as input the warped prediction, as well as the estimated disparity map.
The final predicted view Vfin is obtained by combining the two predictions using the
confidence map as

Vfin = CγVdisp + (1− Cγ)Vref (4.2)

where Vdisp is the output of DBP and an input to the refiner, and Vref the output of the
refiner, and Cγ the computed confidence map.

The method can be tailored to be efficiently trained on both light fields and stereo
content. There is one refiner per branch, which is applied in both learning and test time.

4.3.4 Training on light fields

When using light fields for training, we have access to both horizontal and vertical
disparities, hence the DBP can be trained to estimate these two disparities and produce
the corresponding horizontal and vertical warpings.

We extract pairs of views by taking the center view as one of the two images of the
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pair, and the other one randomly within the light field. The maximum disparities of the
light field are taken as reference.

When working on views which are not extreme, and assuming a regular sampling of
views in structured light fields, we estimate the disparity dint of an intermediate view by
interpolation as

dint(x) = αd(x− (1− α)d(x)) (4.3)

where α represents the targeted position, and x the bidimensional coordinates. This
allows us to obtain an interpolated disparity map for warping, that will tend to favor
background disparity for occluded regions, and lead to more plausible results than when
simply multiplying the disparity map.

4.3.5 Training on stereo content

The method can also be trained on stereo data, and be used to generate full light
fields. In this case, we can only train the method with horizontal disparity, and have to
infer vertical disparity at test time. We therefore add a simple module to infer the vertical
disparity at test time, once the network was trained on stereo contents. The new, two-
channel disparity map dnew is obtained from the horizontal, predicted one, by applying
the following transformation to the horizontal disparity map dhor:

dnew(y, x) = αdhor(αydhor(x), x− (1− αx)dhor(x))) (4.4)

where y accounts for vertical coordinates, while x accounts for horizontal coordinates, and
α = (αy, αx) is a set of parameters accounting for the relative position of the requested
view relatively to the input view. Given that the warped disparity map may however
contain errors especially in the foreground near the borders of the image, we improve
it by applying an auto-regressive extrapolation along the vertical lines and from the 50
previous points. The rest of the network proceeds with the warped prediction, and refines
and automatically improves the occluded regions at test time.

4.3.6 Summary

In summary, the procedure is as follows:
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— From a pair of images, learning the disparity and warping from it through the DBP
to generate one from the other.

— Through a confidence computation obtained by inputting the same image in both
branches, determining which regions are likely to be accurate.

— In the regions with low-confidence, using a refiner with adversarial learning to
improve the results.

4.4 Learning procedure

Let LDBP and RDBP be the DBP-based predictions, and L and R the ground truth
images, and dL and dR the disparity maps for the warping towards predictions L and R.
We first train the DBP using the metrics:

λ0(||LDBP − L||1 + ||RDBP −R||1) + λ1(||∇LDBP −∇L||1 + ||∇RDBP −∇R||1) (4.5)

Before training the Refiner, we add a step of geometrical restructuring for the DBP.

Finally, we freeze the weights of DBP, and train the Refiner in order to minimize the
loss function

λ4(||LREF −L||1)+λ5(||∇LREF −∇L||1)+λ6(||L∗−L||1)+λ7(||∇L∗−∇L||1 +λ8L(L∗, L)
(4.6)

where LREF is the prediction performed by the Refiner, L the ground truth image, L∗ the
final combined prediction L∗ = CγLDBP +(1−Cγ)LREF , and L the Wasserstein loss. The
discriminator for the adversarial process is trained using only this Wasserstein loss. For
the hyperparameters, we consider: γ = 0.08, λ0 = 0.80, λ1 = 0.20, λ4 = 0.27, λ5 = 0.054,
λ6 = 0.54, λ7 = 0.135, λ8 = 0.01. We optimize our approach using the Adam algorithm
([47]), with β1 = 0.9 and β2 = 0.999. We use a learning rate of 0.0001 for the overall
network (with 0.00001 for the discriminator during training). The work was implemented
using TensorFlow ([108]) and Keras ([109]). The network was stopped when no improve-
ment in the validation metrics was obtained after 20 epochs. The network is fully trained
after only a few hours, and contains around 6 million parameters at training time.

For the following experiments, our method for training took as input patches of res-
olution 256× 256 (for the stereo case) or 256× 512 (for the light field case), normalized
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between -1 and 1, with data augmentation in 20 % of the cases, with random gamma and
brightness transformations. In this chapter, we used two datasets for comparison: Flow-
ers ([90]) andKITTI ([100]). Flowers is a light field dataset, with rather small baselines,
comprising around 3,000 light fields of flowers in similar geometrical configurations. We
systematically pick the central view as one element of the pair, and we randomly choose
another view as the other element of the pair. We adjust the value of α to account for the
coordinate of the selected view. As a starting point, we only focus on one corner view as
target that we arbitrarily choose as the reference disparity (α = (1, 1)). After 10 epochs,
we add the rest of the views as possible target views and the interpolation process de-
scribed in section 4.3.4 is then applied. We perform a random train-test-validation split,
to be able to compare our approach, with 100 elements from the dataset randomly chosen
as test set, as in [90]. KITTI is a stereo dataset which depicts urban scenes, and contain
pairs of images with a very significant disparity gap between them. In this work, we use
the same split as in the previous chapter.

4.5 Evaluation

We compare the proposed approach to several methods: LF4D ([90]), a method able to
predict a full light field from one single image, by enforcing epipolar constraints within the
predicted light field, using the code provided by the authors. We also compare visually
our approach with the method in [87], in the stereo case, using the network provided
by the authors. We also compare our method to the method from our previous chapter,
and with the reference method [89], both focused on working in a stereo setting. To
evaluate our stereo-based approach, we also use it on Flowers by only training it from 2
aligned views on the central line of the light field ([90]). For evaluation, we use PSNR,
SSIM and LPIPS ([104]) as reference metrics. Due to the visual nature of the task, we
strongly recommend the reader to take a look at the Supplementary video (http://clim.
inria.fr/research/MonocularSynthesis/supplementary.html), which displays other
examples of views synthesized using the proposed method.

4.5.1 Light Field View Synthesis Results

Training and testing with light field data We first focus on training and testing the
network with light fields. For that, we use the Flowers dataset ([90]). We evaluate predicted
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PSNR/SSIM Ours LF4D Stereo
4 corners 34.97/0.94 31.61/0.89 33.54/0.93
Full LF 38.41/0.96 35.10/0.94 37.16/0.95

Table 4.1 – Statistical comparisons between our method trained on light field data (Ours),
reference method LF4D ([90]), and our stereo-based method (Stereo). We display the mean
PSNRs and SSIM on the 4 corner views (the most difficult ones to predict), as well as on
the full light field.

Figure 4.4 – Visual prediction for a top-left image from the Flowers test set, as well as
the corresponding L1 errors, for, from left to right, our method, LF4D ([90]) and the
stereo version of our method. The errors were multiplied with a factor of 3 for better
visualization.

views in comparison with the reference method LF4D ([90]), in figures 4.4, 4.5 and 4.6,
in table 4.1, as well as in the supplementary video (http://clim.inria.fr/research/
MonocularSynthesis/supplementary.html). We see that our approach clearly outper-
forms LF4D, both metric-wise and visually.

We also use the Flowers dataset to evaluate our stereo-training based approach, i.e. by
only training the network on stereo aligned pairs (extreme left-side view - center view and
center view - extreme right-side view). The results (the last row of figure 4.4 and table
4.1) show that our method, even when trained on stereo content, manages to outperform
the LF4D monocular light field synthesis method, and is able to produce high-quality
light fields. This shows that our stereo to light fields adaptation module is very efficient.

Training on stereo content We also train the network using the stereo KITTI dataset
([100]), in order to build a full light field. The views produced have no ground truth equiv-
alent; only visual evaluation is possible in this case. Visual results are shown in figure 4.1
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Figure 4.5 – Close-up views from figure 4.4. On the left side, our results, on the right side,
the results obtained in [90]. We note that our results are sharper and structurally more
consistent.

Figure 4.6 – Supplementary visual comparisons between our work (left-side) and [90]
(right-side). We note that our images are sharper and better quality.
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Figure 4.7 – Visual comparison of two of our predictions with Sun’s method, for similar
geometrical transformations (from left to right, 2 sequences of: input, our prediction, and
the prediction obtained from [87]). The views we produce are less blurry and have fewer
distortions.

and in the supplementary video (http://clim.inria.fr/research/MonocularSynthesis/
supplementary.html). To evaluate our approach, we compare it visually to the monocu-
lar part of the method in [87]. The network, also trained on KITTI, receives as input one
image and a transformation vector expressing the relative coordinates of the target view.
We specify to the pre-trained network a transformation vector similar to ours.

We note that our approach clearly performs better visually on this data (see figure
4.7). This is probably because the vertical transformations are not present in the KITTI
training set, and can thus not be learnt efficiently by the method in [87]. Given that our
approach is optimized to generate the light field, we are able for this task to obtain more
realistic results.

To evaluate metric-wise our predictions, we also compare them with stereo-based view
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KITTI Test Set PSNR SSIM LPIPS
Ours 19.96 0.76 0.130
[115] 19.24 0.74 0.139

Deep3D ([89]) 19.08 0.74 0.220

Table 4.2 – Comparison of the results of our approach with 2 reference methods ([115],
[89]) in a stereo setting. For PSNR and SSIM, the higher, the better. For LPIPS, the
lower, the better.

synthesis methods (including ours) and [89] in table 4.2, on the KITTI test set, in a stereo
setting. We note that our approach significantly outperforms these two methods for the 3
chosen metrics. We can note that we obtain those results with a smaller number of param-
eters (notably, 200,000 fewer parameters than what we had in the previous contribution).
We show in figure 4.8 a visual stereo prediction, associated with the L1 error. We can see
that the predicted view is rather high-quality.

Finally, we compare our confidence computation process with the one described in
the previous chapter in figure 4.9. We note that our occlusion identification process is
significantly more efficient.

Testing on natural images We can also test our network on natural images, captured
using a smartphone. It allows us to produce a full light field from one single image. A
visual example of it is shown in figure 4.10.

4.5.2 Ablation study

Impact of the confidence-based refiner We evaluate the impact of the refiner on the
result in tables 4.3 and 4.5. We can note that it increases the performance both in PSNR
and SSIM for both datasets. Its contribution is, though, more significant when working
on KITTI, due to its more significant occluded regions. We also evaluate its positive
contribution when training the approach on stereo contents, and using it to generate light
fields in table 4.4. We note that the Refiner in this case also allows to significantly improve
the performance of the approach.

Impact of adversarial learning We also evaluate the impact of our adversarial pro-
cess on the result. We note that depending on the chosen dataset, we do not draw the
same conclusions. When working on Flowers (see table 4.3), we note that the adversarial
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Figure 4.8 – Result of our approach in a stereo setting, on the KITTI test set, for evalu-
ation. From top to bottom: input image, our prediction, ground truth image, L1 error.

Flowers Ours No AL No Refiner
PSNR 38.41 38.40 37.59
SSIM 0.96 0.96 0.95

Table 4.3 – Statistical comparisons for the ablation study on the Flowers test set. No
Refiner only uses the warped prediction, No AL does not use adversarial learning

121



Chapter 4 – Light field reconstruction from one single image

Figure 4.9 – Visual evaluation and comparison of the confidence map. Yellow means low-
confidence. From left to right: our prediction, confidence map returned by our approach,
confidence map returned by [115] in the same setting. We note that our way to compute
the confidence map is significantly better at specifically capturing occluded regions.

Flowers Stereo ours Stereo No refiner
PSNR 37.16 36.02
SSIM 0.95 0.93

Table 4.4 – Statistical comparisons for the ablation study on the Flowers test set. Stereo
ours is our stereo-based light field synthesis method, Stereo No Refiner evaluates the
prediction when no refiner is used.

KITTI Test Set Ours No AL No refiner
PSNR 19.96 19.85 18.87
SSIM 0.76 0.75 0.72
LPIPS 0.130 0.135 0.144

Table 4.5 – Statistical comparisons for the ablation study on the KITTI test set. No
Refiner only uses the warped prediction, No AL does not use adversarial learning.
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Figure 4.10 – A light field generated from one single image (input is the central view in
the figure). The approach is tested on a natural image, captured using a smartphone. For
a result with higher resolution, we advise the reader to check the supplementary video at
http://clim.inria.fr/research/MonocularSynthesis/supplementary.html.
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process does not really have a significant impact. The occluded regions in Flowers are
indeed smaller and then easier to fill, reducing the usefulness of the adversarial loss.

On the other hand, when working on KITTI, we can see that the adversarial process is
much more beneficial, giving an overall increase in PSNR and SSIM, but more importantly
a significantly better LPIPS ([104]), showing that it is an adequate way to improve the
perceptiveness of our images.

4.6 Further analyses and experiments

4.6.1 Analyzing the interpolation process

Between the previous chapter and the current one, one emphasis is put onto the
interpolation process: instead of just multiplying the disparity with a value, we instead
warp the depth map onto the desired position before using it for warping. The interest of
such an evolution is to make sure that occluded pixels are treated as background instead
of foreground when considering interpolation. The positive contribution of this updated
interpolation process is shown in figure 4.11.

4.6.2 Analyzing the confidence measure

Compared with the previous chapter, we have updated here our confidence measure.
Our new confidence measure shows several benefits when compared with previously:

— It is not directly part of the training process: hence, the method requires fewer pa-
rameters, and we can also make sure of its accuracy, while the self-learnt confidence
measure can at times be flawed.

— We noticed experimentally then when training the method from the previous chap-
ter, the graph connection between the confidence map estimator and the refiner
was central to the overall performance; removing it led to significant decrease in
performance. For that reason, we feel like it is relevant to try and do away with
this limitation, hence the point of this new confidence measure, which is not part
of the graph itself.

— We change the overall idea behind the confidence map computation; indeed, in the
previous chapter, the error was computed on disparity inconsistency positions. The
underlying idea behind such a computation was to identify regions where forward-
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Figure 4.11 – Showing the improvements of the new interpolation method. Top line:
interpolation method from chapter 1, bottom row: interpolation method for our current
method. We note that near occluded regions (near the gray car), the interpolation process
is much more accurate for the bottom line. From left to right, interpolated views with
increasing distance from the source view.

backward errors in position were strong, given they are more likely to be regions
with a significant depth change that has not been addressed. In this work, we have
decided to adopt a error measure based instead on disparity magnitude; instead
of comparing the relative positions when doing forward-backward, we compare the
actual disparity values on the same pixel. This is an efficient process to accurately
identify occluded regions.

— Finally, one of the reasons why we adopted this new confidence measure is because
it practically worked: by having a more accurate error estimation, we can use the
Refiner in more relevant regions, allowing an improvement both in PSNR and
LPIPS.

Another change we brought was the architecture of the Refiner (in order to produce
efficient adversarial training), which moved from a simple neural network with successive
convolutional layers to a relatively shallow encoder-decoder structure, with roughly the
same number of parameters. We also noticed that this change in architecture improved
our results, as shown in the ablation study.
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We have suggested in this chapter a confidence measure relying on inconsistent depth
estimation. We can also note that it is entirely possible to use a different confidence
measure if we want the Refiner to be applied in specific regions. Our own experiments
have shown that we can even handcraft our own confidence measures on the original
prediction, which allows us to perform a relatively free and efficient inpainting process on
the desired region.

4.6.3 Analyzing the adversarial process

We’ve found experimentally that the adversarial process helped significantly in han-
dling occluded regions, and in particular in regions near image boundaries; indeed, these
regions are now systematically classified as low-confidence, and require a full synthesis
from neighbouring elements. The GAN helps us tackle this problem more efficiently as
shown in table 4.5.

This adversarial process is nevertheless faced with limits, mostly related to the train-
ing process. Indeed, in spite of many efforts to favor training stability (through the resort
to Wasserstein GANs, normally spectralized layers, giving more training iterations for the
Discriminator than for the Generator...), we ended up very often in situations where our
adversarial training could not converge.

Besides, we have also found experimentally that a very cautious and careful setting of
hyperparameters has to be carried out on the validation set. Indeed, our adversarial pro-
cess is prone to two extreme behaviors when the choice of hyperparameters is not valid.
We have seen that putting a too high emphasis on the adversarial process usually led to
strong and clear mode collapse; an extreme case of it is shown in figure 4.12 for a constant
distribution. In this situation, the Generator managed to trick the Discriminator with a
trivial distribution. On the other hand, setting a too small hyperparameter value for the
adversarial process usually led to a negligible influence for it, given that the adversarial
hyperparameter then became irrelevant metric-wise when compared with the pixel-wise
metrics. Finding the right hyperparameters on the validation set, as well as having a right
convergence usually led to a result that could be perceived as a thin line between mode
collapse and absence of influence for the adversarial component.

This training difficulty has, in our opinion, strong consequences regarding its wide and
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Figure 4.12 – Illustration of a mode collapse for our Adversarial Process, notably due
to a poor choice of hyperparameters. We can note that low-confidence regions are only
darkened.

generic use for many datasets. Indeed, we have found experimentally, that keeping the
same set of GAN hyperparameters for other datasets did not lead to conclusive results;
they had to be totally re-set. It is noteworthy that for all the other elements we have shown
so far, the results were obtained while keeping the same hyperparameters for all datasets.
We have then found that resorting to GANs, indeed led to better results on KITTI, but
it also reduced the generality and comfort of use of our method on new datasets.

That dependency regarding the dataset is not really surprising: the core idea behind
the use of GANs was to learn the semantic distribution of the training set, hence why a
change in training set and semantics can have a drastic impact on the efficiency of our
Generative Adversarial Networks.

4.7 Conclusion

In this chapter, we have described a method able to produce light fields, with a training
from both light field datasets and stereo datasets. The proposed method allows us to
generate high-quality light fields, from only one single input image and for diverse images
and semantics. We manage to achieve good performance for producing these light fields,
and are able to use stereo data to produce light fields with a wider variety of contents
and semantics.
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Chapter 5

RECURRENT NEURAL NETWORKS FOR

LIGHT FIELD VIEW SYNTHESIS

5.1 Introduction

Light field imaging has been getting increasingly popular in recent years, due to the
amount of information that a single capture brings about the scene such as in particular
parallax and scene geometry. Indeed, unlike traditional 2D images, light fields sample light
rays emitted by the scene, and can be seen as a 2D array of views captured from different
angles. This enables a variety of applications, such as post-capture refocusing and depth
estimation.

Light field content, though, is computationally expensive to process, hence the need for
light field compression. Performing efficient view synthesis is a way to reduce the amount
of required data. The aim of the approach described in this chapter is to generate a full
light field from only a subset of views. However, most approaches for view synthesis are
either bound to a specific disparity range, or to a specific number of input views.

In summary, our contributions in this chapter are:

— An approach resorting to Recurrent Neural Networks to perform light field view
synthesis from a subset of views. The method is able to compete with reference
methods in the field.

— A method that can efficiently produce new light fields from a variable number of
input images.

— A network resorting to a Multi-Plane Image representation of the scene for view
synthesis, and that can be adjusted to any chosen configuration and distribution
of depth planes at test time.
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5.2 Relevance of the problem

The main idea behind the contribution is to relax the constraints that were set in the
first two contributions, by considering this time several input views during test time. We
are nevertheless interested in keeping other constraints: we want the method to be able
to work from scratch without requiring complex annotations in the training set, and we
want to have as few parameters as possible.

Tackling this problem, our main objective is to consider a situation that can still be
commonplace for real-world applications. Though, we add more constraints from the user
side, because the whole process requires more than one single image at test time. Doing
so, we also guarantee that we will be able to obtain better performance for view synthesis,
and better genericity: indeed, when working from more than one image, the network usu-
ally has more information at test time to produce more satisfying results, given that in
this case, it is entirely possible to build a solution that is not purely based on semantics.
We mostly expect our network to find connections between existing views that it receives
as input.

We also note that having several cameras or sensors is getting increasingly common-
place, notably in smartphones. Hence, at least 2 views of the same scene can easily be
captured in real-world use cases. We thus believe that designing a method that can per-
form light field synthesis given a small subset of input views is also an interesting way
to reach performance and genericity, while not adding very significant constraints for the
user.

Furthermore, we analyse that most networks are learnt for a specific configuration and
number of input views. This allows to optimize the results for a specific configuration and
for a chosen setting. Here, we are interested in developing a method that can work given
various view configurations as input, without requiring retraining. We believe that this
problem is an interesting one, for it means that depending on the input signal that we
send, the network will opt for different PSV transformations and thus adjust to different
view configurations. In particular, the method can be used for a number of input views
that can fluctuate between 2 and 4, using the same neural network. We believe that this
is an interesting development.
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Following recent work in the literature ([116], [63]), we develop an architecture building
a MPI representation. In most of these works, the MPI structure of the scene has to be
set as a prior during training, and needs to remain the same at test time. Besides, a
constant distance is assumed between the considered depth planes representing the scene,
which of course does not represent accurately all scenes; depending on the contents and
the geometry of the scene, it will be favourable to add a higher concentration of depth
planes in some key regions, and fewer depth planes in some emptier regions. Through
our work, we are able to choose during test time the position of the depth planes in the
MPI model without retraining. Indeed, given that we connect one specific loop of our
architecture with one specific depth plane of the MPI representation, by changing the
number of loops, as well as their associated depth planes, we can adjust at will the MPI
representation at test time.

5.3 Preliminary research remarks

We have found experimentally that the problems of monocular view synthesis and
view synthesis with several input images are vastly different. Indeed, many conclusions
we were able to draw from working in a monocular case did not necessarily stay true
when working from several input images. In particular, many architectures and concepts
that we found were clearly failing while tackling a monocular view synthesis task ended
up being relatively efficient when working from several input images. This fact was evi-
denced in chapter 3 by considering the results using the architecture from [60], shown
to be efficient for video frame interpolation, in a monocular use case.

This is not particularly surprising, and can be explained by the fact that the two
tasks are actually very different from a learning viewpoint. In the case of monocular view
synthesis, the network aims at extracting as much information as possible from one im-
age, using already learnt data priors; the role of the network is then to perform scene
analysis from one image as efficiently as possible. Given that the problem is ill-posed in
this case, most of the effort for the network is focused on using and learning appropri-
ate priors for the problem. On the other hand, when several images are available, the
role of the network is to find associations between pixels belonging to different views.
Hence, the necessity to learn priors from it appears not as significant; what matters in
this case is for the network to be able to draw associations between the various pixels.
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The two problems are then very different, and have different constraints and requirements.

Due to this difference in nature, we draw different conclusions, and believe that other
architectures could be useful for the task. In particular, we draw inspiration from [117],
and decide to resort to a LSTM architecture, due to its lightweightedness and its efficiency.

5.4 Description of the method

5.4.1 Description of the approach

We aim at generating a full light field from a subset of input views (between 2 and
4 views). In particular, we decide to model our scenes as Multi-Plane Images. The MPI
representation of a scene is a good way to model it, by describing the entire scene with
a collection of (α,C) couples, associated with every depth plane of the given scene. For
every depth plane, α is the visibility map associated with this depth plane; it is a map
of values in a [0,1] range, describing how visible the corresponding pixel at this depth
level actually is. C stands for the color map, describing the color value of the pixel at
this depth level. By accumulating and combining all the visibility maps as well as their
associated colormaps, we can reconstruct the target image.

This MPI representation is usually arbitrarily chosen, and kept at test time. Most
of the time ([64], [65]), the choice is made to have a constant distribution in terms of
depth plane presence; we assume a given number of depth planes, equally distributed.
This approximation is consistent, but is not perfect: indeed, some regions in the scene
might benefit from having a more concentrated distribution of depth planes to model
them, while some studied depth planes might not be relevant for the given scene. The
constant distribution in terms of depth plane is thus suboptimal, and we would like to
find ways to leverage other distributions.

Of course, the problem of choosing which distribution of depth planes should be cho-
sen is a tricky issue, and kind of a chicken-and-egg problem: given that the information
regarding which distribution should be favoured is usually accessible once the depth has
been estimated, or the view synthesis problem has been tackled. In a recent work ([93])
focused on monocular view synthesis, the authors tackle this problem of building a non-
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uniform MPI distribution for the given scenes. To do so, they assume a depth map of
the scene is given as input; analyzing the depth map, they are able to select which depth
planes are likely to be the most relevant in the scene. They then only choose the most
relevant depth planes (the number of depth planes is set during training), and are able
this way to obtain an optimized MPI representation for any given scene.

This process is extremely efficient, and is very convenient for obtaining a compressed
and optimized MPI representation for a given scene. Sending as input information a depth
map actually gives already a lot of information, that the MPI representation will indeed
deepen and improve. In our case, we are interested in evaluating whether it is possible
to build a network that can be adjusted to any MPI representation at test time, without
requiring ground truth or estimated depth maps. Besides, we also want to be able to build
scene representations with a variable number of considered depth planes, during training,
as well as at test time.

To address this problem, we draw inspiration from the work in [117], and decide to
also resort to a LSTM. The key idea is to associate a LSTM loop with one (α,C) couple
of one considered depth plane. Associating a network loop with the processing of a depth
plane is indeed very favourable. Changing the number of depth planes to consider between
training and test time is extremely easy, given only the number of RNN loops needs to
be changed. Besides, changing the depth distribution of the MPI representation is also
very accessible, given that it just implies the use of our Recurrent Neural Network on a
different sequence of planes.

If this is the guiding factor for choosing RNNs, we are also interested in their lightweight-
edness; the networks presented in this chapter are around 100,000 parameters, which is
a small value by deep learning standards. We also force our network to adjust to several
input view configurations during training. This allows us, at test time, to use efficiently
several configurations, and it notably gives us the ability to reconstruct a light field using
only one network, for a variable number of input views.

5.4.2 Global outline

Following the analysis in the previous section as well as drawing inspiration from the
work in [117], we decide to resort to a LSTM architecture. The pipeline is described in
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Figure 5.1 – Global outline of our pipeline. An input integer signal s is sent, giving away the
requested input configuration and adjusting the PSV transformations to come accordingly
(PSV definer). If fewer than 4 views are considered, input images and transformations
are simply duplicated. We then have 4 images shifted towards the target view with a
translation vector depending on the considered depth plane. The features of the 4 shifted
images for one specific disparity value are then extracted before being fed, along with the
images themselves, to a LSTM. The hidden state cell for every iteration can be decoded
using a small neural network (the Decoder), giving us a couple (α,C) accounting for a
MPI scene representation. The final image Ioutput is then obtained by combining all α and
C.

figure 5.1. First, we take as input 4 views, and we obtain from them a PSV sequence
(Plane-Sweep Volume). The main idea of PSVs is to shift all the input images towards the
target image, by applying sequentially translation vectors in the direction of the target
image, with increasing or decreasing vector intensity. Such PSVs are commonly used no-
tably because they represent a process that is computationally not expensive. The main
reason, though, is that it is a good way to make sure the network processes the whole
sequence as a disparity-variant sequence. We have found experimentally that it was a very
efficient way to connect a specific disparity (or depth) value with one specific iteration
of our method. Our intuition is that the following network will then produce for every
iteration a mask to filter the pixels that should indeed be warped with the disparity value
of the current iteration.

We then extract features from the input PSV. To do so, we decide to keep a very simple
feature extractor, made up of a succession of several convolutional layers. The main reason
behind such a choice is that it allows to keep a small number of parameters throughout
the work; besides, not having an encoder-decoder structure with skip-connections for our
feature extractor is useful, since it gives fewer constraints for the input image resolution.
We augment our feature extractor by adding Attention-Based modules for every layer; we
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have noted that experimentally, doing so led to an average PSNR increase of +0.4 dB,
for a negligible number of supplementary parameters. The output of the feature extractor
as well as its input PSV are concatenated, and sent as input of a LSTM network. The final
image is obtained by decoding the hidden state of the cell, using another very small neu-
ral network, the Decoder, giving the couples (α,C) associated with the successive depth
planes.

The configuration of the 4 input views is randomly selected among a specific number
of configurations during training (specified in figure 5.2), and an input signal, different
for every configuration, is sent alongside it. This input signal changes the nature of the
PSV trajectory to account for the chosen configuration; during training, the objective
is also for the network to learn the connection between the value of this input signal
and the chosen configuration. At test time, just sending as input the associated signal is
enough for choosing a specific configuration and using the proper PSV translation vector
accordingly.

5.4.3 Learning metrics

We decide to adopt the following metrics for our predicted view:

||Itarget −O(α,C)|| (5.1)

where Itarget stands for the target image, and α, C correspond to the MPI repre-
sentation, and O being the over operator. We thus learn our MPI representation in an
unsupervised way.

5.4.4 Learning conditions

We train our method on two datasets: one dataset of real-world light fields first pre-
sented in [29]. We take the same train-validation-test split as they do. We also evaluate
our method by training it and testing it on the synthetic dataset HCI, first presented in
[118]. We train our network using TensorFlow ([108]) and Keras ([109]). As the algorithm
to optimize our network, we use once more the Adam algorithm ([47]) with the standard
set of parameters. We use a learning rate of 0.0001.
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Figure 5.2 – Definition of the various view configurations employed during training. On the
left: the input (integer) signal s that is sent, as shown in figure 5.1, on the right: highlighted
in yellow, the relative position of the input light field views. We systematically consider
corner views in these configurations
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Figure 5.3 – Visual results. From left to right: ground truth image, result of our method
for respectively configurations 1, 2, 3 and 4.

Method Flower1 Cars Flower2 Rock Seahorse Leaves Average
Ours (4) 31.87 30.78 31.32 33.16 29.94 27.40 30.75
Ours (2) 30.55 29.65 29.17 30.66 28.72 25.64 29.07
[116] (5) 30.00 29.06 28.90 32.60 28.50 27.74 29.47

Table 5.1 – Comparing our method with 4 input images, with 2 input images, as well as
the method in [116], also for view synthesis using MPI representation.

5.5 Results

We can visually evaluate the performance of our method, for several input views, in
figure 5.3. We can also take a look at the visibility map for the successive depth planes,
in figure 5.4.

5.5.1 Comparison for MPI representation in a dense setting

We first want to evaluate the performance of our method when compared with another
method tackling the problem with the same representation model of MPIs. To do so, we
use as a reference the comparison method Local Light Field Fusion, first presented in [116].
The method takes 5 input views, and consequently generates a MPI scene representation
that will be used for the synthesis of the light field. We train the two methods on the
train-validation-test split of the dataset first presented in [29], and we evaluate it in the 4
corner views configuration. For the 5th view, we decide to use the horizontal neighbor to
the top-left image. Visual and numerical comparisons are shown in table 5.1 and in figure
5.5.

We can note that our method, on average and in most cases, significantly outperforms
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Figure 5.4 – Evaluating the successive visibility masks corresponding to the various depth
planes. First: ground truth image, then the visibility masks associated with the successive
considered depth planes. The whiter the pixels are, the more they are associated with the
given depth plane. We may note a gradual displacement from foreground to background.

Figure 5.5 – Visual comparison between our method for a 4-view configuration, and the
results obtained using [116] on 4 light fields (respectively Cars, Flower1, Flower2, Leaves).
From left to right: ground truth image, our prediction, our L1 error, prediction by [116],
associated L1 error
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the method in [116], both PSNR-wise and visually. We believe that this is an interesting
result, for it shows that our method, in spite of its lightweightedness and short training
time, is able to improve upon an existing, significant method for light field view synthe-
sis from MPI scene representation. We also evaluate it using a configuration of only 2
input views. We notice that for a certain number of light fields, our method is able to
outperform it. On average, [116] performs better, mostly due to Rock and Leaves, two
light fields where occluded regions are significant. In this framework, it makes sense that
a method with 4 or 5 input views will be able to perform better, given that the supple-
mentary information granted by the other two views is key to the overall performance. We
still note rather good-quality results on those light fields even for our 2-view configuration.

From this analysis, we can draw the conclusion that in a dense setting, our process
seems to improve upon the MPI representation for light field view synthesis. Of course,
state-of-the-art methods go far beyond MPI representations, and we are thus interested
in performing, in the next section, a more generic comparison with a variety of methods
for light field view synthesis.

5.5.2 General comparison for light field view synthesis

To situate our method within state-of-the-art, we decide to perform comparisons with
a range of methods from these past few years that represent as efficiently as possible the
various recent trends and models for view synthesis. To do so, we used an evaluation
protocol and implementations set up in [72]. Among these other methods, we consider
the DIBR-based method [29], with an outline of two successive neural networks, one for
depth through DIBR process, and another one for color. Another method we consider
is Soft3D, a method for light field view synthesis ([119]) which does not rely on deep
learning to perform its visual prediction, but instead analyses the various input images
and resorts to jury voting. Another method we compare ourselves with is [71], which
performs light field view synthesis by reconstructing epipolar lines using deep learning.
Finally, we compare our approach with a more recent method ([72]), performing light
field view synthesis by merging two neural networks, one pixel-adapted network as well
as one feature-adapted network. Numerical comparisons are shown in table 5.5.2; we give
the results obtained while using our 4-view configuration on elements of the test set of [29].

First, we notice that our method outperforms Soft3D, and the epipolar-based methods
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Method Flower1 Cars Flower2 Rock Seahorse Leaves Average
Ours 31.87 30.78 31.32 33.16 29.94 27.40 30.75
Soft3D 30.29 27.68 30.52 32.67 30.41 27.34 29.82

EPI ([13]) 30.44 28.17 29.26 32.46 26.62 26.48 28.90
Kalantari ([29]) 33.13 31.53 31.95 34.32 32.03 27.97 31.82

[72] 34.49 32.25 34.19 36.75 34.97 32.53 33.91

Table 5.2 – Comparing our method with reference methods in the field for PSNR values.

for these dense light fields. We believe this is an interesting display of the fact that our
method is efficient to process dense light fields. We can also note that performance-wise,
our method is clearly outperformed by [72]. This is not particularly surprising, given that
the methods described in [72] rely on pre-trained depth estimators, and an optimized
pipeline counting millions of parameters, while ours is trained from scratch with only
100,000 parameters.

We also notice that our method does not perform as well as in [29]. The point of the
next sections is thus to study what holds back the performance of our approach, and how
we can possibly improve it. We may also draw the conclusion that MPI-based methods
might not be optimal in a dense context.

5.5.3 Improving the performance

We wonder in this section how we can improve performance, and in particular we try
and quantify the loss in performance induced by some of our design choices.

Flexible configuration

In all the results we have shown so far, we have chosen a neural network that was
trained on a variety of possible configurations, and not only the evaluated configuration of
4 input corner views. When considering only the 4 corner views as training configuration,
we notice an average increase of +1.23 dB on our result, putting us above [29]’s method
for these specific datasets. Hence, the flexible and adaptive framework we have presented
seems to reduce the performance of our approach in this specific configuration. It thus
seems interesting to study it a bit more to assess and evaluate whether the trade-off is
worth it.
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Nb img Flower1 Cars Flower2 Rock Seahorse Leaves
1 19.52/0.73 18.97/0.77 18.96/0.70 18.24/0.66 21.39/0.84 16.51/0.66
2 30.55/0.97 29.65/0.97 29.17/0.96 30.66/0.96 28.72/0.97 25.64/0.93
3 31.71/0.97 30.63/0.98 31.09/0.97 32.23/0.97 29.61/0.98 26.90/0.95
4 31.87/0.98 30.78/0.98 31.32/0.97 33.16/0.98 29.94/0.98 27.40/0.95

Table 5.3 – Evaluating the performance (in PSNR/SSIM) of our method for the 4 config-
urations presented in figure 5.2.

5.5.4 Analyzing the effect of handling various configurations

We have noticed that alternating configurations leads to a significant decrease in per-
formance when working on the specific evaluation configurations of table 5.5.2. First, we
can see a visual and numerical comparison for the various configurations in table 5.5.4
and figure 5.3. We unsurprisingly note that the performance decreases between 2 and 3
input images sent; indeed, when only 2 images are used as input, we lose a lot of informa-
tion regarding the full light field. We still note that when using only 2 input images, our
method remains competitive with other methods presented in table 5.5.2. Unsurprisingly,
we also note a sharp decrease in the monocular case, both due to the fact that this is a
more complex task, as described in the first two chapters, and this is also related to the
fact that this architecture is clearly not a good fit for monocular view synthesis problems.

We see that our method is then able to provide rather satisfying results when only 2
or 3 input images are sent. We know from the analysis in the previous section that this
adaptive configuration is detrimental to the 4-view performance. We want to evaluate
whether or not this adaptive configuration is beneficial for our 2-view framework. To per-
form this comparison, we decide to train a neural network only optimized for the 2-view
configuration. The comparison is performed in table 5.4.

We want here to study the trade-off that is made. In particular, we are interested in
evaluating whether this flexibility improves the result when the number of input views
is < 4, in table 5.4. We notice that our Recurrent Neural Network seems to learn from
having adaptive configurations during training when only 2 images are sent as input. We
can then see that a trade-off has to be found; this adaptive configuration process reduces
our performance on 4-view light field view synthesis, but tends to increase the perfor-
mance that would have been otherwise obtained, while working in a 2-view configuration.
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Nb img Flower1 Cars Flower2 Rock Seahorse Leaves Average
2 (multi-config network) 30.55 29.65 29.17 30.66 28.72 25.64 29.07

2 (trained on only config 2) 30.00 29.36 29.01 30.70 28.39 25.51 28.83

Table 5.4 – Comparison between having 2 input images for a network trained, given
several input configurations, and a neural network optimized for this specific 2-image
configuration.

Given that the priority we had set while starting the work was to perform efficient view
synthesis for a smaller number of input views, we believe the trade-off is worth it, and
keep this adaptive configuration process.

The method presented so far has limitations that need to be emphasized. First, one
limitation we have already mentioned is its pure performance; the method is not state-of-
the-art for light field view synthesis given the 4 corner views. This is unsurprising, given
we had set ourselves constraints related to the number of parameters as well as regarding
the overall flexibility of the method. This is still a point that needs to be brought forward.

Another issue regarding our method is the extension to sparser contents. Indeed, using
our RNN in that framework is likely to cause difficulties; given that we assume one depth
plane per RNN loop, if we keep the distribution presented so far of considering planes for
every disparity integer value, it will imply many more RNN loops need to be performed
for sparse contents, greatly improving the evaluation time. Besides, we also notice our
method tends to have a decreasing performance when too many iterations are performed.

5.5.5 Sparse contents

Gradual data learning

We want to evaluate our method on sparser contents, i.e. light fields with a larger
baseline. To do so, we decide to train our method on HCI, a synthetic dataset including
more examples of sparse contents ([118]). When directly training in the same conditions as
in the dense section, we notice that we encounter a lot of difficulties coming up with fully
satisfying performance. Thus, we develop a specific training procedure that we call gradual
data learning. The core idea is to start with simple contents, and a simple task, that we
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Figure 5.6 – Illustration of our Gradual Data Learning process: in a first phase of training,
we consider the images labeled ’1’ as input, we then add the images labeled ’2’ as possible
input, before adding afterwards the images labelled ’3’.

gradually extend to more tricky problems as iterations go by. This way, the method first
learns how to proceed with a simplified version of the task, before gradually making it
more complex. In our case, what we do is that we consider input views that are further
and further away from the central view, starting with the 4 views around the central
view. Then, we gradually add as possible input configurations with views that are further
away from the central view. The process is described in figure 5.6. We have also found
experimentally that proceeding this way allowed us to sharply reduce the training time.
Using this procedure allows us to move from dense datasets to sparse datasets and proved
to be an efficient way to tackle this problem.

Visual evaluation

Visual results are shown in figure 5.7. We notice that we obtain overall a final prediction
with good visual quality.

The problem of the computational time

If the method can produce adequate results in a sparse context, it was not built with
this purpose in mind. In particular, when adapting to sparse contents, given that one
LSTM loop is associated with one possible disparity unit, more sparsity comes with more
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Figure 5.7 – Examples of visual results on the sparse light field dataset HCI for 4 input
views. From left to right: ground truth image, our prediction. PSNR for Buddha: 40.01,
PSNR for Mona: 38.87, PSNR for StillLife: 29.81.
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Figure 5.8 – Evaluating the successive visibility masks corresponding to the various depth
planes. First: ground truth image, then the visibility masks associated with the successive
considered depth planes. The whiter the pixels are, the more they are associated with the
given depth plane. We may note a gradual displacement from foreground to background.

RNN loops, and thus a longer computational time.

This is where the LSTM structure of our method proves convenient, though. Given
that the MPI structure of our considered scene is not set between training and testing, we
can modify it at will while keeping the efficiency of our method. When working on sparse
contents, it means that we can produce at will MPI representations that will correspond
to a selection of specific depth planes, and use our method in this representation. This
is an efficient way to reduce the computational burden in this situation of sparsity. An
example of MPI analysis from the Mona light field from HCI is displayed in figure 5.8.

5.6 Conclusion and prospects

In this chapter, we have presented a method performing the task of light field view
synthesis given a subset of input images (between 2 and 4). The method uses a MPI-based
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structure to reconstruct the full scene. By using a Recurrent Neural Network architecture,
and linking one RNN loop to a specific depth plane, we can have a method that performs
well in any chosen distribution of depth planes, thus extending MPIs to new interest-
ing distributions. Besides, the method can work from a variable number of input images;
even though it is not state-of-the-art when considering a common configuration with other
methods, it has good performance, especially regarding the overall lightweightedness and
the flexibility of the method.

Most interesting developments would be related to pushing forward the idea of having
a chosen distribution of depth planes in the MPI representation model. We are faced
with one problem, still: we have not managed to make this process of analyzing the
most relevant depth planes an automatic one. In [93], this process is made automatic
by a prior depth map estimation. We also studied leads in this thesis to try and make
the process automatic without resorting to more ground truth (or pre-trained) elements.
One idea we had was to use a Attention-Based Module in the decoder, so as to make
it choose automatically the most relevant depth planes for MPI estimation. If using a
Confidence-Based block in the Feature extractor proved to be efficient, this particular
use of Confidence Block did not return the expected results. Another idea that could be
envisioned is to use a succession of two Recurrent Neural Networks: one having the role
described in the chapter, and another one suggesting possible depth distributions. If the
idea was appealing, we found its implementation difficult, practically. Finally, another idea
interesting to envision could be to use this kind of architecture and model in an internal
learning framework ([120]), so as to automatically learn from data the right distribution
of depth planes in this configuration.

146



Chapter 6

GENERAL CONCLUSION

6.1 Summary

In this thesis, we addressed the problem of view synthesis in a light field context, in
particular for a very small number of input views (≤ 4). We first considered the problem of
light field monocular view synthesis: how can we generate a light field from a single image?

To address this problem, we have first decided to focus on a stereo case framework, to
test our concepts. We proposed in chapter 3 a pipeline to generate a new range of hori-
zontal views from one single image. Besides, our method is able to estimate a depth map
and to estimate a confidence measure in its own prediction. To do so, we have designed
a pipeline to perform the synthesis of these new views: it is based on the combination
of several types of prediction. One depth-based prediction, with a first neural network
(the Disparity-Based Predictor) that aims at estimating the depth of the given scene, and
which performs view synthesis by warping. The predictions obtained this way are neces-
sarily limited with the fact that occluded regions are not explicitly handled, and with the
fact that a small error in the prediction of the depth map can lead to significant mistakes
for the image finally produced. To address these concerns, a second neural network (the
Confidence-Based Merger) is tasked with identifying such regions. Finally, a third neu-
ral network (the Refiner) focuses on these regions to improve their outlook. The entire
pipeline allows to have both a well-estimated depth map and a self-confidence measure,
besides the views finally produced. The method outperformed state-of-the-art approaches
at the time of submitting.

Chapter 4 then extends this work to light fields, and to improve some of its key
elements. Extension to light fields can seem rather straightforward, but actually comes
with significant obstacles. First, monocular view synthesis methods are usually trained
from datasets with similar semantics and geometrical configurations, which are harder
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to capture in a light field framework. For that reason, we design a stereo-to-light fields
module allowing to also train our method on stereo contents, and to apply our Refiner
on other views of the light field. Besides, we also bring significant improvements to our
method, by adding an adversarial component to our Refiner, modifying and improving
the Confidence Measure estimation process, to make it more flexible. Our method is able
to outperform reference methods (such as [90]) in the field on the Flowers dataset. We
also validate our stereo-to-light-fields module by evaluating it in the same framework, and
notice it is efficient. We also check the nature of the light fields views we produce from
the stereo dataset KITTI.

Finally, in chapter 5, we relax the constraint by considering several possible input
views (up to 4 views). Given we have access to more information, and given we want to
keep our constraint of having as few parameters as possible, we decide this time to resort
to a LSTM architecture, inspired by [18]. We estimate this way a MPI representation
for a given scene, and we have an extremely lightweight neural network (around 100,000
parametes) with good performance, which is able to work from a variable number of input
images without retraining.

6.2 Future work

We believe that the work carried out in this thesis opens interesting research directions.

The field of deep learning for monocular view synthesis was relatively nascent when
we started working on the subject, and since then, many new works have been presented,
deeply changing the current landscape of the field.

A salient problem in monocular view synthesis that seems to overshadow all the other
issues is the matter of the semantic genericity of the presented methods. Indeed, all the
monocular methods presented in this report can only work for a very specific semantics
and geometrical configuration and usually fail when a drastic change happens between the
training and the test set. The next logical question to ask is then: how can we mitigate
this lack of genericity? We have tried in our own work to answer this question by bringing
up a method able to adjust quickly and with a relatively low number of input views for
re-training. We still wonder whether more could be done to improve this genericity. To
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address this problem, we see two main leads.

The first lead was mentioned in chapter 4. Even though our own efforts for this mat-
ter have not proven to give results that were consistently good enough, we still believe
that resorting to a proxy task could somehow be a valid way forward. Should we be able to
inject the results obtained from a proxy task from one single image (such as segmentation
for instance) on specific datasets, and use them to guide our networks (drawing inspi-
ration from [114]), we would be likely to obtain a better genericity. After exploring this
lead, we had difficulties finding ways to improve our own predictions using some proxy
tasks. Finding a way to use guidance networks to allow monocular methods to work for
more generic data would be an interesting way forward, given it would allow a much more
significant number of datasets to be used for this task.

The other solution is to focus on data. Today, there are not that many light field
datasets that can be efficiently used for training our methods. KITTI is a very good ex-
ample that was widely used in this thesis, but it is bound to urban scenes with a specific
geometrical configuration. Flowers displays scenes that might be now a bit too simple,
semantic-wise and from a geometrical perspective, to fully evaluate and validate the var-
ious methods. One idea would be to build a series of light field datasets corresponding
to several configurations and specific types of scenes. Training monocular approaches on
these series of datasets could be an efficient way to improve the genericity of such meth-
ods. We turned around this idea throughout the thesis. In early 2020, we had envisioned
to capture this light field dataset using a Lytro camera; the context of the pandemic made
this capture process difficult. In spite of not being able to carry it out during these 3 years,
we absolutely believe that it is an extremely interesting way forward.

In the best-case scenario, we hope that a single neural network could in a straight-
forward way be trained and learn from this variety of data, so as to be able to process
different scenes and configurations. In case this might prove to be difficult, we believe that
the idea developed in chapter 5, with a Neural Network capable of adjusting to various
view configurations and input signals could also be used. We can imagine a method that
can be adjusted to different modes and semantics just by sending the right input signal
for instance.
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Another way to proceed could be to use other data types that are not light fields. We
started exploring that route a bit by using stereo datasets in chapter 4. Ideas revolved
around using YouTube videos as multi-view captures instead of light fields, or images
from video games. All our methods learn the scope and the range of light field and stereo
data in a fully implicit way, meaning that our training set needs to have been captured
using the same baseline. This, of course, restricts the nature of the data that can be used
as input, and makes it difficult to use raw images from these sources in our work. We still
believe that this process is also key to making our approach more generic.

To make our approach trainable on various baselines, one idea widely used in the liter-
ature ([63]) could be to resort to pose estimation, so as to generate the new view positions
directly from vector coordinates. We believe that this is interesting. But we would also
like to point out that our own experience working with such methods has shown that it
is very prone to small errors in pose estimation methods, which is common, given that
automatic pose estimation is a research problem in itself. We thus believe that making the
step from implicit pose estimation to automatic pose estimation is not straightforward,
and should only be pursued when it is necessary.

We also believe that the complexity of the monocular network (around 6M parameters)
could be reduced even more. The experiments we carried out using network compression
methods seemed to indicate that they could be efficient ways to reduce even more the
parameter burden, all while keeping a similar efficiency. Finally, we believe that a very
interesting development for monocular view synthesis would also be to build standards
for comparison and evaluation. As of today, the evaluation modalities, as well as the
training-validation-test splits used in different articles are usually different. If of course,
within the same article, the same evaluation modalities are employed, it still entails that
it is very difficult to evaluate and have a fair comparison ground between methods from
different articles. We believe a valid way forward could be to build a clear procedure for
evaluation, possibly using a particularly relevant and useful dataset, which would allow
easy and fair comparisons between the various state-of-the-art methods.

Regarding chapter 5, we believe that more significant developments could be pursued.
Notably, the approach right now is optimized for dense light fields, and encounters perfor-
mance issues when working with sparser contents. Promising ideas revolved around the
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resort to Attention-Based Modules for choosing the right loops to process. The method is
also not suited for monocular view analysis, and it would be interesting to study whether
there are ways to improve its results for this particular problem.

As a conclusion, we would like to emphasize that in this thesis, we have tried to tackle
the problem of light field view synthesis in a situation where too few views were available
for full and faithful reconstruction. If a lot of work still needs to be done to build entirely
satisfying pipelines for this task, we believe that this thesis was a first, interesting step
into using deep learning for this challenging and ill-posed task.
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Titre : Apprentissage profond pour la synthèse de vues de champs de lumière dans un cadre mono-
culaire et pour un faible nombre de vues d’entrée

Mot clés : champs de lumière, synthèse de vues, génération de vues monoculaire, apprentissage

profond

Résumé : Un champ de lumière est une modéli-
sation de l’intensité de l’ensemble des rayons lu-
mineux circulant par tous les points d’une scène
donnée. Capturer de tels champs de lumière en
utilisant des appareils adéquats est intéressant,
car permet d’importants développements et ap-
plications. Cependant, ces champs de lumière
sont très coûteux en stockage données. Nous ré-
pondons à cette problématique dans cette thèse
par le biais de la synthèse de vues. Nous pré-
sentons ainsi trois contributions. Dans un premier
temps, nous nous intéressons à la synthèse de
nouvelles vues à partir d’une seule image. Nous
nous focalisons en particulier sur le cas stéréo-
scopique, et par le biais d’une combinaison avan-
tageuse de plusieurs réseaux de neurones, nous
présentons une méthode se comparant favora-
blement avec l’état de l’art, tout en étant très lé-

gère et capable de s’ajuster rapidement à de nou-
veaux jeux de données. Dans un second temps,
nous étendons cette contribution au bidimension-
nel, en générant cette fois des champs de lu-
mière. Nous améliorons également le traitement
de la problématique en ajoutant un composant
adversarial, et développons un module stéréo-
champ de lumière permettant d’entraîner notre
approche sur des données stéréoscopiques tout
en générant des champs de lumière de qua-
lité. Enfin, dans un dernier temps, nous utilisons
des réseaux de neurones récurrents pour géné-
rer des champs de lumière entiers à partir d’un
nombre libre de vues d’entrée, en adoptant une
représentation dite "MPI". Notre méthode est lé-
gère, efficace et peut s’appliquer dans n’importe
quelle distribution de plans de profondeur lors du
test.

Title: Deep learning for light field view synthesis from monocular and a very sparse set of input views

Keywords: light fields, view synthesis, monocular view generation, deep learning

Abstract: A light field models the intensity of
every ray of light flowing through every point in
a given scene. Capturing light fields by using
adequate equipment is interesting, for it allows
significant development and applications. Never-
theless, light fields are very computationally ex-
pensive. We address this concern in this thesis
through view synthesis. We thus present three
contributions. First, we focus on view synthesis
given one input image. We are interested, in par-
ticular, in studying the stereoscopic case, and by
the means of an advantageous combination of
neural networks, we present a method that com-
pares favorably with state-of-the-art, all while be-

ing lightweight and capable of quick adjustments
to new datasets. Then, we extend this contribu-
tion to bidimensional contents, by generating light
fields this time. We also improve our solution by
adding an adversarial component, and we de-
velop a stereo to light fields module allowing to
train our approach on stereo data, while generat-
ing in the end quality light fields. Finally, we use
recurrent neural networks to generate light fields
from a free number of input views, by adopting
a MPI representation. Our method is lightweight,
efficient and can be applied to any depth plane
distribution at test time.
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