Keywords: semántica de lenguajes de programación, cálculo-λ, sustituciones explícitas, estrategias de evaluación, evaluación lazy, máquinas abstractas, sistemas de tipos, teoría de residuos programming language semantics, λ-calculus, explicit substitutions, evaluation strategies, lazy evaluation, abstract machines, type systems, residual theory

Semántica dinámica de cálculos de sustituciones explícitas a distancia

Los cálculos de sustituciones explícitas son variantes del cálculo-λ en los que la operación de sustitución no se de ne a nivel del metalenguaje, sino con reglas de reescritura que la implementan. Nuestro principal objeto de estudio es un cálculo de sustituciones explícitas particular, el Linear Substitution Calculus (LSC), de nido por Acca oli y Kesner en 2010. Se caracteriza por el hecho de que las reglas de reescritura operan no localmente (a distancia). En esta tesis, en primer lugar, de nimos máquinas abstractas que implementan estrategias de evaluación en el LSC: call-by-name para evaluación débil y fuerte, call-by-value y call-byneed. Demostramos que dichas máquinas son correctas y preservan la complejidad temporal. En segundo lugar, de nimos una extensión de la estrategia de evaluación call-by-need en el LSC para evaluación fuerte. Demostramos que la estrategia es completa con respecto a call-byname, usando un sistema de tipos intersección no idempotente, y mostramos cómo extenderla para lidiar con pa ern matching y recursión. Por último, estudiamos la teoría de residuos y familias de radicales en el LSC. Para ello de nimos una variante del LSC con etiquetas de Lévy, lo que nos permite demostrar que cumple con la propiedad de Finite Family Developments. Aplicamos esta propiedad para obtener resultados de optimalidad, estandarización y normalización de estrategias en el LSC, y generalizamos algunos de estos resultados al marco axiomático de Deterministic Family Structures.

Computation and λ-Calculi

Computation is about solving problems by mechanically manipulating abstract representations of reality. We are exposed to computation since very early on in our daily lives. To count objects, for example, we may use our ngers as a model of reality: one nger stands for one object. is representation is abstract in that it discards all the irrelevant features of the objects, such as size or color, and it keeps only the relevant ones: in this case, the abstract quality we call quantity.

Computation is not inseparably tied to modern digital computers. Computers are of course invaluable tools for implementing computational processes, but the study of computation deals primarily with the underlying principles reigning the mechanical manipulation of abstract representations, regardless of their potential implementation. e Babylonians, for example, developed algorithms for solving equations nearly 4000 years before the advent of digital computers [?].

Far from being a purely theoretical endeavor, computation has profound practical consequences. In our times, so ware is ubiquituous. It governs most aspects of our societies, impacting not only in seemingly personal ma ers such as entertainment and communication, but also in public a airs such as news broadcasting, monetary transactions, weather forecasting; in safety-critical systems such as medical equipment, nuclear reactors, and avionics; and in sensitive emerging technologies such as self-driving cars and cryptocurrencies.

Traditionally, computation has been associated to the view of processes as mere inputoutput relations, that is, in the nal result that they yield when given particular input data. Contrary to this traditional point of view, computational processes exhibit complex behaviors, and usually many properties besides their output are of signi cant practical relevance. For instance, how can one be sure that a computational process will not take too long to arrive to the expected answer? How can one be sure that a third-party cannot tamper with a system so that it behaves maliciously? How can one design programming languages so that programs resemble declarative speci cations-rather than machine code listings-but in such a way that execution is still e cient?

Developing methods to answer these questions satisfactorily, and to aid the development (or terms for short). An expression of the form λx.t represents a function that maps the variable x to the term t, where t is in turn an expression that might contain occurrences of the variable x. An expression of the form f a denotes the application of the function f to the argument a.

For example, the expression λx.x represents the function that receives a parameter x and returns x, that is, the identity function. Occurrences of the variable x inside an expression of the form λx.t are said to be bound. Occurrences of variables that are not bound are said to be free. e set of variables that occur free in a term t is usually denoted by fvptq-for example fvpxpλy.yzqq " tx, zu. If a variable is bound, its scope is local, so its name is irrelevant to outside observers, and it may be renamed as desired. For example, λy.y is another way of writing the identity function: the terms λx.x and λy.y are formally identi ed. For this reason, and strictly speaking, λ-terms are not merely expressions, but actually equivalence classes of expressions, modulo renaming of bound variables.

e equivalence relation that identi es terms up to the names of its bound variables is called α-equivalence. We refer the reader to standard bibliography, for example [?, Ch. 1, Sec. 2], for the precise de nition of αequivalence, which requires some care. roughout this work we always freely rename bound variables, using Barendregt's variable convention [?, 2.1.13]: during de nitions and proofs, we may assume that bound variables have been chosen so that their names are apart from free variables and from each other.

In the λ-calculus there is only one possible kind of transformation, known as the βreduction rule: pλx.tq s Ñ ttx :" su e β-reduction rule means to re ect one of the most common mathematical practices: it expresses the fact that in order to apply a function (λx.t) to an argument (s) one should replace all the occurrences of the formal parameter (x) in the body of the function (t) by the actual argument (s). e expression ttx :" su represents the operation of substitution of all the free occurrences of the variable x in the term t by the term s. An example computation is given by the following sequence of rewrite steps 1 . Sequences of rewrite steps are sometimes called derivations or reductions:

pλf.f 2qpλx.x `xq Ñ pλx.x `xq 2 Ñ 2 `2
Even though the de nition of β-reduction re ects common mathematical practice, the λcalculus was novel, at the time it was conceived, in that substitution was an explicitly de ned operation. Explicit de nition allows one to reason rigorously about its behavior.

In this thesis we aim, in fact, to reason rigorously about the behavior of programs. For example, we may want to prove that a certain way of executing a program always reaches a nal answer, i.e. that it cannot "hang".

ese properties can be formally stated using the λ-calculus and related calculi, which are based crucially on the notions of substitution and βreduction. Even though these notions are simple from an intuitive standpoint, de ning them precisely is not without pitfalls, and the resulting systems turn out to be surprisingly complex.

A simple example of the richness of the λ-calculus is that, even though functions formally take only one argument, it still allows to simulate many-argument functions. is can be achieved by resorting to the well-known technique of currying, a ributed to Moses Schön nkel [?]. A function f px, yq of two arguments can be curried by regarding it as a single-argument function g such that gpxq is again a single-argument function, and in turn gpxqpyq " f px, yq. More in general, the λ-calculus is Turing-complete, which means that it is expressive enough to de ne all partial computable functions f : N k Ñ N, via a suitable encoding. See for example [?, Section 6.3] for a proof.

Another illustration of the complexity of the phenomena that arise in the λ-calculus is that sequences of rewrite steps can be in nitely long. e term Ω :" pλx.x xq pλx.x xq, for instance, may be rewri en to itself in a single β-reduction step: Ω Ñ Ω, which leads to the in nite sequence:

Ω Ñ Ω Ñ Ω Ñ . . .
Ensuring that computations do terminate, under appropriate conditions, is a kind of problem that we encounter very o en. For a further signi cant example of the kinds of structures that we are interested in, consider the term pλx.xxqppλy.yqzq, and note that there are many ways to rewrite it, depending on the order in which computation steps are performed. is gives rise to a reduction graph: Ensuring that computations always reach the same nal result, even in the presence of such "forks", is another kind of problem that we o en confront. We are also sometimes interested in the question of whether two di erent computations are equivalent in some sense. For example, all the three reduction sequences leading from the term pλx.xxqppλy.yqzq to the nal result zz seem to perform the same computational work, albeit in di erent order. ere is indeed a precise notion of equivalence, called permutation equivalence, which allows one to identify these three sequences. One of the most important theorems that we should mention about the λ-calculus is the Church-Rosser property, also known by the name of an equivalent property, con uence. We use the following standard notation: if R is a binary relation, then R ˚stands for its re exive and transitive closure, and R ´1 stands for its inverse. One may understand the λ-calculus as an equational theory by de ning β-equivalence as the least equivalence relation containing β-reduction. More precisely, two terms are said to be β-equivalent, wri en t " β s, whenever t pÑ Y Ñ ´1q ˚s. e following theorem is due to Alonzo Church and J. Barkley Rosser: eorem 1.1 (Con uence). If t " β s then t and s have a common reduct, that is, there exists a term u such that t Ñ ˚u and s Ñ ˚u.

Proof. See [?, eorem 11. 1.10].

A corollary of this theorem is that the λ-calculus is consistent as a logic, in the sense that not every β-equality holds-observe for example that x and y do not have a common reduct, so the equality x " β y cannot hold.

During the 1940s and 1950s, the group of Alonzo Church and his collaborators, including Stephen Kleene, J. Barkley Rosser, Haskell Curry, Leon Henkin, and Alan Turing, developed the core metatheory of the λ-calculus. ey studied not only the original λ-calculus, but also several of its variants, such as extensions and restrictions of the system, variants endowed with type systems, and other related formalisms, such as combinatory logics. See [?] for an excellent overview of the history of the λ-calculus. Standard references for the theory of the λ-calculus itself are the books by Henk Barendregt ([?]) and J. Roger Hindley and Jonathan P.

Seldin ([?]).

Interest in the λ-calculus was originally motivated by speci c theoretical concerns; in particular, in formally characterizing the notion of e ectively computable method. From this point of view, the λ-calculus a ains some kind of local optimum: it is simultaneously concise, reasonably readable, and Turing-complete.

Over the years, the λ-calculus has been the object of continued interest from both the logical and the computer science communities, and it is still an active area of research. e wide range of concerns addressed by these communities has shi ed the motivations to study the λ-calculus since its conception in the 1930s.

e Static View of the λ-Calculus: as a Logic

In this thesis we are mostly concerned with the ways in which programs may be represented and executed in run-time, so our point of view of the λ-calculus is chie y a dynamic one. Nevertheless, there is a complementary, static view of λ-calculi, in which the logical structure of programs is the primary interest. e interplay between the static and the dynamic views plays a major role in Chapters 4 and 5.

e static view of programs has its roots on mathematical logic. More speci cally, variants of the λ-calculus provided with type systems, are interesting from the logical point of view, because terms can be interpreted as encodings of deductions in formal logical systems. Generally speaking, a type is a category (in the ordinary sense of the word) that serves to classify terms according to their inherent structure or their observable behavior.

e notion of type can be traced back to the e ort by Bertrand Russell to mend the contradictions found in Go lob Frege's set theory [?, Appendix B]. e purpose of types in this se ing is to stratify the universe of discourse, di erentiating between objects and predicates about objects. is prevents contradictions that spring from diagonalization arguments, such as Russell's celebrated paradox: in the absence of such strati cation, one may consider the set of sets A :" tX | X R Xu and obtain a contradiction by noting that A P A holds if and only if A R A holds.

As part of the a empt to obtain consistent foundations for mathematics, Church introduced his simple theory of types in 1940 [?]. In this system, terms of the λ-calculus are assigned types by means of a formal deductive system. One may assume that there is a set of basic types (α, β, γ, etc.) and that for any two types A and B there is an arrow type A Ñ B, reserved for functions mapping elements of type A to elements of type B. Variables are intrinsically decorated with their type, writing x A for an occurrence of a variable of type A. Formal parameters of functions are also decorated with their corresponding type, writing λx A . t for a function that maps a parameter x of type A to the term t. For example, the identity function λx A . x A is of type A Ñ A, and an operator of function composition might be de ned as the term λg BÑC . λf AÑB . λx A . g BÑC pf AÑB x A q whose type is pB Ñ Cq Ñ ppA Ñ Bq Ñ pA Ñ Cqq.

e assignment of types to terms is de ned by means of a typing judgment of the form $ t : A, representing the knowledge that the term t is of type A. A term of type A is said to be an inhabitant of A. Valid judgments are de ned by the following inductive typing rules:

$ x A : A $ t : B $ λx A .t : A Ñ B $ t : A Ñ B $ s : A $ t s : B
For example, the third rule states that if we know that t is a term of type A Ñ B and s is a term of type A, then we may conclude that the application ts is a term of type B.

A remarkable feature of these rules is that types in the simply typed λ-calculus of Church can be thought as formulas of propositional logic 2 , and terms of type A can be thought as witnesses that the formula A is provable, that is, a proof of A. For example, the term λx α . λy β . x α is of type α Ñ pβ Ñ αq, and it can be interpreted as a proof of the propositional formula α Ñ pβ Ñ αq. A term λx α . t of type α Ñ β corresponds to a proof of the implication α Ñ β that proceeds by assuming a proof x of α as a hypothesis, and then providing a proof t of β, possibly depending on this hypothesis. On the other hand, if t is a proof of the implication α Ñ β, and s is a proof of the antecedent α, then ts denotes the proof of β obtained by modus ponens.

e realization that types correspond to formulas and terms correspond to proofs is sometimes known as the Curry-Howard isomorphism or the propositions as types correspondence.

e correspondence has far-reaching consequences. It can be extended to other logical constructs besides implication, including conjunction, disjunction, universal and existential quanti cation, and classical reasoning. It can also be extended to relate other logical/computational phenomena: for instance, reducing a term, i.e. performing a computation step t Ñ t 1 , corresponds to normalizing a proof. Achieving this realization took a number of decades, and it is the result of the work of many logicians, mathematicians, and computer scientists, including Haskell Curry [?], Robert Feys [?], Nicolas Goveert de Bruijn [?], and William Howard [?] Since the 1970s, logical systems have been systematically studied from the type-theoretical point of view suggested by the propositions as types paradigm. For instance, second order intuitionistic logic corresponds to a variant of the λ-calculus with parametric polymorphism, known as System F. It was independently discovered by Jean-Yves Girard [?] and John Reynolds [?].

In 1971, Per Martin-Löf proposed the system of intuitionistic type theory [?] as a foundation for constructive mathematics, which has become a eld of research on its own right. e correspondence between propositions and types has been extended to other logical systems, such as classical logic (in various works, remarkably [?], [?], [?]) and linear logic, an in uential system de ned originally by Jean-Yves Girard in [?]. It has also inspired other systems such as the Calculus of Constructions [?] and Homotopy Type eory [?].

e study of type systems as encodings of logical deductions laid the basis for the development of proof assistants. Proof assistants are computer programs that allow the user to write (using a formal language) mathematical de nitions, statements of theorems, and proofs of those theorems, and verify that the proofs are correct. Many modern proof assistants such as Coq [?], Isabelle [?], and Agda [?] are based on type theory. e e cient implementation of proof assistants poses some of the questions that motivate our work.

Most of the type systems that were mentioned above are examples of type systems à la Church. is means that types are an intrinsic part of the language. For example, in the simply typed λ-calculus of Church, types are an inseparable aspect of the syntax of terms, hence λx α .x α is the identity function of type α Ñ α, and λx αÑβ .x αÑβ is the identity function of type pα Ñ βq Ñ pα Ñ βq. Note that the two variants of the identity function are syntactically di erent terms. In this system, it does not even make sense to speak of a term without types such as λx.x.

ere is another very common kind of type system in which types are not an intrinsic part of the syntax of terms. ese are known in the literature as type systems à la Curry. In these systems, types are rather extrinsic annotations, representing properties that terms might or might not have. For example, in the simply typed λ-calculus of Curry, the expression λx.x is a well-formed term representing the identity function. e identity λx.x may be assigned many types: in particular it has type α Ñ α, and it also has type pα Ñ βq Ñ pα Ñ βq, while it does not have type α Ñ pβ Ñ αq. In type systems à la Curry typing judgments are typically hypothetical judgments of the form Γ $ t : A, where Γ is a typing context representing the hypotheses required to conclude that the term t has type A. Formally, contexts are lists of pairs of the form x : A giving types to the free variables in t. Typing rules are slightly adapted for the simply typed λ-calculus à la Curry:

px : Aq is a hypothesis in Γ Γ $ x : A Γ, x : A $ t : B Γ $ λx.t : A Ñ B Γ $ t : A Ñ B Γ $ s : A Γ $ t s : B
Note that an abstraction λx.t has type A Ñ B in a given context Γ whenever the body t has type B in the extended context Γ, x : A.

Intersection types. In most of this thesis, we will not work with type systems, since we are interested in the dynamic view of λ-calculi, and untyped λ-calculi are a be er t for this purpose. However, in Chapters 4 and 5, we will make use of intersection types to study the dynamic behavior of programs. Intersection types systems are, usually, type systems à la Curry, originally introduced by Mario Coppo and Mariangiola Dezani-Ciancaglini [?] to study termination. ese systems are characterized by the presence of a type constructor representing intersection: for any two types A and B there is a type A X B whose inhabitants are the terms that simultaneously have type A and type B. Intersection type systems also are accompanied with a relation of inclusion between types, A Ď B. Intersection and inclusion respect all the laws that one would expect from their suggestive notation; for example AXB Ď A. Besides the usual three rules of the simply typed λ-calculus, the two following typing rules are added:

Γ $ t : A Γ $ t : B Γ $ t : A X B Γ $ t : A A Ď B
Γ $ t : B e rst rule states that a term has type A X B if it simultaneously has types A and B. e second one states that a term of type A can be regarded as a term of type B whenever A is a "subset" of B. e remarkable feature of this type system is that typability characterizes exactly the seemingly unrelated property of normalization. A term t is said to be normalizing if there exists a nite reduction sequence t Ñ t 1 Ñ t 2 Ñ . . . Ñ t n such that t n is a normal form, i.e. there is no reduction step t n Ñ t n`1 . e surprising result is that a term t is normalizing if and only if there exist Γ and A such that Γ $ t : A. See [?, Part 3] for a complete presentation and a survey of many related intersection type systems and their properties.

In typical intersection type systems, the type constructor pXq is idempotent, that is, the relations A Ď A X A and A X A Ď A are both declared to hold. In contrast, in nonidempotent intersection type systems, the type constructor pXq is not declared to be idempotent. Non-idempotent intersection type systems were originally formulated by Philippa Gardner [?]. Pioneering works on this topic are also by Assaf Kfoury et al. [?, ?] and Daniel de Carvalho [?]. e interest of non-idempotent intersection type systems is that, just as their idempotent counterparts, they allow to characterize normalization properties but, as opposed to their idempotent counterparts, the characterization of normalization provides an explicit decreasing measure. is makes non-idempotent intersection types suitable for analyzing the dynamic properties of reduction in a quantitative fashion.

Intersection types play an important role in Chapters 4 and 5 of this thesis, in which we use a system based on non-idempotent intersection types as a technical tool to ensure termination, adapting a technique by Delia Kesner [?].

e Dynamic View of the λ-Calculus: as a Programming Language As we mentioned before, most of this thesis will be concerned with the dynamic view of the λ-calculus and related formalisms. e dynamic view of λ-calculi is interesting from the computational point of view, because it allows us to understand calculi as execution models for programming languages in general, and for functional programming languages in particular.

Historically, the understanding of programming language semantics has evolved from a concrete, machine-oriented perspective to an abstract, machine-independent perspective. When the rst programming languages were conceived, in the mid-1950s, they were seen as auxiliary tools to mechanically translate mathematical expressions into machine code. A programming language in this sense is a convenient way of abbreviating machine instructions, relying on the remarkable observation that a mathematical expression implicitly encodes a computation mechanism: the post-order traversal of the abstract syntax tree of an arithmetic expression corresponds closely to a sequence of instructions that calculate its value on a stackbased machine. is was the approach taken in languages like F

[?], developed at IBM by John Backus and his team. Although F was a revolutionary breakthrough at the time, it lacked an intrinsic notion of semantics, and it was meant to be understood through the semantics of the target machine.

On the other hand, programming languages can be de ned much more abstractly, as formal objects provided with rigorous notions of syntax and semantics. is perspective started to emerge in the 1960s with languages like John McCarthy's Lisp [?], based on the manipulation of symbolic expressions in a way independent of the underlying machine; APL [?], a mathematical notation devised by Kenneth Iverson to describe computational manipulations on arrays; and Algol [?], an international e ort to standardize the then incipient algorithmic notation.

In the 1960s, Peter J. Landin published a series of in uential papers [?, ?], proposing a family of programming languages, or rather a framework for understanding programming language semantics, named I . It was based on the λ-calculus, and it a empted to capture the common mechanism of abstraction underlying all existing programming languages. Landin provided a formal semantics for I by de ning an abstract machine to execute I programs, the SECD machine. He also discussed how the semantics of languages like Lisp and Algol could be understood by encoding Lisp and Algol programs in I . is abstract take on programming language semantics crystallized during the 1970s with the advent of functional programming languages. ese languages are characterized by being built upon a λ-calculus substratum. Some notable examples are Scheme [?], which introduced some novel ideas like lexical closures and control operators (in particular, call/cc); and the language ML [?], which was the rst one to implement a Hindley-Milner type system. It is remarkable that, still today, Scheme and ML are among the few relatively mainstream programming languages whose standard speci cations include a formally de ned semantics (see [?] and [?]). Another in uential work from this era was John Backus' 1977 Turing award lecture, Can Programming be Liberated from the von Neumann style?, in which he envisioned a style of programming based on the functional composition of smaller subprograms. ereby, programs respect well-de ned algebraic laws and they are subject to being reasoned about mathematically.

Since the 1970s, the community surrounding functional programming languages has been growing steadily, which has put forth the λ-calculus as the quintessential programming language. Most aspects of programming language theory, such as extensions with new features and compilation techniques, have been routinely studied by considering suitable adaptations of the λ-calculus. Features that were rst conceived and studied in theoretical se ings, such as parametric polymorphism, type-inference, inductive data-types, and pa ern matching, have been successfully exported to mainstream programming languages.

Let us end this subsection by mentioning a series of in uential functional programming languages that were designed in the 1980s and 1990s, namely Hope [?], Miranda [?], and Haskell [?], in which all functions are required to be pure. is means that they behave like actual mathematical functions: they are not allowed to perform side-e ects like mutation or external input/output. is restriction brings the execution model of these languages even closer to the pure λ-calculus. Some of these languages are also characterized by the fact that they use lazy evaluation, that is, the evaluation of expressions is delayed until their value is actually needed. e evaluation strategy known as call-by-need (introduced below in Sec. 1.1.2), closely related with lazy evaluation, is a recurring topic throughout this thesis.

Evaluation Strategies

In most of this thesis we will be interested in studying di erent "ways" of executing programs.

e way of executing a program depends on the execution model of the underlying programming language, whose design space has many dimensions. For example, one dimension that drew the a ention of early language designers is that there are various alternatives for implementing the mechanism of parameter passing. Suppose that f pxq is a function depending on a formal parameter x, and f peq represents a function call, where e is some expression.

e question is when the argument e should be evaluated, and what should happen when the function f accesses its parameter. Di erent choices lead to di erent "ways" of executing programs. ese ways are known as evaluation strategies. Some evaluation strategies may be more convenient than others in di erent contexts.

One very common evaluation strategy, call-by-value, establishes that e should be evaluated before performing the function call. Whenever f needs to use its parameter, it su ces to retrieve the parameter x, which is already bound to a fully evaluated value. Another possible evaluation strategy, call-by-name, establishes that the function call should be performed rst, leaving the expression e unevaluated. If f ever needs to access its parameter, it must retrieve the parameter x, which is bound to an unevaluated expression e, and then proceed to evaluate e to a value. For example, let f pxq " x `x and suppose that we want to evaluate the function call f p2 ˚3q. A call-by-value strategy would result in the following execution:

f p2 ˚3q Ñ f p6q Ñ 6 `6 Ñ 12
In contrast, a call-by-name strategy would result in the following execution:

f p2 ˚3q Ñ 2 ˚3 `2 ˚3 Ñ 6 `2 ˚3 Ñ 6 `6 Ñ 12
Note that, in call-by-value, the argument e is evaluated exactly once, and that holds even if f pxq is a constant function not depending on x. On the other hand, in call-by-name, the argument e is evaluated as many times as needed, and that may mean zero, one, or more times. As a consequence, call-by-value may perform unnecessary computational work (if the parameter is never used), while call-by-name may duplicate computational work (if the parameter is used more than once).

In his PhD thesis, Christopher Wadsworth proposed a mechanism for implementing parameter passing that combined the bene ts of call-by-value and call-by-name [?]. is results in the evaluation strategy known as call-by-need. Call-by-need establishes that, to evaluate a function call f peq, the call itself should be performed rst, leaving the expression e unevaluated, similarly as in call-by-name. However, all occurrences of the formal parameter x become bound to the same copy of the expression e, which is shared by means of pointers. If f ever needs to access its parameter, the expression e is evaluated once and forever. Subsequent accesses to the parameter, a er the rst one, merely retrieve the value, similarly as in call-by-value.

Using the call-by-need strategy to evaluate f p2 ˚3q, de ning f pxq " x `x as before, results in an execution that may be graphically depicted as follows, where ' Ñ e represents a pointer to an expression e:

f p2 ˚3q Ñ ' ((`' Ò Ò 2 ˚3 Ñ ' 0 0 `' Ð Ð 6 Ñ 6 `' Ð Ð 6 Ñ 6 `6 Ñ 12
In call-by-need, expressions are not limited to being trees anymore. Instead, they must become directed acyclic graphs, to account for the sharing of subterms. is means that, in a language like the λ-calculus, it is technically not possible to formulate call-by-need as a strategy, because it relies on a special representation for λ-terms. In 1997, Zena Ariola and Ma hias Felleisen [?] and, independently, John Maraist, Martin Odersky, and Philip Wadler [?], de ned a variant of the λ-calculus that extends the syntax of λ-terms with a let construct that allows to encode the sharing of subterms explicitly. us they were able to formulate call-by-need as a strategy internally in this language.

In this thesis we work with the Linear Substitution Calculus, a variant of the λ-calculus extended with explicit substitutions. An explicit substitution is a construct of the form trxzss which means, informally, that all the occurrences of the variable x in the term t are pointers to the term s. 3 e call-by-need strategy is formulated on terms with explicit substitutions. For example, the call-by-need evaluation of f p2 ˚3q as above can be rendered using this notation as follows:

f p2 ˚3q Ñ px `xqrxz2 ˚3s Ñ px `xqrxz6s Ñ p6 `xqrxz6s Ñ 6 `6 Ñ 12
Call-by-need, as we have mentioned, is a recurring theme of this thesis. e relevance of formalisms based on rewriting, such as the λ-calculus, for the purpose of studying evaluation strategies, is that they allow to formulate strategies precisely. is in turn makes it possible to reason about their behavior.

e somewhat vague notion of evaluation strategy has a rigorous counterpart, namely the notion of reduction strategy. A reduction strategy is a function that, given a term t, selects the computation step t Ñ s that should be performed next, provided that t is not already an answer4 . Reduction strategies have been studied from the theoretical point of view since long ago. Indeed, the notions of call-by-name and call-by-value in the λ-calculus were already known in the 1930s by Church and his collaborators. An in uential work from 1975 is by Gordon Plotkin [?], in which he established a precise relationship between call-by-name and call-by-value, showing how the call-by-name λ-calculus may be simulated in the call-by-value λ-calculus, and vice versa, using continuation-passing style translations.

ere are other well-known reduction strategies, besides call-by-name and call-by-value, such as le most-outermost, innermost, and parallel-outermost, to name a few. Most of these strategies have been also extended to formalisms other than the λ-calculus, such as term rewriting systems and higher-order rewriting systems. Standard reference material dealing with reduction strategies and their properties may be found for example in [?, Ch. 13] or [?, Ch. 9].

Abstract Machines and Reasonable Cost Models

In this thesis, and in particular in Chapter 3 we study the question of whether the Linear Substitution Calculus can be regarded as a cost model. e λ-calculus is a ne model of computation from the point of view of mere computability, in the sense that a function N k Ñ N is computable in a Turing machine if and only if it is computable in the λ-calculus. On the other hand, it is not clear whether the λ-calculus is a reasonable model of computation from the quantitative point of view of computational complexity. For example, can complexity classes, such as P, NP, EXP, etc. be characterized in terms of reduction in the λ-calculus? e λ-calculus is an abstract model of computation, but from the point of view of complexity it seems to be too abstract. One reason is that execution is based on performing "surgery" on terms, using the metalanguage operation of substitution. Substitution is more complex than it might seem at rst sight. On one hand, substitution may cause duplication or erasure of arbitrarily large terms. For example, the reduction step pλx.x xq t Ñ t t duplicates the arbitrary term t. Moreover, substitution must avoid variable capture; for example pλy.xqtx :" yu should not equal λy.y, as that would result in capturing the free variable y. Rather, in the expression pλy.xqtx :" yu the bound variable y should be renamed to a fresh variable, for example z. We then have that pλy.xqtx :" yu " pλz.xqtx :" yu and, as a result, pλy.xqtx :" yu " λz.y, thus avoiding capture. It is not immediate to implement this kind of operations in a traditional model of computation like a Turing machine or a randomaccess machine: their execution models are based on a radically di erent mechanism, namely mutating an array (or a "tape") whose entries contain one of a nite number of symbols. e fact that the λ-calculus is "too abstract" is, on one hand, of practical concern. e mismatch between the high level of abstraction of the λ-calculus and the lower level of abstraction of actual computers means that implementing the λ-calculus e ciently is a non-trivial task. Understanding and reasoning about these implementations is hindered by the fact that actual computers are built on complex hardware. Instruction sets vary radically from one processor architecture to another, they are usually ridden with corner cases, and their speci cations are seldom formal or complete.

In order to bridge the gap between higher-level languages like the λ-calculus and lowerlevel machines, many abstract machines have been proposed. An abstract machine is a formalism de ned by a set of possible states that the machine might be in, and a binary relation of transition between states. Formally speaking, this is not unlike the de nition of a rewriting Chapter 3 of this thesis is dedicated to studying abstract machines that implement various evaluation strategies in the Linear Substitution Calculus. In particular, the abstract machines that we propose implement their corresponding evaluation strategies preserving time complexity. For example, n steps of call-by-name evaluation in the Linear Substitution Calculus are simulated by Opc¨nq transitions of the Krivine machine, where c is a factor proportional to the size of the starting term. Given that the Krivine machine can be reasonably implemented in a traditional model of computation, this in turn justi es that call-by-name evaluation in the Linear Substitution Calculus is a reasonable cost model.

Weak vs. Strong Reduction Strategies

In this thesis, and in particular in Chapters 3, 4 and 5, we design and we study evaluation strategies that are well-suited for the e cient implementation of reduction with open expressions.

In typical programming languages, only closed expressions are ever evaluated. An expression is closed when it has no free variables. For example, pλx. x `xq 3 is a closed expression that evaluates to 6. On the other hand, px `xq is not a closed expression, because it has free occurrences of the variable x. In a typical programming language like OCaml or Haskell, attempting to evaluate an expression with free variables does not even make sense, and it leads to a compile-time error.

In contrast, the β-reduction rule of the λ-calculus may take place under an arbitrary context. is means that, in the λ-calculus, reduction steps may be performed anywhere inside a term, so one may have to deal with open expressions, in which variables may occur free. Formally, β-reduction is de ned as a binary relation (Ñ) over the set of λ-terms T e , that is, Ñ Ď T e ˆT e , by means of a formal deductive system that includes four inductive rules:

β pλx.tqs Ñ ttx :" su t Ñ t 1 µ t s Ñ t 1 s s Ñ s 1 ν t s Ñ t s 1 t Ñ t 1 ξ λx.t Ñ λx.t 1
e rst rule, pβq, speci es the actual mechanism by which computations proceed.

e remaining rules, pµq, pνq and pξq, merely specify what are the subexpressions in which computations may take place. Rules like pβq, embodying the actual mechanism of computation, are called rewriting rules or computation rules. Rules like pµq, pνq and pξq are called congruence rules. Congruence rules state that a reduction relation like pÑq enjoys certain closure properties under a number of term constructors. For instance the pµq rule allows one to embed a reduction step t Ñ t 1 below the context ls, thus obtaining a reduction step ts Ñ t 1 s. Likewise, the step λx.zppλy.yqxq Ñ λx.z x might be justi ed by applying the computation rule pβq to conclude that pλy.yqx Ñ x holds, and then applying the congruence rules pνq and pξq to embed the computation under the context λx.z l. It should be clari ed that the distinction between computation and congruence rules is not clear-cut, but still it is a standard and very useful one.

We have mentioned before that the execution model of traditional programming languages does not make sense for terms with free variables: only closed terms may be evaluated. As a necessary consequence, traditional programming languages do not allow performing computations under arbitrary contexts. e reason is that the subexpression t in the expression λx.t may not be a closed term, since it possibly involves free occurrences of x. As a result, traditional programming languages use weak reduction, meaning that the congruence rule corresponding to pξq is missing, so that evaluation under lambdas is forbidden. For example, a program like λx.pλy.yqx is already considered to be an answer in a language like OCaml or Haskell, even though λx.pλy.yqx Ñ λx.x is a valid β-reduction step in the λ-calculus. Evaluation strategies for traditional programming languages, and speci cally call-by-name, call-by-value, and call-by-need, all implement weak reduction. Whenever we wish to emphasize the opposition between the usual notion of reduction in the λ-calculus, which allows the pξq congruence rule, and weak reduction, which forbids the pξq rule, the former is called strong reduction.

Evaluation strategies for strong reduction are a mostly neglected topic. A few notable exceptions are Pierre Crégut's strong version of the Krivine Abstract Machine [?] and Benjamin Grégoire and Xavier Leroy's [?] formulation of strong reduction based on the recursive application of a weak evaluator.

However, strong reduction is a central component in the implementation of modern proof assistants based on constructive type theory, such as Coq and Agda. A distinctive characteristic of constructive type theory is the presence of dependent types: expressions that represent types and may depend on terms. For example the proposition stating the fact that the natural number 2 is even may be encoded as a type IsEven(2), whose inhabitants represent witnesses of this fact. In this kind of systems, a type typically has many possible representations; for example IsEven (2) and IsEven(1 + 1) are equal types by de nition. As a consequence, the type checking engine must perform computations to decide type equality. Moreover, types may depend on assumptions in the form of symbolic (free) variables, and they may as well depend on functions wri en using lambda abstractions.

is means that reduction must be able to deal with open terms, i.e. terms that might contain free variables, in full generality, making strong reduction an indispensable feature.

In the last decade, proof assistants have received increasing a ention, as a result of such milestones as the formalization of the Four-Color theorem [?] and the Feit-ompson theorem [?] by the team of Georges Gonthier, the formal veri cation of the C compiler Com-pCert [?] by the team of Xavier Leroy, the formalization of the Kepler conjecture [?] by the team of omas Hales, and the Univalent Foundations Program [?]. ese developments indicate that proof assistant technology has become mature enough to undertake signi cant projects. On the other hand, the fact that formalization projects have grown larger and more complex has aroused concern regarding the e ciency of proof assistant implementations. Most proof assistants currently rely either on ad hoc evaluation mechanisms that are not well-documented, or on relatively straightforward but ine cient mechanisms. Given this situation, it seems apparent that proof assistants could bene t from solid theoretical foundations to support their e cient implementation.

We are concerned with the e cient implementation of strong reduction at various points in this thesis. In Chapter 3, we propose an abstract machine for strong call-by-name reduction, based on a reformulation of Crégut's abstract machine. Chapter 4 is devoted to studying an extension of the call-by-need strategy for strong reduction.

Normalization

In this thesis we are interested in developing reduction strategies for evaluating programs, and in showing that these strategies are "good" in various precise senses. One important question is whether a reduction strategy is normalizing. Informally, a reduction strategy is normalizing if following the strategy always leads to a answer, whenever possible. For example, de ning I " λx.x as the identity function, and Ω " pλx.xxqpλx.xxq as the non-terminating term par excellence, then following the call-by-value strategy does not terminate for the term pλx.IqΩ, for it repeatedly leads us to choose to evaluate the argument Ω: pλx.IqΩ Ñ pλx.IqΩ Ñ pλx.IqΩ Ñ . . . is example a ests that the call-by-value strategy is not normalizing, because it fails to reach an answer, even though reaching an answer is possible. Contrast this with what happens using the call-by-name strategy, which reaches an answer in just one step: pλx.IqΩ Ñ I Indeed, the call-by-name strategy is normalizing in general, which is a well-known fact 5 .

In Chapters 4 and 5 we prove, using a di erent technique, that a strong variant of the callby-need strategy is normalizing. In Chapter 7 we give su cient conditions to ensure that a strategy is normalizing, and we apply it to a variant of the call-by-need strategy.

Residuals and Developments

In order to prove that reduction strategies are "good" in various senses, one must confront more fundamental questions. For example, one may want to prove that a given computation requires to perform less computational work than any equivalent computation. is leads to a fundamental question: when can one say that two computations are equivalent?

In this thesis, especially in Chapter 7, we use an established notion of equivalence between sequences of rewriting steps, the notion of permutation equivalence, due to Jean-Jacques Lévy [?]. Informally, two sequences of rewriting steps are permutation equivalent if they perform essentially the same computation steps, although possibly in di erent order. For example the following three reduction sequences are permutation equivalent: pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq Ñ zppλy.yqzq Ñ zz pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq Ñ ppλy.yqzqz Ñ zz pλx.xxqppλy.yqzq Ñ pλx.xxqz Ñ zz

To de ne permutation equivalence precisely, the notion of residual has to be introduced. First, a redex in the λ-calculus is a subterm of the form pλx.tqs. For example, the term pλx.xxqppλy.yqzq has two redexes, respectively underlined and overlined. Each redex is associated with one-and only one-computation step. For example, contracting the underlined redex corresponds to the step: pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq while contracting the overlined redex corresponds to the step:

pλx.xxqppλy.yqzq Ñ pλx.xxqz

Conversely, each computation step is associated with one-and only one-redex, so sometimes, both in the literature and in this thesis, redexes and steps are identi ed. If R : t Ñ s and S : t Ñ u are steps going out from the same starting term t, the set of residuals of S a er R, denoted by S{R, can be de ned (semi-formally) as follows:

1. Mark the lambda of the redex S in the starting term t (for example by underlining it).

2. Execute the step R on the marked term, obtaining the target s of the step R, which now has some marked lambdas.

3. A step S 1 starting from s is a residual of S a er R, that is S 1 P S{R, if and only if the lambda of S 1 is marked.

For example, let: Note that a step may have zero, one, or more residuals. For example, S has more than one residual a er R, in which case we say that R duplicates S. On the other hand, if we let R : pλx.yqpIzq Ñ y and S : pλx.yqpIzq Ñ pλx.yqz then S has no residuals a er R, that is, S{R " ∅, in which case we say that R erases S. If R 1 is a residual of R a er S, we say that R is an ancestor of R 1 before S. Another important phenomenon is creation. In a sequence of two steps RS, we say that R creates S if it has no ancestor before R. In the following three examples, the second step is created by the rst step: pλx.xqpλy.zyqt Ñ pλy.zyqt Ñ zt pλx.λy.zxyqts Ñ pλy.ztyqs Ñ zts pλx.zpxz 1 qqpλy.tq Ñ zppλy.tqz 1 q Ñ z tty :" z 1 u To de ne residuals formally, one may proceed as above, introducing an auxiliary λ-calculus with marked lambdas (as we do in Def. 2.70), or directly by case analysis [?, pp. [START_REF] Mascari | Head linear reduction and pure proof net extraction[END_REF][START_REF] Mccarthy | LISP 1.5 programmer's manual[END_REF]. In any case, one obtains the same notion of residual. e set of residuals S{R can be generalized to the case in which, rather than a single step R, one has a sequence R 1 . . . R n . Namely, one declares that S n P S 0 {R 1 . . . R n if and only if there exist steps S 1 , . . . , S n´1 such that S i P S i´1 {R i for all 1 ď i ď n.

R
is allows one to give the following notion of development. Let M be a set of steps, all starting from the same initial term t. A possibly in nite sequence R 1 . . . R n . . . is a development of M if for every 1 ď i ď n there exists a step S P M such that R i P S{R 1 . . . R i´1 . For example, in the diagram below, the sequence RS 1 S 1 2 , the sequence RS 2 , and the sequence SR 1 are three di erent developments of tR, Su: yy Moreover, we say that a development of a set M is complete if it is maximal. For instance, RS 1 S 1 2 is a complete development of tR, Su, while RS 2 is not a complete development of tR, Su because it may be extended to form a longer development RS 2 S 1 1 of the set tR, Su. Note that some sequences are not developments of any set M. For example, let RS be any sequence such that R creates S, e.g. IIx Ñ Ix Ñ x. en RS cannot be the development of any set.

pλx.xxqpIyq
One of the most important theorems about developments is the Finite Developments theorem, stated below.

e rst item was already known to Church and Rosser [?], while the second and third items are due to Lévy [?]: eorem 1.2 (Finite Developments). Let M be a set of steps with the same source t in the λ-calculus. en: 1. Finite. ere are no in nite developments of M.

2. Co nal. If ρ and σ are two complete developments of M, they have the same target, that is there exists a term s such that ρ, σ : t Ñ ˚s.

3.

Equivalent. If ρ and σ are two complete developments of M and T : t Ñ t 1 is any step then T {ρ and T {σ are the same set.

Proof. See [?, p. 33].

Relying on the Finite Developments theorem as a cornerstone, an equivalence relation on reduction sequences may be de ned. Permutation equivalence (") is the least equivalence relation such that ρστ " ρσ 1 τ for any derivations ρ, σ, σ 1 , τ such that σ and σ 1 are complete developments of the same set M.

ere are many alternative ways to characterize permutation equivalence [?, ?, ?]. 6 One way is by proposing a standardization procedure, which converts an arbitrary sequence of rewriting steps into standard form. A reduction in standard form is the canonical representative of its permutation equivalence class, hence two reduction sequences are permutation equivalent if and only if they have the same standard form.

Sharing and Optimality

In Chapters 6 and 7 we will study reduction strategies from the point of view of optimality, i.e. on whether they yield optimal reductions. ere are two related but slightly di erent senses of the word optimality. For clarity, we distinguish these two meanings by referring to them as length-optimality and work-optimality respectively.

On one hand, a reduction t 0 Ñ t 1 Ñ . . . Ñ t n from a term t 0 to an answer t n is said to be length-optimal if it is the shortest reduction leading from t 0 to an answer. In the λcalculus, de ning a reduction strategy that yields length-optimal reductions in this sense is trivial from a strictly mathematical point of view. Unfortunately, as one may suspect, there is no computable length-optimal strategy [?, Prop. 13.5.2].

On the other hand, a reduction t 0 Ñ t 1 Ñ . . . Ñ t n from a term t 0 to an answer t n is said to be work-optimal if it does not duplicate computational work and it does not perform unnecessary computational work.

estions related to optimality, in both of the senses, are far from straightforward to answer. In fact, the notion of work-optimality is not even straightforward to de ne, as it requires to formally specify what it means to say that computational work be duplicated or unnecessary. For the moment we content ourselves with this informal de nition of work-optimality.

e question of optimal reduction was rst studied in the 1970s by Jean Vuillemin [?], John Staples [?], and Jean-Jacques Lévy [?, ?] together with Gérard Berry [?], and later extended and generalized by others.

One may expect that the notions of length-optimality and work-optimality coincide. However, in the λ-calculus there are terms that admit length-optimal reductions, but no workoptimal reductions. Consider for example the following term, where I " λx.x stands for the identity as usual: pλx.xpxIqqpλy.pλz.zzqpyIqq ere are only nitely many reductions pλx.xpxIqqpλy.pλz.zzqpyIqq Ñ ... Ñ I so it is easy to see that there exists a length-optimal reduction. Moreover, there are only two possibilities for the rst step, and it can be checked that none of them leads to a work-optimal reduction: 1. On one hand, we may reduce the expression that is underlined in the diagram below.

But doing so duplicates the computational work required to evaluate the overlined ex-pression, necessarily leading to a reduction that is not work-optimal: pλx.xpxIqqpλy.pλz.zzqpyIqq Ñ pλy.pλz.zzqpyIqqppλy.pλz.zzqpyIqqIq 2. On the other hand, we may reduce the expression that is underlined in the diagram below. But this duplicates the overlined subexpression yI, and this in turn leads to duplicating the computational work to evaluate II: pλx.xpxIqqpλy.pλz.zzqpyIqq Ñ pλx.xpxIqqpλy.pyIqpyIqq Ñ pλy.pyIqpyIqqppλy.pyIqpyIqqIq Ñ pλy.pyIqpyIqqppIIqpIIqq

With regard to the relationship between optimality and other evaluation strategies, it can be noted that call-by-name and call-by-value do not necessarily yield work-optimal reductions. e call-by-name strategy is not optimal because it may duplicate work, as in the following example, in which the underlined expression is duplicated and then evaluated twice: pλx.xxqpIIq Ñ IIpIIq Ñ IpIIq Ñ II Ñ I e call-by-value strategy is also not optimal, because it may perform unnecessary work, as in the following example, in which the underlined expression is evaluated, even though it is not needed: pλx.IqpIIq Ñ pλx.IqI Ñ I More in general, Lévy showed in his PhD thesis that no reduction strategy consistently yields work-optimal reductions for the λ-calculus [?]. Nevertheless, this does not rule out the possibility that an implementation of optimal reduction may exist. An optimal implementation, should it exist, would need to be based on another representation for λ-terms, other than trees. For example, one may conceive representing terms using graphs, as was done for call-by-need.

Considering the impossibility results that we have mentioned so far, it is perhaps surprising that it is actually possible to de ne an e ective optimal implementation for the λ-calculus. In his thesis, Lévy gave su cient conditions that an evaluation mechanism should meet in order to ensure work-optimality, whenever possible. John Lamping later proposed an e ective implementation [?], based on sharing graphs, that ful lls these conditions, yielding an optimal implementation of the λ-calculus.

We return to the topic of optimality in later chapters. Studying optimality for the Linear Substitution Calculus is one of the primary motivations behind Chapters 6 and 7.

Explicit Substitutions

As we have mentioned before, the main object of study in this thesis is a variant of the λcalculus called the Linear Substitution Calculus. e λ-calculus has one rewriting rule, the β-reduction rule:

pλx.tqs Ñ ttx :" su Its de nition relies on the auxiliary operation of substitution, wri en ttx :" su, which belongs to the metalanguage. e operation of substitution is too coarse-grained. e notation ttx :" su suggests that all the free occurrences of x are simultaneously replaced by s. Implementations, however, rarely perform the textual replacement of the formal parameter x by the actual argument s simultaneously. Instead, they rely on an auxiliary data structure, called an environment, that keeps track of variable bindings. An implementation of the β rule would typically create an association rx Þ Ñ ss in the environment, mapping the variable x to the value s. is creates a signi cant gap between theory and practice.

In order to bridge this gap, many works have considered extensions of the λ-calculus incorporating a construct to allow for local de nitions, a feature known by various names (such as "let constructs", "closures", or "explicit substitutions", among other names, depending on the point of view). For example, Nicolas Goveert de Bruijn [?] extends the λ-calculus with a facility to de ne constants, and Pierre-Louis Curien [?] studies a calculus of closures in order to model environments. A milestone paper in this line was by Martin Abadi, Luca Cardelli, Pierre-Louis Curien and Jean-Jacques Lévy [?], in which they propose a calculus with explicit substitutions, the λσ-calculus.

During the 1990s, a plethora of calculi with explicit substitutions emerged, including λx by Kristo er Rose [?, ?], λs by Fairouz Kamareddine and Alejandro Ríos [?], λχ by Pierre Lescanne and Jocelyne Rouyer-Degli [?], λυ by Zine-El-Abidine Benaissa et al. [?], and many other calculi. eir de ning characteristic is that they include a rewriting rule corresponding to the β-reduction rule in the λ-calculus, sometimes called beta: pbetaq pλx.tqs Ñ trxzss with the di erence that trxzss is an explicit substitution operator, internal to the object language. is formally means that the syntax of terms is extended to include not only variables, applications, and abstractions, but also explicit substitutions of the form trxzss. In order to implement the explicit substitution operator, these calculi include also other rewriting rules that indicate the mechanism by which substitutions are performed. For example, a typical calculus with explicit substitutions may include rewriting rules to specify how substitutions should act when confronted with variables, and how they should propagate over abstractions and distribute over applications: In fact, the beta rule plus the four rewriting rules var1, var2, abs, and app form the system known as λx.

pvar1q
An interesting consequence of including substitutions explicitly in the object language is that it allows one to model the sharing of subterms. For example, in the following reduction sequence, pλx.yxxqppλz.zqyq Ñ pyxxqrxzpλz.zqys Ñ pyxxqrxzzrzzyss the rst reduction step binds the variable x to a term pλz.zqy. Here it is appropriate to think of the variable x as a pointer referencing a memory location, and of the explicit substitution rxzpλz.zqys as the memory cell itself.

e second reduction step a ects the term pλz.zqy, modelling a destructive update of shared memory.

ere are many desirable operational properties that an ideal calculus with explicit substitutions should meet. A crucial property is simulation of β-reduction: if a term t reduces to s in the λ-calculus, then t should also reduce to s in the calculus with explicit substitutions in question. For example, the β-reduction step pλx.λy.xqz Ñ λy.z is simulated by the following three reduction steps in λx: pλx.λy.xqz Ñ pλy.xqrxzzs Ñ λy.xrxzzs Ñ λy.z A closely related property is known as full composition: a term built using the explicit substitution operator trxzss should reduce to the actual substitution ttx :" su. For example, in the calculus λx, the term pxxqrxzys reduces to yy in three steps: pxxqrxzys Ñ xrxzys xrxzys Ñ y xrxzys Ñ yy e full composition property is subtler than it seems at rst sight, since the term t may itself have other occurrences of the explicit substitution operator. For example, λx does not enjoy full composition-it is easy to check that zrzzxsrxzys does not reduce to zrzzys. is suggests that the following rewrite rule should be added to have the full composition property: psubq trxzssryzus Ñ tryzusrxzsryzuss if x R fvpuq but unfortunately this rule leads to non-terminating behavior, since the right-hand side of the rule is an instance of the le -hand side:

trxzssryzus Ñ tryzusrxzsryzuss Ñ trxzsryzussryzurxzsryzusss Ñ . . .

In fact, there is another important operational property that calculi with explicit substitutions should ideally enjoy, known as preservation of strong normalization (PSN). Recall that a term t is said to be strongly normalizing if there are no in nite reduction sequences t Ñ t 1 Ñ t 2 Ñ A calculus with explicit substitutions is said to enjoy PSN if whenever t is strongly normalizing in the λ-calculus then t is also strongly normalizing in the given calculus with explicit substitutions. Around 1995, the question of whether the λσ calculus enjoyed PSN was open, and the community was hoping for a positive answer, when Paul-André Melliès famously exhibited a counterexample [?].

Most of the research on the eld of explicit substitutions during the late 1990s and 2000s was concerned with nding a calculus with explicit substitutions verifying a number of desired good properties. Super cially, this means that the calculus should enjoy good operational properties, such as con uence, PSN, and full composition. More profoundly, this means that the operational behavior of the calculus should be backed up by an appropriate semantical justi cation.

As an answer to this quest, Delia Kesner and Stéphane Lengrand proposed an explicit substitution calculus λlxr with explicit operators for weakening and contraction, whose operational semantics is justi ed by a sound and complete correspondence with linear logic proof nets [?, ?]. is calculus enjoys good operational properties. ese ideas led Delia Kesner and her collaborators to develop further explicit substitution calculi in close correspondence with linear logic proof nets, the prismoid of resources [?]-with Fabien Renaud-, which in turn lead to the Linear Substitution Calculus [?]-with Beniamino Acca oli.

e Linear Substitution Calculus e object of study of this thesis, the Linear Substitution Calculus (LSC), was introduced by Beniamino Acca oli and Delia Kesner in 2010 [?], inspired by previous calculi by Kesner et al. [?, ?, ?]. It also turns out to be similar to an earlier calculus by Robin Milner [?].

Why LSC?

• Its formulation is simpler than previous calculus of explicit substitutions, having only three rules.

• It is semantically orthogonal in the sense of residual theory [?]. Previous explicit substitution calculi do not have well-behaved residual theories.

• Its operational semantics can be justi ed via a translation into linear logic proof nets [?].

e starting point of the LSC is a representation of λ-calculus terms as λ-graphs. Roughly speaking, λ-graphs are λ-terms wri en using graph syntax. e syntax of λ-graphs is given by graphs that are built using nodes (') connected by three kinds of links: variable links (v), application links (@), and abstraction links (λ):

Variable link

Application link Abstraction link

' v ' ' @ Ù Ù ! ! ' ' ' λ ! ! ' S S

'

Variable occurrences in the λ-calculus are represented using variable links. e target of a variable link points to a node representing the current binding of the variable, i.e. its value. An application link corresponds to an application in the λ-calculus: the le target points to a node representing the function, and the right target points to a node representing the argument. An abstraction link corresponds to a lambda abstraction in the λ-calculus: the incoming arrow from the bo om le is connected to a node representing the name of the bound variable, while

' λ ' λ ' @ ! ! ' ' v G G @ ' ' v v ' G G ' G G Figure 1.
1: e λ-term λx.λy.ypyxq represented as a λ-graph the target at the bo om right points to the body of the abstraction. For example, the λ-graph representation of the λ-term λx.λy.ypyxq is shown in Figure 1.1. An advantage of λ-graphs is that, much like explicit substitutions, they allow to easily represent shared subterms. For instance, the term pλx.xqpλx.xq may be represented by the following λ-graph:

' @ ' ' v D D v r r ' λ ' v ' G G
Compare this with a calculus with explicit substitutions, in which the term pλx.xqpλx.xq may be rendered as pyyqryzλx.xs.

In this thesis we are not interested in representing λ-terms directly using λ-graphs. We should warn the reader, however, that not every λ-graph is a valid λ-term: rather, λ-graphs must ful ll some correctness conditions to be considered valid. Moreover, depending on the exact representation chosen, other kinds of links besides variable, application, and abstraction may be needed-speci cally, weakening links may be needed to represent an abstraction like λx.y in which the bound variable does not occur in the body. For the details, the interested e Linear Substitution Calculus results from the a empt at representing λ-graphs back in a more traditional term syntax, using an explicit substitution operator to allow the possibility of shared subterms. Terms of the LSC are thus variables x, y, z, . . ., abstractions λx.t, applications ts, and explicit substitutions trxzss. However, LSC is not a typical calculus with explicit substitutions: there are two important traits that set LSC apart.

' @ ' ' v D D v r r ' λ ' v ' G G Ý ÝÝ Ñ ' @ Ñ Ñ & & ' ' λ v ' ' v λ ' G G ' v ' G G
Distant Interaction. e rst important di erence between LSC and typical calculi with explicit substitutions is that rewriting rules in LSC operate at a distance. As already mentioned, terms in the LSC are intended to represent λ-graphs. Consequently, rewriting steps in the LSC are intended to model rewriting steps in a λ-graph, which correspond to local interactions in the graph. For example, Figure 1.2 depicts a rewrite step in a λ-graph, in which a variable link pointing to a subgraph A is replaced by a copy of A. When the same graph is rendered using term notation, the rewrite step becomes:

pyyqryzλx.xs Ñ ppλx.xqyqryzλx.xs

Note that the a ected occurrence of y and the explicit substitution ryzλx.xs could, in principle, lie arbitrarily far away in the term. As a consequence, rewriting steps in the LSC may involve non-local interactions between distant parts of the term.

e technical tool used by LSC to formally express rewriting rules at a distance is that of contexts. A context C is a term with exactly one free occurrence of a distinguished variable called a hole, and wri en l. If C is a context and t is a term, then Cxty denotes the term that results from plugging the term t into the hole of C. For example, if C " plyqryzλx.xs then Cxyy " pyyqryzλx.xs and Cxλx.xy " ppλx.xqyqryzλx.xs. Unlike the regular operation of substitution, plugging a term t into a context C may capture the free variables of t. For example, pλx.lqxxy " λx.x. In LSC, sometimes we are interested in plugging a term into a context but avoiding capture.

is operation is wri en Cxxtyy, and formally de ned as Cxxtyy def " Ctl :" tu. For example, pλx.lqxxxyy " λz.x. A particular case of a context is one built exclusively from a list of zero or more explicit substitutions, that is, a context of the form lrx 1 zt 1 s . . . rx n zt n s. ese are called substitution contexts and denoted by the le er L. Given a substitution context L and a term t, we usually write tL to stand for Lxty.

We are now in condition to present the three rewriting rules of the LSC. Formally, the rewrite relation pÑq is the least binary relation between terms that contains the three axioms below and which is closed by arbitrary contexts (i.e. t Ñ s implies Cxty Ñ Cxsy):

pdbq pλx.tqL s Ñ trxzssL plsq Cxxxyyrxzts Ñ Cxxtyyrxzts pgcq trxzss Ñ t if x R fvptq
e rst rewriting rule, called distant beta (db), corresponds to the β-reduction rule of the λ-calculus. It states that an interaction between a function λx.t and an argument s results in the creation of an explicit substitution operator rxzss a ecting the body of the function (t).

e interaction is distant because in between the function λx.t and the argument s there may be an arbitrary number of explicit substitutions, represented by the substitution context L. For instance, the following is a sequence of three db steps: pλx.λy.λz.xq t s u Ñ pλy.λz.xqrxzts s u Ñ pλz.xqryzssrxzts u Ñ xrzzusryzssrxzts e second rewriting rule, called linear substitution (ls), states that any variable x bound by an explicit substitution to t may be replaced by a copy of t.

e expression Cxxxyy on the le -hand side of the ls rule represents a term with a (distinguished) free occurrence of the variable x. For instance, the following is a sequence of three ls steps: pxxqrxzyysryzzs Ñ pyyxqrxzyysryzzs Ñ pyyxqrxzyzsryzzs Ñ pyypyzqqrxzyzsryzzs e last rewriting rule, called garbage collection (gc), states that an explicit substitution rxzss may be erased once the variable x is not referenced anywhere else in the term. e formal requirement is that the term be of the form trxzss and x R fvptq. Recall that fvptq stands for the set of free variables of a term t. Also note that, in a calculus with explicit substitutions, fvptrxzssq is de ned as fvptq Y pfvpsqztxuq. For instance, the following is a sequence of three gc steps:

xryzzrwzzssrzzss Ñ xryzzsrzzss Ñ xrzzss Ñ x
When considered altogether, it is not di cult to show that the rules db, ls, and gc of the LSC simulate the β-reduction rule of the λ-calculus. Graphical Equivalence. e second characteristic that sets the LSC apart from typical calculi with explicit substitutions is the presence of an equivalence relation of graphical equivalence between terms, wri en t " s. Graphical equivalence is intended to re ect equality of λ-graphs at the level of terms. e crucial point is that the rendering of a λ-graph as an LSC term is not a function-in some cases, a λ-graph may correspond to various di erent terms, depending on the order in which substitutions are wri en out. For instance, if we let I " λx.x, the λ-graph below may be represented as any of the terms pxrxzIsyqryzIs, pxyqrxzIsryzIs, or

pxyqryzIsrxzIs: ' @ Ñ Ñ & & ' ' v v ' ' λ λ ' ' v v ' G G ' G G
Graphical equivalence is de ned with the following three equations:

ptsqrxzus " trxzuss if x R fvpsq pλx.tqryzss " λx.tryzss if x R fvpsq and x ‰ y trxzssryzus " tryzusrxzss if x R fvpuq and y R fvpsq Using these rules we have, for example:

pxrxzIsyqryzIs " pxyqrxzIsryzIs " pxyqryzIsrxzIs

Observe that graphical equivalence does not identify ptsqrxzus with trxzussrxzus, i.e. substitutions do not commute with applications in general. e intuitive reason is that one would like rewriting in LSC to be well-de ned modulo graphical equivalence. A necessary condition for this is that graphical equivalence (") should be a strong bisimulation with respect to the rewriting relation (Ñ), that is, if t 1 " t Ñ s then there should exist a term s 1 such that t 1 Ñ s 1 " s. If the terms ptsqrxzus and trxzussrxzus were identi ed, it would not be clear how to simulate a step ptsqrxzus Ñ ptsqrxzu 1 s using a single step trxzussrxzus

? Ý Ñ trxzu 1 ssrxzu 1 s.
e deeper reason is that graphical equivalence intends to capture exactly those permutations of substitutions that are valid in λ-graphs. In fact, the LSC modulo graphical equivalence turns out to be isomorphic to the language of λ-graphs for the λ-calculus with sharing. e set of terms modulo graphical equivalence is in 1-1 correspondence with λ-graphs, and rewriting sequences in LSC can be transported functorially. Again, for the low-level details we refer the reader to Acca oli's PhD thesis [?].

is Work

is thesis is concerned with evaluation strategies in the Linear Substitution Calculus. In the following subsections we summarize our contributions and lay out the structure of this document. Generally speaking, the document is split into the main body and a technical appendix. Some proofs have been omi ed from the main body; their details can be found in the technical appendix. In these cases the statement of the theorem includes the symbol ♣ with a reference to the appendix.

Background

In Chapter 2 (Background), we x the notation and we recapitulate well-known de nitions and theorems from rewriting theory and the λ-calculus that are relevant to our work. e experienced reader may want to skip this chapter.

Distilling Abstract Machines

Chapter 3 (Distilling Abstract Machines) is the result of joint work with Beniamino Accattoli and Damiano Mazza. In this chapter, we propose the Linear Substitution Calculus as an "abstract abstract machine".

To this aim, we study reduction strategies in the LSC and we show that they distill the essence of various abstract machines. To do this we formally de ne the notion of distillery. Roughly speaking, a reduction strategy in the LSC distills an abstract machine if:

• Each state S of the abstract machine can be decoded to a term rrSss of the LSC.

•

ere is a binary relation p"q of structural equivalence between terms, which is a strong bisimulation.

• Transitions of the abstract machine can be classi ed in two types: search transitions, which change the focus of evaluation but are otherwise computationally irrelevant, and principal transitions, which perform the actual computation, in such a way that:

-If S ù S 1 is a search transition, then rrSss " rrS 1 ss.

-If S ù S 1 is a principal transition, then rrSss Ñ" rrS 1 ss.

We then show that various reduction strategies in the LSC distill various (variations of) wellknown abstract machines: Reduction strategy Abstract machine call-by-name Krivine abstract machine [?] le -to-right call-by-value CEK machine [?] right-to-le call-by-value ZINC machine [?], call-by-need Sesto 's machine [?], strong call-by-name Crégut's machine [?], Moreover, we propose new abstract machines, suggested by the process of distillery, which are based on at global environments rather than on nested local environments. In all of these cases, the process of distillation ensures that the abstract machine correctly implements the given reduction strategy.

Moreover, in each case, we show that simulating n reduction steps requires Opc ¨nq transitions of the machine, where c is a factor proportional to the size of the starting term. is justi es that the LSC-with any of the studied reduction strategies-is a reasonable model of computation, in the sense that execution can be simulated in a random-access machine with at most polynomial overhead in time.

Foundations of Strong Call-by-Need

Chapter 4 (Foundations of Strong Call-by-Need) is the result of joint work with ibaut Balabonski, Eduardo Bonelli, and Delia Kesner. In this chapter, we turn our a ention to an extension of the call-by-need strategy adapted for strong reduction.

e very de nition of a strong call-by-need strategy is challenging. e crux of the ma er is that call-by-need evaluation in the strong case is highly context-dependent. For example, in a term like λx.yryzxts the strong call-by-need strategy should evaluate the term t: λx.yryzxts Ñ λx.yryzxt 1 s because reduction is strong and we seek to obtain the full normal form of the term. In contrast, in a term like zrzzλx.yryzxtsss the strong call-by-need strategy should perform the following linear substitution step: zrzzλx.yryzxtsss Ñ pλx.yryzxtsqrzzλx.yryzxtsss in order to stay faithful to its "by-need" nature. In this chapter:

• eory of Sharing. We de ne a theory of strong reduction, the eory of Sharing (Def. 4.4).

e eory of Sharing is a (non-deterministic) calculus whose rewriting rules induce an equational theory that characterizes the operational equivalence of programs with explicit substitutions, enforcing sharing.

• Strong Call-by-Need Strategy. We de ne a strategy for strong call-by-need-reduction (Def. 4.13), including various related notions such as normal forms and evaluation contexts. Strong call-by-need reduction is a deterministic strategy contained in the eory of Sharing.

Its de nition relies on the notion of evaluation context. Evaluation contexts are parameterized by a set ϑ of variables that are "frozen", i.e. symbolic, and by a binary ag indicating whether the evaluation context may be composed with an applicative context in such a way that the result is still an evaluation context.

• Basic Properties of the Strong Call-by-Need Strategy. We prove four basic principles that our strong call-by-need strategy enjoys, namely that the normal forms of the strategy are strong β-normal forms, up to unfolding, (Prop. 4.16), that the strategy is deterministic (Prop. 4.18), that it is a conservative extension of previously known notions of weak call-by-need (m. 4. [START_REF] Barendregt | Lambda calculus with types[END_REF], and that it is correct with respect to β-reduction (Prop. 4.25), i.e. that if the strategy nds a normal form then the term has a strong β-normal form.

• Completeness of the Strong Call-by-Need Strategy. We study the completeness of our strong call-by-need strategy with respect to β-reduction, i.e. if a λ-term has a strong β-normal form, then our strong call-by-need strategy also reaches a normal form. We establish a precise relationship between the normal form in the λ-calculus and the normal form in our calculus with explicit substitutions (unfolding all of the explicit substitutions). e proof of normalization combines a logical argument and a syntactical argument, extending previous work by Kesner [?]. More speci cally:

-Typability vs. Normalization. We propose a non-idempotent intersection type system for the eory of Sharing (Def. 4.27). is is a simple adaptation of existing systems, following the line of work proposed by Kesner [?]. We also show that typability in this system implies normalization in the eory of Sharing. (m. 4.43).

-Completeness of the eory. We use the type system to argue that the eory of Sharing is complete with respect to β-reduction (Prop. 4.45), i.e. that βnormalizing terms are also normalizing in the eory of Sharing.

-Completeness of the Strategy. Using an abstract factorization result by Accattoli [?], we argue that the strong call-by-need strategy is complete with respect to the eory of Sharing (Prop. 4.54). e proof of this fact relies on an exhaustive case analysis of permutation diagrams.

Strong Call-by-Need for Pattern Matching and Fixed Points

Chapter 5 (Strong Call-by-Need for Pattern Matching and Fixed Points) is the result of joint work with Eduardo Bonelli and Kareem Mohamed. In this chapter, we extend the results of the previous chapter to incorporate pa ern matching and recursion (terms are extended with constructors, a case construct, and a xed point operator). Speci cally:

• Extended eory of Sharing. Our starting point is Grégoire and Leroy's extended λ-calculus (which we recall in Def. 5.3). We generalize the eory of Sharing for the extended λ-calculus (Def. 5.7), and we provide a syntactic characterization of its normal forms (Def. 5.7).

• Extended Type System. We propose a non-idempotent intersection type system for the Extended eory of Sharing. (Def. 5.10). We show that weakly normalizing terms are typable (m. 5.13) and that typable terms are weakly normalizing (m. 5.14). is requires de ning a subtle property on typing judgments (Def. 5.12).

• Extended Strong Call-by-Need Strategy. We propose an extended strong call-byneed strategy for the Extended eory of Sharing (Def. 5.17), and we show that the strategy enjoys good properties as in the previous chapter. Namely, the strategy is deterministic (Prop. 5.21), it conservatively extends the strong call-by-need strategy of the previous chapter (Prop. 5.21), and it is correct (Prop. 5.22) and complete (m. 5.23) with respect to reduction in the extended λ-calculus.

A Labeled Linear Substitution Calculus

Chapter 6 (A Labeled Linear Substitution Calculus) is the result of joint work with Eduardo Bonelli. In this chapter, we develop a variant of the LSC in which terms are decorated with labels, following the course set out by Lévy [?] when studying optimal reduction in the λ-calculus.

We go on by studying the metatheory of the labeled LSC, showing that it has most of the good properties that one would expect in a calculus with Lévy labels. More precisely:

• A Labeled Linear Substitution Calculus. We motivate some design decisions behind a calculus with Lévy labels, and we de ne a variant of the LSC with Lévy labels, the LLSC (Def. 6.6). Each reduction step in the labeled calculus has a name. We show some basic syntactical properties of LLSC.

• Residuals and Orthogonality. We show that the LLSC is an orthogonal axiomatic rewriting system (Prop. 6.32).

• Weak Normalization of Bounded Reduction. We prove that the LLSC is weakly normalizing if reduction is restricted to contracting steps whose names are labels of bounded height (Prop. 6.45).

• Strong Normalization of Bounded Reduction (FFD). We strengthen the aforementioned result, proving that the LLSC is strongly normalizing if reduction is restricted to contracting steps whose names are labels of bounded height (m. 6.51). is means the LSC enjoys a strong variant of the Finite Developments theorem, known as Finite Family Developments (FFD).

• Con uence. We provide two di erent proofs that the LLSC is con uent (m. 6.53).

Applications of the Labeled Linear Substitution Calculus

Chapter 7 (Applications of the Labeled Linear Substitution Calculus) is a continuation of Chapter 6, and also the result of joint work with Eduardo Bonelli.

In this chapter, we apply the labeled LSC developed in the previous chapter to derive further results about the LSC (without labels). One key tool from the previous chapter is the Finite Family Developments theorem:

• Stability. We show that the LSC without the gc rule enjoys Lévy's redex stability property (Prop. 7.1).

• Deterministic Family Structure. A Deterministic Family Structure (DFS) is an abstract rewriting system that veri es a set of particular axioms. We show that the LSC without gc forms a DFS (m. 7.13).

• Optimal reduction. We obtain an optimal reduction result for the LSC, as an immediate consequence of the fact that the LSC without gc is a DFS, using work of Glauert and Khasidashvili (which we review in m. 7.24). ere is another work in which I was involved during my PhD that is not described in detail in this manuscript. Jointly with Gonzalo Ciruelos, we used a con uent calculus based on a non-idempotent intersection type system to study derivation spaces in the pure (untyped) λ-calculus. is was the topic of Gonzalo's Master esis and also resulted in a publication:

• P. Barenbaum, G. Ciruelos. Factoring Derivation Spaces via Intersection Types.

Asian Symposium on Programming Languages and Systems (APLAS), 24-44, 2018. Chapter 2

Background

In this chapter we give an overview of some of the most important notions and results which our work builds upon. e presentation does not intend to be original nor exhaustive. e intention is rather to provide basic reference material, sketching a few well-known but hopefully interesting proofs, and pointing to references when appropriate.

Abstract Rewriting

Mathematical objects can be wri en in many di erent ways. A term or expression is a nite object, usually a string or a tree, intended to represent or denote a value. For example, in a multiplicative group, the expressions "x ¨x´1 " and "1" are expected to denote the same mathematical object: they have di erent syntax but the same semantics.

Rewriting arises from the need to decide the equivalence of expressions, that is, to bridge the gap between syntax and semantics by providing a mechanical procedure that determines whether two expressions represent the same value. In rewriting theory one frequently starts by formulating an equational theory, that is, a set of equations that characterize the semantic equivalence of syntactic expressions. For example, the equational theory E de ned below is composed of seven equation schemas, which characterize the equivalence of expressions representing elements of a free multiplicative group G:

E : $ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % x ¨1 " x @x P G 1 ¨x " x @x P G x ¨py ¨zq " px ¨yq ¨z @x, y, z P G x ¨x´1 " 1 @x P G 1 ´1 " 1 @x, y P G px ¨yq ´1 " y ´1 ¨x´1 @x, y P G px ´1q ´1 " x @x P G
An equational theory provides us with a way to prove that two expressions are equivalent. For example, one may justify that x ´1 ¨x and 1 are equivalent expressions in E with the chain of equalities:

x ´1 ¨x " ppx ´1 ¨xq ´1q ´1 " px ¨x´1 q ´1 " 1

´1

" 1 However, this proof requires a bit of ingenuity. In general, there may not exist an algorithm that decides whether two arbitrary expressions are equivalent, in a given equational theory.

e central idea behind rewriting theory is that equations of the form x " y may be oriented, that is, turned into rewriting rules of the form x Ñ y. A rewriting rule not only expresses the fact that the expressions on the le -hand side and the right-hand side are equivalent, but also endow the theory with computational meaning. Informally, a rewriting rule x Ñ y means that any expression of the form given by x should be replaced by an expression of the form given by y. For example, the equational theory E may be oriented as follows, obtaining a rewriting system R: R :

$ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % x ¨1 Ñ x @x P G 1 ¨x Ñ x @x P G x ¨py ¨zq Ñ px ¨yq ¨z @x, y, z P G x ¨x´1 Ñ 1 @x P G 1 ´1 Ñ 1 @x, y P G px ¨yq ´1 Ñ y ´1 ¨x´1 @x, y P G px ´1q ´1 Ñ x @x P G
Observe that in general there are exponentially many ways to orient an equational theory, since each equation x " y may be oriented as x Ñ y or as y Ñ x. Now given any expression

x representing an element of a free group, we may rewrite it by selecting some rule x i Ñ y i in the rewriting system R and replacing a subexpression of the form x i by a subexpression of the form y i . Usually, rewriting is performed repeatedly, until there are no more rules to apply, and one arrives to a normal form.

For example, starting from the expression x ¨py ¨py ´1 ¨x´1 qq we may rewrite it as follows:

x ¨py ¨py ´1 ¨x´1 qq Ñ x ¨ppy ¨y´1 q ¨x´1 q Ñ x ¨p1 ¨x´1 q Ñ x ¨x´1 Ñ 1

A system of rewriting rules is said to be terminating if the procedure of repeatedly rewriting an expression x 0 Ñ x 1 Ñ x 2 Ñ . . . eventually terminates, arriving to a normal form. It can be shown that the rewriting system R given above is indeed terminating. On the other hand, a system of rewriting rules is said to have the unique normal form property if whenever x 1 and x 2 are equivalent expressions in the original equational theory such that x 1 and x 2 are normal forms, then x 1 " x 2 . e rewriting system R above does not have the unique normal form property. For example, we have already proved that x ´1 ¨x " 1 in the equational theory E, but they are normal forms, i.e. there are no rules in the system R that may be applied to rewrite the expressions x ´1 ¨x and 1.

e foundational theorem of rewriting theory is a simple observation. Suppose that a system of rewrite rules R is terminating and it has the unique normal form property. en the corresponding equational theory E may be decided as follows: to decide if x 1 " x 2 holds in E, repeatedly apply rewriting rules x 1 Ñ . . . Ñ x 1 1 until obtaining a normal form x 1 1 . is procedure always arrives to a normal form because R is terminating. Similarly, repeatedly apply rewriting rules x 2 Ñ . . . Ñ x 1 2 until obtaining a normal form x 1 2 . Now since R has the unique normal form property, the equality x 1

1 " x 1 2 holds in E if and only if x 1 1 and x 1 2 are syntactically equal.

In the remainder of this section we give several de nitions and some results, to make these ideas more precise and x notation. We start by observing that there are two di erent, but compatible, views of a rewriting system that coexist in the literature, which we call the "propositional" and the "relevant" view.

De nition 2.1 (Propositional abstract rewriting system). A propositional abstract rewriting system is a pair pObj, Ñq where Obj is a set whose elements are called objects, and Ñ Ď A 2 is a binary relation called the rewriting relation. Given two objects x, y P Obj one writes x Ñ y if px, yq PÑ.

De nition 2.2 (Relevant abstract rewriting system). A relevant abstract rewriting system is a 4-uple A " pObj, Stp, src, tgtq where Obj is a set whose elements are called objects, Stp is a set whose elements are called steps, and src, tgt : Stp Ñ Obj are functions indicating, respectively, the source and the target of each step. Given two objects x, y P Obj and a step R P Stp, we write x R Ý Ñ A y or R : x Ñ A y if srcpRq " x and tgtpRq " y. Sometimes we drop the subscript and write x R Ý Ñ y or R : x Ñ y when A is clear from the context. Remark 2.3. A relevant abstract rewriting system can always be regarded as a propositional abstract rewriting system by propositional truncation, by declaring the relation x Ñ y to hold if and only if there exists a step R P Stp such that x R Ý Ñ y.

Remark 2.4 (Steps vs. redexes). In relevant abstract rewriting systems that have terms, like the λ-calculus, a redex of a term t is any reducible subterm of t. More precisely, a redex is any subterm that is an instance of the le -hand side of some rewriting rule. For example the underlined subterm of the term λx.xppλy.yyqzq is a redex, because pλy.yyqz is an instance of the le -hand side of the β-reduction rule. Usually, there is an obvious bijection between the set of steps R starting from a term t and the set of redexes of t. In this situation, we may speak of steps and redexes interchangeably. roughout this thesis we speak of abstract rewriting systems, or rewriting systems for short, to refer to relevant rewriting systems. However, we liberally alternate between the propositional point of view, in which rewriting rules are de ned as mere relations, and the relevant point of view, in which we care about the witness that justi es a rewriting step.

De nition 2.5 (Composition of rewriting relations).

From the relevant point of view, two arbitrary rewriting systems A " pObj, Stp, src, tgtq and B " pObj, Stp 1 , src 1 , tgt 1 q, can be composed to obtain a rewriting system pA¨Bq " pObj, Stp 2 , src 2 , tgt 2 q whose steps are de ned by the following bijection Stp ˆStp 1 Ñ Stp 2 :

pR : x Ñ A y, S : y Ñ B zq Þ Ñ R ¨S : x Ñ pA¨Bq z
From the propositional point of view, this corresponds to the composition of rewriting relations Ñ 1 and Ñ 2 , de ned as usual for binary relations:

x pÑ 1 ˝Ñ2 q z def ðñ pDy. x Ñ 1 y ^y Ñ 2 zq
De nition 2.6 (Union of rewriting relations). From the relevant point of view, two arbitrary rewriting systems A " pObj, Stp, src, tgtq and B " pObj, Stp 1 , src 1 , tgt 1 q, can be added to obtain a rewriting system pA Z Bq " pObj, Stp 2 , src 2 , tgt 2 q whose steps are de ned by the following bijection

Stp Z Stp 1 Ñ Stp 2 : R : x Ñ A y Þ Ñ R left : x Ñ AZB y R : x Ñ B y Þ Ñ R right : x Ñ AZB y
From the propositional point of view, this corresponds to the union of rewriting relations Ñ 1 and Ñ 2 , de ned as usual for binary relations:

xpÑ 1 Y Ñ 2 qy def ðñ x Ñ 1 y _ x Ñ 2 y
De nition 2.7 (Inverse rewriting relation). From the relevant point of view, a rewriting system A " pObj, Stp, src, tgtq has an associated opposite rewriting system A op " pObj, Stp 1 , src 1 , tgt 1 q whose steps are de ned by the following bijection Stp Ñ Stp 1 :

R : x Ñ A y Þ Ñ R ´1 : y Ñ A op x
From the propositional point of view, this corresponds to the inverse relation of a rewriting relation Ñ, which is wri en Ñ ´1 or Ð and de ned as follows:

x Ñ ´1 y def ðñ y Ñ x for all x, y P A De nition 2.8 (Closure of a rewriting relation -propositional point of view). Let A be a rewriting system, and let P be a predicate about binary relations on the set of objects Obj, i.e. given a binary relation R Ď Obj ˆObj there is a proposition P pRq. From the propositional point of view, the P -closure of a relation R is the least relation R 1 such that R Ď R 1 and such that P pR 1 q holds. Explicitly:

R 1 " č tR 2 | R Ď R 2 ^P pR 2 qu
In rewriting, there are various frequent cases of closures, for example:

1. e transitive closure of a rewriting relation Ñ is wri en Ñ `. It can be shown that x Ñ `y if and only if x Ñ . . . Ñ y in one or more steps.

2.

e re exive-transitive closure of a rewriting relation Ñ is wri en Ñ ˚or . It can be shown that x Ñ ˚y if and only if x Ñ . . . Ñ y in zero or more steps.

3.

e symmetric closure of a rewriting relation Ñ is wri en Ø. It can be shown that x Ø y if and only if x Ñ y or y Ñ x.

4.

e symmetric-re exive-transitive closure of a rewriting relation Ñ is wri en Ø ˚. It can be shown that x Ø ˚y if and only if x Ø . . . Ø y in zero or more steps.

5.

In rewriting systems involving some notion of context, a rewriting relation Ñ is contextual if x Ñ y implies that Cxxy Ñ Cxyy for any context C. Recall that Cxxy represents the result of plugging the expression x inside the context C. e contextual closure of Ñ is sometimes wri en CxÑy. It can be shown that x CxÑy y if and only if there exists a context C 1 and two objects x 1 , y 1 such that:

x " C 1 xx 1 y y " C 1 xy 1 y x 1 Ñ y 1 6. In rewriting systems involving some notion of context, a congruence is a binary relation which is simultaneously an equivalence relation (symmetric, re exive, and transitive) and contextual. Sometimes we speak of the congruence generated by a binary relation R to mean the symmetric-re exive-transitive-contextual closure of R.

Example 2.9 (Rewriting relations and closure). Let A be the rewriting system whose objects are sets of natural numbers and there is a step X Ñ A Y if and only if X " Y Y tnu for some n P NzX. en:

t1, 2, 3u Ñ t1, 3u t1, 2, 3u Ñ ´1 t1, 2, 3, 4u t1, 2, 3u Ñ `t1u X Ñ ∅ if and only if X is a singleton X Ñ ˚∅ if and only if X is nite X Ñ ˚Y if and only if Y Ď X and XzY is nite X Ø ˚Y
if and only if XzY and Y zX are nite e various notions of closure of a rewriting relation can also be interpreted from a relevant point of view. For example:

1. A witness of a step in the transitive closure S : x Ñ `y is a non-empty list of steps S " rR 1 , . . . , R n s where x " x 0

R 1 Ý Ñ x 1 . . . Rn Ý Ý Ñ x n " y.
2. A witness of a step in the re exive-transitive closure S : x Ñ ˚y is a possibly empty list of steps S " rR 1 , . . . , R n s where x " x 0

R 1 Ý Ñ x 1 . . . Rn Ý Ý Ñ x n " y.
3. A witness of a step in the contextual closure S : x CxÑy y is given by a pair S " pC 1 , Rq where C 1 is a context, R : x 1 Ñ y 1 is a step, and we have that x " C 1 xx 1 y and y " C 1 xy 1 y.

Except for Chapter 6, in which we work with residual theory, we usually take the issue of relevance lightly.

De nition 2.10 (Coinitial and co nal steps). Two steps R :

x 1 Ñ A y 1 S : x 2 Ñ A y 2 are coinitial if x 1 " x 2 and co nal if y 1 " y 2 .
An important property that we are usually interested in, when studying a rewriting system, is that of (weak and strong) normalization. From the computational point of view, normalization ensures that a procedure de nes a total function, that is, that the program does not "hang". From the logical point of view, normalization entails some forms of consistency.

De nition 2.11 (Normal forms, weak and strong normalization). Let A be a rewriting system. en:

1. An object x is a normal form if there is no step R in A such that srcpRq " x. We write NFpAq for the set of normal forms of A.

2. An object x is weakly normalizing (WN) if there exists a normal form y such that x Ñ ˚y.

3. An object x is strongly normalizing (SN) or terminating if there is no in nite sequence of steps x " x 0 Ñ x 1 Ñ x 2 Ñ

e rewriting system

A is called WN (resp. SN) if every object x in A is WN (resp. SN).

A strongly normalizing rewriting system is always weakly normalizing, but the converse does not hold.

Example 2.12 (Weak normalization without strong normalization). e rewriting system A whose objects are N Y tωu and there are steps n Ñ n `1 and n Ñ ω for all n P N. Graphically:

1 G G 2 G G 3 w w G G . . . ω
is weakly normalizing since for every x P N Y tωu we have x Ñ ‹ ω which is a normal form. However, A is not strongly normalizing since 1 Ñ 2 Ñ 3 Ñ . . . is an in nite sequence of steps.

De nition 2.13 (Finite branching). Let A " pObj, Stp, src, tgtq be a rewriting system. An object x is nitely branching (from the relevant point of view), abbreviated FB, if the set tR P Stp | srcpRq " xu is nite. A rewriting system is FB if every object is FB.

Remark 2.14. An object x is de ned to be nitely branching from the propositional point of view, abbreviated FB prop , if the set ty P Obj | x Ñ yu is nite. It is easy to show that the implication FB ùñ FB prop holds in general. Moreover, in all the rewriting systems in this thesis, the set of steps tR | R : x Ñ yu is always nite for any two xed objects x, y P Obj.

is means that throughout our work we may always assume that the converse implication FB prop ùñ FB also holds, so we usually speak of a system being nitely branching without specifying in which sense.

In general, even if a rewriting system is strongly normalizing, there may not be a bound for the length of sequences of steps x 1 Ñ x 2 Ñ . . . Ñ x n . For instance: Example 2.15 (Unbounded terminating rewriting system). Let A be the rewriting system whose objects are tx 0 u Y tx pnq i | n P N, 1 ď i ď nu, and there are steps:

x 0 Ñ x pnq 1 for all n P N x pnq i Ñ x pnq i`1 for all n P N, 1 ď i ď n ´1
Graphically:

x 0 v v } } 3 3 @ @ x p1q 1 x p2q 1 x p3q 1 x p2q 2 x p3q 2 x p3q 3
en A is strongly normalizing but the length of a sequence of steps starting from x 0 is not bounded.

e following (non-constructive) result for nitely branching rewriting systems is known as König's lemma. It serves as a principle to justify that, in a system which is both strongly normalizing and nitely branching, inductive constructions are well de ned: Lemma 2.16 (König's Lemma). Let spanpxq denote the set of objects reachable from x in a rewriting system A:

spanpxq def " ty | x Ñ ˚yu
If A is strongly normalizing and nitely branching, then spanpxq is nite for all x.

Proof. We claim that if spanpxq is in nite for some object x, then there exists an object x 1 such that spanpx 1 q is in nite and x Ñ x 1 . Indeed, since A is nitely branching, there is a nite set Y " ty 1 , . . . , y n u such that x Ñ y if and only y P Y . en spanpxq " txu Y spanpy 1 q Y . . . Y spanpy n q, so spanpy i q must be in nite for some y i . It su ces to take x 1 :" y i to nish the proof of the claim. Now suppose that there is an object x 1 such that spanpx 1 q is in nite. By repeatedly applying the claim, we obtain an in nite sequence of steps x 1 Ñ x 2 Ñ x 3 Ñ . . . such that spanpx i q is in nite for all i. is contradicts that A is strongly normalizing.

A consequence of König's lemma is that, in a nitely branching and strongly normalizing system, there is a bound for the length of sequences of steps going out from an object. We stress, however, that this does not provide a constructive bound. Proposition 2.17 (Bound for strong normalization). Let A be a strongly normalizing and nitely branching rewriting system. Let x 0 be an object of A. en there exists a bound M P N for the length of sequences of steps x 0 Ñ x 1 Ñ . . . Ñ x n starting from x 0 .

Proof. By König's Lemma (Lem. 2.16), the set spanpx 0 q is nite, so M " #spanpx 0 q is a natural number. Let x 0 Ñ x 1 Ñ . . . Ñ x n be any sequence starting on x 0 . Note that the objects x 0 , x 1 , . . . , x n are all di erent, for otherwise there is a loop x i Ñ . . . Ñ x i which contradicts the fact that A is strongly normalizing. Moreover, tx 0 , x 1 , . . . , x n u Ď spanpx 0 q since x 0 , x 1 , . . . , x n are all reachable from x 0 . Hence n ă n `1 " #tx 0 , . . . , x n u ď #spanpx 0 q " M , as required.

De nition 2.18 (Con uence). A rewriting system A is said to be:

1. Weakly Church-Rosser (WCR) or locally con uent if given objects x 0 , x 1 , x 2 such that x 0 Ñ x 1 and x 0 Ñ x 2 there exists an object x 3 such that x 1 Ñ ˚x3 and x 2 Ñ ˚x3 .

2. Church-Rosser (CR) or con uent if given objects x 0 , x 1 , x 2 such that x 0 Ñ ˚x1 and x 0 Ñ ˚x2 there exists an object x 3 such that x 1 Ñ ˚x3 and x 2 Ñ ˚x3 .

A situation in which there are three objects and two steps x 1 Ð x 0 Ñ x 2 is sometimes called a peak. When we complete a peak by constructing a fourth object and two sequences of steps as in x 1 Ñ ˚x3 Ð ˚x2 , we say that we close the peak. Peaks are drawn as squares which we occasionally call tiles. Following the standard convention in rewriting theory, steps that are universally quanti ed (given) are drawn with whole lines, whereas steps that are existentially quanti ed (proven) are o en drawn with do ed lines. Graphically:

x 0 G G x 1 x 2 G G G G x 3
It is immediate to see that if a rewriting system is Church-Rosser, it is also weakly Church-Rosser. But the converse does not hold, as can be seen in this well-known example:

Example 2.19 (Non-con uent WCR system). Let A be the rewriting system:

1 2 o o 3 3 3 G G 4
en A is WCR since the peak 1 Ð 2 Ñ 3 can be closed with 1 Ð ˚3, and similarly the peak

2 Ð 3 Ñ 4 can be closed with 2 Ñ ˚4. But A is not CR, since the peak 1 Ð 2 Ñ ˚4 cannot be closed.
e following result is due to Max Newman and it is known in the literature as Newman's lemma or the diamond lemma. It is a useful tool to show that certain rewriting systems are con uent. Its importance lies in the fact that it allows to reduce the proof of con uence, which involves a universal quanti er over any peak of the form y x z to the simpler property of local con uence, which only involves a universal quanti er over peaks of the form y Ð x Ñ z.

Local con uence can usually be checked by exhaustive case analysis on all possible peaks, while doing the same for con uence is usually impracticable.

Lemma 2.20 (Newman's lemma). If A is strongly normalizing and weakly Church-Rosser, then A is con uent.

Proof. We say that an object x is ambiguous if it has two normal forms, i.e. x Ñ ˚x1 and x Ñ ˚x2 where x 1 ‰ x 2 are di erent normal forms. We prove two claims.

• Claim I: If there are no ambiguous objects in A, then A is CR.

Proof of Claim I. Let x 0 Ñ ˚x1 and x 0 Ñ ˚x2 . Since A is SN, let us normalize x 1 Ñ ˚x1 1 until we obtain a normal form x 1 1 , and similarly let us normalize x 2 Ñ ˚x1 2 until we obtain a normal form x 1 2 . Since x 0 is not ambiguous, we have that x 1 1 " x 1 2 . is shows that A is CR, proving Claim I.

• Claim II: If x is ambiguous, there is an ambiguous object y such that x Ñ y.

Proof of Claim II. Since x is ambiguous, let x Ñ ˚x1 and x Ñ ˚x2 where x 1 ‰ x 2 are di erent normal forms. Note that x ‰ x 1 and x ‰ x 2 , so x Ñ ˚x1 consists of at least one step, i.e. x Ñ y 1 Ñ ˚x1 , and similarly x Ñ y 2 Ñ ˚x2 . Since A is WN, we may close the peak y 1 Ð x Ñ y 2 to obtain y 1 Ñ ˚y3 Ð ˚y2 for some object y 3 . Moreover, since A is SN, we may normalize y 3 Ñ ˚z3 until we obtain a normal form z 3 . Graphically:

y 1 G G G G 3 3 3 3 z 1 x b b 2 2 y 3 G G G G z 3 y 2 G G G G a a a a z 2
Now z 1 , z 2 , and z 3 are normal forms and we know that z 1 ‰ z 2 so either z 3 ‰ z 1 or z 3 ‰ z 1 . If z 3 ‰ z 1 then y 1 turns out to be ambiguous and it su ces to take y :" y 1 . If z 3 ‰ z 2 then y 2 turns out to be ambiguous and it su ces to take y :" y 2 . is concludes the proof of Claim II.

It is now easy to prove Newman's lemma using the law of excluded middle. If A has no ambiguous objects, then A is CR by Claim I. If A has an ambiguous object x 1 then by repeatedly applying Claim II we construct a sequence of steps x 1 Ñ x 2 Ñ x 3 Ñ . . . such that each x i is ambiguous. is contradicts the fact that A is SN. e following result, due to Klop and Nederpelt, is a tool to show that a system is strongly normalizing. A di erent proof can be found in [?, eorem 1.2.3 (iii)]: De nition 2.21. A rewriting system A " pObj, Stp, src, tgtq is increasing (Inc) if there is a function f : Obj Ñ N such that x Ñ y implies f pxq ă f pyq for all x, y P Obj.

Lemma 2.22 (Klop-Nederpelt). Let A be increasing, weakly Church-Rosser and weakly normalizing. en A is strongly normalizing. In short:

Inc ^WCR ^WN ùñ SN Proof. Let A " pObj, Stp, src, tgtq be increasing, WCR and WN. Let f : Obj Ñ N be the witness that A is increasing, i.e. if x Ñ y then f pxq ă f pyq. We prove the following claim:

• Claim: Let z P Obj be an object in normal form. If x and y are objects such that x z and x y then y z. Graphically:

x G G G G z y c c c c
Proof of the claim. In general, note that if x 1 x 2 then f px 1 q ď f px 2 q so f px 2 q ď f px 1 q P N 0 is a natural number. Let z be a xed normal form. Given a peak y x z we de ne its weight as:

W py

x zq def " f pzq ´f pxq e proof proceeds by complete induction on the weight of a peak.

1. Base case, weight 0. en f pzq ´f pxq " 0 so x z consists of zero steps. is means that x " z, so x is in normal form. Since x y, we have that also x " y, and it is trivial to conclude.

Induction, positive weight.

en x z consists of at least one step, that is, x Ñ x 1 z. We consider two subcases:

-If x y consists of zero steps. en trivially y " x z.

-If x y consists of at least one step. en x Ñ y 1 y. By hypothesis, A is WCR so we may close the peak y 1 Ð x Ñ x 1 with an object w such that y 1 w x 1 . e situation is as follows:

x G G x 1 G G G G z y 1 G G G G w y
Note that we may apply the inductive hypothesis on the peak w x 1 z since:

W pw x 1 zq " f pzq ´f px 1 q ă f pzq ´f pxq since x Ñ x 1 so f pxq ă f px 1 q " W py x zq
So by i.h. we have that w z. Now observe that we may also apply the inductive hypothesis on the peak y y 1 w z, since:

W py y 1 w zq " f pzq ´f py 1 q ă f pzq ´f pxq since x Ñ y 1 so f pxq ă f py 1 q " W py x zq So by i.h. we have that y z, which concludes the proof of the claim.

e proof of Klop-Nederpelt's lemma proceeds as follows: let x be any object. Since A is WN let x z be a sequence of steps such that z is in normal form. By contradiction, suppose that A is not SN. at is, suppose that x " x 0 Ñ x 1 Ñ x 2 Ñ . . . is an in nite sequence of steps. Note that f px 0 q ă f px 1 q ă f px 2 q ă . . . is a strictly increasing sequence of natural numbers. By the previous claim, we have that x n z for all n P N, so f px n q ă f pzq for all n P N. us f pzq is an upper bound for the strictly increasing sequence pf px n qq nPN , which is a contradiction.

Recall that a strict partial order ą on a set X is said to be well-founded if there are no in nite descending chains x 1 ą x 2 ą x 3 ą e three following results are widely known and useful tools to show that a rewriting system is strongly normalizing: Lemma 2.23 (Termination by interpretation). Let A " pObj, Stp, src, tgtq be a rewriting system and let ą be a well-founded order on a set X. Suppose that there is a function f : Obj Ñ X such that x Ñ y implies f pxq ą f pyq. en A is strongly normalizing.

Proof. Suppose by contradiction that there is an in nite sequence x 1 Ñ x 2 Ñ x 3 Ñ en f px 1 q ą f px 2 q ą f px 3 q ą . . ., is an in nite descending chain.

Lemma 2.24 (Lexicographic termination). Let ą 1 and ą 2 be strict partial orders on the sets X and Y respectively. De ne the lexicographic order ą on the set X ˆY as follows:

px, yq ą px 1 , y 1 q if px ą 1 x 1 q _ px " x 1 ^y ą 2 y 1 q
If ą 1 and ą 2 are well-founded then ą is well-founded.

Proof. It is routine to check that ą is a strict order. Suppose by contradiction that there is an in nite descending chain px 1 , y 1 q ą px 2 , y 2 q ą px 3 , y 3 q ą Since ą 1 is well-founded, the rst component must eventually stabilize, that is, there is an n ě 1 such that x n " x m for all m ě n. Hence y n ą 2 y n`1 ą 2 y n`2 ą . . . is an in nite descending chain.

Remark 2.25. Lem. 2.24 may be generalized for n-uples writing X 1 ˆX2 ˆ. . . ˆXn´1 ˆXn as X 1 ˆpX 2 ˆ. . . pX n´1 ˆXn qq.

De nition 2.26 (Finite multisets).

A nite multiset over a set X is, formally, a function m : X Ñ N Y t0u such that mpxq is non-zero for a nite number of elements x P X. We write rx 1 , . . . , x n s for the multiset m such that mpxq counts the number of occurrences of x in the sequence x 1 , . . . , x n . Sometimes we may write tx 1 , . . . , x n u if it is clear from the context that we are working with multisets. We say that m Ď n holds if mpxq ď npxq for all x P X. e notation m Z n denotes the (additive) union of multisets, i.e. the function such that pm Z nqpxq " mpxq `npxq. e notation m a n denotes the di erence of multisets, i.e. the function such that pm a nqpxq " mpxq ´npxq where x ´y def " maxt0, x ´yu.

De nition 2.27 (Multiset order). Let ą be a strict partial order on a set X. De ne the multiset order ą on the set of nite multisets of X as the transitive closure of ą 1 , where: m ą n if m ‰ n ^@x P X, pnpxq ą mpxq ùñ Dy P X, y ą x ^mpyq ą npyqq Lemma 2.28 (Characterization of the multiset order). e relation m ą n holds if and only if there exist multisets a, b such that n " pm a aq Z b, where a Ď m is a non-empty multiset, and for every x P b there is an element y P a such that y ą x.

Proof. pñq Take a :" m a n and b :" n a pm a aq. It is straightforward to check that all the conditions hold. pðq Let x 0 P a be a maximal element of a. We have that x 0 R b, for otherwise there would be an element y P a such that y ą x 0 . is means that mpx 0 q ą npx 0 q, so m ‰ n. Moreover, suppose that npxq ą mpxq for some x P X. en x P b, so there is an element y P a such that y ą x. Let y 0 P a be a maximal element such that y 0 ą x. As before, we have that y 0 R b, and this means that mpy 0 q ą npy 0 q, as required.

eorem 2.29 (Multiset termination). If ą is well-founded then ą is a well-founded strict order.

Proof. We sketch a proof due to Nachum Dershowitz and Zohar Manna; see [?, Section 2.5] for more details. Let ą be well-founded and suppose that ą is not well-founded. e proof proceeds by constructing a tree whose nodes are elements of the extended set X Y tKu. e invariant is that in the n-th step we build a tree some of whose leaves may be decorated with K and the remaining leaves are in 1-1 correspondence with the elements of m n , accounting for multiplicities. Moreover, each branch of the tree is a decreasing sequence in X.

Let m 1 ą m 2 ą . . . be an in nite decreasing sequence of multisets. In the rst step, the tree starts with a root with one children per each element of m 1 . In the pn `1q-th step, we have that m n ą m n`1 , so by Lem. 2.28 m n`1 " pm n a aq Z b, where a Ď m n is a non-empty multiset, and for every x P b there is an element y P a such that y ą x. For each element x P a, the node for x is extended with a child decorated with K. For each element x P b, let y P a be the corresponding element such that y ą x; the node for y is extended with a child decorated with x. e resulting tree is in nite, since each step adds at least one node, but it is nitely branching since all multisets are nite. By König's Lemma (Lem. 2.16), it must have an in nite branch, contradicting the well-foundedness of ą.

Residual eory

Consider a con uent abstract rewriting system A. From the propositional point of view, conuence can be summarized in the inclusion of binary relations p ˝ q Ď p ˝ q. It merely means that all peaks can be closed:

1 1 1 1 1 1 1 1
From the relevant point of view, con uence means that if ρ : x y and σ : x z are sequences of rewriting steps, there exists an object w and two sequences of rewrite steps σ 1 : y w and ρ 1 : z w. Graphically:

ρ σ 1 1 1 1 σ 1 1 1 1 1 ρ 1
In fact, if a rewriting system is orthogonal, one can give a constructive account of the sequences σ1 and ρ 1 , and it can be shown that the con uence diagram is universal, i.e. a pushout. In particular, the diagram can be closed in such a way that the sequences ρσ 1 and σρ 1 are equivalent in a precise sense. is relevant view of orthogonal rewriting systems can be a ributed to Jean-Jacques Lévy and Gérard Huet [?, ?]. An axiomatic generalization of this theory was developed by Paul-André Melliès [?]. is theory relies crucially on the notion of residual, informally introduced in Sec. 1.1.2. In this section, we recapitulate some de nitions and results from axiomatic residual theory that we will use throughout this thesis.

ey are especially important for Chapter 6.

De nition 2.30 (Axiomatic rewriting system). An axiomatic rewriting system is a rewriting system A " pObj, Stp, src, tgtq provided with a ternary residual relation ´x´y ´between steps such that: R 1 xSy R 2 implies srcpR 1 q " srcpSq ^srcpR 2 q " tgtpSq for all R 1 , R 2 , S P Stp As customary, sometimes we subscript operations with A when the ambient rewriting system is not clear from the context, e.g. we may write src A pRq or R xSy A T .

De nition 2.31 (Residual theory concepts).

e following notions can be de ned for any axiomatic rewriting system A " pObj, Stp, src, tgt, ´x´y ´q:

1. A derivation is a sequence of composable steps R 1 . . . R n . By composable we mean that tgtpR i q " srcpR i`1 q for all i P t1, . . . , n ´1u. e length of a derivation is wri en |ρ|. e notions of source and target are extended for derivations, so that srcpR 1 . . . R n q " srcpR 1 q and tgtpR 1 . . . R n q " tgtpR n q. e empty derivation, when n " 0, is wri en .

e set of all derivations is wri en Deriv.

Strictly speaking, an empty derivation is annotated with an object, so that there is one empty derivation x for each object x P Obj, such that srcp x q " tgtp x q " x. 1 e composition of the derivations ρ and σ is wri en ρ ¨σ or just ρ σ, and it is de ned whenever tgtpρq " srcpσq.

2. e residual relation is generalized when the step in the middle is a derivation. More precisely if srcpRq " srcpσq and srcpR 1 q " tgtpσq the ternary relation R xσy R 1 is declared to hold if and only if there exist steps R 0 , . . . , R n , S 1 , . . . , S n such that

• σ " S 1 . . . S n , • R " R 0 , • R 1 " R n , and • R i xS i`1 y R i`1
holds for all i P t0, . . . , n ´1u.

Remark that R x srcpRq y R.

We write xσy for the binary relation

tpR, R 1 q | R xσy R 1 u.

4.

If R 1 xσy R 2 holds, we say that R 2 is a residual of R 1 a er σ, and R 1 is an ancestor of R 2 before σ. If R and σ are coinitial, we write R{σ for the set tR 1 | R xσy R 1 u of residuals of R a er σ.

If

R{σ " ∅ we say that σ erases R.

6. If #pR{σq ą 1 we say that σ duplicates R.

7. If tgtpσq " srcpRq and there is no R 0 such that R 0 xσy R, we say that σ creates R.

8. An axiomatic rewriting system has the autoerasure (AE) property if R{R " ∅ for all R P Stp.

9. An axiomatic rewriting system has the nite residuals (FR) property if the set R{S is nite for all coinitial R, S P Stp.

10. An axiomatic rewriting system has the unique ancestor (UA) property if a step has at most one ancestor, i.

e. if R 1 xSy R and R 2 xSy R then R 1 " R 2 for all R 1 , R 2 , R, S P Stp.
11. An axiomatic rewriting system has the acyclicity property if whenever R ‰ S and R{S " ∅ then S{R ‰ ∅.

12. A set of coinitial steps is a set M of steps such that if R, S P M then srcpRq " srcpSq. e empty set of coinitial steps is wri en ∅. Strictly speaking, an empty set of coinitial steps is annotated with an object, so that there is one empty set of coinitial steps ∅ x for each object x. e source of a set of coinitial steps is well-de ned: if M is a nonempty set of coinitial steps, then srcpMq " srcpRq for any R P M. If M is empty, then srcp∅ x q " x. Below, we argue that the target of a set of coinitial steps is also well-de ned, and in particular tgtp∅ x q " x.

13. If M is a set of coinitial steps and srcpMq " srcpσq, we write M{σ for the set of coinitial steps tR 1 | R P M and R xσy R 1 u. Remark that ∅ srcpσq {σ " ∅ tgtpσq .

De nition 2.32 (Development). Let M be a set of coinitial steps in an axiomatic rewriting system

A. A development of M is a possibly in nite sequence R 1 R 2 . . . R n . . . such that R i P M{R 1 . . . R i´1 for all i P t1, . . . , nu. A development is complete if it is maximal.
De nition 2.33 (Finite developments property). An axiomatic rewriting system A has the nite developments property (FD) if given a nite set of coinitial steps M, there are no in nite developments of M.

Let A be an axiomatic rewriting system, and let M be a nite set of coinitial steps. Consider the rewriting system D M whose objects are developments ρ of M and there is a step R : ρ Ñ D M ρR if and only if ρR results from extending the development ρ with a step R P M{ρ. Observe that if A has the nite developments property then D M is strongly normalizing. Moreover, if A has the nite residuals property, then D M is nitely branching. By Prop. 2.17 this means that given a nite set of coinitial steps M, there is a bound for the length of any development of M. is motivates the following de nition: De nition 2.34 (Depth of a set of coinitial steps). Let A be an axiomatic rewriting system with nite developments and nite residuals. en the length of the longest development of a set of coinitial steps M is called the depth of M.

Remark 2.35 (Decreasing depth). Let A be an axiomatic rewriting system with nite developments and nite residuals. Suppose that M is a set of coinitial steps and

R P M. If ρ is a development of M{R then Rρ is a development of M.
is means that the depth of M is strictly greater than the depth of M{R. is property allows one to give arguments and constructions on sets of coinitial steps by induction on their depth. Proposition 2.36 (Existence of complete developments). If an axiomatic rewriting system A veri es FD then any nite set of coinitial steps M has a complete development.

Proof. Construct a development R 1 . . . R i . . . by taking some R i P M{R 1 . . . R i´1 until the set M{R 1 . . . R i´1 is empty.
is process must terminate for otherwise we would have an in nite development, contradicting FD.

De nition 2.37 (Permutation tile). Let Rσ and Sρ be two (non-empty) derivations in an axiomatic rewriting system A. e pair pRσ, Sρq is called a permutation tile if all the following conditions hold:

1. Rσ and Sρ are coinitial and co nal, 2. ρ is a complete development of R{S, and σ is a complete development of S{R, 3. xRσy"xSρy are equal as binary relations.

De nition 2.38 (Semantic orthogonality property

). An axiomatic rewriting system A has the semantic orthogonality property (SO) if given two coinitial steps R, S, a complete development ρ of R{S, and a complete development σ of S{R, then the pair pRσ, Sρq is a permutation tile.

De nition 2.39 (Orthogonal axiomatic rewriting system). An axiomatic rewriting system is orthogonal if it has autoerasure (AE), nite residuals (FR), nite developments (FD), and semantic orthogonality (SO).

In the following subsection we study abstract properties of orthogonal axiomatic rewriting systems.

Properties of Orthogonal Axiomatic Rewriting Systems

roughout this subsection, we assume that we are working within an orthogonal axiomatic rewriting system.

De nition 2.40 (Permutation equivalence). Two coinitial derivations ρ and σ are said to be permutation equivalent, if ρ " σ holds, where " is a binary relation obtained from the re exive-symmetric-transitive closure of the following relation " 1 :

τ 1 Rστ 2 " 1 τ 1 Sρτ 2 if pRσ, Sρq is a permutation tile Lemma 2.41. If ρ " σ then:
• For any τ 1 , τ 2 , we have τ 1 ρτ 2 " τ 1 στ 2 .

• e derivations ρ and σ are coinitial and co nal.

• e binary relations xρy and xσy are equal.

Proof. All the items are straightforward by induction on the derivation of ρ " σ.

Proposition 2.42 (Uniqueness of complete developments, modulo permutation equivalence). Let ρ, σ be complete developments of M in an orthogonal axiomatic rewriting system. en ρ " σ.

Proof. By induction on the depth of M. If M has depth 0, then M " ∅ x , so ρ and σ are the empty derivation x and ρ " σ. If M has strictly positive depth then ρ and σ cannot be empty, for they would not be complete. So let ρ " Rρ 1 and σ " Sσ 1 . By the fact that complete developments exist (Prop. 2.36), let α be a complete development of S{R, and let β be a complete development of R{S. By semantic orthogonality, pRα, Sβq is a permutation tile, so in particular M{Rα " M{Sβ. Consider a complete development τ of M{Rα, which again exists by Prop. 2.36. e situation is:

R S 1 1 ρ 1 α 1 1 1 1 σ 1 1 1 1 1 β τ
Now observe that ατ is a complete development of M{R so by i.h. (using Rem. 2.35). we have that ρ 1 " ατ . Symmetrically, βτ is a complete development of M{S so βτ " σ 1 . Using Lem. 2.41 and the fact that pRα, Sβq is a permutation tile, we conclude that Rρ 1 " Rβτ " Sατ " Sσ 1 , as required.

e proposition above (Prop. 2.42) is the cornerstone of the axiomatic residual theory developed by Lévy, Huet and Melliès. Given any set of coinitial steps M, we know that there is a complete development of M. Moreover, if ρ, σ are two complete developments of M we know that they have the same source and the same target. In particular, the target of a set of coinitial steps, wri en tgtpMq, may now be de ned as tgtpρq, and this does not depend on the choice of the complete development ρ. is means that M may be regarded as a multistep M : x ñ y, where x " srcpMq and y " tgtpMq. Moreover, ρ and σ induce the same residual relation, i.e. R{ρ " R{σ, so the notation R{M may stand for R{ρ, and this is also well-de ned.

Using the properties of existence and uniqueness of complete developments, the following de nition shows that for any orthogonal axiomatic rewriting system A, one may construct an orthogonal axiomatic rewriting system A m whose steps are multisteps of A.

De nition 2.43 (Multisteps and multiderivations). Let

A " pObj, Stp, src, tgtq be an orthogonal axiomatic rewriting system. en:

• A multistep M is a nite, non-empty, set of coinitial steps, that is, there is an object

x P Obj such that for every R P M we have srcpRq " x.

• If M is a multistep, we write srcpMq for the source object x of the multistep, and tgtpMq for the target y of any complete development ρ : x y of the set M. Recall that there is always at least one complete development of a set M (Prop. 2.36), and that complete developments are unique modulo permutation equivalence (Prop. 2.42), so their targets always coincide by Lem. 2.41.

• Let Multistep the set of all multisteps starting on all possible objects x P Obj. en the 4-uple pObj, Multistep, src, tgtq is an abstract rewriting system, which we call the abstract rewriting system of multisteps of A, and we denote by A m .

• Sometimes we write M : x ñ y for a step M : x Ñ A m y. To avoid confusion with derivations of A, derivations of A m are sometimes called multiderivations of A. When working with both derivations and multiderivations, we write D, E, . . . to range over multiderivations.

• We say that a derivation ρ is a complete development of a multiderivation M 1 . . . M n if ρ is of the form ρ 1 . . . ρ n , where for each i, the derivation ρ i is a complete development of the set M i .

Another consequence of the properties of existence and uniqueness of complete developments is the following abuse of notation, usually found in the literature, that we will frequently use.

Convention 2.44. A multistep M (resp. multiderivation D) can be implicitly coerced to a derivation ρ, by taking ρ to be some complete development of M (resp. D). We assume that for each multistep M we deterministically choose a complete development BM, which we call the canonical complete development of M. Similarly for multiderivations, by se ing BpM 1 . . . M n q def " BM 1 . . . BM n .

In the following lemma, we write M \ N for the derivation MpN {Mq, where, as noted in Convention 2.44, "M" stands for the canonical complete development of the set M, and "N {M" stands for the canonical complete development of the set N {M " Proof. Let ρ be the canonical complete development of M and let σ be the canonical complete development of N {M. We claim that ρσ is a complete development of the set M Y N , where Y is the set-theoretical union. Indeed:

Ť tR{M | R P N u.
• Development. Note that ρ is a development of M Ď M Y N and σ is a development of N {ρ Ď pM Y N q{ρ, so ρσ is a development of M Y N .
• Complete. Suppose that ρσ is not maximal. en there is a step R P pM Y N q{ρσ that extends σ. But pM Y N q{ρσ " pM{ρσq Y pN {ρσq " N {ρσ since ρ is a complete development of M, which means that M{ρσ " pM{ρq{σ " ∅{σ " ∅. So we have that R P N {ρσ extends σ, contradicting that σ is a complete development of N {ρ.

Hence the derivation M \ N is a complete development of M Y N . Symmetrically, the derivation N \ M is also a complete development of M Y N . By the uniqueness of complete developments (Prop. 2.42) we obtain that M \ N " N \ M as required.

De nition 2.46 (Residual of a derivation a er a set). If ρ is a derivation and M is a set of coinitial steps with the same source as ρ, then ρ{M is a derivation de ned as follows, by induction on the length of ρ:

srcpMq {M def " tgtpMq Rρ{M def " pR{Mqpρ{pM{Rqq
Note that M{R is a set of coinitial steps with the same source as ρ so the second equation typechecks. Note also that, "R{M" stands for the canonical complete development of the multiset R{M. Proof. By induction on the depth of M. If the depth is 0, then M is empty and it is immediate to conclude. If the depth of M is positive, then M is non-empty and ρ is of the form Rρ 1 where R P M and ρ 1 is a complete development of M{R. Recall that the depth of M{R is strictly smaller than the depth of M, as observed in Rem. 2.35, so by inductive hypothesis ρ 1 {pN {Rq is a complete development of pM{Rq{pN {Rq. Moreover, the cube identity (Lem. 2.45) ensures that pM{Rq{pN {Rq " M{pR \ N q " M{pN \ Rq " pM{N q{pR{N q To conclude, observe that ρ{N " Rρ 1 {N " pR{N qpρ 1 {pN {Rqq, where "R{N " stands for the canonical complete development of the set R{N , which is a subset of M{N , and ρ 1 {pN {Rq is a complete development of the set pM{N q{pR{N q. Hence ρ{N is a complete development of M{N , as required.

De nition 2.48 (Residual of a derivation a er a derivation). If ρ and σ are coinitial derivations, ρ{σ is a derivation de ned as follows, by induction on the length of ρ:

srcpσq {σ def " tgtpσq Rρ{σ def " pR{σqpρ{pσ{tRuqq
Note that σ{tRu is the residual of a derivation a er a set of coinitial steps according to the previous de nition (Def. 2.46). Note also that "R{σ" stands for the canonical complete development of the multiset R{σ.

Remark 2.49. By autoerasure, we have that ρ{ρ " for any derivation ρ. is can be formally proved by induction on ρ.

Lemma 2.50 (Properties of residuals). e following hold in any orthogonal axiomatic rewriting system:

1. ρ{στ " pρ{σq{τ 2. ρσ{τ " pρ{τ qpσ{pτ {ρqq Proof. Ge ing the proof right is a bit delicate. Before doing so, we state and prove some slightly less general claims:

• Claim I. For all ρ, σ, M we have ρσ{M " pρ{Mqpσ{pM{ρqq. en the abstract rewriting system of multisteps A m is also an orthogonal axiomatic rewriting system.

Proof. Given three multisteps:

M : x ñ y N : x ñ x 1 M 1 : x 1 ñ y 1 declare the residual relation M xN y A m M 1 to
hold in A m whenever the equality M 1 " M{N holds when M, N , and M 1 are seen as sets of coinitial steps in A. Note that residuals are a ne, that is, given coinitial multisteps M, N the set of residuals tP | M xN y A m Pu is either empty or consists of exactly one multistep M{N .

Let us check that this de nition veri es the axioms of an orthogonal axiomatic rewriting system:

1. Autoerasure. Note that M{M " ∅ in A. Since a multistep is de ned to be a non-empty set of coinitial steps, there is no multistep N such that M xMy A m N .

2. Finite residuals. Even more strongly, residuals are a ne.

3. Finite Developments. By the fact that residuals are a ne, the length of any development of a set X " tM 1 , . . . , M n u is bounded by n.

4. Semantic Orthogonality. Let M, N be coinitial multisteps. en the peak may be closed as follows:

M C Q N E D C Q C Q
If the set M{N is empty, the multiderivation D is chosen to be the empty multiderivation . If the set M{N is non-empty, the multiderivation D is chosen to be the multiderivation M{N of length 1. Symmetrically for E.

One can then check that the pair pME, N Dq is a permutation tile, which is an immediate consequence of the cube identity for multisteps (Lem. 2.45).

Lemma 2.52. In an orthogonal axiomatic rewriting system A, let M be a multistep and let R 1 . . . R n be a complete development of M. en in the rewriting system of multisteps we have that M " A m tR 1 u . . . tR n u.

Proof. By induction on the depth of M. Recall that M is a multistep so it is non-empty. We consider two cases:

1. If n " 1.
en is a complete development of M{R 1 , so M{R 1 " ∅. Moreover, R 1 P M, so tR 1 u{M " ∅. is means that pM, tR 1 uq is a permutation tile in A m and we have M " A m tR 1 u.

2. If n ą 1. en R 2 . . . R n is a complete development of M{R 1 , so M{R 1 is non-empty.
Moreover, R 1 P M, so tR 1 u{M " ∅. is means that pM, tR 1 upM{R 1 qq is a permutation tile in A m , so M " A m tR 1 upM{R 1 q " A m tR 1 utR 2 u . . . tR n u by i.h., relying on Rem. 2.35.

Proposition 2.53. If A is an orthogonal axiomatic rewriting system, the mappings:

i : Deriv A Ñ Deriv A m R 1 . . . R n Þ Ñ tR 1 u . . . tR n u B : Deriv A m Ñ Deriv A M 1 . . . M n Þ Ñ BpM 1 q . . . BpM n q
Induce a bijection pDeriv A { " A q » pDeriv A m { " A m q. Recall that BM denotes the canonical complete development of M, Proof. First we prove that i and B are well-de ned over permutation-equivalence classes.

pÑq We claim that if ρ " A σ then ipρq " A m ipσq. Indeed, by induction on the derivation of ρ " σ, the interesting case is one-step permutation, i.e. when ρ " τ 1 Aβτ 2 and σ " τ 1 Bατ 2 where pAβ, Bαq is a permutation tile in A, i.e. α is a complete development of A{B and β is a complete development of B{A. en by Lem. 2.52 we have ipρq " ipτ 1 qf pAqipβqipτ 2 q " A m ipτ 1 qipBqipαqipτ 2 q " ipσq. is mapping de nes a function i :

Deriv A { " A Ñ Deriv A m { " A m also noted i.
pÐq We claim that if D " A m E then BpDq " A BpEq. Indeed, by induction on the derivation of D " E, the interesting case is one-step permutation, i.e. when D " F 1 MV F 2 and E " F 1 N U F 2 where pMV, N U q is a permutation tile in A m , i.e. U is a complete development of M{N and V is a complete development of N {M. en by the cube identity for multisteps (Lem. 2.45) we have BD " BpF 1 qBpMqBpV qBpF 2 q " A BpF 1 qBpN qBpU qBpF 2 q " BE. is mapping de nes a function B :

Deriv A m { " A m Ñ Deriv A { " A also noted B.
To conclude, let us show that they are mutual inverses. One side is immediate, namely BpipR 1 . . . R n qq " BptR 1 u . . . tR n uq " R 1 . . . R n . For the other side, ipBpM 1 . . . M n qq " ipρ 1 . . . ρ n q where ρ i is a complete development of M i for all i. By Lem. 2.52, we have that ipρ 1 . . . ρ n q " A m M 1 . . . M n as required.

Lemma 2.54. Let A be an orthogonal axiomatic rewriting system. en ipρ{σq " A m ipρq{ipσq.

Proof. Let us write ρ as of the form ρ " R 1 . . . R n . Let us moreover de ne σ i :" σ{R 1 . . . R i´1 for all 1 ď i ď n. en: e sketch of the proof is as follows: let ρ " R 1 . . . R n and σ : S 1 . . . S m . Consider them as sequences of multisteps D " tR 1 u . . . tR n u and E " tS 1 u . . . tS m u. A peak pðñq in the rewriting system of multisteps may be closed with at most one step on each side pñ ñð ðq, as a consequence of the cube identity for multisteps (Lem. 2.45). So the peak formed by D and E may be closed with square tiles (each side of a tile may be a single multistep or the empty derivation): " pρ{τ qppσ{τ q{pρ{τ qq " pρ{τ q \ pσ{τ q 4. Let ρ{τ " and σ{τ " . en using item 3. we have that pρ \ σq{τ " pρ{τ q \ pσ{τ q " \ " . From this fact, we may conclude that MV {P " N U {P for any multistep P. en:

ipρ{σq " ipR 1 . . . R n {σq " ipBpR 1 {σ 1 q . . .
tS 1 u tR 1 u C Q tR 2 u C Q tRnu C Q tS 2 u C Q C Q C Q C Q C Q C Q tSmu C Q C Q C Q C Q C Q C Q C Q C Q C Q C Q C Q C Q e complete
D{P " F 1 MV F 2 {P " pF 1 {PqpMV {pP{F 1 qqpF 2 {pP{F 1 MV qq " pF 1 {PqpN U {pP{F 1 qqpF 2 {pP{F 1 MV qq " F 1 N U F 2 {P " E{P Proposition 2.

(Compatibility with projection).

Let A is an orthogonal axiomatic rewriting system. If ρ " A σ then ρ{τ " A σ{τ .

Proof. Let ρ " A σ and let us show that ρ{τ " A σ{τ . By Prop. 2.53, we know that ipρq " A m ipσq, and it su ces to show that ipρ{τ q " A m ipσ{τ q. Indeed: ipρ{τ q " A m ipρq{ipτ q by Lem. 2.54 " A m ipσq{ipτ q by compatibility in A m (Prop. 2.62) " A m ipσ{τ q by Lem. 2.54

Corollary 2.64 (Le cancellation). If ρσ " ρτ then σ " τ .

Proof. An immediate consequence of Prop. 2.63, projecting by ρ.

e λ-Calculus

Much has been wri en about the λ-calculus. e syntax of the (pure, untyped) λ-calculus and the β-reduction rule have already been informally discussed in Section 1.1. We omit its formal de nition, referring the reader to standard reference material on the topic [?, ?, ?, ?]. In particular we omit the formal treatment of the equivalence of terms modulo renaming of bound variables (α-equivalence). In the following, we do recall a few important concepts.

Convention 2.65 (Barendregt's free variable convention). During theorems and proofs, we may always assume that bound variables have been renamed apart from bound variables and from each other.

Positions and Contexts

Two simple but important notions are those of positions and contexts. Generally speaking, a position is a string of symbols intended to represent a location in a tree. e empty string represents the root of the tree. A position p representing a node in the tree may be extended with an integer i to represent its i-th child. Given two positions p, q we write p ¨q so stand for their concatenation. Each term t of the λ-calculus has a set of positions posptq: De nition 2.66 (Positions of a λ-term). If t is a λ-term, the set of positions posptq is de ned as follows by induction on t:

pospxq def " t u posptsq def " t u Y t1 ¨p | p P posptqu Y t2 ¨p | p P pospsqu pospλx.tq def " t u Y t1 ¨p | p P posptqu
For example, the positions of λx.xy are t , 1, 11, 12u. Positions are used to perform "surgery" on terms: if p P posptq is a position then t| p denotes the subterm of t at position p, and trss p denotes the term obtained by replacing the subterm at position p of t by s. For example, pλx.xyq| 12 " y and pλx.xyqrxys 11 " λx.xyy. We will freely use the notion of position in other se ings, besides the λ-calculus, without always giving an explicit de nition.

e notion of position is very closely related with the notion of context. A context is a term with exactly one occurrence of a free variable l, called a hole.

De nition 2.67 (Contexts in the λ-calculus).

A context is de ned by the following abstract syntax:

C ::" l | λx.C | C t | t C
Each position p P posptq corresponds to a context trls p . For example, pλx.xyqrls 11 is the context λx.ly. Contexts may also be used to perform surgery: if C is a context and t is a term, then Cxty denotes the capturing substitution of l by t in C, so that, for example, pλx.xlqxxxy " λx.xpxxq. In this thesis we also write Cxxtyy for the capture-avoiding substitution of l by t in C, so that, for example, pλx.xlqxxxy " λz.zpxxq. As for positions, we will freely use the notion of context for other families of terms, besides λ-terms, without always giving an explicit de nition.

Contexts are useful to decompose a term by writing it as Cxty, where C is a partially known term with an unknown subterm l, in which one plugs the subterm t. For example, a term is of the form Cxxxyy if and only if it has a free occurrence of x. Sometimes it is also useful to decompose terms using contexts with more than one hole. A context with n holes is a term with exactly one occurrence of the free variable l i for each i P t1, . . . , nu. If C is a context with n holes, we write Cxt 1 , . . . , t n y for the result of substituting each l i for t i in C. For example, ppλx.xl 2 ql 1 qxt, sy " pλx.xsqt.

Residual eory for the λ-Calculus

From the propositional point of view, the β-reduction rule of the λ-calculus is a binary relation between λ-terms:

Cxpλx.tq sy Ñ β Cxttx :" suy From the relevant point of view, however, the λ-calculus is an abstract rewriting system whose objects are λ-terms and whose steps are de ned as follows:

De nition 2.68 (Step in the λ-calculus). A step in the λ-calculus is a 4-uple R " pC, x, t, sq. e source of R is Cxpλx.tqsy and its target is Cxttx :" suy.

For example, there is a step pλx.xxqyz Ñ β yyz, given by the 4-uple plz, x, xx, yq. An important observation is that a step is not uniquely determined by its source and target. For example, if I " λx.x, there are two di erent steps IpIyq Ñ β Iy namely R " pl, x, x, Iyq and S " pIl, x, x, yq. is kind of situation is called a syntactic accident by Lévy [?]. In spite of the possibility of syntactic accidents, we usually do not work formally with 4-uples, since the step is usually clear from the context, e.g. when we say "the step pλx.xqt Ñ β t" we actually mean "the step pl, x, x, tq". e λ-calculus can be endowed with the structure of an orthogonal axiomatic rewriting system (as de ned in Def. 2.39).

ere are many (equivalent) ways to de ne the notion of residual in the λ-calculus. One way is by tracking descendants, using positions. Here we de ne residuals by means of an auxiliary calculus in which some redexes may be marked.

De nition 2.69 (Marked λ-calculus). Assume given a denumerable set of marks a, b, c, e set of marked terms is given by:

t ::" x | λx.t | t t | pλx a .tq t
e marked λ-calculus has a single rule, closed by arbitrary contexts, that allows to contract any marked redex. e notation ttx :" su stands for the capture-avoiding substitution of x by s in t. pλx a .tqs Ñ M ttx :" su A step in the marked λ-calculus is a 5-uple pC, x, a, t, sq whose source is Cxpλx a .tq sy and its target is Cxttx :" suy. e name of a step R " pC, x, a, t, sq in the marked λ-calculus is the mark a. A term is initially marked if it has no subterms of the form pλx.tqs and marks are pairwise distinct. A marked term t is a variant of an (unmarked) term t 1 if t 1 is the result of erasing all marks from t. Similarly, a marked step R " pC, x, a, t, sq is a variant of an (unmarked) step R 1 " pC 1 , x, t 1 , s 1 q if C, t, and s are variants of C 1 ,t 1 , and s 1 respectively. If the marked term t is an initially marked variant of t 1 and R 1 : t 1 Ñ β s 1 is an unmarked step, there is a unique marked step R : t Ñ M s such that R is a variant of R 1 , we say that R is the marked li of R 1 with respect to t.

For example, pλx a .xqppλy b .yqzq is an initially marked term, but the terms pλx a .xqppλy a .yqzq and pλx a .xqppλy.yqzq are not initially marked. e marked step pλx a .xqppλy b .yqzq Ñ M ppλy b .yqzq is the marked li of the unmarked step pλx.xqppλy.yqzq Ñ β ppλy.yqzq with respect to the marked term pλx a .xqppλy b .yqzq. e notion of residual in the λ-calculus may be de ned using the marked λ-calculus as an auxiliary tool, as follows.

De nition 2.70 (Residuals in the λ-calculus). Let R : t Ñ β s and S : t Ñ β u be coinitial steps in the λ-calculus. e set of residuals R{S is de ned as follows:

1. Let t 1 be an initially marked variant of t.

2. Let R 1 : t 1 Ñ M s 1 and S 1 : t 1 Ñ M u 1 be the marked li s of R and S respectively. Proof. e properties of autoerasure (AE) and nite residuals (FR) are easy to check. e property of nite developments (FD) of the λ-calculus can be reduced to the property that the marked λ-calculus is strongly normalizing. To prove SN of the marked λ-calculus, one may assign a weight mptq P N 0 to any marked term t, representing the length of the longest sequence of steps starting from t:

A step

T : u Ñ β r is a residual of R
mpxq def " 0 mpλx.tq def " mptq mptsq def " mptq `mpsq mppλx a .tqsq def " 1 `mptq `maxt1, m x ptqu ¨mpsq
where in turn m x ptq represents the maximum potential multiplicity of x along any sequence starting from t:

m x pyq def " # 1 if x " y 0 otherwise m x pλy.tq def " m x ptq if x ‰ y m x ptsq def " m x ptq `mx psq m x ppλy a .tqsq def " 1 `mx ptq `maxt1, m y ptqu ¨mx psq if x ‰ y
It can then be checked that t Ñ M s implies mptq ą mpsq, which in turn means that the marked calculus is SN. e key fact is that mpttx :" suq ď mptq `mx ptq ¨mpsq holds for all t, x, s, which can be proved by induction on t. 2e property of semantic orthogonality (SO) can be reduced to the property that the marked λ-calculus is weakly Church-Rosser.

e di cult case is when a step R nests another step S, that is, when the subterm contracted by the step S lies inside the argument of the application contracted by R. en the peak may be closed with a diagram of the form: Lemma 11.2.23] for a detailed proof that the marked λ-calculus is WCR.

pλx a .tq Cxpλy b .squy R G G S ttx :" Cxpλy b .squyu pλx a .tq Cxsty :" uuy G G ttx :" Cxsty :" uuyu See [?,

e Linear Substitution Calculus

e syntax of the Linear Substitution Calculus (LSC) and its reduction rules have been informally discussed in Section 1.1. Below we brie y state these de nitions.

De nition 2.74 (Terms and contexts). Terms (t, s, . . .), arbitrary contexts (C, C 2 , . . .), and substitution contexts (L, L 2 , . . .) are de ned as follows:

t ::" x | t t | λx.t | trxzts C ::" l | C t | t C | λx.C | Crxzts | trxzCs L ::" l | Lrxzts
A pure term is a term without explicit substitutions. Recall that if L is a substitution context, we write tL rather than Lxty for the result of plugging t into the hole of L.

e underlined occurrences of x in the terms λx.t and trxzss are supposed to be binding occurrences. More precisely, the set of free variables fvptq of a term t is de ned as follows:

fvpxq def " txu fvpt sq def " fvptq Y fvpsq fvpλx.tq def " fvptqztxu fvptrxzssq def " pfvptqztxuq Y fvpsq
As in the λ-calculus, terms are considered up to α-equivalence, i.e. renaming of bound variables.

De nition 2.75 (Reduction rules). From the propositional point of view, the rewriting relation between terms pÑ LSC q is de ned as Ñ LSC def " Ñ db Y Ñ ls Y Ñ gc , where Ñ x is de ned as the contextual closure of Þ Ñ x for each x P tdb, ls, gcu:

pλx.tqL s Þ Ñ db trxzssL Cxxxyyrxzts Þ Ñ ls Cxxtyyrxzts trxzss Þ Ñ gc t if x R fvptq
From the relevant point of view, steps in the LSC are given by the disjoint union of db steps, ls steps, and gc steps where:

• A db step is a 5-uple R " pC, x, t, L, sq : Cxpλx.tqL sy Ñ LSC CxtrxzssLy.

• A ls step is a 4-uple R " pC In the following, we state a few results that justify that the LSC is a quite well-behaved explicit substitution calculus, and we sketch the ideas behind their proofs. For Proof. We sketch a proof of PSN, without going into all the technical details, which would require quite a few auxiliary lemmas. A proof of PSN for the structural λ-calculus-a calculus closely related with the LSC-may be found in [?], and the proof can be easily adapted.

De ne the unfolding of an LSC term t as the λ-term t ˛that results from performing all substitutions, that is, the Ñ ls,gc -normal form of t. In a term of the form Cxtrxzssy, we say that the substitution rxzss under the context C is sterile if x R fvpt ˛q. A subterm is unreachable if it lies inside a sterile substitution, and reachable otherwise. For example, in xryzzsrzzts the subterm t is unreachable because the underlined substitution xryzzsrzzts is sterile. A step R : t Ñ s is unreachable if the anchor of R lies inside an unreachable subterm of t, and reachable otherwise. e rewriting relation of unreachable reduction t Ñ U s is de ned as the restriction of t Ñ LSC s to unreachable steps. In turn, reachable unfolding t Ñ Rpls,gcq is the restriction of t Ñ ls,gc s to reachable steps.

Let X be the set of LSC terms such that t ˛P SN β and every unreachable subterm of t is in SN LSC . Observe in particular that if t is pure and t P SN β , then t ˛" t P SN β and t has no unreachable subterms, so in fact t P X. e proof of the main statement can then be reduced to the claim that X Ď SN LSC , which is Claim II below. We also need Claim I as an auxiliary result.

• Claim I. If t P X, then for any subterm s of t we have that s P X.

Proof of Claim I. Let s be a subterm of t. Note that any unreachable subterm u of s is also an unreachable subterm in t, so we have that u P SN LSC . We are le to show that s ˛P SN β . We consider two cases:

-Reachable. Suppose that s is reachable. en s ˛occurs as a subterm of t ˛, and t ˛P SN β by hypothesis, so s ˛P SN β .

- e unreachable subterms of s are the same ones as in t, except perhaps for u and its subterms. But u is smaller in size than t, and by Claim I u P X, so by i.h. we have that u P SN LSC .

Second, let us show that the measure decreases. Since t Ñ Rpls,gcq s we have that depth Rpls,gcq ptq ą depth Rpls,gcq psq so the second component decreases. Moreover t ˛" s ˛so depth β pt ˛q " depth β ps ˛q, i.e. the rst component does not change.

3. Unreachable step. Suppose that the step is unreachable, i.e. of the form t Ñ U s.

First, note that s P X since t ˛" s ˛and the reachable subterms of s are the same ones as in t.

Second, let us show that the measure decreases. Given that t Ñ U s, we have that depth U ptq ą depth U psq so the third component decreases. Note that t ˛" s ˛so depth β pt ˛q " depth β ps ˛q, i.e. the rst component does not change. Moreover, depth Rpls,gcq ptq " depth Rpls,gcq psq, i.e. the second component does not change.

Proposition 2.81 (Con uence). e LSC is con uent.

Proof. We do not give a full proof here, but a few pointers:

• A proof of con uence for the structural λ-calculus-closely related with the LSC-may be found in [?].

• Con uence for the LSC is straightforward using interpretation methods [?]. A proof of a stronger property, meta-con uence, for the LSC can be found in [?].

• A proof that the LSC is an orthogonal axiomatic rewriting system may be found in [?].

Recall that orthogonal axiomatic rewriting systems enjoy the stronger property of algebraic con uence (Coro. 2.56).

• In Chapter 6 we will reconstruct a proof that the LSC is an orthogonal axiomatic rewriting system, using a labeled calculus.

Chapter 3

Distilling Abstract Machines

Introduction

e λ-calculus is a ne model of computation from the point of view of computability-it is Turing-complete. It is however not so clear whether the λ-calculus is a ne model of computation from the point of view of computational complexity. By this we mean the amount of resources that the program must consume to be able to run. ere are many kinds of computational resources. In this chapter we are interested exclusively in the time complexity required to evaluate λ-terms. Time is a most fundamental computational resource, in that other kinds of resources, such as the amount of space (memory) that a program uses, or the amount of energy (e.g. ba ery) that it consumes, can usually be bounded proportionally by the running time of the program.

As mentioned in the introduction, van Emde Boas' Invariance esis stipulates that reasonable models of sequential computation should simulate each other with polynomial overhead in time [?]. For example, "traditional" (or "established") models of computation such as Turing machines and random-access machines are known to simulate each other with polynomial overhead. Is the λ-calculus a reasonable time cost model of sequential computation, with respect to the established models? at is, can a sequence of n consecutive β-reduction steps t 0 Ñ β t 1 . . . Ñ β t n be simulated in a Turing machine with at most a polynomial number of steps in n?

As an illustration of why this question is subtle, note that there are families of λ-terms whose sizes grow exponentially as a function of the number of β-reduction steps. For instance, recall the following families of terms pt n q nPN and ps n q nPN from Section 1.1.2:

t 0 def " y t n`1 def " pλx.xxqt n s 0 def " y s n`1 def " s n s n
ese terms are such that the size of t n is Θpnq and the size of s n is Θp2 n q, but t n reduces to s n in Θpnq steps. Suppose that one represents terms straightforwardly as trees-be it in a Turing machine or in any other established model of sequential computation. With that representation, the amount of memory required to simulate n consecutive β-reduction steps, starting from t n , grows exponentially as a function of n. As a necessary consequence, the amount of time required to simulate n consecutive β-reduction steps also grows (at least) exponentially as a function of n.

e above example shows that it is not possible to simulate β-reduction in polynomial time as long as terms are represented straightforwardly as trees. e subtle point is that this does not forbid that the λ-calculus may turn out to be a reasonable time cost model if one were to rely on a smarter representation for λ-terms. In summary, regarding the question of whether the λ-calculus is a reasonable time cost model, answering it positively would require to conceive a su ciently smart representation for λ-terms that avoids the exponential blowup in space. Conversely, answering it negatively would require to prove that simulating it with polynomial overhead in time is impossible for any conceivable encoding of λ-terms.

A noteworthy contribution to the study of this problem has been the work by Acca oli and dal Lago [?], who have shown that le most-outermost reduction in the λ-calculus is reasonable, by choosing an appropriate representation for λ-terms that avoids the exponential blowup. In fact, in order to share subterms, the Linear Substitution Calculus (LSC) is used as the primary technical tool. e general question of whether arbitrary β-reduction in the λcalculus is a reasonable time cost model is currently open, as of the writing of this thesis.

In this chapter, we tackle the question of whether certain reduction strategies in explicit substitution calculi are reasonable cost models. For example, in the case of the call-by-name reduction strategy for the Linear Substitution Calculus (LSC), the question is whether it is possible to implement the LSC in such a way that n consecutive call-by-name reduction steps can be simulated-in an established model of sequential computation-with at most a polynomial number of steps in n. We answer this question positively for four particular reduction strategies: call-by-name, call-by-value, call-by-need, and strong call-by-name (i.e. call-by-name generalized to allow reduction under abstractions).

To be able to study these questions for a given reduction strategy, one needs to provide the following elements:

1. A formal de nition of the reduction strategy itself.

2. An implementation of the reduction strategy.

3. A "distillation", i.e. a construction showing that the implementation actually implements reduction according to the given strategy.

All of these elements are grouped in an abstract structure that we call a distillery (see Def. 3.17). roughout this chapter we develop a methodology to study distilleries. Besides the particular results on the time complexity of various evaluation strategies, the methodology itself is an important take-home point, for the following reasons:

• Distilleries are uniform: abstract machines are consistently seen as implementations of reduction strategies in a single framework-the λ-calculus extended with explicit substitutions. is allows us to understand the working of many existing abstract machines (e.g. the Krivine Abstract Machine or Landin's SECD machine) as less ad hoc.

• Distilleries are modular with respect to various features (e.g. local vs. global environments, or split vs. merged stacks)-so formulating variants of abstract machines with di erent features becomes a relatively mechanical task.

• is very uniform and modular approach can guide the design of future abstract machines to implement other reduction strategies. For instance in the conclusion (Section 8.1) we discuss an abstract machine for the strong call-by-need reduction strategy of Chapter 4.

In the remainder of this section, before diving into the speci c details of each strategy, we give a description of the general methodology First, in this chapter, a reduction strategy S is always an abstract rewriting system over the set Term of terms with explicit substitutions: One obvious di erence with respect to the LSC is that reduction rules are closed by evaluation contexts, rather than by arbitrary contexts. Moreover, each strategy may incorporate slight (or not so slight) variations; for example the call-by-value strategy will require that the argument of a multiplicative step is already an answer, i.e. a term of the form pλx.tqL.

t ::" x | λx.t | t t
All the reduction strategies studied in this chapter turn out to be deterministic, i.e. if t Ñ S s 1 and t Ñ S s 2 are steps in a given reduction strategy then s 1 " s 2 . Moreover, as mentioned, these strategies always select either a db-like or a ls-like step, and they do not perform garbage collection (there are no gc-like rules). As a consequence, the answer obtained as the result of evaluating a term may contain unreachable explicit substitutions. e decision to ignore the gc-rule in the analysis is justi ed by the following observations:

1. On one hand, gc steps in the explicit substitution calculi that we study do not interfere with other kinds of computation steps. More precisely, gc steps can be postponed: for every reduction sequence t s there is a term u such that t dbYls u gc s.

Formally, the garbage collection rule will be incorporated into an equivalence relation of structural equivalence between terms, and we will show that structurally equivalent terms have the same computational behavior.

2. On the other hand, explicit substitution calculi do not allow for cyclic bindings. at is, if a term with explicit substitutions is interpreted as a directed graph in which some subterms are shared, the graph turns out to be acyclic. is means that garbage collection of unreachable explicit substitutions may be implemented using the elementary technique known as reference counting [?]. Concretely, each explicit substitution trxzss may be annotated with an integer n ě 0 that counts the free occurrences of x in t.

is count must be updated a er each reduction step, and the explicit substitution may be reclaimed when the count reaches zero. Moreover, all the implementations that we propose enjoy the subterm property (see below), which means that these updates can be done in "constant" time 1 .

As a consequence, incorporating the gc rule is not interesting from the point of view of time complexity, and it is le out of the analysis.

Second, implementations in this chapter are always de ned using abstract machines. An abstract machine M is also an abstract rewriting system, over a set State of states, and rules that de ne a binary transition relation ù M Ď State ˆState between states.

e concrete de nition of the set State varies from machine to machine, but typically a state is a tuple consisting of such elements as:

• A code, that is, a term representing the expression that is currently being evaluated.

While in reduction strategies we work implicitly modulo α-equivalence, for machines we will not do so, as renaming of variables is part of what an abstract machine may have to explicitly do, and di erent renaming schemes correspond to di erent approaches to abstract machines. We use the metavariables t, s, u, r for code, that is, terms without explicit substitutions and not up to α-equivalence.

• A stack π " c 1 :: . . . :: c n , into which the arguments are pushed.

• An environment e " rx 1 zc 1 s :: . . . :: rx n zc n s, which binds variables to their corresponding values.

• A dump D, representing a continuation, and abstracting the lower-level notion of call stack.

Furthermore, the values c 1 , . . . , c n found inside stacks and environments are sometimes not bare terms, but rather closures. A closure is a pair pt, eq of a code t and an enclosing environment e which should bind all the free variables of t.

All of the abstract machines that we study in this chapter are deterministic. ey are reasonable abstractions of the lower-level constructs that one may implement in standard hardware architectures, such as pointers and stack frames. Moreover, most of the machines that we will de ne in this chapter (except for the MAD in Section 3.5.6 and the Merged MAD in Section 3.5.7) are to be regarded as established models of sequential computation, in the sense that n transitions of an abstract machine can be simulated by Turing-machines in a number of steps polynomial in n. 2ird, a distillation is given by a decoding function rr ¨ss : State Ñ Term from the set of states of the machine to the set of terms of the calculus. e decoding functions usually take the code t in the state of the abstract machine and they leave it verbatim. e remaining components of the state of the abstract machine (stack, environment, etc.) are combined and decoded into an evaluation context E. e whole state of the abstract machine is then decoded as the term Exty.

One then aims for a correctness result, stating, roughly, that the reduction strategy simulates the abstract machine:

if S ù M S 1 then rrSss S rrS 1 ss (3.1)
Note that this is not a novel idea. In fact, it is well-known that abstract machines can be seen as implementations of evaluation strategies in calculi of explicit substitutions (see at least [?, ?, ?, ?, ?]). However, there is a di culty that must be overcome in calculi with explicit substitutions at a distance. At rst sight, reduction strategies and abstract machines compute in quite di erent ways. Some machine transitions, the principal transitions, correspond to computations and can easily be mapped to either multiplicative or exponential steps. For example, in Krivine's abstract machine [?] (KAM), the following principal transition: In the traditional approach to explicit substitutions (not "at a distance"), this corresponds to a rewriting step in the calculus, such as the following Ñ @ rule:

pt sqrxzus Ñ @ trxzus srxzus (3.3)
However, calculi with explicit substitutions at a distance reject these kinds of rules, and as a consequence the behavior of the machine in (3.2) cannot be simulated by the calculus. e work in this chapter stems from the key observation that rules like Ñ @ in (3.3)-despite not being at a distance-preserve the behavior of the strategy Ñ S . e intuitive reason is that the following diagrams commute. As customary, solid arrows in the diagram are universally quanti ed and do ed arrows are existentially quanti ed:

pt sqrxzus @ G G S trxzus srxzus S r @ G G r 1 pt sqrxzus @ G G S trxzus srxzus S r @ G G r 1
ese diagrams express the fact that Ñ @ is a strong bisimulation. Recall that: De nition 3.1 (Strong bisimulation). Let A " pA, Ñ 1 q and B " pB, Ñ 2 q be abstract rewriting systems. A binary relation " Ď A ˆB is a strong simulation with respect to pÑ 1 , Ñ 2 q if for any objects a, a 1 P A and b P B such that a Ñ 1 a 1 and a " b there is an object b 1 P B such that b Ñ 2 b 1 and a 1 " b 1 . Graphically:

a 1 " b 2 a 1 " b 1
If, moreover, the inverse relation p"q ´1 def " tpb, aq | a " bu Ď BˆA is also a strong simulation with respect to pÑ 2 , Ñ 1 q, then " is a strong bisimulation with respect to pÑ 1 , Ñ 2 q.

In this chapter, we usually have that A " B " pA, Ñq so Ñ 1 "Ñ 2 "Ñ. In this se ing, we simply say that " is a strong bisimulation with respect to Ñ, or just a strong bisimulation if Ñ is clear from the context.

In general, for each corresponding pair pS, Mq of a reduction strategy S and an abstract machine M under study, we de ne an associated binary equivalence relation " of structural equivalence between terms. Structural equivalence includes equations to propagate explicit substitutions, such as pt sqrxzus " trxzus srxzus, and it turns out to be a strong bisimulation with respect to the reduction strategy Ñ S .

Note that " being a bisimulation means that the following inclusion between relations holds:

p" Ñ S q Ď pÑ S "q which in turn implies that any sequence of steps:

t 0 Ñ S " t 1 Ñ S " t 2 . . . Ñ S " t n
can always be rearranged as follows (by transitivity of "):

t 0 Ñ S t 1 1 Ñ S t 1 2 . . . Ñ S t 1 n " t n
e desired correctness result that we stated in 3.1 is then slightly weakened to allow for propagations of explicit substitutions in the calculus: if S ù M S 1 then rrSss S " rrS 1 ss is means that the reduction strategy simulates the abstract machine, up to propagations of explicit substitutions. Since the reduction strategy and the abstract machine are both deterministic, from such a property we will be able to deduce that the abstract machine simulates the strategy.

Note also that " being a strong bisimulation captures the idea that two structurally equivalent terms are behaviorally equivalent with respect to the strategy. In particular if t " s then the number of steps required to normalize t, according to the strategy S, is the same as the number of steps required to normalize s according to S. Consequently, calculi at a distance faithfully represent abstract machines up to propagations of explicit substitutions. e search transitions of the abstract machine (such as 3.2) are decoded as structurally equivalent terms (such as the le and right-hand sides of 3.3). Search transitions are thus are somehow forgo en, while principal transitions are retained and simulated as Ñ S steps.

Bounding the Time Complexity of Reduction

It is natural to wonder what is lost in forge ing some of the transitions of the abstract machine. We show that nothing is lost, at least from a complexity point of view: any time complexity bound for strategies li s to the corresponding machines, and vice-versa. More precisely, we give a polynomial bound for the number of ù M -steps required to simulate a sequence of n consecutive Ñ S -steps starting from an initial pure term t 0 . e speci c details of the argument depend on the particular abstract machine, but the idea is as follows:

• Multiplicative steps. Each multiplicative step Expλx.tqsy Ñ S Extrxzssy, is simulated in the abstract machine with:

-A number of search transitions, in order to nd the underlined redex. e cost of each search transition is constant, and we will argue that there are at most |t 0 | such transitions.

-A principal transition that usually rearranges the stack and creates a binding rxzss in the environment. e cost of such a transition is constant.

• Exponential steps. Each exponential step E 1 xE 2 xxxyyrxztsy Ñ S E 1 xE 2 xtyrxztsy, is simulated in the abstract machine with:

-A number of search transitions, in order to nd the underlined variable. As before, we will argue that there are at most |t 0 | such transitions, each of constant cost.

-A principal transition that makes a copy of the term t. e cost of such a transition is the cost of copying t, which is Op|t|q. A priori the size of t could be arbitrarily large, so to give a bound for this cost, it is crucial to prove that the abstract machines verify a number of invariants. One particular invariant, the subterm property, states that t is a subterm of the initial term t 0 , and it allows us to ensure that the cost of this transition is Op|t 0 |q.

As a consequence of this analysis, we will obtain bilinear bounds. at is, the number of ù M -steps required to simulate a sequence of n consecutive Ñ S -steps starting from an initial term t 0 will be bounded by Op|t 0 | ¨nq.

Local vs. Global Environments -Explicit Treatment of α-Equivalence

In this chapter we study two kinds of machines: those with many local environments and those with just one global environment.

e notion of local environment is de ned mutually inductively with the notion of closure:

Local environments e ::" | rxzcs :: e Closures c ::" pt, eq at is, a local environment maps variables to closures, and closures consist of a code t in an enclosing local environment e.

In contrast, the global environment is at, i.e. it maps variables to codes and there is no nesting:

Global environments E ::" | rxzts :: E machines with global environments will have a single global closure pt, Eq. To explicitly treat α-equivalence, we work with particular representatives of α-equivalence classes, de ned via the notion of support. e support suppp´q of codes, environments, and closures is de ned as follows:

• suppptq is the multiset of its bound names (e.g. supppλx.λy.λx.pzxqq " rx, x, ys).

• supppeq is the multiset of names captured by e (e.g. suppprxzc 1 sryzc 2 srxzc 3 sq " rx, x, ys), and similarly for supppEq.

• suppppt, eqq def " suppptq `supppeq and suppppt, Eqq def " suppptq `supppEq.

A code/environment/closure X is well-named if its support supppXq is a set, i.e. a multiset with no repetitions. Moreover, a closure pt, eq (resp. pt, Eq) is closed if fvptq Ď supppeq (resp. fvptq Ď supppEq).

Our Work

is chapter is the result of collaboration with Beniamino Acca oli and Damiano Mazza, and it is structured as follows. We highlight in boldface what we consider to be the main contributions:

• In Section 3.2 we present ve reduction strategies (Def. 3.3) using explicit substitutions at a distance. Speci cally, the ve reduction strategies are: (1) weak call-by-name, (2) weak call-by-value, with le -to-right evaluation, (3) weak call-by-value, with rightto-le evaluation, (4) weak call-by-need, (5) strong call-by-name.

e rst four strategies are easy to de ne by relying on an appropriate notion of evaluation context. ese strategies are well-known from the literature and we do not claim originality, although it should be noted that this is the rst presentation that uses explicit substitutions at a distance. In particular, the weak call-by-need strategy is quite simple in contrast with previous formulations [?, ?, ?, ?]-it has two reduction rules, and the grammar of evaluation contexts consists of a single sort with four straightforward productions.

Strong call-by-name on the other hand requires more care. Our presentation follows a previous work by Acca oli and Dal Lago [?]. In Section 3.2.4 we show that strong callby-name, de ned using evaluation contexts, corresponds to linear le most-outermost reduction in the LSC [?, ?]-that is at the same time a re nement of le most-outermost β-reduction and an extension of linear head reduction to normal form. Moreover, we show that all of these strategies are deterministic (Prop. 3.11).

• In Section 3.3 we de ne a notion of structural equivalence " S for each reduction strategy S de ned in Section 3.2. e main technical result is that, for each strategy S, it turns out that structural equivalence " S is a strong bisimulation with respect to the strategy S (Prop. 3.14).

• In Section 3.4 we introduce the notion of distillery, an abstract structure used to relate reduction strategies and abstract machines.

• In Section 3.5 we de ne abstract machines implementing each of the strategies, and we prove that all of these abstract machines form distilleries for the corresponding reduction strategies: • Finally, in Section 3.6 we show that, for each of the abstract machines de ned in Section 3.5, the length of an execution in the machine is bilinearly related with the length of the reduction sequence starting from the same initial term, in the corresponding reduction strategy.

A note on machines for strong reduction. In this chapter, the only abstract machine for strong reduction that we study-the Strong MAM (Section 3.5.9)-implements strong callby-name. Machines for other strong strategies, such as strong call-by-value and strong call-byneed, are more complex-in fact de ning the strong reduction strategies is itself a nontrivial task. Abstract machines for open call-by-value (i.e. allowing the presence of free variables but disallowing evaluation below abstractions) following the spirit of this chapter have been studied by Acca oli and Guerrieri [?]; Grégoire and Leroy [?] also study strong call-by-value, de ned by iterating a weak call-by-value strategy. In the following chapter (Chapter 4) we study a strong call-by-need strategy. In Section 8.1 in the Conclusion (Chapter 8), we propose an abstract machine for strong call-by-need evaluation, although we do not study its properties.

Reduction Strategies

In this section we de ne ve deterministic reduction strategies: call-by-name (name), two variants of call-by-value (value LR , value RL), call-by-need (need), and strong call-by-name (name S). Moreover, in Section 3.2.5 we prove that all of these strategies are deterministic.

De nition 3.2 (Root rewriting rules). As mentioned, the set of terms is given as usual for the LSC (cf. Def. 2.74) by the grammar t ::" x | λx.t | ts | trxzss, values are given by v ::" λx.t, and substitution contexts are given by L ::" l | Lrxzts. A term of the form vL is called an answer.

Given a xed family of evaluation contexts ranged over by E, E 1 , . . . we de ne the following four root rewriting rules-two db-like rules and two ls-like rules:

pλx.tqL s Þ Ñ db trxzssL pλx.tqL vL 1 Þ Ñ dbv trxzvL 1 sL Exxxyyrxzss Þ Ñ ls Exsyrxzss ExxxyyrxzvLs Þ Ñ lsv ExvyrxzvsL
In the rules su xed with a "v", the argument of the application/substitution is expected to be an answer. Moreover, we use the notations E Þ Ñ ls and E Þ Ñ lsv to specify the family of contexts used by the rules, with E being the meta-variable ranging over such contexts.

A reduction strategy is speci ed by a choice of root rules, i.e. one multiplicative rule (db or dbv) and one exponential rule (ls or lsv), and a family of evaluation contexts. e chosen multiplicative (resp. exponential) rule is generically denoted by Þ Ñ m (resp. Þ Ñ e). If E ranges over a xed notion of evaluation context, the contextual closures of the root rules are denoted by Ñ m def " ExÞ Ñ m y and Ñ e def " ExÞ Ñ e y. e rewriting relation de ning the reduction strategy is then

Ñ def " Ñ m Y Ñ e .
De nition 3.3 (e reduction strategies name, value LR , value RL , need, name S). e reduction strategies call-by-name (name), le -to-right call-by-value (value LR), right-to-le call-by-value (value RL), call-by-need (need), and strong call-by-name (name S), are speci ed by the following choices of root reduction rules and evaluation contexts: Observe that call-by-name is a weak reduction strategy, so the result is not a normal form in the LSC. is is not only because there are some gc-redexes-there are also ls-redexes (e.g. in the LSC rules are closed by arbitrary contexts so z may be substituted by x).

Strategy Evaluation contexts Þ Ñ m Þ Ñ e Ñ m Ñ e name H ::" l | H t | Hrxzts Þ Ñ db H Þ Ñ ls HxÞ Ñ db y Hx H Þ Ñ ls y value LR V ::" l | V t | vL V | Vrxzts Þ Ñ dbv V Þ Ñ lsv VxÞ Ñ dbv y Vx V Þ Ñ lsv y value RL R ::" l | R vL | t R | Rrxzts Þ Ñ dbv R Þ Ñ lsv RxÞ Ñ dbv y Rx R Þ Ñ lsv y need N ::" l | N t | Nrxzts | N 1 xxyrxzNs Þ Ñ db N Þ Ñ lsv NxÞ Ñ db y Nx N Þ Ñ

Call-by-Value

We work with two variants of call-by-value. Both of them use the Þ Ñ dbv and Þ Ñ lsv root reduction rules, i.e. the arguments must always be evaluated before going on. e two variants, le -to-right call-by-value and right-to-le call-by-value di er on the evaluation contexts. Leto-right call-by-value evaluates the function before evaluating the argument-the production V ::" vL V requires that the function is an answer. Right-to-le call-by-value evaluates the argument before evaluating the function-the production R ::" R vL requires that the argument is an answer. For example, the following is a le -to-right call-by-value reduction:

Call-by-Need

Call-by-need uses the Þ Ñ db root reduction rule. is means that the argument to a function is not evaluated: the formal parameter becomes directly bound to the unevaluated argument.

is has the e ect of delaying evaluation of the argument until it is needed, just as in call-byname. However, call-by-need uses the Þ Ñ lsv root reduction rule, which means that a variable may only be substituted for a value. As a consequence, only values may ever be copied, ensuring that the evaluation of the argument is shared.

e most signi cant change is in the de nition of evaluation contexts. ese are similar to head contexts in call-by-name, but they include a production N ::" N 1 xxyrxzNs. is production means that, when evaluation focuses on a variable and the variable is not an answer yet, evaluation should proceed in the shared argument, inside the explicit substitution. e following is an example of a call-by-need reduction: Note that we underline the redex being contracted. Moreover, a variable inside a box represents the fact that that the variable is the current focus of evaluation and triggers the evaluation of the expression to which it is bound (using the production N ::" N 1 xxyrxzNs). Like call-by-name and call-by-value, call-by-need is also a weak reduction strategy (strong call-byneed reduction is the topic of Chapters 4 and 5).

Strong Call-by-Name

Strong call-by-name is the only strong reduction strategy that we study in this chapter. To complete the de nition of strong call-by-name, we still must give a de nition for the family of evaluation contexts (S, S Note that neutral terms are such that plugging them into a context cannot create a db redex. Below, Def. 3.9 gives an alternative de nition for strong call-by-name evaluation contexts and Lem. 3.10 shows that these de nitions are indeed equivalent. e strong call-by-name strategy uses the db and ls root reduction rules, just as call-byname. But the set of strong call-by-name evaluation contexts (S, S 1 , . . .) generalize the set of head contexts used in (weak) call-by-name (H, H 1 , . . .). Indeed, it may be easily checked by induction on H that any head context is also a strong call-by-name evaluation context.

In contrast with weak call-by-name, strong call-by-name performs evaluation below abstractions (λx.l), as a ested by rule λ-S, as long as the abstraction is not applied. Moreover, strong call-by-name performs evaluation on the arguments of applications t l as long as t is a neutral term. Neutral terms should be thought as terms of the form x t We identify redexes with the context that focuses on the anchor. Recall from Def. 2.75 that the anchor of a db-step is the contracted application, and the anchor of a ls-step is the contracted variable. We can now de ne linear LO reduction, rst considered in [?], where it is proved that it is standard and normalizing, and then in [?], extending linear head reduction [?, ?, ?] to normal form.

Determinism

All the reduction strategies studied in this chapter are deterministic. Recall that the anchor of a multiplicative step is the contracted application, and the anchor of an exponential step is the contracted variable. en:

Proposition 3.

Structural Equivalences

Each of the ve reduction strategies S P tname, value LR , value RL , need, name S u presented so far comes equipped with a corresponding notion of structural equivalence, denoted by " S . Structural equivalence allows manipulating explicit substitutions, moving them around in a computationally irrelevant way. Technically, this is expressed by the property that structural equivalence is a strong bisimulation (cf. Def. 3.1). Certain ways of moving substitutions around are allowed in some strategies and not in other ones. For instance, the equivalence: pt sqrxzus " @ trxzus srxzus is sound in call-by-name, i.e. the term on the le and the term on the right are in fact strongly bisimilar with respect to Ñ name , whereas it is not sound in call-by-need. e reason is that callby-need evaluates inside some substitutions (those that hereditarily bind a head variable), so the term on the le may evaluate u at most once, and the term on the right may evaluate it twice. For our purposes in this chapter, it su ces to show that each structural equivalence is a strong bisimulation. A deeper explanation of why some propagations of explicit substitutions are unsound may be found in the translation of these strategies into linear logic proof nets: substitutions may move freely as long as they do not cross the boundaries of boxes.

Each structural equivalence is given by choosing some of the following axioms: In the " dup rule, t rysx denotes a term obtained from t by renaming some (possibly none) occurrences of x as y.

De nition 3.13 (Structural equivalences). For each strategy S, we select a subset of the structural equivalence axioms, and a family of contexts, as follows:

Strategy Structural equivalence axioms

Family of contexts name " @ , " com , " r¨s , " gc , " dup H value LR " @ , " com , " r¨s , " gc , " dup V value RL " @ , " com , " r¨s , " gc , " dup R need " @l , " com , " r¨s N name S " λ , " @l , " @r , " com , " r¨s , " gc , " dup C (arbitrary contexts) e corresponding structural equivalence " S is de ned as the re exive, symmetric, transitive, and contextual closure of the axioms, under the speci ed family of contexts.

Note that the structural equivalences for call-by-name and call-by-value use the same axioms but closed under their respective notions of evaluation context. e structural equivalence for strong call-by-name is closed under arbitrary contexts. For example:

ppλx.xqyqrxzx 1 sryzy 1 s " value LR ppλx.xqyqryzy 1 srxzx 1 s (by " com)
" value LR ppλx.xqryzy 1 s yryzy 1 sqrxzx 1 s (by " @) " value LR ppλx.xq yryzy 1 sqrxzx 1 s (by " gc) and: pλx.y yqryzzs " name S λx.py yqryzzs (by " λ)

" name S λx.py 1 y 2 qry 1 zzsry 2 zzs (by " dup) " name S λx.py 1 ry 1 zzs y 2 qry 2 zzs (by " @l) " name S λx.y 1 ry 1 zzs y 2 ry 2 zzs (by " @r)

Let Ñ m (resp. Ñ e) denote the multiplicative (resp. exponential) reduction relation of any of the strategies S de ned in Def. 3.3, and let " S be the structural equivalence relation of S.

e key result is the following: Proposition 3.14 (Structural equivalence is a strong bisimulation -♣ Prop. A.5). Let x P tm, eu. If t " S t 1 Ñ x s then there exists s 1 such that t Ñ x s 1 " S s.

Proof. See the appendix. e proofs are long, by exhaustive case analysis on all the possible diagrams that can be formed by overlapping an instance of a reduction step and an instance of an axiom of the structural equivalence (i.e. "critical pairs"). For instance, in call-by-need, one possible diagram involves an overlap between an exponential (lsv) step at the top, and an instance of the structural equivalence axiom " @l . Note that, on the right-hand side, the " @l axiom must be used many times in order to be able to close the diagram:

NxxyrxzvLs t

NxvyrxzvsL t pNxxy tqrxzvLs pNxvy tqrxzvsL

" @l " @l lsv lsv
An essential property of strong bisimulations is that they can be postponed. In fact, it is immediate to prove the following for any of the ve strategies S de ned in Def. 3.3:

Lemma 3.15 (Postponement of structural equivalence). Let t pÑ m Y Ñ e Y "q ˚s.
en t pÑ m Y Ñ e q ˚" s and the number of multiplicative and exponential steps in the two reduction sequences is exactly the same.

In the simulation theorems for machines with a global environment we will also use the following commutation property between substitutions and evaluation contexts via the structural equivalence of every evaluation scheme, proved by an easy induction on the actual definition of evaluation contexts. Lemma 3.16 (Explicit substitutions commute with evaluation contexts, up to "). Let E denote an evaluation context for a strategy S. If x R fvpEq and E does not bind any of the free variables of s, then Extyrxzss " S Extrxzssy.

Distilleries

is section presents an abstract, high-level view of the relationship between abstract machines and explicit substitution calculi, via the following notion:

De nition 3.17 (Distillery). A distillery D " pM, S, ", rr ¨ssq is given by:

1. An abstract machine M, given by: 2. A deterministic reduction strategy S given by a pair pÑ m , Ñ e q of rewriting relations on terms with explicit substitutions.

3. A structural equivalence " on terms with explicit substitutions, such that " is a strong bisimulation with respect to Ñ m and Ñ e .

4. A distillation rr ¨ss, i.e. a decoding function from states to terms, such that, on reachable states:

4.1 Search: S ù s S 1 implies rrSss " rrS 1 ss.

4.2

Multiplicative: S ù m S 1 implies rrSss Ñ m " rrS 1 ss.

Exponential:

S ù e S 1 implies rrSss Ñ e " rrS 1 ss.

Given a distillery, the following simulation result holds abstractly. We write |ρ| for the number of steps in an execution ρ : S ù M ˚S1 of the machine, and |π| for the number of steps in a derivation π : t Ñ S t 1 of the strategy. Similarly, we write |ρ| m (resp. |π| m), |ρ| e (resp. |π| e), and |ρ| p (resp. |π| p) for the number of multiplicative, exponential, and principal steps (i.e. multiplicative or exponential) in an execution of the machine (resp. in a derivation π : t Ñ S t 1 of the strategy). en: Proposition 3.18 (Simulation). Let D be a distillery. en for every execution ρ : S ù M ˚S1 there is a derivation π : rrSss Ñ ˚" rrS 1 ss such that |ρ| m " |π| m , |ρ| e " |π| e , and |ρ| p " |π|.

Proof. By induction on |ρ| and by the properties of the decoding, it follows that there is a derivation ξ : rrSsspÑ"q ˚rrS 1 ss such that the number |ρ| p " |ξ|. e witness π for the statement is obtained by applying the postponement of strong bisimulations (Lem. 3.15) to ξ.

Re ective Distilleries

Given a distillery, one would also expect that reduction in the strategy is re ected in the machine. is result in fact requires two additional abstract properties.

De nition 3.19 (Re ective distillery).

A distillery is re ective when:

1. Termination: search transitions ù s terminate on reachable states. Hence, by determinism, every state S has a unique search normal form nf s pSq.

2.

Progress: if S is reachable, nf s pSq " S and rrSss Ñ x t with x P tm, eu, then there exists S 1 such that S ù x S 1 .

en, we may prove the following re ection of steps in full generality:

Lemma 3.20 (Re ection). Let D be a re ective distillery, let S be a reachable state, and let x P tm, eu. en, rrSss Ñ x t implies that there exists a state S 1 such that nf s pSq ù x S 1 and rrS 1 ss " t.

In other words, every rewriting step on the calculus can be also performed on the machine, up to search transitions.

Proof.

e proof is by induction on the number n of transitions leading from S to nf s pSq.

• Base case n " 0: by the progress property, we have S Ñ x 1 S 1 for some state S 1 and x 1 P tm, eu. By Prop. 3.18, we have rrSss Ñ x 1 s " rrS 1 ss and we may conclude because x 1 " x and s " t by determinism of the calculus (Prop. 3.11).

• Inductive case n ą 0: by hypothesis, we have S ù s S 2 . By m. 3.18, rrSss " rrS 2 ss. e hypothesis and the strong bisimulation property (Prop. 3.14) then give us rrS 2 ss Ñ x s " t. But the induction hypothesis holds for S 2 , giving us a state S 1 such that nf s pS 2 q ù x S 1 and rrS 1 ss " s " t. We may now conclude because nf s pSq " nf s pS 2 q.

e preceding lemma can then be easily extended to a reverse simulation result:

Proposition 3.21 (Reverse simulation). Let D be a re ective distillery and let S be an initial state. Given a derivation π : rrSss Ñ ˚t there is an execution ρ : S ù M ˚S1 such that t " rrS 1 ss and |ρ| m " |π| m , |ρ| e " |π| e , and |ρ| p " |π|.

Proof. By induction on the length of π, using Prop. 3.20.

Abstract Machines

In this section we introduce abstract machines and distillations, and we prove that they form re ective distilleries with respect to the strategies of Section 3.2. For each machine we prove:

(1) that the decoding is in fact a distillation, and (2) the progress property. For the moment we assume the termination property, whose proof is delayed to the quantitative study of Section 3.6, where we prove stronger results, giving explicit bounds.

Call-by-Name: the KAM

e Krivine Abstract Machine (KAM), originally introduced by Jean-Louis Krivine [?], is the rst machine studied in this chapter. Note however that Krivine's presentation of the KAM uses de Bruijn indices, whereas we use variable names.

De nition 3.22 (Krivine Abstract Machine

). A KAM state (S, S 1 , S 2 , . . .) is a pair pc, πq, where c is a closure and π is a stack of closures:

π ::" | c :: π S ::" pc, πq
For readability, we use the notation t | e | π for a state pc, πq where c " pt, eq. e transitions of the KAM then are:

ts | e | π ù s t | e | ps, eq :: π λx.t | e | c :: π ù m t | rxzcs :: e | π x | e | π ù e t | e 1 | π
where ù e takes place only if e " e 1 :: rxzpt, e 1 qs :: e 2 .

A key point of our study is that environments and stacks can be readily understood as contexts, through the following decoding, which satis es the properties stated in the following lemma: . Let e be an environment and π be a stack of the KAM. enrress is a substitution context, and both rrπss and rrπssxrressy are call-by-name evaluation contexts.

Proof. Straightforward by induction on e and π.

Next, we state the dynamic invariants of the machine. Recall that a code/environment/closure X is well-named if its support supppXq has no repetitions, i.e. bindings do not shadow existing names. Lemma 3.25 (KAM invariants). Let S " s | e | π be a KAM reachable state whose initial code t is well-named. en:

1. Closure: every closure in S is closed.

2. Subterm: any code in S is a literal subterm of t.

3. Name: any closure c in S is well-named and its names are names of t (i.e. supppcq Ď fvptq).

4.

Environment Size: the length of any environment in S is bound by |t|.

Proof. It is routine to check that the invariant is preserved, by direct inspection of the machine transitions.

Abstract Considerations on Concrete Implementations.

e name invariant is the abstract property that allows to avoid both α-equivalence and name generation in KAM executions. Note that, by de nition of well-named closure, there cannot be repetitions in the support of an environment. en the length of any environment in any reachable state is bound by the number of distinct names in the initial code t, i.e. with |t|.

is fact is important, as the static bound on the size of environments guarantees that ù e and ù s -the transitions looking-up and copying environments-can be implemented (independently of the chosen concrete representation of terms) in at worst linear time in |t|, so that an execution ρ can be implemented in Op|ρ| ¨|t|q. e same will hold for every machine with local environments. In fact, we may turn this into a de nition: an abstract machine is reasonable if its implementation enjoys the above bilinear bound. In this way, the length of an execution of a reasonable machine provides an accurate estimate of its implementation cost.

e previous considerations are based on the name and environment size invariants. e closure invariant is used in the progress part of the next theorem, and the subterm invariant is used in the complexity analysis of Section 3.6, subsuming the termination condition of re ective distilleries. Note that e 2 xe 1 xextyyrxzextysy " gc exty holds because exty is closed by item 1 of Lem. 3.25, and so all the substitutions around it can be garbage collected.

2. Termination: Given by (forthcoming) m. 3.72.

Note: future proofs of distillation theorems will omit termination.

3. Progress: Let S " t | e | π be a commutative normal form such that rrSss Ñ s. If t is 3.1 an application su. en a ù s transition applies and S is not a commutative normal form, impossible.

3.2 an abstraction λx.s: if π " then rrSss " rressxλx.sy, which is Ñ-normal, impossible. Hence, a ù m transition applies.

3.3 a variable x: by point 1 of Lem. 3.25.1, we must have e " e 1 :: rxzcs :: e 2 , so a ù e transition applies.

3.5.2 Call-by-Name with Global Environment: the MAM e LSC suggests the design of a simpler version of the KAM, that we call the Milner Abstract Machine (MAM), that avoids the concept of closure. At the language level, the idea is that, by repeatedly applying the axioms " dup and " @ of the structural equivalence, explicit substitutions can be brought outside. At the machine level, the local environments in the closures are replaced by just one global environment that closes the code and the stack, as well as the global environment itself.

Naively turning to a global environment breaks the well-named invariant of the machine. is point is addressed using an α-renaming and name generation in the variable (or exponential) transition, i.e. when substitution takes place.

De nition 3.27 (Milner Abstract Machine

). e MAM employs global environments E. Stacks are lists of codes, i.e. π ::" | t :: π. A state of is a triple S " pt, π, Eq. e transitions of the MAM are:

ts | π | E ù s t | s :: π | E λx.t | s :: π | E ù m t | π | rxzss :: E x | π | E ù e t α | π | E
where ù e takes place only if E " E 2 xE 1 rxztsy and t α is a well-named code α-equivalent to t and such that any bound name in t α is fresh with respect to those in π and E. Proof. Straightforward by induction on E and π.

For the dynamic invariants we need a di erent notion of closed closure.

De nition 3.30. Given a global environment E and a code t, we de ne by mutual induction two predicates E is closed and pt, Eq is closed as follows:

is closed pt, Eq is closed ùñ rxzts :: E is closed fvptq Ď supppEq ^E is closed ùñ pt, Eq is closed e dynamic invariants are: Abstract Considerations on Concrete Implementations. Note the new environment size invariant. e bound now depends on the length of the execution ρ, not on the size of the initial term t. If one implements ù e looking for x in E sequentially, then each ù e transition has cost Op|ρ| m q, and the cost of implementing ρ is easily seen to become quadratic in |ρ|.

erefore-at rst sight-the MAM is not a reasonable abstract machine. However, the MAM is meant to be implemented using a representation of codes pointers for variables, so that looking for x in E takes constant time. en the global environment, even if formalized as a list, should rather be considered as a store.

e name invariant is what guarantees that variables can indeed be taken as pointers, as there is no name clash. Note that the cost of a ù e transition is not constant, as the renaming operation actually makes ù e linear in |t| (by the subterm invariant). So, assuming a pointerbased representation, ρ can be implemented in time Op|ρ| ¨|t|q, as for local machines. In other words, the MAM is a reasonable abstract machine. eorem 3.32 (MAM distillation). pMAM, name, ", rr ¨ssq is a re ective distillery. In particular, on a reachable state S we have: States of the CEK have the same shape of those of the KAM, i.e. they are given by a closure plus a stack. e di erence is that they use call-by-value stacks, whose elements are labeled either as arguments or functions, so that the machine knows whether the code currently being evaluated is a function that must be applied to a yet unevaluated argument on top of the stack or the argument to the already evaluated function on top of the stack.

ts | e | π ù s 1 t | e | aps, eq :: π v | e | aps, e 1 q :: π ù s 2 s | e 1 | f pv, eq :: π v | e | f pλx.t, e 1 q :: π ù m t | rxzpv, eqs :: e 1 | π x | e | π ù e t | e 1 | π
where ù e takes place only if e " e 2 :: rxzpt, e 1 qs :: While one can still statically prove that environments decode to substitution contexts, to prove that rrπss and rrπssxrressy are evaluation contexts we need the dynamic invariants of the machine. Lemma 3.35 (CEK invariants). Let S " s | e | π be a CEK reachable state whose initial code t is well-named. en:

1. Closure: every closure in S is closed; 2. Subterm: any code in S is a literal subterm of t;

3. Value: any code in e is a value and, for every element of π of the form f ps, e 1 q, s is a value; 4. Contextual Decoding: rrπss and rrπssxrressy are le -to-right call-by-value evaluation contexts;

5. Name: any closure c in S is well-named and its names are names of t (i.e. supppcq Ď fvptq);

6. Environment Size: the length of any environment in S is bound by |t|.

Proof. Straightforward by inspection of the machine transitions.

eorem 3.36 (CEK distillation). pCEK, value LR , ", rr¨ssq is a re ective distillery. In particular, on a reachable state S we have:

1. Search 1: if S ù s 1 S 1 then rrSss " rrS 1 ss; 2. Search 2: if S ù s 2 S 1 then rrSss " rrS 1 ss.

3.

Multiplicative: if S ù m S 1 then rrSss Ñ m rrS 1 ss; 4. Exponential: if S ù e S 1 then rrSss Ñ e " rrS 1 ss;

Proof. Properties of the decoding: in the following cases, evaluation will always takes place under a context that by Lem. 3.35.4 will be a le -to-right call-by-value evaluation context, and similarly structural equivalence will alway be used in a weak context, as it should be. rrv | e | aps, e 1 q :: πss " rrπssxrressxvyrre • an abstraction v: by hypothesis, π cannot be of the form apcq :: π 1 . Suppose it is equal to . We would then have rrSss " rressxvy, which is a call-by-value normal form, because rress is a substitution context. is would contradict our hypothesis, so π must be of the form f ps, e 1 q :: π 1 . By point 3 of Lem. 3.35, s is an abstraction, hence a ù m transition applies;

• a variable x: by point 1 of Lem. 3.35, e must be of the form e 1 :: rxzcs :: e 2 , so a ù e transition applies.

Le -to-Right Call-by-Value: the Split CEK

For the CEK machine we proved that the stack, that collects both arguments and functions, decodes to an evaluation context (Lem. 3.35.4). In this section we study another le -to-right call-by-value machine, deemed Split CEK (SCEK), which has two stacks: one for arguments and one for functions. Both decode to evaluation contexts. Note that the evaluation contexts V for the calculus value LR :

V ::" l | Vt | vL V | Vrxzts
have two cases for the application. Essentially, when dealing with Vt the machine puts t in a stack for arguments (identical to the stack of the KAM), while in the case vL V the machine puts the closure (corresponding to) vL in a stack for functions, called dump. Actually, together with the closure it stores the current argument stack. us, an entry of the function stack is a pair pc, πq, where c is a closure pv, eq, and the three components v, e, and π together correspond to the evaluation context rrπssxrressxvlyy.

Whenever the code is an abstraction v and the argument stack π is non-empty (i.e. π " c :: π 1), the machine saves the active closure, given by current code v and environment e, and the remainder of the stack π 1 by pushing a new entry ppv, eq, π 1 q on the dump, and then starts evaluating the rst closure c of the stack. In terms of the concrete implementation, each element of the dump corresponds roughly to a stack frame or activation record.

De nition 3.37 (SCEK Machine). Stacks are de ned as in the KAM. e syntax for dumps is given by: D ::" | pc, πq :: D

States are 4-uples pt, e, π, Dq. e transitions of the SCEK are: e SCEK machine is closely related with Landin's SECD machine [?], which also incorporates a notion of dump. In [?], Danvy studies the SECD machine, and shows that the SECD implements right-to-le call-by-value (and not le -to-right call-by-value as the SCEK). Our main point here is illustrating that "spli ing the stack" into an argument stack plus a dump is a general transformation. 5. Name: any closure c in S is well-named and its names are names of t (i.e. supppcq Ď fvptq).

ts | e | π | D ù s1 t | e | ps, eq :: π | D v | e | pt, e 1 q :: π | D ù s2 t | e 1 | | ppv, eq, πq :: D v | e | | ppλx.t,
6. Environment Size: the length of any environment in S is bound by |t|.

Proof. Straightforward by inspection of the machine transitions. eorem 3.40 (SCEK distillation). pSCEK, value LR , ", rr ¨ssq is a re ective distillery. In particular, on a reachable state S we have:

1. Search 1: if S ù s 1 S 1 then rrSss " rrS 1 ss; 2. Search 2: if S ù s 2 S 1 then rrSss " rrS 1 ss; 3. Multiplicative: if S ù m S 1 then rrSss Ñ m rrS 1 ss;
4. Exponential: if S ù e S 1 then rrSss Ñ e " rrS 1 ss.

Proof. Properties of the decoding: We use the fact that rressxvy is closed by Lem. 3.39.1 to ensure that rre 1 ss, rre 2 ss, and rxzvs can be garbage collected.

1. Search 1. We have t s | e | π | D ù s 1 t | e |
Progress. Let S " t | e | π be a commutative normal form such that rrSss Ñ s. If t is • an application su. en a ù s 1 transition applies and S is not a commutative normal form, absurd.

• an abstraction v. e decoding rrSss " rrDssxrrπssxrressxvyyy must have a multiplicative redex, because it must have a redex and v is not a variable. So v is applied to something, i.e. there must be at least one application node in rrDssxrrπssy. Moreover, the stack π must be empty, otherwise there would be an administrative ù s 2 transition, contradicting the hypothesis. So D is not empty. Let D " pps, e 1 q, π 1 q :: D 1 . By point 3 of Lem. 3.39, s must be a value, and a ù m transition applies.

• a variable x. By point 1 of Lem. 3.39, x must be bound by e, so e " e 1 :: rxzps, e 1 qs :: e 2 and a ù e transition applies.

Right-to-Le Call-by-Value: the LAM

In this section we present another adaptation to call-by-value of the KAM, a machine deemed Leroy Abstract Machine (LAM), implementing right-to-le call-by-value. e LAM owes its name to Leroy's ZINC machine [?], that implements right-to-le call-by-value evaluation. We introduce a new name because the ZINC is a quite more sophisticated machine than the LAM: it has a separate set of instructions to which terms are compiled, it handles arithmetic expressions, and it avoids needless closure creations in a way that it is not captured by the LAM. e LAM can be seen as a minor variation of the CEK; we present it mostly to stress the modularity of our contextual approach. We omit all the proofs because they are minimal variations on those for the CEK.

De nition 3.41 (Leroy Abstract Machine). Stacks and states are like those for the CEK. e transitions of the LAM are:

ts | e | π ù s 1 s | e | f pt, eq :: π v | e | f pt, e 1 q :: π ù s 2 t | e 1 | apv, eq :: π λx.t | e | apcq :: π ù m t | rxzcs :: e | π x | e | π ù e t | e 1 | π
where ù e takes place only if e " e 2 :: rxzpt, e 1 qs :: e 3 .

Lemma 3.42 (LAM invariants). Let S " s | e | π be a LAM reachable state whose initial code t is well-named. en:

1. Closure: every closure in S is closed;

2. Subterm: any code in S is a literal subterm of t;

3. Value: any code in e is a value and, for every element of π of the form aps, e 1 q, s is a value;

4. Contexts Decoding: rrπss and rrπssxrressy are right-to-le call-by-value evaluation contexts;

5. Name: any closure c in S is well-named and its names are names of t (i.e. supppcq Ď fvptq);

6. Environment Size: the length of any environment in S is bound by |t|.

Proof. Straightforward by inspection of the machine transitions. eorem 3.43 (LAM distillation). pLAM, value RL , ", rr¨ssq is a re ective distillery. In particular, on a reachable state S we have:

1. Search 1: if S ù s 1 S 1 then rrSss " rrS 1 ss; 2. Search 2: if S ù s 2 S 1 then rrSss " rrS 1 ss. 3. Multiplicative: if S ù m S 1 then rrSss Ñ m rrS 1 ss;
4. Exponential: if S ù e S 1 then rrSss Ñ e " rrS 1 ss;

Proof. Similar to the CEK distillation (m. 3.36).

Call-by-Need: the MAD

In this section we introduce a new abstract machine for call-by-need, deemed Milner Abstract machine by-neeD (MAD). e MAD arises very naturally as a reformulation of the need strategy (Def. 3.3) in the framework of distilleries. e motivations behind the introduction of a new machine are:

1. Simplicity: the MAD is arguably simpler than previous call-by-need machines known in the literature, in particular its distillation is very natural.

2.

Factorizing the Distillation of the Lazy KAM and of the SAM: the study of the MAD will be followed by two sections showing how to tweak the MAD in order to obtain (simpli cations of) two call-by-need machines in the literature, Cregut's Lazy KAM and Sesto 's machine (here called SAM). Expressing the Lazy KAM and the SAM as modi cations of the MAD helps understanding their design, their distillation (that would otherwise look very technical), and their relationship.

e MAD uses the global environment approach of the MAM to implement memoization and the dump-like approach of the SCEK to evaluate inside explicit substitutions.

De nition 3.44 (Milner Abstract Machine by Need). Terms, environments and stacks are de ned as for the KAM. Dumps (D) are de ned by: D ::" | pE, x, πq :: D Transitions are given by:

ts | π | D | E ù s 1 t | s :: π | D | E λx.t | s :: π | D | E ù m t | π | D | rxzss :: E x | π | D | E 1 :: rxzts :: E 2 ù s 2 t | | pE 1 , x, πq :: D | E 2 v | | pE 1 , x, πq :: D | E 2 ù e v α | π | D | E 1 :: rxzvs :: E 2
De nition 3.45 (MAD decoding). e decoding of terms, environments, and stacks is de ned as for the MAM. e decoding of dumps is given by: rr ss Note that when the code is a variable, a search transition should take place. e idea is that whenever the code is a variable x and the environment has the form E 1 :: rxzts :: E 2 , the machine should jump to evaluate t, saving the pre x of the environment E 1 , the variable x on which it will substitute the result of evaluating t, and the stack π. is in fact corresponds to hereditarily weak head evaluation. Lemma 3.46 (Contextual Decoding). Let D, π, and E be a dump, a stack, and a global environment of the MAD, respectively. en rrDss, rrDssxrrπssy, rrEssxrrDssy, and rrEssxrrDssxrrπssyy are call-by-need evaluation contexts.

Proof. Straightforward by induction on D, and respectively on E and π, using the fact that if N is a call-by-need evaluation context then Nrxzts and Nxl ty are also call-by-need evaluation contexts.

e notion of closed closure is de ned exactly as for the MAM. Given a state S " t | π | D | E 0 with D " pE 1 , x 1 , π 1 q :: . . . :: pE n , x n , π n q, its closures are prrπssxty, E 0 q and, for each i P t1, . . . , nu: prrπ i ssxx i y, E i :: rx i zrrπ i´1 ssxx i´1 ys :: . . . :: rx 1 zrrπssxtys :: E 0 q e dynamic invariants are:

Lemma 3.47 (MAD invariants). Let S " t | π | D | E 0 be
a MAD reachable state whose initial code t is well-named, and such that D " pE 1 , x 1 , π 1 q :: . . . :: pE n , x n , π n q. en:

1. Global Closure: the closures of S are closed; 2. Subterm: any code in S is a literal subterm of t;

3. Names: the closures of S are well-named.

For the properties of the decoding function recall that the structural congruence for callby-need (" Need) is de ned as the least equivalence including the axioms " @l , " com , and " r¨s . eorem 3.48 (MAD distillation). pMAD, need, " Need , rr ¨ssq is a re ective distillery. In particular, on a reachable state S we have: 2. an abstraction v. e decoding rrSss is of the form rrEssxrrDssxrrπssxvyyy. e stack π and the dump D cannot both be empty, since then rrSss " rrEssxvy would be normal. So either the stack is empty and a ù e transition applies, or the stack is not empty and a ù m transition applies;

1. Search 1: if S ù s 1 S 1 then rrSss " rrS 1 ss; 2. Search 2: if S ù s 2 S 1 then rrSss " rrS 1 ss; 3. Multiplicative: if S ù m S 1 then rrSss Ñ m " Need rrS 1 ss; 4. Exponential: if S ù e S 1 then rrSss Ñ e " α rrS 1 ss. Proof. 1. Search 1. rrt s | π | D | Ess " rrEssxrrDssxrrπssxt syyy " rrt | s :: π | D | Ess 2. Search 2: rrx | π | D | E 1 :: rxzts :: E 2 ss " rrE 2 ssxrrE 1 ssxrrDssxrrπssxxyyyrxztsy " rrt | | pE 1 ,
3. a variable x. By Lem. 3.47.1 it must be bound by E, so a ù s 2 transition applies, and S is not a commutative normal form, impossible.

Abstract Considerations on Concrete Implementations. Consider transition ù s 2 . Note that the saving of the pre x E 1 in the dump forces to have E implemented as a list, and so to go through E sequentially.

is fact goes against the intuition that E is a store (rather than a list), and makes the MAD an unreasonable abstract machine (see the analogous considerations for the KAM and for the MAM). To solve this point, in the following sections we present the Pointing MAD, a variant of the MAD (akin to Sesto 's machine for call-by-need [?]) that avoids saving E 1 in a dump entry, and restoring the store view of the global environment.

e detour is justi ed as follows:

1. the Pointing MAD is more involved;

2. for the complexity analysis of distillation it is easier to reason on the MAD;

Note that the issue about concrete implementations is orthogonal to the complexity analysis of the distillation process.

Call-by-Need: the Merged MAD

Spli ing the stack of the CEK machine in two we obtained a simpler form of the SECD machine. In this section we apply to the MAD the reverse transformation. e result is a machine, deemed Merged MAD, having only one stack and that can be seen as a simpler version of Crégut's lazy KAM [?] (but we are rather inspired by Danvy and Zerny's presentation in [?]).

To distinguish the two kinds of objects on the stack we use a marker, as for the CEK and the LAM. Formally: where aptq denotes a term to be used as an argument (as for the CEK) and hpE, x, πq is morally an entry of the dump of the MAD, where however there is no need to save the current stack. e transitions are: e dynamic invariants of the Merged MAD are exactly the same of the MAD, with respect to an analogous set of closures associated to a state (whose exact de nition is omi ed). e proof of the following theorem-almost identical to that of the MAD-is omi ed. eorem 3.52 (Merged MAD Distillation). pMerged MAD, need, " Need , rr ¨ssq is a re ective distillery. In particular, on a reachable state S we have:

ts | π | E ù s 1 t | apsq :: π | E λx.t | apsq :: π | E ù m t | π | rxzss :: E x | π | E 1 :: rxzts :: E 2 ù s 2 t | hpE 1 , xq :: π | E 2 v | hpE 1 , xq :: π | E 2 ù e v α | π | E 1 :: rxzvs :: E 2
1. Search 1: if S ù s 1 S 1 then rrSss " rrS 1 ss; 2. Search 2: if S ù s 2 S 1 then rrSss " rrS 1 ss; 3. Multiplicative: if S ù m S 1 then rrSss Ñ m " Need rrS 1 ss;
4. Exponential: if S ù e S 1 then rrSss Ñ e " α rrS 1 ss.

Call-by-Need: the Pointing MAD

In the MAD, the global environment is divided between the environment of the machine and the entries of the dump. On the one hand, this choice makes the decoding very natural. On the other hand, one would like to keep the global environment in just one place, to validate the intuition that it is a store rather than a list, and let the dump only collect variables and stacks.

is is what we do here, exploiting the fact that variable names can be taken as pointers (see the abstract considerations in Sec. Transitions are given by:

ts | π | D | E ù s1 t | s :: π | D | E λx.t | s :: π | | E ù m1 t | π | | rxzss :: E λx.t | s :: π | py, π 1 q :: D | E 1 :: ryzls :: E 2 ù m2 t | π | py, π 1 q :: D | E 1 :: ryzls :: rxzss :: E 2 x | π | D | E 1 :: rxzts :: E 2 ù s2 t | | px, πq :: D | E 1 :: rxzls :: E 2 v | | px, πq :: D | E 1 :: rxzls :: E 2 ù e v α | π | D | E 1 :: rxzvs :: E 2
Note that there are two multiplicative transitions, that are both distilled as multiplicative steps, depending on the content of the dump. A substitution of the form rxzls is called dumped, and in such a situation we also say that x is dumped. Note also that the variables of the entries in D appear in reverse order with respect to the corresponding substitutions in E. We will show that fact is an invariant, called compatibility.

De nition 3.54 (Compatibility E9D

). Compatibility E9D between environments and dumps is de ned by 1. 9 ;

2. E :: rxzts9D if E9D;

3. E :: rxzls9px, πq ::

D if E9D.
Note that in a compatible pair the environment is always at least as long as the dump. e analysis of the Pointing MAD is based on a complex invariant that includes compatibility plus a generalization of the global closure invariant. We need an auxiliary de nition: De nition 3.56 (Slice of an environment). Given an environment E, we de ne its slice E ä as the sequence of substitutions a er the rightmost dumped substitution. Formally: ä :" pE :: rxztsq ä :" E ä:: rxzts pE :: rxzlsq ä :" Moreover, if an environment E is of the form E 1 :: rxzls :: E 2 , we de ne E ä x :" E 1 ä::

rxzls :: E 2 .
e notion of closed closure with global environment (Sec. 3.5.2) is extended to dummy constants l as expected. 3.1 prrπssxty, E äq is closed; 3.2 for every pair px, π 1 q in D, prrπ 1 ssxxy, E ä x q is closed; Proof. See Lem. A.13 in the appendix. eorem 3.58 (Pointing MAD distillation). pPointing MAD, need, " Need , rr ¨ssq is a re ective distillery. In particular, on a reachable state S we have:

1. Search: if S ù s 1 S 1 or S ù s 2 S 1 then rrSss " rrS 1 ss; 2. Multiplicative: if S ù m 1 S 1 or S ù m 2 S 1 then rrSss Ñ m " Need rrS 1 ss; 3. Exponential: if S ù e S 1 then rrSss Ñ e " α rrS 1 ss;
Proof. Properties of the decoding:

1. Search 1. We have:

rrt s | π | D | Ess " rrpE, Dqssxrrπssxt syy " rrt | s :: π | D | Ess
rrλx.t | s :: π | py, π 1 q :: D | E 1 :: ryzls :: E 2 ss " rrE 2 ssxrrpE 1 , Dqssxrrπ 1 ssxyyyryzrrπssxpλx.tq sysy Ñ m rrE 2 ssxrrpE 1 , Dqssxrrπ 1 ssxyyyryzrrπssxtrxzssysy " Need Lem. 3.16 rrE 2 ssxrrpE 1 , Dqssxrrπ 1 ssxyyyryzrrπssxtysrxzssy " rrt | π | py, π 1 q :: D | E 1 :: ryzls :: rxzss :: E 2 ss 5. Exponential. rrv | | px, πq :: D | E 1 :: rxzls :: E 2 ss " rrE 2 ssxrrpE 1 , Dqssxrrπssxxyyrxzvsy Ñ e rrE 2 ssxrrpE 1 , Dqssxrrπssxvyyrxzvsy " α rrE 2 ssxrrpE 1 , Dqssxrrπssxv α yyrxzvsy " rrv α | π | D | E 1 :: rxzvs :: E 2 ss Progress. Let S " t | π | D | E be a commutative normal form such that rrSss Ñ s. If t is
• an application su. en a ù s 1 transition applies and S is not a commutative normal form, absurd.

• a variable x. By the machine invariant, x must be bound by E ä. So E " E 1 :: rxzss :: E 2 , a ù s 2 transition applies, and S is not a commutative normal form, absurd.

• an abstraction v. Two cases:

-e stack π is empty. e dump D cannot be empty, since if D " we have that rrSss " rressxvy is normal. So D " px, π 1 q :: D 1 . By compatibility, E " E 1 :: rxzls :: E 2 and a ù e transition applies;

-e stack π is non-empty. If the dump D is empty, the rst case of ù m applies. If D " px, π 1 q :: D 1 , by compatibility E " E 1 :: rxzls :: E 2 and the second case of ù m applies.

Strong Call-by-Name: the Strong MAM

e machine introduced in this section implements strong call-by-name, and may therefore be seen as a strong version of the MAM.

We know that the MAM performs weak head reduction, whose reduction contexts are (informally) of the form l t 1 . . . t n . is justi es the presence of the stack π " t 1 :: . . . :: t n , which collects the list of arguments. It is immediate to extend the MAM so that it performs full head reduction, i.e., so that the head redex is reduced even if it is under an abstraction. Since head contexts are now of the form λx 1 λx m .lt 1 . . . t n , we simply add a stack of abstractions Λ " x m :: . . . :: x 1 and augment the machine with the following transition:

Abs Code Stack Env Abs Code Stack Env Λ λx.t E s 2 x :: Λ t E (3.4)
e other transitions do not a ect the abstraction stack Λ.

Strong call-by-name reduction is nothing but iterated head reduction. Strong call-by-name evaluation contexts, which we formally introduced in Def. 3.5, when restricted to the pure λ-calculus (without explicit substitutions) are either of the form λx 1 λx m .l t 1 . . . t n as before, or of the form λx 1 λx m .s C t 1 . . . t n , where s is a neutral term and C is, inductively, a strong call-by-name evaluation context. As a consequence strong call-by-name evaluation contexts may be represented by stacks of triples of the form pΛ, s, πq, where s is a neutral term. ese stacks of triples will be called dumps.

e states of the machine for strong call-by-name reduction are as above but augmented with a dump and a phase ϕ, indicating whether we are executing head reduction (ó) or whether we are backtracking to nd the starting point of the next iteration (ò). Besides the transitions of the MAM, which do not touch the dump and are always in the ó phase, and the transition (3.4) above, we add the following transitions:

Abs Code Stack Env Dump Ph Abs Code Stack Env Dump Ph Λ x π E D ó s3 Λ x π E D ò if Epxq " K x :: Λ t E D ò s5 Λ λx.t E D ò s E pΛ, t, πq :: D ò s7 Λ ts π E D ò Λ t s :: π E D ò s6 s E pΛ, t, πq :: D ó
where Epxq " K means that the variable x is unde ned in the environment E.

In the actual machine that we de ne next, we merge the dump D and the abstraction stack Λ into a structure F that we call a frame, as to reduce the number of machine components. e analysis will however somewhat reintroduce the distinction between dump and abstraction stack. In the sequel, the reader should bear in mind that a state of the Strong MAM introduced below corresponds to a state of the machine just discussed according to the following correspondence: 3Discussed Machine:

Abs Code Stack Env Dump Ph Λ 0 t π E pΛ 1 , t 1 , π 1 q :: ¨¨¨:: pΛ n , t n , π n q ϕ Ù Strong MAM: Frame Code Stack Env Ph Λ 0 :: pt 1 , π 1 q :: Λ 1 :: ¨¨¨:: pt n , π n q :: Λ n t π E ϕ
We turn to the formal de nition of the machine: States of the machine are 5-uples pF, t, π, E, ϕq. Transitions are given by:

F | ts | π | E | ó ós 1 F | t | s :: π | E | ó F | λx.t | s :: π | E | ó ù m F | t | π | rxzss :: E | ó F | λx.t | | E | ó ós 2
x ::

F | t | | Źx :: E | ó F | x | π | E | ó ù e F | t α | π | E | ó if Epxq " t F | x | π | E | ó ós 3 F | x | π | E | ò if Epxq " Ź x :: F | t | | E | ò òs 4 F | λx.t | | xŸ :: E | ò pt, πq :: F | s | | E | ò òs 5 F | ts | π | E | ò F | t | s :: π | E | ò òs 6 pt, πq :: F | s | | E | ó
A few comments on the machine follow.

Scope Markers. e two transitions to evaluate and backtrack on abstractions, ós 2 and òs 4 , add markers to delimit subenvironments associated to scopes. e marker Źx is introduced when the machine starts evaluating under an abstraction λx, while xŸ marks the end of such a subenvironment. Note that the markers are not inspected by the machine. ey are in fact needed only for the analysis, as they structure the frame and the environment of a reachable state into weak and trunk parts, allowing a simple decoding towards terms with explicit substitutions.

e following notions of ordinary frames (F), weak frames (F w), and trunk frames (F t), and the following notions of well-formed environments (E), weak environments (E w), and trunk environments (E t) are used in the analysis of the machine: Weak and Trunk Frames. A frame F may be uniquely decomposed as F " F w :: F t , where F w " pt 1 , π 1 q :: ¨¨¨:: pt n , π n q (with n ě 0) is a weak frame, i.e. where there are no abstracted variables, and F t is a trunk frame, i.e. not of the form pt, πq :: F 1 -it must either start with a variable entry or be empty. Note that here "::" denotes the concatenation of frames. We denote by ΛpF q the set of variables abstracted in F , i.e. the set of x such that F " F 1 :: x ::

F 2 .
Weak and Trunk Environments. Similarly to the frame, the environment of a reachable state has a weak/trunk structure. In contrast to frames, however, not every environment can be seen this way, but only the well-formed ones. In fact, reachable environments will be shown to be well-formed as part of the invariant of the machine. A weak environment E w does not contain any open scope, i.e. whenever in E w there is a scope opener marker (Źx) then one can also nd the scope closer marker (xŸ), and (globally) the closed scopes of E w are well-parenthesized. A trunk environment E t may instead also contain open scopes that have no closing marker in E t (but not unmatched closing markers xŸ).

Accessing Environments and Meta-level Garbage Collection. Fragments of the form xŸ :: E w :: Źx within an environment will essentially be ignored-this is how a simple form of garbage collection is encapsulated at the meta-level in the decoding. In particular, for a wellformed environment E we de ne Epxq as: pxq :" K pyŸ :: E w :: Źy :: Eqpxq :" Epxq prxzts :: Eqpxq :" t pŹx :: Eqpxq :" Ź pryzts :: Eqpxq :" Epxq pŹy :: Eqpxq :" Epxq

We write ΛpEq to denote the set of variables bound to Ź by an environment E, i.e. those variables whose scope is not closed with Ÿ.

Lemma 3.61 (Weak environments contain only closed scopes)

. If E w is a weak environment then ΛpE w q " ∅.

Abstract Considerations on Concrete Implementations. Variables are meant to be implemented as memory locations, so that the environment is simply a store, and accessing it takes constant time on a random-access machine. In particular, both the list structure of environments and the scope markers are used to de ne the decoding (i.e. for the analysis), but are not meant to be part of the actual implementation.

Compatibility. In the Strong MAM, both the frame and the environment record information about the abstractions in which evaluation is currently taking place. Clearly, such information has to be coherent, otherwise the decoding of a state becomes impossible.

e following compatibility predicate captures the correlation between the structure of the frame and that of the environment.

De nition 3.62 (Compatibility F 9E). Compatibility F 9E between frames and environments is de ned by 1. Base: 9 .

Weak extension: pF

w :: F t q9pE w :: E t q if F t 9E t .
3. Abstraction: px :: F q9pŹx :: Eq if F 9E.

Lemma 3.63 (Properties of compatibility).

1. Well-Formed Environments: if F and E are compatible then E is well-formed.

2. Factorization: every compatible pair F 9E can be wri en as pF w :: F t q9pE w :: E t q in such a way that F t is of the form F t " x ::

F 1 if and only if E t is of the form E t " Źx :: E 1 .
3. Open Scopes Match: ΛpF q " ΛpEq.

Compatibility and Weak Structures

Commute: for all F w and E w , F 9E if and only if pF w :: F q9pE w :: Eq.

Proof.

e rst three items are by induction on the de nition of compatible pair. Item 1. is straightforward. e base case is immediate for items 2. and 3. Let us check the two inductive cases:

1. Weak extension:

1.1 Factorization: the decomposition is immediate, and the correspondence about the rst variable name follows from the i.h..

1.2

Open Scopes Match: by i.h., ΛpF t q " ΛpE t q. By Lem. 3.61, ΛpE w q " ∅, and by de nition ΛpF w q " ∅. en ΛpF q " ΛpF w q Y ΛpF t q " ΛpF t q " ΛpE t q " ΛpE w q Y ΛpE t q " ΛpEq.

Abstraction

2.1 Factorization: by de nition x :: F and Źx :: E are a trunk frame F t and a trunk environment E t , respectively. given that :: is overloaded with composition, and weak trunk and environments can be empty we have F t ":: F t , and similarly for E t , proving the decomposition property. e correspondence about the rst variable name is evident.

2.2 Open Scopes: Λpx :: F q " txu Y ΛpF q " i.h. txu Y ΛpEq " Λpx :: Eq. Finally, item 4. is a corollary of item 2.

Compatibility and Weak Structures Commute.

1. ñ) By Factorization, F " F 1 w :: F t and E " E 1 w :: E t . By de nition of compatibility, if F 9E is derivable then F t 9E t is also derivable. Now F w :: F 1
w and E w :: E 1 w are weak structures and so by the weak extension rule F w :: F " F w ::

F 1 w :: F t 9E w :: E 1 w :: E t " E w :: E. 2. ð) By de nition of compatibility, if F w :: F " F w :: F 1 w :: F t 9E w :: E 1 w :: E t " E w :: E is derivable then F t 9E t is
also derivable, and F " F 1 w :: F t 9 " E 1 w :: E t " E by applying the weak extension rule.

As for the previous abstract machines, we state and prove a set of dynamic invariants that hold in all reachable states:

Normal Form:

2.1 Backtracking Code: if ϕ " ò, then s is normal, and if π is non-empty, then s is neutral.

2.2 Frame: if F " F 1 :: pu, π 1 q :: F 2 , then u is neutral.

Backtracking Free Variables:

3.1 Backtracking Code: if ϕ " ò then fvpsq Ď ΛpF q.

3.2 Pairs in the Frame: if F " F 1 :: pu, π 1 q :: F 2 then fvpuq Ď ΛpF 2 q.

4. Name:

4.1 Substitutions: if E " E 1 :: rxzts :: E 2 then x is fresh with respect to t and E 2 .

4.2 Markers: if E " E 1 :: Źx :: E 2 and F " F 1 :: x :: F 2 then x is fresh with respect to E 2 and F 2 , and E 1 pyq " K for any free variable y in F 1. Stacks and substitutions commute: if x does not occur free in π then rrπssxtrxzssy " rrπssxtyrxzss;

2. Compatible pairs absorb substitutions: if x does not occur free in F then rrpF, Eqssxtrxzssy " rrpF, prxzss :: Eqqssxty.

Proof. Straightforward by induction on π and the derivation of F 9E. eorem 3.69 (Strong MAM distillation). pStrong MAM, Ñ LO , ", rr ¨ssq is a re ective distillery. In particular:

1. Search 1, 2, 3, 5, 6: if S s 1,2,3,5,6 S 1 then rrSss " rrS 1 ss.

2. Search 4: if S s 4 S 1 then rrSss " gc rrS 1 ss; 3. Multiplicative: if S ù m S 1 then rrSss Ñ db " name S rrS 1 ss; 4. Exponential: if S ù e S 1 then rrSss Ñ ls rrS 1 ss, duplicating the same subterm.

Proof.

Properties of the decoding: Determinism of the machine follows by the name invariant (Lem. 3.64), and that of the strategy follows from the totality of the LO order (Lem. 3.7). We analyze only the interesting cases (ignoring transitions that are decoded to simple equalities).

-Multiplicative: i.e. S " pF, λx.t, s :: π, E, óq ù m pF, t, π, rxzss :: E, óq " S 1 .

Note that C S rrppx :: F q, Eqss " rrppx :: F q, pE w :: Źx :: E 1 qqss " rrppx :: F q, pŹx ::

E 1 qqssxrrE w ssy
Moreover, being in a backtracking phase (ò) and so the backtracking closure invariant (Lem. 3.64) and the open scopes matching property (Lem. 3.63) give fvptq Ď Lem. 3.64 ΛpF q " Lem. 3.63 ΛpE w :: Źx :: E 1 q " Lem. 3.61 ΛpŹx :: E 1 q, i.e. rrE w ss does not bind any variable in fvptq. en rrE w ssxty " gc t, and rrpx :: F, t, , E, òqss " rrppx :: F q, Eqssxty " rrppx :: F q, pE w :: Źx :: E 1 qqssxty " rrppx :: F q, pŹx :: E 1 qqssxrrE w ssxtyy " gc rrppx :: F q, pŹx ::

E 1 qqssxty " rrpF, E 1 qssxaxty " Lem. 3.

Complexity Analysis

In this section we show that the length of an execution ρ : S ù M ˚S1 in each of the abstract machines can be bounded linearly by the length of the distilled derivation rrSss S " rrS 1 ss, up to a factor |t| proportional to the size of the initial code t.

Recall that principal (i.e. multiplicative and exponential) transitions are decoded as exactly one step in the reduction strategy, while non-principal (i.e. search) transitions are decoded as zero steps in the strategy. Hence, in order to obtain a bound for the length of the distilled derivation it su ces to bound the number of search steps |ρ| s in an execution ρ in terms of:

1. the number of principal steps |ρ| s , 2. the size |t| of the initial code t. e analysis only concerns the machines, but via the distillation theorems it expresses the length of the machine executions as a linear function of the length of the distilled derivations in the strategy. For every distillery, we will prove that the relationship is linear in both parameters, namely |ρ| s P Opp|t| `1q ¨|ρ| s q holds. De nition 3.70. Let M be a distilled abstract machine and ρ : S ù M ˚S1 be an execution of initial code t. e machine M is:

1. Locally linear if whenever S 1 ù k s S 2 then k P Op|t|q.

2.

Globally bilinear if |ρ| s P Opp|t| `1q ¨|ρ| s q.

e following result ensures that local linearity is a su cient condition for global bilinearity.

Proposition 3.71 (Locally Linear ñ Globally Bilinear). Let M be a locally linear distilled abstract machine, and ρ an execution of initial code t. en M is globally bilinear.

Proof.

e execution ρ can be wri en uniquely as ù k 1 s ù h 1 s . . . ù km s ù hm s . By hypothesis k i " Op|t|q for every i P t1, . . . , mu. From m ď |ρ| s follows that |ρ| s " Op|t| ¨|ρ| s q. We conclude with |ρ| " |ρ| s `|ρ| s " |ρ| s `Op|t| ¨|ρ| s q " Opp|t| `1q ¨|ρ| s q.

Call-by-name and call-by-value

Call-by-name and call-by-value machines are easily seen to be locally linear, and thus globally bilinear. eorem 3.72 (Bilinearity for call-by-name and call-by-value). e distilleries for the KAM, MAM, CEK, SCEK, and LAM are locally linear, and so also globally bilinear. Proof.

1. Immediate, as ù s 2 is the only transition that pushes elements on D and ù e is the only transition that pops them.

2. e only rule that produces substitutions is ù m . Note that 1) ù s 2 and ù e preserve the global number of substitutions in a state; 2) E and D are made out of substitutions, if one considers every entry pE, x, πq of the dump as a substitution on x (and so the statement follows); 3) the inequality is given by the fact that an entry of the dump includes an environment (counting for many substitutions).

3. Substitute item 2 in item 1. eorem 3.74 (Bilinearity for call-by-need). e distillery for the MAD is globally bilinear.

Proof. Let ρ be an execution of initial code t. De ne Ñ s 1 :"ù e Y ù m Y ù s 2 and write |ρ| s 1 to stand for the number of its steps in ρ. We estimate ù s :"ù s 1 Y ù s 2 by studying its components separately. For ù s 2 , Lem. 3.73.3 proves |ρ| s 2 ď |ρ| p " Op|ρ| p q. For ù s 1 , as for the KAM, the length of a maximal ù s 1 subsequence of ρ is bounded by |t|. e number of ù s 1 maximal subsequences of ρ is bounded by |ρ| s 1 , that by Lem. 3.73.3 is linear in Op|ρ| p q.

en |ρ| s 1 " Op|t| ¨|ρ| s q. Summing up, |ρ| s 2 `|ρ| s 1 " Op|ρ| p q `Op|t| ¨|ρ| s q " Opp|t| `1q ¨|ρ| s q

Strong call-by-name

e complexity analysis of the strong MAM requires a further invariant, bounding the size of the duplicated subterms. In this subsection, we say that s is a subterm of t if it does so up to variable names, both free and bound. More precisely: de ne t ´as t in which all variables (including those appearing in binders) are replaced by a xed symbol ˚. en, we will consider s to be a subterm of t whenever s ´is a subterm of t ´in the usual sense. e key property ensured by this de nition is that the size |s| of s is bounded by |t|. Lemma 3.75 (Subterm invariant). Let ρ be an execution from an initial code t. Every code duplicated along ρ using ù e is a subterm of t.

Proof. Straightforward by inspection of the machine transitions.

e following invariant provides a new proof of the subterm property of linear LO reduction (rst proved in [?]): Lemma 3.76 (Subterm Property for Ñ LO). Let π be a Ñ LO -derivation from an initial term t. Every term duplicated along π using a Ñ ls is a subterm of t.

Proof. Easy by the subterm invariant (Lem. 3.64) via the case of an exponential transition of the distillation theorem (m. 3.69).

Finally, the following theorem ensures that the strong MAM is globally bilinear. Let us stress that, despite the simplicity of the reasoning, the analysis is subtle as the length of backtracking phases can be bound only globally by the previous work done on evaluation phases. eorem 3.77 (Bilinearity for strong call-by-name). e distillery for the strong MAM is globally bilinear. More precisely, given an execution ρ : S ù M ˚S1 from an initial state of code t then:

1. Search evaluation steps are bilinear: |ρ| ós ď p1 `|ρ| e q ¨|t|.

2.

Search evaluation bounds backtracking: |ρ| òs ď 2 ¨|ρ| ós .

3. Search steps are bilinear:

|ρ| s ď 3 ¨p1 `|ρ| e q ¨|t|.
Proof.

1. We prove a slightly stronger statement, namely |ρ| ós `|ρ| m ď p1 `|ρ| e q ¨|t|, by means of the following notion of size for stacks/frames/states: Mainstream programming languages evaluate programs using weak reduction, i.e. the body of a function is not evaluated until the function is applied. Suppose for example that we write a function de nition:

|
f x = 2 * 3 + x
and we evaluate the expression f in a typical programming language like OCaml or Haskell. en the multiplication 2 * 3 will not be performed. Rather, the function f itself will be the nal answer.

It also makes sense in principle to evaluate the body of a function before applying it. For instance the program above can be transformed into the presumably equivalent one:

f x = 6 + x
by performing the multiplication 2 * 3. However, in a typical se ing, the body of a function in runtime is not represented by a tree-like expression, but by a sequence of machine instructions, which means that this kind of program transformation corresponds to preprocessing or compile time optimization, rather than evaluation.

In the λ-calculus, weak reduction is characterized formally by forbidding the congruence rule ξ:

t Ñ t 1 ξ λx.t Ñ λx.t 1
is means that a term like λx.pλy.yqx cannot be evaluated further, even though it contains a redex. When one evaluates a term in the λ-calculus using weak reduction, one does not obtain, in general, a normal form as a result. e set of answers is instead the set of weak head normal forms.

De nition 4.1 (Weak head normal form). A λ-term is in weak head normal form if it is of the form λx.t, or of the form x t 1 . . . t n . e goal of this chapter is to extend the lazy evaluation mechanism, an evaluation strategy that implements weak reduction, originally proposed by Wadsworth [?], to the se ing of strong reduction. e (weak) call-by-need strategy is based on the two following principles:

1. Laziness. One should only perform steps that are needed to obtain a WHNF. For example, a step like pλx.yq t Ñ pλx.yq t 1 , internal to the argument, is not needed, as one may simply contract the redex at the root pλx.yq t Ñ y to obtain a WHNF.

In this respect, call-by-need is similar to call-by-name in that an argument is only evaluated if needed, and it improves the situation over call-by-value (in which an argument is always evaluated, even if it is not needed).

2.

Sharing. e computational work of evaluating an argument should be shared among the copies of the argument. For example, let t :" I I where I " λx.x is the identity function, and note that t Ñ I. en a step like pλx.x xq t Ñ t t, if implemented naïvely by syntactically copying the term t twice, results in the duplication of the computational work required to perform the step t Ñ I:

pλx.x xq t Ñ t t 1 Ñ I t Ñ t 2 Ñ I
In contrast, in call-by-need, when the function λx.x x is applied to the argument t, the two occurrences of x become bound to a single copy of the term t. In this way, as soon as t is evaluated, both copies of x hold a reference to the same result, and computational work is not duplicated. e sharing may be represented, as we do in this thesis, using the notation of explicit substitutions:

pλx.x xq t Ñ px xqrxzts Ñ px xqrxzIs Ñ pI xqrxzIs Ñ xrxzIs Ñ IrxzIs Ñ I
In this respect, call-by-need is similar to call-by-value in that arguments are evaluated at most once, and it improves the situation over call-by-name (in which an argument may be evaluated many times, once per each of its copies).

We remark that some authors may make a distinction between lazy evaluation and callby-need, the former referring only to the deferral of the evaluation of expressions, and the la er incorporating also the notion of sharing. In our work, in accordance with existing literature (e.g. [?, ?, ?]), we speak of lazy evaluation and (weak) call-by-need as synonyms. e weak call-by-need strategy provides various bene ts over call-by-name and call-byvalue. We brie y discuss four aspects: e ciency, expressiveness, ease of reasoning and declarativity.

E ciency. Call-by-need may represent an exponential improvement in e ciency, with respect to call-by-name. For example, consider the family of terms tt n | n P Nu, de ned recursively on n by: t 0 def " λx.x t n`1 def " pλx.xxq t n en one can see that, in call-by-name, evaluating t n requires a number of steps exponential in n. More precisely, we have that t n reduces to the identity λx.x in exactly 2 n`1 ´2 steps. To see this, proceed inductively. Note that λx.x reduces to λx.x in 0 steps, and: Expressiveness. Call-by-need allows one to write programs in a style that would not be possible, or convenient, in a more traditional se ing with call-by-value. For example, John Hughes [?] describes an architecture for a game-playing engine implementing the minimax decision procedure.

t n`1 " pλx.xxq t n Ñ t n t n 2 n`1 ´2
e rough idea is that the problem can be modularly decomposed into two subproblems as follows:

1. A function gametree : Position Ñ Tree Position, representing the potentially in nite game tree starting from the given position. e nodes of the tree are positions in the game and the edges represent moves.

2. A function minimax : Tree Position Ñ Position, which determines the best move.

Modularity is achieved thanks to lazy evaluation, which allows the programmer to handle innite data structures e ortlessly, without having to explicitly resort to representing suspended computations as thunks (using constructs such as Scheme's delay and force).

ere are many other well-known examples of the possibilities that lazy evaluation may enable. For example Chris Okasaki [?] shows how to exploit memoization, i.e. sharing, to implement e cient immutable data structures.

Ease of reasoning. One bene t of lazy evaluation is that it allows to reason about programs equationally. For example, consider the following set of de nitions:

loop = loop f x = 1
In a programming language using call-by-need evaluation the equality f loop = 1 holds, while in a programming language using call-by-value evaluation f loop is non-terminating. Being able to reason equationally is convenient to prove properties about programs and to derive programs by applying mechanical transformations to existing programs, which may be part, for example, of the optimization phase of a compiler.

e property that one may actually "reason equationally" can be expressed formally as the completeness property of call-by-need, which states that if a term t is interconvertible with an answer s, then evaluating t using the call-by-need strategy also leads to an answer. Completeness for strong call-by-need is the main result of this chapter.

Declarativity. Declarativity is not a binary property of programs, but more of a continuous spectrum, a program being less declarative when it resembles a low-level description of a procedure that solves a problem, and more declarative when it resembles an abstract specication of the problem.

Lazy evaluation allows to write arguably more declarative programs, in the sense that the order in which expressions are evaluated is not prescribed by the way in which they were wri en by the programmer. Rather, expressions are evaluated only when they are actually required for the computation to proceed. For example, consider a function de nition like the following:

f x y = if y == 0 then x else z where z = x / y
In a programming language using call-by-value evaluation the expression x / y is evaluated unconditionally, which leads to an error if y equals 0. Contrast this with call-by-need, in which the evaluation of x / y is only triggered when the value of the variable z is required.

Formal De nition of Weak Call-by-Need

Wadsworth rst proposed call-by-need as an implementation technique for the pure λ-calculus [?] in the 1970s. Later, Ariola and Felleisen [?], and independently at around the same time in the 1990s, Maraist, Odersky and Wadler [?], proposed a di erent way of de ning call-by-need evaluation 2 . eir approach is based on a calculus whose operational semantics follows a callby-need discipline. is results in the behavior of the source language matching more closely the behavior of its actual implementation.

Following this approach, we study calculi based on a call-by-need evaluation discipline. In the following, we recall the de nition of the weak call-by-need strategy that we use in this chapter (and also in Chapter 3). e weak call-by-need strategy was originally proposed in [?], and it is based on the technology of explicit substitutions at a distance, closely related with the Linear Substitution Calculus.

De nition 4.2 (e weak call-by-need strategy). e sets of terms (T), values, answers, (full) contexts, substitution contexts, and weak evaluation contexts are given by the grammars: In this chapter, we use squiggly arrows like "ù" to denote reduction strategies, which are usually deterministic, in contrast with typical arrows "Ñ", which represent a (non-deterministic) orientation of an equational theory. Observe that the nal result is an answer, and that the strategy does not incorporate any kind of garbage collection rule.

Call-by-Need for Strong Reduction

As we have stated, our goal in this chapter is to extend the weak call-by-need strategy to strong reduction. In contrast with mainstream programming languages, which use weak reduction, functional programming languages with dependent types -including proof assistants based on dependent type theory-use strong reduction.

Let us exemplify why a type checker for dependent type theory may need to use strong reduction. In dependent type theory, types are allowed to depend on terms. For example, suppose that the type constructor: Vec : N Ñ Type represents the type family of vectors of integers, so that, for a given natural number n : N the expression Vec n denotes the type of vectors of length n. en one may de ne a function to append two vectors as follows:

append : (n : N) Ñ (m : N) Ñ Vec n Ñ Vec m Ñ Vec (n + m) append zero m nil w = w append (suc n) m (cons x v) w = cons x (append n m v w)
In order to accept this de nition, the type checker has to verify that the le and the right-hand sides of all the equations have the same type. In the case of the rst equation, its le -hand side is of type Vec (0 + n), whereas its right-hand side is of type Vec n. Note that these types are not syntactically equal, rather they are interconvertible, up to computational reduction rules. Determining that these types are interconvertible may be achieved by evaluating 0 + n on one hand and n on the other, and checking whether the same normal form is reached.

is example is captured by means of a general typing rule called conversion:

Γ $ A A " B C Γ $ B
e judgement A " B establishes that types A and B are equivalent. Typically, this means that A and B are interconvertible, up to computation rules like the β-reduction rule. A simple decision procedure to determine whether A " B holds consists in evaluating A and B to normal form and then comparing their results syntactically. Given that A and B may contain abstractions and free variables, this procedure must use strong reduction.

In this chapter, our goal is to develop the foundations for a correct and e cient strong reduction strategy. e mechanism to decide A " B implemented by practical proof assistants, such as the Coq proof assistant, is more complex than the naïve algorithm proposed above, and it uses a large set of nely tuned heuristics. In the particular case of Coq-at least at the moment of writing this thesis-this mechanism has not been de ned other than in the actual OCaml source code of Coq, and it has not been proven correct. Even though there is a signi cant gap between the complexity of current implementations of proof assistants and the comparatively minimalistic formalisms studied in this thesis, we are certain that implementers and users could bene t from a foundational study of strong reduction.

As a general remark, evaluation strategies for strong reduction are not as well studied in the literature as strategies for weak reduction. One notable exception is the work of Grégoire and Leroy [?], who have proposed a strong normalization function that consists in iterating the weak call-by-value strategy on terms possibly containing free variables.

Our starting point is the observation that rather than iterating call-by-value, one should consider an appropriate notion of call-by-need that computes strong normal forms of open terms. As a ma er of fact, we propose a strategy that computes strong normal forms by following a call-by-need discipline.

De ning a strong call-by-need strategy, even before a empting to state or prove any theorems, is a non-obvious task. Let us write S ù for such a strategy. Recall also that, if t is a term with explicit substitutions, we write t ˛for the λ-term that results from the unfolding of all the explicit substitutions in t, so for example: pxxqrxzyzsryzλx.xs ˛" pλx.xqzppλx.xqzq e following are the main design principles that we have followed in order to arrive at a satisfactory de nition of S ù:

1. Strong reduction.

e strong call-by-need strategy should implement strong reduction, i.e. if a term t is in S ù-normal form then, when read back into the λ-calculus by unfolding all the explicit substitutions, the resulting λ-term t ˛should be a β-normal form.

Note that this criterion is lax enough that it allows us, for example, to take the terms pλx.xqryzΩs or λx.yryzxs as two valid encodings of the β-normal form λx.x.

Completeness.

e strong call-by-need strategy should be complete with respect to β-equivalence.

is means that if t " β s in the λ-calculus and s is a β-normal form, then tp S ùq ˚u and u ˛" s, i.e. u is an encoding of s modulo unfolding all the explicit substitutions.

A er we have given a de nition of the strong call-by-need strategy, all these principles will be stated and proved as theorems. In the following subsections we mention two non-trivial issues that one must confront in order to de ne a strong call-by-need strategy, the issue of frozen variables, and the issue of context-dependency.

Frozen Variables

Strong reduction performs evaluation below abstractions, so evaluation has to deal with open terms, i.e. the term may contain free variables.

ese variables are typically bound somewhere above in the evaluation context. In our presentation, a variable x may be bound by an abstraction λx.l or by an explicit substitution lrxzts. e behavior of the evaluator depends crucially on the nature of these variables.

For example, the evaluator may have to evaluate an application whose head is a variable, such as x t. If the variable x is bound to an answer, say by an explicit substitution rxzλy.zs, then evaluation should proceed by substituting x by the answer. In our example, evaluation proceeds as follows: px tqrxzλy.zs Ñ ppλy.zq tqrxzλx.zs Ñ zryztsrxzλx.zs Note that the term t is not evaluated in this case.

On the other hand, the variable x may be bound by an abstraction that cannot possibly become applied to an argument. en, given that evaluation must implement strong reduction to normal form, the evaluator should go on and evaluate t: λx.x t Ñ λx.x t 1 Ñ λx.x t 2 Ñ . . .

If a variable

x is bound by an abstraction which cannot possibly become applied to an argument, we say that x is frozen. If a variable x is frozen, a term of the form x t 1 . . . t n is called a structure. Strictly speaking a structure may also contain explicit substitutions-such as in yryzxs t-.

e precise de nition of structure is postponed until later in the chapter. Variables bound to structures are also considered to be, transitively, frozen.

In xrxzλy.ys -e variable x is not bound to a structure.

In order to properly deal with all these situations, in our strong call-by-need strategy the notion of evaluation context is parameterized with respect to a set ϑ of frozen variables. For example, the context x l will be considered a ϑ-evaluation context if and only if x is frozen, i.e. x P ϑ.

Context-Dependency

As mentioned in the previous subsection, strong reduction must perform evaluation below an abstraction, but only so if it can be certain that the abstraction cannot possibly become applied to an argument, along any possible reduction. More technically, one could say that the body of an abstraction should be evaluated only if it has already reached a position in which it will form part of the Böhm tree of the term. For example, in the terms λx.t and λy.ypλx.tq we know that the abstraction λx.t is not going to become applied, so to calculate the normal form of the term we should go on by "opening" the abstraction and evaluating the body t. On the other hand, in a term like pλx.tqs the weak call-by-need strategy would perform the db-step pλx.tqs W ù trxzss so to abide by the Conservativity principle, the strong call-by-need strategy should do the same thing. In particular, it should not evaluate the body t yet. Similarly, in the term pxsqrxzλx.ts the weak call-by-need strategy performs the substitution step pxsqrxzλx.ts W ù ppλx.tqsqrxzλx.ts, so again the strong call-by-need strategy must not evaluate t yet.

To properly deal with the context-dependent nature of strong call-by-need evaluation, we distinguish a particular subset of the evaluation contexts, the set of inert evaluation contexts. Intuitively, an evaluation context is inert if it can be plugged inside another evaluation context in such a way that the composition is still an evaluation context.

For example, the context λx.l is an evaluation context but it is not inert, because plugging it into the evaluation context l t results in the context pλx.lqt, which is not an evaluation context. Note that composing the contexts has enabled an interaction, namely it has created a db-redex, and evaluation should prioritize contracting the newly created db-redex:

ppλx.lqtqxsy " pλx.sqt W ù srxzts
Similarly, the context pλx.yqryzls is an evaluation context, but it is not inert, because plugging it into the evaluation context xrxzls results in the xrxzpλx.yqryzlss which is again not an evaluation context. As before, composing the contexts has enabled an interaction, creating an lsv-redex, and evaluation should contract it before going on:

pxrxzpλx.yqryzlssqxsy " xrxzpλx.yqryzsss W ù pλx.yqrxzpλx.yqsryzss
To de ne the strong call-by-need strategy, we shall restrict the composition of evaluation contexts so that only inert evaluation contexts can be plugged on the le of an application (l t) and inside explicit substitutions (trxzls), so that nor db redexes neither lsv redexes are created due to the undesired enabling of an interaction.

Our Work

is chapter is the result of collaboration with ibaut Balabonski, Eduardo Bonelli, and Delia Kesner, and it is structured as follows. We highlight in boldface what we consider to be the main contributions:

• In Section 4.2 we de ne the strong call-by-need strategy. Speci cally:

-In Section 4.2.1, we de ne a theory of strong reduction, the eory of Sharing (Def. 4.4).

-In Section 4.2.2, we motivate the de nition of strong call-by-need, and we de ne a strategy for strong call-by-need-reduction (Def. 4.4), including various related notions such as normal forms and evaluation contexts.

- To do so we show that any reduction sequence in the eory of Sharing may be factorized as a prex whose steps are in the strong call-by-need strategy, followed by a su x whose steps are garbage, i.e. steps inside unreachable explicit substitutions. e core of the proof is an exhaustive (and delicate) case analysis of permutation diagrams.

In
In the following chapter (Chapter 5), we extend the results of this section to incorporate pa ern matching and recursion (with xed points). In Section 8.1 in the Conclusion (Chapter 8), we propose an abstract machine for strong call-by-need evaluation. e proof that this machine implements the strong call-by-need strategy is le as future work.

Strong Call-by-Need

In this section we de ne the strong call-by-need strategy. Actually we begin by de ning, in Section 4.2.1, a calculus which we call the eory of Sharing. By a "calculus" what we mean is, formally speaking, a rewriting system. e objects of the eory of Sharing are the usual set of terms of the Linear Substitution Calculus (variables, abstractions, applications, and explicit substitutions), as in Def. 4.2. e steps of the eory of Sharing are given by a non-deterministic rewriting relation Ñ sh whose re exive, symmetric, and transitive closure gives us an equational theory (the equivalence relation " sh).

In Section 4.2.2 we de ne the strong call-by-need strategy itself. As already mentioned, the strategy is parameterized by a set of variables ϑ, which are supposed to be frozen. is means that, for each set ϑ, we de ne a deterministic rewriting relation ϑ ù which is a subset of Ñ sh . e strong call-by-need strategy corresponds to the case in which the set ϑ is empty, i.e.

e eory of Sharing

e strong call-by-need strategy S ù can be seen as part of a bigger picture, the eory of Sharing, given by the rewriting relation Ñ sh that we de ne in this subsection.

A remark on nomenclature: in previous versions of this work, we spoke of "the Strong Call-by-Need Calculus" rather than of "the eory of Sharing". We believe that the la er name is more appropriate, because the relation Ñ sh does not enforce "by-need" evaluation; in fact, it allows to evaluate expressions that are not needed to obtain a result. On the other hand, the relation Ñ sh does enforce sharing; in fact, an expression may not be copied unless it is already a value. For example, let ∆ :" pλx.xqy and let ∆ 1 :" xrxzys be its contractum.

en a step like xryz∆s Ñ sh xryz∆ 1 s is allowed in the eory of Sharing, even though it is not needed, while a step like xrxz∆s Ñ sh ∆ryz∆s is not allowed in the eory of Sharing, because it copies ∆, which is not a value. e following lemma characterizes the normal forms of the eory of Sharing. We write NFpÑ sh q for the set of Ñ sh -normal forms, and SNFpÑ sh q for the set of Ñ sh -normal forms that are not answers, i.e. t P SNFpÑ sh q if t P NFpÑ sh q and t is not of the form vL.

De nition 4.6 (Normal forms of the eory of Sharing). e set of sh-structures (S) and the set of sh-normal forms (N) are de ned mutually inductively as follows:

x P S • NFpÑ sh q " N • SNFpÑ sh q " S Proof. Given an arbitrary term t P T , one can check that t P NFpÑ sh q ðñ t P N and that t P SNFpÑ sh q ðñ t P S. e le -to-right implication is straightforward by induction on t.

e right-to-le implication is straightforward by simultaneous induction on the derivation that t P N and t P S.

e Strong Call-by-Need Strategy

In this subsection we de ne a deterministic rewriting relation S ù representing the strong callby-need strategy. Unfortunately, by the nature of the problem that we are confronting, this rewriting relation does not enjoy straightforward closure properties under di erent kinds of contexts.

is is due to the fact that some variables may be frozen, or not frozen, by the enclosing context. For example, if we let ∆ :" pλy.yqz and ∆ 1 :" yryzzs, then we can note that:

• ∆ S ù ∆ 1 should hold,
• λx.x∆ S ù λx.x∆ 1 should hold, because x is frozen under the context λx.l, so λx.xl is an evaluation context,

• px∆qrxzIs S ù px∆ 1 qrxzIs should not hold, because x is not frozen under the context lrxzIs, so pxlqrxzIs is not an evaluation context. is means that a naïve contextual closure rule like "t S ù s holds if and only if λx.t S ù λx.s holds" is not valid. In order to be able to reason inductively, we need to consider an appropriate generalization of the strategy. In fact, we de ne a family of deterministic rewriting relations ϑ ù parameterized by a set ϑ of variables that are considered frozen. e strong call-by-need strategy is then given by S ù def " ∅ ù. For example, with ∆ and ∆ 1 as above, we have that:

• x∆ ϕ ù x∆ 1 holds if x P ϕ, • x∆ ϕ ù x∆ 1 does not hold if x R ϕ.
ese generalized relations will enjoy appropriate closure properties. For instance, λx.t Given that our aim is to de ne a strategy for strong reduction, i.e. reduction to normal form, the behavior of the relation ϑ ù will depend on whether certain subterms have already reached a normal form or not. For example, if we have an application ts, evaluation should focus on the argument s only if the function t is a strong normal form and not an answer.

Bearing this in mind, before de ning the relation ϑ ù we will start by de ning, syntactically, the set of normal forms that it should reach. is set will also depend on ϑ: for instance the term xy will be a strong normal form under ϑ if and only if tx, yu Ď ϑ.

Moreover, the set of normal forms of the strategy ϑ ù does not coincide with the set of normal forms of the theory Ñ sh . By design, our strong call-by-need strategy does not perform garbage collection, i.e. seen as relations, the intersection ϑ ù X Ñ gc is empty, so the inclusion

ϑ ù Ď Ñ db Y Ñ lsv Ď Ñ sh holds.
is means that for example λx.xryzts will be a normal form of our strategy.

In the following subsections we de ne the relations ϑ ù and the corresponding notion of normal form under the set of frozen variables ϑ. But, before going on, we need a few auxiliary de nitions, and in particular the notion of non-garbage variable. is is a general phenomenon.

Given that structures represent an incomplete computation whose evaluation is blocked by a head variable, and given that we do not want to duplicate incomplete computations, we do not substitute structures: structures are not considered values so they cannot be duplicated. is means that, if x is frozen and t is a normal form, the term yryzx ts is a structure.

3.

Variables bound to structures are transitively frozen. If a variable x is bound to a structure, then x is also considered frozen. Indeed, xy is a structure under the context lrxzzzs where x itself is bound to a structure and thus frozen, but it is not a structure under the context lrxzIs where x is bound to a value and thus not frozen.

Following these principles, we de ne the sets of ϑ-normal forms and ϑ-structures:

De nition 4.11. e set of normal forms under the set of frozen variables ϑ, also called ϑnormal forms (N ϑ), and the set of structures under the set of frozen variables ϑ, also called ϑ-structures (S ϑ) are de ned mutually inductively by the following rules:

x P ϑ x P S ϑ t P S ϑ s P N ϑ ts P S ϑ t P S ϑ S t P N ϑ t P N ϑYtxu L λx.t P N ϑ t P X ϑYtxu s P S ϑ x P ngvptq S trxzss P X ϑ t P X ϑ x R ngvptq S G trxzss P X ϑ
In the last two rules, the symbol X represents either S or N.

Note that:

1. In the rule, the head of the application must be a structure, so for example xx is an txu-structure while pλx.xqx is not. Intuitively, every ϑ-structure is headed by a frozen variable in the set ϑ. For example, both xyy and zrzzx ys are txu-structures headed by

x. Later we will prove this fact more rigorously.

2. In the L rule, the bound variable is frozen in the body, so for example λx.xx is an ∅-normal form because xx is an txu-normal form.

3. e rules S and S G allow normal terms to contain explicit substitutions rxzts, which play two very di erent roles:

3.1 e S rule allows substitutions to contain a structure, shared among the occurrences of x, as in the term λy.pxxqrxzyts. In this rule, the bound variable is frozen in the body, and the argument of the substitution must be a structure, so for example pxxqrxzys is an tyu-structure while pxxqrxzλy.ys is not. Moreover, x should be non-garbage, otherwise we should apply the S G rule.

3.2

e S G rule allows substitutions to be "garbage substitutions" as in λy.yrxzts. In this rule, the bound variable should not be non-garbage, and then the argument of the substitution is allows to be an arbitrary term, so for example xryzzsrzzλw.ws is an ∅-normal form.

Evaluation Contexts e strong call-by-need strategy ϑ ù is given by two reduction rules, which are, respectively, instances of the rules Ñ db and Ñ lsv of the eory of Sharing.

ese rules are applied by focusing on speci c locations in a term, as speci ed by evaluation contexts. e two principles of reduction are:

1. Perform function application as soon as db-redexes are found.

Evaluate and substitute the values to which variables are bound on demand.

Let us see how these principles apply when reducing an application t s. Evaluation should not focus on the argument s by default, since we do not know yet whether this argument is actually needed. Hence the rst step is to reduce t until either it becomes an answer or, on the contrary, it becomes visible that it will never become an answer:

• If t becomes an answer, i.e. a λ-abstraction possibly a ected by a substitution context pλx.t 1 qL, then we should perform the db-step.

• If t becomes a term headed by a frozen variable, then it will never become an answer: it can only diverge or become a structure. For example, if Ω stands for the usual nonterminating term:

xpIIq becomes a structure, namely x IryzIs xrxzypIIqspIIq becomes a structure, namely xrxzy IrzzIssIrzzIs x Ω diverges

In this case both t and s have to be independently evaluated to full normal form. According to our strategy, the evaluation focus should stay in t until it becomes a proper structure, and then continue evaluating s.

Note that the choice of reducing in t or s depends on whether t is a structure, which in turn depends on the variables that are frozen at this point. us, as was the case with normal terms and structures, the notion of evaluation context depends on a set ϑ of frozen variables. A context t C is an evaluation context under the set of frozen variables ϑ whenever C is an evaluation context and t is a structure under the same set of frozen variables ϑ.

Now consider a term of the form trxzss. Following the second principle of reduction, the evaluation of the term s should be placed on hold until its value is required. Hence reduction should rst proceed in t, until x becomes the focused variable in t, i.e. until an evaluation context reaches an occurrence of x in t. In this case, reduction should focus on s until an answer is obtained. An important subtlety here is how the notion of focused variable is to be understood in a strong se ing. For example, x is the focused variable in λy.xy and, but also in λy.yx. e focused variable is also x in the term pzyqrzzx Is. In contrast, x is not the focused variable in pyxqryzIs, since y is not frozen under lryzIs so, in this particular case, evaluation should proceed to perform the substitution of I for y. Observe that the focused variable, in case there is one, is always free.

Finally, in the case of a λ-abstraction, evaluation should proceed to evaluate its body (performing proper strong reduction) only if this abstraction can never become applied to an argument. As mentioned, before, to implement this condition we distinguish a particular subset of the evaluation contexts, containing all the evaluation contexts that are not led by a λ-abstraction, which we call inert evaluation contexts. ere are two places at which only inert evaluation contexts can be plugged: on the le of an application to avoid reduction in the le part of a db-redex, and in a substitution to avoid reduction in a value that should be substituted.

is way we ensure that, whenever an evaluation context focuses inside a λabstraction λx.t, it is guaranteed that this λ-abstraction will never be applied, and thus the variable x can be remembered as frozen during the evaluation of t.

Following these principles, we de ne the sets of ϑ-evaluation contexts and inert ϑ-evaluation contexts:

De nition 4.12. e sets of evaluation contexts under the set of frozen variables ϑ, also called ϑ-evaluation contexts (E ϑ) and of inert evaluation contexts under the set of frozen variables ϑ, also called inert ϑ-evaluation contexts (E θ) are de ned mutually inductively by the following rules:

EB l P E θ C P E θ EA L C t P E θ t P S ϑ C P E ϑ EA RS t C P E θ C P E θ C P E ϑ C P E ϑYtxu EL λx.C P E ϑ C P X ϑ t R S ϑ x R ϑ ES LN S Crxzts P X ϑ C P X ϑYtxu t P S ϑ ES LS Crxzts P X ϑ C 1 P X ϑ C 2 P E θ ES R C 1 xxxyyrxzC 2 s P X ϑ
In the last three rules, the symbol X represents either E or E ˝.

Note that:

1. According to the EA L rule, evaluation may proceed on the head of the application as long as the focus of evaluation is below an inert context, so for example lppλx.xqyq is an ∅-evaluation context while pλx.lqppλx.xqyq is not.

2. According to the EA RS rule, evaluation may proceed on the argument of the application as long as the head is a structure, so for example xxl is an txu-evaluation context while pλx.xql is not.

3. According to the EL rule, evaluation may proceed on the body of the abstraction, the bound variable is frozen in the body, so for example λx.xl is an ∅-evaluation context, because xl is an txu-evaluation context. Note that in this case the resulting context is not an inert context.

4. e rules ES LN S and ES LS allow evaluation to proceed on the body of a substitution, in two di erent ways: 4.1 e ES LN S allows evaluation to proceed on the body of a substitution whose argument is not a structure.

is may be because the argument has not been fully evaluated yet, e.g. xrxzpλy.yqzs, or because it has been fully evaluated but it is an answer, e.g. xrxzpλy.wqrwzzss. In these cases, the bound variable is not frozen in the body, so for example lrxzλy.ys is an ∅-evaluation context but pxlqrxzλy.ys is not an ∅-evaluation context, because in turn xl is not an

∅-evaluation context. 4.2
e ES LS rule allows evaluation to proceed on the body of a substitution whose argument is a structure, freezing the bound variable, so for example pxpylqqrxzyys is an tyu-evaluation context because yy is an tyu-structure and xpylq is a tx, yuevaluation context. 5. According to the ES R rule, evaluation may proceed on the argument of a substitution, as long as the bound variable is the current focus of evaluation in the body. For example, let ∆ " pλx.xqpλx.xq. en in a term like pxyqryz∆srxz∆s the context pxyqryz∆srxzls is an ∅-evaluation context, because x is the focus of evaluation in xy, while pxyqryzlsrxz∆s is not an ∅-evaluation context, because y is not the focus of evaluation in xy.

Moreover, in this case, evaluation should proceed on the argument of the substitution as long as the focus of evaluation is below an inert context, so for example xrxzyls is an tyu-evaluation context while xrxzλy.ls is not an tyu-evaluation context.

Reduction

We are nally able to de ne the strong call-by-need strategy as a binary relation

Cxpλx.tqL sy ϑ ù db CxtrxzssLy if C P E ϑ C 1 xC 2 xxxyyrxzvLsy ϑ ù lsv C 1 xC 2 xvyrxzvsLy if C 1 xC 2 xlyrxzvLsy P E ϑ
Note that the strong call-by-need strategy ϑ ù requires that the anchor of the step is below a ϑ-evaluation context. In the db rule, this means that the contracted application pλx.tqL s must lie below a context C P E ϑ . In the lsv rule, this means that the contracted variable x, a ected by the explicit substitution, must lie below a context C P E ϑ . Moreover, since x must be bound to an answer, the context C has to be of the form C " C 1 xC 2 xlyrxzvLsy.

Basic Properties of Strong Call-by-Need

In Section 4.1.2 we listed ve design principles that we followed to de ne the strong call-byneed strategy. In each of the subsections of this section, we state and prove the rst four principles: Strong reduction (Prop. 4.16), Determinism (Prop. 4.18), Conservativity (m. 4.23), and Correctness (Prop. 4.25). e statement and proof of the h principle, Completeness, is much more complex and we defer it until the next section.

Strong Reduction

In this subsection, we show that the strong call-by-need strategy reaches normal forms, up to the unfolding of explicit substitutions. e following auxiliary lemma characterizes the set of normal forms of the strategy ϑ ù. Proof. By Lem. 4.15, it su ces to show that if t P N ϑ then t ˛is a β-normal λ-term. We prove a stronger property, namely that if t P N ϑ or t P S ϑ then t is a β-normal λ-term and, moreover, if t P S ϑ then t is a neutral term, i.e. of the form x t 1 . . . t n . We proceed by mutual induction on the derivations that t P N ϑ and t P S ϑ .

e interesting cases are the rules S and S G. For the rule S , note that the variable is bound to a neutral term, so performing the substitution does not create a β-step. For the rule S G, note that the variable bound by the substitution is not a non-garbage variable, so it does not occur free in the unfolding of the body, and the property holds immediately by i.h..

Determinism

In this subsection we show that the strong call-by-need strategy is deterministic. e following auxiliary lemma states, roughly, that there can be only one redex below an evaluation context. Lemma 4.17 (Unique decomposition -♣ Lem. A.34). If Cxry is a term, we say that r is an anchor if it is a db-redex or a variable bound to an answer. Let t be a term that can be wri en as both C 1 xr 1 y and C 2 xr 2 y, where C 1 , C 2 P E ϑ are evaluation contexts and r 1 , r 2 are anchors. en C 1 " C 2 and r 1 " r 2 . Proof. An immediate consequence of the unique decomposition lemma (Lem. 4.17).

Conservativity

In this subsection we show that the strong call-by-need strategy is conservative over weak call-by-need. To do so, we relate the strong call-by-need strategy with the weak call-by-need strategy W ù (cf. Def. 4.2), as well as to the original notion of weak call-by-need reduction in [?, ?]. Moreover, we take the opportunity to put in evidence the general scheme followed by any reduction sequence of [?] (Lem. 4.21), and we also state a clear relation between these two mentioned notions of weak call-by-need (Lem. 4.22) De nition 4.19 (Ariola et al.'s notion of weak call-by-need). e syntax of the system in [?, ?] is given by the following sets of terms (t), values (v), answers (a), and evaluation contexts (E) 3 :

t ::" x | λx.t | t t | trxzts v ::" λx.t a ::" v | arxzts E ::" l | E t | E t | ExxxyyrxzEs
ere are four rewriting rules:

pλx.tq s Þ Ñ I trxzss Exxxyyrxzvs Þ Ñ V Exvyrxzvs arxzts s Þ Ñ C pa sqrxzts if x R fvpsq Exxxyyrxzaryztss Þ Ñ A Exxxyyrxzasryzts if y R fvpExxxyyq Reduction is de ned by Þ Ñ need def " Þ Ñ I Y Þ Ñ V Y Þ Ñ C Y Þ Ñ A , where Þ Ñ X is the closure by evaluation contexts of Þ Ñ X , i.e. Þ Ñ X def " Ex Þ Ñ X y for each X P tI, V, C, Au. It turns out that Þ Ñ need is deterministic: Proposition 4.20 (Determinism of Þ Ñ need). If t Þ Ñ need s then there exists a unique context E such that t " Ext 1 y, s " Exs 1 y and t 1 Þ Ñ s 1 , where Þ Ñ def " Þ Ñ I Y Þ Ñ V Y Þ Ñ C Y Þ Ñ A .
Proof. See [?, Lemma 4.2].

Using this property, one can observe that any reduction sequence in Þ Ñ need is organized into clusters of the form Þ Ñ CÞ Ñ I or Þ Ñ ÅÞ Ñ V . More precisely:

Lemma 4.21 (Organization of Þ Ñ need reduction sequences). Þ Ñ need " ppÞ Ñ CÞ Ñ I q Y pÞ Ñ ÅÞ Ñ V qq ˚pÞ Ñ C Y Þ Ñ Åq Proof. Straightforward by induction on the number of Þ Ñ need steps.
e key observation is that, a er ring a

Þ Ñ C step, only a step in Þ Ñ C Y Þ Ñ I may be red. Similarly, a er ring a Þ Ñ A step, only only a step in Þ Ñ A Y Þ Ñ V may be red.
On the other hand, the weak call-by-need strategy W ù given in Def. 4.2 has the same syntax as Ariola et al.'s system but a di erent set of rewriting rules. Indeed, recall that it is de ned as the union of the two rewrite rules below, closed by evaluation contexts:

pλx.tqL s W ù db trxzssL ExxxyyrxzvLs W ù lsv ExxvyyrxzvsL
e set of terms de ned by the grammar N w ϑ ::" vL | Exxxyy for x P ϑ characterizes the set of normal forms with respect to the weak call-by-need strategy.

It is quite straightforward to deduce that W ù is included in Þ Ñ need , in particular, a db step (resp. lsv) step translates to a Þ Ñ CÞ Ñ I cluster (resp. Þ Ñ ÅÞ Ñ V cluster).
ese clusters in fact characterize W ù.

(Ď) e inclusion

W ù Ď pÞ Ñ CÞ Ñ I q Y pÞ Ñ ÅÞ Ñ V q is proved by cases on the kind of redex contracted.

1. db redex Expλx.tqL sy Þ Ñ C Exppλx.tq sqLy Þ Ñ I ExtrxzssLy 2. lsv redex ExE 1 xxxyyrxzvLsy Þ Ñ Å ExE 1 xxxyyrxzvsLy Þ Ñ V ExE 1 xxvyyrxzvsLy (Ě)
e inclusion pÞ Ñ CÞ Ñ I q Y pÞ Ñ ÅÞ Ñ V q Ď W ù follows from the remarks stated below and determinism of Þ Ñ need (Prop. 4.20).

t Þ Ñ I s implies t Þ Ñ db s t Þ Ñ V s implies t Þ Ñ lsv s t Þ Ñ C s implies Ds 1 . ps Þ Ñ C Þ Ñ I s 1 q ^pt Þ Ñ db s 1 q t Þ Ñ A s implies Ds 1 . ps Þ Ñ Å Þ Ñ V s 1 q ^pt Þ Ñ lsv s 1 q e Conservativity
P N ϑ , then u is a normal form for Þ Ñ need up to a nite number of Þ Ñ C Y Þ Ñ A steps.

Correctness

To conclude this section, we remark that the strong call-by-need strategy ϑ ù is correct with respect to β-reduction:

Proposition 4.25 (Correctness). If t ϑ ù s then t ˛"β s ˛.
Proof. Observe that ϑ ù db and ϑ ù lsv (cf. Def. 4.13) are instances of Ñ db and Ñ lsv respectively (cf. Def. 4.4), so if t ϑ ù s then we have that t Ñ sh s. Moreover, it is a straightforward exercise to show that the eory of Sharing Ñ sh is correct, i.e. that t Ñ sh s implies t ˛"β s ˛.

Completeness of Strong Call-by-Need

is section is devoted to the proof of the Completeness principle for our strong call-by-need strategy. Recall that by completeness we mean completeness with respect to β-reduction, in the sense that whenever a term t admits a β-normal form s in the λ-calculus, then the strategy S ù computes a normal form u, and the normal forms are in a precise correspondence, more speci cally u ˛" s.

A rst completeness result for weak call-by-need is found in Ariola et al. [?]. eir proof makes use of various syntactical tools such as sharing, residual theory and standardization. A more abstract proof has been developed more recently by Kesner [?]. Kesner shows that every λ-term that can be reduced to a weak head normal-form is typable in an appropriate typing system with intersection types, and that every typable term is normalizing in the weak call-by-need calculus. Here we adopt similar ideas in order to develop a completeness proof for strong call-by-need. Suppose that t " β s are interconvertible terms in the λ-calculus, and suppose that s is a βnormal form. en by con uence of the λ-calculus we have a reduction t β s. Completeness of the strong call-by-need strategy would mean that there exists a term u such that t ϑ ù ˚u and u ˛" s. To prove this, we decompose the proof of completeness of the strategy in two parts:

1. Completeness of the eory of Sharing. First, we prove that the eory of Sharing Ñ sh is complete with respect to β-reduction. is entails that there is a term r such that t sh r and r ˛" s.

2. Factorization of the eory of Sharing. Second, we prove that any reduction in the eory of Sharing Ñ sh may be factorized as a pre x of external steps (i.e. a sequence of steps in the strategy ϑ ù) followed by a su x of internal steps which preserve unfolding. is entails that there is a term u such that t ϑ ù ˚u and such that u ˛" r ˛" s.

e decomposition is depicted graphically in Figure 4.1.

(a) t ϑ β G G G G nf β nf ϑ ˛x x
Completeness of strong call-by-need If t β s P NFpÑ β q then there exists a term u such that t ϑ ù ˚u P N ϑ and u ˛" s, where ϑ " fvptq. (See m. 4.55).

(b) t sh 2 2 2 2 β G G G G nf β nf sh yy
Completeness of the eory of Sharing If t β s P NFpÑ β q then there exists a term u such that t sh u P NFpÑ sh q and u ˛" s. e fundamental property of intersection type systems is that they characterize normalization. In particular, non-idempotent intersection type systems may be formulated in such a way that they characterize weak normalization, i.e. a term has a normal form if and only if it is typable in a non-idempotent intersection type system. e key observation by Kesner is that the proof of completeness, relating weak normalization in two di erent calculi (in our case, reduction in the λ-calculus (Ñ β), and in the eory of Sharing (Ñ sh)), may be simpli ed by relating, on one hand, weak normalization in each of the calculi with, on the other hand, typability in system HW. More precisely, this allows us to decompose completeness of the eory of Sharing into two implications:

1. If a term t has a normal form in the λ-calculus, i.e. t P WNpÑ β q, then t is typable in HW.

Moreover, the typing judgment Γ $ t : τ veri es a structural condition, namely it has no positive occurrences of the empty type.

2. If a term t is typable in HW and the judgment veri es the same structural condition as above, then t has a normal form in the eory of Sharing, i.e. t P WNpÑ sh q.

By composing the implications we conclude that if t has a Ñ β -normal form in the λ-calculus then t has a Ñ sh -normal form in the eory of Sharing, recovering (most of) the completeness result.

e following subsections are organized as follows:

• In Section 4.3.1, we recall the non-idempotent intersection type system HW from [?]. Furthermore, we prove a result relating weak normalization in the eory of Sharing with typability in HW.

• In Section 4.3.2, we prove completeness of the eory of Sharing, as displayed in Figure 4.1(b). As described above, the proof uses typability in HW as a stepping stone.

• In Section 4.3.2, we prove a factorization result for the eory of Sharing, as displayed in

e Non-Idempotent Intersection Type System HW

In contrast to simple types, intersection types are powerful enough to characterize termination properties: a λ-term has a head normal form if and only if it is typable in a suitable intersection type system. at means, in particular, that a head normalizing term like λx.xx, which is not typable in the simply typed λ-calculus, is typable in certain type systems with intersection types. is is done by introducing a new type constructor (^), representing type intersection, together with a corresponding set of typing rules. For instance, in these systems the term λx.xx can be given the type ppτ Ñ τ q ^τ q Ñ τ in such a way that the rst (resp. second) occurrence of the variable x is typed with τ Ñ τ (resp. τ). Typically, intersection is declared to be commutative (i.e. τ ^σ " σ ^τ), associative (i.e. pτ ^σq ^ρ " τ ^pσ ^ρq) and idempotent (i.e. τ ^τ " τ).

In non-idempotent intersection type systems [?], intersection is not declared to be idempotent, i.e. τ ^τ ı τ .

ese non-idempotent types allow giving types to terms according to a resource aware semantics. e informal idea behind the resource aware semantics is that a term of type τ 1 ^. . . ^τn can be understood as a resource that must be used exactly n times, once with type τ i for each 1 ď i ď n. Dually, a term of type pτ 1 ^. . . ^τn q Ñ ρ is a function that uses its argument exactly n times, once with type τ i for each 1 ď i ď n. Non-idempotent intersection type systems also provide a simple formal framework to reason about termination properties: in particular, in these systems correctness results are usually proved by simple inductive arguments rather than with more intricate arguments typical of their idempotent counterparts.

From a formal point of view, the result of applying a commutative, associative and nonidempotent binary operation to a collection of elements can be represented by a multiset of elements, which provides a very convenient notation to manipulate them. We denote nite multisets with brackets, so that r s denotes the empty multiset and rσ, σ, τ s denotes a multiset having two occurrences of the element σ and one occurrence of τ , corresponding to the intersection type σ ^σ ^τ . In this system, we write `for the (additive) union of multisets and Ď for multiset inclusion. Below we recall the intersection type system HW from [?]. A type assignment or typing context, ranged over by Γ, ∆, etc., is a function mapping variables to multiset types. e domain of Γ is de ned by dompΓq :" tx | Γpxq ‰ r su. We assume that typing contexts have nite domain.

e union of typing contexts, wri en Γ `∆, is the typing context de ned by pΓ `∆qpxq :" Γpxq `∆pxq, where the symbol `denotes the additive union of multisets. Note that dompΓ ∆q " dompΓq Y domp∆q. We write Γ ' ∆ to stand for Γ `∆ whenever dompΓq and domp∆q are disjoint. We write Γ `iPI ∆ i to abbreviate Γ `řiPI ∆ i .

e inclusion between typing contexts, wri en Γ Ď ∆, is de ned to hold if for every variable x we have that Γpxq Ď ∆pxq.

For example px : rσs, y : rτ sq `px : rσs, z : rσsq " x : rσ, σs, y : rτ s, z : rσs, and x : rσs Ď x : rσ, σs, y : ρ.

Γ ' px : Mq $ t : τ Γ $ λx.t : M Ñ τ Γ ' px : rσ i s iPI q $ t : τ p∆ i $ s : σ i q iPI Γ `iPI ∆ i $ trxzss : τ

Note that the axiom typing rule (

) is relevant, in the sense that no extra hypotheses besides the fact that x has type τ are allowed in the typing context. In proof-theory jargon, there is no weakening. Moreover, in the rules for application (

) and substitution (), the typing context of the conclusion is obtained by joining all of the typing contexts in the premises. In proof-theory jargon, these rules are multiplicative, i.e. there is no contraction 4 . ese characteristics of the type system are consistent with the resource aware interpretation of the calculus.

In line with the resource aware interpretation, the typing context Γ in a judgment Γ $ t : τ can be understood as follows: given a variable x, each element in the multiset Γpxq concerns one potential use of this variable in the computation of t. is informal description helps in understanding the rules p q and p q, in which several typing judgments are required in the premises for the term s. Each of typing judgment concerns one of the potential uses of s in the computation of the whole term. A particular case of the rules p q and p q is when I " ∅, i.e. there is no potential use of s: the subterm s occurring in the typed term t s (resp. trxzss) does not need to be typed.

By restricting the HW-system to λ-terms, so that it only contains the rules p q, p q, and p q, we obtain the system presented in [?, ?], which we call here λ-type system. Following we recall the usual de nition of type derivation:

De nition 4.28 (Derivations). A (type) derivation is a nite tree obtained by applying the inductive rules of the type system. We write Φ Γ $ t : τ if Φ is a derivation typing t, i.e. ending in the type judgment Γ $ t : τ . We write Φ λ Γ $ t : τ if, moreover, Φ is a valid derivation in the λ-type system. A derivation Φ 1 is an immediate subderivation of Φ if, seen as trees, Φ 1 is one of the children of Φ. A term t is typable if there is a derivation typing t. e size of a type derivation Φ is a natural number sizepΦq denoting the number of nodes of the tree Φ. e following is an example of a type derivation in the system HW. Suppose that a typing judgment of the form Γ $ t : σ is derivable in HW. In contrast with what happens in more traditional type systems, the free variables of t do not necessarily appear in the domain of Γ. For example, x : rσs $ pλy.xqz : σ is derivable in HW but z R dompΓq. However, HW does enjoy the following property. From the logical point of view, it states that all the assumptions in the typing context are used at least once: Lemma 4.30 (Relevance). If there is a derivation Φ Γ $ t : σ then dompΓq Ď fvptq.

Proof. Straightforward by induction on the derivation of the judgment Γ $ t : σ.

It is also worth noticing that not every typable term reduces to a β-normal form. An example is the term xp∆∆q, where ∆ " λy.yy, for which there is a type derivation ending with x : rr s Ñ αs $ xp∆∆q : α. In order to characterize weak β-normalization by means of typability we need to restrict the types and the type contexts to those that do not have positive occurrences of the constant r s. To do so, we introduce the following notion of positive and negative occurrences of a type. e set O `pX q is the set of types that occur positively in X and O ´pX q is the set of types that occur negatively in X. We write O ˘pX q for either O `pX q or O ´pX q and O ¯p...q for the opposite set in a given rule. All of these sets are de ned mutually inductively by the following conditions, where T denotes either a type or a multiset of types: It is an already known fact that the type system HW, restricted to contexts and types in which there are no positive occurrences of the empty multiset rs, can be used to characterize weakly normalizing terms of the λ-calculus: eorem 4.33 (Characterization of weakly normalizing terms in the λ-calculus). Let t be a λ-term. en the following are equivalent:

σ P O `pσq M P O `pMq T P O ˘pσ i q I ‰ ∅ T P O ˘prσ i s iPI q T P O ¯pMq T P O ˘pM Ñ τ q T P O ˘pτ q T P O ˘pM Ñ τ q y P dompΓq T P O ¯pΓpyqq T P O ˘pΓq T P O ˘pΓq T P O ˘pΓ $ τ q T P O ˘pτ q T P O ˘pΓ $ τ q
1. e term is weakly normalizing, i.e. t P WNpÑ β q.

2. e judgment Γ $ t : τ is derivable in HW and r s R O `pΓ $ τ q Proof. A straightforward adaptation of [?] to the non-idempotent case. See [?] for details.

Extending Typing to Contexts

As mentioned before, we use system HW as a tool to characterize the set of terms that are weakly normalizing in the eory of Sharing, in order to relate them with the set of terms that are weakly normalizing in the pure λ-calculus. In order to be able to prove this result for the eory of Sharing, whose rules operate at a distance, a key technical tool is the extension of the typing system given in Def. 4.27 with typing rules for substitution contexts.

If L is a substitution context, we write dompLq for the variables bound by L, and fvpLq for the free variables of L, taking fvplq " ∅. Moreover, we use the following notion of height:

De nition 4.34. e height of a substitution context is de ned by:

heightplq def " 1 heightpLrxztsq def " heightpLq `1
De nition 4.35 (Extension of HW for substitution contexts). e type system HW is extended with typing judgments of the form Γ , L ∆, where Γ and ∆ are typing contexts and L is a substitution context. e le -hand side Γ of a judgment Γ , L ∆ is a typing context for the (typed) free variables of L, while the right-hand side ∆ is a typing context for the term which will be plugged into the hole of L. ere are two typing rules:

∅ , l ∅ Γ ' x : rσ i s iPI , L ∆ x R dom∆ pΣ k $ t : σ k q kPIZJ Γ `kPIZJ Σ k , Lrxzts ∆ ' x : rσ j s jPJ
In the second rule, the sets of indices I and J are supposed to be disjoint.

Note that in the second type rule the context pΣ i q iPI is used to type the copies of t associated with the free occurrences of x in the list L, while the context pΣ j q jPJ is used to type the copies of t associated with the free occurrences of x in the term which will ll the hole of L. 1. If Γ , L ∆ then dompΓq Ď fvpLq and domp∆q Ď dompLq.

2. ere is a derivation Φ tL Λ $ tL : σ if and only if there are contexts Γ, ∆, Π such that Λ " Γ `Π, and there are derivations Φ L Γ , L ∆ and Φ t ∆; Π $ t : σ. Moreover, sizepΦ Lrts q " sizepΦ L q `sizepΦ t q ´1.

3. If pΦ j L Γ j , L ∆ j q jPJ , then Φ L `jPJ Γ j , L `jPJ ∆ j . Moreover, sizepΦ L q " `jPJ sizepΦ j L q ´pheightpLq ¨p|J| ´1qq.

e second item of the lemma allows one to decompose the type derivation of a term tL into two type derivations, one for the context L and another one for the term t. Reciprocally, context and term derivations can be combined if their types coincide.

On the other hand, the third item of the lemma states that combining di erent derivable typing judgments of the same substitution context by means of multiset union yields a derivable typing judgment. Moreover, their sizes can be related using the notion of height. Observe that the statement includes the case J " ∅.

Typability Implies Normalization

Our goal is now to show that terms typable in system HW are weakly normalizing in the eory of Sharing. e key technical result is the property known as weighted subject reduction. Recall that, in traditional type systems such as the simply typed λ-calculus, the subject reduction property states that evaluation preserves types. More precisely, if there is a typing derivation Φ Γ $ t : τ and a reduction step t Ñ t 1 then there is also a typing derivation Φ 1 Γ $ t 1 : τ . e weighted subject reduction property states that, assuming further appropriate conditions on the step t Ñ t 1 , one may also ensure that sizepΦq ą sizepΦ 1 q.

In our case, we will be able to ensure that the size of the derivation decreases as long as we select a step t Ñ t 1 contracting a typed redex. Intuitively, from the point of view of the resource aware interpretation, a redex is typed if it lies inside a subterm that will be used at some point in the evaluation of t5 . For example, the underlined redex R : f ppλx.xqyq Ñ f y is typed if the type of the function f is, say, rαs Ñ α, whereas the redex R is untyped if the type of the function f is, say, rs Ñ α.

To de ne this more precisely, we introduce the notion of typed occurrences of a term (abbreviated as T-occurrences). Intuitively, a typed occurrence of t is a position identifying a subterm that will be used at some point in the evaluation of t. We start by recalling the notion of position:

De nition 4.38 (Positions of a term). e set of positions of a term t, wri en posptq, is the set of nite words over the alphabet t0, 1u, inductively de ned as follows: For example, given t " xrzzz 1 spλy.yq and C " pλx.lqyz, we have that the sets of positions are posptq " t , 0, 00, 01, 1, 10u and pospCq " t , 0, 00, 000, 01, 1u. Moreover, t| 1 " λy.y and C| 000 " l.

De nition 4.39 (T-occurrence). Suppose given a derivation Φ Γ $ t : τ . A position p P posptq is a T-occurrence of t in Φ if either p " , or p " ip 1 pi " 0, 1q and p 1 P pospt| i q is a T-occurrence of t| i in some of the immediate subderivations of Φ. A redex occurrence of t which is a T-occurrence of t in Φ is said to be a redex T-occurrence of t in Φ.

For example, given the following derivation Φ 1 , we have that , 0, 1 and 10 are T-occurrences of xpyzq in Φ 1 , while 11 is not a T-occurrence of xpyzq in Φ 1 .

Φ 1 x:rrτ, τ s Ñ τ s $ x : rτ, τ s Ñ τ y:rr s Ñ τ s $ y : r s Ñ τ y:rr s Ñ τ s $ yz : τ y:rr s Ñ τ s $ y : r s Ñ τ y:rr s Ñ τ s $ yz : τ x:rrτ, τ s Ñ τ s, y:rr s Ñ τ, r s Ñ τ s $ xpyzq : τ Note that if an occurrence of a variable x is a T-occurrence of t in Φ, then x occurs free in t. Given Φ Γ $ t : τ , the no-redex-occurrences predicate Apt, Φq holds if and only if t has no sh-redex T-occurrences in Φ.

e following lemma studies the relation between typing derivations and the substitution of a single occurrence of a variable by a term, namely a typing derivation for Cxxtyy may be constructed by combining a typing derivation for Cxxxyy and typing derivations for t. ∆ i $ u : σ i q iPI then Φ Cxxuyy x:rσ i s iPIzK ; Γ `kPK ∆ k $ Cxxuyy : τ , for some K Ď I where sizepΦ Cxxuyy q " sizepΦ Cxxxyy q `kPK sizepΦ k u q ´|K|. Moreover, if p P pospCq is the occurrence of the hole in C and p is a T-occurrence of Cxxxyy in Φ Cxxxyy , then K ‰ ∅.

Proof. By induction on the typing derivation Φ Cxxxyy .

Using this tool we are able to prove the following key result: Lemma 4.41 (Weighted Subject Reduction for sh). Let Φ Γ $ t : τ . If t Ñ sh t 1 reduces a sh-redex T-occurrence of t in Φ, then there exists Φ 1 such that Φ 1 Γ $ t 1 : τ and sizepΦq ą sizepΦ 1 q.

Proof. By induction on the context under which the step t Ñ sh t 1 takes place. e inductive cases are straightforward by i.h.. e interesting case is the base case, when the step takes place at the root. en we consider three subcases, depending on the kind of redex contracted. 1. db step, i.e. t " pλx.uqLs Ñ db urx{ssL " t 1 . en the reduction concerns a db-redex T-occurrence of t in Φ. en one may show Φ 1 Γ $ t 1 : τ and sizepΦq ą sizepΦ 1 q by induction on L.

Π i 1 , Π i 2 , Π i 3 such that Φ i L Π i 1 , L Π i 2 , Φ i u Π i 2 ; Π i 3 $ u : σ i and ∆ i " Π i 1 `Πi 3 .
From the derivations Φ Cxxxyy and pΦ i u q iPI we get, by Lem. 4.40, a derivation Φ Cxxuyy x : rσ i s iPIzK ; Γ 0 `kPK pΠ k 2 ; Π k 3 q $ Cxxuyy : σ for some K Ď I. So we can construct the following derivation Φ Cxxuyyrx{us .

Φ Cxxuyy

`Φi u ˘iPIzK Γ 0 `kPK pΠ k 2 ; Π k 3 q `iPIzK pΠ i 2 ; Π i 3 q $ Cxxuyyrx{us : σ e last sequent can be wri en Γ 0 `p`i PI Π i 2 ; `iPI Π i 3 q $ Cxxuyyrx{us : σ. We thus apply Lem. 4.37 to pΦ i L q iPI and we get

Φ L `iPI Π i 1 , L `iPI Π i 2 .
We can thus apply Lem. 4.37 to Φ L and Φ Cxxuyyrx{us , obtaining

Φ 1 Γ 0 `iPI Π 1 1 `iPI Π i 3 $ Cxxuyyrx{usL : σ.
We can then conclude with the rst statement since Γ 0 `iPI Π 1 1 `iPI Π i 3 " Γ 0 `iPI ∆ i " Γ as required. Moreover, for the second one, we assume that the reduction step concerns a sh-redex T-occurrence of t in Φ. en, sizepΦq "

sizepΦ Cxxxyy q `iPI sizepΦ i uL q `1 " L. 4.37 sizepΦ Cxxxyy q `iPI psizepΦ i L q `sizepΦ i u q ´1q `1 "

sizepΦ Cxxxyy q `iPI sizepΦ i L q `iPI sizepΦ i u q ´p|I| ´1q " Z ´p|I| ´1q and sizepΦ 1 q " L. 4.37 sizepΦ L q `sizepΦ Cxxuyyrx{us q ´1 " sizepΦ L q `sizepΦ Cxxuyy q `iPIzK sizepΦ i u q `1 ´1 " sizepΦ L q `sizepΦ Cxxuyy q `iPIzK sizepΦ i u q " L. 4.40 sizepΦ L q `sizepΦ Cxxxyy q `kPK sizepΦ k u q ´|K| `iPIzK sizepΦ i u q " L. 4.37 `iPI sizepΦ i L q ´rheightpLq ¨p|I| ´1qs `sizepΦ Cxxxyy q `iPI sizepΦ i u q ´|K| " sizepΦ Cxxxyy q `iPI sizepΦ i L q `iPI sizepΦ i u q ´rheightpLq ¨p|I| ´1qs ´|K| " Z ´rheightpLq ¨p|I| ´1qs ´|K|

We know by Lem. 4.40 that K ‰ ∅. erefore, |I| ´1 ď heightpLq ¨p|I| ´1q so that Z ´p|I| ´1q ě Z ´rheightpLq ¨p|I| ´1qs ą Z ´rheightpLq ¨p|I| ´1qs ´|K|. We thus conclude sizepΦq ą sizepΦ 1 q as required.

3. gc step. Immediate.

We now relate the notions of T-occurrence and sh-normal form, before concluding with the main result of this subsection. Lemma 4.42. Let Φ Γ $ t : τ such that r s R O `pΓ $ τ q. en Apt, Φq implies t P NFpÑ sh q.

Proof. Let Φ Γ $ t : τ such that Apt, Φq. First show the following more general property by induction on Φ.

1. If r s R O `pΓq, and t is not an answer, then t P S.

2. If r s R O `pΓ $ τ q, and t is an answer, then t P N.

Moreover, x P fvptq implies x has some T-occurrence in Φ.

Now, suppose r s R O `pΓ $ τ q. us in particular r s R O `pΓq. If t is not an answer, then one easily shows that t P S, which gives t P N since S Ď N; If t is an answer, then one easily shows t P N. We conclude that t P NFpÑ sh q by Lem. 4.7. eorem 4.43 (Typability implies sh-normalization). Let Φ Γ $ t : τ such that r s R O `pΓ $ τ q. en t is weakly normalizing in the eory of Sharing.

Proof. Let Φ Γ $ t : τ such that r s R O `pΓ $ τ q. By Lem. 4.41 and Lem. 4.42 we can construct a nite sh-reduction sequence which only reduces sh-redex T-occurrences, i.e. there exist t 0 , t 1 , . . . , t n such that (1) t " t 0 and Φ " Φ 0 , (2) Φ i Γ $ t i : τ , (3) t i Ñ sh t i`1 reduces a sh-redex T-occurrences of t i in Φ i , and (5) Apt n , Φ n q holds. is together with r s R O `pΓ $ τ q gives t n P NFpÑ sh q by Lem. 4.42. We thus conclude t P WNpÑ sh q.

Completeness of the eory of Sharing

In this section we prove Fig. 4.1(b), that is completeness of the eory of Sharing with respect to β-reduction in the λ-calculus. Before doing so, we need to state a few basic properties of unfolding.

Lemma 4.44. Let t, s P T be terms, possibly with explicit substitutions. en:

1. If t Ñ sh s, then t ˛ β s ˛.
2. If t P NFpÑ sh q, then t ˛P NFpÑ β q.

Recall that NFpÑq stands for the set of Ñ-normal forms.

Proof. By induction on t.

Indeed, to illustrate the rst point we have t " yryzpλz.zzqpIIqs Ñ db yryzpzzqrzzIIss " u and t ˛" pλz.zzqpIIq Ñ β pIIq pIIq " u ˛, and to illustrate the second one we have t " xryzIrw 1 zIssrzzIs P NFpÑ sh q and t ˛" x P NFpÑ β q.

We now conclude with the completeness result for the sh-calculus, cf. Proposition 4.45 (Completeness of the eory of Sharing). If t β s P NFpÑ β q then there exists a term u such that t sh u P NFpshq and u ˛" s.

Proof. Let t β nf β , where nf β is in β-nf.

en Φ Γ $ t : τ and r s R O `pΓ $ τ q by m. 4.33. But then t is weakly sh-normalizing by m. 4.43, so that t sh nf sh , where nf sh is in sh-nf. By Lem. 4.44(1) t ˛ β nf sh and by Lem. 4.44(2) nf sh P NFpÑ β q. Since t ˛" t β nf β and t ˛ β nf sh , then we conclude nf sh " nf β because Ñ β is CR.

Factorization of the eory of Sharing

In this section we prove Fig. 4.1(c), that is, factorization of the eory of Sharing. For this, we show that Ñ sh reduction steps which are not ϑ ù steps can always be postponed a er ϑ ù reduction steps, that this postponement process terminates, and that, ultimately, all remaining non-ϑ ù steps are erasable by gc (and thus erased by the unfolding ˛). More precisely we proceed in three stages: 1. As a preliminary step, we get gc-steps out of the way: any Ñ sh reduction sequence can be factorized into a Ñ sh reduction sequence without gc-steps, which we call strict, followed by a sequence of gc-steps (cf.). e relation of strict reduction is wri en

t ϑ shzgc ' ' ' ' sh 6 6 6 6 nf ϑ ϑ G G G G gc X X X X s gc G G G G nf sh
Ñ shzgc .
2. en we prove a more involved commutation result: Ñ sh -reductions without gc-steps can be factored in two parts (cf. Prop. 4.51):

2.1 a sequence of external Ñ sh -steps, which correspond to the strategy , where we substitute a value for a variable occurrence that is not focused, or evaluate a substitution whose bound variable is not focused.

3. Finally, we show that internal steps that remain a er the ϑ ù-normal form is reached only take place inside garbage substitutions, that are removed by the unfolding operation ˛(cf. Lem. 4.53).

Postponement of gc

In this subsection we show the reasonable observation that garbage collection steps can always be postponed to the end of a reduction sequence. Reduction steps (resp. sequences) that do not use the gc-rule are called strict and are wri en Ñ shzgc (resp. shzgc).

Lemma 4.46 (Postponement of gc). If t sh s, then there is u such that t shzgc u gc s.

Proof.

e proof is by exhaustive case analysis of the relative positions of a gc step followed by a non-gc step, similar to other proofs of postponement of gc in the LSC (see for instance Lem. 6.50).

Observe that the fact that s P NFpÑ sh q does not imply that u P NFpÑ shzgc q in general. Indeed, if we take t " xryzΩs and s " x, then u " xryzΩs, which is not even normalizing for Ñ shzgc . e actual relation of postponement of gc with normal forms is stated in Lem. 4.53.

Factorization of Strict Reduction

In this subsection, we show that a sequence of strict reduction steps Ñ shzgc can always be factorized as a sequence of steps in the strategy (ϑ ù) followed by steps which are not in the strategy (ϑ Ý Ý Ñ sh). More precisely, we say that t 1 reduces in a ϑ-internal step to t 2 , wri en t 1 ϑ Ý Ý Ñ sh t 2 , if and only if there is a step in the strict eory of Sharing that is not a step in the strong call-by-need strategy, i.e. e proof of factorization is long and technical. We begin by recalling the de nition of square factorization system and an abstract factorization result due to Acca oli [?]:

De nition 4.47 (Square factorization system). A square factorization system is given by a set X and four reduction relations pù ' , ù ˝, Þ Ñ ' , Þ Ñ ˝q such that:

1. Termination: ù ˝and Þ Ñ ˝are strongly normalizing.

Row-swap 1: pù

' ù ˝q Ď pù `ù' q. 3. Row-swap 2: pÞ Ñ ' Þ Ñ ˝q Ď pÞ Ñ `Þ Ñ ' q.
4. Diagonal-swap 1: pÞ Ñ ' ù ˝q Ď pù ˝Þ Ñ ˚q.

Diagonal-swap 2: pù

' Þ Ñ ˝q Ď pÞ Ñ ˝ù˚q .
with the following notation:

ù def " pù ' Y ù ˝q Þ Ñ def " pÞ Ñ ' Y Þ Ñ ˝q Ñ ' def " pù ' Y Þ Ñ ' q Ñ ˝def " pù ˝Y Þ Ñ ˝q Ñ def " pÑ ' Y Ñ ˝q eorem 4.48 (Abstract factorization, Acca oli 2012). Let pù ' , ù ˝, Þ Ñ ' , Þ
Ñ ˝q be a square factorization system. en Ñ ˚Ď pÑ ˚Ñ' q.

Proof. See [?, eorem 5.2].

Below we state the two main lemmas, Backward stability by internal steps and Postponement of internal steps, whose full proofs may be found in the appendix (Section A.2.5). e following lemma states that important notions of the strong call-by-need strategy, such as answers, normal forms, and evaluation contexts, are preserved by expansion via internal steps: Lemma 4.49 (Backward stability by internal steps -♣). Let t 0 ϑ Ý Ý Ñ sh t be a ϑ-internal step. en:

1. If t is an answer (resp. a db-redex) then t 0 is also an answer (resp. a db-redex).

2. If t is a ϑ-normal form (resp. ϑ-structure) then t 0 is also a ϑ-normal form (resp. ϑstructure).

3. If t " Cxxxyy where C is a ϑ-evaluation context (resp. inert ϑ-evaluation context), then t 0 is also of the form C 0 xxxyy, where C 0 is a ϑ-evaluation context (resp. inert ϑ-evaluation context).

Proof. See Section A.2.5 in the appendix.

e following key lemma states that an external step can be commuted before an internal step. In particular, an internal step cannot create an external step (neither by creating a redex in an external position, nor by turning an internal position into an external one).

q Ď ϑ. If t 0 ϑ Ý Ý Ñ sh t 1 ϑ ù t 3 ,
then there is a term t 2 such that t 0 ϑ ù ˚t2 ϑ sh t 3 , where the reduction from t 0 to t 2 includes at least one step and the one from t 2 to t 3 has at most two steps.

Proof.

e proof is by induction on the evaluation context de ning the external step and then by case analysis on the position of the internal step relative to this evaluation context. See Section A.2.5 in the appendix.

Erasure of Final Internal Steps

e previous two subsections ensure that any Ñ sh reduction sequence can be factored into a ϑ ù reduction pre x followed by internal or gc steps. Here we further show that if the Ñ sh reduction sequence reaches a Ñ sh -normal form, then all the internal steps factored out by Prop. 4.51 can be erased by gc steps. Lemma 4.52 (Inclusion of normal forms). Let ϑ, t be such that fvptq Ď ϑ. If t P NFpÑ sh q, then t P NFp ϑ ùq.

Proof.

is is immediate since

ϑ ù Ď Ñ sh .
Lemma 4.53 (Normal forms modulo internal and gc steps). Let ϑ, t be such that fvptq Ď ϑ. Proof. We show that the following conditions are equivalent for any term t such that fvptq Ď ϑ. ey imply items (1) and (2) of this lemma: (i) t is a ϑ ù-normal form, (ii) Ó gc ptq is a Ñ shnormal form, (iii) t " ϑ s for some s P NFpÑ sh q, (iv) t " ϑ s for some s P NFp , and which they call the "type-erased λ-calculus". e extended λ-calculus, denoted λ e , extends the lambda calculus with constants, pa ern matching and xed-points.

Here is an example of a term in λ e that computes the length of a list encoded with constants nil and cons: fix pl. λxs. case xs of pnil ñ zeroq ¨pcons hd tl ñ succ pl tl qqq e Extended Lambda Calculus is a subset of Gallina, the speci cation language of the Coq proof assistant. Grégoire and Leroy [?] study mechanisms for implementing strong reduction in λ e in order to apply it to check type conversion.

ey propose a notion of strong reduction for λ e on open terms, i.e. terms possibly containing free variables, called symbolic call-by-value. Symbolic call-by-value iterates call-by-value, accumulating terms for which computation cannot progress. No notion of sharing is addressed. Indeed, unnecessary computation may be performed. For example, consider the following λ e term, where I abbreviates the identity term λz.z:

case c pI Iq of c x ñ d (5.1)
is term is a case expression that has condition c pI Iq and branch c x ñ d, the pa ern of the branch being c x and the target d. Notice that the branch does not make use of x in the target. However, symbolic call-by-value contracts the redex I I since the argument of c must be a value before selecting the matching branch.

In this chapter, we propose a strong call-by-need strategy that generalizes the strong callby-need strategy of the previous chapter to the se ing of the extended λ-calculus. Informally: e second step in this chapter is to adapt the non-idempotent intersection type system HW to an extended non-idempotent intersection type system HW e that characterizes weakly normalizing terms in the extended theory of sharing Ñ e sh . It turns out that it is relatively easy to extend HW to deal with xed points. e challenge lies in dealing with case constructs. For example, consider the term: case c of pc ñ dq ¨pd ñ Ωq It will evaluate to d and hence should be typable in the extended non-idempotent intersection type system HW e . Since Ω does not participate at all in computing d, there is no need for HW e to account for it.

us our proposed typing rules will only type branches that are actually used to compute the normal form. is, however, raises the question of what happens with case expressions that are "blocked". For example, in an expression such as: case c of pd ñ dq ¨pe ñ eq all the subexpressions are part of the normal form and hence should be typed. Our proposed typing rule shall ensure this, thus avoiding typing terms such as: case c of pd ñ dq ¨pe ñ Ωq where, although matching is blocked, have no strong normal form in λ e or λ e sh . Since blocked case expressions could be applied to arguments, further considerations are required. Consider the term: pcase c of d ñ dq Ω It does not have a normal form in λ e or λ e sh and hence should not be typable. To ensure that, we need the type assigned to this term to provide access to the types of the arguments to which it is applied, namely Ω, so that constraints on these types may be placed. In other words, we need to devise HW e such that it gives case c of pd ñ dq Ω a type that includes that of Ω. is would enable us to state conditions that do not allow this term to be typed but do allow a term such as pcase c of d ñ dq e to be typed. is motivates our notions of error type and error log.

e above examples were all closed terms. Open terms pose additional problems. Consider the term: case x of pc ñ dq ¨pe ñ Ωq

Although it does not have a normal form in λ e sh , it is typable with type d in the typing context in which x : rcs. Note, moreover, that the empty multiset of types does not occur in the type of x (in fact, it meets all the requirements of [?]). e reason it is typable is that Ω is never accounted: since x is known to have type rcs, only the c ñ d branch is typed. Hence some restrictions on the types of free variables must be put forward-variables cannot be assigned any type. In particular, it seems we should not allow constant types such as c to occur positively in the types of free variables. Indeed, we will require that constant types do not occur positively in the typing context and negatively in error logs and in the predicate. Note that constants can occur negatively in the types of variables. is allows terms such as x c to be typable.

One nal consideration is that collecting all the requirements, both on empty multiset types and type constants, should still allow weakly normalizing terms in λ e to be typable in HW e . We will see that this will indeed be the case.

As a closely related work, we should mention that in his PhD thesis [?], Bernadet proposes a non-idempotent intersection type system for a calculus similar to the extended λ-calculus, which includes xed-points and case expressions. However, his goal is to characterize a subset of the strongly normalizing terms, while, in order to prove completeness of the strong call-byneed strategy, we need to characterize all of the weakly normalizing terms.

e Extended Strong Call-by-Need Strategy ù e . As mentioned, reduction in the theory of sharing may involve reducing redexes that are not needed. By restricting reduction in Ñ e sh to a subset of the contexts where reduction can take place, we can ensure that only needed redexes are reduced. We next illustrate, through an example, our call-by-need strategy. e strategy will be denoted ù e . Consider the term:

pcase pλy.x yqpI Iq of c ñ dq pI cq It consists of a case expression applied to an argument. is case expression has a condition pλy.x yqpI Iq, a branch c ñ d with pa ern c and target d, and is applied to an argument I c. e rst reduction step for this term is the same as for weak call-by-need, namely reducing the β-redex pλy.x yqpI Iq in the condition of the case. It must be reduced in order to determine which branch, if any, is to be selected. is β-redex is turned into px yqryzI Is. e resulting term is: pcase px yqryzI Is of c ñ dqpI cq A weak call-by-need strategy would stop there, since the case expression is stuck. In the strong case, however, reduction should continue to complete the evaluation of the term until a strong normal form is reached. Both the body of the explicit substitution I I and also the argument of the stuck case expression I c are needed to produce the strong normal form.

us evaluation must continue with these redexes. at these redexes are indeed selected and, moreover, which one is selected rst, depends on an appropriate notion of evaluation context. Our strategy will include an evaluation context C of the form pcase px yqryzls of c ñ dqpI cq and hence the body of the explicit substitution will be reduced next. Notice that in order for the focus of computation to be placed in the body of an explicit substitution, its target y should be needed. In this particular case, it is because x is free but y is needed for computing the strong normal form. However, in a term such λx.cryzI Is, the β-redex I I is not needed for the strong normal form and hence will not be selected by the strategy.

e remaining computation steps leading to the strong normal form are depicted below. Note that in the fourth step (indicated with an asterisk), y has been replaced by I. As in weak call-by-need, only answers shall be substituted for variables. Answers are abstractions under a possibly empty list of explicit substitutions or data structures possibly interspersed with explicit substitutions. Finally, crucial to de ning the strong call-by-need strategy will be identifying variables and case expressions that will persist. e former are referred to as frozen variables and are free variables (or those that are bound under abstractions and branches of case expressions) that we know will never be substituted by an answer. e la er are referred to as error terms and are case expressions that we know will be stuck forever. An example of the former is x y in px yqryzI Is; an example of the la er is case px IqryzIsrzzIs of c ñ d in pcase px IqryzIsrzzIs of c ñ dqpI cq.

Our Work

is chapter is the result of collaboration with Eduardo Bonelli and Kareem Mohamed. Generally speaking, systems in this chapter are an extension of the ones in Chapter 4 to account for pa ern matching and xed points. As a result, there are more syntactic constructs, more inference rules, and more complex de nitions, but essentially the proof techniques of the previous chapter are applied without radical changes. Most proofs have been omi ed from this chapter.

is chapter is structured as follows. We highlight in boldface what we consider to be the main contributions:

• In Section 5.2, we recall the de nition of Grégoire and Leroy's extended λ-calculus (Def. 5.3), we generalize the eory of Sharing for the extended λ-calculus (Def. 5.7), and we provide a syntactic characterization of the normal forms (Def. 5.7).

• In Section 5.3, we propose a non-idempotent intersection type system HW e for λ e (Def. 5.10), and we show that weakly normalizing terms in λ e are typable (m. 5.13) and that typable terms are weakly normalizing in λ e sh (m. 5.14). More precisely, both theorems require not only that the term is typable, but also that the typing judgment is "good" in a precise sense (cf. Def. 5.12). is notion of goodness generalizes the usual condition that there are no positive occurrences of the empty multiset rs.

• In Section 5.4, we propose a strong call-by-need strategy ù e for λ e (Def. 5.17), and we show that the strategy enjoys good properties. Namely, it is deterministic (Prop. 5.21), it conservatively extends the strong call-by-need strategy of the previous chapter (Prop. 5.21), it is correct (Prop. 5.22) and it is complete with respect to reduction in the extended λ-calculus (m. 5.23).

Extending the eory of Sharing

In this section we extend the eory of Sharing (cf. Def. 4.4) to the extended λ-calculus. In Section 5.2.1, we begin by recalling the de nition of the extended λ-calculus of Grégoire and Leroy [?]. In Section 5.2.2 we give the actual de nition of the Extended eory of Sharing λ e sh .

e Extended λ-Calculus

De nition 5.1 (Syntax of the extended λ-calculus, cf.

[?]). Assume given a denumerable set of variables x, y, z, . . . and constants c, c 1 , c 2 , e set of terms T e of the extended λcalculus are de ned as follows, mutually inductively with the set of branches (branches of case-constructs):

Terms t, s, u, . . . ::" x | λx.t | t s | c | fixpx.tq | case t of b Branches b ::" cx ñ t
Contexts are de ned as expected.

In addition to the usual terms of the λ-calculus, the calculus has constants, case expressions and xed-point expressions. In case t of b we say t is the condition of the case and b are its branches; b represents a possibly empty sequence of branches. If I " t1, 2, . . . , nu, we sometimes write pc i xi ñ s i q iPI for a list of branches pc 1 x1 ñ s 1 q . . . pc n xn ñ s n q. Branches are assumed to be syntactically restricted so that if i ‰ j then pc i , |x i |q ‰ pc j , |x j |q, where |x j | denotes the length of the sequence xj . Moreover, the list xi of formal parameters in each branch is assumed to have no repeats. e expression fixpx.tq is a xed-point expression. We o en write λx.t for λx 1 λx n .t if x is the sequence of variables x 1 ¨. . .¨x n and similarly ts stands for ts 1 . . . s n if s " s 1 ¨. . .¨s n .

Free and bound variables are de ned as expected. In particular, x is bound by a xed point operator fixpx.tq, and all the variables x 1 , . . . , x n are bound in a branch cx 1 . . . x n ñ t.

Remark 5.2. In [?] a family of xed-point operators fix n , for n a positive integer, is used. e index n indicates the expected number of arguments and also the index of the argument that is used to guard recursion to avoid in nite unfoldings.

e type system of the Calculus of Constructions guarantees that the recursive function is applied to strict subterms of the n-th argument. Although we use the more general xed-point operator fix in our calculus similar ideas to "case" can be applied to fix n which "blocks" if given less than n arguments.

De nition 5.3 (e extended λ-calculus, cf. [?]).

e λ e -calculus is given by the following reduction rules over T e , closed by arbitrary contexts. We write Ñ e for the resulting reduction relation.

pλx.tqs Þ Ñ db

ttx :" su pβq fixpx.tq Þ Ñ fix ttx :" fixpx.tqu pfixq case c j t of pc i xi ñ s i q iPI Þ Ñ case s j tx j :" tu pcaseq if j P I and | t| " |x j | e simultaneous capture-avoiding substitution of a list of variables x by a list of terms s of the same length in a term t is wri en ttx :" su. A term t matches with a branch cx ñ s if t " cs with |s| " |x|. A term t matches with a list of branches if it matches with at least one branch. Given our syntactic formation condition on case-expressions, terms match with at most one branch. Note that term reduction may become blocked if the condition of a case does not match any branch (and never will). e normal forms of λ e may be characterized as follows:

Lemma 5.4 (Normal forms). e normal forms of λ e are characterized by the grammar:

N ::" λx.x N | λx.c N | λx.pcase N 0 of pc i xi ñ N i q iPI q N
where N 0 does not match with pc i xi ñ N i q iPI . Note that the lists x and N may be empty.

Proof. By structural induction on the set of terms.

e Extended eory of Sharing

pλx.tqL s Þ Ñ db trxzssL CxxxyyrxzvLs Þ Ñ lsv CxvyrxzvsL trxzss Þ Ñ gc t if x R fvptq fixpx.tq Þ Ñ fix trxzfixpx.tqs case Axc j yL of pc i xi ñ s i q iPI Þ Ñ case s j rx j zAsL
if |Axly| " |x j | and j P I e rules db, lsv, and gc are similar as in the (non-extended) eory of Sharing (cf. Def. 4.4). e rules fix and case are similar to the corresponding rules in λ e , but using explicit substitutions. Note that the condition Axc j yL may have explicit substitutions interspersed. e length of an applicative context is de ned as follows: |l| def " 0 and |AL t| def " 1 `|A|. Given a list of variables x and an applicative context A such that their lengths coincide, we de ne the substitution context rxzAs as follows: r zls def " l and rx, yzAL ts def " rxzAsLryzts. e reduct of Þ Ñ case uses this notion to build an appropriate list of explicit substitutions for each parameter of the branch.

An inductive characterization of the Ñ e sh -normal forms is given in the following de nition.

De nition 5.7 (Normal forms of λ e sh). A term t enables a list of branches pc i xi ñ s i q iPI , wri en t ą pc i xi ñ s i q iPI , if the term is of the form t " Axc j yL, for some A, L, and j P I such that |A| " | xj |.

e judgment de ning the set of normal forms (t P N) is de ned simultaneously with four other judgments, namely constant normal forms (t P K), structure normal forms (t P S), error normal forms (t P E), and abstraction normal forms (t P L).

N C c P K t P K s P N N A t s P K N V x P S t P S s P N N A t s P S t P K Y L Y S t č pc i xi ñ s i q iPI ps i P Nq iPI N S case t of pc i xi ñ s i q iPI P E t P E s P N N A t s P E t P E ps i P Nq iPI N C case t of pc i xi ñ s i q iPI P E t P N N L λx.t P L t P X s P S Y E x P fvptq S trxzss P X t P K C t P N t P S S t P N t P E E t P N t P L L t P N
Note that rule N S captures a blocked case where its condition is not a blocked case itself. If the condition of the case is t P L Y S, then we know that it cannot possibly match any branch. If t P K, we must make sure of this, requiring that t does not enable the branches.). e following are equivalent:

1. t P N 2. t is in Ñ e sh -normal form.
Proof. We omit the detailed proof. To show the implication 1 ùñ 2, one checks that if

t P N Y K Y S Y E Y L then t is in Ñ e sh -normal
form, by induction on the derivation of the corresponding judgment. To show the implication 2 ùñ 1, proceed by induction on t.

Extending the Type System

In this section we introduces HW e , a non-idempotent intersection type system for the Extended eory of Sharing λ e sh , and we argue that it characterizes normalization.

e Extended Non-Idempotent Intersection Type System

We assume α, β, γ, . . . to range over a set of type variables. e set of types is ranged over by τ, σ, ρ, . . ., and nite multisets of types are ranged over by M, N , P, e empty multiset is wri en rs, and rτ 1 , . . . , τ n s stands for the multiset containing each of the types τ i with their corresponding multiplicities. Moreover, M `N stands for the (additive) union of multisets.

For instance ra, bs `rb, cs " ra, b, b, cs.

De nition 5.9 (Syntax of types). e set of types of HW e is de ned by the following grammar, mutually recursively with the sets of datatypes, pre-error types, error types, and branch types: xE τ p Mi ñ σ i q iPI ρ 1 . . . ρ j y ρ j`1 . . . ρ k is the type of a case expression such that:

Types τ ::" α | M Ñ τ | D | E Datatypes D ::" c | D M Pre-Error types G ::" E τ B | G τ
1. its condition has type τ and its branches have type Mi ñ σ i ;

2. it is stuck;

3. it has been applied to arguments of type ρ 1 . . . ρ j ;

4. it is expecting arguments of type ρ j`1 . . . ρ k .

We call E an error type constructor. Typing judgments involve two kinds of contexts:

1. On one hand, typing contexts, ranged over by Γ, ∆, Θ, . . . are functions mapping variables to multisets of types, as in the system HW of [?], recalled in Chapter 4 (cf. Def. 4.26).

2. On the other hand, error logs, ranged over by Σ, Υ, . . . are sets of error types.

As in Chapter 4, we write Γ `∆ for the sum of typing contexts, and Γ ' ∆ for their disjoint sum. Also, we write x : M for the context ppx i q iPI : pM i q iPI q def " ř iPI px i : M i q.

De nition 5.10 (e type system HW e). e typing system HW e is de ned by means of the inductive typing rules below. ese rules de ne the derivability for four forms of typing judgments, with the following informal interpretations:

1. Typing (Γ; Σ $ t : τ) -e term t has type τ under the context Γ and the error log Σ.

2. Multi-typing (Γ; Σ $ t : M) -e term t has the types in M under the context Γ and the error log Σ.

3. Application (τ @ M ñ σ) -A term of type τ may be applied to an argument that has all the types in M, resulting in a term of type σ.

4.

Matching (τ x by Γ; Σ, σ) -e type τ might be the condition of a case with branches b, which will result in a term of type σ, assuming certain hypotheses Γ and error logs Σ, or else fail.

e rules of HW e are:

V x : rτ s; Σ $ x : τ C ∅; Σ $ c : c Γ, x : M; Σ $ t : τ A Γ; Σ $ λx.t : M Ñ τ Γ; Σ $ t : τ τ @ M ñ σ ∆; Σ $ s : M A Γ `∆; Σ $ ts : σ Γ, x : M; Σ $ t : τ ∆; Σ $ fixpx.tq : M F Γ `∆; Σ $ fixpx.tq : τ Γ; Σ $ t : τ τ x by ∆; Σ, σ C Γ `∆; Σ $ case t of b : σ Γ, x : M; Σ $ t : τ ∆; Σ $ s : M ES Γ `∆; Σ $ trxzss : τ pΓ i ; Σ $ t : τ i q 1ďiďn pn ě 0q M n ÿ i"1 Γ i ; Σ $ t : n ÿ i"1 rτ i s A F M Ñ τ @ M ñ τ A D D @ M ñ DM pn ě 1q A E xGy τ 1 . . . τ n @ rτ 1 s ñ xG τ 1 y τ 2 . . . τ n c j M matches pc i xi ñ s i q iPI Γ, xj : M; Σ $ s j : σ j CM c j M xpc i xi ñ s i q iPI y Γ; Σ, σ j τ does not match pc i xi ñ s i q iPI `Γi , xi : Mi ; Σ $ s i : σ i ˘iPI CM τ xpc i xi ñ s i q iPI y p ÿ iPI Γ i q; Σ Y txE τ p Mi ñ σ i q iPI y ρu, xE τ p Mi ñ σ i q iPI y ρ
We write π, ξ, . . . for typing derivations and πpΓ; Σ $ t : τ q if π is a typing derivation of the judgment Γ; Σ $ t : τ . e rules are linear with respect to the typing context in the sense that each assumption is used exactly once. e rules are, however, cartesian with respect to the error log, in the sense that each assumption may be used zero, one, or more times. 1 e rule A allows typing applications of functions of to arguments by means of the application judgment τ @ M ñ σ. e application judgment allows that the function be an abstraction, a data structure, or an error term. e restriction to a singleton type in the A E rule is to enforce that the arguments of a stuck case be typable.

e F rule splits the resources so that they are distributed to be used for the outermost unfolding (Γ) and for the rest of the unfoldings p∆q. e C rule relies on the matching judgment τ x by ∆; Σ, σ, which checks whether the type of the condition τ matches the list of branches. If τ matches with a branch, then that branch is typed (cf. CM). On the other hand, if τ does not match any branch (cf. CM

), then all branches have to be accounted for by the type system. Moreover, in that case, the type of the case expression is an error type of the form xE τ p Mi ñ σ i q iPI y ρ, which is recorded in the error log. Note that ρ " ρ 1 , . . . , ρ k are the types of the arguments to which the stuck case expression will be allowed to be applied to. Finally, M allows a term to be typed with a multiset type. In this rule, if n " 0, then ř n i"1 rτ i s denotes the empty multiset rs.

Characterization of Weakly Normalizing Terms

In Chapter 4, we related typability in the type system HW with weak normalization in the λ-calculus (m. 4.33) and weak normalization in the eory of Sharing (m. 4.43). In this subsection, we state a similar result for the extended system HW e , relating it with weak normalization in the extended λ-calculus, and weak normalization in the Extended eory of Sharing. Recall that, in Chapter 4, the results related the property that a term is weakly normalizing with the property that it is typable in HW in such a way that the judgment is "good" in the sense that it has no positive occurrences of the empty multiset rs.

Below we start by de ning an appropriate notion of "good" judgment for HW e (Def. 5.12). Roughly speaking, a judgment is good if it has no positive occurrences of rs and no negative occurrences of constructors. e reason to reject negative occurrences of constructors is illustrated by a term like case x of pc ñ dq ¨pe ñ Ωq. is term is typable with type d if one assumes that x : rcs. However, it is not weakly normalizing in λ e sh . Note that a free variable of type c corresponds to a negative occurrence of the constructor c (in the typing context).

However forbidding positive occurrences of rs and negative occurrences of constructors alone does not su ce.

e reason is the presence of blocked case expressions. Consider for example the term pcase c of pd ñ dqq Ω. is term is typable; for example, it may be assigned the type xE c prds ñ dqrsy. Note that the type of the blocked case includes the types of arguments to which it is applied-in this case the empty multiset type. Moreover this type is registered in the error log. is allows us to extend the constraints that rs does not occur positively and constructors do not occur negatively to type blocked case expressions.

As a further remark, note that a term such as case x of pc ñ dq ¨pe ñ dq is in normal form, so it should be typable. Indeed, it shall be typed it by assigning x an appropriate error type.

De nition 5.11 (Positive and negative occurrences of types). e set of positive (resp. negative) types occurring in τ , denoted Ppτ q (resp. N pτ q), is de ned as follows:

Ppαq def " tαu PpM Ñ τ q def " N pMq Y Ppτ q Y tM Ñ τ u Ppcq def " tcu PpD Mq def " PpDq Y PpMq Y tD Mu PpE τ q def " PpEq Y Ppτ q Y tE τ u PpxGyq def " PpGq Y tGu PpG τ q def " PpGq Y Ppτ q Y tG τ u PpE τ Bq def " Ppτ q Y Pp Bq Y tE τ Bu PpM 1 , . . . , M n ñ τ q def " Ť iP1..n N pM i q Y Ppτ q Y t M ñ τ u PpMq def " Ť τ PM Ppτ q Y tMu PpΓ; Σ $ τ q def " N pΓq Y PpΣq Y Ppτ q PpΓq def " Ť pxPdomΓq PpΓpxqq N pαq def " ∅ N pM Ñ τ q def " PpMq Y N pτ q N pcq def " ∅ N pD Mq def " N pDq Y N pMq N pE τ q def " N pEq Y N pτ q N pxGyq def " N pGq N pG τ q def " N pGq Y N pτ q N pE τ Bq def " N pτ q Y N p Bq N pM 1 , . . . , M n ñ τ q def " Ť iP1..n PpM i q Y N pτ q N pMq def " Ť τ PM N pτ q N pΓ; Σ $ τ q def " PpΓq Y N pΣq Y N pτ q N pΓq def " Ť pxPdomΓq N pΓpxqq
Moreover, let X be a type (resp. datatype, pre-error type, error type, branch type, typing context). en we say that X is covered by an error log Σ, wri en covered Σ pXq, if for every error type E such that E is a subformula of X, i.e. it occurs anywhere in the syntactic tree of X, one has that E P Σ.

De nition 5.12 (Good types and typing judgements). A type τ is good if c R Ppτ q and rs R N pτ q. We say M is good if each τ P M is good. A typing context Γ is good if it can be wri en as Γ " Γ g Γ e in such a way that Γ g pxq is good for every x P domΓ g , and Γ e pxq is an error type for every x P domΓ e . A typing judgement Γ; Σ $ t : τ is good if all of the following hold:

1. Γ is good;

2. rs R PpΣq and rs R Ppτ q;

3. c R N pΣq and c R N pτ q for every constructor c;

4. covered Σ pΓq and covered Σ pτ q.

Below we state the two main results of this section, which relate typability and normalization. Note that:

• m. 5.13 relates normal forms in λ e with typability in HW e , extending m. 4.33 from the previous chapter (which relates normal forms in the λ-calculus with typability in HW).

• m. 5.14 relates normal forms in λ e sh with typability in HW e , extending m. 4.43 from the previous chapter (which relates normal forms in the eory of Sharing with typability in HW). eorem 5.13 (Weakly normalizing terms in λ e are typable). Let t be weakly normalizing in λ e . en there exist a context Γ, an error log Σ, a type τ such that Γ; Σ $ t : τ is derivable and good.

Proof. We omit the detailed proof. e proof relies on the two following claims:

Normal forms are typable. Let t be a Ñ e -normal form. en there exist a context Γ, an error log Σ and a type τ such that Γ; Σ $ t : τ is derivable and good.

Subject expansion. If t Ñ e s and Γ; Σ $ s : τ , then Γ; Σ $ t : τ . eorem 5.14 (Typable terms are weakly normalizing in λ e sh). If Γ; Σ $ t : τ is derivable and good, then t is weakly normalizing in λ e sh .

Proof. We omit the detailed proof. e proof requires adapting the notion of T-occurrence (cf. Def. 4.39) to HW e and it relies on the following claim:

Weighted subject reduction. Let πpΓ; Σ $ t : τ q. If t Ñ e sh t 1 , then there exists π 1 such that π 1 pΓ; Σ $ t 1 : τ q. Moreover, if this step reduces a T-occurrence in π, then either:

1. sizepπq ą sizepπ 1 q; or 2. sizepπq " sizepπ 1 q and fixpπq ą fixpπ 1 q where sizepπq denotes the size of the derivation π, seen as a tree, and fixpπq denotes the number of nodes in the derivation π that are instances of the F rule.

Extending the Strong Call-by-Need Strategy

In this section, we extend the strong call-by-need strategy S ù for the eory of Sharing from Chapter 4, to a strong call-by-need strategy ù e for the Extended eory of Sharing. Moreover, we show that the strategy is complete with respect to the extended λ-calculus λ e .

e Extended Strong Call-by-Need Strategy

Similarly as in the previous chapter, the extended strong call-by-need strategy ϑ ù e is a binary relation over the set of extended terms T e sh , and it is parameterized over a set ϑ of frozen variables. Its reduction rules are an instance of the rewriting rules of the Extended eory of Sharing (Def. 5.6), with two di erences: (1) the garbage collection rule is absent, and (2) reduction is not closed under arbitrary contexts but under evaluation contexts. Exactly as we did in Section 4.2.2, in order to de ne the set of evaluation contexts, we start by de ning (syntactically) the set of normal forms of the strategy, and next we describe evaluation contexts.

De nition 5.15 (Normal forms of the extended strong call-by-need strategy). e set of nongarbage variables of a term t, denoted ngvptq is de ned as fvpÓ gc ptqq where Ó gc ptq is the gcnormal form of t.

For each set of variables ϑ, the sets of constant normal forms (K ϑ), structure normal forms (S ϑ), error normal forms (E ϑ), abstraction normal forms (L ϑ), and (plain) normal forms (N ϑ) are de ned, mutually inductively by the following judgments. In the rules for explicit substitutions, X ϑ stands for any of the sets K ϑ , S ϑ , E ϑ , or L ϑ :

N C c P K ϑ t P K ϑ s P N ϑ N A t s P K ϑ x P ϑ N V x P S ϑ t P S ϑ s P N ϑ N A t s P S ϑ t P K ϑ Y L ϑ Y S ϑ t č pc i xi ñ s i q iPI ps i P N ϑY xi q iPI N S case t of pc i xi ñ s i q iPI P E ϑ t P E ϑ s P N ϑ N A t s P E ϑ t P E ϑ ps i P N ϑY xi q iPI N C case t of pc i xi ñ s i q iPI P E ϑ t P N ϑYtxu N L λx.t P L ϑ t P X ϑYtxu s P S ϑ Y E ϑ x P ngvptq S NG trxzss P X ϑ t P X ϑ x R ngvptq S G trxzss P X ϑ t P K ϑ C t P N ϑ t P S ϑ S t P N ϑ t P L ϑ L t P N ϑ t P E ϑ E t P N ϑ
e syntactic de nition of normal forms given above is similar to the syntactic characterization of Ñ e sh -normal forms given in Def. 5.7, except that: (1) the set of frozen variables is explicitly tracked, (2) rule S is re ned into rules S NG, and (3) a new rule S G is added due to the absence of gc in ϑ ù e . De nition 5.16 (Extended evaluation contexts). Judgments de ning the sets of evaluation contexts are of the form C P E h ϑ where C is an arbitrary context, ϑ is a set of variables, and h is a symbol called discriminator of the context. is symbol may be one of '˝', 'λ' or any constructor c, d, . . . and its role is to discriminate the head constructor in the context. Note that evaluation context formation rules place requirements on discriminators. An evaluation context is a context C such that the evaluation context judgement C P E h ϑ is derivable for some set of variables ϑ and some discriminator h, using the following rules:

B l P E θ C P E h ϑ h ‰ λ A L C t P E h ϑ t P S ϑ Y E ϑ C P E h ϑ A RS t C P E θ t P K ϑ C P E h ϑ A RC t C P E hcptq ϑ C P E h ϑ t R S ϑ Y E ϑ x R ϑ S LN S Crxzts P E h ϑ C P E h ϑYtxu t P S ϑ Y E ϑ S LS Crxzts P E h ϑ C 1 P E h ϑ C 2 P E θ S R C 1 xxxyyrxzC 2 s P E h ϑ C P E h ϑYtxu L λx.C P E λ ϑ C P E h ϑ h R tc i u iPI or h " c j P tc i u iPI and |Cxyy| ‰ | xj | C 1 case C of pc i xi ñ s i q iPI P E θ t P N ϑ t č pc i xi ñ s i q iPI t k P N ϑY xk for all k ă j C P E h ϑY xi C 2 case t of pc 1 x1 ñ t 1 q . . . pc j xj ñ Cq . . . pc n xn ñ t n q P E θ
e function hcp´q used in rule A RC is de ned as follows, by induction on the derivation that t P K ϑ : Rule B states that any redex at the root is needed. Rule A L allows reduction to take place to the le of an application; in that case C must not be an abstraction.

is is achieved by requiring that h ‰ λ (cf. L and how all rules persist h). In this way, the discriminator generalizes the distinction between arbitrary and inert evaluation contexts of Def. 4.12. In particular, in the fragment without pa ern matching and xed points, the set of arbitrary evaluation contexts E ϑ of Chapter 4 corresponds to E θ Y E λ ϑ . Note that the set of inert contexts is wri en E θ in both presentations.

Rule A RS allows reduction to take place to the right of an application when it is an argument of a term t that is a structure normal form or an error normal form. e '˝' in t C P E θ re ects that t is not headed by a constant and that t C is not an abstraction. Rule A RC is similar only that the discriminator is set to the head variable of t via hcptq and it will be checked when deciding if reduction can take place in the condition of a case (cf. C 1). Frozen variables play the same role as in the (unextended) strong call-by-need strategy of the previous chapter.

ere is no rule for fixpx.tq since reduction must necessarily take place at the root in such a term. Regarding case expressions, in order for reduction to take place in the condition we must ensure that reduction at the root is not possible (cf. C 1).

is is achieved by requiring that the discriminator either is not a constant listed in the branches (h R tc i u iPI) or that, if it is, then the number of expected arguments by the branch are not met (|Cxyy| ‰ | xj |).

For reduction to proceed in a branch j (cf. C 2), the condition must be in normal form, each branch i with i P 1..j must be in normal form and the condition must not enable any branch (t č pc i xi ñ s i q iPI). Note that the bound variables in branch j, are added to the set of frozen variables. We now de ne the strategy itself. Note that the discriminator h in the conditions of all rules is existentially quanti ed.

Properties of the Extended Strong Call-by-Need Strategy

e extended strong call-by-need strategy has the following properties. Contrast them with the properties studied in the previous chapter (Section 4.2.3, Section 4.3).

Lemma 5.18 (Characterization of normal forms). Let t be any term. en the following are equivalent:

1. t is in ϑ ù e -normal form, 2. t P N ϑ .
Proof. We omit the full proof. To show 1 ùñ 2, proceed by induction on t. To show 2 ùñ 1, prove the more general statement that if

t P N ϑ Y K ϑ Y S ϑ Y E ϑ Y L ϑ then t P NFp ϑ ù e q
, by simultaneous induction on the derivation that t P N ϑ (resp. t P K ϑ , t P S ϑ , t P E ϑ , t P L ϑ).

Proposition 5.19 (Strong reduction). If t is in

ϑ ù e -normal form, then its unfolding t ˛is in Ñ e -normal form.

Proof. We omit the full proof, which goes by induction on t, using the characterization of normal forms of Lem. 5.18. Proof. We omit the detailed proof. It relies on the following claim: Unique decomposition. If Cxry is a term, we say that r is an anchor if it is a db-redex, a fix-redex, a case-redex or a variable bound to an answer. If Proof.

e key point is that the notion of evaluation context (Def. 4.12) may be related with the notion of extended evaluation context (Def. 5. [START_REF] Asperti | Parallel beta reduction is not elementary recursive[END_REF]). Indeed, it can be checked by induction on the derivation that if C P E ϑ then C P E h ϑ for some discriminator h P tλ, .˝u and that if

C P E θ then C P E h ϑ with h " ˝. Proposition 5.22 (Correctness). If t ϑ ù s then t ˛ e s ˛.
Proof. We omit the detailed proof, which goes by induction on t.

eorem 5.23 (Completeness). Let ϑ " fvptq. If t e s P NFpÑ e q, then there exists a term u P NFp ϑ ù e q such that t p ϑ ù e q ˚u and u ˛" s.

Proof. We omit the detailed proof. e argument follows the same lines as the completeness theorem of the previous chapter (m. 4.55), in particular relying on the fact that Ñ enormalization implies typability in HW e (m. 5.13), the fact that typability in HW e implies Ñ e sh -normalization (m. 5.14).

Chapter 6

A Labeled Linear Substitution Calculus 6.1 Introduction

Optimality and Redex Families

Consider the function f pxq " x `x. In general there may be many possible ways to rewrite an arithmetic expression in order to calculate its nal result. If, for instance, one starts from the expression f p2 ˚3q, there are three possible ways to calculate its value: the rewriting sequences ABC, DEF C, and DGHC in the diagram below.

f p6q B f p2 ˚3q A G G D A A 6 `p2 ˚3q F $ $
p2 ˚3q `p2 ˚3q

E P P G D D 6 `6 C G G 12 p2 ˚3q `6 H p p
e rewriting sequences that start with D, namely DEF C and DGHC, follow a call-by-name convention for parameter-passing, and they both require four computation steps. In contrast, the rewriting sequence at the top, ABC, follows a call-by-value convention for parameterpassing, and requires only three computation steps.

e sequences that start with D are more computationally onerous than ABC: the reason is that the step D duplicates the subexpression 2 ˚3, which in turn calls for the duplication of the computational work required to calculate it.

One may wonder if consistently following a call-by-value convention always turns out to have the lowest computational cost, compared to other evaluation mechanisms. It is not too di cult to convince oneself that this is not the case. Consider, as a dual example, the constant function gpxq " 5. ere are two possible ways to rewrite gp2 ˚3q to calculate its nal result:

gp2 ˚3q A G G C 6 6 gp6q B 5
e rewriting sequence AB follows a call-by-value convention, and yet it is clear that it is not "optimal", since it performs some unnecessary work: indeed, the rst step A calculates the result of the subexpression 2 ˚3, which is immediately discarded. In this example, it is following a call-by-name convention, rather than a call-by-value convention, which realizes the minimal cost.

e previous examples motivate some natural questions. Given a programming language, how can the nal result of a computation be obtained with minimal computational cost, that is, in an "optimal" way? In what precise sense one can de ne an evaluation mechanism to be optimal? Does an optimal evaluation mechanism always exist? Can it be computed and e ciently implemented? estions regarding optimal evaluation were rst studied in the 1970s. Vuillemin studied the problem of optimal evaluation in the framework of recursive program schemes [?, ?], proving that, under certain sequentiality conditions, expressions can be optimally evaluated by using a sharing mechanism. Staples studied optimal evaluation for combinatory logic [?].

A major step forward was taken by Lévy [?, ?] together with Berry [?], who studied this problem in the context of the λ-calculus. In particular, in his 1978 PhD thesis, Lévy gave su cient conditions for an evaluation mechanism to be optimal, in an appropriate sense. For an evaluation mechanism to be optimal, it su ces that all the computation steps that belong to the same redex family (to be de ned later) are shared by the implementation, i.e. that no computational work is performed twice. Moreover, only needed steps should be performed, i.e. the implementation should not engage in super uous computation. It is worth noting that these conditions, especially the condition that computation steps in the same redex family are shared, are quite demanding, and an implementation meeting these requirements was elusive for some time. A data structure e ectively implementing the necessary amount of sharing was rst proposed by Lamping [?] more than a decade a er Lévy's seminal work. Following, we summarize some of the important results regarding optimal reduction in the context of the λ-calculus.

According to the standard nomenclature, let us de ne a strategy in a rewriting system to be a function S : Term Ñ Term such that t Ñ Sptq for every term t not in normal form. Given a starting term t, a strategy S induces a rewriting sequence t Ñ Sptq Ñ SpSptqq Ñ . . . stopping whenever it reaches a normal form, and possibly in nite. A strategy S can then be de ned to be optimal if, given a normalizable term t, the rewriting sequence induced by S reaches the normal form in a minimal number of steps. It is immediate to observe that, in a non-constructive sense, an optimal strategy exists, given that the length of a rewriting sequence is a natural number, and natural numbers are well-ordered. On the other hand, there is no hope of exhibiting an optimal strategy explicitly: Barendregt et al. [?] showed that, in the λ-calculus, no computable strategy is optimal.

is impossibility result would seem to defeat any a empt to devise a sensible notion of optimal reduction. However, one may conceive implementations that do not necessarily represent terms using a straightforward tree-like representation, but rather in some other form. For instance, terms may be represented as graphs, with pointers that allow sharing subterms, as in Wadsworth's lazy evaluation [?], or even sharing subterm "slices" (i.e. contexts) as in Lamping's sharing graphs [?]. An execution step in a sharing implementation can plausibly be simulated by the simultaneous contraction of many β-redexes, i.e. as a multistep t ñ s. Until now, we have been considering strategies in the λ-calculus. is reasoning leads us to consider strategies in the rewriting system of multisteps Λ M -a single step in Λ M is given by a multistep in the λ-calculus. Lévy's optimality result asserts that there are computable strategies in Λ M that reach the normal form, if it exists, with minimal cost. e contraction of a multistep M : t ñ s is considered to have unitary cost as long as all the steps in M belong to the same redex family. As already anticipated, a strategy can be shown to be optimal, according to Lévy's result, if it is a family reduction, i.e. each multistep is a maximal set of redexes that belong to the same family, and, moreover, each multistep contains at least one needed step. We now turn our a ention to the notion of redex family, which plays a central role in the theory of optimal reductions.

ree Characterizations of Redex Families

A redex family is, intuitively, a set of computation steps that have a common origin, and whose calculation should be shared by an optimal implementation. In the λ-calculus, redex families were rst de ned by Lévy by giving three equivalent characterizations: zig-zag, labels, and extraction. Let us describe each of these characterizations.

Zig-zag.

e rst characterization of redex families is based on residual theory, and is abstract enough that it can be adapted to any other rewriting system admi ing a sensible notion of residual, such as orthogonal term rewriting systems. Let t 0 be a xed starting term. A redex with history from t 0 (hredex for short) is a derivation ρ starting from t 0 , followed by a single step R. Equivalently, an hredex can be thought of as a non-empty derivation ρR, where ρ : t 0 t 1 is the history that has led us to t 1 , and we are interested in the last step R : t 1 Ñ t 2 . We say that an hredex σS is a copy of an hredex ρR, wri en ρR ď σS, if there exists a derivation τ such that ρτ " σ, i.e. ρτ and σ are permutation equivalent (cf. Def. 2.40), and moreover S P R{τ . Graphically:

t 0 ρ Ò Ò Ò Ò σ ((((R Ò Ò τ G G G G " S P R{τ
((e zig-zag relation over redexes with history, wri en ρR ú σS, is the least equivalence relation containing ď. A redex family is an equivalence class of the relation ú.

For example, consider the term ∆pF Iq where ∆ " λx.xx, F " λx.xz, and I " λx.x. Its reduction graph is depicted in Figure 6.1. We claim that the hredexes S 1 R 2 T 3 and R 1 S 3 T 2 are ∆pF Iq in the same family, i.e. that S 1 R 2 T 3 ú R 1 S 3 T 2 . To see this, consider the hredex R 1 S 3 S 5 T 3 and note that the following hold:

F IpF Iq

S 1 R 2 T 3 ď R 1 S 3 S 5 T 3

by taking the empty derivation and noting that

S 1 R 2 " R 1 S 3 S 5 R 1 S 3 T 2 ď R 1 S 3 S 5 T 3 by noting that T 3 P T 2 {S 5
Labels.

e second characterization of redex families is based on an auxiliary labeled variant of the λ-calculus, furnished with so-called Lévy labels. Consider a denumerable set of initial labels ranged over by a, b, c, e set of labels is de ned by the following grammar: α, β, γ, . . . ::" a | rαs | tαu | αβ Labels are considered up to associativity of label juxtaposition, i.e. for all labels α, β and γ the equality pαβqγ " αpβγq is declared to hold; n-way juxtaposition is usually wri en α 1 α 2 . . . α n for n ě 1. e terms of the labeled λ-calculus are the labeled terms, de ned by the grammar: t, s, u, . . . ::"

x α | λ α x.t | @ α pt, sq
Note that labels decorate each and every subterm of a term. An initially labeled term is a labeled term t such that the labels decorating its subterms are all initial and pairwise distinct; for instance @ a pλ b x.x c , y d q is initially labeled. e idea behind labels is that they serve to trace the full history of a term. Each reduction step R in the labeled λ-calculus propagates the labels in such a way as to leave a record that R has been contracted, making apparent the contribution of R to the ongoing computation. e operation of adding a label to a term, wri en α : t is de ned by cases:

α : x β def " x αβ α : λ β x.t def " λ αβ x.t α : @ β pt, sq def " @ αβ pt, sq
Capture-avoiding substitution of a term for a variable ttx :" su is de ned as usual, except for the base case:

x α tx :" su def " α : s

For example, @ a px b , x c qtx :" z d u " @ a pz bd , z cd q. Reduction in the labeled λ-calculus is de ned as the closure by arbitrary contexts of the following labeled β-rule: @ α pλ β x.t, sq Ñ αrβs : ttx :" tβu : su (6.1)

It is easy to prove that in general α : pttx :" suq " pα : tqtx :" su, so the parenthesization of the right-hand side of the labeled β-rule is irrelevant. Each step in the labeled λ-calculus has a name. e name of a step like in (6.1) is the label β that decorates the abstraction. Some of the key properties of redex names are the following:

1. In an initially labeled term, di erent redexes have di erent names.

2. If R is an ancestor of R 1 , then R and R 1 have the same name.

3. Whenever a redex R creates a redex S, the name of R is a sublabel of the name of S.

A term t in the labeled λ-calculus is said to be a variant of a term t in the (unlabeled) λcalculus if t results from t by erasing all the labels. Given a step R : t Ñ s in the λ-calculus and a labeled variant t of t, the step R it can be li ed to a step R : t Ñ s in the labeled λ-calculus, such that s is a variant of s. Similarly, given a derivation ρ : t s and a variant t of t, the derivation ρ can be li ed to a derivation ρ : t s . Finally, it can be shown that labels characterize redex families as follows. Let t 0 be a starting term, and let ρR and σS be two hredexes in the λ-calculus, whose source is t 0 . en ρR and σS are in the same family if and only if for an initially labeled variant t 0 of t 0 the corresponding li s ρ R and σ S verify that R and S have the same name. Going back to our example of Figure 6.1, let us show that the hredexes S 1 R 2 T 3 and R 1 S 3 T 2 are in the same family, this time using the labeled λ-calculus. at is, let us show that T 3 and T 2 are assigned the same name, when starting from the same initially labeled term. Consider an initially labeled variant of ∆pF Iq: @ a pλ b x.@ c px d , x e q l jh n ∆ , @ f pλ g y.@ h py i , z j q l jh n F , λ k w.w l l jh n I qq and consider the li ed derivations S 1 R 2 T 3 and R 1 S 3 T 3 of the hredexes in question. Note that the name of T 3 is itguk: @ a pλ b x.@ c px d , x e q, @ f pλ g y.@ h py i , z j q, λ k w.w l qq

S 1
Ý Ñ @ a pλ b x.@ c px d , x e q, @ frgsh pλ itguk w.w l , z j qq R 2 Ý Ñ @ arbsc p@ dtbufrgsh pλ itguk w.w l , z j q l jh n e redex T 3 .

, @ etbufrgsh pλ itguk w.w l , z j qq and the name of T 2 is indeed also itguk: @ a pλ b x.@ c px d , x e q, @ f pλ g y.@ h py i , z j q, λ k w.w l qq R 1 Ý Ñ @ arbsc p@ dtbuf pλ g y.@ h py i , z j q, λ k w.w l q, @ etbuf pλ g y.@ h py i , z j q, λ k w.w l qq S 3 Ý Ñ @ arbsc p@ dtbuf pλ g y.@ h py i , z j q, λ k w.w l q, @ etbufrgsh pλ itguk w.w l , z j q l jh n e redex T 2 .

q

Extraction. e third and last characterization of redex families is based on an algorithmic procedure that, given an hredex ρR, calculates a canonical representative ρ 0 R 0 of its family.

e di culty of de ning this relation, as noted by Lévy, is that given two hredexes that are in the same family according to the zig-zag relation, ρR ú σS, they do not necessarily have a common ancestor, i.e. it is not necessarily the case that there exists an hredex τ T such that τ T ď ρR and τ T ď σS. In our running example of Figure 6.1, it would seem at rst sight that the common ancestor of the hredexes S 1 R 1 T 2 and R 1 S 3 T 2 should be the hredex S 1 T 7 . Actually, even though S 1 T 7 ď S 1 R 1 T 2 holds, it is not the case that S 1 T 7 ď R 1 S 3 T 2 , as this would imply that S 1 Ď R 1 S 3 , but S 3 is only one of the two copies of S 1 , i.e. it is not a complete development of S 1 {R 1 .

e solution proposed by Lévy is to introduce a binary relation pŹq between hredexes for which a common ancestor property does hold. Let us rst mention a few auxiliary de nitions.

1. If R is a redex and σ is a coinitial derivation, then σ is disjoint from R if the source is of the form Cxt, sy, where C is a two-hole context, the step R takes place inside t, and the derivation σ takes place inside s.

2. If R is a redex and σ is a coinitial derivation, then σ is internal to the body of R if the source is of the form Cxpλx.tqsy, the step R contracts pλx.tqs, and the derivation σ takes place inside t.

3. If R is a redex and σ is a composable derivation (i.e. Rσ is well-de ned), then σ is internal to the i-th copy of the argument of R if the source is of the form Cxpλx.tqsy, the step R contracts pλx.tqs, and the derivation σ takes place inside the i-th copy of s (corresponding to the i-th occurrence of x in t).

e extraction relation is a binary relation Ź between hredexes, de ned as the union of the following four rules: ρRS Ź 1 ρS 0 if S P S 0 {R ρpR \ σq Ź 2 ρσ if σ is not empty and it is disjoint from R ρpR \ σq Ź 3 ρσ if σ is not empty and it is internal to the body of R ρRσ Ź i 4 ρσ 0 if σ is not empty, it is internal to the i-th copy of R, and σ 0 {R " σ || i R e notation σ || i R stands for the parallelization of σ with respect to R, de ned as follows by induction on σ:

|| i R def " T τ || i R
def " pT 0 {Rqppτ {pT 0 {RT qq || i pR{T 0 qq if T P T 0 {R (For more details on the motivation and properties of this de nition see [?, Def. 4.7] or [?, Sec. 5.2]). is algorithmic extraction procedure can be shown to be terminating and con uent. Moreover, it characterizes redex families as follows: two hredexes are in the same family if and only if there exists an hredex τ T such that ρR Ź ‹ τ T and σS Ź ‹ τ T .

To complete the example of Figure 6.1, let us show that the hredexes S 1 R 2 T 3 and R 1 S 3 T 2 belong to the same family, this time using the extraction procedure. Indeed, note that:

S 1 R 2 T 3 Ź 1 S 1 T 7 since T P T 0 {S R 1 S 3 T 2 Ź 2 4 S 1 T 7 since S 3 T 2 is internal to the second copy of R 1 and S 3 T 2 || 2 R 1 " S 3 S 5 T 3 T 5 " S 1 T 7 {R 1

Finite Family Developments

A remarkable result that can only be stated and proved a er the notion of redex family has been introduced is the Finite Family Developments theorem. Recall that the λ-calculus is an orthogonal axiomatic rewriting system (m. 2.73), and in particular it enjoys the nite developments property (Def. 2.33). It states that, in the λ-calculus, given a starting term t 0 and a set M of redexes of t 0 , there are no in nite developments of M. at is, there are no in nite sequences that only contract residuals of redexes in the set M. e Finite Family Developments theorem is a strong generalization of this result. Rather than considering a set M of redexes of t 0 , it allows us to consider a set F of redex families of t 0 . In turn, developments of M are generalized to family developments of F. A family development of F is any reduction sequence R 1 . . . R n such that, for all i P t1, ..., nu the family of the hredex R 1 . . . R i is in F. e Finite Family Developments theorem states that if F is a nite set of redex families, there are no in nite family developments of F.

Below we compare the notions involved in the Finite Developments theorem with the notions involved in the Finite Family Developments theorem: Finite Developments Finite Family Developments redex of t 0 redex family of t 0 set M of redexes of t 0 set of F of redex families of t 0 development of M family development of F all developments of M are nite all family developments of F are nite if F is nite In the last entry, note that the Finite Developments theorem does not need to explicitly require that M is a nite set, since the λ-calculus is nitely branching, so this requirement is automatically met.

For example, consider once again the term ∆pF Iq whose reduction graph is depicted in Figure 6.1. ere are three redex families in total:

1. the redex family of the hredex ∆pF Iq Every hredex starting from ∆pF Iq is in one of these three families. In Figure 6.1 the names of the steps have been chosen deliberately so that all hredexes ending in a step R k belong to the rst family, all hredexes ending in a step S k belong to the second family, and all hredexes ending in a step T k belong to the third family. For instance, the hredex:

∆pF Iq R 1 Ý Ñ F IpF Iq S 3 Ý Ñ F IpIzq
is in the same redex family as S 1 . Let us write Fam ú pρRq for the redex family of the hredex ρR, that is, for its ú-equivalence class. en the following are all the possible family developments, not necessarily maximal, of the set of redex families F " tFam ú pR 1 q, Fam ú pS 1 qu:

∆pF Iq R 1 Ý Ñ F IpF Iq ∆pF Iq R 1 Ý Ñ F IpF Iq S 2 Ý Ñ IzpF Iq ∆pF Iq R 1 Ý Ñ F IpF Iq S 2 Ý Ñ IzpF Iq S 4 Ý Ñ IzpIzq ∆pF Iq R 1 Ý Ñ F IpF Iq S 3 Ý Ñ F IpIzq S 5 Ý Ñ IzpIzq ∆pF Iq S 1 Ý Ñ ∆pIzq ∆pF Iq S 1 Ý Ñ ∆pIzq R 2 Ý Ñ IzpIzq
In fact, all the redex families in F have a representative that consists of a single step, which means that family developments of F are actually ordinary developments. For a di erent example, let F " tFam ú pS 1 q, Fam ú pS 1 T 7 qu. Now there are only two possible family developments of F:

∆pF Iq S 1 Ý Ñ ∆pIzq ∆pF Iq S 1 Ý Ñ ∆pIzq T 7 Ý Ñ ∆ z
In this case, S 1 T 7 is not a development of any set of redexes, since the step T 7 has been created by S 1 , i.e. it has no ancestor.

For a slightly more interesting application of the Finite Family Developments theorem, consider the well-known non-terminating term Ω where Ω " pλx.xxqλx.xx. It has a single redex R:

Ω R Ý Ñ Ω
this results in an in nite number of hredexes. Let us write R n for the hredex of the form R . . . R l jh n n times for each n P N:

R 1 : Ω R Ý Ñ Ω R 2 : Ω R Ý Ñ Ω R Ý Ñ Ω R 3 : Ω R Ý Ñ Ω R Ý Ñ Ω R Ý Ñ Ω . . .
It can be checked that R n and R m belong to the same family if and only if n " m. e intuitive reason is that in a reduction sequence like RR the second step is created by the rst one, and has no ancestor. e in nite reduction Stefano Guerrini [?] studied the general theory of sharing graphs, independently of the calculus to be implemented, using Girard's Geometry of Interaction.

Ω R Ý Ñ Ω R Ý Ñ Ω . . .
Andrea Asperti and Harry Mairson showed [?] that the cost of implementing a sequence of n parallel steps of β-reduction, allowing the sharing of steps in the same redex family, is not bounded by Op2 n q, Op2 2 n q or, in general, OpK pnqq where K pnq is a tower of 2s with an n on top.

Vincent van Oostrom et al. [?, ?] studied the notion of redex family in the context of higher-order rewriting.

More recently, ibaut Balabonski studied optimal reduction for a calculus with dynamic pa erns [?], and proved that, in the case of weak reduction, i.e. disallowing the contraction of redexes below lambdas, call-by-need is an optimal evaluation strategy [?].

In [?], Stefano Guerrini and Marco Solieri show that, in the case of light linear logics, sharing graphs do not require bookkeeping, and they obtain a bound for the overhead introduced by sharing.

A thorough reference book on optimal reductions is Asperti and Guerrini's [?].

Our Work

is chapter is the result of collaboration with Eduardo Bonelli and it is structured as follows. We highlight in boldface what we consider to be the main contributions:

• In Section 6.2, we motivate some design decisions behind a calculus with Lévy labels, and we de ne a variant of the LSC with Lévy labels, the LLSC (Def. 6.6).

• In Section 6.3, we study the properties of the LLSC. In particular:

1. In Section 6.3.1 we study its basic syntactical properties.

2. In Section 6.3.2 we show that the LLSC is an orthogonal axiomatic rewriting system (Prop. 6.32). 3. In Section 6.3.3 we prove that the LLSC is weakly normalizing for bounded reduction (Prop. 6.45), i.e. when reduction is restricted to labels of bounded height.

4. In Section 6.3.4 we strengthen this result, proving that the LLSC is strongly normalizing for bounded reduction (m. 6.51). 5. In Section 6.3.5 we give two proofs that the LLSC is con uent, building on previous results.

In the following chapter (Chapter 7), we apply the LLSC to derive results about the LSC without labels; in particular, optimality, standardization, and normalization results.

6.2

e LSC with Lévy Labels

What is a Calculus with Lévy Labels?

Our aim is to de ne a variant of the Linear Substitution Calculus (LSC) with Lévy labels. We are interested in Lévy labels both for a conceptual reason-gaining understanding of the ways in which computations can interact, contribute to each other, and be shared-and a practical one-labels can be a helpful syntactical tool for a acking further problems. Regarding the la er goal, any conceivable notion of labeling would be welcome as long as it aids us in proving theorems. e former goal, instead, is much less clearly de ned, and one may wonder what abstract properties make a "Lévy labeled" calculus worthy of its name. ere does not seem to be a completely satisfactory answer to this question. Let us take a look at a list of properties that Lévy labels enjoy in the context of the λ-calculus. We will take these properties as guiding principles for designing a Lévy labeled variant of the LSC.

Bestiary of Principles of Lévy Labels

1. Li . Unlabeled reduction sequences may be li ed to labeled reduction sequences, giving an arbitrary labeling to the starting term.

For instance, the step pλx.xqy Ñ y may be li ed to a labeled step @ α pλ β x.x γ , y δ q Ñ y αrβsγtβuδ regardless of the choice of the labels α, β, γ, δ.

Initial.

In an initially labeled term, di erent redexes have di erent names.

Indeed, the name of a redex is the label decorating its abstraction and, in an initially labeled term, labels decorating di erent nodes are required to be pairwise distinct.

3.

Copy. If a hredex ρ 1 R 1 is a copy of the hredex ρR, then ρR and ρ 1 R 1 have the same name.

For instance, in the permutation diagram of Figure 6.2 the names of R and SR 1 are both b, and the names of S and RS 1 are both d.

@ a pλ b x.@ c pλ d y.y e , x f q, z g q R G G S @ arbsc pλ d y.y e , z ftbug q More strongly, redex names characterize exactly redex families, as de ned using the zig-zag relation.

S 1 @ a pλ b x.x crdsetduf , z g q R 1 G G z arbscrdsetduftbug

4.

Creation. Whenever a redex R creates a redex S, the name of R is a sublabel of the name of RS.

As an example, observe that this is the case in the following three representative cases of redex creation. We write α Ď β for the binary relation stating that α is a sublabel of β:

4.1 Creation case I: IIz R Ý Ñ Iz S Ý Ñ z. en c Ď brcsdtcue:
@ a p@ b pλ c x.x d , λ e y.y f q, z g q R Ý Ñ @ a pλ brcsdtcue y.y f , z g q S Ý Ñ z arbrcsdtcuesftbrcsdtcueug @ a p@ b pλ c x.λ d w.w e , y f q, z g q R Ý Ñ @ a pλ brcsd w.y etcuf , z g q S Ý Ñ z arbrcsdsetcuftbrcsdug @ a pλ b x.@ c px d , y e q, λ f z.z g q R Ý Ñ @ arbsc pλ dtbuf z.z g , y e q S Ý Ñ y arbscrdtbufsgtdtbufue

5.

Contribution. e name of a hredex ρR is a "subname" of the name of σS if and only if the family of ρR contributes to the family of σS in a semantical sense. is will be made more precise later. 6. Con uence. e Lévy labeled λ-calculus is con uent.

For instance, the permutation diagram of Figure 6.2 is a (quite easy) illustration of the fact that the weak Church-Rosser property holds.

7.

Termination. If labeled reduction is restricted to contracting redexes whose names are among a nite set of names, the resulting restricted system should be terminating. is property entails the Finite Family Developments theorem.

e intuitive reason for this termination property to hold is the following. Let us say that a redex R is rst-generation if it is present on the starting term, and pn`1qth-generation if the redexes that contribute to creating R are at most nth-generation. An in nite reduction sequence cannot contract only rst-generation redexes since that would be an in nite development, contradicting the Finite Developments theorem. More in general, it can be seen that an in nite reduction sequence must contract nth-generation redexes, for arbitrarily large values of n. By the Contribution principle, newly created redexes include the names of all the redexes that have contributed to its creation. So, as evaluation proceeds, newer generations have larger and larger names. It follows that an in nite reduction sequence must involve redexes having an in nite number of names.

As an illustration of this phenomenon consider the term Ω " pλx.xxqλx.xx and observe that the name of R is included in the name of RR, i.e. b Ď dtbuf: @ a pλ b x.@ c px d , x e q, λ f x.@ g px h , x i qq Ñ @ arbsc pλ dtbuf x.@ g px h , x i q, λ etbuf x.@ g px h , x i qq By appropriately renaming labels, this also shows that the name of RR is included in the name of RRR, the name of RRR is included in the name of RRRR, and so on. is con rms that the in nite reduction sequence Ω Ñ Ω Ñ . . . involves an in nite number of redex names.

8.

Reconstruction. e reduction history of a term can be reconstructed from its labeling, modulo permutation equivalence, supposing that we start from an initially labeled term.

For example, given the term x a we know that it must be the starting term: its history must be empty. Any non-empty reduction yielding a variable x as its nal result would have le a trace. at is, there would be other labels decorating x, indicating that some β-redexes were contracted before.

On the other hand, consider the two possible reductions IpIyq Ñ Iy: R : IpIyq Ñ Iy contracting the outermost redex

S : IpIyq Ñ Iy contracting the innermost redex
is is what Lévy calls a syntactic accident: two derivations happen to start and end on the same terms, but this is accidental.

e Reconstruction property tells us that the labeled calculus is able to discriminate between computations that start and end on the same terms by accident and those that do it by necessity, by performing the same computational work. Carrying on with the example, if we start from an initially labeled source term, the labeled li s R and S of the steps R and S yield di erent labeled target terms: @ a pλ b x.x c , @ d pλ e x.x f , y g qq R G G S @ arbsctbud pλ e x.x f , y g q @ a pλ b x.x c , y dresfteug q From the labeled target term @ arbsctbud pλ e x.x f , y g q we can tell that it is the redex R which has been red, even in the presence of a syntactic accident. Similarly, from the labeled term @ a pλ b x.x c , y dresfteug q we can deduce its history, and conclude that it must be the single step derivation S. If we extend these derivations with their relative residuals R 1 and S 1 , we obtain a permutation diagram ending on the same labeled term: @ a pλ b x.x c , @ d pλ e x.x f , y g qq R G G S @ arbsctbud pλ e x.x f , y g q

S 1 @ a pλ b x.x c , y dresfteug q R 1 G G y arbsctbudresfteug
In fact the extended derivations RS 1 and SR 1 are permutation equivalent, and from the labeled target term y arbsctbudresfteug we can deduce that both redexes R and S have been red. Remark that the order is irrelevant as we are interested in histories only modulo permutation equivalence. 9. Paths. Redex names correspond to paths in the graph-representation of the starting term, connecting two nodes that may take part in an interaction.

For example, let us recall the following labeled reduction: @ a pλ b x.@ c px d , y e q, λ f z.z g q R Ý Ñ @ arbsc pλ dtbuf z.z g , y e q S Ý Ñ y arbscrdtbufsgtdtbufue e starting term, seen as a graph, has the following shape. Note that each node has an incoming edge, and labels on a subterm decorate the corresponding incoming edge. By convention, nodes corresponding to bound variables are connected back to the binding abstraction node:

a @ b Ð Ð f 0 0 λx c λz f @ d Ð Ð e 0 0 z
x y e name of the rst redex R is b. Note that, naturally, b is an edge connecting an application node and an abstraction node. e name of the second redex S is dtbuf. e insight of Asperti and Laneve [?] is that, in general, redex names correspond to paths in the graph of the starting term, connecting an application node and an abstraction node. In this case, start from the application node at the bo om. e path dtbuf can be read as follows:

-Follow the edge d forwards to x.

-Follow the edge connecting x back to its binder λx.

-Follow the edge b backwards to the application node at the top.

-Follow the edge f forwards to λz. e presence of this path indicates the presence of a virtual redex, a potential interaction between the application node at the bo om and λz.

In the remainder of this section we will formulate a labeled variant of the LSC. Later, in Section 6.3 we prove that the labeled variant of the LSC veri es most of the properties in the Bestiary. As a means of giving some cohesion to the array of quite disparate properties that we have just listed, we will show that the labeled LSC without the gc rule forms a Deterministic Family Structure (DFS). Deterministic Family Structures are an axiomatic framework introduced by Glauert and Khasidashvili [?] to generalize Lévy's theory of optimal reductions. Showing that the LSC without gc is a DFS will essentially consist of ensuring that it enjoys properties 1-7 in the list. We will also discuss reasons that suggest that it is not possible to de ne a labeled variant of the full LSC (including the gc rule) that veri es all the properties above-or at least not without a fundamentally di erent approach. We will, nevertheless, deal with the gc rule to the best of our capabilities, and we will show that many of properties above can still be veri ed, including the nontrivial properties of Con uence and Termination.

In this this thesis we do not deal with the last two properties, Reconstruction and Paths, and in fact we consider these to be pending open problems. In the case of Reconstruction, a technical impediment is that we have not been able to de ne an extraction procedure such as the one that has been described in Section 6.1.1 for the λ-calculus. In Section 8.2 we will describe some of the di culties we have found in our a empt to de ne an extraction procedure. In the case of the last property, Paths, we do not foresee any fundamental obstruction for adapting it to the LSC without gc.

In any case, we hope that the reader will agree that the labeled LSC we propose deserves to be regarded as a Lévy labeled LSC.

Residual eory for the LSC

Recall from Def. 2.75 that the LSC is de ned as the rewriting relation Ñ LSC obtained from the union of the three following rewriting rules, closed under arbitrary contexts.

Distant beta

pλx.tqL s Þ Ñ db trxzssL Linear substitution Cxxxyyrxzts Þ Ñ ls Cxxtyyrxzts Garbage collection trxzss Þ Ñ gc t if x R fvptq
As a starting point in our quest to de ne a Lévy labeled variant of the LSC, let us restate the most basic of the properties we are a er. We would like the labeled calculus to give a name to each redex, in such a way that:

• If a redex R 1 is a residual of a redex R, then R and R 1 have the same name.

• If a redex R creates a redex S, then the name of R is a subname of the name of S.

Let us remark that in making these statements we are already presupposing the existence of an a priori theory of residuals. For instance, it seems intuitively clear that the ls redex S is the ancestor of the ls redexes S 1 , S 2 , S 1 1 , and S 1 2 in the reduction graph of Figure 6.3. It seems However, unlike in most other calculi, in the LSC steps interact at a distance. In fact the three rewriting rules involve some sort of non-local interaction. e db rule involves an interaction between an abstraction and an application that are separated by an arbitrary substitution context L. e ls rule involves an interaction between a variable that is bound to a substitution somewhere else in the term. Finally, the gc rule depends on the non-local condition that the variable bound by the substitution rxzss does not occur anywhere in the body t. Adapting the standard techniques that are used to de ne residuals-e.g. in term rewriting systems-is not immediate. Fortunately for us, in [?], Beniamino Acca oli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi already provide a de nition of residuals for the LSC, and they prove that it gives rise to a quite well-behaved residual theory. Let us review the de nitions and results of their work that will be relevant to our own. Before proceeding, it is worth noting that in [?] residuals are de ned using an auxiliary variant of the LSC that uses labels. e use of labels in the labeled calculus of [?] should not be confused with the Lévy labels that we are a empting to de ne. e purpose of labels in the labeled calculus of [?] is to provide an ancestor/descendant relation between the subterms of t and the subterms of s along a single rewriting step t Ñ LSC s. Lévy labels are a much more powerful formalism. In particular, Lévy labels give a name to every redex that is found along a derivation, including created redexes. To avoid confusion, we will depart from the nomenclature of Acca oli et al., and speak of marks, rather than labels, when referring to the labeled calculus of [?]. e nomenclature is also consistent with the marked λ-calculus that we used as an auxiliary tool to de ne residuals in the λ-calculus (cf. Def. 2.69).

xrxzysryzzs R G G S yrxzysryzzs S 1 v v S 2 @ @ zrxzysryzzs S 1 2 @ @ yrxzzsryzzs S 1 1 v v xrxzzsryzzs R 1 G G zrxzzsryzzs
De nition 6.1 (e marked LSC). Consider a denumerable set of marks a, b, c, e set of marked terms is given by the following grammar: e notations L for substitution contexts and C for arbitrary contexts are extended to allow marks. Similarly, the notion of free variables is extended to marked terms as expected, together with its notion of α-conversion. Marked reduction a Ý Ñ on marked terms is de ned as the contextual closure of the following rewriting rules:

pλx a .tqL s a Þ Ñ db trxzssL Cxxx a yyrxzts a Þ Ñ ls Cxtyrxzts trx a zss a Þ Ñ gc t if x R fvptq
A marked redex is a redex R having a pa ern of the form pλx a .tqL s, Cxxx a yyrxzts, or trx a zss, and a is called the mark of the redex R. Note that a marked step t a Ý Ñ s is decorated with the mark of the corresponding redex. On the other hand, unmarked reduction Ñ on marked terms is de ned as the contextual closure of the usual db, ls and gc rules-in this case, the redex is not marked but marks elsewhere in the term are allowed. e anchor of a redex (marked or not) is the variable possibly carrying its mark. If t is a marked term, t ˝is the term that results from erasing all the marks in t. If t ˝" s, we say that t is a variant of s. In that case, we identify redexes of t and redexes of s via the obvious bijection.

De nition 6.2 (Residuals in the LSC). Let R, S be two coinitial steps in the LSC: R : t Ñ s S : t Ñ u Consider a marked variant t 1 of t having exactly one mark a on the anchor of S. Let R 1 : t 1 Ñ s 1 be the step corresponding to R via the obvious bijection.

e set of residuals of S a er R, wri en S{R, is the set of steps of the form S 1 : s Ñ r for some term r, such that S 1 is marked with a in the marked variant s 1 of s.

For example, the reduction graph of the term xrxzysryzzs (Figure 6.3) can be adapted to the marked LSC by marking the anchors of the redexes R and S, as below-we write Rpaq to emphasize that a is the mark of R:

x a rxzy b sryzzs Rpaq G G Spbq y b rxzy b sryzzs S 1 pbq u u S 2 pbq A A zrxzy b sryzzs S 1 2 pbq A A y b rxzzsryzzs S 1 1 pbq u u x a rxzzsryzzs R 1 paq G G zrxzzsryzzs
Moreover, according to the de nition of residual:

R{S " tR 1 u S{R " tS 1 , S 2 u S 1 {S 2 " tS 1 1 u S 2 {S 1 " tS 1 1 u R{R " ∅
One should have in mind that, to calculate a set of residuals, for example S 1 {S 2 , we should start from a marked variant of the source term having a single marked redex, which is not the case for y b rxzy b sryzzs in the diagram above. Recall also from Def. 2.31 that the residual relation can be extended to take the residuals of a step a er a derivation, de ning S{ρ by induction on ρ: S{ def " tSu S{Rρ def " tS 2 | DS 1 . S 1 P S{R and S 2 P S 1 {ρu So in particular, in the diagram above we have:

S{RS 1 " tS 1 2 u S{RS 2 " tS 1 1 u
For a di erent example of marked reduction, the following one involves a db step R, a ls step S, two gc steps T , U , and its residuals:

pλx a .xqry b zts z Rpaq G G U pbq xrxzzsry b zts U 1 pbq S G G zrxzzsry b zts T G G U 2 pbq zry b zts U 3 pbq pλx a .xq z R 1 paq G G xrxzzs S 1 G G zrxzzs T 1 G G z
Recall from Section 2.2 that a step R creates S if the step S is not the residual of any S 0 a er R. In this case, the db step R creates the ls step S, since x was originally bound by an abstraction but, a er the db step, it becomes bound by a substitution, and is now susceptible of being substituted by z. Similarly, the ls step S creates the gc step T , as it exhausts the occurrences of x that are bound by the substitution rxzzs, enabling the substitution to be garbage collected. Perhaps it is also interesting to note also that the newly created redexes S and T are not marked. In the case of the step T , there is no chance that it could be marked, since the garbage collected substitution is created along the way, i.e. it comes from the righthand side of a db step.

To conclude with this section, we restate two results that are already known to hold from [?]. Proposition 6.3. e LSC forms an orthogonal axiomatic rewriting system.

Proof. Recall from Def. 2.39 that an orthogonal axiomatic rewriting system in the sense of Melliès must verify four axioms:

1. Autoerasure (AE). at is, R{R " ∅ for every redex R.

To prove this axiom, note that if t has a single marked redex Rpaq and the redex R : t Ñ s is red, then s has no occurrences of a.

Finite Residuals (FR)

. at is, R{S is nite for every two coinitial redexes R, S. is axiom is immediate since the LSC is nitely branching, and the set R{S is a set of coinitial redexes, so it must be nite.

Finite Developments (FD).

If M is a set of coinitial redexes, there are no in nite developments of M. is axiom is Proposition 1 in [?]. It can be proved using the notion of potential multiplicity, similarly as in the proof that the λ-calculus veri es FD (m. 2.73).

Semantic Orthogonality (SO).

For any two coinitial redexes R, S there exist complete developments ρ of R{S and σ of S{R such that ρ and σ are co nal and, moreover, Rσ and Sρ induce the same residual relation. is axiom is Proposition 2 in [?].

A er presenting the Lévy labeled LSC, and using it as a tool, we will be able to give alternative proofs for FD and SO: termination of the labeled calculus restricted to bounded labels will be a generalization of FD, and con uence of the labeled calculus will be a generalization of SO. We also remind the reader that, as was discussed in Section 2.2, various results from [?] are automatically available in any orthogonal axiomatic rewriting system, in particular multisteps, residuals, permutation equivalence, and algebraic con uence.

Besides Prop. 6.3, there is a second result from the work by Acca oli et al. ([?]) that we should mention before going on, concerning redex creation in the LSC. Here we state an incomplete form of the result, for the sake of clarity.

e fully-edged result is stated and proved in the appendix (Prop. A.77). Proposition 6.4 (Redex creation in the LSC -♣ Prop. A.77). Let t 1 R Ý Ñ t 2 S Ý Ñ t 3 be a sequence of two redexes in the LSC such that R creates S. en S is created in exactly one of seven possible ways. Here we provide only representative examples, see the appendix for the full statement and proof.

De nition of the Labeled LSC Without gc

For expository purposes, we start by giving a de nition of a Lévy labeled variant of the LSC without the gc rule, and then discuss how to extend this de nition to also contemplate the gc rule.

As a general convention, we use the symbol " " when naming constructions that correspond to labeled calculi, and the symbol "I" when naming constructions that only make sense in the calculus without gc. For example, T is the set of terms in the (unlabeled) LSC, T is the set of terms in the (full) labeled LSC, and T I is the set of terms in labeled LSC without gc 1 .

De nition 6.5 (e Lévy labeled LSC without gc, LLSC I). Consider a denumerable set of initial labels I " ta, b, c, . . .u. We assume the existence of a distinguished initial label ' P I.

e set of labels L I is de ned by the following grammar:

α, β, γ, . . . ::" a | αβ | rαs | tαu | dbpαq
Labels are considered up to associativity of juxtaposition, i.e. for every α, β, γ P L we declare pαβqγ " αpβγq to hold. Labels that are not of the form αβ are called atomic. e set of labeled terms T I is de ned by the following grammar:

t, s, . . . ::"

x α | λ α x.t | @ α pt, sq | trxzss
Observe that there are labels over variables, abstractions, and applications, but not over substitutions. e outermost atomic label of a label α, wri en Ò pαq, is de ned as follows, by induction on the number of juxtapositions that take part in the construction of the label α:

Ò pαq def " # Ò pα 1 q if α " α 1 α 2 α if α is atomic 1
e mnemonic for the symbol "I" is that the LSC corresponds to the full λ-calculus, while the LSC without gc corresponds to Church's λI-calculus.

For example Ò prabsacq " rabs. Similarly, the innermost atomic label of a label α, wri en Ó pαq, is de ned as follows:

Ó pαq def " # Ó pα 2 q if α " α 1 α 2 α if α is atomic
Note that Ò pαq and Ó pαq yield atomic labels, and that they are well-de ned modulo associativity of juxtaposition. e external label of a term t, wri en ptq, is de ned as the label decorating its outermost node, ignoring substitutions: px α q " α pλ α x.tq " α p@ α pt, sqq " α ptrxzssq " ptq e outermost atomic label of a term t, wri en Ò ptq is de ned as Ò p ptqq. For example: ppλ abc x.x d qryzy d sq " abc and Ò ppλ abc x.x d qryzy d sq " a e syntax of contexts is extended to allow labeled terms, namely:

C ::" l | λ α x.C | @ α pC, tq | @ α pt, Cq | Crxzts | trxzCs
and similarly for substitution contexts. An operation for adding a label to a term, wri en α : t is de ned as follows by induction on t, by skipping substitutions:

α : x β def " x αβ α : λ β x.t
def " λ αβ x.t α : @ β pt, sq def " @ αβ pt, sq α : ptrxzssq def " pα : tqrxzss e Lévy labeled LSC without gc, LLSC I , is de ned as the rewriting system whose objects are the labeled terms T I and with the rewriting relation Ñ I de ned as the union of the following rules, closed under arbitrary contexts:

@ α ppλ β x.tqL, sq Þ Ñ db αrdbpβqs : trxztdbpβqu : ssL Cxxx α yyrxzts Þ Ñ ls Cxxα ' : tyyrxzts Ñ I db def " CxÞ Ñ db y Ñ I ls def " CxÞ Ñ ls y Ñ I def " Ñ I db Y Ñ I ls
Regarding the names of steps, the name of a db step like in the rule Þ Ñ db is dbpβq, while the name of a ls step like in the rule Þ Ñ ls is Ó pαq ' Ò ptq. Sometimes we write t α Ý Ñ I s when t Ñ I s and the name of the contracted redex is α.

In the following paragraphs we will try to understand the reasons motivating the design of the labeled system we have just de ned. e main guiding principles are items 3. and 4. in the Bestiary of Section 6.2.1:

• Copy: residuals of a redex should have the same name as their ancestor.

• Creation: created redexes should include the name of all the redexes that contribute to their creation.

Forward propagation of labels

A term in a rewriting system has redexes, which represent possible interactions between parts of the term. When a redex R is red in a Lévy labeled calculus, labels are propagated along the term according to precise rules. e informal idea is that labels on the le -hand side should propagate in such a way that the name of the redex R ends up "tainting" all those positions on the right-hand side in which there is a possibility of a new interaction due to the contraction of R. Let us give an informal account of how, and why, labels propagate in LLSC I . Suppose rst that we re a db redex R. e name of the db redex in a term like @ α ppλ β x.tqL, sq is dbpβq. e informal idea is that β records the history indicating how the abstraction λ β x.t reached a position in the term in which it is able to interact with the application @ α p..., sq. Note that the list of substitutions L does not play any role regarding the interaction of the abstraction and the application: the substitutions are not able to aid nor interfere.

If we read the rewriting rule Þ Ñ db of the LLSC I forwards, we nd out that the name dbpβq of the contracted redex R is propagated to two places. First, the label dbpβq is propagated to mark the root of the term t. is is because the root of the term t might be an abstraction, and ring R exposes the abstraction, leaving it on the root of the term, allowing it to, possibly, interact with an external application. is may allow a db creates db creation case, as in item 1. of Prop. 6.4. In order to comply with the Creation principle, the name of the red db redex should be a sublabel of the created db redex. e following example illustrates how the name of the red db redex (dbpcq) is indeed a sublabel of the created db redex (brdbpcqsd): @ a p@ b pλ c x.λ d y.x e , z f q, z g q dbpcq Ý ÝÝ Ñ I @ a ppλ brdbpcqsd y.x e qrxzz tdbpcquf s, z g q brdbpcqsd Ý ÝÝÝÝ Ñ I x ardbpbrdbpcqsdqse ryzz tdbpbrdbpcqsdqug srxzz ftdbpcqu s On the other hand, the rule Þ Ñ db of the LLSC I also propagates the label dbpβq to mark the argument of the substitution.

is is because the argument s of the substitution might be replaced for an occurrence of x allowing a db creates ls situation as in item 2. of Prop. 6.4. As before, we would like to comply with the Creation principle.

e following example illustrates how the name of the red db redex (dbpbq) is indeed a sublabel of the created ls redex (c ' tdbpbqu):

@ a pλ b x.x c , y d q dbpbq Ý ÝÝ Ñ I x ardbpbqsc rxzy tdbpbqud s c ' tdbpbqu ÝÝÝÝÝÑ I y ardbpbqsc ' tdbpbqud
Note that in LSC the situation is subtler than in other calculi because the interaction between the variable x and the argument of the substitution is non-local, i.e. at a distance.

Consider now what happens if we re a ls redex R. e name of the ls redex in a term like Cxxx α yyrxzts is of the form Ó pαq ' Ò ptq: it consists of two "halves". e rst half (Ó pαq) represents which copy of x we are contracting. For example, the two ls steps below should have di erent names and, indeed, their names are di erent: a ' c and b ' c.

py a ' c x b qrxzy c s px a x b qrxzy c s a ' c I I b ' c E E
px a y b ' c qrxzy c s e second half of the name Ò ptq corresponds to the history of the argument t. Informally, the label Ò ptq indicates how the term t came to be the argument of the substitution rxz . . .s.

By reading the rewriting rule Þ Ñ ls of the LLSC I forwards, it can be seen that the name Ó pαq ' Ò ptq of the ls redex appears on the root of the new copy of the term t. is is because the term t might be an abstraction, and ring the ls redex R makes a copy of the abstraction. e new copy of t might possibly interact with an application, allowing a ls creates db creation case, as in items 4. and 5. of Prop. 6.4. As in the previous cases, we would like to comply with the Creation principle. A point that should still be clari ed is why the two "halves" of a ls redex are atomic labels. at is, why the name of a ls redex is Ó pαq ' Ò ptq, rather than just α ' ptq. e reason is that we must comply with the Copy principle. To justify why we take Ó pαq rather than α for the rst half, consider the following example:

x a rxzy b sryzz c s a ' b G G b ' c y a ' b rxzy b sryzz c s b ' c x a rxzz b ' c sryzz c s z a ' b ' c rxzy b sryzz c s
e redex at the right-hand side of the diagram is one of the two residuals of the redex at the le -hand side, so by the Copy principle they should have the same name. If we were to take α, rather than Ó pαq, for the rst half of the name of a ls redex, the name of the redex at the right-hand side would be a ' b ' c instead, violating the Copy principle.

To justify why we take Ò ptq rather than ptq for the second half of the name of a ls-redex, consider the following (symmetric) example:

x a rxzy b sryzz c s b ' c G G a ' b x a rxzz b ' c sryzz c s a ' b y a ' b rxzy b sryzz c s z a ' b ' c rxzz b ' c sryzz c s
Here the redex at the right-hand side is the (unique) residual of the redex at the le -hand side, so by the Copy principle they should have the same name. If we were to take ptq, rather than Ò ptq, for the second half of the name of a ls redex, the name of the redex at the right-hand side would be a ' b ' c instead, violating the Copy principle.

e label constructors dbp´q and ' An obvious di erence between Lévy's labeled λ-calculus and the calculus LLSC I that we have just proposed is the presence of labels of the form dbpαq and the distinguished label ('). e presence of these labels is not to be regarded as a fundamental feature of the labeled calculus, but rather as a technical convenience. Let us motivate their introduction.

e idea of labels is that they characterize redex families: two redexes should be assigned the same name if and only if they belong to the same family. According to the de nition of LLSC I , the name of a db redex in a term like @ α ppλ β x.tqL, sq is dbpβq. For example, consider a situation like the following, corresponding to a ls creates db creation. p@ a px b , y c qqrxzλ d z.z e s b ' d Ý Ý Ñ I p@ a pλ b ' d z.z e , y c qqrxzλ d z.z e s dbpb ' dq Ý ÝÝÝÝ Ñ I z ardbpb ' dqse rzzy tdbpb ' dquc srxzλ d z.z e s Suppose that we had not introduced the dbp´q constructor, and we had declared that the name of such a redex is just β. e name of the db redex above would then be just b ' d, and it would coincide with the name of the ls redex that contributed to its creation. is would contradict the principle that redexes in di erent families should have di erent names. Another reason to justify that the name of the ls redex should be strictly contained in the created db redex, is to comply with the Termination principle (item 7. in the Bestiary of Section 6.2.1). Recall that the Termination principle states that redexes of newer generations should have larger and larger names.

Regarding the distinguished initial label ('), it is simply used as a marker to point out the places in which two labels have come into contact due to the contraction of a ls redex.

One may wonder if the addition of the constructors dbp´q and ' is strictly necessary to de ne a Lévy-like labeling for the LSC. It should be possible to formulate a variant of LLSC I dispensing of both dbp´q and ' while essentially preserving all the good properties of the LLSC I calculus, at the expense of treating redex names slightly more carefully. We have chosen to explicitly mark the places in which db and ls redexes take place, which simpli es the treatment of labels.

e distinguished label (') and associativity

As we have mentioned in the previous section, the distinguished label p ' q is used to point out the places in which two labels come into contact due to the contraction of a ls redex. We have chosen to make ' an initial label, in such a way that a ' b is a list of three labels: a, ' , and b. One may wonder if it would not be more appropriate to regard ' as a binary constructor. To answer this question, consider the following example:

x a rxzy b sryzz c s b ' c G G a ' b x a rxzz b ' c sryzz c s a ' b y a ' b rxzy b sryzz c s b ' c G G z a ' b ' c rxzy b sryzz c s b ' c G G z a ' b ' c rxzz b ' c sryzz c s
Let t be the term at the bo om right of the diagram, i.e. t " z a ' b ' c rxzz b ' c sryzz c s. Note that, if we contract y rst and then x, the label decorating the le most copy z of t is a ' pb ' cq. On the other hand, if we contract x rst and then the two copies of y, the corresponding label is pa ' bq ' c. e Con uence principle (item 6. in the Bestiary of Section 6.2.1) requires that the labeled calculus should be con uent. is basically means that the labels a ' pb ' cq and pa ' bq ' c should be considered equal. If we were to regard a ' b as a new constructor, we would have to work modulo associativity of ' , and also the associativity of ' with respect to juxtaposition. at is, we would have to work modulo the following four equations:

αpβγq " pαβqγ αpβ ' γq " pαβq ' γ α ' pβγq " pα ' βqγ α ' pβ ' γq " pα ' βq ' γ Rather than doing this, we have chosen the arguably simpler route of working only modulo the rst equation (associativity of juxtaposition), and regarding ' as an initial label.

De nition of the Labeled LSC -Extension with gc

De nition 6.6 (e Lévy labeled LSC with gc, LLSC). Similarly as in Def. 6.5, let I " ta, b, c, . . .u be a set of initial labels, and assume the existence of two distinguished labels ' P I and b P I. e set of labels L is again de ned by the following grammar, α, β, γ, . . .

::" a | αβ | rαs | tαu | dbpαq
Metavariables Ω, Θ, Ψ, . . . range over nite sets of initial labels. e set of labeled terms T is de ned by the following grammar: t, s, . . . ::"

x α | λ α Ω x.t | @ α pt, sq | trxzss Ω
e notions of outermost atomic label Ò pαq of a label α, innermost atomic label Ó pαq of a label α, external label ptq of a labeled term t, the operation of adding a label to a term α : t, and the notions of contexts and substitution contexts are de ned as in Def. 6.5.

e Lévy labeled LSC with gc, LLSC, is de ned as the rewriting system whose objects are the labeled terms T and with the rewriting relation Ñ de ned as the union of the following rules, closed by arbitrary contexts.

@ α ppλ β Ω x.tqL, sq Þ Ñ db αrdbpβqs : trxztdbpβqu : ss Ω L Cxxx α yyrxzts Ω Þ Ñ ls Cxxα ' : tyyrxzts Ω trxzss Ω Þ Ñ gc t if x R fvptq Ñ db def " CxÞ Ñ db y Ñ ls def " CxÞ Ñ ls y Ñ gc def " CxÞ Ñ gc y Ñ def " Ñ db Y Ñ ls Y Ñ gc
Regarding the names of steps, the name of a db step like in the rule Þ Ñ db is dbpβq, the name of a ls step like in the rule Þ Ñ ls is Ó pαq ' Ò ptq, and the name of a gc step like in the rule Þ Ñ gc is the set of labels ta ' Ò psq | a P Ωu. As before, we write t α Ý Ñ s when t Ñ s and the name of the contracted redex is α.

Observe that redex names µ, ν, ξ, . . . have three possibly shapes given by the grammar below, where α stands for an arbitrary label in L, and ω, ω 1 , etc. stand for atomic labels:

µ ::" dbpαq l jh n name of a db step | ω ' ω 1 l jh n name of a ls step | tω 1 ' ω 1 1 , . . . , ω n ' ω 1 n u l jh n name of a gc step, n ě 1
Usually we regard redex names as belonging to a separate sort, but occasionally we identify the names of db and ls steps with the corresponding underlying label-e.g. the redex name dbpaq can also be thought as the label dbpaq.

e remainder of this subsection is devoted to motivating the de nition of the labeling scheme introduced in Def. 6.6. We will also describe some di culties involving the gc rule.

Motivation of the labeling: sets of labels (Ω) and dummy labels (b)

Compared to the LLSC I (without gc) the LLSC (with gc) incorporates three new elements:

1. Substitutions are decorated with a set of labels Ω.

2. Abstractions are decorated with a set of labels Ω.

3.

ere are gc steps, and the name of a gc step is a set of labels.

Observe that these elements do not interfere with the behavior of db and ls steps, and in particular it does not a ect the names of db and ls steps. Let us motivate each of these new elements. Consider the following example reduction whose nal step is a gc step:

pxxqrxzys R Ý Ñ ls pyxqrxzys S Ý Ñ ls pyyqrxzys T Ý Ñ gc yy
In this reduction sequence, the rst two ls steps R and S contribute to the creation of the gc step T , which means that, in the labeled calculus, the names of R and S should be sublabels of the name of T . In fact, the order of the rst two steps is irrelevant:

pxxqrxzys S 1 Ý Ñ ls pxyqrxzys R 1 Ý Ñ ls pyyqrxzys T Ý Ñ gc yy
e observation that the order is irrelevant is re ected in the fact that the name of the gc step is a set of labels.

Moreover, we note that the labeling scheme of the LLSC I calculus, without gc, is not su cient to give an appropriate name to the gc step. e main problem is that we lose track of the labels decorating each of the two copies of x, for example in this sequence of labeled steps in LLSC I :

@ a px b , x c qqrxzy d s b ' d Ý Ý Ñ Ils @ a py b ' d , x c qrxzy d s c ' d Ý Ý Ñ Ils @ a py b ' d , y c ' d qrxzy d s
a hypothetical gc step of the form:

@ a py b ' d , y c ' d qrxzy d s Ñ gc @ a py b ' d , y c ' d q
should have a name including the labels b ' d and c ' d. But, even though these labels do appear on the term (in this example), we have no way of knowing what relationship they have with the explicit substitution rxzy d s.

e idea is that every substitution trxzss Ω should be decorated with a set of labels Ω, representing the initial labels that originally decorated each free occurrence of the variables x in t. For instance, in the LLSC the example above becomes:

@ a px b , x c qqrxzy d s tb,cu b ' d Ý Ý Ñ Ils @ a py b ' d , x c qrxzy d s tb,cu c ' d Ý Ý Ñ Ils @ a py b ' d , y c ' d qrxzy d s tb,cu
and as a consequence, the name of the gc step:

@ a py b ' d , y c ' d qrxzy d s tb,cu Ñ gc @ a py b ' d , y c ' d q
is, according to Def. 6.6, precisely the set ta ' Ò py d q | a P tb, cuu that is, tb ' d, c ' du. Note that this set does not depend on the order in which the labeled variants of the steps R and S are red, as can be seen in the diagram:

@ a px b , x c qqrxzy d s tb,cu b ' d G G c ' d @ a py b ' d , x c qqrxzy d s tb,cu c ' d @ a px b , y c ' d qqrxzy d s tb,cu b ' d G G @ a py b ' d , y c ' d qqrxzy d s tb,cu
Later on, we will introduce an invariant characterizing correctly labeled terms. In a correctly labeled term, given any subterm trxzss Ω and any free occurrences of the form x α in t, we will have that Ó pαq P Ω.

To justify the presence of the decoration Ω over an abstraction λ α Ω x.t, note that a substitution trxzss Ω may be created as the result of ring a db step @ α ppλ β Ω x.tqL, sq Ñ db αrdbpβqs : trxztdbpβquss Ω L and the set Ω should appropriately record the set of initial labels originally decorating the free occurrences of x in t. is means that the invariant for correctly labeled terms should request that, given any subterm λ α Ω x.t of a correctly labeled term for any free occurrences of the form x α in t, we will have that Ó pαq P Ω.

ere is one more issue that we should mention: in a term of the form λ α Ω x.t or of the form trxzss Ω , the invariant for correctly labeled terms should not allow Ω to be the empty set. Note that if we allow Ω to be the empty set, the name of a gc step trxzss ∅ Ñ gc t is the set of labels ta ' Ò ptq | a P ∅u, that is, ∅. is is objectionable, because it may result in two gc steps that do not share the same origin but have the same name, for example, the name of the two steps below is ∅:

trxzy a s ∅ trxzy a s ∅ ryzz b s ∅ ∅ T T ∅ @ @ tryzz b s ∅
at is why the invariant for correctly labeled terms will forbid that Ω is empty. In the initial term, if t has no occurrences of x, we will decorate terms of the form λ α Ω x. De nition 6.7 (Stability). An orthogonal axiomatic rewriting system (cf. Def. 2.39) veries the Stability property if given steps R, S, T 1 , T 2 , T 3 such that T 3 P T 1 {pS{Rq and T 3 P T 2 {pR{Sq, there exists a step T 0 such that T 1 P T 0 {R and T 2 P T 0 {S. Graphically:

T 0 y y R S 1 1
T 1 o o S{R 1 1 1 1 R{S T 2 G G T 3
It is not di cult to see that the Stability property fails in the LSC, in presence of the gc rule. 2Remark 6.8 (Failure of Stability in the LSC). Consider the following diagram:

xryzzsrzzws R v v S 8 8 xryzwsrzzws T S{R @ @ xrzzws ∅ T 1 xryzws xrzzws T 1 x x
Note that R is a ls step and S, S{R, T , and T 1 are gc steps. Note also that R{S " ∅. en T and T 1 do not have a common ancestor, which means that the LSC with gc does not have the Stability property.

e failure of Stability means that we cannot hope to ful ll all the principles of Lévy labels in the Bestiary of Section 6.2.1. In particular, if the Initial principle holds, we know that the names of R and S must be di erent. If the Contribution principle holds, we also know that the name of T should contain the name of R but not the name of S, while the name of T 1 should contain the name of S but not the name of R. Finally, from the Copy principle we conclude that the names of T and T 1 must coincide. From this we derive a contradiction.

In the labeled calculus LLSC of Def. 6.6, we have taken the design decision that the redex creation cases of the form "gc creates gc" (cf. Prop. 6.4) are not to be re ected in the labels. For instance, the example of Rem. 6.8 in the labeled calculus LLSC becomes:

x a ryzz b s tbu rzzw c s tbu b ' c t t tb ' bu A A x a ryzz b s tbu rzzw c s tbu tb ' cu tb ' bu B B x a rzzw c s tbu ∅ tb ' cu x a ryzz b s tbu x a rzzw c s tbu tb ' cu x a x a
Observe that the names of T and T 1 are both tb ' cu and they include the name of R (b ' c) as a sublabel while, on the other hand, the name of S (tb ' bu) is unrelated with the name of T .

Properties of the LSC with Lévy Labels

is section is devoted to establishing various properties of the LLSC:

1. In Section 6.3.1 we prove basic properties of labeled reduction, including the invariant for correctly labeled terms.

2. In Section 6.3.2 we study permutation diagrams in the LLSC. In particular we prove that the LLSC is an orthogonal axiomatic rewriting system (Prop. 6.32).

3. In Section 6.3.3 we prove that the LLSC is weakly normalizing if the height of redex names is bounded (Prop. 6.45).

4. In Section 6.3.4 we build upon the previous result, and strengthen it to show that the LLSC is strongly normalizing if the height of redex names is bounded (m. 6.51).

5. In Section 6.3.5 we obtain as a corollary of previous results that the LLSC is con uent (m. 6.53).

Among these properties, we prove that the LLSC enjoys most of the desirable traits that we already listed for a Lévy labeled calculus in the Bestiary of Section 6.2.1. We summarize the status of each of these properties a er nishing this section:

1.

e Li property is an easy observation. Given any (unlabeled) reduction sequence ρ : t LSC s and any labeled variant t 1 P T of t, there is a labeled variant ρ 1 : t 1 s 1 of ρ. Moreover, in Lem. 6.23 we prove that all the labeled terms along the reduction ρ 1 preserve the invariant of being correctly labeled, provided that t 1 is correctly labeled.

2. e Initial property is proved in Lem. 6.19.

e

Copy property is proved in Lem. 6.33.

4.

e Creation property for the calculus without gc is proved in Prop. 6.41. We also show an example in which this property does not hold for the calculus with gc (Rem. 6.8).

5.

e Contribution property for the calculus without gc is not proved in this section. We prove it in the next chapter (Prop. 7.12), when we show that the LSC without gc forms a Deterministic Family Structure (m. 7.13).

6. In m. 6.53 we give two alternative proofs of Con uence.

7.

e Termination property is established in m. 6.51.

8. As we mentioned, we do not treat the Reconstruction or Paths properties.

Basic Properties

We begin by proving some basic properties of the labeled calculus LLSC as de ned in Def. 6.6, including the invariant for correctly labeled terms.

Labels and contexts

Lemma 6.9 (Properties of labels and contexts). Operations on labels and contexts have the following properties:

1. α : pβ : tq " pαβq : t 2. If L is a substitution context, then α : ptLq " pα : tqL.

3. If C is not a substitution context, then α : Cxty " pα : Cqxty.

4. Ò pα : tq " Ò pαq 5. Ò pCxxx α yyq " Ò pCxα ' : tyq 6. α : Cxxx β yy is of the form C 1 xxx β 1 yy, where Ó pβq " Ó pβ 1 q and α : Cxβ ' : ty " C 1 xβ 1 ' : ty.

Proof. e proofs are straightforward. Item 1. and 4. are by induction on t. Items 2., 3., and 5. are by induction on the context. Item 6. is easy by case analysis, depending on whether C is a substitution context or not, and using items 2. and 3. respectively. Proof. By induction on the context C under which the redex in t is contracted. e interesting case is the base case, when C " l. en we proceed by case analysis, depending on the kind of redex contracted.

1. db step.

α : @ β ppλ γ Ω x.t 1 qL, s 1 q α : βrdbpγqs : t 1 rxztdbpγqu :

s 1 s Ω L @ αβ ppλ γ Ω x.t 1 qL, s 1 q dbpγq G G αβrdbpγqs : t 1 rxztdbpγqu : s 1 s Ω L
2. ls step. Using Lem. 6.9, we have:

α : C 1 xx β yrxzt 1 s Ω α : C 1 xβ ' : t 1 yrxzt 1 s Ω C 2 xx β 1 yrxzt 1 s Ω Ópβq ' Òpt 1 q G G C 2 xβ 1 ' : t 1 yrxzt 1 s Ω 3. gc step. α : t 1 rxzs 1 s Ω ta ' Òps 1 q | aPΩu G G α : t 1
Lemma 6.11 (Reduction preserves the outermost label). If t Ñ s then Ò ptq " Ò psq.

Proof. By induction on the context C under which the redex in t is contracted. e interesting case is the base case, when C " l. en we proceed by case analysis, depending on the kind of redex contracted.

1. db step. en:

Ò p@ α ppλ β Ω x.t 1 qL, s 1 qq " Ò pαq " Ò pαrdbpβqsq " Ò pαrdbpβqs : t 1 rxztdbpβqu : s 1 s Ω Lq by Lem. 6.9

2. ls step. en Ò pC 1 xxx α yyq " Ò pC 1 xα ' : t 1 yq by Lem. 6.9.

3. gc step. en Ò pt 1 rxzs 1 s Ω q " Ò pt 1 q.

Initially and correctly labeled terms

Recall that the Initial principle in the Bestiary of properties of Lévy labels given in Section 6.2.1 requests that, in an initially labeled term, two di erent redexes should have di erent names. As a consequence, if we have an unlabeled term and we want to decorate it with initial labels, each subterm (except for substitutions) should be decorated with a di erent initial label. For example, xx should be initially labeled as @ a px b , x c q or @ c px a , x b q rather than @ a px b , x b q or @ a px a , x a q. Moreover, binders in the LLSC, that is, abstractions and explicit substitutions, are decorated with a set of labels Ω. As we have discussed in Section 6.2.4, the set Ω associated to a subterm binding a variable x should start being the set of initial labels decorating the free occurrences of x, or tbu if there are no free occurrences of x. For example, λ a tc,du x.@ b px c , x d q and @ a px b , x c qryzz d s tbu are initially labeled terms.

e property that a term is initially labeled is very restrictive, and the rewriting relation pÑ q of the LLSC does not preserve the invariant that a term is initially labeled. For example, in the following ls step:

x a rxzλ b tcu y.y c s tau Ñ ls pλ a ' b tcu y.y c qrxzλ b tcu y.y c s tau the le -hand side is initially labeled, while on the right-hand side: (1) there is a subterm decorated with a label which is not an initial label (a ' b), (2) there are two subterms decorated with the same initial label (the two copies of y c), and (3) the set of labels tau on the explicit substitution does not correspond to a free occurrence of x.

In this section, we give a precise de nition of initially labeled terms, and we de ne the invariant for correctly labeled terms, in such a way that all initially labeled terms are correctly labeled, and the rewriting relation pÑ LSC q preserves correctly labeled terms.

De nition 6.12 (Leaf labels). Let t P T . e multiset of leaf labels of t, wri en vl x ptq, is the multiset of atomic labels of the form Ó pαq for each free occurrence of x α in t. Formally:

vl x px α q def " tÓ pαqu vl x py α q def " ∅ if x ‰ y vl x pλ α Ω y.tq def " vl x ptq if x ‰ y vl x p@ α pt, sqq def " vl x ptq Z vl x psq vl x ptryzss Ω q def " vl x ptq Z vl x psq if x ‰ y
We also extend this operation to contexts by de ning vl x plq def " ∅. Note that vl x pCxtyq " vl x pCq Z vl x ptq if C does not bind x. Occasionally we treat multisets as sets when the multiplicity of labels is not relevant. Lemma 6.13 (Properties of leaf labels). Leaf labels have the following properties:

1. vl x pα : tq " vl x ptq 2. If t Ñ s then vl x ptq Ě vl x psq for any variable x (where "Ě" denotes the inclusion of sets).

Proof. Item 1. is straightforward by induction on t. Item 2. is by induction on t. e interesting case is when we have a step:

1. db step. @ α ppλ β Ω y.t 1 qL, t 2 q dbpβq Ý ÝÝ Ñ db αrdbpβqs : t 1 ryztdbpβqu : t 2 s Ω L. en: vl x p@ α ppλ β Ω y.t 1 qL, t 2 qq " vl x pt 1 q Z vl x pt 2 q Z vl x pLq " vl x pαrdbpβqs : t 1 q Z vl x ptdbpβqu : t 2 q Z vl x pLq by item 1 Ý ÝÝÝÝÝ Ñ ls Cxα ' : t 2 yryzt 2 s Ω . en: vl x pCxxy α yyryzt 2 s Ω q " vl x pCq Z vl x pt 2 q " vl x pCq Z vl x pt 2 q Z vl x pt 2 q (set equality)

" vl x pCq Z vl x pα ' : t 2 q Z vl x pt 2 q by item. 1

" vl x pCxα ' : t 2 yryzt 2 s Ω q 3. gc step. t 1 ryzt 2 s Ω ta ' Òpt 2 q | aPΩu
Ý ÝÝÝÝÝÝÝÝ Ñ gc t 1 . en vl x pt 1 ryzt 2 s Ω q " vl x pt 1 q Z vl x pt 2 q Ě vl x pt 1 q.

De nition 6.14 (Initially labeled terms). A term t P T is initially labeled, wri en ptq, if:

1. For every subterm of s, the external label psq is initial and psq R t ' , bu.

2. For every pair of subterms s 1 , s 2 at di erent positions, ps 1 q ‰ ps 2 q.

3. For every subterm of t that is a binder, i.e. of the form pλ a Ω x.sq, or of the form srxzus Ω , we have Ω "

tbu if vl x psq " ∅ vl x psq otherwise
Remark 6.15. Given an unlabeled term t, there always exists an initially labeled variant t of t.

Example 6.16 (Initially labeled terms). e labeled term pλ a tcu x.@ b px c , y d qqryzz e s teu is an initially labeled variant of pλx.xyqryzzs.

e labeled terms λ a tc,du x.@ b px c , x d q and y a rxzz b s tbu are initially labeled. e labeled terms x ' and x b are not initially labeled because the distinguished initial labels ' and b cannot decorate subterms.

e labeled terms @ a px b , x b q and @ a px b , x a q are not initially labeled because di erent subterms should have di erent labels.

e labeled terms λ a tb,cu x.x b and y a rxzz b s tbu are not initially labeled because sets of labels over binders should coincide with the set of leaf labels of the bound variable.

e following easy lemma (Lem. 6.18) states that the names of the steps in an initially labeled term have a very particular shape.

De nition 6.17 (Initial redex names). A redex name µ is said to be initial according to the following de nition by cases:

1. A db redex name is initial if it is of the form dbpaq with a P I.

2.

A ls redex name is initial if it is of the form a ' b with a, b P I.

3.

A gc redex name is initial if it is of the form tb ' au. Lemma 6.18 (Redexes in initially labeled terms are initial). Let t P T be initially labeled. Let µ be the name of some redex in t. en µ is initial.

Proof. By cases.

1. db redex. t " @ a ppλ b Ω x.t 1 qL, s 1 q; name: dbpbq.

2. ls redex. t " Cxxx a yyrxzt 1 s Ω ; name: a ' Ò pt 1 q. Note that Ò pt 1 q P I given that t 1 is an initially labeled term.

3. gc redex. t " t 1 rxzs 1 s Ω ; name: ta ' Ò ps 1 q | a P Ωu. As before, Ò ps 1 q P I since s 1 is an initially labeled term. Moreover, since a gc step applies, vl x pt 1 q " ∅, hence Ω " tbu.

e following lemma proves the Initial property from the Bestiary of Section 6. Proof. If R is a db step, its name is of the form µ " dbpaq, where a is the label decorating the λ. Suppose that ν " dbpaq. en S is a db step contracting the same λ, hence R " S.

If R is a ls step, its name is of the form µ " a ' b, where a is the label decorating the contracted variable. Suppose that ν " a ' b. en S is a ls step contracting the same variable, hence R " S.

If R is a gc step, its name is of the form µ " ta ' Ò paq | a P Ωu, where a is the external label of the term s in the substitution trxzss Ω erased by R. Suppose that ν " ta ' Ò paq | a P Ωu.

en S is a gc step erasing the same substitution, hence R " S.

Next we de ne the notion of correctly labeled terms. To do so, we also de ne an auxiliary predicate that states whether a term is good. Roughly speaking, a term is good if the distinguished initial label ' only appears as a result of applying the Ñ ls rule, and the distinguished initial label b only appears decorating the sets Ω of the binders λ α Ω x.t and trxzss Ω when x R fvptq. We also extend the notion of goodness to contexts, by declaring plq to hold. Note that pCxtyq holds if and only if pCq and ptq hold. A term t P T is said to be correctly labeled if and only if all of the following conditions hold:

De nition 6.20 (Correctly labeled terms

1. Good: ptq holds.

2. Correct abstractions: for any subterm λ α Ω x.t 1 we have vl x pt 1 q Ď Ω.

3.

Correct substitutions: for any subterm t 1 rxzs 1 s Ω we have vl x pt 1 q Ď Ω.

For points 2, and 3, note that the inclusions are set-theoretical, i.e. we only care about the underlying set of the multiset vl x ptq.

Example 6.21 (Correctly labeled terms). e labeled term λ a ' b trdbpdqs,tdbpequu x.x crdbpdqs is a correctly labeled variant of λx.x.

e labeled terms x a ' and y abb are not correctly labeled because a ' and abb are not good. e labeled term λ a tbu x.x bcd is not correctly labeled because tdu is not a subset of tbu. e de nition of initially and correctly labeled terms is also extended to derivations. A derivation ρ : t s is said to be initially (resp. correctly) labeled if t is initially (resp. correctly) labeled. By Rem. 6.15, any derivation ρ : t LSC s in the unlabeled LSC has an initially labeled variant ρ 1 : t 1 s 1 .

Next we show that the notion of correctly labeled terms is indeed invariant by the rewriting relation pÑ q. Remark 6.22 (Initially labeled terms are correctly labeled). Initially labeled terms are correctly labeled. Lemma 6.23 (Reduction preserves correctly labeled terms). Let t P T be a correctly labeled term and t Ñ s. en s is correctly labeled.

Proof. In the proof of this lemma we use the fact that if ptq and pαq then pα : tq and pα ' : tq, which can be easily proved by induction on t. e proof proceeds by induction on t. e interesting cases are when there is a step at the root of the term:

1. db step. @ α ppλ β Ω x.t 1 qL, t 2 q dbpβq Ý ÝÝ Ñ db αrdbpβqs : t 1 rxztdbpβqu : t 2 s Ω L.

1.1 Good: since the invariant holds for t we have: pαq, pβq, pΩq, pt 1 q, pt 2 q, and pLq which implies pαrdbpβqsq, ptdbpβquq. Moreover, pαrdbpβqs : t 1 rxztdbpβqu : t 2 s Ω Lq.

1.2 Correct abstractions: immediate by the invariant on t.

1.3 Correct substitutions: for substitution nodes in t 1 and t 2 , it is immediate by the invariant on t. For substitution nodes in L, it is also immediate by using Lem. 6.13, since L cannot bind any variable in t 2 . Finally, for the substitution rxztdbpβqu : t 2 s Ω we use the fact that t has correct abstractions and Lem. 6.13 to conclude that vl x pαrdbpβqs : t 1 q " vl x pt 1 q Ď Ω. Ý ÝÝÝÝÝÝÝÝ Ñ gc t 1 with x R fvpt 1 q. is case it is immediate by the fact that the invariant holds for t.

De nition 6.24 (Initially reachable terms). A term t is said to be initially reachable if there exists an initially labeled term t 0 such that t 0 t.

Remark 6.25 (Initially reachable terms are correctly labeled). Initially reachable terms are correctly labeled by the fact that reduction preserves correct labelling (Lem. 6.23).

Labeling morphisms

Sometimes it is useful to rename labels. For example, the following derivation in the LLSC:

px a x b qrxzz c s ta,bu a ' c Ý Ý Ñ pz a ' c x b qrxzz c s ta,bu
May be renamed by mapping the label a to d ' e, the label b to d ' e, and the label c to f ' g, obtaining:

px d ' e x d ' e qrxzz f ' g s tdu e ' f Ý Ý Ñ pz d ' e ' f ' g x d ' e qrxzz f ' g s tdu
Note that the set ta, bu collapses to the set tdu and that the name of the ls redex is not d ' e ' f ' g but rather e ' f. is mechanism can be formalized with the following notion of labeling morphism.

De nition 6.26 (Labeling morphism). A labeling morphism φ is a function φ : L Ñ L homomorphic on all label constructors, except for initial labels:

φp ' q " ' φpbq " b φpdbpαqq " dbpφpαqq φprαsq " rφpαqs φptαuq " tφpαqu φpα βq " φpαq φpβq

If Ω is a set of labels, we write φpΩq to stand for tÓ pφpΩqq | α P Ωu. e domain of labeling morphisms is extended so that they may be applied on terms as follows:

φpx α q " x φpαq φpλ α Ω x.tq " λ φpαq φpΩq x.φptq φp@ α pt, sqq " @ φpαq pφptq, φpsqq φptrxzss Ω q " φptqrxzφpsqs φpΩq Labeling morphisms may also be applied on contexts, by declaring that φplq " l, and on redex names, as follows:

φpdbpαqq " dbpφpαqq φpα ' βq " Ó pφpαqq ' Ò pφpβqq φpta ' β | a P Ωuq " ta ' Ò pφpβqq | a P φpΩqu Remark 6.27. A labeling morphism is uniquely determined by its value on the set of initial labels I. Proof. By induction on the context C under which the redex in t is contracted: e interesting case is when there is a step at the root of the term. As a consequence of the previous proposition, labeling morphisms can be applied on derivations, se ing φpR 1 . . . R n q " φpR 1 q . . . φpR n q.

Orthogonality

In this section we show that the LLSC is con uent. Actually, we prove the much stronger property that the LLSC forms an orthogonal axiomatic rewriting system in the sense of Melliès, as de ned in Def. 2.39.

We begin by showing that the LLSC is weakly Church-Rosser. Recall from Def. 2.18 that an abstract rewriting system is weakly Church-Rosser if every peak ÐÑ formed by exactly two steps can be closed with zero or more steps . In the labeled calculus a stronger result can be established, which we call strong permutation. It states that every peak µ Ð Ý ν Ý Ñ, where µ and ν are the names of the steps, can be closed with zero or more steps of the same name, that is

ν Ý Ñ Ý ÑÐ Ý µ Ð Ý.
t µ G G ν s ν u µ G G G G r
e proof is constructive, and:

1. If R is a db step, σ consists of exactly one step.

2. If R is a ls step, σ may consist of one or two steps.

3. If R is a gc step, σ may consist of zero or one steps.

And symmetrically for S and ρ.

Proof. By exhaustive case analysis. See the appendix for the detailed proof. Below we show three examples that illustrate some interesting situations:

1. Nested db steps.

@ a pλ b tcu x.x c , @ d pλ e tfu y.y f , z g qq dbpbq G G dbpeq

x ardbpbqsc rxz@ tdbpbqud pλ e tfu y.y f , z g qs c dbpeq @ a pλ b tcu x.x c , y drdbpeqsf ryzz tdbpequg s tfu q dbpbq G G x ardbpbqsc rxzy tdbpbqudrdbpeqsf ryzz tdbpequg s tfu s c

2. Duplication of a ls step by a ls step.

x a rxzy b s tau ryzz c s tbu

a ' b G G b ' c y a ' b rxzy b s tau ryzz c s tbu b ' c z a ' b ' c rxzy b s tau ryzz c s tbu b ' c x a rxzz b ' c s tau ryzz c s tbu a ' b G G z a ' b ' c rxzz b ' c s tau ryzz c s tbu
Note that, if there is duplication, there are exactly two ways to close the diagram, depending on the order in which the copies of the duplicated steps are contracted.

3. Erasure of a ls step by a gc step.

x a rwzy b s tbu ryzz c s tbu

tb ' bu G G b ' c x a ryzz c s tbu x a rwzz b ' c s tbu ryzz c s tbu tb ' bu G G x a ryzz c s tbu
De nition 6.31 (Residuals for the LLSC). Recall that the LSC with its usual residual relation forms an orthogonal axiomatic rewriting system (Prop. 6.3). e LLSC is provided with a residual relation by relying on the residual relation of the LSC as follows.

If t P T is a labeled term, let us write |t| P T for the term without labels that results from erasing all labels from t. Similarly, if R : t Ñ s is a labeled step in the LLSC, let us write |R| : |t| Ñ LSC |s| for the corresponding step in the LSC, via the obvious bijection.

Let R : t Ñ s be a labeled step and consider two labeled steps S 1 : t Ñ u and S 2 : s Ñ r. We declare the residual relation S Proof. It can be checked that the LLSC provided with the residual relation of Def. 6.31 forms an orthogonal axiomatic rewriting system. e rst three axioms: Autoerasure, Finite Residuals, and Finite Developments (FD), are immediate consequences of the fact that the LSC is an orthogonal axiomatic rewriting system. For example, to prove FD, suppose that there is an in nite development t 1 Ñ t 2 Ñ . . . of a set of coinitial steps M in the LLSC. en e Semantic Orthogonality (SO) axiom is a consequence of Strong permutation (Prop. 6.30). Strictly speaking, SO can be checked by exhaustively inspecting all the diagrams constructed in the proof of Prop. 6.30 and checking that they are indeed permutation tiles (cf. Def. 2.37).

|t 1 | Ñ LSC |t 2 | Ñ LSC . . .
e following lemma proves the Copy property from the Bestiary of Section 6.2.1, and a weak form of the converse implication: Lemma 6.33 (Copy property). Let R 1 , S, and R 2 be steps such that srcpR 1 q " srcpSq and srcpR 2 q " tgtpSq. en:

1. If R 1 xSy R 2 in
the LLSC, then R 1 and R 2 have the same name.

2. If srcpR 1 q is initially labeled and R 1 and R 2 have the same name, then R 1 xSy R 2 .

Proof. Item 1. is an immediate consequence of Strong permutation (Prop. 6.30). Namely, if we consider the peak formed by S and R 1 , Prop. 6.30 ensures that the step R 2 used to close the diagram has the same name as R 1 .

We omit the technical proof of item 2. De ne the anchor label of a step as follows. Given a db step named dbpbq, its anchor label is the label decorating the lambda, that is, b. Given a ls step named a ' b, its anchor label is the label decorating the contracted variable, that is, a. Given a gc step named ta 1 ' b, . . . , a n ' bu, its anchor label is the label decorating the erased substitution, that is, b. Let S : t Ñ s and recall that t is initially labeled so there is a single occurrence of the anchor label of R 1 in t. Consider three cases, depending on whether the number of residuals #pR 1 {Sq is 0, 1, or 2. 0. If R 1 {S " ∅ then S is a gc step erasing the contracted substitution. en S erases the unique occurrence of the anchor label of R 1 , that is, the anchor label of R 1 does not appear anywhere in in s, contradicting the fact that R 1 and R 2 have the same name. So this case is impossible.

1. If R 1 {S " tR 1 2 u then S does not erase or duplicate of the anchor label of R 1 . is means that there is a unique occurrence of the anchor label of R 1 in s, and this implies that R 2 " R 1 2 .

2. If R 1 {S " tR 21 , R 22 u then S makes exactly two copies of the anchor label of R 1 , so there are exactly two occurrences of the anchor label of R 1 in s, and this implies that R 2 P tR 21 , R 22 u.

Remark 6.34. e converse of the Copy property does not hold if the term is not initially labeled, and even if it is initially reachable. For example, the source of R 1 and S below is initially reachable but not initially labeled, and even though R 1 and R 2 have the same name, it is not the case that R 1 xSy R 2 :

px a x b qrxzy c s ta,bu ryzz d s tcu a ' c G G py a ' c x b qrxzy c s ta,bu ryzz d s tcu Spb ' cq G G R1pc ' dq py a ' c y b ' c qrxzy c s ta,bu ryzz d s tcu R2pc ' dq pz a ' c ' d x b qrxzy c s ta,bu ryzz d s tcu py a ' c z b ' c ' d qrxzy c s ta,bu ryzz d s tcu
One important corollary of Orthogonality is that labeling is consistent with permutation equivalence. Proposition 6.35 (Permutation equivalent derivations yield the same labellings). Let ρ 1 and ρ 2 be permutation equivalent derivations, i.e. ρ 1 " ρ 2 . Let ρ 1 and ρ 2 be labeled variants of ρ 1 and ρ 2 respectively such that srcpρ 1 q " srcpρ 2 q, i.e. they start on the same labeled term. en tgtpρ 1 q " tgtpρ 2 q, i.e. they end on the same labeled term.

Proof. Recall from Def. 2.40 that " is the re exive, symmetric and transitive closure of the one-step permutation axiom " 1 . We proceed by induction on the derivation that ρ 1 " ρ 2 .

e re exivity, symmetry and transitivity cases are immediate. e only interesting case is the axiom, i.e. when:

ρ 1 " τ 1 R σ τ 2 " 1 τ 1 S ρ τ 2 " ρ 2
where ρ is a complete development of R{S and σ is a complete development of S{R. Consider the labeled variants τ 1 , R , S , σ , ρ , τ 2 , and τ 2 of τ 1 , R, S, σ, ρ, τ 2 , and τ 2 respectively, such that:

• τ 1 R σ τ 2 is a labelled variant of τ 1 R σ τ 2 whose source is t ,

• τ 1 S ρ τ 2 is a labelled variant of τ 1 S ρ τ 2 whose source is t .

en we know that R σ has the same source as S ρ , and we claim that they have the same target. is is a consequence of the strong permutation property (Prop. 6.30), observing that every diagram in the proof of Prop. 6.30 is closed with the relative residuals of R and S. Since R σ and S ρ have the same target, then τ 2 " τ 2 , so we conclude that ρ 1 and ρ 2 have the same target, as required.

Weak Normalization for Bounded Reduction

Consider the following in nite derivation in the LLSC, starting from an initially labeled variant of the non-terminating term Ω " pλx.xxqpλx.xxq and li ing the reduction Ω LSC Ω LSC . . . to the labeled calculus: @ a pλ b td,eu x.@ c px d , x e q, λ f th,iu x.@ g px h , x i qq @ ardbpbqsc pλ d ' atdbpbquf th,iu

x.@ g px h , x i q, λ e ' atdbpbquf th,iu

x.@ g px h , x i qq @ ardbpbqscrdbpd ' atdbpbqufqsg pλ h ' tdbpd ' atdbpbqufque ' atdbpbquf th,iu x.. . ., . . .q . . . One can see that the names of the db steps become progressively larger in size. More precisely, the name of each db step is strictly contained in the name of the following db step, as evidenced by the underlining:

dbpbq dbpd ' atdbpbqufq dbph ' tdbpd ' atdbpbqufque ' atdbpbqufq . . .
is means that the names of the db steps become not merely larger but also deeper in height, if labels are seen as trees. Informally speaking, this is because the LLSC is designed to verify the Creation principle in the Bestiary of properties given in Section 6.2.1. Recall that the Creation principle states that whenever a step R creates a second step S, the name of R is a sublabel of the name of S. In this case, each db redex contributes to the creation of the following one, and as a consequence the name of each db step is a sublabel of the name of the following one.

In this section we show that if the rewriting relation of the LLSC is restricted so that the height of the names of steps is bounded, the resulting rewriting relation turns out to be weakly normalizing. In the following section (Section 6.3.4) we prove that it actually turns out to be strongly normalizing. Note that the strong normalization result explains and generalizes the example given above: it means that whenever we have an in nite labeled reduction sequence t 1 Ñ t 2 Ñ . . . the names of the steps must be labels whose height cannot be bounded by any integer.

Below we introduce the auxiliary calculi LLSC P and LLSC P I , which only allow contracting a step R if the name of R veri es a given predicate P . We also introduce the notion of bounded predicate.

De nition 6.36 (e P -restricted LLSC). Let P be a predicate on redex names. We de ne two calculi, LLSC P and LLSC P I . e set of terms is T in both cases. e reduction relation Ý Ñ P is de ned as in the LLSC, restricted to contracting only steps whose names verify the predicate P . e reduction relation Ñ P I is de ned similarly, but restricted to contracting db and ls-steps:

t µ Ý Ñ P s def ðñ t µ Ý Ñ s ^P pµq holds t µ Ý Ñ P I s def ðñ pt µ Ý Ñ db s _ t µ Ý Ñ ls sq ^P pµq holds
Note that since there are no gc-steps, the name of a step in the LLSC P I can always be understood as a label. We write t Ý Ñ P s if t µ Ý Ñ P s holds for some redex name µ, and similarly for Ý Ñ P I .

De nition 6.37 (Height of labels and redex names). We de ne the height of a label as follows: e result of weak normalization from this section should be seen as a stepping stone for the stronger result of strong normalization in the next section. In particular, for the time being, we can dispense of gc steps and work exclusively with the LLSC P I . Our current goal is then to prove that the rewriting relation µ Ý Ñ P I is weakly normalizing if P is bounded. is is the content of Prop. 6.45 below. We sketch the structure of the proof:

hpaq def " 1 hprαsq " hptαuq " hpdbpαqq def " 1 `
1. In Prop. 6.41, we show that the LLSC without gc veri es the Creation principle in the Bestiary of Section 6.2.1.

2. In Lem. 6.43, we show that among the steps from a LLSC P I term, there is at least one non-duplicating step.

3. In Lem. 6.44, we show that contracting a non-duplicating step has the following e ect:

3.1 Every other step is preserved (i.e. it has exactly one residual).

3.2 e created redexes have deeper names than the contracted redex, i.e. the height of the label increases. ese results will allow us to de ne a measure on terms that always decreases when contracting a non-duplicating redex.

Creation principle e following relation of name contribution corresponds to the informal notion that the name of a redex is "contained" in the name of another redex.

De nition 6.39 (Name contribution). A redex name µ is said to directly contribute to a redex name ν, wri en µ 1. db creates db. e situation is:

@ γ p@ δ ppλ β Ω x.pλ ε Θ y.tqL 1 qL 2 , sqL 3 , uq dbpβq Ý ÝÝ Ñ @ γ ppλ δrdbpβqsε Θ y.tqL 1 rxztdbpβqu : ss Ω L 2 L 3 , uq

So indeed dbpβq

Name ãÑ 1 dbpδrdbpβqsεq.

2. db creates ls. e situation is @ γ ppλ β Ω x.Cxxx δ yyqL, tq dbpβq Ý ÝÝ Ñ γrdbpβqs : Cxxx δ yyrxztdbpβqu : ts Ω L By Lem. 6.9, γrdbpβqs : Cxxx δ yy is of the form C 1 xxx δ 1 yy with Ó pδq " Ó pδ 1 q. Moreover, by Lem. 6.9, Ò ptdbpβqu : tq " Ò ptdbpβquq " tdbpβqu. So we conclude that dbpβq Name ãÑ 1 Ó pδq ' tdbpβqu, as required.

3. ls creates db upwards. e situation is:

@ β px γ L 1 rxzpλ δ Θ y.sqL 2 s Ω L 3 , tq Ópγq ' Òpδq Ý ÝÝÝÝÝ Ñ ls @ β ppλ γ ' δ Θ y.sqL 2 L 1 rxzpλ δ Θ y.sqL 2 s Ω L 3 , tq

So indeed Ó pγq ' Ò pδq

Name ãÑ 1 dbpγ ' δq.

4. ls creates db downwards. Similar to the previous case.

Non-duplicating steps

De nition 6.42 (Non-duplicating step). Given any axiomatic rewriting system with a notion of residual, a step R : t Ñ s is said to be non-duplicating if any coinitial step S : t Ñ u has at most one residual a er R, that is, #pS{Rq ď 1.

Lemma 6.43 (Existence of non-duplicating Ñ P I -steps). Let t P T not in Ñ P I -normal form. en t has at least one non-duplicating Ñ P I -redex.

Proof. Since t is not in Ñ P I -normal form, it has at least one Ñ P I -redex. Let R : t Ñ P I s be the step whose anchor lies more to the right. Recall that the anchor of a db step is the variable bound by the λ, and the anchor of a ls step is the variable a ected by the substitution. Let S : t Ñ P I u be any step coinitial to R, and let us check that #pS{Rq ď 1. If R is a db step, then trivially #pS{Rq ď 1. If R is a ls step, suppose that #pS{Rq ą 1. en the step R is of the form C 1 xC 2 xxx α yyrxzrsy Ñ C 1 xC 2 xxα ' : ryyrxzrsy and the anchor of S must lie inside r. is contradicts the fact that R is the step whose anchor lies more to the right.

Lemma 6.44 (E ect of contracting a non-duplicating step). Let names P I ptq denote the multiset of names of Ñ P I -steps of t. Let R : t α Ý Ñ P I s be a non-duplicating step. en there exist multisets of labels m and n such that: names P I ptq " m Z tαu names P I psq " m Z n and moreover hpαq ă hpβq for every label β P n. Note that α is the name of the contracted step and n are the names of the created steps.

Proof. Since α is the name of a step of t, we can write names P I ptq as names P I ptq " m Z tαu. Since R is a non-duplicating step and it is not a gc step, given any step S : t Ñ P I u such that R ‰ S we have that S has a single residual, that is, S{R is a singleton. Moreover, by the Copy property (Lem. 6.33), S{R has the same name as S. So we have that names P I ptq " m Z n, where n is the multiset of names of the redexes created in this step. Recall that the name of the contracted redex contributes to the names of the created redexes (Prop. 6.41). at is, α Name ãÑ 1 β for every β P n. is implies, in particular, that hpαq ă hpβq for every β P n.

Weak normalization for bounded reduction without gc

We are now able to prove the main result of this subsection. e argument for weak normalization relies on the extension of a well-founded ordering pX, ąq to a well-founded ordering pąq over multisets of elements of X, as described in m. 2.29. Proposition 6.45 (Bounded reduction is weakly normalizing). If P is a bounded predicate, then Ñ P I is WN.

Proof. Let H P N be a bound for the bounded predicate P . Consider the following measure, which takes a multiset of labels and yields a multiset of integers, #pmq def " tH ´hpαq | α P mu. is measure can be extended to work over terms, by declaring #ptq def " #pnames P I ptqq. Note that #ptq is nite and its elements are non-negative integers. e proof relies on the following claim:

• Claim. If t is not in Ñ P I -normal form, there is a step t Ñ P I s such that #ptq ą #psq.

Proof of the claim. Let t P T be a term not in Ñ P I -normal form. By Lem. 6.43, it has at least one non-duplicating redex R : t Ñ P I s. By Lem. 6.44, that there exist multisets m and n such that names P I ptq " m Z tαu and names P I psq " m Z n, where moreover hpαq ă hpβq for all β P n. It su ces to check that #ptq ą #psq.

We begin by observing that #ptqpH ´hpαqq ą #psqpH ´hpαqq. To see this, consider any label that has the same height as α. It cannot belong to n, since all labels in n have greater height than α. en #pnqpH ´hpαqq " 0 and we have:

#ptqpH ´hpαqq " #pm Z tαuqpH ´hpαqq ą #pmqpH ´hpαqq " #pm Z nqpH ´hpαqq " #psqpH ´hpαqq
is observation implies, in particular, that #ptq ‰ #psq. Now consider a value x P Z ě0 such that #psqpxq ą #ptqpxq. Since #psqpxq ą 0, there is a label β such that

x " H ´hpβq. Clearly hpβq ‰ hpαq, since we have already proved #ptqpH ´hpαqq ą #psqpH ´hpαqq, which would contradict the fact that #ptqpxq ă #psqpxq. erefore #ptαuqpxq " #ptαuqpH ´βq " 0.

Moreover, there must be a label β 1 P n of the same height as β. By contradiction, suppose that all labels of the same height as β were in m. en #pnqpH ´βq " 0, which implies:

#ptqpH ´hpβqq " #pm Z tβuqpH ´hpβqq " #pmqpH ´hpβqq " #pm Z nqpH ´hpβqq " #psqpH ´hpβqq
is also contradicts the fact that #ptqpxq ă #psqpxq. en x " H ´hpβ 1 q with β 1 P n. Finally, we want to show that there is a non-negative integer y P Z ě0 such that y ą x and mpyq ą mpxq. Let y :" H ´hpαq. In fact, since β 1 P n is of greater height than α, we have y " H ´hpαq ą H ´hpβ 1 q " x. Moreover, as we have already observed, #ptqpyq " #ptqpH ´hpαqq ą #psqpH ´hpαqq " #psqpyq. is concludes the proof of the claim.

By repeatedly applying the claim, it is immediate to conclude that Ñ P I is WN.

Strong Normalization for Bounded Reduction

In this section we build upon, and strengthen, the normalization result of Prop. 6.45, by showing that the full LLSC (with gc) is strongly normalizing as long as reduction is restricted so that the height of redex names is bounded. e structure of the proof is as follows:

1. First we show that Ñ P I is increasing (Lem. 6.48). Recall from Def. 2.21 that a rewriting relation ÑĎ X 2 is increasing if there exists a function f : X Ñ N such that x Ñ y implies f pxq ă f pyq.

2. Using the previous property, we conclude in Lem. 6.49 that Ñ P I is strongly normalizing if P is a bounded predicate.

3. Finally, using a technical lemma to postpone gc steps (Lem. 6.50), we obtain the main result (m. 6.51), which states that the reduction relation for the full LLSC is SN, as long as redex names have bounded height.

Strong normalization for bounded reduction without gc

De nition 6.46 (Measure of a labeled term). We de ne the size of a label as follows:

}a} def " 1 }rαs} " }tαu} " }dbpαq} def " 1 `}α} }α β} def " }α} `}β}
Given a labeled term, its measure }t} is de ned as the sum of the sizes of all its labels: Ý ÝÝÝÝÝ Ñ P I Cxα ' : t 1 yrxzt 1 s Ω . en:

}x α } def " }α} }λ α Ω x.t} def " }α} `}t} }@ α pt
}t} " }C} `}x α } `}t 1 } by Lem. 6.47

" }C} `}α} `}t 1 } ă }C} `}α} `}t 1 } `}t 1 } `1 " }C} `}α ' } `}t 1 } `}t 1 } " }C} `}α ' : t 1 } `}t 1 }
by Lem. 6.47

" }s}

Chapter 7

Applications of the Labeled Linear Substitution Calculus

Introduction

In his PhD thesis [?], Jean-Jacques Lévy de ned a notion of redex family for the λ-calculus, with the goal of understanding what an optimal implementation of the λ-calculus would look like. In a straightforward implementation of the λ-calculus, each step in the implementation corresponds to a single β-step. If the implementation has some non-trivial mechanism of sharing, however, each step in the implementation may correspond to the simultaneous contraction of many β-steps. Lévy proved that if an implementation of the λ-calculus contracts, in each step, a maximal set of β-steps belonging to the same redex family, in such a way that at least one β-step is needed, then the implementation is optimal. Later, in [?], Lévy and Gérard Huet studied standardization and normalization in the se ing of orthogonal term rewriting systems. In particular, they showed that if a reduction strategy repeatedly contracts a needed step, the strategy reaches a result whenever possible, i.e. it is normalizing.

In their 1996 paper [?], John Glauert and Zurab Khasidashvili generalized the results of optimality and normalization to any abstract rewriting system, provided that it comes equipped with well-behaved notions of residuals and redex families.

e abstract axiomatic structure encapsulating all the desired properties is called a Deterministic Family Structure in [?].

In the previous chapter, we have de ned a Lévy labeled calculus LLSC (Section 6.2) and we have proved that it enjoys a number of properties (Section 6.3). In this chapter, the Lévy labeled calculus LLSC is used as a tool to prove properties about the usual, unlabeled, LSC. In particular, the labeled calculus LLSC is used to show that the unlabeled LSC forms a Deterministic Family Structure, and consequently to obtain optimality, standardization, and normalization results. Most of the results concern the LSC without gc.

Our Work

is chapter is the result of collaboration with Eduardo Bonelli and it is structured as follows. We highlight in boldface what we consider to be the main contributions:

1. In the previous chapter (Rem. 6.8), we have already seen that the LSC with the gc rule does not enjoy the property known as redex stability. In Section 7.2, using the LLSC as a tool, we show that, however, the LSC without the gc rule does enjoy redex stability (Prop. 7.1).

2. In Section 7.3 we recall Glauert and Khasidashvili's notion of Deterministic Family Structure (DFS). en, using the LLSC as a tool, we prove that the LSC without gc forms a Deterministic Family Structure (m. 7.13).

When the properties of Deterministic Family Structures are translated into the language of Lévy labels, the statement that the LSC forms a DFS can essentially be summarized as the statement that the LLSC veri es the properties 1-7 in the Bestiary of Chapter 6 Section 6.2.1. e property of Termination for the LLSC corresponds to the property usually known as Generalized Finite Developments or Finite Family Developments. e property of Contribution (Prop. 7.12) is not immediate and relies on Finite Family Developments.

3. In Section 7.4 we recall Lévy's optimality result for the λ-calculus (m. 7.17), we also review Glauert and Khasidashvili's abstract optimality result (m. 7.24), and, as a corollary, we derive an optimality result for the LSC without gc.

Stability

Recall that an orthogonal axiomatic rewriting system is said to verify the Stability property (Def. 6.7) if any two steps that have a common residual also have a common ancestor. Graphically:

T 0 y y R S 1 1 T 1 o o S{R 1 1 1 1 R{S T 2 G G T 3
In Rem. 6.8 we observed that the LSC with the gc rule does not have the Stability property. On the other hand: Proposition 7.1. e LLSC without gc has the Stability property.

Proof. Let R, S, T 1 , T 2 , and T 3 be ve steps such that T 3 P T 1 {pS{Rq X T 2 {pR{Sq. Consider an initially labeled variant t 0 of the term at the peak of the diagram, i.e. the source of R and S. Consider also all the corresponding labeled variants R , S , T 1 , T 2 , and T 3 of R, S, T 1 , T 2 , and T 3 respectively:

t 0 R Ñ Ñ S)) t 1 Ñ Ñ S {R)))) t 2
))

R {S Ñ Ñ Ñ Ñ T 1 t 3 T 2 T 3
Since T 3 is a residual of both T 1 and T 2 , by the Copy property (Lem. 6.33), we have that T 1 , T 2 and T 3 have the same name. We consider two cases, depending on whether T 1 and T 2 have an ancestor in t 0 or not.

1.

If T 1 has an ancestor in t 0 . en there is a step T 0 such that T 1 P T 0 {R, so T 0 has the same name as T 1 by the Copy property (Lem. 6.33). Moreover, since T 0 and T 2 have the same name and t 0 is initially labeled, we have that T 2 P T 0 {R using the converse of the Copy property (Lem. 6.33).

2.

If T 2 has an ancestor in t 0 . Analogous to the previous case.

3.

If T 1 and T 2 do not have an ancestor in t 0 . We argue that this case is impossible. Since T 1 has no ancestor, by de nition, it is a created redex. By the Creation property (Prop. 6.41) the name of R directly contributes to the name of T 1 , so there are three possibilities:

dbpbq Name ãÑ 1 dbpardbpbqscq dbpbq Name ãÑ 1 a ' tdbpbqu a ' b Name ãÑ 1 dbpa ' bq
Note that since a, b, and c are initial labels, the name of T 1 uniquely determines the name of R . Symmetrically, T 2 is created by S , and the name of S is uniquely determined by the name of T 2 .

Finally, since T 1 and T 2 both have the same name, and they uniquely determine the name of their ancestors, the names of R and S must coincide. Moreover t 0 is initially labeled, so by the Initial property (Lem. 6. [START_REF] Balabonski | Optimality for dynamic pa erns[END_REF] we have that R " S , and in particular R " S, which is a contradiction.

Redex Families

In this section we study redex families in the LSC without gc. First, we review the de nition of Deterministic Family Structure (DFS), proposed by Glauert and Khasidashvili in [?]. A Deterministic Family Structure is an abstract rewriting system that veri es a number of particular axioms. ese axioms essentially request that there is a well-behaved notion of redex family, which allows one to state and prove a generalized version of Lévy's optimality result in a framework that abstracts away the low level details of Lévy labels. Second, we prove that the LSC without gc forms a DFS (m. 7.13). is construction relies crucially on the labeled LSC that we have de ned in previous sections (Def. 6.6).

We begin by recalling some notation and de nitions:

• An axiomatic rewriting system has the unique ancestor (UA) property (Def. 2.31) if a step has at most one ancestor, that is, whenever

R 1 xSy R and R 2 xSy R then R 1 " R 2 .
• An axiomatic rewriting system has the acyclicity property (Def. 2.31) if two steps cannot erase each other, that is, whenever R ‰ S and R{S " ∅ then S{R ‰ ∅.

• In an abstract rewriting system, a redex with history or hredex for short (see Section 6.1.1) is a non-empty derivation. We are usually interested in the last step of the hredex, so hredexes are typically wri en as of the form ρR where ρ is a possibly empty derivation and R is a composable step. e set of hredexes whose source is an object x is denoted by Histpxq.

• In an orthogonal axiomatic rewriting system we write ρ " σ whenever ρ and σ are permutation equivalent derivations (Def. 2.40).

We also give a formal de nition of copy:

De nition 7.2 (Copy relation). Let ρR and σS be coinitial hredexes in any orthogonal axiomatic rewriting system. We say that σS is a copy of ρR, wri en ρR ď σS if there exists a derivation τ such that ρτ " σ and R xτ y S. Graphically:

ρ σ 1 1 1 1 R τ G G G G S 1 1
De nition 7.3 (Deterministic Family Structure). A Deterministic Residual Structure (DRS) is an orthogonal axiomatic rewriting system (cf. Def. 2.39) that moreover veri es the unique ancestor (UA) and acyclicity properties.

A Deterministic Family Structure (DFS) is a triple xA, », ãÑy, where A is a Deterministic Residual Structure, » is an equivalence relation between coinitial hredexes whose equivalence classes are called families, and ãÑ is a binary relation of contribution between coinitial families. Two families are declared to be coinitial if their representatives are coinitial. e family of an hredex ρR is wri en Fam » pρRq. Moreover, the following axioms hold: 1. I . If R, S are di erent coinitial steps, then Fam » pRq ‰ Fam » pSq.

C

. e inclusion pďq Ď p»q holds.

3. F F D (FFD). Any derivation that contracts hredexes of anite number of families is nite. More precisely, there cannot be an in nite derivation R 1 R 2 . . . R n . . . such that the set tFam » pR 1 . . . R n q | n P Nu is nite.

C

. If ρR is an hredex and R creates S, then Fam » pρRq ãÑ Fam » pρRSq.

C

. Given any two coinitial families φ 1 , φ 2 P Histptq{ », the relation φ 1 ãÑ φ 2 holds if and only if for every hredex σS P φ 2 , there is an hredex ρR P φ 1 such that ρR is a pre x of σ (i.e. σ " ρRσ 1).

Note that the formal requirements imposed by the de nition of a DFS correspond to the informal principles 2-7 in the Bestiary of Chapter 6 Section 6.2.1. While the Bestiary states these principles using redex names, the notion of DFS states them using the more abstract notion of family.

e axioms I , C , and C correspond to the principles 2, 3, and 4, respectively, in the Bestiary. Practically speaking, once one has de ned an appropriate Lévy labeling for a calculus, the proof that these axioms are ful lled should be a technical but direct proof.

e axioms F F D and C correspond to the principles 5 and 7, respectively, in the Bestiary, and their proof is typically non-trivial.

Let us brie y recapitulate notation. So far we have introduced various axiomatic structures to deal with rewriting systems abstractly. e following table summarizes the relation between these structures, from most general to most restrictive:

T 0 y y R S 1 1
T 1 o o S{R 1 1 1 1 R{S T 2 G G T 3
at is, we have that R ‰ S, where T 3 P T 1 {pS{Rq and T 3 P T 2 {pR{Sq. Let us show that T 1 and T 2 have a common ancestor T 0 . Note that R T 1 ď pR \ Sq T 3 and S T 2 ď pR \ Sq T 3 by de nition of the copy relation. By the C axiom we have that R T 1 and S T 2 are in the same family: R T 1 » pR \ Sq T 3 » S T 2

We consider three cases, depending on whether Fam » pRq contributes to Fam » pRT 1 q, or Fam » pSq contributes to Fam » pST 2 q, or none of these happens.

1. If Fam » pRq ãÑ Fam » pRT 1 q. We argue that this case is impossible. By the C axiom, since Fam » pRq ãÑ Fam » pRT 1 q and S T 2 P Fam » pRT 1 q, we must have that S P Fam » pRq. is means that R » S, which contradicts the I axiom, since R and S are di erent coinitial steps.

2. If Fam » pSq ãÑ Fam » pST 2 q. is case is impossible, by a symmetric argument as in the rst case.

3. If pFam » pRq ãÑ Fam » pRT 1 qq and pFam » pSq ãÑ Fam » pST 2 qq. en by the contrapositive of the C axiom, we have that R does not create T 1 so it has an ancestor, i.e. there is a step T 0 such that T 1 P T 0 {R. Similarly, T 2 has an ancestor before S, i.e. there is a step T 1 0 such that T 2 P T 1 0 {S. Note that T 0 and T 1 0 are both ancestors of T 3 , so by the unique ancestor property we have that T 0 " T 1 0 , which concludes the proof.

e LSC without gc forms a Deterministic Family Structure is section is devoted to proving that the LSC without gc forms a Deterministic Family Structure. By de nition, a DFS is a triple xA, », ãÑy where A is a Deterministic Residual Structure, so we start by showing that it forms a DRS. Proof. In [?], the LSC has already been shown to form an orthogonal axiomatic rewriting system. (We also give a proof of this fact in Prop. 6.3). It remains to be checked that the LSC has the unique ancestor and acyclicity properties: To show that the LSC without gc forms a DFS, we need some preliminary lemmas. Recall that p Name ãÑ q stands for the relation of name contribution de ned in Def. 6.39.

1. Unique ancestor (UA). Let R 1 xSy R and R 2 xSy R in the LSC. Let R 1 , R 2 , R , S be labeled variants of R 1 , R 2 ,
ppλx.xq yqryzzs R G G T 1 xrxzysryzzs S G G T 2 yrxzysryzzs ppλx.

xq zqryzzs xrxzzsryzzs

We have that T 1

Fam

» RT 2 and that R Fam ãÑ RS. is can be justi ed starting from an initially labeled variant of ppλx.xq yqryzzs and noting that the names of T 1 and RT 2 are both d ' e, and that the name of R contributes to the name of RS, that is, dbpbq Name ãÑ c ' tdbpbqu:

@ a pλ b x.x c , y d qryzz e s dbpbq G G d ' e
x ardbpbqsc rxzy tdbpbqud sryzz e s

c ' tdbpbqu G G d ' e
y ardbpbqsc ' tdbpbqud rxzy tdbpbqud sryzz e s @ a pλ b x.x c , z d ' e qryzz e s x ardbpbqsc rxzz tdbpbqud ' e sryzz e s Proposition 7.9 (Redex families are well-de ned). e relations p Fam » q and p Fam ãÑq are wellde ned, in the sense that they do not depend on the choice of the initial labeling.

Proof. Let ρR and σS be coinitial hredexes in the LSC without gc. Let ρ 1 R 1 and σ 1 S 1 be initially labeled variants of ρR and σS starting on the same initially labeled term t 1 , and let ρ 2 R 2 and σ 2 S 2 be initially labeled variants of ρR and σS starting on a possibly di erent initially labeled term t 2 . Let µ 1 , ν 1 , µ 2 , ν 2 be the names of R 1 , S 1 , R 2 , S 2 respectively. To show that p Fam » q and p Fam ãÑq are well-de ned it su ces to prove that:

1. pµ 1 " ν 1 q ðñ pµ 2 " ν 2 q 2. pµ 1 Name ãÑ ν 1 q ðñ pµ 2 Name ãÑ ν 2 q
In both cases, to prove the equivalence it su ces to show the implication in one direction, since the other one is symmetric.

Note that each subterm of t 1 is labeled with a di erent initial label, so there is a labeling morphism φ : L Ñ L such that φpt 1 q " t 2 . Since labeling morphisms are functorial (Prop. 6.29) we have that φpρ 1 R 1 q " ρ 2 R 2 and similarly φpσ 1 S 1 q " σ 2 S 2 .

is means that φpµ 1 q " φpR 1 q " R 2 " µ 2 and φpν 1 q " φpS 1 q " S 2 " ν 2 . Now, if µ 1 " ν 1 then µ 2 " φpµ 1 q " φpν 1 q " ν 2 , which proves that p Fam » q is well-de ned. On the other hand, if µ 1 Name ãÑ ν 1 then using Lem. 7.6 we have that µ 2 " φpµ 1 q Name ãÑ φpν 1 q " ν 2 , which proves that p Fam ãÑq is well-de ned. Proof. Let t be a term and let φ, φ 1 P Histptq{ Fam » be two families. Let us show that the condition φ Fam ãÑ φ 1 does not depend upon the choice of the representative of the equivalence classes of φ and φ 1 . Indeed, let ρ 1 R 1 , ρ 2 R 2 P φ, and let

It is immediate to check that the family relation p

σ 1 S 1 , σ 2 S 2 P φ 1 . Let us show that ρ 1 R 1 Fam ãÑ σ 1 S 1 if and only if ρ 2 R 2 Fam ãÑ σ 2 S 2 .
Let t be an initially labelled variant of the source term t, and consider labelled variants

ρ 1 R 1 , ρ 2 R 2 , σ 1 S 1 , and σ 2 S 2 of ρ 1 R 1 , ρ 2 R 2 , σ 1 S 1 ,
and σ 2 S 2 respectively. Moreover, let µ 1 , µ 2 , ν 1 , and ν 2 be the names of R 1 , R 2 , S 1 , and S 2 respectively. en, by de nition of being in the same family, In the following proposition we state and prove the C axiom for the LSC without gc. e proof relies on various quite technical lemmas whose statement and proof can be found in Section A.4.1 of the appendix. Proposition 7.12 (C axiom for the LSC without gc). Let φ 1 , φ 2 P Histptq{ Fam » be coinitial families in the LSC without gc. en the following propositions are logically equivalent:

ρ 1 R 1 Fam » ρ 2 R 2 means that µ 1 " µ 2 . Similarly, σ 1 S 1 Fam » σ 2 S 2 means that ν 1 " ν 2 . en: ρ 1 R 1 Fam ãÑ σ 1 S 1 if
1. Syntactic contribution. φ 1 Fam ãÑ φ 2 .
2. Semantic contribution. For every hredex σS P φ 2 , there is an hredex ρR P φ 1 such that ρR is a pre x of σ.

Proof. Let us show each direction of the implication. We refer to the implication p1 ùñ 2q as correctness and to the implication p2 ùñ 1q as completeness.

pñq Correctness. Let σS P φ 2 be an hredex. Consider an initially labelled variant t 0 of t, and the labelled variant σ S of σS whose source is t 0 . Let t 1 " tgtpσ q " srcpS q. Moreover, let τ T P φ 1 , and consider the labelled variant τ T of τ T whose source is t 0 .

Let ν be the name of S , and let µ be the name of T . Since φ 1

Fam

ãÑ φ 2 we have, by de nition, that µ Name ãÑ ν. It can be seen that names contributing to a step must occur in the source (by Lem. A.83 in Section A.4.1 of the appendix). is means that there must exist a label α decorating a subterm of t 1 such that µ is a sublabel of α. By Lem. A.94 (in Section A.4.1 of the appendix), this entails that there must exist a step in σ whose name is µ. is means that σ " ρ R υ where the name of R is µ, hence ρR Fam » τ T and so σ " ρRυ where ρR P φ 1 , as wanted.

pðq Completeness. Let us show that φ 1 Fam ãÑ φ 2 . Let σS P φ 2 be an hredex. Consider an initially labelled variant t 0 of t, and consider the labelled variant σ S whose source is t 0 . Let ν be the name of S . Let P be the predicate on redex names such that P pµq holds if and only if µ Name ãÑ ν. Observe that P is a bounded predicate, since by Rem. 6.40 we have that hpµq ă hpνq for every µ such that P pµq holds. Hence labeled reduction in the calculus restricted to P is strongly normalizing (m. 6.51). Consider a maximal derivation ρ starting from t 0 and contracting redexes whose names verify the predicate P ; then ρ must be nite as we have just argued. Since the LLSC is an orthogonal axiomatic rewriting system (Prop. 6.32), by algebraic con uence (Coro. 2.56) we may close the diagram formed by ρ and σ with labelled variants of the relative projections ρ{σ and σ{ρ. e situation is:

t 0 ρ σ G G G G pρ{σq S G G pσ{ρq G G G G
Note that, by de nition of the residual relation, any step contracted along ρ{σ must be the residual of some step in ρ. Moreover, we know that residuals of redexes have the same name as their ancestor (Lem. 6.33), so given any step T that is contracted along pρ{σq its name ξ is also the name of a step T 0 that is contracted along ρ . Hence ξ must verify the predicate P , which means that ξ Name ãÑ ν. In particular ξ ‰ ν, since the relation Name ãÑ is a strict partial order. en by Lem. A.95 (in Section A.4.1 of the appendix) there is a residual S 1 P S{pρ{σq and the name of its corresponding labelled variant S 1 is also ν.

We need an auxiliary claim:

Claim: the names of the redexes contracted along pσ{ρq do not contribute to ν. Proof of the claim. By contradiction, suppose that pσ{ρq is of the form τ 1 T τ 2 where the name of T is ξ and it contributes to ν, that is ξ Name ãÑ ν. Without loss of generality, let T be the rst such step. en the names of the redexes contracted along τ 1 do not contribute to ξ, because if τ 1 contracts a redex T 1 whose name is ξ 1 Name ãÑ ξ, then by transitivity of Name ãÑ we have ξ 1 Name ãÑ ν, contradicting the hypothesis that T is the rst redex with that property. By Lem. A.96 (in Section A.4.1 of the appendix) this means that T must have an ancestor T 0 , that is a step T 0 such that T P T 0 {pσ{ρq and such that the name of T 0 is also ξ. us we obtain a derivation ρ T 0 where the name of T 0 veri es P . is contradicts the hypothesis that ρ was a maximal derivation contracting only redexes that verify P , which concludes the proof of the claim. Now since redexes contracted along pσ{ρq do not contribute to the name of S 1 , we may again apply Lem. A.96 and obtain that there exists an ancestor S 2 , i.e. a step S 2 such that S 1 P S 2 {pσ{ρq and such that the name of S 2 is also ν. e situation is as follows:

t 0 ρ σ G G G G pρ{σq S G G pσ{ρq G G G G S 2 S 1 1 1
To conclude the proof, note that ρS 2 Fam » σS since S 2 and S have the same name, namely ν. So ρS 2 P φ 2 since σS P φ 2 . By hypothesis, this implies that there exists an hredex ρ 1 R P φ 1 such that ρ can be wri en as of the form ρ 1 Rρ 2 . Consider the labelled variant ρ 1 R of ρ 1 R whose source is t 0 . e step R is one of the redexes in ρ . By construction, the names of all the steps contracted along ρ verify the predicate P . In particular, if we let µ stand for the name of R , we have that P pµq holds, i.e. that µ Name ãÑ ν. is, by de nition, means that ρ 1 R Fam ãÑ ρS 2 , and this in turn means that φ 1 Fam ãÑ φ 2 , as required.

Finally, we are able to prove the main theorem of this section. . Let R and S be di erent coinitial steps. en we claim that R Fam » S does not hold. Indeed, let t be an initially labelled variant of the source of R and S, and let R and S be their respective labelled variants. en Lem. 6.19 ensures that, since R and S are di erent coinitial steps whose source is an initially labelled term, they must have di erent names. We conclude that R P Fam » pRq but R R Fam » pSq, which entails Fam » pRq ‰ Fam » pSq.

C

. Let ρR ď σS, and let us show that ρR Fam » σS. By de nition of ď, there exists a derivation τ such that S P R{τ and ρτ " σ.

ρ σ 1 1 1 1 R τ G G G G S 1 1
Let t be the source of the derivations ρ and σ, let t be an initially labelled variant of the term t, and let ρ , σ , τ , R , S , S denote labelled variants of ρ, σ, τ , R, S, and S respectively, in such a way that:

• ρ τ S is a labelled variant of ρτ S whose source is t ,

• ρ R is a labelled variant of ρR whose source is t ,

• σ S is a labelled variant of σS whose source is t .

To see that ρR Fam » σS. it su ces to check that R and S have the same name. Recall that coinitial labelled variants of permutation equivalent derivations must be co nal (Prop. 6.35). is implies that tgtpρ τ q " tgtpσ q, so S " S . Moreover, residuals of redexes have the same name (Lem. 6.33), and S P R{τ so the names of R and S " S coincide, as required.

F

. Let ρ be a potentially in nite derivation that contracts redexes in a nite number of families. Let t be an initially labelled variant of the source of ρ, and let ρ be a labelled variant of ρ starting from t . Let P be the predicate on redex names such that P pµq holds if and only if µ is one of the names of the redexes contracted along ρ . en P is bounded, since only a nite number of families are contracted by ρ , so by m. 6.51 ρ must be nite. Hence ρ is also nite.

C

. Let ρR be an hredex such that R creates S, and let us check that Fam » pρRq Fam ãÑ Fam » pρRSq. By de nition, it su ces to check that ρR Fam ãÑ ρRS.

Consider an initially labelled variant t of the source of ρ, and labelled variants ρ , R , and S of ρ, R, and S respectively, such that ρ R S is a labelled variant of ρRS whose source is t . Let µ be the name of R and let ν be the name of S . By applying Prop. 6.41, we conclude that µ Name ãÑ 1 ν, as required.

C

. is has been shown in Prop. 7.12.

Optimal Reduction

In previous sections we have endowed the LSC with a notion of Lévy labels (Def. 6.6) and we have used this notion of labeling to de ne a notion of redex family for the LSC without gc (Def. 7.7): two redexes are in the same family if the labeling scheme gives them the same name. We have also shown that this notion of family is well-behaved, in the sense that the LSC without gc forms a Deterministic Family Structure (m. 7.13).

In this section: rst, we state Lévy's optimality theorem in the se ing of the λ-calculus. is is not strictly necessary for our purposes but it hopefully clari es the rest of the exposition. Second, we state and prove a generalization of Lévy's optimality theorem for an arbitrary Deterministic Family Structure, due to Glauert and Khasidashvili. Finally, using the fact that the LSC without gc forms a Deterministic Family Structure, we obtain an optimality theorem for the LSC without gc, meaning that certain kinds of reductions are optimal. To this purpose, we study the notion of normal forms up to gc.

Optimality in the λ-calculus

To state Lévy's optimality result more precisely, we need to introduce a few de nitions. Recall the notions of multistep and multiderivation from Def. 2.43, and also recall from Convention 2.44 that if M is a multistep we may write just M to stand for its canonical complete development, which is known to exist and to be unique modulo permutation equivalence. e de nitions and results in this subsection can be traced back to Lévy's work and are nicely exposed in Asperti and Guerrini's book [?].

De nition 7.14 (Family reduction). Let pA, », ãÑq be a DFS. A family reduction is a multiderivation M 1 . . . M n in A such that for each i P t1, . . . , nu all the steps in M i belong to the same family. More precisely, for all i P t1, . . . , nu and for any two steps R, S P M i we have that M 1 . . . M i´1 R » M 1 . . . M i´1 S. Moreover, a family reduction is complete if each M i is a maximal set of steps that have srcpM i q as their source and belong to the same family. e motivation behind Lévy's de nition of complete family reduction is that an optimal implementation should never duplicate work. Rather it should share the computational work of contracting all the copies of a redex. Performing one computational step in an optimal implementation should correspond to contracting all and only the redexes in some family.

pxxqrxzysryzzs R G G S pyxqrxzysryzzs S 1 pzyqrxzysryzzs pxyqrxzysryzzs R 1 G G pyyqrxzysryzzs T 1 T T T 2 G G T 3 @ @
pyzqrxzysryzzs pyyqrxzzsryzzs e multiderivation tR, Su (consisting of a sequence of exactly one multistep) is not a family reduction, because R and S are not in the same family, while tRutS 1 u and tSutR 1 u are both complete family reductions. e multiderivation tRutS 1 utT 1 , T 2 u is a family reduction, but it is not complete because the set tT 1 , T 2 u is not a maximal set of coinitial steps in the same family.

e multiderivation tRutS 1 utT 1 , T 2 , T 3 u is a complete family reduction.

Starting from a term t, we are interested in nding the optimal, i.e. the shortest family reduction.

De nition 7.16 (Optimal reduction). Let x P A be an object in a DFS. A family reduction starting on x and reaching the normal form of x is optimal if its length is minimum among all the family reductions reaching the normal form of x.

By requiring that a multiderivation is a complete family reduction, one guarantees that no computational work is ever duplicated. Still, a complete family reduction may not be optimal, because it may perform unnecessary computational work. For example, in the λ-calculus, given the diagram:

pλx.yq pIzq S 1 R G G pλx.yq z S 2
w w y the multiderivation tRutS 2 u is a complete family reduction that reaches the normal form. However, it is not optimal, since tS 1 u is a shorter complete family reduction reaching the normal form.

To formally de ne what it means for a multiderivation to perform only necessary computational work, Lévy de nes a step R : t Ñ s to be needed if every coinitial derivation σ : t u that reaches the normal form of t contracts at least one residual of R. A family reduction M 1 . . . M n is needed if every multistep M i contains at least one needed step. Lévy's optimality result asserts that: eorem 7.17 (Optimality - [START_REF] Lévy | Réductions correctes et optimales dans le lambda-calcul[END_REF]). In the λ-calculus, any needed, complete family reduction reaching a normal form is optimal.

Proof. A particular case of m. 7.24 in the next subsection.

Optimality in Deterministic Family Structures

In [?], Glauert and Khasidashvili propose a generalization of Lévy's optimality result. is result generalizes m. 7.17 along two dimensions. First, the result does not only apply to the λ-calculus, but in general to any Deterministic Family Structure, of which the λ-calculus is a particular case. Second, the result does not only apply to reductions reaching a normal form, but in general to reductions reaching an answer, where the notion of answer is an additional parameter of the generalized optimality theorem. e notion of answer is speci ed by a set of terms which may vary in di erent se ings. For example in the λ-calculus one may consider any of the following sets as the set of answers:

tt P T | Es P T . t Ñ su (normal forms) tλx.t | x P V, t P T u (abstractions) tλx 1 . . . x n .y t 1 . . . t m | n, m ě 0, x 1 , . . . , x n , y P V, t 1 , . . . , t m P T u (head normal forms) tλx.t | x P V, t P T u Y txt 1 . . . t n | n ě 0, x P V, t 1 , . . . , t n P T u (weak head normal forms)
where V is the set of variables and T the set of all terms. e set of answers is denoted by X . e de nitions and results in this subsection can be traced back to Lévy's work and correspond to Glauert and Khasidashvili's generalization to arbitrary DFSs [?, ?]. De nition 7.18 (X -needed). Let A be an orthogonal axiomatic rewriting system and let X be a set of objects. A step R : x Ñ y is X -needed if every derivation σ :

x z P X contracts at least one residual of R. A multistep M is X -needed if it contains at least one X -needed step. A multiderivation M 1 . . . M n is X -needed if the multistep M i is X -needed for all i P 1..n.
For technical reasons, the set of answers may not be an arbitrary set. It must be a stable set: Indeed, suppose that Φpiq " Φpjq for some 1 ď i, j ď n with i ‰ j. Without loss of generality, let i ă j, and suppose moreover that the pair pi, jq is chosen so that j is the least possible index, i.e. there is no other pair pi 1 , j 1 q such that Φpi 1 q " Φpj 1 q and i 1 ă j 1 ă j. We argue that this case is impossible. Let us write D i for the multiderivation M 1 . . . M i , for each 0 ď i ď n. Since Φpiq " Φpjq we have that R i and R j are in the same family, more precisely, D i´1 R i » D j´1 R j . We consider two cases, depending on whether step R j has an ancestor before the derivation M i . . . M j´1 :

1. If R j has an ancestor.

at is, there is a step R 1 j such that R 1 j xM i . . . M j´1 y R j . By the C axiom, R 1 j and R j must be in the same family, more precisely,

D i´1 R 1 j » D j´1 R j .
en by transitivity of the family relation,

D i´1 R 1 j » D i´1 R i .
Since D is a complete family reduction, M i is a maximal set of steps in the same family, so we obtain that R 1 j P M i . But then by Autoerasure R 1 j {M i . . . M j´1 must be empty. is contradicts the fact that R j P R 1 j {M i . . . M j´1 .

2. If R j has no ancestor. at is, there is no step R 1 j such that R 1 j xM i . . . M j´1 y R j . In particular, the range ti, . . . , j ´1u cannot be empty. Let q P ti, . . . , j ´1u be such that there is an ancestor R 1 j xM q`1 . . . M j´1 y R j but there is no ancestor R 2 j xM q y R 1 j . Moreover by C there must be a step in M q that contributes to R 1 j , and since all the steps in M q are in the same family, this means that Fam » pD q´1 R q q ãÑ Fam » pD q R 1 j q. e situation is:

M 1 ...M i´1 G G G G R i M i ...M q´1 G G G G Rq Mq G G G G R 1 j M q`1 ...M j´1 G G G G R j M j ...Mn G G G G
Note that Fam » pD q´1 R q q ãÑ Fam » pD q R 1 j q " Fam » pD i´1 R i q, so by the completeness part of the C axiom, there must exist a step in the history of R i in the same family as R q contributing to R i . at is, there is an index p P t1, . . . , i ´1u such that Fam » pD q´1 R q q " Fam » pD p´1 R p q ãÑ Fam » pD i´1 R i q. To conclude, observe that pp, qq is a pair of indices such that Φppq " Φpqq and p ă q ă j. is contradicts the request that j is the least possible index with such condition. e following generalization of Lévy's optimality theorem (m. 7.17) is due to Glauert and Khasidashvili ([?, eorem 5.2]). eorem 7.24 (Generalized optimality -Glauert and Khasidashvili, 1996). Let X be a stable set of terms in a DFS. en any X -needed complete family reduction D : x y P X is Xoptimal.

Proof. Let D " M 1 . . . M m : x y P X be an X -needed complete family reduction and let E " N 1 . . . N n : x z P X be any family reduction to X . First we argue that FAMpDq Ď FAMpEq. Let φ P FAMpDq be a family. By de nition, φ " Fam » pM 1 . . . M i´1 R i q for some i P t1, . . . , mu and some R i P M i . Moreover, since D is X -needed, for each 1 ď i ď m, the set M i contains an X -needed redex S i . Consider the derivation E{M 1 . . . M i´1 . Note that its target is an object z 1 which coincides with the target of M 1 . . . M i´1 {E : z z 1 . Since z P X and X is a stable set, hence closed under parallel moves, we have that z 1 P X as well. So for each i P t1, . . . , mu the situation is:

x E M 1 ...M i´1 G G G G E{M 1 ...M i´1 S i G G z M 1 ...M i´1 {E G G G G z 1
Moreover, S i is X -needed, so a residual of S i is contracted somewhere along E{M 1 . . . M i´1 . By the C axiom, this means that E contracts a redex in the same family as S i , that is, the multiderivation E, seen as a derivation, can be wri en, for each i P t1, . . . , mu, as of the form E " ρ i T i σ i , where M 1 . . . M i´1 R i » M 1 . . . M i´1 S i » ρ i T i . So we have that φ " Fam » pρ i T i q P FAMpEq. is proves our claim that FAMpDq Ď FAMpEq. To conclude the proof of this theorem, observe that: pλx.yq ∆ ppλx.yq ∆q

S 1 t t S 2 C C pλx.xxq y R 1 m m y ppλx.yq ∆q S 1 2 B B pλx.yq ∆ y S 1 1 s s y y
en the family reductions tRutS 1 , S 2 u and tSutR 1 u are both optimal reductions to normal form. e family reductions tRutS 1 utS 1 2 u and tRutS 2 utS 1 1 u are not complete. Any family reduction starting with tT u . . . is not needed, because the step T is not needed to obtain a normal form.

Optimality in the LSC without gc

Combining the fact that the LSC without gc is a Deterministic Family Structure (m. 7.13) with the generalized optimality theorem for DFSs (m. 7.24), one obtains an optimality result for the LSC. However, the generalized optimality theorem depends on the choice of a stable set X that captures the notion of answer that one is interested in.

One may be interested in the set of answers given by the normal forms of the LSC without gc, that is, in the set: Proof.

NF db,
e proof is technical and can be found in Section A.4.2 of the appendix. It requires to introduce the notion of reachable step, which is, intuitively, a step not erased by any sequence of gc steps. e proof also relies on the notion of nesting introduced by Acca oli et al. in [?].

Example 7.28 (Optimal RNF-reduction in the LSC without gc). Let ∆ be any term such that ∆ Ñ ∆ 1 and consider the following diagram, in which the terms in RNF have been underlined:

xrxzpλy.zq ∆s R s s S B B T G G xrxzpλy.zq ∆ 1 s ppλy.zq ∆qrxzpλy.zq ∆s S 1 t t S 2 C C xrxzyrzz∆ss R 1 l l yrzz∆srxzpλy.zq ∆s S 1 2 B B ppλy.zq ∆qrxzzryz∆ss S 1 1 t t yrzz∆srxzyrzz∆ss
en the family reductions tRutS 1 , S 2 u and tSutR 1 u are RNF-optimal by m. 7.24. Any family reduction starting with tT u . . . is not RNF-needed, because T is not needed to reach a term in RNF.

Note that the family reduction tRutS 1 u reaches a term in RNF in the least possible number of multisteps, but it is not complete because tS 1 u is not maximal, so m. 7.24 does not ensure that it is RNF-optimal.

Standardization

In a very general sense, the problem of standardization consists in nding, for each derivation ρ : x y an equivalent derivation ρ 1 : x 1 y 1 that is standard. ere are two keywords involved here, equivalent and standard, worthy of a short discussion.

In principle, one may be interested in various di erent notions of equivalence between derivations. For example, in their original standardization result [?], one could say that Curry and Feys were interested in the equivalence relation " that equates two derivations whenever they are coinitial and co nal. at is, given ρ : x y and ρ 1 : x 1 Ñ y 1 one has ρ " ρ 1 if and only if px, yq " px 1 , y 1 q.

Later, Lévy noted that the notion of equivalence that Curry and Feys were really a er was the relation of permutation equivalence. Recall from Lem. 2.41 that if any two derivations are permutation equivalent then they are coinitial and co nal, so permutation equivalence is a ner equivalence relation than ". In fact, Lévy remarked that in the λ-calculus there exist derivations that are coinitial and co nal but which are not permutation equivalent, such as in the "syntactic accident" I pI xq Ñ I x.

One may also be interested in other notions of equivalence between derivations. For example, Laneve [?] studies distributive permutation equivalence which allows swapping adjacent steps as long as this does not cause duplication nor erasure.

e word standardization is most commonly used in the literature to refer to standardization with respect to the equivalence relation of permutation equivalence.

Given a xed notion of equivalence " between derivations, one may sometimes prove a standardization result, involving a class of derivations S, whose elements are called standard derivations. A standardization result states that one may nd, for each derivation ρ, an equivalent standard derivation ρ 1 P S. A stronger standardization result would moreover ensure that for each derivation ρ there is a unique equivalent derivation ρ 1 P S, that is, that the set of equivalence classes modulo " is in 1-1 correspondence with the set S. Moreover, the standardization result is usually proved constructively, by giving a procedure that yields, for every derivation ρ the standard representative ρ 1 of its "-equivalence class.

In this section we de ne a standardization procedure for Deterministic Family Structures, by requesting some additional axioms. e proof that the standardization procedure terminates relies on the F F D property. As a corollary, we obtain a standardization theorem for the LSC without gc.

Many abstract standardization results have been studied before.

e result we present here is an adaptation of Klop's parallel standardization theorem ([?, Proposition 8.5.19]) to the framework of Deterministic Family Structures.

Note that in [?, eorem 3, eorem 4], Acca oli, Bonelli, Lombardi, and Kesner have already proposed a standardization procedure for the LSC. Our procedure di ers from theirs in in the following aspects:

1. Our procedure relies on the Finite Family Developments theorem, while [?] relies on the fact that the LSC enjoys a number of axioms proposed by Melliès in [?, Chapter 4].

2. Our standardization procedure is inspired by Klop's [?, Section 8.5.2], and it is based on selection, resembling selection sort, while [?] is based on permutation of anti-standard pairs, resembling bubble sort.

3. Our procedure does not deal with the gc rule, while [?] does.

4. Our procedure imposes a xed order for redexes in such a way that the standard reduction is syntactically unique, while [?] considers standard forms modulo permutation of disjoint redexes, in such a way that the standard reduction is unique up to square equivalence.

Standardization in Deterministic Family Structures

In this subsection we prove a standardization result for Deterministic Family Structures that verify some additional constraints. e main result of this subsection is the standardization result for DFSs (Prop. 7.39). We begin by proving a simple technical result.

Proposition 7.29 (Projection does not create families). Let A be a DFS, let φ : t t 1 be a derivation in A, and let ρ and σ be coinitial derivations in A starting from t 1 . en the set of families of redexes contracted along ρ{σ is contained in the set of families of redexes contracted along ρ, relatively to the history φ. More precisely, if ρ{σ can be wri en as τ 1 T τ 2 then ρ can be wri en as υ 1 U υ 2 such that Fam » pφυ 1 U q " Fam » pφστ 1 T q.

Proof. By induction on the length of ρ. e base case is trivial. If ρ " Rρ 1 we have that ρ{σ " pR{σqpρ 1 {pσ{Rqq by de nition. Let ρ{σ be wri en as τ 1 T τ 2 . We consider two subcases, depending on whether τ 1 is a proper pre x of R{σ or not:

1. If τ 1 is a proper pre x of R{σ.
en R{σ " τ 1 T τ 1 2 and τ 2 " τ 1 2 pρ 1 {pσ{Rqq. Note that T P pR{σq{τ 1 so R xστ 1 y T . en by taking υ 1 :" , U :" R and υ 2 :" ρ 1 we have that Fam » pφRq " Fam » pφστ 1 T q since T is a copy of R, and as a consequence of the C axiom.

2. If τ 1 is not a proper pre x of R{σ. en ρ 1 {pσ{Rq " τ 1 1 T τ 2 and τ 1 " pR{σqτ 1 1 . By i.h. on the derivation ρ 1 (using φR as the new history), we conclude that ρ 1 can be wri en as υ 1 1 U υ 2 in such a way that:

Fam » pφRυ 1 1 U q " Fam » pφRpσ{Rqτ 1 1 T q " Fam » pφσpR{σqτ 1 1 T q by the C axiom, since φRpσ{Rqτ 1 1 T ď φσpR{σqτ 1 1 T since φRpσ{Rqτ 1 1 " φσpR{σqτ 1 1
Hence by taking υ 1 :" Rυ 1 1 we conclude.

To prove the standardization result, let us state a few further auxiliary de nitions, including the crucial notion of uniform multi-selection strategy. Recall that in an orthogonal axiomatic rewriting system, the le ers M, N , . . . range over multisteps, D, E, . . . range over multiderivations, and Multistep stands for the set of multisteps.

De nition 7.30 (Belonging). In an orthogonal axiomatic rewriting system A, a step R belongs to a derivation ρ, wri en R Ÿ ρ, if and only if ρ can be wri en as of the form ρ " ρ 1 R 1 ρ 2 where R 1 P R{ρ 1 . A multistep M belongs to a derivation ρ, wri en M Ÿ ρ, if and only if R Ÿ ρ for all R P M. De nition 7.31 (Multi-selection strategy). In an orthogonal axiomatic rewriting system A, a multi-selection strategy is a function M that maps every non-empty derivation ρ to a coinitial multistep M P Multistep such that M Ÿ ρ and M{ρ " ∅. De nition 7.32 (Uniform multi-selection strategy). A multi-selection strategy M is uniform if ρ " σ implies Mpρq " Mpσq for any non-empty ρ, σ.

Example 7.33. In the λ-calculus, consider the trivial multi-selection strategy M Triv that always selects the rst step of a given derivation. More precisely, let M Triv pRρq def " tRu. en M Triv is a multi-selection strategy because for every non-empty derivation Rρ we have that R Ÿ Rρ and that R{Rρ " ∅.

However, M Triv is not uniform. For example, if RS 1 " SR 1 , such as in the following diagram, we have that M Triv pRS 1 q " tRu ‰ tSu " M Triv pSR 1 q. pλx.pλy.zq x xq t R G G S pλy.zq t t

S 1 pλx.z xq t R 1 G G z t
In the remainder of this subsection, we show that any uniform multi-selection strategy M induces, for a given derivation ρ, a permutation equivalent derivation ρ ˚. is gives us a standardization result, parametric on M. e set of standard derivations is the set tρ ˚| ρ is a derivationu. Moreover, we show that the induced derivation ρ ˚is unique, up to permutation equivalence. De nition 7.34 (Induced multiderivation). In an orthogonal axiomatic rewriting system, let M be a multi-selection strategy and let ρ be any derivation. e sequence induced by M on ρ, wri en M ‹ pρq, is a possibly in nite sequence of multisteps, de ned by the following recursive equations:

M ‹ pρq def " # if ρ "
Mpρq ¨M‹ pρ{Mpρqq otherwise If recursion terminates, the sequence is nite and we call it the multiderivation induced by M on ρ.

Non-empty.

en ρ is non-empty, so σ must be also non-empty, and we have that M ‹ pρq " Mpρq M ‹ pρ{Mpρqq and M ‹ pσq " Mpσq M ‹ pσ{Mpσqq. First, since ρ " σ and M is a uniform selection strategy, we have Mpρq " Mpσq. Moreover, the tail of M ‹ pρq is of the form M ‹ pρ{Mpρqq, and it is strictly shorter than M ‹ pρq. So we can apply the i.h. on the tails of M ‹ pρq and M ‹ pσq. e i.h. states:

ρ{Mpρq " σ{Mpσq ùñ M ‹ pρ{Mpρqq " M ‹ pσ{Mpσqq
To conclude, we are le to show that ρ{Mpρq " σ{Mpσq holds. is is an immediate consequence of the fact that ρ " σ, since the projections of permutation equivalent derivations are again equivalent (Prop. 2.63).

Lemma 7.37. Let M be a multi-selection strategy in a DFS, and ρ a nite derivation. en ρ " BM ‹ pρq.

Proof. By Lem. 7.35, we have that M ‹ pρq must be nite. We proceed by induction on the length of the multiderivation M ‹ pρq.

1. Empty, M ‹ pρq " . en ρ " , so ρ " B " BM ‹ pρq.

2. Non-empty. Let M " Mpρq be the rst multistep selected by the strategy. en M ‹ pρq " M M ‹ pρ{Mq. To show that ρ " BM ‹ pρq, by Lem. 2.59, it su ces for us to check that they are projection equivalent, i.e. that ρ Ď BM ‹ pρq Ď ρ.

(Ď) Let us check that ρ{BM ‹ pρq " . ρ{BM ‹ pρq " ρ{BpM M ‹ pρ{Mqq " ρ{pBMq pBM ‹ pρ{Mqq " pρ{BMq{BM ‹ pρ{Mq since α{βγ " pα{βq{γ " since by i.h. ρ{M " BM ‹ pρ{Mq (Ě) Since M is a multi-selection strategy, we have that M{ρ " ∅. Let us check that BM ‹ pρq{ρ " .

pBM ‹ pρqq{ρ " pBpM M ‹ pρ{Mqqq{ρ " pBMq pBM ‹ pρ{Mqq{ρ " ppBMq{ρq ppBM ‹ pρ{Mqq{pρ{BMqq since αβ{γ " pα{βqpγ{pβ{αqq " pBM ‹ pρ{Mqq{pρ{BMq since M{ρ " ∅, so pBMq{ρ " " pBM ‹ pρ{Mqq{pρ{Mq since ρ{M stands for ρ{BM " since by i.h. ρ{M " BM ‹ pρ{Mq De nition 7.38 (Standard multiderivation). A multiderivation D is M-standard if M ‹ pBDq " D.

Proposition 7.39 (Standardization for DFSs). Let M be a uniform multi-selection strategy in a DFS. For any nite derivation ρ there exists a unique multiderivation D such that ρ " BD and D is M-standard. Namely, D " M ‹ pρq.

Proof. We prove the result in two parts:

1. Existence. First note that ρ " BM ‹ pρq by Lem. 7.37. To see that M ‹ pρq is M-standard, apply Lem. 7.36 on the fact that BM ‹ pρq " ρ to conclude that M ‹ pBM ‹ pρqq " M ‹ pρq, as required.

2. Uniqueness. Suppose that there is a multiderivation E such that ρ " BE and E is Mstandard. We claim that E " M ‹ pρq. By applying Lem. 7.36 on the fact that BE " ρ, we obtain that M ‹ pBEq " M ‹ pρq. Finally, since E is M-standard, E " M ‹ pBEq " M ‹ pρq and we conclude. In this subsection we apply the previous standardization result (Prop. 7.39) to the LSC without gc.

De nition 7.41 (Arbitrary selector). Let Outptq denote the set of steps whose source is a term t in the LSC without gc, and let ă t be an arbitrary strict partial order on Outptq. We write ă for the function that, for each term t P T , yields a partial order ă t Ď Outptq ˆOutptq. e arbitrary selector on ă is wri en M ă and de ned as the following function, taking a non-empty derivation and returning a nite set of coinitial steps:

M ă pρq def " tR | R{ρ " ∅ and R is minimalu
By minimal we mean that there is no step R 1 such that R 1 {ρ " ∅ and R 1 ă srcpρq R.

Note that M ă pρq is a non-empty nite set. To see this, note that the set X " tR | R{ρ " ∅u is non-empty, because R{ρ " ∅ if R is taken to be the rst step of the derivation ρ. Moreover, the set X is nite, because the LSC is nitely branching. Hence X must have at least one minimal element. Moreover: Lemma 7.42. M ă is a uniform multi-selection strategy.

Proof. Let us check that M ă is a multi-selection strategy and that it is uniform:

1. M ă is a multi-selection strategy. Let ρ be a non-empty reduction sequence. Recall that a function M is a selection strategy if Mpρq is a non-empty multistep M coinitial to ρ such that M{ρ " ∅ and M Ÿ ρ.

In our case, we have constructed M ă pρq to be a non-empty multistep coinitial to ρ (Def. 7.41). Moreover, also by construction, any step R P M ă pρq veri es R{ρ " ∅, so indeed M ă pρq{ρ " ∅. Moreover, in the LSC without gc there is no erasure, so all steps are essential. at is, if R{ρ " ∅ then R Ÿ ρ. Hence we have that M ă pρq Ÿ ρ, as required.

2. M ă is uniform. Let ρ " σ, and let us check that M ă pρq " M ă pσq. It su ces to show that the set A ρ " tR | R{ρ " ∅u coincides with the set A σ " tR | R{σ " ∅u, since M ă pρq is the subset of the minimal elements of A ρ and M ă pσq is the subset of the minimal elements of A σ .

Note that: R P A ρ ðñ R{ρ " ∅ ðñ R{σ " ∅ since ρ " σ ðñ R P A σ So A ρ " A σ , as wanted.

Corollary 7.43 (Standardization by arbitrary selection for the LSC without gc). Let M ă be the arbitrary selector on ă. For each nite sequence ρ in the LSC without gc, there is a unique multiderivation D such that ρ " BD and D is M ă -standard. Moreover, if the ordering function

ă is computable, then D is computable from ρ, namely D " M ‹ ă pρq. Proof.
is is a consequence of the standardization result for DFSs (Prop. 7.39) and the fact that M ă is a uniform multi-selection strategy (Lem. 7.42). Moreover, it is clear by de nition that M ‹ ă is computable if the ordering function ă is computable.

Example 7.44 (Standardization in the LSC without gc). In the LSC without gc, let ρ :

xrxzts Ñ xrxzt 1 s Ñ t 1 rxzt 1 s Ñ t 2 rxzt 1 s, where t Ñ t 1 Ñ t 2 .
1. If ă 1 is the trivial partial order in which every step is incomparable, i.e. R ă 1 t S never holds, then M ‹ ă 1 pρq : xrxzts ñ t 1 rxzt 1 s Ñ t 2 rxzt 1 s. e rst step is a proper multistep.

2. Let ă 2 be the total le -to-right order, de ned so that R ă 2 t S holds whenever R is to the le of S. en M ‹ ă 2 pρq : xrxzts Ñ trxzts Ñ t 1 rxzts Ñ t 1 rxzt 1 s Ñ t 2 rxzt 1 s.

3. Let ă 3 be the total right-to-le order, de ned so that R ă 3 t S holds if R is to the right of S. en M ‹ ă 3 pρq " ρ : xrxzts Ñ xrxzt 1 s Ñ t 1 rxzt 1 s Ñ t 2 rxzt 1 s.

Normalization of Strategies

A reduction strategy is, informally speaking, a restriction on the computational steps that may be performed in a rewriting system. For example, in the λ-calculus, head reduction is the restriction of the β-reduction rule that only allows to contract head redexes, this is, redexes that lie below a context of the form λx 1 . . . x n .l u 1 . . . u m . More precisely, head reduction is de ned by the following rewriting rule: Observe that a term, such as Ω " pλx.xxqpλx.xxq, may not have a head normal form, in which case it is impossible for any strategy to reach a head normal form.

λx 1 . . . x
As evidenced in the title of the statement, the result given in Prop. 7.45 is known as the fact that head reduction is head normalizing. In general, if X is a set of answers, a strategy is said to be X -normalizing if repeatedly contracting a step according to the strategy leads to a term in the set X , whenever possible.

In this section, we give su cient conditions under which reduction strategies are Xnormalizing in Deterministic Family Structures.

e proof of normalization relies on the F F D property. As a consequence, we conclude that two speci c strategies, call-by-name and linear call-by-need, are normalizing in the LSC without gc.

Many normalization results have been studied before. In particular, we should mention that Glauert and Khasidashvili prove a Relative Normalization result [?, eorem 4.1] for Deterministic Family Structures, which ensures that any reduction contracting X -needed steps (cf. Def. 7.18) reaches a term in X if possible.

e normalization result for DFSs that we state and prove below is a particular case, i.e. it is a weaker result than Glauert and Khasidashvili's Relative Normalization.

e advantage is that our weaker result only requires to check a number of local syntactic conditions on rewriting diagrams in order to ensure that a strategy is X -normalizing.

Normalization in Deterministic Family Structures

In this subsection we prove a normalization result for Deterministic Family Structures. e main result of this subsection is Prop. 7.54, in which we give su cient conditions for a strategy to be X -normalizing. We begin by giving formal de nitions of all the required notions.

De nition 7.46 (Sub-ARS). A sub-ARS of an ARS A " pObj, Stp, src, tgtq is an ARS B " pObj 1 , Stp 1 , src 1 , tgt 1 q such that Obj 1 Ď Obj, Stp 1 Ď Stp, and moreover the functions src 1 , tgt 1 are the restrictions of src, tgt to Stp 1 . A sub-ARS B is closed if the set NFpBq is closed by reduction, i.e. if x Ñ A y and x P NFpBq then y P NFpBq.

De nition 7.47 (Strategy). A strategy in an ARS

A " pObj, Stp, src, tgtq is a sub-ARS B " pObj 1 , Stp 1 , src 1 , tgt 1 q having the same objects, i.e. Obj " Obj 1 , and the same normal forms, i.e. NFpAq " NFpBq.

Remark 7.48. Any sub-ARS B can be extended to a strategy S B by adjoining the steps going out from normal forms, i.e. by se ing StppS B q :" StppBq Y tR P StppAq | srcpRq P NFpBqu. Note in particular that if B is already a strategy then S B " B.

Example 7.49. In the λ-calculus, the notion of head reduction Ñ head is not strictly speaking a strategy, because the set of β-normal forms does not coincide with the set of head normal forms.

Head reduction can be extended to a strategy S head in such a way that an arbitrary β-step R : t Ñ β s is in the strategy S head whenever R contracts a head redex or, alternatively, t is a head normal form. De nition 7.50 (X -normalizing strategy). Let X be a superset of the normal forms of A. A strategy S is said to be X -normalizing if for every object x such that there exists a reduction x A y P X , every maximal reduction from x in the strategy S contains an object in X . e following notion of residual-invariance is the key notion to give a su cient condition for a strategy to be X -normalizing. De nition 7.51 (Residual-invariance). Let A be an axiomatic rewriting system (including the notion of residual). A sub-ARS B of A is residual-invariant if for any steps R and S such that R P B and S ‰ R, there exists a step R 1 P S such that R 1 P R{S.

Example 7.52. In the λ-calculus, the le most outermost strategy S LO is the strategy that only allows contracting the le most outermost step, i.e. the step contracting the redex whose λ is more to the le . It is easy to check that S LO is residual-invariant, because the residual of a le most outermost step is again le most outermost.

e following is a straightforward lemma regarding residual-invariance. Lemma 7.53 (Steps of residual-invariant sub-ARSs are preserved in DFSs). Let F " pA, » , ãÑq be a DFS and suppose that B is a residual-invariant sub-ARS of A. Let ρR be a redex with history such that R is in B, and let σ be any nite reduction coinitial to R. Let us also suppose that σ does not contract redexes in the family of ρR. More precisely, let us suppose that whenever σ can be wri en as σ 1 Sσ 2 then ρR » ρσ 1 S. en R has a residual R 1 P R{σ in B.

Proof. By induction on σ. If σ is empty it is immediate. If σ " T τ , we know that ρR » ρT by hypothesis, so in particular R ‰ T . Since B is residual-invariant this means that there exists a step R 1 P B such that R xT y R 1 . Moreover, by the C axiom ρR » ρT R 1 . By i.h. on the derivation τ and the redex with history ρT R 1 we conclude that there is a step R 2 P B such that R 1 xτ y R 2 . So R xT τ y R 2 and we are done.

We turn to the main result of this subsection. Proposition 7.54 (Normalization for DFSs). Let B be a closed residual-invariant sub-ARS in a Deterministic Family Structure. en the corresponding strategy S B is NFpBq-normalizing.

Proof. Let ρ 1 be a derivation x A y P NFpBq and consider a maximal derivation σ starting from x in the strategy S B . We must show that σ contains a term in NFpBq. Let F be the set of families of all the redexes contracted along ρ 1 . e set F is nite, so by the FFD axiom, the derivation ρ 1 can be extended to a complete family development ρ 1 ρ 2 of F.

By contradiction, suppose that the reduction sequence σ has no terms in NFpBq. en σ is contained in the sub-ARS B, and it is in nite. By the FFD axiom, σ cannot be a family development of F, so there must be at least one redex whose family is not in F. Let S be the rst such step, i.e. let us write σ as σ 1 Sσ 2 where σ 1 is a family development of F and Fam » pσq R F.

e situation is as follows, closing the square with the derivations ρ 1 ρ 2 {σ 1 and σ 1 {ρ 1 ρ 2 :

ρ 1 G G G G σ 1 ρ 2 G G G G σ 1 {ρ 1 ρ 2 " τ ρ 1 ρ 2 {σ 1 G G G G S σ 2
First we claim that the derivation τ " σ 1 {ρ 1 ρ 2 is actually empty. Indeed, by the C axiom the families of all the redexes contracted along σ 1 {ρ 1 ρ 2 are contained in the families of all the redexes contracted along σ 1 . In particular, ρ 1 ρ 2 τ is a family development of F. If τ were not empty, it would mean that τ " T τ 1 , where Fam » pρ 1 ρ 2 T q P F. is contradict the fact that ρ 1 ρ 2 is a complete family development, as it can be extended with T , so T is indeed empty.

is means that the diagram is as follows:

ρ 1 G G G G σ 1 ρ 2 G G G G ρ 1 ρ 2 {σ 1 R R R R S σ 2
By the C axiom, we know that the families of all the redexes contracted along ρ 1 ρ 2 {σ 1 are contained in the families of all the redexes contracted along ρ 1 ρ 2 . In particular, σ 1 pρ 1 ρ 2 {σ 1 q is a family development of F.

By Lem. 7.53, we obtain that there must exist a step S 1 P B such that S xρ 1 ρ 2 {σ 1 y S 1 . To be able to apply Lem. 7.53 note that:

• S is a step in the sub-ARS B;

• by hypothesis, the sub-ARS B is residual-invariant;

• the derivation ρ 1 ρ 2 {σ 1 does not contract redexes in the family of

σ 1 S since Fam » pσ 1 Sq R F while σ 1 pρ 1 ρ 2 {σ 1 q is a family development of F.
So the situation is:

ρ 1 G G G G σ 1 ρ 2 G G G G S 1 ρ 1 ρ 2 {σ 1 R R R R S σ 2
Finally, recall that tgtpρ 1 q P NFpBq, and that, by hypothesis, B is closed residual-invariant, which means that the set NFpBq is closed by reduction. So tgtpρ 2 q P NFpBq, contradicting the fact that there is an outgoing step S 1 in the sub-ARS B. We conclude that σ must be have a term in NFpBq, as required.

Normalization in the LSC without gc

In the following subsections, we give the de nition of two strategies in the LSC without gc, and we prove that they are normalizing. First, we study head linear reduction, also known as call-by-name, in the LSC without gc. As we see in Chapter 3, this strategy is in close correspondence with evaluation of λ-terms in the Krivine Abstract Machine. Moreover, this strategy is closely related with Vincent Danos and Laurent Regnier's notion of head linear reduction in the λ-calculus [?].

Second, we de ne a new strategy that we baptize needed linear reduction. Needed linear reduction is very similar to the (weak) call-by-need strategy that we study in Chapters 3 and 4, with the slight di erence that the linear substitution rule that we study here is of the form given in (7.1) below, rather than of the form given in (7.2) below.

CxxyrxzvLs Ñ CxvLyrxzvLs (7.1)

CxxyrxzvLs Ñ CxvyrxzvsL (7.
2) e advantage of the weak call-by-need strategy, as given in (7.2), is that it only copies the subterm v, sharing the substitution context L. Moreover, (7.2) corresponds more closely with Ariola et al.'s established notion of call-by-need [?, ?]. Unfortunately, the weak call-by-need is not a sub-ARS of the LSC, so it would not be possible to apply our results directly to the variant of weak call-by-need given by (7.2) without redoing some of the work that we have done in previous sections. For example, one should prove that an adapted variant of the LSC with the sharing linear substitution rule also forms a Deterministic Family Structure. We leave this task as future work, restricting our a ention to the variant of call-by-need given by (7.1) only.

Normalization of head linear reduction

In this subsection, we recall the de nition of head linear reduction (call-by-name), and we prove that it is normalizing. De nition 7.55 (Head linear reduction and head linear normal forms). Head linear reduction is the sub-ARS HL of the LSC without gc that selects the (unique) db or ls step whose anchor is currently below a weak head context. Weak head contexts are de ned by the grammar:

H ::" l | H t |

Normalization of needed linear reduction

In this subsection, we de ne a variant of call-by-need we call needed linear reduction, and we prove that it is normalizing. Proof. A consequence of the previous proposition (Prop. 7.54), using the fact that the LSC without gc is a DFS (m. 7.13). It su ces to show that NL is a closed residual-invariant sub-ARS of the LSC without gc, and that NFpNLq " NLNF. See the appendix for the proof of these facts.

Conclusion

In this thesis we have used calculi with explicit substitutions at a distance, and in particular the Linear Substitution Calculus, to study evaluation strategies. ree main topics have been addressed:

1. We have showed that some of these evaluation strategies-call-by-name, call-by-value, call-by-need, and strong call-by-name-distill the behaviour of abstract machines, and that they are reasonable in terms of time complexity. is methodology has allowed us to revisit some abstract machines known from the literature (such as the Krivine abstract machine or Leroy's ZINC machine), as well as to conceive new abstract machines.

2. We have extended the call-by-need evaluation strategy to a strong se ing. Our main result is the completeness of strong call-by-need, which relies on a recent technique by Kesner, based on using non-idempotent intersection type systems to characterize weak normalization.

3. We have studied the theory of redex families in the LSC. For this, we have proposed a labeled variant of the LSC, following Lévy's work on the λ-calculus.

is theory provides us with results about the optimal evaluation strategy, and also gives us new proofs of standardization in the LSC, and normalization of the call-by-need strategy.

In the following sections we describe two concrete topics for future work.

An Abstract Machine for Strong Call-by-Need Reduction

In Chapter 3, we de ned abstract machines for evaluation according to the call-by-name, call-by-value, call-by-need, and strong call-by-name strategies. Moreover, in Chapter 4, we de ned a strong call-by-need strategy. It is only natural to wonder what an abstract machine for evaluation according to this strong call-by-need strategy would look like.

In this section, we propose an abstract machine for strong call-by-need evaluation. | λpxq : π Lambda (focus under an abstraction)

E ::" Empty environment | E : rx Þ Ñ ts Mapping | E : rrx Þ Ñ tss Frozen mapping | E : λpxq Scope delimiter
e transition rules of the abstract machine are given below:

π | ó trxzss | E ù π | ó t | rx Þ Ñ ssE D-Migration π | ó ts | E ù πapsq | ó t | E D-Application πapsq | ó λx.t | E ù π | ó t | rx Þ Ñ ssE Beta π | ó λx.t | E ù πλpxq | ó t | λpxqE D-Strong if π does not end with ap.q, or hp., .q π | ó x | E 1 rx Þ Ñ ssE 2 ù πhpE 1 , xq | ó s | E 2 Lookup π | ó x | E 1 rrx Þ Ñ sssE 2 ù π | ò x | E 1 rrx Þ Ñ sssE 2 Frozen lookup πhpE 1 , xq | ó v | E 2 ù π | ó v 1 | E 1 rx Þ Ñ vsE 2 LSV π | ó y | E ù π | ò y | E Up if y has no mapping in E πapsq | ò t | E ù πdptq | ó s | E U-Argument πhpE 1 , xq | ò t | E 2 ù π | ò x | E 1 rrx Þ Ñ tssE 2 U-Update πdptq | ò s | E ù π | ò ts | E U-Application πλpxq | ò t | ry Þ Ñ ssE ù πλpxq | ò tryzss | E U-Migration πλpxq | ò t | λpxqE ù π | ò λx.t | E U-Strong
Example 8.2. e following is an execution in the strong call-by-need abstract machine. In each step we underline the focus of evaluation, i.e. the pa ern of the db redex or the variable contracted by the ls redex:

w | rrw Þ Ñ zss λpyqrx Þ Ñ λy.zpIzqys U-Application ù λpyq apyq |ò zw | rrw Þ Ñ zss λpyqrx Þ Ñ λy.zpIzqys U-Argument ù λpyq dpzwq |ó y | rrw Þ Ñ zss λpyqrx Þ Ñ λy.zpIzqys Up ù λpyq dpzwq |ò y | rrw Þ Ñ zss λpyqrx Þ Ñ λy.zpIzqys U-Application ù λpyq |ò zwy | rrw Þ Ñ zss λpyqrx Þ Ñ λy.zpIzqys U-Migration ù λpyq |ò pzwyqrwzzs | λpyqrx Þ Ñ λy.zpIzqys U-Strong ù |ò λy.pzwyqrwzzs | rx Þ Ñ λy.zpIzqys
We omit a proposal for the decoding of machine states as terms. Proposing an appropriate notion of strong bisimulation " between terms in order to show that this machine simulates the strong call-by-need strategy is le as future work.

e question of whether the strong call-by-need strategy can be implemented reasonably is open at the moment of writing this thesis.

Di culties De ning an Extraction Procedure

As we detailed in Section 6.1.1, Lévy characterized redex families in the λ-calculus in three ways: (1) by means of the zig-zag equivalence relation whose equivalence classes are the redex families; (2) by means of an auxiliary calculus with labels, in such a way that two redexes with history are in the same family if and only if they have the same name; and (3) by means of an extraction procedure, in such a way that two redexes with history are in the same family if and only if the extraction procedure yields the same canonical representative.

In this section we mention a currently unsolved problem that we have found while attempting to characterize redex families in the LSC. In particular, we propose an extraction procedure but we leave the question of whether it has all the desired properties as an open problem.

To clarify the discussion, let us consider three equivalence relations between redexes with history in the LSC without gc:

• Zig-zag family equivalence (» Z), de ned as the re exive-symmetric-transitive closure of the copy relation ď de ned in Def. 7.2.

• Labeling family equivalence (» L), de ned to hold for two redexes with history if an initially labeled variant gives them the same name. Note that this is precisely the relation Fam » de ned in Def. 7.7.

• Extraction family equivalence (» E), that we will a empt to de ne below, de ned to hold for two redexes with history if they have the same canonical representative.

e question is now whether these relations all characterize the same notion of redex family. We have already seen that the LSC without gc veri es the C axiom (m. 7.13), which means that pρR ď σSq ùñ pρR » L σSq. From this fact, by induction on the derivation that ρR » Z σS, one can easily prove that zig-zag equivalence is contained in labeling equivalence, that is, pρR » Z σSq ùñ pρR » L σSq.

e converse implication pρR » L σSq ùñ pρR » Z σSq is non-trivial. In the λcalculus, the proof of this fact that we are familiar with relies on the de nition of an extraction procedure (see [?, Section 6.

2.3]).

For the extraction procedure that we will propose below, it will be easy to prove that extraction equivalence is contained in zig-zag equivalence, i.e. the implication pρR » E σSq ùñ pρR » Z σSq. e picture, at the time of writing this thesis, is currently:

ρR » Z σS # 1 ? r r ρR » E σS F T ρR » L σS ? k k ? (8.1)

Proposal of an extraction procedure

Before proposing the extraction procedure, we introduce some auxiliary notions.

De nition 8.3 (Non-duplication). We write ρ # S if ρ does not duplicate S, i.e. #pS{ρq " 1. We say that ρ does not duplicate σ, wri en ρ # σ, according to the following inductive de nition: De nition 8.5 (Internal derivation). A step R is internal to a context C, wri en C ă R, whenever the source of R is of the form Cxty and, moreover:

ρ # ρ # S ρ{S # σ ρ # Sσ
• If R is a db redex, the position of the hole of C is a pre x of the position of the pa ern of the db redex.

• If R is a ls redex, the position of the hole of C is a pre x of the position of the variable contracted by the ls redex.

Moreover, a derivation ρ is internal to a context C, according to the following inductive denition:

C ă C ă R C ă ρ C ă Rρ If R
is a ls redex and σ is a composable derivation, i.e. tgtpRq " srcpσq, the derivation σ is said to be internal to the subject (resp. argument) of R, wri en R ă sbj σ (resp. R ă arg σ) whenever the redex R is of the form

C 1 xC 2 xxxyyrxztsy Ñ C 1 xC 2 xtyrxztsy and C 1 xC 2 xlyrxztsy ă σ (resp. C 1 xC 2 xtyrxzlsy ă σ).
Example 8.6 (Internal derivations). For example, consider the following diagram:

pzyqrxzyysryzzs T 1 G G pzzqrxzyysryzzs pyyqrxzyysryzzs S 1 R R S 2 B B pyyqrxzzysryzzs T 2 G G pyyqrxzzzsryzzs xrxzzysryzzs T B B xrxzyysryzzs R y y S R R T 1 B B xrxzzzsryzzs xrxzyzsryzzs S 1 R R en lrxzyysryzzs ă S 1 T 1 so R ă sbj S 1 T 1 , and pyyqrxzlsryzzs ă S 2 T 2 so R ă arg S 2 T 2 .
Note that if R ă i S i for i P tsbj, argu, then S i has an ancestor S 0 , that is S i P S 0 {R. Moreover, S 0 {R consists of exactly two redexes, namely S sbj and S arg such that S i is internal to i. Also note that S 0 does not duplicate R. is can be justi ed by the following diagram:

C 1 xC 2 xxxyyrxztsy R G G S 0 C 1 xC 2 xtyrxztsy Ssbj Sarg
De nition 8.7 (Retraction). If R ă i S i for i P tsbj, argu, we write S i R for the (unique) ancestor of S i , corresponding to S 0 in the diagram above. We call pS i Rq the retract of S i before R.

e notion of retract is also extended for derivations. If R ă i σ for i P tsbj, argu, the retract of σ before R, wri en σ R, is de ned inductively as follows:

R def " Sσ R
def " S 0 pσ{pS 0 {RSq R{S 0 q where S 0 " S R e retraction is well de ned as R{S 0 is a single redex, since, as we have already discussed, S 0 does not duplicate R. To see that the inductive de nition is in fact well-de ned, it can be checked that R{S 0 ă i σ{pS 0 {RSq and, moreover, that the length of σ{pS 0 {RSq coincides with the length of σ, so recursion is well-founded. e following diagram illustrates the situation:

R G G S 0 S $ $ S 0 {R R{S 0 G G σ{pS 0 {RSq S 0 {RS o o σ Example 8.8 (Retraction).
In the situation of Ex. 8.6, we have that pS 1 T 1

Rq " pS 2 T 2 Rq " ST .

Finally, we may de ne an extraction procedure.

De nition 8.9 (Extraction procedure). Extraction is a rewriting system whose objects are redexes with history. Rewriting steps are given by the two following rules:

ρRpσ{Rq Ź ρσ if σ ‰ and R # σ ρRσ Ź ρpσ Rq if σ ‰ and R ă i σ for some i P tsbj, argu
Example 8.10. In the situation of Ex. 8.6, we have that

RS 1 Ź S, RS 2 Ź S, RS 1 T 1 Ź ST Ź T 1 ,
and

RS 2 T 2 Ź ST Ź T 1 .
It is not hard to show that Ź is strongly normalizing. Indeed, one can show that if ρ Ź σ, then the length of σ is strictly lesser than the length of ρ. Moreover, one may de ne extraction family equivalence by declaring the relation ρR » E σS to hold if and only if ρR pŹ Y Ź ´1q σS.

With this de nition, it is not hard to show that pρS » E σSq ùñ pρS » Z σSq. On the other hand, the two following problems seem to be non-trivial, and we leave them as unsolved conjectures.

Conjecture 8.11. e extraction procedure Ź is con uent. Conjecture 8.12. e extraction procedure Ź characterizes redex families. More precisely, the implication pρS » L σSq ùñ pρS » E σSq holds, closing the circle of implications of (8.1).

• N " N 1 xzyrzzN 2 s: by symmetry with the above case, the only possibility is R 1 " N 1 xzyrzzR 1 2 s, which allows us to conclude immediately by induction hypothesis.

For item 3, let r be a redex (i.e., a term matching the le hand side of Þ Ñ db or Þ Ñ lslsv) and let R 1 be an evaluation context. We will show by structural induction on N that t ‰ R 1 xry. We will do this by considering, in each inductive case, all the possible shapes of R 1 .

• N " l: obvious.

• N " N 1 s: the result is obvious unless R 1 " l or R 1 " R 1 1 s. In the la er case, we conclude by induction hypothesis (on N 1). In the former case, since r is a redex, we are forced to have r " Lxvys 1 for some abstraction v, substitution context L and term s 1 . Now, even supposing s 1 " s, we are still allowed to conclude because N 1 xxy ‰ Lxvy by item 1.

• N " N 1 ryzss: the result is obvious unless:

-R 1 " l: this time, the fact that r is a redex forces r " R 1 1 xyyryzss. Even if we admit that s " Lxvy, we may still conclude because x ‰ y (by the hypothesis x P fvptq), hence

N 1 xxy ‰ R 1 1 xyy by item 2. -R 1 " R 1 1 ryzss: immediate by induction hypothesis on N 1 . -R 1 " R 1 1 xyyryzR 1 2 s: even if R 1 2
xry " s, we may still conclude because, again, x ‰ y implies N 1 xxy ‰ R 1 1 xyy by item 2.

• N " N 1 xyyryzN 2 s: again, the result is obvious unless:

-R 1 " l: the fact that r is a redex implies r " R 1 1 xyyryzLxvys. Even assuming R 1 1 " N 1 , we may still conclude because N 2 xxy ‰ Lxvy by item 1. -R 1 " R 1 1 ryzN 2 xxys: since y P fvpN 1 xyyq, we conclude because the induction hypothesis gives us

N 1 xyy ‰ R 1 1 xry. -R 1 " N 1 xyyryzR 1
2 s: we conclude at once by applying the induction hypothesis to N 2 . Now, the proof of Prop. 3.11 is by structural induction on t :" N 1 xr 1 y " N 2 xr 2 y. Cases:

• Variable or abstraction. Impossible, since variables and abstractions are both call-byneed normal.

• Application, i.e. t " su. is case is treated exactly as in the corresponding case of the proof of Prop. 3.11.

• Substitution, i.e. t " srxzus. Cases:

-Both contexts have their holes in s or u. It follows from the i.h..

(I) Prove the property holds for , i.e. if t Ñ a s and t u, there exists r such that u Ñ a r and s " r.

(II) Prove the property holds for " (i.e. for many steps of) by resorting to (I).

e proof of (II) is immediate by induction on the number of steps. e proof of (I) goes by induction on the rewriting step Ñ (that, since Ñ is closed by evaluation contexts, becomes a proof by induction on the evaluation context H). In principle, we should always consider the two directions of . Most of the time, however, one direction is obtained by simply reading the diagram of the other direction bo om-up, instead than top-down; these cases are simply omi ed, we distinguish the two directions only when it is relevant.

1. Base case 1: multiplicative root step t " Lxλx.t 1 ys 1 Þ Ñ db Lxt 1 rxzs 1 sy " s.
If the step is internal to s 1 or internal to one of the substitutions in L, the pa ern of the redex does not overlap with the Þ Ñ db step, and the proof is immediate, the two steps commute. Otherwise, we consider every possible case for :

1.1 Garbage Collection " gc . e garbage collected substitution must be one of the substitutions in L, i.e. L must be of the form L 1 xL 2 ryzu 1 sy. Let p L :" L 1 xL 2 y. en:

Lxλx.t 1 ys 1 p Lxλx.t 1 ys 1 p Lxt 1 rxzs 1 sy Lxt 1 rxzs 1 sy db " gc " gc db 1.
2 Duplication " dup . e duplicated substitution must be one of the substitutions in L, i.e. L must be of the form L 1 xL 2 ryzu 1 sy. en:

L 1 xL 2 xλx.t 1 yryzu 1 sys 1 t 2 t 3 t 1 db " dup " dup db
where

t 1 :" L 1 xL 2 xt 1 rxzs 1 syryzu 1 sy, t 2 :" L 1 x pL 2 xλx.t 1 yq rzsy ryzu 1 srzzu 1 s ys 1 , t 3 :" L 1 x pL 2 xt 1 rxzs 1 syq rzsy ryzu 1 srzzu 1 s y.
1.3 Commutation with application " @ . Here " @ can only be applied in one direction. e diagram is:

Lxλy.t 1 yrxzq 1 ss 1 rxzq 1 s t 4 t 2 t 1 db " @ db " α t 3 t 5 t 6
" dup " com " r¨s where t 1 :" pLxλy.t 1 ys 1 qrxzq 1 s, t 2 :" pLxt 1 ryzs 1 syqrxzq 1 s, t 3 :" pLxt 1 ryzs 1 tx{yusyqrxzq 1 sryzq 1 s, t 4 :" Lxt 1 ryzs 1 rxzq 1 ssyrxzq 1 s, t 5 :" pLxt 1 ryzs 1 tx{yuryzq 1 ssyqrxzq 1 s, t 6 :" pLxt 1 ryzs 1 tx{yusryzq 1 syqrxzq 1 s.

1.4 Commutation of independent substitutions " com .

e substitutions that are commuted by the " com rule must be both in L, i.e. L must be of the form L 1 xL 2 ryzu 1 srzzr 1 sy with z R fvpu 1 q. Let p L " L 1 xL 2 rzzr 1 sryzu 1 sy. en:

Lxλx.t 1 ys 1 p Lxλx.t 1 ys 1 p Lxt 1 rxzs 1 sy Lxt 1 rxzs 1 sy db " com " com db 1.
5 Composition of substitutions " r¨s . e substitutions that appear in the le -hand side of the " r¨s rule must both be in L, i.e. L must be of the form L 1 xL 2 ryzu 1 srzzr 1 sy with z R fvpL 2 xλx.t 1 yq. Let p L " L 1 xL 2 ryzu 1 rzzr 1 ssy. Exactly as in the previous case:

Lxλx.t 1 ys 1 p Lxλx.t 1 ys 1 p Lxt 1 rxzs 1 sy Lxt 1 rxzs 1 sy db " r¨s " r¨s db 2. Base case 2: exponential root step t " R 1 xxyrxzt 1 s Þ Ñ ls R 1 xt 1 yrxzt 1 s " s.
If the step is internal to t 1 , the proof is immediate, since there is no overlap with the pa ern of the Þ Ñ ls redex. Similarly, if the step is internal to Rxxy, the proof is straightforward by resorting to Lem. A.7. Now we proceed by case analysis on the step:

2.1 Garbage collection " gc . Note that " gc cannot remove rxzt 1 s, because by hypothesis x does occur in its scope. If the removed substitution belongs to R 1 , i.e. R 1 " H 2 xH 3 ryzs 1 sy. Let p R 1 :" H 2 xH 3 y. en:

R 1 xxyrxzt 1 s p R 1 xxyrxzt 1 s p R 1 xt 1 yrxzt 1 s R 1 xt 1 yrxzt 1 s ls " gc " gc ls
If " gc adds a substitution as topmost constructor the diagram is analogous.

2.2 Duplication " dup . Two sub-cases:

2.2.1 e equivalence " dup acts on a substitution internal to R 1 . is case goes as for Garbage collection.

2.2.2 e equivalence " dup acts on rxzt 1 s. ere are two further sub-cases:

• e substituted occurrence is renamed by " dup :

R 1 xxyrxzt 1 s R 1 rysx xyyrxzt 1 sryzt 1 s t 1 R 1 xt 1 yrxzt 1 s ls " gc " gc ls
where t 1 :" R 1 rysx xt 1 yrxzt 1 sryzt 1 s and R 1 rysx is the context obtained from R 1 by renaming some (possibly none) occurrences of x as y.

• e substituted occurrence is not renamed by " dup . Essentially as in the previous case:

R 1 xxyrxzt 1 s R 1 rysx xxyrxzt 1 sryzt 1 s t 1 R 1 xt 1 yrxzt 1 s ls " dup " dup ls
where t 1 :" R 1 rysx xt 1 yrxzt 1 sryzt 1 s. 2.3 Commutation with application " @ . Two sub-cases: 2.3.1 e equivalence " @ acts on a substitution internal to R 1 . is case goes as for Garbage collection.

2.3.2 e equivalence " @ acts on rxzt 1 s. It must be the case that R 1 is of the form H 2 s 1 . en:

pH 2 xxys 1 qrxzt 1 s t 2 t 3 t 1 ls " @ " @ ls where t 1 :" pH 2 xt 1 ys 1 qrxzt 1 s, t 2 :" H 2 xxyrxzt 1 ss 1 rxzt 1 s, t 3 :" H 2 xt 1 yrxzt 1 ss 1 rxzt 1 s.
2.4 Commutation of independent substitutions " com . Two sub-cases:

2.4.1 e equivalence " com acts on two substitutions internal to R 1 . is case goes as for Garbage collection.

2.4.2 e equivalence " com acts on rxzt 1 s. It must be the case that R 1 is of the form H 2 . en:

H 2 xxyryzs 1 srxzt 1 s H 2 xxyrxzt 1 sryzs 1 s H 2 xt 1 yrxzt 1 sryzs 1 s H 2 xt 1 yryzs 1 srxzt 1 s ls " com " com ls 2.
5 Composition of substitutions " r¨s . Two sub-cases:

2.5.1 e equivalence " r¨s acts on two substitutions internal to R 1 . is case goes as for Garbage collection.

2.5.2 e equivalence " r¨s acts on rxzt 1 s. Note that the equivalence " r¨s cannot be applied from le to right to rxzt 1 s, because R

:" R 1 xxyrxzt 1 sryzss, t 2 :" R 1 xt 1 yrxzt 1 sryzss, t 3 :" R 1 xt 1 ty{zuyrxzt 1 srzzssryzss, t 4 :" R 1 xt 1 ryzssyrxzt 1 ryzsss, t 5 :" R 1 xt 1 yryzssrxzt 1 ryzsss, t 6 :" R 1 xt 1 yryzssrxzt 1 sryzss, t 7 :" R 1 xt 1 ty{zuyrzzssrxzt 1 sryzss.

3.

Inductive case 1: le of an application H " R 1 q. e situation is: t " t 1 q Ñ a s 1 q " s for terms t 1 , s 1 such that either t 1 Ñ m s 1 or t 1 Ñ e s 1 . Two sub-cases:

3.1 e t u step is internal to t 1 . e proof simply uses the i.h. applied to the (strictly smaller) evaluation context of the step t 1 Ñ a s 1 .

e t

u step involves the topmost application. e step can only be a commutation with the root application. Moreover, for t 1 q to match with the right-hand side of the " @ rule, t 1 must have the form u 1 rxzr 1 s and q the form q 1 rxzr 1 s, so that the is: u " pu 1 q 1 qrxzr 1 s " @ u 1 rxzr 1 sq 1 rxzr 1 s " t ree sub-cases:

3.2.1 e rewriting step is internal to u 1 . en the two steps trivially commute. Let a P tdb, lsu:

u 1 rxzr 1 sq 1 rxzr 1 s pu 1 q 1 qrxzr 1 s pu 2 q 1 qrxzr 1 s u 2 rxzr 1 sq 1 rxzr 1 s a " @ " @ a 3.
2.2 db-step not internal to u 1 . Exactly as the multiplicative root case 1.3 (read in the other direction).

3.3 ls-step not internal to u 1 . Not possible: the topmost constructor is an application, consequently any Ñ e has to take place in u 1 .

4. Inductive case 2: le of a substitution H " R 1 rxzqs. e situation is:

t " t 1 rxzqs Ñ s 1 rxzqs " s with t 1 " R 1 xt 2 y. If the step is internal to R 1 xt 1 y
, the proof we conclude using the i.h.. Otherwise: 4.1 Garbage Collection " gc . If the garbage collected substitution is rxzqs then:

t 1 rxzqs t 1 s 1 s 1 rxzqs " gc " gc
If the substitution is introduced out of the blue, i.e. t 1 rxzqs " gc t 1 rxzqsryzq 1 s or t 1 rxzqs " gc t 1 ryzq 1 srxzqs the diagram is analogous.

4.2 Duplication " dup . If the duplicated substitution is rxzqs then:

t 1 rxzqs t 1 rysx rxzqsryzqs s 1 rysx rxzqs s 1 rxzqs " dup " dup
If duplication is applied in the other direction, i.e. t 1 " t 2 ryzqs and t 1 rxzqs " t 2 ryzqsrxzqs " dup t 2 ty{xurxzqs " t 1 rxzqs the interesting case is when t 2 " H 2 xyy and the step is exponential:

H 2 xyyryzqsrxzqs H 2 xxyty{xurxzqs H 2 xqyty{xurxzqs H 2 xqyryzqsrxzqs ls " dup " dup ls Proof.
By induction on L. e base case is trivial. For L " L 1 lryzus, by i.h. we have:

L 1 xtrxzssyryzus " L 1 xtrxzL 1 xsysyryzus
Let pL 1 xsyq rzsy be the result of replacing all occurrences of y by z in L 1 xsy. en:

L 1 xtrxzL 1 xsysyryzus " dup L 1 xtrxzpL 1 xsyq rzsy syryzusrzzus " com L 1 xtrxzpL 1 xsyq rzsy srzzusyryzus " r¨s L 1 xtrxzpL 1 xsyq rzsy rzzussyryzus " α L 1 xtrxzL 1 xsyryzussyryzus
Now we prove the strong bisimulation property, by induction on the derivation of the reduction step.

1. Base case 1: multiplicative root step t " Lxλx.t 1 yL 1 xvy Þ Ñ dblsv s " Lxt 1 rxzL 1 xvysy.
e nontrivial cases are when the step overlaps the pa ern of the dbv-redex. Note that by Lem 1.3 Commutation with application " @ . e axiom can be applied only in one direction and there must be the same explicit substitution ryzqs as topmost constructor of each of the two sides of the application. e diagram is:

Lxλx.t 1 yrxzqs L 1 xvyryzqs t 1 pLxλx.t 1 y L 1 xvyqryzqs t 2 " @ " dbv dbv
where

t 1 :" Lxt 1 rxzL 1 xvyryzqssyrxzqs, t 2 :" Lxt 1 rxzL 1 xvysyryzqs.
To prove the equivalence on the right, let L 1 xvy rzsx denote the result of replacing all occurrences of x by a fresh variable z in L 1 xvy. e equivalence holds because:

Lxt 2 ryzL 1 xvysyrxzqs " dup Lxt 2 ryzL 1 xvy rzsx syrxzqsrzzqs " com Lxt 2 ryzL 1 xvy rzsx srzzqsyrxzqs " r¨s Lxt 2 ryzL 1 xvy rzsx rzzqssyrxzqs " α Lxt 2 ryzL 1 xvyrxzqssyrxzqs
1.4 Commutation of independent substitutions " com . e commutation of substitutions must be in L, i.e. L must be of the form L 1 xL 2 ryzs 1 srzzu 1 sy with z R fvps 1 q. Let p L :" L 1 xL 2 rzzu 1 sryzs 1 sy. en: If the occurrence of x substituted by the Þ Ñ lslsv step is replaced by the fresh variable y, the situation is essentially analogous.

Lxλx

Commutation with application "

@ .
e only possibility is that the substitution rxzLxvys is commuted with the outermost application in Rxxy. Two cases:

2.3.1 e substitution acts on the le of the application, i.e. V " R 1 t 1 .

pR 1 xxy t 1 qrxzLxvys t 1 t 2 t 3 t 4 " @ " @ " r¨s lsv lsv
where t 1 :" LxpR 1 xvy t 1 qrxzvsy,

t 2 :" LxR 1 xvyrxzvsyLxt 1 rxzvsy, t 3 :" R 1 xxyrxzLxvyst 1 rxzLxvys, t 4 :" LxR 1 xvyrxzvsyt 1 rxzLxvys.
2.3.2 e substitution acts on the right of the application, i.e. V " L 1 xv 1 yR 1 . Similar to the previous case:

pL 1 xv 1 y R 1 xxyqrxzLxvys t 1 t 2 t 3 t 4 " @ " @ " r¨s lsv lsv
where

t 1 :" LxpL 1 xv 1 y R 1 xvyqrxzvsy, t 2 :" LxL 1 xv 1 yrxzvsyLxR 1 xvyrxzvsy, t 3 :" L 1 xv 1 yrxzLxvysR 1 xxyrxzLxvys, t 4 :" L 1 xv 1 yrxzLxvysLxR 1 xvyrxzvsy.
2.4 Commutation of independent substitutions " com . If the commuted substitutions both belong to L, let p L be the result of commuting them, and the situation is exactly as for Garbage collection.

e remaining possibility is that V " R 1 ryzt 1 s and rxzLxvys commutes with ryzt 1 s (which implies x R fvpt 1 q). en:

R 1 xxyryzt 1 srxzLxvys LxR 1 xvyryzt 1 srxzvsy R 1 xxyrxzLxvysryzt 1 s LxR 1 xvyrxzvsyryzt 1 s " com " com lsv lsv
2.5 Composition of substitutions " r¨s . If the composed substitutions both belong to L, let p L be the result of composing them, and the situation is exactly as for Garbage collection.

e remaining possibility is that rxzLxvys is the outermost substitution composed by " r¨s . is is not possible if the rule is applied from le to right, since it would imply that Rxxy " R 1 xxyryzt 1 s with x R R 1 xxy, which is a contradiction.

Finally, if the " r¨s rule is applied from right to le , L is of the form L 1 ryzt 1 s and:

RxxyrxzL 1 xvyryzt 1 ss L 1 xRxvyrxzvsyryzt 1 s RxxyrxzL 1 xvysryzt 1 s L 1 xRxxyrxzvsyryzt 1 s
" r¨s " lsv lsv 3. Inductive case 1: le of an application V " R 1 q. e situation is:

t " R 1 xt 1 y q Ñ R 1 xs 1 y q " s
If the step is internal to R 1 xt 1 y, the result follows by i.h.. e proof is also direct if is internal to q. e nontrivial case is when the step overlaps R 1 xt 1 y and q. ere are two possibilities. e rst is trivial: " gc is used to introduce a substitution out of the blue, but this case clearly commutes with reduction. e second is that the application is commuted with a substitution via the " @ rule (applied from right to le). ere are two cases:

3.1 e substitution comes from t 1 . at is, R 1 " l and t 1 has a substitution at its root.

en t 1 must be a Þ Ñ lslsv -redex t 1 " V 2 xxyrxzLxvys. Moreover q " q 1 rxzLxvys. We have:

V 2 xxyrxzLxvys q 1 rxzLxvys t 1 t 2 t 3 " @ " lsv lsv where t 1 :" LxV 2 xvyrxzvsy q 1 rxzLxvys, t 2 :" pV 2 xxy q 1 qrxzLxvys, t 3 :" LxpV 2 xvy q 1 qrxzvsy.

For the equivalence on the right note that:

LxV 2 xvyrxzvsy q 1 rxzLxvys " r¨s LxV 2 xvyrxzvsy Lxq 1 rxzvsy " @ LxV 2 xvyrxzvs q 1 rxzvsy " @ LxpV 2 xvy q 1 qrxzvsy 3.2 e substitution comes from R 1 . at is: R 1 " V 2 rxzu 1 s. Moreover, q " q 1 rxzu 1 s. e proof is then straightforward:

V 2 xt 1 yrxzu 1 s q 1 rxzu 1 s t 1 t 2 t 3 " @ " @
where t 1 :" V 2 xs 1 yrxzu 1 s q 1 rxzu 1 s, t 2 :" pV 2 xt 1 y q 1 qrxzu 1 s, t 3 :" pV 2 xs 1 y q 1 qrxzu 1 s.

4.

Inductive case 2: right of an application V " LxvyR 1 . e situation is:

t " Lxvy R 1 xt 1 y Ñ Lxvy R 1 xs 1 y " s
Reasoning as in the previous case (le of an application), if the step is internal to R 1 xt 1 y, the result follows by i.h., and if it is internal to Lxvy, it is straightforward to close the diagram by resorting to the fact that " preserves the shape of Lxvy (Lem. A.8). e remaining possibility is that the step overlaps both Lxvy and R 1 xt 1 y. As in the previous case, this can only be possible if " gc introduces a substitution out of the blue, which is a trivial case, or because of a Commutation with application rule (" @ , from right to le). is again leaves two possibilities: 4.1 e substitution comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ lslsv -redex t 1 " V 2 xyyryzL 1 xv 1 ys. Moreover, L " L 2 ryzL 1 xv 1 ys. en:

L 2 xvyryzL 1 xv 1 ys V 2 xyyryzL 1 xv 1 ys t 1 t 2 t 3 " @ " lsv lsv
where

t 1 :" L 2 xvyryzL 1 xv 1 ys L 1 xV 2 xv 1 yryzv 1 sy, t 2 :" pL 2 xvy V 2 xyyqryzL 1 xv 1 ys, t 3 :" L 1 xpL 2 xvy V 2 xv 1 yqryzv 1 sy.
Exactly as in the previous case, for the equivalence on the right consider:

L 2 xvyryzL 1 xv 1 ys L 1 xV 2 xv 1 yryzv 1 sy " r¨s L 1 xL 2 xvyryzv 1 sy L 1 xV 2 xv 1 yryzv 1 sy " @ L 1 xL 2 xvyryzv 1 s V 2 xv 1 yryzv 1 sy " @ L 1 xpL 2 xvy V 2 xv 1 yqryzv 1 sy
4.2 e substitution comes from R 1 . at is, R 1 " V 2 rxzu 1 s. Moreover, L " L 1 rxzu 1 s. is case is then straightforward:

L 1 xvyrxzu 1 s V 2 xt 1 yrxzu 1 s L 1 xvyrxzu 1 s V 2 xs 1 yrxzu 1 s pL 1 xvy V 2 xt 1 yqrxzu 1 s pL 1 xvy V 2 xs 1 yqrxzu 1 s " @ " @
5. Inductive case 3: le of a substitution V " R 1 rxzqs. e situation is:

t " R 1 xt 1 yrxzqs Ñ R 1 xs 1 yrxzqs " s
If the step is internal to R 1 xt 1 y, the result follows by i.h.. If it is internal to q, the steps are orthogonal, which makes the diagram trivial. If the equivalence " gc introduces a substitution out of the blue the steps trivially commute. e remaining possibility is that the substitution rxzqs is involved in the redex. By case analysis on the kind of the step " b : 5.1 Garbage collection " gc . We know x R fvpR 1 xt 1 yq and therefore also x R fvpR 1 xs 1 yq.

We get:

R 1 xt 1 yrxzqs R 1 xs 1 yrxzqs R 1 xt 1 y R 1 xs 1 y " gc " gc 5.2 Duplication " dup .
e important fact is that if R 1 xt 1 y Ñ R 1 xs 1 y and R 1 xt 1 y rysx denotes the result of renaming some (arbitrary) occurrences of x by y in R 1 xt 1 y, then R 1 xt 1 y rysx Ñ R 1 xs 1 y rysx , where R 1 xs 1 y rysx denotes the result of renaming some occurrences of x by y in R 1 xs 1 y. By this we conclude:

R 1 xt 1 yrxzqs R 1 xs 1 yrxzqs pR 1 xt 1 yq rysx rxzqsryzqs pR 1 xs 1 yq rysx rxzqsryzqs " dup " dup 5.
3 Commutation with application " @ . R 1 xt 1 y must be an application. is allows for three possibilities: 5.3.1 e application comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ dblsv -redex t 1 " Lxλy.t 2 y L 1 xvy. e diagram is exactly as for the multiplicative base case 1.3 (read bo om-up). 5.3.2 e application comes from R 1 , le case. at is, R 1 " V 2 u 1 . is case is direct:

pV 2 xt 1 y u 1 qrxzqs t 1 t 2 t 3 " @ " @
where t 1 :" pV 2 xs 1 y u 1 qrxzqs, t 2 :" V 2 xt 1 yrxzqs u 1 rxzqs, t 3 :" V 2 xs 1 yrxzqs u 1 rxzqs.

5.3.3 e application comes from R 1 , right case. at is, R 1 " Lxvy V 2 . Analogous to the previous case.

5.4 Commutation of independent substitutions " com . Since R 1 xt 1 y must have a substitution at the root, there are two possibilities:

5.4.1 e substitution comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ lslsv -redex t 1 " V 2 xyyryzLxvys, with x R fvpLxvyq. en:

V 2 xyyryzLxvysrxzqs LxV 2 xvyryzvsyrxzqs V 2 xyyrxzqsryzLxvys LxV 2 xvyrxzqsryzvsy " com " com lsv lsv 5.4.2 e substitution comes from R 1 . at is, R 1 " V 2 ryzu 1 s with x R fvpu 1 q. is case is direct: V 2 xt 1 yryzu 1 srxzqs V 2 xs 1 yryzu 1 srxzqs V 2 xt 1 yrxzqsryzu 1 s V 2 xs 1 yrxzqsryzu 1 s " com " com lsv lsv
5.5 Composition of substitutions " r¨s . As in the previous case, there are two possibilities:

5.5.1 e substitution comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ lslsv -redex t 1 " V 2 xyyryzLxvys, with x R fvpV 2 xyyq. en:

V 2 xyyryzLxvysrxzqs LxV 2 xvyryzvsyrxzqs V 2 xyyryzLxvyrxzqss LxV 2 xvyryzvsyrxzqs
" r¨s " lsv lsv 5.5.2 e substitution comes from R 1 . at is, R 1 " V 2 ryzu 1 s with x R fvpV 2 xt 1 yq. e proof for this case is direct:

V 2 xt 1 yryzu 1 srxzqs V 2 xs 1 yryzu 1 srxzqs V 2 xt 1 yryzu 1 rxzqss V 2 xs 1 yryzu 1 rxzqss " r¨s " r¨s
Call-by-Need (need)

We follow the structure of the previous proofs of strong bisimulation, in particular the proof is by induction on the derivation of the reduction step. Remember that for call-by-need the de nition of the structural equivalence is given only by axioms " @l , " com , and " r¨s . We need two preliminary lemmas, proved by straightforward inductions on N:

Lemma A.10. Let t be a term, N be a call-by-need evaluation context not capturing any variable in fvptq, and x R fvpRxyyq. en Rxtrxzssy " Need Rxtyrxzss.

Lemma A.11. e equivalence relation " Need preserves the shape of Rxxy. More precisely, if Rxxy " Need t, with x not captured by N, then t is of the form R 1 xxy, with x not captured by R 1 .

1. Base case 1: multiplicative root step t " Lxλx.t 1 yq Þ Ñ db s " Lxt 1 rxzqsy. Every application of " inside q or inside one of the substitutions in L trivially commutes with the step. e interesting cases are those where structural equivalence has a critical pair with the step:

1.1 Commutation with le of an application " @l . If L " L 1 ryzrs then

L 1 xλx.t 1 yryzrsq L 1 xt 1 rxzqsyryzrs pL 1 xλx.t 1 yqqryzrs L 1 xt 1 rxzqsyryzrs " @l " db db
1.2 Commutation of independent substitutions " com . e substitutions that are commuted by the " com rule must be both in L, i.e. L must be of the form L 1 xL 2 ryzu 1 srzzr 1 sy with z R fvpu 1 q. Let p L " L 1 xL 2 rzzr 1 sryzu 1 sy. en: If the -redex is internal to one of the substitutions in L, the proof is straightforward. Note that the -redex has always a substitution at the root. e remaining possibilities are that such substitution is in L, or that it is precisely rxzLxvys. Axiom by axiom:

Lxλx.t
2.1 Commutation with the le of an application " @l .

e only possibility is that the substitution rxzLxvys is commuted with the outermost application in Rxxy, i.e. N " R 1 t 1 . e diagram is: Finally, if the " r¨s rule is applied from right to le , L is of the form L 1 ryzt 1 s and:

pR 1 xxy t 1 qrxzLxvys LxpR 1 xvy t 1 qrxzvsy R 1 xxyrxzLxvyst 1 LxR 1 xvyrxzvsy t 1 " @l " @l lsv lsv 2.
RxxyrxzL 1 xvyryzt 1 ss L 1 xRxvyrxzvsyryzt 1 s RxxyrxzL 1 xvysryzt 1 s L 1 xRxxyrxzvsyryzt 1 s
" r¨s " lsv lsv 3. Inductive case 1: le of an application N " R 1 q. e situation is:

t " R 1 xt 1 y q Ñ R 1 xs 1 y q " s
If the step is internal to R 1 xt 1 y, the result follows by i.h.. e proof is also direct if is internal to q. e nontrivial cases are those where overlaps R 1 xt 1 y and q. e only possible case is that a substitution commutes with the topmost application via " @l (applied from right to le). ere are two cases:

3.1 e substitution comes from t 1 . at is, R 1 " l and t 1 has a substitution at its root.

en t 1 must be a Þ Ñ lslsv -redex t 1 " N 2 xxyrxzLxvys. We have:

N 2 xxyrxzLxvys q LxN 2 xvyrxzvsy q pN 2 xxy qqrxzLxvys LxpN 2 xvy qqrxzvsy " @l " @l lsv lsv 3.2 e substitution comes from R 1 . at is: R 1 " N 2 rxzu 1 s. e proof is then straightforward:

N 2 xt 1 yrxzu 1 s q N 2 xs 1 yrxzu 1 s q pN 2 xt 1 y qqrxzu 1 s pN 2 xs 1 y qqrxzu 1 s " @l " @l
4. Inductive case 2: le of a substitution N " R 1 rxzqs. e situation is:

t " R 1 xt 1 yrxzqs Ñ R 1 xs 1 yrxzqs " s
If the step is internal to R 1 xt 1 y, the result follows by i.h.. If it is internal to q, the steps are orthogonal, which makes the diagram trivial. e remaining possibility is that the substitution rxzqs is involved in the redex. By case analysis on the kind of the step " b :

4.1 Commutation with the le of an application " @l . R 1 xt 1 y must be an application. Two possibilities:

4.1.1 e application comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ db -redex t 1 " Lxλy.t 2 y r. is is exactly as the base case 1.1 (read bo om-up). 4.1.2 e application comes from R 1 , i.e. R 1 " N 2 u 1 . is is exactly as the inductive case 3.2 (read bo om-up).

4.2 Commutation of independent substitutions " com . Since R e property is then proved by induction on the derivation that C P S. Now we turn to the proof of bisimulation itself. As in the previous proofs of bisimulation, we proceed by induction on the derivation of the reduction step:

1. Base case 1: multiplicative root step, t " Lxλx.t 1 ys 1 Þ Ñ db Lxt 1 rxzs 1 sy. If the step is internal to t 1 , internal to s 1 , or internal to the argument of one of the substitutions in L, then the pa ern of the redex does not overlap with the Þ Ñ db step, and the proof is immediate, as the two steps commute. Otherwise, we consider every possible case of :

1.1 Garbage collection, " gc . e garbage collected substitution must be one of the substitutions in L, i.e. L must be of the form L 1 xL 2 ryzu 1 sy. en:

L 1 xL 2 xλx.t 1 yryzzsys 1 L 1 xL 2 xt 1 rxzs 1 syryzzsy L 1 xL 2 xλx.t 1 yys 1 L 1 xL 2 xt 1 rxzs 1 syy " gc " gc db db
1.2 Commutation of independent substitutions, " com . e substitutions that are commuted must be both in L, i.e. L must be of the form L 1 xL 2 ryzu 1 srzzr 1 sy. en: Note that the diagram can be also read from the bo om-up for a reverse application of the " λ rule. In order to be able to apply " com , note that x R fvpu 1 q by application of the " λ rule, and that y R fvps 1 q by the bound variable convention.

L 1 xL 2 xλx.t 1 yryzu 1 srzzr 1 sys 1 L 1 xL 2 xt
1.6 Le commutation with application, " @l . e only possibility is that the outermost substitution of L commutes with the application taking part in the Ñ db step. at is, L must be of the form L 1 ryzu 1 s and:

L 1 xλx.t 1 yryzu 1 ss 1 L 1 xt 1 rxzs 1 syryzu 1 ss 1 pL 1 xλx.t 1 y s 1 qryzu 1 s L 1 xt 1 rxzs 1 syryzu 1 s " @l " db db 1.
7 Right commutation with application, " @r . Note that every " @r (and " @r ´1) redex in pλx.t 1 qL s 1 must be internal to either t 1 , s 1 , or the argument of one of the substitutions in L. We have already argued that in these cases the steps commute.

2. Base case 2: exponential root step, t " Cxxyrxzt 1 s Þ Ñ ls Cxt 1 yrxzt 1 s.

If the substitution that is contracted by the exponential step does not take part in the pa ern of the step, it is immediate to check that the property holds. More precisely, suppose that Cxxyrxzt 1 s C 1 xxyrxzt 2 s, where C 1 and t 2 result respectively from C and t by a single step of . Note that we have that either C C 1 and t 1 " t 2 or vice-versa. en:

Cxxyrxzt 1 s Cxt 1 yrxzt 1 s C 1 xxyrxzt 2 s C 1 xt 2 yrxzt 2 s ls ls
Note that when commutation a ects t 1 (i.e. if we are in the case in which C " C 1 and t 1 t 2), then the right-hand side of the diagram must be closed by two steps: one for each copy of t 1 .

So we may assume that the substitution that is contracted by the exponential step does take part in the pa ern of the step. We consider every possible case of .

2.1 Garbage collection, " gc . e garbage collected substitution cannot erase the contracted occurrence of x, since C is a LO context, and it cannot go inside substitutions. Two subcases, depending on the position of the hole of C with respect to the node of the garbage collected substitution:

2.1.1 If the hole of C lies inside the body of the garbage collected substitution, i.e.

C " C 1 xC 2 ryzs 1 sy with y R fvpC 2 xxyq, then:

C 1 xC 2 xxyryzs 1 syrxzt 1 s C 1 xC 2 xt 1 yryzs 1 syrxzt 1 s C 1 xC 2 xxyyrxzt 1 s C 1 xC 2 xt 1 yyrxzt 1 s " gc " gc ls ls
Note that y R fvpC 2 xt 1 yq since we may assume that y R fvpt 1 q by the bound variable convention.

2.1.2 Otherwise, the hole of C must be disjoint from the node of the garbage collected substitution, i.e. there must be a two-hole context C 1 such that:

C " C 1 xl, s 1 ryzu 1 sy
where y R fvps 1 q. en:

C 1 xx, s 1 ryzu 1 syrxzt 1 s C 1 xt 1 , s 1 ryzu 1 syrxzt 1 s C 1 xx, s 1 yrxzt 1 s C 1 xt 1 , s 1 yrxzt 1 s " gc " gc ls ls
2.2 Commutation of independent substitutions, " com . Note that the contracted occurrence of x cannot be inside the argument of any of the commuted substitutions, since C is a LO context and it cannot go inside substitutions. Since the contracted substitution is commuted, we have that C must be of the form C 1 ryzs 1 s and the situation is:

C 1 xxyryzs 1 srxzt 1 s C 1 xt 1 yryzs 1 srxzt 1 s C 1 xxyrxzt 1 sryzs 1 s C 1 xt 1 yrxzt 1 sryzs 1 s " com " com ls ls 2.
3 Composition of substitutions, " r¨s . Note that the contracted occurrence of x cannot be inside the argument of any of the two substitutions that take part in the " r¨s step, since C is a LO context and it cannot go inside substitutions. We know that the contracted substitution takes part in the " r¨s step. We consider two subcases, depending on whether the " r¨s rule is applied from le to right or from right to le , since the situation is not symmetrical.

2.3.1 If the " r¨s step is applied from le to right, then C must be of the form C 1 ryzs 1 s with x R fvpC 1 xxyq. is is a contradiction, so this case is not actually possible. 2.6 Le commutation with application, " @l . en C is of the form C s 1 and:

pCxxy s 1 qrxzt 1 s pCxt 1 y s 1 qrxzt 1 s Cxxyrxzt 1 s s 1 Cxt 1 yrxzt 1 s s 1
" @l " @l ls ls 2.7 Right commutation with application, " @r . en C is of the form s 1 C and:

ps 1 Cxxyqrxzt 1 s ps 1 Cxt 1 yqrxzt 1 s s 1 Cxxyrxzt 1 s s 1 Cxt 1 yrxzt 1 s
" @r " @r ls ls 3. Inductive case 1: inside an abstraction. Suppose that t " λx.t 1 Ñ λx.s 1 " s. We consider two subcases, depending on whether the step is internal to the body of the abstraction, or involves the outermost abstraction:

3.1 If the application of the step is internal to t 1 , we have by i.h.:

t 1 s 1 u 1 r 1
" " so is immediate to conclude that:

λx.t 1 λx.s 1 λx.u 1 λx.r 1 " "
3.2 If the outermost abstraction takes part in the step, then a " λ step must have been applied, so t 1 must be of the form t 2 ryzs 1 s. We consider two further subcases, depending on whether the commuted substitution is involved in the reduction step: 3.2.1 If the reduction step t 2 ryzs 1 s Ñ u 1 is an exponential, and the commuted substitution ryzs 1 s is the one contracted by the exponential step, then the situation is exactly like in case 2.5 (Commutation with abstraction for exponential steps), by reading the diagram from the bo om up. 3.2.2 Otherwise, note that there cannot be a multiplicative step at the root, and that the step cannot be internal to s 1 , as LO contexts do not go inside substitutions. erefore the reduction step must be internal to t 2 and the situation is: 4. Inductive case 2: le of an application. Suppose that t " t 1 q Ñ s 1 q " s. If the application of the step is internal to t 1 , we may immediately conclude by i.h. (analogous to case 3.1).

λx.t
e interesting case is when the outermost application takes part in the step. ere are two possibilities, depending on whether a " @l step or a " @r step is applied:

4.1 " @l step. en t 1 must be of the form t 2 rxzu 1 s. We consider two further subcases, depending on whether the commuted substitution is involved in the reduction step:

4.1.1 If the reduction step t 2 rxzu 1 s Ñ r 1 is an exponential step and the commuted substitution rxzu 1 s is also the one contracted by the exponential step, then the situation is exactly like in case 2.6 (Le commutation with application for exponential steps), by reading the diagram from the bo om up.

4.1.2 Otherwise, note that the reduction step cannot be internal to u 1 , since LO contexts do not go inside substitutions, so it must be internal to t 2 and the situation is: t 2 rxzu 1 s q s 2 rxzu 1 s q pt 2 qqrxzu 1 s ps 2 qqrxzu 1 s " @l " @l 4.2 " @r step. en q must be of the form q 1 rxzu 1 s and the situation is:

t 1 q 1 rxzu 1 s s 1 q 1 rxzu 1 s pt 1 q 1 qrxzu 1 s ps 1 q 1 qrxzu 1 s " @r " @r 5. Inductive case 3: right of an application. Suppose that t " q t 1 Ñ q s 1 " s. If the application of the step is internal to t 1 , we may immediately conclude by i.h. (analogous to case 3.1).

e interesting case is when the outermost application takes part in the step. ere are two possibilities, depending on whether a " @l step or a " @r step is applied:

5.1 " @l step. en q must be of the form q 1 rxzu 1 s and the situation is:

q 1 rxzu 1 s t 1 q 1 rxzu 1 s s 1
pq 1 t 1 qrxzu 1 s pq 1 s 1 qrxzu 1 s " @l " @l 5.2 " @r step. en t 1 must be of the form t 2 rxzu 1 s. We consider two further subcases, depending on whether the commuted substitution is involved in the reduction step:

5.2.1 If the reduction step t 2 rxzu 1 s Ñ r 1 is an exponential step and the commuted substitution rxzu 1 s is also the one contracted by the exponential step, then the situation is exactly like in case 2.7 (Right commutation with application for exponential steps), by reading the diagram from the bo om up. 5.2.2 Otherwise, note that the reduction step cannot be internal to u 1 , since LO contexts do not go inside substitutions, so it must be internal to t 2 and the situation is: q t 2 rxzu 1 s q s 2 rxzu 1 s pq t 2 qrxzu 1 s pq s 2 qrxzu 1 s " @r " @r 6. Inductive case 4: le of a substitution. Suppose that t " t 1 rxzqs Ñ s 1 rxzqs " s.

If the application of the step is internal to t 1 , we may immediately conclude by i.h. (analogous to case 3.1). e interesting case is when the outermost substitution node takes part in the step. ere are four possibilities, depending on whether a " gc step, a " com step, a " r¨s step, or a " dup step is applied: 6.1 " gc step. e reduction step cannot be internal to q, since LO contexts may not go inside substitutions, so the step must be internal to t 1 , and closing the diagram is trivial:

t 1 rxzqs s 1 rxzqs t 1 s 1 " gc " gc
Note that if x R fvpt 1 q then x R fvps 1 q by the usual property that reduction does not create free variables.

6.2 " com step. en t 1 must be of the form t 2 ryzu 1 s with x R fvpu 1 q. We consider two further subcases, depending on whether the commuted substitution is involved in the reduction step:

6.2.1 If the reduction step t 2 ryzu 1 s Ñ r 1 is an exponential step and the commuted substitution ryzu 1 s is also the one contracted by the exponential step, then the situation is exactly like in case 2.2 (Commutation of independent substitutions for exponential steps), by reading the diagram from the bo om up.

6.2.2 Otherwise, note that the reduction step cannot be internal to u 1 , since LO contexts may not go inside substitutions, so it must be internal to t 2 , and the situation is: t 2 ryzu 1 srxzqs s 2 ryzu 1 srxzqs t 2 rxzqsryzu 1 s s 2 rxzqsryzu 1 s " com " com 6.3 " r¨s step. Two cases, depending on whether the " r¨s step is applied from le to right or from right to le : 6.3.1 " r¨s is applied from le to right. en t 1 must be of the form t 2 ryzu 1 s with x R fvpt 2 q. We consider two further subcases, depending on whether the commuted substitution is involved in the reduction step: 6.3.1.1 If the reduction step t 2 ryzu 1 s Ñ r 1 is an exponential step and the commuted substitution ryzu 1 s is also the one contracted by the exponential step, then the situation is exactly like in case 2.3.2 (Composition of substitutions for exponential steps), by reading the diagram from the bo om up.

6.3.1.2 Otherwise, note that the reduction step cannot be internal to u 1 , since LO contexts may not go inside substitutions, so it must be internal to t 2 , and the situation is:

t 2 ryzu 1 srxzqs s 2 ryzu 1 srxzqs t 2 ryzu 1 rxzqss s 2 ryzu 1 rxzqss " r¨s " r¨s
Note that if x R fvpt 2 q, then x R fvps 2 q, by the usual fact that reduction does not create free variables. 6.3.2 " r¨s is applied from right to le . en q must be of the form q 1 ryzu 1 s, and the reduction step must be internal to t 1 , so the situation is: 2 Otherwise, note that the reduction step cannot be internal to q, since LO contexts may not go inside substitutions, so it must be internal to t 2 . e situation is then exactly like in case 6.4.1, by reading the diagram from the bo om up.

t 1 rxzq
3.1 prrπssxty, E äq is closed;

3.2 for every pair px, π 1 q in D, prrπ 1 ssxxy, E ä x q is closed;

3.3 E9D holds.

4. Contextual Decoding: rrpE, Dqss is a call-by-need evaluation context.

Proof. By induction on the length of the execution. Points 1 and 2 are by direct inspection of the rules. Assuming E9D, point 4 is immediate by induction on the length of D. us we are only le to check point 3. We use point 2, i.e. that substitutions in E bind pairwise distinct variables. Following we show that transitions preserve the invariant:

1. Conmutative 1. We have:

t s | π | D | E ù s 1 t | s :: π | D | E
Trivial, since the dump and the environment are the same and rrps :: πqssxty " rrπssxt sy.

2. Conmutative 2. We have S ù s 2 S 1 with:

S " x | π | D | E 1 :: rxzts :: E 2 S 1 " t | | px, πq :: D | E 1 :: rxzls :: E 2
Note that since by i.h. prrπssxxy, pE 1 :: rxzts :: E 2 q äq is closed and x is free in rrπssxxy, there cannot be any dumped substitutions in E 2 .

en pE 1 :: rxzts :: E 2 q ä" E 1 ä:: rxzts :: E 2 and we know:

prrπssxxy, E 1 ä:: rxzts :: E 2 q is closed (A.7) For 3.1, note pE 1 :: rxzls :: E 2 q ä" E 2 . en we must show pt, E 2 q is closed, which is implied by (A.7).

For 3.2, there are two cases:

• If the pair is px, πq, we must show prrπssxxy, pE 1 :: rxzls :: E 2 q ä x q is closed, i.e.

prrπssxxy, E 1 ä:: rxzls :: E 2 q is closed which is implied by (A.7).

• If the pair is py, π 1 q in D, with y ‰ x, note rst that pE 1 :: rxzts :: E 2 q ä y " E 1 ä y :: rxzts :: E 2

And similarly for pE 1 :: rxzls :: E 2 q ä y . Moreover, by the invariant on S we know prrπ 1 ssxyy, E 1 ä y :: rxzts :: E 2 q is closed and this implies prrπ 1 ssxyy, E 1 ä y :: rxzls :: E 2 q is closed as required.

For 3.3, we have already observed that E 2 has no dumped substitutions. en rxzls is the rightmost dumped substitution in the environment of S 1 , while px, πq is the le most pair in the dump. We conclude by the fact that the invariant already holds for S. Note rst that since the invariant holds for S, we know ryzls is the rightmost dumped substitution in the environment of both S and S 1 . erefore pE 1 :: ryzls ::

E 2 q ä" E 2
For proving point 3.1, we have:

prrπssxpλx.tq sy, E 2 q is closed and we must show:

prrπssxty, rxzss :: E 2 q is closed e situation is exactly as in point 3.1 for the ù m transition, empty dump case.

For point 3.2, let pz, π 2 q be any pair in py, π 1 q :: D. Let also

E 1 1 :" # E 1 ä if y " z E 1 ä z otherwise
and note that pE 1 :: ryzls :: Eq ä y " E 1 1 :: ryzls :: E for any environment E that contains no dumped substitutions. By the invariant on S, we have that: prrπ 2 ssxzy, E 1 1 :: ryzls :: E 2 q is closed Moreover, from point 3.1 we know ps, E 2 q is closed. Both imply:

prrπ 2 ssxzy, E 1 1 :: ryzls :: rxzss :: E 2 q is closed as required.

For point 3.3, just note that the substitution rxzss added to the environment is not dumped, and so duality holds because it holds for S by i.h..

5.

Exponential. We have S ù e S 1 with:

S " v | | px, πq :: D | E 1 :: rxzls :: E 2 S 1 " v α | π | D | E 1 :: rxzvs :: E 2
First note that since the environment and the dump are dual in S, we know E 2 has no dumped substitutions.

For proving point 3.1, by resorting to point 3.1 on the state S, for which the invariant already holds, we have that:

pv, E 2 q is closed (A.9) Moreover, by point 3.2 on S, specialized on the pair px, πq, we also know:

prrπssxxy, E 1 ä:: rxzls :: E 2 q is closed (A.10)

We must check that:

prrπssxv α y, E 1 ä:: rxzvs :: E 2 q is closed Any free variable in rrπssxv α y is either free in π, in which case by (A.9) it must be bound by E 1 ä:: rxzls :: E 2 , or free in v, in which case by (A.9) it must be bound by E 2 . In both cases it is bound by E 1 ä:: rxzvs :: E 2 , as required. To conclude the proof of point 3.1, note that by combining (A.9) and (A.10) we get E 1 ä:: rxzvs :: E 2 is closed.

For proving point 3.2, let py, π 1 q be a pair in D. Using that x ‰ y, by the invariant on S we know:

prrπ 1 ssxyy, E 1 ä y :: rxzls :: E 2 q is closed and this implies:

prrπ 1 ssxyy, E 1 ä y :: rxzvs :: E 2 q is closed as wanted.

Point 3.3 is immediate, given that the environment and the dump are already dual in S. For a non-empty evaluation sequence we list the cases for the last transitions. We only consider the cases for backtracking phases (ò) or when the frame changes, the others (ós 1 , ù m , ù e) are omi ed because they follow immediately from the i.h..

• Case pF, λx.t, , E, óq ós 2 px :: F, t, , Źx :: E, óq.

1. Trivial since ϕ ‰ ò.

2. Suppose x :: F can be wri en as x :: F 1 :: ps, π 1 q :: F 2 . en by i.h. s is a neutral term.

• Case pF, x, π, E, óq ós 3 pF, x, π, E, òq with Epxq " Ź. Note that x P ΛpEq, because Epxq " Ź.

1.

x is a normal and neutral term.

2. It follows from the i.h., as F is unchanged. For a non-empty evaluation sequence we list the cases for the last transitions. We omit the transitions involving only states in evaluating phase, as for them everything follows immediately from the i.h..

• Case pF, y, π, E, óq ós 3 pF, y, π, E, òq with Epyq " Ź.

1. Backtracking Code: by hypothesis Epyq " Ź, and so y P ΛpEq " ΛpF q by Lem. 3.63.

2. Pairs in the Frame: it follows from the i.h..

• Case py :: F, u, , E, òq òs 4 pF, λy.u, , yŸ :: E, òq.

1. Backtracking Code: by i.h. fvpuq Ď Λpy :: F q and so fvpayuq " fvpuqztxu " ΛpF q.

2. Pairs in the Frame: it follows from the i.h..

• Case ppu, πq :: F, r, , E, òq òs 5 pF, ur, π, E, òq.

1. Backtracking Code: by i.h. fvprq Ď Λppu, πq :: F q " ΛpF q and by i.h. fvpuq Ď ΛpF q, and so fvpurq Ď ΛpF q.

2. Pairs in the Frame: it follows from the i.h..

• Case pF, u, r :: π, E, òq òs 6 ppu, πq :: F, r, , E, óq.

1. Backtracking Code: nothing to prove.

2. Pairs in the Frame: by i.h. fvpuq Ď ΛpF q, the rest follows immediately from the i.h..

Name Invariant

e invariant trivially holds for an initial state ó | | u 0 | | if u 0 is closed and well-named. For a non-empty evaluation sequence we list the cases for the last transitions:

• Case pF, ur, π, E, óq ós 1 pF, u, r :: π, E, óq. Every point follows from its i.h..

• Case pF, λy.u, r :: π, E, óq ù m pF, u, π, ryzrs :: E, óq.

1. Substitutions: for ryzrs it follows from the i.h., for E it follows from the i.h..

2.

Markers: note that by i.h. y simply cannot occur in F , the rest follows from the i.h.. 3. Abstractions: it follows from the i.h..

• Case pF, λy.u, , E, óq ós 2 py :: F, u, , Źy :: E, óq.

1. Substitutions: it follows from the i.h..

2.

Markers: for y it follows from the i.h., the rest follows from the i.h..

3.

Abstractions: it follows from the i.h..

• Case pF, y, π, E, óq ù e pF, u α , π, E, óq. It follows by the i.h. and the fact that in u α the abstracted variables are renamed (with respect to u) with fresh names.

• Case pF, y, π, E, óq ós 3 pF, y, π, E, òq. Every point follows from its i.h.. • Case pF, ur, π, E, óq ós 1 pF, u, r :: π, E, óq. Every point follows from its i.h..

• Case pF, λy.u, r :: π, E, óq ù m pF, u, π, ryzrs :: E, óq.

1. Environment: for ryzrs it follows from the i.h., for the rest it follows from the i.h..

2.

Code, Stack, and Frame: for y is evident, as ryzrs :: E is clearly de ned on y, for the rest it follows from the i.h..

• Case pF, λy.u, , E, óq ós 2 py :: F, u, , Źy :: E, óq.

1. Environment: it follows from the i.h..

2.

Code, Stack, and Frame: for y is evident, as Źy :: E is clearly de ned on y, for the rest it follows from the i.h..

• Case pF, y, π, E, óq ù e pF, u α , π, E, óq.

1. Environment: it follows from the i.h.. Proof. We prove that rrpF, Eqss is a LO context, the fact that C S is a LO contexts then easily follows, as C S :" rrpF, Eqssxrrπssy.

e invariant trivially holds for an initial state ó | | t 0 | | . For a non-empty evaluation sequence we list the cases for the last transitions. We omit the cases for which the environment and the frame do not change (i.e. ós 1 , ù e , ós 3), as for them the statement follows from the i.h.. • Case ppt, πq :: F, s, , E, òq òs 5 pF, ts, π, E, òq. By i.h. we have that rrpppt, πq :: F q, Eqss is LO and by frame part of the backtracking normal form invariant (Lem. 3.64) t is neutral. By de nition, rrpppt, πq :: F q, Eqss " rrpF, Eqssxrrπssxtlyy, en, rrpF, Eqssbeing a pre x of rrpppt, πq :: F q, Eqss-veri es the conditions of Def. 3.5 and is LO.

• Case pF, t, s :: π, E, òq òs 6 ppt, πq :: F, s, , E, óq. Note that Convention A.17. In the proofs of Chapter 4, we adopt the following notational conventions: A.2.3 Unique decomposition -proof of Lem. 4.17 Our aim is to show that whenever C 1 xr 1 y " C 2 xr 2 y, where C 1 and C 2 are evaluation contexts over ϑ, and r 1 and r 2 are reducible subterms, then C 1 " C 2 and r 1 " r 2 . A technical stumbling block is that it is not possible to reason inductively: if a term is of the form Cxryrxzts where r is a reducible subterm, then in the subterm Cxry it is not necessarily the case that r is a reducible subterm. For instance the underlined occurrence of x is a reducible subterm in pxxqrxzλy.ys but not in xx. e way out of this di culty is generalizing the notion of reducible subterm to that of reduction place. A reduction place is essentially a reducible subterm or the free ocurrence of a variable. Reasoning inductively will be possible using reduction places, rather than reducible subterms, since if r is a reduction place in Cxryrxzts then r is a reduction place in Cxry. More precisely:

F ϑ , F ϑ 1 , F ϑ 2 ,
De nition A.31 (Reduction place). In a term F ϑ xty, the subterm t is said to be a F ϑ -reduction place if any of the following hold: 1. t is the redex pa ern of a beta-step, i.e. t " pλx.sqL u;

1. EB , i.e. F ϑ " l en N ϑ must be a l-reduction place, for l as a context in E ϑ . Let us consider the three cases of the de nition of l-reduction place:

1.1 If N ϑ is the redex pa ern of a beta-step. en N ϑ " M ϑ N ϑ 1 with M ϑ an answer. But strong structures are not answers, so this case is impossible.

1.2 If N ϑ is the variable x contracted by an ls-step.

Impossible, since x is free. (by Barendregt's convention), so x R fz ϑ pF ϑ 21 q; these conditions imply that x is a F ϑ 21 -reduction place. is allows us to apply the i.h., obtaining pF ϑ 11 , xq " pF ϑ 21 , t 1 q. Since t 1 " x is a F ϑ 1reduction place by hypothesis, and x is bound by F ϑ 1 , we conclude that it must be involved in an ls-step. is implies that the substitution rxzss contains an answer, that is, s " vL. But from the formation rule of F ϑ 2 , we also know that s " I ϑ xt 2 y. So the situation is such that I ϑ xt 2 y " vL. By the fact that inert evaluation contexts such as I ϑ do not go below answers (Lem. A.21) we conclude that t 2 must be of the form vL 1 . is is a contradiction, as t 2 is a F ϑ 2 -reduction place, which means that it must be either an application or a variable. . By Lem. A.32 we know that each t i must be a F ϑ i1 -reduction place, so we may apply the i.h. to conclude that pF ϑ 11 , t 1 q " pF ϑ 21 , t 2 q, as required.

A.2.4 Conservativity -proof of m. 4.23

In this section we give a proof of m. 4.23, which states that our strong call-by-need strategy is a conservative extension of weak call-by-need. e proofs developed in this section rely on an alternative characterization of weak normal forms.

e set of weak normal forms is captured by WNF ϑ ::" vL | Exxxyy with x P ϑ.

e alternative characterization presented below is convenient for carrying out the proofs. . en x P hrvpt 1 q and we conclude by i.h..

2.

w ' : t " t 1 ryzt 2 s and t 1 P X ϑYtxu and x P hrvpt 1 q and t 2 P S w ϑ . Recall that:

hrvpt 1 ryzt 2 sq def " phrvpt 1 qzyq Y # hrvpt 2 q if y P hrvpt 1 q
∅ otherwise If x P hrvpt 1 ryzt 2 sq, there are two cases. Either x P hrvpt 2 q and we conclude from the i.h.. Otherwise, x P hrvpt 1 qzy. en x ‰ y and we also conclude from the i.h. too.

3. w ˝: t " t 1 ryzt 2 s with t 1 P X ϑ and y R hrvpt 1 q erefore, hrvpt 1 ryztsq " hrvpt 1 qzy. Suppose x P hrvpt 1 qzy.

en x ‰ y and x P hrvpt 2 q and we conclude using the i.h. again.

Lemma A.38. If s P S w ϑ is a weak structure then hrvpsq is a singleton.

Proof. By induction on the derivation that s P S w ϑ . e cases w and w are immediate.

w

˝:

en t " t 1 rxzt 2 s with x R hrvpt 1 q and t 2 P S w ϑ . us hrvptq " hrvpt 1 qzx " hrvpt 1 q and the result follows from the i.h. on t 1 .

w

' : en t " t 1 rxzt 2 s with t 1 P S w ϑYtxu and x P hrvpt 1 q and t 2 P S w ϑ . By the i.h. hrvpt 1 q " tzu, for some variable z. We consider two cases: 2.1 If x P hrvpt 1 q. en z " x and hrvpt 1 rxzt 2 sq " hrvpt 1 qzx Y hrvpt 2 q " hrvpt 2 q. e result follows from the i.h. on t 2 .

If

x R hrvpt 1 q. en hrvpt 1 rxzt 2 sq " hrvpt 1 qzx " hrvpt 1 q " tzu.

Lemma A.39. Let t P S w ϑ . If x P hrvptq, then there is a weak evaluation context E P WCtx such that t " Exxxyy.

Proof. By induction on the derivation that t P S w ϑ .

1. w : t " x with x P ϑ. Take E " l.

w

: t " t 1 t 2 with t 1 P S w ϑ . Resort to the i.h. to obtain E 1 and set

E def " E 1 t 2 .
3. w ˝: t " t 1 ryzt 2 s with t 1 P S w ϑ and y R hrvpt 1 q. us hrvptq " hrvpt 1 qzy " hrvpt 1 q. erefore x P hrvpt 1 q, hence x ‰ y, and the i.h. yields E 1 such that t 1 " E 1 rxs. We conclude by se ing E def " E 1 ryzts.

w

' : t " t 1 ryzt 2 s and t 1 P S w ϑYtxu and y P hrvpt 1 q and t 2 P S w ϑ . By the i.h. there exists E 1 such that t 1 " E 1 xxyyy. Also, hrvpt 1 ryzt 2 sq " hrvpt 1 qzy Y hrvpt 2 q " hrvpt 2 q.

e last equality follows from Lem. A. • F ϑ rxs " F ϑ 1 xxyyyryzI ϑ rxss and t 2 " I ϑ rxs. Since y P hrvpt 1 q, then x R hrvpI ϑ rxsq. erefore we conclude from the i.h. on I ϑ .

w

˝: F ϑ rxs " t 1 ryzt 2 s with t 1 P X ϑ and y R hrvpt 1 q. e following cases are possible:

• F ϑ rxs " F ϑ 1 rxsryzt 2 s with t 2 R S ϑ and y R ϑ. e result follows from the i.h. , then it must be the case that F ϑ rrs " I ϑ rrs t 2 and the result follows from the i.h. with respect to item (2) and w

. If t 1 P S ϑ , then it must be the case that F ϑ rrs " t 1 F ϑ 1 rrs and the result is immediate from w .

2. w ' : t " t 1 rxzt 2 s and t 1 P X ϑYtxu , x P hrvpt 1 q, t 2 P S w ϑ . Note that F ϑ " l is not possible since t 2 is not an answer. us one of the following holds:

• F ϑ rrs " F ϑ 1 rrsrxzt 2 s with t 2 R S ϑ and x R ϑ. By Lem. A.37 this case is not possible. • F ϑ rrs " F ϑYtxnu 1 rrsrxzt 2 s with t 2 P S ϑ . e result follows from the i.h. and w ' or w ˝.

• F ϑ rrs " F ϑ 1 xxxyyrxzI ϑ rrss and t 2 " I ϑ rrs. We use the i.h. with respect to item (2) on t 2 and then conclude using either w ' .

3. w ˝: t " t 1 rxzt 2 s and t 1 P X ϑ and x R hrvpt 1 q. One of the following holds: A.2.5 Commutation -proof of Lem. 4.49 and Lem. 4.50 In this section we give a proof of the backward stability by internal steps result stated in Lem. 4.49, and the postponement of internal steps result stated in Lem. 4.50. ese proofs are long and technical. Before being able to give a complete proof, we need many auxiliary lemmas. e items in the statement of Lem. 4.49 e rest of this section is organized in subsections as follows. Sec. A.2.5 deals with backward stability of answers and db-redexes. Sections A.2.5-A.2.5 introduce auxiliary notions and results: the set of structural variables of an evaluation context (Sec. A.2.5), critical contexts (Sec. A.2.5), an analysis of the context that results from replacing a value by a variable in an evaluation context (Sec. A.2.5), a solution for a uni cation problem with evaluation contexts (Sec. A.2.5), and non-garbage contexts (Sec. A.2.5). Backward stability is then addressed for normal forms (Sec. A.2.5) and evaluation contexts (Sec. A.2.5). Finally we turn to the postponement result itself (Sec. A.2.5).

• F ϑ " l. t 1 " F ϑ 1 xxxyy
As a notational remark, in this section we use anchor of a redex to refer to the underlined subterm in each of the following cases:

1. db-redex: Cxpλx.tqL sy, i.e., the anchor is the pa ern of the db-redex.

2. lsv-redex: C 1 xC 2 xxxyyrxzvLsy, i.e., the anchor is the occurrence of x substituted by the lsv-step.

Backward stability of answers and db-redexes by internal steps

In this subsection we tackle the rst item of Lem. 4.49. We recall the statement: if t 0 ϑ Ý Ý Ñ sh t and t is an answer (resp. a db redex), then t 0 must also be an answer (resp. a db redex). Backward stability of db redexes is necessary to show that internal steps can be postponed in a situation like t 0 ϑ Ý Ý Ñ sh pλx.tqLs ϑ ù trxzssL, to ensure that there is a db step at the root of t 0 . Backward stability of answers is necessary to show that internal steps can be postponed in a situation like xrxzt 0 s ϑ Ý Ý Ñ sh xrxzvLs ϑ ù vrxzvsL. In that case it can be argued that the step t 0 Ñ vL has to be internal, so t 0 is an answer and there is a lsv step at the root of t 0 .

Lemma A.51 (Backward stability of answers). Let t 0 ϑ Ý Ý Ñ sh pλx.sqL " t be a ϑ-internal step. en the source of the step is of the form t 0 " pλx.s 0 qL 0 . Moreover, the anchor of the step is not below a substitution context, i.e. it is inside s 0 or inside one of the arguments of L 0 .

Proof. By induction on the context C under which the step takes place: 1. Empty, C " l Note that the step cannot be a db step, as it would then be a ϑ-external step, since l P E ϑ .

So the step must be a lsv step, contracting the outermost substitution, that is, t 0 "

C 1 xxyyyryzvL 2 s ϑ Ý Ý Ñ sh C 1 xvyryzvsL 2 " t. Note that C 1 xvy " pλx.sqL 1 where L " L 1 ryzvsL 2 .
We claim that C 1 is not a substitution context. By contradiction, suppose that C 1 is a substitution context.

en the lsv step t 0 " yL 1 ryzvL 2 s ϑ Ý Ý Ñ sh vL 1 ryzvsL 2 " t is ϑ-external since L 1 ryzvL 2 s P E ϑ .

is contradicts the assumption that the step is ϑinternal. Note that, as already argued, in both cases, the anchor of the step is not below a substitution context.

2. Inside an abstraction, C " λx.C 1 e step is of the form t 0 " λx.C 1 xr 0 y ϑ Ý Ý Ñ sh λx.C 1 xry " t, so L " L 0 " l, with s 0 " C 1 xr 0 y and s " C 1 xry. Note that the anchor of the step is inside s 0 , hence not below a substitution context.

3. Le of an application, C " C 1 u Impossible, since the step would be of the form t 0 "

C 1 xr 0 y u ϑ Ý Ý Ñ sh C 1 xry u " t but t is not an application.
4. Right of an application, C " u C 1 Impossible, analogous to the previous case.

5. Le of a substitution, C " C 1 ryzus en the step is of the form t 0 " C 1 xryryzus ϑ Ý Ý Ñ sh C 1 xr 1 yryzus " pλx.sqL 1 ryzus " t, where L " L 1 ryzus. We consider two cases, depending on whether u is a strong ϑ-structure: 5.1 If u P S ϑ Note that the isomorphic step C 1 xryÑ shzgc pλx.sqL 1 , taking place under the context C 1 , cannot be pϑ Y tyuq-external, since then the fact that C 1 P E ϑYtyu would imply that C 1 ryzus P E ϑ , and the original step would be ϑ-external, contradicting the hypothesis.

Hence the step C 1 xry ϑYtyu ÝÝÝÝÑ sh pλx.sqL 1 is pϑ Y tyuq-internal. By i.h. we have that C 1 xry " pλx.s 0 qL 1 0 , so the source of the original step is of the form C 1 xryryzus " pλx.s 0 qL 1 0 ryzus. By i.h., we also have that the anchor of the step is either inside s 0 , or inside one of the arguments of L 1 0 By taking L 0 :" L 1 0 ryzus we conclude. 5.2 If u R S ϑ Similar to the previous case: the isomorphic step C 1 xry Ñ shzgc pλx.sqL 1 , taking place under the context C 1 , cannot be ϑ-external, as this would imply that the original step is ϑ-external. So it must be ϑ-internal and we may apply the i.h. to conclude that C 1 xry " pλx.s 0 qL 1 0 and, moreover, that the anchor of the step is either inside s 0 , or inside one of the arguments of L 1 0 . is means that the source of the original step is of the form C 1 xryryzus " pλx.s 0 qL 1 0 ryzus, as required.

6. Inside a substitution, C " uryzC 1 s en it must be the case that u " pλx.sqL 1 and the step is of the form pλx.sqL 1 ryzC 1 xrys ϑ Ý Ý Ñ sh pλx.sqL 1 ryzC 1 xr 1 ys, with L " L 1 ryzC 1 xr 1 ys. By taking s 0 :" s and L 0 :" L 1 ryzC 1 xrys we conclude. Note that the anchor of the step is inside one of the arguments of L 0 , as required.

Lemma A.52 (Backward stability of db-redexes). Let t 0 ϑ Ý Ý Ñ sh pλx.sqL u " t be a ϑ-internal step. en the source of the step is of the form t 0 " pλx.s 0 qL 0 u 0 . Moreover, the anchor of the step is not below a context of the form L 1 u 0 , i.e. it is inside s 0 , inside one of the arguments of L 0 , or inside u 0 .

Proof. By case analysis on the shape of the context C under which the step takes place. e interesting case is when going to the le of an application, that is C " C 1 u.

en the step is of the form C 1 xry u ϑ Ý Ý Ñ sh C 1 xr 1 y u. Consider the isomorphic step C 1 xry Ñ shzgc C 1 xr 1 y takes place under the context C 1 . We consider two cases, depending on whether C 1 is an generalized evaluation context over ϑ:

1. If C 1 P E ϑ Note that C 1 is not an inert evaluation context, i.e. C 1 R E θ, since

Structural variables

In this subsection we introduce structural variables. Intuitively, the structural variables svpCq of an evaluation context C are the free variables that must be frozen in order for C to be an evaluation context. For instance svppxlqryzzsq " txu and svppxlqrxzzsq " tx, zu. To understand the de nition of structural variables, it might be helpful to observe that a term in the process of being evaluated has already frozen subterms, which have been normalized and are morally to the le of the focus of evaluation, and still pending subterms, which are yet to be evaluated and are morally to the right of the focus of evaluation. Structural variables are de ned to be the non-garbage variables that occur in the already frozen subterms. Structural variables are required as tools to reason over arbitrary evaluation contexts. In particular, the strengthening lemma for evaluation contexts (Lem. A.54) allows obtaining a ϑ-evaluation context from a pϑ Y txuq-evaluation context C depending on whether x P svpCq.

is mimicks the strengthening lemma for normal forms that we have already stated (Lem. A.25) which allows obtaining a ϑ-normal form from a pϑ Y txuq-normal form t depending on whether x P ngvptq.

In this subsection we also introduce a "proof tactic" (Tactic A.55) that will be used later. 2. If x P svpCq and x R ϑ then for any term q there is a (resp. inert) ϑ-evaluation context C 2 such that Cxqy " C 2 xxxyy.

Proof. For the rst item of the lemma, let X ϑ denote either the set E ϑ or the set E θ. Let us show that if C P X ϑYtxu and x R svpCq, then C P X ϑ . Proceed by induction on the size of the context C, and then by case analysis on the last step of the derivation that C P X ϑYtxu . e interesting case is when C is built by applying ES LS , that is, C " C 1 ryzts P X ϑYtxu with t P S ϑYtxu and C 1 P X ϑYtx,yu . en x R svpC 1 ryztsq Ě svpC 1 qztyu, so x R svpC 1 qztyu. Observe that x ‰ y by the variable convention, so actually x R svpC 1 q. Hence we can apply the i.h., obtaining that C 1 P X ϑYtyu . We consider two cases, depending on whether y is structural in C 1 :

1. If y P svpC 1 q en, by de nition of the structural variables, we have that svpCq " psvpC 1 qztyuq Y ngvptq. In particular, x R ngvptq. By the fact that garbage variables are not required in "ϑ" (Lem. A.25) we have that t P S ϑ . Now we can apply the formation rule for generalized contexts adding a structural substitution (ES LS), and conclude C 1 ryzts P X ϑ , as required.

2. If y R svpC 1 q en we may apply the i.h. again on the fact that C 1 P X ϑYtyu to obtain that C 1 P X ϑ . By the fact that adding an arbitrary substitution preserves evaluation contexts (Lem. A.26) we have that C 1 rxzts P X ϑ , as required.

For the second item of the lemma, let X ϑ stand for either E ϑ or E θ, and let C 1 P X ϑYtxu where x P svpC 1 q and x R ϑ. Let us show that for any term q there is a context C 2 P X ϑ such that C 1 xqy " C 2 xxxyy. Proceed by induction on the size of the term C 1 xqy, and then by case analysis on the last step of the derivation that C 1 P X ϑYtxu . e interesting cases are the rules ES LS , ES R, and EA RS : e following result will be useful many times throughout the proofs in the remainder of this section. We call it a "proof tactic", rather than a "lemma", following the nomenclature usual in proof assistants such as Coq. e exact way in which this result has to be instantiated in each case may vary slightly. 1. Strengthening ϑ for normal forms. Let X ϑ stand for either the set nfϑ or the set S ϑ .

If Cxxxyy P X θ, where θ " fz ϑ prxzvsLq then Cxxxyy P X ϑ .

2. Strengthening ϑ for evaluation contexts. Let X ϑ stand for either the set E ϑ or the set E θ. If CrxzvsL P X ϑ then Cxxxyy P X ϑ and CxxxyyrxzvLs P X ϑ .

Proof. For the rst item, note that x R θ since x is bound to an answer, so it is not frozen. So we have that θ Ď ϑ Y domL. e variables in domL do not occur free in the term Cxxxyy by Barendregt's convention, since Cxxxyy is outside the scope of L on the le -hand side of the lsv step. In particular, all the variables in domL are garbage variables in the term Cxxxyy. Hence, by repeatedly applying the fact that garbage variables are not required in "ϑ" (Lem. A.25), we obtain that Cxxxyy P X ϑ . For the second item, by the decomposition of evaluation contexts lemma (Lem. A.20) the context C must be an evaluation context in X θ where θ " fz ϑ prxzvsLq. Note that x R θ since x is bound to an answer, so it is not frozen. So we have that θ Ď ϑ Y domL. Note that the variables in domL do not occur free in the context C by Barendregt's convention, since C is outside the scope of L on the le -hand side of the lsv step. In particular, all the variables in domL are not structural variables in the context C. Hence, by repeatedly applying the fact that non-structural variables are not required in "ϑ" (Lem. A.54), we obtain that C P X ϑ . Moreover, since adding arbitrary substitutions preserves evaluation contexts (Lem. A.26), CrxzvLs P X ϑ , as required.

Critical contexts

Consider a context like C " yryzzls and the set of frozen variables ϑ " tzu. Note that CxIy " yryzz Is is a ϑ-normal form since z I is a ϑ-structure. On the other hand, Cxxxyy " yryzz xs is not a ϑ-normal form because z x is not a ϑ-structure, as x R ϑ. Remark that C is a ϑ-evaluation context. In the following Lem. A.57 we show that this is not just a coincidence. Indeed, we will show that if a context is such that Cxty is a normal form but Cxxy is not a normal form, then C must be an evaluation context. is result will be a useful tool to prove that normal forms and evaluation contexts are backward stable by internal steps. For example, if Cxxxyyrxzvs ϑ Ý Ý Ñ sh Cxvyrxzvs is an internal step and the right-hand side is a normal form, then Cxxxyy must be a normal form. Otherwise we would have that Cxvy is a normal form while Cxxxyy is not, hence C would be an evaluation context, contradicting the fact that the original step was internal.

De nition A.56 (Critical contexts). Let X ϑ be a set of terms depending on a set of variables ϑ. A context C is said to be X ϑ -critical if the following conditions hold:

1. Cxqy P X ϑ for some term q; and 2. Cxxxyy R X ϑ for some variable x R ϑ that is not bound by C.

Lemma A.57 (Critical contexts are evaluation contexts). e following inclusions between sets hold:

1. e set of nfϑ-critical contexts is included in E ϑ .

2. e set of S ϑ -critical contexts is included in E θ.

Proof. Let X ϑ denote the set nfϑ (resp. S ϑ), and let Y ϑ denote the set E ϑ (resp. E θ). Suppose that C is a X ϑ -critical context, and let us show that C P Y ϑ . Since C is X ϑ -critical, there is a term q and a variable x not bound by C such that Cxqy P X ϑ and Cxxxyy R X ϑ . We proceed by induction on the derivation that Cxqy P X ϑ . e interesting cases are rules S G and S :

1. S G, Cxqy " tryzss P X ϑ with t P X ϑ and y R ngvptq Let us check that C P Y ϑ . If C is empty, i.e. C " l, we trivially have C P Y ϑ . Otherwise, C is non-empty and there are two possibilities:

1.1 e hole of C is to the le , i.e. C " C 1 ryzss en C 1 xqy P X ϑ by formation of Cxqy P X ϑ . Moreover we claim that C 1 xxxyy R X ϑ . To see this, note that the fact that y R ngvpC 1 xqyq Y txu implies that y R ngvpC 1 xxxyyq. So, by contradiction, if we suppose C 1 xxxyy R X ϑ we can apply the same formation rule and obtain that C 1 xxxyyryzss P X ϑ , contradicting the hypothesis that Cxxxyy R X ϑ .

erefore we are able to apply the i.h. on the facts that C 1 xqy P X ϑ and C 1 xxxyy R X ϑ to conclude that C 1 P Y ϑ . is in turn implies that C 1 ryzss P Y ϑ since adding an arbitrary substitution preserves evaluation contexts (Lem. A.26).

1.2

e hole of C is to the right, i.e. C " tryzC 1 s is case is not possible, since t P X ϑ and y R ngvptq by formation, and this implies that tryzC 1 xxxyys P X ϑ , contradicting the hypothesis that Cxxxyy R X ϑ .

2.

S , Cxqy " tryzM ϑ s P X ϑ with t P X ϑYtyu and M ϑ P S ϑ Let us check that C P Y ϑ . If C is empty, i.e. C " l, we trivially have C P Y ϑ . Otherwise, C is non-empty and there are two possibilities: 2.1 e hole of C is to the le , i.e. C " C 1 ryzM ϑ s en C 1 xqy P X ϑYtyu by formation. Moreover, we claim that C 1 xxxyy R X ϑYtxu . By contradiction, suppose that C 1 xxxyy P X ϑYtxu . en C 1 xxxyyryzM ϑ s P X ϑ , contradicting the hypothesis that Cxxxyy R X ϑ . So by i.h. we obtain that C 1 P Y ϑYtxu and, applying the context forming rule for structural substitutions (ES LS), we get C 1 ryzM ϑ s P Y ϑ , that is to say C P Y ϑ , as required.

2.2

e hole of C is to the right, i.e. C " tryzC 1 s en t P X ϑYtyu and y P ngvptq by formation. is implies that t " C 1 xxyyy with C 1 P Y ϑ by Lem. A.25 Note that C 1 xqy " M ϑ P S ϑ . Moreover, we claim that C 1 xxxyy R S ϑ . By contradiction, suppose that C 1 xxxyy P S ϑ .

en tryzC 1 xxxyys P X ϑ , contradicting the hypothesis that Cxxxyy R X ϑ . So by i.h. we have that C 1 P E θ. Combining the facts that C 1 P Y ϑ and C 1 P E θ, by applying the formation rule for generalized evaluation contexts going inside substitutions, we conclude that C 1 xxyyyryzC 1 s P Y ϑ , as required.

Replacing a value by a variable in an evaluation context

To prove that internal steps can be postponed we need to deal with situations such as Cxt, xyrxzvs ϑ Ý Ý Ñ sh Cxt, vyrxzvs ϑ ù Cxt 1 , vy, where C is a two-hole context. Note that Cxl, vy is an evalua-

Stripping substitutions

Consider the following uni cation problem: if C is an evaluation context and we know that Cxty " sL, then what is the shape of C? We call this the problem of stripping substitutions out of an evaluation context. It might simply be the case that C " C 1 L where C 1 is in turn an evaluation context. But it may also be the case that C goes inside a substitution, for example, C " xrxzyls and L " rxzyts. e relation between C and L can actually get quite hairy: C can take a number of "jumps" inside L. For instance, C " x 1 rx 1 zyryzx 2 ssrzzusrx 2 zls with L " rx 1 zyryzx 2 ssrzzusrx 2 zts. We characterize the solution to this problem by de ning an auxiliary sort of chain contexts. A chain context L is intuitively a context with two holes, and t 1 L tt 2 u stands for the result of plugging t 1 and t 2 in each of its holes. For instance, in the example above we would have l 1 L tl 2 u " l 1 rx 1 zyryzx 2 ssrzztsrx 2 zl 2 s. us C can be recovered as sL tlu and L can be recovered as lL ttu.

De nition A.59 (Chain context). e sets of pϑ, xq-chain contexts, ranged over by L , L 1 , etc., are de ned inductively with the two following rules:

ϑ 1 " fz ϑ pL 2 q C P E θ1 is a inert evaluation context L 1 , L 2 are substitution contexts xL 1 , x, C, L 2 y is a pϑ, xq-chain context ϑ 1 " fz ϑ pLq C P E θ1 is a inert evaluation context L is a substitution context L is a pϑ 1 Y tyu, xq-chain context xL , y, C, Ly is a pϑ, xq-chain context
Given a pϑ, xq-chain context L , its instantiation on two terms t 1 , t 2 , wri en t 1 L tt 2 u, is dened inductively as follows:

t 1 xL 1 , x, C, L 2 ytt 2 u def " t 1 L 1 rxzCxt 2 ysL 2 t 1 xL , y, C, Lytt 2 u def " pt 1 L tyuqryzCxt 2 ysL
Sometimes we write L ϑ x to stress that L is a pϑ, xq-chain context. e number of rules required to build a chain context L is called the number of jumps of L . Proof. By induction on the formation rules for chain contexts, using the weakening lemma for evaluation contexts (Lem. A.24).

De nition A.61 (Adding substitutions to chain contexts). If L is a substitution context, ϑ 1 " fz ϑ pLq and L is a pϑ 1 , xq-chain context then we write L L for the pϑ, xq-chain context de ned as follows:

1. xL 1 , x, C, L 2 yL def " xL 1 , x, C, L 2 Ly 2. xL 1 , x, C, L 1 yL def " xL 1 , x, C, L 1 Ly Note that t 1 pL Lqtt 2 u " pt 1 L tt 2 uqL.
1.2 If r is internal to t 2 Let r 1 : t 2 Ñ shzgc s 2 be the step isomorphic to r but going under the context t 1 l. en s " t 1 s 2 . Recall that by hypothesis s P nfϑ is a normal form, so t 1 must be a strong ϑ-structure, i.e. t 1 P S ϑ . e step r 1 cannot be ϑ-external, for otherwise r would be ϑ-external (note that this depends on the fact that t 1 is a structure). So ngvpt 1 t 2 q " ngvpt 1 q Y ngvpt 2 q Ď i.h. ngvpt 1 q Y ngvps 2 q " ngvpt 1 s 2 q.

2. Substitution, t " t 1 rxzt 2 s We consider three cases, depending on whether (1) the step r is at the root of t, (2) r is internal to t 1 , (3) r is internal to t 2 .

2. en ngvptq " ngvpt 1 q Y ngvpt 2 q Ď i.h. ngvps 1 q Y ngvpt 2 q " ngvps 1 rxzt 2 sq " ngvpsq. 2.2.2 If x R ngvpt 1 q en ngvptq " ngvpt 1 q Ď i.h. ngvps 1 q Ď ngvps 1 rxzt 2 sq " ngvpsq.

If

t " F ϑ 1 xxxyyrxzF ϑ 2 xΣys ϑ Ý Ý Ñ sh F ϑ 1 xxxyyrxzF ϑ 2 xΣ 1 ys " s. Note that F ϑ
2 cannot be a inert ϑ-evaluation context, since otherwise the step r would be ϑ-external. Hence we have that F ϑ 2 R E θ. Recall that evaluation contexts which are not inert evaluation contexts have the shape of an answer (Lem. A.23). In particular, the subterm F ϑ 2 xΣ 1 y is an answer pλy.rqL. is contradicts the hypothesis that s " F ϑ 1 xxxyyrxzpλy.rqLs is in normal form, since x is below an evaluation context and bound to an answer. 2.3.1.2 If r is ϑ-internal en ngvptq " ngvpt 1 qYngvpt 2 q Ď i.h. ngvps 1 qYngvpt 2 q " ngvpsq as required. If C and F ϑ are the same context, then CryzvLs P E ϑ , which contradicts the hypothesis that the step r is ϑ-internal. So we may suppose that C ‰ F ϑ . en there is a two-hole context p C such that p Cxl, yy " F ϑ and p Cxy, ly " C, and the step r is of the form: r : p Cxy, yyryzvLsÑ shzgc p Cxy, vyryzvsL " t. Note that the underlined occurrence of y is non-garbage on the le -hand side, so it is also non-garbage on the right-hand side. More precisely, p Cxl, yy " F ϑ is an evaluation context so by Lem. A.66 it is also a non-garbage context. Recall that replacing a variable by an arbitrary term in a non-garbage context is still a non-garbage context (Lem. A.67), so p Cxl, vy is also non-garbage. Moreover, since non-garbage variables coincide with variables below non-garbage contexts (Lem. A.65) we have that y P ngvp p Cxy, vyq.

is contradicts the fact that t is a normal form, since to conclude that p Cxy, vyryzvs is a normal form, given that y P ngvp p Cxy, vyq we would require that y is bound to a structure, but it is bound to a value v. 2.1.1.2 If y R ngvpCxxyyyq en we are done, as Cxxyyy P X ϑ , so by applying the S G rule we obtain that CxxyyyryzvLs P X ϑ , as wanted. 2.1.2 If Cxxyyy R X θ Note that Cxvy " s 1 P X θ. So by de nition (Def. A.56) C is a X θ- critical context. By Lem. A.57 since C is X θ-critical, it is an evaluation context, C P X θ. By strengthening ϑ (Tactic A.55), CryzvLs P X ϑ , contradicting the fact that the step r is ϑ-internal.

2.2 If r is to the le of t 0 " s 0 rxzus Let r 1 : s 0 Ñ shzgc s be the step isomorphic to r but going under the context lrxzus. Note that r 1 cannot be ϑ-external, since then r would be ϑ-external. So r 1 is ϑ-internal and by i.h. we have that s 0 P X ϑ . Moreover, since non-garbage variables are preserved by internal steps (Lem. A.68), by the contrapositive we have that x R ngvps 0 q, hence t 0 " s 0 rxzus P X ϑ as required.

2.3 If r is to the right of t 0 " srxzu 0 s en by applying the rule S G it is immediate that t 0 " srxzu 0 s P X ϑ 3. S , t " srxzM ϑ s P X ϑ with x P ngvpsq, s P X ϑYtxu and M ϑ P S ϑ We consider three cases, depending on whether (1) r is a step at the root of t 0 , (2) t 0 is a substitution s 0 rxzu 0 s and r is internal to t 1 , (3) t 0 is a substitution s 0 rxzu 0 s and r is internal to t 2 .

3.1 If r is at the root Note that r cannot be a db step since it would be external, it must be a lsv step: r : t 0 " CxxyyyryzvLs ϑ Ý Ý Ñ sh CxvyryzvsL " srxzM ϑ s. So let us write s as of the form s " s 1 L 1 in such a way that L 1 rxzM ϑ s " ryzvsL. By Lem. A.27 we have that s 1 P X θ where θ Ď fz ϑ pL 1 rxzM ϑ sq " fz ϑ pryzvsLq " fz ϑ pLq. en the remainder of this case is analogous to case 2.1 of this lemma.

3.2 If r is to the le of t 0 " s 0 rxzM ϑ s Let r 1 : s 0 Ñ shzgc s be the step isomorphic to r but going under the context lrxzM ϑ s. Note that r 1 cannot be pϑ Y txuq-external, since then r would be ϑ-external. So r 1 is pϑ Y txuq-internal, and since s P X ϑYtxu by i.h. we have that s 0 P X ϑYtxu . We consider two further subcases, depending on whether x is garbage in s 0 :

3.2.1 If x P ngvps 0 q en s 0 rxzM ϑ s P X ϑ since s 0 P X ϑYtxu , by the rule S .

If

x R ngvps 0 q en since garbage variables are not required in "ϑ" (Lem. A.25), we have that s 0 P X ϑ . Hence s 0 rxzM ϑ s P X ϑ , by the rule S G.

3.3 If r is to the right of t 0 " srxzu 0 s Let r 1 : u 0 Ñ shzgc M ϑ be the step isomorphic to r but going under the context srxzls. We consider two cases, depending on whether r 1 is ϑ-external or ϑ-internal:

3.3.1 If r 1 is ϑ-external First note that, since x P ngvpsq and s P X ϑYtxu , by the fact that non-garbage variables in normal forms are below evaluation contexts (Lem. A.25) there must exist an evaluation context F ϑ 1 P E ϑ such that s " F ϑ 1 xxxyy. Moreover, since r 1 is a ϑ-external step, the term u 0 can be wri en as F ϑ 2 xΣy, where F ϑ 2 is an evaluation context in E ϑ and Σ is the anchor of a redex. If we let Σ 1 denote the contractum of Σ, the internal step is r :

F ϑ 1 xxxyyrxzF ϑ 2 xΣys ϑ Ý Ý Ñ sh F ϑ 1 xxxyyrxzF ϑ 2 xΣ 1 ys " srxzM ϑ s " t. Since the step r is ϑ-internal, the context F ϑ
2 cannot be a inert evaluation context, i.e. F ϑ 2 R E θ. Recall that evaluation contexts which are not inert evaluation contexts have the shape of an answer (Lem. A.23).

is means that F ϑ 2 xΣ 1 y " pλy.rqL is an answer. But we also had that F ϑ 2 xΣ 1 y " M ϑ , so it is both an answer and a structure, which is impossible.

3.3.2 If r 1 is ϑ-internal en by i.h. u 0 is a structure, i.e. u 0 P M ϑ . Hence srxzu 0 s P X ϑ , as required.

Backward preservation of evaluation contexts

To prove that internal steps can be postponed, we need to deal with situations such as trxzIs ϑ Ý Ý Ñ sh F ϑ xxxyyrxzIs ϑ ù F ϑ xIyrxzIs. We would like to obtain that t can also be wri en as Cxxxyy for some evaluation context C, to swap the external step before the internal one. is is precisely the situation addressed by the following lemma.

Lemma A.70 (Backward stability of evaluation contexts). Let t 0 ϑ Ý Ý Ñ sh F ϑ xxxyy be an internal step with F ϑ xxxyy P X ϑ , where X ϑ stands for either E ϑ or E θ, and such that F ϑ does not bind x.

en there exists an evaluation context F ϑ 0 P X ϑ such that t 0 " F ϑ 0 xxxyy.

Proof. Let r be the name of the ϑ-internal step r : t 0 ϑ Ý Ý Ñ sh F ϑ xxxyy. e proof goes by induction on the derivation that F ϑ P X ϑ .

e cases for rules EB , EA L, and EL are easy. We deal with the other rules:

1. ES LN S , F ϑ " F ϑ 1 ryzts with F ϑ 1 P X ϑ and t R S ϑ We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to t 1 0 , (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to r 0 .

1.1 e internal step r is at the root of t 0 Note that r cannot be a db step, since it would be external. So it is an lsv step of the form: r : t 0 " CxxzyyrzzvLs ϑ Ý Ý Ñ sh CxvyrzzvsL " F ϑ 1 xxxyyryzts " t 1 . Let L 1 be the substitution context such that L 1 ryzts " rzzvsL, and using Lem xxwyy, and L 1 " lL txu where θ " fz ϑ pL 1 q, the evaluation context F θ 11 is in X θ, and L is a pϑ, wqchain context. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F θ 11 . ey remainder of this case is similar to case 1.1.1, except when the hole of C and the hole of F θ 11 are disjoint. en there is a two-hole context p C such that p Cxl, vy " F θ 11 and p Cxw, ly " C, and the internal step r is of the form: r : t 0 " p Cxw, zyrzzvLs ϑ Ý Ý Ñ sh p Cxw, vyrzzvsL " t 1 . Note that w is bound by rzzvsL " lL txuryzts on the right-hand side of the step r since L is a pϑ, wq-chain context. So w must be bound by rzzvLs on the le -hand side of the step r, for otherwise it would be free, and free variables cannot become bound by reduction. Hence it must be the case that w " z. Note that w is bound to a term of the form I ϑ 1 1 xxw 1 yy on the right-hand side of the step r, and we have just argued that w " z, so I ϑ 1 1 xxw 1 yy " v. is is impossible since answers do not have variables below inert evaluation contexts (Lem. A.21).

1.2

e internal step r is to the le of t 0 " t 1 0 ryzts Let r 1 : t 1 0 Ñ shzgc F ϑ 1 xxxyy be the step isomorphic to r but going under the context ryzts.

en by i.h. there is an evaluation context F ϑ 10 P X ϑ such that t 1 0 " F ϑ 10 xxxyy. By taking F ϑ 0 :" F ϑ 10 ryzts P X ϑ we conclude that t 0 " F ϑ 10 xxxyyryzts, as required. 1.3 e internal step r is to the right of t 0 " F ϑ 1 xxxyyryzt 1 0 s By taking F ϑ 0 :" F ϑ 10 ryzt 1 0 s P X ϑ we conclude that t 0 " F ϑ 10 xxxyyryzts, as required. 2. ES LS , F ϑ " F ϑYtyu 1 ryzM ϑ s with F ϑYtyu P X ϑYtyu and M ϑ P S ϑ We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to t 1 0 , (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to r 0 .

2.1

e internal step r is at the root of t 0 Note that r cannot be a db step, since it would be external. So r is an lsv step of the form:

r : t 0 " CxxzyyrzzvLs ϑ Ý Ý Ñ sh CxxvyyrzzvsL " F ϑYtyu 1
xxxyyryzM ϑ s " t 1 . Let L 1 be the substitution context such that rzzvsL " L 1 ryzM ϑ s, and using Lem. A.62 let us strip the substitution L 1 from F ϑYtyu 1 xxxyy. is gives us two possibilities, A and B:

2.1.1 Case A en F ϑYtyu 1 " F θYtyu 11
L 1 and Cxvy " F θYtyu xxxyy where θ Y tyu " fz ϑYtyu pL 1 q and F θYtyu 11 P X θYtyu . We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of e right branch case is impossible, ssible since it contradicts that r is ϑ-internal (by strengthening ϑ, Tactic A.55). In the le branch case, by strengthening ϑ (Tactic A.55), p Cxl, zyrzzvLs P X ϑ . en it is immediate to conclude, since by taking F ϑ 0 :" p Cxl, zyrzzvLs P X ϑ , we have that t 0 " p Cxx, zyrzzvLs, as required. xxwyy, and L 1 " lL txu, where θ Y tyu " fz ϑYtyu pL 1 q, the evaluation context F θYtyu is in X θYtyu , and L is a pϑ, wq-chain context. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F p Cxw, vyrzzvsL. Note that w is bound by lL txuryzM ϑ s " rzzvsL, since L is a pϑ, wq-chain context. Hence it must be the case that w " z, for otherwise, if it were the case that w P domL, w would occur free on the le -hand side of the step r, since it occurs outside the scope of L. is is impossible since free variables cannot become bound a er a reduction step. Note that w must be bound to a term of the form I ϑ 1 1 xxw 1 yy and, since we have just argued that w " z, we have that I ϑ 1 1 xxw 1 yy " v. is is impossible since answers do not have variables below inert evaluation contexts (Lem. A.21).

2.2

e internal step r is to the le of t 0 " t 1 0 ryzM ϑ s Let r 1 :

t 1 0 Ñ shzgc F ϑYtyu 1
xxxyy be the step isomorphic to r but going under the context ryzM ϑ s. Note that r 1 must be pϑYtyuq-internal, otherwise r would be pϑYtyuq-external. By i.h. there is an evaluation context F q Since r 1 : t 1 0 Ñ shzgc M ϑ is a ϑ-external step, we can write t 1 0 " F ϑ 3 xΣy and M ϑ " F ϑ 3 xΣ 1 y where Σ is the anchor of a redex, Σ 1 its contractum, and F ϑ 3 is an evaluation context F ϑ 3 P E ϑ . Moreover, since structural variables are below evaluation contexts (Lem. A.54), there exists an evaluation context F ϑ 2 P X ϑ such that F ϑYtyu 1

xxxyy " F ϑ 2 xxyyy. Hence the step r is of the form: r :

F ϑ 2 xxyyyryzF ϑ 3 xΣys Ñ shzgc F ϑ 2 xxyyyryzF ϑ 3 xΣ 1 ys. If F ϑ
3 happens to be a inert evaluation context, i.e. F ϑ 3 P E θ then the composition F ϑ 2 xxyyyryzF ϑ 3 s is a ϑ-evaluation context and r is a ϑ-external step, contradicting the hypothesis that it was internal. So we may suppose that F ϑ 3 is not a inert evaluation context. By Lem. A.23 we know that evaluation contexts which are not inert evaluation contexts have the shape of an answer, that is, F ϑ 3 x˚y is an answer when lling the hole with an arbitrary term. In particular, F ϑ 3 xΣ 1 y " M ϑ is both an answer and a structure, which is impossible. q By the fact that non-structural variables are not required in "ϑ" (Lem. A.54), we have that F 3. ES R, F ϑ " F ϑ 1 xxyyyryzI ϑ s where F ϑ 1 P X ϑ and I ϑ P E θ We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to t 1 0 , (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to r 0 .

3.1 e internal step r is at the root of t 0 Note that r cannot be a db redex, since it would be external. So r is a lsv redex of the form: r : t 0 " CxxzyyrzzvLs Ñ CxvyrzzvsL " F ϑ 1 xxyyyryzI ϑ xxxyys " t 1 . Let L 1 be the substitution context such that L 1 ryzI ϑ xxxyys " rzzvsL, and using Lem Note that y is bound by the substitution context L 1 ryzI ϑ xxxyys " rzzvsL on the right-hand side of the step r. So it must be the case that y " z, for if we had y P domL, we would have that y is free on the le -hand side of the step r, since it occurs outside the scope of the substitution L. is is impossible, since a free variable cannot become bound along reduction. Also note that y is bound to I ϑ xxxyy and, since y " z, we have I ϑ xxxyy " v.

is is impossible, since answers do not have variables below inert evaluation contexts (Lem. A.21). en by the decomposition of evaluation contexts lemma (Lem. A.20) the context C must be an evaluation context in X θ. By strengthening ϑ (Tactic A.55), CrzzvLs P X ϑ , contradicting the fact that the step r is ϑ-internal. xxwyy, and L 1 " lL tyu, where θ " fz ϑ pL 1 q, the evaluation context F θ 11 is in X θ, and L is a pϑ, wqchain context. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F θ 11 . e remainder of this case is similar to 3.1.1.

3.2

e internal step r is to the le of t 0 " t 1 0 ryzI ϑ s Let r 1 : t 1 0 Ñ shzgc F ϑ 1 xxyyy be the step isomorphic to r but going under the context ryzI ϑ xxxyys. Note that r 1 must be ϑ-internal, for if it were ϑ-external, by adding an arbitrary substitution (Lem. A.26) it would contradict the fact that r is ϑ-internal. So we may apply the i.h. to obtain that there exists an evaluation context F ϑ 10 P X ϑ such that t 1 0 " F ϑ 10 xxyyy. Applying the ES R rule and taking F ϑ 0 :" F ϑ 10 xxyyyryzI ϑ s P X ϑ , we have that t 0 " F ϑ 10 xxyyyryzI ϑ xxxyys, as required.

3.3 e internal step r is to the right of t 0 " F ϑ 1 xxyyyryzt 1 0 s Let r 1 : t 1 0 Ñ shzgc I ϑ xxxyy be the step isomorphic to r but going under the context F ϑ 1 xxyyyryzls. Note that r 1 cannot be ϑ-external, since then r would be ϑ-external. Hence r 1 is ϑ-external, and we may apply the i.h. to obtain that there is a inert evaluation context I ϑ 0 P E θ such that t 1 0 " I ϑ 0 xxxyy. Taking F ϑ 0 :" F ϑ 1 xxyyyryzI ϑ 0 s P X ϑ , we have that t 0 " F ϑ 1 xxyyyryzI ϑ 0 xxxyys, as required.

4. EA RS , F ϑ " M ϑ F ϑ 1 where M ϑ P S ϑ and F ϑ 1 P E ϑ We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is an application t 1 0 r 0 and the step r is internal to t 1 0 , (3) t 0 is an application t 1 0 r 0 and the step r is internal to r 0 .

4.1

e internal step r is at the root of t 0 is case is impossible: r cannot be a db step or a lsv step, since the right-hand side of both db and lsv steps is a substitution, not an application.

4.2

e internal step r is to the le of t 0 " t 1 0 F ϑ 1 xxxyy Let r 1 : t 1 0 Ñ shzgc M ϑ be the step isomorphic to r but going under the context l F ϑ 1 xxxyy. Note that r 1 must be ϑinternal, otherwise r would be ϑ-external. en since normal forms are backward preserved by internal steps (Lem. A.69), t 1 0 must be a strong ϑ-structure M ϑ 0 . By taking F ϑ 0 :" M ϑ 0 F ϑ 1 P X ϑ we have that t 0 " M ϑ 0 F ϑ 1 xxxyy, as required. 4.3 e internal step r is to the right of t 0 " M ϑ t 1 0 Let r 1 : t 1 0 Ñ shzgc F ϑ 1 xxxyy be the step isomorphic to r but going under the context M ϑ l. By i.h. there is an evaluation context F ϑ 10 P E ϑ such that t 1 0 " F ϑ 10 xxxyy. Taking F ϑ 0 :" M ϑ F ϑ 10 P X ϑ we have that t 0 " M ϑ F ϑ 10 xxxyy, as required.

Postponement of internal steps

We turn to the proof of postponement of internal steps a er external steps. e proof is long and by a heavy case analysis. For organizational purposes we split the proof in two lemmas: the rst one (Lem. A.71) deals with the case in which the external step is a db step; the second one (Lem. A.72) deals with the case in which the external step is a lsv step. Finally in Lem. 4.50 we conclude and give the proof of Postponement itself (Lem. 4.50 in the main body).

Lemma A.71 (Postponement of internal steps a er external db steps). Given any set of variables ϑ such that fvpt 0 q Ď ϑ, if t 0 ϑ Ý Ý Ñ sh t 1 ϑ ù t 3 where the second step is a db step, there exists a term t 2 such that t 0 ϑ ù t 2 shzgc t 3 where the rst step is a db step. An explicit construction for the diagrams is given.

Proof. Let us call r to the internal step t 0 ϑ Ý Ý Ñ sh t 1 and r 1 to the external db step t 1 ϑ ù t 3 . en t 1 " F ϑ xpλx.sqL uy and t 3 " F ϑ xsrxzusLy. roughout the proof we write ∆ for the db redex pλx.sqL u and ∆ 1 for its contractum srxzusL. Let X ϑ denote either the set E ϑ or the set E θ. By induction on the derivation that F ϑ P X ϑ , the term t 0 will be shown to be of the form F ϑ 0 x∆ 0 y, where F ϑ 0 P X ϑ , and ∆ 0 is a db redex, and t 2 " F ϑ 0 x∆ 1 0 y, where ∆ 1 0 is the contractum of ∆ 0 , in such a way that the diagram is closed as required by the statement.

1. EB , F ϑ " l P X ϑ en there is a db redex at the root of t 1 . By Lem. A.52, the internal step t 0 ϑ Ý Ý Ñ sh t 1 must be of the form r : t 0 " pλx.s 0 qL 0 u 0 ϑ Ý Ý Ñ sh pλx.sqL u " t 1 and the anchor of r must lie either inside s 0 , inside u 0 , or inside one of the arguments of L 0 . By taking F ϑ 0 :" l we conclude.

2. EA L, F ϑ " I ϑ r P X ϑ with I ϑ P E θ e situation is t 0 ϑ Ý Ý Ñ sh I ϑ x∆y r ϑ ù I ϑ x∆ 1 y r. We consider three cases: (1) the step r is at the root of t 0 ; (2) t 0 is an application t 0 " t 1 0 r 0 and the step r takes place inside t 1 0 ; (3) t 0 is an application t 0 " t 1 0 r 0 and the step r takes place inside r 0 .

2.1 e internal step r is at the root of t 0 Impossible: r cannot be a db step, since it would be external, and it cannot be a lsv step.

2.2

e internal step r is to the le of t 0 " t 1 0 r 0 en there is a step r 1 : t 1 0 Ñ shzgc I ϑ x∆y. We consider two subcases, depending on whether r 1 is ϑ-external or ϑ-internal.

If r

1 is ϑ-external en t 1
0 is of the form r F ϑ xΣy where r F ϑ is an evaluation context in E ϑ and Σ is the anchor of a redex. Note that r F ϑ R E θ, i.e. it is not a inert evaluation context, since that would imply that r F ϑ r P X ϑ and we would have that the step r : r F ϑ xΣy r ϑ Ý Ý Ñ sh I ϑ x∆y r is external. Hence since r F ϑ P E ϑ zE θ by Lem. A.23 we conclude that t 1 0 is of the form v 0 L 0 , i.e. an answer. Moreover, since answers are stable by reduction (Lem. A. [START_REF] Barendregt | e Lambda Calculus: Its Syntax and Semantics[END_REF] we have that I ϑ x∆y is an answer, and this is impossible since answers do not have redexes below inert evaluation contexts (Lem. A.21).

2.2.2

If r 1 is ϑ-internal Immediate by i.h..

2.3

e internal step r is to the right of t 0 " t 1 0 r 0 en t 1 0 " I ϑ x∆y and r 0 ϑ Ý Ý Ñ sh r. By taking F ϑ 0 :" I ϑ r 0 P X ϑ closing the diagram is immediate.

ES LN S , F

ϑ " F ϑ 1 ryzrs with y R ϑ, r R S ϑ and F ϑ 1 P X ϑ e situation is t 0 ϑ Ý Ý Ñ sh F ϑ 1 x∆yryzrs ϑ ù F ϑ 1 x∆ 1 yryzrs.
ere are three cases: (1) the step r is at the root of t 0 ; (2) t 0 is a substitution t 0 " t 1 0 ryzr 0 s and the step r takes place inside t 1 0 ; (3) t 0 is a substitution t 0 " t 1 0 ryzr 0 s and the step r takes place inside r 0 .

3.1 e internal step r is at the root of t 0 Note that r cannot be a db step as it would be external. Suppose that r is a lsv step. en t

0 " CxxzyyrzzvL 1 s ϑ Ý Ý Ñ sh CxvyrzzvsL 1 " F ϑ 1 x∆yryzrs ϑ ù F ϑ 1 x∆ 1 yryzrs. We know that CxvyrzzvsL 1 " F ϑ 1 x∆yryzrs.
e outermost substitution ryzrs is either rzzvs (if L 1 is empty) or it is the outermost substitution in L 1 . In any case, the substitution ryzrs is not part of C.

Let L 1 be a substitution context such that rzzvsL 1 " L 1 ryzrs and using Lem. A.62 let us strip the substitution L 1 from F ϑ 1 x∆y. is gives us two possibilities, case A and case B in the statement of Lem. A.62:

Case A en F ϑ

1 " F ϑ 1 11 L 1 in such a way that: Cxvy " F ϑ 1 11 x∆y, where ϑ 1 " fz ϑ pL 1 ryzrsq " fz ϑ przzvsL 1 q and F ϑ 1 11 P X ϑ 1 . We consider three subcases, depending on the position of the hole of C relative to the position of the hole of F ϑ 1 11 . 3.1.1.1 e hole of C and the hole of F ϑ 1 11 are disjoint en there is a two-hole context p C such that p Cxl, vy " F ϑ 1 11 and p Cx∆, ly " C and the situation is

t 0 " p Cx∆, zyrzzvL 1 s ϑ Ý Ý Ñ sh p Cx∆, vyrzzvsL 1 " t 1 ϑ ù p Cx∆ 1 , vyrzzvsL 1 " t 3 .
Recall that p Cxl, vy " F ϑ 1 11 P X ϑ 1 where ϑ 1 " fz ϑ przzvsL 1 q. Note that z R ϑ 1 since the value v is not a strong structure. By Lem. A.58 there are two possibilities: the le and the right branch of the disjunction. e right branch case, p Cx∆, ly P X ϑ 1 , is impossible, as we would have that p Cx∆, lyrzzvsL 1 P X ϑ , since fz ϑ przzvsLq " ϑ 1 .

is implies that there are two di erent steps of the generalized call-by-need evaluation strategy under ϑ outgoing from t 1 : one is the db step t 1 " p Cx∆, xyrxzvsL 1 ϑ ù p Cx∆ 1 , xyrxzvsL 1 " t 3 and the other one is the lsv step: t 1 " p Cx∆, xyrxzvsL 1 ϑ ù p Cx∆, vyrxzvsL 1 . e coexistence of two di erent steps contradicts the fact that ϑ ù is a strategy (as shown in Lem. 4.17). In the le branch case, p Cxl, zy P X ϑ 1 . en we also have that p Cxl, zyrzzvL 1 s P X ϑ , and it is immediate to close the diagram. In the rst three cases it is easy to close the diagram. For example, if the hole of C 1 is inside s, i.e. C 1 " pλx.C 2 qLu and s " C 2 xvy, closing the diagram is straightforward noting that F ϑ 1 11 rzzvL 1 s is a ϑ-evaluation context, by strengthening ϑ (Tactic A.55).

e last case is impossible: if the context C 1 is of the form C 1 " lLu, then by strengthening ϑ (Tactic A.55) we have that F ϑ 1 11 xlLsyrzzvL 1 s P X ϑ . and we obtain that r is an external step.

Case B . en F ϑ

1 " F ϑ 1 11 xxx 1 yyL tlu in such a way that Cxvy " F ϑ 1 11 xxx 1 yy and L 1 " lL t∆u, where ϑ 1 " fz ϑ pL 1 ryzrsq " fz ϑ przzvsL 1 q, the evaluation context is F ϑ 1 11 P X ϑ 1 , and L is a pϑ, x 1 q-chain context. e remainder of this case is similar to case 3.1.1. Namely, we consider three subcases, depending on the position of the hole of C relative to the position of the hole of F ϑ 1

11 . e only di erence with respect to case 3.1.1. is when the context C is a pre x of F ϑ 1 11 . en F ϑ 1 11 " CxC 1 y, so by Lem. A.20 C P X ϑ 1 , and by strengthening ϑ (Tactic A.55) C P X ϑ which means that r is external.

3.2

e internal step r is to the le of t 0 " t 1 0 ryzr 0 s Note that isomorphic step t 1 0 Ñ shzgc t 1 1 must be internal, so this case is immediate by i.h..

3.3

e internal step r is to the right of t 0 " t 1 0 ryzr 0 s en it is immediate to close the diagram, recalling that adding an arbitrary substitution preserves evaluation contexts (Lem. A.26).

ES LS

, F ϑ " F ϑYtyu 1
ryzrs with r P S ϑ and F ϑYtyu P X ϑYtyu e situation is t 0

ϑ Ý Ý Ñ sh F ϑYtyu 1 x∆yryzrs " t 1 ϑ ù F ϑYtyu 1
x∆ 1 yryzrs " t 3 . ere are three cases: (1) the step r is at the root of t 0 ; (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r takes place inside t 1 0 ; (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r takes place inside r 0 .

4.1 e internal step r is at the root of t 0 Note that r cannot be a db step, as that would be an external step. Suppose then that r is a lsv step. e situation is t 0 "

CxxzyyrzzvL 1 s ϑ Ý Ý Ñ sh CxvyrzzvsL 1 " F ϑYtyu 1 x∆yryzrs " t 1 ϑ ù F ϑYtyu 1 x∆ 1 yryzrs " t 3 . We know that CxvyrzzvsL 1 " F ϑYtyu 1
xpλx.sqL uyryzrs. Note that L 1 cannot be empty since the outermost substitution ryzrs cannot coincide with rzzvs, given that r P S ϑ is a structure, and therefore it cannot be a value like v.

Let L 1 be a substitution context such that rzzvsL 1 " L 1 ryzrs, and using Lem xpλx.sqL uy, where ϑ 1 Ytyu " fz ϑYtyu pL 1 ryzrsq " fz ϑYtyu przzvsL 1 q and F ϑ 1 Ytyu 11 P X ϑ 1 Ytyu . We consider three subcases, depending on the position of the hole of C relative to the position of the hole of F xxx 1 yy and lL t∆u " L 1 , where ϑ 1 Ytyu " fz ϑYtyu pL 1 q, the evaluation context F ϑ 1 Ytyu 11 is in X ϑ 1 Ytyu , and L is a pϑYtyu, x 1 q-chain context. We consider three subcases, depending on the position of the hole of C relative to the position of the hole of F ϑ 1 Ytyu 11

. ese are similar to the three subcases of 3.1.2.

4.2

e internal step r is to the le of t 0 " t 1 0 ryzrs Note that the step t 1 0 Ñ shzgc t 1 1 must be pϑ Y tyuq-internal, for otherwise the step at the top of the diagram r : t 1 0 ryzrs Ñ shzgc t 1 1 ryzrs would be a ϑ-external step. en it is straightforward to conclude by i.h..

4.3

e internal step r is to the right of t 0 " t 1 0 ryzr 0 s Here r 0 Ñ shzgc r and t 1 0 " F ϑYtyu 1 x∆y. We consider two cases, depending on whether the step r 1 : r 0 Ñ shzgc r is ϑ-external or ϑ-internal: q Since r 1 : r 0 Ñ shzgc r is a ϑ-external step, we can write r 0 " F ϑ 3 xΣy and r " F ϑ 3 xΣ 1 y where Σ is the anchor of r 1 and Σ 1 is its contractum, and moreover F ϑ 3 is an evaluation context F 11 xxx 1 yy " Cxvy and L 1 " lL tyu where ϑ 1 " fz ϑ przzvsL 1 q " fz ϑ pL 1 ryzI ϑ x∆ysq, the evaluation context

F ϑ 1
11 is in X ϑ 1 , and L is a pϑ, x 1 q-chain context. e remainder of this case is similar to the previous item 5.1.1. For case 5.1.1.1, recall that answers do not have variables under inert evaluation contexts (Lem. A.21).

5.2

e internal step r is to the le of t 0 " t 1 0 ryzr 0 s en there is a step r 1 : t 1 0 Ñ shzgc F ϑ 1 xxyyy. e step r 1 must be ϑ-internal, otherwise r would be ϑ-external. Since r 1 is internal, by Lem. A.70 we have that t 1 0 is of the form F ϑ 0 xxyyy, where F ϑ 0 is an evaluation context in X ϑ . en it is immediate to close the diagram.

5.3

e internal step r is to the right of t 0 " t 1 0 ryzr 0 s en there is a step r 1 : r 0 Ñ shzgc I ϑ x∆ 1 y. We consider two subcases, depending on whether r 1 is ϑ-external or ϑinternal: 5.3.1 If r 1 is ϑ-external en its source r 0 is of the form r 0 " r F ϑ xΣy where r F ϑ P E ϑ is an evaluation context and Σ is the anchor of a redex. Moreover, r

F ϑ R E θ,
i.e. it cannot be a inert evaluation context, since otherwise we would have that r is external. So given that r F ϑ P E ϑ zE θ by Lem. A.23 we conclude that r 0 is of the form r 0 " v 0 L 0 , i.e. an answer. By the fact that answers are stable by reduction (Lem. A.22) this means that I ϑ x∆ 1 y is also an answer, which contradicts the fact that answers do not have redexes below inert evaluation contexts (Lem. A.21).

If

Ý Ý Ñ sh r F ϑ 1 x∆y " t 1 ϑ ù r F ϑ
1 x∆ 1 y " t 3 . ere are three cases: (1) the step r is at the root of t 0 ; (2) t 0 is an application r 0 t 1 0 and the step takes place inside r 0 ; (3) t 0 is a substitution r 0 t 1 0 and the step takes place inside t 1 0 .

6.1 e internal step r is at the root of t 0 is case is impossible. Note that r cannot be a db step at the root, since it would be an external step. Moreover, r cannot be a lsv step at the root, since then the outermost constructor of t 1 " r F ϑ 1 x∆y would be a substitution, but it is an application.

6.2

e internal step r is to the le of t 0 " r 0 t 1 0 en there is a step r 1 : r 0 Ñ shzgc r. It cannot be ϑ-external, for this would imply that r is ϑ-external. Note that r P S ϑ , so by Lem. A.69 we have that r 0 P S ϑ . en it is immediate to close the diagram.

6.3

e internal step r is to the right of t 0 " r 0 t 1 0 ere is a step r 1 : t 1 0 Ñ shzgc F ϑ 1 x∆y. It cannot be ϑ-external, as this would imply that r is also ϑ-external.

en it is straightforward to conclude by i.h..

EB , F ϑ

1 " l P X ϑ Note that in this case ϑ 1 " fz ϑ plq " ϑ. en there is a lsv redex at the root of t 1 " F ϑ 2 xxxyyrxzvLs. We consider three cases: (1) the step r : t 0 ϑ Ý Ý Ñ sh t 1 is at the root of t 0 ; (2) t 0 is a substitution t 1 0 rxzs 0 s and r is internal to t 1 0 ; (3) t 0 is a substitution t 1 0 rxzs 0 s and r is internal to s 0 .

1.1 e internal step r is at the root of t 0 Note that r cannot be a db step, since it would be external. So r is a lsv step, i.e. t 0 " Cxxyyyryzv 1 L 1 s ϑ Ý Ý Ñ sh Cxv 1 yryzv 1 sL 1 " t 1 " F ϑ 2 xxxyyrxzvLs. Let L 1 be a substitution context such that ryzv 1 sL 1 " L 1 rxzvLs, and using Lem e right branch, C " p Cxx, ly P X ϑ 2 , is impossible since by strengthening ϑ (Tactic A.55), Cryzv 1 L 1 s P X ϑ , which contradicts the fact that r is external. In the le branch case, p Cxl, yy P X ϑ 2 . By strengthening ϑ (Tactic A.55), p Cxl, yy P X ϑ . Note also that x is bound by L 1 rxzvLs " ryzv 1 sL 1 , and that it must occur bound in t 0 " p Cxx, yyryzv 1 L 1 s, since free variables cannot become bound. So x it must be bound by ryzv 1 L 1 s, which means that x " y, and in particular v " v 1 and L " L 1 .

en it is immediate to close the diagram. , where ϑ 2 " fz ϑ pL 1 q, the evaluation context F ϑ 2 21 is in X ϑ 2 , and L is a pϑ, zqchain context. e remainder of this case is by case analysis on the relative positions of the hole of C and the hole of F ϑ 2 21 , similar to item 1.1.1. 1.2 e internal step r is to the le of t 0 " t 1 0 rxzs 0 s en there is a step r 1 : t 1 0 Ñ shzgc F ϑ 2 xxxyy. Note that r 1 cannot be ϑ-external, for this would imply that r is ϑexternal. Hence r 1 is ϑ-internal, so given that evaluation contexts are backward preserved by internal steps (Lem. A.70), there is an evaluation context F ϑ 20 P X ϑ such that t 1 0 " F ϑ 20 xxxyy. en it is immediate to close the diagram. 1.3 e internal step r is to the right of t 0 " t 1 0 rxzs 0 s en there is a step r 1 : s 0 Ñ shzgc vL. We consider two cases, depending on whether r 1 is a ϑ-external or a ϑ-internal step:

1.3.1 If r 1 is ϑ-external en s 0 is of the form r F ϑ xΣy, where r F ϑ is an evaluation context in E ϑ and Σ is the anchor of a redex. Note that r F ϑ is an evaluation context but it is not a inert evaluation context, i.e. r F ϑ R E θ, since if we had r F ϑ P E θ then the context F ϑ 2 xxxyyrxz r F ϑ s would be an evaluation context, and the step r would be external, contradicting the hypothesis that it is internal. en since r F ϑ P E ϑ zE θ by the Lem. A.23 we may conclude that r F ϑ xΣy " v 0 L 0 , and it is immediate to close the diagram. 1.3.2 If r 1 is ϑ-internal en since answers are backward stable by internal steps (Lem. A.51), s 0 is of the form s 0 " v 0 L 0 , and the diagram can be closed just as in the previous case.

2. EA L, F ϑ 1 " I ϑ t e situation is t 0 ϑ Ý Ý Ñ sh I ϑ x∆y t " t 1 ϑ ù I ϑ x∆ 1 y t " t 3 , where I ϑ xF ϑ 1 2 rxzvLsy is a inert evaluation context in E θ. is case is analogous to item 2 of the previous lemma (Lem. A.71), as the proof does not rely on ∆ being a db redex.

ES LN S , F ϑ

1 " F ϑ 11 ryzts, where y R ϑ, t R S ϑ , and F ϑ 11 P X ϑ e situation is t 0 ϑ Ý Ý Ñ sh F ϑ 11 x∆yryzts " t 1 ϑ ù F ϑ 11 x∆ 1 yryzts " t 3 . We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to t 1 0 , (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to r 0 .

3.1 e internal step r is at the root of t 0 en r cannot be a db step, since it would be external. So it must be a lsv step.

en the step r is of the form: t 0 "

Cxxzyyrzzv 1 L 1 s ϑ Ý Ý Ñ sh Cxv 1 yrzzv 1 sL 1 " F ϑ 11 x∆yryzts " t 1 . Let L 1 be a substitution context such that L 1 ryzts " rzzv 1 sL 1 . Recall that ∆ " F ϑ e right branch, C P X θ, is impossible, since by strengthening ϑ (Tactic A.55) we have C P X ϑ , which contradicts the fact that r is an internal step.

In the le branch case, p Cxl, zy is an evaluation context in X θ. Since θ " fz ϑ przzv 1 sL 1 q Ď ϑ Y domL 1 , by applying the fact that non-structural variables are not required in "ϑ" (Lem. A.54) we obtain that p Cxl, zy P X ϑ .

en closing the diagram is straightforward. 3.1.1.2 e context C is a pre x of F θ 111 By the decomposition of evaluation contexts lemma (Lem. A.20), we have that C P X θ. Since θ Ď ϑ Y domL 1 , by applying the fact that non-structural variables are not required in "ϑ" (Lem. A.54) we obtain that C P X ϑ . is contradicts the fact that r is an internal step. 2 . Observe that F ϑ 1 2 cannot be a pre x of C 11 , as this would imply that x " C 2 xvy. So there are two possibilities, either the holes of C 11 and F ϑ 1 2 are disjoint, or C 11 is a pre x of F ϑ 1 2 : -If the holes of C 11 and F ϑ 1 2 are disjoint en there is a two-hole context p C such that p Cxl, v 1 y " F ϑ 1 2 and p Cxx, ly " C 11 . By Lem. A.58 there are two possibilities for p C: the le and the right branch of the disjunction. e right branch case, C 11 P Y ϑ 1 , is impossible since then C " F θ 111 xC 11 rxzvLsyrzzv 1 L 1 s P X ϑ , which contradicts the fact that r is an internal step. In the le branch case, p Cxl, zy P Y ϑ 1 , so closing the diagram is straightforward.

-If C 11 is a pre x of F x∆ 1 yryzts " t 3 . We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to t 1 0 , (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to r 0 .

4.1 e internal step r is at the root of t 0 Note that r cannot be a db step, since it would be external. So it must be a lsv step of the form: r : t 0 " Cxxzyyrzzv 1 L 1 s ϑ Ý Ý Ñ sh Cxxv 1 yyrzzv 1 sL 1 " t 1 . Let L 1 be a substitution context such that L 1 ryzts " rzzv 1 sL 1 . Recall that ∆ " F ϑ e right branch case, C P X θYtyu , is impossible, since by strengthening ϑ (Tactic A.55) we have Crzzv 1 L 1 s P X ϑ which contradicts the hypothesis that r is an internal step. In the le branch case, p Cxl, zy P X θYtyu . By strengthening ϑ (Tactic A.55), p Cxl, zyrzzv 1 L 1 s P X ϑ and closing the diagram is straightforward. en by the decomposition of evaluation contexts lemma (Lem. A.20) we know that C P X θYtyu . By strengthening ϑ (Tactic A.55), Crzzv 1 L 1 s P X ϑ . is contradicts the hypothesis that r is an internal step. xxwyy, and L 1 " lL t∆u, where θ " fz ϑYtyu pL 1 qztyu, the evaluation context F By the decomposition lemma for evaluation contexts (Lem. A.20) we know that C P X θYtyu . By strengthening ϑ (Tactic A.55), p Cxl, zyrzzv 1 L 1 s P X ϑ . is contradicts the fact that the step r is internal. e internal step r is to the le of t 0 " t 1 0 ryzr 0 s en there is a step r 1 :

t 1 0 Ñ shzgc F ϑYtyu 11
x∆yryzts. It must be a pϑ Y tyuq-internal step, for otherwise r would be ϑ-external. en it is straightforward to conclude by i.h..

4.3

e internal step r is to the right of t 0 " t 1 0 ryzr 0 s en the internal step r is of the form: F x∆yryzts and there is a step r 1 : r 0 Ñ shzgc t. We consider two cases, depending on whether y is a structural variable in F q en since non-structural variables are not required in "ϑ" (Lem. A.54), F ϑYtyu is an evaluation context in X ϑ . Regardless of whether r 0 is a structure or not a structure, the context F ϑYtyu 1 rxzr 0 s is an evaluation context in X ϑ . en closing the diagram is straightforward.

ES R, F ϑ

1 " F ϑ 11 xxyyyryzI ϑ s with F ϑ 11 P X ϑ and I ϑ P E θ e situation is t 0 ϑ Ý Ý Ñ sh F ϑ 11 xxyyyryzI ϑ x∆ys " t 1 ϑ ù F ϑ 11 xxyyyryzI ϑ x∆ 1 ys " t 3 . We consider three cases, depending on whether (1) the internal step r is at the root of t 0 , (2) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to t 1 0 , (3) t 0 is a substitution t 1 0 ryzr 0 s and the step r is internal to r 0 .

5.1

e internal step r is at the root of t 0 Note that r cannot be a db step, since it would be external, so it must be a lsv step of the form r : t 0 " Cxxzyyrzzv 1 L 1 s ϑ Ý Ý Ñ sh Cxv 1 yrzzv 1 sL 1 " t 1 . Let L 1 be a substitution context such that L 1 ryzI ϑ x∆ys " rzzv 1 sL 1 . Using Lem. A.62 let us strip L 1 from F ϑ 11 ryzI ϑ x∆ys. is gives us two possibilities, A and B in the statement of Lem. A.62.

5.2

e internal step r is to the le of t 0 " t 1 0 ryzr 0 s Let r 1 : t 1 0 Ñ shzgc F ϑ 11 xxyyy be the step isomorphic to r but going under the substitution ryzI ϑ x∆ys. Note that r 1 cannot be ϑ-external since, by Lem. A.26, this would imply that r is also ϑexternal. So r 1 is ϑ-internal and we may apply the fact that evaluation contexts are backward preserved by internal steps (Lem. A.70) to conclude that t 1 0 has to be of the form F ϑ 110 xxyyy. en closing the diagram is straightforward. 5.3 e internal step r is to the right of t 0 " t 1 0 ryzr 0 s Let r 1 : r 0 Ñ shzgc I ϑ x∆y be the step isomorphic to r but going inside the substitution F ϑ 11 xxyyyryzls. Note that r 1 cannot be ϑ-external since this would imply that r is ϑ-external.

en it is immediate to conclude by i.h..

EA RS , F ϑ

1 " M ϑ F ϑ 11 , where M ϑ P S ϑ and F ϑ 11 P E ϑ e situation is t 0 ϑ Ý Ý Ñ sh M ϑ F ϑ 11 x∆y " t 1 ϑ ù M ϑ F ϑ 11 x∆ 1 y " t 3 . Note that the internal step r cannot be at the root: it cannot be a db step, since it would be external, and it cannot be a lsv step, since then there would be a substitution node at the root of t 1 . So t 0 must be an application node r 1 r 2 and there are two remaining cases: (1) the step r is internal to r 1 , (2) the step r is internal to r 2 .

6.1 e internal step r is internal to the le of t 0 " r 1 r 2 en t 0 " r 1 F ϑ 11 x∆y. Let r 1 : r 1 Ñ shzgc M ϑ be the step isomorphic to r below the context l F ϑ 11 x∆y. Note that r 1 cannot be ϑ-external as this would imply that r is also ϑ-external. By the fact that strong normal forms are backward stable by internal steps (Lem. A.69), r 1 must be a strong ϑ-structure. en closing the diagram is straightforward.

6.2

e internal step r is internal to the right of t 0 " r 1 r 2 en t 0 " M ϑ r 2 . Let r 1 : r 2 Ñ shzgc F ϑ 11 x∆y be the step isomorphic to r below the context M ϑ l. Note that r 1 cannot ϑ-external since this would imply that r is also ϑ-external. en it is immediate to conclude by i.h..

EL , F ϑ

1 " λy.F ϑYtyu , where F ϑ P E ϑ Straightforward by i.h.. L 2 such that L " L 1 rzzC 1 xxxyysL 2 and C " trxzssL 1 rzzC 1 sL 2 . en we may conclude by taking C 0 :" pλx.tqL 1 rzzC 1 sL 2 s.

e proofs for the ls and gc cases are similar.

Lemma A.76 (Creation of an answer).

Recall that an answer is a term of the form pλx.tqL. Suppose that Cxxxyy is not an answer and Cxty is an answer. en C is a substitution context and t is an answer. roughout the proof, we let ∆ stand for the pa ern of S and ∆ 1 for its contractum. Similarly, Σ stands for the pa ern of S and Σ 1 for its contractum. By case analysis on the kind of redex R:

1. If R is a db redex. en t 1 " Cxpλx.tqL sy R Ý Ñ CxtrxzssLy " t 2 . Consider the position of the hole of C, relative to the position the pa ern Σ of S.

First, if the position of the hole of C is a pre x of the position of Σ, then there are two subcases, depending on whether Σ overlaps the spine of trxzssL or it does not overlap the spine:

1.1 If Σ overlaps the spine of trxzssL. en the redex S must be either a ls redex contracting one of the substitutions among rxzssL, or a gc redex collecting one of the substitutions among rxzssL. Let us call the a ected substitution the one that is either contracted by a ls step or collected by a gc step.

If the substitution that is being a ected is one of the substitutions in L then it is immediate to observe that this case is impossible, as S has an ancestor before R. For example, if S is a gc step, then L " L 1 ryzrsL 2 and the situation is:

Cxpλx.tqL 1 ryzrsL 2 sy R G G S 0 CxtrxzssL 1 ryzrsL 2 y S Cxpλx.tqL 1 L 2 sy CxtrxzssL 1 L 2 y
observe that y R fvptrxzssL 1 q implies y R fvppλx.tqL 1 q.

If the substitution that is being a ected is rxzss then the step S is created by R, and we are either in Creation case 2: db creates ls or in Creation case 3: db creates gc. For example, if S is a gc step:

t 1 " Cxpλx.tqL sy R Ý Ñ CxtrxzssLy " t 2
1.2 If Σ does not overlap the spine of trxzssL. en it may be the case that Σ lies inside t, or inside s, or inside one of the subsitutions of L. In all of these cases, S has an ancestor and the situation is impossible. For example, if Σ lies inside t then t is of the form t " C 1 xΣy, and the situation is: p Cxtrxzss, Σy S p Cxpλx.tqLs, Σ 1 y p Cxtrxzss, Σ 1 y Finally we arrive to the more complex case, when the position of the pa ern of Σ is a pre x of the position of the hole of C, that is, there exist contexts C 1 and C 2 such that t 2 " C 1 xΣy and C " C 1 xC 2 y. Note that Σ " C 2 xtrxzssLy. We proceed by case analysis on the kind of redex S:

Cxpλx.C 1 xΣyqL sy R G G
1.1 If S is a db redex. en Σ " pλy.uqL 1 r " C 2 xtrxzssLy. If the hole of C 2 is inside u, inside r, or inside one of the substitutions of L 1 , then S has an ancestor S 0 . For example if the hole of C 2 is inside u then C 2 " pλy.C 3 qL 1 r, and the situation is: e only remaining possibility is that there exist substitution contexts L 1 and L 2 such that L 1 " L 1 L 2 and C 2 " L 2 r. e situation is:

t 1 " C 1 xppλx.tqL sq L 2 ry R Ý Ñ C 1 xtrxzssL L 2 ry " t 2
so t is of the form t " pλy.rqL 3 . Hence we are in Creation case 1: db creates db. is means that S has an ancestor S 0 , so this case is impossible. More precisely, the situation is: Second, if the hole of C 2 lies inside r, then C 2 " C 3 xxyyyryzC 4 s. en S has an ancestor S 0 , so this case is impossible. More precisely, the situation is: e interesting case is the last, when C 2 is an empty context. en C 3 xxyyyryzus " trxzssL. Again we consider two subcases, depending on whether L is empty or non-empty: 1.2.1 If L is empty. en x " y and s " u, so the situation is: Note that y cannot occur in s by Barendregt's convention. So y occurs either in t or in L 1 , which means that the redex S has an ancestor S 0 before R. For example, if y occurs in t, then t " C 5 xxyyy and: First, if the hole of C 2 lies inside u, then u " C 2 x∆ 1 y. Note that fvp∆q " fvppλx.tqL sq " fvptrxzssLq " fvp∆ 1 q, so fvpC 2 x∆yq " fvpC 2 x∆ 1 yq. In particular, y R fvpC 2 x∆yq.

C 1 xC 3 xxyyyryzC 4 x∆ysy R G G
C 1 xpλx.C 5 xxyyyqL 1 ryzussy R G G
en this case is impossible, since S has an ancestor S 0 . Graphically:

C 1 xC 2 x∆yryzrsy R G G S 0 C 1 xC 2 x∆ 1 yryzrsy S C 1 xC 2 x∆yy C 1 xC 2 x∆ 1 yy
Second, if the hole of C 2 lies inside r, then r " C 2 x∆y. is case is impossible since S has an ancestor S 0 . Graphically:

C 1 xuryzC 2 x∆ysy R G G S 0 C 1 xuryzC 2 x∆ 1 ysy S C 1 xuy C 1 xuy
Finally, if C 2 is the empty context, then uryzrs " trxzssL. Again we consider two subcases, depending on whether L is empty or non-empty:

1.3.1 If L is empty. en x " y, t " u, and s " r. Note that x R fvptq, so the situation is: t 1 " pλx.tqL s R Ý Ñ trxzssL " t 2 and we are in Creation case 3: db creates gc. 1.3.2 If L is non-empty. en L " L 1 ryzrs, so u " trxzssL 1 . Note that fvppλx.tqL 1 q Ě fvptrxzssL 1 q, so y R fvppλx.tqL 1 q implies y R fvptrxzssL 1 q. is means that this case is impossible since S has an ancestor S 0 . More precisely the situation is: First, if the position of the hole of C 1 is a pre x of the position of Σ, then there is a context C 3 such that C 2 xtyrxzts " C 3 xΣy. We consider three subcases for the position of the hole of C 3 : to the le of the substitution, inside the substitution, or at the root (i.e. C 3 empty): First, if the position of the hole of C 2 is a pre x of the position of Σ, then there is a context C 1 4 such that C 4 " C 2 xC 1 4 y and t " C 1 4 xΣy. en this case is impossible since S has an ancestor S 0 . More precisely, the situation is: e only remaining possibility is the interesting one, when the hole of C 1 2 lies somewhere along the spine of pλy.sqL, more precisely, there exist substitution contexts L 1 and L 2 such that L " L 1 L 2 and C 1 2 " C 2 2 L 2 u. en t " pλy.sqL 1 so the situation is: First note that, if C 1 2 is empty, we have already considered this situation since C 2 is a pre x of C 4 . Second, if the hole of C 1 2 is to the le of the substitution and it is disjoint from the hole of C 5 , that is, there is a two-hole context p C such that p Cxl, yyryzss " C 1 2 and p Cxt, ly " C 5 . en this case is impossible as S has an ancestor S 0 . More precisely, the situation is: However, this case is impossible, since the variable y is outside the scope of the substitution binding y on the le -hand side of R, so by Barendregt's convention the step S cannot exist. e only remaining possibility is that the hole of C 1 2 is inside the substitution, that is, C 1 2 " C 5 xxyyyryzC 2 2 s with s " C 2 2 xty. en this case is impossible, as S has an ancestor S 0 . In fact the situation is: First, if the position of the hole of C is a pre x of the position of Σ, then t " C 1 xΣy.

C 1 xpλx.tqL 1 ryzrs sy R G G
C 1 xC 2 xxxyyrxzC 1 4 xΣysy R G G S 0 C 1 xC
C 1 xC
en this case is impossible since S has an ancestor S 0 . e situation is: Finally, if the position of Σ is a pre x of the position of the hole of C, then C " C 1 xC 2 y such that Σ " C 2 xty. We proceed by case analysis on the kind of redex S:

CxC 1 xΣyrxzssy R G G
3.1 If S is a db redex. at is Σ " pλy.uqLr " C 2 xty. en the hole of C 2 lies either inside u, inside r, inside one of the substitutions of L, or along the spine of pλy.uqL (i.e. there exist substitution contexts L 1 , L 2 such that L " L 1 L 2 and C 2 " L 2 r). In any case, this case is impossible since S has an ancestor S 0 . For example, if the hole of C 2 lies inside u, then C 2 " pλy.C 1 2 qLr and the situation is: en the hole of C 2 lies either inside u, inside C 3 disjoint from the variable y, or it is a pre x of C 3 ryzus. In any case, this case is impossible since S has an ancestor S 0 . For example, if the hole of C 2 lies inside u, then C 2 " C 3 xxyyyryzC 1 2 s and the situation is: en note that y R fvpC 1 2 xtrxzssyq, so this case is impossible, since S has an ancestor S 0 . e situation is:

C 1 xpλy.C 1 2 xtrxzssyqLry R G G S 0 C 1 xpλy.C
C 1 xC 3 xxyyyryzC 1 2 xtrxzssysy R G G S 0 C 1 xC
C 1 xC 1 2 xtrxzssyryzrsy R G G S 0 C 1 xC 1 2 xtyryzrsy S C 1 xC 1 2 xtrxzssyy C 1 xC 1 2 xtyy
Second, if the hole of C 2 lies inside r, that is C 2 " uryzC 1 2 s, then this case is impossible, since S has an ancestor S 0 . e situation is: For the proof of Prop. 6.30 we need an auxiliary technical tool. We already know that adding a label to a context is not always de ned as a context. For instance, α : l is not a valid labeled context. Sometimes it will be convenient to allow this to stand for a generalized notion of contexts, which we call pseudo-contexts. Pseudo-contexts will be allowed to have a label decorating the hole. For instance, α : l will be a pseudo-context such that pα : lqxty " α : t.

C 1 xuryzC 1 2 xtrxzssysy R G G
C 2 xxx α , x β yyrxzt 1 s Ω Ópαq ' Òpt 1 q G G Ópβq ' Òpt 1 q C 2 xxα ' : t 1 , x β yyrxzt 1 s Ω Ópβq ' Òpt 1 q
C 2 xxx α , β ' : t 1 yyrxzt 1 s Ω Ópαq ' Òpt 1 q G G C 2 xxα ' : t 1 , β ' : t 1 yyrxzt 1 s Ω 1.2.4 S is a gc-redex, including x α as a subterm. Let q be the subterm corresponding to the gc-redex. As in the previous cases, since q is a subterm of Cxxx α yy, we have that Cxxx α yy " C 1 xqy. Moreover, q must have the form q " s 1 ryzu 1 s Θ , with y R fvps 1 q. As we are also assuming that the a ected occurrence of x α is in q, there are two possibilities for C, depending on whether the hole of C lies in a position inside s 1 or inside u 1 :

C " $ ' ' ' ' & ' ' ' ' % C 1 x C 2 ryzu 1 s Θ y where C 2 xxx α yy " s 1
"the hole is internal to s 1 " C 1 x s 1 ryzC 2 s Θ y where C 2 xxx α yy " u 1 "the hole is internal to u 1 "

We analyze these two subcases separately: We conclude this subcase noting that Ò pC 2 xxx α yyq " Ò pC 2 xxα ' : t 1 yyq by Lem. 6.9.

1.2.4.1 C " C 1 x C 2 ryzu 1 s Θ y Cxxx α yyrxzt 1 s Ω C 1 xx C 2 xxx α yyryzu 1 s Θ yyrxzt 1 s Ω Ópαq ' Òpt 1 q G G ta ' Òpu 1 q | aPΘu C 1 xx C 2 xxα ' : t 1 yyryzu 1 s Θ yyrxzt 1 s Ω ta ' Òpu 1 q | aPΘu C 1 xx C 2 xxx α yy yyrxzt 1 s Ω Ópαq ' Òpt 1 q G G C 1 xx
1.3 R is a gc-redex. at is: t " t 1 rxzs 1 s Ω x R fvpt 1 q and µ " ta ' Ò ps 1 q | a P Ωu. If the redex occurrence S is internal to t 1 , it is straightforward to close the diagram.

If it is internal to s 1 , it is also straightforward, taking in account the fact that the contraction of R erases S. More precisely, if we suppose that s 1 ν Ý Ñ p s 1 , we have:

t 1 rxzs 1 s Ω ta ' Òps 1 q | aPΩu G G ν t 1 t 1 rxzp s 1 s Ω ta ' Òpp s 1 q | aPΩu G G t 1
Note that Ò ps 1 q " Ò pp s 1 q by the fact that reduction preserves the rst label of a term (Lem. 6.11).

e remaining possibility is that the redex occurrence S involves the substitution at the root of t. is cannot happen:

• e redex occurrence S cannot be a db-redex, as there is no application node at the root.

• e redex occurrence S cannot be a ls-redex, since that would require at least one free occurrence of x in t 1 .

• If S is a gc-redex, then R and S are the same redex ocurrence, which is trivial and was already considered.

2. Inductive case. All the inductive cases are trivial, since we only care about the case when the position of R is a pre x of the position of S. Hence both redex occurrences R and S must be internal to the same subcontext of C, and we conclude by i.h.. And so we conclude:

@ α ppλ β Ω x.u 0 qL, s 1 q ta ' Òpr 1 2 q | aPΘu G G β @ α ppλ β Ω x.u 1 qL, s 1 q β αrdbpβqs : u 0 rxztdbpβqu : s 1 s Ω L ta ' Òpr 1 2 q | aPΘu G G αrdbpβqs : u 1 rxztdbpβqu : s 1 s Ω L
• e gc step is internal to one of the arguments of L 0 . at is, u 1 " u 0 and:

L 0 " L 1 ryzr 1 s Θ L 2 L " L 1 ryzr 2 s Θ L 2 r 1 µ Ý Ñ gc r 2
en:

@ α ppλ β Ω x.u 1 qL 0 , s 1 q µ G G β @ α ppλ β Ω x.u 1 qL, s 1 q β αrdbpβqs : u 1 rxztdbpβqu : s 1 s Ω L 0 µ G G αrdbpβqs : u 1 rxztdbpβqu : s 1 s Ω L section concerns the labeled version of the LSC. Since the gc rule is never used here, in order to alleviate notation, we omit the sets of labels on abstractions and substitutions, which are irrelevant in this context. at is, we write λ α x.t and trxzss rather than λ α Ω x.t and trxzss Ω , omi ing the "Ω" subscripts.

Correctness

e following de nitions and lemmas are used to prove the implication p1 ùñ 2q (Correctness) of Prop. 7.12.

De nition A.81 (Inclusion of labels).

e order relation of inclusion between labels α, β, wri en α Ď β, is given by the re exive and transitive closure of the following rules: α Ď rαs α Ď tαu α Ď dbpαq α Ď αβ α Ď βα De nition A.82 (All labels in a term). Given a labeled term t P T , the set of all labels decorating nodes in t is wri en labelsptq. Formally: labelspx α q def " tαu labelsp@ α pt, sqq Lemma A.83 (Redex names that contribute to a step must occur in the source). Let R : t 0 Ñ t 1 be a step in the LLSC without gc. Let ν be the name of R , and let µ be another redex name such that µ Name ãÑ ν. en there exists a label α P labelspt 0 q such that µ Ď α.

Proof. It is easy to check that name contribution implies label inclusion, so from the hypothesis µ Name ãÑ ν we have that µ Ď ν. Moreover, the inclusion is proper, i.e. µ ‰ ν since, by de nition, µ Name ãÑ µ does not hold. We proceed by case analysis on the kind of step R :

1. db step. en we have: t 0 " Cx@ α ppλ β x.t qL, s qy dbpβq Ý ÝÝ Ñ Cxαrdbpβqs : t rxztdbpβqu : s sLy " t 1 Since µ Ď ν " dbpβq and µ ‰ ν, it must be the case that µ Ď β and β P labelspt 0 q, so we are done. Observe that µ Ď ν " Ó pαq ' Ò pt q and that Ó pαq and Ò pt q are atomic labels. We claim that either µ Ď Ó pαq or µ Ď Ò pt q. Indeed: 2.1 If µ is the name of a db redex, then it is of the form dbpγq so necessarily dbpγq Ď Ó pαq or dbpγq Ď Ò pt q.

2.2 If µ is the name of a ls redex, then it is of the form γ ' δ where γ and δ are atomic labels. Since we already know that µ ‰ ν, the " ' " in µ must occur either in Ó pαq or in Ò pt q. is in turn implies that γ ' δ Ď Ó pαq or γ ' δ Ď Ò pt q.

Now there are two possibilities: if µ Ď Ó pαq then µ Ď α P labelspt 0 q, and we are done. Otherwise, it must be the case that µ Ď Ò pt q. Let us write the term t as of the form t " s L where L is a list of substitutions and s is a term whose root is not a substitution node (i.e. it is an application, an abstraction or a variable). en by de nition Ò pt q " Ò pβq where β is the label decorating s .

us we obtain that µ Ď Ò pt q " Ò pβq Ď β P labelspt q, as required.

De nition A.84 (Labels of variables). Let vlpt q be de ned as the following set: vlpt q " tÓ pαq | x α is a subterm of t for some xu Inductively:

vlpx α q def " tÓ pαqu vlpλ α x.t q def " vlpt q vlp@ α pt , s qq def " vlpt q Y vlps q vlpt rxzs sq def " vlpt q Y vlps q is de nition is also extended to contexts by se ing vlplq " ∅.

Remark A.85. vlpCxt yq " vlpCq Y vlpt q Remark A.86. vlpα : t q " vlpt q Lemma A.87 (Labels of variables are not created). Let t 0 Ñ t 1 be a step in the labeled calculus.

en vlpt 0 q Ě vlpt 1 q.

Proof. Straightforward by case analysis on the kind of contracted redex.

De nition A.88 (Labels of substitutions). Let slpt q be de ned as the following set: slpt q " tÒ ps q | rxzs s is a substitution occurring in t for some xu Inductively: slpx α q def " ∅ slpλ α x.t q def " slpt q slp@ α pt , s qq def " slpt q Y slps q slpt rxzs sq def " tÒ ps qu Y slpt q Y slps q is de nition is also extended to contexts by se ing slplq " ∅.

Otherwise.

en tL 1 is of the form C 2 xxzyy where C 2 is a reachable context, so tL 1 rzzCs is a reachable context. By i.h. this means that t " C 1 xxxyy and L 1 is a px, zq-chained substitution context. So L " L 1 ryzss is also px, zq-chained. pðq Let t " C 1 xxxyy. By induction on the derivation that L is px, zq-chained:

1. If L is pz, zq-chained with z R dompLq.

en x " z and C 1 xxzyyrzzCs is reachable since C 1 and C are reachable. Lemma A.111 (Strongly reachable redexes have reachable residuals). Let R be a strongly reachable redex and let S ‰ R be any other redex coinitial to R. en:

If

• e set of residuals R{S is a singleton and it is reachable.

• If tgtpRq is in RNF, then R{S is strongly reachable.

Proof. During the proof we shall implicity use the fact that these two conditions are equivalent for a reachable redex R:

(1) For every redex S we have that pS ă B Rq.

(2) For every reachable redex S we have that pS ă B Rq, i.e. R is strongly reachable.

e implication p1 ùñ 2q is immediate. e reverse implication is Lem. A.105. e proof proceeds by induction on the context C under which the S step takes place. We study only the base case, when C " l. e inductive cases are not all straightforward, but they can be proved using the same ideas. By case analysis on the kind of redex S:

1. db redex. en the step S is of the form pλx.tqL s S Ý Ñ trxzssL. Note that S is a reachable redex so, since R is minimal, the anchor of R cannot be internal to s. We consider two subcases, depending on whether the anchor of R is internal to t or internal to L. en C 1 xxxyy " C 1 xC 2 xuyy, so C 2 must be empty and u " x must be the anchor of R, so R is an ls redex. Furthermore R contracts the same variable occurrence as S, so R " S, which is impossible.

2.1.2 If C 1 is a pre x of C 1 . at is, C 1 " C 1 xC 2 y. en the source of R and S is of the form C 1 xC 2 xxxyyyrxzts, where the subterm C 2 xxxyy is the anchor of R. Note that R cannot be a ls step, since then we would have that C 2 " l. is would in turn mean that R and S contract the same variable occurrence, so R " S, which is impossible. Hence R must be a db step, that is, C 2 xxxyy " pλy.sqL u. Let pλy.ŝq L û be the term that results from pλy.sqL u by replacing the occurrence of x under the context C 2 by t, i.e. pλy.ŝq L û " C 2 xty. By hypothesis, R is a reachable redex, so the context C 1 rxzts is reachable. en R{S is also a reachable redex. Moreover, let us show that R{S is strongly reachable. By contradiction, suppose that T ă 1 B R{S for some reachable redex T . We consider two cases, depending on whether T is a db redex created by S, or it has has an ancestor before S: 2.1.2.1 T is a db redex created by S. In order to create a db redex, we know that two conditions must hold. On the rst hand, the argument of the substitution contracted by S must be an answer, more precisely, we know that t is of the form t " vL 1 , where v is an abstraction. On the other hand, C 2 must be an applicative context, more precisely we know that C 2 " C 1 2 xlL 2 ry. To conclude, note that the application node involved in the pa ern of T is strictly contained either in ŝ, or in L, or in û, so it cannot possibly nest R{S. To state it more precisely, we consider three similar subcases, depending on whether the hole of C 2 lies inside s, inside L, or inside u:

• e hole of C 2 lies inside s. en s " C Since R is a reachable redex, the context p Cxl, xy is reachable. Hence p Cxl, ty is also reachable, which implies that R{S is also a reachable redex. Moreover, let us show that R{S is strongly reachable. By contradiction, suppose that T ă 1 B R{S for some reachable redex T . We consider two cases, depending on whether T is a db redex created by S, or it has has an ancestor before S:

• T is a db redex created by S. In order to create a db redex, we know that two conditions must hold. On the rst hand, the argument of the substitution contracted by S must be an answer, more precisely, we know that t is of the form t " vL 1 where v is an abstraction. On the other hand, C 1 must be an applicative context, more precisely we know that C 1 " C 1 1 xlL 2 uy. Moreover, since the anchor of R{S is inside the box of T , we have that u " C 3 xsy, and p C " C 1 1 xl 2 L 2 C 3 xl 1 yy where l 1 and l 2 are the rst and second parameters of the two-hole context p C. en the situation is: is contradicts the hypothesis that the target of R is in RNF.

C 1 1 xxL 2 C 3 xsyyrxzvL 1 s S G G R C 1 1 xvL 1 L 2 C 3 xsyyrxzvL 1 s R{S C 1 1 xxL 2 C 3 xs 1 yyrxzvL 1 s S{R G G C
• T has an ancestor before S. Recall that R is strongly reachable so it is minimal with respect to the box order and in particular pS ă B Rq. Let T 0 be an ancestor of T , i.e. T P T 0 {S. en since pS ă B Rq and T ă B R{S, by Context-freeness (Lem. A.106) we have that T 0 ă B R, contradicting the fact that R is minimal with respect to the box order.

2.2 If the anchor of R is inside the substitution, i.e. internal to t. is case is impossible, as we would have S ă 1 B R, but R is strongly reachable, and in particular minimal with respect to the box order.

With these tools, we can prove the main result of this section.

Proposition A.112 (Full proof of Prop. 7.27-e set RNF is stable).

Proof.

e proof goes by checking items 1. and 2. in the de nition of stable set: Let σ : t gc nf gc ptq be a sequence of gc steps to normal form. Since t P RNF, by Lem. A.100, we have that nf gc ptq is in Ñ db Y ls -normal form. Consider the relative projections σ{R and R{σ. Since σ{R is the projection of a sequence of gc steps, it is also sequence of gc steps. Let σ{R : s gc s 1 . e situation is:

t σ R G G s σ{R nf gc ptq R{σ G G G G s 1
Since nf gc ptq is in Ñ db Y ls -normal form, R{σ must be empty, so s 1 " nf gc ptq. In particular, s 1 is a gc normal form, so by con uence s 1 is the gc normal form of s, i.e. nf gc psq " s 1 " nf gc ptq. erefore nf gc psq is in Ñ db Y ls -normal form which means, by Lem. A.100, that s P RNF as required.

2. RNF is closed under unneeded expansion.. Let R : t Ñ db Y ls s with t R RNF and s P RNF, and let us show that R is RNF-needed. In fact, it su ces to show that R is a strongly reachable redex. First we prove that R is reachable.

Claim: R is a reachable redex. By contradiction, suppose that R is unreachable, consider a reduction from t to gc-normal form σ : t gc nf gc ptq, and the relative projections R{σ : nf gc ptq db Y ls s 1 and σ{R : s db Y ls s 1 . By the fact that unreachable redexes have no residual a er going to gc-normal form (Lem. A.103) we know that R has no residual a er σ, so R{σ is empty. Hence nf gc ptq " s 1 , so s 1 is in gc-normal form and by con uence we obtain that nf gc psq " s 1 " nf gc ptq.

e situation is:

t σ R G G s σ{R nf gc ptq R{σ G G G G s 1
Since t P RNF, by the characterization of RNFs given in Lem. A.100, we have that nf gc ptq is not a Ñ db Y ls -normal form. On the other hand, since s P RNF, by Lem. A.100, we have that nf gc psq " nf gc ptq is a Ñ db Y ls -normal form. is is a contradiction, which concludes the proof of the claim.

To see that R is a strongly reachable redex, we are le to check that R is minimal, among the reachable redexes, with respect to the nesting order ă B . Indeed, by contradiction, suppose that R is not minimal. en since the order ă B is well-founded (as there are nitely many redexes in any given term) there is a reachable redex such that S ă B R and such that S is minimal among the reachable redexes. at is, S is a strongly reachable redex.

en by the fact that strongly reachable redexes have reachable residuals (Lem. A.111) the redex S{R is reachable. is contradicts the fact that s is in RNF. So R must be minimal with respect to the nesting order ă B , as required. Proof. To show that S HL is HLNF-normalizing, using Prop. 7.54 we must show that:

1.

e set NFpHLq coincides with the set HLNF, so being NFpHLq-normalizing is equivalent to being HLNF-normalizing. For this we will show the two inclusions: 1. Empty, H " l. Two cases, depending on the kind of redex of R:

1.1 If R is a db step. en R is of the form: pλx.tqL s Ñ trxzssL ere are three cases, depending on the position where S takes place. Note that S cannot be at the root:

1.1.1 If S is internal to t. By this we mean that S is a db redex completely internal to t, or an ls redex whose anchor is a variable y that lies inside t (the substitution binding y might be also inside t, or it might be one of the substitutions in L). Let p t denote the result of applying S on t. en: 1.2.1 At the root. Note that S ‰ R and that S cannot be a db step, since there is not an application at the root. e remaining possibility is that S is a ls step contracting a di erent occurrence of x. at is, that there is a two-hole context p C such that: To conclude that R{S P HL it su ces to observe that p Cxl, s 1 y is a head context as a consequence of (A.11) and the fact that p Cxl, sy is a head context. So the hole of H can be either:

• Internal to s. is is impossible as head contexts do not go under abstractions.

• Internal to one of the substitutions in L. is is impossible as head contexts do not go inside substitutions.

• Internal to u. is is impossible as head contexts do not go to the right of applications. To conclude that R{S P HL it su ces to observe that C 1 x p Cxl, syryzssy is a head context as a consequence of (A.11) and the fact that C 1 x p Cxl, yyryzssy is a head context. 2. Le of an application, H " H 1 t. We argue that the step S cannot take place at the root. Suppose that S takes place at the root. en it is a db step. en pλx.sqL must have a db or ls redex under the head context H 1 . Two cases:

2.1 If R is a db redex. en there must be an application node in pλx.sqL under a head context. But head contexts do not go below abstractions or inside substitutions, so this is impossible.

2.2

If R is a ls redex. en there must be a variable in pλx.sqL under a head context. But head contexts do not go below abstractions or inside substitutions, so this is impossible.

en the step S must take place either to the le of the application (and we conclude by i.h.) or to the right of the application (and then R and S are disjoint, so it is trivial).

3. Le of a substitution, H " H 1 rxzts. ree cases: 3.1 If S takes place at the root. en S must be a ls redex. Depending on the kind of redex of R:

Figure 1

 1 Figure 1.2:e portrayed rewrite step corresponds to a local interaction in the graph, but it is mapped to a non-local interaction when graphs are wri en back in term syntax: pyyqryzλx.xs Ñ ppλx.xqyqryzλx.xs.

Lemma 2 . 45 (

 245 Cube identity for multisteps). Let M and N denote sets of coinitial steps with the same source. en M \ N " N \ M.

Lemma 2 . 47 .

 247 Let ρ be a complete development of M. en ρ{N is a complete development of M{N .

1. 1 A 1 . 3 . 2 . 1 1 . 3 . 2 . 2

 113211322 deterministic reduction relation ù M on a set of states State " tS 1 , S 2 , . . .u. 1.2 A distinguished class of states deemed initial, in bijection with closed λ-terms and from which one obtains the reachable states by applying ù M ˚. 1.3 A partition of the transitions de ning the relation ù M : 1.3.1 Search transitions, noted ù s . 1.3.2 Principal transitions, in turn partitioned into: Multiplicative transitions, denoted by ù m . Exponential transitions, denoted by ù e .

De nition 3 . 23 (24 (

 32324 KAM decoding). Contextual decoding)

eorem 3 . 26 (1 .

 3261 KAM distillation). pKAM, name, ", rr ¨ssq is a re ective distillery.Proof. Properties of the decoding: 1.1 Search. Let ts | e | π ù s t | e | ps, eq :: π. en: rrts | e | πss " rrπssxrressxtsyy " @ rrπssxrressxtyrressxsyy " rrt | e | ps, eq :: πss 1.2 Multiplicative. Let λx.t | e | c :: π ù m t | rxzcs :: e | π. en: rrλx.t | e | c :: πss " rrπssxrressxλx.tyrrcssy Ñ m rrπssxrressxtrxzrrcsssyy " rrt | rxzcs :: e | πss e rewriting step can be applied because by contextual decoding (Lem. 3.24) it takes place in an evaluation context. 1.3 Exponential. Let x | e 1 :: rxzpt, eqs :: e 2 | π ù e t | e | π. en: rrx | e 1 :: rxzpt, eqs :: e 2 | πss " rrπssxrre 2 ssxrre 1 ssxxyrxzrressxtysyy Ñ e rrπssxrre 2 ssxrre 1 ssxrressxtyyrxzrressxtysyy " gc rrπssxrressxtyy " rrt | e | πss

Lemma 3 . 31 (1 . 4 .

 33114 MAM invariants). Let S " s | π | E be a MAM state reached by an execution ρ of initial well-named code t. en: Global Closure: the global closure prrπssxty, Eq of S is closed; 2. Subterm: any code in S is a literal subterm of t; 3. Names: the global closure of S is well-named; Environment Size: the length of the global environment in S is bound by |ρ| m . Proof. Straightforward by inspection of the machine transitions.

 rrλx.t | s :: π | Ess " rrEssxrrπssxpλx.tqsyy Ñ m rrEssxrrπssxtrxzssyy " Lem.3.16 rrEssxrrπssxtyrxzssy " rrt | π | rxzss :: Ess 3. Exponential. e erasure of part of the environment of the KAM is replaced by an explicit use of α-equivalence: rrx | π | E :: rxzss :: E 1 ss " rrE 1 ssxrrEssxrrπssxxyyrxzssy Ñ e rrE 1 ssxrrEssxrrπssxsyyrxzssy " α rrE 1 ssxrrEssxrrπssxs α yyrxzssy " rrs α | π | E :: rxzss :: E 1 ss 3.5.3 Le -to-Right Call-by-Value: the CEK In this section we present an adaptation to call-by-value of the KAM, namely Felleisen and Friedman's CEK machine [?] (without control operators), implementing le -to-right call-byvalue.

De nition 3 . 33 (

 333 CEK Machine). Stacks are de ned as follows: π ::" | f pcq :: π | apcq :: π A state is a triple S " pt, e, πq. e transitions of the CEK are:

e 3 .

 3 De nition 3.34 (CEK decoding). Stacks are decoded as follows: rr ss def " l rrf pcq :: πss def " rrπssxrrcssly rrapcq :: πss def " rrπssxlrrcssy States of the machine are decoded exactly as for the KAM, i.e. rrt | e | πss def " rrπssxrressxtyy.

1. Search 1 . 2 .

 12 We have ts | e | π ù s 1 t | e | aps, eq :: π: rrts | e | πss " rrπssxrressxtsyy " @ rrπssxrressxtyrressxsyy " rrt | e | aps, eq :: πss Search 2. We have v | e | aps, e 1 q :: π ù s 2 s | e 1 | f pv, eq :: π, and:

 e 1 q, πq :: D ù m t | rxzpv, eqs :: e 1 | π | D x | e :: rxzpv, e 1 qs :: e 2 | π | D ù e v | e 1 | π | D De nition 3.38 (SCEK decoding). e decoding of terms, environments, closures, and stacks is as for the KAM. Every dump decodes to a context according to: rr ss def " l rrppv, eq, πq :: Dss def " rrDssxrrπssxrressxvlyyy e decoding of states is de ned as rrt | e | π | Dss def " rrDssxrrπssxrressxtyyy.

Lemma 3 . 4 .

 34 39 (SCEK invariants). Let S " s | e | π | D be a SCEK reachable state whose initial code t is well-named. en: 1. Closure: every closure in S is closed; 2. Subterm: any code in S is a literal subterm of t; 3. Value: the code of any closure in the dump or in any environment in S is a value; Contextual Decoding: rrDss, rrDssxrrπssy, and rrDssxrrπssxrressyy are le -to-right call-byvalue evaluation contexts.

 ps, eq :: π | D, and: rrt s | e | π | Dss " rrDssxrrπssxrressxt syyy " @ rrDssxrrπssxrressxty rressxsyyy " rrt | e | ps, eq :: π | Dss 2. Search 2. We have v | e | pt, e 1 q :: π | D ù s 2 t | e 1 | | ppv, eq, πq :: D, and: rrv | e | pt, e 1 q :: π | Dss " rrDssxrrπssxrressxvy rre 1 ssxtyyy " gc rrDssxrrπssxrressxvy rressxrre 1 ssxtyyyy " @ rrDssxrrπssxrressxv rre 1 ssxtyyyy " rrt | e 1 | | ppv, eq, πq :: Dss 3. Multiplicative. We have v | e | | ppλx.t, e 1 q, πq :: D ù m t | rxzpv, eqs :: e 1 | π | D, and: rrv | e | | ppλx.t, e 1 q, πq :: Dss " rrDssxrrπssxrre 1 ssxpλx.tq rressxvyyyy ù m rrDssxrrπssxrre 1 ssxtrxzrressxvysyyy " rrt | rxzpv, eqs :: e 1 | π | Dss 4. Exponential. We have x | e 1 :: rxzpv, eqs :: e 2 | π | D ù e v | e | π | D, and: rrx | e 1 :: rxzpv, eqs :: e 2 | π | Dss " rrDssxrrπssxrre 2 ssxrre 1 ssxxyrxzrressxvysyyy ù e rrDssxrrπssxrre 2 ssxrressxrre 1 ssxvyrxzvsyyyy " gc rrDssxrrπssxrressxvyyy " rrv | e | π | Dss

def"

 l rrpE, x, πq :: Dss def " rrEssxrrDssxrrπssxxyyyrxzls e decoding of states is de ned by rrt | π | D | Ess :" rrEssxrrDssxrrπssxtyyy.

De nition 3 . 49 (

 349 Merged MAD). Terms and environments are de ned as for the MAM. e syntax for stacks is: π ::" | aptq :: π | hpE, xq :: π

De nition 3 . 50 (

 350 Merged MAD decoding). e decoding is de ned as follows rr ss def " l rrrxzts :: Ess def " rrEssxlrxztsy rrhpE, xq :: πss def " rrEssxrrπssxxyyrxzls rraptq :: πss def " rrπssxlty rrt | π | Ess def " rrEssxrrπssxtyy Lemma 3.51 (Contextual Decoding). Let π and E be a stack and a global environment of the Merged MAD. en rrπss and rrEssxrrπssy are call-by-need evaluation contexts.

 3.5.2 and Sec. 3.5.6). e new machine can be seen as a simpler version of Sesto 's Abstract Machine [?], here called SAM. It uses a new dummy constant l for the substitutions whose variable is in the dump. De nition 3.53 (e Pointing MAD). Dumps and environments are de ned as follows: D ::" | px, πq :: D E ::" | rxzts :: E | rxzls :: E

De nition 3 . 55 (

 355 Pointing MAD decoding). A compatible pair E9D decodes to a context as follows: rrpE, qss def " rrEss rrpE :: rxzls, px, πq :: Dqss def " rrpE, Dqssxrrπssxxyyrxzls rrpE :: rxzts, py, πq :: Dqss def " rrpE, py, πq :: Dqssrxzts e decoding of a state is de ned as rrt | π | D | Ess :" rrpE, Dqssxrrπssxtyy provided that E and D are compatible.

Lemma 3 . 57 (

 357 Pointing MAD invariants -♣ Lem. A.13). Let S " t | E | π | D be a Pointing MAD reachable state whose initial code t is well-named. en: 1. Subterm: any code in S is a literal subterm of t; 2. Names: the global closure of S is well-named; 3. Dump-Environment Compatibility:

3. 3 4 .

 34 E9D holds. Contextual Decoding: rrpE, Dqss is a call-by-need evaluation context.

2. Search 2 . 3 . 4 .

 234 Note that E 2 has no dumped substitutions, since E 1 :: rxzls :: E 2 9px, πq :: D. en: rrx | π | D | E 1 :: rxzts :: E 2 ss " rrE 2 ssxrrpE 1 , Dqssxrrπssxxyyrxztsy " rrt | | px, πq :: D | E 1 :: rxzls :: E 2 ss Multiplicative 1, empty dump. rrλx.t | s :: π | | Ess " rrEssxrrπssxpλx.tq syy Ñ m rrEssxrrπssxtrxzssyy " @l Lem. 3.16 rrEssxrrπssxtyrxzssy " rrt | π | | rxzss :: Ess Multiplicative 2, non-empty dump.

De nition 3 .

 3 59 (e Strong MAM). e sets of stacks, environments, frames, and phases are de ned as follows: Frames F ::" | pt, πq :: F | x :: F Stacks π ::" | t :: π Environments E ::" | rxzts :: E | Źx :: E | xŸ :: E Phases ϕ ::" ó | ò

Lemma 3 . 64 (

 364 Strong MAM invariants -♣ Lem. A.14). Let S " ϕ | F | s | π | E be a state reachable from an initial term t 0 . en: 1. Compatibility: F and E are compatible, i.e. F 9E.

Lemma 3 . 68 (

 368 Decoding and structural equivalence ").

Example 4 . 3 .

 43 e following is a reduction in weak call-by-need: pλx.xxqppλy.yqpλz.zqq W ù pxxqrxzpλy.yqpλz.zqs W ù pxxqrxzyryzλz.zss W ù pxxqrxzpλz.zqryzλz.zss W ù ppλz.zqxqrxzλz.zsryzλz.zs W ù zrzzxsrxzλz.zsryzλz.zs W ù zrzzλz.zsrxzλz.zsryzλz.zs W ù pλz.zqrzzλz.zsrxzλz.zsryzλz.zs

 In Section 4.2.3 we study some of its basic properties, namely the four principles of Strong reduction, Determinism, Conservativity, and Correctness.

 t P S u P N tu P S t P S t P N t P N λx.t P N t P X u P S x P fvptq trxzus P X In the last rule, the symbol X represents either S or N.

Lemma 4 . 7 (

 47 Characterization of strong normal forms). e following hold:

 ϑ ù λx.s holds if and only if t ϑYtxu ù s holds, freezing the variable x.

 De nition 4.13 (Strong call-by-need reduction). e strong call-by-need strategy ϑ ù is given by the union of the two reduction rules ϑ ù db and ϑ ù lsv below:

Example 4 .

 4 [START_REF] Asperti | Optimal Implementation of Functional Programming Languages[END_REF]. e following is a reduction in strong call-by-need. In each step we underline the focus of evaluation, i.e. the pa ern of the db redex or the variable contracted by the ls redex: pλx.xxqpλy.zpIzqyq tzu ù pxxqrxzλy.zpIzqys tzu ù ppλy 1 .zpIzqy 1 qxqrxzλy.zpIzqys tzu ù pzpIzqy 1 qry 1 zxsrxzλy.zpIzqys tzu ù pzpwrwzzsqy 1 qry 1 zxsrxzλy.zpIzqys tzu ù pzpwrwzzsqy 1 qry 1 zλy.zpIzqysrxzλy.zpIzqys tzu ù pzpwrwzzsqpλy 2 .zpIzqy 2 qqry 1 zλy.zpIzqysrxzλy.zpIzqys tzu ù pzpwrwzzsqpλy 2 .zpwrwzzsqy 2 qqry 1 zλy.zpIzqysrxzλy.zpIzqys

Lemma 4 . 15 (

 415 Characterization of ϑ-normal forms -♣ Lem. A.30). e following sets are equal:• e set of ϑ-normal forms N ϑ (cf. Def.4.11).• e set of normal forms of the strong call-by-need strategy ϑ ù.Proof. See the appendix.

 Proposition 4.16 (Strong reduction). If t is a ϑ ù-normal term, then its unfolding t ˛is a λ-term in β-normal form.

Proposition 4 .

 4 18 (Determinism). If t ϑ ù s and t ϑ ù u then s " u.

Lemma 4 .

 4 22 (Decomposition of W ù). W ù " pÞ Ñ CÞ Ñ I q Y pÞ Ñ ÅÞ Ñ V q Proof.

5 5 5 5

 55 (See Prop. 4.45). (c) t ϑ sh nf ϑ ˛nf sh Factorization of the eory of Sharing If t sh s P NFpÑ sh q then there exists a term u such that t ϑ ù ˚u P N ϑ and u ˛" s ˛, where ϑ " fvptq. (See Prop. 4.54).

Figure 4 . 1 :

 41 Figure 4.1: Decomposition of the proof of Completeness: (a) is implied by (b) and (c)

Figure 4 .

 4 1(c). If we write ϑ Ý Ý Ñ sh for Ñ sh z ϑ ù, the proof is based on repeatedly swapping pairs steps of steps t ϑ Ý Ý Ñ sh ϑ ù s such that they become of the form t ϑ ù sh s.

Example 4 .

 4 [START_REF] Bloo | Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection[END_REF] (A type derivation in HW). Let Ω denote the non-terminating term pλz.zzqpλz.zzq. Moreover, let τ " rσs Ñ σ, where σ is an arbitrary type. Let π be the following derivation: x : rτ s $ x : rσs Ñ σ x : rσs $ x : σ x : rτ, σs $ xx : σ x : rτ, σs $ λy.xx : r s Ñ σ x : rτ, σs $ pλy.xxqΩ : σ en we have that: . . . π z : rτ s $ z : τ z : rσs $ z : σ z : rτ, σs $ ppλy.xxqΩqrxzzs : σ

De nition 4 . 31 (

 431 Positive and negative occurrences of types). e set of types that occur with sign b P t`, ´u in a type σ (resp. in a multiset of types M, in a context Γ, and in a pair of context and type pΓ, σq) is wri en O b pσq (resp. O b pMq, O b pΓq, and O b pΓ $ σq).

Example 4 . 32 (

 432 Positive and negative occurrences). e following hold: • r s P O `pr sq • r s P O ´pr s Ñ σq • r s P O `px : rr s Ñ σsq • r s P O `px : rr s Ñ σs $ σq

Example 4 . 36 .

 436 Let π be the following typing derivation for rxzyzs:∅ , l ∅ . . . y : rrγ 1 , γ 2 s Ñ αs, z : rγ 1 , γ 2 s $ yz : α y : rrγ 1 , γ 2 s Ñ αs, z : rγ 1 , γ 2 s , rxzyzs x : rαsen the following is a typing derivation for rxzyzsryzzs:. . .π z : rrγ 1 , γ 2 s Ñ αs $ z : rγ 1 , γ 2 s Ñ α z : rβs $ z : β z : rrγ 1 , γ 2 s Ñ α, β, γ 1 ,γ 2 s , rxzyzsryzzs x : rαs, y : rβs e following lemma states a few properties that may be easily proved by induction on L.

Lemma 4 . 37 (

 437 Properties of type derivations of substitution contexts).

 e set of positions of a context C is de ned similarly. e subterm of t (resp. C) at position p is wri en t| p (resp. C| p) and de ned as expected.

Lemma 4 . 40 (

 440 Partial Substitution). If Φ Cxxxyy x:rσ i s iPI ; Γ $ Cxxxyy : τ and pΦ i u

Fig. 4 .

 4 1(b):

Figure 4 . 2 :

 42 Figure 4.2: Decomposition of Fig. 4.1(c)

ϑ ù 2 .

 2 2 a sequence of internal Ñ sh -steps, which are not in the strategy ϑ ù, wri en ϑ Ý Ý Ñ sh . e proof relies on an abstract factorization result by Acca oli [?]. We write ϑ Ý Ý Ñ sh instead of Ñ sh for such internal steps. Two examples of internal steps are pxxqrxzIs ϑ Ý Ý Ñ sh px IqrxzIs and pI xqrxzI Is ϑ Ý Ý Ñ sh pI xqrxzzrzzIss

t 1 pÑ shzgc z ϑ ùq t 2 .

 2 We sometimes call ϑ-internal steps just internal steps if ϑ is clear from the context. Steps in the strategy ϑ ù are called ϑ-external steps (or just external steps).

Lemma 4 . 50 (

 450 Postponement of internal steps -♣ Lem. A.73). Let fvpt 0

Proposition 4 . 51 (

 451 External-internal factorization). Let fvptq Ď ϑ. If t shzgc r then there is u such that t is is a consequence of m. 4.48 and Lem. 4.50. Indeed, by the construction given in the proof of Lem. 4.50 one has that p ϑ Ý Ý Ñ shdb , ϑ ù db , ϑ Ý Ý Ñ shlsv , ϑ ù lsv q forms a square factorization system, taking ϑ ù db (resp.

ϑù

 lsv) to be the external db (resp. lsv) reduction, and ϑ Ý Ý Ñ shdb (resp. ϑ Ý Ý Ñ shlsv) to be the internal db (resp. lsv) reduction.

ϑ

 ùq.Here " ϑ stands for the least equivalence relation containing Ñ gc Y ϑ Ý Ý Ñ sh .As an example of this lemma, consider the sequence xryzzrzzIss ϑ Ý Ý Ñ sh xryzIrzzIss Ñ gc x. All three terms are in NFp ϑ ùq: this is straightforward for x, and due to the fact that the substitution is garbage for the two others. Moreover, although we do not have xryzzrzzIssÑ gc xryzIrzzIss, both terms reduce in one gc-step to the same term x. e results in this section can now be assembled to complete the argument outlined in Fig. 4.2 to prove Fig. 4.1(c): Proposition 4.54 (Factorization of the eory of Sharing). Let ϑ " fvptq. If t sh s P NFpÑ sh q, then there exists a term u P NFp ϑ ùq such that t ϑ ù ˚u and u ˛" s ˛. (More precisely, u gc s). Proof. Combining postponement of gc (Lem. 4.46), the external-internal factorization result (Prop. 4.51), and Lem. 4.53. Finally, we obtain the full completeness theorem of Fig. 4.1(a):

eorem 4 .

 4 55 (Completeness of ϑ ù with respect to β-reduction). Let ϑ " fvptq. If t β s P NFpÑ β q then there exists a term u P NFp ϑ ùq such that t ϑ ù ˚u and u ˛" s. Proof. Immediate, combining Prop. 4.45 and Prop. 4.54 as described in Fig. 4.1. Chapter 5 Strong Call-by-Need for Pattern Matching and Fixed Points 5.1 Introduction is chapter is devoted to generalizing the strong call-by-need strategy of the preceding chapter (Chapter 4) to the Extended λ-Calculus of Grégoire and Leroy [?]

 strong call-by-need (Chapter 4) λ-calculus :: extended strong call-by-need (this chapter) extended λ-calculus ([?]) e development of the extended strong call-by-need strategy is split into three steps: e Extended eory of Sharing Ñ e sh . e rst step in this chapter is introducing the Extended eory of Sharing λ e sh . is theory generalizes Def. 4.4 to deal with case constructs and xed points. e Extended Non-Idempotent Intersection Type System HW e .

 pcase pλy.x yqpI Iq of c ñ dqpI cq ù e pcase px yqryzI Is of c ñ dqpI cq ù e pcase px yqryzzrzzIss of c ñ dqpI cq ù e pcase px yqryzIrzzIss of c ñ dqpI cq ù e pcase px IqryzIsrzzIs of c ñ dqpI cq p˚q ù e pcase px IqryzIsrzzIs of c ñ dqpzrzzcsq ù e pcase px IqryzIsrzzIs of c ñ dqpcrzzcsq

De nition 5 . 5 (

 55 Syntax of the Extended eory of Sharing). e terms of the Extended eory of Sharing T e sh are de ned as follows, extending the syntax of λ e with explicit substitutions: t, s, u, . . . ::" x | λx.t | t s | fixpx.tq | c | case t of b | trxzss Recall that terms without explicit substitutions are called pure terms. A pure term t ˛is obtained from any t P T e sh by unfolding explicit substitutions, e.g. ppcase z of c ñ zqrzzd dsq ˛" case d d of c ñ d d. In order to describe reduction in the Extended eory of Sharing λ e sh , we need to introduce additional syntactic categories that generalize the notions of answer and value in presence of constructors: Answers a ::" vL Values v ::" λx.t | Axcy Applicative contexts A ::" l | AL t Substitution contexts L ::" l | LrxztsAn answer of the form pλx.tqL is an abstraction answer and one of the form AxcyL is an applicative answer. An example of the la er is ppc xqrxzys dqryzss.De nition 5.6 (Extended eory of Sharing). e Extended eory of Sharing λ e sh consists of the reduction rules over T e sh given below, closed by arbitrary contexts. We write Ñ e sh for the reduction relation.

Lemma 5 . 8 (

 58 Characterization of normal forms in λ e sh

 Note in particular that hcpAxcyLq " c.e notation |Cxyy| used in rule C 1 counts the number of arguments in the spine of the term Cxyy, more precisely:

Proposition 5 . 20 (

 520 Determinism). If t ϑ ù e s and t ϑ ù e u then s " u.

Figure 6 . 1 :

 61 Figure 6.1: Reduction graph of ∆pF Iq, with ∆ " λx.xx, F " λx.xz, and I " λx.x

R 1 Ý

 1 Ñ F IpF Iq, 2. the redex family of the hredex ∆pF Iq

S 1 Ý 1 Ý Ñ ∆pIzq T 7 Ý

 117 Ñ ∆pIzq, 3. the redex family of the hredex ∆pF Iq S Ñ ∆ z.

Figure 6 . 2 :

 62 Figure 6.2: Permutation diagram of pλx.Ixqz in the labeled λ-calculus

4. 2

 2 Creation case II: pλx.Iqyz R Ý Ñ Iz S Ý Ñ z. en c Ď brcsd:

4. 3

 3 Creation case III: pλx.xyqI R Ý Ñ Iy S Ý Ñ y. en b Ď dtbuf:

Figure 6 . 3 :

 63 Figure 6.3: Reduction graph of xrxzysryzzs

 e following example illustrates how the name of the red ls redex (b ' d) is indeed a sublabel of the created db redex (dbpb ' dq): p@ a px b , y c qqrxzλ d z.z e s b ' d Ý Ý Ñ I p@ a pλ b ' d z.z e , y c qqrxzλ d z.z e s dbpb ' dq Ý ÝÝÝÝ Ñ I z ardbpb ' dqse rzzy tdbpb ' dquc srxzλ d z.z e s

Lemma 6 . 10 (

 610 Adding labels is functorial). If t µ Ý Ñ s then pα : tq µ Ý Ñ pα : sq.

Lemma 6 . 28 .

 628 If φ is a labeling morphism, the following hold for any label α P L and any term t P T :1. Ó pφpαqq " Ó pφpÓ pαqqq 2. Ò pφpαqq " Ò pφpÒ pαqqq3. Ò pφptqq " Ò pφpÒ ptqqqProof. Items 1. and 2. are straightforward by induction on α. Item 3. is a consequence of item 2. Proposition 6.29 (Labeling morphisms are functorial). Let φ be a label morphism. en for each step R : t µ Ý Ñ s there is a step φpRq : φptq φpµq ÝÝÑ φpsq.

Proposition 6 . 30 (

 630 Strong permutation -♣ Prop. A.79). Let R : t µ Ý Ñ s and S : t ν Ý Ñ u be steps in the LLSC. en there exists a term r and two derivations σ : s

 1 xRy S 2 to hold in the LLSC if and only if the usual relation |S 1 | x|R|y |S 2 | holds in the LSC. Proposition 6.32 (Orthogonality). e LLSC forms an orthogonal axiomatic rewriting system.

 is an in nite development of the set t|R| | R P Mu in the LSC, contradicting the fact that the LSC enjoys the FD property.

Name ãÑ 1

 1 ν, if one of the three following cases holds: dbpβq Name ãÑ 1 dbpα rdbpβqs γq dbpβq Name ãÑ 1 α ' tdbpβqu where α is any atomic label Ó pαq ' Ò pβq Name ãÑ 1 dbpα ' βq A redex name µ is said to (indirectly) contribute to a redex name ν, wri en µ Name ãÑ ν, if µp Name ãÑ 1 q ˚ν.

Remark 6 .

 6 40. If µName ãÑ 1 ν then hpµq ă hpνq. Proposition 6.41 (Creation property for the LLSC without gc). Let t a sequence of two steps, each of which may be a db step or a ls step but not a gc step. If the rst step creates the second one, then µ Name ãÑ 1 ν.Proof. Recall that the notion of residual in the LLSC is de ned in terms of the notion of residual in the LSC (Def. 6.31), i.e. the residual relation S 1 xRy S 2 holds for three given labeled steps if and only if |S 1 | x|R|y |S 2 | holds for the underlying unlabeled variants. Recall also that in the LSC there are seven creation cases (Prop. 6.4), three of which involve gc steps. So it su ces to analyze the remaining four creation cases:

Proposition 7 . 5 (

 75 LSC is a DRS). e LSC with gc forms a Deterministic Residual Structure.

Lemma 7 . 6 . 1 : 1 .

 7611 Let φ be a labeling morphism and let µ and ν be (non-gc) redex names. en µ Name ãÑ ν implies φpµq Name ãÑ φpνq. Proof. Recall that Name ãÑ is the transitive closure of Name ãÑ 1 , so it su ces to check that the property holds for one step of Name ãÑ 1 . By cases on the rules de ning the relation Name ãÑ If µ " dbpβq Name ãÑ 1 dbpα rdbpβqs γq " ν then φpµq " dbpφpβqq Name ãÑ 1 dbpφpαq rdbpφpβqqs φpγqq " φpνq 2. If µ " dbpβq Name ãÑ 1 α ' tdbpβqu " ν where α is an atomic label, then φpµq " dbpφpβqq Name ãÑ 1 Ó pφpαqq ' tdbpφpβqqu " φpνq 3. If µ " β ' γ Name ãÑ 1 dbpαβ ' γδq " ν where β and γ are atomic labels then φpµq " Ó pφpβqq ' Ò pφpγqq Name ãÑ 1 dbpφpαqφpβq ' φpγqφpδqq " φpνq e LSC without gc will be shown to form a DFS with the following notions of redex family and contribution. De nition 7.7 (Redex families in the LSC without gc). Let ρR and σS be coinitial hredexes in the LSC without gc. Let ρ R and σ S be initially labeled variants of ρR and σS respectively, starting on the same initially labeled term. Let µ be the name of R and let ν be the name of S . en: • Family relation. We de ne ρR Fam » σS to hold if and only if µ " ν. • Contribution relation. We de ne ρR Fam ãÑ σS to hold if and only if µ Name ãÑ ν. Example 7.8 (Redex families and contribution). In the following diagram:

Fam » q 1 Fam ãÑ φ 2

 q12 is an equivalence relation. is reduces to the fact that equality of redex names is in turn an equivalence relation. As in the abstract de nition of a DFS, equivalence classes of Fam » are called families, and Fam » pρRq stands for the family of ρR. De nition 7.10 (Family contribution relation). Given two coinitial families φ 1 , φ 2 , we say that φ 1 contributes to φ 2 , and write φ if and only if given ρR P φ 1 and σS P φ 2 the condition ρR Fam ãÑ σS holds. Note that, by abuse of notation, we write Fam ãÑ both for the contribution relation between hredexes and for the contribution relation between families. Proposition 7.11 (Contribution is well-de ned). e contribution relation Fam ãÑ between families is well-de ned, in the sense that it does not depend on the choice of representative.

Fam

 ãÑ is well de ned on the set of families.

eorem 7 .

 7 13 (e LSC without gc is a DFS). e triple pA, Fam » , Fam ãÑq forms a Deterministic Family Structure, where A is the DRS constructed in Prop. 7.5, Fam » is the "same family" relation between coinitial hredexes (Def. 7.7) and Fam ãÑ is the contribution relation between families (Def. 7.10). Proof. Let us check each of the axioms: 1. I

Example 7 . 15 (

 715 Family reductions). Consider the following diagram in the LSC without gc:

 |D| " #FAMpDq by Lem. 7.23 since D is an X -needed complete family reduction ď #FAMpEq since FAMpDq Ď FAMpEq as we have just claimed ď |E| by Lem. 7.22 since E is a family reduction Example 7.25 (Optimal reduction in the λ-calculus). Let ∆ be any term such that ∆ Ñ ∆ 1 and consider the following diagram: pλx.xxq ppλx.yq ∆q T ppλx.yq ∆ 1 q

Example 7 . 40 (

 740 Standardization in the λ-calculus). In the λ-calculus, let M Le pρq :" tRu where R is the le most step such that R{ρ " ∅, and let M Par pρq :" tR | R{ρ " ∅u. It can be checked that M Le and M Par are uniform multi-selection strategies. Moreover, let ∆ Ñ ∆ 1 and let ρ be the derivation: ρ : pλx.yxxq ppλx.zq∆q Ñ pλx.yxxq ppλx.zq∆ 1 q Ñ pλx.yxxq z Ñ yzz en the (le most) standard form of ρ is: M ‹ Le pρq : pλx.yxxq ppλx.zq∆q Ñ yppλx.zq ∆qppλx.zq∆q Ñ yzppλx.zq∆q Ñ yzz e parallel standard form of ρ consists of a single multistep: M ‹ Par pρq : pλx.yxxq ppλx.zq∆q ñ yzz Standardization in the LSC without gc

De nition 7 . 58 (

 758 Needed linear reduction and needed linear normal forms). Needed linear reduction is the sub-ARS NL of the LSC without gc de ned as follows. Needed evaluation contexts are de ned by the grammar N ::" l | N t | Nrxzts | NxxxyyrxzNs e reduction rule Ñ NL is the union of the usual db rule, and the lsnl rule NxxxyyrxzvLs Þ Ñ lsnl NxvLyrxzvLs both rewriting rules are closed by need contexts.e set of needed linear normal forms NLNF is de ned by the grammar A ::" pλx.tqL | Nxxxyy. Terms of the form pλx.tqL are called answers, and Nxxxyy are called structures. In structures, N does not bind x, the la er called its needed variable.

Corollary 7 . 59 (

 759 Needed linear reduction is NLNF-normalizing -♣ Coro. A.[START_REF] Mascari | Head linear reduction and pure proof net extraction[END_REF]). e strategy S NL associated to the sub-ARS NL is NLNF-normalizing.

De nition 8 . 1 (

 81 An abstract machine for strong call-by-need evaluation). Abstract machine states are quadruples x π | ϕ t | E y comprising: a stack π, a phase ϕ, a term t, and an environment E. Terms are usual terms of the LSC. e phase is a boolean ag which may be either ò or ó. e stack represents the current evaluation context, in a way reminiscent of zippers [?]. Phases, stacks and environments are de ned by the following grammars: ϕ ::" ò Going up (normal form found) | ó Evaluation phase π ::" Empty stack (focus at toplevel) | aptq : π Argument (focus on the le of an application) | dptq : π Data structure (focus on the right of an application) | hpE 1 , xq : π Heap (focus on the right of a substitution)

Remark 8 . 4 .

 84 If ρ # σ then σ{ρ has the same length as σ.

A. 2

 2 Proofs of Chapter 4 -Foundations of Strong Call-by-Need A.2.1 Technical tools is subsection is devoted to bringing together various de nitions and properties that are used as technical tools throughout the proofs of Chapter 4 (Foundations of Strong Call-by-Need). Most proofs in this subsection are ommited since they are straightforward.

Tactic A. 55 (

 55 Strengthening ϑ). Consider a lsv step CxxxyyrxzvLs Ñ CxvyrxzvsL.

Lemma A. 60 (

 60 Weakening for chain contexts). If L is a pϑ, xq-chain context, and ϑ Ď ϑ 1 then L is a pϑ 1 , xq-chain context.

F

 there is a two-hole context p C such that p Cxl, vy " F θYtyu 11 and p Cxx, ly " C. By Lem. A.58 there are two possibilities: the le and the right branch of the disjunction.

θYtyu 11 .

 11 e remainder of this case is similar to 2.1.1 except when the hole of C and F θYtyu 11 are disjoint. en there is a two hole context p C such that p Cxl, vy " F θYtyu 11 and p Cxw, ly " C. e step r is of the form: r : p Cxw, zyrzzvLs ϑ Ý Ý Ñ sh

2. 3 . 1 . 2

 312 If y R svpF ϑYtyu 1

3. 1

 1 .1.2 e context C is a pre x of F θ 11

11 Let F ϑ 1 11 "

 1111 3.1.1.2 e context C is a pre x of F ϑ 1 CxC 1 y. By the decomposition of evaluation contexts (Lem. A.20) C P X ϑ 1 . By strengthening ϑ (Tactic A.55) we have that C P X ϑ . Hence the step r is external, which is a contradiction. 3.1.1.3 e context F ϑ 1 11 is a pre x of C Let C " F ϑ 1 11 xC 1 y. Hence C 1 xvy " pλx.sqLu. ere are four possibilities for the position of the hole of C 1 : inside s, inside one of the substitutions in L, inside u, or right above λx.s (i.e. C 1 " lLu).

ϑ 1 11 . 1 " F ϑ 1 11 xxx 1 1

 111111111 Ytyu ese are similar to the three subcases of 3.1.1. 4.1.2 Case B en F ϑYtyu Ytyu yyL tlu such that Cxvy " F ϑ Ytyu 11

4. 3 . 1 1 q

 311 If r 1 is ϑ-external Two further subcases, depending on whether y P svpF ϑYtyu or not: 4.3.1.1 If y P svpF ϑYtyu 1

1 2

 1 xxxyyrxzvLs. Using Lem. A.63 let us strip L 1 from F ϑ 11 xF ϑ 1 2 rxzvLsy. is gives us four possibilities, A, B, C, and D in the statement of Lem. A.63. 3.1.1 Case A en F ϑ 11 " F θ 111 L 1 and Cxv 1 y " F θ 111 x∆y, where θ " fz ϑ pL 1 q and F θ 111 P X θ. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F θ 111 . 3.1.1.1 e hole of C and the hole of F θ 111 are disjoint en there is a two hole context p C such that p Cxl, v 1 y " F θ 111 and p Cx∆, ly " C. By Lem. A.58 there are two possibilities for p C: the le and the right branch of the disjunction.

 3.1.1.3 e context F θ 111 is a pre x of C en C " F θ 111 xC 1 y, so C 1 xv 1 y " F ϑ 1 2 xxxyyrxzvLs. We proceed by case analysis on the position of the hole of C 1 in the term F ϑ 1 2 xxxyyrxzvLs: it can be to the le of the substitution rxzvLs, or inside the substitution. • Le of the substitution, C 1 " C 11 rxzvLs Now C 11 xv 1 y " F ϑ 1 2 xxxyy. Let us analyze the relative positions of the holes of the contexts C 11 and F ϑ 1

1 2 11 xF ϑ 1 2 11 " F θYtyu 111 L 1 and 111 P

 1112111111111 xxxyyrxzvLs. Using Lem. A.63 let us strip L 1 from F ϑYtyu rxzvLsy. is gives us four possibilities, A, B, C, and D in the statement of Lem. A.63. 4.1.1 Case A en: F ϑYtyu Cxv 1 y " F θYtyu 111 x∆y, where θ " fz ϑYtyu pL 1 qztyu and F θYtyu X ϑYtyu . We consider three cases, depending on whether the holes of C and F θYtyu 111 are disjoint, C is a pre x of F of C and the hole of F θYtyu 111 are disjoint en there is a two-hole context such that p Cxl, v 1 y " F θYtyu 111 and p Cx∆, ly " C. By Lem. A.58 there are two possibilities for p C: the le and the right branch of the disjunction.

 4.1.1.2 e context C is a pre x of F θYtyu 111

X 111 . 4 .

 1114 θYtyu , and L is a pϑ Y tyu, wq-chain context. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F θYtyu 1.2.1 e hole of C and the hole of F θYtyu 111 are disjoint en there is a two-hole context p C such that p Cxl, v 1 y " F θYtyu 111and p Cxw, ly " C. By Lem. A.58 there are two possibilities for p C: the le and the right branch of the disjunction. e right branch case, C P X θYtyu , is impossible, since by strengthening ϑ (Tactic A.55), we have that p Cxl, zyrzzv 1 L 1 s P X ϑ , which contradicts the fact that the step r is internal. In the le branch case, p Cxl, zy P X θYtyu . By strengthening ϑ (Tactic A.55), p Cxl, zyrzzv 1 L 1 s P X ϑ . en closing the diagram is immediate. 4.1.2.2 e context C is a pre x of F θYtyu 111

" F θ1 21 L 2 ,

 212 x of C en C " F θYtyu 111 xC 1 y. Hence w " C 1 xvy, which is impossible. 4.1.3 Case C en F ϑ 11 is a substitution context, and: F ϑ 1 2 L 1 " F ϑ 11 xL 2 rxzvLsy, and Cxv 1 y " F ϑ 1 21 xxxyy, where θ1 " fz ϑ 1 pL 2 q and the evaluation context F θ1 21 is in Y θ1 . e remainder of this case is analogous to case 3.1.3, by case analysis on the relative positions of the holes of C and F θ1 21 . 4.1.4 Case D en F ϑ 11 is a substitution context, and: F ϑ 1 2 " F θ1 21 xxwyyL tlu, L 1 " F ϑYtyu 11 xlL txurxzvLsy, and Cxv 1 y " F θ1 21 xxwyy, where θ1 " fz ϑYtyu pL 1 q, the evaluation context F θ1 21 is in Y θ1 , and L is a pϑ 1 , wq-chain context. e remainder of this case is analogous to case 3.1.4, by case analysis on the relative positions of the holes of C and F

ϑYtyu 1 . 4 . 3 . 1 1 q 1 ryzr 0

 1431110 If y P svpF ϑYtyu en since structural variables are below evaluation contexts (Lem. A.54) there is a context r F ϑ 1 P X ϑ such that F ϑYtyu 1 x∆y " r F ϑ 1 xxyyy. Consider two further subcases, depending on whether r 1 is ϑ-external or ϑinternal: 4.3.1.1 If r 1 is a ϑ-external step en r is ϑ-external, contradicting the hypothesis that it is ϑ-internal. 4.3.1.2 If r 1 is a ϑ-internal step en since normal forms are backward preserved by internal steps (Lem. A.69), r 0 is a structure in S ϑ , so F ϑYtyu s is an evaluation context in X ϑ and closing the diagram is straightforward. 4.3.2 If y R svpF ϑYtyu 1

Lemma A. 73 (ϑÝ Ý Ñ sh t 1 ϑ ù t 3 there exists a term t 2 such that t 0 ϑ ù t 2 shzgc t 3 ù

 7313 Full proof of Lem. 4.50-Postponement of internal steps). Let ϑ be such that fvpt 0 q Ď ϑ. If t 0 lsv q forms a square factorization system according to the terminology of [?], taking ϑ ù db (resp.

ϑùù

 lsv) to be the external db (resp. lsv) reduction, and ϑ Ý Ý Ñ shdb (resp. ϑ Ý Ý Ñ shlsv) to be the internal db (resp. lsv) reduction. More precisely, only the following swaps are allowed:db q `p ϑ Ý Ý Ñ shdb q ˚ ϑ Ý Ý Ñ shlsv ϑ ù lsv Ď p ϑ ù lsv q `p ϑ Ý Ý Ñ shlsv q ˚ ϑ Ý Ý Ñ shdb ϑ ù lsv Ď ϑ ù lsv p ϑ Ý Ý Ñ sh q ˚ ϑ Ý Ý Ñ shlsv ϑ ù db Ď ϑ ù db p ϑ Ý Ý Ñ sh q ˚

Cxpλx.C 1 xΣ 1 yqL sy CxC 1 xΣ 1 yrxzssLy

 1 Second, if the positions of the hole of C and Σ are disjoint, then S has an ancestor and this case is impossible. More precisely, there must exist a two-hole context p C such that C " p Cxl, Σy, and the situation is:p Cxpλx.tqLs, Σy R G G S 0

C 1 xpλy.C 3 x∆yqL 1 ry R G G S 0 C 1 C 1

 011 xpλy.C 3 x∆ 1 yqL 1 ry S xC 3 x∆yryzrsL 1 y C 1 xC 3 x∆ 1 yryzrsL 1 y

1. 2

 2 If S is a ls redex. en Σ " C 3 xxyyyryzrs " C 2 xtrxzssLy. Let us consider three subcases, depending on the position of the hole of C 2 inside Σ. First, if the hole of C 2 lies inside C 3 xxyyy, then C 2 " C 4 ryzrs and C 3 xxyyy " C 4 x∆ 1 y. By Lem. A.75 there is a context C 1 3 such that C 4 x∆y " C 1 3 xxyyy and, moreover, the occurrence of y under C 13 is an ancestor of the occurrence of y under C 3 before the step R.

C 1 xC 1 3 xxyyyryzrsy S 0 C 1 SC 1

 011 xC 4 x∆yryzrsy R G G C 1 xC 4 x∆ 1 yryzrsy C 1 xC 1 3 xxyyyryzrsy xC 3 xryryzrsy C 1 xC 3 xryryzrsy

S 0 C 1

 01 xC 3 xxyyyryzC 4 x∆ 1 ysy S C 1 xC 3 xC 4 x∆yyryzC 4 x∆ysy C 1 xC 3 xC 4 x∆ 1 yyryzC 4 x∆ 1 ysy

t 1 "

 1 C 1 xpλx.C 5 xxxyyqsy R Ý Ñ C 1 xC 5 xxxyyrxzssy " t 2and we are in Creation case 2: db creates ls.1.2.2If L is non-empty. en L " L 1 ryzrs and C 3 xxyyy " trxzssL 1 . e situation is:C 1 xpλx.tqL 1 ryzussy R Ý Ñ C 1 xtrxzssL 1 ryzusy

S 0 C 1 xC 5 xuyrxzssL 1 ryzusy 1 . 3

 0113 xC 5 xxyyyrxzssL 1 ryzusy S C 1 xpλx.C 5 xuyqL 1 ryzussy C 1 If S is a gc redex. en Σ " uryzrs " C 2 xtrxzssLy with y R fvpuq. Let us consider three subcases, depending on the position of the hole of C 2 inside Σ.

S 0 C 1 C 1 xpλx.tqL 1 sy C 1 xtrxzssL 1 y 2 .

 0112 xtrxzssL 1 ryzrsy S If R is a ls redex. en t 1 " C 1 xC 2 xxxyyrxztsy R Ý Ñ C 1 xC 2 xtyrxztsy " t 2 .Consider the position of the hole of C 1 , relative to the position of the pa ern Σ of S.

2. 1

 1 If C 3 " C 4 rxzts. en C 2 xty " C 4 xΣy. Now again we consider the position of the hole of C 2 relative to the position of Σ.

t 1 "

 1 C 1 xC 4 xxL 2 uyrxzpλy.sqL 1 sy R Ý Ñ C 1 xC 4 xpλy.sqL 1 L 2 uyrxzpλy.sqL 1 sy " t 2 and we are in Creation case 5: ls creates db downwards.

2. 1 . 2

 12 If S is a ls redex. en Σ " C 5 xxyyyryzss. e proof proceeds by analyzing the position of the hole of C 1 2 inside Σ.

C 1 0 C 1 SC 1 xC 4 xC 1 2 xC 1 5 xsyyryzssyrxzC 1 5

 1015 xC 4 x p Cxx, yyryzssyrxztsy R G G S xC 4 x p Cxt, yyryzssyrxztsy S C 1 xC 4 x p Cxx, syryzssyrxztsy C 1 xC 4 x p Cxt, syryzssyrxztsy ird, if the hole of C 1 2 is to the le of the substitution and it is a pre x of the position of the hole of C 5 , that is, C 5 " C 1 2 xC 1 5 y. en t " C 1 5 xxyyy. Note that the steps R and S would need to be of the form: C 1 xC 4 xC 1 2 xxxyyryzssyrxzC 1 5 xxyyysy R G G C 1 xC 4 xC 1 2 xC 1 5 xxyyyyryzssyrxzC 1 5 xxyyysy xxyyysy

3 .

 3 If R is a gc redex. en t 1 " Cxtrxzssy R Ý Ñ Cxty " t 2 with x R fvptq. Consider the position of the hole of C, relative to the position of the pa ern Σ of S.

CxC 1 0

 10 xΣ 1 yrxzssy CxC 1 xΣ 1 yy Second, if the position of the holes of C and the position of Σ are disjoint, then there is a two-hole context p C such that C " p Cxl, Σy. en this case is impossible since S has an ancestor S 0 . e situation is: Cx p Cxtrxzss, Σyy R G G S Cx p Cxt, Σyy S Cx p Cxtrxzss, Σ 1 yy Cx p Cxt, Σ 1 yy

A. 3 . 2

 32 Strong permutation -proof of Prop. 6.30

A. 3 . 3

 33 Postponement of gc in the LLSC-calculus -proof of Lem. 6.50 Lemma A.80 (Full proof of Lem. 6.50-Postponement of gc in the LLSC-calculus). Let ρ : t s be a reduction sequence. en there exists a term u and a reduction sequence σ : t db Y ls u gc s. Moreover, let # µ pρq denote the number of redexes named µ that are contracted along the reduction sequence ρ. en: en by Lem. 6.10, we have that αrdbpβqs : u 0 ta ' Òpr 1 2 q | aPΘu Ý ÝÝÝÝÝÝÝÝ Ñ gc αrdbpβqs : u 1

 def " tαu Y labelsptq Y labelspsq labelspλ α x.tq def " tαu Y labelsptq labelsptrxzssq def " labelsptq Y labelspsq is de nition is also extended to contexts, by se ing labelsplq def " ∅.

2 .

 2 ls step. en we have:t 0 " C 1 xC 2 xxx α yyrxzt sy Ópαq ' Òpt q Ý ÝÝÝÝÝ Ñ C 1 xC 2 xα : t yrxzt sy " t 1

1. 1 2 . 1 1 : 2 . 1 . 1

 1211211 If the anchor of R is internal to t. en t " C 1 xuy where the anchor of R is at the root of u and the situation is:pλx.C 1 xuyqL s R S G G C 1 xuyrxzssL R{S pλx.C 1 xu 1 yqL s C 1 xu 1 yrxzssL2. ls redex. en the step S is of the form: C 1 xxxyyrxzts S Ý Ñ C 1 xtyrxzts. Let us consider two cases, depending on whether the anchor of R is to the le of the substitution, or inside the substitution: If the anchor of R is to the le of the substitution, i.e. internal to C 1 xxxyy. Let C 1 xxxyyrxzts " C 1 xuyrxzts such that u is the anchor of R. We consider three further subcases, depending on the relative positions of the hole of C 1 and the hole of C If C 1 is a pre x of C 1 . at is, C 1 " C 1 xC 2 y.

A. 4 . 3

 43 Head linear reduction is normalizing -proof of Coro. 7.56 Corollary A.113 (Full proof of Coro. 7.56-Head-linear reduction is HLNF-normalizing). e strategy S HL associated to the sub-ARS HL is HLNF-normalizing.

 tqL s R{S G G pλx. p tqL s and R{S is also in HL. 1.1.2 If S is internal to L. By this we mean that L " L 1 ryzusL 3 , and S is either a db redex completely internal to u, or an ls redex whose anchor is a variable z that lies inside u (the substitution binding z might be also inside u, or it might be one of the substitutions in L 2). Let p L denote the result of applying S on L. en: p L s R{S G G pλx.tq p L s and R{S is also in HL. 1.1.3 If S is internal to s. Let p s denote the result of applying S on s. en: pλx.tqL s R G G S trxzssL pλx.tqL p s R{S G G pλx.tqL p s and R{S is also in HL.

1. 2

 2 If R is a ls step. en R is of the form:Hxxxyyrxzts Ñ Hxtyrxzts ere are four cases, depending on the position where S takes place.

p

 Cxl, xy " H en: p Cxx, xyrxzts R G G S p Cxt, xyrxzts p Cxx, tyrxzts R{S G G p Cxt, tyrxzts To conclude that R{S P HL it su ces to observe that p Cxl, ty is a head context as a consequence of (A.11) and the fact that p Cxl, xy is a head context. 1.2.2 Internal to Hxxxyy, disjoint from the hole of H. en there is a two-hole context p C such that p Cxl, sy " H and p Cxx, ly is the context under which the step S takes place. en: p Cxx, syrxzts R G G S p Cxt, syrxzts p Cxx, s 1 yrxzts R{S G G p Cxt, s 1 yrxzts

1. 2 . 3 1 . 2 . 3 . 1

 231231 Internal to Hxxxyy, above the hole of H. Two cases, depending on the kind of redex of S: If S is a db redex. en the step S is of the form: C 1 xpλy.sqL uyrxzts Ñ C 1 xsryzusLyrxzts such that Hxxxyy " C 1 xpλy.sqL uy and C 1 is a pre x of H (i.e. H " C 1 xC 2 y).

1. 2 . 4 1 s

 241 Internal to t. en: R{S G G Hxt 1 yrxzt 1 s

 Computation and λ-Calculi . 1.1.1 e λ-Calculus . 1.1.2 Evaluation Strategies . 1.1.3 Explicit Substitutions . 1.2 is Work . 1.2.1 Background . 1.2.2 Distilling Abstract Machines . 1.2.3 Foundations of Strong Call-by-Need 1.2.4 Strong Call-by-Need for Pa ern Matching and Fixed Points 1.2.5 A Labeled Linear Substitution Calculus 1.2.6 Applications of the Labeled Linear Substitution Calculus 1.2.7 Publications and Work Not Included in is esis Positions and Contexts . 2.3.2 Residual eory for the λ-Calculus . 2.4 e Linear Substitution Calculus . Introduction . 3.1.1 Our Work . 3.2 Reduction Strategies . 3.2.1 Call-by-Name . 3.2.2 Call-by-Value . 3.2.3 Call-by-Need . Structural Equivalences . 3.4 Distilleries .

	Contents
	1 Introduction
	1.1 3 Distilling Abstract Machines
	3.1

2 Background 2.1 Abstract Rewriting . 2.2 Residual eory . 2.2.1 Properties of Orthogonal Axiomatic Rewriting Systems 2.3 e λ-Calculus . 2.3.1 3.2.4 Strong Call-by-Name . 3.2.5 Determinism . 3.3

 pλx.xxqλy.y Ñ db pxxqrxzλy.ys Ñ ls ppλy.yqxqrxzλy.ys Ñ ls ppλy.yqλy.yqrxzλy.ys Ñ gc pλy.yqλy.y As a ma er of fact, the LSC enjoys all the desired properties for a calculus with explicit substitutions, including full composition and preservation of strong normalization [?, ?].

For instance, the β-reduction step pλx.xxqλy.y Ñ pλy.yqλy.y may be simulated by a db step, followed by two ls steps, plus a nal gc step:

 Proof of Claim I. By induction on ρ. If ρ is empty it is immediate. If ρ " Rρ 1 then: Rρ 1 σ{M " pR{Mqpρ 1 σ{pM{Rqq by de nition " pR{Mqpρ 1 {pM{Rqqpσ{pM{Rρ 1 qq by i.h. Rρ 1 σ{τ " pR{τ qpρ 1 σ{pτ {Rqq by de nition " pR{τ qpρ 1 {pτ {Rqqpσ{ppτ {Rq{ρ 1 qq by i.h. " pR{τ qpρ 1 {pτ {Rqqpσ{pτ {Rρ 1 qq by item 1.

	" pRρ 1 {τ qpσ{pτ {Rρ 1 qq	by de nition
	Proposition 2.51 (Orthogonality of multisteps). Let A be an orthogonal axiomatic rewriting
	system.	
	Rρ 1 {στ " pR{στ qpρ 1 {pστ {Rqq	by de nition
	" ppR{σq{τ qpρ 1 {pστ {Rqq	by de nition
	" ppR{σq{τ qpρ 1 {pσ{Rqpτ {pR{σqqq	by Claim I

" pRρ 1 {Mqpσ{pM{Rρ 1 qq by de nition • Claim II. Let ρ be a complete development of a set M. en for any σ, we have that σ{ρ " σ{M. Proof of Claim II. By induction on σ. If σ is empty, it is immediate. If σ " Sσ 1 observe that Lem. 2.47 ensures that ρ{S is a complete development of M{S: Sσ 1 {ρ " pS{ρqpσ 1 {pρ{Sqq by de nition " pS{ρqpσ 1 {pM{Sqq by i.h. using Lem. 2.47 " pS{Mqpσ 1 {pM{Sqq since ρ is a complete development of M " Sσ 1 {M by Claim I • Claim III. If ρ is a complete development of a set M, then ρσ{τ " pρ{τ qpσ{pτ {ρqq. Proof of Claim III. By induction on ρ. If ρ is empty, it is immediate. Otherwise ρ " Rρ 1 is a complete development of M so ρ 1 is a complete development of M{R. en: Rρ 1 σ{τ " pR{τ qpρ 1 σ{pτ {Rqq by de nition " pR{τ qpρ 1 {pτ {Rqqpσ{ppτ {Rq{ρ 1 qq by i.h. " pRρ 1 {τ qpσ{ppτ {Rq{ρ 1 qq by de nition " pRρ 1 {τ qpσ{ppτ {Rq{pM{Rqqq by Claim II " pRρ 1 {τ qpσ{pτ {Mqq by the cube identity (Lem. 2.45) since R \ M " M \ R " M " pRρ 1 {τ qpσ{pτ {Rρ 1 qq by Claim II Having established these claims, we are able to prove items 1. and 2. in the statement: 1. Let us prove that ρ{στ " pρ{σq{τ . By induction on ρ. If ρ is empty, it is immediate. If ρ " Rρ 1 then: " ppR{σq{τ qppρ 1 {pσ{Rqq{pτ {pR{σqqq by i.h. " pR{σqpρ 1 {pσ{Rqq{τ by Claim III since R{σ is a complete development " pRρ 1 {σq{τ by de nition 2. Let us prove that ρσ{τ " pρ{τ qpσ{pτ {ρqq. By induction on ρ. If ρ is empty, it is immediate. If ρ " Rρ 1 then:

 BpR n {σ n qq " ipBpR 1 {σ 1 qq . . . ipBpR n {σ n qq " A m pR 1 {σ 1 q . . . pR n {σ n q

			by Prop. 2.53
		"	tR 1 u . . . tR n u{ipσq
		"	ipρq{ipσq
	eorem 2.55 (Cube identity for derivations). e following holds in any orthogonal axiomatic
	rewriting system A:
			ρpσ{ρq " σpρ{σq
	Proof.	e proof of this fact requires working in the rewriting system of multisteps A m , which
	is orthogonal by Prop. 2.51.

 development of the multisteps on one side of the diagram is precisely ρpσ{ρq, and the complete development of the multisteps on the other side of the diagram is precisely σpρ{σq. Moreover, the cube identity for multisteps (Lem. 2.45) ensures that the diagram commutes, i.e. that the sides of each tile are permutation equivalent in A m . By Prop. 2.53 this implies that ρpσ{ρq " σpρ{σq in A.

	3. Note that, using Lem. 2.50 and m. 2.55:
	pρ \ σq{τ " ρpσ{ρq{τ
		" pρ{τ qppσ{ρq{pτ {ρqq
		" pρ{τ qpσ{ρpτ {ρqq
		" pρ{τ qpσ{τ pρ{τ qq	since ρpτ {ρq " τ pρ{τ q
			In Paul-André Melliès' PhD thesis [?, Chapter 2] the
	reader may nd a more detailed proof.	
	As a consequence of this theorem we obtain a strong version of con uence, called algebraic
	con uence by Melliès:		
	Corollary 2.56 (Algebraic con uence). Let ρ : x	y and σ : x	z. en there is an object
	w such that σ{ρ : y	w and ρ{τ : z	w.
	Proof. Immediate since by m. 2.55 we have that ρpσ{ρq " σpρ{σq.

 Proposition 2.62 (Compatibility with projection for multisteps). Let A be an orthogonal axiomatic rewriting system. If D " A m E then D{F " A m E{F .Proof. It su ces to show the property when F is a single multistep; the main result then follows by induction on F . So let D " A m E and let us show that D{P " A m E{P. We proceed by induction on the derivation of D " A m E. e interesting case is one-step permutation, i.e. when D " F 1 MV F 2 and E " F 1 N U F 2 where pMV, N U q is a permutation tile in A m , i.e. U is a complete development of M{N and V is a complete development of N {M.e multiderivations U and V may be empty or they may consist of exactly one multistep. In any case, for any multistep P we have that xMV {Py"xN U {Py, because given an arbitrary step R, we have that:

	R{pMV {Pq " R{pM{PqpV {pP{Mqq	
	" R{pM{PqppN {Mq{pP{Mqq	
	" R{pM{PqppN {Pq{pM{Pqq	by the cube identity (Lem. 2.45)
	" R{pN {PqppM{Pq{pN {Pqq	by the cube identity (Lem. 2.45)
	" R{pN {PqppM{N q{pP{N qq	by the cube identity (Lem. 2.45)
	" R{pN {PqpU {pP{N qq	
	" R{pN U {Pq	

 a er S if and only if it has a marked variant T 1 : u 1 Ñ M r 1 with the same name as R 1 .

	eorem 2.73. e λ-calculus is an orthogonal axiomatic rewriting system.
	Remark 2.71. e de nition of residual does not depend on the choice of the initially marked
	variant t 1 .				
	Example 2.72. Let ∆ " λx.xx and I " λx.x, and let moreover	
		R : ∆ pI zq Ñ β ∆ z	
		S : ∆ pI zq Ñ β I z pI zq	
		R 1 : I z pI zq Ñ β z pI zq	
		R 2 : I z pI zq Ñ β I z z	
	then R{S " tR 1 , R 2 u, as witnessed by the following diagram in the marked λ-calculus:
	pλx a .xxq ppλy b .yq zq R 1	S 1	t t	G G pλy b .yq z ppλy b .yq zq R 1 1 R 1 2	A A
	pλx a .xxq z	z ppλy b .yq zq		pλy b .yq z z

 1 , C 2 , x, tq : C 1 xC 2 xxxyyrxztsy Ñ LSC C 1 xC 2 xxtyyrxztsy.• A gc step is a 4-uple R " pC, t, x, sq : Cxtrxzssy Ñ LSC Cxty such that x R fvptq.A useful notion is that of the anchor of a step. e anchor of a db step pλx.tqL s Ñ trxzssL is the underlined (binding) occurrence of x. e anchor of a ls step Cxxxyyrxzts Ñ Cxxtyyrxzts is the underlined occurrence of x. e anchor of a gc step trxzss Ñ t is the underlined (binding) occurrence of x. R fvpsq and x ‰ y trxzssryzus " com tryzusrxzss if x R fvpuq and y R fvpsqRecall that a congruence is an equivalence relation which is closed by arbitrary contexts, i.e. t " s implies Cxty " Cxsy.

	De nition 2.76 (Graphical equivalence). Terms of the LSC are provided with a binary rela-
	tion t " s called graphical equivalence. It is de ned as the least congruence containing the
	three axioms below:		
	ptsqrxzus " @	trxzuss	if x R fvpsq
	pλx.tqryzss " λ	λx.tryzss	if x

 If t, s are terms in the LSC, then trxzss LSC ttx :" su.Proof. Suppose that there are exactly n free occurrences of x in t, and write t " Cxx, x, . . . , xy where C is an n-hole context, for n ě 0. en with a sequence of n ls steps and one gc step Corollary 2.78 (Simulation of β-reduction). e LSC simulates the λ-calculus, that is if t Ñ β s then t Ñ LSC s.Proof. A β-reduction step Cxpλx.tq sy Ñ Cxttx :" suy can be simulated in the LSC as follows:It can then be shown that if t Ñ ls,gc s then mptq ą mpsq which entails termination.Let us write SN x for the set of strongly normalizing terms for the rewriting relation Ñ x . eorem 2.80 (Preservation of strong normalization). If t is a pure term and t P SN β then t P SN LSC .

				their formal
	proofs the reader should refer to [?, ?, ?].
	Proposition 2.77 (Full Composition). we have:
	trxzss "	Cxx, x, . . . , xyrxzss
	LSC Cxs, s, . . . , syrxzss with n ls steps
	Ñ LSC Cxs, s, . . . , sy	with a single gc step
	"	ttx :" su
	Cxpλx.tq sy Ñ LSC Cxtrxzssy	with a db step
	LSC Cxttx :" suy by Full Composition (Prop. 2.77)
	Lemma 2.79 (Unfolding is terminating). e relation Ñ ls,gc	def " Ñ ls Y Ñ gc is SN.
	Proof. A bound mptq for the length of the longest sequence of Ñ ls,gc steps going out from a
	term t can be obtained as follows:	
	mpxq		def " 0
	mpλx.tq		def " mptq
	mpt sq		def " mptq `mpsq
	mptrxzssq		def " mptq `p1 `mx ptqq ¨p1 `mpsqq
	where in turn m x ptq represents the maximum potential multiplicity of x along any sequence
	of Ñ ls,gc steps starting from t:		
	m x pyq	def "	# 1 if x " y 0 otherwise
	m x pλy.tq	def " m x ptq
	m x pt sq	def " m x ptq `mx psq
	m x ptryzssq	def " m x ptq `p1 `my ptqq ¨mx psq

 Unreachable. Suppose that s is unreachable. e hypothesis that t P X implies that s P SN LSC . As a consequence, we have that s ˛P SN β , since by Simulation (Coro. 2.78) an in nite sequences ˛Ñβ u 1 Ñ β u 2 Ñ β . . .Proof of Claim II. e proof proceeds by induction on the size of the term t. Since the λ-calculus and the LSC are nitely branching, by Prop. 2.17 we may de ne the following notions of depth:Note that depth Rpls,gcq ptq is well-de ned because Ñ ls,gc is SN (Lem. 2.79) so in particular Ñ Rpls,gcq is SN. e measure of t is wri en #ptq and de ned as the triple: pt ˛q, depth Rpls,gcq ptq, depth U ptqq It can then be shown that if t Ñ LSC s then #ptq ą #psq where pąq is the lexicographic order. We consider three cases:1. Reachable db step. Suppose that the step is of the form t " Cxpλx.uqL ry Ñ dbCxurxzrsLy " s and that it is reachable. First, we argue that s P X. Note that t ˛Ñβ `s˛i n at least one step, as can be checked by induction on t. Since t ˛P SN β then s ˛P SN β . Moreover, consider an unreachable subterm of s, and let us check s P SN LSC . e unreachable subterms of s are the same ones as for t, except perhaps for r and its subterms. But r is smaller in size than t, and by Claim I r P X, so by i.h. we have that r P SN LSC . so depth β pt ˛q ą depth β ps ˛q and the rst component decreases. 2. Reachable ls or gc step. Suppose that the step is of the form t Ñ Rpls,gcq s and that it is reachable. First, let us show that s P X. Observe that t ˛" s ˛so given that t ˛P SN β , also s ˛P SN β . Moreover, let us check that the unreachable subterms of s are in SN LSC . If the step is a gc, it is immediate. If the step is a ls step then t " C 1 xC 2 xxxyyrxzusy Ñ ls C 1 xC 2 xxxyyrxzusy " s.

	depth β ptq	def " maxt|ρ| | ρ : t Ñ β su	if t P SN β
	depth Rpls,gcq ptq	def " maxt|ρ| | ρ : t Rpls,gcq su if t is any LSC term
	depth U ptq	def " maxt|ρ| | ρ : t U su	if t is an LSC term whose
			unreachable subterms are in SN LSC
	#ptq " pdepth β Second, let us show that the measure decreases. We have already noted that t ˛Ñβ def	s˛,
	results in an in nite sequence	
		s ls,gc s ˛ÑL SC u 1 Ñ LSC u 2 Ñ LSC . . .
	contradicting s P SN LSC .	

• Claim II. If t P X then t P SN LSC .

 | trxzts and a binary reduction relation Ñ S Ď Term ˆTerm. In order to rigorously de ne the relation Ñ S , we use evaluation contexts, a technique introduced by Felleisen [?]. E 1 xE 2 xxxyyrxztsy Ñ S E 1 xE 2 xxtyyrxztsy if E 1 xE 2 yrxzts is an S-evaluation context

		e set of
	S-evaluation contexts is a subset of the set of all possible contexts. e position of the hole
	in an S-evaluation context indicates where in a term evaluation should focus next, according
	to the strategy S. For instance, the set of call-by-name evaluation contexts is given by the
	grammar:	
	H ::" l | H t | Hrxzts
	Hence the following db step (underlined):	
	ppλx.xqpyzqqryzpλx.xqzsrzzws Ñ xrxzyzsryzpλx.xqzsrzzws
	is a step in the call-by-name strategy, as the redex is below the evaluation context H :"
	lryzpλx.xqzsrzzws, whereas the following db step:
	ppλx.xqpyzqqryzpλx.xqzsrzzws Ñ ppλx.xqpyzqqryzxrxzzssrzzws
	is not a step in the call-by-name strategy, because the context C :" ppλx.xqpyzqqryzlsrzzws
	is not a call-by-name evaluation context.	
	e reduction relation Ñ S for each strategy S that we study is always de ned using a
	multiplicative (db-like) reduction rule, and an exponential (ls-like) reduction rule. e names
	obey to the fact that db-like rules correspond to multiplicative cut-elimination steps in the
	encoding of explicit substitution calculi using Linear Logic proof-nets and, likewise, ls-like
	rules correspond to exponential cut-elimination steps. e de nition of a reduction strategy
	S will follow roughly the following template:	
	Multiplicative reduction rule (db-like)	
	Expλx.tqL sy Ñ S ExtrxzssLy	if E is an S-evaluation context
	Exponential reduction rule (ls-like)	

contexts H are sometimes called head contexts. Evaluation always focuses on the le -hand side of applications, until the head becomes an answer vL. If there are any arguments remaining, a db-step may be red. e following is an example of a call- by-name reduction; on each step, the contracted redex is underlined: pλx

 .x xqppλy.yqpλz.f zqq Ñ name px xqrxzpλy.yq pλz.f zqs Ñ name ppλy.yq pλz.f zq xqrxzpλy.yqpλz.f zqs Ñ name pyryzλz.f zs xqrxzpλy.yqpλz.f zqs Ñ name ppλz.f zqryzλz.f zs xqrxzpλy.yqpλz.f zqs Ñ name pf zqrzzxsryzλz.f zsrxzpλy.yqpλz.f zqs

					lsv y
	name S	S ::" (S contexts, see Def. 3.5)	Þ Ñ db	S Þ Ñ ls SxÞ Ñ db y Sx	S Þ Ñ ls y
	3.2.1 Call-by-Name			
	e call-by-name strategy uses the Þ Ñ db and Þ Ñ ls root reduction rules, i.e. it never evaluates
	arguments. Evaluation			

 pλx.x xqppλy.yqpλz.f zqq Ñ value LR pλx.x xq yryzλz.f zs Ñ value LR pλx.x xq pλz.f zqryzλz.f zs Ñ value LR px xqrxzpλz.f zqryzλz.f zss Ñ value LR ppλz.f zq xqrxzλz.f zsryzλz.f zs Ñ value LR ppλz.f zq pλz.f zqqrxzλz.f zsryzλz.f zs Ñ value LR pf zqrzzλz.f zsrxzλz.f zsryzλz.f zs while the following is a right-to-le call-by-value reduction-it di ers from le -to-right callby-value only in the steps marked with p‹q: pλx.x xqppλy.yqpλz.f zqq Ñ value RL pλx.x xq yryzλz.f zs Ñ value RL pλx.x xq pλz.f zqryzλz.f zs Ñ value RL px xqrxzpλz.f zqryzλz.f zss p‹q Ñ value RL px pλz.f zqqrxzλz.f zsryzλz.f zs p‹q Ñ value RL ppλz.f zq pλz.f zqqrxzλz.f zsryzλz.f zs Ñ value RL pf zqrzzλz.f zsrxzλz.f zsryzλz.f zs

	Both variants of call-by-value are also weak reduction strategies.

 1 , . . .). First we need the notion of le free variables of a context, i.e. the set of variables occurring free at the le of the hole: De nition 3.4 (Le Free Variables). e set lfvpCq of le free variables of C is de ned by:

	lfvplq	def " ∅			lfvptCq	def " fvptq Y lfvpCq
	lfvpλx.Cq	def " lfvpCqztxu	lfvpCrxztsq	def " lfvpCqztxu
	lfvpCtq	def " lfvpCq		lfvptrxzCsq	def " pfvptqztxuq Y lfvpCq
	De nition 3.5 (Strong call-by-name evaluation contexts). A term is neutral if it is Ñ dbYls -
	normal in the LSC and it is not of the form pλx.tqL. A context C is a strong call-by-name
	evaluation context if the judgment "C P S" can be derived using the following inductive rules:
		l P S	(S)	C P S C ‰ pλx.C 1 qL C t P S	(@ S)
		C P S λx.C P S	(λ S)	t is neutral C P S t C P S	(@ S)
				C P S x R lfvpCq Crxzts P S	(ES S)

 1 . . . t n , sprinkled with unreachable explicit substitutions (i.e. terms whose Ñ gc -normal form is of the form x t 1 . . . t n). .x xqppλy.yqpλz.λf.f zqq Ñ name S px xqrxzpλy.yq pλz.λf.f zqs Ñ name S ppλy.yq pλz.λf.f zq xqrxzpλy.yqpλz.λf.f zqs Ñ name S pyryzλz.λf.f zs xqrxzpλy.yqpλz.λf.f zqs Ñ name S ppλz.λf.f zqryzλz.λf.f zs xqrxzpλy.yqpλz.λf.f zqs Ñ name S pλf.f zqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs Ñ name S pλf.f xqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs p‹q Ñ name S pλf.f ppλy.yqpλz.λf.f zqqqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs Ñ name S pλf.f yryzλz.λf.f zsqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs Ñ name S pλf.f pλz.λf.f zqryzλz.λf.f zsqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs LO . To de ne Ñ LO we need a few previous de nitions: De nition 3.6 (LO order). We write C ă p t if there is a term s such that Cxsy " t. is is called the pre x relation. e outside-in order C ă O C 1 between arbitrary contexts C, C 1 is de ned by the following rules:

	e following is an example of a reduction in strong call-by-name. Observe that the (weak)
	call-by-name reduction is a pre x of the strong call-by-name reduction.	e rst properly
	strong step is marked with p‹q:	
	Alternative Characterization of Strong Call-by-Name	
	Reduction according to the strong call-by-name strategy, can be characterized exactly as linear
	le most-outermost reduction Ñ	

pλx

 De nition 3.8 (Linear LO Reduction Ñ LO). Let t be a term. A redex C is the le most-outermost (LO for short) redex of t if C ă LO C 1 for every other redex C 1 of t. We write t Ñ LO s for a step contracting the le most-outermost redex.We now de ne LO contexts and prove that the position of a linear LO step is always a LO context: Right Application: whenever C " C 1 xt C 2 y then t is neutral.2. Le Application: wheneverC " C 1 xC 2 ty then C 2 ‰ Lxλx.C 3 y. 3. Substitution: whenever C " C 1 xC 2 rxzssy then x R lfvpC 2 q. Lemma 3.10 (Characterization of LO contexts). 1. Let C be a context. en C P S ifand only if C is LO. 2. Let t Ñ s by reducing a redex under a context C. en C is a Ñ LO step if and only if C is LO. Le application: if C " C 1 xC 2 ty then clearly C 2 ‰ Lxλx.C 3 y, otherwise C is not the position of the LO redex. 2. Right Application: let C " C 1 xuC 2 y, and note u is neutral otherwise C is not the position of the LO redex. 3. Substitution: if C " C 1 xC 2 rxzssy then x R lfvpC 2 q otherwise there is an exponential redex of position ă LO C, which would be absurd. (ð) Let C 1 the position of the step in t and suppose that C 1 ‰ C. By de nition C 1 ă LO C. We have two cases: 1. C 1 ă O C. en necessarily C 1 identi es a db-redex and we have C " C 1 xLxλx.C 2 yuy. It follows that C is not a LO context, because this contradicts the le application clause. 2. C 1 ă L C. en there is a decomposition C " C 2 xuC 3 y with the hole of C 1 falling in u. By hypothesis u is neutral. en u " C 0 xxy and the Ñ LO step is a ls-step substituting on x from a substitution in C 2 , i.e. C 2 " C ' xC ˝rxztsy for some contexts C ' and C ˝. en C " C ' xC ˝xuC 3 yrxztsy and x P lfvpC ˝xuC 3 yq, which contradicts the substitution clause in the hypothesis that C is a LO context.

	De nition 3.9 (LO Contexts). A context C is LO if:
	1. Proof.	e rst item is an immediate induction on C. For the second item, we prove each
	direction of the equivalence. (ñ) ere are three cases:
	1.	

 11 (Determinism -♣ Prop. A.1). e ve reduction strategies of Def. 3.3 are deterministic. In each case, if E 1 , E 2 are evaluation contexts, r 1 , r 2 are anchors, and E 1 xr 1 y " E 2 xr 2 y then E 1 " E 2 and r 1 " r 2 . So there is at most one way to reduce a term.

	Proof. See Prop. A.1 in the appendix for the detailed proofs. e proofs for the call-by-name,
	call-by-value, and call-by-need cases are by induction on the structure of the terms, verifying
	that there may be at most one redex under an evaluation context. e proof for the strong call-
	by-name case is easily derived from the fact that strong call-by-name reduction is precisely
	le most-outermost reduction (Lem. 3.10).

 De nition 3.12 (Axioms for structural equivalences).

	pλx.tqryzss " λ	λx.tryzss	if x R fvpsq
	pt uqrxzss " @ trxzssurxzss	
	pt uqrxzss " @l trxzss u	if x R fvpuq
	pt uqrxzss " @r t urxzss	if x R fvptq
	trxzssryzus " com tryzusrxzss	if y R fvpsq and x R fvpuq
	trxzssryzus " r¨s trxzsryzuss	if y R fvptq
	trxzss " gc t	if x R fvptq
	trxzss " dup t rysx rxzssryzss	

 πxexxyy " rrπssxrre 3 ssxrre 2 ssxxyrxzrre 1 ssxtysyy Ñ e rrπssxrre 3 ssxrre 1 ssxrre 2 ssxtyrxztsyyy " gc rrπssxrre 1 ssxtyy " rrt | e 1 | πss We can apply Ñ e since by Lem. 3.35.3, t is a value. We also use that by Lem. 3.35.1, rre 1 ssxty is a closed term to ensure that rre 2 ss and rre 3 ss can be garbage collected.

1

ssxsyy " rrs | e 1 | f pv, eq :: πss 3. Multiplicative. We have v | e | f pλx.t, e 1 q :: π ù m s | rxzpv, eqs :: e 1 | π, and: rrv | e | f pλx.t, e 1 q :: πss " rrπssxrre 1 ssxλx.tyrressxvyy Ñ m rrπssxrre 1 ssxtrxzrressxvysyy " rrt | rxzpv, eqs :: e 1 | πss 4. Exponential. Let e " e 2 :: rxzpt, e 1 qs :: e 3 . We have x | e | π ù e t | e 1 | π, and: rrx | e | πss " Progress. Let S " t | e | π be a commutative normal form such that rrSss Ñ s. If t is

• an application su. en a ù s 1 transition applies and S is not a commutative normal form, absurd;

 De nition 3.60 (Auxiliary notions of frames and environments).

Ordinary, Weak, and Trunk Frames F ::" F w | F t | F w :: F t F w ::" | pt, πq :: F F t ::" | x :: F Well-Formed, Weak, and Trunk Environments E ::" E w | E t | E w :: E t E w ::" | rxzts :: E w | xŸ :: E w :: Źx :: E 1 w E t ::" | Źx :: E

 E t qqss " rrpF t , E t qssxrrxŸ :: E w :: Źx :: E 1 w ssxrrF w ssyy " rrpF t , E t qssxrrE 1 w ssxrrF w ssyy " rrppF w :: F t q, pE 1 w :: E t qqss " rrpF, Eqss Lemma 3.67 (LO decoding invariant -♣ Lem. A.16). Let S " xϕ | F | s | π | Ey be a reachable state. en rrpF, Eqss and C S are LO contexts. Proof. See Section A.1.5 in the appendix.

			def " rrπssxlsy
	• States:	C S	def " rrpF, Eqssxrrπssy
		rrSss	

2 . 4.3 Abstractions: if axt is a subterm of F , s, π, or E then x may occur only in t and in the closed subenvironment xŸ :: E w :: Źx of E, if it exists. 5. Closure: 5.1 Environment: if E " E 1 :: rxzts :: E 2 then E 2 pyq ‰ K for all y P fvptq. 5.2 Code, Stack, and Frame: Epxq ‰ K for any free variable x in s and in any code of π and F . Proof. See Section A.1.4 in the appendix. e de nition of the decoding relies on the notion of compatible pair. De nition 3.65 (Strong MAM decoding). Let S " pF, t, π, E, ϕq be a state such that F 9E is a compatible pair. en S decodes to a state context C S and a term rrSss as follows: • Weak environments: rr ss def " l rrrxzss :: E w ss def " rrE w ssxlrxzssy rrxŸ :: E w :: Źx :: E 1 w ss def " rrE 1 w ss • Compatible pairs: rrp , qss def " l rrppF w :: F t q, pE w :: E t qqss def " rrpF t , E t qssxrrE w ssxrrF w ssyy rrppx :: F q, pŹx :: Eqqss def " rrpF, Eqssxλx.ly • Weak frames: rr ss def " l rrps, πq :: F w ss def " rrF w ssxrrπssxslyy • Stacks: rr ss def " l rrs :: πss def " C S xty e following lemmas sum up the properties of the decoding. Lemma 3.66 (Closed scopes disappear). Let F 9E be a compatible pair. en rrpF, pxŸ :: E w :: Źx :: Eqqss " rrpF, Eqss. Proof. Essentially it follows from rrxŸ :: E w :: Źx :: Ess " rrEss. Precisely, by Lem. 3.63 F and E have, respectively, the forms F w :: F t and E 1 w :: E t . Now: rrpF, pxŸ :: E w :: Źx :: Eqqss " rrppF w :: F t q, pxŸ :: E w :: Źx :: E 1 w ::

 Eqssxrrπssxpλx.tqsyy Ñ db rrpF, Eqssxrrπssxtrxzssyy " Lem. 3.68 rrpF, Eqssxrrπssxtyrxzssy " Lem. 3.68 rrpF, prxzss :: Eqqssxrrπssxtyy

1

" rrpF, Eqssxrrπssy is LO by the LO decoding invariant

(Lem. A.16)

.

Moreover by the closure invariant

(Lem. 3.64)

x does not occur in F nor π, justifying the use of

Lem. 3.68

in: rrpF, λx.t, s :: π, E, óqss " rrpF, Eqssxrrs :: πssxλx.tyy " rrpF, " rrpF, t, π, rxzss :: E, óqss -Exponential: S " pF, x, π, E, óq ù e pF, t α , π, E, óq " S 1 with Epxq " t. As before, C S is LO by Lem. A.16. Moreover, Epxq " t guarantees that E, and thus C S , have a substitution binding x to t. Finally, C S " C S 1 . en rrSss " C S xxy Ñ ls C S xt α y " rrS 1 ss -Search 4: S " px :: F, t, , E, òq òs 4 pF, λx.t, , xŸ :: E, òq " S 1 . By Lem. 3.64 x :: F 9E, and by Lem. 3.63 E " E w :: Źx :: E 1 . en

 KAM/MAM. Immediate: ù s reduces the size of the code, that is bounded by |t| by the subterm invariant(Lem. 3.25/Lem. 3.31).Call-by-need machines are not locally linear, because a sequence of ù s 2 steps can be as long as the global environment E, that is not bound by |t| but only by the number |ρ| s of preceding principal transitions (as for the MAM). Adapting the previous reasoning to this other bound would only show that globally |ρ| s is quadratic in |ρ| s , not linear. However, being locally linear is not a necessary condition for global bilinearity. In fact, call-by-need machines are globally bilinear. e key observation is that |ρ| s 2 is not only locally but also globally bound by |ρ| p , as the next lemma formalizes.

	Proof.
	1.

2. CEK. Consider the following measure for states: #ps | e | πq :" # |s| `|u| if π " apu, e 1 q :: π 1 |s| otherwise By direct inspection of the rules, it can be seen that both ù s 1 and ù s 2 transitions decrease the value of # for CEK states, and so the relation ù s 1 Y ù s 2 terminates (on reachable states). Moreover, both |s| and |u| are bounded by |t| by the subterm invariant (Lem. 3.35), and so k ď 2 ¨|t| " Op|t|q. 3. SCEK. As for the CEK, using the corresponding subterm invariant (Lem. 3.39) and the following measure: #ps | e | π | Dq :" # |s| `|u| if π " pu, e 1 q :: π 1 |s| otherwise 4. LAM. As for the CEK, using the corresponding subterm invariant (Lem. 3.42) and the following measure: #ps | e | πq :" # |s| `|u| if π " f pu, e 1 q :: π 1 |s| otherwise 3.6.2 Call-by-need We treat the MAD. e reasoning for the Merged/Pointing MAD is analogous. De ne | | :" 0 and |pE, x, πq :: D| :" 1 `|D|. Lemma 3.73. Let S " t | π | D | E be a MAD state, reached by the execution ρ. en: 1. |ρ| s 2 " |ρ| e `|D| 2. |E| `|D| ď |ρ| m 3. |ρ| s 2 ď |ρ| e `|ρ| m " |ρ| p

 P tm, ós 1 , ós 2 , ós 3 u then |S 1 | ă |S|; • Backtracking transitions do not change the size: if S a S 1 with a P tò s 4 , ò s 5 , ò s 6 u then |S 1 | " |S|. We can then conclude with |ρ| ós `|ρ| m ď |S| `|ρ| e ¨|t| ´|S 1 | ď |S| `|ρ| e ¨|t| " |t| `|ρ| e ¨|t| " p1 `|ρ| e q ¨|t| 2. We have to estimate |ρ| òs " |ρ| òs 4 `|ρ| òs 5 `|ρ| òs 6 . Note that: 2.1 |ρ| òs 4 ď |ρ| ós 2 , as òs 4 pops variables from F , pushed only by òs 4 ; 2.2 |ρ| òs 5 ď |ρ| òs 6 , as òs 5 pops pairs pt, πq from F , pushed only by òs 6 ; 2.3 |ρ| òs 6 ď |ρ| ós 3 , as òs 6 ends backtracking phases, started only by ós 3 . en |ρ| òs ď |ρ| ós 2 `2|ρ| ós 3 ď 2|ρ| ós . 3. We have |ρ| s " |ρ| ós `|ρ| òs ď P.2 " |ρ| ós `2|ρ| ós " P.1 3 ¨p1 `|ρ| e q ¨|t|. Finally, every transition but ù e takes a constant time on a RAM. e renaming in a ù e step is instead linear in |t|, by the subterm invariant (Lem. 3.75).

	Chapter 4
	Foundations of Strong Call-by-Need
	4.1 Introduction

| :" 0 |x :: F | :" |F | |t :: π| :" |t| `|π| |pt, πq :: F | :" |π| `|F | |pF, t, π, E, óq| :" |F | `|π| `|t| |pF, t, π, E, òq| :" |F | `|π| By direct inspection of the rules of the machine it can be checked that: • Exponentials increase the size: if S ù e S 1 is an exponential transition, then |S 1 | ď |S| `|t| where |t| is the size of the initial term; this is a consequence of the fact that exponential steps retrieve a piece of code from the environment, which is a subterm of the initial term by Lem. 3.75; • Non-Exponential evaluation transitions decrease the size: if S a S 1 with a en a straightforward induction on |ρ| shows that |S 1 | ď |S| `|ρ| e ¨|t| ´|ρ| ós ´|ρ| m i.e. that |ρ| ós `|ρ| m ď |S| `|ρ| e ¨|t| ´|S 1 |. 123 Now note that | ¨| is always non-negative and that since S is initial we have |S| " |t|. 4.1.1 Call-by-Need for Weak Reduction

 steps, by i.h. So t n`1 reduces to λx.x in exactly 2 n`2 ´2 steps.On the other hand, in call-by-need, evaluating t n requires a number of steps linear in n. More precisely, t n reduces to the identity λx.x in exactly 5n steps 1 .

		Ý ÝÝÝÝÝÝÝÝÝÝ Ñ pλx.xq t n
		Ñ t n
		2 n`1 ´2 steps, by i.h. Ý ÝÝÝÝÝÝÝÝÝÝ Ñ λx.x
	t n`1 " pλx.xxq t n	Ñ pxxqrxzt n s

5n steps, by i.h. Ý ÝÝÝÝÝÝÝ Ñ pxxqrxzλy.ys Ñ ppλy.yqxqrxzλy.ys Ñ yryzxsrxzλy.ys Ñ yryzλz.zsrxzλy.ys Ñ λz.z So t n`1 reduces to λx.x in exactly 5pn `1q steps.

2 .

 2 Determinism. e strong call-by-need strategy should be deterministic, that is, if t

S ù s 1 and t S ù s 2 then s 1 " s 2 . 3. Conservativity. e strong call-by-need strategy should be conservative with respect to weak call-by-need. at is, if t W ù s then t S ù s. 4. Correctness. e strong call-by-need strategy should be correct with respect to βequivalence. is means that if t S ù s then t ˛"β s ˛.

 the following examples the underlined variables are frozen:

	λx.λy.y t	-e abstractions cannot become applied.
	λx.xpλy.yq	-e abstractions cannot become applied.

λx.pztqrzzyssryzxus -e variables y and z are bound to structures. In contrast, in the following examples the underlined variables are not frozen: pλx.xtqs -e abstraction can become applied. pλy.y pλz.zqqpλx.xsq -e abstraction can, in principle, become applied.

 Section 4.2.3 we prove four basic principles that our strong call-by-need strategy enjoys, namely that it reaches normal forms (Prop. 4.16), it is deterministic (Prop.4.18), it is a conservative extension of Ariola et al.'s notion of weak call-by-need strategy always nds it-modulo unfolding of explicit substitutions. e proof of completeness combines a logical argument and a syntactical argument. e logical argument relies on an auxiliary type system based on non-idempotent intersection types, and it shows that the eory of Sharing is complete with respect to β-reduction.e syntactical argument shows that the strong call-by-need strategy is complete with respect to the eory of Sharing. Speci cally:-In Section 4.3.1, we propose a non-idempotent intersection type system called HW, for the eory of Sharing (Def. 4.27). is is a simple adaptation of existing systems, following the line of work proposed by Kesner [?]. We also show that typability implies normalization (m. 4.43), i.e. that terms typable in HW are weakly normalizing in the eory of Sharing.

by-need (m.

4.23)

, and it is correct with respect to β-reduction (Prop. 4.25). • In Section 4.3 we prove that the strong call-by-need strategy is complete with respect to β-reduction (m. 4.55). is means that if a λ-term has a β-normal form, then the strong call--In Section 4.3.2, we use system HW to argue that the eory of Sharing is complete (Prop. 4.45) with respect to β-reduction, i.e. that β-normalizing terms are also normalizing in the eory of Sharing. -In Section 4.3.3, we recall an abstract factorization result due to Acca oli [?]. Using this abstract result, we then argue that the strong call-by-need strategy is complete (Prop. 4.54) with respect to the eory of Sharing.

 De nition 4.4. e eory of Sharing λ sh is given by the set of terms T sh as in Def. 4.2, and the reduction relation Ñ sh def " Ñ db Y Ñ lsv Y Ñ gc , where for each R P tdb, lsv, gcu, Ñ R is the closure by full contexts of the corresponding rewrite rules below, i.e. Ñ R On the other hand, the Ñ lsv rule of the eory of Sharing and the Ñ ls rule of the LSC are not instances of each other, since for example:

def

" CxÞ Ñ R y. pλx.tqL s Þ Ñ db trxzssL CxxxyyrxzvLs Þ Ñ lsv CxvyrxzvsL trxzss Þ Ñ gc t if x R

fvptq Note that the rules Ñ db and Ñ gc are exactly the Ñ db and Ñ gc rules of the LSC (cf. Def. 2.75). xrxzpλy.zqrzztss Ñ R pλy.zqrxzλy.zsrzzts holds for R " lsv but not for R " ls xrxzys Ñ R yrxzys holds for R " ls but not for R " lsv Example 4.5. e following is a reduction in the eory of Sharing: pλx.zxxqppλy.yqpλw.wqq Ñ sh pλx.zxxqpyryzλw.wsq Ñ sh pzxxqrxzyryzλw.wss Ñ sh pzxxqrxzpλw.wqryzλw.wss Ñ sh pzxpλw.wqqrxzλw.wsryzλw.ws Ñ sh pzxpλw.wqqrxzλw.ws Ñ sh pzpλw.wqpλw.wqqrxzλw.ws Ñ sh zpλw.wqpλw.wq

 De nition 4.8 (Garbage collection operation). e operation of garbage collection Ó gc ptq is de ned as follows:Lemma 4.10 (Inductive characterization of non-garbage variables). e set ngvptq of nongarbage variables can be characterized by the following inductive equations: We summarize the three principles that motivate their de nition. 1. Frozen variables de ne the shape of the structures. If x is frozen, reduction in a term like x t must take place in t and hence the variable x persists in the reduct. is motivates our calling a term such as x t, with t in normal form, a structure. Iterating this idea, if x is frozen and t 1 , . . . , t n are in normal form then x t 1 . . . t n is a structure and reduction in a term like x t 1 . . . t n t n`1 must take place in t n`1 . e set of normal forms includes the set of structures as a proper subset. is principle leaves the following question open: is yryzxts a structure? e answer depends crucially on whether xt should be substituted for y. 2. Structures should not be duplicated. Weak call-by-need only duplicates values, abstractions being the only possible values. In weak reduction the set of values coincides with the set of weak-head normal forms, since all terms are closed. is raises the question of whether structures, which are weak-head normal forms in the se ing of strong reduction, should be substituted too. e crucial observation is that, in contrast to abstractions, structures cannot contribute in any way to creating new redexes. Contrast for example the step: pxtqrxzλy.ys Ñ ppλy.yqtqrxzλy.ys in which performing the substitution creates the underlined db redex, with the step:

	Ó gc pxq	
	pxtqrxzyss Ñ pystqrxzyss
	in which performing the substitution does not create any new interaction.
	ngvpxq " txu	
	ngvpλx.tq " ngvptqztxu	
	ngvptsq " ngvptq Y ngvpsq	
	#
	ngvptrxzssq " pngvptqztxuq Y	ngvpsq if x P ngvptq
		∅	otherwise
	Proof. Straightforward by induction on t.	

def " x Ó gc pλx.tq def " λx.Ó gc ptq Ó gc ptsq def " Ó gc ptqÓ gc psq Ó gc ptrxzssq def " " Ó gc ptqrxzÓ gc psqs if x P fvpÓ gc ptqq Ó gc ptq otherwise Note that this de nition also erases explicit substitutions that are not garbage substitutions stricto sensu. For instance, consider the term xryzzsrzzts. Both substitutions are collected by Ó gc p.q, even if an occurrence of the variable z temporarily appears in the subterm xryzzs. De nition 4.9 (Non-garbage variables). e set of non-garbage variables of a term t is de ned as ngvptq def " fvpÓ gc ptqq. Informally, ngvptq is the set of free variables of t that are not erased by garbage collection. A free variable is a garbage variable if it is not non-garbage. Normal Forms and Structures e de nition of the set of normal forms of the strategy ϑ ù depends on the key notion of structure.

 principle states that our strong call-by-need strategy is conservative As a corollary of m. 4.23 and Lem. 4.22, we deduce that our strategy ϑ ù has Ariola et al.'s notion of weak call-by-need reduction as a pre x. Corollary 4.24. If t p ϑ ùq ˚s then there is a term u such that t ppÞ Ñ CÞ Ñ I q Y pÞ Ñ ÅÞ Ñ V qq ˚u p

	with respect to		W ù.
	en we have:	
	eorem 4.23 (Conservativity -♣ m. A.50). If t 0	ϑ ù t 1	ϑ ù . . . t n´1	ϑ ù t n there exists
	an 1 ď i ď n such that the three following conditions hold:
	1. t 0	W ùt 1	W ù . . . t n´1	W ùt i
	2. t i	ϑzW ù t i`1	ϑzW ù . . . t n´1	ϑzW ù t n

W ù, i.e. that t W ù s implies t S ù s. More precisely, let ϑzW ù stand for ϑ ù z 3. If i ă n, then t j P N w ϑ for all i ď j ď n. Proof. See the appendix.

ϑzW ùq ˚s Moreover, if s

 De nition 4.26 (Syntax of HW). Given a countable in nite set B of base types α, β, γ, . . . the set of types and multisets of types are de ned mutually inductively by the following grammar: Multisets of types M ::" rτ i s iPI where I is a nite set e empty multiset r s plays the rôle of the universal ω type in [?]. e types are strict [?, ?], that is, the right-hand sides of function types are never multisets.

	Types	τ, σ, ρ ::" α | M Ñ τ

 2. lsv step, i.e. t " Cxxxyyrx{uLs Ñ lsv Cxxuyyrx{usL " t 1 . en the derivation Φ has the following form, where Γ " Γ 0 `iPI ∆ i .

Φ Cxxxyy x : rσ i s iPI ; Γ 0 $ Cxxxyy : σ `Φi uL ∆ i $ uL : σ i ˘iPI Γ 0 `iPI ∆ i $ Cxxxyyrx{uLs : σ

By Lem. 4.37, for all i P I, there exist

 Informally, cM 1 . . . M n is the type of a constant applied to n arguments, each of which has been assigned a multiset of types. PreError types are solely introduced for building error types; error types are used for typing case expressions which will eventually become stuck. A case is stuck if, intuitively, it can be decided that the condition cannot match any branch. An error type

Error types E ::" xGy | E τ Branch types B ::" M ñ τ A type τ matches with a branch cx ñ s if it is of the form τ " c M with | M| " |x|. A type matches with a list of branches if it matches with at least one branch. e type α is a type variable, M Ñ τ is a function type, D is a datatype, and E is an error type. A datatype is either a constant type c or an applied datatype D M.

 De nition 5.17 (Extended strong call-by-need strategy). e C 1 xC 2 xvyrxzvsLy if C 1 xC 2 xlyrxzvLsy P E h

				ϑ ù e strategy is de ned by the
	following rules.			
	pdbq	Cxpλx.tqL sy	ϑ ù e CxtrxzssLy	if C P E h ϑ
	plsvq	C 1 xC 2 xxxyyrxzvLsy		ϑ
	pfixq	Cxfixpx.tqy		

ϑ ù e ϑ ù e Cxtrxzfixpx.tqsy if C P E h ϑ pcaseq Cxcase Axc j yL of pc i xi ñ s i q iPI y ϑ ù e Cxs j rx j zAsLy if C P E h ϑ with j P I and |Axly| " |x j |

 C 1 rr 1 s " C 2 rr 2 s, where C 1 , C 2 P E h ϑ and r 1 , r 2 are anchors, then C 1 " C 2 and r 1 " r 2 . Proposition 5.21 (Conservativity). e extended strong call-by-need strategy is conservative with respect to the strong call-by-need strategy of Chapter 4, i.e. if t

ϑ ù s then t ϑ ù e s.

 is a family development of the in nite set of redex families F " tFam ú pR n q | n P Nu. e Finite Family Developments theorem ensures that, given any nite subset G Ď F, any family development of G must terminate.Pointers on Optimality eoryere has been much work surrounding the theory of optimal reductions. We have already mentioned the foundational works of Vuillemin [?, ?] on recursive program schemes, Staples [?] on combinatory logic, and Lévy [?, ?] together with Berry [?] on the λ-calculus. model for the λ-calculus, proposed a cost model based on Lévy labels, and proved that Lamping's sharing graphs satisfy the proposed cost model.

John Lamping was the rst to propose a data structure (sharing graphs) capable of implementing Lévy's optimal reduction [?]. Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy [?] explained Lamping's sharing graphs in terms of Girard's Geometry of Interaction. Cosimo Laneve [?] studied optimality in the very general context of interaction systems. Andrea Asperti and Cosimo Laneve [?] characterized redex families by characterizing proper paths: paths in the graph-representation of a λ-term that connect an application and an abstraction forming a virtual redex, i.e. a potential interaction. John Glauert and Zurab Khasidashvili [?] generalized Lévy's optimality result in an axiomatic framework (Deterministic Family Structures). Julia Lawall and Harry Mairson [?, ?] studied the question of what constitutes a cost

 t and of the form trxzss Ω with the set of labels Ω " tbu where b is a distinguished dummy label. With this invariant, the names of the gc steps are di erent:

	trxzy a s tbu tb ' bu S S
	trxzy a s tbu ryzz b s tbu	
	tb ' au	A A
		tryzz b s tbu
	Failure of stability in the LSC with gc	
	Stability is an abstract property of rewriting systems with residuals, stating that computa-
	tional steps are created in an essentially unique way: if any two steps have a common residual,

they must also have a common ancestor. is means that the presence of a computational step has a unique cause. e property of stability in the context of rewriting was originally studied by Jean-Jacques Lévy [?, ?], and inspired by Gérard Berry's notion of stability in denotational semantics [?].

). A label α P L is good, wri en pαq if it veri es the following inductive de nition: T is good, wri en ptq, if every label and set of labels is good. More precisely:

	pαq	ùñ	px α q
	pαq ^ pΩq ^ ptq ùñ	pλ α Ω x.tq
	pαq ^ ptq ^ psq ùñ	p@ α pt, sqq
	ptq ^ psq ^ pΩq ùñ	ptrxzss Ω q
		a R t ' , bu ùñ	paq
		pαq ^ pβq ùñ	pα βq
		pαq ^ pβq ùñ	pα ' βq
		pαq ùñ	prαsq
		pαq ùñ	ptαuq
		pαq ùñ	pdbpαqq

A set of initial variables Ω is good, wri en pΩq, if it is non-empty, it contains no occurrences of ' , and it does not contain occurrences of b unless it is precisely tbu. Formally:

pΩq def ðñ pΩ ‰ ∅q ^p ' R Ωq ^pb R Ω _ Ω " tbuq A term t P

 2. ls step. Cxxx α yyrxzt 2 s Ω Ópαq ' Òpt 2 q Ý ÝÝÝÝÝ Ñ ls Cxα ' : t 2 yrxzt 2 s α . 2.1 Good: by the invariant on t we have that pCq, pαq, pt 2 q, and pΩq. So pCxα ' : t 2 yrxzt 2 s Ω q. 2.2 Correct abstractions: abstractions internal to t 2 or internal to C are correct by the invariant on t. e only non-trivial case is that of abstraction nodes in the path to the hole of C. Let C be of the form C 1 xλ β Θ y.C 2 y. en vl y pC 2 xxx α yyq " vl y pC 2 xα : t 2 yq since x ‰ y, and t 2 cannot have free occurrences of y. We conclude by the fact that vl y pC 2 xx α yq Ď Θ, as the invariant holds for t. 2.3 Correct substitutions: the only non-trivial case is for substitutions lying in the path to the hole of C. Let C be of the form C 1 xC 2 ryzss Θ y. en vl y pC 2 xxx α yyq " vl y pC 2 xα : t 2 yq. We conclude similarly as in the previous item.

3. gc step. t 1 rxzt 2 s Ω ta ' Òpt 2 q | aPΩu

 Similarly, we de ne the height of a redex name as follows: Ωu where β is atomic Note that in the case of db and ls redexes the height of the redex name coincides with its height if seen as a label.De nition 6.38 (Bounded predicate). A predicate P on redex names is said to be bounded if and only if there exists a bound H P N such that for every redex name µ, if P pµq holds then hpµq ă H.

	db redex:	hpdbpαqq	def " 1 `hpαq
	ls redex:	hpα ' βq	

hpαq hpαβq def " maxthpαq, hpβqu def " maxthpαq, hpβqu where α, β are atomic gc redex: hpta ' β | a P Ωuq def " maxthpa ' βq | a P

 Moreover, in Section 8.2 in the Conclusion (Chapter 8), we discuss an open problem regarding the de nition of an extraction procedure for the LSC. We propose an extraction procedure and we state two unproved conjectures about it.

4. In Section 7.5 we recall the problem of standardization, and we propose a standardization procedure for Deterministic Family Structures (Prop. 7.39), inspired on a standardization result by Klop. As a corollary, we obtain a standardization result for the LSC without gc (Coro. 7.43).

5. In Section 7.6 we recall the notion of normalization, and we prove a normalization result for Deterministic Family Structures (Prop. 7.54), giving su cient conditions under which a reduction strategy is normalizing. As a corollary, we conclude that, in the LSC without gc the call-by-name strategy (Coro. 7.56) and a variant of the call-by-need strategy (Coro. 7.59) are normalizing.

 We have already shown in Rem. 6.8 that the full LSC (with gc) does not enjoy the Stability property. A consequence of this fact is that the LSC with gc does not form a Deterministic Family Structure. To see this it su ces to prove the following proposition, which can already be found in Glauert and Khasidashvili's work [?,Lemma 4.1].

	Abstract rewriting system	(ARS)	Def. 2.2 Objects and steps.
	Axiomatic rewriting system	(AxRS)	Def. 2.30 ARS + residuals.
	Orthogonal axiomatic rewriting system (OAxRS) Def. 2.39 AxRS + AE `FR `FD `SO.
	Deterministic Residual Structure	(DRS)	Def. 7.3 OAxRS + UA + acyclicity.
	Deterministic Family Structure	(DFS)	Def. 7.3 DRS + redex families.

e LSC with gc is not a Deterministic Family Structure Proposition 7.4. If xA, », ãÑy is a DFS then A has the Stability property. Proof. Consider a diagram as in the de nition of Stability:

 R, S respectively, such that the source of R 1 , R 2 , and S coincides and is initially labeled, and such that moreover the residual relations R 1 xS y R and R 2 xS y R hold in the LLSC.By the Copy property (Lem. 6.33), R 1 and R have the same name. Similarly, R 2 and R have the same name, so in fact R 1 and R 2 have the same name. en by Lem. 6.19 R 1 " R 2 , so R 1 " R 2 , as required.2. Acyclicity. Let R and S be di erent steps such that R{S " ∅. Since only gc steps may erase other steps, S must be a gc step of the form S : Cxtrxzssy Ñ LSC Cxty and the anchor of the redex contracted by R lies inside s, i.e. R is a step of the form R : Cxtrxzssy Ñ LSC Cxtrxzs 1 sy. en S{R is the singleton tS 1 u where S 1 : Cxtrxzs 1 sy Ñ LSC Cxty. So in fact S{R ‰ ∅.

 and only if µ 1 Name ãÑ ν 2 since µ 1 " µ 2 and ν 1 " ν 2 if and only if ρ 2 R 2

	Name ãÑ ν 1	by de nition of	Fam ãÑ
	if and only if µ 2		
	Fam ãÑ σ 2 S 2 by de nition of	

 It is easy to show that NF db,ls is a stable set. But the notion of NF db,ls -optimality that one obtains in that case is not very interesting, for two reasons. One reason is that in the LSC without gc there is no erasure, which means that every step is always NF db,ls -needed. Another reason is that in the LSC without gc one is not really interested in obtaining the normal form of a term. For example let Ω " pλx.xxq λx.xx and consider the following derivation: pλx.λy.xq z Ω Ñ db pλy.xqrxzzs Ω Ñ db xryzΩsrxzzs Ñ ls zryzΩsrxzzs Ñ db zryzpxxqrxzλx.xxssrxzzs Ñ . . . In this example, reduction goes on forever without reaching a normal form, evaluating the term inside the substitution ryz...s, even though this substitution is never used. One is actually interested in the set of normal forms up to garbage collection of unused substitutions. is is the notion of reachable normal form de ned below. De nition 7.26 (Reachable normal forms). Let nf gc ptq denote the gc-normal form of a given term t. e set RNF of reachable normal forms is the set of terms: Proposition 7.27 (e set RNF is stable -♣ Prop. A.112).

	RNF

ls def " tt P T | Es P T . t Ñ db,ls su def " tt P T | nf gc ptq P NF db,ls u e following proposition justi es that m. 7.24 may be applied to the notion of RNFoptimal reductions.

 n .pλy.tqs u 1 . . . u m Ñ head λx 1 . . . x n .tty :" su u 1 . . . u m For instance, underlining the contracted redex, the following is a sequence of head reduction steps: λx.pλy.yqppλy.xqΩq Ñ head λx.pλy.xqΩ Ñ head λx.

x While the following is not a sequence of head reduction steps, because the rst step does not contract a head redex: λx.pλy.yqppλy.xqΩq Ñ λx.pλy.yqx Ñ head λx.x It can be shown that a term has at most one head redex. A term without a head redex is called a head normal form. It is well-known that, by repeatedly contracting the head redex, one reaches a head normal form if possible. More precisely, one has the following result: Proposition 7.45 (Head reduction is head normalizing in the λ-calculus). Suppose that t has a head normal form, that is, there exists a head normal form s such that t Ø β s. en there is no in nite head reduction t Ñ head t 1 Ñ head t 2 Proof. See [?,

Corollary 1.5.12 (i)

].

 Hrxztse set of head linear normal forms HLNF is de ned as the set of terms generated by the grammar:Example 7.57. e following is a head linear reduction reaching a term in HLNF.

	pλx.xxqppλy.yqpλz.zqq Ñ pxxqrxzpλy.yqpλz.zqs
	Ñ ppλy.yqpλz.zqxqrxzpλy.yqpλz.zqs
	Ñ pyryzλz.zsxqrxzpλy.yqpλz.zqs
	Ñ ppλz.zqryzλz.zsxqrxzpλy.yqpλz.zqs
	Ñ zrzzxsryzλz.zsrxzpλy.yqpλz.zqs
	Ñ xrzzxsryzλz.zsrxzpλy.yqpλz.zqs
	Ñ ppλy.yqpλz.zqqrzzxsryzλz.zsrxzpλy.yqpλz.zqs
	Ñ yryzλz.zsrzzxsryzλz.zsrxzpλy.yqpλz.zqs
	Ñ pλz.zqryzλz.zsrzzxsryzλz.zsrxzpλy.yqpλz.zqs

A ::" pλx.tqL | Hxxxyy where H does not bind x Terms of the form pλx.tqL are called answers, and terms of the form Hxxxyy are called head structures (or just structures if clear from the context). e variable x is called the head variable of a structure Hxxxyy.

Corollary 7.56 (Head linear reduction is HLNF-normalizing -♣ Coro. A.113). e strategy S HL associated to the sub-ARS HL is HLNF-normalizing.

Proof. A consequence of the previous proposition (Prop. 7.54), using the fact that the LSC without gc is a DFS (m. 7.13). It su ces to show that HL is a closed residual-invariant sub-ARS of the LSC without gc, and that NFpHLq " HLNF. See the appendix for the proof of these facts.

 Example 7.60. e following is a needed linear reduction reaching a term in NLNF.

	Chapter 8
	pλx.xxqppλy.yqpλz.zqq Ñ pxxqrxzpλy.yqpλz.zqs
	Ñ pxxqrxzyryzλz.zss
	Ñ pxxqrxzpλz.zqryzλz.zss
	Ñ ppλz.zqxqrxzλz.zsryzλz.zs
	Ñ zrzzxsrxzλz.zsryzλz.zs
	Ñ zrzzλz.zsrxzλz.zsryzλz.zs
	Ñ pλz.zqrzzλz.zsrxzλz.zsryzλz.zs

 1 xxy must be of the form H 2 xxyryzs 1 s with x R fvpH 2 xxyq, which is clearly not possible. It can be applied from right to le . e diagram is:

	R 1 xxyrxzt 1 ryzsss	" @	t 1
	ls		ls
	t 4		t 2
	" by Lem. A.6		" dup
	t 5		t 3
	" r¨s		" com
	t 6	" α	t 7
	where		
	t 1		

 . A.8.1, if the is internal to L 1 xvy, the proof is direct, since the dbv-redex is preserved. More precisely, if L 1 xvy L 2 xv 1 y, we have: Lxλx.t 1 y L 1 xvy Lxt 1 rxzL 1 xvysy Lxλx.t 1 y L 2 xv 1 y Lxt 1 rxzL 2 xv 1 ysy Garbage collection " gc . e garbage collected substitution must be in L, i.e. L must be of the form L 1 xL 2 ryzL 2 xv 1 ysy with y R fvpL 2 xλx.t 1 yq. Let p L :" L 1 xL 2 y. en: Lxλx.t 1 y L 1 xvy Lxt 1 rxzL 1 xvysy p Lxλx.t 1 y L 1 xvy p Lxt 1 rxzL 1 xvysy Duplication " dup . e duplicated substitution must be in L, i.e. L must be of the form L 1 xL 2 ryzs 1 sy. Let p L :" L 1 xlryzs 1 srzzs 1 sy. en: Lxλx.t 1 y L 1 xvy Lxt 1 rxzL 1 xvysy p LxpL 2 xλx.t 1 yq rzsy y L 1 xvy t 1

		dbv	
		dbv	
	Consider the remaining possibilities for	:	
	1.1 " gc	dbv	" gc
		dbv	
	1.2 " dup		" dup

dbv dbv where t 1 :" p LxpL 2 xt 1 rxzL 1 xvysyq rzsy y.

 .t 1 y L 1 xvy Lxt 1 rxzL 1 xvysy p Lxλx.t 1 y L 1 xvy p Lxt 1 rxzL 1 xvysy Composition of substitutions " r¨s . e composition of substitutions must be in L, i.e. L must be of the form L 1 xL 2 ryzs 1 srzzu 1 sy with z R fvpL 2 xλx.t 1 yq. Let p L :" L 1 xL 2 ryzs 1 rzzu 1 ssy. As in the previous case: Lxλx.t 1 y L 1 xvy Lxt 1 rxzL 1 xvysy p Lxλx.t 1 y L 1 xvy p Lxt 1 rxzL 1 xvysy Base case 2: exponential root step t " RxxyrxzLxvys Þ Ñ lslsv s " LxRxvyrxzvsy. Consider rst the case when the -redex is internal to Rxxy. By Lem. A.8. we know preserves the shape of Rxxy, i.e. Rxxy p Vxxy. en: internal to one of the substitutions in L, the proof is straightforward. Note that the -redex has always a substitution at the root. e remaining possibilities are such that substitution is in L, or that it is precisely rxzLxvys. Axiom by axiom: 2.1 Garbage collection " gc . If the garbage collected substitution is in L, let p L be L without such substitution. en: Duplication " dup . If the duplicated substitution is in L, then L is of the form L 1 xL 2 ryzt 1 sy. Let p L " L 1 xryzt 1 srzzt 1 sy. en: LxL 2rzs y xRxv rzsy yrxzv rzsy syy. If the duplicated substitution is rxzLxvys, there are two possibilities, depending on whether the occurrence of x substituted by the Þ Ñ lslsv step is replaced by the fresh variable y, or le untouched. If it is not replaced: LxpRxvyq rysx rxzvsryzvsy, t 3 :" LxpRxvyq rysx rxzvsryzLxvysy, t 4 :" pRxxyq rysx rxzLxvysryzLxvys.

	If the	-redex is RxxyrxzLxvys	lsv	LxRxvyrxzvsy
		" gc		" gc
		Rxxyrxz p Lxvys	lsv	p LxRxvyrxzvsy
		e garbage collected substitution cannot be rxzLxvys, since this would imply x R
		fvpRxxyq, which is a contradiction.		
	2.2 RxxyrxzLxvys	lsv	LxRxvyrxzvsy
		" dup		" dup
		t 1	lsv	t 2
		where		
	" com t RxxyrxzLxvys " dup 1.5 " r¨s t 4	dbv dbv dbv lsv dbv lsv	" com LxRxvyrxzvsy t 2 " dup " (Lem. A.9) " r¨s t 3
	where 2. RxxyrxzLxvys t 2 :"	lsv	LxRxvyrxzvsy
				"
		p VxxyrxzLxvys	lsv	Lx p Vxvyrxzvsy

1 :" Rxxyrxz p LxL 2rzs y xv rzsy yys, t 2 :" p

 1 ys 1 p Lxλx.t 1 ys 1 p Lxt 1 rxzs 1 sy Lxt 1 rxzs 1 sy Composition of substitutions " r¨s . e substitutions that appear in the le -hand side of the " r¨s rule must both be in L, i.e. L must be of the form L 1 xL 2 ryzu 1 srzzr 1 sy with z R fvpL 2 xλx.t 1 yq. Let p L " L 1 xL 2 ryzu 1 rzzr 1 ssy. Exactly as in the previous case: Base case 2: exponential root step t " RxxyrxzLxvys Þ Ñ lslsv s " LxRxvyrxzvsy. Consider rst the case when the -redex is internal to Rxxy. By Lem. A.11 we know preserves the shape of Rxxy, i.e. Rxxy p Nxxy. en:

	" com 1.3 Lxλx.t 1 ys 1 p Lxλx.t 1 ys 1 " r¨s 2. RxxyrxzLxvys p NxxyrxzLxvys	lsv lsv	db db db db	" com p Lxt 1 rxzs 1 sy Lxt 1 rxzs 1 sy " r¨s LxRxvyrxzvsy " Lx p Nxvyrxzvsy

2

 Commutation of independent substitutions " com . Two sub-cases: 2.2.1 e commuted substitutions both belong to L. Let p L be the result of commuting them, and the diagram is: One of the commuted substitutions is rxzLxvys. en N " R 1 ryzt 1 s and rxzLxvys commutes with ryzt 1 s (which implies x R fvpt 1 q). en: One of the composed subtitutions is rxzLxvys. is is not possible if the rule is applied from le to right, since it would imply that Rxxy " R 1 xxyryzt 1 s with x R R 1 xxy, which is a contradiction.

	RxxyrxzLxvys	lsv	LxRxvyrxzvsy
	" com		" com
	Rxxyrxz p Lxvys	lsv	p LxRxvyrxzvsy
	2.2.2 R 1 xxyryzt 1 srxzLxvys	lsv	LxR 1 xvyryzt 1 srxzvsy
	" com		" com
	R 1 xxyrxzLxvysryzt 1 s	lsv	LxR 1 xvyrxzvsyryzt 1 s
	2.3 Composition of substitutions " r¨s . Two sub-cases:	
	2.3.1 e composed substitutions both belong to L. Analogous to case 2.2.1.
	2.3.2		

 1 xt 1 y must have a substitution at the root, there are two possibilities: 4.2.1 e substitution comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ lslsv -redex t 1 " N 2 xyyryzLxvys, with x R fvpLxvyq. is case is exactly as the base exponential case 2.2.2 (read bo om-up).4.2.2 e substitution comes from R 1 . at is, R 1 " N 2 ryzu 1 s with x R fvpu 1 q. e diagram is:N 2 xt 1 yryzu 1 srxzqs N 2 xs 1 yryzu 1 srxzqs N 2 xt 1 yrxzqsryzu 1 s N 2 xs 1 yrxzqsryzu 1 s Composition of substitutions " r¨s .As in the previous case, there are two possibilities:4.3.1 e substitution comes from t 1 . at is, R 1 " l and t 1 is a Þ Ñ lslsv -redex t 1 " N 2 xyyryzLxvys, with x R fvpN 2 xyyq. is case is exactly as the base exponential case 2.3.2 (read bo om-up). 4.3.2 e substitution comes from R 1 . at is, R 1 " N 2 ryzu 1 s with x R fvpN 2 xt 1 yq. ediagram is:N 2 xt 1 yryzu 1 srxzqs N 2 xs 1 yryzu 1 srxzqs N 2 xt 1 yryzu 1 rxzqss N 2 xs1 yryzu 1 rxzqss " r¨s " r¨s 5. Inductive case 3: inside a hereditary head substitution N " R 1 xxyrxzN 2 s. e situation is: t " R 1 xxyrxzN 2 xqys Ñ R 1 xxyrxzN 2 xq 1 ys " s Commutation with the le of an application " @l . It must be that R 1 xxy " N 4 xxyr with x R fvprq. en the two steps simply commute: pN 4 xxyrqrxzN 2 xqys pN 4 xxyrqrxzN 2 xq 1 ys N 4 xxyrxzN 2 xqysr N 4 xxyrxzN 2 xq 1 ysr Commutation of independent substitutions " com . It must be that R 1 xxy " N 4 xxyryzrs with x R fvprq. en the two steps simply commute: N 4 xxyryzrsrxzN 2 xq 1 ys, t 2 :" N 4 xxyrxzN 2 xqysryzrs, t 3 :" N 4 xxyrxzN 2 xq 1 ysryzrs. 5.3 Composition of substitutions " r¨s . ere are various sub-cases 5.3.1 rxzN 2 xqys enters in a substitution. It must be that R 1 xxy " N 1 xyyryzN 2 xxys with x R fvpN 1 xyyq. en the diagram is: N 1 xyyryzN 2 xxysrxzN 2 xq 1 ys, t 2 :" N 1 xyyryzN 2 xxyrxzN 2 xqyss, t 3 :" N 1 xyyryzN 2 xxyrxzN 2 xq 1 yss. 5.3.2 a substitution pops out of rxzN 2 xqys. Two sub-cases: 5.3.2.1 e substitution comes from N 2 . en N 2 xqy " N 4 xqyryzrs. e diagram is: e substitution comes from q. en N 2 " l and q is a Þ Ñ lslsv -redex t 1 " N 4 xyyryzLxvys and the diagram is: Lemma A.12. If C is a LO context and C does not bind any of the variables in fvpsq, then Cxtrxzssy " Cxtyrxzss. Proof. Recall that a context C is LO if and only if C P S (Lem. 3.10).

	lsv
	" com is internal to R 1 xxy the two steps clearly commutes. If lsv conclude using the i.h.. e remaining cases are when 4.3 If constructor. Axiom by axiom: 5.1 " @l " @l " com is internal to N 2 xqy we overlaps with the topmost 5.2 N 4 xxyryzrsrxzN 2 xqys t 1 t 2 t 3 " @l " @l where t 1 t 2 t 3 " r¨s " r¨s t 1 :" R 1 xxyrxzN 4 xqyryzrss t 1 t 2 t 3 " r¨s " r¨s where t 1 :" R 1 xxyrxzN 4 xq 1 yryzrss, (A.1) t 2 :" R 1 xxyrxzN 4 xqysryzrs, (A.2) t 3 :" R 1 xxyrxzN 4 xq 1 ysryzrs. (A.3) 5.3.2.2 R 1 xxyrxzN 4 xyyryzLxvyss t 1 t 2 t 3 " r¨s " r¨s lsv lsv where t 1 :" R 1 xxyrxzLxN 4 xvyryzvsys, (A.4) t 2 :" R 1 xxyrxzN 4 xyysryzLxvys, (A.5) t 3 :" LxR 1 xxyrxzN 4 xvysryzvsy. (A.6) Strong Call-by-Name (name S) t 1 :" N 1 xyyryzN 2 xxysrxzN 2 xqys We need the following auxiliary lemma:

 1 rxzs 1 syryzu 1 srzzr 1 sy L 1 xL 2 xλx.t 1 yrzzr 1 sryzu 1 sys 1 L 1 xL 2 xt 1 rxzs 1 syrzzr 1 sryzu 1 sy Composition of substitutions, " r¨s . e substitutions that are composed must be both in L, i.e. L must be of the form L 1 xL 2 ryzu 1 srzzr 1 sy. en:L 1 xL 2 xλx.t 1 yryzu 1 srzzr 1 sys 1 L 1 xL 2 xt 1 rxzs 1 syryzu 1 srzzr 1 sy L 1 xL 2 xλx.t 1 yryzu 1 rzzr 1 ssys 1 L 1 xL 2 xt 1 rxzs 1 syryzu 1 rzzr 1 ssy Duplication, "dup . e duplicated substitution must be one of the substitutions in L, i.e. L must be of the form L 1 xL 2 ryzu 1 sy. en:L 1 xL 2 xλx.t 1 yryzu 1 sys 1 L 1 xL 2 xt 1 rxzs 1 syryzu 1 sy L 1 xpL 2 xλx.t 1 yq rzsy ryzu 1 srzzu 1 sys 1 L 1 xpL 2 xt1 rxzs 1 syq rzsy ryzu 1 srzzu 1 sy Commutation with abstraction, " λ . e commuted substitution must be the innermost substitution in L, i.e. L must be of the form L 1 xryzu 1 sy, and: L 1 xpλx.t 1 qryzu 1 sys 1 L 1 xt 1 rxzs 1 sryzu 1 sy L 1 xλx.t 1 ryzu 1 sys 1 L 1 xt 1 ryzu 1 srxzs 1 sy

		db	
	" com		" com
		db	
	1.3 " r¨s	db	" r¨s
		db	
	1.4 " dup	db	" dup
		db	
	1.5 " λ	ls	" com
		ls	

 2.3.2 If the " r¨s step is applied from right to le , then t 1 must be of the form t 2 ryzs 1 s and: Cxxyrxzt 2 ryzs 1 ss Cxt 2 ryzs 1 syrxzt 2 ryzs 1 ss Cxxyrxzt 2 sryzs 1 s Cxt 2 yrxzt 2 sryzs 1 s Cxt 2 ryzs 1 syrxzt 2 ryzs 1 ss " Cxt 2 yrxzt 2 sryzs 1 s First note that C is a LO context, and that, by the bound variable convention, C does not bind any of the variables in fvps 1 q. By resorting to Lemma A.12, this allows us to commute the substitution that: Cxt 2 ryzs 1 syrxzt 2 ryzs 1 ss " Cxt 2 yryzs 1 srxzt 2 ryzs 1 ss by Lemma A.12 " r¨s Cxt 2 yryzs 1 srxzt 2 sryzs 1 s " Cxt 2 yryzs 1 srxzt 2 ty{zusrzzs 1 s renaming y to z " com Cxt 2 yrxzt 2 ty{zusryzs 1 srzzs 1 s " dup Cxt 2 yrxzt 2 sryzs 1 s 2.4 Duplication, " dup . Note that the contracted occurrence of x cannot be inside the argument of any of the two substitutions that take part in the " dup step, since C is a LO context and it cannot go inside substitutions. We consider two cases, depending on whether " dup is applied from le to right or from right to le : 2.4.1 From le to right: the contracted occurrence of x is either renamed to y or le untouched as x. Let z denote x or y, correspondingly. In both cases we have: Cxt 1 yrxzt 1 s C rysx xzyrxzt 1 sryzt 1 s C rysx xt 1 yrxzt 1 sryzt 1 s From right to le : then C is of the form C 1 rxsy ryzt 1 s, where C 1 has no occurrences of x, and: Commutation with abstraction, " λ . en C is of the form λy.C 1 and: pλy.C 1 xxyqrxzt 1 s pλy.C 1 xt 1 yqrxzt 1 s λy.C 1 xxyrxzt 1 s λy.C 1 xt 1 yrxzt 1 s

		Cxxyrxzt 1 s	ls		
		" dup			" dup
			ls		
	2.4.2 C 1	rxsy xxyryzt 1 srxzt 1 s	ls	C 1	rxsy xt 1 yryzt 1 srxzt 1 s
		" dup			" dup
		C 1 xyyryzt 1 s	ls	C 1 xt 1 yryzt 1 s
	2.5 " λ	ls		" λ
			ls ls		
		" r¨s			"
			ls		
	To close the right-hand side of the diagram, we are le to show that:

 1 ryzu 1 ss s 1 rxzq 1 ryzu 1 ss t 1 rxzq 1 sryzu 1 s s 1 rxzq 1 sryzu 1 s " dup step. Two cases, depending on whether the " dup step is applied from le to right or from right to le : 6.4.1 " dup is applied from le to right. en the reduction step is internal to t 1 and closing the diagram is immediate: " dup is applied from right to le . en t 1 must be of the form t 2 ryzqs. We consider two further subcases, depending on whether the commuted substitution is involved in the reduction step: 6.4.2.1 If the reduction step t 2 ryzqs Ñ r 1 is an exponential step and the a ected substitution ryzqs is also the one contracted by the exponential step, then t 2 must be of the form C 1 rxsy xyy and the situation is:

		" r¨s			" r¨s
	6.4 t 1 rxzqs		s 1 rxzqs
		" dup		" dup
	t 1 rysx rxzqsryzqs		s 1 rysx rxzqsryzqs
	6.4.2 C 1	rxsy xyyryzqsrxzqs	ls	C 1	rxsy xqyryzqsrxzqs
		" dup			" dup
		C 1 xyyryzqs	ls	C 1 xqyryzqs
	6.4.2.				

3 .

 3 Multiplicative, empty dump. We have S ù m S 1 with: First note that, since the environment and the dump are dual in S, there are no dumped substitutions in E. Eq is closed Let y P fvprrπssxtyq. en either y " x, which is bound by rxzss, or y P fvprrπssxλx.tyq, in which case y is bound by E. Moreover, since rrπss is an application context, by (A.8) we get ps, Eq is closed. Multiplicative, non-empty dump. We have S ù m S 1 with:

	S " λx.t | s :: π | | E	
	S 1 " t | π | | rxzss :: E	
	For point 3.1, we know that:	
	prrπssxpλx.tq sy, Eq is closed	(A.8)
	and we have to check:	
	prrπssxty, rxzss :: Points 3.2 and 3.3 are trivial since the dump is empty and the environment has no
	dumped substitutions.	
	4.	

S " λx.t | s :: π | py, π 1 q :: D | E 1 :: ryzls :: E 2 S 1 " t | π | py, π 1 q :: D | E 1 :: ryzls :: rxzss :: E 2

•

 Case px :: F, t, , E, òq òs 4 pF, λx.t, , xŸ :: E, òq. By i.h., px :: F q9E. By the factorization property of compatible pairs (Lem. 3.63) E " E w :: Źx :: E 1 with F 9E 1 . Now xŸ :: E " xŸ :: E w :: Źx :: E 1 " E 1 w :: E 1 . en, from F 9E 1 by de nition F 9pE 1 w :: E 1 q, i.e. F 9pxŸ :: Eq. • Case ppt, πq :: F, s, , E, òq òs 5 pF, ts, π, E, òq. By i.h., ppt, πq :: F q9E, so F 9E by (Lem. 3.63). • Case pF, t, s :: π, E, òq òs 6 ppt, πq :: F, s, , E, óq. By i.h., we have that F 9E which implies ppt, πq :: F q9E by (Lem. 3.63).

	Normal Form Invariant
	e invariant trivially holds for an initial state ó | | t | | .

•

 Case px :: F, t, , E, òq òs 4 pF, λx.t, , xŸ :: E, òq. 1. By i.h. we know that t is a normal form. en λx.t is a normal form. the stack is empty, so we conclude. 2. It follows from the i.h.. • Case ppt, πq :: F, s, , E, òq òs 5 pF, ts, π, E, òq. Backtracking Free Variables Invariant e invariant trivially holds for an initial state ó | | t 0 | | if t 0 is closed and wellnamed.

	1. By i.h. we have that s is a normal term while by i.h. t is neutral. erefore ts is a
	neutral term.
	2. It follows from the i.h..

• Case pF, t, s :: π, E, òq òs 6 ppt, πq :: F, s, , E, óq.

1. Trivial since ϕ ‰ ò.

2. t is a neutral term by i.h..

•

 Case py :: F, u, , E, òq òs 4 pF, λy.u, , yŸ :: E, òq. By the compatibility invariant py :: F q9E, and by the factorization property of compatible pairs (Lem. 3.63) E " E w :: Źy :: E 1 .1. Substitutions: it follows from the i.h..2.Markers: it follows from the i.h..3.Abstractions: for ayu it holds because by i.h. y does not appear in F nor in E t (it may however occur in E w , but this is taken into account by the statement). For the other abstractions, it is immediate to conclude by i.h..• Case ppu, πq :: F, r, , E, òq òs 5 pF, ur, π, E, òq. Every point follows from its i.h..• Case pF, u, r :: π, E, òq òs 6 ppu, πq :: F, r, , E, óq. Every point follows from its i.h.. holds for an initial state ó | | t 0 | | if t 0 is closed and well-named. For a non-empty evaluation sequence we list the cases for the last transitions:

	Closure Invariant
	e invariant trivially

1 .

 1 Weak Extension, i.e. pF w :: F t q9pE w :: E t q with F t 9E t . By i.h. rrpF t , E t qss is not applicative and both rrF w ss and rrE w ss are not applicative. By de nition, rrppF w :: F t q, pE w :: E t qqss " rrpF t , E t qssxrrE w ssxrrF w ssyy, which is then not applicative.2. Abstraction, i.e. px :: F q9pŹx :: Eq with F 9E. Immediate, as rrpF, Eqssxλx.ly is not applicative.We can now prove that the decoding of the data-structures of a reachable state is a LO context. Lemma A.16 (Full proof of Lem. 3.67-LO decoding invariant). Let S " xϕ | F | s | π | Ey be a reachable state. en rrpF, Eqss and C S are LO contexts.

•

 Case pF, λx.t, s :: π, E, óq ù m pF, t, π, rxzss :: E, óq. By i.h. rrpF, Eqss is LO. Let F " F w :: F t , so that rrpF, Eqss " rrpF t , EqssxrrF w ssy. Note that, by the name invariant(Lem. 3.64), the eventual occurrences of x are all in t and so x R fvprrF w ssq, and in particular x R lfvprrF w ssq. en, rrpF t , EqssxrrF w ssrxzssy is LO: the conditions of Def. 3.5 are satis ed either because rrpF, Eqss " rrpF t , EqssxrrF w ssy is LO or because x R lfvprrF w ssq. • Case pF, λx.t, , E, óq ós 2 px :: F, t, , Źx :: E, óq. By i.h. we have rrpF, Eqss is LO and by Lem. A.15 rrpF, Eqss is not applicative, so rrppx :: F q, pŹx :: Eqqss " rrpF, Eqssxλx.ly is LO (it satis es the conditions of Def. 3.5 because rrpF, Eqss does). • Case px :: F, t, , E, òq òs 4 pF, λx.t, , xŸ :: E, òq. By the compatibility invariant (Lem. 3.64) px :: F q9E, and by the factorization property of compatible pairs (Lem. 3.63) E " E w :: Źx :: E 1 . By de nition rrppx :: F q, pE w :: Źx :: E t qqss " rrpF, E t qssxλx.rrE w ssy that by i.h. is LO. Now, rrpF, E t qss is LO, as it satis es the conditions of Def. 3.5 because rrpF, Eqss does. We conclude by noticing that the compatible pair of the target state satis es rrpF, pxŸ :: Eqqss " rrpF, pxŸ :: E w :: Źx :: E t qqss " Lem. 3.66 rrpF, E t qss.

 etc. range over evaluation contexts in E ϑ I ϑ , I ϑ 1 , I ϑ 2 , etc. range over inert evaluation contexts in E , N ϑ 1 , N ϑ 2 , etc. range over strong normal forms in nfϑ M ϑ , M ϑ 1 , M ϑ 2 , etc. range over strong structures in S ϑ so rather than saying "t is of the form Cxsy, where C P E ϑ and s P S ϑ 1 ", we might say "t is of the form F ϑ xM ϑ 1 y".De nition A.18 (Frozen variables). e frozen variables fz ϑ pCq of a context C are the rigid bound variables that bind the hole of C. fz ϑ p˝q " ϑ fz ϑ pCtq " fz ϑ pCq fz ϑ ptCq " fz ϑ pCq fz ϑ pλx.Cq " fz ϑYtxu pCq fz ϑ ptrxzCsq " fz ϑ pCq fz ϑ pCrxztsq " " fz ϑYtxu pCq if t is a strong ϑ-structure fz ϑ pCq otherwise Lemma A.19. fz ϑ pC 1 xC 2 yq " fz fz ϑ pC 1 q pC 2 q.Proof. By induction on C 1 .Lemma A.29. Variables below evaluation contexts are reachable. More precisely, if t " Cxxxyy where C P E ϑ (resp. t " E θ), then x P ngvptq. Proof. By induction on the derivation that C P E ϑ . en by induction on t, using Lem. A.28 and Lem. A.25 we can check that t P nfϑ. (Ď) We prove the following more general property: nfϑ Y S ϑ Ď NFp ϑ ùq, by taking a term t P nfϑYS ϑ and proceeding by induction on the derivation that t P nfϑYS ϑ . " t 1 t 2 with t 1 P S ϑ and t 2 P nfϑ. By i.h., t 1 P NFp Since t 1 P S ϑ , then t 1 is not an answer. erefore t P NFp " t 1 rxzt 2 s, where t 1 P X ϑYtxu and x P ngvpt 1 q and t 2 P S ϑ . By i.h., t 1 P NFp Finally, reduction at the root is not possible since t 2 is a structure, hence not an answer. " t 1 rxzt 2 s, where t 1 P X ϑ and x R ngvptq. By i.h., t 1 P NFp By Lem. A.29, reduction at the root is not possible. By the same lemma, the focus of reduction cannot be any subterm in t 2 . us t P NFp

	Lemma A.30 (Full proof of Lem. 4.15-Characterization of ϑ-normal forms). e following
	sets are equal:
	• e set of ϑ-normal forms nfϑ (cf. Def. 4.11).
	• e set of normal forms of the strong call-by-need strategy	ϑ ù.
	Proof. (Ě) Let t P NFp
	e interesting cases are	, S , and S G:
	1.	: t ϑ ùq.
	2.	S : t ϑ ùq
		and t 2 P NFp
	3.	S G: t

θ N ϑ ϑ ùq. ϑ ùq and t 2 P NFp ϑ ùq. ϑ ùq. ϑ ùq. ϑ ùq.

 1.3 If N ϑ is a free variable x such that x R fz ϑ plq. Impossible, since x R ϑ, but a variable x is a strong normal form in nfϑ if and only if x P ϑ. 2. EA L, i.e. F ϑ " I ϑ s en since F ϑ xty is a ϑ-normal form, the subterm I ϑ xty must also be a ϑ-normal form. Moreover t is a a I ϑ -reduction place by Lem. A.32. By i.h. we conclude that this is impossible. 3. ES LN S , ES LS , ES R, EA RS , EL Similar to EA L. Lemma A.34 (Full proof of Lem. 4.17-Unique decomposition). If F ϑ 1 xt 1 y " F ϑ 2 xt 2 y such that t i is a F ϑ i -reduction place for i P t1, 2u, then F ϑ 1 " F ϑ 2 and t 1 " t 2 . If t 1 is the redex pa ern of a beta-step Suppose that F ϑ 2 were not empty. Let t 1 " pλx.sqL u. en F ϑ 2 xt 2 y " pλx.sqL u. By Lem. A.21 we have that L can be split asL " L 1 L 2 such that F ϑ 2 " L 2 u. is means that t 2 " pλx.sqL 1 , so t 2 cannot be a F ϑ 2 -reduction place, as it is neither an application nor a variable. Hence this case is impossible.1.2 If t 1 is a variable x contracted by an ls-step Impossible, as there is no substitution binding x.1.3 If t 1 is a free variable x such that x R fz ϑ pF ϑ 1 q " ϑ Immediate, as F ϑ 2 " l so t 2 " x R ϑ " fz ϑ pF ϑ 2 q. EA L, i.e. F ϑ 2 " I ϑ 2 s en I ϑ 1 xt 1 y " I ϑ 2 xt 2 y. e contexts I ϑ 1 and I ϑ 2 are both in E θ and hence also in E ϑ , and each t i is a I ϑ i -reduction place (by Lem. A.32), so by i.h. we have pI ϑ 1 , t 1 q " pI ϑ 2 , t 2 q.is implies that M ϑ " I ϑ 1 xt 1 y where t 1 is a I ϑ 1reduction place. A strong normal form such as M ϑ cannot have a reduction place such as t 1 under an evaluation context such as I ϑ 1 . is last fact is a direct application of Lem. A.33.3. ES LN S , i.e. F ϑ1 " F ϑ 11 rxzss with s R S ϑ and x R ϑ By case analysis on the formation rules for F ϑ 2 . Note that F ϑ 2 cannot be empty, since the symmetric situation has already been considered. 3.1 ES LN S , i.e. F ϑ 2 " F ϑ 21 rxzss Note that each t i is a F ϑ i1 -reduction place by Lem. A.32. By the i.h. on F ϑ 1 we have that pF ϑ 1 , t 1 q " pF ϑ 2 , t 2 q, so we conclude. 3.2 ES LS , i.e. F ϑ 2 " F ϑYtxu 21 rxzM ϑ s is case is impossible, as the formation rule for F ϑ 1 implies that s R S ϑ , while the formation rule for F ϑ 2 implies that s " M ϑ P S ϑ . 3.3 ES R, i.e. F ϑ 2 " F ϑ 21 xxxyyrxzI ϑ s We claim that this case is impossible. Note that we have that F ϑ 11 xt 1 y " F ϑ 21 xxxyy, where t 1 is a F ϑ 11 -reduction place by virtue of Lem. A.32. Moreover x R ϑ, and x is not bound by F ϑ 21

	Proof. By induction on the derivation of F ϑ 1 as a context in E ϑ :
	1. EB , F ϑ 1 " l By cases on the de nition that t 1 is a F ϑ 1 -reduction place:
	1.1 2. EA L, i.e. F ϑ 1 " I ϑ 1 s en I ϑ 1 xt 1 y s " F ϑ 2 xt 2 y. By case analysis on the formation rules
	for F ϑ 2 . Note that F ϑ 2 cannot be empty, since the symmetric situation has already been
	considered.
	2.1

 ES R, i.e. F ϑ 2 " F ϑ 21 xxxyyrxzI ϑ s en we have that M ϑ " I ϑ xt 2 y. Note that t 2 is a I ϑ -reduction place byLem. A.32. is is impossible since M ϑ is a strong normal form, and it might not have a reduction place under an evaluation context(Lem. A.33). By case analysis on the formation rules for F ϑ 2 . Note that F ϑ 2 cannot be empty, nor built using ES LN S , ES LN S , or ES LS , since the symmetric situations have already been considered. e only remaining possiblity is that F ϑ 2 is built using ES R, i.e. F ϑ 2 " F ϑ 21 xxxyyrxzI ϑ 2 s. en each t i is a I ϑ i -reduction place, as a consequence of Lem. A.32. By applying the i.h. we obtain that pI ϑ 1 , t 1 q " pI ϑ 2 , t 2 q, as required.6. EA RS , i.e. F ϑ 1 " M ϑ 1 F ϑ 11 By case analysis on the formation rules for F ϑ 2 . Note that F ϑ 2 cannot be empty, nor built using EA L, since the symmetric situations have already been considered. e only remaining possiblity is that F ϑ 2 is built using EA RS , i.e.

	4. ES LS , i.e. F ϑ 1 " F 11 ϑYtxu Note that F ϑ 2 cannot be empty, nor built using ES LN S or ES LS , since the rxzM ϑ s By case analysis on the formation rules for F ϑ 2 . symmetric situations have already been considered. 4.1 ES LS , i.e. F ϑ 2 " F ϑYtxu 21 rxzM ϑ s en each t i is a F ϑYtxu i1 -reduction place as a consequence of Lem. A.32, so we may apply the i.h. to conclude pF ϑYtxu 11 , t 1 q " pF ϑYtxu 21 , t 2 q, as required. 4.2 5. ES R, i.e. F ϑ 1 " F ϑ 11 xxxyyrxzI ϑ 2 " M ϑ 2 F ϑ 21 . en each t i is a F ϑ i1 -reduction place, as a consequence of Lem. A.32. By applying the i.h. we conclude that pF ϑ 11 , t 1 q " pF ϑ 21 , t 2 q, as required. 1 s F ϑ 7. EL , i.e. F ϑ 1 " λx.F ϑYtxu 11 en F ϑ 2 cannot be empty (the symmetric situation was already considered), so F ϑ ϑYtxu 2 must be of the form λx.F 21

 De nition A.[START_REF] Chang | e call-by-need lambda calculus, revisited[END_REF] (Head reachable variables). e set of head reachable variables of a term is de ned as follows. Note that hrvptq Ď fvptq.Proof. Straightforward by induction on the derivations.Lemma A.37. Let t P WNF ϑ or t P S w ϑ . en x P hrvptq implies x P ϑ.Proof. By simultaneous induction on the derivation that t P WNF ϑ or t P S w : t " t 1 t 2 with t 1 P S w ϑ

									ϑ .	e cases
	w	, w	, and w	are immediate.
	1.							
				hrvpxq	def " txu	
				hrvptsq	def " hrvptq	
				hrvpλx.tq	def " ∅	
				hrvptrxzssq	def " phrvptqzxq Y	# hrvpsq if x P hrvptq ∅ otherwise
		e set of ϑ-weak normal forms (N w ϑ), is de ned below, mutually inductively with the set
	of ϑ-weak structures (S w ϑ). Here, X ϑ stands for either the set N w ϑ or the set S w ϑ :
			x P ϑ x P S w ϑ	w	t P S w ϑ ts P S w ϑ	w	t P S w ϑ t P N w ϑ	w	λx.t P N w ϑ	w
		t P X ϑYtxu x P hrvptq s P S w ϑ	w	'	t P X ϑ x R hrvptq	w	trxzss
				trxzss P X ϑ				P X ϑ
	Lemma A.36. N w ϑ " WNF ϑ				

w

 38. us x P hrvpt 2 q and the i.h., again, yields E 2 such that t 1 " E 2 xxxyy. We conclude by se ing E def " E 1 xxyyyryzE 2 s. Remark A.40. Strong structures are also weak structures, i.e. S ϑ Ď S w ϑ . Remark A.41 (Weakening). If s P S w ϑ is a weak structure then s P S w ϑYtxu . Note: technically we require that x does not occur bound in s, which we can always guarantee by α-conversion. Lemma A.42. If I ϑ is an inert evaluation context, then I ϑ xxxyy P S w ϑYtxu . Proof. By induction on the derivation that I ϑ P E θ. 1. EB , I ϑ " l. en x P ϑ Y txu and the result follows from w . 2. EA L, I ϑ " I ϑ 1 t. By the i.h. on I ϑ 1 and w . 3. EA RS , I ϑ " t 1 F ϑ with t 1 P S ϑ . By Rem. A.40, t 1 P S w ϑ . Since x does not occur bound in t 1 , by Rem. A.41, t 1 P S w ϑYtxu . We conclude using w . 4. ES LN S , I ϑ " I ϑ 1 ryzts with t R S ϑ and y R ϑ. By the i.h. I ϑ 1 xxxyy P S w ϑYtxu . Moreover, y R ϑ and, by the statement of the result, also y ‰ x. Hence y R ϑ Y txu. We conclude from Lem A.37 and w ryzt 2 s with t 2 P S ϑ . By the i.h. I Lemma A.43 (Strengthening). If s P S w ϑYtxu is a weak structure and x R hrvpsq, then s P S w ϑ .Proof. By induction on the derivation that s P S w ϑYtxu .Lemma A.44. Let I ϑ P E θ be an inert evaluation context. If I ϑ rss R S w ϑ , then I ϑ P WCtx.Proof. By induction on the derivation that I ϑ P E θ. e case EB is immediate:1. EA L, I ϑ 1 t. Since I ϑ rss R S w ϑ , then I ϑ 1 rss R S w ϑ .us by i.h. I ϑ 1 P WCtx. Hence also I ϑ P WCtx.6. EA RS , s F ϑ1 with s P S ϑ . Immediate.Lemma A.47. Let X ϑ stand for either WNF ϑ or S w ϑ . If x R hrvpF ϑ rxsq and F ϑ rxs P X ϑ , then F ϑ rts P X ϑ .Proof. By simultaneous induction on F ϑ rxs P WNF ϑ and F ϑ rxs P S w : F ϑ rxs " t 1 t 2 with t 1 P S w ϑ . en two cases are possible:• t 1 t 2 " I ϑ t 2 . We resort to the i.h..•t 1 t 2 " t 1 F ϑ 1 . e result is immediate. 2. w ' : F ϑ rxs " t 1 ryzt 2 s with t 1 P X ϑYtyu and y P hrvpt 1 q and t 2 P S w ϑ . e following further cases are considered: • F ϑ rxs " F ϑ 1 rxsryzt 2 s with t 2 R S ϑ and y R ϑ. e result follows from the i.h. on F ϑ 1 and Lem. A.46. • F ϑ rxs " F ϑYtyu 1 rxsryzt 2 s with t 2 P S ϑ . e result follows from the i.h. and Lem A.46.

	7. EL , λy.F 1 ϑYtyu	. is case is not possible since hrvpλy.F 1 ϑYtyu	xxxyyq " ∅.
					ϑ . e w	, w	,
	and w	cases are immediate.	
	1.			
				˝.
	5. ES LS , I ϑ " I ϑYtyu 1		ϑYtyu 1	xxxyy is a ϑ Y tx, yu-
	structure. Moreover, from Rem. A.40, t 2 P S w ϑ . We may assume that y does not occur in t 2 . We conclude using w ˝or w ' , depending on whether y P hrvpI ϑYtyu 1 xxxyyq
	or not.		
	6. ES R, I ϑ " I ϑ 1 xxyyyryzI ϑ 2 s. By the i.h. I ϑ 1 xxyyy P S w ϑYtyu . By by Rem. A.41 I ϑ 1 xxyyy P
	S w ϑYtx,yu . We conclude using w	˝or	w	' , depending on whether y P hrvpI ϑ 1 xxxyyq
	or not.		

w

 • F ϑ rxs " F ϑYtyu 1rxsryzt 2 s with t 2 P S ϑ . e result follows from the i.h.• F ϑ rxs " F ϑ 1 xxyyyryzI ϑ rxss and t 2 " I ϑ rxs. e result is immediate.Lemma A.48. Let r be a redex and X ϑ stand for either S w ϑ or WNF ϑ . If F ϑ rrs P X ϑ , then hrvpF ϑ rrsq " hrvpF ϑ rssq, for any s. is also holds, in particular, if F ϑ is an inert evaluation context.Proof. By induction on the derivation that F ϑ rrs P X ϑ . : F ϑ rrs " t 1 t 2 with t 1 P S w ϑ . en two cases are possible:• t 1 t 2 " I ϑ t 2 . We resort to the i.h. with respect to item (2).• t 1 t 2 " t 1 F ϑ 1 . e result is immediate.2. w ' : F ϑ rrs " t 1 ryzt 2 s with t 1 P X ϑYtyu and y P hrvpt 1 q and t 2 P S w ϑ . e following further cases are considered:• F ϑ rrs " F ϑ 1 rrsryzt 2 s with t 2 R S ϑ and y R ϑ. e result follows from the i.h. on F ϑ 1 rrs. • F ϑ rrs " F ϑYtyu 1 rrsryzt 2 s with t 2 P S ϑ . e result follows from the i.h. on F F ϑ rrs " F ϑ 1 xxyyyryzI ϑ rrss and t 2 " I ϑ rxs. e result follows from the i.h. on I ϑ rxs.3. w˝: F ϑ rrs " t 1 ryzt 2 s with t 1 P X ϑ and y R hrvpt 1 q. e following cases are possible:• F ϑ rrs " F ϑ 1 rrsryzt 2 s with t 2 R S ϑ and y R ϑ. e result follows from the i.h. • F ϑ rrs " F ϑYtyu 1 rrsryzt 2 s with t 2 P S ϑ . e result follows from the i.h. • F ϑ rrs " F ϑ 1 xxyyyryzI ϑ rrss and t 2 " I ϑ rrs. e result follows from the i.h.. Lemma A.49. Let X ϑ stand for either WNF ϑ or S w ϑ . If t By induction on the derivation that t P X ϑ . e w : t " t 1 t 2 and t 1 P S w ϑ . en t 1 t 2 " F ϑ rrs and we have two further cases. If t 1 R S ϑ

	e w , w 1. ϑYtyu , w , and w cases are immediate. 1 , and w cases rrs. are immediate. 1.

w

• ϑ ù r u and t P X ϑ , then u P X ϑ .

Proof. w

 and t 2 is an answer. By Lem. A.47, F ϑ 1 xxt 2 yy P WNF ϑ . us we conclude using w ˝. A similar argument applies if X " S w .• F ϑ rrs " F ϑ 1 rrsrxzt 2 s with t 2 R S ϑ and x R ϑ. e result follows from the i.h. and Lem A.48 (which guarantees that x R hrvpt1 1 q, where t 1 1 is the reduct ofF ϑ 1 rrs). • F ϑ rrs " F ϑYtxu 1rrsrxzt 2 s with t 2 P S ϑ . e result follows from the i.h. • F ϑ rrs " F ϑ 1 xxxyyrxzI ϑ rrss and t 2 " I ϑ rrs. e result is immediate. If i ă n, then t j P N w ϑ for all i ď j ď n. Proof. Let C i xxxyy be the context selected at step t i ϑ ù t i`1 . If C i xxxyy R S w ϑ and C i xxxyy not an answer, then C i P WCtx (cf. Lem A.45 in Appendix) and hence step t i ϑ ù t i`1 is also a weak step. If, moreover, this happens for every step i with i P 1..n, then we are done. Otherwise, let j P 1..n be the rst index such that either C j xxxyy P S w ϑ or C j xxxyy not an answer. en all subsequent steps are non-weak steps; this follows from the fact that weak call-by-need reduction preserves both answers and weak structures (cf. Lem. A.49).

	eorem A.50 (Full proof of m. 4.23-Conservativity). If t 0	ϑ ù t 1	ϑ ù . . . t n´1	ϑ ù t n
	there exists an 1 ď i ď n such that the three following conditions hold:
	1. t 0	W ùt 1	W ù . . . t n´1	W ùt i
	2. t i	ϑzW ù t i`1	ϑzW ù . . . t n´1	ϑzW ù t n
	3.			

 are sca ered throughout various lemmas: the rst item of Lem. 4.49 is proved in Lem. A.51 (backward stability of answers) and Lem. A.52 (backward stability of db-redexes); the second item of Lem. 4.49 is proved in Lem. A.69 (backward stability of normal forms); the third item of Lem. 4.49 is proved in Lem. A.70 (backward stability of evaluation contexts).

 Now, since C 1 xvy " pλx.sqL 1 , there are two cases, depending on the position of the hole of C 1 : 1.1 e hole of C 1 lies inside s en C 1 " pλx.C 2 qL 1 , and the step is of the form t 0 " pλx.C 2 xxyyyqL 1 ryzvL 2 s By taking s 0 :" C 2 xxyyy and L 0 :" L 1 ryzvL 2 s we conclude. 1.2 e hole of C 1 lies inside L 1 en C 1 " pλx.sqL 11 rzzC 2 sL 12 where L 1 " L 11 rzzC 2 xvysL 12 , and the step is of the form t 0 " pλx.sqL 11 rzzC 2 xxyyysL 12 ryzvL 2 s sh pλx.sqL 11 rzzC 2 xvysL 12 ryzvsL t. By taking s 0 :" s and L 0 :" L 11 rzzC 2 xxyyysL 12 ryzvL 2 s we conclude.

ϑ Ý Ý Ñ sh pλx.C 2 xvyqL 1 ryzvsL 2 " t. ϑ Ý Ý Ñ

 e context C 1 is of the form pλx.C 2 qL en the original step is t 0 " pλx.C 2 xryqL s sh pλx.C 2 xr 1 yqL s " t. Taking s 0 :" C 2 xry, with L 0 " L and u 0 " u we conclude.1.2e context C 1 is of the form pλx.sqL 1 ryzC 2 sL 2 en the original step is of the form t 0 " pλx.sqL 1 ryzC 2 xrysL 2 s ϑ Ý Ý Ñ sh pλx.sqL 1 ryzC 2 xr 1 ysL 2 s " t. By taking L 0 :" L 1 ryzC 2 xrysL 2 , with s 0 " s and u 0 " u we conclude.2. If C 1 R E ϑ en the step C 1 xry Ñ shzgc C 1 xr 1 y " pλx.sqL is ϑ-internal, so since answers are backward stable by internal steps (Lem. A.51) we have that C 1 xry " pλx.s 0 qL 0 and the anchor of the step is not below a substitution context. Hence t " C 1 xry u " pλx.s 0 qL 0 u and the anchor of the original step is not below a context of the form L u, as required.

otherwise we would have C 1 u P E ϑ , which means that the original step is ϑ-external. So C 1 P E ϑ zE θ and by Lem. A.23 we know that C 1 has the form of an answer. More precisely, there are two subcases: 1.1 ϑ Ý Ý Ñ

 De nition A.53 (Structural variables). Let C be a generalized evaluation context over ϑ. More precisely, let C P X ϑ where X ϑ is either the set E ϑ or the set E θ. e set of structural variables of C, wri en svpCq is de ned by induction on the derivation that C P X ϑ as follows:

	pEB q	svplq	def " ∅		
	pEA Lq	svpC 1 tq	def " svpC 1 q		
			where C 1 P E θ		
	pES LN S q	svpC 1 rxztsq	def " svpC 1 qztxu		
			where C 1 P X ϑ , x R ϑ, and t R S ϑ
	pES LS q	svpC 1 rxztsq	def " psvpC 1 qztxuq Y	#	ngvptq if x P svpC 1 q ∅ otherwise
			where C 1 P X ϑYtxu and t P S ϑ
	pES Rq	svpC 1 xxxyyrxzC 2 sq			

def

" psvpC 1 qztxuq Y svpC 2 q

where C 1 P X ϑ and

C 2 P E θ pEA RS q svpt C 1 q def " ngvptq Y svpC 1 q

where t P S ϑ and

C 1 P E ϑ pEL q svpλx.C 1 q def " svpC 1 qztxu where C 1 P E ϑYtxu

Lemma A.54 (Strengthening for evaluation contexts). Let C be a (resp. inert) pϑ Y txuqevaluation context. 1. If x R svpCq then C is a (resp. inert) ϑ-evaluation context.

 1. ES LS , C 1 " C 11 ryzts P X ϑYtxu with t P S ϑYtxu and C 11 P X ϑYtx,yu We consider two cases, depending on whether x is a structural variable in C 11 : 1.1 If x P svpC 11 q en by i.h. there is a context C 21 P X ϑYtyu such that C 11 xqy " C 21 xxxyy. We consider two further subcases, depending on whether y is a structural variable in C 21 : 1.1.1 If y P svpC 21 q We consider two more cases, depending on whether x is garbage in the structure t: 1.1.1.1 If x P ngvptq Since y P svpC 21 q we may apply the i.h. again, to obtain that there exists a context C 31 P X ϑ such that C 21 xxxyy " C 31 xxyyy. Note that we are able to apply the i.h. since the term C 21 xxxyy " C 11 xqy is smaller than the original term, namely C 1 xqy " C 11 xqyryzts. Since non-garbage variables are below evaluation contexts (Lem. A.25) and t P S ϑYtxu we know that there exists a context C 22 P E θ such that t " C 22 xxxyy. So we have C 1 xqy " C 11 xqyryzts " C 11 xqyryzC 22 xxxyys " C 21 xxxyyryzC 22 xxxyys " C 31 xxyyyryzC 22 xxxyys with C 31 P X ϑ and C 22 P E θ. By applying the rule for building evaluation contexts by going inside substitutions (ES R), we have that C 31 xxyyyryzC 22 s P X ϑ . 1.1.1.2 If x R ngvptq By the fact that garbage variables are not needed in "ϑ" (Lem. A.25) we have that t P S ϑ . So C 1 xqy " C 11 xqyryzts " C 21 xxxyyryzts with C 21 P X ϑYtyu and t P S ϑ . By applying the rule for building evaluation contexts with structural substitutions (ES LS), we have that C 21 ryzts P X ϑ . 1.1.2 If y R svpC 21 q en since non-structural variables are not required in "ϑ" (Lem. A.54), C 21 P X ϑ . So C 1 xqy " C 11 xqyryzts " C 21 xxxyyryzts with C 21 P X ϑ . By the fact that adding an arbitrary substitution preserves evaluation contexts (Lem. A.26), we have C 21 ryzts P X ϑ , as required. 1.2 If x R svpC 11 q Recall that, by hypothesis, x P svpC 1 q " svpC 11 ryztsq and that by de nition of structural variables: svpC 11 ryztsq " svpC 11 q Y A where A " ngvptq if y P svpC 11 q, and A " ∅ otherwise. Since x R svpC 11 q, we must have that y P svpC 11 q and x P ngvptq. By applying the lemma that non-structural variables are not required in "ϑ" (Lem. A.54) on the fact that C 11 P X ϑYtx,yu we have C 11 P X So we have C 1 xqy " C 11 xqyryzts " C 21 xxyyyryzts " C 21 xxyyyryzC 22 xxxyys with C 21 P X ϑ and C 22 P E θ. By applying the rule for building evaluation contexts by going inside substitutions (ES R), we obtain that C 21 xxyyyryzC 22 s P X ϑ , as required. 2. ES R, C 1 " C 11 xxyyyryzC 12 s P X ϑYtxu with C 11 P X ϑYtxu and C 12 P E θYtxu en svpC 1 q " svpC 11 xxyyyryzC 12 sq " psvpC 11 qztyuq Y svpC 12 q. Observe that x ‰ y by the variable convention. We consider two cases, depending on whether x is a structural variable in C 11 : 2.1 If x P svpC 11 q en by i.h. there is a context C 21 P X ϑ such that C 11 xxyyy " C 21 xxxyy. By the fact that adding an arbitrary substitution preserves evaluation contexts (Lem. A.26), we obtain that C 21 ryzC 12 xqys P X ϑ , as required. 2.2 If x R svpC 11 q Since non-structural variables are not required in "ϑ" (Lem. A.54), C 11 P X ϑ . Moreover, it must be the case that x P svpC 12 q, so by i.h. we have that there is a context C 22 P E θ such that C 12 xqy " C 22 xxxyy. By applying the formation rule for generalized evaluation contexts going inside substitutions (ES R) we conclude that C 11 xxyyyryzC 22 s P X ϑ , as required.

ϑYtyu

. Since y P svpC 11 q, by the i.h. we have that there exists a context C 21 P X ϑ such that C 11 xqy " C 21 xxyyy. Moreover, x P ngvptq, so since non-garbage variables are below evaluation contexts

(Lem. A.25)

, there exists a context C 22 P E θ such that t " C 22 xxxyy.

3. EA RS , C 1 " t C 11 P X ϑYtxu with t P S ϑYtxu and C 11 P E ϑYtxu en svpC 1 q " ngvptq Y svpC 11 q We consider two cases, depending on whether x is non-garbage in t: 3.1 If x P ngvptq Since non-garbage variables are below evaluation contexts (Lem. A.25), the structure t can be wri en as of the form C 21 xxxyy, with C 21 P E θ. By applying the formation rule for generalized evaluation contexts going to the le of an application (EA L) we conclude that C 21 C 11 xqy P E θ. If X ϑ is E θ, we are done. If X ϑ is E ϑ , we are also done, since E θ Ď E ϑ . 3.2 If x R ngvptq Since garbage variables are not required in "ϑ" (Lem. A.25), t P S ϑ . Moreover, x P svpC 11 q, so by i.h. there must exist a context C 21 P E ϑ such that C 11 xqy " C 21 xxxyy. By applying the formation rule for generalized evaluation contexts going to the right of a structure (EA RS) we conclude that t C 21 P X ϑ as required.

 1 If r is at the root of t en r is a lsv step, which means that t 1 " Cxxxyy and t 2 " vL in such a way that r : t " CxxxyyrxzvLs Since s " CxvyrxzvsL P nfϑ we may strip the substitution context rxzvsL (byLem. A.27) to obtain that Cxvy P nf θ where θ Ď fz ϑ prxzvsLq " fz ϑ pLq. We consider two cases, depending on whether Cxxxyy is a normal form in nf θ:2.1.1 If Cxxxyy P nf θ We consider two further subcases, depending on whether x is a non-garbage variable in Cxxxyy: Note that the underlined occurrence of x is nongarbage on the le -hand side, so it is also non-garbage on the righthand side. More precisely, p Cxl, xy " F ϑ is an evaluation context so by Lem. A.66 it is also a non-garbage context. Recall that replacing a variable by an arbitrary term in a non-garbage context is still a non-garbage context (Lem. A.67), so p Cxl, vy is also non-garbage. Moreover, since nongarbage variables coincide with variables below non-garbage contexts .1.1.2 If x R ngvpCxxxyyq Let us show that ngvptq Ď ngvpsq. Consider an arbitrary variable y P ngvptq " ngvpCxxxyyrxzvLsq, and let us show that y P ngvpsq. Since x is garbage in Cxxxyy, it must be the case that y P ngvpCxxxyyq. Moreover, since x ‰ y and y is non-garbage in Cxxxyy, by the fact that nongarbage variables are below non-garbage contexts (Lem. A.65) there must exist a two-hole context p C such that p Cxl, xy is non-garbage and p Cxy, ly " C. By replacing a variable in a non-garbage context (Lem. A.67) we obtain that p Cxl, vy " C is also non-garbage. So y P ngvp p Cxy, vyq " ngvpCxvyq. Hence y P ngvpCxvyrxzvsLq " ngvpsq, as required. 2.1.2 If Cxxxyy R nf θ en by de nition (Def. A.56) C is a nf θ-critical context. By Lem. A.57 since C is X θ-critical, it is an evaluation context, C P E θ. By strengthening ϑ (Tactic A.55) CrxzvLs P E ϑ , contradicting the fact that the step r is ϑ-internal. 2.2 If r is internal to t 1 Let r 1 : t 1 Ñ s 1 be the step isomorphic to r but going under the context rxzt 2 s. en s " s 1 rxzt 2 s. Note that r 1 cannot be ϑ-external, since then r would be ϑ-external. ere are two cases, depending on whether x is garbage in t

ϑ Ý Ý Ñ sh CxvyrxzvsL " s. 2.1.1.1 If x P ngvpCxxxyyq Recall that θ Ď ϑ Y domL. Moreover, observe that Cxxxyy is outside the scope of L in the original term CxxxyyrxzvLs, so by Barendregt's convention we may suppose that variables in domL do not occur in Cxxxyy. In particular, variables in domL are garbage in Cxxxyy, so since garbage variables are not required in "ϑ" (Lem. A.25), Cxxxyy P nfϑ. Since x P ngvpCxxxyyq and Cxxxyy is a normal form in nfϑ, by the fact that non-garbage variables in normal forms are below evaluation contexts (Lem. A.25), we have that there exists an evaluation context F ϑ P E ϑ such that Cxxxyy " F ϑ xxxyy. ere are two subcases, depending on whether C " F ϑ or C ‰ F ϑ : • If C " F ϑ en CrxzvLs is an evaluation context in E ϑ , contradicting the fact that r is ϑ-internal. • If C ‰ F ϑ en there is a two-hole context p C such that p Cxl, xy " F ϑ and p Cxx, ly " C, and the step is of the form: r : t " p Cxx, xyrxzvLsÑ shzgc p Cxx, vyrxzvsL " s. (Lem. A.65) we have that x P ngvp p Cxx, vyq. is contradicts the fact that s is a normal form, since to conclude that p Cxx, vyrxzvLs is a normal form, given that x P ngvp p Cxx, vyq, we would require that x is bound to a structure, but it is bound to a value v. 21 or not: 2.2.1 If x P ngvpt 1 q Note that by i.h. x P ngvps 1 q.

 r is internal to t 2 Let r 1 : t 2 Ñ s 2 be the step isomorphic to r but going under the context t 1 rxzls. en s " t 1 rxzs 2 s. We consider two subcases, depending on whether x is garbage in t 1 or not: By the fact that non-garbage variables in normal forms are below evaluation contexts (Lem. A.25) there must exist an evaluation context F ϑ 1 P E ϑ such that t 1 " F ϑ 1 xxxyy. Moreover, since the step r 1 is external, we have that t 2 " F ϑ 2 xxΣyy where F ϑ 2 P E ϑ and Σ is the anchor of a redex. If we let Σ 1 denote its contractum, we have that the step r is of the form r :

2.3.1 If

x P ngvpt 1 q We consider two subcases, depending on whether r 1 is ϑexternal or ϑ-internal:

2.3.1.1 If r is ϑ-external Since t

1 rxzs 2 s is a normal form, we have that t 1 P nfϑ Y txu.

 2.1.1.1 If y P ngvpCxxyyyq Recall that non-garbage variables in a normal form are below evaluation contexts (Lem. A.25). en since Cxxyyy is a normal form in X ϑ and y P ngvpCxxyyyq, we have that Cxxyyy may be wri en as F ϑ xxyyy, where F ϑ P E ϑ .

 . A.62 let us strip the substitution L 1 from F ϑ 1 xxxyy. is gives us two possibilities, A and B:1.1.1 Case A en F ϑ 1 " F θ 11 L 1 andCxvy " F θ 11 xxxyy where θ " fz ϑ pL 1 q and F θ 11 P X θ. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F θ 11 . 1.1.1.1 e hole of C and the hole of F θ 11 are disjoint en there is a two-hole context p C such that p Cxl, vy " F θ 11 and p Cxx, ly " C. By Lem. A.58 there are two possibilities: the le and the right branch of the disjunction. e right branch case is impossible since it contradicts that r is ϑ-internal (by strengthening ϑ, Tactic A.55). In the le branch case, p Cxl, zy P X Cxl, zyrzzvLs P X ϑ . Hence t 0 " p Cxx, zyrzzvLs and by taking F ϑ 0 :" p Cxl, zyrzzvLs we conclude. 1.1.1.2 e context C is a pre x of the context F θ 11 By strengthening ϑ (Tactic A.55), CrzzvLs P X θ. is contradicts the fact that r is ϑ-internal.

	1.1.1.3	e context F θ 11 is a pre x of the context C en C " F θ 11 xC 1 y, so C 1 xvy "
		x, which is impossible.
	1.1.2 Case B en F ϑ 1 " F θ 11 xxwyyL tlu, Cxvy " F θ 11

θ so by strengthening ϑ (Tactic A.55), p

 Hence y cannot occur free in the subterm Cxxzyy on the le -hand side of the step r. In particular, y does not occur as a structural variable in C. So applying the fact that non-structural variables are not required in "ϑ" (Lem. A.54) we obtain that CrzzvLs P X ϑ . is contradicts that the step r is ϑ-internal.

	2.1.1.2	e context C is a pre x of F
	2.1.1.3	e context F	θYtyu 11	is a pre x of C en C " F	θYtyu 11	xC 1 y, so C 1 xvy " x,
		which is impossible.	
	2.1.2 Case B en F ϑ 1 " F	ϑYtyu 11	xxwyyL tlu, Cxvy " F	θYtyu 11

θYtyu 11

By strengthening ϑ (Tactic A.55), CrzzvLs P X ϑYtyu Moreover, y is bound by L 1 ryzM ϑ s " rzzvsL, and y ‰ z, since y is bound to M ϑ and z is bound to v.

 Let r 1 : t 1 0 Ñ shzgc M ϑ . We consider two cases, depending on whether the step r 1 is ϑ-internal or ϑ-internal: 2.3.1 If r 1 is ϑ-external Two further subcases, depending on whether y is a structural variable in F

		ϑYtyu 10 clude by taking F ϑ 0 :" F P X ϑYtyu such that t 1 0 " F	ϑYtyu 10	xxxyy. It is immediate to con-ϑYtyu 10 xxxyyryzM ϑ s.
	2.3	e internal step r is to the right of t 0 " F 0 s ϑYtyu ϑYtyu 1 xxxyyryzt 1 1 or not:
		ϑYtyu 1 2.3.1.1 If y P svpF	

ϑYtyu 10 ryzM ϑ s P X ϑ , since then t 0 " F

 If r 1 is ϑ-internal Since structures are backward preserved by internal steps

	ϑYtyu 1	P X ϑ . en, regardless of whether
	t 1 0 is a structure or not, adding an arbitrary substitution (Lem. A.26) we have F ϑYtyu 1 ryzt 1 0 s P X ϑ . It is then immediate to conclude by taking F ϑ 0 :" F ϑYtyu 1 ryzt 1 0 s P X ϑYtyu 1 xxxyyryzt 1 0 s.
	2.3.2 ϑYtyu 1 t 0 " F ϑYtyu 1 xxxyyryzt 1 0 s, as required.	ryzt 1 0 s P X ϑ , since

ϑ , since indeed t 0 " F (Lem. A.69), t 1 0 P S ϑ . We conclude by taking F ϑ 0 :" F

 . A.62 let us strip the substitution L 1 from F ϑ 1 xxyyy. is gives us two possibilities, A and B: 3.1.1 Case A en: F ϑ 1 " F θ 11 L 1 and Cxvy " F θ 11 xxyyy where θ " fz ϑ pL 1 q and F θ 11 P X θ. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F θ 11 . 3.1.1.1 e hole of C and the hole of F θ 11 are disjoint en there is a two-hole context p C such that p Cxl, vy " F θ 11 and p Cxy, ly " C.

 . A.62 let us strip the substitution L 1 from F ϑYtyu 1 x∆y. is gives us two possibilities, case A and case B in the statement of Lem. A.62: 4.1.1 Case A en F Ytyu 11L 1 in such a way that rzzvsL 1 " L 1 ryzrs and Cxvy " F

	ϑYtyu 1	" F	ϑ 1

ϑ 1 Ytyu 11

 ϑ 3 P E ϑ . Moreover, since structural variables are below evaluation contexts (Lem. A.54), there is an evaluation context F ϑ 2 P X ϑ such that F CrzzvL 1 s P X ϑ . is contradicts the fact that r is an internal step.5.1.1.3 e contextF ϑ 1 11 is a pre x of C en C " F ϑ 1 11 xC 1 y. Given that Cxvy " F ϑ 11 xxyyy we have that v " y, which is impossible. 5.1.2 Case B en F ϑ 1 " F ϑ 1 11 xxx 1 yyL tlu such that F ϑ 1

	(Tactic A.55),	
	ϑYtyu 1	x∆y " F ϑ 2 xxyyy. Hence

 r 1 is ϑ-internal Immediate by i.h..

	6. EA RS , F

ϑ " r F ϑ 1 , where r P S ϑ and F ϑ 1 P E ϑ e situation is t 0 ϑ

 7. EL , F ϑ " λy.F ϑYtyu Straightforward by i.h.. Lemma A.72 (Postponement of internal steps a er external lsv steps). Given any set of variables ϑ such that fvpt 0 q Ď ϑ, if t 0 where the second step is a lsv step, there exists a term t 2 such that t 0 ϑ ù t 2 shzgc t 3 where the rst step is a lsv step. An explicit construction for the diagrams is given.Proof. Let X ϑ denote either the set E ϑ or the set E θ. Let us call r to the internal step t 0 ϑ Ý Ý Ñ sh t 1 and r 1 to the external lsv step t 1ϑ ù t 3 . en t 1 " F ϑ 1 xF ϑ 1 2 xxxyyrxzvLsy and t 3 " F ϑ 1 xF ϑ 1 2 xvyrxzvsLy, where F ϑ 1 xF ϑ 12 rxzvLsy P X ϑ . We write ∆ to stand for the lsv redex F ϑ 1 2 xxxyyrxzvLs and ∆ 1 for its contractum F ϑ 1 2 xvyrxzvsL. By induction on the derivation that F ϑ 1 P X ϑ , the term t 0 will be shown to be of the form F ϑ 10 xF ϑ 2 20 xxxyyrxzv 0 L 0 sy, where F ϑ 10 xF ϑ 2 20 rxzv 0 L 0 sy P X ϑ , and then t 2 " F ϑ 10 xF ϑ 2 20 xv 0 yrxzv 0 sL 0 y, in such a way that the diagram is closed as required by the statement. We write ∆ 0 to stand for the lsv redex F ϑ 2 20 xxxyyrxzv 0 L 0 s and ∆ 1 0 for its contractum F ϑ 2 20 xvyrxzv 0 sL 0 . Furthermore, suppose that F ϑ 1 2 P Y ϑ 1 . en the inductive construction will ensure that F ϑ 2 20 P Y ϑ 2 , where Y ϑ is either E ϑ or E θ.

	ϑ Ý Ý Ñ sh t 1	ϑ ù t 3

 . A.62 let us strip L 1 from F ϑ 2 xxxyy. is gives us two possibilities, case A and case B in the statement of Lem. A.62: 1.1.1 Case A en F ϑ 2 xxxyy " F ϑ 2 21 xxxyyL 1 where ϑ 2 " fz ϑ pL 1 q, the evaluation context F ϑ 2 21 is in X ϑ 2 and we have Cxv 1 y " F ϑ 2 21 xxxyy. We consider three further subcases, depending on the position of the hole of C relative to the position of the hole of F ϑ 2 21 . 1.1.1.1 e hole of C and the hole of F ϑ 2 21 are disjoint en there is a two-hole context p C such that p Cxl, vy " F ϑ 2 21 and p Cxx, ly " C. By Lem. A.58 there are two possibilities for p C: the le and the right branch of the disjunction.

 1.1.1.2 e context C is a pre x of F ϑ 2 21 en F ϑ 2 21 " CxC 1 y, so by Lem. A.20 C must be an evaluation context in X ϑ 2 . By the fact that non-structural variables are not required in "ϑ" (Lem. A.54) we obtain that C P X ϑ . is contradicts the hypothesis that r is an internal step. 1.1.1.3 e context F ϑ 2 21 is a pre x of C en C " F ϑ 2 21 xC 1 y. Since Cxv 1 y " F ϑ 2 21 xxxyy this implies that v 1 " x, which is impossible. 1.1.2 Case B en F ϑ 2 xxxyy " F ϑ 2 21 xxzyyL txu such that Cxv 1 y " F ϑ 2 21 xxzyy and lL txu " L 1

 ϑ 1 sh F θ 111 xC 11 xv 1 yrxzvLsyrzzv 1 sL 1 " t 1 and we have that F ϑ 1 2 xxxyy " C 11 xv 1 y. Given that C 11 is a pre x of F ϑ 1 2 , we have in particular that x occurs free in v 1 . is is impossible in Y θ1 . e remainder of this case is similar to case 3.1.2, by case analysis on the position of the hole of C relative to the position of the hole of F θ1 21 . 3.1.4 Case D en F ϑ 11 is a substitution context, F ϑ 1 2 " F θ1 21 xxwyyL tlu, L 1 " F ϑ 11 xlL txurxzvLsy, and Cxv 1 y " F θ1 21 xxwyy, where θ1 " fz ϑ 1plL txuq, the evaluation context F , and L is a pϑ 1 , wq-chain context. e remainder of this case is similar to case 3.1.2, by case analysis on the position of the hole of C relative to the position of the hole of F is to the le of t 0 " t 1 0 ryzr 0 s en there is a step r 1 :t 1 0 Ñ shzgc F ϑ11 x∆y. Note that r 1 must be ϑ-internal, for otherwise r would be ϑ-external. en it is straightforward to conclude by i.h..3.3e internal step r is to the right of t 0 " t 1 0 ryzr 0 s en r : r 0 Ñ shzgc r and closing the diagram is immediate.4. ES LS , F ϑ1 " F X ϑYtyu and t P S ϑ e situation is t 0

						θ1 21 is
			in Y		
						θ1 21 .
	3.2	e internal step r ϑYtyu 11	ryzts with F	ϑYtyu 11	P ϑ Ý Ý Ñ sh
	F	ϑYtyu 11	x∆yryzts " t 1	ϑ ù F	ϑYtyu 11

2 en F ϑ 1 2 " C 11 xC 2 y. e situation is t 0 " F θ 111 xC 11 xxzyyrxzvLsyrzzv 1 L 1 s ϑ Ý Ý Ñ θ1

 Recall that ∆ " F ϑ 1 2 xxxyyrxzvLs. e remainder of this case is analogous to case 3.1.1.3, by case analysis on whether the hole of C 1 lies to the le or inside the substitution rxzvLs. 4.1.2 Case B en F Cxv 1 y " F

		ϑYtyu 11	" F 111 θYtyu	xxwyyL tlu, θYtyu 111
	4.1.1.3	e context F	

θYtyu 111 is a pre x of C en C " F θYtyu 111 xC 1 y. So ∆ " C 1 xv 1 y.

 Proof. Straightforward by induction on C. Proposition A.77 (Full proof of Prop. 6.4-Redex creation in the LSC). Let t 1 Ý Ñ t 3 be a sequence of two redexes in the LSC such that R creates S. en S is created in exactly one of the following possible ways. e anchors of the redexes R and S are underlined in each case for clarity. 1. Creation case 1: db creates db. t 1 " Cxppλx.pλy.tqL 1 qL 2 sqL 3 uy Cxpλy.tqL 1 rxzssL 2 L 3 uy " t 2 2. Creation case 2: db creates ls. t 1 " C 1 xpλx.C 2 xxxyyqL ty C 1 xC 2 xxxyyrxztsLy " t 2 3. Creation case 3: db creates gc. For x R fvptq: t 1 " C 1 xpλx.tqL sy Creation case 4: ls creates db upwards. t 1 " CxxL 1 rxzpλy.tqL 2 sL 3 sy Cxpλy.tqL 2 L 1 rxzpλy.tqL 2 sL 3 sy " t 2 5. Creation case 5: ls creates db downwards. t 1 " C 1 xC 2 xxL 1 tyrxzpλy.sqL 2 sy C 1 xC 2 xpλy.sqL 2 L 1 tyrxzpλy.sqL 2 sy " t 2 6. Creation case 6: ls creates gc. For x R C 2 xty: t 1 " C 1 xC 2 xxxyyrxztsy R Ý Ñ C 1 xC 2 xtyrxztsy " t 2 7. Creation case 7: gc creates gc. For y P fvpsq and y R fvpC 2 xtyq: t 1 " C 1 xC 2 xtrxzssyryzusy

	R Ý Ñ t 2	S

R Ý Ñ R Ý Ñ R Ý Ñ C 1 xtrxzssLy " t 2 4. R Ý Ñ R Ý Ñ R Ý Ñ C 1 xC 2 xtyryzusy " t 2 Proof.

 2 xC 1 4 xΣyyrxzC 1 4 xΣysy S C 1 xC 2 xxxyyrxzC 1 4 xΣ 1 ysy C 1 xC 2 xC 1 4 xΣ 1 yyrxzC 1 4 xΣysy Second, if the positions of the hole of C 2 and the hole of C 4 are disjoint, then there exists a two-hole context p C such that p Cxl, Σy " C 2 and p Cxt, ly " C 4 . en again this case is impossible since S has an ancestor S 0 : C 1 x p Cxx, Σyrxztsy Cxx, Σ 1 yrxztsy C 1 x p Cxt, Σ 1 yrxztsy ird, if the position of the hole of C 4 is a pre x of the position of the hole of C 2 , then there is a context C 1 2 such that C 2 " C 4 xC 1 2 y and Σ " C 1 2 xty. We consider three subcases depending on the kind of redex S: 2.1.1 If S is a db redex. en Σ " pλy.sqL u " C 1 2 xty. e proof proceeds by analyzing the position of the hole of C 1 2 inside Σ. First note that, if C 1 2 is empty, we have already considered this situation since C 2 is a pre x of C 4 . Second, if the hole of C 1 2 lies inside s, inside u, or inside one of the substitutions in L, then this case is impossible since S has an ancestor S 0 . For example, if the hole of C 1 2 lies inside s, we have that C 1 2 " pλy.C 2 2 qL u, s " C 2 2 xty, and the situation is: C 1 xC 4 xpλy.C 2 2 xxxyyqL uyrxztsy xC 4 xC 2 2 xxxyyLryzusyrxztsy C 1 xC 4 xC 2 2 xtyLryzusyrxztsy

	C 1 xC 4 xpλy.C 2 2 xtyqL uyrxztsy
	S 0

R G G S 0 C 1 x p Cxt, Σyrxztsy S C 1 x p R G G S C 1

 4 xC 5 xxyyyryzC 2 2 xxxyysyrxztsy xC 4 xC 5 xC 2 2 xxxyyyryzC 2 2 xxxyysyrxztsy C 1 xC 4 xC 5 xC 2 2 xtyyryzC 2 2 xtysyrxztsy 2.1.3 If S is a gc redex. en Σ " sryzus " C 1 2 xty, with y R fvpsq. e proof proceeds by analyzing the position of the hole of C 1 2 inside Σ. First note that, if C 1 2 is empty, we have already considered this situation since C 2 is a pre x of C 4 . Second, if the hole of C 1 2 is to the le of the substitution, that is, C 1 2 " C 2 2 ryzus and s " C 2 2 xty. Note that y R s " C 2 2 xty implies that y R C 2 2 xxxyy, since x ‰ y. en this case is impossible since S has an ancestor S 0 . More precisely, the situation is: C 1 xC 4 xC 2 2 xxxyyryzusyrxztsy R G G xC 4 xC 2 2 xxxyyyrxztsy C 1 xC 4 xC 2 2 xtyyrxztsy e only remaining possibility is that the hole of C 1 2 is inside the substitution, i.e. that C 1 2 " sryzC 2 2 s with u " C 2 2 xty. en this case is impossible since S has an ancestor S 0 . More precisely, the situation is: C 1 xC 4 xsryzC 2 2 xxxyysyrxztsy xC 4 xsyrxztsy C 1 xC 4 xsyrxztsy 2.2 If C 3 " C 2 xtyrxzC 4 s. en t " C 4 xΣy. is case is impossible, since S has an ancestor S 0 . More precisely, the situation is: C 1 xC 2 xxxyyrxzC 4 xΣysy C 1 xC 2 xC 4 xΣyyrxzC 4 xΣysy S C 1 xC 2 xxxyyrxzC 4 xΣ 1 ysy C 1 xC 2 xC 4 xΣyyrxzC 4 xΣ 1 ysy 2.3 If C 3 " l. en C 2 xtyrxzts " Σ. is means that Σ must be either a ls redex or a gc redex, because its pa ern is a substitution. Let us check each of these cases: 2.3.1 If S is a ls redex. en C 2 xty " C 4 xxxyy. Note that it cannot be the case that C 2 is a pre x of C 4 , since this would mean that C 4 " C 2 xC 1 4 y and t " C 1 4 xxxyy. is would mean that the step R should be of the form C 1 xC 2 xxxyyyrxzC 1 4 xxxyys C 1 xC 2 xC 1 4 xxxyyyyrxzC 1 4 xxxyys but this is impossible by Barendregt's convention, since the free occurrence of the variable x in C 1 4 xxxyy becomes bound when performing the substitution. So the holes of C 2 and C 4 must be disjoint. More precisely, there exists a twohole context p C such that p Cxl, xy " C 2 and p Cxt, ly " C 4 .en this whole case is impossible, as S would have an ancestor S 0 , as shown in the following diagram:C 1 x p Cxx, xyrxztsy R G G Cxx, tyrxztsy C 1 x p Cxt, tyrxztsy 2.3.2 If S is a gc redex. en x R fvpC 2 xtyq.So the situation is:t 1 " C 1 xC 2 xxxyyrxztsy C 1 xC 2 xtyrxztsy " t 2and we are in Creation case 6: ls creates gc.Second, if the positions of the hole of C 1 and the position of Σ are disjoint, then there must be a two-hole context p C such that C 1 " p Cxl, Σy. en this case is impossible, since S has an ancestor S 0 . Graphically, the situation must be:pCxC 2 xxxyyrxzts, Σy CxC 2 xxxyyrxzts, Σ 1 y p CxC 2 xtyrxzts, Σ 1 y Finally, if the position of Σ is a pre x of the position of the hole of C 1 , then C 1 " C 11 xC 12 y such that Σ " C 12 xC 2 xtyrxztsy " C 12 x∆ 1 y. We proceed by case analysis on the kind of redex S: 2.1 If S is a db redex. en Σ " pλy.sqL u " C 12 xC 2 xtyrxztsy. We proceed by case analysis on the position of the hole of C 12 inside Σ. First, if the hole of C 12 lies inside s, or inside u, or inside one of the substitutions in L, then this case is impossible since S has an ancestor S 0 . For example, if the hole of C 12 lies inside s, that is C 12 " pλy.C 1 12 qL u with s " C 1 12 x∆ 1 y, then the situation is: 12 x∆ 1 yryzusLe remaining possibility is that the hole of C 12 lies along the spine of pλy.sqL. More precisely, there exist substitution contexts L 1 and L 2 such that L " L 1 L 2 , with ∆ 1 " pλy.sqL 1 and C 12 " L 2 u. en the situation is:t 1 " C 11 xC 2 xxxyyrxzts l jh n C 11 xC 2 xtyrxzts l jh n ∆ 1 L 2 uy " t 2where C 2 xtyrxzts " pλy.sqL 1 .To conclude, note that there are two possibilities in this case, depending on whether the term C 2 xxxyy is of the form pλy.s 0 qL 0 (an answer) or not.2.1.1 If C 2xxxyy is an answer. en S has an ancestor S 0 . Indeed, the situation is:C 11 xpλy.s 0 qL 0 L 2 uy 11 xs 0 ryzusL 0 L 2 y C 11 xsryzusL 1 L 2 l jh n If C 2 xxxyyis not an answer. Since C 2 xxxyy is not an answer but C 2 xty is an answer, by Lem. A.76 it must be the case that C 2 is a substitution context L 3 , and t is an answer, t " pλy.t 1 qL 1 . Hence the situation is:t 1 " C 11 xxL 3 rxzpλy.t1 qL 1 sL 2 uy C 11 xpλy.t 1 qL 1 L 3 rxzpλy.t 1 qL 1 sL 2 uy " t 2 and we are in Creation case 4: ls creates db upwards. 2.2 If S is a ls redex. en Σ " C 3 xxyyyryzss " C 12 xC 2 xtyrxztsy. We proceed by case analysis on the position of the hole of C 12 inside Σ. First, if the hole of C 12 is to the le of the substitution and disjoint of the hole of C 3 ryzss, more precisely if there exists a two hole context p C such that C 12 " p Cxl, yyryzss and C 3 " p Cx∆ 1 , ly, then this case is impossible, since S has an ancestor S Observe that fvp∆q " fvpC 2 xxxyyrxztsq " fvpC 2 xtyrxztsq " fvp∆ 1 q so from the fact that y R fvpC 1 12 x∆ 1 yq we may conclude that y R fvpC 1 12 x∆yq. Second, if the hole of C 12 is inside the substitution, that is, C 12 " sryzC 1 12 s then this case is impossible since S has an ancestor S 0 . More precisely: C 11 xsryzC 1 12 x∆ysy R G G 11 xsy C 11 xsy e only remaining possibility is that C 12 is empty, i.e. C 12 " l, x " y, u " t, and s " C 2 xty. en the situation is the following, with x R fvpC 2 xtyq: t 1 " C 11 xC 2 xxxyyrxztsy R Ý Ñ C 11 xC 2 xtyrxztsy " t 2 and we are in Creation case 6: ls creates gc.

		C 1 xC 4 xsryzC 2 2 xtysyrxztsy	
	S 0		
		C 11 xsryzC 1 12 x∆ 1 ysy	
	S 0 S 0 pλy.C 1 12 x∆yqL u R G G S 0 R G G S 0 pλy.C 1 C 1 xC 4 xC 5 xxyyyryzC 2 2 xtysyrxztsy C 1 x p Cxt, xyrxztsy 12 x∆ 1 yqL u S C 1 12 x∆yryzusL C 1 C 11 xC 2 xxxyyrxzts l jh n 2.1.2 S 0 S 0	Σ 1	y
		R G G p CxC 2 xtyrxzts, Σy	
	S 0	C 1 xC 4 xC 2 2 xtyryzusyrxztsy	
	S 0		

R G G S C 1 S C 1 R G G S C 1 R Ý Ñ S C 1 x p R Ý Ñ S p ∆ L 2 uy R Ý Ñ ∆ L 2 uy R G G C 11 xC 2 xtyrxzts l jh n ∆ 1 L 2 uy C 11 xpλy.sqL 1 L 2 u l jh n Σ y S C R Ý Ñ 0 : C 11 x p Cx∆, yyryzssy R G G S 0 C 11 x p

Cx∆ 1 , yyryzssy S C 11 x p Cx∆, syryzssy C 11 x p Cx∆ 1 , syryzssy S C

 If S is a ls redex. at is Σ " C 3 xxyyyryzus " C 2 xty.

	3.2	
		1 2 xtyqLry
		S
	C 1 xC 1 2 xtrxzssyryzrsLy	C 1 xC 1 2 xtyryzrsLy

 If S is a gc redex. at is Σ " uryzrs " C 2 xty with y R fvpuq. en the hole of C 2 lies either inside u or inside r. Let us consider each case. First, if the hole of C 2 lies inside u, that is C 2 " C 1 2 ryzrs, there are two subcases, depending on whether y P fvpsq: 3.3.1 If y P fvpsq. en the situation is:t 1 " C 1 xC 1 2 xtrxzssyryzusy C 1 xC 1 2 xtyryzusy " t 2where y P fvpsq and y R fvpC 1 2 xtyq, so we are in Creation case 7: gc creates gc. 3.3.2 If y R fvpsq.

		3 xxyyyryzC 1 2 xtysy
		S
	C 1 xC 3 xC 1 2 xtrxzssyyryzC 1 2 xtrxzssysy	C 1 xC 3 xC 1 2 xtyyryzC 1 2 xtysy
	3.3	

R

Ý Ñ

 1.2.2.2 C " C 1 x C 1 xxy β yyryzC 2 s Θ y. Let us abbreviate ∆ :" C 2 xα ' : t 1 y. en:Cxxx α yyrxzt 1 s Ω C 1 xx C 1 xxy β yyryzC 2 xxx α yys Θ yyrxzt 1 s Ω Ópαq ' Òpt 1 q G G Ópβq ' ÒpC 2 xxx α yyq C 1 x C 1 xxy β yyryz∆s Θ yrxzt 1 s Ω Ópβq ' ÒpC 2 xα ' :t 1 yq C 1 xx C 1 xxβ ' : C 2 xxx α yyyyryzC 2 xxx α yys Θ yyrxzt 1 s Ω Ópαq ' Òpt 1 q D D D D C 1 x C 1 xβ ' : ∆yryz∆s Θ yrxzt 1 s ΩTo be able to close the diagram, we need the two following observations: • By Lem. 6.9, Ò pC 2 xxx α yyq " Ò pC 2 xxα ' : t 1 yyq.• By Lem. 6.9: β ' : C 2 xxx α yy is of the form C 1 2 xxx α 1 yy, where Ó pαq " Ó pα 1 q and β ' :C 2 xα : t 1 y " C 1 2 xα 1 : t 1 y. 1.2.3 S is a ls-redex, contracting rxzt 1 s Ω . at is, Cxxx α yy " C 1 xxx β yy,where x α is the occurrence a ected by R, and x β is the occurrence a ected by S. Since the two occurrences are distinct, there is a two-hole context C 2 such that C 2 xxl, x β yy " C C 2 xxx α , lyy " C 1 . It is then immediate to close the diagram:

 C 2 xxα ' : t 1 yy yyrxzt 1 s Ω 1.2.4.2 C " C 1 x s 1 ryzC 2 s Θ y Cxxx α yyrxzt 1 s Ω C 1 xx s 1 ryzC 2 xxx α yys Θ yyrxzt 1 s Ω Ópαq ' Òpt 1 q G G ta ' ÒpC2xxx α yyq | aPΘu C 1 xx s 1 ryzC 2 xxα ' : t 1 yys Θ yyrxzt 1 s Ω ta ' ÒpC2xxα ' :t 1 yyq | aPΘu C 1 xx s 1 yyrxzt 1 s Ω C 1 xx s 1 yyrxzt 1 s Ω

 L " L 1 ryzC 2 xxzyys where C 2 is reachable and L 1 is px, yq-chained. By i.h. we have that C 1 xxxyyL 1 ryzC 2 s is a reachable context. Hence C 1 xxxyyL 1 ryzC 2 xxzyysrzzCs is reachable. 3. If L " L 1 ryzss where L 1 is px, zq-chained. By i.h. we have that C 1 xxxyyL 1 rzzCs is a reachable context. Hence by Lem. A.104 C 1 xxxyyL 1 must be of the form C 1 xxzyy where C 1 is a reachable context. en C 1 ryzss is also reachable, which in turn implies that C 1 xxzyyryzssrzzCs " C 1 xxxyyL 1 ryzssrzzCs is reachable, as required.

 2 2 xlL 2 ry and C 1 2 " pλy.C 2 2 qL u. e situation is: C 1 xpλy.C 2 2 xxL 2 ryqL uyrxzvL 1 s xpλy.C 2 2 xvL 1 L 2 ryqL uyrxzvL 1 s R{S C 1 xC 2 2 xxL 2 ryryzusLyrxzvL 1 s C 1 xC 2 2 xvL 1 L 2 ryryzusLyrxzvL 1 s e redex T is underlined and clearly pT ă B R{Sq since the anchor of R{S is to the le of the box of T . • e hole of C 2 lies inside L. Similar to the previous case. • e hole of C 2 lies inside u. Similar to the previous case. 2.1.2.2 T has an ancestor before S. Let T 0 be an ancestor of T , i.e. T P T 0 {S. en since pS ă B Rq and T ă B R{S, by Context-freeness (Lem. A.106) we have that T 0 ă B R, contradicting the fact that R is minimal with respect to the box order. 2.1.3 If C 1 and C 1 are disjoint. en there is a two hole context p C such that: C 1 " p Cxl, xy and C 1 " p Cxs, ly, and the situation is:

S G G R C 1 p Cxs, xyrxzts S G G R p Cxs, tyrxzts R{S p Cxs 1 , xyrxzts p Cxs 2 , tyrxzts

 1 1 xvL 1 L 2 C 3 xs 1 yyrxzvL 1 s Since R is a reachable redex by hypothesis, the context C 1 1 xxL 2 C 3 yrxzvL 1 s must be reachable. By Lem. A.104 this implies that C 1 1 xlL 2 C 3 xs 1 yyrxzvL 1 s must also be a reachable context. Hence the step at the bo om of the diagram S{R is a reachable redex.

 1. RNF is closed under parallel moves. It su ces to check that RNF is closed under reduction. Let R : t Ñ db Y ls s with t P RNF, and let us check that s P RNF. It can be proved as a lemma that RNFs given in Lem. A.100, that t P RNF if and only if nf gc ptq is in Ñ db Y ls -normal form, and similarly for s.

 1.1 NFpHLq Ď HLNF 1.2 HLNF Ď NFpHLq 2. e sub-ARS HL is closed and residual-invariant, to be able to apply Prop. 7.54. For this we will show that: It is immediate to check that pλx.tqL and Hxxxyy have no db or ls redexes under a head Part 2b: the sub-ARS HL is residual-invariant. Let R P HL and consider R ‰ S. Let us show that there is a residual R 1 P HL X R{S. Before, let us state two simple facts: p Cxl, ty is a head context ùñ p Cxl, t 1 y is a head context where p C is any two-hole context (A.11) C 1 xC 2 rxztsy is a head context ùñ C 1 xC 2 y is a head context (A.12) ese properties can be shown by induction on C. Now we proceed by induction on the head context H under which the step R takes place:

	2.1	e set NFpHLq is closed by reduction.
	2.2	e sub-ARS HL is residual-invariant.

Part 1a: every HL-normal form is a HLNF. By induction on t it is straightforward to check that if t P NFpHLq then t P HLNF.

Part 1b: every HLNF is a HL-normal form.

 1.2.3.2 If S is a ls redex. en the step S is of the form:C 1 xC 2 xxyyyryzssyrxzts Ñ C 1 xC 2 xsyryzssyrxztssuch that Hxxxyy " C 1 xC 2 xyyryzssy and C 1 is a pre x of H (i.e. H " C 1 xC 3 y). Note that the hole of H cannot be internal to s since head contexts cannot go inside substitutions, so the hole of H must be internal to C 2 xxyyy e occurrences of x and y must be disjoint, since they are di erent variables and R and S are di erent ls redexes, so there must exist a two-hole context p C such that:C 1 x p Cxl, yyryzssy " H p Cxx, ly " C 2 en: C 1 x p Cxx, yyryzssyrxzts R G G

S C 1 x p Cxt, yyryzssyrxzts C 1 x p Cxx, syryzssyrxzts R{S G G C 1 x p Cxt, syryzssyrxzts

 3.1.1If R is a db redex. en R is of the form:H 1 xpλy.sqL uyrxzts Ñ H 1 xsryzusLyrxztsFour cases depending on the position of the contracted occurrence of x:3.1.1.1 e contracted occurrence of x is in H 1 .en there is a two-hole context p C such that: CxsryzusL, xyrxzts p Cxpλy.sqL u, tyrxzts R{S G G p CxsryzusL, tyrxzts To conclude that R{S P HL it su ces to observe that p Cxl, ty is a head context as a consequence of (A.11) and the fact that p Cxl, xy is a head context. 3.1.1.2 e contracted occurrence of x is in s. Let p s denote the result of replacing the corresponding occurrence of x in s by t. en: H 1 xpλy.sqL uyrxzts Analogous to the previous case. 3.1.1.4 e contracted occurrence of x is in u. Analogous to the previous case. 3.1.2 If R is a ls redex. en R is of the form: H 1 xH 2 xxyyyryzssyrxzts Ñ H 1 xH 2 xsyryzssyrxzts with H 1 " H 1 xH 2 ryzssy. ree cases depending on the position of the contracted occurrence of x: 3.1.1 e contracted occurrence of x is in H 1 . en there is a two-hole context p C such that: CxH 2 xsyryzss, xyrxzts p CxH 2 xxyyyryzss, tyrxzts CxH 2 xsyryzss, tyrxzts To conclude that R{S P HL it su ces to observe that p Cxl, ty is a head context as a consequence of (A.11) and the fact that p Cxl, xy is a head context. 3.1.2 e contracted occurrence of x is in H 2 . Analogous to the previous case. 3.1.3 e contracted occurrence of x is in s. en s " C 1 xxxyy and: H 1 xH 2 xxyyyryzC 1 xxxyysyrxzts H 1 xH 2 xC 1 xxxyyyryzC 1 xxxyysyrxzts H 1 xH 2 xxyyyryzC 1 xtysyrxzts R{S G G H 1 xH 2 xC 1 xtyyryzC 1 xtysyrxzts To conclude that R{S P HL it su ces to observe that H 1 xH 2 ryzC 1 xtysy is a head context as a consequence of (A.11) and the fact that H 1 xH 2 ryzC 1 xxysy is a head context. 3.2 If S takes place to the le of the substitution. en we conclude by i.h.. 3.3 If S takes place to the right of the substitution. en R and S are disjoint, so it is trivial.

	p Cxl, xy " H
	and:
	p Cxpλy.sqL u, xyrxzts
	p Cxl, xy " H 1
	and:
	p CxH 2 xxyyyryzss, xyrxzts

R G G S p R G G S H 1 xsryzusLyrxzts H 1 xpλy.p sqL uyrxzts R{S G G H 1 xp sryzusLyrxzts 3.1.1.3 e contracted occurrence of x is in L. R G G S p R{S G G p R G G S

e pure λ-calculus does not have a built-in notion of numbers or addition; we use them in this example for clarity of exposition.

More precisely, formulas in minimal implicational logic.

Explicit substitutions and let constructs are, in fact, synonyms; an explicit substitution trxzss is nothing but a let construct plet x " s in tq, wri en with di erent syntax.

e notion of answer may vary depending on the context. For call-by-name and call-by-value, the set of answers is typically the set of terms of the form λx.t.

See for instance [?, Corollary 1.5.12 (i)]. In Coro. 7.56 we prove a related result.

In Def. 2.40 we give the formal de nition of permutation equivalence that we use. In Lem. 2.59 we recall a useful alternative characterization.

In other words, derivations are morphisms in the free category generated by A, seen as a directed graph.

is direct de nition of a bound for the length of the longest development of a term is due to de Vrijer [?]. See [?, eorem 11.2.21] for a di erent proof.

Actually in time proportional to the size of the starting term.

is is justi ed by the invariants that the machines enjoy. Using these invariants, it can be seen that the abstract machines can be simulated polynomially by random-access machines, and hence also by Turing machines. We shall not give detailed proofs of these facts.

Modulo the presence of markers of the form xŸ and Źx in the environment, which are needed for bookkeeping purposes and were omi ed here.

In the last step we perform garbage collection implicitly for the sake of clarity. But note that, in the explicit substitution calculi in this thesis, garbage collection is explicit.

In fact these two independent works are combined in a joint paper [?].

Remark that Ariola et al. use let syntax (let x " s in t) rather than explicit substitution syntax (trxzss), but this is only a change of notation.

De nition 4.27 (e HW type system, [?]). Typing judgments are of the form Γ $ t : τ , where Γ is a typing context, t is a term and τ is a type. e HW-type system is given by the following rules:x:rτ s $ x : τ Γ $ t : rσ i s iPI Ñ τ p∆ i $ s : σ i q iPI Γ `iPI ∆ i $ t s : τ

Weakening is the logical rule that allows including unused hypotheses in the context. Contraction is the logical rule that allows con ating repeated occurrences of a hypothesis in the context.

In fact, these intuitions can be formalized; see for example[?].

Note that rules are multiplicative for typing contexts and additive for error logs.

e Stability property does hold in the LSC without gc, as will be proved in Section 7.2.

 Lemma 6.49 (Bounded reduction in the calculus without gc is strongly normalizing). Let P be a bounded predicate. en Ý Ñ P I is SN.

Proof. Note that we already know that Ý Ñ P I is weakly Church-Rosser, weakly normalizing, and increasing:

1. WCR. is is a consequence of Strong permutation (Prop. 6.30). Recall that in Prop. 6. [START_REF] Bruggink | Optimal implementation of higher-order rewriting[END_REF] all peaks µ Ð Ý ν Ý Ñ are closed with steps with the same name ν Ý Ñ Ý ÑÐ Ý µ Ð Ý. So if we suppose that P pµq and P pνq hold for the names of the steps in the peak, the steps closing the diagram are also related by Ñ P I .

2. WN. is has been shown in Prop. 6.45.

3. Inc. is has been shown in Lem. 6.48. Moreover, Klop-Nederpelt's Lemma (Lem. 2.22), asserts that WCR ^WN ^Inc ùñ SN, which concludes the proof.

Strong normalization for bounded reduction with gc

In order to extend the strong normalization result to the full calculus, including the gc rule, we need the following technical lemma that allows to postpone gc steps. Lemma 6.50 (Postponement of gc in the LLSC-calculus -♣ Lem. A.80). Let ρ : t s be a reduction sequence. en there exists a term u and a reduction sequence σ : t db Y ls u gc s. Moreover, let # µ pρq denote the number of redexes named µ that are contracted along the reduction sequence ρ. en:

1. e number of db and ls redexes is preserved: # µ pρq " # µ pσq if µ is the name of a db or ls redex 2. e number of gc redexes may increase: # µ pρq ď # µ pσq if µ is the name of a gc redex 3. e reduction σ contracts the same names as ρ: # µ pσq ą 0 ùñ # µ pρq ą 0 for any redex name µ Proof. See the appendix for the full proof. e following is the main result of this section: eorem 6.51 (Bounded reduction in LLSC P is strongly normalizing). Let P be a bounded predicate. en labeled reduction Ý Ñ P is SN.

Proof. Suppose given an in nite reduction sequence ρ : t 0 µ 1 Ý Ñ P t 1 . . .

Ý Ñ P t n We show how to construct a second in nite reduction sequence: σ : s 0 ν 1 Ý Ñ P s 1 . . . νn Ý Ñ P s n . . . consisting only of db and ls steps. is construction contradict the fact that LLSC P I (without gc) is strongly normalizing for bounded families of labels, as already shown in Lem. 6.49. First, note that there cannot be an in nite reduction sequence t Ý Ñ Ý Ñ P . . . consisting only of gc steps, since Ý Ñ gc is SN (as it strictly decreases the size of the term). To alleviate notation, given i ď j, let t i µ Ý Ñ Ý Ñ t j stand for t i µ i`1 ÝÝÑ t i`1 . . . µ j Ý Ñ t j . To construct σ, proceed by induction on n, with the following invariant. At the n-th step, for n ě 1, we will have built:

• a reduction sequence s 0 ν Ý Ñ Ý Ñ P s n of length exactly n;

• consisting of only db and ls steps;

• and such that t 0 Ý Ñ Ý Ñ db Y ls s n gc t kn for some k n ě 0. We prove the base case and inductive step:

• Base case, n " 1. By the previous remark, there cannot be an in nite sequence of gc steps, so we can choose k 1 ą 0 such that t 0

By postponement (Lem. 6.50) there exists a term s 1 such that t 0

Take s 0 :" t 0 and ν 1 :" µ k 1 .

• Induction, "n ùñ n `1". We already have t 0 Ý Ñ Ý Ñ db Y ls s n gc t kn . As before, since there cannot be an in nite sequence of gc steps, we can choose k n`1 ą k n such that s n gc t kn gc

ÝÝÝÑ db Y ls t k n`1 . By postponement, there exists a term s n`1 such that s n µ k n`1 ÝÝÝÑ db Y ls s n`1 Ý Ñ Ý Ñ gc t k n`1 . Take ν n`1 :" µ k n`1 .

Finally, since ν n " µ kn , it is clear that P pν n q must hold for all n.

Con uence

In this section we give two proofs that the LLSC is con uent. Both proofs are consequences of previous facts that we have already established. e rst proof is based on purely syntactical methods, while the second one relies on residual theory. Lemma 6.52 (Bounded reduction in the LLSC P is con uent). Let P be a bounded predicate. en the rewriting relation Ý Ñ P is Church-Rosser.

Proof. By Newman's Lemma (Lem. 2.20), is su ces to show that Ý Ñ P is SN (cf. m. 6.51) and WCR (cf. Prop. 6.30). eorem 6.53 (e LLSC is con uent). e rewriting relation Ñ is Church-Rosser.

Proof.

First proof. If ρ : t s and σ : t u, de ne P pµq to hold i µ is the name of redex contracted in ρ or σ. Since the number of such labels is nite, P is bounded and by the previous result (Lem. 6.52) we conclude.

De nition 7.19 (Stable set). A set X of objects is stable if:

1. X is closed under parallel moves, i.e. for any x R X , any ρ : x y P X , and any reduction σ : x z which does not contain objects in X , the target of ρ{σ is in X .

2. X is closed under unneeded expansion, i.e. for any R : x Ñ y such that x R X and y P X , the step R is X -needed.

Example 7.20 (Abstractions are stable in the λ-calculus). In the λ-calculus, the set of abstractions tλx.t | t P T u is stable. It is easy to see that NF β is closed under parallel moves, because if ρ : t λx.s and σ : t u then σ{ρ : λx.s λx.r. To see that NF β is closed under unneeded expansion, consider a step R : t Ñ λx.s such that t is not an abstraction. en t must be of the form pλx.t 1 q t 2 . Any derivation σ : pλx.t 1 q t 2 λy.u must contract the residual of R, otherwise all steps are internal to t 1 and t 2 , and the target is still an application.

De nition 7.21 (X -optimal reduction). Let x P A be an object in a DFS and let X be a stable set on A. A family reduction D : x y P X is X -optimal if its length is minimum among all the family reductions of the form x y P X (where x is xed and y varies).

Let FAMpDq denote the set of families of a multiderivation. More precisely:

en we can prove the following auxiliary result. Lemma 7.22. Let X be a stable set of terms in a DFS. If D : x y P X is a family reduction, then #FAMpDq ď |D|.

Proof. Let D " M 1 . . . M n . By de nition, each family φ P FAMpDq can be wri en as φ " Fam » pM 1 . . . M i´1 Rq for some i P t1, . . . , nu and some R P M i . Consider the map I giving, for each family, the minimum such index:

I : FAMpDq Ñ t1, . . . , nu φ Þ Ñ minti P t1, . . . , nu | DR P M i . φ " Fam » pM 1 . . . M i´1 Rqu

To show that #FAMpDq ď |D|, it su ces to show that I is injective. Indeed, if Ipφq " Ipφ 1 q " i, then there are two steps R, S P M i such that φ " Fam » pM 1 . . . M i´1 Rq and φ 1 " Fam » pM 1 . . . M i´1 Sq. But D is a family reduction, so M 1 . . . M i´1 R » M 1 . . . M i´1 S. erefore φ " φ 1 .

Lemma 7.23. Let X be a stable set of terms in a DFS. If D : x y P X is a X -needed complete family reduction, then |D| " #FAMpDq.

Proof. In Lem. 7.22 we have seen that |D| ě #FAMpDq for any family reduction, so we are le to show that |D| ď #FAMpDq. Let D " M 1 . . . M n . Since D is X -needed, for each i P t1, . . . , nu the set M i contains an X -needed step R i . It su ces to show that the following map Φ is injective.

In an arbitrary rewriting system, this recursive de nition may not terminate. e following lemma provides su cient conditions for M ‹ pρq to be well-de ned. Namely, in a Deterministic Family Structure, the recursive de nition of M ‹ pρq is well-founded, as a consequence of F F D .

Lemma 7.35. Let M is a multi-selection strategy in a DFS. If ρ is any (nite) derivation, then M ‹ pρq is nite.

Proof. Let ρ be a nite derivation, let D " M ‹ pρq be the multiderivation induced by M on ρ, and let F be the set of redex families that are contracted along ρ, more precisely:

Claim. Write D as a possibly in nite sequence of multisteps D " M 1 . . . M n Suppose that σ " σ 1 . . . σ n is any complete development of a pre x M 1 . . . M n of D, where each σ i is a complete development of M i . en the set of families of the redexes contracted along σ is contained in F.

Proof of the claim. Let σ " σ 1 . . . σ n and let σ i " S i 1 . . . S i m i for each 1 ď i ď n. An arbitrary step of σ is one of the steps S i j with 1 ď i ď n and 1 ď j ď m i . It su ces to show that the family of each S i j is in F. More precisely, we aim to show that Fam » pσ 1 . . . σ i´1 S i 1 . . . S i j´1 S i j q P F holds for every i, j.

Let 1 ď i ď n and 1 ď j ď m i be arbitrary indices. Note that S i j is a redex in σ i and σ i is a complete development of M i , so S i j has an ancestor S ‹ xS i 1 . . . S i j´1 y S i j with S ‹ P M i . is means that S i j is a copy of S ‹ , hence they are in the same family, i.e. Fam » pσ 1 . . . σ i´1 S i 1 . . . S i j q " Fam » pσ 1 . . . σ i´1 S ‹ q. Moreover, by construction, M i " Mpρ{M 1 . . . M i´1 q. Since M is a multi-selection strategy, we have that S ‹ Ÿ ρ{M 1 . . . M i´1 . is means that ρ{M 1 . . . M i´1 can be wri en as ρ 1 S ‹‹ ρ 2 where S ‹ xρ 1 y S ‹‹ . is means that S ‹‹ is a copy of S ‹ , hence they are in the same family: Fam » pσ 1 . . . σ i´1 S ‹ q " Fam » pσ 1 . . . σ i´1 ρ 1 S ‹‹ q. Moreover, since projection does not create families in a DFS (Prop. 7.29) and ρ{M 1 . . . M i´1 " ρ{σ 1 . . . σ i´1 " ρ 1 S ‹‹ ρ 2 we have that Fam » pσ 1 . . . σ i´1 ρ 1 S ‹‹ q P F. Collecting all the facts we have already established above, we have that Fam » pσ 1 . . . σ i´1 S i 1 . . . S i j q " Fam » pσ 1 . . . σ i´1 S ‹ q " Fam » pσ 1 . . . σ i´1 ρ 1 S ‹‹ q P F, which concludes the proof of the claim.

To conclude the proof of the lemma, note that the set F is nite since ρ is nite. By FFD, this implies that there cannot be in nite derivations contracting redexes whose family is in F. erefore D must be nite. By de nition, a uniform multi-selection strategy M, when given two permutation equivalent derivations, always selects the same multistep. It, in fact, yields the same multiderivation. Lemma 7.36. Let M be a uniform multi-selection strategy in a DFS, and let ρ, σ be nite derivations. If ρ " σ then M ‹ pρq " M ‹ pσq.

Proof. By Lem. 7.35, we know that M ‹ pρq must be nite. We proceed by induction on the length of M ‹ pρq:

1. Empty, M ‹ pρq " . en ρ " , so σ " and we have M ‹ pρq " " M ‹ pσq. In each case, if R 1 , R 2 are evaluation contexts, r 1 , r 2 are anchors (i.e. an application that may be contracted by a multiplicative step or a variable that may be contracted by an exponential step), and R 1 xr 1 y " R 2 xr 2 y then R 1 " R 2 and r 1 " r 2 . So there is at most one way to reduce a term.

We prove each case separately.

Call-by-Name

Let t " H 1 xr 1 y " H 2 xr 2 y. By induction on the structure of t. Cases:

• Variable or an abstraction. Vacuously true, because there is no redex.

• Application. Let t " su. Suppose that one of the two evaluation contexts, for instance H 1 , is equal to l. en, we must have s " λx.s 1 , but in that case it is easy to see that the result holds, because H 2 cannot have its hole to the right of an application (in u) or under an abstraction (in s 1). We may then assume that none of H 1 , H 2 is equal to l. In that case, we must have H 1 " H 1 1 u and H 2 " H 1 2 u, and we conclude by induction hypothesis.

• Substitution. Let t " srxzus. is case is entirely analogous to the previous one.

Le -to-Right Call-by-Value

We prove the following statement, of which the determinism of the reduction is a consequence.

Lemma A.2. Let t be a term. en t has at most one subterm s that veri es both (i) and (ii):

(i) Either s is a variable x, or s is an application LxvyL 1 xv 1 y, for v, v 1 being values.

(ii) s is under a le -to-right call-by-value evaluation context, i.e. t " Rxsy.

From the statement it follows that there is at most one Ñ-redex in t, i.e. Ñ is deterministic.

Proof. by induction on the structure of t:

• t is a variable. ere is only one subterm, under the empty evaluation context.

• t is an abstraction. ere are no subterms that verify both (i) and (ii), since the only possible evaluation context is the empty one.

• t is an application u r. ere are three possible situations:

-e le subterm u is not of the form Lxvy. en s cannot be at the root, i.e. s ‰ t. Since ul is not an evaluation context, s must be internal to lr, which is an evaluation context. We conclude by i.h..

-e le subterm u is of the form Lxvy with v a value, but the right subterm r is not.

en s cannot be a subterm of u, and also s ‰ t. Hence, if there is a subterm s as in the statement, it must be internal to the evaluation context ul. We conclude by i.h..

-Both subterms have that form, i.e. u " Lxvy and r " L 1 xv 1 y with v and v 1 values.

e only subterm that veri es both (i) and (ii) is s " t.

• t is a substitution urxzrs. Any occurrence of s must be internal to u (because urxzls is not an evaluation context). We conclude by i.h. that there is at most one such occurrence.

Right-to-Le Call-by-Value

Exactly as in the case for le -to-right call-by-value, we prove the following property, from which determinism of the reduction follows.

Lemma A.3. Let t be a term. en t has at most one subterm s that veri es both (i) and (ii):

(i) s is either a variable x or an application LxvyL 1 xv 1 y, where v and v 1 are values.

(ii) s is under a right-to-le call-by-value evaluation context, i.e. t " Rxsy.

As a corollary, any term t has at most one Ñ-redex.

Proof. By induction on the structure of t:

• Variable or abstraction. Immediate.

• Application. If t " u r, there are three cases:

-e right subterm r is not of the form L 1 xv 1 y. en s cannot be at the root. Since l r is not an evaluation context, s must be internal to r and we conclude by i.h..

-e right subterm r is of the form L 1 xv 1 y but the le subterm u is not. Again s cannot be at the root. Moreover, r has no applications or variables under an evaluation context. erefore s must be internal to u and we conclude by i.h..

-Both subterms have that form, i.e. u " Lxvy and r " L 1 xv 1 y. We rst note that u and r have no applications or variables under an evaluation context. e only possibility that remains is that s is at the root, i.e. s " t.

• Substitution. If t " urxzrs is a substitution, s must be internal to u (because urxzls is not an evaluation context), and we conclude by i.h..

Call-by-Need

We rst need an auxiliary result:

Lemma A.4. Let t " Nxxxyy for an evaluation context N. en:

1. for every substitution context L and abstraction v, one has t ‰ Lxvy;

2. for every evaluation context R 1 and variable y, one has that t " R 1 xyy implies R 1 " N and y " x;

3. t is a call-by-need normal form.

Proof. In all items we use a structural induction on N. For item 1:

• N " l: obvious.

• N " N 1 s: obvious.

• N " N 1 ryzus: suppose that L " L 1 ryzus (for otherwise the result is obvious); then we apply the induction hypothesis to N 1 to obtain N 1 xxy ‰ L 1 xvy.

• N " N 1 xyyryzN 2 s: suppose that L " L 1 ryzN 2 xxys (for otherwise the result is obvious); then we apply the induction hypothesis to N 1 to obtain N 1 xyy ‰ L 1 xvy.

For item 2:

• N " l: obvious.

• N " N 1 s: we must necessarily have R 1 " R 1 1 s and we conclude by induction hypothesis.

• N " N 1 rzzss: in principle, there are two cases. First, we may have R 1 " R 1 1 rzzss, which allows us to conclude immediately by induction hypothesis, as above. e second possibility would be R 1 " R Le -to-Right Call-by-Value (value LR)

We follow the structure of the proof in for call-by-name.

Before proving the main result, we need the following auxiliary lemmas, proved by straightforward inductions on the contexts. Lem. A.8.2 is the adaptation of Lem. A.7 already stated for call-by-name: Lemma A.8. e equivalence relation " preserves the "shapes" of Lxvy and Rxxy. Formally:

1. If Lxvy " t, then t is of the form L 1 xv 1 y.

If

Rxxy " t, with x not bound by V, then t is of the form R 1 xxy, with x not bound by R 1 .

Lemma A.9. Lxtrxzssy " LxtrxzLxsysy Proof.

e rst item is straightforward by induction on the derivation of a normal form. For the second item, let X ϑ stand for either E ϑ or E θ and let us show that C P X ϑ implies C P X ϑ 1 by induction on the formation rules for C as a context in E ϑ or E θ.

Most cases are straightforward by applying the i.h.. e only subtle case is when C is built by appending a non-structural substitution (rule ES LN S), i.e. when C " C 1 rxzts P X ϑ with C 1 P X ϑ , t R S ϑ and x R ϑ. en we consider two subcases, depending on whether t is a strong ϑ 1 -structure:

1. If t P S ϑ 1 Note that ϑ Ď ϑ 1 Ď ϑ 1 Y txu so by i.h. we have that C 1 P X ϑ 1 Ytxu . By applying the formation rule for generalized ϑ 1 -evaluation contexts using a structural substitution we conclude that C 1 rxzts P X ϑ 1 , as wanted.

2. If t R S ϑ 1 Note that x R ϑ 1 by the variable convention (i.e. ϑ 1 is a set of free variables, but x is bound by a substitution). By i.h. we have that C 1 P X ϑ 1 . By applying the formation rule for generalized ϑ 1 -evaluation contexts using a non-structural substitution (ES LN S) we conclude that C 1 rxzts P X ϑ 1 , as wanted.

Lemma A.25 (Strengthening for normal forms). Let t be a pϑ Y txuq-normal form (resp. pϑ Y txuq-structure).

1. If x R ngvptq, then t is a ϑ-normal form (resp. ϑ-structure).

2. If x P ngvptq, then t can be wri en as t " Cxxxyy where C is a (resp. inert) ϑ-evaluation context.

Proof. e rst item is by induction on the derivation that t P nfϑ Y txu. e second item is by induction on the derivation that t P nfϑ Y txu, using the rst item.

Lemma A.26 (Evaluation contexts are closed by adding substitutions). If C is a (resp. inert) ϑ-evaluation context, then Crxzts is a (resp. inert) ϑ-evaluation context, provided that x R ϑ.

Proof. By case analysis on whether t is a strong ϑ-structure, and the weakening lemma (Lem. A.24).

Lemma A.27 (Inversion for normal forms). If tL is a ϑ-normal form (resp. ϑ-structure) then t is a fz ϑ pLq-normal form (resp. fz ϑ pLq-structure).

Proof. By induction on L.

A.2.2 Characterization of ϑ-normal forms -proof of Lem. 4.15 In this subsection we prove Lem. 4.15, which states that ϑ-normal forms as de ned in Def. 4.11 are indeed the normal forms of the strategy ϑ ù.

Lemma A.28. If t P nfϑ and t is not an answer, then t P S ϑ .

Proof. By induction on t P nfϑ.

2. t is the variable contracted by an ls-step, i.e. t " x and F ϑ " CxC 1 rxzvLsy; 3. t is a free variable (not bound by F ϑ) such that x R fz ϑ pF ϑ q.

Lemma A.32 (Reduction places are stable by trimming a context down). Let F ϑ 1 xF ϑ 1 2 y P E ϑ , and let t be a F ϑ 1 xF ϑ 1 2 y-reduction place. en t is a F ϑ 1 2 -reduction place.

Proof. Let us consider the three cases in Def. A.31 for the fact that t is a F ϑ 1 xF ϑ 1 2 y-reduction place:

1. If t is the redex pa ern of a beta-step en t is trivially a F ϑ 1 2 -reduction place.

2. If t is the variable contracted by an ls-step at is, t " x and x is bound to an answer vL. ere are two cases, depending on whether x is bound by the external context

12 rxzvLsy. We know that x R ϑ by Barendregt's convention. By applying Lem. A. [START_REF] Balabonski | Optimality for dynamic pa erns[END_REF] again we obtain that fz ϑ pF ϑ 1 xF ϑ 1 2 yq " fz ϑ 3 pF ϑ 2 12 xF ϑ 1 2 yrxzvLsq, where ϑ 3 " fz ϑ pF ϑ 11 q. Note that x is not bound by F ϑ 11 , so x R ϑ 3 . Now note that vL is an answer but not a structure, so ϑ 3 " ϑ 2 and fz ϑ 3 pF ϑ 2 12 xF ϑ 1 2 yrxzvLsq " fz ϑ 2 pF ϑ 2 12 xF ϑ 1 2 yq. Note also that since x R ϑ 3 and x is not bound by F ϑ 2 12 xF ϑ 1 2 y we know that x R fz ϑ 2 pF ϑ 2 12 xF ϑ 1 2 yq. Finally, we may apply Lem. A.19 once more to conclude that x R fz ϑ 2 pF ϑ 2 12 xF ϑ 1 2 yq " fz ϑ 1 pF ϑ 1 2 q, by which we conclude that x is a

2 -reduction place, as it is the variable contracted by an ls-step.

If t is a free variable

, by the decomposition of evaluation contexts (Lem. A.20) we know that fz ϑ pF ϑ 1 q " ϑ 1 , so we conclude that x R fz ϑ pF ϑ 1 xF ϑ 1 2 yq " fz ϑ 1 pF ϑ 1 2 q, so t is a F ϑ 1 2 -reduction place, as required.

Lemma A.33 (Strong normal forms have no reduction places under an evaluation context).

Let N ϑ P nfϑ be a strong normal form. en N ϑ cannot be wri en as F ϑ xty such that F ϑ P E ϑ is a generalized evaluation context and t is an F ϑ -reduction place.

Proof. Suppose that N ϑ " F ϑ xty, where t is a F ϑ -reduction place. Let us check that this is impossible by induction on F ϑ .

ES LN S , I ϑ

1 rxzts with t R S ϑ , x R ϑ. Note that I ϑ 1 rss R S w ϑ for otherwise by x R ϑ and Lem. A.37, we would have I ϑ rss P S w ϑ . erefore I ϑ 1 P WCtx by the i.h. and hence also I ϑ P WCtx. Proof. Note that F ϑ xxxyy R WNF ϑ so it is not an answer. en, by the contrapositive of Lem. A.23, the evaluation context F ϑ must be inert, i.e. F ϑ P E θ. Note moreover that F ϑ xxxyy R S w ϑ , so by Lem. A.44 we conclude.

ES LS ,

Lemma A.46. Let F ϑ P E ϑ and y P hrvpF ϑ rxsq with x ‰ y. en y P hrvpF ϑ rtsq, for any term t.

Proof. We show this for F ϑ P X ϑ , where X ϑ stands for either the set E ϑ or the set E θ, by induction on the derivation that F ϑ P X ϑ .

1. EB , l. Holds trivially since y R hrvpF ϑ rxsq.

2. EA L, I ϑ t. Follows from i.h. and the de nition of head reachable variables. tion context since the second step is external. To postpone the internal step we would like that Cxl, xy is also an evaluation context. Unfortunately this is not always the case. As an example, consider the two-hole context C " pz l 1 qrzzy l 2 s with ϑ " tyu and note that Cxl, Iy " pz lqrzzy Is is a tyu-evaluation context, since z is bound to a strong tyu-structure, but Cxl, xy " pz lqrzzy xs is not a tyu-evaluation context, since z is bound to y x, which is not a strong tyu-structure. In such a situation, evaluation should focus on x, that is, what we do have is that Cxt, ly " pz tqrzzy ls is a tyu-evaluation context. e following lemma deals with this situation in full generality.

ES LN S , F

Lemma A.58 (Replacing a value by a variable in an evaluation context). Let p C be a two-hole context, x R ϑ a variable, v any value, and q be a term such that x is not bound by p Cxq, ly. If p Cxl, vy P X ϑ then either p Cxl, xy P X ϑ (le branch) or p Cxq, ly P X ϑ (right branch) where X ϑ is either the set E ϑ or the set E θ.

Proof. Let us write l and b to distinguish the two holes of p C. e proof goes by induction on the derivation that p Cxl, vy is a generalized evaluation context over ϑ.

1. EB , p Cxl, vy " l P X ϑ Impossible, as p Cxl, vy must contain a value v as a subterm. where all the substitution nodes in the spine of L belong to the context F ϑ (rather than to the subterm t), that is, one of the following holds:

• A. F ϑ " CL and s " Cxty.

en in each case the following more precise conditions hold:

ere is an evaluation context F ϑ 1 1 P X ϑ 1 where ϑ 1 " fz ϑ pLq, and a pϑ, xq-chain context L such that F ϑ " F ϑ 1 1 xxxyyL tlu and L " lL ttu.

Proof. By induction on L, using the fact that if CL is a ϑ-evaluation context then C is a fz ϑ pLqevaluation context (Lem. A.20).

Lemma A.63 (Stripping substitutions from a lsv redex using chain contexts). Let X ϑ denote either the set E ϑ or the set

2 rxzvL 1 sy P X ϑ is an evaluation context then at least one of the following four possibilities holds:

L where ϑ 2 " fz ϑ pLq and F ϑ 2 11 P X ϑ 2 .

2. B F ϑ 1 " F ϑ 2 11 xxyyyL tlu such that L " lL tF ϑ 1 2 xxxyyrxzvL 1 su, where ϑ 2 " fz ϑ pLq, the evaluation context

11 is in X ϑ 2 and L is a pϑ, yq-chain context.

x LrxzvL 1 sy, where ϑ 2 " fz ϑ p Lq, the context F ϑ 1 is a substitution context, and the evaluation context

and L is a pϑ 2 , yq-chain context.

Proof. We know that F ϑ 1 xF ϑ 1 2 xxxyyrxzvL 1 sy " tL. We consider two cases, depending on whether L is "contained" in F ϑ 1 , that is, all the substitution nodes in the spine of L belong to the context F ϑ 1 , or otherwise:

1. If all the substitution nodes in the spine of L belong to the context F ϑ 1 at is, the substitution nodes in L do not come from the subterm F ϑ 1 2 xxxyyrxzvL 1 s. en we may strip the substitution L from F ϑ 1 using Lem. A.62, which means that we are either in case A or case B, and we are done.

2. Otherwise en some of the substitution nodes in L come from the subterm F ϑ 1 2 xxxyyrxzvL 1 s. So we have that F ϑ 1 is a substitution context and that L " F ϑ 1 xL 1 y for some substitution context L 1 . Note that L 1 is non-empty since otherwise L would be subsumed in F ϑ 1 , which has already been considered in the previous case. Since L 1 is non-empty we have that L 1 " LrxzvL 1 s. So F ϑ 1 2 xxxyyrxzvL 1 s " t LrxzvL 1 s. en we may strip the substitution L from F ϑ 1 2 rxzvL 1 s using Lem. A.62. is gives us two possibilities, which correspond to cases C and D respectively.

Non-garbage contexts is subsection deals with non-garbage contexts, which are used in the next subsection to prove backward stability for normal forms.

De nition A.64 (Non-garbage contexts).

e set of non-garbage contexts is given by the following grammar: Lemma A.66 (Generalized evaluation contexts are non-garbage). Let F ϑ P E ϑ be a generalized ϑ-evaluation context. en F ϑ is non-garbage.

Proof. By induction on the derivation that F ϑ P E ϑ .

Lemma A.67 (Replacing a variable in a non-garbage context yields a non-garbage context). Let p C be a two-hole context such that p Cxl, yy is a non-garbage context and y is not bound by the context p Cxq, ly (for an arbitrary term q). en for any term s the context p Cxl, sy is non-garbage.

Proof. By induction on the derivation that p Cxl, yy is a non-garbage context.

Lemma A.68 (Preservation of non-garbage variables by internal steps when going to normal form). Let t ϑ Ý Ý Ñ sh s be a ϑ-internal step, such that s P nfϑ is a strong ϑ-normal form. en ngvptq Ď ngvpsq.

Proof. Let r : t ϑ Ý Ý Ñ sh s be the internal step. e proof goes by induction on t. If t is a variable or an abstraction it is immediate. We consider the cases for application and substitution:

1. Application, t " t 1 t 2 Note that r cannot be a step at the root, since it would be a db step, and it would be external. Hence there are two cases, depending on whether the step r is internal to t 1 or internal to t 2 :

1.1 If r is internal to t 1 Let r 1 : t 1 Ñ shzgc s 1 be the step isomorphic to r but going under the context l t 2 . en s " s 1 t 2 . Note that r 1 cannot be ϑ-external, for otherwise r would be ϑ-external. So ngvpt 1 t 2 q " ngvpt 1 q Y ngvpt 2 q Ď i.h. ngvps 1 q Y ngvpt 2 q " ngvps 1 t 2 q.

If

x R ngvpt 1 q en ngvptq " ngvpt 1 q " ngvpsq and we are done.

Backward stability of normal forms

To prove that internal steps can be postponed, we need to deal with situations such as ts ϑ Ý Ý Ñ sh t 1 s ϑ ù t 1 s 1 . Here t 1 l must be an evaluation context, since the second step is external, so t 1 is a structure. We would like to obtain that tl is also an evaluation context, i.e. we would like to show that t is a structure. is is where the following lemma comes into play.

Lemma A.69 (Backward stability of normal forms). Let t 0 ϑ Ý Ý Ñ sh t be an internal step with t P X ϑ where X ϑ stands for either nfϑ or S ϑ . en t 0 P X ϑ .

Proof. By induction on the derivation that t P X ϑ . e interesting cases are , S G, and S .

1.

, t " M ϑ N ϑ P S ϑ with M ϑ P S ϑ and N ϑ P nfϑ Note that the step r cannot be at the root of t 0 , since the right-hand side of both db and lsv steps is a substitution, rather than an application. So t 0 is an application t 1 t 2 , and we consider two cases depending on whether the step r is internal to t 1 or internal to t 2 :

1.1 If r is to the le of t 0 " t 1 N ϑ Let r 1 : t 1 Ñ shzgc M ϑ be the step isomorphic to r but going under the context l N ϑ . Note that r 1 cannot be ϑ-external, since this would imply that r is ϑ-external. So r 1 is ϑ-internal and by i.h. we have that t 1 P S ϑ . Hence t 0 " t 1 N ϑ P S ϑ , as required.

1.2 If r is to the right of t 0 " M ϑ t 2 Let r 1 : t 2 Ñ shzgc N ϑ be the step isomorphic to r but going under the context M ϑ l. Note that r 1 cannot be ϑ-external, since this would imply that r is ϑ-external. So r 1 is ϑ-internal and by i.h. we have that t 2 P nfϑ. Hence t 0 " M ϑ t 2 P S ϑ , as required.

2.

S G, t " srxzus P X ϑ with x R ngvpsq and s P X ϑ We consider three cases, depending on whether (1) r is a step at the root of t 0 , (2) t 0 is a substitution s 0 rxzu 0 s and r is internal to t 1 , (3) t 0 is a substitution s 0 rxzu 0 s and r is internal to t 2 .

2.1 If r is at the root Note that r cannot be a db step since it would be external, it must be a lsv step r : t 0 " CxxyyyryzvLs ϑ Ý Ý Ñ sh CxvyryzvsL " srxzus. So s is of the form s " s 1 L 1 with L 1 rxzus " ryzvsL and Cxvy " s 1 . Note that since s " s 1 L 1 P X ϑ by Lem. A.27 we must have s 1 P X θ where θ Ď fz ϑ pL 1 rxzusq " fz ϑ pryzvsLq " fz ϑ pLq. We consider two subcases, depending on whether Cxxyyy P X θ.

If

Cxxyyy P X θ By strengthening ϑ (Tactic A.55), Cxxyyy P X ϑ . Consider two further subcases, depending on whether y is a garbage variable in Cxxyyy:

the step r at the top of the diagram is of the form r :

3 happens to be a inert evaluation context, i.e. F ϑ 3 P E θ then the composition F ϑ 2 xxyyyryzF ϑ 3 s is a ϑ-evaluation context and r is a ϑ-external step, contradicting the hypothesis that it was internal. So we may suppose that F ϑ 3 is not a inert evaluation context. By Lem. A.23, evaluation contexts which are not inert evaluation contexts have the shape of an answer. In particular F ϑ 3 xΣ 1 y " pλx 1 .t 1 qL 2 and we have a ϑ-external step:

Hence t 1 has two distinct external steps, namely r 1 and r 2 . is is impossible as a consequence of the unique decomposition lemma (Lem. 4.17). q en by Lem. A.54 we have that F ϑYtyu 1 P X ϑ , so F ϑYtyu 1 ryzr 0 s P X ϑ , regardless of whether r 0 is a ϑ-structure or not. en it is straightforward to close the diagram. 4.3.2 If r 1 is ϑ-internal Since normal forms are backward preserved by internal steps (Lem. A.69), r 0 is a structure; more precisely r 0 P S ϑ . is allows us to conclude that F ϑYtyu 1 ryzr 0 s P X ϑ , and it is straightforward to close the diagram.

If y R svpF

ES R, F

ere are three cases: (1) the step r is at the root of t 0 ; (2) t 0 is a substitution t 1 0 ryzr 0 s and the step takes place inside t 1 0 ; (3) t 0 is a substitution t 1 0 ryzr 0 s and the step takes place inside r 0 .

5.1 e internal step r is at the root of t 0 Note that r cannot be a db step since then it would be ϑ-external, so r must be a lsv step t 0 " CxxzyyrzzvL 1 s ϑ Ý Ý Ñ sh CxxzyyrzzvsL 1 " F ϑ 1 xxyyyryzI ϑ x∆ys " t 1 . Let L 1 be a substitution context such that rzzvsL 1 " L 1 ryzI ϑ x∆ys, and using Lem e right branch case, C P X θ, is impossible since by strengthening ϑ (Tactic A.55) we have Crzzv 1 L 1 s P X ϑ , which contradicts the fact that r is an internal step. In the le branch case, p Cxl, zy P X θ. Note that in the term t 1 , the variable w is bound by lL t∆uryzts " rzzv 1 sL 1 since L is a pϑ, wq-chain context. en w must also occur bound in the term t 0 " p Cxw, v 1 yrzzv 1 L 1 s, since reduction cannot make a free variable become bound. Hence w " z. Consider the binding of w in the substitution context lL t∆u. We know that it is of the form I ϑ 1 xΣy where I ϑ 1 is a inert evaluation context for some value of ϑ 1 , and Σ is either ∆ (if L has exactly one jump) or a variable (if L has more than one jump). So we have that v 1 L 1 " I Proof. Let r be the internal step t 0 ϑ Ý Ý Ñ sh t 1 and r 1 the external step t 1 ϑ ù t 3 . e proof goes by case analysis on the kind of step r 1 . If r 1 is a db step, this is a consequence of Lem. A.71. If r 1 is a lsv step, this is a consequence of Lem. A.72. Note that in both cases the construction is given inductively. In all the base cases, the diagram is closed according to the allowed swaps. In all the inductive cases, the diagram is closed using the same kind of swaps as in the inductive hypothesis.

A.3 Proofs of Chapter 6 -A Labeled Linear Substitution Calculus

A. It is a well-known fact that in the λ-calculus free variables cannot be created. at is, if t Ñ s is a step, then fvptq Ě fvpsq. e same property also holds in the LSC. Actually, both in the λ-calculus and in the LSC, a stronger property holds: for any step t Ñ s, every occurrence of a free variable x in s has an ancestor in t.

Lemma A.75 (Every variable occurrence has an ancestor). Let R : t 1 Ñ t 2 " Cxxxyy be a step in the LSC. en x has an ancestor, i.e. there exists a context C 0 such that t 1 " C 0 xxxyy and such that the occurrence of x under C 0 is an ancestor of the occurrence of x under C before the step R.

Proof.

is property can be checked by a straightforward case analysis on the kind of redex R (db, ls, or gc). If R is a db redex, the step is of the form:

Consider an occurrence of a variable x on the term t 2 , under a context C, i.e. t " Cxxxyy. en there are three possibilities:

1.

e variable occurrence is inside t. at is, C " C 1 rxzssL. en taking C 0 :" pλx.C 1 qL s, the occurrence of x in t 1 under C 0 is an ancestor of the occurrence of x in t 2 under C.

2.

e variable occurrence is inside s. Similar to the previous case. More precisely, we have that C " trxzC 1 sL, and we take C 0 :" pλx.tqL C 1 .

3.

e variable occurrence is inside one of the substitutions in L. Similar to the previous cases. More precisely, we have that there exist substitution contexts L 1 and Second, if the hole of C 12 is to the le the substitution and it is a pre x of C 3 ryzss, more precisely if C 12 " C 1 12 ryzss and C 3 " C 1 12 xC 1 3 y, then we have that C 1 3 xxyyy " C 2 xtyrxzts. We consider three subcases, depending on whether the hole of C

Moreover:

1. If R is a db step, σ consists of exactly one step.

2. If R is a ls step, σ may consist of one or two steps.

3. If R is a gc step, σ may consist of zero or one steps.

And symmetrically for S and ρ.

Proof. If R and S lie in disjoint positions, the result is immediate. e non-trivial case is, without loss of generality, when the position of the redex occurrence R is a pre x of the position of the redex occurrence S. We only consider the case when R and S are di erent redexes. Note that even if R and S are di erent, they might lie in the same position; for instance px a x b qrxzy c s Ω has two ls redexes at the root. e proof is by induction on the context C under which the redex occurrence R is contracted:

1. Base case, C " l. Depending on the kind of the redex R:

1.1 R is a db-redex. at is t " @ α ppλ β Ω x.t 1 qL, s 1 q and µ " dbpβq. If S is internal to t 1 , s 1 or L (i.e. without overlapping the hole of L), the steps are disjoint, and it is immediate. Furthermore, since any application must be internal to t 1 , s 1 or L, we have already considered all the possible cases of S being a db-redex. e remaining possibilities are that S is a ls-redex or a gc-redex, involving one of the substitutions in L. at is, L must have the form L 1 ryzu 1 s Θ L 2 , and one of the two following cases applies:

Let us prove each case separately:

1.1.1 S is a ls-redex, contracting ryzu 1 s Θ . Since there is a ls-redex, we know that pλ α Ω x.t 1 qL 1 must be of the form C 1 xxy γ yy. e contracted occurrence of y can be either inside t 1 or inside L 1 . e name of the redex S is ν " Ó pγq ' Ò pu 1 q. We consider two subcases:

1.1.1.1 If the a ected occurrence is inside t 1 , we have t 1 " C 1 xxy γ yy. Let p t 1 be the corresponding term a er contracting the a ected occurrence of y, i.e.:

p t 1 :" C 1 xγ ' : u 1 y. en:

Note that on the right hand side we are using Lem. 6.9 to conclude that:

where Ó pγq " Ó pγ 1 q and, moreover:

Let p L 1 be the corresponding substitution context a er contracting the affected occurrence of y, i.e. p L 1 :" L A rzzC 1 xγ ' : u 1 ys Ψ L B . e situation is then:

Since it is a gc-redex, we know pλ β Ω x.t 1 qL 1 has no free occurrences of y. e name of the redex S is then: ν " ta ' Ò pu 1 q | a P Θu. By the usual fact that reduction cannot create free variables, we have:

2 R is a ls-redex. at is t " Cxxx α yyrxzt 1 s Ω and µ " Ó pαq ' Ò pt 1 q. Note that if S is internal to C (i.e. without overlapping the hole of C), the steps are disjoint, and the proof is direct. If S is internal to t 1 , it is also straightforward to close the diagram, although the ls-step duplicates t 1 , which requires contracting two residuals of S.

More precisely, suppose t 1 ν Ý Ñ p t 1 ; then:

Note that the name ν in the step marked with ‹ is not changed, by the fact that adding labels preserves redex names (Lem. 6.10). To close this diagram, note also that Ò p p t 1 q " Ò pt 1 q by the fact that reduction preserves the rst label of a term (Lem. 6.11).

We have already considered the cases when S is internal to C and internal to t 1 . e remaining cases are that the redex occurrence S contains as a subterm either the a ected variable x α or the a ected substitution rxzt 1 s Ω . Some situations are impossible and can be dismissed:

• A db-step cannot possibly involve rxzt 1 s Ω , since there is no application node that contains such substitution. • A gc-step cannot erase rxzt 1 s Ω , since there is at least one free occurrence of x in Cxxx α yy.

So we are le to check the following cases:

1.2.1 S is a db-redex, including x α as a subterm 1.2.2 S is a ls-redex, including x α as a subterm 1.2.3 S is a ls-redex, contracting rxzt 1 s Ω 1.2.4 S is a gc-redex, including x α as a subterm

Let us prove each of these separately:

1.2.1 S is a db-redex, including x α as a subterm. Let q be the subterm corresponding to the db-redex S. Since q is a subterm of Cxxx α yy, we know Cxxx α yy " C 1 xqy. Also, since q is a db-redex, it has the form q " @ β ppλ γ Θ y.s 1 qL, u 1 q where ν " dbpγq. Note that for this case we are also assuming that the occurrence of the a ected variable x α lies inside this subterm q. is leads to three cases for C, depending on whether the hole of C corresponds to a position inside s 1 , inside u 1 or inside L:

"the hole is internal to

Respectively for each case, let p C be the pseudo-context that results a er contracting the db-redex in C. Respectively in each of the three cases above:

Having de ned p C, we have:

Note that since p C is a pseudo-context, the expression p Cxx α y could prepend additional labels to the label α decorating the variable node x. However, the residual of the step R has the same name as R, namely Ó pαq ' Ò pt 1 q, since Ó pδαq " Ó pαq for any label δ. 1.2.2 S is a ls-redex, including x α as a subterm. Since the redex occurrence S includes x α as a subterm, it cannot contract the same substitution as the redex occurrence R, for in that case they would be the same redex, substituting the same occurrence of x α . Let q be the subterm corresponding to the ls-redex S. Since q is a subterm of Cxxx α yy, we know Cxxx α yy " C 1 xqy. Moreover, since q is a ls-redex, it has the form: q " C 1 xxy β yyryzs 1 s Θ where ν " Ó pβq ' Ò ps 1 q.

Here we are also assuming that the a ected occurrence of x α is internal to q. is leads to two cases for C, depending on whether the hole corresponds to a position inside C 1 or inside s 1 :

We analyze these two subcases separately:

• e gc step erases one of the substitutions in L 0 . at is, u 1 " u 0 and:

Ý ÝÝÝÝÝÝÝÝ Ñ gc qL for any term q e diagram is closed exactly as in the previous case, taking µ :" ta ' Ò pr 1 q | a P Θu.

4.

Inductive case, right of an application, C " @ α ps, C 1 q. e situation is:

If the Ñ db Y ls step is internal to s or t 1 2 , the situation is analogous to the le of an application case (points 3.1 and 3.2 of this lemma). e non-trivial case is when there is a Ñ db step at the root. at is: s " pλ β Ω x.s 1 qL ν " β By Lem. 6.10, since we had a step t 1

2 , we also have a step tdbpβqu :

gc tdbpβqu : t 1 2 . en:

Inductive case, le of a substitution, C " C 1 rxzss Ω . e situation is:

If the Ñ db Y ls step is internal to t 1 2 or s, the situation is analogous to the le of an application case (points 3.1 and 3.2 of this lemma). e non-trivial case is when there is a Ñ ls step at the root. en t 1 2 must be of the form Cxxx α yy and:

, we have that t 1 1 must be of the form C 1 xu 1 ryzr 1 s Θ y, with y R fvpu 1 q, so that:

2 " Cxxx α yy is implies that the substituted occurrence of x α in t 1 2 lies either in C 1 or in u 1 . Let p C 1 and p u 1 denote the result of replacing the a ected occurrence of x α (if any) by pα ' : sq, in C 1 and u 1 respectively. en:

We use the fact that y R fvpu 1 q and y R fvpsq to conclude that y R fvpp u 1 q, and thus be able to apply the gc step on the bo om of the diagram.

6. Inductive case, right of a substitution, C " srxzC 1 s Ω . e situation is:

If the Ñ db Y ls step is internal to s or t 1 2 , the situation is analogous to the le of an application case (points 3.1 and 3.2 of this lemma). e non-trivial case is when there is a Ñ ls step at the root. en s " Cxxx α yy and:

We use the fact that reduction preserves the rst label (Lem. 6.11) to conclude that since t 1 1 µ Ý Ñ gc t 1 2 then Ò pt 1 1 q " Ò pt 1 2 q; this is to ensure that the ls steps both have the same name. Moreover, we use the fact that adding labels preserves redex names (Lem. 6.10) to conclude that α ' : t 1 1 µ Ý Ñ gc α ' : t 1 2 ; this is to ensure that the rst gc step at the bo om of the diagram has the right name.

Finally, note that this is the only case throughout the proof by induction that duplicates the number of gc steps that are required to close the diagram. All the other cases either resort to the inductive hypothesis or require exactly one gc step. Since this case corresponds to having a ls step at the root, it can be applied at most once, implying that the number n of gc steps that are required to close the diagram must be 1 ď n ď 2.

Termination.

e process of swapping gc and db Y ls steps is modeled by the string rewriting system: R :

where a represents db Y ls steps and b represents gc steps. To see that R is strongly normalizing consider the decreasing measure m : ta, bu ‹ Ñ N given by: mpsq :" In this section we state and prove auxiliary results that are needed to prove that the LSC without gc veri es the C axiom. Note that, even though Prop. 7.12 is about the LSC without gc, the LLSC (with labels) is used as an auxiliary tool, so most lemmas in this Remark A.89. For any context C and any term t we have:

Remark A.90. slpα : t q " slpt q Lemma A.91 (Creation of labels of substitutions). Let t 0 Ñ t 1 be a step in the labeled calculus. en:

1. If it is a db step of name dbpβq, then slpt 0 q Y ttdbpβquu " slpt 1 q.

2. If it is a ls step, then slpt 0 q " slpt 1 q.

Proof. Straightforward by case analysis on the kind of contracted redex.

Lemma A.92 (Possible shapes of redex names). Let ρ : t 0 t 1 be a derivation in the LLSC without gc, where t 0 is an initially labeled term. Let µ be the name of a redex contracted along ρ . en µ must have one of the following three forms:

Proof. We claim that if t 0 u and t 0 is an initially labeled term, then the following properties hold for u : (I1) If x α is a subterm of u , i.e. Ó pαq P vlpu q, then Ó pαq is an initial label a.

(I2) If rxzt s is a substitution occurring in u , i.e. Ò pt q P slpu q, then Ò pt q is an initial label a or a label of the form tdbpαqu.

By induction on the length of the derivation t 0 u , it can be checked that this invariant is preserved More precisely, let s 0 Ñ s 1 be a labeled step and suppose that the invariant holds for s 1 . By the fact that variable labels are not created, as shown in Lem. A.87, condition (I1) is preserved. By the fact that substitution labels are only created with the form tdbpαqu, as shown in Lem. A.91, condition (I2) is preserved. Moreover, if the invariant holds for a term s 0 , the name of any labeled step s 0 Ñ s 1 has one of the forms in the statement. Indeed, by case analysis on the kind of step taken:

1. db step.

en the name of the step is dbpβq and it has the rst of the forms in the statement.

2. ls step. en the step is of the form:

e name of the step is Ó pαq ' Ò pt q. Since the invariant holds for s 0 , condition (I1) ensures that Ó pαq is an initial label and condition (I2) ensures that Ò pt q is either an initial label or of the form tdbpαqu. Hence the name of the step has either the second form or the third form in the statement.

t . Let µ be the name of R 0 , and suppose that µ is not among the names of the redexes contracted by ρ . en there exists a step R 1 P R 0 {ρ. Moreover, the name of its labeled variant R 1 is also µ.

Proof. By induction on ρ. If ρ is empty it is immediate by taking R 1 :" R 0 . Otherwise, ρ is of the form S σ . e names of R 0 and S are di erent by hypothesis, hence R 0 and S must be di erent steps. Since in the LSC without gc there is no erasure, there is at least one residual R 2 P R 0 {S, and given that residuals have the same name as their ancestors (Lem. 6.33), the name of the labeled variant R 2 of R 2 is also µ. Applying the i.h., we conclude that there is a step R 1 P R 2 {σ, i.e. R 1 P R 0 {Sσ, and the name of the labeled variant R 1 of R 1 is also µ, as required.

Lemma A.96 (Any redex has an ancestor before a derivation not contributing to its name). In the LSC without gc, let ρ be a derivation and let R 1 be a composable step, i.e. tgtpρq " srcpR 1 q. Let t be an initially reachable variant of the source of ρ, consider the labeled variant ρ of ρ whose source is t , and the labeled variant of R 1 of R 1 whose source if tgtpρ q. Let µ be the name of R 1 , and suppose that the names of the redexes contracted by ρ do not contribute to µ, i.e. every step S in ρ has a name ν such that ν Name ãÑ µ does not hold. en there exists a step R 0 such that R 1 P R 0 {ρ. Moreover, the name of its labelled variant R 0 is also µ.

Proof. By induction on the length of ρ. If ρ is empty it is immediate by taking R 0 :" R 1 . Otherwise, ρ is of the form σ S . e name of S does not contribute to the name of R 0 by hypothesis.

Recall that Prop. 6.41 states that whenever a step T 1 creates a step T 2 we have that the name of T 1 contributes to the name of T 2 . By the contrapositive, whenever the name of a step T 1 does not contribute to the name of a step T 2 , the second step T 2 must have an ancestor.

In our case, given that the name of S does not contribute to the name of R 0 , there must exist an ancestor, i.e. a step R 2 such that R 0 P R 2 {S. Moreover, by the fact that residuals have the same name as their ancestors (Lem. 6.33) the name of the labeled variant R 2 of R 2 must be µ. en, by applying the i.h., we conclude that there is a step R 1 such that R 2 P R 1 {σ, i.e. R 0 P R 1 {σS, and the name of the labeled variant R 0 of R 0 is also µ, as required.

A. 4 Our aim is to prove that the set of reachable normal forms is a stable set. e proof depends on a number of technical de nitions and lemmas. We omit the long proofs by case analysis of these lemmas. e proof of the second item is similar, by induction on t. As before, the interesting case is when t " srxzus and there are two cases.

1. If x P fvpnf gc psqq. By item 1. of this lemma, we have that x P rvpsq, so s " Rxxxyy. en the term t is not a RNF, since t " Rxxxyyrxzus so it has a reachable ls step. On the other hand, the term nf gc ptq is not a Ñ db Y ls -normal form, since nf gc ptq " nf gc psqrxznf gc puqs and x occurs free in nf gc psq, so there is a ls step. Note that R is reachable, so pλx.C 1 qL s is a reachable context. en, by Lem. A.104, we have that C 1 rxzssL is also a reachable context. Hence R{S is reachable.

Moreover, let us show that R{S is strongly reachable. By contradiction, suppose that T ă 1 B R{S for some reachable redex T . We consider three cases, depending on whether T is a db redex created by S, a ls redex created by S, or it has has an ancestor before S:

1.1.1 T is a db redex created by S. is case is not possible, since there should be an outermost application in order to create a db redex in this way.

1.1.2 T is a ls redex created by S. is case is not possible as we would have pT ă 1

B

Rq, since the box of T is the argument of the substitution rxzss and the anchor of R{S is inside u. en since R is a reachable redex, the context pλx.tqL 1 ryzC 1 sL 2 s must be reachable. By Lem. A.110 there must exist a variable z such that λx.t is of the form C 2 xxzyy where C 2 is a reachable context, and moreover L 1 is a pz, yq-chained substitution context. Note that λx.t " C 2 xxzyy so C 2 " λx.C 1 and x ‰ z. In particular, t " C 1 xxzyy and C 1 is a reachable context. By applying Lem. A.110 now in the opposite direction, we have that the context trxzssL 1 ryzC 1 sL 2 is reachable, so R{S is a reachable redex. Moreover, let us show that R{S is strongly reachable. By contradiction, suppose that T ă 1 B R{S for some reachable redex T . We consider three cases, depending on whether T is a db redex created by S, a ls redex created by S, or it has has an ancestor before S:

1.2.1 T is a db redex created by S. is case is not possible, since there should be an outermost application in order to create a db redex in this way.

1.2.2 T is a ls redex created by S. en T contracts an occurrence of x in t, and the box of T is the argument of the substitution rxzss. e anchor of R{S is not inside that substitution, so we have pT ă 1 B R{Sq. 1.2.3 T has an ancestor before S. Let T 0 be an ancestor of T , i.e. T P T 0 {S. en since pS ă B Rq and T ă B R{S, by Context-freeness (Lem. A.106) we have that T 0 ă B R, contradicting the fact that R is minimal with respect to the box order.

2. e sub-ARS NL is closed residual-invariant, to be able to apply Prop. 7.54. For this we will show that (2a) the set NFpNLq is closed by reduction, and (2b) the sub-ARS NL is residual-invariant.

Part 1a: every NL-normal form is a NLNF. By induction on t it is straightforward to check that if t P NFpNLq then t P NLNF.

Part 1b: every NLNF is a NL-normal form. Given t P NLNF it can be shown that it is a NL-normal form. ere are two cases, depending on the shape of t. If t is an answer it is a direct consequence of Lem. A.114. If it is a structure, t " Nxxxyy, then it is straightforward by induction on N.

Part 2a: the set NFpNLq is closed by reduction. By items (1a) and (1b), we know that NFpNLq " NLNF. Let t 1 P NLNF and let t 1 Ñ t 2 be an arbitrary step (not necessarily in the strategy). We claim that t 2 P NLNF. ere are two cases, depending on the shape of t 1 : if t 1 is an answer pλx.tqL, then by induction on L it can be seen that t 2 is also an answer. If t 1 is a structure Nxxxyy, then by induction on N it can be seen that t 2 is also of the form N 1 xxxyy.

Part 2b: the sub-ARS NL is residual-invariant. Let R P NL and consider R ‰ S. Let us show that there is a residual R 1 P NL X R{S. By induction on the need context N under which the step R takes place. Most overlappings between redexes R and S are uninteresting, and it is immediate to show that there is a residual R 1 P R{S in the strategy, resorting to Lem • lsnl vs. step internal to the argument: Let vL Ñ t be a step. By Part 2a, the set of S N L -normal forms is closed by reduction and, more speci cally, the set of answers is closed by reduction. So t " v 1 L 1 . en: