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Abstract

Abstract
My research activities have been developed around Synthetic Aperture Radar (SAR) imagery,

but cover a broad range of subjects starting from the exploitation of SAR images for displacement
measurement at the Earth’s surface until the estimation of geophysical parameters which charac-
terize the subsurface geological structures that induce the displacement observed at the surface.
I am interested in both methodological developments, especially those to better exploit the mass
of available SAR data, and applications of the methods to targets of geophysical interest such as
earthquakes, volcanoes, subsidence in urban environments and alpine glaciers. In this report, I give
a summary of my research works carried out in recent years, mainly through Master internships
and Ph.D theses that I co-supervised or co-supervise. I also introduce the related state-of-the-art
works, as well as the perspectives of my research activities. These works will be presented in line
with four research axes organized according to four different scientific objectives : estimation of
the displacement from time series of SAR images, reconstruction of the missing data in the time
series of SAR/optical displacement, analysis of the time series of displacement measurement and
estimation and prediction of geophysical parameters.

Keywords : SAR, multi-temporal InSAR, displacement measurement, time series, inversion, data
assimilation.
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Résumé

Résumé
Mon activité de recherche se développe autour de l’imagerie SAR (Synthetic Aperture Radar),
mais couvre un spectre large des sujets allant de l’exploitation des images SAR pour la mesure
de déplacement à la surface de la Terre jusqu’à l’estimation des paramètres géophysiques qui
caractérisent la source en profondeur du déplacement observé en surface. Je m’intéresse à la
fois aux développements méthodologiques, notamment ceux pour mieux exploiter la masse de
données SAR disponibles, et aux applications des méthodes aux objets d’intérêt géophysiques
telles que les séismes, les volcans, les subsidences en milieux urbains et les glaciers alpins. Dans ce
rapport, je présente de manière synthétique mes travaux de recherche menés ces dernières années
essentiellement à travers des stages et thèses que j’ai co-encadrés ou co-encadre ; je présente
également l’état de l’art permettant un positionnement approprié de mes travaux, ainsi que les
perspectives de mon activité de recherche. Ces travaux seront présentés suivant quatre axes de
recherche organisés selon quatre objectifs scientifiques différents : l’estimation du déplacement
à partir de séries temporelles d’images SAR, la reconstruction des données manquantes dans les
séries temporelles de déplacement SAR/optique, l’analyse des séries temporelles de mesure de
déplacement, et l’estimation et la prédiction des paramètres géophysiques.

Mots-clefs : SAR, InSAR multi-temporelle, mesure de déplacement, série temporelle, inversion,
assimilation de données.
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Activités pédagogiques

Mon activité d’enseignement a débuté durant ma thèse, puis s’est poursuivie lors de ma prise de
poste MCF. Ci-dessous une liste des domaines dans lesquels je suis intervenue en enseignement :

• Algorithmique & numération

• Base de données

• Systèmes embarqués

• Traitement du signal et d’images

Quand j’étais en thèse, je suis intervenue, sous forme de vacation, dans des modules de trai-
tement d’images dans la filière "Système Numérique Instrumentation" (SNI) à Polytech Annecy-
Chambéry et au département informatique à l’IUT d’Annecy. Depuis ma prise de poste MCF,
j’interviens principalement dans la filière SNI à Polytech Annecy-Chambéry. J’interviens égale-
ment dans les filières Mecanique & Mécatronique (MM) et Informatique Données et Usage (IDU)
dans des modules informatiques du tronc commun.

Mes enseignements ont été dispensés à des publics variés, incluant les étudiants en cycle pré-
paratoire (PEIP) (ou L1) et en cycle ingénieur de l’année 3 à l’année 5. En plus des enseignements
classiques, je m’investis également dans les enseignements innovants développés au sein de Poly-
tech Annecy-Chambéry. Je me charge de plus des suivis de stages ingénieurs et de projets de fin
d’études.

Lors de mes deux premières années en poste MCF (09/2014 - 08/2016), j’avais une décharge
de 64 h en enseignement, mon service était limité à 128 h/an. Depuis septembre 2016, le volume
d’enseignement annuel que j’effectue est autour de 250 h (y compris les suivis de stages et projets).

Enseignements classiques

Une partie importante de mes enseignements correspondent aux enseignements classiques sous
forme de CM/TD/TP. Je suis la responsable de deux modules, Corrélation d’images (Ing. 4) et
Technique Traitement de l’Information (Ing. 5) dans la filière SNI. J’étais la responsable du module
"Systèmes embarqués I" (Ing. 4) dans la filière MM pendant la période 2015 - 2020.

La Table 1 présente un résumé des matières et des heures d’enseignement classique que j’effec-
tue depuis septembre 2016 (après la décharge jeune MCF). Pour certaines matières (e.g. Système
embarqué I, Signaux aléatoires, Corrélation d’images et Technique traitement de l’information) en
ingénieur 4e et 5e année, le nombre d’heures varie légèrement d’une année à l’autre en fonction du
nombre d’étudiants recrutés.
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Module Volume (h/an) Public

CM TD TP

Algorithmique & numération - 30 32 PEIP 1, Ing.3

Base de données - 4,5 36 Ing.3

Signal & image : opérateur de base - 12 - Ing.3

Imagerie & Télédétection ∗ ∗ 12 Ing.3

Système embarqué I - 9/12 52 Ing.4

Signaux aléatoires - 0/12 12 Ing.4

Corrélation d’images 4,5 4,5/9 12 Ing.4

Technique traitement de l’information ∗ ∗ 10/20 Ing.5

Total 4,5 60/79,5 166/176 -

Tableau 1 – Résumé des matières et des heures d’enseignement classique que j’effectue depuis septembre
2016. ∗ signifie que le type d’enseignement n’existe pas dans le module, alors que − signifie que je n’y
interviens pas.

Enseignements innovants

En plus des enseignements classiques, je m’investis également dans les enseignements inno-
vants, Apprentissage par Problème et par Projet (APP), mis en place dans la filière SNI au sein
de Polytech Annecy-Chambéry. En APP, les étudiants travaillent en groupe (composé de 4 à 8
étudiants qui souhaitent travailler sur le même sujet) sous forme de projet pendant 4 semestres (S6
- S9). En plus des problèmes techniques à résoudre, les étudiants se forment à gérer et organiser
leurs projets. Les tuteurs enseignants ont le rôle de guider les étudiants dans l’avancement de leurs
projets, avec un encadrement de plus en plus lâche au cours des semestres afin de les mener vers
l’autonomie. L’évaluation à la fin de chaque semestre comprend une présentation orale collective,
un rapport écrit collectif et un entretien individuel. Lors de ce dernier, les étudiants sont évalués par
compétence avec 4 niveaux (notion, application, maîtrise, avancé), selon la grille des compétences
techniques et transversales établie par l’équipe APP.

Je fais partie de l’équipe APP depuis ma prise de poste MCF. J’interviens en thème "Ima-
gerie pour l’Environnement" (IE). J’étais la responsable du sous-thème "Imagerie Dronoportée
et Télédétection" pendant la période de 2016 - 2019 et je prends la responsabilité du sous-thème
"Imagerie satellitaire et Télédétection" depuis janvier 2021. Je participe régulièrement aux réunions
APP en tant que représentant IE et j’ai participé à l’établissement de la grille des compétences.
J’ai obtenu en juillet 2016 le brevet de télépilotage d’aéronef Ultra-Léger Motorisé (ULM) et le
certificat d’inspecteur de pilote d’aéronef ULM afin de faciliter l’encadrement du projet "Imagerie
Dronoportée et Télédétection". Par rapport aux enseignements classiques, l’encadrement et le suivi
des projets APP nécessitent beaucoup plus d’énergie.

En plus des APPs, dans le module "Technique Traitement de l’Information", dont je suis
responsable, j’interviens avec 3 autres collègues portant des compétences complètement différentes,
nous gardons la même pédagogie que les APPs. L’objectif de ce module consiste à développer une
application Android qui permet de reconnaître les visages en utilisant l’analyse en composante
principale. Les étudiants organisent les 3 tâches techniques : reconnaissance de visages par analyse
en composante principale, développement Android et communication, dans un projet en déployant
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des méthodes avancées en gestion de projet. La stratégie de l’évaluation du module est aussi la
même que celle en APP. Cette pédagogie enrichit largement les compétences que les étudiants
peuvent acquérir dans un module et les aide à se préparer plus rapidement pour leur future carrière
d’ingénieur.

Stages et projets Recherche & Développement (R&D)

Chaque année, je me charge des suivis de 4 stages ingénieurs de 4e ou 5e année en France ou
à l’étranger dans la filière SNI. De temps en temps, je suis les stages (orientée informatique) de 4e
année dans la filière MM suite à la demande des collègues.

J’encadre également des Travaux Personnels Encadrés (TPE) au cycle préparatoire et des
projets R&D de fin d’études de la filière SNI.

Réunions pédagogiques

Pendant les deux premières années en posteMCF, j’ai participé régulièrement aux formations et
ateliers pédagogiques afin de renforcer mes compétences en enseignement. Plus tard, suite à l’aug-
mentation des charges d’enseignement, de recherches et administratives, je participe moins à ce
genre de formations. Cependant, je maintiens toujours ma participation aux réunions pédagogiques
pour les APPs et aux réunions organisées au sein de la filière SNI.
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Activités de recherche

Mon activité de recherche se développe autour de l’imagerie SAR (Synthetic Aperture Radar),
mais couvre un spectre large des sujets allant de l’exploitation des images SAR pour la mesure
de déplacement à la surface de la Terre jusqu’à l’estimation des paramètres géophysiques qui
caractérisent la source en profondeur du déplacement observé en surface. Je m’intéresse à la fois
aux développements méthodologiques, notamment ceux pour mieux exploiter la masse de données
disponibles, et aux applications des méthodes aux objets d’intérêt géophysiques telles que les
séismes, les volcans, les subsidences en milieux urbains et glaciers alpins.

Ci-dessous sont présentés les 4 grands axes de mon activité de recherche.

Mesure de déplacement par imagerie SAR

Les images SAR constituent actuellement la source principale d’information pour la mesure
de déplacement terrestre, grâce à leur grande couverture spatiale et leur disponibilité régulière. Un
grand nombre de méthodes Interférométrie SAR (InSAR) multi-temporelles ont été développées,
grâce auxquelles l’analyse et le suivi pluriannuels du déplacement deviennent possibles et la
précision de lamesure de déplacement atteint l’ordre dumillimètre par an. Cependant, ces dernières
années, le développement méthodologique en InSARmulti-temporelle voit un ralentissement. Plus
d’efforts ont étémenés à construire des systèmes de surveillance à l’échelle nationale et à développer
des services de traitement automatique en ligne. D’autre part, l’exploitation de la technique InSAR
dans des contextes opérationnels en génie civil et en surveillance des risques naturels commence
à voir le jour, mais leur application est souvent limitée par la difficulté d’intégrer de manière
graduelle des nouvelles images dans une chaîne de traitement plus ou moins compliquée.

Ma première expérience en mesure du déplacement par image SAR date de mon stage M2 pour
lequel j’ai utilisé la méthode InSAR multi-temporelle, Permanent Scatterer (PS), pour estimer la
vitesse de la subsidence de la ville de Mexico (Yan et al., 2012). Durant ma thèse, j’ai utilisé la
technique InSAR classique et la technique de la corrélation d’amplitude pour calculer les champs
de déplacement induits par le séisme du Pakistan en 2015. Ces premières activités étaient plutôt
sur la prise en main et l’application des méthodes qui existaient à l’époque.

J’ai repris mon activité en mesure du déplacement par image SAR depuis l’encadrement de la
thèse deMatthias Jauvin (taux d’encadrement 40%).Dans cette thèse, laméthode PS a été appliquée
aux séries temporelles d’images Sentinel-1 dans un contexte opérationnel pour la surveillance de
grand chantier, i.e. l’exploitation des lignes de métro à Paris. Pour répondre au besoin d’un suivi
régulier, une mise à jour tous les 3 mois de la carte de déplacement a été effectuée par relance de
la chaîne de traitement en ajoutant les nouvelles images. Des résultats cohérents avec les mesures
in situ ont été obtenus, ce qui a permis de convaincre de l’intérêt de l’InSAR auprès des maîtres
de chantier, malgré une stratégie de traitement assez lourde. À cause de la confidentialité, ces
travaux n’ont pas pu être publiés. Matthias a étudié également la faisabilité de l’InSAR avec les
images Sentinel-1 disponibles tous les 6 jours pour mesurer l’écoulement des glaciers alpins. Il a
proposé une méthode PS "ad hoc", avec l’aide des installations des coins réflecteurs, pour mesurer
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les déplacements sur les moraines (Jauvin et al., 2019). Sur les glaciers, malgré la présence des
franges interférométriques sur certains endroits pour certaines dates, une application systématique
de l’InSAR pour suivre les mouvements des glaciers alpins reste toujours pessimiste.

Étant donné la conclusion sur l’utilisation de l’InSAR avec les données Sentinel-1 pour me-
surer les déplacements des glaciers alpins, dans la thèse de Suvrat Kaushik (taux d’encadrement
25%), nous avons proposé d’exploiter les images de haute résolution TerraSAR-X et PAZ aux
collègues glaciologues (qui font également partie de l’encadrement de la thèse), afin de mesurer
les déplacements sur des glaciers suspendus dans le massif du Mont Blanc.

L’observation des travaux réalisés dans la thèse de Matthias pour la surveillance de grand
chantier m’a motivé à développer une nouvelle méthode InSAR multi-temporelle qui permet de
prendre en compte les nouvelles images au fil de l’eau sans recommencer toute la chaîne de
traitement. Pour ceci, je me suis approchée des collègues spécialisés en traitement statistique du
signal et donc coencadré un stage M2 en 2018 (stage de Ségolène Martin) avec G. Ginolhac. À
travers ce stage, nous avons identifié des pistes de développement et avons mis en place d’un sujet
de thèse. En octobre 2020, la thèse de Viet-Hoa Vu Phan a démarré avec l’objectif de développer
une méthode InSARmulti-temporelle récursive et robuste qui permettra 1) d’intégrer les nouvelles
images au fil de l’eau et 2) de prendre en compte la distribution non gaussienne des données.

Publications associées :

• Yan. Y., Doin M.P., Lopez-Quiroz P., Tupin F., Fruneau B., Pinel V., Trouvé E. Mexico City
subsidence measured by InSAR time series : Joint analysis using PS and SBAS approaches.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.
5, No. 4, pp.1312 – 1326. 2012. DOI : 10.1109/JSTARS.2012.2191146

• M. Jauvin, Y. Yan, E. Trouvé, B. Fruneau,M. Gay, B. Girard. Integration of Corner Reflectors
for theMonitoring of Mountain Glacier Areas with Sentinel-1 Time Series. Remote Sensing,
MDPI, 11(8), 988, https ://doi.org/10.3390/rs11080988

Reconstruction de données manquantes

Malgré la masse de données disponibles, le problème de données manquantes existe toujours
dans les séries temporelles de mesures de déplacement, à cause des changements de la surface
observée ou limite technique des méthodes utilisées pour le calcul du déplacement. En particulier,
pour les objets qui décorrèlent rapidement comme les glaciers alpins, l’incomplétude de données
est fréquemment présente, ce qui dégrade la fiabilité des mesures de déplacement et donc gêne
l’utilisation de ce dernier dans des problèmes demodélisation. Par conséquent, le développement de
méthodes avancées permettant de reconstruire les données manquantes dans des séries temporelles
de mesures de déplacement semble nécessaire.

Mon début en traitement de données manquantes était durant le stage M2 de Rémi Prébet (taux
d’encadrement 80%). Une série temporelle d’interférogrammes formés entre les dates d’acquisition
consécutives ont été obtenus sur le glacier Gorner, courant la période hivernale 2016 - 2017. La
difficulté d’une analyse directe de cette série temporelle se trouve, d’une part, sur la présence
des données manquantes, i.e. des zones ou des interférogrammes entiers où la perte de cohérence
est observée ; et d’autre part sur le manque de la redondance des informations de déplacement
dans la série temporelle à cause de la manière de former les interférogrammes. Nous avons
proposé une méthode, nommée Principal Modes (PM), afin d’extraire les informations cohérentes
du déplacement dans les séries temporelles des interférogrammes enroulés et déroulés en nous
appuyant sur une analyse en composante principale. Ces travaux ont été publiés dans (Prébet et al.,
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2019).
Dans la thèse Alexandre Hippert-Ferrer que j’ai encadrée principalement (taux d’encadrement

80%), nous avons proposé 3 méthodes pour reconstruire les données manquantes dans des sé-
ries temporelles de mesure de déplacement par télédétection (images optiques/radar, GPS). Les
deux premièresméthodes, nommées "ExpectationMaximization - Empirical Orthogonal Functions
(EM-EOF)" et "EM-EOF étendue", s’appuient respectivement sur la décomposition de la cova-
riance temporelle et spatio-temporelle de la série temporelle demesure de déplacement en fonctions
empiriques orthogonales (EOFs) et nécessitent une initialisation des valeurs manquantes avant le
traitement. La troisième méthode est orientée vers l’estimation robuste de la matrice de covariance
du signal de déplacement, sans initialisation préalable des valeurs manquantes. Ces trois approches
ont en commun de s’appuyer sur un schéma de résolution itératif de type espérance-maximisation
(EM) ainsi que sur la sélection d’un nombre réduit de modes décrivant le maximum de variabilité
du signal de déplacement. Les deux premières méthodes ont été publiées dans (Hippert-Ferrer
et al., 2020a) et (Hippert-Ferrer et al., 2020b). La poursuite du développement de la troisième
méthode s’est poursuivi par Alexandre Hippert-Ferrer, recruté en post-doctorant au LEME dans le
cadre du projet ANR MARGARITA.

Publications associées :

• R. Prébet, Y. Yan, M. Jauvin, E. Trouvé. A Data-Adaptive EOF-Based Method for Dis-
placement Signal Retrieval From InSAR Displacement Measurement Time Series for De-
correlating Targets. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8),
pp.5829-5852. <10.1109/TGRS.2019.2902719>
• A. Hippert-Ferrer, Y. Yan, P. Bolon. 2020a, EM-EOF : Gap – Filling in Incomplete SAR
Displacement Time Series, IEEE Transactions on Geosciences & Remote Sensing, doi :
10.1109/TGRS.2020.3015087
• A. Hippert-Ferrer, Y. Yan, P. Bolon. 2020b, Spatiotempporal Filling of Missing Data in
Remotely Sensed Displacement Measurement Time Series, IEEE Geosciences & Remote
Sensing Letters, doi : 10.1109/LGRS.2020.3015149

Analyse des séries temporelles de mesures de déplacement

Avec la disponibilité régulière et gratuite des données Sentinel, des séries temporelles d’images
sont disponibles pour les mesures de déplacement. De manière générale, on construit un réseau
de mesure en reliant les pairs d’images entre lesquelles on calcule le déplacement. De ce fait, une
grande quantité de mesures de déplacements de différentes baselines temporelles, de différentes
qualités (en termes d’incertitude et d’incomplétude), portant des informations redondantes ou
complémentaires, sont à notre disposition. D’autre part, l’ensemble de ces mesures de déplacement
ne permet pas une interprétation directe du comportement du déplacement étudié (e.g. vitesse
moyenne pendant une période, variabilité saisonnière, etc.). Une étape de post-traitement est
indispensable afin d’extraire les informations du déplacement de meilleure qualité et directement
interprétables ou utilisables par d’autres techniques d’analyse.

Le problème de fusion des mesures de déplacement a été abordé dans ma thèse, avec l’objectif
de réduire les incertitudes par la redondance dans un cadre statique (phénomène instantané, pas de
série temporelle de mesure de déplacement). Des stratégies de fusion ont été proposées avec une
modélisation des incertitudes présentes dans les données (Yan et al., 2012a, Yan et al., 2012b).

Dans la thèse de Laurane Charrier (taux d’encadrement 33%), le problème est nettement plus
compliqué. Des mesures de déplacement issues de l’offset tracking des images Sentinel-2 de diffé-
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rentes baselines temporelles et de différentes qualités sont à disposition pour étudier l’écoulement
du glacier Fox. L’incomplétude, la redondance, la complémentarité et l’incertitude sont présentes
dans les données. L’objectif de l’étude consiste à obtenir une série temporelle de mesures de
déplacement entre les dates d’acquisition consécutives avec une qualité améliorée (incertitude et
incomplétude réduite). La méthode proposée pour le traitement de ce jeu de données nécessite la
prise en compte de la redondance, de l’incomplétude, de l’incertitude, ainsi que de la particularité
du comportement du déplacement étudié. Pour ceci, nous sommes partis de la démarche courante,
et nous nous appuyons sur le principe de la fermeture temporelle de déplacement dans un système
d’inversion au sens moindre carré. Afin de prendre en compte les incertitudes, une stratégie d’inver-
sion à 2 étapes a été adoptée : une première inversion sans pondération et les valeurs de pondération
à l’étape 2 sont estimées à partir des résidus obtenus à la première étape. Étant donné l’information
a priori du déplacement (vitesse varie sous forme d’un sinus), les mesures de petites baselines
temporelles sont privilégiées dans l’inversion, car les mesures de grandes baselines temporelles
ont tendance à favoriser une estimation d’une vitesse moyenne. Ces travaux font l’objet d’un papier
en préparation.

Publications associées :

• Yan Y., Mauris G., Trouvé E., Pinel V. Fuzzy uncertainty representations of co-seismic dis-
placement measurements issued from SAR imagery. IEEE Transactions on Instrumentation
& Measurement, vol. 61, No. 5, pp. 1278 – 1286, 2012. DOI : 10.1109/TIM.2011.2175825.

• Yan Y., Trouvé E., Pinel V., Mauris G., Pathier E., Galichet S. Fusion of D-InSAR and
subpixel image correlation measurements for coseismic displacement field estimation : Ap-
plication to the Kashmir earthquake (2005). International Journal of Image and Data Fusion,
Vol. 3, No. 1, pp.71-92, 2012. DOI :10.1080/19479832.2011.577563.

Estimation des paramètres géophysiques à partir des mesures de dé-
placement

Un objectif important de la mesure de déplacement consiste à prédire les risques naturels. Pour
ceci, il est indispensable de comprendre la source en profondeur à l’origine du déplacement observé
depuis la surface. La géométrie et la force de la source sont caractérisées par un ensemble des
paramètres géométriques et physiques qui peuvent être estimés à partir des mesures de déplacement
en surface, ce dernier est réalisé par inversion d’un modèle géophysique. Deux types d’inversion,
statique et dynamique, existent. Dans le cas d’inversion statique, les valeurs des paramètres géo-
physiques à estimer n’évoluent pas, alors qu’elles varient au cours du temps dans le cas d’inversion
dynamique. Les méthodes d’inversion statique (déterministe ou stochastique) ont été développées
depuis très longtemps dans la communauté géophysique et ont déjà gagné beaucoup de maturité,
la difficulté de leur implémentation se trouve essentiellement sur la modélisation du phénomène
observé. Quant à l’inversion dynamique, très récemment l’assimilation de données a été proposée
en volcanologie, ce qui ouvre une nouvelle direction de recherche dans cette communauté.

J’ai acquis la compétence en inversion statique pendant ma thèse. Dans l’étude du séisme du
Pakistan en 2015, j’ai estimé les paramètres géométriques de la faille et la distribution du glissement
sur le plan de la faille à partir des mesures de déplacement issues de l’InSAR et de la corrélation
d’amplitude. Par rapport aux études similaires pré-existantes, j’ai réussi à proposer un modèle de
faille qui explique mieux les données (Yan et al., 2013). Cette première expérience, même si c’était
juste une application des outils mis à disposition, m’a permis de maîtriser la démarche d’inversion
statique.
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Avec deux ans de postdoc en assimilation de données en océanographie dans le cadre d’un
projet Européen, j’ai pu acquérir de solide connaissance en assimilation de données (une technique
permettant de combiner unmodèle dynamique et les données dans le passé et au présent pour prédire
l’état futur du système observé, en s’appuyant sur les statistiques des erreurs), en particulier avec
le filtre de Kalman d’ensemble (Yan et al., 2014, Yan et al., 2015, Yan et al., 2017). En collaborant
avec Virginie Pinel, spécialiste en modélisation volcanique, nous avons introduit la technique de
l’assimilation de données pour la première fois en volcanologie dans le cadre de la thèse de Mary
Grace Bato (taux d’encadrement 30%). L’objectif de cette thèse était de prédire l’évolution des
surpressions dans des chambres magmatiques en utilisant des mesures de déplacement en surface
issues de données InSAR et GNSS. L’ensemble des cas d’études sur données réelles et synthétiques
fournissent des résultats prometteurs, renforçant l’intérêt que porte l’assimilation de données. Ces
travaux ont été publiés dans (Bato et al., 2017) et (Bato et al., 2018). Cette thèse a gagné un prix
de thèse en géophysique en 2019 du fait de son originalité.

Avec les avancées en réseau de neurones, je souhaite développer des nouvelles méthodes
d’inversion qui permettront de combiner les réseaux de neurones convolutionels et récurrents, et
les modèles physiques afin de répondre au besoin de surveillance des risques naturels. Cette idée
fait l’objet d’un workpackage de mon projet ANR soumis.

Publications associées :

• Bato M.-G., Pinel V., Yan Y., Jouanne F., Vandemeulebrouck J., Possible deep connection
between volcanic systems evidenced by sequential assimilation of geodetic data, Scientific
Reports, Nature Publishing Group, 2018, https ://doi.org/10.1038/s41598-018-29811-x
• Bato M.-G., Pinel V., Yan Y., “Assimilation of Deformation Data for Eruption Forecasting :
Potentiality Assessment Based on Synthetic Cases”, Frontiers in Earth Science, Frontiers
Media, 2017, doi : 10.3389/feart.2017.00048
• Yan Y., Barth A., Beckers J.-M., Brankart J.-M., Brasseur P., Candille G., « Comparison
of different incremental analysis update schemes in a realistic assimilation system with En-
sembleKalmanFilter »,OceanModelling, 2017, 115, pp.27-41. 〈10.1016/j.ocemod.2017.05.002〉
• Yan Y., Barth A., Beckers J.-M., Candille G., Brankart J.-M., Brasseur P., « Ensemble
assimilation of ARGO temperature profile, sea surface temperature, and altimetric satellite
data into an eddy permitting primitive equation model of the North Atlantic Ocean », Journal
of Geophysical Research. Oceans, 2015, pp.vol. 120. 〈10.1002/2014JC010349〉
• Yan Y., Barth A., Beckers J.M. Comparison of different assimilation schemes in a sequential
Kalman filter assimilation system. Ocean Modelling, Vol. 73, pp. 123-137, 2014
• Yan Y., Pinel V., Trouvé E., Pathier E., Perrain J., Bascou P., Jouanne F. Coseismic slip
distribution of the 2005 Kashmir earthquake from SAR amplitude image correlation and
differential interferometry. Geophysical Journal International, Vol. 193, No. 1, pp. 29-46,
2013. DOI :10.1093/gji/ggs102

Bilan des publications

. Nombre de chapitres dans des ouvrages : 1 publié, 2 en préparation

. Nombre d’articles dans des revues à comité de lecture : 18

. Nombre de communications au niveau international avec comité de lecture : 16

. Nombre de communications au niveau national avec comité de lecture : 2
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. Nombre de communications dans des congrès internationaux : 21

. Nombre de communications dans des congrès nationaux : 11

Liste de publications

Revues à comité de lecture

1. A. Hippert-Ferrer, Y. Yan, P. Bolon. EM-EOF : Gap – Filling in Incomplete SAR Dis-
placement Time Series, IEEE Transactions on Geosciences & Remote Sensing, doi :
10.1109/TGRS.2020.3015087

2. A. Hippert-Ferrer, Y. Yan, P. Bolon. Spatiotempporal Filling of Missing Data in Remotely
Sensed Displacement Measurement Time Series, IEEE Geosciences & Remote Sensing
Letters, doi : 10.1109/LGRS.2020.3015149

3. R. Prébet, Y. Yan, M. Jauvin, E. Trouvé. A Data-Adaptive EOF-Based Method for Dis-
placement Signal Retrieval From InSAR Displacement Measurement Time Series for De-
correlating Targets. IEEE Transactions on Geoscience & Remote Sensing, 2019, 57(8),
pp.5829-5852, <10.1109/TGRS.2019.2902719>

4. M. Jauvin,Y.Yan, E. Trouvé, B. Fruneau,M.Gay, B.Girard. Integration of Corner Reflectors
for theMonitoring of Mountain Glacier Areas with Sentinel-1 Time Series. Remote Sensing,
MDPI, 11(8), 988, https ://doi.org/10.3390/rs11080988

5. R. Fallourd, A. Dehecq, M. Jauvin, Y. Yan, G. Vasile, et al.. Suivi des glaciers de montagne
par imagerie radar satellitaire. Revue Française de Photogrammétrie et de Télédétection,
Société Française de Photogrammétrie et de Télédétection, 2019, pp.91-105

6. Bato M.-G., Pinel V., Yan Y., Jouanne F., Vandemeulebrouck J., Possible deep connection
between volcanic systems evidenced by sequential assimilation of geodetic data, Scientific
Reports, Nature Publishing Group, 2018, https ://doi.org/10.1038/s41598-018-29811-x

7. Bato M.-G., Pinel V., Yan Y., Assimilation of Deformation Data for Eruption Forecasting :
Potentiality Assessment Based on Synthetic Cases, Frontiers in Earth Science, Frontiers
Media, 2017, doi : 10.3389/feart.2017.00048

8. YanY., Barth A., Beckers J.-M., Brankart J.-M., Brasseur P., Candille G., Comparison of dif-
ferent incremental analysis update schemes in a realistic assimilation system with Ensemble
KalmanFilter,OceanModelling, Elsevier, 2017, 115, pp.27-41. 10.1016/j.ocemod.2017.05.002

9. Barth A., Yan Y., Alvera-Azcárate A., Beckers J.-M., Local ensemble assimilation scheme
with global constraints and conservation, Ocean Dynamics, Springer Verlag, 2016, 66 (12),
pp. 1651-1664

10. Yan Y., Dehecq A., Trouvé E., Mauris G., Gourmelen N., Vernier F., Fusion of Remotely
Sensed Displacement Measurements : Current status and challenges, IEEE geoscience and
remote sensing magazine, IEEE, 2016, 4 (1), pp.6-25. 10.1109/MGRS.2016.2516278

11. Yan Y., Barth A., Beckers J.-M., Candille G., Brankart J.-M., Brasseur P., Ensemble assi-
milation of ARGO temperature profile, sea surface temperature, and altimetric satellite data
into an eddy permitting primitive equation model of the North Atlantic Ocean, Journal of
Geophysical Research. Oceans,Wiley-Blackwell, 2015, pp.vol. 120. 10.1002/2014JC010349

12. Yan Y., Barth A., Beckers J.M. Comparison of different assimilation schemes in a sequential
Kalman filter assimilation system. Ocean Modelling, Vol. 73, pp. 123-137, 2014
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13. Yan Y., Pinel V., Trouvé E., Pathier E., Perrain J., Bascou P., Jouanne F. Coseismic slip
distribution of the 2005 Kashmir earthquake from SAR amplitude image correlation and
differential interferometry. Geophysical Journal International, Vol. 193, No. 1, pp. 29-46,
2013. DOI :10.1093/gji/ggs102.

14. Yan Y., Trouvé E., Pinel V., Mauris G., Pathier E., Galichet S. Fusion of D-InSAR and
subpixel image correlation measurements for coseismic displacement field estimation : Ap-
plication to the Kashmir earthquake (2005). International Journal of Image and Data Fusion,
Vol. 3, No. 1, pp.71-92, 2012. DOI :10.1080/19479832.2011.577563.

15. Yan Y., Mauris G., Trouvé E., Pinel V. Fuzzy uncertainty representations of co-seismic dis-
placement measurements issued from SAR imagery. IEEE Transactions on Instrumentation
Measurement, vol. 61, No. 5, pp. 1278 – 1286, 2012. DOI : 10.1109/TIM.2011.2175825.

16. Yan. Y., Doin M.P., Lopez-Quiroz P., Tupin F., Fruneau B., Pinel V., Trouvé E. Mexico City
subsidence measured by InSAR time series : Joint analysis using PS and SBAS approaches.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.
5, No. 4, pp.1312 – 1326. 2012. DOI : 10.1109/JSTARS.2012.2191146

17. Vernier, F., Fallourd R., Friedt J.M., Yan Y., Trouvé E., Nicolas J.M., Moreau L. Fast
Correlation Technique for Glacier FlowMonitoring byDigital Camera and Space-borne SAR
Images. EURASIP Journal on Image and Video Processing, 2011 :11, DOI :10.1186/1687-
5281-2011-11

18. Pétillot I., Trouvé E., Bolon Ph., Julea A., Yan Y., Gay M., Vanpé J.-M. Radar-Coding
and Geocoding Lookup Tables for the Fusion of GIS and SAR Data in Mountain Areas.
IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 2, pp. 309-313, 2010. Doi :
10.1109/LGRS.2009.2034118

Chapitre dans des ouvrages

1. Bato M.G., Pinel V., Yan Y., Ensemble data assimilation in volcanology, Remote Sensing
Imagery, ISTE – John Wiley Sons, to appear.

2. Yan Y., Pinel V., Vernier F., Trouvé E., Displacement measurements, Florence Tupin, Jordi
Inglada, Jean-Marie Nicolas Eds. Remote Sensing Imagery, ISTE – John Wiley Sons, pp.
251-282, 2014, Digital and image processing series, <ISBN : 978-1-84821-508-5>

3. Yan Y., Pinel V., Vernier F., Trouvé E., Mesures de déplacement, Florence Tupin, Jean-
Marie Nicolas, Jordi Inglada Eds. Imagerie de télédétection, Hermes Science – Lavoisier,
pp. 269-301, 2014, Traité IC2, série Signal et image.

Conférences internationales avec comité de lecture

. . .
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Encadrements

Thèses

1. MmeMary Grace Bato

• Sujet de thèse : Vers une assimilation de données de déformation en volcanologie
• Financement : ministériel ordinaire
• Durée : 02/01/2015 - 02/07/2018
• Encadrement

— Yajing Yan (LISTIC, 30 %).
— Virginie Pinel (ISTerre, 70 %).

• Prix et distinction : le premier Accessit du Prix de thèse Géophysique décerné par le
Comité National Français de Géodésie et Géophysique en 2019
• Bilan de production scientifique

— Revues : 2
— Conférences internationales : 5 sans acte (dont 1 invitée)
— Colloques nationaux : 4
— Diffusion media grâce à l’innovation de la thèse :

∗ Volcano Forecast ? New Technique Could Better Predict Eruptions, Scientific
American

∗ Scientists are trying to use satellites to forecast volcanic eruptions, CNBC
∗ Think weather forecasts are bad? Try forecasting a volcanic eruption, Popular

Science
∗ Predicting eruptions using satellites and math, Eurekalert
∗ Scientists predict volcanic eruptions with satellites and GPS, CNN Tech

• Devenir de la doctorante : chercheuse post-doctorale au JPL, NASA, USA

2. M.Matthias Jauvin

• Sujet de thèse : Mesure des déformations de surface par imagerie radar satellitaire :
Application à la surveillance des territoires de montagne et de l’impact de grands
chantiers
• Financement : 50% Université Savoie Mont-Blanc, 50% Industriel
• Durée : 01/10/2015 - 18/12/2019
• Encadrement

— Yajing Yan (LISTIC, 40 %)
— Emmanuel Trouvé (LISTIC, 40 %)
— Bénédicte Fruneau (MATIS-IGN, 20 %)

• Bilan de production scientifique et industrielle
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— Revue : 1
— Conférences internationales : 3 avec acte, 2 sans acte
— Conférence nationale : 1
— Création du Groupe d’Intérêt Economique (GIE) AURIGAMI

• Devenir du doctorant : Directeur technique du GIE AURIGAMI

3. M. Alexandre Hippert-Ferrer

• Sujet de thèse : Reconstruction de données manquantes dans des séries temporelles de
mesures de déplacement par télédétection
• Financement : Ministériel ordinaire
• Durée : 01/10/2017 - 16/10/2020
• Encadrement

— Yajing Yan (LISTIC, 80 %).
— Philippe Bolon (LISTIC, 20 %).

• Bilan de production scientifique
— Revue : 2
— Conférence internationale : 2 avec acte, 2 sans acte
— Conférence nationale : 1 avec acte, 2 sans acte

• Devenir du doctorant : Chercheur post-doctoral au LEME, France

4. Mme Laurane Charrier
• Sujet de thèse : Fusion d’images de télédétectionmulti-capteurs/multi-temporelles pour

la surveillance de glaciers et de glissements de terrain
• Financement : 50% Université Savoie Mont-Blanc, 50% ONERA
• Date de la première inscription : 01/10/2019
• Encadrement

— Yajing Yan (LISTIC, 33 %).
— Emmanuel Trouvé (LISTIC, 33 %).
— Elise Koeniguer (ONERA, 33 %).

• Bilan de production scientifique
— Conférence internationale : 1 avec acte, 1 sans acte

5. M. Suvrat Kaushik
• Sujet de thèse : Couverture glacio-nivale & glacier suspendu
• Financement : Ministériel ordinaire
• Date de la première inscription : 01/11/2019
• Encadrement

— Yajing Yan (LISTIC, 25 %).
— Emmanuel Trouvé (LISTIC, 25 %).
— Ludovic Ravanel (EDYTEM, 25 %).
— Florence Magnin (EDYTEM, 25 %).

6. Mme Viet-Hoa Vu Phan
• Sujet de thèse : Apprentissage statistique pour la surveillance de la déformation terrestre

avec l’InSAR
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• Financement : ONERA
• Date de la première inscription : 01/10/2020
• Encadrement

— Yajing Yan (LISTIC, 25 %).
— Guillaume Ginolhac (LISTIC, 25 %).
— Frédéric Brigui (ONERA, 25 %).
— Arnaud Breloy (LEME, 25 %).

Étudiants Master

1. M. Rémi Prébet (Ecole Normale Supérieure Paris-Saclay)
• Sujet du stage : Extraction du signal de déplacement à partir d’une série temporelle
d’interferogrammes Sentinel-1 dans des milieux montagneux
• Durée : 04/04/2017 - 25/07/2017
• Encadrement

— Yajing Yan (LISTIC, 80%)
— Emmanuel Trouvé (LISTIC, 20%)

• Production scientifique :
— Revue : 1
— Conférence internationale : 1 avec acte

2. Mme Ségolène Martin (Ecole Normale Supérieure Paris-Saclay)
• Sujet du stage : Calcul de la borne de Cramer-Rao pour l’évaluation de la performance

de l’interférométrie radar en mesure de déplacement terrestre
• Durée : 09/04/2018 - 27/07/2018
• Encadrement

— Yajing Yan (LISTIC, 50%)
— Guillaume Ginolhac (LISTIC, 50%)

• Production scientifique : préparation du sujet de thèse de Viet-Hoa Vu Phan
3. Mme Aurélie Pourrin (Université Grenoble - Alpes)

• Sujet du stage : Pré-étude sur la surveillance des glissements de terrain dans la région
Savoie/Haute Savoie par séries temporelles d’images radar à synthèse d’ouverture
• Durée : 02/03/2020 - 17/07/2020
• Encadrement

— Yajing Yan (LISTIC, 100%)
• Production scientifique : prestation SAGE/Conseil Départemental 73
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Activités scientifiques et associatives

Présentations invitées

• Séminaire invité 02/2021, Présentation : Exploitation des images SAR pour la mesure de
déplacement et l’estimation des paramètres géophysiques, YanY., ISTerre, Grenoble, France,
23/02/2021
• AGUFallMeeting 12/2018, Présentation : Volcanic data assimilation : Towards and beyond
near real-time eruption forecasting, Bato M.G. Pinel V. Yan Y, session "Better Living
Through Volcano Geodesy : Constraints on Volcanic Hazards from Geodetic Observations
and Multidisciplinary Models I", December 10-14, Washington D.C, United States.
• IEEE International Geoscience and Remote Sensing Symposium 07/2016, Présentation :
An overview of remotely sensed displacement measurements fusion : current status and
challenges, Yan Y., Dehecq A., Trouvé E., Mauris G., Gourmelen N., Vernier F., Session
invitée : Data fusion II, July 10-15, Beĳing, China.
• GDR-ISIS Journée : Série d’imagesmulti-temporelles à haute revisite, 10/2017, Exposé :
Extraction d’informations de déplacement à partir de séries temporelles d’images SAR :
Applications aux glaciers Alpins, Toulouse.
• MDIS 10/2015 ; Exposé :Data assimilation : new perspective in displacement measurement
by remote sensing, Autrans.
• Journée en Assimilation de données en géosciences 05/2015 ; Exposé : De la fusion

à l’assimilation de mesures de déplacement issues d’imagerie SAR : Application à des
modèles de déformation terrestre, Paris.

Animatrice de session dans des conférences

• 09/2020, Animatrice de la session "Analysis ofMultitemporal Images", IEEE International
Geoscience and Remote Sensing Symposium, Virtuel, septembre 2020.

• 07/2018, Animatrice de la session poster "SAR/InSAR Surface Evolution Analysis", IEEE
International Geoscience and Remote Sensing Symposium, Valence, Espagne, juillet
2018.

• 10/2017, Co-animatrice de la session poster "Extraction du signal physique", Mesure de la
Déformation par Imagerie Spatiale, Clermont-Ferrand, octobre 2017.

• 07/2015, Co-animatrice de la session orale "Inverse Problems and Data Assimilation Special
Session", International Workshop on the Analysis of Multitemporal Remote Sensing
Images, Annecy, France, Juillet 2015.

• 05/2015, Animatrice de la session orale "Modelling", The 47th Liège Colloquium, Marine
Environmental Monitoring, Modelling And Prediction, Liège, Belgique, mai 2015.
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Projets de recherche

En tant que porteur/co-porteur du projet

• ANR Jeune Chercheur Jeune Chercheuse
— Sujet : Recursive estimation and prediction of Earth deformation from SAR image time

series
— Années : 2021 - 2025
— Porteur : Y. Yan
— Financement : 288266 euros
— Consortium : LISTIC, LEME, ISTerre, IGE

• Programme National de Télédétection Spatiale (n° PNTS-2019-11),
— Sujet : Reconstruction de données manquantes dans des séries temporelles de mesures

de déplacement issues d’images SAR par apprentissage statistique
— Années : 2019 - 2020
— Porteur : Y. Yan
— Financement : 15000 euros
— Consortium : LISTIC, IGE, LEME

• Appel à projet Université Savoie Mont-Blanc
— Sujet : Surveillance par imagerie radar des glaciers alpins
— Années : 2019 - 2020
— Porteur : Y. Yan
— Financement : 8200 euros
— Consortium : LISTIC, ISTerre, IGE, India Institute of Technology Bombay

• Appel à projet CNES
— Sujet : AssimSAR : Assimilation des données SAR acquises en contexte volcanique
— Années : 2018 - 2019
— Porteur : V. Pinel, Y. Yan
— Financement : 22447 euros
— Consortium : ISTerre, LISTIC

• Contrat industriel
— Sujet : Mesure des déformations de surface par imagerie radar satellitaire
— Années : 2015 - 2019
— Porteur : E. Trouvé, Y. Yan
— Financement : 60000 euros
— Consortium : LISTIC, MATIS-IGE, MIRE SAS, ALITERE VIDERE

En tant que participant

• Projet MIAI
— Sujet : Interférométrie satellite SAR pour l’estimation de la déformation de surface :

comment apprendre la cohérence temporelle à partir de matrices de covariance com-
plètes de séries temporelles d’images SAR?

— Années : 2020 - 2021
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— Porteur : S. Roisin-Giffard (ISTerre)
— Financement : 4300 euros
— Consortium : ISTerre, LISTIC

• Projet ANR MARGARITA
— Sujet : Modern Adaptive Radar : Great Advances in Robust and Inference Techniques

and Application
— Années : 2018 - 2021
— Porteur : G. Ginolhac (LISTIC)
— Financement : 297477 euros
— Consortium : LISTIC, IMS, L2S, LEME

• Projet EUMETSAT/CNES
— Sujet : Merging Ocean Models and Observations at Mesoscale and Submesoscale

(MOMOMS)
— Années : 2016 - 2020
— Porteur : E. Cosme (IGE)
— Financement : 171000 euros
— Consortium : IGE, LJK, LEGOS, IMB, IMEDEA, GHER, CLS, Mecator-Océan, LIS-

TIC
• Projet LEFE-GMMC

— Sujet : Vers la prochaine génération de méthodes d’assimilation pour le contrôle de la
circulation et des traceurs dans les systèmes d’océanographie opérationnelles

— Années : 2014 - 2016
— Porteur : P. Brasseur (IGE)
— Financement : 23000 euros
— Consortium : IGE, LJK, LISTIC, LOV
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Activités administratives

Responsabilité en enseignement

• Responsable semestre 7 de la spécialité SNI du Polytech Annecy-Chambéry (06/2018 -
08/2020)

• Responsable année 4 de la spécialité SNI du Polytech Annecy-Chambéry (09/2020 - aujour-
d’hui)

• Responsable du thème “Imagerie Dronoportée et Télédétection” en enseignement innovant
"Apprentissage par Problème et par Projet" (09/2016 – 07/2019)

Responsabilité administrative

• Membre nommée du conseil de pôle MSTIC (06/2021 - aujourd’hui)

• Membre du comité consultatif CNU 61 de l’Université Savoie Mont-Blanc (2016 – aujour-
d’hui)

• Membre du comité de sélection 4281/261 MCF 61 LISTIC/Polytech Annecy-Chambéry,
2020

• Co-animatrice de l’action "Télédétection & IA" du thème "Image & Vision" du GdR ISIS
(06/2021 - aujourd’hui)

Responsabilité éditoriale

• Editrice associée d’un numéro spécial du journal "Ocean Dynamics" (09/2015 – 02/2017)

• Editrice du livre “Inversion & Assimilation de données” (2019 - aujourd’hui)

Responsabilité en comité de conférences

• Membre dans le comité du programme technique de la session "Multitemporal analysis" de
la conférence internationale "IGARSS 2021" (12/07/2021 - 16/07/2021)

• Membre dans le comité d’organisation de la conférence internationale "Multitemp 2015"
(22/07/2015 – 24/07/2015)
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• Membre dans le comité d’organisation de la conférence internationale "The 47th international
Liège Colloquium" (04/05/2015 – 08/05/2015)
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Deuxième partie

Research work
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Introduction

Introduction

My research activities have been developed around SAR (Synthetic Aperture Radar) imagery,
but cover a broad spectrum of subjects starting from the exploitation of SAR images for displace-
mentmeasurement until the estimation and prediction of geophysical parameterswhich characterize
the subsurface geological structures that induce the displacement observed at the Earth’s surface.
I’m interested in both methodological developments, especially those to better exploit the mass of
available SAR data, and geophysical applications such as earthquakes, volcanoes, subsidence in
urban areas and Alpine glaciers.

With an initial formation in geophysics and geology, I decided to do a Master in remote
sensing, thinking that remote sensing would be the future of geophysics. My Master thesis entitled
"Calculation of the subsidence of Mexico City by differential interferometry" opened the door of
SAR interferometry for me. My Ph.D thesis thus continued in this community with applications
to seismic and volcanic modeling. Besides InSAR, I also took data fusion and geophysical model
inversion in hand during my Ph.D thesis. The perspective of my Ph.D thesis was to do data fusion
in a dynamical context, thus to do data assimilation. As a fresh person, I was sufficiently lucky
to be selected as a post-doc researcher in an European project. My supervisor told me later that
I was chosen among other candidates with experience, because I’m a honest person ... (not for
science). Later, I spent two years in the domain of data assimilation for oceanic applications. Until
now, I am not able to interpret complex oceanic phenomena (even though 3 articles have been
published in Ocean Modelling and Journal of Geophysical Research), but I succeeded in getting
skills in Ensemble Kalman Filter, a commonly used operational data assimilation technique in real
time weather forecasting. Since taking up my actual Associate Professor position at LISTIC in
September 2014, I came back to the InSAR community. Obviously, at that moment, my knowledge
about InSAR was out of date due to the more than two years spent on data assimilation. Therefore,
during the first three years of my Associate Professor career, on one hand, I finished my works
related tomy post-doc research (I was involved in another data assimilation project since September
2014 following the invitation of a previous European project partner with whom I collaborated
during my post-doc research) ; on the other hand, I read a lot of papers about the development
of multi-temporal InSAR approaches that I missed. At the same time, I co-supervised the Ph.D
thesis of Mary Grace Bato (01/2015-07/2018), in which data assimilation has been introduced
for the first time to volcanology and its potential in real time forecasting of volcanic eruptions
has been highlighted ; and the Ph.D thesis of Matthias Jauvin (10/2015-12/2019), in which InSAR
techniques, in particular the Permanent Scatterer interferometry, have been deployed for operational
urban infrastructure monitoring and for Alpine glaciers tracking. In 2017, I supervised the Master
1st year internship of Rémi Prébet (04/2017 - 07/2017), in which a namely Principal Mode
method has been proposed to extract displacement information from SAR interferogram time
series for decorrelating targets. From October 2017, I supervised primarily the Ph.D thesis of
Alexandre Hippert-Ferrer (10/2017-10/2020) which constitutes a pioneering work that deals with
missing data issues in remote sensing displacement time series by statistical learning. In 2018,
I co-supervised the Master 1st year internship of Ségolène Martin (04/2018 - 07/2018) with my
colleagueGuillaumeGinolhac specializing in statistical signal processing. A preparation to develop
a new robust and recursive multi-temporal InSAR approach, combing skills in InSAR and robust
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Introduction

covariance estimation, has been carried out in this internship. The Ph.D thesis of Viet-Hoa Vu
Phan for further development of this subject has been started in October 2020. Since 2019, I also
co-supervise the Ph.D thesis of Laurane Charrier (10/2019 - today) who works on displacement
time series analysis and interpretation and the Ph.D thesis of Suvrat Kaushik (11/2019 - today)
who works on hanging glacier monitoring with high resolution SAR images.

After the aforementioned data assimilation project (2014-2016), I was also solicited for the
EUMETSAT/CNES project (2016-2020) and the international Dragon-4 project (2016-2020), but
my involvement in these two projects was very limited. In 2018, the two-year project AssimSAR
related to the Ph.D thesis of Mary Grace Bato was funded by CNES. At the same time, I tried
three times an Auvergne-Rhône-Alpes region funded project on the subject of operational mo-
nitoring of displacement by SAR images, but without success. In 2019, two two-year projects
coordinated by myself and funded by Université Savoie Mont-Blanc (USMB) and national pro-
gram of spatial remote sensing (PNTS) respectively, related to the Ph.D thesis of Alexandre, were
accepted. The PNTS funded project was more focused on methodological development for mis-
sing data imputation, while the USMB project was more focused on applications to the Alpine
glacier monitoring. Since 2019, I began to prepare an ANR young researcher project, "recursive
estimation and prediction of Earth deformation from SAR image time series", with the objective
to promote methodological development for operational monitoring of displacement and natural
hazards prediction by means of both statistical learning and deep learning.

I take the opportunity of this report to summarize my past and ongoing research works, as
well as related state-of-the-art works around my research activities. I will also talk about the future
works that I want to develop in the coming years, that is, towards operational monitoring of Earth
deformation and prediction of natural hazards.

This report is organised into 4 chapters according to main directions of my research activities.
In Chapter 1, I focus on InSAR techniques, in particular multi-temporal InSAR approaches, for
displacement measurement from SAR images. After a quick introduction of SAR images and the
two traditional techniques used for displacement measurement, i.e. InSAR and offset tracking,
I provide a summary of the actually firmly established state-of-the-art multi-temporal InSAR
approaches. This chapter ends up with the presentation of my future work, i.e. development of a
new recursive and robust multi-temporal InSAR approach. In Chapter 2, I present the missing data
problem in SAR/optical displacement time series and missing data imputation techniques proposed
in the Ph.D thesis of Alexandre Hippert-Ferrer that I mainly supervised. These methods are based
on the analysis of the temporal and spatio-temporal covariance of SAR/optical displacement time
series in an Expectation-Maximization (EM) scheme. Both the technical details of the proposed
methods and the results obtained in the Ph.D thesis of Alexandre will be demonstrated. I will
end this chapter with further development of these methods towards parametric methods focused
on the robust estimation of the covariance of SAR/optical displacement time series. Chapter 3
is dedicated to the fusion and exploitation of SAR/optical displacement time series. The main
scientific problem to resolve consists of estimating a reliable and easily interpretable displacment
time series from displacement networks with redundancy, uncertainty and incompleteness. State-
of-the-art approaches are mainly discussed. Ideas of the Ph.D thesis of Laurane Charrier that I
co-supervise actually will also be mentioned. Because this is an ongoing Ph.D thesis, I prefer
not to show results that have not yet been published. In Chapter 4, I talk about the estimation
and prediction of geophysical parameters related to natural hazards. Both classical model driven
inversion and data assimilation techniques will be presented. The works performed in the Ph.D
thesis of Mary Grace Bato will be showcased. This chapter ends up with my future works, i.e.
geophysical parameter estimation and prediction by means of neural networks.

This report is written in English in order that some parts of this report can be useful for ongoing
and future English speaking Ph.D students.
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1
Measure displacement from SAR images

1.1 Introduction

Nowadays, SAR images constitute the principal source of information for displacement measu-
rements at the Earth’s surface, thanks to the high spatial coverage, all-day all-time functionality and
regular availability. Interferometric SAR (InSAR), one of the most important techniques in SAR
imagery, has been deployed for displacement measurement and Digital Elevation Model (DEM)
generation since more than two decades. This technique can be considered as a great revolution
compared to conventional geodetic approaches, since it is the only tool capable of providing displa-
cement measurement with sub-centimeter accuracy over large areas. Enhanced performances have
further been achieved by advanced multi-temporal InSARmethods, such as Small BAseline Subset
(Berardino et al. (2002), Doin et al. (2011), Lanari et al. (2004), Usai (2003)), Permanent Scatterer
Interferometry (Ferretti et al. (2001), Hooper et al. (2007), Kampes (2006)), SqueeSAR (Ferretti
et al. (2011)), CAESAR (Fornaro et al. (2015)), phase linking with maximum likelihood estimator
(Guarnieri and Tebaldini (2008)), Multi-link InSAR (Pinel-Puysségur et al. (2012)), Least square
estimator (Samiei-Esfahany et al. (2016)), EMI (Ansari et al. (2018)), etc. These methods have
been extensively developed and implemented in the past twenties of years, thanks to which, long
term monitoring of displacement evolution becomes possible and the accuracy of the displacement
velocity estimation has been revolutionized to millimeters per year, for example, on the order of
1 mm/yr based on a time series with more than 60 SAR images. Actually, with the systematic
acquisition and free access of Sentinel 1 A/B images every 6 days over Europe and every 12 days
elsewhere, the time series of SAR images has particularly become an unprecedented living subject.
Multi-annual analysis of displacement constitutes the subject of numerous studies of landslide,
subsidence, volcano deformation, glacier flows, etc.

Recent methodological development in multi-temporal InSAR has, however, seen a slowdown.
More efforts have been made to build regional or national monitoring systems to be able to process
SAR images at large scales and to develop automatic online processing services to facilitate the
utilization of the actually existing approaches by non-experts. This is mainly because the actual
existing multi-temporal InSAR approaches have already been capable of meeting the need of
displacement measurement with sufficient satisfaction. On the other hand, the exploitation of
InSAR techniques in operational contexts such as civil engineering monitoring and natural hazard
alert, begins to emerge, but the progress is especially limited by the difficulty in integrating
gradually new images that arrive over time in a more or less complex processing chain. Most
actual multi-temporal InSAR approaches are retrospective analysis approaches. They have rather
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Chapitre 1. Measure displacement from SAR images

been used for backward-looking analyses than for real time analyses or for prediction purpose. An
integration of new SAR images into most multi-temporal InSAR processing chains implies a restart
of the whole or at least a significant part of the processing chain, which can be computationally
overwhelming, thus not suitable for the operational context where timely delivery of products is
of particular importance. Therefore, further development of multi-temporal InSAR approaches
towards operational use seems necessary and meaningful. It will significantly contribute to the
near real time monitoring of anthropogenic and natural hazards.

In the following, the conventional 2-pass InSAR and offset tracking techniques for displacement
estimation are presented after the quick introduction of SAR images. Then, more focus will be
given to actually firmly established state-of-the-art multi-temporal InSAR approaches. The chapter
ends up with my research perspective towards operational development of multi-temporal InSAR
approaches.

1.2 SAR images in displacement measurement

A Single Look Complex (SLC) SAR image, z, is composed of pixels each containing a bi-
dimensional complex signal, characterized by an amplitude, A, and a phase, φ (equation 1.1). The
amplitude measures the backscattering strength of the target on the ground and depends on the
properties such as soil moisture, terrain slope, etc. The phase contains geometrical information
related to the distance between the sensor and the target, as well as information related to the
backscattering property of the target.

z = Aejφ (1.1)

The displacement information can be obtained by comparing two SAR images acquired at
two different dates and co-registered to the same geometry, namely the reference image and the
secondary image respectively in this report. Two principle methods, differential interferometry
SAR (also called D-InSAR) and offset tracking, deploying the phase and the amplitude of SAR
images respectively, have been developed and extensively used since the 1990s.

1.2.1 Differential inteferometry SAR

The conventional 2-pass D-InSAR deploys the phase difference, sensitive to distance variation
in the line of sight (LOS) direction of SAR image acquisition, between the reference and the
secondary images, by computing the interferogram. The interferogram obtained from equation 1.2
is also composed of bi-dimensional complex signals, with its amplitude called the coherence and
its phase called the interferometric phase.

γejφ(i, j) =

∑
i,j∈Ω z1(i, j)z∗2(i, j)√∑

i,j∈Ω z1(i, j)z∗1(i, j)
∑

i,j∈Ω z2(i, j)z∗2(i, j)
(1.2)

where γ denotes the coherence, φ is the interferometric phase (with φ = φ1 − φ2). Ω denotes the
multi-lookingwindow, a spatial neighborhood around the pixel (i, j). In the conventional D-InSAR,
a complex multi-looking (i.e. simple complex average) is often performed during the computation
of the interferogram in order to reduce decorrelation noise at the expense of the spatial resolution.
In case of a single look interferogram, Ω is reduced to the pixel (i, j).

The coherence varies between 0 and 1 and indicates the similarity between the reference image
and the secondary image. It is a measure of the quality of the interferometric phase. A high
coherence indicates a reliable interferometric phase. The interferometric phase appears as fringe
patterns on the interferogram and is sensitive to the topography and the displacement along the
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1.2. SAR images in displacement measurement

LOS direction. Moreover, orbital component (due to the orbit shift between two acquisitions),
atmospheric component (due to differences in the refractivity of the atmosphere between image
acquisitions caused by variations in concentrations of water vapor and hydrostatic pressure) and
noise component (due to various geometrical and temporal decorrelation noise) also contribute to
the interferometric phase (equation 1.3).

φ = φorb + φtopo + φdef + φatm + φnoise (1.3)

The main processing of D-InSAR consists of separating the component related to displacement
from other components. The orbital and topographic components can be removed by using auxiliary
orbit data and aDEM (ideally of the same resolution as that of the interferogram). The interferogram
with the orbital and topographic components removed is called the differential interferogram.

The interferometric phase is known modulo 2π, called wrapped phase, due to the round trip of
the radar wave. One of the important but challenging processing step, namely phase unwrapping,
thus consists of retrieving the absolute phase (i.e. unwrapped phase) from the wrapped phase.
The success of phase unwrapping determines the applicability of the D-InSAR technique to the
phenomenon under consideration. Coherence loss constitutes themajor source of phase unwrapping
failure. Phase unwrapping is performed on differential interferograms. Lots of phase unwrapping
methods, including local propagation method (Chen and Zebker (2002), Goldstein and Werner
(1998)), global optimization method (Yan et al. (2013)), deep learning method (Sica et al. (2021),
Zhou et al. (2020)), etc., can be found in the literature. The choice of the appropriate method
depends on the data quality and the user knowledge. No method always outperforms the others.

The unwrapped phase of the differential interferogram is composed of the displacement phase,
the atmospheric phase and the phase term related to noise. The phase term related to noise is
mainly reduced by spatial and/or temporal filtering. The separation of the atmospheric phase
from the displacement signal constitutes another major challenging step in the interferometric
processing. The atmospheric phase is a combination of ionospheric and tropospheric signals. The
ionospheric signal depends on the radar wavelength and is less pronounced in C-band than in
L-band. The tropospheric signal includes a stratified component and a turbulent component. When
the atmosphere is stratified, changes to water vapor concentration are correlated with topography
and can mask displacement signals with similar or lower magnitude. When turbulent mixing is
dominant, atmospheric phase is spatially correlated on the scale of tens of kilometers (Doin et al.
(2009), Ebmeier (2016)). Classical methods include 1) using GPS data or multi-spectral satellite
data 2) meteorological model to simulate the atmospheric phase and 3) simply assuming a linear or
nonlinear dependence of the (stratified) atmospheric phase on the topography (Doin et al. (2009)).
Recent advances propose to use Independent Component Analysis (ICA) to separate displacement
signal from atmospheric perturbations (Ebmeier (2016), Gaddes et al. (2018, 2019), Maubant
et al. (2020)). Due to the chaotic characteristics of the atmospheric phase, the efficiency of the
atmospheric correction is in fact case dependent.

D-InSAR provides displacement measurement with high accuracy (on the order of centimeters
or sub-centimeters), but is particularly efficient for small displacement (i.e. several multiples of the
wavelength of the radar signal). In case of large displacement, on one hand, coherence loss occurs.
On the other hand, narrow fringe patterns increase the difficulty in phase unwrapping.

1.2.2 Offset Tracking

Offset tracking is based on the cross correlation of amplitude between the reference image
and the secondary image. By defining a sliding window centered on the considered pixel on
the reference image, we search for the most similar window on the secondary image, and the
similarity is quantified by the cross correlation value. The relative position of the two windows
gives the bi-dimensional (range and azimuth directions related to the acquisition of SAR images
used) displacement information. Further interpolation needs to be performed in order to obtain a
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Chapitre 1. Measure displacement from SAR images

sub-pixel estimation of the displacement. For technique details, please refer to (Fallourd (2012),
Vernier et al. (2011)).

The accuracy of the displacement measurement provided by offset tracking depends on the
spatial resolution of the SAR amplitude images used. In general, it can reach 1/10 pixel. In case
of time series with careful processing, an accuracy of 1/30 pixel has been reported in Casu et al.
(2011). This technique is only efficient for large displacement (e.g. on the order of meters), due
to its limited accuracy. Offset-tracking is used as a complementary tool to D-InSAR in a number
of studies in order to provide a complete displacement field (e.g. Yan et al. (2013)). Notice also
that offset tracking is not dedicated to SAR images, it can also be applied to other images such as
optical satellite images and digital camera photos.

1.3 Recent advances in multi-temporal InSAR

The development of multi-temporal InSAR approaches has been based on how the signal
decorrelation can be accounted for. For this, analyses of backscattering properties of SAR images
are essential. Within a resolution cell of a SAR image, the signal is the coherent sum of returns
frommany scatterers on the ground. If these scatters move relative to each other over time, e.g. with
the presence of vegetation, the backscattering signal varies randomly, which induces the temporal
decorrelation. From a spatial point of view, if the scatters within a resolution cell are observed with
even slightly different incidence angles, which results of a change of the relative positions among
them, the spatial decorrelation occurs. The signal decorrelation in a resolution cell is thus complex
and depends on the relative behaviors of individual scatterers. In the literature, we distinguish two
kinds of scatterers : Permanent Scatterer (PS) and Distributed Scatterer (DS) (Figure 1.1). In case
of PS, the resolution cell is dominated by one stable scatter that is brighter than the background
scatterers. In such a pixel, the variance in the phase of the backscattering signal due to the relative
movement of the background scatterers is much reduced. The pixel thus appears coherent over
time, subject to neither temporal nor spatial decorrelaiton. In the case of DS, a large number
of scatters contribute more or less equally to the backscattering signal in a pixel. This pixel is
subject to temporal and/or spatial decorrelation. In practice, many neighboring pixels share similar
backscattering signals, as they belong to the same object.

Figure 1.1 – Illustration of different behaviors of (a) DS and (b) PS (Hooper et al. (2007)).

Actual state-of-the-art multi-temporal InSAR approaches rely on

1. processing with point-wise time coherent permanent scatterers, namely Permanent Scatterer
Interferometry (PSI), (e.g. Ferretti et al. (2001), Hooper et al. (2007), Kampes (2006))
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2. construction of redundant multi-looked interferograms networks in Distributed Scatterer
Interferometry (DSI) (e.g. Small BAseline Subset (e.g. Berardino et al. (2002), Doin et al.
(2011), Lanari et al. (2004),Usai (2003)), PhaseLinking or PhaseTriangulationmethods (e.g.
Ansari et al. (2018), Guarnieri and Tebaldini (2008)), Multi-link method (Pinel-Puysségur
et al. (2012)), Integer Least-Square method (Samiei-Esfahany et al. (2016)), etc.)

3. combination of PSI and DSI (e.g. squeeSAR Ferretti et al. (2011)).

Depending on the way to account for the decorrelation, the fundamental idea of multi-temporal
InSAR approaches is to construct interferometric networks from a SAR image time series and to
estimate a set of consistent single referencewrapped or unwrapped interferometric phase. Figure 1.2
presents several common interferometric networks.

Figure 1.2 – Illustration of several common interferometric networks used in multi-temporal InSAR ap-
proaches. a) single reference b) auto-regressive b) small baselines d) all combination. (Samiei-Esfahany
et al. (2016))

The single reference (SR) network, i.e. interferograms are formed between a common reference
SAR image and other images in the time series, is widely adopted in PSI. Despite the simplicity
of this interferometric network (i.e. without redundancy), it is sufficient to obtain reliable phase
estimation, thanks to the high coherence of PS points. The auto-regressive (AR) network is most
used for decorrelating targets for which coherence loss is observed on interferograms of longer
time span and interferograms can only be constructed between consecutive acquisitions. The small
baseline network and the all combination network are two widely used networks in DSI. In both
cases, the constructed interferometric networks are redundant. The redundancy is used to retrieve
the phase consistency at the level of unwrapped interferograms in case of the small baseline network
(i.e. SBAS approach) and at the level of wrapped interferograms in case of the all combination
network (i.e. phase linking approaches).

The phase consistency is explained as follows : assume that zm, zn and zo are three coregistered
SLC images, we can obtain three single-look interferograms (without multi-looking), Imn, Iom
and Ion, from any two of them. It can be shown that the phase of any of these interferograms can
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be obtained from the other two (equation 1.4). This is called the phase consistency.

φmn = φom − φon (1.4)

This condition is always hold for single look pixels (e.g. PS), but not necessarily valid for
multi-looked (spatially averaged) interferometric pixels (e.g. DS). All DS-based multi-temporal
InSAR approaches perform phase consistency restoration to filter the wrapped or unwrapped
interferograms in order to be able to estimate a set of consistent single reference interferometric
phase.

1.3.1 Permanent Scatterer Interferometry

Permanent Scatterer Interferometry (PSI) distinguishes itself from other multi-temporal InSAR
approaches by the use of point-wise long term coherent permanent scatterers. The network of
interferograms is generated with respect to a common reference image (i.e. the SR network in
Figure 1.2 (a)), without limitations in temporal or spatial baselines of SAR image pairs. Notice
that, in PSI, there is no need to compute the full coherence matrix that will provide the same phase
information as a SR interferometric network (i.e. onlyN −1 useful phase values in case ofN SAR
images), the rank of the full coherence matrix being 1.

Given a SLC SAR image stack (already coregistered to a common reference image), PS
candidates are selected based on their backscattering properties. In general, they should exhibit
high phase stability over the whole time period of observation and are typically characterized by
high reflectivity values (e.g. generated by dihedral reflection or simple single-bounce scattering).
Two criteria are thus considered for the selection of PS candidates : temporal phase stability and
amplitude brightness. For the former, the statistic of amplitude can be used as a proxy for the phase
stability (Ferretti et al. (2001)), and the amplitude dispersion index is often used to describe the
temporal phase variability (equation 1.5). For the latter, the average amplitude of the pixel under
consideration is compared to the average amplitude of all the pixels (equation 1.6).

Da =
σa
ā
≤ λ1 (1.5)

ā ≥ λ2Ā (1.6)

where Da is the amplitude dispersion index, ā is the average amplitude and σa is the amplitude
standard deviation of the pixel under consideration, Ā is the average amplitude of all pixels. λ1

and λ2, two threshold values, do not have nominal values and are mainly determined based on the
trade-off between the PS points density and the phase quality provided by the selected PS points.
For example, 0.58 and 1.2 were given to λ1 and λ2 respectively in Yan et al. (2012a).

For each selected PS point, the single look interferogram is computed as in equation 1.2 with the
multi-looking window reduced to one pixel. In this way, the PS approaches work on full resolution
SAR images. The advantages are two folds, 1) the phase consistency is naturally retained and 2)
point like information will not be lost by the spatial average as performed in most DS approaches.
Same as in the conventional 2-pass D-InSAR approach, the interferometric phase of each PS
point includes several contributions (equation 1.3) and differential interferogram is computed by
removing orbital and topographic components using auxiliary orbit data and a DEM. Notice that,
because of the inaccuracy of the orbit data and the DEM error, it is possible that residual orbital
and topographic phases remain in the phase of the differential interferogram.

PS approaches generally propose a 2-dimensional phase model and adopt a local processing
strategy (i.e. propagation through nearby pixels). The residual topographic phase (related to the
DEM error) and the displacement phase (related to the linear displacement velocity) are mainly
taken into account in the phase model (equation 1.7). The rational to take the residual topographic
phase rather than atmospheric phase or residual orbital phase into account lies in the fact that, on one
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hand, for nearby pixels, the atmospheric phase and the residual orbital phase can be considered very
similar ; on the other hand, in PSI, interferograms can be formed with large perpendicular baselines
(i.e. distance between the orbits of two acquisitions) regardless of the spatial decorrelation. Since
the residual topographic phase is proportional to the perpendicular baseline, its contribution can
thus be large in the interferometric phase.

φm =
4π

λ

B⊥
Rsinθ

h+
4π

λ
υT (1.7)

where λ is the wavelength of the radar signal, B⊥ is the perpendicular baseline, θ is the incidence
angle, h is the DEM error, T is the temporal baseline, υ is the linear displacement velocity.

In the phase model shown in equation 1.7, the linear displacement velocity, υ, and the DEM
error, h, constitute two major parameters to estimate. They can be obtained by minimising the
difference between the phase model and the measured phase, with the constraint that the phase is
modulo 2π. For this, a temporal phase unwrapping strategy is adopted and a local (inside a small
patch) 2D regression in the space of (B⊥, T ) between nearby PS points is performed. The temporal
phase unwrapping is possible because the phase consistency condition is met. The solution is
obtained by maximising the temporal coherence defined as in equation 1.8.

γ =
1

N

N∑
k=1

ej(φ
m
k −φk) (1.8)

with N the number of SAR images, φm modeled wrapped phase, φ measured wrapped phase.
The local 2D regression leads to relative DEM error and displacement rate, (δh, δυ), across

arcs linking PS points. The relative DEM error and displacement rate are integrated through space,
i.e. connecting each point to others in a propagating way, to get a global solution (h, υ).

The residual of the 2D regression corresponds to phase terms not considered in the phasemodel,
including residual orbital trend, atmospheric delay and nonlinear motion, etc. A 2D regression
performed on the residual (or the residual plus the temporally unwrapped phase) allows further
refinement of the estimation. An iterative procedure leads to a more accurate solution. At each
iteration, the phase standard deviation of the 2D regression can be used as an assessment of the
quality of the obtained (δh, δυ). A thresholding on the phase standard deviation is performed to
reject PS candidates that do not provide reliable phase information. Thus, more and more fake PS
candidates are removed during the iteration.

The final products of PS approaches include a linear displacement velocity estimation, a DEM
error estimation and a SR phase time series over reliable PS points. Nonlinear motion is not
considered in the phase model, this part of displacement is filtered to the residual phase after the
2D regression. According to (Yan et al. (2012a)), the phase standard deviation is strongly related
to the presence of nonlinear motion. Large phase standard deviation is observed over areas where
nonlinearmotion presents. It is thus necessary to check the phase standard deviation and the residual
phase to retrieve the nonlinear motion. Note also that, a priori displacement information (e.g. from
previous surveys) can help better define the searching space of (B⊥, T ), which potentially improves
the efficiency of the PS approaches.

PS approaches have the capability to provide point-wise displacement measurements of high
accuracy. With an accurate localisation of PS points, PS approaches present great interest for
urban infrastructure monitoring where we see their widespread applications. Figure 1.3 presents
the linear displacement velocity map and the DEM error correction between November 2002 and
March 2007 obtained from PSI over the Mexico city (Yan et al. (2012a)). The interest of PSI in
providing displacement information on individual targets on the ground has been highlighted in
Yan et al. (2012a) : the point like displacement information is essential to quantify the relative
importance of surface loads, surface drying and drying due to underground water over-exploitation
in the subsoil compaction.
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Figure 1.3 – (a) Linear displacement velocity (a color cycle represents 15 cm/yr) (b) elevation correction
(a color cycle represents 20 m) over the Mexico city during the period between November 2002 and March
2007 obtained from PSI applied to 38 ENVISAT images (Yan et al. (2012a)).

Despite the success of PSI, their applications are mainly limited by the PS points density,
particularly over natural areas where few man-made structures exist, only tree trunks, single large
rocks or facet amongst the vegetation can be considered as PS points. Installation of corner reflectors
networks in natural areas can help the implementation of PSI. In Jauvin et al. (2019), ad hoc PSI
processing has been performed successfully over the moraine of the Argentière glacier (Figure 1.4),
with the help of a small corner reflectors network. However, note that the accuracy of the phase
estimation in this case is not comparable with that obtained from a dense PS points network.

(a) (b)

Figure 1.4 – (a) Corner reflectors network (b) linear velocity over the period between 01/08/2017 and
30/10/2018 obtained from 27 Sentinel-1 images over the moraine of the Argentière glacier (Jauvin et al.
(2019)).

1.3.2 Small BAseline Subset

The Small BAseline Subset (SBAS) approach (Berardino et al. (2002), Doin et al. (2011),
Lanari et al. (2004), Usai (2003)) increases the spatial coverage over which we extract reliable
phase time series, especially outside urban areas, by working on distributed targets. To maximize
the coherence, interferograms are computed only for SAR image pairs separated by small temporal
and spatial baselines (Figure 1.2 (c)). Multi-looked interferograms are computed in the same way
as in the 2-pass D-InSAR (equation 1.2). Adaptive filtering using the Goldstein filter is carried out
on interferograms to further reduce decorrelation noise. Spatial phase unwrapping is performed on
each individual filtered interferogram. Atmospheric phase and other residual terms (e.g. residual
orbital contribution) that appears as a ramp on interferograms are jointly estimated by linear
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adjustment to the unwrapped phase outside the deformation area. Afterwards, a singlar value
decomposition (SVD) inversion allows an examination of the phase consistency of the redundant
unwrapped interferometric network (including both the phase inconsistency introduced by spatial
average and phase unwrapping errors on individual interferograms) and an estimation of a SR
displacement time series. The SVD is especially useful when the used SAR image time series
breaks into several disjoint subsets or at least one critical link in the interferometric network is
missing, as linking separate subsets is an ill-posed problem. An alternative solution to SVD consists
of a linear or nonlinear interpolation of the phase between separate subsets. This is realized by
adding a constraint, stating for example that the phase varies linearly or as a quadratic polynomial
in time and linearly with the perpendicular baseline, to the design matrix of the inverse problem
with an appropriate weight (often a small weight).

In the SBAS variant proposed in (Doin et al. (2011), Lopez-Quiroz et al. (2009)), a deformation
model is estimated from a stack of properly unwrapped interferograms of high signal-to-noise ratio.
Residual interferograms are obtained by substracting the deformation model from the wrapped
interferograms. Then, phase unwrapping is only performed on residual intererograms, whichmakes
it possible to avoid phase unwrapping errors as much as possible. This procedure is repeated in an
iterative way until the temporal misclosure error (i.e. root mean square error between the observed
phase and the one reconstructed from inverted phases) after the SVD inversion drops to a predefined
threshold.

Figure 1.5 – (a) Linear displacement velocity over the Mexico city during the period between November
2002 and March 2017 obtained from the SBAS approach proposed in Doin et al. (2011), Lopez-Quiroz et al.
(2009). A color cycle represents 15 cm/yr. (b) zoom on the temporal misclosure error in the area located by
the black rectangle in (a). Larger errors correspond to localized phase unwrapping errors. (Yan et al. (2012a)).

Figure 1.5 presents the linear velocity map obtained from the SBAS approach proposed in
Doin et al. (2011), Lopez-Quiroz et al. (2009) over the Mexico city with the same data sets as
in Figure 1.3. Consistent displacement patterns and velocity amplitude are observed. The SBAS
approach provides measurements over areas where no PS points are identified. However, the SBAS
velocity map is regularized in space, thus cannot give accurate velocity estimation over individual
points that behave differently from its neighbors. Therefore, PS and SBAS approaches have been
used jointly to measure the Mexico city subsidence at different scales in (Yan et al. (2012a)).

The SBAS approach constitutes one of the most important early multi-temporal InSAR ap-
proaches. Several variants have been developed by different research groups (Berardino et al.
(2002), Doin et al. (2011), Lanari et al. (2004), Usai (2003)). The efficiency of these approaches
has been proven in numerous applications. However, a recent study of systematic bias in displa-
cement measurement by multi-temporal InSAR approaches indicates that the SBAS approach is
more error-prone compared to approaches that use the full coherence matrix of a SAR images time
series (Ansari et al. (2021)). They found that the multi-looked interferograms reveal a systematic
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signal which cannot be explained by the topographic or atmospheric variations and interfere in the
accurate estimation of the displacement. Such signals are short-lived and decay with the temporal
baseline. Therefore, phase bias is larger using only short temporal baseline interferograms. The
propagation of phase bias in long time series compromises the accuracy of displacement velocity
from an achievable sub-millimetric to centimetric per year level.

1.3.3 Phase linking approaches

Phase linking or phase triangulation approaches exploit the full covariance/coherence of SAR
images time series. The wrapped interferometric network is constructed according to the all-
combination strategy (Figure 1.2 (d)). The redundancy of the wrapped interferomeric network is
used to retrieve the phase consistency lost due to spatial averaging. The main objective is to use
all the N × (N − 1)/2 interferograms generated from a time series of N SAR images to yield
the best estimate of N − 1 single reference wrapped phase difference. These approaches solve a
nonlinear estimation problem either by iterative algorithms or by eigendecomposition of the full
coherence/covariance matrix of the SAR images time series.

Maximum likelihood estimator

The maximum likelihood estimator (MLE) based phase linking approaches (namely MLE-PL
for the sake of brevity) present a statistically optimal estimator for the parameters of interest (e.g.
DEM error, displacement rate). The rationale of MLE-PL is that interferograms are weighted by
the coherence through a rigorous mathematical approach. A rich variety of the state-of-the-art
MLE-PL can be found in the literature. In Ferretti et al. (2008), a prospective idea is to estimate
the DEM error and displacement rate directly from the SAR images time series in one step. This
idea, being intrinsically the most robust, results in an overwhelming computational burden if
applied to a large set of SAR images (maybe this is why no further publication is found). While
in Rocca (2007) and Guarnieri and Tebaldini (2008), the estimation process is split into two steps.
In the first step, N × (N − 1)/2 interferograms are formed from N SAR image acquisitions, the
full coherence matrix is exploited to derive the optimal estimator (i.e. the maximum likelihood
estimator) of the N − 1 SR phase differences. Target decorrelation is accounted for by properly
weighting each interferogram depending on the coherence. In the second step, the contributions
of the atmospheric phase and the decorrelation noise are separated from the displacement phase.
After the Extended Invariance Principal (EXIP), under the condition that the covariance of the
estimation errors committed in the first step approaches the Craméo-Rao bound, the splitting of the
MLE-PL into two steps does not entail any loss of information compared to the one step estimation
in Ferretti et al. (2008).

Besides properly weighting (in a ML sense) all the available interferograms to limit spatial and
temporal decorrelation, another advantage of MLE-PL approaches is that the estimates are asymp-
totically unbiased with a minimum variance by virtue of the properties of the MLE. In general,
MLE-PL approaches require a priori reliable knowledge on the target statistics (i.e. the coherence)
to drive the estimation algorithm. The performance of MLE-PL approaches thus strongly depends
on the reliability of the prior coherence information. In most studies, this information is obtained
from the modeling of the temporal decorrelation of targets under observation (not a trivial issue).

In the following, the two-step MLE-PL is presented in detail.

First step Consider a time series of N SAR images, a multi-variate pixel xi contains a local
observation for N dates,

xi = [x1
i , x

2
i , . . . , x

N
i ] (1.9)

Under the hypothesis of distributed scattering, xi follows a zero-mean multivariate circular normal
distribution with the probability density function (pdf) as follows
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f(x) =
1

πNDet(Σ)
exp(−xHΣ−1x) (1.10)

with H indicates Hermitian conjugation, Σ the covariance of xi given by

Σ = ΘΥΘH (1.11)

with Θ an N ×N diagonal matrix containing the true phase values that we search for.

Θ =


ejθ1 0 · · · 0

0 ejθ2 · · · 0

...
...

. . .
...

0 0 · · · ejθN


and Υ anN×N symmetric real valued matrix whose elements correspond to the coherence values
of all the interferograms.

Υ =


1 γ1,2 · · · γ1,N

γ2,1 1 · · · γ2,N

...
...

. . .
...

γN,1 γN,2 · · · 1


On the other hand, the sample covariance of xi can be expressed as

Ci = E(xix
H
i ) =

1

L

L∑
i∈Ω

xix
H
i (1.12)

Ω is a neighborhood of statistically homogeneous pixels (i.e. multi-looking window), including L
samples.

With xi normalized such as E(|xi|2) = 1, the sample covariance matrix becomes the sample
coherence matrix. Working on the coherence matrix rather than the covariance matrix can be
beneficial to compensate for possible backscattered power unbalances among all the images.

The principal diagonal of the sample coherence matrix is actually a data vector of N spatially
averaged intensity value, while the off-diagonal complex elements correspond to spatially multi-
looked interferograms. In another way, the sample coherence matrix can be written as a Kronecker
product of the interferometric coherence matrix and the interferometric phase matrix.

Ci =


1 ˜γ1,2e

jφ1,2 · · · ˜γ1,Ne
jφ1,N

˜γ2,1e
jφ2,1 1 · · · ˜γ2,Ne

jφ2,N

...
...

. . .
...

˜γN,1e
jφN,1 ˜γN,2e

jφN,2 · · · 1

 = |Γ| ◦ Φ

with ◦ denoting the Hadamard entry-wise product operator.
Because of the phase consistency loss due to spatial averaging, the sample coherence matrix is

indeed not redundant (different from the case of PSI). For this reason, it is necessary to deal with
N × (N − 1)/2 interferometric phases to estimate consistentN − 1 SR phase differences, denoted
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θ = [θ1, θ2, · · · , θN ]T . For this estimation, we use the corresponding negative log-likelihood
expressed as

L(xi|Σ) = −log(
L∏
i=1

f(xi; Σ)) (1.13)

= Nlog|Σ|+
N∑
i=1

xHi Σ−1xi + const

= Nlog|Σ|+N trace{Σ−1C}+ const

= Nlog|Σ|+N trace{ΘΥ−1ΘHC}+ const (1.14)

The maximum likelihood estimate of θ can be obtained by minimising the previous negative
log-likelihood function

Σ̂(Υ,Θ) = arg minL(xi|Σ) (1.15)

To estimate Θ, the true coherence, Υ, is required but unknown. In most cases, we use |Γ|/|C|
to estimate Υ. In so doing, it is assumed that the estimated interferometric coherence is of high
accuracy (that is, in case of highly coherent target and large spatial samples L).

It follows that equation 1.15 becomes

ΘML = arg minNlog|Σ|+N trace{Θ|C|−1ΘHC}+ const

= arg min trace{Θ|C|−1ΘHC} (1.16)

The algorithm requires the minimization of a nonlinear functional, implying the use of ite-
rative methods, because no closed form solution can be found. A possible solution is the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which is a quasi-Newton method for uncons-
trained nonlinear optimization. Another option to deal with bad conditioned matrices is to rely on
the eigen-decomposition of C and use its generalized inverse or pseudo inverse.

Second step We now have the consistent N − 1 SR phase differences. Once the 2π ambiguity
has been solved by phase unwrapping, denoting the first image as the reference, we can model the
phase difference as

∆ϕ = ϕi − ϕ1 = ϕi(θ) + αi − α1 + ε (1.17)

where θ is a vector of parameters that describe the displacement, e.g. linear velocity. ϕi(θ) is a
set of known functions of θ such as linear, exponential, periodic, etc., corresponding to different
displacement behaviors. α represents the atmospheric phase. In most cases where SAR images
are acquired at intervals of several days and the spatial resolution is on the order of a few meters,
the atmospheric phase turns out to be highly correlated over space and uncorrelated from one
acquisition to the other. ε is the estimation error committed in the first step (i.e. related to the
decorrelation noise).

In equation 1.17, the atmospheric phase appears in form of difference, it is thus convenient to
directly deal with atmospheric phase difference, denoted ωi = αi − α1. Under the hypothesis of a
zero-mean Gaussian model with variance σ2

α, the covariance matrix of the atmospheric difference
is

{Vωω}mn = E[ωmωn]

= E[(αn − α1)(αm − α1)]

= E[αmαn] + E[α2
1]− E[αmα1]− E[αnα1]

= σ2
α(δn−m + 1) (1.18)
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To quantify the estimation error committed in the first step, given the phase model in equa-
tion 1.17, the Hybrid Cramér-Rao Bound (HCRB) is exploited for lower bounding the accuracy
of the estimation. HCRB applies in the case where both deterministic and random unknowns are
present and unifies the deterministic and Bayesian CRB in such a way as to simultaneously bound
the covariance matrix of the unbiased estimate of the random unknowns and the mean square errors
on the estimate of the determinstic unknowns. Let θ̂ be an unbiased estimator of the deterministic
unknown θ and ω̂ an estimator of the random unknown ω. The HCRB assures

Ex,ω

 (θ̂ − θ)(θ̂ − θ)T (θ̂ − θ)(ω̂ − ω)T

(ω̂ − ω)(θ̂ − θ)T (ω̂ − ω)(ω̂ − ω)T

 ≥ J−1 (1.19)

where Ex,ω denotes the expectation with respect to the joint pdf of the data and the atmospheric
phase, f(x, ω|θ) (see equation 1.10). J is the hybrid information matrix and can be obtained as
the sum of the standard Fisher Information Matrix (FIM), F , averaged with respect to ω and the
prior information matrix Iω (since there is no prior information about θ is available, only the prior
information of the atmospheric phase is accounted for in the expression).

J = Eω(F ) + Iω (1.20)

with

F = −Ex|ω


∆θ

θlogf(x|ω, θ) ∆ω
θ logf(x|ω, θ)

∆θ
ωlogf(x|ω, θ) ∆ω

ωlogf(x|ω, θ)

 (1.21)

and

Iω = −Eω =


0 0

0 ∆ω
ωlogf(ω)

 (1.22)

where Eω denotes expectation with respect to f(ω). ∆y
x defines a matrix of the second order

partial derivatives with respect to two multidimensional variables (x, y), {∆y
x}m,n = ∂2

∂xm∂yn
.

Given that
f(ω) =

1

πNDet(Vω)
exp(−ωHV −1

ωω ω) (1.23)

Thus,
Eω[∆ω

ωlogf(ω)] = V −1
ωω (1.24)

Representing the standard FIM as

F =

ΛTXΛ ΛTX

XΛ X

 (1.25)

with {Λ}m,n = ∂ϕm(θ)
∂θn

and X is an N × N matrix representing the FIM associated with the
estimate of the phase difference ∆ϕ, with X = 2L(Υ ◦Υ−1 − IN ).

The hybrid information matrix, J , is thus

J =

ΛTXΛ ΛTX

XΛ X + V −1
ωω

 (1.26)

Computing the inverse of J and extracting the upper left block, we have

Ex,ω[(θ̂ − θ)(θ̂ − θ)T ] ≥ (ΛT (X−1 + Vωω)−1Λ)−1 (1.27)
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In practice, we substituteX by its perturbation,Xε = X + εIN to ensure that the HCRB exists
finite.

The termX−1 +Vωω in equation 1.27 represents the covariance matrix of the total phase noise,
with X−1 accounting for the decorrelation noise and Vωω accounting for the atmospheric noise.

Accordingly, the decorrelation noise, ε, can be considered being asymptotically 1 distributed
as a zero-mean multivariate normal process, with the same covariance as the one predicted by the
CRB.

ε ∼ N(0, lim
ε→0

(X + εIN )−1) (1.28)

This leads to
∆ϕ ∼ N(ϕ(θ), lim

ε→0
(Wε)) (1.29)

with
Wε = (X + εIN )−1 + σ2

αIN (1.30)
To provide a closed form solution for the estimation of θ from ∆ϕ, most literature focused on

the case where ∆ϕ(θ) is a linear function of θ, i.e. ϕ(θ) = Aθ (Ansari et al. (2018), Guarnieri and
Tebaldini (2008, 2007)). Then, the MLE of θ from ∆ϕ can be derived by minimising with respect
to θ the following quadratic form

L(θ) = (∆ϕ−Aθ)TW−1
ε (∆ϕ−Aθ) (1.31)

The solution is given by

θ̂ = lim
ε→0

(ATW−1
ε A)−1ATW−1

ε ∆ϕ (1.32)

According to equation 1.32, the MLE of θ corresponds to a weighted L2 norm fit of the model
∆ϕ(θ) andW−1

ε can be interpreted as the set ofweightswhich allows taking the target decorrelation
and the atmospheric noise into account. The covariance of θ̂ is given by equation 1.33, which is
the same as in equation 1.27.

E[(θ̂ − θ)(θ̂ − θ)T ] = lim
ε→0

(AT ((X + εIN )−1 + σ2
αIN )−1A)−1 (1.33)

MLE-PL constitutes one of the most important multi-temporal InSAR approaches. It laid the
foundation for many recent developments such as Ansari et al. (2017, 2018), Ferretti et al. (2011),
Fornaro et al. (2015). Further improvements include extending the linear displacement model to
more complex displacement models such as seasonal, exponential models in the second step.

Eigendecomposition-based phase estimator

CAESAR Based on the MLE-PL, one eigendecomposition-based phase estimator has been pro-
posed in the Component extrAction and sElection SAR (CAESAR) approach to deal with multiple
scattering mechanism (Fornaro et al. (2015)) located at different heights, e.g. ground, facades
and roofs. This approach allows the tomographic extraction and selection of multiple scattering
mechanisms directly at the level of interferogram generation. The key feature is the application
of the eigendecomposition to the covariance matrix of the SAR images time series and the latter
is approximated by a low rank representation, i.e. only the eigenvector associated with the largest
eigenvalue is considered in the phase estimation.

Indeed, the interferometric phase can be assumed to be low rank, or even rank-1 in the case of
single scattering mechanism (i.e. PS). However, the decorrelation process is not a low rank nature,
it can be a symmetric Toeplitz matrix that requires the entire spectral components. Therefore, the
CAESAR approach compromises the optimality in phase estimation, in spite of being advantageous
in terms of computational efficiency.

1. either the estimation window is large or there is sufficient number of highly coherent interferometric pairs
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EMI Ansari et al. (2018) proposed another eigendecomposition-based phase estimator, namely
Eigendecomposition-based Maximum likelihood estimator of Interferometric phase (EMI) ap-
proach. This estimator constitutes a bridge between the previously presented MLE-PL and EVD
based estimator, keeping the high phase estimation efficiency of MLE-PL and the computational
efficiency of EVD. The main contribution of EMI consists of taking the coherence estimation error
that affects the performance of MLE-PL into account. For this, they proposed a generalization of
the covariance model that accounts for the calibration of the estimated coherence matrix by two
dyads (a full rank real valued matrix σ and a scaling parameter α in equation 1.34), at the cost of
increasing the computational cost.

Σ = α2Υ ◦ σσT ◦ΘΘH (1.34)

where α and σ are scaling parameters that allow extra freedom for the calibration of Υ̂ which is
expected to be poorly estimated. Without coherence estimation error, α2 = 1 and σ = I .

An eigendecomposition-based solver was proposed to increase the computational efficiency.
For more computational details, please refer to Ansari et al. (2018). Authors concluded that the
generalized covariance model proposed in EMI has been shown to be only marginally successful
in improving the performance of the phase estimation. A follow-on research to further generalize
the covariance model is necessary to better account for coherence estimation error.

1.3.4 Multi-link InSAR

An alternative heuristic yet effective approach is the multi-link InSAR approach proposed
by Pinel-Puysségur et al. (2012). This approach constructs versions of wrapped interferograms
using different interferometric paths, then combines them to obtain an estimate of SR wrapped
interferograms. The idea behind is to exploit as many as possible interferometric pairs, but to
minimise the effect of target decorrelation by forming interferograms from properly selected pairs.

In this approach, the interferometric network is represented by a graph where each node is an
acquisition date and each link is an interferogram (Figure 1.6). The principle consists of combining
sets of interferograms to form multiple effective interferograms with the same start and end dates,
and then aggregating the latter to retrieve the phase consistency in the wrapped interferograms.

Figure 1.6 – Example of a graph of the interferometric network. For example, between the date 0 and the
date 2, we have 0-4, 0-2-4, 0-5-4, 0-7-4, 0-8-4, 0-7-8-4, 0-5-10-4, . . . as path. (Pinel-Puysségur et al. (2012))

Between any two acquisitions k and l in an interferometric network, there can be several paths,
including the path of the interferogram between dates k and l, Ikl, and paths passing by other
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intermediate acquisitions, e.g. Ikm, Im,l. In the latter case, the theoretical interferometric phase on
each path, φkl, is estimated as the sum of the phases modulo 2π,

φ̂kl = (φk,m1 + φm1m2 + . . .+ φmnl) mod 2π (1.35)

For practical reasons, φkl is only computed for path length smaller than some value (e.g.
3, mn = m3 in equation 1.35) to limit the computational time. A colinearity criterion, Ckl, is
proposed to indicate the quality of each estimated phase on each path. Indeed, the coherence
cannot be estimated directly because no amplitude is associated with φ̂kl. Ckl can be considered as
a modified estimate of the coherence. Given the fact that for natural scenes, the phase should vary
smoothly in space, the colinearity criterion aims to characterize at each pixel of the estimated φ̂kl
the local spatial variability of the phase. For a given pixel P , we define a small square window Ω
(ω × ω) centered on P but excluding P . The objective is to compare the estimated phase over P ,
φ̂(P ), and the estimated phase over its neighbours inside the square window, φ̂(P ′) with P ′ ∈ Ω.
One measure of the closeness corresponds to the scalar product between eiφ̂(P ) and eiφ̂(P ′), which
is equal to cos(φ̂(P ′)− φ̂(P )).

The colinearity is defined as

C(P ) = max(cos(φ̂(P )− φ̄Ω), 0) max(

∑
P ′∈Ω cos(φ̂(P ′)− φ̂(P ))

ω2 − 1
, 0) (1.36)

with φ̄Ω the mean phase on Ω computed as follows,

φ̄Ω = arg(
∑
P ′∈Ω

eiφ̂(P ′)) (1.37)

C lies between 0 and 1. It is high if φ̂(P ) is close to φ̄Ω and noise is weak in the neighbourhood
Ω.

The estimates, φ̂kl, on all paths are then combined into a single estimate, called the multi-link
SAR interferogram.

ˆ̂
φkl = arg(

M∑
i=1

Cikle
iφikl) (1.38)

To further reduce the computational cost, for two acquisitions k and l, if multi-link SAR
interferograms have already been computed on one path, it is preferred to consider only this path
instead of considering all paths.

According to Pinel-Puysségur et al. (2012), this approach is particularly efficient in high
temporal decorrelating area. Despite the good results obtained in the applications, one main
drawback of this approach lies in the fact that there is no clear and formal assessment of the
criteria which should drive the selection of the image pairs to be used (the selection still remains
subjective).

1.3.5 Least-square phase estimator

The least-square phase estimator proposed in Samiei-Esfahany et al. (2016) resolves the SR
wrapped phase estimation problem from the all-combination interferogram network (Figure 1.2 (d))
based on the integer least square principle. In this approach, the estimation problem is modeled as
a system of linear equations with some integer (integer ambiguity) and real (SR phase difference)
unknowns. A bootstrap estimator is used for joint estimation of the SR phase difference and the
integer ambiguity. A full error propagation scheme is also proposed by performing a large number
of simulations of SLC image samples.

Let φmn be regarded as an observation, φom and φon regarded as unknowns. The linear
functional model is given by
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E(φmn) =


φom − φon + anm(2π) if n,m 6= o

φom if n = o

−φon if m = o

(1.39)

where amn is an integer ambiguity term. The value of φom − φon can only lie between −2π and
2π, because they are wrapped phase. Therefore, amn ∈ {−1, 0, 1}.

In matrix form, we have

E





φo1
...

φo(N−1)

...

φnm
...




=



0 . . . 0

...
. . .

...

0 . . . 0

2π

. . .

2π




...

amn
...

+



1

. . .

1

...

−1 . . . 1

...




φo1
...

φo(N−1)

 (1.40)

In equation 1.40, the SR phase difference estimation problem is described in a hybrid system
of linear equations with real unknowns φon and integer unknowns amn. This hybrid system can be
synthesized as

E{y} = Aa+Bb (1.41)

where y is the vector of observations (i.e. phases of all interferometric combinations), a and b are
the vectors of integer and real-valued unknown parameters to estimate.

The weighted integer least-square (ILS) solution is given by

â, b̂ = arg min
a∈Z,b∈R

||y −Aa−Bb||2W (1.42)

whereW is the weight matrix, e.g. coherence or Fisher information index.
As in most least-square estimation, an error covariance matrix is also estimated to quantify the

error propagation from the dispersion of observations to the final SR phase difference estimates.
For this, a large number of simulations of SLC image samples are performed, based on the
hypothesis that SLC images follow a multivariate circular Gaussian distribution. The observation
error covariance is estimated from the set of interferograms samples generated from the SLC image
samples in the following way,

Qy =
1

M

M∑
i=1

(yi − E(y))(yi − E(y))T (1.43)

The error covariance of the final SR phase difference estimation is given by

Qb̂ = (BTWB)−1BTWQyWB(BTWB)−1 (1.44)

For more technical details, please refer to Samiei-Esfahany et al. (2016).
The main advantage of this approach lies in the flexibility, i.e. it can be applied to any subset of

interferograms. Moreover, the error propagation scheme provides an error representation in case
without accurate observation error information. The main drawback of this approach is the high
computational cost.
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1.3.6 Combination of PSI & DSI

On one hand, PS approaches struggle to extract displacement information for areas characteri-
zed by DS. On the other hand, DS approaches cannot provide point-wise displacement measure-
ments. To overcome the limit of both PSI and DSI, a proper combination of PSI and DSI constitutes
the key element of several approaches. In this section, an early approach combining PSI and SBAS
(i.e. StaMPS) and a recent approach exploiting both PS and DS pixels in a MLE-PL framework
(i.e. squeeSAR) are presented.

StaMPS

Hooper (2008) combined both PS and SBAS approaches by processing jointly the PS and pixels
that decorrelate little over short time intervals, namely slowly decorrelating filtered phase (SDFP)
pixels. PS candidates are selected according to the same criteria presented in Section 1.3.1 and
further evaluated according to a phase analysis (i.e. estimate the decorrelation noise for a pixel, then
characterize the latter in terms of a measure similar to the coherence and use this measure to verify
the phase stability) applied to the SR interferograms (Hooper et al. (2007)). Only PS candidates that
present phase stability are considered in the phase estimation. SDFP pixels are also selected in the
same way as PS, but further evaluated according to a phase analysis applied to small baseline (SB)
interferograms. Note that the difference between SR-interferograms and SB-interferograms lies in
the fact the SB interferograms are subject to spatial and spectral filtering, while SR-interferograms
are not. In order to combine the selected PS and SDFP pixels, the equivalent SB interferograms
are calculated for the PS pixels by recombination of SR interferograms. The SB interferograms
from both PS and SDFP pixels is then combined : for a pixel occurs in both data sets, a weighted
mean phase is calculated by summing the complex signal from both data sets, with the amplitude
of each fixed to an estimate of the signal-to-noise ratio for the pixel in that data set. A 3D phase
unwrapping algorithm is then applied to the combined SB interferometric network. The unwrapped
phase of the SB interferograms are inverted to derive a SR phase difference for each pixel, as done
in the SBAS approach.

This approach was included in the open-access software StaMPS (Stanford Method for Per-
sistent Scatterers) developed by A. Hooper. The problem of phase bias in long time series, due to
the utilization of SB interferograms alone, in the SBAS approach also exists in this approach.

SqueeSAR

The squeeSAR approach (Ferretti et al. (2011)) proposed a way to properly combine PS and
DS to increase the density of measurement points, at the same time, to preserve the high quality
phase estimation. It has been developed under the assumption that radar returns and geophysical
parameters of interest (e.g. DEM error, displacement rate) are common to all pixels belonging
to a certain area, it is thus desirable to process them jointly. The main idea consists of spatially
averaging the DS points over statistically homogeneous areas to increase the signal-to-noise ratio,
without compromising the identification of coherent PS point-wise scatterers. For this, a space
adaptive filtering is necessary. Ferretti et al. (2011) proposed the DespecKS algorithm, whose key
element is a definition of a statistical test capable of discriminating whether two pixels belonging to
an interferometric data stack can be considered statistically homogeneous or not. The well-known
two-sample Kolmogorov-Smirnov (KS) test has been adopted in the SqueeSAR approach. Since the
KS test cannot be applied to complex data, the amplitude is used instead of the complex reflectivity.
The MLE-PL approach is applied to the selected statistically homogeneous DS points to obtain the
consistentN − 1 SR phase difference values by retrieving the phase consistency. The latter allows
treating multi-looked interferograms as single-look interferograms and thus provides the bridge
between PS and DS and makes it possible to characterize a DS thoughN − 1 consistent SR phase
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values as the PSI. Afterwards, the DS and PS points are exploited together using the standard PS
processing chain.

Compared to the standard PSI processing chain, the computational cost represents the main
drawback of the squeeSAR approach.

1.3.7 Sequential estimator

A recent attempt of near-real-time processing proposes a sequential estimator (Ansari et al.
(2017))) that works on mini stacks (far below the total number of images in the time series, e.g.
between ten and twenty) of SAR images. It performs data compression by a linear transformation
within eachmini stack to reduce the amount of data to save and estimate the coherence by formation
of artificial interferograms between the compressed mini stack and the mini stack of new data.

Figure 1.7 – Illustration of the sequential estimator. a) full coherence matrix of a SAR image time series : the
Sequential Estimator divides the stack into isolated mini-stacks indicated by the black boxes along the diago-
nal. At each sequence, one mini-stack is processed and compressed ; the mini-stacks are replaced by their
compressed components in further sequences. The coherent signals among the mini-stacks are retrieved
by generation of artificial interferograms. b) coherence matrix at the initial sequence. c) second sequence :
the isolated dot on the diagonal indicates the compressed SLC of the unavailable first mini-stack ; the square
depicts the acquired mini-stack ; and the sparse rectangles represent the generated artificial interferograms
between the compressed and the acquired SLCs. d) third sequence : the artificial interferograms are gene-
rated with respect to the compressed SLCs of the first and the second mini-stacks. (Ansari et al. (2017))

.

The sequential estimator begins with the acquisition of a mini-stack of SLCs (� the total num-
ber of images). The latter undergoes a two-step process : phase estimation and data compression.
In the phase estimation step, the phase of each SLC in the mini-stack with respect to a reference
SLC is estimated by the MLE-PL approach (section 1.3.3). In the data compression step, the SLCs
are compressed by the estimation of a low-rank subspace and a further projection of the data to
this subspace.

A linear transformation is chosen for data compression. Indeed, PCA is commonly used to
provide a spectral decomposition of the data space, such that the eigenvectors corresponding to the
highest eigenvalue represents the underlying most coherent signal. However, PCA cannot provide
an accurate estimation to the phase linking (see CAESAR in section 1.3.3). Therefore, the solution
provided by MLE is used. A new orthonormal basis is sought with its first component defined as

vML =
exp(jφ̂ML)

‖exp(jφ̂ML‖
(1.45)

The projection matrix corresponding to vML is given by

CML = vMLv
H
ML (1.46)

and its orthogonal complement is given as

C⊥ML ⊕ CML = I (1.47)
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The coherence matrix can then be projected to the residual subspace through the orthogonal
complement. The eigendecomposition of the latter provides the complementary vectors of the
sought orthonormal basis, denoted {v1; v2; . . . ; vN−1}. The transformation matrix is defined as

T = {vML; v1; . . . ; vm−1} (1.48)

Themini-stack of SLCs (N-dimensional) is compressed by its transformation to a low rank subspace
(m-dimensional)

z̃ = THz (1.49)

Ansari et al. (2017) kept the first component, i.e. the ML component, corresponding to the
most coherent signal component, the mini-stack compressed to a single SLC is given by

z̃ML = TH1 z = vHMLz (1.50)

The result of the processing of the first mini-stack is thus archiving the compressed SLCs to
a single SLC. For the subsequent mini-stacks, the same two-step processing is performed with
minor changes. Prior to the phase estimation, the compressed SLC is pretended to the newly
acquired mini-stack. Artificial interferograms are generated between the newly acquired SLCs
and the compressed SLC of the mini-stack prior to the current one and are exploited jointly with
interferograms generated between newly acquired SLCs in theMLE-PL approach. Indeed, artificial
interferograms substitute the lost coherent signal among the isolated mini-stacks.

In each mini-stack, the phase with respect to a reference SLC, i.e. phase difference, is estimated
by MLE via phase linking. In order to link the estimated phases of different mini-stacks, a datum
connection step is necessary. This is performed through a phase-linking on the z̃ML component,
that is, the compressed SLC inside each mini-stack is treated as a new stack. In this way, the phase
differences are temporally integrated to retrieve the phase difference of each mini-stack relative to
a new arbitrary but unique reference.

The sequential estimator is proposed as an efficient processing scheme to exploit the unpre-
cedented big data in InSAR. It constitutes an important step towards an near-real-time processing
scheme while retaining the optimality of the phase estimation. However, this estimator presents
several major drawbacks such as the need for a long time period to form an appropriate mini stack,
non-robustness to all kinds of temporal decorrelation mechanisms (rank-1 subspace considered in
data compression) and Gaussian hypotheses of SAR image statistics (these hypotheses cannot be
justified especially in case of high resolution SAR images).

1.4 Conclusion & perspective

Towards operational monitoring of Earth surface displacement

Despite the recent advances in the development of multi-temporal InSAR approaches and
the revolutionary results obtained in displacement measurements by SAR images, perspectives of
further improvement or development still exist, that is, towards operational monitoring of displa-
cement by means of adequate multi-temporal InSAR approaches. For an operational purpose, the
developed multi-temporal InSAR approaches should be able to timely deliver reliable displace-
ment products. Therefore, on one hand, the developed multi-temporal InSAR approaches should
be capable of integrating new arriving SAR images with appropriate computational time ; on the
other hand, the hypotheses made in these approaches should be as representative as possible of the
reality.
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Most actual multi-temporal InSAR approaches are mainly retrospective analysis tools and do
not allow efficient gradual integration of new SAR images that arrive over time. It is necessary to
restart part of or the whole displacement estimation processing chain, which would be prohibitively
expensive in practice and does not answer the need for operational monitoring. It is true that the PSI
has widely been used for displacement monitoring of urban infrastructures at regional and national
scales, including operational monitoring of major public works. The instability of PS candidates
with the increase of the number of SAR images and the complexity of the iterative processing chain
make an efficient integration of new SAR images extremely challenging. Among DSI approaches,
the SBAS approach does not require restarting the processing chain from the very beginning,
because only SB interferograms need to be computed between the new arriving and previous
SAR images. However, the SB network compromises the phase estimation accuracy, large bias
can exist especially for interferograms of large time span. The sequential estimator represents an
important development for operational use. However, it presents several shortcomings such as the
phase estimation quality inside each mini-stack limited by the number of SAR images used, non-
robustness to all kinds of temporal decorrelation mechanisms (only one eigenvector is retained
in the data compression step) and Gaussian hypotheses of SAR image statistics that cannot be
justified especially in case of high resolution SAR images (Mian et al. (2019)). Indeed, hypotheses
of complex Gaussian distributions have often been made for SAR image statistics for the sake of
simplicity. The estimation built on a Gaussian hypothesis can give very poor results that will affect
the reliability of the displacement information. Preliminary studies about the use of M-estimators
for SAR images covariance matrix estimation in case of non Gaussian properties can also be
found in Schmitt et al. (2014) and Wang and Zhu (2016). However, these works do not consider
the prior knowledge on the structure of the covariance matrix (i.e. Kronecker product), which
can lead to poor estimation performance when data used are strongly heterogeneous. Therefore,
efforts are still necessary to develop more elaborated recursive and robust multi-temporal InSAR
approaches allowing for efficient gradual integration of new arriving SAR images and considering
non Gaussianity of data statistics.

Motivated by the above, I want to develop new recursive and robust multi-temporal InSAR
approaches for operational use, with the help of colleagues specializing in statistical signal proces-
sing, in particular in robust covariance matrix estimation. For this, the baseline method chosen is
theMLE-PL approach, because it provides a mathematical framework for obtaining an optimal dis-
placement estimation in the statistical sense. Moreover, this approach allows for a full exploration
of all possible combinations of a SAR image stack by formally taking the impact of the temporal
decorrelation of the observed phenomenon into account. More importantly, from the formulation
of this method, we can interpret interferograms as elements of the full sample covariance matrix of
the SAR image time series, which gives perspective to perform robust and recursive displacement
estimation by means of advanced statistical tools dedicated for covariance matrix estimation. This
work has been initiated in the Master 1st year internship of Ségolène Martin and followed up in
the Ph.D thesis of Viet-Hoa Vu Phan, started in October 2020. Moreover, this work, together with
missing data imputation in SAR displacement time series presented in Chapter 3, constitute a work
package in my ANR young researcher project. Another Ph.D thesis will also be set up in order to
strengthen the work force and to ensure the successful completion of this work.
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2
Impute missing data in displacement measurement

time series

2.1 Introduction

Despite the large volume of available, satellite and in-situ, data for displacement measurement,
the missing data problem is still a frequently encountered issue. In case of optical imagery derived
displacement time series, cloud cover constitutes one of the main reasons of data incompleteness.
While in case of SAR imagery derived displacement time series, data incompleteness is mainly
due to surface changes of the observed targets that induce coherence loss. In both cases, technical
limitations of the displacement extraction methods (e.g. offset tracking, InSAR) and thresholding
according to the reliability of the estimated displacement values also create data gaps.

Missing data can hinder global and accurate observations of the displacement behavior, and
further hamper thorough understanding of the underlying physical phenomenon that induces the
displacement. Imputation of missing data in SAR/optical displacement time series can be of
particular interest to improve the data completeness and reliability, especially for decorrelating
targets such as glaciers and vegetated volcanoes, etc.

Indeed, the missing data problem exists since a long time (Preisendorfer (1988), Rubin (1976))
and has beenwell-documented especially for optical and infrared satellite imageswhere data quality
is strongly dependent on cloud coverage (Lin et al. (2014), Melgani (2006), Wu et al. (2018), Zhang
et al. (2018)). An important framework of missing data imputation has already been established
in ocean-atmosphere, vegetation and hydrology domains (Alvera-Azcarate et al. (2007), Beckers
and Rixen (2003), Gerber et al. (2018), Hocke and Kämpfer (2009), Kondrashov and Ghil (2006),
Verger et al. (2013)). However, in displacement measurement, previously existing methods to
handle missing data, e.g. regression analysis, nearest-neighbor interpolation (NNI), inverse/angular
distance weighting (IDW), spline interpolation and kriging (Chang et al. (2018), Gudmundsson
et al. (2002), Jolivet et al. (2011), Wu et al. (2013)), mainly use spatial interpolation of missing
values from existing values.Most of thesemethods include limited temporal information, which can
be an issue when dealing with time-evolving physical processes. Moreover, no particular attention
had been paid to missing data issues especially in SAR-derived products such as interferogram
and offset time series before the Ph.D thesis of Alexandre Hippert-Ferrer. The substantial lack of
advanced approaches (i.e taking information richness in both spatial and temporal dimensions and
complex data statistics into account) to deal with missing data in SAR/optical displacement time
series became obvious.
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Motivated by this, I aimed to propose new methods, taking both temporal and spatial cha-
racteristics of the displacement behavior into account, to impute missing data in displacement
time series. These works have been carried out in the Master 1st year internship of Rémi Prébet
(04/2017 - 07/2017) and in the Ph.D thesis of Alexandre Hippert-Ferrer (10/2017 - 10/2020).
The common principle of the proposed methods relies on the construction of the temporal or
spatio-temporal covariance matrix of the displacement time series and the analysis of the latter
by eigenvalue decomposition (ED) or singular value decomposition (SVD) in terms of data-based
empirical orthogonal functions (EOFs). The interest of the EOF-based analysis lies in the fact that
these orthogonal functions can be classified into trends, oscillatory patterns, and noise. Given any
displacement field time series, the EOF-based analysis finds a set of orthogonal spatial (tempo-
ral) patterns along with a set of associated uncorrelated time (space) series. A few leading EOF
modes, corresponding to the dominant oscillatory and/or trend modes, are necessary to optimally
reconstruct the initial displacement signal.

In the following, I will present the Principle Modes (PM) method proposed in the internship of
Rémi for displacement signal retrieval from noisy interferogram time series (Prébet et al. (2019)),
the Expectation-Maximzation Empirical Orthogonal Functions (EM-EOF) (Hippert-Ferrer et al.
(2020a)) and the extended EM-EOF methods (Hippert-Ferrer et al. (2020b)) proposed in the
Ph.D thesis of Alexandre for missing data imputation. For this, I begin with the description of
the common theoretical background of the three methods and end up with the perspective of
this research direction, that is, towards the development of parametric methods for missing data
imputation.

2.2 Common theoretical background - EOF-based analysis

2.2.1 Data organization

Suppose that we have a displacement time series represented by a spatio-temporal fieldX(s, t)
which contains the values of the fieldX at position s and at time t. The values of the field are noted
(xst)1≤s≤p,1≤t≤n and may be missing. In matrix form, the spatio-temporal field can be written as :

X =
(
x1,x2, . . . ,xn

)
=


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xp1 xp2 · · · xpn

 (2.1)

where each column xt =
(
x1t, x2t, . . . xpt

)T
is an observation over p positions at a given time t,

and each row is a time series at a given position s. An observation xt can be incomplete, initially
represented by a 2-D field and reshaped as a column vector of length p.

2.2.2 Sample covariance estimation

For the sample temporal covariance estimation, the spatial mean of the field at each time (i.e.
mean of each column) is subtracted to form the spatial anomaly X ′ :

X ′ = X − 1pX̄ (2.2)
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where 1p =
(

1, . . . 1
)
is a unit vector of length p and X̄ =

(
x̄1, x̄2, . . . x̄n

)
is the line vector

containing all observation means with each x̄t being the spatial mean of observation xt computed
as :

x̄t =
1

p

p∑
s=1

xst (2.3)

The sample temporal covariance matrix of X is given by :

Ĉ =
1

p− 1
X ′TX ′ (2.4)

Note that p can either be equal to the number of all spatial samples or be a subset of samples
representing a target or a particular object in the spatial field. In the latter, the data matrix X
represents only the target under consideration.

2.2.3 Eigenvalue decomposition

The eigenvectors, which are the EOFs of matrix Ĉ, can be found by resolving the following
equation :

ĈU = UΛ (2.5)

where U is a n× n orthogonal matrix and Λ = diag(λ1, . . . , λn) contains the eigenvalues λi
of matrix Ĉ in decreasing order on its diagonal 1. Each column ui of U is an eigenvector of Ĉ and
corresponds to each eigenvalue λi. U has the property that UTU = UUT = I , indicating that the
eigenvector is orthogonal to each other, hence the name EOF.

Since Ĉ is a symmetric matrix, it follows from the spectral representation theorem that the
eigenvalues and the eigenvectors decompose Ĉ as :

Ĉ = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n (2.6)

This decomposition allows a representation of the temporal covariance matrix in terms of EOF
modes which describe the temporal variability of the displacement field (Hannachi et al. (2007)),
to each eigenvalue corresponding a measure of the fraction of the total variance explained by the
considered EOF mode. This fraction is obtained by dividing λi by the sum of all eigenvalues.
In general, the first EOF modes represent most of the variability, which means that most of the
information about the displacement behavior observed in the spatio-temporal field X can be
explained by just a few leading EOF modes.

2.2.4 Data reconstruction

The spatial anormaly, X ′, can be reconstructed by summing the principal components (PCs)
ai multiplied by the eigenvectors :

X̂ ′ =

n∑
i=1

aiu
T
i (2.7)

with the ith PC ai = X ′ui corresponding to the projection of X ′ on the ith eigenvector, i.e. a
spatial pattern map on the orthonormal space engendered by the eigenvector ui. In other words,
the eigenvectors, ui, can be considered as function of time, whereas the PCs, ai, can be considered

1. Note that since U−1 = UT , equation (2.5) is equivalent to performing a SVD on matrix Ĉ and can be noted
Ĉ = UΛUT .
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as functions of space. The former represents the variability modes of all the positions over time
and the latter is there to modulate this variability according to the position in space.

By truncating the summation of (2.7) at some R � n, we will keep the first EOF modes
corresponding to the largest eigenvalues. To decide the optimal number of EOF modes to retain
in a given decomposition, it is common to use the fraction of the variance explained by the first
R EOF modes (Beckers and Rixen (2003), Hannachi et al. (2007)). A typical choice is to retain
those modes that, when summed up, explain 95% of the signal. In case of known data uncertainty,
the number of modes to retain can be determined such that the misfits between the reconstruction
and the noisy data are, on average, of the order of magnitude of the data uncertainty (Kositsky and
Avouac (2010)). Moreover, when the statistical characteristics of the noise present in the data are
known, a Monte Carlo method that generates random matrices of noise having the same statistical
characteristics can help decide when pure noise is likely to be interpreted as a displacement
signal if an EOF mode is retained (Björnsson and Venegas (1997), Overland and W. Preisendorfer
(1982)).Despite the existing methods and criteria available in the literature, finding an optimal
number of EOF modes remains a challenge, especially in case where noise is spatially or spatio-
temporally correlated as the displacement signal, it is thus difficult to efficiently separate the noise
from the displacement signal.

To get the reconstructed field X̂ , we finally add the spatial mean back to the anomaly :

X̂ = X̂ ′ + 1pX̄ (2.8)

In the casewhere a displacement field is composed ofmultiple objects eachwith a different temporal
behavior, the reconstruction of the displacement field can be performed object by object. The sample
temporal covariance should be estimated using only spatial samples related to each object and the
reconstruction of the spatial field can be obtained from the mosaic of the reconstruction of each
object.

2.3 Principal modes method

The principal modes (PM) method was proposed to retrieve displacement signal from both
wrapped and unwrapped noisy interferogram time series. The main objective was to capture a
coherent displacement behavior in a displacement time series with the presence of large coherence
loss areas, not to directly fill in data gaps in interferogram time series. However, it laid the
foundation for the development of the EM-EOF and extended EM-EOF methods, both latter
dedicated to missing data imputation. If we consider coherence loss areas as data gaps, the PM
method can indeed be considered as a missing data imputation method.

2.3.1 Methodology

The methodology of the PM method is simple. It relies on an EOF-analysis of the temporal
covariance of an interferogram time series (technical details in Section 2.2).

Interpretation of the temporal covariance

Here, we give a detailed insight into the content of the temporal covariance.
On each interferogram, the total signal includes the displacement signal and perturbations. De-

correlation noise and atmospheric perturbations are considered as main error sources on wrapped
and unwrapped interferograms respectively (Ansari et al. (2017), Guarnieri and Tebaldini (2008)).
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2.3. Principal modes method

Therefore, spatially correlated noise (atmospheric-like) and random noise are considered as per-
turbations in case of unwrapped interferograms ; while decorrelation noise is considered in case of
wrapped interferograms.

In order to facilitate the interpretation, we represent the temporal covarianceC in the following
way :

C = E[x′m
t
x′n] (2.9)

where xn′ is a column of the data anomaly matrix, andm and n correspond to two different times
(columns). E is the mathematical expectation.

Taken different contributions in X into account, in case of unwrapped interferograms, C
becomes

C =E[(x′dm + x′am + x′bm)t(x′dn + x′an +′bn )] (2.10)

=E[x′dm
t
x′dn + x′am

t
x′dn + x′bm

t
x′dn + x′dm

t
x′an + x′am

t
x′an + x′bm

t
x′an + x′dm

t
x′bn + x′am

t
x′bn + x′bm

t
x′bn ]

(2.11)

where d denotes displacement, a spatially correlated noise and b random noise.
The displacement can be assumed independent of other perturbations, thus E[x′am

tx′dn ] = 0 and
E[x′bm

t
x′dn ] = 0. For atmospheric-like spatially correlated noise, in general, they do not present

temporal correlation. However, in the case of displacement measurement from consecutive SAR
acquisitions, a common image is shared by the consecutive displacement measurements, therefore,
there is a correlation between consecutive times. In what follows,

C =

 E[x′dm
t
x′dn ] |m− n| > 1

E[x′dm
t
x′dn + x′am

tx′an ] |m− n| = 1
(2.12)

In case of wrapped interferograms time series, C becomes

C = E[ej(x
′d
n−x′dm+x′bn−x′bm)] (2.13)

= E[ej(x
′d
n−x′dm)]E[ej(x

′b
n−x′bm)] (2.14)

If m and n are consecutive, similarly, as there is a common image in the formation of the
interferogram, strong temporal correlation can exist in the decorrelation noise ; otherwise, the
decorrelation noise follows the temporal decorrelating mechanism of the phenomenon under ob-
servation and E[ej(φ

′b
n−φ′bm)] = γmγn with γm the interferometric coherence at timem and γn the

interferometric coherence at time n. Thus,

C =

 γmγnE[ej(x
′d
n−x′dm)] |m− n| > 1

E[ej(x
′d
n−x′dm)]E[ex

′b
n−x′bm)] |m− n| = 1

(2.15)

According to equations 2.12 and 2.15, in the temporal covariance C, the information is the
temporal covariance between displacements at timesn andm and that of spatially correlated noise in
case of unwrapped interferograms or that of decorrelation noise in case of wrapped interferograms
between consecutive times. The temporal covariance between displacements is continuous (i.e.
between all times), whereas that of the perturbations is not (i.e. only between consecutive times).
Since the temporal variation of the displacement and that of the perturbations do not have the same
correlation length (i.e. frequency in spectral analysis), it is possible to separate them through a
spectral analysis of the temporal covariance (Rocca (2007)).
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Chapitre 2. Impute missing data in displacement measurement time series

Determination of the optimal number of EOF modes

To determine the optimal number of EOF modes to retain in the reconstruction, we proposed
the root mean square deviation (RMSD) and the error reduction rate as metrics.

The RMSD can be calculated as follows :

RMSD =
1

σ̄x

√∑N
i=1 ||x̂i − xi||2

np
(2.16)

where σ̄x denotes the temporal mean standard deviation, x̂i and xi denote respectively the estimated
and the observed (or true) values at each time instant i. In case of complex data, σ̄x is replaced by
σ̄ejx , x̂ and x are replaced by ejx̂ and ejx respectively.

The RMSD is a measure of accuracy and frequently used to measure the difference between
values predicted by a model or an estimator and the values actually observed. The RMSD serves to
aggregate the magnitudes of the errors in estimation for various time instants into a single measure
of estimative power. Note that the RMSD is different from the average error, because the former
mixes information concerning average error with information concerning variation in the errors.
The effect of each error on the RMSD is proportional to the size of the squared error thus larger
errors have a disproportionately large effect on the RMSD (Willmott and Matsuura (2006)).

The number of EOF modes that minimises the RMSD is denoted by imin with the associated
RMSDmin. The RMSD of the noisy data (or original data) is denoted by RMSDmax. The error
reduction rate, τerr, is defined as

τerr = 1− RMSDmin
RMSDmax

(2.17)

The error reduction rate varies between 0 (no improvement) and 1 (perfect reconstruction). It
measures the gain of accuracy with the application of a method, thus indicates the efficiency of the
method.

2.3.2 Case study

Real data applications

The PM method was applied to time series of 30 interferograms constructed from consecutive
Sentinel-1 A/B acquisitions between October 2016 and April 2017 over the Gorner glacier situated
at the frontier between Italy and Switzerland. In this interferogram time series, low coherence is
present over large area in some interferograms. Only 18 interferograms can be considered of good
(fringe patterns clearly visible over the whole glacier) and moderate quality (fringe patterns are
visible over part of the glacier).

The results obtained in case of unwrapped interferogram time series are shown in Figure 2.1
with several representative examples. These results, as well as those not shown here, confirm the
ability of the PM method to retrieve coherent displacement patterns in real valued interferogram
time series.

The results obtained in case of wrapped interferogram time series are shown in Figure 2.2 with
the same examples as shown in Figure 2.1. The ability of the PMmethod to retrieve fringe patterns
in wrapped interferogram time series is also highlighted according to these results and those not
shown. In case of wrapped interferograms, besides the conclusions consistent with those obtained
in case of unwrapped interferograms, two other observations need to be stressed. The first one
concerns the interferogram with total coherence loss (2017/03/05 - 2017/03/11), fringe patterns
have been retrieved successfully by the PM method, which seems very promising. Of course, the
question arises, if the retrieved interferogram is correct. A validation with averaged offset tracking
measurements confirmed this result (Figure 2.3), but the accuracy of the result cannot be validated
on the order of centimeters with offset tracking measurements. The second observation concerns
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Figure 2.1 – (a) original and (b) reconstructed unwrapped interferograms (c) residual (reconstruction - ori-
ginal) at time spans (from top to bottom) 2016/12/17 - 2016/12/23, 2016/12/29 - 2017/01/04, 2017/02/15 -
2017/02/21, 2017/03/11 - 2017/03/17, 2017/02/03 - 2017/02/09, 2017/03/05 - 2017/03/11). The PM method
does not degrade the interferograms of good quality (first three lines in Figure 2.1), the reconstructed interfe-
rograms can be considered as a filtered version of the original interferograms, with the displacement pattern
over the glacier smoothed and most spatially correlated (at small scales) noise in stable areas filtered out.
Larger residuals are only observed at the upper edge of the glacier where localised phase unwrapping er-
rors exist in the original interferograms due to the transition between the fast moving glacier and the stable
areas. The PM method provides an important improvement of the displacement pattern in interferograms of
moderate quality (4th and 5th lines in Figure 2.1), the original interferograms are sufficiently noisy, the displa-
cement patterns are visible but significantly deformed. For interferograms of total coherence loss (last line in
Figure 2.1) where only noise is observed in the interferogram, the PMmethod fails to retrieve the displacement
pattern. (Prébet et al. (2019)).
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Chapitre 2. Impute missing data in displacement measurement time series

Figure 2.2 – (a) original (b) reconstructed wrapped interferograms (c) residual (reconstruction - original)
modulo 2π at time spans (from top to bottom) 2016/12/17 - 2016/12/23, 2016/12/29 - 2017/01/04, 2017/02/15
- 2017/02/21, 2017/03/11 - 2017/03/17, 2017/02/03 - 2017/02/09, 2017/03/05 - 2017/03/11) (Prébet et al.
(2019)).
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the interferogram of good quality (2017/02/15 - 2017/02/21), displacement signal is observed
in the residual, which implies that the reconstructed fringe pattern is different from that in the
original interferogram. This is due to a unique event produced on the interferogram (2017/02/15 -
2017/02/21) and not observed in other interferograms in the time series. This observation showcased
a limitation of the PM method against unique events present in the displacement time series. To
remedy, more modes are necessary in the reconstruction to keep this part of information, at the
expense of keeping more noise at the same time. Another solution consists of a further analysis of
the residual.

Figure 2.3 – (a) Mean velocity (cm/day) over the Gorner glacier obtained from 7 offset tracking measure-
ments (from Sentinel-1 image pairs of 12-days interval) of good quality between 2016/11/29 and 2017/02/27
(b) Mean velocities on the profile indicated by a black line in (a) obtained from all original interferograms,
reconstructed unwrapped interferograms, reconstructions of the two-stage application of the PM method and
7 offset tracking measurements of good quality (Prébet et al. (2019)).

Given the ability of the PM method to retrieve fringe patterns in the case of wrapped interfe-
rogram time series, a two-stage application of the PM method was implemented, that is, the PM
method was first applied to the wrapped interferogram time series, phase unwrapping was perfor-
med on the reconstructed wrapped interferogram time series, then the PM method was applied a
second time to the unwrapped interferogram time series. The results are shown in Figure 2.4 and a
comparison with the mean velocity obtained from offset tracking measurements on a profile along
the glacier is shown in Figure 2.3. The displacement pattern over the glacier is highlighted and
regularised and most perturbations (both at small and large scales) in stable areas are filtered out
on the reconstructed interferograms after the two-stage application of the PM method. Important
displacement signals have been retrieved successfully on almost useless original interferograms
and perturbations correlated at large scales have been filtered out efficiently, thanks to the appli-
cation of the PM method to the wrapped interferogram time series. Then a second application of
the PM method to the unwrapped interferogram time series further removes the artefacts, which
results of uniform but not identical displacement fields.

Synthetic simulations

Besides the real data applications, the impact of some key parameters such as the displacement
type, the time series size, the noise type, the signal to noise ratio (SNR) and the presence of
unique events on the performance of the PM method have been investigated by means of synthetic
simulations. The conclusions are reported in the following.

The PM method can retrieve most commonly observed displacement behaviors, including
linear trend, acceleration/deceleration, intra-annual and inter-annual oscillations. In case of linear
displacement, one EOFmode is sufficient to represent all the displacement information. Small time
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Chapitre 2. Impute missing data in displacement measurement time series

Figure 2.4 – (a) Original unwrapped interferograms (b) unwrapped interferogram of the PM wrapped re-
construction (c) reconstruction of the 2-stage PM method at time spans (from top to bottom) 2016/12/17
- 2016/12/23, 2016/12/29 - 2017/01/04, 2017/02/15 - 2017/02/21, 2017/03/11 - 2017/03/17, 2017/02/03 -
2017/02/09, 2017/03/05 - 2017/03/11) (Prébet et al. (2019)).
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series is sufficient to correctly retrieve the displacement information.Whereas in case of oscillatory
displacement, the displacement information is distributed over more EOF modes, with the number
depending on the complexity of the displacement behavior. The appropriate time series size is the
one that include all the oscillatory cycles. Longer time series does not degrade the quality of the
retrieved displacement signal, but the error reduction rate is smaller.

The impact of the noise type on the performance of the PM method is significant. Random
noise is uniformly distributed on the eigenvalue spectrum. Taking only the first EOF modes that
represent the displacement can eliminate most random noise. Spatially correlated noise can be
difficult to remove, because its distribution on the eigenvalue spectrum can be similar to that of the
displacement. Taking the first EOF modes will also keep a large quantity of noise.

In the case of unwrapped interferograms, the error reduction is more significant in case of
lower SNR; on the other hand, in the case of wrapped interferograms, the error reduction is more
efficient in case of higher SNR. However, the benefit of the PM method is more important in the
case of low and moderate SNR because the gain in accuracy in these cases is crucial to make
useless data sets exploitable.

The impact of unique events on the performance of the PMmethod depends on the displacement
type and the interferogram type. The impact is very small in the case of unwrapped interferograms
of linear displacement. Compared to the case without unique events, the RMS errors are only
increased for interferograms with unique events, even in case of as many as 50% of interferograms
with unique events. In the case of either unwrapped interferograms of oscillatory displacement
or wrapped interferograms of trend displacement, when the proportion of interferograms with
unique events reaches as many as 25%, the RMS errors of other interferograms begin to increase,
whereas in the case of wrapped interferograms of oscillatory displacement, the critical proportion
of interferograms with unique events is 15%. Therefore, given a limited number of both unwrapped
and wrapped interferograms with unique events, the reconstructions of other interferograms cannot
be contaminated, and the efficiency of the PM method can, thus, be maintained.

2.3.3 Discussions

The PM method is a data-adaptive method that identifies the spatial patterns that vary together
following a specific time function. Thereby, it can separate the coherent displacement signal and
other perturbations in a displacement measurement time series, without any a priori information.
For high SNR data sets, it behaves like a filter that denoises the displacement patterns, while for low
SNR data sets, it can be considered as a gap filler that replaces the noise by coherent displacement
signal based on the spatial and temporal correlation of the displacement.

It can be applied to both real valued unwrapped and complex valued wrapped interferogram
time series. In case of unwrapped interferogram, the good performance of the PM method is
obtained for interferograms with a minimum sufficient SNR. In case of wrapped interferogram, the
PM method can even restore completely decorrelating fringe patterns. This difference in efficiency
can be explained by the fact that, in the latter case, random decorrelating noise dominants the
displacement signal in case of low SNR. Due to the randomness, the decorrelation noise does
not introduce new variation directions in the ED/SVD analysis of the temporal covariance matrix.
While in case of unwrapped interferogram time series, the spectrum of the spatially correlated
noise is similar to that of the displacement signal, which can perturb the true variation directions
in the ED/SVD analysis.

The PM method also presents some limitations. It is particularly suitable for measurement of
continuous displacement over time (linear, with acceleration/deceleration, periodic, etc). In other
words, primary variation modes must exist in the ED/SVD analysis of the temporal covariance. For
significantly irregular displacement (e.g. intermittent or random displacement), the PM method
may fail, due to lack of dominant variability in the time series. Moreover, in case of regular
displacement, if high frequency displacement related to unique events exists in the time series, it

59



Chapitre 2. Impute missing data in displacement measurement time series

can be lost in the reconstruction. Further analysis on the residual will be necessary to retrieve this
part of displacement.

Further development of the PM method consists of investigating the independent component
analysis, which outperforms the principal component analysis in separating independent sources.

2.4 EM-EOF method

The EM-EOF method was proposed for missing data imputation in real valued displacement
time series. It can be considered as a follow-up of the PM method presented previously.

2.4.1 Methodology

The EM-EOF method integrates the EOF-based analysis of the temporal covariance (presented
in Section 2.2) into an EM-type resolution scheme, in order to gainmore performance. The principle
can be summarized in two steps (Figure 2.5). With an appropriate initialisation of missing values,
the first step consists in estimating the optimal number of EOF modes for the reconstruction
(denoted by R in the following) by minimizing the error between the validation data and the
reconstructed time series. The second step updates the missing values iteratively following an
EM algorithm, based on both the previous estimation of missing values and a new estimation
of the optimal number of EOF modes according to the EOF analysis of the updated temporal
covariance. In the EM algorithm, at step E, the missing data are fulfilled by the values obtained at
the previous iteration and the temporal covariance is computed. At step M, the temporal covariance
is decomposed en EOF modes and missing values are estimated with the optimal number of EOF
modes determined according to the predefined criteria.

Step 1

Step 2

Initialisation of
missing data

First estimation of the
optimal number of EOF modes R

Update of the missing data
Reconstruction with
r ≤ R EOF modes

Reconstructed displacement field

EM iteration

Figure 2.5 –Diagram of the two-step procedure of the EM-EOFmethod (according to Hippert-Ferrer (2020)).

Initialization of missing values

Initialization of missing values is essential, because it impacts the estimation of the temporal
covariance matrix Ĉ and thus the computation of the EOFs. As the initialization value is considered
as a first estimate of the missing values, it is clear that it should be set in accordance to the
distribution of the observed values. We can find several suggestions in the literature. For example,
(Alvera-Azcarate et al. (2007), Schneider (2001)) proposed to use the spatial mean as initial values
of the missing data to avoid any bias in the anomaly matrix (corresponding to zero in the anomaly).
However, Beckers and Rixen (2003) have shown that an initial filling of missing values by the

60



2.4. EM-EOF method

spatial mean tends to decrease the variance of higher order modes by inversely increasing the
variance of the dominant modes. Such an initial value tends to overwrite small scale information
because it smooths the displacement field around missing data points. According to experiments
performed in Hippert-Ferrer (2020), including the spatial mean, the spatial mean plus a random
noise following a Gaussian distribution and the spatial mean plus a spatially correlated noise,
no difference is observed in the final reconstruction and the selection of the optimal number of
EOF modes. What changes with these initialization values is the computation time. Therefore, we
propose to use the spatial mean as initial values of the missing data, since it is not always easy to
characterize the noise present in the data.

Estimation of the optimal number of EOF modes

Similarly to Prébet et al. (2019), a cross validation error and the error reduction rate have been
used as metrics to determine the optimal number of EOF modes. Note that the RMSD proposed
in Prébet et al. (2019) is not used here, because the strategy of independent cross validation is
adopted here and the RMS error is more intuitive compared to RMSD (at least for Alexandre).

The cross validation error, denoted by cross-RMSE, is the root mean square error of the
reconstruction compared to the cross validation data. The cross validation data subset contains a
predefined number of points randomly chosen in space and time among the existing data. These
points are set as artificial missing data with their values put aside. After each reconstruction
with a certain number, k, of EOF modes, the cross validation data set is compared to the new
reconstruction. The number of cross validation points must be neither too small nor too large : a
small number will not provide a good statistical representation of the data whereas a large number
can affect the reconstruction error since the quantity of missing data is increased. Cross-RMSE is
particularly useful when no ground truth or other source of information is available for validation
of the results, the latter is often the case in displacement measurement.

In the case of a displacement signal perturbed by strongly correlated noise, the optimal number
of EOFmodes can be over-estimated. To deal with this issue, we use the error reduction rate defined
as in equation 2.18, which gives a measure of the variation of the cross-RMSE when adding one
more EOF mode.

Λ = 1− cross-RMSE(k + 1)

cross-RMSE(k)
(2.18)

A small variation (for example less than a value β) implies that only little information is
added to the new reconstructed field. In this case, the added EOF mode is not considered in the
reconstruction. If the data uncertainty is known, β can be determined such that the reconstruction
uncertainty is consistent with the data uncertainty. If the uncertainty is unknown, β is determined
empirically. According to repeated experiments in Hippert-Ferrer (2020), a value of 0.1 is often
sufficient to select an optimal number of EOF modes.

2.4.2 Case study

Real data applications

The EM-EOF method was applied to the displacement time series obtained from consecutive
Sentinel-1 A/B SAR images over the Gorner and Miage glaciers in the Mont-Blanc massif. For the
Gorner glacier, 16 interferograms covering the period between November 2016 and March 2017
are used. Data gaps are spatially correlated, with quantities per interferogram varying from 11.8 %
to 27.4 %. The time series also contains four missing interferograms due to total coherence loss.
For the Miage glacier, there are 13 interferograms covering the period between December 2016
and March 2017. The quantity of data gaps varies from 11.4 % to 23.1 % and many interferograms
are concerned with data gaps in the central part of the glacier. There are also three missing
interferograms in this time series. Note that the long and narrow shape of the Miage glacier,
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in addition to discontinuities due to coherence loss, make the phase unwrapping challenging :
5 interferograms out of 13 are concerned with phase jumps after the phase unwrapping. The
correction of such phase jumps is difficult since no other data set with similar spatial coverage and
measurement accuracy is available.

Examples of the reconstructed interferograms for the Gorner and Miage glaciers are shown in
Figure 2.6 and Figure 2.7 respectively. The reconstructed displacement patterns are consistent with
those observed in the original interferograms. In both cases, localised phase unwrapping errors
present in the original interferogram have been corrected in the reconstruction. In Figure 2.6,
the reconstruction of a missing interferogram is presented. This reconstructed interferogram is in
agreement with other interferograms in terms of displacement pattern and global displacement
magnitude, but further quantitative validation is impossible because of lack of other source of in-
formation. According to synthetic simulations performed to imitate this situation, the reconstructed
missing interferograms are credible as long as they are not consecutive.

Figure 2.6 – Examples of (a) initial interferogram (b) reconstructed interferogram (c) residual (reconstruction
- initial) over the Gorner glacier. Displacement values are in centimeters in the LOS direction (Hippert-Ferrer
et al. (2020a)).

Examples of time series on arbitrarily chosen points over the Gorner glacier is shown in
Figure 2.8 and those over the Miage glacier is shown in Figure 2.9. Similar observations are
obtained with Figure 2.6 and Figure 2.7, which proves the efficiency of the EM-EOF method in
both temporal and spatial dimensions.

For all these results, no absolute validation of the reconstruction was further realized, on one
hand because of lack of other source of information, on the other hand because independent cross
validation was performed in the method.

Synthetic simulations

Since there is no means to evaluate the accuracy of the EM-EOF method with real data, the
first objective of synthetic simulations consists in assessing the accuracy of the EM-EOF method.
Obviously, it depends on a lot of parameters such as SNR, quantity of data gaps, etc. A large number
of experiments show that the accuracy of the EM-EOF method is comparable with the nominal
uncertainty of the data set. For instance, for interferogram time series whose nominal uncertainty
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Figure 2.7 – Examples of (a) initial interferogram (b) reconstructed interferogram (c) residual (reconstruction
- initial) over the Miage glacier. Displacement values are in centimeters in the LOS direction (Hippert-Ferrer
et al. (2020a)).
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Figure 2.8 – Time series over locations P1, P2 and P3 (figure 2.6). Circles represent the original value and
the lines represent the reconstructed value. The reconstructions follow the observations, even the abrupt fluc-
tuations for example in mid-February 2017. The reconstruction over P2 can be validated by the observations
over P1 which is located nearby (Hippert-Ferrer (2020)).
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Figure 2.9 – Time series over locations P1, P2 and P3 (figure 2.7). Circles represent the original value
and the lines represent the reconstructed value. Over the location P2, the discrepancy between the original
values and the reconstructed values is mainly due to phase unwrapping errors in the original interferograms.
(Hippert-Ferrer (2020)).

is on the order of centimeters, the accuracy of the EM-EOF method is centimeters, even better in
numerous cases.

The sensitivity of the EM-EOF method to the type of displacement (linear, oscillatory, expo-
nential, etc.), the SNR, the type of gaps (random and seasonal) and the type of noise (random,
spatially correlated and spatio-temporally correlated, localized errors due to processing such as
phase unwrapping) was also analyzed through synthetic simulations. The conclusions are in the
following.

The EM-EOF method is robust against the type of displacement and the type of gaps. Displa-
cement signal is observed in the residual only for displacement as complex as a combination of a
linear trend and five oscillations with different frequencies. In most cases of Earth deformation,
the displacement behavior is much less complex, there is thus no doubt on the efficiency of the
EM-EOF method. No noteworthy difference in performance is observed between the random gaps
and the seasonal gaps, except in case of large gaps (> 70%) where the quality of the reconstruction
with seasonal gaps is better than that with random gaps. This can be explained by the fact that large
random gaps imply a high probability that missing data appear over the same point in successive
measurements in the time series. Note also that in the case of exponential displacement behavior,
the method is slightly less sensitive to large quantities of random gaps compared to correlated
seasonal gaps.

Regarding the impact of the type of noise, similar to the observations for the PM method, it is
sometimes difficult to separate the displacement signal and the correlated noise on the eigenvalue
spectrum. Therefore, with the presence of correlated noise, the efficiency of the noise reduction
of the EM-EOF method is degraded. In case of low SNR, it is possible that the estimation of the
missing value is biased due to the high contribution of the correlated noise. In case of moderate
SNR, as long as the displacement behavior is not biased, even if the reconstruction of missing data
is still contaminated by correlated noise, it does not matter because the objective is to reconstruct
the missing data in agreement with observed data that are subject to correlated noise. Notice also
that, the minimum necessary SNR to guarantee the performance of the EM-EOF method is lower
in case of random noise.

The impact of the SNR is obvious, if the displacement signal is buried in the noise, it is
impossible to obtain a correct estimation of the displacement behavior. It has been observed
that the performance of the EM-EOF method is more affected by SNR than by the quantity of
gaps, except for large quantities (> 60%). With 30% of data gaps for example, the quality of the
reconstruction only depends on the SNR. Therefore, the EM-EOF method is robust against the

64



2.4. EM-EOF method

quantity of data gaps. Even in case of 50% data gaps, satisfactory results can still be obtained.
However, note that in case of missing data in successive measurements in the time series, the
reconstruction will follow the tendency of other points, which can provide good or biased result.

The ability of the EM-EOF method in filling in gaps in displacement fields with multiple
objects, each presenting different behavior, was also investigated. A comparison between one
reconstruction of the whole field and multiple reconstructions for each object has been performed.
The one reconstruction strategy gave satisfactory results compared to the true field. Transitions
between patterns are preserved, but it is possible that small displacement signal is found in the
residual for some objects. Multiple independent reconstructions for each displacement pattern with
different optimal number of EOFmodes gave slightly better results : the displacement characteristics
of each pattern are more preserved. Indeed, when the discontinuities between displacement patterns
are relatively sharp, it is preferred to perform the reconstruction separately, particularly in case
where displacement patterns are very different from one to another, which implies different number
of optimal EOFmodes for the reconstruction.When transition zones cannot be clearly identified (as
in most cases of ground displacement fields), one reconstruction of the whole field is recommended
to avoid possible discontinuities between displacement patterns.

2.4.3 Discussions

The EM-EOF constitutes the first missing data imputation method for displacement time series
issued from optical or SAR images. Its ability in filling in gaps in displacement time series has
been proven by both synthetic simulations and real data applications. It can deal with large data
gaps, low or moderate SNR, multiple noise types and complex displacement behaviors.

The EM-EOF method works at 2 steps. Its first step indeed corresponds to the application of
the PM method, with the main objective to get a first estimation of the optimal number of EOF
modes to represent the data. At the second step, the PM method is applied iteratively to update
the estimation of missing values, based on the previous estimation and a new EOF analysis of
the updated temporal covariance matrix. The idea behind is to approach progressively to the true
temporal covariance, starting from the initialisation more or less far away from the true value.
With the improvement of the temporal covariance estimation step by step, the optimal number
of EOF mode is also re-estimated at the second step. Therefore, compared to the PM method,
the refinement proposed in the EM-EOF method provides a better estimation of the displacement
behavior. The gain of iterative scheme proposed in the EM-EOF method with respect to a single
EOF analysis proposed in the PM method deserves a quantification. Moreover, a cross validation
strategy was proposed in order to ensure that the reconstructed missing values are in agreement
with the observed values, which is very meaningful when the ground truth or other source of
information is unavailable.

The EM-EOF method cannot reconstruct two successive missing interferograms : the re-
constructions are the same for the two interferograms. On the other hand, all the interferograms
reconstructed by the PM method are different, including those of successive acquisitions. That is
why only a subset of the interferogram time series over the Gorner glacier used for the PM method
was chosen for the application of the EM-EOF method. This difference is mainly related to the
initialisation of missing data. On one hand, the same initialisation (i.e. temporal mean) is given
to the two successive missing interferograms in the case of the EM-EOF method ; on the other
hand, in the case of the PM method, coherence loss areas can be considered as data gaps because
no useful information can be obtained, but there are indeed realistic noise values and possible
displacement signals buried in the noise. It should be preferred to initialize missing values by the
spatial or temporal mean plus a realistic noise in case of successive missing interferograms. This
point has not been investigated thoroughly in the Ph.D thesis of Alexandre Hippert-Ferrer.

Finally, the EM-EOF method is an iterative method, but its implementation is not heavy at all.
The computation time is case dependent, but the dimension of the temporal covariance depends
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on the time series size which is small in most cases. In case of a time series of 40 displacement
fields of dimension 5000 × 5000, the execution time is 8 min on a classical laptop (Intel Xeon
E5-2650 v3 à 2.3 GHz). As a result, the EM-EOF method can be considered as a processing step
in an operational processing chain.

2.5 Extended EM-EOF method

The extended EM-EOF method constitutes an extension of the previously presented EM-
EOF method. The methodological increment consists of the utilization of the spatio-temporal
covariance, instead of the temporal covariance of the displacement time series. Compared to the
EM-EOF method, this method is capable of dealing with cases when 1) the spatial correlation
dominates the temporal correlation 2) only small time series (e.g. around 10 interferograms in the
time series) is available 3) same missing areas exist in successive displacement field in the time
series.

2.5.1 Methodology

The extended EM-EOF method follows the principal of the EM-EOF method, i.e. integrating
the EOF-based analysis of the spatio-temporal covariance into an EM-type resolution scheme.
Similarly, after the initialisation of missing values, it works at two steps. At the first step, we get a
first estimation of the optimal number of EOF modes. The missing data are estimated and updated
in an iterative way following an EM algorithm at the second step. At the end of the second step, a
refinement of the optimal number of EOF mode is realized, based on a confidence index estimated
from the uncertainty of eigenvalues.

Estimation of spatio-temporal covariance

Let Xt be a spatial grid of size Px × Py observed at time t = 1, . . . , N , where each element
at position (i, j) is noted xij(t), 1 ≤ i ≤ Px, 1 ≤ j ≤ Py. All observations of Xt are stacked
into a spatio-temporal data matrixY = (X1,X2, . . . ,XN ). Note that in practice eachXt has zero
mean, i.e. its spatial mean is removed.

EachXt is augmented into a Hankel-block Hankel (HbH) matrixDt of sizeKxKy ×MxMy,
with Kx = (Px −Mx + 1), Ky = (Py −My + 1) and where (Mx,My) is a two-dimensional
window sliding through each Xt (see Figure 2.10) :

Dt =



H1,t H2,t . . . HMx,t

H2,t H3,t . .
. ...

... . .
.

. .
. ...

HKx,t . . . . . . HPx,t


(2.19)

Each matrixHi,t is aKy ×My Hankel matrix defined as :
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Hi,t =



xi1(t) xi2(t) . . . xi,My(t)

xi2(t) xi3(t) . .
. ...

... . .
.

. .
. ...

xi,Ky(t) . . . . . . xi,Py(t)


(2.20)

In the following, we note K = KxKy,M = MxMy and P = PxPy for the sake of convenience.
Similarly toY, each matrixDt is stacked into a spatio-temporal matrixD of size (K×NM), that
is D = (D1,D2, . . . ,DN ).

x11x12x13

x21x22x23

x31x32x33

X1

Px

Py

Kx

Ky

Mx

My

x11x12x13x21x22x23x31x32x33

K

M M

D1 DN

D

Figure 2.10 – Illustration of the estimation of the spatio-temporal covariance with help of a sliding window
Mx ×My. The field X1 is augmented to a matrix D1 of dimension KxKy ×MxMy, which is stocked in
a large spatio-temporal matrix D. Each Dt corresponding to Xt is then ordered in line, which results of a
matrix of dimension (K ×NM) (Hippert-Ferrer (2020)).

With reference to the literature inMultivariate Singular Spectral analysis (M-SSA) (Broomhead
and King (1986), Ghil et al. (2002)), D is called an augmented data matrix. The difference here is
that each Xt is augmented spatially and not temporally. The one-dimensional window of sizeM
used in M-SSA to augment a time series is now a two-dimensional window of sizeMx×My as in
Golyandina and Usevich (2010). The augmented matrix is therefore spatio-temporal in the sense
that its structure is an alternation of temporal blocks within which augmented spatial blocks are
nested.

In the following, the sample covariance of the augmented data matrix, D, is formed by

Ĉ =
1

K
DTD (2.21)

where Ĉ is a symmetrical and positive definite matrix of size NM ×NM .

Determination of the spatial lag

The choice of the spatial lag, M , is generally determined by a trade-off between the amount
of information extracted in the window (M should be large) and the number of repetitions of the
window within each image (M should be small) (Groth and Ghil (2015)). Instead of a single value,
a range ofM can provide satisfactory results. We explored two metrics to determine the range of
M . The first metric is based on the covariance estimation theory, that is, the number of independent
samples should be at least twice the number of variables. Thus, the maximum value of M can
be determined by solving K > 2M . Simple calculations lead approximately to M < P/6. The
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second metric is based on the spatial auto-correlation property of the displacement field. Let τ be
the spatial decorrelation decay defined as τ = − ∆P

log r , where r is the lag-one auto-correlation and
∆P is the spatial sampling rate, here 1 pixel. Following Ghil et al. (2002),M can be approximated
byM ' P/τ . In most cases, r is supposed to be smaller than 0.95, which givesM > P/20.

Estimation of the optimal number of EOF modes

Because of the complex structure of the spatio-temporal covariance matrix, the structure of the
eigenvalue spectrum can be complicated, which makes the determination of the optimal number
of EOF modes more difficult. Besides the cross-RMSE and the error reduction rate proposed
previously (which can be limited in the case of degenerate eigenvalues), we proposed furthermore
a confidence index associated with the eigenvalue uncertainty.

Degeneracy (close eigenvalues) and/or separation (distant eigenvalues) in the eigenvalue spec-
trum provides useful information on both signal frequencies distribution and spatio-temporal
variability. Degeneracy of eigenvalues makes the interpretation of the corresponding EOFs diffi-
cult. Two or multiple consecutive eigenvalues (called multiplet thereafter) are degenerate when the
uncertainty of an eigenvalue is comparable with or larger than the spacing between this eigenvalue
and its closest neighbor. Therefore, to investigate multiplet degeneracy, the uncertainty of eigen-
values must be first estimated. North et al. (1982) proposed a "rule of thumb" to approximate the
eigenvalue uncertainty :

∆λk ≈
√

2

L∗
λk ∆uk ≈

∆λk
λj − λk

uj (2.22)

where λj is the closest eigenvalue from λk, uj , uk are the corresponding eigenvectors, L∗ is the
number of independent observations in the spatio-temporal samples also called effective sample
size (named ESS hereafter). The interpretation of equation (2.22) is the following : if the uncertainty
of eigenvalue λk is close to the difference between this eigenvalue and its closest neighbor, then the
corresponding eigenvectors are likely to be contaminated one by each other. This contamination
exists when, for example, two eigenvectors describe together the same spatio-temporal pattern or
if the signal is perturbed by correlated noise, which has the effect of "spreading" the variance over
the spectrum. To estimate the spatio-temporal ESS L∗, we separate it into two distinct parts such
that L∗ = N∗M∗. N∗ corresponds to the temporal ESS andM∗ to the spatial ESS. Thiébaux and
Zwiers (1984) have given an estimation of N∗ by N

[
1 + 2

∑N−1
k=1 (1− k

N )ρ(k)
]−1, where ρ(k) is

the auto-correlation of the time series andN is the number of observations in time. This definition
holds for a univariate time series ofN observations, e.g. a pixel value varying over time. Following
this definition, we estimate the spatial ESSM∗ within each spatial window of sizeM by

M∗ = M

(
1 + 2ν

M∑
k=1

(1− k

M
)

)−1

(2.23)

where ν = 1
N

∑N
t=1 It is the average spatial auto-correlation and It is the Moran’s I statistics of

spatial field Xt.
Based on the estimated uncertainty of eigenvalues given in equation (2.22), a measure of

confidence Ck associated with each eigenvalue λk can be computed in the [0, 1] interval :

Ck =
max(Γk)− Γk

max(Γk)−min(Γk)
k = 1, . . . , NM (2.24)

with Γk = log
(

∆λk
λj−λk

)
.

Ck allows to detect degeneracy and/or separation of the eigenvalues in the spectrum ofD, which
respectively corresponds to lower and higher values of Ck. That is, the peak in Ck corresponds to
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a separation between two eigenvalue multiplets whereas lower "sidepeak" values correspond to
degeneracy of a multiplet or close eigenvalues.

To refine the optimal number of EOF modes R previously determined using the cross-RMSE
and the error reduction rate, Ck is computed for k = 1, . . . ,MN . Then, the peaks in Ck corres-
ponding to the separations in the eigenvalue spectrum are detected. If R corresponds to a peak of
Ck, the algorithm stops here. Otherwise, if the subsequent Ck is high enough (e.g. Ck ≥ 0.8), the
optimal number is updated so that it matches the subsequent index k.

Reconstruction of the displacement time series

Different from the EM-EOF method, the direct reconstruction after the eigenvalue decomposi-
tion gives the augmented data matrix D in which redundancy of the original displacement points
exists. In order to obtain the reconstructed displacement time series, an average on the diagonals
called hankelization, is applied on each matrixHi,t andDt,

xik(t) =
1

#Ak

∑
(l,l′)∈Ak

xll′(t) (2.25)

Hk,t =
1

#Bk

∑
(l,l′)∈Bk

Hll′,t (2.26)

where Ak = {(l, l′) : 1 ≤ l ≤ Ky, 1 ≤ l′ ≤ My, l + l′ = k + 1} et Bk = {(l, l′) : 1 ≤ l ≤
Kx, 1 ≤ l′ ≤ Mx, l + l′ = k + 1}. This implies that the average is performed on each block of
Hi,t, then entirely onHi,t (Golyandina and Usevich (2010)), which is consistent with the Hankel’s
bloch structure.

Therefore, compared to the EM-EOF method, an averaging in the final reconstruction of the
displacement time series exists, and this averaging behaves as a low-pass filter.

2.5.2 Case study

Real data application

The extended EM-EOFmethod is applied to surface velocity data obtained from offset tracking
of Sentinel-2 images over the Fox glacier inNewZealand (Millan et al. (2019)). The data set consists
of a time series of 12 velocity fields covering the period from February to mid-September in 2018.
The dimension of each velocity field is 100 × 150 pixels. All velocity fields contain missing data,
with quantity varying from 10% to 60%. Data gaps correspond to discarded values due to low
correlation or outliers. The number of cross-validation points, which are randomly chosen, is set
to 1% of the observed points per velocity field. The spatial lag is fixed to M = 225 (window of
size 15×15), which, considering the quantity of points over the glacier, roughly corresponds to the
lower limit of the lag.

In the original displacement time series, data gaps are significant especially in the lower part
of the glacier (left upper part on the Figure 2.11). A seasonal variation of the velocity has been
identified over some locations (e.g. P1) where velocity measurement is available most of the time
in a previous study (Millan et al. (2019)). In the upper part of the glacier (right lower part on the
Figure 2.11), spike velocity values can still be observed even after the thresholding and this kind of
values is common in offset tracking measurements. Obviously, the large data gaps hinder the full
understanding of the displacement behavior over the whole glacier, in which case gap filling is of
particular importance. The reconstructed velocity fields (Figure 2.12) present smooth displacement
patterns, but with the seasonal variation retrieved. The maximal velocity value reaches 1500m/year
in the lower part of the glacier, a narrow and hanging area where acceleration is observed. This
observation is consistent with Herman et al. (2011) and Kääb et al. (2016)). A detailed inspection

69



Chapitre 2. Impute missing data in displacement measurement time series

over selected locations (P1, P2 and P3 in Figure 2.11) further confirms the efficiency of the extended
EM-EOF method. Similar evolution tendency has been reconstructed over P1, P2 and P3 and this
observation remains over the whole glacier, including both observed areas and missing data areas.
A comparison with the EM-EOF method demonstrates an accuracy gain on the order of 15 m/year
on average over these locations.

Figure 2.11 – Original velocity (m/yr) time series between February and September 2018 over the Fox
glacier, obtained by offset tracking of Sentinel-2 optical images (Hippert-Ferrer et al. (2020b)).

Synthetic simulations

Synthetic simulations have been performed to assess the efficiency of the extended EM-EOF
method compared to the EM-EOF method in case of small time series, as well as to highlight the
sensitivity of the extended EM-EOF method to key parameters such as SNR, noise type, quantity
of data gaps. The conclusions are reported in the following.

In case of small time series (∼10), the displacement patterns can be retrieved correctly by
both methods, but the extended EM-EOF method generally gives smoother displacement field
and smaller RMS errors compared to the EM-EOF method. This smoothness is mainly due to
the average step in the final reconstruction of the displacement time series from the augmented
data matrix. However, in most synthetic experiments, it is observed that the residual of the EM-
EOF reconstruction is more similar than that of the extended EM-EOF reconstruction to the
spatially or spatio-temporally correlated noise added to the displacement signal. This implies that
more correlated noise, whether spatially or spatio-temporally, is kept in the reconstruction of the
extended EM-EOF method. The average step in the latter method is not sufficient to reduce the
correlated noise. Indeed, because of the complex structure of the spatio-temporal covariance in the
case of the extended EM-EOF, much more EOF modes are retained in the reconstruction, which
results of more correlated noise in the reconstruction. Consequently, the simpler the displacement
behavior is, the less EOFmodes are retained, thus the less correlated noise is present in the extended
EM-EOF reconstruction.

The sensitivity to SNR, data gaps and noise of the extended EM-EOF is similar to that of
the EM-EOF method. Its efficiency degrades with increasing data gaps and decreasing SNR. The
impact of the SNR is more important than that of the data gaps. The benefit, in other words the
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Figure 2.12 – Reconstructed velocity (m/yr) time series in Figure 2.11 by the extended EM-EOF method
(Hippert-Ferrer et al. (2020b)).

error reduction rate, is particularly significant in case of low to moderate SNR (0.7 - 2) and large
data gaps (30% - 70%).

2.5.3 Discussions

The extended EM-EOF method is capable of filling in gaps in small time series with large
quantity of data gaps. Besides the temporal correlation, taking the spatial correlation into account
by creating small subset of spatial samples allows for better reconstructions according to both
synthetic simulations and real data applications. The benefit is three-fold : 1) the spatio-temporal
correlation provides a better constraint to the reconstruction than the temporal correlation. 2) the
spatial window used in the augmentation of the data matrix reduces the analysis to a relatively
homogeneous subset rather than an entire displacement field, thus avoids potential bias in the
estimation of the covariance matrix. 3) The averaging step in the final reconstruction allows for
a further gain in accuracy. However, note that in case of spatially or spatio-temporally correlated
noise, more noise is kept in the reconstruction by the extended EM-EOF method. The averaging
step cannot always be efficient to remove this noise. Remind also that the gain in accuracy compared
to the EM-EOF method is case dependent. In many cases, the gain is comparable with the nominal
accuracy of the original displacement measurement.

Despite the slightly higher performance of the extended EM-EOF method, one drawback
consists of the computational burden. The complexity of the algorithm is much increased, which
results of longer computation time and larger requirement ofmemory. According to the experiments
in the Ph.D thesis of Alexandre Hippert-Ferrer, in case of long time series or moderate SNR or
intermediate data gaps, the EM-EOF method is sufficient to provide satisfactory results, because
the gain in accuracy of the extended EM-EOF method in these cases is limited. While in case of
small time series, especially with low SNR and large data gaps, it is preferred to apply the extended
EM-EOF method, in spite of the heavy computational load.
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2.6 Conclusions & perspective

Towards parametric methods for missing data imputation

Indeed, the development of the EM-EOF method and the extended EM-EOF method was more
application driven than method driven. In other words, the emphasis was on the resolution of
the interpolation problem encountered in displacement time series, no particular focus was made
on data distributions and the hypotheses behind the statistical theory. For example, the sample
covariance matrix is considered as an estimator of the true covariance in both EM-EOF method
and its extension without considering the data distribution, whereas this is only appropriate for
data following a Gaussian distribution. Although promising results have been obtained, it is clear
that these methods can give sub-optimal results for some data sets and more importantly this way
does not allow for further methodological development. Therefore, we intend to propose a new
paradigm that aims to tackle the problem of missing data in the broad sense from a statistical
point of view, independent of the application. This paradigm requires modeling the data statistic
by means of a probability distribution function, formulating hypotheses on the statistical model
and estimating the statistical parameters on which the distribution depends. Since we can use the
estimated statistical parameters to describe, analyze and predict the variability of the data under
consideration, it is possible to deal with any type of data with this kind of approaches.

Therefore, instead of a direct estimation of missing data as in EM-EOF and extended EM-EOF
methods, the main objective is to estimate one or several parameters (e.g. mean, covariance or
higher order statistics) of the statistical model that describes the data distribution. The missing
data can then be retrieved from the estimated parameters. The methods to further develop, namely
parametric approaches, consist of estimating the covariance matrix directly from the observed data
without initialisation of missing data. The estimator of the covariance, which depends on the data
distribution, can be approached in an EM scheme. For data following a Gaussian distribution,
maximum likelihood estimator for covariance estimation has been widely reported in statistical
signal processing (Little and Rubin (2002), Liu (1999)). A few works can also be found either to
deal with non Gaussian distributions (Frahm and Jaekel (2010), Liu and Palomar (2019)) or to
take a low rank structure of the covariance matrix into account (Chen et al. (2009)). To the best
of our knowledge, no work has so far been published to deal with non Gaussian distributions and
constraints on the structure of the covariance matrix at the same time. Given the fact that it is
really infrequent that SAR/optic derived displacement time series follow a Gaussian distribution,
a particular focus will be set to non Gaussian statistics, considering the inherent structure of the
covariance matrix (e.g. low rank, toeplitz, etc.) of SAR displacement time series.

Alexandre has already started to work on this subject at the end of his Ph.D thesis, prelimi-
nary results obtained confirmed the consistency between the previously developed EM-EOF and
extended EM-EOF methods and the parametric approach in case of Gaussian distributions. The
retrieval of missing data from the estimated covariance matrix still remains an open question in
his Ph.D thesis. Future works of robust estimation of the covariance matrix for non Gaussian data
distribution and its recursive implementation constitute the subject of a task in my ANR young
research project.
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3
Explore displacement measurements time series

3.1 Introduction

With the increasing availability of satellite SAR and optical images, in particular, the launching
of Sentinel 1 and 2 satellites that provide regular and free access acquisitions over the whole world,
the quantity of displacement measurements produced by multi-temporal InSAR and offset tracking
approaches reach an unprecedented volume. Displacement measurements time series are often
further exploited for detection and classification purposes in order to give detailed insights into the
displacement behaviors at different scales. The vast data stream thus requires enhanced processing
techniques that are accurate, robust and fast. The questions, how to efficiently explore these
large displacement data sets for timely displacement information delivery, or how to appropriately
combine these large displacement data sets in order to further improve the reliability and to facilitate
the interpretation by end users, arise.

In case of small displacement measured by multi-temporal InSAR approaches, as shown in
Chapter 1, whatever is the interferometric network exploited, a single reference (SR) displacement
time series is often estimated (by retrieving the phase consistency in the temporal dimension) as the
final product, with the latter keeping the essential displacement information provided by the whole
SAR image stack, but being much easily interpretable. The major shortcoming of these approaches
is that they are applied on a pixel-by-pixel basis and ignore the known spatial correlation in the
displacement observations. Therefore, further improvement concerns the synergistic exploitation
of both spatial and temporal relationships of displacement instead of dealing with individual spatial
points separately through a temporal model as done in most multi-temporal InSAR approaches.
Moreover, efficient integration of newly arriving displacementmeasurements in a dynamical frame-
work constitutes another research direction in line with the operational monitoring of displacement
measurements.

In case of large displacement measured by offset tracking of optical or SAR images, depending
on the SAR/optical image network formed, a large amount of displacementmeasurements of diverse
temporal baselines, of different quality in terms of uncertainty and incompleteness, providing both
redundant and complementary displacement information can be obtained in most cases. Of course,
we can estimate a SR offset time series as the final product, as done in multi-temporal InSAR
approaches. For example, Casu et al. (2011) proposed a namely PO-SBAS approach to estimate a
SR offset time series from small baselines offset measurements, following the idea of the SBAS
approach. However, it is not always appropriate, in this case, to follow the multi-temporal InSAR
processing because of different data characteristics. Large data gaps can exist in individual offset
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measurement (due to the inefficiency of the offset tracking algorithm or thresholding according to
the reliability of the estimated displacement values) and the quality of each offset measurement
can be significantly different from one to the others. For instance, the signal-to-noise ratio (SNR)
of offset measurement of small temporal baselines (smaller displacement) is generally weaker than
that of longer temporal baselines (larger displacement), because of the moderate accuracy of the
offset tracking technique. Moreover, data inconsistency often occurs due to lack of efficient quality
indicator of the offset tracking results. Therefore, methodological development (in the sens of
data fusion) still seems necessary to extract displacement information of better quality and easily
interpretable from a large amount of offset measurements of different characteristics.

Indeed, displacement data fusion problem exists since a long time, even before the expansion of
the time series. In Yan et al. (2016), a reviewwas given to present early displacement measurements
fusion approaches to improve the measurement accuracy, to increase the spatial extension and to
estimate displacement information at a higher level (e.g. 3D displacement, geophysical parameters,
etc.). Obviously, the previously proposed approaches seem partly or completely out of date. In this
chapter, I will present the actual state-of-the-art approaches for displacement time series analysis,
with more focus on displacement fusion approaches and make a comment on these approaches. I
will also give my personal insights into the possibility of application and further development of
these state-of-the-art approaches in an operational context.

In the following, I begin with the standard least-square inversion approach. Open issues related
to this approach such as the choice of weighting functions, the consideration of correlation in
measurements and the choice of temporal baselines are discussed. Then, the multi-scale InSAR
time series analysis approach, the spatio-temporal random effect model, the Kalman Filter based
InSAR time series analysis, theMedian ofMultiple CommonMaster Series approach, and machine
learning approaches are presented in order. Besides the essential technical details, the potentials
and drawbacks of each approach are also discussed.

3.2 Least-square inversion

3.2.1 3D displacement estimation

The 3D displacement estimation constitutes an important subject in SAR displacement mea-
surements exploration (Hu et al. (2017), Liu et al. (2018), Wright et al. (2001), Yan et al. (2013)).
As is known, InSAR and offset tracking techniques provide displacement measurements in the
geometry of SAR image acquisition, this increases the difficulty in displacement interpretation
and comparison with other sources of information for non experts who are not familiar with SAR
geometries. The common approach is thus to estimate the 3D displacement from displacement
measurements in different directions (i.e. range and azimuth directions, different incidence angles)
issued from InSAR and offset tracking. The problem is resolved through a linear geometrical model
expressed as follows,

r = Pu (3.1)

where r denotes the vector of displacement measurements from InSAR and offset tracking, u is
the vector of 3D displacement to estimate, P is the projection matrix depending on the incidence
angle (θ) and the heading angle (φ, the angle between the direction of the satellite trajectory and
the North, e.g. −167◦ in descending pass and −13◦ in ascending pass for Sentinel-1 data), with

PLOS =
(
−cosφsinθ sinφsinθ −cosθ

)
(3.2)

Paz =
(
sinφ cosφ 0

)
(3.3)
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The least-square solution is given by

u = (P TΣ−1
r P )−1P TΣ−1

r r (3.4)

with Σr the error covariance of displacement measurements r. In many cases, a diagonal matrix is
used for the sake of simplicity, assuming independence of each displacement measurement. In case
of measurements sharing the same reference/secondary images, the latter assumption cannot be
verified any more, but there is no clear correlation quantification that can be found in the literature.

Since u is a vector with three components, there should be displacement measurements in at
least three directions in r. In case of InSAR displacement measurements with different incidence
angles, only two components, i.e. East-West and vertical components, can be estimated.

Through equation 3.4, a large number of displacementmeasurements are transformed to a single
3D displacement measurement. Besides the ease of interpretation and comparison, another main
interest lies on the reduction of the uncertainty. The uncertainty of the 3D displacement obtained is
smaller than that of any displacementmeasurement in r. In case of random uncertainty, themore the
number of displacement measurements used, the smaller the uncertainty of the 3D displacement.
Therefore, the use of all available displacement measurements (namely joint inversion hereafter) is
preferred in this case. However, in case of systematic uncertainty (e.g. a ramp, a constant shift, etc.),
the relationship between the uncertainty of the 3D displacement and the number of displacement
measurements used is not so linear any more. Other fusion strategy should be considered.

In Yan (2011), two fundamental fusion strategies, joint inversion and pre-selection (use just
part of the available displacement measurements, e.g. those of the best quality), have been explored
with two kinds of uncertainty modeling, probability distribution and possibility distribution (i.e.
triangular distribution) (Yan et al. (2012b)). The probability distribution is most appropriate for
modelling random uncertainties, while the possibility distribution provides a unified representation
of both random uncertainty and systematic uncertainty, without any hypothesis about the uncer-
tainty characteristics and independence. In the latter case, instead of a vector of three components
to estimate, three possibility distributions are estimated through fuzzy algorithms

u = (P TΣ−1
r P )−1P TΣ−1

r ⊗ r (3.5)

with ⊗ represents the fuzzy multiplication matrix operator in which the sum and scalar product
operators are replaced by corresponding fuzzy operators.

The results obtained in the case of the Kashmir 2005 earthquake (Figure 3.1) show that the
choice of the fusion strategy depends on the type of uncertainty to reduce and the data quality. In
the conventional approach with probabilistic modeling of uncertainty, joint inversion can reduce
to the maximum the uncertainty, except in the case where few displacement measurements of
good quality are available. In the latter case, pre-selection and joint inversion give similar results
but pre-selection is less computational expensive. In the approach with possibilitic modeling of
uncertainty, adding more displacement measurements cannot reduce the uncertainty, sometimes,
even increase it, the strategy of pre-selection is thus preferred. Indeed, the probabilistic modeling
is somehow optimistic while the possibilitic modeling is pessimistic. In most real cases where
both random and systematic uncertainty are present, the uncertainty of 3D displacement estimation
provided by the probabilistic modelling can be considered as a lower bound, while that provided
by the possibilitic modeling as a higher bound. The real uncertainty should be situated in between.
The more the hypothesis of randomness and independence is justified, the closer to the uncertainty
provided by the probabilistic modeling ; otherwise, the closer to the uncertainty provided by the
possibilitic modeling.

3.2.2 Displacement time series fusion

Theoretically, from N SAR or optical images, N(N − 1)/2 displacement measurements can
be obtained, considering the all combination network presented in Chapter 1 (Figure 1.2 (d)). The
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5 m

-2.5 m

(a)

(b) (c)

(d) (e)

Figure 3.1 – (a) Vertical component of the 3D displacement induced by the Kashmir 2005 earthquake ob-
tained from a least square inversion of InSAR and offset tracking displacement measurements. Probabilistic
uncertainty in (b) pre-fusion and (c) joint inversion. Possibilitic uncertainty in (d) pre-fusion and (e) joint inver-
sion (Yan (2011)).
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first method, simple but efficient, consists of estimating a SR displacement time series through a
linear equation system (equation 3.6) by retrieving the temporal closure (equivalent to the phase
consistency presented in Chapter 1).

Ax = y (3.6)

where x is the vector containing the SR displacement measurements, y is the vector containing all
available displacement measurements. A is a design matrix, with 0 and 1 as values.

The least square solution is given by

x = (ATΣ−1
Y A)−1ATΣ−1

Y y (3.7)

where Σy is the error covariance of y, from which different measurements in the vector y are
weighted in the inversion. A diagonal matrix is often considered for Σy, assuming independence
between different measurements, which can be true in most cases. This matrix can also be replaced
by other types of weighting matrix.

In case of disconnected subsets,ATΣ−1
y A has a rank deficiency, the inverse problem is thus ill-

posed. The common solution consists of using a SVD pseudo-inversion. Indeed, without connecti-
vity, it is impossible to reconstruct a common temporal displacement history between disconnected
subsets. Various methods propose to derive a temporally parametrized model of the displacement
evolution, either assuming constant velocity between disconnected subsets (Berardino et al. (2002))
or more complex ad-hoc models (Jolivet and Simons (2018), Lopez-Quiroz et al. (2009)). A linear
displacement model can simply be

dk = a(tk − t1) + c (3.8)

and a quadratic displacement model to take the acceleration or deceleration into account,

dk = a(tk − t1) + b(tk − t1)2 + c (3.9)

with k index of time, a, b and c three unknown coefficients to estimate.
In case of a periodic or seasonal behavior in time, the displacement model can be

dk = a(tk − t1) + b(tk − t1)2 + c+ dcos
2π(tk − t1)

T
+ fsin

2π(tk − t1)

T
(3.10)

with a, b, c, d, f and T six unknown coefficients to estimate.
Compared to a laplacian regularization term or a constant velocity assumption, these ad-

hoc displacement models provide more physically meaningful solutions. The benefit is important
especially when the number of disconnected subsets is significant.

Take the quadratic displacementmodel (equation 3.9) as an example for illustration, the equation
system to resolve becomes
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where γ is a scaling parameter of the additional constraint to the displacement. Its value is
sufficiently small to ensure that if the inverse problem is well-posed, the additional constraint is
neglected, if not, the additional constraint only sets the relative displacement between disconnected
subsets. At corresponds to the design matrix mentioned in equation 3.6, with 0 and 1 as values.

The least-square solution to equation 3.11 provides a SR displacement time series, easy to
interpret and an estimation of the unknown coefficients of the displacement model. In practice, the
displacement behavior can be more complex than a linear, quadratic or periodic variation in time.
An analysis of the residual of the inversion (e.g. visualization of the residual map, computation
of the standard deviation, etc.) seems necessary to see the areas with displacement behaviors not
taken into account by the model. When necessary, the least-square inversion can also be performed
in an iterative way, with or without change to the weighting matrix.

The least-square inversion method has been applied in lots of studies (Bontemps et al. (2018),
Casu et al. (2011), Hadhri et al. (2019), Jolivet and Simons (2018), Jolivet et al. (2012), Lopez-
Quiroz et al. (2009)), where its efficiency has been proven. However, there are still some open
questions such as how to take into account the data quality in case where data uncertainty is
not available? How to deal with correlated displacement measurements? How to select the dis-
placement measurements, in particular in terms of temporal baselines, to retrieve displacement
at different scales (e.g. trend, inter-annual variation, intra-annual variation, etc.) ? These open
questions are discussed in the following.

Choice of weighting function

It is frequently encountered in displacement measurement that there is no displacement uncer-
tainty associated with the displacement measurement. In case of InSAR measurements where all
measurements can be considered as being of high quality, an equal weight for all measurements
seems reasonable. However, in case of offset tracking measurements, sub-optimal or even erro-
neous estimation can be obtained, if displacement measurements of different quality are not used
in an appropriate way.

In many early studies, the standard deviation of displacement values obtained in stable areas
was used as a proxy of the uncertainty value associated with the displacement measurement. The
rational to do so is that the displacement value should be null in stable areas and this standard
deviation measures the uncertainty related to the algorithm of the used displacement computation
method. The drawback of this approach is obvious : on one hand, only one uncertainty value is
available for all pixels in a displacement field, regardless of the different measurement quality over
different pixels. On the other hand, the uncertainty in stable areas can be different from that in
moving areas (e.g. in areas with rich textures in a pair of SAR images, offset tracking works better).
In Bontemps et al. (2018), a first weighting matrix computed from the standard deviation in stable
areas was used, but later replaced by a weighting matrix estimated from the residual (in the form
1/R2, with R denoting the residual, to assign less or even zero weight to those observations with
large residual).

The deployment of the residual to determine the relative contribution of displacement mea-
surements is useful whenever data uncertainty is not available. However, it is worth seeking for
more advanced formulation than 1/R2 to better calibrate the residual values to weighting factors.
A sophisticated way can be found in Liang et al. (2021), a recent paper dedicated for improving
InSAR coherence estimation. In this paper, a down-weighting factor is computed from the residual
and expressed as a bi-weight function as

g =

[1− (uc )2]2, |u| ≤ c

0, |u| > c
(3.12)
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with u the normalized residual expressed as

u =
R

s
√

1− h
(3.13)

where h is the hat value and can be derived from the diagonal element of A(ATA)−1AT (A the
design matrix in equation 3.6). s is the median absolute deviation and c is a tuning constant which
is usually set as 4, 685, producing 95% efficiency at normal distribution.

In case of combination with another weighting information (e.g. quality indicator issued from
the displacement estimation method or prior knowledge), the final weighting matrix can be

Wf = W ◦G (3.14)

with G a diagonal matrix of the down-weighting factor obtained in equation 3.12, W a diagonal
matrix of other weighting information and ◦ the Hadamard entry-wise product operator. In case of
iterative least-square inversions, both G andWf can be updated iteratively.

In the Ph.D thesis of Laurane Charrier, a two-step least-square inversion strategy is adopted
to estimate SR and AR (auto-regressive network, Figure 1.2 (b)) displacement time series from a
large number of offset tracking measurements of Sentinel-2 image data over the Fox glacier and
offset tracking measurements of Sentinel-1 image data over the Kyagar glacier. At the first step, all
displacement measurements are given the same weight, with the reason that it is better to give no
weight than to give erroneous weight. At the second step, the weighting matrix is computed from
the residual issued from the first step according to equation 3.12. The obtained results show that
this weighting strategy is efficient to remove outliers.

Choice of temporal baselines

As previously mentioned, from a time series of N images, N(N − 1)/2 displacement mea-
surements, including all possible temporal baselines, can be obtained. However, in practice, the
quantity of displacement measurements is limited by the decorrelating characteristic of the phe-
nomenon under observation, the availability of computing and storage facilities and the research
objective. For example, for decorrelating targets such as the Alpine glaciers, long temporal base-
lines displacement measurements are not possible due to rapid surface changes. Therefore, small
temporal baseline displacement measurements are mainly considered in the related applications
(Hadhri et al. (2019), Marsy et al. (2021)). Indeed, small baseline displacement measurements are
also widely computed for many other long-term correlating targets (Dalaison and Jolivet (2020)),
because of the simplicity of the image network that does not require many computing and storage
resources.

Actually, few studies have been carried out to investigate how to select displacement mea-
surements with different temporal baselines in order to meet a specific need, e.g. to estimate a
seasonal variation or a general trend of the displacement under consideration. Both InSAR and
offset tracking measurements (from SAR, optical images and digital camera photos) provide dis-
placement information between the two dates of image acquisitions. Therefore, in general, long
temporal baseline displacement measurements bring out the averaged low frequency behavior
over the period of observation, while small baseline displacement measurements highlight more
the velocity and can bring out detailed high frequency displacement behavior depending on the
period of observation. The smaller the temporal baseline is, the higher frequency behavior can
be captured. As a result, the choice of temporal baselines strongly depends on the displacement
behavior (in case we have the choice). In case of a linear displacement, a selection of temporal
baselines or not can only impact the final estimation accuracy, but does not impact the retrieved
displacement behavior due to the regularity of the displacement. In this case, the main concern is
the measurement uncertainty that can vary depending on the temporal baselines. In case of more
complex displacement behaviors, a selection of data sets with appropriate temporal baselines is
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3.2. Least-square inversion

necessary to be able to get the displacement component we are interested in. For instance, to follow
amoving target with a seasonal variation, small baseline displacement measurements are preferred,
because long temporal baselines tend to degrade the high frequency oscillations.

The problem of the temporal baselines also concerns the output displacement time series in case
that an AR (Figure 1.2 (b)) displacement time series is estimated. For example, with the acquisition
cycle of Sentinel-1, 6 days, what is the appropriate temporal baseline of the AR displacement time
series to generate? every 6 days or 12 days or even more? What is the impact of the input temporal
baselines on the output temporal baselines, for a given displacement behavior ? These problems
are tackled in the Ph.D thesis of Laurane Charrier, for which two previously mentioned data sets
from offset tracking of Sentinel-2 images for the Fox glacier (seasonal variation) and of Sentinel-1
images for the Kyagar glacier (abrupt acceleration and oscillations) are available. Related works
performed by Laurane constitute the subject of a journal paper in preparation.

Consideration of correlated measurements

As previously shown, independence between displacement measurements is assumed in most
cases for the sake of simplicity. To this effect, the uncertainty associated with the inversion result
is underestimated when the independence hypothesis cannot be verified. The correlation between
displacement measurements exist especially when common images are used in the displacement
estimation, whereas it is extremely difficult, even impossible to quantify this correlation. Therefore,
in displacement measurement, to my knowledge, no effort has been made to deal with this problem
and no works can be found in the literature. On the other hand, this kind of problem also exists
in the atmosphere-ocean community and more elaborated approaches have been proposed, which
can be deployed for displacement measurements.

The most simplest way to consider the data observation correlation is to artificially increase
the data uncertainty in the data error covariance matrix, keeping the diagonal structure. This
approach does not directly take the correlation into account, but tries to avoid the problem of
underestimating the uncertainty associated with the inversion result. Despite the over-simplicity, a
diagonal weighting matrix presents advantages in terms of computational cost. In case of a large
data observation vector, algorithmic optimizations are only possible with a diagonal weighting
matrix.

Another advanced alternative consists of transforming the observation vector by a regular linear
transformation operator Γ : y+ = Γy (Brankart et al. (2009), Ruggiero et al. (2016)). Each new
data observation is a linear combination of all original observations. The data error covariance
matrix is also transformed according to

Σ−1
y = ΓTΣ+−1

y Γ (3.15)

It follows that any data error covariance matrix Σy can be simulated by a diagonal matrix
Σ+
y in a transformed observation space. An immediate solution is to choose Σ+

y as the matrix of
eigenvalues of Σy and Γ as the matrix with the corresponding normalized eigenvectors, so that
Σy = ΓTΣ+

y Γ, with Γ unitary and Σ+
y diagonal. The drawback of this solution is that it does not

decrease the computational burden.
Brankart et al. (2009) and Ruggiero et al. (2016) further proposed to add the first- and second-

order spatial derivatives of the data observations in the observation vector in order to deal with
spatial correlation. This can be easily transferred to the temporal dimension. The addition of
gradient observations to the observation vector can be equivalent to assuming a specific form of
the observation error covariance matrix. In this way, the transformed observation error covariance
matrix has a block diagonal form. Compared to a linear transformation, this approach is much
computationally efficient. For detailed explanations, please refer to Brankart et al. (2009).
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Multi-sensors displacement time series fusion

The least-square inversion approach is also able to deal with multi-sensor displacement time
series fusion. Compared to the mono-sensor case, more heterogeneity is present in the data.
Besides the heterogeneous data quality, the temporal baselines are not regular any more. Two more
questions thus arise when we aim to estimate a homogeneous SR displacement time series. The
first one is about the relative weight of displacement measurements from different sensors. Without
ground truth, it is impossible to evaluate each data set in an absolute way. Moreover, it is difficult
to compare displacement measurements covering different periods, with different initial spatial
resolution obtained from different sensors. Even though we know that one data set is generally
noisier than the other, it is not always easy to quantify the relative uncertainty. Therefore, an
intuitively safe method is to give equal weight to displacement measurements of different sensors.
Further refinement can be performed according the result of a first inversion. The second question
is about how to deal with irregular temporal baselines. More precisely, how to decide the output
temporal baselines, especially in the case of an AR displacement time series, in order to correctly
retrieve the displacement behavior and to make use of as many as possible available displacement
measurements. In the Ph.D thesis of Laurane, the latter problem is resolved by formulating the
inverse problem in the following way,

Ax = By (3.16)

Compared to the standard formulation in equation 3.6, a design matrix B is added to the data
observationmatrix. Themain role ofB is to split or combine the temporal baselines of displacement
measurements in y in order to form as many as possible available measurements corresponding to
the temporal baselines defined in x.

Note that the least-square inversion approach requires that the multi-sensor displacement mea-
surements should be relatively homogeneous, that is, of the same spatial resolution, covering
the same area, measuring the displacement in the same direction, etc. In case of significant he-
terogeneity (e.g. different areas and/or directions), it is more relevant to combine multi-sensors
displacement measurements with help of a statistical or physical model. This refers to physical
models inversions and data assimilation presented in Chapter 4.

3.3 Multiscale InSAR time series analysis

Hetland et al. (2012) proposed to extract spatially and temporally continuous displacement field
from unwrapped interferograms stack, based on a wavelet decomposition in space and a general
parametrization in time. This approach is referred to as Multiscale InSAR time series.

Parametrization of time dependent displacement For a given location s and time t, we re-
present the displacement (in LOS direction) as

d(s, t) = d0(s) + Fd(s, t) (3.17)

where d0 is a location specific constant and Fd(s, t) can be any time-dependent function.
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For example,

Fd(s, t) = v(s)t (3.18)

=
∑

∆i(s)H(t− Ti) (3.19)

=
∑

αLi (s)H(t− TLi )ln(1 +
t

τLi
) (3.20)

=
∑

αEi (s)H(t− TEi )ln(1− e
−t
τE
i ) (3.21)

=
∑

si(s)sin(ωit) + ci(s)cos(ωit) (3.22)

=
∑

κi(s)Bn(t− tbi) +
∑

κ′i(s)B
∫
n (t− tbi) +

∑
κ′′i (s)Bni(t− t

]
i) (3.23)

whereH(t−Ti) is a Heaviside function centered at Ti,Bn(t−tbi) are B-splines of order n centered
on the uniformly spaced knots tbi , B

∫
n (t− tbi) =

∫
Bn(t′ − tbi)dt′ and Bni(t− t

]
i) are B-splines of

order n located at the non-uniformly spaced knots t]i . The spatially dependent coefficients ∆i, αLi ,
αEi , si, ci, κi, κ′i and κ′′i are unknown parameters to estimate from the InSAR stack.

Equation 3.18 corresponds to linear rate displacement. Equation 3.19 describes offsets at
specific times, e.g. those due to an earthquake. Equations 3.20 and 3.21 are often used to represent
post-seismic displacement (sharp onsets and steady decay) (Figure 3.2). Equation 3.22 describes
periodically repeating displacement (e.g. annual or seasonal variations). Equation 3.23 does not
carry any assumption of the underlying component of the displacement signal and the three terms
are used to describe signals that are not well described by previous components (Figure 3.2).

Figure 3.2 – Examples of basis functions used in the time-dependent parametrization of displacement
(Hetland et al. (2012)).

Multiscale spatial decomposition The 2D spatial discrete wavelet decomposition of a given
unwrapped interferogram can be represented as

∆d(s) =
∑
a,b

ra,bϕa,b(s) (3.24)

with ϕa,b(s) 2D spatial wavelets of scale a and position b, ra,b are the corresponding wavelet
coefficients.

Similarly, we can represent Fd(s, t) as

F (s, t) =
∑
a,b

Fa,bϕa,b(s) (3.25)
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with Fa,b the time-dependent wavelet coefficients in the parametrization of the time-dependent
displacement.

Least-square inversion The temporal behavior of a given wavelet is estimated in a least-square
inversion by minimising

ψ = ‖Gma,b − ya,b‖22 + λ2‖Hma,b‖22 (3.26)

where ya,b represents the wavelet coefficients at a given scale a and location b in all interferograms,
ma,b represents the wavelet coefficients of the parameters of the time-dependent displacement
in Fa,b(t), G is the design matrix, H is a regularization matrix (e.g. to enhance a smoothness
constraint or to damp the B

∫
-splines amplitude) and λ is the regularization penalty parameter

chosen using a n-fold cross validation.
To determine F (s, t), the inverse discrete wavelet transform is applied to each of the model

wavelet coefficients, which results in the spatial fields of the amplitude in the time-dependent
function F (s, t).

The wavelet coefficients include information about the underlying spatial data covariance at
any given spatial scale. The benefit of the 2D Meyer wavelet transform used in Hetland et al.
(2012) lies in the fact that the covariance between wavelet coefficients in a single interferogram is
neglected, we can thus determine the time-dependence of each wavelet coefficient independently.
For more technical details, please refer to Hetland et al. (2012).

The interest of this method compared to the standard pixel-by-pixel least-square method is ob-
vious : the estimation of displacement information is done in the wavelet-domain at each location
and scale independently, thanks to which different displacement behaviors such as coseismic, post-
seismic and seasonal loading mixed in displacement measurement time series can be separated.
Moreover, this approach provides an efficient way for interpolating across regions of low interfero-
meric coherence, giving a constrained estimation of the continuous spatio-temporal displacement
field. Without experience in wavelet decomposition of displacement fields, it is difficult for me to
judge the effective contribution of this method. I just wonder the efficiency of this approach in case
no prior displacement information is available, because it seems that the temporal evolution of the
displacement is imposed. Notice that no further development of this method can be found in the
literature, but the idea of the parametric least square regression has widely been adopted later in
Dalaison and Jolivet (2020), Daout et al. (2019), Maubant et al. (2020).

3.4 Spatio-temporal random effect model

Displacement measurements time series have spatial and temporal information and nearby
observations in space or time generally results in higher statistical correlation. This dependence
can be described through specification of a spatio-temporal covariance function or explained
through a dynamical model that gives either a statistical or physical mechanism for the evolution of
the present from the past. Displacement measurements fusion by means of a physical model will be
discussed in Chapter 4. Here, I only focus on the statistical model, i.e. the spatio-temporal random
effect model (STRE) referred to as a standard state-space model in the time series literature.

Let s = s1, s2, . . . , sn denote location points and t = 1, 2, . . . , T denote time instant, the
observations Y (s, t) can be decomposed into true value Y r(s, t) and noise ε(s, t)

Y (s, t) = Y r(s, t) + ε(s, t) (3.27)

where ε(si, t) ∼ N (0, σ2
t vi), i = 1, 2, . . . , n. vi is the accuracy ratio of different measurements.

n is the number of pixels in a displacement field. For the sake of computational efficiency, ε(s, t)
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is assumed uncorrelated spatially and temporally, which implies that correlated noise should be
removed beforehand.

Y r(s, t) can be further decomposed into deterministic global spatio-temporal trends µt(s),
local spatial variations ν(s, t) and fine-scale spatial variations ξ(s, t)

Y r(s, t) = µt(s) + ν(s, t) + ξ(s, t) (3.28)

The global spatio-temporal trend, µt(s), is correlated at large scale. It can be removed by
polynomial fitting, e.g. µt(s) = XT

t (s)βt with XT
t (s) = (X1,t(s), . . . , Xp,t(s))

T being the
chosen trend field. Polynomial function of coordinate dimensions is a commonly used trend
field. βt = (β1,t(s), . . . , βp,t(s) is the corresponding polynomial coefficients. The local spatial
variations, ν(s, t), represent spatial variations locally correlated in the spatial domain and strongly
temporally dependent. They can be expressed as

ν(s, t) = STt (s)ηt (3.29)

where spatial basis St(s) = (S1,t(s), . . . , Sr,t(s))
T is the basis function with a fixed rank r (often

low rank). Wavelet basis functions, smoothing spline basis functions and radial basis functions are
often used as spatial basis (Liu et al. (2018)). In general, St(s) is often set at different space scales
and is often assumed to be consistent in time, which results in a temporal stable ν(s, t). ηt is a
coefficient vector assumed to follow a vector-auto-regressive process of order one and evolves in
the temporal domain according to the state transition equation

ηt = Hηt−1 + ζt (3.30)

with H the state transition (or propagator) matrix and ζt an error term.
The fine-scale spatial variations ξ(s, t) are assumed to be uncorrelated across time and space

and independent of ηt, with ξ(si, t) ∼ N (0, σξ,tvξ,i). It can be modeled by the stochastic volatility
model (Liu et al. (2018)) or considered as vξ,i ≡ 1 for simplicity.

A key feature of the STRE model is the dimension reduction that makes it possible to deal
with a very large number of observations at each time instant. The use of a vector-auto-regressive
model of order one (equation 3.30) allows for fast sequential processing via the Kalman Filter or
the Kalman smoother.

The unknown parameters of the STRE model, including error covariance and propagator
matrices that describe the spatial and temporal dependence structure in the reduced-dimensional
process, can be obtained from a maximum likelihood estimator via an EM algorithm (Katzfuss and
Cressie (2011)). As shown in Chapter 2, EM is particularly useful when the estimated parameters
are unknown or imprecise. Once estimated, the aforementioned parameters can then be substituted
into the Kalman filter or smoother equations to obtain empirical spatio-temporal predictions.

Despite the complexity of estimating a parametric model, the interest of the STRE model lies
in 1) taking both the temporal and spatial dependence into account 2) providing a generic model
able to characterize most encountered displacement behaviors 3) being capable of interpolating
any interested spatio-temporal points, even on unmonitored areas and days.

In displacement measurement, a pioneering work exploring the STREmodel (Liu et al. (2018))
was for the combination of InSAR and GNSS displacement time series in a unified framework.
Satisfactory results obtained confirmed the efficiency of the STRE model.

3.5 Kalman filter based time series analysis

Dalaison and Jolivet (2020) proposed aKalman Filter based InSAR time series analysismethod,
with the objective to sequentially update pre-existing displacement time series considering only
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the latest data observations. Indeed, the idea comes from the data assimilation technique that will
be presented in detail in Chapter 4. A parametric function of time, i.e. the linear combination of a
set of user-defined functions fn of time modulated by coefficients an, to describe the evolution of
the interferometric phase was considered as the displacement model. The interferometric phase φi
at a time ti, relative to the phase φ0 at time t0, thus writes

φi =
N∑
n=1

anfn(ti) + γi (3.31)

where fn can be polynomial terms, Heaviside functions or periodic functions describing the
temporal history of the interferometric phase. γi is the error accounting for the mismodeling of the
interferometric phase at time ti and the decorrelation noise. I think it is more appropriate to mention
that γi is the model error accounting for the uncertainty due to mismodeling. Decorrelation noise
is only related to the data observations. In Dalaison and Jolivet (2020), γi is assumed normally
distributed with zero mean and standard deviation σγ . It is also assumed constant with time for
the sake of simplicity, which is a strong hypothesis that does not represent the reality. What really
matters is that assuming a constant model error, we cannot make full use of the data assimilation
technique.

An example of the functional model (due to interseismic loading along a fault) is given as
follows,

φk = a0 + a1tk + a2sin(tk
2π

T
) + a3cos(tk

2π

T
) + a4Ssse(tk) + a5Heq(tk) + γk (3.32)

where T is a 1 year period, Ssse is an integrated spline function centered on Day 210 with a width
of 100 to model a slow transient slip event, Heq is a Heaviside function on day 500 to model an
earthquake occurred on day 500 of the time series.

The unwrapped phase of the interferogram between the dates ti and tj is expressed as

ϕij = φj − φi + εij (3.33)

where φj is the unwrapped phase at time tj relative to the phase φ0 at time t0. ε is an error term
potentially associated with inaccurate phase unwrapping or spatial filtering and multi-looking that
break the phase consistency (Chapter 1). This error term can be related to the temporal misclosure
(section 1.3.2). Its standard deviation σε is assumed common to all interferograms for the sake of
simplicity in Dalaison and Jolivet (2020).

Figure 3.3 – Illustration of the state vector and data observation as a function of time (Dalaison and Jolivet
(2020)).
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For a given time instant tk, the vector of parameters to estimate or re-estimate, namely state
vector, is denotedmk = [a0, a1, . . . , aL, φ0, φ1, . . . , φk].

The value ofmk at time tk can be obtained from its value at time tk−1,

mk = Akmk−1 (3.34)

Each time a new SAR image is acquired, the interferograms connecting this last acquisition
with the four previous ones are computed (i.e. small baseline interferograms). These interferograms
can be related to the state vector through the observation operator H at each time instant, as

dk = Hkmk (3.35)

The objective is to solve equations 3.31, 3.33 3.34 and 3.35 sequentially via the Kalman Filter,
whenever a new acquisition is available. A SR interferogram time series is estimated as in many
other multi-temporal InSAR approaches. Details of the implementation of the Kalman Filter is not
presented here but in Chapter 4.

Indeed, the formulations of equations 3.34 and 3.35 are ad-hoc in order to approach the standard
formulation in data assimilation. In case of earthquake and volcano displacement measurements
as in Dalaison and Jolivet (2020) where advanced physical models are available, it is clearly more
relevant to use a physicalmodel andwhole interferograms (i.e. spatial fields) to do data assimilation,
instead of using a temporal functional model and individual points measurements.

In Bekaert et al. (2016), a similar Kalman Filter based idea was adopted, but for the estimation
of geophysical parameters of a tectonic slip model. The main interest of the Kalman Filter based
approach lies in the sequential integration of new acquisitions. However, appropriate formulation
of the problem and adequate specification of model errors and observation errors are necessary to
ensure the reliability of the final results.

3.6 Median of Multiple Common Master Series

The Median of Multiple Common Master Series (MMCMS) approach was proposed to deal
with digital camera photos time series (Marsy et al. (2021)), but it can easily be extended to InSAR
or offset tracking displacement time series. The principle is explained in the following.

Given a time series of N images, consider any two SR displacement time series, with ri and
rj as reference date respectively (i, j ∈ [0, N − 1]). According to the temporal closure of the
displacement, we have

drirj = drik − drjk (3.36)

It is thus possible to estimate dri,rj with a simple mean difference between two time series

d̃rirj =
1

N

N−1∑
i=0

drii − drji (3.37)

Not mentioned in Marsy et al. (2021), but equation 3.36 is not respected in general cases
because of uncertainty (e.g. spatial filtering or multi-looking in InSAR). Assuming a random
uncertainty,N should be sufficiently large in order that d̃rirj represents the real offset between the
two time series.

Given the offset between two SR displacement time series, we can align them to a single
SR displacement time series. Therefore, for each point, two versions of SR displacement time
series can be obtained, one from the direct computation with respect to the reference date and the
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other from the offset correction to another SR displacement time series referred to a different date
(equation 3.38).

d
rj
rii

= drji − d̃rirj (3.38)

This process is repeated for all possible reference dates (N ) and one final reference date, rref ,
is chosen to align all the SR displacement time series using equation 3.38.

To determine the final reference date, all reference dates are tested and the one minimising the
following error is chosen as the final reference date,

ε =

∑
i

∑
j‖d

rref
0i − d

rj
0i‖

N2
(3.39)

Thus, we getN measures for each term in the SR displacement time series referred to the final
reference date,

D
rref
01 = {dr001, d

r1
01, . . . , d

rN−1

01 }
D
rref
02 = {dr002, d

r1
02, . . . , d

rN−1

02 }
. . .

D
rref
0N−1 = {dr00N−1, d

r1
0N−1, . . . , d

rN−1

0N−1}

The median and the median absolute deviation (MAD) are computed for each term in the final
SR displacement time series. Further processing consists of thresholding on the median and MAD
values to remove outliers. The procedure can be performed iteratively with outliers removed at
each iteration in order to refine the final SR displacement time series estimation.

For large and very large temporal baselines, the displacement cannot be computed directly
because of significant surface change.Marsy et al. (2021) proposed to construct the SRdisplacement
time series in an incremental way by applying the MMCMS approach to subsets time series. The
offset between subsets time series is estimated and a connection between subsets time series is
performed to obtain the complete time series. This implementation allows for gradual integration
of new arriving images and displacement measurements.

Marsy et al. (2021) compared the MMCMS approach with the standard least-square inversion
approach and in situ GPSmeasurements in the displacement measurement of the Argentière glacier.
They concluded that the MMCMS approach slightly outperforms the least-square inversion in their
application. However, notice that, the computational load of the MMCMS approach is more
significant than that of the least-square inversion.

3.7 Machine learning based approaches

One of themost important recent advances in displacement time series analysis consists of using
machine learning methods. Different from the previously presented multi-temporal approaches
whose purpose is to reduce the dimension of displacement data sets and to estimate consistent
and easily understandable displacement information, actual machine learning methods aim to
automatically detect displacement signals of interest in large displacement measurement data sets
without any estimation, in other words, to separate displacement signals from other perturbations
(e.g. atmospheric signals).

The first works deploying neural networks based methods have been performed with seismic
data (Magrini et al. (2020), Mosser et al. (2018), Titos et al. (2019)) and further development
continues. For instance, Titos et al. (2019) used recurrent neural networks (RNN), long short term
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memory (LSTM) and gated recurrent unit (GRU) to detect and classify continuous sequences of
volcanic-seismic events. Regarding the exploitation of SAR displacement time series, pioneering
works to automatically detect displacement signals have mainly been proposed by the UK COMET
group with applications to volcanic deformation. Two categories of works can be outlined, one with
traditional machine learning techniques such as PCA, ICA and Nonnegative Matrix Factorization
(NMF) (Ebmeier (2016), Gaddes et al. (2018, 2019), Maubant et al. (2020)) ; the other with
convolutional neural networks (CNN) techniques (Anantrasirichai et al. (2018, 2019a,b)).

3.7.1 Traditional ML approaches

PCA, ICA and NMF have been deployed to separate the displacement signal from other
components in SR and AR time series of interferograms (Ebmeier (2016), Gaddes et al. (2018),
Maubant et al. (2020)). The displacement signal separation problem is formulated as a blind source
separation (BSS) problem, and the observed mixed signals are assumed to be generated using the
following mixing model :

X = AS (3.40)

where X contains the mixtures as row vectors, S contains the unknown sources as row vectors
and A is the unknown mixing matrix that combines varying amounts of the sources to create each
mixture. The rows of A are coefficients that describe the relative contribution of each source to a
particular mixed signal.

The sources S can be recovered if we could calculate the unmixing matrixW ,

S = WX (3.41)

with
A = W−1 (3.42)

The preceding description of linear mixing can also be expressed in terms of Euclidean
geometry (Figure 3.4). The goal of the BSS is to find the basis vectors required to recover each
source from themixture. PCA, ICAandNMFhave been investigated to implementBSS.A summary
is given in the following.

PCA finds a unique solution to the decomposition of a mixed signal by maximizing signal
variance, with the assumption that sources are uncorrelated. The PCs are routinely found by
calculating the eigenvectors and eigenvalues of the mean-centered data covariance matrix. The
change of basis can be achieved as follows,

Sr = ETX (3.43)

where Sr is the reconstructions of the sources, E is a matrix of eigenvectors.
This is closely related to the work of (Prébet et al. (2019)) in which PCA is used to retrieve

coherent displacement signal from AR displacement time series (section 2.3). According to Prébet
et al. (2019), the separation of displacement signal from spatially correlated atmosphere-like noise
by PCA is not always efficient.

ICA is a classical method for BSS. It aims to describe random variables as a linear combination
of statistically independent components. This is achieved by the decomposition of a mixed signal
using the assumption that each constituent component has a non-Gaussian probability distribution.
ICA retrieves sources by maximizing statistical independence. Each independent component is
estimated by choosing unmixing vectors that maximize the non-Gaussianity of its product with the
data, assessed by using a property such as kurtois or negentropy. Many specialized ICA tools can be
found in the literature. The FastICA algorithm (research.ics.aalto./ica/software.shtml) constitutes
one of the most used tools (Ebmeier (2016), Gaddes et al. (2018), Maubant et al. (2020)).
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Figure 3.4 – Linear mixing for spatial and temporal data. Spatial organization : a deformation signal (S1) is
mixed with a topographically correlated signal (S2) through reprojecting the data in the directions A1 and A2,
to produce two mixtures, M1 and M2. The sources can be recovered from the mixtures by reprojecting the
data in the directions W1 and W2. In this case, the mixture space has as many dimensions as the number
of interferograms and as many points in the space as the number of pixels in the interferograms. Temporal
organization : the displacement evolution on one pixel over 20 epochs (S1) is mixed with the evolution of a
topographically correlated atmospheric signal on the same pixel (S2) in a similar manner to the spatial case to
produce two mixtures, M1 and M2. In this case, the mixture space has as many dimensions as the number of
pixels the interferograms have and as many points in this space as the number of interferograms. Progression
from blue to yellow is used to indicate areas of high point density in the scatter plots (Gaddes et al. (2018)).
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NMF factorizes a non-negative data matrix of mixture, X , into two non-negative matrices, A
and S. It cannot be used on data that contains negative values. In Gaddes et al. (2018), it is only
applied to a SR displacement time series in order to keep positive displacement values.

Gaddes et al. (2018) concluded that ICA is the best suited formost applicationswith InSARdata.
Cohen-Waeber et al. (2018) used ICA to identify precipitation-modulated landslide spatio-temporal
patterns from a SR InSAR time series. Gaddes et al. (2019) further used ICA to identify deformation
that departs from the background rate/pattern and may not be clear in single interferograms.

ICA has the advantage over the PCA to decompose the signal in a set of statistically independent
components, which are more likely to represent independent sources. However, the ideal number of
ICs and their order of importance are not defined. Selecting too few ICs may mix different sources
together and selecting too many will split the sources of interest over many components with large
errors. In Maubant et al. (2020), PCA and GPS data have been proposed to aid the determination
of the appropriate number of ICs. Note further that ICA is successful when constituent sources are
very non Gaussian. Gaussian sources will not be extracted as ICs and the presence of correlations
between constituent sources results in signals related to different sources being captured in the
same ICs.

3.7.2 Neural networks approaches

Anantrasirichai et al. (2018) proposed, for the first time, to use CNNs to detect large and rapid
volcanic deformation signals in wrapped interferograms. The main idea is to distinguish fringe
patterns related to displacement from atmospheric artifacts, the latter can also generate concentric
fringes around volcanoes, particularly those with steep topography. The proposed CNN framework,
including training and prediction processes, is illustrated in Figure 3.5. This study showcased the
ability of CNNs to detect rapid displacement that generate multiple fringes in wrapped interfero-
grams, but could not reliably distinguish between displacement signals and atmospheric artefacts
in case of small displacement. Anantrasirichai et al. (2019a,b) further improved the previously
developed approach to be able to detect slow, sustained deformation (i.e. lower rate and smaller
spatial scale) in urban environments, by rewrapping the displacement map to increase the number
of fringes.

These proof-of-concept studies demonstrate the ability of neural networks based approaches in
automatically analyzing large displacement measurement data sets. For example, in Anantrasirichai
et al. (2018), the global data set used in the study consists of 30,249 Sentinel-1 interferograms
covering 900 volcanoes in 2016–2017. The proof-of-concept algorithm reduces the number of
interferograms that require manual inspection from more than 30,000 to 104, which makes it
possible to timely deliver the results to the appropriate authorities. However, it is also worth
mentioning that the supervised learning of DNNmodels generally relies on the availability of large
annotated data collections that cannot always be available. To provide ground-truth information for
training and verification of supervised classification systems, it is necessary to manually identify
a selection of interferograms where several fringes can be attributed to volcanic deformation.
Identifying a sufficient number of positive images in this vast data set is challenging. Anantrasirichai
et al. (2018) used an older ENVISAT archive to initialize their classification model for the sake
of convenience. On the other hand, even with the efficient automatic detection of displacement
signals in large InSAR data sets, expert analysis is still required to distinguish deformation from
some types of atmospheric artifacts and to interpret the deformation patterns in terms of source
processes. Actually, the development of neural networks based approaches in InSAR community
is still at a very early stage. A lot of efforts are still necessary before they can be considered as
completely operational approaches.
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Figure 3.5 – Diagram of the CNN framework for volcano signal detection. The training process starts with
data with ground truth (labeled as 1 or positive, where deformation is present ; and 0 or negative in other
areas). Then, edge detection is applied so that only the areas with large phase changes are considered.
These areas are subsequently divided into two classes of patches and fed to the CNN for training. For the
prediction process, the new interferogram is divided into overlapping patches, and the patches with strong
edges are tested with the trained CNN model, giving the probability P of being ground deformation. The
probabilities of all patches are merged with Gaussian weights. The highest probability Pmax and its location
are provided for the development of an alert system. Finally, the expert checks the result, and the positives
are employed to retrain the CNN for better performance (Anantrasirichai et al. (2018)).

3.8 Conclusions & Perspectives

A non-exhaustive list of approaches for displacement time series analysis is presented in this
chapter. Each approach has its own advantages and shortcomings. In particular, each approach can
respond to a specific need (e.g. reduce the dimension of the data set, separate the displacement
signal from other perturbations. etc.). It is impossible to conclude on the relative performance
of all the aforementioned approaches. Indeed, there has not been benchmark studies that aim to
compare all the state-of-the-art displacement time series analysis approaches. In certain ways, this
kind of benchmark studies do not really make sense in my opinion. We can choose the appropriate
approach(es) depending on the data sets to deal with (i.e. dimension, uncertainty, completeness,
consistency, etc.), the scientific objective to reach and the available resources.

Personally, I consider the standard pixel-by-pixel least-square inversion as a first choice, be-
cause of its ease of implementation and almost universal applicability. More importantly, in most
cases, it can give satisfactory results, sufficiently accurate for further interpretation. According
to the results obtained in the Ph.D thesis of Laurane Charrier, this approach is not only effi-
cient for linear displacement behavior, but also for other complex displacement behaviors such
as seasonal oscillations and mixed exponential trend and seasonal oscillations (provided that the
choice of temporal baselines is appropriate). Moreover, despite a pixel-by-pixel strategy, no spa-
tial discontinuities have been observed in the final retrieved displacement fields time series. For
its efficiency in terms of both computational time and result quality, it constitutes an impor-
tant step of the SBAS approach and the offset tracking operational processing adopted in the
online service of ground deformation monitoring (GDM) developed by ForM@Ter in France
(https ://www.poleterresolide.fr/projets/en-cours/gdm-epos/). The multi-scale InSAR time series
analysis approach is also based on a least-square inversion, but displacement values are replaced by
the wavelet coefficients of spatial displacement fields as input in order to take the spatial correlation
into account. This approach is especially helpful when the displacement measured is composed of
mixed behaviors such as coseismic, post-seismic and other transient deformations and when we
want to separately quantify these behaviors. The STRE model provides unified modeling of dis-
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placement fields time series, with realistic assumptions of error statistics. However, the estimation
of the model parameters involves sophisticated statistical methods. Its usefulness is particularly
highlighted while dealing with heterogeneous displacement measurement time series, e.g. obtained
from different sensors and when the physical model is not available. A statistical spatio-temporal
displacement model thus allows for efficient integration of different displacement measurements
and is able to produce regular and homogeneous displacement products, even for unobserved areas
and dates. The MMCMS approach was initially developed for digital camera photo time series.
One important difference between digital camera photo time series and InSAR/offset tracking
displacement time series lies on the temporal misclore error. It appears that the temporal misclore
error of digital camera photo time series is inherently small (according to communications with
colleagues who work on digital camera photos). Therefore, the efficiency of this approach for
InSAR/offset tracking displacement time series still needs to be proven. ICA based approaches are
useful for separating displacement signals from other sources of perturbations (e.g. atmopsheric
perturbations). These approaches are rather applied to SR or AR displacement time series. I cannot
see the point of applying these approaches to a large data set including interferograms or offsets of
all temporal baselines. Neural networks based methods outperform the others in case of very large
data set automatically produced (in a blind way) such as that used in Anantrasirichai et al. (2018).
Even though lots of time consuming preparation works are necessary for neural networks to work
properly, as soon as the training procedure is finished, results can be delivered timely.

To meet the need for operational processing, besides the ability to provide reliable results,
the appropriate approaches should be fast and preferably be able to handle new displacement
measurements in a gradual way. From this point of view, on one hand, the standard least-square
inversion can always be considered as a candidate approach, because it can be applied to any
subset of a displacement time series. Of course, elaborated adaptations will be necessary to merge
the results obtained from isolated or connected subsets. On the other hand, approaches allowing
gradual integration of displacement measurements such as the STRE model and the kalman filter
based approach and approaches allowing working on subsets such as the MMCMS approach (if its
efficiency can be proven) seem promising. Finally, with further development of neural networks
based approaches, we can also rely on future neural networks based approaches.

93



4
Estimate and predict geophysical parameters by

inversion and data assimilation

4.1 Introduction

Besides direct Earth deformation monitoring, the main objective of displacement estimation is
to infer the subsurface geological structure and to predict natural hazards. Subsurface modelling
studies often rely on inversion methodologies to derive subsurface properties that are consistent
with both available prior information and displacement observed at the Earth’s surface. However,
predictions based on physical models alone are often far from reliable so that they cannot be consi-
dered as operational tools. SAR derived displacement time series have been proven effective and
have always provided meaningful insights into what is going on beneath the Earth’s surface through
physical model based inversion. They begin to be used as major sources for subsurface deforma-
tion sources characterization, thanks to the regular and free Sentinel-1 A/B acquisitions. Despite
being very successful, such model-driven approaches require sufficiently accurate modelling of the
phenomenon under observation and cannot be deployed as a universal approach.

Hazard prediction is one of the most challenging tasks in geophysics, because of the complex
nonlinear behaviors, intrinsic unpredictability of natural phenomena and lack of direct observations
on what is exactly happening underground. Current practices that lead to successful prediction are
mostly based on empirical pattern recognition that relies on present observations, geological and
historical information from global monitoring databases and scientific insights of experts (Bato
(2018)). For an operational prediction purpose, data assimilation, combining a dynamical model
and data observations in the past and at present based on error statistics, has been proposed
recently to predict the pressurization and rupture of magmatic reservoirs (Bato et al. (2017, 2018)).
Promising results obtained confirmed the predictive capability of the proposed data assimilation
method. However, the success of data assimilation depends strongly on the knowledge about the
physical model error and data observation error statistics that are often poorly known. Moreover,
non-Gaussian properties of errors, highly nonlinear models and implicit relationships between
physical model parameters and data observations can significantly degrade the predictive ability
of most operational data assimilation methods

The recent advent of neural networks based machine learning paradigms enables the deve-
lopment of new solutions to tackle the previous shortcomings of model-driven inversions and
predictions. Generative deep neural network (DNN) models such as Generative Adversarial Net-
works (GAN), being able to generate very realistic stochastic representations, have been deployed
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with success in seismic and hydrological inversions (Laloy et al. (2018, 2019), Mosser et al. (2018),
Zhang and Lin (2020)). Also, DNNs capable of integrating temporal information such as Recurrent
Neural Networks (RNN), have been deployed to predict earthquake trend and structural seismic
response from historical data (Vardaan et al. (2019), Zhang et al. (2019)). Other attempts make
use of Convolutional Neural Networks (CNN) and RNN to investigate glacier evolution modelling
(Bolibar et al. (2020)). These proof-of-concept studies highlight the interest of neural networks
based methods compared to the traditional physics based methods : free of statistical hypotheses
made on model parameters, capable of dealing with data/model complexity (e.g. high dimensional
nonlinear model, implicit relationship between data and model parameters, partial knowledge on
the physical model, etc.) and data adaptive. Therefore, neural networks based methods are worth
investigating in Earth deformation inversion and prediction with SAR displacement time series,
complementary to physics/statistics based methods.

In the following, I first present the conventional model driven inversion methodologies to
estimate geophysical parameters fromSAR, optical andGNSSdisplacementmeasurements. Results
obtained in the cases of the 2005 Kashmir earthquake and the 2011 post-eruptive event of the
Grímsvotn volcano are used for illustration. Second, I introduce in detail the methodology of data
assimilation, in particular, the Ensemble Kalman Filter to predict the temporal evolution of key
geophysical parameters by sequentially assimilating data observations. Works carried out in the
Ph.D thesis of Mary Grace Bato, a pioneering investigation of data assimilation in volcanology,
will be showcased. Finally, I will talk about data driven inversion and prediction methodologies, i.e.
neural networks based inversion and predictions to estimate and to predict geophysical parameters
by means of SAR displacement time series. The latter constitutes the future work that I want to
develop in the coming years.

4.2 Model driven approaches

4.2.1 Inversion

SAR derived displacement fields constitute one of the major sources to explore the subsurface
feature of the Earth by means of inversion. The latter involves modeling the deformation source
and physical mechanism at depth that explain the displacement fields observed at the Earth’s
surface. Solving such an inverse problem means finding a set of model parameters that best fit the
observations.

The classical inverse problem is of the following form 1

y = G(m) + ε (4.1)

y represents data observations, m is a vector of model parameters we aim to estimate, both y
and m are elements in appropriate function spaces, G represents the forward model operator that
describes how the model parameters give rise to data observations in the absence of noise and
measurement errors, ε is an error term including the observational error and the modelling error,
often assumed random.

Indeed, most inversions in geophysical applications are ill-posed, that is, small errors in data
may lead to large errors in the model parameters or several sets of model parameters may match
the same data observations. This is mainly due to noise and incompleteness presented in data
observations and uncertainties associated with modeling. Addressing ill-posedness is critical in

1. There is no formal mathematical definition of an inverse problem, but from an application point of view, it is
common to formalize it as solving an operator equation - determine causes from observed effects.
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all research and applications where decision making is based on the recovered model parameters
(e.g. risk assessment, operational monitoring, etc.). For this, on one hand, we formulate the
knowledge about possible or impossible model parameters (based on natural experience and/or
previous studies) as a prior probability density function (pdf) of model parameters. The choice
of an appropriate prior pdf of model parameters is essential but challenging to ensure posterior
consistency and global convergence. On the other hand, ill-posedness has also been counteracted
by means of regularization, a scheme providing a well defined parameterized mapping between
model parameters and data observations to guarantee properties such as existence, stability and
convergence.

Two main state-of-the-art approaches are functional analytic inversion and Bayesian inversion,
both derived from the knowledgewe have about the data, themodel parameters and their relationship
(Arridge et al. (2019)).

Functional analytic inversion

Functional analytic inversion makes no statistical assumptions on the model parameters and
only single model parameters values, i.e. approximations of the true values, are estimated.

The first solution consists of approximating analytic inversions based on stabilizing a closed-
form expression ofG−1. These approaches are, however, highly problem-specific. A large body of
literature addressing iterative methods based on gradient descent for the data misfit ||G(m)− y||2
can also be found. A well known example is the maximum likelihood expectation - maximization
(EM) algorithm (Dempster et al. (1977)). Besides iterative methods, another common framework
corresponds to variational methods, whose idea is to minimize a measure of data misfit penalized
using a regularizer (equation 4.2). A well known example is the classical Tikhonov regularization.

m = arg max
m∈X

{L(G(m), y) + λΓ(m)} (4.2)

where L is the data discrepancy measure (i.e. misfit function), Γ is a regularization functional. λ
is a weighting factor.

A statistical model for data description is mostly used to justify the choice of data discrepancy
in a variational method and for selecting an appropriate regularization parameter.

Indeed, the deployment of the functional analytical inversion requires a precise description
of the forward model operator, G. However, analytic expressions do not always exist to describe
the often complex but partially observed physical process with reasonable accuracy. Therefore,
functional analytical inversion cannot see a widespread application in geophysical inversions.

Bayesian inversion

Bayesian inversion considers both data observations and model parameters as realisations
of random variables and phrases the inverse problem as a statistical inference question, that is,
from a prior pdf of model parameters, P (m), approximating a posterior pdf of model parameters
conditioned on data observations, P (m|y) (Tarantola (2005)).

P (m|y) =
P (y|m)P (m)

P (y)
(4.3)

with P (y) corresponds to the data likelihood, which can be considered as a constant, since it does
not depend on the model parameters.

In this way, the posterior pdf of model parameters writes as

P (m|y) ∝ P (y|m)P (m) (4.4)

where P (y|m) is the likelihood, which represents the probability to obtain the data observations
y, given the model parametersm.
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Equation 4.4 demonstrates how the data observation is involved in the retrieval of the posterior
pdf of model parameters from their prior pdf. The likelihood, P (y|m), follows the direct problem
and relates the model parameters and the data observations. It is a measure of the degree of
fit between the observed data and the model predicted "data". Typically, this is done through
the introduction of a misfit function L(y|m), connected to P (y|m) through an expression like
P (y|m) = k exp(−L(y|m)) with k an appropriate normalization constant. The common form of
the likelihood is the Gaussian likelihood (equation 4.5) when the error term, ε in Equation 4.1
follows a Gaussian distribution.

P (y|m) =
1√

(2π)Ny |Σy|
exp[−1

2
(y −G(m))TΣ−1

y (y −G(m))] (4.5)

where Σy denotes the error covariance of data observations and |Σy| its determinant.
The Gaussian likelihood (coupled with a L2 norm of the misfit function) is widely used, but

it is not robust against outliers included in the data (Gesrt (2021)). In this case, other likelihood
models such as the Laplace distribution (equation 4.6) should be considered.

P (y|m) = k exp

(
−
∑
i

|Gi(m)− yi|
σi

)
(4.6)

where σ is the estimated data uncertainty.
In general, the choice of the likelihood depends on the quality of the data observations (i.e.

statistical properties of data uncertainty). For example, if the data observations are contaminated
by statistically independent random errors given by a double Gaussian probability density function
like

f(ε) = k

[
a exp(− ε2

2σ2
1

) + b exp(− ε2

2σ2
2

)

]
(4.7)

then
P (y|m) = kΠi

[
a exp(−(Gi(m)− yi)2

2σ2
1

) + b exp(−(Gi(m)− yi)2

2σ2
2

]
(4.8)

with a, b two constants.
However, in practice, realistically describing data uncertainty constitutes a difficult topic.
The prior pdf of model parameters, P (m), is also usually considered following a Gaussian

distribution. In case without clear prior information on the model parameters, it is appropriate to
use a uniform distribution.

With the prior pdf and the likelihood defined, we can obtain either the most likely model
parameters by maximising the posterior pdf (to solve an optimization problem) or a complete
solution including all possible model parameters given the data observations (to solve a sampling
problem). In the former case, when we estimate the uncertainty associated with the most likely
model parameters, we make Gaussian hypothesis on the posterior pdf, whereas it is often more
complex than a Gaussian distribution. On the other hand, the sampling of the complete distribution
in the latter case allows an unbiased estimate of the uncertainties of themodel parameters. Therefore,
the latter solution seemsmore relevant and gains in popularity inmost recent geophysical inversions.
A well known example is the Markov Chain Monte Carlo (MCMC), whose main idea consists in
generating models sampled with a frequency distribution equal to the prior probability distribution
in the model space by means of a random walk and comparing model based predictions to the
data observations, with models accepted or rejected depending on the models ability to reproduce
observations and according to the Metropolis-Hastings rule (Mosegaard and Tarantola (1995),
Sambridge and Mosegaard (2002), Segall (2013)). This kind of methods often requires high
computational load, in particular, long computational time. Designing an appropriate prior and to
have a computational feasibility for exploring the posterior is essential for implementing Bayesian
inversion.
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Case studies

Myearly experience in physicalmodel inversionwas to estimate the geometrical parameters and
the slip (i.e. displacement) distribution of the fault rupturemodel (i.e. Okadamodel, a homogeneous
linear elastic halfspace model assuming that the fault dislocation is a rectangular plane reaching
the surface) in the case of the 2005 Kashmir earthquake in my Ph.D thesis, using displacement
fields obtained from InSAR and offset tracking of ENVISAT images. Due to the complexity of the
inverse problem (i.e. number of model parameters to estimate and the non-linearity of the forward
model operator), the problem was solved at two steps. At the first step, a nonlinear inversion
was performed to estimate the geometrical parameters of the fault rupture, assuming fixed slip
on the fault plan. Monte Carlo type inversion (with 100 realizations) was performed, starting
from a Gaussian prior pdf of model parameters obtained from a previous study. The posterior
distribution of the estimated geometrical parameters is shown in Figure 4.1. At the second step,
the slip distribution was estimated with the geometrical parameters obtained previously. A linear
functional analytical inversion was performed, the solution was given by a variational method with
a Laplacian regularizer (equation 4.2) to avoid non physical solutions. The result obtained is shown
in Figure 4.2.

Figure 4.1 – Posterior pdf of geometrical parameters of the fault rupture model of the 2005 Kashmir earth-
quake obtained from InSAR and offset tracking measurements. The marginal pdf for each parameter is shown
in the blue histogram plots on the bottom. The red scatter plots indicate the correlation between parameters.
depth and length correspond to the depth and the length of the fault plane. (X, Y) is the coordinate of the
center of the fault trace at the surface. strike is the angle between the North and the line representing the
intersection of the fault plane with a horizontal plane. dip is the angle between the fault plane and a horizontal
plane. rake is the slip direction in the fault plane. (Yan et al. (2013)).

In the Ph.D thesis of Mary Grace Bato, she deployed MCMC (in the PyMC2 python mo-
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Figure 4.2 – Slip distribution of the fault rupture model of the 2005 Kashmir earthquake obtained from InSAR
and offset tracking measurements. Arrows indicate the slip directions on the fault plane. (Yan et al. (2013)).

dule) to estimate some unknown parameters of a two chamber magma model (Figure 4.5),
m = [ad, Hd, C,∆ρ,∆Pdt0 , Qin], using GNSS displacement measurements in the case of the
2011 post-eruptive event of the Grímsvotn volcano. Details of the two-chamber magma model are
given in section 4.2.2 where the model is fully exploited in data assimilation. The prior distribu-
tions are obtained from previous studies and expert’s knowledge. The posterior pdf of the estimated
parameters is shown in Figure 4.3.

From Figures 4.1 and 4.3, we can see that geophysical parameters to estimate can be more or
less correlated. Trade-off occurs between correlated parameters in the inversion. In order to avoid
this, Bato (2018), Bato et al. (2018) adopted the adaptive metropolis (AM) step method that fits
the parameters by block updating them using multivariate jump distribution.

4.2.2 Data assimilation

Data assimilation refers to a set of statistical methods (e.g. Ensemble Kalman Filter, Particle
filter, 4D-VAR, etc.) that use all the available information including data observations in the past
and at present and a priori information in order to improve the knowledge about the future state
of a dynamical system. It takes advantage of the complementary information provided by the
physical model and the data observations, with the objective to provide an estimate with improved
accuracy. It is widely used as operational tools in climate-weather forecasting and has gained a lot
of development in the atmosphere-ocean science community. It has recently been introduced to
solid Earth geophysics such as geomagnetism (Fournier et al. (2007a,b)) and volcanology (Bato
et al. (2017, 2018), Gregg and Pettĳohn (2016), Zhan and Gregg (2017), Zhan et al. (2017)).

Basic concept

The principle of data assimilation consists of an appropriate combination of the model pre-
diction and data observations, based on their error statistics, in order to predict the future state of
the dynamical model. The latter is represented by the model state vector which is composed of a
set of model state variables (i.e. prognostic variables that reveal the state governed by the physical
process) and sometimes a set of model parameter variables (i.e. variables that govern the physical
process). The main idea of data assimilation is thus to update the model state vector over time, in
other words, to gradually correct the trajectory of the model state by data observations in order
that the model would provide reliable short-term and/or long-term predictions of the model state
variables.

Consider a model state vector x, the dynamical model can predict the value of x at instant n
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Figure 4.3 – Posterior pdf of some unknown parameters of a two-chamber magma model of the 2011 post-
eruptive event of the Grímsvötn volcano obtained from GNSS displacement measurements. ad is the radius
of the deep reservoir, Qin is the magma inflow rate at the bottom, Hd is the depth of the deep reservoir, C
is the characteristic of the hydraulic connection with C =

a4c
µHc

where ac is the radius of the conduit, µ is the
viscosity andHc is the height of the hydraulic connection, ∆ρ is the density contrast between the rock and the
magma, ∆Pdt0 is the initial over-pressure of the deep reservoir at time t0. The marginal pdf for each uncertain
parameter is shown in the diagonal histogram plots. The green vertical lines with numbers indicate the best-fit
values of the parameters. The off-diagonal contour plots are the joint kernel-density estimate between pairs
of parameters with their corresponding Pearson correlation coefficients. A p-value close to±1 implies strong
correlation between the parameters (Bato et al. (2018)).
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from the value at the previous instant as expressed in the following model integration equation,

xn =M(xn−1) + qn (4.9)

whereM is the forward model operator which represents the physical process of the phenomenon,
it can be linear or nonlinear. q is the model error which can be due to the choices or limitations
related to the model physics and parameters, including errors associated with assumptions, theory
and conceptualisations within the underlying equations, errors due to the computational grid and
its discretisation, numerical errors related to the time step or numerical methods used to solve the
mathematical equations and errors associated with the model parameters.

To start the model, an initial condition of x, denoted x0, is necessary. In most cases, the
initial condition is obtained from assumptions, measurements or previous studies, thus subject to
uncertainty.

x0 = xt0 + η (4.10)

where xt0 is the true initial condition and η is the error of the initial condition.
The data observations, y, are related to the model state vector through the observation operator,

yn = H(xn) + εn (4.11)

whereH is the observation operator, often supposed to be linear. ε is the observation error due to
either the instrument itself or different perturbations during the data acquisition and noise generated
during the data processing.

In general, the model error, the initial condition error and the observation error are uncorrelated
with each other, thus E[qηiT ] = E[qεT ] = E[ηiεT ] = 0. These errors are also assumed following
a normal distribution in lots of cases for the sake of simplicity.

At each instant, the model error covariance, P , and the observation error covariance, R, are
computed as follows :

P = E[qkq
T
m] (4.12)

R = E[εkε
T
m] (4.13)

with k, m denoting index of model state vector elements or observation vector elements and T
denoting the transpose operator.

Accurate knowledge of the model error covariance and the observation error covariance is
crucial to guarantee the relevance of the assimilation results. However, their quantification is not
always simple in the practice, especially the quantification of the model error because of insufficient
knowledge about the phenomenon under observation.

Ensemble Kalman Filter

Ensemble Kalman Filter (EnKF) constitutes one of the most widely used data assimilation
approach in operational forecasting, thanks to its high performance in dealing with nonlinear
model, high dimensional state vector, etc. (Yan et al. (2014, 2015)). One important feature of EnKF
is the way to construct the model error covariance. It proposes a Monte Carlo approximation of the
model error by means of an ensemble of model state (Evensen (2003)). For this, a large number
of realisations of the uncertain model variables are generated following a prior distribution. These
realizations propagate to a set of model state vector during the forward model integration. In this
way, errors due to uncertain model variables are propagated to the error of the model state vector.
The set of model state vector is called ensemble, hence the name of the EnKF. The number of
the set is called ensemble size and each model state vector in the set is called ensemble member.
The ensemble continues to propagate at each time step of the model integration and represents
the model error by means of a (Gaussian) distribution (Figure 4.4). The mean of the ensemble is
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taken as the mean model state and the covariance of the ensemble corresponds to the model error
covariance. The choice of the ensemble size is a trade-off between a sufficient representation of
the model error and the computational burden. The nominal ensemble size in oceanic applications
is 100. In case of a high dimensional model state vector and limited computational resources, the
solution consists of generating a large ensemble in a first time and then performing a SVD to reduce
the ensemble size without loss of useful information (Yan et al. (2014)).

Figure 4.4 – Simplified illustration of the EnKF. Each line corresponds to an ensemble member and a set of
lines represent a distribution. The blue lines represent the error propagation through free model integration
at the forecast step. The red lines represent the correction by observations with error covariance R (yellow
distribution) at the analysis step. Xt represents the true state (Bato (2018)).

Starting from an initial condition, EnKF performs the forecast step and the analysis step in an
iterative way.

Forecast step The forecast step consists of predicting the model state vector value from its value
at the previous time step and is carried out by the model integration under the control of the model
operator (equation 4.21, Figure 4.4). This step is performed for each ensemble member.

The forecast of the model state is given by the ensemble mean of the forecast, while the forecast
error covariance is given by the covariance of the ensemble as follows :

x̄f =
1

N

N∑
i=1

xfi (4.14)

P f =
1

N − 1
(xf − x̄f )(xf − x̄f )T (4.15)

with f denoting forecast and N the ensemble size.

Analysis step At the analysis step, the model state vector obtained at the forecast step is updated
by the data observations in order to obtain an estimate of the model state with improved accuracy,
namely analysis (Figure 4.4). The relative contribution of the model forecast and the data observa-
tions to the estimation of the analysis is determined based on their error covariance. Large errors
correspond to small contributions. For this, the kalman gain is computed as follows,

K = P fHT (HP fHT +R)−1 (4.16)

For each ensemble member, the model state vector is updated in the following way

xa = xf +K(y −Hxf ) (4.17)
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with a denoting analysis and f denoting forecast.
The analysis of the model state and the analysis error covariance are given by,

x̄a =
1

N

N∑
i=1

xai (4.18)

P a =
1

N − 1
(xa − x̄a)(xa − x̄a)T (4.19)

Indeed, the analysis error covariance can also be deduced from the forecast error covariance,
that is,

P a = P f −KHP f (4.20)

According to equation 4.20, the variance of the analysis is inherently smaller than that of the
forecast, which implies the improvement of the model state vector that should be provided by
data assimilation (even though it cannot be the case sometimes). That is why the specification
of the model error covariance and the observation error covariance should be as accurate as
possible in order that the analysis error covariance represents the reality. Indeed, the problem of
underestimation of the analysis error covariance often occurs in EnKF, due to inappropriate model
error specification. This problem can further result of ensemble collapse, i.e. ensemble members
converge to one single member. A common solution consists of empirically applying an inflation
factor (e.g. in the range of [1.05, 1.1]) to the analysis error covariance at each time step. Afterwards,
the analysis of the model state vector is used as an updated initial condition to restart the forward
model integration in order to produce the forecast for the next time step. In this way, a new iteration
of the forecast step and then the analysis step begins, and so on.

Case study

Data assimilation, in particular EnKF, has been proposed, for the first time in volcanology,
to predict magma chamber over-pressure that is one of the key parameters to infer an impending
effusive eruption, in the Ph.D thesis ofMaryGrace Bato. Very promising results have been obtained
in the study of the inter-eruptive and post-eruptive activities of the Grímsvön volcano located in
Iceland during the period of 2004 - 2016, which confirms the capability of data assimilation in
following up the dynamical volcanic system roots and in near-real-time volcanic forecasting.

Dynamical model The two-chamber magma model proposed in (Reverso et al. (2014)) (Fi-
gure 4.5), which is a simple and generic dynamical model for the magma plumbing system, was
used. This model consists of two reservoirs embedded in an elastic medium and connected by
a hydraulic pipe. The deeper reservoir is assumed to be fed by a constant magma inflow, which
corresponds to the bottom boundary condition of the system. This model is characterized by a set of
geometrical and rheological parameters and solves for the temporal evolution of the magma over-
pressures for the shallow and the deep reservoirs respectively. As shown by Reverso et al. (2014),
this simple model provides a consistent explanation for the temporal evolution of the post-eruptive
displacement measured at Grímsvön volcano after the three last eruptions (1998, 2004 and 2011).

In this model, the values of the over-pressure within the shallow and deep reservoirs, respecti-
vely, ∆Ps and ∆Pd, at a given time, tn+1, are derived from their values at the previous time step,
tn, using the following discrete time step equations,

∆Ps(tn+1)−∆Ps(tn)

tn+1 − tn
=

Ga4
c

8µHca3
s

((ρr − ρm)gHc + ∆Pd(tn)−∆Ps(tn)) (4.21)

∆Pd(tn+1)−∆Pd(tn)

tn+1 − tn
=

G

πa3
d

Qin −
γs
γd

a3
s

a3
d

∆Ps(tn+1)−∆Ps(tn)

tn+1 − tn
(4.22)
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Figure 4.5 – Schematic sketch of the two-chamber magma model. The magma inflow rate at the bottom
reservoir Qin and the radius of the deep reservoir ad are the two parameters considered to be uncertain
in this study. Observations (vertical and horizontal displacements) are recorded at the surface at a given
location S characterized by its distance r from the center of the volcanic system C. Rs =

√
r2 +H2

s and
Rd =

√
r2 +H2

d are distances between S and the respectively (Bato (2018)).

with ac the radius of the conduit, ad the radius of the deep reservoir, as the radius of the shallow
reservoir,Hs andHd the depth of the shallow and deep reservoirs respectively,G the shearmodulus,
µ the viscosity of the magma, ρr the density of the host rock, ρm the density of the magma, g
the gravity, Qin the magma inflow rate in the deep reservoir, γs and γd two scaling factors for
volume-pressure relationship depending on the shape of the reservoir, 1.0 for a Mogi point (sphere)
source and 8(1− υ)/3π for a sill.

Based on the Mogi model, the radial displacement, uR, and the vertical displacement, uz ,
observed at the surface can be expressed as :

uR(t) =
1− ν
G

r(αs
a3
s

R3
s

∆Ps(t) + αd
a3
d

R3
d

∆Pd(t)) (4.23)

uz(t) =
1− ν
G

r(Hsαs
a3
s

R3
s

∆Ps(t) +Hdαd
a3
d

R3
d

∆Pd(t)) (4.24)

where υ is the Poisson’s ratio, αs and αd are two scaling factors for displacement-pressure rela-
tionship depending on the shape of the reservoir, with value of 1.0 for a Mogi point source and
4H2

s /πR
2
s , 4H2

d/πR
2
d respectively for a sill.

Equations 4.23 and 4.24, showing the relationship between the surface displacements and
over-pressures of the shallow and deep reservoirs, provides a link between the data observations
and the model state variables, a key element of data assimilation.
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Ensemble generation According to volcanic expert’s knowledge, in a first approximation, the
model error of the two-chambermagmamodelmainly results from two uncertainmodel parameters,
the magma inflow at the bottom of the system Qin and the radius of the deep reservoir ad. The
ensemble members are thus generated from these two uncertain model parameters in order to
represent as accurately as possible the model error. Gaussian distributions are considered for
these two parameters, because 1) no information about the real distribution is available 2) EnKF
provides optimal results in case of Gaussian distributions.More precisely, two types of distributions
are generated, including, 1) a truncated Gaussian distribution wherein the mean is centered on
the nominal value of the uncertain parameter, namely unbiased case ; 2) a truncated Gaussian
distribution that dose not include the nominal value of the uncertain parameter with the mean
being very far away from the nominal value, namely biased case. Gaussian distributions are
truncated to ensure the physical sens of the parameters. The nominal values of Qin and ad are
obtained from the MCMC inversion (Figure 4.3). The ensemble size is set to 1000. Here, a large
ensemble size is possible, thanks to the small dimension of the model state vector.

Data observations Data observations include essentially displacement time series measured by
GNSS. These displacement measurements are characterized by high temporal sampling (daily) and
low spatial coverage (only one GPS station). InSAR displacement measurements, with high spatial
coverage but relatively low temporal sampling (e.g. 12 days) are not available because of snow
covers over theGrímsvötn volcano.However, InSARdisplacement time series are simulated in order
to highlight the impact of the spatial distribution and the temporal sampling of data observations
on the assimilation performance in case of synthetic simulations. In Figure 4.6, the daily 3D

Figure 4.6 – GPS time series measured at GFUM station from 30 Sep 2004 to 01 Sep 2016. The blue
dots are the actual data. The red broken lines mark the 2004 and 2011 Grímsvötn eruptions as well as
the 2014 major rifting event. The black solid lines are the linear fit to the linear part of each post-eruptive
event. The black broken lines are shown as a reference for the zero-displacement value. The shaded gray
area corresponds to the assumed shift from linear to constant trend around 10 months before the 2014 rifting
event. Note that the vertical component of the time series is not corrected for either glacial isostatic adjustment
(GIA) or seasonal effects. The horizontal component is however, corrected for tectonic trend (Bato (2018)).

surface displacement observed at GFUM station from 30 September 2004 to 1 September 2016 at
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Grímsvötn volcano is shown. The eruption events aremarked by discontinuities. The nominal errors
of these displacement are 1 mm and 10 mm for horizontal and vertical displacements respectively.
Given the symmetry of the volcanic model, one GPS point is sufficient to constrain the model
parameters.

Experiment setup Two cases are considered, 1) state estimation 2) state - parameter estimation.
In the case of state estimation, the state vector includes the over-pressures in the shallow and deep
reservoirs, x = [∆Ps,∆Pd]. Only the evolution of the over-pressures in the shallow and deep
reservoirs is tracked. In the case of state-parameter estimation, besides the over-pressures, the evo-
lution of the magma inflow rate,Qin, is also tracked, the state vector is thus x = [∆Ps,∆Pd, Qin].
Unlike the over-pressures, the magma inflow rate is not directly related to the eruption, but the
follow up of its temporal evolution gives insights into the volcanic system roots, which information
cannot be retrieved by other classical methods such as inversion.

The initial values of over-pressures are set to zero, assuming that both reservoirs had been
fully depressurized by the previous eruption. The initial value of the magma inflow rate is obtained
from the MCMC inversion (Figure 4.3). Data assimilation is performed every day when the GNSS
displacement measurement is available. In synthetic simulations, other assimilation windows, e.g.
12 days, have also been tested to highlight its impact on the assimilation results.

Real data application We have mainly investigated the 2004-2011 inter-eruptive data set, the
2011 post-eruptive data set and 2014-2015 eruptive data set at the Grímsvötn volcano in Iceland
in the Ph.D thesis of Mary Grace Bato.

Figure 4.7 and Figure 4.8 illustrate the results of sequentially assimilating the radial displace-
ment by EnKF in the 2004-2011 inter-eruptive period. Both the over-pressures and the time varying
uncertain parameterQin can be closely followed with data assimilation. For a comparison purpose,
the free run of the model (only model prediction, without data assimilation) is also presented.
Indeed, the free run of the model have already provided satisfactory results for the prediction of
the over-pressures and the radial displacement, because the uncertain model parameters were well
constrained by the MCMC inversion using the initial part of the data set. However, the free run
of the model seems insufficient in predicting the evolution of the magma inflow rate, Qin, which
implies that inversion only cannot be able to track the evolution of the magma inflow rate.

Assuming a statistical distribution of the threshold magma over-pressure leading to reservoir
wall ruptures, the prediction of the over-pressures can be used to estimate the timing of an impeding
eruption. A Gaussian distribution of the failure over-pressure,∆Pf , with the mean value of 44MPa
and the standard deviation (σ) of 11 Pa was considered, based on previous records (Albino et al.
(2010, 2018)), to forecast the rupture of the shallow magma chamber. Several eruption zones have
thus been introduced based on the evolution of the shallow over-pressure, ∆Ps, at each time step,

• No eruption zone, with 0 ≤ ∆Ps ≤ ∆Pf − 2σ

• Sub-critical zone, with ∆Pf − 2σ < ∆Ps ≤ ∆Pf − σ
• Critical zone, with ∆Pf − σ < ∆Ps ≤ ∆Pf

• Super-critical zone, with ∆Ps > ∆Pf

To compute the probability of the rupture, we first assign a failure over-pressure at t = 0 for
each ensemble member, these values are drawn randomly from the Gaussian distribution previously
mentioned and considered as the reference failure over-pressure that remains constant over time.
Then at each time step, the probability of rupture is calculated as the percentage of ensemble
members that exceed the assigned reference failure over-pressure value. Forecasts can be provided
in the form "an eruption might occur within the next Nmax

min days.
According to Figure 4.9, the mean over-pressure that triggered the 2011 eruption is 38.09 MPa.

Before the eruption, all the ensemble members were already in the critical state with a probability
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Figure 4.7 – A) Entire 2004-2011 inter-eruptive radial data set (black) and the resulting data fits by : 1) free
run of the model (green) and 2) data assimilation with EnKF (red). The green dotted box covers the data set
used to estimate the non-evolving uncertain parameters by inversion. B) estimated magma inflow rate, Qin,
as a function of time using : free run (green) and EnKF (red). (C) prior distribution of Qin used for ensemble
generation in the unbiased case. (Bato (2018))

of rupture equal to∼ 24%. With further tests using different values for the non-evolving uncertain
parameters (to avoid the possible dependence of the probability of the rupture on the initially
fixed non-evolving uncertain parameters), we concluded that when 25% ± 1% of the ensemble
exceeded the failure over-pressure, an actual eruption is imminent. Further details about how to
estimate the timing, Nmax

min , can be found in Bato (2018). All the results previously shown, as well
as those not shown here but in Bato (2018), confirm the capability of data assimilation (i.e. EnKF)
in near-real-time forecasting.

The investigation of the 2011 post-eruptive data set until and after the 2014 rifting event is
shown in Figure 4.10. Different from the 2004-2011 inter-eruptive case (Figure 4.7), a decreasing
trend of the magma inflow rate is observed between 2013 and 2014. Data assimilation enabled us
to closely follow this trend. We obtained a minimum rate of 0.007 km3yr−1, which corresponds to
a drop of 0.039 km3yr−1 relative to its prior value.

The analysis of the probability of rupture also showed that just before the 2014 rifting event,
Grímsvötn’s shallow magma reservoir was already at the critical stage of rupturing and could
have erupted in 2015. However, no eruption has occurred, suggesting that a transient event may
have happened and postponed the supposed eruption. This transient event has been evidenced
by the observation of the decreasing of the magma inflow rate mentioned previously, the latter
corresponding to the interplay between the Grímsvötn volcano and the nearby Bárdarbunga volcano
(Bato et al. (2018)). We were able to estimate that the magma inflow beneath Grímsvötn dropped
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Figure 4.8 – Over-pressures of the shallow and deep reservoirs obtained with EnKF (red) in the 2004-2011
inter-eruptive period. The corresponding data fit is illustrated in Figure 4.7. The pink color represents each
ensemble member and the dark red shade is the standard deviation of the ensemble distribution (also called
ensemble spread). It follows that the pink line within the dark red shade is the mean of the ensemble. The
light green colors are the ensemble members of the free run and the darker green shade is the ensemble
spread. The purple broken lines mark the 2011 eruption. (Bato (2018))

up to 85% during the 10 months preceding the initiation of the Bárdarbunga rifting event. The
loss of at least 0.016 km3yr−1 in the magma supply of Grímsvötn is interpreted as a consequence
of magma accumulation beneath Bárdarbunga and subsequent feeding of the Holuhraun eruption
41 km away. This transient event might have postponed Grímsvötn’s supposed eruption in 2015.

The results of the 2011 post-eruptive data set and the 2014-2015 eruptive data set go beyond
volcanic eruption forecasting and showcase the capability of EnKF to track parameters that can
suddenly fluctuate in time and to give insight into the volcanic system roots.

Synthetic simulations The impact of the temporal sampling and spatial distribution has been
investigated through synthetic simulations. The main findings show that both GNSS and InSAR
data sets are able to track the true behaviour of the shallow and deep over-pressures. However,
when it comes to estimating the uncertain model parameters, Qin and ad at the same time, only
the InSAR-type data allow the convergence of to their true values. The challenge remains with
the temporal sampling of InSAR data. InSAR data fail when the assimilation is performed every
12 days (sampling interval of Sentinel-1 data). The advantage of using GNSS data to capture the
behavior of the over-pressures is its high temporal sampling (e.g. daily or even hourly). InSAR data
on the other hand, are less frequent to acquire but provide better spatial coverage and constraints
on the uncertain parameters. In order to exploit the advantages of both data sets, it is recommended
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Figure 4.9 – (A) Evolution of the EnKF-derived shallow over-pressure constrained by the initial part of the
2004-2011 radial displacement data set (i.e. Figure 4.7), embedded on the eruption zones. (B) cumulative
distribution function (CDF) illustrating the failure over-pressure (blue) as well as the over-pressures at the
end of the assimilation (red) and at the end of free run (green). (C) probability of rupture calculated from the
percentage of ensemble members that exceeded the reference failure over-pressure randomly drawn from
the distribution in (D). (E) percentage of ensemble members entering each eruption zone as a function of
time. (Bato (2018))

to jointly assimilate the GNSS-like and InSAR-like data.
The impact of the position of the data observation with respect to the volcano axis has also been

studied. The near field displacement signals are mostly related to the shallow reservoir whereas at
farther distances (i.e. > 16 km and > 10 km for the radial and vertical displacements, respectively),
the displacement signals become dominated by the deep reservoir. Given this, we can infer that
far-field data can bring more information about the deep reservoir but note also that going farther
away from the volcano axis, the signal-to-noise ratio weakens. Therefore, careful attention should
be paid when assimilating far field data to distinguish between deep reservoir activities and noise
presented in the data.

The impact of the prior distribution of uncertain model parameters used for ensemble genera-
tion, i.e. the previously mentioned unbiased and biased cases, on the prediction of the shallow and
deep over-pressures, as well as the uncertain model parameters is small, as long as the assimilation
duration is sufficiently long and data observations are sufficiently accurate. In the biased case, the
assimilation results succeed in converging to the true values after a while along the assimilation
period, even though large fluctuations are observed at the beginning of the assimilation. However,
notice that the over-pressure in the deep reservoir is more likely to be affected by a poorly specified
prior distribution of uncertain model parameters. If this happens, the prediction of the vertical
displacement is also biased and the bias is more pronounced going farther away from the volcano
axis.
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Figure 4.10 – A) Entire 2011 post-eruptive data set (black) and the resulting data fits by : 1) free run of the
model (green), 2) MCMC inversion (blue), and 3) data assimilation with EnKF (red). The green dotted box
covers the data set used to estimate the non-evolving uncertain parameters. B) estimated magma inflow rate,
Qin, as a function of time using : free run (green), EnKF (red) and MCMC (blue). Note that the gray and black
broken lines (Figure 4.10 A and B) correspond to the points where a decreasing trend in Qin, tracked with
EnKF, are observed. C) prior distribution ofQin used for free run, data assimilation and inversion (Bato et al.
(2018)).

4.2.3 Discussions

Inversion estimates geophysical parameters in static contexts (i.e. the estimated geophysical
parameters do not evolve in time), while data assimilation can do the geophysical parameters
estimation job in dynamical contexts. Data assimilation thus outperforms inversion in following
up time-varying geophysical parameters. Inversion works with prior distributions of unknown
geophysical parameters (uniform distribution in case of no information) and data observations.
Data assimilation requires initial conditions of model parameters, prior distributions of uncertainty
model parameters and data observations. Taking aside the specific research objective and constraints
of the static or dynamical context, practically, we use inversion when the geophysical parameters
of interest are unknown and data assimilation when the geophysical parameters of interest are
uncertain. Using inversion to estimate initial conditions for data assimilation as done in Bato et al.
(2018) represents an excellent idea.

Not explicitly stressed in section 4.2.2, Bayesian inference also constitutes the foundation of data
assimilation. Both stochastic data assimilation methods (e.g. EnKF, Particle Filter) and variational
data assimilationmethods (e.g. 4D-var) are based on theBayesian formulation given in equation 4.3.
In EnKF, Gaussian distributions are assumed for error statistics. At each analysis step, both the
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prior pdf and likelihood are Gaussian (equation 4.5), the most likely model parameters are obtained
by maximising the posterior pdf by solving an optimization problem. The optimal estimator, known
also as the best linear unbiased estimator (BLUE), gives the solutions in equations 4.16, 4.17 and
4.20. Therefore, inversion and data assimilation are closely connected : EnKF performs inversion
in a sequential way.

Despite the widespread applications and remarkable achievement in geophysical parameters
estimation and prediction, model-driven inversion and assimilation approaches exhibit some short-
comings : 1) Overly simplistic solutions are frequently adopted in geophysical modelling, in
particular in case of limited understanding of the underlying physical processes. Moreover, the
quantification of the model error is tremendously difficult, even impossible. 2) The overwhelming
amount of computing resources of Bayesian inversion quickly goes beyond any feasible real time
potential, in particular in case of large (spatial and temporal) scale imaging applications. 3) Partial
observations that do not cover the full model parameter space are available in lots of cases. Remind
that InSAR and offset tracking provide displacement measurements with a temporal sampling
of several days while GNSS provides displacement measurements over isolated points. There is
not yet satellite cancellation that comes up with both high spatial and temporal sampling rate.
4) Difficulty exists in specifying an appropriate prior distribution of model parameters, because
accurate prior knowledge is not always available. Poorly specified prior distributions can play an
important role in the reliability of the final results. 5) The solutions, including prior distribution
and regularisation designing, are often case dependent, thus have no extensive universality and
suitability in general. For all these reasons, data driven approaches presented in the following
section can provide important alternative solutions.

4.3 Data driven approaches

The recent advent of neural networks based machine learning paradigms enables the develop-
ment of new solutions to tackle the previous shortcomings of model-driven inversion and prediction
problems.

In contrast to physical model based approaches, neural networks based methods are highlighted
by the following features : 1) the use of generic models but adapted to specific problems through
automatic learning against training data. 2) free from prior knowledge about the phenomenon
under observation and statistical hypotheses made on model parameters and/or data observations.
Nevertheless, neural networks can also take prior knowledge into account as network structural
constraints and regularization terms. 3) capable of finding non-linearity in the solution that we were
unaware of in the theory and hidden regularities in the data that we have overlooked. 4) capable
of dealing with data/model complexity such as high dimension, implicit relationship between data
and model parameters, partial knowledge on physics.

For example, in Laloy et al. (2018), GANs have been incorporated into a MCMC approach
in an hydrological inversion to overcome the difficulty in choosing an appropriate prior and
to reduce the expensive computational effort. In this work, GANs have been used to define a
low dimensional representation of the original high dimensional data. Following this, the model
parameters research space was much reduced. In this way, the inversion by MCMC could be
performed within a low-dimensional space, thanks to which, the efficiency of the MCMC inversion
has been significantly improved. In Laloy et al. (2019), the same authors further improved the
computational cost by replacing the MCMC by gradient-based deterministic methods (e.g. quasi-
Newton gradient descent and Gauss-Newton). In Mosser et al. (2018), GANs have been deployed
to formulate the seismic forward and inverse processes with synthetic simulations. In Jacquemont
et al. (2021), deep multitask learning is used for inverse problems in astrophysics for gamma ray
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parameters estimation. RNN relying on LSTM cells have been deployed to predict earthquake
trends and structural seismic response from historical data in Vardaan et al. (2019), Zhang et al.
(2019). CNNs, as well as hybrid CNN-LSTM, have been used with success for climate predictions
(e.g. precipitation forecast, hurricane forecast, etc.) (Giffard-Roisin et al. (2020), Shi et al. (2015)).
Note further that, in physical model based inversion, a first set of key model parameters that
control the data observation are identified beforehand often based on previous studies or experts’
experience. The main role of inversion is thus to determine model parameters values and there
is no need to identify key model parameters in inversion. Therefore, in case of unidentified
key model parameters, semi-blind or blind inversion becomes impossible. With the advance of
neural networks, it is possible to solve a model parameters disentanglement problem (i.e. key
model parameters identification) by unsupervised learning (Locatello et al. (2019)). This is really
important for geophysical targets for which not much work has been realised for diverse reasons.

All these neural networks based proof-of-concept studies highlight the interest of neural net-
works based methods compared to the traditional physics based methods and open new perspective
for geophysical parameters inversion and prediction with SAR displacement time series where
large amounts of spatial and time-varying data are available but no neural networks based methods
have so far been published.

4.4 Conclusion & perspectives

Inversion constitutes the unique solution to get insights into the subsurface geological structures
that induce the displacement observed at the Earth’s surface.Model driven inversionmethodologies
have been developed since a very long time in geophysical community and have been firmly
established nowadays. Advanced but standard inversion methods such as Bayesian inversion, have
widely been used as routine methods in numerous studies of earthquakes, volcanoes, etc. Actually,
the advance of geophysical modeling constitutes a key factor that potentially limits the further
development of model driven inversion methodologies.

Data assimilation can also be considered as the unique solution for near-real-time forecasting
of key geophysical parameters that are strongly related to natural hazards and for getting insights
into the non-observed subsurface dynamical system roots. Recently proposed to volcanology (Bato
et al. (2017, 2018)) and to glaciology (Gillet-Chaulet et al. (2016)), data assimilation still has large
development prospect in these two domains, as well as in operational monitoring of landslides,
slow slip events, etc., for which vast stream of displacement time series is available. Achievement
of methodological development in data assimilation in the atmosphere-ocean community is worthy
of fully exploiting in order to be beneficial to operational displacement estimation and natural
hazard prediction. In the Ph.D thesis of Mary Grace Bato, we confirmed the capability of data
assimilation (i.e. EnKF) to predict the probability of a volcano to erupt, based on the tracking of
the over-pressures in the magma chambers. Then, the new question is when and where the magma
arrives at the Earth’s surface, given the rupture of a magma chamber. To answer this question,
another Ph.D thesis is being set up, with the objective to predict the location and timing of eruptive
vents induced by magmatic intrusion propagation by means of Partical Filter.

Besides further investigation of data assimilation, I’m also interested in neural networks based
data driven approaches for inversion and prediction problems. To tackle inversion and prediction
issues by means of neural networks will complement significantly the common physics based
approaches and enlarge undoubtedly the scientific insights in the geophysical community.Moreover,
this meets entirely the actual opportunity and also challenge for huge and regular SAR satellite
data exploitation and opens new perspectives for neural networks based data-driven methods in
SAR satellite data exploitation. This work constitutes a work package in my ANR young researcher
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project. Collaborations with colleagues specializing in deep learning will be started in order to
propose novel recursive neural networks models with both linear and nonlinear functionalities,
adapted to the SAR displacement data specificity (i.e. spatial and time varying data), by combining
GAN and LSTM (or alternatives such as causal convolutional networks) for physical parameters
inversion and prediction problems. Prior physical knowledge (e.g. model parameter value range,
covariance structure, etc.) will be incorporated into the neural networks in order to enhance the
learning process and to improve the interpretability (be able to predict what is going to happen,
given a change in input or algorithmic parameters) and explainability (be able to explain the internal
mechanics of a neural networks system). A particular effort will be made on the understanding of
the neural network functioning in order to ensure the accountability and then the actionability of
the results for operational use. The ultimate objective consists of the synergistic exploitation of
both model driven and data driven approaches.
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Conclusions & perspectives

In this report, I summarizedmy researchworks aroundSAR image exploitation for displacement
measurement and geophysical parameters estimation, as well as related state-of-the-art works, in
line with four research directions organised according to four different scientific objectives :
displacement estimation from SAR image time series, missing data imputation in SAR/optical
displacement time series, displacement time series analysis and geophysical parameters estimation
and prediction.

Past, ongoing and futureworks in each research direction have been discussed. For displacement
measurement from SAR images, my interest lies in the multi-temporal InSAR approaches.With the
past experience of applications and a thorough study of the state-of-the-art multi-temporal InSAR
approaches, I decided to propose new approaches to respond to operationalmonitoring requirement.
A recursive and robust multi-temporal InSAR approach, able to integrate SAR images in a gradual
way and take the non Gaussian data statistics into account, is being established in the Ph.D thesis
of Viet Hoa Vu Phan, in collaboration with colleagues specializing in statistical signal processing,
in particular in robust and recursive covariance matrix estimation. For missing data imputation in
SAR/optical displacement time series, two approaches, namely EM-EOF and extended EM-EOF,
based on EOF decomposition of the temporal and spatio-temporal covariance of displacement
time series in an EM scheme have been proposed in the Ph.D thesis of Alexandre Hippert-Ferrer.
Indeed, the missing data problem in SAR displacement time series was addressed for the first time
in the Ph.D thesis of Alexandre. Missing data issues being trivial, plays an important role in the
reliability and completeness of displacement measurements. The perspective of the EM-EOF and
extended EM-EOF approaches corresponds to parametric approaches that aim to estimate first-
order and/or second-order statistical parameters of the distribution that describe the data directly
from incomplete data observations in an EM scheme. The interest of parametric approaches lies
not only in the capacity of dealing with any data distribution independent of applications, but also
in the possibility of recursive implementations (i.e. recursive estimation of covariance matrix) that
opens perspectives for operational processing. For displacement time series analysis, I presented
data-driven and statistical model driven approaches for displacement measurement fusion with the
objective to provide a consistent and easily interpretable displacement time series, for displacement
signal separation from other perturbations and for automatic displacement signal detection from
large data sets such as global volcano monitoring. An on-going Ph.D thesis is focused on the offset
tracking displacement measurements fusion to improve the reliability and completeness. Given
the background of the Ph.D student (geology/geophysics), the standard least-square inversion has
been chosen as the baseline method and efforts are made to deal with remaining open issues
such as data weighting, choice of temporal baselines, multi-sensor displacement measurements
fusion, etc. For geophysical parameters estimation and prediction, model driven inversion and
data assimilation methodologies have been introduced. Works carried out in the Ph.D thesis of
Mary Grace Bato, being pioneering works deploying data assimilation in volcanology, have been
presented. Perspectives to further exploit data assimilation for volcanic hazard prediction and
to tackle the problem of geophysical parameters estimation and prediction by means of neural
networks based approaches have been discussed. A synergistic deployment of both model driven
and data driven inversion and prediction methodologies constitutes the future work that I want to
develop in the coming years.
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Thanks to my multidisciplinary experience, my research activities spread over a large spectrum
of subjects. Certainly, my multidisciplinary experience is beneficial from the point of view that
it allows me to acquire skills in different research fields, somehow enlarges my research vision
and makes it possible to jointly exploit advances in different scientific areas to solve the problem
of interest. However, the drawback of this multidisciplinary experience is also obvious, that is,
I’m not an expert in any research direction. Therefore, I do not intend to diversify my research
works any more. On one hand, my efforts are made to keep the methodological consistency in my
future research works. For instance, for the development of a recursive and robust multi-temporal
InSAR approach and the development of parametric approaches for missing data imputation, the
common key methodology behind consists of recursive and robust estimation of the covariance
matrix. The only difference lies in the data type and the inherent structure of the covariance matrix.
In case of the multi-temporal InSAR approach, we deal with complex valued SAR images and the
inherent structure of the covariance of SAR image time series is strongly related to the temporal
decorrelating property, but can be expressed by a Kronecker product in a general way. In case of
missing data imputation, we handle real valued displacement time series and the inherent structure
of the covariance of displacement time series is often low rank. Displacement time series analysis in
particular displacement measurements fusion, inversion and data assimilation can also be grouped
together according to the common methodology : synergistic deployment of data and (statistical
and/or physical) model. In my opinion, there are very few or even no pure data driven approaches in
fact. To my knowledge, most state-of-the-art data driven approaches are based on statistical and/or
mathematical models, a hidden model that describes the process or phenomenon under observation
being retrieved based on data observations. Neural networks based approaches, the most likely pure
data driven approaches, are indeed based on a large number of mathematical models. The common
key elements of all data and model fusion methodologies include the weight of each contribution
and the optimization strategy to resolve an estimation problem. On the other hand, mes efforts
are made to jointly deploy my previous, ongoing and future works in the aforementioned four
research directions to promote operational monitoring of natural hazards by means of SAR images.
Indeed, each of the four research directions constitutes a processing step in a natural hazard
monitoring chain : estimate displacement measurements from SAR image time series, improve
the completeness of the previously obtained displacement measurements, analyze displacement
measurements to extract consistent and reliable displacement information, estimate and predict
the key geophysical parameters related to natural hazards from previously improved displacement
measurements. Of course, my contribution will only be one of the efforts towards operational
monitoring of natural hazards. There is still a long way to go for both operational monitoring of
natural hazards and my scientific carrier.
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Vers la surveillance opérationnelle de la
déformation de la Terre et la prévision
des risques naturels

Towards operational monitoring of Earth
deformation and prediction of natural ha-
zards

Résumé

Mon activité de recherche se développe autour de l’imagerie SAR (Synthetic Aper-
ture Radar), mais couvre un spectre large des sujets allant de l’exploitation des
images SAR pour la mesure de déplacement à la surface de la Terre jusqu’à l’es-
timation des paramètres géophysiques qui caractérisent la source en profondeur
du déplacement observé en surface. Je m’intéresse à la fois aux développements
méthodologiques, notamment ceux pour mieux exploiter la masse de données SAR
disponibles, et aux applications des méthodes aux objets d’intérêt géophysiques
telles que les séismes, les volcans, les subsidences en milieux urbains et les gla-
ciers alpins. Dans ce rapport, je présente de manière synthétique mes travaux de
recherche menés ces dernières années essentiellement à travers des stages et
thèses que j’ai co-encadrés ou co-encadre ; je présente également l’état de l’art
permettant un positionnement approprié de mes travaux, ainsi que les perspectives
de mon activité de recherche. Ces travaux seront présentés suivant quatre axes
de recherche organisés selon quatre objectifs scientifiques différents : l’estimation
du déplacement à partir de séries temporelles d’images SAR, la reconstruction des
données manquantes dans les séries temporelles de déplacement SAR/optique,
l’analyse des séries temporelles de mesure de déplacement, et l’estimation et la
prédiction des paramètres géophysiques.

Mots-clés : SAR, multi-temporal InSAR, mesure de déplacement, série tem-
porelle, inversion, assimilation de données

Abstract

My research activities have been developed around Synthetic Aperture Radar (SAR)
imagery, but cover a wide spectrum of subjects starting from the exploitation of SAR
images for displacement measurement at the Earth’s surface until the estimation
of geophysical parameters which characterize the subsurface geological structures
that induce the displacement observed at the surface. I am interested in both metho-
dological developments, especially those to better exploit the mass of available SAR
data, and applications of the methods to targets of geophysical interest such as ear-
thquakes, volcanoes, subsidence in urban environments and alpine glaciers. In this
report, I give a summary of my research works carried out in recent years, mainly
through Master internships and Ph.D theses that I co-supervised or co-supervise. I
also introduce the related state-of-the-art works, as well as the perspectives of my
research activities. These works will be presented in line with four research axes
organized according to four different scientific objectives : estimation of the displa-
cement from time series of SAR images, reconstruction of the missing data in the
time series of SAR/optical displacement, analysis of the time series of displacement
measurement and estimation and prediction of geophysical parameters.

Keywords : SAR, multi-temporal InSAR, displacement measurement, time
series, inversion, data assimilation
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