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Introduction

The material presented in this manuscript summarizes results obtained for two
problems of gravitational dynamical systems. The first one, presented in a

first part entitled “The First Law of Mechanics in General Relativity”, aims at ex-
ploring and extending an important variational equation in the context of relativistic
mechanics. A second part, entitled “Isochrone Orbits in Newtonian Gravity”, aims
at solving a problem of mathematical physics motivated by astrophysical considera-
tions, in the Newtonian (non-relativistic) context. Although both topics are rather
independent, they do share one common, central feature, symmetry, which will be
the guiding principle throughout this manuscript.

The First Law of Mechanics in General Relativity
Einstein’s theory of General Relativity has never been more alive. As I am writing
these lines in 2021, it seems that every two years in the last decade has seen an
unprecedented, astonishing breakthrough in relativistic astrophysics or cosmology.
In 2013, the unprecedentedly accurate heat map of the early Universe was gathered
by the Planck satellite. In 2015, the first direct detection of gravitational waves,
emitted by a black hole binary, was made by LIGO’s two giant interferometers. In
2017, the coalescence of two neutron stars was simultaneously observed by a hun-
dred telescopes in the electromagnetic spectrum and three different gravitational
wave detectors. In 2019, the first direct picture of a supermassive black hole’s accre-
tion disk was released by the Event Horizon Telescope network. These revolutionary
steps in the everlasting quest for knowledge would not have been possible without
our modern understanding of the theory of General Relativity.

In particular, these discoveries regarding gravitational waves are the result of decades
of theoretical and practical effort to build, not only the detectors, but also an effec-
tive method to extract, from their output, gravitational wave signals. In this context,
a fundamental feature has been the ability to accurately model these gravitational
waves from various types of sources. A number of methods have been devised and
used conjointly to solve the Einstein equation, the fundamental equation of General
Relativity, in order to extract from its intrinsic nonlinearities the shape and form
of gravitational waves signals emitted by binary systems of compact objects. These
objects, typically black holes and neutron stars, were for a long time among the
most promising sources of gravitational waves. Since 2015, they have fulfilled this
promise: around fifty binary systems of compact objects have been observed directly
through the detection of gravitational waves.

xiii



xiv INTRODUCTION

Although they rely on different assumptions, the domains of applicability of all
these theoretical frameworks overlap, and are becoming wider with time. It is fun-
damental to understand the interplay between them, and to compare their outputs.
To perform these comparisons, one key ingredient has been the so-called “first law
of mechanics”. This equation, which relates various physical quantities of interest
characterizing a system of compact objects, gets its name from an analogy with the
first law of thermodynamics. In General Relativity, this “first law” was first derived
in the 1970s for isolated black holes. Since then, it has been generalized to numer-
ous, more complicated systems, including compact object binaries. In spite of the
different gravitational systems they describe, the various forms that the first law
embodies are strikingly similar, and their simplicity, given the nonlinear intricacies
of General Relativity, is rather remarkable.

The first part of this thesis is dedicated to an exploration of the First Law of Me-
chanics, and its generalization for binary systems of extended compact objects on
circular orbits. The six chapters contain the following material:

• In Chap. 1, we present a historical summary of the century preceding the
advent of gravitational wave astronomy, from Einstein’s original publications
on General Relativity to the most recent gravitational wave detections to date.
This chapter contains a lot of historical references and pedagogical illustrations
of key concepts of gravitational wave physics.

• The content of Chap. 2 is a thorough discussion on the model used to describe
compact objects and derive their relativistic equations of motion. In a nutshell,
this model replaces extended compact objects by point particles endowed with
a finite number of characteristics (mass, spin, etc). First, in Secs. 2.1 and 2.2
we present an overview of the different approximation schemes this multipolar-
point-particle model comes from. Then, in Sec. 2.3 we summarize the output
results from this model that shall be used in subsequent chapters.

• In Chap. 3, we explore the notion of circular orbit as enforced by the existence
of a helical Killing vector field. In particular, Sec. 3.1 contains a discussion on
this circular hypothesis, Sec. 3.2 contains two key results about the behavior
of multipolar particles in helically symmetric spacetimes, and Sec. 3.3 explores
their geometrical consequences for spinning particles.

• Chapter 4 is dedicated to the first law of mechanics. The first two sections
contain an overview of the different forms of various first laws found in the
literature (Sec. 4.1), while Sec. 4.2 focuses on their applications, illustrating
how these laws are used in practice. Lastly, Sec. 4.3 contains the derivation
of a central identity, the first law of mechanics for arbitrary matter fields in
helically symmetric spacetimes.

• In Chap. 5, we combine all the ingredients of the previous three chapters to
derive the first law of mechanics for multipolar particles at dipolar order. This
derivation is detailed in Sec. 5.1, which contains the most general formulation
of this law. Then, in Secs. 5.1 and Sec. 5.3, we explore some consequences of
this law and provide alternative formulations of it.
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• Lastly, Chap. 6 contains the integral formulation of the first law of mechanics
at quadrupolar order, taking into account finite size effects of the body de-
scribed by the particle. First, in Sec. 6.1 we discuss two sources of finite-size
effects, namely spin-induced and tidally-induced quadrupoles. Then, the in-
tegral law is derived in Sec. 6.2 for an arbitrary quadrupole model, applied to
our spin/tidal case and shown to coincide with that found in the literature in
the dipolar limit. Lastly, Sec. 6.3 presents the anticipated result of the first
law at quadrupolar order.

⋄

Isochrone Orbits In Newtonian Gravity
In the late 1950’s, the French astronomer and astrophysicist Michel Hénon proposed
a very simple model describing a peculiar gravitational system known as a globu-
lar cluster. Although his motivations were purely practical, unknowingly, Michel
Hénon provided, in his seminal paper on the topic, the seed for a very rich and
beautiful problem of mathematical physics: the (celestial) isochrone problem. The
question that one tries to answer is the following: in classical gravity, are there any
spherically-symmetric, gravitational potentials that generate bounded orbits with a
radial period independent of one of the constants of motion? The answer to this
question is yes. For example, in a harmonic potential, the radial period is inde-
pendent of any constant of motion. A less trivial example is the classical two-body
problem, in which the radial period only depends on the conserved mechanical en-
ergy of the system, and not on its conserved angular momentum.

Remarkably, Michel Hénon found a third potential with this property. The problem
then remained untouched for decades, as Hénon and the community was satisfied
enough with his findings on the one hand, and because it was not obvious that
Hénon’s question could be turned into a mathematical physics problem with much
richer answers. Only in the late 2010s did this problem re-emerge, as it was explored
by Alicia Simon-Petit, Jérôme Perez and Guillaume Duval. Hénon’s isochrone prob-
lem turned out to be much richer than expected, and another family of isochrone
potentials was found.

The second part of this thesis is dedicated to a thorough exploration of the isochrone
problem in celestial mechanics. The four chapters contain the following material:

• In Chap. 7, we give an historical overview of the most well-known notion of
isochrony in physics: the (near-)isochrony of the pendulum. In particular,
we revisit Huygens’ remarkable work of the isochrone, cycloid pendulum in
Sec. 7.1, giving valuable insight for the solution of the celestial isochrone prob-
lem. Then, in Sec. 7.2 we provide some necessary preliminaries, as well as the
astrophysical context that motivated Hénon’s work, and a precise statement
of the problem to be solved (Sec. 7.3).
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• The content of Chap. 8 is a geometrical solution to the isochrone problem.
By extending Hénon’s original method, we are able to make a one-to-one
correspondence between isochrone potentials and parabolae in the plane, using
a characterization of parabolae due to Archimedes (Sec. 8.2). We then classify
the complete set of isochrone potentials into five distinct families in Sec. 8.3.

• In Chap. 9, we use our classification of isochrone potentials to study the dy-
namics of test particles within them. In particular, in Sec. 9.1, we show that
all isochrone potentials satisfy Kepler’s third law for the period and a similar
one for the apsidal angle. Then, in Sec. 9.2, we solve the equations of motion
in a parametric form, using but geometrical constructions with parabolae.
Isochrone orbits are then depicted and classified in Sec. 9.3, allowing for a
comparison of our analytical results to a direct numerical integration of the
equations of motion.

• Lastly, in Chap. 10 we revisit the isochrone problem from the point of view
of Hamiltonian mechanics. This analysis completely solves the problem using
a well-adapted set of angle-action coordinates (Sec. 10.1). We show, in par-
ticular, that all isochrone orbits satisfy a generalization of Kepler’s equation.
Then, applying to the problem the powerful machinery of Birkhoff normal
forms in Sec. 10.2, we derive in a self-consistent way a number of central
isochrone results in Sec. 10.3, and show how they are elegantly encoded into
the Birkhoff invariants of the associated isochrone Hamiltonian.

⋄

The Abel-Ruffini theorem
On an unrelated matter, the reader will also find in Appendix D a new, geometric,
group-theory-free proof of the Abel-Ruffini theorem, which states that the general
solution to an algebraic equation of degree five or more cannot be written using
radicals, that is, using its coefficients and arithmetic operations +, −, ×, ÷, and

√
.

This proof is based on ideas of Vladimir Arnold, and only requires knowledge on
complex numbers, whereas traditional, textbook proofs rely on advanced mathe-
matics. It is completely self-contained and has the advantage of giving some insight
as to why closed-form formulae exist for equations of degree four or less (and how
they are constructed), and why they do not for degree five or more.
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How to read this manuscript
The work presented in the first part of this manuscript is based on an (ongoing),
three-part series of papers that, ultimately, aim at deriving the first law of mechanics
at quadrupolar order for a circular binary system of compact objects. This program
was subdivided into a derivation of key necessary, geometrical results (Paper I),
a derivation of the master variational identity and application to dipolar particles
(Paper II), and the derivation of the first law at quadrupolar order (Paper III). We
chose, in order to present this work, not to include into the manuscript these arti-
cles in their entirety, after an introductory paragraph. Rather, we followed a more
traditional way, dispersing our work (and thus the papers’ content) throughout a
structured, and more logical sequence. This leads to a subdivision into six chapters,
and the reading logic is depicted on the top part in Fig. 1. The color-coding in this
figure is such that, after an introductory chapter (Chap. 1), the content of Paper I
is in blue (Chap. 3), Paper II in red (Chaps. 2, 4 and 5) and Paper III in orange
(Chap. 6). Note however that a number of results presented in the latter are still
preliminary, due to ongoing calculations at quadrupolar order.

Regarding the second part of the manuscript, the problem at hand was to explore
and solve as thoroughly as possible the isochrone problem bequeathed by Michel
Hénon. This was done in a two-part series of papers, where we first elaborated on
previous works in order to complete the classification of isochrone potentials, derive
a purely geometrical proof of the isochrone theorem and solve the equations of mo-
tion (Paper I). Then, we revisited the problem from a Hamiltonian point of view,
providing an ultimate, self-consistent solution to Hénon’s isochrone problem and
revealing the profound symmetries of isochrone mechanics (Paper II). Like the first
part of the manuscript, all these results are dispersed to follow the logic presented
on the lower part in Fig. 1. After an introductory chapter (Chap. 7), the same
color-coding applies: the content of Paper I is in blue (Chaps. 8 and 9), and that of
Paper II is in red (Chap. 10).

Material presented in this manuscript has been published or submitted in peer-
reviewed journals. For the First Law of Mechanics, Paper I has been published
in Quantum and Classical Gravity [1], Paper II contains the material presented
in Chaps. 4 and 5 and is in a final stage, and Paper III is still in preparation.
Regarding Isochrony, Paper I has been published in the journal Celestial Mechanics
and Dynamical Astronomy [2], and Paper II has been accepted for publication in
the Journal of Mathematical Physics [3]. Finally, the Paper on the Abel-Ruffini
theorem has been accepted for publication in The American Mathematical Monthly
(a preprint can be found in [4]).
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Notations

Differential geometry
As is customary with differential geometry in GR, we specify our conventions. They
follow those of Wald [5]: the metric signature is (−, +, +, +), the Riemann tensor
𝑅𝑎𝑏𝑐𝑑 satisfies 2∇[𝑎∇𝑏]𝜔𝑐 = 𝑅 𝑑

𝑎𝑏𝑐 𝜔𝑑 for any 1-form 𝜔𝑎, and the Ricci tensor is
defined by 𝑅𝑎𝑏 ≡ 𝑅 𝑐

𝑎𝑐𝑏 . Except in rare, mentioned cases, in the first part of this
manuscript we always use geometric units, such that 𝐺 = 𝑐 = 1.

Tensorial indices
For tensor indices, we always use abstract indices using letters (𝑎, 𝑏, 𝑐, … ) from the
beginning of the Latin alphabet. Other types of indices include the following:

• Greek letters (𝛼, 𝛽, 𝛾, … ) vary in {0, 1, 2, 3} and denote spacetime components
of tensor in a given basis,

• letters (𝑖, 𝑗, 𝑘, … ) from the middle of the Latin alphabet denote internal Lorenz
indices, (for example an orthonormal triad is denoted (𝑒𝐴

𝑖 ), with 𝑖∈{1, 2, 3}),

• capital Latin letters (𝐴, 𝐵, 𝐶, …) from the beginning of the Latin alphabet are
mere indexing labels varying between 0 and 4,

• capital Latin letters (𝐾, 𝐿, 𝑀, … ) from the middle of the alphabet denote
multi-indices of length 𝑘, ℓ, 𝑚, … ,

• the Roman font subscript i ∈ {1, 2} labels the two components of a binary
system,

• index-free, boldface symbols denote differential forms, as in 𝐗 = 𝑋𝑎1⋯𝑎𝑝
,

• the covariant derivative ∇ is always the Levi-Civita, metric compatible one,
and the classical abuse of notation (∇𝜔)𝑎𝑏 = ∇𝑎𝜔𝑏 is used throughout,

• the Lie-derivative along an arbitrary vector field 𝜉𝑎 is denoted ℒ𝜉,

• the exterior derivative of a 𝑝-form 𝐗 is denoted d𝐗 = (d𝑋)𝑎1⋯𝑎𝑝+1
,

• subscripts that encode an information of a quantity (e.g., ΞBH or 𝐽𝑎𝑏𝑐𝑑
spin ) are

sometimes denoted with sans-serif font and should not be confounded with
indices.

xix
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Miscellaneous
The symbol ≡ is used when the quantity on the right defines the quantity on the
left. We sometimes use index-free notation when there is no ambiguity. For example,
the dependence of the Einstein tensor on a metric may be written 𝐺𝑎𝑏[𝑔] instead
of 𝐺𝑎𝑏[𝑔𝑏𝑐], or the parametrization of a curve 𝑥 = 𝑧(𝜆) instead of 𝑥𝛼 = 𝑧𝛼(𝜆) with
𝛼 ∈ {1; 4}. All these should be obvious from the context.

Acronyms
We gather here the most frequently used acronyms:

• GR: General Relativity

• PN: Post-Newtonian

• SF: Self-Force

• SEM: Stress-Energy-Momentum

• GW: Gravitational Wave

• EM: Electro-Magnetic

• BH: Black Hole

• SMBH: Super-Massive Black Hole

• NS: Neutron Star

• EMRI: Extreme Mass Ratio Inspiral

• IMRI: Intermediate Mass Ratio Inspiral

• LIGO: Laser Interferometer Gravitational wave Observatory

• KAGRA: KAmioka GRAvitational wave detector

• LISA: Laser Interferometer Space Antenna

• HKV: Helical Killing Vector

• ODE: Ordinary Differential Equation

• PDE: Partial Differential Equation

• MPTD: Mathisson-Papapetrou-Tulczyjew-Dixon

• GKF: Generalized Killing Vector Fields

• BNF: Birkhoff Normal Form
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Symbols used in Part I
The following table gathers symbols used frequently in Part I of the manuscript,
covering Chap. 1 through Chap. 6), and the dedicated conclusion, in Sec. 10.3.3.

Symbol Description Definition
Sets

ℰ spacetime manifold
𝒱 4-volume in ℰ
𝒮 3-hypersurface in ℰ
𝒰 2-surface in ℰ
γ particle worldline

𝑥, 𝑥′ points in ℰ
𝑧, 𝑧′ points on γ

Geometry
𝑔𝑎𝑏 metric tensor
∇𝑎 covariant derivative

𝜀𝑎𝑏𝑐𝑑 canonical volume form
𝑅𝑎𝑏𝑐𝑑 Riemann curvature tensor
𝐸𝑎𝑏 (gravito-)electric part of 𝑅𝑎𝑏𝑐𝑑 (6.5)
𝐵𝑎𝑏 (gravito-)magnetic part of 𝑅𝑎𝑏𝑐𝑑 (6.5)

Particle
𝜏 proper time

𝑢𝑎, �̇�𝑎 4-velocity, 4-acceleration
𝑝𝑎, 𝑆𝑎𝑏 4-momentum, spin tensor
𝑆𝑎, 𝐷𝑎 spin vector, mass dipole (2.63)
𝐽𝑎𝑏𝑐𝑑 quadrupole tensor
𝑇 𝑎𝑏 stress-energy-momentum tensor
ℎ𝑎𝑏 projector orthogonal to 𝑢𝑎 (2.62)
𝛿4 invariant Dirac distribution (A.17)

Multipoles
𝒯 𝑎𝑏𝑐1⋯𝑐ℓ 2ℓ-pole of 𝑇 𝑎𝑏 (Ansatz) (3.16)
𝒯 𝑎𝑏𝑐1⋯𝑐ℓ 2ℓ-pole of 𝑇 𝑎𝑏 (normal form) (3.17)

̃𝒯 𝑎𝑏𝑐1⋯𝑐ℓ geodesic extension of 𝒯 𝑎𝑏𝑐1⋯𝑐ℓ (3.19)
ℒ 𝑎𝑏𝑐1⋯𝑐ℓ Lie-derivative of ̃𝒯 𝑎𝑏𝑐1⋯𝑐ℓ along 𝑘𝑎 (3.19)

Isometry
𝜉𝑎 generic Killing vector
ℒ𝜉 Lie derivative along 𝜉𝑎 (A.20)
𝑘𝑎 helical Killing vector (3.7)
𝑧 redshift parameter (3.32)

Table 1: List of frequently used symbols in Part I of the manuscript.
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Symbols used in Part II
The following table gathers symbols used frequently in Part I of the manuscript,
covering Chap. 7 through Chap. 10), and the dedicated conclusion, in Sec. 10.3.3.

Symbol Description Definition
Classical

mechanics
(𝑟, 𝜃) polar coordinates (orbital plane)
𝜓(𝑟) radial potential (7.15)

𝜉 (mechanical) specific energy (7.16)
Λ specific angular momentum (7.17)
𝐽 radial action (7.22)
𝑇 radial period (7.20)
Θ apsidal angle (7.21)

𝑟𝐴, 𝑟𝑃 apoastron, periastron p. 187
Isochrone
potentials

𝑥 = 2𝑟2 Hénon variable (8.3)
𝑌 (𝑥) potential in Hénon’s variable (8.3)

(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) parabola parameters (8.27)
𝛿 parabola discriminant (8.27)

(𝜖, 𝜆, 𝜔, 𝜇, 𝛽) potential parameters (Greek) Sec. 8.3.2
𝑥𝑣 abscissa of vertical tangent (8.31)

Isochrone
orbits

𝐸 eccentric anomaly (10.18)
𝜖 eccentricity (10.19b)
𝛼 semi-major axis (10.22)

Ω = 2𝜋/𝑇 angular frequency (10.17)
Hamiltonian

mechanics
𝐻 Hamiltonian

(𝐽, Λ) action variables p. 244
𝑁(𝐽) Birkhoff normal form (10.33)

𝔟𝑖 Birkhoff invariant (10.54)

Table 2: List of frequently used symbols in Part II of the manuscript.
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Gravitational astronomy

Proper separation oscillation between two freely falling bodies could
be used in principle to detect the passage of a gravitational wave, as
monitored by laser interferometry. However, such detectors have so

low a sensitivity that they are of little experimental interest.
C. MISNER, K. THORNE AND A. WHEELER,

Gravitation (1973)

⋄

Galileo’s first celestial observations in 1609, using the freshly invented refracting
telescope, can be rightfully called the birth of electromagnetic astronomy. His

observations, among which new stars, the Moon’s mountains and Jupiter’s four
biggest natural satellites, were published on 13 March 1610 in a short astronomical
treatise, Sidereus Nuncius. Four-hundred and five years later, at 09:50:45 UTC on
September the 14th, a new type of astronomy was born. The coalescence of two black
holes emitted around 3 Solar masses worth of gravitational radiation and provided
the first direct detection of a gravitational wave, whose existence was predicted in
1916 by Albert Einstein, as a consequence of his general theory of relativity. The
work presented in the first part of this thesis is placed in this context of gravitational
astronomy. The aim of this first chapter is to provide some background and context
about the field. We will start, in Sec. 1.1, by a brief historical account on Einstein’s
general theory of relativity. Then, in Sec. 1.2, the focus will be on the theory of
gravitational waves. Lastly, in Sec. 1.3 we will discuss what the direct detection of
these waves has brought to science since 2015, and the exciting future that awaits.
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1.1. EINSTEINIAN GRAVITATION 5

1.1 Einsteinian gravitation
Like every major scientific revolution, the advent of the theory of General Relativity
is one of the most remarkable achievement in the history of mankind. What led
Albert Einstein to the discovery/invention1 of his theory is a fascinating story, details
of which are still being discussed and debated by science historians today. I have
found myself very often baffled by the the ingenuity of Einstein and the serendipitous
nature of his quest. Before going into details that are much more easily conveyed
by equations in the following sections, I would like to start this journey with a brief,
succinct summary of this remarkable piece of scientific history: the backstory of
General Relativity.

1.1.1 Backstory
The advent of the theory of special relativity at the beginning of the nineteenth
century marks the dawn of a new chapter in Natural Sciences, that of modern
physics [6,7]. On the one hand, special relativity would provide the four-dimensional
spacetime structure on which quantum mechanics would be based, and eventually
account for three of the four fundamental interactions. On the other hand, special
relativity would be generalized in a far richer theory called general relativity (GR),
providing the most accurate description of the fourth interaction, gravity. Remark-
ably enough, only one man can be associated to each of these three fundamental,
theoretical constructions. This man is Albert Einstein. While his name resonates
with that of Planck, Heisenberg and Schrodinger for the foundations of quantum
mechanics, and with Poincaré, Lorentz and Minkowski for special relativity, the de-
velopment of GR can be largely attributed to Einstein alone, albeit for small but
crucial interactions with his friend Marcel Grossmann. Traditionally, it is said that it
took eight years of intense thinking and work for Einstein to construct his theory [8].
The beginning of Einstein’s quest is set somewhere in the summer of 1907 while he
was in Bern, and its completion on May 11 1916, when the first final, mistake free
review of GR was published. Today, historians and scientists have accomplished a
remarkable work in trying to understand how Einstein constructed, piece by piece,
this remarkably simple and elegant theory of space, time and gravitation. These
eight years of intense work can be split into three rather distinct phases [9]:

• the implications of the equivalence hypothesis in 1907,

• the use of Riemannian geometry to encode gravitation in 1912,

• the search for covariant field equations in 1915.

The following brief account on the genesis of GR is mostly based on Einstein’s
almost-autobiography [10], the two biographies [11, 12], the following historical ref-
erences [8, 13–17] and Einstein’s numerous publications. The large majority of his

1We shall skip over the eternal debate of whether scientific facts are discovered, invented, or
both, and let the reader decide for himself.
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original scientific work, as well as English translations, can all be found on the Dig-
ital Einstein Papers web page [18], provided by the Princeton University as part of
the Einstein Papers Projects [19].

Equivalence hypothesis

Although Einstein’s will to “generalise” the special theory of relativity2 was mo-
tivated by numerous reasons, two of them seem to stand out. On the one hand,
Newton’s Universal Law of Gravitation was a two century old, perfectly well-tested
and verified theory of gravitation3. However, its instantaneous, action-at-a-distance
nature was clearly contradictory to the principles of SR. On the other hand, Einstein
was not satisfied with the idea that, just as in Galilean relativity, a particular set
of reference frames seemed to stand out of SR: the non-accelerated, inertial frames
of reference. Gravitation and acceleration. Two words that resonate as two sides of
the same coin today, but which were on Einstein’s mind already in 1907 and would
have to wait eight years to be unified geometrically in the context of GR.

The Equivalence Hypothesis (EH), nowadays called the Equivalence principle,
was first introduced by Einstein himself in 1907 (see in particular the paragraph 17
in Einstein’s account [20] on the principle(s) of relativity). At that time, Einstein
had found4 a job as a patent examiner at the Swiss Patent Office, in Bern. There,
after lunch, he had the habit of doing what he called “semi-awaken naps”, an ac-
tivity consisting in letting his body at rest but otherwise virtually “physically feel”
situations he would put himself in [13]. Einstein performed these “Gedankenexperi-
mente” (thought experiments) quite often and they were of prime importance while
developing his ideas on special relativity [16].

The patent office’s Gedankenexperiment consisted in reinterpreting Galileo’s law
of free fall in two frames of references: one free-falling with a man and his hand tools
from a building’s roof, and one at rest with the building. As Galileo proved two
centuries before, both the man and his hand tools would fall at the same rate.
Einstein then realized that the unfortunate roofer may as well consider himself at
rest, for all his tools would remain at hand’s reach during the fall. With this thought,
Einstein realized that no local experiment could be able to distinguish between a
reference frame free-falling in an homogeneous gravitational field, and one that is
uniformly accelerated. This equivalence between a static, homogeneous gravitational
field and a uniformly accelerated frame of reference, suggested to transpose any
gravity-related fact into a geometrical-dependent one.

Metric tensor

Until 1911, Einstein, who was now a Physics Professor at the German University of
Prague, did not published a lot on the “problem of gravity” as he calls it. He was

2Interestingly, Einstein mostly uses the phrasing General Theory of Relativity instead of the
now common GR, thinking of the relativity theory as general, rather than relativity itself.

3Except for Mercury’s perihelion advance, which we will get back to shortly.
4Thanks to the father of his friend Marcel Grossmann [15], who we will encounter again soon.
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rather occupied with various topics in (what would later become) statistical physics
and quantum mechanics [12]. In the mean time, people started to look into the con-
sequences of the new theory of special relativity on Newtonian gravitation. Notable
works and insight were provided by M. Abraham, G. Nordström and M. van Laue
on the topic, with various attempts to construct a relativistic version of the Poisson
equation (therefore opting for a scalar gravitational field). These theories were all
successful in deriving covariant field equations that reduced to Newtonian gravity,
but lacked the (rather important) ability to predict correctly light deflection and
periastron advance (cf. historical notes in [21]).

Einstein got back to the gravitation problem in 1911. By examining the new
status of non-inertial forces (Coriolis and centrifugal) in the light of the equivalence
principle, and examining the role of a varying-speed of light theory to encode the
gravitational field, Einstein became convinced to quit the realm of flat, affine geom-
etry, be it Euclidean or Minkowskian. In particular, he realized sometime around
August 1912 that it was necessary to consider the more general notion of differ-
entiable manifold. Fearing that his mathematical skills would not be enough to
understand this new5 geometry, he asked for help to his good friend and mathe-
matician Marcel Grossmann. The two accomplices ventured together into the realm
of Riemannian geometry, or, in this case, Lorentzian geometry. Grossmann guided
Einstein to the recent literature on differentiable manifolds and showed him how
they are akin to the use of curved coordinates in affine spaces (like in SR), which
Einstein knew. This part of Einstein’s quest for a theory of gravity was the most
intense, mentally and physically, as he said himself [10]. The reward for this intense
and abstract interlude was the conviction that a relativistic theory of gravity would
necessarily be geometrical, and the gravitational field of tensorial nature.

Covariant field equations

Einstein and Grossmann built the field equation from the Riemann curvature tensor
first. They arrived at a first equation, of the form 𝑅𝑎𝑏 = 𝜅𝑇𝑎𝑏, which was rapidly
discarded as it was not able to recover Newton’s law of gravitation in the weak-
field, slow-speed limit. After some refinement, the closest thing they could get to
a covariant theory with the proper Newtonian limit was crystallized in an “Outline
of a Generalized Theory of Relativity and of a Theory of Gravitation” published
in 1913 [27]. This work contains many traits that GR would inherit a few years
later, among which, a mathematical introduction of tensor calculus, the use of the
metric tensor to encode the gravitational field, and field equations (but not fully
covariant and incorrect). Together, these three features came to be known as the
“Entwurf” theory (Entwurf is German for “Outline”) and would later be the basis
on which Einstein would work to develop the final form of GR (notably the correct
field equations). This theory was mature enough in Einstein ’s mind that he wrote
a synthetic review of it in 1914 [28], using for the first time the qualifier “general”

5At the time, differential geometry was still new, following the founding works of Bernhard
Riemann [22] and Felix Klein’s Erlangen program [23] in Germany, as well as the great school of
Italian geometers, where Luigi Bianchi [24] and then Tullio Levi-Civita [25] played a central role.
I refer to Chap. 7 of the interesting book [26] for more historical details.
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(and not “generalised”) for the new principles of relativity it contained.

The Entwurf theory was wrong. Yes, it had the correct Newtonian limit, but
it predicted the incorrect value of Mercury’s perihelion advance, and Einstein knew
this from the beginning. Yet, having found nothing better, for months after the pub-
lication of the Entwurf theory he would not hesitate to take the (incorrect) conse-
quences of his theory as features that would be “expected” from a relativistic theory
of gravitation, hence the infamous “hole argument” to justify the non-covariance of
the field equation [9]. In 1914, errors in the covariance proof of the Entwurf field
equations were reported by others. Adding to this the fact that the special relativity
spacetime in rotating coordinates was found to contradict the new field equations,
Einstein abandoned the Entwurf theory and began looking for new (correct and fully
covariant) field equations.

Reading the first review of 1914 [28] on his general theory of relativity and the
four successive papers of November 19156 reveals an interesting quirk. It is almost
like Einstein is explaining in each publication how the previous one was wrong and
how he is trying to convince the reader that he is on the right track. His issue was to
find an equation that was at once correct (reproducing well-known results) and fully
covariant (not restricted to a class of coordinates). But these two problems had to
be solved simultaneously, for the correct equation would readily be fully covariant.
The key was to include a new term in the equation. Einstein did not account for
this term until late 1915, even though Grossmann already hinted that it could be
the solution to achieve covariance, two years earlier. In Einstein’s defense, this term
vanishes in many cases, including the case of electromagnetic sources. In any case,
we find on the first page of the last November paper [32]:

I now quite recently found that one can get away without this hypothesis about the
energy tensor of matter merely by inserting it into the field equations in a slightly

different way,

the hypothesis in question being, essentially, that matter behaves like electromag-
netic fields. With this last improvement, the search for a relativistic theory of gravity
was finally over, and GR was officially born. The final form of field equations were
published on page 1 and 2, right after Einstein’s comment. They are depicted in
Fig. 1.1, directly extracted from Einstein’s publication.

1.1.2 Einstein’s equation
After various unsuccessful attempts to find the correct equation for his general theory
of relativity, the exact field equations are finally published on December 2nd of 1915
(see Fig. 1.1). Today, they are collectively known as the Einstein (field) equation,
and it is customary to write it slightly differently than its initial formulation. It
reads

𝐺𝑎𝑏 + Λ𝑔𝑎𝑏 = 𝜅𝑇𝑎𝑏 , (1.1)
6Those papers were submitted on the 4th [29], 11th [30], 18th [31] and 25th [32], each Thursday

of every week !
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Figure 1.1: The first appearance of the Einstein equation, published on December 2nd 1915 [32].
Equation (a) is the vacuum field equation (𝐺𝑖𝑚 stands for the Ricci tensor, not the Einstein
tensor), and equation (2a) includes the SEM tensor for non-vacuum spacetimes. The minus sign
in front of the Einstein constant (𝜒 here) comes from the metric signature (+, +, +, −) used by
Einstein.

where Λ and 𝜅 are two fundamental constants, 𝐺𝑎𝑏 depends explicitly on the met-
ric tensor 𝑔𝑎𝑏 which, in turn, contains all information about the geometry of some
region of spacetime ℰ , and 𝑇𝑎𝑏 is a tensor encoding all (non-quantum) properties of
the matter and/or energy content in ℰ . In physical terms, we cannot do much bet-
ter than Archibald Wheeler’s famous words to explain what Eq. (1.1) truly means:
spacetime grips mass, telling it how to move, mass grips spacetime, telling it how
to curve.7 Indeed, the left-hand side of (1.1) contains all the information on the
curvature of spacetime, while the right-hand side encodes the physical characteris-
tics about the mass (and energy) distribution in this region of spacetime. Equation
(1.1) is one of the two fundamental postulates of GR, the second being that space-
time ℰ is well-described by a four-dimensional, torsion-free, Lorentzian manifold
(ℰ , 𝑔𝑎𝑏), whose metric 𝑔𝑎𝑏 is the fundamental object, and main unknown of (1.1).
The Einstein equation is either postulated as such or derived from an equivalent
action postulate formulation8.

The constants

Equation (1.1) is the most general form of Einstein’s equation that satisfies all
defining principles of GR. In particular, it includes two fundamental constants: 𝜅
and Λ. The constant 𝜅 is called Einstein’s constant and can be expressed in terms of
other fundamental constants of physics by examining the low-velocity and weak-field
limit of (1.1). In SI units, it is given in terms of Newton’s gravitational constant 𝐺
and the vacuum speed of light 𝑐 as

𝜅 ≡ 8𝜋𝐺
𝑐4 ⇒ 𝜅 ≃ 10−43 m−2

J/m3 , (1.2)

7This is the actual original phrasing, found on page xi of [33].
8This action is called the Einstein-Hilbert action, because of its independent discovery by

mathematician David Hilbert one month prior to Einstein’s final publication [34].
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elegantly expressing the fact that GR is a geometric (8𝜋) and relativistic (𝑐) theory
of gravitation (𝐺). The astronomically (!) small value of the coupling constant 𝜅
implies that a gigantic amount of energy density (in units of J/m3) is necessary
to produce noticeable spacetime curvature (in units of m−2). This explains at once
why GR was discovered much later than Newtonian gravitation, and why, regarding
applications, GR is only required for either extreme precision (e.g., GPS tracking at
the nanosecond level or Mercury’s tiny perihelion advance) or when looking at ex-
treme astrophysical phenomena (e.g., black holes or the expansion of the Universe).

The other constant, Λ, is called the cosmological constant. It was manually
added by Einstein in 1917 [35], in order to get a static solution of the equations
obtained when applying GR to the Universe as a whole. After Edwin Hubble’s
demonstration that the Universe is expanding, in the 1930’s Einstein discarded this
constant “with a flicker of his pen” [36]. The cosmological constant the re-appeared
in the nineties, as a natural explanation for the freshly observed accelerated expan-
sion of the Universe. In any case, since the low-velocity, weak-field limit of (1.1)
(i.e., Newton’s Law of Universal Gravitation), has been perfectly well-tested on Solar
system scales without Λ, a strong upper bound exists on it, of order 10−42 m−2 [37].
It is therefore safe to neglect the effect of the term Λ𝑔𝑎𝑏 in the Einstein equation
while working on astrophysics, and we shall do so for the remaining of this work.

Curvature

The left-hand side of Einstein’s equation (1.1) has, a priori, nothing to do with
physics, It can be written purely in terms of the metric tensor 𝑔𝑎𝑏 of the underlying 4-
dimensional manifold representing spacetime, through the Riemann curvature tensor
𝑅𝑎𝑏𝑐𝑑 and its contractions 𝑅𝑎𝑏 ≡ 𝑔𝑐𝑑𝑅𝑎𝑐𝑏𝑑 (the Ricci tensor) and 𝑅 ≡ 𝑔𝑎𝑏𝑅𝑎𝑏 (the
Ricci scalar), as

𝐺𝑎𝑏 ≡ 𝑅𝑎𝑏 − 1
2𝑅𝑔𝑎𝑏 . (1.3)

The tensor 𝐺𝑎𝑏 is called the Einstein tensor, and is nothing but the trace-reversal of
the Ricci tensor9. In particular, whenever 𝑇𝑎𝑏 = 0, the Einstein equation shows that,
necessarily, 𝑅𝑎𝑏 = 0. Physically, vacuum spacetimes are thus described by Ricci-flat
manifolds. The Einstein tensor is the object of a remarkable unicity theorem for
GR, proved in its strongest form by David Lovelock in 197210. Let (ℰ , 𝑔𝑎𝑏) be a
four-dimensional spacetime ℰ with metric 𝑔𝑎𝑏. Then [39] any tensor that is (1)
divergence-free and (2) constructed from the metric and its derivatives up to second
order, is necessarily a linear combination of the Einstein tensor and the metric
tensor. As all fundamental equations in physics have at most a second-derivative
dependence, it can be said that the Einstein equation is the simplest yet unique field
equation of relativistic gravity on a four-dimensional spacetime.

9The equivalence between Einstein’s way of writing his equation in Fig. 1.1 and Eq. (1.1) comes
from this remark, and from the different use of units for 𝑇𝑎𝑏 (see [38] for an excellent account on
the dimensional analysis of tensors in GR)

10This unicity theorem is sometimes attributed to Veirmeil, Cartan and/or Weyl, who wrote
on the matter fifty years before Lovelock. For the reader’s interest, we provide in App. A.1 a brief
summary and references for the contributions of these men.
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Matter

On the right-hand side of (1.1) lies the stress-energy-momentum (SEM) tensor 𝑇𝑎𝑏.
In general, it depends on both the metric and the matter fields at play in spacetime.
Physically, in some observer’s frame represented by a local vector tetrad (𝑢𝑎, 𝑒𝑎

𝑖 ),
with 𝑢𝑎 that observer’s four-velocity and the triad (𝑒𝑎

𝑖 ) spanning its local rest space,
the components of 𝑇𝑎𝑏 correspond to

• the energy density 𝑇00 ≡ 𝑇𝑎𝑏𝑢𝑎𝑢𝑏 ,

• the 𝑖-th component of the momentum density vector 𝑇0𝑖 ≡ 𝑇𝑎𝑏𝑒𝑎
𝑖 𝑢𝑏 ,

• the 𝑖𝑗-th component of the stress tensor 𝑇𝑖𝑗 ≡ 𝑇𝑎𝑏𝑒𝑎
𝑖 𝑒𝑏

𝑗 ,

In general relativity, the SEM tensor is necessarily symmetric11, implying that the
momentum density vector 𝑇0𝑖 = 𝑇𝑎𝑏𝑒𝑎

𝑖 𝑢𝑏 coincides with the energy flux vector
𝑇𝑖0 = 𝑇𝑎𝑏𝑢𝑎𝑒𝑏

𝑖 . This extends the mass-energy equivalence 𝐸 = 𝑚𝑐2 of SR [21], and
was Einstein’s way of thinking about the equivalence principle “relativistically” [41].
As sources, the stresses 𝑇𝑖𝑗 are typically weaker (by a factor of 𝑐−1) than the momen-
tum density 𝑇0𝑖, which is itself weaker than the energy density 𝑇00. In particular,
at the lowest order of approximation in 𝑐−1, only the mass density 𝜖 ≃ 𝜌𝑐2 sources
the Einstein equation, which simply reduces to the Poisson equation of Newtonian
physics. The explicit form of the SEM tensor depends on the type of matter/energy
being described. Typical examples imply that of a perfect fluid (4.13) or the elec-
tromagnetic field (4.17). A given SEM tensor can be either postulated, or derived
from a Lagrangian. We provide some examples in Chaps. 2 and 3.

Motion in GR

Unlike other classical field equations (e.g., electrodynamics), the Einstein equation is
nonlinear and strongly couples each components of the metric with the matter fields.
However, in most cases it does not require the addition of an equation of motion for
these fields. Indeed, the Bianchi identity ∇𝑎𝐺𝑎𝑏 = 0, which holds irrespective of the
Einstein equation and comes from pure geometry [42], readily implies with (1.1)

∇𝑎𝑇 𝑎𝑏 = 0 . (1.4)

Mathematically, since the expression of 𝑇 𝑎𝑏 usually includes both the metric and
the field’s properties, (1.4) comes as an integrability condition of the Einstein
equation. Physically, it is the manifestation of local conservation of stress-energy-
momentum12. That the equation of motion directly follows from pure geometry is
one of the most elegant features of GR. For a given metric 𝑔𝑎𝑏, Eq. (1.4) is a PDE
for the matter fields. In general, it is not sufficient to determine completely their
evolution. However, for sufficiently small and/or simple objects, (1.4) completely

11This comes from the assumption that the manifold representing the spacetime has no torsion.
When this assumption is relaxed, one works in the Einstein-Cartan theory, a perfectly reasonable
extension of GR that naturally provides some insight about the dark issues of cosmology [40].

12Except for the energy of the gravitational field itself, which, contrary to Newtonian gravity,
becomes ill-defined in GR [5].
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determines the motion of the source. For example, it turns into a geodesic equation
for nonspining point masses, and into Maxwell’s equations for the electromagnetic
field. However, for extended objects or perfect fluids, (1.4) will not be enough. One
needs to add some kind of equation of state (or results from microphysics in general)
to close the PDE system. The motion of extended bodies will be our main point of
interest in this part of the thesis, and will be thoroughly discussed in Chap. 2.

1.1.3 Solutions and tests
The Einstein equation is notoriously complicated. In a given coordinate system, it is
equivalent to a system of ten13 nonlinear, coupled, second-order, partial differential
equations, whose unknowns are the components of the metric tensor 𝑔𝛼𝛽, and pos-
sibly unspecified features of the matter fields. Finding exact solutions remains, to
this day, an incredibly difficult exercise, and has become a whole field of research in
itself [43]. Throughout the years, a remarkably small number of solutions have been
found, thanks either to symmetries (e.g., black hole metrics or cosmological space-
times) or by constructing perturbations of these exact solutions (e.g., gravitational
waves or post-Newtonian spacetimes). In these cases, the symmetries or the per-
turbative regime allows the nonlinearity of Einstein’s equation to be tamed [44,45],
but whenever a system is highly dynamical and presents strong gravitational fields
(for example the merging of two black holes), numerical methods must be used.
Yet, almost all of GR’s experimental verification come from analytical predictions.
Here, we give an overview of the main steps that made GR one of the most (if not
the most) well-tested scientific theory. For more than a hundred years now, GR
has passed all these tests and remains to this day the most accurate description of
space, time and gravity.

Classical tests

The classical tests of GR refer to the gravitational redshift of light, the bending of
light as it passes in a gravitational field and the advance of Mercury’s perihelion.
These three tests were the first effects that could be experimentally verified and
would favor GR over SR or Newtonian gravitation. Einstein himself discussed dif-
ferent applications of his theory. For example, we find in the last paragraph of his
1916 review on the foundations of GR [46]:

• Therefore, a clock goes slowly when it is placed in the neighborhood of ponder-
able masses. It follows from this that the spectral lines in the light coming to
us from the surfaces of big stars should appear shifted towards the red end of
the spectrum.

• with reference to the co-ordinate system, the rays of light must appear curved
[…]. A ray of light just grazing the Sun would suffer a bending of 1,7” whereas
one coming by Jupiter would have a deviation of about 0,02”.

13Although at most six of them are independent, thanks to the Bianchi identity ∇𝑎𝐺𝑎𝑏 = 0.
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• The Ellipse of Planetary motion suffers a slow rotation in the direction of
motion […] The calculation gives for the planet Mercury, a rotation of path of
amount 43” per century, corresponding sufficiently to what has been found by
astronomers.

Like its SR analogue (Doppler redshift), gravitational-induced time dilation
could, in principle, be measured through the frequency shift of light emitted by a
source in a gravitational potential. Einstein’s prediction of the gravitational redshift
can already be found in his 1907 article [20] discussing the relativity principle(s).
Remarkably, the sole inspection of careful light-measurements between two inertial
observers in SR readily shows, that under the Equivalence hypothesis, the metric
cannot be Minkowskian [47]. In particular, gravitational redshift holds for any rel-
ativistic theory of gravity and is not intrinsic to GR. The first direct experimental
evidence for it did not came from “big stars” as Einstein hoped, but from the tiniest
light emitters: individual atoms. In the sixties, with the advent of nuclear emission
lines of radioactive isotopes, the first experiment was led by Robert Pound and Glen
Rebka in 1960 [48], showing consistency with GR at the 10% level, improved five
year later at 1% [49] (see [21] for subsequent experiments). Very recently, two re-
markable measurements of the gravitational redshift from starlight have been made,
both compatible with GR. One from the light of the star S2, which regularly visit
the close, strong-field neighborhood of Sgr A⋆ (the supermassive black hole at the
center of the Milky way) [50]; and another one [51] directly from the Sun, made by
observing... the Moon !

The bending of light (or light deflection, or gravitational lensing) when interpret-
ing Newton’s laws strictly, does not exist in Newtonian mechanics, as light carriers
(photons) have no mass. However it was suggested long before the advent of GR
that the path of photons could be influenced by the presence of a gravitational
field [52, 53]. All this required somewhat of an interpretation of Newton’s laws of
motion and light’s propagation theory. In 1911, Einstein proposed [54] a revision
of his analysis of 1907 [20] regarding the propagation of light in curved spacetime,
emphasizing the fact that it could very well be tested by observations. What’s more,
the value predicted by GR and the “Newtonian” theory were different by a factor
of two, allowing one to distinguish between the two for observations with enough
precision. Expeditions were led throughout the world to test this prediction during
a total Solar eclipse, as this allowed the location of stars surrounding the Sun to
become temporarily visible thanks to the Moon’s shielding. Most of these expedi-
tions would prove unsuccessful, due to bad weather or the advent of World War
I [55]. However, the total Solar eclipse of May 29th 1919, seen from the Principe
Island off the west coast of Africa, allowed British astronomers Arthur Eddington
and Frank Dyson to discriminate GR from Newtonian gravity, by a reasonable level
of accuracy. The results were published in 1920 [56] and, although still containing
significant experimental errors, were in favor of Einstein’s theory. Two years later,
a similar eclipse experiment was conducted by a team lead by William Campbell
and Robert Trumpler in two Australian observatories14. The results, depicted on

14There seems to be a mistake in the original article’s title: the eclipse was on 21 September,
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the left, in Fig. 1.2, showed remarkable accuracy and validated once and for all the
predicted value of GR [57]. After a century at the disposal of astronomers (see the
review [58]), gravitational lensing has led to remarkable astronomical images and
discoveries, a beautiful example being given on the right in Fig. 1.2. It is not a
simple test of GR anymore, but one of the most important tools used on a regular
basis in astrophysics [59] and cosmology [60].

Figure 1.2: Left: figure showing the displacement of the location of stars around the Sun during
the 1922 eclipse. Source: extracted from the original article [61]. Right: an example of modern
day gravitational lensing images. The figure depicts distorted images of far-away galaxies, located
beyond the galaxy cluster Abell 370. The lensing produces multiple copies of the same background
galaxies and stretched images thereof (see figure 6 in [62], or [63], for details). Source: Visible and
IR composite image taken by the Hubble Space Telescope [64].

Perhaps the most important test GR had to pass was the explanation of an
anomaly in Mercury’s motion, namely the observed advance of its perihelion as
compared to the theoretical value. In 1840, under the impulse of Louis Arago at the
Paris Observatory, Urbain Le Verrier conducted a ten-years long, thorough analysis
of the celestial motion of Mercury, both theoretically (using Newton’s laws) and
observationally (with an impressive review of all available observations at the time).
Published in 1959 [65], Le Verrier’s results showed that the value of Mercury’s per-
ihelion advance could not be completely accounted for by Newtonian mechanics,
even with apparent (Earth’s rotation, equinox precession) or direct (other planets
pull, flattening of the Sun) biases. Le Verrier proposed, in vain, to apply the onto-
logical solution that led him to the discovery of Uranus a few years earlier in order
to explain Mercury’s anomaly. The new planet, named Vulcan (Vulcain, in French),
whose orbit must have been within Mercury’s, was never found, although Le Ver-
rier’s fame had already convinced academic representatives to include Vulcan on
celestial maps, as depicted in Fig. 1.3. The end of the story is well-known: it would
be a legislative solution that would at once explain the correct value of Mercury’s
perihelion precession, and sign the birth act of GR. As Le Verrier puts it himself [66]

1922 and not 1923, as can be checked on https://eclipse.gsfc.nasa.gov/. See also this beautiful
article by writer and photo editor Anika Burgess for the story behind the 1922 eclipse experiment.

https://eclipse.gsfc.nasa.gov/
https://www.atlasobscura.com/articles/the-1922-eclipse-expedition-to-remote-western-australia
https://www.atlasobscura.com/articles/the-1922-eclipse-expedition-to-remote-western-australia
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“L’altération des lois de la gravitation serait une dernière ressource à laquelle il ne
pourrait être permis d’avoir recours qu’après avoir épuisé l’examen des autres

causes, qu’après les avoir reconnues impuissantes à produire les effets observés”,

essentially saying that, to Le Verrier, changing the law of gravitation would be but
the last solution to Mercury’s perihelion advance. Knowing that Einstein’s quest
for the correct field equation was partly influenced by his will to find the correct
precession value from his new theory [67], one cannot help but wonder how this
whole story would have changed if our Solar system had not had a planet this close
to the Sun... Today, the relativistic perihelion precession has been compared to GR
predictions at the 10−5 level for some bodies of the Solar system [68].

Figure 1.3: A celestial map (lithography) presented to students and academics in American univer-
sities. It already contains the planet Vulcan, located between Mercury and the Sun. Interestingly,
Neptune, of which Le Verrier actually predicted the existence, is not on the map. Yet, this map
represents an unsolved mystery for historians of physics. We encourage the reader to examine it
carefully (in particular the rectangular insert) to understand why. Source: Library of Congress
website.

Astrometry

The classical tests above can be classified as post-Newtonian tests, because they are
but small modifications of otherwise well-known Newtonian results. There exists
numerous other such slight differences between Newtonian gravity and GR, or any
other competing relativistic theory of gravity. A particularly convenient way of
distinguishing between all of them is the so-called Parametrized Post-Newtonian
(PPN) formalism [69,70]. In this framework, theories of gravity are expanded in the
weak-field limit, and compared to one another by examining the coefficients of said
expansion. The coefficients together define a set of PPN parameters that may take
different values depending on the theory. As an illustration, the two most important
parameters, 𝛾 and 𝛽15, appear in the PPN expression of the laws of light deflection

15They measure how much space-curvature is produced by unit rest mass and how much “non-
linearity” there is in the superposition law for gravity, respectively [71].

https://www.loc.gov/resource/g3180.ct003790?r=-0.493,-0.046,1.816,1.127,0
https://www.loc.gov/resource/g3180.ct003790?r=-0.493,-0.046,1.816,1.127,0
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(of a lightray grazing the Sun) and periastron advance (of Mercury) laws [71]:

𝛿𝜙 = 4𝐺𝑀⊙
𝑐2𝑅⊙

1 + 𝛾
2 and 𝛿𝜔 = 6𝜋𝐺𝑀⊙

𝑐2𝑎(1 − 𝑒2)
2 + 2𝛾 − 𝛽

3 , (1.5)

where 𝑀⊙, 𝑅⊙ are the Sun’s mass and radius, and 𝑎, 𝑒 are Mercury’s orbit semi-
major axis and eccentricity. In GR, (𝛾, 𝛽) = (1, 1), so that (1.5) coincides with
the values derived by Einstein in 1916 [46]. Although the PPN parameters are
constrained by many other observables, the most precise values for 𝛾, 𝛽 come from
light-bending and perihelion precession measurements, thanks to two spacecrafts,
one sent to observe Jupiter (Cassini mission [72] for 𝛾) and the other Mercury
(Messenger mission [73] for 𝛽). The values agree with GR value at the 10−5 level.
Many other measurements have reported constraints on the PPN parameters, all
of which agree with GR’s predictions. Although most of them are obtained using
Solar system experiments (see Chap. 8 of [74] for a recent review), measurements at
the galactic and cosmological scale have been made too. Clifford Will’s review [75]
on GR tests remains the unavoidable reference about GR tests and experimental
checks.

Black holes and neutron stars

Although the idea of a “body with such gravity that not even light could escape
from it” was already on the minds of eighteenth century scientists [76], black holes
(BHs) only became astrophysical objects decades after the advent of GR, as the
physical counterpart of peculiar mathematical solutions to the Einstein equations.
The first chapter of this story starts with the first (non-flat) exact solution to the
Einstein equation, derived in 1916 by Karl Schwarzschild while he was serving on
the Russian front in the German army (see Jean Eisenstadt’s review article on
Schwarzschild’s solution [77]). In his two articles [78, 79], Schwarzschild’s primary
goal was twofold: derive an exact solution to the full nonlinear Einstein equation (for
the first time), and show that Einstein’s derivation of Mercury’s perihelion advance
could be recovered exactly from this result. Upon knowledge of this discovery,
Einstein wrote to Schwarzshild:

I have read your paper with the utmost interest. I had not expected that one could
formulate the exact solution of the problem in such a simple way. I liked very much

your mathematical treatment of the subject.

Here, Einstein makes reference to the elegant symmetry arguments used by
Schwarzshild to derive the eponymous metric: he assumes that the metric is static,
spherically symmetric and Ricci-flat (vacuum solution). In particular, it can describe
a black hole if there is no matter at all or the exterior of a spherically symmetric
and static star. Around the same time, Johannes Droste derived independently
the same result [80, 81], along with the solution of the equations of motion in the
Schwarzshild spacetime in terms of the Weierstrass elliptic function ℘.16 At the end

16Since the polar equation of motion of Schwarzshild geodesics involves the Weierstrass elliptic
function [81], exact and analytical formulae for the light deflection 𝛿𝜙 and perihelion advance 𝛿𝜔
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of the 1930’s, it was known that both white dwarfs and neutron stars had a maxi-
mum mass, beyond which the gas of electron (or neutrons, respectively) would not
be able to counteract the star’s weight, leading to instability. These considerations
culminated in 1939 with a groundbreaking paper by Robert Oppenheimer and his
student Hartland Snyder [83] wherein they showed explicitly that a collapsing star
(with enough mass) does lead to the formation of a black hole.

In spite of these theoretical results, experimental evidence for BHs would have
to wait for the “golden age” of GR, starting with the first observations of X sources
in 1962 [84], quasars a year later [85], and pulsars in 1968 [86]. While most of
these sources could have been attributed to neutron stars, the observation of the X
binary Cygnus X-1 constitutes the first strong BH candidate. Indeed, a measure-
ment of its mass ruled out the possibility of it being a neutron star. Experimental
identifications of BH candidates became mainstream, while theoretical works on
BHs continued and showed that the perfect, theoretical spherical symmetry of black
holes is not a prerequisite. In this context, the discovery by Roy Kerr [87] of the
metric describing a rotating BH (see Saul Teukolsky’s nice review [88]) and the sin-
gularity theorem(s) by Roger Penrose and Stephen Hawking [89–92], are of major
importance. To summarize, GR predicts BHs not just because of the Schwarzshild
and Kerr exact solutions, but also because these exact BHs remain stable under
small perturbations [93–95] and that there exists physically realistic situations that
lead to their formation (although this is still an intense field of research [96]). Of
course, the direct detection of BH binaries through their gravitational wave emis-
sion, and more recently the direct imaging of a supermassive BH’s surroundings [97],
gave a final YES to this fascinating question (and key prediction) of GR: Do black
holes exist?

Contrary to white dwarfs, the relativistic description of neutron stars is rather
different from its Newtonian counterpart. This is due to their large compactness,
which is 100 to 1000 times higher than white dwarfs’, making their very existence a
GR prediction on its own. In fact, five years after the proposed idea of their existence
by Walter Baade and Fritz Zwicky [98], Robert Oppenheimer and Vladimir Volkoff
provided the first explicit, relativistic calculation of a neutron star model [99]. They
showed that GR predicts a universal limit to the mass of neutrons stars around
2.2𝑀⊙. The fact that all neutron stars discovered so far have a mass below this
critical value [100] is also a major success of GR.

Modern cosmology

Modern cosmology, which entered the last decades the “precision era” [101], relies
entirely on the curved spacetime description of the Universe provided by GR. The
current theoretical and observational paradigm in cosmology, called the standard
model of cosmology for its unparalleled success, has been verified on multiples scales

can be given in terms of the Elliptic integrals. These beautiful formulae were derived in chap IX
and X of [82], and would make for an interesting academic exam or a nice illustration of the elliptic
functions/integrals duality.
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in various ways. Gravitational lensing, either strong (Einstein crosses and rings)
[102–104] or weak (cosmic shear) [105, 106], allows one to probe the geometry of
spacetime on cosmological distances. But among the most important probes of
GR on cosmological scales is the observation and analysis of the cosmic microwave
background (CMB). The most recent results from the Planck Collaboration [107]
provides a direct measurement of the temperature anisotropy spectrum from the
early universe, and provides information on the Universe’s large scale geometry,
early structure formation mechanisms and particle combination processes. Fine
effects (high-multipoles modes of the spectrum), in particular the Integrated Sachs–
Wolfe effect and CMB lensing, have been used to check that GR predictions are
favored over alternative theories gravity (see [108, 109] as well as Sec. 4.4 of the
review [110] for details.) Many other tests of GR are accessible through cosmological
observations and we refer to the recent review [110] and references therein for more
on this topic.

1.2 Gravitational waves
The prediction of general relativity that will be of primary importance in the present
work is the existence of gravitational waves (GW). These were first directly de-
tected in 2015 by the LIGO observatories. The period from 2015 forth will be
discussed thoroughly in Sec. 1.3. First, we will start with a short historical account
in Sec. 1.2.1, split into two distinct phases: 1916-1973 and 1974-2015. Then, we will
move to more theoretical aspects, discussing the mathematical derivation of GWs
(Sec. 1.2.2), their different sources (Sec. 1.2.3) and the process(es) by which one can
detect them (Sec. 1.3.1).

1.2.1 History
The reviewer strikes back

As already mentioned, another key prediction of Einstein’s GR, which he himself
made as soon as 1916 [34], is the existence of ripples in the fabric of spacetime, prop-
agating at the speed of light: gravitational waves (GWs). Prior to their direct detec-
tion in 2015, GWs went through two very distinct periods: between 1916 and 1974,
they were but theoretical predictions and their existence was rather controversial.
After his first paper, Einstein reconsidered GWs two years later [111] and started to
question their physical existence. He showed that out of the three “types” discov-
ered, longitudinal-longitudinal (LL), longitudinal-transverse (LT), and transverse-
transverse (TT), the first two were “gauge waves” in the sense that they were not
associated to spacetime curvature. The following years, major contributions were
made by Arthur Eddington (again). He clarified the nature of these gauge waves and
corrected Einstein’s quadrupole formula [112], and discussed for the first time the
implications of GW emission on a binary’s orbit [113]. Despite these clarifications,
GWs were hardly considered as physical objects at that time, as evidenced by the
famous Physical Review controversy between Einstein, Rosen and the editors of the
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journal [114]. A glimpse of their interaction can be found in Fig. 1.4.

Figure 1.4: A comment from Howard Robertson, reviewer of Einstein and Rosen’s paper on grav-
itational waves. This comment summarises what came out of the refereeing process: the author’s
arguments do not prove the claims of the paper, but rather come from a bad choice of coordinates.
Let this be a lesson for any student learning GR: even Einstein fell into the trap of diffeomorphism
invariance!. Scan courtesy of The Hebrew University of Jerusalem.

The following years then saw a decrease in the physicist’s interest for GWs,
and for GR as a whole. Primarily because of the lack of available experiments
and the consequences of the World War(s), but also because most physicists were
occupied with quantum mechanics. Only in the 1950s did the interest in GWs
came back, with the notable works of Bondi, Pirani and Robinson [115–117] who
clarified the question of whether GWs transported energy (and thus if they could be
detected). It is Pirani again who discussed [118] for the first time the effect of GWs
on two point particles, which would ultimately become the most efficient way of
detecting them. If GWs transport energy, a system emitting them must lose some.
The final piece of the GW puzzle thus consisted in computing the backreaction of
GW emission on a source’s motion. Various attempts, using post-Newtonian (PN)
expansions (or variations thereof) to tackle this problem were already provided in
the early years [119–121] but the real stepping stone was Landau and Lifshitz’s
rewriting of the Einstein equation [122] in a form particularly convenient for the
coupled problem of motion and radiation. Finally, after some discussions in the
1970s (again) [123] on the validity of earlier improvements [124, 125], rigorous and
self-consistent derivations of a GW source’s motion and its emission were obtained
in the early 1980s, with notable pioneering works by Thibault Damour, Nathalie
Deruelle and collaborators [126–129].

Yet, all these considerations were purely theoretical, and it is fair to say that
all hesitations and controversies they underwent would have benefited from a lit-
tle help by experiments and/or observation. Thankfully, a remarkable discovery
came in 1974 and would, finally, provide a genuine interest for GWs from the whole
community and restore hope in the quest for the (direct) detection of GWs.
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Figure 1.5: This 2+1 spacetime diagram depicts the main geometry of the Hulse-Taylor pulsar.
On the left, the double helix shows the pulsar in orbit with its companion. The arrival times are
measured when the radio beam (yellow geodesic) crosses the Earth worldline (timelike geodesic, on
the right). The time measured between two successive arrival times slowly decreases due to GW
emission, which also makes the orbital radius decrease over time, as exaggeratedly depicted here.

A new hope

Neutron stars are arguably the most extreme kind of stars, with two main proper-
ties: they are strongly magnetized and have a very fast proper rotation. For some of
them, the first trait makes them emit a continuous beam of radio waves along their
two magnetic poles, while the second makes this continuous signal appear as pulses
every time the beam crosses an observer’s path. The first such star, called a pulsar,
was discovered by Jocelyn Bell in 1967 [86], and today about three thousand of them
are cataloged [130,131], with a few tens visible in the optical wavelength [132,133].
While isolated pulsars already provide an important test bench for GR [134], they
become even more valuable when part of a binary system, allowing one to test many
strong-field effects of GR dynamics.

The Hulse-Taylor binary, technically known as PSR B1913+16,17 is one of them.
It is made of two NS, one of them being an observed pulsar, of which we detect the
faint, periodic radio signal. It was detected in 1974 by Russel Hulse and his thesis
advisor Joseph Taylor Jr [136], using data from the Arecibo Observatory18. It was
the first binary pulsar ever discovered.

17For the interested reader, this technical nomenclature encodes PSR for Pulsating Source of
Radio, and 1913+16 for the equatorial coordinates (𝛼, 𝛿), with right-ascension 𝛼 = 19hrs13min
and declination 𝛿 = +16°. See page 302 of [135] for additional details.

18As I am writing these lines in December 2020, parts of the Arecibo telescope have just col-
lapsed, making additional damages to its already crumbling dish. The Arecibo telescope is respon-
sible for a long history of discoveries, as beautifully accounted for in the review [137].
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General relativity predicts that GW are emitted by a binary system, taking
away some energy and angular momentum from it. This loss of energy and angu-
lar momentum induces a slow, secular variation of the parameters describing the
Keplerian ellipse. For example, one expects an increase of the orbital frequency
Ω̇ and decrease of the eccentricity ̇𝑒, an (orbital-time averaged) precession of the
periastron position 𝛿𝜔, etc. These numbers, which vanish identically in Newtonian
dynamics, are naturally called post-Keplerian parameters. In 1963, using among
other things the first quadrupole formula (1.17), Philip Peters and his thesis advisor
Jon Matthews provided the first expression of these post-Keplerian parameters in
terms of the binary’s properties. They found relations like [138, 139]19,

𝛿𝜔 = 3(𝐺𝑀)2/3

𝑐2
Ω5/3

1 − 𝑒2 (1.6)

which expresses the periastron precession parameter in terms of the total mass of the
binary 𝑀 , its orbital frequency Ω and eccentricity 𝑒. Thanks to the measurement of
the arrival times of binary pulsars, these parameters can be estimated and compared
to the prediction of GR. This provides remarkable tests, the most well-known one
being depicted in Fig. 1.6.

Secular variations such as (1.6) are well-known from Newtonian, celestial me-
chanics for a binary perturbed by other bodies [140]. But here, the binary is isolated:
these variations are solely due to a general relativistic effect: GW emission. Conse-
quently, and provided one has a way of inferring the Keplerian and post-Keplerian
parameters in the first place, the HT binary allows one to test the GR prediction.
This is where the pulsar nature comes into play. Indeed, thanks to the beautiful
theory of pulsar timing, or the art of extracting the physical properties of a pulsar
from the arrival times of its radio signals. The tour de force of Hulse and Taylor
was to find a clever way to analyse the data [141] and fit most of the HT binary pa-
rameters. In a few years, one will not be able to observe the pulsar since the beam’s
trajectory is expected to drift and miss the Earth due to the geodetic precession, a
relativistic spin-orbit coupling within the binary.

These observations are indirect hints converging towards the existence of GWs.
Yet, a direct detection, meaning an actual GW interacting with a dedicated GW
detector had to wait until 2015. Before covering this in more details in Sec. 1.3, let us
dive into more theoretical aspects, to understand the main physical characteristics
of GWs.

1.2.2 Linearized gravity
At the mathematical level, GWs are nothing but approximate solutions to the Ein-
stein equation. They may be understood either on pure geometrical grounds as
ripples in the curvature or as independent fields propagating in some background
spacetime. In the latter viewpoint, they have physical features akin to EM waves:

19The accordance between the GR prediction and the observed value allows for an astrophysical
derivation of nontrivial series formula for the Bessel functions (see the Appendix of [138]).
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Figure 1.6: Data points showing different measures of periastron time shift, relative to an un-
changing orbit, for the HT pulsar over 38 years. They all lie perfectly (error bars are too small
to show) on the parabola corresponding to the GR prediction. The curvature of the parabola is
given by −Ω̇/2Ω, allowing one to compute the frequency shift of the orbit through the years [135].
Source: [142].

they are transverse, and propagate in vacuum at the speed of light. However, from a
mathematical perspective, they share a common point with hydrodynamic waves, as
they arise from the linearization of a more fundamental, nonlinear equation (Navier-
Stokes in hydrodynamics, Einstein equation for GWs). The remaining of this sec-
tion is dedicated to the basics of GW theory: mathematical derivation, propagation,
sources, and detectors. We hide most of the technical details and refer to classical
textbooks [135, 143] for further information on this subject.

Let us consider a background metric ̊𝑔𝑎𝑏: an exact solution to Einstein’s equation
sourced by some arbitrary SEM tensor 𝑇𝑎𝑏. We look for a solution to the Einstein
equation in the form of a (formal) small-parameter expansion, with an Ansatz for
the solution metric 𝑔𝑎𝑏 of the type

𝑔𝑎𝑏 = ̊𝑔𝑎𝑏 + 𝜖ℎ𝑎𝑏 , (1.7)

where ℎ𝑎𝑏 is the perturbation, and 𝜖 is a dimensionless, small parameter. Typical
examples include the parameter 𝑣/𝑐, such as in post-Newtonian theory [144], or the
mass ratio as in the gravitational self force scheme (see Sec. 1.3.1). Here, we just
treat 𝜖 as a formal, bookkeeping parameter that counts the nonlinearities in the
perturbation ℎ𝑎𝑏. By viewing the Einstein tensor 𝐺𝑎𝑏 as an operator acting on the
metric 𝑔 ≡ ̊𝑔 + 𝜖ℎ, the Ansatz (1.7) can be used to linearise the left-hand side of the
Einstein Eq. (1.1). A straightforward computation (e.g., Sec. 7.5 of [5]) provides, to
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linear order in 𝜖

∇̊𝑐∇̊𝑐ℎ̄𝑎𝑏 + 2�̊�𝑎𝑐𝑏𝑑ℎ̄𝑐𝑑 − 2∇̊(𝑎𝐻𝑏) = −16𝜋𝑇𝑎𝑏 , (1.8)

where �̊�𝑎𝑏𝑐𝑑 is the Riemann tensor associated to the background metric ̊𝑔𝑎𝑏, with
which the covariant derivative ∇̊𝑐 is compatible. Equation (1.8) is written in terms
of the convenient trace reversal of ℎ𝑎𝑏, defined by ℎ̄𝑎𝑏 ≡ ℎ𝑎𝑏 − 1

2 ̊𝑔𝑎𝑏 ̊𝑔𝑐𝑑ℎ𝑐𝑑, as well as
its “divergence” 𝐻𝑎 ≡ ∇̊𝑏ℎ̄𝑎𝑏. Equation (1.8) is the linearized Einstein equation in
the perturbation ℎ̄𝑎𝑏, and is at the basis of many applications. It is very general and
valid in any coordinate system where the splitting (1.7) holds. However, for illustra-
tion purposes, it is much more convenient to take advantage of the diffeomorphism
invariance of GR to simplify this equation.

Gauges

Since the background metric ̊𝑔𝑎𝑏 is fixed, we may see Eq. (1.8) as that of an inde-
pendent field ℎ𝑎𝑏 (or equivalently its trace-reversal ℎ̄𝑎𝑏) evolving on the background
spacetime. We would then like to simplify Eq. (1.8), for example by choosing co-
ordinates in which 𝐻𝑎 = 𝑜(𝜖), so that the third term on the left of (1.8) can be
neglected at linear order in 𝜖. A particularly convenient (and sufficient) way to do
this is to perform an 𝜖-infinitesimal transformation, i.e., a change of coordinates of
the form 𝑥𝛼 ↦ 𝑥𝛼 + 𝜖𝜉𝛼, with 𝜉𝑎 an arbitrary vector field. Because the coordinates
differ only at order 𝜖, this induces a change in the metric 𝑔𝑎𝑏 only at the level of
the perturbation. Indeed, an easy computation reveals that under this mapping,

̊𝑔𝑎𝑏 ↦ ̊𝑔𝑎𝑏 + 𝑜(𝜖) but
ℎ𝑎𝑏 ↦ ℎ𝑎𝑏 − ℒ𝜉 ̊𝑔𝑎𝑏 + 𝑜(𝜖) , (1.9)

where ℒ𝜉 denotes the Lie-derivative along 𝜉𝑎. As we can see, this mapping generates
an isometry ( ̊𝑔𝑎𝑏 is invariant) up to 𝜖-corrections: the perturbation “absorbs” the
𝜖-part, and leaves the background untouched. Since this is but a mere change of
coordinates, it does not alter any physical observable: it is a gauge transformation.
The idea is to chose this gauge by fine-tuning the arbitrary field 𝜉𝑎 so that 𝐻𝑎 = 𝑜(𝜖)
in the new coordinates. To do this, simply notice that (1.9) induces

𝐻𝑎 ↦ 𝐻𝑎 − ∇̊𝑏∇̊𝑏𝜉𝑎 + 𝑜(𝜖) , (1.10)

where metric compatibility ∇̊𝑐 ̊𝑔𝑎𝑏 = 0 was used. To summarize, if 𝐻𝑎 was not 𝑜(𝜖)
in the original coordinates, then Eq. (1.10) tells us to introduce a vector field 𝜉𝑎

such that ∇̊𝑏∇̊𝑏𝜉𝑎 = 𝐻𝑎 (always possible). In the new 𝑥 + 𝜖𝜉 coordinates, we have
𝐻 = 𝑜(𝜖), and the third term in Eq. (1.8) can be neglected, resulting in a classical,
hyperbolic wave equation

∇̊𝑐∇̊𝑐ℎ̄𝑎𝑏 + 2�̊�𝑎𝑐𝑏𝑑ℎ̄𝑐𝑑 = −16𝜋𝑇𝑎𝑏 . (1.11)

Although Eq. (1.11) is simpler than (1.8), it is also less general since it holds in a
particular set of coordinates: those that satisfy the gauge condition 𝐻𝑎 = 𝑜(𝜖), that
is, at linear order in 𝜖,

∇̊𝑏ℎ̄𝑎𝑏 = 0 . (1.12)
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This gauge is traditionally called the Lorenz gauge20 by analogy with classical elec-
trodynamics [150]. The system (1.11)-(1.12) is the linearized Einstein equation in
the Lorenz gauge, and is the basis of many calculations of GW-related physics.
Particularly relevant cases correspond to vacuum metrics (𝑇𝑎𝑏 = 0), where ̊𝑔𝑎𝑏 is
either the Schwarzshild or Kerr metric. In this case, the full solution ̊𝑔𝑎𝑏 + ℎ𝑎𝑏 de-
scribes a perturbed isolated BH and ℎ𝑎𝑏 contains the GWs emitted by the system.
In the non-vacuum case (𝑇𝑎𝑏 ≠ 0), prototypical examples include: binary systems
of compact objects, where ̊𝑔𝑎𝑏 is the Minkowski metric and the matter is described
as post-Newtonian source [144]; or cosmological perturbations, for which ̊𝑔𝑎𝑏 is the
FLRW metric and the SEM tensor is necessarily that of a perfect fluid, for symmetry
reasons [52].

Before going further let us stress that while the linear system (1.11)-(1.12) is
sufficient to get a grasp on how GW generation mechanisms work, and even for
some applications (like the slow orbital decay of binary pulsars, see Sec. 1.2.1), it
is not sufficient for the direct detection of GWs. In particular, non-linearities in
ℎ of high-order must be accounted for when building the GW templates used in
a GW detector (see Sec. 1.3.1). What’s more, already at the quadratic level, self-
interactions of the field ℎ come into play, with terms that can be of the same order
of magnitude as linear ones, something that is often overlooked in deriving the usual
quadrupole formula (see for example [151]).

Propagation

Now let us move on to solving the system (1.11)-(1.12) and consider a system of
Lorenz coordinates 𝑥𝛼. For simplicity, we place ourselves on a flat background,
so that �̊�𝑎𝑏𝑐𝑑 = 0 (enforcing ̊𝑔𝑎𝑏 to be the Minkowski metric). Studying this
free, vacuum-propagation of ℎ𝑎𝑏 is particularly relevant for gravitational astronomy,
where the GWs travel mostly in the vacuum of spacetime far away from any source.
Moreover, this setup is the easiest way to distinguish from the mathematical solu-
tion ℎ𝑎𝑏 the non-physical and physical degrees of freedom. With these assumptions
made, the system (1.11)-(1.12) becomes

𝜕𝑐𝜕𝑐ℎ̄𝑎𝑏 = 0 and 𝜕𝑎ℎ̄𝑎𝑏 = 0 , (1.13)

where we assumed Cartesian-like coordinates so that 𝜂𝛼𝛽 = diag(−1, 1, 1, 1), and
therefore ∇̊𝑎 = 𝜕𝑎. Equations (1.13) can be simplified once more by further specify-
ing the gauge. Indeed, notice that in the Lorenz gauge we have the liberty to add to
the previous gauge vector 𝜉𝑎 another arbitrary vector field 𝜉𝑎

𝑜 , such that 𝜕𝑏𝜕𝑏𝜉𝑎
𝑜 = 0.

Clearly, the new coordinate system 𝑥𝛼 + 𝜖(𝜉𝛼 + 𝜉𝛼
𝑜 ) still satisfies the Lorenz gauge

condition, but we may now freely chose 𝜉𝑎
𝑜 so as to remove superfluous degrees of

freedom in ℎ𝑎𝑏. In particular, this new sub-gauge enforces 4 conditions (one for each
20Not to be confused with Hendrik Antoon Lorentz who gave his name to the Lorentz force,

Lorentz transformations and Lorentz factor [21]. Several classical textbooks [5, 122, 135, 145, 146]
make this mistake. The Lorenz gauge (or coordinates that satisfy it) is also often called “harmonic”
[144,147], and more rarely De Donder [148] or Hilbert [149].
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component of 𝜉𝑎
𝑜 ) which we may as well chose to be

ℎ̄0𝑖 = 0 and ℎ̄ ≡ 𝜂𝑎𝑏ℎ̄𝑎𝑏 = 0 . (1.14)

In other words, we set to zero the space-time components and the trace of ℎ𝑎𝑏.
This new system of coordinates defines a (sub-)gauge of the Lorenz one, called
the transverse-traceless (TT) gauge. Noting that these conditions imply ℎ00 = 0
(thanks to (1.12)) and ℎ̄𝑎𝑏 = ℎ𝑎𝑏 (since ℎ̄ = 0,) we obtain as a final result a simple
d’Alembert equation

𝜕𝑐𝜕𝑐ℎ𝑖𝑗 = −16𝜋𝑇𝑖𝑗 . (1.15)

This equation is valid in the TT gauge, on a Minkowskian background and when
nonlinearities in ℎ𝑎𝑏 are neglected. The point of the TT gauge is not just to simplify
Eq. (1.15), as it also removes all possible non-physical degrees of freedom. Indeed,
in the initial, arbitrary 𝑥 coordinates, ℎ𝑎𝑏 has 10 independent components. The
Lorenz gauge (1.12) lowers this number to 6, and the TT sub-gauge to 2. The only
freedom left in the TT gauge is a rigid rotation of the axes, which may be used to
uncouple the two remaining degrees of freedom, as follows.

Let us consider the solution of Eq. (1.15) away from the source, so that 𝑇𝑎𝑏 = 0.
We obtain a simple homogeneous equation 𝜕𝑐𝜕𝑐ℎ𝑖𝑗 = 0, whose solution can be
written as a superposition of plane waves, say ℎ𝑖𝑗 = 𝑝𝑖𝑗(𝑘) exp(i𝑘𝛼𝑥𝛼) where 𝑘𝛼 are
the components of the wave vector and 𝑝𝑖𝑗 is the mode’s amplitude, or polarization
tensor. Choosing coordinates (𝑡, 𝑥, 𝑦, 𝑧) such that the vector 𝑘𝑎 is along the 𝑧-
axis, the condition (1.12) simply becomes 𝑘𝑖ℎ𝑖𝑗 = 0: the wave is transverse to the
direction of propagation. In that case, symmetry and traceless-ness of ℎ𝑖𝑗 readily
imply

ℎ𝛼𝛽 =
⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

⎞⎟⎟⎟⎟
⎠

, (1.16)

where ℎ×, ℎ+ denote the two intrinsic polarization states of the GW, called the plus
and cross polarization. The reason for these names is best explained by looking at
the effect of each polarization on a ring of test masses placed in a plane orthogonal
to the GW’s direction. The ℎ+ makes the ring contract and extend (making it oval)
along two perpendicular axes (say 𝑥 and 𝑦), while the ℎ× does the same, albeit
rotated by 𝜋/4, along the diagonals. Figure 1.7 depicts a spacetime diagram with
these test mass rings.

The main conclusions obtained here with ̊𝑔𝑎𝑏 = 𝜂𝑎𝑏 still hold in a general back-
ground and with matter [152,153]. In particular, the metric perturbation ℎ𝑎𝑏 always
contains three types of degrees of freedom : (1) non-physical and pure gauge (2)
physical but non-radiative, and (3) physical and radiative. The non-physical ones
have been discarded with the use of the Lorenz and TT gauges. The non-radiative
degrees of freedom generate the so-called gravito-magnetism effects [5,52]. The two
radiative degrees of freedom are crystallized in the ℎ+ and ℎ× polarizations of the
GW. From a field-theory perspective, this implies that the field ℎ𝑎𝑏 is associated to
a spin-2 boson (the graviton) [135].
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Figure 1.7: A spacetime diagram depicting a ring of point particles. The GW propagates in the
𝑧 direction (not depicted here), and the oscillations of the ring take place in the horizontal plane
(transverse wave). The + polarization on the left has the same effect of the × polarization, on the
right, albeit rotated by 𝜋/4.

1.2.3 Sources
The solution to the wave Eq. (1.15) can be turned into an explicit formula for the
components ℎ𝑖𝑗 as a function of the TT coordinates (𝑡, 𝐱) and the source’s physical
properties. This computation is classical [52, 135, 140] and we will only sketch the
general ideas, which were already in Einstein’s second article on GW [111]. The first
step consists in inverting the d’Alembert operator appearing in Eq. (1.15) in the
usual way (e.g., by means of its retarded Green function). This gives an expression
of ℎ𝑖𝑗 terms of the TT components 𝑇𝑖𝑗 of the source’s SEM tensor. From there, a
rather involved but otherwise very elegant calculation allows one to simplify that
expression drastically, by combining the conservation equation for the SEM tensor
and a multipole expansion thereof. The leading-order result of said calculation is
called Einstein’s first quadrupole formula, and reads

ℎ𝑖𝑗(𝑡, 𝐱) = 1
|𝐱|

2𝐺
𝑐4 �̈�𝑖𝑗(𝑡ret) , (1.17)

where |𝐱| is the distance to the source from the origin of TT coordinates (𝑡, 𝐱), a
dot stands for a 𝑡-derivative and the right-hand side is evaluated at the retarded
time 𝑡ret ≡ 𝑡 − |𝐱|/𝑐. This formula holds for generic, isolated sources21. Equation
(1.17) is particularly simple as it only depends on the (second derivative of the)
quadrupole moment of the source, linked to its mass density 𝜌(𝑡, 𝐱) through the
classical, Newtonian expression

𝑄𝑖𝑗(𝑡) = ∫
𝒮

𝜌(𝑡, 𝐱)(𝐱𝑖𝐱𝑗 − 1
3 |𝐱|2𝛿𝑖𝑗)d3𝐱 , (1.18)

21It should be noted that in linearized theory, a rigorous derivation of (1.17) is impossible.
Precisely because the equation of motion, which follows from the Lorenz gauge condition, implies
that that sources moves on a geodesic of Minkowski’s spacetime. This undeniably excludes any
gravitationally-driven orbit. The rigorous, self-consistent derivation includes a careful inspection
of the nonlinearities [135,144].
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where the integral is over the source’s spatial support 𝒮 . Although the leading order
result (1.17) is usually not enough for the actual detection of a GW [135, 154, 155],
it readily shows that GW are generally produced by time-varying quadrupoles. The
quadrupolar nature of GWs is intrinsic to gravitation, much like the dipolar nature
of EM waves is reminiscent of electrodynamics. In linearized GR, the conservation of
energy and linear momentum of the source prevents monopole and dipole radiation,
respectively. Again, in the full picture this is not so simple, as GW do, in fact,
transport energy and linear momentum which they extract from the source [135].

GW amplitudes

Still, from equations (1.17) and (1.18), one can obtain a good estimate for a typical
GW amplitude. In particular, if a non-spherical source has a rotational frequency
Ω, mass 𝑀 and length scale 𝐿, then 𝑄𝑖𝑗 ≃ 𝐴𝑀𝐿2, with 𝐴 a numerical coefficient
measuring the asymmetry of the source. At some distance 𝑅 ≡ |𝐱|, we thus get a
typical GW amplitude of

ℎGW ≃ 𝐴 𝐿
𝑅

2𝐺𝑀
𝐿𝑐2 (Ω𝐿

𝑐 )
2

. (1.19)

The first two terms show that non-spherical systems (𝐴 ≃ 1) that are not too far
away (𝐿/𝑅 reasonably small) will produce GW with greater amplitude. The third
term we recognise as (twice) the compactness parameter Ξ ≡ 𝐺𝑀/𝐿𝑐2, a first hint
that we should expect compact objects to be the most promising sources of GW. In
particular, systems involving black holes (BH) and neutron stars (NS) (ΞBH = 1/2
and ΞNS ≃ 0.2) should be excellent candidates. The last term in (1.19) shows that
among these sources, those with relativistic internal velocities 𝑣 ≃ Ω𝐿 produce GW
with a greater amplitude. This can be either the proper rotation of an isolated
compact object, or the relative orbital velocity in a binary system. Naturally, these
characteristics lead us to extreme astrophysical sources which are, by definition, far
away from us. Consequently, the main goal of GW detection is to focus on compact
sources and build GW detectors sensitive enough to account for the 𝐿/𝑅 ≪ 1 term.

Figure 1.8: Physical characteristics of astrophysical sources involved in the typical amplitude
(1.19) and frequency (1.21) estimates, with 𝐴 representing the deformation (distance to spherical
symmetry).
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GW frequencies

As we have just seen, promising sources of GW are rapidly rotating, asymmetric,
isolated compact objects and orbiting binaries. Let us apply the first quadrupole
formula (1.17) to a binary system of compact objects of total mass 𝑀 ≡ 𝑀1 +
𝑀2 on a circular orbit of radius 𝐿 and angular frequency Ω. We skip the details,
referring to [135] for more on this calculation. We obtain, in the TT gauge, for the
+ polarization,

ℎ+(𝑡, 𝐱) = 𝜄+
|𝐱|

4𝐺𝜇
𝑐2

Ω2𝐿2

𝑐2 cos(2Ω𝑡ret) , (1.20)

where 𝜇 ≡ 𝑀1𝑀2/𝑀 is the reduced mass, 𝑡ret ≡ 𝑡 − |𝐱|/𝑐 is the retarded time as
in (1.17), and the coefficients 𝜄+ is a geometrical factors that depend on the relative
inclination of the orbit with respect to the observer (see [140] for details). A similar
equation holds for the × polarization, obtained by replacing (cos, 𝜄+) by (sin, 𝜄×).
We see from Eq. (1.20) that the frequency 𝑓GW of the GW is twice that of the source’s
orbit: 𝑓GW = 2Ω. By combining Kepler’s third law in the form Ω2𝐿3 = 𝐺𝑀 and
the definition of the compactness Ξ, we get the estimate

𝑓GW ≃ 𝑐3Ξ3/2

𝐺𝑀 ⇒ 𝑓GW(𝑀) ≃ 𝑀⊙
𝑀 ⋅ Ξ3/2 ⋅ 100 kHz (1.21)

This formula already shows that more massive systems generate GW with lower
frequencies. For compact binary systems, Ξ is much less than the compactness of
the individual bodies (ΞBH = 1/2 and ΞNS ≃ 0.2) because 𝐿 is the orbital separation.
This estimate allows one to compute the typical frequency-range of GW emitters of
astrophysical origin, as discussed in the next section.

Coalescence of binary systems

Binary systems of BH and/or NS22 are undoubtedly the most important and promis-
ing sources of GWs. The main reason behind this is that (1) they are made of the
most compact objects in the Universe, and (2) they are naturally occurring systems
with the crucial “varying-quadrupole” nature, due to their gravitationally bound
orbit. The orbital evolution of these sources is typically split into three phases:

• the inspiral, during almost all of a binary’s lifetime, when the orbital separa-
tion 𝐿 gradually decreases due to GW emission, but remains otherwise large
compared to the individual objects radii 𝑅S;

• the merger, describing a highly nonlinear and relativistic region of spacetime
where the two bodies are close to one another and then make contact, in the
sense that the length scales verify 𝐿 ≃ 𝑅S ;

22Theoretically, more exotic types of objects, such as dark stars [156] or boson stars [157] could
also be included into this class. White dwarfs on the other hand, although compact, have too
large of a radius to coalesce: they never reach the last stable orbit that would provoke a merger.
Yet, they do produce GWs, which could be detected as part of a GW stochastic background or as
resolved individual sources [158] (see also Sec. 1.3.3).
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• the ring-down, when the newly formed, compact object relaxes towards a
steady-state, either a BH in quasi-equilibrium or a big NS close to the mass
limit.

The typical waveform for these systems, depicted in Fig. 1.9, clearly shows these
three different stages. Binary systems are usually divided between sub classes that
depend on the masses of the compact objects: stellar-mass binary systems, extreme
and intermediate mass-ratio inspirals, and supermassive BH binaries. Since gen-
eral relativistic effects prevent NSs from having a mass higher than around 2.2 to
2.6𝑀⊙ [96,100], this classification primary depends on the BH masse(s) involved in
the binary.

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Figure 1.9: A typical GW signal emitted by a binary system of compact objects, with its three
phases: inspiral, merger and ring-down. This signal is a reconstruction of the first detection
event, GW150914. We clearly see that both the amplitude and the frequency rise until merger.
Source: [159]

Stellar mass binary systems refers to those with one or two BHs that have masses
in the range 1𝑀⊙ − 100𝑀⊙. The astrophysical origin of such binaries is still an in-
tense field of research, in particular for the more massive objects. Stellar/collapse
formation scenarii favor BH with masses in the range 5𝑀⊙ − 50𝑀⊙. The lack of
evidence for BH with masses less than 5𝑀⊙ is refereed to as the mass gap. Reasons
for its existence are still debated, from physical theories to observational bias [96].
Still, their most likely progenitors are expected to be binary stars with one (or both)
undergoing a gravitational collapse, forming a BH or a NS, depending on its ini-
tial mass, or perhaps through gravitational capture, in highly populated regions of
galaxies [96].

On a drastically different scale, there is a general consensus today that most
galaxies are host to a supermassive black hole (SMBH) with a typical mass of at
least a million, up to a few billion Solar masses [160]. As a consequence, when two
galaxies merge, their SMBH undergo a slow inspiral which may result into a coa-
lescence over the billion years timescale, depending on their environment and their
masses [161, 162]. These mass and time scales imply that SMBH binaries, if they
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exist, would be GWs emitters in frequency range the mHz and nHz. As GWs ex-
tract linear momentum from the system, an interesting byproduct of these binaries
is that the post-merger SMBH may be ejected from its host galaxy. This effect,
called gravitational recoil, may have major astrophysical consequences [163]. More
details about SMBH binaries may be found in the recent review [96].

Lastly, the asymmetric combination of very large and low mass objects results in
systems called extreme mass ratio inspirals (EMRIs). In practice, these systems are
expected to exist close to the centre of galaxies where an SMBH may trap a compact
star or a massive BH. They are of particular interest because the small body acts as
a probe of the background BH spacetime. Consequently, the detection of GW from
EMRIs are anticipated tests of GR in the strong-field regime. In particular, GWs
from these systems will allow a test of the no-hair theorem, which states that BHs are
uniquely determined by two numbers, their mass and spin [164–166]. The natural
angle of attack for theoretically describing such systems is black hole perturbation
theory, which takes advantage of the small mass ratio (between 10−4 and 107) to
solve the Einstein equation in a perturbative manner. We shall come back to this
formalism in Chap. 2. Contrary to stellar-mass binaries, which enter the detector
only around the last orbits of the inspiral, the merger and ring-down), GW signals
from EMRIs will consists in many (several hundred up to hundreds of thousand)
orbital cycles, spanning anything from a few weeks to several years. The typical
trajectory of the small body is very complex: it is three-dimensional and combines
large spin precessions with high eccentricities, cf. Fig. 1.10.

Figure 1.10: Left: the “+” polarization of a typical GW signal from an eccentric, inclined EMRI
obtained with a stellar-mass objetc orbiting a 106𝑀⊙ Kerr BH, with spin parameter 𝑎 = 0.9
[167, 168]. The amplitude modulation on the top is due to the precession of the orbital plane,
while the sharp peaks on the bottom coincide with passage at the pericenter (closest point to the
central BH). Right: typical (Euclidean-mapped) trajectory of a test particle in the Kerr spacetime,
represented by a timelike geodesic [169].

Isolated sources

Some isolated NSs are expected to emit a steady, very clean, sine-wave-like GW
signal. However, this can only be the case if they are not axisymmetric, in which
case their mass quadrupole is almost constant and therefore the quadrupole formula
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(1.18) indicates a very low amplitude for the GW. A typical order-of-magnitude
estimate gives, for such a rotating body

ℎGW ≃ 1
|𝐱|

4𝐺
𝑐4 Ω2𝛿𝐼 , (1.22)

where 𝛿𝐼 ≡ |𝐼1 − 𝐼2| is the difference between the principal moments of inertia of
the body orthogonal to the spin axis. As an example, a mountain of mass 𝑚 located
at the equator of a body of radius 𝐿 generates Δ𝐼 = 𝑚𝑎2. This estimate strongly
depends on the equation of state of the NS [170], and gives ℎGW ≃ 10−25 for typical
values of a typical, 𝑘𝐻𝑧-rotating neutron star located in the galaxy |𝐱| ≃ 10kpc.
Although this makes it a very low amplitude source, the near-constant periodicity
of the amplitude should allow for a signal accumulation over long times, and thus a
direct detection of these so-called “continuous GWs” in the future.

As we have seen, emitting GWs requires huge power outputs. As a consequence,
core-collapse supernovae (CCSN) were the first natural candidates to be considered
[171]. During a CCSN, a star reaches the end of its life: its newly formed, ≃ 1.5𝑀⊙
iron core collapses on itself, creating a proto neutron star. The outer layers of
the stars then start to fall inward and bounce off the core. The resulting shock,
if energetic enough, breaks out from the star’s envelope, leading to a supernovae
explosion. During this event, GWs may be emitted at various stages, typically when
the approximate axisymmetry of the star breaks. For example, during the bounce of
the core [172], or alongside the (anisotropic) emission of neutrinos [173]. Although
the typical GW amplitude for these CCSN depend on a considerable number of
physical parameters (mass, size, spin, magnetization, environment, equation of state,
etc), a typical order-of-magnitude is [174]

ℎGW ≃ 10−24 Ω
1kHz

20Mpc
|𝐱| , (1.23)

where Ω is the star’s angular frequency. The GW signal from these systems is rather
unique and very complex. Typically, it is made of a short burst followed by an erratic
tail, and is much different than the smooth, continuous signals emitted by coalesc-
ing binary systems (compare a typical CCSN signal in figure 14 of [175] to figures
1.10 and 1.17 that depict waveforms from a coalescing binary). Consequently, the
technique of matched filtering (see paragraphs below), so powerful when it comes
to compact binary systems, is much less adapted for these type of systems, and
alternative detection techniques must be used (excess-power searches in the time-
frequency domain [176], deep learning algorithms [177], etc). The expected rarity
of these events (a few per century) is balanced by the fact that they should often
present an EM counterpart, which would vastly help their detection [178]. Obtaining
gravitational waveforms of CCSN is an incredibly difficult task, which relies almost
entirely on numerical methods, as they are are dominated by stochastic processes.
The field is an intense and active domain of research (see [179, 180] and references
therein for recent, state-of-the-art simulations and computations).

Finally, let us mention other astrophysical sources of importance which are re-
lated to compact objects. Galactic binaries, which encompass white dwarf (WD)
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binaries or more generally binary systems with one compact object (BH, NS or WD).
When entering the detectors, these systems will be far away from coalescence and
their very large population (at least a few hundred millions in the Milky Way) will
create an unresolved background of periodic GWs, with typical frequencies in the
range 1-10 mHz [181,182]. Accreting compact objects should also produce detectable
GWs, for example, matter (say a main sequence star) tidally disrupting as it ap-
proaches a BH’s horizon (see Sec. 4.3 of [135]), or accreting neutron stars [183,184].
Elastic collisions between BHs (see Sec. 4.4 of [135]), which produce a characteristic
wave form, and close-by inspiralling globular clusters may be detectable as well [185].

Cosmological sources

Promising sources of GW are not limited to astrophysics, as we also expect to be
bathing in a GW background, part of which should have been generated during the
early phases of the Universe. Just like the incoherent background of astrophysical
sources described above, GWs of cosmological origin must be described statistically,
by means of an ensemble average23. Among the sources, we find [152]

• quantum density fluctuations amplified during the inflation period,

• various matter creation mechanisms during the reheating epoch,

• first-order phase transitions, at the epoch of electroweak symmetry breaking,

• networks of topological defects, such as cosmic strings, monopoles or textures.
strings.

The stochastic background of GW generated during inflation contains a scale-
invariant, irreducible component that is inflation model-independent. To this day,
it has not been observed, although it should have left B-modes imprints into the
CMB polarization, as well as distortions in the CMB black-body spectrum. How-
ever, this absence of detection puts stringent limits as to the frequencies of this GW
background [187]. Thankfully, an increasing number of experiments are underway
to try and detect these B-modes, while pulsar-timing methods (see Sec. 1.3.1) pro-
vide another promising way of putting bounds on the GW stochastic background,
if not measuring it directly. For more on GW cosmology, we refer to the recent and
thorough review [152].

As a summary, Fig. 1.11 recapitulates the different sources of GWs discussed
above. For reviews and additional details on GW sources, see [170, 188].

1.3 A new astronomical era
Nowadays, it has become customary to read (part of) the following sentence “grav-
itational waves mark the dawn of a new era –or revolution– in astronomy”. This

23As always in cosmology, we must rely on some kind of ergodic hypothesis to argue that
an ensemble average (impossible as we have only access to one Universe) coincides with a time
average [135,186].
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Figure 1.11: Taxonomy of different GW sources (top) with their associated, typical frequency-range
and detectors (bottom). Source: LISA NASA website

is true both in public media, blog articles and in particular in the first introduc-
tory paragraph of scientific articles of peer-reviewed journals. Indeed, since the first
detection of gravitational waves in 2015, the field of gravitational wave astronomy
has had a tremendous amount of success. In this last section, to conclude this first
chapter, we will come back on the major discoveries allowed by GW observations
from the last seven years (Sec. 1.3.2), present a non-exhaustive selection of appli-
cations that have been made thanks to these GW detections and what the future
generation of GW detectors will bring (Sec. 1.3.3)

1.3.1 GW Detection
In this section, we examine how GWs interact with point particles and how GW
templates are built, in order to understand how current ground-based GW interfer-
ometers work. We also discuss two other types of “detectors”, namely the Weber
bars, and pulsar-timing arrays.

GWs and test particles

The best way to understand how GWs are detected is to first describe how they
interact with matter. The canonical way of explaining this interaction is to consider
two test particles at rest with respect to one another in the absence of the GW.
In a system of TT coordinates 𝑥𝛼 = (𝑡, 𝑥𝑖), the spacetime interval d𝑠 between two
nearby events reads, by definition of the metric (1.7),

d𝑠2 = −d𝑡2 + (𝛿𝑖𝑗 + ℎ𝑖𝑗)d𝑥𝑖d𝑥𝑗 + 𝑂(ℎ2) . (1.24)

To observe a true physical effect of the passing of a GW, we must study physical
observables, for example, a distance or time measured operationally by an observer.
Suppose that an observer in the spacetime (1.24) sends a light ray in an arbitrary
direction, until the ray bounces off a mirror and comes back. Between these two
events (emission and reception) the observer measures, with its clock, a proper time

https://lisa.nasa.gov
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interval Δ𝜏 (on the left in Fig. 1.12). Since this is one round trip of a light ray
traveling at 𝑐 = 1, the observer defines a “proper distance” 𝐿 between themselves
and the mirror “à la Einstein-Poincaré” [21, 189]

𝐿 ≡ 1
2Δ𝜏 . (1.25)

To link the distance 𝐿 (defined as a proper time interval) to the GW (encoded in
the TT-coordinate expression of ℎ𝑖𝑗), one must appeal to two things. The spacetime
events “emission” and “reception” are, by definition, the intersections of two distinct
geodesics: a timelike one, the observer’s worldline (in blue in Fig. 1.12), and a null
one, the light ray’s path (in yellow in Fig. 1.12). Solving the geodesic equation for
the observer’s worldline is a classical exercise (see e.g. [135] or [190]). It reveals that
(1) the TT space coordinate of the observer remain constant, and (2) the TT time
coordinate along its worldline coincides with its own proper time (all this holding
at linear order in ℎ). These two properties are rather important: the former shows
that the observer does not move in the TT coordinates, even though a GW passes,
and the latter implies the key relation

Δ𝜏 = Δ𝑡 + 𝑂(ℎ2) (1.26)

between the proper time interval Δ𝜏 he measures and the TT time interval Δ𝑡
elapsed between emission and reception. Since we expect ℎ = 𝑂(10−21) for a typical
GW, we can safely work at linear order. Now, between these two events, the light
ray travels on a null geodesic, such that d𝑠2 = 0. Inserting this in (1.24), allows one
to solve the resulting equation for d𝑡 in terms of d𝑥𝑖, and integrating along the null
geodesic gives

Δ𝑡 = 2Δ𝑥(1 + 1
2ℎ𝑖𝑗𝑛𝑖𝑛𝑗) + 𝑂(ℎ2) , (1.27)

where Δ𝑥2 ≡ 𝛿𝑖𝑗Δ𝑥𝑖Δ𝑥𝑗 is the coordinate spatial distance between the two events
as measured in flat spacetime and 𝑛𝑖 is the (Euclidean) unit vector joining them,
see Fig. 1.12. In Eq. (1.27), the 2 comes from the light path being a round trip
and the 1/2 from expanding a square root to stay linear in ℎ, and Δ𝑥𝑖 is the TT
coordinate spatial distance between the two events. Since Δ𝑥 coincides with the
proper distance 𝐿0 between the observer and the mirror in flat spacetime (with
ℎ𝑖𝑗 = 0 in (1.27)), we conclude, thanks to Eqs. (1.25), (1.26) and (1.27), that the
proper distance 𝐿 between the observer and the mirror varies when a GW passes,
according to

𝐿 = 𝐿0(1 + 1
2ℎ𝑖𝑗𝑛𝑖𝑛𝑗) + 𝑂(ℎ2) . (1.28)

Given the typical waveform (1.20) of ℎ𝑖𝑗, we see from (1.28) that the distance be-
tween the test masses oscillates as the GW passes. This length variation induces a
change in the optical path that a light ray follows between the test masses. These
tiny length variations are measured by interferometry, the test masses being the
mirrors of the interferometer. We will describe the current GW interferometers and
their detection method below.
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<latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit><latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit><latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit><latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit>

bounce off 
mirror

observer's 
worldline
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worldline

reception

emission

�xi
<latexit sha1_base64="nsSRjMClPWAE+d0QZ4H3owNJX8k=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KokIeizqwWMF+4FtLJvtpF262YTdjVhC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4NfGbj6g0j+WdGSXoR7QvecgZNVa671yjMJQ8PfBuqexW3CnIIvFyUoYctW7pq9OLWRqhNExQrduemxg/o8pwJnBc7KQaE8qGtI9tSyWNUPvZ9OIxObZKj4SxsiUNmaq/JzIaaT2KAtsZUTPQ895E/M9rpya88DMuk9SgZLNFYSqIicnkfdLjCpkRI0soU9zeStiAKsqMDaloQ/DmX14kjdOK51a827Ny9TKPowCHcAQn4ME5VOEGalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8fEz+Qgw==</latexit><latexit sha1_base64="nsSRjMClPWAE+d0QZ4H3owNJX8k=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KokIeizqwWMF+4FtLJvtpF262YTdjVhC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4NfGbj6g0j+WdGSXoR7QvecgZNVa671yjMJQ8PfBuqexW3CnIIvFyUoYctW7pq9OLWRqhNExQrduemxg/o8pwJnBc7KQaE8qGtI9tSyWNUPvZ9OIxObZKj4SxsiUNmaq/JzIaaT2KAtsZUTPQ895E/M9rpya88DMuk9SgZLNFYSqIicnkfdLjCpkRI0soU9zeStiAKsqMDaloQ/DmX14kjdOK51a827Ny9TKPowCHcAQn4ME5VOEGalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8fEz+Qgw==</latexit><latexit sha1_base64="nsSRjMClPWAE+d0QZ4H3owNJX8k=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KokIeizqwWMF+4FtLJvtpF262YTdjVhC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4NfGbj6g0j+WdGSXoR7QvecgZNVa671yjMJQ8PfBuqexW3CnIIvFyUoYctW7pq9OLWRqhNExQrduemxg/o8pwJnBc7KQaE8qGtI9tSyWNUPvZ9OIxObZKj4SxsiUNmaq/JzIaaT2KAtsZUTPQ895E/M9rpya88DMuk9SgZLNFYSqIicnkfdLjCpkRI0soU9zeStiAKsqMDaloQ/DmX14kjdOK51a827Ny9TKPowCHcAQn4ME5VOEGalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8fEz+Qgw==</latexit><latexit sha1_base64="nsSRjMClPWAE+d0QZ4H3owNJX8k=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KokIeizqwWMF+4FtLJvtpF262YTdjVhC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4NfGbj6g0j+WdGSXoR7QvecgZNVa671yjMJQ8PfBuqexW3CnIIvFyUoYctW7pq9OLWRqhNExQrduemxg/o8pwJnBc7KQaE8qGtI9tSyWNUPvZ9OIxObZKj4SxsiUNmaq/JzIaaT2KAtsZUTPQ895E/M9rpya88DMuk9SgZLNFYSqIicnkfdLjCpkRI0soU9zeStiAKsqMDaloQ/DmX14kjdOK51a827Ny9TKPowCHcAQn4ME5VOEGalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8fEz+Qgw==</latexit>

�xj
<latexit sha1_base64="MLJ6I0Wlc8M0TsSkhtO6KmWtCew=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegHjxGMA9M1jA76SRjZmeXmV4xLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O7ml5ZXVtfx6YWNza3unuLtXN1GiOdR4JCPdDJgBKRTUUKCEZqyBhYGERjC8nPiNR9BGROoWRzH4Iesr0ROcoZXu2lcgkdGn+4dOseSW3SnoIvEyUiIZqp3iV7sb8SQEhVwyY1qeG6OfMo2CSxgX2omBmPEh60PLUsVCMH46vXhMj6zSpb1I21JIp+rviZSFxozCwHaGDAdm3puI/3mtBHvnfipUnCAoPlvUSyTFiE7ep12hgaMcWcK4FvZWygdMM442pIINwZt/eZHUT8qeW/ZuTkuViyyOPDkgh+SYeOSMVMg1qZIa4USRZ/JK3hzjvDjvzsesNedkM/vkD5zPHxTDkIQ=</latexit><latexit sha1_base64="MLJ6I0Wlc8M0TsSkhtO6KmWtCew=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegHjxGMA9M1jA76SRjZmeXmV4xLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O7ml5ZXVtfx6YWNza3unuLtXN1GiOdR4JCPdDJgBKRTUUKCEZqyBhYGERjC8nPiNR9BGROoWRzH4Iesr0ROcoZXu2lcgkdGn+4dOseSW3SnoIvEyUiIZqp3iV7sb8SQEhVwyY1qeG6OfMo2CSxgX2omBmPEh60PLUsVCMH46vXhMj6zSpb1I21JIp+rviZSFxozCwHaGDAdm3puI/3mtBHvnfipUnCAoPlvUSyTFiE7ep12hgaMcWcK4FvZWygdMM442pIINwZt/eZHUT8qeW/ZuTkuViyyOPDkgh+SYeOSMVMg1qZIa4USRZ/JK3hzjvDjvzsesNedkM/vkD5zPHxTDkIQ=</latexit><latexit sha1_base64="MLJ6I0Wlc8M0TsSkhtO6KmWtCew=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegHjxGMA9M1jA76SRjZmeXmV4xLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O7ml5ZXVtfx6YWNza3unuLtXN1GiOdR4JCPdDJgBKRTUUKCEZqyBhYGERjC8nPiNR9BGROoWRzH4Iesr0ROcoZXu2lcgkdGn+4dOseSW3SnoIvEyUiIZqp3iV7sb8SQEhVwyY1qeG6OfMo2CSxgX2omBmPEh60PLUsVCMH46vXhMj6zSpb1I21JIp+rviZSFxozCwHaGDAdm3puI/3mtBHvnfipUnCAoPlvUSyTFiE7ep12hgaMcWcK4FvZWygdMM442pIINwZt/eZHUT8qeW/ZuTkuViyyOPDkgh+SYeOSMVMg1qZIa4USRZ/JK3hzjvDjvzsesNedkM/vkD5zPHxTDkIQ=</latexit><latexit sha1_base64="MLJ6I0Wlc8M0TsSkhtO6KmWtCew=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegHjxGMA9M1jA76SRjZmeXmV4xLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O7ml5ZXVtfx6YWNza3unuLtXN1GiOdR4JCPdDJgBKRTUUKCEZqyBhYGERjC8nPiNR9BGROoWRzH4Iesr0ROcoZXu2lcgkdGn+4dOseSW3SnoIvEyUiIZqp3iV7sb8SQEhVwyY1qeG6OfMo2CSxgX2omBmPEh60PLUsVCMH46vXhMj6zSpb1I21JIp+rviZSFxozCwHaGDAdm3puI/3mtBHvnfipUnCAoPlvUSyTFiE7ep12hgaMcWcK4FvZWygdMM442pIINwZt/eZHUT8qeW/ZuTkuViyyOPDkgh+SYeOSMVMg1qZIa4USRZ/JK3hzjvDjvzsesNedkM/vkD5zPHxTDkIQ=</latexit>

�⌧
<latexit sha1_base64="VJThzgs61qx+ot7Q3e1XViAzQm0=">AAAB8nicdVBNSwMxEM3Wr1q/qh69BIvgaclqF9tbUQ8eK9gP2JaSTdM2NJtdklmhlP4MLx4U8eqv8ea/MdtWUNEHA4/3ZpiZFyZSGCDkw8mtrK6tb+Q3C1vbO7t7xf2DpolTzXiDxTLW7ZAaLoXiDRAgeTvRnEah5K1wfJX5rXuujYjVHUwS3o3oUImBYBSsFHSuuQSKO0DTXrFEXOJXfY9g4vrEq55npFqtlH0fey6Zo4SWqPeK751+zNKIK2CSGhN4JIHulGoQTPJZoZManlA2pkMeWKpoxE13Oj95hk+s0seDWNtSgOfq94kpjYyZRKHtjCiMzG8vE//yghQGle5UqCQFrthi0SCVGGKc/Y/7QnMGcmIJZVrYWzEbUU0Z2JQKNoSvT/H/pHnmesT1bsul2uUyjjw6QsfoFHnoAtXQDaqjBmIoRg/oCT074Dw6L87rojXnLGcO0Q84b59IIpFC</latexit><latexit sha1_base64="VJThzgs61qx+ot7Q3e1XViAzQm0=">AAAB8nicdVBNSwMxEM3Wr1q/qh69BIvgaclqF9tbUQ8eK9gP2JaSTdM2NJtdklmhlP4MLx4U8eqv8ea/MdtWUNEHA4/3ZpiZFyZSGCDkw8mtrK6tb+Q3C1vbO7t7xf2DpolTzXiDxTLW7ZAaLoXiDRAgeTvRnEah5K1wfJX5rXuujYjVHUwS3o3oUImBYBSsFHSuuQSKO0DTXrFEXOJXfY9g4vrEq55npFqtlH0fey6Zo4SWqPeK751+zNKIK2CSGhN4JIHulGoQTPJZoZManlA2pkMeWKpoxE13Oj95hk+s0seDWNtSgOfq94kpjYyZRKHtjCiMzG8vE//yghQGle5UqCQFrthi0SCVGGKc/Y/7QnMGcmIJZVrYWzEbUU0Z2JQKNoSvT/H/pHnmesT1bsul2uUyjjw6QsfoFHnoAtXQDaqjBmIoRg/oCT074Dw6L87rojXnLGcO0Q84b59IIpFC</latexit><latexit sha1_base64="VJThzgs61qx+ot7Q3e1XViAzQm0=">AAAB8nicdVBNSwMxEM3Wr1q/qh69BIvgaclqF9tbUQ8eK9gP2JaSTdM2NJtdklmhlP4MLx4U8eqv8ea/MdtWUNEHA4/3ZpiZFyZSGCDkw8mtrK6tb+Q3C1vbO7t7xf2DpolTzXiDxTLW7ZAaLoXiDRAgeTvRnEah5K1wfJX5rXuujYjVHUwS3o3oUImBYBSsFHSuuQSKO0DTXrFEXOJXfY9g4vrEq55npFqtlH0fey6Zo4SWqPeK751+zNKIK2CSGhN4JIHulGoQTPJZoZManlA2pkMeWKpoxE13Oj95hk+s0seDWNtSgOfq94kpjYyZRKHtjCiMzG8vE//yghQGle5UqCQFrthi0SCVGGKc/Y/7QnMGcmIJZVrYWzEbUU0Z2JQKNoSvT/H/pHnmesT1bsul2uUyjjw6QsfoFHnoAtXQDaqjBmIoRg/oCT074Dw6L87rojXnLGcO0Q84b59IIpFC</latexit><latexit sha1_base64="VJThzgs61qx+ot7Q3e1XViAzQm0=">AAAB8nicdVBNSwMxEM3Wr1q/qh69BIvgaclqF9tbUQ8eK9gP2JaSTdM2NJtdklmhlP4MLx4U8eqv8ea/MdtWUNEHA4/3ZpiZFyZSGCDkw8mtrK6tb+Q3C1vbO7t7xf2DpolTzXiDxTLW7ZAaLoXiDRAgeTvRnEah5K1wfJX5rXuujYjVHUwS3o3oUImBYBSsFHSuuQSKO0DTXrFEXOJXfY9g4vrEq55npFqtlH0fey6Zo4SWqPeK751+zNKIK2CSGhN4JIHulGoQTPJZoZManlA2pkMeWKpoxE13Oj95hk+s0seDWNtSgOfq94kpjYyZRKHtjCiMzG8vE//yghQGle5UqCQFrthi0SCVGGKc/Y/7QnMGcmIJZVrYWzEbUU0Z2JQKNoSvT/H/pHnmesT1bsul2uUyjjw6QsfoFHnoAtXQDaqjBmIoRg/oCT074Dw6L87rojXnLGcO0Q84b59IIpFC</latexit>
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ni
<latexit sha1_base64="uzN6+COBRgOKhPR44EdSBol5pdU=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadkVUY9BLx4jmgcka5iddJIhs7PLzKwQlnyCFw+KePWLvPk3ziYRfBYMU1R1090VJoJr43nvTmFhcWl5pbhaWlvf2Nwqb+80dJwqhnUWi1i1QqpRcIl1w43AVqKQRqHAZji6yP3mHSrNY3ljxgkGER1I3ueMGitdy1veLVc898TLQX4T353+XgXmqHXLb51ezNIIpWGCat32vcQEGVWGM4GTUifVmFA2ogNsWypphDrIpqtOyIFVeqQfK/ukIVP1a0dGI63HUWgrI2qG+qeXi3957dT0z4KMyyQ1KNlsUD8VxMQkv5v0uEJmxNgSyhS3uxI2pIoyY9Mp2RA+LyX/k8aR63uuf3VcqZ7P4yjCHuzDIfhwClW4hBrUgcEA7uERnhzhPDjPzsustODMe3bhG5zXD2oJjd8=</latexit><latexit sha1_base64="uzN6+COBRgOKhPR44EdSBol5pdU=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadkVUY9BLx4jmgcka5iddJIhs7PLzKwQlnyCFw+KePWLvPk3ziYRfBYMU1R1090VJoJr43nvTmFhcWl5pbhaWlvf2Nwqb+80dJwqhnUWi1i1QqpRcIl1w43AVqKQRqHAZji6yP3mHSrNY3ljxgkGER1I3ueMGitdy1veLVc898TLQX4T353+XgXmqHXLb51ezNIIpWGCat32vcQEGVWGM4GTUifVmFA2ogNsWypphDrIpqtOyIFVeqQfK/ukIVP1a0dGI63HUWgrI2qG+qeXi3957dT0z4KMyyQ1KNlsUD8VxMQkv5v0uEJmxNgSyhS3uxI2pIoyY9Mp2RA+LyX/k8aR63uuf3VcqZ7P4yjCHuzDIfhwClW4hBrUgcEA7uERnhzhPDjPzsustODMe3bhG5zXD2oJjd8=</latexit><latexit sha1_base64="uzN6+COBRgOKhPR44EdSBol5pdU=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadkVUY9BLx4jmgcka5iddJIhs7PLzKwQlnyCFw+KePWLvPk3ziYRfBYMU1R1090VJoJr43nvTmFhcWl5pbhaWlvf2Nwqb+80dJwqhnUWi1i1QqpRcIl1w43AVqKQRqHAZji6yP3mHSrNY3ljxgkGER1I3ueMGitdy1veLVc898TLQX4T353+XgXmqHXLb51ezNIIpWGCat32vcQEGVWGM4GTUifVmFA2ogNsWypphDrIpqtOyIFVeqQfK/ukIVP1a0dGI63HUWgrI2qG+qeXi3957dT0z4KMyyQ1KNlsUD8VxMQkv5v0uEJmxNgSyhS3uxI2pIoyY9Mp2RA+LyX/k8aR63uuf3VcqZ7P4yjCHuzDIfhwClW4hBrUgcEA7uERnhzhPDjPzsustODMe3bhG5zXD2oJjd8=</latexit><latexit sha1_base64="uzN6+COBRgOKhPR44EdSBol5pdU=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadkVUY9BLx4jmgcka5iddJIhs7PLzKwQlnyCFw+KePWLvPk3ziYRfBYMU1R1090VJoJr43nvTmFhcWl5pbhaWlvf2Nwqb+80dJwqhnUWi1i1QqpRcIl1w43AVqKQRqHAZji6yP3mHSrNY3ljxgkGER1I3ueMGitdy1veLVc898TLQX4T353+XgXmqHXLb51ezNIIpWGCat32vcQEGVWGM4GTUifVmFA2ogNsWypphDrIpqtOyIFVeqQfK/ukIVP1a0dGI63HUWgrI2qG+qeXi3957dT0z4KMyyQ1KNlsUD8VxMQkv5v0uEJmxNgSyhS3uxI2pIoyY9Mp2RA+LyX/k8aR63uuf3VcqZ7P4yjCHuzDIfhwClW4hBrUgcEA7uERnhzhPDjPzsustODMe3bhG5zXD2oJjd8=</latexit>

L0
<latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit><latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit><latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit><latexit sha1_base64="7SJz/ge3zVR18iZxERtlX3a5tS8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiGXQxsIiovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9mfvuJayNi9YiThPsRHSoRCkbRSg93fbdfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NQpObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYZXfiZUkiJXbLEoTCXBmMz+JgOhOUM5sYQyLeythI2opgxtOiUbgrf88ippXVQ9t+rdX1bq13kcRTiBUzgHD2pQh1toQBMYDOEZXuHNkc6L8+58LFoLTj5zDH/gfP4AxxWNcw==</latexit>

Figure 1.12: Spacetime diagram showing the geometry of a distance measurement in presence of
a GW. The distance 𝐿 of (1.28) is defined as (half) the proper time interval Δ𝜏 measured by an
observer (left), while he waits for the return of the light ray that bounces off a mirror (right). This
measurement can be compared to the Euclidean distance 𝐿0 measured in the flat spacetime when
there was no GW (bottom).

GW templates and matched filtering

Reducing the noise in the GW detectors is a considerable effort, but still insufficient
to detect a GW. Indeed, except for very loud (and thus rare) events, the GW signal
is usually hidden in the detector’s output. In order to extract the GW data, a
systematic search is performed using a technique called matched filtering, which we
now describe briefly. See otherwise [135] and references therein for details.

The first step in realizing this program is to solve the Einstein equation. More
precisely, we need to know as accurately as possible the potential signals ℎ(𝑡) that
may be coming from a given source of GW. Depending on the physical parameters
of the source (e.g., masses, spins, orbital parameters, etc for compact objects) a the-
oretical/numerical work allows theoretical physicists to build these GW templates.
They are theoretical signals, solution to the Einstein equation, obtained by a com-
bination of approximation schemes and numerical methods. In particular, focusing
on compact binaries, the tools available to theoreticians are:

• post-Newtonian (PN) expansions [144,191–194], which aim at solving the Ein-
stein equation in an expansion with respect to the small parameter 𝜖 ≡ 𝑣2/𝑐2,
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where 𝑣 is the typical orbital velocity of the source. This method allows one
to express various quantities of interest at a given order in 𝜖, for example the
equations of motion of the binary, from which one can extract the binding
energy 𝐸; and the metric perturbation ℎ𝑎𝑏 far away from the source, allowing
one to compute the GW energy flux ℱ . GW templates are then constructed
adiabatically, i.e., by stitching together multiple circular orbits24 of decreas-
ing orbital radii (see Chap. 3 for details). In particular, if both 𝐸 and ℱ
are known at some given PN order for a circular orbit of orbital frequency
Ω, then the balance equation ̇𝐸(Ω) = −ℱ(Ω) can be integrated to find the
evolution of the orbital phase, as: 𝜙 ≡ ∫ Ωd𝑡 = − ∫ Ω(d𝐸/dΩ)ℱ(Ω)−1dΩ.
Since 𝑣/𝑐 ≃ 𝐺𝑀/𝐿𝑐2 for self-gravitating binary systems with total mass 𝑀
and separation 𝐿 (thanks to the virial theorem), the PN formalism is partic-
ularly adapted for describing the inspiral phase of compact binaries, where
the separation 𝐿 remains large compared to the object’s proper size and the
orbital speed remains small 𝑣 ≪ 𝑐. For up to date, state-of-the-art PN results,
see [195].

• black-hole perturbation techniques, are based on the idea that some relativistic
systems are close to an isolated BH, and look for solutions to the Einstein
equation as the sum of a BH metric plus a small perturbation. Two important
applications are: the gravitational self-force (GSF) theory [196,197,197–199],
and quasi-normal modes (QNM) analysis [200–202]. The former applies to
EMRIs: one expands the perturbation ℎ𝑎𝑏 in powers of the small mass ratio,
and derives both the metric and the equation of motion of the small body
in the BH spacetime background (see Sec. 2.2.4). This method covers the
inspiral up to the plunge, as well as the ring-down of the binary, but is limited
to EMRIs (mass ratio ≃ 10−7 −10−4)25. The gravitational waveforms are then
computed directly from the metric perturbation ℎ𝑎𝑏. In practice, the linear
order perturbation is sufficient for GW detection but second order results
will be necessary for parameter estimation. QNM theory aims at computing
the relaxing modes of a vacuum metric representing an isolated, perturbed
BH. This perturbation, encoded in the vacuum metric, can be used to derive
the waveform of the ring-down (post-merger) of binary inspirals, or of BH
collisions.

• numerical relativity (NR) consists in solving the Einstein equation numeri-
cally, typically by decomposing it into a 3+1 space/time system of partial
differential equations. Since the simultaneous breakthrough in the early 2000s
by independent groups [208–210], NR is able to simulate efficiently the for-
mation and ring-down of a Kerr BH after the merger of two smaller ones. As
of today, different NR groups release waveform banks that cover most of a
binary’s coalescence, including spins and eccentricities [211–213]. Although

24PN theory has also been developed to handle eccentric orbits, in which case one also needs to
rely on the balance of angular momentum in addition to the balance of energy.

25Although a number of recent results seem to converge on the fact that GSF theory may very-
well hold for mass ratios that are not that small (for the so-called intermediate mass ratio inspirals
(IMRIs), with mass ratio ≃ 10−4 − 10−2), or even with mass ratio flirting with unity [203–207].
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it has a priori no intrinsic physical limitations (no approximation scheme is
involved), the computational cost is the limiting factor for this method, which
is still complementary to other analytical approximation schemes. References
for current state-of-the art results of NR may be found in Sec. 4 of [96] and
references therein.

As we mentioned, these methods are particularly relevant to a portion of the
whole coalescence, and/or to a subclass of sources. Consequently, to obtain com-
plete waveforms that span the early inspiral up to the ring-down, effective and phe-
nomenological schemes, among which the effective-one-body (EOB) model [214,215]
and the Phenomenological (Phenom) formalism [216], are used. The EOB formal-
ism consists in mapping the true metric of a relativistic two-body system to that of
an effective metric, parametrized by the binary’s physical characteristics (masses,
spin, …). The model was initially introduced by Alessandra Buonanno and Thibault
Damour in [217, 218] and has since been successful at modelling binary systems
with a wide range of parameters. By construction, the EOB dynamics reduce to
the geodesic motion of a test particle in a Schwarzschild background in the extreme
mass-ratio limit, and to the Newtonian 2-body dynamics in the weak-field/small-
velocity limit. Beyond these two cases, the EOB formalism needs to be “calibrated”
using a combination of results from NR, GSF and PN expansions. EOB is able
to provide “factorized” waveforms for the whole coalescence of a binary system, by
smoothly stitching together the inspiral-plunge and merger-ring-down waveforms.
As such, the EOB framework plays a central role in the detection of GW events by
current ground-based detectors [219,220]. The Phenom model [216] is based on the
simple idea that a GW signal, however complicated, may always be written in the
form ℎ(𝑓, ⃗𝑝) = 𝐴(𝑓, ⃗𝑝) exp(𝑖Φ(𝑓, ⃗𝑝)), with 𝐴 the amplitude and Φ the phase of the
waveform, that depend on the instantaneous frequency 𝑓 and a set of physical and
phenomenological parameters encoded in the vector ⃗𝑝. These parameters are fixed
by comparing with other frameworks (PN, GSF) and/or calibrating with NR results.
Both the EOB and Phenom schemes are now able to include spin precession, orbital
eccentricity as well as tidal effects. Details and references may be found in Sec. 6
of [96]).

An overview and historical perspective results for all these schemes can be found
in the review [221]. It should be noted that, although all these methods have strength
and weaknesses, they are not limited to some well-defined number of contexts, but
rather overlap in their application range. What’s more, we find in the literature
a number of studies that conducted comparison between all these approximation,
numerical and effective schemes, essentially showing agreement between all methods
whenever they can be compared [204, 222, 223].

Once GW templates have been constructed, they are stored into GW template
banks, which are regularly updated and improved. These templates depend on
intrinsic parameters that enter the source’s description: masses, spins, and other
geometric parameters: location in the sky, orientation with respect to the detector
etc. These waveform banks are crucial for the detection of the GW itself, as they al-
low (1) to extract the GW from the noisy detector’s output by making a systematic
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eLISA: Astrophysics and cosmology in the millihertz regime
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Figure 24: Segments of generic EMRI waveforms (Drasco and Hughes, 2006). These are the plus-polarised waves
produced by a test mass orbiting a 106M� black hole that is spinning at 90 % of the maximal rate allowed by general
relativity, a distance D from the observer. Top panel: Slightly eccentric and inclined retrograde orbit modestly far from
the horizon. Bottom panel: Highly eccentric and inclined prograde orbit much closer to the horizon. The amplitude
modulation visible in the top panel is mostly due to Lense-Thirring precession of the orbital plane. The bottom panel’s
more eccentric orbit produces sharp spikes at each pericentre passage.
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eccentric BH binary

Figure 1.13: This diagram shows the different types of GW sources. The horizontal location
determines the (order of magnitude of) the waveform duration in LIGO-Virgo-Kagra, with transient
sources (compact binary mergers and CCSN) on the left, and persistent (i.e., continuous) sources
on the right. The vertical location determines the degree of effectiveness of the two main detection
techniques: matched filtering method for the top (phase-fitting with GW template, adapted for
long-lasting, slowly varying waveforms) and the coherence method (looking for coherent, excess
power in several detectors, most effective for erratic signals). Note that intermediate-mass BH
binaries are in between the two. Source: adaptation from private communications with Jess McIver
and David Shoemaker.

search (see below), and (2) estimate the source’s parameters with best confidence
once the GW signal is extracted.

The second step is to analyze the detector’s output signal and extract the GW
data. To illustrate, let us think of the detector’s output as a superposition ℎ(𝑡)+𝑛(𝑡),
of a “true” GW signal ℎ(𝑡) and some random noise 𝑛(𝑡). Even with all the noise
reduction techniques involved in the detectors, one typically has |ℎ| ≪ |𝑛|, so that
the GW signal is hidden in the output. Thankfully, there exists a detection method
called “matched filtering” that is tailored to the situation, taking advantage of the
fact that (1) the GW and the noise have very different frequency characteristics
(the GW has a well-defined, regularly evolving frequency whereas the noise is er-
ratic with a wide range of frequencies), and that (2) we do know what kind of ℎ(𝑡) to
expect from typical sources, thanks to GW templates. In a word, matched filtering
consists in comparing a GW template to the detector’s output and compute the
cross-correlation between them. The higher the correlation, the stronger our con-
fidence in having detected a GW signal. If the same template accounts for several
different detectors, then there is no doubt that a GW has passed. Matched filter-
ing is a very elegant detection technique which we briefly describe below, referring
to [135] for details and [224] for an introduction to other approaches in GW detection.

Let us think of the detection as a linear process with some given transfer function
𝒟(𝜔) (Fourier-domain equivalent of its impulse response). In order to know if some
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GW signal ℎ(𝑡) is present in the detector’s output, one constructs the signal-to-noise
ratio (SNR) classically, as

SNR[𝒟] ≡ 𝑆
𝑁 , 𝑆 ≡ ∫

ℝ
𝒟(𝜔)ℎ̃(𝜔)d𝜔 , 𝑁2 ≡ ∫

ℝ
|𝒟(𝜔)|2𝑆𝑛(𝜔)d𝜔 , (1.29)

where 𝑆 is the output power of the filtered GW signal 𝒟(𝜔)ℎ̃(𝜔) (recall that time-
convolution is equivalent to Fourier multiplication), and 𝑁2 is the output power of
the filtered noise, described by its power spectral density 𝑆𝑛(𝜔). To check whether
the GW ℎ(𝑡) is in the output, we want to make SNR[𝒟] maximal. To this end, we can
try different transfer functions, or filters 𝒟, but then the question becomes: which
𝒟 will maximise the value 𝑆/𝑁? An elegant solution to this (classical) optimization
problem is obtained by writing (1.29) into a form that involves a scalar product.
Indeed, if we control the typical noise entering the detector (and thus its 𝑆𝑛) we can
define for any two complex functions ( ̃𝑓, ̃𝑔) a positive definite scalar product by

( ̃𝑓 | ̃𝑔) ≡ ∫
ℝ

̃𝑓(𝜔)∗ ̃𝑔(𝜔) d𝜔
𝑆𝑛(𝜔) ⇒ SNR[𝒟] = (𝒟 𝑆𝑛 | ℎ)

||𝒟 𝑆𝑛|| (1.30)

with || ̃𝑓 ||2 ≡ ( ̃𝑓 | ̃𝑓). The expression for the SNR on the right of (1.30) is par-
ticularly appealing, and one may even say that it already contains the solution
to the maximization problem. Indeed, let us recall the Cauchy-Schwarz inequality
( ̃𝑓 | ̃𝑔) ≤ || ̃𝑓|| || ̃𝑔||, with equality if and only if ̃𝑓 ∝ ̃𝑔. Applying this to the right-
hand side of (1.30), we readily conclude that the SNR is always bounded above by
||ℎ||. Moreover, from the equality case we find that this bound ||ℎ|| is the SNR’s
maximum, reached when 𝒟𝑆𝑛 ∝ ℎ̃. In other words,

SNRmax ≡ √∫
ℝ

|ℎ̃(𝜔)|2
𝑆𝑛(𝜔) d𝜔 , obtained when 𝒟(𝜔) ∝ ℎ̃(𝜔)

𝑆𝑛(𝜔) . (1.31)

To summarize, when some GW enters the detector, the output is a noisy signal,
with a low SNR. Heuristically, one can think of matched filtering as sliding thou-
sands of stencils over the output and finding the best matching one. In practice,
this amounts to trying many different filters: one explores the GW templates bank
(using a standard MCMC method) to try and find the filter with the highest SNR.
By construction, this template must be very close to the real GW (in the sense of
the above scalar product). If 𝑛(𝑡) were a white noise, then 𝑆𝑛 would be constant,
and therefore the best filter would be the GW signal itself (recall (1.31)). In general,
𝑛(𝑡) is much richer than white noise, and the integration measure d𝜔/𝑆𝑛(𝜔) acts as
a weight that dictates which frequencies should be tuned up or down in the filter so
as to maximize the SNR. An illustration of this GW extraction from a noisy signal
is depicted in Fig. 1.14, with signals taken in the second detection of GWs by the
LIGO interferometers [225].

Lastly, we should mention that matched filtering only works well for signals that
are well-modeled, so as to give enough time for the matching to align the template
with the true signal in order to produce a large SNR. For example, strongly mod-
ulated GW signals, such as those produced by highly eccentric orbits are currently
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Figure 1.14: Top row: (slightly filtered) strain data from the detectors output. In black, the
best-match template is presented, whose amplitude lies way below the noise level [225].

not well-modeled to be detected via matched filtering. Less predictable signals, such
as short-lasting “burst” produced by CCSN, rely on other detection methods, typi-
cally a search for coherent GW power across the detectors network. Recent readout
techniques, involving for example deep-learning algorithms [177] or the so-called
balanced homodyne schemes [226] are being developed and are very promising, in
particular for the new generations of detectors.

Terrestrial GW interferometers

From Eq. (1.28), we see that the typical relative displacement (𝐿 − 𝐿0)/𝐿0 to be
measured is of the order of the GW amplitude ℎ. Even for a rest length 𝐿 ≃ 1
km, already Δ𝐿 ≃ 10−18 for a typical binary system GW, which is smaller than a
thousand of an atom’s radius. Measuring such a relative variation in distances is
a remarkable challenge. To achieve such, light rays are sent to bounce back and
forth between the test masses, which are realized by suspended mirrors. Since the
distance between these mirrors changes with time, so does the optical path for the
light ray, which naturally calls for laser interferometry. Today’s GW detectors are
therefore nothing but giant interferometers. More precisely, a single laser is split in
two, thanks to a semi-reflecting lens, and injected into two perpendicular, km-long
vacuum tubes. At the end of both arms, a suspended mirror reflects the laser, which
is then recombined26. This recombination between two coherent rays creates an in-
terference pattern whenever the optical path differs between the two: one obtains
an output of typical amplitude 10−21, which encodes all sources of noise as well as
a potential GW signal.

The mirrors are suspended to an ingenious system of pendulums to (1) counter-
act Earth gravity and make it a virtually free-falling particle, and (2) isolate against
seismic noise. Speaking of noise, there lies the most challenging aspect of GW detec-

26In practice, the light makes around 150 round trips in the vacuum cavity thanks to additional
mirrors to make one Fabry-Perrot cavity in each arm, before being recombined. This effectively
enhances the length of the detector’s arms
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Figure 1.15: Left: exterior view of the Virgo observatory, with the Alpes in the background.
Visible are the two perpendicular, 3km-long arms extending from the main building. Credit:
Nicola Baldocchi. Right: the 40 kg mirror (bottom) in the LIGO detetctor, suspended by silica
fibers to the seismic noise-reducing pendulum system (top). Credit: LIGO.

tion at the technical level: GW detectors have to be able to distinguish between a
GW signal and all sorts of noise. Current detectors have a sensing bandwidth from
tens to thousands of Hertz. At low frequency (between 10 and 50 Hz), the noise is
dominated by scattered light and seismic activity, while quantum noise dominates
high frequencies (above 700 Hz) noise. See [227,228] for the different types of noise,
and how they can be controlled/reduced in the LIGO [229] and Virgo [230] detec-
tors27.

As of July 2021, six independent such interferometers are dedicated to the de-
tection of GWs and are active. The three most important make the so-called LVK
collaboration: the two Advanced LIGO observatories (based in the USA), the Ad-
vanced Virgo detector (based in Italy) (cf. Fig. 1.15) and the KAGRA detector
(based in Japan). The other three AIGO (Australia), CLIO (Japan), and GEO600
(Germany) have a much lower sensibility than LVK but have been essential to the
development and improvement of their technology.

Resonant mass detectors

Although the first indirect observation of GWs dates from 1974, we find in the lit-
erature as soon as 1969 an article published by Joseph Weber [233], announcing the
first direct detection of GWs using an apparatus invented by himself [234] and today
known as a “Weber bar”. This detection technique consists in tuning the resonant
frequency of a metal mass around 1kHz, a frequency associated to a number of GW
sources. Typically, these bars are 1m-long, 30cm wide cylinders made of aluminum-
alloys, and thus weight a few tons. As a GW passes, it squeezes/extends the bar
slightly (recall Eq. (1.28)), and these contractions are captured by a clever read-out

27See [231] for a noise hunt in the detector’s output, showing how external sources such as wind,
ocean waves, human activity, airplanes, thunderstorms, helicopters, etc couple to the detector.
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of the detectors, the waveforms of GW150914,
GW151226, and LVT151012 are also shown. The expected
signal-to-noise ratio (SNR) ρ of a signal, hðtÞ, can be
expressed as

ρ2 ¼
Z

∞

0

ð2j ~hðfÞj
ffiffiffi
f

p
Þ2

S nðfÞ
d lnðfÞ; ð1Þ

where ~hðfÞ is the Fourier transform of the signal. Writing it
in this form motivates the normalization of the waveform
plotted in Fig. 1, as the area between the signal and noise
curves is indicative of the SNR of the events.
The gravitational-wave signal from a BBH merger takes

the form of a chirp, increasing in frequency and amplitude
as the black holes spiral inwards. The amplitude of the
signal is maximum at the merger, after which it decays
rapidly as the final black hole rings down to equilibrium. In
the frequency domain, the amplitude decreases with fre-
quency during inspiral, as the signal spends a greater
number of cycles at lower frequencies. This is followed
by a slower falloff during merger and then a steep decrease
during the ringdown. The amplitude of GW150914 is
significantly larger than the other two events, and at the
time of the merger, the gravitational-wave signal lies well
above the noise. GW151226 has a lower amplitude but
sweeps across the whole detector’s sensitive band up to
nearly 800 Hz. The corresponding time series of the three
waveforms are plotted in the right panel of Fig. 1 to better
visualize the difference in duration within the Advanced
LIGO band: GW150914 lasts only a few cycles, while
LVT151012 and GW151226 have lower amplitudes but last
longer.
The analysis presented in this paper includes the total set

of O1 data from September 12, 2015 to January 19, 2016,

which contain a total coincident analysis time of 51.5 days
accumulated when both detectors were operating in their
normal state. As discussed in Ref. [13] with regard to the
first 16 days of O1 data, the output data of both detectors
typically contain nonstationary and non-Gaussian features,
in the form of transient noise artifacts of varying durations.
Longer duration artifacts, such as nonstationary behavior in
the interferometer noise, are not very detrimental to CBC
searches as they occur on a time scale that is much longer
than any CBC waveform. However, shorter duration
artifacts can pollute the noise background distribution of
CBC searches. Many of these artifacts have distinct
signatures [49] visible in the auxiliary data channels from
the large number of sensors used to monitor instrumental or
environmental disturbances at each observatory site [50].
When a significant noise source is identified, contaminated
data are removed from the analysis data set. After applying
this data quality process, detailed in Ref. [51], the remain-
ing coincident analysis time in O1 is 48.6 days. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data to 46.1 days for the PyCBC
analysis and 48.3 days for the GstLAL analysis.

III. SEARCH RESULTS

Two different, largely independent, analyses have been
implemented to search for stellar-mass BBH signals in the
data of O1: PyCBC [2–4] and GstLAL [5–7]. Both these
analyses employ matched filtering [52–60] with waveforms
given by models based on general relativity [8,9] to search
for gravitational waves from binary neutron stars, BBHs,
and neutron star–black hole binaries. In this paper, we
focus on the results of the matched-filter search for BBHs.

FIG. 1. Left panel: Amplitude spectral density of the total strain noise of the H1 and L1 detectors,
ffiffiffiffiffiffiffiffiffi
S ðfÞ

p
, in units of strain per

ffiffiffiffiffiffi
Hz

p
,

and the recovered signals of GW150914, GW151226, and LVT151012 plotted so that the relative amplitudes can be related to the SNR
of the signal (as described in the text). Right panel: Time evolution of the recovered signals from when they enter the detectors’ sensitive
band at 30 Hz. Both figures show the 90% credible regions of the LIGO Hanford signal reconstructions from a coherent Bayesian
analysis using a nonprecessing spin waveform model [48].
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Figure 1.16: The left figure shows the amplitude spectral density of the total strain noise of both
LIGO detectors, along with the path followed by the three most significant events, during the O1
run. By construction, the SNR of each event can be read as the area between these paths and
the noise curves. On the right, the (recovered) time evolution of these three signals is depicted,
starting at around 30Hz when they enter. Notice the different duration of the signals and the
unexpected “loudness” of the very first event, GW150914. Source: [232].

electro-mechanical system called a “resonant transducer” [135]. By construction,
although this apparatus has a very narrow frequency range (few hundred Herz),
cooling and isolating systems allow to reach formidable sensitivity and are able to
measure length changes of order 10−19 − 10−18m. This sensitivity should be suf-
ficient to detect events that are very loud and close, typically in our galaxy, i.e., rare.

Following Weber’s pioneering works, many other teams launched similar experi-
ments around the world until the 1980s [235], making the so-called second genera-
tion of resonant-mass experiments. However, Weber’s discovery was never replicated
and is nowadays considered to be due to noise28. The third generation of resonant-
mass detectors, which include the Mario Schenberg GW Antenna [237] (based in
Brazil) and the MiniGRAIL Gravitational Radiation Antenna [238, 239] (based in
the Netherlands), use spherical designs and are cooled down at the mK level, allow-
ing one to reach peak sensibilities of order 10−21 − 10−20 [240].

Pulsar timing arrays

We have seen in earlier paragraphs that binary pulsars allowed the first (indirect)
detection of GWs, in particular thanks to the remarkable stability of their period
which ranges from about 1.4ms to 30ms. Today we observe hundreds of such pul-
sars and control the arrival time of the pulses with an accuracy of microseconds
for up to several decades into the future. Consequently, any latency in the arrival
times means that something happened to the pulse as it was traveling towards us.
If this “something” is a passing GW, then this should be reflected in the arrival
timings of several pulsars, and one expects a coherent shift in the arrival times,
depending on the GW’s direction, frequency and amplitude. The pioneering calcu-
lations on the effect a GW has on a pulse propagating from a pulsar to Earth date

28I recommend taking a look at Janna Levin’s marvellous book Black Hole Blues and Other
Songs from Outer Space [236]. Chapter 5 tells the story of Weber’s experiment and its outcome(s).
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from the 1970s [241, 242]. Measuring the arrival times of various pulsars allows,
through a cross-correlation analysis, to disentangle the residuals from a potential
GW signal. PTAs will be able to measure GW signals from isolated SMBH and GW
backgrounds, either cosmological or astrophysical (typically from unresolved SMBH
binaries).

Today, three major PTAs exist: the European PTA Consortium [243], the Parkes
PTA [244] (Australian) and the NanoGRAV [245] (North-American). Together with
Indian PTA Project [246], they make the International PTA (IPTA) [247], while
promising new PTA projects are emerging in China and South Africa (see references
in [248]). Updated data releases have recently been published [249–251] and provide
more constraints on GW backgrounds. As more binary pulsars are discovered and
new telescopes are added to the collaboration, the range and sensitivity of PTAs
will improve. In this context, the Square-Kilometer-Array telescope [252,253], which
should be operational this decade, is expected to drastically improve GW searches
by PTAs.

1.3.2 Seven years in
As of today, the LIGO and Virgo detectors are the only detectors to have directly
measured GWs. Although they had been observing for more than a decade, these
GW observations were made possible thanks to the “advanced” design of the de-
tectors, which benefited from many improvements technological compared to the
original ones. The nomenclature for these GW events is of the form “GWYYM-
MDD” with the date YYMMDD29. The first two runs (period when the detectors
are online and actively looking for GWs), went from September 2015 to January
2016 (O1), and November 2016 to August 2017 (02), with Virgo joining the two
LIGO detectors at the end of O2. During O1 and O2, the LIGO-Virgo collabora-
tion observed 11 GW signals [255], 10 of which were produced by the coalescence of
binary BHs, and 1 from a NS merger. The first part of the third run, O3a, spanned
April to September 2019 and added 39 GW events, bringing the GW catalog to a
total of 50 detections [254]. Although observations stopped officially on March 2020
due to the COVID-19 pandemic, the O4 run will hopefully start in late 2022 with
the KAGRA detector joining and many improvements made to LIGO-Virgo.

During the first seven years of gravitational astronomy, a remarkable diversity
of GW events have been observed. Without exception, all of these detections are
compatible with GR, which underwent (yet again!) a number of unprecedented
tests in the radiative sector and strong field regime. In addition to validating com-
pact binary models and raising new questions as to their formation channels, these
observations allowed measurements of key GW features, such as their speed, their
polarization state, multipolar structure (GW harmonics), etc. In what follows we
present a non-exhaustive selection of six of the most interesting GW events detected

29The new nomenclature will also include UTC time of detection [254], in the form GWYYM-
MDD_HHMMSS, (Hour-Minute-Second), as several events are expected to be detected on the
same day, in the near future.



44 1.3. A NEW ASTRONOMICAL ERA

so far. All data and companion papers are conveniently available on the dedicated
page [256] on the LIGO website.

The first one: GW150914

Ninety-nine years and three months. This is the time that passed between Einstein’s
first publication on GWs (June 9, 1916) and their first direct detection by the LIGO
interferometers (September 14, 2015) [159]. This GW event lasted 0.2 seconds,
and encompasses the inspiral, merger, and subsequent final black hole ring-down.
The two LIGO detectors observed the same signal 6.9 milliseconds apart, which
corresponds to the light-time taken by the GW to travel between their respective
location in Handford and Linvingston. The waveform is perfectly compatible with
predictions of GR, as that emitted by a binary system of black holes of 36 and
29 Solar masses, at a luminosity distance of 410 Mpc30. It confirmed at once the
existence of GW, of binary BHs, of BH mergers, and BHs with masses much higher
than those inferred from X an gamma-ray observations. Most remarkably, this
detection was registered just before the actual start of the first observing run O1.
The strain from the detector shows a very loud event (SNR of 24), and the GW
waveform is visible by eye (see Fig. 1.17).

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Figure 1.17: The digure shows the gravitational waveforms extracted from the output of the two
LIGO detectors (Handford on the left, Linvingston on the right) for the first ever GW event,
GW150914. On the top, the direct, filtered strain. On the bottom, reconstructed waveforms are
shown, obtained with the best parameters extracted from the signal. Source: [159].

The collaborative one: GW170814

Virgo joined the LIGO detectors at the end of O2, on August 1, 2017. Thirteen
days later, the three detectors conjointly observed a GW signal compatible with
that emitted by a BH binary located 540 Mpc away, of 30 and 25 Solar masses [258].
The signal is again visible by eye, especially in the LIGO detectors which presented
at the time a better sensitivity and noise reduction system (see figure 2 in [258]). The
delay between the detection (8 ms for Linvingston-Handford, and 12 ms between
Linvingston-Virgo) is again compatible with the speed of light, as predicted by
GR the three-detectors network allow for a much more precise localization of the

30See [257] for a first principles, pedagogical derivation of these parameter estimates.
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source on the sky. The most important feature of this detection is the ability to
measure the polarization of the GW. Technically, the polarization could not be
measured accurately by the LIGO detectors only because of their very small relative
orientation. Thanks to Virgo, it was possible to show that the measurement strongly
favors GR and its two-polarization prediction.

Figure 1.18: This figure shows the first three-detector detection, GW170814, with different char-
acteristics of the signal as a function of time: SNR at the top, power in time-frequency domain in
the middle, and the reconstructed waveforms on the bottom. Source: [258].

The bright one: GW170817

Three days after the first three-detectors detection, we witnessed one of the most
incredible scientific events in history: the joint detection of GWs from a binary NS
merger along with its EM counterpart. On August 17, 2018 LIGO-Virgo detect31

a very loud signal (SNR of 32.4). Lasting for more than 100 seconds, it was iden-
tified through matched filtering with that of a binary NS merger [259]. Thanks to
triangulation, the location of the source was confined in a 31 deg2 region on the
sky, at a distance of 40 Mpc. The signal was compatible with a binary NS merger
with masses constrained between 0.86 and 2.26 Solar masses. But then, around 1.7s
after GW170817, the Fermi telescope observed a gamma-ray burst (RB170817A) in
the same direction. Much like an Earth-wide treasure hunt32, the updated, 28 deg2

localization map was issued publicly and a wide observation campaign began. Less
than 11 hours after the merger, an optical transient was detected in the NGC 4993
galaxy by the SWOPE telescope. During the following days, more than a hundred
telescopes across the seven continents observed the event, and data was collected

31In fact, Virgo, although fully operational, did not see anything of this event. This indicates
that the source was in the detector’s blind direction (i.e. the GW produced the same displacement
in both arms of the detector) which helped to find its location in the sky.

32This analogy works pretty well since it has been reported that an exceedingly large amount
of gold (between 3 and 13 Earth masses !) was produced during this event [260].
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in the whole EM spectrum [261]. This event is, to date, the most fruitful multi-
messenger observation and has had a tremendous impact in astronomy, cosmology
and virtually all branches related to astrophysics.

Figure 1.19: This figure shows key features of the NS merger event GW170817. In the left panel,
as a time series, the lightcurves (number of gamma photons per unit of time) of the Fermi telescope
(top and middle). The black vertical line corresponds the merging of the NSBH binary, as indicated
by the tip of the GW frequency curve (bottom). We see that the peak of gamma photons arrives
less than 2 seconds after merger. On the right panel, the colored patches show the localization of
the source from different instruments. The inset magnifies the location of the host galaxy NGC
4993 before (bottom) and after (top) the event, in visible light. Sources: [261,262].

The massive one: GW190521

With the GW190521 event, the first observation of an intermediate mass BH was
made. These objects have a mass above the 100 Solar mass threshold, a number
not favored by current stellar collapse models, making it particularly interesting.
The signal was emitted by two BHs of 85 and 66 that merged into one of 142 Solar
masses [263,264]. The signal detected from this coalescence is unlike those described
above, as can be seen in Fig. 1.20. Indeed, these massive systems merge at lower
orbital frequencies, which means they are very close to merger when they enter the
detector’s bandwidth, giving only a few cycles. These events are thus less sensitive
to matched filtering methods (that work best for long-duration signals) [228]. The
85 Solar mass BH belongs to the so-called “second mass gap” produced by pair-
instability supernovae processes. Explaining the formation channels that lead to
such BH populations remains a challenge today, and GW astronomy provides a way
of estimating these merger rates and thus discriminate between formation models
[96].

The strange one: GW190814

On August 14, 2019, GWs from a compact binary system were observed by the
LIGO-Virgo detectors [265]. The system is composed of a 23 Solar masses BH of
with a smaller object, between 2.50 and 2.67 Solar masses. This object is rather
unexpected: on the one hand standard NS models prevent them from being that
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Figure 1.20: This figure shows the three time-domain strains from the LIGO-Virgo detectors during
the event GW190521, with reconstructions of the signal superimposed over the data (light-blue).
Notice the small number of cycles in this waveform, due to the larges masses of the components.
Source: [263].

massive [100], on the other such a small BH has never been observed before with EM
observations. The nature of this secondary object remains somewhat of a mystery
to this day, as most known formation mechanisms do not account for compact
objects within this so-called “first mass gap”, between massive NSs 2.2𝑀⊙ and
low-mass BHs (≃ 5𝑀⊙).33 Another important feature of this event is its mass ratio
of 0.11, making it the most asymmetric binary observed to date. This property
allowed to resolve, with very high confidence, the signature of the subdominant
mode of the GW multipolar structure. For this event, the subdominant (ℓ, 𝑚) =
(3, 3) mode was clearly visible alongside the dominant, quadrupolar mode (ℓ, 𝑚) =
(2, 2), at 1.5 times its frequency34 (see [266] for explanations). This higher-multipole
measurement was expected from GR and was also made in the earlier, second most
asymmetric event GW190412 [267].

The awaited one: GW200105

During the first two-and-a-half runs, no GWs emitted by a NS-BH merger were
detected. The most probable candidates were either a marginal event that could not
be distinguished from a detector noise artifact, or the “strange” event GW190814
with a secondary mass above the NS mass limit. It is only in the data of the O3b run
that not one but two such events were seen and confirmed for the first time [268].
The first, GW200105 was detected by one of the two LIGO detectors and VIRGO,
while the second, GW200115, was detected by all three. The signal is compatible
with sources that have a primary object of mass above the NS mass limit, and a
secondary object with mass below it, as can be seen in Fig. 1.21. The effect of tidal
disruption between the bodies near merger, if there were some, was not found in
the imprint of the GW signal, and no EM counterparts was identified either. Even
though these observations (tidal effects and EM) are not expected from such far-
away systems, it is not possible to rule out that this event was a binary BH merger
with a component of very low mass. Either way, this event is the first of its kind to
be a confirmed, and many more NS-BH mergers are expected to be observed during
the next runs.

33The second mass gap comes from the scarcity of observed BHs above fifty Solar masses [96].
34Coincidentally, this event is also the fifth in this selected list…
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multipole Moments. Henceforth, we will use the shortened
names for the waveform models.

In order to quantify the impact of neglecting tidal effects, we
also analyze GW200105 and GW200115 using two NSBH
waveform models that include tidal effects and assume that
spins are aligned with the orbital angular momentum:
IMRPhenomNSBH (Phenom NSBH; Thompson et al. 2020)
and SEOBNRv4_ROM_NRTidalv2_NSBH (EOBNR NSBH;
Matas et al. 2020). We restrict the NSBH analyses to the region
of applicability of the NSBH models, i.e., χ1< 0.5, χ2< 0.05
for Phenom NSBH and χ1< 0.9, χ2< 0.05 for EOBNR
NSBH. We also perform aligned-spin BBH waveform analyses
and find good agreement with the analyses using NSBH
waveform models (see Section 4.6 below), validating the use of
BBH waveform models. Specifically, we use the aligned-spin
BBH models IMRPhenomXAS (Phenom; Pratten et al. 2020b)
and SEOBNRv4 (EOBNR; Bohé et al. 2017), which only
contain dominant quadrupole moments, and IMRPhenomXHM
(Phenom HM; García-Quirós et al. 2020) and SEOBNRv4HM
(EOBNR HM; Cotesta et al. 2018, 2020), which contain
higher-order moments.

The secondary objects are probably NSs based on mass
estimates, as discussed in detail in Section 5. As in earlier GW
analyses (Abbott et al. 2017a, 2020b), we proceed with two
different priors on the secondary’s spin magnitude: a low-spin
prior, χ2� 0.05, which captures the maximum spin observed in
Galactic BNSs that will merge within a Hubble time (Burgay et al.
2003), and a high-spin prior, χ2� 0.99, which is agnostic about the
nature of the compact object. The two priors allow us to investigate
whether the astrophysically relevant subcase of low NS spin leads
to differences in the parameter estimation for the binaries. All other
priors are set as in previous analyses (e.g., Abbott et al. 2021b).
Throughout, we assume a standard flat ΛCDM cosmology with
Hubble constant H0= 67.9 km s−1Mpc−1 and matter density
parameter Ωm= 0.3065 (Ade et al. 2016).

For each spin prior, we run our main analyses with higher-
order multipole moments and precession for both waveform
families, EOBNR PHM and Phenom PHM. The EOBNR PHM
model is used in combination with RIFT and the Phenom PHM
model with PBILBY. The parameter estimation results for the
individual precessing waveform models yield results in very
good agreement; the median values typically differ by 1/10 of

the width of the 90% credible interval. Nevertheless, in order to
alleviate potential biases due to different samplers or waveform
models, we combine an equal number of samples of each into
one data set for each spin prior (Abbott et al. 2016c, 2020c;
Ashton & Khan 2020) and denote these as Combined PHM.
The quoted parameter estimates in the following sections are
the Combined PHM high-spin prior analyses. In the figures, we
emphasize the high-spin prior results. The values of the most
important parameters of the binaries are summarized in

Table 2
Source Properties of GW200105 and GW200115

GW200105 GW200115

Low Spin High Spin Low Spin High Spin
(χ2 < 0.05) (χ2 < 0.99) (χ2 < 0.05) (χ2 < 0.99)

Primary mass m1/Me -
+8.9 1.3

1.1
-
+8.9 1.5

1.2
-
+5.9 2.1

1.4
-
+5.7 2.1

1.8

Secondary mass m2/Me -
+1.9 0.2

0.2
-
+1.9 0.2

0.3
-
+1.4 0.2

0.6
-
+1.5 0.3

0.7

Mass ratio q -
+0.21 0.04

0.06
-
+0.22 0.04

0.08
-
+0.24 0.08

0.31
-
+0.26 0.10

0.35

Total mass M/Me -
+10.8 1.0

0.9
-
+10.9 1.2

1.1
-
+7.3 1.5

1.2
-
+7.1 1.4

1.5

:% MChirp mass -
+3.41 0.07

0.08
-
+3.41 0.07

0.08
-
+2.42 0.07

0.05
-
+2.42 0.07

0.05

Detector-frame chirp mass ( ) :+ %z M1 -
+3.619 0.006

0.006
-
+3.619 0.008

0.007
-
+2.580 0.007

0.006
-
+2.579 0.007

0.007

Primary spin magnitude χ1 -
+0.09 0.08

0.18
-
+0.08 0.08

0.22
-
+0.31 0.29

0.52
-
+0.33 0.29

0.48

Effective inspiral spin parameter χeff - -
+0.01 0.12

0.08 - -
+0.01 0.15

0.11 - -
+0.14 0.34

0.17 - -
+0.19 0.35

0.23

Effective precession spin parameter χp -
+0.07 0.06

0.15
-
+0.09 0.07

0.14
-
+0.19 0.17

0.28
-
+0.21 0.17

0.30

Luminosity distance DL/Mpc -
+280 110

110
-
+280 110

110
-
+310 110

150
-
+300 100

150

Source redshift z -
+0.06 0.02

0.02
-
+0.06 0.02

0.02
-
+0.07 0.02

0.03
-
+0.07 0.02

0.03

Note. We report the median values with 90% credible intervals. Parameter estimates are obtained using the Combined PHM samples.

Figure 4. Component masses of GW200105 (red) and GW200115 (blue),
represented by their two- and one-dimensional posterior distributions. Colored
shading and solid curves indicate the high-spin prior, whereas dashed curves
represent the low-spin prior. The contours in the main panel, as well as the
vertical and horizontal lines in the top and right panels, respectively, indicate
the 90% credible intervals. Also shown in gray are two possible NSBH events,
GW190814 and the marginal candidate GW190426_152155, the latter
overlapping GW200115. Lines of constant mass ratio are indicated in dashed
gray. The green shaded curves in the right panel represent the one-dimensional
probability densities for two estimates of the maximum NS mass, based on
analyses of nonrotating NSs (M ;max,TOV Landry et al. 2020, 2021) and Galactic
NSs (M ;max,GNS Farr & Chatziioannou 2020).
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Figure 1.21: This diagram shows the posterior distribution for the component masses of the first
two confirmed NS-BH events (red and blue). In grey, two probable, but not confirmed events from
the O3a run From [268].

1.3.3 Applications and future
The field of GW astronomy has just started and yet, many upcoming projects and
experiments are already being built and/or planned. Thankfully, the tremendous
impact these last seven years have had on astrophysics, cosmology and fundamental
physics helped raise at least as many questions as it answered. In this last section,
we provide a selection of major applications and results that have been possible
thanks to the first seven years of GW astronomy, before taking a glimpse at its very
promising future with the next generation of space- and ground-based detectors.

Astrophysics with GW

As all currently detected GW have been emitted by astrophysical sources, numerous
applications from GW astronomy deals with astrophysics. If we only count the GW
events with a false alarm rate less than 1/year, then the catalog contains 44 BH
binaries, 2 NS binaries and 1 system made of a BH and light object (GW190814).
A Bayesian analysis of the parameters of these systems, including the component
masses, the mass ratio, the effective spin and luminosity distance, allowed to put
constraints on population models and binary system formation mechanisms [269].

The first binary NS merger (GW170817) allowed to show evidence for the cre-
ation of hypermassive neutron stars, which was the most probable outcome of this
merger [270]. The simultaneous detection of the GW and EM signals from the binary
NS mergers have directly confirmed the long lasting hypothesis that binary system
coalescence is the source of high-energy transients, in particular short gamma-ray
bursts [262, 271] and kilonovae [272, 273]. It also provided strong evidence that NS
mergers are an important formation mechanism of heavy elements, constraining nu-
cleosynthesis models [274], and provided a new and unique way of understanding
the formation and structure of relativistic jets [275, 276].
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Fundamental physics with GW

The joint observation of EM and GW emission from the binary NS merger also
allowed for test of GR. For example, the speed of GWs, which was found compatible
with the speed of light with a 10−16 precision, allowed to rule out a number of
modified gravity theories [277]. Additionally, it was possible to test the Equivalence
Principle using the Shapiro delay, again finding agreement with its GR value at the
10−6 level [262]. Similar tests enabling a discrimination between GR and competing
theories will be possible with LISA [278] and third generation detectors [279].

A number of constraints have already been put on microphysics models describ-
ing the state of matter in NS’s core. This is possible thanks to a measurement
of the deformability coefficients (Love numbers) of the neutron stars in the event
GW170817 [259, 280]. In particular, the constraints on the equation of state from
this event showed that they were neither very stiff nor very soft [281,282]. Similarly,
numerical estimates on high-order PN parameters have been obtained, constraining
two-body dynamics of a compact-object binaries in the strong-field, nonlinear regime
of GR, thanks to the early detections GW150914 and GW151226 [232].

Cosmology with GW

Although the ΛCDM model has brought a remarkable understanding of the Uni-
verse’s history and composition, its very name hides two major unresolved mysteries.
First, while the observed acceleration of the expansion of the Universe can be ac-
counted for by introducing a nonzero cosmological constant (Λ, in ΛCDM), there are
good reasons to look for alternative explanations, gathered under the name “dark
energy”. Second, the ΛCDM model can only fit observations if about 25% of the
Universe’s content is assumed to be a pressure-less matter fluid that interacts only
gravitationally, thus called Cold Dark Matter (CDM in ΛCDM). These two prob-
lems represent a major challenge for the community and are the object of much
research today. GW observations have already helped shedding light on these dark
issues. As an example, the first GW detections have been reanalyzed under the as-
sumptions that they were emitted by primordial BHs, which could enter (a fraction
of) the dark matter component [283,284]. Regarding dark energy, constraints on its
equation of state are already possible from GW observations and will be improved
during the next observational runs [285].

More recently, the first multi-messenger observation of a binary NS merger
through both GW and EM emission [259] allowed to measure the local expansion
rate of the Universe through a measurement of the Hubble constant 𝐻0 in a new,
independent way. Although not competitive yet due to several uncertainties, the
result shows a difference between the value of 𝐻0 from CMB data [107] and that
of supernovae of type Ia [286]. Consequently, one will have to wait to witness a
possible resolution of the so-called Hubble tension [287, 288].

LISA

The Laser Interferometer Space Antenna (LISA) is a spaced-based GW interferom-
eter operated by the European Space Agency and planned to launch in the mid-
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2030’s [158]. Planned to launch in the mid-2030’s, it consists in three spacecrafts,
arranged at the corners of a virtual equilateral triangle of sides about 2.5 million km
(the “arms” of the detector), cf. Fig. 1.22. Free falling masses inside these spacecraft
will act as test masses and six lasers (one in each direction per spacecraft pair) will
allow to measure by interferometry distance variations between them. As one of the
most ambitious scientific projects ever designed, it will require an unprecedented
level of precision, calibration and data management. To check whether the planned
technology (interferometer optics, drag-free test masses and reliability of various
components) will meet the LISA’s requirements, the LISA Pathfinder mission was
launched in 2015. It consisted in a single spacecraft located at the L1 Lagrange
point, within which a 38cm interferometer sensed the distance between two free-
falling masses. The mission was successful as the results obtained were better than
expected (noise levels were more than tenfold below the target value) [289]. LISA’s
dimensions are such that it will be able to detect GWs with frequencies in the range
of microhertz up to hundreds of millihertz. LISA should thus be able to target
various GW sources, among which

• early BH binaries of (cosmological) redshift up to ≃20 [290], shedding some
light on the very first BH populations

• intermediate-mass and SMBH binary systems, in the 102 − 107 Solar masses
range, allowing one to constrain evolutionary models for BHs from early ages
until the star formation era [291],

• the early inspiral of stellar-mass BH binaries which could then be detected by
terrestrial GW interferometers years later [292],

• galactic binaries and help understand the local population of compact object
binaries [293, 294],

• EMRIs, which, although the computation of waveform represent a challenge,
will allow to probe the neighborhood of massive BHs [295]

• unresolved GW sources, in particular the cosmological background [296] and
that of unresolved galactic binaries [297].

LISA will allow routine multi-messenger astronomy [298], GR tests in nonlinear,
strong regimes yet unexplored and open the door to GW cosmology. A more com-
plete discussion of GW sources as well as the countless physical applications it will
allow may be found in the LISA white paper [299] and the recent reviews [96, 300].
Other space-based interferometers have been proposed, such as the Japanese DECi-
hertz Interferometer Gravitational wave Observatory (DECIGO) [301], a 1000km
equilateral triangle interferometer. A proof-of-concept mission, B-DECIGO, should
launch in the 2020s [302].

Other projects

Current terrestrial GW interferometers (Advanced LIGO and Advanced Virgo) will
continue to be updated with technological improvments and detection methods up-



1.3. A NEW ASTRONOMICAL ERA 51

XJUI B NFBO JOUFS�4�$ TFQBSBUJPO EJTUBODF PG ��� NJM�
MJPO LN� " SFGFSFODF PSCJU IBT CFFO QSPEVDFE PQUJ�
NJTFE UPNJOJNJTF UIF LFZ WBSJBCMF QBSBNFUFST PG JOUFS�
4�$ CSFBUIJOH BOHMFT 	ĘVDUVBUJPOT PG WFSUFY BOHMFT
 BOE
UIF SBOHF SBUF PG UIF 4�$ BT CPUI PG UIFTF ESJWF UIF DPN�
QMFYJUZ PG UIF QBZMPBE EFTJHO XIJMF BU UIF TBNF UJNF FO�
TVSJOH UIF SBOHF UP UIF DPOTUFMMBUJPO JT TVďDJFOUMZ DMPTF
GPS DPNNVOJDBUJPO QVSQPTFT�

Earth

Sun
1 AU (150 million km)

19 – 23°
60°

2.5 million km

1 AU
Sun

'JHVSF �� %FQJDUJPO PG UIF -*4" 0SCJU�

ćF PSCJUBM DPOĕHVSBUJPO JT EFQJDUFE JO 'JHVSF �� ćFTF
PSCJUT XJMM MFBE UP CSFBUIJOH BOHMFT PG ±� EFH BOE
%PQQMFS TIJęT CFUXFFO UIF 4�$ PG XJUIJO ±�.)[�
ćF MBVODI BOE USBOTGFS BSF PQUJNJ[FE GPS B EFEJDBUFE
"SJBOF ��� MBVODI BOE DBSSZ UIF GPMMPXJOH CBTJD GFB�
UVSFT�
t UPUBM USBOTGFS UJNF PG BCPVU ��� EBZT�
t EJSFDU FTDBQF MBVODI XJUI V∞ = 260N�T�
t UISFF TFUT PGNBOPFVWSFT GPS ĕOBM USBOTGFS PSCJU JOKFD�

UJPO QFSGPSNFE CZ UIF QSPQVMTJPO BOE 4�$ DPNQPTJUF
NPEVMFT� 4FF 4FDUJPO ����� GPS EFUBJMT�

��� -BVODIFS

ćF SFDPNNFOEFE PQUJPO GPS -*4" JT UP VTF POF PG
UIF "SJBOF � GBNJMZ PG MBVODI WFIJDMFT XJUI B EFE�
JDBUFE "SJBOF ��� MBVODI CFJOH UIF QSFGFSSFE PQUJPO�
8JUI B MBVODI DBQBDJUZ EJSFDUMZ JOUP BO FTDBQF USBKFD�
UPSZ PG ���� LH UIF "SJBOF ��� JT WFSZ XFMM TVJUFE UP
UIF -*4" MBVODI SFRVJSFNFOUT BOE UIF SFGFSFODF PSCJU
EFTDSJCFE JO 4FDUJPO ��� JT CBTFE PO UIF DBQBCJMJUJFT PG
UIJT MBVODIFS� ćF DBQBDJUZ PG "SJBOF ��� JT MJNJUFE BOE
JU JT FYUSFNFMZ MJLFMZ UIBU BOZ NJTTJPO TJ[FE UP ĕU XJUIJO
JU XPVME CF TJHOJĕDBOUMZ DPNQSPNJTFE JO UFSNT PG DB�
QBCJMJUZ� 4JNJMBSMZ JU JT MJLFMZ UIBU UIF DPOTUSBJOUT BOE
DPNQMFYJUZ PG B MBVODI UP (FPTUBUJPOBSZ 5SBOTGFS 0S�
CJU DPNCJOFE XJUI UIF OFFE UP ĕOE B TVJUBCMF QBSUOFS
NBLF B TIBSFE "SJBOF ��� MBVODI VOBUUSBDUJWF�

��� $PODFQU PG 0QFSBUJPOT

&BDI 4�$ JT FRVJQQFE XJUI JUT PXO QSPQVMTJPO NPEVMF
UP SFBDI UIF EFTJSFE PSCJU� %VSJOH UIJT DSVJTF QIBTF
DIFDLPVU BOE UFTUJOH PG TPNF FRVJQNFOU DPVME BMSFBEZ
CFHJO� 0ODF UIF 4�$ IBWF CFFO JOTFSUFE JOUP UIFJS DPS�
SFDU PSCJUT BOE UIF QSPQVMTJPO NPEVMFT KFUUJTPOFE UIF
UISFF 4�$ NVTU CF QSFQBSFE UP GPSN B TJOHMF XPSL�
JOH PCTFSWBUPSZ CFGPSF TDJFODF PQFSBUJPOT DBO CF FT�
UBCMJTIFE� ćJT JODMVEFT UIF SFMFBTF PG UIF UFTU NBTTFT
BOE FOHBHJOH UIF %SBH�'SFF "UUJUVEF $POUSPM 4ZTUFN
	%'"$4
� ćJT QSPDFTT DPOTUFMMBUJPO BDRVJTJUJPO BOE
DBMJCSBUJPO JT EFTDSJCFE JO 4FDUJPO ������ 'PMMPXJOH
BDRVJTJUJPO BOE DBMJCSBUJPO -*4" XPVME FOUFS UIF QSJ�
NBSZ TDJFODF NPEF� "U UIJT UJNF BMM UFTU NBTTFT JOTJEF
UIF UISFF 4�$ XJMM CF JO GSFF GBMM BMPOH UIF MJOFT PG TJHIU
CFUXFFO UIF 4�$� $BQBDJUJWF TFOTPST TVSSPVOEJOH FBDI
UFTU NBTT XJMM NPOJUPS UIFJS QPTJUJPO BOE PSJFOUBUJPO
XJUI SFTQFDU UP UIF 4�$� %'"$4 XJMM VTF NJDSP�/FXUPO
UISVTUFST UP TUFFS UIF 4�$ UP GPMMPX UIF UFTUNBTTFT BMPOH
UIF UISFF USBOTMBUJPOBM EFHSFFT�PG�GSFFEPN VTJOH JO�
UFSGFSPNFUSJD SFBEPVU XIFSF BWBJMBCMF BOE DBQBDJUJWF
TFOTJOH GPS UIF SFNBJOJOH EFHSFFT�PG�GSFFEPN� &MFD�
USPTUBUJD BDUVBUPST BSF VTFE UP BQQMZ UIF SFRVJSFE GPSDFT
BOE UPSRVFT JO BMM PUIFS EFHSFFT PG GSFFEPN UP UIF UFTU
NBTTFT� -BTFS JOUFSGFSPNFUSZ JT VTFE UP NPOJUPS UIF
EJTUBODF DIBOHFT CFUXFFO UIF UFTU NBTTFT BOE UIF PQ�
UJDBM CFODI 	0#
 JOTJEF FBDI 4�$� ćFTF UFDIOPMPHJFT
IBWF CFFO EFNPOTUSBUFE CZ UIF -*4" 1BUIĕOEFS NJT�
TJPO�
ćF MPOH�CBTFMJOF MBTFS JOUFSGFSPNFUFS PS TDJFODF JO�
UFSGFSPNFUFS JT VTFE UP NFBTVSF DIBOHFT JO UIF EJT�
UBODF CFUXFFO UIF PQUJDBM CFODIFT XIJMF B UIJSE JO�
UFSGFSPNFUFS TJHOBM NPOJUPST UIF EJČFSFOUJBM MBTFS GSF�
RVFODZ OPJTF CFUXFFO UIF UXP MPDBM MBTFS TZTUFNT� "MM
JOUFSGFSPNFUFS TJHOBMT BSF DPNCJOFE PO HSPVOE UP EF�
UFSNJOF UIF EJČFSFOUJBM EJTUBODF DIBOHFT CFUXFFO UXP
QBJST PG XJEFMZ TFQBSBUFE UFTU NBTTFT� 4DJFODF .PEF
XPVME GFBUVSF OFBS�DPOUJOVPVT PQFSBUJPO PG UIF TZTUFN
BU UIF EFTJHO TFOTJUJWJUZ� ćF TZTUFN EFTJHO TIPVME CF
TVDI UIBU JO TDJFODF NPEF FYUFSOBM QFSUVSCBUJPOT UP
UIF TZTUFN BSFNJOJNJTFE BOE JO QBSUJDVMBS UIF CBTFMJOF
EFTJHO EPFT OPU SFRVJSF TUBUJPO LFFQJOH PS PSCJU DPS�
SFDUJPO NBOPFVWSFT� *O MJOF XJUI UIF TDJFODF SFRVJSF�
NFOUT PO EBUB MBUFODZ DPNNVOJDBUJPOT XPVME PDDVS
PODF QFS EBZ GPS B EVSBUJPO PG BQQSPYJNBUFMZ � IPVST�
ćFSF BSF UXP QSJODJQBM FWFOUT XIJDI XJMM DBVTF TPNF
EJTSVQUJPO UP UIF TDJFODF NPEF PG PQFSBUJPOT� UIFTF
BSF SF�QPJOUJOH PG UIF BOUFOOBT BOE SF�DPOĕHVSBUJPO
PG UIF MBTFS MPDLJOH UP NBJOUBJO UIF CFBU OPUFT XJUIJO
UIF QIBTFNFUFS CBOEXJEUI UIFTF BSF DPWFSFE JO NPSF
EFUBJM JO 4FDUJPOT ��� BOE ��� SFTQFDUJWFMZ� *O BEEJUJPO
UP UIF NBJO TDJFODF NPEF B TQFDJBM QSPUFDUFE QFSJPE

-*4" o �� .*44*0/ 130'*-& 1BHF ��

� *OUSPEVDUJPO

ćF HSPVOECSFBLJOH EJTDPWFSZ PG (SBWJUBUJPOBM 8BWFT
	(8T
 CZ HSPVOE�CBTFE MBTFS JOUFSGFSPNFUSJD EFUFD�
UPST JO ���� JT DIBOHJOH BTUSPOPNZ <�> CZ PQFOJOH
UIF IJHI�GSFRVFODZ HSBWJUBUJPOBM XBWF XJOEPX UP PC�
TFSWF MPX NBTT TPVSDFT BU MPX SFETIJę� ćF 4FOJPS
4VSWFZ $PNNJUUFF 	44$
 <�> TFMFDUFE UIF -� TDJFODF
UIFNF ćF (SBWJUBUJPOBM 6OJWFSTF <�> UP PQFO UIF ���
UP ���N)[ (SBWJUBUJPOBM 8BWF XJOEPX UP UIF 6OJ�
WFSTF� ćJT MPX�GSFRVFODZ XJOEPX JT SJDI JO B WBSJFUZ
PG TPVSDFT UIBU XJMM MFU VT TVSWFZ UIF 6OJWFSTF JO B OFX
BOE VOJRVF XBZ ZJFMEJOH OFX JOTJHIUT JO B CSPBE SBOHF
PG UIFNFT JO BTUSPQIZTJDT BOE DPTNPMPHZ BOE FOBCMJOH
VT JO QBSUJDVMBS UP TIFE MJHIU PO UXP LFZ RVFTUJPOT� 	�

)PX XIFO BOE XIFSF EP UIF ĕSTU NBTTJWF CMBDL IPMFT
GPSN HSPX BOE BTTFNCMF BOE XIBU JT UIF DPOOFDUJPO
XJUI HBMBYZ GPSNBUJPO 	�
 8IBU JT UIF OBUVSF PG HSBW�
JUZ OFBS UIF IPSJ[POT PG CMBDL IPMFT BOE PO DPTNPMPHJ�
DBM TDBMFT 
8F QSPQPTF UIF -*4" NJTTJPO JO PSEFS UP SFTQPOE UP
UIJT TDJFODF UIFNF JO UIF CSPBEFTU XBZ QPTTJCMF XJUIJO
UIF DPOTUSBJOFE CVEHFU BOE HJWFO TDIFEVMF� -*4" FO�
BCMFT UIF EFUFDUJPO PG (8T GSPN NBTTJWF CMBDL IPMF
DPBMFTDFODFT XJUIJO B WBTU DPTNJD WPMVNF FODPNQBTT�
JOH BMM BHFT GSPN DPTNJD EBXO UP UIF QSFTFOU BDSPTT
UIF FQPDIT PG UIF FBSMJFTU RVBTBST BOE PG UIF SJTF PG
HBMBYZ TUSVDUVSF� ćF NFSHFS�SJOHEPXO TJHOBM PG UIFTF
MPVE TPVSDFT FOBCMFT UFTUT PG &JOTUFJO�T (FOFSBM ćFPSZ
PG 3FMBUJWJUZ 	(3
 JO UIF EZOBNJDBM TFDUPS BOE TUSPOH�
ĕFME SFHJNF XJUI VOQSFDFEFOUFE QSFDJTJPO� -*4" XJMM
NBQ UIF TUSVDUVSF PG TQBDFUJNF BSPVOE UIF NBTTJWF
CMBDL IPMFT UIBU QPQVMBUF UIF DFOUSFT PG HBMBYJFT VTJOH
TUFMMBS DPNQBDU PCKFDUT BT UFTU QBSUJDMF�MJLF QSPCFT� ćF
TBNF TJHOBMT XJMM BMTP BMMPX VT UP QSPCF UIF QPQVMBUJPO
PG UIFTF NBTTJWF CMBDL IPMFT BT XFMM BT BOZ DPNQBDU PC�
KFDUT JO UIFJS WJDJOJUZ� " TUPDIBTUJD (8 CBDLHSPVOE PS
FYPUJD TPVSDFT NBZ QSPCF OFX QIZTJDT JO UIF FBSMZ 6OJ�
WFSTF� "EEFE UP UIJT MJTU PG TPVSDFT BSF UIF OFXMZ EJTDPW�
FSFE -*(0�7JSHP IFBWZ TUFMMBS�PSJHJO CMBDL IPMF NFSH�
FST XIJDIXJMM FNJU(8T JO UIF -*4"CBOE GSPN TFWFSBM
ZFBST VQ UP B XFFL QSJPS UP UIFJS NFSHFS FOBCMJOH DPPS�
EJOBUFE PCTFSWBUJPOT XJUI HSPVOE�CBTFE JOUFSGFSPNF�
UFST BOE FMFDUSPNBHOFUJD UFMFTDPQFT� ćF WBTU NBKPSJUZ
PG TJHOBMT XJMM DPNF GSPN DPNQBDU HBMBDUJD CJOBSZ TZT�
UFNT XIJDI BMMPX VT UP NBQ UIFJS EJTUSJCVUJPO JO UIF
.JMLZ 8BZ BOE JMMVNJOBUF TUFMMBS BOE CJOBSZ FWPMVUJPO�
-*4" CVJMET PO UIF TVDDFTT PG -*4" 1BUIĕOEFS
	-1'
 <�> UXFOUZ ZFBST PG UFDIOPMPHZ EFWFMPQNFOU
BOE UIF (SBWJUBUJPOBM 0CTFSWBUPSZ "EWJTPSZ 5FBN
	(0"5
 SFDPNNFOEBUJPOT� -*4" XJMM VTF UISFF BSNT

BOE UISFF JEFOUJDBM TQBDFDSBę 	4�$
 JO B USJBOHVMBS GPS�
NBUJPO JO B IFMJPDFOUSJD PSCJU USBJMJOH UIF &BSUI CZ
BCPVU ��○� ćF FYQFDUFE TFOTJUJWJUZ BOE TPNF QPUFO�
UJBM TJHOBMT BSF TIPXO JO 'JHVSF ��

'JHVSF �� &YBNQMFT PG (8 TPVSDFT JO UIF GSF�
RVFODZ SBOHF PG -*4" DPNQBSFE XJUI JUT TFOTJ�
UJWJUZ GPS B ��BSNDPOĕHVSBUJPO� ćFEBUB BSF QMPU�
UFE JO UFSNT PG EJNFOTJPOMFTT ADIBSBDUFSJTUJD TUSBJO
BNQMJUVEF� <�>� ćF USBDLT PG UISFF FRVBMNBTT CMBDL
IPMF CJOBSJFT MPDBUFE BU z = 3 XJUI UPUBM JOUSJO�
TJD NBTTFT 107 106 BOE 105M⊙ BSF TIPXO� ćF
TPVSDF GSFRVFODZ 	BOE 4/3
 JODSFBTFT XJUI UJNF
BOE UIF SFNBJOJOH UJNF CFGPSF UIF QMVOHF JT JOEJ�
DBUFE PO UIF USBDLT� ćF � TJNVMUBOFPVTMZ FWPMW�
JOH IBSNPOJDT PG BO &YUSFNF .BTT 3BUJP *OTQJSBM
TPVSDF BU z = 1.2 BSF BMTP TIPXO BT BSF UIF USBDLT PG
B OVNCFS PG TUFMMBS PSJHJO CMBDL IPMF CJOBSJFT PG UIF
UZQF EJTDPWFSFE CZ -*(0� 4FWFSBM UIPVTBOE HBMBD�
UJD CJOBSJFT XJMM CF SFTPMWFE BęFS B ZFBS PG PCTFS�
WBUJPO� 4PNF CJOBSZ TZTUFNT BSF BMSFBEZ LOPXO
BOE XJMM TFSWF BT WFSJĕDBUJPO TJHOBMT� .JMMJPOT PG
PUIFS CJOBSJFT SFTVMU JO B ADPOGVTJPO TJHOBM� XJUI B
EFUFDUFE BNQMJUVEF UIBU JT NPEVMBUFE CZ UIF NP�
UJPO PG UIF DPOTUFMMBUJPO PWFS UIF ZFBS� UIF BWFSBHF
MFWFM JT SFQSFTFOUFE BT UIF HSFZ TIBEFE BSFB�

"O PCTFSWBUPSZ UIBU DBO EFMJWFS UIJT TDJFODF JT EF�
TDSJCFE CZ B TFOTJUJWJUZ DVSWF XIJDI CFMPX �N)[ XJMM
CF MJNJUFE CZ BDDFMFSBUJPO OPJTF BU UIF MFWFM EFNPO�
TUSBUFE CZ -1'� *OUFSGFSPNFUSZ OPJTF EPNJOBUFT BCPWF
�N)[ XJUI SPVHIMZ FRVBM BMMPDBUJPOT GPS QIPUPO TIPU
OPJTF BOE UFDIOJDBM OPJTF TPVSDFT� 4VDI B TFOTJUJWJUZ
DBO CF BDIJFWFE XJUI B ���NJMMJPO LN BSN�MFOHUI DPO�
TUFMMBUJPO XJUI �� DN UFMFTDPQFT BOE �8 MBTFS TZTUFNT�
ćJT JT DPOTJTUFOU XJUI UIF (0"5 SFDPNNFOEBUJPOT
BOE CBTFE PO UFDIOJDBM SFBEJOFTT BMPOF B MBVODINJHIU
CF GFBTJCMF BSPVOE ����� 8F QSPQPTF BNJTTJPO MJGFUJNF
PG � ZFBST FYUFOEBCMF UP �� ZFBST GPS -*4"�

1BHF � -*4" o �� */530%6$5*0/

Figure 1.22: The left panel depicts the geometry of LISA’s orbit. Each spacecraft follows its own
heliocentric orbit, inclined with respect to the ecliptic, so as to maintain an equilateral triangle
configuration. The right panel shows the characteristic strain of various astrophysical and cosmo-
logical sources expected to be detected by LISA. Some of them, e.g., massive binary black holes
(MBMHs) should be observed for months to years. Source: [158]

dates. The new designs, called A+ and AdV+, will improve sensitivity by a fac-
tor two thanks to better mirrors (lower thermal noise, optical coatings), better
lasers (frequency-dependent optical squeezing) and better statistics and GW detec-
tion methods. In the meantime, the Japanese KAGRA detector [303] will join the
LIGO-Virgo collaboration as soon as O4, and LIGO-India should come online in
the 2020s as well [304]. The third generation of terrestrial detectors will still be
based on laser interferometry but will present arms of much longer length. The two
promising projects are the Einstein Telescope (ET) based in Europe and the Cosmic
Explorer (CE) based in the United States. ET will be built underground and have
the geometry of a 10km equilateral triangle [305], while CE will keep the two-arms
configuration with lengths up to 40 km [306]. Other projects will also aim at filling
in the yet unexplored deci-Hz range [307].

Side note

Before concluding this chapter, we would like to add a side note, in view of the
previous considerations on the future of GW astronomy (it applies to the future
of science in general). It is clear that future missions and experiments, although of
primary importance for enlarging the field of GW astronomy, will be very demanding
and expensive on various levels, in particular regarding financial investment and
energy requirement. In regards to GW astronomy, the numbers that are currently
associated to GW data analysis will be increased by several orders of magnitude
for the next-gen detectors, requiring a significant increase in energy consumption,
e.g., to power the observatories, cool down supercomputers facilities, etc. At a time
where (hopefully) climate change and the energy crisis will be on the table for every
major decision, the field of GW astronomy will have to face a new challenge, that of
being compatible with (at least) carbon-neutral trajectories. This is a responsibility
that will have to be taken by the community, and, therefore, must be discussed
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Mais où est le fait simple ? L’Astronome l’a trouvé parce que les
distances des astres sont immenses, si grandes, que chacun d’eux

n’apparaît plus que comme un point ; et parce qu’un point est plus
simple qu’un corps qui a une forme et des qualités.

H. POINCARÉ,
Science et Méthode (1908)

⋄

As we saw in Chap. 1, binary systems of compact objects are among the most
promising sources of GWs. These include black holes (BHs) and/or neutron

stars (NSs). A critical issue in constructing GW templates for the detection is to
(1) model these compact objects at a satisfying level of accuracy and (2) understand
their orbital and internal dynamics. In this second chapter, the goal is to cover a
family of models, which we will collectively refer to as “gravitational skeletons”, that
aim at tackling these issues. Although BHs and NSs are rather different objects,
with the former being a vacuum region of spacetime and the latter a compact ball
of magnetized fluid with extreme thermodynamics, both can be described in the
skeleton approach, provided that the description is limited to dipolar order in the
skeleton formalism. Such a dipolar (or pole-dipole) description consists in represent-
ing the compact object as a point particle equipped with a mass, and (possibly) a
spin. In this chapter, we will start by illustrating the skeleton formalism at the New-
tonian level (Sec. 2.1), before giving an overview of different, independent methods
that derive its relativistic equivalent (Sec. 2.2). A summary of the important results
and a number of extensions necessary for the next chapters will then be presented
(Sec. 2.3).
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2.1. NEWTONIAN SKELETON 55

2.1 Newtonian skeleton
One of the first and most important things we learn while studying classical gravity
is to compute the gravitational potential 𝜓(𝐱) generated at some point 𝐱 ∈ ℝ3 by a
body with support ℬ ⊂ ℝ3, with mass density 𝜌(𝐲), where 𝐲 ∈ ℬ. In Newtonian
gravity, the link between these two quantities is provided by the Poisson equation

Δ𝜓(𝐱) = 4𝜋𝜌(𝐱) ⇔ 𝜓(𝐱) = − ∫
ℬ

𝜌(𝐲)
|𝐱 − 𝐲|d𝐲 . (2.1)

For a generic source 𝜌(𝐱), the integral on the right-hand side cannot be computed
in closed form. However, it is possible for a spherically-symmetric body or a point
mass 𝑚 described by 𝜌(𝐲) = 𝑚𝛿3(𝐲), where 𝛿3 is the usual, 3-dimensional Dirac
distribution. In fact, the result coincides for both cases and reads

𝜓(𝐱) = − 𝑚
|𝐱| , where 𝑚 ≡ ∫

ℬ
𝜌(𝐲)d𝐲 . (2.2)

This remarkable result of Newtonian gravitation, sometimes called Newton’s the-
orem1 shows that the potential at the exterior of a spherically-symmetric body is
independent of the mass distribution within it, and only depends on the macro-
scopic, total mass within ℬ. That gravity only cares about macroscopic features is
present in GR too, and is sometimes referred to as the “effacement principle”. We
will come back to this in the next paragraphs.

In many cases, spherical symmetry for an astrophysical body is but an ideal-
ization, and one needs to go beyond this assumption. Indeed, the proper rotation
of this body induces centrifugal forces that, in return, deform it (see section (2.3)
in [140]). Equilibrium configurations of such rotating bodies were already studied
by Newton himself and shown to take ellipsoidal shapes. The extent of this defor-
mation primarily depends on the rigidity of the body (spin deformability, in this
case). Spherical symmetry can also be broken in the case where the body belongs
to a binary system, where it is deformed under the tidal forces generated by its
companion (see section (2.5) in [140]). Once again, these tidal forces deform the
body and create a bulge which may be locked within the direction of the companion
or lagging behind that axis, depending on the viscosity and rigidity of the body.

To go beyond spherical symmetry in Newtonian theory, the general idea is to
rewrite the integral in equation (2.1) at some point 𝐱 in the exterior of the body
(where |𝐱| ≥ |𝐲|). For example, one may use the Legendre polynomials or the usual
spherical harmonics decomposition. Integrating this expansion term by term in (2.1)
gives the classical multipolar expansion of the gravitational potential

𝜓(𝐱) = − 𝑚
|𝐱| − 𝑚𝑖 ̂𝐱𝑖

|𝐱|2 − 3
2

𝑚𝑖𝑗 ̂𝐱𝑖 ̂𝐱𝑗

|𝐱|3 − 5
2

𝑚𝑖𝑗𝑘 ̂𝐱𝑖 ̂𝐱𝑗 ̂𝐱𝑘

|𝐱|4 + ⋯ , (2.3)

where 𝐱𝑖 are the coordinate components of the unit vector ̂𝐱 ≡ 𝐱/|𝐱|, and the
Euclidean tensors (𝑚𝑖, 𝑚𝑖𝑗, 𝑚𝑖𝑗𝑘, …) are the (traceless, symmetric) mass moments

1The interested reader can find in [308] other types of non-spherical sources with this property.
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of the source. The vector 𝑚𝑗 = ∫ℬ 𝜌(𝐲)𝐲𝑖d𝐲 is the mass dipole, and can be set to
zero when the origin of the coordinates is at the center of mass. The higher order
tensors are the mass quadrupole, mass octupole, etc. They are all given explicitly
as integrals of the mass density over the source, as

𝑚𝑖1…𝑖ℓ ≡ ∫
ℬ

𝜌(𝐲) 𝐲⟨𝑖1…𝑖ℓ⟩d𝐲 , (2.4)

where ⟨⋯⟩ denotes the usual symmetric-trace-free (STF) operation on these indices
(see for instance [140], equations (1.153)). Since |𝐲| ≤ 𝑅 in equation (2.4), with 𝑅
a measure of the (maximal) extension of the body, each multipole can be bounded
as 𝑚𝑖1…𝑖ℓ ≤ 𝑚𝑅ℓ. Consequently, each term in the expansion (2.3) is smaller than
the previous one by a factor of 𝑅/|𝐱|. Therefore, outside the source, one expects
that the main features of the body will be well-described by the first few terms of
this expansion.

With the expansion (2.3) of the potential 𝜓(𝐱), the Newtonian skeletonization
can now be introduced. Consider truncating the expansion (2.3) at quadrupolar
order (for the sake of simplicity). This defines the quadrupolar potential

𝜓q(𝐱) ≡ − 𝑚
|𝐱| − 𝑚𝑖 ̂𝐱𝑖

|𝐱|2 − 3
2

𝑚𝑖𝑗 ̂𝐱𝑖 ̂𝐱𝑗

|𝐱|3 . (2.5)

Of course, 𝜓q is not the potential created by the initial body ℬ of mass density
𝜌(𝐱), since its fine, post-quadrupolar details encoded in higher multipoles have been
neglected. Rather, it corresponds to another, effective body, whose mass density
𝜌q(𝐱) satisfies the Poisson equation Δ𝜓q = 4𝜋𝜌q, with

𝜌q(𝐱) = 𝑚𝛿3(𝐱) + 𝑚𝑖𝜕𝑖𝛿3(𝐱) + 𝑚𝑖𝑗𝜕𝑖𝜕𝑗𝛿3(𝐱) (2.6)

which easily follows from the distributional identity Δ(𝐱−1) = −4𝜋𝛿3(𝐱). Mathe-
matically, 𝜌q is a singular mass density, supported at the origin, whereas the original
body had a non-singular compact support ℬ. But physically, it generates exactly
the same gravitational field, so long as the octupole, hexadecapole, etc of ℬ are
neglected. This generalises Newton’s theorem, which stated that a spherically sym-
metric body is equivalent to a point mass distribution, from a purely gravitational
point of view. By linearity of the Poisson equation, this result can be generalised
to any multipolar order, an ℓ-th order multipole being sourced by the ℓ-th spatial
derivative of the Dirac distribution 𝛿3. Note that the initial body may have a time-
dependent density, in which case the multipole moments will be time-dependent as
well.

To summarise, a compact object ℬ of continuous mass density 𝜌(𝑡, 𝐱) in Newto-
nian gravity can be skeletonized, i.e., equivalently described at any multipolar order
by a singular mass density

𝜌skel(𝑡, 𝐱) = 𝑚(𝑡)𝛿3(𝐱) + ∑
ℓ≥1

𝑚𝐿(𝑡)𝜕𝐿𝛿3(𝐱) , (2.7)
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where the 𝑚𝐿 ≡ 𝑚𝑖1…𝑖ℓ are its STF mass moments and 𝜕𝐿 ≡ 𝜕𝑖1
… 𝜕𝑖ℓ

. Because it
replaces the original body ℬ of three-dimensional compact support by a singular
density 𝜌skel equipped with a finite set of moments, this effective body is called a
multipolar particle.

2.2 Relativistic skeletons
The Newtonian skeletonization presented in the last section works well thanks to
the linearity of the Poisson equation. Its GR-equivalent, the Einstein equation, is
nonlinear, making it unclear how to generalize this procedure. However, it has long
been known and shown in independent ways that one can still make sense of the
Einstein equation when the extended compact object is replaced by a point particle,
despite of its nonlinearity, in some perturbative contexts. In this section, we start
with a brief review of four independent “skeletonization” methods, that have been
proposed in the literature through the years. Although we try to be as precise as
possible, the point of this section is not to review these methods, as (1) this is done
very well elsewhere (cf references in the text below), and (2) we are only interested
in the end result, namely (1) the skeleton SEM tensor and the evolution equations.
Rather, the aim is to emphasize that several (independent) routes can reach the
same result, but also that all are complementary in their assumptions and range of
applicability.

In the present section, the emphasis will be on the monopole-dipole model (from
Sec. 2.2.1 up to 2.2.4). The extension to higher multipoles is briefly described at the
end (Sec. 2.2.5), before Sec. 2.3 provides a complete summary of the quadrupolar-
point-particle model that will be used in the following chapters.

2.2.1 Lagrangian approach
The Lagrangian approach is based on the classical action-variation method, already
used in Newtonian mechanics and in the analysis of geodesics in curved spacetime.
The latter is a good starting point and is presented first, before extending the
method massive, spinning point particles. A particularly well-written account is
that provided by Jan Steinhoff in [309], in which all details can be found.

Test particle

As we saw in Chap. 1, Einstein’s main insight into the construction of GR was the
equivalence principle, i.e., the fact that one can always remove a gravitational field
locally by going into an accelerated frame of reference. The direct consequence is
that a test particle in flat spacetime follows a trajectory that maximizes its proper
time. According to the equivalence principle, the same should be true for a test
body embedded in a gravitational field, i.e., in GR.

Let 𝑥𝛼 be a coordinate system covering the spacetime (ℰ , 𝑔𝑎𝑏), and γ be the
worldline of a test particle in it. We parametrize γ by four equations (𝑥𝛼 =
𝑧𝛼(𝜆), 𝜆 ∈ ℝ), where 𝑧𝛼 are four functions of an arbitrary parameter 𝜆 ∈ ℝ varying
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along γ. The action 𝑆 of this test particle is well-known [5, 21, 310] and a function
of γ (or equivalently of 𝑧𝛼). It reads2

𝑆(𝑧𝛼) ≡ ∫
γ
(−𝑔𝛼𝛽(𝑧)d𝑧𝛼

d𝜆
d𝑧𝛽

d𝜆 )
1/2

d𝜆 . (2.8)

This action is a functional of the worldline γ through the metric 𝑔𝛼𝛽 evaluated at
𝑧𝛼 ∈ γ, and the 𝜆-derivative thereof. Extremizing 𝑆 with respect to the worldline
is easily done à la Euler-Lagrange [21]. The result is classical: the curve γ that
maximizes (2.8) satisfies

d2𝑧𝛼

d𝜆2 + Γ𝛼
𝛽𝛾

d𝑧𝛽

d𝜆
d𝑧𝛾

d𝜆 = 𝐾 d𝑧𝛼

d𝜆 , (2.9)

where Γ𝛼
𝛽𝛾 are the Christoffel symbols evaluated at 𝑧𝛼(𝜆), given in terms of the

metric coefficients 𝑔𝛼𝛽 and 𝐾, the non-affinity “coefficient”, is actually a function
of 𝜆. Equation (2.9) describes a geodesic in the spacetime (ℰ , 𝑔𝑎𝑏). It takes the
simplest form when 𝜆 is an affine function of 𝜏 , say 𝜆 = 𝑎𝜏 + 𝑏 with (𝑎, 𝑏) ∈ ℝ⋆ × ℝ
two constants. In this case, 𝜆 is called an affine parameter, and the quantities
d𝑧𝛼/d𝜆 are (up to a constant factor) the components of the four-velocity 𝑢𝑎 of the
particle, the unique vector tangent to γ and normalized as 𝑔𝑎𝑏𝑢𝑎𝑢𝑏 = −1. In this
case, the geodesic equation (2.9) takes the covariant form

�̇�𝑎 ≡ 𝑢𝑏∇𝑏𝑢𝑎 = 0 , (2.10)

with ∇𝑎 the metric-compatible covariant derivative. For the sake of simplicity, in
Chap. 3 and onward we shall always consider a proper time parametrization of the
worldline and work with the unit, tangent vector 𝑢𝑎, i.e., the four-velocity of the
particle. For the time being, it is more convenient to work with a generic affine
parameter 𝜆 = 𝑎𝜏 + 𝑏 and then choose 𝜆 = 𝜏 at the end of the calculation.

Massive, spinning particle

A test particle, by definition, does not act as a source of the gravitational field.
Mathematically, this is ensured by demanding that its Lagrangian 𝐿 (such that
𝑆 = ∫γ 𝐿 d𝜆 in (2.8)) has no functional dependence on the metric 𝑔𝑎𝑏. In this way,
when we apply the principle of least action to the Einstein-Hilbert action (vacuum
GR) + test particle action (2.8), only the former gives a nonzero contribution, and
the field equations for 𝑔𝑎𝑏 are the GR vacuum equations. There is a one-way de-
coupling: the metric is independent of the particle, but the particle depends on the
metric through the geodesic equation.

The next level of approximation for a small object, beyond the test-particle limit,
is to turn on the two-way coupling between the particle and gravity. This is done by
adding a functional dependence on 𝑔𝑎𝑏 in the Lagrangian (integrand of the action

2Strictly speaking the integral is over 𝜆 ∈ ℝ, but it is customary to write ∫γ. There is a
one-to-one correspondence between ℝ ∋ 𝜏 and γ ∋ 𝑧𝛼 through the parametrization 𝑥𝛼 = 𝑧𝛼(𝜆).
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(2.8)). Through the Einstein equation, the metric 𝑔𝑎𝑏 itself becomes dependent on
the particle’s property and motion. Computing the field generated by a point par-
ticle comes with a number of difficulties (essentially because of the singular nature
of the particle) that may be solved using a variety of methods depending on the ap-
proximation scheme (see e.g., [311,312] in post-newtonian expansions and [313,314]
in the gravitational self-force formalism etc). For our purposes, we will not need
to solve the Einstein equation in order to get crucial information of the behavior of
the point particle. Everything will be obtained from first principles, just as in the
test-particle case. The method discussed here uses Lagrangian mechanics and was
pioneered in GR by Bailey and Israel [315], extending Hanson and Regge’s work on
the special relativistic spherical top [316].

Let us consider a massive, spinning point particle, represented as a timelike
worldline γ. At the kinematical level, the translational degrees of freedom of the
particle are encoded in the parametric equation of γ, taken, as before, to be 𝑥𝛼 =
𝑧𝛼(𝜆) where 𝑧𝛼 are four functions of 𝜆 ∈ ℝ, an affine parameter along γ. The
rotational degrees of freedom are introduced via an orthonormal tetrad (𝜖𝑎

𝐵), free to
rotate along γ. Note that 𝜖𝑎

𝐵 is not a rank-2 tensor: 𝑎 is an abstract index (meaning
that 𝜖𝑎

𝐵 is a vector), whereas 𝐵 is a mere label that tells which vector of the tetrad
it is. The action 𝑆 of the particle is then postulated as

𝑆(𝑧𝛼, 𝜖𝑎
𝐵) ≡ ∫

γ
𝐿[𝑣𝑎(𝜆), Ω𝑎

𝑏(𝜆), 𝑔𝑎𝑏(𝜆)]d𝜆 , (2.11)

where 𝐿, the Lagrangian of the particle, now depends on the dynamical, covariant
quantities conjugated to 𝑧𝛼 and 𝜖𝑎

𝐵, namely the tangent vector 𝑣𝑎 to γ and the
rotation tensor Ω𝑎

𝑏, respectively. These are defined in the usual way through the
rate of change of 𝑧𝛼 and 𝜖𝑎

𝐵 along γ, by

d𝑧𝛼

d𝜆 ≡ 𝑣𝛼 and d𝜖𝑎
𝐴

d𝜆 ≡ Ω𝑎
𝑏𝜖𝑏

𝐴 . (2.12)

The next step to make some progress is to assume that the action 𝑆(𝑧, 𝜖) be invariant
under an arbitrary change of affine-parameter. In particular, linear changes such as
𝜆 ↦ 𝑘𝜆 with 𝑘 ∈ ℝ should leave it invariant. Given the definitions (2.12), 𝑆
is invariant if and only if 𝑘𝐿(𝑣/𝑘, Ω/𝑘, 𝑔) = 𝐿(𝑣, Ω, 𝑔). This indicates that 𝐿 is
homogeneous of degree one with respect to (𝑣, Ω). Thanks to the Euler theorem3

for homogeneous functions, this implies

𝐿 = 𝑢𝑎𝑝𝑎 + 1
2Ω𝑎

𝑏𝑆 𝑏
𝑎 , where 𝑝𝑎 ≡ 𝜕𝐿

𝜕𝑢𝑎 , 𝑆 𝑏
𝑎 ≡ 2 𝜕𝐿

𝜕Ω𝑎
𝑏

, (2.13)

where we finally used the proper time as a parameter (hence 𝑣𝑎 = 𝑢𝑎), now that
the calculation is over. In equation (2.13), the spin tensor 𝑆 𝑏

𝑎 and the momentum
form 𝑝𝑎 are functions of (𝑢𝑎, Ω𝑎

𝑏) and are defined as the conjugated momenta of Ω𝑎
𝑏

and 𝑢𝑎, respectively (the factor 1/2 for the spin is purely conventional). It is rather
3In a nutshell, if 𝑘𝐿(𝑣/𝑘, Ω/𝑘, 𝑔) = 𝐿(𝑣, Ω, 𝑔) for any 𝑘 ∈ ℝ, differentiating with respect to

𝑘 and then setting 𝑘 = 1 readily gives 𝐿(𝑣, Ω, 𝑔) = 𝑢𝜕𝑣𝐿 + Ω𝜕Ω𝐿.
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remarkable that the sole “scalar nature” requirement for the action is sufficient to
explicitly express it in terms of the dynamical properties of the particle. However,
one should not conclude from (2.13) that 𝐿 is linear in the spin, since it still de-
pends on the metric through 𝑝𝑎 and 𝑆 𝑏

𝑎 . We also see here that, fundamentally, the
four-momentum is a 1-form (as in SR [21]) and the spin is a (1, 1)-tensor. This will
be important later on for the derivation of the first law of mechanics at dipolar order.

With the expression of the Lagrangian (2.13), we can now compute in the clas-
sical way the first-order variation of the action (2.11) to obtain the Euler-Lagrange
equations for the particle. Leaving the metric aside, since there are two types of
degrees of freedom (translational and rotational), there are two distinct ways of
varying 𝑆. First, with respect to the tetrad 𝜖𝑎

𝐴, keeping the worldline γ fixed. Sec-
ond, with respect to γ, keeping the tetrad fixed4. After some computations which
we do not detail here (found for instance in [309, 317, 318]), maximization of the
action provides two evolution equations

̇𝑝𝑎 = 1
2𝑅 𝑎

𝑏𝑐𝑑 𝑆𝑏𝑐𝑢𝑑 , (2.14a)
̇𝑆𝑎𝑏 = 2𝑝[𝑎𝑢𝑏] , (2.14b)

with an overdot denoting the covariant derivative 𝑢𝑎∇𝑎 along γ. A few comments
are in order. First, we see that these two evolution equations express the derivative
of (𝑝𝑎, 𝑆𝑎𝑏) along γ. Compared to the test-particle case, there is no equation for
the four-velocity (such as (2.10)). However, it is possible to derive, from equations
(2.14) such an equation, albeit now 𝑢𝑏∇𝑏𝑢𝑎 ≠ 0. This will be discussed in Sec. 2.3.2.
Second, although some insight on the physical interpretation of 𝑝𝑎 and 𝑆𝑎𝑏 can be
obtained by inspecting their definition (2.13) as conjugate quantities, we can also
study the spinless limit of equations (2.14). Setting 𝑆𝑎𝑏 = 0 in (2.14b) implies that
𝑝[𝑎𝑢𝑏] = 0 and thus that 𝑝𝑎 = 𝓂𝑢𝑎 for some 𝓂. But (2.14a) implies, with 𝑆𝑎𝑏 = 0,
that 𝑝𝑎 is parallel transported along γ. Combining these two results readily gives
�̇� = 0 and �̇�𝑎 = 0, which means that a spinless particle travels on a geodesic γ and
that 𝓂, with dimension of a mass, is constant along γ. Notice that this is identical
to the case of a test-particle. Naturally, the consequence is that 𝑝𝑎 corresponds to
the linear momentum of the particle, whereas 𝑆𝑎𝑏 contains the spinning degrees of
freedom. The presence of spin prevents 𝑝𝑎 from being parallel transported.

Even though the Lagrangian (2.13) is a function defined on a worldline, one can
construct an action 𝑆 by integrating it over a 4-region of spacetime thanks to the
four-dimensional, covariant version of the Dirac distribution (defined properly in
App. A.2). In particular, we have

𝑆 = ∫
ℰ

𝐿[𝑢, Ω, 𝑔] 𝛿4(𝑥, 𝑧(𝜏)) d𝑉 , (2.15)

where 𝑥 is a point of ℰ and d𝑉 ≡ √−𝑔 d4𝑥 is the covariant volume element on ℰ .
One can then derive the SEM tensor for the point particle in the usual way, i.e., by

4Since the tetrad is defined along the worldline, it cannot remain fixed, strictly speaking, but
is rather parallel-transported along the family of worldlines defined for the variation.
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varying the action (2.15) with respect to the metric 𝑔𝑎𝑏. Instead of the metric, in
practice it is easier to do this variation by introducing a background tetrad 𝑒𝑎

𝐴, such
that 𝑔𝑎𝑏 = 𝜂𝐴𝐵𝑒𝐴

𝑎 𝑒𝐵
𝑏 , and varying with respect to it. The result then follows from

the definition of the SEM as the functional derivative of the action with respect to
the background tetrad. The calculation makes use of the evolution equations (2.14)
and can be found in Sec. II of [319] (see also Sec. 7 in [193]). The result is

𝑇 𝑎𝑏(𝑥) = ∫
γ

𝑢(𝑎𝑝𝑏) 𝛿4(𝑥, 𝑧(𝜏)) d𝜏 + ∇𝑐 ∫
γ

𝑢(𝑎𝑆𝑏)𝑐 𝛿4(𝑥, 𝑧(𝜏)) d𝜏 . (2.16)

This SEM tensor is distributional and non-zero only along the worldline of the par-
ticle. Thanks to the distribution bi-scalar 𝛿4, it is both covariant (independent of
the coordinates 𝑥𝛼) and independent of the worldline parametrization 𝑧𝛼(𝜏).

This monopole-dipole formalism does not account for the physical features of
an extended body. To account for this, one needs to go back to the Lagrangian
(or action) (2.11) and add other degrees of freedom. For example, if we allow the
Lagrangian to depend on the Riemann curvature tensor and its successive covariant
derivatives 𝐿[𝑢, Ω, 𝑔, 𝑅, ∇𝑅, …], then the higher multipole moments are defined as
𝐽 ≡ 𝜕𝑅𝐿 (quadrupole), 𝑂 ≡ 𝜕∇𝑅𝐿 (octupole), etc. However, imposing the scalarity
of the Lagrangian just as before still gives the same expression, namely

𝐿[𝑢, Ω, 𝑔, 𝑅, ∇𝑅, …] = 𝑢𝑎𝑝𝑎 + 1
2Ω𝑎𝑏𝑆𝑎𝑏 , (2.17)

the dependence on (𝑔, 𝑅, ∇𝑅, ⋯) being hidden in (𝑝𝑎, 𝑆𝑎𝑏). This formalism has been
used in particular at octupolar order to compute cubic-in-spin effects in the dynam-
ics and energy flux of compact binaries in [319]. There, it was also extended to any
order in the Riemann derivatives (see Appendix A there). It should be noted that
the dependence on the Riemann tensor and its derivatives can be equivalently en-
coded into the so-called “metric extensions”, which are natural tensorial quantities
obtained from symmetrized derivatives of the metric. See [320], or App. 2 of [321]
for details on these.

Lastly, let us also mention, for the sake of completeness, the effective-field-theory
(EFT) framework, which is closely related to the Lagrangian scheme presented here.
This framework, initiated in [322], is inspired by ideas coming from quantum field
theory-type calculations and has proven to be very powerful for applications in
GR. In particular, this formalism provides one of the ways to construct explicit
quadrupolar models, as will be touched upon in Sec. 6. For more on EFT, we refer
to [323–325] and references therein, as well as [309] and the recent review [194] by
Michèle Levi.

2.2.2 MPTD formalism
The Lagrangian method of Bailey and Israel presented in the last section is general
and can be applied to GR as well as other metric theories of gravity. It takes as an
assumption the fact that an extended body can be represented by a single worldline,
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along which multipoles, defined geometrically, evolve and characterize the extended
body. In particular, it does not show that an extended body’s motion can be equiva-
lently described by that of a point particle equipped with multipoles. This was done
prior to Bailey and Israel’s method, during earlier attempts to study the dynamics
of extended bodies in a way closer to the Newtonian skeletonization presented in
Sec. 2.1. This task was tackled by a number of authors, among which four names
traditionally stand out: Myron Mathisson, Ioannis Papapetrou, Włodzimierz Tul-
czyjew and William Dixon, in chronological order of appearance in the literature.
A thorough account on the history behind these men’s work is provided by Dixon
himself in [326]. In a nutshell, the MPTD formalism refers to a theory aiming at
describing the motion of extended bodies in GR, that is based on early attempts
by Mathisson, Papapetrou and Tulczyjew, and was then completed, extended and
synthesized by Dixon, in the late seventies. More precisely

• Mathisson published his pioneering work [327] on extended bodies in GR up to
(almost) quadrupolar order, and discussed the problem of center-of-mass [328].
He also made important mathematical contributions [329] to clarify earlier
points. He presented several related works in flat spacetime [330].5

• Papapetrou took on the problem of center-of-mass definition in GR [334] and
then proposed the first general derivation [335,336] of the evolution equations
based on an integral definition of the multipoles, in the sense that it held
for arbitrary center-of-mass conditions. These methods usually lacked general
covariance and only went up to dipolar order.

• Tulczyjew reformulated Mathisson’s original approach in 1959 [337], proposing
a fully covariant and general derivation of the evolution equations, and then
refined Papapetrou’s integral approach in 1962 by using an adapted set of
coordinates [338].

• Dixon started working on the topic in 1964 [339] using the integral approach
of Papapetrou, introducing two-point tensors. Then in [340] he explored the
problem in flat spacetime to finally find the missing parts of the big picture,
which he completed and clarified up until 1974 [321, 341, 342].

Dixon’s recent synthetic review [326] on the topic is complete, detailed and
clear. Since we only want to focus on the equations of motion of the body, from now
called evolution equations, and on the construction of the SEM tensor, wewill only
cover these derivations and chose one that is most adapted to our purpose, based
on Tulczyjew’s ideas. The reason for this is twofold. First, although Tulczyjew’s
method relies on more assumptions than Dixon’s work does (making it somewhat
less self-consistent), it does produce the same results regarding the evolution equa-
tions and the SEM tensors, which is all we need in this work. Second, Tulczyjew’s
method present the advantage of being extendable to an other purpose, which we

5Mathisson died prematurely in 1940 from tuberculosis, aged 43. In his early days, he corre-
sponded in French with Einstein, who showed great interest in his methods [331]. His works on
GR and wave diffraction impressed Paul Dirac and David Hilbert so much that they published
Mathisson’s works on these problems posthumously in 1942, in [332] and [333], respectively.
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will encounter in the following chapters for the derivation of crucial results. We will
therefore leave all the details of the MPTD formalism aside except for the derivation
of the SEM tensor of a multipolar, extended body, and the evolution equations of
its multipoles, in the spirit of Tulczyjew’s.

Tulczyjew’s reduction process

The method of Tulczyjew extend ideas found in both Mathisson and Papapetrou’s
approaches. We have chosen to present it here in details because the general process
behind the derivation of the evolution equations will be used in Chap. 3 for another
important matter. His method is a four-step algorithmic procedure which can be
summarized as follows

{i. Ansatz for SEM tensor,
ii. SEM tensor conservation,

⇒ {iii. Reduced SEM tensor,
iv. Evolution equations.

The tools hidden in the implication “⇒”, in order to go from the assumptions
(i, ii) to the results (iii, iv), are rather elementary. They involve an orthogonal de-
composition with respect to the four-velocity and two theorems, due to Tulczyjew,
that generalize the fundamental lemma of the calculus of variations6.

We will first present Tulczyjew’s method at monopolar order in detail, so as to
get the general idea, and then sketch the dipolar derivation. Although more in-
volved, the dipolar and quadrupolar cases are algorithmically straightforward and
follow the same steps as what will be done below. The detail of the dipolar case can
be found in App. A.4.3, and the quadrupolar case in [343].

Step i. The Ansatz for the SEM tensor of a monopolar particle is constructed
as a tensor distribution that vanishes outside of some wordline γ representing the
trajectory of the body. To make it independent of any coordinate choice, it is helpful
to introduce (again) the two-point tensor 𝛿4(𝑥, 𝑦), called the 4-dimensional Dirac
distribution, which generalizes the Euclidean (or coordinate)-delta distribution. Its
rigorous definition is found in App. A.2. It allows us to write a covariant Ansatz of
the form

𝑇 𝑎𝑏(𝑥) = ∫
γ

𝒯 𝑎𝑏(𝑦(𝜏)) 𝛿4(𝑥, 𝑦(𝜏)) d𝜏 . (2.18)

Notice in equation (2.18) that the tensor 𝒯 𝑎𝑏(𝑦) is arbitrary at this stage and defined
only along γ, whereas 𝑇 𝑎𝑏 is defined at any point 𝑥 ∈ ℰ . In particular, 𝑇 𝑎𝑏(𝑥) ≡ 0
whenever 𝑥 ∉ γ. Since 𝒯 𝑎𝑏 is defined along γ, we can perform a time+space
decomposition of it with respect to the four-velocity 𝑢𝑎, which is also defined along
γ. Thanks to its symmetry, this “orthogonal” decomposition takes the form

𝒯 𝑎𝑏 = 𝓂𝑢𝑎𝑢𝑏 + 2𝓂(𝑎𝑢𝑏) + 𝓂𝑎𝑏 , (2.19)

where (𝓂, 𝓂𝑎, 𝓂𝑎𝑏) are the time-time, time-space and space-space projections of
𝒯 𝑎𝑏, respectively. By definition, 𝓂𝑎 and 𝓂𝑎𝑏 are both orthogonal to 𝑢𝑎, and 𝓂𝑎𝑏

6This is the lemma that says (details aside) “if a function 𝑓 ∶ ℝ → ℝ is such that
∫ℝ 𝑓(𝑥)𝑔(𝑥)d𝑥 = 0 for all functions 𝑔 ∶ ℝ → ℝ, then 𝑓 vanishes identically”.
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is symmetric. Therefore, 𝓂, 𝓂𝑎 and 𝓂𝑎𝑏 have 1, 3 and 6 independent components,
respectively, and encode the same information as 𝑇 𝑎𝑏 (or equivalently 𝒯 𝑎𝑏).

Step ii. Now let us insert the 3+1 decomposition (2.19) into the Ansatz (2.18)
and apply the covariant derivative ∇𝑎. Rearranging the result gives

∇𝑎𝑇 𝑎𝑏 = ∫
γ

𝑢𝑎∇𝑎(𝓂𝑢𝑏 + 𝓂𝑏) 𝛿4d𝜏 + ∇𝑎 ∫
γ
(𝓂𝑎𝑢𝑏 + 𝓂𝑎𝑏)𝛿4d𝜏 , (2.20)

where, to get the first term, a key distributional identity (given and proved in
App. A.4.1) was used. Notice that in (2.20), the second integrand is orthogonal to
the four-velocity, with respect to the index 𝑎 present in ∇𝑎. With this property
(orthogonality with respect to derivative index), the right-hand side of (2.20) is said
to be into normal form. This normal form always exists, whatever the multipolar
order, as showed initially by Tulczyjew [337]. We will refer to this as Tulczyjew’s
first theorem, and in App. A.3.1 we provide a proof of an extension of the original
theorem, in the case of a binary system of particles (Tulczyjew’s theorem only deals
with a single particle).

Now let us impose the SEM conservation ∇𝑎𝑇 𝑎𝑏 = 0 to equation (2.20). This
implies that the sum of integrals on the right-hand side of (2.20) must vanish. In
general, this does not imply the vanishing of each individual integral. But because it
is in normal form, it is the case here. This result is called Tulczyjew’s second theorem.
Details (and an extension to binary systems) about this theorem can be found in
App. A.3. In any case, the sum (2.20) vanishes thanks to SEM conservation, and
since it is in normal form, Tulczyjew’s theorem imply that both integrands vanish.
This gives the two following equations

𝑢𝑎∇𝑎(𝓂𝑢𝑏 + 𝓂𝑏) = 0 , (2.21a)
𝓂𝑎𝑢𝑏 + 𝓂𝑎𝑏 = 0 . (2.21b)

Step iii. Let us start by examining the consequences of equation (2.21b). Con-
tracting it with 𝑢𝑏 readily gives 𝓂𝑎 = 0, which implies, from the very same equa-
tion, that 𝓂𝑎𝑏 = 0 as well. Consequently, wee see that only one component of
𝒯 𝑎𝑏 (and thus of 𝑇 𝑎𝑏) “survives” the reduction process: the time-time component
𝓂 ≡ 𝒯 𝑎𝑏𝑢𝑎𝑢𝑏. In particular, the reduced SEM tensor of a monopolar particle reads

𝑇 𝑎𝑏 =∫
γ

𝓂𝑢𝑎𝑢𝑏 𝛿4 d𝜏 , (2.22)

where 𝓂 is an arbitrary scalar field defined along γ, that depends on 𝜏 , a priori. It
is naturally interpreted as the mass of the body that the particle represents. The
evolution equation will therefore constrain this remaining degree of freedom.

Step iv. Finally, now that we have seen that 𝓂𝑎 = 0 = 𝓂𝑎𝑏, let us examine
equation (2.21a). Using the Leibniz rule, and contracting it with 𝑢𝑏 readily gives
two evolution equations

𝑢𝑎∇𝑎𝓂 = 0 and 𝑢𝑎∇𝑎𝑢𝑏 = 0 . (2.23)
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In other words, both the mass 𝓂 and the four-velocity 𝑢𝑎 of the particle are parallel-
transported along γ. For the former, it means that the only degree of freedom of
the particle (its mass) is in fact constant. For the latter, since 𝑢𝑎 is tangent to
the worldline γ, its parallel transport means that γ is a geodesic of the underlying
spacetime. These are called the evolution equations, as they evolve of the multipoles
along the worldline. If we construct the linear momentum vector 𝑝𝑎 ≡ 𝓂𝑢𝑎, then
(2.23) can be written equivalently as

𝑢𝑎∇𝑎𝑝𝑏 = 0 and 0 = 2𝑝[𝑎𝑢𝑏] , (2.24)

which coincides with the dipolar result (2.14) derived earlier with 𝑆𝑎𝑏 = 0, i.e., for
a monopolar (hence spinless) particle.

Tulcyjew’s reduction at dipolar order

Without giving the details (which can be found in App. A.4) let us give an overview
of the calculation involved in the Tulczyjew reduction process at dipolar order, using
the same steps as above.

Step i. The dipolar Ansatz now involves two terms, say

𝑇 𝑎𝑏 = ∫
γ

𝒯 𝑎𝑏 𝛿4 d𝜏 + ∇𝑐 ∫
γ

𝒯 𝑎𝑏𝑐 𝛿4 d𝜏 , (2.25)

where 𝒯 𝑎𝑏, 𝒯 𝑎𝑏𝑐 are arbitrary. We perform an orthogonal decomposition. For 𝒯 𝑎𝑏

equation (2.19) still holds, while for 𝒯 𝑎𝑏𝑐, it is sufficient to take

𝒯 𝑎𝑏 = 𝓂𝑢𝑎𝑢𝑏 + 2𝓂(𝑎𝑢𝑏) + 𝓂𝑎𝑏 (2.26a)
𝒯 𝑎𝑏𝑐 = 𝑢𝑎𝑢𝑏𝓃𝑐 + 2𝑢(𝑎𝓃𝑏)𝑐 + 𝓃𝑎𝑏𝑐 + ℴ𝑎𝑏𝑢𝑐 , (2.26b)

where all the 𝑚’s and 𝑛’s are orthogonal to the four-velocity, and both 𝓃𝑎𝑏𝑐 and
ℴ𝑎𝑏 are symmetric in (𝑎𝑏).

Step ii. We take the covariant derivative ∇𝑏 of (2.25) and bring the result into
normal form. After a rather lengthy calculation detailed in App. A.4, we arrive at

∇𝑏𝑇 𝑎𝑏 = ∫
γ

𝒳 𝑎𝛿4d𝜏 + ∇𝑏 ∫
γ

𝒳 𝑎𝑏𝛿4d𝜏 + ∇𝑏∇𝑐 ∫
γ

𝒳 𝑎𝑏𝑐𝛿4d𝜏 , (2.27)

where the 𝒳 ’s are in normal form: 𝒳 𝑎𝑏𝑢𝑏 = 0 = 𝒳 𝑎𝑏𝑐𝑢𝑏 and 𝒳 𝑎𝑏𝑐 is symmetric in
(𝑏𝑐). They are given by explicit formulae in terms of 𝑢𝑎, 𝑅𝑎𝑏𝑐𝑑, the 𝓂’s, 𝓃’s and
ℴ𝑎𝑏 as well as their 𝑢𝑎∇𝑎-derivative. The full expressions, which are not relevant
here, will be derived and used in Chap. 3, Sec. 3.2.1.

Step iii. The SEM conservation ∇𝑏𝑇 𝑎𝑏 = 0 and Tulczyjew’s second theorem
imply that all 𝒳 ’s in equation (2.27) vanish. This gives three equations. One of
them readily implies 𝓃(𝑎𝑏) = 0 = 𝓃𝑎𝑏𝑐, which simplifies the other two. The remain-
ing system of two equations naturally calls for the introduction of two particular
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combinations of the 𝓂’s, 𝓃’s and 𝑜𝑎𝑏. They are
𝑝𝑎 ≡ 𝓂𝑢𝑎 + 𝓂𝑎 + (ℴ𝑎𝑏 + 𝑢𝑎𝓃𝑏 + 𝓃𝑎𝑏)�̇�𝑏 (2.28a)

𝑆𝑎𝑏 ≡ 2𝑢[𝑎𝓃𝑏] + 2𝓃𝑎𝑏 , (2.28b)
Inserting them back into the Ansatz (2.25) then gives the reduced form of the SEM
tensor at dipolar order (at monopolar order, we had obtained (2.22)). The result is

𝑇 𝑎𝑏(𝑥) = ∫
γ

𝑢(𝑎𝑝𝑏) 𝛿4 d𝜏 + ∇𝑐 ∫
γ

𝑢(𝑎𝑆𝑏)𝑐 𝛿4 d𝜏 . (2.29)

We see that this is the sum of two terms, the first one bringing four components via
the vector 𝑝𝑎 and the second one six, since 𝑆𝑎𝑏 is antisymmetric.

Step iv. From the definitions (2.28), we can easily compute the derivatives of
(𝑝𝑎, 𝑆𝑎𝑏) along γ. The result looks rather familiar:

𝑢𝑒∇𝑒𝑝𝑎 = 1
2𝑅 𝑎

𝑏𝑐𝑑 𝑆𝑏𝑐𝑢𝑑 and 𝑢𝑐∇𝑐𝑆𝑎𝑏 = 2𝑝[𝑎𝑢𝑏] . (2.30)

We recognize, as expected, the evolution equations for the dipolar particle (2.14)
derived with the Lagrangian method in the last section. The right-hand side of
these equations acts as a force vector and torque tensor that prevent 𝑝𝑎 and 𝑆𝑎𝑏

from being parallel-transported.

At quadrupolar order, the four steps are the same, but the calculation is much
more involved [343]. In particular, at the quadrupolar level the Ansatz fot 𝑇 𝑎𝑏

contains a term with two covariant derivatives, in addition to the dipolar Ansatz
(2.25). Consequently, when applyting SEM conservation this term will pick up an
addition covariant derivative and the reduction process will involve the computation
of the normal form for a term like ∇𝑏∇𝑐∇𝑑 ∫γ 𝒯 𝑎𝑏𝑐𝑑. Although this is a lengthy and
tedious calculation, it did not discourage the authors of [343], who derived the re-
duced form of the quadrupolar SEM tensor (given below in Eqs. (2.58)-(2.59)) and
the evolution equations at quadrupolar order (Eq. (2.57)).

To summarize, Tulczyjew’s method takes as an input a distributional Ansatz
for the SEM tensor, directly inspired from the Newtonian skeletonized mass density
(2.7), which it generalizes as

𝑇 𝑎𝑏
skel(𝑥) =

∞
∑
ℓ=0

∇𝑐1⋯𝑐ℓ
∫

𝛾
𝒯 𝑎𝑏𝑐1⋯𝑐ℓ(𝑦) 𝛿4(𝑥, 𝑦) d𝜏 . (2.31)

Then, by SEM conservation and following an algorithmic procedure (involving the
so-called normal form) it removes all the redundant degrees of liberty of the 𝒯 ’s.
This allows us to rewrite the SEM in a reduced form, in term of reduced moments
(𝑝𝑎, 𝑆𝑎𝑏, …), along with evolution equations for these. The general picture behind
Tulczyjew’s reduction process is depicted in Fig. 2.1. This approach is to be con-
trasted with Dixon’s [326] (which was not presented at all here) that essentially
defines these moments beforehand (as integrals over 𝑇 𝑎𝑏) and derives their evolu-
tion equation from the conservation of 𝑇 𝑎𝑏. A summary of the differences between
these approaches is provided in Sec. 2.2.5.
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Figure 2.1: In the multipolar gravitational skeleton model, the smooth SEM tensor 𝑇 𝑎𝑏 of an
extended compact body enclosed in a worldtube 𝒯 (left) is replaced by the distributional SEM
tensor (2.31) of a particle endowed with a collection of multipoles (𝒯 𝑎𝑏, 𝒯 𝑎𝑏𝑐, 𝒯 𝑎𝑏𝑐𝑑, … ), all
defined along a worldline γ ⊂ 𝒯 (right), as if the extended body was “observed from far away.”

2.2.3 Generalized Killing Fields
The realm of Newtonian mechanics is built on Universal time and Euclidean 3-space.
As a consequence, it enjoys various geometrical results linked to the isometries of
Euclidean space. In particular, Euclidean 3D space is a maximally symmetric man-
ifold: it contains the maximum number of symmetries a 3D space can have. These
isometries are generated by six independent Killing vector fields, three associated to
rotations and three to translations. For any isolated system, the conservation of its
total linear and angular momentum can be derived from the invariance by trans-
lations and rotations, respectively. Behind these conservation laws lies a general
procedure for finding equations of motion, as encapsulated in the theory of Noether
invariants [344].

In a nutshell, the generalized Killing fields (GKF) framework developed by Abra-
ham Harte consists in extending this Euclidean duality between isometries and evo-
lution laws to relativistic mechanics. There are slight differences between the two,
notably because Euclidean spaces are maximally symmetric whereas GR spacetimes
are usually not. Harte’s program is a remarkably simple and elegant way of deriving
the laws of motion close to Dixon’s work [326], with one considerable advantage over
it: it naturally accounts for the self-field of the object. Harte has provided several
pedagogical reviews on his methods, see in particular [345], [346], which we strongly
encourage the reader to give a look, even the non-relativistic sections. Let us now
sketch the general ideas in the Newtonian case and then explain what changes need
to be made for the GR extension.

Euclidean mechanics

In Newtonian mechanics, more particularly in astrophysics, one is almost always
interested in the bulk motion of objects. The equations of motion for a continuous
distribution of matter of compact support ℬ, mass density 𝜌(𝐱) and velocity (3-
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vector) 𝐯 follow from the local conservation of mass and linear momentum (see,
e.g., [347])

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝐯) = 0 and 𝜕(𝜌𝐯)

𝜕𝑡 + ∇ ⋅ (𝜌 𝐯 ⊗ 𝐯 + 𝝈) = −𝜌∇𝜙 , (2.32)

where ⊗ denotes the tensorial product, the Cauchy stress tensor 𝝈 encodes infor-
mation on the contact, small-range forces (e.g., thermodynamic pressure), and 𝜙 is
a potential from which derives the long-ranged forces (e.g., the gravitational poten-
tial). Solving these equations to get the motion of a star or a planet is unnecessarily
complicated. Rather, one usually integrates out the fine details by defining a total
mass 𝑚 ≡ ∫ 𝜌d3𝐱, and total momenta. Classically, there are two kinds of momenta,
linear and angular

𝐩 ≡ ∫
ℬ

𝜌 𝐯 d3𝐱 and 𝐒 ≡ ∫
ℬ

𝜌 (𝐱 − 𝐳) × 𝐯 d3𝐱 , (2.33)

where × denote the Euclidean cross product, and 𝐳 is an arbitrary point with respect
to which angular momentum is defined (usually, the center of mass simplifies the
equations, but let us stay general for now). Equations of motion for these quantities
are easily obtained by taking the derivative of their definitions (2.33), and combining
the result with the conservation equations (2.32). We directly obtain d𝑚/d𝑡 = 0,
so that the total mass is conserved, and for the momenta

d𝐩
d𝑡 = − ∫

ℬ
𝜌 ∇𝜙 d3𝐱 , (2.34a)

d𝐒
d𝑡 = − ∫

ℬ
𝜌 (𝐱 − 𝐳) × ∇𝜙 d3𝐱 − d𝐳

d𝑡 × 𝐩 , (2.34b)

The first of these equations is nothing but (the integral formulation of) Newton’s
second law d𝐩/d𝑡 = 𝐅, expressing the rate of change of the momentum in terms of
the total force 𝐅 ≡ ∫ℬ 𝐟d3𝐱, as a volume-integral of the force densities 𝐟 ≡ −𝜌∇𝜙.
The second equation expresses the total torque that drives the angular momentum
of the extended body, with the spin component (first term, integrated) and the
orbital component (second term).

Isometries and motion

The previous results are well-known and taught in any graduate course on classical
mechanics. There is, however, an alternative approach to motivate the definitions
(2.33) of the momenta and their evolution equations (2.34), based on the isometries
of Euclidean space. This method takes advantage of the highly-symmetric nature
of 3D Euclidean space, where Newtonian mechanics take place. In particular, it is
convenient to introduce a functional, called the generalized momentum, that encap-
sulates both forms of momentum. It is defined by

𝒫𝜉(𝑡) ≡ ∫
ℬ

𝜌(𝐱, 𝑡)𝑣𝑎(𝐱, 𝑡)𝜉𝑎(𝐱)d3𝐱 , (2.35)
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where 𝜉𝑎 is a Killing vector field of Euclidean space. At a given time 𝑡, 𝒫 takes as an
input a Killing field 𝜉𝑎 and outputs a real number. For instance, if 𝜉𝑎 ≡ (𝜕𝑥)𝑎, is the
Killing vector associated to translations in the 𝑥-direction, then 𝒫𝜉 represents the
𝑥-component of the body’s linear momentum. The main property of the quantity
𝒫𝜉 is that it is a linear map on the space of Killing field 𝜉𝑎. But Killing fields satisfy
a remarkable property: specifying the value of (𝜉𝑎, ∇𝑎𝜉𝑏) at any one point 𝐱𝑜 in
space suffices to know 𝜉𝑎(𝐱) at every point 𝐱. This central result follows from the
system of equations satisfied by the pair (𝜉𝑎, Ξ𝑎𝑏), where Ξ𝑎𝑏 ≡ ∇𝑎𝜉𝑏, namely

𝑣𝑎∇𝑎𝜉𝑏 = 𝑣𝑎Ξ𝑎𝑏 and 𝑣𝑎∇𝑎Ξ𝑏𝑐 = −𝑅𝑏𝑐𝑎𝑑𝑣𝑎𝜉𝑑 , (2.36)

where 𝑣𝑎 is any tangent vector to a curve joining 𝐱𝑜 to 𝐱. If the metric 𝑔𝑎𝑏 is given,
then so is the Riemann tensor 𝑅𝑎𝑏𝑐𝑑 that appears in equations (2.36). Therefore,
(2.36) is a well-posed, linear differential system and any initial data (𝜉𝑎(𝐱𝑜), Ξ𝑎𝑏(𝐱𝑜))
is sufficient to compute the value of (𝜉𝑎(𝐱), Ξ𝑎𝑏(𝐱)) at any 𝐱. In particular, there
always exists two two-point tensors 𝐴𝑎b(𝐱, 𝐱𝑜) and 𝐵𝑎bc(𝐱, 𝐱𝑜) such that

𝜉𝑎(𝐱) = 𝐴𝑎b(𝐱, 𝐱𝑜)𝜉b(𝐱𝑜) + 𝐵𝑎bc(𝐱, 𝐱𝑜)Ξbc(𝐱𝑜) . (2.37)

These two-point tensors simply propagate the information from 𝐱𝑜 to 𝐱. They are
akin to the flow of vector fields associated to the solution of a differential system.
Inserting the general decomposition of Killing fields (2.37) into the definition (2.35)
of the generalized momentum then gives

𝒫𝜉 = 𝑝𝑎𝜉𝑎 + 1
2𝑆𝑎𝑏Ξ𝑎𝑏 , (2.38)

where the two tensors (𝑝𝑎, 𝑆𝑎𝑏) are defined as

𝑝𝑏 ≡ ∫
ℬ

𝜌𝑣𝑎𝐴𝑎𝑏d3𝐱 and 𝑆𝑏𝑐 ≡ 2 ∫
ℬ

𝜌𝑣𝑎𝐵𝑎𝑏𝑐d3𝐱 . (2.39)

In the 3D Euclidean setting, the two-point tensors (or propagators) 𝐴𝑎𝑏 and 𝐵𝑎𝑏𝑐

simply read [346] 𝐴𝑎𝑏(𝐱, 𝐱𝑜) ≡ 𝛿𝑎𝑏 and 𝐵𝑎𝑏𝑐(𝐱, 𝐱𝑜) ≡ (𝐱 − 𝐱𝑜)[𝑏𝛿𝑐]𝑎. If we insert
these expressions back in (2.39), we recover the original definitions (2.33), with the
spin vector 𝐒 there being equivalent to the antisymmetric spin tensor 𝑆𝑎𝑏 here by
the usual Hodge duality (in 3D spaces).

In this context, the linear and angular momenta (𝑝𝑎, 𝑆𝑎𝑏) are defined uniquely
as the coefficients appearing in the generalized momentum 𝒫𝜉, when writing it as
the linear combination of 𝜉𝑎 and ∇𝑎𝜉𝑏. In order to get the evolution equations for
𝑝𝑎 and 𝑆𝑎𝑏, it suffices to take the derivative of (2.38), combine it with the evolution
equations for the Killing fields (2.36) and match the coefficients in front of 𝜉𝑎 and
Ξ𝑎𝑏. After some more algebra, one then obtains two equations, whose general form
reads

d𝑝𝑎

d𝑡 = 1
2𝑅 𝑎

𝑏𝑐𝑑 𝑆𝑏𝑐𝑣𝑑 + 𝐹 𝑎 and d𝑆𝑎𝑏

d𝑡 = 2𝑝[𝑎𝑣𝑏] + 𝑀𝑎𝑏 , (2.40)

where 𝑣𝑎 is a vector generating time translations, and 𝐹 𝑎, 𝑀𝑎𝑏 are the force vector
and (antisymmetric) torque tensor, that can be expressed as integrals over the body
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and reduce to their expression (2.34) when explicitly computed. This derivation
shows that the evolution equations for the momenta 𝑝𝑎, 𝑆𝑎𝑏 are dual to those of the
Killing quantities 𝜉𝑎, Ξ𝑎𝑏. In particular, nothing here is relativistic, and the coupling
between spin and curvature (appearing in ̇𝑝𝑎) is already present at the “Newtonian”
level. This so-called “Papapetrou-term” is a consequence of the geometry of the
problem and not the relativistic nature of the theory, a fact only revealed by the
GKF approach. In fact, this is one of the main feature of the GKF method, which
does not appear to be widely known: it reveals the strong connection between the
laws of motion and the geometry of the underlying space(time). Treating Newtonian
mechanics this way provides valuable insight on the strong link between Euclidean
isometries and the laws of motion. As an example, the invariance of the Laplacian’s
Green function 𝐺(𝐱, 𝐲) = −|𝐱−𝐲|−1 with respect to Euclidean isometries is, in fact,
equivalent to Newton’s third law [345].

Lorentzian generalization

The previous calculations may be seen, at first glance, as nothing but a complicated
way of motivating the (otherwise natural) momenta definitions (2.33) and computing
the (otherwise straightforward) evolution equations (2.34). The point of using the
generalized momentum linear form 𝒫𝜉 and the two-point tensors 𝐴𝑎𝑏, 𝐵𝑎𝑏𝑐 (both of
which admit trivially simple expressions in Euclidean spaces) is that their definition
is, in fact, independent of the underlying manifold. Consequently, they can be
extended to any Lorentzian spacetime. In the case of GR, a number of adjustments
are necessary, but not fundamentally complicated. In particular

• the Newtonian time 𝑡 ∈ ℝ is replaced by a 3 + 1 foliation of spacetime, with
a parameter 𝑠 ∈ ℝ indexing the leaves, playing the role of time.

• the Killing fields of Euclidean space are replaced by Generalized Killing Fields
(whence the name, GKF). The space of GKFs has the same dimension as that
of Killing fields, but contrary to them, GKF exist for any regular manifold.
Whereas Killing fields are defined by the Killing equation ℒ𝑘𝑔𝑎𝑏 = 0 that holds
on the whole spacetime, GKFs are constructed from the 3+1 foliation and a
worldline γ, and verify ℒ𝑘𝑔𝑎𝑏 = 0 only on γ. Otherwise, they enjoy the same
properties as Killing fields do.

• the generalized momentum is a functional of GKFs and depends on the leaf
index 𝑠, through 𝑃𝜉(𝑠) ≡ ∫ℬ 𝑇 𝑎𝑏𝜉𝑏d𝑆𝑏, where d𝑆𝑏 is the 3-volume element on
the spacelike leaf, ℬ is the intersection between 𝑇 𝑎𝑏’s support and that leaf.

Except for these natural modification, the calculations remain the same in Eu-
clidean space and in curved spacetime (details of which can be found in section 4
of [346]). One advantage of the GKF results over the MPTD scheme (as synthe-
sized by Dixon [321,341,348]), is that it extends Dixon’s result in the case where the
self-field of the object is non-negligible. Although discussing this would be outside
the scope of this section, one of the strengths of the GKF approach is the ability to
capture self-field effects (i.e., influence of the body’s gravitational field on its own
motion) in a non-perturbative framework. More precisely, where the MPTD scheme
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provides an excellent basis for understanding the motion of the body, the GKF ap-
proach allows one to generalize the definitions of momenta (and center of mass) so
that the multipole expansions (in the SEM tensor or the evolution equations) still
hold (and behave nicely) when the object’s self-field is taken into account. As a
consequence, although the GKF equations derived in [345, 346] may look the same
as that obtained in the MPTD scheme (or in the Lagrangian formalism, for that
matter), they usually apply to a wider range of cases.

As a final note, Harte himself stresses [349] that the most important aspects of
the GKF method are not the results nor the fact that it applies to more general
cases, but rather that it shows (1) that linear and angular momentum are actually
two pieces of a more general object, which can be manipulated at once (much like the
electric and magnetic fields), (2) that the evolution equations for the dipole particle
(no force or torque) are dual to the Killing evolution equations, and thus more a
feature of curved-geometry than relativistic motion7, and (3) that the dynamics
(forces and torque) only start at the quadrupolar level, and can simply be seen as a
measure of the deviation from (the local, Poincaré) symmetry. This short account
on the GKF method skips over many other important and interesting features, in
particular the discussion about self-field and renormalization of the point-particle
limit for extended bodies. These are discussed in depth in [345, 346]. Fortunately,
the effects of the body on its own dynamics are well captured by the self-force
formalism, which we present next.

2.2.4 Gravitational Self-Force
In the previous sections, we have seen how a compact object can be explicitly mod-
eled as a (possibly spinning) point particle. We did not need to give the explicit
form for the metric, nor to specify if it was a solution to the Einstein equation.
Rather, the laws of motion for the multipoles of the particle readily come from the
sole energy conservation equation. In all methods, the form of the SEM tensor of
multipolar particle is found to be (2.29) (at dipolar order), which universally de-
scribes spinning, massive objects. As a consequence, these methods rely on a crucial
assumption: the metric tensor is implicitly defined initially. One could ask: what is
the metric in these computations ? Is it the metric solution to the Einstein equation
when the multipolar SEM tensor is taken as the source ? Is it a vacuum metric
? A second question could be: how do these results apply to the case of a black
hole, which is made of pure vacuum and therefore has no intrinsic SEM tensor?
Indeed, the Dixon and Harte’s formulae for the multipoles involve integrals over the
SEM tensor of the source, while the Tulczyjew algorithm makes the assumption of
a multipolar expansion of the SEM tensor of the source in the first place.

One way of answering these questions is to explore the problem under the light
of gravitational self-force theory (GSF). This alternative path, which is a direct
application of perturbation theory to GR, in the is under intense investigation as

7For example, the curvature-spin “coupling” is present in “Newtonian mechanics” on Rieman-
nian 3-spaces, cf Sec. 2.2.7 of [346]. It is the flatness of Euclidean 3-space that makes this term
absent in Newtonian mechanics.
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one of the most promising way of building GW templates for the detection of EMRIs
by the space-based interferometer LISA. The GSF method does lead to evolution
equations and a SEM tensor that look the same as those obtained with the previous
methods. On the one hand it only holds at a some given order in the perturbation,
but on the other hand it sheds some light as to the nature of the metric appearing
in the equations. For our purposes, the most important aspect of GSF is that it is
perfectly well defined for objects with a vanishing SEM tensor (such as BHs). In the
following paragraphs we provide a brief summary of the assumptions behind GSF
theory and how they are used to derive the evolution equations and the multipolar
SEM tensor.

Overview of GSF

The main goal of GSF is to describe a compact binary system made of a small
compact object of mass 𝑚 orbiting a much larger compact object of mass 𝑀 . For
definiteness, in this paragraph we will take the big object to be a supermassive Kerr
black hole (BH) of mass 𝑀 , and, to contrast, the small body will be a neutron star
(NS). The mass ratio of these two provides a small-parameter 𝜖 ≡ 𝑚/𝑀 ≪ 1, which,
in turn, naturally calls for a perturbative expansion in powers of 𝜖 of the problem.
In the absence of the NS (𝜖 = 0), the metric describing the system is that of an
isolated BH, say ̊𝑔𝑎𝑏. Consequently, far away from the NS, the exact metric 𝑔𝑎𝑏 of
the full system (BH+NS) can be written as

𝑔𝑎𝑏(𝜖) ≡ ̊𝑔𝑎𝑏 + ℎ𝑎𝑏(𝜖) , with ℎ𝑎𝑏 ≡ ∑
𝑛≥1

𝜖𝑛ℎ(𝑛)
𝑎𝑏 , (2.41)

where ℎ𝑎𝑏 is rightfully called the perturbation. The perturbation encodes the small
difference between an isolated BH and a BH surrounded by the NS. It is expanded
formally in powers of 𝜖, with coefficients8 ℎ(𝑛)

𝑎𝑏 . Decomposition (2.41) is called the
outer expansion of 𝑔𝑎𝑏 as it only holds at some reasonable distance from the NS.
Indeed, close to the NS the full metric 𝑔𝑎𝑏 does not resemble ̊𝑔𝑎𝑏 but rather the
metric of an isolated NS, say ⃰𝑔𝑎𝑏. Consequently, then there must exist a second
decomposition of the full system 𝑔𝑎𝑏, called the inner expansion, such that

𝑔𝑎𝑏( ̃𝑟, 𝜖) ≡ ⃰𝑔𝑎𝑏( ̃𝑟) + 𝐻𝑎𝑏( ̃𝑟, 𝜖) , with 𝐻𝑎𝑏 ≡ ∑
𝑛≥1

𝜖𝑛𝐻(𝑛)
𝑎𝑏 ( ̃𝑟) , (2.42)

where 𝐻𝑎𝑏 is the perturbation, 𝑟 is a measure of the distance to the NS and ̃𝑟 ≡ 𝑟/𝜖,
such that (2.42) is valid for 𝜖 → 0 at fixed ̃𝑟, whereas (2.41) holds for 𝜖 → 0 at fixed
𝑟. For the reader familiar with basic perturbation theory, the vicinity of the NS gen-
erates a boundary layer [351] in the background solution, where the outer expansion
(2.41) breaks down. The existence of an outer (2.42) and inner (2.41) expansions,
as well as the Einstein equation (1.1), are the only necessary assumptions behind
GSF theory, making it very general and powerful. In particular, if one assumes that

8One may use singular (ℎ(𝑛)
𝑎𝑏 depends also on 𝜖) or regular (formal 𝜖 Taylor-expansion) ex-

pansions depending on whether the representative worldline of the body is fixed or 𝜖-dependent.
See [350] and references therein for a discussion about these different approaches.
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(1) the two expansions coincide over some intermediate, buffer region (after all they
are two expansions of the same metric 𝑔𝑎𝑏) and that (2) the exact metric 𝑔𝑎𝑏 solves
the vacuum Einstein equation outside the NS, then one readily obtains the general
structure of the perturbation ℎ𝑎𝑏, from which everything else can be obtained.

First, and irrespective of the Einstein equation, the small object’s metric ⃰𝑔𝑎𝑏 is
shown to be ̃𝑟-asymptotically flat (i.e., ⃰𝑔𝑎𝑏 → 𝜂𝑎𝑏 as ̃𝑟 → +∞ for fixed 𝜖). This
is but a consequence of the matching condition, which encodes the dependence of

⃰𝑔𝑎𝑏 for large ̃𝑟. This asymptotic flatness can be used to properly define a set of
multipole moments for the NS, for example by applying the very general theory
of Geroch-Hansen moments [352, 353]. As a consequence, the coefficients 𝐻(𝑛)

𝑎𝑏 of
the inner expansion can be expressed entirely in terms of these multipole moments.
Then, thanks to the matching condition again, the ℎ(𝑛)

𝑎𝑏 can be expressed in terms
of these multipoles via 𝐻(𝑛)

𝑎𝑏 .

Then, one may solve the Einstein equation iteratively in powers of 𝜖, outside the
small body. The main feature of the obtained solution (which necessitates a number
of computational tricks, gauge choices and control of the boundary conditions) is
that the perturbation ℎ𝑎𝑏 can always be written a sum of two pieces

ℎ𝑎𝑏 = ℎ𝑅
𝑎𝑏 + ℎ𝑆

𝑎𝑏 . (2.43)

The so-called regular piece, ℎ𝑅
𝑎𝑏, encodes the information on the background metric

̊𝑔𝑎𝑏, for instance the SMBH’s mass, spin, and tidal environment, and is independent
of the small body’s characteristics. It is both regular at the location the small body,
and a vacuum solution to the Einstein equation. On the contrary, the singular piece,
ℎ𝑆

𝑎𝑏, diverges when approaching the small body. It is not a vacuum solution, and
explicitly depends on the body’s multipole moments. Broadly speaking, the general
form of the singular piece is, at quadratic order in 𝜖,

ℎ𝑆
𝑎𝑏 = 𝜖2𝑚

𝑟 𝛿𝑎𝑏 + 𝜖2 4𝑆𝑐𝑛𝑑

𝑟2 𝑢(𝑎𝜀𝑏)𝑐𝑑 + 𝑂(𝜖3) (2.44)

where 𝑟 is a measure of the distance from the NS to the field evaluation point and 𝑛𝑎

is the unit vector that joins them. Equation (2.44) contains information on the small
body: 𝑚 its mass, 𝑆𝑎𝑏 a spin tensor defined with respect to some worldline that
represents the body, and 𝑢𝑎 is that worldline’s unit tangent vector. These multipoles
𝑚, 𝑆𝑎𝑏 are defined from the object’s own spacetime (as if it were isolated). With
the metric perturbation (2.44), we can now understand how the equation of motion
and the SEM tensor of the NS are derived.

Evolution equations

In GSF theory, the worldline that will ultimately represent the small body is intro-
duced implicitly through the use of Fermi-Walker (FW) coordinates, denoted (𝑡, 𝑥𝑖)
(see also section III.B of [350]). These coordinates generalize, to a whole curve, the
locally inertial normal coordinates that are traditionally built around a point, such
that the metric near this point looks flat (locally) (see Eric Poisson’s relativity’s
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toolkit [354] for details). We will not discuss further the exact definition and exis-
tence condition of this worldline further, but refer to the discussion in section III.B.
of [350] for details. To illustrate, let us look at the metric coefficients written in FW
coordinates. Putting 𝑟2 ≡ 𝛿𝑖𝑗𝑥𝑖𝑥𝑗, they read [354]

𝑔𝑡𝑡 = −1 − 2𝑎𝑖𝑥𝑖 − (𝑅𝑡𝑖𝑡𝑗 + 𝑎𝑖𝑎𝑗)𝑥𝑖𝑥𝑗 + 𝑂(𝑟3) , (2.45a)
𝑔𝑖𝑡 = −2

3𝑅𝑡𝑖𝑎𝑗𝑥𝑖𝑥𝑗 + 𝑂(𝑟3) , (2.45b)
𝑔𝑖𝑗 = 𝛿𝑖𝑗 − 2

3𝑅𝑎𝑖𝑏𝑗𝑥𝑖𝑥𝑗 + 𝑂(𝑟3) , (2.45c)

and thus include the FW components 𝑎𝛼 = (0, 𝑎𝑖) of the four-acceleration vector
𝑢𝑏∇𝑏𝑢𝑎, with 𝑢𝑎 the unit tangent to the worldline, as well as the local spacetime
curvature through the components of the Riemann tensor. Thanks to the FW
coordinate system, the acceleration of the worldline is thus encoded in the metric.
The Einstein equation, when solved for the metric outside the small body, gives an
expression of the acceleration 𝑢𝑏∇𝑏𝑢𝑎 in terms of the body’s multipole moments via
the singular piece ℎ𝑆

𝑎𝑏 of the metric (2.44) and the regular piece ℎ𝑅
𝑎𝑏. These equations

have been obtained at linear order9 in 𝜖 for an arbitrary compact object. In this
case, the acceleration along γ reads

𝑢𝑏∇𝑏𝑢𝑎 = 𝜖 ⋅ ( 1
2𝑚𝑅 𝑎

𝑏𝑐𝑑 𝑢𝑏𝑆𝑐𝑑 − 1
2𝑔𝑎𝑏(2ℎ𝑅,1

𝑏𝑐;𝑑 − ℎ𝑅,1
𝑐𝑑;𝑏)𝑢𝑐𝑢𝑑) + 𝑂(𝜖2) , (2.46)

with ℎ𝑅,1
𝑎𝑏;𝑐 ≡ ∇𝑐ℎ𝑅

𝑎𝑏 denoting the covariant derivative compatible with the back-
ground metric 𝑔𝑎𝑏 of the first order, regular piece of the perturbation. Notice that
there is no zero-th order term in Eq. (2.46): this is consistent with the test-particle
limit, wherein the small body indeed follows a geodesic of the background spacetime.
The right-hand side of Eq. (2.46) contains two terms, of which

• the second is a first-order term proportional to the spin tensor 𝑆𝑎𝑏 of the small
body (uniquely defined from the spin vector 𝑆𝑎 of Eq. (2.44) by setting the
mass dipole moment to zero, cf. Sec. 2.3.2 below). This is the term that we
found in all previous calculations for dipolar particles;

• the last term is new, and involves the first-order, regular piece of the metric
perturbation ℎ𝑅

𝑎𝑏. If the small body was a test particle, then this term would
vanish identically. Therefore, it accounts for the small body’s own influence
on its trajectory, hence its name: the self-force (per unit mass, to be precise).

Equation (2.46) is the fundamental and central result of GSF theory, and is known
as the MiSaTaQuWa equation (named after the authors of [357,358] who derived it
for the first time). In addition to the equation of motion (2.46), one obtains, still
from the Einstein equation, conservation laws for the body’s multipoles, namely

𝑢𝑎∇𝑎𝑚 = 𝑂(𝜖2) and 𝑢𝑐∇𝑐𝑆𝑎𝑏 = 𝑂(𝜖3) . (2.47)
9Most second-order self-force calculations are currently ongoing, and the equations of motion

have, for the moment, only been obtained for spinless, spherically symmetric objects [355,356].
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Consequently, in GSF theory, the spin is parallel-transported along the (accelerated)
worldline of the particle10. One remarkable aspect of equations (2.46) and (2.47) is
that they can be combined into a form similar to the evolution equations derived
using the other methods (Lagrangian, MPTD and GKF). Indeed, if we work at
linear order in spin, such that 𝑝𝑎 = 𝑚𝑢𝑎, the conservation of mass (2.47) combines
nicely with (2.46) so that

𝑢𝑒∇̃𝑒𝑝𝑎 ≡ 1
2�̃� 𝑎

𝑏𝑐𝑑 𝑢𝑏𝑆𝑐𝑑 + 𝑂(𝜖2) , (2.48)

where, this time, ∇̃ is the covariant derivative compatible with the effective metric
̃𝑔𝑎𝑏 ≡ ̊𝑔𝑎𝑏 + ℎ𝑅

𝑎𝑏. This form gives an answer to the question asked earlier: what is
the metric that enters the evolution equations? The answer from GSF is that it is
neither the exact metric 𝑔𝑎𝑏, nor the background metric ̊𝑔𝑎𝑏. Rather, it is a vacuum
metric ̃𝑔𝑎𝑏, defined as the background + the regular piece of the perturbation. We
see here a generalization of the equivalence principle, which traditionally refers to
test objects: here the particle is accelerated in the real, physical spacetime 𝑔𝑎𝑏, but
can also be interpreted as following a geodesic in an effective, vacuum geometry

̃𝑔𝑎𝑏. The presentation here follows the so-called self-consistent method initiated by
Adam Pound [350]. Other routes are possible to derive the self-force equations of
motion, for example the approach of Sam Gralla and Robert Wald that also provide
compatible first [359] and second order [360] results.

SEM tensor

The results for the equation of motion and the evolution equations rely on a subtle,
yet central, assumption behind GSF. The metric perturbation, as obtained from
solving the Einstein equation, is technically valid only outside of the small body,
in vacuum. In terms of the distance 𝑟 to the worldline, these results hold for 𝑟
larger than 𝑂(𝜖) distances. However, extending these results all the way down to
the worldline (i.e., 𝑟 → 0) does make mathematical sense and does not alter the
physics in the outside region [350, 361]. This, in a sense, generalizes the Newton
theorem: computing the field at the exterior of a spherical body or that of a point
mass yields the same result.

Let us now explain the general idea behind the derivation of the SEM tensor at
linear order in 𝜖, first. The Einstein tensor11 𝐺𝑎𝑏 associated with the full metric
𝑔𝑎𝑏 = ̊𝑔𝑎𝑏 + ℎ𝑎𝑏 can be linearized as,

𝐺𝑎𝑏[ ̊𝑔 + 𝜖ℎ1] = 0 + 𝜖 ⋅ 𝐺𝑎𝑏
(1)[ℎ𝑆,1] + 𝑂(𝜖2) (2.49)

10This does not contradict the dipolar equation of precession derived earlier in other schemes.
Indeed, to compare these results, one would need (at least) to (1) compare both result in the
same spacetime, (i.e, expressed the equations with the same metric), and (2) expand the dipolar
precession equation in terms of a mass ratio, which would then lead to ̇𝑆𝑎𝑏 = 𝑂(𝜖3).

11We choose the upstairs indices to match references cited in the text. Care must be taken
while moving indices in perturbation theory because of the different metrics at play and their
𝜖-dependence.



76 2.2. RELATIVISTIC SKELETONS

with 𝐺𝑎𝑏
(1) the linearized Einstein tensor (that looks like a d’Alembert operator in

a Lorenz gauge, recall Sec. 1.2.2). The vanishing zeroth-order term and the fact
that only ℎ𝑆 contributes to 𝐺𝑎𝑏

(1) come from ̊𝑔𝑎𝑏 and ℎ𝑅
𝑎𝑏 being vacuum solutions,

respectively. One may now explicitly compute equation (2.49) in terms of the body’s
multipoles thanks to the expression of ℎ𝑆 given in (2.44). Since everything is taken
to hold all the way to the worldline, the result takes a distributional form and
reads [199, 359, 362]

𝐺𝑎𝑏
(1)[𝑔] = 8𝜋𝑚∫

γ
𝑢𝑎𝑢𝑏 𝛿4(𝑥, 𝑧(𝜏)) d𝜏 + 𝑂(𝜖2) , (2.50)

where 𝑢𝑎 is the four-velocity along the worldline γ, 𝜏 the proper time and where
the Dirac covariant distribution 𝛿4, all built from the background metric ̊𝑔𝑎𝑏. If we
interpret equation (2.50) as the linearized Einstein equation, then we recognize on
the right-hand side 8𝜋𝑇 𝑎𝑏, where 𝑇 𝑎𝑏 is the SEM tensor of a point particle of mass
𝑚, moving in the background spacetime ̊𝑔𝑎𝑏, just like we encountered in the previous
sections. However, we should stress that, here, this result is not an assumption and
does not derive from a point-particle Ansatz of the body: it is derived solely from
the matching condition and the Einstein equation. This result is central: it shows
that at the first order in 𝜖, a small body (even a black hole) acts as a point particle,
in the sense that it generates the same gravitational field (encoded in ℎ𝑆

𝑎𝑏) as one.
At second order, one can proceed in (almost) the same way, namely, use the

left-hand side of the Einstein equation to define the SEM tensor of the body. In
particular, once we know the perturbation ℎ𝑎𝑏 outside the body and extend it all
the way to the worldline, we can take the sourced Einstein equation 𝐺𝑎𝑏 = 8𝜋𝑇𝑎𝑏,
compute the Einstein tensor at second order, and then define the SEM tensor as
(8𝜋)−1𝐺𝑎𝑏, since this equation is to hold everywhere. This is in the same spirit
as what we did in the Newtonian case in Sec. 2.1, where the skeletonized mass
density (2.6) was defined as the quantity that generates the truncated potential
(2.5) through the Poisson equation. In particular, at second order the SEM tensor
is now computed through the second-order expansion of the Einstein tensor

𝐺𝑎𝑏[𝑔] = 0 + 𝜖 ⋅ 𝐺𝑎𝑏
(1)[ℎ𝑆,1] + 𝜖2 ⋅ (𝐺𝑎𝑏

(1)[ℎ𝑆,2] + 𝐺𝑎𝑏
(2)[ℎ1, ℎ1]) + 𝑂(𝜖3) , (2.51)

with now the second order piece 𝐺𝑎𝑏
(2) coming from the quadratic term in the expan-

sion of 𝐺𝑎𝑏[𝑔 + 𝜖ℎ] that is quadratic in ℎ (see Appendix A in [361] for details). Due
to the assumption that the Einstein equation holds all the way to the worldline,
the term 𝐺(2)

𝑎𝑏 in (2.51) involves strongly singular terms that prevent the left-hand
side of (2.51) (and thus 𝑇𝑎𝑏) to be a well-defined distribution, unlike the first or-
der calculation. As a consequence, the second-order calculation requires some extra
care: either with a method involving some kind of regularization procedure (e.g.,
a puncture scheme, cf. [363]), or with an exact computation but in a well-chosen
gauge (which removes, by construction, the strongest singularities), as was done re-
cently by Sam Upton and Adam Pound [361]. In both cases, and quite remarkably,
the result (2.49) still holds at second order, in the sense that the first and second
order terms in (2.51), computed thanks to formulae like (2.44), all combine nicely
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Figure 2.2: This picture depicts the three main features of GSF. The real system consists in an
extended NS (yellow ball on the right) orbiting a perturbed Kerr BH (deformations in grey) on an
accelerated worldline (in yellow). This worldline is accelerated with respect to the Kerr geodesic
(dotted grey curve) that would be followed by a test particle around an exact Kerr BH (cylindrically
symmetric, in black). This acceleration is interpreted as resulting from a gravitational self-force
(red arrow, on the right).

so that [199, 364]

(8𝜋)−1𝐺𝑎𝑏[𝑔] = 𝑚∫
γ

�̃�𝑎�̃�𝑏 ̃𝛿4 d ̃𝜏 + ∇̃𝑐∫
γ

�̃�(𝑎 ̃𝑆𝑏)𝑐 ̃𝛿4 d ̃𝜏 + 𝑂(𝜖3) , (2.52)

where now all tilde quantities are built from the effective metric ̃𝑔𝑎𝑏 ≡ ̊𝑔𝑎𝑏 + ℎ𝑅
𝑎𝑏.

Here appears the spin contribution (which finds its origin in the singular piece ℎ𝑆,2
𝑎𝑏 in

(2.44)). One again, we observe the SEM tensor of a spinning point particle, moving,
not on the background metric, but on the effective metric ̊𝑔 + ℎ𝑅. We emphasize
one last time that this is the result of an explicit calculation, namely the Einstein
tensor at second-order in 𝜖2. As predicted by Detweiler in [365], the point particle
model does hold at nonlinear order in GSF theory. A summary of the important
results are depicted in Fig. 2.2

2.2.5 Discussion
The point of the previous sections was to present, without going into too much
details, how different multipolar schemes (Lagrangian, MPTD, GKF and GSF) are
used to derive (1) the SEM tensor of an extended compact object modelled as a
point particle endowed with multipoles, and (2) the evolution equations for these
multipoles. Only the main results will be used in the next sections, and no more
reference will be made to these particular schemes. Before moving to the next section
where a summary is provided and where we build on these results, we take some
time to (1) discuss how these schemes differ in their assumptions and what they each
bring into the picture of relativistic dynamics, and (2) give some information on how
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they generalize to higher multipoles, as we only provided a pole-dipole discussion
up to now. These two points are discussed below, in that order.

Comparisons

Although we believe that a more thorough comparison between the multipolar
schemes would be of valuable interest for the sake of clarity and for understand-
ing precisely how their applications range overlap, we must leave this for future
work. Here, we only summarize the assumptions and main results of these schemes,
and pin point how some of them answer questions that others raise, emphasizing
their complementarity.

The Lagrangian method relies on two main assumptions. First, that a metric ten-
sor is given: all calculations are made relative to this metric and the dynamics take
place in the spacetime described by it. Second, it assumes a point-particle model for
the extended body, by the introduction of a worldline, and needs an Ansatz for the
Lagrangian. However, very little assumptions about the Lagrangian are required to
derive its explicit form in terms of the multipoles, which are defined as conjugated
variables of the kinematic degrees of freedom. In particular, the four-momentum,
spin tensor, and higher-order multipoles arise as the generalized momenta of the
worldline’s four-velocity, rotation coefficients, and the (successive derivatives of) the
Riemann tensor. Nevertheless, this method presents the advantage of deriving very
straightforwardly the evolution equations for the multipoles by a simple “action
minimization” procedure. Also, the very definition of the multipoles renders their
algebraic symmetries obvious (the quadrupole tensor has the same symmetries as
the Riemann tensor since it is its conjugated momentum). Finally, the explicit form
of the Lagrangian opens up a very effective Hamiltonian treatment of the dynamics
of point particles in GR [366], that even extends in the non-conservative regime.
References of interest for the Lagrangian method are Bailey and Israel’s pioneering
works [315] and Sylvain Marsat’s paper [319] with a complete derivation at all mul-
tipolar orders. See also [193] for a recent review on the Hamiltonian formulation of
binary mechanics.

The MPTD scheme was historically the first to derive the evolution equations
for the multipoles, which nowadays are sometimes called the MPTD equations. The
only assumption behind this framework is the conservation of the SEM tensor rep-
resenting the body. From there, two routes are possible. First, in Dixon’s point of
view, one can define linear and angular momentum as integrals over the body’s SEM
tensor. These definitions, when chosen correctly (here lies Dixon’s main input) lead
to a set of evolution equations that are well-posed. They involve a force vector and
a torque tensor that can be expressed as a sum of higher order multipoles (starting
with the quadrupole), also defined as integrals. In the spirit of Tulczyjew, one can
also take an alternative route. Instead of defining the momenta, start with an Ansatz
for the SEM tensor, which is directly inspired by its Newtonian equivalent, albeit
being covariant and adapted to a 3+1 spacetime. Then, by the sole application of
SEM conservation, one derives at once the evolution equations of the non-redundant
degrees of freedom of the multipoles, defined as projections of the Ansatz. Although
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Dixon’s way is advantageous as it allows one to define momenta by integrals over
the SEM tensor, and discuss the worldline unicity, it cannot account for black holes,
which by definition do not have a SEM tensor over which to integrate. On the
contrary, Tulczyjew’s scheme already assumes a point-particle model, and can thus
be applied to any kind of compact object, a priori. Finally, we note that our main
interest in Tulczyjew’s reduction process is to apply it for the derivation of useful
conservation laws, as done in Chap. 3. References of interest for the MPTD scheme
are Dixon’s most recent and complete account of his work [326], and for Tulczyjew’s
reduction process, see Andrzej Trautman’s lecture notes [310], as well as [1, 343].

The method of GKF developed by Abraham Harte provides a direct extension
of Dixon’s scheme. For that reason, this scheme only applies to matter sources, with
a non-zero SEM tensor, excluding the case of black holes. However, it offers two
considerable advantages. First, it is written in an interesting geometrical way, pro-
viding insight as to what belongs to kinematics (the pole-dipole evolution equations
are pure geometry, in this sense) and what belongs to the dynamics (the effect of
all higher-order multipoles starting with the quadrupole). The definition of the mo-
menta are combined into a single entity that is defined by duality with Killing fields
(generalized, if need be). The method applies to a wide range of theories of gravity,
including Newtonian, GR and higher-dimensional extensions thereof (as explained
in [346]). The second advantage of the GKF framework is to shed some light on the
influence of a body on its own motion (self-field) in a non-perturbative setting. In
particular it readily shows which metric actually enters the evolution equations and
the SEM tensor, a question left unanswered in the Lagrangian and MPTD schemes.
References for the GFK method are Abraham Harte’s own reviews [345, 346] and
his recent article [367] containing a summary and applications at quadrupolar order.

The GSF theory presents a number of advantages over the above schemes. The
overall appeal of the GSF method is that it does not rely on any limiting assumption,
except for the Einstein equation (which can hardly be discarded). The small object’s
point-particle behavior is actually a result of the theory, as is its effective SEM tensor,
which actually applies for any type of compact objects, neutron stars and black holes.
Yet, the most important advantage of GSF is practical: the GSF framework includes
a whole algorithmic procedure destined to compute the actual waveform emitted by
EMRIs [199]. This is necessary, as GSF is the most promising tool for producing
templates and analyzing the data of the space-based interferometer LISA. These
computations represent an ongoing challenge, with the most recent milestone being
the explicit computation of the gravitational binding energy between a small object
orbiting a large Schwarzschild black hole, at second-order in the mass ratio [368].

Beyond the dipole

The evolution equations (2.14) obtained in the previous section were derived at
dipolar order. This means that the body is described by two “multipoles”, its mo-
mentum 𝑝𝑎 and spin 𝑆𝑎𝑏. Each approach (Lagrangian, MPTD, SF or GKF) can, in
principle, be extended to any order 𝑛 ≥ 2 in the multipolar expansion. These exten-
sions are present at all multipole orders in [319] for the Lagrangian method, in [321]
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for the MPTD method and in [345] for the GKF method. In GSF theory, the evo-
lution equations have been derived at first order for spinning objects [350, 357, 359]
and at second order for nonspinning, spherical objects [355, 356]. Quadrupole and
higher-order multipoles only appear at third order or more in the mass ratio, but the
general result that the small body orbits on a geodesic of an effective metric is known
to hold even in the full nonlinear setting, as the GKF method readily shows [345].
Along with evolution equations, the corresponding SEM tensor at dipolar order is
easily derived in each method. It should be noted, however, that, although algorith-
mically straightforward, the computations become cumbersome for the SEM tensor
at higher than dipolar order; see [343] for the quadrupolar order, and [319] for the
SEM tensor at octupolar order in the Lagrangian formalism. Finally, for the SEM
tensor in GSF theory, we refer section 5.5 of [199] and references therein.

The general structure of the evolution equations is known at all multipolar orders.
Much like (2.14), they only contain two equations (one for 𝑝𝑎, one for 𝑆𝑎𝑏) but with
additional terms on their right-hand sides. In particular, at any order 𝑛 ≥ 2 in the
multipolar expansion, the evolution equations (2.14) are to be replaced by

̇𝑝𝑎 = 1
2𝑅 𝑎

𝑏𝑐𝑑 𝑆𝑏𝑐𝑢𝑑 +
𝑛

∑
𝑘=2

𝐹 𝑎
(𝑘) and ̇𝑆𝑎𝑏 = 2𝑝[𝑎𝑢𝑏] +

𝑛
∑
𝑘=2

𝑀𝑎𝑏
(𝑘) , (2.53)

where the (𝐹 𝑎
(𝑘), 𝑀𝑎𝑏

(𝑘)) denote contributions from the higher-order multipoles that
appear at each order. As they drive the evolution of the momentum and the spin,
they are known as the force and moment tensors, respectively. As an illustration,
their expression for 𝑛 = 2 are [319, 321, 343]

𝐹 𝑎
(2) = −1

6𝐽 𝑏𝑐𝑑𝑒∇𝑎𝑅𝑏𝑐𝑑𝑒 and 𝑀𝑎𝑏
(2) = 4

3𝑅 [𝑎
𝑒𝑑𝑐 𝐽 𝑏]𝑐𝑑𝑒 , (2.54)

where the 4-indices tensor 𝐽𝑎𝑏𝑐𝑑 is called the quadrupolar tensor. It possesses the
same algebraic symmetries as the Riemann tensor 𝑅𝑎𝑏𝑐𝑑 (recall the discussion around
equation (2.17)). Therefore it has only 20 independent components. We shall come
back in details to the quadrupolar case in the next section.

At the next, octupolar order (𝑛 = 3), a 5-indices tensor 𝑂𝑎𝑏𝑐𝑑𝑒 appears. The
evolution equations (2.53) now contain the quadrupolar contributions (2.54) as well
as octupolar terms, given by [319]

𝐹 𝑎
(3) = − 1

12𝑂𝑏𝑐𝑑𝑒𝑓∇𝑎∇𝑏𝑅𝑐𝑑𝑒𝑓 , (2.55a)

𝑀𝑎𝑏
(3) = −2

3∇𝑐𝑅 [𝑎
𝑑𝑒𝑓 𝑂𝑏]𝑐𝑑𝑒𝑓 + 1

6∇[𝑎𝑅𝑐𝑑𝑒𝑓𝑂𝑏]𝑐𝑑𝑒𝑓 , (2.55b)

with the octupole 𝑂𝑎𝑏𝑐𝑑𝑒 possessing 40 independent components, thanks to its many
algebraic symmetries. More generally, at any order 𝑛 ≥ 2 an additional, (2 + 𝑛)-
indices tensor called the 2𝑛-polar tensor, appears in the expressions of (𝐹 𝑎

(𝑛), 𝑀𝑎𝑏
(𝑛)).

It possesses many algebraic symmetries and exactly (𝑛 + 2)(3𝑛 − 1) independent
components [319, 321]. In this work, we will limit ourselves to quadrupolar order
and therefore only need equations (2.54).
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Regarding the multipolar SEM tensor of a point particle, at quadrupolar order a
new contribution 𝑇 𝑎𝑏

q (see Eq. (2.59) below) must be added to the pole-dipole SEM
tensor 𝑇 𝑎𝑏 given in Eq. (2.29). Its expression involves the quadrupole tensor 𝐽𝑎𝑏𝑐𝑑

that appears in the quadrupolar force 𝐹 𝑎
(2) and torque 𝑀𝑎𝑏

(2) (2.54). It has been de-
rived using Tulczyjew’s reduction process in [343], with the Lagrangian method (see
e.g., [319]) and can be computed with Dixon’s or the GKF method by inverting the
integral expressions of the multipoles.12 These quadrupolar contributions are crucial
to encode tidal deformations in a binary and/or quadratic-in-spin effects [369]. The
SEM tensor at octupolar order includes a new term 𝑇 𝑎𝑏

oct that only appeared (to my
knowledge) in [319] using the Lagrangian formalism. The full expression involves
the octupolar tensor 𝑂𝑎𝑏𝑐𝑑𝑒 that appears in the octupolar evolution equations, with
the octupolar force and torque given in (2.55). This contribution, which must be
added to the pole-dipole-quadrupole SEM tensor, reads, schematically

𝑇 𝑎𝑏
oct = ∫

γ
(∇𝑅) 𝑂 𝛿4d𝜏 + ∇ ∫

γ
𝑅 𝑂 𝛿4d𝜏 + ∇∇∇ ∫

γ
𝑂 𝛿4 d𝜏 , (2.56)

where 𝑅 represents the Riemann tensor. The exact expression can be found in
Eq. (2.25) of [319]. The octupolar piece is necessary to account for the cubic-in-spin
contributions in the dynamics of spinning binaries, as shown in that same paper. We
note that given the length of Tulczyjew’s reduction process already at quadrupolar
order (given in [343]), the same calculation at octupolar order is possible by hand but
would be extremely tedious. However, it is interesting to note that this reduction
process could be implemented systematically at all orders in a algorithmic way, for
example with the help of a symbolic algebra system, as it shares strong similarities
with combinatorics-type calculations. We leave this for future work.

2.3 Model summary
In the previous section we saw how the description of an extended compact object in
GR can be approached. These methods are rather different in their assumptions and
definitions. Yet, up to minor details, they all provide the same results regarding the
evolution equations and the SEM tensor of a multipolar particle. In this section, we
provide a summary of our model, used in the following chapters to derive the first
law of mechanics. In particular, we also define and study the conservation properties
of derived quantities, like a spin vector, a mass dipole, and various other scalars.

2.3.1 Quadrupolar particles
In the gravitational skeleton formalism, a compact object is represented by a point
particle moving along a worldline γ. In a coordinate system 𝑥𝛼, the worldline γ
is described by four parametric equations of the form 𝑥𝛼 = 𝑦𝛼(𝜏), where 𝜏 ∈ ℝ
denotes the proper time, and 𝑦𝛼 are four functions ℝ → ℝ of 𝜏 .

12Although we have not been able to find an example of this particular derivation in the liter-
ature, it may (possibly [349]) be found in Ruprecht Schattner’s PhD thesis.
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Evolution equations

At quadrupolar order, all the physical information about the compact object is en-
coded into four tensors defined along γ: the four-velocity 𝑢𝑎 (tangent to γ), the
four-momentum 𝑝𝑎 (not parallel to 𝑢𝑎 in general), the spin tensor 𝑆𝑎𝑏 (antisymmet-
ric) and the quadrupole tensor 𝐽𝑎𝑏𝑐𝑑 (same algebraic symmetries as the Riemann
tensor). These multipoles evolve along γ and are coupled to one another and to the
geometry, as encoded in the following evolution equations

̇𝑝𝑎 = 1
2𝑅 𝑎

𝑏𝑐𝑑 𝑆𝑏𝑐𝑢𝑑 − 1
6𝐽 𝑏𝑐𝑑𝑒∇𝑎𝑅𝑏𝑐𝑑𝑒 , (2.57a)

̇𝑆𝑎𝑏 = 2𝑝[𝑎𝑢𝑏] + 4
3𝑅 [𝑎

𝑒𝑑𝑐 𝐽 𝑏]𝑐𝑑𝑒 . (2.57b)

Because they evolve the momentum 𝑝𝑎 and the spin 𝑆𝑎𝑏, equations (2.57a) and
(2.57b) are called the equation of motion and equation of precession, respectively.
The system (2.57) is made of two coupled, first order, ordinary differential equations
for the components of (𝑝, 𝑆), given (𝑢, 𝐽) and the geometry. Indeed, as tensor fields
defined along γ only, they can always be viewed as functions of the sole proper time
𝜏 .

Notice that there is no evolution equation for the quadrupole 𝐽𝑎𝑏𝑐𝑑. An expla-
nation can be drawn from SEM tensor conservation (1.4), which, in general, is not
sufficient to constrain the matter fields so much as to fully determine their evolu-
tion [370]. Indeed, a quadrupolar particle in GR suffers the same treatment as the
perfect fluid with density and pressure (𝜚, 𝑃 ) in Newtonian gravity. For the lat-
ter, the Navier-Stokes equations are not sufficient to determine the dynamics, and
must be completed by an equation of state relating 𝜚 and 𝑃 . Similarly, in GR, for
the system (2.57) to be well-posed, an equation expressing the quadrupole 𝐽𝑎𝑏𝑐𝑑 in
terms of the other multipoles (𝑝𝑎, 𝑆𝑎𝑏), the four-velocity 𝑢𝑎 and/or the geometry
(𝑔𝑎𝑏, 𝑅𝑎𝑏𝑐𝑑, …) is required. These expressions as well as more details will be given
in the Chap. 6, when we work at quadrupolar order. For the moment, we do not re-
quire explicit formulae and will keep our result valid for a generic quadrupole 𝐽𝑎𝑏𝑐𝑑.
Additionally, even with the quadrupole expressions, the system (2.57) is still not
well-posed and requires another equation (called a supplementary spin condition),
which is touched upon in the following paragraphs.

SEM tensor

A multipolar particle curves spacetime around it by sourcing the Einstein equation
via its SEM tensor. The latter is supported on the worldline γ ∶ 𝑥 = 𝑧(𝜏) of the
particle. At quadrupolar order, it is the sum of three terms, each corresponding to
a successive multipolar order and depending on the associated multipole (𝑝, 𝑆, 𝐽).
At dipolar order, we have

𝑇 𝑎𝑏 = ∫
γ

𝑢(𝑎𝑝𝑏) 𝛿4(𝑥, 𝑧) d𝜏 + ∇𝑐 ∫
γ

𝑢(𝑎𝑆𝑏)𝑐 𝛿4(𝑥, 𝑧) d𝜏 , (2.58)

where the first and second term in (2.58) form the classical monopole-dipole model
of a compact object, discussed in Sec. 2.2. At quadrupolar order, one must add to
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the right-hand side of Eq. (2.58) the following term

𝑇 𝑎𝑏
quad(𝑥) = 1

3 ∫
γ

𝑅 (𝑎
𝑐𝑑𝑒 𝐽 𝑏)𝑐𝑑𝑒 𝛿4(𝑥, 𝑧) d𝜏 − 2

3∇𝑐𝑑 ∫
γ

𝐽𝑐(𝑎𝑏)𝑑 𝛿4(𝑥, 𝑧) d𝜏 , (2.59)

where we introduced the shorthand notation ∇𝑐𝑑 = ∇𝑐∇𝑑 here, used in the re-
maining of the manuscript. We see in Eq. (2.59) that the quadrupolar contribution
contains a term with two derivatives, as expected, and a term deprived of derivatives.
In fact, the latter is simply the anti-symmetric, second-order covariant derivative
contribution of the quadrupolar sector. It has simply been recast in terms of the
Riemann tensor, thanks to its definition as the commutator of double covariant
derivatives. Consequently, the right-most term on the right of (2.59) is actually the
symmetrized second-derivative, and one could write ∇(𝑐𝑑) in front of it. It turns
out that, thanks to its symmetries, the quadrupole verifies 𝐽𝑐(𝑎𝑏)𝑑 = 𝐽𝑎(𝑐𝑑)𝑏, so that
that this symmetrization is unnecessary. Finally, we stress that in equations (2.58)-
(2.59), the four-velocity 𝑢𝑎 and the three multipoles (𝑝, 𝑆, 𝐽) are functions of the
worldline only (or 𝑧(𝜏), or simply 𝜏 , equivalently) and it is the Dirac distribution
𝛿4 ≡ 𝛿4(𝑥, 𝑧(𝜏)) that makes 𝑇 𝑎𝑏 a well-defined, distributional tensor field on ℰ . In
particular, for any 𝑥 ∉ γ we have 𝑇 𝑎𝑏(𝑥) = 0.

Scalars

Next, from the variables 𝑢𝑎, 𝑝𝑎 and 𝑆𝑎𝑏, we introduce three positive scalar fields
along γ: the rest mass 𝑚, the dynamical mass 𝜇 and the spin amplitude 𝑆 as

𝑚 ≡ −𝑝𝑎𝑢𝑎 , (2.60a)
𝜇2 ≡ −𝑝𝑎𝑝𝑎 , (2.60b)
𝑆2 ≡ 1

2𝑆𝑎𝑏𝑆𝑎𝑏 . (2.60c)

The coefficient 1/2 for the spin amplitude is purely conventional. In general, none
of these scalar fields is conserved along γ, and the masses 𝑚 and 𝜇 need not coincide
[343]. However, as we shall prove later, in the case of a binary system of quadrupolar
particles moving on a circular orbit, 𝑚, 𝜇 and 𝑆 are all conserved, for each particle.

Momentum-velocity relation

Contracting equation (2.57b) with 𝑢𝑏 and using the mass 𝑚 defined in (2.60a) readily
implies the momentum-velocity relation

𝑝𝑎 = 𝑚𝑢𝑎 − ̇𝑆𝑎𝑏𝑢𝑏 + 4
3𝑅 [𝑎

𝑒𝑑𝑐 𝐽 𝑏]𝑐𝑑𝑒𝑢𝑏 . (2.61)

This equation is exact. For a dipolar particle (𝐽𝑎𝑏𝑐𝑑 = 0), it shows that the 4-
momentum 𝑝𝑎 = 𝑝𝑎

kin + 𝑝𝑎
hid is the sum of the timelike kinematic momentum 𝑝𝑎

kin ≡
𝑚𝑢𝑎 and of the spacelike hidden momentum (see e.g. Ref. [371]) 𝑝𝑎

hid ≡ ℎ𝑎
𝑏𝑝𝑏, such

that 𝑢𝑎𝑝𝑎
hid = 0, where we introduced the projector orthogonal to 𝑢𝑎,

ℎ𝑎
𝑏 ≡ 𝛿𝑎

𝑏 + 𝑢𝑎𝑢𝑏 . (2.62)

The projector (2.62) should not be confused with the metric perturbation ℎ𝑎𝑏 used
earlier, of which no further mention should be made in the remaining chapters.
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2.3.2 Dipolar particles
In this last section we introduce the notion of supplementary spin condition (SSC),
which allows (1) to obtain a well-posed system of evolution equations and (2) to
expand key relations in powers of the spin.

Note: from now until the end of the present chapter, equations result from a
dipolar calculation, where the quadrupole 𝐽𝑎𝑏𝑐𝑑 has been set to zero anywhere it
would otherwise appear from the evolution equations (2.57). Their generalization at
any multipolar order is provided in App. A.4.4. We will need the following equations
in Chap. 5 and their quadrupolar corrections in Chap. 6.

Spin supplementary condition

Consider for now an extended body, whose support is a worldtube 𝒯 , as well as
a reference worldline γ∘ ⊂ 𝒯 , with unit timelike tangent 𝑣𝑎. As shown by Dixon
[341] or Harte [345], the body’s momentum 𝑝𝑎 and spin 𝑆𝑎𝑏 can be expressed as
surface integrals over the SEM distribution, the later depending also on the choice
of reference worldline γ∘ [326, 348]. The six degrees of freedom encoded in the spin
tensor 𝑆𝑎𝑏 can equivalently be encoded in two spacelike vectors 𝑆𝑎 and 𝐷𝑎, both
orthogonal to 𝑣𝑎, according to

𝑆𝑎𝑏 = 𝜀𝑎𝑏𝑐𝑑𝑣𝑐𝑆𝑑 + 2𝐷[𝑎𝑣𝑏] ⟺ { 𝑆𝑎 ≡ −1
2𝜀𝑎𝑏𝑐𝑑𝑣𝑏𝑆𝑐𝑑 ,

𝐷𝑎 ≡ −𝑆𝑎𝑏𝑣𝑏 . (2.63)

Physically, the vector 𝐷𝑎 can be interpreted as the body’s mass dipole moment,
as measured by an observer with 4-velocity 𝑣𝑎, i.e., with respect to the reference
worldline γ∘, while 𝑆𝑎 can be interpeted as the body’s spin with respect to that
wordline [372].

We now go back to the quadrupolar particle described by (2.57)–(2.58). In a
given basis, the equations of evolution (2.57) are equivalent to a system of 10 ordi-
nary differential equations for 13 unknowns, namely the 4 + 6 + 3 = 13 independent
components of 𝑝𝛼(𝜏), 𝑆𝛼𝛽(𝜏) and 𝑢𝛼(𝜏). (Having specified a physical model for the
quadrupole 𝐽𝑎𝑏𝑐𝑑, its components 𝐽𝛼𝛽γ𝛿(𝜏) are known functions of 𝑢𝛼(𝜏), 𝑝𝛼(𝜏) and
𝑆𝛼𝛽(𝜏).) Since we did not specify the worldline γ representing the body, it is not
surprising that such under-determinacy should occur in the gravitational skeleton
model. To obtain a well-posed problem, three additional constraints on the spin
tensor, known as a spin supplementary condition (SSC), thus have to be imposed,
equivalent to the choice of the reference wordline γ∘ with tangent 𝑣𝑎 for the actual
extended body. These constraints take the form 𝑆𝑎𝑏𝑓𝑏 = 0, where 𝑓𝑎 is a timelike
vector. In this work, we shall adopt the so-called Frenkel-Mathisson-Pirani SSC (or
Pirani SSC for short), defined by setting

𝑆𝑎𝑏𝑢𝑏 = 0 , (2.64)

which states that the mass dipole 𝐷𝑎 with respect to the wordline γ vanishes, or
equivalently that the spin vector 𝑆𝑎 in equation (2.63) is orthogonal to the 4-velocity
𝑢𝑎. This natural choice of SSC is primarily motivated by the fact that the first law
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of compact binary mechanics to be derived in Chap. 5 will take its simplest form if
(2.64) holds. Moreover, as we shall prove in the next chapter, for circular orbits the
4-velocity of each particle is necessarily tangent to the generator 𝑘𝑎 of the helical
Killing symmetry. For such orbits, the SSC (2.64) will thus be equivalent to the
geometrically-motivated, algebraic constraint

𝑆𝑎𝑏𝑘𝑏 = 0 . (2.65)

Other choices of SSC are of course possible, such as the Tulczujew-Dixon SSC
𝑆𝑎𝑏𝑝𝑏 = 0. Our results are, for the most part, written in a covariant manner,
and independent of a choicce of SSC. The latter will mainly be used to expand the
results in powers of the spin, as a mean to compare our results to the literature.
We refer to the references [372–375] for a review of the various SSC, their physical
interpretation and well-posedness (see also [].

Conservation of rest mass and spin amplitude

Together with the equations of evolution (2.57), the Pirani SSC (2.64) implies exact
conservation laws at dipolar order.

First, contracting the equation of precession (2.57b) with 𝑆𝑎𝑏 = 𝑆 [𝑎𝑏] and using
(2.64) shows that the particle’s spin amplitude (2.60c) is conserved at dipolar order:

̇𝑆 = 0 . (2.66)

Moreover, the particle’s rest mass 𝑚 (2.60a) is conserved along γ as well, up to
quadrupolar terms. To prove it, first take the derivative of (2.60a) to get

�̇� = −(𝑝𝑎�̇�𝑎 + ̇𝑝𝑎𝑢𝑎) . (2.67)

To compute the first term, we contract (2.61) with 𝑢𝑎 and find that the first two
terms on the right-hand side of the resulting equation vanish, thanks to �̇�𝑎𝑢𝑎 = 0 and

̇𝑆𝑎𝑏𝑢𝑎�̇�𝑏 = 0, respectively (the latter follows from a Leibniz rule, the antisymmetry
of the spin tensor and the SSC). Consequently, we find 𝑝𝑎�̇�𝑎 = 𝑂(𝐽). For the
second term in (2.67), we simply contract the equation of motion (2.57a) with 𝑢𝑎,
and thanks to the symmetries of the Riemann tensor, the first term on the right
vanishes and we also find ̇𝑝𝑎𝑢𝑎 = 𝑂(𝐽). Explicitly, the result is

�̇� = 0 . (2.68)

Similar conservation laws hold for other choices of SSC. For instance, using the
Tulczujew-Dixon SSC 𝑆𝑎𝑏𝑝𝑏 = 0, one can establish the conservation of the spin
amplitude 𝑆 and of the dynamical mass 𝜇 defined in (2.60b). We emphasize that
if the SSC 𝑆𝑎𝑏𝑢𝑏 = 0 is imposed, the conservation laws (2.66) and (2.68) are exact
at dipolar order, and not merely perturbatively valid in a Taylor series expansion
in the spin. At quadrupolar order, the terms 𝑂(𝐽) can be computed explicitly by
following the calculation steps provided in the above text.
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Definition of a spin vector

Having imposed the SSC (2.64), the decomposition (2.63) implies that the three
remaining degrees of freedom of the spin tensor 𝑆𝑎𝑏 can be encoded in a spin vector
𝑆𝑎—or equivalently in a spin 1-form 𝑆𝑎 ≡ 𝑔𝑎𝑏𝑆𝑏—obeying

𝑆𝑎 ≡ −1
2𝜀𝑎𝑏𝑐𝑑𝑢𝑏𝑆𝑐𝑑 ⟺ 𝑆𝑎𝑏 = 𝜀𝑎𝑏𝑐𝑑𝑢𝑐𝑆𝑑 . (2.69)

By construction, the spin vector 𝑆𝑎 is spacelike and orthogonal to 𝑢𝑎, while its norm
coincides with the conserved norm (2.60c) of the spin tensor, namely

𝑆𝑎𝑢𝑎 = 0 , (2.70a)
𝑆𝑎𝑆𝑎 = 𝑆2 . (2.70b)

The first result derives from the definition (2.69) and the antisymmetry of 𝜀𝑎𝑏𝑐𝑑,
while (2.70b) derives from equations (2.69) and (2.60c) together with the SSC (2.64).
Moreover, the rate of change of the spin vector is easily computed from the definition
(2.69) as

̇𝑆𝑎 = −1
2𝜀𝑎𝑏𝑐𝑑�̇�𝑏𝑆𝑐𝑑 , (2.71)

where we used ̇𝜀𝑎𝑏𝑐𝑑 = 0 by metric compatibility, the equation of spin precession
(2.57b), and the antisymmetry of 𝜀𝑎𝑏𝑐𝑑. This equation of evolution can be further
simplified as follows. By substituting in (2.71) the expression (2.69) for 𝑆𝑐𝑑 in terms
of 𝑢𝑎 and 𝑆𝑎, and using the orthogonality �̇�𝑎𝑢𝑎 = 0, we readily obtain

̇𝑆𝑎 = 𝑢𝑎�̇�𝑏𝑆𝑏 . (2.72)

The spin vector 𝑆𝑎 is found to obey the Fermi-Walker transport law at dipolar
order (when 𝑂(𝐽) = 0). This will be responsible for the Thomas precession that
we shall encounter later in Sec. 5.2.3. Finally, we notice that by substituting the
expression (2.69) of the tensor 𝑆𝑎𝑏 into the momentum-velocity relationship (2.67),
the 4-momentum can alternatively be written as

𝑝𝑎 = 𝑚𝑢𝑎 − 𝜀𝑎
𝑏𝑐𝑑𝑢𝑏�̇�𝑐𝑆𝑑 , (2.73)

which readily implies 𝑝𝑎𝑆𝑎 = 0. At dipolar order, the 4-momentum 𝑝𝑎 = 𝑝𝑎
kin + 𝑝𝑎

hid
is the sum of the timelike kinematic momentum 𝑝𝑎

kin ≡ 𝑚𝑢𝑎, with 𝑚 constant, and
of the spacelike hidden momentum 𝑝𝑎

hid ≡ −𝜀𝑎
𝑏𝑐𝑑𝑢𝑏�̇�𝑐𝑆𝑑, which is orthogonal to 𝑢𝑎,

�̇�𝑎 and 𝑆𝑎. By using the condition of metric compatibility, which implies ̇𝜀𝑎𝑏𝑐𝑑 = 0,
as well as the equation of spin precession (2.72), the rate of change of the hidden
momentum is given by ̇𝑝𝑎

hid ≡ −𝜀𝑎
𝑏𝑐𝑑𝑢𝑏�̈�𝑐𝑆𝑑, and thus belongs to the two-space

orthogonal to 𝑢𝑎 and 𝑆𝑎. Lastly, we note that the Pirani SSC allows to express 𝑢𝑎

entirely in terms of 𝑚, 𝑝𝑎 and 𝑆𝑎𝑏, as showed13 in Sec. II.C of [375], in the form

𝑚𝑢𝑎 = 𝑝𝑎 + 1
𝑆2 𝑆𝑎𝑏𝑆𝑏𝑐𝑝𝑐 . (2.74)

13To our knowledge, it was not written down prior to the publication of [375]. As noted by the
authors, the existence of this “momentum-velocity” relation for the Pirani SSC is rather intriguing,
given the numerous claims in the literature that such relation did not exist.
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which is compatible with Eq. (2.73) (cf. Eqs. (25) and (26) in [374]. Now, it is clear
from Eq. (2.74) that the tensor 𝑆𝑎𝑏𝑆𝑏𝑐 acts as some kind of a projector. A direct
calculation using (2.69) indeed reveals that

𝑆𝑎𝑏𝑆𝑏𝑐 = −(𝛿𝑎
𝑐 + 𝑢𝑎𝑢𝑐 − 𝑠𝑎𝑠𝑐)𝑆2 , (2.75)

with 𝑠𝑎 ≡ 𝑆𝑎/𝑆. This is the rank-2 tensor that projects onto the subspace orthog-
onal to both 𝑢𝑎 and 𝑆𝑎 (up to multiplication by the constant −𝑆2). Interestingly,
equation (2.74) can be applied to itself any number of times by inserting (schemat-
ically) 𝑝 = 𝑚𝑢 + 1

𝑆2 𝑆𝑆𝑝 into the 𝑆𝑆𝑝-term and repeating this procedure. In the
end, since 𝑆𝑎𝑏𝑢𝑎 = 0, one obtains, for any 𝑛 ≥ 1

𝑚𝑢𝑎 = 𝑝𝑎 + (−)𝑛

𝑆2𝑛 𝑆𝑎1𝑎2 ⋯ 𝑆𝑎2𝑛𝑎2𝑛+1
𝑝𝑎2𝑛+1 . (2.76)

Acceleration, momentum and velocity

The SSC (2.64) can also be used to derive some approximate equations of evolution
and algebraic relations, in the sense that they hold true only up to some order in the
spin tensor 𝑆𝑎𝑏. We shall denote by 𝑂(𝑆𝑛) any term that involves 𝑛 spin tensors (or
spin vectors). We start by introducing the gravito-magnetic part of the Riemann
tensor, 𝐵𝑎𝑏 ≡ ⋆𝑅𝑎𝑐𝑏𝑑𝑢𝑐𝑢𝑑, with ⋆𝑅𝑎𝑏𝑐𝑑 ≡ 1

2𝜀 𝑒𝑓
𝑎𝑏 𝑅𝑒𝑓𝑐𝑑 the self-dual of the Riemann

tensor. Using the definition (2.69) of the spin vector, the equation of motion (2.57a)
can be written in the more compact form ̇𝑝𝑎 = 𝐵𝑎𝑏𝑆𝑏. Substituting this formula into
the left-hand side of the derivative of equation (2.67), and using the conservation
(2.68) of the rest mass 𝑚, yields

�̇�𝑎 = 1
𝑚𝐵𝑎𝑏𝑆𝑏 − 1

𝑚𝑆𝑎𝑏�̈�𝑏 , (2.77)

where we further used ̇𝑆𝑎𝑏�̇�𝑏 = 0 because of equation (2.57b) and the orthogonality
of �̇�𝑎 to both 𝑢𝑎 and 𝑝𝑎. Equation (2.77) is exact, and readily shows that �̇�𝑎 = 𝑂(𝑆),
so that the motion of a dipolar particle cannot be geodesic. The rightmost term
in (2.77) is therefore at least of 𝑂(𝑆2). Actually, the later involves �̈�𝑏, and can
therefore be expanded in powers of the spin at any order by recursively taking the
derivative of equation (2.77) and substituting it back into its own right-hand side.
Doing this once, while using (2.72) and the orthogonality 𝐵𝑎𝑏𝑢𝑏 =0, we can isolate
the quadratic-in-spin contribution and obtain the following spin expansion:

�̇�𝑎 = 1
𝑚𝐵𝑎𝑏𝑆𝑏 − 1

𝑚2 𝑆𝑎𝑏�̇�𝑏𝑐𝑆𝑐 + 𝑂(𝑆3) . (2.78)

Equations (2.77) and (2.78) have a number of interesting consequences. First,
by noticing that 𝑆𝑎𝑏𝑆𝑎 = 0 by equation (2.69), we contract (2.77) with 𝑆𝑎 and
insert the result in the equation of precession (2.72). We then obtain the exact spin
evolution equation

̇𝑆𝑎 = 1
𝑚𝑢𝑎𝐵𝑏𝑐𝑆𝑏𝑆𝑐 , (2.79)

which shows that ̇𝑆𝑎 =𝑂(𝑆2). Hence the driving torque that prevents 𝑆𝑎 from being
parallel-transported along γ is quadratic in spin. Second, we substitute equation
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(2.78) in the right-hand side of equation (2.67) to obtain the following expansion for
the momentum:

𝑝𝑎 = 𝑚𝑢𝑎 + 1
𝑚𝑆𝑎𝑏𝐵𝑏𝑐𝑆𝑐 + 𝑂(𝑆3) . (2.80)

From this equation we see that 𝑝𝑎 = 𝑚𝑢𝑎 + 𝑂(𝑆2). Therefore the 4-momentum of
a dipolar particle can only be aligned with its 4-velocity up to linear order in the
spin. Third, taking the norm of equation (2.67) provides a simple relation between
the dynamical mass 𝜇 and the rest mass 𝑚. Using the SSC (2.64), we readily obtain

𝜇2 = 𝑚2 + �̇�𝑎𝑆𝑎𝑏𝑆𝑏𝑐�̇�𝑐 . (2.81)

Equation (2.78) then implies 𝜇 = 𝑚 + 𝑂(𝑆4), such that the two notions of mass
coincide up to quartic-in-spin corrections. Since �̇� = 0 the dynamical mass satisfies

̇𝜇 = 𝑂(𝑆4). Notice also that if the spin amplitude 𝑆 is small enough, then 𝜇2 > 0
and 𝑝𝑎 is timelike.

Finally, it should be kept in mind that the contributions of 𝑂(𝑆2) in equations
(2.78)–(2.80) should be interpreted with care at dipolar order, because additional
terms of 𝑂(𝑆2) would contribute to those same equations if we were to include the
spin-induced quadrupole in our gravitational skeleton model of spinning compact
objects. This is particularly relevant for the derivation of the quadrupolar first law
discussed in Chap. 6. As a matter of fact, it is possible to obtain an exact relation
for �̇�𝑎 in terms of nothing but 𝑝𝑎, 𝑆𝑎 and curvature tensors, as showed in [374] (see
Sec. II.B there). This takes the form

𝑚�̇�𝑎 = 𝐵𝑠𝑠𝑆𝑎 − 1
𝑆2 𝑆𝑎𝑏𝑝𝑏 , (2.82)

where 𝐵𝑠𝑠 ≡ 𝐵𝑎𝑏𝑆𝑎𝑆𝑏/𝑆2. It is worth noting that this formula splits �̇�𝑎 into two
simple terms: the first one is colinear to 𝑆𝑎 and the second is orthogonal to 𝑆𝑎,
since 𝑆𝑎𝑏𝑆𝑎 = 0 by construction.
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Helical isometry

[...] the author seeks a level of rigor that is (i) high enough to give
him confidence of the results derived, but also (ii) low enough to

permit the treatment of real astrophysical systems in the real,
non-asymptotically flat universe.

K. THORNE,
Rev. Mod. Phys. 52(2) (1980) .

⋄

Exactly circular orbits, which in a 2+1 spacetime diagram depict perfect helices,
do not exist in nature. Yet, one of the central assumptions behind the work

presented in this thesis relies on an exact isometry that describes compact binary
systems moving along circular orbits. In this chapter, the first section is dedicated
to various definitions, motivations and classical results about circular orbits of com-
pact binary systems and their mathematical modeling using a helical Killing vector.
Then, in the following two sections we will show how this helical isometry, in the
presence of multipolar particles, implies two central geometrical results. First, in
Sec. 3.2.1 we show that each particle must follow an helical trajectory in a helical
spacetime, and in Sec. 3.2.2 that all its multipoles (momentum, spin, quadrupole)
are Lie-dragged along this helical trajectory. These results are derived covariantly
and are self-consistent, i.e. they do not require any additional assumption other
than the helical isometry. Finally, several useful identities are derived in Sec. 3.3.

89
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3.1 Helically isometric spacetimes
In this work, we will deal exclusively with binary systems of point particles on a
circular orbit. In this first section we shall explain why this assumption, which
clearly contradicts the very notion of inspiral, is a good model for compact binary
systems (Sec. 3.1.1), and then show how this is enforced at the mathematical level,
with the introduction of a helical Killing vector field. As the circular approximation
constitutes one of the main assumptions of our work, we discuss its limitations,
along with those arising from of the use of point particles, in Sec. 3.1.3.

3.1.1 Why circular orbits ?
A traveling GW emitted by a binary system carries energy and angular momentum
which it extracted from its source. At the leading PN order, this process is encoded
in the fluxes of energy 𝒫 and angular momentum 𝒯 𝑖, which are given by (see section
12.3.2 of [140], or section 3.3 of [135])

𝒫 = 1
5

⃛𝐼 𝑖𝑗 ⃛𝐼 𝑖𝑗 and 𝒯 𝑖 = 2
5𝜖𝑖

𝑗𝑘 ̈𝐼𝑗ℓ ⃛𝐼𝑘ℓ , (3.1)

in terms of the time derivatives of 𝐼 𝑖𝑗(𝑡), the mass quadrupole of the source. The
fluxes (3.1), in turn, drive a slow evolution of the energy 𝐸 and angular momentum
𝐿𝑖 of the source itself, which would otherwise be constant at the Newtonian level.
The relation between the fluxes and the binary’s energy and angular momentum are
known as “balance laws”, and, when averaged over one orbit, take the natural form
d𝐸/d𝑡 = −𝒫 and d𝐿𝑖/d𝑡 = −𝒯 𝑖 [140, 144]. When applied to a binary system of
masses 𝑚1, 𝑚2 on a Keplerian ellipse of semi-major axis 𝑎 and eccentricity 𝑒, these
balance laws are shown to induce a slow, secular variation of the orbital parameters
𝑒 and 𝑎 themselves. To derive these evolutions, at the Newtonian level we may
simply use the classical formulae for the energy, 𝐸 ∝ −1/𝑎, and for the angular
momentum, 𝐿 ∝ (𝑎(1 − 𝑒2))1/2. Combining these with balance laws and equations
(3.1) readily give [135]

d𝑎
d𝑡 = −64

5
𝑚1𝑚2

𝑎3
1

(1 − 𝑒2)7/2 (1 + 73
24𝑒2 + 37

96𝑒4) , (3.2a)

d𝑒
d𝑡 = −304

15
𝑚1𝑚2

𝑎4
𝑒

(1 − 𝑒2)5/2 (1 + 121
304𝑒2) . (3.2b)

Readily from these equations, we see that both 𝑎 and 𝑒 will decrease with time.
Consequently, the two bodies will get closer to each other, while orbiting on an
ever-circularizing orbit. Clearly, from the (Newtonian) Kepler’s third law Ω2 =
(𝑚1 + 𝑚2)𝑎−3, a decrease in 𝑎 implies that the orbital frequency Ω of the binary
will increase with time1. However, these two processes occur at different rates.
The main reason is because of the eccentricity 𝑒 in the numerator of (3.2b). This
equation makes the eccentricity rapidly evolve towards the circular limit (𝑒 = 0)

1This can readily be seen on the observed waveforms of the GW events (see figures in Sec. 1.3.2
of Chap. 1), since the GW frequency is (at leading order) twice the orbital frequency.
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since for as long as the orbit is eccentric, ̇𝑒 < 0. On the other hand, when 𝑒 ≃ 0,
then ̇𝑒 ≃ 0 as well, and the orbit remains circular. In the light of dynamical systems,
the system (3.2) exhibits a phase space (𝑒, 𝑎) with a rapid horizontal direction
and a slow vertical one for most of the eccentricity’s values. The two extreme
regimes, where 𝑒 ≃ 0 and 𝑒 ≃ 1, show a rapid vertical direction and slow horizontal
one (see Fig. 3.1). To summarize, a (moderately massive) binary on a highly
eccentric orbit looses its eccentricity so rapidly that when it is essentially circular,
the orbital separation is still orders of magnitude larger than the body’s typical
sizes. Consequently, the binary is still far away from merger, and by the time it
starts plunging, its eccentricity has become completely negligible.

To put these results in perspective, let us apply them to a real binary system.
Remarkably, using Eq. (3.2) to compute d𝑎/d𝑒 ≡ ̇𝑎/ ̇𝑒 gives an ordinary differential
equation that can be solved analytically as [135]

𝑎(𝑒) = 𝐶 𝑒12/19

1 − 𝑒2 (1 + 121
304𝑒2)

870/2299
(3.3)

with 𝐶 an integration constant that is fixed e.g., by a measurement of the orbital
parameters of the binary. Figure 3.1 depicts in a (𝑒, 𝑎)-diagram the relation (3.3) for
two known pulsars, the Hulse-Taylor (first pulsar in a binary ever discovered) and
the double-pulsar (first and only binary made of two pulsars [376]). We see that,
indeed, in the 𝑒 ∈ [0.1, 0.9] region, both 𝑒 and 𝑎 lose an order of magnitude along
the evolution of (3.3).
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Merger

Hulse-Taylor pulsar 
(PSR J1915+1606)

300 Myr to merger

Double-pulsar 
(PSR J0737-3039)

85 Myr to merger

Figure 3.1: This diagram shows the evolution of the typical orbital separation (semi-major axis 𝑎)
of a binary in terms of its eccentricity 𝑒. In the region 𝑒 ∈ [0.1, 0.9], both 𝑒 and 𝑎 decrease by a
factor of ten within the same time span. Therefore, a compact binary loses its eccentricity during
its early inspiral, and has 𝑒 ≃ 0.01 when reaching the end of the inspiral (when 𝑎 is a few times
the radii of the body, here 10 km for a NS). Two real examples are plotted: the only double-pulsar
known to this day (PSR J0737-3039) and the Hulse-Taylor pulsar, with their corresponding time
to merger.

It should be noticed, to be more precise, that this circularization process by
the loss of angular momentum through the emission of GWs applies to relatively
low-mass binary systems. Usually, these systems will be circularized for a long time
when the GW enters the detector’s bandwidth, around 10 Hz. But notice, due to
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the 𝑚1𝑚2 factor in equations (3.2), that this process is far less efficient for very
massive systems, in particular SMBH binaries and EMRIs. For these systems, when
the GW will enter the detector’s bandwidth, the binary will not have lived long
enough for the orbit to be circular. It is always a competition between the time
taken to circularize the orbit (a time which is longer for massive systems) and the
frequency at which the GW enters the detector’s bandwidth.

Nevertheless, let us now examine a binary system on a circular orbit of radius 𝑅
and angular frequency Ω. The leading-order, PN result for the secular evolution of
Ω and 𝑅 reads (we restore the factors of 𝑐)

d𝑅
d𝑡 = −64

5
𝐺3𝑚3𝜈
𝑅3𝑐5 + 𝑂(𝑐−7) and dΩ

d𝑡 = 96
5

𝐺𝑚𝜈
𝑅3 𝛾5/2 + 𝑂(𝑐−7) , (3.4)

where 𝜈 ≡ 𝑚1𝑚2/𝑚2 is the symmetric mass ratio. These equations are central
because they allow to show that two time scales are present in the problem: (1)
the orbital time scale 𝑇orb ≡ 2𝜋/Ω and (2) the radiation-reaction time 𝑇rea ≡ Ω/Ω̇,
which governs the secular evolution of the orbital parameters, in particular Ω. Using
the (Newtonian) Kepler third law in the form Ω2𝑅3 = 𝐺𝑚 and the viriel theorem
𝑣2 = 𝐺𝑚/𝑟, equation (3.4) gives an estimate

𝑇orb
𝑇rea

∝ 𝜈(𝑣
𝑐 )

5
. (3.5)

Consequently, during most of the inspiralling phase (𝑣/𝑐 ≪ 1) and/or for systems
with large mass ratios (𝜈 ≪ 1), we have 𝑇orb ≪ 𝑇rea and the binary makes a large
number of orbits before the orbital radius decreases significantly as a reaction to
the GW emission2. The existence of two distinct time scales justifies the adiabatic
approximation of an inspiral, i.e., the fact that it is well-approximated by a sequence
of circular orbits. This adiabatic approximation is quite powerful, as it allows the
construction of GW templates for the whole inspiral phase just by stitching together
a series of circular-orbits, whose orbital parameters evolve over a radiation reaction
timescale 𝑇rea. As depicted in Fig. 3.2

To summarize, by the time the GW emitted by a binary system possesses a high
enough frequency to enter the detector’s sensitive bandwidth (around a a few tens
of Hz for current detectors, their orbit is expected to show a negligible eccentricity.

3.1.2 Helical Killing vectors
Definition

When a spacetime (ℰ , 𝑔𝑎𝑏) possesses a (continuous) isometry, there exists trajec-
tories along which the metric 𝑔𝑎𝑏 is preserved. The generator of these trajectories

2Even though the estimate relies on the assumption of circular orbits and thus is invalid for EM-
RIs which are typically eccentric, the existence of two timescales (orbital and radiation-reaction),
and thus the validity of an adiabatic approximation, still holds for most binaries, including EM-
RIs [377].
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Quasi-circular  
inspiral

Exactly circular  
spacetime

Adiabatic approximation

Torb
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Figure 3.2: Three 2+1 spacetime diagrams that summarize the idea of the adiabatic approximation
for a quasi-circular inspiral. On the left, the inspiral spans several 𝑇rea, over which the orbital
radius decreases significantly. In the middle, the zoom shows that 𝑇rea still spans many orbital
periods 𝑇orb. However, over a timescale 𝑇orb (right), the orbital radius is constant, and the orbit
can be considered circular.

is called a Killing vector field (here after Killing field or Killing vector). If such a
Killing vector exists, it satisfies, by definition

ℒ𝜉𝑔𝑎𝑏 = 0 , (3.6)

with ℒ𝜉 denoting the Lie-derivative with respect to the vector field 𝜉𝑎. Equation
(3.6) translates mathematically the fact that, along the integral curves of 𝜉𝑎, the
metric is conserved. Building on the works of Bonazolla, Gourgoulhon and collabo-
rators [378,379], we shall define a helical Killing vector (HKV), always denoted 𝑘𝑎,
as a Killing field admitting a decomposition

𝑘𝑎 ≡ 𝑡𝑎 + Ω 𝜙𝑎 , (3.7)

where 𝑡𝑎 is an arbitrary timelike vector field, 𝜙𝑎 an arbitrary spacelike vector field
with closed integral curves of parameter length 2𝜋, and Ω is a positive constant
that will be interpreted as the circular-orbit angular velocity of the binary. The
decomposition is illustrated on figure 3.3, which justifies the helical in HKV. As
Killing fields are defined up to a normalization factor, we choose to normalize the
HKV (3.7) so that 𝑘𝑎𝑡𝑎 → −1 at spatial infinity. The first occurence of the intro-
duction of an HKV seems to be due to Steven Detweiler in [380]. This definition
is equivalent to a more axiomatic one, constructed from the flow of periodic vec-
tor fields, as in [381]. A spacetime that is axisymmetric and static admits a whole
family of HKVs, by setting 𝑡𝑎 = (𝜕𝑡)𝑎 and 𝜙𝑎 = (𝜕𝜙)𝑎, where 𝑡 and 𝜙 are the coor-
dinates that the spacetime’s metric is independent of. However, we emphasize that
in our context, neither 𝑡𝑎 nor 𝜙𝑎 are Killing fields. The null hypersurface over which
𝑘𝑎𝑘𝑎 = 0 is known as the light cylinder. Heuristically, it corresponds to the set of
points where an observer would have a circular motion around the helical axis of
symmetry (𝜙𝑎 = 0) with a “velocity” equal to the vacuum speed of light. Excluding
any black hole region, the helical Killing field (3.7) is timelike everywhere inside the
light cylinder and spacelike everywhere outside of it, as depicted on Fig. 3.3. In
this work, we are only interested in the region inside the light cylinder, where the
integral curves of the HKV (the helices) are all timelike.
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Notons cependant qu’en relativité générale, on étudie un espace-temps « entier » solution
des équations, qui contient le passé et le futur du système. Aussi remplace-t-on l’étude
d’un unique espace-temps où la binaire spirale et les paramètres orbitaux évoluent par une
succession d’espaces-temps où la binaire est sur une orbite circulaire, avec des paramètres
orbitaux fixes dans chacun d’entre eux. Nous allons donc nous concentrer sur ces orbites
circulaires, qui sont représentées par des hélices dans un diagramme d’espace-temps.

∼Tr ∼P

Figure 7. Diagrammes d’espace-temps qui résument l’approximation adiabatique. À gauche, la
phase spiralante s’étale sur plusieurs temps Tr. Au centre, sur une durée Tr contenant encore de
nombreuses périodes P , le rayon de l’orbite diminue de façon significative. À droite, sur une échelle
de temps orbitale, le rayon n’évolue quasiment pas et la symétrie hélicoïdale devient manifeste.

2.2.2 Vecteur de Killing hélicoïdal

Une autre façon de dire ceci est de supposer que l’espace-temps ℰ dans lequel évolue la binaire
admet une symétrie hélicoïdale. Mathématiquement, cette symétrie sur ℰ se traduit par
l’existence d’un vecteur de Killing hélicoïdal ka. La définition exacte d’un vecteur de Killing
hélicoïdal se trouve dans [19], mais ses deux carcatéristiques principales sont

Lkgab=2∇(akb)=0, et ka= ta+Ωφa. (23)

La première équation indique que la dérivée de Lie le long de ka laisse la métrique gab
inchangée, c’est l’aspect « Killing ». Elle implique d’ailleurs que le tenseur ∇akb est anti-
symétrique. La seconde équation défini l’aspect « hélicoïdal » de ka : celui-ci s’écrit comme
une combinaison linéaire d’un vecteur de genre temps ta et d’un vecteur de genre espace φa,
dont les courbes intégrales sont fermées et de longeur 2π. Le paramètre Ω est un constante
réelle strictement positive et s’interprête physiquement comme la vitesse angulaire de la
binaire. Un vecteur de Killing étant défini à une constante près, nous choisirons d’imposer
qu’à l’infini spatial, là où ℰ est asymptotiquement plat, celui-ci prend la forme

ka=(∂t)a+Ω(∂φ)a, (24)

où (∂t)a et (∂φ)a sont des vecteurs de la base naturelle associée au système de coordonnées
inertielles sphériques (t, r, θ, φ) usuelles. Un vecteur de Killing hélicoïdal est de genre
temps proche de l’origine des coordonnées et de genre espace à l’infini. Entre les deux se
trouve une zone où il est de genre lumière : on l’appelle cylindre de lumière. Elle correspond
heuristiquement à la zone où la vitesse angulaire orbitale atteint la vitesse de la lumière.

Voici un diagramme d’espace-temps muni de coordonnées (t, r,θ, φ) dans lesquelles le vecteur
de Killing hélicoïdal ka a partout la forme (∂t)a+Ω(∂φ)a.
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Figure 3.3: Light cylinder and 𝑘 = 𝑡 + Ω𝜙.

Properties of Killing fields

Independently of its helical nature, the HKV 𝑘𝑎 satisfies a number of identities
because it is a Killing field in the first place. Some of them will be of utmost impor-
tance for the derivation of the first law of mechanics later on. Let us give some of
these properties, keeping the notation 𝜉𝑎 to emphasis that these are not restricted to
the HKV 𝑘𝑎 but to any Killing field. We leave their mathematical proof in App. A.2
for the most part.

First of all, the definition (3.6) is independent of the existence of a connection
on the spacetime. However, the Levi-Civita connection can help bring (3.6) in the
equivalent, and sometimes more convenient, form

∇(𝑎𝜉𝑏) = 0 . (3.8)

Taking the trace of (3.8) shows that a Killing field 𝑘𝑎 is divergenceless: ∇𝑎𝜉𝑎 = 0.
Killing’s equation (3.8) also implies the identity 1

2∇𝑎(𝜉𝑏𝜉𝑏) = 𝜉𝑏∇𝑎𝜉𝑏 = −𝜉𝑏∇𝑏𝜉𝑎
for the “acceleration” of a Killing field along its integral curves. Contracting it once
more with 𝜉𝑎 shows that the norm squared 𝜉𝑏𝜉𝑏 of a Killing field is conserved along
its integral curves 𝜉𝑎∇𝑎(𝜉𝑏𝜉𝑏) = 0.

Very important for our work is the so-called Kostant formula, which relates the
second covariant derivative of 𝜉𝑎 to 𝜉𝑎 itself, as

∇𝑎∇𝑏𝜉𝑐 = 𝑅 𝑐
𝑑𝑎𝑏 𝜉𝑑 . (3.9)

The proof combines the definition of the Riemann tensor, its algebraic symmetries
and the Killing equation (3.8)

Then, from the Kostant formula, one can establish the commutation between
the Lie-derivative ℒ𝜉 and the metric-compatible3, covariant derivative ∇. Indeed,
for any tensor field 𝚾

∇𝑎(ℒ𝜉𝚾) = ℒ𝜉(∇𝑎𝚾) . (3.10)
3Note that ℒ𝜉 need not commute with a generic connection, cf. App. A.2.2.
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A covariant proof of this result (i.e., not requiring the introduction of a coordinate
system) is provided in Appendix A.2.

A number of geometrical quantities are Lie-dragged along a Killing field, as
a direct consequence of the Lie-dragging of the metric (3.6). Among them, the
canonical volume form 𝜀𝑎𝑏𝑐𝑑 and the Riemann tensor 𝑅𝑎𝑏𝑐𝑑 associated to 𝑔𝑎𝑏 are
both Lie-dragged along 𝜉𝑎

ℒ𝜉𝜀𝑎𝑏𝑐𝑑 = 0 , (3.11a)
ℒ𝜉𝑅 𝑑

𝑎𝑏𝑐 = 0 . (3.11b)

We provide covariant proofs for all these formulae in App. A.2. Surprisingly, as
far as we know, some of these important results and their proof scarcely appear in
classical textbooks, Ref. [382] being a notable exception.

Another important result, which is only of interest when dealing with point
particles, is the Lie-dragging of the covariant, four-dimensional Dirac distribution
𝛿4(𝑥, 𝑦). Heuristically, as it is built from nothing but the metric and two events in
spacetime, we expect it to be Lie-dragged. A proof of this statement is provided
in Appendix A.2, where it is also rigorously defined as a (distributional) bi-tensor.
Skipping over the details of the proof, we will need later on the identity

ℒ𝜉𝛿4(𝑥, 𝑦) = 0 , (3.12)

for any two points 𝑥 and 𝑦 in spacetime. Equation (3.12) implies, in particular, the
Lie-dragging of the quantity 𝛿4(𝑥, 𝑧(𝜏)), when 𝑥𝛼 = 𝑧𝛼(𝜏) is a parametrization of
some particle’s worldline.

Finally, and perhaps most importantly, we argue that the SEM tensor 𝑇 𝑎𝑏 of
the matter present in spacetime must also be invariant along the integral curves of
any Killing field. The proof of this result is a simple consequence of the Einstein
equation 𝐺𝑎𝑏 = 8𝜋𝑇𝑎𝑏. Indeed, since the metric and the Riemann tensor are Lie-
dragged (Eqs. (3.6)-(3.11b)), so is the Einstein tensor 𝐺𝑎𝑏 built from them, and it
follows that

ℒ𝜉𝑇 𝑎𝑏 = 0 . (3.13)

We will still need to justify this statement in the case where 𝑇𝑎𝑏 is singular, in
particular in the context of point particles. This discussion is relegated to Sec. 3.1.3
just below, where we also summarize the assumptions and limits of our work.

3.1.3 Limits of the model
Before going into the next section where we examine the consequences of an helical
isometry for multipolar particles, we discuss various assumptions that have been
made so far, and which constitute the limits of our results.
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Helical spacetimes

As we discussed in Sec. 3.1.1, the validity of an exactly circular orbit holds for
(1) systems that have been circularized and (2) over time scales small compared
to the radiation reaction one, as crystallized in Eq. (3.5). For longer timescales,
the emission of GWs draws energy from the system, implying a decrease of the or-
bital radius and ultimately breaking the helical symmetry. In a sense, in order to
maintain the binary on a fixed circular orbit, the energy radiated in GWs would
need to be compensated by an equal amount of incoming radiation. This heuristic
argument of incoming GWs can actually be made mathematically precise and, as
a consequence, it has long been known that in GR helically symmetric spacetimes
cannot be asymptotically flat [380,383,384]. Again from an heuristic point of view:
far away from the source, the resulting (emitted and incoming) system of standing
GWs ends up dominating the energy content of the spacetime, so that the falloff con-
ditions necessary to ensure asymptotic flatness cannot be satisfied. As emphasized
in Refs. [205,381,385–387], however, asymptotic flatness can be recovered if, loosely
speaking, the gravitational radiation can be “turned off.” This can be achieved, in
particular, in two instances at least. First, using the Isenberg, Wilson and Math-
ews approximation to GR, also known as the conformal flatness condition (CFC)
approximation [388–390]. There, spacetime is foliated into conformally flat space-
like slices that satisfy a truncated set of field equations. Second, in the context of
approximation methods such as PN theory [144] where one can distinguish between
radiative and conservative effects, and GSF theory [198,199] where a local wavezone
can be defined from an approximate asymptotic region [381, 391].

Point particles

Whereas the use of point particles is perfectly justified in Newtonian gravity or classi-
cal electrodynamics, their use in GR is highly questionable, because of the nonlinear-
ity of the Einstein equation. On the mathematical side, Geroch and Traschen [392]
(see also [393]) have proven that, precisely because of this nonlinearity, a point
particle source will usually yield solutions that are mathematically ill-posed in any
suitable class of functions. Indeed, from a more physical perspective, we know that
the closest thing to a point particle in GR is a black hole. However, in the con-
text of approximation methods (e.g. PN theory [144] or GSF [199]), the Einstein
equation can be coupled to a distributional source such as (2.18) in a meaningful
manner. In the PN framework, this is true at least at the fourth PN order [394,395]
provided that a regularization scheme (e.g. dimensional regularization [396,397]) is
used to handle the divergent self-field of each particle. Additionally, as mentioned
in Sec. 2.2.4, it was shown recently that even at second order in perturbation the-
ory, the Einstein equation is well-defined with a point-particle source, at least in
(so-called) highly regular gauges [361, 365].

As most of our results will be used in the context of approximation methods such
as PN or GSF, in this work we will always implicitly assume that such a regulariza-
tion scheme is being used, or that a highly regular gauge is chosen, while evaluating
various tensor fields along the wordline of a multipolar point particle. All tensorial
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equations, including Einstein’s, should thus be interpreted in a regularized sense.
This justifies that the helical symmetry ℒ𝑘𝑔𝑎𝑏 implies the Lie-dragging of the SEM
tensor, as discussed above Eq. (3.13). Additionally, we mention that any “physi-
cally reasonable” regularization method yields 𝑇 𝑎𝑏|γ = 0, so that 𝑅𝑎𝑏|γ = 0 by the
Einstein equation. Hence the spacetimes that we shall be considering in this work,
in addition of being helically symmetric, are also Ricci-flat in a regularized sense.
This assumption has been also used for co-rotating binary black hole spacetimes,
such as those considered in [205, 379, 381, 398].

3.2 Consequences for multipolar particles

3.2.1 Helical trajectories
Detweiler’s parameter

In a seminal paper, Steven Detweiler [399] performed the first comparison of the pre-
dictions from the perturbative GSF framework and PN theory, for a binary system
of nonspinning compact objects moving along a closed circular orbit. This compari-
son relied on the calculation of the quantity 𝑈 ≡ d𝑡/d𝜏 , i.e. on the time component
of the 4-velocity of the smaller body, modelled as a structureless point particle, as
a function of the angular velocity Ω of the binary’s circular orbit. This comparison
was later extended and refined in Refs. [400–404]. In Detweiler’s paper, the quantity
𝑈 (or rather its inverse 𝑧 ≡ d𝜏/d𝑡) was coined the “redshift” parameter, for reasons
that will become clear at the end of the section (cf. around Eq. (3.31)).

Soon after, the discovery of the first law of compact binary mechanics [381,
386, 405] showed that the kinematical redshift parameter 𝑈 also has a dynamical
relevance, as it can be related in a simple manner to some of the global properties
of the binary system, such as its binding energy and orbital angular momentum;
see also [406]. Using the first law of binary mechanics, the redshift parameter has
been used to compare the predictions of GSF theory to the results from numerical
relativity simulations of black hole binaries moving on quasi-circular orbits, showing
remarkably good agreement, even for comparable-mass binary systems [205, 407,
408].

Using the BH perturbation theory developed in [409,410], the GSF contribution
to the redshift parameter has been computed analytically, up to very high PN or-
ders [411–416], and numerically with extremely high accuracy [417,418]. Combined
with the first law of binary mechanics, those results have been used to complete
the calculation of the 4PN dynamics of arbitrary-mass-ratio binary systems of non-
spinning compact objects [419], as well as calibrate one of the potentials entering
the EOB Hamiltonian that controls the conservative part of the binary’s orbital
dynamics [420–422] (some of these applications are detailed in Chap. 4, Sec. 4.2.3).

For compact binary systems moving along eccentric orbits, a generalization of
the redshift parameter has been introduced in the context of GSF theory [423], and
then used to perform a comparison with the predictions from PN theory [424]. This
generalized redshift ⟨𝑈⟩ appears naturally in the first law of mechanics for eccentric-
orbit compact binaries [425, 426], and it has been used to calibrate the remaining
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potentials that enter the conservative part of the EOB Hamiltonian [427, 428].

Given the large amount of work, reviewed above, that relies on the redshift
parameter 𝑈 , it is arguably important to give this physical quantity a simple, ge-
ometrical and coordinate-invariant meaning. To the best of our knowledge, this
question has only been adressed in the context of the perturbative GSF framework,
where the redshift parameter 𝑈 has been shown to be gauge-invariant under gauge
transformations generated by a helically symmetric gauge vector [399, 429, 430].

Among the main results established in this thesis is the fact that the existence
of the (helical) Killing field enforces the particles’s worldlines to be (helical) Killing
trajectories. In other words, the four-velocity 𝑢𝑎 of a particle in a helically isometric
spacetime, satisfies

𝑘𝑎|γ = 𝑧𝑢𝑎 , (3.14)
where 𝑧 is a constant along γ. By using a spherical-type coordinate system (𝑡, 𝑟, 𝜃, 𝜙)
adapted to the helical isometry, such that 𝑘𝑎 = (𝜕𝑡)𝑎 + Ω (𝜕𝜙)𝑎 in a neighbor-
hood of γ, the coordinate components of the 4-velocity 𝑢𝑎 then simply read 𝑢𝛼 =
𝑧−1(1, 0, 0, Ω). In particular,

𝑧 = d𝜏
d𝑡 = 1

𝑈 , (3.15)

which shows that, while using adapted coordinates, Detweiler’s redshift parameter is
simply the inverse of the geometrically-defined constant that appears in the helical
constraint (3.14). The formulas (3.14) and (3.15) have been written down in various
papers, e.g. in [204, 414, 430–432], but have never been proven in the more general
context considered here, namely without any restriction on the coordinate system,
for an arbitrary-mass-ratio binary system of spinning compact bodies with internal
structure.

Lie-dragging constraints on the multipoles

To derive the central result (3.14) from the Lie-dragging of the SEM tensor, it is
more convenient to use the unreduced form of a quadrupolar SEM tensor, in the
sense of Tulczyjew’s reduction process (described in Chap. 2, Sec. 2.2.2). Therefore,
instead of the reduced and ready-to-apply form (2.58)-(2.59), our starting point is
the multipolar SEM tensor of a binary system of quadrupolar particles in the form

𝑇 𝑎𝑏 = ∑
i

{∫
γi

𝒯 𝑎𝑏
i 𝛿i

4 d𝜏i + ∇𝑐 ∫
γi

𝒯 𝑎𝑏𝑐
i 𝛿i

4 d𝜏i + ∇𝑐𝑑 ∫
γi

𝒯 𝑎𝑏𝑐𝑑
i 𝛿i

4 d𝜏i} , (3.16)

where we used the shorthand 𝛿i
4 ≡ 𝛿4(𝑥, 𝑦i) and the special equal sign with Σi atop

it for clarity, denoting a sum over the particle on the right-hand side. More precisely, we
shall use the normal form associated with Eq. (3.16), which is obtained by performing
an orthogonal decomposition of the multipoles 𝒯 𝑎𝑏

i , 𝒯 𝑎𝑏𝑐
i and 𝒯 𝑎𝑏𝑐𝑑

i with respect to the
4-velocity 𝑢𝑎

i . Using the formula (A.41), the SEM tensor (3.16) can be written in the
alternative form

𝑇 𝑎𝑏 = ∑
i

{∫
γi

𝒯 𝑎𝑏
i 𝛿i

4 d𝜏i + ∇𝑐 ∫
γi

𝒯 𝑎𝑏𝑐
i 𝛿i

4 d𝜏i + ∇𝑐𝑑 ∫
γi

𝒯 𝑎𝑏𝑐𝑑
i 𝛿i

4 d𝜏i} , (3.17)
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where the dipole and quadrupole moments now obey the constraints 𝒯 𝑎𝑏𝑐
i 𝑢i

𝑐 = 0, 𝒯 𝑎𝑏[𝑐𝑑]
i =

0 and 𝒯 𝑎𝑏𝑐𝑑
i 𝑢i

𝑑 = 0. The fact that such a normal form always exists and is unique is one
of the two theorems of Tuclzyjew, which are reviewed in App. A.3.1 and A.3.2. As shown
in App. A.4, the multipole moments appearing in Eq. (3.17) are explicitly given by

𝒯 𝑎𝑏
i ≡ 𝒯 𝑎𝑏

i − (𝒯 𝑎𝑏𝑢
i − (𝒯 𝑎𝑏𝑢𝑢

i ) +̇ 2𝒯 𝑎𝑏(𝑐𝑢)
i �̇�i

𝑐) ̇+ 𝑅 (𝑎
𝑐𝑑𝑒 𝒰 𝑏)𝑒𝑑𝑐

i , (3.18a)

𝒯 𝑎𝑏𝑐
i ≡ 𝒯 𝑎𝑏 ̂𝑐

i − 2(𝒯 𝑎𝑏(𝑑𝑢)
i ) ℎ̇𝑐

i 𝑑 − 𝒯 𝑎𝑏𝑢𝑢
i �̇�𝑐

i , (3.18b)

𝒯 𝑎𝑏𝑐𝑑
i ≡ 𝒯 𝑎𝑏( ̂𝑐 ̂𝑑)

i , (3.18c)

where, for each particle, the upper index 𝑢 denotes a contraction with 𝑢𝑎, for example
𝒯 𝑎𝑏𝑢

i ≡ 𝒯 𝑎𝑏𝑐
i 𝑢𝑐, and the hat above an index denotes a contraction with the orthogonal

projector (2.62), e.g. 𝒯 𝑎𝑏 ̂𝑐
i ≡ 𝒯 𝑎𝑏𝑑

i ℎ𝑐
𝑑. We also used 𝒰 𝑏𝑒𝑑𝑐

i ≡ 2𝒯 𝑏𝑒𝑢 ̂𝑑
i 𝑢𝑐

i − 𝒯 𝑏𝑒 ̂𝑐 ̂𝑑
i , to fit the

first equation on a single line.

Heuristically, one expects that the Lie-dragging along 𝑘𝑎 of 𝑇 𝑎𝑏, Eq. (3.13) above with
𝜉𝑎 = 𝑘𝑎, implies some differential relationships obeyed by the multipoles 𝒯 𝑎𝑏

i , 𝒯 𝑎𝑏𝑐
i and

𝒯 𝑎𝑏𝑐𝑑
i that appear in Eq. (3.17). However, these multipoles are merely defined along γi.

To define them as tensor fields off these worldlines, we introduce some smooth extensions
̃𝒯 𝑎𝑏
i , ̃𝒯 𝑎𝑏𝑐

i and ̃𝒯 𝑎𝑏𝑐𝑑
i . Such an extension can be chosen freely. Here, it is defined by

parallel propagation along spacelike geodesics perpendicular to γi. Therefore, for each
particle, in a normal neighborhood of a given point 𝑦 ∈ γ, we define the extensions

̃𝒯 𝑎𝑏(𝑥) ≡ 𝑔𝑎
𝑎′(𝑥, 𝑦) 𝑔𝑏

𝑏′(𝑥, 𝑦) 𝒯 𝑎′𝑏′(𝑦) , (3.19a)
̃𝒯 𝑎𝑏𝑐(𝑥) ≡ 𝑔𝑎

𝑎′(𝑥, 𝑦) 𝑔𝑏
𝑏′(𝑥, 𝑦) 𝑔𝑐

𝑐′(𝑥, 𝑦) 𝒯 𝑎′𝑏′𝑐′(𝑦) , (3.19b)
̃𝒯 𝑎𝑏𝑐𝑑(𝑥) ≡ 𝑔𝑎

𝑎′(𝑥, 𝑦) 𝑔𝑏
𝑏′(𝑥, 𝑦) 𝑔𝑐

𝑐′(𝑥, 𝑦) 𝑔𝑑
𝑑′(𝑥, 𝑦) 𝒯 𝑎′𝑏′𝑐′𝑑′(𝑦) , (3.19c)

where the bitensor 𝑔𝑎
𝑎′(𝑥, 𝑦) is the parallel propagator from 𝑦 to 𝑥 (see App. A.2.3). As

shall be proven in the next Sec. 3.2.1, the final results will not depend upon this particular
choice of extension. Owing to the presence of the invariant Dirac functional 𝛿4(𝑥, 𝑦i) in
each integral in Eq. (3.17), we may replace the multipoles by their smooth extensions
(3.19) there. Taking the Lie derivative along 𝑘𝑎 on both sides and using Eq. (3.13), as well
as the property (3.12) and the commutation (3.10) of the Lie and covariant derivatives,
we readily obtain

0 = ∑
i

{∫
γi

ℒ 𝑎𝑏
i 𝛿i

4 d𝜏i + ∇𝑐 ∫
γi

ℒ 𝑎𝑏𝑐
i 𝛿i

4 d𝜏i + ∇𝑐𝑑 ∫
γi

ℒ 𝑎𝑏𝑐𝑑
i 𝛿i

4 d𝜏i} , (3.20)

where we introduced the notation ℒ …
i ≡ ℒ𝑘 ̃𝒯 …

i for the Lie derivatives of the smoothly
extended multipoles. The multipolar sums in Eq. (3.20) are not in normal form: the
multipoles ℒ 𝑎𝑏𝑐

i and ℒ 𝑎𝑏𝑐𝑑
i have the right algebraic symmetries, but they need not be

orthogonal to 𝑢i
𝑐. However, thanks to the Thm. 1 in App. A.3.1, this normal form exists

and is unique, and as shown in App. A.4 it reads

0 = ∑
i

{∫
γi

(ℒ 𝑎𝑏
i − (ℒ 𝑎𝑏𝑢

i + ℒ 𝑎𝑏𝑐𝑢
i �̇�i

𝑐 − (ℒ 𝑎𝑏𝑐𝑢
i ) �̇�i

𝑐) ̇+ 2𝑅 (𝑎
𝑐𝑑𝑒 ℒ 𝑏)𝑒𝑢 ̂𝑑

i 𝑢𝑐
i ) 𝛿i

4 d𝜏i

+ ∇𝑐 ∫
γi

(ℒ 𝑎𝑏 ̂𝑐
i − 2(ℒ 𝑎𝑏𝑑𝑢

i ) ℎ̇𝑐
i 𝑑 − ℒ 𝑎𝑏𝑢𝑢

i �̇�𝑐
i ) 𝛿i

4 d𝜏i + ∇𝑐𝑑 ∫
γi

ℒ 𝑎𝑏 ̂𝑐 ̂𝑑
i 𝛿i

4 d𝜏i} . (3.21a)
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Those multipolar sums are now in normal form, so that, according to Tulczyjew’s second
theorem (2 in appendix A.3.2), each integrand must be identically equal to zero along γi.
This implies the following constraints, valid for any i ∈ {1; 2}

ℒ 𝑎𝑏
i = (ℒ 𝑎𝑏𝑢

i + ℒ 𝑎𝑏𝑐𝑢
i �̇�i

𝑐 − (ℒ 𝑎𝑏𝑐𝑢
i ) �̇�i

𝑐) ̇− 2𝑅 (𝑎
𝑐𝑑𝑒 ℒ 𝑏)𝑒𝑢 ̂𝑑

i 𝑢𝑐
i , (3.22a)

ℒ 𝑎𝑏𝑐
i = −ℒ 𝑎𝑏𝑢

i 𝑢𝑐
i + 2(ℒ 𝑎𝑏𝑑𝑢

i ) ℎ̇𝑐
i 𝑑 + ℒ 𝑎𝑏𝑢𝑢

i �̇�𝑐
i , (3.22b)

ℒ 𝑎𝑏𝑐𝑑
i = −ℒ 𝑎𝑏𝑢𝑢

i 𝑢𝑐
i 𝑢𝑑

i + 2ℒ 𝑎𝑏𝑢( ̂𝑑
i 𝑢𝑐)

i . (3.22c)

These constraints will be central to prove, in the next subsection, that quadrupolar par-
ticles do follow helical Killing trajectories.

Quadrupolar particles follow Killing trajectories

Let 𝑓𝑎𝑏 denote a tensor field with compact support 𝒱 ⊂ ℰ that is smooth on the interior
𝒱 ∘ of 𝒱 . The Lie dragging (3.13) of the distributional SEM tensor (3.17) implies that
∫𝒱 𝑓𝑎𝑏ℒ𝑘𝑇 𝑎𝑏 d𝑉 = 0, where d𝑉 is the invariant 4-volume element. Therefore, by using
the Leibniz rule on the Lie derivative, we readily obtain

∫
𝒱

ℒ𝑘(𝑇 𝑎𝑏𝑓𝑎𝑏) d𝑉 = ∫
𝒱

𝑇 𝑎𝑏ℒ𝑘𝑓𝑎𝑏 d𝑉 . (3.23)

The integral appearing in the left-hand side of Eq. (3.23) is easily shown to vanish, as
follows. By using the definition of the Lie derivative of a scalar field, together with
∇𝑐𝑘𝑐 = 0, and applying Stokes’ theorem together with 𝑓𝑎𝑏 = 0 on the boundary 𝜕𝒱 , we
have

∫
𝒱

ℒ𝑘(𝑇 𝑎𝑏𝑓𝑎𝑏) d𝑉 = ∫
𝒱

∇𝑐(𝑘𝑐𝑇 𝑎𝑏𝑓𝑎𝑏) d𝑉 = ∮
𝜕𝒱

𝑇 𝑎𝑏𝑓𝑎𝑏 𝑘𝑐dΣ𝑐 = 0 , (3.24)

where dΣ𝑐 is the surface element orthogonal to 𝜕𝒱 . Next, we substitute the expression
(3.17) of the binary’s quadrupolar SEM tensor, in normal form, into the integral that
appears in the right-hand side of Eq. (3.23). After commuting the integrals over 𝒱 and
γi, integrating by parts, using Stokes’ theorem and the compact-supported nature of the
tensor 𝑓𝑎𝑏, as well as the defining property (A.15) of the invariant Dirac distribution, we
obtain

∫
𝒱

𝑇 𝑎𝑏ℒ𝑘𝑓𝑎𝑏 d𝑉 = ∑
i

∫
γi

(𝒯 𝑎𝑏
i ℒ𝑘𝑓𝑎𝑏 − 𝒯 𝑎𝑏𝑐

i ∇𝑐ℒ𝑘𝑓𝑎𝑏 + 𝒯 𝑎𝑏𝑐𝑑
i ∇𝑐𝑑ℒ𝑘𝑓𝑎𝑏) d𝜏i . (3.25)

On the one hand, from the result (3.10) we may commute the covariant and Lie derivatives
in the second and third terms in the right-hand side of (3.25). On the other hand, we
notice that 𝒯 𝑎𝑏

i = ̃𝒯 𝑎𝑏
i along γi, and similarly for 𝒯 𝑎𝑏𝑐

i and 𝒯 𝑎𝑏𝑐𝑑
i , so that the multipoles

can be replaced by their smooth extensions (3.19) off γi. Combined with Eqs. (3.23) and
(3.24), the formula (3.25) then implies

∑
i

∫
γi

( ̃𝒯 𝑎𝑏
i ℒ𝑘𝑓𝑎𝑏 − ̃𝒯 𝑎𝑏𝑐

i ℒ𝑘∇𝑐𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐𝑑
i ℒ𝑘∇𝑐𝑑𝑓𝑎𝑏) d𝜏i = 0 . (3.26)
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Applying the Leibniz rule to the Lie derivatives in the integrand and recalling the notation
ℒ ≡ ℒ𝑘 ̃𝒯 , the formula (3.26) now implies

∑
i

∫
γi

ℒ𝑘( ̃𝒯 𝑎𝑏
i 𝑓𝑎𝑏 − ̃𝒯 𝑎𝑏𝑐

i ∇𝑐𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐𝑑
i ∇𝑐𝑑𝑓𝑎𝑏) d𝜏i

= ∑
i

∫
γi

(ℒ 𝑎𝑏
i 𝑓𝑎𝑏 − ℒ 𝑎𝑏𝑐

i ∇𝑐𝑓𝑎𝑏 + ℒ 𝑎𝑏𝑐𝑑
i ∇𝑐𝑑𝑓𝑎𝑏) d𝜏i

= ∑
i

∫
γi

(ℒ 𝑎𝑏𝑢
i 𝑓𝑎𝑏 − (ℒ 𝑎𝑏𝑐𝑑

i 𝑓𝑎𝑏) �̇�i
𝑐𝑢i

𝑑 − 2ℒ 𝑎𝑏𝑢𝑐
i ∇𝑐𝑓𝑎𝑏 ) ̇d𝜏i = 0 , (3.27)

where we have used the constraints (3.22) in the second equality and the fact that 𝑓𝑎𝑏
has a compact support in the last equality. Equation (3.27) must hold for any 𝑓𝑎𝑏 with
compact support 𝒱 and smooth on 𝒱 ∘. In particular, it must hold for all tensor fields
𝑓𝑎𝑏 whose support excludes either γ1 or γ2, such that both proper time integrals in (3.27)
must identically vanish. Therefore, for all i ∈ {1, 2}, we have established that

∫
γi

ℒ𝑘𝑓i d𝜏i = 0 , where 𝑓i ≡ ̃𝒯 𝑎𝑏
i 𝑓𝑎𝑏 − ̃𝒯 𝑎𝑏𝑐

i ∇𝑐𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐𝑑
i ∇𝑐𝑑𝑓𝑎𝑏 . (3.28)

Clearly, having 𝑘𝑎 ∝ 𝑢𝑎
i along γi is a sufficient condition for Eq. (3.28) to hold for any 𝑓𝑎𝑏.

Indeed, 𝑘𝑎 ∝ 𝑢𝑎
i implies ℒ𝑘𝑓i = 𝑘𝑎∇𝑎𝑓i ∝ ̇𝑓i, and the integral of ̇𝑓i(𝜏i) over γi vanishes

because 𝑓i has compact support. We now argue that 𝑘𝑎 ∝ 𝑢𝑎
i along γi is also a necessary

condition for Eq. (3.28) to hold for all 𝑓𝑎𝑏.

We summarize here the idea behind the proof and relegate the details to App. A.3.3.
First, we perform an orthogonal decomposition of 𝑘𝑎 with respect to the tangent 4-velocity
𝑢𝑎

i to γi, according to 𝑘𝑎|γi = 𝑧i𝑢𝑎
i + 𝑤𝑎

i , where 𝑧i ≡ −𝑘𝑎𝑢i
𝑎 and 𝑤𝑎

i ≡ ℎ𝑎
i 𝑏𝑘𝑏. With these

notations, the integrand in Eq. (3.28) becomes ℒ𝑘𝑓i = 𝑧i ̇𝑓i + 𝑤𝑎
i ∇𝑎𝑓i. Second, we let 𝔽

denote the set of scalar fields 𝑓i given by Eq. (3.28), with 𝑓𝑎𝑏 of compact support 𝒱 and
smooth on 𝒱 ∘. We now consider the following proposition:

∀𝑓i ∈ 𝔽 , ∫
γi

(𝑧i ̇𝑓i + 𝑤𝑎
i ∇𝑎𝑓i) d𝜏i = 0 ⟹ ∀𝑦 ∈ γi , { ̇𝑧i(𝑦) = 0 ,

𝑤𝑎
i (𝑦) = 0 . (3.29)

Proposition (3.29) is most easily proved by contraposition. More precisely, one assumes
that ̇𝑧i ≠ 0 or 𝑤𝑎

i ≠ 0 at some point along γi and shows that, consequently, there exists an
𝑓i ∈ 𝔽 such that the integral on the left-hand side is nonzero; see App. A.3.3 for details.
Since this result holds for any 4-volume 𝒱 chosen initially, we conclude that ̇𝑧i = 0 and
𝑤𝑎

i = 0 at any point along γi. Consequently, the expansion of 𝑘𝑎 along γi simply reads
𝑘𝑎|γi = 𝑧i𝑢𝑎

i , with 𝑧i constant along γi.

The “redshift” parameter

In the last paragraphs we have proven that if the SEM tensor 𝑇 𝑎𝑏 describes a pair of
quadrupolar particles moving along a circular orbit, then its Lie-dragging ℒ𝑘𝑇 𝑎𝑏 = 0
along the helical Killing field 𝑘𝑎 implies that for any particle i ∈ {1, 2} of the system,
there exists a constant scalar field 𝑧i defined on γi such that

∀𝑦 ∈ γi , 𝑘𝑎(𝑦) = 𝑧i𝑢𝑎
i (𝑦) . (3.30)
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In other words, 𝑘𝑎 is tangent to the worldlines of both particles, or equivalently γ1 and
γ2 are integral curves of the helical Killing field 𝑘𝑎. Moreover, since 𝑢𝑎

i and 𝑘𝑎|γi are both
timelike and future-directed, the constant 𝑧i is strictly positive along γi. That the helical
Killing field (3.7) should be colinear to the particles’ 4-velocities makes perfect physical
sense, because the support of the helically symmetric SEM tensor (3.16) is restricted to
the worldlines γ1 and γ2.

Following Detweiler’s seminal work [399], the scalar field 𝑧i has been coined the “red-
shift” parameter/variable, e.g. in Refs. [205, 400, 408, 421, 432]. The reason for this title
can be understood from the following thought experiment. Consider a binary system
on a circular orbit. One of its components, ℬ, emits a photon of (emission) energy 𝐸ℬ.
This photon travels on a null geodesic, with a four-momentum 𝑝𝑎 parallel to is received
by an observer 𝒮 (named Steve), located far away from the binary, near its symmetry
axis. On the one hand, the photon’s energy as measured by Steve is 𝐸𝒮 = 𝑘𝑎𝑝𝑎, since its
four-velocity coincides with the HKV at its location. Indeed, far away from the binary,
we can write 𝑘𝑎 = (𝜕𝑡)𝑎 + Ω(𝜕𝜙)𝑎 where 𝑡 and 𝜙 are part of the inertial spherical-type
coordinate, and (𝜕𝜙)𝑎 = 0 along the symmetry axis. On the other hand, the energy of
the photon at emission is simply 𝑢𝑎𝑝𝑎, since 𝑢𝑎 is the object’s four-velocity. Now, since
the photon travels on a null geodesic, and 𝑘𝑎 is a HKV, the quantity 𝑝𝑎𝑘𝑎 is conserved4.
Consequently, it follows from Eq. (3.30) that the ratio of the observed and emitted energy
is

𝐸𝒮
𝐸ℬ

= 𝑘𝑎𝑝𝑎
𝑢𝑎𝑝𝑎

= 𝑘𝑎𝑝𝑎
𝑧−1(𝑘𝑎𝑝𝑎) = 𝑧 , whence 𝑧 = 𝜆ℬ

𝜆𝒮
, (3.31)

where 𝜆 = ℎ/𝐸 is the photon’s wavelength and ℎ Planck’s constant. In most cases, the
emission energy of the photon as measured close to the binary is larger than that mea-
sured at infinity. In particular, we see that 𝑧 is a (coordinate-independent) measure of
the redshift of a photon, emitted from the particle, when the photon is observed on the
symmetry axis at large distances.

Contracting (3.30) with 𝑢i
𝑎 and taking the norm of (3.30) yields two simple expressions

for the redshift:
𝑧i = −𝑢𝑎

i 𝑘𝑎 and 𝑧i = |𝑘|i ≡ (−𝑘𝑎𝑘𝑎)1/2|γi . (3.32)

In particular, the redshift coincides with the norm of 𝑘𝑎 along γi. Since the norm of
a Killing field is necessarily conserved along its integral curves, the redshift 𝑧i must be
conserved along γi. Indeed, the constraint (3.30) and Killing’s equation (3.8) imply

𝑧i ̇𝑧i = −1
2 𝑢𝑎

i ∇𝑎(𝑘𝑏𝑘𝑏) = −𝑢𝑎
i 𝑘𝑏∇𝑎𝑘𝑏 = −𝑧i𝑢𝑎

i 𝑢𝑏
i ∇(𝑎𝑘𝑏) = 0 . (3.33)

This is consistent with the result (3.29). The conserved redshift (3.32) is not to be confused
with the Killing energy of the quadrupolar particle, which will be defined in Sec. 3.3.2 be-
low.

We stress that (3.30) holds irrespective of a choice of SSC for the spins 𝑆𝑎𝑏
i of the

particles, and irrespective of a particular physical model for the quadrupoles 𝐽𝑎𝑏𝑐𝑑
i . More-

over, while we have established this result at the quadrupolar order, we expect it to hold
at any order in the multipolar expansion (2.18). In particular, at the monopolar order it
is a classical result that the solutions to the equations of motion (2.57a) for nonspinning

4Indeed, one has 𝑝𝑏∇𝑏(𝑝𝑎𝑘𝑎) = 𝑘𝑎𝑝𝑏∇𝑏𝑝𝑎 + 𝑝𝑎𝑝𝑏∇𝑏𝑘𝑎. The first term vanishes thanks to
the geodesic equation, and the second one because of the Killing equation.
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massive particles are timelike geodesics. Equation (3.30) thus implies that the integral
curves of the helical Killing vector along γi must be timelike geodesics in this case.

Finally, we note that the constraint (3.30) implies that for any scalar field 𝑓 defined
along γi, the Lie derivative along 𝑘𝑎 simply reduces, up to a factor of the constant redshift
(3.32), to the ordinary derivative with respect to proper time 𝜏i along γi, namely

ℒ𝑘𝑓|γi = 𝑧i ̇𝑓 = 𝑧i
d𝑓
d𝜏i

. (3.34)

Introducing a spherical-type coordinate system (𝑡, 𝑟, 𝜃, 𝜙) adapted to the helical Killing
symmetry, such that 𝑘𝑎 = (𝜕𝑡)𝑎 + Ω (𝜕𝜙)𝑎 holds everywhere (or at least in a neighborhood
of γi), the coordinate components of the 4-velocity 𝑢𝑎

i simply read 𝑢𝛼
i =𝑧−1

i (1, 0, 0, Ω). In
particular, 𝑧i = d𝜏i/d𝑡 such that Eq. (3.34) reduces to

ℒ𝑘𝑓|γi = d𝑓
d𝑡 . (3.35)

3.2.2 Lie dragging of the multipoles
In the last section, we showed that the existence of a Killing vector 𝑘𝑎 in a spacetime
containing multipolar particles implied that their worldline must be Killing trajectories,
as crystalised in Eq. (3.30). In this section, we go further. In particular, we show that (1)
the generic (𝒯 ) and reduced (𝒯 ) multipoles of the particle obey differential equations, and
(2) that these relations imply the Lie-dragging of the the momentum, spin and quadrupole
tensors (𝑝𝑎, 𝑆𝑎𝑏, 𝐽𝑎𝑏𝑐𝑑). We work at quadrupolar order, but expect the results to hold at
any multipolar order.

Thanks to the colinearity (3.30) of the helical Killing field (3.7) and the tangent 4-
velocity to the worldline γi, the Lie derivative along 𝑘𝑎 of any tensor field defined solely
along γi is well defined. In particular, ℒ𝑘𝑢𝑎

i , ℒ𝑘𝑝𝑎
i , ℒ𝑘𝑆𝑎𝑏

i and ℒ𝑘𝐽𝑎𝑏𝑐𝑑
i are well-defined

tensor fields along γi. In this section, we shall omit the subscript i ∈ {1, 2} whenever an
equation applies for both particles. We shall establish that the 4-velocity 𝑢𝑎, momentum
𝑝𝑎, spin 𝑆𝑎𝑏 and quadrupole 𝐽𝑎𝑏𝑐𝑑 of each particle are Lie-dragged along the helical Killing
field 𝑘𝑎, as expected given the Lie-dragging (3.13) of the SEM tensor of the binary system.

Lie-dragging of velocity and related identities
Taking the covariant derivative of Eq. (3.30) along γ readily gives �̇�𝑎 = 𝑧�̇�𝑎, because
the redshift 𝑧 is constant. Using Eq. (3.30), this equation can be rewritten as 𝑢𝑏∇𝑏𝑘𝑎 =
𝑘𝑏∇𝑏𝑢𝑎, which is equivalent to

ℒ𝑘𝑢𝑎 = 0 . (3.36)
Therefore, the 4-velocity 𝑢𝑎 is Lie-dragged along 𝑘𝑎|γ = 𝑧𝑢𝑎. Together with the Lie-
dragging ℒ𝑘𝑔𝑎𝑏 = 0 of the metric, the formula (3.36) implies that the projector ℎ𝑎𝑏 =
𝑔𝑎𝑏 + 𝑢𝑎𝑢𝑏 is also Lie-dragged along 𝑘𝑎, namely

ℒ𝑘ℎ𝑎𝑏 = 0 . (3.37)

Moreover, for any tensor field 𝚾 we may combine Eq. (3.36) with the commutation (3.10)
of the Lie and covariant derivatives, together with the Leibniz rule, to establish that

ℒ𝑘(�̇�) = (ℒ𝑘𝚾) ̇, (3.38)
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i.e., the Lie derivative along 𝑘𝑎 commutes with the covariant derivative along γ. This
general result will prove useful in Sec. 3.3.2 below.

Lie-dragging of momentum, spin and quadrupole
The next goal is to establish that, for each particle, the momentum 𝑝𝑎, spin 𝑆𝑎𝑏 and
quadrupole 𝐽𝑎𝑏𝑐𝑑 are Lie-dragged as well. The idea is to start with the general expression
of the quadrupolar SEM tensor for a binary of particles, in the form 𝑇 𝑎𝑏 = ∑i 𝑇 𝑎𝑏

i , where
(recall Chap. 2, Eqs. (2.58)-(2.59))

𝑇 𝑎𝑏 = ∑
i

{∫
γi

𝑢(𝑎
i 𝑝𝑏)

i 𝛿i
4d𝜏i + ∇𝑐∫

γi

𝑢(𝑎
i 𝑆𝑏)𝑐

i 𝛿i
4d𝜏i (3.39a)

+1
3 ∫

γi

𝑅i (𝑎
𝑐𝑑𝑒 𝐽𝑏)𝑐𝑑𝑒

i 𝛿i
4d𝜏i − 2

3∇𝑐𝑑∫
γi

𝐽𝑐(𝑎𝑏)𝑑
i 𝛿i

4d𝜏i} , (3.39b)

and then take the Lie-derivative along 𝑘𝑎 of it. When we do so, the left-hand side van-
ishes because ℒ𝑘𝑇 𝑎𝑏 = 0, by assumption (3.13). On the right-hand side, ℒ𝑘 only hits
(𝑝𝑎, 𝑆𝑎𝑏, 𝐽𝑎𝑏𝑐𝑑) in the integrals because ∇ and ℒ𝑘 commute (3.10) and 𝑢𝑎, 𝛿4 and 𝑅𝑎𝑏𝑐𝑑
are all Lie-dragged along 𝑘𝑎, as established in Eqs. (3.36), (3.12) and (3.11b), respectively.
Consequently, the Lie-dragging of (3.39) directly reads

0 = ∑
i

{∫
γi

𝑢(𝑎
i 𝓅𝑏)

i 𝛿i
4d𝜏i + ∇𝑐∫

γi

𝑢(𝑎
i 𝒮 𝑏)𝑐

i 𝛿i
4d𝜏i (3.40a)

+1
3 ∫

γi

𝑅i (𝑎
𝑐𝑑𝑒 𝒥 𝑏)𝑐𝑑𝑒

i 𝛿i
4d𝜏i − 2

3∇𝑐𝑑∫
γi

𝒥 𝑐(𝑎𝑏)𝑑
i 𝛿i

4d𝜏i} , (3.40b)

where we introduced the following notations for the Lie derivatives of the multipoles:

𝓅𝑎 ≡ ℒ𝑘𝑝𝑎 , 𝒮 𝑎𝑏 ≡ ℒ𝑘𝑆𝑎𝑏 and 𝒥 𝑎𝑏𝑐𝑑 ≡ ℒ𝑘𝐽𝑎𝑏𝑐𝑑 . (3.41)

Equation (3.40) does look like a normal form in the sense of Tulczyjew, but is not so
in general. Indeed, although the integrands have the right symmetries required for the
normal form (which boils down to 𝒥 𝑐(𝑎𝑏)𝑑 = 𝒥 𝑑(𝑎𝑏)𝑐 here), they need not be orthogonal
to the four-velocity. Consequently, we first need to bring Eq. (3.40) into its normal form,
just like the SEM tensor (3.16) was brought into its normal form (3.17)–(3.18). Again,
this is done by (1) expanding each integrand with respect to 𝑢𝑎 and (2) using extensively
the “magic” formula (A.41). Once this is done, we apply Tulczyjew’s second theorem (see
App. A.3.2), and obtain the following constraints on the Lie-dragged multipoles 𝓅𝑎, 𝒮 𝑎𝑏

and 𝒥 𝑎𝑏𝑐𝑑,

𝑢(𝑎𝓅𝑏) = (𝑢(𝑎𝒮 𝑏)𝑢) −̇ 1
3𝑅 (𝑎

𝑐𝑑𝑒 𝒥 𝑏)𝑐𝑑𝑒 + 2
3(𝒥 𝑢(𝑎𝑏)𝑢) +̈ 4

3𝑅 (𝑎
𝑐𝑑𝑒 𝒥 𝑏)( ̂𝑑𝑢)𝑒𝑢𝑐 , (3.42a)

𝑢(𝑎𝒮 𝑏) ̂𝑐 = −4
3(𝒥 𝑑(𝑎𝑏)𝑢) ℎ̇𝑐

𝑑 − 2
3𝒥 𝑢(𝑎𝑏)𝑢�̇�𝑐 , (3.42b)

𝒥 ̂𝑐(𝑎𝑏) ̂𝑑 = 0 . (3.42c)

We dropped the i index since these equations hold for each particle individually, owing to
our extension of Tulczyjew’s second theorem. They are the consequences of the condition
ℒ𝑘𝑇 𝑎𝑏 = 0 on (𝑝𝑎, 𝑆𝑎𝑏, 𝐽𝑎𝑏𝑐𝑑) when 𝑇 𝑎𝑏 describes a quadrupolar particle, and are but
ordinary differential equations for (𝓅𝑎, 𝒮 𝑎𝑏, 𝒥 𝑎𝑏𝑐𝑑). Let us now establish that the only
solution to these equation is the one where 𝒥 𝑎𝑏𝑐𝑑, 𝒮 𝑎𝑏 and 𝓅𝑎 vanish identically, in that
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precise order.

We start by showing that (3.42c) implies 𝒥 𝑎𝑏𝑐𝑑 = 0. To this end, we perform an or-
thogonal decomposition of 𝒥 𝑎𝑏𝑐𝑑 with respect to 𝑢𝑎, with help of the orthogonal projector
ℎ𝑎𝑏. Thanks to the algebraic symmetries of 𝒥 𝑎𝑏𝑐𝑑 (namely those of 𝑅𝑎𝑏𝑐𝑑), this decom-
position simply reads (details about this decomposition are given in Chap. 6, Sec. 6.1)

𝒥 𝑎𝑏𝑐𝑑 = ̂𝒥 𝑎𝑏𝑐𝑑 + 2𝑢[𝑎𝒥 𝑏]𝑐𝑑 + 2𝑢[𝑑𝒥 𝑐]𝑏𝑎 − 4𝑢[𝑎𝒥 𝑏][𝑐𝑢𝑑] , (3.43)

where the tensors ̂𝒥 𝑎𝑏𝑐𝑑 ≡ 𝒥 �̂��̂� ̂𝑐 ̂𝑑, 𝒥 𝑎𝑏𝑐 ≡ 𝒥 �̂�𝑢�̂� ̂𝑐 and 𝒥 𝑎𝑏 ≡ 𝒥 �̂�𝑢�̂�𝑢 are all orthogonal to
𝑢𝑎, by definition. We then symmetrize (3.43) with respect to the indices 𝑏 and 𝑐, and
contract with the projector ℎ𝑒

𝑎ℎ𝑓
𝑑, so that Eq. (3.42c) implies

̂𝒥 𝑐(𝑎𝑏)𝑑 + 2𝒥 (𝑐𝑑)(𝑎𝑢𝑏) − 𝑢𝑎𝑢𝑏𝒥 𝑐𝑑 = 0 . (3.44)

Contracting (3.44) with 𝑢𝑎𝑢𝑏 and 𝑢𝑎ℎ𝑒
𝑏 gives 𝒥 𝑎𝑏 = 0 and 𝒥 𝑎𝑏𝑐 = 0, respectively. Sub-

stituting these equations back into (3.44) yields the third constraint ̂𝒥 𝑎(𝑏𝑐)𝑑 = 0. Finally,
substituting these three constraints into the decomposition (3.43) gives

𝒥 𝑎𝑏𝑐𝑑 = ̂𝒥 𝑎[𝑏𝑐]𝑑 , (3.45)

which tautologically means that 𝒥 𝑎(𝑏𝑐)𝑑 = 0. Combined with the other algebraic symme-
tries of 𝒥 𝑎𝑏𝑐𝑑 this readily implies that 𝒥 𝑎𝑏𝑐𝑑 vanishes identically5. We have thus proven
that the quadrupole of each particle is Lie-dragged along its worldline, i.e.,

𝒥 𝑎𝑏𝑐𝑑 ≡ ℒ𝑘𝐽𝑎𝑏𝑐𝑑 = 0 . (3.46)

Given Eq. (3.46), the system (3.42) simplifies drastically, as it reduces to that for a
dipolar particle, namely

𝑢(𝑎𝓅𝑏) = (𝑢(𝑎𝒮 𝑏)𝑢) ,̇ (3.47a)
𝑢(𝑎𝒮 𝑏) ̂𝑐 = 0 . (3.47b)

Contracting Eq. (3.47b) with ℎ𝑑
𝑎𝑢𝑏 and 𝑢𝑎𝑢𝑏 implies 𝒮 𝑎𝑏ℎ𝑐

𝑎ℎ𝑑
𝑏 = 0 and 𝒮 𝑎𝑏ℎ𝑐

𝑎𝑢𝑏 = 0,
respectively. Since 𝒮 𝑎𝑏𝑢𝑎𝑢𝑏 = 0 by the antisymmetry of 𝒮 𝑎𝑏, we conclude that all the
contributions to the orthogonal decomposition of 𝒮 𝑎𝑏 with respect to 𝑢𝑎 vanish. Con-
sequently, we have shown that the spin tensor of each particle is Lie-dragged along its
worldline, i.e.,

𝒮 𝑎𝑏 ≡ ℒ𝑘𝑆𝑎𝑏 = 0 . (3.48)

Finally, we may substitute Eq. (3.48) into (3.47a) and contract with ℎ𝑐
𝑎𝑢𝑏 and 𝑢𝑎𝑢𝑏

to obtain 𝓅𝑎ℎ𝑏
𝑎 = 0 and 𝓅𝑎𝑢𝑎 = 0. We thus conclude that the 4-momentum of each

particle is Lie-dragged along its worldline, i.e.,

𝓅𝑎 ≡ ℒ𝑘𝑝𝑎 = 0 . (3.49)

The physical models for a spin-induced or tidally-induced quadrupole that will be used
in Chap. 6 are consistent with the Lie-dragging of 𝑢𝑎, 𝑝𝑎, 𝑆𝑎𝑏 and 𝐽𝑎𝑏𝑐𝑑. We naturally
expect that the results (3.46), (3.48) and (3.49) extend to an arbitrary multipolar order

5This can be shown by applying alternatively the antisymmetry in the middle two indices and
the one of the last two indices. After fives steps, the end result is 𝒥 𝑎𝑏𝑐𝑑 = −𝒥 𝑎𝑏𝑐𝑑.
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in the gravitational skeleton formalism.

To end this section, we mention that the spin vector 𝑆𝑎 and the mass dipole 𝐷𝑎 of
the particles, defined in Eqs. (2.63), are Lie-dragged too

ℒ𝑘𝑆𝑎 = 0 and ℒ𝑘𝐷𝑎 = 0 , (3.50)

since they are defined from 𝑆𝑎𝑏, 𝑢𝑎 and the canonical volume form 𝜀𝑎𝑏𝑐𝑑, which are Lie-
dragged. Interestingly, the formula (3.30) and some of its consequences—namely the Lie
dragging (3.48) and (3.49) of the 4-momentum and spin tensor—were previously estab-
lished in [433], in a mathematical physics journal. Their derivation is done at dipolar
order and is based on Dixon’s integral definition of the momenta [348]. Consequently, it
is unclear how their result extends to black holes, as pointed out in Chap. 2, Sec. 2.2.5. In
the context of the first law of mechanics, which is our main goal here, it is important that
we remain self-consistent throughout the calculations and that we control the definition of
the multipoles used in the final form of the first law. Consequently, it is more practical to
use Tuclzyjew’s route for our purpose. What’s more, despite these slight differences, the
consistency of our results with those of [433] (in the regions where our applications range
overlap) illustrates once more that the two formalisms are complementary and consistent
with each other.

Algebraic constraints on the multipoles
Finally, we discuss an interesting consequence of the Lie-dragging (3.49) and (3.48) of the
momentum 𝑝𝑎 and spin 𝑆𝑎𝑏, in light of the helical constraint (3.30). Combining Eqs. (3.30)
and (3.8), the formulas (3.49) and (3.48) can be rewritten as

𝑧 ̇𝑝𝑎 = 𝑝𝑐∇𝑐𝑘𝑎 = −𝑝𝑐∇𝑎𝑘𝑐 , (3.51a)
𝑧 ̇𝑆𝑎𝑏 = 2𝑆𝑐

[𝑎∇𝑏]𝑘𝑐 = 2∇𝑐𝑘[𝑎𝑆𝑐
𝑏] . (3.51b)

By combining those Lie-dragging equations with the equations of evolution (2.57), while
using the helical constraint (3.30), we obtain the following relations that must be satisfied
by the momentum, spin and quadrupole of each particle:

𝑝𝑐∇𝑐𝑘𝑎 = 1
2𝑅𝑏𝑐𝑑𝑎𝑆𝑏𝑐𝑘𝑑 − 1

6 𝑧𝐽𝑏𝑐𝑑𝑒∇𝑎𝑅𝑏𝑐𝑑𝑒 , (3.52a)

𝑆𝑐
[𝑎∇𝑏]𝑘𝑐 = 𝑝[𝑎𝑘𝑏] + 2

3 𝑧𝑅𝑒𝑑𝑐[𝑎𝐽 𝑐𝑑𝑒
𝑏] . (3.52b)

Assuming that the spacetime geometry is known, so that (𝑘𝑎,∇𝑎𝑘𝑏, 𝑅𝑎𝑏𝑐𝑑,∇𝑎𝑅𝑏𝑐𝑑𝑒) are
known, and given a physical model for the quadrupole 𝐽𝑎𝑏𝑐𝑑, the relations (3.52) are a set
of ten algebraic equations for the ten unknowns 𝑝𝛼 and 𝑆𝛼𝛽. Interestingly, by recalling
the Kostant formula (3.9) and the expression (3.32) for the redshift 𝑧, the formula (3.52b)
appears schematically (getting rid of all tensorial indices and numerical prefactors) as a
multipolar identity of the form

𝑝 𝑘 + 𝑆 ∇𝑘 + 𝐽 ∇∇𝑘 = 0 , (3.53)

while (3.52a) has a similar multipolar structure, with an additional overall covariant deriva-
tive. It would be interesting to see if this pattern extends at higher multipolar orders,
and to assess whether it carries or not any deeper meaning. Naturally, these equations
are closely related to similar formulas established in the context of Dixon’s and Harte’s
formalisms for extended fluid bodies, in presence of an isometry [348,434].
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3.3 Properties of dipolar particles
Along with the identities presented in Sec. 3.1.2, other results that are specific to an HKV
in the context of multipolar particles will be of importance for the derivation of the first
law later on. In this subsection we consider a binary system of dipolar particles moving
along a circular orbit, and explore some of the consequences of the Lie-dragging along the
helical Killing vector (3.7) of the 4-velocity 𝑢𝑎, the 4-acceleration �̇�𝑎 and the spin vector
𝑆𝑎, as was established in the previous section. We first introduce the notion of twist and
vorticity and show that it is aligned with the spin vector, and the discuss some conserved
quantities.

3.3.1 Twist, vorticity and spin vector
An important notion associated with the helical Killing vector field (3.7) is the twist

𝜛𝑎 ≡ −1
2𝜀𝑎𝑏𝑐𝑑𝑘𝑏∇𝑐𝑘𝑑 . (3.54)

The twist (3.54) is orthogonal to 𝑘𝑎 and Lie-dragged along 𝑘𝑎, as a direct consequence
of the Lie-dragging of 𝜀𝑎𝑏𝑐𝑑, 𝑘𝑏 and ∇𝑐𝑘𝑑 (cf. Chap. 3). It will be shown that the twist
(3.54) does not vanish everywhere. As a consequence of the Frobenius theorem, 𝑘𝑎 cannot
be hypersurface-orthogonal [354]. Moreover, it can be shown that the twist (3.54) obeys
the identity [5]

∇[𝑎𝜛𝑏] = 1
2𝜀𝑎𝑏𝑐𝑑𝑘𝑐𝑅𝑑𝑒𝑘𝑒 . (3.55)

For a Ricci-flat, helically symmetric spacetime we thus have ∇[𝑎𝜛𝑏] = 0, so that, locally,
the 1-form 𝜛𝑎 is exact, i.e. there exists a scalar field 𝜛 such that

𝜛𝑎 = ∇𝑎𝜛 . (3.56)

The scalar twist 𝜛 is then Lie-dragged along the helical Killing field 𝑘𝑎, as ℒ𝑘𝜛 = 𝑘𝑎𝜛𝑎 =
0.

From the twist, we can now endow each particle with a vorticity 𝑉 𝑎, namely the
restriction to the worldline γ of the twist (3.54) associated with the helical Killing field
(3.7), defined as

𝑉 𝑎 ≡ −1
2 𝜀𝑎𝑏𝑐𝑑𝑢𝑏∇𝑐𝑘𝑑 . (3.57)

Indeed, the helical constraint (3.30) implies 𝜛𝑎|γ = 𝑧𝑉 𝑎. The vorticity 𝑉 𝑎 is orthogonal to
𝑢𝑎 and is Lie-dragged along 𝑘𝑎|γ ∝ 𝑢𝑎. The definition (3.57) of the vorticity, which involves
the Noether 2-form ∇𝑎𝑘𝑏, should be compared to the definition (2.69) of the spin vector,
which involves the antisymmetric spin tensor 𝑆𝑎𝑏. The duality between (𝑉 𝑎, ∇𝑎𝑘𝑏) and
(𝑆𝑎, 𝑆𝑎𝑏) is made even clearer when expressing ∇𝑎𝑘𝑏 in terms of 𝑉 𝑎. Indeed, contracting
Eq. (3.57) with 𝜀𝑎𝑏𝑐𝑑𝑢𝑏, using Eq. (3.30) and re-aranging the result readily gives

∇𝑎𝑘𝑏|γ = 𝜀𝑎𝑏𝑐𝑑𝑢𝑐𝑉 𝑑 + 2𝑘[𝑎�̇�𝑏] , (3.58)

which is to be compared to Eq. (2.63). We will use this formula in Sec. 5.3 below to
simplify the first law of compact binary mechanics.

We now consider the rate of change of the vorticity (3.57) along γ. Using the condition
of metric compatibility, which implies ̇𝜀𝑎𝑏𝑐𝑑 = 0, together with the conservation of ∇𝑐𝑘𝑑
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along γ (shown below in Eq. (3.78)), we simply have 2 ̇𝑉 𝑎 = −𝜀𝑎𝑏𝑐𝑑�̇�𝑏∇𝑐𝑘𝑑. Substituting
the decomposition (3.58) into this formula while using �̇�𝑎𝑢𝑎 = 0 then yields

̇𝑉 𝑎 = 𝑢𝑎�̇�𝑏𝑉𝑏 , (3.59)

showing that 𝑉 𝑎 obeys the Fermi-Walker transport law, like the spin vector 𝑆𝑎. Contract-
ing (3.59) with 𝑉𝑎 then implies ̇𝑉 𝑎𝑉𝑎 = 0, so that the norm of the vorticity is conserved
along γ.

The vorticity and the spin vector share one more property: provided that the SSC
(2.64) is satisfied, they have the same spacelike direction. In order to establish this prop-
erty, consider on the one hand the spacelike vector

𝑊 𝑎 ≡ 𝜀𝑎
𝑏𝑐𝑑𝑢𝑏𝑆𝑐𝑉 𝑑 , (3.60)

and on the other hand the Lie-dragging of the spin vector 𝑆𝑎 (cf. Eq. (3.50)). The latter
implies 𝑧 ̇𝑆𝑎 = 𝑆𝑏∇𝑏𝑘𝑎, an equation which can be simplified with the help of Eq. (3.58),
to find an alternative expression for 𝑊 𝑎 as

𝑊 𝑎 = 𝑧( ̇𝑆𝑎 − 𝑢𝑎�̇�𝑏𝑆𝑏) , (3.61)

which vanishes as a consequence of the equation of spin precession (2.72).6 Since 𝑆𝑎 and
𝑉 𝑎 are both orthogonal to 𝑢𝑎, the equation 𝑊 𝑎 = 0 holds if, and only if, 𝑆𝑎 and 𝑉 𝑎 are
aligned. Let 𝑠𝑎 denote their common unit spacelike direction, such that 𝑠𝑎𝑠𝑎 = 1. Then
we obtained the important result

𝑉 𝑎 = 𝑉 𝑠𝑎 , (3.62a)
𝑆𝑎 = 𝑆 𝑠𝑎 , (3.62b)

where 𝑉 ≡ (𝑉 𝑎𝑉𝑎)1/2 is the norm of the vorticity and 𝑆 that of the spin vector, as defined
in Eq. (2.70b). The norms 𝑉 and 𝑆 are both constant along γ, while 𝑠𝑎 is Lie-dragged
along γ. The colinearity (3.62) will prove useful in Sec. 5.1 to write the first law of binary
mechanics in its simplest form, in terms of scalar quantities.

Around Eq. (3.56), we established that for our class of Ricci-flat spacetimes, the twist
(3.54) associated with the helical Killing field (3.7) must derive from a scalar potential 𝜛.
Therefore, the vorticity (3.57) is necessarily proportional to the gradient of the scalar twist
𝜛, evaluated along γ. Combining Eq. (3.56) with the orthogonality 𝑉 𝑎𝑢𝑎 = 0 implies the
conservation of the scalar twist 𝜛 along γ, namely

�̇� = 𝑢𝑎𝜛𝑎 = 𝑧𝑢𝑎𝑉𝑎 = 0 . (3.63)

For a spinning particle in a binary system on a circular orbit, we may use the Lie-
dragging of the 4-acceleration �̇�𝑎 along 𝑘𝑎, namely 𝑧�̈�𝑏 = �̇�𝑐∇𝑐𝑘𝑏 (see Paper I), to express
Eq. (2.77) in the implicit form

𝑚�̇�𝑎 = (𝑃 −1)𝑎
𝑏𝐵𝑏𝑐𝑆𝑐 , where 𝑃 𝑎

𝑏 = 𝛿𝑎
𝑏 + 1

𝑧𝑚 𝑆𝑎𝑐∇𝑏𝑘𝑐 . (3.64)

The term linear in the spin tensor in the operator 𝑃 𝑎
𝑏 can be rewritten in terms of the

spin vector 𝑆𝑎 and the vorticity 𝑉 𝑎 by substituting the expressions (2.69) and (3.58) for
6If the SSC (2.64) is not imposed, then the relationship 𝑆[𝑎𝑉 𝑏] = 0 can be generalized to

𝑆[𝑎𝑉 𝑏] = 𝑧𝐷[𝑎�̇�𝑏], as can easily be shown by generalizing the equation of spin precession (2.72)
to a nonzero mass dipole 𝐷𝑎.
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𝑆𝑎𝑏 and ∇𝑎𝑘𝑏. Using the colinearity (3.62) and introducing the projector ℎ𝑎
𝑏 ≡ 𝛿𝑎

𝑏 +𝑢𝑎𝑢𝑏
orthogonal to the 4-velocity, we readily find

𝑆𝑎𝑐∇𝑏𝑘𝑐 = 𝑝𝑎
hid𝑘𝑏 + 𝑉 𝑆 (ℎ𝑎

𝑏 − 𝑠𝑎𝑠𝑏) , (3.65)

where we recall that 𝑝𝑎
hid = −𝜀𝑎

𝑏𝑐𝑑𝑢𝑏�̇�𝑐𝑆𝑑 is the spacelike “hidden momentum” appearing
in the momentum-velocity relationship (2.73), and ℎ𝑎

𝑏 −𝑠𝑎𝑠𝑏 is the projector in the space-
like plane orthogonal to the common axial direction 𝑠𝑎 of 𝑆𝑎 and 𝑉 𝑎. If 𝑒𝑎

1 and 𝑒𝑎
2 denote

two spacelike unit vectors spanning that plane, such that (𝑢𝑎, 𝑒𝑎
1, 𝑒𝑎

2, 𝑠𝑎) is an orthnormal
tetrad, then the operator 𝑃 𝑎

𝑏 in Eq. (3.64) reads

𝑃 𝑎
𝑏 = 𝛿𝑎

𝑏 + 1
𝑚𝑝𝑎

hid𝑢𝑏 + 𝑉 𝑆
𝑧𝑚 (𝑒𝑎

1𝑒1𝑏 + 𝑒𝑎
2𝑒2𝑏) (3.66)

Remarkably, the inverse (𝑃 −1)𝑎
𝑏 of the operator (3.66) can be written in closed form

by assuming an Ansatz of the form (𝑃 −1)𝑎
𝑏 = 𝛿𝑎

𝑏 + 𝛼 𝑝𝑎
hid𝑢𝑏 + 𝛽 (𝑒𝑎

1𝑒1𝑏 + 𝑒𝑎
2𝑒2𝑏), with 𝛼, 𝛽

two constants to be solved for. Thanks to the defining identity (𝑃 −1)𝑎
𝑏𝑃 𝑏

𝑐 = 𝛿𝑎
𝑐, the

orthonormality of the basis (𝑒𝑎
1, 𝑒𝑎

2) and of 𝑝𝑎
hid𝑢𝑎 = 0 = 𝑝𝑎

hid𝑠𝑎, one obtains

(𝑃 −1)𝑎
𝑏 = 𝛿𝑎

𝑏 − 1
1 + 𝑎𝜔

1
𝑚𝑝𝑎

hid𝑢𝑏 − 𝑎𝜔
1 + 𝑎𝜔 (𝑒𝑎

1𝑒1𝑏 + 𝑒𝑎
2𝑒2𝑏) . (3.67)

Here, we introduced the Kerr parameter 𝑎 ≡ 𝑆/𝑚 of the spinning particle and we antici-
pated on the formula 𝑉 = 𝑧𝜔, with 𝜔 the invariant spin precession frequency to be defined
in Sec. 5.2 below; see e.g. Eqs. (5.33) and (5.43). Substituting Eq. (3.67) back into the
formula (3.64) for the 4-acceleration while using 𝑢𝑏𝐵𝑏𝑐 = 0 then gives

�̇�𝑎 = 𝑎
1 + 𝑎𝜔 (𝐵𝑎𝑏𝑠𝑏 + 𝑎𝜔𝑠𝑎𝐵𝑏𝑐𝑠𝑏𝑠𝑐) . (3.68)

This simple formula shows that the 4-acceleration is entirely sourced by the coupling of
the magnetic-type tidal field with the spin vector, just like the rate of change ̇𝑝𝑎 = 𝐵𝑎𝑏𝑆𝑏
of the 4-momentum. Equations (2.70a) and (3.68) yield ̇𝑆𝑎𝑢𝑎 =−�̇�𝑎𝑆𝑎 =− 1

𝑚𝐵𝑎𝑏𝑆𝑎𝑆𝑏, in
agreement with the spin precession equation (2.79).

3.3.2 Conserved quantities
In this final section, we explore the various conserved quantities associated with the isom-
etry generated by the helical Killing field (3.7). In particular, given the Lie-dragging along
𝑘𝑎 of the 4-velocity, 4-momentum, spin and quadrupole tensor of each particle established
in Sec. 3.2.2, the result (3.34) implies that any scalar field that is constructed out of the
particle’s variables (𝑢𝑎, 𝑝𝑎, 𝑆𝑎𝑏, 𝐽𝑎𝑏𝑐𝑑) and the spacetime geometry (𝑔𝑎𝑏, 𝑘𝑎, 𝑅𝑎𝑏𝑐𝑑, … ) will
be conserved along γ.

Killing energy
For a generic Killing vector field 𝜉𝑎, i.e., for a Killing vector field that does not necessarily
satisfy the helical constraint (3.30), the Killing energy of a particle with momentum 𝑝𝑎

and spin 𝑆𝑎𝑏 is defined as7

𝐸𝜉 ≡ 𝑝𝑎𝜉𝑎 + 1
2𝑆𝑎𝑏∇𝑎𝜉𝑏 . (3.69)

7This constant of motion was recently used in [364] to compute a GW flux balance law in an
EMRI with a spinning secondary.
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At the dipolar order, this linear combination of 𝑝𝑎 and 𝑆𝑎𝑏 is easily seen to be conserved
by substituting the equations of evolution (2.57) with 𝐽𝑎𝑏𝑐𝑑 = 0 into the expression for

̇𝐸𝜉 and by using Killing’s equation (3.8) and the Kostant formula (3.9). Remarkably, the
conservation of the Killing energy (3.69) holds beyond the dipolar order. Indeed, it can
be shown that the scalar (3.69) is a constant of motion for an arbitrary extended body
endowed with an infinite set of multipole moments8 [309,326,346,370].

In general, however, neither the monopolar contribution, nor the dipolar contribution
to the Killing energy (3.69), say

𝐸(𝑝)
𝜉 ≡ 𝑝𝑎𝜉𝑎 and 𝐸(𝑆)

𝜉 ≡ 1
2𝑆𝑎𝑏∇𝑎𝜉𝑏 , (3.70)

will be separately conserved. For example, if 𝑡𝑎 and 𝜙𝑎 denote the usual Killing vector fields
associated with the stationary and axisymmetry of the Kerr geometry, then a test spinning
particle orbiting a spinning black hole has a conserved energy −𝐸𝑡 and a conserved angular
momentum 𝐸𝜙, but the monopolar and dipolar contributions {𝐸(𝑝)

𝑡 , 𝐸(𝑆)
𝑡 } and {𝐸(𝑝)

𝜙 , 𝐸(𝑆)
𝜙 }

to 𝐸𝑡 and 𝐸𝜙 are not separately conserved.
However, in our case the helical nature of the Killing field 𝑘𝑎 implies the constraint

(3.30), from which we readily derive the exact conservation laws

𝑧 ̇𝐸(𝑝)
𝑘 = ℒ𝑘(𝑝𝑎𝑘𝑎) = (ℒ𝑘𝑝𝑎)𝑘𝑎 + 𝑝𝑎ℒ𝑘𝑘𝑎 = 0 , (3.71a)

2𝑧 ̇𝐸(𝑆)
𝑘 = ℒ𝑘(𝑆𝑎𝑏∇𝑎𝑘𝑏) = (ℒ𝑘𝑆𝑎𝑏)∇𝑎𝑘𝑏 + 𝑆𝑎𝑏ℒ𝑘∇𝑎𝑘𝑏 = 0 , (3.71b)

where we used Eqs. (3.48)–(3.49) and the identity ℒ𝑘∇𝑎𝑘𝑏 = ∇𝑎ℒ𝑘𝑘𝑏 = 0 (see App. A.2).
So, in our physical setup, the monopolar and dipolar contributions to the Killing energy
𝐸𝑘 are separately conserved, irrespective of a particular choice of SSC. In particular, by
combining Eq. (3.30) with the definition (2.60) of the particle’s rest mass, the monopolar
contribution to the Killing energy is easily seen to coincide with the redshifted rest mass:

𝐸(𝑝)
𝑘 = 𝑝𝑎𝑘𝑎 = −𝑚𝑧 . (3.72)

This expression is indeed consistent with the conservation (3.33) and (3.73) of 𝑧 and 𝑚.
The separate conservation of 𝐸(𝑝)

𝑘 and 𝐸(𝑆)
𝑘 is a consequence of the constraint (3.30) on the

helical Killing field, which must be satisfied here because both particles act as a source of
spacetime curvature, contrary to the case of a spinning test particle in the Kerr black hole
geometry, for which there exists no relationship (for a generic orbit) between the velocity
𝑢𝑎 of the test particle and the Killing fields 𝑡𝑎|γ and 𝜙𝑎|γ along the particle’s wordline γ.

Other geometrically conserved quantities
Equations (3.36), (3.48) and (3.49) readily imply the Lie-dragging along 𝑘𝑎 of the scalar
norms (2.60). Combined with the identity (3.34) we conclude that the rest mass 𝑚 =
−𝑝𝑎𝑢𝑎, the dynamical mass 𝜇2 = −𝑝𝑎𝑝𝑎 and the spin amplitude 𝑆2 = 1

2𝑆𝑎𝑏𝑆𝑎𝑏 are all
conserved along γ, irrespective of a choice of SSC, i.e.

�̇� = 0 , ̇𝜇 = 0 and ̇𝑆 = 0 . (3.73)

Moreover, as shown below Eq. (3.8), Killing’s equation implies the identity 𝑘𝑐∇𝑐𝑘𝑎 =
−1

2∇𝑎(𝑘𝑐𝑘𝑐). When evaluated along γ, this yields 𝑧2�̇�𝑎 = 1
2∇𝑎|𝑘|2|γ = 𝑧∇𝑎|𝑘|, where we

8To make contact with the GFK formalism touched upon in Chap. 2, Sec. 2.2.3, the energy 𝐸𝜉
is precisely the numerical value of the generalized four-momentum 𝒫𝜉 with the true Killing vector
field 𝜉𝑎, and not a mere generalized one, cf. Sec. 3.5 in [346].
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used Eqs. (3.30)–(3.33), and the fact that 𝑘𝑎 is necessarily timelike in a neighborhood of
γ. The 4-acceleration can thus be expressed in terms of the gradient of the norm of the
helical Killing field as

�̇�𝑎 = ∇𝑎 ln |𝑘| . (3.74)

Contracting with 𝑢𝑎 we find that |𝑘|γ = 𝑧 is conserved along γ, as established earlier.
Interestingly, for a monopolar particle, the geodesic equation �̇�𝑎 = 0 and (3.74) imply
∇𝑎 ln |𝑘|=0, so that |𝑘| is conserved not only along γ, but also along the spacelike directions
orthogonal to γ.

Moreover, by applying the general result (3.38) to the particular case of the 4-velocity
𝑢𝑎 of a given particle, while making use of the Lie-dragging (3.36) of 𝑢𝑎, we readily obtain
the Lie-dragging along 𝑘𝑎 of the 4-acceleration:

ℒ𝑘�̇�𝑎 = 0 . (3.75)

More precisely, the general result (3.38) should be applied to an extension �̃�𝑎 of 𝑢𝑎 in a
neighborhood of γ, as in (3.19). This result can alternatively be derived by taking the
Lie derivative along 𝑘𝑎 of the expression (3.74) of the 4-acceleration, as ℒ𝑘∇𝑎 ln |𝑘| =
∇𝑎ℒ𝑘 ln |𝑘| = 0. The formula (3.75) is equivalent to

𝑧�̈�𝑎 = �̇�𝑐∇𝑐𝑘𝑎 , (3.76)

which contracted with the 4-acceleration implies �̇�𝑎�̈�𝑎 = 0, thanks to Killing’s equation
(3.8). Thus, the norm of the acceleration is conserved, in addition to that of the velocity.
Moreover, contracting (3.76) with 𝑢𝑎 and using Killing’s equation along with the helical
constraint (3.30) with 𝑧 constant implies 𝑢𝑎�̈�𝑎 = −�̇�𝑐�̇�𝑐, so that

�̇�𝑎�̇�𝑎 = −�̈�𝑎𝑢𝑎 = const. (3.77)

The same argument holds for the rates of change of any Lie-dragged quantity. In particular,
̇𝑝𝑎 ̇𝑝𝑎, ̇𝑆𝑎 ̇𝑆𝑎, �̇�𝑎�̇�𝑎, ̇𝑆𝑎𝑏 ̇𝑆𝑎𝑏 and ̇𝐽𝑎𝑏𝑐𝑑 ̇𝐽𝑎𝑏𝑐𝑑 are all constant along γ.

Finally, using the Kostant formula (3.9) together with the constraint (3.30), we can
easily show that ∇𝑎𝑘𝑏 is conserved along γ, according to

(∇𝑎𝑘𝑏) ̇ ≡ 𝑢𝑐∇𝑐∇𝑎𝑘𝑏 = −𝑢𝑐𝑅𝑎𝑏𝑐𝑑𝑘𝑑 = −𝑧𝑅𝑎𝑏𝑐𝑑𝑢𝑐𝑢𝑑 = 0 , (3.78)

the last equality following from the antisymmetry of the Riemann tensor with respect to its
last two indices. As will be shown in Chap. 5, the conserved norm |∇𝑘|γ of the conserved
2-form ∇𝑎𝑘𝑏|γ is very closely related to the precession frequency of the spin vector 𝑆𝑎 that
was introduced in Sec. 2.3.2, and which has been used extensively to compare PN and
GSF calculations [435–440], and to calibrate EOB models [441].
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First Laws of mechanics

Gestern erhielt ich von Fr. Nöther eine sehr interessante Arbeit über
Invariantenbildung. Es hätte den Göttinger Feldgrauen nichts

geschadet, wenn sie zu Frl. Nöther in die Schule geschickt worden
wären. Sie scheint ihr Handwerk gut zu verstehen!1

A. EINSTEIN,
Letter to D. Hilbert (1918) .

⋄

Since the pioneering works on isolated black hole thermodynamics in the 1970s, the
so-called first law of mechanics has gradually been extended to a variety of binary

systems, such as black hole binaries, magnetized neutron stars or spinning point particles.
They have also been generalized to account for the wide variety of relativistic orbits: quasi-
circular, eccentric, and black hole geodesics. The aim of this chapter is to present these
first laws, explain what they are about, and understand why they have become a central
tool in the theory of relativistic mechanics and gravitational waves. To achieve this goal,
we begin in Sec. 4.1 with an overview of the different kinds of “first laws” that can be
found in the literature. Then, in Sec. 4.2, we review a selection of the many applications
they have been used for. We shall see, in particular, that they provide a powerful tool to
compare and benchmark the output of the different approximation schemes presented in
Chap. 2. Lastly, in Sec. 4.3, we derive a first, general version of the first law of mechanics,
which will be the basis of the calculations presented in Chap. 5.

1Dated 24 May 1918 [442]: “Yesterday I received from Miss Noether a very interesting paper
on the generation of invariants. It would have done the Old Guard of Göttingen no harm to be
sent back to school under Miss Noether. She really seems to know her trade!”
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4.1 Zoology of first laws
The first occurrence of a “first law of mechanics” in GR dates back to the seventies
with the pioneering papers on BH thermodynamics, by several physicists, namely Jacob
Bekenstein, Stephen Hawking, James Bardeen and Brandon Carter, to name but the
principal protagonists. Their results showed that several scalar, physical observables of
an isolated Kerr BH could all be related by a differential relation that resembles the first
law of thermodynamics. Since then, such differential (and algebraic) relations have been
extended to a plethora of sources and come in many forms, all under the name “first law
of mechanics”. Broadly speaking, these extensions, can be categorized into three families,
represented here chronologically (along with their principal protagonists)

• 1990’s: Generalized BH thermodynamics (Wald, Iyer et al.),

• 2000’s: Extension to BH and NS binary systems (Friedmann, Uryu̅, et al.),

• 2010’s: Extension to point particle models (Le Tiec, Blanchet et al.).

The first family contains extensions of the pioneering works on BH thermodynamics,
to a broader class of spacetimes and theories of gravity. One of them will be discussed
separately in Sec. 4.3, where we will extend its validity for our own purposes. The second
and third families deal with first laws for binary systems, with practical applications in
relativistic celestial mechanics and GW astronomy, just as our work. Sections 4.1.2 through
4.1.4 fill in the details on their context and derivation. However, before considering binary
systems, we cover in Sec. 4.1.1 the basics of their common ancestor, the laws of BH
thermodynamics.

4.1.1 Black hole thermodynamics
As we covered briefly in Chap. 1, one of the most remarkable result of GR is the fact that
each and every isolated black hole in the Universe is described by solely two numbers, its
mass 𝑀 and spin 𝑆. Indeed, they are all described by the Kerr metric, a two-parameter
family of exact, vacuum, stationary solutions to Einstein’s equations. Let us represent this
metric by giving its spacetime element d𝑠 in the Boyer-Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙) ∈
ℝ2 × 𝕊2 (see [81] for a review a detailed account on the Kerr metric):

d𝑠2 = − (1 − 2𝑀𝑟
Σ )d𝑡2 − 4𝑀𝑟

Σ 𝑎 sin2𝜃 d𝑡d𝜙 + Σ
Δd𝑟2

+ Σ d𝜃2 + (𝑟2 + 𝑎2 + 2𝑀𝑟
Σ 𝑎2 sin2𝜃) sin2𝜃 d𝜙2 , (4.1)

where Δ(𝑟) ≡ 𝑟2 −2𝑀𝑟+𝑎2 and Σ(𝑟, 𝜃) ≡ 𝑟2 +𝑎2 cos2 𝜃. The metric (4.1) is parametrized
by the BH’s mass 𝑀 > 0 and its spin 𝑆, or equivalently the (dimensionless) spin parameter
𝑎 ≡ 𝑆/𝑀 ≥ 0. The parameter 𝑎 can take any value in [0; 𝑀]. In the limit 𝑎 → 0, Eq. (4.1)
reduces to the Schwarzschild metric in the Schwazshild-Droste coordinates, while 𝑎 = 𝑀
defines the so-called extremal Kerr BH. One advantage of the Boyer-Lindquist coordinates
is the explicit independence of the metric components with respect to the coordinates 𝑡
and 𝜙. Consequently, the vector fields (𝜕𝑡)𝑎, and (𝜕𝜙)𝑎 are Killing. These encode the fact
that the Kerr spacetime is stationary and axisymmetric, respectively. The components of
the Kerr metric (4.1) diverge when Σ = 0. This corresponds to the 2-dimension locus of
events ℛ where (𝑟, 𝜃) = (0, 𝜋/2). It is called the ring singularity of the Kerr BH and is
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a true, curvature singularity of the Kerr spacetime. The metric (4.1) also diverges when
Δ = 0. Since Δ is a quadratic-in-𝑟 polynomial, this singularity defines two 3-dimensional
hypersurfaces of constant BL radius. Contrary to ℛ, these two regions correspond to a
mere coordinate singularity, and the Kerr event horizon, denoted ℋ , corresponds to the
outer one, namely

ℋ ∶ 𝑟 = 𝒽 , where 𝒽 ≡ 𝑀 +
√

𝑀2 − 𝑎2 . (4.2)

The other surface ℋin, located on the 3-hypersurface 𝑟 = 𝑀 −
√

𝑀2 − 𝑎2, is called the
inner horizon of the Kerr BH. The laws of thermodynamics involve three fundamental,
geometrical quantities associated to the event horizon ℋ .

Angular velocity

The event horizon ℋ is also a Killing horizon, in the sense that there exists a null Killing
vector field 𝜒𝑎 that is normal to ℋ . This Killing field must be a linear combinations
of (𝜕𝑡)𝑎 and (𝜕𝜙)𝑎, the two generators of Kerr isometries. Up to a constant normalizing
factor, it can thus be written as (𝜕𝜙)𝑎 + Ωℋ (𝜕𝜙)𝑎 where Ωℋ is a constant. Requiring that
this Killing vector be null on ℋ provides an expression of Ωℋ in terms of the parameters
(𝑀, 𝑎). Summarizing, it is found that on ℋ

𝜒𝑎 = (𝜕𝑡)𝑎 + Ωℋ (𝜕𝜙)𝑎 , where Ωℋ ≡ 𝑎
2𝑀𝒽 , (4.3)

with 𝒽 given in terms of (𝑀, 𝑎) by Eq. (4.2). The quantity Ωℋ is called the angular
velocity of the Kerr BH, as it coincides with its apparent rotation rate as measured by an
inertial, static observer located at spatial infinity.

Surface gravity

The Killing field 𝜒𝑎 coincides, on ℋ , with the null geodesic generator of the Kerr space-
time. Accordingly, when evaluated on the event horizon, 𝜒𝑎 satisfies a (pre-)geodesic
equation, in the form

𝜒𝑏∇𝑏𝜒𝑎|ℋ = 𝜅𝜒𝑎 , where 𝜅 ≡ 𝒽 − 𝑀
2𝑀𝒽 , (4.4)

and where 𝜅 is the non-affinity coefficient. Now, considering the outer region where 𝜒𝑎

is timelike. The parameter 𝜅 can be given a physical interpretation, as follows. Consider
an observer 𝒪 located outside of ℋ , whose worldline’s coincides with an integral curve
of 𝜒𝑎.The four-velocity of that observer is then 𝑢𝑎 = 𝜒−1𝜒𝑎, where 𝜒2 ≡ −𝜒𝑎𝜒𝑎 is the
(squared) norm of 𝜒𝑎. Using Killing’s equation, the four-acceleration of this observer can
be shown to satisfy 𝑢𝑎∇𝑏𝑢𝑎 = 1

𝜒2 𝜒𝑏∇𝑏𝜒𝑎. This relation is valid outside of the event
horizon ℋ , where as Eq. (4.4) holds on ℋ . By taking the norm of these two equations,
and the limit 𝒪 → ℋ where the observer approaches the event horizon, we find that the
norm Γ ≡ √�̇�𝑎�̇�𝑎 of the observer’s four-acceleration satisfies

𝜅 = lim
𝒪→ℋ

𝜒Γ . (4.5)

Consequently, 𝜅 is the value of the (normalized) acceleration of the observer, 𝜒Γ, as
it approaches the black hole. Note, however, that this result only motivates the name
“surface gravity” and does not correspond to the “gravity felt” by the observer per se. In
particular, since 𝜒𝑎 is null on ℋ , 𝜒 → 0 as 𝒪 → ℋ . Therefore Eq. (4.5) requires Γ → ∞
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in this limit: the “physical surface gravity” becomes infinite as one approaches the BH’s
horizon.2

Surface area
As mentioned previously, the event horizon of the Kerr BH is also a Killing horizon. As
such, it is also a totally geodesic null hypersurface, or more simply, a non-expanding horizon
(see Sec. 1.3.5 [81] for details). This feature allows for the introduction of a well-defined
notion of area 𝐴, for a Kerr BH. This area is defined as that of any cross section 𝒰 of
the event horizon ℋ (see Sec. 2.3.4 for a proper definition). In terms of the 3+1 Kerr
coordinates ( ̃𝑡, 𝑟, 𝜃, ̃𝜙), which are not singular on ℋ , such a cross section is given by ̃𝑡 = cst
and 𝑟 = 𝒽, which induces a 2-metric 𝑞𝑎𝑏 on 𝒰 given by

𝑞𝛼𝛽d𝑥𝛼d𝑥𝛽 = (𝒽2 + 𝑎2 cos2 𝜃) d𝜃2 + (𝒽2 + 𝑎2)2

𝒽2 + 𝑎2 cos2 𝜃 sin2 𝜃 d ̃𝜙2. (4.6)

The area of this (closed-)surface is then simply computed by integrating the covariant
surface element definition √𝑞 d𝜃 d ̃𝜙 over 𝒰 , with 𝑞 ≡ det(𝑞𝑎𝑏) the determinant of the
induced metric on 𝒰 . Since 𝑞 = (𝒽2 + 𝑎2)2 sin2 𝜃, as can be read off Eq. (4.6) this
integration is straightforward, and the area of the Kerr BH is found to be

𝐴 = 8𝜋𝑀𝒽 . (4.7)

We note that this area is defined for an isolated, Kerr BH. In the case where the BH
presents disconnected components, such as a binary BH, the cross section 𝒰 becomes
time-dependent. In particular, it presents two disconnected components that “touch” at
the time of merger, as is nicely represented in the figures of [443].

First law
Recalling that 𝑆 = 𝑀𝑎 and viewing the area 𝐴 as a function of the two black hole
parameters (𝑀, 𝑆), it is straightforward to compute the partial derivatives (𝜕𝑀𝐴, 𝜕𝑆𝐴)
from Eqs. (4.7) and (4.2). One can then compute first-order variation 𝛿𝐴 in terms of 𝛿𝑆
and 𝛿𝑀 . By combining this with the definitions (4.3) of angular velocity and (4.5) of
surface gravity, the following remarkable result emerges

𝛿𝑀 − Ωℋ 𝛿𝑆 = 𝜅
8𝜋𝛿𝐴 . (4.8)

This computation was first presented in the pioneering paper by Bardeen, Carter and
Hawking [444]. Surely, it looks like the classical first law of thermodynamics 𝛿𝑈 + 𝑃𝛿𝑉 =
𝑇 𝛿𝑆. This formal analogy was extended to a rigorous, thermodynamical interpretation
by Hawking [445], who managed to perform a semi-classical calculation, i.e., account for
quantum effects in a curved spacetime. In particular, he showed that BHs not only absorb
but also radiate energy at a finite temperature given by ℏ𝜅/2𝜋, where ℏ is the reduced
Planck constant. It then follows from the first law (4.8) that the BH entropy is simply
given by 𝐴/4ℏ, proportional to the BH’s area, a result proposed by Bekenstein [446] shortly
before Hawking’s paper. This groundbreaking discovery was, at once, the first milestone
in the ongoing search for a self-consistent theory of quantum gravity, and the first “first
law of mechanics” to be derived in the context of compact objects. The reader is invited
to browse Robert Wald’s review [447] for more on the thermodynamics of BHs.

2It is possible to give another justification of the term surface gravity, by identifying 𝜅 as the
force exerted by an operator at infinity necessary to keep a unit mass at rest close to ℋ , see [354].
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Other laws
The analogy between the geometric quantities of a Kerr BH and a thermodynamical
processes does not stop at the first law (4.8). Already from Eq. (4.5), we see that the
surface gravity of the Kerr BH is constant. In particular, it is defined everywhere on ℋ ,
and is therefore a constant scalar field there, in spite of the Kerr non-spherical symmetry.
In fact, this fundamental result

𝜅 = cst. , (4.9)

has been shown to hold for any Killing horizon. In view of Hawking’s result that 𝜅
relates to the BH temperature, this result has been coined the “zeroth law” of black hole
mechanics3. Interestingly, this law holds irrespective of the Einstein equation, and thus is
not restricted to GR (in fact it holds in virtually all metric theories of gravity [448]).

The second law of thermodynamics, stating that the entropy of an isolated system
undergoing cannot decrease, has also been shown to hold for an arbitrary BH spacetime,
where it takes the form

𝛿𝐴 ≥ 0 , (4.10)

where 𝛿𝐴 is the change in total area of the BH. The fact that it is the total area is
important for the case of a BH spacetime with two disconnected components, i.e., two
BHs. Remarkably, this law can be explicitly verified thanks to GW signals detected from
BH mergers. For example, by analyzing the data from the first GW event GW150914,
the authors of [449] showed that the second law of BH mechanics (4.10) was verified at a
confidence level of at least 95%.

4.1.2 Compact objects binaries
The first law of BH thermodynamics (4.8) presented above deals with an isolated Kerr
BH. In the advent of GW astronomy, it was quite natural to try and extend its validity
to compact objects binaries, including BHs and NSs.

Two black holes
In [381], the authors have explored various extensions of the first law of mechanics. In
particular, they showed that the case a BH binary system on a circular orbit also satisfies
such a first law. To model the circular orbit, they use the HKV 𝑘𝑎 defined in Chap. 3.
Although their result is obtained after a considerable calculation unrelated to the simple,
algebraic derivation of (4.8), the first law for a BH binary turns out to be very simple:
it is the sum of the contributions (4.8) of two isolated BHs. In particular, the Noether
charge 𝑄 associated to the helical isometry satisfies

𝛿𝑄 = 𝜅1
8𝜋𝛿𝐴1 + 𝜅2

8𝜋𝛿𝐴2 , (4.11)

where 𝜅i and 𝐴i is the horizon surface gravity and area of each BH of the binary i ∈ {1, 2}.
To derive this law for a binary, the authors first show that the zeroth law holds also for this
system, extending the isolated-BH case (4.9). In particular, the HKV 𝑘𝑎 = 𝑡𝑎 + Ω𝜙𝑎 that
defines the helical isometry is shown to be tangent to the null generators of the horizon4

3“Mechanics” because it holds for any BH spacetime, even for those with disconnected com-
ponents, for example binary BHs.

4If there are two BHs, then this horizon ℋ has two disconnected components (ℋ1, ℋ2) and
𝑘𝑎, when evaluated at one component ℋi is tangent to its respective generators.
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of the black hole. The surface gravity 𝜅, defined as

𝑘𝑎∇𝑎𝑘𝑏|ℋ = 𝜅𝑘𝑏 , (4.12)

is then constant on ℋ . The area 𝐴, of the BH is defined in the same way as an isolated
Kerr BH, as the area of an arbitrary hypersurface 𝒮 transverse to 𝑘𝑎.

BH and NS

A very natural extension of the binary first law (4.11) is to account for neutron stars as
well as black holes, in order to describe any kind of compact binary system. This was first
achieved in [381] by John Friedmann, K ̅oji Uryu̅ and Masaru Shibata. There, a binary
system of BH and/or NS is represented as a helically symmetric spacetime, as defined in
Sec. 3.1, with vacuum regions surrounded by a Killing horizon for the BHs, and balls of
perfect fluid for the NS. The SEM tensor of the latter reads

𝑇 𝑎𝑏 = 𝜀𝑢𝑎𝑢𝑏 + 𝑝ℎ𝑎𝑏 (4.13)

where 𝜀 and 𝑝 are the perfect fluid’s energy density and pressure, and ℎ𝑎𝑏 ≡ 𝑔𝑎𝑏 + 𝑢𝑎𝑢𝑏

projects orthogonally to the four-velocity field 𝑢𝑎. As a perfect fluid, the NS satisfies the
usual first law of thermodynamics,

Δ𝜀 = ℎΔ𝜌 + 𝑇 𝜌Δ𝑠 (4.14)

which relates the Lagrangian variations Δ of the energy density 𝜀, the mass density 𝜌 and
entropy 𝑠 per unit baryon mass. Equation (4.14) also involves the temperature 𝑇 and the
specific enthalpy ℎ ≡ (𝜀 + 𝑝)/𝜌 of the fluid. An explicit calculation then shows that the
Noether charge 𝑄 associated to the helical isometry satisfies

𝛿𝑄 = 𝜅
8𝜋𝛿𝐴 + ∫

𝒮
[ ̄𝑇 Δ(𝑠d𝑀𝐵) + ̄𝜇Δ(d𝑀𝐵) + 𝑣𝛼Δ(ℎ𝑢𝛼d𝑀𝐵) ] . (4.15)

In equation (4.15), the first term on the RHS is the contribution from the BH, as in (4.8)
for an isolated Kerr BH. The contribution from the NS involves various thermodynamics
quantities associated to a perfect fluid. In particular, the (redshifted) temperature ̄𝑇 ≡
𝑇 /𝑢𝑡 and chemical potential ̄𝜇 ≡ 𝜇/𝑢𝑡, where 𝑢𝑡 is the time-component of the velocity
field and 𝑚𝐵 is the baryon average mass. Similarly, d𝑀𝐵 ≡ 𝜌𝑢𝛼d𝑆𝛼 is the baryon mass
of a fluid element. Finally, the Lagrangian variation Δ and Eulerian one 𝛿 are linked by
Δ = 𝛿 +ℒ𝜉, where 𝜉𝑎 is a displacement field between any two fluid elements. The first law
(4.15) is the most general one. In practice (i.e., in numerical simulations), one restricts to
perfect fluids with certain hydrodynamic configurations. One that simplifies the first law
greatly is that of an isentropic fluid. It implies additional (Lagrangian) conservation laws
for the mass current, the entropy and the vorticity

Δ(𝜌𝑢𝑎√−𝑔) = 0 , Δ𝑠 = 0 and Δ𝜔𝑎𝑏 = 0 , (4.16)

with 𝜔𝑎𝑏 ≡ 2∇[𝑎(ℎ𝑢𝑏]) (the fluid’s vorticity 2-form). Each conservation equation in (4.16)
implies the vanishing of the corresponding term5 in the integral of (4.15). Consequently, for
such isentropic, perfect fluids, the first law is identical to that of an isolated black hole (4.8)

5In the case of a nonisentropic, but otherwise irrotational flow (vanishing vorticity) only the
third term vanishes. Other fluid configurations are discussed in [381].



4.1. ZOOLOGY OF FIRST LAWS 119

(up to the interpretation of the mass and angular momentum involved in 𝑄). The first law
(4.15), which relates the helical Noether charge variations to changes in the thermodynamic
and hydrodynamic equilibrium of matter and in the area of the horizon, has been used
in the numerical simulation of binary inspirals involving neutrons stars [450–452] and
construction of (numerical) initial data of such systems [378, 453–455] (see also the series
of papers [456–458]).

Magnetized NS

As emphasized in Chap. 1 of this thesis, one of the main features of neutron stars is
their intense magnetization. To aim at a more realistic model for NS/BH binaries using
a sequence of equilibria, it is therefore important to understand how this magnetization
enters the first law. This was done in [459] using a similar approach to the above law,
except that an additional term was added to the SEM tensor of the fluid to account for
an electromagnetic field. In particular, the SEM tensor now reads 𝑇 𝑎𝑏

pf + 𝑇 𝑎𝑏
em, where 𝑇 𝑎𝑏

pf
is given in (4.13) and

𝑇 𝑎𝑏
em ≡ 1

4𝜋(𝐹 𝑎𝑐𝐹 𝑏
𝑐 − 1

4𝑔𝑎𝑏𝐹𝑐𝑑𝐹 𝑐𝑑) (4.17)

is the SEM tensor of an EM field, with the Faraday tensor 𝐹𝑎𝑏 ≡ 2∇[𝑎𝐴𝑏] defined in terms
of the EM potential 1-form 𝐴𝑏 (see for example [21] for details on the relativistic EM
field). The spacetime is still assumed to be helical, and the Noether charge 𝑄 associated
to the HKV satisfies

𝛿𝑄 = 𝜅
8𝜋𝛿𝐴 + Φ𝛿𝑄𝐸 + 𝐼pf − ∫

𝒮
[ 𝐴𝑏𝑘𝑏Δ(𝑗𝛼d𝑆𝛼) + 2𝑗[𝛼𝑘𝛽]Δ(𝐴𝛽d𝑆𝛼) ] , (4.18)

where now the black hole’s contribution is not limited to the surface gravity term ∝ 𝛿𝐴
but also includes an EM part, with 𝑄𝐸 and Φ standing for the electric charge and scalar
potential on the horizon. This term appears because 𝑇 𝑎𝑏

em sources the Einstein equation and
therefore the BH is not Kerr but rather Kerr-Newman. Similarly, for the NS two terms
are present: 𝐼pf, which stands for the integral coming from the 𝑇 𝑎𝑏

pf -part of the source,
is identical to that of (4.15), whereas the integral term in (4.18) involves the electric
current 𝑗𝑎 and comes from 𝑇 𝑎𝑏

em-part of the total SEM tensor. The NS being now modeled
by magnetohydrodynamics (MHD), other types of assumptions can be made as to the
physical properties of its fluid flow. In particular, the ideal MHD assumption, 𝐹𝑎𝑏𝑢𝑎 = 0,
readily implies a conservation law for the magnetic flux, which, in turn, implies that
the second term in the integral (4.18) vanishes. Similarly, the first term in that integral
vanishes under the assumption of conserved circulation of the magnetic flow. Other types
of equilibrium configurations lead to a simplification of the general first law (4.18) and are
discussed thoroughly in [459]. These MHD results (and the formalism around it) allows
for a self-consistent inclusion of magnetic fields in the construction of quasi-equilibrium
sequences for binary system inspirals [460,461].

4.1.3 Point particles binaries
In the previous section, we saw how a first law of mechanics for binary systems can be
derived for extended compact objects, including BHs, and Ns as perfect fluids. But as we
have seen in Chap. 3, real compact objects can also be modeled accurately by extracting
from them a small number of multipoles, evolving along a single worldline. The post-
Newtonian formalism has shown to be a useful method of obtaining these alternative first
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laws. Here we discuss two such laws, one for point masses at the 3PN level, and an
extended version which accounts for the nonlocal-in-time part of the dynamics.

Circular orbits

In 2012, it was shown by Alexandre Le Tiec, Luc Blanchet, and Bernard Whiting in [386]
that a first law of binary mechanics can be obtained for such a system of pointlike objects.
This discovery could almost be said “serendipitous” as they were able to guess the form
of the first law from a careful examination of the PN expansions of the physical quantities
that enter it. In particular, they considered the 3PN expressions6 for the binding energy
𝐸, angular momentum 𝐽 and redshifts 𝑧i. For circular orbits, these 3PN expressions look
like

𝐸 = −𝑚1𝑚2𝑥
2𝑚 (1 +

3
∑
𝑘=1

𝐸𝑘(𝑚i)𝑥𝑘 + 𝑜(𝑥3)) , (4.19a)

𝐽 = 𝐺𝑚1𝑚2√𝑥 (1 +
3

∑
𝑘=1

𝐽𝑘(𝑚i)𝑥𝑘 + 𝑜(𝑥3)) , (4.19b)

𝑧i = 1 +
4

∑
𝑘=1

𝜁𝑘(𝑚i)𝑥𝑘 + 𝑜(𝑥4) , (4.19c)

and 𝑧2 is obtained from 𝑧1 by exchanging 𝑚1 with 𝑚2 and 𝑚 ≡ 𝑚1 + 𝑚2. Equations
(4.19) are PN expansions in terms of the 1PN parameter 𝑥 ≡ (𝑚Ω)2/3, which is well-
adapted to circular orbits. The coefficients (𝐸𝑘), (𝐽𝑘) and (𝜁𝑘) are rational functions of
(𝑚1, 𝑚2) (see equations (2.35) to (2.37) in [386] for their exact expressions). By inspecting
Eqs. (4.19), the authors remark that three PDE can be written relating the quantities
(𝑀 ≡ 𝐸 + 𝑚, 𝐽, 𝑧1, 𝑧2), seen as functions of (Ω, 𝑚1, 𝑚2). These are

𝜕𝑀
𝜕Ω − Ω 𝜕𝐽

𝜕Ω = 0 and 𝜕𝑀
𝜕𝑚i

− Ω 𝜕𝐽
𝜕𝑚i

= 𝑧i , (4.20)

for i ∈ {1; 2}. These PDE’s can all be grouped in one single differential expression,
by writing the differentials 𝛿𝑀, 𝛿𝐽, 𝛿𝑚i and reading their coefficients from (4.20). This
provided the first law of point-particle binary mechanics:

𝛿𝑀 − Ω 𝛿𝐽 = ∑
i

𝑧i𝛿𝑚i . (4.21)

This law is obtained by solving the Einstein equation iteratively in powers of 𝑐−1, as they
are sourced by two point masses. In particular, the SEM tensor of the Einstein equation
is precisely the monopolar particle (2.22). Several algebraic relations can be derived from
the differential expression (4.21), and these are discussed in the paper. Moreover, the
comparison between the variation 𝛿𝑄 of the Noether charge associated to the helical
isometry and the quantity 𝛿𝑀 −Ω𝛿𝐽 appearing on the left-hand side of (4.21) is discussed,
reaching the same conclusions as those presented in Chap. 3. The PN first laws also have
an important application: as they are expected to hold at all PN order, they can be used
to constrain (and sometimes explicitly compute) PN coefficients that would otherwise be
very calculation-heavy. We shall discuss this further in Sec. 4.2.

6Their work also includes of logarithmic contributions of 4PN and 5PN orders, which we omit
here for clarity, but which are also checked to verify the first law in their paper.
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Eccentric orbits

The first laws presented above, be it for extended compact objects or their point-particle
approximation, are restricted to circular orbits. In order to extend the first law to generic
bound orbits (eccentric, for short), the natural framework has turned out to be the canon-
ical, ADM formalism of GR. Applied to binary system of point masses (𝑚1, 𝑚2), it has
been possible to derive up to 3PN order7 an autonomous Hamiltonian 𝐻(x, p; 𝑚i) that
encodes the 3PN dynamics of the system. The phase space coordinates (x, p) are the
canonical position and momenta of the particles (3-vectors), defined in some fixed gauge,
and they obey Hamilton’s equations

dx
d𝑡 = 𝜕𝐻

𝜕p and dp
d𝑡 = −𝜕𝐻

𝜕x . (4.22)

Even though this framework is perfectly relativistic, it inherits many results from New-
tonian gravity. In particular, it is possible to rigorously and unambiguously define a
conserved, total linear momentum P and a conserved, total angular momentum L. In the
“center-of-mass” frame (in which P = 0) the conservation of L defines a 2-dimensional or-
bital plane. Introducing polar coordinates (𝑟, 𝜙) in this plane, the 3PN ADM Hamiltonian
is shown to only depend on (𝑟, 𝑝𝑟, 𝑝𝜙; 𝑚i), where (𝑝𝑟, 𝑝𝜙) denote the conjugated momenta
associated to (𝑟, 𝜙). Again, we emphasize that all these familiar, Newtonian-looking results
are not straightforward and require an elaborate construction.

In this context, the first law of mechanics follows from a series of calculations based, in
essence, on a (orbital-averaged) variation of the Hamiltonian 𝐻(𝑟, 𝑝𝑟, 𝑝𝜙; 𝑚i) with respect
to the phase-space coordinates and the individual masses 𝑚i. After performing these steps
(detailed in [425]), the first law of mechanics for binaries on an eccentric orbit follows from
the on-shell condition 𝐻 = 𝑀 , stating that the numerical value of the Hamiltonian along
any solution to Eq. (4.22) coincides with the invariant, ADM mass of the underlying
spacetime [464]. The result for the first law reads [425]

𝛿𝑀 − Ω𝜙𝛿𝐿 = Ω𝑟𝛿𝐽𝑟 + ∑
i

⟨𝑧i⟩𝛿𝑚i , (4.23)

where (Ω𝑟, Ω𝜙) are the radial and angular Hamiltonian frequencies, 𝐽𝑟 is the radial action,
the integral invariant associated to the radial motion8, just like 𝑝𝜙 = 𝐿 is that of the
angular motion. Lastly, in the ADM context, the redshift 𝑧i that enters Eq. (4.23) is
defined by

𝜕𝐻
𝜕𝑚i

= d𝜏i
d𝑡 ≡ 𝑧i , (4.24)

where the partial derivatives is computed while keeping the phase-space variables fixed,
and 𝜏i is the proper time along the worldline of particle i. Again, it should be emphasized
that Eq. (4.24), in spite of its simplicity, is a non-trivial result of relativistic mechanics, as
explained in [405]. The law for eccentric orbits (4.23) is compatible with that for circular
orbits (4.21). Indeed, in the circular case, the radial action 𝐽𝑟 vanishes (by definition),
the polar angular frequency Ω𝜙 becomes that of the circular motion Ω, and finally the
averaged redshift coincides with the constant redshift of the circular case.

7We limit the present discussion to 3PN, even though this Hamiltonian is known at 4PN
[462, 463]. However, at that level it brings new, non-local effects, which are precisely the content
of the first law derived in the next paragraph.

8This action is defined in the same way in Newtonian mechanics, and we shall use it extensively
in the second part of this thesis, in particular in Chap. 10.
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Non-local effects

The first law of mechanics (4.23), for eccentric orbits, was based on a calculation involving
an autonomous Hamiltonian 𝐻 expressed in terms of canonical coordinates (x, p). As of
today, the full expression of this Hamiltonian is known at full 4PN order, and contrasts
with its 3PN expansion in one key aspect: its nonlocal-in-time nature. Following the
notations of [426] (see Sec. II for details), at 4PN order the Hamiltonian 𝐻 splits into two
pieces, as

𝐻4PN ≡ 𝐻0(𝑟, 𝑝𝑟, 𝑝𝜙; 𝑚i) + 𝐻tail[𝑟, 𝜙, 𝑝𝑟, 𝑝𝜙; 𝑚i] . (4.25)

In this equation, 𝐻0 denotes a “traditional” Hamiltonian, that depends algebraically on
the phase space coordinates. In particular, 𝐻0 at a given instant 𝑡 is known from the
value of (𝑟, 𝑝𝑟, 𝑝𝜙) at this very instant 𝑡. In contrast, 𝐻tail is a non-local-in-time piece,
which is a functional of the phase space coordinates (whence the bracket notation). In
particular, the value of 𝐻tail at a given time depends on the whole past and future evolution
of (𝑟, 𝜙, 𝑝𝑟, 𝑝𝜙), as shown by its explicit, integral expression, provided in Eqs. (2.2)-(2.4)
in [426]. This functional dependence of the Hamiltonian implies that in the Hamilton
equations (4.22), the right-hand sides must be replaced by functional derivatives,

dx
d𝑡 = 𝛿𝐻

𝛿p(𝑡) and dp
d𝑡 = − 𝛿𝐻

𝛿x(𝑡) , (4.26)

making it a system of integro-differential equations, and contrasting with the traditional
PDE system that would be obtained with the local Hamiltonian 𝐻0 alone.

It should be emphasized that this peculiarity arising at 4PN in binary mechanics is a
feature of the conservative part of the dynamics, even though its physical interpretation
does have something to do with GWs. Heuristically, the dependence of the body’s motion
on its own past and future can be seen as a consequence of the interaction between that
body and the GWs it emitted in the past (and future): it is an effect of self-interaction,
stemming from the nonlinearity of GR. Accordingly, this effect his known under the name
of gravitational-wave-tail. In [426], the authors showed that the 3PN “eccentric” first law
(4.23) was still valid at 4PN order for generic bound orbits, as long as these GW-tail
effects are re-absorbed into the definition of the radial action 𝑅 that enters it. This result
is of importance as it shows, at once, that the first law is not limited to instantaneous,
local-in-time effects, and does holds at 4PN order, which is the current state-of-the-art
result (cf. Sec. 1.4 of [144]) for the motion of binary mechanics.

Spinning particles

The effect of spin (i.e., the proper rotation of the body) on the dynamics of binary systems
is known today with a satisfying precision. For example, in the PN formalism, spin-orbit
couplings are known to high PN orders [144] and leading quadratic- [369] and cubic-in-
spin [319] have also been calculated explicitly. We refer to Sylvain Marsat’s thesis [465]
for the effects of spin in compact objects binary systems.

The contributions of spin in the first law of mechanics have been first derived by Luc
Blanchet, Alessandra Buonanno and Alexandre Le Tiec in [405]. They derived a linear-in-
spin result that applies to circular orbits using the Hamiltonian formulation of the problem
of motion for a binary system of spinning objects. More specifically, the starting point is
the Lagrangian (2.13) of a massive, spinning particle, identical from the one presented in
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the paragraph on the Lagrangian formalism in Chap. 2, Sec. 2.2.1. From this Lagrangian
they construct an ADM Hamiltonian that now depends on the canonical variables (x, p, S),
with the vector S encoding the spinning degrees of freedom of the particle. After carefully
constructing all the necessary tools, they eventually obtain the following first law

𝛿𝑀 − Ω 𝛿𝐽 = ∑
i

𝑧i𝛿𝑚i + (Ωi − Ω) 𝛿𝑆i + 𝑂(𝑆2) , (4.27)

where Ωi is the spin precession frequency of the i-th particle, 𝐽 is the total angular momen-
tum of the system (containing both the orbital contribution 𝐿 and the spins 𝑆i), and Ω
is the binary’s angular frequency. In general, the precession frequencies Ωi depend on the
spin themselves, and the first law (4.27) only holds at linear order in the spin (whence the
𝑂(𝑆2)). It obviously reduces to the non-spinning case (4.21) when 𝑆i = 0. In particular,
the PDE’s (4.20) derived from the non spinning first law are still valid, but two additional
ones can be obtained, namely

𝜕𝑀
𝜕𝑆i

− Ω 𝜕𝐽
𝜕𝑆i

= Ω − Ωi . (4.28)

It should be noted that to derive this law, the Tulczyjew SSC 𝑝𝑎𝑆𝑎𝑏 = 0 was chosen.
However, as we saw in the Chap. 2, at linear order this is equivalent to the Pirani SSC
𝑢𝑎𝑆𝑎𝑏 = 0, since 𝑝𝑎 = 𝑚𝑢𝑎 + 𝑂(𝑆2). We shall compare this linear-in-spin first law to our
results in Chap. 5, where we derive an SSC-free first law that holds at all orders in the
spin, for a dipolar particle. Finally, we note that the first law with spin presented above,
valid for circular orbits, was recently generalized to eccentric orbits in [466].

4.1.4 Perturbed systems
The derivations of the first laws of mechanics presented above all exploit, in some sense,
a symmetry of the system: the helical isometry for circular-orbit binaries, or the Poincaré
symmetries associated to the ADM Hamiltonian formulation of GR (see, e.g., [464]). If the
mass-ratio of the binary system is small, then the lightest of the bodies can be described
as moving in the background of a (Schwarzschild or Kerr) black hole, akin to the GSF
framework. Again, the isometries of these metrics allow a derivation of the first laws, in a
perturbative regime. We provide three examples of such derivations.

BH with a moon
In the case of Kerr BH of mass 𝑀 and spin 𝑆 perturbed by an orbiting, small body, or
moon, of mass 𝑚, Sam Gralla and Alexandre Le Tiec were able to derive in [387] a zeroth
and first law of mechanics, generalizing the classical result for an isolated BH. One of the
key features of their analysis is the observation that under the assumption that the moon
is corotating with the BH, the helical isometry of the isolated Kerr BH is preserved (recall
the Killing field for the Kerr metric in Eq. (4.3)). By “corotating”, it is meant that the
moon’s (orbital) angular velocity coincides with that of the (unperturbed) event horizon
of the BH. Under this hypothesis, they showed that the BH’s perturbed horizon remains
a Killing horizon, and therefore that its surface gravity is constant over it (see Sec. III
in [387]). The constant value of this surface gravity is shifted with respect to the exact
Kerr expression (4.5), by a small amount 𝑐 (𝑚/𝑀2), where −

√
3/2 ≤ 𝑐 ≤ 0 depends on

the background BH parameters, thereby “cooling” the BH (recall that 𝜅 is proportional
to the BH’s Hawking temperature).
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In addition to this zeroth law, using a calculation similar to that presented in the next
chapter, the authors derive a first law of mechanics for the (Kerr BH + moon) system,
valid at linear order in the mass ratio, in the form

𝛿𝑀b − Ω̃ 𝛿𝐽b = ̃𝜅
8𝜋𝛿 ̃𝐴 + 𝑧𝛿𝑚 (4.29)

where 𝑀b, 𝐽b are the Bondi mass and angular momentum of the spacetime, Ω̃, ̃𝜅, ̃𝐴 are the
angular frequency, surface gravity and area of the perturbed BH respectively, and 𝑧, 𝑚 are
the moon’s redshift and mass. Remarkably, this first law can be derived geometrically,
without explicitly knowing how the perturbations (Ω̃, ̃𝜅, ̃𝐴) relate to the background Kerr
values (Ω, 𝜅, 𝐴). It turns out, as the authors show (in Sec. V of [387]), that these pertur-
bation can all be expressed simply in terms of the Kerr parameters and the Hamiltonian of
the moon ℋ described in the test-particle approximation (i.e., the Hamiltonian generating
geodesic motion in Kerr).

Test particle
As mentioned many times by now, in the test-particle approximation a small body of mass
𝑚 orbiting a Kerr BH of parameters (𝑀, 𝑆) follows a geodesic γ of the Kerr spacetime.
This particle is characterized by its four-momentum vector 𝑝𝑎 ≡ 𝑚𝑢𝑎, where 𝑢𝑎 is its
velocity. The motion of this particle can be encoded in a Hamiltonian ℋ given by

ℋ(𝑧, 𝑝) = 1
2 ̊𝑔𝛼𝛽(𝑧)𝑝𝛼𝑝𝛽 , (4.30)

where 𝑧𝛼 is the phase-space coordinate of the system and ̊𝑔𝛼𝛽 are the components of the
Kerr metric ̊𝑔𝑎𝑏. This Hamiltonian is related to the rest mass of the particle, since, on
shell, i.e., when evaluating (4.30) anywhere on γ, we have ℋ = −𝑚2/2. The Hamilton
equation then relate the position 𝑧𝛼 and the components 𝑝𝛼 through

d𝑧𝛼

d𝜆 = 𝜕ℋ
𝜕𝑝𝛼

and d𝑝𝛼
d𝜆 = − 𝜕ℋ

𝜕𝑧𝛼 , (4.31)

using 𝜆 ≡ 𝜏/𝑚 as an affine parameter along γ. In [467], the author used this basic setup
to derive a first law of mechanics for this particular system, namely a test-particle orbiting
a Kerr BH. The simplest way to derive such a first law is to exploit the isometries of the
Kerr spacetime, as follows. Along with the Hamiltonian ℋ, two other constants of motion
can be found by contracting the four-momentum 𝑝𝑎 with the two Killing vectors of the
Kerr metric (recall the discussion above Eq. (4.3)). These are the energy ℰ and angular
momentum 𝒥 of the particle. Since the Hamiltonian system (4.31) is 8-dimensional, these
three constants of motion (ℋ, ℰ , 𝒥 ) are not sufficient to make that system integrable.
However, as shown by Brandon Carter in his formidable paper [468], there exists a fourth
constant of motion 𝒦 (following Carter’s notation), which is associated to a Killing rank-2
tensor 𝐾𝑎𝑏, and such that 𝒦 ≡ 𝐾𝑎𝑏𝑝𝑎𝑝𝑏 is conserved. These four constants of motion,
or any four functions thereof, can be promoted to the level of canonical variables, as part
of a system of angle-action coordinates (𝐽𝑡, 𝐽𝑟, 𝐽𝜃, 𝐽𝜙).9 The first law of mechanics then
reads, in terms of these actions

𝛿ℰ − Ω𝜙 𝛿ℒ = Ω𝑟𝛿𝐽𝑟 + Ω𝜃𝐽𝜃 + 𝑧𝛿𝑚 (4.32)
9These are nothing but the Poincaré invariants, used already in the ADM context, for the

Hamiltonian first laws. They will also be used in the second part of this thesis, cf. Chap. 10.
However, see [377] for details on such a construction of actions in a relativistic context.
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where Ω𝑗 are the Hamiltonian frequencies associated to the tri-periodic motion the Kerr
BH, 𝑧 is the redshift of the particle (linked to the Hamiltonian frequency for in the “time”
direction), and the 𝑡-and 𝜙-actions 𝐽𝑡, 𝐽𝜙 are nothing but ℰ , ℒ. This particular form of
the first law, although only valid for a test-particle around a Kerr BH, looks the same as
that of eccentric orbits (4.23) or spinning particles (4.27) when taken in the appropriate
limit, as discussed in [467] (see also Sec. 3.3.4 of [469]).

Self-force

As a final example of first law of mechanics, let us now consider extending the previous
test-particle result to a first-order GSF calculation, taking into account the effect of the
small body on its own motion. This was done in [406], with a calculation that we now
outline. As we have seen in Chap. 2, Sec. 2.2.4, even at first order the worldline of the
particle can be considered a geodesic, provided that the Kerr metric ̊𝑔𝑎𝑏 is replaced by the
effective, regular metric ̊𝑔𝑎𝑏 + ℎ𝑅

𝑎𝑏, with ℎ𝑅
𝑎𝑏 the regular piece of the metric perturbation

ℎ𝑎𝑏 (cf. the discussion in Sec. 2.2.4). Consequently, the Hamiltonian of the particle that
accounts for the first-order perturbation is simply

ℋ(𝑧, 𝑝;γ) = 1
2( ̊𝑔𝛼𝛽(𝑧) + ℎ𝑅

𝛼𝛽(𝑧;γ)) 𝑝𝛼𝑝𝛽 , (4.33)

where the dependence on γ is here to remind the reader that the perturbation ℎ𝑎𝑏 is
worldline-dependent. In particular, Eq. (4.33) is not simply the Hamiltonian (4.30) to
which we simply add ℎ𝑅

𝛼𝛽𝑝𝛼𝑝𝛽, in particular because the four-momentum is now defined
in the effective spacetime, and not the background, as in (4.30). As a consequence of the
perturbation ℎ𝑅

𝑎𝑏, the background actions (ℰ , 𝐽𝑟, 𝐽𝜃, ℒ) are not constants anymore in the
real spacetime, but undergo slow oscillations (as expected for a perturbed Hamiltonian
system), compared to the orbital period timescale. However, the authors show in [406] that
it is possible to find a gauge in which these oscillations vanish, and thus that (ℰ , 𝐽𝑟, 𝐽𝜃, ℒ)
can be promoted to action-variables even in the real spacetime. From there, an effective
Hamiltonian can be defined, and calculations similar to those performed in the exact Kerr
case lead to the first law given by Eq. (4.34), albeit with the replacement rule

𝐽𝛼 → 𝐽𝛼 (1 + 1
4⟨ℎ𝑅

𝛼𝛽𝑢𝛼𝑢𝛽⟩) and 𝑧 → 𝑧 (1 − 1
2⟨ℎ𝑅

𝛼𝛽𝑢𝛼𝑢𝛽⟩) (4.34)

with ⟨⋅⟩ denoting an infinite long time average, and we recall that 𝐽𝛼 = (ℰ , 𝐽𝑟, 𝐽𝜃, ℒ).
Evidently, this form of the first law is compatible with previously established results and
shows, once again, the great variety of contexts to which it applies.

4.2 Details and applications
Having reviewed the literature on the first laws of mechanics, we now turn to their appli-
cations. Most of these are based on the fact that the first law of mechanics is equivalent to
a set of PDE’s, as presented in Eq. (4.20). First, we start with two general comments on
the interpretation of the various first laws in Sec. 4.2.1. Then, a detailed example of and
application of Eq. (4.21) in Sec. 4.2.2, while a number of other applications are succinctly
reviewed in Sec. 4.2.3.
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4.2.1 How to interpret the first law ?
All the first laws presented above have in common one general feature: through a vari-
ational identity, they relate global, binary quantities, e.g., binding energy, total angular
momentum, orbital frequency; to the intrinsic properties of the individual bodies, e.g.,
masses, spins, redshifts, etc. However, in spite of their common general structure, there
may be subtle, yet important, differences between them. We clarify the definition (and
interpretation) of the 𝛿-variation used in the formulation of the first laws, and make a
comment on the global quantities that appear on their left-hand side.

What is 𝛿 ?
The 𝛿-variation that appears in the first laws of mechanics is defined as the first-order
variation of the quantity it is adjoined to, with respect to a parameter indexing a family
of different spacetimes. More precisely, let (ℰ𝜆, 𝑔𝑎𝑏(𝜆)) be a family of spacetimes indexed
by a real, continuous parameter 𝜆. The 𝛿-variation is defined by (following [381,470])

𝛿𝑔𝑎𝑏 ≡ d𝑔𝑎𝑏
d𝜆 ∣

𝜆=0
, (4.35)

where the derivative is computed while fixing any other fields present in the spacetime. The
𝛿-variation of other quantities of interest in spacetime are defined similarly. Equivalently,
𝛿𝑔𝑎𝑏 is simply the first term in the Taylor expansion 𝑔𝑎𝑏(𝜆) = 𝑔𝑎𝑏(0) + 𝜆𝛿𝑔𝑎𝑏 + 𝑜(𝜆), with
respect to a given, arbitrary, reference spacetime (ℰ0, 𝑔𝑎𝑏(0)). This definition implies that
the first laws relate the variation of quantities defined in two different, but arbitrarily
𝜆-close, spacetimes.

It is also possible to interpret the first law as describing a physical process. However,
one would generally lose information along the way. Consider, for example, the first law
(4.21), 𝛿𝑀 − Ω𝛿𝐽 = ∑i 𝑧i𝛿𝑚i. One could argue that, for a typical binary system, the
masses of the individual bodies are constant, and thus readily discard the 𝛿𝑚i contribution
to the first law. This would be perfectly reasonable, and, in fact, the resulting equation
𝛿𝑀 = Ω𝛿𝐽 was well-known long before (4.21), and has already been used to numerically
evolve quasi-equilibrium sequences of corotating BH binaries in [379, 398]. However, we
stress that imposing 𝛿𝑚i = 0 is generally an early, simplifying assumption that prevents
further insight on the problem at hand. As we shall see, even if the masses of the individual
bodies do remain constant physically, the contribution 𝛿𝑚i to the first law is where most
of its success comes from.

The global quantities
The global quantities involved in the left-hand side of the first law of mechanics always
include (1) a notion of mass or energy and (2) a notion of angular momentum. Because
of the many different definitions of mass, energy and angular momentum in GR, this can
be confusing, especially to compare two different first laws, or even to apply them in a
given context. Already in the first law presented above, several notions of mass have been
involved: ADM mass, Bondi mass, binding energy, on-shell value of some Hamiltonian,
etc. Our goal here is not to give a detailed review of how these quantities are defined
and how they differ. Rather, we want to point the reader to valuable information on this
topic. In particular: reference [471], which provides a detailed overview of the different
global notions of mass, energy and angular momentum; Sec. II.E of [386] which discusses
thoroughly the equality between these masses in the PN context, and reference [472]
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which discusses and defines conserved, global quantities in the context of diffeomorphism
covariant, Lagrangian theories (such as GR).

In the present work, the combination of an approximation scheme and the helical
isometry provides, just as in [386], no ambiguity as to the notion of mass and angular
momentum used in the first law. In particular, it is always possible to write the left-hand
side of the first law as 𝛿𝑄, as we shall do in Sec. 4.3 below, where 𝑄 is the unambiguously
well-defined, conserved Noether charge associated to the helical isometry introduced in
Chap. 3. Expressing 𝛿𝑄 into physical quantities such as the mass and angular momentum
is then another problem in itself, which is discussed at the end of Sec. 4.3.

4.2.2 A detailed example
Let us start with an application from the first law of mechanics at monopolar order for a
binary of point particles, on a circular orbit. As we have seen previously, the first law, in
this case, reads

𝛿𝑀 − Ω 𝛿𝐽 = 𝑧1𝛿𝑚1 + 𝑧2𝛿𝑚2 , (4.36)

where 𝑀 and 𝐽 are the ADM mass and the total angular momentum, both defined as
integrals at spatial infinity. Physically, these two quantities, as well as the redshifts 𝑧i of
the particles, depend on the orbital frequency Ω of the binary, and on the masses 𝑚i of
the particles. In what follows, it will be more convenient to work with the “variables”
(𝑚, 𝜈, 𝑥) instead of (Ω, 𝑚1, 𝑚2), where 𝑚 ≡ 𝑚1 + 𝑚2 is the total mass, 𝜈 ≡ 𝑚1𝑚2/𝑚2

is the symmetric mass ratio and 𝑥 ≡ (𝑚Ω)2/3 is the usual dimensionless, invariant PN
parameter adapted to circular orbits. Similarly, instead of the pair (𝑀, 𝐽), let us introduce

̂𝐸(𝑚, 𝜈, 𝑥) ≡ 𝑀 − 𝑚
𝑚𝜈 and ̂𝐽 (𝑚, 𝜈, 𝑥) ≡ 𝐽

𝑚𝜈2 , (4.37)

in which ̂𝐸 is the specific (dimensionless) binding energy of the system and ̂𝐽 its dimen-
sionless, total angular momentum. Now consider the same system in the framework of the
GSF. For example, let us consider a small NS of mass 𝑚1 orbiting a large, Schwarzschild
BH of mass 𝑚2. The mass ratio 𝑞 ≡ 𝑚1/𝑚2 is small, and so is the symmetric mass ratio
𝜈, since they are related by 𝜈 = 𝑞/(1 + 𝑞)2 = 𝑞 + 𝑂(𝑞2). Consequently, in the limit 𝜈 → 0,
the system approaches that of a test particle of mass 𝑚1 orbiting the large Schwarzschild
BH 𝑚2. Therefore, if we expand the functions ̂𝐸, ̂𝐽 and 𝑧i in powers of 𝜈, we should find

• at zeroth order in 𝜈, the contribution from a test-particle following a circular
Schwarzschild geodesic (known in closed-form, cf. Sec. 7.3.3 of [81]);

• at first order in 𝜈, the correction induced by the (conservative piece of) the first-order
gravitational self-force.

Putting these results together, we find that ̂𝐸, ̂𝐽 and 𝑧 ≡ 𝑧1 (the redshift of the lightest
body), have the following expansions

̂𝐸 = −1 + 1 − 2𝑥√
1 − 3𝑥 + 𝜈 ̂𝐸SF(𝑥) + 𝑂(𝜈2) , (4.38a)

̂𝐽 = 1
√𝑥(1 − 3𝑥)

+ 𝜈 ̂𝐽SF(𝑥) + 𝑂(𝜈2) , (4.38b)

𝑧 =
√

1 − 3𝑥 + 𝜈𝑧SF(𝑥) + 𝑂(𝜈2) , (4.38c)
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where the leading terms are the classical results for the test-particle limit (namely the
circular Schwarzschild geodesic [81]), and ̂𝐸SF, ̂𝐽SF, 𝑧SF are the unknown, first order self-
force corrections. A priori, if one wants to control all the dynamics at linear order in 𝜈,
this requires three different calculations in the GSF framework, one for each of correction
in ̂𝐸, ̂𝐽 and 𝑧. But thanks to the first law, these three quantities must satisfy a system
of PDE’s, namely Eq. (4.20), discussed above. When we insert Eqs. (4.38) into this set of
PDE’s and expand the result at first order in 𝜈, we find (1) that the leading-orders pieces
(test-particle limit) verify the first law identically, and (2) that the first-order corrections
for ̂𝐸 and ̂𝐽 satisfy

̂𝐸SF(𝑥) = 𝑧SF(𝑥)
2 − 𝑥

3 𝑧′
SF(𝑥) − 1 +

√
1 − 3𝑥 + 𝑥

6
7 − 24𝑥

(1 − 3𝑥)3/2 , (4.39a)

̂𝐽SF(𝑥) = −𝑧′
SF(𝑥)
3√𝑥 + 1

6√𝑥
4 − 15𝑥

(1 − 3𝑥)3/2 , (4.39b)

where a prime denotes a derivative with respect to 𝑥. There are several ways in which this
first law result could be used. For example, it could be used to check the consistency of a
GSF calculation: if one computes all three of ( ̂𝐸, ̂𝐽 , 𝑧), then the resulting expression should
satisfy Eqs. (4.39). Alternatively, it can be used to infer from 𝑧 the values of ( ̂𝐸, ̂𝐽): as
we can see from Eqs. (4.39), the sole knowledge of the first-order correction to the redshift
(the function 𝑧SF(𝑥), and thus its derivative), immediately fixes the corrections for ̂𝐸, ̂𝐽 .

The previous calculation was first performed in [407]. At the time of this publication,
the authors could find, in the literature, 55 data points for the function 𝑥 ↦ 𝑧SF(𝑥),
obtained from numerical, GSF calculations, with relative errors smaller than 10−6. Thanks
to this data, they reconstructed the function 𝑥 ↦ ̂𝐸(𝑥) and 𝑥 ↦ ̂𝐽(𝑥), and used them
as a parametric representation for the coordinate-invariant relation ̂𝐸( ̂𝐽). This diagram,
depicted in Fig. 4.1, allowed to compare their GSF result to the relation ̂𝐸( ̂𝐽) obtained
using other methods, namely a 3PN expansion [473], a result from the EOB(3PN) adiabatic
model [474], and an exact (up to numerical errors) result from NR [475]. The result showed
remarkable agreement between GSF and NR, both in the weak and strong field regime,
for all mass ratios considered.

4.2.3 Other applications
The first law of mechanics has been used extensively for a wide variety of problems. We
now present a (non-exhaustive) tour d’horizon of these applications. Some of them have
been done separately by different groups and/or presented in a series of papers: we only
refer to a selection of them, and point the reader to [426] for a more exhaustive list ref-
erences. Lastly, we also mention reference [469] (Sec. 3.4 in particular), which contains
an account on most applications of the laws of binary mechanics, with a greater level of
details than what is presented below.

ISCO/IBCO frequency shift
In the test-particle limit, a small body of mass 𝑚 orbiting a Schwarzshild BH of mass 𝑀
on a circular orbit moves on a timelike geodesic. For a given value of the BH mass 𝑀 ,
any circular geodesic is characterized by two parameters: the particle’s specific angular
momentum ̂𝐽0 and energy ̂𝐸0, associated to the invariance of the Schwarzschild spacetime
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ǦǼ ȝǣǐ ǝǐǼǐȓƷǶ ȓǐǶƷȝǦΗǦȖȝǦǆ ȝΘȂৄǅȂǌΞ ȏȓȂǅǶǐǻ ফࢳࢴࢰূࢱࢴࢰবॽ

[ǣǦǜȝ Ȃǜ ȝǣǐ ǦǼǼǐȓǻȂȖȝ ȖȝƷǅǶǐ ǆǦȓǆȠǶƷȓ ȂȓǅǦȝ ǜȓǐȒȠǐǼǆΞ

�ȂǼȖǦǌǐȓ ǼȂΘ ȝǣǐ ǥȡțȵǯȲ͝ǖȼȅ͝ǯ ȮǖȲȼ Ȃǜ ȝǣǐ ȂȓǅǦȝƷǶ ǻȂȝǦȂǼ Ȃǜ Ʒ ǼȂǼȖȏǦǼǼǦǼǝ ȏȂǦǼȝ ǻƷȖȖ ࣕ ǦǼ ȝǣǐ <ǐȓȓ
ǝǐȂǻǐȝȓΞ Ȃǜ Ʒ ǅǶƷǆǴ ǣȂǶǐ ȂǜǻƷȖȖق ƷǼǌ ȖȏǦǼوॶ ƷǼǌ Ƕǐȝ ٟ Β ق�ࣕ ǌǐǼȂȝǐ ȝǣǐǻƷȖȖ ȓƷȝǦȂॽ $Ȃȓ ǐȒȠƷȝȂȓǦƷǶ
ȂȓǅǦȝȖॶ Ʒ ȖƷǶǦǐǼȝ ǜǐƷȝȠȓǐ Ȃǜ ȝǣǐ ȖȝȓȂǼǝৄЖǐǶǌ ǌΞǼƷǻǦǆȖ ǦȖ ȝǣǐ ǶȂǆƷȝǦȂǼ Ȃǜ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞƛǦȖǆȂ
࣠�ॶ ƷȖ
Ʒ ǜȠǼǆȝǦȂǼ Ȃǜ ȝǣǐ ǌǦǻǐǼȖǦȂǼǶǐȖȖ ǅǶƷǆǴ ǣȂǶǐ ȖȏǦǼ ࣠ Β ൗॶق�و ΘǣǦǆǣ ȖǐȏƷȓƷȝǐȖ ȝǣǐ ǦǼȖȏǦȓƷǶ ƷǼǌ ȏǶȠǼǝǐ
ȏǣƷȖǐȖॽ $Ȃȓ Ʒ ȖǻƷǶǶ ǻƷȖȖ ȓƷȝǦȂ ٟ Λ � Ǧȝ ǻƷΞ ǅǐ ȏƷȓƷǻǐȝǐȓǦΣǐǌ ǦǼ ȝǣǐ ǜȂȓǻ ফࢰॶ ॶࢯࢴࢯ ق
বࢴࢴࢰ  ࣕ�ƛǦȖǆȂ � 
ƛق�
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�
ǦȖǆȂ
࣠� ǦȖ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞ Ȃǜ Ʒ ȝǐȖȝ ȏƷȓȝǦǆǶǐ ٟ ˎ � ǦǼ <ǐȓȓॶ ǴǼȂΘǼ ǦǼ ǆǶȂȖǐǌ ǜȂȓǻ ফࢱࢮࢯবॽ

bǣǐ ǆȂȂȓǌǦǼƷȝǐৄǦǼΗƷȓǦƷǼȝ ǜȠǼǆȝǦȂǼ 
ظ࣠� ǐǼǆȂǌǐȖ ȝǣǐ ȂȓǌǐȓৄǻƷȖȖৄȓƷȝǦȂ ǜȓǐȒȠǐǼǆΞ ȖǣǦǜȝ Ȃǜ ȝǣǐ <ǐȓȓ
/[�H ǦǼǌȠǆǐǌ ǅΞ ȝǣǐ ǆȂǼȖǐȓΗƷȝǦΗǐ ȏǦǐǆǐ Ȃǜ ȝǣǐ ЖȓȖȝৄȂȓǌǐȓ %[$ॽ

ࢳࢱ

$ǦǝȠȓǐ ॵࢱॽࢱ =ǯǻȼ Ȯǖțǯȕझbǣǐ ǦǼΗƷȓǦƷǼȝ ȓǐǶƷȝǦȂǼ Ŵغ
 Ŵؿ� ǅǐȝΘǐǐǼ ȝǣǐ ǅǦǼǌǦǼǝ ǐǼǐȓǝΞ ƷǼǌ ȝǣǐ ƷǼǝȠǶƷȓ ǻȂǻǐǼȝȠǻ
ǜȂȓ ǐȒȠƷǶৄǻƷȖȖॶ ǼȂǼȖȏǦǼǼǦǼǝ ǅǶƷǆǴ ǣȂǶǐ ǅǦǼƷȓǦǐȖॶ ƷȖ ǆȂǻȏȠȝǐǌ ǦǼ ǼȠǻǐȓǦǆƷǶ ȓǐǶƷȝǦΗǦȝΞ ǌƷȖǣǐǌ ǅǶƷǆǴ ƷǼǌ ȝǣǐ
ЖȓȖȝ ǶƷΘ ǆȂǻǅǦǼǐǌ ΘǦȝǣ %[$ ǌƷȝƷ ǜȂȓ ȝǣǐ ȓǐǌȖǣǦǜȝ ǝȓǐǐǼ ফࢰবॽ XȅǼȂȼ ȮǖțǯȕझXǐǝǦȂǼ Ȃǜ ƷȏȏǶǦǆƷǅǦǶǦȝΞ Ȃǜ ǌǦЍǐȓǐǼȝ
ƷȏȏȓȂΝǦǻƷȝǦȂǼ ȝǐǆǣǼǦȒȠǐȖ ǜȂȓ ǼȂǼȖȏǦǼǼǦǼǝ ȒȠƷȖǦৄǆǦȓǆȠǶƷȓ ǅǦǼƷȓΞ ǅǶƷǆǴ ǣȂǶǐ ǦǼȖȏǦȓƷǶ ফࢱࢳࢰবॽ bǣǐ ȖǣƷǌǐǌ ȓǐǝǦȂǼȖ
ǦǼǌǦǆƷȝǐ ȓƷǼǝǐȖ ΘǦȝǣǦǼ ΘǣǦǆǣ ȝǣǐ ǆȠǻȠǶƷȝǦΗǐ ȂȓǅǦȝƷǶ ȏǣƷȖǐৄǐȓȓȂȓ ǦȖ ǶǐȖȖ ȝǣƷǼ ဏ൛ ƷǼǌ ဏൕൟ ȓƷǌǦƷǼȖॶ ȓǐȖȏǐǆȝǦΗǐǶΞॽ

bǣǦȖ ȓǐǻƷȓǴƷǅǶǐ ƷǝȓǐǐǻǐǼȝ ǅǐȝΘǐǐǼ ȝǣǐ ǐΝƷǆȝ ȓǐȖȠǶȝȖ ǜȓȂǻCX ƷǼǌ ȝǣǐ ȏȓǐǌǦǆȝǦȂǼ ǜȓȂǻ%[$ ȝǣǐৄ
ȂȓΞ ǦȖ ǼȂȝ ƷǆǆǦǌǐǼȝƷǶॽ /Ǽǌǐǐǌॶ Ʒ ǶƷȓǝǐ ƷǼǌ ǝȓȂΘǦǼǝ ǅȂǌΞ Ȃǜ ǐΗǦǌǐǼǆǐ ফࢰॶࢯࢯॶࢯࢳࢯॶࢰࢳࢯॶࢯࢴࢰূࢱࢳࢰব ȖȝȓȂǼǝǶΞ
ȖȠǝǝǐȖȝȖ ȝǣƷȝ ȏǐȓȝȠȓǅƷȝǦȂǼ ȝǣǐȂȓΞ ǆƷǼ ǅǐ ȠȖǐǌ ȝȂǻȂǌǐǶ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǼȂȝ ȂǼǶΞ ǜȓȂǻ
�BX/Ȗ ΘǦȝǣ ǻƷȖȖ ȓƷȝǦȂȖ ��͎ൡ Σ ٟ Σ ��͎൛ॶ ǅȠȝ ƷǶȖȂ ǜȓȂǻ ȅțȼǯȲȚǯǫȅǖȼǯ ǻƷȖȖ ȓƷȝǦȂ ǦǼȖȏǦȓƷǶȖ /BX/Ȗ
ΘǦȝǣǻƷȖȖ ȓƷȝǦȂȖ ��͎൛ Σ ٟ Σ ��͎ൗॶ ƷǼǌ ǐΗǐǼ ȏȂȖȖǦǅǶΞ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦǼƷȓǦǐȖ ΘǦȝǣ ǥȡȚȮǖȲǖǤȕǯȚǖȵȵǯȵॶ
ȏȓȂΗǦǌǐǌ ȝǣƷȝ ȝǣǐ %[$ ǻȂǌǐǶ ǦȖ ȓǐৄǐΝȏȓǐȖȖǐǌ ƷȖ ƷǼ ǐΝȏƷǼȖǦȂǼ ǦǼ ȏȂΘǐȓȖ Ȃǜ ȝǣǐ ȖΞǻǻǐȝȓǦǆ ǻƷȖȖ ȓƷȝǦȂࣖ � ٛൕٛൗ�ٛൗ � ٟ  
لٟൗ�ॶ ȓƷȝǣǐȓ ȝǣƷǼ ȝǣǐ ȂȓǌǦǼƷȓΞ ǻƷȖȖ ȓƷȝǦȂ ٟ � ٛൕ�ٛൗ ফࢰࢴࢰবॽ /Ǽ ȏƷȓȝǦǆȠǶƷȓॶ ΗƷǼ
ǌǐ BǐǐǼȝ ƷǼǌ UǜǐǦЍǐȓ ফࢱࢳࢰব ȓǐǆǐǼȝǶΞ ǜȂȠǼǌ ȝǣƷȝ Ʒ ЖȓȖȝ ȏȂȖȝৄƷǌǦƷǅƷȝǦǆ ࢯU� ƷȏȏȓȂΝǦǻƷȝǦȂǼ ফࢴࢶব ǻƷΞ
ǅǐ ȒȠǦȝǐ ƷǆǆȠȓƷȝǐ ǦǼ ȏƷȓȝȖ Ȃǜ ȝǣǐ ǅǦǼƷȓΞ ȏƷȓƷǻǐȝǐȓ ȖȏƷǆǐॶ ǐΗǐǼ ǜȂȓ ǼǐƷȓǶΞ ǆȂǻȏƷȓƷǅǶǐৄǻƷȖȖ ǅǶƷǆǴৄǣȂǶǐ
ǅǦǼƷȓǦǐȖॶ ƷȖ ǦǶǶȠȖȝȓƷȝǐǌ ǦǼ ȝǣǐ ȓǦǝǣȝ ȏƷǼǐǶ Ȃǜ $Ǧǝॽ ॽࢱॽࢱ bǣǐ ৗȠǼȓǐƷȖȂǼƷǅǶǐ ǐЍǐǆȝǦΗǐǼǐȖȖ Ȃǜ ȏǐȓȝȠȓǅƷȝǦȂǼ
ȝǣǐȂȓΞ ȝȂǻȂǌǐǶ ȝǣǐ ȂȓǅǦȝƷǶ ǌΞǼƷǻǦǆȖ Ȃǜ ƷǼǌ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǜȓȂǻ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦৄ
ǼƷȓǦǐȖ ΘǦȝǣ ǆȂǻȏƷȓƷǅǶǐ ǻƷȖȖǐȖ ǦȖ ǣǦǝǣǶΞ ȏȓȂǻǦȖǦǼǝ ফࢰࢴࢰবॶ ƷǼǌ Ǧȝ ǻƷΞ ǣǦǼȝ Ʒȝ ȖȂǻǐ ǣǦǌǌǐǼ ȖǦǻȏǶǦǆǦȝΞ
ǦǼ ȝǣǐ ǝǐǼǐȓƷǶ ȓǐǶƷȝǦΗǦȖȝǦǆ ȝΘȂৄǅȂǌΞ ȏȓȂǅǶǐǻ ফࢳࢴࢰূࢱࢴࢰবॽ

[ǣǦǜȝ Ȃǜ ȝǣǐ ǦǼǼǐȓǻȂȖȝ ȖȝƷǅǶǐ ǆǦȓǆȠǶƷȓ ȂȓǅǦȝ ǜȓǐȒȠǐǼǆΞ

�ȂǼȖǦǌǐȓ ǼȂΘ ȝǣǐ ǥȡțȵǯȲ͝ǖȼȅ͝ǯ ȮǖȲȼ Ȃǜ ȝǣǐ ȂȓǅǦȝƷǶ ǻȂȝǦȂǼ Ȃǜ Ʒ ǼȂǼȖȏǦǼǼǦǼǝ ȏȂǦǼȝ ǻƷȖȖ ࣕ ǦǼ ȝǣǐ <ǐȓȓ
ǝǐȂǻǐȝȓΞ Ȃǜ Ʒ ǅǶƷǆǴ ǣȂǶǐ ȂǜǻƷȖȖق ƷǼǌ ȖȏǦǼوॶ ƷǼǌ Ƕǐȝ ٟ Β ق�ࣕ ǌǐǼȂȝǐ ȝǣǐǻƷȖȖ ȓƷȝǦȂॽ $Ȃȓ ǐȒȠƷȝȂȓǦƷǶ
ȂȓǅǦȝȖॶ Ʒ ȖƷǶǦǐǼȝ ǜǐƷȝȠȓǐ Ȃǜ ȝǣǐ ȖȝȓȂǼǝৄЖǐǶǌ ǌΞǼƷǻǦǆȖ ǦȖ ȝǣǐ ǶȂǆƷȝǦȂǼ Ȃǜ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞƛǦȖǆȂ
࣠�ॶ ƷȖ
Ʒ ǜȠǼǆȝǦȂǼ Ȃǜ ȝǣǐ ǌǦǻǐǼȖǦȂǼǶǐȖȖ ǅǶƷǆǴ ǣȂǶǐ ȖȏǦǼ ࣠ Β ൗॶق�و ΘǣǦǆǣ ȖǐȏƷȓƷȝǐȖ ȝǣǐ ǦǼȖȏǦȓƷǶ ƷǼǌ ȏǶȠǼǝǐ
ȏǣƷȖǐȖॽ $Ȃȓ Ʒ ȖǻƷǶǶ ǻƷȖȖ ȓƷȝǦȂ ٟ Λ � Ǧȝ ǻƷΞ ǅǐ ȏƷȓƷǻǐȝǐȓǦΣǐǌ ǦǼ ȝǣǐ ǜȂȓǻ ফࢰॶ ॶࢯࢴࢯ ق
বࢴࢴࢰ  ࣕ�ƛǦȖǆȂ � 
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�
ǦȖǆȂ
࣠� ǦȖ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞ Ȃǜ Ʒ ȝǐȖȝ ȏƷȓȝǦǆǶǐ ٟ ˎ � ǦǼ <ǐȓȓॶ ǴǼȂΘǼ ǦǼ ǆǶȂȖǐǌ ǜȂȓǻ ফࢱࢮࢯবॽ

bǣǐ ǆȂȂȓǌǦǼƷȝǐৄǦǼΗƷȓǦƷǼȝ ǜȠǼǆȝǦȂǼ 
ظ࣠� ǐǼǆȂǌǐȖ ȝǣǐ ȂȓǌǐȓৄǻƷȖȖৄȓƷȝǦȂ ǜȓǐȒȠǐǼǆΞ ȖǣǦǜȝ Ȃǜ ȝǣǐ <ǐȓȓ
/[�H ǦǼǌȠǆǐǌ ǅΞ ȝǣǐ ǆȂǼȖǐȓΗƷȝǦΗǐ ȏǦǐǆǐ Ȃǜ ȝǣǐ ЖȓȖȝৄȂȓǌǐȓ %[$ॽ

ࢳࢱ

$ǦǝȠȓǐ ॵࢱॽࢱ =ǯǻȼ Ȯǖțǯȕझbǣǐ ǦǼΗƷȓǦƷǼȝ ȓǐǶƷȝǦȂǼ Ŵغ
 Ŵؿ� ǅǐȝΘǐǐǼ ȝǣǐ ǅǦǼǌǦǼǝ ǐǼǐȓǝΞ ƷǼǌ ȝǣǐ ƷǼǝȠǶƷȓ ǻȂǻǐǼȝȠǻ
ǜȂȓ ǐȒȠƷǶৄǻƷȖȖॶ ǼȂǼȖȏǦǼǼǦǼǝ ǅǶƷǆǴ ǣȂǶǐ ǅǦǼƷȓǦǐȖॶ ƷȖ ǆȂǻȏȠȝǐǌ ǦǼ ǼȠǻǐȓǦǆƷǶ ȓǐǶƷȝǦΗǦȝΞ ǌƷȖǣǐǌ ǅǶƷǆǴ ƷǼǌ ȝǣǐ
ЖȓȖȝ ǶƷΘ ǆȂǻǅǦǼǐǌ ΘǦȝǣ %[$ ǌƷȝƷ ǜȂȓ ȝǣǐ ȓǐǌȖǣǦǜȝ ǝȓǐǐǼ ফࢰবॽ XȅǼȂȼ ȮǖțǯȕझXǐǝǦȂǼ Ȃǜ ƷȏȏǶǦǆƷǅǦǶǦȝΞ Ȃǜ ǌǦЍǐȓǐǼȝ
ƷȏȏȓȂΝǦǻƷȝǦȂǼ ȝǐǆǣǼǦȒȠǐȖ ǜȂȓ ǼȂǼȖȏǦǼǼǦǼǝ ȒȠƷȖǦৄǆǦȓǆȠǶƷȓ ǅǦǼƷȓΞ ǅǶƷǆǴ ǣȂǶǐ ǦǼȖȏǦȓƷǶ ফࢱࢳࢰবॽ bǣǐ ȖǣƷǌǐǌ ȓǐǝǦȂǼȖ
ǦǼǌǦǆƷȝǐ ȓƷǼǝǐȖ ΘǦȝǣǦǼ ΘǣǦǆǣ ȝǣǐ ǆȠǻȠǶƷȝǦΗǐ ȂȓǅǦȝƷǶ ȏǣƷȖǐৄǐȓȓȂȓ ǦȖ ǶǐȖȖ ȝǣƷǼ ဏ൛ ƷǼǌ ဏൕൟ ȓƷǌǦƷǼȖॶ ȓǐȖȏǐǆȝǦΗǐǶΞॽ

bǣǦȖ ȓǐǻƷȓǴƷǅǶǐ ƷǝȓǐǐǻǐǼȝ ǅǐȝΘǐǐǼ ȝǣǐ ǐΝƷǆȝ ȓǐȖȠǶȝȖ ǜȓȂǻCX ƷǼǌ ȝǣǐ ȏȓǐǌǦǆȝǦȂǼ ǜȓȂǻ%[$ ȝǣǐৄ
ȂȓΞ ǦȖ ǼȂȝ ƷǆǆǦǌǐǼȝƷǶॽ /Ǽǌǐǐǌॶ Ʒ ǶƷȓǝǐ ƷǼǌ ǝȓȂΘǦǼǝ ǅȂǌΞ Ȃǜ ǐΗǦǌǐǼǆǐ ফࢰॶࢯࢯॶࢯࢳࢯॶࢰࢳࢯॶࢯࢴࢰূࢱࢳࢰব ȖȝȓȂǼǝǶΞ
ȖȠǝǝǐȖȝȖ ȝǣƷȝ ȏǐȓȝȠȓǅƷȝǦȂǼ ȝǣǐȂȓΞ ǆƷǼ ǅǐ ȠȖǐǌ ȝȂǻȂǌǐǶ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǼȂȝ ȂǼǶΞ ǜȓȂǻ
�BX/Ȗ ΘǦȝǣ ǻƷȖȖ ȓƷȝǦȂȖ ��͎ൡ Σ ٟ Σ ��͎൛ॶ ǅȠȝ ƷǶȖȂ ǜȓȂǻ ȅțȼǯȲȚǯǫȅǖȼǯ ǻƷȖȖ ȓƷȝǦȂ ǦǼȖȏǦȓƷǶȖ /BX/Ȗ
ΘǦȝǣǻƷȖȖ ȓƷȝǦȂȖ ��͎൛ Σ ٟ Σ ��͎ൗॶ ƷǼǌ ǐΗǐǼ ȏȂȖȖǦǅǶΞ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦǼƷȓǦǐȖ ΘǦȝǣ ǥȡȚȮǖȲǖǤȕǯȚǖȵȵǯȵॶ
ȏȓȂΗǦǌǐǌ ȝǣƷȝ ȝǣǐ %[$ ǻȂǌǐǶ ǦȖ ȓǐৄǐΝȏȓǐȖȖǐǌ ƷȖ ƷǼ ǐΝȏƷǼȖǦȂǼ ǦǼ ȏȂΘǐȓȖ Ȃǜ ȝǣǐ ȖΞǻǻǐȝȓǦǆ ǻƷȖȖ ȓƷȝǦȂࣖ � ٛൕٛൗ�ٛൗ � ٟ  
لٟൗ�ॶ ȓƷȝǣǐȓ ȝǣƷǼ ȝǣǐ ȂȓǌǦǼƷȓΞ ǻƷȖȖ ȓƷȝǦȂ ٟ � ٛൕ�ٛൗ ফࢰࢴࢰবॽ /Ǽ ȏƷȓȝǦǆȠǶƷȓॶ ΗƷǼ
ǌǐ BǐǐǼȝ ƷǼǌ UǜǐǦЍǐȓ ফࢱࢳࢰব ȓǐǆǐǼȝǶΞ ǜȂȠǼǌ ȝǣƷȝ Ʒ ЖȓȖȝ ȏȂȖȝৄƷǌǦƷǅƷȝǦǆ ࢯU� ƷȏȏȓȂΝǦǻƷȝǦȂǼ ফࢴࢶব ǻƷΞ
ǅǐ ȒȠǦȝǐ ƷǆǆȠȓƷȝǐ ǦǼ ȏƷȓȝȖ Ȃǜ ȝǣǐ ǅǦǼƷȓΞ ȏƷȓƷǻǐȝǐȓ ȖȏƷǆǐॶ ǐΗǐǼ ǜȂȓ ǼǐƷȓǶΞ ǆȂǻȏƷȓƷǅǶǐৄǻƷȖȖ ǅǶƷǆǴৄǣȂǶǐ
ǅǦǼƷȓǦǐȖॶ ƷȖ ǦǶǶȠȖȝȓƷȝǐǌ ǦǼ ȝǣǐ ȓǦǝǣȝ ȏƷǼǐǶ Ȃǜ $Ǧǝॽ ॽࢱॽࢱ bǣǐ ৗȠǼȓǐƷȖȂǼƷǅǶǐ ǐЍǐǆȝǦΗǐǼǐȖȖ Ȃǜ ȏǐȓȝȠȓǅƷȝǦȂǼ
ȝǣǐȂȓΞ ȝȂǻȂǌǐǶ ȝǣǐ ȂȓǅǦȝƷǶ ǌΞǼƷǻǦǆȖ Ȃǜ ƷǼǌ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǜȓȂǻ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦৄ
ǼƷȓǦǐȖ ΘǦȝǣ ǆȂǻȏƷȓƷǅǶǐ ǻƷȖȖǐȖ ǦȖ ǣǦǝǣǶΞ ȏȓȂǻǦȖǦǼǝ ফࢰࢴࢰবॶ ƷǼǌ Ǧȝ ǻƷΞ ǣǦǼȝ Ʒȝ ȖȂǻǐ ǣǦǌǌǐǼ ȖǦǻȏǶǦǆǦȝΞ
ǦǼ ȝǣǐ ǝǐǼǐȓƷǶ ȓǐǶƷȝǦΗǦȖȝǦǆ ȝΘȂৄǅȂǌΞ ȏȓȂǅǶǐǻ ফࢳࢴࢰূࢱࢴࢰবॽ

[ǣǦǜȝ Ȃǜ ȝǣǐ ǦǼǼǐȓǻȂȖȝ ȖȝƷǅǶǐ ǆǦȓǆȠǶƷȓ ȂȓǅǦȝ ǜȓǐȒȠǐǼǆΞ

�ȂǼȖǦǌǐȓ ǼȂΘ ȝǣǐ ǥȡțȵǯȲ͝ǖȼȅ͝ǯ ȮǖȲȼ Ȃǜ ȝǣǐ ȂȓǅǦȝƷǶ ǻȂȝǦȂǼ Ȃǜ Ʒ ǼȂǼȖȏǦǼǼǦǼǝ ȏȂǦǼȝ ǻƷȖȖ ࣕ ǦǼ ȝǣǐ <ǐȓȓ
ǝǐȂǻǐȝȓΞ Ȃǜ Ʒ ǅǶƷǆǴ ǣȂǶǐ ȂǜǻƷȖȖق ƷǼǌ ȖȏǦǼوॶ ƷǼǌ Ƕǐȝ ٟ Β ق�ࣕ ǌǐǼȂȝǐ ȝǣǐǻƷȖȖ ȓƷȝǦȂॽ $Ȃȓ ǐȒȠƷȝȂȓǦƷǶ
ȂȓǅǦȝȖॶ Ʒ ȖƷǶǦǐǼȝ ǜǐƷȝȠȓǐ Ȃǜ ȝǣǐ ȖȝȓȂǼǝৄЖǐǶǌ ǌΞǼƷǻǦǆȖ ǦȖ ȝǣǐ ǶȂǆƷȝǦȂǼ Ȃǜ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞƛǦȖǆȂ
࣠�ॶ ƷȖ
Ʒ ǜȠǼǆȝǦȂǼ Ȃǜ ȝǣǐ ǌǦǻǐǼȖǦȂǼǶǐȖȖ ǅǶƷǆǴ ǣȂǶǐ ȖȏǦǼ ࣠ Β ൗॶق�و ΘǣǦǆǣ ȖǐȏƷȓƷȝǐȖ ȝǣǐ ǦǼȖȏǦȓƷǶ ƷǼǌ ȏǶȠǼǝǐ
ȏǣƷȖǐȖॽ $Ȃȓ Ʒ ȖǻƷǶǶ ǻƷȖȖ ȓƷȝǦȂ ٟ Λ � Ǧȝ ǻƷΞ ǅǐ ȏƷȓƷǻǐȝǐȓǦΣǐǌ ǦǼ ȝǣǐ ǜȂȓǻ ফࢰॶ ॶࢯࢴࢯ ق
বࢴࢴࢰ  ࣕ�ƛǦȖǆȂ � 
ƛق�

ǦȖǆȂ ৠ�  ظ ٟ  
لٟൗ�৴ � ࢴࢶ

Θǣǐȓǐƛ
�
ǦȖǆȂ
࣠� ǦȖ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞ Ȃǜ Ʒ ȝǐȖȝ ȏƷȓȝǦǆǶǐ ٟ ˎ � ǦǼ <ǐȓȓॶ ǴǼȂΘǼ ǦǼ ǆǶȂȖǐǌ ǜȂȓǻ ফࢱࢮࢯবॽ

bǣǐ ǆȂȂȓǌǦǼƷȝǐৄǦǼΗƷȓǦƷǼȝ ǜȠǼǆȝǦȂǼ 
ظ࣠� ǐǼǆȂǌǐȖ ȝǣǐ ȂȓǌǐȓৄǻƷȖȖৄȓƷȝǦȂ ǜȓǐȒȠǐǼǆΞ ȖǣǦǜȝ Ȃǜ ȝǣǐ <ǐȓȓ
/[�H ǦǼǌȠǆǐǌ ǅΞ ȝǣǐ ǆȂǼȖǐȓΗƷȝǦΗǐ ȏǦǐǆǐ Ȃǜ ȝǣǐ ЖȓȖȝৄȂȓǌǐȓ %[$ॽ

exact Schwarzschild  
(no GSF)

marginally bound    

ISCO

IBCO
0

<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

r ! 1
<latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit><latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit><latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit><latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit>

Ê0
<latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit>

increa
sing  ⌦<latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit><latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit><latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit><latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit>

decrea
sing  r<latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit>

�0.057
<latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit><latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit><latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit><latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit>

3.464
<latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit><latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit><latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit><latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit>

Ĵ0
<latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit><latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit><latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit><latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit>4.000

<latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit><latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit><latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit><latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit>
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Figure 4.1: A comparison between different approximation schemes (GSF in green, 3PN in blue,
EOB in pink) to the exact result of numerical relativity (NR, in black). This comparison is made
for an equal mass, nonspinning black hole binary, by plotting the invariant relation �̂�( ̂𝐽). The
GSF result was inferred from the first law of mechanics, as explained in the text. When the GSF
is shut down, a zoom of the top-right, blue rectangular section is given in Fig. 4.2. Source: [407].

under spatial rotations and time translations, respectively. Circular orbits are bound
orbits, by definition. Therefore, they have negative energy, ̂𝐸0 ≤ 0. Moreover, these
circular orbits only exist if the angular momentum satisfies ̂𝐽0 ≥ ̂𝐽 crit

0 where the critical
value can be shown to be ̂𝐽 crit

0 ≡ 2
√

3 ≃ 3.46 [81]. For a given value of ̂𝐽0 > ̂𝐽 crit
0 , there

exists exactly two distinct circular orbits: one, closer to the BH, is unstable; while the
other one, farther out, is stable. As ̂𝐽0 varies between ̂𝐽 crit

0 and +∞, these pairs of circular
orbits draw two distinct branches in a ̂𝐸0 versus ̂𝐽0 diagram, as depicted in Fig. 4.2.

These two branches of circular orbits define two unique and important orbits. The
first one, at the cusp point where the branches meet, is where ̂𝐽0 = ̂𝐽 crit

0 and ̂𝐸0 =
2
√

2/3 − 1 ≃ −0.057. This is the so-called innermost stable circular orbit (ISCO). It
is only marginally stable as it belongs to both branches, and is located at 𝑟 = 6𝑀 in
Schwarzschild-Droste coordinates, i.e., three times further than the BH’s horizon at 𝑟 =
2𝑀 . The other important circular orbits is found where the unstable branch (dashed line
in Fig. 4.2) intersects the line ̂𝐸0 = 0, where orbits become unbound. This orbit is the
IBCO, for innermost bound circular orbit. It corresponds to ̂𝐽0 = 4, and is located closer
to the BH, at 𝑟 = 4𝑀 . It can be shown [81] that the ISCO and the IBCO have a uniquely
defined, invariant orbital frequency given by

Ω(0)
ISCO ≡ 1

6
√

6𝑀 and Ω(0)
IBCO ≡ 1

8𝑀 . (4.40)

The above discussion and formulae holds in the exact Schwarzschild spacetime. Beyond
the test-particle limit, when GSF effects are taken into account, this picture will change
and the ISCO and IBCO orbital frequency will slightly change. For example, under the
GSF a particle may venture closer to the BH while still remaining on a stable circular
orbit. This orbit, of smaller radius than the (unperturbed) ISCO, is associated with an
increased angular velocity. In other words, the GSF causes a frequency shift of the ISCO.
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This shift was first computed numerically in [476] for circular orbits, a result confirmed
a few years later by the authors of [407], using a first law calculation similar to that
of Sec. 4.2.2. Their result, valid at linear order in the mass ratio 𝑞 ≡ 𝑚/𝑀 , reads
ΩISCO = Ω(0)

ISCO[1 + 𝑞Ω(1)
ISCO + 𝑂(𝑞2)], with the test-particle contribution Ω(0)

ISCO given in
Eq. (4.40), and the first order GSF correction by

Ω(1)
ISCO ≡ 1

2 + 1
12

√
2

[𝑧′
SF(𝑥) − 3𝑧″

SF(𝑥)]
𝑥=1/6

, (4.41)

where 𝑥 = 1/6 corresponds to the (unperturbed) ISCO frequency in the dimensionless,
coordinate-invariant variable 𝑥 ≡ (𝑀Ω)2/3. We see that, as for the binding energy and
angular momentum in Sec. 4.2.2, the sole knowledge of the redshift 𝑧SF allows one to
compute the GSF correction of the ISCO. Other works of importance studied the GSF-
induced ISCO frequency shift in a Schwarzschild background, including [421, 477, 478].
Moreover these calculations have been extended to the case of a Kerr BH, first in [479],
and more recently in [480].

Regarding the IBCO, the authors of [481] recently performed a similar comparison,
between the GSF/first law prediction, and a direct, numerical evaluation of the GSF. Just
like the ISCO calculation, at first order in 𝑞 they found that ΩIBCO = Ω(0)

IBCO[1+𝑞Ω(1)
IBCO +

𝑂(𝑞2), where this time the first-order correction is

Ω(1)
IBCO ≡ −1

2 + 1
4[𝑧′

SF(𝑥) − 6𝑧SF(𝑥)]
𝑥=1/4

. (4.42)

Notice the similarity between the ISCO (4.41) and the IBCO (4.42) results, located at
𝑥 = 1/6 and 𝑥 = 1/4 respectively. Again, the work presented in [481] showed agreement
between the above result (which only requires the numerical calculation of the redshift of
a circular orbit) and that obtained by a full numerical integration. This agreement was
found for both the frequency shift, as well as the particle’s orbital angular momentum shift.
These agreements between numerical/analytical and full-numerical results shows two of
the most important applications of the first law of mechanics. First, on the practical side, it
allows one to benchmark GSF calculations and can be used as consistency-checks for GSF
numerical codes. Second, on a more fundamental level, it provides evidence that different
notions of energy and angular momentum (in this case, mechanical versus ADM-type) can
be identified, at least in this particular GSF context.

Second-order GSF benchmark
The above comparisons between first-law/GSF and numerical GSF calculations were per-
formed at linear order in the mass ratio 𝜈 = 𝑚1𝑚2/𝑚2 (or equivalently 𝑞 = 𝑚1/𝑚2, since
𝜈 = 𝑞 + 𝑂(𝑞2)). However, even if first-order GSF theory should be sufficient to build
templates accurate enough for GW detection, it is known that a precise parameter esti-
mations from the GW signal will require (at least pieces of) the second-order GSF effects.
Consequently, pushing GSF calculations to second-order is an intense, ongoing program
of research. Although substantial obstacles are still in the way, the first results are slowly
becoming available. In particular, the first full, self-consistent, second-order (metric) per-
turbation calculation of a physical effect, was recently reported in [368]. There, the authors
computed the binding energy 𝐸 of a quasi-circular EMRI made of a nonspinning object
of mass 𝑚 around a large BH of mass 𝑀BH.

As described in Chap. 2, Sec. 2.2.4, in GSF theory such an EMRI is described by ex-
tending the test-particle approximation of a small object (mass 𝑚) orbiting (on a geodesic
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Ê0
<latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit>

Ĵ0
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 Ŵؿ� ǅǐȝΘǐǐǼ ȝǣǐ ǅǦǼǌǦǼǝ ǐǼǐȓǝΞ ƷǼǌ ȝǣǐ ƷǼǝȠǶƷȓ ǻȂǻǐǼȝȠǻ
ǜȂȓ ǐȒȠƷǶৄǻƷȖȖॶ ǼȂǼȖȏǦǼǼǦǼǝ ǅǶƷǆǴ ǣȂǶǐ ǅǦǼƷȓǦǐȖॶ ƷȖ ǆȂǻȏȠȝǐǌ ǦǼ ǼȠǻǐȓǦǆƷǶ ȓǐǶƷȝǦΗǦȝΞ ǌƷȖǣǐǌ ǅǶƷǆǴ ƷǼǌ ȝǣǐ
ЖȓȖȝ ǶƷΘ ǆȂǻǅǦǼǐǌ ΘǦȝǣ %[$ ǌƷȝƷ ǜȂȓ ȝǣǐ ȓǐǌȖǣǦǜȝ ǝȓǐǐǼ ফࢰবॽ XȅǼȂȼ ȮǖțǯȕझXǐǝǦȂǼ Ȃǜ ƷȏȏǶǦǆƷǅǦǶǦȝΞ Ȃǜ ǌǦЍǐȓǐǼȝ
ƷȏȏȓȂΝǦǻƷȝǦȂǼ ȝǐǆǣǼǦȒȠǐȖ ǜȂȓ ǼȂǼȖȏǦǼǼǦǼǝ ȒȠƷȖǦৄǆǦȓǆȠǶƷȓ ǅǦǼƷȓΞ ǅǶƷǆǴ ǣȂǶǐ ǦǼȖȏǦȓƷǶ ফࢱࢳࢰবॽ bǣǐ ȖǣƷǌǐǌ ȓǐǝǦȂǼȖ
ǦǼǌǦǆƷȝǐ ȓƷǼǝǐȖ ΘǦȝǣǦǼ ΘǣǦǆǣ ȝǣǐ ǆȠǻȠǶƷȝǦΗǐ ȂȓǅǦȝƷǶ ȏǣƷȖǐৄǐȓȓȂȓ ǦȖ ǶǐȖȖ ȝǣƷǼ ဏ൛ ƷǼǌ ဏൕൟ ȓƷǌǦƷǼȖॶ ȓǐȖȏǐǆȝǦΗǐǶΞॽ

bǣǦȖ ȓǐǻƷȓǴƷǅǶǐ ƷǝȓǐǐǻǐǼȝ ǅǐȝΘǐǐǼ ȝǣǐ ǐΝƷǆȝ ȓǐȖȠǶȝȖ ǜȓȂǻCX ƷǼǌ ȝǣǐ ȏȓǐǌǦǆȝǦȂǼ ǜȓȂǻ%[$ ȝǣǐৄ
ȂȓΞ ǦȖ ǼȂȝ ƷǆǆǦǌǐǼȝƷǶॽ /Ǽǌǐǐǌॶ Ʒ ǶƷȓǝǐ ƷǼǌ ǝȓȂΘǦǼǝ ǅȂǌΞ Ȃǜ ǐΗǦǌǐǼǆǐ ফࢰॶࢯࢯॶࢯࢳࢯॶࢰࢳࢯॶࢯࢴࢰূࢱࢳࢰব ȖȝȓȂǼǝǶΞ
ȖȠǝǝǐȖȝȖ ȝǣƷȝ ȏǐȓȝȠȓǅƷȝǦȂǼ ȝǣǐȂȓΞ ǆƷǼ ǅǐ ȠȖǐǌ ȝȂǻȂǌǐǶ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǼȂȝ ȂǼǶΞ ǜȓȂǻ
�BX/Ȗ ΘǦȝǣ ǻƷȖȖ ȓƷȝǦȂȖ ��͎ൡ Σ ٟ Σ ��͎൛ॶ ǅȠȝ ƷǶȖȂ ǜȓȂǻ ȅțȼǯȲȚǯǫȅǖȼǯ ǻƷȖȖ ȓƷȝǦȂ ǦǼȖȏǦȓƷǶȖ /BX/Ȗ
ΘǦȝǣǻƷȖȖ ȓƷȝǦȂȖ ��͎൛ Σ ٟ Σ ��͎ൗॶ ƷǼǌ ǐΗǐǼ ȏȂȖȖǦǅǶΞ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦǼƷȓǦǐȖ ΘǦȝǣ ǥȡȚȮǖȲǖǤȕǯȚǖȵȵǯȵॶ
ȏȓȂΗǦǌǐǌ ȝǣƷȝ ȝǣǐ %[$ ǻȂǌǐǶ ǦȖ ȓǐৄǐΝȏȓǐȖȖǐǌ ƷȖ ƷǼ ǐΝȏƷǼȖǦȂǼ ǦǼ ȏȂΘǐȓȖ Ȃǜ ȝǣǐ ȖΞǻǻǐȝȓǦǆ ǻƷȖȖ ȓƷȝǦȂࣖ � ٛൕٛൗ�ٛൗ � ٟ  
لٟൗ�ॶ ȓƷȝǣǐȓ ȝǣƷǼ ȝǣǐ ȂȓǌǦǼƷȓΞ ǻƷȖȖ ȓƷȝǦȂ ٟ � ٛൕ�ٛൗ ফࢰࢴࢰবॽ /Ǽ ȏƷȓȝǦǆȠǶƷȓॶ ΗƷǼ
ǌǐ BǐǐǼȝ ƷǼǌ UǜǐǦЍǐȓ ফࢱࢳࢰব ȓǐǆǐǼȝǶΞ ǜȂȠǼǌ ȝǣƷȝ Ʒ ЖȓȖȝ ȏȂȖȝৄƷǌǦƷǅƷȝǦǆ ࢯU� ƷȏȏȓȂΝǦǻƷȝǦȂǼ ফࢴࢶব ǻƷΞ
ǅǐ ȒȠǦȝǐ ƷǆǆȠȓƷȝǐ ǦǼ ȏƷȓȝȖ Ȃǜ ȝǣǐ ǅǦǼƷȓΞ ȏƷȓƷǻǐȝǐȓ ȖȏƷǆǐॶ ǐΗǐǼ ǜȂȓ ǼǐƷȓǶΞ ǆȂǻȏƷȓƷǅǶǐৄǻƷȖȖ ǅǶƷǆǴৄǣȂǶǐ
ǅǦǼƷȓǦǐȖॶ ƷȖ ǦǶǶȠȖȝȓƷȝǐǌ ǦǼ ȝǣǐ ȓǦǝǣȝ ȏƷǼǐǶ Ȃǜ $Ǧǝॽ ॽࢱॽࢱ bǣǐ ৗȠǼȓǐƷȖȂǼƷǅǶǐ ǐЍǐǆȝǦΗǐǼǐȖȖ Ȃǜ ȏǐȓȝȠȓǅƷȝǦȂǼ
ȝǣǐȂȓΞ ȝȂǻȂǌǐǶ ȝǣǐ ȂȓǅǦȝƷǶ ǌΞǼƷǻǦǆȖ Ȃǜ ƷǼǌ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǜȓȂǻ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦৄ
ǼƷȓǦǐȖ ΘǦȝǣ ǆȂǻȏƷȓƷǅǶǐ ǻƷȖȖǐȖ ǦȖ ǣǦǝǣǶΞ ȏȓȂǻǦȖǦǼǝ ফࢰࢴࢰবॶ ƷǼǌ Ǧȝ ǻƷΞ ǣǦǼȝ Ʒȝ ȖȂǻǐ ǣǦǌǌǐǼ ȖǦǻȏǶǦǆǦȝΞ
ǦǼ ȝǣǐ ǝǐǼǐȓƷǶ ȓǐǶƷȝǦΗǦȖȝǦǆ ȝΘȂৄǅȂǌΞ ȏȓȂǅǶǐǻ ফࢳࢴࢰূࢱࢴࢰবॽ

[ǣǦǜȝ Ȃǜ ȝǣǐ ǦǼǼǐȓǻȂȖȝ ȖȝƷǅǶǐ ǆǦȓǆȠǶƷȓ ȂȓǅǦȝ ǜȓǐȒȠǐǼǆΞ

�ȂǼȖǦǌǐȓ ǼȂΘ ȝǣǐ ǥȡțȵǯȲ͝ǖȼȅ͝ǯ ȮǖȲȼ Ȃǜ ȝǣǐ ȂȓǅǦȝƷǶ ǻȂȝǦȂǼ Ȃǜ Ʒ ǼȂǼȖȏǦǼǼǦǼǝ ȏȂǦǼȝ ǻƷȖȖ ࣕ ǦǼ ȝǣǐ <ǐȓȓ
ǝǐȂǻǐȝȓΞ Ȃǜ Ʒ ǅǶƷǆǴ ǣȂǶǐ ȂǜǻƷȖȖق ƷǼǌ ȖȏǦǼوॶ ƷǼǌ Ƕǐȝ ٟ Β ق�ࣕ ǌǐǼȂȝǐ ȝǣǐǻƷȖȖ ȓƷȝǦȂॽ $Ȃȓ ǐȒȠƷȝȂȓǦƷǶ
ȂȓǅǦȝȖॶ Ʒ ȖƷǶǦǐǼȝ ǜǐƷȝȠȓǐ Ȃǜ ȝǣǐ ȖȝȓȂǼǝৄЖǐǶǌ ǌΞǼƷǻǦǆȖ ǦȖ ȝǣǐ ǶȂǆƷȝǦȂǼ Ȃǜ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞƛǦȖǆȂ
࣠�ॶ ƷȖ
Ʒ ǜȠǼǆȝǦȂǼ Ȃǜ ȝǣǐ ǌǦǻǐǼȖǦȂǼǶǐȖȖ ǅǶƷǆǴ ǣȂǶǐ ȖȏǦǼ ࣠ Β ൗॶق�و ΘǣǦǆǣ ȖǐȏƷȓƷȝǐȖ ȝǣǐ ǦǼȖȏǦȓƷǶ ƷǼǌ ȏǶȠǼǝǐ
ȏǣƷȖǐȖॽ $Ȃȓ Ʒ ȖǻƷǶǶ ǻƷȖȖ ȓƷȝǦȂ ٟ Λ � Ǧȝ ǻƷΞ ǅǐ ȏƷȓƷǻǐȝǐȓǦΣǐǌ ǦǼ ȝǣǐ ǜȂȓǻ ফࢰॶ ॶࢯࢴࢯ ق
বࢴࢴࢰ  ࣕ�ƛǦȖǆȂ � 
ƛق�
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لٟൗ�৴ � ࢴࢶ

Θǣǐȓǐƛ
�
ǦȖǆȂ
࣠� ǦȖ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞ Ȃǜ Ʒ ȝǐȖȝ ȏƷȓȝǦǆǶǐ ٟ ˎ � ǦǼ <ǐȓȓॶ ǴǼȂΘǼ ǦǼ ǆǶȂȖǐǌ ǜȂȓǻ ফࢱࢮࢯবॽ

bǣǐ ǆȂȂȓǌǦǼƷȝǐৄǦǼΗƷȓǦƷǼȝ ǜȠǼǆȝǦȂǼ 
ظ࣠� ǐǼǆȂǌǐȖ ȝǣǐ ȂȓǌǐȓৄǻƷȖȖৄȓƷȝǦȂ ǜȓǐȒȠǐǼǆΞ ȖǣǦǜȝ Ȃǜ ȝǣǐ <ǐȓȓ
/[�H ǦǼǌȠǆǐǌ ǅΞ ȝǣǐ ǆȂǼȖǐȓΗƷȝǦΗǐ ȏǦǐǆǐ Ȃǜ ȝǣǐ ЖȓȖȝৄȂȓǌǐȓ %[$ॽ
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$ǦǝȠȓǐ ॵࢱॽࢱ =ǯǻȼ Ȯǖțǯȕझbǣǐ ǦǼΗƷȓǦƷǼȝ ȓǐǶƷȝǦȂǼ Ŵغ
 Ŵؿ� ǅǐȝΘǐǐǼ ȝǣǐ ǅǦǼǌǦǼǝ ǐǼǐȓǝΞ ƷǼǌ ȝǣǐ ƷǼǝȠǶƷȓ ǻȂǻǐǼȝȠǻ
ǜȂȓ ǐȒȠƷǶৄǻƷȖȖॶ ǼȂǼȖȏǦǼǼǦǼǝ ǅǶƷǆǴ ǣȂǶǐ ǅǦǼƷȓǦǐȖॶ ƷȖ ǆȂǻȏȠȝǐǌ ǦǼ ǼȠǻǐȓǦǆƷǶ ȓǐǶƷȝǦΗǦȝΞ ǌƷȖǣǐǌ ǅǶƷǆǴ ƷǼǌ ȝǣǐ
ЖȓȖȝ ǶƷΘ ǆȂǻǅǦǼǐǌ ΘǦȝǣ %[$ ǌƷȝƷ ǜȂȓ ȝǣǐ ȓǐǌȖǣǦǜȝ ǝȓǐǐǼ ফࢰবॽ XȅǼȂȼ ȮǖțǯȕझXǐǝǦȂǼ Ȃǜ ƷȏȏǶǦǆƷǅǦǶǦȝΞ Ȃǜ ǌǦЍǐȓǐǼȝ
ƷȏȏȓȂΝǦǻƷȝǦȂǼ ȝǐǆǣǼǦȒȠǐȖ ǜȂȓ ǼȂǼȖȏǦǼǼǦǼǝ ȒȠƷȖǦৄǆǦȓǆȠǶƷȓ ǅǦǼƷȓΞ ǅǶƷǆǴ ǣȂǶǐ ǦǼȖȏǦȓƷǶ ফࢱࢳࢰবॽ bǣǐ ȖǣƷǌǐǌ ȓǐǝǦȂǼȖ
ǦǼǌǦǆƷȝǐ ȓƷǼǝǐȖ ΘǦȝǣǦǼ ΘǣǦǆǣ ȝǣǐ ǆȠǻȠǶƷȝǦΗǐ ȂȓǅǦȝƷǶ ȏǣƷȖǐৄǐȓȓȂȓ ǦȖ ǶǐȖȖ ȝǣƷǼ ဏ൛ ƷǼǌ ဏൕൟ ȓƷǌǦƷǼȖॶ ȓǐȖȏǐǆȝǦΗǐǶΞॽ

bǣǦȖ ȓǐǻƷȓǴƷǅǶǐ ƷǝȓǐǐǻǐǼȝ ǅǐȝΘǐǐǼ ȝǣǐ ǐΝƷǆȝ ȓǐȖȠǶȝȖ ǜȓȂǻCX ƷǼǌ ȝǣǐ ȏȓǐǌǦǆȝǦȂǼ ǜȓȂǻ%[$ ȝǣǐৄ
ȂȓΞ ǦȖ ǼȂȝ ƷǆǆǦǌǐǼȝƷǶॽ /Ǽǌǐǐǌॶ Ʒ ǶƷȓǝǐ ƷǼǌ ǝȓȂΘǦǼǝ ǅȂǌΞ Ȃǜ ǐΗǦǌǐǼǆǐ ফࢰॶࢯࢯॶࢯࢳࢯॶࢰࢳࢯॶࢯࢴࢰূࢱࢳࢰব ȖȝȓȂǼǝǶΞ
ȖȠǝǝǐȖȝȖ ȝǣƷȝ ȏǐȓȝȠȓǅƷȝǦȂǼ ȝǣǐȂȓΞ ǆƷǼ ǅǐ ȠȖǐǌ ȝȂǻȂǌǐǶ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǼȂȝ ȂǼǶΞ ǜȓȂǻ
�BX/Ȗ ΘǦȝǣ ǻƷȖȖ ȓƷȝǦȂȖ ��͎ൡ Σ ٟ Σ ��͎൛ॶ ǅȠȝ ƷǶȖȂ ǜȓȂǻ ȅțȼǯȲȚǯǫȅǖȼǯ ǻƷȖȖ ȓƷȝǦȂ ǦǼȖȏǦȓƷǶȖ /BX/Ȗ
ΘǦȝǣǻƷȖȖ ȓƷȝǦȂȖ ��͎൛ Σ ٟ Σ ��͎ൗॶ ƷǼǌ ǐΗǐǼ ȏȂȖȖǦǅǶΞ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦǼƷȓǦǐȖ ΘǦȝǣ ǥȡȚȮǖȲǖǤȕǯȚǖȵȵǯȵॶ
ȏȓȂΗǦǌǐǌ ȝǣƷȝ ȝǣǐ %[$ ǻȂǌǐǶ ǦȖ ȓǐৄǐΝȏȓǐȖȖǐǌ ƷȖ ƷǼ ǐΝȏƷǼȖǦȂǼ ǦǼ ȏȂΘǐȓȖ Ȃǜ ȝǣǐ ȖΞǻǻǐȝȓǦǆ ǻƷȖȖ ȓƷȝǦȂࣖ � ٛൕٛൗ�ٛൗ � ٟ  
لٟൗ�ॶ ȓƷȝǣǐȓ ȝǣƷǼ ȝǣǐ ȂȓǌǦǼƷȓΞ ǻƷȖȖ ȓƷȝǦȂ ٟ � ٛൕ�ٛൗ ফࢰࢴࢰবॽ /Ǽ ȏƷȓȝǦǆȠǶƷȓॶ ΗƷǼ
ǌǐ BǐǐǼȝ ƷǼǌ UǜǐǦЍǐȓ ফࢱࢳࢰব ȓǐǆǐǼȝǶΞ ǜȂȠǼǌ ȝǣƷȝ Ʒ ЖȓȖȝ ȏȂȖȝৄƷǌǦƷǅƷȝǦǆ ࢯU� ƷȏȏȓȂΝǦǻƷȝǦȂǼ ফࢴࢶব ǻƷΞ
ǅǐ ȒȠǦȝǐ ƷǆǆȠȓƷȝǐ ǦǼ ȏƷȓȝȖ Ȃǜ ȝǣǐ ǅǦǼƷȓΞ ȏƷȓƷǻǐȝǐȓ ȖȏƷǆǐॶ ǐΗǐǼ ǜȂȓ ǼǐƷȓǶΞ ǆȂǻȏƷȓƷǅǶǐৄǻƷȖȖ ǅǶƷǆǴৄǣȂǶǐ
ǅǦǼƷȓǦǐȖॶ ƷȖ ǦǶǶȠȖȝȓƷȝǐǌ ǦǼ ȝǣǐ ȓǦǝǣȝ ȏƷǼǐǶ Ȃǜ $Ǧǝॽ ॽࢱॽࢱ bǣǐ ৗȠǼȓǐƷȖȂǼƷǅǶǐ ǐЍǐǆȝǦΗǐǼǐȖȖ Ȃǜ ȏǐȓȝȠȓǅƷȝǦȂǼ
ȝǣǐȂȓΞ ȝȂǻȂǌǐǶ ȝǣǐ ȂȓǅǦȝƷǶ ǌΞǼƷǻǦǆȖ Ȃǜ ƷǼǌ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǜȓȂǻ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦৄ
ǼƷȓǦǐȖ ΘǦȝǣ ǆȂǻȏƷȓƷǅǶǐ ǻƷȖȖǐȖ ǦȖ ǣǦǝǣǶΞ ȏȓȂǻǦȖǦǼǝ ফࢰࢴࢰবॶ ƷǼǌ Ǧȝ ǻƷΞ ǣǦǼȝ Ʒȝ ȖȂǻǐ ǣǦǌǌǐǼ ȖǦǻȏǶǦǆǦȝΞ
ǦǼ ȝǣǐ ǝǐǼǐȓƷǶ ȓǐǶƷȝǦΗǦȖȝǦǆ ȝΘȂৄǅȂǌΞ ȏȓȂǅǶǐǻ ফࢳࢴࢰূࢱࢴࢰবॽ

[ǣǦǜȝ Ȃǜ ȝǣǐ ǦǼǼǐȓǻȂȖȝ ȖȝƷǅǶǐ ǆǦȓǆȠǶƷȓ ȂȓǅǦȝ ǜȓǐȒȠǐǼǆΞ

�ȂǼȖǦǌǐȓ ǼȂΘ ȝǣǐ ǥȡțȵǯȲ͝ǖȼȅ͝ǯ ȮǖȲȼ Ȃǜ ȝǣǐ ȂȓǅǦȝƷǶ ǻȂȝǦȂǼ Ȃǜ Ʒ ǼȂǼȖȏǦǼǼǦǼǝ ȏȂǦǼȝ ǻƷȖȖ ࣕ ǦǼ ȝǣǐ <ǐȓȓ
ǝǐȂǻǐȝȓΞ Ȃǜ Ʒ ǅǶƷǆǴ ǣȂǶǐ ȂǜǻƷȖȖق ƷǼǌ ȖȏǦǼوॶ ƷǼǌ Ƕǐȝ ٟ Β ق�ࣕ ǌǐǼȂȝǐ ȝǣǐǻƷȖȖ ȓƷȝǦȂॽ $Ȃȓ ǐȒȠƷȝȂȓǦƷǶ
ȂȓǅǦȝȖॶ Ʒ ȖƷǶǦǐǼȝ ǜǐƷȝȠȓǐ Ȃǜ ȝǣǐ ȖȝȓȂǼǝৄЖǐǶǌ ǌΞǼƷǻǦǆȖ ǦȖ ȝǣǐ ǶȂǆƷȝǦȂǼ Ȃǜ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞƛǦȖǆȂ
࣠�ॶ ƷȖ
Ʒ ǜȠǼǆȝǦȂǼ Ȃǜ ȝǣǐ ǌǦǻǐǼȖǦȂǼǶǐȖȖ ǅǶƷǆǴ ǣȂǶǐ ȖȏǦǼ ࣠ Β ൗॶق�و ΘǣǦǆǣ ȖǐȏƷȓƷȝǐȖ ȝǣǐ ǦǼȖȏǦȓƷǶ ƷǼǌ ȏǶȠǼǝǐ
ȏǣƷȖǐȖॽ $Ȃȓ Ʒ ȖǻƷǶǶ ǻƷȖȖ ȓƷȝǦȂ ٟ Λ � Ǧȝ ǻƷΞ ǅǐ ȏƷȓƷǻǐȝǐȓǦΣǐǌ ǦǼ ȝǣǐ ǜȂȓǻ ফࢰॶ ॶࢯࢴࢯ ق
বࢴࢴࢰ  ࣕ�ƛǦȖǆȂ � 
ƛق�

ǦȖǆȂ ৠ�  ظ ٟ  
لٟൗ�৴ � ࢴࢶ

Θǣǐȓǐƛ
�
ǦȖǆȂ
࣠� ǦȖ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞ Ȃǜ Ʒ ȝǐȖȝ ȏƷȓȝǦǆǶǐ ٟ ˎ � ǦǼ <ǐȓȓॶ ǴǼȂΘǼ ǦǼ ǆǶȂȖǐǌ ǜȂȓǻ ফࢱࢮࢯবॽ

bǣǐ ǆȂȂȓǌǦǼƷȝǐৄǦǼΗƷȓǦƷǼȝ ǜȠǼǆȝǦȂǼ 
ظ࣠� ǐǼǆȂǌǐȖ ȝǣǐ ȂȓǌǐȓৄǻƷȖȖৄȓƷȝǦȂ ǜȓǐȒȠǐǼǆΞ ȖǣǦǜȝ Ȃǜ ȝǣǐ <ǐȓȓ
/[�H ǦǼǌȠǆǐǌ ǅΞ ȝǣǐ ǆȂǼȖǐȓΗƷȝǦΗǐ ȏǦǐǆǐ Ȃǜ ȝǣǐ ЖȓȖȝৄȂȓǌǐȓ %[$ॽ

ࢳࢱ

$ǦǝȠȓǐ ॵࢱॽࢱ =ǯǻȼ Ȯǖțǯȕझbǣǐ ǦǼΗƷȓǦƷǼȝ ȓǐǶƷȝǦȂǼ Ŵغ
 Ŵؿ� ǅǐȝΘǐǐǼ ȝǣǐ ǅǦǼǌǦǼǝ ǐǼǐȓǝΞ ƷǼǌ ȝǣǐ ƷǼǝȠǶƷȓ ǻȂǻǐǼȝȠǻ
ǜȂȓ ǐȒȠƷǶৄǻƷȖȖॶ ǼȂǼȖȏǦǼǼǦǼǝ ǅǶƷǆǴ ǣȂǶǐ ǅǦǼƷȓǦǐȖॶ ƷȖ ǆȂǻȏȠȝǐǌ ǦǼ ǼȠǻǐȓǦǆƷǶ ȓǐǶƷȝǦΗǦȝΞ ǌƷȖǣǐǌ ǅǶƷǆǴ ƷǼǌ ȝǣǐ
ЖȓȖȝ ǶƷΘ ǆȂǻǅǦǼǐǌ ΘǦȝǣ %[$ ǌƷȝƷ ǜȂȓ ȝǣǐ ȓǐǌȖǣǦǜȝ ǝȓǐǐǼ ফࢰবॽ XȅǼȂȼ ȮǖțǯȕझXǐǝǦȂǼ Ȃǜ ƷȏȏǶǦǆƷǅǦǶǦȝΞ Ȃǜ ǌǦЍǐȓǐǼȝ
ƷȏȏȓȂΝǦǻƷȝǦȂǼ ȝǐǆǣǼǦȒȠǐȖ ǜȂȓ ǼȂǼȖȏǦǼǼǦǼǝ ȒȠƷȖǦৄǆǦȓǆȠǶƷȓ ǅǦǼƷȓΞ ǅǶƷǆǴ ǣȂǶǐ ǦǼȖȏǦȓƷǶ ফࢱࢳࢰবॽ bǣǐ ȖǣƷǌǐǌ ȓǐǝǦȂǼȖ
ǦǼǌǦǆƷȝǐ ȓƷǼǝǐȖ ΘǦȝǣǦǼ ΘǣǦǆǣ ȝǣǐ ǆȠǻȠǶƷȝǦΗǐ ȂȓǅǦȝƷǶ ȏǣƷȖǐৄǐȓȓȂȓ ǦȖ ǶǐȖȖ ȝǣƷǼ ဏ൛ ƷǼǌ ဏൕൟ ȓƷǌǦƷǼȖॶ ȓǐȖȏǐǆȝǦΗǐǶΞॽ

bǣǦȖ ȓǐǻƷȓǴƷǅǶǐ ƷǝȓǐǐǻǐǼȝ ǅǐȝΘǐǐǼ ȝǣǐ ǐΝƷǆȝ ȓǐȖȠǶȝȖ ǜȓȂǻCX ƷǼǌ ȝǣǐ ȏȓǐǌǦǆȝǦȂǼ ǜȓȂǻ%[$ ȝǣǐৄ
ȂȓΞ ǦȖ ǼȂȝ ƷǆǆǦǌǐǼȝƷǶॽ /Ǽǌǐǐǌॶ Ʒ ǶƷȓǝǐ ƷǼǌ ǝȓȂΘǦǼǝ ǅȂǌΞ Ȃǜ ǐΗǦǌǐǼǆǐ ফࢰॶࢯࢯॶࢯࢳࢯॶࢰࢳࢯॶࢯࢴࢰূࢱࢳࢰব ȖȝȓȂǼǝǶΞ
ȖȠǝǝǐȖȝȖ ȝǣƷȝ ȏǐȓȝȠȓǅƷȝǦȂǼ ȝǣǐȂȓΞ ǆƷǼ ǅǐ ȠȖǐǌ ȝȂǻȂǌǐǶ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǼȂȝ ȂǼǶΞ ǜȓȂǻ
�BX/Ȗ ΘǦȝǣ ǻƷȖȖ ȓƷȝǦȂȖ ��͎ൡ Σ ٟ Σ ��͎൛ॶ ǅȠȝ ƷǶȖȂ ǜȓȂǻ ȅțȼǯȲȚǯǫȅǖȼǯ ǻƷȖȖ ȓƷȝǦȂ ǦǼȖȏǦȓƷǶȖ /BX/Ȗ
ΘǦȝǣǻƷȖȖ ȓƷȝǦȂȖ ��͎൛ Σ ٟ Σ ��͎ൗॶ ƷǼǌ ǐΗǐǼ ȏȂȖȖǦǅǶΞ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦǼƷȓǦǐȖ ΘǦȝǣ ǥȡȚȮǖȲǖǤȕǯȚǖȵȵǯȵॶ
ȏȓȂΗǦǌǐǌ ȝǣƷȝ ȝǣǐ %[$ ǻȂǌǐǶ ǦȖ ȓǐৄǐΝȏȓǐȖȖǐǌ ƷȖ ƷǼ ǐΝȏƷǼȖǦȂǼ ǦǼ ȏȂΘǐȓȖ Ȃǜ ȝǣǐ ȖΞǻǻǐȝȓǦǆ ǻƷȖȖ ȓƷȝǦȂࣖ � ٛൕٛൗ�ٛൗ � ٟ  
لٟൗ�ॶ ȓƷȝǣǐȓ ȝǣƷǼ ȝǣǐ ȂȓǌǦǼƷȓΞ ǻƷȖȖ ȓƷȝǦȂ ٟ � ٛൕ�ٛൗ ফࢰࢴࢰবॽ /Ǽ ȏƷȓȝǦǆȠǶƷȓॶ ΗƷǼ
ǌǐ BǐǐǼȝ ƷǼǌ UǜǐǦЍǐȓ ফࢱࢳࢰব ȓǐǆǐǼȝǶΞ ǜȂȠǼǌ ȝǣƷȝ Ʒ ЖȓȖȝ ȏȂȖȝৄƷǌǦƷǅƷȝǦǆ ࢯU� ƷȏȏȓȂΝǦǻƷȝǦȂǼ ফࢴࢶব ǻƷΞ
ǅǐ ȒȠǦȝǐ ƷǆǆȠȓƷȝǐ ǦǼ ȏƷȓȝȖ Ȃǜ ȝǣǐ ǅǦǼƷȓΞ ȏƷȓƷǻǐȝǐȓ ȖȏƷǆǐॶ ǐΗǐǼ ǜȂȓ ǼǐƷȓǶΞ ǆȂǻȏƷȓƷǅǶǐৄǻƷȖȖ ǅǶƷǆǴৄǣȂǶǐ
ǅǦǼƷȓǦǐȖॶ ƷȖ ǦǶǶȠȖȝȓƷȝǐǌ ǦǼ ȝǣǐ ȓǦǝǣȝ ȏƷǼǐǶ Ȃǜ $Ǧǝॽ ॽࢱॽࢱ bǣǐ ৗȠǼȓǐƷȖȂǼƷǅǶǐ ǐЍǐǆȝǦΗǐǼǐȖȖ Ȃǜ ȏǐȓȝȠȓǅƷȝǦȂǼ
ȝǣǐȂȓΞ ȝȂǻȂǌǐǶ ȝǣǐ ȂȓǅǦȝƷǶ ǌΞǼƷǻǦǆȖ Ȃǜ ƷǼǌ ȝǣǐ ǝȓƷΗǦȝƷȝǦȂǼƷǶৄΘƷΗǐ ǐǻǦȖȖǦȂǼ ǜȓȂǻ ǆȂǻȏƷǆȝৄȂǅǱǐǆȝ ǅǦৄ
ǼƷȓǦǐȖ ΘǦȝǣ ǆȂǻȏƷȓƷǅǶǐ ǻƷȖȖǐȖ ǦȖ ǣǦǝǣǶΞ ȏȓȂǻǦȖǦǼǝ ফࢰࢴࢰবॶ ƷǼǌ Ǧȝ ǻƷΞ ǣǦǼȝ Ʒȝ ȖȂǻǐ ǣǦǌǌǐǼ ȖǦǻȏǶǦǆǦȝΞ
ǦǼ ȝǣǐ ǝǐǼǐȓƷǶ ȓǐǶƷȝǦΗǦȖȝǦǆ ȝΘȂৄǅȂǌΞ ȏȓȂǅǶǐǻ ফࢳࢴࢰূࢱࢴࢰবॽ

[ǣǦǜȝ Ȃǜ ȝǣǐ ǦǼǼǐȓǻȂȖȝ ȖȝƷǅǶǐ ǆǦȓǆȠǶƷȓ ȂȓǅǦȝ ǜȓǐȒȠǐǼǆΞ

�ȂǼȖǦǌǐȓ ǼȂΘ ȝǣǐ ǥȡțȵǯȲ͝ǖȼȅ͝ǯ ȮǖȲȼ Ȃǜ ȝǣǐ ȂȓǅǦȝƷǶ ǻȂȝǦȂǼ Ȃǜ Ʒ ǼȂǼȖȏǦǼǼǦǼǝ ȏȂǦǼȝ ǻƷȖȖ ࣕ ǦǼ ȝǣǐ <ǐȓȓ
ǝǐȂǻǐȝȓΞ Ȃǜ Ʒ ǅǶƷǆǴ ǣȂǶǐ ȂǜǻƷȖȖق ƷǼǌ ȖȏǦǼوॶ ƷǼǌ Ƕǐȝ ٟ Β ق�ࣕ ǌǐǼȂȝǐ ȝǣǐǻƷȖȖ ȓƷȝǦȂॽ $Ȃȓ ǐȒȠƷȝȂȓǦƷǶ
ȂȓǅǦȝȖॶ Ʒ ȖƷǶǦǐǼȝ ǜǐƷȝȠȓǐ Ȃǜ ȝǣǐ ȖȝȓȂǼǝৄЖǐǶǌ ǌΞǼƷǻǦǆȖ ǦȖ ȝǣǐ ǶȂǆƷȝǦȂǼ Ȃǜ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞƛǦȖǆȂ
࣠�ॶ ƷȖ
Ʒ ǜȠǼǆȝǦȂǼ Ȃǜ ȝǣǐ ǌǦǻǐǼȖǦȂǼǶǐȖȖ ǅǶƷǆǴ ǣȂǶǐ ȖȏǦǼ ࣠ Β ൗॶق�و ΘǣǦǆǣ ȖǐȏƷȓƷȝǐȖ ȝǣǐ ǦǼȖȏǦȓƷǶ ƷǼǌ ȏǶȠǼǝǐ
ȏǣƷȖǐȖॽ $Ȃȓ Ʒ ȖǻƷǶǶ ǻƷȖȖ ȓƷȝǦȂ ٟ Λ � Ǧȝ ǻƷΞ ǅǐ ȏƷȓƷǻǐȝǐȓǦΣǐǌ ǦǼ ȝǣǐ ǜȂȓǻ ফࢰॶ ॶࢯࢴࢯ ق
বࢴࢴࢰ  ࣕ�ƛǦȖǆȂ � 
ƛق�
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Θǣǐȓǐƛ
�
ǦȖǆȂ
࣠� ǦȖ ȝǣǐ /[�H ǜȓǐȒȠǐǼǆΞ Ȃǜ Ʒ ȝǐȖȝ ȏƷȓȝǦǆǶǐ ٟ ˎ � ǦǼ <ǐȓȓॶ ǴǼȂΘǼ ǦǼ ǆǶȂȖǐǌ ǜȂȓǻ ফࢱࢮࢯবॽ

bǣǐ ǆȂȂȓǌǦǼƷȝǐৄǦǼΗƷȓǦƷǼȝ ǜȠǼǆȝǦȂǼ 
ظ࣠� ǐǼǆȂǌǐȖ ȝǣǐ ȂȓǌǐȓৄǻƷȖȖৄȓƷȝǦȂ ǜȓǐȒȠǐǼǆΞ ȖǣǦǜȝ Ȃǜ ȝǣǐ <ǐȓȓ
/[�H ǦǼǌȠǆǐǌ ǅΞ ȝǣǐ ǆȂǼȖǐȓΗƷȝǦΗǐ ȏǦǐǆǐ Ȃǜ ȝǣǐ ЖȓȖȝৄȂȓǌǐȓ %[$ॽ

exact Schwarzschild  
(no GSF)

marginally bound    

ISCO

IBCO
0

<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

r ! 1
<latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit><latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit><latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit><latexit sha1_base64="gxSIOl1nbyMXxR6+zA25BLieqsQ=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZjfsTtQQ+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8MBHcgOd9O6W19Y3NrfJ2ZWd3b//APay2jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXByM/M7D0wbruQ9ZAkLYjKSPOKUgJUGblX3NR+NgWitHvtcRpAN3JpX9+bAq8QvSA0VaA7cr/5Q0TRmEqggxvR8L4EgJxo4FWxa6aeGJYROyIj1LJUkZibI57dP8alVhjhS2pYEPFd/T+QkNiaLQ9sZExibZW8m/uf1UoiugpzLJAUm6WJRlAoMCs+CwEOuGQWRWUKo5vZWTMdEEwo2rooNwV9+eZW0z+u+V/fvLmqN6yKOMjpGJ+gM+egSNdAtaqIWougJPaNX9OZMnRfn3flYtJacYuYI/YHz+QPnY5T8</latexit>

Ê0
<latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit><latexit sha1_base64="2XygsX/+Gg61FSMzA+Uu5us68wA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FETxWsLXSlpJNs21okl2SWaEs/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemEhh0fe/vcLK6tr6RnGztLW9s7tX3j9o2jg1jDdYLGPTCqnlUmjeQIGStxLDqQolfwhH11P/4YkbK2J9j+OEdxUdaBEJRtFJj50hxexm0vN75Ypf9WcgyyTISQVy1Hvlr04/ZqniGpmk1rYDP8FuRg0KJvmk1EktTygb0QFvO6qp4rabzQ6ekBOn9EkUG1cayUz9PZFRZe1Yha5TURzaRW8q/ue1U4wuu5nQSYpcs/miKJUEYzL9nvSF4Qzl2BHKjHC3EjakhjJ0GZVcCMHiy8ukeVYN/Gpwd16pXeVxFOEIjuEUAriAGtxCHRrAQMEzvMKbZ7wX7937mLcWvHzmEP7A+/wBi3WQOQ==</latexit>

increa
sing  ⌦<latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit><latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit><latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit><latexit sha1_base64="ObnqD1hbfHqghXAZw1ZJ+I3YUO0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04s0I5gHJEmYnvcmYmdllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsmCTTDOssEYluRdSg4ArrlluBrVQjlZHAZjS8mfrNJ9SGJ+rBjlIMJe0rHnNGrZManTuJfdotlf2KPwNZJkFOypCj1i19dXoJyyQqywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKISTTieXTshp07pkTjRrpQlM/X3xJhKY0Yycp2S2oFZ9Kbif147s/FVOOYqzSwqNl8UZ4LYhExfJz2ukVkxcoQyzd2thA2opsy6gIouhGDx5WXSOK8EfiW4vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvXuK9eO/ex7x1xctnjuAPvM8fXzGO+w==</latexit>

decrea
sing  r<latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit>

�0.057
<latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit><latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit><latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit><latexit sha1_base64="2U1WObBa2jUXmuAnCoCgXBm0gnU=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAhuLDOi1GXRjcsK9gHtUDJppo3NJEOSEcrQf3DjQhG3/o87/8a0nYW2Hgg5nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJIPdpywICYDySNOiXVS89yreFfVXqns/hnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8Tmqj6yDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpHlR8b2Kf39Zrt3kcRTgGE7gDHyoQg3uoA4NoPAIz/AKb0ihF/SOPualKyjvOYI/QJ8/qtuN3Q==</latexit>

3.464
<latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit><latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit><latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit><latexit sha1_base64="bU2CH53GxGfLHgc4yXySmg8t2Y4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0qMeiF48VTFtoQ9lsN+3SzW7Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf2D6uFRS8tMERoQyaXqRFhTzgQNDDOcdlJFcRJx2o7GdzO//USVZlI8mklKwwQPBYsZwcZKwaVbv6r3qzXP9eZAq8QvSA0KNPvVr95AkiyhwhCOte76XmrCHCvDCKfTSi/TNMVkjIe0a6nACdVhPj92is6sMkCxVLaEQXP190SOE60nSWQ7E2xGetmbif953czEN2HORJoZKshiUZxxZCSafY4GTFFi+MQSTBSztyIywgoTY/Op2BD85ZdXSevC9T3Xf6jXGrdFHGU4gVM4Bx+uoQH30IQACDB4hld4c4Tz4rw7H4vWklPMHMMfOJ8/SIONqw==</latexit>

Ĵ0
<latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit><latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit><latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit><latexit sha1_base64="zBA8G9jW76JxyCZdJgeL2GAVyv4=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoI1YRTIwkIext9pIlu3vH7pwQjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzwkQKi77/7RVWVtfWN4qbpa3tnd298v5B08apYbzBYhmbVkgtl0LzBgqUvJUYTlUo+UM4up76D0/cWBHrexwnvKvoQItIMIpOeuwMKWa3k57fK1f8qj8DWSZBTiqQo94rf3X6MUsV18gktbYd+Al2M2pQMMknpU5qeULZiA5421FNFbfdbHbwhJw4pU+i2LjSSGbq74mMKmvHKnSdiuLQLnpT8T+vnWJ02c2ETlLkms0XRakkGJPp96QvDGcox45QZoS7lbAhNZShy6jkQggWX14mzbNq4FeDu/NK7SqPowhHcAynEMAF1OAG6tAABgqe4RXePOO9eO/ex7y14OUzh/AH3ucPkxiQPg==</latexit>4.000

<latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit><latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit><latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit><latexit sha1_base64="spk9Bebk/8tW1gSl/uc7RUATyDY=">AAAB7HicbVBNSwMxEJ2tX3X9qnr0EiyCp5KVgh6LXjxWcNtCu5Rsmm1Ds9klyQpl6W/w4kERr/4gb/4bs+0etPVByOO9GWbmhang2mD87VQ2Nre2d6q77t7+weFR7fiko5NMUebTRCSqFxLNBJfMN9wI1ksVI3EoWDec3hV+94kpzRP5aGYpC2IyljzilBgr+c0GxnhYq+Pit0DrxCtJHUq0h7WvwSihWcykoYJo3fdwaoKcKMOpYHN3kGmWEjolY9a3VJKY6SBfLDtHF1YZoShR9kmDFurvjpzEWs/i0FbGxEz0qleI/3n9zEQ3Qc5lmhkm6XJQlAlkElRcjkZcMWrEzBJCFbe7IjohilBj83FtCN7qyeukc9XwcMN7aNZbt2UcVTiDc7gED66hBffQBh8ocHiGV3hzpPPivDsfy9KKU/acwh84nz80xY2e</latexit>
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r = 6M
<latexit sha1_base64="/j4ztK6H3njvh5MEBwou/PdOXac=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1ItQ9OJFqGA/oA1ls920S3c3YXcjlNC/4MWDIl79Q978N27aHLT1wcDjvRlm5oUJZ9p43rdTWlldW98ob1a2tnd299z9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4fg299tPVGkWy0czSWgg8FCyiBFsckldX9z33apX82ZAy8QvSBUKNPruV28Qk1RQaQjHWnd9LzFBhpVhhNNppZdqmmAyxkPatVRiQXWQzW6dohOrDFAUK1vSoJn6eyLDQuuJCG2nwGakF71c/M/rpia6CjImk9RQSeaLopQjE6P8cTRgihLDJ5Zgopi9FZERVpgYG0/FhuAvvrxMWmc136v5D+fV+k0RRxmO4BhOwYdLqMMdNKAJBEbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AHD3jdQ=</latexit><latexit sha1_base64="/j4ztK6H3njvh5MEBwou/PdOXac=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1ItQ9OJFqGA/oA1ls920S3c3YXcjlNC/4MWDIl79Q978N27aHLT1wcDjvRlm5oUJZ9p43rdTWlldW98ob1a2tnd299z9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4fg299tPVGkWy0czSWgg8FCyiBFsckldX9z33apX82ZAy8QvSBUKNPruV28Qk1RQaQjHWnd9LzFBhpVhhNNppZdqmmAyxkPatVRiQXWQzW6dohOrDFAUK1vSoJn6eyLDQuuJCG2nwGakF71c/M/rpia6CjImk9RQSeaLopQjE6P8cTRgihLDJ5Zgopi9FZERVpgYG0/FhuAvvrxMWmc136v5D+fV+k0RRxmO4BhOwYdLqMMdNKAJBEbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AHD3jdQ=</latexit><latexit sha1_base64="/j4ztK6H3njvh5MEBwou/PdOXac=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1ItQ9OJFqGA/oA1ls920S3c3YXcjlNC/4MWDIl79Q978N27aHLT1wcDjvRlm5oUJZ9p43rdTWlldW98ob1a2tnd299z9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4fg299tPVGkWy0czSWgg8FCyiBFsckldX9z33apX82ZAy8QvSBUKNPruV28Qk1RQaQjHWnd9LzFBhpVhhNNppZdqmmAyxkPatVRiQXWQzW6dohOrDFAUK1vSoJn6eyLDQuuJCG2nwGakF71c/M/rpia6CjImk9RQSeaLopQjE6P8cTRgihLDJ5Zgopi9FZERVpgYG0/FhuAvvrxMWmc136v5D+fV+k0RRxmO4BhOwYdLqMMdNKAJBEbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AHD3jdQ=</latexit><latexit sha1_base64="/j4ztK6H3njvh5MEBwou/PdOXac=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1ItQ9OJFqGA/oA1ls920S3c3YXcjlNC/4MWDIl79Q978N27aHLT1wcDjvRlm5oUJZ9p43rdTWlldW98ob1a2tnd299z9g5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4fg299tPVGkWy0czSWgg8FCyiBFsckldX9z33apX82ZAy8QvSBUKNPruV28Qk1RQaQjHWnd9LzFBhpVhhNNppZdqmmAyxkPatVRiQXWQzW6dohOrDFAUK1vSoJn6eyLDQuuJCG2nwGakF71c/M/rpia6CjImk9RQSeaLopQjE6P8cTRgihLDJ5Zgopi9FZERVpgYG0/FhuAvvrxMWmc136v5D+fV+k0RRxmO4BhOwYdLqMMdNKAJBEbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AHD3jdQ=</latexit>

r = 4M
<latexit sha1_base64="rSguhlh81a6JfaUEqR6/jI1w2XU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MWLUMF+QBvKZrtpl+5uwu5GKKF/wYsHRbz6h7z5b9ykOWjrg4HHezPMzAtizrRx3W+ntLa+sblV3q7s7O7tH1QPjzo6ShShbRLxSPUCrClnkrYNM5z2YkWxCDjtBtPbzO8+UaVZJB/NLKa+wGPJQkawySR13bgfVmtu3c2BVolXkBoUaA2rX4NRRBJBpSEca9333Nj4KVaGEU7nlUGiaYzJFI9p31KJBdV+mt86R2dWGaEwUrakQbn6eyLFQuuZCGynwGail71M/M/rJya88lMm48RQSRaLwoQjE6HscTRiihLDZ5Zgopi9FZEJVpgYG0/FhuAtv7xKOhd1z617D41a86aIowwncArn4MElNOEOWtAGAhN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/be2N0g==</latexit><latexit sha1_base64="rSguhlh81a6JfaUEqR6/jI1w2XU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MWLUMF+QBvKZrtpl+5uwu5GKKF/wYsHRbz6h7z5b9ykOWjrg4HHezPMzAtizrRx3W+ntLa+sblV3q7s7O7tH1QPjzo6ShShbRLxSPUCrClnkrYNM5z2YkWxCDjtBtPbzO8+UaVZJB/NLKa+wGPJQkawySR13bgfVmtu3c2BVolXkBoUaA2rX4NRRBJBpSEca9333Nj4KVaGEU7nlUGiaYzJFI9p31KJBdV+mt86R2dWGaEwUrakQbn6eyLFQuuZCGynwGail71M/M/rJya88lMm48RQSRaLwoQjE6HscTRiihLDZ5Zgopi9FZEJVpgYG0/FhuAtv7xKOhd1z617D41a86aIowwncArn4MElNOEOWtAGAhN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/be2N0g==</latexit><latexit sha1_base64="rSguhlh81a6JfaUEqR6/jI1w2XU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MWLUMF+QBvKZrtpl+5uwu5GKKF/wYsHRbz6h7z5b9ykOWjrg4HHezPMzAtizrRx3W+ntLa+sblV3q7s7O7tH1QPjzo6ShShbRLxSPUCrClnkrYNM5z2YkWxCDjtBtPbzO8+UaVZJB/NLKa+wGPJQkawySR13bgfVmtu3c2BVolXkBoUaA2rX4NRRBJBpSEca9333Nj4KVaGEU7nlUGiaYzJFI9p31KJBdV+mt86R2dWGaEwUrakQbn6eyLFQuuZCGynwGail71M/M/rJya88lMm48RQSRaLwoQjE6HscTRiihLDZ5Zgopi9FZEJVpgYG0/FhuAtv7xKOhd1z617D41a86aIowwncArn4MElNOEOWtAGAhN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/be2N0g==</latexit><latexit sha1_base64="rSguhlh81a6JfaUEqR6/jI1w2XU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MWLUMF+QBvKZrtpl+5uwu5GKKF/wYsHRbz6h7z5b9ykOWjrg4HHezPMzAtizrRx3W+ntLa+sblV3q7s7O7tH1QPjzo6ShShbRLxSPUCrClnkrYNM5z2YkWxCDjtBtPbzO8+UaVZJB/NLKa+wGPJQkawySR13bgfVmtu3c2BVolXkBoUaA2rX4NRRBJBpSEca9333Nj4KVaGEU7nlUGiaYzJFI9p31KJBdV+mt86R2dWGaEwUrakQbn6eyLFQuuZCGynwGail71M/M/rJya88lMm48RQSRaLwoQjE6HscTRiihLDZ5Zgopi9FZEJVpgYG0/FhuAtv7xKOhd1z617D41a86aIowwncArn4MElNOEOWtAGAhN4hld4c4Tz4rw7H4vWklPMHMMfOJ8/be2N0g==</latexit>
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Figure 4.2: The parameter space (�̂�0, ̂𝐽0) of circular orbits in the Schwarzschild spacetime. Orbits
on the upper branch (dashed curve) are unstable, while those on the lower branch are stable. The
IBCO is located on the �̂�0 = 0 line of marginally bound orbits, while the ISCO is located at
the cusp of the two branches, making it marginally stable. All values given in the diagram are
classical results obtined by solving the Schwarzshild geodesic equation (see Chap. 7 of [81] for a
nice presentation). The rectangular, blue rectangle corresponds to the one in Fig. 4.1, allowing for
an easy visualization of the effect of the GSF on this diagram.

of) a Schwarzschild BH (mass 𝑀). The natural small parameter of the problem is there-
fore 𝜖 ≡ 𝑚/𝑀 . Beyond this geodesic approximation, the central BH is not Schwarzschild
anymore, but only approximately so. Similarly, the total (Bondi) mass of the system 𝑀B
is not 𝑀 either, as would be the case for 𝜖 = 0. More precisely, it can be shown [368] that
𝑀BH and 𝑀B admit a second-order expansion in 𝜖 of the form

𝑀BH = 𝑀 + 𝜖 (1 + ̂𝐸0 + 𝛿𝑀) + 𝜖2𝑀 (2)
BH + 𝑂(𝜖3) , (4.43a)

𝑀B = 𝑀 + 𝜖 𝛿𝑀 + 𝜖2𝑀 (2)
B + 𝑂(𝜖3) (4.43b)

where ̂𝐸0 is the zeroth-order particle’s (orbital) energy (second term in (4.38a)) and 𝛿𝑀
is the change in the background Schwarschild’s black hole mass, which increases due to
gravitational radiation falling into it. The second-order pieces in Eqs. (4.43) are given
by complicated expressions involving the metric perturbation ℎ𝑎𝑏, evaluated at the BH’s
horizon (for 𝑀 (2)

BH) and at future null infinity (for 𝑀 (2)
B ). The (specific) binding energy

̂𝐸bind of the EMRI is then defined as the difference between its Bondi mass 𝑀B and
the individual masses of the bodies 𝑀BH + 𝑚, normalized by the reduced mass 𝜇 ≡
𝑀BH𝑚/(𝑀BH + 𝑚). Expanding in powers of 𝜖 thanks to Eqs. (4.43), it is found that

̂𝐸bind = ̂𝐸0(𝑦) + 𝑞 ̂𝐸bind
SF + (𝑞2) (4.44)

where 𝑞 ≡ 𝑚/𝑀BH and 𝑦 ≡ (𝑀BHΩ)2/3 is the 𝑥-variable introduced earlier adapted to the
present context (in fact, one has 𝑥 = 𝑦 + 2

3𝑞𝑦 + 𝑂(𝑞2)), and ̂𝐸0 is the leading-order piece
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in (4.38a), independent of 𝜈. Lastly, the second-order10 correction ̂𝐸bind
SF is given by

̂𝐸bind
SF = �̂� (2)

B + �̂� (2)
BH + ̂𝐸0(𝑦) + 𝛿𝑀

𝑀
𝑦(1 − 6)𝑦

(1 − 3𝑦)3/2 , (4.45)

with �̂� (2)
B ≡ 𝑀 (2)

B /𝑀 and similarly for �̂� (2)
BH. Eq. (4.45), along with a numerical imple-

mentation of the computation of the first two-terms (which depend on the second-order
metric perturbation) is the real tour-de-force of [368]. The first law of mechanics was then
used to check their calculation, by comparing it to the result

̂𝐸SF(𝑦)1st law = 𝑧SF(𝑦)
2 − 𝑦

3𝑧′
SF(𝑦) − 1 + √1 − 3𝑦 + 𝑦

6
5 − 12𝑦

(1 − 3𝑦)3/2 , (4.46)

which is simply obtained by combining Eqs. (4.38a) and (4.39), as well as the link 𝑥 =
𝑦 + 2

3𝑞𝑦 + 𝑂(𝑞2) between the variables of the two problems. The comparison between
Eqs. (4.45) and (4.46) is shown in Fig. 1. of [368] and shows a very good overall agreement,
although non-negligible discrepancies are present, and are (most probably) due to the
difference between the notions of mass and angular momentum used in the two contexts.
After all, the first law was derived in a non-radiative context, whereas the GSF frameworks
account for the GWs of the system. In spite of this, and quite remarkably, the first law
provided a valuable comparison tool, even in the strong-field regime of an EMRI.

Cosmic sensor
The cosmic censorship conjecture (CCC), first formulated by Roger Penrose in [91], is the
statement that no naked singularity exists in the Universe. This implies, for example,
that any spacetime singularity formed by gravitational collapse must be cloaked behind
an event horizon. As an elementary example of such a naked singularity, consider the Kerr
BH, given by the metric (4.1). In this metric, the BH parameters (𝑀, 𝑎) are required to
satisfy the inequality 𝑎 ≤ 𝑀 , with the upper limit corresponding to a so-called extremal
Kerr BH. Now, for illustrative purposes, consider what would happen for 𝑎 > 𝑀 : the lo-
cation of the event horizon ℋ , given by 𝑟 = 𝑀 +

√
𝑀2 − 𝑎2 in BL-coordinates (𝑡, 𝑟, 𝜃, 𝜙),

becomes complex-valued, and the horizon thus “vanishes”, leaving the ring-singularity of
the Kerr BH naked.

In light of this heuristics, consider now the more realistic case of a near-extremal
Kerr BH, i.e., with 𝑎 − 𝑀 ≪ 1, undergoing a physical process making its spin increase.
This could be the capture of a small body, for example. If the CCC is true, then the
capture of the small body cannot increase 𝑎 to arbitrarily large values. If it led to an
overspinning of the BH (i.e., 𝑎 > 𝑀), then the CCC would not be true. A particularly
well-suited arena to address this problem is that of GSF theory, in which the effect of
a small body on the evolution of the BH parameters (𝑀, 𝑎) can be explicitly computed.
Such an analysis was performed by Marta Colleoni, Leor Barrack and their collaborators
in [482, 483]. In [482], the authors showed that, without GSF corrections, overspinning
was possible for a non-negligible region of the parameter space for the problem. Then,
accounting for the first-order GSF, they used11 the first law of mechanics in the perturbed

10Even though �̂�SF may appear like a first-order term (multiplied by 𝑞), it does contains all
second-order perturbations through the masses (4.43).

11Strictly speaking, they stumbled upon integral that could not be computed with available
GSF codes and data at the time. This integral provided a key information between the asymptotic
quantities and the local properties of the particle, which is precisely the type of information the
first law provides, by good fortune, to quote the authors of [482].
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Kerr spacetime (given by combining Eqs. (4.34) and (4.32)) to establish a very simple
criterion for whether overspinning was possible or not, in terms of the particle’s energy
and the GSF correction to its redshift (see Eq. (104) there). Finally, in [483] a subsequent
numerical analysis was led using this criterion. The conclusion is best put by quoting the
authors: “Within the first-order GSF approximation (and excluding deeply bound orbits),
equatorial captures generically result in a subextremal post-capture geometry. One can at
best achieve extremality, through weak fine-tuning, but overspinning is not possible. This
result, evidently, is a strong argument in favor of the CCC. The same result was obtain
in [484] in the general case, i.e., accounting for all types of orbits.

PN theory

The fourth post-Newtonian order equations of motion for a binary system of compact
objects have been obtained recently and using different, independent methods. First, using
the ADM Hamiltonian formalism, the authors of [463,485,486] arrived at conclusive 4PN
result, albeit with a so-called “ambiguity parameter”, a undetermined constant coefficient
whose value could not be fixed by their methods. This parameter was finally computed
explicitly in [462] (see also [419]), by comparing the on-shell value of the 4PN Hamiltonian
to the binding energy of the system, as computed from a 4PN-accurate GSF calculation
that involved the first law of mechanics. Soon after, the Fokker Lagrangian approach was
used by a second group [487, 488], arriving at the same result with, this time, the need
for two ambiguity parameters12. To find the value of these coefficients, the authors used
again a comparison from 4PN GSF calculations, this time requiring the use of two first
laws, namely that for circular (4.21) and for eccentric (4.23) orbits. It is worth noting
that an ambiguity-free derivation (eliminating the need for GSF information) of the full
4PN dynamics has recently been obtained in [395,489] (see also [195].

Informing EOB

The first law has been of particular importance to “calibrate” the potentials that enter the
EOB formalism. It was first performed in [421,490], just after the first publication of the
first law for binary mechanics (4.21). It was then extended a few years later to account
for spin-orbit couplings [491], as well as eccentric orbits [427, 428, 492]. To illustrate how
the first law has helped in this context, we provide a very simple example based on [425].

As we mentioned in Chap. 1, Sec. 1.3.1, the EOB formalism is a semi-analytical frame-
work in which the geometry of a two-body system are mapped to an effective metric which
takes the form (here for nonspinning binaries)

d𝑠2 = −𝐴(𝑟) d𝑡2 + 𝐷(𝑟)
𝐴(𝑟) d𝑟2 + 𝑟2(d𝜃2 + sin2𝜃d𝜙2) , (4.47)

where the two potentials 𝐴, 𝐷 encode the Schwarzschild “deformation”. These are two of
the so-called EOB potentials [217], and they depend on the binary’s characteristics, the two
masses, in the nonspinning case. Now consider the case where one of the two bodies, say
𝑚2, is much more massive than the other, 𝑚1. In the limit case 𝑞 ≡ 𝑚1/𝑚2 → 0, 𝑚1 should

12These ambiguity parameters find their origin in the use of regularization schemes for the
calculation. Typically, the so-called “UV” divergences arise from the use of point-particle models
(introducing a singularity), while “IR” divergences come from the infinite temporal range of the
tail effects, discussed in Sec. 4.1.3.
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follow a geodesic in a Schwarzschild spacetime of mass parameter 𝑚2. Consequently, in
the small ratio limit, the potentials 𝐴 and 𝐷 must behave like

𝐴 = 1 − 2𝑚2
𝑟 + 𝜈𝑎(𝑟) + 𝑂(𝜈2) and 𝐷 = 1 + 𝜈𝑑(𝑟) + 𝑂(𝜈2) , (4.48)

where we used the exact Schwarzschild limit 𝐴 = 1 − 2𝑚2/𝑟 and 𝐷 = 1 for the leading
order. The functions 𝑎(𝑟) and 𝑑(𝑟) contain all the information on the EOB dynamics at
linear order in 𝜈 = 𝑞 + 𝑂(𝑞). It is to inform these functions that the first law can be
used. In particular, using the first law (4.23) for eccentric orbits, it was shown in [425]
that the potentials 𝑎(𝑟), 𝑑(𝑟) (and another one entering the EOB Hamiltonian) could be
expressed entirely in terms of the sole quantity 𝑧SF, the leading order GSF correction to
the (eccentric orbit) redshift, see Eqs. (5.25)-(5.26) there.

Finally, let us mention the recent works [493,494], in which the authors extended the
above calculation (still based on the “eccentric” first law) to compute coefficients of the
5PN and 5.5PN Hamiltonian of a two-body binary system.13

4.3 A variational identity
In this section, we derive a general identity that relates the first-order variations of con-
served asymptotic quantities in a diffeomorphism invariant theory of gravity—such as
GR—to those of hypersurface integrals over the SEM tensor of a generic distribution of
matter with compact support. Following a short recollection of some preliminary results
in Sec. 4.3.1, a gravity-matter split is performed in Sec. 4.3.2, out of which the variational
identity is derived in Sec. 4.3.3. The link to conserved asymptotic quantities is discussed
in Sec. 4.3.4, and the arbitrariness of the hypersurface of integration over the SEM tensor
is proven in Sec. 4.3.5.

Throughout this section we shall use boldface symbols to denote differential forms
defined over a 4-dimensional spacetime manifold. Given an arbitrary differential 𝑝-form
𝐗 = 𝑋𝑎1⋯𝑎𝑝 , its exterior derivative will be denoted d𝐗 = (d𝑋)𝑎1⋯𝑎𝑝+1 .

4.3.1 Preliminaries
Iyer and Wald [470,495] gave a general derivation of the first law of black hole mechanics for
arbitrary vacuum perturbations of a stationary black hole that are asymptotically flat at
spatial infinity and regular on the event horizon. This derivation was extended to arbitrary
electro-nonvacuum perturbations of charged black holes by Gao and Wald [496], who
further derived a “physical process” version of the first law. Here we follow their general
strategy, while making appropriate modifications for our nonvacuum perturbations of a
nonstationary spacetime with a generic, compactly supported SEM tensor. The following
analysis will follow closely that of Iyer [497], except that our background spacetime will
not be assumed to be a stationary-axisymmetric black hole solution. For simplicity and
definiteness, we shall restrict our analysis to the classical theory of GR in four spacetime
dimensions, but most of the calculations hold for a general diffeomorphism invariant theory
of gravity in any dimension [497].

Our starting point is the Lagrangian of the theory, taken to be a diffeomorphism
invariant 4-form 𝐋 on spacetime, which depends on the metric 𝑔𝑎𝑏 and other dynamical

13To reach this high PN order, their method uses at once PN, post-Minkowskian, multipolar-
post-Minkowskian, GSF and EOB, and is therefore coined the tutti-frutti method.
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“matter” fields 𝜓, denoted collectively as 𝜙 ≡ (𝑔, 𝜓). Let us consider a one-parameter
family of spacetimes with metric 𝑔𝑎𝑏(𝜆). The first-order variation of 𝑔𝑎𝑏(𝜆) is defined as
𝛿𝑔𝑎𝑏 ≡ d𝑔𝑎𝑏/d𝜆|𝜆=0, and similarly for other dynamical fields. The first-order variation of
the Lagrangian 𝐋 can always be written in the form [470,495–498]

𝛿𝐋 = 𝐄 𝛿𝜙 + d𝚯(𝜙, 𝛿𝜙) , (4.49)

where summation over the dynamical fields (and contraction of the associated tensor in-
dices) is understood in the first term on the right-hand side, and the Euler-Lagrange
equations of motion can be read off as 𝐄(𝜙) = 0. The symplectic potential 3-form 𝚯 is a
linear differential operator in the field variations 𝛿𝜙. Because the Lagrangian is uniquely
defined only up to an exact form, 𝐋 → 𝐋 + d𝝁, the symplectic potential is defined only
up to 𝚯 → 𝚯 + 𝛿𝝁 + d𝐘, for some arbitrary 3-form 𝝁(𝜙) and 2-form 𝐘(𝜙, 𝛿𝜙).

Now, let 𝜉𝑎 denote an arbitrary smooth vector field on the unperturbed spacetime
and ℒ𝜉 the Lie derivative along 𝜉𝑎. From the Lagrangian 𝐋 and its associated symplectic
potential 𝚯, we define the Noether current 3-form 𝐉 relative to 𝜉𝑎 according to

𝐉[𝜉] ≡ 𝚯(𝜙, ℒ𝜉𝜙) − 𝜉 ⋅ 𝐋 , (4.50)

where 𝚯(𝜙, ℒ𝜉𝜙) stands for the expression of 𝚯(𝜙, 𝛿𝜙) with each occurrence of 𝛿𝜙 replaced
by ℒ𝜉𝜙, and “⋅” denotes the contraction of a vector field with the first index of a differential
form, so that 𝜉 ⋅ 𝐋 ≡ 𝜉𝑑𝐿𝑑𝑎𝑏𝑐. The key property of the Noether current (4.50) is that it
is closed (d𝐉 = 0) if the field equations are satisfied (𝐄 = 0) or if the vector field 𝜉𝑎 Lie
derives all of the dynamical fields (ℒ𝜉𝜙 = 0). Indeed, taking the exterior derivative of
Eq. (4.50) readily gives [498]

d𝐉[𝜉] = d𝚯(𝜙, ℒ𝜉𝜙) − d(𝜉 ⋅ 𝐋)
= ℒ𝜉𝐋 − 𝐄 ℒ𝜉𝜙 − (ℒ𝜉𝐋 − 𝜉 ⋅ d𝐋)
= −𝐄 ℒ𝜉𝜙 , (4.51)

where in the second equality we used the Lagrangian variation ℒ𝜉𝐋 = 𝐄 ℒ𝜉𝜙+d𝚯(𝜙, ℒ𝜉𝜙)
[formally analogous to Eq. (4.49)] and Cartan’s magic formula14, and d𝐋 = 0 in the third,
since d𝐋 is a 5-form on a 4D manifold.

The form of the Noether current (4.50) can be further specified thanks to the identity
(4.51). Indeed, it can be shown [497, 500] that there exists a 3-form (with an extra dual
vector index) 𝐂𝑎(𝜙) that is locally constructed out of the dynamical fields 𝜙 in a covariant
manner, such that the rightmost term in (4.51) reads 𝐄 ℒ𝜉𝜙 = d(𝐂𝑎𝜉𝑎), thus implying
d(𝐉[𝜉] + 𝐂𝑎𝜉𝑎) = 0. Consequently, according to the Poincaré lemma, there exists a 2-form
𝐐[𝜉] such that the Noether current (4.50) can locally be written in the form

𝐉[𝜉] = −𝐂𝑎𝜉𝑎 + d𝐐[𝜉] . (4.52)

Crucially, 𝐂𝑎 = 0 whenever the equation of motion, 𝐄 = 0, are satisfied. One may view
𝐂𝑎 = 0 as being the constraint equations of the theory which are associated with its
diffeomorphism invariance [498]. The ambiguity in 𝚯 discussed below (4.49) implies that
the Noether current is uniquely defined only up to 𝐉[𝜉] → 𝐉[𝜉] + d[𝐘(𝜙, ℒ𝜉𝜙)−𝜉 ⋅ 𝝁] and

14By Cartan’s magic formula we mean ℒ𝜉𝐋 = d(𝜉⋅𝐋)+𝜉⋅d𝐋. It is due to Élie Cartan (in [499])
and not his son Henri, as it is sometimes claimed in textbooks.
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the Noether charge up to 𝐐[𝜉] → 𝐐[𝜉] + 𝐘(𝜙, ℒ𝜉𝜙) − 𝜉 ⋅ 𝝁. As shown in Ref. [470], those
ambiguities will not affect the results stated in the following paragraphs, so from now on
we shall omit them.

Next, we define the symplectic current 3-form by [495]

𝝎(𝜙, 𝛿1𝜙, 𝛿2𝜙) ≡ 𝛿2[𝚯(𝜙, 𝛿1𝜙)] − 𝛿1[𝚯(𝜙, 𝛿2𝜙)] , (4.53)

which depends on two linearly independent first-order variations 𝛿1𝜙 and 𝛿2𝜙 of the fields
𝜙. It can be shown that this differential form is closed (d𝝎 = 0) when 𝜙 is a solution of
the field equations and 𝛿1𝜙 and 𝛿2𝜙 are solutions of the linearized field equations [498].
As discussed in Sec. 4.3.4 below, the symplectic curent (4.53) is used to define the notion
of a Hamiltonian, which, in turn, gives rise to the notions of total energy and angular
momentum.

Now, set 𝛿1𝜙 ≡ ℒ𝜉𝜙 and let 𝛿2𝜙 ≡ 𝛿𝜙 correspond to a nearby solution for which
𝛿𝜉𝑎 = 0, as allowed by the diffeomorphism gauge freedom of GR. Then

𝝎(𝜙, ℒ𝜉𝜙, 𝛿𝜙) = 𝛿𝚯(𝜙, ℒ𝜉𝜙) − ℒ𝜉𝚯(𝜙, 𝛿𝜙)
= 𝛿𝐉[𝜉] + 𝜉 ⋅ 𝛿𝐋 − (𝜉 ⋅ d𝚯 + d(𝜉 ⋅ 𝚯))
= d(𝛿𝐐[𝜉] − 𝜉 ⋅ 𝚯) + 𝜉 ⋅ 𝐄 𝛿𝜙 − 𝛿(𝐂𝑎𝜉𝑎) , (4.54)

where we used the definition (4.50) and Cartan’s magic formula in the second equality, as
well as the identities (4.49) and (4.52) in the last equality. When the equations of motion
are satisfied, 𝐄 = 0 and 𝐂𝑎 = 0 imply that the symplectic current (4.54) is exact and
thus closed, as mentioned above. Integrating the resulting identity over a hypersurface
𝒮 transverse to 𝜉𝑎, with boundary 𝜕𝒮 , and using Stokes’ theorem, we obtain the general
formula [497]

∫
𝒮

𝝎(𝜙, ℒ𝜉𝜙, 𝛿𝜙) = ∫
𝜕𝒮

𝛿𝐐[𝜉] − 𝜉 ⋅ 𝚯(𝜙, 𝛿𝜙) . (4.55)

The symplectic current in Eq. (4.54) is a linear differential operator in the field variation
ℒ𝜉𝜙. Consequently, if 𝜉𝑎 Lie derives all of the dynamical fields in the background (ℒ𝜉𝜙 =
0), then the boundary integral on the right-hand side of Eq. (4.55) vanishes identically.

4.3.2 Gravity-matter split
To derive the general variational identity of interest, we shall further split the Lagrangian
4-form 𝐋 of the theory into a purely gravitational (vacuum) part and a matter part:

𝐋(𝑔, 𝜓) ≡ 𝐋g(𝑔) + 𝐋m(𝑔, 𝜓) . (4.56)

The vacuum GR Lagrangian 𝐋g depends on the metric 𝑔𝑎𝑏 and its derivatives and is
explicitly given by 16𝜋𝐋g = 𝑅 𝜺, where 𝑅 is the Ricci scalar and 𝜺 the canonical volume
form associated with 𝑔𝑎𝑏. The matter part 𝐋m is left unspecified, but is required to depend
only on the metric 𝑔𝑎𝑏 and the other dynamical “matter” fields 𝜓. Following Eq. (4.49),
the first-order variation of each Lagrangian in Eq. (4.56) can then be split into a total
derivative and a part related to the field equations, according to

𝛿𝐋g = − 1
16𝜋 𝜺 𝐺𝑎𝑏𝛿𝑔𝑎𝑏 + d𝚯g(𝑔, 𝛿𝑔) , (4.57a)

𝛿𝐋m = 1
2 𝜺 𝑇 𝑎𝑏𝛿𝑔𝑎𝑏 + 𝐄m(𝑔, 𝜓) 𝛿𝜓 + d𝚯m(𝜙, 𝛿𝜙) . (4.57b)
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Here, 𝐺𝑎𝑏 ≡ 𝑅𝑎𝑏 − 1
2𝑅𝑔𝑎𝑏 is the Einstein tensor, 𝑇𝑎𝑏 is the SEM tensor and the matter

field equations read 𝐄m(𝜙) = 0. Repeating the analysis performed above in Sec. 4.3.1,
separately for the (vacuum) gravity and matter sectors, one can easily show that the
gravity and matter Noether currents take the form

𝐉g[𝜉] ≡ 𝚯g(𝑔, ℒ𝜉𝑔) − 𝜉 ⋅ 𝐋g = − 𝐂𝑎
g𝜉𝑎 + d𝐐g[𝜉] , (4.58a)

𝐉m[𝜉] ≡ 𝚯m(𝜙, ℒ𝜉𝜙) − 𝜉 ⋅ 𝐋m = − 𝐂𝑎
m𝜉𝑎 + d𝐐m[𝜉] . (4.58b)

On the one hand, the vacuum GR contributions are well known and read [470,495]

Θg
𝑎𝑏𝑐(𝑔, 𝛿𝑔) = − 1

16𝜋 𝜀𝑎𝑏𝑐𝑑 𝑔𝑑𝑒𝑔𝑓ℎ(∇𝑓𝛿𝑔𝑒ℎ − ∇𝑒𝛿𝑔𝑓ℎ) , (4.59a)

𝐽g
𝑎𝑏𝑐[𝜉] = − 1

8𝜋 𝜀𝑎𝑏𝑐𝑑∇𝑒∇[𝑒𝜉𝑑] , (4.59b)

𝑄g
𝑎𝑏[𝜉] = − 1

16𝜋 𝜀𝑎𝑏𝑐𝑑∇𝑐𝜉𝑑 , (4.59c)

𝐶g
𝑎𝑏𝑐𝑒 = − 1

8𝜋 𝜀𝑎𝑏𝑐𝑑 𝐺𝑑
𝑒 . (4.59d)

On the other hand, explicit forms of the matter contributions 𝚯m, 𝐂𝑎
m, 𝐐m and 𝐉m depend

on the particular choice of matter Lagrangian 𝐋m. Typical examples include perfect fluids
and electromagnetic fields [497, 501]. Importantly, whenever the matter field equations
𝐄m = 0 are satisfied, the matter constraint simply reduces to [497]

𝐶m
𝑎𝑏𝑐𝑒 = 𝜀𝑎𝑏𝑐𝑑 𝑇 𝑑

𝑒 , (4.60)

in such a way that the total constraint 𝐂𝑎 ≡ 𝐂𝑎
g + 𝐂𝑎

m in Eq. (4.52) vanishes identically
when the Einstein field equation 𝐺𝑎𝑏 = 8𝜋 𝑇𝑎𝑏 are satisfied as well.

4.3.3 Variational identity
So far we considered an arbitrary smooth vector field 𝜉𝑎 defined on a background geometry
𝑔𝑎𝑏. From now on, we shall further assume that 𝜉𝑎 is a Killing field of the background,
such that ℒ𝜉𝑔𝑎𝑏 = 0. Moreover, as allowed by the diffeomorphism gauge freedom of GR,
we shall consider first-order variations for which

𝛿𝜉𝑎 = 0 , implying ℒ𝜉𝛿𝑔𝑎𝑏 = 0 and ℒ𝜉𝛿𝜉𝑎 = 0 . (4.61)

Consequently, the vacuum GR contribution 𝝎g to the symplectic current (4.53) can easily
be shown to vanish identically. Indeed, from the explicit expression (4.59a) for the pure
gravity part 𝚯g of the symplectic potential 3-form, we have

𝝎g(𝑔, ℒ𝜉𝑔, 𝛿𝑔) = −ℒ𝜉𝚯g(𝑔, 𝛿𝑔) = −𝚯g(𝑔, ℒ𝜉𝛿𝑔) = 0 , (4.62)

where we used the Lie-dragging along 𝜉𝑎 of 𝑔𝑎𝑏, 𝛿𝑔𝑎𝑏 and 𝜀𝑎𝑏𝑐𝑑, as well as the commu-
tation of the covariant derivative ∇𝑎 and the Lie derivative ℒ𝜉, as shown in Eq. (A.9).
Consequently, only the matter part 𝚯m contributes to (4.53), and we have

𝝎(𝜙, ℒ𝜉𝜙, 𝛿𝜙) = 𝛿𝚯m(𝜙, ℒ𝜉𝜙) − ℒ𝜉𝚯m(𝜙, 𝛿𝜙)
= 𝛿𝐉m[𝜉] + 𝜉 ⋅ 𝛿𝐋m − (𝜉 ⋅ d𝚯m + d(𝜉 ⋅ 𝚯m))
= d(𝛿𝐐m − 𝜉 ⋅ 𝚯m) + 𝜉 ⋅ (1

2 𝜺 𝑇 𝑎𝑏𝛿𝑔𝑎𝑏 + 𝐄m 𝛿𝜓) − 𝛿(𝐂𝑎
m𝜉𝑎) , (4.63)
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where we used the definition (4.50) and Cartan’s magic formula in the second equality,
as well as the Lagrangian variation (4.57b) and (4.52) in the last equality. Equating the
expressions (4.54) and (4.63), in which 𝐐 = 𝐐g + 𝐐m and 𝚯 = 𝚯g + 𝚯m, and imposing
the equations of motion (𝐄 = 0, 𝐄m = 0 and 𝐂 = 0) implies15

d(𝛿𝐐g[𝜉] − 𝜉 ⋅ 𝚯g) = 1
2 𝜉 ⋅ 𝜺 𝑇 𝑎𝑏𝛿𝑔𝑎𝑏 − 𝛿(𝜺 ⋅ 𝑇 ⋅ 𝜉) , (4.64)

where we introduced the shorthand 𝜺⋅𝑇 ⋅𝜉 = 𝜀𝑎𝑏𝑐𝑑𝑇 𝑑𝑒𝜉𝑒. Finally, integrating this equation
over a hypersurface 𝒮 transverse to 𝜉𝑎, with boundary 𝜕𝒮 , and using Stokes’ theorem, we
obtain the simple identity

∫
𝜕𝒮

𝛿𝐐g[𝜉] − 𝜉 ⋅ 𝚯g = 1
2 ∫

𝒮
𝜉 ⋅ 𝜺 𝑇 𝑎𝑏𝛿𝑔𝑎𝑏 − 𝛿 ∫

𝒮
𝜺 ⋅ 𝑇 ⋅ 𝜉 . (4.65)

This formula is very closely related to Eq. (32) of Ref. [497], valid for nonvacuum perturba-
tions of stationary-axisymmetric black hole solutions in a general diffeomorphism invariant
theory of gravity. Equation (4.65) was also written down (without a detailed derivation)
in Ref. [387], by adapting Refs. [470, 472, 497], and applied to nonvacuum, nonstationary,
nonaxisymmetric perturbations of a Kerr-black-hole-with-a-corotating-moon solution that
is asymptotically flat at future null infinity.

4.3.4 Asymptotic conserved quantities
General case
Up to a numerical prefactor, the Noether (scalar) charge 𝑄𝜉 relative to 𝜉𝑎 is defined as
the integral of the Noether 2-form (4.59c) over a topological 2-sphere 𝒰 that includes all
the matter fields:

𝑄𝜉 ≡ ∫
𝑆

𝐐g[𝜉] . (4.66)

This charge is conserved in the sense that it does not depend on the choice of integration
2-surface 𝑆. Indeed, if 𝒰 and 𝒰 ′ denote two such topological 2-spheres, and 𝒮 any
hypersurface bounded by 𝒰 and 𝒰 ′, then

∫
𝒰

𝐐g[𝜉] − ∫
𝒰′

𝐐g[𝜉] = ∫
𝒮

d𝐐g[𝜉] = − 1
8𝜋 ∫

𝒮
𝜀𝑎𝑏𝑐𝑑∇𝑒∇[𝑒𝜉𝑑] = 0 , (4.67)

where we successively used Stokes’ theorem, Eqs. (4.58a), (4.59b) and (4.59d), the identity
∇𝑒∇[𝑒𝜉𝑑] = −𝑅𝑐𝑑𝜉𝑐 following from Eqs. (3.8) and (A.3), as well as the Einstein equation
𝑅𝑎𝑏 = 0 over the vacuum region 𝒮 (cf. [502,503]).

For an asymptotically flat spacetime with no isometry, the formula (4.66) can be
evaluated on a topological 2-sphere at spatial infinity. For instance, if 𝑡𝑎 and 𝜙𝑎 de-
note the asymptotic Killing vectors associated with the invariance of an asymptotically
Minkowskian spacetime under time translations and spatial rotations, then the Noether
charge (4.66) gives rise to the notions of Komar mass and Komar angular momentum

𝑀K ≡ 2 ∫
∞

𝐐g[𝑡] and 𝐽K ≡ − ∫
∞

𝐐g[𝜙] . (4.68)

15If 𝜉𝑎 Lie derives all the dynamical fields in the background (ℒ𝜉𝜙 = 0) and not merely the
metric 𝑔𝑎𝑏, then the right-hand side of (4.54) and (4.63) vanish identically, yielding d(𝛿𝐐g[𝜉] −
𝜉 ⋅ 𝚯g) = −d(𝛿𝐐m[𝜉] − 𝜉 ⋅ 𝚯m). This condition is stronger than merely equating the right-hand
sides of Eqs. (4.54) and (4.63), but it gives rise to the same identity (4.64).
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For an asymptotically flat spacetime, it can easily be established (see e.g. Ref. [464]) that
the Komar angular momentum 𝐽𝐾 is equal to the ADM-like angular momentum 𝐽 , also
defined as a surface integral at spatial infinity, namely 𝐽K = 𝐽 . Under the additional
assumption of stationarity, the equality 𝑀K = 𝑀 of the Komar mass and the ADM mass
was proven long ago [504, 505]. This equality is closely related to a general relativistic
generalization of the Newtonian virial theorem [506], and was used as a criterion to com-
pute quasi-equilibrium sequences of initial data for binary black holes [379,398,507–510].
Shibata et al. [385] showed that the equality 𝑀K = 𝑀 holds for a much larger class of
spacetimes; in particular, they could relax the restrictive hypothesis of stationarity.

When evaluated at infinity, the boundary term on the left-hand side of the identity
(4.65) has the natural interpretation of being the variation of the “conserved quantity”
canonically conjugate to the asymptotic symmetry generated by 𝜉𝑎. Indeed, according to
the analysis of Refs. [470,472,495] (also Sec. 2 in [500]), if a Hamiltonian 𝐻𝜉 exists for the
dynamics generated by the vector field 𝜉𝑎, then there exists a 3-form Bg such that

∫
∞

𝛿𝐇g[𝜉] − 𝜉 ⋅ 𝚯g = 𝛿𝐻𝜉 , with 𝐻𝜉 ≡ ∫
∞

𝐐g[𝜉] − 𝜉 ⋅ Bg . (4.69)

It can be shown that a necessary and sufficient condition for the existence of a Hamiltonian
𝐻𝜉 conjugate to 𝜉𝑎 on 𝒮 is that for all solutions 𝜙 and all pairs of linearized solutions 𝛿1𝜙
and 𝛿2𝜙 we have [472]

∫
𝜕𝒮

𝜉 ⋅ 𝝎(𝜙, 𝛿1𝜙, 𝛿2𝜙) = 0 . (4.70)

Finally, by combining (4.65) and (4.69), we conclude that if the hypersurface Σ has no
inner boundary (corresponding to the intersection of Σ with the horizon of a black hole),
then the variation of the conserved Noether charge associated with 𝜉𝑎 is related to the
energy-momentum content through

𝛿𝐻𝜉 = 𝛿 ∫
𝒮

𝜀𝑎𝑏𝑐𝑑 𝑇 𝑑𝑒𝜉𝑒 − 1
2 ∫

𝒮
𝜀𝑎𝑏𝑐𝑑 𝜉𝑑 𝑇 𝑒𝑓𝛿𝑔𝑒𝑓 . (4.71)

This variational formula is valid for a generic “matter” source with compact support. This
is the most important (new) result of this chapter, as it will be the basis of all calculations
for the derivation of the first law in the next chapter. In particular, we shall be interested
in applying this general result to a binary system of spinning compact objects, modeled
within the multipolar gravitational skeleton formalism reviewed in Chap. 2, up to dipolar
order.

Helical isometry

As mentioned earlier, in general neither 𝑡𝑎 nor 𝜙𝑎 in (3.7) is a Killing vector. If the
spacetime is asymptotically flat, however, then 𝑡𝑎 and 𝜙𝑎 are asymptotically Killing, with
the normalization 𝑡𝑎𝑡𝑎 → −1 at infinity, and the surface integral at spatial infinity of the
2-form 𝐐g[𝑘] yields the conserved charge associated with the generator (3.7), namely (cf.
Eq. (4.68))

∫
∞

𝐐g[𝑘] = 1
2𝑀K − Ω𝐽K = 1

2𝑀K − Ω𝐽 . (4.72)

The curious relative factor of two is related to the famous Komar “anomalous factor”
entering the definitions of the Komar mass and angular momentum [470,511].
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Moreover, according to the general result (4.69), the boundary term at spatial infinity
in the identity (4.65) yields a linear combination of the conserved charges associated with
the asymptotic symmetry generators 𝑡𝑎 and 𝜙𝑎, namely16

∫
∞

(𝛿𝐐g[𝑘] − 𝑘 ⋅ 𝚯g) = 𝛿 ∫
∞

(𝐐g[𝑘] − 𝑘 ⋅ Bg) = 𝛿𝐻𝑘 = 𝛿𝑀 − Ω 𝛿𝐽 , (4.73)

The formula (4.73) is consistent with the results of Ref. [381], obtained from a related
analysis.

Finally, combining (4.65) and (4.73), we conclude that for a helically symmetric space-
time, the variations of the total mass and angular momentum are related to the energy-
momentum content through

𝛿𝑀 − Ω 𝛿𝐽 = 𝛿 ∫
𝒮

𝜀𝑎𝑏𝑐𝑑 𝑇 𝑑𝑒𝑘𝑒 − 1
2 ∫

𝒮
𝜀𝑎𝑏𝑐𝑑 𝑘𝑑 𝑇 𝑒𝑓𝛿𝑔𝑒𝑓 . (4.74)

The generalized first law (4.74) is valid for a generic “matter” source with compact sup-
port, whose energy-momentum tensor 𝑇 𝑎𝑏 must be compatible with the helical isometry,
ℒ𝑘𝑇 𝑎𝑏 = 0. The variational formula (4.74) holds, in particular, for perfect fluids. In this
work, we shall be interested in applying this general formula to a binary system of spinning
compact objects, modeled within the multipolar gravitational skeleton formalism, up to
dipolar order, as described in Chap. 2.

4.3.5 Arbitrariness of the hypersurface
Before closing this chapter, let us show that the integrals appearing in the right-hand side
of (4.71) are independent of the choice of hypersurface 𝒮 , and hence of “time.” It will
prove convenient to introduce special notations for these hypersurface integrals, namely

𝐼(𝒮 ) ≡ − ∫
𝒮

𝜀𝑎𝑏𝑐𝑑 𝑇 𝑑𝑒𝜉𝑒 = ∫
𝒮

𝑇 𝑎𝑏𝜉𝑏 dΣ𝑎 , (4.75a)

𝐾(𝒮 ) ≡ − ∫
𝒮

𝜀𝑎𝑏𝑐𝑑 𝜉𝑑 𝑇 𝑒𝑓𝛿𝑔𝑒𝑓 = ∫
𝒮

𝑇 𝑎𝑏𝛿𝑔𝑎𝑏 𝜉𝑐dΣ𝑐 , (4.75b)

where dΣ𝑎 is the (hyper)surface element normal to 𝒮 . The integral 𝐼 is simply the flux
across 𝒮 of the conserved Noether current 𝑇 𝑎𝑏𝜉𝑏 associated with the Killing field 𝜉𝑎.
The integral 𝐾, which involves the perturbed metric 𝛿𝑔𝑎𝑏, has no such simple physical
interpretation. To show that these integrals are invariant with respect to 𝒮 , consider
Δ𝐼 ≡ 𝐼(𝒮1) − 𝐼(𝒮2) and Δ𝐾 = 𝐾(𝒮1) − 𝐾(𝒮2), where 𝒮1, 𝒮2 are two arbitrary spacelike
hypersurfaces. Let also 𝒱 denote the volume bounded by 𝒮1 and 𝒮2 and 𝒯 a worldtube
that includes the support of 𝑇 𝑎𝑏. Then, by using Stokes’ theorem and the Leibniz rule,
we readily find

Δ𝐼 = ∫
𝒱

∇𝑎(𝑇 𝑎𝑏𝜉𝑏) d𝑉 = ∫
𝒱

[(∇𝑎𝑇 𝑎𝑏)𝜉𝑏 + 𝑇 𝑎𝑏∇(𝑎𝜉𝑏)] d𝑉 = 0 , (4.76a)

Δ𝐾 = ∫
𝒱

∇𝑐(𝜉𝑐𝑇 𝑎𝑏𝛿𝑔𝑎𝑏) d𝑉 = ∫
𝒱

[(ℒ𝜉𝑇 𝑎𝑏)𝛿𝑔𝑎𝑏 + 𝑇 𝑎𝑏ℒ𝜉𝛿𝑔𝑎𝑏] d𝑉 = 0 , (4.76b)

16Asymptotically, the Killing vector field (3.7) reduces to a linear combination of the generators
𝑡𝑎 and 𝜙𝑎 of time translations and spatial rotations, such that Ω should be treated as a constant
while evaluating the surface integral (4.73).
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where d𝑉 is the invariant volume element. We used the local conservation of energy
and momentum, ∇𝑎𝑇 𝑎𝑏 = 0, together with Killing’s equation ∇(𝑎𝜉𝑏) = 0, which implies
∇𝑐𝜉𝑐 = 0, the gauge choice 𝛿𝑘𝑎 = 0, and finally ℒ𝜉𝑇 𝑎𝑏 = 0.

As a final note, we mention that both integrals (4.75) are also invariant under Lie-
dragging of the hypersurface 𝒮 in the direction of 𝜉𝑎. Given a spacelike hypersurface 𝒮 and
a small positive number 𝜖, let 𝒮𝜖 denote the hypersurface obtained by Lie-dragging 𝒮0 along
the direction 𝜖𝜉𝑎. With the shorthands 𝐼0 ≡ 𝐼(𝒮0), 𝐼𝜖 ≡ 𝐼(𝒮𝜖) and ̇𝐼 ≡ lim𝜖→0 (𝐼𝜖 − 𝐼0)/𝜖,
we have

̇𝐼 = − ∫
𝒮0

ℒ𝜉(𝜀𝑎𝑏𝑐𝑑 𝑇 𝑑𝑒𝜉𝑒) = 0 , (4.77a)

�̇� = − ∫
𝒮0

ℒ𝜉(𝜀𝑎𝑏𝑐𝑑 𝜉𝑑 𝑇 𝑒𝑓𝛿𝑔𝑒𝑓) = 0 , (4.77b)

as a consequence of the Leibniz rule, ℒ𝜉𝜀𝑎𝑏𝑐𝑑 = 0 and ℒ𝜉𝑇 𝑎𝑏 = 0 and Eq. (4.61). The fact
that the right-hand side of Eq. (4.71) is invariant under Lie-dragging in the direction of
𝜉𝑎 is consistent with the invariance (4.76) of 𝐼 and 𝐾 on the choice of hypersurface.
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The First Law at dipolar order

Comme une pierre que l’on jette dans l’eau vive d’un ruisseau, et qui
laisse derrière elle des milliers de ronds dans l’eau. Comme un

manège de lune avec ses chevaux d’étoiles, comme un anneau de
Saturne, un ballon de carnaval. Comme le chemin de ronde que font
sans cesse les heures, le voyage autour du monde d’un tournesol dans

sa fleur.
M. LEGRAND,

Les Moulins de mon Cœur (1968)

⋄

This chapter is dedicated to the derivation of the first law of mechanics, for a system of
two spinning, massive points particles. It relies on a number of results that have been

obtained in the previous chapters, in particular: (1) the skeleton stress-energy-momentum
tensor of a dipolar particle discussed in Chap. 2; (2) a number of key, geometrical identities
derived from the helical isometry in Chap. 3, and (3) the generalized first law of mechanics
valid for an arbitrary distribution of matter obtained in Chap. 4. First, we provide a
detailed and explicit computation of the first law in Sec. 5.1 in terms of the particle’s
multipoles. The derivation is fully covariant, and the result free of any spin supplementary
condition. Then, we rewrite it in terms of geometrical scalars associated to the helical
Killing field, and scalar multipoles in Sec. 5.2. Lastly, in Sec. 5.3 we discuss how our result
compares (and reduces) to the Hamiltonian first law of mechanics found in the literature.

143
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5.1 Derivation
In this first section we derive the first law of mechanics, for a binary system of dipolar
particles moving along an exactly circular orbit. We begin in Sec. 5.1.1 by choosing the
spacelike hypersurface of integration in order to simplify the calculations. Then, from the
integral form of the first law derived in Sec. 4.3, we compute in Sec. 5.1.2 the two integrals
that appear in the right-hand side of (4.74). The resulting expressions are simplified alge-
braically in Sec. 5.1.3, and those results are combined in Sec. 5.1.4 to establish the final
formula. Throughout this section we do not impose the SSC (2.64) to keep the results as
general as possible.

Note: the derivation presented in this chapter relies heavily on a large number of
identities established in Chap. 2, in particular Sec. 2.3. There, these formulae were
written for a quadrupolar particle. For the remaining of this chapter, in which we limit
ourselves to the dipolar case, any quadrupolar term (i.e., one that includes a contribution
with 𝐽𝑎𝑏𝑐𝑑) imported from Chap. 2 will be systematically set to zero.

5.1.1 Choice of spacelike hypersurface
We proved in Chap. 3, Sec. 4.3 that the right-hand side of the identity (4.74) does not
depend on the choice of spacelike hypersurface 𝒮 . We may thus conveniently choose this
hypersurface such that, for each particle, the Killing field 𝑘𝑎 is orthogonal to 𝒮 at the
intersection point 𝒫 ≡ 𝒮 ∩ γ, i.e.

𝑘𝑎 𝒫= |𝑘|𝑛𝑎 , (5.1)

where 𝑛𝑎 is the future-directed, unit normal to 𝒮 . Since 𝑘𝑎|γ = 𝑧𝑢𝑎, this implies 𝑛𝑎|𝒫 = 𝑢𝑎

and |𝑘|𝒫 = 𝑧, where the redshift parameter 𝑧 was shown in Chap. 3, Sec. 3.2.1 to be
constant along γ. More generally, one may introduce a foliation of the spacetime manifold
ℰ by a family of spacelike hypersurfaces (𝒮𝑡)𝑡∈ℝ such that Eq. (5.1) holds at any point
𝒫 ∈ γ, so that

𝑘𝑎 γ= |𝑘|𝑛𝑎 , (5.2)

where 𝑛𝑎 is the future-directed, unit normal to the family (𝒮𝑡)𝑡∈ℝ of spacelike hypersur-
faces, such that 𝑛𝑎|γ = 𝑢𝑎. Along γ, the norm |𝑘|γ = 𝑧 of the helical Killing field then
plays the role of a constant lapse function, and 𝑘𝑎 that of the normal evolution vector
(see, e.g., Ref. [512]). According to our findings in Chap. 3, we then have ℒ𝑘𝑛𝑎|γ = 0,
such that the extrinsic curvature vanishes at any point along γ:

𝐾𝑎𝑏 ≡ −1
2ℒ𝑛γ𝑎𝑏

γ= − 1
2|𝑘|ℒ𝑘γ𝑎𝑏

γ= − 1
|𝑘|𝑛(𝑎ℒ𝑘𝑛𝑏)

γ= 0 , (5.3)

where γ𝑎𝑏 ≡ 𝑔𝑎𝑏 + 𝑛𝑎𝑛𝑏 is the induced metric on any spacelike hypersurface of the fo-
liation, so that 𝑛𝑎γ𝑎𝑏 = 0. By combining (5.3) with the equalities 𝑛𝑎|γ = 𝑢𝑎 and
𝑛′

𝑎|γ ≡ 𝑛𝑐∇𝑐𝑛𝑎|γ = �̇�𝑎, the usual 3+1 formula for the gradient of the unit normal to
𝒮 becomes [512]

∇𝑎𝑛𝑏 = −𝐾𝑎𝑏 − 𝑛𝑎𝑛′
𝑏

γ= −𝑢𝑎�̇�𝑏 . (5.4)

We emphasize that Eqs. (5.2)–(5.4) are valid only along the worldline γ, and thus in partic-
ular at the intersection point 𝒫 = 𝒮 ∩ γ with a given hypersurface 𝒮 . Most importantly,
one cannot choose the hypersurface 𝒮 such that (5.1) holds in an open neighborhood of
𝒫 . This is closely related to the helical nature of the Killing vector field (3.7), whose
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worldline

Figure 5.1: The normal 𝑛𝑎 of the integration hypersurface 𝒮 is parallel to the four-velocity 𝑢𝑎

(and thus to 𝑘𝑎 = 𝑧𝑢𝑎) only at the intersection point 𝒫 ≡ γ∩ 𝒮 . Elsewhere, the vector fields 𝑘𝑎

and 𝑛𝑎 are not tangent, due to the helical nature of the former.

twist (3.54) does not vanish everywhere, and which, by Frobenius’ theorem, cannot be
hypersurface orthogonal [354].

5.1.2 Hypersurface integrals
In this subsection, we provide integrated expressions for the integrals 𝐼 and 𝐾 that appear
in the right-hand side of the first law, as given in the form (4.74). To avoid being repetitive,
we shall detail the calculation for 𝐼 only, and merely quote the final result for 𝐾.

We begin by substituting the dipolar SEM tensor (2.58) into the definition (4.75a) of
𝐼 to obtain

𝐼 = ∫
𝒮

∫
γ

𝑢(𝑎𝑝𝑏)𝑘𝑏 𝛿4 d𝜏dΣ𝑎 + ∫
𝒮

∫
γ

∇𝑐(𝑢(𝑎𝑆𝑏)𝑐𝛿4)𝑘𝑏 d𝜏dΣ𝑎 . (5.5)

To evaluate those two integrals, it is convenient to consider the foliation (𝒮𝑡)𝑡∈ℝ introduced
above, and to choose for 𝒮 one of the leaves of this foliation, say 𝒮𝑡0 for some fixed
𝑡0 ∈ ℝ. We recall that 𝑛𝑎 denotes the future-directed, unit normal to any leaf 𝒮𝑡 and
𝛾𝑎𝑏 ≡ 𝑔𝑎𝑏 +𝑛𝑎𝑛𝑏 the induced metric on 𝒮𝑡. After performing the change of variable 𝜏 → 𝑡,
while using standard 3+1 formulae [512] d𝜏 = 𝑁d𝑡, dΣ𝑎 = −𝑛𝑎

√𝛾 d3𝑥 and 𝑁√𝛾 = √−𝑔,
where 𝑁 is the lapse function, 𝛾 ≡ det (𝛾𝑖𝑗) and 𝑔 ≡ det (𝑔𝛼𝛽), we obtain

𝐼 = − ∫
ℰ

𝑢(𝑎𝑝𝑏)𝑘𝑏𝑛𝑎 𝛿4 d𝑉 − ∫
ℰ

∇𝑐(𝑢(𝑎𝑆𝑏)𝑐𝛿4)𝑘𝑏𝑛𝑎 d𝑉 , (5.6)

with d𝑉 = √−𝑔 d𝑡 d3𝑥 the invariant 4-volume element over ℰ = ⋃𝑡∈ℝ 𝒮𝑡. The first
integral in (5.6) can readily be evaluated by using the defining property (A.15) of the
invariant Dirac distribution 𝛿4. Using the Leibniz rule and applying Stokes’ theorem to
the second integral yields

∫
ℰ

∇𝑐(𝑢(𝑎𝑆𝑏)𝑐𝛿4)𝑘𝑏𝑛𝑎 d𝑉 = ∫
𝜕ℰ

𝑢(𝑎𝑆𝑏)𝑐𝑘𝑏𝑛𝑎 𝛿4 dΣ𝑐 − ∫
ℰ

𝑢(𝑎𝑆𝑏)𝑐∇𝑐(𝑘𝑏𝑛𝑎) 𝛿4 d𝑉 . (5.7)

The boundary term vanishes because its support is restricted to the single point 𝒫 = γ∩𝒮 ,
which does not intersect the boundary 𝜕ℰ of the manifold ℰ . The remaining integral over
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ℰ in (5.7) can be evaluated once again by means of the property (A.15). Finally, we obtain
the expression

𝐼 = −𝑢(𝑎𝑝𝑏)𝑘𝑏𝑛𝑎 + 𝑢(𝑎𝑆𝑏)𝑐∇𝑐(𝑘𝑏𝑛𝑎) . (5.8)

For the integral 𝐾 defined in Eq. (4.75b) we follow the exact same steps, i.e., we
perform a 3+1 decomposition, integrate by parts, apply Stokes’ theorem, and lastly we
use Eq. (A.15). We obtain the integrated formula

𝐾 = 𝑝𝑎𝑘𝑏𝛿𝑔𝑎𝑏 + 𝑢𝑏𝑆𝑐𝑑∇𝑑(𝑘𝑎𝑛𝑎𝛿𝑔𝑏𝑐) . (5.9)

It should be understood that Eqs. (5.8)–(5.9) are to be evaluated at the point 𝒫 . There-
fore, in the first term in the right-hand side of Eq. (5.8), one may freely use (5.1), which
implies in particular 𝑛𝑎|𝒫 = 𝑢𝑎. However, those relations cannot be used in the second
term in the right-hand side of Eqs. (5.8) and (5.9), because the formula (5.1) is only valid
at 𝒫 , and not in an open neighborhood of it. Finally, we note that the expressions (5.8)
and (5.9) hold irrespective of a particular choice of SSC.

5.1.3 Algebraic reduction of 𝐼 and 𝐾
We shall now simplify algebraically the expressions (5.8)–(5.9) for the integrals 𝐼 and 𝐾.
We start with the result (5.8). First, as 𝑢𝑎𝑛𝑎 = −1 and 𝑘𝑏𝑛𝑎 = 𝑘𝑎𝑛𝑏 at 𝒫 by virtue
of (5.1), the first term is simply 𝑝𝑎𝑘𝑎. For the second term, we expand the symmetry in
𝑢(𝑎𝑆𝑏)𝑐 and the gradient ∇𝑐(𝑘𝑏𝑛𝑎) by the Leibniz rule. This gives

𝐼 = 𝑝𝑎𝑘𝑎 + 1
2(𝑢𝑎𝑆𝑏𝑐 + 𝑢𝑏𝑆𝑎𝑐)(𝑛𝑎∇𝑐𝑘𝑏 + 𝑘𝑏∇𝑐𝑛𝑎) . (5.10)

By substituting the formula (5.4) into Eq. (5.10), while using Killing’s equation ∇(𝑎𝑘𝑏) = 0,
the helical constraint 𝑘𝑎|γ = 𝑧𝑢𝑎, which implies 𝑢𝑎𝑘𝑎 = −𝑧 and �̇�𝑎 = 𝑧𝑢𝑎, as well as
𝑛𝑎|𝒫 = 𝑢𝑎 and the orthogonality 𝑢𝑎�̇�𝑎 = 0, we readily obtain the simple expression

𝐼 = 𝑝𝑎𝑘𝑎 − 𝐷𝑎�̇�𝑎 + 1
2𝑆𝑎𝑏∇𝑎𝑘𝑏 , (5.11)

where we recall that 𝐷𝑎 = −𝑆𝑎𝑏𝑢𝑏 is the mass dipole moment with respect to γ. Lastly,
we can simplify the first term on the right-hand side of (5.11) by using the equality
𝑘𝑎|𝒫 = 𝑧𝑢𝑎 and the definition (2.60) of the rest mass 𝑚, and use Leibniz rule combined
with the constraint 𝐷𝑎𝑢𝑎 = 0, yielding

𝐼 = −𝑚𝑧 + �̇�𝑎𝑘𝑎 + 1
2𝑆𝑎𝑏∇𝑎𝑘𝑏 . (5.12)

Next we turn to the simplification of K. We start with equation (5.9) by expanding the
covariant derivative in the second term by the Leibniz rule. This gives

𝐾 = 𝑝𝑏𝑘𝑐𝛿𝑔𝑏𝑐 − [(∇𝑑𝑘𝑎)𝑛𝑎𝛿𝑔𝑏𝑐 − 𝑘𝑎(∇𝑑𝑛𝑎)𝛿𝑔𝑏𝑐 − 𝑘𝑎𝑛𝑎∇𝑑𝛿𝑔𝑏𝑐]𝑆𝑑𝑏𝑢𝑐 , (5.13)

of which we will consider the three terms in brackets separately. For the first term, we use
Killing’s equation ∇(𝑎𝑘𝑏) = 0, as well as 𝑛𝑎|𝒫 = 𝑢𝑎, so that we can write (∇𝑑𝑘𝑎)𝑛𝑎|𝒫 =
−𝑧�̇�𝑑. The second one vanishes, since by Eqs. (3.30) and (5.4) it is proportional to
𝑢𝑎�̇�𝑎 = 0. In the third term, we use 𝑘𝑎𝑛𝑎|𝒫 = −𝑧. Renaming some indices and using
𝑘𝑐|𝒫 = 𝑧𝑢𝑐 in the remaining terms yields

𝐾 = (𝑝𝑎 − 𝑆𝑎𝑏�̇�𝑏)𝛿𝑘𝑎 + 𝑆𝑎𝑏𝑘𝑐∇𝑎𝛿𝑔𝑏𝑐 , (5.14)
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where we have also used 𝑘𝑐𝛿𝑔𝑏𝑐 = 𝛿𝑘𝑏, this last equality coming from Eq. (4.61) with
𝜉𝑎 = 𝑘𝑎. Now let us focus on the first term in the right-hand side of (5.14). First we
substitute the formula (2.61) and simplify the result by using the antisymmetry of 𝑆𝑎𝑏

and the Leibniz rule, so that

(𝑝𝑎 − 𝑆𝑎𝑏�̇�𝑏)𝛿𝑘𝑎 = 𝑚𝑢𝑎𝛿𝑘𝑎 + �̇�𝑎𝛿𝑘𝑎 . (5.15)

Second, we use in the right-hand side of (5.15) the identity 𝑢𝑎𝛿𝑘𝑎 = −2𝛿𝑧, which is derived
by applying Eqs. (4.61) and (3.30) to the equality 𝑢𝑎𝑘𝑎 = −𝑧. Substituting all this into
(5.14) gives the following final formula for the integral (4.75b):

𝐾 = −2𝑚𝛿𝑧 + �̇�𝑎𝛿𝑘𝑎 + 𝑆𝑎𝑏𝑘𝑐∇𝑎𝛿𝑔𝑏𝑐 . (5.16)

The formulae (5.12) and (5.16) for 𝐼 and 𝐾 are consistent with the results established
in Sec. 4.3, for their integral forms (4.75). Indeed, the right-hand sides of (5.12) and
(5.16) are independent of the normal vector 𝑛𝑎, and thus of the choice of hypersurface of
integration. Moreover, these expressions only involve Lie-dragged quantities: the tensors
𝑘𝑎, 𝛿𝑘𝑎 and 𝛿𝑔𝑎𝑏 were shown to be Lie-dragged in Sec. 4.3, while the velocity 𝑢𝑎 and the
multipoles (𝑝𝑎, 𝑆𝑎𝑏) were shown to be Lie-dragged in Chap. 3, Sec. 3.2.2, and 𝑧 and 𝑚 are
constants of motion. The only term for which we did not prove conservation thus far is
�̇�𝑎𝑘𝑎. Fortunately, this can be done thanks to a combination of identities established in
Chap. 2. Indeed, we have

𝐷𝑎�̈�𝑎 = 𝐷𝑎(�̇�𝑏∇𝑏𝑘𝑎) = −(𝐷𝑎∇𝑎𝑘𝑏)�̇�𝑏 = (𝑘𝑎∇𝑎𝐷𝑏)�̇�𝑏 = −�̇�𝑏�̇�𝑏 , (5.17)

where we used successively �̈�𝑎 = �̇�𝑏∇𝑏𝑘𝑎 (which follows from the Kostant formula (3.9)),
Killing’s equation (3.8), the Lie-dragging of the mass dipole (3.50), and the equality �̇�𝑎 =
𝑧�̇�𝑎 (which follows from (3.30)). Equation (5.17) readily implies that (𝐷𝑎𝑘𝑎) ̇= 0, thanks
to the Leibniz rule, and therefore each term on the right-hand side of (5.13) is separately
conserved along γ.

Combining all those results with the commutation of the Lie and covariant derivatives
(3.10), we find, as expected,

̇𝐼 = 𝑧−1ℒ𝑘𝐼 = 0 and �̇� = 𝑧−1ℒ𝑘𝐾 = 0 . (5.18)

As a final note, let us mention that up to the conserved dipolar term 𝐷𝑎�̇�𝑎, the
conserved integral (4.75a) is found to coincide with the Killing energy of a pole-dipole
particle, a constant of motion in the dynamics of dipolar particles, whose constancy is
naturally encoded in the GKF formalism [345, 346] (recall the discussion in Chap. 2,
Sec. 2.2.3).

5.1.4 Linear combination of 𝐼 and 𝐾
We are finally ready to combine the previous results for 𝐼 and 𝐾 in order to compute the
quantity 𝛿𝑊 ≡ −𝛿𝐼 +𝐾/2 which appears in the right-hand side of the variational identity
(4.74). Combining the variation of Eq. (5.12) with (5.16) readily gives

𝛿𝑊 = 𝛿(𝑚𝑧) − 𝛿(�̇�𝑎𝑘𝑎) − 1
2𝛿(𝑆𝑎

𝑏∇𝑎𝑘𝑏) − 𝑚𝛿𝑧 + 1
2�̇�𝑎𝛿𝑘𝑎 + 1

2𝑆𝑎𝑏𝑘𝑐∇𝑎𝛿𝑔𝑏𝑐 . (5.19)

Combining the first and fourth terms yields the monopolar contribution 𝑧𝛿𝑚. By expand-
ing the third term and factorizing by the spin tensor 𝑆𝑎𝑏 we obtain, after renaming some
indices,

𝛿𝑊 = 𝑧𝛿𝑚 − 𝑘𝑎𝛿�̇�𝑎 − 1
2�̇�𝑎𝛿𝑘𝑎 − 1

2∇𝑎𝑘𝑏𝛿𝑆𝑎
𝑏 − 1

2𝑆𝑎𝑏[𝑔𝑏𝑐𝛿(∇𝑎𝑘𝑐) − 𝑘𝑐∇𝑎𝛿𝑔𝑏𝑐] . (5.20)
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The last step is to show that the last term in the right-hand side vanishes identically.
The easiest way is to compute the commutator of 𝛿 and ∇𝑎 applied to both 𝑔𝑏𝑐 and 𝑘𝑐,
while expressing ∇𝑎 in terms of partial derivatives and Christoffel symbols (any coordinate
system will do). Then, using (4.61) and the condition ∇𝑎𝑔𝑏𝑐 = 0 of metric compatibility,
one gets 𝑔𝑏𝑐𝛿(∇𝑎𝑘𝑐) − 𝑘𝑐∇𝑎𝛿𝑔𝑏𝑐 = 𝑘𝑐 𝛿Γ𝑐

𝑎𝑏, which is symmetric under 𝑎 ↔ 𝑏. But since it
is contracted with 𝑆𝑎𝑏 = 𝑆[𝑎𝑏], the whole term vanishes identically. At last, we find

𝛿𝑊 = 𝑧𝛿𝑚 − 𝑘𝑎𝛿�̇�𝑎 − 1
2�̇�𝑎𝛿𝑘𝑎 − 1

2∇𝑎𝑘𝑏𝛿𝑆𝑎
𝑏 . (5.21)

To obtain the first law of binary mechanics in its final form, we note that the result
(5.21) is valid for a single dipolar particle in the binary system. Given the definitions
(4.75) of 𝐼 and 𝐾, as well as the linearity of the first law (4.74) with respect to the SEM
tensor, we have 𝛿𝑀 −Ω 𝛿𝐽 = 𝛿𝑊1+𝛿𝑊2, where 𝛿𝑊i is given by Eq. (5.21) and corresponds
to the contribution of particle i ∈ {1, 2} to the binary system. Our final result thus reads

𝛿𝑀 − Ω 𝛿𝐽 = ∑
i

(𝑧i 𝛿𝑚i − 1
2∇𝑎𝑘𝑏 𝛿𝑆𝑎

i 𝑏 − 𝑘𝑎 𝛿�̇�𝑎
i − 1

2�̇�𝑎
i 𝛿𝑘𝑎), (5.22)

where 𝑧i, 𝑚i, 𝑆𝑎
i 𝑏 and 𝐷𝑎

i are the redshift, the rest mass, the spin tensor and the mass
dipole of the ith particle, respectively.

The variational formula (5.22) is one of the most important results of this chapter.
Let us comment on this particular form of the first law of binary mechanics. First, in the
simplest case of a binary system of nonspinning particles, for which 𝑆𝑎𝑏

i = 0, which implies
𝐷𝑎

i = 0, Eq. (5.22) reduces to the standard result already established in Ref. [386], albeit
by following a different route. Second, Eq. (5.22) is exact to dipolar order, in the sense
that no truncation in the spin tensor has been performed. Third, by imposing the SSC
(2.64), the last two terms in the right-hand side of (5.22) vanish identically, and the first
law takes the simple form

𝛿𝑀 − Ω 𝛿𝐽 SSC= ∑
i

|𝑘| 𝛿𝑚i − 1
2 ∑

i
(∇𝑎𝑘𝑏) 𝛿𝑆𝑎

i 𝑏 , (5.23)

where we used the fact that the redshift 𝑧i coincides with the norm of the Killing field
along the wordline γi, and we recall that 𝑚i = −𝑝𝑎

i 𝑢i
𝑎. Equation (5.23) naturally suggests

that, at higher multipolar order, the right-hand side of the first law may take the form of
a multipolar expansion, with multipole index ℓ, that reads schematically (getting rid of
spacetime indices)

𝛿𝑀 − Ω 𝛿𝐽 ∼ ∑
i

∑
ℓ⩾0

(∇ ⋯ ∇𝑘)⏟⏟⏟⏟⏟
ℓ derivatives

𝛿𝑄(ℓ)
i . (5.24)

5.2 Spin precession
In this section, we will focus on a single dipolar particle of the binary system and introduce
an orthonormal tetrad along its worldline γ. Combined with the SSC (2.64), this will allow
us to define an Euclidean 3-vector associated with the covariant spin 𝑆𝑎 of the particle.
We then discuss the evolution along γ of this 3-vector, with respect to a preferred frame
that is Lie-dragged along γ. This will allow us, in the next section, to formulate the first
law (5.23) in terms of scalar quantities.
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5.2.1 Orthonormal tetrad
We introduce an orthonormal tetrad (𝑒𝑎

𝛼) = (𝑒𝑎
0, 𝑒𝑎

𝑖 ), where 𝑒𝑎
0 = 𝑢𝑎 is taken to coincide

with the 4-velocity along γ, while the italic Roman subscript 𝑖 ∈ {1, 2, 3} labels the
spacelike vectors of the triad (𝑒𝑎

1, 𝑒𝑎
2, 𝑒𝑎

3). By construction, those four vectors satisfy the
orthonormality conditions

𝑔𝑎𝑏𝑒𝑎
𝑖 𝑒𝑏

𝑗 = 𝛿𝑖𝑗 and 𝑔𝑎𝑏𝑒𝑎
𝑖 𝑢𝑏 = 0 , (5.25)

and 𝑢𝑎𝑢𝑎 = −1, where 𝛿𝑖𝑗 is the Kronecker symbol. We are interested in the evolution of
this tetrad along the worldline γ. It is natural to first expand the vectors �̇�𝑎 and ̇𝑒𝑎

𝑖 along
the tetrad. Using the fact that �̇�𝑎𝑢𝑎 = 0 and �̇�𝑎𝑒𝑎

𝑖 = −𝑢𝑎 ̇𝑒𝑎
𝑖 , these expansions take the

form1

�̇�𝑎 = 𝑎𝑖𝑒𝑎
𝑖 and ̇𝑒𝑎

𝑖 = 𝑎𝑖𝑢𝑎 + 𝜔𝑖𝑗𝑒𝑎
𝑗 , (5.26)

with the tetrad components 𝑎𝑖 ≡ �̇�𝑎𝑒𝑎
𝑖 = −𝑢𝑎 ̇𝑒𝑎

𝑖 and 𝜔𝑖𝑗 ≡ 𝑔𝑎𝑏 ̇𝑒𝑎
𝑖 𝑒𝑏

𝑗. Those are closely
related to the so-called Ricci rotation coefficients of the tetrad formalism in general rel-
ativity [5]. Notice that the orthogonality relations (5.25) and the metric compatibility
∇𝑐𝑔𝑎𝑏 = 0 imply the antisymmetry of 𝜔𝑖𝑗:

𝜔𝑖𝑗 = 𝑔𝑎𝑏 ̇𝑒𝑎
𝑖 𝑒𝑏

𝑗 = −𝜔𝑗𝑖 . (5.27)

Consequently, 𝜔𝑖𝑗 may be viewed as a 3×3 antisymmetric matrix with 3 degrees of freedom.
It is then natural to introduce a dual 3-vector 𝝎 whose components 𝜔𝑖 are given by

𝜔𝑖 ≡ −1
2𝜖𝑖𝑗𝑘𝜔𝑗𝑘 ⟺ 𝜔𝑖𝑗 = −𝜖𝑖𝑗𝑘𝜔𝑘 , (5.28)

where 𝜖𝑖𝑗𝑘 is the totally antisymmetric Levi-Civita symbol, such that 𝜖123 = 1. Thus far,
𝜔𝑖 and 𝑎𝑖 merely encode the evolution of the tetrad vectors along γ. As we shall see in
the next subsections, for a geometrically motivated class of tetrads, they can be given a
fairly simple physical interpretation.

5.2.2 Spin precession
In Sec. 2.3.2 we showed how the SSC (2.64) implies the existence of a spacelike spin vector
𝑆𝑎, defined in Eq. (2.69). Let us now expand this vector over the triad. By Eq. (2.70a)
we have 𝑆𝑎𝑢𝑎 = 0, so the expansion only involves spatial components 𝑆𝑖, such that

𝑆𝑎 = 𝑆𝑖𝑒𝑎
𝑖 with 𝑆𝑖 ≡ 𝑆𝑎𝑒𝑎

𝑖 . (5.29)

An Euclidean spin vector S can be defined from the three components 𝑆𝑖. Those are
related to the tetrad components 𝑆𝑖𝑗 ≡ 𝑆𝑎𝑏𝑒𝑎

𝑖 𝑒𝑏
𝑗 of the spin tensor 𝑆𝑎𝑏 by an equation

analogous to Eq. (5.28), namely

𝑆𝑖 = −1
2𝜖𝑖𝑗𝑘𝑆𝑗𝑘 ⟺ 𝑆𝑖𝑗 = −𝜖𝑖𝑗𝑘𝑆𝑘 , (5.30)

where we used the definition (2.69) and the formula 𝜀𝑎𝑏𝑐𝑑𝑢𝑏𝑒𝑐
𝑖 𝑒𝑑

𝑗 = 𝜖𝑖𝑗𝑘𝑒𝑘
𝑎, which follows

from the expansion 𝜀𝑎𝑏𝑐𝑑 = −4! 𝑢[𝑎𝑒𝑏
1𝑒𝑐

2𝑒𝑑]
3 of the volume form 𝜀𝑎𝑏𝑐𝑑 on the orthonormal

1Since the labels (𝑖, 𝑗, 𝑘, … ) correspond to internal Euclidean indices, we may raise them and
lower them indistinctly.
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basis (𝑢𝑎, 𝑒𝑎
𝑖 ). Equation (5.30) allows us to compute the Euclidean norm of the spin vector

S, which is found to be conserved, in the sense that [recall Eqs. (2.60c) and (2.66)]

𝛿𝑖𝑗𝑆𝑖𝑆𝑗 = 1
2𝑆𝑎𝑏𝑆𝑎𝑏 = 𝑆2 . (5.31)

Next, we look for an equation of evolution along γ for the Euclidean spin vector
S = (𝑆𝑖). To do so, we simply compute the proper time derivative of the equality 𝑆𝑖 = 𝑆𝑎𝑒𝑎

𝑖
while using Eqs. (2.72) and (5.26). With the help of Eq. (5.25), the resulting formula can
be turned into an evolution equation for S that reads

̇𝑆𝑖 = 𝜔𝑖𝑗𝑆𝑗 ⟺ Ṡ = 𝝎 × S , (5.32)

where we used (5.28) to introduce a cross product. With this Newtonian-looking (but
exact) equation of precession for the spin vector S, the vector 𝝎 can be interpreted as the
precession frequency vector for S. This spin vector precesses in the (𝑒𝑎

𝑖 ) frame with an
angular frequency 𝜔 given by

𝜔2 ≡ 𝛿𝑖𝑗𝜔𝑖𝜔𝑗 = 1
2𝜔𝑖𝑗𝜔𝑖𝑗 = 1

2( ̇𝑒𝑎
𝑖 ̇𝑒𝑖

𝑎 + �̇�𝑎�̇�𝑎) , (5.33)

where the last two equalities follow from the relations (5.28) and (5.27), respectively,
together with the identity 𝛿𝑖𝑗𝑒𝑎

𝑖 𝑒𝑏
𝑗 = 𝑔𝑎𝑏 + 𝑢𝑎𝑢𝑏. Despite the natural interpretation of

(5.32) as a spin precession equation for the 3-vector S, the precession frequency 3-vector
𝝎 depends on the choice of triad [as Eq. (5.33) illustrates most clearly], and as such has
no invariant meaning.

5.2.3 A geometrically-motivated class of tetrads
In order to give an invariant meaning to the spin precession frequency, thereafter we shall
restrict ourselves to the geometrically-motivated class of tetrads (𝑢𝑎, 𝑒𝑎

𝑖 ) that are Lie-
dragged along the helical Killing field 𝑘𝑎, or equivalently along 𝑢𝑎. Because we already
have ℒ𝑘𝑢𝑎 = 0 (cf. Chap. 3), we additionally require that

ℒ𝑘𝑒𝑎
𝑖 = 0 . (5.34)

Since 𝑘𝑎|γ = 𝑧𝑢𝑎, the formula (5.34) implies that 𝑒𝑎
𝑖 evolves along γ according to 𝑧 ̇𝑒𝑎

𝑖 =
𝑒𝑐

𝑖 ∇𝑐𝑘𝑎. Using the expansions (5.26) and projecting on the tetrad readily implies

𝑧𝜔𝑖𝑗 = 𝑒𝑎
𝑖 𝑒𝑏

𝑗∇𝑎𝑘𝑏 , (5.35a)
𝑧𝑎𝑖 = 𝑢𝑎𝑒𝑏

𝑖∇𝑎𝑘𝑏 , (5.35b)

which shows that 𝜔𝑖𝑗 is manifestly antisymmetric via Killing’s equation. This provides a
new interpretation of 𝜔𝑖𝑗 and 𝑎𝑖 which are, up to a factor of 𝑧, the space-space and space-
time components of the Killing 2-form ∇𝑎𝑘𝑏 in the Lie-dragged tetrad, respectively.2 In
other words,

∇𝑎𝑘𝑏 γ= 2𝑧𝑎𝑖𝑒[𝑎
𝑖 𝑢𝑏] + 𝑧𝜔𝑖𝑗𝑒𝑎

𝑖 𝑒𝑏
𝑗 . (5.36)

This formula will allow us to compute, in Sec. 5.2.4, the norm of ∇𝑎𝑘𝑏 along γ. Notice also
that, since ℒ𝑘∇𝑎𝑘𝑏 = ∇𝑎ℒ𝑘𝑘𝑏 = 0 (recall Eq. (3.10)) and ℒ𝑘𝑧 = 𝑧 ̇𝑧 = 0, both right-hand
sides of Eqs. (5.35) are Lie-dragged, such that

�̇�𝑖𝑗 = 𝑧−1ℒ𝑘𝜔𝑖𝑗 = 0 , (5.37a)
̇𝑎𝑖 = 𝑧−1ℒ𝑘𝑎𝑖 = 0 . (5.37b)

2The time-time component 𝑢𝑎𝑢𝑏∇𝑎𝑘𝑏 vanishes by virtue of Killing’s equation ∇(𝑎𝑘𝑏) = 0.
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Combining this result with the definition (5.28) gives the important result that the pre-
cession frequency vector is constant along the worldline, in this Lie-dragged frame:

�̇� = 0 . (5.38)

On the other hand, we showed in Chap. 3, Sec. 3.2.2 that ℒ𝑘𝑆𝑎 = 0. From the definition
(5.29) and the property (5.34), it readily follows that

̇𝑆𝑖 = 𝑧−1ℒ𝑘𝑆𝑖 = 0 . (5.39)

Therefore each component 𝑆𝑖 is conserved along the worldline, and so is the vector S.
By the equation of spin precession (5.32), the spin S must thus satisfy 𝝎 × S = 0; as
a consequence it must be aligned or anti-aligned with the precession frequency vector 𝝎.
Introducing the notation n = (𝑛𝑖) for their common constant direction, such that n⋅n = 1,
we thus have

𝝎 = 𝜔 n , (5.40a)
S = 𝑆 n , (5.40b)

where 𝜔, 𝑆 and 𝑛𝑖 are constant. We emphasize that although the results (5.37)-(5.40)
express conservation laws, they have little dynamical contents by themselves, in the sense
that they rely crucially on the particular choice of a Lie-dragged triad obeying Eq. (5.34).

5.2.4 Precession frequency and vorticity
In this subsection, we shall express the Euclidean norm 𝜔 of the spin precession frequency
vector 𝝎 in terms of geometrically-defined quantities related to the helical Killing field
(3.7). This scalar will, in particular, be shown to be closely related to the vorticity 𝑉 𝑎

associated to 𝑘𝑎. Let us consider the norm |∇𝑘| of the 2-form ∇𝑎𝑘𝑏 along the worldline γ.
By making use of the orthogonality properties (5.25), the formula (5.36) readily implies

|∇𝑘|2 ≡ 1
2∇𝑎𝑘𝑏∇𝑎𝑘𝑏

γ= 𝑧2(𝜔2 − 𝑎2) , (5.41)

where we introduced 𝑎2 ≡ 𝐚 ⋅ 𝐚 = �̇�𝑎�̇�𝑎 by virtue of (5.26), and we recall that 𝜔2 ≡
𝝎 ⋅ 𝝎 = 1

2𝜔𝑖𝑗𝜔𝑖𝑗. All the scalar fields appearing in this formula are constant along γ, as
was shown in Chap. 3 and Eq. (5.38). The second term in the right-hand side of Eq. (5.41)
can alternatively be written as

𝑧2𝑎2 γ= ∇𝑎|𝑘|∇𝑎|𝑘| , (5.42)

where we made use of Eq. (3.74) derived in Chap. 3. Combining Eqs. (5.41) and (5.42)
yields an exact, coordinate-invariant and frame-independent expression for the (redshifted)
norm 𝑧𝜔 of the precession frequency 𝝎, namely

𝑧2𝜔2 γ= 1
2∇𝑎𝑘𝑏∇𝑎𝑘𝑏 + ∇𝑎|𝑘|∇𝑎|𝑘| . (5.43)

This simple formula generalizes — for a spinning particle that follows a nongeodesic motion
driven by the Mathisson-Papapetrou spin force (2.57a) — the result of Refs. [435,436,513],
which was established in the particular case of a small but massive test spin that follows
a geodesic motion in a (properly regularized) helically-symmetric perturbed black hole
spacetime.
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To linear order in the spin, the motion is not geodesic because �̇�𝑎 = 𝑂(𝑆), as estab-
lished in Eq. (2.78). Therefore, the second term in the right-hand side of Eq. (5.43) is of
quadratic order in the spin, such that

𝑧𝜔 γ= |∇𝑘| + 𝑂(𝑆2) . (5.44)

Comparing this formula with Eq. (3) of Ref. [435] or Eqs. (2.11)–(2.12) of Ref. [436], we
notice an extra factor of the redshift 𝑧. This can easily be understood because the helical
Killing field considered in Ref. [435] is normalized such that 𝑘𝑎|γ = 𝑢𝑎 (equivalent to
𝑧 = 1), while the spin precession frequency considered in Ref. [436] is defined with respect
to the coordinate time 𝑡, and not with respect to the proper time 𝜏 (while 𝑧 = d𝜏/d𝑡 in
adapted coordinates).

We now establish a simple relation between the Lorentzian vorticity 𝑉 𝑎 and the Eu-
clidean spin precession frequency 𝝎, through the basis vectors of the Lie-dragged tetrad
introduced in Sec. 5.2.3. By substititing Eq. (5.36) into the definition (3.57) of the vorticity
and by using the identity 𝜀𝑎𝑏𝑐𝑑𝑢𝑏𝑒𝑐

𝑖 𝑒𝑑
𝑗 = 𝜖𝑖𝑗𝑘𝑒𝑘

𝑎 and the definition (5.28) of the precession
3-vector, we obtain

𝑉 𝑎 = 𝑧𝜔𝑖𝑒𝑎
𝑖 . (5.45)

Equation (5.45) establishes that the components of the vorticity 𝑉 𝑎 with respect to the
Lie-dragged frame (𝑒𝑎

𝑖 ) coincide—up to a redshift factor—with the Euclidean components
𝜔𝑖 of the spin precession frequency vector 𝝎. Moreover, by comparing Eq. (5.29) and
(5.45), we conclude that the Euclidean colinearity (5.40) of 𝝎 and S implies the Lorentzian
colinearity of 𝑉 𝑎 and 𝑆𝑎, in agreement with the conclusion (3.62) reached in Sec. 3.3.

Finally, using the orthonormality of the triad (𝑒𝑎
𝑖 ), we find that (5.45) implies the

following simple relationship between the Lorentzian norm 𝑉 of the vorticity 𝑉 𝑎 and the
Euclidean norm 𝜔 of spin precession frequency 𝝎:

𝑉 = 𝑧𝜔 . (5.46)

Alternatively, this conclusion could be reached by computing the norm of the vorticity
(3.57) and comparing it with Eq. (5.43). The conservation of 𝑧 and 𝜔 along γ [recall
Eq. (5.38)] is of course compatible with that of 𝑉 , as established in Sec. 3.3.

5.3 Hamiltonian first law of mechanics
In this section, we shall compare our variational formula (5.23) to the canonical Hamil-
tonian first law of mechanics established in Ref. [405], for a binary system of spinning
particles moving along circular orbits, for spins aligned or anti-aligned with the orbital
angular momentum. In Sec. 5.3.1 we first rewrite (5.23) in term of the scalars 𝜔 and 𝑆,
to linear order in the spins, by using a Lie-dragged tetrad as introduced in the previous
section. Then, in Sec. 5.3.2 the scalars 𝑆 and 𝜔 are shown to be related to the Euclidean
norms of the canonical spin variable and the spin precession frequency used in Ref. [405],
allowing us to prove the equivalence of the differential geometric first law (5.23) to the
Hamiltonian first law of Ref. [405].

5.3.1 Alternative form of the first law
In this first subsection, we write the dipolar contribution ∇𝑎𝑘𝑏 𝛿𝑆𝑎

𝑏 in Eq. (5.22) in terms
of the conserved scalars 𝜔 (or |∇𝑘|) and 𝛿𝑆 that were defined in Eqs. (5.33) [or Eq. (5.41)]
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and (5.31), respectively. We will do so at linear order in the spins, since this is all we need
in order to compare to the Hamiltonian first law of Ref. [405].

By using the formulas (2.69) and (3.58) for 𝑆𝑎
𝑏 and ∇𝑎𝑘𝑏, as well as the Leibniz rule

and the antisymmetry of 𝜀𝑎𝑏𝑐𝑑, we readily obtain

∇𝑎𝑘𝑏𝛿𝑆𝑎
𝑏 = 𝜀𝑎𝑏𝑐𝑑𝜀𝑎𝑏𝑒𝑓𝑢𝑒𝑉 𝑓𝛿(𝑢𝑐𝑆𝑑) + 𝜀 𝑏

𝑎 𝑒𝑓𝑢𝑒𝑉 𝑓𝑢𝑐𝑆𝑑 𝛿𝜀𝑎 𝑐𝑑
𝑏

+ 2𝜀𝑎𝑏𝑐𝑑𝑘𝑎�̇�𝑏 𝛿(𝑢𝑐𝑆𝑑) + (𝑘𝑎�̇�𝑏 − �̇�𝑎𝑘𝑏)𝑢𝑐𝑆𝑑 𝛿𝜀𝑎 𝑐𝑑
𝑏 . (5.47)

Let us consider those four terms successively. Using the Leibniz rule and the orthogonality
of 𝑢𝑎 to both 𝑉 𝑎 and 𝑆𝑎, the first term reduces to 2𝑉 𝑎𝛿𝑆𝑎 − 2𝑉 𝑐𝑆𝑐𝑢𝑎𝛿𝑢𝑎. With the help
of the identity 𝛿𝜀𝑎𝑏𝑐𝑑 = −1

2𝜀𝑎𝑏𝑐𝑑𝑔𝑒𝑓𝛿𝑔𝑒𝑓 , the second term simplifies to −𝑉 𝑎𝑆𝑏𝛿𝑔𝑎𝑏 +
𝑉 𝑐𝑆𝑐𝑢𝑎𝑢𝑏𝛿𝑔𝑎𝑏. Similarly, the third and fourth terms yield 2𝑆𝑎𝑏�̇�𝑎𝛿𝑢𝑏 and −𝑆𝑎𝑏�̇�𝑎𝑘𝑐𝛿𝑔𝑏𝑐,
respectively. Using 2𝑢𝑎𝛿𝑢𝑎 = 𝑢𝑎𝑢𝑏𝛿𝑔𝑎𝑏, as a consequence of 𝑢𝑎𝑢𝑎 = −1, as well as 𝛿𝑘𝑐 = 0,
we then obtain

∇𝑎𝑘𝑏𝛿𝑆𝑎
𝑏 = 2𝑉 𝑎𝛿𝑆𝑎 − 𝑉 𝑎𝑆𝑏𝛿𝑔𝑎𝑏 + 2𝑆𝑎𝑏�̇�𝑎𝛿𝑢𝑏 − 𝑆𝑎𝑏�̇�𝑎𝛿𝑘𝑏 . (5.48)

Next, we use the colinearity (3.62) of 𝑉 𝑎 and 𝑆𝑎, as a consequence of the SSC (2.64),
so that the first two terms combine to give 2𝑉 𝛿𝑆. The last two terms can be simplified
thanks to the SSC (2.64) and the helical constraint (3.30). Using the relation (5.46) we
finally obtain the simple result

∇𝑎𝑘𝑏𝛿𝑆𝑎
𝑏 = 2𝑧𝜔𝛿𝑆 + �̇�𝑎𝑆𝑎𝑏𝛿𝑘𝑏 . (5.49)

Therefore, the dipolar contribution in Eq. (5.23) involves a term 𝑧𝜔𝛿𝑆 that is linear in
spin and a term proportional to �̇�𝑎𝑆𝑎𝑏𝛿𝑘𝑏, which is quadratic in spin. Indeed, by virtue
of (2.78) we have

�̇�𝑎𝑆𝑎𝑏𝛿𝑘𝑏 = 1
𝑚𝑆𝑎𝐵𝑎𝑏𝑆𝑏𝑐𝛿𝑘𝑐 + 𝑂(𝑆3) . (5.50)

We are at last ready to write down the first law of compact binary mechanics in
terms of scalar quantities, to linear order in the spin amplitudes. To do so, we substitute
Eqs. (5.49)–(5.50) into (5.23) for each particle, and obtain the simple variational formula

𝛿𝑀 − Ω 𝛿𝐽 SSC= ∑
i

𝑧i (𝛿𝑚i − 𝜔i 𝛿𝑆i) + 𝑂(𝑆2
i ) . (5.51)

This is another important result of our work. Interestingly, for a helically symmetric
spacetime that contains one/two black holes, the necessary conditions of vanishing ex-
pansion and shear (i.e. Killing horizon) imply that each black hole must be in a state of
co-rotation [205, 381, 387, 405]. By contrast, for a binary system of dipolar particles, the
helical isometry merely constrains each spin vector Si to be aligned with the precession
frequency vector 𝝎i [recall Eqs. (5.40)], while the spin amplitude 𝑆i of each particle in
Eq. (5.51) is left entirely free.

Now, recalling that 𝑧i = |𝑘|i and 𝑧i𝜔i = |∇𝑘|i + 𝑂(𝑆2
i ), from Chap. 3 and Eq. (5.44)

above, the variational formula (5.51) looks explicitly like an expansion in powers of (the
norms of) the covariant derivatives of the helical Killing vector field 𝑘𝑎, namely

𝛿𝑀 − Ω 𝛿𝐽 SSC= ∑
i

(|𝑘|i 𝛿𝑚i − |∇𝑘|i 𝛿𝑆i) + 𝑂(𝑆2
i ) . (5.52)

This naturally suggests that, at the next quadrupolar order, one might obtain an additional
contribution of the form ∑i |∇∇𝑘|i 𝛿𝑄i, where the double covariant derivative of the helical
Killing field can be related to the curvature tensor through the Kostant formula (3.9), and
𝑄i would be the spacetime norm of the quadrupole moment tensor of each particle.
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5.3.2 Comparison to the Hamiltonian first law
By using the canonical Arnowitt-Deser-Misner (ADM) Hamiltonian framework of general
relativity applied to spinning point particles, the authors of Ref. [405] derived a first law
of mechanics for binary systems of compacts objects with spins aligned (or anti-aligned)
with the orbital angular momentum, to linear order in the spins. Our goal is to relate this
earlier result to the scalar version (5.51) of the first law, which also holds to linear order
in spins.

In Sec. 5.2 we have established the geometrical precession, with respect to an or-
thonormal frame (𝑒𝑎

𝑖 ) orthogonal to γ and Lie-dragged along it, of a Euclidean spin vector
S orthogonal to γ. Using 𝑧 = d𝜏/d𝑡, which holds in any coordinate system adapted to the
helical isometry (cf. Chap. 3), Eqs. (5.32) and (5.44) can be rewritten, for each particle,
in the equivalent form

dSi
d𝑡 = 𝑧i𝝎i × Si , where 𝑧i𝜔i

γi= |∇𝑘|i + 𝑂(𝑆2
i ) . (5.53)

As shown in Refs. [436, 514], one can relate this well established kinematical result to
dynamical properties of spin-orbit coupling in a binary system of spinning compact objects.

This can be done in the context of the canonical ADM Hamiltonian framework of
general relativity, applied to a binary system of spinning point masses with canonical
positions ri(𝑡), momenta pi(𝑡) and spins S̄i(𝑡). In the center-of-mass frame, the dynamics
depends on the relative position r ≡ r1 − r2, the relative momentum p ≡ p1 = −p2 and
the individual spins. The evolution of the canonical variables is then governed, to linear
order in the spins, by a canonical Hamiltonian

𝐻(r, p, S̄i) = 𝐻orb(r, p) + ∑
i

𝛀i(r, p) ⋅ S̄i , (5.54)

where the pseudo-vectors 𝛀i = 𝜎i L are both proportional to the orbital angular momen-
tum L = r × p, while 𝜎i is closely related to the “gyro-gravitomagnetic” ratio 𝑔i of the
i-th particle [515]. The usual Poisson bracket structure of the Cartesian components ̄𝑆𝑗

i
of the canonical spin S̄i ensures that the spin-orbit (linear-in-spin) part of the canoni-
cal Hamiltonian (5.54) implies Newtonian-looking, but exact precession equations of the
form [514]

dS̄i
d𝑡 = 𝛀i × S̄i . (5.55)

Consequently, the Euclidean norm ‖S̄i‖ of each canonical spin variable is conserved. For
that reason, the canonical variables S̄i are known as the “constant-in-magnitude” spins.
Those variables are, however, by no means unique. In particular, it can be shown that
the gauge freedom (local rotation group) to perform an infinitesimal rotation of S̄i can
be seen as being induced by an infinitesimal canonical transformation in the full phase
space [514].

Despite the striking similarity between Eqs. (5.53) and (5.55), the canonical spin vari-
able S̄i need not coincide with the Euclidean spin vector Si constructed from the compo-
nents of the 4-vector 𝑆𝑎

i along an orthonormal triad (𝑒𝑎
𝑖 ), and the precession frequency 𝑧i𝝎i

need not coincide with the coefficient 𝛀i appearing in the spin-orbit piece of the canonical
Hamiltonian (5.54). In fact, several definitions of a globally SO(3)-compatible, canonical
spin variable S̄ constructed from a spacelike, covariant 4-vector 𝑆𝑎 are possible [436,514].
For instance, given the spatial components 𝑆𝑖 of the covector 𝑆𝑎 = 𝑔𝑎𝑏𝑆𝑏 with respect to
an ADM coordinate system compatible with the Hamiltonian formulation, one may define
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a particular canonical spin variable according to

̄𝑆𝑖 = 𝐻𝑖𝑗𝑆𝑗 , (5.56)

where 𝐻𝑖𝑗 is the unique symmetric and positive definite square root of the effective metric
𝐺𝑖𝑗 ≡ 𝑔𝑖𝑗 − 2𝑔0(𝑖𝑣𝑗) + 𝑔00𝑣𝑖𝑣𝑗, which is constructed from the components 𝑔𝛼𝛽 of the
inverse metric and the components 𝑣𝛼 = 𝑢𝛼/𝑢0 of the coordinate 3-velocity of the particle
[514,516]. The key point is that the Euclidean norm ̄𝑆 ≡ ‖S̄‖ of the canonical spin variable
(5.56) is numerically equal to the norm (5.31) of the spin vector S (and is thus conserved):

̄𝑆2 ≡ 𝛿𝑖𝑗 ̄𝑆𝑖 ̄𝑆𝑗 = 𝑆2 . (5.57)

Moreover, the global SO(3) symmetry of the Hamiltonian dynamics generated by (5.54)
implies, in particular, that the conserved total angular momentum vector J has the simple,
additive form J = L+∑i S̄i [514]. For spins aligned or anti-aligned with the orbital angular
momentum L, this reduces to the algebraic equality

𝐽 = 𝐿 + ∑
i

̄𝑆i . (5.58)

Finally, in the particular case of circular orbits of angular velocity Ω, the analysis of
Ref. [436] (see also [435]) shows that, for each particle, the Euclidean norm Ωi ≡ ‖𝛀i‖ of
the precession frequency vector of the canonical spin variable S̄i is related to the Lorentzian
norm (5.41) of the helical Killing 2-form ∇𝑎𝑘𝑏 by the simple numerical link

Ωi = Ω − |∇𝑘|i . (5.59)

The occurence of the circular-orbit angular velocity Ω can be understood from the fact
that the precession frequency Ωi is defined with respect to the coordinate time of the global
chart associated with the 3+1 split required to construct the canonical Hamiltonian (5.54),
while the (redshifted) precession frequency 𝑧i𝜔i = |∇𝑘|i is defined with respect to a local
spatial frame that is Lie-dragged along the spinning particle’s worldline. Importantly, the
relation (5.59) was established to linear order in the spin amplitudes 𝑆i.

Substituting the relationships (5.57)–(5.59) into the geometric, scalar first law (5.51),
we readily find

𝛿𝑀 − Ω 𝛿𝐿 = ∑
i

(𝑧i 𝛿𝑚i + Ωi 𝛿 ̄𝑆i) + 𝑂( ̄𝑆2
i ) . (5.60)

Provided that the total mass 𝑀 coincides with the on-shell value of the Hamiltonian (5.54),
the variational formula (5.60) precisely agrees with the Hamiltonian first law of mechanics
derived in Ref. [405] [see Eq (4.6) there], for binary systems of spinning compact objects
moving along circular orbits, with spins aligned or anti-aligned with the orbital angular
momentum, to linear order in the spins. The first integral associated with the variational
formula (5.60) reads [405]

𝑀 − 2Ω𝐿 = ∑
i

(𝑧i𝑚i + 2Ωi ̄𝑆i) + 𝑂( ̄𝑆2
i ) . (5.61)

Combined with Eqs. (5.58) and (5.59), together with the formula (5.44), this agrees with
the “geometrical” first integral relation (6.43), as we shall see in the next chapter.
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Extensions at quadrupolar order

Le problème des marées présente une telle complication qu’il ne peut
guère être abordé du premier coup dans toute sa généralité et qu’il

convient d’en partager la difficulté.
H. POINCARÉ,

Sur l'équilibre et les mouvements des mers (1896)

⋄

In this last chapter, the aim is to extend the results of Chap. 5, obtained at dipolar
order, to account for several finite-size effects. In particular, we detail two quadrupolar

models, that account for the deformation of the physical body described by the particle:
a spin-induced quadrupole, which encodes the information on the response of a body to
its proper rotation, and a tidally-induced quadrupole, which accounts for the tidal effects.
These models are reviewed in Sec. 6.1 along with some useful identities and remarks
that will help afterwards. In Sec. 6.2, we derive an integral first law of mechanics at
quadrupolar order, valid for any quadrupolar model. This result extends the integral first
law that can be found in the literature for spinning particles, with which we make contact
for a comparison. This section includes many calculations that are covariant and free
of any spin supplementary condition. Lastly, in (the very short) Sec. 6.3, we provide a
number of preliminary results for the variational first law at quadrupolar order. Although
its derivation is still underway, we motivate and discuss the anticipated final result.
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6.1 Quadrupolar particles
We reviewed in Chap. 2, Sec. 2.3 the main results regarding quadrupolar particles. In
particular, we saw there that at the quadrupolar level, a particle is endowed with three
multipoles: the four-momentum 𝑝𝑎, the spin tensor 𝑆𝑎𝑏 and the quadrupole tensor 𝐽𝑎𝑏𝑐𝑑.
Associated to this particle is a SEM tensor, which takes the form of the dipolar part 𝑇 𝑎𝑏

dipo
and a quadrupolar part 𝑇 𝑎𝑏

quad (given in Chap. 2, Eqs. (2.58)-(2.59)) which we rewrite here
for convenience

𝑇 𝑎𝑏
dipo = ∫

γ
𝑢(𝑎𝑝𝑏) 𝛿4 d𝜏 + ∇𝑐 ∫

γ
𝑢(𝑎𝑆𝑏)𝑐 𝛿4 d𝜏 , (6.1a)

𝑇 𝑎𝑏
quad = 1

3 ∫
γ

𝑅 (𝑎
𝑐𝑑𝑒 𝐽𝑏)𝑐𝑑𝑒 𝛿4 d𝜏 − 2

3∇𝑐𝑑 ∫
γ

𝐽𝑐(𝑎𝑏)𝑑 𝛿4 d𝜏 . (6.1b)

We also pointed out that in that chapter that multipolar schemes do not provide an evo-
lution equation for 𝐽𝑎𝑏𝑐𝑑, and that closing the system of evolution equations requires (an
SSC and) an expression for 𝐽𝑎𝑏𝑐𝑑 in terms of the other unknowns of the problem, namely
the four-velocity 𝑢𝑎, the multipoles (𝑝𝑎, 𝑆𝑎𝑏), and the geometry (𝑔𝑎𝑏, 𝑅𝑎𝑏𝑐𝑑) evaluated at
the location of the particle. In this first section, we give the two types of quadrupolar
models that will be considered in this work.

Preliminaries
As we mentioned already in Chap. 2, the quadrupole tensor 𝐽𝑎𝑏𝑐𝑑 possesses the same
algebraic symmetries as the Riemann tensor 𝑅𝑎𝑏𝑐𝑑. This is reminiscent of its definition in
the Lagrangian formalism, as the conjugated momentum of the Riemann tensor. Using
these symmetries, we can decompose any quadrupole into a set of three tensors of smaller
rank, as [370,517,518]

𝐽𝑎𝑏𝑐𝑑 = ̂𝐽𝑎𝑏𝑐𝑑 + 2(𝑢[𝑎𝐽𝑏]𝑐𝑑 + 𝑢[𝑑𝐽𝑐]𝑏𝑎) − 4𝑢[𝑎𝐽𝑏][𝑐𝑢𝑑] , (6.2)

where ̂𝐽𝑎𝑏𝑐𝑑 is the stress quadrupole, 𝐽𝑎𝑏𝑐 the momentum quadrupole, and 𝐽𝑎𝑏 the mass
quadrupole, respectively. These names come from the fact that these tensors reduce to
their Newtonian equivalent (when they have one) in the right limit, as discussed in [519].
They are built from various space/time contractions of 𝐽𝑎𝑏𝑐𝑑, as

̂𝐽𝑎𝑏𝑐𝑑 ≡ 𝐽 �̂��̂� ̂𝑐 ̂𝑑 , 𝐽𝑎𝑐𝑑 ≡ 𝑢𝑏𝐽 �̂�𝑏 ̂𝑐 ̂𝑑 and 𝐽𝑎𝑏 ≡ 𝑢𝑐𝑢𝑑𝐽 �̂�𝑐�̂�𝑑 , (6.3)

reminding the reader that a hatted index denotes a projection orthogonal to the four-
velocity. Consequently, these tensors are orthogonal to 𝑢𝑎 with respect to all their indices
by construction, and verify the following algebraic symmetries, as can be checked easily

𝐽 [𝑎𝑏] = 0 , 𝐽𝑎(𝑏𝑐) = 0 and 𝐽 [𝑎𝑏𝑐] = 0 . (6.4)

In terms of components, 𝐽𝑎𝑏𝑐𝑑 contains 20 independent ones, with 6 in 𝐽𝑎𝑏 + 6 in 𝐽𝑎𝑏𝑐 +
8 in ̂𝐽𝑎𝑏𝑐𝑑. Each of the three terms in the right-hand side of Eq. (6.2) verifies the algebraic
symmetries of the Riemann tensor, and, therefore, any quadrupolar model should be of
one of these three forms. This will be the case for the two models considered below.

The previous “3+1” decomposition of 𝐽𝑎𝑏𝑐𝑑 depends only on its algebraic symmetries
and could very well be applied to the Riemann tensor 𝑅𝑎𝑏𝑐𝑑 itself. Instead of this 3+1
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expansion, we shall introduce the classical Hodge, electric-magnetic decomposition of the
Riemann tensor, much more convenient for our purpose. These two rank-2 tensors are
defined as follows

{𝐸𝑎𝑏 ≡ 𝑅𝑎𝑐𝑏𝑑𝑢𝑐𝑢𝑑 ,
𝐵𝑎𝑏 ≡ ⋆𝑅𝑎𝑐𝑏𝑑𝑢𝑐𝑢𝑑 , where ⋆ 𝑅𝑎𝑏𝑐𝑑 ≡ 1

2𝜀 𝑒𝑓
𝑎𝑏 𝑅𝑒𝑓𝑐𝑑 , (6.5)

is the self-dual of 𝑅𝑎𝑏𝑐𝑑. The two models of quadrupoles that will be considered will be
easily expressed in terms of these electric-part 𝐸𝑎𝑏 and magnetic-part 𝐵𝑎𝑏 of the Rie-
mann tensor. For a physical interpretation of these fundamental quantities, see [513] and
references therein.

6.1.1 Quadrupole models
Generally, the explicit form of a quadrupole tensor 𝐽𝑎𝑏𝑐𝑑 cannot be obtained1 from the
point-particle models presented in Chap. 2. However, if the quadrupole is expected to
depend on the pole-dipole properties of the body (and geometric quantities evaluated
at its location), then it is possible to infer the generic form that 𝐽𝑎𝑏𝑐𝑑 must have, if
it is to be compatible with a number of natural assumptions. The most natural way
of doing this is via some kind of effective-field-theory method, extending ideas from the
pole-dipole Lagrangian formalism presented in Chap. 2, Sec. 2.2.1. Giving details about
these constructions would be much beyond the scope of this chapter, and, for the overall
scheme of EFT we refer the reader to the recent review [194], as well as references therein.
Although a study of the compatibility between EFT assumptions and those of our work is
necessary (and underway), we shall simply use the EFT results “as is” in what follows, as
explicit expressions for the quadrupole. However, we shall work with formulae as general
as possible as long as we can. In particular, most of the following results will be valid for
any 𝐽𝑎𝑏𝑐𝑑, thanks to the generic decomposition in Eq. 6.2.

Spin-induced quadrupole
As in Newtonian gravity, we shall consider the deformation of a body resulting from
its proper rotation, or spin-induced quadrupole, denoted 𝐽𝑎𝑏𝑐𝑑

spin . Its expression is well-
known [194, 319, 518, 520–524], and, in a nutshell, results from the addition of a scalar in
the dipolar Lagrangian (2.13) that is (1) built from the Riemann tensor (evaluated at the
particle’s location) and the spin tensor 𝑆𝑎𝑏 of the body, and (2) preserves the aforemen-
tioned symmetry/conservation conditions for the Lagrangian. The unique possibility2 is
a term ∝ 𝐸𝑎𝑏𝑆𝑎

𝑐𝑆𝑐𝑏. Introducing a dimensionless, coupling constant, the spin-induced
quadrupole readily follows [319]

𝐽𝑎𝑏𝑐𝑑
spin ≡ 𝜅2

2𝑚𝑢[𝑎𝑆𝑏]𝑒𝑆 [𝑐
𝑒 𝑢𝑑] , (6.6)

where, in the prefactor 1/2𝑚 is conventional, and the dimensionless constant 𝜅2 measures
the quadrupolar “polarisability” of the body induced by its proper rotation. In practice,
one has 𝜅2 = 1 for an isolated (i.e. Kerr) black hole [154,525] and 𝜅2 ∼ 4−8 for a neutron
star [309,526,527], depending on its equation of state. In the EFT formalism, this constant

1Except for its 4-indices nature, its algebraic symmetries, and the actual number of degrees of
freedom that do enter the evolution equations, which is ten (i.e., 10 less than the total number of
independent degrees of freedom in 𝐽𝑎𝑏𝑐𝑑), see for example [367] for details.

2Under suitable redefinition (or re-absorption of terms) in the other multipoles [319,522,523].
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is simply the (non-minimal) coupling constant between gravity and the extended object,
and is written 𝐶𝐸𝑆2 [194]. Indeed, when 𝑆𝑎𝑏 is expressed into a spin vector 𝑆𝑎 (and thus
under a given SSC), the right-hand side of Eq. (6.6) is simply ∝ 𝐸𝑎𝑏𝑆𝑎𝑆𝑏. If no SSC
is imposed, then from the general (SSC-free) decomposition (cf. Chap. 2, Eq. (2.63)) of
𝑆𝑎𝑏 in terms of a spin vector 𝑆𝑎 and a mass dipole 𝐷𝑎, an easy calculation shows that
𝐿s also contains a term ∝ 𝐸𝑎𝑏𝐷𝑎𝐷𝑏. Since we try to impose the SSC as late as possible,
we keep the general expression (6.6) for now. Lastly, we note that the spin-induced
quadrupole gives a mass-type contribution to the total quadrupole 𝐽𝑎𝑏𝑐𝑑, according to the
decomposition Eq. (6.2).

Tidally-induced quadrupole
The spin-induced quadrupole arises naturally in the case of spinning particles. However,
there are also quadrupolar deformations to an extended body in the case of massive but
non-spinning bodies, in particular for binary systems, through tidal interactions. In this
case, the Lagrangian and/or EFT formalism can be applied and also gives explicit formulae
for the tidally-induced quadrupole. Once again, the idea is to add a scalar term to the (non-
spinning) point-particle Lagrangian that (1) depends on the Riemann tensor (evaluated at
the particle’s location), and (2) preserves the Lagrangian covariance and parametrization
invariance of the worldline. From these constraints, two possible contributions emerge,
and read [528–531] (see also Sec. 3.1 in [194]) one ∝ 𝐸𝑎𝑏𝐸𝑎𝑏 and another ∝ 𝐵𝑎𝑏𝐵𝑎𝑏. From
these expressions follows the tidally-induced quadrupole, made of two contributions, an
‘èlectric” one and a ”magnetic” one, given by

𝐽𝑎𝑏𝑐𝑑
elec = 3𝜇2

2 𝑢[𝑎𝐸𝑏][𝑐𝑢𝑑] , (6.7a)

𝐽𝑎𝑏𝑐𝑑
mag = −2𝜎2(𝑢[𝑎𝐵𝑏]𝑓𝜀𝑐𝑑

𝑒𝑓𝑢𝑒 + 𝑢[𝑐𝐵𝑑]𝑓𝜀𝑎𝑏
𝑒𝑓𝑢𝑒) , (6.7b)

where, again, the numerical prefactors are conventional in the literature, and this time
the constants 𝜇2 and 𝜎2 (so-called quadrupolar “tidal Love numbers”) have dimension
[length]5. Remarkably, 𝜇2 and 𝜎2 vanish for a nonspinning black hole [532–537]. For a
nonspinning neutron star of areal radius 𝑅,

𝜇2 = 2
3𝑅5𝑘2 and 𝜎2 = 1

48𝑅5𝑗2 , (6.8)

with 𝑘2 ∼ 0.05 − 0.15 and |𝑗2| ≲ 0.02, depending on the equation of state [532, 533].
The effect of the spin of the compact objects on the tidal Love numbers was explored in
Refs. [538–542]. The quadrupole model (6.7) assumes that each compact object responds
adiabatically and linearly to the tidal field induced by the orbiting companion. A more
realistic model would include a dynamical response of the body to the applied tidal field
[543, 544] and would account for nonlinear tidal effects (see e.g. footnote 2 in [529]).
Interestingly, we note that the electric part of the tidally-induced quadrupole (6.7a), just
like the spin-induced part, induces a mass-type contribution to the total quadrupole 𝐽𝑎𝑏𝑐𝑑,
according to the decomposition Eq. (6.2). It contrasts with the magnetic part (6.7b)
corresponding to a momentum-type quadrupole.

6.2 Integral first law at quadrupolar order
As shown e.g. in Refs. [386, 387, 405, 425, 426, 467], each variational first law of binary
mechanics implies the existence of an associated “first integral” relationship. This is
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the case for the laws derived in this work too, and is the topic of discussion for this
section. This “integral first law” does not necessarily involve integrals; rather, it is an
algebraic equation that does not contain any 𝛿’s anymore, hence the wording integral. It
contains less information than the variational law, in the sense that the former follows from
the latter, but not the opposite. However, it is an interesting relation for two reasons:
(1) it already provides a checking tool for comparisons between results from different
approximations schemes [386], and (2) its derivation will provide intermediary results for
the quadrupolar order, variational first law calculations. In what follows, we provide
some preliminary, geometric results in Sec. 6.2.1, before explicitly deriving the dipolar
contribution in Sec. 6.2.2 and quadrupolar contributions in Sec. 6.2.3, and stating our
final result in Sec. 6.2.4.

6.2.1 Preliminaries
Before performing the calculation, we state a general integral first law that applies for
arbitrary matter sources in helically isometric spacetimes, and motivate the choice of
integration hypersurface that we make, expanding on the discussion in Chap. 5, Sec. 5.1.1.

Komar quantities

Our starting point is Eq. (4.72) derived in Chap. 4 and employs the notations introduced in
Sec. 4.3 there. Using the Noether theorem, Eqs. (4.59b) and (4.59c), the Kostant formula
Eq. (A.3) and the Einstein equation, we readily obtain

𝑀K − 2Ω𝐽K = 2 ∫
∞

𝐐g[𝑘] = −2 ∫
𝒮

(𝑇 𝑎𝑏𝑘𝑏 − 1
2𝑇 𝑘𝑎) dΣ𝑎 , (6.9)

where 𝑇 ≡ 𝑔𝑎𝑏𝑇 𝑎𝑏 is the trace of the energy-momentum tensor and 𝒮 any spacelike
hypersurface bounded by the 2-sphere at spatial infinity. This formula was previously
written down in Eq. (3.18) of Ref. [386]. It is closely related to the Tolman formula for
the mass and angular momentum of a stationary-axisymmetric star [545].

Let 𝐹(𝒮 ) denote the integral in the right-hand side of the identity (6.9). This integral
can be shown to be independent of the choice of hypersurface 𝒮 , as was done in Chap. 4
for the integrals (4.75). Let 𝒱 denote a volume bounded by two spacelike hypersurfaces
𝒮1 and 𝒮2 and by a worldtube 𝒯 that includes the support of 𝑇 𝑎𝑏. Then by using Stokes’
theorem we readily find

𝐹(𝒮1) − 𝐹(𝒮2) = ∫
𝒱

∇𝑎(𝑇 𝑎𝑏𝑘𝑏 − 1
2𝑇 𝑘𝑎) d𝑉 = 0 , (6.10)

as a consequence of the local conservation law ∇𝑎𝑇 𝑎𝑏 = 0, of Killing’s equation ∇(𝑎𝑘𝑏) = 0,
which implies ∇𝑎𝑘𝑎 = 0, and of the Lie-dragging ℒ𝑘𝑇 = 𝑘𝑎∇𝑎𝑇 = 0 along 𝑘𝑎 of the trace
𝑇 , itself a consequence of the Lie-dragging of 𝑇 𝑎𝑏, as established in Chap. 3.

Choice of integration hypersurface

The hypersurface 𝒮 involved in Eq. (6.9) will be the same as that used for the derivation
of the variational first law at dipolar order, in Sec. 5.1. Following the notations used there,
𝒮 is chosen so that its future-directed, unit normal 𝑛𝑎 coincides with the four-velocity 𝑢𝑎
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of the particle at the intersection 𝒫 ≡ γ ∩ 𝒮 . Consequently, extending this requirement
at all points along γ just as in Sec. 5.1, we will be able to use the result

∇𝑎𝑛𝑏
γ= −𝑢𝑎�̇�𝑏 (6.11)

to simplify any geometric, 𝒮 -dependent term involving ∇𝑎𝑛𝑏. For the same reason, we will
have access to 𝑘𝑎𝑛𝑎|γ = −𝑧, according to the general result 𝑘𝑎|γ = 𝑧𝑢𝑎. These two results
were enough for the dipolar case, with the SEM integrals only involving one covariant
derivative. At quadrupolar order, we will have to consider double covariant derivatives,
such as ∇𝑎∇𝑏𝑛𝑐. This term will arise frequently and it is convenient to have a reduced
formula for it, which we derive as follows. Taking the covariant derivative of the general
3+1 formula ∇𝑏𝑛𝑐 = −𝐾𝑏𝑐 − 𝑛𝑏𝑛′

𝑐 (recall Sec. 5.1), we readily find

∇𝑎∇𝑏𝑛𝑐 = −∇𝑎𝐾𝑏𝑐 − 𝑛′
𝑐∇𝑎𝑛𝑏 − 𝑛𝑏(∇𝑎𝑛𝑒)∇𝑒𝑛𝑐 − 𝑛𝑏𝑛𝑒∇𝑎𝑒𝑛𝑐

= −∇𝑎𝐾𝑏𝑐 + (𝐾𝑎𝑏𝑛′
𝑐 + 𝑛𝑎𝑛′

𝑏𝑛′
𝑐) − (𝐾 𝑑

𝑎 𝑛𝑏𝐾𝑐𝑑 + 𝑛𝑎𝑛𝑏𝐾𝑐𝑑𝑛′𝑑)
+ (𝐾′

𝑎𝑐𝑛𝑏 + 𝑛′
𝑎𝑛𝑏𝑛′

𝑐 + 𝑛𝑎𝑛𝑏𝑛″
𝑐 − 𝑅𝑎𝑒𝑐𝑑𝑛𝑏𝑛𝑑𝑛𝑒) , (6.12a)

where each of the four terms in the first line yields the corresponding parenthesis in the
second line. To obtain the latter, we have commuted the second covariant derivative in
the last term of the first equality, and used the properties 𝑛𝑎𝐾𝑎𝑏 = 0 and 𝑛𝑎𝑛′

𝑎 = 0. By
evaluating this general formula at the point 𝒫 = 𝛾 ∩ 𝒮 , where 𝑛𝑎 = 𝑢𝑎, 𝑛′

𝑎 = �̇�𝑎 and
𝐾𝑎𝑏 = 0, so that ∇𝑎𝑛𝑏 = −𝑢𝑎�̇�𝑏, as well as 𝐾′

𝑎𝑏 = �̇�𝑎𝑏 = 0, we obtain

∇𝑎∇𝑏𝑛𝑐
γ= −∇𝑎𝐾𝑏𝑐 − 𝐸𝑎𝑐𝑢𝑏 + 2𝑢(𝑎�̇�𝑏)�̇�𝑐 + 𝑢𝑎𝑢𝑏�̈�𝑐 . (6.13)

This formula will be used in the following section, for the quadrupolar contributions to
Eq. (6.9).

6.2.2 Dipolar contribution
First, we rewrite Eq. (6.9) as follows

𝑀K − 2Ω𝐽K = 𝑊dipo + 𝑊quad (6.14)

where 𝑊dipo is the integral on the right-hand side of Eq. (6.9) obtained by inserting in
place of 𝑇 𝑎𝑏 the dipolar contribution 𝑇 𝑎𝑏

dipo given in Eq. (6.1a), and similarly for 𝑊quad
with Eq. (6.1b). For now we focus on 𝑊dipo and relegate the calculation of 𝑊quad to the
next section. To evaluate 𝑊dipo, we note that it can be written as

𝑊dipo ≡ −2 ∫
𝒮

(𝑇 𝑎𝑏
dipo𝑘𝑏 − 1

2𝑇dipo𝑘𝑎) dΣ𝑎 ≡ −2𝐼dipo + 𝐿dipo , (6.15)

where 𝐼dipo is precisely the integral 𝐼 computed in the previous chapter, Sec. 4.3.3 (de-
fined in Chap. 1, Eq. (4.75a)), and only the trace-term 𝐿dipo ≡ ∫ 𝑇dipo𝑘𝑎dΣ𝑎 needs to be
computed. To this end, we proceed as in Sec. 4.3.3 and write explicitly the trace 𝑇dipo of
the dipolar SEM tensor (6.1a), to obtain

𝐿dipo = − ∫
𝒱

[𝑝𝑎𝑢𝑎 𝛿4 + ∇𝑎(𝐷𝑎𝛿4)]𝑘𝑏𝑛𝑏 d𝑉 (6.16a)

= − 𝑝𝑎𝑢𝑎𝑘𝑏𝑛𝑏 + 𝐷𝑎∇𝑎(𝑘𝑏𝑛𝑏) , (6.16b)
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where 𝐷𝑎 = −𝑆𝑎𝑏𝑢𝑏 is the mass dipole defined in Eq. (2.63) and 𝑛𝑎 is the unit vector
normal to 𝒮 . In the second equality we used the defining property of the invariant Dirac
distribution and Stokes’ theorem to integrate by parts the dipolar term (see Sec. 5.1 for
details). Equation (6.16) can be further simplified by combining formula (5.4) with the
formula (5.11) for the integral 𝐼dipo. We find

𝑊dipo = −𝑝𝑎𝑘𝑎 − 𝑆𝑎𝑏∇𝑎𝑘𝑏 + 𝐷𝑎�̇�𝑎 . (6.17)
This formula can be given an alternative form by using the decomposition (2.63) of the
spin tensor 𝑆𝑎𝑏 in terms of the spin vector 𝑆𝑎 and the mass dipole 𝐷𝑎, as well as the
definition (3.57) of the vorticity 𝑉 𝑎. In particular, with the identity 𝜀𝑎𝑏𝑔ℎ𝜀𝑎𝑏𝑐𝑑 = −4𝛿[𝑔

𝑐 𝛿ℎ]
𝑑

(see App. 2.2 in [5]), we readily find
𝑆𝑎𝑏∇𝑎𝑘𝑏 = 2𝑆𝑎𝑉 𝑎 + 2𝐷𝑎�̇�𝑎 , (6.18)

where the orthogonality relations 𝐷𝑎𝑢𝑎 = 0 and 𝑉 𝑎𝑢𝑎 = 0 were used. Inserting the latter
into Eq. (6.17) gives the final, integral formulation of the first law of mechanics for dipolar
particles

𝑊dipo = −𝑝𝑎𝑘𝑎 − 2𝑆𝑎𝑉𝑎 − 𝐷𝑎�̇�𝑎 . (6.19)
Notice the couplings of the particle’s multipoles to the Killing field and its derivatives in
the right-hand side, reminiscent of the general structure discussed around Eq. (5.24) in
Chap. 5. Lastly, we stress that this result is independent of any SSC.

6.2.3 Quadrupolar contributions
Now let us turn to the quadrupolar contribution 𝑊quad in Eq. (6.14). It will closely follow
the previous one for a dipolar particle. In fact, in view of the fact that the right-hand
side of Eq. (6.9) is linear in the SEM tensor, we need only compute the quadrupolar
contribution, and add them to the pole-dipole part already done and given in Eq. (6.17).
Consequently, we want to compute

𝑊quad ≡ −2 ∫
𝒮

(𝑇 𝑎𝑏
quad𝑘𝑏 − 1

2𝑇quad𝑘𝑎)dΣ𝑎 ≡ −2𝐼quad + 𝐿quad , (6.20)

where 𝑇quad ≡ 𝑔𝑎𝑏𝑇 𝑎𝑏
quad is the trace of the quadrupolar piece of the SEM tensor, given

in Eq. (6.1b), and on the right we defined 𝐼quad ≡ ∫ 𝑇 𝑎𝑏
quad𝑘𝑏dΣ𝑎, as well as 𝐿quad ≡

∫ 𝑇quad𝑘𝑎dΣ𝑎. Let us start with the trace-contribution 𝐿quad. We take the trace of
Eq. (6.1b), insert the result into the definition of 𝐿quad, integrate by means of Stokes
theorem (applied twice) and use the 𝛿4 distribution, just as in the dipolar case. We
proceed in the same way for 𝐼quad. We find

𝐿quad = −1
3𝑅𝑐𝑑𝑒𝑏𝐽𝑏𝑐𝑑𝑒𝑘𝑎𝑛𝑎 + 2

3𝑔𝑒𝑏𝐽𝑐𝑒𝑏𝑑∇𝑑𝑐(𝑘𝑎𝑛𝑎) , (6.21a)

𝐼quad = −1
3𝑅 (𝑎

𝑐𝑑𝑒 𝐽𝑏)𝑐𝑑𝑒𝑘𝑏𝑛𝑎 + 2
3𝐽𝑐(𝑎𝑏)𝑑∇𝑑𝑐(𝑘𝑏𝑛𝑎) , (6.21b)

where, again, 𝑛𝑎 denotes the normal vector field to the integration hypersurface 𝒮 , and the
right-hand side of Eqs. (6.21) is to be evaluated at the position of the particle 𝒫 ≡ γ∩ 𝒮 .

Next, we simplify Eqs. (6.21). If we write them (schematically) as 𝑅𝐽 ⋅ 𝑘𝑛 + 𝑔𝐽 ⋅ ∇𝑘𝑛,
the calculation is best done by splitting it in two steps: first the “quadrupole” terms
(𝑅𝐽, 𝑔𝐽), and then the “Killing” terms (𝑘𝑛, ∇𝑘𝑛). The former depends on the specific
quadrupole, while the latter does not. Let us first compute it, and then we will combine it
with the three quadrupoles types (mass, momentum and stress), in three separate parts.
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Killing terms

We start with the “Killing” terms 𝑘𝑎𝑛𝑎 and ∇𝑑𝑐(𝑘𝑎𝑛𝑎) in Eq. (6.21a). The first one is
easy: we chose the hypersurface 𝒮 such that its normal 𝑛𝑎 coincides with the four-velocity
𝑢𝑎. Hence we have 𝑘𝑎𝑛𝑎 = −𝑧, from the (now) classical result 𝑘𝑎|γ = 𝑧𝑢𝑎. The second
term, with the second covariant derivative, is more complicated. We start by applying the
Leibniz rule twice, to get

∇𝑑𝑐(𝑘𝑎𝑛𝑎) = 𝑛𝑎∇𝑑𝑐𝑘𝑎 + (∇𝑑𝑘𝑎)∇𝑐𝑛𝑎 + (∇𝑑𝑛𝑎)∇𝑐𝑘𝑎 + 𝑘𝑎∇𝑑𝑐𝑛𝑎 . (6.22)

The first two terms are easily dealt with: the first one can be simplified by the Kostant
formula (A.3), and in the second one we can use Eq. (6.11) as well as the conservation
(∇𝑎𝑘𝑏) ̇= 0, established in Chap. 3, Eq. (3.78). In details:

𝑛𝑎∇𝑑𝑐𝑘𝑎 = 𝑛𝑎𝑅𝑎𝑐𝑑𝑒𝑘𝑒 = −𝑧𝐸𝑐𝑑 , (6.23a)
(∇𝑑𝑘𝑎)∇𝑐𝑛𝑎 = −𝑢𝑐�̇�𝑎∇𝑑𝑘𝑎 = 𝑢𝑐�̈�𝑑 , (6.23b)

where Killing’s equation ∇(𝑎𝑘𝑏) = 0, and the identities 𝑘𝑎|γ = 𝑧𝑢𝑎 and ̇𝑧 = 0 were also
used several times. Next, the third term on the right-hand side of Eq. (6.22) is simply
the second one with 𝑐 ↔ 𝑑, and the fourth term is directly given by Eq. (6.13). All these
results put together and some simplifications finally leads to

∇𝑑𝑐(𝑘𝑎𝑛𝑎) = −𝑧𝐸𝑐𝑑 + 2𝑢(𝑐�̈�𝑑) − 𝑘𝑎∇𝑑𝐾𝑐𝑎 − �̇�𝑎�̇�𝑎𝑘𝑑𝑢𝑐 . (6.24)

In a similar fashion, we can compute the Killing terms involved in Eq. (6.21b). Again, the
first one is simply 𝑘𝑏𝑛𝑎 = 𝑧𝑢𝑏𝑢𝑎 and is thus symmetric. For the other term, ∇𝑑𝑐(𝑘𝑏𝑛𝑎),
we provide the result only, the calculation following closely that of (6.24). We find

∇𝑑𝑐(𝑘𝑏𝑛𝑎) = 𝑛𝑎𝑅𝑏𝑐𝑑𝑒𝑘𝑒 − 𝑢𝑐�̇�𝑎∇𝑑𝑘𝑏 − 𝑢𝑑�̇�𝑎∇𝑐𝑘𝑏
− 𝑘𝑏𝐸𝑑𝑎𝑢𝑐 + 𝑘𝑏𝑢𝑑𝑢𝑐�̈�𝑎 − 𝑘𝑏∇𝑑𝐾𝑐𝑎 + 2𝑘𝑏𝑢(𝑑�̇�𝑐)�̇�𝑎 , (6.25)

and we can check that the trace with respect to 𝑎𝑏 of Eq. (6.25) gives, as expected, exactly
Eq. (6.24). Equations (6.24) and (6.25) are key identities that will be used below.

Mass-type quadrupole

We now compute the quantities 𝐿quad, 𝐼quad given in Eqs. (6.21) for the case of a mass-type
quadrupole, of the form

𝐽𝑎𝑏𝑐𝑑 = 𝑢[𝑎𝐽𝑏][𝑐𝑢𝑑] . (6.26)

In practice, 𝐽𝑎𝑏 will be a placeholder tensor, so that the spin-induced quadrupole (6.6) is
found by setting 𝐽𝑎𝑏 = 𝜅2

2𝑚𝑆𝑎
𝑐𝑆𝑐𝑏, and the electric-type tidal quadrupole (6.7a) by setting

𝐽𝑎𝑏 = 3𝜇2
2 𝐸𝑎𝑏 (we shall treat the magnetic part further down). We also assume that the

rank-2 tensor 𝐽𝑎𝑏 in Eq. (6.26) is symmetric and orthogonal to 𝑢𝑎, since it will be the
case of both 𝑆𝑎

𝑐𝑆𝑐𝑏 (under the assumption of the SSC) and 𝐸𝑎𝑏 (in general). With the
general form (6.26) and these properties of 𝐽𝑎𝑏, a simple calculation readily shows that

𝑅𝑐𝑑𝑒𝑏𝐽𝑏𝑐𝑑𝑒 = −1
2𝐸𝑎𝑏𝐽𝑎𝑏 and 𝑔𝑒𝑏𝐽𝑐𝑒𝑏𝑑 = 1

4(𝐽𝑢𝑐𝑢𝑑 − 𝐽𝑐𝑑) , (6.27)

where 𝐽 ≡ 𝑔𝑎𝑏𝐽𝑎𝑏 is the trace of 𝐽𝑎𝑏. We can now combine all these results into Eq. (6.21a),
and we find a number of terms that cancel one another, in particular the electric terms
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𝐸𝑎𝑏𝐽𝑎𝑏 and four-acceleration terms (using 𝑢𝑎�̈�𝑎 = −�̇�𝑎�̇�𝑎, cf. Eq. (3.77)). Moreover, all
contractions of the form 𝐽𝑎𝑏𝑢𝑎 vanish by assumption on 𝐽𝑎𝑏, and, eventually, we obtain

𝐿mass
quad = 𝑧

6(𝐽�̇�𝑎�̇�𝑎 + 𝑢𝑎𝐽𝑐𝑑∇𝑑𝐾𝑐𝑎) , (6.28)

We note that this equation depends on the extrinsic curvature 𝐾𝑐𝑎 and thus on the hy-
persurface of integration. Since we showed that our final result should be independent
of it, we expect this term exactly cancel with the 𝐼quad integral (cf. Eq. (6.20)). In fact,
the extrinsic curvature term in the above equation vanishes identically, since, along γ, we
have

𝑢𝑎𝐽𝑐𝑑∇𝑑𝐾𝑐𝑎 = 𝐽𝑐𝑑(∇𝑑(𝐾𝑐𝑎𝑛𝑎) − 𝑢𝑑𝐾𝑐𝑎�̇�𝑎)= 0 , (6.29)
where in the first equality we used the Leibniz rule, Eq. (6.11) and 𝑛𝑎|γ = 𝑢𝑎, and in the
second the fact that 𝐾𝑐𝑎𝑛𝑎 = 0 by definition and 𝐽𝑐𝑑𝑢𝑑 = 0 by assumption. A similar
calculation holds for 𝐼mass

quad , and it is also shown to be independent of 𝐾𝑎𝑏, and thus of the
foliation. In the end, the result for both quantities is (for a mass-type quadrupole 𝐽𝑎𝑏)

𝐿mass
quad = 𝑧

6𝑔𝑎𝑏𝐽𝑎𝑏�̇�𝑐�̇�𝑐 , (6.30a)

𝐼mass
quad = 𝑧

6𝐽𝑎𝑏�̇�𝑎�̇�𝑏 + 𝑧
4𝐽𝑎𝑏𝐸𝑎𝑏 . (6.30b)

Momentum-type quadrupole
Now we turn to deriving the contribution 𝑊 mom

quad from a momentum-type quadrupole, the
middle term in (6.2). Once again, we write

𝐽𝑎𝑏𝑐𝑑 = 𝑢[𝑎𝐽𝑏]𝑐𝑑 + 𝑢[𝑐𝐽𝑑]𝑎𝑏 , (6.31)

with a momentum-type quadrupole 𝐽𝑎𝑏𝑐. Note that 𝐽𝑏𝑐𝑑 = −2𝜎2𝐵𝑏𝑓𝜀𝑐𝑑
𝑒𝑓𝑢𝑒 in the case of

the magnetic-type tidally-induced quadrupole Eq. (6.7b). We note that, by construction,
𝐽𝑏𝑐𝑑 verifies 𝐽𝑏𝑐𝑑 = 𝐽𝑏[𝑐𝑑] and is orthogonal to the four-velocity with respect to all its
indices. To get the (momentum-type) quadrupolar contribution 𝑊 mom

quad = −2𝐼mom
quad +𝐿mom

quad ,
we insert Eq. (6.31) into the general expressions (6.21a) (for 𝐿mom

quad) and (6.21b) (for 𝐼mom
quad ).

After some calculations similar to those performed above, we find

𝐿mom
quad = −𝑧

3(𝑅𝑎𝑏𝑐𝑢𝐽𝑐𝑏𝑎 + 2𝐽𝑎�̈�𝑎 + 𝐽𝑎𝑢𝑏𝑢𝑐∇𝑎𝐾𝑏𝑐) , (6.32a)

𝐼mom
quad = −𝑧

3(𝑅𝑎𝑏𝑐𝑢𝐽𝑎𝑏𝑐 − 1
2𝐽𝑎𝑏𝑐∇𝑏𝐾𝑐𝑎) − 2

3𝐽𝑎𝑏𝑐 �̇�(𝑎∇𝑏)𝑘𝑐 , (6.32b)

where we defined 𝐽𝑎 ≡ 𝑔𝑏𝑐𝐽𝑏𝑐𝑎 and 𝑅𝑎𝑏𝑐𝑢 ≡ 𝑅𝑎𝑏𝑐𝑑𝑢𝑑. Now let us simplify these two
formulae. Among the terms involving the extrinsic curvature 𝐾𝑎𝑏, the one in Eq. (6.32a)
is easily shown to vanish because of 𝑢𝑎𝑢𝑏|γ = 𝑛𝑎𝑛𝑏, the Leibniz rule and 𝐾𝑎𝑏𝑛𝑎 = 0. The
one in Eq. (6.32b) can be simplified as follows

𝐽𝑎𝑏𝑐∇𝑏𝐾𝑐𝑎 = 𝐽𝑎𝑏𝑐∇[𝑏𝐾𝑐]𝑎 = 1
2𝐽𝑎𝑏𝑐𝑅�̂� ̂𝑐�̂�𝑑𝑛𝑑 = 1

2𝑅𝑏𝑐𝑎𝑢𝐽𝑎𝑏𝑐 , (6.33)

where used the antisymmetry of 𝐽𝑎𝑏𝑐 in the first equality, the Codazzi relation (cf. [464])
in the second, and the fact that 𝐽𝑎𝑏𝑐 = 𝐽 �̂��̂� ̂𝑐 as well as 𝑢𝑎 = 𝑛𝑎|γ throughout. Using all
this and the symmetries of the Riemann tensor and 𝐽𝑎𝑏𝑐 one last time, we find

𝐿mom
quad = −2𝑧

3 (𝑅𝑎𝑏𝑐𝑢𝐽𝑎𝑏𝑐 + 𝑔𝑎𝑏𝐽𝑎𝑏𝑐�̈�𝑐) , (6.34a)

𝐼mom
quad = −𝑧

2𝑅𝑎𝑏𝑐𝑢𝐽𝑎𝑏𝑐 − 2
3𝐽𝑎𝑏𝑐 �̇�(𝑎∇𝑏)𝑘𝑐 . (6.34b)
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Stress-type quadrupole

For the last, stress-piece of the quadrupole (first term in Eq. (6.2)) the calculation is rather
easy since ̂𝐽𝑎𝑏𝑐𝑑 ≡ 𝐽 �̂��̂� ̂𝑐 ̂𝑑 is orthogonal to 𝑢𝑎 with respect to any index. The calculation
thus amounts to finding the (rare) terms that will not involve such contractions. Regarding
𝐿stress

quad (Eq. (6.21a)) the first term will evidently not produce any such term since ̂𝐽𝑎𝑏𝑐𝑑 is
contracted with Riemann tensor. The second term however contains a number of canceling
contractions in view of Eq. (6.24) for ∇𝑑𝑐(𝑘𝑎𝑛𝑎), and only one remains, the 𝐸𝑐𝑑 term. In
regards to 𝐼stress

quad (Eq. (6.21b)), both terms vanish, since both will contain at least one
contraction of the four-velocity with some index of ̂𝐽𝑎𝑏𝑐𝑑. In the end, the result for the
stress-type quadrupole contribution reads

𝐿stress
quad = 𝑧

3(𝑅𝑎𝑏𝑐𝑑 − 2𝑔𝑎𝑏𝐸𝑐𝑑) ̂𝐽𝑑𝑎𝑏𝑐 , (6.35a)

𝐼stress
quad = 0 . (6.35b)

6.2.4 Results and discussion
The previously established results for the mass-, momentum- and stress-type quadrupolar
tensors given in Eqs. (6.30), (6.34) and (6.35), respectively, can be used to write the total
quadrupolar contribution 𝑊quad in the right-hand side of the integral first law (6.20) for
a generic quadrupole. Indeed, since the latter can always be written in the general form
(6.2), we can simply compute 𝑊quad as

𝑊quad ≡ 𝑊 stress
quad + 2𝑊 mom

quad − 4𝑊 mass
quad , (6.36)

where each of these contributions are given by the combination −2𝐼 + 𝐿 in the aforemen-
tioned equations. Putting all this together, we find the total quadrupolar contribution as

𝑊quad = 𝑧
3

̂𝐽𝑎𝑐𝑏𝑑(𝑅𝑎𝑏𝑐𝑑 − 2𝑔𝑎𝑏𝐸𝑐𝑑) (6.37a)

+ 2𝑧
3 𝐽𝑎𝑏𝑐(𝑅𝑎𝑏𝑐𝑢 − 2𝑔𝑎𝑏�̈�𝑐) + 8

3𝐽𝑎𝑏𝑐�̇�(𝑎∇𝑏)𝑘𝑐 (6.37b)

+ 2𝑧
3 𝐽𝑎𝑏(3𝐸𝑎𝑏 + 2�̇�𝑎�̇�𝑏 − 𝑔𝑎𝑏�̇�𝑐�̇�𝑐) . (6.37c)

This relation holds for any quadrupolar model, and can be rewritten in terms of 𝐽𝑎𝑏𝑐𝑑

simply by using Eq. (6.3). From it one can derive the trace-free version, which could be
of interest as they are the only one affecting the motion of particles in vacuum spacetimes
[367]. Lastly, let us mention that, to be self-consistent, the quadrupolar contribution
(6.37) has to be added to the dipolar one, derived in Sec. 6.2.2, namely

𝑊dipo = −𝑝𝑎𝑘𝑎 − 𝑆𝑎𝑏∇𝑎𝑘𝑏 + 𝐷𝑎�̇�𝑎 . (6.38)

Although we call Eq. (6.38) a “dipolar contribution”, it does contain 𝐽𝑎𝑏𝑐𝑑-dependent
terms, which come indirectly from the term �̇�𝑎 = 𝑧�̇�𝑎 in (6.38), and thus the evolution
equations. A similar remark can be made for Eq. (6.37) as well, which also contains 𝑝𝑎-
and 𝑆𝑎𝑏-dependent terms through �̇�𝑎. In fact, all this is simplified by a choice of SSC
which allows one to consistently expand the results in powers of a given quantity, typically
the spin, as we shall do subsequently.
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Extended spinning particle

In the particular case where the quadrupolar model only assumes a spin-dependence for
the (non-minimal) Lagrangian, the tidally-induced quadrupole do not enter the description
of the body. Neglecting the tidal forces with respect to spin-induced ones is a reasonable
assumption, at least in the inspiral stage of binary systems, where tidal effects enter at
higher PN order than the spin-induced ones. In any case, the previous result allows us to
write the integral first law of mechanics for a spinning particle, accounting for all quadratic-
in-spin effects. To find it, we simply add the dipolar result (6.38) with the quadrupolar
one (6.37) in which we take for the generic quadrupole (6.2) the spin-induced one (6.6).
To be consistent, we assume the SSC 𝑆𝑎𝑏𝑢𝑎 = 0 to ensure that3 𝐽𝑎𝑏𝑢𝑎 = 0. We find

𝑀 − 2Ω𝐽 SSC= −𝑝𝑎𝑘𝑎 − 𝑆𝑎𝑏∇𝑎𝑘𝑏 + 2𝑧𝜅2
𝑚 𝑆𝑎𝑐𝑆 𝑏

𝑐 𝐸𝑎𝑏 + 𝑂(𝑆4) . (6.39)

with the 𝑆3 contribution containing the last two terms in the line (6.37), using �̇� = 𝑂(𝑆)
as established in Chap. 2, Sec. 2.3.2. Equation (6.39) can be rewritten in two interesting
ways. First, by recalling the definition (6.7a) of the electric-part of the Riemann tensor
and the Kostant formula (A.3),

𝑀 − 2Ω𝐽 SSC= −𝑝𝑎𝑘𝑎 − 𝑆𝑎𝑏∇𝑎𝑘𝑏 − 2𝜅2
𝑚 𝑆𝑎𝑐𝑆 𝑏

𝑐 𝑢𝑑∇𝑎𝑏𝑘𝑑 + 𝑂(𝑆3) , (6.40)

which agrees with the conjecture made in Chap. 5 where we expected to see higher deriva-
tives of 𝑘𝑎 contracted with higher-order multipoles. Second, we can turn Eq. (6.39) into
a form that only depends on the spin vector 𝑆𝑎 (Eq. (2.69)). Introducing the helical
vorticity 𝑉 𝑎 (Eq. (3.57)), we easily show that (given the SSC) 𝑆𝑎𝑐𝑆 𝑏

𝑐 = 𝑆𝑎𝑆𝑏 − 𝑆2ℎ𝑎𝑏,
with ℎ𝑎𝑏 = 𝑔𝑎𝑏 + 𝑢𝑎𝑢𝑏 the projector orthogonal to 𝑢𝑎. Since 𝐸𝑎𝑏 is traceless, Eq. (6.39)
becomes

𝑀 − 2Ω𝐽 SSC= −𝑝𝑎𝑘𝑎 − 2𝑆𝑎𝑉𝑎 + 2𝜅2
𝑚 𝑆𝑎𝑆𝑏𝐸𝑎𝑏 + 𝑂(𝑆3) . (6.41)

This equation is a self-consistent, quadratic-in-spin result for a binary systems of spinning
point particles. Indeed, it is known that the next-order in the multipolar approxima-
tion brings an octupole with cubic-in-spin terms (see [319] or [194]), and any indirect
quadratic-in-spin piece that would come from the quadrupolar equations of motion actu-
ally contributes at quartic-order, as already above. We also note that we did not include
any tidal effect here for the sake of brevity, but our general result (6.37) along with the
explicit formulation (6.7) for tidally-induced quadrupoles can be used to add the tidal
contributions to Eq. 6.41 as easily as for the spin-induced contribution.

Comparison at dipolar order

Let us now show that the (Komar)-integral law (6.19) is perfectly compatible with the
that derived from the variational law established in Chap. 5, Sec. 5.3.1, at linear order in
spin

𝛿𝑀 − Ω 𝛿𝐽 SSC= ∑
i

𝑧i (𝛿𝑚i − 𝜔i 𝛿𝑆i) + 𝑂(𝑆2
i ) . (6.42)

Indeed, by applying Euler’s theorem to the function 𝑀(
√

𝐽, √𝑆1, √𝑆2, 𝑚1, 𝑚2), which is
homogeneous of degree one, one obtains from the variational first law (5.51), the following

3If we do not choose an SSC, there is simply an extra quadrupolar contribution 𝐽𝑎𝑏 ∝ 𝐷𝑎𝐷𝑏,
in terms of the mass dipole 𝐷𝑎.
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relationship
𝑀 − 2Ω𝐽 SSC= ∑

i
𝑧i (𝑚i − 2𝜔i𝑆i) + 𝑂(𝑆2

i ) . (6.43)

After imposing the SSC (2.64) and using 𝑝𝑎
i 𝑘𝑎 = −𝑚i𝑧i and 𝑆𝑎

i 𝑉𝑎 = 𝑆i𝑉 = 𝑧i𝜔i𝑆i, as
a consequence of Eqs. (3.30), (2.60a), (3.62) and (5.45), we readily obtain the simple
algebraic formula

𝑀K − 2Ω𝐽K
SSC= ∑

i
𝑧i (𝑚i − 2𝜔i𝑆i) . (6.44)

Assuming that our helically symmetric spacetimes would obey appropriate falloff condi-
tions [385, 512], it can be shown that 𝑀K = 𝑀 and 𝐽K = 𝐽 , so that the Komar-type
derivation of the first integral relation is consistent with the formula (6.43). In fact, the
algebraic formula (6.44) suggests that the first integral (6.43) is exact at dipolar order,
and not merely valid to linear order in the spin amplitudes 𝑆i.

6.3 Variational first law at quadrupolar order
Note: as pointed out in the text, some results presented in this section are preliminary
and part of ongoing calculations. The definitive, correct expressions may ultimately differ
from these “anticipated” ones.

The derivation of the first law of mechanics for quadrupolar particles is one of the
main problem tackled during this work. The calculation follow the same step as that pre-
sented for the dipolar case. In particular, one must insert the full quadrupolar SEM tensor
(Eqs. (6.1a) and (6.1b)) into the generalized first law derived in Chap. 4 and compute the
two integrals 𝐼 and 𝐾 (defined in Sec. (4.75). Thankfully, it suffices, at the quadrupolar
order, to simply add the quadrupolar contribution, coming from the 𝐽𝑎𝑏𝑐𝑑-dependent part
(6.1a) of the SEM tensor. We have thus two integrals to calculate, namely 𝐼quad, 𝐾quad.

6.3.1 Integrals
Thankfully, our previous calculations for the integral first law provided 𝐼quad for an ar-
bitrary quadrupole. We can therefore read their expression off Eqs. (6.30b), (6.34b) in
which we simply substitute the explicit quadrupole models given in Eqs. (6.6) and (6.7).
This calculation is done with the same method as above: we skip over the details for the
spin and electric-type contributions 𝐼spin

quad, 𝐼elec
quad, which are relatively straightforward. For

𝐼mag
quad, we mention the following key steps of the calculation

𝐽 (𝑎𝑏)𝑐�̇�𝑎∇𝑏𝑘𝑐 = 𝐽 (𝑎𝑏)𝑐�̇�𝑎𝜀𝑏𝑐𝑑𝑒𝑢𝑑𝑉 𝑒 = −𝜎2𝐵𝑎𝑏�̇�𝑎𝑉 𝑏 , (6.45a)

𝑅𝑎𝑏𝑐𝑢𝐽𝑎𝑏𝑐 = 1
2𝑅𝑐𝑏𝑎𝑢𝐽𝑎𝑏𝑐 = 𝜎2𝐵𝑎𝑏𝐵𝑎𝑏 . (6.45b)

In Eq. (6.45a), the first equality follows from the expansion (3.58) for ∇𝑎𝑘𝑏 in terms
of the vorticity 𝑉 𝑎, and the second by replacing 𝐽𝑎𝑏𝑐 by the magnetic-type quadrupole
(6.7). Regarding Eq. (6.45b), the first equality is obtained by combining the algebraic
symmetries of both 𝑅𝑎𝑏𝑐𝑑 and 𝐽𝑎𝑏𝑐, and the second by again replacing 𝐽𝑎𝑏𝑐 and using the
definition (6.5) of the self-dual of the Riemann tensor. These two formulae can readily be
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inserted in Eq. (6.34b) to find 𝐼mag
quad. In the end, the three quadrupolar contributions are

given

𝐼spin
quad

SSC= −𝑧𝜅2
2𝑚 𝑆𝑎

𝑐𝑆𝑐𝑏𝐸𝑎𝑏 − 𝑧𝜅2
3𝑚 𝑆𝑎

𝑐𝑆𝑐𝑏�̇�𝑎�̇�𝑏 , (6.46a)

𝐼elec
quad

SSC= −3𝑧𝜇2
2 𝐸𝑎𝑏𝐸𝑎𝑏 − 𝑧𝜇2𝐸𝑎𝑏�̇�𝑎�̇�𝑏 , (6.46b)

𝐼mag
quad

SSC= −𝑧𝜎2
2 𝐵𝑎𝑏𝐵𝑎𝑏 + 2𝜎2

3 𝐵𝑎𝑏�̇�𝑎𝑉 𝑏 , (6.46c)

Even for dipolar particles, we showed in Chap. 2 that �̇�𝑎 = 𝑂(𝑆). Therefore, the last two
terms on the right-hand side of Eq. (6.46a) are 𝑂(𝑆4). As already mentioned above, such
quartic-in-spin contributions must be neglected to remain self-consistent at quadrupolar
order. Indeed, we do not control the terms of order 𝑂(𝑆3) or higher that would come from
spin-induced multipoles at octupolar order and beyond. Similarly, for a nonspinning,
tidally-perturbed body, one has �̇� = 𝑂(𝑅∇𝑅), as can be checked using the equations
provided in Eq. (A.61e) App. A.4.4, and inserting the tidally-induced quadrupole (6.7) into
the force and torque (recall Eq. (2.54)). As a consequence, the last term in Eq. (6.46b) and
in Eq. (6.46c) are 𝑂(𝑅3(∇𝑅)2) and 𝑂(𝑅2∇𝑅), respectively. These quintic-in-curvature
and cubic-in-curvature contributions can also be neglected, as we do not control the terms
𝑂(𝑅3) or higher that would come from nonlinear tidal effects. Consequently, we find the
simplified expression for the total quadrupolar integral 𝐼quad

𝐼quad
SSC= − 𝑧

2𝑚𝜅2 𝐸𝑎𝑏𝑆𝑎𝑆𝑏 − 3𝑧
2 𝜇2ℰ2 − 𝑧

2𝜎2ℬ2 + 𝑂(𝑅3, 𝑆4) (6.47)

where, as for the integral law, we used the equality 𝑆𝑎𝑐𝑆 𝑏
𝑐 𝐸𝑎𝑏 = 𝑆𝑎𝑆𝑏𝐸𝑎𝑏, and we also

introduced the tidal invariants ℰ2 ≡ 𝐸𝑎𝑏𝐸𝑎𝑏 and ℬ2 ≡ 𝐵𝑎𝑏𝐵𝑎𝑏 (see e.g., [513, 546, 547]).
Here, the spin vector 𝑆𝑎 is uniquely determined from the spin tensor thanks to the SSC.
The quadratic invariants play a key role in interfacing GSF/PN/PM theory to EOB the-
ory, and, therefore, it is not very surprising that they would appear in the first law of
mechanics.

As we mentioned earlier, having computed the integral 𝐼quad is not sufficient for the
derivation of the first law as we also need an expression for the following integral:

𝐾quad ≡ ∫
𝒮

𝑇 𝑎𝑏
quad𝛿𝑔𝑎𝑏 𝜉𝑐dΣ𝑐 , (6.48)

with 𝑇 𝑎𝑏
quad given by Eq. (6.1b). The integration process for this integral is as easy as for the

other one, and is based on the same choice of integration hypersurface. The difficulty stems
from the interplay between the double covariant derivative arising from the quadrupolar
term in the SEM tensor, and the 𝛿-variations. As a consequence, these calculations are
still underway, and there would be no point in giving the expression that we have obtained
at the current stage, for which a simplification remains to be made.

6.3.2 Preliminary result
Given the fact that the integral 𝐾quad has not been obtained yet, the explicit form of
the first law at quadrupolar order is still unknown. However, given the explicit results
obtained in Eqs. (6.46) and the general structure of the first law as a sum of terms of the
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form (derivative of 𝑘𝑎) times the corresponding quadrupole (recall the discussion around
Eq. (5.24)), we anticipate that the scalar version may take the form

𝛿𝑀 − Ω𝛿𝐽 !!!= ∑
i

𝑧i(𝛿𝑚i − 𝜔i𝛿𝑆i + 𝐸𝑆
i 𝛿(𝜅2,i𝒬i) + ℰi𝛿(𝜆2,iℰi) + ℬi𝛿(𝜎2,iℬi)) (6.49)

where 𝐸𝑆 ≡ 𝐸𝑎𝑏𝑠𝑎𝑠𝑏 is the eigenvalue associated with the eigendirection 𝑠𝑎 ≡ 𝑆𝑎/𝑆 of
the electric-type tidal quadrupole, 𝒬 ≡ −𝑆2/𝑚 is the quadrupole (mass) moment of a
Kerr black hole of mass 𝑚 and spin 𝑆. Once again, we stress as it does not have a com-
plete derivation yet, there should be numerical factors in front of the last three terms in
Eq. (6.49), and some of the quadrupolar factors may ultimately have to be moved inside
or outside of the 𝛿-variations. This is the general form of the “expected” result, and it
does not have a complete derivation yet.

Naturally the spin-induced quadrupolar contribution is proportional to the scalar
quadrupole 𝜅2𝒬, but also to the eigenvalue of the electric tidal field in the axial direction
𝑠𝑎 of the spin. For each body, only two out of the six parameters (𝑚, 𝑆, 𝑧, 𝜅𝐸

2 , ℰ , ℬ) are
truly linearly independent, e.g. 𝑚 and 𝑆, the other four parameters, say 𝜽 ≡ (𝑧, 𝜅𝐸

2 , ℰ , ℬ),
being functions of 𝑚 and 𝑆. Therefore,

𝛿𝜽 = 𝜕𝑚𝜽 𝛿𝑚 + 𝜕𝑆𝜽 𝛿𝑆 , (6.50)

where the partial derivatives can be computed explicitly in certain physically relevant
limits, e.g. the large-mass-ratio limit (black hole perturbation theory and the GSF frame-
work) and the large-separation limit (PN approximation). Those finite-size contributions
will effectively renormalize the redshift 𝑧 and the spin precession frequency 𝜔 of each par-
ticle in the first law of binary mechanics. In particular, recent GSF results for the redshift
parameter 𝑧 of a small, extended, compact body on a circular orbit around a Schwarzschild
black hole [416], combined with the quadrupolar first law, will give new results for the
binding energy and angular momentum, which could then be used to calibrate EOB mod-
els with tidal effects.

Lastly, let us make a comment on the phenomenological parameters 𝜅2, 𝜇2 and 𝜎2
that appear in Eq. (6.49). An isolated black hole has 𝜅2 = 1, which implies 𝛿𝜅2 = 0
under a small variation of the black hole mass 𝑚 and spin 𝑆. For an isolated neutron
star, 𝜅2 ∼ 4 − 8, depending on the equation of state. Hence comparing two neutron stars
with two slightly different internal properties gives 𝛿𝜅2 ≠ 0 in general. In principle, the
tidal field of the companion can correct the 𝑂(𝑆2) quadrupole of the compact object,
thus effectively promoting the constant 𝜅2 to a function of the mass 𝑚 and spin 𝑆. In
particular, this would imply 𝜅2 ≠ 1 for a black hole and thus 𝛿𝜅2 ≠ 0 in general. However,
we did not account for such a small (to be quantified) effect in this work, which would
require the addition of appropriate operators in the EFT description of the binary system
and a proper matching to a tidally perturbed spinning black hole at 𝑂(𝑆2). Regarding the
tidal coupling constants 𝜇2 and 𝜎2, it has been shown that they vanish for nonspinning
black holes, thus implying 𝛿𝜇2 = 𝛿𝜎2 = 0 while comparing two nonspinning black holes of
nearly identical masses. For a nonspinning neutron star, we have generically nonzero 𝛿𝜇2
and 𝛿𝜎2. Those scale as the fifth power of the areal radius 𝑅 = 𝑚/Ξ, where the value of
the compactness parameter Ξ ∼ 0.2 depends on the equation of state.



Interlude

For most physics students learning about general relativity (GR), it is fair to say that
having followed an introductory course on special relativity (SR) is recommended

at the least. Most of these students (myself included) might have felt that SR is less
“complicated” than GR. Without doubts, this is primarily because of the flatness of the
Minkowski spacetime, which allows one to stay within the realm of affine geometry, a world
already familiar to Euclideanly-trained students. This misconception may also be due to
the way SR is usually taught, with more emphasis on a matrix formulation and Lorentz
transformations than on the tensorial, operational nature of the theory. But as was beau-
tifully showed by Éric Gourgoulhon in his treatise on SR in non-inertial frames [21], the
geometry of Minkowski spacetime is nothing short of complicated and beautiful. It may
as well be curved if one chooses arbitrary coordinates and/or studies accelerated, rotating
motions. Of course, GR forces us to leave affine spaces for manifolds, but the effort to
make the SR → GR step is, in my opinion, drastically reduced when learning about SR
chronogeometrically, as Gourgoulhon teaches.

In any case, these relativistic theories showed how to think of space, time and gravita-
tion geometrically. Einstein himself talked about this matter several times. His thoughts
on the geometrization of physics are beautifully summarized in the article Geometrie und
Erfahrung (Geometry and Experience) [548], which he had prepared for his “particularly
nice lecture” given in 1921, at the Prussian Academy’s in honor of Frederick the Great.
During this lecture, Einstein makes the distinction between the “practical” geometry,
which he refers to as the oldest branch of physics; and “purely axiomatic geometry”,
which he does not give any credit for his discovery of relativity. But by distinguishing
between the two, Einstein only emphasizes of the geometry of space (and time) in which
physical processes take place, and not on the inherent geometry of the laws themselves.
Yet, this is where the geometrization of physics started, long before Einstein and his rev-
olutionary ideas, at a time when the frontier between mathematics and physics was very
much nuanced.

Indeed, it was classical mechanics that became the first geometrized branch of physics
during the eighteenth century, through an ironical situation often found in books on physics
history. While it is often said that Lagrange is the father of analytical mechanics (which
would become the foundation of symplectic geometry), we find in his 1788 masterwork on
analytical mechanics the following warning:

On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que j’y expose ne
demandent ni construction, ni raisonnemens géométriques ou méchaniques, mais

seulement des opérations algébriques, assujetties à une marche réguliere et uniforme.
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In English: The reader will find no figures in this work. The methods which I set forth
require no constructions nor geometrical or mechanical reasonings, but only algebraic op-
erations, subject to a regular and uniform rule of procedure. Here, Lagrange speaks, in
this particular paragraph, of the “synthetic” geometry, which he will not be using, even
though it was the method of choice among geometers and physicists of the time. Instead,
Lagrange warns that he will be using new tools, that are now part of classical “analysis”.
Nevertheless, it is ironic that by inventing his new analysis tools, in particular, the La-
grange parentheses, Lagrange did invent a new geometry: symplectic geometry. Indeed, we
may rightfully set the birth date of symplectic geometry in 1808, when Lagrange’s work
on celestial mechanics showed that the equations of planetary motion could be cast in a
greatly simplified form [549], using the tools he invented. The form of these equations were
then extended to any mechanical problem by Hamilton, and these ideas were all simplified,
extended and understood in details by Poisson, Jacobi and Liouville, to name but a few.
An illustration of Lagrange’s early insight can be found in the “Lagrange parentheses”,
equivalent to the more commonly known Poisson brackets, which are nothing but the
components of the symplectic form [550].

The word “symplectic” was introduced by Hermann Weyl in his treatise on group
theory [551] (see the first footnote in chapter VI there) as a replacement for (and Greek-
equivalent of) complex, also introduced by himself in the context of group theory. Sym-
plectic geometry, at the basis of Mechanics, is more demanding, in some sense, than
Lorentzian geometry, on which GR is founded. While pretty much every manifold can
be endowed with a Riemannian metric, regardless of its dimension, not all of them can
carry a symplectic form. Even excluding odd-dimensional manifolds is not enough. For
example, the 4D and 6D sphere cannot be endowed with a symplectic structure (not even
a nondegenerate antisymmetric bilinear form for the former!) The main reason behind this
fundamental difference between the two is encoded in Jacobi’s identity, or, to paraphrase
Arnold [552], because the three altitudes of a triangle are concurrent [553]. We leave for
the reader the pleasure of discovering why Arnold would have said such a thing.

⋄

The first part of this manuscript was based on a relativistic problem, where a “sym-
metry” was provided by the existence of a helical Killing vector field. In the second part,
we will be dealing with a non-relativistic problem, with a symplectic symmetry, hidden
at the level of the Hamiltonian of the system. Since the new problem at hand s be rather
independent of that studied in the first, let us, at least, keep with the tradition of letting
Galileo open the introductory chapter, like in the first part of this manuscript.
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Par exemple, vous prenez aujourd’hui. Vous comptez sept jours. Ça
vous emmène dans une semaine. Et bien on sera exactement le

même jour qu’aujourd’hui… À une vache près, hein… C’est pas une
science exacte.

KARADOC DE VANNES,
Kaamelott, Livre II, (2005).

⋄

The embodiment of isochrony is undoubtedly the pendulum. Galileo was surely not
the first to play with pendula, but was a pioneer in relating his observations of

their oscillations and their dependence on the pendulum’s parameters. However, the
first satisfying analysis of the isochrone pendulum is attributed to Christian Huygens,
who managed to construct such a device by combining his geometrical skills and his
great knowledge of planar curves. This chapter opens the second part of this thesis with
a historical account on the (near-)isochrone pendulum of Galileo, the (exact) isochrone
pendulum of Huygens (Sec. 7.1. Then, Sec. 7.2 is dedicated to the introduction of notations
and classical results regarding periodic orbits in generic, spherically symmetric potentials.
Lastly, in Sec. 7.3, we provide some astrophysical background on Hénon’s isochrony, and
give a precise definition of the problem that will be explored in the next chapters.
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7.1. ISOCHRONE PENDULA 177

7.1 Isochrone pendula
In this introductory section, we present a very brief, modern-day summary of Galileo and
Huygens’ work and ideas in the quest for the isochrone pendulum. Although fascinating
in itself, this story presents strong similarities with that related in the second part of this
thesis, regarding celestial isochrony.

7.1.1 Galileo’s pendulum
Attach a bob of mass 𝑚 to one end of a massless string of length ℓ, and suspend that string
from the other end, so that the bob is only acted upon by gravity and the string’s restoring
force. Remarkably, this simple mechanical system has been one of the most important
physical apparatus in the history of science. There hardly is any other physical system
that can, alone, demonstrate the Earth’ proper rotation1 [556], act as a gravimeter and
a time keeper [557], set standards of length [558], compute air drag coefficients [559], etc.
Among all its properties, the one that kept Galileo’s attention was isochrony, or the abil-
ity of a pendulum to oscillate with a constant period, independently of its releasing height.

If a pendulum is released from rest at an angle 𝜃𝑜 with respect to the vertical axis
meeting its fixed end, an exact formula for its oscillation period 𝑇 can be obtained. Galileo
made his observations on the pendulum in the first decade of the seventeenth century, but
published them about thirty years later in his famous Discorsi. These observations led
him to two central results. First, 𝑇 is independent of the mass. As we know today, this is
a consequence of the universal law of free fall, which he discovered himself [560]. Second,
the oscillation period is proportional to the square root of the string’s length. Putting
these together, we obtain 𝑇 = 𝐶

√
ℓ where 𝐶 is a constant, independent of the mass 𝑚.

Galileo is convinced of the isochrony of the pendulum, even though his arguments, from
a modern perspective, were not at all convincing [561]. The constant of proportionality
𝐶 to which Galileo refers is known today to depend only on the strength of the local
gravitational field 𝑔, resulting in the famous result

𝑇 = 2𝜋√ ℓ
𝑔 . (7.1)

Galileo’s result was, therefore, perfectly sound, and indeed, based on Eq. (7.1), the pen-
dulum does seem isochrone. However, soon after the publication of his results, Galileo’s
conclusions were rapidly examined by others, notably Marin Mersenne and René Descartes
in Paris, who pointed out that Galileo’s result were correct but limited to pendula with
small oscillations. As a matter of fact, in Mersenne’s translation [562] of Galileo’s work,
we find in Book I, Article XVII the comment2

Si l’autheur eust esté plus exact en ses essais, il eust remarqué que la chorde est
sensiblement plus long-temps à descendre depuis le haut de son quart de cercle jusques à

la perpendiculaire, que lorsqu’on la tire seulement dix ou quinze degrez...
1Foucault’s pendulum has a close link with general relativity, see for example this proposal [554]

for an experimental check of general relativity involving a Foucault pendulum, or this article [555]
explaining the precession of the oscillation plane in terms of the relativistic Thomas precession.

2“If the author had made his measurements more carefully, he would have noticed that a
pendulum released from 45° takes a longer time to reach the vertical than from 10° or 15°.”
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In fact, Galileo did observe these small differences and, retrospectively, nothing should
have prevented him to conclude as to the near-isochrony of the pendulum. Nothing, except
his confirmation bias. Galileo, the father of experimentation and the scientific method,
fell into the trap of trying to justify isochrony at any cost, instead of looking for what
contradicted his isochrone hypothesis. There are a number of reasons why he did so, but
this discussion would lead us too far (we refer to [561, 563] for good references on this
matter). Let us simply say that his justifications of any non-isochrone behavior were not
convincing from a scientific point of view. Although his conclusion was (partly) incorrect,
Galileo had already done the most difficult part: convincing his successors to examine
closely the pendulum, for it was not a mere oscillating ball anymore, but an apparatus
worthy of interest for accurate time-keeping. This was the dawn of precise time mea-
surement [557], that culminated in 1761 with John Harrisson’s invention of the marine
chronometer [564], that would revolutionize sea-travel navigation by allowing for precise
longitude measurements.

As of today, we known the pendulum much better, with exact and explicit formulae
for 𝑇 accounting for arbitrarily large oscillations. Usually stated in terms of elliptic inte-
grals [565] (see also [566]), let us provide another closed-form expression in terms of the
mechanical energy 𝐸 of the pendulum. As a conserved quantity, 𝐸 may be evaluated at
any point on the trajectory. Let us choose the release point, where the amplitude is 𝜃𝑜
and the velocity vanishes. The mechanical energy 𝐸 is then pure potential energy 𝐸𝑝,
simply given by 𝑚𝑔ℓ(1 − cos 𝜃𝑜) when we choose 𝐸𝑝 = 0 when the pendulum is vertical,
at rest. The exact period of oscillation 𝑇 takes the form

𝑇 (𝐸) = 2𝜋√ ℓ
𝑔 (1 + ∑

𝑛≥1
𝑎𝑛ℰ𝑛) , with ℰ ≡ 𝐸

2𝑚𝑔ℓ , (7.2)

where 𝑎𝑛 are explicit positive coefficients3 and ℰ the dimensionless energy. Since ℰ =
1
2(1 − cos 𝜃𝑜), we find ℰ = 𝑂(𝜃2

𝑜) for small oscillations 𝜃𝑜 ≪ 1, we do recover the approx-
imate isochrony of Galileo’s pendulum, which holds if we neglect effects quadratic in the
amplitude. To put Galileo’s result into perspective, let us take an initial amplitude of
𝜃𝑜 = 𝜋/6, so that ℰ = 1/4, thus adding a 3% correction to the small-amplitude result
(7.1). With a 3% change, Galileo should have seen this effect, as he reveals using pendula
swinging for up to a hundred times [561].

A hint for a way to build a truly isochrone pendulum can readily be found by inspecting
the exact formula (7.2) for 𝑇 (𝐸). Notice that, by definition, the dimensionless energy reads
ℰ = 1

2(1 − cos 𝜃𝑜), so that in Eq. (7.2) 𝑇 depends on ℓ through the prefactor and on 𝜃𝑜
through the power expansion. These two mathematical dependencies correspond to two
competing physical effects. If the oscillation 𝜃𝑜 is too wide, then the energy ℰ contributes
significantly and 𝑇 increases. Conversely, if the length ℓ of the pendulum shortens, then
𝑇 decreases. Consequently, if somehow one could constrain the string’s length to decrease
when the wide oscillations take place, there may be a way to make these two effects
compensate one another, so that 𝑇 remains, in fact, constant. In practice, this can be
achieved by placing fixed, curved walls on the side of the pendulum. With this apparatus,
as the pendulum swings the string is constrained to wrap around the wall, making it

3Explicitly, 𝑎𝑛 ≡ ( (2𝑛)!
4𝑛(𝑛!)2 )2. Therefore 𝑎𝑛 ∼ 1/𝜋𝑛 for large 𝑛 and the series converges for

|ℰ | < 1, which is equivalent to 𝜃𝑜 ≠ 𝜋. Indeed, 𝜃𝑜 = 𝜋 is the (unstable) equilibrium, associated
to an infinite period. In that case, ℰ = 1 and the series diverges harmonically.
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effectively shorter, as explained in Fig. 7.1. The shape of these walls can be tuned so that
they only affect the motion in the wide-oscillation regime. In this case, the bob does not
follow a perfect circle of radius ℓ anymore. Rather, its path draws a more complicated
curve, of equation 𝑦(𝑥) on the right of Fig. 7.1. The solution to the isochrone pendulum
will involve such walls and a non-circular curve 𝑦(𝑥), as we will see below.
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<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>
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shortened

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit> circle

bob

fixed  
wall

y(x)
<latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

fixed 
obstacle

length 
effectively 
shortened

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit> circle

bob

fixed  
wall

y(x)
<latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

fixed 
obstacle

length 
effectively 
shortened

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

bob

✓o
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Figure 7.1: Left: in the classical pendulum the bob moves on a circle of radius ℓ. Middle: a
fixed point obstacle (green dot) acts as a secondary, temporary oscillation center, that decreases
artificially the length, and thus the oscillation period. Right: an infinity of such point obstacles
are placed on a curve (green curve) to make a “wall” around which the string wraps. This allows
one to change the path 𝑦(𝑥) followed by the bob’s path (in red). Such an apparatus was actually
used by Huygens, found in his magnum opus Horlogium Oscillatorium.

7.1.2 Horlogium Oscillatorium
It is Christiaan Huygens who provided both the first correct explanation of the near-
isochrony of Galileo’s pendulum and the solution to the problem regarding the isochrone
pendulum. His findings were published in 1673 in a famous and groundbreaking treatise,
nowadays called by the title’s first two words: Horlogium Oscillatorium. His demonstra-
tions only use elementary geometry, as calculus would only be invented a few decades
later4. In this section we would like to explain the key steps Huygens took for his dis-
covery of the isochrone pendulum, rewritten here with modern mathematics. Explaining
Huygens’ ideas in this fashion provides an interesting derivation seldom seen in the lit-
erature, and, crucially, it closely resembles celestial isochrony as it will be defined and
explored in the next chapters.

Revisiting Galileo
The first goal of Huygens is to find the curve 𝑦(𝑥) that produces an isochrone pendulum,
i.e., with an oscillating period 𝑇 independent of the initial release height. Only then will
he discuss the right shape for the side walls that enforces this motion (again, cf. Fig. 7.1).
Huygens starts by writing, using geometry, what we would now call the master ODE for
this kind of problem, namely

1
2 (d𝑠

d𝑡 )
2

= 𝑔 (ℎ𝑜 − 𝑦) , (7.3)

where 𝑠 is the (curvilinear) arclength along the path 𝑦(𝑥) and ℎ𝑜 is the release height.
Equation (7.3) is nothing but the conservation of energy, with the kinetic energy difference

4Although, quite remarkably, reading through Huygens’ geometric arguments clearly reveals
hints of what would later become limits, derivatives and integration [567].
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on the left equal, at all times, to the gravitational potential energy difference on the right,
the points of reference being an arbitrary point on the curve and the turning point, where
( ̇𝑠, 𝑦) = (0, ℎ𝑜). Huygens considers first the case of Galileo’s free pendulum. As said
before, 𝑦(𝑥) is then a circle of radius ℓ, the string’s length. Therefore, this path is given
by 𝑥2 + (𝑦 − ℓ)2 = ℓ2, with the Cartesian coordinates (𝑥, 𝑦) erected with respect to the
lowest point on the circle (as in Fig. 7.1). A classical calculation then gives d𝑠/d𝑦 = ℓ/𝑥,
so that Eq. (7.3) reads, for the classical pendulum

1
2 (d𝑦

d𝑡 )
2

= 𝑔 (ℎ𝑜 − 𝑦) (1 − (𝑦/ℓ − 1)2) . (7.4)

To get the period 𝑇 , it suffices to isolate d𝑡, express it in terms of d𝑦 and integrate the
result. In fact, it is the cubic-in-𝑦 polynomial in the right-hand side of Eq. (7.4) that will
give rise to the aforementioned elliptic integral, which can then be turned into Eq. (7.2).
Huygens already knows about the anisochrony of the regular pendulum, and rather wants
to understand why, geometrically, in small-oscillation limit it becomes isochrone. With
modern day notations, this limit is simply 𝑦 ≪ ℓ, and in this case Eq. (7.4) becomes

1
2 (d𝑦

d𝑡 )
2

= 2𝑔 (ℎ𝑜 − 𝑦) 𝑦/ℓ . (7.5)

Now we may compute the oscillating period as follows. As the pendulum is released from
the left-hand side of the vertical, it goes down (from height ℎ𝑜 to height 0), and then up
(from 0 to ℎ𝑜) before reaching the turning point on the right-hand side of the vertical. It
then swings all the way back, symmetrically. Consequently, by symmetry, 𝑇 is four times
that the time taken from height ℎ𝑜 to height 0. Since ̇𝑦 < 0 on this portion, we obtain by
inverting Eq. (7.5) for d𝑡 and integrating the result:

𝑇 = 2√ ℓ
𝑔 ∫

ℎ𝑜

0

d𝑦
√(ℎ𝑜 − 𝑦)𝑦

. (7.6)

One can then check that the integral on the right-hand side of (7.6) is independent of ℎ𝑜,
as it evaluates exactly to 𝜋, giving the classical, small-angle result (7.1).

The parabola property

Of course, Huygens did not have access to integrals as we have shown here. His work
was based on pure geometry. In geometrical terms, the Taylor approximation 𝑦/ℓ ≪ 1
we made to go from Eq. (7.3) to Eq. (7.4) is nothing but the act of replacing the original
circle by its osculating parabola at the origin, as showed on Huygens’ own drawings (cf.
Fig. 7.2). With our method or Huygens’, the result is the same: it allows one to get the
“time of the curve”, i.e., 𝑇 in terms of 𝑦(𝑥) (Eq. (7.6)). The next goal is, naturally, to
find a way to invert this relation. Huygens thus asks:

For what trajectory, if any, would the parabolic relationship used to construct the inverse
curve of time be exact?

Here, he speaks of the osculating parabola argument that allowed an explicit calcula-
tion. Heuristically, if the effect of this osculation could be applied (somehow) to the whole
curve (and not just at one point), then the resulting pendulum would be isochrone in all
oscillations, not just small ones. From this point on, Huygens’ geometric demonstration
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consists in showing that the cycloid is such a curve (see Fig. 7.2). His proof, in this sense,
may be a bit disappointing at first: he uses the known, end result to motivate the means
to prove it.5 Nevertheless, the beauty of the geometrical arguments involved makes up for
it.
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<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>
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x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit> circle

bob

fixed  
wall

y(x)
<latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit>

x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

fixed 
obstacle

length 
effectively 
shortened

x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit> circle
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<latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit>

x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

fixed 
obstacle

length 
effectively 
shortened

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

x<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

bob

✓o
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Figure 7.2: The first (left) and last (right) figures drawn by Huygens in his 1659 Worknote on
the Pendulum. Highlighted in color are the different curves considered in his proof: the circle
(classical pendulum), its osculating parabola (small-angle approximation) and the cycloid (the
isochrone pendulum). The left figure represents small-angle approximation (osculating parabola)
of the classical pendulum (circle). The right figure shows that it is an approximation of the actual
isochrone pendulum (cycloid). For references and details on these notes, see [569].

To understand, with modern-day notations, how his proof works, let us summarize
how we arrive at the isochrone result in the small amplitude limit:

• First, we assumed that 𝑦(𝑥) was a circle, which allowed to replace the arclength
parameter 𝑠 for the height 𝑦, going from (7.3) to (7.4)

• Then we replaced the circle by its osculating parabola, so as to turn the cubic into
a quadratic, going from (7.4) to (7.5)

• Finally, the peculiar form of the integral (7.6), with a square root of a quadratic in
the denominator, and its roots as integral limits, gives a constant value.

Clearly, isochrony comes from the second step, i.e., the right-hand side of (7.5) being
quadratic in 𝑦. With this in mind, let us go back to the master equation (7.3) but without
making the assumption of step 1, keeping a general curve 𝑦(𝑥) (or 𝑦(𝑠), equivalently). We
write it as an ODE for 𝑦 using the Leibniz rule as

1
2 (d𝑦

d𝑡 )
2

= 𝑔 (ℎ𝑜 − 𝑦) (d𝑦
d𝑠)

2
. (7.7)

Now let us suppose that the curve 𝑦(𝑠) is such that Eq. (7.7) (an exact equation) is exactly
the same ODE as Eq. (7.5) (an approximate one). By comparing Eqs. (7.7) and (7.5),

5One might even wonder if Huygens did not even discover that the cycloid was a solution in the
first place, and then checked if it yielded an isochrone pendulum. Indeed, before starting to think
about this problem he already knew about the cycloid, as he was just getting out of a mathematical
controversy after a challenge on this very curve posed by Blaise Pascal in 1658 [568].
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this implies that 𝑦(𝑠) satisfie

(d𝑦
d𝑠)

2
= 2𝑦

ℓ ⇒ 𝑦(𝑠) = 𝑠2

2ℓ , (7.8)

where the integration constant has been set to 0 to ensure 𝑦(0) = 0. The6 solution to
the isochrone pendulum problem is right there, in Eq. (7.8). Indeed, combining Eqs. (7.7)
and (7.8) to compute the period just as before readily gives 𝑇 = 2𝜋√ℓ/𝑔, as expected (we
leave this easy integral for the reader). The associated pendulum is exactly isochrone, as
no small-angle approximation was made to obtain it.

Nevertheless, it is not straightforward to infer by eye the actual shape of the curve 𝑦(𝑥)
from its arclength parametrization (7.8). To obtain a more traditional, Cartesian equation,
we look for a parametric equation, using 𝑠 as a parameter. To this end, we derive from 𝑦(𝑠)
the other coordinate function 𝑥(𝑠), using again the Euclidean line element d𝑠2 = d𝑥2+d𝑦2,
which readily gives d𝑥/d𝑠 = √1 − 𝑠2/ℓ2. After an integration by parts, we readily obtain

𝑥(𝑠) = ℓ
2 arcsin 𝑠

ℓ + 𝑠
2

√1 − 𝑠2

ℓ2 , (7.9)

with the integration constant set to 0 to ensure 𝑥(0) = 0. Eqs. (7.8) and (7.9) provide the
arclength parametrization for the Cartesian coordinates of the curve. However, there is
a much more natural one. Indeed, it is clear that Eq. (7.9) calls (screams, even) for the
introduction of an angle 𝜙 such that 𝑠 = ℓ sin 𝜙/2. Replacing 𝑠 by this new parameter 𝜙
in Eqs. (7.8) and (7.9), we find (with well-chosen trigonometric identities)

𝑥(𝜙) = ℓ
4(𝜙 + sin 𝜙) and 𝑦(𝜙) = ℓ

4(1 − cos 𝜙) , (7.10)

the range of the parameter 𝜙 being [−𝜙𝑜; 𝜙𝑜], where 𝜙𝑜 ≡ arccos(1 − 4ℎ𝑜/ℓ) is find by
setting 𝑦(𝜙𝑜) = ℎ𝑜. Equation (7.10) is the familiar parametrization of the cycloid7. This
particular expression is reminiscent of its geometrical definition as the path followed by
a fixed point on the circumference of freely rolling circle (of radius ℓ/4 here), as depicted
at the top in Fig. 7.3. In this parametrization (7.10), 𝜙 is simply the angle by which the
circle has rotated. That the cycloid is the solution to the isochrone pendulum is not really
a surprise for who knows about two other equally famous curves: the brachistochrone and
the tautochrone. The former is the curve that minimizes travel time of a freely rolling ball
between any two points (left in Fig. 7.3), and the latter is the curve along which any two
balls released from different heights will reach the bottom point at the same time (right in
Fig. 7.3). These two curves are also cycloids, and are very closely related to the isochrone
pendulum. Huygens solved the tautochrone problem8, while both Bernoulli brothers (and
Leibniz) solved the brachistochrone problem first, in 1796 [571].

6Or at least, one solution to the problem. Just like Huygens, we did not prove its unicity.
Although it turns out that the cycloid is the unique symmetric isochrone pendulum (i.e., the
motion is symmetric with respect to the vertical axis), there exists an infinity of asymmetric
isochrone pendula, as shown in [570].

7In light of the above, it is rather amusing to note that the name cycloid, was coined by Galileo,
who claimed to have studied it for more than fifty years [571].

8Solving the tautochrone problem is equivalent to finding an isochrone pendulum, the only
difference being that the string tension is replaced by the contact force from the solid curve.
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Figure 7.3: Top: the traditional definition of the cycloid as the curve followed by a point on a
rolling circle. Bottom left: the brachistochrone (cycloid, in red) and two other curves in black. Of
the three rolling balls released from the top at 𝑡 = 0, the first to arrive at the tip is the one on the
cycloid (𝑡 = 1). Bottom right: the cycloid is a tautochrone: balls released at 𝑡 = 0 from different
heights all reach the bottom at the same time (𝑡 = 1). We encourage the reader to look at [571]
which contains a nice historical perspective on these curves.

The right variable

One of the most important result of the previous calculation is that it allows one to rewrite
the cycloid pendulum as a true harmonic system, where Galileo’s circular pendulum was
only nearly harmonic. This harmonic behavior is only revealed when the problem is written
in term of the arclength 𝑠 along the path. In terms of 𝑠, the equation of motion, obtained
by combining the master ODE (7.3) and the parametrization (7.8), is simply

1
2 (d𝑠

d𝑡 )
2

= 𝑔 (ℎ𝑜 − 𝑠2

2ℓ) , (7.11)

This ODE, with a parabola on the right-hand side, is a hallmark of isochrony, as we shall
see in this the next chapter. By differentiating Eq. (7.11) with respect to time, we obtain
̈𝑠(𝑡) + (𝑔/ℓ)𝑠(𝑡) = 0, which is the ODE of an harmonic oscillator.

The exact equation (7.7) can be used to understand the reason why Galileo’s pendulum
is nearly isochrone for small oscillations, and also why any pendulum is. Indeed, consider
a pendulum described by the Cartesian curve 𝑦(𝑥), and expand it around 𝑥 = 0, i.e., the
downward equilibrium. There, we have 𝑦 = 0 by construction of the coordinates, and
d𝑦/d𝑥 = 0 since the velocity must me perpendicular to the (vertical) string. Assuming a
smooth curve, we have,

𝑦(𝑥) = 𝑥2

2ℓ + 𝑂(𝑥3) , (7.12)

for some constant ℓ ≡ 1/𝑦″(0), which is nothing but the radius of curvature at 𝑥 = 0.
Eq. (7.12) is simply the second-order Taylor approximation of any pendulum’s motion.
To link this to the arclength 𝑠, we can use the Euclidean line element in the form d𝑠2 =
d𝑥2 + d𝑦2, and after a short calculation, we obtain

(d𝑦
d𝑠)

2
= 2𝑦

ℓ + 𝑂(𝑦2) . (7.13)
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This result, although elementary, is crucial because it holds for any pendulum, and can
be used to show two things. On the one hand, inserting it into the master equation (7.8)
readily gives Eq. (7.5), the small amplitude equation of Galileo’s circular pendulum. Con-
sequently, as claimed, any pendulum will exhibit isochrony in the small-angle limit. On
the other hand, we see that the exact cycloid ODE Eq. (7.8) is the first-order approxima-
tion to the general result (7.13). In other words, where all pendulum are nearly isochrone
because they can all be approximated by a parabola (in the 𝑦 or 𝑠 coordinate), only one
curve extends this parabolic property to the whole pendulum, the cycloid. The difference
between these two cases is encapsulated in the 𝑂(𝑦2) term in Eq. (7.13).

Now that Huygens has found that the cycloid solves the isochrone problem, his last
step is to find the shape of the pendulum walls (cf. Fig. 7.1) to enforce this curve. This
reverse problem leads him to introduce the notions of involute and evolute of a curve.
The involute of a curve is the locus of points drawn by a pendulum’s bob when it wraps
around that curve, and the evolute is the converse, i.e., the evolute of the involute of a
curve is the curve itself. Huygens goes on to show that the cycloid is its own involute (and
evolute), as can be seen on Fig. 7.4. Consequently, by the very geometry of the problem,
the walls that will enforce cycloidal motion are portions of that same, exact cycloid. This
is a unique property that, once again, characterizes the cycloid among all other curves.

cycloidal 
walls

cycloid

y(x)
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Figure 7.4: Left and middle: an excerpt from Huygens’ notebook on the isochrone pendulum, where
we see both the cycloid path followed by the pendulum’s bob, and the cycloid walls that generate
the motion. This is only possible because the involute of a cycloid (the red curve in the middle) is
a cycloid (the green walls). Right: the actual size and shape of the walls used by Huygens for his
cycloid pendulum, as depicted in his Horlogium Oscillatorium, with the same color-coding as the
other figures.

7.1.3 Staying in Harmony
After Galileo and Huygens’ investigations of the pendulum, a profusion of designs for pen-
dulum clocks were proposed. Huygens’ cycloid was perfectly isochrone on the theoretical
point of view, and on the experimental side too. In 1657, him and the horologist Salomon
Coster built a pendulum providing a hundred-fold increase in accuracy compared to older
designs, losing only 15 seconds per day. However, for most purposes, it did not prove that
useful, as the cycloid pendulum only provided increased accuracy for wide oscillations,
whereas a rigid, classical pendulum with small-oscillations was enough for most applica-
tions.

Yet, Huygens found another way of applying his isochrone pendulum to time-keeping
devices. After the mastering of regular pendulums, the advent of pocket clocks and wrist
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watches came with another challenge: for these devices, gravity does not always point
downward with respect to the oscillator. Since for the pendulum gravity acts as a restoring
force, the natural first try was to mimic gravity by replacing it with a spring. It is in this
context that Robert Hooke stated the eponymous law in 1675, first publishing with an
anagram (a common practice at the time)

ceiiinosssttuv ⇔ ut tensio, sic vis

which translates in modern day mathematics into 𝐹 ∝ 𝑥, where 𝐹 is the restoring force
and 𝑥 the displacement. As we know today, this force derives from a potential proportional
to the displacement squared, nowadays called the harmonic (or Hooke) potential. In other
words, the time-dependent displacement of such a body under the influence of a Hooke
force satisfies the ODE (7.11), just like the isochrone pendulum. Huygens only needed to
find how to construct, mechanically, such a force. Thankfully, Huygens knows all about
curves, and invents right around that time the spiral balance, an apparatus composed of a
metallic spring in the shape of an Archimedean spiral9. This curve has a polar equation of
the form 𝑟 = 𝑎 + 𝑏𝜃, where 𝑎, 𝑏 are constants, and as a spring, produces a restoring force
that satisfies (an angular) Hooke’s law even for wide amplitudes. Coupled to an oscillator,
it produce isochrone motion. Just like Hooke, Huygens shares his discovery in a coded
message that he sends to Royal Society’s secretary Henry Oldenburg in 1675 [558]:

413537312343242
𝑎𝑏𝑐𝑒𝑓𝑖𝑙𝑚𝑛𝑜𝑟𝑠𝑡𝑢𝑥

which, once deciphered, gives in Latin “Axis Circuli mobilis affixus in Centro Volute
ferrea”, or “the axis of the mobile circle is fixed at the center of an iron spiral”. This is
indeed the basic mechanism that can be found drawn on several letters sent by Huygens
around 1675, as depicted in Fig. 7.5. The period of oscillation 𝑇 for the spiral balance
depends on the moment of inertia 𝐼 of this “mobile circle” (the balance wheel in red in
Fig. 7.5) and on the stiffness 𝜅 of the spiral spring, through the relation

𝑇 = 2𝜋√𝐼
𝜅 , (7.14)

We see from Eq. 7.14 the isochrone nature of this system (of course, up to nonlinearities
in the spring and energy losses). This very mechanism is still present in most mechanical
clocks and watches.

The quest for isochrone oscillations and precise time-keeping devices did not end with
the seventeenth century, of which we provide a summarizing timeline in Fig. 7.6 for the
reader’s convenience. This rich and major part of scientific history is fascinating, and the
interested reader will find in [557] (in French) much more about it.

This first introductory section could be seen as rather unrelated to the problem that
will occupy us in the next chapters. After all, we will deal with Newtonian, celestial
mechanics with the true Kepler potential (𝜓(𝑟) ∝ −1/𝑟), whereas Huygens considered a
constant gravitational field, associated to a Hooke potential (𝜓(𝑧) = 𝑚𝑔𝑧). However, it
is my hope that, at the end of the second part of this thesis, the reader will understand
why Huygens’ derivation is so interesting in the light of celestial isochrone mechanics. In
particular, regarding the previous discussion, three key points stand out, and will be worth
remembering:

9Huygens, whose father nicknamed my little Archimedes, knew about Archimedes’ work very
well. Interestingly enough, we will also meet Archimedes in celestial isochrony.



186 7.1. ISOCHRONE PENDULA

y(x)
<latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit><latexit sha1_base64="MtGm0Q1ZrgQ/JC9RBvbKu2xpJ4g=">AAAB63icdVDLSsNAFJ34rPVVdelmsAh1Eyba0mRXdOOygn1AG8pkOmmHziRhZiKG0l9w40IRt/6QO//GSVtBRQ9cOJxzL/feEyScKY3Qh7Wyura+sVnYKm7v7O7tlw4O2ypOJaEtEvNYdgOsKGcRbWmmOe0mkmIRcNoJJle537mjUrE4utVZQn2BRxELGcE6l7LK/dmgVEa2h2qeW4PIRsi7qNdzUnPdqgcdo+QogyWag9J7fxiTVNBIE46V6jko0f4US80Ip7NiP1U0wWSCR7RnaIQFVf50fusMnhplCMNYmoo0nKvfJ6ZYKJWJwHQKrMfqt5eLf3m9VIeuP2VRkmoakcWiMOVQxzB/HA6ZpETzzBBMJDO3QjLGEhNt4imaEL4+hf+T9rntINu5qZYbl8s4CuAYnIAKcEAdNMA1aIIWIGAMHsATeLaE9Wi9WK+L1hVrOXMEfsB6+wQUQ45E</latexit>

cycloid walls

cycloid

Figure 7.5: Huygens’ drawing of a spiral balance, found in a letter sent to Jean Gallois in 1675 [558].
The balance wheel (in red) connects to the spiral spring (in green) through a vertical shaft. Turning
the wheel loads potential energy into the spring, and releasing it starts the back and forth motion.
The shaft terminates at the bottom with a cog transmitting motion the geared wheel (blue).

• there exists an adapted variable in which the isochrone pendulum looks like a har-
monic oscillator,

• isochrony is equivalent to the potential looking like a parabola in this variable,

• sometimes, insight can be found by looking at Archimedes’ work.

Remarkably, these three features will be at the core of our resolution of the isochrone
problem as initially formulated by Michel Hénon in 1959.
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Figure 7.6: Seventeenth century timeline of the main works and events cited in this introduction.
Horizontal grey lines shows the life span of the associated scientist, on left and right (note that
birth and death fit into this century for Huygens only). In red their magnum opus (opera for some
of them), with their common name (in general a shorthand of the whole title). In blue historical
notes that have been cited in the text. Many additional and interesting historical references can
be found in the very nice account [558].
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7.2 Periodic orbits in central potentials
The main difference between the isochrony of the pendulum, as described above, and the
isochrony defined by Michel Hénon is that (1) it deals with a 2-dimensional problem, and
(2) it is defined in the context of celestial mechanics. Consequently, in this section we shall
lay the general definitions that will be used throughout the next chapters. In Sec. 7.2.1, we
derive some standard results regarding periodic orbits of test particles in a given central,
gravitational potential. Then, in Secs. 7.2.2 and 7.2.3 we define two constants of motion
that will be at the core of Hénon’s isochrony, defined in the next chapter.

7.2.1 Generalities
Let us consider the three-dimensional Euclidean space and an inertial frame of reference
equipped with a set of spherical coordinates (𝑟, 𝜃, 𝜑) and the associated natural basis
( ⃗𝑒𝑟, ⃗𝑒𝜃, ⃗𝑒𝜑). We assume that around the origin 𝑂 = (0, 0, 0) lies a spherically symmetric
distribution of matter with mass density 𝜌(𝑟). This system generates a gravitational
potential, denoted 𝜓(𝑟), that obeys Poisson’s equation

Δ𝜓(𝑟) = 1
𝑟2

d(𝑟2𝜓′)
d𝑟 = 4𝜋𝐺𝜌(𝑟) , (7.15)

where a prime ′ denotes a differentiation with respect to 𝑟, and 𝐺 is Newton’s constant. We
consider a test particle of mass 𝑚 orbiting this system, with position vector ⃗𝑟 and velocity
vector ⃗𝑣 ≡ d ⃗𝑟/d𝑡. Owing the spherical symmetry, the angular momentum �⃗� ≡ 𝑚 ⃗𝑟 × ⃗𝑣
of the particle is conserved. Its norm is given by |�⃗�| = 𝑚𝑟2 ̇𝜃, with the usual notation

̇𝜃 = d𝜃/d𝑡 for the time derivative. The total energy 𝐸 of the particle, sum of a kinetic
term 1

2𝑚| ⃗𝑣|2 and a potential term 𝑚𝜓, is conserved as well. Let us introduce 𝜉 ≡ 𝐸/𝑚,
the (total) energy of the particle per unit mass ; and Λ ≡ |�⃗�|/𝑚, the (norm of the) angular
momentum per unit mass. The explicit computation of the energy in terms of 𝑟 yields the
following energy conservation equation

𝜉 = 1
2(d𝑟

d𝑡 )
2

+ Λ2

2𝑟2 + 𝜓(𝑟) . (7.16)

Since 𝐸, �⃗� and 𝑚 are conserved quantities, 𝜉 and Λ are two constants of motion.
In a given potential 𝜓, the quantities (𝜉, Λ) are sufficient to know everything about the
dynamics of a particle, up to initial conditions in the position. Accordingly, we will abuse
notation and speak of (𝜉, Λ) as a particle. Along with these initial conditions, Eq. (7.16)
forms a nonlinear ODE for the function 𝑡 ↦ 𝑟(𝑡). We are interested in orbits and therefore
will consider bounded solutions to Eq. (7.16). Once 𝑟(𝑡) has been obtained by solving
Eq. (7.16), we can solve for the angular part 𝜃(𝑡) by means of conservation of angular
momentum, which readily gives

d𝜃
d𝑡 = Λ

𝑟2 . (7.17)

This one-way decoupling between radial and angular motion will be important for our
purpose, as the definition of isochrony depends on the characteristics of the radial motion
of a test particle.

Since the orbit is bounded and the function 𝑟(𝑡) is continuous, we may define 𝑟𝑃 and
𝑟𝐴 as the minimum and maximum values of 𝑟(𝑡). Physically, 𝑟𝑃 is (the radius of) the
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periapsis, i.e., the point on the orbit closest to 𝑂; and 𝑟𝐴 that of the apoapsis, the one
farthest from 𝑂. At these turning points, the radial velocity ̇𝑟 ⃗𝑒𝑟 vanishes and ̇𝑟 changes
sign. Consequently, by Eq. (7.16), 𝑟𝑃 and 𝑟𝐴 are two solutions to the following algebraic
equation10

𝜉 = 𝜓𝑒(𝑟) ≡ Λ2

2𝑟2 + 𝜓(𝑟) , (7.18)

where we have introduced the effective potential 𝜓𝑒(𝑟), sum of the gravitational potential
𝜓(𝑟) and the centrifugal term Λ2/2𝑟2. Note that, for somes values of (𝜉, Λ), there is unique
solution 𝑟𝐶 to Eq. (7.18). The associated orbit is circular, of radius 𝑟 = 𝑟𝐶 . This can
always be seen as the degenerate case 𝑟𝑃 → 𝑟𝐴.

It is customary to use the effective potential to study geometrically the orbit of a
particle, depending on its energy. As depicted in Fig. 7.7, one plots the function 𝜓𝑒 for a
given value of Λ, and then draws a line of height 𝜉. By construction, any choice of initial
conditions will yield 𝜉 ≥ min 𝜓𝑒. When there are two intersections between the line 𝑦 = 𝜉
and the curve 𝑦 = 𝜓𝑒(𝑟), the orbit is non-circular and one can read the periapsis 𝑟𝑃 and
apoapsis 𝑟𝐴 as the abscissae of the intersection points. When there is only one intersection,
its abscissa is the orbital radius 𝑟𝐶 and the orbit is circular. Furthermore, at 𝑟 = 𝑟𝐶 the
tangent to the curve is the horizontal line 𝑦 = 𝜉, and therefore, 𝜓′

𝑒(𝑟𝐶) = 0. Two exemples
of this classical construction are depicted in Fig. 7.7 for two particles sharing the same
energy but having different angular momenta.

Figure 7.7: The graph 𝑦 = 𝜓𝑒(𝑟) corresponds to the effective potential 𝜓(𝑟) + Λ2/2𝑟2. Two 𝜓𝑒
are depicted, associated with two particles with different angular momenta : Λ (bottom curve,
red) and Λ𝐶 > Λ (top curve, light red). The vertical line 𝑦 = 𝜉 defines two orbits associated with
the same energy 𝜉. Particle (𝜉, Λ) is on a generic, non-circular orbit [𝑟𝑃 , 𝑟𝐴] and particle (𝜉, Λ𝐶)
is on a circular orbit of radius 𝑟𝐶. Note that they both orbit in the same potential 𝜓.

Lastly, it is worth noting that, by virtue of Eq. (7.16), the quantity 𝜉 − 𝜓𝑒(𝑟) ∝
̇𝑟2 should always be strictly positive when 𝑟(𝑡) ∈]𝑟𝑃 , 𝑟𝐴[, and vanish at 𝑟𝑃 and 𝑟𝐴, by

definition.

10When there are more than two solutions to Eq. (7.18)., say (𝑟1, … , 𝑟𝑛) for some 𝑛 ≥ 3, the
orbit is selected on the graph by the initial radius 𝑟0: its periapsis and apoapsis being 𝑟𝑃 = 𝑟𝑖
and 𝑟𝐴 = 𝑟𝑖+1, where 𝑖 is such that 𝑟0 ∈ [𝑟𝑖, 𝑟𝑖+1].
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7.2.2 Radial Period
The Hamiltonian nature of the system implies that any bounded and continuous solution
to Eq. (7.16) must be periodic [344]. In other words, if an orbit is bounded in a central
potential, it is necessarily radially periodic. We shall define the radial period (the period
in short hereafter) as the smallest 𝑇 ∈ ℝ⋆

+ such that 𝑟(𝑡 + 𝑇 ) = 𝑟(𝑡) for all 𝑡 ≥ 0. Note
that the radial period 𝑇 always exists for bound orbits. It should not be confused with
the period of motion of the particle (i.e., the period of the position vector 𝑡 ↦ ⃗𝑟(𝑡) ∈ ℝ3).
The later only exists if the orbit is closed in real space, as for Keplerian ellipses.

For a generic, non-circular orbit, one can get a formula for 𝑇 by first isolating the
variables 𝑡 and 𝑟 in Eq. (7.16). This yields

d𝑡 = ± d𝑟
√2𝜉 − 2𝜓(𝑟) − Λ2/𝑟2 . (7.19)

In this formula, the + sign corresponds to an increasing radius 𝑟(𝑡), i.e., when the particle
goes from 𝑟𝑃 to 𝑟𝐴, whereas the − sign corresponds to a decreasing radius, i.e., when the
particle comes from 𝑟𝐴 back to 𝑟𝑃 . Integrating Eq. (7.19) over a full period and taking
into account the two different signs provides the following integral formula for the period,
which we take as a definition

𝑇 ≡ 2 ∫
𝑟𝐴

𝑟𝑃

d𝑟
√2𝜉 − 2𝜓(𝑟) − Λ2/𝑟2 . (7.20)

Notice that the bounds of the integral 𝑟𝑃 and 𝑟𝐴 are precisely the zeros of the denominator
vanish, by virtue of Eq. (7.18). The fact that 𝑥 ↦ 1/√𝑥 is integrable near 0 ensures the
convergence of the integral.11 We note that strictly speaking, the integral in (7.20) does
not make immediate sense for circular orbits. As we shall see with explicit formulae in
the next chapters, by continuity there is a well-defined notion of radial period associated
to circular orbits, in terms of 𝜉 and/or Λ.

7.2.3 Apsidal angle
Let a particle (𝜉, Λ) be at some position (𝑟(𝑡), 𝜃(𝑡)) on its orbit at some fixed time 𝑡 (red
point on the right of Fig. 7.8). The radial period 𝑇 corresponds to the time taken for the
particle to go back to that radius 𝑟(𝑡) (with the same sign of ̇𝑟). This does not mean,
however, that the orbit itself is a closed curve in real space. It will be the case only if, after
a period 𝑇 , the new angle 𝜃(𝑡 + 𝑇 ) is equal to 𝜃(𝑡) + 𝑞𝜋, for some rational number 𝑞 ∈ ℚ.
The orbit then closes after a finite number of radial periods that equal the denominator
of 𝑞.

To quantify this, we define the quantity Θ ≡ 𝜃(𝑡 + 𝑇 ) − 𝜃(𝑡). This angle is constant12

and corresponds physically to the angle difference between any two positions, a period
𝑇 apart. In orbital mechanics it is customary to take the angle difference between two
successive periapsis, as depicted in Fig. 7.8. Therefore, we shall call Θ > 0 the apsidal

11Indeed, using Eq. (7.18), we have the Taylor expansion 𝜉−𝜓𝑒(𝑟) = 𝜓′
𝑒(𝑟𝑃 )(𝑟𝑃 −𝑟)+𝑜(𝑟𝑃 −𝑟),

and 𝜓′
𝑒(𝑟𝑃 ) ≠ 0 since the orbit is non-circular. The integrand in Eq. (7.20) is thus equivalent to

(𝑟𝑃 − 𝑟)−1/2, which is integrable at 𝑟𝑃 . The same holds at 𝑟𝐴.
12Since Λ = 𝑟2 ̇𝜃 we have Θ̇ = Λ/𝑟(𝑡 + 𝑇 )2 − Λ/𝑟(𝑡)2, which vanishes by 𝑇 -periodicity of 𝑟(𝑡).
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angle. When Θ is a rational multiple of 𝜋, the orbit depicts a closed curve in real space.
Otherwise, the orbit densely fills the shell region 𝑟 ∈ [𝑟𝑃 , 𝑟𝐴].

An integral formula can be obtained for Θ, by using the conservation of angular
momentum Eq. (7.17). This equation gives d𝜃 = Λd𝑡/𝑟2, which, when combined with
Eq. (7.19) and integrated over one period, gives easily

Θ ≡ 2Λ ∫
𝑟𝐴

𝑟𝑃

d𝑟
𝑟2√2𝜉 − 2𝜓(𝑟) − Λ2/𝑟2 . (7.21)

Equation (7.21) is well-defined for any non-circular orbit, but also admits a finite value in
the circular-orbits limit, just as the integral for 𝑇 in Eq. (7.20). We shall come back to
this in the next chapters.

7.2.4 Radial action
A Hamiltonian treatment of the problem will be thoroughly discussed in Chap. 9. For now,
we will only need one result from it, the existence of a radial action 𝐽 . Fundamentally,
this is defined as the integral over one radial period of the momentum conjugated to the
radial variable 𝑟. In practice, this momentum is simply 𝑚 ̇𝑟, and we will simply define this
action by

𝐽 =
√

2
𝜋 ∫

𝑟𝐴

𝑟𝑃

(𝜉 − Λ2

2𝑟2 − 𝜓(𝑟))
1/2

d𝑟 . (7.22)

The fact that it is an action (from a set of action-angle variables) is not important here.
Rather, its central feature is that it acts as a generating function for the radial period 𝑇
and the apsidal angle Θ as seen as functions of (𝜉, Λ). Indeed, by comparing Eqs. (7.20)
and (7.21) with Eq. (7.22), the following relations are immediate

𝑇
2𝜋 = 𝜕𝐽

𝜕𝜉 and Θ
2𝜋 = −𝜕𝐽

𝜕Λ . (7.23)

These two equations provide a fundamental result that will be used later on. To derive
it, we take the partial derivative of 𝑇 with respect to Λ (left of (7.23)) and the partial
derivative of Θ with respect to 𝜉 (right of (7.23)). Using Schwartz’s theorem to swap the
order of derivative, we readily find that

𝜕𝑇
𝜕Λ = −𝜕Θ

𝜕𝜉 . (7.24)

Of course this differential relation could have been obtained readily by differentiating the
integral definitions (7.20) and (7.21). It just more convenient through the radial action 𝐽 .
In any case, Eq. (7.24) will be very useful to reformulate the problem of isochrony, in the
next section.

7.3 Hénon’s Isochrony
With the background on isochrone pendula given in Sec. 7.1 and the prerequisites provided
in Sec. 7.2, it is time to move to the statement of the isochrone problem with which we
will deal in the following chapters. First we provide some context on Hénon’s isochrony
(Sec. 7.3.1), state the problem to be solved (Sec. 7.3.2), and make a brief summary of
what can be found in the literature about this particular notion of isochrony (Sec. 7.3.3).
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Figure 7.8: A typical orbit in a central potential (solid black), centered on the origin 𝑂, during ∼ 2
periods 𝑇 . At some initial time 𝑡, the particle is at a radius 𝑟 = 𝑟(𝑡) (red dot on grey circle, right).
At times 𝑡 + 𝑇 and 𝑡 + 2𝑇 it comes back to that same radius, crossing the grey circle with the
same sign of ̇𝑟. During the first period [𝑡, 𝑡 + 𝑇 ], the particle reaches the periapsis (inner dashed
circle) and then the apoapsis (outer dashed circle). During the second period [𝑡 + 𝑇 , 𝑡 + 2𝑇 ],
the process repeats. Θ is the angle between two successive periapsis, but also between any two
successive positions a period 𝑇 appart.

7.3.1 The context
Michel Hénon (1931-2013) was a French theoretical astrophysicist. Although he touched
upon many different topics in his career, it is fair to say that all of them had to do with
the field of dynamical systems. In theoretical physics, he was a pioneer in numerical
exploration of dynamical systems (the celebrated Hénon map is named after him [572]).
Regarding astrophysics, we refer to the book [573], dedicated to Hénon’s life and work,
which summarizes several of his many decisive scientific contributions.

The problem of interest for us, isochrony, was introduced by Hénon at the end of the
1950s, at a time when he was not Docteur ès Sciences Physiques yet. His three papers
on isochrony were published in 1959 and 1960, and he defended his PhD in December 11,
1961 in front of André Danjon, director of the Paris Observatory, and Evry Shatzman,
his advisor13. At that time, Hénon was interested in a particular type of astrophysical
systems called globular clusters. These objects are rather peculiar, like tiny galaxies within
galaxies, made of thousands to millions of stars bound together by their collective grav-
itational field. They were first resolved observationally as a luminous system of many
individual stars at the end of the eighteenth century by William Herschel, who also intro-
duced the term globular for their near-perfect spherical symmetry [574]. Today, globular
clusters are of central importance for astronomy and astrophysics and are found in es-

13Interestingly, the work on isochrony presented in this thesis was done in the Evry Shatzman
building of the Paris observatory (Meudon site), and presented for the first time in the André
Danjon room (Paris site).
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sentially all galaxies. They appear to contain stellar (and possibly massive) black holes
in their core [575–577], and the total number of globular clusters seems to be positively
correlated with the mass of the super-massive black hole of the host galaxy [578]. New lit-
erature on the dynamics and evolution of globular clusters is currently burgeoning thanks
to the recent and unparalleled precision of the data collected during the ongoing GAIA
mission [579–581].

In the Milky Way, around 150 globular clusters have been observed [580], the most
massive and luminous of them being Omega Centauri, with around 10 millions of stars.
In 1959-1960, Hénon publishes a three-part series of articles in French entitled L’amas
isochrone (the isochrone cluster) [582–584]. The primary goal of this work, which he
would never revisit later in his career, was to propose an analytic model for the potential
generated by these globular clusters. In his seminal paper [582] (in French, for an English
version see [585]) he succeeded in solving this ambitious problem and found what he called
the “isochrone potential”

𝜓(𝑟) = −𝜇
𝑠 , where 𝑠 ≡ 𝑏 + √𝑏2 + 𝑟2 , (7.25)

and 𝑏 is a size parameter closely related to the half-mass radius of the system. The
corresponding mass density distribution, obtained by solving the Poisson equation (7.15),
was in good agreement with some of the observed globular clusters available in 1959, as
can be seen in Fig. 7.9.

Poincaré, 1912-2012, Vol. XVI, 2012 Poincaré and the Three-Body Problem 107

Understanding the extreme complexity of the intersections of these two asymptotic
manifolds which must fold and stretch more and more when approaching the periodic
point, Poincaré writes (one shoud rather say “exclaims”):

Que l’on cherche à se représenter la figure formée par ces deux courbes et
leurs intersections en nombre infini dont chacune correspond à une solution
doublement asymptotique, ces intersections forment une sorte de treillis,
de tissu, de réseau à mailles infiniment serrées ; chacune des deux courbes
ne doit jamais se recouper elle-même, mais elle doit se replier sur elle-même
d’une manière très complexe pour venir recouper une infinité de fois toutes
les mailles du réseau.

On sera frappé de la complexité de cette figure, que je ne cherche même
pas à tracer. Rien n’est plus propre à nous donner un idée de la compli-
cation du problème des trois corps et en général de tous les problèmes de
Dynamique où il n’y a pas d’intégrale uniforme et où les série de Bohlin
sont divergentes.127 (chapitre XXXIII, section 397).

Figure 18: A tangle computed by Carles Simó.

127Let us try to represent the figure formed by these two curves and their intersections in infinite number, each
corresponding to a doubly asymptotic solution, these intersections form a kind of mesh, of fabric, of infinitely tight
network; each of the two curves must never intersect itself, but it must fold back on itself in a very complex way in
order to cross an infinite number of times all the meshes of the network.

One will be struck by the complexity of this figure, which I do not even try to draw. Nothing is more likely to
give us an idea of the complexity of the Three-Body Problem and in general of all the problems of dynamics where
there is no uniform integral and where the Bohlin series are divergent.
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Figure 7.9: A figure from Hénon’s first article [582] on isochrony, comparing the theoretical (pro-
jected) mass density of Hénon’s isochrone model and the observations for 5 globular cluster: M5,
M15, M92, Omega Centauri (NGC 5139) and 47 Tucanae (NGC 104).

7.3.2 The problem
How did Hénon find his potential and why did he call it “isochrone”? First, he made the
following heuristic argument. In a globular cluster, the stars at the center have a nearly
constant density, whereas those on the periphery see the spherical distribution beneath
them. Through the Poisson equation, a constant density is associated to a quadratic (or
harmonic) potential , whereas spherical distributions generate the Kepler potential, say

𝜓Ke(𝑟) = −𝜇
𝑟 and 𝜓Ha(𝑟) = 1

8𝜔2𝑟2 , (7.26)
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with 𝜇 and 𝜔 two constants characterizing the mass sourcing these potentials. A potential
that would describe the entirety of the globular cluster should share common feature
with these two. What property do they share? A first answer is that they generate
elliptic orbits. But in general, orbits in central potentials are not even closed, except for,
precisely, the Kepler and harmonic potential. This is the celebrated Bertrand theorem
(which we will show to be a simple consequence of isochrone theory later on). Another,
less restrictive, commonality of the harmonic and Kepler potentials (7.26) can be found
by examining the radial period 𝑇 of orbits therein. We find

𝑇Ke = 2𝜋𝜇
(−2𝜉)3/2 and 𝑇Ha = 2𝜋

𝜔 , (7.27)

the first identity being the celebrated third law of Kepler, and the second the simple rela-
tionship between period and angular frequency of the harmonic oscillator. Notice that they
do not depend on the other constant of motion Λ, the angular momentum. However, for a
generic central potential 𝜓, the radial period 𝑇 is a function of both 𝜉 and Λ, as should be
clear in view of Eq. (7.20). Two particles with same energy but otherwise different angular
momenta will orbit the Kepler or harmonic potentials with the same (iso) radial period
(chrone). Hénon then asks if there are other potentials with this property, and if, most im-
portantly for him, these other “isochrone” potentials accurately describe globular clusters.

Our definition of isochrony in the case of celestial mechanics will thus be that of Hénon,
for spherically symmetric (i.e., radial) potentials: a radial potential 𝜓(𝑟) is isochrone if
and only if all periodic orbits it generates have a radial period 𝑇 only function of the energy
𝜉. Schematically, we thus have

𝜓 is isochrone ⇔ 𝑇 = 𝑇 (𝜉, Λ/) , (7.28)

with the radial period being a functional of 𝜓, defined by a integral in (7.20). Hénon found
one particular isochrone potential, called the isochrone in the astrophysical literature. As
we will see, there exists many other. Consequently, in the following we will use isochrone
as a qualifier for the whole class of potentials verifying (7.28), and call the potential dis-
covered by Hénon (7.25), the Hénon potential.

There is an alternative, equivalent definition of isochrony, on which, without knowing,
Hénon commented. Indeed, we can find on page 3 of his second paper [583], a remark
depicted in Fig. 7.10.

Poincaré, 1912-2012, Vol. XVI, 2012 Poincaré and the Three-Body Problem 107

Understanding the extreme complexity of the intersections of these two asymptotic
manifolds which must fold and stretch more and more when approaching the periodic
point, Poincaré writes (one shoud rather say “exclaims”):

Que l’on cherche à se représenter la figure formée par ces deux courbes et
leurs intersections en nombre infini dont chacune correspond à une solution
doublement asymptotique, ces intersections forment une sorte de treillis,
de tissu, de réseau à mailles infiniment serrées ; chacune des deux courbes
ne doit jamais se recouper elle-même, mais elle doit se replier sur elle-même
d’une manière très complexe pour venir recouper une infinité de fois toutes
les mailles du réseau.

On sera frappé de la complexité de cette figure, que je ne cherche même
pas à tracer. Rien n’est plus propre à nous donner un idée de la compli-
cation du problème des trois corps et en général de tous les problèmes de
Dynamique où il n’y a pas d’intégrale uniforme et où les série de Bohlin
sont divergentes.127 (chapitre XXXIII, section 397).

Figure 18: A tangle computed by Carles Simó.

127Let us try to represent the figure formed by these two curves and their intersections in infinite number, each
corresponding to a doubly asymptotic solution, these intersections form a kind of mesh, of fabric, of infinitely tight
network; each of the two curves must never intersect itself, but it must fold back on itself in a very complex way in
order to cross an infinite number of times all the meshes of the network.

One will be struck by the complexity of this figure, which I do not even try to draw. Nothing is more likely to
give us an idea of the complexity of the Three-Body Problem and in general of all the problems of dynamics where
there is no uniform integral and where the Bohlin series are divergent.
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Figure 7.10: Hénon points out the “curious fact” that, in his isochrone model, the apsidal angle 𝛼
(Θ in our notations) depends only the angular momentum 𝐴 (Λ for us).

After having computed the apsidal angle Θ in the Hénon potential, he notices that
the resulting expression depends only on Λ. Thanks to the previously established result in
Eq. (7.24), we see that this is not a coincidence, but an equivalent definition of isochrony.
Accordingly, we can complete the definition (7.28) as

𝜓 is isochrone ⇔ 𝑇 = 𝑇 (𝜉, Λ/) ⇔ Θ = Θ(𝜉/, Λ) . (7.29)
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The problem that will occupy us for the remaining chapters is about this notion of
isochrony. In particular, starting from the definition (7.29), we will be interested in an-
swering as thoroughly as possible (1) the question of the existence of other isochrone
potentials and (2) the properties of orbits therein. Our exploration will be made under
the light of mathematical physics, and we will not discuss the applicability of the theory of
isochrone potentials to the modeling of globular clusters, or other astrophysical systems.
However, work remains to be done in that direction, and several prospects are provided
in the thesis’ conclusion section.

7.3.3 The literature
The literature on this particular isochrone problem is rather scarce if we look at it from
a mathematical-physics perspective (which is that of the present work), but rather rich
from an astrophysics/dynamics point of view. Before ending this chapter, let us provide
an overview of the literature that deals directly with Hénon’s isochrone.

Astrophysics

Evidently, the first to provide answers to the problem is Michel Hénon himself. In his three
papers, the first one [582] is dedicated to finding the explicit formula for his isochrone po-
tential, given in Eq. (7.25) and compute the corresponding density distribution. He then
proposes a heuristic argument as to why his isochrone model fits well with the observa-
tions. His argument is as follows. First, resonances are expected to be stronger between
stars of equal period. Second, if the cluster is not yet isochrone, then the set 𝐹𝑇 of stars
with period 𝑇 do not have the same energy 𝜉 (typically, radial orbits (large Λ) have an
energy smaller than quasi-circular orbits (small Λ). Third, mutual interactions in 𝐹𝑇 will
naturally drive it a state of energy equipartition. Consequently, all stars in 𝐹𝑇 will have
the same energy, which defines the isochrone cluster. Hénon points out that this is but
a heuristic, and that a formal demonstration of this process, if it exists, remains to be given.

Hénon’s second paper [583] aims at exploring the orbits in his isochrone potential.
He computes the period 𝑇 and apsidal angle Θ, checks that they indeed satisfy (7.29),
and provide drawings of some isochrone orbits14. In the third and last paper [584], he
goes back to the statistical physics approach and computes the distribution function of an
isochrone cluster using his model. Although the recent refinement of observations has ac-
tually revealed a wider diversity, Hénon’s isochrone model remains at the center of cluster
modeling for at least two reasons. First, just like the harmonic and Kepler potentials, this
potential is fully integrable and its action-angle formalism provides a fundamental basis
for both the modeling and simulations of stellar systems (see e.g., [586]). More recently,
a detailed numerical analysis [587] showed that the isochrone model could be associated
with the initial state of the evolution of singular stellar systems (e.g., globular clusters
and/or Low Surface Brightness Galaxies); a result that followed an involved extension of
many aspects of Hénon’s work on isochrone potentials [588].

Hénon’s isochrone model, and more precisely his elegant (but heuristic) explanation
of why it may be physically relevant to cluster modeling, does not seem to be widely

14I do not know if Hénon used graphical methods to plot the complicated parametric equations
of the orbit, or if he used his own mechanical calculator (he used to build is own before the advent
of modern computers [573]).
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known nor used. Yet, to my knowledge, no further exploration of this particular isochrone
resonance mechanism can be found in the literature, except for brief mentions in [589]
(see Sec. III and IV there). However, the isochrone model has been used extensively in
cluster and galactic dynamics, not as an exact potential for these systems, but to develop
physical intuition on otherwise very complex mechanisms. The main reason is because it
provides completely analytic results while presenting much richer dynamics that perfectly
closed ellipses. The authoritative book [590] contains a number of references on these
applications. As an example, let us mention the extension of Hénon’s isochrone to flattened
potentials in [591,592], so that it can be properly applied to galactic potentials which are
(at least for the non dark matter sector) clearly not spherically symmetric like Hénon’s
isochrone.

Mathematical physics

On the mathematical physics side, expect for Hénon’s first paper, in which he partly solves
the (restricted) problem of isochrony, not much is found in the literature. The first edition
of James Binney and Scott Tremaine’s Galactic Dynamics (1987) makes a brief mention
of it, essentially re-deriving all of Hénon’s results from the explicit form for the potential
(7.25) (they do not discuss how and why Hénon found it in the first place). The second
edition (2008) [590] contains a new section on action-angle variables, and uses for Hénon’s
isochrone for illustration. However, no reference is made to earlier works by Dino Boc-
caletti and Guiseppe Pucacco’s Theory of Orbits published in 2003-2004, where one can
already find all these action-angle results. In all these references, however, the isochrone
is a mean to illustrate key ideas about the orbits of stars in radial potentials, and no par-
ticular emphasis is made on Hénon’s model regarding is peculiar mathematical properties,
as will be explored here. Hénon’s derivation of the form (7.25) was elegantly re-visited by
Donald Lyndel-Bell in [589]. There, he showed that Hénon’s isochrone could be recovered
by generalizing the classical mapping between the Hooke and Kepler potentials (which
both produce ellipses), as was already described by Newton with his “transmutation” of
the force [593].

Except for these rare references, no real and thorough discussion or revisit of the
mathematical problem posed by Michel Hénon (find all isochrone potentials and discuss
their properties) exists before 2018 (to my knowledge). There is a good reason for it. For
physical applications, we shall see that although the class of isochrone potentials is very
large, only the Kepler, harmonic and Hénon potentials ((7.26) and (7.25)) really matter, as
other families are associated to more exotic mass distributions. However, when considered
as a whole, the class of isochrone potentials presents an inherent, profound structure with
many geometric properties and symmetries. This was revealed in 2018, with a paper by
Alicia Simon-Petit, Jérôme Perez and Guillaume Duval [588]. In this work, other kinds of
potentials with the isochrone property were found and classified using elements of group
theory and Euclidean geometry.

The present work builds on the findings of [588], and aims to go further in three
directions, one for each chapter. These extensions are are organized as follows.

• First, we provide a fully geometrical solution of Hénon’s main problem, finding all
isochrone potentials. We shall see that with a geometrical treatment, one family of
potentials was left aside in [588]. Therefore, we give a complete solution of Hénon’s
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problem and exhaustively classify all isochrone potentials, based on their physical
properties. This is the content of Chap. 8.

• Then, we study in details the shape, properties and conditions of existence of
isochrone orbits. In particular we generalize Kepler’s third law to all isochrone
orbits, providing a synthetic analytic formula for both the radial period and the
apsidal angle. We also detail and fulfill a geometrical program that leads to an
analytic parameterization of any isochrone orbit, completing the program started
in [588]. This is the content of Chap. 9.

• Lastly, we complete this exploration by examining isochrone potentials and isochrone
orbits within the realm of Hamiltonian mechanics. We bring to light the central
role and universal property of isochrone potentials, and show that fundamental
properties and symmetries of the two academic isochrones (Kepler and harmonic),
for example Kepler’s laws of motion, the Bertrand Theorem, the Kepler Equation,
eccentric orbital elements are all but special cases of the more general theory of
isochrony.
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Isochrone parabolae

C’est une merveille comment quelque fois en un clin d’oeil on
s’appercoit de ce qu’on n’a sçu voir auparavant quoy qu’en estant fort

proche.
C. HuyGENS,

Letter to G.W. Leibniz (1691).

⋄

Huygens’ solution of the isochrone pendulum problem, as we saw in the previous
chapter, reveals that the isochrone pendulum traces a cycloid curve in its plane

of oscillation. Fundamentally, we pointed out that this was reminiscent of a quadratic
potential energy, as expressed in terms of the arclength defined by the pendulum motion.
In this chapter, we will see how this feature is also shared by celestial isochrony. In
particular, by introducing what we call the Hénon variables in Sec. 8.1, it will be shown in
Sec. 8.2 that any isochrone potential has the shape of a parabola in these variables. This
remarkable result, called the fundamental theorem of isochrony, is the most important
feature of the theory of isochrone potentials. Its proof involves two main ingredients: (1)
a calculation based off Hénon’s own ideas found in his seminal paper, and (2) a geometrical
characterization of parabolae that can be traced back to Archimedes. With this theorem,
we complete in Sec. 8.3 the classification of isochrone potentials, thus answering Hénon’s
problem once and for all.
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8.1 The Hénon variables
The effective potential method, presented in Fig. 7.7, is particularly useful to find geomet-
rically the characteristics of an orbit of energy and angular momentum (𝜉, Λ). It is based
on the equation of conservation of energy (7.16), in the form

1
2(d𝑟

d𝑡 )
2

= 𝜉 − ( Λ2

2𝑟2 + 𝜓(𝑟)) . (8.1)

with the parenthesis on the right being the effective potential 𝜓𝑒(𝑟). However, this method
also presents a disadvantage: since 𝜓𝑒 includes the centrifugal term Λ2/2𝑟2, it depends on
the particle through its angular momentum. Therefore, it is impossible with this method
to draw and compare the orbits of two distinct particles (with different (𝜉, Λ)) in a given
potential 𝜓. As an illustration, consider the Solar system. With this effective potential
method, one needs eight pairs of different curves and lines to represent each planet. Would
not it be easier to have a diagram where a single curve corresponds to the Sun’s potential,
and each line to a planet, instead ?

One way to perform this decoupling between the particle (𝜉, Λ) and the potential (𝜓) is
to introduce the Hénon variables. Their definition comes from the following consideration.
Multiplying Eq. (8.1) by 2𝑟2 on each side and regrouping the terms gives

1
16(d(2𝑟2)

d𝑡 )
2

= (𝜉 ⋅ 2𝑟2 − Λ2) − 2𝑟2 ⋅ 𝜓(𝑟) . (8.2)

As such, this equation is equivalent to the original (8.1), and not much more useful.
However, if we look at it in terms of the variable 2𝑟2 instead of 𝑟, then the term between
parenthesis is a straight line, of which the slope is the energy 𝜉 and the 𝑦-intercept is
(minus the square root of) the angular momentum Λ. To make things even more clear,
define the following “variables”

𝑥 ≡ 2𝑟2 and 𝑌 ≡ 2𝑟2𝜓(𝑟) . (8.3)

Since 𝑌 (𝑥) and 𝜓(𝑟) are in a one-to-one correspondence through Eq. (8.3), the 𝑥 variable
can still be thought of as a radius and 𝑌 as a potential, and we shall sometimes abuse
and speak of the radius 𝑥 and the potential 𝑌 , always referring to this duality. In terms
of these, the energy conservation equation (7.16) reads

1
16(d𝑥

d𝑡 )
2

= (𝜉𝑥 − Λ2) − 𝑌 (𝑥) . (8.4)

In his seminal paper on isochrony [582], Michel Hénon introduced this change of variables
just as a mean to compute some complicated integrals. As we can see, these have a much
broader use, as they decouple the particle from the potential it lives in, contrary to the
effective potential method. As we shall see below, these variables are the equivalent of the
arclength for the isochrone pendulum.

Plotting orbits in the (𝑥, 𝑌 ) variables is the same as with (𝑟, 𝜓𝑒). In view of the
paragraph above Eq. (7.18), the apoapsis and periapsis 𝑥𝐴 ≡ 2𝑟2

𝐴 and 𝑥𝑃 ≡ 2𝑟2
𝑃 in

Hénon’s variables are given by the intersection between the curve 𝒞 ∶ 𝑦 = 𝑌 (𝑥) and
the straight line ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2, as can be read off the right-hand side of Eq. (8.4).
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Furthermore, it is clear that the line ℒ should always lie above curve 𝒞 since the left-
hand side of Eq. (8.4) is always positive. In what follows, ℒ will always denote a line of
equation 𝑦 = 𝜉𝑥 − Λ2, associated with a particle (𝜉, Λ); and 𝒞 will always be the curve of
equation 𝑦 = 𝑌 (𝑥), associated with a potential 𝑌 (𝑥) = 2𝑟2𝜓(𝑟).

Figure 8.1: Same situation as in Fig. 7.7 depicted here in the Hénon plane, with Hénon’s variables.
The curve 𝒞 of the graph 𝑦 = 𝑌 (𝑥) corresponds to the potential 𝜓, in Hénon’s variables. Two
particles are depicted as straight lines ℒ (red) and ℒ𝐶 (light red). They have the same energy 𝜉
(same slope for both lines) but different angular momenta Λ and Λ𝐶 > Λ (different 𝑦-intercept).
Particle (𝜉, Λ) is on a generic orbit with periapsis 𝑥𝑃 and apoapsis 𝑥𝐴 given by the two intersec-
tions at 𝑃 and 𝐴. Particle (𝜉, Λ𝐶) is on a circular orbit of radius 𝑥𝐶 given the unique intersection
at 𝐶. Notice that one can draw several different particles orbiting the potential without changing
the curve 𝑦 = 𝑌 (𝑥).

We note that, in terms of Hénon’s variables, the conservation of energy provides the
ODE for 𝑥(𝑡) = 2𝑟(𝑡)2, Eq. (8.4). We still call it the equation of radial motion. Similarly,
the conservation of angular momentum reads as an ODE for 𝜃(𝑡):

Λ = 𝑥
2

d𝜃
d𝑡 . (8.5)

To summarize, Hénon’s variables (𝑥, 𝑌 (𝑥)) take advantage of the fact that a test par-
ticle in a radial potential is entirely characterized by two numbers (𝜉, Λ), and is therefore
in a one-to-one correspondence with a line, that has two degrees of freedom (e.g., the slope
and the 𝑦-intercept). The potential 𝑌 (𝑥) corresponds to a unique curve 𝒞 , and a particle
(𝜉, Λ) is associated with a unique straight line ℒ . If ℒ intersects 𝒞 and lies above it,
this particle orbits periodically, as detailed in Fig. 8.1. For the sake of completeness, we
provide in Fig. 8.2 a comparison between the effective potential method and the Hénon
variables, going back to the point made relative to the Solar system earlier.

8.2 Hénon meets Archimedes
This section aims at giving a geometrical characterization of isochrony. In Sec. 8.2.1 we
derive the Hénon formulae which give 𝑇 and Θ explicitly for isochrone potentials. In
Sec. 8.2.2, we give a geometrical proof that the Hénon formula for 𝑇 implies that the
potential 𝑌 must be an arc of parabola. We follow the notation introduced in the last
section using Hénon’s variables: A particle (𝜉, Λ) is associated with a line ℒ ∶ 𝑦 = 𝜉𝑥−Λ2,
and 𝒞 ∶ 𝑦 = 𝑌 (𝑥) is the curve of an arbitrary isochrone potential 𝑌 (𝑥) = 2𝑟2𝜓(𝑟).
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<latexit sha1_base64="sWnYnq1qOIXDK0tarGBuouXLOLI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/ShrLZTtqlu0nY3Qgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBY+wabgR2EkUUhkIbAfj25nffkKleRw9mEmCvqTDiIecUWOlx16ieR+r6rxfrrg1dw6ySrycVCBHo1/+6g1ilkqMDBNU667nJsbPqDKcCZyWeqnGhLIxHWLX0ohK1H42P3hKzqwyIGGsbEWGzNXfExmVWk9kYDslNSO97M3E/7xuasJrP+NRkhqM2GJRmApiYjL7ngy4QmbExBLKFLe3EjaiijJjMyrZELzll1dJ66LmuTXv/rJSv8njKMIJnEIVPLiCOtxBA5rAQMIzvMKbo5wX5935WLQWnHzmGP7A+fwBOWOQAw==</latexit><latexit sha1_base64="sWnYnq1qOIXDK0tarGBuouXLOLI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/ShrLZTtqlu0nY3Qgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBY+wabgR2EkUUhkIbAfj25nffkKleRw9mEmCvqTDiIecUWOlx16ieR+r6rxfrrg1dw6ySrycVCBHo1/+6g1ilkqMDBNU667nJsbPqDKcCZyWeqnGhLIxHWLX0ohK1H42P3hKzqwyIGGsbEWGzNXfExmVWk9kYDslNSO97M3E/7xuasJrP+NRkhqM2GJRmApiYjL7ngy4QmbExBLKFLe3EjaiijJjMyrZELzll1dJ66LmuTXv/rJSv8njKMIJnEIVPLiCOtxBA5rAQMIzvMKbo5wX5935WLQWnHzmGP7A+fwBOWOQAw==</latexit><latexit sha1_base64="sWnYnq1qOIXDK0tarGBuouXLOLI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/ShrLZTtqlu0nY3Qgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBY+wabgR2EkUUhkIbAfj25nffkKleRw9mEmCvqTDiIecUWOlx16ieR+r6rxfrrg1dw6ySrycVCBHo1/+6g1ilkqMDBNU667nJsbPqDKcCZyWeqnGhLIxHWLX0ohK1H42P3hKzqwyIGGsbEWGzNXfExmVWk9kYDslNSO97M3E/7xuasJrP+NRkhqM2GJRmApiYjL7ngy4QmbExBLKFLe3EjaiijJjMyrZELzll1dJ66LmuTXv/rJSv8njKMIJnEIVPLiCOtxBA5rAQMIzvMKbo5wX5935WLQWnHzmGP7A+fwBOWOQAw==</latexit><latexit sha1_base64="sWnYnq1qOIXDK0tarGBuouXLOLI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/ShrLZTtqlu0nY3Qgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBY+wabgR2EkUUhkIbAfj25nffkKleRw9mEmCvqTDiIecUWOlx16ieR+r6rxfrrg1dw6ySrycVCBHo1/+6g1ilkqMDBNU667nJsbPqDKcCZyWeqnGhLIxHWLX0ohK1H42P3hKzqwyIGGsbEWGzNXfExmVWk9kYDslNSO97M3E/7xuasJrP+NRkhqM2GJRmApiYjL7ngy4QmbExBLKFLe3EjaiijJjMyrZELzll1dJ66LmuTXv/rJSv8njKMIJnEIVPLiCOtxBA5rAQMIzvMKbo5wX5935WLQWnHzmGP7A+fwBOWOQAw==</latexit>

�⇤2
1<latexit sha1_base64="qqyKWJJWA+iG1USMZYaDiyaOk8A=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBHcWGaKoMuiGxcuKtgHdMaSyWTa0EwyJBmhDP0NNy4UcevPuPNvTNtZaOuBwOGcc7k3J0w508Z1v52V1bX1jc3SVnl7Z3dvv3Jw2NYyU4S2iORSdUOsKWeCtgwznHZTRXESctoJRzdTv/NElWZSPJhxSoMEDwSLGcHGSv65f2ezEX6s971+perW3BnQMvEKUoUCzX7ly48kyRIqDOFY657npibIsTKMcDop+5mmKSYjPKA9SwVOqA7y2c0TdGqVCMVS2ScMmqm/J3KcaD1OQptMsBnqRW8q/uf1MhNfBTkTaWaoIPNFccaRkWhaAIqYosTwsSWYKGZvRWSIFSbG1lS2JXiLX14m7XrNc2ve/UW1cV3UUYJjOIEz8OASGnALTWgBgRSe4RXenMx5cd6dj3l0xSlmjuAPnM8fy3uQ3A==</latexit><latexit sha1_base64="qqyKWJJWA+iG1USMZYaDiyaOk8A=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBHcWGaKoMuiGxcuKtgHdMaSyWTa0EwyJBmhDP0NNy4UcevPuPNvTNtZaOuBwOGcc7k3J0w508Z1v52V1bX1jc3SVnl7Z3dvv3Jw2NYyU4S2iORSdUOsKWeCtgwznHZTRXESctoJRzdTv/NElWZSPJhxSoMEDwSLGcHGSv65f2ezEX6s971+perW3BnQMvEKUoUCzX7ly48kyRIqDOFY657npibIsTKMcDop+5mmKSYjPKA9SwVOqA7y2c0TdGqVCMVS2ScMmqm/J3KcaD1OQptMsBnqRW8q/uf1MhNfBTkTaWaoIPNFccaRkWhaAIqYosTwsSWYKGZvRWSIFSbG1lS2JXiLX14m7XrNc2ve/UW1cV3UUYJjOIEz8OASGnALTWgBgRSe4RXenMx5cd6dj3l0xSlmjuAPnM8fy3uQ3A==</latexit><latexit sha1_base64="qqyKWJJWA+iG1USMZYaDiyaOk8A=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBHcWGaKoMuiGxcuKtgHdMaSyWTa0EwyJBmhDP0NNy4UcevPuPNvTNtZaOuBwOGcc7k3J0w508Z1v52V1bX1jc3SVnl7Z3dvv3Jw2NYyU4S2iORSdUOsKWeCtgwznHZTRXESctoJRzdTv/NElWZSPJhxSoMEDwSLGcHGSv65f2ezEX6s971+perW3BnQMvEKUoUCzX7ly48kyRIqDOFY657npibIsTKMcDop+5mmKSYjPKA9SwVOqA7y2c0TdGqVCMVS2ScMmqm/J3KcaD1OQptMsBnqRW8q/uf1MhNfBTkTaWaoIPNFccaRkWhaAIqYosTwsSWYKGZvRWSIFSbG1lS2JXiLX14m7XrNc2ve/UW1cV3UUYJjOIEz8OASGnALTWgBgRSe4RXenMx5cd6dj3l0xSlmjuAPnM8fy3uQ3A==</latexit><latexit sha1_base64="qqyKWJJWA+iG1USMZYaDiyaOk8A=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBHcWGaKoMuiGxcuKtgHdMaSyWTa0EwyJBmhDP0NNy4UcevPuPNvTNtZaOuBwOGcc7k3J0w508Z1v52V1bX1jc3SVnl7Z3dvv3Jw2NYyU4S2iORSdUOsKWeCtgwznHZTRXESctoJRzdTv/NElWZSPJhxSoMEDwSLGcHGSv65f2ezEX6s971+perW3BnQMvEKUoUCzX7ly48kyRIqDOFY657npibIsTKMcDop+5mmKSYjPKA9SwVOqA7y2c0TdGqVCMVS2ScMmqm/J3KcaD1OQptMsBnqRW8q/uf1MhNfBTkTaWaoIPNFccaRkWhaAIqYosTwsSWYKGZvRWSIFSbG1lS2JXiLX14m7XrNc2ve/UW1cV3UUYJjOIEz8OASGnALTWgBgRSe4RXenMx5cd6dj3l0xSlmjuAPnM8fy3uQ3A==</latexit>

Y<latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit>

2r2
<latexit sha1_base64="WIB6dci4g4Ait7W7JP/O/FroeKc=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8ld0i6LHoxWMF+wHtWrJptg1NskuSFcrSv+DFgyJe/UPe/Ddm2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64ST29zvPDFteKwe7DRhgSQjxSNOic2lun6sDypVr+bNgVeJX5AqFGgOKl/9YUxTyZSlghjT873EBhnRllPBZuV+alhC6ISMWM9RRSQzQTa/dYbPnTLEUaxdKYvn6u+JjEhjpjJ0nZLYsVn2cvE/r5fa6DrIuEpSyxRdLIpSgW2M88fxkGtGrZg6Qqjm7lZMx0QTal08ZReCv/zyKmnXa75X8+8vq42bIo4SnMIZXIAPV9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwB+jzB3PRjdY=</latexit><latexit sha1_base64="WIB6dci4g4Ait7W7JP/O/FroeKc=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8ld0i6LHoxWMF+wHtWrJptg1NskuSFcrSv+DFgyJe/UPe/Ddm2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64ST29zvPDFteKwe7DRhgSQjxSNOic2lun6sDypVr+bNgVeJX5AqFGgOKl/9YUxTyZSlghjT873EBhnRllPBZuV+alhC6ISMWM9RRSQzQTa/dYbPnTLEUaxdKYvn6u+JjEhjpjJ0nZLYsVn2cvE/r5fa6DrIuEpSyxRdLIpSgW2M88fxkGtGrZg6Qqjm7lZMx0QTal08ZReCv/zyKmnXa75X8+8vq42bIo4SnMIZXIAPV9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwB+jzB3PRjdY=</latexit><latexit sha1_base64="WIB6dci4g4Ait7W7JP/O/FroeKc=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8ld0i6LHoxWMF+wHtWrJptg1NskuSFcrSv+DFgyJe/UPe/Ddm2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64ST29zvPDFteKwe7DRhgSQjxSNOic2lun6sDypVr+bNgVeJX5AqFGgOKl/9YUxTyZSlghjT873EBhnRllPBZuV+alhC6ISMWM9RRSQzQTa/dYbPnTLEUaxdKYvn6u+JjEhjpjJ0nZLYsVn2cvE/r5fa6DrIuEpSyxRdLIpSgW2M88fxkGtGrZg6Qqjm7lZMx0QTal08ZReCv/zyKmnXa75X8+8vq42bIo4SnMIZXIAPV9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwB+jzB3PRjdY=</latexit><latexit sha1_base64="WIB6dci4g4Ait7W7JP/O/FroeKc=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8ld0i6LHoxWMF+wHtWrJptg1NskuSFcrSv+DFgyJe/UPe/Ddm2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64ST29zvPDFteKwe7DRhgSQjxSNOic2lun6sDypVr+bNgVeJX5AqFGgOKl/9YUxTyZSlghjT873EBhnRllPBZuV+alhC6ISMWM9RRSQzQTa/dYbPnTLEUaxdKYvn6u+JjEhjpjJ0nZLYsVn2cvE/r5fa6DrIuEpSyxRdLIpSgW2M88fxkGtGrZg6Qqjm7lZMx0QTal08ZReCv/zyKmnXa75X8+8vq42bIo4SnMIZXIAPV9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwB+jzB3PRjdY=</latexit>

Mars  
+ Sun

Mercury

Earth

Mars

�⇤2
4<latexit sha1_base64="Q4HSw146uHgwB6T/zhDAwnktOwE=">AAAB83icdVDLSgMxFM34rPVVdekmWAQ3Dplxiu2u6MaFiwr2AZ2xZDKZNjSTGZKMUEp/w40LRdz6M+78G9OHoKIHAodzzuXenDDjTGmEPqyl5ZXVtfXCRnFza3tnt7S331JpLgltkpSnshNiRTkTtKmZ5rSTSYqTkNN2OLyc+u17KhVLxa0eZTRIcF+wmBGsjeSf+tcmG+E7t+f1SmVk12rI8yoQ2RXkum7VEHTmVmsOdGw0Qxks0OiV3v0oJXlChSYcK9V1UKaDMZaaEU4nRT9XNMNkiPu0a6jACVXBeHbzBB4bJYJxKs0TGs7U7xNjnCg1SkKTTLAeqN/eVPzL6+Y6rgZjJrJcU0Hmi+KcQ53CaQEwYpISzUeGYCKZuRWSAZaYaFNT0ZTw9VP4P2m5toNs58Yr1y8WdRTAITgCJ8AB56AOrkADNAEBGXgAT+DZyq1H68V6nUeXrMXMAfgB6+0TOfuRKA==</latexit><latexit sha1_base64="Q4HSw146uHgwB6T/zhDAwnktOwE=">AAAB83icdVDLSgMxFM34rPVVdekmWAQ3Dplxiu2u6MaFiwr2AZ2xZDKZNjSTGZKMUEp/w40LRdz6M+78G9OHoKIHAodzzuXenDDjTGmEPqyl5ZXVtfXCRnFza3tnt7S331JpLgltkpSnshNiRTkTtKmZ5rSTSYqTkNN2OLyc+u17KhVLxa0eZTRIcF+wmBGsjeSf+tcmG+E7t+f1SmVk12rI8yoQ2RXkum7VEHTmVmsOdGw0Qxks0OiV3v0oJXlChSYcK9V1UKaDMZaaEU4nRT9XNMNkiPu0a6jACVXBeHbzBB4bJYJxKs0TGs7U7xNjnCg1SkKTTLAeqN/eVPzL6+Y6rgZjJrJcU0Hmi+KcQ53CaQEwYpISzUeGYCKZuRWSAZaYaFNT0ZTw9VP4P2m5toNs58Yr1y8WdRTAITgCJ8AB56AOrkADNAEBGXgAT+DZyq1H68V6nUeXrMXMAfgB6+0TOfuRKA==</latexit><latexit sha1_base64="Q4HSw146uHgwB6T/zhDAwnktOwE=">AAAB83icdVDLSgMxFM34rPVVdekmWAQ3Dplxiu2u6MaFiwr2AZ2xZDKZNjSTGZKMUEp/w40LRdz6M+78G9OHoKIHAodzzuXenDDjTGmEPqyl5ZXVtfXCRnFza3tnt7S331JpLgltkpSnshNiRTkTtKmZ5rSTSYqTkNN2OLyc+u17KhVLxa0eZTRIcF+wmBGsjeSf+tcmG+E7t+f1SmVk12rI8yoQ2RXkum7VEHTmVmsOdGw0Qxks0OiV3v0oJXlChSYcK9V1UKaDMZaaEU4nRT9XNMNkiPu0a6jACVXBeHbzBB4bJYJxKs0TGs7U7xNjnCg1SkKTTLAeqN/eVPzL6+Y6rgZjJrJcU0Hmi+KcQ53CaQEwYpISzUeGYCKZuRWSAZaYaFNT0ZTw9VP4P2m5toNs58Yr1y8WdRTAITgCJ8AB56AOrkADNAEBGXgAT+DZyq1H68V6nUeXrMXMAfgB6+0TOfuRKA==</latexit><latexit sha1_base64="Q4HSw146uHgwB6T/zhDAwnktOwE=">AAAB83icdVDLSgMxFM34rPVVdekmWAQ3Dplxiu2u6MaFiwr2AZ2xZDKZNjSTGZKMUEp/w40LRdz6M+78G9OHoKIHAodzzuXenDDjTGmEPqyl5ZXVtfXCRnFza3tnt7S331JpLgltkpSnshNiRTkTtKmZ5rSTSYqTkNN2OLyc+u17KhVLxa0eZTRIcF+wmBGsjeSf+tcmG+E7t+f1SmVk12rI8yoQ2RXkum7VEHTmVmsOdGw0Qxks0OiV3v0oJXlChSYcK9V1UKaDMZaaEU4nRT9XNMNkiPu0a6jACVXBeHbzBB4bJYJxKs0TGs7U7xNjnCg1SkKTTLAeqN/eVPzL6+Y6rgZjJrJcU0Hmi+KcQ53CaQEwYpISzUeGYCKZuRWSAZaYaFNT0ZTw9VP4P2m5toNs58Yr1y8WdRTAITgCJ8AB56AOrkADNAEBGXgAT+DZyq1H68V6nUeXrMXMAfgB6+0TOfuRKA==</latexit>

�⇤2
3

<latexit sha1_base64="AHgo0lvENmTKRwm2gFLthRszscY=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4cci0HWx3RTcuXFSwD+iMJZPJtKGZB0lGKEN/w40LRdz6M+78GzNtBRU9EDiccy735ngJZ1Ih9GEUVlbX1jeKm6Wt7Z3dvfL+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMll7vfuqZAsjm7VNKFuiEcRCxjBSkvOmXOtsz6+qw5rw3IFmchu2haCyLSR1azlpNls1G0bWiaaowKWaA/L744fkzSkkSIcSzmwUKLcDAvFCKezkpNKmmAywSM60DTCIZVuNr95Bk+04sMgFvpFCs7V7xMZDqWchp5OhliN5W8vF//yBqkKGm7GoiRVNCKLRUHKoYphXgD0maBE8akmmAimb4VkjAUmStdU0iV8/RT+T7pV00KmdVOvtC6WdRTBETgGp8AC56AFrkAbdAABCXgAT+DZSI1H48V4XUQLxnLmEPyA8fYJPt+RLA==</latexit><latexit sha1_base64="AHgo0lvENmTKRwm2gFLthRszscY=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4cci0HWx3RTcuXFSwD+iMJZPJtKGZB0lGKEN/w40LRdz6M+78GzNtBRU9EDiccy735ngJZ1Ih9GEUVlbX1jeKm6Wt7Z3dvfL+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMll7vfuqZAsjm7VNKFuiEcRCxjBSkvOmXOtsz6+qw5rw3IFmchu2haCyLSR1azlpNls1G0bWiaaowKWaA/L744fkzSkkSIcSzmwUKLcDAvFCKezkpNKmmAywSM60DTCIZVuNr95Bk+04sMgFvpFCs7V7xMZDqWchp5OhliN5W8vF//yBqkKGm7GoiRVNCKLRUHKoYphXgD0maBE8akmmAimb4VkjAUmStdU0iV8/RT+T7pV00KmdVOvtC6WdRTBETgGp8AC56AFrkAbdAABCXgAT+DZSI1H48V4XUQLxnLmEPyA8fYJPt+RLA==</latexit><latexit sha1_base64="AHgo0lvENmTKRwm2gFLthRszscY=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4cci0HWx3RTcuXFSwD+iMJZPJtKGZB0lGKEN/w40LRdz6M+78GzNtBRU9EDiccy735ngJZ1Ih9GEUVlbX1jeKm6Wt7Z3dvfL+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMll7vfuqZAsjm7VNKFuiEcRCxjBSkvOmXOtsz6+qw5rw3IFmchu2haCyLSR1azlpNls1G0bWiaaowKWaA/L744fkzSkkSIcSzmwUKLcDAvFCKezkpNKmmAywSM60DTCIZVuNr95Bk+04sMgFvpFCs7V7xMZDqWchp5OhliN5W8vF//yBqkKGm7GoiRVNCKLRUHKoYphXgD0maBE8akmmAimb4VkjAUmStdU0iV8/RT+T7pV00KmdVOvtC6WdRTBETgGp8AC56AFrkAbdAABCXgAT+DZSI1H48V4XUQLxnLmEPyA8fYJPt+RLA==</latexit><latexit sha1_base64="AHgo0lvENmTKRwm2gFLthRszscY=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4cci0HWx3RTcuXFSwD+iMJZPJtKGZB0lGKEN/w40LRdz6M+78GzNtBRU9EDiccy735ngJZ1Ih9GEUVlbX1jeKm6Wt7Z3dvfL+QVfGqSC0Q2Iei76HJeUsoh3FFKf9RFAcepz2vMll7vfuqZAsjm7VNKFuiEcRCxjBSkvOmXOtsz6+qw5rw3IFmchu2haCyLSR1azlpNls1G0bWiaaowKWaA/L744fkzSkkSIcSzmwUKLcDAvFCKezkpNKmmAywSM60DTCIZVuNr95Bk+04sMgFvpFCs7V7xMZDqWchp5OhliN5W8vF//yBqkKGm7GoiRVNCKLRUHKoYphXgD0maBE8akmmAimb4VkjAUmStdU0iV8/RT+T7pV00KmdVOvtC6WdRTBETgGp8AC56AFrkAbdAABCXgAT+DZSI1H48V4XUQLxnLmEPyA8fYJPt+RLA==</latexit>

Sun's 
potential

⇠3
<latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit><latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit><latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit><latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit>

⇠4
<latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit><latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit><latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit><latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit>

⇠1
<latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit><latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit><latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit><latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit>

⇠4
<latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit><latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit><latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit><latexit sha1_base64="iXnrQxGMVTYYL/aqioFfW9ogUT8=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbNrgskt6MVjBPOAZAmzk9lkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMBVcG4w/nJXVtfWNzdxWfntnd2+/cHDY1EmmKGvQRCSqHRLNBJesYbgRrJ0qRuJQsFY4upr5rTumNE/krRmnLIjJQPKIU2Ks1Oje816pVyhit1rFpVIZYbeMfd+vWILP/UrVQ56L5yjCEvVe4b3bT2gWM2moIFp3PJyaYEKU4VSwab6baZYSOiID1rFUkpjpYDI/dopOrdJHUaJsSYPm6veJCYm1Hseh7YyJGerf3kz8y+tkJqoEEy7TzDBJF4uiTCCToNnnqM8Vo0aMLSFUcXsrokOiCDU2n7wN4etT9D9p+q6HXe+mVKxdLuPIwTGcwBl4cAE1uIY6NIAChwd4gmdHOo/Oi/O6aF1xljNH8APO2yfxUI7F</latexit>

⇠3
<latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit><latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit><latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit><latexit sha1_base64="vhVk38yZ4vyQj4CcBg/VyGO+pZM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9hog82t6MVjBdMW2lA22027dLMJuxuxhP4GLx4U8eoP8ua/cdNWUNEHA4/3ZpiZF6acKY3Qh1VaWV1b3yhvVra2d3b3qvsHbZVkklCfJDyR3RArypmgvmaa024qKY5DTjvh5KrwO3dUKpaIWz1NaRDjkWARI1gbye/fs8H5oFpDNnI910EQ2S5yvPOCeF6j7rrQsdEcNbBEa1B97w8TksVUaMKxUj0HpTrIsdSMcDqr9DNFU0wmeER7hgocUxXk82Nn8MQoQxgl0pTQcK5+n8hxrNQ0Dk1njPVY/fYK8S+vl+moEeRMpJmmgiwWRRmHOoHF53DIJCWaTw3BRDJzKyRjLDHRJp+KCeHrU/g/aZ/ZDrKdm3qtebmMowyOwDE4BQ64AE1wDVrABwQw8ACewLMlrEfrxXpdtJas5cwh+AHr7RP2NI7J</latexit>

Hénon variables 
(x,L) VS Ps(⇠,⇤)

<latexit sha1_base64="b7FXmbSoA7R5qF2nOuwTncLZtPI=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotQQUoigi6Lbly4qGAf0IQymUzaoZNJnJkUS+h3uHGhiFs/xp1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7By0Vp5LQJol5LDs+VpQzQZuaaU47iaQ48jlt+8Obqd8eUalYLB70OKFehPuChYxgbSSv6j6xM/fO5AN82itX7Jo9A1omTk4qkKPRK3+5QUzSiApNOFaq69iJ9jIsNSOcTkpuqmiCyRD3addQgSOqvGx29ASdGCVAYSzNExrN1N8TGY6UGke+SUZYD9SiNxX/87qpDq+8jIkk1VSQ+aIw5UjHaNoACpikRPOxIZhIZm5FZIAlJtr0VDIlOItfXiat85pj15z7i0r9Oq+jCEdwDFVw4BLqcAsNaAKBR3iGV3izRtaL9W59zKMFK585hD+wPn8AmaqRUw==</latexit><latexit sha1_base64="b7FXmbSoA7R5qF2nOuwTncLZtPI=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotQQUoigi6Lbly4qGAf0IQymUzaoZNJnJkUS+h3uHGhiFs/xp1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7By0Vp5LQJol5LDs+VpQzQZuaaU47iaQ48jlt+8Obqd8eUalYLB70OKFehPuChYxgbSSv6j6xM/fO5AN82itX7Jo9A1omTk4qkKPRK3+5QUzSiApNOFaq69iJ9jIsNSOcTkpuqmiCyRD3addQgSOqvGx29ASdGCVAYSzNExrN1N8TGY6UGke+SUZYD9SiNxX/87qpDq+8jIkk1VSQ+aIw5UjHaNoACpikRPOxIZhIZm5FZIAlJtr0VDIlOItfXiat85pj15z7i0r9Oq+jCEdwDFVw4BLqcAsNaAKBR3iGV3izRtaL9W59zKMFK585hD+wPn8AmaqRUw==</latexit><latexit sha1_base64="b7FXmbSoA7R5qF2nOuwTncLZtPI=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotQQUoigi6Lbly4qGAf0IQymUzaoZNJnJkUS+h3uHGhiFs/xp1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7By0Vp5LQJol5LDs+VpQzQZuaaU47iaQ48jlt+8Obqd8eUalYLB70OKFehPuChYxgbSSv6j6xM/fO5AN82itX7Jo9A1omTk4qkKPRK3+5QUzSiApNOFaq69iJ9jIsNSOcTkpuqmiCyRD3addQgSOqvGx29ASdGCVAYSzNExrN1N8TGY6UGke+SUZYD9SiNxX/87qpDq+8jIkk1VSQ+aIw5UjHaNoACpikRPOxIZhIZm5FZIAlJtr0VDIlOItfXiat85pj15z7i0r9Oq+jCEdwDFVw4BLqcAsNaAKBR3iGV3izRtaL9W59zKMFK585hD+wPn8AmaqRUw==</latexit><latexit sha1_base64="b7FXmbSoA7R5qF2nOuwTncLZtPI=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotQQUoigi6Lbly4qGAf0IQymUzaoZNJnJkUS+h3uHGhiFs/xp1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7By0Vp5LQJol5LDs+VpQzQZuaaU47iaQ48jlt+8Obqd8eUalYLB70OKFehPuChYxgbSSv6j6xM/fO5AN82itX7Jo9A1omTk4qkKPRK3+5QUzSiApNOFaq69iJ9jIsNSOcTkpuqmiCyRD3addQgSOqvGx29ASdGCVAYSzNExrN1N8TGY6UGke+SUZYD9SiNxX/87qpDq+8jIkk1VSQ+aIw5UjHaNoACpikRPOxIZhIZm5FZIAlJtr0VDIlOItfXiat85pj15z7i0r9Oq+jCEdwDFVw4BLqcAsNaAKBR3iGV3izRtaL9W59zKMFK585hD+wPn8AmaqRUw==</latexit>

 
<latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit>

2 UA2
1 UA

Effective potential 
x VS (L,Ps)  ⇠

<latexit sha1_base64="1wGnoUZRraZ2SlTvRPCWqUe0y5M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+96T6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1vljdU=</latexit><latexit sha1_base64="1wGnoUZRraZ2SlTvRPCWqUe0y5M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+96T6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1vljdU=</latexit><latexit sha1_base64="1wGnoUZRraZ2SlTvRPCWqUe0y5M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+96T6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1vljdU=</latexit><latexit sha1_base64="1wGnoUZRraZ2SlTvRPCWqUe0y5M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+96T6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1vljdU=</latexit>

(⇤, )
<latexit sha1_base64="XKWrFpcG3qNfQWFB1/YQ9lAlWfM=">AAAB9XicbVDLSsNAFL2pr1pfVZduBotQQUpSBF0W3bhwUcE+oIllMpm0QyeTMDNRSuh/uHGhiFv/xZ1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7B20Vp5LQFol5LLs+VpQzQVuaaU67iaQ48jnt+KPrqd95pFKxWNzrcUK9CA8ECxnB2kgPVffWZAN85iaKnfbLFbtmz4CWiZOTCuRo9stfbhCTNKJCE46V6jl2or0MS80Ip5OSmyqaYDLCA9ozVOCIKi+bXT1BJ0YJUBhL84RGM/X3RIYjpcaRb5IR1kO16E3F/7xeqsNLL2MiSTUVZL4oTDnSMZpWgAImKdF8bAgmkplbERliiYk2RZVMCc7il5dJu15z7Jpzd15pXOV1FOEIjqEKDlxAA26gCS0gIOEZXuHNerJerHfrYx4tWPnMIfyB9fkDZVCRyA==</latexit><latexit sha1_base64="XKWrFpcG3qNfQWFB1/YQ9lAlWfM=">AAAB9XicbVDLSsNAFL2pr1pfVZduBotQQUpSBF0W3bhwUcE+oIllMpm0QyeTMDNRSuh/uHGhiFv/xZ1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7B20Vp5LQFol5LLs+VpQzQVuaaU67iaQ48jnt+KPrqd95pFKxWNzrcUK9CA8ECxnB2kgPVffWZAN85iaKnfbLFbtmz4CWiZOTCuRo9stfbhCTNKJCE46V6jl2or0MS80Ip5OSmyqaYDLCA9ozVOCIKi+bXT1BJ0YJUBhL84RGM/X3RIYjpcaRb5IR1kO16E3F/7xeqsNLL2MiSTUVZL4oTDnSMZpWgAImKdF8bAgmkplbERliiYk2RZVMCc7il5dJu15z7Jpzd15pXOV1FOEIjqEKDlxAA26gCS0gIOEZXuHNerJerHfrYx4tWPnMIfyB9fkDZVCRyA==</latexit><latexit sha1_base64="XKWrFpcG3qNfQWFB1/YQ9lAlWfM=">AAAB9XicbVDLSsNAFL2pr1pfVZduBotQQUpSBF0W3bhwUcE+oIllMpm0QyeTMDNRSuh/uHGhiFv/xZ1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7B20Vp5LQFol5LLs+VpQzQVuaaU67iaQ48jnt+KPrqd95pFKxWNzrcUK9CA8ECxnB2kgPVffWZAN85iaKnfbLFbtmz4CWiZOTCuRo9stfbhCTNKJCE46V6jl2or0MS80Ip5OSmyqaYDLCA9ozVOCIKi+bXT1BJ0YJUBhL84RGM/X3RIYjpcaRb5IR1kO16E3F/7xeqsNLL2MiSTUVZL4oTDnSMZpWgAImKdF8bAgmkplbERliiYk2RZVMCc7il5dJu15z7Jpzd15pXOV1FOEIjqEKDlxAA26gCS0gIOEZXuHNerJerHfrYx4tWPnMIfyB9fkDZVCRyA==</latexit><latexit sha1_base64="XKWrFpcG3qNfQWFB1/YQ9lAlWfM=">AAAB9XicbVDLSsNAFL2pr1pfVZduBotQQUpSBF0W3bhwUcE+oIllMpm0QyeTMDNRSuh/uHGhiFv/xZ1/47TNQlsPDBzOOZd75/gJZ0rb9rdVWFldW98obpa2tnd298r7B20Vp5LQFol5LLs+VpQzQVuaaU67iaQ48jnt+KPrqd95pFKxWNzrcUK9CA8ECxnB2kgPVffWZAN85iaKnfbLFbtmz4CWiZOTCuRo9stfbhCTNKJCE46V6jl2or0MS80Ip5OSmyqaYDLCA9ozVOCIKi+bXT1BJ0YJUBhL84RGM/X3RIYjpcaRb5IR1kO16E3F/7xeqsNLL2MiSTUVZL4oTDnSMZpWgAImKdF8bAgmkplbERliiYk2RZVMCc7il5dJu15z7Jpzd15pXOV1FOEIjqEKDlxAA26gCS0gIOEZXuHNerJerHfrYx4tWPnMIfyB9fkDZVCRyA==</latexit>

⇠1
<latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit><latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit><latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit><latexit sha1_base64="eLwW3cV4y88p2XwSlNvRyRzK53Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp038Sg8ybDao1t+7OQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP5ufOyNnVhmSMNa2FJK5+nsio5Ex0yiwnRHFsVn2cvE/r5dieO1nQiUpcsUWi8JUEoxJ/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH0kWj4U=</latexit>

Figure 8.2: Comparison between the two methods discussed in the text, to represent orbits of three
planets (1 = Mercury, 3 = Earth and 4 = Mars) in the gravitational potential of the Sun. On the
left, 3 curves, one for each planet. They contain information about both the Sun and the planet
(angular momentum). On the right, thanks to the decoupling permitted by the Hénon variables,
a single curve is enough (the Sun), on which one can depicts the orbits of the three planets. This
gives access to their energy (slope) and angular momentum (𝑦-intercept). Both diagrams are to
scale. The units are adapted to Earth (left: unit of Earth’s energy VS unit of Earth’s mean distance
to the sun (1 AU); right: unit of Earth’s angular momentum squared VS AU squared).

8.2.1 Hénon’s formulae
This subsection is split into three parts. In the first, we integrate Eq. (7.20) explicitly, for
any central potential, following a method of Hénon [582]. Assuming isochrony, we simplify
in the second part this result to get the Hénon formula for 𝑇 . The third part presents
more briefly this computation for Θ.

Computing the integral for 𝑇
As we motivated below Eq. (8.4), we start by performing in Eq. (7.20) the change of
variables 𝑟 → 𝑥 = 2𝑟2 and we introduce the potential 𝑌 (𝑥) = 2𝑟2𝜓(𝑟). We readily obtain
the following expression

𝑇 = 1
2 ∫

𝑥𝐴

𝑥𝑃

d𝑥
√𝐷(𝑥)

, with 𝐷(𝑥) ≡ (𝜉𝑥 − Λ2) − 𝑌 (𝑥) . (8.6)

The bounds of the integral are 𝑥𝑃 ≡ 2𝑟2
𝑃 and 𝑥𝐴 ≡ 2𝑟2

𝐴 ≥ 𝑥𝑃 . In the (𝑥, 𝑦) plane, the
quantity 𝐷 appearing in Eq. (8.6) is the vertical distance between the curve 𝒞 and the line
ℒ . The fact that 𝐷(𝑥) ≥ 0 is ensured by the very existence of the orbit, or equivalently
by Eq. (8.4), as discussed in the last section.

Since the curve 𝒞 is smooth and lies below ℒ on [𝑥𝑃 , 𝑥𝐴], there exists a line ℒ𝐶
that is both parallel to ℒ and tangent to 𝒞 at some point 𝐶 of abscissa 𝑥𝐶 ∈ [𝑥𝑃 , 𝑥𝐴].
This line intersects 𝒞 exactly once, and corresponds to a particle with a circular radius
𝑟𝐶 , such that 𝑥𝐶 = 2𝑟2

𝐶 . Moreover, ℒ and ℒ𝐶 are parallel and therefore associated with
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particles that share the same energy 𝜉. Consequently we may write ℒ𝐶 ∶ 𝑦 = 𝜉𝑥 − Λ2
𝐶 ,

where Λ𝐶 is the angular momentum of the other particle, on the circular orbit.

With the help of this secondary line ℒ𝐶 , we may rewrite the distance 𝐷 of Eq. (8.6) as
the difference ℓ2 − 𝑧(𝑥)2, where ℓ2 ≡ Λ2

𝐶 − Λ2 > 0 is the vertical distance between ℒ and
ℒ𝐶 , and 𝑧(𝑥)2 ≡ 𝑌 (𝑥) − (𝜉𝑥 − Λ2

𝐶) > 0 is the vertical distance between 𝒞 and ℒ𝐶 (see
Fig. 8.3). We denote the latter by a squared quantity 𝑧(𝑥)2, so that we may conveniently
choose 𝑧(𝑥) ≤ 0 on [𝑥𝑃 , 𝑥𝐶 ] and 𝑧(𝑥) ≥ 0 on [𝑥𝐶 , 𝑥𝐴]. We stress that this is nothing but a
convention: the positive distance is still 𝑧(𝑥)2 ≥ 0, but the sign of 𝑧(𝑥) depends on where
we are on [𝑥𝑃 , 𝑥𝐴]. These new quantities are depicted in Fig. 8.3, and upon insertion in

Figure 8.3: Summary of the geometrical quantities used to compute the integral for the period 𝑇 .
Both lines ℒ and ℒ𝐶 define an orbit with the same period, and ℓ2 is the vertical distance between
ℒ and ℒ𝐶. The distance between ℒ𝐶 and 𝒞 is 𝑧(𝑥)2, such that 𝐷(𝑥) + 𝑧(𝑥)2 = ℓ2.

Eq. (8.6), we obtain

𝑇 = 1
2 ∫

𝑥𝐴

𝑥𝑃

d𝑥
√ℓ2 − 𝑧(𝑥)2 , (8.7)

Now, by construction, 𝑧(𝑥) varies monotonically on [𝑥𝑃 , 𝑥𝐴]: it is negative and increasing
on [𝑥𝑃 , 𝑥𝐶 ], it hits zero at 𝑥𝐶 and it is positive and increasing again on [𝑥𝐶 , 𝑥𝐴]. We can
therefore perform the change of variables 𝑥 → 𝑧(𝑥) in Eq. (8.7). We readily obtain

𝑇 = 1
2 ∫

ℓ

−ℓ

𝑓 ′(𝑧)d𝑧√
ℓ2 − 𝑧2 , with 𝑥 ≡ 𝑓(𝑧) . (8.8)

It is now natural to perform in Eq. (8.8) one last change of variables, namely 𝑧 → ℓ sin 𝜙,
with 𝜙 varying between −𝜋/2 and 𝜋/2, corresponding to 𝑧 = −ℓ and 𝑧 = ℓ, respectively.
We then get

𝑇 = 1
2 ∫

𝜋/2

−𝜋/2
𝑓 ′(ℓ sin 𝜙)d𝜙 . (8.9)

We cannot, in general, compute explicitly the integral in Eq. (8.9), for 𝑓 ′ is but a generic,
unspecified function that depends on the potential and the particle. However, assuming
that the potential is regular enough, we can expand the function 𝑓 ′ as a Taylor expansion
at zero, i.e., write 𝑓 ′(𝑧) = 𝑎0 + ∑𝑛≥1 𝑎𝑛𝑧𝑛. Inserting this in Eq. (8.9) and integrating
term by term gives

𝑇 = 𝜋
2 𝑎0 + ∑

𝑛≥1
𝑎2𝑛𝑊2𝑛ℓ2𝑛 , with 𝑊𝑛 ≡ ∫

𝜋/2

0
sin𝑛𝜙 d𝜙 . (8.10)
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Note that only the even terms 𝑎2𝑛 remain since the integral of the odd function sin2𝑛+1

vanishes over the symmetric interval [−𝜋/2, 𝜋/2]. The integral 𝑊𝑛 is the celebrated Wallis
integral, and can be given explicitly. Notice that Eq. (8.10) is valid for any potential and
any particle orbiting within it. Both the coefficients 𝑎𝑛 and ℓ depend on (𝜉, Λ) and the
properties of the potential. As such, it is not that useful. However, for isochrone potentials,
it is of considerable interest.

Explicit formula for 𝑇
So far, what we have done does not take advantage of the isochrony property, and Eq. (8.10)
is valid for any particle (𝜉, Λ) in any central potential 𝑌 (𝑥). In particular, we insist that
the coefficients 𝑎𝑛 appearing in Eq. (8.10) are all function of 𝜉 and Λ, a priori. Now let
us fix the energy 𝜉 of the particle. If the potential is isochrone, then by definition 𝑇 is
independent of Λ, and so is the right-hand side of Eq. (8.10). We may therefore choose
Λ = Λ𝐶 , i.e., ℓ = 0, so that the last term on the right-hand side of Eq. (8.10) vanishes,
and we readily find that

𝑇 (𝜉) = 𝜋
2 𝑎0 . (8.11)

Now Eq. (8.11) is true for any Λ. (Actually, it is independent of Λ.) The combination of
Eqs. (8.10) and (8.11) implies that the sum on the right-hand side of Eq. (8.10) is a power
series in ℓ that vanishes for any ℓ. By a classical result on power series, this is true if and
only if all the coefficients of the power series vanish, i.e., 𝑎2𝑛𝑊2𝑛 = 0 for all 𝑛 ≥ 1. Since
the Wallis integrals 𝑊𝑛 are all nonzero, we conclude that, if the potential is isochrone,
𝑎2𝑛 = 0 for all 𝑛 ≥ 1. In particular, the Taylor expansion of 𝑓 ′ now reads

𝑓 ′(𝑧) = 𝑎0 + ∑
𝑛≥1

𝑎2𝑛+1𝑧2𝑛+1 . (8.12)

The last step consists in finding explicitly the coefficient 𝑎0 appearing in Eq. (8.11). To
this end, we integrate Eq. (8.12) over [𝑧(𝑥𝑃 ), 𝑧(𝑥𝐴)] = [−ℓ, ℓ]. On the left-hand side, we
use 𝑓(𝑧𝐴) = 𝑥𝐴 and 𝑓(𝑧𝑃 ) = 𝑥𝑃 (which follows from the definition 𝑥 = 𝑓(𝑧)). On the
right-hand side, the first term is a mere constant, and the second term is an odd function
of 𝑧: Its integral over [−ℓ, ℓ] will vanish. Consequently, the integrated result is simply
𝑥𝐴 − 𝑥𝑃 = 2ℓ𝑎0. With the help of ℓ2 = Λ2

𝐶 − Λ2 and Eq. (8.11), we obtain the following
explicit formula for 𝑇 (𝜉)

𝑇 (𝜉) = 𝜋
4

𝑥𝐴 − 𝑥𝑃

√Λ2
𝐶 − Λ2

. (8.13)

This is what we call Hénon’s formula for 𝑇 . Let us make a few remarks on Eq. (8.13).
First, and quite remarkably, we stress that although both 𝑥𝐴 − 𝑥𝑃 and (Λ2

𝐶 − Λ2)1/2

depend explicitly on Λ, their ratio does not, since 𝑇 is independent of Λ by assumption.
Second, if we square both sides of Eq. (8.13), we observe that the horizontal distance
𝑥𝑃 − 𝑥𝐴 squared is proportional to the vertical one Λ2

𝐶 − Λ2, and that the constant of
proportionality, namely 16𝑇 2/𝜋2, is independent of Λ. We shall use this geometrical result
to prove that the curve 𝒞 must be a parabola in the (𝑥, 𝑦) plane. Third, we insist that this
relation is valid for all isochrone potentials, even though their explicit form is unknown
at this stage. In particular, given an isochrone potential, the radial period of any orbit
can be read simply by drawing the line ℒ intersecting the curve 𝒞 , and then finding the
secondary line ℒ𝐶 that is both parallel to ℒ and tangent to 𝒞 .
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Lastly, let us explain why we call formula (8.13) Hénon’s formula. In fact, it can be
found as an intermediate equation in the seminal paper of Hénon [582], (with a missing
factor of 1/2 there). Since our method here is similar to his (although it is more detailed
here) this is not unexpected. However, Hénon did not seem to be interested in this
particular equation, probably because his main goal was not to obtain a formula for the
period. Yet, we shall see that this equation is rather central in the context of isochrony.

Explicit formula of Θ
In the last paragraphs, we were able to obtain the explicit formula (8.13) for 𝑇 (𝜉). The
recipe for the computation went in five steps that can be summarized as follows:

• fix 𝜉 and rewrite the integrand in (7.20) as 1/√𝐷(𝑥) using Hénon’s variables,

• rewrite 𝐷(𝑥) as ℓ2 − 𝑧(𝑥) using the line ℒ𝐶 associated with the circular orbit of
same energy (and thus same period),

• introduce 𝑥 = 𝑓(𝑧), perform the change of variables 𝑥 → 𝑧 and then 𝑧 → 𝜙,

• perform a Taylor expansion of 𝑓′ around 0 and integrate explicitly,

• assume that 𝜓 is isochrone and use 𝑇 = 𝑇 (𝜉, Λ/) to constrain 𝑓 and conclude.

Ultimately, the effectiveness of this recipe can be traced back to the Hénon variable
𝑥 = 2𝑟2 which isolates Λ from the denominator of the integrand in Eq. (7.20), as can be
seen on Eq. (8.6). Knowing this, it is possible to try and adapt the recipe to find an explicit
formula for Θ, starting from its integral definition in Eq. (7.21). As we argued earlier,
examining the radial action (7.22) shows that 𝑇 = 𝑇 (𝜉, Λ/) is equivalent to Θ = Θ(𝜉/, Λ).
Therefore, one can apply the same recipe provided that one uses a variable that isolates
𝜉 in the denominator in Eq. (7.21). The Binet variable 𝑢 ≡ 1/𝑟 turns out to be the
appropriate variable this time. Indeed, in terms of 𝑢, Eq. (7.21) becomes

Θ =
√

2Λ ∫
𝑢𝑃

𝑢𝐴

d𝑢
√𝐷Θ(𝑢)

, with 𝐷Θ(𝑢) ≡ 𝜉 − Ψ𝑒(𝑢) . (8.14)

From there, the same computation can be made to obtain an explicit formula for Θ.
The detailed computation is given in App. C.2.2. More precisely, with the Binet variable
𝑢 = 1/𝑟 and the Binet effective potential Ψ𝑒(𝑢) ≡ 𝜓𝑒(1/𝑢), it is possible to make a one-
to-one dictionary between what was used for 𝑇 and what can be used for Θ. The latter
is presented in Table 8.1. At the end of the computation, for any given Λ we obtain the
following formula in the case of isochrone potentials

Θ(Λ) = 𝜋Λ√
2

𝑢𝑃 − 𝑢𝐴
√𝜉 − 𝜉𝐶

, (8.15)

with 𝑢𝑃,𝐴 ≡ 1/𝑟𝑃,𝐴. This is Hénon’s formula for Θ. The value 𝜉𝐶 depends only on Λ and
is the energy to be given to a particle of angular momentum Λ to obtain a circular orbit.
Moreover, as we argued earlier for 𝑇 in Eq. (8.13), despite appearances the right-hand
side of Eq. (8.15) is independent of 𝜉.

Just as Eq. (8.13) will be used in Chap. 9 to write a generalized Kepler’s third law for
all isochrone orbits, Eq. (8.15) will be used to find a similar law for the apsidal angle of
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any isochrone orbit. We shall not use it directly and present a more astute computation,
but it is possible to derive, without any trick, this periapsis law directly from Eq. (8.15).

This apsidal angle law can, in turn, be used to give a proof of Bertrand’s theorem, a
well-known result of classical mechanics that states that the only two potentials in which
all periodic orbits are closed are the Kepler and the harmonic potentials. In fact, since
these two are also isochrone potentials, it should come as no surprise that Bertrand’s
theorem is closely related to isochrony. As demonstrated in [588], the theorem actually
follows from the examination of Eq. (8.15), once the latter is expressed in terms of Λ.
Let us mention that the equivalent of Eq. (8.10) for Θ (Eq. (C.11)) can be used to give
a proof a Bertrand’s theorem with brute force as in [594] [compare Eq. (20) of [594] to
Eq. (C.11)]. We shall revisit Bertrand’s theorem ourselves with the Hamiltonian treatment
of isochrony, in Chap. 10.

Isochrony Variable Curve 𝒞 Line ℒ
𝑇 (𝜉, Λ/) 𝑥 = 2𝑟2 𝑦 = 𝑥𝜓(√𝑥/2) 𝑦 = 𝜉𝑥 − Λ2

Θ(𝜉/, Λ) 𝑢 = 1/𝑟 𝑦 = 𝜓𝑒(1/𝑢) 𝑦 = 𝜉
Table 8.1: Dictionary between the geometrical quantities involved in the derivation of the Hénon
formulae: (8.13) for 𝑇 (𝜉) and (8.15) for Θ(Λ).

8.2.2 Geometry of parabolae
In this section, we provide a geometrical proof that the curve 𝒞 ∶ 𝑦 = 𝑌 (𝑥) must be
a parabola1 in order for the associated potential 𝜓 to be isochrone. This result, which
we will refer to as the fundamental theorem of isochrony, was first established by Hénon
in [582], using a very technical argument (see also [588] for proof using complex analysis).
The present proof is based only on Eq. (8.13) and a characterization of parabolae that can
be traced back to Archimedes.

Archimedean characterization

Archimedes, in his treatise Quadrature of the Parabola2, proved in a series of 24 proposi-
tions the following remarkable property shared by all parabolae. On a given parabola 𝒫 ,
take two points 𝐴 and 𝐵 defining a chord 𝐴𝐵 and a third point 𝐶 where the tangent to
𝒫 is parallel to the chord 𝐴𝐵. Then the area enclosed by 𝒫 and 𝐴𝐵 is four thirds that of
the triangle 𝐴𝐵𝐶. Although it was not known to Archimedes, it turns out that this prop-
erty uniquely characterizes parabolae [597]. In other words, we have the following theorem:

Theorem. Let 𝒞 be an arbitrary smooth curve in the plane, and ℒ any line that
intersects 𝒞 exactly twice, say at points 𝑃 and 𝐴. Let 𝐶 be the point where the tangent
to 𝒞 is parallel to ℒ . Then, if 𝒯 denotes the triangle 𝑃𝐴𝐶 and 𝒮 the region enclosed by

1Strictly speaking, we will show that 𝒞 is an arc of parabola, as it is the graph of a function.
However any given arc of parabola defines a unique parabola, so there will be no possible confusion.

2We refer the interested reader to pp.233-252 of Heath [595] for a modern English translation
of this work, and to pp.51-62 of Stein [596], for a pedagogical version.
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ℒ and 𝒞 , the following equivalence holds:

Area (𝒯 ) = 3
4Area (𝒮 ) ⇔ 𝒞 is an arc of parabola . (8.16)

Notice that in order for 𝒞 to be a parabola, the area ratio should be 4/3 for all of its
chords. As stated above, the ⇐ result was the aim of Archimedes’ work.

Rewriting of Hénon’s formula

Consider the curve 𝒞 ∶ 𝑦 = 𝑌 (𝑥) associated with an isochrone potential 𝑌 (𝑥) = 2𝑟2𝜓(𝑟).
Following the notation used so far, let us take a line ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2, such that 𝑃 and 𝐴
correspond to the periapsis and apoapsis of the orbit of particle (𝜉, Λ). Accordingly, the
parallel line that passes through 𝐶 is ℒ𝐶 ∶ 𝑦 = 𝜉𝑥 − Λ2

𝐶 , and defines a circular orbit with
the same energy 𝜉, and thus the same period 𝑇 (𝜉), given by Eq. (8.13). If for any line ℒ
the areas involved in the theorem are in proportion 4/3, we will have shown that 𝒞 is a
parabola. Therefore, the goal is to find an expression for these areas, using Eq. (8.13).

First let us do a bit of geometry. We define 𝐵 to be the orthogonal projection of 𝐶
on ℒ , and take 𝑀 to be an arbitrary point on 𝐶𝐵. We parameterize the length 𝐶𝑀 by
ℎ ≥ 0, with the convention ℎ = 0 when 𝑀 = 𝐶, and ℎ = 𝐶𝐵 when 𝑀 = 𝐵. Next we
define a chord 𝑃 ′𝐴′ that is parallel to ℒ and passes through 𝑀 . We denote by 𝐿(ℎ) the
length of that chord 𝐴′ and 𝑃 ′. Note that 𝐿(ℎ) varies between 0 (when ℎ = 0) and 𝑃𝐴
(when ℎ = 𝐶𝐵). All these quantities are depicted in Fig. 8.4.

Figure 8.4: Initially, an arbitrary curve 𝒞 and an intersecting line ℒ of slope 𝜉 are drawn. They
define the intersection points 𝑃 and 𝐴. The horizontal distance between 𝑃 and 𝐴 is 𝑥𝐴 − 𝑥𝑃
(top). The line ℒ𝐶, parallel to ℒ and tangent to 𝒞 at 𝐶, defines a circular orbit with energy 𝜉
(bottom). The vertical distance between ℒ and ℒ𝐶 is Λ2

𝐶 − Λ2 (left). The intermediary chord
𝑃 ′𝐴′ defined in the text is parallel to ℒ and defines yet another orbit with energy 𝜉.

Now let us rewrite Eq. (8.13) in terms of these geometrical quantities. For the numer-
ator, 𝑥𝐴 − 𝑥𝑃 is but the horizontal projection of 𝑃𝐴, and thus 𝑥𝐴 − 𝑥𝑃 = 𝑃𝐴 cos 𝜑, where
𝜑 is the angle that ℒ makes with the horizontal axis, i.e.,. 𝜑 = arctan 𝜉. Similarly, for the
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denominator, Λ2
𝐶 − Λ2 is simply the vertical projection of 𝐶𝐵; consequently, we also have

Λ2
𝐶 − Λ2 = 𝐶𝐵/ cos 𝜑. Inserting these two identities in Eq. (8.13) gives its geometrical

variant
𝑇 (𝜉) = 𝜋

4(1 + 𝜉2)3/4
𝑃𝐴√
𝐶𝐵

, (8.17)

where we used the trigonometric identity cos(arctan 𝜉) = (1+𝜉2)−1/2. Now, formula (8.17)
has been obtained for any chord 𝑃𝐴 of the curve 𝒞 , corresponding to a particle of energy 𝜉.
However, by construction, for any ℎ the chord 𝑃 ′𝐴′ is parallel to 𝑃𝐴 and thus corresponds
to an orbit with the same energy 𝜉. Therefore, the potential being isochrone, all parallel
chords 𝑃 ′𝐴′ generated by varying ℎ correspond to orbits with the same energy 𝜉, and
therefore the same period 𝑇 (𝜉). The conclusion is that Eq. (8.17), which corresponds to
the case ℎ = 𝐶𝐵, is also verified for any value of ℎ when the potential is isochrone. In
other words, for any ℎ ∈]0, 𝐶𝐵], we have

𝑇 (𝜉) = 𝜋
4(1 + 𝜉2)3/4

𝐿(ℎ)√
ℎ

. (8.18)

Of course, Eq. (8.17) is just a particular case of Eq. (8.18), when ℎ = 𝐶𝐵 and 𝐿(ℎ) = 𝑃𝐴.

Computing the areas
With Eq. (8.18) at hand, we can now turn to the computation of the areas involved in the
theorem. For the triangle 𝑃𝐴𝐶, we have the basis 𝑃𝐴 and the height 𝐶𝐵. For the area
between 𝒞 and ℒ , we can simply integrate à la Lebesgue the infinitesimal area 𝐿(ℎ)dℎ
while ℎ varies between 0 and 𝐶𝐵. We thus have, respectively

Area (𝒯 ) = 1
2𝑃𝐴 × 𝐶𝐵 and Area (𝒮 ) = ∫

𝐶𝐵

0
𝐿(ℎ)dℎ . (8.19)

Now we compute these areas and we show that they are in proportion 4/3. For the area
of the triangle 𝒯 , we use Eq. (8.17) to express 𝑃𝐴 in terms of 𝐶𝐵 and plug the result in
Eq. (8.19). We obtain the following expression

Area (𝒯 ) = 2𝑇
𝜋 (1 + 𝜉2)3/4𝐶𝐵3/2 . (8.20)

In a similar manner, the area of the region 𝒮 can be found by isolating 𝐿(ℎ) from Eq. (8.18)
and expressing it in terms of ℎ. Plugging the result in the area formula for 𝒮 in Eq. (8.19)
and computing the integral explicitly give easily

Area (𝒮 ) = 8𝑇
3𝜋 (1 + 𝜉2)3/4𝐶𝐵3/2 . (8.21)

Comparing Eqs. (8.20) and (8.21) shows that, indeed, Area (𝒮 )/Area (𝒯 ) = 4/3. The
conclusion from this calculation is so central that we give it its own paragraph, below.

Conclusion
We have just shown, thanks to the Hénon formula (8.13) for 𝑇 (𝜉) that if 𝜓 is isochrone,
then the curve 𝒞 ∶ 𝑦 = 𝑌 (𝑥) of that potential in Hénon’s variables satisfies the 4/3-area
condition of Theorem (8.16). Since the latter uniquely characterizes parabolae, we obtain
what we call the fundamental theorem of isochrony:

𝜓 is isochrone ⇒ 𝒞 is a parabola . (8.22)
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The converse result holds as well, although will require a discussion on the conditions
under which a parabola actually corresponds to a physically well-posed isochrone potential.
Nevertheless, we may already check the result (8.22) for potentials that we know to be
isochrone. Recall in Chap. 7 that three of them were already mentioned: the Kepler and
harmonic potentials (Eq. (7.26)) and the Hénon potential (Eq. (7.25)). Let us look at the
first two, which we rewrite here for convenience

𝜓Ke(𝑟) = −𝜇
𝑟 and 𝜓Ha(𝑟) = 1

8𝜔2𝑟2 , (8.23)

where 𝜇, 𝜔 and 𝑏 are real constants. Let us re-express them in terms of the Hénon variables
using the definitions (8.3). We find

𝑌Ke(𝑥) = −𝜇
√

2𝑥 and 𝑌Ha(𝑥) = 1
16𝜔2𝑥2 , (8.24)

and as we can see, both of these are arcs of parabolae in the (𝑥, 𝑦) plane, and thus satisfy
the Theorem (8.22). The same computation can be done for Hénon’s isochrone potential
(7.25), which also looks like a parabola in the (𝑥, 𝑌 ) variables. This theorem drastically
reduces the size of the set of potentials that needs to be searched to find isochrone ones.
This will be the goal of the next section.

Let us make a last comment on the derivation of theorem (8.22), which has been de-
rived thanks to the Hénon formula (8.13) for 𝑇 (𝜉). Following the same logic, one could
ask whether the Hénon formula for Θ(Λ) (Eq. (8.15)) could not be used to reach the same
result. The answer is no, unfortunately. The reason is that the Θ-formula is to be read
in the (𝑢, 𝑦) plane, where 𝑢 = 1/𝑟 is the Binet variable, and orbits correspond to hori-
zontal lines ℒ ∶ 𝑦 = 𝜉; whereas Eq. (8.13) is to be read in the (𝑥, 𝑦) plane, where orbits
correspond to straight lines ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2 (recall Table. 8.1). Yet, the Archimedean
characterization of parabolas (8.16) requires the areas ratio to be 4/3 for any chord, not
just horizontal ones. Therefore, Eq. (8.15) cannot be used to conclude that 𝒞 should be
a parabola, at least not with the Archimedean characterization.

We end this section by making contact, as promised in Chap. 6, with Huygens’
isochrony of the pendulum. In particular, let us ask ourselves the question: Why is it
that 𝒞 should be a parabola, and not any other type of curve, when the potential is
isochrone ? What is so special about parabolae ? To understand this, let us focus our
attention on a point 𝑀 of a generic curve 𝒞 (i.e., non-necessarily a parabola). Close
enough to 𝑀 , 𝒞 always looks like a parabola, as can be seen by writing its Taylor expan-
sion around 𝑀 . To see this, consider a Cartesian coordinate system (𝑥, 𝑦) centered on 𝑀
where the tangent to 𝒞 at 𝑀 is horizontal. These two conditions indicate that 𝑦(0) = 0
and 𝑦′(0) = 0 respectively. Therefore the curve has an implicit equation of the type

𝑦 = 𝛼𝑥2 + 𝑜(𝑥2) for some constant 𝛼 . (8.25)

For a generic curve, the 𝑜(𝑥2) in Eq. (8.25) corrects the local parabolicness of the curve
as one moves away from 𝑀 . However, Eq. (8.18) shows that the 𝑜(𝑥2) terms vanishes
identically in the case of isochrony. Indeed, in Fig. 8.4, this particular frame (𝑥, 𝑦) we are
considering is precisely the one centered on 𝐶 equipped with coordinates (𝑥, 𝑦) = (𝐿, ℎ).
Now Eq. (8.18) may be rewritten as

ℎ = 𝛼𝐿2 , with 𝛼 = 𝜋2/16𝑇 2(1 + 𝜉2)3/2 . (8.26)
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Since this should be true for all ℎ, or equivalently any 𝑥, comparing Eqs. (8.25) and (8.26)
shows that in the case of isochrony the 𝑜(𝑥2) vanishes identically as claimed. In other
words, isochrony constrains the curve 𝒞 to be a parabola, in addition to locally look like
one. Remarkably, this is exactly like the osculating parabola argument that Huygens used
in his derivation of the isochrone pendulum, as we covered in Chap. 7. We have therefore
seen all three of the take away results provided in the list at the very end of Sec. 7.1: the
change of variable, the parabolic nature of the potential, and an insight from Archimedes
insight, as summarized in Table. 8.2.

Isochrony System Variable Potential
Huygens Pendulum radius squared quadratic
Hénon Orbit arc length parabolic

Table 8.2: The derivation of the isochrone pendulum (by Huygens) and isochrone potentials (by
Hénon) follow common steps and the results are similar: the potential driving the motion is a
parabola in terms of a well-chosen proper variable.

8.3 Isochrone Potentials
The fundamental theorem of isochrony (8.22) implies that the curve 𝒞 of an isochrone
potential 𝑌 corresponds to (at least an arc of) a parabola. However, not all parabolae
will contain the potential of a physically realistic system. The first aim of this section is
to classify, based on their geometrical properties, the isochrone parabolae, i.e., those that
contain the curve 𝒞 of a well-defined, isochrone potential 𝑌 (Sec. 8.3.1). Once this is done,
we provide explicit formulae and show that there are five families of isochrone potentials
(Sec. 8.3.2). We then conclude in Sec. 8.3.3 by examining the conditions on (𝜉, Λ) for which
a particle has a bounded orbit in these five families of isochrone potentials. Inspired by
Arnold [344], these result are written as bifurcation diagrams in the (𝜉, Λ2) plane.

8.3.1 Isochrone parabolae
In this section, we start by a potpourri of algebraic and geometrical properties of parabolae,
and derive general results that shall be used throughout the next sections. Then, we
examine under which conditions a parabola is associated to an isochrone potential well-
defined physically.

Geometric preliminaries
Let us give an overview of parabolae in the plane, equipped with Cartesian coordinates
(𝑥, 𝑦). A generic parabola is given by an implicit equation, of the form

𝒫 ∶ (𝑎𝑥 + 𝑏𝑦)2 + 𝑐𝑥 + 𝑑𝑦 + 𝑒 = 0 with 𝛿 ≡ 𝑎𝑑 − 𝑏𝑐 ≠ 0 , (8.27)

and where (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) are five real numbers. The quantity 𝛿 is the discriminant of 𝒫 and
is taken to be nonzero, otherwise 𝒫 degenerates into a pair of parallel lines. Without loss
of generality, we will assume from now on that 𝛿 > 0.3

3If 𝛿 < 0 we can always replace (𝑎, 𝑏) by (−𝑎, −𝑏). This leaves Eq. (8.27) unchanged and thus
corresponds to the same parabola, but changes the sign of 𝛿.
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As an algebraic curve, a parabola is not, in general, the graph of a function. It is,
however, always the union of such graphs. To see this, let us take a point (𝑥, 𝑦) on the
parabola 𝒫 given by Eq. (8.27). Its ordinate 𝑦 can be given as a function of its abscissa
𝑥 by solving Eq. (8.27) for 𝑦. There are two cases depending on the parameter 𝑏:

• when 𝑏 = 0, the whole parabola 𝒫 is the graph of a function. Its equation is
obtained by isolating 𝑦 in Eq. (8.27):

𝒫 ∶ 𝑦 = − 𝑒
𝑑 − 𝑐

𝑑𝑥 − 𝑎2

𝑑 𝑥2 , (8.28)

where 𝑑 ≠ 0 since the discriminant 𝛿 = 𝑎𝑑 ≠ 0. For 𝑑 < 0 this parabola opens upwards
and we shall say that it is top-oriented. When 𝑑 > 0, it opens downwards and we will say
bottom-oriented. Any top- or bottom-oriented parabola crosses the 𝑦-axis once, and the
ordinate of this point is

𝜆 ≡ − 𝑒
𝑑 . (8.29)

• when 𝑏 ≠ 0, the curve 𝒫 is the union of two branches, which are actual graphs of two
functions. Indeed, for a fixed 𝑥, Eq. (8.27) is a quadratic in 𝑦. Its solutions are easily
found to be

𝒫± ∶ 𝑦 = −𝑎𝑥
𝑏 − 𝑑

2𝑏2 ± 1
2𝑏2 √4𝑏(𝛿𝑥 − 𝑏𝑒) + 𝑑2 , (8.30)

where the condition 4𝑏(𝛿𝑥 − 𝑏𝑒) + 𝑑2 ≥ 0 ensures the positivity inside the square root.
The support of the parabola is the set of 𝑥 such that 4𝑏(𝛿𝑥 − 𝑏𝑒) + 𝑑2 ≥ 0. In particular,
there is a unique value

𝑥𝑣 ≡ 4𝑏2𝑒 − 𝑑2

4𝑏𝛿 , (8.31)

that makes the square root in Eq. (8.30) vanish. The quantity 𝑥𝑣 is the abscissa of the com-
mon point between 𝒫+ and 𝒫−, where the branches meet and the tangent to 𝒫 is vertical,
as shown in Fig. 8.5. Note that 𝒫− is always convex and always below 𝒫+ which is concave.

The sign of 𝑏 controls the orientation of the parabola. If 𝑏 > 0, we will say that the
parabola is right-oriented. Its support is [𝑥𝑣, +∞], and the parabola crosses the 𝑦-axis if
and only if 𝑥𝑣 ≤ 0. If 𝑏 < 0, we say that it is left-oriented. Its support is [−∞, 𝑥𝑣] and it
crosses the 𝑦-axis if and only if 𝑥𝑣 ≥ 0.

A left or right-oriented parabola may not always cross the 𝑦-axis. When it does,
the ordinates of the intersection points are obtained by setting 𝑥 = 0 in Eq. (8.30). In
particular, the convex branch 𝒫− crosses the 𝑦-axis at ordinate

𝜆 ≡ −𝑑 +
√

𝑑2 − 4𝑏2𝑒
2𝑏2 . (8.32)

This implies that 𝑑2 − 4𝑒𝑏2 should always be positive for parabolae crossing the 𝑦-axis. In
particular, we have 𝑑2 − 4𝑏2𝑒 > 0 when there are two intersections. The case 𝑑2 − 4𝑒𝑏2 =
0 ⇔ 𝑑2 = 4𝑒𝑏2 happens when the two intersections degenerate into one, and its ordinate
is simply −𝑑/2𝑏2.

To summarize, the graph 𝒞 of an isochrone potential 𝑌 (𝑥) must be contained within
a parabola 𝒫 in the plane. From the preceding generalities on parabolae, it follows that
𝒞 is to be looked for in any of the following families:
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Figure 8.5: Geometrical properties of a right-oriented parabola 𝒫 , with its two branches 𝒫± that
are actual graphs of functions. The parabola itself is 𝒫 = 𝒫− ∪ 𝒫+. On the left, the point of
abscissa 𝑥𝑣 given by Eq. (8.31) belongs to both 𝒫+ and 𝒫−, and the domain of the parabola is
[𝑥𝑣, +∞[ (highlighted in grey on the 𝑥-axis).

• top- and bottom-oriented parabolae, whose whole curve 𝒫 is that of a function
defined on ℝ, cf. Eq. (8.28).

• left-oriented parabolae, whose curve 𝒫 is the union of a convex branch 𝒫− and
a concave branch, 𝒫+, each of the two being the graph of a function defined on
] − ∞, 𝑥𝑣], cf. Eq. (8.30) with 𝑏 < 0.

• right-oriented parabolae, whose curve 𝒫 is the union of a convex branch 𝒫− and
a concave branch, 𝒫+, each of the two being the graph of a function defined on
[𝑥𝑣, +∞[, cf. Eq. (8.30) with 𝑏 > 0.

Geometrical hypotheses

Now, we examine under which conditions a curve 𝒞 of the potential 𝑌 (𝑥) = 2𝑟2𝜓(𝑟) is a
physically well-posed, isochrone potential, in the sense that it does contain bounded orbits.
This will be done in three steps, each consisting in imposing a geometrical hypothesis (𝐻𝑖,
with 𝑖 = 1, 2, 3), on a candidate curve. These three hypotheses come from, respectively:
the fundamental theorem of isochrony (8.22), the very definition of the Hénon variable
(8.3), the existence of orbits (8.4). They are as follows:

• 𝐻0: 𝒞 must be an arc of parabola. This geometrical requirement ensures that
the potential 𝜓 is isochrone, regardless of its mathematical and physical properties.
The next hypotheses are therefore concerned with the parabola 𝒫 that contains the
curve 𝒞 .

• 𝐻1: 𝒞 must lie on the right half plane. From a purely mathematical perspective,
an isochrone potential is a function 𝜓(𝑟) defined on some subset of ℝ+ (since 𝑟 is
a positive radius). Since 𝑥 = 2𝑟2 > 0, we only keep parabolae that exhibit a portion
on the right half plane 𝑥 > 0. The only parabolae that do not have this property,



212 8.3. ISOCHRONE POTENTIALS

are the left-oriented ones crossing the 𝑦-axis at most once (Eq. (8.30) with 𝑏 < 0
and 𝑥𝑣 ≤ 0).

• 𝐻2: 𝒞 must be convex. Indeed, a particle orbits periodically when 𝒞 is below ℒ ,
since the (directed) distance is positive (recall Eq. (8.4)). The geometrical equivalent
of this is that 𝒞 should lie under its chords, and therefore be convex. Since this is
not possible on the concave branch of a parabola, we only keep parabolae that exhibit
a convex branch. These that do not are the bottom-oriented ones4 (Eq. (8.28) with
𝑑 < 0.). Therefore, we discard the bottom-oriented parabolae, and stress that on
the right- and left-oriented ones, the curve 𝒞 will be located on the convex branch
𝒫−.

Equipped with these three hypotheses 𝐻0, 𝐻1 and 𝐻2, it is now a simple matter to
examine each parabola and discard any that does not satisfy one of them. Instead of
presenting these calculations, we summarize the result in Fig. 8.6. This figure shows the
reduction process: starting at the top with the general equation (8.27), parabolae are
discriminated with respect to their parameters, and some are discarded, as indicated by
horizontally red arrows, and the corresponding hypothesis they do not fulfill. At the bot-
tom, by construction, all remaining parabolae satisfy 𝐻0, 𝐻1 and 𝐻2, and are the last
candidate for isochrone potentials.

1 or 0 int.
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<latexit sha1_base64="7N/WAXfYYAQPu6r5JI+gQCTop+Y=">AAAB9HicdVBNS8NAEN3Ur1q/qh69LBbBiyGpoa23ohePFawttKFsttt26ebD3UlpCP0dXjwo4tUf481/46atoKIPBh7vzTAzz4sEV2BZH0ZuZXVtfSO/Wdja3tndK+4f3KkwlpQ1aShC2faIYoIHrAkcBGtHkhHfE6zlja8yvzVhUvEwuIUkYq5PhgEfcEpAS27SBTaF9IxMuZr1iiXLvKhVyk4FW6ZlVe2ynZFy1Tl3sK2VDCW0RKNXfO/2Qxr7LAAqiFId24rATYkETgWbFbqxYhGhYzJkHU0D4jPlpvOjZ/hEK308CKWuAPBc/T6REl+pxPd0p09gpH57mfiX14lhUHNTHkQxsIAuFg1igSHEWQK4zyWjIBJNCJVc34rpiEhCQedU0CF8fYr/J3dl07ZM+8Yp1S+XceTRETpGp8hGVVRH16iBmoiie/SAntCzMTEejRfjddGaM5Yzh+gHjLdPsJeSsg==</latexit><latexit sha1_base64="7N/WAXfYYAQPu6r5JI+gQCTop+Y=">AAAB9HicdVBNS8NAEN3Ur1q/qh69LBbBiyGpoa23ohePFawttKFsttt26ebD3UlpCP0dXjwo4tUf481/46atoKIPBh7vzTAzz4sEV2BZH0ZuZXVtfSO/Wdja3tndK+4f3KkwlpQ1aShC2faIYoIHrAkcBGtHkhHfE6zlja8yvzVhUvEwuIUkYq5PhgEfcEpAS27SBTaF9IxMuZr1iiXLvKhVyk4FW6ZlVe2ynZFy1Tl3sK2VDCW0RKNXfO/2Qxr7LAAqiFId24rATYkETgWbFbqxYhGhYzJkHU0D4jPlpvOjZ/hEK308CKWuAPBc/T6REl+pxPd0p09gpH57mfiX14lhUHNTHkQxsIAuFg1igSHEWQK4zyWjIBJNCJVc34rpiEhCQedU0CF8fYr/J3dl07ZM+8Yp1S+XceTRETpGp8hGVVRH16iBmoiie/SAntCzMTEejRfjddGaM5Yzh+gHjLdPsJeSsg==</latexit><latexit sha1_base64="7N/WAXfYYAQPu6r5JI+gQCTop+Y=">AAAB9HicdVBNS8NAEN3Ur1q/qh69LBbBiyGpoa23ohePFawttKFsttt26ebD3UlpCP0dXjwo4tUf481/46atoKIPBh7vzTAzz4sEV2BZH0ZuZXVtfSO/Wdja3tndK+4f3KkwlpQ1aShC2faIYoIHrAkcBGtHkhHfE6zlja8yvzVhUvEwuIUkYq5PhgEfcEpAS27SBTaF9IxMuZr1iiXLvKhVyk4FW6ZlVe2ynZFy1Tl3sK2VDCW0RKNXfO/2Qxr7LAAqiFId24rATYkETgWbFbqxYhGhYzJkHU0D4jPlpvOjZ/hEK308CKWuAPBc/T6REl+pxPd0p09gpH57mfiX14lhUHNTHkQxsIAuFg1igSHEWQK4zyWjIBJNCJVc34rpiEhCQedU0CF8fYr/J3dl07ZM+8Yp1S+XceTRETpGp8hGVVRH16iBmoiie/SAntCzMTEejRfjddGaM5Yzh+gHjLdPsJeSsg==</latexit><latexit sha1_base64="7N/WAXfYYAQPu6r5JI+gQCTop+Y=">AAAB9HicdVBNS8NAEN3Ur1q/qh69LBbBiyGpoa23ohePFawttKFsttt26ebD3UlpCP0dXjwo4tUf481/46atoKIPBh7vzTAzz4sEV2BZH0ZuZXVtfSO/Wdja3tndK+4f3KkwlpQ1aShC2faIYoIHrAkcBGtHkhHfE6zlja8yvzVhUvEwuIUkYq5PhgEfcEpAS27SBTaF9IxMuZr1iiXLvKhVyk4FW6ZlVe2ynZFy1Tl3sK2VDCW0RKNXfO/2Qxr7LAAqiFId24rATYkETgWbFbqxYhGhYzJkHU0D4jPlpvOjZ/hEK308CKWuAPBc/T6REl+pxPd0p09gpH57mfiX14lhUHNTHkQxsIAuFg1igSHEWQK4zyWjIBJNCJVc34rpiEhCQedU0CF8fYr/J3dl07ZM+8Yp1S+XceTRETpGp8hGVVRH16iBmoiie/SAntCzMTEejRfjddGaM5Yzh+gHjLdPsJeSsg==</latexit>

! : (ax+ by)2 + cx+ dy + e = 0
<latexit sha1_base64="J4kyQ82NRfygHnTYKjxch/JdQOc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQCZSkCLoRim5cVrAPaGOZTCbt0MkkzEykIdRfceNCEbd+iDv/xmmbhbYeuHA4517uvceLGZXKtr+Nwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk441vZn7nkQhJI36v0pi4IRpyGlCMlJYGZrmKJpaXnj3ULTyx/NQiV/bArNg1ew64SpycVECO5sD86vsRTkLCFWZIyp5jx8rNkFAUMzIt9RNJYoTHaEh6mnIUEulm8+On8FQrPgwioYsrOFd/T2QolDINPd0ZIjWSy95M/M/rJSq4dDPK40QRjheLgoRBFcFZEtCngmDFUk0QFlTfCvEICYSVzqukQ3CWX14l7XrNsWvO3XmlcZ3HUQTH4ARUgQMuQAPcgiZoAQxS8AxewZvxZLwY78bHorVg5DNl8AfG5w8/GpM0</latexit><latexit sha1_base64="J4kyQ82NRfygHnTYKjxch/JdQOc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQCZSkCLoRim5cVrAPaGOZTCbt0MkkzEykIdRfceNCEbd+iDv/xmmbhbYeuHA4517uvceLGZXKtr+Nwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk441vZn7nkQhJI36v0pi4IRpyGlCMlJYGZrmKJpaXnj3ULTyx/NQiV/bArNg1ew64SpycVECO5sD86vsRTkLCFWZIyp5jx8rNkFAUMzIt9RNJYoTHaEh6mnIUEulm8+On8FQrPgwioYsrOFd/T2QolDINPd0ZIjWSy95M/M/rJSq4dDPK40QRjheLgoRBFcFZEtCngmDFUk0QFlTfCvEICYSVzqukQ3CWX14l7XrNsWvO3XmlcZ3HUQTH4ARUgQMuQAPcgiZoAQxS8AxewZvxZLwY78bHorVg5DNl8AfG5w8/GpM0</latexit><latexit sha1_base64="J4kyQ82NRfygHnTYKjxch/JdQOc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQCZSkCLoRim5cVrAPaGOZTCbt0MkkzEykIdRfceNCEbd+iDv/xmmbhbYeuHA4517uvceLGZXKtr+Nwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk441vZn7nkQhJI36v0pi4IRpyGlCMlJYGZrmKJpaXnj3ULTyx/NQiV/bArNg1ew64SpycVECO5sD86vsRTkLCFWZIyp5jx8rNkFAUMzIt9RNJYoTHaEh6mnIUEulm8+On8FQrPgwioYsrOFd/T2QolDINPd0ZIjWSy95M/M/rJSq4dDPK40QRjheLgoRBFcFZEtCngmDFUk0QFlTfCvEICYSVzqukQ3CWX14l7XrNsWvO3XmlcZ3HUQTH4ARUgQMuQAPcgiZoAQxS8AxewZvxZLwY78bHorVg5DNl8AfG5w8/GpM0</latexit><latexit sha1_base64="J4kyQ82NRfygHnTYKjxch/JdQOc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQCZSkCLoRim5cVrAPaGOZTCbt0MkkzEykIdRfceNCEbd+iDv/xmmbhbYeuHA4517uvceLGZXKtr+Nwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikeh6SBJGOWkpqhjpxoKg0GOk441vZn7nkQhJI36v0pi4IRpyGlCMlJYGZrmKJpaXnj3ULTyx/NQiV/bArNg1ew64SpycVECO5sD86vsRTkLCFWZIyp5jx8rNkFAUMzIt9RNJYoTHaEh6mnIUEulm8+On8FQrPgwioYsrOFd/T2QolDINPd0ZIjWSy95M/M/rJSq4dDPK40QRjheLgoRBFcFZEtCngmDFUk0QFlTfCvEICYSVzqukQ3CWX14l7XrNsWvO3XmlcZ3HUQTH4ARUgQMuQAPcgiZoAQxS8AxewZvxZLwY78bHorVg5DNl8AfG5w8/GpM0</latexit>

� = ad� bc
<latexit sha1_base64="DzVrM8pmPSJCOctHguAmIy/28cw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQS9C0YvHCtYWmlA2m027dLMJuxOhlP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL8ykMOi6305pZXVtfaO8Wdna3tndq+4fPJo014y3WCpT3Qmp4VIo3kKBkncyzWkSSt4Oh7dTv/3EtRGpesBRxoOE9pWIBaNoJd+PuER6TaOzkPWqNbfuzkCWiVeQGhRo9qpffpSyPOEKmaTGdD03w2BMNQom+aTi54ZnlA1pn3ctVTThJhjPbp6QE6tEJE61LYVkpv6eGNPEmFES2s6E4sAselPxP6+bY3wVjIXKcuSKzRfFuSSYkmkAJBKaM5QjSyjTwt5K2IBqytDGVLEheIsvL5PH87rn1r37i1rjpoijDEdwDKfgwSU04A6a0AIGGTzDK7w5ufPivDsf89aSU8wcwh84nz94S5FM</latexit><latexit sha1_base64="DzVrM8pmPSJCOctHguAmIy/28cw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQS9C0YvHCtYWmlA2m027dLMJuxOhlP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL8ykMOi6305pZXVtfaO8Wdna3tndq+4fPJo014y3WCpT3Qmp4VIo3kKBkncyzWkSSt4Oh7dTv/3EtRGpesBRxoOE9pWIBaNoJd+PuER6TaOzkPWqNbfuzkCWiVeQGhRo9qpffpSyPOEKmaTGdD03w2BMNQom+aTi54ZnlA1pn3ctVTThJhjPbp6QE6tEJE61LYVkpv6eGNPEmFES2s6E4sAselPxP6+bY3wVjIXKcuSKzRfFuSSYkmkAJBKaM5QjSyjTwt5K2IBqytDGVLEheIsvL5PH87rn1r37i1rjpoijDEdwDKfgwSU04A6a0AIGGTzDK7w5ufPivDsf89aSU8wcwh84nz94S5FM</latexit><latexit sha1_base64="DzVrM8pmPSJCOctHguAmIy/28cw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQS9C0YvHCtYWmlA2m027dLMJuxOhlP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL8ykMOi6305pZXVtfaO8Wdna3tndq+4fPJo014y3WCpT3Qmp4VIo3kKBkncyzWkSSt4Oh7dTv/3EtRGpesBRxoOE9pWIBaNoJd+PuER6TaOzkPWqNbfuzkCWiVeQGhRo9qpffpSyPOEKmaTGdD03w2BMNQom+aTi54ZnlA1pn3ctVTThJhjPbp6QE6tEJE61LYVkpv6eGNPEmFES2s6E4sAselPxP6+bY3wVjIXKcuSKzRfFuSSYkmkAJBKaM5QjSyjTwt5K2IBqytDGVLEheIsvL5PH87rn1r37i1rjpoijDEdwDKfgwSU04A6a0AIGGTzDK7w5ufPivDsf89aSU8wcwh84nz94S5FM</latexit><latexit sha1_base64="DzVrM8pmPSJCOctHguAmIy/28cw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQS9C0YvHCtYWmlA2m027dLMJuxOhlP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL8ykMOi6305pZXVtfaO8Wdna3tndq+4fPJo014y3WCpT3Qmp4VIo3kKBkncyzWkSSt4Oh7dTv/3EtRGpesBRxoOE9pWIBaNoJd+PuER6TaOzkPWqNbfuzkCWiVeQGhRo9qpffpSyPOEKmaTGdD03w2BMNQom+aTi54ZnlA1pn3ctVTThJhjPbp6QE6tEJE61LYVkpv6eGNPEmFES2s6E4sAselPxP6+bY3wVjIXKcuSKzRfFuSSYkmkAJBKaM5QjSyjTwt5K2IBqytDGVLEheIsvL5PH87rn1r37i1rjpoijDEdwDKfgwSU04A6a0AIGGTzDK7w5ufPivDsf89aSU8wcwh84nz94S5FM</latexit>

H0

� = 0
<latexit sha1_base64="geZ9MMdr+K223vAB8mP1c1FBjlc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgq2FNpTNZtMu3Wzi7kQooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1IpDLrut1NaWV1b3yhvVra2d3b3qvsHbZNkmvEWS2SiOwE1XArFWyhQ8k6qOY0DyR+C0c3Uf3ji2ohE3eM45X5MB0pEglG0UqcXcon0yu1Xa27dnYEsE68gNSjQ7Fe/emHCspgrZJIa0/XcFP2cahRM8kmllxmeUjaiA961VNGYGz+f3TshJ1YJSZRoWwrJTP09kdPYmHEc2M6Y4tAselPxP6+bYXTp50KlGXLF5ouiTBJMyPR5EgrNGcqxJZRpYW8lbEg1ZWgjqtgQvMWXl0n7rO65de/uvNa4LuIowxEcwyl4cAENuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx+Fto+d</latexit><latexit sha1_base64="geZ9MMdr+K223vAB8mP1c1FBjlc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgq2FNpTNZtMu3Wzi7kQooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1IpDLrut1NaWV1b3yhvVra2d3b3qvsHbZNkmvEWS2SiOwE1XArFWyhQ8k6qOY0DyR+C0c3Uf3ji2ohE3eM45X5MB0pEglG0UqcXcon0yu1Xa27dnYEsE68gNSjQ7Fe/emHCspgrZJIa0/XcFP2cahRM8kmllxmeUjaiA961VNGYGz+f3TshJ1YJSZRoWwrJTP09kdPYmHEc2M6Y4tAselPxP6+bYXTp50KlGXLF5ouiTBJMyPR5EgrNGcqxJZRpYW8lbEg1ZWgjqtgQvMWXl0n7rO65de/uvNa4LuIowxEcwyl4cAENuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx+Fto+d</latexit><latexit sha1_base64="geZ9MMdr+K223vAB8mP1c1FBjlc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgq2FNpTNZtMu3Wzi7kQooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1IpDLrut1NaWV1b3yhvVra2d3b3qvsHbZNkmvEWS2SiOwE1XArFWyhQ8k6qOY0DyR+C0c3Uf3ji2ohE3eM45X5MB0pEglG0UqcXcon0yu1Xa27dnYEsE68gNSjQ7Fe/emHCspgrZJIa0/XcFP2cahRM8kmllxmeUjaiA961VNGYGz+f3TshJ1YJSZRoWwrJTP09kdPYmHEc2M6Y4tAselPxP6+bYXTp50KlGXLF5ouiTBJMyPR5EgrNGcqxJZRpYW8lbEg1ZWgjqtgQvMWXl0n7rO65de/uvNa4LuIowxEcwyl4cAENuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx+Fto+d</latexit><latexit sha1_base64="geZ9MMdr+K223vAB8mP1c1FBjlc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxgq2FNpTNZtMu3Wzi7kQooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMC1IpDLrut1NaWV1b3yhvVra2d3b3qvsHbZNkmvEWS2SiOwE1XArFWyhQ8k6qOY0DyR+C0c3Uf3ji2ohE3eM45X5MB0pEglG0UqcXcon0yu1Xa27dnYEsE68gNSjQ7Fe/emHCspgrZJIa0/XcFP2cahRM8kmllxmeUjaiA961VNGYGz+f3TshJ1YJSZRoWwrJTP09kdPYmHEc2M6Y4tAselPxP6+bYXTp50KlGXLF5ouiTBJMyPR5EgrNGcqxJZRpYW8lbEg1ZWgjqtgQvMWXl0n7rO65de/uvNa4LuIowxEcwyl4cAENuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx+Fto+d</latexit>

Pair of
<latexit sha1_base64="u1obYDdl0FnIyDuhrrpQI/6oqGU=">AAAB9XicdVDLSsNAFJ34rPVVdelmsAiuQhJDW3dFNy4r2Ae0sUymk3bo5MHMjVpC/8ONC0Xc+i/u/BsnbQUVPXDhcM693HuPnwiuwLI+jKXlldW19cJGcXNre2e3tLffUnEqKWvSWMSy4xPFBI9YEzgI1kkkI6EvWNsfX+R++5ZJxePoGiYJ80IyjHjAKQEt3fSA3UPWIFziOJj2S2XLPKtVHLeCLdOyqrZj58SpuqcutrWSo4wWaPRL771BTNOQRUAFUaprWwl4GZHAqWDTYi9VLCF0TIasq2lEQqa8bHb1FB9rZYCDWOqKAM/U7xMZCZWahL7uDAmM1G8vF//yuikENS/jUZICi+h8UZAKDDHOI8ADLhkFMdGEUMn1rZiOiCQUdFBFHcLXp/h/0nJM2zLtK7dcP1/EUUCH6AidIBtVUR1dogZqIookekBP6Nm4Mx6NF+N13rpkLGYO0A8Yb58To5Li</latexit><latexit sha1_base64="u1obYDdl0FnIyDuhrrpQI/6oqGU=">AAAB9XicdVDLSsNAFJ34rPVVdelmsAiuQhJDW3dFNy4r2Ae0sUymk3bo5MHMjVpC/8ONC0Xc+i/u/BsnbQUVPXDhcM693HuPnwiuwLI+jKXlldW19cJGcXNre2e3tLffUnEqKWvSWMSy4xPFBI9YEzgI1kkkI6EvWNsfX+R++5ZJxePoGiYJ80IyjHjAKQEt3fSA3UPWIFziOJj2S2XLPKtVHLeCLdOyqrZj58SpuqcutrWSo4wWaPRL771BTNOQRUAFUaprWwl4GZHAqWDTYi9VLCF0TIasq2lEQqa8bHb1FB9rZYCDWOqKAM/U7xMZCZWahL7uDAmM1G8vF//yuikENS/jUZICi+h8UZAKDDHOI8ADLhkFMdGEUMn1rZiOiCQUdFBFHcLXp/h/0nJM2zLtK7dcP1/EUUCH6AidIBtVUR1dogZqIookekBP6Nm4Mx6NF+N13rpkLGYO0A8Yb58To5Li</latexit><latexit sha1_base64="u1obYDdl0FnIyDuhrrpQI/6oqGU=">AAAB9XicdVDLSsNAFJ34rPVVdelmsAiuQhJDW3dFNy4r2Ae0sUymk3bo5MHMjVpC/8ONC0Xc+i/u/BsnbQUVPXDhcM693HuPnwiuwLI+jKXlldW19cJGcXNre2e3tLffUnEqKWvSWMSy4xPFBI9YEzgI1kkkI6EvWNsfX+R++5ZJxePoGiYJ80IyjHjAKQEt3fSA3UPWIFziOJj2S2XLPKtVHLeCLdOyqrZj58SpuqcutrWSo4wWaPRL771BTNOQRUAFUaprWwl4GZHAqWDTYi9VLCF0TIasq2lEQqa8bHb1FB9rZYCDWOqKAM/U7xMZCZWahL7uDAmM1G8vF//yuikENS/jUZICi+h8UZAKDDHOI8ADLhkFMdGEUMn1rZiOiCQUdFBFHcLXp/h/0nJM2zLtK7dcP1/EUUCH6AidIBtVUR1dogZqIookekBP6Nm4Mx6NF+N13rpkLGYO0A8Yb58To5Li</latexit><latexit sha1_base64="u1obYDdl0FnIyDuhrrpQI/6oqGU=">AAAB9XicdVDLSsNAFJ34rPVVdelmsAiuQhJDW3dFNy4r2Ae0sUymk3bo5MHMjVpC/8ONC0Xc+i/u/BsnbQUVPXDhcM693HuPnwiuwLI+jKXlldW19cJGcXNre2e3tLffUnEqKWvSWMSy4xPFBI9YEzgI1kkkI6EvWNsfX+R++5ZJxePoGiYJ80IyjHjAKQEt3fSA3UPWIFziOJj2S2XLPKtVHLeCLdOyqrZj58SpuqcutrWSo4wWaPRL771BTNOQRUAFUaprWwl4GZHAqWDTYi9VLCF0TIasq2lEQqa8bHb1FB9rZYCDWOqKAM/U7xMZCZWahL7uDAmM1G8vF//yuikENS/jUZICi+h8UZAKDDHOI8ADLhkFMdGEUMn1rZiOiCQUdFBFHcLXp/h/0nJM2zLtK7dcP1/EUUCH6AidIBtVUR1dogZqIookekBP6Nm4Mx6NF+N13rpkLGYO0A8Yb58To5Li</latexit>

parallel lines
<latexit sha1_base64="GkwaphRTHRE1BpAS/jstQW6lv0M=">AAAB/nicdVDLSgNBEJz1GeMrKp68DAbBU9iNSxJvQS8eI5gHJCHMTjrJkNkHM71iWAL+ihcPinj1O7z5N84mEVS0oKGo6p7pLi+SQqNtf1hLyyura+uZjezm1vbObm5vv6HDWHGo81CGquUxDVIEUEeBElqRAuZ7Epre+DL1m7egtAiDG5xE0PXZMBADwRkaqZc77CDcYRIxxaQESdN39LSXy9uF80qp6JaoXbDtslN0UlIsu2cudYySIk8WqPVy751+yGMfAuSSad127Ai7CVMouIRpthNriBgfsyG0DQ2YD7qbzNaf0hOj9OkgVKYCpDP1+0TCfK0nvmc6fYYj/dtLxb+8doyDSjcRQRQjBHz+0SCWFEOaZkH7QgFHOTGEcSXMrpSPTBIcTWJZE8LXpfR/0igWHLvgXLv56sUijgw5IsfklDikTKrkitRInXCSkAfyRJ6te+vRerFe561L1mLmgPyA9fYJWDCWYA==</latexit><latexit sha1_base64="GkwaphRTHRE1BpAS/jstQW6lv0M=">AAAB/nicdVDLSgNBEJz1GeMrKp68DAbBU9iNSxJvQS8eI5gHJCHMTjrJkNkHM71iWAL+ihcPinj1O7z5N84mEVS0oKGo6p7pLi+SQqNtf1hLyyura+uZjezm1vbObm5vv6HDWHGo81CGquUxDVIEUEeBElqRAuZ7Epre+DL1m7egtAiDG5xE0PXZMBADwRkaqZc77CDcYRIxxaQESdN39LSXy9uF80qp6JaoXbDtslN0UlIsu2cudYySIk8WqPVy751+yGMfAuSSad127Ai7CVMouIRpthNriBgfsyG0DQ2YD7qbzNaf0hOj9OkgVKYCpDP1+0TCfK0nvmc6fYYj/dtLxb+8doyDSjcRQRQjBHz+0SCWFEOaZkH7QgFHOTGEcSXMrpSPTBIcTWJZE8LXpfR/0igWHLvgXLv56sUijgw5IsfklDikTKrkitRInXCSkAfyRJ6te+vRerFe561L1mLmgPyA9fYJWDCWYA==</latexit><latexit sha1_base64="GkwaphRTHRE1BpAS/jstQW6lv0M=">AAAB/nicdVDLSgNBEJz1GeMrKp68DAbBU9iNSxJvQS8eI5gHJCHMTjrJkNkHM71iWAL+ihcPinj1O7z5N84mEVS0oKGo6p7pLi+SQqNtf1hLyyura+uZjezm1vbObm5vv6HDWHGo81CGquUxDVIEUEeBElqRAuZ7Epre+DL1m7egtAiDG5xE0PXZMBADwRkaqZc77CDcYRIxxaQESdN39LSXy9uF80qp6JaoXbDtslN0UlIsu2cudYySIk8WqPVy751+yGMfAuSSad127Ai7CVMouIRpthNriBgfsyG0DQ2YD7qbzNaf0hOj9OkgVKYCpDP1+0TCfK0nvmc6fYYj/dtLxb+8doyDSjcRQRQjBHz+0SCWFEOaZkH7QgFHOTGEcSXMrpSPTBIcTWJZE8LXpfR/0igWHLvgXLv56sUijgw5IsfklDikTKrkitRInXCSkAfyRJ6te+vRerFe561L1mLmgPyA9fYJWDCWYA==</latexit><latexit sha1_base64="GkwaphRTHRE1BpAS/jstQW6lv0M=">AAAB/nicdVDLSgNBEJz1GeMrKp68DAbBU9iNSxJvQS8eI5gHJCHMTjrJkNkHM71iWAL+ihcPinj1O7z5N84mEVS0oKGo6p7pLi+SQqNtf1hLyyura+uZjezm1vbObm5vv6HDWHGo81CGquUxDVIEUEeBElqRAuZ7Epre+DL1m7egtAiDG5xE0PXZMBADwRkaqZc77CDcYRIxxaQESdN39LSXy9uF80qp6JaoXbDtslN0UlIsu2cudYySIk8WqPVy751+yGMfAuSSad127Ai7CVMouIRpthNriBgfsyG0DQ2YD7qbzNaf0hOj9OkgVKYCpDP1+0TCfK0nvmc6fYYj/dtLxb+8doyDSjcRQRQjBHz+0SCWFEOaZkH7QgFHOTGEcSXMrpSPTBIcTWJZE8LXpfR/0igWHLvgXLv56sUijgw5IsfklDikTKrkitRInXCSkAfyRJ6te+vRerFe561L1mLmgPyA9fYJWDCWYA==</latexit>

Parabola
<latexit sha1_base64="BsgiYi5Xhe92ygH8aqSCvdMQQ64=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoigh6LXjxWsB/QhrLZbtulm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YSKFQc/7dgpr6xubW8Xt0s7u3n7ZPThsmjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3grHNzO/9cC1EbG6x0nCg4gOlRgIRtFKPbfcRf6IWZ1qGsaSTntuxat6c5BV4uekAjnqPfer249ZGnGFTFJjOr6XYJBRjYJJPi11U8MTysZ0yDuWKhpxE2Tzw6fk1Cp9Moi1LYVkrv6eyGhkzCQKbWdEcWSWvZn4n9dJcXAVZEIlKXLFFosGqSQYk1kKpC80ZygnllCmhb2VsJHNgKHNqmRD8JdfXiXN86rvVf27i0rtOo+jCMdwAmfgwyXU4Bbq0AAGKTzDK7w5T86L8+58LFoLTj5zBH/gfP4ASs2TfA==</latexit><latexit sha1_base64="BsgiYi5Xhe92ygH8aqSCvdMQQ64=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoigh6LXjxWsB/QhrLZbtulm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YSKFQc/7dgpr6xubW8Xt0s7u3n7ZPThsmjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3grHNzO/9cC1EbG6x0nCg4gOlRgIRtFKPbfcRf6IWZ1qGsaSTntuxat6c5BV4uekAjnqPfer249ZGnGFTFJjOr6XYJBRjYJJPi11U8MTysZ0yDuWKhpxE2Tzw6fk1Cp9Moi1LYVkrv6eyGhkzCQKbWdEcWSWvZn4n9dJcXAVZEIlKXLFFosGqSQYk1kKpC80ZygnllCmhb2VsJHNgKHNqmRD8JdfXiXN86rvVf27i0rtOo+jCMdwAmfgwyXU4Bbq0AAGKTzDK7w5T86L8+58LFoLTj5zBH/gfP4ASs2TfA==</latexit><latexit sha1_base64="BsgiYi5Xhe92ygH8aqSCvdMQQ64=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoigh6LXjxWsB/QhrLZbtulm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YSKFQc/7dgpr6xubW8Xt0s7u3n7ZPThsmjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3grHNzO/9cC1EbG6x0nCg4gOlRgIRtFKPbfcRf6IWZ1qGsaSTntuxat6c5BV4uekAjnqPfer249ZGnGFTFJjOr6XYJBRjYJJPi11U8MTysZ0yDuWKhpxE2Tzw6fk1Cp9Moi1LYVkrv6eyGhkzCQKbWdEcWSWvZn4n9dJcXAVZEIlKXLFFosGqSQYk1kKpC80ZygnllCmhb2VsJHNgKHNqmRD8JdfXiXN86rvVf27i0rtOo+jCMdwAmfgwyXU4Bbq0AAGKTzDK7w5T86L8+58LFoLTj5zBH/gfP4ASs2TfA==</latexit><latexit sha1_base64="BsgiYi5Xhe92ygH8aqSCvdMQQ64=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoigh6LXjxWsB/QhrLZbtulm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YSKFQc/7dgpr6xubW8Xt0s7u3n7ZPThsmjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3grHNzO/9cC1EbG6x0nCg4gOlRgIRtFKPbfcRf6IWZ1qGsaSTntuxat6c5BV4uekAjnqPfer249ZGnGFTFJjOr6XYJBRjYJJPi11U8MTysZ0yDuWKhpxE2Tzw6fk1Cp9Moi1LYVkrv6eyGhkzCQKbWdEcWSWvZn4n9dJcXAVZEIlKXLFFosGqSQYk1kKpC80ZygnllCmhb2VsJHNgKHNqmRD8JdfXiXN86rvVf27i0rtOo+jCMdwAmfgwyXU4Bbq0AAGKTzDK7w5T86L8+58LFoLTj5zBH/gfP4ASs2TfA==</latexit>

� > 0
<latexit sha1_base64="BgKARPEJZlt/5TpMLCl4eRUccHw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhDWWz2bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzglQKg6777ZRWVtfWN8qbla3tnd296v5B2ySZZrzFEpnoTkANl0LxFgqUvJNqTuNA8odgdDP1H564NiJR9zhOuR/TgRKRYBSt1OmFXCK9cvvVmlt3ZyDLxCtIDQo0+9WvXpiwLOYKmaTGdD03RT+nGgWTfFLpZYanlI3ogHctVTTmxs9n907IiVVCEiXalkIyU39P5DQ2ZhwHtjOmODSL3lT8z+tmGF36uVBphlyx+aIokwQTMn2ehEJzhnJsCWVa2FsJG1JNGdqIKjYEb/HlZdI+q3tu3bs7rzWuizjKcATHcAoeXEADbqEJLWAg4Rle4c15dF6cd+dj3lpyiplD+APn8weHO4+e</latexit><latexit sha1_base64="BgKARPEJZlt/5TpMLCl4eRUccHw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhDWWz2bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzglQKg6777ZRWVtfWN8qbla3tnd296v5B2ySZZrzFEpnoTkANl0LxFgqUvJNqTuNA8odgdDP1H564NiJR9zhOuR/TgRKRYBSt1OmFXCK9cvvVmlt3ZyDLxCtIDQo0+9WvXpiwLOYKmaTGdD03RT+nGgWTfFLpZYanlI3ogHctVTTmxs9n907IiVVCEiXalkIyU39P5DQ2ZhwHtjOmODSL3lT8z+tmGF36uVBphlyx+aIokwQTMn2ehEJzhnJsCWVa2FsJG1JNGdqIKjYEb/HlZdI+q3tu3bs7rzWuizjKcATHcAoeXEADbqEJLWAg4Rle4c15dF6cd+dj3lpyiplD+APn8weHO4+e</latexit><latexit sha1_base64="BgKARPEJZlt/5TpMLCl4eRUccHw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhDWWz2bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzglQKg6777ZRWVtfWN8qbla3tnd296v5B2ySZZrzFEpnoTkANl0LxFgqUvJNqTuNA8odgdDP1H564NiJR9zhOuR/TgRKRYBSt1OmFXCK9cvvVmlt3ZyDLxCtIDQo0+9WvXpiwLOYKmaTGdD03RT+nGgWTfFLpZYanlI3ogHctVTTmxs9n907IiVVCEiXalkIyU39P5DQ2ZhwHtjOmODSL3lT8z+tmGF36uVBphlyx+aIokwQTMn2ehEJzhnJsCWVa2FsJG1JNGdqIKjYEb/HlZdI+q3tu3bs7rzWuizjKcATHcAoeXEADbqEJLWAg4Rle4c15dF6cd+dj3lpyiplD+APn8weHO4+e</latexit><latexit sha1_base64="BgKARPEJZlt/5TpMLCl4eRUccHw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisYGuhDWWz2bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzglQKg6777ZRWVtfWN8qbla3tnd296v5B2ySZZrzFEpnoTkANl0LxFgqUvJNqTuNA8odgdDP1H564NiJR9zhOuR/TgRKRYBSt1OmFXCK9cvvVmlt3ZyDLxCtIDQo0+9WvXpiwLOYKmaTGdD03RT+nGgWTfFLpZYanlI3ogHctVTTmxs9n907IiVVCEiXalkIyU39P5DQ2ZhwHtjOmODSL3lT8z+tmGF36uVBphlyx+aIokwQTMn2ehEJzhnJsCWVa2FsJG1JNGdqIKjYEb/HlZdI+q3tu3bs7rzWuizjKcATHcAoeXEADbqEJLWAg4Rle4c15dF6cd+dj3lpyiplD+APn8weHO4+e</latexit>

b = 0
<latexit sha1_base64="RLHBfRJzjNCqHNi3w7/693PQYJc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqBeh6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfy0UwS9CM6lDzkjBorPQTXbr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5LWRdVzq979ZaV+k8dRhBM4hXPwoAZ1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w+0741n</latexit><latexit sha1_base64="RLHBfRJzjNCqHNi3w7/693PQYJc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqBeh6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfy0UwS9CM6lDzkjBorPQTXbr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5LWRdVzq979ZaV+k8dRhBM4hXPwoAZ1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w+0741n</latexit><latexit sha1_base64="RLHBfRJzjNCqHNi3w7/693PQYJc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqBeh6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfy0UwS9CM6lDzkjBorPQTXbr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5LWRdVzq979ZaV+k8dRhBM4hXPwoAZ1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w+0741n</latexit><latexit sha1_base64="RLHBfRJzjNCqHNi3w7/693PQYJc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqBeh6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfy0UwS9CM6lDzkjBorPQTXbr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5LWRdVzq979ZaV+k8dRhBM4hXPwoAZ1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w+0741n</latexit>

b 6= 0
<latexit sha1_base64="h6b9IicjLz82M9kTN6IcMNwvP1s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqkRdSQ++t1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDQsSO6A==</latexit><latexit sha1_base64="h6b9IicjLz82M9kTN6IcMNwvP1s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqkRdSQ++t1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDQsSO6A==</latexit><latexit sha1_base64="h6b9IicjLz82M9kTN6IcMNwvP1s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqkRdSQ++t1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDQsSO6A==</latexit><latexit sha1_base64="h6b9IicjLz82M9kTN6IcMNwvP1s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqkRdSQ++t1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDQsSO6A==</latexit>

Vertical
<latexit sha1_base64="fbmGc4VBoklwPAyFzLqlU5cPnGQ=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuCHoMevEYwTwgWcLspDcZMvtgpleMS77EiwdFvPop3vwbZ5M9aGJBQ1HVPdNdfiKFRsf5tkpr6xubW+Xtys7u3n7VPjhs6zhVHFo8lrHq+kyDFBG0UKCEbqKAhb6Ejj+5yf3OAygt4ugepwl4IRtFIhCcoZEGdrWP8IhZGxQaTc4Gds2pO3PQVeIWpEYKNAf2V38Y8zSECLlkWvdcJ0EvY/l7EmaVfqohYXzCRtAzNGIhaC+bLz6jp0YZ0iBWpiKkc/X3RMZCraehbzpDhmO97OXif14vxeDKy0SUpAgRX3wUpJJiTPMU6FAo4CinhjCuhNmV8jFTjKPJqmJCcJdPXiXt87rr1N27i1rjuoijTI7JCTkjLrkkDXJLmqRFOEnJM3klb9aT9WK9Wx+L1pJVzByRP7A+fwBvxZOU</latexit><latexit sha1_base64="fbmGc4VBoklwPAyFzLqlU5cPnGQ=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuCHoMevEYwTwgWcLspDcZMvtgpleMS77EiwdFvPop3vwbZ5M9aGJBQ1HVPdNdfiKFRsf5tkpr6xubW+Xtys7u3n7VPjhs6zhVHFo8lrHq+kyDFBG0UKCEbqKAhb6Ejj+5yf3OAygt4ugepwl4IRtFIhCcoZEGdrWP8IhZGxQaTc4Gds2pO3PQVeIWpEYKNAf2V38Y8zSECLlkWvdcJ0EvY/l7EmaVfqohYXzCRtAzNGIhaC+bLz6jp0YZ0iBWpiKkc/X3RMZCraehbzpDhmO97OXif14vxeDKy0SUpAgRX3wUpJJiTPMU6FAo4CinhjCuhNmV8jFTjKPJqmJCcJdPXiXt87rr1N27i1rjuoijTI7JCTkjLrkkDXJLmqRFOEnJM3klb9aT9WK9Wx+L1pJVzByRP7A+fwBvxZOU</latexit><latexit sha1_base64="fbmGc4VBoklwPAyFzLqlU5cPnGQ=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuCHoMevEYwTwgWcLspDcZMvtgpleMS77EiwdFvPop3vwbZ5M9aGJBQ1HVPdNdfiKFRsf5tkpr6xubW+Xtys7u3n7VPjhs6zhVHFo8lrHq+kyDFBG0UKCEbqKAhb6Ejj+5yf3OAygt4ugepwl4IRtFIhCcoZEGdrWP8IhZGxQaTc4Gds2pO3PQVeIWpEYKNAf2V38Y8zSECLlkWvdcJ0EvY/l7EmaVfqohYXzCRtAzNGIhaC+bLz6jp0YZ0iBWpiKkc/X3RMZCraehbzpDhmO97OXif14vxeDKy0SUpAgRX3wUpJJiTPMU6FAo4CinhjCuhNmV8jFTjKPJqmJCcJdPXiXt87rr1N27i1rjuoijTI7JCTkjLrkkDXJLmqRFOEnJM3klb9aT9WK9Wx+L1pJVzByRP7A+fwBvxZOU</latexit><latexit sha1_base64="fbmGc4VBoklwPAyFzLqlU5cPnGQ=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuCHoMevEYwTwgWcLspDcZMvtgpleMS77EiwdFvPop3vwbZ5M9aGJBQ1HVPdNdfiKFRsf5tkpr6xubW+Xtys7u3n7VPjhs6zhVHFo8lrHq+kyDFBG0UKCEbqKAhb6Ejj+5yf3OAygt4ugepwl4IRtFIhCcoZEGdrWP8IhZGxQaTc4Gds2pO3PQVeIWpEYKNAf2V38Y8zSECLlkWvdcJ0EvY/l7EmaVfqohYXzCRtAzNGIhaC+bLz6jp0YZ0iBWpiKkc/X3RMZCraehbzpDhmO97OXif14vxeDKy0SUpAgRX3wUpJJiTPMU6FAo4CinhjCuhNmV8jFTjKPJqmJCcJdPXiXt87rr1N27i1rjuoijTI7JCTkjLrkkDXJLmqRFOEnJM3klb9aT9WK9Wx+L1pJVzByRP7A+fwBvxZOU</latexit>

symmetry axis
<latexit sha1_base64="0UQbc9htjkPz7yKvOxK3EQ0M3ig=">AAAB/XicbVDJSgNBFOyJW4zbuNy8NAbBU5gRQY9BLx4jmAWSIfR0XpImPQvdbyTjEPwVLx4U8ep/ePNv7CRz0MSChqLqPV51+bEUGh3n2yqsrK6tbxQ3S1vbO7t79v5BQ0eJ4lDnkYxUy2capAihjgIltGIFLPAlNP3RzdRvPoDSIgrvMY3BC9ggFH3BGRqpax91EMaY6TQIAFVK2VjoSdcuOxVnBrpM3JyUSY5a1/7q9CKeBBAil0zrtuvE6GVMoeASJqVOoiFmfMQG0DY0ZAFoL5uln9BTo/RoP1LmhUhn6u+NjAXa5PPNZMBwqBe9qfif106wf+VlIowThJDPD/UTSTGi0ypoTyjgKFNDGFfCZKV8yBTjaAormRLcxS8vk8Z5xXUq7t1FuXqd11Ekx+SEnBGXXJIquSU1UiecPJJn8krerCfrxXq3PuajBSvfOSR/YH3+AI7Yles=</latexit><latexit sha1_base64="0UQbc9htjkPz7yKvOxK3EQ0M3ig=">AAAB/XicbVDJSgNBFOyJW4zbuNy8NAbBU5gRQY9BLx4jmAWSIfR0XpImPQvdbyTjEPwVLx4U8ep/ePNv7CRz0MSChqLqPV51+bEUGh3n2yqsrK6tbxQ3S1vbO7t79v5BQ0eJ4lDnkYxUy2capAihjgIltGIFLPAlNP3RzdRvPoDSIgrvMY3BC9ggFH3BGRqpax91EMaY6TQIAFVK2VjoSdcuOxVnBrpM3JyUSY5a1/7q9CKeBBAil0zrtuvE6GVMoeASJqVOoiFmfMQG0DY0ZAFoL5uln9BTo/RoP1LmhUhn6u+NjAXa5PPNZMBwqBe9qfif106wf+VlIowThJDPD/UTSTGi0ypoTyjgKFNDGFfCZKV8yBTjaAormRLcxS8vk8Z5xXUq7t1FuXqd11Ekx+SEnBGXXJIquSU1UiecPJJn8krerCfrxXq3PuajBSvfOSR/YH3+AI7Yles=</latexit><latexit sha1_base64="0UQbc9htjkPz7yKvOxK3EQ0M3ig=">AAAB/XicbVDJSgNBFOyJW4zbuNy8NAbBU5gRQY9BLx4jmAWSIfR0XpImPQvdbyTjEPwVLx4U8ep/ePNv7CRz0MSChqLqPV51+bEUGh3n2yqsrK6tbxQ3S1vbO7t79v5BQ0eJ4lDnkYxUy2capAihjgIltGIFLPAlNP3RzdRvPoDSIgrvMY3BC9ggFH3BGRqpax91EMaY6TQIAFVK2VjoSdcuOxVnBrpM3JyUSY5a1/7q9CKeBBAil0zrtuvE6GVMoeASJqVOoiFmfMQG0DY0ZAFoL5uln9BTo/RoP1LmhUhn6u+NjAXa5PPNZMBwqBe9qfif106wf+VlIowThJDPD/UTSTGi0ypoTyjgKFNDGFfCZKV8yBTjaAormRLcxS8vk8Z5xXUq7t1FuXqd11Ekx+SEnBGXXJIquSU1UiecPJJn8krerCfrxXq3PuajBSvfOSR/YH3+AI7Yles=</latexit><latexit sha1_base64="0UQbc9htjkPz7yKvOxK3EQ0M3ig=">AAAB/XicbVDJSgNBFOyJW4zbuNy8NAbBU5gRQY9BLx4jmAWSIfR0XpImPQvdbyTjEPwVLx4U8ep/ePNv7CRz0MSChqLqPV51+bEUGh3n2yqsrK6tbxQ3S1vbO7t79v5BQ0eJ4lDnkYxUy2capAihjgIltGIFLPAlNP3RzdRvPoDSIgrvMY3BC9ggFH3BGRqpax91EMaY6TQIAFVK2VjoSdcuOxVnBrpM3JyUSY5a1/7q9CKeBBAil0zrtuvE6GVMoeASJqVOoiFmfMQG0DY0ZAFoL5uln9BTo/RoP1LmhUhn6u+NjAXa5PPNZMBwqBe9qfif106wf+VlIowThJDPD/UTSTGi0ypoTyjgKFNDGFfCZKV8yBTjaAormRLcxS8vk8Z5xXUq7t1FuXqd11Ekx+SEnBGXXJIquSU1UiecPJJn8krerCfrxXq3PuajBSvfOSR/YH3+AI7Yles=</latexit>d > 0

<latexit sha1_base64="uRVhzaru7hIzvlH9IIIVO8xBfyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisaG2hDWWzmbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kimGLJSJRnYBqFFxiy3AjsJMqpHEgsB2MbqZ++wmV5ol8MOMU/ZgOJI84o8ZK9+GV26/W3Lo7A1kmXkFqUKDZr371woRlMUrDBNW667mp8XOqDGcCJ5VepjGlbEQH2LVU0hi1n89OnZATq4QkSpQtachM/T2R01jrcRzYzpiaoV70puJ/Xjcz0aWfc5lmBiWbL4oyQUxCpn+TkCtkRowtoUxxeythQ6ooMzadig3BW3x5mTye1T237t2d1xrXRRxlOIJjOAUPLqABt9CEFjAYwDO8wpsjnBfn3fmYt5acYuYQ/sD5/AG5gI1q</latexit><latexit sha1_base64="uRVhzaru7hIzvlH9IIIVO8xBfyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisaG2hDWWzmbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kimGLJSJRnYBqFFxiy3AjsJMqpHEgsB2MbqZ++wmV5ol8MOMU/ZgOJI84o8ZK9+GV26/W3Lo7A1kmXkFqUKDZr371woRlMUrDBNW667mp8XOqDGcCJ5VepjGlbEQH2LVU0hi1n89OnZATq4QkSpQtachM/T2R01jrcRzYzpiaoV70puJ/Xjcz0aWfc5lmBiWbL4oyQUxCpn+TkCtkRowtoUxxeythQ6ooMzadig3BW3x5mTye1T237t2d1xrXRRxlOIJjOAUPLqABt9CEFjAYwDO8wpsjnBfn3fmYt5acYuYQ/sD5/AG5gI1q</latexit><latexit sha1_base64="uRVhzaru7hIzvlH9IIIVO8xBfyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisaG2hDWWzmbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kimGLJSJRnYBqFFxiy3AjsJMqpHEgsB2MbqZ++wmV5ol8MOMU/ZgOJI84o8ZK9+GV26/W3Lo7A1kmXkFqUKDZr371woRlMUrDBNW667mp8XOqDGcCJ5VepjGlbEQH2LVU0hi1n89OnZATq4QkSpQtachM/T2R01jrcRzYzpiaoV70puJ/Xjcz0aWfc5lmBiWbL4oyQUxCpn+TkCtkRowtoUxxeythQ6ooMzadig3BW3x5mTye1T237t2d1xrXRRxlOIJjOAUPLqABt9CEFjAYwDO8wpsjnBfn3fmYt5acYuYQ/sD5/AG5gI1q</latexit><latexit sha1_base64="uRVhzaru7hIzvlH9IIIVO8xBfyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvXisaG2hDWWzmbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kimGLJSJRnYBqFFxiy3AjsJMqpHEgsB2MbqZ++wmV5ol8MOMU/ZgOJI84o8ZK9+GV26/W3Lo7A1kmXkFqUKDZr371woRlMUrDBNW667mp8XOqDGcCJ5VepjGlbEQH2LVU0hi1n89OnZATq4QkSpQtachM/T2R01jrcRzYzpiaoV70puJ/Xjcz0aWfc5lmBiWbL4oyQUxCpn+TkCtkRowtoUxxeythQ6ooMzadig3BW3x5mTye1T237t2d1xrXRRxlOIJjOAUPLqABt9CEFjAYwDO8wpsjnBfn3fmYt5acYuYQ/sD5/AG5gI1q</latexit>

Two
<latexit sha1_base64="iuGXsrCnHccRxjdcr8C5YJSPV1c=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKzQL2xD2Ww37dLNbtidqCX0X3jxoIhX/403/43bNgdtfTDweG+GmXlhIrhBz/t2VlbX1jc2C1vF7Z3dvf3SwWHTqFRT1qBKKN0OiWGCS9ZAjoK1E81IHArWCkc3U7/1wLThStZxnLAgJgPJI04JWum+i+wJs/qjmvRKZa/izeAuEz8nZchR65W+un1F05hJpIIY0/G9BIOMaORUsEmxmxqWEDoiA9axVJKYmSCbXTxxT63SdyOlbUl0Z+rviYzExozj0HbGBIdm0ZuK/3mdFKOrIOMySZFJOl8UpcJF5U7fd/tcM4pibAmhmttbXTokmlC0IRVtCP7iy8ukeV7xvYp/d1GuXudxFOAYTuAMfLiEKtxCDRpAQcIzvMKbY5wX5935mLeuOPnMEfyB8/kDHeGRMQ==</latexit><latexit sha1_base64="iuGXsrCnHccRxjdcr8C5YJSPV1c=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKzQL2xD2Ww37dLNbtidqCX0X3jxoIhX/403/43bNgdtfTDweG+GmXlhIrhBz/t2VlbX1jc2C1vF7Z3dvf3SwWHTqFRT1qBKKN0OiWGCS9ZAjoK1E81IHArWCkc3U7/1wLThStZxnLAgJgPJI04JWum+i+wJs/qjmvRKZa/izeAuEz8nZchR65W+un1F05hJpIIY0/G9BIOMaORUsEmxmxqWEDoiA9axVJKYmSCbXTxxT63SdyOlbUl0Z+rviYzExozj0HbGBIdm0ZuK/3mdFKOrIOMySZFJOl8UpcJF5U7fd/tcM4pibAmhmttbXTokmlC0IRVtCP7iy8ukeV7xvYp/d1GuXudxFOAYTuAMfLiEKtxCDRpAQcIzvMKbY5wX5935mLeuOPnMEfyB8/kDHeGRMQ==</latexit><latexit sha1_base64="iuGXsrCnHccRxjdcr8C5YJSPV1c=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKzQL2xD2Ww37dLNbtidqCX0X3jxoIhX/403/43bNgdtfTDweG+GmXlhIrhBz/t2VlbX1jc2C1vF7Z3dvf3SwWHTqFRT1qBKKN0OiWGCS9ZAjoK1E81IHArWCkc3U7/1wLThStZxnLAgJgPJI04JWum+i+wJs/qjmvRKZa/izeAuEz8nZchR65W+un1F05hJpIIY0/G9BIOMaORUsEmxmxqWEDoiA9axVJKYmSCbXTxxT63SdyOlbUl0Z+rviYzExozj0HbGBIdm0ZuK/3mdFKOrIOMySZFJOl8UpcJF5U7fd/tcM4pibAmhmttbXTokmlC0IRVtCP7iy8ukeV7xvYp/d1GuXudxFOAYTuAMfLiEKtxCDRpAQcIzvMKbY5wX5935mLeuOPnMEfyB8/kDHeGRMQ==</latexit><latexit sha1_base64="iuGXsrCnHccRxjdcr8C5YJSPV1c=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKzQL2xD2Ww37dLNbtidqCX0X3jxoIhX/403/43bNgdtfTDweG+GmXlhIrhBz/t2VlbX1jc2C1vF7Z3dvf3SwWHTqFRT1qBKKN0OiWGCS9ZAjoK1E81IHArWCkc3U7/1wLThStZxnLAgJgPJI04JWum+i+wJs/qjmvRKZa/izeAuEz8nZchR65W+un1F05hJpIIY0/G9BIOMaORUsEmxmxqWEDoiA9axVJKYmSCbXTxxT63SdyOlbUl0Z+rviYzExozj0HbGBIdm0ZuK/3mdFKOrIOMySZFJOl8UpcJF5U7fd/tcM4pibAmhmttbXTokmlC0IRVtCP7iy8ukeV7xvYp/d1GuXudxFOAYTuAMfLiEKtxCDRpAQcIzvMKbY5wX5935mLeuOPnMEfyB8/kDHeGRMQ==</latexit>

branches
<latexit sha1_base64="xxktWmNBI5AMZPr/zO6+RuhZwh0=">AAAB+HicbVBNS8NAEN3Ur1o/WvXoZbEInkoigh6LXjxWsB/QhrLZTtqlm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3n65cnDYMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+mfntB9BGxOoeJwn4ERsqEQrO0Er9SrmH8IhZoJniIzDTfqXq1tw56CrxclIlORr9yldvEPM0AoVcMmO6npugnzGNgkuYlnqpgYTxMRtC11LFIjB+Nj98Sk+tMqBhrG0ppHP190TGImMmUWA7I4Yjs+zNxP+8borhlZ8JlaQIii8WhamkGNNZCnQgNHCUE0sY18LeSvmIacbRZlWyIXjLL6+S1nnNc2ve3UW1fp3HUSTH5IScEY9ckjq5JQ3SJJyk5Jm8kjfnyXlx3p2PRWvByWeOyB84nz+CMpOg</latexit><latexit sha1_base64="xxktWmNBI5AMZPr/zO6+RuhZwh0=">AAAB+HicbVBNS8NAEN3Ur1o/WvXoZbEInkoigh6LXjxWsB/QhrLZTtqlm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3n65cnDYMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+mfntB9BGxOoeJwn4ERsqEQrO0Er9SrmH8IhZoJniIzDTfqXq1tw56CrxclIlORr9yldvEPM0AoVcMmO6npugnzGNgkuYlnqpgYTxMRtC11LFIjB+Nj98Sk+tMqBhrG0ppHP190TGImMmUWA7I4Yjs+zNxP+8borhlZ8JlaQIii8WhamkGNNZCnQgNHCUE0sY18LeSvmIacbRZlWyIXjLL6+S1nnNc2ve3UW1fp3HUSTH5IScEY9ckjq5JQ3SJJyk5Jm8kjfnyXlx3p2PRWvByWeOyB84nz+CMpOg</latexit><latexit sha1_base64="xxktWmNBI5AMZPr/zO6+RuhZwh0=">AAAB+HicbVBNS8NAEN3Ur1o/WvXoZbEInkoigh6LXjxWsB/QhrLZTtqlm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3n65cnDYMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+mfntB9BGxOoeJwn4ERsqEQrO0Er9SrmH8IhZoJniIzDTfqXq1tw56CrxclIlORr9yldvEPM0AoVcMmO6npugnzGNgkuYlnqpgYTxMRtC11LFIjB+Nj98Sk+tMqBhrG0ppHP190TGImMmUWA7I4Yjs+zNxP+8borhlZ8JlaQIii8WhamkGNNZCnQgNHCUE0sY18LeSvmIacbRZlWyIXjLL6+S1nnNc2ve3UW1fp3HUSTH5IScEY9ckjq5JQ3SJJyk5Jm8kjfnyXlx3p2PRWvByWeOyB84nz+CMpOg</latexit><latexit sha1_base64="xxktWmNBI5AMZPr/zO6+RuhZwh0=">AAAB+HicbVBNS8NAEN3Ur1o/WvXoZbEInkoigh6LXjxWsB/QhrLZTtqlm03YnYg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3n65cnDYMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+mfntB9BGxOoeJwn4ERsqEQrO0Er9SrmH8IhZoJniIzDTfqXq1tw56CrxclIlORr9yldvEPM0AoVcMmO6npugnzGNgkuYlnqpgYTxMRtC11LFIjB+Nj98Sk+tMqBhrG0ppHP190TGImMmUWA7I4Yjs+zNxP+8borhlZ8JlaQIii8WhamkGNNZCnQgNHCUE0sY18LeSvmIacbRZlWyIXjLL6+S1nnNc2ve3UW1fp3HUSTH5IScEY9ckjq5JQ3SJJyk5Jm8kjfnyXlx3p2PRWvByWeOyB84nz+CMpOg</latexit>

Concave,
<latexit sha1_base64="8BSWQs/rfuhgdR6iELuCuD5zeQM=">AAAB+HicdVBNS8NAEN34WetHqx69LBbBg5SkBltvxV48VrAqtKVstlO7dLMJuxOxhv4SLx4U8epP8ea/cVMrqOiDgcd7M8zMC2IpDLruuzM3v7C4tJxbya+urW8UiptbFyZKNIcWj2SkrwJmQAoFLRQo4SrWwMJAwmUwamT+5Q1oIyJ1juMYuiG7VmIgOEMr9YqFDsItpo1IcXYDB5NeseSWj2tHFf+IumXXrXoVLyOVqn/oU88qGUpkhmav+NbpRzwJQSGXzJi258bYTZlGwSVM8p3EQMz4iF1D21LFQjDddHr4hO5ZpU8HkbalkE7V7xMpC40Zh4HtDBkOzW8vE//y2gkOat1UqDhBUPxz0SCRFCOapUD7QgNHObaEcS3srZQPmWYcbVZ5G8LXp/R/clEpe27ZO/NL9ZNZHDmyQ3bJPvFIldTJKWmSFuEkIffkkTw5d86D8+y8fLbOObOZbfIDzusHVzqThw==</latexit><latexit sha1_base64="8BSWQs/rfuhgdR6iELuCuD5zeQM=">AAAB+HicdVBNS8NAEN34WetHqx69LBbBg5SkBltvxV48VrAqtKVstlO7dLMJuxOxhv4SLx4U8epP8ea/cVMrqOiDgcd7M8zMC2IpDLruuzM3v7C4tJxbya+urW8UiptbFyZKNIcWj2SkrwJmQAoFLRQo4SrWwMJAwmUwamT+5Q1oIyJ1juMYuiG7VmIgOEMr9YqFDsItpo1IcXYDB5NeseSWj2tHFf+IumXXrXoVLyOVqn/oU88qGUpkhmav+NbpRzwJQSGXzJi258bYTZlGwSVM8p3EQMz4iF1D21LFQjDddHr4hO5ZpU8HkbalkE7V7xMpC40Zh4HtDBkOzW8vE//y2gkOat1UqDhBUPxz0SCRFCOapUD7QgNHObaEcS3srZQPmWYcbVZ5G8LXp/R/clEpe27ZO/NL9ZNZHDmyQ3bJPvFIldTJKWmSFuEkIffkkTw5d86D8+y8fLbOObOZbfIDzusHVzqThw==</latexit><latexit sha1_base64="8BSWQs/rfuhgdR6iELuCuD5zeQM=">AAAB+HicdVBNS8NAEN34WetHqx69LBbBg5SkBltvxV48VrAqtKVstlO7dLMJuxOxhv4SLx4U8epP8ea/cVMrqOiDgcd7M8zMC2IpDLruuzM3v7C4tJxbya+urW8UiptbFyZKNIcWj2SkrwJmQAoFLRQo4SrWwMJAwmUwamT+5Q1oIyJ1juMYuiG7VmIgOEMr9YqFDsItpo1IcXYDB5NeseSWj2tHFf+IumXXrXoVLyOVqn/oU88qGUpkhmav+NbpRzwJQSGXzJi258bYTZlGwSVM8p3EQMz4iF1D21LFQjDddHr4hO5ZpU8HkbalkE7V7xMpC40Zh4HtDBkOzW8vE//y2gkOat1UqDhBUPxz0SCRFCOapUD7QgNHObaEcS3srZQPmWYcbVZ5G8LXp/R/clEpe27ZO/NL9ZNZHDmyQ3bJPvFIldTJKWmSFuEkIffkkTw5d86D8+y8fLbOObOZbfIDzusHVzqThw==</latexit><latexit sha1_base64="8BSWQs/rfuhgdR6iELuCuD5zeQM=">AAAB+HicdVBNS8NAEN34WetHqx69LBbBg5SkBltvxV48VrAqtKVstlO7dLMJuxOxhv4SLx4U8epP8ea/cVMrqOiDgcd7M8zMC2IpDLruuzM3v7C4tJxbya+urW8UiptbFyZKNIcWj2SkrwJmQAoFLRQo4SrWwMJAwmUwamT+5Q1oIyJ1juMYuiG7VmIgOEMr9YqFDsItpo1IcXYDB5NeseSWj2tHFf+IumXXrXoVLyOVqn/oU88qGUpkhmav+NbpRzwJQSGXzJi258bYTZlGwSVM8p3EQMz4iF1D21LFQjDddHr4hO5ZpU8HkbalkE7V7xMpC40Zh4HtDBkOzW8vE//y2gkOat1UqDhBUPxz0SCRFCOapUD7QgNHObaEcS3srZQPmWYcbVZ5G8LXp/R/clEpe27ZO/NL9ZNZHDmyQ3bJPvFIldTJKWmSFuEkIffkkTw5d86D8+y8fLbOObOZbfIDzusHVzqThw==</latexit>

bottom-
<latexit sha1_base64="SE7C796DcoMzp15CJoWvXWzZ9gg=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LBbBiyGppa23ohePFewHtLVstpt26SYbdidqCf0fXjwo4tX/4s1/46atoKIPBh7vzTAzz4sE1+A4H1ZmaXlldS27ntvY3Nreye/uNbWMFWUNKoVUbY9oJnjIGsBBsHakGAk8wVre+CL1W7dMaS7Da5hErBeQYch9TgkY6aYL7B4STwLI4GTazxcc+6xaLpbK2LEdp+IW3ZQUK6XTEnaNkqKAFqj38+/dgaRxwEKggmjdcZ0IeglRwKlg01w31iwidEyGrGNoSAKme8ns6ik+MsoA+1KZCgHP1O8TCQm0ngSe6QwIjPRvLxX/8jox+NVewsMoBhbS+SI/FhgkTiPAA64YBTExhFDFza2YjogiFExQORPC16f4f9Is2q5ju1elQu18EUcWHaBDdIxcVEE1dInqqIEoUugBPaFn6856tF6s13lrxlrM7KMfsN4+AXfokyM=</latexit><latexit sha1_base64="SE7C796DcoMzp15CJoWvXWzZ9gg=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LBbBiyGppa23ohePFewHtLVstpt26SYbdidqCf0fXjwo4tX/4s1/46atoKIPBh7vzTAzz4sE1+A4H1ZmaXlldS27ntvY3Nreye/uNbWMFWUNKoVUbY9oJnjIGsBBsHakGAk8wVre+CL1W7dMaS7Da5hErBeQYch9TgkY6aYL7B4STwLI4GTazxcc+6xaLpbK2LEdp+IW3ZQUK6XTEnaNkqKAFqj38+/dgaRxwEKggmjdcZ0IeglRwKlg01w31iwidEyGrGNoSAKme8ns6ik+MsoA+1KZCgHP1O8TCQm0ngSe6QwIjPRvLxX/8jox+NVewsMoBhbS+SI/FhgkTiPAA64YBTExhFDFza2YjogiFExQORPC16f4f9Is2q5ju1elQu18EUcWHaBDdIxcVEE1dInqqIEoUugBPaFn6856tF6s13lrxlrM7KMfsN4+AXfokyM=</latexit><latexit sha1_base64="SE7C796DcoMzp15CJoWvXWzZ9gg=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LBbBiyGppa23ohePFewHtLVstpt26SYbdidqCf0fXjwo4tX/4s1/46atoKIPBh7vzTAzz4sE1+A4H1ZmaXlldS27ntvY3Nreye/uNbWMFWUNKoVUbY9oJnjIGsBBsHakGAk8wVre+CL1W7dMaS7Da5hErBeQYch9TgkY6aYL7B4STwLI4GTazxcc+6xaLpbK2LEdp+IW3ZQUK6XTEnaNkqKAFqj38+/dgaRxwEKggmjdcZ0IeglRwKlg01w31iwidEyGrGNoSAKme8ns6ik+MsoA+1KZCgHP1O8TCQm0ngSe6QwIjPRvLxX/8jox+NVewsMoBhbS+SI/FhgkTiPAA64YBTExhFDFza2YjogiFExQORPC16f4f9Is2q5ju1elQu18EUcWHaBDdIxcVEE1dInqqIEoUugBPaFn6856tF6s13lrxlrM7KMfsN4+AXfokyM=</latexit><latexit sha1_base64="SE7C796DcoMzp15CJoWvXWzZ9gg=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LBbBiyGppa23ohePFewHtLVstpt26SYbdidqCf0fXjwo4tX/4s1/46atoKIPBh7vzTAzz4sE1+A4H1ZmaXlldS27ntvY3Nreye/uNbWMFWUNKoVUbY9oJnjIGsBBsHakGAk8wVre+CL1W7dMaS7Da5hErBeQYch9TgkY6aYL7B4STwLI4GTazxcc+6xaLpbK2LEdp+IW3ZQUK6XTEnaNkqKAFqj38+/dgaRxwEKggmjdcZ0IeglRwKlg01w31iwidEyGrGNoSAKme8ns6ik+MsoA+1KZCgHP1O8TCQm0ngSe6QwIjPRvLxX/8jox+NVewsMoBhbS+SI/FhgkTiPAA64YBTExhFDFza2YjogiFExQORPC16f4f9Is2q5ju1elQu18EUcWHaBDdIxcVEE1dInqqIEoUugBPaFn6856tF6s13lrxlrM7KMfsN4+AXfokyM=</latexit>

oriented
<latexit sha1_base64="eXIXceDNFr0y8qqFRTSwbz72teY=">AAAB+HicdVDLSgNBEJz1GeMjUY9eBoPgKezGJYm3oBePEcwDkhBmJ51kyOyDmV4xLvkSLx4U8eqnePNvnE0iqGjBQFHVRfeUF0mh0bY/rJXVtfWNzcxWdntndy+X3z9o6jBWHBo8lKFqe0yDFAE0UKCEdqSA+Z6Elje5TP3WLSgtwuAGpxH0fDYKxFBwhkbq53NdhDtMQiUgQBjM+vmCXTyvlktumdpF2644JSclpYp75lLHKCkKZIl6P//eHYQ89k2cS6Z1x7Ej7CVMoeASZtlurCFifMJG0DE0YD7oXjI/fEZPjDKgw1CZFyCdq98TCfO1nvqemfQZjvVvLxX/8joxDqu9RARRjBDwxaJhLCmGNG2BDoQCjnJqCONKmFspHzPFOJqusqaEr5/S/0mzVHTsonPtFmoXyzoy5Igck1PikAqpkStSJw3CSUweyBN5tu6tR+vFel2MrljLzCH5AevtEwFMk/Y=</latexit><latexit sha1_base64="eXIXceDNFr0y8qqFRTSwbz72teY=">AAAB+HicdVDLSgNBEJz1GeMjUY9eBoPgKezGJYm3oBePEcwDkhBmJ51kyOyDmV4xLvkSLx4U8eqnePNvnE0iqGjBQFHVRfeUF0mh0bY/rJXVtfWNzcxWdntndy+X3z9o6jBWHBo8lKFqe0yDFAE0UKCEdqSA+Z6Elje5TP3WLSgtwuAGpxH0fDYKxFBwhkbq53NdhDtMQiUgQBjM+vmCXTyvlktumdpF2644JSclpYp75lLHKCkKZIl6P//eHYQ89k2cS6Z1x7Ej7CVMoeASZtlurCFifMJG0DE0YD7oXjI/fEZPjDKgw1CZFyCdq98TCfO1nvqemfQZjvVvLxX/8joxDqu9RARRjBDwxaJhLCmGNG2BDoQCjnJqCONKmFspHzPFOJqusqaEr5/S/0mzVHTsonPtFmoXyzoy5Igck1PikAqpkStSJw3CSUweyBN5tu6tR+vFel2MrljLzCH5AevtEwFMk/Y=</latexit><latexit sha1_base64="eXIXceDNFr0y8qqFRTSwbz72teY=">AAAB+HicdVDLSgNBEJz1GeMjUY9eBoPgKezGJYm3oBePEcwDkhBmJ51kyOyDmV4xLvkSLx4U8eqnePNvnE0iqGjBQFHVRfeUF0mh0bY/rJXVtfWNzcxWdntndy+X3z9o6jBWHBo8lKFqe0yDFAE0UKCEdqSA+Z6Elje5TP3WLSgtwuAGpxH0fDYKxFBwhkbq53NdhDtMQiUgQBjM+vmCXTyvlktumdpF2644JSclpYp75lLHKCkKZIl6P//eHYQ89k2cS6Z1x7Ej7CVMoeASZtlurCFifMJG0DE0YD7oXjI/fEZPjDKgw1CZFyCdq98TCfO1nvqemfQZjvVvLxX/8joxDqu9RARRjBDwxaJhLCmGNG2BDoQCjnJqCONKmFspHzPFOJqusqaEr5/S/0mzVHTsonPtFmoXyzoy5Igck1PikAqpkStSJw3CSUweyBN5tu6tR+vFel2MrljLzCH5AevtEwFMk/Y=</latexit><latexit sha1_base64="eXIXceDNFr0y8qqFRTSwbz72teY=">AAAB+HicdVDLSgNBEJz1GeMjUY9eBoPgKezGJYm3oBePEcwDkhBmJ51kyOyDmV4xLvkSLx4U8eqnePNvnE0iqGjBQFHVRfeUF0mh0bY/rJXVtfWNzcxWdntndy+X3z9o6jBWHBo8lKFqe0yDFAE0UKCEdqSA+Z6Elje5TP3WLSgtwuAGpxH0fDYKxFBwhkbq53NdhDtMQiUgQBjM+vmCXTyvlktumdpF2644JSclpYp75lLHKCkKZIl6P//eHYQ89k2cS6Z1x7Ej7CVMoeASZtlurCFifMJG0DE0YD7oXjI/fEZPjDKgw1CZFyCdq98TCfO1nvqemfQZjvVvLxX/8joxDqu9RARRjBDwxaJhLCmGNG2BDoQCjnJqCONKmFspHzPFOJqusqaEr5/S/0mzVHTsonPtFmoXyzoy5Igck1PikAqpkStSJw3CSUweyBN5tu6tR+vFel2MrljLzCH5AevtEwFMk/Y=</latexit>

Concave
<latexit sha1_base64="Ll63CMprZOnv1ExbmvkOGwQuvSk=">AAAB9XicdVBNS8NAEN34WetX1aOXxSJ4KkkNVm/FXjxWsFpoY9lsp7q42YTdSbWE/g8vHhTx6n/x5r9xUyuo6IOBx3szzMwLEykMuu67MzM7N7+wWFgqLq+srq2XNjbPTZxqDi0ey1i3Q2ZACgUtFCihnWhgUSjhIrxp5P7FELQRsTrDUQJBxK6UGAjO0EqXXYQ7zBqx4mwI416p7FaODg+q/gF1K65b86peTqo1f9+nnlVylMkUzV7prduPeRqBQi6ZMR3PTTDImEbBJYyL3dRAwvgNu4KOpYpFYIJscvWY7lqlTwextqWQTtTvExmLjBlFoe2MGF6b314u/uV1UhwcBplQSYqg+OeiQSopxjSPgPaFBo5yZAnjWthbKb9mmnG0QRVtCF+f0v/JebXiuRXv1C/Xj6dxFMg22SF7xCM1UicnpElahBNN7skjeXJunQfn2Xn5bJ1xpjNb5Aec1w9yQZMg</latexit><latexit sha1_base64="Ll63CMprZOnv1ExbmvkOGwQuvSk=">AAAB9XicdVBNS8NAEN34WetX1aOXxSJ4KkkNVm/FXjxWsFpoY9lsp7q42YTdSbWE/g8vHhTx6n/x5r9xUyuo6IOBx3szzMwLEykMuu67MzM7N7+wWFgqLq+srq2XNjbPTZxqDi0ey1i3Q2ZACgUtFCihnWhgUSjhIrxp5P7FELQRsTrDUQJBxK6UGAjO0EqXXYQ7zBqx4mwI416p7FaODg+q/gF1K65b86peTqo1f9+nnlVylMkUzV7prduPeRqBQi6ZMR3PTTDImEbBJYyL3dRAwvgNu4KOpYpFYIJscvWY7lqlTwextqWQTtTvExmLjBlFoe2MGF6b314u/uV1UhwcBplQSYqg+OeiQSopxjSPgPaFBo5yZAnjWthbKb9mmnG0QRVtCF+f0v/JebXiuRXv1C/Xj6dxFMg22SF7xCM1UicnpElahBNN7skjeXJunQfn2Xn5bJ1xpjNb5Aec1w9yQZMg</latexit><latexit sha1_base64="Ll63CMprZOnv1ExbmvkOGwQuvSk=">AAAB9XicdVBNS8NAEN34WetX1aOXxSJ4KkkNVm/FXjxWsFpoY9lsp7q42YTdSbWE/g8vHhTx6n/x5r9xUyuo6IOBx3szzMwLEykMuu67MzM7N7+wWFgqLq+srq2XNjbPTZxqDi0ey1i3Q2ZACgUtFCihnWhgUSjhIrxp5P7FELQRsTrDUQJBxK6UGAjO0EqXXYQ7zBqx4mwI416p7FaODg+q/gF1K65b86peTqo1f9+nnlVylMkUzV7prduPeRqBQi6ZMR3PTTDImEbBJYyL3dRAwvgNu4KOpYpFYIJscvWY7lqlTwextqWQTtTvExmLjBlFoe2MGF6b314u/uV1UhwcBplQSYqg+OeiQSopxjSPgPaFBo5yZAnjWthbKb9mmnG0QRVtCF+f0v/JebXiuRXv1C/Xj6dxFMg22SF7xCM1UicnpElahBNN7skjeXJunQfn2Xn5bJ1xpjNb5Aec1w9yQZMg</latexit><latexit sha1_base64="Ll63CMprZOnv1ExbmvkOGwQuvSk=">AAAB9XicdVBNS8NAEN34WetX1aOXxSJ4KkkNVm/FXjxWsFpoY9lsp7q42YTdSbWE/g8vHhTx6n/x5r9xUyuo6IOBx3szzMwLEykMuu67MzM7N7+wWFgqLq+srq2XNjbPTZxqDi0ey1i3Q2ZACgUtFCihnWhgUSjhIrxp5P7FELQRsTrDUQJBxK6UGAjO0EqXXYQ7zBqx4mwI416p7FaODg+q/gF1K65b86peTqo1f9+nnlVylMkUzV7prduPeRqBQi6ZMR3PTTDImEbBJYyL3dRAwvgNu4KOpYpFYIJscvWY7lqlTwextqWQTtTvExmLjBlFoe2MGF6b314u/uV1UhwcBplQSYqg+OeiQSopxjSPgPaFBo5yZAnjWthbKb9mmnG0QRVtCF+f0v/JebXiuRXv1C/Xj6dxFMg22SF7xCM1UicnpElahBNN7skjeXJunQfn2Xn5bJ1xpjNb5Aec1w9yQZMg</latexit>

branch
<latexit sha1_base64="X7KdDOWPIryzHD5DdTUQocyGki0=">AAAB9HicdVBNS8NAEN34WetX1aOXxSJ4Kkksbb0VvXisYD+gDWWz3bRLN5u4OymW0N/hxYMiXv0x3vw3btoKKvpg4PHeDDPz/FhwDbb9Ya2srq1vbOa28ts7u3v7hYPDlo4SRVmTRiJSHZ9oJrhkTeAgWCdWjIS+YG1/fJX57QlTmkfyFqYx80IylDzglICRvB6we0h9RSQdzfqFol26qFXccgXbJduuOq6TEbdaPi9jxygZimiJRr/w3htENAmZBCqI1l3HjsFLiQJOBZvle4lmMaFjMmRdQyUJmfbS+dEzfGqUAQ4iZUoCnqvfJ1ISaj0NfdMZEhjp314m/uV1EwhqXsplnACTdLEoSASGCGcJ4AFXjIKYGkKo4uZWTEdEEQomp7wJ4etT/D9puSXHLjk35WL9chlHDh2jE3SGHFRFdXSNGqiJKLpDD+gJPVsT69F6sV4XrSvWcuYI/YD19gnNw5LF</latexit><latexit sha1_base64="X7KdDOWPIryzHD5DdTUQocyGki0=">AAAB9HicdVBNS8NAEN34WetX1aOXxSJ4Kkksbb0VvXisYD+gDWWz3bRLN5u4OymW0N/hxYMiXv0x3vw3btoKKvpg4PHeDDPz/FhwDbb9Ya2srq1vbOa28ts7u3v7hYPDlo4SRVmTRiJSHZ9oJrhkTeAgWCdWjIS+YG1/fJX57QlTmkfyFqYx80IylDzglICRvB6we0h9RSQdzfqFol26qFXccgXbJduuOq6TEbdaPi9jxygZimiJRr/w3htENAmZBCqI1l3HjsFLiQJOBZvle4lmMaFjMmRdQyUJmfbS+dEzfGqUAQ4iZUoCnqvfJ1ISaj0NfdMZEhjp314m/uV1EwhqXsplnACTdLEoSASGCGcJ4AFXjIKYGkKo4uZWTEdEEQomp7wJ4etT/D9puSXHLjk35WL9chlHDh2jE3SGHFRFdXSNGqiJKLpDD+gJPVsT69F6sV4XrSvWcuYI/YD19gnNw5LF</latexit><latexit sha1_base64="X7KdDOWPIryzHD5DdTUQocyGki0=">AAAB9HicdVBNS8NAEN34WetX1aOXxSJ4Kkksbb0VvXisYD+gDWWz3bRLN5u4OymW0N/hxYMiXv0x3vw3btoKKvpg4PHeDDPz/FhwDbb9Ya2srq1vbOa28ts7u3v7hYPDlo4SRVmTRiJSHZ9oJrhkTeAgWCdWjIS+YG1/fJX57QlTmkfyFqYx80IylDzglICRvB6we0h9RSQdzfqFol26qFXccgXbJduuOq6TEbdaPi9jxygZimiJRr/w3htENAmZBCqI1l3HjsFLiQJOBZvle4lmMaFjMmRdQyUJmfbS+dEzfGqUAQ4iZUoCnqvfJ1ISaj0NfdMZEhjp314m/uV1EwhqXsplnACTdLEoSASGCGcJ4AFXjIKYGkKo4uZWTEdEEQomp7wJ4etT/D9puSXHLjk35WL9chlHDh2jE3SGHFRFdXSNGqiJKLpDD+gJPVsT69F6sV4XrSvWcuYI/YD19gnNw5LF</latexit><latexit sha1_base64="X7KdDOWPIryzHD5DdTUQocyGki0=">AAAB9HicdVBNS8NAEN34WetX1aOXxSJ4Kkksbb0VvXisYD+gDWWz3bRLN5u4OymW0N/hxYMiXv0x3vw3btoKKvpg4PHeDDPz/FhwDbb9Ya2srq1vbOa28ts7u3v7hYPDlo4SRVmTRiJSHZ9oJrhkTeAgWCdWjIS+YG1/fJX57QlTmkfyFqYx80IylDzglICRvB6we0h9RSQdzfqFol26qFXccgXbJduuOq6TEbdaPi9jxygZimiJRr/w3htENAmZBCqI1l3HjsFLiQJOBZvle4lmMaFjMmRdQyUJmfbS+dEzfGqUAQ4iZUoCnqvfJ1ISaj0NfdMZEhjp314m/uV1EwhqXsplnACTdLEoSASGCGcJ4AFXjIKYGkKo4uZWTEdEEQomp7wJ4etT/D9puSXHLjk35WL9chlHDh2jE3SGHFRFdXSNGqiJKLpDD+gJPVsT69F6sV4XrSvWcuYI/YD19gnNw5LF</latexit>

Convex
<latexit sha1_base64="Ay+tDC8KRIaOl44uvI3Lg9l197w=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIzHxRHaNiR6JXDxiIo8ENmR2aGDC7Mw600sgG77DiweN8erHePNvHGAPClbSSaWqO91dYSy4Qc/7dnIbm1vbO/ndwt7+weFR8fikYVSiGdSZEkq3QmpAcAl15CigFWugUSigGY6qc785Bm24ko84jSGI6EDyPmcUrRR0ECaYVpUcw2TWLZa8sreAu078jJRIhlq3+NXpKZZEIJEJakzb92IMUqqRMwGzQicxEFM2ogNoWyppBCZIF0fP3Aur9Ny+0rYkugv190RKI2OmUWg7I4pDs+rNxf+8doL92yDlMk4QJFsu6ifCReXOE3B7XANDMbWEMs3trS4bUk0Z2pwKNgR/9eV10rgq+17Zf7guVe6yOPLkjJyTS+KTG1Ih96RG6oSRJ/JMXsmbM3ZenHfnY9mac7KZU/IHzucPdN+SiA==</latexit><latexit sha1_base64="Ay+tDC8KRIaOl44uvI3Lg9l197w=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIzHxRHaNiR6JXDxiIo8ENmR2aGDC7Mw600sgG77DiweN8erHePNvHGAPClbSSaWqO91dYSy4Qc/7dnIbm1vbO/ndwt7+weFR8fikYVSiGdSZEkq3QmpAcAl15CigFWugUSigGY6qc785Bm24ko84jSGI6EDyPmcUrRR0ECaYVpUcw2TWLZa8sreAu078jJRIhlq3+NXpKZZEIJEJakzb92IMUqqRMwGzQicxEFM2ogNoWyppBCZIF0fP3Aur9Ny+0rYkugv190RKI2OmUWg7I4pDs+rNxf+8doL92yDlMk4QJFsu6ifCReXOE3B7XANDMbWEMs3trS4bUk0Z2pwKNgR/9eV10rgq+17Zf7guVe6yOPLkjJyTS+KTG1Ih96RG6oSRJ/JMXsmbM3ZenHfnY9mac7KZU/IHzucPdN+SiA==</latexit><latexit sha1_base64="Ay+tDC8KRIaOl44uvI3Lg9l197w=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIzHxRHaNiR6JXDxiIo8ENmR2aGDC7Mw600sgG77DiweN8erHePNvHGAPClbSSaWqO91dYSy4Qc/7dnIbm1vbO/ndwt7+weFR8fikYVSiGdSZEkq3QmpAcAl15CigFWugUSigGY6qc785Bm24ko84jSGI6EDyPmcUrRR0ECaYVpUcw2TWLZa8sreAu078jJRIhlq3+NXpKZZEIJEJakzb92IMUqqRMwGzQicxEFM2ogNoWyppBCZIF0fP3Aur9Ny+0rYkugv190RKI2OmUWg7I4pDs+rNxf+8doL92yDlMk4QJFsu6ifCReXOE3B7XANDMbWEMs3trS4bUk0Z2pwKNgR/9eV10rgq+17Zf7guVe6yOPLkjJyTS+KTG1Ih96RG6oSRJ/JMXsmbM3ZenHfnY9mac7KZU/IHzucPdN+SiA==</latexit><latexit sha1_base64="Ay+tDC8KRIaOl44uvI3Lg9l197w=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIzHxRHaNiR6JXDxiIo8ENmR2aGDC7Mw600sgG77DiweN8erHePNvHGAPClbSSaWqO91dYSy4Qc/7dnIbm1vbO/ndwt7+weFR8fikYVSiGdSZEkq3QmpAcAl15CigFWugUSigGY6qc785Bm24ko84jSGI6EDyPmcUrRR0ECaYVpUcw2TWLZa8sreAu078jJRIhlq3+NXpKZZEIJEJakzb92IMUqqRMwGzQicxEFM2ogNoWyppBCZIF0fP3Aur9Ny+0rYkugv190RKI2OmUWg7I4pDs+rNxf+8doL92yDlMk4QJFsu6ifCReXOE3B7XANDMbWEMs3trS4bUk0Z2pwKNgR/9eV10rgq+17Zf7guVe6yOPLkjJyTS+KTG1Ih96RG6oSRJ/JMXsmbM3ZenHfnY9mac7KZU/IHzucPdN+SiA==</latexit>

branch
<latexit sha1_base64="Umf35ZXzWPcAy2HGw8kjADSjWPM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbSS30X+hFmgqWLDaa9ccavuHGSVeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5a6qeEJZSM64B1LFY248bP50VNyZpU+CWNtSyGZq78nMhoZM4kC2xlRHJplbyb+53VSDK/9TKgkRa7YYlGYSoIxmSVA+kJzhnJiCWVa2FsJG1JNGdqcSjYEb/nlVdK8qHpu1bu/rNRu8jiKcAKncA4eXEEN7qAODWDwCM/wCm/O2Hlx3p2PRWvByWeO4Q+czx9ttJKD</latexit><latexit sha1_base64="Umf35ZXzWPcAy2HGw8kjADSjWPM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbSS30X+hFmgqWLDaa9ccavuHGSVeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5a6qeEJZSM64B1LFY248bP50VNyZpU+CWNtSyGZq78nMhoZM4kC2xlRHJplbyb+53VSDK/9TKgkRa7YYlGYSoIxmSVA+kJzhnJiCWVa2FsJG1JNGdqcSjYEb/nlVdK8qHpu1bu/rNRu8jiKcAKncA4eXEEN7qAODWDwCM/wCm/O2Hlx3p2PRWvByWeO4Q+czx9ttJKD</latexit><latexit sha1_base64="Umf35ZXzWPcAy2HGw8kjADSjWPM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbSS30X+hFmgqWLDaa9ccavuHGSVeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5a6qeEJZSM64B1LFY248bP50VNyZpU+CWNtSyGZq78nMhoZM4kC2xlRHJplbyb+53VSDK/9TKgkRa7YYlGYSoIxmSVA+kJzhnJiCWVa2FsJG1JNGdqcSjYEb/nlVdK8qHpu1bu/rNRu8jiKcAKncA4eXEEN7qAODWDwCM/wCm/O2Hlx3p2PRWvByWeO4Q+czx9ttJKD</latexit><latexit sha1_base64="Umf35ZXzWPcAy2HGw8kjADSjWPM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbSS30X+hFmgqWLDaa9ccavuHGSVeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5a6qeEJZSM64B1LFY248bP50VNyZpU+CWNtSyGZq78nMhoZM4kC2xlRHJplbyb+53VSDK/9TKgkRa7YYlGYSoIxmSVA+kJzhnJiCWVa2FsJG1JNGdqcSjYEb/nlVdK8qHpu1bu/rNRu8jiKcAKncA4eXEEN7qAODWDwCM/wCm/O2Hlx3p2PRWvByWeO4Q+czx9ttJKD</latexit>

b < 0
<latexit sha1_base64="FSG5ZLAEJZ2VG4FBcHs+19aeMFs=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVF0MYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6SG4dvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDKz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW0LqqeW/XuLyv1mzyOIpzAKZyDBzWowx00oAkMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8As2qNZg==</latexit><latexit sha1_base64="FSG5ZLAEJZ2VG4FBcHs+19aeMFs=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVF0MYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6SG4dvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDKz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW0LqqeW/XuLyv1mzyOIpzAKZyDBzWowx00oAkMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8As2qNZg==</latexit><latexit sha1_base64="FSG5ZLAEJZ2VG4FBcHs+19aeMFs=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVF0MYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6SG4dvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDKz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW0LqqeW/XuLyv1mzyOIpzAKZyDBzWowx00oAkMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8As2qNZg==</latexit><latexit sha1_base64="FSG5ZLAEJZ2VG4FBcHs+19aeMFs=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVF0MYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6SG4dvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDKz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW0LqqeW/XuLyv1mzyOIpzAKZyDBzWowx00oAkMhvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8As2qNZg==</latexit>

b > 0
<latexit sha1_base64="4pZotWV4uT9m4TNhEvZWkzjfReo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpevFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD8G12y9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R1UfXcqnd/Wanf5HEU4QRO4Rw8qEEd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO2dI1o</latexit><latexit sha1_base64="4pZotWV4uT9m4TNhEvZWkzjfReo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpevFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD8G12y9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R1UfXcqnd/Wanf5HEU4QRO4Rw8qEEd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO2dI1o</latexit><latexit sha1_base64="4pZotWV4uT9m4TNhEvZWkzjfReo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpevFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD8G12y9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R1UfXcqnd/Wanf5HEU4QRO4Rw8qEEd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO2dI1o</latexit><latexit sha1_base64="4pZotWV4uT9m4TNhEvZWkzjfReo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpevFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD8G12y9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R1UfXcqnd/Wanf5HEU4QRO4Rw8qEEd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO2dI1o</latexit>

Left-oriented
<latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit>

Left-oriented
<latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit>

Left-oriented
<latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit><latexit sha1_base64="ZsLEgB35+KFC59EAzyxRgCdLem0=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4sSQi6LLoxoWLCvYBbSiT6U07dJIJMzdiDcVfceNCEbf+hzv/xmmbhbYeGDiccw/3zgkSwTW67re1sLi0vLJaWCuub2xubds7u3UtU8WgxqSQqhlQDYLHUEOOApqJAhoFAhrB4GrsN+5BaS7jOxwm4Ee0F/OQM4pG6tj7bYQHzG4gxBOpOMQI3VHHLrlldwJnnng5KZEc1Y791e5KlkYmzgTVuuW5CfoZVciZgFGxnWpIKBvQHrQMjWkE2s8m14+cI6N0nVAq82J0JurvREYjrYdRYCYjin09643F/7xWiuGFn/E4SRFiNl0UpsJB6YyrcLpcAUMxNIQyxc2tDutTRRmawoqmBG/2y/Okflr23LJ3e1aqXOZ1FMgBOSTHxCPnpEKuSZXUCCOP5Jm8kjfryXqx3q2P6eiClWf2yB9Ynz8WHJWe</latexit>

Right-oriented
<latexit sha1_base64="21P39vqOv2mP1HFxUEDpTCkly10=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCG0sigi6LblxWsQ9oQ5lMbtuhk0mYuRFLKPgrblwo4tbvcOffOG2z0NYDA4dz7uHeOUEiuEbX/bYKS8srq2vF9dLG5tb2jr2719BxqhjUWSxi1QqoBsEl1JGjgFaigEaBgGYwvJ74zQdQmsfyHkcJ+BHtS97jjKKRuvZBB+ERszveH+BprDhIhHDctctuxZ3CWSReTsokR61rf3XCmKWRiTNBtW57boJ+RhVyJmBc6qQaEsqGtA9tQyWNQPvZ9Pyxc2yU0OnFyjyJzlT9nchopPUoCsxkRHGg572J+J/XTrF36WdcJimCZLNFvVQ4GDuTLpyQK2AoRoZQpri51WEDqihD01jJlODNf3mRNM4qnlvxbs/L1au8jiI5JEfkhHjkglTJDamROmEkI8/klbxZT9aL9W59zEYLVp7ZJ39gff4A8lCWGw==</latexit><latexit sha1_base64="21P39vqOv2mP1HFxUEDpTCkly10=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCG0sigi6LblxWsQ9oQ5lMbtuhk0mYuRFLKPgrblwo4tbvcOffOG2z0NYDA4dz7uHeOUEiuEbX/bYKS8srq2vF9dLG5tb2jr2719BxqhjUWSxi1QqoBsEl1JGjgFaigEaBgGYwvJ74zQdQmsfyHkcJ+BHtS97jjKKRuvZBB+ERszveH+BprDhIhHDctctuxZ3CWSReTsokR61rf3XCmKWRiTNBtW57boJ+RhVyJmBc6qQaEsqGtA9tQyWNQPvZ9Pyxc2yU0OnFyjyJzlT9nchopPUoCsxkRHGg572J+J/XTrF36WdcJimCZLNFvVQ4GDuTLpyQK2AoRoZQpri51WEDqihD01jJlODNf3mRNM4qnlvxbs/L1au8jiI5JEfkhHjkglTJDamROmEkI8/klbxZT9aL9W59zEYLVp7ZJ39gff4A8lCWGw==</latexit><latexit sha1_base64="21P39vqOv2mP1HFxUEDpTCkly10=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCG0sigi6LblxWsQ9oQ5lMbtuhk0mYuRFLKPgrblwo4tbvcOffOG2z0NYDA4dz7uHeOUEiuEbX/bYKS8srq2vF9dLG5tb2jr2719BxqhjUWSxi1QqoBsEl1JGjgFaigEaBgGYwvJ74zQdQmsfyHkcJ+BHtS97jjKKRuvZBB+ERszveH+BprDhIhHDctctuxZ3CWSReTsokR61rf3XCmKWRiTNBtW57boJ+RhVyJmBc6qQaEsqGtA9tQyWNQPvZ9Pyxc2yU0OnFyjyJzlT9nchopPUoCsxkRHGg572J+J/XTrF36WdcJimCZLNFvVQ4GDuTLpyQK2AoRoZQpri51WEDqihD01jJlODNf3mRNM4qnlvxbs/L1au8jiI5JEfkhHjkglTJDamROmEkI8/klbxZT9aL9W59zEYLVp7ZJ39gff4A8lCWGw==</latexit><latexit sha1_base64="21P39vqOv2mP1HFxUEDpTCkly10=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCG0sigi6LblxWsQ9oQ5lMbtuhk0mYuRFLKPgrblwo4tbvcOffOG2z0NYDA4dz7uHeOUEiuEbX/bYKS8srq2vF9dLG5tb2jr2719BxqhjUWSxi1QqoBsEl1JGjgFaigEaBgGYwvJ74zQdQmsfyHkcJ+BHtS97jjKKRuvZBB+ERszveH+BprDhIhHDctctuxZ3CWSReTsokR61rf3XCmKWRiTNBtW57boJ+RhVyJmBc6qQaEsqGtA9tQyWNQPvZ9Pyxc2yU0OnFyjyJzlT9nchopPUoCsxkRHGg572J+J/XTrF36WdcJimCZLNFvVQ4GDuTLpyQK2AoRoZQpri51WEDqihD01jJlODNf3mRNM4qnlvxbs/L1au8jiI5JEfkhHjkglTJDamROmEkI8/klbxZT9aL9W59zEYLVp7ZJ39gff4A8lCWGw==</latexit>

2 int.
<latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit><latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit><latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit><latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit>

with
<latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit>

y-axis
<latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit>

2 int.
<latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit><latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit><latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit><latexit sha1_base64="fzv7d4JbkwXU3XlCTvU6S3b0EVg=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4CkkR9Fj04rGC/YA2lM122i7dbOLupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJlIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TJxqDnUey1i3QmZACgV1FCihlWhgUSihGY5uZ35zDNqIWD3gJIEgYgMl+oIztFLQQXjCrEKFQnfaLZU915uDrhI/J2WSo9YtfXV6MU8jUMglM6btewkGGdMouIRpsZMaSBgfsQG0LVUsAhNk86On9NwqPdqPtS2FdK7+nshYZMwkCm1nxHBolr2Z+J/XTrF/HWRCJSmC4otF/VRSjOksAdoTGjjKiSWMa2FvpXzINONocyraEPzll1dJo+L6nuvfX5arN3kcBXJKzsgF8ckVqZI7UiN1wskjeSav5M0ZOy/Ou/OxaF1z8pkT8gfO5w9z55Hg</latexit>

with
<latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit>

y-axis
<latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit>

1 int.
<latexit sha1_base64="CwlRt+GSfydWQkkiQz04nU9gTqM=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdzvzWGLQRsXrASQJ+xAZKhIIztJLfRXjCzKNCYXXaK1fcqjsHXSVeTiokR71X/ur2Y55GoJBLZkzHcxP0M6ZRcAnTUjc1kDA+YgPoWKpYBMbP5kdP6ZlV+jSMtS2FdK7+nshYZMwkCmxnxHBolr2Z+J/XSTG89jOhkhRB8cWiMJUUYzpLgPaFBo5yYgnjWthbKR8yzTjanEo2BG/55VXSvKh6btW7v6zUbvI4iuSEnJJz4pErUiN3pE4ahJNH8kxeyZszdl6cd+dj0Vpw8plj8gfO5w9yXZHf</latexit><latexit sha1_base64="CwlRt+GSfydWQkkiQz04nU9gTqM=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdzvzWGLQRsXrASQJ+xAZKhIIztJLfRXjCzKNCYXXaK1fcqjsHXSVeTiokR71X/ur2Y55GoJBLZkzHcxP0M6ZRcAnTUjc1kDA+YgPoWKpYBMbP5kdP6ZlV+jSMtS2FdK7+nshYZMwkCmxnxHBolr2Z+J/XSTG89jOhkhRB8cWiMJUUYzpLgPaFBo5yYgnjWthbKR8yzTjanEo2BG/55VXSvKh6btW7v6zUbvI4iuSEnJJz4pErUiN3pE4ahJNH8kxeyZszdl6cd+dj0Vpw8plj8gfO5w9yXZHf</latexit><latexit sha1_base64="CwlRt+GSfydWQkkiQz04nU9gTqM=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdzvzWGLQRsXrASQJ+xAZKhIIztJLfRXjCzKNCYXXaK1fcqjsHXSVeTiokR71X/ur2Y55GoJBLZkzHcxP0M6ZRcAnTUjc1kDA+YgPoWKpYBMbP5kdP6ZlV+jSMtS2FdK7+nshYZMwkCmxnxHBolr2Z+J/XSTG89jOhkhRB8cWiMJUUYzpLgPaFBo5yYgnjWthbKR8yzTjanEo2BG/55VXSvKh6btW7v6zUbvI4iuSEnJJz4pErUiN3pE4ahJNH8kxeyZszdl6cd+dj0Vpw8plj8gfO5w9yXZHf</latexit><latexit sha1_base64="CwlRt+GSfydWQkkiQz04nU9gTqM=">AAAB9HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdzvzWGLQRsXrASQJ+xAZKhIIztJLfRXjCzKNCYXXaK1fcqjsHXSVeTiokR71X/ur2Y55GoJBLZkzHcxP0M6ZRcAnTUjc1kDA+YgPoWKpYBMbP5kdP6ZlV+jSMtS2FdK7+nshYZMwkCmxnxHBolr2Z+J/XSTG89jOhkhRB8cWiMJUUYzpLgPaFBo5yYgnjWthbKR8yzTjanEo2BG/55VXSvKh6btW7v6zUbvI4iuSEnJJz4pErUiN3pE4ahJNH8kxeyZszdl6cd+dj0Vpw8plj8gfO5w9yXZHf</latexit>

y-axis
<latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit><latexit sha1_base64="hQEl3rQZeHWY4aSZLktmfSOsai4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh6DXjxGMA9IljA7mU2GzD6c6Q1ZlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rcLa+sbmVnG7tLO7t39QPjxq6ihRjDdYJCPV9qjmUoS8gQIlb8eK08CTvOWN7mZ+a8yVFlH4iGnM3YAOQuELRtFIbtpFPsHsgk6EnvbKFbtqz0FWiZOTCuSo98pf3X7EkoCHyCTVuuPYMboZVSiY5NNSN9E8pmxEB7xjaEgDrt1sfvSUnBmlT/xImQqRzNXfExkNtE4Dz3QGFId62ZuJ/3mdBP0bNxNhnCAP2WKRn0iCEZklQPpCcYYyNYQyJcythA2pogxNTiUTgrP88ippXlYdu+o8XFVqt3kcRTiBUzgHB66hBvdQhwYweIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPUIiScA==</latexit>

with
<latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit><latexit sha1_base64="wSlbeo8lUmdn1O0iW1CFqwJ2tkw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wppKJvtpl262Q27E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ETFMcMlayFGw+1QzkkSCdaLR9dTvPDBtuJJ3OE5ZmJCB5DGnBK0UdJE9Yf7IcTjpVWte3ZvBXSZ+QWpQoNmrfnX7imYJk0gFMSbwvRTDnGjkVLBJpZsZlhI6IgMWWCpJwkyYz06euCdW6bux0rYkujP190ROEmPGSWQ7E4JDs+hNxf+8IMP4Msy5TDNkks4XxZlwUbnT/90+14yiGFtCqOb2VpcOiSYUbUoVG4K/+PIyaZ/Vfa/u357XGldFHGU4gmM4BR8uoAE30IQWUFDwDK/w5qDz4rw7H/PWklPMHMIfOJ8/DJiRvQ==</latexit>

!1 !2 !3 !4

d < 0
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Figure 8.6: Tree showing the reduction process of isochrone parabolae. Starting at the top with the
implicit equation (8.27), the reduction consists in exploring the properties of parabolae associated
with the sign of 𝛿, 𝑏, 𝑑. Red horizontal lines correspond to a discarded parabola (that does not
satisfy one of the hypotheses 𝐻𝑖). Black, downwards arrows lead naturally to the five families 𝒫𝑖
that remain at the bottom. Any of these is associated with an isochrone potential.

4Strictly speaking, these bottom-oriented parabolae contain a unique, circular, unstable orbit.
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After this reduction process, the resulting set of parabolae is split into five families,
according to their orientation in the (𝑥, 𝑦) plane and their number of intersections with
the 𝑦-axis:

• 𝒫1: top-oriented (Eq.(8.28), with 𝑑 < 0),

• 𝒫2: left-oriented, crossing the 𝑦-axis twice (Eq. (8.30) with 𝑏 < 0, 𝑥𝑣 > 0),

• 𝒫3: right-oriented, crossing the 𝑦-axis twice (Eq. (8.30) with 𝑏 > 0, 𝑥𝑣 < 0).

• 𝒫4: right-oriented, crossing the 𝑦-axis once (Eq. (8.30) with 𝑏 > 0, 𝑥𝑣 = 0).

• 𝒫5: right-oriented, not crossing the 𝑦-axis (Eq. (8.30) with 𝑏 > 0, 𝑥𝑣 > 0).

We see that the last four of these families are simply given by the relative signs of the
pair (𝑏, 𝑥𝑣), where we recall that 𝑥𝑣 is given in Eq. (8.31) and corresponds to the abscissa
of the point where two branches meet (or equivalently where the parabola has a vertical
tangent).

Combining the reduction process depicted in Fig. 8.6 and the generic equation of a
parabola (8.27) allows us to obtain the equation of an isochrone parabola, in the form
𝒫𝑖 ∶ 𝑦 = 𝑌𝑖(𝑥), for 𝑖 ∈ [[1; 5]]. Three of these are depicted in Fig. 8.7. We can then invert
this equation to obtain the expression of the associated potential 𝜓𝑖(𝑟), using the definition
of the Hénon variables (8.3). This will be much easier in terms of new parameters instead
(of the Latin ones (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) that we have used up to now), as we show below.

Figure 8.7: Three isochrone parabolae, of the Hénon (left), Bounded (middle) and Hollowed (right)
family. Left-orientation (𝑏 < 0) corresponds the Bounded family 𝒫2. Right-orientation 𝑏 > 0
encompasses the Hénon class (𝑥𝑣 < 0) and the Hollowed class (𝑥𝑣 > 0). For each parabola, the
physical part (i.e., where the associated 𝜓(𝑟) is well-defined) is highlighted in red.

8.3.2 Complete set of isochrone potentials
In this section we derive the explicit form of each and every isochrone potential, completing
Michel Hénon’s program. We express our result in Eqs. (8.34)-(8.39) in terms of new, more
adapted parameters, allowing us to determine the fine structure of the set of isochrone
potentials. Finally we make a comment on the notion of “gauge” for isochrone potentials
and their associated mass distribution.
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New parameters

When working in the Hénon plane, doing geometry with parabolae, the Latin parame-
ters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) are useful. In order to work with simpler expressions when dealing with
the potentials, and prepare for the next steps, we rewrite the equations of the isochrone
parabola (𝒫𝑖) with more adapted, Greek parameters (𝜖, 𝜆, 𝜔, 𝜇, 𝛽).

We first consider the top-oriented parabolae 𝒫1 given by Eq. (8.28) with 𝑑 < 0. We
may combine the constants in the first two terms and define 𝜖 ≡ −𝑐/𝑑 ∈ ℝ, 𝜆 ≡ −𝑒/𝑑 ∈ ℝ.
Moreover, since 𝑑 < 0 in this case, we may always write

𝜔2 ≡ −16𝑎2

𝑑 > 0 . (8.33)

Inserting the new parameters (𝜖, 𝜆, 𝜔) in Eq. (8.28) and using 𝜓(𝑟) = 𝑌 (2𝑟2)/2𝑟2, we ob-
tain for the first family of potentials 𝜓1 and/or parabolae 𝒫1, associated with top-oriented
parabolae,

• the Harmonic family:

𝜓1(𝑟) = 𝜖 + 𝜆
2𝑟2 + 1

8𝜔2𝑟2 . (8.34)

The name Harmonic comes from the fact that 𝜓1 is a harmonic potential, up to a
constant 𝜖 and a centrifugal-like term 𝜆/2𝑟2. The normalizing factor 1/16 is chosen such
that the radial period 𝑇 will coincide exactly with the angular frequency 𝜔, i.e., 𝑇 = 2𝜋/𝜔,
as we shall find later on.

Now consider the 𝑏 ≠ 0 case, i.e., the convex branch 𝒫− of Eq. (8.30). Once again,
we may define 𝜖 ≡ −𝑎/𝑏 ∈ ℝ. With a bit of rewriting, we can also introduce the 𝜆
parameter of Eq. (8.32) and move the square root of the rightmost term down, using the
usual conjugate trick. Furthermore, independently of the sign of 𝑏 ≠ 0, we may always
define

𝜇 ≡ √𝛿|𝑏|
2𝑏4 > 0 and 𝛽 ≡ √𝑑2 − 4𝑏2𝑒

8𝛿|𝑏| ≥ 0 . (8.35)

When 𝛽 ≠ 0, the parabola crosses the 𝑦-axis twice. Then either 𝑏 > 0 (right-oriented
parabola) or 𝑏 < 0 (left-oriented parabola), as depicted in Fig. 8.6. Inserting the new
parameters (𝜖, 𝜆, 𝜇, 𝛽) in Eq. (8.30) and using 𝜓(𝑟) = 𝑌 (2𝑟2)/2𝑟2, we obtain the second
family of potentials 𝜓2 and/or parabolae 𝒫2, associated with left-oriented parabolae,

• the Bounded family:

𝜓2(𝑟) = 𝜖 + 𝜆
2𝑟2 + 𝜇

𝛽 + √𝛽2 − 𝑟2 . (8.36)

The name Bounded comes from the fact that 𝜓2 is defined only on the bounded interval
[0, 𝛽]. Finally, the same parameters can be used to define the third family of potentials 𝜓3
and/or parabolae 𝒫3, associated with right-oriented parabolae crossing the 𝑦-axis twice,
namely
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• the Hénon family:

𝜓3(𝑟) = 𝜖 + 𝜆
2𝑟2 − 𝜇

𝛽 + √𝛽2 + 𝑟2 . (8.37)

The name Hénon comes from the fact that 𝜓3 is, up to a constant and a centrifugal-like
term, the potential found by Michel Hénon [582]. Finally, the case 𝛽 = 0 defines a fourth
family of potentials 𝜓4 and/or parabolae 𝒫4, associated with right-oriented parabolae
crossing the 𝑦-axis once, namely

• the Kepler family:

𝜓4(𝑟) = 𝜖 + 𝜆
2𝑟2 − 𝜇

𝑟 . (8.38)

The name Kepler comes from the fact that 𝜓4 is, up to a constant and a centrifugal-like
term 𝜆/2𝑟2, the usual Kepler potential. For the final family 𝒫5, the quantity 𝜆, defined
as the 𝑦-intercept of the convex branch of a parabola does not make sense anymore since,
by definition, 𝒫5 has no intersection with the 𝑦-axis (recall Fig. 8.6). We thus have to
go back to the general equation (8.30) and define the constants 𝜇, 𝛽 in terms of 𝑥𝑣 (cf.
Eq. (8.31)), which is well defined for any (non-harmonic) parabola. A quick calculation
shows that the parameter 𝜇 can be taken as in Eq. (8.35), whereas 𝛽 is simply √𝑥𝑣/2.
Lastly, by setting 𝜆 = −𝑑/2𝑏2, we define the fifth and last family of isochrone potentials,
namely:

• the Hollowed family:

𝜓5(𝑟) = 𝜖 + 𝜆
2𝑟2 − 𝜇

𝑟
√1 − 𝛽2

𝑟2 . (8.39)

The qualifier “Hollowed” comes from the fact that 𝜓5 is defined only on the open interval
[𝛽, +∞[, i.e., outside a sphere of radius 𝛽 in the three-dimensional physical space. For
𝑟 < 𝛽, the potential is undefined and it turns out that no particle can enter this region,
leaving it “hollow”. In this sense, the Hollowed potential 𝜓5 is complementary to the
Bounded one 𝜓2, since the latter is defined on [0; 𝛽] and the former on [𝛽; +∞[.

With the new, Greek parameters, the result of this section can be summarized easily:
If a potential 𝜓 is isochrone, then it must be equal to one of the 𝜓𝑖∈[[1;5] above. In other
words, if 𝜓 is isochrone, then there exists some constants (𝜖, 𝜆) and (𝜇, 𝛽, 𝜔) such that
𝜓(𝑟) = 𝜓𝑖(𝑟) for some 𝑖 ∈ [[1; 5]]. We stress that, by definition, 𝜔 ≠ 0 , 𝜇 > 0 and 𝛽 ≥ 0.
The introduction of these parameters is important since it allows one to structure the set
of isochrone potentials into 5 families, and give the dimension of each. In particular, we see
that both the Harmonic (𝜓1) and Kepler (𝜓4) potentials form a (2+1)-parameters family
(2 because of (𝜖, 𝜆), and 1 because of 𝜔 or 𝜇); whereas the Bounded (𝜓2), Hénon (𝜓3) and
Hollowed (𝜓5) are (2+2)-parameters families. We have now found the fine structure of the
set of isochrone potentials, and thus completed Hénon’s program, from a mathematical
physics perspective. The main result are summarized in Fig. 8.8.

Gauged and reduced potentials

Now, for the sake of completeness, let us make a few comments about the notion of
“gauged” isochrone potentials, as introduced in [588]. Notice from the explicit forms of
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Figure 8.8: Left: isochrone potentials form a subset of the larger class of radial potentials that
look like a parabola in Hénon’s variables, which is itself a subset of the class of radial potentials.
Some radial potentials correspond to parabolae but are not physically well-defined (as explained
in Table. 8.6). Right: the set of isochrone potentials is structured into 5 subfamilies (Eqs. (8.34)-
(8.39)).

the five potential families (8.34)-(8.39) that all isochrone potentials are the sum of three
terms, the first two being identical for each of them:

𝜓(𝑟) = 𝜖 + 𝜆
2𝑟2 + ⋯ , (8.40)

where … denotes the third term, that differs from one family to another. Physically, the
first, constant term is expected, since it represents a shift in the potential energy of the
particle. The second term looks like it derives from a centrifugal force, although it is not
dependent on the particle. Now let us see how these terms contribute to the potential in the
Hénon variables. Multiplying (8.40) by 2𝑟2 and remembering the definition 𝑌 = 2𝑟2𝜓(𝑟),
we find

𝑌 (𝑥) = 𝜖𝑥 + 𝜆 + ⋯ (8.41)

In terms of the associated parabola, these two terms make a simple affine contribution.
In particular, the parameters (𝜖, 𝜆) control the orientation of the symmetry axis and the
height of the parabola respectively. Similarly, we can show that the other parameters (𝜔
for 𝒫1, and (𝜇, 𝛽) for the others) control the aperture and the horizontal position of the
parabola. The other consequence of the general form (8.41) is the partition of isochrone
potentials between gauged ones and reduced ones, as introduced in [588]. Without going
into the details (this is well-explained in that article), the gauged potentials are obtained
by applying an affine transformation to the reduced ones, as follows.

• For any real 𝜖, the affine transformation 𝐼𝜖 ∶ (𝑥, 𝑦) ↦ (𝑥, 𝑦 + 𝜖𝑥) is a transvection.
Geometrically, this map adds the value 𝜖 to the slope of any straight line in the plane.
In particular, when applied to ℒ it gives the line 𝐼𝜖(ℒ ) ∶ 𝑦 = (𝜉+𝜖)𝑥−Λ2 and when
applied to 𝒫 it adds 𝜖 to the slope of its symmetry axis. Moreover, vertical lines
are invariant under this map, and therefore the number of intersections between 𝒫
with ℒ is preserved. In other words, the action of 𝐼𝜖 does not change the fact that
a parabola is isochrone.

• For any 𝜆 ≤ 0 the map 𝐽𝜆 ∶ (𝑥, 𝑦) ↦ (𝑥, 𝑦 + 𝜆) is a downward, vertical translation.
If a parabola 𝒫𝑖 is intersected twice by a line ℒ , this intersecting configuration
remains after the action of 𝐽𝜆. Moreover, since negativity of the 𝑦-intercept of ℒ
is preserved by 𝐽𝜆, the action of 𝐽𝜆 does not change the fact that a parabola is
isochrone.
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As a consequence, if 𝒫 is an isochrone parabola, then for any (𝜖, 𝜆) ∈ ℝ × ℝ−, the
curve 𝐼𝜖 ∘𝐽𝜆(𝒫 ) is also an isochrone parabola. In topological terms, this induces an equiv-
alence relation on the set of isochrone potentials. If one takes the quotient of that set by
this equivalence relation, one can define a set of reduced isochrone potentials, that are
defined up to an additional term 𝜖 + 𝜆/2𝑟2. This topological structure has been explored
thoroughly in [588], we refer to Sec. 2.5 of that article for more details.

Finally, we mention that from the explicit formulae of the isochrone potentials 𝜓𝑖(𝑟),
it is possible to compute and analyze the associated mass density 𝜌𝑖(𝑟), through the
Poisson equation (7.15). This was already presented in Sec. 4.1 of [588], albeit for only
a subset of isochrone potentials. Speaking of mass density, we relegated to App. C.1 a
simple construction in the Hénon plane that allows one to compute, geometrically, the
mass contained in a sphere of radius 𝑟 for a given mass density. This construction works
for any radial potential that is defined around the origin (not necessarily isochrone). It
shows, once again, the usefulness of the Hénon variables.

8.3.3 Bifurcation diagrams
In the last section, we have isolated five families of potentials (𝜓𝑖) and their associated
parabolae (𝒫𝑖), and discussed some of their properties. We have shown that if a potential
is isochrone, then its curve 𝒞 ∶ 𝑦 = 𝑌 (𝑥) is the portion of a parabola 𝒫𝑖 that is convex
and lies on the right half-plane 𝑥 > 0. What remains to be shown is the reciprocal of
this statement, i.e., that any such 𝒞 is the curve of an isochrone potential, in the sense
that it contains periodic orbits. To this end, we just need to show that 𝒞 can always be
intersected twice by some line ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2. We shall do this by finding explicitly
which lines ℒ can intersect 𝒞 . In so doing, we will find two important results:

• the set (𝜓𝑖) is complete (it contains all and only the isochrone potentials),

• necessary and sufficient conditions on (𝜉, Λ) for the existence of periodic orbits.

In what follows, we consider a curve 𝒞 and a line ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2. By assumption, 𝒞 is
on the right half plane and on the convex portion of a parabola 𝒫𝑖 given by Eqs. (8.34)-
(8.39). When they exist, we denote by 𝑥𝑃 and 𝑥𝐴 > 𝑥𝑃 the abscissa of 𝑃 and 𝐴, the two
intersections of ℒ with 𝒞 .

Harmonic family 𝒫1

Let us start with the family 𝒫1 given in Eq. (8.34). We fix the parameters (𝜖, 𝜆, 𝜔) and
look for the conditions on (𝜉, Λ) under which the line ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2 intersects 𝒫1
twice. By definition, 𝑃 , 𝐴 belong to both ℒ and 𝒫1; therefore, 𝑥𝑃 , 𝑥𝐴 are solutions to
𝜉𝑥 − Λ2 = 𝜖𝑥 + 𝜆 + 𝜔2𝑥2/16. We may equivalently write this equation in the following
evocative form

𝑥2 − 𝑠𝑥 + 𝑝 = 0 , where {𝑠 ≡ 16(𝜉 − 𝜖)/𝜔2 ,
𝑝 ≡ 16(Λ2 + 𝜆)/𝜔2 , (8.42)

with the sum 𝑠 = 𝑥𝑃 + 𝑥𝐴 and product 𝑝 = 𝑥𝑃 𝑥𝐴 of the two roots. Note that 𝑥𝑃 , 𝑥𝐴
and therefore 𝑠 and 𝑝 are all functions of 𝜉 and Λ2. For a generic quadratic equation
such as Eq. (8.42), two solutions exist if and only if Δ ≡ 𝑠2 − 4𝑝 > 0, and are given by
(𝑠 ±

√
Δ)/2, with a minus sign for 𝑥𝑃 and a plus sign for 𝑥𝐴. We want these solutions to
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lie on the convex branch of the parabola, in order for an orbit to actually exist. This is
always satisfied since the parabola 𝒫1 is everywhere convex. Furthermore, we want them
to be strictly positive, in order for 𝑃 and 𝐴 to be in the right half plane 𝑥 ≥ 0. It is
sufficient to require 𝑥𝑃 > 0, because then 𝑥𝐴 > 𝑥𝑃 > 0.

The parameters of the potential are fixed; therefore, the condition 𝑥𝑃 (𝜉, Λ2) > 0, along
with Λ2 ≥ 0, defines a region in the (𝜉, Λ2) plane that contains every pair (𝜉, Λ2) such that
the orbit is radially periodic. Using the formula for 𝑥𝑃 in terms of 𝑠 and 𝑝, this domain
is explicitly delimited by the two inequalities

Λ2 ≥ 0 and 𝑥𝑃 (𝜉, Λ2) > 0 , (8.43)

with 𝑥𝑃 = (𝑠 − √𝑠2 − 4𝑝)/2 and 𝑠, 𝑝 given by Eq. (8.42). Outside this region, there may
be collision orbits (the particle avoids the origin and goes to infinity), or no orbit at all
(for instance in the Λ2 < 0 region). This is depicted in Fig. 8.9.

Figure 8.9: Bifurcation diagram for a harmonic potential 𝜓1, with 𝜆 ≥ 0 (left) and 𝜆 ≤ 0 (right).
The axes are 𝜉 = 𝜖 and Λ2 = 0. The light grey region defined by the inequalities (8.43) contains the
(𝜉, Λ2) associated with bounded motion. Following the convention of Arnold (Fig. (2.3) of [344]),
the region of possible motion in the physical space is depicted as a light-red region in the orbital
plane. For a generic orbit, 0 < 𝑟𝑃 < 𝑟𝐴 and the motion takes place in an annulus. The black
boundaries correspond to degeneracies: The top one to circular motion (𝑟𝑃 → 𝑟𝐴) and the bottom
one to trajectories spiraling toward the center (𝑟𝑃 → 0).

Bounded family 𝒫2

We proceed similarly for the left-oriented parabolae 𝒫2, associated with a Bounded po-
tential. In particular, we fix the parameters (𝜖, 𝜆, 𝜇, 𝛽) and look for a domain in the
(𝜉, Λ2) plane that contains all and only the periodic orbits. The condition 𝑃 , 𝐴 ∈ ℒ ∩ 𝒫2
translates algebraically into

𝜉𝑥 − Λ2 = 𝜖𝑥 + 𝜆 + 2𝜇𝛽 − 2𝜇√𝛽2 − 𝑥/2 . (8.44)

As for 𝒫1, with a bit of algebra we may write Eq. (8.44) as 𝑥2 − 𝑠𝑥 + 𝑝 = 0 where
𝑠 ≡ 𝑥𝑃 + 𝑥𝐴 and 𝑝 ≡ 𝑥𝑃 𝑥𝐴. In terms of (𝜉, Λ2), we have explicitly

𝑠 ≡ 2 (Λ2 + 𝜆 + 2𝜇𝛽)(𝜉 − 𝜖) − 𝜇2

(𝜉 − 𝜖)2 and 𝑝 ≡ (Λ2 + 𝜆 + 4𝜇𝛽)(Λ2 + 𝜆)
(𝜉 − 𝜖)2 . (8.45)
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As before, the solutions 𝑥𝑃 , 𝑥𝐴 must be strictly positive and this is ensured by the
condition 𝑥𝑃 > 0. At this point, choosing (𝜉, Λ2) in the region 𝑥𝑃 (𝜉, Λ2) > 0 ensures that
there are two intersections between 𝒫2 and ℒ . Adding the condition Λ2 ≥ 0 ensures that
𝑥𝑃 is on the convex branch. However, a third condition is needed, namely that 𝐴 belongs
to the convex branch. To this end, notice that in Eq. (8.44), the minus sign in front of
2𝜇 came from selecting the convex branch of the parabola. Therefore, to ensure that 𝐴 is
on this branch, it is sufficient to impose that 𝜉𝑥𝐴 − Λ2 ≤ 𝜖𝑥𝐴 + 𝜆 + 2𝜇𝛽. All in all, three
conditions are sufficient to draw the bifurcation diagram. They read explicitly

Λ2 ≥ 0 , 𝑥𝑃 (𝜉, Λ2) > 0 and (𝜉 − 𝜖) 𝑥𝐴(𝜉, Λ2) ≤ Λ2 + 𝜆 + 2𝜇𝛽 . (8.46)

Once we express 𝑥𝑃 and 𝑥𝐴 in terms of 𝑠, 𝑝, and thus in terms of (𝜉, Λ2) via Eq. (8.45),
the three inequalities (8.46) delimit a region with all and only the periodic orbits. This
region is depicted for a typical bounded potential 𝜓2 in Fig. 8.10.

Figure 8.10: Bifurcation diagram for a bounded potential 𝜓2, with 𝜆 ≥ 0 (left) and 𝜆 ≤ 0 (right).
The axes are 𝜉 = 𝜖 + 𝜇/2𝛽 and Λ2 = 0. All information is encoded the same way as in Fig. 8.9.

Hénon and Kepler families 𝒫3 and 𝒫4

For the right-oriented parabolae, we proceed the same way. Noticing that a parabola 𝒫4
can be obtained as the 𝛽 → 0 limit of a parabola 𝒫3, we may focus on the latter. As
before, the condition 𝑃 , 𝐴 ∈ 𝒫3 translates into 𝑥2 − 𝑠𝑥 + 𝑝 = 0, where 𝑠 and 𝑝 are have
the same expression as in Eq. (8.45), albeit with a plus sign in front of 𝜇2 for the former.

The conditions to be imposed to have a well-defined orbit are as before, 𝑥𝑃 > 0,
Λ2 ≥ 0. These two ensure that 𝑃 is in the right half plane and on the convex branch.
However, this does not imply that 𝐴 is on the convex branch, so we must, again, add a
third condition. Therefore, all three requirements are the same as in the 𝒫2 case, and
the bifurcation diagram can be depicted using the inequalities Eq. (8.46) (again, with a
plus sign in front of 𝜇2). For the Hénon family, 𝛽 ≠ 0 and the bifurcation diagram is
depicted in Fig. 8.11. The bifurcation diagram for the Kepler family 𝒫4 is the 𝛽 → 0 limit
of Fig. 8.11 and coincides precisely with Fig. (2.3) of [344].

Hollowed family 𝒫5

Finally, we can do the same calculation for the fifth family 𝒫5. Equating 𝜉𝑥 − Λ2 to
𝑌5(𝑥) = 𝑥𝜓5(√𝑥/2) and squaring the result provides a quadratic-in-𝑥 equation, from
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Figure 8.11: Bifurcation diagram for a Hénon potential 𝜓3, with 𝜆 ≥ 0 (left) and 𝜆 ≤ 0 (right).
The axes are 𝜉 = 𝜖 − 𝜇/2𝛽 and Λ2 = 0. All information is encoded the same way as in Fig. 8.9.

which we find the sum 𝑠 and product 𝑝 to be

𝑠 ≡ 2 (Λ2 + 𝜆)(𝜉 − 𝜖) + 𝜇2

(𝜉 − 𝜖)2 and 𝑝 ≡ (Λ2 + 𝜆)2 + 4𝛽2𝜇2

(𝜉 − 𝜖)2 . (8.47)

The bifurcation diagram is then given in Fig. 8.12, and is built by requiring the same
conditions as before, except that this time, 𝐴 lies on the convex branch if 𝜉𝑥𝐴 ≤ 𝜖𝑥𝐴 + 𝜆.
The conditions are therefore just as Eq. (8.46), without the term 2𝜇𝛽 on the right-hand
side.
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�  0
<latexit sha1_base64="TrheoIBVeMEzgo39mpUfxaj+m7I=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4AmlMnkph06eXRmUiih3+HGhSJu/Rh3/o3TNgttPTBwOOdc7p3jp4IrbdvfVmljc2t7p7xb2ds/ODyqHp+0VZJJhi2WiER2fapQ8BhbmmuB3VQijXyBHX90P/c7E5SKJ/GTnqboRXQQ85Azqo3kucJEA+oKHBO7X63ZdXsBsk6cgtSgQLNf/XKDhGURxpoJqlTPsVPt5VRqzgTOKm6mMKVsRAfYMzSmESovXxw9IxdGCUiYSPNiTRbq74mcRkpNI98kI6qHatWbi/95vUyHt17O4zTTGLPlojATRCdk3gAJuESmxdQQyiQ3txI2pJIybXqqmBKc1S+vk/ZV3bHrzuN1rXFX1FGGMziHS3DgBhrwAE1oAYMxPMMrvFkT68V6tz6W0ZJVzJzCH1ifPx2Skac=</latexit><latexit sha1_base64="TrheoIBVeMEzgo39mpUfxaj+m7I=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4AmlMnkph06eXRmUiih3+HGhSJu/Rh3/o3TNgttPTBwOOdc7p3jp4IrbdvfVmljc2t7p7xb2ds/ODyqHp+0VZJJhi2WiER2fapQ8BhbmmuB3VQijXyBHX90P/c7E5SKJ/GTnqboRXQQ85Azqo3kucJEA+oKHBO7X63ZdXsBsk6cgtSgQLNf/XKDhGURxpoJqlTPsVPt5VRqzgTOKm6mMKVsRAfYMzSmESovXxw9IxdGCUiYSPNiTRbq74mcRkpNI98kI6qHatWbi/95vUyHt17O4zTTGLPlojATRCdk3gAJuESmxdQQyiQ3txI2pJIybXqqmBKc1S+vk/ZV3bHrzuN1rXFX1FGGMziHS3DgBhrwAE1oAYMxPMMrvFkT68V6tz6W0ZJVzJzCH1ifPx2Skac=</latexit><latexit sha1_base64="TrheoIBVeMEzgo39mpUfxaj+m7I=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4AmlMnkph06eXRmUiih3+HGhSJu/Rh3/o3TNgttPTBwOOdc7p3jp4IrbdvfVmljc2t7p7xb2ds/ODyqHp+0VZJJhi2WiER2fapQ8BhbmmuB3VQijXyBHX90P/c7E5SKJ/GTnqboRXQQ85Azqo3kucJEA+oKHBO7X63ZdXsBsk6cgtSgQLNf/XKDhGURxpoJqlTPsVPt5VRqzgTOKm6mMKVsRAfYMzSmESovXxw9IxdGCUiYSPNiTRbq74mcRkpNI98kI6qHatWbi/95vUyHt17O4zTTGLPlojATRCdk3gAJuESmxdQQyiQ3txI2pJIybXqqmBKc1S+vk/ZV3bHrzuN1rXFX1FGGMziHS3DgBhrwAE1oAYMxPMMrvFkT68V6tz6W0ZJVzJzCH1ifPx2Skac=</latexit><latexit sha1_base64="TrheoIBVeMEzgo39mpUfxaj+m7I=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4AmlMnkph06eXRmUiih3+HGhSJu/Rh3/o3TNgttPTBwOOdc7p3jp4IrbdvfVmljc2t7p7xb2ds/ODyqHp+0VZJJhi2WiER2fapQ8BhbmmuB3VQijXyBHX90P/c7E5SKJ/GTnqboRXQQ85Azqo3kucJEA+oKHBO7X63ZdXsBsk6cgtSgQLNf/XKDhGURxpoJqlTPsVPt5VRqzgTOKm6mMKVsRAfYMzSmESovXxw9IxdGCUiYSPNiTRbq74mcRkpNI98kI6qHatWbi/95vUyHt17O4zTTGLPlojATRCdk3gAJuESmxdQQyiQ3txI2pJIybXqqmBKc1S+vk/ZV3bHrzuN1rXFX1FGGMziHS3DgBhrwAE1oAYMxPMMrvFkT68V6tz6W0ZJVzJzCH1ifPx2Skac=</latexit>

Figure 8.12: Bifurcation diagram for a Hollowed potential 𝜓5, with 𝜆 ≥ 0 (left) and 𝜆 ≤ 0 (right).
The axes are 𝜉 = 𝜖 and Λ2 = 0. All information is encoded the same way as in Fig. 8.9.
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Isochrone mechanics

Sed res est certissima exactissimaque, quòd proportio quæ est inter
binorum quorumcunque Planetarum tempora periodica, sit præcisè

sesquialtera proportionis mediarum distantiarum
J. KEpLER,

Harmonices Mundi (1619).

⋄

After years of meticulous analysis of Tycho Brahe’s observations of Mars, Johannes
Kepler discovered, at the beginning of the seventeenth century, three laws that now

bear his name. The first two, published in the Astronomia Nova (1609), state that (1)
planets follow elliptical orbits with the Sun at one of their focii, and (2) the time elapsed
between two points on an orbit is proportional to the swept area in that time. Kepler’s
third law, was published later in his Harmonices Mundi (1619). It states that the cube of
the semi-major axis of these ellipses is proportional to the square of the planet’s orbital
period. This chapter is dedicated to a generalization of Kepler’s laws to all isochrone
orbits1. In particular, we will show that any periodic orbit in any isochrone potential
satisfies Kepler’s third law (Sec. 9.1) for the radial period 𝑇 . We will interpret this law in
various geometrical contexts and will also point out a similar and unified law for the apsidal
angle Θ. In Sec. 9.2, we devise a geometrical method for solving the equations of motion
in an isochrone potential, and show that all isochrone orbits can be parametrized by a
Keplerian ellipse. Finally, we shall use all these results to exhibit and classify isochrone
orbits in Sec. 9.3.

1Fortunately, we only have to generalize two of them. Indeed, Kepler’s second law is a mere
consequence of spherical symmetry: it holds for any radial potential, and thus for isochrone ones.
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9.1 Isochrone Kepler’s third laws
Kepler’s third law is arguably one of the most celebrated and useful equations in astronomy
and astrophysics. It arises in the context of a test particle orbiting a spherical body of mass
𝑀 . Under the Newtonian law of gravitation, the particle follows a perfectly elliptical orbit.
Kepler’s third law expresses the relation that exists between the semi-major axis 𝛼 of this
ellipse2 and the orbital period 𝑇orb, as 𝑇orb ∝ 𝛼3/2, where the proportionality constant,
4𝜋2/𝐺𝑀 , does not depends on the particle. Let us re-write Kepler’s third law using our
notations adapted to the study of isochrony. First, notice that for a Keplerian ellipse, the
orbital period (time taken for the particle to come back to the same position in the orbital
plane) coincides with the radial period 𝑇 that we have used up to know. Second, a classical
result of celestial mechanics (see App. B.2 for details) shows that the semi-major axis 𝛼
depends only on the particle’s energy 𝜉, through 𝛼 = −𝜇/2𝜉. Consequently, Kepler’s third
law reads

𝑇 2 = 𝜋2

2
𝜇2

(−𝜉)3 (9.1)

This first section is dedicated to a derivation of an equation identical to (9.1) for any
isochrone orbit3. It is divided into three parts. First, we derive the generalized Kepler’s
third law for the period 𝑇 in any isochrone potential, by solving quadratic equations
(Sec. 9.1.1). Then we use the circular orbit trick to get a similar law for Θ (Sec. 9.1.2).
Lastly we provide an alternative formulation of these two laws, in terms of purely geo-
metrical quantities that can all be inferred solely from the parabola 𝒫 and the line ℒ
(Sec. 9.1.3).

9.1.1 Third law for the radial period 𝑇
Let us consider a generic isochrone potential 𝜓 and a particle (𝜉, Λ) that orbits within
it. As we did many times above, in the Hénon plane 𝜓 is associated with a parabola 𝒫 ,
and the particle is associated with a line ℒ that intersects 𝒫 twice (or once for circular
orbits). For convenience, we rewrite the equations for 𝒫 and ℒ here:

𝒫 ∶ (𝑎𝑥 + 𝑏𝑦)2 + 𝑐𝑥 + 𝑑𝑦 + 𝑒 = 0 and ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2 . (9.2)

Keeping the parabola 𝒫 fixed, we take a line (𝜉, Λ) with two intersections 𝑃 and 𝐴, both
functions of (𝜉, Λ). Now since 𝐴 and 𝑃 belong to both 𝒫 and ℒ , we can eliminate 𝑦 from
the two equations in (9.2) and get an equation on 𝑥 whose solutions are 𝑥𝑃 and 𝑥𝐴, the
abscissa of 𝑃 and 𝐴. Re-arranging the result gives the following quadratic equation:

(𝑎 + 𝑏𝜉)2𝑥2 + [(𝑐 + 𝑑𝜉) − 2𝑏Λ2(𝑎 + 𝑏𝜉)]𝑥 + [𝑏2Λ4 + 𝑒 − 𝑑Λ2] = 0 , (9.3)

whose discriminant Δ is given by

Δ(𝜉, Λ) ≡ (𝑐 + 𝑑𝜉)2 − 4𝑏Λ2(𝑐 + 𝑑𝜉)(𝑎 + 𝑏𝜉) − 4(𝑎 + 𝑏𝜉)2(𝑒 − 𝑑Λ2) . (9.4)

We will now compute the period 𝑇 with the help of Hénon’s formula, proved in Sec. 9.1
and given in Eq. (8.13). First, we need the difference between 𝑥𝐴 and 𝑥𝑃 . By writing the
solutions to the quadratic equation (9.3), we obtain easily

(𝑥𝐴 − 𝑥𝑃 )2 = Δ(𝜉, Λ)
(𝑎 + 𝑏𝜉)4 . (9.5)

2We use 𝛼, since the more common notation is 𝑎 and this corresponds to one of the Latin
parameters for our parabolae (8.27).

3By isochrone orbit, we mean an orbit followed by a test particle in an isochrone potential.
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Second we need a formula for Λ𝐶 , the angular momentum of the circular orbit with
energy 𝜉. To find it, we note that for a fixed 𝜉, the discriminant Δ(𝜉, Λ) is strictly positive
when ℒ intersects 𝒫 twice, but vanishes when it intersects once, for some value Λ𝐶 .
This corresponds to a circular orbit, obtained by translating ℒ downward until 𝑃 and 𝐴
degenerate into a single point 𝐶 (recall Fig. 8.1). Therefore, we have Δ(𝜉, Λ𝐶) = 0, which
may be solved for Λ𝐶 . With the help of Eq. (9.3) and some elementary algebra, we obtain

Λ2
𝐶 = 4𝑒(𝑎 + 𝑏𝜉)2 − (𝑐 + 𝑑𝜉)2

4𝛿(𝑎 + 𝑏𝜉) , (9.6)

where 𝛿 is the discriminant of the parabola, cf. Eq. (8.27). Now we can combine Hénon’s
formula (8.13) with Eqs. (9.5) and (9.6). Once again, after some easy algebra we obtain
the following generalization of Kepler’s third law

𝑇 2 = −𝜋2

4
𝛿

(𝑎 + 𝜉𝑏)3 . (9.7)

A few remarks are in order. First of all, we stress that Eq. (9.7) is valid for any particle
(𝜉, Λ) orbiting periodically in any isochrone potential, including Hollowed ones and those
discarded during the reduction process4 showed in Fig. 8.6. As long as there is a periodic
orbit in a isochrone potential, physical or not, there is an associated parabola 𝒫 given by
Eq. (9.2) and its radial period 𝑇 verifies Eq. (9.7). Second, we see that it involves in the
numerator 𝛿 which is strictly positive. Therefore, Eq. (9.7) implies that the denominator
is strictly negative and thus that 𝑎 + 𝑏𝜉 < 0. This is a general property that can be traced
back to the very existence of solutions to the quadratic equation (9.3). We shall use this
result later in Sec. 9.2 to find a parametrization of isochrone orbits. Moreover, speaking
of the parameters, we recover the two well-known cases: When 𝑎 = 0 the parabola has
horizontal symmetry and we have 𝑇 2 ∝ |𝜉|−3, as in the Kepler potential. Similarly, when
𝑏 = 0, the parabola has vertical symmetry and we have 𝑇 = cst, i.e., 𝑇 is independent of
the properties of the particle, as for the harmonic potential.

9.1.2 Third law for the apsidal angle Θ
All the results presented in the last paragraph regarding 𝑇 are also true for the apsidal
angle Θ. In particular, we can use the Hénon formula (8.15) in order to write the apsidal
angle for any orbit solely in terms of Λ and the parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒). To this end, we
start, as usual, with some geometry and Fig. 8.1 in mind. Consider a line ℒ intersecting
a generic isochrone parabola 𝒫 , both given by Eq. (9.2). Since Θ is independent of 𝜉, we
may choose a value of 𝜉 such that the orbit is circular. This can be done as follows. Keep-
ing Λ fixed, decreasing 𝜉 defines other lines with the same Λ and thus the same apsidal
angle Θ(Λ) for the associated orbits. In particular, 𝜉 can reach a critical value 𝜉𝐶 such
that the line ℒ becomes tangent to 𝒫 , at some point of abscissa 𝑥𝐶 . It is important to
notice that 𝜉𝐶 and 𝑥𝐶 are function of Λ only.

Let us focus on this very line ℒ𝐶 ∶ 𝑦 = 𝜉𝐶𝑥 − Λ2 and the associated circular orbit.
Its orbital radius is 𝑟𝐶 , such that 2𝑟2

𝐶 = 𝑥𝐶 . The period 𝑇 (𝜉𝐶) of this orbit is given by
Eq. (9.7). Now by definition of the angular momentum, we have, for this circular orbit

4For these potentials, one must venture into a world where the orbital radius and other physical
quantities become imaginary numbers. Yet, the law (9.7) still holds in these (strange) case.
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Λ = 𝑟2
𝐶 ̇𝜃. Since 𝑥𝐶 = 2𝑟2

𝐶 , this can be turned into a differential equality 2Λd𝑡 = 𝑥𝐶d𝜃.
Now, by definition of Θ, integrating the latter over a period 𝑇 (𝜉𝐶) readily gives

Θ = 2Λ𝑇 (𝜉𝐶)
𝑥𝐶

. (9.8)

Let us stress again that both 𝜉𝐶 and 𝑥𝐶 are functions of Λ, thus we just need a formula
for these in terms of (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) and Λ. Now we can apply the results of the last section,
regarding the intersections of 𝒫 and ℒ , below Eq. (9.2). In particular, in the present
context 𝜉𝐶 is such that Δ(𝜉𝐶 , Λ) = 0, with Δ given by Eq. (9.4). After some algebra, the
solution for 𝜉𝐶 is easily found to be

𝜉𝐶(Λ) = −𝑎Ξ𝐶 − 𝑐
𝑏Ξ𝐶 − 𝑑 where Ξ𝐶 ≡ 2𝑏Λ ± 2√𝑏2Λ4 − 𝑑Λ2 + 𝑒 , (9.9)

and the +/− sign should be used for the left-/right-oriented parabolae, respectively. Re-
garding the quantity 𝑥𝐶 , it can be found by writing the solution to Eq. (9.3) when Δ = 0.
We obtain easily

𝑥𝐶(Λ) = 𝑏Λ2

𝑎 + 𝑏𝜉𝐶
− 𝑐 + 𝑑𝜉𝐶

2(𝑎 + 𝑏𝜉𝐶)2 , (9.10)

where 𝜉𝐶 is given in terms of Λ by Eq. (9.9). Now it is just a matter of inserting Eqs. (9.10)
and (9.9) into Eq. (9.8) and do some algebra to obtain a formula for Θ. After a rather
lengthy but simple computation, we obtain the following law, valid for any particle orbiting
in any isochrone potential

Θ2

𝜋2Λ2 = 2𝑏2Λ2 − 𝑑
𝑏2Λ4 − 𝑑Λ2 + 𝑒 + 2𝑏√

𝑏2Λ4 − 𝑑Λ2 + 𝑒
. (9.11)

As for Eq.(9.7), we stress that Eq. (9.11) is valid for any orbit in any isochrone potential,
even the gauged and hollow ones. As a corollary of this general formula, one may insert
the Greek parameters (𝜖, 𝜆, 𝜔, 𝜇, 𝛽) introduced earlier, and find agreement with the results
of [588].

9.1.3 Geometrical reading of the third laws
The computation of the period 𝑇 and apsidal angle Θ via Eqs. (9.7) and (9.11) involves
the parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒), and can thus be made only if we know the algebraic equation
of the parabola. Here, we show that it is also possible to express 𝑇 and Θ entirely in
terms of geometrical quantities, i.e., compute them solely with Euclidean geometry, once
a parabola 𝒫 and a line ℒ is drawn in the Hénon plane. For the period 𝑇 , we need to
define three geometrical quantities

• ⃗𝜉 ≡ (1, 𝜉), generator of the line ℒ ,

• ⃗𝑁 ≡ (𝑎, 𝑏), generator of the symmetry axis of 𝒫 (controls its orientation),

• 𝑅 ≡ 𝛿/2| ⃗𝑁|3, the curvature radius of 𝒫 at its apex (controls its aperture).

Expressions for these quantities can be easily derived with the help of Sec. 8.3.1. We
can now rewrite Eq. (9.7) without the (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) parameters, using the unit vector �⃗� ≡

⃗𝑁/| ⃗𝑁|, simply as

𝑇 2 = 𝜋2

2
𝑅

|�⃗� ⋅ ⃗𝜉 |3
. (9.12)



226 9.2. ISOCHRONE ORBITS TRANSFORMATIONS

This formula should be compared to Kepler’s third law for the radial period as given by
Eq. (9.1). In a similar fashion, we can make a geometrical construction for the law of the
apsidal angle Θ. In particular, let ℓ± be the ordinate of the intersection points between
the branch 𝒫± and the 𝑦-axis (we thus discard the Hollowed potentials for the moment,
for which the parabola does not intersect the 𝑦-axis, and the Harmonic ones which have
only one). As we have seen already in Sec. 8.3.1, we have

ℓ± = −𝑑 ±
√

𝑑2 − 4𝑏2𝑒
2𝑏2 (9.13)

In terms of the Greek parameters, we can show easily that the quantity ℓ+ is nothing
but 𝜆, and that ℓ− is 𝜆 + 4𝜇𝛽. Now we can easily turn Eq. (9.13) into 𝑏2Λ4 − 𝑑Λ2 + 𝑒 =
𝑏2(ℓ++Λ2)(ℓ−+Λ2) and notice that the left-hand side appears precisely in the denominator
in Eq. (9.11). Therefore, we insert this result in Eq. (9.11), make a partial fraction
decomposition for the first term and obtain

Θ = 𝜋
√1 + ℓ+/Λ2 + 𝜄𝜋

√1 + ℓ−/Λ2 , (9.14)

where 𝜄 ∈ {−1, 1} is simply the sign of 𝑏 and determines the orientation (resp. left or
right) of the parabola. As for the period 𝑇 , we see that the apsidal angle Θ can be found
with only geometrical quantities that can be read off the parabola. In particular, ℓ±/Λ2 is
simply the ratio of the vertical distances between the 𝑦-intercept of ℒ and the branches5

𝒫±, as depicted in Fig. 9.1.
Finally, at the end of App. C.2.1 we provide yet another form for the third law 𝑇 (𝜉)

and Θ(Λ). For 𝑇 , this alternative form involves the slope and curvature of the parabola
at the circular point 𝐶 uniquely associated with the orbit. For Θ, this alternative involves
the curvature of the effective potential, when looked at in the Binet variable 𝑢 = 1/𝑟. The
interested reader may find these results useful in order to go further into the geometrical
properties of isochrony, e.g., for academic purposes. Along these lines, we stress that what
led to the mathematical equalities (9.7), (9.11) and other third laws in App. C.2.1 can be
seen as a geometrical method to compute the rather complex-looking integrals (8.6) and
(8.15), with 𝑌 (𝑥) given by Eq. (8.28) or Eq. (8.30). In particular, the fact that these rather
complex-looking integrals do not depend on Λ for 𝑇 , and on 𝜉 for Θ, is quite remarkable.

9.2 Isochrone orbits transformations
In this section, we provide a geometrical analysis that leads naturally to an explicit and
analytic parametrization of any isochrone orbit in polar coordinates. The essential idea is
the following: An isochrone orbit is associated with an arc of parabola in the Hénon plane.
There is one isochrone orbit for which we know an analytic expression: the Keplerian el-
lipse. Using linear transformations in the Hénon plane, we show how to map any arc of
parabola to a Keplerian one, and therefore establish a one-to-one correspondence between
any isochrone orbit and a Keplerian ellipse, the latter being used to parametrize the former.

5For the Kepler family, the two intersections degenerate into one and ℓ+ = ℓ−. For the
Harmonic family, ℓ+ goes to +∞ (think of a 𝜋/2-rotation turning 𝑦 = −√𝑥 into 𝑦 = 𝑥2).
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Figure 9.1: Geometrical quantities involved in the geometrical laws for 𝑇 (Eq. (9.12)) and for Θ
(Eq. (9.14)). In this figure, �⃗� is a unit vector and gives the asymptotic direction of the parabola,
𝑅 is the curvature radius at the apex, and ℓ± are the vertical distances between the 𝑦-intercept of
ℒ and the 𝑦-intercept of 𝒫±.

9.2.1 Reduced orbit
As we have seen many times before, an arc of parabola 𝒜 in the Hénon plane (𝑥, 𝑦) is
associated with an isochrone orbit in the physical space that will be denoted by 𝒪 . By
conservation of angular momentum, the particle orbits within a plane, equipped with the
usual polar coordinates (𝑟, 𝜃). We shall always choose the angle 𝜃 such that 𝜃 = 0 at
periapsis 𝑟 = 𝑟𝑃 .

When the particle moves on an isochrone orbit 𝒪 , its radius 𝑟 changes periodically
and can be mapped to a point 𝑀 that travels back and forth on the arc 𝒜 . However,
the converse is not true: A point 𝑀 ∈ 𝒜 of abscissa 𝑥 = 2𝑟2 corresponds to an infinite
number of points on 𝒪 , namely the points (𝑟, 𝜃 + 𝑘Θ)𝑘∈ℤ, precisely because of the radial
periodicity. To get a one-to-one correspondence, we can quotient the full orbit 𝒪 by
reflexions and rotations, to get the reduced orbit 𝒪𝑜, as depicted in Fig. 9.2. The full orbit
𝒪 can be constructed from 𝒪𝑜, which acts as a generator of the orbit and which, contrary
to the full orbit 𝒪 , is in a one-to-one correspondence with the arc 𝒜 : a point (𝑟, 𝜃) ∈ 𝒪𝑜
is uniquely linked to a point (𝑥, 𝑦) ∈ 𝒜 via 𝑥 = 2𝑟2.

9.2.2 Kepler parabola
We will need in this section a few results about the Kepler parabola 𝑦2 = 2𝜇2𝑥. It is
associated with the usual Kepler potential 𝜓(𝑟) = −𝜇/𝑟. The bifurcation diagram in
terms of (𝜉, Λ) for the Kepler potential is given in Fig. 8.11 with 𝛽 = 𝜖 = 𝜆 = 0, or
equivalently in Fig. (2.3) of [344]. Requiring that the values of (𝜉, Λ) generate a periodic
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Figure 9.2: The construction of a full orbit 𝒪 (right) from a reduced orbit 𝒪𝑜 (left). All points of
𝒪𝑜 have a different radius 𝑟 varying increasingly between periapsis 𝑟 = 𝑟𝑃 and apoapsis 𝑟 = 𝑟𝐴.
By reflexion with respect to 𝜃 = 0, one obtains the portion travelled in one radial period 𝑇 , and
the opening angle is therefore Θ. By successive rotations of angle Θ, the full orbit 𝒪 can be
constructed.

orbit (i.e., that they are in the grey region of Fig. 8.11) is equivalent to the following
algebraic inequalities:

Λ2 ≥ 0 and 0 > 𝜉 ≥ − 𝜇2

2Λ2 . (9.15)

In the Kepler potential, any bounded orbit is an ellipse whose focus is at the center of
polar coordinates. An elliptic orbit 𝒪 is made of one periapsis and one apoapsis, joined
by two symmetrical portions, as can be seen in the bottom left of Fig. 9.3. We will take
the reduced orbit 𝒪𝑜 to be the upper portion. From the classical solution to the Kepler
problem (see [344] and/or App. B.2), the reduced orbit 𝒪𝑜 can be given the following
parametric representation6

{𝑟(𝑠) = 𝑝 (1 + 𝜀 cos 𝑠)−1

𝜃(𝑠) = 𝑠 , 𝑠 ∈ [0, 𝜋] . (9.16)

In these equations, 𝜀 is the eccentricity of the ellipse, and 𝑝 is its semi-latus rectum
(again, see [344] and/or App. B.2 for details). They depend explicitly on the energy 𝜉 and
angular momentum Λ of the particle, as well as the central mass 𝜇 ≡ 𝐺𝑀 of the Keplerian
potential. They are given by

𝜀 ≡ √1 + 2Λ2𝜉
𝜇2 and 𝑝 ≡ Λ2

𝜇 , (9.17)

and one can see that Eq. (9.15) is actually equivalent to 𝜀 ∈ [0, 1[ and 𝑝 ≥ 0.

9.2.3 Linear transformation
We consider a reduced isochrone orbit 𝒪𝑜 in a central isochrone potential with finite mass
at the origin. Recall that 𝒪𝑜 is in a one-to-one correspondence with an arc of parabola 𝒜

6Note that if the periapsis is at (𝑟, 𝜃) = (𝑟𝑃 , 0), the reduced orbit 𝒪𝑜 is simply the upper half
of 𝒪 .
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in the Hénon plane that passes through the origin. This arc 𝒜 is defined as the portion
of a parabola 𝒫 that lies below a given line ℒ , both given by Eq. (9.2) with 𝑒 = 0

𝒫 ∶ (𝑎𝑥 + 𝑏𝑦)2 + 𝑐𝑥 + 𝑑𝑦 = 0 and ℒ ∶ 𝑦 = 𝜉𝑥 − Λ2 . (9.18)
Now let us apply the following linear transformation 𝐹 to the Hénon plane

𝐹 ∶ (𝑥, 𝑦) ↦ (−𝑐𝑥 − 𝑑𝑦, 𝑎𝑥 + 𝑏𝑦) ≡ ( ̄𝑥, ̄𝑦) . (9.19)
Following Eq. (9.19), any quantity 𝑋 that has been mapped by 𝐹 will be denoted

with a bar as �̄� ≡ 𝐹(𝑋). For instance, a point 𝑀 of coordinates (𝑥, 𝑦) on 𝒜 will be
mapped to the point �̄� with coordinates ( ̄𝑥, ̄𝑦) = 𝐹(𝑥, 𝑦) given by Eq. (9.19). Since the
set of parabolae and the set of lines are stable under affine transformations (and thus
linear ones), ̄𝒫 = 𝐹(𝒫 ) is still a parabola and ̄ℒ = 𝐹(ℒ ) still a line. The parameters
(𝑎, 𝑏, 𝑐, 𝑑) in Eq. (9.19) are precisely these of the parabola 𝒫 in Eq. (9.18) and are not
chosen randomly. It is straightforward to find its implicit equation which reads

̄𝒫 ∶ ̄𝑦2 = ̄𝑥 . (9.20)
In view of the previous section, it is clear from Eq. (9.20) that 𝐹 maps 𝒫 to a Keplerian
parabola with mass parameter 𝜇 = 1/

√
2. Regarding the image ̄ℒ of the line ℒ , a quick

computation gives the following equation

̄ℒ ∶ ̄𝑦 = ̄𝜉 ̄𝑥 − Λ̄2 , with ̄𝜉 = −𝑎 + 𝑏𝜉
𝑐 + 𝑑𝜉 and Λ̄2 = − 𝛿Λ2

𝑐 + 𝑑𝜉 . (9.21)

The image arc ̄𝒜 is a portion of ̄𝒫 , although we do not know yet if it lies below ̄ℒ . If it
does, then ̄𝒜 is a Keplerian arc and the associated orbit is an ellipse. Let us first ensure
that ̄𝒜 indeed corresponds to a well-defined elliptic orbit. According to the inequalities
(9.15) with 𝜇 = 1/

√
2, a Keplerian orbit is periodic provided that Λ̄2 ≥ 0, ̄𝜉 < 0 and

̄𝜉 > −1/4Λ̄2. We now argue that these three conditions are always satisfied, in the three
following steps:

• From Kepler’s generalized third law (9.7) and 𝛿 > 0, we have 𝑎 + 𝑏𝜉 < 0. Con-
sequently, by Eq. (9.21), the two conditions ̄𝜉 < 0 and Λ̄2 ≥ 0 hold if and only if
𝑐 + 𝑑𝜉 < 0.

• The condition 𝑐 + 𝑑𝜉 < 0 is a geometrical consequence of all hypotheses (𝐻𝑖) that
are, by assumption, verified since the initial orbit 𝒪 is isochrone. (The proof is easy
but not central here; it can be found in App. C.2.4.) At this stage, we thus have
̄𝜉 < 0 and Λ̄2 ≥ 0.

• Linear transformations preserve the existence of intersection points; therefore, ̄ℒ
intersects the Kepler parabola ̄𝒫 twice. Along with ̄𝜉 < 0 and Λ̄2 ≥ 0, we can check
easily that these intersections are necessarily on the convex branch. Consequently,
the orbit is an ellipse with eccentricity ̄𝜀 = √1 + 4Λ̄2 ̄𝜉 ∈ [0, 1[, and therefore,
̄𝜉 > −1/4Λ̄2 holds.

To summarize, we can map any isochrone arc 𝒜 to a Keplerian one ̄𝒜 with mass 𝜇 = 1/
√

2
using an appropriate linear transformation 𝐹 given by Eq. (9.19). According to Keplerian
dynamics, the orbit ̄𝒪 associated with ̄𝒜 is an ellipse whose polar equation is

̄𝑟( ̄𝜃) = ̄𝑝
1 + ̄𝜀 cos ̄𝜃 with ̄𝜀 = √1 + 4Λ̄2 ̄𝜉 and ̄𝑝 =

√
2Λ̄2 . (9.22)

We thus have a mapping between the generic isochrone arc 𝒜 and the Keplerian one ̄𝒜 ,
i.e., we have established the upper part of Fig. 9.3. The next step is to extend this to the
lower part of Fig. 9.3, i.e., link the polar coordinates of each orbit.
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Figure 9.3: Any reduced isochrone orbit 𝒪𝑜 = (𝑟, 𝜃) (red, bottom right) can be put in correspon-
dence with a reduced Keplerian ellipse ̄𝒪𝑜 = ( ̄𝑟, ̄𝜃) (red, bottom left). The mapping 𝑟( ̄𝑟), 𝜃( ̄𝜃) can
be obtained by going into the Hénon plane and making a linear transformation 𝐹 to relate the arcs
of parabolae associated with 𝒪𝑜 (red, top right) and ̄𝒪𝑜 (red, top left) (see details in the text).

9.2.4 General isochrone orbit
Consider a point 𝑁 = (𝑟, 𝜃) on a reduced isochrone orbit 𝒪𝑜. It is in a one-to-one cor-
respondence with the point 𝑀 ∈ 𝒜 of abscissa 𝑥 = 2𝑟2. The point 𝑀 = (𝑥, 𝑦) is in
turn associated with a unique point �̄� = ( ̄𝑥, ̄𝑦) on the Keplerian parabola (9.20) and
thus with a unique point 𝑁 = ( ̄𝑟, ̄𝜃) on the reduced elliptic orbit �̄�𝑜. This is all depicted
in Fig. 9.3. The goal now is to express (𝑟, 𝜃) of the generic isochrone orbit in terms of ( ̄𝑟, ̄𝜃).

We start with the radius. By inverting Eq. (9.19) we write 𝑥 = 𝛿−1(𝑏 ̄𝑥 + 𝑑 ̄𝑦). Now �̄�
is on the convex branch of the Keplerian parabola (9.20); therefore, ̄𝑦 = −

√
̄𝑥. Combining

these two equations readily gives a relation between the abscissa of the two points 𝑀 and
�̄� , namely

𝑥 = 𝛿−1(𝑏 ̄𝑥 − 𝑑
√

̄𝑥) ⇒ 𝑟 = √ ̄𝑟
𝛿 (𝑏 ̄𝑟 − 𝑑√

2
) , (9.23)

where we simply used the definition of Hénon variables for each orbit, i.e., ̄𝑥 = 2 ̄𝑟2 and
𝑥 = 2𝑟2 to get the second equation, and 𝛿 = 𝑎𝑑 − 𝑏𝑐 ≠ 0 (see Sec. 8.3.1). Now if we
take a point ( ̄𝑟, ̄𝜃) on the Keplerian reduced ellipse, then while ̄𝜃 varies in [0, 𝜋], ̄𝑟 changes
according to Eq. (9.22), and 𝑟 changes as well according to Eq. (9.23). Therefore, we
can use ̄𝜃 as a parameter, denoted 𝑠, to track the radius 𝑟 on 𝒪𝑜. To this end, we insert
Eq. (9.22) into Eq. (9.23) and perform some algebraic manipulations to find that the radius
𝑟 of the particle on a generic reduced isochrone orbit 𝒪𝑜 can be parametrized by 𝑟 = 𝜚(𝑠),
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𝑠 ∈ [0, 𝜋], where

𝜚(𝑠) ≡
√𝑐1 + 𝑐2 cos 𝑠

1 + 𝑐3 cos 𝑠 , (9.24)

for some constants 𝑐1, 𝑐2 and 𝑐3 that depend on (𝑎, 𝑏, 𝑐, 𝑑) and (𝜉, Λ), given by

𝑐1 = 2𝑏𝛿Λ4

(𝑐 + 𝑑𝜉)2 + 𝑐2
𝑐3

, 𝑐2 = Λ2𝑑
𝑐 + 𝑑𝜉 𝑐3 and 𝑐3 = √1 + 4𝛿Λ2(𝑎 + 𝑏𝜉)

(𝑐 + 𝑑𝜉)2 . (9.25)

We note incidentally that 𝑐3 is actually the eccentricity ̄𝜀 of the parametrizing ellipse
(9.22). Now we seek to find a similar parametrization for the angle 𝜃. Since ̄𝜃 = 𝑠 is our
parameter, all we need is an expression of 𝜃 in terms of ̄𝜃. To this end, we start by writing
the following chain rule

d𝜃
d ̄𝜃 = d𝜃

d𝑡
d𝑡
d𝑥

d𝑥
d ̄𝑥

d ̄𝑥
d ̄𝑡

d ̄𝑡
d ̄𝜃 . (9.26)

In this equation, the time ̄𝑡 is the one associated with the dynamics of the Keplerian orbit
̄𝒪 , i.e., such that energy and angular momentum conservation read

1
16(d ̄𝑥

d ̄𝑡 )
2

= ̄𝜉 ̄𝑥 − Λ̄2 − ̄𝑦 and Λ̄ = ̄𝑥
2

d ̄𝜃
d ̄𝑡 . (9.27)

We now express each factor on the right-hand side of Eq. (9.26) in terms of ̄𝜃, in order
to integrate a first order ODE. For the first and last terms, we use angular momentum
conservation in each orbit: Eq. (8.5) for 𝒪 and Eq. (9.27) for ̄𝒪 . Similarly, in the second
and second-to-last terms we use energy conservation: Eq. (8.4) for 𝒪 and Eq. (9.27) for

̄𝒪 . Inserting these results in Eq. (9.26) readily gives

d𝜃
d ̄𝜃 = ̄𝑥

𝑥
d𝑥
d ̄𝑥

Λ
Λ̄(

̄𝜉 ̄𝑥 − Λ̄2 − ̄𝑦
𝜉𝑥 − Λ2 − 𝑦)

1/2
. (9.28)

To simplify this equation, we express ( ̄𝑥, ̄𝑦) in terms of (𝑥, 𝑦) using Eq. (9.19) and ( ̄𝜉, Λ̄)
in terms of (𝜉, Λ) using Eq. (9.21). When doing so, the last two terms on the right-hand
side compensate each other exactly. The only terms contributing on the right-hand side
of Eq. (9.28) are the first two, and they can be simplified with the help of Eq. (9.23). In
the end, we find

d𝜃
d ̄𝜃 = 1

2 + 1
2

𝑏
𝑏 − 𝑑/

√
2 ̄𝑟

. (9.29)

The final step is to insert Eq. (9.22) into Eq. (9.29). We then obtain a first-order ODE
that can then be integrated using the usual change of variables 𝑢 = tan ̄𝜃/2. Once this
integration is done and the initial condition is chosen,7, we find that the angle 𝜃 of the
particle on a generic reduced isochrone orbit 𝒪𝑜 can be parametrized by 𝜃 = 𝜗(𝑠), with
𝑠 ∈ [0, 𝜋], where

𝜗(𝑠) ≡ 𝑠
2 + 𝑐4 arctan(𝑐5 tan 𝑠

2) , (9.30)

for some constants 𝑐4 and 𝑐5 that depend on (𝑎, 𝑏, 𝑐, 𝑑) and (𝜉, Λ); given by

𝑐4 = 𝑏Λ√
𝑏2Λ2 − 𝑑

and 𝑐5 = √1 − 2𝑑(𝑐 + 𝑑𝜉)𝑐3
2𝑏𝛿Λ2 + 𝑑(𝑐 + 𝑑𝜉)(1 + 𝑐3) . (9.31)

7We choose 𝜃 such that 𝜃 = 0 at initial 𝑟 = 𝑟𝑃 . Since ̄𝑟𝑃 is sent to 𝑟𝑃 , we require 𝜃 = 0 when
̄𝜃 = 0.
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9.2.5 Summary and remarks
To summarize, we have found a parametrization for any reduced orbit 𝒪𝑜 in an isochrone
potential 𝜓 with finite central mass. To get the full orbit 𝒪 from 𝒪𝑜, we follow Fig. 9.2.
In particular, we add to 𝒪𝑜 its symmetric with respect to the 𝑥-axis, by extending the
range of the parameter 𝑠 from [0, 𝜋] to [−𝜋, 𝜋].8 We then obtain a piece 𝒪𝑇 of the orbit
that spans a full radial period 𝑇 , or equivalently a full apsidal angle Θ. The full orbit 𝒪
is then obtained by copying and pasting the piece 𝒪𝑇 , albeit rotated anti-clockwise by an
angle 𝑛Θ, for all 𝑛 ∈ ℤ. In particular, any orbit 𝒪 in a potential with finite central mass
can be parametrized by

𝒪 = ⋃
𝑛∈ℤ

𝒪𝑛 where 𝒪𝑛 ≡ {(𝑟, 𝜃) = (𝜚(𝑠), 𝜗(𝑠) + 𝑛Θ) , 𝑠 ∈ [−𝜋, 𝜋]} , (9.32)

with 𝜚(𝑠) and 𝜗(𝑠) given by Eqs. (9.24) and (9.30), respectively. By construction, when
𝑠 = 0, the particle is at periapsis (𝑟𝑃 , 0) and when 𝑠 = 𝜋 it is at apoapsis (𝑟𝐴, Θ/2). The
latter implies that Θ = 𝜋(1 + 𝑐4), a result that can be checked by comparing Eqs. (9.11)
and (9.31). The special case of the Keplerian ellipse of eccentricity 𝜀 and semi-latus rec-
tum 𝑝 corresponds to (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5) = (𝑝2, 0, 𝜀, 1, 1).

This parametrization covers any isochrone orbit in a potential associated with a finite
mass at the center. However, it can be extended easily to orbits in gauged potentials
(with 𝜆 ≠ 0, i.e., infinite central mass) and to hollow potentials (with 𝑥𝑣 > 0, i.e., un-
defined around the origin), by considering affine transformations instead of only linear
ones. Indeed, starting from the appropriate parabola crossing the origin, with a verti-
cal (resp. horizontal) translation, one can reach any orbit in a gauged (resp. hollow)
potential. In particular, one can follow the previous method and send any parabola
𝒫 ∶ (𝑎𝑥 + 𝑏𝑦)2 + 𝑐𝑥 + 𝑑𝑦 + 𝑒 = 0 to the Keplerian parabola ̄𝒫 ∶ ̄𝑦2 = ̄𝑥 by applying
to 𝒫 the affine transformation 𝐹 ∘ 𝐺, composed of the linear map 𝐹 given by Eq. (9.19)
and the translation 𝐺 ∶ 𝑥 ↦ 𝑥 − 𝑒. The computation can be done to find an analytic
parametrization, with a little more work in the integration of the ODE expressing 𝜃 in
terms of ̄𝜃, cf. Eq. (9.28). We leave this as an exercise to the interested reader.

Speaking of Eq. (9.28), we have seen that the last two terms on the right-hand side
cancel each other. Notice that it would also have been the case if the following assump-
tions had been made: 𝜉𝑥 − 𝑦 = ̄𝜉 ̄𝑥 − ̄𝑦 and Λ = Λ̄. In [588], the authors precisely make
these assumptions and the consequence was twofold. On the one hand, not all orbits can
be reached from the Keplerian one (only the ones associated with arcs that verify theses
two geometrical constraints). Therefore, the so-called bolst transformations cannot bridge
between any two isochrone orbits. On the other hand, these bolsts form a subgroup of
the linear transformations, whose additive representation exhibits similarities with the
Lorentz group (to some extent), allowing for some analogies with special relativity, for
a particular subclass of bolsts (the so-called ‘𝑖−bolst). However, as we have seen, the
integration of Eq. (9.28) is tractable without any additional assumption, and considering
linear transformations is the only way to describe all isochrone orbits. To summarize,
although we believe that the special relativistic analogies presented in [588] may be of
pedagogical interest, the fundamental group associated with isochrony is that of parabola
arcs equipped with affine transformation. Any other subgroup will necessarily miss the

8Indeed, from Eqs. (9.24) and (9.30), two points (𝜚(𝑠), 𝜗(𝑠)) and (𝜚(𝑠), 𝜗(−𝑠)) are symmetric
with respect to 𝜃 = 0 for 𝑠 ∈ [0, 𝜋] simply because cos is even and 𝑠 ↦ 𝑠, tan and arctan are odd.
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description of some isochrone orbits.

One last comment, to motivate the need for a Hamiltonian treatment of the problem,
as presented in Chap. 10. The above calculation is, in a sense, a geometrical way of
solving the equations of motion (7.16), under the assumption that the potential 𝜓(𝑟) is
isochrone. Given the general form of these potentials (the five equations (8.34)-(8.39)),
there was little hope that such an analytic solution existed. Fortunately, we can bypass
this complexity by going to the Hénon plane and, do some geometry, and come back, to get
the solution. This solution is given as a parametric system (Eqs. (9.24) and (9.30), with
the parameters 𝑠 following the polar angle of a Keplerian ellipse. However, no insight can
be given as to the nature of this parameter, except perhaps by examining the polar angle,
Eq. (9.30), which does look familiar to the eccentric anomaly of the Kepler problem with
the term arctan(… tan 𝑠/2). In Chap. 10, we will show that this parameter 𝑠 is actually
the generalization to any isochrone potential of the Keplerian eccentric anomaly.

9.3 Classification of isochrone orbits
Now that we have an analytic expression for any isochrone orbit, we will classify each of
them according to the isochrone potential in which it exists. In classical textbooks, the
two academic orbits turn out to be ellipses: In the Kepler problem, these ellipses have
the origin at one of their focii, and in the harmonic problem, the ellipse is centered on
the origin. We will of course recover these results here, and try to exhibit the plethora of
orbits arising from all five families of isochrone potentials, one by one.

9.3.1 General properties of isochrone orbits
It is well known that in gravitational mechanics, a periodic orbit in a generic radial poten-
tial consists in a rosette [344]. Although no clear definition of a rosette exists, all have in
common a generally not-closed, flower-shaped plane curve that may wrap numerous times
around the origin while oscillating between an periapsis and apoapsis. Of course, we will
recover all these results here. In Figs. 9.4 through 9.7, we depict the orbits of particles in
each of the five families of isochrone potentials, such as defined in Sec. 8.3.2. However,
all isochrone orbits exhibit similar properties, due to the following fact: Any isochrone
potential 𝜓(𝑟) can be written as

𝜓(𝑟) = 𝜖 + 𝜆
2𝑟2 + 𝑓(𝑟) , (9.33)

where 𝑓 is an increasing function or 𝑟, as can be checked on the definitions of the potentials
𝜓𝑖 in Sec. 8.3.2. This is true for all families but the Hollowed one, the study of which we
relegate to Sec. 9.3.5 below.

In the case 𝜆 ≤ 0, it is immediate from Eq. (9.33) that 𝜓 will be increasing and
therefore be associated with a gravitational potential, i.e., with positive mass density 𝜌.
Consequently, the orbiting particle will feel an ever-attracting force and its orbit will be
some kind of rosette [344], as is well known in classical mechanics. In particular, the apsi-
dal angle in such a case will always verify Θ ≥ 𝜋 since the particle, when approaching the
origin, misses it as its angular velocity 𝑣𝜃 = Λ/𝑟 increases, while 𝑟 → 0. Given that the
harmonic and Kepler potentials are isochrone, it is no surprise that all isochrone orbits
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with 𝜆 ≤ 0 will be some kind of precessing ellipses, as we shall see in the following sections.

We mention that in the 𝜆 ≤ 0 case, any particle (𝜉, Λ) with Λ2 = −𝜆 will fall toward
the center without stopping, and will take an infinite amount of time to reach it, as on
the innermost orbit depicted in Fig. 9.4. This is because the 𝜆/2𝑟2 term will balance the
centrifugal term Λ2/2𝑟2 and the particle will not feel that centrifugal wall anymore. In
terms of the parabola, this happens when the line ℒ intersects the parabola 𝒫 once, on
the 𝑦-axis. This is a generalization of the well-known radial orbits [344], i.e., these with
Λ = 0. When 𝜆 = 0, only particles with Λ = 0 travel on radial orbits. As their angular ve-
locity 𝑣𝜃 = Λ/𝑟 vanishes they go in a straight line to the center. When 𝜆 < 0, although the
centrifugal wall is not here anymore, they still have 𝑣𝜃 ≠ 0 and will thus inspiral toward
the center. These orbits are all depicted as the innermost ones in Fig. 9.4 through Fig. 9.6.

In the case 𝜆 > 0, Eq. (9.33) shows that 𝜓 will be decreasing around the origin 𝑟 = 0,
and therefore be associated with a repulsive force in this region, associated with a negative
mass density. The particle will therefore be repelled at periapsis. Far from the origin,
however, the potential is always decreasing, and the particle will be attracted at apoap-
sis. This situation is closer to electrostatics than to gravitational dynamics, and shows
that isochrony is not unique to gravitational systems, and can be found in the motion of
charged, test particles in central electrostatic potentials. This special property of 𝜆 > 0
potentials will imply that Θ can take value in [0, 𝜋], and isochrone orbits will be drastically
different.

We now turn to the analysis of orbits in each of the five families of isochrone potentials.
We stress that the general shape of the orbits can be classified only by the value of the
𝜆 parameter. In particular, we will set 𝜖 = 0 for each potential as it just amounts to
re-scaling the potential energy, and with a good choice of units for time and space, we
may always set 𝜔 = 1 for the harmonic family and 𝜇 = 𝛽 = 1 in the Bounded, Hénon,
Kepler and Hollowed families. These choices do not change the general characteristics of
the orbit. A dynamical system formulation of the problem (detailed in App. C.1.1) has
been integrated numerically and used to check (and found perfect agreement with) all the
isochrone formulae: (9.7) for the radial period 𝑇 , (9.11) for the apsidal angle Θ and the
parametrization (9.32) for the shape of the orbit.

9.3.2 Harmonic family
According to Sec. 8.3.2, a potential 𝜓 in the Harmonic family is given by

𝜓(𝑟) = 𝜖 + 𝜆
2𝑟2 + 1

8𝜔2𝑟2 , (9.34)

for some 𝜔 > 0 and (𝜖, 𝜆) ∈ ℝ2. Given the potential, the values of (𝜉, Λ) that yield periodic
orbits are given by the inequalities (8.43). With the help of Sec. 8.3.2, we may insert the
Greek parameters in place of the Latin ones into Eq. (9.7) and (9.11) to find the period
𝑇 (𝜉) and apsidal angle Θ(Λ) in terms of 𝜖, 𝜆, 𝜔

𝑇 = 2𝜋
𝜔 , and Θ = 𝜋Λ√

Λ2 + 𝜆
. (9.35)

• In the case 𝜆 = 0, we have Θ = 𝜋 for all orbits. Up to the additive constant 𝜖, 𝜓1
is the well-known harmonic (or Hooke) potential. The dynamics can be solved analyti-
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cally, and the shape of the orbit is an ellipse centered on the origin (bottom left of Fig. 9.4).

• In the case 𝜆 < 0, from Eq. (9.35) we have Θ > 𝜋. When 𝜋 < Θ < 2𝜋, the
particle makes less than one turn in one radial period 𝑇 . One such orbit is depicted on
the bottom-right of Fig. 9.4. When Θ > 2𝜋 the orbit winds up at least once around the
origin, and the winding number can become arbitrarily large with 𝜆.

• In the case 𝜆 > 0, we have Θ ∈]0, 𝜋[. In this peculiar case, the orbits need many
periods in order to make a complete turn around the origin. This is because particles are
repelled when reaching their periapsis. Such orbits are depicted at the top of Fig. 9.4.
When the orbit is close to a circular one this gives rather odd shapes, such as the top-right
of Fig. 9.4.

Figure 9.4: Five isochrone orbits, generated by the same particle (𝜉, Λ) orbiting in five different
potentials of the harmonic family 𝜓1, with varying 𝜆. In the corners, the four orbits are depicted
over several periods 𝑇 . The curves in the middle, aside each orbit in the corner, is the highlighted,
first period [0, 𝑇 ] of each orbit, allowing for an easier comparison. Each of these orbits has the same
initial position (𝑟, 𝜃) = (𝑟0, 0) (black dot on the right) and same initial velocity. The innermost
orbit (in red) spirals toward the origin, and the four outer ones are found at 𝑟 = 𝑟0 again (black
dots on the dashed circle 𝑟 = 𝑟0) after one radial period 𝑇 , by definition. The spiraling one
corresponds to the 𝜆 = −Λ2 case, discussed in the text.
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9.3.3 Bounded family
According to Sec. 8.3.2, a potential 𝜓 in the Bounded family is given by

𝜓(𝑟) = 𝜖 + 𝜆
2𝑟2 + 𝜇

𝛽 + √𝛽2 − 𝑟2 , (9.36)

for some 𝜇 > 0, 𝛽 > 0 and (𝜖, 𝜆) ∈ ℝ2. Given the potential, the values of (𝜉, Λ) that yield
periodic orbits are given by the inequalities (8.46). As established in Sec. 9.1, the period
𝑇 (𝜉) and apsidal angle Θ(Λ) of the orbit are given by

𝑇 = 𝜋√
2

𝜇
(𝜉 − 𝜖)3/2 and Θ = 𝜋Λ√

Λ2 + 𝜆
− 𝜋Λ

√Λ2 + 𝜆 + 4𝜇𝛽
. (9.37)

The most striking feature of orbits in Bounded potentials is the angular, almost non-
differentiable, turning point at the apoapsis, as depicted in Fig. 9.5. In fact, these orbits
are smooth and we provide some insight as to why they seem pointy in App. C.2.5. Re-
garding the classification of orbits, it will be very similar to that of the harmonic family,
by examining the function Θ(Λ) given by Eq. (9.37), the properties of which can be found
in App. C.2.3. We set 𝜖 = 0 and 𝜇 = 𝛽 = 1 in Eq. (9.36) by a good choice of units, and
the shape of the orbits depends on the sign of 𝜆.

• In the case 𝜆 = 0, Θ decreases with Λ, but varies in ]0; 𝜋]. The particle needs
many periods to make a full rotation around the center. If the apoapsis are peaked, then
this can lead to peculiar, star-shaped orbits, such as the bottom left one in Fig. 9.5. It is
even possible to tune Λ so that Θ is commensurable with 𝜋 in order to obtain any regular
polygon whose vertices are the apsides of the orbit.

• In the case 𝜆 < 0, Θ decreases with Λ and can take arbitrary values in ]0, +∞[. As
we said for the harmonic family, the orbit may wrap around the origin numerous times in
one period, as depicted at the bottom of Fig. 9.5.

• In the case 𝜆 > 0, Θ is not monotonous with respect to Λ. It is increasing from
0 to some maximum value Θmax < 𝜋 when Λ equals some critical value Λ𝑜, and then, it
decreases to zero for Λ𝑜. In particular, all orbits have a maximum apsidal angle that is
less than 𝜋. However, we are again in the case where the particle is repelled at periapsis,
giving the orbits a different look than the 𝜆 = 0 case. Two examples are depicted at the
top of Fig. 9.5.

9.3.4 Hénon family
According to Sec. 8.3.2, a potential 𝜓 in the Hénon family is given by

𝜓(𝑟) = 𝜖 + 𝜆
2𝑟2 − 𝜇

𝛽 + √𝛽2 + 𝑟2 , (9.38)

for some 𝜇 > 0, 𝛽 ≥ 0 and (𝜖, 𝜆) ∈ ℝ2. Given the potential, the values of (𝜉, Λ) that yield
periodic orbits are given by the inequalities (8.46) (with a minus sign in front of 𝜇2). As
established in Sec. 9.1, the period 𝑇 (𝜉) and apsidal angle Θ(Λ) of the orbit are given by

𝑇 = 𝜋√
2

𝜇
(𝜖 − 𝜉)3/2 and Θ = 𝜋Λ√

Λ2 + 𝜆
+ 𝜋Λ

√Λ2 + 𝜆 + 4𝜇𝛽
. (9.39)
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Figure 9.5: Some orbits in various potentials of the Bounded family 𝜓2, with varying 𝜆. See
Fig. 9.4 for the explanation of the figure.

Regarding the classification of orbits, we apply the same method that we used for the
two other families. In particular, the variations of the function Θ(Λ) by Eq. (9.39) are
given in App. C.2.3 and we set 𝜖 = 0 and 𝜇 = 𝛽 = 1 in Eq. (9.36) by a good choice of
units. The shape of the orbits depends on the sign of 𝜆.

• In the case 𝜆 = 0, Θ increases with Λ and varies in [𝜋; 2𝜋[. The particle needs at
least two periods to make a full rotation around the center. The Kepler potential belongs
to the Hénon family with 𝜆 = 𝛽 = 0, and has Θ = 2𝜋, recovering the elliptic orbit. It is
thus not a surprise that most orbits in the Hénon family resemble precessing ellipses. One
such orbit is depicted at the bottom of Fig. 9.6.

• In the case 𝜆 < 0, Θ is, in general, not monotonous with respect to Λ. The precise
shape of the function Θ(Λ) can be found in App. C.2.2, but generally speaking, Θ is de-
creasing from +∞ to some minimum value Θmin < 𝜋 when Λ equals some critical value Λ𝑜,
and it increases to reach 2𝜋 for Λ > Λ𝑜. For some values of 𝜆, the critical angular momen-
tum Λ𝑜 goes to +∞, and Θ(Λ) is then strictly decreasing, varying between 2𝜋 and +∞. In
either case, Θ > 𝜋 and the periapsis can be at an arbitrarily large radius, leading to an or-
bit with numerous windings around the center, as depicted on the bottom-right of Fig. 9.6.

• In the case 𝜆 > 0, the apsidal angle Θ is strictly increasing between 0 and 2𝜋.
This case is peculiar because the shape of the orbit will depend on the location of the
periapsis. Indeed, note that since 𝜆 > 0, the potential is always decreasing in some region
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surrounding the origin. If the periapsis is in this region, then the particle will be repelled,
and we will have necessarily 0 < Θ < 𝜋, as usual for repelled orbits. On the contrary,
if the periapsis is outside the region where the potential decreases, the particle is always
attracted and 𝜋 < Θ < 2𝜋.

Figure 9.6: Some orbits in various potentials of the Hénon family 𝜓3, with varying 𝜆. See Fig. 9.4
for the explanation of the figure. The Hénon family contains the usual Kepler potential when
(𝛽, 𝜆) = (0, 0), with closed ellipses. Consequently, for (𝛽, 𝜆) ≠ (0, 0) the orbits are similar to
precessing ellipses.

9.3.5 Hollowed family
According to Sec. 8.3.2, a potential 𝜓 in the Hollowed family is given by

𝜓(𝑟) = 𝜖 + 𝜆
2𝑟2 − 𝜇

𝑟
√1 − 𝛽2

𝑟2 , (9.40)

for some 𝜇 > 0, 𝛽 ≥ 0 and (𝜖, 𝜆) ∈ ℝ2. Given the potential, the values of (𝜉, Λ) that yield
periodic orbits are given by the inequalities (8.46) (with a minus sign in front of 𝜇2). The
formulae for the period 𝑇 (𝜉) and the apsidal angle Θ(Λ) can be found using the definition
of the Greek parameters in terms of the Latin ones, and then inserting these relations in
Kepler’s third laws (9.7) and (9.11). We find

𝑇 = 𝜋√
2

𝜇
(𝜖 − 𝜉)3/2 and Θ = 𝜋Λ

√Λ2 + 𝜆 + 2i𝜇𝛽
+ 𝜋Λ

√Λ2 + 𝜆 − 2i𝜇𝛽
, (9.41)
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where the imaginary unit i is just here to provide a concise formula (any branch cut of the
complex square root can be taken, cf. what is shown in App. B.3.1), the result being a real
number as can be checked easily. The two conjugate complex numbers under the square
root in Eq. (9.41) are reminiscent of the fact that the Hollowed potential has a parabolae
does not cross the 𝑦-axis. Consequently the equation “Hollowed parabola = 𝑦-axis” has
two solutions that are complex conjugate, whence these two terms. We note that, just
as in the Hénon case, we recover the classical relation Θ = 2𝜋 for the Kepler potential,
corresponding to 𝜆 = 0 = 𝛽. When written as a purely real number (for example by
squaring it), the function Λ ↦ Θ(Λ) is easily shown to be non-monotonous. Again, a
proof of this like for the other four cases follows from the same arguments used for the
other potentials (as in App. C.2.2). Physically, the repulsion of the particle by the 𝑟 ≤ 𝛽
inner region follows the same principle as that of the outer region 𝑟 ≥ 𝛽 of the Bounded
potential, owing to the symmetry of this two cases, as previously mentioned.

Consider a particle orbiting the Hollowed potential (9.40), far away from the hollow
region, i.e., such that 𝛽 ≪ 𝑟. Then, the potential is approximately Keplerian, so that
near the apoapsis the orbit looks like an ellipse. This is what we see in Fig. 9.7, on the
right. Now the particle comes back. If it does not go near the 𝑟 ≃ 𝛽 region, nothing really
happens to it: it passes the origin from a distance. But if it approaches 𝑟 ≃ 𝛽, then we
see from Eq. (9.40) that the term on the right behaves as −2𝜇(𝑟 − 𝛽), which corresponds
to a centrifugal force linear in the distance to the sphere. Since all other terms become
mere constants, the only thing the particle feels is a repulsive force from the sphere 𝑟 = 𝛽:
it is repelled. This looks like a bounce when the particle comes very close to 𝑟 = 𝛽, and
the turn is very sharp (although still smooth). This is the same thing that happens at the
boundary 𝑟 = 𝛽 from within, in the Bounded potential, as discussed in Sec. 9.3.3. All the
qualitative behavior just discussed can be seen on Fig. 9.7.
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Figure 9.7: Some orbits in various potentials of the Hollowed family 𝜓5, with varying 𝜆, as
indicated in the top right corner. See Fig. 9.4 for the explanation of the figure. We clearly see the
“wall” at 𝑟 = 𝛽 where no particle can enter, leaving a hollow center. Particles that orbit close to
it are rapidly deflected, so much so that the apsidal angle becomes smaller.
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Hamiltonian analysis

Il faut faire très attention avant de dire que quelque chose n’est pas
dans Poincaré.

E. GHyS.

⋄

In the previous chapters, we used geometry as a tool to solve a differential system,
namely the motion of a test particle in an isochrone potential. From the Archimedean

characterization of parabolae to the expression of Kepler’s third law in terms of geometric
invariants, there does not seem to be a single feature in isochrony that is not expressible
in terms of Euclidean geometry. However, the motion of particles in isochrone potentials
is also (and primarily) a Hamiltonian problem. In fact, one can check that the starting
point of all derivations in the last chapter was the conservation of the particle’s energy.
In this tenth and last chapter, we will revisit Hénon’s isochrone problem in the light of
Hamiltonian mechanics, and thus switch from Euclidean to symplectic geometry. First, in
Sec. 10.1, we extend the generalization of Keplerian mechanics to all isochrone potentials,
namely with the derivation of an isochrone Kepler equation. Then, in Sec. 10.2, we
introduce the notion of Birkhoff normal form of a Hamiltonian, and compute the Birkhoff
invariants of the isochrone problem. These results are then exploited in Sec. 10.3, where we
use these invariants to derive, at once, and in a fully self-consistent way, the fundamental
theorem of isochrony, Bertrand’s theorem, and the isochrone Kepler’s third law.
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10.1 New methods of isochrone mechanics
Even though all credit must be given to Lagrange for pioneering the field of analytical
mechanics, there is a strong argument for associating Henri Poincaré to its modern for-
mulation. In his celebrated New Methods of Celestial Mechanics1 [598], and the following
“Mémoires” [599], Poincaré developed and explored the revolutionary idea of using geo-
metrical and topological techniques to determine the qualitative behavior and global prop-
erties of solutions to differential systems, rupturing with the ancestral methods devised
to find exact solutions. His ideas were then developed during all the twentieth century,
with applications that have proved useful to solve problems well beyond the sole scope of
celestial mechanics [344]. Perhaps the most ambitious problem that Poincare’s methods
was able to tackle was the qualitative resolution of the classical 𝑁 -body problem, which
ultimately gave birth to KAM-theory [600] and the stability analysis of quasi-integrable
Hamiltonian systems.

At the core of Hamiltonian mechanics lies the notion of periodic motion. The two
canonical examples are the two-body (or Keplerian) problem, and the harmonic oscillator,
which we have discussed a lot in the previous chapters. In the gravitational two-body
problem of classical mechanics (see chapter 2 in [601] for a nice presentation), the orbit is a
perfect ellipse. Therefore, an explicit, analytic polar equation 𝑟(𝜃) can be found. However,
no analytic solution can be found in the form (𝑟(𝑡), 𝜃(𝑡)), where 𝑡 is the time. However, it
is possible to find a parametric solution for all three, namely (𝑟(𝐸), 𝜃(𝐸), 𝑡(𝐸)), in terms
of the so-called eccentric anomaly 𝐸 (these classical results are collected in App. B.2). In
this first section, we derive a series of formulae that are closely related to this parametric
solution of the Keplerian problem, but that is actually true of any isochrone orbit. Quite
remarkably, all these formulae can be derived analytically in terms of (1) the properties
of the particle (𝜉, Λ) and (2) the properties of the isochrone potential (𝑎, 𝑏, 𝑐, 𝑑, 𝑒). We
derive these formulae, and compare them to the Keplerian case to motivate generalized
definitions. It should be noted that some of the following results were proposed in slightly
different forms as ”useful formula for numerical methods” in App. A of [586], and in
Sec. 5.3 of [601]. In both cases, this concerns only Hénon’s potential, and not the whole
class of isochrone.

10.1.1 Hamiltonian and action-angle variables
From now on, we consider the isochrone problem from the point of view of Hamiltonian
mechanics. But first, let us take a step back and let 𝐻 be the Hamiltonian a test particle in
a generic radial potential 𝜓(𝑟), not necessarily isochrone. In terms of the polar coordinates
adapted to the orbital plane (𝑟, 𝜃), the canonical momenta (𝑝𝑟, 𝑝𝜃) simply read ( ̇𝑟, Λ), as
is is well-known (we set the mass of the particle to 1). The constancy of the angular
momentum Λ then follows from the fact that 𝜃 is a cyclic variable. In these variables the
Hamiltonian reads

𝐻(𝑟, 𝜃, 𝑝𝑟, 𝑝𝜃) = 1
2(𝑝2

𝑟 + 𝑝2
𝜃

𝑟2 ) + 𝜓(𝑟) , (10.1)

Now we consider the problem in terms of action-angle variables. One way of doing this
is to consider the two conserved quantities that we already have at hand: the energy 𝜉
and the angular momentum Λ. However, the former is simply the numerical value of the

1to which the title of this section humbly pays tribute.
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Hamiltonian 𝐻. Instead, let us follow Poincaré2 and define some actions as the integral
invariants:

𝐽𝑖 ≡ 1
2𝜋 ∮ 𝑝𝑖d𝑞𝑖 , (10.2)

where 𝑖 ∈ {𝑟, 𝜃} and the integral is performed over any closed curve in phase space followed
during one orbital transfer (e.g., from one periastron to the following) [344, 590]. For the
angular part, this is almost tautological: 𝐽𝜃 ≡ 1

2𝜋 ∮ 𝑝𝜃d𝜃 = Λ, which is a constant of
motion. For the radial part, a quick computation provides

𝐽𝑟 ≡ 1
2𝜋 ∮ 𝑝𝑟d𝑟 ⇒ 𝐽𝑟 =

√
2

𝜋 ∫
𝑟𝐴

𝑟𝑃

(𝜉 − Λ2

2𝑟2 − 𝜓(𝑟))
1/2

d𝑟 , (10.3)

where 𝑟𝑃 and 𝑟𝐴 are the periastron and apoastron radii, respectively, and to get the second
identity we simply integrated 𝑝𝑟 as given by inverting Eq. (10.1), and setting 𝐻 = 𝜉 and
𝑝𝜃 = Λ there. We now have a set of actions which we will denote (𝐽𝑟, 𝐽𝜃) = (𝐽, Λ) from now
on, for simplicity and without risk of confusion. By definition of these action variables, the
Hamiltonian 𝐻 of the system is independent of their associated coordinates, the “angles”,
which we will call (𝑧𝐽 , 𝑧Λ). In general, if one want to compute explicitly the Hamiltonian
in terms of (𝐽, Λ), the integral (10.3) needs to be inverted. However, for generic radial
potentials 𝜓(𝑟), this integral is seldom expressible in terms of elementary functions. We
will now show that, under the assumption that 𝜓(𝑟) is isochrone, an explicit expression
for 𝐻 = 𝐻(𝐽, Λ) can be obtained.

One way of showing this would be to (1) take one of the five families of isochrone poten-
tials (given in the Chap. 8, Eqs. (8.34)-(8.39)), (2) compute the periastron and apoastron
in terms of (𝜉, Λ) by solving the algebraic equation (7.18), (3) insert all these in (10.3) and
compute the integral. And then, start over with the other isochrone families. Clearly, this
would be very tedious and there must be a way to take advantage of the many symmetries
of isochrony to avoid doing all these calculations. The particular symmetry that will help
us was already discussed in Chap. 7, but let us present it from scratch, for the reader’s ease.

The radial action 𝐽 generally depends on both constants of motion (𝜉, Λ), as clearly
expressed in (10.3). This dependence is twofold: direct, from the term 𝜉 − Λ2/2𝑟2 in the
integrand; and indirect, from the boundary of the integrals 𝑟𝑃 , 𝑟𝐴, that depend on (𝜉, Λ)
too. If one takes a partial derivative of (10.3) with respect to 𝜉 (or Λ), the indirect depen-
dence yields a vanishing contribution, since the integrand is precisely 0 when evaluated at
𝑟𝑃 or 𝑟𝐴 (recall Eq. (7.18)). Therefore, only the direct dependence contributes, and we
readily find3

𝜕𝐽
𝜕𝜉 = 𝑇

2𝜋 and 𝜕𝐽
𝜕Λ = − Θ

2𝜋 , (10.4)

as follows from comparing the result to the definitions of 𝑇 (𝜉, Λ) (7.20) and Θ(𝜉, Λ) (7.21).
The identities (10.4) are true of any radial potential, not necessarily isochrone. However,
in the case of an isochrone potential, we have by definition 𝑇 = 𝑇 (𝜉) and Θ(Λ). Therefore,

2Poincaré first introduced these eponymous invariants in Sec. 255 of his New Methods [602].
3Formulae (10.4) are true in general, and explicit formulae such as the r.h.s of (10.3) is not

necessary to derive (10.4) from 𝐽 = 1
2𝜋 ∮ 𝑝𝑟d𝑟. Fundamentally, this can be understood from the

fact that, locally around the equilibrium (circular orbit), the pair (𝐻, 𝑡) itself defines symplectic
coordinates (see [603] for more details).
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the two PDE’s in (10.4) are easily integrated and combined to give

𝐽(𝜉, Λ) = 1
2𝜋 ∫𝑇 (𝜉) d𝜉 − 1

2𝜋 ∫Θ(Λ) dΛ , (10.5)

where any antiderivative can be considered at this stage. We emphasize that whereas
(10.4) holds for any 𝜓, equation (10.5) only holds for isochrone 𝜓. To make more progress
towards the explicit expression of 𝐻, we need to refer to Chap. 9, in particular Sec. 9.1
where we derived the generalized Kepler’s third laws for 𝑇 and Θ. Let us rewrite them
here as

𝑇 2 = −𝜋2

4
𝛿

(𝑎 + 𝑏𝜉)3 , and Θ2

𝜋2Λ2 = 2𝑏2Λ2 − 𝑑
𝑏2Λ4 − 𝑑Λ2 + 𝑒 + 2𝑏√

𝑏2Λ4 − 𝑑Λ2 + 𝑒
, (10.6)

where we recall that 𝛿 ≡ 𝑎𝑑 − 𝑏𝑐 > 0. These “Kepler laws” are valid for any particle of
energy and angular momentum (𝜉, Λ) orbiting in any isochrone potential, parametrized by
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) as explained in Sec. 8.3.1. With the help of formulae (10.6), we can integrate
explicitly equation in (10.5) and obtain (when 𝑏 ≠ 0)4

𝐽(𝜉, Λ) = 1
2𝑏√ −𝛿

𝑎 + 𝑏𝜉 − 𝑅(Λ)
2𝑏 , (10.7)

where for convenience we introduced the function 𝑅(Λ) independent of 𝜉 and given by5

𝑅(Λ) ≡ √2𝑏2Λ2 − 𝑑 + 2𝑏√𝑏2Λ4 − 𝑑Λ2 + 𝑒 . (10.8)

It should be noted that while performing the integrals from (10.5) to (10.7), a con-
stant of integration should be included in the latter expression. This constant can be
shown to vanish by taking the Keplerian limit, for which on the one hand (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) =
(0, 1, −2𝜇2, 0, 0), and on the other 𝐽Ke = 𝜇/√−2𝜉 − Λ, as a classical calculation readily
shows. Equation (10.7) gives an exact formula for the radial action of all non-harmonic
isochrone potentials. For the harmonic class (𝑏 = 0), the computation is given in App. B.2
(see equation (B.21) there).

Going back to the Hamiltonian 𝐻, for any pair (𝐽, Λ) corresponding to a well-defined
orbit, its numerical value is the energy 𝜉 of the particle. Therefore, we may solve equation
(10.7) for 𝜉 in terms of (𝐽, Λ), to obtain the expression of 𝐻(𝐽, Λ). This readily gives

𝐻(𝐽, Λ) = −𝑎
𝑏 − 𝛿

𝑏(2𝑏𝐽 + 𝑅(Λ))2 , (10.9)

with 𝑅(Λ) given in (10.8). Equation (10.9) provides the general expression for the Hamil-
tonian of a particle in any non-harmonic isochrone potential, in action-angle variables (see
equation (B.22) of App. B.2 for the harmonic class). In the Keplerian limit (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) =
(0, 1, −2𝜇2, 0, 0), we recover the Hamiltonian of the classical two-body problem in terms

4Although Eqs. (10.6) hold for any isochrone, including the harmonic family; starting from
equation (10.7), most expressions differ in the harmonic case, because of the condition 𝑏 = 0. We
relegate them in App. B.2.

5In Eqs. (10.7) and (10.8), the quantities appearing in the square roots are all positive. For
the former because of the isochrone Kepler’s third law (9.7), and for the latter by geometrical
considerations on parabolae.
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of the Delaunay variables (see, e.g., equation (E.1) of [590]). Equation (10.9) coincides
with (and generalizes) the Hamiltonian of the Hénon potential as discussed in Sec. 3.5.2
of [590]. In action-angle variables, the equations of motion for the isochrone orbit are in
their simplest form, given by the constancy of (𝐽, Λ) and the linear-in-time evolution of
the associated angles, namely

𝑧𝐽(𝑡) = 𝜔𝐽𝑡 + 𝑧𝐽(0) and 𝑧Λ(𝑡) = 𝜔Λ𝑡 + 𝑧Λ(0) . (10.10)

where the Hamiltonian frequencies 𝜔𝑖 read, by definition,

𝜔𝐽 ≡ 𝜕𝐻
𝜕𝐽 and 𝜔Λ ≡ 𝜕𝐻

𝜕Λ . (10.11)

In action-angle variables, the four-dimensional phase space can be represented by embed-
ding a torus of radii 𝐽, Λ in ℝ3, allowing for a particularly nice representation, as depicted
in Fig. 10.1. However, relating the angle variables (𝑧𝐽 , 𝑧Λ) to the polar coordinates (𝑟, 𝜃)
remains to be done. In the next section, doing so will enable us to derive a general-
ization of the Kepler equation and Kepler’s third law, as well as true/eccentric anomaly
relations. In the mean time, we can do a simple consistency check of our isochrone for-
mulae. A straightforward computation from equation (10.9) reveals that the Hamiltonian
frequencies read

𝜔𝐽 = 4𝛿
(2𝑏𝐽 + 𝑅(Λ))3 and 𝜔Λ = 2𝛿𝑅′(Λ)

(2𝑏𝐽 + 𝑅(Λ))3 , (10.12)

where 𝑅′(Λ) ≡ d𝑅/dΛ. Whenever the orbit is closed in real space, it should also be in
phase space. Indeed, computing the ratio 𝜔Λ/𝜔𝐽 using equations (10.12) and comparing
the result to equation (10.6) readily gives

𝜔Λ
𝜔𝐽

= Θ(Λ)
2𝜋 , (10.13)

showing that all those isochrone formulae are consistent with one another. It is quite
remarkable that all isochrone potentials admit a universal and closed-form expression for
their Hamiltonian in action-angle variables. Coupled to the large variety of properties
that these potentials and orbits therein offer (recall Sec. 9.3), this allows for a valuable
pedagogical tool, e.g., illustrate Hamiltonian mechanics with applications beyond the har-
monic oscillator and two-body problem. From a more practical point of view, it is very
tempting to build toy-models in terms of isochrone potentials, as analytic expressions are
rather rare for entire systems. As we mentioned in Chap. 7, availability of closed-form
expressions has probably been the main reason for the success of the Hénon potential.
The calculations performed in this section show that this feature holds for all isochrones.

10.1.2 Kepler equation and eccentric anomaly
In Chap. 9, we showed that the equations of motion for a subclass of isochrone orbits
(namely those associated with parabolae crossing the origin of the (𝑥, 𝑦)-plane) could be
integrated analytically in a parametric expression of the type (𝑟(𝑠), 𝜃(𝑠)) for some pa-
rameter 𝑠 ∈ ℝ. The parameter used in these expression was then a pure mathematical
quantity, bearing, a priori, no physical meaning. In particular, these parametric equations
were obtained by relating any isochrone orbit to a Keplerian one, through a linear trans-
formation acting on their respective arcs of parabolae, in the (𝑥, 𝑦)-plane. In this section,
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Figure 10.1: One torus (𝐽, Λ) in the phase space, depicting a generic (non-circular) orbit (black
curve). The circular orbit (𝐽 = 0) with the same angular momentum Λ is depicted in red.

we show that these formulae can be obtained (1) by direct integration, (2) without making
any assumption as to the subclass of isochrone, (3) such that the parameter 𝑠 admits a
clear, physical interpretation.

We suppose that a particle of energy and angular momentum (𝜉, Λ) orbits an isochrone
potential 𝜓(𝑟). As argued before, 𝜓(𝑟) is in a one-to-one correspondence with a convex
arc of parabola 𝑦 = 𝑌 (𝑥). We start by deriving an explicit formula for the time 𝑡 elapsed
during orbit. Let 𝑇 be the radial period and 𝑡 ∈ [0; 𝑇 /2] be an instant between the
initial-time periastron 𝑟(0) = 𝑟𝑃 and apoastron 𝑟(𝑇 /2) = 𝑟𝐴. By isolating d𝑡 in the radial
equation of motion in the 𝑥 variable, Eq. (8.4), and integrating, we readily obtain

𝑡 = 1
4 ∫

𝑥

𝑥𝑃

(𝑎0 + 𝑎1𝑥 + √𝑎2𝑥 + 𝑎3 )−1/2d𝑥 , (10.14)

where, for the sake of simplicity, we temporarily introduced the following coefficients that
depend on the particle (𝜉, Λ) and the potential (𝑎, 𝑏, 𝑐, 𝑑, 𝑒):

(𝑎0, 𝑎1, 𝑎2, 𝑎3) = ( 𝑑
2𝑏2 − Λ2, 𝜉 + 𝑎

𝑏 , 𝛿
𝑏3 , 𝑑2 − 4𝑏2𝑒

4𝑏4 ) . (10.15)

The change of variables 𝑢 = √𝑎2𝑥 + 𝑎3 then turns the term in parenthesis in (10.14) into
a pure quadratic, namely

𝑡 =
√𝑢0√

2𝑎2
∫

𝑢

𝑢𝑃

𝑢 d𝑢
√𝑣0 − (𝑢 − 𝑢0)2 , (10.16)

where (𝑢0, 𝑣0) are the coordinates of the apex of that quadratic, given by 𝑢0 = −𝑎2/2𝑎1
and 𝑣0 = 𝑢2

0 + 2𝑎0𝑢0 + 𝑎3. Note that in the 𝑢 variable, the periastron (lower bound of
the integral (10.16)) corresponds to the smallest root of the quadratic in the denominator,
namely 𝑢𝑃 = 𝑢0 − √𝑣0. To integrate equation (10.16), we start by turning the quadratic
𝑣0 −(𝑢−𝑢0)2 in canonical form by performing the linear transformation 𝑠 = (𝑢−𝑢0)/√𝑣0,
so that 𝑠 = −1 when 𝑢 = 𝑢𝑃 . This turns (10.16) into

Ω 𝑡 = ∫
𝑠

−1

1 + 𝜀𝑠√
1 − 𝑠2 d𝑠 , where 𝜀 =

√𝑣0
𝑢0

, Ω =
√

2𝑎2
𝑢3/2

0
. (10.17)
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Notice that by construction, 0 < 𝜀 < 1, since 𝑢𝑃 = 𝑢0 − √𝑣0 > 0. The integral in (10.17)
may then be finally integrated by defining an angle 𝐸 ∈ [0, 𝜋] such that 𝑠 = − cos 𝐸,
with 𝑠 = 0 at periastron (𝑡 = 0 ⇔ 𝑠 = −1). Integrating in this fashion, we obtain the
sought-after, expression for 𝑡, which takes the form of a generalized Kepler equation

Ω 𝑡 = 𝐸 − 𝜀 sin 𝐸 . (10.18)

Equation (10.18) looks exactly like the Kepler equation (B.19) found in the classical
two-body problem. The expression of the constants (Ω, 𝜀) can be given in terms of the
generic Latin parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) and (𝜉, Λ) that characterize the potential and the
particle, respectively. These expressions read:

Ω2 ≡ −16𝛿−1(𝑎 + 𝑏𝜉)3 , (10.19a)
𝜀2 ≡ 1 + 2𝛿−1(2𝑏2Λ2 − 𝑑)(𝑎 + 𝑏𝜉) + 𝛿−2(𝑑2 − 4𝑏2𝑒)(𝑎 + 𝑏𝜉)2 , (10.19b)

where 𝛿 = 𝑎𝑑 − 𝑏𝑐. Naturally, we may identify 𝜀 and 𝐸 as the isochrone eccentricity
and isochrone eccentric anomaly, respectively. The isochrone eccentricity verifies 0 ≤ 𝜀 <
1, vanishes only for circular orbits and coincides with the Keplerian eccentricity in the
Keplerian limit (cf. App. B.2). The isochrone eccentric anomaly is a well-defined angle
and coincides with its Keplerian counterpart as well (as we will see in the next subsection).
It should be stressed that the frequency Ω also coincides with 2𝜋/𝑇 , as we see by comparing
(10.19a) and (10.6). In other words, the left-hand side of the generalized Kepler equation
(10.18) involves the frequency Ω of the radial motion 𝑟(𝑡). In particular, combining the
angle coordinates (10.13) and the Kepler equation (10.18) provides

𝑧𝐽 = 𝐸 − 𝜀 sin 𝐸 , 𝑧Λ = Θ
2𝜋(𝐸 − 𝜀 sin 𝐸) , (10.20)

where we have set (𝑧𝐽 , 𝑧Λ) = (0, 0) at 𝑡 = 0. It is clear from (10.20) that 𝑧𝐽 , the angle
variable associated to the radial action 𝐽 , generalizes in fact the Keplerian mean anomaly.

10.1.3 Parametric polar solution
Now that an eccentric anomaly 𝐸 has been introduced via Kepler’s equation (10.18), we
derive its relation to the orbital radius 𝑟 (or equivalently 𝑥 = 2𝑟2) and the polar angle 𝜃.

Radial motion

For the radial part 𝑟(𝐸), we may simply go through the different changes of variables used
to compute the integral (10.14) in the last subsection, but in reverse, i.e., 𝐸 ↦ 𝑠 ↦ 𝑢 ↦ 𝑥.
After some easy algebra, we find that6

𝑥(𝐸) = 4𝑏2𝑒 − 𝑑2

4𝑏𝛿 ± 𝛿
4|𝑏|(𝑎 + 𝑏𝜉)2 (1 − 𝜀 cos 𝐸)2 . (10.21)

where ± corresponds to the sign of 𝑏. We note that the first term on the right-hand side
is actually 𝑥𝑣, the abscissa of the point with vertical tangent on the parabola introduced
in equation (8.31). Whenever the potential is Keplerian, then 𝑥𝑣 = 0 (and 𝑏 > 0) and we
recover the classical link 𝑟 = 𝛼Ke(1 − 𝜀 cos 𝐸), where 𝛼Ke is the semi-major axis of the

6There is a subtlety in the case 𝑎2 < 0, since then the function 𝑢(𝑥) = √𝑐2𝑥 + 𝑐3 is decreasing.
This is resolved by keeping track of sign(𝑎2) = sign(𝑏), which results in the ±|𝑏| in (10.21).
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Keplerian ellipse. This motivates the following definition for an isochrone semi-major axis
𝛼 such that the orbital radius 𝑟(𝐸) reads

𝑟(𝐸) = √𝑥𝑣
2 ± 𝛼2(1 − 𝜀 cos 𝐸)2 , where 𝛼2 ≡ 𝛿

8|𝑏|(𝑎 + 𝑏𝜉)2 . (10.22)

This isochrone semi-major axis is, in general, not related to an ellipse axis, as isochrone
orbits are not, in general, ellipses. However, it coincides with its Keplerian counterpart in
the proper limit, and comparing equations (10.22) with (10.19) reveals the equality

Ω2𝛼3 = √ 𝛿
2|𝑏|3 . (10.23)

which we recognize as the generalization of the more traditional form of Kepler’s third
law of motion, relating the (square of) the orbital frequency to the (cube) of the semi-
major axis. Indeed, the Keplerian limit (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = (0, 1, −2𝜇2, 0, 0) of equation (10.23)
gives Ω2𝛼3 = 𝜇, the well-known formulation of Kepler’s third law [590]. In fact, the
quantity appearing on the right-hand side is exactly the mass parameter 𝜇 introduced in
the formulae for the isochrone potentials, cf. Eqs. (8.36)-(8.39).

Angular motion
For the angular motion, we adapt the strategy developed in Sec. 9.2.4 and first construct
an ODE to which 𝜃(𝐸) is a solution. We can do this with the Leibniz rule as follows

d𝜃
d𝐸 = d𝜃

d𝑡
d𝑡
d𝐸 = Λ

Ω
1 − 𝜀 cos 𝐸

𝑟(𝐸)2 , (10.24)

where in the second equality we used the angular equation of motion ̇𝜃 = Λ/𝑟2 and the
Kepler equation (10.18). To obtain an expression 𝜃(𝐸) from (10.24), we simply need to
inject the expression of 𝑟(𝐸) given in (10.22) and integrate the result. By doing so, we
readily obtain

𝜃(𝐸) = 2Λ
Ω ∫

𝐸

0

1 − 𝜀 cos 𝜙
𝑥𝑣 + 2𝛼2(1 − 𝜀 cos 𝜙)2 d𝜙 , (10.25)

where we recall that 𝛼 was defined in (10.22) and 𝑥𝑣 in (8.31). When 𝑥𝑣 ≤ 0, which
corresponds to the Hénon class of potentials, the integral can be easily integrated. Indeed,
a partial fraction decomposition gives

𝜃(𝐸) = Λ
2Ω𝛼2 ∑

±

1
1 ± 𝜁 ∫

𝐸

0

d𝜙
1 − 𝜀± cos 𝜙 , (10.26)

where 𝜀± = 𝜀/(1 ± 𝜁) with 𝜁2 = −𝑥𝑣/2𝛼2 and is such that 0 ≤ 𝜁 ≤ 𝜀 < 1, so that
the integrals are well-defined. Equation (10.26) can be further simplified by computing
explicitly the integral, and thus provides the final formula for 𝜃 in terms of 𝐸, namely

𝜃(𝐸) = Λ
Ω𝛼2 ∑

±

𝜀±

√1 − 𝜀2±
arctan(√1 + 𝜀±

1 − 𝜀±
tan 𝐸

2 ) . (10.27)

The Keplerian limit of equation (10.27) consists in taking 𝜁 ∝ 𝑥𝑣 = 0 such that 𝜀± = 𝜀, and
thus provides a sum of two identical terms, recovering the well-known Keplerian result (cf.
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Eq. (B.18)). For consistency, one can check that when 𝐸 = 𝜋, which should correspond to
the apoastron of the orbit, equation (10.27) coincides with the general expression (10.6)
of the apsidal angle Θ, which satisfies 𝜃(𝜋) = Θ/2 by definition.

As final word, let us mention that the derivation of formula (10.27) relies on the crucial
assumption that 𝑥𝑣 ≤ 0, and thus only holds for the Hénon class of isochrone potentials
(recall Fig. 8.7). When 𝑥𝑣 ≥ 0, the auxiliary quantity 𝜁, defined by 𝜁2 = −𝑥𝑣/2𝛼2,
becomes imaginary and the 𝜀± are now complex. It turns out that formula (10.27) also
holds for this case. The reason is that, although both terms + and − in the ∑± sum are
complex numbers, they are conjugate to one another. Their sum is therefore twice their
real part, and is thus a real quantity. We provide the details of this in App. B.3.1. In par-
ticular, formula (10.27) for imaginary 𝜁 is mathematically well-defined and the resulting
(𝑟(𝐸), 𝜃(𝐸))-orbit does coincide with the true isochrone dynamics. This “complex” num-
ber feature is reminiscent of the comment made below Eq. (9.41), regarding the apsidal
angle in Hollowed potentials

Once again, we end this section by a summary of the results. The equations of motion
for a test particle in any isochrone potential can be solved analytically in the parametric
form (𝑟(𝐸), 𝜃(𝐸)) where 𝐸 is a parameter that reduces to the Keplerien eccentric anomaly.
These equations are given in (10.22) and (10.27). The polar coordinates (𝑟, 𝜃) along the
orbit can also be related to orbital time 𝑡 through a generalization of the Kepler equation
(10.18), that holds for any isochrone orbit. Finally, we have shown that the radial action
variable 𝐽 is particularly well-adapted to the isochrone problem, as it (1) splits into a sum
of 𝜉- and Λ-dependent terms and (2) can be used to derive the general Hamiltonian of the
dynamics in action-angle variables (𝐽, Λ).

10.2 Birkhoff normal forms and invariants
The fundamental theorem of isochrony (8.22) is what allows one to derive all the analytical
results for isochrone potentials and orbits therein, as we did in Sec. 10.1. As we mentioned
earlier, this theorem was first proven by Michel Hénon in his seminal paper [582], although
not without some (minor) mistakes. It was then discussed in [588] by borrowing techniques
from complex analysis, and in Sec. (8.2.2) of the previous chapter we provided a proof with
using Archimedean characterization. However, as we also mentioned there, Archimedes’
original result was only an implication (In any case, at present, a self-consistent and nat-
ural proof of this central theorem relying only on classical mechanics, is nowhere to be
found, to our knowledge. It is our goal, in the present and following sections to introduce
and exploit a powerful tool of Hamiltonian mechanics: the Birkhoff normal form. In a
nutshell, the Birkhoff normal form allows one to (quantitatively and rigorously) probe the
neighborhood of equilibrium points in phase space, to obtain information on their stabil-
ity, and thus on the integrability of the underlying Hamiltonian.

There exists a lot of specialized literature on this topic. Yet, introductory material
on normal forms may be hard to find for non-specialists. Among the most accessible, we
found that Arnold’s classical textbook (App. 7 of [344]) and Hofer & Zehnder’s lectures
( [604], sections 1.7 and 1.8) are particularly relevant (see also Sec. (8.5) of [605] and [606]).
Other examples of accessible presentations (with applications) may be found in [601] (for
the stability of the Lagrange points), and [607] (for solving PDE’s). Other notable refer-
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ences, namely [608–610], present explicit computations of normal forms and use them to
study the stability of the (restricted) 𝑁 -body problem. The latter have largely motivated
the present derivation.

Applications of our method go beyond the sole fundamental theorem of isochrony
(8.22), as it allows us to prove the Bertrand theorem [344], as well as the generalized
Kepler’s third laws (10.6). We relegate these applications to Sec. 10.3, and only focus on
the derivation of the normal form in the present section, which we organize as follows:

• in Sec. 10.2.1, we introduce the notion of Birkhoff normal form and Birkhoff invari-
ants in a very simple case, sufficient for our purpose,

• in Sec. 10.2.2, we write the Birkhoff normal form 𝑁1 for the Hamiltonian of a particle
in a generic potential, which encodes information on the the potential 𝑌 (𝑥),

• in Sec. 10.2.3, we write the Birkhoff normal form 𝑁2 for the Hamiltonian of a particle
in an isochrone potential, using the radial action (10.3) well-adapted to isochrony.

10.2.1 Birkhoff normal form and invariants
Note: The theory of Birkhoff normal forms is a rather technical, sub-branch of Hamiltonian
dynamical systems. As a consequence, it is likely that the following presentation will
(sometimes) lack mathematical rigor, but we chose a pedagogical style instead, and look at
it from a physically-motivated point of view. For this reason, and as done several times
already in this thesis, we shall start with a fundamentals: the pendulum.

Pendular motivation

Usually, the starting point of a Hamiltonian treatment of a mechanics problem is an
expression usually written in terms of (phase-space) coordinates that are linked, somehow,
to the physical coordinates (position in Euclidean space, for example). The point of using
Hamiltonian mechanics, however, is that there exists coordinate transformations that leave
the equations of motion invariant, the so-called canonical transformation. Let us consider,
as an example, the classical pendulum. The Hamiltonian is the sum of the kinetic energy
and the gravitational potential energy. Keeping the notations introduced in Chap. 7
alongside Galileo and Huygens, we have7

𝐻(𝜃, 𝜔) = 1
2 𝜔2 + (1 − cos 𝜃) , (10.28)

where 𝜔 ≡ ̇𝜃 is the momentum (angular velocity), conjugated to the position variable 𝜃
(angle). Around the (𝜃, 𝜔) = (0, 0) equilibrium position (pendulum at rest pointing down),
we may expand the rightmost term of side of (10.28) to write

𝐻(𝜃, 𝜔) = 1
2 𝜔2 + 1

2 𝜃2 + 𝑜(𝜃2) , (10.29)

If we neglect the 𝑜(𝜃2) term, then we are in the small-angle approximation. If we picture
the phase space of the system described by (10.28), then Eq. (10.29) simply says that
around the point (𝜃, 𝜔) = (0, 0), the level curves of the hamiltonian, say 𝐻 = 𝜌 for some

7We chose our units of mass, time and length so that 𝑚, 𝑔 and ℓ are equal to unity.
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fixed 𝜌 ∈ ℝ, are given by the equation 𝜔2 + 𝜃2 = 2𝜌. If we consider (𝜃, 𝜔) to be some
kind of Cartesian coordinates, then this equation is that of a circle, with radius

√2𝜌.
These circles are only approximate, however, owing to the 𝑜(𝜃2) term. Nevertheless, this
observation motivates the introduction of 𝜌 ≡ 1

2(𝜃2 + 𝜔2) as an independent variable, that
labels the level curves of 𝐻 according to the actual value of 𝐻 along these curves. If we
promote 𝜌 to a new momentum variable, then let us chose the associated “position” 𝜑 so
as to have a canonical transformation. It is straightforward, with the Poisson brackets for
example, to show that the complete canonical transformation (𝜃, 𝜔) ↦ (𝜌, 𝜑) reads

𝜃 = √2𝜌 cos 𝜑 and 𝜔 = −√2𝜌 sin 𝜑 (10.30)

We can now re-express the Hamiltonian in Eq. (10.29) in terms of these new variables,
and since 𝜃2 = 𝑂(𝜌), we readily find

𝐻(𝜌, 𝜑) = 𝜌 + 𝑜(𝜌, 𝜙) (10.31)

Now, notice that, by construction, up to very small terms hidden in the 𝑜(𝜌, 𝜙) this
Hamiltonian does not depend explicitly on the variable 𝜙. Consequently, in the small-
oscillation approximation, (𝜌, 𝜙) are action-angle variables for the pendulum. This method
of constructing approximate action-angle variables around an equilibrium point will be
central to the following calculation, and is at the basis of the theory of Birkhoff invariants,
which we will now introduce.

Definitions

The calculation performed in the previous section was made for a simple system: the clas-
sical pendulum. Given the Hamiltonian (10.28) and the equilibrium point (0, 0), we were
able to construct approximate angle-action variables (𝜌, 𝜑) in the phase space, around that
point. However, the method can be extended to a much wider class of Hamiltonian sys-
tems. For the sake of simplicity, we will only cover the very basics of Birkhoff normal forms
and refer to the above literature for the details. In particular, we consider a 1-dimensional
problem (2-dimensional phase space), but all can be generalized to any 2𝑛-dimensional
phase space (see, e.g., Sec. 1.8 of [604]). Let 𝐻(𝑞, 𝑝) be a Hamiltonian defined in terms of
some coordinates (𝑞, 𝑝) ∈ ℝ2. We assume, without any loss of generality, that the origin
(𝑞, 𝑝) = (0, 0) is an elliptic8 equilibrium of the system. A fundamental theorem of Hamil-
tonian systems, due initially to Birkhoff9 [612] and then refined/generalized since then
(see [604] for references). This theorem essentially says that if the Hamiltonian behaves
nicely around the equilibrium, there exists a local, symplectic coordinate transformation
(𝑞, 𝑝) ↦ (𝜌, 𝜑) such that the Hamiltonian takes the form

𝐻(𝜌, 𝜑) = 𝔩 + 𝔟𝜌 + 1
2𝔅𝜌2 + 𝑜(𝜌2) . (10.32)

The real numbers (𝔩, 𝔟, 𝔅) will be called Birkhoff invariants of zeroth, first and second
order, respectively. In the general case where (𝑞, 𝑝) ∈ ℝ𝑛 × ℝ𝑛, then 𝜌 ∈ ℝ𝑛 and,
accordingly, the Birkhoff invariants 𝔟 and 𝔅 are linear and bilinear forms, respectively.
The Birkhoff invariants depend exclusively on 𝐻 and not on the mapping (𝑞, 𝑝) ↦ (𝜌, 𝜑),

8We focus on elliptic equilibria since we want to describe the stable, periodic motion of the
particle. Hyperbolic equilibria will in general be associated to semi-stable or unstable systems.

9Obviously (cf. this chapter’s main quote), some of Birkhoff’s ideas on normal forms can be
traced back to Poincaré’s New Methods, as mentioned in [611] and [602]
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whence their name. They encode the information on the geometry of phase space around
the equilibrium point. In whole generality, Birkhoff’s theorem gives much stronger results
than the result (10.32). In particular, it holds for any dimensions, explains how to extend
(10.32) to any order in the powers of 𝜌, makes a distinction between resonant or non-
resonant orbits, etc. However, quadratic order will be sufficient for our purposes, and we
will refer the reader to Sec. (1.8) of [604] (and references therein) for a more detailed and
rigorous discussion.

As we explained for the pendulum earlier, the main feature of the variables (𝜌, 𝜑) in
(10.32) is that, up to 𝑜(𝜌2) corrections, they are action-angle coordinates, as 𝐻 does not
depend on the angle 𝜑. From now on, we call Birkhoff normal form (BNF)10 of 𝐻, and
denote by 𝑁(𝜌), the quadratic part of (10.32), namely

𝑁(𝜌) = 𝔩 + 𝔟𝜌 + 1
2𝔅𝜌2 . (10.33)

Heuristically, the quantity 𝑁(𝜌) in (10.33) can be seen as a Hamiltonian that is (1) com-
pletely integrable and (2) describes the same dynamics as 𝐻 in (10.32) in the 𝑂(𝜌2)-
neighborhood of the equilibrium (0, 0). Owing to the unicity of the Birkhoff invariants,
the BNF (10.33) is itself unique, in the sense that any change of action-angle coordinates
that leaves the equilibrium point at the origin must be the identity (see [613] for a detailed
presentation as well as App. B.3.3). A natural method to construct a BNF is crystallized
in figure 10.3, which shows the successive steps one may use to transform the geometry of
the phase space (𝑞, 𝑝) around (0, 0), so as to introduce polar-symplectic coordinates (𝜌, 𝜑)
(cf. Sec. 10.2.2). In fact, in Sec. 10.2.2 we explicitly provide a constructive example of
such (𝑞, 𝑝) ↦ (𝜌, 𝜑) mapping, that brings 𝐻(𝑞, 𝑝) into BNF (10.32).

The general picture to have in mind while working with a BNF is depicted in Fig. 10.2.
It shows how, locally, the action-angle variables (𝜌, 𝜑) distort phase space so as to make the
neighborhood of the equilibrium mimic that of the harmonic oscillator. In the next section,
we will construct these variables from scratch, in successive steps. The effect of each step
will be to distort phase space more and more until we reach the BNF. These successive
distortions are what is presented in Fig. 10.3, although this figure will be re-discussed in
the following section.

10.2.2 BNF for a generic radial potential
Let us start with the Hamiltonian of a particle in a radial potential 𝜓(𝑟), as given by
(10.1), rewritten here for convenience as:

𝐻(𝑟, 𝑅, 𝜃, Λ) = 𝑅2

2 + Λ2

2𝑟2 + 𝜓(𝑟) , (10.34)

where (𝑟, 𝜃) are the coordinates and (𝑅, Λ) their conjugated momenta. The complete, 4-
dimensional phase space of the dynamics is a subset of ℝ+ ×ℝ×[0; 2𝜋[×ℝ+ ∋ (𝑟, 𝑅, 𝜃, Λ).
However, since 𝜃 does not appear explicitly in (10.34) and its conjugated momentum Λ
is then constant, (𝜃, Λ) is already a pair of angle-action coordinates. Therefore, it can be
practical to think of (10.34) as a 1-dimensional family of Hamiltonians parametrised by

10BNF is also the acronym for the Bibliothèque Nationale de France (National French Library),
where (almost) all of Poincaré’s writings may be found and borrowed, cf. this webpage.

https://data.bnf.fr/fr/documents-by-rdt/11920108/te/page1
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Figure 10.2: Left: A phase space in arbitrary (𝑝, 𝑞) with two equilibrium points. Periodic motion
corresponds closed curve that are level sets of the Hamiltonian 𝐻. Left: the construction of local
action-angle variables around one of the two equilibria. The action 𝜌 = 1

2 (𝑃 2 + 𝑄2) is defined
from other coordinates (𝑃 , 𝑄), and is related to the radius of the (approximate) circles, which are
the level sets of 𝐻 in the (𝑃 , 𝑄) variables.

Λ. In this way, we just need to focus the radial part (𝑟, 𝑅) of the dynamics, and per-
form successive symplectic transformations to reach a BNF, the coefficients of which will
thus be Λ-dependent. With this 2-dimensional phase space point of view, we will write
𝐻(𝑟, 𝑅) instead of 𝐻(𝑟, 𝑅, 𝜃, Λ) to stick with the notations of Sec. 10.2.1, with no risk
of confusion. Moreover, while performing successive symplectic changes of coordinates on
the phase space (𝑟, 𝑅) ∈ ℝ+ × ℝ, we will keep the (lower case/upper case) notation for a
coordinate (𝑟, 𝑥, 𝑧, …) and its conjugated momentum (𝑅, 𝑋, 𝑍, …).

Although we have tried to be as pedagogical as possible (and we believe these compu-
tations are interesting in themselves), the following subsections are rather technical. On
first reading (or for the reader in a hurry), it is possible to skip the following steps and
just assume that there exists a pair of variables (𝜌, 𝜑), such that the Hamiltonian (10.34)
admits a BNF 𝑁2(𝜌), given by equation (10.49) below; before directly proceeding with
Sec. 10.2.1.

Hénon variable and circular orbits

Note: from this point on we denote by a lowercase subscript 𝑐 any quantity related to the
circular orbit, such as (𝑟𝑐, 𝑥𝑐, 𝜉𝑐, …), and not an uppercase 𝐶 like we did before.

The Hamiltonian (10.34) describes the same system as the Hamiltonian in (10.51)
only if the potential is isochrone. Since the following computations are true for any radial
potential (not just isochrones) we stay general and relegate the isochrone assumption to the
next subsection. Still, as we have the isochrone theorem (8.22) in mind, we would prefer
to speak in terms of (𝑥, 𝑌 (𝑥)) instead of (𝑟, 𝜓(𝑟)). Therefore, the first step is the change
of variables (𝑟, 𝑅) ↦ (𝑥, 𝑋), where 𝑥 = 2𝑟2 and 𝑋 is the canonical momenta associated to
𝑥. The transformation is easily seen to be symplectic if and only if 𝑅 =

√
8𝑥𝑋. In these

variables, the Hamiltonian (10.34) now reads

𝐻(𝑥, 𝑋) = 4𝑥𝑋2 + Λ2

𝑥 + 𝑌 (𝑥)
𝑥 . (10.35)



10.2. BIRKHOFF NORMAL FORMS AND INVARIANTS 255

where we recall that 𝑌 (𝑥) = 𝑥𝜓(𝑟(𝑥)). The derivation of a BNF starts with a choice of
equilibrium point around which to write it. Using (10.35) for a given Λ, these points are
simply given by (𝑥, 𝑋) = (𝑥𝑐, 0), where 𝑥𝑐 = 𝑥𝑐(Λ) is a solution to the algebraic equation

𝑥𝑐𝑌 ′(𝑥𝑐) − 𝑌 (𝑥𝑐) = Λ2 . (10.36)
At this equilibrium, we have 𝑋 = 0 ∝ ̇𝑟 = 0, thus corresponding to circular orbits,
the radius 𝑟𝑐 of which is such that 𝑥𝑐 = 2𝑟2

𝑐 and 𝑥𝑐 solves (10.36). In the complete
4-dimensional phase space, there is a family of such circular orbits, parametrised by Λ.

Figure 10.3: The circular orbit (red point) and three non-circular orbits (red curves) in the 2-
dimensional phase space under each transformation. The map (𝑥, 𝑋) ↦ (�̂�, �̂�) translate 𝑥𝑐 at
the origin, and (�̂�, �̂�) ↦ (𝑧, 𝑍) circularizes the orbits in the only in the close vicinity of the origin
(the outer curves are not circular). Then (𝑧, 𝑍) ↦ ( ̄𝑧, ̄𝑍) circularizes a larger neighborhood of
the origin (all curves circular up to 𝑂(𝜌2)) allowing one to construct polar action-angle variables
(𝜌, 𝜑) in that region.

Moving the equilibrium at the origin
Now we are going to write the BNF of 𝐻 around a given circular orbit (𝑥, 𝑋) = (𝑥𝑐, 0). The
main goal is to fix a Λ and to circularise the phase space around the equilibrium (𝑥𝑐, 0),
in order to introduce symplectic polar coordinates, following the discussion in Sec. 10.2.1.

We start by translating the equilibrium (𝑥, 𝑋) = (𝑥𝑐, 0) to the origin, by setting
( ̂𝑥, �̂�) = (𝑥 − 𝑥𝑐, 𝑋) and then Taylor-expanding in the ̂𝑥 variable, small by assumption.
We obtain11 the following expression

𝐻( ̂𝑥, �̂�) = 𝑌1 + 4𝑥𝑐�̂�2 + 𝑌2
2𝑥𝑐

̂𝑥2 + 4�̂�2 ̂𝑥 + 𝑐3 ̂𝑥3 + 𝑐4 ̂𝑥4 + 𝑜( ̂𝑥4) , (10.37)

where we introduced the convenient notation 𝑌𝑛 ≡ 𝑌 (𝑛)(𝑥𝑐), and defined the following
coefficients that depends on the derivatives of 𝑌 (𝑥) at 𝑥 = 𝑥𝑐, namely

𝑐3 = 𝑥𝑐𝑌3 − 3𝑌2
6𝑥2𝑐

, and 𝑐4 = 12𝑌2 − 4𝑥𝑐𝑌3 + 𝑥2
𝑐𝑌4

24𝑥3𝑐
. (10.38)

11In the 4D phase space, this change of variable is rendered symplectic by changing the angle
accordingly. For example, the mapping (𝑥, 𝜃, 𝑋, Λ) ↦ (𝑥 − 𝑥𝑐(Λ), ̂𝜃, �̂�, Λ) is symplectic if we
take ̂𝜃 = 𝜃 − 𝑥′

𝑐(Λ)𝑋.
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In these variables, the circular orbits are at the origin ( ̂𝑥, 𝑋) = (0, 0), and in the 4D
phase space each coefficient depends on Λ through 𝑥𝑐 = 𝑥𝑐(Λ) (recall equation (10.36)).
Notice that the energy of the circular orbit is 𝐻(0, 0) = 𝑌1 = 𝑌 ′(𝑥𝑐(Λ)). This is in agree-
ment with the way orbits are constructed in the Hénon variables, as we explained back in
Chap. 8, see Fig. 8.1 there.

Lastly, and for the sake of completeness, let us deduce from (10.37) the nature of the
equilibrium ( ̂𝑥, �̂�) = (0, 0). Writing the Hamilton equations and linearising around (0, 0)
readily gives

d ̂𝑥
d𝑡 = 𝜕𝐻

𝜕�̂�
= 8𝑥𝑐�̂� + 𝑜(𝑥, 𝑋) , d�̂�

d𝑡 = −𝜕𝐻
𝜕 ̂𝑥 = −𝑌2

𝑥𝑐
̂𝑥 + 𝑜(𝑥, 𝑋) . (10.39)

Now, since the potential 𝑥 ↦ 𝑌 (𝑥) must be convex, (again, recall the construction of an
orbit, cf. Fig. 8.1), it is clear hat we must have 𝑌2 ≥ 0. Consequently, the eigenvalues
(ℓ1, ℓ2) of the linearised system (10.39) are

ℓ1 = i√8𝑌2 and ℓ2 = −i√8𝑌2 . (10.40)

These eigenvalues are conjugate, imaginary numbers, allowing us to conclude that the
equilibrium ( ̂𝑥, �̂�) = (0, 0) is, indeed, elliptic, as our use of the BNF requires.

Circularizing the equilibrium neighborhood

Next, notice that the quadratic part of 𝐻 in (10.37) describes ellipses in the ( ̂𝑥, �̂�)-plane.
As we aim, eventually, towards a polar-like system of action-angle coordinates, we would
like to circularise these ellipses; that is, have the same coefficients in front of ̂𝑥2 and �̂�2 in
equation (10.37). This can be done easily by yet another change of variables. Explicitly,
we set ( ̂𝑥, �̂�) = (𝜂𝑧, 𝛾𝑍) (a homothety for fixed Λ) and choose (𝜂, 𝛾) such that: (i) the
transformation is symplectic, and (ii) the coefficients in front of 𝑧2 and 𝑍2 are equal in the
new variables. A calculation reveals that condition (i) holds if 𝛾 = 1/𝜂, while condition (ii)
holds if we set 𝜂4 = 8𝑥2

𝑐/𝑌2. Expressing the Hamiltonian with the new (𝑧, 𝑍)-variables12,
we find

𝐻Λ(𝑧, 𝑍) = 𝑌1 + √2𝑌2(𝑧2 + 𝑍2 + 𝑐0𝑧𝑍2 + 𝑐1𝑧3 + 𝑐2𝑧4) + 𝑜(𝑧4) , (10.41)

where we see that our phase-space ellipses have indeed been circularized, and where we
defined new coefficients (𝑐0, 𝑐1, 𝑐2) by

𝑐0 = 81/4

𝑌 1/4
2 𝑥1/2

𝑐
, 𝑐1 = 81/4

3
𝑥𝑐𝑌3 − 3𝑌2
𝑥1/2

𝑐 𝑌 5/4
2

and 𝑐2 = 81/2

12
12𝑌2 − 4𝑥𝑐𝑌3 + 𝑥2

𝑐𝑌4
𝑥𝑐𝑌 3/2

2
. (10.42)

One more time, we emphasize that, in the complete, 4-dimensional phase space, these
coefficients all depend on Λ, through 𝑥𝑐(Λ) and 𝑌𝑛(𝑥𝑐(Λ)). Next, we simplify the (𝑧, 𝑍)-
dependent part in the parentheses of (10.41).

12We would also need to change the angle ̂𝜃 ↦ ̂𝜃 + 𝜂′(Λ)
𝜂(Λ) �̂�, to ensure symplecticity in the 4D

phase space.
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Flowing towards the BNF

For the moment, let us rewrite (10.41) in the form 𝐻 = 𝑌1 + √2𝑌2�̃� + 𝑜(𝑧4), where

�̃�(𝑧, 𝑍) = 𝑧2 + 𝑍2 + 𝑐0𝑧𝑍2 + 𝑐1𝑧3 + 𝑐2𝑧4 . (10.43)

As our final aim is to introduce polar-type coordinates, we would like �̃�, a polynomial in
(𝑧, 𝑍), to be written solely as powers of 𝜌 = 𝑧2 + 𝑍2, which would then correspond to the
radial part of the polar-type coordinates. The best way to massage �̃� into this form is to
make a transformation derived from the flow of another (polynomial) Hamiltonian Φ. Let
us take a moment to explain this method more clearly.

Using the flow of a secondary Hamiltonian can be viewed as a very general procedure to
produce symplectic transformations (𝑧, 𝑍) ↦ ( ̄𝑧, ̄𝑍). Let Φ(𝑧, 𝑍) be some arbitrary Hamil-
tonian, and let 𝜙𝑡 be the flow associated to Φ, such that 𝜙𝑡 ∶ (𝑧, 𝑍) ↦ ( ̄𝑧, ̄𝑍) = (𝑧(𝑡), 𝑍(𝑡)),
where (𝑧(𝑡), 𝑍(𝑡)) is the solution to Hamilton’s equations for Φ. For 𝑡 = 1, the map
𝜙 ≡ 𝜙1 is appropriately called the time-one flow, as it sends a point (𝑧, 𝑍) = (𝑧(0), 𝑍(0))
(corresponding to some initial condition 𝑡 = 0) to some other point ( ̄𝑧, ̄𝑍) = (𝑧(1), 𝑍(1))
(corresponding to its updated value at 𝑡 = 1). Choosing Φ in the right way allows one to
determine the dynamics between 𝑡 = 0 and 𝑡 = 1, and thus select the image ( ̄𝑧, ̄𝑍) of each
point (𝑧, 𝑍). By construction, this mapping 𝜙 defines a symplectic transformation on the
phase space, because it derives from a Hamiltonian system.

Returning to our problem, an explicit computation adapted from [608] (with a slight
adjustment for the cross term 𝑧𝑍2 in (10.43) absent there) shows that if �̃�(𝑧, 𝑍) is of
the form (10.43), then the time-one flow 𝜙 of a well-chosen13 Φ(𝑧, 𝑍) defines a set of
coordinates ( ̄𝑧, ̄𝑍) precisely such that the polynomial Hamiltonian (10.43) now reads, in
the “bar” variables:

�̄�( ̄𝑧, ̄𝑍) = ̄𝑧2 + ̄𝑍2 + 𝐶 ( ̄𝑧2 + ̄𝑍2)2 + 𝑂(5) , (10.44)

where 𝑂(5) contains terms of order 5 or more in ( ̄𝑧, ̄𝑍), and 𝐶 is expressed in terms of the
constants appearing in (10.43), by

𝐶 = − 3
32(5𝑐2

1 − 4𝑐2
2 + 2𝑐1𝑐0 + 𝑐2

0) . (10.45)

We can now go back to the original Hamiltonian (10.41) and express it in the new variables
( ̄𝑧, ̄𝑍). To this end, we replace �̃�(𝑧, 𝑍) in (10.41) (recall that 𝐻 = 𝑌1 + √2𝑌2�̃� + 𝑜(𝑧4))
by �̄�( ̄𝑧, ̄𝑍) as given in (10.44). We eventually find

𝐻( ̄𝑧, ̄𝑍) = 𝑌1 + √2𝑌2( ̄𝑧2 + ̄𝑍2) + 𝐶√2𝑌2 ( ̄𝑧2 + ̄𝑍2)2 + 𝑂(5) . (10.46)

where 𝐶 is a function of 𝑥𝑐 given by combining equations (10.45) and (10.42). Expression
(10.46) is then directly amendable to a BNF, as we show in the next paragraph.

13Explicitly, Φ(𝑧, 𝑍) = 𝑏1𝑍𝑧2+𝑏2𝑍3+𝑏3𝑍𝑧3+𝑏4𝑧𝑍3, where (𝑏1, 𝑏2, 𝑏3, 𝑏4) are combinations
of (𝑐0, 𝑐1, 𝑐2), given by 𝑏1 = − 1

2 𝑐1, 𝑏2 = − 1
6 (2𝑐1+𝑐0), 𝑏3 = 1

64 (9𝑐2
1−20𝑐2−3𝑐0(2𝑐1+𝑐0)), 𝑏4 =

1
64 (15𝑐2

1 − 12𝑐2 − 5𝑐0(2𝑐1 + 𝑐0)).
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Polar action-angle coordinates

The final step to extract the BNF of (10.46) is to promote ̄𝑧2 + ̄𝑍2 to an action variable,
just as we did for the classical pendulum in Sec. 10.2.1. A classical technique [344] is
to think of ( ̄𝑧, ̄𝑍) as a kind of Cartesian-type coordinates and pass to (symplectic) polar
coordinates, by setting

𝑧 = √2𝜌 cos 𝜑 and 𝑍 = −√2𝜌 sin 𝜑 , (10.47)

where this expression is necessary to enforce symplecticity. Inserting into equation (10.46)
the new coordinates (𝜌, 𝜑) gives us our final expression for the Hamiltonian

𝐻(𝜌, 𝜑) = 𝑌1 + √8𝑌2𝜌 + 𝐶√32𝑌2 𝜌2 + 𝑜(𝜌2) . (10.48)

Now we can compute 𝐶 = 𝐶(Λ) in terms of 𝑥𝑐 and the 𝑌𝑛’s from equations (10.45) and
(10.42). The BNF 𝑁1(𝜌) of (10.48) is therefore

𝑁1(𝜌) = 𝑌1 + √8𝑌2 𝜌 + 1
2(4𝑌3

𝑌2
+ 𝑥𝑐

3𝑌 2
2

(3𝑌2𝑌4 − 5𝑌 2
3 )) 𝜌2 . (10.49)

It should be noted that no assumption about the radial potential 𝑌 (𝑥) has been made
to derive this BNF. In particular, 𝑌 (𝑥) is not required to be isochrone, and, much like
in [608], this BNF is valid for any radial potential. We know turn to the derivation of the
BNF for an isochrone potential.

10.2.3 BNF for an isochrone potential
In general, the strength and simplicity of a BNF is usually balanced by the (analytic)
complexity involved in its derivation (see e.g. the BNF of the restricted 𝑁 -body prob-
lem, [609, 610]). However, in the case of an isochrone potential, things are much simpler
thanks to the symmetry at play. We explain, in this subsection, how to construct the
BNF of the Hamiltonian in that particular, isochrone case. The simplicity of the argu-
ment should then be compared to the previous Sec. 10.2.2, where without the isochrone
assumption the calculation was much more involved, and very close to that of [608].

We will follow the same steps used in Sec. 10.1.1. In particular, we start from the
following result: if the potential is isochrone, the radial action 𝐽 decomposes into a sum of
two terms, one 𝜉-dependent and one Λ-dependent, as was shown in (10.5). For convenience
we rewrite this as

𝐽(𝜉, Λ) = 𝐹(𝜉) − 𝐺(Λ) , (10.50)

where 𝐹, 𝐺 are two functions14 verifying 𝐹 ′(𝜉) = 𝑇 (𝜉)/2𝜋 and 𝐺′(Λ) = Θ(Λ)/2𝜋, since
for any radial potential, (10.4) must hold. In Sec. 10.1.1 we had the explicit expressions of
𝐹 and 𝐺 (recall (10.7)) but these have been obtained by assuming what we are attempting
to prove, namely the fundamental theorem of isochrony. As we shall see, these explicit
forms are not required to make the computation.

Now let us fix a value of Λ, and solve equation (10.50) for the energy 𝜉 in terms of
the radial action 𝐽 . Since that expression holds for any 𝜉, i.e. any numerical value of the

14We assume that 𝐹, 𝐺 behave nicely so they can be differentiated and inverted on their domain
of definition. We know this will be the case as we know their explicit form, cf. Eq. (10.6).
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Hamiltonian 𝐻 = 𝜉, we have just obtained 𝐻 expressed in terms of the action 𝐽 , at fixed
Λ. This expression reads

𝐻(𝐽, 𝑧𝐽) = 𝐹 −1(𝐺(Λ) + 𝐽) , (10.51)
where we have re-introduced the dependence on the radial angle variable 𝑧𝐽 associated to
the radial action 𝐽 , for completeness. Let us emphasize one more time that, at this stage,
we do not know the expressions of 𝐹, 𝐺. They can only be computed once the isochrone
theorem is demonstrated. When this is done equations (10.50) and (10.51) will become
(10.7) and (10.9), respectively.

As emphasized in the last section, for a given value of Λ, circular orbits are relative
equilibria of 𝐻 and correspond to 𝐽 = 0. Let us then Taylor-expand (10.51) around 𝐽 = 0
and set 𝐻(0, 𝑧𝐽) ≡ 𝜉𝑐(Λ) as the energy of that circular orbit. We readily get

𝐻(𝐽, 𝑧𝐽) = 𝜉𝑐 + 1
𝐹 ′(𝜉𝑐)𝐽 + 1

2(− 𝐹 ″(𝜉𝑐)
𝐹 ′(𝜉𝑐)3 )𝐽2 + 𝑜(𝐽2) . (10.52)

We can now extract the BNF of the above Hamiltonian 𝐻(𝐽, 𝑧𝑗), which we denote by
𝑁1(𝐽), such that 𝐻(𝐽, 𝑧𝐽) = 𝑁1(𝐽) + 𝑜(𝐽2). Using the property 𝐹 ′(𝜉) = 𝑇 (𝜉)/2𝜋 one
more time, we find

𝑁2(𝐽) = 𝜉𝑐 + 2𝜋
𝑇 (𝜉𝑐)𝐽 + 1

2(−4𝜋2𝑇 ′(𝜉𝑐)
𝑇 (𝜉𝑐)3 )𝐽2 , (10.53)

where 𝑇 (𝜉𝑐) is understood as the limit of 𝑇 (𝜉) when 𝜉 → 𝜉𝑐(Λ) for fixed Λ, since the radial
period of a circular orbit can be ambiguous to define. Equation (10.53) is, for a given Λ,
a BNF for 𝐻, but we emphasize that it holds only if the potential is isochrone, otherwise
equation (10.50) (from which (10.53) follows) does not hold in the first place. With this
second BNF at hand, we can finally turn to the applications, in the next and last section.

10.3 Three applications of the BNF
In this fourth and last section, we use the two BNFs (10.53) and (10.49) of the Hamiltonian
describing a particle in an isochrone potential. By exploiting the equality between their
respective Birkhoff invariants, we provide: (1) a proof of the fundamental theorem of
isochrony (8.22), (2) a proof of the Bertrand theorem, and (3) a proof of the generalized
Kepler’s third law (10.6). These three items are presented in each of the three following
subsections.

10.3.1 Fundamental theorem of isochrony
The two BNFs 𝑁1 and 𝑁2 derived in the previous section define two sets of three Birkhoff
invariants (according to (10.33)), one for each BNF. They must be equal, by unicity of the
BNF. From the first BNF (10.49), derived in the 𝜌 action coordinate, their expression is

𝔩1 = 𝑌1 , 𝔟1 = √8𝑌2 , and 𝔅1 = 4𝑌3
𝑌2

+ 𝑥𝑐
3𝑌 2

2
(3𝑌2𝑌4 − 5𝑌 2

3 ) , (10.54)

where we emphasize that each of these invariants are Λ-dependent, through the derivatives
of the potential 𝑌𝑛 = 𝑌 (𝑛)(𝑥𝑐(Λ)) and (twice the square of) the radius of the circular orbit
𝑥𝑐 = 𝑥𝑐(Λ). The second BNF (10.53) then provides an alternative expression

𝔩2 = 𝜉𝑐(Λ) , 𝔟2 = 2𝜋
𝑇 (𝜉𝑐) , and 𝔅2 = −4𝜋2 𝑇 ′(𝜉𝑐)

𝑇 (𝜉𝑐)3 , (10.55)
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where, once gain, they are Λ-dependent through the energy of the circular orbit 𝜉𝑐 = 𝜉𝑐(Λ).
The invariants (10.55) are computed under the assumption that 𝑌 (𝑥) (or equivalently
𝜓(𝑟)) is isochrone, while the invariants (10.54) are valid for any 𝑌 (𝑥) (not necessarily
isochrone). However, if we assume 𝑌 (𝑥) isochrone, then (10.54) and (10.55) are the
Birkhoff invariants of the same system (a particle of angular momentum Λ and energy
𝐻 = 𝜉 in an isochrone potential). Therefore, from now on we assume that 𝑌 (𝑥) is
isochrone, and derive the isochrone theorem (8.22) by exploring the consequences of the
three equality’s (𝔩1, 𝔟1, 𝔅1) = (𝔩2, 𝔟2, 𝔅2) in three steps, one for each order of invariants.

Zeroth order invariant
The first equality 𝔩1 = 𝔩2 provides a link between the energy of the circular orbit of angular
momentum Λ and the first derivative of 𝑌 , namely:

𝑌 ′(𝑥𝑐(Λ)) = 𝜉𝑐(Λ) . (10.56)

This equation is consistent with the construction of an orbit in the 𝑥 = 2𝑟2 variable,
as we explained in figure 8.1. Indeed, a circular orbit of energy 𝜉𝑐 corresponds the line
𝑦 = 𝜉𝑐𝑥 − Λ2 being tangent to the curve 𝑌 (𝑥). Therefore, their respective slope must
be equal at the tangency point 𝑥𝑐, hence 𝜉𝑐 = 𝑌 ′(𝑥𝑐). The other consequence of that
equation is how 𝜉𝑐 varies with respect to Λ. Indeed, we have

d𝜉𝑐
dΛ = d𝑌1

dΛ = d𝑥𝑐
dΛ 𝑌2 , (10.57)

where we note that the Leibniz rule must be used since 𝑌1 depends only on Lambda
through 𝑥𝑐(Λ) (recall that 𝑌𝑛 ≡ 𝑌 𝑛(𝑥𝑐) by definition). Equation (10.57) will be used
below.

First order invariant
The second equality 𝔟1 = 𝔟2 implies a relation between the radial period and the second
derivative of 𝑌 at 𝑥𝑐, namely

𝑌 ″(𝑥𝑐(Λ)) = 𝜋2

2
1

𝑇 (𝜉𝑐(Λ))2 . (10.58)

Once we know 𝑌 (𝑥), this equation allows us to derive easily the generalization of the
Kepler’s third law of motion, which we saw back in (10.6). The other consequence of
(10.58) is an equation for 𝔅2. Indeed, differentiating (10.58) with respect to Λ readily
gives

𝑥′
𝑐𝑌 ‴(𝑥𝑐) = −𝜋2 d𝜉𝑐

dΛ
𝑇 ′(𝜉𝑐)
𝑇 (𝜉𝑐)3 . (10.59)

We see that (10.59) is very similar to the expression of 𝔅2 in (10.55). In fact, inserting
(10.57) in (10.59) and comparing the resulting with (10.55) readily gives the relation

𝔅2 = 4𝑌3
𝑌2

, (10.60)

where we used the fact that 𝑥′
𝑐(Λ) ≠ 0, which follows by differentiating (10.36) with respect

to Λ to obtain 𝑥′
𝑐𝑥𝑐𝑌2 = 2Λ. With equation (10.60) at hand we may finally complete the

proof of the fundamental theorem of isochrony.
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Second-order invariant
Lastly, we insert in the equality 𝔅1 = 𝔅2 the expression (10.60) for 𝔅2, and the expression
(10.54) for 𝔅1, to conclude that

𝑥𝑐
3𝑌 2

2
(3𝑌2𝑌4 − 5𝑌 2

3 ) = 0 . (10.61)

Since 𝑥𝑐 = 2𝑟2
𝑐 ≠ 0, the parenthesis must vanish. Recalling the notation 𝑌𝑛 = 𝑌 (𝑛)(𝑥𝑐(Λ)),

and since (10.61) should hold for any Λ, we may now let Λ vary continuously. By continuity
of Λ ↦ 𝑥𝑐(Λ), the equation 3𝑌2𝑌4 = 5𝑌 2

3 is nothing but an ODE for the function 𝑥𝑐 ↦
𝑌 (𝑥𝑐), i.e., the function 𝑌 . Therefore, at least on some open interval of ℝ+, we must have

3𝑌 (2)𝑌 (4) = 5(𝑌 (3))2 . (10.62)

It turns out that equation (10.62) is the universal differential equation for parabolae, in the
sense that its solutions cover all and only functions 𝑌 whose curve 𝑦 = 𝑌 (𝑥) are parabolae
in the (𝑥, 𝑦) plane. A short proof of this statement is included in App. B.3.2. This
concludes the proof of the isochrone theorem (8.22). Before going to the next paragraph,
let us mention that (10.62) can be simply written as an ODE for the Λ-dependent Birkhoff
invariants (𝔩, 𝔟, 𝔅) themselves, namely

𝔅 d𝔩
dΛ = 𝔟 d𝔟

dΛ . (10.63)

In fact we could have obtained (10.63) readily from the fact that 𝔅2𝔩′2 = 𝔟2𝔟′
2 (here a

prime denotes d/dΛ), which can be seen easily from (10.55). That the isochrone theorem
follows from such a simple differential relation between the Birkhoff invariants constitutes
a very nice and fundamental characterization of isochrony. More insight on (10.63) is
provided in App. B.3.3.

10.3.2 Bertrand theorem
There is another fundamental result that we can derive from this formalism: the Bertrand
theorem. As mentioned before, this was actually done in [608] and was the main mo-
tivation behind the present work. However, we would like to present it in the light of
isochrony. Indeed: as we mentioned back in Chap. 7, the Bertrand theorem states that
only the Harmonic and Kepler potentials generate closed and only closed orbits. But
notice that both of these potentials are isochrone. Therefore, we expect the Bertrand
theorem to be a corollary of the isochrone theorem (as was argued already in [588]). We
prove the Bertrand theorem in two steps: first we show that a Bertrand potential 𝑌 (𝑥)
must be a power law (up to a linear term); and second, that it must be isochrone.

Let us consider the BNF (10.49), which holds for any radial potential 𝑌 (𝑥), in-
cluding isochrone and Bertrand potentials. Let us write the corresponding Hamiltonian
𝐻(𝜌, 𝜙, Λ, 𝜗) in the complete, 4D-phase space with the two pairs (𝜌, 𝜙), (Λ, 𝜗) of action
angle variables. We have seen that it reads

𝐻(𝜌, Λ) = 𝔩1(Λ) + 𝔟1(Λ)𝜌 + 1
2𝔅1(Λ)𝜌2 + 𝑜(𝜌2) , (10.64)

where (𝔩1, 𝔟1, 𝔅1) are given in terms of 𝑌 (𝑥𝑐(Λ)) in (10.49). Associated to the action
variables (𝜌, Λ), the corresponding frequencies (𝜔𝜌, 𝜔Λ) of this Hamiltonian thus read

𝜔Λ ≡ 𝜕𝐻
𝜕Λ = d𝔩1

dΛ + 𝑜(1) , and 𝜔𝜌 ≡ 𝜕𝐻
𝜕𝜌 = 𝔟1(Λ) + 𝑜(1) . (10.65)
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If 𝑌 (𝑥) satisfies the Bertrand theorem, then all the orbits are closed in real space. In phase
space, a closed orbit corresponds to a pair of actions (𝜌, Λ) (recall figure 10.1) that defines
a torus, on which the associated curve wraps around, but ultimately closes on itself. This
is called a resonant orbit, i.e., an orbit for which there exists integers (𝑘Λ, 𝑘𝜌) ∈ ℤ such
that 𝑘Λ𝜔Λ + 𝑘𝜌𝜔𝜌 = 0. Now, since each and every orbit must be closed for a Bertrand
potential, this means that these integers (𝑘Λ, 𝑘𝜌) are actually independent of the pair
(𝜌, Λ). In other words, there exists a 𝑄 ∈ ℚ such that for all (𝜌, Λ),

𝜔Λ(𝜌, Λ) = 𝑄 𝜔𝜌(𝜌, Λ) . (10.66)

We emphasize that equation (10.66) should hold for any pair of actions (𝜌, Λ). In particu-
lar, (10.66) should hold for a given Λ in the limit 𝜌 → 0 (quasi-circular orbits). According
to (10.65), this means that

d𝔩1
dΛ = 𝑄 𝔟1 . (10.67)

It is rather remarkable that the Bertrand theorem is equivalent to such a simple condition,
namely a differential equation for the Birkhoff invariants. We can solve this equation easily.
First we insert the definitions (10.54) of 𝔩1(Λ) and 𝔟1(Λ) in terms of 𝑌1 and 𝑌2. Then the
calculation reads

(10.67) ⇒ 𝑥′
𝑐𝑌2 = 𝑄√8𝑌2 ⇒ Λ2 = 2𝑥2

𝑐𝑄2𝑌2 ⇒ 𝑥𝑐𝑌1 − 𝑌 = 2𝑥2
𝑐𝑄2𝑌2 , (10.68)

where in the first step we differentiated with the Leibniz rule (much like in (10.57)), in the
second step we squared and used 𝑥′

𝑐𝑥𝑐𝑌2 = 2Λ which we obtain by differentiating (10.36)
with respect to Λ, and in the last step we used (10.36) once more to remove Λ. Much like
equation (10.61) can be seen as an ODE for 𝑥𝑐 ↦ 𝑌 (𝑥𝑐), the rightmost equation in (10.68)
is an ODE too, in which 𝑄 ∈ ℚ is a parameter. The solution to this ODE is simply found
as

𝑌 (𝑥) = 𝐶1𝑥 + 𝐶2𝑥𝐾 , with 𝐾 ≡ 1
2𝑄2 , (10.69)

with two integration constants (𝐶1, 𝐶2) ∈ ℝ2. The linear term 𝐶1𝑥 corresponds to the
addition of a constant in the potential 𝜓(𝑟) (recall 𝑌 (2𝑟2) = 2𝑟2𝜓(𝑟)). As it does not
affect the dynamics, we leave it aside and set 𝐶1 = 0.

On the one hand, we have shown that if 𝑌 (𝑥) is a Bertrand potential, then according
to equation (10.69) it must be a power law. On the other hand, it is clear that a Bertrand
potential must be isochrone: if all bounded orbits are closed, then the apsidal angle Θ(𝜉, Λ)
must be a constant, rational multiple of 2𝜋. In particular, as a constant function it is also
independent of the energy 𝜉 of the particle. But this characterizes isochrony. Consequently,
a Bertrand potential must, at once, have the form of a power law and that of a parabola.
The only parabolae that verify this property are either the square root 𝑌 ∝ √𝑥 or the
quadratic 𝑌 ∝ 𝑥2. In terms of the variable 𝑟, this means that either 𝜓(𝑟) ∝ 1/𝑟 (the
Kepler potential), or 𝜓 ∝ 𝑟2 (the Harmonic potential). Moreover, according to (10.69),
these two cases correspond to 𝐾 = 1/2 and 𝐾 = 2, i.e. to 𝑄 = 1 or 𝑄 = 1/2, respectively.
In light of the link between the apsidal angle Θ and the ratio of Hamiltonian frequencies
(10.12), we recover the classical formulae Θ = 2𝜋 for the Kepler ellipses, and Θ = 𝜋 for
the Harmonic ellipses.

10.3.3 Isochrone Kepler’s Third Law
As a final application of the BNFs, let us consider once more the equality 𝔟2 = 𝔟1, which
was written explicitly in terms of 𝑌 in (10.59). Re-arranging this equation provides, for
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any Λ,

𝑇 (𝜉𝑐(Λ))2 = 𝜋2

2
1

𝑌 ″(𝑥𝑐(Λ)) . (10.70)

But now, recall the initial definition of isochrone potentials: 𝑇 should be independent
of Λ. Although here the equation holds for the circular orbit of energy 𝜉𝑐, there exist
other, non-circular orbits with the same energy. Geometrically, they can be constructed
by translating the line 𝑦 = 𝜉𝑐𝑥 − Λ2 upward on figure 8.1. By construction, all these
orbits (defined by the translation) only see their angular momentum change, not their
energy (a translation preserves the slope). Consequently, their radial period (squared) is
numerically equal to (10.70). Summarizing, we can now write that an orbit of energy and
angular momentum (𝜉, Λ) has a radial period 𝑇 (𝜉) given by

𝑇 (𝜉) = 𝜋√
2

1
√𝑌 ″(𝑥𝑐(𝜉))

, (10.71)

where now 𝑥𝑐(𝜉) denotes the abscissa of the circular orbit with energy 𝜉, obtained by
a downward translation (cf figure 8.1). Equation (10.71) is in complete agreement with
formula the other form of Kepler’s third laws given in App. C.2.1, where 𝑇 was expressed
in terms of the radius of curvature 𝑅𝑐 of the parabola at the point of abscissa 𝑥𝑐. Recalling
the link between curvature and the second derivative for explicit curves, equality between
the two formulae follows. To obtain the general expression (10.6) in terms of 𝜉 and the
parabola parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒), one simply needs to compute the second derivative of a
given parabola 𝑌 (𝑥), evaluate it at 𝑥𝑐 and insert the result in (10.71). The result (10.6)
follows immediately.

A last historical note
We end this chapter with an historical note that involves both Hamiltonian mechanics and
Huygens, closing the second part of this thesis just as it started, in Chap. 7. This note
starts with a question. How come that, in analytical mechanics, the conserved mechanical
energy of a system, which is the most fundamental quantity of interest, is denoted 𝐻?
This is easy. It is because it refers to the Hamiltonian of the system. Another question
then. Who introduced that notation for the first time? Again, a quick search reveals that
it is Joseph Louis Lagrange, who used it first in the second edition of his masterwork “Mé-
canique Analytique”, in 1811. A last question. How old was Sir William Rowan Hamilton
in 1811? The answer is: five years old.

Although it is clear that Hamilton would have earned this privilege for his work on
analytical mechanics (it is him who brought considerable novelty and valuable insight on
Lagrange’s work), the letter 𝐻 was not dedicated to him. Did Lagrange chose 𝐻 for lack
of a better letter? No, either. In fact, a careful inspection of Lagrange’s work reveals
that he did dedicate this letter 𝐻 to someone. That someone is none other than Christian
Huygens. Indeed, as Lagrange mentions in his treatise, it his Huygens who proposed,
for the first time, in his Horlogium Oscillatiorium (again!), to use what we know call the
conservation of energy, to solve a mechanical problem. Lagrange knew Huygens’ work
very well, and makes many references to his brilliant idea throughout his writings.

This misuse of the letter 𝐻 is not very well-known. It seems to have been first described
by Jean-Marie Souriau in 1986 [550], and also by Patrick Iglésias in 1998 [614,615]. These
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two accounts are based on Lagrange’s printed work, and one may argue that we can never
now for sure if Lagrange used that letter himself in his notes, and that the printer decided
to chose the letter 𝐻. However, recently, a lost manuscript of Lagrange’s second edition
of Mécanique Analytique was found again, hidden in the library of the École Nationale
Supérieure des Techniques Avançées (ENSTA). In this particular copy, a leaflet can be
found at the very end of the manuscript, in the binding of the book. On it, written from
Lagrange’s own hand, we can see a reference to the “vis-viva” constant of Huygens (the
mechanical energy), just above the equation 𝑇 + 𝑉 = 𝐻, as depicted in Fig. 10.4. This
book was given to the school by its owner, Jacques Binet15, who hand wrote on the cover
page that “the handwritten leaflet at the end of the manuscript is from the author himself”.

Figure 10.4: The leaflet added to Binet’s copy of Lagrange’s second edition of the Mécanique
Analytique. We see the equation 𝑇 + 𝑉 = 𝐻 and a reference to Huygens’ conservation of energy
in the text above it. The gloved fingers belong to Jérôme Perez [616].

Of course, it is far too late to begin calling 𝐻 the Huygensian of the system, and it will
probably be called the Hamiltonian forever. Nevertheless, we see from this story a version
of Arnold’s theorem at work again: if something is named after someone in science, then
it is most probable that this someone did not discover nor invent it first. Of course, this
theorem from Arnold applies to itself as well.

15The same Binet who pointed out that the two-body problem is a harmonic oscillator when
written in terms of the (now eponymous) variable 𝑢 ≡ 1/𝑟.



Conclusions

To conclude this manuscript, we come back to the main results derived in this work. We
also discuss a number of research prospects associated to each of them and emphasize

on potential applications.

The First Law of Mechanics in General Relativity
The first chapter of this manuscript contained a number of historical references. Although
there is nothing there that cannot be found elsewhere with greater details, some of these
historical references are perhaps not that well-known, and some figures may be of interest
for pedagogical purposes. In any case, the point was to give some context to this work, and
understand how our results fit into the bigger picture that is GW astronomy. Speaking of
Chap. 1 and conclusions, I take this opportunity to reveal the “mystery” behind Fig. 1.3.
Although this lithography depicts the properties and orbits of the (never to be found)
planet Vulcan, it is also dated from 1846 (rectangular inset), namely 13 years before Le
Verrier proposed it to the French Academy of Sciences for the first time [66]. Several
experts on this topic and period of astronomy (including Guy Bertrand, David Aubin and
Bill Sheehan) admitted never having seen this map and be somewhat baffled by it, having
no convincing explanation as to the presence of Vulcan so early. References on this map
can be found here, and any reader with the slightest piece of information is encouraged
to contact me for further investigation. Solving the “mystery of the 1846 Vulcan map”
would be an exciting side project which I intend to pursue with historians of physics at
the Paris Observatory.

New material starts to appear in Chap. 2. Even though all approximation schemes
discussed there are not new, we tried to add value to the discussion by comparing their
main assumptions and outputs, and pointing out their unequal but overlapping range of
applicability. In particular, emphasis was made on their complementarity: some of them
take as an assumption the fact that we can describe an extended body by a point particle
whereas others have this as an output; and some of them, based on SEM conservation,
are a priori incompatible with the description of black holes; etc. In fact, we believe that
an overall, thorough comparison analysis of all these relativistic approximation schemes
would be of value, and could be an interesting line of research to explore. Regarding other
prospects, we mention the possibility of extending Tuclzyjew’s reduction scheme to higher
multipolar orders. Indeed, we believe that the calculation at dipolar order (App. A.4) and
quadrupolar order (cf. [343]) could be made systematic with the help of some computer al-
gebra software. Currently, it seems that there is no obvious rule regarding the structure of
higher order multipoles, derivatives and coefficients in the formula for a generic multipolar
SEM tensor, contrary to the evolution equations, cf. [319]. This computer-assisted method
could shed some light on this issue, and may show an interesting interplay between physics

265

https://www.loc.gov/resource/g3180.ct003790?r=-0.493,-0.046,1.816,1.127,0


266 CONCLUSIONS

and combinatorics. Lastly, although straightforward to derive, the consequences of the
evolution equations at any multipolar order (with a generic force and torque sourcing the
equation of motion and precession), are given in App. A.4.4 and have not been written
down before, to our knowledge. It would be interesting to examine these equations further
to understand how each multipole contributes to the conservation laws.

In Chap. 3, we motivated, using leading-order post-Newtonian results for a two-body
system, our need for the introduction of a helical Killing vector 𝑘𝑎. This strategy has been
known and applied for a long time, in particular for corotating, extended-objects binaries
and points particles. The main use of this helical Killing vector is the central identity

𝑘𝑎|γ = 𝑧𝑢𝑎 , (10.72)

where 𝑢𝑎 is the body’s four-velocity, which mathematically encodes the circular motion
of the body within the spacetime geometry at once. Our main result in this chapter
is a covariant proof that the mere existence of a Killing vector enforces this equation
automatically. In other words, given a helical spacetime and a multipolar point particle
within it, it readily follows from a calculation that Eq. (10.72) holds. Additionally, we
showed that this setup enforces a number of geometrical constraints on the multipoles
equipping the particle, namely their Lie-dragging along 𝑘𝑎:

ℒ𝑘𝑝𝑎 = 0 , ℒ𝑘𝑆𝑎𝑏 = 0 and ℒ𝑘𝐽𝑎𝑏𝑐𝑑 = 0 , (10.73)

with the four-momentum 𝑝𝑎, spin tensor 𝑆𝑎𝑏 and quadrupole tensor 𝐽𝑎𝑏𝑐𝑑 of the parti-
cle. These results, which are expected to hold at any multipolar order, are of primary
importance for subsequent chapters, but could also be used as a starting point to measure
the effect of approximate isometries. In particular, given a spacetime that contains an
“approximate” Killing vector (in a sense to be precised), our calculation could be repeated
to see how the constraints (10.72) and (10.73) are modified. This could have potential
applications in black hole perturbation theory, where the background isometries of the
black hole are ”slightly” broken by, say, a secondary object of any other type of field.
Again, this could be of some interest to some groups, and we leave this as an interesting
research prospect.

Chapter 4 discuses several of the plethora of forms that the first law of mechanics takes
in the literature, depending on the context in which it is derived and/or used. Again, the
added value here is to gather in a single place all these first laws and their associated
references. We hope that it can be helpful as it is, and a more profound review could be of
value for the community. However, the most important new result of Chap. 4 is found in
Sec. 4.3, where we derive a general first law of mechanics valid for arbitrary, non-vacuum,
helically isometric spacetime

𝛿𝑀 − Ω 𝛿𝐽 = 𝛿 ∫
𝒮

𝜀𝑎𝑏𝑐𝑑 𝑇 𝑑𝑒𝑘𝑒 − 1
2 ∫

𝒮
𝜀𝑎𝑏𝑐𝑑 𝑘𝑑 𝑇 𝑒𝑓𝛿𝑔𝑒𝑓 , (10.74)

where 𝑇 𝑎𝑏 is the SEM tensor of the fields in this spacetime and 𝒮 any spacelike surface
transverse to 𝑘𝑎. This first law generalizes that of Friedmann, Uryū and Shibata [381] for
perfect fluids. Because the formalism from which it is derived [470, 497] is very general,
it should be straightforward to obtain a number of variations of this law, e.g., by adding
other fields, or extend it to alternative (diffeomorphism-invariant) theories of gravity. The
resulting first law should then include additional terms encoding deviations from GR,
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and could be used in the context of approximation schemes within alternative theories of
gravity. Comparison to, say, post-Newtonian results within alternative theories of gravity
could then be performed as a validity check for both results. Discussions on the matter
have already been initiated.

In Chap. 5, we have combined all ingredients from previous chapters to derive a co-
variant, SSC-independent, first law of mechanics for dipolar particles. The coefficients
appearing in the first law are shown to be related to the helical Killing field in a natural
way. We also derived another, simpler formulation of that same law under the SSC as-
sumption 𝑢𝑎𝑆𝑎𝑏 = 0, and a further one only involving scalar quantities, valid up to linear
order in the spin. These laws read

𝛿𝑀 − Ω 𝛿𝐽 = ∑
i

(𝑧i 𝛿𝑚i − 1
2∇𝑎𝑘𝑏 𝛿𝑆𝑎

i 𝑏 − 𝑘𝑎 𝛿�̇�𝑎
i − 1

2�̇�𝑎
i 𝛿𝑘𝑎) (10.75a)

SSC= ∑
i

(|𝑘|i 𝛿𝑚i − 1
2(∇𝑎𝑘𝑏) 𝛿𝑆𝑎

i 𝑏) (10.75b)

SSC= ∑
i

(|𝑘|i 𝛿𝑚i − |∇𝑘|i 𝛿𝑆i) + 𝑂(𝑆2
i ) , (10.75c)

respectively. We also showed that this law coincides (with the SSC and in the linear-in-
spin limit) with the pre-existing first law for spinning particles derived in the Hamiltonian
framework [405]. Although quadratic-in-spin corrections from quadrupolar contributions
should be added for a self-consistent result, let us mention that our dipolar first law con-
tains, by construction, all spin nonlinearities from the dipolar sector. Therefore, the first
law for spinning particles accounting for all quadratic-in-spin effects only necessitates the
computation of this quadrupolar contribution. Since non-linear spin effects are relatively
well-understood in post-Newtonian theory, explicit verification of the first law is feasible.
This PN verification is currently underway at dipolar order.

In that respect, we presented in Chap. 6 a number of preliminary but promising re-
sults regarding these extensions to quadrupolar order. In particular, we completed the
derivation of one of the two integrals that enter the first law, namely the integral 𝐼 in
𝛿𝑀 −Ω𝛿𝐽 = −𝛿𝐼 + 1

2𝐾 (cf. Eq. (10.74)). Remarkably, this calculation does not require an
explicit formula for the quadrupole 𝐽𝑎𝑏𝑐𝑑 entering the description of the binary. Given the
general mass-momentum-stress decomposition (6.2) of 𝐽𝑎𝑏𝑐𝑑, these contributions are given
in Eqs. (6.30), (6.34) and (6.35), respectively. Although in the current state of our work
this result needs to be double-checked, our confidence in it is rather high, owing to the fact
that any non-covariant term (e.g., involving a dependence on the integration hypersurface
𝒮 through the extrinsic curvature) present throughout the calculation vanishes identically
at the end, based on very general symmetry arguments, and as should be expected. This
integral, quadrupolar first law, when taken in the dipole limit, was compared to (and
found to agree with) that found in the literature for spinning point particles [405]. Lastly,
based on these results, we anticipated the final expression for the variational first law at
quadrupolar order, in the particular case of a spin- and tidally-induced quadrupole:

𝛿𝑀 − Ω𝛿𝐽 !!= ∑
i

𝑧i(𝛿𝑚i − 𝜔i𝛿𝑆i + 𝐸𝑆
i 𝛿(𝜅2,i𝒬i) + ℰi𝛿(𝜇2,iℰi) + ℬi𝛿(𝜎2,iℬi)) (10.76)

where the notations are defined in Chap. 6, Sec. 6.3. Regarding applications of this re-
sult, a first step would be to use the first law as a comparison tool, as we presented in
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Chap. 4. In particular, results for these spin and tidally-induced quadrupoles effects in the
post-Newtonian expansions of quantities appearing in the first law are already available.
For example, the work [617] contains the expressions for the binding energy and total
angular momentum of a circular binary with spin-aligned spins, in terms of the polariz-
ability constants (𝜇2, 𝜎2), see Eqs. (6.5) and (6.6) there16. Regarding the spin-induced
quadrupole, [319] contains similar PN expressions in terms of the constant 𝜅2 and could
be used to verify our first law including our entire quadrupolar model. We note that these
two references also contain octupolar (tidal and spin) contributions, which could be of
interest if the first law were to be extended at this order. In practice, all these polarizabil-
ity coefficients measure finite-size effects in binary systems of primary importance for the
future of GW astronomy. Indeed, these “measurements” of the polarizability constants
will put strong constraints on the equation of state of neutron stars in the supra-nuclear
regime [618,619], which cannot be tested in current laboratory experiment. These imprints
left in the gravitational waveform of tidally-deformed objects have already been observed,
in particular following the binary neutron-star merger event GW170817 [280,620,621].

Lastly, on more theoretical grounds, it would be very interesting to examine how the
generalized Killing field formalism (touched upon in Chap. 2, Sec. 2.2.3) could be used to
redo, and possibly simplify, our calculations. Indeed, this framework takes advantage of
the existence of generalized Killing fields, and seems to be a natural choice in the context
where one has a true Killing field, such as in our context. If our calculations are to be
extended to octupolar order, the GKF formalism could be more adapted to handle these
high (multipolar) order calculations, which are already intricate at quadrupolar order, at
least in our formalism.

Isochrone Orbits in Newtonian Gravity
The last four chapters of this manuscript presented our result regarding the solution of a
problem posed by Michel Hénon: determining all isochrone potentials and studying orbits
therein. In the first of these chapters, Chap. 7, we gave an overview of a related problem,
solved by Huygens: the isochrone pendulum. As we pointed out several times, Huygens’
solution contains a number of similarities with ours. This is expected, as both problems
can be rephrased as, broadly speaking, “find a curve 𝑦(𝑥) such that a functional 𝑇 [𝑦] is
independent of one of the parameters of the problem”. It would be very interesting to make
a more complete dictionary between these two problems, and to study higher-dimensional
versions of them. We will come back to these similarities below for Chap. 10.

In Chap. 8, we provided a complete classification of the set of isochrone potentials,
which we split into five families, as summarized in Fig 8.8. To obtain this classification,
we first had to rewrite the integral definition of the radial period as the Hénon’s formula

𝑇 (𝜉) = 𝜋
4

𝑥𝐴 − 𝑥𝑃

√Λ2
𝐶 − Λ2

, (10.77)

which expresses the radial period as the ratio between two directly measurable (geomet-
rically speaking) quantities built out of chords and tangents to the isochrone potential.

16It was shown in that same reference that the first-law corollary 𝜕Ω𝐸 − Ω𝜕Ω𝐽 = 0 holds at
the PN level considered in the paper, which includes both spin- and tidally-induced quadrupole
considered in our work.
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With this geometrical rephrasing of isochrony, it was then possible to use Archimedes’
characterization of parabolae to deduce the fundamental theorem of isochrony, namely

𝜓 is isochrone ⇒ 𝑦 = 𝑥 𝜓(√𝑥/2) is a parabola . (10.78)

We then use this correspondence between parabolae in the plane (parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒))
and isochrone potentials to find and classify them, into five distinct families (parameters
(𝜖, 𝜆, 𝜔, 𝜇, 𝛽)). Two of them are the most well-known, academic potentials (Harmonic and
Kepler), the third is that of Hénon, the fourth one (Bounded), was found in [588], and the
fifth one (Hollow) was put forward in this work. All these potentials exhibit a plethora of
features and would be of great interest to act as toy-models for astrophysical systems or
confined quantum systems, as pointed out in [2].

Having shed light on the nature of isochrone potentials in Chap. 8, we could then turn
to the analysis of isochrone orbits in Chap. 9. Two of the most important results in that
chapter were the generalization of Kepler’s third law for both the radial period and the
apsidal angle to all isochrone orbits:

𝑇 2 = −𝜋2

4
𝛿

(𝑎 + 𝑏𝜉)3 , and Θ2

𝜋2Λ2 = 2𝑏2Λ2 − 𝑑
𝑏2Λ4 − 𝑑Λ2 + 𝑒 + 2𝑏√

𝑏2Λ4 − 𝑑Λ2 + 𝑒
, (10.79)

which allows for a definitive check that these potentials are isochrone (𝑇 does not depend
on Λ, nor Θ on 𝜉); and the explicit, closed-form expression of the polar coordinates (𝑟, 𝜃),
given in Sec. 9.2.4. These formulae have been checked to agree with a direct, numeri-
cal integration of the equations of motion (cf. App. C.1.1). In particular, in Figs. 9.4
through 9.7, both the analytical and numerical orbits are plotted and indistinguishable
from one another. To derive this analytical solution, we proposed a geometrical method
that consisted in working in the Hénon plane, and mapping arcs of parabolae to one an-
other. As this geometrical method does not rely on the isochrone nature of the potentials,
it could be implemented for other types of dynamical systems, in the case where a fam-
ily of potentials is in a one-to-one correspondence with a set of curves stable under an
invertible group of transformations. This represents an interesting line of research to ob-
tain analytical results for otherwise complicated equations of motion. This method could
also be used to explore “distance” to isochrony, since any non-isochrone potential 𝑌 (𝑥)
can always be written as 𝐼(𝑥) + 𝑓(𝑥), where 𝐼(𝑥) is an isochrone potential (and thus an
arc of parabola) and 𝑓(𝑥) an arbitrary function. When 𝑓(𝑥) is small (in some sense to
be precised) then the curve 𝑌 (𝑥) is approximately a parabola and all results derived in
this work could be appropriately modified. This could be helpful for a stability analy-
sis of isochrone orbits, or to study other problems altogether (the geodesic motion of a
particle in the Schwarzschild metric being one example of a “Kepler + perturbation” case.)

Lastly, we mention another exploration that did not make it into the manuscript, but
otherwise provided interesting results. Since all isochrone orbits are arcs of parabolae in
the plane, constants of motion associated to this orbit should have an invariant formu-
lation, i.e., an expression in terms of geometrical quantities whose numerical value does
not change when going from a family of orbits to another. For instance, the Euclidean
group maps parabolae arcs to parabolae arcs. Therefore any physical quantity related to
an orbit can be written in terms of the Euclidean invariants of the locus of points made of
a parabola and a line. Such locus of points is a particular case of degree-three algebraic
curve, and the theory of Euclidean invariants are rather involved. Thankfully, Euclidean
invariants of parabolae are well-known (see the very nice article of MacDuffee [622]) and
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can easily be generalized to account for the “parabola+line” nature of this curve. Writ-
ing an expression for the physical, orbital invariants in terms of mathematical, Euclidean
invariants of these curves does give very interesting (but preliminary) results, and these
should be investigated further.

The last chapter on isochrony, Chap. 10, contains a revisit of the problem, with an
Hamiltonian approach. This investigation needed to be done to fully understand the
symmetries at play in isochrone mechanics. In particular, isochrone potentials are those
for which the Hamiltonian of a test particle takes the form

𝐻(𝐽, Λ) = −𝑎
𝑏 − 𝛿

𝑏(2𝑏𝐽 + 𝑅(Λ))2 , (10.80)

in terms of the natural action-angle variables (𝐽, Λ) of this (spherically symmetric) prob-
lem. The equations of motion derived from this Hamiltonian revealed that the notion of
eccentric anomaly and eccentricity, defined usually for the Keplerian ellipse, both admit
a generalization to all isochrone orbits. Although a direct, geometrical construction of
this eccentric anomaly (like for the Keplerian case) could not be found, we have to men-
tion the particular structure of the parametric solution (10.22) and (10.27), which take
the (schematic) form 𝑟(𝐸) = √𝑟+(𝐸)𝑟−(𝐸) and 𝜃(𝐸) = 𝜃+(𝐸) + 𝑞𝜃−(𝐸), where 𝑞 ∈ ℚ
and, remarkably, each pair (𝑟±, 𝜃±) depicts a Keplerian ellipse, in the Keplerian eccentric
anomaly parametrization (the Keplerian case corresponds to 𝑟+ = 𝑟− and 𝑞 = 0.) This
peculiarity would need to be investigated further, in particular to shed some light on the
nature of this angle 𝐸 in the case of isochrone, but non-Keplerian, orbits.

To conclude once and for all this last chapter, and perhaps most importantly regarding
our work on isochrony, the Hamiltonian analysis of the isochrone problem culminated in
two results. First, the derivation of the Kepler equation valid for all and any isochrone
orbit, in the form

Ω 𝑡 = 𝐸 − 𝜖 sin 𝐸 , (10.81)

with the parameter 𝜖 vanishing for circular orbits and satisfying 0 < 𝜖 < 1 for non-
circular ones, and Ω being the radial frequency 2𝜋/𝑇 . These quantities are expressed
simply in terms of the parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) and (𝜉, Λ) (cf. Eq. (10.19)) and give a
complete solution to the problem of motion in any isochrone potential. Second, the explicit
computation of the Birkhoff normal form of the system. The careful analysis of the (three
first) Birkhoff invariants of this normal form revealed the profound link between parabolae
and isochrony. Quite remarkably, the third Birkhoff invariant

𝔅 = 4𝑌3
𝑌2

+ 𝑥𝑐
3𝑌 2

2
(3𝑌2𝑌4 − 5𝑌 2

3 ) , (10.82)

encodes the universal ODE for parabolae in its second term. Since, as we showed, isochrony
implies that 𝔅1 = 4𝑌3/𝑌2, this second term vanishes, implying that 𝑌 (𝑥) satisfies this
ODE, and hence is a parabola. As a direct corollary, we showed that the Birkhoff invariants
also contain the Bertrand theorem, and the (generalized) Kepler’s third law. The power of
Hamiltonian mechanics revealed the deep connection between the symplectic nature of this
problem of mechanics and its Euclidean counterparts involving parabolae and their chords.

The implications of the previous result (and in particular our method) are numerous.
First, although we have not done it yet, we strongly suspect that the same treatment
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(Birkhoff normal form, Birkhoff invariants and an ODE) should give a very elegant solution
to Huygens’ isochrone pendulum. Indeed, much like parabolae, cycloids, which are the
unique set of (symmetric) solution to the isochrone pendulum problem, admit a universal
ODE, of the form 𝑌 𝑌 ″ + 𝑌 = const.. It should be straightforward to show that this
ODE is encoded in the Birkhoff invariant of the pendulum Hamiltonian. Second, this
Hamiltonian approach seems to be the most natural to generalize the isochrone problem
to axially (and not merely spherically) symmetric potentials. This would induce another
dimension to the orbit (not confined in a plane) but also an additional constant of motion,
hence an integrable problem. Construction of angle-action variables are well-known in
this case, and it should not be too difficult to generalize the normal form calculation.
Third, although this was not included in the manuscript, the expression for the Birkhoff
invariants in an isochrone potential can be actually computed at any order in the normal
form. We do not known if such analytic result, valid at any order in the normal form, is
of any interest, but it may be one of the rare case where it is available analytically. We
leave all these ideas for future explorations of the ever-expanding Land of Isochrony.
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Lorentzian geometry

A.1 Unicity of the field equations
In Chap. 1, Sec. 1.1.2, we presented, among other things, the Einstein field equation that
characterizes GR, and Lovelock’s theorem, which states the uniqueness of this equation
under very natural requirements. In the literature, we find other names associated to
Lovelock’s theorem, among which Vermeil, Cartan and Weyl stand out. Below is a brief
account on this priority (non-)issue.

• First of all, it is to be said that Einstein (probably thanks to Grossmann) and
Hilbert both claim the unicity result as a motivation for the final form of the field
equation, without giving a proof [623].

• Hermann Vermeil showed in 1917 that the Ricci scalar 𝑅 is the only scalar field
that is linear in the second derivative of 𝑔𝑎𝑏, for manifolds of any dimensions [624].
It should be noted that this work by Vermeil was actually motivated by his mentor
Felix Klein at the Göttingen university, directly following conversations between
Felix Klein, Emmy Noether and David Hilbert about invariance and conservation
laws [625]. At that time Hilbert had already derived the Einstein equation from an
action principle, of which the Lagrangian was purely and simply the Ricci scalar;
whence Vermeil and Klein’s motivations.

• Hermann Weyl reproduced Vermeil’s proof (in English) for the four-dimensional
case in his treatise 1922 [626].

• The same year, Élie Cartan [627], working at the level of the field equations, showed
that the only tensor that is symmetric and linear in the second derivatives of the
metric tensor is a linear combination of 𝑔𝑎𝑏, 𝑅𝑔𝑎𝑏 and the Ricci tensor 𝑅𝑎𝑏. He
also showed that enforcing the divergence-free condition imposes that 𝑔𝑎𝑏 and 𝑅𝑔𝑎𝑏
must combine in the Einstein tensor1.

1Joël Merker provides a nice revisit of Cartan’s work on the Einstein equations, with additional
mathematical details and physical applications in [627].
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• Finally, David Lovelock showed in a four-papers program [39,628–630] the strongest
unicity result, relaxing most of Cartan’s assumptions. Lovelock aknowledges Car-
tan’s theorem and points out the differences between their work. Lovelock proved,
in particular, that symmetry is not required and is a consequence of the four-
dimensionality of spacetime. He also showed that asking for a mere dependence
in second-order derivatives is sufficient, as the result is then linear in these. For
a revisited, easier-to-read proof of Lovelock’s work, see [631]. Note that Weyl also
mentions that linearity is a consequence, not an assumption, at the very end of
App. II of his treatise [626], but no proof nor reference is given there.

A.2 Killing fields and bitensors
We provide a number of important mathematical results used especially in Chap. 3 when
working with a Killing vector field.

A.2.1 Kostant formula
Combining the defining property of the Riemann tensor with Killing’s equation (3.8) yields

∇𝑎𝑏𝜉𝑐 + ∇𝑏𝑐𝜉𝑎 = 𝑅 𝑑
𝑎𝑏𝑐 𝜉𝑑 . (A.1)

Performing a cyclic permutation on the indices 𝑎, 𝑏, 𝑐, and considering the linear combi-
nation (𝑎𝑏𝑐) + (𝑐𝑎𝑏) − (𝑏𝑐𝑎), we readily obtain

2∇𝑎𝑏𝜉𝑐 = (𝑅 𝑑
𝑎𝑏𝑐 + 𝑅 𝑑

𝑐𝑎𝑏 − 𝑅 𝑑
𝑏𝑐𝑎 )𝜉𝑑 = −2𝑅 𝑑

𝑏𝑐𝑎 𝜉𝑑 , (A.2)

where the algebraic symmetry property 𝑅 𝑑
[𝑎𝑏𝑐] = 0 was used in the last equality. Finally

with 𝑅 𝑑
𝑏𝑐𝑎 = −𝑅 𝑑

𝑐𝑏𝑎 we obtain the Kostant formula

∇𝑎𝑏𝜉𝑐 = 𝑅 𝑑
𝑐𝑏𝑎 𝜉𝑑 , (A.3)

or equivalently ∇𝑎𝑏𝜉𝑐 = 𝑅 𝑐
𝑑𝑎𝑏 𝜉𝑑. Equation (A.3) implies that the 2-form ∇𝑎𝜉𝑏 = ∇[𝑎𝜉𝑏],

as well as its norm |∇𝜉|, are conserved along the integral curves of 𝜉𝑎. Indeed, by virtue
of the antisymmetry of the Riemann tensor with respect to its last two indices,

𝜉𝑐∇𝑐∇𝑎𝜉𝑏 = −𝑅𝑎𝑏𝑐𝑑𝜉𝑐𝜉𝑑 = 0 . (A.4)

A.2.2 Commutation of the covariant and Lie derivatives
In this subsection we prove that, for any tensor field, the Lie derivative operator ℒ𝜉, such
that ℒ𝜉𝑔𝑎𝑏 = 0, commutes with the metric-compatible covariant derivative operator ∇𝑐,
such that ∇𝑐𝑔𝑎𝑏 = 0. First, consider a tensor field 𝑇 𝑁 of type (𝑛, 0), where 𝑁 ≡ 𝑐1 ⋯ 𝑐𝑛
denotes an abstract multi-index with 𝑛 indices. By definition of the Lie derivative operator
in terms of the Levi-Civita connection, we have

ℒ𝜉𝑇 𝑁 = 𝜉𝑒∇𝑒𝑇 𝑁 −
𝑛

∑
𝑖=1

𝑇 𝑁𝑒∇𝑒𝜉𝑐𝑖 , (A.5a)

ℒ𝜉∇𝑎𝑇 𝑁 = 𝜉𝑒∇𝑒𝑎𝑇 𝑁 − (∇𝑒𝑇 𝑁)∇𝑒𝜉𝑎 −
𝑛

∑
𝑖=1

(∇𝑎𝑇 𝑁𝑒)∇𝑒𝜉𝑐𝑖 , (A.5b)
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where we used the shorthand 𝑁𝑒 ≡ 𝑐1 ⋯ 𝑒 ⋯ 𝑐𝑛, with the abstract index 𝑒 at the 𝑖th slot.
Taking the covariant derivative of the first equation yields a formula that will be shown
to be identical to Eq. (A.5b). Indeed,

∇𝑎ℒ𝜉𝑇 𝑁 = (∇𝑎𝜉𝑒)∇𝑒𝑇 𝑁 + 𝜉𝑒∇𝑎𝑒𝑇 𝑁 −
𝑛

∑
𝑖=1

(∇𝑎𝑇 𝑁𝑒)∇𝑒𝜉𝑐𝑖 −
𝑛

∑
𝑖=1

𝑇 𝑁𝑒∇𝑎𝑒𝜉𝑐𝑖 . (A.6)

By Killing’s equation, the first term of (A.6) is identical to the second term of (A.5b).
Since (A.6) and (A.5b) share the same third term, we get the following expression for their
difference:

(∇𝑎ℒ𝜉 − ℒ𝜉∇𝑎)𝑇 𝑁 = 2𝜉𝑒∇[𝑎𝑒]𝑇 𝑁 −
𝑛

∑
𝑖=1

𝑇 𝑁𝑒∇𝑎𝑒𝜉𝑐𝑖 . (A.7)

Then, we apply the defining property of the curvature tensor to the first term on the
right-hand side of (A.7), we use 𝑅 𝑐𝑖

𝑎𝑒𝑏 = −𝑅 𝑐𝑖
𝑒𝑎𝑏 , and rename some indices to obtain

(∇𝑎ℒ𝜉 − ℒ𝜉∇𝑎)𝑇 𝑐1⋯𝑐𝑛 =
𝑛

∑
𝑖=1

𝑇 𝑐1⋯𝑒⋯𝑐𝑛(𝑅 𝑐𝑖
𝑏𝑎𝑒 𝜉𝑏 − ∇𝑎𝑒𝜉𝑐𝑖) = 0 , (A.8)

where the last equality follows by noticing that each term in parenthesis vanishes, by virtue
of Kostant’s formula (A.3). Finally, since the metric satisfies ℒ𝜉𝑔𝑎𝑏 = 0 and ∇𝑐𝑔𝑎𝑏 =0, it
can be used to “lower” indices in (A.8), such that the result holds for a tensor field of any
type. In summary, we have proven that for any Killing vector field 𝜉𝑎 and for any tensor
field 𝚾,

𝛁(ℒ𝜉𝚾) = ℒ𝜉(𝛁𝚾) . (A.9)

A.2.3 Bitensors and their Lie derivatives
In this appendix we shall briefly review the concepts of bitensor, coincidence limit, parallel
propagator, invariant Dirac functional and Lie derivative operator. We shall then prove
that the Lie derivative of the invariant Dirac distribution along the flow of a Killing field
vanishes identically. The reader is referred to, e.g., Ref. [196,632] for more details on those
notions.

Bitensors and coincidence limit
Just like a tensor field is a multilinear map on the points 𝑥 of a spacetime manifold ℰ , a
bitensor field is a multilinear map on two points (𝑥, 𝑥′) ∈ ℰ × ℰ . A generic bitensor will
then be denoted as

Ω𝑎𝑏⋯
𝑎′𝑏′⋯(𝑥, 𝑥′) , (A.10)

where the abstract indices 𝑎, 𝑏, 𝑐, … and 𝑎′, 𝑏′, 𝑐′, … refer to the points 𝑥 and 𝑥′, respec-
tively. Two examples of bitensors are used in this paper: the parallel propagator 𝑔𝑎

𝑎′(𝑥, 𝑥′)
and the invariant Dirac functional 𝛿4(𝑥, 𝑥′), both defined below.

An important operation for bitensors is the coincidence limit, which consists in evalu-
ating a bitensor at the same point. It is defined as

[Ω𝑎𝑏⋯
𝑎′𝑏′⋯](𝑥) ≡ lim

𝑥′→𝑥
Ω𝑎𝑏⋯

𝑎′𝑏′⋯(𝑥, 𝑥′) . (A.11)

The coincidence limit of a bitensor is thus an ordinary tensor field. We will assume that this
coincidence limit always exist and is independent of the direction in which 𝑥′ approaches
𝑥. For more details regarding bitensors and the coincidence limit, see e.g. Ref. [196].
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Parallel propagator
An important example of bitensor is the parallel propagator. If the points 𝑥 and 𝑥′ are
“close enough,” i.e., if 𝑥′ is in a normal neighborhood of 𝑥, then there is a unique geodesic
segment 𝜆 that joins them. On this geodesic segment, we introduce an orthonormal tetrad
(𝑒𝑎

𝐴) that is parallel-transported on 𝜆, where the subscript 𝐴 ∈ {0, 1, 2, 3} labels the vectors
of the basis. By definition, this tetrad obeys the orthonormality and completion relations

𝑔𝑎𝑏𝑒𝑎
𝐴𝑒𝑏

𝐵 = 𝜂𝐴𝐵 and 𝑔𝑎𝑏 = 𝜂𝐴𝐵𝑒𝐴
𝑎 𝑒𝐵

𝑏 , (A.12)

where the Minkowski metric 𝜂𝐴𝐵 = diag (−1, 1, 1, 1) is used to lower the Greek indices,
and its inverse 𝜂𝐴𝐵 to raise them. The 1-form 𝑒𝐴

𝑎 is defined by metric duality as 𝑒𝐴
𝑎 ≡

𝜂𝐴𝐵𝑔𝑎𝑏𝑒𝑏
𝐵.

Next, we introduce a generic vector field 𝑣𝑎 defined on 𝜆. At any point 𝑧 ∈ 𝜆, this
vector field can be expanded with respect to the tetrad (𝑒𝑎

𝐴), according to

𝑣𝑎(𝑧) = 𝑣𝐴(𝑧)𝑒𝑎
𝐴(𝑧) , where 𝑣𝐴 ≡ 𝑣𝑎𝑒𝐴

𝑎 . (A.13)

Now we make the following remark: if 𝑣𝑎 is parallely transported along 𝜆, then it is clear
from (A.13) that the tetrad components 𝑣𝐴 remain constant along 𝜆, and thus have the
same numerical value at 𝑧 = 𝑥 and at 𝑧 = 𝑥′. By substituting the definition given in the
right-hand side of Eq. (A.13) in each side of the equality 𝑣𝐴(𝑥) = 𝑣𝐴(𝑥′), and by using
the orthogonal properties of the tetrad (A.12), we obtain

𝑣𝑎(𝑥) = 𝑔𝑎
𝑎′(𝑥, 𝑥′)𝑣𝑎′(𝑥′) , where 𝑔𝑎

𝑎′(𝑥, 𝑥′) ≡ 𝑒𝑎
𝐴(𝑥)𝑒𝐴

𝑎′(𝑥′) . (A.14)

The bitensor 𝑔𝑎
𝑎′(𝑥, 𝑥′) is the so-called parallel propagator from 𝑥′ to 𝑥. It takes the

vector 𝑣𝑎 at the point 𝑥′ and extends it by parallel transport to the point 𝑥. As long as
the underlying geodesic is unique, this extension is unique as well. The formula (A.14)
can be generalized to a generic tensor field of arbitrary rank. The parallel propagator
(A.14) is used in Sec. 3.2.2 to extend the multipoles off the worldline of each quadrupolar
particle.

Invariant Dirac distribution
The gravitational skeleton model reviewed in Chap. 2 relies crucially on a 4-dimensional,
covariant generalization of the ordinary, noncovariant Dirac distribution. In four spacetime
dimensions, the invariant Dirac functional 𝛿4(𝑥, 𝑥′) is the distributional biscalar defined
by the relations [196]

∫
𝒱

𝑓(𝑥) 𝛿4(𝑥, 𝑥′) d𝑉 = 𝑓(𝑥′) and ∫
𝒱 ′

𝑓(𝑥′) 𝛿4(𝑥, 𝑥′) d𝑉 ′ = 𝑓(𝑥) , (A.15)

where 𝑓 is a smooth scalar field (a test function), 𝒱 and 𝒱 ′ any four-dimensional regions
of spacetime that contain the points 𝑥′ and 𝑥, respectively, and d𝑉 = √−𝑔 d4𝑥 is the
invariant volume element, with 𝑔 the determinant of the metric tensor 𝑔𝑎𝑏 in a given
coordinate basis. The definition (A.15) ensures that 𝛿4 is symmetric in its arguments,

𝛿4(𝑥, 𝑥′) = 𝛿4(𝑥′, 𝑥) , (A.16)

such that it depends necessarily on the difference of the events’ coordinates. More precisely,
given a coordinate system (𝑥𝛼), one can easily show that [196]

𝛿4(𝑥, 𝑥′) =
3

∏
𝛼=0

𝛿(𝑥𝛼 − 𝑥′𝛼)√−𝑔 , (A.17)
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where 𝛿 is the ordinary, noncovariant Dirac distribution, such that ∫ℝ 𝜙(𝑡)𝛿(𝑡) d𝑡 = 𝜙(0)
for any test function 𝜙. Together with the consequence ∇𝑎 𝑔 = 0 of metric compatibility,
the explicit formula (A.17) implies the property

(∇𝑎 + ∇𝑎′) 𝛿4(𝑥, 𝑥′) = 0 . (A.18)

Finally, by recalling the notation (A.11) for the coincidence limit where 𝑥′ → 𝑥, an
important distributional identity satisfied by 𝛿4, valid for any bitensor Ω𝑎𝑏⋯

𝑎′𝑏′⋯, is

Ω𝑎𝑏⋯
𝑎′𝑏′⋯(𝑥, 𝑥′) 𝛿4(𝑥, 𝑥′) = [Ω𝑎𝑏⋯

𝑎′𝑏′⋯] 𝛿4(𝑥, 𝑥′) . (A.19)

Lie derivative operator

Our derivation of the relations (3.30), (3.36), (3.46), (3.48) and (3.49) relies on the invari-
ance (3.13) of the quadrupolar SEM tensors (2.58)-(2.59) and (3.17) along the integral
curves of the helical Killing vector (3.7). Since these tensor fields involve the (distribu-
tional) bitensor 𝛿4(𝑥, 𝑥′), we require a generalization to bitensor fields of the ordinary
definition of the Lie derivative of a smooth tensor field.

Let 𝜙𝜖 denote a one-parameter group of diffeomorphism generated by a vector field
𝜉𝑎(𝑥). The “push-forward” 𝜙∗

𝜖 can then be used to carry any smooth bitensor field
Ω𝑎𝑏⋯

𝑎′𝑏′⋯(𝑥, 𝑥′) along the flow of 𝜉𝑎, by acting independently on both spacetime points 𝑥
and 𝑥′. By analogy with the definition of the Lie derivative of a smooth tensor field, we
define the Lie derivative ℒ𝜉 along 𝜉𝑎 of a smooth bitensor field as [5]

ℒ𝜉Ω𝑎𝑏⋯
𝑎′𝑏′⋯ ≡ lim

𝜖→0
1
𝜖 [𝜙∗

−𝜖Ω𝑎𝑏⋯
𝑎′𝑏′⋯ − Ω𝑎𝑏⋯

𝑎′𝑏′⋯] , (A.20)

where all bitensor appearing in (A.20) are evaluated at the same combination (𝑥, 𝑥′) of
points. For a generic biscalar 𝑆(𝑥, 𝑥′), this general definition reduces to

ℒ𝜉𝑆(𝑥, 𝑥′) = 𝜉𝑎∇𝑎𝑆(𝑥, 𝑥′) + 𝜉𝑎′∇𝑎′𝑆(𝑥, 𝑥′) . (A.21)

This definition coincides with that used by Harte [345], who defines the Lie derivative of
any bitensor as acting independently and linearly on each spacetime point.

Lie derivative of the invariant Dirac functional

Finally, we wish to establish a formula for the Lie derivative ℒ𝜉𝛿4 along a vector field 𝜉𝑎 of
the invariant Dirac distribution 𝛿4. By applying the definition (A.21) of the Lie derivative
to the distributional biscalar (A.17), and by using the property (A.18), the Lie derivative
of the invariant Dirac distribution along a smooth vector field 𝜉𝑎 reads

ℒ𝜉𝛿4(𝑥, 𝑥′) = (𝜉𝑎 − 𝜉𝑎′)∇𝑎𝛿4(𝑥, 𝑥′) . (A.22)

This form can be further simplified by integrating ℒ𝜉𝛿4 against an arbitrary “test function.”
Indeed, for any smooth scalar field 𝑓 with compact support, the formula (A.22) implies

∫
𝒱

𝑓(𝑥) ℒ𝜉𝛿4(𝑥, 𝑥′) d𝑉 = ∫
𝒱

∇𝑎(𝑓(𝜉𝑎 − 𝜉𝑎′)𝛿4) d𝑉 − ∫
𝒱

(∇𝑎𝑓(𝜉𝑎 − 𝜉𝑎′) + 𝑓∇𝑎𝜉𝑎) 𝛿4 d𝑉 ,
(A.23)
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where we integrated by parts and used ∇𝑎𝜉𝑎′ = 0. The first integral in the right-hand side
can be converted into a surface integral by applying Stokes’ theorem, and easily shown to
vanish thanks to the distributional identity (A.19) and the coincidence limit [𝜉𝑎 −𝜉𝑎′] = 0:

∫
𝒱

∇𝑎(𝑓(𝜉𝑎 − 𝜉𝑎′)𝛿4) d𝑉 = ∮
𝜕𝒱

[𝑓(𝜉𝑎 − 𝜉𝑎′)]𝛿4 dΣ𝑎 = 0 . (A.24)

Moreover, by using the distributional identity (A.19), the coincidence limit [𝜉𝑎 − 𝜉𝑎′] = 0
and the defining property (A.15) of the invariant distribution 𝛿4, the second term in the
right-hand side of Eq. (A.23) simply reads

∫
𝒱

([∇𝑎𝑓(𝜉𝑎 − 𝜉𝑎′)] + 𝑓∇𝑎𝜉𝑎)(𝑥) 𝛿4(𝑥, 𝑥′) d𝑉 = (𝑓∇𝑎𝜉𝑎)(𝑥′) . (A.25)

Hence, by substiting (A.24) and (A.25) into (A.23), while using the formula ∇𝑎𝜉𝑎 =
1
2𝑔𝑎𝑏ℒ𝜉𝑔𝑎𝑏, we obtain the distributional identity

ℒ𝜉𝛿4(𝑥, 𝑥′) = −1
2 𝛿4(𝑥, 𝑥′) 𝑔𝑎𝑏(𝑥)ℒ𝜉𝑔𝑎𝑏(𝑥) . (A.26)

This agrees with Eq. (136) in [346], where the same definition of the Lie derivative acting
on bitensors was introduced.

In the case where 𝜉𝑎 is a Killing vector field (see App. A.2 below), Eq. (A.26) shows
that the Dirac functional 𝛿4(𝑥, 𝑥′) is invariant along the integral curves of a Killing field.
In particular, for the helical Killing field (3.7) considered in this work, the distributional
identity (A.26) implies that

ℒ𝑘𝛿4(𝑥, 𝑦) = 0 (A.27)
for any point 𝑦 ∈ γ. This result was used in Sec. 3.2.1 to establish the helical constraint
(3.30), and in Sec. 3.2.2 to derive the Lie-dragging along 𝑘𝑎 of the velocity 𝑢𝑎, momentum
𝑝𝑎, spin 𝑆𝑎𝑏 and quadrupole 𝐽𝑎𝑏𝑐𝑑 of each quadrupolar particle, Eqs. (3.36), (3.46), (3.48)
and (3.49).

A.3 Tulczyjew’s theorems
In this appendix, we shall review Tulczyjew’s two theorems [337], which play a central in
any work that relies on the gravitational skeleton formalism. The first theorem ensures
the existence and unicity of the normal form of a tensor expressed as a distributional
multipolar expansion. The second theorem gives a necessary and sufficient condition for
such a distributional multipolar expansion to vanish: that the multipoles of its normal
form all vanish identically. Finally, we give a proof of the proposition (3.29), which was
used to derive the key helical constraint (3.30). In what follows, the notation [[𝑝, 𝑞]] to
denotes the set of integers between any two given integers (𝑝, 𝑞) ∈ ℕ × ℕ with 𝑝 < 𝑞.

A.3.1 Tulczyjew’s first theorem
First we introduce some notation. Let 𝑌 𝑀 ≡ 𝑌 𝑎1⋯𝑎𝑚 denote a contravariant tensor field
of rank 𝑚 ∈ ℕ. We assume that its support is restricted to a worldline γ with proper time
𝜏 and unit tangent 𝑢𝑎, and that it can be written as a distributional multipolar expansion
of order 𝑛 ∈ ℕ. Therefore, at any point 𝑥 ∈ ℰ we have

𝑌 𝑀(𝑥) =
𝑛

∑
𝑘=0

∇𝐾 ∫
γ

𝒴𝑀𝐾(𝑦) 𝛿4(𝑥, 𝑦) d𝜏 , (A.28)
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where 𝑦 ∈ γ and (𝒴𝑀𝐾)𝑘∈[[0,𝑛]] is a collection of 𝑛 + 1 multipoles, i.e., contravariant
tensors of rank 𝑚 + 𝑘 defined along γ. We introduced the notations ∇𝐾 ≡ ∇𝑐1⋯𝑐𝑘 and
𝒴𝑀𝐾 ≡ 𝒴𝑀𝑐1⋯𝑐𝑘 for 𝑘 ⩾ 1, while ∇𝐾 = id and 𝒴𝑀𝐾 = 𝒴𝑀 for 𝑘 = 0. We may now
state the first theorem.

Theorem 1 For any given (𝑚, 𝑛) ∈ ℕ × ℕ, let 𝑌 𝑀 be defined as in Eq. (A.28). Then
there exists a collection of multipoles (𝒴 𝑀𝐾)𝑘∈[[0,𝑛]] that are (i) symmetric with respect to
any pair of indices of the multi-index 𝐾, (ii) orthogonal to 𝑢𝑎 with respect to any index
of 𝐾, and (iii) such that

𝑌 𝑀(𝑥) =
𝑛

∑
𝑘=0

∇𝐾 ∫
γ

𝒴 𝑀𝐾(𝑦) 𝛿4(𝑥, 𝑦) d𝜏 . (A.29)

Moreover, the multipolar expansion (A.29) is unique and the multipoles (𝒴 𝑀𝐾)𝑘∈[[0,𝑛]] can
be written explicitly in terms of the multipoles (𝒴𝑀𝐾)𝑘∈[[0,𝑛]] of (A.28). Equation (A.29)
is referred to as the normal form of 𝑌 𝑀 .

Unicity of the normal form is straightforward once we have Thm. 2 below. For the ex-
istence, we construct in App. A.4 below the explicit normal form associated with the
quadrupolar (𝑛 = 2) gravitational skeleton of the generic tensor 𝑌 𝑀 . In particular, the
multipoles 𝒴 𝑀𝐾 of the quadrupolar normal form are given in terms of the multipoles
𝒴𝑀𝐾 in Eqs. (A.50). For the existence of the normal form when 𝑛 > 2, see e.g. Ref. [343]
and references therein.

A.3.2 Extension of Tulczyjew’s second theorem
Again, we first introduce some notation. Let 𝑝 ∈ ℕ⋆ and let (𝑌 𝑀

i )i∈[[1,𝑝]] denote a collection
of 𝑝 contravariant tensor fields of rank 𝑚 ∈ ℕ. We assume that the support of each 𝑌 𝑀

i
is restricted to a worldline γi with proper time 𝜏i and unit tangent 𝑢𝑎

i , and that it can
be expressed as a distributional multipolar expansion of order 𝑛 ∈ ℕ. Therefore, at any
point 𝑥 ∈ ℰ , we have

𝑌 𝑀
i (𝑥) =

𝑛
∑
𝑘=0

∇𝐾 ∫
γi

𝒴 𝑀𝐾
i (𝑦i) 𝛿4(𝑥, 𝑦i) d𝜏i , (A.30)

where, for each i ∈ [[1, 𝑝]], (𝒴 𝑀𝐾
i )𝑘∈[[0,𝑛]] is a collection of 𝑛+1 multipoles, i.e., contravariant

tensors of rank 𝑚 + 𝑘 defined along γ. We may now state the second theorem.

Theorem 2 For any given (𝑚, 𝑛, 𝑝) ∈ ℕ × ℕ × ℕ∗, let (𝑌 𝑀
i )i∈[[1,𝑝] be a collection of 𝑝

tensors defined as in Eq. (A.30), and let 𝑌 𝑀 ≡ ∑i 𝑌 𝑀
i denote their sum. The following

result holds. If for all (i, 𝑘) ∈ [[1, 𝑝]] × [[0, 𝑛]], 𝒴 𝑀𝐾
i is symmetric with respect to any pair

of indices of the multi-index 𝐾 and is orthogonal to 𝑢𝑎
i with respect to any index of 𝐾,

then
𝑌 𝑀 = 0 ⟺ ∀ (i, 𝑘) ∈ [[1, 𝑝]] × [[0, 𝑛]] , 𝒴 𝑀𝐾

i = 0 . (A.31)

Clearly, if all the multipoles 𝒴 𝑀𝐾
i vanish, then 𝑌 𝑀

i = 0 by (A.30), and the sum 𝑌 𝑀 =
∑i 𝑌 𝑀

i vanishes as well. The heart of the proof therefore resides in showing that if 𝑌 𝑀
i

is in normal form, then 𝑌 𝑀 = 0 implies 𝒴 𝑀𝐾
i = 0 for all (i, 𝑘) ∈ [[1, 𝑝]] × [[0, 𝑛]]. See

Refs. [310,337,343] and references therein for more details.
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Figure A.1: The geometrical setup used in App. A.3.3 to prove the proposition (3.29).

Importantly, in the literature this result is proven for a single multipolar particle,
whereas Thm. 2 is stated for an arbitrary number 𝑝 ∈ ℕ∗ of particles. However, we
now argue that the multi-particle case can easily be reduced to the single-particle case.
Indeed, the general idea behind the proof for a single particle is the following: take an
arbitrary rank-𝑚 tensor 𝑍𝑀 , whose compact support 𝒱 intersects the worldline γ of the
particle. Contract 𝑍𝑀 with 𝑌 𝑀 , given as a multipolar expansion in normal form (A.29),
and integrate over 𝒱 . The goal is then to show that this integral vanishes for every 𝑍𝑀
only if 𝒴 𝑀𝐾 = 0 for all 𝑘 ∈ [[0, 𝑛]]. Since this holds for any compact support 𝒱 , the
vanishing of 𝒴 𝑀𝐾 must hold for any portion of γ, and thus on all of γ. Now, if there are
𝑝 ∈ ℕ∗ multipolar particles, one may choose the volume 𝒱 such that it intersects only
one of the 𝑝 worldlines, say γ, and proceed with the single-particle proof, as summarized
above.

A.3.3 Proof of proposition (3.29)
We now give a proof of the proposition (3.29), which was used in Sec. 3.2.2 to derive the
colinearity (3.30) of 𝑘𝑎 and 𝑢𝑎

i along the worldline γi of the i-th particle. For clarity’s
sake we will drop the subscript i, as the proof holds for any of the two particles of the
binary system. The proposition (3.29) is an implication which is most easily proven by
contraposition.

First, we introduce Fermi coordinates (𝑡, 𝑥𝑖) in a neighborhood 𝒩 ⊂ℰ of the worldline
γ. Using Fermi coordinates, γ is parameterized by the proper time 𝜏 ∈ ℝ according to
(𝑡, 𝑥𝑖) = (𝜏, 0, 0, 0). Let 𝐼 ⊂ ℝ be a finite interval and γ𝐼 be the finite portion of γ param-
eterized by 𝜏 ∈ 𝐼 . We also set 𝜖 > 0 and let 𝒱 denote the 3-cylinder of Fermi coordinate
radius 𝜖 that surrounds γ𝐼 . We assume that 𝜖 is small enough such that 𝒱 ⊆ 𝒩 . This
geometric setup is depicted on Fig. A.1. Finally, for given tensor fields ( ̃𝒯 𝑎𝑏, ̃𝒯 𝑎𝑏𝑐, ̃𝒯 𝑎𝑏𝑐𝑑)
defined in Eq. (3.19), we let 𝔽 ≡ { ̃𝒯 𝑎𝑏𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐∇𝑐𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐𝑑∇𝑐𝑑𝑓𝑎𝑏 , 𝑓𝑎𝑏 ∈ 𝐶∞

𝒱 }, with
𝐶∞

𝒱 the set of tensor fields with compact support 𝒱 that are smooth on the interior 𝒱 ∘.
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Proof that 𝑧 is constant along γ
Since all the scalar fields are evaluated along γ in the following integrals, we view them as
functions of the proper time 𝜏 . We first prove by contraposition the part of the proposition
(3.29) that implies that ̇𝑧 = 0 along γ, i.e., we show that the following implication is true:

∃ 𝜏0 ∈ 𝐼 , ̇𝑧(𝜏0) ≠ 0 ⟹ ∃ 𝑓 ∈ 𝔽 , ∫
ℝ

(𝑧 ̇𝑓 + 𝑤𝑎∇𝑎𝑓) d𝜏 ≠ 0 . (A.32)

Let 𝜏0 ∈ 𝐼 be as in Eq. (A.32). Since 𝜏 ↦ ̇𝑧(𝜏) is continuous, there exists a neighborhood
of 𝜏0, say ]𝜏−, 𝜏+[ ⊂ 𝐼 , such that ∀𝜏 ∈ ]𝜏−, 𝜏+[ , ̇𝑧(𝜏) ≠ 0 and is of constant sign. Now
consider the scalar field 𝑓 defined on 𝒱 ∘ by

𝑓(𝑡, 𝑥𝑖) ≡ { exp ([(𝑡 − 𝜏−)(𝑡 − 𝜏+)]−1) if 𝑡 ∈ ]𝜏−, 𝜏+[ ,
0 if 𝑡 ∉ ]𝜏−, 𝜏+[ , (A.33)

and 𝑓 ≡ 0 elsewhere. We claim that such 𝑓 verifies the right-hand side of (A.32).
Indeed, in the Fermi coordinate system, the 4-velocity 𝑢𝑎 has components 𝑢𝛼 =

(1, 0, 0, 0), so that 𝑤𝑎𝑢𝑎 = 0 implies that 𝑤𝑎 has components 𝑤𝛼 = (0, 𝑤𝑖). Hence
𝑤𝑎∇𝑎𝑓 = 𝑤𝑖𝜕𝑖𝑓 = 0 since 𝑓 does not depend on 𝑥𝑖. Moreover, the function 𝜏 ↦ 𝑓(𝜏)
is smooth on ℝ and vanishes for 𝜏 ∉ ]𝜏−, 𝜏+[. Consequently ∫γ(𝑧 ̇𝑓 + 𝑤𝑎∇𝑎𝑓) d𝜏 =
∫𝜏+
𝜏−

𝑧(𝜏) ̇𝑓(𝜏) d𝜏 , and an integration by parts gives

∫
γ
(𝑧 ̇𝑓 + 𝑤𝑎∇𝑎𝑓) d𝜏 = − ∫

𝜏+

𝜏−

̇𝑧(𝜏)𝑓(𝜏) d𝜏 . (A.34)

But the integral on the right-hand side of (A.34) cannot vanish, as ̇𝑧 is nonzero with
constant sign over ]𝜏−, 𝜏+[ by assumption, and 𝑓(𝜏) > 0 for all 𝜏 ∈ ]𝜏−, 𝜏+[. Therefore, 𝑓
as defined in Eq. (A.33) verifies the proposition (A.32), provided that it belongs to the set
𝔽.

To establish that 𝑓 ∈ 𝔽, consider the tensor 𝑓𝑎𝑏 ≡ 𝜙𝑔𝑎𝑏, where the scalar field 𝜙 is
defined over 𝒱 ∘ by

𝜙(𝑡, 𝑥𝑖) ≡ { exp ([(𝑡 − 𝜏−)(𝑡 − 𝜏+)]−1) Φ(𝑡)−1 if 𝑡 ∈ ]𝜏−, 𝜏+[ ,
0 if 𝑡 ∉ ]𝜏−, 𝜏+[ , (A.35)

and 𝜙 ≡ 0 elsewhere, where Φ(𝑡) ≡ 𝑔𝑎𝑏 ̃𝒯 𝑎𝑏, the latter being evaluated at the point
(𝑡, 0, 0, 0). With 𝑓𝑎𝑏 = 𝜙𝑔𝑎𝑏 and 𝜙 given in (A.35), one can readily check that 𝑓 =

̃𝒯 𝑎𝑏𝑓𝑎𝑏 − ̃𝒯 𝑎𝑏𝑐∇𝑐𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐𝑑∇𝑐𝑑𝑓𝑎𝑏, for 𝑓 given in Eq. (A.33). The computation involves
(i) the metric compatibility ∇𝑐𝑔𝑎𝑏 = 0, (ii) the independence of 𝜙 with respect to 𝑥𝑖,
(iii) the fact that the Christoffel symbols Γ𝑡

𝑖𝑗|γ vanish in Fermi coordinates, and (iv) the
normal form of the tensors ̃𝒯 𝑎𝑏, ̃𝒯 𝑎𝑏𝑐 and ̃𝒯 𝑎𝑏𝑐𝑑.

Proof that 𝑤𝑎 = 0 along γ
Having proven that 𝑧 is constant along γ, it is clear that for any compactly supported 𝑓 ,
we have ∫γ 𝑧 ̇𝑓 d𝜏 = 0. Consequently, we will now establish that 𝑤𝑎 = 0 along γ by proving
the following proposition:

∃ 𝜏0 ∈ 𝐼 , 𝑤𝑎(𝜏0) ≠ 0 ⟹ ∃ 𝑓 ∈ 𝔽 , ∫
γ

𝑤𝑎∇𝑎𝑓 d𝜏 ≠ 0 . (A.36)
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As noted before, in the Fermi coordinate system we have 𝑤𝛼 = (0, 𝑤𝑖) so that 𝑤𝑎∇𝑎𝑓 =
𝑤𝑖𝜕𝑖𝑓 . Because 𝑤𝑖 is continuous and 𝑤𝑖(𝜏0) ≠ 0, there exists a neighborhood ]𝜏−, 𝜏+[ ⊂ 𝐼
of 𝜏0 such that at least one component of 𝑤𝑖, say 𝑤1, is nonzero and of constant sign over
]𝜏−, 𝜏+[. Now consider the following scalar field defined on 𝒱 ∘:

𝑓(𝑡, 𝑥𝑖) ≡ { 𝑥1 exp ([(𝑡 − 𝜏−)(𝑡 − 𝜏+)]−1) if 𝑡 ∈ ]𝜏−, 𝜏+[ ,
0 if 𝑡 ∉ ]𝜏−, 𝜏+[ , (A.37)

and 𝑓 ≡ 0 elsewhere. Because 𝑓 does not depend on 𝑥2 and 𝑥3, the integral in the
right-hand side of Eq. (A.36) is simply

∫
γ

𝑤𝑎∇𝑎𝑓 d𝜏 = ∫
𝜏+

𝜏−

𝑤1(𝜏) exp ([(𝜏 − 𝜏−)(𝜏 − 𝜏+)]−1) d𝜏 . (A.38)

As earlier this integral does not vanish since, by assumption, 𝑤1(𝜏) is nonzero and of
constant sign over ]𝜏−, 𝜏+[. Therefore, the scalar field (A.37) verifies Eq. (A.36) provided
that it belongs to 𝔽. Once again, let us consider the tensor field 𝑓𝑎𝑏 ≡ 𝜙𝑔𝑎𝑏, with the
scalar field 𝜙 now defined on 𝒱 ∘ by

𝜙(𝑡, 𝑥𝑖) ≡ {
1
6(𝑥1)3 exp ([(𝑡 − 𝜏−)(𝑡 − 𝜏+)]−1) Φ(𝑡)−1 if 𝑡 ∈ ]𝜏−, 𝜏+[ ,
0 if 𝑡 ∉ ]𝜏−, 𝜏+[ , (A.39)

and 𝜙 ≡ 0 elsewhere, where this time Φ(𝑡) ≡ 𝑔𝛼𝛽(1
6(𝑥1)2 ̃𝒯 𝛼𝛽 − 1

2𝑥1 ̃𝒯 𝛼𝛽1 + ̃𝒯 𝛼𝛽11), the
latter being evaluated at the point (𝑡, 0, 0, 0). With 𝑓𝑎𝑏 = 𝜙𝑔𝑎𝑏 and 𝜙 given in Eq. (A.39),
one can readily check that 𝑓 = ̃𝒯 𝑎𝑏𝑓𝑎𝑏 − ̃𝒯 𝑎𝑏𝑐∇𝑐𝑓𝑎𝑏 + ̃𝒯 𝑎𝑏𝑐𝑑∇𝑐𝑑𝑓𝑎𝑏, for 𝑓 given in (A.37).
This time, the computation involves (i) the metric compatibility ∇𝑐𝑔𝑎𝑏 = 0, (ii) the inde-
pendence of 𝜙 with respect to the coordinates 𝑥2 and 𝑥3, (iii) the fact that the Christoffel
symbols Γ𝛼

𝑖𝑗|γ vanish in Fermi coordinates, and (iv) the normal form of the tensors ̃𝒯 𝑎𝑏,
̃𝒯 𝑎𝑏𝑐 and ̃𝒯 𝑎𝑏𝑐𝑑.

A.4 Normal form of a quadrupolar skeleton
In this appendix, we shall detail the computations that lead to the unique normal form
associated with the quadrupolar gravitational skeleton of a generic tensor field. This nor-
mal form can for instance be used to derive the equations of evolution for the momentum
and spin of a dipolar particle, i.e. Eq. (2.57) with 𝐽𝑎𝑏𝑐𝑑 = 0, or to obtain the Lie-dragging
constraints (3.22) for a quadrupolar particle.

A.4.1 A useful formula
Before deriving this normal form, we first prove a simple formula that will turn out crucial
in order to carry out the following computations. Let 𝚾 denote a generic tensor field
defined along the worldline γ with unit tangent 𝑢𝑎. Then we have

∇𝑎 ∫
γ
𝚾(𝑦′) 𝑢𝑎′(𝑦′) 𝛿4(𝑥, 𝑦′) d𝜏 = ∫

γ
𝚾(𝑦′) 𝑢𝑎′(𝑦′)∇𝑎𝛿4(𝑥, 𝑦′) d𝜏

= − ∫
γ
𝚾(𝑦′) 𝑢𝑎′(𝑦′)∇𝑎′𝛿4(𝑥, 𝑦′) d𝜏

= − ∫
γ
[𝚾(𝑦′) 𝛿4(𝑥, 𝑦′)] ̇d𝜏 + ∫

γ
�̇�(𝑦′) 𝛿4(𝑥, 𝑦′) d𝜏 , (A.40)
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where we used the fact that the covariant derivative ∇𝑎 acts on points 𝑥 ∈ ℰ but not on
points 𝑦′ ∈ γ in the first equality, the property (A.18) of the invariant Dirac functional in
the second equality, and we integrated by parts in the third and last equality. Assuming
that 𝚾 vanishes as 𝜏 → ±∞ to discard the boundary terms, we conclude that for any
tensor field 𝚾 defined along γ,

∇𝑎 ∫
γ
𝚾𝑢𝑎 𝛿4 d𝜏 = ∫

γ
�̇� 𝛿4 d𝜏 . (A.41)

A.4.2 Derivation of the normal form
Note: to fit equations on a single line, in what follows we use the shorthand 𝕕𝜏 ≡ 𝛿4d𝜏 .

We now turn to the derivation of the normal form at quadrupolar order. Let 𝑌 𝑀

denote a generic tensor field of rank 𝑚 ∈ ℕ, expressed as a gravitational skeleton at
quadrupolar order, i.e., Eq. (A.28) with 𝑛 = 2, such that

𝑌 𝑀 = ∫
γ

𝒴𝑀𝕕𝜏 + ∇𝑎 ∫
γ

𝒴𝑀𝑎𝕕𝜏 + ∇𝑎𝑏 ∫
γ

𝒴𝑀𝑎𝑏𝕕𝜏 , (A.42)

with 𝒴𝑀 , 𝒴𝑀𝑎 and 𝒴𝑀𝑎𝑏 the monopole, dipole and quadrupole of 𝑌 𝑀 , respectively.
From Thm. 1 the first term in (A.42) is already in normal form. For the second term, we
perform an orthogonal decomposition of 𝒴𝑀𝑎 with respect to the index 𝑎 by means of the
projector (2.62) orthogonal to the 4-velocity 𝑢𝑎, namely 𝒴𝑀𝑎 = 𝒴𝑀�̂� − 𝒴𝑀𝑢𝑢𝑎. (Recall
the notations introduced below Eqs. (3.18).) Using the formula (A.41) then gives

∇𝑎 ∫
γ

𝒴𝑀𝑎𝕕𝜏 = ∇𝑎 ∫
γ

𝒴𝑀�̂�𝕕𝜏 − ∫
γ
(𝒴𝑀𝑢) ̇𝕕𝜏 . (A.43)

Regarding the third term on the right-hand side of Eq. (A.42), we start again by perform-
ing an orthogonal decomposition of the integrand, yielding 𝒴𝑀𝑎𝑏 = 𝒴𝑀�̂��̂� − 𝒴𝑀𝑢�̂�𝑢𝑎 −
𝒴𝑀𝑎𝑢𝑢𝑏. Substituting this decomposition into the integral and using the formula (A.41),
we obtain

∇𝑎𝑏 ∫
γ

𝒴𝑀𝑎𝑏𝕕𝜏 = ∇𝑎𝑏 ∫
γ

𝒴𝑀�̂��̂�𝕕𝜏 − ∇𝑎𝑏 ∫
γ

𝒴𝑀𝑢�̂�𝑢𝑎𝕕𝜏 − ∇𝑎 ∫
γ
(𝒴𝑀𝑎𝑢) ̇𝕕𝜏 . (A.44)

We shall now consider those three terms successively.
We begin with the first term of (A.44). We split the second covariant derivative into its

symmetric and antisymmetric part, ∇𝑎𝑏 ∫γ 𝒴𝑀�̂��̂�𝕕𝜏 = ∇𝑎𝑏 ∫γ 𝒴𝑀(�̂��̂�)𝕕𝜏 + ∇[𝑎𝑏] ∫γ 𝒴𝑀�̂��̂�𝕕𝜏 ,
the first term of which being already in normal form (integrand symmetric with respect to
𝑎 and 𝑏 and orthogonal to 𝑢𝑎). For the second term we use the definition of the Riemann
tensor and its algebraic symmetries to get

∇[𝑎𝑏] ∫
γ

𝒴𝑀�̂��̂�𝕕𝜏 = −1
2

𝑚
∑
𝑗=1

∫
γ

𝑅 𝑐𝑗
𝑎𝑏𝑒 𝒴𝑀𝑒�̂��̂�𝕕𝜏 , (A.45)

where 𝑀𝑒 is the multi-index 𝑀 with 𝑒 at the 𝑗-th slot. This term is in normal form
since it does not involve any derivative, just like the first term on the right-hand side of
Eq. (A.42).
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Next, for the second term of Eq. (A.44), we commute the two covariant derivatives
and use once again the definition of the Riemann tensor. Using the formula (A.41) we
obtain

∇𝑎𝑏 ∫
γ

𝒴𝑀𝑢�̂�𝑢𝑎𝕕𝜏 = ∇𝑏 ∫
γ
(𝒴𝑀𝑢�̂�) ̇𝕕𝜏 −

𝑚
∑
𝑗=1

∫
γ

𝑅 𝑐𝑗
𝑎𝑏𝑒 𝒴𝑀𝑒𝑢�̂�𝑢𝑎𝕕𝜏 , (A.46)

where the rightmost term is in normal form. However the first term is not, because it
needs not be orthogonal to 𝑢𝑏. But it can be handled simply by writing the integrand
(𝒴𝑀𝑢�̂�) ̇ as (𝒴𝑀𝑢𝑐) ℎ̇𝑏

𝑐 + 𝒴𝑀𝑢𝑐ℎ̇𝑏
𝑐. The Leibniz rule and metric compatibility imply

ℎ̇𝑏
𝑐 = �̇�𝑏𝑢𝑐 + 𝑢𝑏�̇�𝑐. We combine these formulas and use the formula (A.41) one last time

to get

∇𝑏 ∫
γ
(𝒴𝑀𝑢�̂�) �̇�𝜏 = ∇𝑏 ∫

γ
[(𝒴𝑀𝑢𝑐) ℎ̇𝑏

𝑐 + 𝒴𝑀𝑢𝑢�̇�𝑏]𝕕𝜏 + ∫
γ
(𝒴𝑀𝑢𝑐�̇�𝑐) �̇�𝜏 . (A.47)

Finally, for the third and last term of (A.44), we write, again, an orthonormal decomposi-
tion with respect to the abstract index 𝑎, namely 𝒴𝑀𝑎𝑢 = 𝒴𝑀�̂�𝑢 − 𝒴𝑀𝑢𝑢𝑢𝑎. Taking the
covariant derivative along 𝑢𝑎 and using the Leibniz rule, along with the formula (A.41),
then gives

∇𝑎 ∫
γ
(𝒴𝑀𝑎𝑢) ̇𝕕𝜏 = ∇𝑎 ∫

γ
(𝒴𝑀�̂�𝑢) ̇𝕕𝜏 − ∇𝑎 ∫

γ
𝒴𝑀𝑢𝑢�̇�𝑎𝕕𝜏 − ∫

γ
(𝒴𝑀𝑢𝑢) ̈𝕕𝜏 . (A.48)

The second to last term is in normal form since �̇�𝑎 is orthogonal to 𝑢𝑎, and the last one
is in normal form too. Finally, the first term in the right-hand side of Eq. (A.48) can be
brought into normal form by following the steps that yielded Eq. (A.47).

To conclude, we can combine Eqs. (A.45)–(A.48) to write the normal form of (A.44).
Combining the latter with (A.43) gives, at last, the normal form of the quadrupolar
expansion (A.42) of 𝑌 𝑀 according to

𝑌 𝑀 = ∫
γ

𝒴 𝑀𝕕𝜏 + ∇𝑎 ∫
γ

𝒴 𝑀𝑎𝕕𝜏 + ∇𝑎𝑏 ∫
γ

𝒴 𝑀𝑎𝑏𝕕𝜏 , (A.49)

where 𝒴 𝑀 , 𝒴 𝑀𝑎 and 𝒴 𝑀𝑎𝑏 are given explicitly in terms of 𝒴𝑀 , 𝒴𝑀𝑎 and 𝒴𝑀𝑎𝑏 by

𝒴 𝑀 ≡ 𝒴𝑀 − (𝒴𝑀𝑢 − (𝒴𝑀𝑢𝑢) +̇ 2𝒴𝑀(𝑐𝑢)�̇�𝑐) ̇+
𝑚

∑
𝑗=1

𝑅 𝑐𝑗
𝑎𝑏𝑒 𝒵𝑀𝑒𝑎𝑏 , (A.50a)

𝒴 𝑀𝑎 ≡ 𝒴𝑀�̂� − 2(𝒴𝑀(𝑐𝑢)) ̇ℎ𝑎
𝑐 − 𝒴𝑀𝑢𝑢�̇�𝑎 , (A.50b)

𝒴 𝑀𝑎𝑏 ≡ 𝒴𝑀(�̂��̂�) , (A.50c)

where 𝒵𝑀𝑒𝑎𝑏 ≡ 𝒴𝑀𝑒𝑢�̂�𝑢𝑎 − 1
2𝒴𝑀𝑒�̂��̂� in the first term. By construction, we have 𝒴 𝑀𝑎𝑢𝑎 =

0, 𝒴 𝑀[𝑎𝑏] = 0 and 𝒴 𝑀𝑎𝑏𝑢𝑏 = 0. Consequently, Eq. (A.49) is the normal form of (A.42).
This normal form was used in Chap. 4, Sec. 3.2.1 to go from Eq. (3.20) to the associated
normal form (3.21a)–(3.22). As a final note, we should mention that the calculations
performed above are not sufficient by themselves to derive the reduced form (2.58)-(2.59)
of the SEM tensor of a quadrupolar particle, nor the associated equations of evolution
(2.57), which were achieved in Ref. [343]. Indeed, while imposing the SEM conservation
∇𝑎𝑇 𝑎𝑏 = 0 to the generic quadrupolar SEM tensor (2.58)-(2.59), one must in particular
put into normal form the quadrupolar contribution ∇𝑏𝑐𝑑 ∫γ 𝒯 𝑎𝑏𝑐𝑑𝕕𝜏 , which involves a triple
covariant derivative. Such (rather tedious) calculation was made is present in [343].
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A.4.3 Tulczyjew’s reduction process for a dipolar particle
We now derive the evolution equations and SEM tensor at dipolar order. To this end, we
apply the normal form (A.49)-(A.50) to the tensor 𝑌 𝑒 ≡ ∇𝑎𝑇 𝑎𝑒, thus taking the multi-
index 𝑀 = 𝑒 of length 1. Our starting point is therefore the generic dipolar Ansatz given
in Eq. (2.25), to which we apply the covariant derivative ∇𝑏. In the notations of Eq. (A.49)
our starting coefficients 𝒴 are therefore just

𝒴𝑒 ≡ 0 , 𝒴𝑒𝑎 = 𝒯 𝑒𝑎 and 𝒴𝑒𝑎𝑏 = 𝒯 𝑒𝑎𝑏 . (A.51)

The normal form of ∇𝑎𝑇 𝑎𝑒 and can therefore be written, as claimed in Eq. (2.27) of
Chapt. 2, namely

∇𝑏𝑇 𝑎𝑏 = ∫
γ

𝒳 𝑎𝛿4d𝜏 + ∇𝑏 ∫
γ

𝒳 𝑎𝑏𝛿4d𝜏 + ∇𝑏∇𝑐 ∫
γ

𝒳 𝑎𝑏𝑐𝛿4d𝜏 . (A.52)

where

𝒳 𝑒 ≡ ((𝒯 𝑒𝑢𝑢) −̇ 𝒯 𝑒𝑢 − 2𝒯 𝑒(𝑐𝑢)�̇�𝑐) ̇− 1
2𝑅 𝑒

𝑎𝑏𝑐 (𝒯 𝑐�̂��̂� + 2𝒯 𝑐𝑢�̂�𝑢𝑏) , (A.53a)
𝒳 𝑒𝑎 ≡ 𝒯 𝑒�̂� − 2(𝒯 𝑒(𝑐𝑢)) ̇ℎ𝑎

𝑐 − 𝒯 𝑒𝑢𝑢�̇�𝑎 , (A.53b)

𝒳 𝑒𝑎𝑏 ≡ 𝒯 𝑒(�̂��̂�) . (A.53c)

By Tulczyjew’s second theorem all the 𝒳 vanish, and we obtain three equations. Let
us explore their consequences, by introducing the 3+1 expansions of the quantities 𝒯
discussed in Sec. 2.2.2, which we rewrite here for convenience

𝒯 𝑎𝑏 = 𝓂𝑢𝑎𝑢𝑏 + 2𝓂(𝑎𝑢𝑏) + 𝓂𝑎𝑏 (A.54a)
𝒯 𝑎𝑏𝑐 = 𝑢𝑎𝑢𝑏𝓃𝑐 + 2𝑢(𝑎𝓃𝑏)𝑐 + 𝓃𝑎𝑏𝑐 + ℴ𝑎𝑏𝑢𝑐 , (A.54b)

Equation 𝒳 𝑒𝑎𝑏 = 0
In terms of the quantities appearing in Eqs. (A.54), the equation 𝒳 𝑒𝑎𝑏 = 0 implies that
𝑢𝑎𝓃(𝑏𝑐) + 𝓃𝑎(𝑏𝑐) = 0. Contracting this with 𝑢𝑎 yields 𝓃(𝑏𝑐) = 0 and 𝓃𝑎(𝑏𝑐) = 0. Hence
𝓃𝑎𝑏 is antisymmetric and 𝓃𝑎𝑏𝑐 vanishes identically because it also satisfies 𝓃[𝑎𝑏]𝑐 = 0 by
construction2. These results simplify the two other equations as follows

Equation 𝒳 𝑒𝑎 = 0
Now Eq. (A.53b) reads, thanks to the previous results,

𝓂𝑏𝑢𝑎 + 𝓂𝑎𝑏 = −ℎ𝑏
𝑐(ℴ𝑎𝑐 + 𝓃𝑐𝑢𝑎 + 𝓃𝑎𝑐) ,̇ . (A.55)

Taking its space-space component with the help of the orthogonal projector, antisym-
metrizing the result and using 𝓂[𝑎𝑏]=0 leads to ℎ𝑎

𝑏ℎ𝑐
𝑑�̇�𝑐𝑑 = 0, where 𝜎𝑎𝑏 ≡ 𝑢[𝑎𝓃𝑏] + 𝓃[𝑎𝑏].

Re-expanding the projector as ℎ𝑎
𝑏 = 𝛿𝑎

𝑏 + 𝑢𝑎𝑢𝑏 and using the orthogonalities then yields

�̇�𝑎𝑏 = −�̇�[𝑎𝑢𝑏] + 2𝑢𝑐�̇�𝑐[𝑎𝑢𝑏] . (A.56)

This will eventually turn into the precession equation for the spin tensor 𝑆𝑎𝑏, that we will
define at the end, i.e., once the last equation has been massaged, as follows.

2To show this, one can keep applying the antisymmetry and symmetry property alternatively
until one reaches 𝓃𝑎𝑏𝑐 = −𝓃𝑎𝑏𝑐.
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Equation 𝒳 𝑒 = 0
Equation (A.53c), with the help of the previously established results and the quantity 𝜎𝑎𝑏

defined above, can readily be transformed into

(𝓂𝑢𝑎 + 𝓂𝑎 + (ℴ𝑎𝑏 + 𝑢𝑎𝓃𝑏 + 𝓃𝑎𝑏)�̇�𝑏) ̇= −1
2𝑅 𝑎

𝑐𝑏𝑑 (2𝜎𝑑𝑐𝑢𝑏 + 𝜎𝑏𝑐𝑢𝑑) , (A.57)

where we simply inserted the projections (A.54) into Eq. (A.53a). Let us denote the
quantity that is being differentiated on the left-hand side of this equation by 𝑝𝑎 (thus
giving the definition in Eq. (2.28)). On the one hand, a n explicit calculation shows that
the antisymmetric tensorial product between 𝑢𝑎 and 𝑝𝑎, and Eq. (A.56), gives

𝑝[𝑎𝑢𝑏] = �̇�𝑎𝑏 . (A.58)

On the other hand, using the antisymmetry of 𝜎𝑎𝑏 and the algebraic symmetries of the
Riemann tensor allows one to simplify the right-hand side of Eq. (A.57), to obtain

̇𝑝𝑎 = −2𝑅 𝑎
𝑏𝑐𝑑 𝑢𝑏𝜎𝑐𝑑 . (A.59)

Equations (A.59) and (A.58) are the dipolar equations of motion and precession respec-
tively, and the spin tensor 𝑆𝑎𝑏 is simply twice the quantity 𝜎𝑎𝑏 (thus giving the definition
in Eq. (2.28)). It is then straightforward to rewrite the 𝒯 ’s of the SEM Ansatz in terms
of 𝑝𝑎, 𝑆𝑎𝑏 and derivatives of other terms. Thanks to the magic formula (A.41), these
cancel one another and one obtains the pole-dipole SEM tensor (2.29). This concludes the
derivation.

A.4.4 Equations of motion of a multipolar particle
Here we give the consequences of the dipolar evolution equations given in Sec. 2.3.2,
generalized to any multipolar order. In particular, starting from

̇𝑝𝑎 = 1
2𝑅 𝑎

𝑏𝑐𝑑 𝑆𝑏𝑐𝑢𝑑 + 𝐹 𝑎 and ̇𝑆𝑎𝑏 = 2𝑝[𝑎𝑢𝑏] + 𝑀𝑎𝑏 , (A.60)

with a generic force vector 𝐹 𝑎 and torque tensor 𝑀𝑎𝑏, we can perform the same analysis
as that provided in that section to include the multipolar contributions to the Eqs. (2.66)
through (2.77). They read

̇𝑆 = 1
2𝑆 𝑀𝑎𝑏𝑆𝑎𝑏 , (A.61a)

�̇� = −𝐹 𝑢 − 𝑀𝑢𝑎�̇�𝑎 , (A.61b)

̇𝑆𝑎 = −1
2𝜀𝑎𝑏𝑐𝑑�̇�𝑏𝑆𝑐𝑑 − 1

2𝜀𝑎𝑏𝑐𝑑𝑢𝑏𝑀𝑐𝑑 , (A.61c)

𝑝𝑎 = 𝑚𝑢𝑎 − 𝜀𝑎
𝑏𝑐𝑑𝑢𝑏�̇�𝑐𝑆𝑑 + 𝑀𝑎𝑏𝑢𝑏 , (A.61d)

𝑚�̇�𝑎 = 𝐵𝑎𝑏𝑆𝑏 − 𝑆𝑎𝑏�̈�𝑏 − �̇�𝑎𝑏𝑢𝑏 − 2𝑀 �̂�𝑏�̇�𝑏 − 𝐹 �̂� . (A.61e)

We stress that these equations hold for any multipolar order, but depend on our choice of
SSC 𝑢𝑎𝑆𝑎𝑏 = 0.
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ix B
Symplectic geometry

B.1 Newtonian first law of mechanics
In this section, we derive the quasi-Newtonian first law of point-particle mechanics, for
circular orbits, as touched upon. It is only quasi-Newtonian because one needs to add
the mass energy 𝑚𝑐2 of the particles to write the result in a form similar to the first law
derived in Chap. 5. For completeness, we start from scratch with the classical reduction
of the newtonian two-body problem.

B.1.1 Reduction of the two-body problem
Let us consider two test particles labeled by i ∈ {1; 2}, of mass 𝑚i and located in the Eu-
clidean three-dimensional space of Newtonian mechanics. The Lagrangian of this system
is

ℒ (𝑟1, 𝑟2, ̇𝑟1, ̇𝑟2) ≡ 1
2𝑚1| ̇𝑟1|2 + 1

2𝑚2| ̇𝑟2|2 + 𝐺𝑚1𝑚2
|𝑟1 − 𝑟2| , (B.1)

where 𝑟i are the position vectors and 𝐺 the gravitational constant. The conjugated vari-
ables read 𝑝i ≡ 𝜕 ̇𝑟iℒ = 𝑚i ̇𝑟i and allows us to write the Hamiltonian of the system
ℋ ≡ ̇𝑟1𝑝1 + ̇𝑟2𝑝2 − ℒ as

ℋ (𝑟1, 𝑟2, 𝑝1, 𝑝2) ≡ |𝑝1|2
2𝑚1

+ |𝑝2|2
2𝑚2

− 𝐺𝑚1𝑚2
|𝑟1 − 𝑟2| . (B.2)

It is clear from that equation that ℋ depends on (𝑟1, 𝑟2, 𝑝1, 𝑝2) only through the norms
of the momenta and of the distance between the two particles. It is therefore natural to
perform a first change of coordinates (or physically a change of reference frame) in order
to reduce the complexity of the problem. To this end, let 𝑢 be the vector pointing from
the origin of the old coordinates to the centre of mass of the system. Then,

𝑢 ≡ 𝛽1𝑟1 + 𝛽2𝑟2 , where 𝛽i ≡ 𝑚i
𝑚 and 𝑚 ≡ 𝑚1 + 𝑚2 . (B.3)

Then, let 𝑟 ≡ 𝑟1−𝑟2 be the separation vector between the two particles. The new variables
(𝑢, 𝑟) are related to the old ones (𝑟1, 𝑟2) by a linear transformation, which we may represent
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as
(𝑢

𝑟) = (𝛽1𝕀 𝛽2𝕀
−𝕀 𝕀 ) (𝑟1

𝑟2
) . (B.4)

where 𝕀 is the 3 × 3 identity matrix. Having performed a linear transformation of the
coordinates constrains us to change the momenta linearly too, if we want the system to
remain hamiltonian. Indeed, if (𝑞, 𝑝) are canonical variables and 𝒜 is an invertible matrix,
then the mapping (𝑞, 𝑝) ↦ (𝑄, 𝑃) with 𝑄 = 𝒜𝑞 is canonical if and only if 𝑝 = 𝒜⊤𝑃 , where
𝒜⊤ denotes the transpose of 𝒜. Applying this to the present case, we need for the new
momenta 𝑃 ≡ (𝑣, 𝑝) to satisfy

𝑣 ≡ 𝑝1 + 𝑝2 and 𝑝 ≡ 𝛽1𝑝2 − 𝛽2𝑝2 . (B.5)

We note that 𝑣 is the total linear momentum of the system. In the new variables (𝑢, 𝑟, 𝑣, 𝑝),
the Hamiltonian reads

ℋ (𝑢, 𝑟, 𝑣, 𝑝) ≡ |𝑝|2
2𝜇 + |𝑣|2

2𝑚 − 𝐺𝑚𝜇
|𝑟| , (B.6)

where we have introduced the reduced mass 𝜇 ≡ 𝑚1𝑚2/𝑚 to further simplify the expres-
sion. By comparing equations (B.2) and (B.6), we see that, numerically, all we have done
is replace (𝑝1, 𝑝2, 𝑚1, 𝑚2) by (𝑝, 𝑣, 𝜇, 𝑚), respectively. In particular, the hamiltonian of
the initial (𝑚1, 𝑚2)-system is equivalent to that of (𝜇, 𝑚). The main advantage of this
new expression is that, now, ℋ does not depend explicitly on the coordinate 𝑢 associated
to the total momentum. This is reminiscent of the momentum conservation. In particu-
lar, since 𝑣 is constant, we may as well set it equal to zero, in which case 𝑝1 = −𝑝2, and
therefore 𝑝 = 𝑝1 = −𝑝2. Leaving aside the couple (𝑢, 𝑣) all together, we have reduced the
initial problem to the dynamics of the Hamiltonian

ℋ (𝑟, 𝑝) ≡ |𝑝|2
2𝜇 − 𝐺𝑚𝜇

|𝑟| . (B.7)

But now we see that the Hamiltonian is invariant under a fixed rotation of the separation
vector 𝑟 as well as its associated momentum 𝑝. Intuitively, this should reduce the problem
from the phase space ℝ3 × ℝ3 ∋ (𝑟, 𝑝) to ℝ × ℝ. To do this properly, the usual spherical
coordinates (𝜌, 𝜃, 𝜙) should be particularly useful. But to do things self-consistently, we
would have to compute the new momenta (𝑝𝜌, 𝑝𝜃, 𝑝𝜙) associated to (𝜌, 𝜃, 𝜙). To do this, we
can use a brute force, Poisson brackets-like calculation. I prefer to take a less straightfor-
ward route, with much less calculations. First, one of the two Hamilton equations in the
Cartesian variables (𝑥, 𝑦, 𝑧), which I denote by 𝑟 = (𝑟1, 𝑟2, 𝑟3), gives us ̇𝑟i = 𝜕𝑝iℋ = 𝑝i/𝜇.
Consequently, we have |𝑝|2 = 𝜇2| ̇𝑟|2, and we can now perform the inverse Legendre trans-
form ℒ (𝑟, ̇𝑟) = 𝜇| ̇𝑟|2 − ℋ (𝑟, 𝜇 ̇𝑟), so that

ℒ (𝑟, ̇𝑟) = 1
2𝜇| ̇𝑟|2 + 𝐺𝑚𝜇

𝑟 . (B.8)

The advantage now is that we can write the separation vector 𝑟 in any coordinates, spher-
ical being the one we are after. In the natural, sphercial basis (𝑒𝜌, 𝑒𝜃, 𝑒𝜙) we simply have
𝑟 = 𝜌𝑒𝜌 and therefore |𝑟| = 𝜌 and | ̇𝑟|2 = ̇𝜌2 + 𝜌2 ̇𝜃2 + 𝜌2 sin2𝜃 ̇𝜙2. Inserting this in the
previous expression of the Lagrangian and computing the momenta gives

𝑝𝜌 ≡ 𝜕ℒ
𝜕 ̇𝜌 = 𝜇 ̇𝜌 , 𝑝𝜃 ≡ 𝜕ℒ

𝜕 ̇𝜃
= 𝜇𝜌2 ̇𝜃 and 𝑝𝜙 ≡ 𝜕ℒ

𝜕 ̇𝜙
= 𝜇𝜌2 sin2𝜃 ̇𝜙 . (B.9)
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One last time, a Legendre transform allows us to write the Hamiltonian in the new,
spherical-type canonical coordinates (𝜌, 𝜃, 𝜙, 𝑝𝜌, 𝑝𝜃, 𝑝𝜙), with respect to the center of mass
of the system. It reads

ℋ = 𝑝2
𝜌

2𝜇 + 𝑝2
𝜃

2𝜇𝜌2 +
𝑝2

𝜙
2𝜇𝜌2 sin2𝜃

− 𝐺𝑚𝜇
𝜌 . (B.10)

Several remarks are in order. First, the fact that, in these coordinates, ℋ is independent
of (𝜃, 𝜙), implies that 𝑝𝜃 and 𝑝𝜙 are constant. Second, ℋ is also independent of 𝜃, and
we may thus take without loss of generality 𝜃 = 0. By doing so, But since 𝑝𝜃 = 𝜇𝑟 ∧ ̇𝑟
These two elements together imply that the motion is confined at once within a cone and
a plane. This is the very definition of a conic section.

In the end, we see that the classical two-body problem, which started with a 12-
dimensional phase-space can be reduced to the analysis of a hamiltonian on ℝ × ℝ. This
is the “reduction” of the two-body problem, a remarkable consequence of the underlying
symmetries of the Keplerian potential (and Euclidean nature of Newtonian mechanics in
general).

B.1.2 First law of mechanics
Let us consider the hamiltonian of the system as a function of both the coordinates/momenta
as well as the masses of the particles:

𝐻(𝑟, 𝑝, 𝐿, 𝑚1, 𝑚2) = 𝑝2

2𝜇 + 𝐿2

2𝜇𝑟2 − 𝐺𝑚𝜇
𝑟 , (B.11)

where the reduced and total masses are functions of the individual masses through 𝑚 =
𝑚1 + 𝑚2 and 𝜇 = 𝑚1𝑚2/𝑚. With the help of Hamilton’s equations, the differential 𝛿ℋ
of this hamiltonian can be simply written as

𝛿ℋ = − ̇𝑝𝛿𝑟 + ̇𝑟𝛿𝑝 + ̇𝜃𝛿𝐿 + ∑
i

𝑧i𝛿𝑚i , (B.12)

where for any i ∈ {1; 2}, the coefficients 𝑧i are defined by

𝑧i ≡ − 1
𝑚i

( 𝑝2

2𝑚i
+ 𝐿2

2𝑚i𝑟2 − 𝐺𝑚
𝑟 ) , (B.13)

In the case of a circular orbit of radius 𝑟𝑜, we have ̇𝑝 = ̇𝑟 = 0 and the true anomaly 𝜃
evolves linearly with time, at frequency Ω (the orbital frequency). Thanks to Kepler’s third
law Ω2𝑟2

𝑜 = 𝐺𝑚 and the expression of the angular momentum 𝐿2 = 𝐺𝑚𝑟𝑜𝜇2, equation
(B.12) simply reads

𝛿ℋ = Ω𝛿𝐿 − 𝐺𝑚2
𝑟𝑜

(1 + 𝑚2
2𝑚) − 𝐺𝑚1

𝑟𝑜
(1 + 𝑚1

2𝑚) . (B.14)

How can we compare this Newtonian first law to the relativistic case ? In GR, the hamil-
tonian has the numerical value of the ADM mass 𝑀 , which encompasses all energy within
the spacetime. The link between the total energy 𝐻 at play here and this ADM mass is
simply 𝑀𝑐2 = 𝐻 + 𝑚𝑐2. Let us add the total mass energy 𝑚𝑐2 to the Hamiltonian and
regroup all terms to get

𝛿𝑀𝑐2 − Ω𝛿𝐿 = (1 − 𝐺𝑚2
𝑟𝑜𝑐2 (1 + 𝑚2

2𝑚))𝛿𝑚1𝑐2 + (1 ↔ 2) . (B.15)
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This is precisely the Newtonian first law of mechanics derived by the authors of [386].
Indeed, in Eq. (1.1) there, we read the same equation with 𝑧i given in Eq. (2.37) as

𝑧1 = 1 + (−3
4 − 3

4Δ + 𝜈
2)𝑥 + 𝑂(𝑥2) , (B.16)

where 𝜈 ≡ 𝑚1𝑚2/𝑚2, Δ ≡ (𝑚2 − 𝑚1)/𝑚 and 𝑥 = (𝑚Ω)3/2. Using Kepler’s third law, we
find agreement between the two results.

B.2 Keplerian and Harmonic dynamics
B.2.1 Keplerian dynamics
The dynamics in the Kepler potential 𝜓(𝑟) = −𝜇/𝑟 is most easily found by writing an
ODE for the function 𝑢(𝜃) where 𝑢 = 1/𝑟 is the Binet variable (see [344]). This ODE
is linear in the case of the Kepler potential and reads 𝑢″ + 𝑢 = 𝜇/Λ2, with 𝑢′ = d𝑢/d𝜃.
The solution for 𝑟(𝜃) is then easily obtained, and using (𝑟(0), 𝜃(0)) = (𝑟𝑝, 0) as initial
conditions gives

𝑟(𝜃) = 𝑝
1 + 𝜀 cos 𝜃 , where 𝑝 = Λ2

𝜇 , 𝜀 = √1 + 2𝜉Λ2

𝜇2 , (B.17)

where 𝑝 > 0 is the semi-latus rectum and 𝜀 ∈ [0; 1[ the eccentricity. In celestial mechanics,
the angle 𝜃 is called the true anomaly. One can also parametrize the orbit with the
so-called eccentric anomaly 𝐸, such that

𝑟(𝐸) = 𝛼(1 − 𝜀 cos 𝐸) , where tan 𝐸
2 = √1 + 𝜀

1 − 𝜀 tan 𝜃
2 , (B.18)

where 𝛼 = 𝑝/(1 − 𝜀2) = −𝜇/2𝜉 is the semi-major axis of the elliptic orbit. Contrary to
the true anomaly, the eccentric anomaly 𝐸 can be linked analytically to the orbital time
𝑡 elapsed along the orbit, as encoded in the Kepler equation

√𝜇
𝛼3/2 𝑡 = 𝐸 − 𝜀 sin 𝐸 , (B.19)

where it is assumed that 𝐸 = 𝜃 = 0 at 𝑡 = 0, as our initial conditions require. Finally,
Kepler’s third law of motion comes as a corollary of (B.19). By definition, every Keplerian
orbit is an ellipse, thus the radial period 𝑇 coincides with the orbital period, and corre-
sponds to 𝐸 = 2𝜋. Consequently, (B.19) implies equation (B.19) since the semi-major
axis 𝛼 is linked to the energy 𝜉 by 𝛼 = −𝜇/2𝜉, as follows from (B.17).

B.2.2 Harmonic dynamics
In an harmonic potential, the orbit is an ellipse, except that the origin of coordinates is
at the center of the ellipse, not at one of its focii (like the Keplerian case). The easiest
way to solve the equations of motion is through Cartesian coordinates. This is well-
known and derived in most classical textbooks (e.g., section 3.1.(a) of [590]). It was
mentioned in Chap. 8 that an isochrone potential 𝜓 always belongs to one of the five
families (𝜓Ha, 𝜓He, 𝜓Ke𝜓Bo, 𝜓Ho, ) up to a gauge-term of the form 𝜀+ 𝜆

2𝑟2 , where (𝜀, 𝜆) ∈ ℝ2.
The analytical results derived in this paper are general enough to take into account this
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gauge-liberty, for all non-harmonic potentials. For the (non-gauged) harmonic potential,
the results of the last section is very classical and applies. There only remains the case of
gauged-harmonic potentials, of the form (8.28). Let us solve the dynamics in this general
potential.

Hamiltonian in action-angle variables

The computation of the radial action 𝐽 for the harmonic class is easily found by setting
𝑏 = 0 in the expressions (10.6) for 𝑇 and Θ. They are given by

𝑇 = 𝜋
2

√
−𝑑
𝑎 and Θ = 𝜋Λ

√Λ2 − 𝑒/𝑑
, (B.20)

where we recall that 𝑑 < 0 for an orbit to exist (otherwise the parabola is not convex) and
𝑎 > 0 since by assumption 𝛿 = 𝑎𝑑 > 0. From the above formulae, the expression (10.5) of
𝐽 as a sum of integrals over 𝑇 and Θ can be easily turned into

𝐽(𝜉, Λ) = 𝐽𝑜 +
√

−𝑑
4𝑎 𝜉 − 1

2√Λ2 − 𝑒
𝑑 , (B.21)

where 𝐽𝑜 is an integration constant that depends on (𝑎, 𝑏, 𝑐, 𝑑, 𝑒). Since we must have
𝐽 = 0 in the case of a circular orbit, a calculation (see e.g. section IV.A.1 of [2]) gives
𝐽𝑜 = − 𝑐

4𝑎
√

−𝑑 . Now, as in section 10.1.1, we get the expression of the Hamiltonian 𝐻(𝐽, Λ)
by simply solved the above formula for the energy 𝜉, giving

𝐻(𝐽, Λ) = − 𝑐
𝑑 + 4𝑎√

−𝑑
𝐽 + 2𝑎√

−𝑑
√Λ2 − 𝑒

𝑑 . (B.22)

The Hamiltonian of the isochrone class is therefore always linear in 𝐽 , and linear in Λ
only in the case 𝑒 = 0, i.e., when the parabola crosses the origin of the (𝑥, 𝑦)-plane (cf
equation (8.27)). Naturally, we recover the gauge term −𝑐/𝑑 (energy shift) of the harmonic
potential (8.28). The Hamiltonian frequencies (𝜔𝐽 , 𝜔Λ) read in the present, harmonic case

𝜔𝐽 ∶= 𝜕𝐻
𝜕𝐽 = 4𝑎√

−𝑑
and 𝜔Λ ∶= 𝜕𝐻

𝜕Λ = 2𝑎√
−𝑑

Λ
√Λ2 − 𝑒/𝑑

. (B.23)

Comparing these frequencies with (B.20) shows that the ratio 𝜔Λ/𝜔𝐽 coincides with
Θ(Λ)/2𝜋, as discussed in section 10.1.1 in the non-harmonic isochrone case.

Explicit polar solution

First, let us re-write the equation of motion (8.4) with the explicit form (8.28). We have

1
16(d𝑥

d𝑡 )
2

=(𝜉 + 𝑐
𝑑)𝑥 + 𝑒

𝑑 − Λ2 + 𝑎2

𝑑 𝑥2 , (B.24)

and we suppose as always that 𝑥(𝑡 = 0) = 𝑥𝑝. The right-hand side of (B.24) vanishes at
𝑡 = 0 when 𝑥 = 𝑥𝑝 (periastron) and at 𝑡 = 𝑇 /2 when 𝑥 = 𝑥𝑎 (apoastron). Both 𝑥𝑝, 𝑥𝑎
are easily found as the quadratic roots of the right-hand side. Between the two, i.e., for
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𝑡 ∈]0; 𝑇 /2[, it is strictly positive. Therefore, for we can factorize the right-hand side of
(B.24) and rearrange the result into1

d𝑥
√(𝑥 − 𝑥𝑝)(𝑥𝑎 − 𝑥)

= 4√ 𝑎2

−𝑑d𝑡 . (B.25)

Now we integrate this equation using the Euler substitution 𝑥 ↦ 𝜒 defined by 𝜒2 = 𝑥−𝑥𝑝
𝑥𝑎−𝑥 .

Integrating in the 𝜒 variable and going back to 𝑥 then gives the simple formula

𝑥(𝑡) = 𝑥𝑎 + (𝑥𝑝 − 𝑥𝑎) cos(Ω𝑡)2 , where Ω = √4𝑎2

−𝑑 = 2𝜋
𝑇 , (B.26)

in which we fixed the integration constant by requiring 𝑥(0) = 𝑥𝑝. As a verification, we
see that 𝑥(𝑡 = 𝑇 /2) = 𝑥𝑎, in agreement with Kepler’s generalized third law (10.6) for
𝑏 = 0 (harmonic class). Equation (B.26) gives the solution for the radial part of the
dynamics 𝑟(𝑡) via 𝑥 = 2𝑟2. For the angular part, we may use the angular equation of
motion ̇𝜃 = Λ/𝑟2 and integrate with respect to 𝑡. We readily obtain:

𝜃(𝑡) = 2Λ ∫
𝑡

0

d𝜏
𝑥𝑎 + (𝑥𝑝 − 𝑥𝑎) cos(Ω𝜏)2 . (B.27)

Let us now set 𝜙 = Ω𝜏 and 𝜀2 = 1 − 𝑥𝑝/𝑥𝑎 (such that 0 < 𝜀 < 1) in (B.27), and
integrate with respect to 𝜙 using a partial fraction decomposition (same technique as
around equation (4.55)). We then find the explicit expression:

𝜃(𝑡) = 2Λ
Ω𝑥𝑝𝑥𝑎

∑
±

arctan(√1 + 𝜀±
1 − 𝜀±

tan Ω𝑡
2 ) , 𝐸 = Ω𝑡 . (B.28)

where we used the identity 𝑥2
𝑎(1 − 𝜀2) = 𝑥𝑝𝑥𝑎 and set 𝜀± = ∓𝜀. Equations (B.26) and

(B.28) are true of any isochrone potential of the harmonic class. They should be com-
pared to their non-harmonic equivalent (10.21) and (10.27), respectively. Based on the
fact that the Kepler equation (B.19) reduces to Ω𝑡 = 𝐸 in the limit 𝑏 → 0, there probably
exists a way to gather all these isochrone results (both harmonic and non-harmonic) under
the same formulation. We have not managed to find such formulae, but encourage the
interested reader to give it a try. It would provide a strong proof of universality to the
isochrone paradigm. As a perspective, we mention the following formulae for arctangent
which is seldom found in the literature and which may be of some help. Consider the clas-
sical trigonometric identity: tan(𝑥 + 𝑦) = tan 𝑥+tan 𝑦

1−tan 𝑥 tan 𝑦 + 𝜅𝜋 with 𝜅 ∈ {−1, 0, 1} depending
on where tan(𝑥+𝑦) lies in [−𝜋; 𝜋]. Setting (𝑋, 𝑌 ) = (tan 𝑥, tan 𝑦) we readily get the other
well-known identity (assuming 𝜅 = 0)

arctan 𝑋 + 𝑌
1 − 𝑋𝑌 = arctan 𝑋 + arctan 𝑌 . (B.29)

Now set 2𝑈 ∶= 𝑋 + 𝑌 and 2𝑉 ∶= 1 − 𝑋𝑌 , so that we can express 𝑋 and 𝑌 in terms
of (𝑈, 𝑉 ) by solving a quadratic equation. Noticing that the left-hand side of (B.29) is
arctan 𝑈/𝑉 , we obtain a formula for the arctangent of a quotient

arctan 𝑈
𝑉 = ∑

±
arctan(𝑈 ± √𝑈2 + 2𝑉 − 1) (B.30)

1For the harmonic case 𝑏 = 0, we necessarily have 𝑑 < 0, since 𝑦 = 𝑌 (𝑥) as given by (8.28)
must be convex for the physical orbit to be well-defined.
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Noticing that each formula for 𝜃(𝐸) ((10.27) non-harmonic and (B.28) for harmonic)
always involves terms of the form (B.30), it may be a possible starting point to find the
common point between the harmonic and non-harmonic results. We leave this for future
work.

B.3 Details on the Hamiltonian treatment
B.3.1 Analytic continuations
The explicit formula (10.27) for 𝜃(𝐸) has been obtained for all (non-harmonic) isochrone
potentials with 𝑥𝑣 < 0. In particular, the derivation does not hold a priori for the Bounded
and Hollowed class, for which 𝑥𝑣 > 0. Indeed, if 𝑥𝑣 > 0, then 𝜁2 = −𝑥𝑣/2𝛼2 is negative,
and thus 𝜁 is imaginary (see between (10.25) and (4.55)). However, note that the final
formula (10.27) is a sum of two terms, one with +𝜁 and another with −𝜁 (recall that 𝜀± =
𝜀/(1±𝜁) there). Since 𝜁 ∈ 𝕀 ⊂ ℂ, this means that equation (10.27) reads 𝜃 ∝ 𝐹(𝜁)+𝐹( ̄𝜁)
where the function 𝐹 is simply

𝐹 ∶ 𝑧 ∈ ℂ ↦ 𝜀
√(1 + 𝑧)2 − 𝜀2 arctan(√1 + 𝑧 + 𝜀

1 + 𝑧 − 𝜀 tan 𝐸
2 ) , (B.31)

with (𝜀, 𝐸) ∈ [0; 1]× [0 ∶ 𝜋] seen as fixed parameters here. Now if 𝐹 is holomorphic around
𝐼𝐼 (and since its restriction to real 𝑧 is real-valued) then we automatically have 𝐹(𝑧) +
𝐹( ̄𝑧) = 𝐹(𝑧) + ̄𝐹 (𝑧) from standard results of complex analysis. But up to multiplicative
positive constants 𝐹 can be written as 𝐹(𝑧) = √𝑓(𝑧) arctan(√𝑔(𝑧)), where

𝑓 ∶ 𝑧 ↦ (1 + 𝑧)2 − 𝜀2 and 𝑔 ∶ 𝑧 ↦ 1 + 𝑧 + 𝜀
1 + 𝑧 − 𝜀 , (B.32)

Now let 𝕀 = iℝ be the imaginary axis and 𝕀± = iℝ± be the lower (−) and upper (+)
part of the imaginary axis. By a direct calculation, the image of 𝕀+ (resp. 𝕀−) under 𝑓
is the upper (resp. lower) part of a parabola, and under 𝑔, it is the upper (resp. lower)
part of a circle (Möbius transformation). Under 𝑧 ↦ √𝑧, and irrespective of the chosen
principal value, the parabola 𝑓(𝕀) is then mapped to a set of two disconnected curves
that are complex conjugate to one-another (corresponding to the two 𝑓(𝕀+) and 𝑓(𝕀−)
parts). The same is true for the circle 𝑔(𝕀). In particular, √𝑔(𝕀) is a closed curve on
the right-half plane (for the +

√
branch) that does not intersect the imaginary axis, such

that its (complex) arctangent is well-defined and holomorphic (square roots and inverse
trig functions can all be defined in terms of the complex logarithm, with which it is easy
to check that all is well-defined and holomoprhic). A summary of all this is depicted on
figure B.1. The conclusion is that the function 𝐹 defined in (B.31) is holomorphic on 𝕀,
and therefore 𝐹(𝑧) + 𝐹( ̄𝑧) = 2Re(𝐹(𝑧)), making the formula for 𝜃(𝐸) also real-valued and
well-defined, even in the case 𝑥𝑣 > 0, i.e., for Bounded and Hollowed potentials.

B.3.2 Universal ODE for parabolae
In this appendix, we solve the so-called universal ODE for parabolae 3𝑌 ″𝑌 ⁗ = 5(𝑌 ‴)2.
This ODE was already used in appendix B of [588] to characterize parabolae. We start
by the case where 𝑌 ‴ = 0 which clearly is a solution. Then 𝑌 ″ is a constant function
and, therefore, 𝑌 (𝑥) is a quadratic polynomial. This corresponds to the harmonic class of
parabolae (8.34). If 𝑌 ‴ ≠ 0, then re-arranging the equation yields 𝑌 ⁗/𝑌 ‴ = 5

3𝑌 ‴/𝑌 ″,
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Figure B.1: Successive images of the imaginary axis 𝕀 = 𝕀+ ∪ 𝕀− under 𝑓, 𝑔 and then
√𝑓, √𝑔.

Images for both branches ±
√

of the (complex) square root are represented.

which can be readily integrated as 𝑌 ‴(𝑌 ″)−5/3 = 𝐶 where 𝐶 ∈ ℝ. From this which we
directly get −3

2(𝑌 ″)−2/3 = 𝐶𝑥+𝐷 with 𝐷 ∈ ℝ. This implies that 𝑌 ″(𝑥) ∝ (𝐶𝑥+𝐷)−3/2,
and therefore 𝑌 is of the form (8.30), encompassing all non-harmonic types of parabolae.
Reciprocally, each parabola is a solution of the ODE, which finishes the proof.

B.3.3 Action-angle transformation and Birkhoff invariants
In section 10.2 and 10.3, we have used the Birkhoff normal form for a 1-dimensional sys-
tem (2-dimensional phase space), and thus worked with scalar Birkhoff invariants. In this
section, we would like to provide an alternative way of looking at the relation between
these invariants. In particular, we consider the 2-dimensional point of view of the problem
(4-dimensional phase space), and consider other, more general, types of invariants. In par-
ticular, this will allow us to understand more deeply the unicity of the Birkhoff invariants.

Let �⃗� be the frequency vector made of the two natural frequencies associated with
some Hamiltonian ℋ(𝐴, 𝐵), given in terms of some action variables (𝐴, 𝐵) (we are not
interested in their respective angles here). It is given by

�⃗� = (𝜕ℋ
𝜕𝐴 , 𝜕ℋ

𝜕𝐵 ) . (B.33)

Let us know construct simple quantities using �⃗� whose value remain unchanged under a
transformation from one set of action-angle variables to another. We will use the fact that
transformation between sets of action-angles is not arbitrary. Indeed, when going from a
set (𝐴, 𝐵) to another, say (𝐴′, 𝐵′), symplecticity imposes that the old and new actions
must be related by a matrix 𝑀 ∈ SL(2, ℤ). These are 2 × 2 matrices with determinant
1 and coefficients in ℤ. Roughly speaking, this is because angles must be transformed
so that they remain angles, i.e. make ℤ-linear combinations of them and not mix them
with actions. Then symplecticity imposes that the actions be transformed similarly. For
more on these action-angle transformations, we refer to the very clear discussion in [613],
and to the book [633] for more technical details (see around proposition (6.5.3) there).
Summarizing, we must have

(𝐴′

𝐵′) = (𝑚 𝑝
𝑛 𝑞) (𝐴

𝐵) , where { (𝑚, 𝑛, 𝑝, 𝑞) ∈ ℤ4 ,
𝑚𝑞 − 𝑛𝑝 = 1 . (B.34)

The change of actions (B.34) induces a change in the Hamiltonian such that the frequency
vector (B.33) is transformed as �⃗� ↦ 𝑀⊤�⃗�, where 𝑀⊤ is the transpose of 𝑀 = ( 𝑚 𝑝

𝑛 𝑞 ).
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From then, it is easy to construct invariants by taking advantage of the fact that det 𝑀 = 1.
For example, consider the following scalar quantities

𝒥 ∶= 𝜕�⃗�
𝜕𝐴 ∧ �⃗� , 𝒢 ∶= �⃗� ∧ 𝜕�⃗�

𝜕𝐵 and 𝒯 ∶= 𝜕�⃗�
𝜕𝐴 ∧ 𝜕�⃗�

𝜕𝐵 , (B.35)

where ∧ denotes the usual determinant between two vectors. Then the transformation
(B.34) leaves 𝒥 , 𝒢, 𝒯 invariant. Indeed, consider 𝒥 ′, the expression of 𝒥 in the new action
variables. Then

𝒥 ′ = 𝜕(𝑀�⃗�)
𝜕𝐴 ∧ (𝑀�⃗�) = (det 𝑀)2 𝜕�⃗�

𝜕𝐴 ∧ �⃗� = 𝒥 , (B.36)

where we used in the first equality �⃗�′ = 𝑀�⃗�, in the second the fact that 𝑀 has (constant)
coefficients in ℤ and in the third det 𝑀 = 1. A similar computation holds for both 𝒢 and
𝒯 . Since �⃗� ∧ �⃗� = 0, the three quantities (B.35) are the most simple scalars built out of
�⃗� that are invariant under (B.34). The link between (𝒥 , 𝒢, 𝒯 ) (functions of (𝐴, 𝐵)) and
the Birkhoff invariants used in section 10.2 and 10.3 is easily obtained as follows. Setting
(𝐴, 𝐵) = (𝐼, Λ) where Λ is the angular momentum action and 𝐼 = 𝜌 or 𝐽 . Then if the
Hamiltonian is in a normal form of the type 𝑁(𝐼, Λ) = 𝔩(Λ) + 𝔟(Λ)𝐼 + 1

2𝔅(Λ)𝐼2, the
quantities (𝒥 , 𝒢, 𝒯 ) are easily found to be

𝒥 = 𝔩 ′𝔅 − 𝔟𝔟′ , 𝒢 = 𝔩 ′𝔟′ − 𝔟𝔩 ″ and 𝒯 = 𝔩 ″𝔅 − 𝔟′𝔟′ . (B.37)

The quantity 𝒯 (𝐴, 𝐵) in (B.35) is the torsion of the torus (𝐴, 𝐵). The vanishing of 𝒯 and
𝒢 is a necessary and sufficient condition for the Bertrand theorem to hold, as explained
in [608]. We see from equation (10.63) that, in fact, the vanishing of 𝒥 is a necessary
and sufficient condition for the isochrone theorem to hold. What’s more, it is clear from
their definition (B.35) that if both 𝒯 and 𝒢 vanish, then so does 𝒥 , since the 𝒯 = 0 = 𝒢
implies that 𝜕𝐵�⃗� is parallel to both 𝜕𝐴�⃗� and �⃗�, consequently 𝜕𝐴�⃗� is parallel to �⃗� and
thus 𝒥 = 0. Physically, this parallelism relations between the frequency vectors encodes
the remarkable fact that Bertrand potentials are necessarily isochrone.
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ix C
Euclidean geometry

C.1 Details on radial potentials
Finite mass and attractive nature

Before going further, we would like to discuss some physical properties of the isochrone po-
tentials associated with the five families (𝒫𝑖). We start with a (non-necessarily isochrone)
central potential 𝜓 and the Poisson equation (7.15), from which we can easily infer the
mass contained within a (spherical) shell surrounding the origin. We choose the units so
that 𝐺 = 1 in order to simplify the equations.

Let 𝜖 > 0 be the inner radius of such a shell, and 𝑅 > 𝜖 be its outer radius, so that
𝜓(𝑅) is well-defined, and we let 𝑀𝜖(𝑅) be the mass contained within this shell [𝜖, 𝑅]. By
definition, 𝑀𝜖(𝑅) is given by ∫𝑅

𝜀 𝜌(𝑟)4𝜋𝑟2d𝑟. Multiplying Eq. (7.15) by 𝑟2 and integrating
over the shell [𝜖, 𝑅] readily give

𝑀𝜖(𝑅) = 𝑅2𝜓′(𝑅) − 𝜖2𝜓′(𝜖) . (C.1)

From this equation, it is clear that the total mass 𝑀(𝑅) contained within the sphere or
radius 𝑟 = 𝑅 is simply given by the 𝜖 → 0 limit of 𝑀𝜖(𝑅). Therefore, for any radius 𝑅,
𝑀(𝑅) is finite if and only if the rightmost term 𝜖2𝜓′(𝜖) in Eq. (C.1) remains bounded as
𝜖 → 0. If this limit is infinite, the potential is sourced by an infinite amount of mass at
the physical origin.

With the Hénon variables, it is very simple to see geometrically if 𝑀(𝑅) is infinite
or not. Indeed, if we differentiate 𝑌 (𝑥) = 2𝑟2𝜓(𝑟) with respect to 𝑟 we obtain 𝑟2𝜓′(𝑟) =
(𝑥𝑌 ′(𝑥) − 𝑌 (𝑥))/𝑟. Evaluating this at 𝑟 = 𝜖 and Taylor-expanding around 𝜖 = 0 give
easily

𝜖2𝜓′(𝜖) = −𝑌 (0)
𝜖 + 𝑜(𝜖) . (C.2)

It is clear from Eqs. (C.1) and (C.2) that the mass 𝑀(𝑅) is finite if and only if 𝑌 (0) = 0; a
result true for any central potential 𝜓. In other words, we have the following geometrical
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result: A potential 𝜓 is sourced by a finite mass at the origin if and only if its curve 𝒞
in Hénon’s variables passes through the origin. In the isochrone context, this means that
any isochrone parabola whose convex branch does not cross the origin is associated with
an infinite mass at the origin. Moreover, we see on Eq. (C.2) that if 𝑌 (0) > 0, i.e., the
convex branch crosses the 𝑦-axis above the origin, then the central mass is infinite and
positive.1.

Now if we focus on a potential satisfying 𝑌 (0) = 0, the mass 𝑀(𝑟) is finite within any
sphere, and it can be read off of the curve 𝒞 as follows. Plugging 𝑟2𝜓′(𝑟) = (𝑥𝑌 ′(𝑥) −
𝑌 (𝑥))/𝑟 into Eq. (C.1) allows us to write 𝑀(𝑟) in the following evocative form

𝑀(𝑟) = −𝑌 ′(𝑥)(0 − 𝑥) + 𝑌 (𝑥)
𝑟 . (C.3)

Notice that the numerator in Eq. (C.3) is nothing but the 𝑦-intercept of the tangent of 𝒞
at the point of abscissa 𝑥. Therefore, given a central potential, the mass contained within
a sphere of radius 𝑟 can be measured simply by reading this 𝑦-intercept. In particular,
for the isochrone potentials the mass within a given sphere is also something that can be
geometrically read off the parabola, as depicted in Fig. C.1.

Figure C.1: The curve 𝒞 is in solid black, and the rest of the parabola in dashed black. The curve
passes through the origin; therefore, the mass 𝑀(𝑟) inside any sphere of radius 𝑟 is finite. It can
be read off as the 𝑦-intercept of the tangent at the point of abscissa 𝑥 (in red). Note that this
construction for the mass holds for any central potential.

C.1.1 Dynamical system
In order to draw the orbit, we write the equations of motion as a three-dimensional dy-
namical system. Although, in general, a generic three-dimensional motion in classical me-
chanics involves 6 degrees of freedom, namely the three coordinates and their associated
momenta, the spherical symmetry here at play reduces this number to three. Moreover,
the radial motion is decoupled from the polar one. To see this, differentiate Eq. (7.16)
with respect to 𝑟 to obtain a second-order ODE for 𝑟(𝑡), or equivalently, a two-dimensional

1We shall see this feature at play in the classification of isochrone orbits, later in Sec. 9.3.
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dynamical system for the radial motion in (𝑟, ̇𝑟). To get the polar motion, and thus the
full orbit (𝑟(𝑡), 𝜃(𝑡)), one may simply use the definition of the angular momentum Λ = 𝑟2 ̇𝜃,
which gives 𝜃(𝑡) directly from 𝑟(𝑡). These three pieces together give the following three-
dimensional dynamical system in (𝑟, ̇𝑟, 𝜃)

d𝑟
d𝑡 = ̇𝑟 , d ̇𝑟

d𝑡 = Λ2

𝑟3 − 𝜓′(𝑟) and d𝜃
d𝑡 = Λ

𝑟2 . (C.4)

The system (C.4) is sufficient to compute the trajectory of any particle in any cen-
tral potential 𝜓(𝑟). In particular, once 𝜓(𝑟) is plugged into Eqs. (C.4) and some initial
conditions (𝑟(0), ̇𝑟(0), 𝜃(0)) are provided, the motion can be solved using, e.g., a classical
Runge-Kutta numerical method. Since we are interested in periodic, bounded orbits, we
must, however, choose the initial conditions carefully. In order to find these orbits more
easily, we choose to express (𝑟(0), ̇𝑟(0)) in terms of the two constants of motion 𝜉 and Λ,
and take 𝜃(0) = 0, as the latter does not change the periodic nature of an orbit. Since
the set of (𝜉, Λ) that produces periodic orbits is precisely the one we found in Sec. 8.3.3
depicted in Figs. 8.9, 8.10 and 8.11, this procedure allows for an easy picking of initial
conditions and allows us to draw any periodic orbit in any isochrone potential. This has
been used to draw the orbits in Figs. 9.4 through 9.6, and to check the validity of all our
analytic isochrone formulae.

C.2 Details on isochrone potentials
C.2.1 Alternative form of the third laws
We have seen that the Hénon’s formula (8.13) gives the period 𝑇 (𝜉) of an orbit (𝜉, Λ)
in any isochrone potential. For any value of 𝜉, there exists a unique value Λ𝐶 such that
the orbit is circular, corresponding to the line ℒ𝐶 ∶ 𝑦 = 𝜉𝑥 − Λ2

𝐶 being tangent to the
isochrone parabola. Using the notations ℎ and 𝐿(ℎ) introduced in Sec. 8.2.2, this circular
limit corresponds to ℎ → 0. Taking this well-defined limit in Eq. (8.18) gives

𝑇 2 = 𝜋2

16(1 + 𝜉2)3/2 lim
ℎ→0

𝐿(ℎ)2

ℎ . (C.5)

As it can be intuited from the discussion of Sec. 8.2.2, it turns out that the limit on the
right-hand side of Eq. (C.5) is independent of the global aspect of the curve. In fact, this
limit is simply eight times the radius of curvature 𝑅𝐶 at the point 𝐶 corresponding to the
circular orbit.2 In other words, we have

𝑇 2 = 𝜋2

2
𝑅𝐶

(1 + 𝜉2)3/2 . (C.6)

Equation (C.6) provides a geometrical way to find the period of any given orbit in an
isochrone potential, without any algebraic reference to the parabola itself. First take a
line ℒ intersecting an isochrone parabola 𝒫 at 𝑃 and 𝐴, and then, perform a translation
of this line to construct ℒ𝐶 , tangent to 𝒫 at 𝐶. The curvature radius 𝑟𝐶 of the parabola

2The intuition comes from the following remark: The information on the period should be
encoded somewhere on the curve, but be independent of Λ and thus of the height of the line ℒ .
By varying Λ we see that the only place that is not altered by this translation is the point 𝐶. In
particular, the slope of the tangent encodes 𝜉, and the curvature at that point encodes 𝑇 .
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at the tangency point 𝐶 gives the period, via Eq. (C.6). This is the local version of the
result given in Eq. (8.13).

In a similar fashion, the law for the apsidal angle can also be written in terms of
curvature, albeit for the effective potential. If Ψ𝑒(𝑢) = 𝜓𝑒(𝑟) with 𝑢 = 1/𝑟, we have

Θ2 = 4𝜋2Λ2

Ψ′′𝑒 (𝑢𝐶) . (C.7)

This law provides a way to compute the apsidal angle in the effective potential Ψ𝑒 in the
Binet variable 𝑢 = 1/𝑟, or in the real effective potential 𝜓𝑒, using Ψ′′

𝑒 (𝑢𝐶) = 𝑟4
𝐶𝜓′′

𝑒 (𝑟𝐶).

C.2.2 Hénon’s formula for Θ
We detail the computation of the integral (7.21) for Θ, with the method used to derive
the Hénon formula (8.13) for 𝑇 . According to the dictionary in Table. 8.1, this time we
use the Binet variable 𝑢 ∶= 1/𝑟 and define a potential Ψ𝑒(𝑢) by 𝜓𝑒(𝑟) = Ψ𝑒(𝑢). Inserting
these notations in (7.21) readily gives

Θ =
√

2Λ ∫
𝑢𝑃

𝑢𝐴

d𝑢
√𝐷Θ(𝑢)

, with 𝐷Θ(𝑢) ∶= 𝜉 − Ψ𝑒(𝑢) . (C.8)

This is the equivalent for Θ, of Eq. (8.6) for 𝑇 . The bounds of the integral are 𝑢𝐴 ∶= 1/𝑟𝐴
and 𝑢𝑃 = 1/𝑟𝑃 ≥ 𝑢𝐴. In the (𝑢, 𝑦) plane, the quantity 𝐷Θ(𝑢) ∶= 𝜉 − Ψ𝑒(𝑢) appearing in
Eq. (C.8) is the vertical distance between the curve 𝒞 ∶ 𝑦 = Ψ𝑒(𝑢) and the line ℒ ∶ 𝑦 = 𝜉.
Once again, the fact that 𝐷Θ(𝑢) ≥ 0 follows from the requirement 𝜉 − 𝜓𝑒(𝑟) ≥ 0. Next we

Figure C.2: Illustration of the geometrical analysis involved in the computation of Θ, according to
the dictionary of Table. 8.1. 𝐷Θ is the vertical distance between the straight line ℒ ∶ 𝑦 = 𝜉 and
a generic curve 𝒞 ∶ 𝑦 = Ψ𝑒(𝑢). The line ℒ𝐶 ∶ 𝑦 = 𝜉𝐶 is the unique line both parallel to ℒ and
tangent to 𝒞 .

rewrite the distance 𝐷Θ as 𝐷Θ(𝑢) = 𝜀2 − 𝑧(𝑢)2, with 𝜀2 ∶= 𝜉 − 𝜉𝐶 the vertical distance
between the two lines ℒ and ℒ𝐶 , and 𝑧(𝑢)2 ∶= Ψ𝑒(𝑢) − 𝜉𝐶 , as depicted in Fig. C.2. As
we did for 𝑇 , we may conveniently choose 𝑧(𝑢) to be negative on [𝑢𝐴, 𝑢𝐶 ] and positive on
[𝑢𝐶 , 𝑢𝑃 ]. The formula for Θ becomes

Θ =
√

2Λ ∫
𝑢𝑃

𝑢𝐴

d𝑢
√𝜀2 − 𝑧(𝑢)2 . (C.9)
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As we argued for 𝑇 , the function 𝑢 ↦ 𝑧(𝑢) is by construction monotonically increasing so
that we can perform the change of variables 𝑢 → 𝑧(𝑢) and introduce 𝑓 such that 𝑢 = 𝑓(𝑧).
Since 𝑧(𝑢𝐴) = −𝜀 and 𝑧(𝑢𝐴) = 𝜀, the integral becomes

Θ =
√

2Λ ∫
𝑢𝑃

𝑢𝐴

𝑓 ′(𝑧)d𝑧√
𝜀2 − 𝑧2 =

√
2Λ ∫

𝜋/2

−𝜋/2
𝑓 ′(𝜀 sin 𝜙)d𝜙 , (C.10)

where the last equality follows from the change of variables 𝑧 → 𝜀 sin 𝜙, with 𝜙 varying
between −𝜋/2 and 𝜋/2 when 𝑧 ∈ [−𝜀, 𝜀]. Now we assume for 𝑓 ′ a Taylor expansion around
0 of the form 𝑓(𝑧) = 𝑎0 + ∑𝑛≥1 𝑎𝑛𝑧𝑛, and integrate term by term to get

Θ =
√

2𝜋Λ𝑎0 + 2
√

2Λ ∑
𝑛≥1

𝑎2𝑛𝑊2𝑛𝜀2𝑛 , (C.11)

with 𝑊𝑛 the Wallis integral as given in Eq. (8.10), and the odd terms vanishing by in-
tegration over the symmetric interval [−𝜀, 𝜀]. Now if Θ is to be independent of 𝜉, then
it must also be independent of 𝜀, since 𝜉𝐶 depends only on Λ. Therefore, we must have
𝑎2𝑛 = 0 for all 𝑛 ≥ 1. We thus obtain the formula Θ =

√
2𝜋Λ𝑎0 and the Taylor expansion

of 𝑓 ′ therefore writes
𝑓 ′(𝑧) = Θ√

2𝜋Λ
+ ∑

𝑛≥1
𝑎2𝑛+1𝑧2𝑛+1 . (C.12)

Integrating this equation over the interval [𝑧(𝑢𝐴), 𝑧(𝑢𝑃 )] = [−𝜀, 𝜀], we can make the same
remarks as we did in the paragraph below Eq. (8.12), except that in this case 𝑓(𝑧𝐴) = 𝑢𝐴
and 𝑓(𝑧𝑃 ) = 𝑢𝑃 . In the end, we obtain Eq. (8.15), which is the equivalent to Eq. (8.13) for
𝑇 . The right-hand side of that equation is independent of 𝜉, even though the quantities
𝑢𝑃 , 𝑢𝐴 depend explicitly on 𝜉.

C.2.3 Analysis of Θ(Λ)
Let 𝜓𝑖 be a potential in one of the four families 𝑖 ∈ {1, 2, 3, 4} as defined in Sec. 8.2.2. In
this appendix, we study the properties of the function Θ𝑖(Λ) defined in Eq. (9.11). These
formulae are used in Sec. 9.3 to classify the orbits in each isochrone potential 𝜓𝑖. The
claims of Sec. 9.3 regarding each function Λ ↦ Θ𝑖(Λ) follow easily from the mathematical
analysis detailed here, with the Latin parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) replaced by the Greek ones
(𝜔, 𝜀, 𝜆, 𝜇, 𝛽).

Harmonic and Kepler family
For the Harmonic potentials 𝜓1, the analysis of Θ1(Λ) = 𝜋Λ(Λ2+𝜆)−1/2 is straightforward.
For 𝜆 < 0, it is strictly decreasing and Θ varies in ]𝜋, +∞[ when Λ ∈]

√
−𝜆, +∞[. For

𝜆 = 0, Θ = 𝜋 for all Λ ∈ ℝ. For 𝜆 > 0, it is strictly increasing and Θ varies in ]0, 𝜋[ when
Λ ∈]0, +∞[. For the Kepler family 𝜓4 the analysis is also straightforward since we have
for any Λ and 𝜆 the identity Θ4(Λ) = 2Θ1(Λ) by direct examination of Eq. (9.11) when
𝑏 = 0 (harmonic) and 𝑑2 = 4𝑏2𝑒 (Kepler).

Bounded family
For Bounded potentials 𝜓2, the analysis is more involved. For any 𝜇 > 0 and 𝛽 > 0 we
write 𝛼 ∶= 𝜆/(𝜆 + 4𝜇𝛽). We also define a function 𝑓(Λ, 𝜆) of the real variables Λ, 𝜆 by the
formula

𝑓(Λ, 𝜆) ∶= Λ
(Λ2 + 𝜆)1/2 − Λ

(Λ2 + 𝜆 + 4𝜇𝛽)1/2 . (C.13)
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With these notations, we have Θ2(Λ) = 𝜋𝑓(Λ, 𝜆) (cf. Eq. (9.37)). We want to study the
three cases 𝜆 > 0, 𝜆 = 0 and 𝜆 < 0, used to classify the orbits in Sec. 9.3.

• Case 𝜆 = 0. In this case, we simply plug 𝜆 = 0 in Eq. (C.13) and we see that
𝑓(Λ, 0) ∈ [0, 1]. Moreover, we have easily 𝜕Λ𝑓 < 0. Therefore, Θ(Λ) is strictly decreasing
and varies [0, 𝜋].

• Case 𝜆 > 0. In this case, 0 < 𝛼 < 1 and for a fixed 𝜆, we have 𝜕Λ𝑓(Λ, 𝜆) =
𝜆(Λ2 + 𝜆)−3/2 − (𝜆 + 4𝜇𝛽)(Λ2 + 𝜆 + 4𝜇𝛽)−3/2. Then, a few algebraic manipulation show
that 𝜕Λ𝑓(Λ, 𝜆) vanishes for a value Λ𝑜 given by

Λ2
𝑜 = 𝜆 𝛼1/3 − 1

𝛼 − 𝛼1/3 ⇒ 𝑓(Λ𝑜, 𝜆) = Λ𝑜(1 − 𝛼1/3)
(Λ2𝑜 + 𝜆)1/2 . (C.14)

Since 0 < 𝛼 < 1 and 0 < Λ𝑜 < (Λ𝑜 + 4𝜇𝛽)1/2, we have readily 0 < 𝑓(Λ𝑜, 𝜆) < 1. Now, for
any fixed 𝜆 > 0, Λ ↦ 𝑓(Λ, 𝜆) is continuous, 𝜕Λ𝑓 vanishes only once at Λ𝑜 and furthermore
0 < 𝑓(Λ𝑜, 𝜆) < 1. Furthermore, it is clear that 𝑓(Λ, 𝜆) goes to 0 as Λ → 0 and Λ → +∞.
With all these results, the general shape of the curve Λ ↦ 𝑓(Λ, 𝜆) can be easily inferred.

• Case 𝜆 < 0. In this case, Λ ↦ 𝑓(Λ; 𝜆) is defined only when Λ2 > −𝜆. First
subcase: 𝜆 < 0 and 𝜆 + 4𝜇𝛽 < 0. Then, this is the same as in the 𝜆 > 0 case, where
we saw that 𝜕Λ𝑓(Λ, 𝜆) > 0. Second subcase: 𝜆 < 0 but 𝜆 + 4𝜇𝛽 ≥ 0, then setting
𝑔(Λ, 𝜆) ∶= 𝜆(Λ2 + 𝜆)−3/2, we have for any Λ2 > −𝜆

𝜕𝑔
𝜕𝜆(Λ, 𝜆) = 2Λ2 − 𝜆

2(Λ2 + 𝜆)5/2 . (C.15)

Now, since Λ2 > −𝜆, the right-hand side of Eq. (C.15) is strictly positive, and therefore 𝑔 is
an increasing function of 𝜆. In particular, we have 𝜆 + 4𝜇𝛽 > 𝜆 ⇒ 𝑔(Λ, 𝜆 + 4𝜇𝛽) > 𝑔(Λ, 𝜆)
and by definition of 𝑔, the latter is exactly 𝜕Λ𝑓(Λ, 𝜆) > 0. To conclude, in the 𝜆 < 0 case,
Λ ↦ 𝑓(Λ, 𝜆) is strictly decreasing. Furthermore, it is clear that 𝑓(Λ, 𝜆) goes to +∞ as
Λ → (−𝜆)1/2, and to 0 as Λ → +∞. With all these results, the general shape of the curve
Λ ↦ 𝑓(Λ, 𝜆) can be easily inferred.

Hénon family

For Hénon potentials 𝜓3, the analysis is similarly more involved. As for the Bounded
potentials we fix 𝜇 > 0 and 𝛽 > 0 and write 𝛼 ∶= 𝜆/(𝜆 + 4𝜇𝛽). This time we define a
function ℎ(Λ, 𝜆) of the real variables Λ, 𝜆 by the formula

ℎ(Λ, 𝜆) ∶= Λ
(Λ2 + 𝜆)1/2 + Λ

(Λ2 + 𝜆 + 4𝜇𝛽)1/2 . (C.16)

With these notations, we have Θ3(Λ) = 𝜋ℎ(Λ, 𝜆 − 2𝜇𝛽) (cf. Eq. (9.39)). The analysis
follows the same lines as what was done for Θ2(Λ). We want to study the three cases
𝜆 > 0, 𝜆 = 0 and 𝜆 < 0, used to classify the orbits in Sec. 9.3.

• Case 𝜆 > 0. Then we have 0 < 𝛼 < 1 and there is no problem in showing that
Λ ↦ ℎ(Λ, 𝜆) is strictly increasing and that 0 < ℎ(Λ, 𝜆) < 1.
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• Case 𝜆 = 0. Once again, there is no problem in showing that Λ ↦ ℎ(Λ, 𝜆) is strictly
increasing and that 0 < ℎ(Λ, 𝜆) < 2.

• Case 𝜆 < 0. In this case, ℎ is only defined when Λ2 > −𝜆. For any such (Λ, 𝜆), we
have

𝜕ℎ
𝜕Λ(Λ, 𝜆) = 𝜆

(Λ2 + 𝜆)3/2 + 𝜆 + 4𝜇𝛽
(Λ2 + 𝜆 + 4𝜇𝛽)3/2 . (C.17)

There are two subcases. First subcase: 𝜆 < 0 and 𝜆 + 4𝜇𝛽 < 0. Then from Eq. (C.17),
𝜕Λℎ(Λ, 𝜆) < 0. Furthermore, ℎ(Λ, 𝜆) goes to +∞ as Λ → (−𝜆)1/2, and to 2 as Λ → +∞.
Second subcase: 𝜆 < 0 and 𝜆 + 4𝜇𝛽 < 0. If |𝛼| < 1, then there is a value Λ𝑜 that makes
𝜕Λℎ(Λ, 𝜆) vanish. It is given by

Λ2
𝑜 = 𝜆 |𝛼|1/3 + 1

|𝛼| − |𝛼|1/3 ⇒ 𝑓(Λ𝑜, 𝜆) = Λ𝑜(1 + |𝛼|1/3)
(Λ2𝑜 + 𝜆)1/2 . (C.18)

In this case, the function Λ ↦ ℎ(Λ, 𝜆) decreases on [(−𝜆)1/2, Λ𝑜] and increases on [Λ𝑜, +∞[.
The value ℎ(Λ𝑜, 𝜆) is always strictly between 1 and 2. If |𝛼| ≥ 1, then the function 𝑓 is
strictly decreasing. (It can be seen as the limit Λ𝑜 → +∞.) The value ℎ(Λ𝑜, 𝜆) is in this
case always above 2.

C.2.4 Proof that 𝑐 + 𝑑𝜉 < 0 for isochrone orbits around
finite central mass

In Sec. 9.2 we used the fact that 𝑎 + 𝑏𝜉 < 0 and 𝑐 + 𝑑𝜉 < 0 for isochrone orbits in order
to prove that our formulae in Sec. 9.2 covers all isochrone orbits. The former identity
follows from the generalized Kepler’s third law, and here, we prove the latter identity.
By assumption, we have a particle (𝜉, Λ) on an isochrone orbit in a potential with finite
central mass whose parabola 𝒫 ∶ (𝑎𝑥 + 𝑏𝑦)2 + 𝑐𝑥 + 𝑑𝑦 = 0 verifies all hypotheses (𝐻𝑖) of
Sec. 8.3.2. First we can check easily that 𝑐𝑥 + 𝑑𝑦 = 0 is an equation for the tangent to 𝒫
at the origin. geometrically, since two intersections exist between ℒ and 𝒫 , the slope of
ℒ must be bigger than that of this tangent, i.e., we must have 𝜉 > −𝑐/𝑑. We just have
to show that 𝑑 ≤ 0 and the result will follow. First, if 𝑏 = 0 (harmonic case), then we
necessarily have 𝑑 < 0 (top-oriented parabola). Second, if 𝑏 ≠ 0, then since 𝜆 = 0 (𝒫
crosses the origin) we have by Eq. (8.32) the equality −𝑑 =

√
𝑑2, which implies 𝑑 ≤ 0.

Therefore, we always have 𝑑 ≤ 0 and thus 𝑐 + 𝑑𝜉 < 0.

C.2.5 Peaks of orbits in Bounded potentials
Let an arbitrary orbit be given by a polar equation 𝑟(𝜃), and let us compute the value
of |d𝑟/d𝜃|. The latter is a measure of the change of d𝑟 when moving from 𝜃 to 𝜃 + d𝜃.
It vanishes for circles 𝑟 = cst and is infinite for straight lines 𝜃 = cst. With the help of
Eq. (7.16) and Λ = 𝑟2 ̇𝜃, we obtain easily |d𝑟/d𝜃|2 = 2𝑟4(𝜉 − 𝜓𝑒(𝑟))/Λ2. Using a Taylor
expansion of 𝜓(𝑟) and Eq. (7.18), we can linearize this equation around the apoapsis 𝑟𝐴.
We then obtain

∣d𝑟
d𝜃 ∣

2
= 2𝑟4

𝐴
Λ2 (𝜓′(𝑟𝐴) − Λ2

𝑟3
𝐴

)(𝑟𝐴 − 𝑟) + 𝑜(𝑟𝐴 − 𝑟) . (C.19)

Examining Eq. (C.19), we see that as 𝑟 → 𝑟𝐴 the right-hand side goes to zero as every
term is finite in front of (𝑟𝐴 − 𝑟). The orbit is therefore smooth and differentiable around
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the apoapsis. However, the quantity 𝜓′(𝑟𝐴) turns out to be very large for the Bounded
family, in general. This is because the slope of a Bounded potential increases to infinity
as 𝑟 grows toward 𝛽 from below, as can be seen readily on Eq. (9.36). Therefore, a line
ℒ can intersect 𝒞 such that 𝑟𝐴 is very close to 𝛽, and it is clear from Eq. (9.36) that
𝜓′

2(𝑟) → ∞ as 𝑟 → 𝛽. As a conclusion, before the apoapsis, the term (𝑟𝐴 − 𝑟) does not
yet compensate the 𝜓′(𝑟𝐴) which is large for the Bounded potential, making d𝑟

d𝜃 large and
the curve resembles a 𝜃 = cst line. This is why we see such abrupt and pointy turns in
Fig. 9.5.
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ix D
Abel-Ruffini's theorem

⋄

This appendix contains an article published in The American Mathematical Monthly,
on the Abel-Ruffini theorem. Using only elementary knowledge of complex numbers,
we sketch a proof of the celebrated Abel–Ruffini theorem, which states that the general
solution to an algebraic equation of degree five or more cannot be written using radicals,
that is, using its coefficients and arithmetic operations +, −, ×, ÷, and

√
. The present

article is written purposely with concise and pedagogical terms and dedicated to students
and researchers not familiar with Galois theory, or even group theory in general, which
are the usual tools used to prove this remarkable theorem. In particular, the proof is
self-contained and gives some insight as to why formulae exist for equations of degree four
or less (and how they are constructed), and why they do not for degree five or more.
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Introduction

Historical background

Finding a general expression for the solutions of an algebraic equation has been one of
the oldest and most fruitful problems in mathematics. The history behind what was
once called the “theory of equations” [634], is almost as rich and old as the history of
mathematics itself. For example, methods for solving linear and quadratic equations have
been known for at least four millennia [635], in independent places in the world. The
quadratic formula taught today in school, with modern notation, was first written down
by R. Descartes in 1637 [636]. The introduction of the definitive

√
notation (with the hor-

izontal overbar called the “vinculum”) was only introduced in 1525 [637]. Regarding cubic
and quartic equations, they too had to wait until the sixteenth century to be finally solved.
By then, a group of rivaling Italian mathematicians, including S. del Ferro, N. Tartaglia,
G. Cardano, and L. Ferrari, made the serendipitous discovery of complex numbers while
solving the general cubic equation. In 1545, a few years before their quarrels settled in a
public mathematical contest [634], L. Ferrari solved the quartic equation by reducing it to
a cubic one. The quintic equation, however, would still keep these mathematicians (and
all others) in check, while the idea of it being unsolvable slowly started to emerge.

Unsolvable equations

The idea of examining permutations of the solutions to study the (un-)solvability of al-
gebraic equations dates back to the pioneering works of J.-L. Lagrange in 1771 [638].
Lagrange’s ideas matured, and were finally extended to the quintic equation by P. Ruffini
in early 1800 [639]. For twenty years, Ruffini tried to convince the mathematical commu-
nity of the importance of his results, without success. It is only in 1821, with the help
of L.-A. Cauchy, that Ruffini’s work was recognized as a stepping stone in the theory of
algebraic equations. Although it turned out that Ruffini did not prove the theorem that
now bears his name per se, his results were strong enough to place serious doubt about
the possibility of finding a solution to the general quintic equation. The wait was finally
over in 1824 when N.-H. Abel wrote the first complete proof of the theorem (a short proof
published in 1824 [640] at his own expense, and a longer, more detailed version two years
later [641]). His work still remained unworthy of interest to the eyes of most mathemati-
cians, including Gauss and Cauchy themselves. Abel died aged 26 in 1829, just before his
work on the unsolvability of the quintic finally received all the appreciation it deserved.
He received posthumously the Grand Prix de l’Académie des Sciences de Paris in 1830,
in recognition of his work. The same year also marks the publication of É. Galois’s first
paper on these topics [642], in which he gives the premises of (now) Galois theory, a novel
and elegant extension of all previous results. He too died young (aged 20 in 1832) and his
work also took several decades to be fully published and recognized as revolutionary.

This short historical account lacks many interesting stories about these mathemati-
cians, such as conflict of interests, encrypted communications, fatal duels, long lost and
recovered memoirs, etc. The interested reader could start with J. Sesiano’s [635] and
J. Stillwell’s [634] books and references therein for well-written and thorough presenta-
tions of these fascinating pieces of history.
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Aim and content

The aim of this article is to sketch an accessible and self-contained proof of the Abel–Ruffini
theorem:

No formula exists for the solution to the general equation of degree five
or more, using only the operations +, −, ×, ÷, and

√
.

The word general is important: it emphasizes that a formula that holds for any coefficients
cannot be found. However, the theorem does not prevent some equations to have a solution
that can be written in terms of +, −, ×, ÷,

√
. In most textbooks, the proof of this

remarkable theorem relies on a powerful subbranch of mathematics called Galois theory,
developed quasi-exclusively by the French mathematician É. Galois at the beginning of
the nineteenth century. Galois theory solved all “unsolvability problems” once and for
all, as well as other millennia-long problems [634]. However, it is also rather advanced,
usually taught in the second/third years of specialized, university-level mathematics. The
first complete proof (by Abel) of the Abel–Ruffini theorem is a few years older than
the birth of Galois theory. Moreover, the works of Galois took several decades to be
broadly known to other mathematicians. In other words, neither Ruffini nor Abel used
the methods developed by Galois to prove that some equations were unsolvable. Because
it usually relies on advanced mathematics, few people in the scientific community are
aware of this theorem and its underlying principles. But because Abel did not prove it
this way, there must be another, perhaps simpler, way of understanding the reason why
the general quintic equation does not have a solution in terms of radicals. In particular,
Galois’s, Abel’s, and Ruffini’s ideas all rely on a unique, fundamental, common point: the
symmetry of an algebraic equation under the permutation of its solutions. Based solely on
this fundamental symmetry, we propose to sketch a proof of Abel–Ruffini’s theorem using
only elementary knowledge about complex numbers. Familiarity with complex numbers
and a pen (and paper!) to draw appropriate figures are the only prerequisites to get a grasp
of how the proof works. Everything else is elementary mathematics and useful notations
that help present the ideas more clearly.

Motivation

The proof given here cannot be considered new. It is the result of several adaptations
and simplifications of ideas that we feel compelled to attribute to the theoretical physicist
B. Katz. His ideas are presented concisely in an online video [643], which can be used
as complementary material with dynamic illustrations. Katz’s inspiration for making this
video comes from a series of lectures given by physicist and mathematician V. Arnold,
which were nicely crystallized in a problems-and-solutions book published by V. B. Alek-
seev, who was Arnold’s student at the time of these lectures. This book, although very
well written and complete, is, however, not elementary in any sense. While Katz’s video
does a very good job at explaining the general idea of the proof, we found that some gaps
could be filled, and some arguments could be made much simpler, especially when we get
to the end of the proof. Other references dealing with the present ideas are rather scarce
in the literature (academic or not). A nonexhaustive selection is located at the conclusion
of the article, and can serve as complementary material to deepen one’s understanding of
the proof.
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Outline
The remainder of this article is organized as follows. After some prerequisites and re-
minders regarding complex numbers are introduced, we spend some time on the quadratic
equation, explaining why a quadratic formula cannot be built out of only the four ba-
sic arithmetic operations (our first impossibility result). Similar ideas are then extended
successively to the cubic and quartic equation, giving stronger impossibility results at
each step. By the time we get to the quintic equation, the reader should be comfortable
enough with the strategy (hopefully) to see how the quadratic, cubic, and quartic cases
foreshadow the proof of the the Abel–Ruffini theorem. Along the way, we also derive the
cubic and quartic formulae, scarcely presented in the nonspecialized literature. Although
the derivation of these formulae is interesting enough to justify their presence, they will
be especially useful in light of our temporary results, and will naturally guide us step by
step to Abel–Ruffini’s theorem. Finally, we note that animated versions of Figures D.2,
D.4, D.5 and D.6 are available as supplementary material for a better understanding.

Prerequisites
In this article, we are dealing with algebraic equations of degree 𝑛 ≥ 2. These equations
are always of the form

𝑧𝑛 + 𝑐𝑛−1𝑧𝑛−1 + ⋯ + 𝑐1𝑧 + 𝑐0 = 0 , (D.1)
where 𝑧 ∈ ℂ is the unknown and the 𝑛 complex numbers (𝑐0, ..., 𝑐𝑛−1) are the coefficients.
It is a remarkable fact, often cited as the fundamental theorem of algebra, that equation
(D.1) always has exactly 𝑛 complex solutions. (We use solutions, instead of roots of poly-
nomials, to avoid confusion with the “root” operation

√
later on.) These solutions will

always be denoted (𝑠1, … , 𝑠𝑛), and we use 𝑠 as a placeholder for any of the solutions.

Permutations
Our strategy will be based on picturing the solutions (𝑠1, … , 𝑠𝑛) in the complex plane and
make them move around so as to exchange their positions, i.e., permute them. We will
need two kinds of permutation:

• transpositions, denoted (𝑖𝑗), exchanging the position of two solutions, i.e., 𝑠𝑖 ↔ 𝑠𝑗.
The transposition (12) is depicted on the left in Fig D.1,

• cycles, denoted (𝑖𝑗𝑘), exchanging the position of three solutions cyclically, i.e., 𝑠𝑖 →
𝑠𝑗, 𝑠𝑗 → 𝑠𝑘, and 𝑠𝑘 → 𝑠𝑖. The cycle (123) is depicted on the right in Fig D.1.

Two permutations next to each other are to be performed successively, from left to
right. For example, (12)(23) consists in exchanging 𝑠1 and 𝑠2, then 𝑠2 with 𝑠3. Notice that
the result is equivalent to the cycle (132), hence there is no unique way of writing permu-
tations. However, permutations do not commute in general. Indeed, (12)(23) = (132) and
(23)(12) = (123); therefore (12)(23) ≠ (23)(12).

Loops
One way of visualizing permutations of (𝑠1, … , 𝑠𝑛) is to locate them in the complex plane
and make them travel along some paths. Paths in the complex plane are just continu-
ous curves than connect two points (we assume that they do not self-intersect, otherwise
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Figure D.1: The paths-induced transposition (12) and cycle (123) on the solutions (𝑠1, 𝑠2, 𝑠3) of
some algebraic equation of degree 𝑛 ≥ 3. See supplementary material for animated version.

things get unnecessarily complicated). A path that closes, i.e., connects a point to itself,
is called a loop and denoted 𝛾, whereas a path that connects two distinct points is simply
called an unclosed path, denoted 𝜔. These paths will be represented by arrows in our
figures, and will be used to induce permutations on (𝑠1, … , 𝑠𝑛). For example, in Figure
D.1 are depicted the transposition (12) on the left, and the cycle (123) on the right. Notice
that to induce (12), 𝑠3 follows a loop 𝛾 so that only 𝑠1 and 𝑠2 swap places by following
the unclosed paths 𝜔1, 𝜔2. When speaking of permutations of solutions, we will always
imagine them traveling on these paths.

Roots

Now let us examine how roots of complex numbers move around the complex plane. Fixing
some complex number 𝑧, a root of 𝑧 is some number 𝜁 ∈ ℂ such that 𝜁𝑘 = 𝑧 for some
𝑘 ∈ ℕ. Such a 𝜁 is then called a 𝑘th root of 𝑧; and 𝑧 admits exactly 𝑘 such 𝑘th roots (this
follows from the fundamental theorem of algebra). We will deliberately use the ambiguous
notation 𝑘√ as a multivariable notation, i.e., for a given 𝑘, 𝑘√𝑧 means any of the 𝑘th roots
of 𝑧. Fixing 𝑘 ∈ ℕ and assuming that 𝑧 itself follows a loop 𝛾, let us examine what kind of
path 𝑘√𝑧 follows. To this end, we use the exponential form of 𝑧, i.e, 𝑧 = 𝑟ei𝜃 with 𝑟 = |𝑧|
and 𝜃 = arg 𝑧, from which we find that all 𝑘th roots (𝜁1, … , 𝜁𝑘) can be written explicitly
as

𝜁ℓ = 𝑟1/𝑘ei(𝜃+2ℓ𝜋)/𝑘 , ℓ ∈ {1, … , 𝑘} . (D.2)

From equation (D.2), one can already tell that all 𝑘th roots of 𝑧 have the same modulus
: 𝑟1/𝑘. Geometrically, this means that they lie on the same circle (of radius 𝑟1/𝑘) in the
complex plane. Moreover, we readily see from equation (D.2) that

arg 𝜁ℓ = 𝜃
𝑘 + ℓ2𝜋

𝑘 , (D.3)

which means that all roots are equally spaced on this circle, at angle 2𝜋/𝑘 apart. Now
suppose that 𝑧 goes on a journey exploring the complex plane, by traveling on a loop 𝛾
winding once (say) around the origin, in the counterclockwise direction (in red, on the left
in Figure D.2). As 𝑧 travels along 𝛾, its 𝑘th roots also move around, and their position
can be tracked from equation (D.2) (see the red paths on the right in Figure D.2). Since 𝛾
is a loop, the radius 𝑟 comes back to its original (i.e., pre-loop) value, and so does 𝑟1/𝑘. In
other words: the roots remain on their circle after the path 𝛾 (see the grey, dashed-circle
on the right of Figure D.2). However, arg 𝑧 went from 𝜃 to 𝜃 + 2𝜋 (one counterclockwise
turn). Therefore, from equation (D.3), each 𝑘th root 𝜁ℓ has moved to its closest, coun-
terclockwise neighbor, 𝜁ℓ+1. In particular, the roots have followed an unclosed path. Had
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𝑧 not wound around the origin (in blue, on the left in Figure D.2), its argument 𝜃 would
have seen no net change after the loop 𝛾, and the roots would have followed their own
loops (in blue on the right in Figure D.2).

Figure D.2: When 𝑧 follows a loop 𝛾 that does not wind around the origin, its roots 𝜁i follow loops
as well (right). However, for the loop 𝛾 that winds once, the roots then follow the red, unclosed
paths. See supplementary material for animated version.

We have seen two example of loops followed by 𝑧 and the result is not the same for its
roots 𝑘√𝑧 : in one case the roots follow a loop (blue part of Figure D.2), in the other they
do not (red part of Figure D.2). Consequently, we conclude that when 𝑧 follows a loop,
𝑘√𝑧 does not always follow a loop. This conclusion holds for any type of root (i.e., any 𝑘

in 𝑘√𝑧). Since we will not need to differentiate between all these roots, we will denote by√𝑧 any root of 𝑧 (that is, any 𝑘th root, whatever the value 𝑘 ∈ ℕ). With this notation,
the takeaway result of this paragraph is simply:

When 𝑧 follows a loop,
√𝑧 does not always follow a loop.

Formula ingredients

In this article we question the existence of a general formula for the solutions of the general
algebraic equation of degree 𝑛, equation (D.1). By formula, we mean some equality

𝑠 = Φ(𝑐0, … , 𝑐𝑛−1) , (D.4)

where 𝑠 is a solution of equation (D.1) and Φ is some function of its coefficients (𝑐0, … , 𝑐𝑛−1).
The Abel–Ruffini theorem states that for 𝑛 ≥ 5, no formula in terms of radicals exists. “In
terms of radicals” simply mean that the function Φ in equation (D.4) can be constructed
solely in terms of (1) the coefficients (𝑐0, … , 𝑐𝑛−1), and (2) the elementary operations +,
−, ×, ÷ and

√
.

Leaving
√

aside, if we constrain ourselves to a formula combining the coefficients
(𝑐0, … , 𝑐𝑛) and the four operations +, −, ×, ÷, we obtain what we will call an 𝐹 -formula,
or simply an 𝐹 -function. Examples of such 𝐹 -functions are

𝐹 = 1 , 𝐹 = −𝑐6
2 , 𝐹 = 𝑐2

8 − 7𝑐2 . (D.5)
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They are the elementary building blocks for constructing formulae. In particular, they
encompass integers, the coefficients themselves, as well as polynomials and rational func-
tions of the coefficients. Clearly, if two coefficients each follow a loop simultaneously, then
their sum, difference, product, and quotient also follow a loop. As they are built with only
these four operations, 𝐹 -functions enjoy the same property. In other words:

When (𝑐0, … , 𝑐𝑛−1) follow a loop, 𝐹 -functions also follow a loop.

This property of 𝐹 -functions is not shared by
√

𝐹 -functions, i.e., expressions that are roots
of 𝐹 -functions, e.g., 7√𝑐0 or 2√1 − 3𝑐2. (recall the notation in the subsection “Loops”).
In particular, if we denote by 𝐺-function a combination of 𝐹 - and

√
𝐹 -functions together

with +, −, ×, ÷, then we have the following:

When (𝑐0, … , 𝑐𝑛−1) follow a loop, 𝐺-functions do not always follow a loop.

A 𝐺-function is a new type of ingredient as it may include expressions with one level of
roots, such as

𝐺 = −𝑐5
2 + 1

2
2√𝑐2

4 − 4𝑐1 . (D.6)

We can keep going like this to construct formulae with higher number of nested roots,
i.e., roots in roots. For example, we can combine 𝐺-functions and

√
𝐺-functions with

+, −, ×, ÷ to make 𝐻-functions. These may contain up to two levels of nested roots, such
as

𝐻 = 𝑐4 − 3√7𝑐2 + 5√−𝑐0
2 + 5√𝑐2

1 − 4𝑐6 , (D.7)

and so on, as summarised in Figure D.3. With this nomenclature, we can make arbitrarily
complex expressions involving +, −, ×, ÷ and

√
, and at the same time keep track of the

number of nested roots appearing in the formula. Conversely, any formula constructed
with +, −, ×, ÷,

√
can be built using this procedure, provided that we look high enough

in the “…” of the list of ingredients (𝐹 , 𝐺, 𝐻, …).

Figure D.3: Ingredients used to build a formula. Combining coefficients (𝑐0, ..., 𝑐𝑛−1) with
+, −, ×, ÷ defines an 𝐹 -function. Combining 𝐹 -functions and their roots

√
𝐹 with +, −, ×, ÷

defines a 𝐺-function, etc. See supplementary material for animated version.

We have now covered all the tools necessary: permutations of (𝑠1, … , 𝑠𝑛), loops, and
𝐹, 𝐺, 𝐻-functions. Let us now apply all these concepts to the degree 𝑛 equation, starting
with 𝑛 = 2, to understand the Abel–Ruffini theorem when 𝑛 = 5.

The quadratic equation
Our journey toward the Abel–Ruffini theorem starts with considerations of the much more
familiar quadratic equation. In particular, considering only the case 𝑛 = 2, we will prove
a first impossibility result, actually valid for 𝑛 ≥ 2. The ideas developed here are rather
simple but also at the heart of the proof of the Abel–Ruffini theorem.
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Vieta’s formulae

Let us consider the general quadratic equation

𝑧2 + 𝑐1𝑧 + 𝑐0 = 0 . (D.8)

As mentioned previously, the fundamental theorem of algebra informs us that this equation
admits exactly two complex solutions 𝑠1 and 𝑠2. Let us then write it in the factored form
(𝑧 − 𝑠1)(𝑧 − 𝑠2) = 0 and expand this product, ordering the terms by power of 𝑧. We find a
new expansion that can be compared to equation (D.8). By identification, we obtain the
so-called Vieta’s formulae:

𝑐1 = −(𝑠1 + 𝑠2) and 𝑐0 = 𝑠1𝑠2 . (D.9)

This kind of relation between the coefficients and the solutions can be established for
any degree 𝑛 ≥ 2. For example, equation (D.9) generalizes nicely to 𝑐𝑛−1 = − ∑i 𝑠i and
𝑐0 = (−1)𝑛 ∏i 𝑠i, for any 𝑛 ≥ 2. In any case, these formulae always reveal the same
fundamental property:

Coefficients (𝑐0, … , 𝑐𝑛−1) are symmetric functions of the solutions (𝑠1, … , 𝑠𝑛).

In particular, for the 𝑛 = 2 case here at hand, if one permutes 𝑠1 and 𝑠2 by moving them
continuously in the complex plane (using, for example, the transposition (12) depicted in
Figure D.1), then the coefficients (𝑐0, 𝑐1) will each move on some path, but eventually
they must come back to their original location as they are symmetric in (𝑠1, 𝑠2). In other
words, they will follow a loop, as depicted in Figure D.4.

Figure D.4: The transposition (12) on the solutions (𝑠1, 𝑠2) induces a loop on the coefficients
(𝑐0, 𝑐1). See supplementary material for animated version.

A first impossibility result

Because it is the central idea at play, let us rephrase the symmetry in Vieta’s formulae
geometrically:

When (𝑠1, … , 𝑠𝑛) undergo a permutation, (𝑐0, … , 𝑐𝑛−1) each follow a loop.

This remarkable fact can be used to obtain a first impossibility result, as follows. Suppose
that the solutions 𝑠1 and 𝑠2 of the quadratic equation are given by two formulae of the
type

𝑠1 = 𝐹1(𝑐0, 𝑐1) and 𝑠2 = 𝐹2(𝑐0, 𝑐1) , (D.10)

with 𝐹1, 𝐹2 two 𝐹 -functions (i.e., expressions involving (𝑐0, 𝑐1) and the symbols +, −, ×, ÷).
Now, picture (𝑠1, 𝑠2) and (𝑐0, 𝑐1) in the complex plane, and study the following process:
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• connect 𝑠1 and 𝑠2 with paths inducing the transposition (12), and make them move
along these paths (see Fig. D.4);

• as 𝑠1 and 𝑠2 move around, 𝑐0 and 𝑐1 each travel on a loop, as seen previously (see
Fig. D.4),

• while 𝑐0 and 𝑐1 follow their own loop, the two 𝐹 -functions 𝐹1 and 𝐹2 will also follow
a loop, as argued earlier (see Fig. D.5).

Figure D.5: A loop followed by (𝑐0, 𝑐1) also induced a loop on the 𝐹 -functions 𝐹1(𝑐0, 𝑐1) and
𝐹2(𝑐0, 𝑐1). See supplementary material for animated version.

At the end of this process, 𝑠1 and 𝑠2 have permuted, yet both 𝐹1 and 𝐹2 have followed
a loop. Consequently, 𝐹1 and 𝐹2 cannot equal 𝑠2 and 𝑠2 respectively, and no formula such
as in (D.10) exists. This impossibility result actually holds for an equation of any degree
𝑛 ≥ 2. Indeed, it suffices to pick two of the 𝑛 solutions to the degree 𝑛 equation, name
them 𝑠1 and 𝑠2, and apply the above recipe. The conclusion is thus:

Using only 𝐹 -functions, no formula solving
the general equation (D.1) can be found for 𝑛 ≥ 2.

This is our first impossibility result. In particular, it means that we have no chance of
finding a formula for the cubic equation using only 𝐹 -functions either. To see which extra
ingredients are needed, let us examine closely the well-known quadratic formula.

Discussion: the quadratic formula

The quadratic formula is derived most easily by “completing the square” in equation (D.8)
to get (𝑧 + 𝑐1

2 )2 = 1
4𝑐2

1 − 𝑐0. Using our notation 2√ for any of the two square roots, we
easily obtain a formula for the general solution 𝑠 of equation (D.8) as

𝑠 = −𝑐1
2 + 1

2
2√𝑐2

1 − 4𝑐0 . (D.11)

This formula alone corresponds to two solutions, one for each of the two square roots on
the right-hand side. Moreover, notice how this root indeed points to the same direction
as our impossibility result: we need to add

√
𝐹 -function to the list of ingredients. One

last note: just as the Abel–Ruffini theorem, the impossibility result just derived tells
something about the general quadratic equation. However, there exists some quadratic
equations with given, explicit coefficient that admit a formula in terms of +, −, ×, ÷.
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The cubic equation
Let us now try to construct a formula for the solutions of the general cubic equation. The
equation reads

𝑧3 + 𝑐2𝑧2 + 𝑐1𝑧 + 𝑐0 = 0 . (D.12)

Let (𝑠1, 𝑠2, 𝑠3) be its three complex solutions. Learning from our previous findings, we
now add

√
𝐹 -functions to the list of ingredients. Therefore, we assume that there exists

some formulae of the type

𝑠i = 𝐺i(𝑐0, 𝑐1, 𝑐2) , for i ∈ {1, … , 3} , (D.13)

with 𝐺1, 𝐺2, 𝐺3 three 𝐺-functions (combinations of 𝐹 and
√

𝐹 with +, −, ×, ÷). Our
second impossibility result will consist in showing that such a formula cannot exist. Our
previous method is not guaranteed to work: yes, the coefficients still follow loops as solu-
tions permute, but no, 𝐺-functions do not generally follow loops in these circumstances,
as we have already seen. We need to change our plan.

Introducing commutators

Consider the transposition (12) that induces a loop 𝛾1 on 𝐹 and thus an unclosed path
𝜔1 on

√
𝐹 . Consider also (23), inducing a loop 𝛾2 on 𝐹 and a path 𝜔2 on

√
𝐹 . Now

perform the following sequence of transpositions, called the commutator of (12) and (23),
and denoted

[(12), (23)] = (12)(23)(12)−1(23)−1 . (D.14)

Since (12)−1 is simply (21), and (23)−1 = (32), it turns out that [(12), (23)] is simply the
cycle (123). In fact, this is true with any pair of transposition, i.e.,

[(𝑖𝑗), (𝑗𝑘)] = (𝑖𝑗𝑘) . (D.15)

Therefore, [(12), (23)] does permute the three solutions (𝑠1, 𝑠2, 𝑠3). But what is its effect
on numbers like 𝐹 and

√
𝐹 ? Clearly, 𝐹 follows a sequence of loops 𝛾1𝛾2𝛾−1

1 𝛾−1
2 , which is

itself a loop. The number
√

𝐹 , however, follows a sequence of unclosed paths 𝜔1𝜔2𝜔−1
1 𝜔−1

2
(visiting other roots) but closes on itself by construction; see Figure D.6.

Figure D.6: Effect of the commutator [(12), (23)] on a coefficient 𝑐 (left), on an 𝐹 -function (center)
and on

√
𝐹 -function (right). After the process, both 𝐹 and

√
𝐹 have followed a loop. Notice the

loop followed by
√

𝐹 consisting in four unclosed paths. See supplementary material for animated
version.
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Conclusion

With the permutation (123) written as the commutator [(12), (23)], we reach the same
conclusion as in the quadratic case: while (𝑠1, 𝑠2, 𝑠3) undergoes the permutation (123),
both 𝐹 and

√
𝐹 follow a loop (and thus any 𝐺-function). Consequently, there cannot be

equalities given by (D.13). Again, this holds for the general equation of degree 𝑛 ≥ 3, too,
as it suffices to pick up three solutions out of the 𝑛 ≥ 3, label them 𝑠1, 𝑠2, 𝑠3, and apply
the above recipe. Therefore, we conclude:

Using only 𝐺-functions, no formula solving
the general equation (D.1) can be found for 𝑛 ≥ 3.

This is our second impossibility result. We must emphasize that it works only if we apply
the cycle (123) as a commutator such as in equation (D.14). Had we just applied the cycle
(123) directly (i.e., without writing it as a commutator), there would have been no guar-
antee that

√
𝐹 followed a loop. It is the commutator that allows us to discard one level

of roots, and thus
√

𝐹 , from the list of ingredients. Let us now put this new impossibility
result to the test, by solving explicitely the cubic equation.

Discussion: the cubic formula

We follow the classical method found by Italian mathematicians of the sixteenth century.
First, perform the change of variables 𝑍 = 𝑧 + 𝑐2/3, which “removes” the 𝑧2 term in
equation (D.12), transforming it into

𝑍3 + 3𝑃𝑍 + 2𝑄 = 0 , (D.16)

where 𝑃 = 𝑐1
3 − 𝑐2

2
9 and 𝑄 = 𝑐0

2 + 𝑐3
2

27 − 𝑐1𝑐2
6 . Notice that both 𝑃 and 𝑄 are 𝐹 -functions

of (𝑐0, 𝑐1, 𝑐2). To solve equation (D.16), one then writes 𝑍 = 𝑣 + 𝑤, where 𝑣, 𝑤 are two
complex numbers to be chosen freely later on. Then, equation (D.16) becomes 𝑣3 + 𝑤3 +
3(𝑣𝑤 + 𝑃 )(𝑣 + 𝑤) + 2𝑄 = 0, from which we can remove the second term by imposing
that 𝑣, 𝑤 satisfy 𝑣𝑤 = −𝑃 . By cubing the latter, we then obtain two equations for two
unknowns, namely

𝑣3 + 𝑤3 = −2𝑄 and 𝑣3𝑤3 = −𝑃 3 . (D.17)

These equations can be solved simultaneously for 𝑣3 and 𝑤3, since they explicitly give
their sum and product, respectively. (These are nothing but Vieta’s formulae for 𝑛 = 2;
See equation (D.9).) Using the quadratic formula, one obtains 𝑣3 and 𝑤3 in terms of 𝑃
and 𝑄, takes their cube root and adds the result to obtain 𝑣 + 𝑤 = 𝑍. Going back to the
original unknown 𝑧 = 𝑍 − 𝑐2/3 gives the famous “cubic formula”

𝑠 = −𝑐2
3 + 3√−𝑄 + √𝑄2 + 𝑃 3 + 3√−𝑄 − √𝑄2 + 𝑃 3 . (D.18)

This formula gives three solutions (𝑠1, 𝑠2, 𝑠3), one for each cube root. It is clear that
this expression involves more than 𝐹 and

√
𝐹 functions: indeed, the two cube roots are

actually
√

𝐺-functions. In a sense, the cubic formula above contains “two levels” of roots,
whereas 𝐺-functions can only contain one, by definition. This kind of expression is thus
called a nested root. Our “commutator trick” was only able to remove one level of roots.
Perhaps two levels of commutators will remove two? If so, then it looks like a pattern is
emerging…
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The quartic equation
We now turn to the quartic equation

𝑧4 + 𝑐3𝑧3 + 𝑐2𝑧2 + 𝑐1𝑧 + 𝑐0 = 0 . (D.19)

For the cubic, we saw that 𝐺-functions are not enough to construct a formula, as we also
needed

√
𝐺 functions. Therefore, we start by assuming the existence of some formula for

the four solutions
𝑠i = 𝐻i(𝑐0, 𝑐1, 𝑐2, 𝑐3) , for i ∈ {1, … , 4} . (D.20)

As before, the four functions 𝐻i are assumed to be 𝐻-functions, i.e., 𝐺- and
√

𝐺-functions
combined with +, −, ×, ÷. As should be clear by now, it turns out that even with the
extra ingredient

√
𝐺, no general quartic formula can be constructed. Once again we will

prove this by constructing an appropriate permutation of (𝑠1, 𝑠2, 𝑠3, 𝑠4).

A brief checkpoint

Once again, just as the first method did not work for cubic equations, the method used
for the cubic case is not guaranteed to work for quartic equations either. Indeed, the
commutator of transpositions induced a loop on 𝐹 and

√
𝐹 (and thus on 𝐺). But a loop

on 𝐺 generally does not induce a loop on
√

𝐺, as we have seen many times. A summary
of these previous methods is given on Table D.1.

ingredient 𝐹 -functions 𝐺-functions
nested roots 0 1
discarded by transpositions commutator of transpositions
with the path (12) [(12),(23)] = (123)

for degree 𝑛 ≥ 2 𝑛 ≥ 3
Table D.1: Summary of the methods used to prove the first two impossibility results.

But now a natural solution presents itself: what if we take the commutator of, say,
(123) and (234), written as commutators themselves, using equation (D.15)? Let us ex-
amine this in detail.

Commutators, yet again

First we need to check that the commutator of (123) and (234) does indeed permute the
four solution (𝑠1, 𝑠2, 𝑠3, 𝑠4). Fortunately it does, as a quick check reveals that

[(123), (234)] = (14)(23) , (D.21)

which is a particular case of the more general formula [(𝑖𝑗𝑘), (𝑗𝑘ℓ)] = (𝑖ℓ)(𝑗𝑘). Therefore,
our commutator [(123), (234)] does indeed permute (𝑠1, 𝑠2, 𝑠3, 𝑠4). Now, let us examine
how it affects 𝐺- and

√
𝐺-functions, one step at a time:

• First, we apply the cycles (123) = [(12), (23)] then (234) = [(23), (34)]. Since they
are commutators, 𝐺-functions will follow two loops 𝛾1, 𝛾2 successively, coming back to
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their original positions. However, quantities like
√

𝐺 will move along two (generally un-
closed) paths 𝜔1 and 𝜔2. All this is exactly as in the cubic case.

• Second, we apply these two paths backwards, in reverse i.e., (432) = [(43), (32)]
and then (321) = [(32), (21)]. During these two, 𝐺-functions will follow 𝛾−1

2 𝛾−1
1 , i.e. the

previous loops backwards. Similarly,
√

𝐺-functions will travel along 𝜔−1
2 𝜔−1

1 .

What just happened is exactly the same as in the cubic case, except with 𝐺-functions
in place of 𝐹 -functions. In particular, 𝐺-functions follow the loop 𝛾 = 𝛾1𝛾2𝛾−1

1 𝛾−1
2 ;

and
√

𝐺-functions a sequence of unclosed paths 𝜔1𝜔2𝜔−1
1 𝜔−1

2 , which closes on itself by
construction. In other words, both 𝐺- and

√
𝐺-functions followed a loop and thus any

𝐻-function will, too. Our conclusion has therefore been reached: while (𝑠1, 𝑠2, 𝑠3, 𝑠4)
undergoes the permutation (14)(23) written as a commutator of commutators, any 𝐻-
function follows a loop. Consequently, no formula (D.20) can exist. This result extends
to any equation of degree 𝑛 ≥ 4, as before, and constitutes our third impossibility result:

Using only 𝐻-functions, no formula solving
the general equation (D.1) can be found for 𝑛 ≥ 4.

In particular, we can extend Table D.1 with an additional column for the new ingredient,
𝐻-functions.

ingredient 𝐻-functions
nested roots 2
discarded by commutator of commutator of transpositions
with the path [[(12),(23)],[(23),(34)]] = (14)(23)

for degree 𝑛 ≥ 4
Table D.2: Extension of Table D.1 to 𝐻-functions, for degree 𝑛 ≥ 4.

Discussion: the quartic formula

As for the cubic case, our impossibility result does not imply that there is no quartic (nor
quintic) formula. It just means that to construct one, one needs at least three levels of
nested roots, and 𝐻-functions contain only two. It turns out that the quartic equation
can be solved as follows and, indeed, it involves three levels of nested roots. As for the
cubic case, we start by removing the 𝑧3 term by the change of variables 𝑍 = 𝑧 + 𝑐3/4.
This brings equation (D.19) into the form

𝑍4 + 𝑃𝑍2 + 𝑄𝑍 + 𝑅 = 0 , (D.22)

where 𝑃 , 𝑄, 𝑅 are three 𝐹 -functions of (𝑐0, 𝑐1, 𝑐2, 𝑐3), whose expressions are long, but
easily obtained. The next step is to transform equation (D.22) into one that is quadratic
in 𝑍2. For now, nothing guarantees that 𝑃𝑍2 + 𝑄𝑍 + 𝑅 is a perfect square, but if it were,
then equation (D.22) could be factored into two equations quadratic in 𝑍2. One way is to
write 𝑍4 in the equivalent form 𝑍4 = (𝑍2 + 𝐴)2 − 2𝐴𝑍2 − 𝐴2, for some complex number
𝐴 to be chosen freely later on. Inserting this in equation (D.22) gives

(𝑍2 + 𝐴)2 + (𝑃 − 2𝐴)𝑍2 + 𝑄𝑍 + 𝑅 − 𝐴2 = 0 . (D.23)
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Now we can choose 𝐴 in equation (D.23) such that the quadratic part (𝑃 − 2𝐴)𝑍2 +
𝑄𝑍 + 𝑅 − 𝐴2 has the form of a perfect square. This will be the case if its discriminant
𝑄2 + 4(𝑃 − 2𝐴)𝐴2 vanishes. The latter amounts to

8𝐴3 − 4𝑃𝐴2 − 𝑄2 = 0 , (D.24)

which is a cubic equation 𝐴. It can be solved using the cubic formula, giving a value of
𝐴 in terms of 𝑃 and 𝑄 that is an 𝐻-function (recall the cubic formula (D.18)). Once 𝐴
takes this special value, equation (D.23) becomes (𝑍2 + 𝐴)2 + (𝑃 − 2𝐴)(𝑍 − 𝐴)2 = 0,
which can be factored easily into two quadratic polynomials in 𝑍. The latter equations
are solved easily using the quadratic formula. Since 𝐴 is an 𝐻-function, the solution for
𝑍 will necessarily involve some

√
𝐻 quantities, something which we did not include in

equation (D.20). This confirms our impossibility result, once again.

The quintic equation
It seems at this point that things are becoming repetitive, and that a clear pattern emerges.
For 𝑛 = 2, 3, 4, commutators could be used to reject formulae with too few nested roots in
their expressions. However, we were still be able to solve the equation simply by allowing
more levels of roots. But at 𝑛 = 5, this all breaks down, and this is why the quintic
equation is a very special case. The goal of this section is to apply our methods to the
case of degree 𝑛 = 5 and understand why it allows, not only to discard 4 levels of nested
roots (i.e., one more that the quartic case), but actually any number of roots.

Let us pretend that we found a quintic formula, e.g.,

𝑠i = Φi(𝑐0, … , 𝑐4), for i ∈ {1, … , 5} , (D.25)

with the five functions Φi built out of 𝐻– and
√

𝐻–functions. If we follow the previous
methods, summarized in Tables D.1 and D.2, it should be clear that (1) all 𝐻-functions
will follow a loop from a commutator of commutators of the solutions (as in the quartic
case), but (2) we will need one more level of commutators for the

√
𝐻 terms.

As we now have five solutions to play with, let us consider for example the permutations
(123) and (345) to construct a first commutator [(123), (345)]. An easy check shows that
the latter is equal to (235), and this commutator therefore permutes three of our solutions.
In general, the following result holds at 𝑛 = 5:

[(𝑖𝑗𝑘), (𝑘ℓ𝑚)] = (𝑗𝑘𝑚) . (D.26)

But now, contrary to the previous cases, we have something rather remarkable with equa-
tion (D.26). It shows that any cycle (𝑗𝑘𝑚) can be written as a commutator of two other
cycles, namely [(𝑖𝑗𝑘), (𝑘ℓ𝑚)]. But notice that this is true for any cycle (𝑗𝑘𝑚), including
(𝑖𝑗𝑘) and (𝑘ℓ𝑚) on the left-hand side of equation (D.26) itself. In other words, this formula
can be applied to itself, again and again, allowing us to write (𝑗𝑘𝑚) as a commutator of
as many commutators as needed. Since a number 𝑁 ∈ ℕ of commutators allows us to
discard precisely 𝑁 levels of roots in a formula (see Tables D.1 and D.2), we can actually
discard any number of roots in any candidate quintic formula. The Abel–Ruffini theorem
follows immediately from this remark, but let us give a more detailed explanation.

Suppose that, in the quintic formula, equation (D.25), we use a Φ-function made of
+, −, ×, ÷, along with 𝑁 levels of roots, for some 𝑁 ∈ ℕ. To construct this Φ-function,
we have at our disposal several ingredients: 𝐹 -functions (no roots), 𝐺-functions (one level
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of root), 𝐻-functions (two levels of root), and so on. As always, we start by choosing a
permutation of the solutions, say (123), that discards any 𝐹 -functions (no roots). Next,
using equation (D.26), we write (123) as a commutator, for example:

(123) = [(412), (253)] . (D.27)

When applied to (𝑠1, … , 𝑠5), this commutator discards the 𝐺-functions from the list of
ingredients (one level of roots). Now we keep going: we write the cycles (412), (253)
appearing in equation (D.27) as commutators themselves, again using equation (D.26).
We obtain (123) expressed with two commutators:

(123) = [[(341), (152)], [(425), (513)]] , (D.28)

which removes 𝐻-functions (expression with two levels of roots). By iterating equation
(D.26) 𝑁 − 2 more times, we end up writing (123) as a combination of 𝑁 commutators.
When the latter is applied to (𝑠1, … , 𝑠5), the solutions 𝑠1, 𝑠2, 𝑠3 will permute; and yet any
expression of the coefficients with 𝑁 or less roots will follow a loop. Since a Φ-function is
made up of all these ingredients, Φ1, Φ2, Φ3 go back to their original position. Clearly this
contradicts equation (D.25). This result generalises to an equation of any degree 𝑛 ≥ 5 by
picking five of its solutions, as before. Moreover, since 𝑁 is arbitrary, we conclude that
no number of roots will be sufficient to write a formula. Our conclusion is therefore:

No formula exists for the solution to the general equation of degree five
or more, using only the operations +, −, ×, ÷, and

√
.

i.e., the Abel–Ruffini theorem itself. A last remark is in order. Why the fifth degree, and
not the fourth or sixth? This all boils down to the possibility of writing a permutation of
at least two solutions as a sequence of commutators. A formula such as equation (D.26)
can only be iterated indefinitely when it involves five or more elements. For four or fewer
elements, any sequence of commutators of transposition and/or cycles will necessarily end,
i.e., end up being the trivial permutation that “does nothing.” The reader familiar with
group theory will here recognise the notions of perfect or solvable group.

Conclusions
To conclude this article, we would like to first make some comments on the various advan-
tages and disadvantages of this proof, compared to the usual proof using Galois theory.
First of all, the present proof does not say that no equations of degree five or higher can be
solved; but only that a general formula (valid for the general equation) cannot be written
using only +, −, ×, ÷, and

√
. Indeed, some equations of degree 𝑛 ≥ 5 can actually be

solved explicitly (see [644] for a nice and thorough discussion on the quintics 𝑧5+𝑎𝑧+𝑏 = 0
that are solvable by radicals.) Galois theory, on the other hand, is perfectly able to say
whether a given equation is solvable or not. On the other hand, the present proof can be
extended to also account for continuous (and single-valued) functions of the coefficients
(such as exp, sin, …) in the list of ingredients. Indeed, just like +, −, ×, ÷, these functions
follow a loop when the coefficients do. Galois theory is unable to provide for this, as it
only accounts for expressions in terms of radicals.

We hope that the present proof will be seen not only as a simplified and elementary
demonstration of the Abel–Ruffini’s theorem, but also as a complementary result, as it
helps to explain why the 𝑛 = 5 case is so special, and why the quadratic, cubic, and quartic
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formulae have such “nested roots” structures. It is also a good and instructive exercise to
complete the present proof sketch with rigorous arguments (we encourage students to give
it a try!). For more insight on this topic, one should definitely watch Katz’s video [643] and
read Goldmakher’s paper [645], which have both inspired this article. We end this paper
by providing more references that should help the interested reader to get started with
topics that are based on (and broadly extend) the ideas presented here: (1) an interactive
blog article by F. Akalin [646]; (2) an article by H. Zoladek [647] that deals with similar but
more advanced ideas; (3) the original book of Alekseev mentioned in the introduction [648]
on the Abel–Ruffini theorem. Devised as a problems-and-solutions book, it discusses many
advanced concepts in a very pedagogical and extremely well-written manner.
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Résumé La première partie de cette thèse se place dans le contexte du problème à deux
corps en relativité générale. Nous établissons une identité variationnelle appelée “Première
Loi de la Mécanique” qui fait le lien entre différents paramètres physiques caractérisant un
système binaire d’objets compacts comme son énergie de liaison et son moment cinétique
total, aux propriétés des corps, comme leur masse ou leur rotation propre. Notre résultat
se base sur le modèle du “squelette gravitationnel” poussé à l’ordre quadrupolaire, combiné
avec une généralisation d’une identité variationnelle établie pour des espaces-temps dotés
d’une isométrie helicoïdale pour décrire des orbites circulaires. Nous présentons également
un tour d’horizon des modèles de squelettes gravitationels et des différentes premières lois
existant dans la littérature, et discutons des applications et de l’impact de la première loi à
l’ordre quadrupolaire dans le contexte de l’astronomie gravitationnelle. La seconde partie
de la thèse concerne un problème de gravitation Newtonienne, dans lequel il est ques-
tion d’une classe particulière de potentiels gravitationels appelés “potentiels isochrones”.
Ceux-ci, introduits dans les années 1950 par Michel Hénon, sont défini par la propriété
que toute particule test y orbite avec une période radiale indépendante de son moment
cinétique. Après avoir établi une classification complète de cette classe de potentiels, nous
explorons la dynamique qu’ils génèrent et donnons une solution analytique des équations
du mouvement exclusivement à l’aide d’outils géométriques. Puis, nous proposons une
revisite du problème sous l’angle de la mécanique Hamiltonienne, permettant ainsi de voir
avec un angle nouveaux certains résultats de mécanique classique, comme l’équation de
Kepler, le théorème de Bertrand et les lois de Kepler, et de généraliser ceux-ci à tout orbite
isochrone. Enfin, en calculant le forme normale de Birkhoff du système, nous donnons une
démonstration purement mécanique du théorème fondamental de l’isochronie, basée sur
l’étude des invariants de Birkhoff du système.
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Title The First Law of Mechanics in General Relativity & Isochrone Orbits in Newto-
nian Gravity

Abstract The first part of the thesis focuses on the relativistic, two-body problem in
the context of general relativity. More precisely, we derive a variational identity known
as the “First Law of Mechanics” that relates physical parameters of a binary system of
compact objects, such as its total energy and angular momentum, to the characteristics
of the objects themselves, such as their masses and spins. Our derivation is based on the
gravitational skeleton formalism for compact objects at quadrupolar order, combined with
an extended version of a general variational identity established for spacetimes endowed
with a helical isometry describing circular orbits. We also propose a review of the various
multipolar skeleton models and the different types of First Laws that exist in the liter-
ature, and discuss applications and physical implications of our results in the context of
gravitational wave astronomy. The second part of the thesis deals with a classical prob-
lem of potential theory, in Newtonian gravity. In particular, we continue the exploration
of isochrone potentials, introduced in the fifties by Michel Hénon. These potentials are
defined by the property that any test particle orbits within it with a radial period that
is independent of its angular momentum. After a complete classification of the isochrone
potentials using nothing but euclidean geometry, we explore the dynamics in these poten-
tials by classifying their orbits, providing analytical solutions to the equation of motion.
Using a Hamiltonian treatment, we also derive action-angle coordinates for the isochrone
problem, providing new insight of several well-known result of classical celestial mechanics
to all isochrone orbits, such as the Kepler equation, Bertrand’s theorem and Kepler’s laws
of motion, and a generalization of these to all isochrone orbits. Finally, we compute the
Birkhoff normal form of the corresponding Hamiltonian for a generic potential, and derive
the fundamental theorem of isochrony from the inspection of the Birkhoff invariants of
the system.
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