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Goals

The main objective of this chapter is to discuss the Big Data concept from both theoretical and practical perspectives. The comprehension of this concept can be considered as a primary stage before proceeding to a specialized study of its components like graphs. This background chapter starts with a brief introduction to Big Data. Afterward, we describe popular frameworks that are recently developed to handle imposed challenges by this concept. A deep experimental study of some Apache frameworks is conducted in order to concretize their performance to store, analyze and process Big Data. Finally, the usefulness of Big Data in real-world applications is then demonstrated through some examples

Goals

This chapter summarizes the contents and outlines of the thesis plan. First, we highlight the emergence of Big Data and big graph analysis. Then, we state issues to be addressed in the fallowing chapters.

Context and motivations

1.1.1 Big Data emergence Every day, 2.5 terabytes of data are generated in the digital world. In the last five years, the size of data is expected to multiply by 50 times [Gandomi 2015a]. According to Statista1 , the global volume of data in the world will be multiplied by 3.7 between 2020 and 2025. Then it will be multiplied by 3.5 every five years until 2035 to reach 2,142 zettabytes of data. For instance, Google receives 40,000 requests every second, 72 videos are uploaded every minute to YouTube, and 217 new smartphone users are counted every minute [Gandomi 2015a]. These data come to us various sources, including smartphones (log files, calls, etc.), social networks, videos and digital images, customer transactions, shape or movement sensors of connected objects, etc. The development and access to these data caused the emergence of a new phenomenon called "Big Data". This phenomenon had a particular impact on companies that have to handle terabytes or even petabytes of data requiring, specific infrastructures for their creation, storage, processing, analysis, and recovery. In other words, they manage and process a lot of data that come in streams or in batches. Such data exceed the capacity of traditional resources such as relational databases, sequential processing, classic development tools, etc. In addition, traditional data models, like the relational database model, are unable to support these volumes of data. Consequently, advanced data models have been introduced such as NoSQL databases model and graph-based models.

From Big Data to Big Graphs

Data can take several representations. Apart from the relational model, the graph model has gained increasing interest to represent various types of data, it has been extremely used in different applications, especially computer networks [START_REF] Faloutsos | [END_REF]], social networks [Bonchi 2011], [START_REF] Liu | [END_REF]] and bioinformatics [Saidi 2009]. These applications use the graph representation to describe the relationships between the data. In bioinformatics, the structure of the proteins can be considered as a graph. Amino acids represent the nodes whereas their interactions seen edges. In fact, studying protein graphs allows us to better understand the structures of proteins through the extraction of information that is not visible using the classical representation structure of protein data. In the area of social network analysis, graph representation is used to model the interactions between users in a social network. Analyzing these interactions can help, for example, to identify the transmission routes of a rumor or a joke [START_REF] Liu | [END_REF]]. In another way, some graphs are naturally dynamic in terms of their structures or their properties (i.e. some vertices and/or edges can be deleted from or added to the initial graph, and some properties of the graph can be changed).

In the next section, some challenges related to this thesis, mainly big graph processing and mining, will be presented and discussed.

Challenges of big graph processing

The two fields of big graph analytics and large-scale graph processing represent a continuity of Big Data challenges. In the last years, big graphs analytics have become among the first research tracks in the database research community. Also, big graphs attract the attention of companies in the context of industrial projects. Facebook and Google have proposed their own graph processing systems and have used graphs in several use cases. As a result, large graphs can contain terabytes of compressed data when they are stored on disks. Therefore a single computer will not be able to process such volume of data. This incapacity causes a lot of problems mainly in the context of data processing and indexing, despite the fact that graphs represent an important source of knowledge useful for business. Therefore, many algorithms and solutions have been proposed to explore and exploit large graphs in order to analyze them and to discover hidden insights. Multiple applications of large graphs are present today inside technologies and daily routine such as social networks, protein interactions and road networks. Recently, the discovery of dense subgraphs in large graphs has become one of the major issues in the graph field. This is known as the problem of graph clustering and community detection, and it is gradually attracting the attention of a larger research community. The graph clustering aims mainly to detect groups or hidden structures in a given graph [START_REF] Rossetti | [END_REF]]. For example, in social networks (e.g., Twitter), groups of users with specific conditions can be considered to be communities [START_REF] Rossetti | [END_REF]]. In a collaborative network (for example the co-authorship database DBLP), a cluster can be a group of researchers with similar research interests. In computational biology, calculating functional clusters of genes can help biologists to better study the gene networks. real-world graphs are characterized not only by their huge size but also by their heterogeneity. Besides, the dynamic nature of several real-world graphs is also a major issue. For example, Facebook has put about 86,400 objects per second in 2013 [START_REF][END_REF]], while Twitter traffic [START_REF] Sengupta | [END_REF]] can reach 143 thousand tweets per second (we can also consider graph updates), and email communication network [START_REF] Sengupta | [END_REF]] can exceed 2.5 millions of new emails per second2 . This speed of graph updates makes graph analytics algorithms (e.g., clustering in our case) need real-time and obviously scalable processing.

Contributions

This thesis deals with distributed and incremental structural graph clustering. Firstly, we present an experimental study on data processing. This comparative study is divided into two parts: (1) theoretical study and (2) experimental study. Secondly, we propose a distributed algorithm for graph clustering. The proposed approach is based on the structural graph clustering [Xu 2007] and implemented on top of the BLADYG [Aridhi 2017] framework. Thirdly, we extend the proposed algorithm in order to support the dynamic graphs.

First axis: a comparative study on Big Data frameworks

In this contribution, we study the most popular frameworks for large-scale data processing in both stream and batch processing. We, first, present a brief description of some major Big Data framework: Hadoop, Spark, Storm, Samza and Flink. We also presented a categorization of these frameworks according to some features as being mainly related to the processing mode, data source, Machine learning compatibility and others. We also conducted an extensive comparative study of the above-mentioned frameworks on a cluster of machines and we highlighted best practices with respect to each big data framework's capacity. This comparative study has been published in [Inoubli 2018b].

Second axis: distributed structural graph clustering

In this part of our thesis, after an extensive literature review on both graph clustering algorithms and large graph processing frameworks, we propose a novel algorithm for graph clustering in a distributed setting. The proposed algorithm is implemented on top of BLADYG framework. It supports both centralized and distributed graphs. In a centralized graph setting, the proposed algorithm starts by splitting the graph into subgraphs, using our proposed graph partitioning. In the distributed graph setting, the proposed algorithm takes the already distributed graph as input and lunch directly the graph clustering task. The proposed algorithm is based on the structural graph clustering algorithm SCAN [Xu 2007]. We compare our approach with four other methods based on SCAN. We have shown through an experimental study that the proposed algorithm is scalable even with big distributed graphs.

Third axis: dynamic and distributed structural graph clustering

The third axis of this work deals with dynamic graphs. We extend our distributed graph clustering algorithm in order to support big and dynamic graphs. Thus, an incremental graph clustering has been proposed. The experimental studies have proved that the new extension is scalable and faster than the baseline algorithms.

Outline

This thesis is made up of six chapters organized as follows. In Chapter 2, we introduce the Big Data emergence in the last years and we present an overview of popular Big Data frameworks. We also conduct an experimental study on the reviewed Big Data frameworks. In Chapter 3, we first survey large graph processing systems and graph programming models. Then, we discuss existing graph clustering algorithms and we present a structural graph clustering algorithms. In Chapter 4, we introduce our method for structural graph clustering. Then, we present the conducted experimental study and we compare the proposed algorithm to four similar clustering algorithms. In Chapter 5, we extend the proposed distributed algorithm in order to support dynamic graphs. For this, we purpose an incremental and distributed structural graph clustering algorithm that exploits the previous results to generate new ones in each update. Through the conducted experimental study, we have shown that the incremental algorithm significantly improves the execution time.

In Chapter 6, we conclude the present manuscript by summarizing our contributions and highlighting some prospects.

Introduction to Big Data

In recent decades, increasingly large amounts of data are generated from a variety of sources. The size of generated data per day on the Internet has already exceeded two exabytes [Gandomi 2015b]. Within one minute, 72 h of videos are uploaded to Youtube, around 30.000 new posts are created on the Tumblr blog platform, more than 100.000 tweets are shared on Twitter and more than 200.000 pictures are posted on Facebook [Gandomi 2015b]. Big Data problems lead to several research questions such as (1) how to design scalable environments, (2) how to provide fault tolerance and (3) how to design efficient solutions. Most existing tools for storage, processing and analysis of data are inadequate for massive volumes of heterogeneous data. Consequently, there is an urgent need for more advanced and adequate Big Data solutions. Many definitions of Big Data have been proposed throughout the literature. Most of them agreed that Big Data problems share four main characteristics, referred to as the four V's (Volume, Variety, Veracity and Velocity) [START_REF] Oguntimilehin | [END_REF]]. The volume refers to the size of available datasets that typically require distributed storage and processing. The variety refers to the fact that Big Data is composed of several different types of data such as text, sound, image and video. The veracity refers to the biases, noise and abnormality in data. The velocity deals with the place at which data flows in from various sources like social networks, mobile devices and the Internet of Things (IoT).

Popular Big Data frameworks

In the literature, a set of surveys was established in relation to Big Data frameworks. From the ten discussed surveys above, only six have experimentally studied some of the Big Data frameworks.

In [6], the authors compared several MapReduce implementations like Hadoop [Li 2015], Twister [START_REF] Ekanayake | [END_REF]] and LEMO-MR [START_REF] Fadika | [END_REF]] on many workloads. Particularly, the performance and scalability of the studied frameworks have been evaluated. In [Veiga 2016], an experimental study on Spark, Hadoop and Flink has been conducted. Mainly, the impact of some configuration parameters of the studied frameworks (e.g., number of mappers and reducers in Hadoop, number of threads in the case of Spark and Flink) on the runtime while running several workloads was studied. In [START_REF] Shi | [END_REF]], the authors conducted an experimental study on Spark and Hadoop. They developed two profiling tools : (1) a study of the resource utilization for both MapReduce and Spark; (2) a breakdown of the task execution time for in-depth analysis. The conducted experiments showed that Spark is about 2.5x, 5x, and 5x faster than MapReduce, for WordCount, k-means, and PageRank workloads, respectively. Some other works like [Singh 2014] [Chen 2014b] [Chen 2014a] [START_REF] Liu | [END_REF]] tried to highlight Big Data fundamentals. They discussed the challenges related to Big Data applications and they presented the main features of some Big Data processing frameworks. Two works have compared Spark and Flink from theoretical and/or experimental point of view [García-Gil 2017] [ [START_REF] Marcu | [END_REF]]. Scalability and impact of the size on disk, as well as the performance of specific functionalities of the compared frameworks have been considered. In [García-Gil 2017], the authors discussed the main difference between Spark and Flink and presented an empirical study of both frameworks in the case of machine learning applications. In [START_REF] Marcu | [END_REF]], Marcu et al. studied the impact of different architectural choices and parameter configurations on the perceived performance in the case of batch processing is studied. The performance of the studied frameworks has been evaluated with several representative batch and iterative workloads. The work presented in [Zhang 2015b] deals with in-memory Big Data management and processing frameworks. The authors provided a review of several in-memory data management and processing proposals and systems, including both data storage systems and data processing frameworks. They also presented some key factors that need to be considered in order to achieve efficient in-memory data management and processing, such as RDD for in-memory data persistence, immutable objects to improve response time, and data placement optimization. In [Zhang 2017], the authors conducted an experimental study on Storm and Flink in a stream processing context. The aim of the conducted study is to understand how current design aspects of modern stream processing sys-tems interact with modern processors when running different types of applications. However, the study mainly focuses on evaluating the common design aspects of stream processing systems on scale-up architectures, rather than comparing the performance of individual systems. We mention that most of the above-presented surveys are limited in terms of both the evaluated features of Big Data frameworks and the number of considered frameworks. For example, in [Zhang 2017], only stream processing frameworks are considered while in [START_REF] Dede | Benchmarking MapReduce implementations under different application scenarios[END_REF]] [Veiga 2016] [García-Gil 2017] [ [START_REF] Marcu | [END_REF]], only batch processing frameworks are considered. We highlight that our experimental survey as described in Section 1.3. differs from the above-presented works by the fact that it compares the studied frameworks in the case of both batch and stream processing. It also deals with several representative batch and iterative workloads which are not considered in most existing surveys. Add to that, additional parameters (e.g., memory, threads) are configured to better evaluate the discussed frameworks. Moreover, monitoring capacities differentiate our work from the existing surveys. In fact, a personalized tool is implemented for different tests to effectively monitor resource usage.

Presentation of Big Data frameworks

This part is dedicated to a theoretical study of the most popular Big Data frameworks. For a better explanation of their principles, we use the Word-Count program as a running example. This latter consists on reading a set of text files and counting how often words occur. Snapshots of the codes used to implement the WordCount example with the studied frameworks are available online. As shown in Fig. 2.1, the basic steps of a MapReduce program are as follows:

Apache Hadoop

1. Data reading: in this phase, the input data is transformed into a set of key-value pairs. The input data may come from various sources such as file systems, database management systems or main memory (RAM). The input data is split into several fixed-size chunks. Each chunk is processed by one instance of the Map function. • HDFS: it consists of an open source implementation of the distributed Google File System (GFS) [START_REF] Ghemawat | [END_REF]]. It provides a scalable distributed file system for storing large files over distributed machines in a reliable and efficient way [White 2012]. In Fig. 2.2, we show the abstract architecture of HDFS and its components.

It consists of a master/slave architecture with a Name Node being master [START_REF] Hindman | [END_REF]] and Zookeeper [Skeirik 2013].

-Mesos is an open source cluster manager that ensures dynamic resources sharing and provides efficient resources management for distributed frameworks [START_REF] Hindman | [END_REF]]. It is based on a master/slave architecture. The master node relies on a daemon, called master process. This later manages all executor daemons deployed in the slave nodes, on which user tasks are distributed and executed.

-Apache ZooKeeper is an open source and fault-tolerant coordinator for large distributed systems [Skeirik 2013]. It provides a centralized service for maintaining the cluster's configuration and management. It also ensures the data or service synchronization in distributed applications. Unlike YARN or Mesos, Zookeeper is based on a cooperative control architecture, where the same service is deployed in all machines of the cluster. Each client or application can request the Zookeeper service by connecting to any machine in the cluster.

WordCount example with Hadoop

A WordCount program in Hadoop consists of a MapReduce job that counts the number of occurrences of each word in a file stored in the HDFS. The Map task maps the text data in the file and counts each word in the data chunk provided to the Map function (see Fig. Apache Spark is a powerful processing framework that provides ease of use tool for efficient analytics of heterogeneous data. It was originally developed at UC Berkeley in 2009 [START_REF] Zaharia | [END_REF]]. Spark has several advantages compared to other Big Data frameworks like Hadoop and storm. Spark is used by many companies such as Yahoo, Baidu, and Tencent. A key concept of Spark is Resilient Distributed Datasets (RDDs). An RDD is basically an immutable collection of objects spread across a Spark cluster. In Spark, there are two types of operations on RDDs:

(1) transformations and (2) actions. Transformations consist in the creation of new RDDs from existing ones using functions like map, filter, union and join. Actions consist of the final result of RDD computations. In Fig. 2.3, we present an overview of the Spark architecture. A Spark cluster is based on a master/slave architecture with three main components:

• Driver Program: this component represents the slave node in a Spark cluster. It maintains an object called SparkContext that manages and supervises running applications.

• Cluster Manager: this component is responsible for orchestrating the workflow of the application assigned by Driver Program to workers. It also controls and supervises all resources in the cluster and returns their state to the Driver Program.

• Worker Nodes: each Worker Node represents a container of one operation during the execution of a Spark program.

Spark offers several Application Programming Interfaces (APIs) [START_REF] Zaharia | [END_REF]]:

• SparkCore: Spark Core is the underlying general execution engine for the Spark platform. All other features and extensions are built on top of it. Spark Core provides in-memory computing capabilities and a generalized execution model to support a wide variety of applications, as well as Java, Scala, and Python APIs for ease of development.

• SparkStreaming: Spark Streaming enables powerful interactive and analytic applications across both streaming and historical data while inheriting Spark's ease of use and fault tolerance characteristics. It can be used with a wide variety of popular data sources including HDFS, Flume [START_REF] Chambers | [END_REF]], Kafka [Garg 2013], and Twitter [START_REF] Zaharia | [END_REF]].

• SparkSQL: Spark offers a range of features to structure data retrieved from several sources. It allows subsequently to manipulate them using the SQL language [Armbrust 2015].

• SparkMLLib: Spark provides a scalable machine learning library that delivers both high-quality algorithms (e.g., multiple iterations to increase accuracy) and high speed (up to 100x faster than MapReduce) [START_REF] Zaharia | [END_REF]].

• GraphX: GraphX [START_REF] Xin | [END_REF]] is a Spark API for graph-parallel computation (e.g., PageRank algorithm and collaborative filtering). At a high-level, GraphX extends the Spark RDD abstraction by introducing the Resilient Distributed Property Graph: a directed multigraph with properties attached to each vertex and edge. To support graph computation, GraphX provides a set of fundamental operators (e.g., subgraph, joinVertices, and MapReduceTriplets) as well as an optimized variant of the Pregel API [Malewicz 2010a]. In addition, GraphX includes a growing collection of graph algorithms (e.g., PageRank, Connected components, Label propagation and Triangle count) to simplify graph analytics tasks.

WordCount example with Spark

In Spark, every job is modeled as a graph. The nodes of the graph represent transformations and/or actions, whereas the edges represent data exchange between the nodes through RDD objects.

Through Fig. 2.4, we show the execution plan for a WordCount job. In the first step, the SparkContext object is used to read the input data from any sources (e.g., HDFS) and to create an RDD. In the second step, several operations can be applied to the RDD. In this example, we apply a flatMap operation that receives the lines of RDD, and applies a lambda function to each line of the RDD in order to generate a set of words. Then, a map function is applied in order to create a set of key-value pairs, in which the key is a word and the value is the number one. The next step consists of computing the sum of the values of each key using the reduceByKey function. The final results are written using the saveAsFile function.

Apache Storm

Storm system overview

Storm [START_REF] Toshniwal | [END_REF]] is an open source framework for processing large structured and unstructured data in real-time. Storm is a fault tolerant framework that is suitable for real-time data analysis, machine learning, sequential and iterative computation. Following a comparative study of storm and Hadoop, we find that the first is geared for real-time applications while the second is effective for batch applications. As shown in Fig. 2 represent the functions to be performed on the data. Note that storm distributes bolts across multiple nodes to process the data in parallel. In Fig. 2.5, we show a storm cluster administrated by zookeeper, a service for coordinating processes of distributed applications [START_REF] Hunt | [END_REF]]. Storm is based on two daemons called Nimbus (in master node) and supervisor (for each slave node). Nimbus supervises the slave nodes and assigns tasks to them. If it detects a node failure in the cluster, it re-assigns the task to another node. Each supervisor controls the execution of 

WordCount example with Storm

Since Storm is a framework for stream processing, we run the WordCount example in stream mode. A Storm WordCount job consists of a topology that combines a set of spouts and bolts, where the spouts are used to get the data and the bolts are used to process the data. In Fig. 2.6, three processing layers are used to process the data. In the first layer, the spouts are used to read the input data from the sources and push the data (as lines of text) to the next layer. Then, in the next layer, a set of bolts are used to generate a set of words from each consumed line (from the previous layer). Finally, the last bolts are used to count for each word its number of occurrences. 

Apache Samza

Samza system overview

Apache Samza [START_REF] Samza | Apache Samza. LinkedIn's Real-time Stream Processing Framework[END_REF]] is a distributed processing framework created by LinkedIn to solve various kinds of stream processing requirements such as tracking data, service logging, and data ingestion pipelines for real-time services. Since then, it was adopted and deployed in several projects. Samza is designed to handle large messages and to provide file system persistence for them. It uses Apache Kafka as a distributed broker for messaging, and YARN for distributed resource allocation and scheduling. YARN resource manager is adopted by Samza to provide fault tolerance, processor isolation, security, and resource management in the used cluster. As illustrated in Fig. 2.7, Samza is based on three layers. The first layer is devoted to streaming data and uses Apache Kafka to manage the data flow. The second layer is based on YARN resource manager to handle the distributed execution of Samza jobs and to manage CPU and memory usage across a multitenantcluster of machines. The processing capabilities are available in the third layer which represents the Samza core and provides APIs for creating and running stream tasks in the cluster [START_REF] Samza | Apache Samza. LinkedIn's Real-time Stream Processing Framework[END_REF]]. In this layer, several abstract classes can be implemented by the user to perform specific processing tasks. These abstract classes could be implemented with MapReduce, in order to ensure a distributed processing. 

WordCount example with Samza

A Samza job is usually based on two parts. The first part is responsible for data processing and the second part is responsible for data flow transfer between the data processing units.

As shown in Fig 2.8. the execution steps of a wordCount job with Samza. In the first step, the data is read from the source and sent to the first Samza task, called a splitter, through a kafka topic. In this step, each message is split into a set of words. In the next step, another Samza task called counter consumes the set of words, and counts for each one the number of occurrences and generates the final result. Flink [Alexandrov 2014b] is an open source framework for processing data in both real time mode and batch mode. It provides several benefits such as fault-tolerant and large scale computation. The programming model of Flink is similar to MapReduce. By contrast to MapReduce, Flink offers additional high level functions such as join, filter and aggregation. Flink allows iterative processing and real time computation on stream data collected by different tools such as Flume [START_REF] Chambers | [END_REF]] and Kafka [Garg 2013]. It offers several APIs on a more abstract level allowing the user to launch distributed computation in a transparent and easy way. Flink ML is a machine learning library that provides a wide range of learning algorithms to create fast and scalable Big Data applications. In Fig. 2.9, we illustrate the architecture and components of Flink. As shown in Fig. 2.9, the Flink system consists of several layers. In the highest layer, users can submit their programs written in Java or Scala. User programs are then converted by the Flink compiler to DAGs. Each submitted job is represented by a graph. Nodes of the graph represent operations (e.g., map, reduce, join or filter) that will be applied to process the data. Edges of the graph represent the flow of data between the operations. A DAG produced by the Flink compiler is received by the Flink optimizer in order to improve performance by optimizing the DAG (e.g., re-ordering of the operations). The second layer of Flink is the cluster manager which is responsible for planning tasks, monitoring the status of jobs and resource management. The lowest layer is the storage layer that ensures storage of the data to multiple destinations such as HDFS and local files.

WordCount example with Flink

In order to implement the WordCount example with Flink, we can use the abstract functions provided by Flink such as map, flatMap and groupBy. First, the input data is read from the data source and stored in several dataset objects. Then, a map operation is applied to the dataset objects in order to generate key-value pairs, with the word as a key and one as value. Then, the groupBy function is applied to aggregate the list of key-value pairs generated in the previous step ( Fig. 2.10). Finally, the number of occurrences of each word is calculated using the sum function and the final results are generated.

Categorization of Big Data frameworks

Before proceeding to the experimental survey, we start by presenting some popular Big Data frameworks and categorizing them according to their key features. These key features are (1) the programming model, (2) the supported programming languages, (3) the type of data sources and (4) the capability to allow for iterative data processing, (5) the compatibility of the framework with existing machine learning libraries, and (6) the fault tolerance strategy. We present in Table 2.1 a comparative study of the presented frameworks according to these features. As shown in Table 2.1, Hadoop, Flink and Storm use the key-value format to represent their data. This is motivated by the fact that the key-value format allows access to 2.1: Comparative study of popular Big Data frameworks heterogeneous data. For Spark, both RDD and key-value models are used to allow fast data access. We have also classified the studied Big Data frameworks into two categories: (1) batch mode and (2) stream mode. We have shown in Table 2.1 that Hadoop processes the data in batch mode, whereas the other frameworks allow the stream processing mode. In terms of physical architecture, we notice that all the studied frameworks are deployed in a cluster architecture, and each framework uses a specified cluster manager. We note that most of the studied frameworks use YARN as cluster manager. From a technical point of view, we mention that all the presented frameworks provide APIs for several programming languages like Java, Scala and Python.

Each framework provides a set of abstract functions that is used to define the desired computation. We also presented in Table 2.1 weather the studied framework provides a machine learning library or not. We notice that Spark and Flink provide their own machine learning libraries, while the other frameworks have some compatibility with other tools, such as SAMOA for Samza and Mahout for Hadoop. It is important to mention that Hadoop is currently one of the most widely used parallel processing solutions. Hadoop ecosystem consists of a set of tools such as Flume, HBase, Hive and Mahout. Hadoop is widely adopted in the management of large-size clusters. Its YARN daemon makes it a suitable choice to configure Big Data solutions on several nodes [Yao 2014]. For instance, Hadoop is used by Yahoo to manage 24 thousands of nodes. Moreover, Hadoop MapReduce was proven to be the best choice to deal with text processing tasks [35]. We notice that Hadoop can run multiple MapReduce jobs to support iterative computing but it does not perform well because it cannot cache intermediate data in memory for faster performance.

As shown in Table 2.1, Spark importance lies in its in-memory features and micro-batch processing capabilities, especially in iterative and incremental processing [START_REF] Bajaber | [END_REF]]. In addition, Spark offers an interactive tool called SparkShell which allows exploiting the Spark cluster in real time. Once interactive applications were created, they may subsequently be executed interactively in the cluster. We notice that Spark is known to be very fast in some kinds of applications due to the concept of RDD and also to the DAG-based programming model.

Flink shares similarities and characteristics with Spark. It offers good processing performance when dealing with complex Big Data structures such as graphs. Although there exist other solutions for large-scale graph processing, Flink and Spark are enriched with specific APIs and tools for machine learning, predictive analysis and graph stream analysis [Alexandrov 2014b[START_REF] Zaharia | [END_REF]].

Comparative study of Big Data frameworks

We have performed an extensive set of experiments to highlight the strengths and weaknesses of popular Big Data frameworks. The performed analysis covers the scalability, the impact of several configuration parameters on the performance and the resource usage. For our tests, we evaluated Spark, Hadoop, Flink, Samza and Storm. For reproducibility reasons, we provide information about the implementation details and the used datasets online. In the following sub-section, we describe the experimental setup and we discuss the obtained results.

Experimental environment

All the experiments were performed in a cluster of 10 machines operating with Linux Ubuntu 16.04. Each machine is equipped with a 4 CPU, 8 GB of main memory and 500 GB of local storage. For our tests, we used Hadoop 2.9.0, Flink 1.3.2, Spark 1.6.0, Samza 0.10.3 and Storm 1.1.1. All the studied frameworks have been deployed with YARN as a cluster manager. We also varied these parameters in order to analyze the impact of some of them on the performance of the studied frameworks.

Experimental environment

We consider two scenarios according to the data processing mode (Batch and Stream) of the evaluated frameworks.

• In the Batch mode scenario, we evaluate Hadoop, Spark and Flink while running the WordCount, K-means and PageRank workloads with real and synthetic data sets.

In the WordCount application, we used tweets that are collected by Apache Flume [START_REF] Chambers | [END_REF]] and stored in HDFS. As shown in Fig2.11, the collected data may come from different sources including social networks, local files, log files and sensors. In our case, Twitter is the main source of our collected data. The motivation behind using Apache Flume to collect the processed tweets is its integration facility in the Hadoop ecosystem (especially the HDFS system). Moreover, Apache Flume allows data collection in a distributed way and offers high data availability and fault tolerance. We collected 10 billion tweets and we used them to form large tweet files with a size on disk varying from 250 MB to 100 GB of data.

For K-means, we generated a synthetic datasets containing between 10,000 and 100 million learning examples. As for the PageRank workload, we have used seven real graph datasets with different numbers of nodes and edges. Table 2.2 shows more details of the used datasets.

The above-presented datasets have been downloaded from the Stanford Large Network Dataset Collection (SNAP)1 and formatted as plan files in which each line represents a link between two nodes. We implemented the PageRank workload with Hadoop using a three-jobs workflow. In the first job, we read data from the text file and we generated a set of links for each page. The second job is responsible for setting an initial score for each page. The last job iteratively computes and sorts the pages' scores. Regarding the PageRank implementation with Spark, we followed the same execution logic as in Hadoop. We implemented a Spark job that applies the flatMap function to generate key-value pairs for the corresponding links, and the map function to initialize an initial score for each page. Finally, the reduceByKey function is used to iteratively aggregate the page's scores. As for the implemented Flink job, it starts by generating the page-score pairs using the flatMap function. Then, it iteratively aggregates the scores for each page using the groupBy function. Finally, it computes the total score of each page by applying the sum function.

Dataset

• In the Stream mode scenario, we evaluate real-time data processing capabilities of Storm, Flink, Samza and Spark. The Stream mode scenario is divided into three main steps. As shown in Fig. 2.12, the first step is devoted to data storage. To do this step, we collected 1 billion tweets from Twitter using Flume and we stored them in HDFS. The stored data is then transferred to Kafka, a messaging server that guarantees fault tolerance during the streaming and message persistence [Garg 2013]. The second step consists of sending the tweets as streams to the studied frameworks. To allow simultaneous streaming of the data collected from HDFS by Storm, Spark, Samza and Flink, we have implemented a script that accesses the HDFS and transfers the data to Kafka. The last step consists of executing our workloads in stream mode. To do this, we have implemented an Extract, Transform and Load (ETL) program in order to process the received messages from Kafka. The ETL routine consists of retrieving one tweet in its original format (JSON file), and selecting a subset of attributes from the tweet such as hash-tag, text, geocoordinate, number of followers, name, surname and identifiers. All the received messages are processed by our implemented workload. Then, they are stored using ElasticSearch storage server, and possibly visualized with Kibana [Gupta 2015]. Regarding the hardware configuration adopted in the Stream mode, we used one machine for Kafka and one machine for Zookeeper that allows the coordination between Kafka and Storm. For the processing task, the remaining machines are devoted to access the data in HDFS and to send it to Kafka server.

To allow monitoring resources usage according to the executed jobs, we have implemented a personalized monitoring tool as shown in Fig. 2.13. Our monitoring solution is based on three core components : (1) data collection module, (2) data storage module, and (3) data visualization module. To detect the states of the machines, we have implemented a Python script and we deployed it in every machine of the cluster. This script is responsible for collecting CPU, RAM, Disk I/O, and Bandwidth history.

The collected data are stored in ElasticSearch, in order to be used in the evaluation step. The stored data are used by Kibana for monitoring and visualization purposes. For our monitoring tests, we used a dataset of 50 GB of data for the WordCount workload, 10 million examples for the K-means workload and the G5 dataset for the PageRankworkload. It is important to mention that existing monitoring tools like Ambari [Wadkar 2014] and Hue [Eadline 2015] are not suitable for our case, as they only offer real-time monitoring results. 

Batch mode

In this sub-section, we evaluate the scalability of the studied frameworks, and we measure their CPU, RAM, disk I/O usage, as well as bandwidth consumption while processing. We also study the impact of several parameters and settings on the performance of the evaluated frameworks. Evaluation of the horizontal scalability This experiment aims to evaluate the impact of the size of the data on the processing time. In this experiment, we used two simulations according to the size of data: (1) simulation with small datasets and (2) simulation with big datasets. Our experiments are conducted using the WordCount workload, with various datasets with a size on disk varying from 250 MB to 2 GB for the first simulation and from 1 GB to 100 GB for the second simulation. Fig. 2.14 and Fig. 2.15 show the average processing time for each framework and for every dataset. As shown in 2.14, Spark is the fastest framework for all the datasets, Flink is the next and Hadoop is the lowest. Fig. 2.15 shows that Spark has kept its order in the case of big datasets and Hadoop showed good results compared to Flink. We also notice that Flink is faster than Hadoop only in the case of very Spark has gradually reduced the processing time. It can also be observed that the computational time of Flink is longer than those of Spark and Hadoop in the case of big datasets. This is due to the fact that Flink sends its intermediate results directly to the network through channels between the workers, which makes the processing time very dependent on the cluster's local network. In the case of small datasets, the data is transmitted quickly between workers. As shown in Fig. 2.14, Flink is faster than Hadoop. We also notice that Spark defines optimal time by using the memory to store the intermediate results as RDD objects.

In the next experiment, we tried to evaluate the scalability and the processing time of the considered frameworks based on the size of used cluster (the number of machines in the cluster). Fig. 2.16 shows the impact of the number of the used machines on the processing time. Both Hadoop and Flink take higher time regardless of the cluster size, compared to Spark. Fig. 2.16 shows instability in the slope of Flink due to the network traffic. In fact, Flink jobs are modeled as a graph that is distributed on the cluster, where nodes represent Map and Reduce functions, whereas edges denote data flow between Map and Reduce functions. In this case, Flink performance depends on the network state that may affect intermediate results which are transferred from Map to Reduce functions across the cluster. Regarding Hadoop, it is clear that the processing time is proportional to the cluster size. In contrast to the reduced number of machines, the gap between Spark and Hadoop is reduced when the size of the cluster is large. This means that Hadoop performs well and can have close processing time in the case of bigger cluster size. The time spent by Spark is approximately between 450 s and 300 s for 2-6 nodes cluster. Furthermore, as the number of participating nodes increases, the processing time, yet, remains approximately equal to 290 s. This is explained by the processing logic of Spark. Indeed, Spark depends on the main memory (RAM) and the available resources in the cluster. In case of insufficient resources to process the intermediate results, Spark requires more RAM to store its intermediate results. This is the case of 6 to 9 nodes which explains the inability to improve the processing time even with an increased number of participating machines.

In the case of Hadoop, intermediate results are stored on disk. This explains the reduced execution time that reached 400 s in the case of 9 nodes, compared to 600 s when exploiting only 4 nodes. To conclude, we mention that Flink .17: Impact of iterative processing on the average processing time allows creating a set of channels between workers, to transfer intermediate results between them. Flink does not perform Read/Write operations on disk or RAM, which allows accelerating the processing times, especially when the number of workers in the cluster increases. As for the other frameworks, the execution of jobs is influenced by the number of processors and the amount of Read/Write operations, on disk (case of Hadoop) and on RAM (case of Spark).
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Iterative processing In the next scenario, we tried to evaluate the studied frameworks in the case of iterative processing with both K-means and PageRank workloads. In Fig. 2.17, both use cases measure the impact of iterative computing on the studied frameworks. For K-means workload, we find that Spark and Flink are similar in response time and they are faster compared to Hadoop. This can be explained by the fact that Hadoop writes the output results, for each iteration in the hard disk which makes Hadoop very slow. The PageRank workload is an iterative processing but it consumes more memory resources, which degrade performances in the case of Spark. In this case, Spark consumed all the available memory to create a new RDD object. Then, Spark applies its own strategy to replace the useless RDD and, when it does not fit in the memory, it slow down the execution compared to both Flink and Hadoop. Through the next experiment, we try to show the impact of the number of iterations on the runtime. We tested our frameworks by running K-means on 10 million examples in the training set. We varied the number of iteration in each simulation. As shown in Fig. 2.18, with both Flink and Spark frameworks, the number of iterations has no significant influence on the execution time. Fig. 2.18. Impact of the number of iterations on the average processing time (K means workload with 10 million examples). One can conclude that the curve of Hadoop is characterized by an quadratic slope whereas in the case of Spark and Flink the curve are characterized by a linear slope. According to Fig. 2.18 and to the literature, we can interpret that Hadoop is not the best choice for this kind of processing (iterative computing).

Data partitioning

In the next experiment, we try to show the impact of data partitioning on the studied frameworks. In our experimental setup, we used HDFS for storage. We varied the block size in our HDFS system and we run K-means with 10 iterations with all the used frameworks. Fig. 2.19 presents the impact of the HDFS block size on the processing time. As shown in Fig. 2.19, the curves are inflated proportionally to the size of the HDFS block size for both Hadoop and Spark, while Flink does not imply any variation in the processing time. This can be explained by the degree of parallelism adopted by the studied frameworks. We mention that in Hadoop, the number of mappers is directly proportional to the input splits, which depends on HDFS block size. When we increase the number of splits, the degree of parallelism increases too. One possible solution to improve the processing time is to enhance resource usage, but this is not always possible according to the Hadoop curve's behavior presented in Fig. 2.19. Note also that when we set a block of HDFS whose size is less than 16 MB, the processing time decreases as the number of input splits exceeds the number of cores in the cluster. For Spark, we have almost the same results compared to Hadoop. Precisely, when Spark loads its data from HDFS, it converts or creates for each input split an RDD partition. In this case, the partition makes and provides the degree of parallelism, because Spark context program assigns for each worker an RDD partition.

As for Flink, each job is modeled as a directed graph, where nodes are reserved for data processing and edges represent data flow. In addition, each Flink job reserves a list of nodes in the graph to read the input data and to write the final results. In this case, the and send the data as stream flow to other processing nodes. This mechanism makes Flink independent on the HDFS block size, as shown in Fig. 2.19.

Impact of the cluster manager

In our work, we mainly used YARN as a cluster manager. We also tried to evaluate the impact of the cluster manager on the performance of the studied frameworks.

To do this, we compared Mesos, YARN and the standalone clusters manager of the studied frameworks. For our tests, we run the WordCount workload with 50 GB of data, K-means with 10 million examples and Pagerank with the G5 dataset (see Table 2.1). As shown in Fig. 2.20, the standalone mode is faster than both YARN and MESOS. In fact, the standalone uses all the resources while executing a job, whereas both YARN and MESOS have a scheduler to run multiple jobs at once and share the cluster resources with all the submitted applications [START_REF] Jha | [END_REF]].

Impact of bandwidth

In order to study the impact of bandwidth consumption on the performance of the In fact, when the bandwidth increases, the response time decreases. This can be explained by the fact that each Flink job sends the data directly from a source to a calculating unit across the network. We also notice that Spark uses the network to, sometimes, migrate the data to the processing unit. Hadoop allows data locality, which means that Hadoop moves the computation close to where the actual data resides on the node. Impact of some configuration parameters All the studied frameworks have a large list of configuration parameters, which can influence their behaviors. In order to understand the impact of these parameters on the performance and the quality of the results, we try in this sub-section to study some of them mainly those which are related to the RAM and the number of threads in each framework. In Hadoop, the Application Manager daemon distributes the Map and Reduce functions on the available slots of the cluster. To configure this aspect, we set both parameters mapred.tasktracker.map.tasks.maximum and mapred.tasktracker. reduce.tasks.maximum in the site-mapred.xml configuration file. These parameters represent respectively the maximum number of Map and Reduce tasks that will run simultaneously on a node. Note that Spark uses executor-cores parameter and Flink uses slots parameter to configure the number of executed threads in parallel. In order to define the amount of memory buffer, Hadoop uses the io.sort.mb parameter in the site-mapred.xml configuration, Spark uses the executor-memory parameter and Flink uses the taskManagerMemory parameter.

• Flink configuration: In order to evaluate the impact of some configuration parameters on the performance of Flink, we first executed our workloads while varying the number of slots in each TaskManager. Then, we varied the amount of used memory by each TaskManager. Fig. 2.22 presents the impact of the number of slots on the processing time of the WordCount workload. In fact, the latter is characterized by a high CPU resource consumption which explains the reduction of the response time when the number of slots increases. Note that this is not the case with K-means and PageRank workloads. By analyzing Fig. 2.23, we notice that the memory resource does not have a large effect on the processing time in these workloads since Flink is based on sending the output results directly from one computing unit to another one without a high usage of disk or memory.

• Spark Configuration: The parallelism configuration in Spark requires the definition of the number of executor-cores by machine. In addition, memory management is primordial as we must configure the memory for each worker. These two parameters are respectively executor-cores and executor-memory.

As shown in Fig. 2.24, when we increase the number of workers per machine the processing time increases too. This behavior may be related to the memory management of Spark. In fact, when the memory is shared and distributed on several slots, the slot of each worker will be limited which slows down the computing performance. In this case, it is advisable to limit the number of workers, if the machine has a limited memory, and to maximize it proportionally to the capacity of the memory. In the same context, we notice the importance of the memory size through Fig. 2.25.

When we increase the memory the response time decreases. This behavior is not always valid because it depends on some other constraints such as the availability of other resources traffic networks.

• Hadoop Configuration: To configure the number of slots on each node in a Hadoop cluster, we must set the two following parameters :

(1) mapreduce.tasktracker.map.tasks.maximum and ( 2) mapreduce. tasktracker.reduce.tasks.maximum. These two parameters define the number of Map and Reduce functions that run simultaneously on each node of the cluster. These parameters maximize the CPU usage which can improve the processing time. Fig. 2.26 shows the impact of the number of slots on the performance of Hadoop jobs. We find that the best performance is guaranteed when using two slots for both Map and Reduce functions. However, this value depends on the number of cores in each node of the cluster.

In our case, we have four cores in each machine and the best value is two slots for Map and Reduce, since the other cores are reserved for both daemons DataNode and NodeManager. The same behavior is observed with the WordCount workload because this latter is based on CPU resource compared to the other workloads. Among the characteristics of Hadoop, we note the use of the hard disk to write intermediate results between iterations or between Map and Reduce functions. Before writing data to the disk, Hadoop writes its intermediate data in a memory buffer. This memory can be configured through the io.sort.mb parameter. In order to evaluate the impact of this parameter, we varied its values from 20MB to 120MB as illustrated in Fig. 2.27. It is also clear that the processing time decreases subsequently and reaches 100 MB when we increase the value of io.sort.mb parameter. A level of stability is achieved when the satisfaction of the computing units by this resource is guaranteed.

Stream mode

In stream experiments, we measure CPU, RAM, disk I/O usage and bandwidth consumption of the studied frameworks while processing tweets, as described in Section 4.2. The goal here is to compare the performance of the studied frameworks according to the number of processed messages within a period of time. In the first experiment, we send a tweet of 100 KB (on average) per message. Fig. 33 shows that Flink, Samza and Storm have better processing rates compared to Spark. This can be explained by the fact that the studied frameworks use different values of window time. The values of window time of Flink, Samza and Storm are much smaller than that of Spark (milliseconds vs seconds).

In the next experiment, we changed the sizes of the processed messages. We used 5 tweets per message (around 500 KB per message). The results presented in Fig. 34 show that Samza and Flink are very efficient compared to Spark, especially for large messages.

Summary of the evaluation

From the above-presented experiments, it is clear that Spark can deal with large data sets better than Hadoop and Flink. Although Spark is known to be the fastest framework due to the concept of RDD, it is not a suitable choice in the case of intensive memory processing tasks. Indeed, intensive memory applications are characterized by the massive use of memory (creation of RDD objects at each transformation operation). This process degrades the performance of Spark since the SparkContext will be led to find the unused RDD and remove them in order to get more free memory space. The carried experiments in this work also indicate that Hadoop performs well on the whole. However, it has some limitations regarding the writing of intermediate results in the hard disk and requires a considerable processing time when the size of data increases, especially in the case of iterative applications. According to the resource consumption results in batch mode, we can conclude that Flink maximizes the use of CPU resources compared to both frameworks Spark and Hadoop. This good exploitation is relative to the pipeline technique of Flink which minimizes the period of idle resources. However, it is characterized by high demands on the network resource compared to Hadoop. In fact, this resource consumption explains why Flink is faster than Hadoop. In the stream scenario, Flink, Samza and Storm are quite similar in terms of data processing. In fact, they are originally designed for stream processing. We also notice that Flink is characterized by its low latency since it is based on pipe-lined processing and on message passing processing technique, whereas Spark is based on Java Virtual Machine (JVM) and belongs to the category of batch mode frameworks. Each Samza job is divided into one or more partitions and each partition is processed in an independently container or executor, which shows best results with large stream messages. Another important aspect to be considered while tuning the used framework is the cluster manager. In the standalone mode, the resource allocation in Spark and Flink are specified by the user during the submission of its jobs whereas using a cluster manager such as Mesos or YARN, the allocation of the resources is done automatically.

Real-world applications and best practices

In this sub-section, we discuss the use of the studied frameworks in several realworld applications including health care applications, recommender systems, social network analysis and smart cites. More technically, we describe some examples where these frameworks can be applied in specific fields in the best practices part.

Real-world applications

Healthcare applications

Healthcare scientific applications, such as body area network provide monitoring capabilities to decide on the health status of a host. This requires deploying hundreds of interconnected sensors over the human body to collect various data including breath, cardiovascular, insulin, blood, glucose and body temperature [Zhang 2015a]. However, sending and processing iteratively such a stream of health data is not supported by the original MapReduce model. Hadoop was initially designed to process Big Data already available in the distributed file system.

In the literature, many extensions have been applied to the original Mapreduce model in order to allow iterative computing such as Haloop system [Bu 2012] and Twister [START_REF] Ekanayake | [END_REF]]. Nevertheless, the two caching functionalities in Haloop that allow reusing processing data in the later iterations and make checking for a fix-point lack efficiency. Also, since processed data may partially remain unchanged through the different iterations, they have to be reloaded and reprocessed at each iteration. This may lead to resource wastage, especially network bandwidth and processor resources.

Unlike Haloop and existing MapReduce extensions, Spark provides support for interactive queries and iterative computing. RDD caching makes Spark efficient and performs well in iterative use cases that require multiple treatments on large in-memory datasets [START_REF] Bajaber | [END_REF]].

Recommendation systems

Recommender systems are another field that began to attract more attention, especially with the continuous changes and the growing streams of users' ratings. Unlike traditional recommendation approaches that only deal with static item and user data, new emerging recommender systems must adapt to the high volume of item information and the big stream of user ratings and tastes. In this case, recommender systems must be able to process the big stream of data. For instance, news items are characterized by a high degree of change and user interests vary over time which requires a continuous adjustment of the recommender system. In this case, frameworks like Hadoop are not able to deal with the fast stream of data (e.g. user ratings and comments), which may affect the real evaluation of available items (e.g. product or news). In such a situation, the adoption of effective stream processing frameworks is encouraged in order to avoid overeating or incorporating user/item related data into the recommender system. Tools like Mahout, FlinkML and SparkMLlib include collaborative filtering algorithms, that may be used for e-commerce purposes and in some social network services to suggest suitable items to users [START_REF] Domann | [END_REF]].

Social media

Social media is another representative data source for Big Data that requires real-time processing and results. Its is generated from a wide range of Internet applications and Web sites including social and business-oriented networks (e.g. LinkedIn, Facebook), online mobile photo and video sharing services (e.g. Instagram, Youtube, Flickr), etc. This huge volume of social data requires a set of methods and algorithms related to, text analysis, information diffusion, information fusion, community detection and network analytics, which maybe exploited to analyze and process information from social-based sources [Bello-Orgaz 2016a]. This also requires iterative processing and learning capabilities and necessitates the adoption of in-stream frameworks such as Storm and Flink along with their rich libraries.

Smart cities

Smart city is a broad concept that encompasses economy, governance, mobility, people, environment and living. It refers to the use of information technology to enhance the quality, the performance and the interactivity of urban services in a city. It also aims to connect several geographically distant cities [43]. Within a smart city, data is collected from sensors installed on utility poles, water lines, buses, trains and traffic lights. The networking of hardware equipment and sensors is referred to as the Internet of Things (IoT) and represents a significant source of Big Data. Big Data technologies are used for several purposes in a smart city including traffic statistics, smart agriculture, healthcare, transport and many others [Stimmel 2015a]. For example, transporters of the logistic company UPS are equipped with operating sensors and GPS devices reporting the states of their engines and their positions respectively. This data is used to predict failures and track the positions of the vehicles. Urban traffic also provides large quantities of data that come from various sensors (e.g., GPSs, public transportation smart cards, weather conditions devices and traffic cameras). To understand this traffic behavior, it is important to reveal hidden and valuable information from the big stream/storage of data. Finding the right programming model is still a challenge because of the diversity and the growing number of services [44]. Indeed, some use cases are often slow such as urban planning and traffic control issues. Thus, the adoption of a batch-oriented framework like Hadoop is sufficient. Processing urban data in micro-batch fashion is possible to provide eGovernment and public administration services. Other use cases like healthcare services (e.g. remote assistance of patients) need decision making and results within few milliseconds. In this case, real-time processing frameworks like Storm are encouraged.

Combining the strengths of the above discussed frameworks may also be useful to deal with cross-domain smart ecosystems also called big services [START_REF] Xu | [END_REF]].

Best practices

In Section 1.3, two major processing approaches (batch and stream) were studied and compared in terms of speed and resource usage. Choosing the right processing model is a challenging problem, given the growing number of frameworks with similar and various services [Sakr 2016]. This section aims to shed light on the strengths of the above discussed frameworks when exploited in specific fields including stream processing, batch processing, machine learning and graph processing.

Stream processing

As the world becomes more connected and influenced by mobile devices and sensors, stream computing emerged as a basic capability of real-time applications in several domains, including monitoring systems, smart cities, financial markets and manufacturing [START_REF] Bajaber | [END_REF]]. However, this flood of data that comes from various sources at high speed always needs to be processed in a short time interval. In this case, Storm and Flink may be considered, as they allow pure stream processing. The design of in-stream applications needs to take into account the frequency and the size of incoming events data. In the case of stream processing, Apache Storm is well-known to be the best choice for the big/high stream oriented applications (billions of events per second/core). As shown in the conducted experiments, Storm performs well and allows resource saving, even if the stream of events becomes important.

Micro-batch processing

In case of batch processing, Spark may be a suitable framework to deal with periodic processing tasks such as Web usage mining, fraud detection, etc. In some situations, there is a need for a programming model that combines both batch and stream behavior over the huge volume/frequency of data in a lambda architecture. In this architecture, periodic analysis tasks are performed in a larger window time. Such behavior is called micro-batch. For instance, data produced by healthcare and IoT applications often require combining batch and stream processing. In this case, frameworks like Flink and Spark may be good candidates [Landset 2015a]. Spark micro-batch behavior allows processing data sets in larger window times. Spark consists of a set of tools, such as SparkMLLIB and Spark Stream that provides rich analysis functionalities in micro-batch. Such behavior requires regrouping the processed data periodically, before performing the analysis task.

Machine learning algorithms

Machine learning algorithms are iterative in nature [Landset 2015a]. They are widely used to process huge amounts of data and to exploit the opportunities hidden in Big Data [Zhou 2017b]. Most of the above discussed frameworks support machine learning capabilities through a set of libraries and APIs. FlinkML library includes implementations of K-means clustering algorithm, logistic regression, and Alternating Least Squares (ALS) for recommendation [Chakrabarti 2008]. Spark has a more efficient set of machine learning algorithms such as SparkMLlib [START_REF] Assefi | [END_REF]] and MLI [START_REF] Sparks | [END_REF]]. Spark MLlib is a scalable and fast library that is suitable for general needs and most areas of machine learning. Regarding Hadoop framework, Apache Mahout aims to build scalable and performant machine learning applications on top of Hadoop.

Big graph processing

The field of large graph processing has attracted considerable attention because of its huge number of applications, such as the analysis of social networks [Giatsidis 2011], Web graphs [Alvarez-Hamelin 2008] and bioinformatics [START_REF] Huttenhower | [END_REF]] [Dhifli 2017a]. It is important to mention that Hadoop is not the optimal programming model for graph processing [Elser 2013]. This can be explained by the fact that Hadoop uses coarse-grained tasks to do its work, which are too heavyweight for graph processing and iterative algorithms [Landset 2015a]. In addition, Hadoop cannot cache intermediate data in memory for faster performance. We also notice that most of Big Data frameworks provide graph-related libraries (e.g., Graphx [START_REF] Xin | [END_REF]] with Spark and Flinkgelly [START_REF] Carbone | [END_REF]] with Flink).

Conclusion

In this chapter, we surveyed popular frameworks for large-scale data processing. After a brief description of the main paradigms related to Big Data problems, we presented an overview of the Big Data frameworks Hadoop, Spark, Storm and Flink. We presented a categorization of these frameworks according to some main features such as the used programming model, the type of data sources, the supported programming languages and whether the framework allows iterative processing or not. We also conducted an extensive comparative study of the above presented frameworks on a cluster of machines and we highlighted best practices while using the studied Big Data frameworks.

Key points

• We presented basic notions and features of some Big Data frameworks that help understanding distributed computing.

• We presented an overview of most popular Big Data frameworks.

• We presented a categorization of the presented frameworks and techniques.

• We cared out an extensive set of experiments to evaluate the studied Big Data frameworks.

• We showed a description of best practices related to the use of popular Big Data frameworks in several application domains. 

Publications

Goals

In the previous chapter, an overview of distributed computing and some Big Data frameworks were presented.Adding to that, a comparative study has been carried out on these frameworks. Both data size and data velocity stand for the main challenges of Big Data analysis applications. In the same way, big graph analysis imposes several challenges such as graph size and velocity. This chapter introduces basic definitions and the related work on graph mining. The related work provides an overview of the graph processing fields, and we present some graph clustering algorithms.

Keywords: GraphX, Pregel, Graph processing models, Graph processing frameworks, Graph clustering.

Graph: definitions

Graph: definitions

Graph (sometimes called network) is a data structure similar to the relational structure. A graph is noted by G = (V, E), where the V is a set of vertices, whereas E = V x V denote the set of edges. Each element e ∈ E represents a link between a pair of vertices and is noted as follows e(v i , v j ), where v i and v j ∈ V . This graph structure can represent several real-world applications (e.g.;social network) where the vertices and edges represent respectively the social network members and the relationships between them. We can also find various extensions of this data structure as an attributed graph, a directed or an undirected graph, and Weighted or unweighted graph. Definition 3.1.1 Weighted and unweighted graph. A basic graph is a set of edges that link each pair of vertices. As described above, an edge e = (v 1 ,v 2 ) in E. But in some cases, some edges are more important than others, so they are given higher weights. In this perspective, weighted graphs are introduced, making the ponderation of edges possible. For more details, each edge can be embedded with a value according to its weight. Given an edge e in E, e= (v 1 ,v 2 ,w) is a triple value, where v 1 and v 2 correspond to the edge bounds, and w is the edge weight. Definition 3.1.2 Directed and Undirected Graph. An undirected graph G = (V ,E) consists of a list of unidirectional edges. Otherwise, there is no associated directions of edges, unlike to directed graphs where a direction must be added to each edge. 3.2 Related work on big graph: processing models and frameworks

Graph programming models

Implementing distributed graph applications is an extremely hard task, where the parallel computing, graph partitioning, and communication management are major challenges of distributed graph algorithms. To cope with the issues of distributed graph processing, several high-level programming models have been recently introduced. In the next section, we present the popular used programming models.

Vertex-centric model

The principle of this model [START_REF] Kalavri | [END_REF]] is how to think like a vertex. One programmer summarizes the program to be applied as an input graph through the implementation of each vertex in the graph. The user-defined function in the vertex is iteratively executed until satisfying a defined goal or when reaching the defined number of iterations, knowing that the number of iterations is defined by the user. During the processing, each vertex can access to its neighboring vertices in order to get some pieces of information or data useful for its treatment. Otherwise, a program can be modeled as a sequence of exchanged messages between vertices. This sequence represents the program steps and during the latter the vertices can change their status. Since each vertex can run its internal program independently from the other vertices, this independence makes the implementation of a parallel or distributed program more effective. Fig. 3.1 provides an explanation of concepts of vertex-centric programming. In the initial graph state , a programmer defines the vertex-defined function and runs the program iteratively. During each iteration, a vertex changes its status from active to inactive, according to both internal value and received values from its neighbors. In iteration 3, all vertices are inactive, so the program will stop. As shown in Fig. 3.1 all vertices are inactive initially, and after some iterations they converge to be inactive vertices (iteration 3). This model [Zhou 2017a] is based on the streaming of edges. The processor takes one graph as an input set of edges. Each coming edge has two connected vertices and an edge value. Each edge is computed by the processor and is stored in the global graph. This model is also designed for iterative algorithms. Similarly to the vertex-centric model, this latter describes a graph program for each edge. In this model, a program is executed in several iterations. In each iteration, an edge is processed in three steps: (i) collect the information from the sources (vertices), (ii) update its internal values, and (iii) send the new value to its destination vertices.

Gather-Apply-Scatter model (GAS)

This model [START_REF] Gonzalez | [END_REF]] is similar to the Vertex-centric model. Each graph must be viewed as a vertex and implement a program from a vertex point of view. Nevertheless, it divides the vertex program, which will be executed in each iteration) into three sub-functions: gather, apply and scatter. In the gather function, the current vertex gets information from its neighboring vertices or edges and optionally aggregates them in a single value σ . In the apply function, the state of the vertex is updated based on the σ value, and probably on the specific features of the vertex neighbors. Finally, in the scatter function, each vertex shares its new state to its neighboring vertices or edges. Then, every implemented program must 

Block-centric model

The strategy of this model is to think like a sub-graph or a partition [START_REF][END_REF]]. In the above abstraction models, each vertex or edge in an input graph is executed dependently in a slot or machine with a parallel or a distributed setting. The execution is performed iteratively and the communication must be ensured between slots or machines. In the block-centric model, however,the input graph is divided into a set of sub-graphs. Then, these sub-graphs are assigned to slots (in a parallel setting) or to machines (in a distributed setting), in order to execute a user-defined function on the sub-graphs in each iteration. Fig. 3.4 illustrates a general three-step workflow of a graph program using the Block-centric model. Splitting an input graph into sub-graphs represents the first step of this model, while preserving the coherence of the graph. As Fig. 3.4 shows, sub-graph 1 and sub-graph 2 share the vertices A, B and C as frontiers vertices. The second step is the sub-graph processing. A user-defined function is executed in this step on all sub-graphs iteratively or in a single iteration. In the last step, after generating local results, these latter should be aggregated into one global result.

Summary of graph processing models

In this section, we summarize some advantages and limits for each graph programming model. Through Tab. 3.1: Graph processing models comparative study the graph partitioning, step since they are designed for distributed and parallel settings. Therefore, an input graph must be distributed on machines or slots, in order to perform a distributed processing. Tab 3.1, shows that GAS, Edge-centric, and Vertex-centric use a random hash-based partitioning method. This method is based on a hash function to split sets of vertices or edges into sets of machines or partitions. But, the Block-centric model uses a partitioning method which consists in spliting a graph into sub-graphs or partitions. This method is very expensive in terms of running time, since it takes into consideration the graph density in order to lower the communication costs. Thereby, the partitioning step represents an advantage for some models such as GAS, Edge-centric, and Vertex-centric model which is less expensive. However, the graph partitioning step is considered as a major weakness in the Block-centric model. In fact, thinking like a vertex or an edge can facilitate the parallelism of processing, because these models are characterized by independence between their vertices and edges. But, they need high communications in each step. On the other hand, the communication cost of the Block-centric model is extremely low compared to that in other models. This is due to the aggregation of several vertices and edges into some partitions.

Related work on big graph processing frameworks

Graph processing frameworks

Due to the Big data revolution, several abstract programming models have been proposed like MapReduce [START_REF] Dean | [END_REF]] or dryad [Isard 2007]. These models are implemented as research projects or in industrial projects such as Hadoop, Spark, etc. The graph processing topic has also attracted many researchers and industries. In fact, it is costly in terms of computing resources due to its complexity and to the large size of the real-world graphs. Therefore, a single thread or a simple machine could not meet the emerging needs, especially when dealing with new applications like social networks. As detailed in the previous section, several abstract programming models have been proposed in order to support the new graph processing challenges. These abstract models are implemented in both research and industrial projects. Moreover, several frameworks have been implemented in the context of a single graph programming model. Thus, the large number of frameworks in the literature makes the selection of the right framework for a use case or an application extremely difficult. In this section, we present the most popular frameworks for graph processing, and we enumerate their major features.

Graph processing frameworks: an overview

Pregel [Malewicz 2010b] is a scalable, fault-tolerant and distributed framework for large graph processing. It represents an evolution of the MapReduce framework [START_REF] Dean | [END_REF]] to the graph processing systems. Pregel is available as a C++ API and based on Master/slaves architecture. The Master machine starts to divide an input graph into slave machines candidates. Slave machines are managed by a master machine during their treatment. Pregel is known as the first implementation of the vertex-centric model using the computation model Bulk Synchronous Parallel(BSP) [START_REF] Goudreau | [END_REF]]. It divides a graph algorithm into a sequence of iterations called super-steps, which are limited by separators called barriers. In each super-step, each vertex exchanges messages with its neighbors. Note that communication between the vertices is based on the message-passing method. To write a Pregel program, a user must implement some abstract methods as Compute() and getValue() which represent the vertex user-defined function and the function to get information from its neighbors respectively. Giraph [START_REF] Han | Giraph unchained: Barrierless asynchronous parallel execution in pregel-like graph processing systems[END_REF]] is an open source graph processing framework that was developed by Google. It represents a next generation of Pregel framework. It combines both Mapreduce and vertex-centric programming models. Giraph is based on the Hadoop framework to ensure a distributed system with a master/slaves architecture. The master machine divides the input graph into partitions, sends them a cross the slave machines, and coordinates all global barriers in each super-step. Also, It uses multi-threading processing in each slave machine in order to optimize the local computing. Each graph algorithm is considered as a MapReduce Job and it uses HDFS to store the input, final and intermediate results. Giraph uses global barriers between consecutive iterations. These barriers make the communication between the workers synchronous, using BSP model. Graphx [START_REF] Gonzalez | [END_REF]] is an API for graph processing, which is embedded within the Spark distributed dataflow system. GraphX takes advantage of the Resilient Distributed Dataset (RDD) to introduce the Resilient Distributed Graph (RDG) data storage abstraction. This abstraction allows Graphx to distribute the input data (graph) in a distributed memory, which allows a parallel processing using several high-level functions. To implement a graph algorithm using Graphx, a thinking like a vertex is required. The graph processing model used by graphX is the GAS model, which provides three functions (gather, apply and scatter) in each iteration. Also, the GAS model allows both synchronous and asynchronous communication modes during the graph processing. The data structure used by the GraphX framework is represented as a pair of vertex and edge. The first pair is a list of vertices objects. These objects are defined by the user and each one is keyed by unique identifier. The second pair is the edges list. This pair represents a set of edges objects also defined by the user and keyed by the source and destination vertex identifiers. This structure is called triplet representation, and allows GraphX to use the basic operations of Spark core system such as the map, joint, groupBy. In addition, other specific functions proposed by GraphX like mrTriplets (MapReduce triblets), sendMsg, Vprog. This abstraction also allows the use of a declarative programming language like SQL, in order to perform a descriptive analysis of the graph. GraphIn To meet the dynamic graphs needs, GraphIn [START_REF] Sengupta | [END_REF]] framework was proposed as an incremental and multicore graph processing engine. It is implemented on the top of another graph processing framewrok called Graph-Mat [Sundaram 2015]. The latter is also a Graph processing framework that is designed to support large graphs using a multicore processing. Thus, GraphIn is adopted for both dynamic and large graphs using High Performance Computing (HPC) machines. GraphIn is mainly designed for dynamic graphs processing. In this context, it introduces a novel programming model known as Incremental-Gather-Apply-Scatter ( I-GAS). Through this model, the processing of a dynamic or stream graph can be performed in an incremental way. It considers a dynamic graph as a set of batches, and in each batch, it checks only the changed vertices. These vertices are called inconsistent vertices. Blogel [START_REF][END_REF]] is one of the first distributed block-centric graph processing frameworks. It is an open source project implemented in C++. Using Libhdfs library, it uses the HDFS as a graph storage system. The main motivation behind the introduction of the Blogel framework is the high diameter of real-world graphs. In fact, using a vertex-centric programming model for these graphs needs high number of super-steps. For example, a single-source shortest path algorithm in [Malewicz 2010b] takes 10,789 super-steps on a USA road network graph. These latter requires expensive communication costs. which decreased the performance of the graph algorithm. Thus, Blogel was proposed to overcome this limit using the bloc-centric model where an input graph must be divided into blocks or partitions. Blogel supports also several predefined partitioning method and provides many interfaces to users, , allowing them to implement their own methods. GraphLab [Low 2012] is an open-source and distributed graph processing Framework. It is implemented in C++ and its programming philosophy is similar to the GAS model, which is among the thinking like vertex processing model. But, this program should be divided into three functions (Gather, Apply and Scatter). GraphLab provides two execution modes: synchronous and asynchronous. The synchronous mode is ensured by the BSP model which uses barriers between the super-steps. Differently, the asynchronous mode does not uses neither barriers or super-steps. Unlike the Pregel framework, the communication between the supersteps is ensured by the shared memory. The computation model used by graphLab is similar to Mapreduce. It is based on the implementation of two predefined functions: the first one is called update function for a local computing and the second one aggregates the local results and is called sync mechanism.

PowerGraph [START_REF] Gonzalez | [END_REF]] using a distributed framework for graph processing depends on the graph partitioning. This latter can affect the performance of any graph processing framework, since with a bad partitioning scheme a cost of processing and communication must be added. Based on this property, PowerGraph has been introduced. Being a distributed and parallel framework for large graph processing, PowerGraph takes into consideration the real-world graphs property. Where the degree of vertices is varied. In other words, some vertices have very high degrees while others have very low ones. The PowerGraph framework has tackled this challenge using a partitioning technique that affects the high degree vertices to several workers in order to ensure the load balancing between all workers. Otherwise, by exploiting the GAS model as a programming model, PowerGraph was able to ensure the distributed computation of a single vertex on several workers. In addition, the communication between all workers have been ensured by the shared memory mechanism, which allows an asynchronous processing. BLADYG [Aridhi 2017] is a distributed and parallel graph processing framework that runs on a commodity of machines. This framework is based on block-centric graph processing model. The architecture of BLADYG is based on a master/slaves topology. BLADYG starts by reading the input graph from many different sources, which can be local or distributed files, such as HDFS and Amazon Simple Storage Service (Amazon S3). The communication model used by BLADYG is the message passing technique, which consists in sending messages explicitly from one component to another in order to get or send useful data during the graph processing. In the same way, BLADYG defines two types of messages: (1) worker-to-worker (W2W) messages, and ( 2) master-to-worker messages (M2W). BLADYG allows its users to implement their own partitioning techniques. The synchronous technique used in BLADYG is PSP model with the partitions or machines when barriers are used between iterations in an iterative graph algorithms. Also, BLADYG uses an asynchronous communication using a shared memory among vertices in the same partition.

Other systems The very large number of graph processing frameworks motivated us to discuss all these systems. We choose to present some other graph processing frameworks according to their scope in the literature and their uses in experimental studies and industrial projects. For example, some frameworks represent a continuity of an existing project, such as Hama [START_REF] Siddique | [END_REF]] mizan [START_REF] Khayyat | [END_REF]] and GPS [START_REF] Salihoglu | GPS: a graph processing system[END_REF]] which enhance the communication and data partitioning of the basic Pregel system. Pegasus [Kang 2009] is a large-scale graph mining system that has been implemented on top of the Hadoop framework. It uses MapReduce to directly implement iterative graph algorithms and HDFS for the data sharing between the super-steps. Trinity [START_REF] Shao | [END_REF]] is another graph processing framework that is based on a distributed memory processing. Using a share distributed memory, Trinity has optimized the communication cost. Graph-Mat [Sundaram 2015], Graph++ and GRACE [Prabhakaran 2012] are other graph processing frameworks which are qualified as centralized systems, but they use a partitioning technique in order to improve their performance. Through the comparative Table . 3.2, we established a summary study of the studied graph processing frameworks. The used features in this table are determined according to the literature. These invoices have represented contributions to combat some problem related to the processing of large graphs. However, there is no perfect framework for each application or use case. For example, in the case of modest graphs multi-core and centralized frameworks should be used in this kind of applications . Thereby, GraphMat or GraphIn are the most suitable frameworks for this application. Moreover, some applications require a lot of communication which will make the shared memory frameworks represent the right choice. Also, the shared memory can ensure synchronous communication which is required in some use cases especially in unbalanced graphs. In the same way, the study application in this project is the big and dynamic graphs clustering. Wherefore, the used framework should support both dynamic and big graphs. As it is shown in Table . 3.2 most frameworks are distributed, but only two frameworks (BLADYG and GraphIn) can support dynamic graphs. However GraphIn is a multi-core framework that cannot support both big graphs and distributed graphs.

Summary of graph processing framworks

Related work on graph clustering

Graphs are one of the most used data models in several applications like social networks [START_REF] Said | CC-GA: A clustering coefficient based genetic algorithm for detecting communities in social networks[END_REF]], road maps [START_REF] Cao | [END_REF]], bioinformatics [START_REF] Xu | [END_REF]]. For instance, a recent 5 ranking shows that the popularity of graph databases model increased up to around 500% in the last years [Gandomi 2015a]. It has shown that graphs are optimum data models that are able to represent easily many relationships and to facilitate the exploration of data. Taking social networks as an example, the graph model organizes data elements into a set of vertices representing the members, and a list of edges to materialize the relationships between them (vertices). Also, the last years featured a Big data explosion especially in graph-based social networks. As an example, Facebook in 2013 had over 874 million monthly users [Gandomi 2015a]. This proliferation of a huge amount of data and the massiveness of graphs introduce several research topics such as graph storage, graph indexing, graph processing and graph mining. This latter also occurs in several use cases such as nodes classification, links prediction, graph clustering which is sometimes called community detection. In this thesis, we focus on the graph clustering. Graph Clustering is a fundamental problem in graph mining area. It groups the vertices of an input graph into a collection of dense and disjoint subsets called clusters [START_REF] Rizman | Memetic algorithm using node entropy and partition entropy for community detection in networks[END_REF][Žalik , Günnemann 2012]. Different clusters have to be weakly connected between them. Graph clustering has many applications. For example, the protein annotation task is among the challenges in bioinformatics fields. This task consists of an understanding of the expression, function, and regulation of encoded proteins by an organism. These proteins can be represented by a graph of proteins often called Protein Interaction (PPI) network. In this network, proteins in each subset interact together in order to perform a specific biological function. In this context, graph clustering represents one of a set of methods used for detecting protein in the PPI. In some other applications, the used graph could be very large and could be partitioned into several sub-graphs, where the computation is performed in a parallel/distributed way. Generally, graph clustering algorithms are used to ensure the graph partitioning. Likewise, detecting and analyzing research communities is a real-world application, which uses graph clustering to aggregate the authors under the same area according to the co-authorship (collaboration) relationships.

The complexity of the graph data model and its benefits drive the search to propose several algorithms for this field. Proposed algorithms oscillate from modularity-based algorithm [START_REF] Lasalle | Multi-threaded modularity based graph clustering using the multilevel paradigm[END_REF]] Markov clustering [Lei 2016] Label propagation algorithm [START_REF] Xie | [END_REF]] Spectral based clustering [White 2005a] and structural clustering. These algorithms are detailed in the next subsections.

Modularity based algorithm

Basically, the modularity [START_REF] Brandes | [END_REF]] is a used metric for measuring the strength of partitioning a graph into groups, in addition to the quality of clustering. The goal of this measure is to quantify the clustering schema using the number of edges between the different clusters. These edges are also called 'fraction of edges'. The formula of modularity [START_REF] Aktunc | [END_REF]] can be written as in Eq. 3.1:

Q = 1 2 * m n ∑ uv A uv - d u d v 2 * m δ (C u ,C v ) (3.1)
where m is the number of edges in the graph, v and u are two vertices, and d u and d v are the degrees of u and v, respectively. A vw represents the connectivity between u and v, which is 1 when u and v are connected by an edge and is 0 otherwise. C u and C v are the clusters that contain u and v, respectively. The value of δ function is 1 when C u and C v is the same cluster; otherwise it is 0.

The modularity measure can be applied in order to perform the graph clustering. When generating several partitioning schema and evaluating the modularity of each partitioning scheme in order to select the best scheme. The partitioning generation step is an NP-complet problem. In order to optimize the modularity quality we need to evaluate all possible partitioning scheme which depend on the number of vertices in an input graph. In this context, the authors in [Zeng 2015] have proposed an heuristic method called the Louvain method. This latter is iterative and is based on multiple phases. The first step is to find a local maximum which consists to assign each vertex to a cluster, after that then clustering vertices to the neighbor cluster which increase the modularity measure. The last step must be repeated until no individual vertex move can improve the modularity score. The second phase is reserved to the reconstruction of the new network. During this phase, each community funded in the first phase is considered as a super vertex. The modularity measure between all founded communities is applied using the edge between the latter.

Markov Clustering (MCL)

Markov clustering (MCL) [START_REF] Vlasblom | Markov clustering versus affinity propagation for the partitioning of protein interaction graphs[END_REF]] is one of the most popular graph clustering algorithms. It is frequently used in the bioinformatic field, especially in protein-protein interaction networks (PPINs) and protein similarity networks and demonstrates its usefulness in these use cases. The frequent use of this algorithm in bioinformatics is explained by the the clusters' balanced feature. Because, for complex problems such as protein finding, it is required to not find big clusters. The ideal cluster size (complex proteins) does not exceed 15-30 vertices [START_REF] Satuluri | [END_REF]]. It is also important to deal with a limited set of singleton clusters. MCL is based on the simulation of random walks using a matrix of probabilities of transition in an input graph. This algorithm consists on two phases. The first one is to build an adjacency matrix A from an input graph, while the second one is to normalize the columns in order to produce the transition probabilities matrix noted M, and which is defined as follows:

M i j = A i j ∑ n k=1 A k j (3.2)
For more details, the second phase is devoted to calculate the matrix probability. This matrix is initialized according to Eq. 3.2 and iterates the followed steps until the convergence. The iterative process can be divided into two steps: The first one is called the expand step, which represents a simple matrix multiplication M=M*M. As for the second one, it is called inflate step that represents a normalization of each column of M using the next equation:

M i j = (M i j ) r ∑ n k=1 (M k j ) r , r > 1. (3.3) 
Then, a pruning technique is applied on M to ensure that values below a given threshold (r) are set to 0. When MCL converges, the clustering step is applied to aggregate the vertices which have non-zero values in the same row of M are assigned to the same cluster. In the case where two nodes have multiple non-zero values in their columns, the row selection is done arbitrarily. Note that until the convergence, MCL must ensure that each column in M has at least one non-zero value. With the iterative multiplication of the matrix and especially with large graphs, MCL uses a lot of computing resources and takes a lot of time. In return, it ensures that vertices in dense regions will appear in a single cluster only, which ensure the non-overlapping clustering.

Label propagation algorithm

Label propagation algorithm (LPA) [START_REF] Wang | [END_REF]] is an iterative and heuristic algorithm used by several works in several fields including community detection and bioinformatics. LPA uses both the graph structure and the label of each vertex in the graph in order to group vertices into clusters. Initially, LPA starts by distin-guishing labels for all vertices and propagate these them until convergence. In the propagation step, each vertex sends its own label to its neighbors. Usually, each vertex changes its label by the largest value of its neighbors or using a defined function. After some iterations, the LPA converges. In this case, it groups the vertices that share the same label value into the same cluster.

Spectral clustering

The spectral clustering [White 2005b] is based on the graph density unlike other graph clustering algorithms. The density of a graph provides the optimal number of clusters. Then, the similarity measure can be applied between data points in order to aggregate similar vertices. The goal of this algorithm is to transform a graph as data points and apply any other basic clustering algorithm. At the first step, this algorithm starts by representing an input graph with an adjacency matrix A. This latter represents the links and edges between all vertices in the graph, and the degree matrix D = n*n, where n the number of vertices in the graph.

The D matrix has for each vertex, the number of its adjacency or its degree. At the second step, it computes the laplacian matrix L which is defined as L=D-A.

After that, it computes the eigenvalues (lambda) and eigenvectors (x) of A with

x as follows :

A * x = lambda * x (3.4)
The third step, consists in selecting the largest n eigenvalues and redefining the input space as a n dimensional subspace. A basic clustering algorithm, like Kmeans, is finally applied on the new redefined space with n dimensions.

Structural graph clustering

The Structural Clustering Algorithm for Networks (SCAN) was proposed in [Xu 2007] aiming, not only to identify the clusters in a graph, but also to provide additional informations like hubs (vertices between one or more clusters) and outliers (vertices that do not belong to any cluster). These additional pieces of information can be used to detect vertices that can be considered as noise and also vertices that can be considered as bridges between clusters. The functional principle of SCAN is based on graph topology. It consists of grouping vertices that share the maximum number of neighbors. Moreover, it computes the similarity between all the edges of the graph in order to perform the clustering. The similarity computation step in SCAN is quadratic according to the number of edges, which degrades SCAN performance especially in the case of large graphs. Structural graph clustering is one of the most effective clustering methods for differentiating the various types of vertices in a graph.

Summary of graph clustering algorithms

Tab. 3.3 shows an overview of the discussed algorithms. As it is shown, modularity-based algorithm, label propagation and Markov clustering algorithm are heuristic methods which are mainly based on the propagation step in order to give the final result. The results given by these algorithms are based on the density of the graph. In addition, Markov clustering algorithm ensures the non-overlapping clustering as required in some cases. Also, Label propagation algorithm does not need any parameter or number of clusters required while running. Moreover, both Spectral clustering and Markov clustering are based only on the matrix representation. This representation offers several advantages, such as ease of manipulation. However, it poses a scalability problem in the case of large graphs and also in the dynamic graphs, especially in the adding/removing of a vertex. Whereas in each each update, a new matrix must be builded. The Structural clustering, unlike modularity based label propagation and Markov clustering is an exact method for the graph clustering. It uses any graph representation, which ensure a flexibility with the dynamic graphs. In addition to that, the above methods provide, as output, a list of clusters which are not really sufficient to understand the graph behavior. To address this issue, the Structural Clustering Algorithm for Networks (SCAN) was proposed in [Xu 2007] aiming, not only to identify the clusters in a graph, but also to provide additional information like hubs and outliers. Motivated by this comparative study and based on the advantage of structural clustering, we choose this algorithm as a reference algorithm. In the next section, we discuss Algorithm Advantages Disadvantages Modularity based [START_REF] Brandes | [END_REF] • Maximize the modularity of the clustering schema

• Convergence can take a lot of time (DTAR). This new data structure is the set of two-hop-away nodes from a given node that are likely to be in the same cluster as the given node. SCAN++ could save many structural similarity operations, since it avoids several computations of structural similarity by vertices that are shared between the neighbors of a vertex and its two-hop-away vertices.

In the same way, the authors in [Chang 2017a] suppose that the identification of core vertices represents an essential and expensive task in SCAN. Based on this assumption, they proposed a pruning method for identifying the core vertices after a pruning step, which aims to avoid a high number of structural similarity computations. To improve the performance and robustness of the basic SCAN, an algorithm named LinkSCAN* has been proposed in [Lim 2014]. LinkSCAN* is based on a sampling method, which is applied on the edges of a given graph. This sampling aims to reduce the number of structural similarity operations that should be executed. However, LinkSCAN* provides approximate results.

Other works have proposed parallel implementations of SCAN algorithm [START_REF] Takahashi | [END_REF][START_REF] Mai | Scalable and interactive graph clustering algorithm on multicore CPUs[END_REF]] [Chang 2017b[START_REF] Stovall | [END_REF]] [Wen 2017].

In [START_REF] Takahashi | [END_REF]], the authors proposed an approach based on openMP library [START_REF] Bull | Measuring synchronisation and scheduling overheads in OpenMP[END_REF]]. The authors' aims were to ensure a parallel computation of the structural similarity and to show the impact of parallelism on the response time. Their method was proven to be faster than the basic SCAN algorithm. Other works have focused on the problem of dynamic graph clustering. In [START_REF] Mai | Scalable and interactive graph clustering algorithm on multicore CPUs[END_REF]] and [Chang 2017b], the authors have extended SCAN algorithm to deal with the addition or removal of nodes and edges. Authors in [START_REF] Stovall | [END_REF]], used the graphical processing unit (GPU) whose purpose is to parallelize the processing and to benefit from the high number of processing slots in the GPU which increase the degree of parallelism. Most of the above presented works face a two major problems: (1) they do not deal with big graphs and ( 2) they do not consider already distributed/partitioned graphs.

Through Table 3.4, we have summarized the discussed approaches according to some features. As shown in Table . 3.4, most proposed algorithms allow parallel processing but could not deal with very large graphs. It is also clear that none of the studied approaches allow distributed computing. In addition, these approaches are unable to process large and dynamic graphs. Also in some applications, like social networks, graphs are distributed by nature. Thereby, using the discussed algorithms. All the partitions of a distributed graph should be aggregated in one machine, in order to run the graph clustering. Based on these limits, in this work, we tackle the problem of large and dynamic graph clustering in a distributed setting.

Conclusion

In this chapter, we presented a background on graphs as a widely used data structure. Secondly, we discussed the popular graph programming model, which are implemented by several graph processing frameworks. After a quick summary of these programming models, we have shown the main advantages and limits of each one. Then, in order to chose the right graph processing, we surveyed the popular frameworks and, we have compared them according to several features such as programming model, the graph processing model (dynamic or static). Thirdly, state-of-the-art on graph clustering algorithms is provided, after that the structural graph clustering is selected to study its related work. Finally, we have presented the recent work related to the structural graph clustering. as social network. As mentioned in previous chapter, several frameworks are designed for big graph processing. Due to this fact, we propose a distributed graph clustering in order to overcome the issues discussed in the previous chapter. The proposed algorithm is implemented on BLADYG framework, it can support both centralized and distributed graph. It supports both centralized and distributed graphs. In a centralized graph setting, the proposed algorithm starts by splitting the graph into subgraphs using our proposed graph partitioning. In the distributed graph setting, the proposed algorithm takes the already distributed graph as input and lunch directly the graph clustering task. We also present an experimental study, and we show that our proposed algorithm can support big graphs compared to other algorithms. In addition to that the experimental results show the scalability of our proposed algorithm.

Keywords: Big graph, graph clustering, community detection, graph analysis, distributed graph processing.

Strctural graph clustering

Definitions and basic concepts

Graph clustering consists in dividing a graph G into several partitions or subgraphs. Like other clustering techniques, we should use one or more metrics to measure the similarity between two vertices or partitions in G. In the structural clustering technique, the graph structure or topology is used to divide G into a set of subgraphs. These subgraphs are relatively distant, and vertices in some subgraphs are strongly connected.

As a well-known algorithm for structural graph clustering, SCAN algorithm uses the structural similarity between vertices to perform the clustering task. In addition, it provides other pieces of information like outliers and bridges. In the following, we present an overview of graphs model and the structural graph clustering algorithm named SCAN [Xu 2007]. Consider a graph G = {V, E}, where V is a set of vertices, and E is a set of edges between vertices. Each of those elements can represent a real property in real-word applications. Let u and v be two vertices in V . We denote by (u,v) an edge between u and v; u (resp. v) is said to be a neighbor of v (resp. u).

In the following, we extend some basic definitions of structural graph clustering, which will be used in our proposed algorithm. Definition 4.1.1 (Structural neighborhood) The structural neighborhood of a vertex v,is denoted by N(v), and represents all the neighbors of a given vertex v ∈ V , including the vertex v: 

N(v) = {u ∈ V |(v, u) ∈ E} ∪ {v}
σ (u, v) = |N(u)| ∩ |N(v)| |N(u)| . |N(v)| (4.2)
After calculating the structural similarity with Eq. ( 4.2), SCAN uses two parameters to detect the core vertices in a given graph G.

Definition 4.1.3 (ε-neighborhood) Each vertex has a set of structural neighbors, like it is mentioned in Definition 4.1.1. To group one vertex and its neighbors in the same cluster, they must have a strong connection (denoted by ε-neighborhood) between them. SCAN uses a ε threshold and Eq. ( 4.3) to filter, for each vertex, its strongest connections. The ε-neighborhood is defined as follows.

N ε (u) = {N(u)|σ (u, v) ≥ ε} (4.
3)

The ε threshold 0 < ε 1 shows to what extent two vertices u and v are connected based on the shared structural neighbors. In addition, it represents a metric with which the most important vertices, also called core vertices, are detected.

Definition 4.1.4 (Core) Core vertices detection is a fundamental step in SCAN algorithm. It consists of finding the dominant vertices in a given graph G. This step allows to build the set of clusters or a clustering mapping. A core vertex v is a vertex which has a sufficient number of neighbors strongly connected with it N ε (v). We use µ as a minimum number of strong connected neighbors (see Definition 4.1.3). A core vertex is modeled as follows: Once the nodes and their borders are determined, it is straightforward to start a clustering step. To do so, we use the following definition: Definition 4.1.6 (Cluster) A cluster C (|C| ≥ 1) is a nonempty subset of vertices, where its construction is based on the set of core vertices and their border vertices.

V c = {v | |N ε (v)| ≥ µ} (4.
The main steps of clusters' building algorithm are the following: first, randomly chose a core from the cores' list and create a cluster C, then push the core and its borders into the same cluster. At the same time, the algorithm checks if the list of borders has a core vertex. Then, it inserts their borders into the same cluster and it applies this step recursively until adding all the borders of the connected cores.

Finally, the algorithm chooses other core vertices and applies the same previous steps until checking all core vertices.

Among the fundamental information returned by SCAN, compared to other graph clustering algorithms, we mention bridge and outlier information, as defined as below:

Definition 4.1.7 (Bridge and Outlier) The clustering step aggregates the core vertices and their borders into a set of clusters. However, some vertices do not have strong connections with a core vertex, which does not give the possibility to join any cluster. In this context, SCAN algorithm classifies these vertices into two families: bridges and outliers. A vertex v, that is not part of any cluster and has at least two neighbors in different clusters, is called bridge. Otherwise it is considered as an outlier.

Running example

In this section, we explain through a running example, how SCAN algorithm works. Consider a graph G presented in Figure 4.1 and the parameters ε = 0.7 and µ = 3.

In the first step, lines 1-3 of Algorithm 12 use Eq. ( 4.2) to compute the structural similarity for each edge e ∈ E. Then, Eq. ( 4.3) (lines 5-8) is used to define the core vertices (see gray vertices in Fig. 4.1). After that, we proceed to the clustering step, then we apply Definition 4.1.6 (lines 6-7) to build the clustering schema.

In our example we have four core vertices: 0,2,9 and 10. Each core has a list of border vertices (the neighbors that have strong connections with a core). In our example, vertex number 2 is a core. This later has the vertices number 1, 4, 5, 3 and 0 as the list of borders since they have strong connections with the core. The core and its borders build a cluster, and if a border is a core we join all its Algorithm 1 Basic SCAN algorithm Input : A Graph G and parameters (µ ,ε)

Output: C, B, O foreach (u, v) ∈ E do Compute σ (u, v) end Core ← / 0 foreach u ∈ V do if (|N ε (u)| ≥ µ) then Core = Core ∪ {u} ; end Cluster ← / 0 foreach unprocessed core vertex u ∈ Core do Cluster= ← {u} Markuasprocessed foreach unprocessed border of vertex v ∈N ε (u) do
Cluster= ←Cluster ∪ {v} Mark v as processed end end borders into the cluster. Like in our example, the vertex 2 is a core. Hence, we join all its borders (1, 3 ,5 ,4 including 0 as being a core vertex). In this case, if the vertex 3 is not a border of vertex 2 and it is a border of vertex 0, then vertex 3 should belong to the same cluster of vertex 2 (which is a core vertex), since it is a reachable border of vertex 2. The last step of SCAN algorithm consists in defining the bridges and the outliers. As shown in Fig. 4.1, we have two clusters. The first one is composed of vertices 1,2,3,4, and 5, whereas the second cluster is composed of nodes 8, 9, 10, and 11. The remaining vertices (6 and 7) must be categorized as outliers and bridges according to the Definition 4.1.7. In our example, vertex 7 has two connections with two different clusters, and vertex 6 has only one connection with one cluster which makes vertex 7 a bridge and vertex 6 an outlier. 

DSCAN: A Distributed Algorithm for

Large-Scale Graph Clustering

In this section, we introduce DSCAN: a new distributed algorithm for structural graph clustering. Our proposed algorithm is based on a master/slave architecture, and it is implemented on top of BLADYG framework [Aridhi 2017]. This latter is a distributed graph processing framework in which the slaves machines are responsible for the execution of a specific computation and the master machine coordinates between all the slaves. The input data must be divided into sets of chunks (subgraphs in our case). Each chunck/partition is assigned to a worker or slave machine, which performs a specific computation. The master machine orchestrates the workers' execution. In the following, we present the main two steps of DSCAN: (1) graph partitioning and (2) graph clustering.

Distributed graph partitioning

In this step, DSCAN splits the input graph G into several small partitions P 1 , P 2 , ..P n , while keeping data consistency (graph structure). To ensure the con-sistency property while dividing the input graph, we must identify a list of cuts edges in order to have a global view of G. Usually, the graph partitioning problem is categorized under the family of NP-hard problems, that need to parse all the combinations in order to get the best partitioning result part. For this reason, we proposed an approximation and a distributed partitioning method as a preliminary step for our distributed clustering algorithm. Algorithm 2 shows that, at the beginning, the master machine divides equitably an input graph file into sub-files according to the number of edges, and sends the sub-files to all the worker machines. Secondly, each worker machine gets a list of edges and vertices from its sub-file. Thereafter, it sends its list of vertices to all workers, in order to determine the frontier vertices so that to get the cuts edges. Afterwards, when each worker receives a list of vertices from its neighbor workers, it determines the vertices that belong to the current worker (partition). Consequently, these vertices are considered as frontier vertices in their partitions. In the last step, when each worker could determine the frontier vertices, it starts to fix the cuts edges, i.e. edges that have a frontier vertex.

Distributed clustering

The distributed clustering step of DSCAN has also two main steps: (1) local clustering step and (2) merging step.

Step 1: Local clustering. As presented in Algorithm 3, the input graph G is splitted into multiple subgraphs/partitions (P), each one is assigned to a worker machine. The partitioning step, as mentioned in Section 4.2.1, is performed according to the α parameter, which refers to the number of worker machines (line 2). To overcome the loss of information during the partitioning step (edges connecting nodes in different partitions), frontier vertices are duplicated into neighboring partitions (line 3-8). Subsequently, for any partition P i , a local clustering is performed (lines 9-11) on a worker machine. Fig. 4.2 shows a demonstrative example of the duplication step. The demonstrative example describes how the graph consistency will be ensured during the partitioning step.

Assume that a graph G is partitioned into two partitions P1 (vertices in blue) For example, vertex 4 is a vertex of the partition P2. It has the vertex 6 as internal and the vertices 1,2 and 5 as external neighbors. Computing the structural similarity of a frontier vertex u considers that all the neighbors of u belong to the same partition. Thereby, we duplicate all frontier vertices in partition P to all neighbor partitions and we call them external vertices. For example in our running example, P1 has frontier vertices V f P1 ={1,2,5} and P2 is the neighboring partition. Thus, we must duplicate V f P1 into P2 to ensure the accuracy of structural similarity of V f P2 (see Fig. 4.3). After that, when we apply a local clustering on P1 and P2, we will find several conflicts such as the vertex v ∈ V f P1 is a core vertex in P1, and an outlier in P2. These conflicts should be avoided in the merging step.

V i IN Outliers do if (V i ∈ Core ∪ Border ∪ Bridges ) then 34 Remove V i from the list of Outliers end end for V i IN Outliers do Nb Connections ← 0 for C i IN Clusters do 39 if (N(V i ) ∩C = ∅) then 40 Nb Connections + + 41 end end if ( Nb Connections ≥ 2 ) then 44 Add V i to Bridges Remove V i from Outliers
Step 2: Merging. The distribution of similarity computation and the local clustering step can improve the response time of our proposed DSCAN, compared to the basic sequential algorithm. However, we should take into consideration the exactness of the returned results compared to those of the basic SCAN. To ensure the same result of basic SCAN, we defined a set of scenarios regarding the merging step. These scenarios will repetitively be applied to every two partitions of G, until combining all the partitions (see Algorithm 3,merging step). For each pair of partitions P i and P j , a merging function is executed to combine the local results from P i and P j and store them in global variables like clusters, borders, bridges and outliers. Algorithm 3 also achieves several scenarios (Lemmas 4.2.1,4.2.2 and 4.2.3) to solve the encountered conflicts, mentioned below: Proof 1 Let C i be a cluster that groups a set of border and core vertices. If

C i shares at least one core vertex c with another cluster C j , then c has a set of borders in C i and C j , and all the vertices in C i and C j are reachable from c. Hence, C i and C j should be merged into the same cluster. Proof 3 Let C i and C j two clusters that have a set of vertices (borders or cores), and a set of bridges with other local clusters, and ∃ b a bridge vertex according to the two clusters C i and C j only, where i = j. In the merging step and according to Lemma 4.2.1, if one or several clusters share at least a core vertex, then they will be merged into a single cluster. In this case, (C i ,C j ) ⇒ C which makes b be weakly connected with only one cluster C, then according to Definition 4.1.7, b should change its status from bridge to outilier.

For instance looking at lines 26 to 28, we have focused on the shared cores between two clusters and the case when they share at least one core. According to Lemma 4.2.1, we should merge them into one single cluster. Subsequently, in lines 32-36, we verify for each outlier if it does not belong to some sets of cores, borders or bridges. In this case, we must remove it from the list of outliers. Otherwise, a vertex v should be changed as a bridge if it is classified as an outlier in the two clusters C i and C j that are not in the same partition, and if it has two connections with different clusters in the merging step. in each pair of adjacent partitions. For example, the blue vertices 1,2 and 5 are duplicated in partition P2 since they represent frontier vertices in their partition.

In the same way, the vertices 4 and 7 are duplicated in the partition P2. In the third step, all the workers perform the similarity computation, check the status for each vertex and build the local clusters, as it is shown in Fig 4 .3. The last step of DSCAN consists of combining all local results returned by each worker. As shown in Fig. 4.3, there are some conflicts in terms of node status. For example, vertex 2 is a core vertex in P1 whereas it is a noise (outlier) vertex in P2. In the same way, vertex 4 is a border in P1 and a noise in P2. Then, after building the local clusters, P1 has one cluster (1,2,3,4, and 5) in which vertex 7 is a noise vertex in P2. As for P2, it groups the vertices 8,9, 10 and 11 as a cluster and the remaining vertices (4,5,1,2,7 and 6) are considered as noise vertices including vertex 7. This latter is a bridge according to basic SCAN (see running example in Section 4.1.2)). In the merging step, DSCAN considers that the vertex 7 has two weak connections with two different clusters. Thus vertex 7 is marked as a bridge.

Time complexity analysis of DSCAN

Let E be the set of all edges (internal and cut edges), V be the set of all vertices(internal and external) and the set of core vertices is V c . The time complexity of DSCAN is like basic SCAN, and can be divided into three step, (i) the structural neighborhood step, when DSCAN according to Definition 4.1.1 aggregates for each vertex its list of neighbors. Thus, the complexity is of the order of O(|E|).

(ii) the time complexity of the computation of structural similarity which is defined by Definition 4.1.2. In this step, DSCAN enumerates for each edge (u, v) the set of common neighbors. Therefore, the time complexity is O(|E|). (iii) DSCAN performs the clustering step using the µ in order filter the core vertices, and groups those which have strong connections into a same cluster. Like this, the complexity is

O = (|V c | -|(v i , v j )| |V | i, j=1 , v i , v j ∈ V c and σ (v i , v j ) ≥ ε)

Communication complexity

Let S be the set of slave machines, the communication complexity of DSCAN is the number of messages sent in the network during the merging step of DSCAN. This complexity is depended on the message type of BLADYG [Aridhi 2017] (Worker2worker, worker2Master). In the worker2Worker message the communication complexity is O= |S| 2 , and in the worker2Master message the complexity is O= |S|.

Experiments

In this section, we present an experimental study and we evaluate the effectiveness and efficiency of our proposed algorithm for structural clustering of large distributed graphs.

Experimental protocol

We implemented DSCAN on top of BLADYG framework [Aridhi 2017], which was designed to build graph processing algorithms for large graphs. In the first experiment part, we compared DSCAN with four existing structural graph clustering algorithms, and then we evaluate some parameters of features of DSCAN :

1. Basic SCAN 1 .

2. pSCAN: a pruning SCAN algorithm 2 .

3. AnyScan: a parallel implementation of basic SCAN using OpenMP library 3 .

4. ppSCAN: a pruning and parallel SCAN implementation The above mentioned algorithms are implemented with C language. Thus, we used the GCC/GNU compiler to build their binary versions. The compared algorithms are divided into two categories: (1) centralized algorithms such as SCAN and pSCAN, and ( 2) parallel algorithms such as AnyScan and ppSCAN. To run both centralized and parallel algorithms, we used a T3.2xlarge virtual machine on Amazon EC2. This machine is equipped with an 8 vCPU Intel Skylake CPUs at 2.5 GHz and 32 GB of main memory on a Ubuntu 16.04 server distribution.

In order to evaluate DSCAN, we used a cluster of 10 machines, each of them is equipped with a 4Ghz CPU, 8 GB of main memory and operating with Linux Ubuntu 16.04.

Experimental data

For all test we used real-world graph datasets (see Table 4.1), these graphs are obtained from the Stanford Network Analysis Project (SNAP) snap.

Experimental results related to DSCAN

Speedup. We evaluated the speedup of DSCAN compared to the basic SCAN and its variants presented in Section 4.3.1. The compared algorithms use different graph representations. In fact, AnyScan and SCAN implementations use the adjacency list representation [Doerr 2007], whereas both pSCAN and ppSCAN use the Compressed Sparse Row (CSR) format [Dâ TM Azevedo 2005]. In our proposed algorithm, we used an edge list format, in which each line represents one edge of the graph. The incompatibility of the graph representations poses an additional transformation cost while evaluating the studied methods. For example, the transformation of the live journal graph from edge list to adjacency list takes around 100 seconds using one machine equiped with an 8 vCPU and 32 GB of main memory. As shown in Fig. 4.4, our approach is slower than the other algorithms in the case of small graphs (G1,G2,G3) and there was a very large gap between DSCAN and the other algorithms especially with pSCAN and ppSCAN. On the other hand, this gap become reduced when the graph size increases (case of G4 dataset). The plots bars in Fig. 4.4 shows a gap of 12x between DSCAN and basic SCAN with the G1 dataset and 2x only with the G4 dataset. We notice that the gap between DSCAN and ppSCAN depends mainly on the size of the used dataset. For example, with the G1 dataset, the gap between DSCAN and ppScan is about 20x, while this gap is reduced to 11x for the G4 dataset. This can be explained by reaching the pruning step of pSCAN, which exempts several similarity computings during the clustering step. It is important to mention that DSCAN is a distributed implementation of SCAN and the other studied algorithms are centralized. This leads to additional costs related to data distribution, synchronization and communication. Fig 4.4 also shows that with the modest hardware configurations, only DSCAN can scale with large graphs like the G5 dataset.

Scalability. The main goal of this experiment is to evaluate the horizontal scalability of our algorithm. We used two graphs (LiveJournal and California road network). We set the values of µ and ε to 3 and 0.5 respectively, and we varied the number of machines, with the goal to measure the response time for each size of the cluster. It can be clearly seen, from Fig. 4.5, that our algorithm is horizontally scalable, which was not guaranteed by the other algorithms, as discussed in the previous chapter. Fig. 4.5 also shows that the running time will decrease depending on the number of machines in the cluster. When we add a new machine to the cluster, the running time becomes smaller. As depicted in Fig. 4.5, the red curve (LiveJournal graph) shows a significant improvement of about 82% in the response time, when the number of machines reaches 10. We also notice a weak improvement, according to the number of machines in the cluster, when we have a small graph. This is the case of California road network which is smaller than LiveJournal graph. The red curve's behavior can be explained by the splitting of the input graph into small sub-graphs and by performing a local clustering on each sub-graph, which reduces the global response time even with the additional cost of aggregating the intermediate results returned by each machine in the cluster.

That was not the case with the blue curve, where we have an improvement of about 50% using a cluster of 10 machines, compared to the results using a 6machine cluster. We noted that the curve starts to increase when the cluster size exceeds 8 machines. This is due to the communication in the shuffling step.

Impact of ε value on DSCAN. The numbers of clusters, bridges and noise vertices depend on the values of ε and µ. In ppSCAN, when we decrease the value of µ, the running time increases, as the non-pruned edges are increased.

Similarly in this experiment, we evaluated the impact of ε value on the running time of DSCAN. For this, we varied the value of ε from 0. andG4). When we increase the value of ε the response time increases. Overall, the observed behavior can be explained by the merging step in DSCAN algorithm, since we did not see the impact of ε on the previous steps (graph loading and local clustering). In the graph loading step, we do not use this value and in local clustering we use the basic SCAN clustering which is not dependent to ε. That is why the impact of ε on the running time can be explaind by the merging step. In fact, when the value of ε increases, the number of outliers becomes larger. Also, in the merging function (see Algorithm 3,, DSCAN combines the local results by starting to check the clusters that share almost one core, in order to merge them. Then, it verifies for all outliers if they are bridges or cores. Hence, outliers' checking requires more communication between the workers, which increases the respense time.

Evaluation of DSCAN steps: DSCAN algorithm is based on four main steps.

In each step, DSCAN performs a specific treatment with different costs in terms of running time. To study the running cost of each step in DSCAN, we used four graph datasets and we fixed the values of ε and µ to 0.5 and 3, respectively. Fig. Imapct of the graph partitioning on DSCAN. In our vision, the partitioning step has a direct impact on the response time of DSCAN. For this reason, we randomly generated four partitioning schemas, and for each one, we got the number of cut-edges as follows: 17.6M, 19.2M, 22.3M and 24.6M for the partitions P1, P2, P3 and P4, respectively. Then, we run DSCAN on all partitions with the same configuration (10 machines, ε=0.5 and µ=3). As shown in Fig. 4.8, there is a very clear impact of the graph partitioning on the response time of DSCAN, as this latter rises from nearly 800 to 1000 seconds with P1 and P2. Furthermore, the elapsed time of each DSCAN step varies from one partitioning to another. This disparity is noticed mostly during the merging step and slightly in the clustering step. This is probably explained by the number of vertices duplicated due to the number of cuts-edges produced by the graph partitioning. This number would affect the amount of similarity computing operations in the clustering step, and increases the communication cost during the merging step.

Conclusion

In this chapter, the second contribution is presented. This proposed algorithm (DSCAN) is a distributed algorithm for big graph clustering based on the structural similarity. DSCAN is based on a distributed and master/slaves architecture which makes it scalable and works on the community of modest machines. In this chapter, Firstly, an overview on the structural graph clustering is presented. Secondly, we have presented the main steps of DSCAN, starting from the partitioning to the combining of intermediate results for each worker. Finally, we have performed an extensive experimentation about our proposed algorithm compared to other ones. The experiments have shown that DSCAN ensures the horizontal scalability, which is not guaranteed with other similar algorithms.

Key points

• We presented a new distributed graph partitioning based on a big graph processing framework.

• We proposed a novel distributed algorithm for the detection of clusters, bridges and outliers in these of large-scale networks.

• An experimental study to evaluate the distributed algorithm for the detection of clusters, bridges and outliers on large-scale networks.

Publications

• W. Goals The real-world applications that use a graph as data model, and perform a graph clustering should support dynamic graphs. The existing methods consists to re-executed a clustering algorithm in each new update. However, this approach can suffer from the graphs size, which spends a lot of time to get a clustering result in each updating. Accordingly, in this chapter an incremental algorithm is proposed and named DISCAN. Thus, this chapter introduces the concepts of dynamic graphs through some definitions, after that a distributed graph maintenance and an incremental graph clustering are presented. Finally, in order to present the efficient of DISCAN, an experimental study is presented at the end of this chapter.

Keywords: Big and dynamic graph, Dynamic graph clustering, Dynamic community detection, Graph analysis, incremental graph processing.

Introduction to dynamic graphs

Due to the complexity of processing of big generated data in several applications, the graph data model has been proposed for several applications, and it has proven to be an effective model in some use cases like research networks (e.g., DBLP), social networks (e.g., Facebook and Twitter), sensor networks (e.g., Internet of Things). Furthermore, in real-world applications, the data naturally is not static. Therefore, graphs are models for encoding the data including the dynamic data, thus dynamic graphs have been introduced. This new data model has been the main goal of several research projects, and it introduces new challenges that are mainly related to data velocity and data volume (graph). Additionally, several definitions defined the dynamic graphs, and these definitions are related to applications. In the next section, we refer to a set of definitions that are related to some applications and use cases to understand the concept of dynamic graphs.

Dynamic graphs: definitions

In the literature, authors propose several definitions and formulations. In this context, a survey in [START_REF] Rossetti | [END_REF]] presented some definitions and representations on the graph relatively to the community detection use case.. Through Fig. 5.1, four graph representations are illustrated, and in the next, we provides some definitions related to each representation. properties. For example, in the case of attributed graph, attributes's values of edges/vertices can be changed at each time while maintaining the initial graph structure. Another example, is the case of simple graph the dynamism that can be observed on the edges Weight updating over time.

Definition 5.2.2 (Snapshots) Graph snapshots type is represented as an history of graph snapshots over time or at each period. Thus, each snapshot is a graph at a time t or at a period p. In the snapshot graph case, from on snapshot to another, several updates can be observed. Then, a snapshot graph G can be defined by an ordered set <G 1 , G 2 . . .Gt> where each snapshot G i = (V i , E i ) is univocally identified by the sets of nodes V i and edges E i . Definition 5.2.3 (Dynamic/Temporal Graphs) A dynamic or temporal graph is a graph which undergoes several updates over time. Unlike properties updated graph, the updates over time can be structural or semantic. Where, the structure update is represented by the vertices and/or edges my be appear or disappear in each update, and the semantic updates are the properties or edge weight updates.

DISCAN: Proposed incremental graph clustering

Consider a large and dynamic graph G, which will undergo several changes over time such as adding or deleting edges or/and vertices. When a clustering is performed, the classic approaches re-run the clustering from scratch, which is obviously very expensive especially in large graphs. In this work, we propose an incremental and distributed algorithm for large and dynamic graph clustering. The main idea of our approach is to determine in each update the vertices and the edges that are concerned by this update, and according to that, we apply the new updates on the old clustering results.

Distributed graph update

Adding a new vertex

In this section, we describe the scenario at the adding of a new vertex. In this context, several situations may be encountered, such as a separated vertex, vertex connected to a single existing vertex and vertex connected to several existing vertices. To minimize the task complexity, we have standardized this action to a single operation that will take into consideration all the discussed situations. In the case of several edges must be added to the graph and in the same time, we split them into a set of a simple edge as follows (V new ,V old ), where V new is a new vertex to be added and V old an existing Vertex. As we discussed in the partition step, we have two types of vertex in each partition: internal vertices and external vertices. Then it is required to take into consideration the vertex type in the adding vertex operation. For more details, the algorithm 10 illustrates the fundamentals steps of an adding of a new vertex. This operation starts by sending the tuple (V new ,V old ) by the master machine to 

W i ∈ W do if (V old = null ∩V old ∈ internalVertices ∩V old =∈ f rantierVertices) then Add a new vertex V new Add V new as a neighbor of V old vertex Add a new edge (V new , V old )
Update the similarity of all affected edges end else if (V old = null ∩V old ∈ internalVertices ∩V old ∈ f rantierVertices) then Add V new as a neighbor of V old Update the similarity values of all affected edges end end all worker machines (line 2). Thereafter, in each partition, the workers check if the V old is an internal or frontier vertex (if V old ∈ the current partition). According to vertex type, each worker applies a specific treatment like as illustrated in the algorithm 10. In first case (line 4 to 6), when the V old is an internal vertex, we add the v new into the partition, add v new as a neighbor of V old , add a new edge and update the structural similarity of affected edges. In the other case, when the V old is a frontier vertex, the worker must only add the v new a neighbor of V old and update the structural similarity of affected edges.

Adding a new edge

When we will add a new edge E new , it is necessary to check if this is an internal or a cut edge. In the case of an internal edge, E new is an edge which links two internal vertices, and the cut edge is an edge that links two vertices in different types (internal/frontier). Consequently, these two type of edges need a special treatment for everyone. To show all these details, algorithm 5 explains these main steps. After that the master machine sends the E new to all worker machines. The latter check the type of E new , if it is an internal or a cut edge. Thus, in the case of an internal edge, local changes will be performed in the partition that contains the E new , as described in the algorithm 5 in line 3 to 6. Whereas in the second case, E new =(v 1 , v 2 ) i.e. v 1 and v 1 are in different partitions P 1 and P 1 respectively. Therefore, the algorithm adds v 1 as an external vertex in P 2 and v 2 as an external vertex in P 1 (see algorithm 5 lines 7-9).

Delete a vertex

In a local graph, a deleting of a vertex can be affected by several vertices and several structural similarities. In our case, when we have a distributed graph, several partitions can be affected by the vertex deleting, since one vertex can exist on several partitions but in different types: internal vertex, frontier vertex, and external vertex. Each vertex type requires a special treatment. The algorithm 6 presents all possible cases when deleting an existing vertex. In the first step, when the master receives a request to delete a vertex, it sends the vertex to all workers Algorithm 5 Adding a new edge Input : 

E new =(V 1 , V 2 ) Output: G ∪ E new Master machine: sent the E new to all worker machines /* In parallel */ foreach Worker W i ∈ W do if (V 1 ∈ Internal and V 2 ∈ Internal) then Add V 1 as a neighbor in V 2 Add V 2 as a neighbor in V 1 Add E new into current partition Update the similarities of all affected edges end else if (V 1 ∈ Internal) then Add V 2 as a neighbor in V 1 Add E new into current
: (V 1 , V 2 ) Output: G \(V 1 , V 2 )
Master machine: send the edge E =( V 1 , V 2 ) will be deleted to all worker machines

/* In parallel */ foreach Worker W i ∈ W do if (E ∈Edges internal ) then Remove v 1 from N[v 1 ] Remove v 2 from N[v 2 ] end else if (( E) ∈CutEdgesandv 1 ∈PInternal) then Remove v 2 from N[v1]
Remove v1 from frontier vertices: (if do not have any other connection with an external vertex) Remove v2 from external vertices: (if do not have any other connection with an internal vertex) Remove ( v 1 , v 2 ) from Cut edges list

end else if (( v 1 , v 2 ) ∈CutEdgesandV 2 ∈PInternal) then Remove V 1 from N[v2]
Remove V 2 from frontiers vertices :(if do not have any other connection with an external vertex) Remove V 1 from external vertices :(if do not have any other connection with an internal vertex)

Remove ( V 1 , V 2 ) from Cut edges list end Remove ( V 1 , V 2 )

from all edges end

In the case when v 2 is belongs to the current partition, we perform the same steps like it is presented between line 10 and 13 in the algorithm 7. In the last step, for all cases (internal or cut-edge) we remove E, update the concerned edges according to the deleting of E and get all affected vertices in order to sent them to master.

Distributed graph clustering

Assume that G = (V ,E ) is going to undergo several updates U over time. U can be adding/deleting vertices or edges from/to G. These changes can affect the similarity values and some vertex status (borders, core, etc). Consequently, the clustering schema may be affected in several situations. Definition 5.3.1 Each vertex u i ∈ U generates modifications of several structural similarities, which is defined as the affected edges E A .These vertices also change the status of several vertices and are noted as affected vertices V A . Definition 5.3.2 (Affected edges) When adding a vertex V new associated with an existing vertex V old , new edge (V new ,V old ) will be created and a set of edges denoted E A will be marked as affected edges and should be updated. Note that e ∈ E A and e = (u, v), where u ∈ V old and v = v new .

In the case of removing a vertex V T BD , a set of edges noted as E T BD should be deleted from G. Therefore, a V c of vertices is concerned by this update. Here V c = (u, v) ∈ E T BD \V T BD , and according to V c , the affected edges are

E A = E i ⊂ G and E i = (u, v) / {u,v} ∈ V c .
Also when adding or deleting an edge (v i , v j ), the list of neighbors of both vertices v i and v j will be changed which can produce several other edges. The affected edges update their structural similarities. E A is a set of edges (u, v) ∈ E and v i = u or v j = v Definition 5.3.3 (Affected Vertices) For each update on G, some structural similarities can be changed. Thus, some vertices change their status (border, core vertices). These vertices are defined as affected vertices V A . V A can be divided into two sub-sets: (i) directly affected V AD , which update their status depending directly on E A , and are defined as V AD , (ii) indirectly affected V ID which depend on the status of V AD . For example, when a core vertex changes his status to outlier or border, then all these border vertices will become affected indirectly according to this update. Let E A =(v 1 , v 2 ) be following an update V AD =V AD ∪ v 1 ∪ v 2 , while V AI are all neighbors of V AD . Other vertices can be affected indirectly with several updates, and are dependent on the changed clusters. These vertices are defined the affected bridges and noted as V AB . V AB is the list of outliers or bridges which are connected with affected clusters described in the Definition 5.3.4. When c 1 and c 2 will be merged into one cluster c new , v will be weakly connected with only c new . In this case and according to Definition 4.1.7 v will be an outlier vertex. In the same way, when we have a cluster c and v is an outlier to c with two weak connections related to v 1 and v2, after some updates c becomes splited to two clusters c 1 and c 2 when v 1 and v 2 are respectively in c 1 and c 2 . In this case, v become a bridge between the new clusters c 1 and c 2 according to the connection of v with v 1 and v 2 . Then, all affected edges E A (red edges) change their structural similarities since the vertices 0,2 and 5 (old neighbors of the deleted vertex 3) lost the vertex 3 as a neighbor, and all the edges associated with the vertex (3) are removed from G. This new update affects only a subset of vertices in G. The example shows that the vertex 2 (v 2 ∈ v A ) lost its core status, whereas vertex 9 keeps its core status (v 9 / ∈ v A ). Thus, E A can change several vertices ' status directly (v AD ) or indirectly (v AI ). Like it is shown in our example, vertex 2 ∈ v AD , it lost on strong connection with the removed vertex which changed to an outleir in this case. In the same way, v AD can change the status of v AI . Vertices 0,1,4 and 5 were considered as border vertices according to vertex 2 (in the initial graph), and in our case, when the vertex 2 lost the core status, as a result v AI are changed to outliers. According to Definition 5.3.4, v AD and v AI can change the old clustering schema and our example confirm that. Partition 1 of G groups two clusters. The first one is C 1 = { 12,13,14} and the second one is C 2 ={0,1,2,3,4,5} (4 and 5 are external vertices). Thus, C1 and C2 are affected because C1 contains the vertex 12 as an affected vertex, and in the C2, all its vertices are affected because of the removed vertex. These clusters can affect in the last step other vertices (bridge or outlier vertices). Like it is depicted in 5.2 C 2 should be removed since it does not have any core vertex, and the vertices 6 and 7 were considered as bridges with C2. Thereby, these bridges are susceptible to change their status.

Algorithm 8 describes the main steps of the proposed DISCAN. DISCAN provides real-time graph maintenance and a micro-batch clustering. Moreover, it performs the new clustering after several changes, in order to optimize the incremental clustering. We present below the main steps of DISCAN:

Step 1: Graph maintenance. In this step, DISCAN runs the graph maintenance in real time. In each update U, it (i) updates the graph G structure, (ii) checks the affected edges E A , and (iii) recomputes the similarities of E A (lines4-12 of the pseud-code 8). Then, it gets V A according to E A in order to memorize them in a global variable. Like discussed in Definition 5.3.4, V A can affect several clusters in the current partition or in other partitions. Thereby, each worker shares its V A with all workers so that each one determines the affected clusters and saves them. Once the affected clusters are fixed, they affect some bridges or outliers vertices. So the affected bridges should be added to the list of affected vertices to be checked in the next step.

Step 2: Incremental local clustering. This step is performed in micro-batch processing mode, after a number of updates or using a window time. In both methods, DISCAN runs the some scenarios. These latter consist of two choices for a user who selects one of them according to the number of changes per seconds or according to other needs such as the graph size, graph evolution. Therefore, in each batch, DISCAN first checks the core vertices. The checking is performed only on the affected vertices V A , where in general the |V A | |V |. Secondly, DISCAN checks the border vertices like in the first clustering but using only E A , since the border vertices are dependent on the strong connections with core vertices. For this reason, DISCAN checks the core vertices according to E A only.

After that, the updated cores and borders vertices will change the clustering schema depending of the affected vertices (cores, borders) like it is described in Definition 5.3.4. The affected clusters feat are four possible cases owing to each update of a graph: (1) split one cluster to small clusters, (2) remove an existing cluster, (3) build new clusters, (4) update the existing clusters and ( 5) merge two or more clusters. Consider set of cores and theirs borders, and the core vertices have strong connections beteen them. After the removal of a strong connection between two cores (c 1 ,c 2 ) and (c 1 ,c 2 ), then the clusters should be splited into sub-clusters depending on c 1 and c 2 . For the case (2), each cluster is built on a list of cores and theirs borders. If one cluster does have any core vertex it should be removed. Sometimes, a new update makes an outlier vertex to a core vertex c new . If this vertex has a strong connection with any other old core c, it joins the cluster of c, like in the case (4). If c new does have any strong connections with any other core it builds a new cluster, like the case (3). In the last case (5), if there exist a new strong connection between two cores in two different clusters, then we merge these latter. In order to deal with all these cases, we remove all the affected clusters and re-build a new clustering in a same way of the first clusetring presented in Definition 4.1.6 and using only the affected vertices (cores and borders vertices). The new clustering is performed only on the changed vertices which will be very faster compared to the first clustering. Finally, DISCAN uses the new clusters and the remaining affected vertices to check if they represent new border vertices.

Step 3: Merge the new updates. After each batch, each worker starts to merge the new updates (see Algorithm 8 lines 19-23). The master machine gets all the affected vertices from all workers in order to facilitate the combination of the new changes. Here some clusters should be verified. In each batch, the master keeps only the past unchanged clusters and requests all workers to get the changed clusters. Thereby, all workers combine the updated clusters eventually including new clusters. In the merging step, DISCAN uses the same scenarios as in the first clustering (see Lemma 4.2.1). If at most one cluster shares at least one core vertex, they can be merged into one cluster. In the next step, after getting the new clusters, the master machine requests all workers to get theirs borders vertices. Then, each worker filters only the affected vertices which will belong to its local bridges, and sends them to the master. The rest of affected vertices will be added to the global list of outliers. Finally, DISCAN initializes the global affected vertices and global affected clusters to empty lists which will to be used in the next batch.

Time complexity analysis of DISCAN

The time complexity of DISCAN mainly depends on the affected edges and the affected vertices in each new update. Moreover, this complexity is very low compared to the initial complexity of DSCAN. Since the number of affected edges , v i , v j ∈ V c and σ (v i , v j ) ≥ ε).

Communication complexity

Let S be the set of slave machines, and S A the set of partitions (slaves) affected by graph updates. Moreover, this complexity is depend on the number of affected slaves. Thus, this complexity in the case of worker2worker message is O= |S| 2 , and in the worker2Master message the complexity is O= |S A |.

Experimental result

SpeedUp. The main goal of this experiment is to compare DISCAN with other algorithms, Since there is no incremental algorithm for the structural graph clustering, we evaluated the speedup of DISCAN compared to the fastest existing algorithm (pSCAN and ppSCAN) which we presented in Section 4. Send C,B,O to master using Worker2Master message time, we start by running all the algorithms with the used graphs, and in each moment, we added a new batch of updates in different sizes. In almost used graphs, DISCAN is slow compared to other algorithms, except for pSCAN which does not support the G5 graph. Despite that pSCAN and ppSCAN re-execute the clustering from scratch, they are faster than DISCAN in case of G2 and have the same response time in the case of G3. In the case of the G4, DISCAN is initially better than pSCAN and ppSCAN. Initially, ppSCAN and pSCAN are faster than DISCAN, but the gap in running time begins to narrow between G2 and G4.

Then, when we add a new batch to the initial graphs, DISCAN becomes faster than pSCAN and ppSCAN. In the case of G3, Fig. 5.3 shows a gap of 2X between DISCAN and pSCAN and almost the same running time of DISCAN and ppSCAN. Furthermore, the gap between DISCAN and pSCAN starts to increase, to finally reach 3X, and 10% between DISCAN and ppSCAN.

DISCAN scalabilily. Fig. 5.4 shows the scalability of DISCAN w.r.t. the number of workers, with G2 and G3 datasets and for different batches of updates using the default parameters ε=0.5, µ=3.

Overall, the number of workers affects the running time in terms of size of the used dataset and the number of updates. In Fig. 5.4 with G2 dataset, all curves have almost the same look. They decrease for 2 to 4 workers, but with varying the degrees of improvement depending on the number of updates. These varying improvements are between 10% and 50%, respectively for 2000 and 10000 updates. Afterwards, the curves grow until 8 workers, then comes down. In the G3 dataset, the scalability becomes very high. The response time decreases depending on the number of workers. This improvement is about 30% and 40% when related to the number of updates. This behavior can be attributed to the number of affected vertices and clusters. When this number becomes small, the needed resources (e.g.,workers) should be small. Nevertheless, using many workers, DISCAN uses a lot of communication which increases the processing time.

Impact of the batch size. The main goal of this experiment is to evaluate the impact of batch size on the response time. Initially, we run DISCAN with different datasets (G2, G3, G4 and G5) and different batch sizes (between 2000 en 1000) on a cluster of 10 machines and using the default parameters ε=0.5, µ=3. Fig. 5.5 shows that the running time increases for all curves. This is explained by the initial graph size, as we noticed in Fig. 5.3, but also in function of the batch size. We can also notice that the increase depends on the size of the initial graph and the batch size. The increase rate is about 5%, 50% and 150%, respectively for G2, G4 and G5. This can mainly be explained by the graph size, since for each update DISCAN in the graph maintenance step check all affected vertices and edges in order to update the affected similarities. Therefore, this checking depends on the graph size. On the other hand, in the reclustering step, DISCAN first performs the clustering on the affected vertices. Then, it merges all the affected clusters in the master machine. Thus, the running time of the merging step depends on the number of affected edges because we must check all affected clusters. The affected clusters' checking requires using the communications between the master and other workers. In this way, when the batch is small, i.e. few affected vertices, a little communication should be used. Impact of the vertex type (internal vs external). Each update on an existing graph maybe in internal or frontier (external) vertices. With, this exper-iment we show the difference in terms of the running time between the updates in internal vertices and external vertices. We generated for G2, G3, G4 and G5 several internal and external batches of adding edges. After that, we ran DISCAN using them in order to compare their response times. As depicted in the Fig. 5.6 the updates on the frontier vertices are very expensive with regard to running time. This latters' gap trends to around 50% between internal and external vertices updates. This can be explained by the graph' maintenance step performed by DISCAN, that consumes a lot of processing time in the case of external vertices, compared to internal vertices. In fact, in the internal vertices all maintenance operations are done locally (in the same partition), whereas the graph maintenance is done in several partitions, which requires additional costs. These latter's are mainly related to the duplication of the frontier partitions and obviously the communication between all the affected workers. DISCAN Steps. We notice, from the previous experiment, that the response time depends on the type of vertices that can be internal or external. Especially, for the external vertices the response time is slow because graph ' maintenance is expensive, compared to internal vertices. re-clustering steps for both the internal and external vertices. The re-clustering step takes about 30% of the global running time in case of internal vertices, while this rate is about 50% in case of frontiers updates. On the other hand, the difference between internal and external updates in terms of running time during the re-clustering is about 3X. This is understandable because the external updates need additional computing time like the duplication of frontier vertices and the graph maintenance according to the neighboring partitions. The additional treatment sometimes requires several communications with other workers.

Conclusion

In this chapter, the presence of the third contribution accentuates that an incremental and distributed structural graph clustering algorithm is proposed. In fact, it represents an extension of DSCAN which is named DISCAN. The main goal of DISCAN is to perform a dynamic graph clustering incrementally. In this respect , we presented a full description of the proposed algorithm from graph maintenance to the incremental clustering. In addition, it is worth noting that an experimental study is performed at the end of this chapter which is mainly based on experimental results. Eventually, We can mention that DISCAN outperforms the rest of algorithms within this work ,and this efficientis is basically related to the running time and scalability.

Summary of contributions

This thesis deals with distributed and dynamic graph clustering from huge graphs. Firstly, it surveys the big data concepts and popular frameworks proposed in the literature. Secondly, it emphasizes the big graph clustering task with a proposal for a distributed graph clustering algorithm. Thirdly, to solve the problem of dynamic graph processing, it presents an incremental graph clustering algorithm for dynamic graphs. In this section, we first present some details about the comparative study on popular big data frameworks. Then, we summarize the basic keys of the proposed graph clustering algorithm, and finally, we present an extension of the proposed algorithm to deal with dynamic graphs.

Comparative study on big data frameworks

In this axis, we surveyed popular frameworks for large-scale data processing. After a brief description of the main paradigms related to Big Data problems, we presented an overview of popular Big Data frameworks including Hadoop, Spark, Storm and Flink. We presented a categorization of these frameworks according to some main features such as the used programming model, the type of data sources, the supported programming languages and whether the framework allows iterative processing or not. We also conducted an extensive comparative study of the above presented frameworks on a cluster of machines and we highlighted best practices while using the studied Big Data frameworks.

Distributed structural graph clustering

In this axis, we proposed a new distributed graph clustering for big graphs, termed DSCAN. This latter is a distributed algorithm and supports both centralized and distributed graphs. For the centralized graphs, DSCAN provides its own partitioning method. For the distributed graphs, DSCAN takes the already partionned graph as input. The clustering method used by DSCAN is based on structural similarity and gives some other knowledge like bridges and outliers. The experimental results performed in this contribution demonstrates the horizontal scalability in the case of big graphs. The efficiency of DSCAN is also shown in terms of running time in the case of big graphs. The outcomes of our comparative experiments confirm the efficiency of DSCAN to big graphs.

Dynamic graph clustering

In this contribution, we have extended DSCAN for big and dynamic graph clustering. The new extension is named Distributed and Incremental Structural Clustering Algorithm for networks DISCAN. This latter, unlike other dynamic graphs systems, provides dynamic graph maintenance. Also, DISCAN has covered all possible graph update operations, e.g., adding and deleting of vertices and/or edges. The efficiency related to running time of DISCAN has been demonstrated across experimental results. These results are performed in dynamic graphs in a distributed setting.

Future works and prospects

This thesis has covered two mains axes. In the first axis, we provided a large-scale graph clustering in a distributed setting. In the second axis, we touched the clustering of large and dynamic graphs. For each axis, an algorithm has been proposed to overcome the cited issues. The proposed algorithms have shown significant improvement compared to the existing algorithms. However, our algorithms have some challenges related to graph partitioning and data communication. Therefore, these challenges represent one of our future works. In this section, we propose some details about these ongoing work.

First axis: improvement of the partitioning method proposed by DSCAN

The proposed distributed graph clustering algorithm consists in dividing an input graph and performing a distributed graph clustering. However, the experimental results have shown that a significant impact of the partitioning scheme on the running time. This is explained by the number of frontier vertices. When the number is high, a cost of computation resources is added. Starting from this interpretation, the partitioning step improvement can automatically decrease the running time of the proposed algorithm. As a future work in this axis, we will study the existing distributed graph partitioning methods and compare them with our proposed algorithm. We also aim to propose a dedicated partitioning method to DISCAN.

Second axis: improvement of the communication

The communication is a primordial aspect in distributed computing. Both DSCAN and DISCAN use the bandwidth exhaustively which increase the running time in the case of several dense graphs. This issue will represent a future work in the short term. To overcome this issue, we will propose a shared memory instead of a message passing communication technique between workers in the cluster. The communication method proposed can decrease the bandwidth resource consumption and then decrease the running time.

Third axis: evolving graphs

This thesis deals with both static and dynamic graph clustering, but recently in some real-word applications, another kind of graphs called evolving graph has emerged. In fact, evolving graph consists on a series of snapshots of an initial graph, which evolves over time. In this axis, we aim to extend and adapt our proposed algorithm to deal with evolving graph clustering. We will study the proposed approaches that take into consideration evolving graphs during the graph clustering. Then, and according to the study carried out, we will try to adapt DISCAN in order to track the graph evolution and to maintain the graph clustering over time.
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 221 Hadoop system overviewHadoop is an Apache project founded in 2008 by Doug Cutting at Yahoo and Mike Cafarella at the University of Michigan[START_REF] Polato | A comprehensive view of Hadoop research-A systematic literature review[END_REF]]. Hadoop consists of two main components: (1) Hadoop Distributed File System (HDFS) for data storage and (2) Hadoop MapReduce, an implementation of the MapReduce programming model[START_REF] Dean | [END_REF]. In what follows, we discuss the MapReduce programming model, HDFS and Hadoop MapReduce.• MapReduce Programming Model : it is a programming model that was designed to deal with parallel processing of large datasets. MapReduce has been proposed by Google in 2004[START_REF] Dean | [END_REF]] as an abstraction that allows performing simple computations while hiding the details of parallelization, distributed storage, load balancing and enabling fault tolerance. The central features of the MapReduce programming model are two functions, written by a user: Map and Reduce. The Map function takes a single key-value pair as input and produces a list of intermediate key-value pairs. The intermediate values associated with the same intermediate key are grouped together and passed to the Reduce function. The Reduce function takes as input an intermediate key and a set of values for that key. It merges these values together to form a smaller set of values. The system overview of MapReduce is illustrated in Fig. 2.1.
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 234 Map phase: for each chunk having the key-value structure, the corresponding Map function is triggered and produces a set of intermediate key-value pairs. Combine phase: this step aims to group together all intermediate key-value pairs associated with the same intermediate key. Partitioning phase: following their combination, the results are distributed across the different Reduce functions.
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 2 Figure 2.1: MapReduce architecture
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 22 Figure 2.2: HDFS architecture

  2.1). The result of the Map tasks are passed to Reduce function which combines and reduces the data to generate the final result.

Figure 2

 2 Figure 2.3: Spark system overview

  .5, a storm program/topology is represented by a directed acyclic graph (DAG). The edges of the program DAG represent data transfer. The nodes of the DAG are divided into two types: spouts and bolts. The spouts (or entry points) of a storm program represent the data sources. The bolts
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 24 Figure 2.4: WordCount example with Spark
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 25 Figure 2.5: Topology of a Storm program and architecture
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 2 Figure 2.6: WordCount example with Storm
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 2 Figure 2.7: Samza architecture

Figure 2

 2 Figure 2.9: Flink architecture
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 2 Figure 2.10: WordCount with Flink
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 2 Figure 2.11: Batch Mode scenario
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 2 Figure 2.12: Stream mode scenario
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 2 Figure 2.13: Architecture of our personalized monitoring tool
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 2 Figure 2.14: Impact of the size of the data on the average processing time: case of small datasets
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 2 Figure 2.15: Impact of the size of the data on the average processing time: case of big datasets
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 2 Figure 2.16: Impact of the number of machines on the average processing time (WordCount workload with 50 Gb of data)
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 2 Figure2.17: Impact of iterative processing on the average processing time
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 2 Figure 2.18: Impact of the number of iterations on the average processing time (Kmeans workload with 10 million examples)
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 2 Figure 2.19: Impact of HDFS block size on the runtime (Kmeans workload with 10 million examples and 10 iterations)
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 22 Figure 2.20: Impact of the cluster manager on the performance of the studied frameworks
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 2 Figure 2.22: Impact of parallelism parameters on the performance of Flink
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 22 Figure 2.23: Impact of the memory size on the performance of Flink
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 2 Figure 2.25: Impact of the memory size on the performance of Spark
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 22 Figure 2.26: Impact of the number of slots on the performance of Hadoop
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 313 Attributed graph. An attributed graph can be an undirected or a directed graph. It is defined as G = (V , E, A e , A v ). As detailed in Definition 3.1, V being the set of vertices, E is the set of edges. Two variables A e and A v are added to the basic definition to materialize the attributed graph. Added variables represent respectively the attributes of vertices and edges in G. For more details, A e =(A e 1,A e 2,..A en ) represent the attributes of each edge in G while A v =(Av 1 ,Av 2 ,..) represent the attributes associated with all vertices in G.

Figure 3 .

 3 Figure 3.1: Vertex-centric programming model
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 32 Figure 3.2: Edge-centric programming model

Figure 3 . 4 :

 34 Figure 3.4: Block-centric programming model flow chart

2 (

 2 Structural similarity) The structural similarity between each pair of vertices (u, v) in E represents a number of shared structural neighbors between u and v. It is defined by σ (u, v).

4 )

 4 Definition 4.1.5 (Border) Let v c be a core vertex. v c has two lists of structural neighbors: (1) weak connected neighbors to v c , also called noise vertices (N(V c ) \ N ε (V c )), and (2) strong connected neighbors called reachable structured neighbors. In our work, reachable structured neighbors are called border vertices. N ε (V c ) represents the border vertices of a core vertex V c .
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 41 Figure 4.1: Running example ( ε = 0.7 and µ = 3).

Algorithm 2

 2 Distributed partitioning Input : Graph file GF as a text file, parameter (NP number of partitions) Output: P set of partitions BLADYG initialization according to the NP parameter Master machine: split GF into a set of sub-files GF foreach GF i ∈ GF do Assign GF i to worker W i end /* In parallel */ foreach Worker W i ∈ W do Get list of vertices and edges from GF i Find the list of frontier vertices from the neighbor workers end /* In parallel */ foreach Worker W i ∈ W do foreach Edge ∈ E do Graph G , parameters (µ, ε, α) Output: Clusters, Bridges, Outliers /* Divide G into subgraphs G = {G 1 G 2 ..G α } according to parameter α */ P ←-Partition (G,α) BLADYG initialization /* In parallel */ foreach P i ∈ P do Assign P i to W i end /* In parallel */ /* Step 1: Local clustering */ foreach Worker W i ∈ W do Let P i the current partition Find the frontier vertices in P i and duplicate them into neighbor partitions end /* In parallel */ foreach Worker ∈ W do Compute the structural similarity of a partition P i using V f list Retrieve local Cores and Borders in P i Build local clusters in P i Find local Bridges and Outliers in P i end /* Step 2: Merging */ All workers exchange theirs local clusters between them using Worker2Worker message foreach Worker W i ∈ W do if (C 1 ∩C 2 ∩ .. ∩C α = V; and ∃V i ∈ Core) then C ← Merge(C 1 ,C 2 ,..C α ) Send C to the master end else Send local clusters to the master end for

  Bridges,Outliers to the master using Worker2Master message

Figure 4 . 2 :

 42 Figure 4.2: Illustrative example

  Lemma 4.2.1 (Merging local clusters) Let C 1 and C 2 two sets of local clusters in different partitions P 1 and P 2 , respectively. ∃c 1 ∈ C 1 and ∃c 2 ∈ C 2 , Core(c 1 ) ∩Core(c 2 ) = / 0.

Lemma 4 . 2 . 2 (Proof 2

 4222 Outlier to Bridge) Let C 1 and C 2 two sets of local clusters in partitions P 1 and P 2 , respectively. ∃ C 1 and C 2 two clusters that belong to the two different sets of clusters C 1 and C 2 . In addition, ∃ o an outlier in both partitions P 1 and P 2 , with N(o) ∩ c 1 = / 0 and N(o) ∩ c 2 = / 0 If C i and C j (i = j) share an outlier o, this means that o is weakly connected with the two clusters C i and C j . Hence, according to Definition 4.1.7, o should be changed to a bridge vertex.Lemma 4.2.3 (Bridge to Outlier) Let c 1 and c 2 two local clusters in the partitions P 1 and P 2 , respectively. ∃ a bridge b according to only two clusters c 1 and c 2 , when c 1 and c 2 two clusters that will be merged into one cluster, b should be changed into an outlier.
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 4324 Figure 4.3: Partitioned graph G used in the running example in Section 4.1.2
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 444 Fig. 4.4 shows the runtime of the studied approaches with different datasets.
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 45 Figure 4.5: Impact of the number of workers on the running time (with ε = 0.5, µ = 3).
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 46 Figure 4.6: Impact of ε size on the running time of DSCAN
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 47 Figure 4.7: Performance of DSCAN phases
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 48 Figure 4.8: Impact of the partitionning step on DSCAN response time (ε=0.5, µ=3)
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 51 Figure 5.1: Different graph representations from static to dynamic graph

Algorithm 4

 4 Adding a new vertex Input : V new V old Output: G ∪V new Master machine: send (V new V old ) to all workers /* In parallel */ foreach Worker
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 534 Affected clusters) The affected vertices in several situations can affect the clustering schema. The Affected (concerned) clusters represent the sub set of clusters which contain one or more affected vertices, denoted by C a f f ected . C a f f ected =c ∈ C, ∃v ∈ (v AD ∪ v ID ) and v ∈ c.
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 52 Figure 5.2: Partitioned graph G (P1, P2, P3), affected vertices, edges when deleting vertex 3

Figure 5 .

 5 Figure 5.2 shows an example with a graph G with 3 partitions for which we deleted the vertex 3 (yellow vertex). Then, all affected edges E A (red edges) change their structural similarities since the vertices 0,2 and 5 (old neighbors of the deleted vertex 3) lost the vertex 3 as a neighbor, and all the edges associated with the vertex (3) are removed from G. This new update affects only a subset of vertices in G. The example shows that the vertex 2 (v 2 ∈ v A ) lost its core status, whereas vertex 9 keeps its core status (v 9 / ∈ v A ). Thus, E A can change

  |E A | |E| and the number of affected vertices |V A | |V |. In DISCAN, also the time complexity is based on three steps. (i) The graph maintenance, the complexity in this step is about O = |E|/n in worst case and O = 1 in best case, where n is the number of partitions. (ii) In the similarity computation the complexity is O = (min(|N(u)|, |N(v)|).|E A |), and (iii) also the clustering step manly depends on V A . Thereby the incremental clustering complexity is about O = (|V c ∈ V A | -|(v i , v j )| |V A | i, j=1

  3.1. Fig. 5.3 shows the running time of the tested algorithms with different graphs. In the first Algorithm 8 Incremental and Distributed Clustering Input : Initial graph G as a text file, parameter (NP number of partitions), a new update U Output: C, B, O /* Global affected vertices and clusters in each worker *the inital graph in each new update and get the affected vertices and the affected clusters */ Master machine: send a new update u to all workers /* In parallel */ foreach Worker i w i ∈ W do Update the current partition according to U Get E A Recompute the similarities of E A Get the immediately affected vertices V I Share the immediately affected vertices V I with all workers Get the indirectly affected vertices V Ind , and the affected clusters C A end /* Step 2: Local clustering schema maintenance */ /* Update the old local clustering schema according to the global affected vertices */ foreach Worker i w i ∈ W do Check Core vertices from GlobalAffectedVertices Check Border vertices from GlobalAffectedVertices Check affected clusters Check Affected bridges end /* Step 3: Merge the new updates */ foreach Worker i w i ∈ W do Merge all affected clusters from all workers Check new Bridge vertices according to the new clusters Check the remaining outlier vertices end /* Reset the global affected vertices and clusters in each worker */ GlobalA f f ectedVertices= / 0 GlobalA f f ectedClusters= / 0
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 53 Figure 5.3: Impact of the number of updates on the processing time of the pSCAN, ppSCAN and DISCAN (ε=0.5, µ=3)
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 54 Figure 5.4: Impact of the n workers' number on the processing time of DISCAN(ε=0.5, µ=3) 
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 55 Figure 5.5: Impact of the batch size on the running time (ε=0.5, µ=3)
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 56 Figure 5.6: Impact of the vertices' type (internal or external) on the processing time (ε=0.5, µ=3)
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 557 Figure 5.7: Performance of DISCAN steps (ε=0.5, µ=3) 
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  Reduce functions and (2) the Job Tracker which represents the master part and allows resource management and job scheduling/monitoring. The Job Tracker supervises and manages the Task Trackers [21]. In the second version of Hadoop called YARN, the two major features of the Job Tracker have been split into separate daemons: (1) a global Resource Manager and (2) per-application Application Master. In Fig. 2.2, we illustrate the overall architecture of YARN. As shown in this figure, the Resource Manager receives and runs MapReduce jobs. The per-application Application Master obtains resources from the Resource Manager and works with the Node Manager(s) to execute and monitor the tasks. In YARN, the Resource Manager (respectively the Node Manager) replaces the Job Tracker (respectively the Task Tracker) [Li 2015]. Note that other wellknown cluster managers are heavily used by Big Data systems. Taking as examples Mesos

• Hadoop MapReduce: There are two main versions of Hadoop MapReduce. In the first version called MRv1, Hadoop MapReduce is essentially based on two components: (1) the Task Tracker that aims to supervise the execution of the Map/
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Table

  3.1, we can see that all processing models use

	Graph pro-	Advantages		Limits		Partitioning
	gramming					method
	model					
	Vertex-centric	Easily allows par-	Communication	Random	hash-
	model	allelism		cost is high	based partition-
						ing
	Edge-centric	Easily allows par-	It is designed for	Random	hash-
	model	allelism and al-	a stream graph	based partition-
		lows the stream-	processing	ing
		ing graph pro-			
		cessing				
	GAS model	Easily allows par-	Communication	Random	hash-
		allelism		cost is high	based partition-
						ing
	Block-centric	Minimizes	the	An	additional	Specific partition-
	model	communication	cost of partition-	ing method
		costs		ing step	

Table 3 . 2
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	Framework Programming	Distributed	Communication	Dynamic/Static
		model	/Centralized		graph
	Pregel	Vertex-	Distributed	Message passing Static
		centric			
	GraphX	GAS	Distributed	Shared memory	Static
	BLADYG	Block-	Distributed	Hybrid	Dynamic
		Centric			
	Giraph	Vertex-	Distributed	Message passing Static
		centric			
	GraphIn	I-GAS	Centralized	Message passing Dynamic
	GraphMat	GAS	Centralized	Message passing Static
	PowerGraph GAS	Distributed	Shared memory	Static
	GraphLab	GAS	Distributed	Shared memory	Static
	Blogel	Block-	Distributed	Message passing Static
		Centric			
	Mezan	Vertex-	Distributed	Message passing Static
		centric			
	GPS	Vertex-	Distributed	Message passing Static
		centric			
	Trinity	GAS	Distributed	Shared memory	Static
	Hama	Vertex-	Distributed	Message passing Static
		centric			
	Pegasus	MapReduce Distributed	no communica-	Static
				tion	
	Giraph++	Vertex-	Centralized	Message passing Static
		centric			
	GRACE	Vertex-	Centralized	message passing	Static
		centric			

: Graph processing frameworks comparative study

Table 3 .

 3 3: Comparative study on the graph clustering algorithms some works related to the structural graph clustering in order to propose a new algorithm that supports both big and dynamic graphs.The functional principle of SCAN is based on graph topology. It consists of grouping vertices that share the maximum number of neighbors. Moreover, it computes the similarity between all the edges of the graph in order to perform the clustering. The similarity computation step in SCAN is quadratic according to the number of edges, which degrades SCAN performance especially in case of large graphs. Structural graph clustering is one of the most effective clustering methods for differentiating the various types of vertices in a graph. In the literature, several works have been proposed for the structural graph clustering to overcome the drawback of SCAN. In[Shiokawa 2015], Shiokawa et al. proposed an extension of the basic SCAN algorithm, namely SCAN++. The proposed algorithm aims to introduce a new data structure of directly two-hop-away reachable node set

	• Heuristic method

  4 .

	Dataset name	Number	of	Number of edges	Diameter Avg. CC
			vertices			
	G1:	California	1 965 206		2 766 607	849	0.04
	road network				
	G2: Youtube	1 134 890		2 987 624	20	0.08
	G3: Orkut	3 072 441		117 185 083	9	0.16
	G4: LiveJournal	3 997 962		34 681 189	17	0.28
	G5: Friendster	65 608 366		1 806 067 135	32	0.16
			Table 4.1: Graph datasets	
	1 https://github.com/eXascaleInfolab/pSCANdeploymet	
	2 https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN
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  2 to 0.8 for different graph data sets. As shown in Fig. 4.6, the response time is slightly dependent

				G1	G2
				G3	G4
		2,000			
	Runtime (S)	1,000 1,500			
		500			
		0	0.2	0.4	0.6	0.8
				Varyning	
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  partition Update the similarities of all affected edges Sent V 1 to all Workers: with AddExternalVertex message end end /* if any worker receives AddExternalVertex message with V f rom parameter, it saves V f rom as an external vertex */ remove v 1 from list of frontiers vertex if do not have any other connection with an external vertex. Then remove v 2 from the list of external vertices if and only if v 2 did not have any connections with an internal vertex.

	Algorithm 7 Delete an edge
	Input
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Key points

• We presented some definitions and features of graphs.

• We presented a related work on the graph processing model.

• We discussed the popular graph processing framework, and a theoretical study have been cared out on these frameworks.

• We presented a related work on the graph clustering, and a related work on structural graph clustering has been presented.

Publications

• W. Inoubli, L. Almada, T.L. Coelho da Silva, G. Coutinho, L. Peres, R.P. Magalhaes, J.F. de Macedo, S. Remove all external vertices associated with V Remove all vertices associated with V from P f rontier end Remove V Remove all edges associated with V end requested vertex is belonged to the partition and performs a specific treatment for each case like detailed in algorithm 6 (lines 3-9). When V is a frontier vertex to be deleted, if V a frontier vertex, we delete all external edges that are associated only with it. Else, if V is an external vertex we delete it from all list of neighbors of each vertex contains V as a neighbor.

Delete an edge

Like deleting of a vertex V , when we will delete an edge E, two cases occures according to the type of the latter (internal or cut). Each type should be performed with a special treatment as explained in Algorithm 7. Therefore, the master sends to all workers the edge E = (v 1 , v 2 ) and asked them to delete it. Thus, each worker asks them to check if E is an internal or cut edge. Like in the algorithm 7 lines (3)(4)(5)(6), when both vertices are in the same partition, then V 1 must be removed from a list of neighbors of V 2 and the same thing with v2. In the other case, where E is a cut edge and v 1 has belonged to the current partition (and v 2 in other partition) lines(7-9). Thus remove v 2 from a list of neighbors of v 1 , and

Key points

• We presented some definitions of dynamic graphs.

• We presented a distributed graph maintenance with dynamic graphs.

• We proposed a distributed and incremental graph clustering algorithm for dynamic and large-scale networks.

• An experimental study to evaluate the proposed incremental graph clustering algorithm for dynamic graphs. Chapter 6 

Conclusion and prospects

Goals

In this chapter, we conclude the thesis by summarizing our contributions. Then, we highlight the ongoing works we are conducting. 
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