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Goals
This chapter summarizes the contents and outlines of the thesis plan. First,

we highlight the emergence of Big Data and big graph analysis. Then, we state
issues to be addressed in the fallowing chapters.



2 Chapter 1. Introduction

1.1 Context and motivations

1.1.1 Big Data emergence

Every day, 2.5 terabytes of data are generated in the digital world. In the last
five years, the size of data is expected to multiply by 50 times [Gandomi 2015a].
According to Statista 1, the global volume of data in the world will be multiplied
by 3.7 between 2020 and 2025. Then it will be multiplied by 3.5 every five years
until 2035 to reach 2,142 zettabytes of data. For instance, Google receives 40,000
requests every second, 72 videos are uploaded every minute to YouTube, and 217
new smartphone users are counted every minute [Gandomi 2015a]. These data
come to us various sources, including smartphones (log files, calls, etc.), social
networks, videos and digital images, customer transactions, shape or movement
sensors of connected objects, etc.
The development and access to these data caused the emergence of a new phe-
nomenon called "Big Data". This phenomenon had a particular impact on com-
panies that have to handle terabytes or even petabytes of data requiring, specific
infrastructures for their creation, storage, processing, analysis, and recovery. In
other words, they manage and process a lot of data that come in streams or in
batches. Such data exceed the capacity of traditional resources such as relational
databases, sequential processing, classic development tools, etc. In addition, tradi-
tional data models, like the relational database model, are unable to support these
volumes of data. Consequently, advanced data models have been introduced such
as NoSQL databases model and graph-based models.

1.1.2 From Big Data to Big Graphs

Data can take several representations. Apart from the relational model, the
graph model has gained increasing interest to represent various types of data, it
has been extremely used in different applications, especially computer networks
[Faloutsos 1999], social networks [Bonchi 2011], [Liu 2009] and bioinformatics
[Saidi 2009]. These applications use the graph representation to describe the

1https://fr.statista.com/
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relationships between the data. In bioinformatics, the structure of the proteins
can be considered as a graph. Amino acids represent the nodes whereas their
interactions seen edges. In fact, studying protein graphs allows us to better un-
derstand the structures of proteins through the extraction of information that is
not visible using the classical representation structure of protein data. In the area
of social network analysis, graph representation is used to model the interactions
between users in a social network. Analyzing these interactions can help, for ex-
ample, to identify the transmission routes of a rumor or a joke [Liu 2009].
In another way, some graphs are naturally dynamic in terms of their structures or
their properties (i.e. some vertices and/or edges can be deleted from or added to
the initial graph, and some properties of the graph can be changed).
In the next section, some challenges related to this thesis, mainly big graph pro-
cessing and mining, will be presented and discussed.

1.1.3 Challenges of big graph processing

The two fields of big graph analytics and large-scale graph processing represent
a continuity of Big Data challenges. In the last years, big graphs analytics have
become among the first research tracks in the database research community. Also,
big graphs attract the attention of companies in the context of industrial projects.
Facebook and Google have proposed their own graph processing systems and have
used graphs in several use cases.
As a result, large graphs can contain terabytes of compressed data when they
are stored on disks. Therefore a single computer will not be able to process
such volume of data. This incapacity causes a lot of problems mainly in the
context of data processing and indexing, despite the fact that graphs represent an
important source of knowledge useful for business. Therefore, many algorithms
and solutions have been proposed to explore and exploit large graphs in order to
analyze them and to discover hidden insights. Multiple applications of large graphs
are present today inside technologies and daily routine such as social networks,
protein interactions and road networks. Recently, the discovery of dense subgraphs
in large graphs has become one of the major issues in the graph field. This is known
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as the problem of graph clustering and community detection, and it is gradually
attracting the attention of a larger research community. The graph clustering aims
mainly to detect groups or hidden structures in a given graph [Rossetti 2018]. For
example, in social networks (e.g., Twitter), groups of users with specific conditions
can be considered to be communities [Rossetti 2018]. In a collaborative network
(for example the co-authorship database DBLP), a cluster can be a group of
researchers with similar research interests. In computational biology, calculating
functional clusters of genes can help biologists to better study the gene networks.
real-world graphs are characterized not only by their huge size but also by their
heterogeneity. Besides, the dynamic nature of several real-world graphs is also
a major issue. For example, Facebook has put about 86,400 objects per second
in 2013 [Armstrong 2013], while Twitter traffic [Sengupta 2016] can reach 143
thousand tweets per second (we can also consider graph updates), and email
communication network [Sengupta 2016] can exceed 2.5 millions of new emails
per second 2. This speed of graph updates makes graph analytics algorithms
(e.g., clustering in our case) need real-time and obviously scalable processing.

1.2 Contributions

This thesis deals with distributed and incremental structural graph clustering.
Firstly, we present an experimental study on data processing. This comparative
study is divided into two parts: (1) theoretical study and (2) experimental study.
Secondly, we propose a distributed algorithm for graph clustering. The proposed
approach is based on the structural graph clustering [Xu 2007] and implemented
on top of the BLADYG [Aridhi 2017] framework. Thirdly, we extend the proposed
algorithm in order to support the dynamic graphs.

2https://www.internetlivestats.com/one-second/email-band
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1.2.1 First axis: a comparative study on Big Data frame-

works

In this contribution, we study the most popular frameworks for large-scale data
processing in both stream and batch processing. We, first, present a brief de-
scription of some major Big Data framework: Hadoop, Spark, Storm, Samza and
Flink. We also presented a categorization of these frameworks according to some
features as being mainly related to the processing mode, data source, Machine
learning compatibility and others. We also conducted an extensive comparative
study of the above-mentioned frameworks on a cluster of machines and we high-
lighted best practices with respect to each big data framework’s capacity. This
comparative study has been published in [Inoubli 2018b].

1.2.2 Second axis: distributed structural graph clustering

In this part of our thesis, after an extensive literature review on both graph clus-
tering algorithms and large graph processing frameworks, we propose a novel al-
gorithm for graph clustering in a distributed setting. The proposed algorithm is
implemented on top of BLADYG framework. It supports both centralized and
distributed graphs. In a centralized graph setting, the proposed algorithm starts
by splitting the graph into subgraphs, using our proposed graph partitioning. In
the distributed graph setting, the proposed algorithm takes the already distributed
graph as input and lunch directly the graph clustering task. The proposed algo-
rithm is based on the structural graph clustering algorithm SCAN [Xu 2007]. We
compare our approach with four other methods based on SCAN. We have shown
through an experimental study that the proposed algorithm is scalable even with
big distributed graphs.

1.2.3 Third axis: dynamic and distributed structural

graph clustering

The third axis of this work deals with dynamic graphs. We extend our distributed
graph clustering algorithm in order to support big and dynamic graphs. Thus, an



6 Chapter 1. Introduction

incremental graph clustering has been proposed. The experimental studies have
proved that the new extension is scalable and faster than the baseline algorithms.

1.3 Outline

This thesis is made up of six chapters organized as follows. In Chapter 2, we
introduce the Big Data emergence in the last years and we present an overview
of popular Big Data frameworks. We also conduct an experimental study on the
reviewed Big Data frameworks.
In Chapter 3, we first survey large graph processing systems and graph program-
ming models. Then, we discuss existing graph clustering algorithms and we present
a structural graph clustering algorithms.
In Chapter 4, we introduce our method for structural graph clustering. Then, we
present the conducted experimental study and we compare the proposed algorithm
to four similar clustering algorithms.
In Chapter 5, we extend the proposed distributed algorithm in order to support
dynamic graphs. For this, we purpose an incremental and distributed structural
graph clustering algorithm that exploits the previous results to generate new ones
in each update. Through the conducted experimental study, we have shown that
the incremental algorithm significantly improves the execution time.
In Chapter 6, we conclude the present manuscript by summarizing our contribu-
tions and highlighting some prospects.
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Goals The main objective of this chapter is to discuss the Big Data con-
cept from both theoretical and practical perspectives. The comprehension of this
concept can be considered as a primary stage before proceeding to a specialized
study of its components like graphs. This background chapter starts with a brief
introduction to Big Data. Afterward, we describe popular frameworks that are
recently developed to handle imposed challenges by this concept. A deep experi-
mental study of some Apache frameworks is conducted in order to concretize their
performance to store, analyze and process Big Data. Finally, the usefulness of
Big Data in real-world applications is then demonstrated through some examples
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2.1 Introduction to Big Data

In recent decades, increasingly large amounts of data are generated from a variety
of sources. The size of generated data per day on the Internet has already exceeded
two exabytes [Gandomi 2015b]. Within one minute, 72 h of videos are uploaded
to Youtube, around 30.000 new posts are created on the Tumblr blog platform,
more than 100.000 tweets are shared on Twitter and more than 200.000 pictures
are posted on Facebook [Gandomi 2015b]. Big Data problems lead to several
research questions such as (1) how to design scalable environments, (2) how to
provide fault tolerance and (3) how to design efficient solutions.
Most existing tools for storage, processing and analysis of data are inadequate for
massive volumes of heterogeneous data. Consequently, there is an urgent need
for more advanced and adequate Big Data solutions. Many definitions of Big
Data have been proposed throughout the literature. Most of them agreed that
Big Data problems share four main characteristics, referred to as the four V’s
(Volume, Variety, Veracity and Velocity) [Oguntimilehin 2014].
The volume refers to the size of available datasets that typically require distributed
storage and processing. The variety refers to the fact that Big Data is composed
of several different types of data such as text, sound, image and video. The
veracity refers to the biases, noise and abnormality in data. The velocity deals
with the place at which data flows in from various sources like social networks,
mobile devices and the Internet of Things (IoT).

2.2 Popular Big Data frameworks

In the literature, a set of surveys was established in relation to Big Data frame-
works. From the ten discussed surveys above, only six have experimentally studied
some of the Big Data frameworks.

In [6], the authors compared several MapReduce implementations like Hadoop
[Li 2015], Twister [Ekanayake 2010] and LEMO-MR [Fadika 2010] on many work-
loads. Particularly, the performance and scalability of the studied frameworks have
been evaluated. In [Veiga 2016], an experimental study on Spark, Hadoop and
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Flink has been conducted. Mainly, the impact of some configuration parameters
of the studied frameworks (e.g., number of mappers and reducers in Hadoop,
number of threads in the case of Spark and Flink) on the runtime while running
several workloads was studied. In [Shi 2015], the authors conducted an experimen-
tal study on Spark and Hadoop. They developed two profiling tools : (1) a study
of the resource utilization for both MapReduce and Spark; (2) a breakdown of the
task execution time for in-depth analysis. The conducted experiments showed that
Spark is about 2.5x, 5x, and 5x faster than MapReduce, for WordCount, k-means,
and PageRank workloads, respectively.
Some other works like [Singh 2014] [Chen 2014b] [Chen 2014a] [Liu 2014] tried
to highlight Big Data fundamentals. They discussed the challenges related to Big
Data applications and they presented the main features of some Big Data pro-
cessing frameworks. Two works have compared Spark and Flink from theoretical
and/or experimental point of view [García-Gil 2017] [Marcu 2016]. Scalability and
impact of the size on disk, as well as the performance of specific functionalities of
the compared frameworks have been considered.
In [García-Gil 2017], the authors discussed the main difference between Spark and
Flink and presented an empirical study of both frameworks in the case of ma-
chine learning applications. In [Marcu 2016], Marcu et al. studied the impact
of different architectural choices and parameter configurations on the perceived
performance in the case of batch processing is studied. The performance of the
studied frameworks has been evaluated with several representative batch and it-
erative workloads. The work presented in [Zhang 2015b] deals with in-memory
Big Data management and processing frameworks. The authors provided a review
of several in-memory data management and processing proposals and systems,
including both data storage systems and data processing frameworks. They also
presented some key factors that need to be considered in order to achieve efficient
in-memory data management and processing, such as RDD for in-memory data
persistence, immutable objects to improve response time, and data placement
optimization. In [Zhang 2017], the authors conducted an experimental study on
Storm and Flink in a stream processing context. The aim of the conducted study
is to understand how current design aspects of modern stream processing sys-
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tems interact with modern processors when running different types of applications.
However, the study mainly focuses on evaluating the common design aspects of
stream processing systems on scale-up architectures, rather than comparing the
performance of individual systems.
We mention that most of the above-presented surveys are limited in terms of both
the evaluated features of Big Data frameworks and the number of considered
frameworks. For example, in [Zhang 2017], only stream processing frameworks
are considered while in [Dede 2014] [Veiga 2016] [García-Gil 2017] [Marcu 2016],
only batch processing frameworks are considered. We highlight that our experi-
mental survey as described in Section 1.3. differs from the above-presented works
by the fact that it compares the studied frameworks in the case of both batch
and stream processing. It also deals with several representative batch and itera-
tive workloads which are not considered in most existing surveys. Add to that,
additional parameters (e.g., memory, threads) are configured to better evaluate
the discussed frameworks. Moreover, monitoring capacities differentiate our work
from the existing surveys. In fact, a personalized tool is implemented for different
tests to effectively monitor resource usage.

2.2.1 Presentation of Big Data frameworks

This part is dedicated to a theoretical study of the most popular Big Data frame-
works. For a better explanation of their principles, we use the Word- Count
program as a running example. This latter consists on reading a set of text files
and counting how often words occur. Snapshots of the codes used to implement
the WordCount example with the studied frameworks are available online.

2.2.2 Apache Hadoop

2.2.2.1 Hadoop system overview

Hadoop is an Apache project founded in 2008 by Doug Cutting at Yahoo and Mike
Cafarella at the University of Michigan [Polato 2014]. Hadoop consists of two
main components: (1) Hadoop Distributed File System (HDFS) for data storage
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and (2) Hadoop MapReduce, an implementation of the MapReduce programming
model [Dean 2008]. In what follows, we discuss the MapReduce programming
model, HDFS and Hadoop MapReduce.

• MapReduce Programming Model : it is a programming model that was
designed to deal with parallel processing of large datasets. MapReduce has
been proposed by Google in 2004 [Dean 2008] as an abstraction that allows
performing simple computations while hiding the details of parallelization,
distributed storage, load balancing and enabling fault tolerance. The central
features of the MapReduce programming model are two functions, written by
a user: Map and Reduce. The Map function takes a single key–value pair as
input and produces a list of intermediate key–value pairs. The intermediate
values associated with the same intermediate key are grouped together and
passed to the Reduce function. The Reduce function takes as input an
intermediate key and a set of values for that key. It merges these values
together to form a smaller set of values. The system overview of MapReduce
is illustrated in Fig. 2.1.

As shown in Fig. 2.1, the basic steps of a MapReduce program are as follows:

1. Data reading: in this phase, the input data is transformed into a set
of key–value pairs. The input data may come from various sources
such as file systems, database management systems or main memory
(RAM). The input data is split into several fixed-size chunks. Each
chunk is processed by one instance of the Map function.

2. Map phase: for each chunk having the key–value structure, the corre-
sponding Map function is triggered and produces a set of intermediate
key–value pairs.

3. Combine phase: this step aims to group together all intermediate
key–value pairs associated with the same intermediate key.

4. Partitioning phase: following their combination, the results are dis-
tributed across the different Reduce functions.
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Figure 2.1: MapReduce architecture

5. Reduce phase: the Reduce function merges key–value pairs having the
same key and computes a final result.

• HDFS: it consists of an open source implementation of the distributed
Google File System (GFS) [Ghemawat 2003]. It provides a scalable dis-
tributed file system for storing large files over distributed machines in a
reliable and efficient way [White 2012]. In Fig. 2.2, we show the abstract
architecture of HDFS and its components.

It consists of a master/slave architecture with a Name Node being master
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Figure 2.2: HDFS architecture

and several Data Nodes as slaves. The Name Node is responsible for al-
locating physical space to store large files sent by the HDFS client. If the
client wants to retrieve data from HDFS, it sends a request to the Name
Node. The Name Node will seek their location in its indexing system and
subsequently sends their address back to the client. The Name Node returns
to the HDFS client the meta-data (filename, file location, etc.) related to
the stored files. A secondary Name Node periodically saves the state of the
Name Node. If the Name Node fails, the secondary Name Node takes over
automatically.

• Hadoop MapReduce: There are two main versions of Hadoop MapRe-
duce. In the first version called MRv1, Hadoop MapReduce is essentially
based on two components: (1) the Task Tracker that aims to supervise
the execution of the Map/Reduce functions and (2) the Job Tracker which
represents the master part and allows resource management and job schedul-
ing/monitoring. The Job Tracker supervises and manages the Task Trackers
[21]. In the second version of Hadoop called YARN, the two major features
of the Job Tracker have been split into separate daemons: (1) a global Re-
source Manager and (2) per-application Application Master. In Fig. 2.2,
we illustrate the overall architecture of YARN. As shown in this figure, the
Resource Manager receives and runs MapReduce jobs. The per-application
Application Master obtains resources from the Resource Manager and works
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with the Node Manager(s) to execute and monitor the tasks. In YARN,
the Resource Manager (respectively the Node Manager) replaces the Job
Tracker (respectively the Task Tracker) [Li 2015]. Note that other well-
known cluster managers are heavily used by Big Data systems. Taking as
examples Mesos [Hindman 2011] and Zookeeper [Skeirik 2013].

– Mesos is an open source cluster manager that ensures dynamic re-
sources sharing and provides efficient resources management for dis-
tributed frameworks [Hindman 2011]. It is based on a master/slave
architecture. The master node relies on a daemon, called master pro-
cess. This later manages all executor daemons deployed in the slave
nodes, on which user tasks are distributed and executed.

– Apache ZooKeeper is an open source and fault-tolerant coordinator
for large distributed systems [Skeirik 2013]. It provides a centralized
service for maintaining the cluster’s configuration and management. It
also ensures the data or service synchronization in distributed applica-
tions. Unlike YARN or Mesos, Zookeeper is based on a cooperative
control architecture, where the same service is deployed in all machines
of the cluster. Each client or application can request the Zookeeper
service by connecting to any machine in the cluster.

2.2.2.2 WordCount example with Hadoop

A WordCount program in Hadoop consists of a MapReduce job that counts the
number of occurrences of each word in a file stored in the HDFS. The Map task
maps the text data in the file and counts each word in the data chunk provided
to the Map function (see Fig. 2.1). The result of the Map tasks are passed to
Reduce function which combines and reduces the data to generate the final result.
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Figure 2.3: Spark system overview

2.2.3 Apache spark

2.2.3.1 Spark system overview

Apache Spark is a powerful processing framework that provides ease of use tool
for efficient analytics of heterogeneous data. It was originally developed at UC
Berkeley in 2009 [Zaharia 2010]. Spark has several advantages compared to other
Big Data frameworks like Hadoop and storm. Spark is used by many companies
such as Yahoo, Baidu, and Tencent. A key concept of Spark is Resilient Distributed
Datasets (RDDs). An RDD is basically an immutable collection of objects spread
across a Spark cluster. In Spark, there are two types of operations on RDDs:
(1) transformations and (2) actions. Transformations consist in the creation of
new RDDs from existing ones using functions like map, filter, union and join.
Actions consist of the final result of RDD computations. In Fig. 2.3, we present
an overview of the Spark architecture. A Spark cluster is based on a master/slave
architecture with three main components:

• Driver Program: this component represents the slave node in a Spark
cluster. It maintains an object called SparkContext that manages and su-
pervises running applications.

• Cluster Manager: this component is responsible for orchestrating the
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workflow of the application assigned by Driver Program to workers. It also
controls and supervises all resources in the cluster and returns their state to
the Driver Program.

• Worker Nodes: each Worker Node represents a container of one operation
during the execution of a Spark program.

Spark offers several Application Programming Interfaces (APIs) [Zaharia 2010]:

• SparkCore: Spark Core is the underlying general execution engine for the
Spark platform. All other features and extensions are built on top of it.
Spark Core provides in-memory computing capabilities and a generalized
execution model to support a wide variety of applications, as well as Java,
Scala, and Python APIs for ease of development.

• SparkStreaming: Spark Streaming enables powerful interactive and an-
alytic applications across both streaming and historical data while inher-
iting Spark’s ease of use and fault tolerance characteristics. It can be
used with a wide variety of popular data sources including HDFS, Flume
[Chambers 2010], Kafka [Garg 2013], and Twitter [Zaharia 2010].

• SparkSQL: Spark offers a range of features to structure data retrieved from
several sources. It allows subsequently to manipulate them using the SQL
language [Armbrust 2015].

• SparkMLLib: Spark provides a scalable machine learning library that deliv-
ers both high-quality algorithms (e.g., multiple iterations to increase accu-
racy) and high speed (up to 100x faster than MapReduce) [Zaharia 2010].

• GraphX: GraphX [Xin 2013] is a Spark API for graph-parallel computa-
tion (e.g., PageRank algorithm and collaborative filtering). At a high-level,
GraphX extends the Spark RDD abstraction by introducing the Resilient
Distributed Property Graph: a directed multigraph with properties attached
to each vertex and edge. To support graph computation, GraphX pro-
vides a set of fundamental operators (e.g., subgraph, joinVertices, and
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MapReduceTriplets) as well as an optimized variant of the Pregel API
[Malewicz 2010a]. In addition, GraphX includes a growing collection of
graph algorithms (e.g., PageRank, Connected components, Label propaga-
tion and Triangle count) to simplify graph analytics tasks.

2.2.3.2 WordCount example with Spark

In Spark, every job is modeled as a graph. The nodes of the graph represent trans-
formations and/or actions, whereas the edges represent data exchange between
the nodes through RDD objects.

Through Fig. 2.4, we show the execution plan for a WordCount job. In the
first step, the SparkContext object is used to read the input data from any sources
(e.g., HDFS) and to create an RDD. In the second step, several operations can be
applied to the RDD. In this example, we apply a flatMap operation that receives
the lines of RDD, and applies a lambda function to each line of the RDD in order
to generate a set of words. Then, a map function is applied in order to create a
set of key–value pairs, in which the key is a word and the value is the number one.
The next step consists of computing the sum of the values of each key using the
reduceByKey function. The final results are written using the saveAsFile function.

2.2.4 Apache Storm

2.2.4.1 Storm system overview

Storm [Toshniwal 2014] is an open source framework for processing large struc-
tured and unstructured data in real-time. Storm is a fault tolerant framework that
is suitable for real-time data analysis, machine learning, sequential and iterative
computation. Following a comparative study of storm and Hadoop, we find that
the first is geared for real-time applications while the second is effective for batch
applications. As shown in Fig. 2.5, a storm program/topology is represented by
a directed acyclic graph (DAG). The edges of the program DAG represent data
transfer. The nodes of the DAG are divided into two types: spouts and bolts. The
spouts (or entry points) of a storm program represent the data sources. The bolts
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Figure 2.4: WordCount example with Spark

represent the functions to be performed on the data. Note that storm distributes
bolts across multiple nodes to process the data in parallel. In Fig. 2.5, we show a
storm cluster administrated by zookeeper, a service for coordinating processes of
distributed applications [Hunt 2010]. Storm is based on two daemons called Nim-
bus (in master node) and supervisor (for each slave node). Nimbus supervises the
slave nodes and assigns tasks to them. If it detects a node failure in the cluster,
it re-assigns the task to another node. Each supervisor controls the execution of
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Figure 2.5: Topology of a Storm program and architecture

its tasks (affected by the nimbus). It can stop or start the spots following the
instructions of Nimbus. Each topology submitted to Storm cluster is divided into
several tasks.

2.2.4.2 WordCount example with Storm

Since Storm is a framework for stream processing, we run the WordCount example
in stream mode. A Storm WordCount job consists of a topology that combines a
set of spouts and bolts, where the spouts are used to get the data and the bolts are
used to process the data. In Fig. 2.6, three processing layers are used to process
the data. In the first layer, the spouts are used to read the input data from the
sources and push the data (as lines of text) to the next layer. Then, in the next
layer, a set of bolts are used to generate a set of words from each consumed line
(from the previous layer). Finally, the last bolts are used to count for each word
its number of occurrences.
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Figure 2.6: WordCount example with Storm

2.2.5 Apache Samza

2.2.5.1 Samza system overview

Apache Samza [Samza 2014] is a distributed processing framework created by
LinkedIn to solve various kinds of stream processing requirements such as tracking
data, service logging, and data ingestion pipelines for real-time services. Since
then, it was adopted and deployed in several projects. Samza is designed to handle
large messages and to provide file system persistence for them. It uses Apache
Kafka as a distributed broker for messaging, and YARN for distributed resource
allocation and scheduling. YARN resource manager is adopted by Samza to provide
fault tolerance, processor isolation, security, and resource management in the used
cluster. As illustrated in Fig. 2.7, Samza is based on three layers. The first layer
is devoted to streaming data and uses Apache Kafka to manage the data flow.
The second layer is based on YARN resource manager to handle the distributed
execution of Samza jobs and to manage CPU and memory usage across a multi-
tenantcluster of machines. The processing capabilities are available in the third
layer which represents the Samza core and provides APIs for creating and running
stream tasks in the cluster [Samza 2014]. In this layer, several abstract classes can
be implemented by the user to perform specific processing tasks. These abstract
classes could be implemented with MapReduce, in order to ensure a distributed
processing.
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Figure 2.7: Samza architecture

Figure 2.8: WordCount example with Samza

2.2.5.2 WordCount example with Samza

A Samza job is usually based on two parts. The first part is responsible for data
processing and the second part is responsible for data flow transfer between the
data processing units.

As shown in Fig 2.8. the execution steps of a wordCount job with Samza. In
the first step, the data is read from the source and sent to the first Samza task,
called a splitter, through a kafka topic. In this step, each message is split into a
set of words. In the next step, another Samza task called counter consumes the
set of words, and counts for each one the number of occurrences and generates
the final result.
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Figure 2.9: Flink architecture

2.2.6 Apache Flink

2.2.6.1 Flink system overview

Flink [Alexandrov 2014b] is an open source framework for processing data in both
real time mode and batch mode. It provides several benefits such as fault-tolerant
and large scale computation. The programming model of Flink is similar to
MapReduce. By contrast to MapReduce, Flink offers additional high level func-
tions such as join, filter and aggregation. Flink allows iterative processing and
real time computation on stream data collected by different tools such as Flume
[Chambers 2010] and Kafka [Garg 2013]. It offers several APIs on a more ab-
stract level allowing the user to launch distributed computation in a transparent
and easy way. Flink ML is a machine learning library that provides a wide range of
learning algorithms to create fast and scalable Big Data applications. In Fig. 2.9,
we illustrate the architecture and components of Flink. As shown in Fig. 2.9, the
Flink system consists of several layers. In the highest layer, users can submit their
programs written in Java or Scala. User programs are then converted by the Flink
compiler to DAGs. Each submitted job is represented by a graph. Nodes of the
graph represent operations (e.g., map, reduce, join or filter) that will be applied
to process the data. Edges of the graph represent the flow of data between the
operations. A DAG produced by the Flink compiler is received by the Flink opti-
mizer in order to improve performance by optimizing the DAG (e.g., re-ordering of
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Figure 2.10: WordCount with Flink

the operations). The second layer of Flink is the cluster manager which is respon-
sible for planning tasks, monitoring the status of jobs and resource management.
The lowest layer is the storage layer that ensures storage of the data to multiple
destinations such as HDFS and local files.

2.2.6.2 WordCount example with Flink

In order to implement the WordCount example with Flink, we can use the abstract
functions provided by Flink such as map, flatMap and groupBy. First, the input
data is read from the data source and stored in several dataset objects. Then, a
map operation is applied to the dataset objects in order to generate key– value
pairs, with the word as a key and one as value. Then, the groupBy function is
applied to aggregate the list of key–value pairs generated in the previous step (
Fig. 2.10). Finally, the number of occurrences of each word is calculated using
the sum function and the final results are generated.

2.2.7 Categorization of Big Data frameworks

Before proceeding to the experimental survey, we start by presenting some popular
Big Data frameworks and categorizing them according to their key features. These
key features are (1) the programming model, (2) the supported programming
languages, (3) the type of data sources and (4) the capability to allow for iterative
data processing, (5) the compatibility of the framework with existing machine
learning libraries, and (6) the fault tolerance strategy. We present in Table 2.1 a
comparative study of the presented frameworks according to these features. As
shown in Table 2.1, Hadoop, Flink and Storm use the key–value format to represent
their data. This is motivated by the fact that the key–value format allows access to
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Hadoop Spark Storm Flink Samza
Data format Key-value Key-value,

RDD
Key-value Key-value Events

Processing mode Batch Batch and
Stream

Stream Batch and
Stream

Stream

Data sources HDFS HDFS, DBMS
and Kafka

HDFS, HBase
and Kafka

Kafka, Kine-
sis, message
queus, socket
streams and
files

Kafka

Programming
model

Map and Re-
duce

Transformation
and Action

Topology Transformation Map and Re-
duce

Supported pro-
gramming lan-
guages

Java Java, Scala
and Python

Java Java Java

Cluster manager YARN Standalone,
YARN and
Mesos

YARN
or Zookeeper

Zookeeper YARN

Comments Stores large
data in HDFS

Gives sev-
eral APIs
to develop
interactive
applications

Suitable for
real-time
applications

Flink is an
extension of
MapReduce
with graph
methods

Based on
Hadoop and
Kafka

Iterative compu-
tation

Yes (by run-
ning multiple
MapReduce
jobs)

Yes Yes Yes Yes

Interactive Mode No Yes No No No
Machine learning
compatibility

Mahout SparkMLlib Compatible
with SAMOA
API

FlinkML Compatible
with SAMOA
API

Fault tolerance Duplication
feature

Recovery tech-
nique on the
RDD objects

Checkpoints Checkpoints Data parti-
tioning

Table 2.1: Comparative study of popular Big Data frameworks

heterogeneous data. For Spark, both RDD and key–value models are used to allow
fast data access. We have also classified the studied Big Data frameworks into two
categories: (1) batch mode and (2) stream mode. We have shown in Table 2.1
that Hadoop processes the data in batch mode, whereas the other frameworks
allow the stream processing mode. In terms of physical architecture, we notice
that all the studied frameworks are deployed in a cluster architecture, and each
framework uses a specified cluster manager. We note that most of the studied
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frameworks use YARN as cluster manager. From a technical point of view, we
mention that all the presented frameworks provide APIs for several programming
languages like Java, Scala and Python.

Each framework provides a set of abstract functions that is used to define
the desired computation. We also presented in Table 2.1 weather the studied
framework provides a machine learning library or not. We notice that Spark and
Flink provide their own machine learning libraries, while the other frameworks have
some compatibility with other tools, such as SAMOA for Samza and Mahout for
Hadoop. It is important to mention that Hadoop is currently one of the most
widely used parallel processing solutions. Hadoop ecosystem consists of a set of
tools such as Flume, HBase, Hive and Mahout. Hadoop is widely adopted in the
management of large-size clusters. Its YARN daemon makes it a suitable choice to
configure Big Data solutions on several nodes [Yao 2014]. For instance, Hadoop is
used by Yahoo to manage 24 thousands of nodes. Moreover, Hadoop MapReduce
was proven to be the best choice to deal with text processing tasks [35]. We notice
that Hadoop can run multiple MapReduce jobs to support iterative computing but
it does not perform well because it cannot cache intermediate data in memory for
faster performance.

As shown in Table 2.1, Spark importance lies in its in-memory features and
micro-batch processing capabilities, especially in iterative and incremental process-
ing [Bajaber 2016]. In addition, Spark offers an interactive tool called SparkShell
which allows exploiting the Spark cluster in real time. Once interactive applica-
tions were created, they may subsequently be executed interactively in the cluster.
We notice that Spark is known to be very fast in some kinds of applications due
to the concept of RDD and also to the DAG-based programming model.

Flink shares similarities and characteristics with Spark. It offers good process-
ing performance when dealing with complex Big Data structures such as graphs.
Although there exist other solutions for large-scale graph processing, Flink and
Spark are enriched with specific APIs and tools for machine learning, predictive
analysis and graph stream analysis [Alexandrov 2014b] [Zaharia 2010].
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2.3 Comparative study of Big Data frame-

works

We have performed an extensive set of experiments to highlight the strengths and
weaknesses of popular Big Data frameworks. The performed analysis covers the
scalability, the impact of several configuration parameters on the performance and
the resource usage. For our tests, we evaluated Spark, Hadoop, Flink, Samza and
Storm. For reproducibility reasons, we provide information about the implementa-
tion details and the used datasets online. In the following sub-section, we describe
the experimental setup and we discuss the obtained results.

2.3.1 Experimental environment

All the experiments were performed in a cluster of 10 machines operating with
Linux Ubuntu 16.04. Each machine is equipped with a 4 CPU, 8 GB of main
memory and 500 GB of local storage. For our tests, we used Hadoop 2.9.0, Flink
1.3.2, Spark 1.6.0, Samza 0.10.3 and Storm 1.1.1. All the studied frameworks have
been deployed with YARN as a cluster manager. We also varied these parameters
in order to analyze the impact of some of them on the performance of the studied
frameworks.

2.3.1.1 Experimental environment

We consider two scenarios according to the data processing mode (Batch and
Stream) of the evaluated frameworks.

• In the Batch mode scenario, we evaluate Hadoop, Spark and Flink while
running the WordCount, K-means and PageRank workloads with real and
synthetic data sets.

In the WordCount application, we used tweets that are collected by Apache
Flume [Chambers 2010] and stored in HDFS. As shown in Fig2.11, the col-
lected data may come from different sources including social networks, local
files, log files and sensors. In our case, Twitter is the main source of our
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Figure 2.11: Batch Mode scenario

collected data. The motivation behind using Apache Flume to collect the
processed tweets is its integration facility in the Hadoop ecosystem (espe-
cially the HDFS system). Moreover, Apache Flume allows data collection in
a distributed way and offers high data availability and fault tolerance. We
collected 10 billion tweets and we used them to form large tweet files with
a size on disk varying from 250 MB to 100 GB of data.

For K-means, we generated a synthetic datasets containing between 10,000
and 100 million learning examples. As for the PageRank workload, we have
used seven real graph datasets with different numbers of nodes and edges.
Table 2.2 shows more details of the used datasets.

The above-presented datasets have been downloaded from the Stanford
Large Network Dataset Collection (SNAP) 1 and formatted as plan files
in which each line represents a link between two nodes. We implemented
the PageRank workload with Hadoop using a three-jobs workflow. In the
first job, we read data from the text file and we generated a set of links
for each page. The second job is responsible for setting an initial score for
each page. The last job iteratively computes and sorts the pages’ scores.
Regarding the PageRank implementation with Spark, we followed the same
execution logic as in Hadoop. We implemented a Spark job that applies the
flatMap function to generate key–value pairs for the corresponding links,
and the map function to initialize an initial score for each page. Finally, the
reduceByKey function is used to iteratively aggregate the page’s scores. As

1https://snap.stanford.edu/data/

https://snap.stanford.edu/data/
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Dataset Number of
nodes

Number of
edges

Description

G1 685 230 7 600 595 Web graph of Berkeley
and Stanford

G2 875 713 5 105 039 Web graph from
Google

G3 325 729 1 497 134 Web graph of Notre
Dame

G4 281 903 2 312 497 Web graph of Stanford
G5 1,965,206 2,766,607 RoadNet-CA
G6 3,997,962 34,681,189 Com-LiveJournal
G7 4,847,571 8,993,773 Soc-LiveJournal

Table 2.2: Graph datasets.

for the implemented Flink job, it starts by generating the page-score pairs
using the flatMap function. Then, it iteratively aggregates the scores for
each page using the groupBy function. Finally, it computes the total score
of each page by applying the sum function.

• In the Stream mode scenario, we evaluate real-time data processing capa-
bilities of Storm, Flink, Samza and Spark. The Stream mode scenario is
divided into three main steps. As shown in Fig. 2.12, the first step is de-
voted to data storage. To do this step, we collected 1 billion tweets from
Twitter using Flume and we stored them in HDFS. The stored data is then
transferred to Kafka, a messaging server that guarantees fault tolerance dur-
ing the streaming and message persistence [Garg 2013]. The second step
consists of sending the tweets as streams to the studied frameworks. To
allow simultaneous streaming of the data collected from HDFS by Storm,
Spark, Samza and Flink, we have implemented a script that accesses the
HDFS and transfers the data to Kafka. The last step consists of executing
our workloads in stream mode. To do this, we have implemented an Ex-
tract, Transform and Load (ETL) program in order to process the received
messages from Kafka. The ETL routine consists of retrieving one tweet in
its original format (JSON file), and selecting a subset of attributes from
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Figure 2.12: Stream mode scenario

the tweet such as hash-tag, text, geocoordinate, number of followers, name,
surname and identifiers. All the received messages are processed by our
implemented workload. Then, they are stored using ElasticSearch storage
server, and possibly visualized with Kibana [Gupta 2015]. Regarding the
hardware configuration adopted in the Stream mode, we used one machine
for Kafka and one machine for Zookeeper that allows the coordination be-
tween Kafka and Storm. For the processing task, the remaining machines
are devoted to access the data in HDFS and to send it to Kafka server.

To allow monitoring resources usage according to the executed jobs, we have
implemented a personalized monitoring tool as shown in Fig. 2.13. Our monitoring
solution is based on three core components : (1) data collection module, (2) data
storage module, and (3) data visualization module. To detect the states of the
machines, we have implemented a Python script and we deployed it in every
machine of the cluster. This script is responsible for collecting CPU, RAM, Disk
I/O, and Bandwidth history.

The collected data are stored in ElasticSearch, in order to be used in the eval-
uation step. The stored data are used by Kibana for monitoring and visualization
purposes. For our monitoring tests, we used a dataset of 50 GB of data for the
WordCount workload, 10 million examples for the K-means workload and the G5
dataset for the PageRankworkload. It is important to mention that existing mon-
itoring tools like Ambari [Wadkar 2014] and Hue [Eadline 2015] are not suitable
for our case, as they only offer real-time monitoring results.
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Figure 2.13: Architecture of our personalized monitoring tool

2.3.2 Experimental results

2.3.2.1 Batch mode

In this sub-section, we evaluate the scalability of the studied frameworks, and
we measure their CPU, RAM, disk I/O usage, as well as bandwidth consumption
while processing. We also study the impact of several parameters and settings
on the performance of the evaluated frameworks. Evaluation of the horizontal
scalability This experiment aims to evaluate the impact of the size of the data
on the processing time. In this experiment, we used two simulations according to
the size of data: (1) simulation with small datasets and (2) simulation with big
datasets. Our experiments are conducted using the WordCount workload, with
various datasets with a size on disk varying from 250 MB to 2 GB for the first
simulation and from 1 GB to 100 GB for the second simulation. Fig. 2.14 and
Fig. 2.15 show the average processing time for each framework and for every
dataset. As shown in 2.14, Spark is the fastest framework for all the datasets,
Flink is the next and Hadoop is the lowest. Fig. 2.15 shows that Spark has kept
its order in the case of big datasets and Hadoop showed good results compared
to Flink. We also notice that Flink is faster than Hadoop only in the case of very
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Figure 2.14: Impact of the size of the data on the average processing time: case
of small datasets
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Figure 2.15: Impact of the size of the data on the average processing time: case
of big datasets

small datasets. Compared to Spark, Hadoop achieves data transfer by accessing
the HDFS. Hence, the processing time of Hadoop is considerably affected by
the high amount of Input/Output (I/O) operations. By avoiding I/O operations,
Spark has gradually reduced the processing time. It can also be observed that the
computational time of Flink is longer than those of Spark and Hadoop in the case
of big datasets. This is due to the fact that Flink sends its intermediate results
directly to the network through channels between the workers, which makes the
processing time very dependent on the cluster’s local network. In the case of small
datasets, the data is transmitted quickly between workers. As shown in Fig. 2.14,
Flink is faster than Hadoop. We also notice that Spark defines optimal time by
using the memory to store the intermediate results as RDD objects.

In the next experiment, we tried to evaluate the scalability and the processing
time of the considered frameworks based on the size of used cluster (the number
of machines in the cluster). Fig. 2.16 shows the impact of the number of the
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Figure 2.16: Impact of the number of machines on the average processing time
(WordCount workload with 50 Gb of data)

used machines on the processing time. Both Hadoop and Flink take higher time
regardless of the cluster size, compared to Spark. Fig. 2.16 shows instability in
the slope of Flink due to the network traffic. In fact, Flink jobs are modeled as a
graph that is distributed on the cluster, where nodes represent Map and Reduce
functions, whereas edges denote data flow between Map and Reduce functions.
In this case, Flink performance depends on the network state that may affect
intermediate results which are transferred from Map to Reduce functions across
the cluster. Regarding Hadoop, it is clear that the processing time is proportional
to the cluster size. In contrast to the reduced number of machines, the gap
between Spark and Hadoop is reduced when the size of the cluster is large. This
means that Hadoop performs well and can have close processing time in the case
of bigger cluster size. The time spent by Spark is approximately between 450 s and
300 s for 2–6 nodes cluster. Furthermore, as the number of participating nodes
increases, the processing time, yet, remains approximately equal to 290 s. This is
explained by the processing logic of Spark. Indeed, Spark depends on the main
memory (RAM) and the available resources in the cluster. In case of insufficient
resources to process the intermediate results, Spark requires more RAM to store its
intermediate results. This is the case of 6 to 9 nodes which explains the inability
to improve the processing time even with an increased number of participating
machines.

In the case of Hadoop, intermediate results are stored on disk. This explains
the reduced execution time that reached 400 s in the case of 9 nodes, compared
to 600 s when exploiting only 4 nodes. To conclude, we mention that Flink
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Figure 2.17: Impact of iterative processing on the average processing time

allows creating a set of channels between workers, to transfer intermediate results
between them. Flink does not perform Read/Write operations on disk or RAM,
which allows accelerating the processing times, especially when the number of
workers in the cluster increases. As for the other frameworks, the execution of
jobs is influenced by the number of processors and the amount of Read/Write
operations, on disk (case of Hadoop) and on RAM (case of Spark).

Iterative processing
In the next scenario, we tried to evaluate the studied frameworks in the case of
iterative processing with both K-means and PageRank workloads. In Fig.2.17, both
use cases measure the impact of iterative computing on the studied frameworks.
For K-means workload, we find that Spark and Flink are similar in response time
and they are faster compared to Hadoop. This can be explained by the fact
that Hadoop writes the output results, for each iteration in the hard disk which
makes Hadoop very slow. The PageRank workload is an iterative processing but
it consumes more memory resources, which degrade performances in the case of
Spark. In this case, Spark consumed all the available memory to create a new
RDD object. Then, Spark applies its own strategy to replace the useless RDD
and, when it does not fit in the memory, it slow down the execution compared to
both Flink and Hadoop. Through the next experiment, we try to show the impact
of the number of iterations on the runtime. We tested our frameworks by running
K-means on 10 million examples in the training set. We varied the number of
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Figure 2.18: Impact of the number of iterations on the average processing time
(Kmeans workload with 10 million examples)

iteration in each simulation. As shown in Fig. 2.18, with both Flink and Spark
frameworks, the number of iterations has no significant influence on the execution
time. Fig. 2.18. Impact of the number of iterations on the average processing
time (K means workload with 10 million examples). One can conclude that the
curve of Hadoop is characterized by an quadratic slope whereas in the case of
Spark and Flink the curve are characterized by a linear slope. According to Fig.
2.18 and to the literature, we can interpret that Hadoop is not the best choice for
this kind of processing (iterative computing).
Data partitioning
In the next experiment, we try to show the impact of data partitioning on the
studied frameworks. In our experimental setup, we used HDFS for storage. We
varied the block size in our HDFS system and we run K-means with 10 iterations
with all the used frameworks. Fig. 2.19 presents the impact of the HDFS block
size on the processing time. As shown in Fig. 2.19, the curves are inflated
proportionally to the size of the HDFS block size for both Hadoop and Spark,
while Flink does not imply any variation in the processing time. This can be
explained by the degree of parallelism adopted by the studied frameworks. We
mention that in Hadoop, the number of mappers is directly proportional to the
input splits, which depends on HDFS block size. When we increase the number
of splits, the degree of parallelism increases too. One possible solution to improve
the processing time is to enhance resource usage, but this is not always possible
according to the Hadoop curve’s behavior presented in Fig. 2.19. Note also that
when we set a block of HDFS whose size is less than 16 MB, the processing time
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Figure 2.19: Impact of HDFS block size on the runtime (Kmeans workload with
10 million examples and 10 iterations)

decreases as the number of input splits exceeds the number of cores in the cluster.
For Spark, we have almost the same results compared to Hadoop. Precisely, when
Spark loads its data from HDFS, it converts or creates for each input split an RDD
partition. In this case, the partition makes and provides the degree of parallelism,
because Spark context program assigns for each worker an RDD partition.

As for Flink, each job is modeled as a directed graph, where nodes are reserved
for data processing and edges represent data flow. In addition, each Flink job
reserves a list of nodes in the graph to read the input data and to write the final
results. In this case, the and send the data as stream flow to other processing
nodes. This mechanism makes Flink independent on the HDFS block size, as
shown in Fig. 2.19.
Impact of the cluster manager
In our work, we mainly used YARN as a cluster manager. We also tried to evaluate
the impact of the cluster manager on the performance of the studied frameworks.
To do this, we compared Mesos, YARN and the standalone clusters manager of the
studied frameworks. For our tests, we run the WordCount workload with 50 GB
of data, K-means with 10 million examples and Pagerank with the G5 dataset (see
Table 2.1). As shown in Fig. 2.20, the standalone mode is faster than both YARN
and MESOS. In fact, the standalone uses all the resources while executing a job,
whereas both YARN and MESOS have a scheduler to run multiple jobs at once
and share the cluster resources with all the submitted applications [Jha 2014].
Impact of bandwidth
In order to study the impact of bandwidth consumption on the performance of the
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Figure 2.20: Impact of the cluster manager on the performance of the studied
frameworks
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Figure 2.21: Impact of bandwidth on the performance of the studied frameworks

studied frameworks, we run the Word- Count workload with 50 GB of data and
we varied the bandwidth from 128 MB to 1 GB. As shown in Fig. 2.21, Flink is
bandwidth dependent.

In fact, when the bandwidth increases, the response time decreases. This can
be explained by the fact that each Flink job sends the data directly from a source
to a calculating unit across the network. We also notice that Spark uses the
network to, sometimes, migrate the data to the processing unit. Hadoop allows
data locality, which means that Hadoop moves the computation close to where
the actual data resides on the node.
Impact of some configuration parameters
All the studied frameworks have a large list of configuration parameters, which
can influence their behaviors. In order to understand the impact of these pa-
rameters on the performance and the quality of the results, we try in this
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Figure 2.22: Impact of parallelism parameters on the performance of Flink

sub-section to study some of them mainly those which are related to the
RAM and the number of threads in each framework. In Hadoop, the Ap-
plication Manager daemon distributes the Map and Reduce functions on the
available slots of the cluster. To configure this aspect, we set both pa-
rameters mapred.tasktracker.map.tasks.maximum and mapred.tasktracker. re-
duce.tasks.maximum in the site-mapred.xml configuration file. These parameters
represent respectively the maximum number of Map and Reduce tasks that will
run simultaneously on a node. Note that Spark uses executor-cores parameter and
Flink uses slots parameter to configure the number of executed threads in paral-
lel. In order to define the amount of memory buffer, Hadoop uses the io.sort.mb
parameter in the site-mapred.xml configuration, Spark uses the executor-memory
parameter and Flink uses the taskManagerMemory parameter.

• Flink configuration: In order to evaluate the impact of some configuration
parameters on the performance of Flink, we first executed our workloads
while varying the number of slots in each TaskManager. Then, we varied
the amount of used memory by each TaskManager.

Fig. 2.22 presents the impact of the number of slots on the processing time
of the WordCount workload. In fact, the latter is characterized by a high
CPU resource consumption which explains the reduction of the response
time when the number of slots increases. Note that this is not the case with
K-means and PageRank workloads. By analyzing Fig. 2.23, we notice that
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Figure 2.23: Impact of the memory size on the performance of Flink
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Figure 2.24: Impact of the number of workers on the performance of Spark

the memory resource does not have a large effect on the processing time in
these workloads since Flink is based on sending the output results directly
from one computing unit to another one without a high usage of disk or
memory.

• Spark Configuration: The parallelism configuration in Spark requires the
definition of the number of executor-cores by machine. In addition, memory
management is primordial as we must configure the memory for each worker.
These two parameters are respectively executor-cores and executor-memory.

As shown in Fig. 2.24, when we increase the number of workers per machine
the processing time increases too. This behavior may be related to the
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Figure 2.25: Impact of the memory size on the performance of Spark

memory management of Spark. In fact, when the memory is shared and
distributed on several slots, the slot of each worker will be limited which
slows down the computing performance. In this case, it is advisable to
limit the number of workers, if the machine has a limited memory, and
to maximize it proportionally to the capacity of the memory. In the same
context, we notice the importance of the memory size through Fig. 2.25.
When we increase the memory the response time decreases. This behavior
is not always valid because it depends on some other constraints such as
the availability of other resources traffic networks.

• Hadoop Configuration: To configure the number of slots on each
node in a Hadoop cluster, we must set the two following parameters :
(1) mapreduce.tasktracker.map.tasks.maximum and (2) mapreduce. task-
tracker.reduce.tasks.maximum. These two parameters define the number
of Map and Reduce functions that run simultaneously on each node of the
cluster. These parameters maximize the CPU usage which can improve the
processing time. Fig. 2.26 shows the impact of the number of slots on the
performance of Hadoop jobs. We find that the best performance is guaran-
teed when using two slots for both Map and Reduce functions. However,
this value depends on the number of cores in each node of the cluster.

In our case, we have four cores in each machine and the best value is
two slots for Map and Reduce, since the other cores are reserved for both
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Figure 2.26: Impact of the number of slots on the performance of Hadoop
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Figure 2.27: Impact of the memory size on the performance of Hadoop

daemons DataNode and NodeManager. The same behavior is observed
with the WordCount workload because this latter is based on CPU resource
compared to the other workloads. Among the characteristics of Hadoop,
we note the use of the hard disk to write intermediate results between
iterations or between Map and Reduce functions. Before writing data to
the disk, Hadoop writes its intermediate data in a memory buffer. This
memory can be configured through the io.sort.mb parameter. In order to
evaluate the impact of this parameter, we varied its values from 20MB to
120MB as illustrated in Fig. 2.27. It is also clear that the processing time
decreases subsequently and reaches 100 MB when we increase the value of
io.sort.mb parameter. A level of stability is achieved when the satisfaction
of the computing units by this resource is guaranteed.
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2.3.2.2 Stream mode

In stream experiments, we measure CPU, RAM, disk I/O usage and bandwidth
consumption of the studied frameworks while processing tweets, as described in
Section 4.2. The goal here is to compare the performance of the studied frame-
works according to the number of processed messages within a period of time. In
the first experiment, we send a tweet of 100 KB (on average) per message. Fig.
33 shows that Flink, Samza and Storm have better processing rates compared to
Spark. This can be explained by the fact that the studied frameworks use different
values of window time. The values of window time of Flink, Samza and Storm are
much smaller than that of Spark (milliseconds vs seconds).

In the next experiment, we changed the sizes of the processed messages. We
used 5 tweets per message (around 500 KB per message). The results presented in
Fig. 34 show that Samza and Flink are very efficient compared to Spark, especially
for large messages.

2.3.2.3 Summary of the evaluation

From the above-presented experiments, it is clear that Spark can deal with large
data sets better than Hadoop and Flink. Although Spark is known to be the
fastest framework due to the concept of RDD, it is not a suitable choice in the
case of intensive memory processing tasks. Indeed, intensive memory applications
are characterized by the massive use of memory (creation of RDD objects at each
transformation operation). This process degrades the performance of Spark since
the SparkContext will be led to find the unused RDD and remove them in order
to get more free memory space. The carried experiments in this work also indi-
cate that Hadoop performs well on the whole. However, it has some limitations
regarding the writing of intermediate results in the hard disk and requires a con-
siderable processing time when the size of data increases, especially in the case
of iterative applications. According to the resource consumption results in batch
mode, we can conclude that Flink maximizes the use of CPU resources compared
to both frameworks Spark and Hadoop. This good exploitation is relative to the
pipeline technique of Flink which minimizes the period of idle resources. However,
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it is characterized by high demands on the network resource compared to Hadoop.
In fact, this resource consumption explains why Flink is faster than Hadoop. In
the stream scenario, Flink, Samza and Storm are quite similar in terms of data
processing. In fact, they are originally designed for stream processing. We also
notice that Flink is characterized by its low latency since it is based on pipe-lined
processing and on message passing processing technique, whereas Spark is based
on Java Virtual Machine (JVM) and belongs to the category of batch mode frame-
works. Each Samza job is divided into one or more partitions and each partition is
processed in an independently container or executor, which shows best results with
large stream messages. Another important aspect to be considered while tuning
the used framework is the cluster manager. In the standalone mode, the resource
allocation in Spark and Flink are specified by the user during the submission of its
jobs whereas using a cluster manager such as Mesos or YARN, the allocation of
the resources is done automatically.

2.4 Real-world applications and best practices

In this sub-section, we discuss the use of the studied frameworks in several real-
world applications including health care applications, recommender systems, social
network analysis and smart cites. More technically, we describe some examples
where these frameworks can be applied in specific fields in the best practices part.

2.4.1 Real-world applications

2.4.1.1 Healthcare applications

Healthcare scientific applications, such as body area network provide monitoring
capabilities to decide on the health status of a host. This requires deploying
hundreds of interconnected sensors over the human body to collect various data
including breath, cardiovascular, insulin, blood, glucose and body temperature
[Zhang 2015a]. However, sending and processing iteratively such a stream of
health data is not supported by the original MapReduce model. Hadoop was ini-
tially designed to process Big Data already available in the distributed file system.
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In the literature, many extensions have been applied to the original Mapreduce
model in order to allow iterative computing such as Haloop system [Bu 2012]
and Twister [Ekanayake 2010]. Nevertheless, the two caching functionalities in
Haloop that allow reusing processing data in the later iterations and make check-
ing for a fix-point lack efficiency. Also, since processed data may partially remain
unchanged through the different iterations, they have to be reloaded and repro-
cessed at each iteration. This may lead to resource wastage, especially network
bandwidth and processor resources.

Unlike Haloop and existing MapReduce extensions, Spark provides support for
interactive queries and iterative computing. RDD caching makes Spark efficient
and performs well in iterative use cases that require multiple treatments on large
in-memory datasets [Bajaber 2016].

2.4.1.2 Recommendation systems

Recommender systems are another field that began to attract more attention,
especially with the continuous changes and the growing streams of users’ ratings.
Unlike traditional recommendation approaches that only deal with static item and
user data, new emerging recommender systems must adapt to the high volume
of item information and the big stream of user ratings and tastes. In this case,
recommender systems must be able to process the big stream of data. For instance,
news items are characterized by a high degree of change and user interests vary
over time which requires a continuous adjustment of the recommender system.
In this case, frameworks like Hadoop are not able to deal with the fast stream
of data (e.g. user ratings and comments), which may affect the real evaluation
of available items (e.g. product or news). In such a situation, the adoption of
effective stream processing frameworks is encouraged in order to avoid overeating
or incorporating user/item related data into the recommender system. Tools like
Mahout, FlinkML and SparkMLlib include collaborative filtering algorithms, that
may be used for e-commerce purposes and in some social network services to
suggest suitable items to users [Domann 2016].
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2.4.1.3 Social media

Social media is another representative data source for Big Data that requires
real-time processing and results. Its is generated from a wide range of Internet
applications and Web sites including social and business-oriented networks (e.g.
LinkedIn, Facebook), online mobile photo and video sharing services (e.g. Insta-
gram, Youtube, Flickr), etc. This huge volume of social data requires a set of
methods and algorithms related to, text analysis, information diffusion, informa-
tion fusion, community detection and network analytics, which maybe exploited
to analyze and process information from social-based sources [Bello-Orgaz 2016a].
This also requires iterative processing and learning capabilities and necessitates the
adoption of in-stream frameworks such as Storm and Flink along with their rich
libraries.

2.4.1.4 Smart cities

Smart city is a broad concept that encompasses economy, governance, mobility,
people, environment and living. It refers to the use of information technology to
enhance the quality, the performance and the interactivity of urban services in
a city. It also aims to connect several geographically distant cities [43]. Within
a smart city, data is collected from sensors installed on utility poles, water lines,
buses, trains and traffic lights. The networking of hardware equipment and sensors
is referred to as the Internet of Things (IoT) and represents a significant source
of Big Data. Big Data technologies are used for several purposes in a smart
city including traffic statistics, smart agriculture, healthcare, transport and many
others [Stimmel 2015a]. For example, transporters of the logistic company UPS
are equipped with operating sensors and GPS devices reporting the states of their
engines and their positions respectively. This data is used to predict failures and
track the positions of the vehicles. Urban traffic also provides large quantities
of data that come from various sensors (e.g., GPSs, public transportation smart
cards, weather conditions devices and traffic cameras). To understand this traffic
behavior, it is important to reveal hidden and valuable information from the big
stream/storage of data. Finding the right programming model is still a challenge
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because of the diversity and the growing number of services [44]. Indeed, some
use cases are often slow such as urban planning and traffic control issues. Thus,
the adoption of a batch-oriented framework like Hadoop is sufficient. Processing
urban data in micro-batch fashion is possible to provide eGovernment and public
administration services. Other use cases like healthcare services (e.g. remote
assistance of patients) need decision making and results within few milliseconds.
In this case, real-time processing frameworks like Storm are encouraged.

Combining the strengths of the above discussed frameworks may also be useful
to deal with cross-domain smart ecosystems also called big services [Xu 2015].

2.4.2 Best practices

In Section 1.3, two major processing approaches (batch and stream) were studied
and compared in terms of speed and resource usage. Choosing the right pro-
cessing model is a challenging problem, given the growing number of frameworks
with similar and various services [Sakr 2016]. This section aims to shed light
on the strengths of the above discussed frameworks when exploited in specific
fields including stream processing, batch processing, machine learning and graph
processing.

2.4.2.1 Stream processing

As the world becomes more connected and influenced by mobile devices and sen-
sors, stream computing emerged as a basic capability of real-time applications
in several domains, including monitoring systems, smart cities, financial markets
and manufacturing [Bajaber 2016]. However, this flood of data that comes from
various sources at high speed always needs to be processed in a short time inter-
val. In this case, Storm and Flink may be considered, as they allow pure stream
processing. The design of in-stream applications needs to take into account the
frequency and the size of incoming events data. In the case of stream processing,
Apache Storm is well-known to be the best choice for the big/high stream oriented
applications (billions of events per second/core). As shown in the conducted ex-
periments, Storm performs well and allows resource saving, even if the stream of
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events becomes important.

2.4.2.2 Micro-batch processing

In case of batch processing, Spark may be a suitable framework to deal with
periodic processing tasks such as Web usage mining, fraud detection, etc. In
some situations, there is a need for a programming model that combines both
batch and stream behavior over the huge volume/frequency of data in a lambda
architecture. In this architecture, periodic analysis tasks are performed in a larger
window time. Such behavior is called micro-batch. For instance, data produced
by healthcare and IoT applications often require combining batch and stream
processing. In this case, frameworks like Flink and Spark may be good candidates
[Landset 2015a]. Spark micro-batch behavior allows processing data sets in larger
window times. Spark consists of a set of tools, such as SparkMLLIB and Spark
Stream that provides rich analysis functionalities in micro-batch. Such behavior
requires regrouping the processed data periodically, before performing the analysis
task.

2.4.2.3 Machine learning algorithms

Machine learning algorithms are iterative in nature [Landset 2015a]. They are
widely used to process huge amounts of data and to exploit the opportunities hid-
den in Big Data [Zhou 2017b]. Most of the above discussed frameworks support
machine learning capabilities through a set of libraries and APIs. FlinkML library
includes implementations of K-means clustering algorithm, logistic regression,
and Alternating Least Squares (ALS) for recommendation [Chakrabarti 2008].
Spark has a more efficient set of machine learning algorithms such as SparkMLlib
[Assefi 2017] and MLI [Sparks 2013]. Spark MLlib is a scalable and fast library
that is suitable for general needs and most areas of machine learning. Regard-
ing Hadoop framework, Apache Mahout aims to build scalable and performant
machine learning applications on top of Hadoop.
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2.4.2.4 Big graph processing

The field of large graph processing has attracted considerable attention be-
cause of its huge number of applications, such as the analysis of social net-
works [Giatsidis 2011], Web graphs [Alvarez-Hamelin 2008] and bioinformatics
[Huttenhower 2009] [Dhifli 2017a]. It is important to mention that Hadoop is not
the optimal programming model for graph processing [Elser 2013]. This can be
explained by the fact that Hadoop uses coarse-grained tasks to do its work, which
are too heavyweight for graph processing and iterative algorithms [Landset 2015a].
In addition, Hadoop cannot cache intermediate data in memory for faster perfor-
mance. We also notice that most of Big Data frameworks provide graph-related
libraries (e.g., Graphx [Xin 2013] with Spark and Flinkgelly [Carbone 2015] with
Flink).

2.5 Conclusion

In this chapter, we surveyed popular frameworks for large-scale data processing.
After a brief description of the main paradigms related to Big Data problems,
we presented an overview of the Big Data frameworks Hadoop, Spark, Storm
and Flink. We presented a categorization of these frameworks according to some
main features such as the used programming model, the type of data sources,
the supported programming languages and whether the framework allows iterative
processing or not. We also conducted an extensive comparative study of the above
presented frameworks on a cluster of machines and we highlighted best practices
while using the studied Big Data frameworks.
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Key points

• We presented basic notions and features of some Big Data frame-
works that help understanding distributed computing.

• We presented an overview of most popular Big Data frameworks.

• We presented a categorization of the presented frameworks and
techniques.

• We cared out an extensive set of experiments to evaluate the
studied Big Data frameworks.

• We showed a description of best practices related to the use of
popular Big Data frameworks in several application domains.
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Goals
In the previous chapter, an overview of distributed computing and some Big Data
frameworks were presented.Adding to that, a comparative study has been carried
out on these frameworks. Both data size and data velocity stand for the main
challenges of Big Data analysis applications. In the same way, big graph analysis
imposes several challenges such as graph size and velocity. This chapter intro-
duces basic definitions and the related work on graph mining. The related work
provides an overview of the graph processing fields, and we present some graph
clustering algorithms.
Keywords: GraphX, Pregel, Graph processing models, Graph processing frame-
works, Graph clustering.
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3.1 Graph: definitions

Graph (sometimes called network) is a data structure similar to the relational
structure. A graph is noted by G = (V,E), where the V is a set of vertices,
whereas E = V x V denote the set of edges. Each element e ∈ E represents a
link between a pair of vertices and is noted as follows e(vi,v j), where vi and v j ∈
V . This graph structure can represent several real-world applications (e.g.;social
network) where the vertices and edges represent respectively the social network
members and the relationships between them. We can also find various extensions
of this data structure as an attributed graph, a directed or an undirected graph,
and Weighted or unweighted graph.

Definition 3.1.1 Weighted and unweighted graph. A basic graph is a set of
edges that link each pair of vertices. As described above, an edge e = (v1,v2) in
E. But in some cases, some edges are more important than others, so they are
given higher weights. In this perspective, weighted graphs are introduced, making
the ponderation of edges possible. For more details, each edge can be embedded
with a value according to its weight. Given an edge e in E, e= (v1,v2,w) is a triple
value, where v1 and v2 correspond to the edge bounds, and w is the edge weight.

Definition 3.1.2 Directed and Undirected Graph. An undirected graph G =
(V ,E) consists of a list of unidirectional edges. Otherwise, there is no associated
directions of edges, unlike to directed graphs where a direction must be added to
each edge.

Definition 3.1.3 Attributed graph. An attributed graph can be an undirected or
a directed graph. It is defined as G = (V , E, Ae, Av). As detailed in Definition
3.1, V being the set of vertices, E is the set of edges. Two variables Ae and
Av are added to the basic definition to materialize the attributed graph. Added
variables represent respectively the attributes of vertices and edges in G. For more
details, Ae =(Ae1,Ae2,..Aen) represent the attributes of each edge in G while Av

=(Av1,Av2,..) represent the attributes associated with all vertices in G.
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3.2 Related work on big graph: processing

models and frameworks

3.2.1 Graph programming models

Implementing distributed graph applications is an extremely hard task, where the
parallel computing, graph partitioning, and communication management are major
challenges of distributed graph algorithms. To cope with the issues of distributed
graph processing, several high-level programming models have been recently in-
troduced. In the next section, we present the popular used programming models.

3.2.1.1 Vertex-centric model

The principle of this model [Kalavri 2017] is how to think like a vertex. One
programmer summarizes the program to be applied as an input graph through
the implementation of each vertex in the graph. The user-defined function in the
vertex is iteratively executed until satisfying a defined goal or when reaching the
defined number of iterations, knowing that the number of iterations is defined by
the user. During the processing, each vertex can access to its neighboring vertices
in order to get some pieces of information or data useful for its treatment. Oth-
erwise, a program can be modeled as a sequence of exchanged messages between
vertices. This sequence represents the program steps and during the latter the
vertices can change their status. Since each vertex can run its internal program
independently from the other vertices, this independence makes the implemen-
tation of a parallel or distributed program more effective. Fig. 3.1 provides an
explanation of concepts of vertex-centric programming. In the initial graph state ,
a programmer defines the vertex-defined function and runs the program iteratively.
During each iteration, a vertex changes its status from active to inactive, accord-
ing to both internal value and received values from its neighbors. In iteration 3,
all vertices are inactive, so the program will stop. As shown in Fig. 3.1 all vertices
are inactive initially, and after some iterations they converge to be inactive vertices
(iteration 3).
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Figure 3.1: Vertex-centric programming model

3.2.1.2 Edge-centric model

This model [Zhou 2017a] is based on the streaming of edges. The processor takes
one graph as an input set of edges. Each coming edge has two connected vertices
and an edge value. Each edge is computed by the processor and is stored in the
global graph. This model is also designed for iterative algorithms. Similarly to the
vertex-centric model, this latter describes a graph program for each edge. In this
model, a program is executed in several iterations. In each iteration, an edge is
processed in three steps: (i) collect the information from the sources (vertices), (ii)
update its internal values, and (iii) send the new value to its destination vertices.

3.2.1.3 Gather-Apply-Scatter model (GAS)

This model [Gonzalez 2014] is similar to the Vertex-centric model. Each graph
must be viewed as a vertex and implement a program from a vertex point of view.
Nevertheless, it divides the vertex program, which will be executed in each itera-
tion) into three sub-functions: gather, apply and scatter. In the gather function,
the current vertex gets information from its neighboring vertices or edges and op-
tionally aggregates them in a single value σ . In the apply function, the state of
the vertex is updated based on the σ value, and probably on the specific features
of the vertex neighbors. Finally, in the scatter function, each vertex shares its new
state to its neighboring vertices or edges. Then, every implemented program must
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Figure 3.2: Edge-centric programming model

Figure 3.3: GAS programming model

be modeled as three functions that manipulate the σ values in order to change
the vertex state or to stop the program. As shown in Fig . 3.3, a graph algorithm
is a set of steps or iterations. In the first sub-iteration (Gather), each active
and destination vertex gets information from its neighbors. Thereafter, the Apply
function is executed in order to update the value σ and to change the vertex state.
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Figure 3.4: Block-centric programming model flow chart

Finally, the current vertex sends its value to all its neighbors. As illustrated in Fig
. 3.3, when the vertex B is in run, vertices A and C send information to B. Vertex
B updates its σ value, its state, and sends this value to the vertices D and E.

3.2.1.4 Block-centric model

The strategy of this model is to think like a sub-graph or a partition [Fan 2017]. In
the above abstraction models, each vertex or edge in an input graph is executed
dependently in a slot or machine with a parallel or a distributed setting. The
execution is performed iteratively and the communication must be ensured between
slots or machines. In the block-centric model, however,the input graph is divided
into a set of sub-graphs. Then, these sub-graphs are assigned to slots (in a
parallel setting) or to machines (in a distributed setting), in order to execute a
user-defined function on the sub-graphs in each iteration. Fig. 3.4 illustrates a
general three-step workflow of a graph program using the Block-centric model.
Splitting an input graph into sub-graphs represents the first step of this model,
while preserving the coherence of the graph. As Fig. 3.4 shows, sub-graph 1 and
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sub-graph 2 share the vertices A, B and C as frontiers vertices. The second step
is the sub-graph processing. A user-defined function is executed in this step on
all sub-graphs iteratively or in a single iteration. In the last step, after generating
local results, these latter should be aggregated into one global result.

3.2.2 Summary of graph processing models

In this section, we summarize some advantages and limits for each graph pro-
gramming model. Through Tab. 3.1, we can see that all processing models use

Graph pro-
gramming
model

Advantages Limits Partitioning
method

Vertex-centric
model

Easily allows par-
allelism

Communication
cost is high

Random hash-
based partition-
ing

Edge-centric
model

Easily allows par-
allelism and al-
lows the stream-
ing graph pro-
cessing

It is designed for
a stream graph
processing

Random hash-
based partition-
ing

GAS model Easily allows par-
allelism

Communication
cost is high

Random hash-
based partition-
ing

Block-centric
model

Minimizes the
communication
costs

An additional
cost of partition-
ing step

Specific partition-
ing method

Table 3.1: Graph processing models comparative study

the graph partitioning, step since they are designed for distributed and parallel
settings. Therefore, an input graph must be distributed on machines or slots, in
order to perform a distributed processing. Tab 3.1, shows that GAS, Edge-centric,
and Vertex-centric use a random hash-based partitioning method. This method is
based on a hash function to split sets of vertices or edges into sets of machines or
partitions. But, the Block-centric model uses a partitioning method which consists
in spliting a graph into sub-graphs or partitions. This method is very expensive in
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terms of running time, since it takes into consideration the graph density in order
to lower the communication costs. Thereby, the partitioning step represents an
advantage for some models such as GAS, Edge-centric, and Vertex-centric model
which is less expensive. However, the graph partitioning step is considered as a
major weakness in the Block-centric model. In fact, thinking like a vertex or an
edge can facilitate the parallelism of processing, because these models are char-
acterized by independence between their vertices and edges. But, they need high
communications in each step. On the other hand, the communication cost of the
Block-centric model is extremely low compared to that in other models. This is
due to the aggregation of several vertices and edges into some partitions.

3.3 Related work on big graph processing

frameworks

3.3.1 Graph processing frameworks

Due to the Big data revolution, several abstract programming models have been
proposed like MapReduce [Dean 2008] or dryad [Isard 2007]. These models are
implemented as research projects or in industrial projects such as Hadoop, Spark,
etc. The graph processing topic has also attracted many researchers and indus-
tries. In fact, it is costly in terms of computing resources due to its complexity and
to the large size of the real-world graphs. Therefore, a single thread or a simple
machine could not meet the emerging needs, especially when dealing with new
applications like social networks. As detailed in the previous section, several ab-
stract programming models have been proposed in order to support the new graph
processing challenges. These abstract models are implemented in both research
and industrial projects. Moreover, several frameworks have been implemented in
the context of a single graph programming model. Thus, the large number of
frameworks in the literature makes the selection of the right framework for a use
case or an application extremely difficult. In this section, we present the most
popular frameworks for graph processing, and we enumerate their major features.
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3.3.2 Graph processing frameworks: an overview

Pregel [Malewicz 2010b] is a scalable, fault-tolerant and distributed framework
for large graph processing. It represents an evolution of the MapReduce framework
[Dean 2008] to the graph processing systems. Pregel is available as a C++ API
and based on Master/slaves architecture. The Master machine starts to divide an
input graph into slave machines candidates. Slave machines are managed by a
master machine during their treatment. Pregel is known as the first implementa-
tion of the vertex-centric model using the computation model Bulk Synchronous
Parallel(BSP) [Goudreau 1996]. It divides a graph algorithm into a sequence of
iterations called super-steps, which are limited by separators called barriers. In
each super-step, each vertex exchanges messages with its neighbors. Note that
communication between the vertices is based on the message-passing method. To
write a Pregel program, a user must implement some abstract methods as Com-
pute() and getValue() which represent the vertex user-defined function and the
function to get information from its neighbors respectively.
Giraph [Han 2015] is an open source graph processing framework that was devel-
oped by Google. It represents a next generation of Pregel framework. It combines
both Mapreduce and vertex-centric programming models. Giraph is based on the
Hadoop framework to ensure a distributed system with a master/slaves architec-
ture. The master machine divides the input graph into partitions, sends them a
cross the slave machines, and coordinates all global barriers in each super-step.
Also, It uses multi-threading processing in each slave machine in order to optimize
the local computing. Each graph algorithm is considered as a MapReduce Job and
it uses HDFS to store the input, final and intermediate results. Giraph uses global
barriers between consecutive iterations. These barriers make the communication
between the workers synchronous, using BSP model.
Graphx [Gonzalez 2014] is an API for graph processing, which is embedded within
the Spark distributed dataflow system. GraphX takes advantage of the Resilient
Distributed Dataset (RDD) to introduce the Resilient Distributed Graph (RDG)
data storage abstraction. This abstraction allows Graphx to distribute the input
data (graph) in a distributed memory, which allows a parallel processing using
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several high-level functions. To implement a graph algorithm using Graphx, a
thinking like a vertex is required. The graph processing model used by graphX
is the GAS model, which provides three functions (gather, apply and scatter) in
each iteration. Also, the GAS model allows both synchronous and asynchronous
communication modes during the graph processing.
The data structure used by the GraphX framework is represented as a pair of
vertex and edge. The first pair is a list of vertices objects. These objects are
defined by the user and each one is keyed by unique identifier. The second pair is
the edges list. This pair represents a set of edges objects also defined by the user
and keyed by the source and destination vertex identifiers. This structure is called
triplet representation, and allows GraphX to use the basic operations of Spark
core system such as the map, joint, groupBy. In addition, other specific functions
proposed by GraphX like mrTriplets (MapReduce triblets), sendMsg, Vprog. This
abstraction also allows the use of a declarative programming language like SQL,
in order to perform a descriptive analysis of the graph.
GraphIn To meet the dynamic graphs needs, GraphIn [Sengupta 2016] frame-
work was proposed as an incremental and multicore graph processing engine. It
is implemented on the top of another graph processing framewrok called Graph-
Mat [Sundaram 2015]. The latter is also a Graph processing framework that is
designed to support large graphs using a multicore processing. Thus, GraphIn is
adopted for both dynamic and large graphs using High Performance Computing
(HPC) machines. GraphIn is mainly designed for dynamic graphs processing. In
this context, it introduces a novel programming model known as Incremental-
Gather-Apply-Scatter ( I-GAS). Through this model, the processing of a dynamic
or stream graph can be performed in an incremental way. It considers a dynamic
graph as a set of batches, and in each batch, it checks only the changed vertices.
These vertices are called inconsistent vertices.
Blogel [Fan 2017] is one of the first distributed block-centric graph processing
frameworks. It is an open source project implemented in C++. Using Libhdfs
library, it uses the HDFS as a graph storage system. The main motivation behind
the introduction of the Blogel framework is the high diameter of real-world graphs.
In fact, using a vertex-centric programming model for these graphs needs high
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number of super-steps. For example, a single-source shortest path algorithm in
[Malewicz 2010b] takes 10,789 super-steps on a USA road network graph. These
latter requires expensive communication costs. which decreased the performance
of the graph algorithm. Thus, Blogel was proposed to overcome this limit using
the bloc-centric model where an input graph must be divided into blocks or par-
titions. Blogel supports also several predefined partitioning method and provides
many interfaces to users, , allowing them to implement their own methods.
GraphLab [Low 2012] is an open-source and distributed graph processing Frame-
work. It is implemented in C++ and its programming philosophy is similar to the
GAS model, which is among the thinking like vertex processing model. But,
this program should be divided into three functions (Gather, Apply and Scatter).
GraphLab provides two execution modes: synchronous and asynchronous. The
synchronous mode is ensured by the BSP model which uses barriers between the
super-steps. Differently, the asynchronous mode does not uses neither barriers or
super-steps. Unlike the Pregel framework, the communication between the super-
steps is ensured by the shared memory. The computation model used by graphLab
is similar to Mapreduce. It is based on the implementation of two predefined func-
tions: the first one is called update function for a local computing and the second
one aggregates the local results and is called sync mechanism.
PowerGraph [Gonzalez 2012] using a distributed framework for graph processing
depends on the graph partitioning. This latter can affect the performance of any
graph processing framework, since with a bad partitioning scheme a cost of pro-
cessing and communication must be added. Based on this property, PowerGraph
has been introduced. Being a distributed and parallel framework for large graph
processing, PowerGraph takes into consideration the real-world graphs property.
Where the degree of vertices is varied. In other words, some vertices have very high
degrees while others have very low ones. The PowerGraph framework has tackled
this challenge using a partitioning technique that affects the high degree vertices
to several workers in order to ensure the load balancing between all workers. Oth-
erwise, by exploiting the GAS model as a programming model, PowerGraph was
able to ensure the distributed computation of a single vertex on several workers. In
addition, the communication between all workers have been ensured by the shared
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memory mechanism, which allows an asynchronous processing.
BLADYG [Aridhi 2017] is a distributed and parallel graph processing framework
that runs on a commodity of machines. This framework is based on block-centric
graph processing model. The architecture of BLADYG is based on a master/slaves
topology. BLADYG starts by reading the input graph from many different sources,
which can be local or distributed files, such as HDFS and Amazon Simple Storage
Service (Amazon S3). The communication model used by BLADYG is the message
passing technique, which consists in sending messages explicitly from one compo-
nent to another in order to get or send useful data during the graph processing.
In the same way, BLADYG defines two types of messages: (1) worker-to-worker
(W2W) messages, and (2) master-to-worker messages (M2W). BLADYG allows its
users to implement their own partitioning techniques. The synchronous technique
used in BLADYG is PSP model with the partitions or machines when barriers are
used between iterations in an iterative graph algorithms. Also, BLADYG uses an
asynchronous communication using a shared memory among vertices in the same
partition.
Other systems The very large number of graph processing frameworks moti-
vated us to discuss all these systems. We choose to present some other graph
processing frameworks according to their scope in the literature and their uses
in experimental studies and industrial projects. For example, some frameworks
represent a continuity of an existing project, such as Hama [Siddique 2016] mizan
[Khayyat 2013] and GPS [Salihoglu 2013] which enhance the communication and
data partitioning of the basic Pregel system. Pegasus [Kang 2009] is a large-scale
graph mining system that has been implemented on top of the Hadoop framework.
It uses MapReduce to directly implement iterative graph algorithms and HDFS for
the data sharing between the super-steps. Trinity [Shao 2013] is another graph
processing framework that is based on a distributed memory processing. Using a
share distributed memory, Trinity has optimized the communication cost. Graph-
Mat [Sundaram 2015], Graph++ and GRACE[Prabhakaran 2012] are other graph
processing frameworks which are qualified as centralized systems, but they use a
partitioning technique in order to improve their performance.
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3.3.3 Summary of graph processing framworks

Framework Programming
model

Distributed
/Centralized

Communication Dynamic/Static
graph

Pregel Vertex-
centric

Distributed Message passing Static

GraphX GAS Distributed Shared memory Static
BLADYG Block-

Centric
Distributed Hybrid Dynamic

Giraph Vertex-
centric

Distributed Message passing Static

GraphIn I-GAS Centralized Message passing Dynamic
GraphMat GAS Centralized Message passing Static
PowerGraph GAS Distributed Shared memory Static
GraphLab GAS Distributed Shared memory Static
Blogel Block-

Centric
Distributed Message passing Static

Mezan Vertex-
centric

Distributed Message passing Static

GPS Vertex-
centric

Distributed Message passing Static

Trinity GAS Distributed Shared memory Static
Hama Vertex-

centric
Distributed Message passing Static

Pegasus MapReduce Distributed no communica-
tion

Static

Giraph++ Vertex-
centric

Centralized Message passing Static

GRACE Vertex-
centric

Centralized message passing Static

Table 3.2: Graph processing frameworks comparative study

Through the comparative Table. 3.2, we established a summary study of the
studied graph processing frameworks. The used features in this table are deter-
mined according to the literature. These invoices have represented contributions
to combat some problem related to the processing of large graphs. However,
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there is no perfect framework for each application or use case. For example, in
the case of modest graphs multi-core and centralized frameworks should be used
in this kind of applications . Thereby, GraphMat or GraphIn are the most suit-
able frameworks for this application. Moreover, some applications require a lot
of communication which will make the shared memory frameworks represent the
right choice. Also, the shared memory can ensure synchronous communication
which is required in some use cases especially in unbalanced graphs. In the same
way, the study application in this project is the big and dynamic graphs clustering.
Wherefore, the used framework should support both dynamic and big graphs. As
it is shown in Table. 3.2 most frameworks are distributed, but only two frame-
works (BLADYG and GraphIn) can support dynamic graphs. However GraphIn
is a multi-core framework that cannot support both big graphs and distributed
graphs.

3.4 Related work on graph clustering

Graphs are one of the most used data models in several applications like social net-
works [Said 2018], road maps [Cao 2009], bioinformatics [Xu 2002]. For instance,
a recent 5 ranking shows that the popularity of graph databases model increased
up to around 500% in the last years [Gandomi 2015a]. It has shown that graphs
are optimum data models that are able to represent easily many relationships and
to facilitate the exploration of data. Taking social networks as an example, the
graph model organizes data elements into a set of vertices representing the mem-
bers, and a list of edges to materialize the relationships between them (vertices).
Also, the last years featured a Big data explosion especially in graph-based social
networks. As an example, Facebook in 2013 had over 874 million monthly users
[Gandomi 2015a]. This proliferation of a huge amount of data and the massiveness
of graphs introduce several research topics such as graph storage, graph indexing,
graph processing and graph mining. This latter also occurs in several use cases
such as nodes classification, links prediction, graph clustering which is sometimes
called community detection. In this thesis, we focus on the graph clustering.
Graph Clustering is a fundamental problem in graph mining area. It groups the
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vertices of an input graph into a collection of dense and disjoint subsets called
clusters [Žalik 2018, Günnemann 2012]. Different clusters have to be weakly con-
nected between them. Graph clustering has many applications. For example, the
protein annotation task is among the challenges in bioinformatics fields. This task
consists of an understanding of the expression, function, and regulation of encoded
proteins by an organism. These proteins can be represented by a graph of proteins
often called Protein Interaction (PPI) network. In this network, proteins in each
subset interact together in order to perform a specific biological function. In this
context, graph clustering represents one of a set of methods used for detecting
protein in the PPI. In some other applications, the used graph could be very large
and could be partitioned into several sub-graphs, where the computation is per-
formed in a parallel/distributed way. Generally, graph clustering algorithms are
used to ensure the graph partitioning. Likewise, detecting and analyzing research
communities is a real-world application, which uses graph clustering to aggregate
the authors under the same area according to the co-authorship (collaboration)
relationships.

The complexity of the graph data model and its benefits drive the search
to propose several algorithms for this field. Proposed algorithms oscillate from
modularity-based algorithm [LaSalle 2015] Markov clustering [Lei 2016] Label
propagation algorithm [Xie 2013] Spectral based clustering [White 2005a] and
structural clustering. These algorithms are detailed in the next subsections.

3.4.1 Modularity based algorithm

Basically, the modularity [Brandes 2007] is a used metric for measuring the
strength of partitioning a graph into groups, in addition to the quality of clus-
tering. The goal of this measure is to quantify the clustering schema using the
number of edges between the different clusters. These edges are also called ‘frac-
tion of edges’. The formula of modularity [Aktunc 2015] can be written as in Eq.
3.1:

Q =
1

2∗m

n

∑
uv

[
Auv−

dudv

2∗m

]
δ (Cu,Cv) (3.1)
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where m is the number of edges in the graph, v and u are two vertices, and du

and dv are the degrees of u and v, respectively. Avw represents the connectivity
between u and v, which is 1 when u and v are connected by an edge and is 0
otherwise. Cu and Cv are the clusters that contain u and v, respectively. The
value of δ function is 1 when Cu and Cv is the same cluster; otherwise it is 0.

The modularity measure can be applied in order to perform the graph cluster-
ing. When generating several partitioning schema and evaluating the modularity
of each partitioning scheme in order to select the best scheme. The partitioning
generation step is an NP-complet problem. In order to optimize the modularity
quality we need to evaluate all possible partitioning scheme which depend on the
number of vertices in an input graph. In this context, the authors in [Zeng 2015]
have proposed an heuristic method called the Louvain method. This latter is
iterative and is based on multiple phases. The first step is to find a local maxi-
mum which consists to assign each vertex to a cluster, after that then clustering
vertices to the neighbor cluster which increase the modularity measure. The last
step must be repeated until no individual vertex move can improve the modularity
score. The second phase is reserved to the reconstruction of the new network.
During this phase, each community funded in the first phase is considered as a
super vertex. The modularity measure between all founded communities is applied
using the edge between the latter.

3.4.2 Markov Clustering (MCL)

Markov clustering (MCL) [Vlasblom 2009] is one of the most popular graph clus-
tering algorithms. It is frequently used in the bioinformatic field, especially in
protein-protein interaction networks (PPINs) and protein similarity networks and
demonstrates its usefulness in these use cases. The frequent use of this algorithm
in bioinformatics is explained by the the clusters’ balanced feature. Because, for
complex problems such as protein finding, it is required to not find big clusters. The
ideal cluster size (complex proteins) does not exceed 15-30 vertices [Satuluri 2010].
It is also important to deal with a limited set of singleton clusters. MCL is based
on the simulation of random walks using a matrix of probabilities of transition in
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an input graph. This algorithm consists on two phases. The first one is to build
an adjacency matrix A from an input graph, while the second one is to normalize
the columns in order to produce the transition probabilities matrix noted M, and
which is defined as follows:

Mi j =
Ai j

∑
n
k=1 Ak j

(3.2)

For more details, the second phase is devoted to calculate the matrix probabil-
ity. This matrix is initialized according to Eq. 3.2 and iterates the followed steps
until the convergence. The iterative process can be divided into two steps: The
first one is called the expand step, which represents a simple matrix multiplication
M=M*M. As for the second one, it is called inflate step that represents a nor-
malization of each column of M using the next equation:

Mi j =
(Mi j)

r

∑
n
k=1(Mk j)r ,r > 1. (3.3)

Then, a pruning technique is applied on M to ensure that values below a given
threshold (r) are set to 0. When MCL converges, the clustering step is applied
to aggregate the vertices which have non-zero values in the same row of M are
assigned to the same cluster. In the case where two nodes have multiple non-zero
values in their columns, the row selection is done arbitrarily. Note that until the
convergence, MCL must ensure that each column in M has at least one non-zero
value. With the iterative multiplication of the matrix and especially with large
graphs, MCL uses a lot of computing resources and takes a lot of time. In return,
it ensures that vertices in dense regions will appear in a single cluster only, which
ensure the non-overlapping clustering.

3.4.3 Label propagation algorithm

Label propagation algorithm (LPA) [Wang 2007] is an iterative and heuristic al-
gorithm used by several works in several fields including community detection and
bioinformatics. LPA uses both the graph structure and the label of each vertex in
the graph in order to group vertices into clusters. Initially, LPA starts by distin-
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guishing labels for all vertices and propagate these them until convergence. In the
propagation step, each vertex sends its own label to its neighbors. Usually, each
vertex changes its label by the largest value of its neighbors or using a defined
function. After some iterations, the LPA converges. In this case, it groups the
vertices that share the same label value into the same cluster.

3.4.4 Spectral clustering

The spectral clustering [White 2005b] is based on the graph density unlike other
graph clustering algorithms. The density of a graph provides the optimal number
of clusters. Then, the similarity measure can be applied between data points in
order to aggregate similar vertices. The goal of this algorithm is to transform a
graph as data points and apply any other basic clustering algorithm. At the first
step, this algorithm starts by representing an input graph with an adjacency matrix
A. This latter represents the links and edges between all vertices in the graph,
and the degree matrix D = n*n, where n the number of vertices in the graph.
The D matrix has for each vertex, the number of its adjacency or its degree. At
the second step, it computes the laplacian matrix L which is defined as L=D-A.
After that, it computes the eigenvalues (lambda) and eigenvectors (x) of A with
x as follows :

A∗ x = lambda∗ x (3.4)

The third step, consists in selecting the largest n eigenvalues and redefining the
input space as a n dimensional subspace. A basic clustering algorithm, like K-
means, is finally applied on the new redefined space with n dimensions.

3.4.5 Structural graph clustering

The Structural Clustering Algorithm for Networks (SCAN) was proposed in
[Xu 2007] aiming, not only to identify the clusters in a graph, but also to pro-
vide additional informations like hubs (vertices between one or more clusters) and
outliers (vertices that do not belong to any cluster). These additional pieces of
information can be used to detect vertices that can be considered as noise and
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also vertices that can be considered as bridges between clusters. The functional
principle of SCAN is based on graph topology. It consists of grouping vertices that
share the maximum number of neighbors. Moreover, it computes the similarity be-
tween all the edges of the graph in order to perform the clustering. The similarity
computation step in SCAN is quadratic according to the number of edges, which
degrades SCAN performance especially in the case of large graphs. Structural
graph clustering is one of the most effective clustering methods for differentiating
the various types of vertices in a graph.

3.4.6 Summary of graph clustering algorithms

Tab. 3.3 shows an overview of the discussed algorithms. As it is shown,
modularity-based algorithm, label propagation and Markov clustering algorithm
are heuristic methods which are mainly based on the propagation step in order to
give the final result. The results given by these algorithms are based on the density
of the graph. In addition, Markov clustering algorithm ensures the non-overlapping
clustering as required in some cases. Also, Label propagation algorithm does not
need any parameter or number of clusters required while running. Moreover, both
Spectral clustering and Markov clustering are based only on the matrix representa-
tion. This representation offers several advantages, such as ease of manipulation.
However, it poses a scalability problem in the case of large graphs and also in the
dynamic graphs, especially in the adding/removing of a vertex. Whereas in each
each update, a new matrix must be builded. The Structural clustering, unlike
modularity based label propagation and Markov clustering is an exact method for
the graph clustering. It uses any graph representation, which ensure a flexibility
with the dynamic graphs. In addition to that, the above methods provide, as
output, a list of clusters which are not really sufficient to understand the graph
behavior. To address this issue, the Structural Clustering Algorithm for Networks
(SCAN) was proposed in [Xu 2007] aiming, not only to identify the clusters in a
graph, but also to provide additional information like hubs and outliers. Motivated
by this comparative study and based on the advantage of structural clustering, we
choose this algorithm as a reference algorithm. In the next section, we discuss
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Algorithm Advantages Disadvantages
Modularity based
[Brandes 2007] • Maximize the modular-

ity of the clustering
schema

• Convergence can take a
lot of time

• Heuristic method

Markov clustering
[Vlasblom 2009] • Non-overlapping clus-

tering
• Only the matrix repre-

sentation must be used

• Matrix multiplication
followed by inflation
operator

Spectral
clustering
[White 2005b] • Algorithm unsuper-

vised

• Using the basic cluster-
ing algorithm

• Only the matrix repre-
sentation must be used

Label propaga-
tion [Wang 2007] • The number of clusters

do not required
• Heuristic method

• Results produced by
LPA are not stable

• Convergence can take a
lot of time

Structural clus-
tering [Xu 2007] • Differentiate the types

of vertices

• Provides outliers and
bridges vertices

• Processing time is high
in the large graph

Table 3.3: Comparative study on the graph clustering algorithms
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some works related to the structural graph clustering in order to propose a new
algorithm that supports both big and dynamic graphs.

3.4.7 Related work on structural graph clustering

The functional principle of SCAN is based on graph topology. It consists of
grouping vertices that share the maximum number of neighbors. Moreover, it
computes the similarity between all the edges of the graph in order to perform the
clustering. The similarity computation step in SCAN is quadratic according to the
number of edges, which degrades SCAN performance especially in case of large
graphs. Structural graph clustering is one of the most effective clustering methods
for differentiating the various types of vertices in a graph. In the literature, several
works have been proposed for the structural graph clustering to overcome the
drawback of SCAN. In [Shiokawa 2015], Shiokawa et al. proposed an extension
of the basic SCAN algorithm, namely SCAN++. The proposed algorithm aims
to introduce a new data structure of directly two-hop-away reachable node set
(DTAR). This new data structure is the set of two-hop-away nodes from a given
node that are likely to be in the same cluster as the given node. SCAN++ could
save many structural similarity operations, since it avoids several computations of
structural similarity by vertices that are shared between the neighbors of a vertex
and its two-hop-away vertices.

In the same way, the authors in [Chang 2017a] suppose that the identification
of core vertices represents an essential and expensive task in SCAN. Based on
this assumption, they proposed a pruning method for identifying the core vertices
after a pruning step, which aims to avoid a high number of structural similarity
computations. To improve the performance and robustness of the basic SCAN,
an algorithm named LinkSCAN* has been proposed in [Lim 2014]. LinkSCAN*
is based on a sampling method, which is applied on the edges of a given graph.
This sampling aims to reduce the number of structural similarity operations that
should be executed. However, LinkSCAN* provides approximate results.

Other works have proposed parallel implementations of SCAN algorithm
[Takahashi 2017] [Mai 2017] [Chang 2017b] [Stovall 2015] [Wen 2017]. In
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[Takahashi 2017], the authors proposed an approach based on openMP library
[Bull 1999]. The authors’ aims were to ensure a parallel computation of the struc-
tural similarity and to show the impact of parallelism on the response time. Their
method was proven to be faster than the basic SCAN algorithm. Other works
have focused on the problem of dynamic graph clustering. In [Mai 2017] and
[Chang 2017b], the authors have extended SCAN algorithm to deal with the addi-
tion or removal of nodes and edges. Authors in [Stovall 2015], used the graphical
processing unit (GPU) whose purpose is to parallelize the processing and to benefit
from the high number of processing slots in the GPU which increase the degree
of parallelism.
Most of the above presented works face a two major problems: (1) they do not
deal with big graphs and (2) they do not consider already distributed/partitioned
graphs.
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algorithm Parallel Distributed Processing
model

Graph
parti-
tioning

Main contri-
butions

SCAN
[Xu 2007]

No No Sequential No Basic imple-
mentation
of struc-
tural graph
clustering

SCAN++
[Shiokawa 2015]

No No Sequential No Reducing
the number
of similarity
computations

AnySCAN
[Zhao 2017]

Yes No Parallel No Parallelizing
SCAN

pSCAN
[Chang 2017a]

Yes No Parallel No Reducing
the number
of similarity
computations

Index-
based
SCAN
[Wen 2017]

No No Sequential No Interactive
SCAN

ppSCAN
[Che 2018]

Yes No Parallel No Parallel ver-
sion of pSCAN

SCAN
based
on GPU
[Stovall 2015]

Yes No Parallel No A GPU-based
version of
SCAN

pm-SCAN
[Seo 2017]

Yes No Parallel Yes Graph par-
titioning to
reduce the
I/O costs

Table 3.4: Comparative study on existing structural graph clustering approaches
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Through Table 3.4, we have summarized the discussed approaches according
to some features.
As shown in Table. 3.4, most proposed algorithms allow parallel processing but
could not deal with very large graphs. It is also clear that none of the studied
approaches allow distributed computing. In addition, these approaches are unable
to process large and dynamic graphs. Also in some applications, like social net-
works, graphs are distributed by nature. Thereby, using the discussed algorithms.
All the partitions of a distributed graph should be aggregated in one machine, in
order to run the graph clustering. Based on these limits, in this work, we tackle
the problem of large and dynamic graph clustering in a distributed setting.

3.5 Conclusion

In this chapter, we presented a background on graphs as a widely used data
structure. Secondly, we discussed the popular graph programming model, which
are implemented by several graph processing frameworks. After a quick summary
of these programming models, we have shown the main advantages and limits of
each one. Then, in order to chose the right graph processing, we surveyed the
popular frameworks and, we have compared them according to several features
such as programming model, the graph processing model (dynamic or static).
Thirdly, state-of-the-art on graph clustering algorithms is provided, after that the
structural graph clustering is selected to study its related work. Finally, we have
presented the recent work related to the structural graph clustering.
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Key points

• We presented some definitions and features of graphs.

• We presented a related work on the graph processing model.

• We discussed the popular graph processing framework, and a
theoretical study have been cared out on these frameworks.

• We presented a related work on the graph clustering, and a re-
lated work on structural graph clustering has been presented.
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as social network. As mentioned in previous chapter, several frameworks are
designed for big graph processing. Due to this fact, we propose a distributed
graph clustering in order to overcome the issues discussed in the previous
chapter. The proposed algorithm is implemented on BLADYG framework, it can
support both centralized and distributed graph. It supports both centralized and
distributed graphs. In a centralized graph setting, the proposed algorithm starts
by splitting the graph into subgraphs using our proposed graph partitioning. In
the distributed graph setting, the proposed algorithm takes the already distributed
graph as input and lunch directly the graph clustering task. We also present an
experimental study, and we show that our proposed algorithm can support big
graphs compared to other algorithms. In addition to that the experimental results
show the scalability of our proposed algorithm.

Keywords: Big graph, graph clustering, community detection, graph anal-
ysis, distributed graph processing.
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4.1 Strctural graph clustering

4.1.1 Definitions and basic concepts

Graph clustering consists in dividing a graph G into several partitions or subgraphs.
Like other clustering techniques, we should use one or more metrics to measure
the similarity between two vertices or partitions in G. In the structural clustering
technique, the graph structure or topology is used to divide G into a set of sub-
graphs. These subgraphs are relatively distant, and vertices in some subgraphs
are strongly connected.

As a well-known algorithm for structural graph clustering, SCAN algorithm
uses the structural similarity between vertices to perform the clustering task. In
addition, it provides other pieces of information like outliers and bridges. In the
following, we present an overview of graphs model and the structural graph clus-
tering algorithm named SCAN [Xu 2007].
Consider a graph G = {V,E}, where V is a set of vertices, and E is a set of
edges between vertices. Each of those elements can represent a real property in
real-word applications. Let u and v be two vertices in V . We denote by (u,v) an
edge between u and v; u (resp. v) is said to be a neighbor of v (resp. u).
In the following, we extend some basic definitions of structural graph clustering,
which will be used in our proposed algorithm.

Definition 4.1.1 (Structural neighborhood) The structural neighborhood of a
vertex v,is denoted by N(v), and represents all the neighbors of a given vertex
v ∈V , including the vertex v:

N(v) = {u ∈V |(v,u) ∈ E}∪{v} (4.1)

Definition 4.1.2 (Structural similarity) The structural similarity between each
pair of vertices (u,v) in E represents a number of shared structural neighbors
between u and v. It is defined by σ(u,v).

σ(u,v) =
|N(u)|∩ |N(v)|√
|N(u)| . |N(v)|

(4.2)
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After calculating the structural similarity with Eq. (4.2), SCAN uses two param-
eters to detect the core vertices in a given graph G.

Definition 4.1.3 (ε-neighborhood) Each vertex has a set of structural neighbors,
like it is mentioned in Definition 4.1.1. To group one vertex and its neighbors in the
same cluster, they must have a strong connection (denoted by ε-neighborhood)
between them. SCAN uses a ε threshold and Eq. (4.3) to filter, for each vertex,
its strongest connections. The ε-neighborhood is defined as follows.

Nε(u) = {N(u)|σ(u,v)≥ ε} (4.3)

The ε threshold 0< ε 6 1 shows to what extent two vertices u and v are connected
based on the shared structural neighbors. In addition, it represents a metric with
which the most important vertices, also called core vertices, are detected.

Definition 4.1.4 (Core) Core vertices detection is a fundamental step in SCAN
algorithm. It consists of finding the dominant vertices in a given graph G. This
step allows to build the set of clusters or a clustering mapping. A core vertex v

is a vertex which has a sufficient number of neighbors strongly connected with
it Nε(v). We use µ as a minimum number of strong connected neighbors (see
Definition 4.1.3). A core vertex is modeled as follows:

Vc = {v | |Nε(v)| ≥ µ} (4.4)

Definition 4.1.5 (Border) Let vc be a core vertex. vc has two lists of structural
neighbors: (1) weak connected neighbors to vc, also called noise vertices (N(Vc)\
Nε(Vc)), and (2) strong connected neighbors called reachable structured neighbors.
In our work, reachable structured neighbors are called border vertices. Nε(Vc)

represents the border vertices of a core vertex Vc.

Once the nodes and their borders are determined, it is straightforward to start a
clustering step. To do so, we use the following definition:

Definition 4.1.6 (Cluster) A cluster C (|C| ≥ 1) is a nonempty subset of vertices,
where its construction is based on the set of core vertices and their border vertices.
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The main steps of clusters’ building algorithm are the following: first, randomly
chose a core from the cores’ list and create a cluster C, then push the core and its
borders into the same cluster. At the same time, the algorithm checks if the list of
borders has a core vertex. Then, it inserts their borders into the same cluster and
it applies this step recursively until adding all the borders of the connected cores.
Finally, the algorithm chooses other core vertices and applies the same previous
steps until checking all core vertices.

Among the fundamental information returned by SCAN, compared to other graph
clustering algorithms, we mention bridge and outlier information, as defined as
below:

Definition 4.1.7 (Bridge and Outlier) The clustering step aggregates the core
vertices and their borders into a set of clusters. However, some vertices do not
have strong connections with a core vertex, which does not give the possibility to
join any cluster. In this context, SCAN algorithm classifies these vertices into two
families: bridges and outliers.
A vertex v, that is not part of any cluster and has at least two neighbors in different
clusters, is called bridge. Otherwise it is considered as an outlier.

4.1.2 Running example

In this section, we explain through a running example, how SCAN algorithm works.
Consider a graph G presented in Figure 4.1 and the parameters ε = 0.7 and µ = 3.
In the first step, lines 1-3 of Algorithm 12 use Eq. (4.2) to compute the structural
similarity for each edge e∈E. Then, Eq. (4.3) (lines 5-8) is used to define the core
vertices (see gray vertices in Fig. 4.1). After that, we proceed to the clustering
step, then we apply Definition 4.1.6 (lines 6-7) to build the clustering schema.
In our example we have four core vertices: 0,2,9 and 10. Each core has a list of
border vertices (the neighbors that have strong connections with a core). In our
example, vertex number 2 is a core. This later has the vertices number 1, 4, 5,
3 and 0 as the list of borders since they have strong connections with the core.
The core and its borders build a cluster, and if a border is a core we join all its
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Algorithm 1 Basic SCAN algorithm
Input : A Graph G and parameters (µ ,ε)
Output: C,B,O

2 foreach (u,v) ∈ E do
3 Compute σ(u,v)
4 end
5 Core ← /0

foreach u ∈V do
6 if (|Nε(u)| ≥ µ) then Core =Core∪{u} ;
7 end
8 Cluster ← /0

foreach unprocessed core vertex u ∈Core do
9 Cluster= ←{u}

Markuasprocessed
foreach unprocessed border of vertex v ∈Nε(u) do

10 Cluster= ←Cluster ∪ {v} Mark v as processed

11 end
12 end

borders into the cluster. Like in our example, the vertex 2 is a core. Hence, we
join all its borders (1, 3 ,5 ,4 including 0 as being a core vertex). In this case, if
the vertex 3 is not a border of vertex 2 and it is a border of vertex 0, then vertex
3 should belong to the same cluster of vertex 2 (which is a core vertex), since it
is a reachable border of vertex 2. The last step of SCAN algorithm consists in
defining the bridges and the outliers. As shown in Fig. 4.1, we have two clusters.
The first one is composed of vertices 1,2,3,4, and 5, whereas the second cluster
is composed of nodes 8, 9, 10, and 11. The remaining vertices (6 and 7) must
be categorized as outliers and bridges according to the Definition 4.1.7. In our
example, vertex 7 has two connections with two different clusters, and vertex 6
has only one connection with one cluster which makes vertex 7 a bridge and vertex
6 an outlier.
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Figure 4.1: Running example ( ε = 0.7 and µ = 3).

4.2 DSCAN: A Distributed Algorithm for

Large-Scale Graph Clustering

In this section, we introduce DSCAN: a new distributed algorithm for structural
graph clustering. Our proposed algorithm is based on a master/slave architecture,
and it is implemented on top of BLADYG framework [Aridhi 2017]. This latter
is a distributed graph processing framework in which the slaves machines are
responsible for the execution of a specific computation and the master machine
coordinates between all the slaves. The input data must be divided into sets of
chunks (subgraphs in our case). Each chunck/partition is assigned to a worker
or slave machine, which performs a specific computation. The master machine
orchestrates the workers’ execution. In the following, we present the main two
steps of DSCAN: (1) graph partitioning and (2) graph clustering.

4.2.1 Distributed graph partitioning

In this step, DSCAN splits the input graph G into several small partitions
P1,P2, ..Pn, while keeping data consistency (graph structure). To ensure the con-
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sistency property while dividing the input graph, we must identify a list of cuts
edges in order to have a global view of G. Usually, the graph partitioning problem
is categorized under the family of NP-hard problems, that need to parse all the
combinations in order to get the best partitioning result part. For this reason,
we proposed an approximation and a distributed partitioning method as a prelimi-
nary step for our distributed clustering algorithm. Algorithm 2 shows that, at the
beginning, the master machine divides equitably an input graph file into sub-files
according to the number of edges, and sends the sub-files to all the worker ma-
chines. Secondly, each worker machine gets a list of edges and vertices from its
sub-file. Thereafter, it sends its list of vertices to all workers, in order to determine
the frontier vertices so that to get the cuts edges. Afterwards, when each worker
receives a list of vertices from its neighbor workers, it determines the vertices that
belong to the current worker (partition). Consequently, these vertices are con-
sidered as frontier vertices in their partitions. In the last step, when each worker
could determine the frontier vertices, it starts to fix the cuts edges, i.e. edges that
have a frontier vertex.

4.2.2 Distributed clustering

The distributed clustering step of DSCAN has also two main steps: (1) local
clustering step and (2) merging step.

Step 1: Local clustering. As presented in Algorithm 3, the input graph G

is splitted into multiple subgraphs/partitions (P), each one is assigned to a worker
machine. The partitioning step, as mentioned in Section 4.2.1, is performed ac-
cording to the α parameter, which refers to the number of worker machines (line
2). To overcome the loss of information during the partitioning step (edges con-
necting nodes in different partitions), frontier vertices are duplicated into neigh-
boring partitions (line 3-8). Subsequently, for any partition Pi, a local clustering
is performed (lines 9-11) on a worker machine. Fig. 4.2 shows a demonstrative
example of the duplication step. The demonstrative example describes how the
graph consistency will be ensured during the partitioning step.

Assume that a graph G is partitioned into two partitions P1 (vertices in blue)
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Algorithm 2 Distributed partitioning
Input : Graph file GF as a text file, parameter (NP number of partitions)
Output: P set of partitions

2 BLADYG initialization according to the NP parameter
Master machine: split GF into a set of sub-files GF
foreach GFi ∈GF do

3 Assign GFi to worker Wi
4 end
/* In parallel */

5 foreach Worker Wi ∈W do
6 Get list of vertices and edges from GFi

Find the list of frontier vertices from the neighbor workers
7 end
/* In parallel */

8 foreach Worker Wi ∈W do
9 foreach Edge ∈ E do

10 (a,b)=Edge
Let P f

i the frontier vertices
if (a ∈ P f

i ∪b ∈ P f
i ) then ;

11 Set the edge E as a cut edge
12 end
13 end
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Algorithm 3 DSCAN
Input : Graph G , parameters (µ,ε,α)
Output: Clusters, Bridges, Outliers

/* Divide G into subgraphs G = {G1G2..Gα} according to parameter α */
14 P←− Partition (G,α)
15 BLADYG initialization

/* In parallel */
16 foreach Pi ∈ P do
17 Assign Pi to Wi
18 end

/* In parallel */
/* Step 1: Local clustering */

19 foreach Worker Wi ∈W do
20 Let Pi the current partition

Find the frontier vertices in Pi and duplicate them into neighbor partitions
21 end

/* In parallel */
22 foreach Worker ∈W do
23 Compute the structural similarity of a partition Pi using V f list

Retrieve local Cores and Borders in Pi
Build local clusters in Pi
Find local Bridges and Outliers in Pi

24 end
/* Step 2: Merging */

25 All workers exchange theirs local clusters between them using Worker2Worker message
foreach Worker Wi ∈W do

26 if (C1 ∩C2 ∩ ..∩Cα = V; and ∃Vi ∈ Core) then
27 C ←Merge(C1,C2,..Cα )

Send C to the master
28 end
29 else
30 Send local clusters to the master
31 end
32 for Vi IN Outliers do
33 if (Vi ∈ Core∪Border∪Bridges ) then
34 Remove Vi from the list of Outliers
35 end
36 end
37 for Vi IN Outliers do
38 NbConnections ← 0

for Ci IN Clusters do
39 if (N(Vi)∩C 6=∅) then
40 NbConnections ++
41 end
42 end
43 if ( NbConnections ≥ 2 ) then
44 Add Vi to Bridges

Remove Vi from Outliers
45 end
46 end
47 end
48 Send Clusters,Bridges,Outliers to the master using Worker2Master message
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Figure 4.2: Illustrative example

and P2 (vertices in red), like it is depicted in Fig. 4.2, and each partition has a
set of vertices connected with other partitions. We call them frontier vertices of
a given partition P, and they are denoted by V f

P . For example, V f
P1={1,2,5} and

V f
P2={4,7}. Each v ∈ V f

P has a set of internal neighbors and external neighbors.
For example, vertex 4 is a vertex of the partition P2. It has the vertex 6 as
internal and the vertices 1,2 and 5 as external neighbors. Computing the structural
similarity of a frontier vertex u considers that all the neighbors of u belong to the
same partition. Thereby, we duplicate all frontier vertices in partition P to all
neighbor partitions and we call them external vertices. For example in our running
example, P1 has frontier vertices V f

P1={1,2,5} and P2 is the neighboring partition.
Thus, we must duplicate V f

P1 into P2 to ensure the accuracy of structural similarity
of V f

P2 (see Fig. 4.3).
After that, when we apply a local clustering on P1 and P2, we will find several

conflicts such as the vertex v ∈ V f
P1 is a core vertex in P1, and an outlier in P2.

These conflicts should be avoided in the merging step.
Step 2: Merging. The distribution of similarity computation and the local

clustering step can improve the response time of our proposed DSCAN, compared
to the basic sequential algorithm. However, we should take into consideration
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the exactness of the returned results compared to those of the basic SCAN. To
ensure the same result of basic SCAN, we defined a set of scenarios regarding the
merging step. These scenarios will repetitively be applied to every two partitions
of G, until combining all the partitions (see Algorithm 3, merging step). For each
pair of partitions Pi and Pj, a merging function is executed to combine the local
results from Pi and Pj and store them in global variables like clusters, borders,
bridges and outliers. Algorithm 3 also achieves several scenarios (Lemmas 4.2.1,
4.2.2 and 4.2.3) to solve the encountered conflicts, mentioned below:

Lemma 4.2.1 (Merging local clusters) Let C1 and C2 two sets of local
clusters in different partitions P1 and P2, respectively. ∃c1 ∈ C1 and ∃c2 ∈ C2,
Core(c1)∩Core(c2) 6= /0.

Proof 1 Let Ci be a cluster that groups a set of border and core vertices. If
Ci shares at least one core vertex c with another cluster C j, then c has a set of
borders in Ci and C j, and all the vertices in Ci and C j are reachable from c. Hence,
Ci and C j should be merged into the same cluster.

Lemma 4.2.2 (Outlier to Bridge) Let C1 and C2 two sets of local clusters in
partitions P1 and P2, respectively. ∃ C1 and C2 two clusters that belong to the two
different sets of clusters C1 and C2. In addition, ∃ o an outlier in both partitions
P1 and P2, with N(o)∩ c1 6= /0 and N(o)∩ c2 6= /0

Proof 2 If Ci and C j (i 6= j) share an outlier o, this means that o is weakly
connected with the two clusters Ci and C j. Hence, according to Definition 4.1.7,
o should be changed to a bridge vertex.

Lemma 4.2.3 (Bridge to Outlier) Let c1 and c2 two local clusters in the
partitions P1 and P2, respectively.
∃ a bridge b according to only two clusters c1 and c2, when c1 and c2 two clusters
that will be merged into one cluster, b should be changed into an outlier.

Proof 3 Let Ci and C j two clusters that have a set of vertices (borders or cores),
and a set of bridges with other local clusters, and ∃ b a bridge vertex according to
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the two clusters Ci and C j only, where i 6= j. In the merging step and according
to Lemma 4.2.1, if one or several clusters share at least a core vertex, then they
will be merged into a single cluster. In this case, (Ci,C j) ⇒ C which makes b be
weakly connected with only one cluster C, then according to Definition 4.1.7, b

should change its status from bridge to outilier.

For instance looking at lines 26 to 28, we have focused on the shared cores
between two clusters and the case when they share at least one core. According
to Lemma 4.2.1, we should merge them into one single cluster. Subsequently,
in lines 32-36, we verify for each outlier if it does not belong to some sets of
cores, borders or bridges. In this case, we must remove it from the list of outliers.
Otherwise, a vertex v should be changed as a bridge if it is classified as an outlier
in the two clusters Ci and C j that are not in the same partition, and if it has two
connections with different clusters in the merging step.

(a) Partition 1 (b) Partition 2

Figure 4.3: Partitioned graph G used in the running example in Section 4.1.2

4.2.2.1 Illustrative example

Fig. 4.3 shows a demonstrative example of a graph clustering using DSCAN. In
this example, we use the same parameters (ε and µ ) of the running example in
Section 4.1.2, and two partitions (P1 and P2). In the first step of DSCAN, the
input graph G is divided into two partitions P1 and P1 as it presented in Fig. 4.3,
where the blue vertices represent the first partition and the red vertices represent
the second partition. In the second step, DSCAN duplicates the frontier vertices
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in each pair of adjacent partitions. For example, the blue vertices 1,2 and 5 are
duplicated in partition P2 since they represent frontier vertices in their partition.
In the same way, the vertices 4 and 7 are duplicated in the partition P2. In the
third step, all the workers perform the similarity computation, check the status
for each vertex and build the local clusters, as it is shown in Fig 4.3. The last
step of DSCAN consists of combining all local results returned by each worker. As
shown in Fig. 4.3, there are some conflicts in terms of node status. For example,
vertex 2 is a core vertex in P1 whereas it is a noise (outlier) vertex in P2. In
the same way, vertex 4 is a border in P1 and a noise in P2. Then, after building
the local clusters, P1 has one cluster (1,2,3,4, and 5) in which vertex 7 is a noise
vertex in P2. As for P2, it groups the vertices 8,9, 10 and 11 as a cluster and
the remaining vertices (4,5,1,2,7 and 6) are considered as noise vertices including
vertex 7. This latter is a bridge according to basic SCAN (see running example in
Section 4.1.2)). In the merging step, DSCAN considers that the vertex 7 has two
weak connections with two different clusters. Thus vertex 7 is marked as a bridge.

4.2.2.2 Time complexity analysis of DSCAN

Let E be the set of all edges (internal and cut edges), V be the set of all ver-
tices(internal and external) and the set of core vertices is Vc. The time complexity
of DSCAN is like basic SCAN, and can be divided into three step, (i) the struc-
tural neighborhood step, when DSCAN according to Definition 4.1.1 aggregates
for each vertex its list of neighbors. Thus, the complexity is of the order of O(|E|).
(ii) the time complexity of the computation of structural similarity which is de-
fined by Definition 4.1.2. In this step, DSCAN enumerates for each edge (u,v)

the set of common neighbors. Therefore, the time complexity is O(|E|). (iii)
DSCAN performs the clustering step using the µ in order filter the core vertices,
and groups those which have strong connections into a same cluster. Like this,
the complexity is O = (|Vc|− |(vi,v j)||V |i, j=1,vi,v j ∈Vc and σ(vi,v j)≥ ε)
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4.2.2.3 Communication complexity

Let S be the set of slave machines, the communication complexity of DSCAN is
the number of messages sent in the network during the merging step of DSCAN.
This complexity is depended on the message type of BLADYG [Aridhi 2017]
(Worker2worker, worker2Master). In the worker2Worker message the commu-
nication complexity is O= |S|2, and in the worker2Master message the complexity
is O= |S|.

4.3 Experiments

In this section, we present an experimental study and we evaluate the effective-
ness and efficiency of our proposed algorithm for structural clustering of large
distributed graphs.

4.3.1 Experimental protocol

We implemented DSCAN on top of BLADYG framework [Aridhi 2017], which was
designed to build graph processing algorithms for large graphs. In the first exper-
iment part, we compared DSCAN with four existing structural graph clustering
algorithms, and then we evaluate some parameters of features of DSCAN :

1. Basic SCAN1.

2. pSCAN: a pruning SCAN algorithm2.

3. AnyScan: a parallel implementation of basic SCAN using OpenMP library3.

4. ppSCAN: a pruning and parallel SCAN implementation4.

1https://github.com/eXascaleInfolab/pSCANdeploymet
2https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN
3https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN
4https://github.com/RapidsAtHKUST/ppSCAN/tree/master/ppSCAN-release
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Dataset name Number of
vertices

Number of edges Diameter Avg. CC

G1: California
road network

1 965 206 2 766 607 849 0.04

G2: Youtube 1 134 890 2 987 624 20 0.08
G3: Orkut 3 072 441 117 185 083 9 0.16
G4: LiveJournal 3 997 962 34 681 189 17 0.28
G5: Friendster 65 608 366 1 806 067 135 32 0.16

Table 4.1: Graph datasets

The above mentioned algorithms are implemented with C language. Thus, we
used the GCC/GNU compiler to build their binary versions. The compared algo-
rithms are divided into two categories: (1) centralized algorithms such as SCAN
and pSCAN, and (2) parallel algorithms such as AnyScan and ppSCAN. To run
both centralized and parallel algorithms, we used a T3.2xlarge virtual machine
on Amazon EC2. This machine is equipped with an 8 vCPU Intel Skylake CPUs
at 2.5 GHz and 32 GB of main memory on a Ubuntu 16.04 server distribution.
In order to evaluate DSCAN, we used a cluster of 10 machines, each of them
is equipped with a 4Ghz CPU, 8 GB of main memory and operating with Linux
Ubuntu 16.04.

4.3.2 Experimental data

For all test we used real-world graph datasets (see Table 4.1), these graphs are
obtained from the Stanford Network Analysis Project (SNAP) snap.

4.3.3 Experimental results related to DSCAN

Speedup. We evaluated the speedup of DSCAN compared to the basic SCAN
and its variants presented in Section 4.3.1. The compared algorithms use different
graph representations. In fact, AnyScan and SCAN implementations use the ad-
jacency list representation [Doerr 2007], whereas both pSCAN and ppSCAN use
the Compressed Sparse Row (CSR) format [DâTMAzevedo 2005]. In our proposed
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algorithm, we used an edge list format, in which each line represents one edge
of the graph. The incompatibility of the graph representations poses an addi-
tional transformation cost while evaluating the studied methods. For example,
the transformation of the live journal graph from edge list to adjacency list takes
around 100 seconds using one machine equiped with an 8 vCPU and 32 GB of
main memory.

Fig. 4.4 shows the runtime of the studied approaches with different datasets.
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Figure 4.4: Impact of the graph size on the processing time of both SCAN and
DSCAN

As shown in Fig. 4.4, our approach is slower than the other algorithms in the
case of small graphs (G1,G2,G3) and there was a very large gap between DSCAN
and the other algorithms especially with pSCAN and ppSCAN. On the other hand,
this gap become reduced when the graph size increases (case of G4 dataset). The
plots bars in Fig. 4.4 shows a gap of 12x between DSCAN and basic SCAN with
the G1 dataset and 2x only with the G4 dataset. We notice that the gap between
DSCAN and ppSCAN depends mainly on the size of the used dataset. For ex-
ample, with the G1 dataset, the gap between DSCAN and ppScan is about 20x,
while this gap is reduced to 11x for the G4 dataset. This can be explained by
reaching the pruning step of pSCAN, which exempts several similarity computings
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during the clustering step. It is important to mention that DSCAN is a distributed
implementation of SCAN and the other studied algorithms are centralized. This
leads to additional costs related to data distribution, synchronization and commu-
nication. Fig 4.4 also shows that with the modest hardware configurations, only
DSCAN can scale with large graphs like the G5 dataset.

Scalability. The main goal of this experiment is to evaluate the horizontal
scalability of our algorithm. We used two graphs (LiveJournal and California road
network). We set the values of µ and ε to 3 and 0.5 respectively, and we varied
the number of machines, with the goal to measure the response time for each size
of the cluster. It can be clearly seen, from Fig. 4.5, that our algorithm is hori-
zontally scalable, which was not guaranteed by the other algorithms, as discussed
in the previous chapter. Fig. 4.5 also shows that the running time will decrease
depending on the number of machines in the cluster. When we add a new machine
to the cluster, the running time becomes smaller. As depicted in Fig. 4.5, the red
curve (LiveJournal graph) shows a significant improvement of about 82% in the
response time, when the number of machines reaches 10. We also notice a weak
improvement, according to the number of machines in the cluster, when we have
a small graph. This is the case of California road network which is smaller than
LiveJournal graph. The red curve’s behavior can be explained by the splitting of
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Figure 4.5: Impact of the number of workers on the running time (with ε = 0.5,
µ = 3).

the input graph into small sub-graphs and by performing a local clustering on each
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sub-graph, which reduces the global response time even with the additional cost
of aggregating the intermediate results returned by each machine in the cluster.
That was not the case with the blue curve, where we have an improvement of
about 50% using a cluster of 10 machines, compared to the results using a 6-
machine cluster. We noted that the curve starts to increase when the cluster size
exceeds 8 machines. This is due to the communication in the shuffling step.
Impact of ε value on DSCAN. The numbers of clusters, bridges and noise
vertices depend on the values of ε and µ . In ppSCAN, when we decrease the
value of µ , the running time increases, as the non-pruned edges are increased.
Similarly in this experiment, we evaluated the impact of ε value on the running
time of DSCAN. For this, we varied the value of ε from 0.2 to 0.8 for different
graph data sets. As shown in Fig. 4.6, the response time is slightly dependent
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Figure 4.6: Impact of ε size on the running time of DSCAN

on the value of ε , especially with large graphs (G3 and G4). When we increase
the value of ε the response time increases. Overall, the observed behavior can be
explained by the merging step in DSCAN algorithm, since we did not see the im-
pact of ε on the previous steps (graph loading and local clustering). In the graph
loading step, we do not use this value and in local clustering we use the basic
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SCAN clustering which is not dependent to ε . That is why the impact of ε on
the running time can be explaind by the merging step. In fact, when the value of
ε increases, the number of outliers becomes larger. Also, in the merging function
(see Algorithm 3, lines 17-37), DSCAN combines the local results by starting to
check the clusters that share almost one core, in order to merge them. Then,
it verifies for all outliers if they are bridges or cores. Hence, outliers’ checking
requires more communication between the workers, which increases the respense
time.
Evaluation of DSCAN steps: DSCAN algorithm is based on four main steps.
In each step, DSCAN performs a specific treatment with different costs in terms
of running time. To study the running cost of each step in DSCAN, we used four
graph datasets and we fixed the values of ε and µ to 0.5 and 3, respectively. Fig.
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Figure 4.7: Performance of DSCAN phases

4.7 shows the response time of each step in DSCAN. The merging function is the
most expensive step that makes DSCAN slow, compared to the other algorithms.
It takes more than 50% of the global running time with all the used graph datasets,
while the clustering step takes about 30% only. The rest of computation time is
devoted to the graph loading step and the duplication of vertices in frontiers to
ensure the consistency property, as we discussed in Section 4.2.1. This disparity
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can be explained by the communication between machines during the aggrega-
tion of local results returned by each machine. Consequently, communication in
DSCAN must be improved because the clustering step takes a little time which
can make DSCAN faster.
Imapct of the graph partitioning on DSCAN. In our vision, the partitioning
step has a direct impact on the response time of DSCAN. For this reason, we ran-
domly generated four partitioning schemas, and for each one, we got the number
of cut-edges as follows: 17.6M, 19.2M, 22.3M and 24.6M for the partitions P1,
P2, P3 and P4, respectively. Then, we run DSCAN on all partitions with the same
configuration (10 machines, ε=0.5 and µ=3). As shown in Fig. 4.8, there is a
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Figure 4.8: Impact of the partitionning step on DSCAN response time (ε=0.5,
µ=3)

very clear impact of the graph partitioning on the response time of DSCAN, as this
latter rises from nearly 800 to 1000 seconds with P1 and P2. Furthermore, the
elapsed time of each DSCAN step varies from one partitioning to another. This
disparity is noticed mostly during the merging step and slightly in the clustering
step. This is probably explained by the number of vertices duplicated due to the
number of cuts-edges produced by the graph partitioning. This number would
affect the amount of similarity computing operations in the clustering step, and
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increases the communication cost during the merging step.

4.4 Conclusion

In this chapter, the second contribution is presented. This proposed algorithm
(DSCAN) is a distributed algorithm for big graph clustering based on the struc-
tural similarity. DSCAN is based on a distributed and master/slaves architecture
which makes it scalable and works on the community of modest machines. In
this chapter, Firstly, an overview on the structural graph clustering is presented.
Secondly, we have presented the main steps of DSCAN, starting from the parti-
tioning to the combining of intermediate results for each worker. Finally, we have
performed an extensive experimentation about our proposed algorithm compared
to other ones. The experiments have shown that DSCAN ensures the horizontal
scalability, which is not guaranteed with other similar algorithms.



4.4. Conclusion 103

Key points

• We presented a new distributed graph partitioning based on a
big graph processing framework.

• We proposed a novel distributed algorithm for the detection of
clusters, bridges and outliers in these of large-scale networks.

• An experimental study to evaluate the distributed algorithm for
the detection of clusters, bridges and outliers on large-scale net-
works.
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Goals The real-world applications that use a graph as data model, and perform
a graph clustering should support dynamic graphs. The existing methods consists
to re-executed a clustering algorithm in each new update. However, this approach
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can suffer from the graphs size, which spends a lot of time to get a clustering
result in each updating. Accordingly, in this chapter an incremental algorithm is
proposed and named DISCAN. Thus, this chapter introduces the concepts of dy-
namic graphs through some definitions, after that a distributed graph maintenance
and an incremental graph clustering are presented. Finally, in order to present the
efficient of DISCAN, an experimental study is presented at the end of this chapter.
Keywords: Big and dynamic graph, Dynamic graph clustering, Dynamic com-
munity detection, Graph analysis, incremental graph processing.
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5.1 Introduction to dynamic graphs

Due to the complexity of processing of big generated data in several applications,
the graph data model has been proposed for several applications, and it has proven
to be an effective model in some use cases like research networks (e.g., DBLP),
social networks (e.g., Facebook and Twitter), sensor networks (e.g., Internet of
Things). Furthermore, in real-world applications, the data naturally is not static.
Therefore, graphs are models for encoding the data including the dynamic data,
thus dynamic graphs have been introduced.
This new data model has been the main goal of several research projects, and
it introduces new challenges that are mainly related to data velocity and data
volume (graph). Additionally, several definitions defined the dynamic graphs, and
these definitions are related to applications. In the next section, we refer to a set
of definitions that are related to some applications and use cases to understand
the concept of dynamic graphs.

5.2 Dynamic graphs: definitions

In the literature, authors propose several definitions and formulations. In this con-
text, a survey in [Rossetti 2018] presented some definitions and representations on
the graph relatively to the community detection use case.. Through Fig.5.1, four
graph representations are illustrated, and in the next, we provides some definitions
related to each representation.

Figure 5.1: Different graph representations from static to dynamic graph

Definition 5.2.1 (Updated proprieties/Edge Weighted) Properties updated is a
dynamic graph variant, where the dynamism aspect is observed only on the graph
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properties. For example, in the case of attributed graph, attributes’s values of
edges/vertices can be changed at each time while maintaining the initial graph
structure. Another example, is the case of simple graph the dynamism that can
be observed on the edges Weight updating over time.

Definition 5.2.2 (Snapshots) Graph snapshots type is represented as an history
of graph snapshots over time or at each period. Thus, each snapshot is a graph
at a time t or at a period p. In the snapshot graph case, from on snapshot to
another, several updates can be observed. Then, a snapshot graph G can be
defined by an ordered set <G1, G2 . . .Gt> where each snapshot Gi = (Vi , Ei )
is univocally identified by the sets of nodes Vi and edges Ei.

Definition 5.2.3 (Dynamic/Temporal Graphs) A dynamic or temporal graph is
a graph which undergoes several updates over time. Unlike properties updated
graph, the updates over time can be structural or semantic. Where, the structure
update is represented by the vertices and/or edges my be appear or disappear in
each update, and the semantic updates are the properties or edge weight updates.

5.3 DISCAN: Proposed incremental graph

clustering

Consider a large and dynamic graph G, which will undergo several changes over
time such as adding or deleting edges or/and vertices. When a clustering is
performed, the classic approaches re-run the clustering from scratch, which is
obviously very expensive especially in large graphs. In this work, we propose an
incremental and distributed algorithm for large and dynamic graph clustering. The
main idea of our approach is to determine in each update the vertices and the
edges that are concerned by this update, and according to that, we apply the new
updates on the old clustering results.
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5.3.1 Distributed graph update

5.3.1.1 Adding a new vertex

In this section, we describe the scenario at the adding of a new vertex. In this
context, several situations may be encountered, such as a separated vertex, ver-
tex connected to a single existing vertex and vertex connected to several existing
vertices. To minimize the task complexity, we have standardized this action to a
single operation that will take into consideration all the discussed situations. In
the case of several edges must be added to the graph and in the same time, we
split them into a set of a simple edge as follows (Vnew,Vold), where Vnew is a new
vertex to be added and Vold an existing Vertex.
As we discussed in the partition step, we have two types of vertex in each par-
tition: internal vertices and external vertices. Then it is required to take into
consideration the vertex type in the adding vertex operation. For more details,
the algorithm 10 illustrates the fundamentals steps of an adding of a new vertex.
This operation starts by sending the tuple (Vnew,Vold) by the master machine to

Algorithm 4 Adding a new vertex
Input : Vnew Vold
Output: G∪Vnew

2 Master machine: send (Vnew Vold) to all workers
/* In parallel */

3 foreach Worker Wi ∈W do
4 if (Vold 6= null∩Vold ∈ internalVertices∩Vold 6=∈ f rantierVertices) then
5 Add a new vertex Vnew

Add Vnew as a neighbor of Vold vertex
Add a new edge (Vnew, Vold)
Update the similarity of all affected edges

6 end
7 else if (Vold 6= null∩Vold ∈ internalVertices∩Vold ∈ f rantierVertices) then
8 Add Vnew as a neighbor of Vold

Update the similarity values of all affected edges
9 end

10 end
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all worker machines (line 2). Thereafter, in each partition, the workers check if
the Vold is an internal or frontier vertex (if Vold ∈ the current partition). According
to vertex type, each worker applies a specific treatment like as illustrated in the
algorithm 10. In first case (line 4 to 6), when the Vold is an internal vertex, we
add the vnew into the partition, add vnew as a neighbor of Vold, add a new edge
and update the structural similarity of affected edges. In the other case, when the
Vold is a frontier vertex, the worker must only add the vnew a neighbor of Vold and
update the structural similarity of affected edges.

5.3.1.2 Adding a new edge

When we will add a new edge Enew, it is necessary to check if this is an internal
or a cut edge. In the case of an internal edge, Enew is an edge which links two
internal vertices, and the cut edge is an edge that links two vertices in different
types (internal/frontier). Consequently, these two type of edges need a special
treatment for everyone. To show all these details, algorithm 5 explains these main
steps. After that the master machine sends the Enew to all worker machines. The
latter check the type of Enew, if it is an internal or a cut edge. Thus, in the case
of an internal edge, local changes will be performed in the partition that contains
the Enew, as described in the algorithm 5 in line 3 to 6. Whereas in the second
case, Enew=(v1,v2) i.e. v1 and v1 are in different partitions P1 and P1 respectively.
Therefore, the algorithm adds v1 as an external vertex in P2 and v2 as an external
vertex in P1 (see algorithm 5 lines 7-9).

5.3.1.3 Delete a vertex

In a local graph, a deleting of a vertex can be affected by several vertices and
several structural similarities. In our case, when we have a distributed graph,
several partitions can be affected by the vertex deleting, since one vertex can exist
on several partitions but in different types: internal vertex, frontier vertex, and
external vertex. Each vertex type requires a special treatment. The algorithm 6
presents all possible cases when deleting an existing vertex. In the first step, when
the master receives a request to delete a vertex, it sends the vertex to all workers
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Algorithm 5 Adding a new edge
Input : Enew=(V1, V2)
Output: G ∪ Enew

2 Master machine: sent the Enew to all worker machines
/* In parallel */

3 foreach Worker Wi ∈W do
4 if (V1 ∈ Internal and V2 ∈ Internal) then
5 Add V1 as a neighbor in V2

Add V2 as a neighbor in V1
Add Enew into current partition
Update the similarities of all affected edges

6 end
7 else if (V 1 ∈ Internal) then
8 Add V2 as a neighbor in V1

Add Enew into current partition
Update the similarities of all affected edges
Sent V1 to all Workers: with AddExternalVertex message

9 end
10 end

/* if any worker receives AddExternalVertex message with Vf rom
parameter, it saves Vf rom as an external vertex */
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to delete it. Then in the second step, each worker starts by checking if the

Algorithm 6 Delete a vertex
Input : V
Output: G\V

2 Master machine: send the vertex V (that will be deleted) to all worker machines
/* In parallel */

3 foreach Worker Wi ∈W do
4 if ((V ∈ Pinternal) and (V ∈ P f rantier)) then
5 Remove all external vertices associated with V
6 end
7 else if ((V ∈ Pexternal)) then
8 Remove all external vertices associated with V

Remove all vertices associated with V from Pf rontier
9 end

10 Remove V
Remove all edges associated with V

11 end

requested vertex is belonged to the partition and performs a specific treatment for
each case like detailed in algorithm 6 (lines 3-9). When V is a frontier vertex to
be deleted, if V a frontier vertex, we delete all external edges that are associated
only with it. Else, if V is an external vertex we delete it from all list of neighbors
of each vertex contains V as a neighbor.

5.3.1.4 Delete an edge

Like deleting of a vertex V , when we will delete an edge E, two cases occures
according to the type of the latter (internal or cut). Each type should be performed
with a special treatment as explained in Algorithm 7. Therefore, the master sends
to all workers the edge E = (v1,v2) and asked them to delete it. Thus, each
worker asks them to check if E is an internal or cut edge. Like in the algorithm
7 lines (3-6), when both vertices are in the same partition, then V 1 must be
removed from a list of neighbors of V 2 and the same thing with v2. In the other
case, where E is a cut edge and v1 has belonged to the current partition (and v2

in other partition) lines(7-9). Thus remove v2 from a list of neighbors of v1, and
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remove v1 from list of frontiers vertex if do not have any other connection with
an external vertex. Then remove v2 from the list of external vertices if and only
if v2 did not have any connections with an internal vertex.

Algorithm 7 Delete an edge
Input : (V1, V2)
Output: G \(V1, V2)

2 Master machine: send the edge E =( V1, V2) will be deleted to all worker ma-
chines
/* In parallel */

3 foreach Worker Wi ∈W do
4 if (E ∈Edgesinternal) then
5 Remove v1 from N[v1]

Remove v2 from N[v2]
6 end
7 else if (( E) ∈CutEdgesandv1 ∈PInternal) then
8 Remove v2 from N[v1]

Remove v1 from frontier vertices: (if do not have any other connection
with an external vertex)
Remove v2 from external vertices: (if do not have any other connection
with an internal vertex)
Remove ( v1, v2) from Cut edges list

9 end
10 else if (( v1, v2) ∈CutEdgesandV2 ∈PInternal) then
11 Remove V1 from N[v2]

Remove V 2 from frontiers vertices :(if do not have any other connection
with an external vertex)
Remove V 1 from external vertices :(if do not have any other connection
with an internal vertex)
Remove ( V1, V2) from Cut edges list

12 end
13 Remove ( V1, V2) from all edges

end

In the case when v2 is belongs to the current partition, we perform the same
steps like it is presented between line 10 and 13 in the algorithm 7. In the last
step, for all cases (internal or cut-edge) we remove E, update the concerned edges
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according to the deleting of E and get all affected vertices in order to sent them
to master.

5.3.2 Distributed graph clustering

Assume that G = (V ,E ) is going to undergo several updates U over time. U can
be adding/deleting vertices or edges from/to G. These changes can affect the
similarity values and some vertex status (borders, core, etc). Consequently, the
clustering schema may be affected in several situations.

Definition 5.3.1 Each vertex ui ∈U generates modifications of several structural
similarities, which is defined as the affected edges EA.These vertices also change
the status of several vertices and are noted as affected vertices VA.

Definition 5.3.2 (Affected edges) When adding a vertex Vnew associated with
an existing vertex Vold, new edge (Vnew,Vold) will be created and a set of edges
denoted EA will be marked as affected edges and should be updated. Note that
e ∈ EA and e = (u,v), where u ∈Vold and v = vnew.

In the case of removing a vertex VT BD, a set of edges noted as ET BD should
be deleted from G. Therefore, a Vc of vertices is concerned by this update. Here
Vc = (u,v)∈ ET BD\VT BD, and according to Vc, the affected edges are EA = Ei⊂G

and Ei = (u,v) / {u,v} ∈Vc.

Also when adding or deleting an edge (vi,v j), the list of neighbors of both
vertices vi and v j will be changed which can produce several other edges. The
affected edges update their structural similarities. EA is a set of edges (u,v) ∈ E

and vi = u or v j = v

Definition 5.3.3 (Affected Vertices) For each update on G, some structural sim-
ilarities can be changed. Thus, some vertices change their status (border, core
vertices). These vertices are defined as affected vertices VA. VA can be divided
into two sub-sets: (i) directly affected VAD, which update their status depending
directly on EA, and are defined as VAD, (ii) indirectly affected VID which depend on
the status of VAD. For example, when a core vertex changes his status to outlier
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or border, then all these border vertices will become affected indirectly according
to this update. Let EA=(v1,v2) be following an update VAD =VAD∪v1∪v2, while
VAI are all neighbors of VAD. Other vertices can be affected indirectly with several
updates, and are dependent on the changed clusters. These vertices are defined
the affected bridges and noted as VAB. VAB is the list of outliers or bridges which
are connected with affected clusters described in the Definition 5.3.4.

Definition 5.3.4 (Affected clusters) The affected vertices in several situations
can affect the clustering schema. The Affected (concerned) clusters represent
the sub set of clusters which contain one or more affected vertices, denoted by
Ca f f ected. Ca f f ected=c ∈ C, ∃v ∈ (vAD∪ vID) and v ∈ c.

Figure 5.2: Partitioned graph G (P1, P2, P3), affected vertices, edges when
deleting vertex 3

Lemma 5.3.1 Change of structural similarity of affected edges EA are
mainly depend on the Definition 4.1.1. The similarity value is based on the neigh-
bors of both vertices of an edge. Therefore, each update (adding/deleting an
edge/vertex) can change the list of neighbors of some vertices. As a result, some
edges must change their structural similarity.
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Lemma 5.3.2 Change in the status of affected vertex According to the
Definition 4.1.4 and the Definition 4.1.3, for some updates in the structural simi-
larity, when the similarity value exceeds or decreases the threshold ε the status of
this edge maybe changed to strong or weakly connection. Thereby, this change
can affect the status of each vertex v ∈ VAD. Consequently, according to 4.1.5
the VDA can change other vertices status indirectly which are defined as indirectly
affected vertices VIA. Rationally, those changes can affect the mapping of the
clusters, and several clusters may be changed. Thereby, according to Definition
4.1.7, ∃ a vertex v ∈ borders list where v only depends on two clusters c1 and c2.
When c1 and c2 will be merged into one cluster cnew, v will be weakly connected
with only cnew. In this case and according to Definition 4.1.7 v will be an outlier
vertex. In the same way, when we have a cluster c and v is an outlier to c with two
weak connections related to v1 and v2, after some updates c becomes splited to
two clusters c1 and c2 when v1 and v2 are respectively in c1 and c2. In this case, v

become a bridge between the new clusters c1 and c2 according to the connection
of v with v1 and v2.

Figure 5.2 shows an example with a graph G with 3 partitions for which we
deleted the vertex 3 (yellow vertex). Then, all affected edges EA (red edges)
change their structural similarities since the vertices 0,2 and 5 (old neighbors of
the deleted vertex 3) lost the vertex 3 as a neighbor, and all the edges associated
with the vertex (3) are removed from G. This new update affects only a subset
of vertices in G. The example shows that the vertex 2 (v2 ∈ vA) lost its core
status, whereas vertex 9 keeps its core status (v9 /∈ vA). Thus, EA can change
several vertices ’ status directly (vAD) or indirectly (vAI). Like it is shown in our
example, vertex 2 ∈ vAD, it lost on strong connection with the removed vertex
which changed to an outleir in this case. In the same way, vAD can change the
status of vAI. Vertices 0,1,4 and 5 were considered as border vertices according
to vertex 2 (in the initial graph), and in our case, when the vertex 2 lost the
core status, as a result vAI are changed to outliers. According to Definition 5.3.4,
vAD and vAI can change the old clustering schema and our example confirm that.
Partition 1 of G groups two clusters. The first one is C1 = { 12,13,14} and the
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second one is C2 ={0,1,2,3,4,5} (4 and 5 are external vertices). Thus, C1 and
C2 are affected because C1 contains the vertex 12 as an affected vertex, and in
the C2, all its vertices are affected because of the removed vertex. These clusters
can affect in the last step other vertices (bridge or outlier vertices). Like it is
depicted in 5.2 C2 should be removed since it does not have any core vertex, and
the vertices 6 and 7 were considered as bridges with C2. Thereby, these bridges
are susceptible to change their status.

Algorithm 8 describes the main steps of the proposed DISCAN. DISCAN pro-
vides real-time graph maintenance and a micro-batch clustering. Moreover, it
performs the new clustering after several changes, in order to optimize the incre-
mental clustering. We present below the main steps of DISCAN:
Step 1: Graph maintenance. In this step, DISCAN runs the graph mainte-
nance in real time. In each update U , it (i) updates the graph G structure, (ii)
checks the affected edges EA, and (iii) recomputes the similarities of EA (lines4-12
of the pseud-code 8). Then, it gets VA according to EA in order to memorize
them in a global variable. Like discussed in Definition 5.3.4, VA can affect several
clusters in the current partition or in other partitions. Thereby, each worker shares
its VA with all workers so that each one determines the affected clusters and saves
them. Once the affected clusters are fixed, they affect some bridges or outliers
vertices. So the affected bridges should be added to the list of affected vertices
to be checked in the next step.
Step 2: Incremental local clustering. This step is performed in micro-batch
processing mode, after a number of updates or using a window time. In both
methods, DISCAN runs the some scenarios. These latter consist of two choices
for a user who selects one of them according to the number of changes per seconds
or according to other needs such as the graph size, graph evolution. Therefore,
in each batch, DISCAN first checks the core vertices. The checking is performed
only on the affected vertices VA, where in general the |VA| � |V |.
Secondly, DISCAN checks the border vertices like in the first clustering but using
only EA, since the border vertices are dependent on the strong connections with
core vertices. For this reason, DISCAN checks the core vertices according to EA

only.
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After that, the updated cores and borders vertices will change the clustering
schema depending of the affected vertices (cores, borders) like it is described
in Definition 5.3.4. The affected clusters feat are four possible cases owing to
each update of a graph: (1) split one cluster to small clusters, (2) remove an
existing cluster, (3) build new clusters, (4) update the existing clusters and (5)
merge two or more clusters. Consider set of cores and theirs borders, and the
core vertices have strong connections beteen them. After the removal of a strong
connection between two cores (c1,c2) and (c1,c2), then the clusters should be
splited into sub-clusters depending on c1 and c2. For the case (2), each cluster
is built on a list of cores and theirs borders. If one cluster does have any core
vertex it should be removed. Sometimes, a new update makes an outlier vertex
to a core vertex cnew. If this vertex has a strong connection with any other old
core c, it joins the cluster of c, like in the case (4). If cnew does have any strong
connections with any other core it builds a new cluster, like the case (3). In the
last case (5), if there exist a new strong connection between two cores in two
different clusters, then we merge these latter. In order to deal with all these cases,
we remove all the affected clusters and re-build a new clustering in a same way
of the first clusetring presented in Definition 4.1.6 and using only the affected
vertices (cores and borders vertices). The new clustering is performed only on the
changed vertices which will be very faster compared to the first clustering.
Finally, DISCAN uses the new clusters and the remaining affected vertices to check
if they represent new border vertices.
Step 3: Merge the new updates. After each batch, each worker starts to
merge the new updates (see Algorithm 8 lines 19-23). The master machine gets
all the affected vertices from all workers in order to facilitate the combination
of the new changes. Here some clusters should be verified. In each batch, the
master keeps only the past unchanged clusters and requests all workers to get the
changed clusters. Thereby, all workers combine the updated clusters eventually
including new clusters. In the merging step, DISCAN uses the same scenarios as
in the first clustering (see Lemma 4.2.1). If at most one cluster shares at least one
core vertex, they can be merged into one cluster. In the next step, after getting
the new clusters, the master machine requests all workers to get theirs borders
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vertices. Then, each worker filters only the affected vertices which will belong
to its local bridges, and sends them to the master. The rest of affected vertices
will be added to the global list of outliers. Finally, DISCAN initializes the global
affected vertices and global affected clusters to empty lists which will to be used
in the next batch.

5.3.3 Time complexity analysis of DISCAN

The time complexity of DISCAN mainly depends on the affected edges and the
affected vertices in each new update. Moreover, this complexity is very low com-
pared to the initial complexity of DSCAN. Since the number of affected edges
|EA| � |E| and the number of affected vertices |VA| � |V |. In DISCAN, also
the time complexity is based on three steps. (i) The graph maintenance, the
complexity in this step is about O = |E|/n in worst case and O = 1 in best
case, where n is the number of partitions. (ii) In the similarity computation
the complexity is O = (min(|N(u)|, |N(v)|).|EA|), and (iii) also the clustering step
manly depends on VA. Thereby the incremental clustering complexity is about
O = (|Vc ∈VA|− |(vi,v j)||VA|

i, j=1,vi,v j ∈Vc and σ(vi,v j)≥ ε).

5.3.3.1 Communication complexity

Let S be the set of slave machines, and SA the set of partitions (slaves) affected
by graph updates. Moreover, this complexity is depend on the number of affected
slaves. Thus, this complexity in the case of worker2worker message is O= |S|2,
and in the worker2Master message the complexity is O= |SA|.

5.4 Experimental result

SpeedUp. The main goal of this experiment is to compare DISCAN with other
algorithms, Since there is no incremental algorithm for the structural graph clus-
tering, we evaluated the speedup of DISCAN compared to the fastest existing
algorithm (pSCAN and ppSCAN) which we presented in Section 4.3.1. Fig. 5.3
shows the running time of the tested algorithms with different graphs. In the first
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Algorithm 8 Incremental and Distributed Clustering
Input : Initial graph G as a text file, parameter (NP number of partitions), a

new update U
Output: C,B,O
/* Global affected vertices and clusters in each worker */

2 GlobalA f f ectedVertices= /0
GlobalA f f ectedClusters= /0
/* Step 1: Graph maintenance */

/* Update the inital graph in each new update and get the
affected vertices and the affected clusters */

3 Master machine: send a new update u to all workers
/* In parallel */

4 foreach Workeri wi ∈W do
5 Update the current partition according to U

Get EA
Recompute the similarities of EA
Get the immediately affected vertices VI
Share the immediately affected vertices VI with all workers
Get the indirectly affected vertices VInd, and the affected clusters CA

6 end
/* Step 2: Local clustering schema maintenance */
/* Update the old local clustering schema according to the

global affected vertices */
7 foreach Workeri wi ∈W do
8 Check Core vertices from GlobalAffectedVertices

Check Border vertices from GlobalAffectedVertices
Check affected clusters
Check Affected bridges

9 end
/* Step 3: Merge the new updates */

10 foreach Workeri wi ∈W do
11 Merge all affected clusters from all workers

Check new Bridge vertices according to the new clusters
Check the remaining outlier vertices

12 end
/* Reset the global affected vertices and clusters in each

worker */
13 GlobalA f f ectedVertices= /0

GlobalA f f ectedClusters= /0

14 Send C,B,O to master using Worker2Master message
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time, we start by running all the algorithms with the used graphs, and in each
moment, we added a new batch of updates in different sizes. In almost used
graphs, DISCAN is slow compared to other algorithms, except for pSCAN which
does not support the G5 graph. Despite that pSCAN and ppSCAN re-execute
the clustering from scratch, they are faster than DISCAN in case of G2 and have
the same response time in the case of G3. In the case of the G4, DISCAN is ini-
tially better than pSCAN and ppSCAN. Initially, ppSCAN and pSCAN are faster
than DISCAN, but the gap in running time begins to narrow between G2 and G4.
Then, when we add a new batch to the initial graphs, DISCAN becomes faster
than pSCAN and ppSCAN. In the case of G3, Fig. 5.3 shows a gap of 2X between
DISCAN and pSCAN and almost the same running time of DISCAN and ppSCAN.
Furthermore, the gap between DISCAN and pSCAN starts to increase, to finally
reach 3X, and 10% between DISCAN and ppSCAN.

DISCAN scalabilily. Fig. 5.4 shows the scalability of DISCAN w.r.t. the
number of workers, with G2 and G3 datasets and for different batches of updates
using the default parameters ε=0.5, µ=3.

Overall, the number of workers affects the running time in terms of size of the
used dataset and the number of updates. In Fig. 5.4 with G2 dataset, all curves
have almost the same look. They decrease for 2 to 4 workers, but with varying
the degrees of improvement depending on the number of updates. These varying
improvements are between 10% and 50%, respectively for 2000 and 10000 updates.
Afterwards, the curves grow until 8 workers, then comes down. In the G3 dataset,
the scalability becomes very high. The response time decreases depending on the
number of workers. This improvement is about 30% and 40% when related to the
number of updates. This behavior can be attributed to the number of affected
vertices and clusters. When this number becomes small, the needed resources
(e.g.,workers) should be small. Nevertheless, using many workers, DISCAN uses
a lot of communication which increases the processing time.

Impact of the batch size. The main goal of this experiment is to evaluate
the impact of batch size on the response time. Initially, we run DISCAN with
different datasets (G2, G3, G4 and G5) and different batch sizes (between 2000
en 1000) on a cluster of 10 machines and using the default parameters ε=0.5,
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Figure 5.3: Impact of the number of updates on the processing time of the pSCAN,
ppSCAN and DISCAN (ε=0.5, µ=3)

µ=3. Fig. 5.5 shows that the running time increases for all curves. This is
explained by the initial graph size, as we noticed in Fig. 5.3, but also in function
of the batch size. We can also notice that the increase depends on the size
of the initial graph and the batch size. The increase rate is about 5%, 50%
and 150%, respectively for G2, G4 and G5. This can mainly be explained by
the graph size, since for each update DISCAN in the graph maintenance step
check all affected vertices and edges in order to update the affected similarities.
Therefore, this checking depends on the graph size. On the other hand, in the
reclustering step, DISCAN first performs the clustering on the affected vertices.
Then, it merges all the affected clusters in the master machine. Thus, the running
time of the merging step depends on the number of affected edges because we
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Figure 5.4: Impact of the n workers’ number on the processing time of DISCAN
(ε=0.5, µ=3)

must check all affected clusters. The affected clusters’ checking requires using
the communications between the master and other workers. In this way, when the
batch is small, i.e. few affected vertices, a little communication should be used.
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Figure 5.5: Impact of the batch size on the running time (ε=0.5, µ=3)

Impact of the vertex type (internal vs external). Each update on an
existing graph maybe in internal or frontier (external) vertices. With, this exper-
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iment we show the difference in terms of the running time between the updates
in internal vertices and external vertices. We generated for G2, G3, G4 and G5
several internal and external batches of adding edges. After that, we ran DISCAN
using them in order to compare their response times.
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Figure 5.6: Impact of the vertices’ type (internal or external) on the processing
time (ε=0.5, µ=3)

As depicted in the Fig. 5.6 the updates on the frontier vertices are very
expensive with regard to running time. This latters’ gap trends to around 50%
between internal and external vertices updates. This can be explained by the
graph’ maintenance step performed by DISCAN, that consumes a lot of processing
time in the case of external vertices, compared to internal vertices. In fact, in
the internal vertices all maintenance operations are done locally (in the same
partition), whereas the graph maintenance is done in several partitions, which
requires additional costs. These latter’s are mainly related to the duplication of
the frontier partitions and obviously the communication between all the affected
workers.
DISCAN Steps. We notice, from the previous experiment, that the response
time depends on the type of vertices that can be internal or external. Especially,
for the external vertices the response time is slow because graph ’ maintenance is
expensive, compared to internal vertices.

Fig. 5.7 clearly shows a span of the difference between graph maintenance and
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Figure 5.7: Performance of DISCAN steps (ε=0.5, µ=3)

re-clustering steps for both the internal and external vertices. The re-clustering
step takes about 30% of the global running time in case of internal vertices,
while this rate is about 50% in case of frontiers updates. On the other hand,
the difference between internal and external updates in terms of running time
during the re-clustering is about 3X. This is understandable because the external
updates need additional computing time like the duplication of frontier vertices
and the graph maintenance according to the neighboring partitions. The additional
treatment sometimes requires several communications with other workers.

5.5 Conclusion

In this chapter, the presence of the third contribution accentuates that an incre-
mental and distributed structural graph clustering algorithm is proposed. In fact,
it represents an extension of DSCAN which is named DISCAN. The main goal of
DISCAN is to perform a dynamic graph clustering incrementally. In this respect ,
we presented a full description of the proposed algorithm from graph maintenance
to the incremental clustering. In addition, it is worth noting that an experimental
study is performed at the end of this chapter which is mainly based on experi-
mental results. Eventually, We can mention that DISCAN outperforms the rest of
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algorithms within this work ,and this efficientis is basically related to the running
time and scalability.
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Key points

• We presented some definitions of dynamic graphs.

• We presented a distributed graph maintenance with dynamic
graphs.

• We proposed a distributed and incremental graph clustering al-
gorithm for dynamic and large-scale networks.

• An experimental study to evaluate the proposed incremental
graph clustering algorithm for dynamic graphs.

Publications

• W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, E. Mephu Nguifo.
A Distributed and Incremental Algorithm for Large-Scale Graph
Clustering. submitted to Data Mining and Knowledge
Discovery.
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Goals
In this chapter, we conclude the thesis by summarizing our contributions. Then,
we highlight the ongoing works we are conducting.
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6.1 Summary of contributions

This thesis deals with distributed and dynamic graph clustering from huge graphs.
Firstly, it surveys the big data concepts and popular frameworks proposed in the
literature. Secondly, it emphasizes the big graph clustering task with a proposal for
a distributed graph clustering algorithm. Thirdly, to solve the problem of dynamic
graph processing, it presents an incremental graph clustering algorithm for dynamic
graphs. In this section, we first present some details about the comparative study
on popular big data frameworks. Then, we summarize the basic keys of the
proposed graph clustering algorithm, and finally, we present an extension of the
proposed algorithm to deal with dynamic graphs.

6.1.1 Comparative study on big data frameworks

In this axis, we surveyed popular frameworks for large-scale data processing. Af-
ter a brief description of the main paradigms related to Big Data problems, we
presented an overview of popular Big Data frameworks including Hadoop, Spark,
Storm and Flink. We presented a categorization of these frameworks according
to some main features such as the used programming model, the type of data
sources, the supported programming languages and whether the framework allows
iterative processing or not. We also conducted an extensive comparative study of
the above presented frameworks on a cluster of machines and we highlighted best
practices while using the studied Big Data frameworks.

6.1.2 Distributed structural graph clustering

In this axis, we proposed a new distributed graph clustering for big graphs, termed
DSCAN. This latter is a distributed algorithm and supports both centralized and
distributed graphs. For the centralized graphs, DSCAN provides its own parti-
tioning method. For the distributed graphs, DSCAN takes the already partionned
graph as input. The clustering method used by DSCAN is based on structural sim-
ilarity and gives some other knowledge like bridges and outliers. The experimental
results performed in this contribution demonstrates the horizontal scalability in the
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case of big graphs. The efficiency of DSCAN is also shown in terms of running
time in the case of big graphs. The outcomes of our comparative experiments
confirm the efficiency of DSCAN to big graphs.

6.1.3 Dynamic graph clustering

In this contribution, we have extended DSCAN for big and dynamic graph clus-
tering. The new extension is named Distributed and Incremental Structural Clus-
tering Algorithm for networks DISCAN. This latter, unlike other dynamic graphs
systems, provides dynamic graph maintenance. Also, DISCAN has covered all
possible graph update operations, e.g., adding and deleting of vertices and/or
edges. The efficiency related to running time of DISCAN has been demonstrated
across experimental results. These results are performed in dynamic graphs in a
distributed setting.

6.2 Future works and prospects

This thesis has covered two mains axes. In the first axis, we provided a large-scale
graph clustering in a distributed setting. In the second axis, we touched the clus-
tering of large and dynamic graphs. For each axis, an algorithm has been proposed
to overcome the cited issues. The proposed algorithms have shown significant im-
provement compared to the existing algorithms. However, our algorithms have
some challenges related to graph partitioning and data communication. There-
fore, these challenges represent one of our future works. In this section, we propose
some details about these ongoing work.

6.2.1 First axis: improvement of the partitioning method

proposed by DSCAN

The proposed distributed graph clustering algorithm consists in dividing an input
graph and performing a distributed graph clustering. However, the experimental
results have shown that a significant impact of the partitioning scheme on the
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running time. This is explained by the number of frontier vertices. When the
number is high, a cost of computation resources is added. Starting from this
interpretation, the partitioning step improvement can automatically decrease the
running time of the proposed algorithm. As a future work in this axis, we will
study the existing distributed graph partitioning methods and compare them with
our proposed algorithm. We also aim to propose a dedicated partitioning method
to DISCAN.

6.2.2 Second axis: improvement of the communication

The communication is a primordial aspect in distributed computing. Both DSCAN
and DISCAN use the bandwidth exhaustively which increase the running time in
the case of several dense graphs. This issue will represent a future work in the
short term. To overcome this issue, we will propose a shared memory instead of
a message passing communication technique between workers in the cluster. The
communication method proposed can decrease the bandwidth resource consump-
tion and then decrease the running time.

6.2.3 Third axis: evolving graphs

This thesis deals with both static and dynamic graph clustering, but recently in
some real-word applications, another kind of graphs called evolving graph has
emerged. In fact, evolving graph consists on a series of snapshots of an initial
graph, which evolves over time. In this axis, we aim to extend and adapt our
proposed algorithm to deal with evolving graph clustering. We will study the
proposed approaches that take into consideration evolving graphs during the graph
clustering. Then, and according to the study carried out, we will try to adapt
DISCAN in order to track the graph evolution and to maintain the graph clustering
over time.
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Publications

Journal papers

• Inoubli. W, Aridhi. S, Mezni. H, Maddouri. M et Mephu Nguifo. E An ex-
perimental survey on big data frameworks Journal: Future Generation Computer
Systems Elsevier, 86, pp. 546-564, 2018

Conference papers

• Inoubli. W, Aridhi. S, Mezni. H, Maddouri. M et Mephu Nguifo. E Un
algorithme distribué pour le clustering de grands graphesExtraction et Gestion des
Connaissances (EGC) 2020, brussels, Belgium.vol. RNTI-E-36, pp.349-356
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Analysis and Mining of Large Dynamic Graphs: Graphs

clustering application

Abstract: Recently, the graph clustering has become one of the most used techniques

to understand structures and inherent knowledge in graph data. This trend progressively

attracts the attention of companies and research community. For example, in the in-

dustrial field, it is used for multiple applications like social networks (e.g. Facebook),

where communities can be modeled as clusters in a graph. As for collaborative networks

(e.g. DBLP), a cluster can represent a team with similar research interests. Several

works have been established where their proposed approaches are based on advanced

algorithms mainly graph clustering algorithms and modularity based-ones. The former

has demonstrated their efficiency notably by providing supplementary information about

clusters in a list. Besides, they can identify hub and outlier vertices. Despite their im-

portance, the utility of such algorithms is limited by their high complexity particularly

when dealing with Big and dynamic graphs. This limitation motivates us to propose new

algorithms with higher performances in our thesis. For more details, our contributions

can be summarized in the following points: (1) carrying out of a comparative study be-

tween the most popular Big Data platforms (2) proposing a distributed algorithm called

DSCAN for large graphs clustering and (3) extending DSCAN to develop an incremental

algorithm for dynamic and large graphs. A comparative study between our proposed

algorithms and other baselines has shown their effectiveness and their scalability when

dealing with large and dynamic graphs

Keywords: Dynamic graph clustering, graph mining, community detection, Big

Data, graph clustering, big graph processing.
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