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Summary

Extensive research carried out over the last 100 years has established that retinoids,
which constitute a group of fat-soluble morphogens related to retinol (vitamin A), play
crucial roles in development, organogenesis, tissue homeostasis, cell proliferation,
differentiation and apoptosis. In vertebrates, retinoic acid (RA), the main mediator of
retinoid signaling, is synthesized from retinol in two steps, the second being the
irreversible oxidation of retinal to RA by RALDH enzymes. In addition to RA
synthesis, the availability of endogenous RA is also controlled through its
degradation by CYP26 enzymes. Most RA functions in vertebrates are mediated by
binding of RA to heterodimers of two nuclear receptors: the retinoic acid receptor
(RAR) and the retinoid X receptor (RXR). Retinoid signaling was long thought to be
vertebrate-specific, but developmental studies in invertebrate chordates have
revealed roles for retinoids that are conserved in all chordates. These studies have
also established that, of all invertebrates, the cephalochordate amphioxus has the
most vertebrate-like retinoid signaling system, both in terms of molecular composition
and of biological functions, with the important added value of a lack of significant
genetic redundancy. Outside the chordate lineage, evidence for functional roles of
retinoids and of the RAR/RXR heterodimer is scarce. Although genes encoding
orthologs of vertebrate RALDH and CYP26 as well as of vertebrate RAR and RXR
are present in ambulacrarian deuterostomes (such as hemichordates and
echinoderms) and lophotrochozoan protostomes (such as annelids and mollusks),
extensive experimental evidence for retinoid and/or RAR/RXR functions in these
lineages is still lacking. | am thus proposing to study retinoid signaling in five
invertebrate taxa, whose genomes encode orthologs of RALDH, CYP26, RAR and
RXR (the annelid Platynereis dumerilii, the mollusk Nucella lapillus, the echinoderm
Paracentrotus lividus, the hemichordate Saccoglossus kowalevskii, and the
cephalochordate Branchiostoma lanceolatum). Experiments have been designed to
independently characterize, in these five taxa, the roles of retinoids and of RAR and
RXR, which will allow a detailed assessment of the functions of retinoids versus the
functions of RAR and RXR in each lineage. Comparisons of these respective
functions will reveal roles for retinoids that are dependent on RAR and RXR and
those that are independent of the receptors. Moreover, cross-comparisons of these
results between the five species will identify conserved and divergent elements of
retinoid signaling, which in turn will allow the reconstruction of the evolutionary
diversification of this morphogen-dependent signaling cascade in bilaterian animals.
Altogether, these data, obtained in animals without obvious ties to humans, will
instruct the complexity of the vertebrate (including, of course, also the human)
retinoid system, with its crucial functions in development and tissue homeostasis.
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Abstract

Extensive research carried out over the last 100 years has established that the fat-
soluble organic compound vitamin A plays crucial roles in early development,
organogenesis, cell proliferation, differentiation and apoptosis as well as in tissue
homeostasis. Given its importance during development, the delivery of vitamin A to
the embryo is very tightly regulated with perturbations leading to severe
malformations. This review discusses the roles of vitamin A during human
development and the molecular mechanisms controlling its biological effects, hence
bridging the gap between human development and molecular genetic work carried
out in animal models. Vitamin A delivery during pregnancy and its developmental
teratology in humans are thus discussed alongside work on model organisms, such
as chicken or mice, revealing the molecular layout and functions of vitamin A
metabolism and signaling. We conclude that, during development, vitamin A-derived
signals are very tightly controlled in time and space and that this complex regulation
is achieved by elaborate autoregulatory loops and by sophisticated interactions with
other signaling cascades.
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Introduction

Vitamin A is responsible for the formation and maintenance of many body
tissues as well as for the promotion of healthy vision and immune functions. Vitamin
A is obtained from the diet either directly, with the richest source being animal liver,
or in the form of retinyl esters and carotenoids. For example, $-carotene is converted
to vitamin A in the body through two successive oxidation steps. While absorption of
preformed vitamin A in the diet is very efficient regardless of nutritional state,
absorption of -carotene is not as efficient, since, in the body, 12ug p-carotene are
converted to only 1ug vitamin A [1].

The powerful effects of vitamin A on the promotion of healthy vision were
already known in ancient Egypt, where night blindness was cured by ingestion of
liver. Moreover, even before the pioneering experiments of Hale in the 1930s
demonstrating the teratogenic potential of vitamin A deficiency (VAD), it was
established that absence of vitamin A from the diet results in xerophthalmia. In 1933,
Hale showed that a VAD sow gave birth to piglets without eyeballs, whereas deficient
sows fed with cod-liver oil had normal offspring thus demonstrating that the observed
phenotype was diet related [2]. Other reported birth defects were microphthalmia,
accessory ears, cleft lip and palate as well as misplaced kidneys [3]. In 1950, Wilson
and Warkany reported malformations of the eye, urogenital tract, heart and lung in
the offspring of rats fed with VAD diets prior to and during gestation [4].

Soon thereafter, Cochlan was the first to show that excess vitamin A during
pregnancy is teratogenic, inducing skeletal, craniofacial and central nervous system
(CNS) defects [5, 6]. Thus, excess dietary vitamin A is also toxic to the organism. In
animal experiments, hypervitaminosis A was shown to result in congenital
abnormalities collectively termed retinoic acid embryopathy (RAE), which consists of
malformations in the CNS (such as hydrocephaly, anencephaly or spina bifida),
microtia/anotia, micrognathia, cleft palate, cardiac defects, thymic abnormalities and
eye malformations [7, 8]. In addition, at lesser doses, neurogenesis can be affected
resulting in learning disabilities [8].

Since these pioneering experiments, the importance of vitamin A for proper
animal development has been firmly established in vertebrates as well as in certain
invertebrate species. One of the most intriguing aspects of vitamin A-dependent
signaling is the intricate nature of how this pathway is employed repeatedly during
development in various tissues. This article is reviewing the impact of vitamin A and
of its derivatives on human development and discusses these health-related issues
in the context of our current understanding of the complex regulation of this
multifaceted signaling cascade.

Vitamin A and Pregnancy

Maternal vitamin A status is important for implantation and later normal
development of the fetus and neonate. Human studies have established that low or
excess dietary levels of vitamin A during gestation result in teratogenesis [9]. During
pregnancy, the nutritional requirement for vitamin A is increased, especially in the
third trimester when fetal growth is most rapid. Vitamin A is transferred across the
placenta to the embryo, even at maternal deficiency states. The needs of the embryo
are met first, as suggested in a 1962 study where serum vitamin A levels were
normal in cord blood but deficient in the mother [10]. The circulating levels of vitamin
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A in neonates (1umol/l) are lower than in maternal serum and levels below 0.7umol/l
in neonates are indicative of deficiency [11].

Delivery of vitamin A to the fetus is tightly regulated, which limits body stores
at birth. Accumulation of vitamin A stores begins during the third trimester, and
several months of sufficient intake after birth are required to build hepatic stores.
Moreover, vitamin A is important for lung maturation in utero, and because of this
premature infants are at high risk for bronchopulmonary dysplasia and require
vitamin A supplementation [12]. Breast milk is the only source of vitamin A during the
neonatal period for the exclusively breast-fed infant. Therefore, the vitamin A content
of breast milk (which is dependent on the vitamin A status and serum levels of the
mother during the last trimester of pregnancy) defines the levels of this vitamin in
neonates [13]. The vitamin A content of colostrum and early milk is extremely high
and neonate needs are met even with the milk of a mildly undernourished woman
[12]. The vitamin A content of breast milk declines over 4-8 weeks of parturition [12].
In the case of VAD mothers, the needs of the infant cannot be met long term and
supplementation is required to avoid detrimental health effects. Surprisingly, mothers
of twins or short-interval births are also at risk for VAD, even in countries where
vitamin A supplementation is not an issue [14].

Deficiency of vitamin A has been classified as a moderate health problem in
developing countries. According to the World Health Organization (WHO), VAD is the
leading cause of childhood blindness, and subclinical VAD elevates mortality risk
from common childhood infections [12]. Vitamin A supplementation guides and
programs have thus been put into place by the WHO: women should receive a dose
of 200,000 International Units (IU) at parturition and prior to 8 weeks postpartum,
infants aged 0-5 months 3 doses of 15,000 IU at least one month apart, infants aged
6-11 months a single dose of 100,000 IU, and infants of 12-59 months a dose of
200,000 IU every 6 months [15]. These doses of vitamin A are generally well
tolerated, with few side effects reported. Moreover, food supplementation (for
example of sugar, margarine, flour or rice) and low dose supplements over a longer
period of time represent promising alternatives to the high dose administration of
vitamin A, as they reduce the risk of formation of significant amounts of vitamin A-
derived metabolites in the mother that could be passed on through the milk to the
infant [15].

Developmental Teratology of Vitamin A and its Derivatives

Analogs of vitamin A, which is also called retinol, are generally referred to as
retinoids. Other bioactive retinoids include, for example, different isomers of vitamin
A acid, more commonly known as retinoic acid (RA), which is the most potent active
metabolite of vitamin A (Fig. 1A). Since both retinoid deficiency and excess are
harmful for the developing embryo, the endogenous retinoid supply during
development must be very tightly regulated. Given the teratogenic potential of
retinoids, the influence of various therapeutically employed retinoids on this fine
regulatory balance has extensively been studied.

Vitamin A

Medical applications of vitamin A include the treatment of skin and eye
disorders and the prevention of VAD in geographical regions, where VAD is
considered a public health problem. The presence of adequate vitamin A stores is of
critical importance during gestation and lactation and pregnant women should be
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receiving 2,700-8,000 IU/day of vitamin A [16]. Toxicity due to vitamin A intake can
occur when large doses (30,000 IU/day or higher) are ingested for prolonged periods
of time. The Teratology Society considers doses of 8,000 |U/day as safe during
pregnancy and doses over 25,000 IU/day as teratogenic [16].

Due to the tendency of vitamin A to bioaccumulate, consumption of large
doses in the months before conception may lead to increased teratogenic risk.
Moreover, high dietary intake of vitamin A before the 7" gestational week results in
malformations attributable to vitamin A toxicity [17]. Vitamin A-dependent
abnormalities reported in infants are reminiscent of those observed in animal models,
with ear, limb and craniofacial malformations being the most abundant [8, 18].
Recently, a number of studies were published that examined the effects of vitamin A
intake generally considered safe and nonteratogenic [19]. Not surprisingly, these
analyses concluded that, if pregnant women are exposed to these innocuous vitamin
A doses, teratogenicity appeared to be very unlikely [19].

Isotretinoin/Tretinoin

Whereas, isotretinoin (13-cis RA) is used in the treatment of cystic acne,
tretinoin (all-trans RA) is utilized topically for treatment of skin disorders and orally for
acute promyelocytic leukemia. Oral administration of both isotretinoin and tretinoin is
teratogenic in every animal studied, including rodents, rabbits, pigs and primates
[19]. The induced defects following isotretinoin and tretinoin treatment are RAE-like
and similar to those induced by other retinoids [19]. In addition, topical treatment of
rabbits with tretinoin results in fetal growth retardation and death [20].

Isotretinoin is a potent human teratogen [21] and is the first known teratogen
[22, 23] to be approved as a drug (under the commercial name Accutane+). Shortly
after isotretinoin was approved for medical use, there were reports of malformations
due to inadvertent exposure during pregnancy [21, 24-26]. The most common
malformations observed in this isotretinoin-induced RAE include hydrocephalus,
microtia or anotia, maldevelopment of the facial bones and a flat, depressed nasal
bridge [27].

Another common outcome of intrauterine exposure to isotretinoin is a lower 1Q
[28], which could be associated with, or caused by, the CNS malformations
associated with RAE [19, 29]. A high spontaneous abortion rate is also associated
with exposure to isotretinoin with the majority occurring 2-4 months after conception
making death the most likely outcome of isotretinoin teratogenicity [25]. An estimated
700-1000 women had spontaneous abortions in the initial marketing period of 1982-
1986 [19]. Another 5000-7000 women terminated their pregnancies in the same
period for fear of congenital defects associated with isotretinoin exposure [19].

The critical period of exposure is the first trimester, more specifically the first
3-5 weeks following conception, well before organogenesis has been completed.
However, due to its relatively short half-life (16-20h), isotretinoin is undetectable in
the serum after 4-5 days and is therefore not believed to be of concern for conception
that occurs after termination of maternal use [30, 31]. Interestingly, contrary to results
obtained with animal models, observed effects in humans do not appear to be dose-
dependent [27].

In contrast, the teratogenic potential of topically administered tretinoin has
been questioned, because of a marked lack of significant percutaneous tretinoin
absorption [32, 33]. Although cases of congenital malformations consistent with RAE
following topical tretinoin treatment during pregnancy have been reported [34-37],
several epidemiologic and experimental animal studies contradicted these findings
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[38-43]. It should however be added that the epidemiologic and experimental animal
analyses have not addressed subtle effects on brain development, which can occur
even in the absence of typical RAE-associated malformations [28]. Taken together,
the teratogenic potential of topically administered tretinoin cannot be excluded and
exposure during pregnancy should thus be avoided [44].

Etretinate/Acitretin

Etretinate and its active metabolite, acitretin, are used orally for the treatment
of psoriasis. Etretinate and acitretin induce malformations during organogenesis in all
species studied, including rodents and rabbits. While for etretinate these include,
among others, meningomyelocele, facial dysmorphia as well as skeletal and
cardiovascular defects, acitretin treatments result in malformations of the limb and
cleft palate [19].

In humans, a critical element of etretinate teratogenicity is exposure during the
first 10 weeks of pregnancy. Developmental toxicity of both etretinate and acitretin
usually results in spontaneous abortion or stillbirth with only some of the observed
developmental malformations being indicative of RAE [19]. Interestingly, normal
births following both etretinate and acitretin exposure have also been reported [45,
46].

Given that etretinate is very slowly released over a prolonged period of time, a
number of etretinate toxicity cases have occurred 4 months to 4 years after the
treatment ceased. Despite the half-life of acitretin being much shorter than that of
etretinate (2-4 days for acitretin as opposed to 120 or more days for etretinate),
acitretin can be converted to etretinate in the body [47], for example as a result of
concurrent use of alcohol [48]. Thus, pregnancies are contraindicated for at least 3
years after discontinuation of either etretinate or acitretin treatment.

Vitamin A and its Derivatives have Pleiotropic Functions during Development

Apart from clinical investigations carried out on patients, many functions of
vitamin A and its derivatives in humans have been extrapolated from studies in
animal models. Initial pharmacological investigations into developmental processes
controlled by vitamin A have shown that most biological functions controlled by this
compound are actually mediated by RA [49]. These teratology-based experiments
have subsequently been complemented with gene targeting analyses in classical
vertebrate model species, such as the mouse, as well as with work on non-model
organisms, such as invertebrate chordates [50-52]. Taken together, these studies
strongly suggest that vitamin A and its biologically active derivatives (i.e. RA) have
pleiotropic roles during development, which are very tightly regulated, both in time
and space.

RA-dependent functions have actually been described for a wide range of
developmental stages. Thus, in both vertebrates and invertebrate chordates, RA has
been shown to regulate biological processes from early embryogenesis [53] to very
late events in organ differentiation [51, 52]. For example, RA is implicated in
controlling the early establishment of anteroposterior (AP) polarity in the gastrulating
chordate embryo [54-56] and is also required at much later stages for organogenesis,
for example of pancreas, lung, eyes, ears and digits [52, 57-59]. One outstanding
example for time-dependent pleiotropic roles of RA during development is the
differentiation of the heart, where RA is sequentially involved in cardiac field
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specification [60], AP regionalization and patterning [61], cardiomyocyte
differentiation [62], septation [63] and heart looping [64].

The multifunctional nature of RA-dependent signaling in development is also
evident, when considering the tissues requiring this molecule for proper
development. For example, studies carried out in both vertebrates and invertebrate
chordates have shown that RA plays crucial roles in the differentiation of derivatives
of all three embryonic tissue layers (ectoderm, mesoderm and endoderm), mainly by
controlling regional patterning and tissue maturation [51, 52]. Moreover, RA is also
required for proper differentiation of post-migratory neural crest cells [65], which
some consider as a fourth embryonic tissue layer, and plays an instrumental role in
germ cells differentiation [66].

The pleiotropy of RA-dependent functions is actually not limited to time and
space, but includes also the biological processes controlled by this vitamin A
derivative. Hence, RA, for example, is known to be involved in the regulation of cell
differentiation, cell proliferation, cell survival, cell migration and apoptosis in
vertebrate embryos [67]. This diversity of RA-controlled processes is exemplified by
the action of this vitamin A derivative on neural cells: RA can induce neurite
outgrowth [68], trigger the migration of neural precursors [69] and promote the
specification of different neuronal populations, thus leading to the emergence of
distinct neural territories [70]. Recent studies also indicate that RA signaling is
involved in tissue regeneration in both vertebrates and invertebrates [71] suggesting
that, apart from its general prodifferentiation capacities, vitamin A and its derivatives
can also trigger transdifferentiation processes in certain biological contexts.

Vitamin A and RA Availability is Crucial and Highly Regulated during
Development

Vitamin A metabolism and signaling are tightly controlled processes involving
multiple levels of regulation (Fig. 1B). Ingested vitamin A is transported to target
tissues in a complex with retinol binding protein (RBP) and transthyretin (TTR) [72],
where cellular uptake is mediated by the transmembrane receptor STRAG6 [73]. Once
inside the cell, vitamin A is converted to RA in two separate oxidation steps. Vitamin
A is first reversibly oxidized into retinaldehyde by alcohol dehydrogenase (ADH) or
short-chain dehydrogenase/reductase (SDR) enzymes, such as RDH10 [74].
Retinaldehyde is subsequently irreversibly oxidized into RA by retinaldehyde
dehydrogenase (RALDH) enzymes, with RALDH2 being the main RA synthesizing
enzyme during early embryogenesis [53]. The combinatorial gene expression and
concerted action of rdh10 and raldh2 have been suggested to constitute a so-called
biosynthetic enzyme code required for axis formation and AP patterning of the
vertebrate embryo [75, 76].

Elimination of RA is primarily catalyzed by members of the cytochrome P450
family [77]. In particular, the CYP26 enzymes, which are associated to the
endoplasmic reticulum, are highly specific for RA and catalyze its hydroxylation into a
wide variety of metabolites, such as 4-oxo RA, 4-OH RA and 18-OH RA. It is still
controversial, though, whether these metabolites are biologically active [78, 79].
Furthermore, RA levels can be negatively regulated by endogenous removal of
retinaldehyde. This can be achieved by reduction of retinaldehyde to vitamin A, a
reaction carried out, for example, by DHRS3, a member of the SDR family [80].

Intracellular retinoid metabolism is further influenced by cellular retinol binding
protein (CRBP) and cellular retinoic acid binding protein (CRABP) [81]. However, the
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exact functions of these proteins remain elusive. While it has been suggested that
CRBP act as a chaperone for vitamin A and may determine the cellular levels of
vitamin A accumulation and esterification [82], CRABP might facilitate the
translocation of RA from the cytoplasm to the nucleus thus acting as a coregulator of
RA signaling [83].

The biological functions of vitamin A are chiefly mediated by the association of
RA with heterodimers of two nuclear hormone receptors, the retinoic acid receptor
(RAR) and the retinoid X receptor (RXR) [84], which together regulate the
transcription of target genes in response to ligand binding. While RAR binds all-trans
RA and 9-cis RA, RXR has been reported to only bind 9-cis RA in vitro. It is however
still unclear, whether 9-cis RA is actually present in the embryo and thus whether this
compound and its binding to RXR have a biological function during development [85,
86]. RAR/RXR heterodimers bind to specific DNA elements in the regulatory regions
of target genes, called RA response elements (RAREs). Most RAREs consist of two
direct repeats (DRs) with the canonical nucleotide sequence (A/G)G(G/T)TCA
separated by a variable number of nucleotide spacers (usually either 1, 2 or 5
nucleotides) [87]. Fixation of RA leads to the binding of a coactivator complex to the
heterodimer and activates the ligand-dependent transcription factor function of the
RAR/RXR heterodimer [84].

One key element in tightly controlling the activity of RA signaling during
development in time and space is the autoregulation of RA signaling components by
RA. For example, while RA directly activates transcription of rar and cyp26 [67, 88,
89], raldh2 expression is repressed [90]. In combination with the differential
expression domains of the three vertebrate rar paralogs (rare, rarp and rary) [91] and
the largely complementary domains of cyp26 and raldh transcription in different
tissues [92], the RA regulatory loop hence defines very specific time windows and
tissue domains of RA sensitivity [93].

Developmental Functions of RA Signaling are Highly Dependent on
Interactions with Other Signaling Pathways

A plethora of studies in vertebrate model systems have established that the
functions of RA are tightly linked to the action of other signaling pathways during
vertebrate development. Thus, RA signaling can functionally interact with the
Fibroblast Growth Factor (FGF), Wnt, Nodal, Bone Morphogenetic Protein (BMP) and
Sonic hedgehog (Shh) signaling cascades [94-97]. Crosstalks between RA and other
signaling pathways can either be synergetic or antagonistic and can involve direct or
indirect interactions (Fig. 2). Thus, RA-dependent regulatory loops implicating two or
more signaling cascades and exhibiting very different architectures have been
identified in many developmental processes in vertebrates. Such functional
interactions between RA signaling and other cascades are involved in the control of
somitogenesis [98], patterning of the CNS [99], otic and optic differentiation [59, 100],
heart development [62], limb development [101] and pharyngeal differentiation [102].

Different modes of crosstalk of RA with other signaling cascades have been
described. A typical situation observable in many developmental processes is that
the action of RA signaling is upstream of other pathways (Fig. 2). For example, the
retinoid signaling cascade activates the formation of skeletal muscle progenitors by
repressing BMP signaling and by activating canonical Wnt signaling in the mesoderm
[103]. In this case, RA controls developmental events upstream of the differentiation
cascade. However, recent studies have indicated that RA signaling may sometimes
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exhibit only a permissive role for developmental events. Thus, in the vertebrate limb,
RA is required only transiently to inhibit axial FGF activity during the early steps of
limb bud emergence [101].

Conversely, the RA signaling pathway can also act downstream of other
signaling cascades, thus being tightly regulated as an effector regulatory system (Fig.
2). This situation is observable at different instances during vertebrate development,
particularly during organogenesis. For example, during eye development proper RA
signaling is achieved by activation of raldh3 and concomitant repression of cyp26a1
and cyp26c1 by Vax2 [104].

RA signaling activity can further be inhibited by other signaling pathways,
which leads to the creation of very well defined RA-free zones in the developing
embryo (Fig. 2). This control of RA signaling activity is often achieved by
downregulating expression of RA synthesizing (RALDH) and degrading (CYP26)
enzymes. For example, during hindbrain development, repression of RA activity
through activation of cyp26b1 by FGF signaling is required for inhibition of
neurogenesis in the center of the rhombomeres [105]. Similarly, during neural
development, Pax6 proteins have been shown to repress rarB and to activate
cyp26b1, thus restricting the domains of RA signaling activity within the nascent CNS
[106].

Another fundamental interaction of RA signaling and other pathways involves
parallel and complementary action of different signaling cascades on the same target
genes (Fig. 2). In this case, the coregulation of target genes by two or more
pathways fine-tunes the output levels of the downstream genes. For example, it is
now well established that RA and FGF signaling can act on the same target genes
depending on the developmental context. Thus, during somitogenesis and hindbrain
patterning these two signaling pathways act on the expression of hox genes, which
results in the establishment of a hox code conveying regional identities to the body
segments along the AP axis [107, 108]. This control of hox expression is mediated by
cdx genes [109], which are direct convergence points (i.e. targets) of the RA, FGF
and Wnt signaling pathways [110-112].

Taken together, the data obtained in vertebrate model organisms over the last
few decades have succeeded in at least partially elucidating the complex functions of
RA signaling during development. It is now obvious that RA signaling interacts at
various levels with other signaling cascades and that the activity of RA is dependent
on the developmental stage, the target tissue and the biological context. The
biological functions of RA signaling are thus strongly interdependent with those of
other developmental pathways. A prime example for this notion is the crosstalk
between the RA and FGF signaling pathways, which together play instrumental roles
in vertebrate development [98, 99, 101].
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Retinoic Acid Signaling in Development: Tissue-Specific Functions
and Evolutionary Origins

Florent Campo-Paysaa, Ferdinand Marlétaz, Vincent Laudet, Michael Schubert

Abstract

Retinoic acid (RA) is a vitamin A-derived morphogen important for axial patterning
and organ formation in developing vertebrates and invertebrate chordates (tunicates
and cephalochordates). Recent analyses of genomic data have revealed that the
molecular components of the RA signaling cascade are also present in other
invertebrate groups, such as hemichordates and sea urchins. In this review, we
reassess the evolutionary origins of the RA signaling pathway by examining the
presence of key factors of this signaling cascade in different metazoan genomes and
by comparing tissue-specific roles for RA during development of different animals.
This discussion of genomic and developmental data suggests that RA signaling
might have originated earlier in metazoan evolution than previously thought. Based
on this hypothesis, we conclude by proposing a scenario for the evolution of RA
functions during development, which highlights functional gains and lineage-specific
losses during metazoan diversification.
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Introduction

Clinical and basic research carried out in the last fifty years has established
that the vitamin A-derived morphogen retinoic acid (RA) is an important modulator of
cell survival, cellular proliferation, differentiation, regionalization and organogenesis
in the developing embryo (reviewed in Blomhoff and Blomhoff, 2006; Glover et al.,
2006; Mark et al., 2006). Moreover, effects of RA on epithelial and tumor cells have
also led to the use of vitamin A derivatives (generally referred to as retinoids) as anti-
tumor agents and as therapeutic products to cure skin illnesses (Kligman, 1997). For
example, in 1982, 13-cis RA (also called isotretinoin) was licensed under the name
Accutane- for treatment of severe, cystic acne. Taken in early pregnancy, Accutane:
also has strong teratogenic effects on the developing human fetus resulting in high
percentages of spontaneous abortions and embryonic malformations (known as RA
embryopathy). This RA-induced phenotype includes craniofacial malformations as
well as abnormal central nervous system, heart and thymus development (Lammer et
al., 1985).

The roles of RA during development have been extensively investigated in
vertebrates (chiefly in rodents, chicken and quail, frogs and fish) (reviewed in Maden,
2002; Glover et al., 2006; Mark et al., 2006). While vitamin A deficiency models and
pharmacological approaches, such as treatment with vitamin A or RA, were initially
used to study RA signaling, the development of genetic tools, such as targeted gene
knockouts, has allowed an even more detailed assessment of the roles of RA during
vertebrate embryogenesis. Targeted inactivation of RA signaling components has
produced, for example, mouse embryos lacking RA synthesizing and degrading
enzymes or the receptors mediating the RA signal (reviewed in Mark et al., 2006).
However, although it has been known for quite a while that RA signaling is not limited
to vertebrates (Denucé, 1991; Holland and Holland, 1996), with only a few
exceptions, the roles for RA signaling in embryonic development of invertebrates
remain largely unknown.

Vertebrates belong to the phylum Chordata, which also include two
invertebrate groups: the cephalochordates (e.g. amphioxus) and the tunicates or
urochordates (e.g. ascidians, appendicularians and thaliaceans), with
cephalochordates being the sister group of tunicates plus vertebrates (i.e. olfactores)
(Bourlat et al., 2006; Delsuc et al., 2006; reviewed in Schubert et al, 2006a).
Together with the ambulacrarians (hemichordates and echinoderms) the chordates
belong to the deuterostomes. Deuterostomes and protostomes, which include
lophotrochozoans (e.g. annelids and mollusks) and ecdysozoans (e.g. insects and
nematodes), represent the two major clades of bilaterian animals, while at the base
of these two groups, there are three main clades of non-bilaterian metazoans:
cnidarians, ctenophores and sponges (Dunn et al., 2008).

After it became clear that RA signaling and function is not limited to
vertebrates, RA signaling was considered to be chordate-specific, until some very
recent analyses identified molecular components of the RA pathway in non-chordate
deuterostomes, such as echinoderms and hemichordates (Cafestro et al., 2006;
Howard-Ashby et al., 2006; Marlétaz et al., 2006; Ollikainen et al., 2006; Simdes-
Costa et al., 2008). In this review, we use these recent findings as a basis to discuss
our current understanding of the evolution of the RA signaling cascade. We first
analyze the evolutionary history of the molecular components constituting the RA
signaling cascade, then review conserved and non-conserved functions of RA
signaling in vertebrate and invertebrate development. Finally, by combining
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molecular genomic and developmental data, we try to retrace the evolution of RA-
dependent developmental mechanisms in metazoans.

An Overview over the RA Signaling Cascade

The retinoid family contains molecules derived from vitamin A (i.e. retinol),
such as retinal and RA, which can exist in alternate stereoisomeric forms (e.g. all-
trans, 9-cis or 13-cis) (Fig. 1a). During animal development, RA is synthesized from
retinol in two steps of NAD-dependent oxidation, each catalyzed by different families
of enzymes (Fig. 1b) (reviewed in Simdes-Costa et al., 2008). After cellular uptake of
ingested retinol by a system involving retinol binding protein (RBP) and the
transmembrane protein STRAG6 (Kawaguchi et al., 2007), the first step of RA
synthesis is the reversible oxidation of retinol to retinal by enzymes of two different
families: the alcohol dehydrogenases (ADHs/RolDHs) and the short-chain
dehydrogenases/reductases (SDRs) (Kim et al., 1992; Boleda et al., 1993; Yang et
al., 1994). ADHs can metabolize 9-cis and 13-cis retinol as well as all-frans retinol
(Yang et al., 1994), whereas SDRs can only catalyze the oxidation of all-trans retinol.
The second step is the irreversible oxidation of retinal to retinoic acid (RA)
predominantly by enzymes of the aldehyde dehydrogenase family (ALDH) (Duester,
1996). ALDHSs catalyze the oxidation of both 9-cis and all-trans retinal (Labrecque et
al., 1995). In vertebrates, studies on ALDHs have focused on ALDH1a1, 2, 3 and
ALDH8 also known as, respectively, RALDH1, 2, 3 and 4 (for retinaldehyde
dehydrogenases) (Lee et al., 1991; Niederreither et al., 1997; Lin et al., 2003).
RALDH-dependent RA synthesis plays a critical role during the embryonic
development of vertebrates. For example, loss of raldh2 in mice results in severe
developmental phenotypes that are almost completely rescued by maternal RA
administration (Niederreither et al., 1999). In addition to ALDH enzymes, some
members of the CYP450 family also catalyze the oxidations of retinol to retinal and of
retinal to RA. In vitro, this has been shown for CYP1A (Roberts et al., 1992) and
CYP2J4 (Raner et al., 1996), while in vivo synthesis of RA has recently been
reported for CYP1B1 in mouse embryos (Chambers et al., 2007).

Other proteins, such as cellular retinoid binding proteins (CRBP and CRABP),
also affect RA synthesis through their interaction with retinoids (retinol interacts with
CRBP, while RA associates with CRABP) (Napoli, 1999), but the exact role of these
factors still remains elusive. It has been suggested that CRBP and CRABP regulate
the availability of RA in vivo: for example, the retinol dehydrogenase activity of SDRs
is activated in the presence of CRBPI in mice (Yost et al., 1988), while CRABPII
mediates the transport of RA to the nucleus (Donovan et al., 1995) and is involved in
regulating the transcriptional activity of RA signaling (Delva et al., 1999).

The availability of endogenous RA is also controlled through its degradation by
proteins of the cytochrome P450 family, chiefly in the CYP26 subfamily (White et al.,
1997). These enzymes catalyze the oxidation of RA into a wide variety of
metabolites, such as 4-oxo-RA, 4-OH-RA or 18-OH-RA. Whether these metabolites
have a biological activity is still controversial (Niederreither et al., 2002; Reijntjes et
al., 2005). Even if most studies have focused on the roles of CYP26 proteins during
development, it is known that other CYPs, such as CYP2B6, CYP2C8, CYP3A4/5 or
CYP2A6, can also catabolize RA (Marill et al., 2000).

RA functions during development are mediated by heterodimers of two
members of the nuclear hormone receptors superfamily — RAR and RXR (Fig. 1b)
(reviewed in Gronemeyer et al., 2004). RAR/RXR heterodimers bind to specific DNA
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elements in the regulatory regions of target genes, called RA response elements
(RAREs). Most RAREs consist of two direct repeats (DRs) with the canonical
nucleotide sequence (A/G)G(G/T)TCA separated by a variable number of nucleotidic
spacers (usually either 1, 2 or 5 nucleotides) (reviewed in Balmer and Blomhoff,
2005; Chambon, 1996; Ross et al., 2000). Fixation of RA activates the ligand-
dependent transcription factor function of the RAR/RXR heterodimer and leads to the
binding of a coactivator complex to the heterodimer (reviewed in Gronemeyer et al.,
2004). In vitro, RAR can bind both all-frans and 9-cis RA, whereas RXR only binds 9-
cis RA. However, it is still unclear whether 9-cis RA is actually present in the embryo
and thus whether this compound and its binding to RXR have a biological function
during development (Mic et al., 2003; Calleja et al., 2006).

In vertebrates, RA activates, directly or indirectly, the expression of a wide
range of target genes (reviewed in Balmer and Blomhoff, 2002). Two types of these
targets are of particular importance during embryonic development: (i) genes coding
for factors involved in the RA pathway (synthesis, metabolism and signaling), and (ii)
homeobox-containing transcription factors. Thus, as part of the RA pathway, RA
directly controls expression of cyp26ai, rara, rarB, rary and crabp2 (Balmer and
Blomhoff, 2002; Blomhoff and Blomhoff, 2006), and probably indirectly regulates the
expression of raldh2 (Balmer and Blomhoff, 2002) suggesting that feedback loops
are an important part of the RA signaling control machinery. Indeed, RA signaling
inhibits raldh expression (Niederreither et al., 1997), while directly activating cyp26
(Wang et al., 2002). This indicates that the availability of RA in vivo is under the tight
control of a negative feedback loop restricting RA activity to specific zones of the
developing embryo (White et al., 2007). In addition, RA acts directly on the
expression of transcription factor genes containing homeobox domains (e.g. hoxaT,
hoxb1, hoxa4, hoxd4, cdx1 and pit1), which have crucial roles in establishing
anteroposterior (AP) positional information in the developing embryo (reviewed in
Balmer and Blomhoff, 2002). Thus, another important function of the RA signaling
cascade is the control of regional patterning during development by means of
homeobox transcription factors. Finally, RA and other retinoids also have non-
genomic functions, for example as pigments in the visual cycle (reviewed in Blomhoff
and Blomhoff, 2006) or as substrate for retinoylation of proteins (reviewed in
Breitman and Takahashi, 1996).

During development, RA has long been thought to act over a distance in the
form of a gradient, hence controlling the establishment of positional identity along the
anteroposterior (AP) body axis in the vertebrate embryo. This idea is based on
studies on the distribution of endogenous RA in vertebrate embryos that have shown
that RA concentrations are generally higher posteriorly than anteriorly (Chen et al.,
1994; Maden et al., 1998). In this scenario, RA diffuses towards the anterior pole of
the embryo creating a gradient along the AP axis. This RA gradient then activates
expression of a variety of genes along this gradient and thus along the AP axis: high
concentrations in the posteriormost part of the embryo activate (or repress) a specific
group of genes, while low concentrations in the anterior part activate (or repress)
other genes. Although some studies have supported this simple model, more recent
work has questioned this production-diffusion gradient model for RA-dependent
regionalization along the whole AP axis during development. For example,
endogenous RA deficiency can be rescued in vivo by treatment with a uniform
concentration of RA (Gale et al., 1999; Niederreither et al., 2000). Moreover, it has
been shown that restricted RA degradation is crucial for the establishment of
localized RA activity zones (Hernandez et al., 2007; White et al., 2007). Thus, local
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expression of cyp26 genes during hindbrain development is fundamental for
establishing differential RA signaling activities along the AP axis of the hindbrain
(reviewed in Glover et al., 2006). In addition, it is now clear that while RA synthesis
takes place in a very broad posterior domain during development, the main zone of
RA production being the somitic mesoderm (Berggren et al., 1999), RA synthesis
also occurs, for example, in the retina (McCaffery et al., 1999), the testis (Vernet et
al., 2006) and the heart (reviewed in Xavier-Neto et al., 2001). Thus, the simple
model of a RA gradient coming from a posterior source is in fact more complex than
anticipated.

In addition to the tightly controlled synthesis and degradation of RA during
development in vertebrates, RA activity is further regulated by crbp and crabp as well
as rarf3 and rary, which have spatially and temporally restricted expression domains
during development (Dolle et al., 1990; Ruberte et al., 1991). Taken together, this
suggests that RA activity during development is far more complex than initially
anticipated and probably does not correspond to a simple concentration gradient of
endogenous RA. Instead, the embryo appears to be subdivided into several modules
of different RA responsiveness, which depend on the presence of local sources and
sinks of RA and on the sensitivity of a given tissue to RA, which varies both
temporally and spatially during development. Thus, the action of RA signaling during
the development appears to be both stage- and tissue-specific, as we will discuss
below in more detail.

Evolutionary Origins of RA Signaling

RA signaling was long thought to be vertebrate-specific, but studies in
invertebrate chordates (e.g. amphioxus and different tunicate species) provided
evidence for roles of RA during development of all chordates (Denuce, 1991; De
Bernardi et al., 1994; Katsuyama et al., 1995; Holland and Holland, 1996; Hinman
and Degnan, 1998; Cariestro and Postlethwait, 2007). Moreover, recent studies have
suggested a possible presence of this pathway in other deuterostomes: bioinformatic
analyses have revealed rar, cyp26 and raldh homologs in the genome of the sea
urchin Strongylocentrotus purpuratus and raldh and cyp26 homologs in EST
sequences from the hemichordate Saccoglossus kowalevskii (Cafiestro et al., 2006;
Howard-Ashby et al., 2006; Marlétaz et al., 2006; Ollikainen et al., 2006; Simdes-
Costa et al., 2008). Thus, RA signaling probably already existed in the last common
ancestor of all deuterostomes. To further investigate the evolution of the RA signaling
cascade, we decided to expand our bioinformatic searches for molecular
components of the RA signaling cascade to genomic data from various invertebrates,
including two lophotrochozoans (the gastropod Lottia gigantea and the annelid worm
Capitella capitata), three ecdysozoans (the fruit fly Drosophila melanogaster, the
branchiopod Daphnia pulex and the nematode worm Caenorhabditis elegans) and
one cnidarian (the sea anemone Nematostella vectensis). Using the Basic Local
Alignment and Search Tool (BLAST), we searched the available genomic data for
major components of the canonical vertebrate RA signaling cascade, namely rar, rxr,
aldh1 and aldh8 (as putative raldhs) and cyp26 (Fig. 2). For all these genes, the
BLAST results were validated by phylogenetic analyses (data not shown).

For aldh1 and aldh8 as putative raldhs, we found candidates in all sampled
species except the appendicularian O. dioica, where both genes seem to be absent,
the insect D. melanogaster that lacks an aldh8 and the sea urchin S. purpuratus,
where the aldh1 gene might be absent (Fig. 2). Moreover, while cyp26 genes seem
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absent from the tunicate O. dioica, the three ecdysozoans (D. melanogaster, D. pulex
and C. elegans) and the cnidarian N. vectensis, we found hits for cyp26 genes in
both lophotrochozoan species (L. gigantea and C. capitata) (Fig. 2).

In this analysis, we were particularly interested in identifying homologs of rar
and rxr, since these genes are the main mediators of RA signaling. While we found
no rar homologs in the three ecdysozoan (D. melanogaster, D. pulex and C.
elegans), the appendicularian (Oikopleura dioica) or the cnidarian (N. vectensis)
genomes, to our great surprise we found homologs of rar in the genomes of both
lophotrochozoan species (L. gigantea and C. capitata). Comparison of the amino
acid residues responsible for contacting RA in the RAR ligand binding pocket
(Renaud et al, 1995; Escriva et al., 2006) revealed a significant degree of
conservation between the two lophotrochozoan RARs and deuterostome RARs
(Table 1). Of the 14 sites described for human RARy (Renaud et al., 1995), 13 are
conserved in the two other human paralogs (RARa and RARR), 12 in the RAR of C.
intestinalis, 9 in amphioxus, at least 5 in sea urchin (Ollikainen et al., 2006) and 8 in
both L. gigantea and C. capitata. Moreover, in the binding pocket of human RARy
Lys236, Arg278 and Ser289 directly interact with the carboxylate moiety of the RA
molecule (Renaud et al., 1995). At these sites, identical amino acids are found in
human RARa and RAR as well as in the RAR of C. intestinalis. In contrast, only two
of these residues (Arg278 and Ser289) are conserved in L. gigantea and only one
(Arg278) in amphioxus, sea urchin and C. capitata (Table 1) (Ollikainen et al., 2006).
However, in C. capitata Ser289 is replaced by a threonine, which represents a
conservative amino acid substitution (Styczynski et al., 2008). Thus, the RARs from
L. gigantea and C. capitata display a conservation of ligand binding residues with
human RARYy that is comparable to that of amphioxus RAR, a receptor bound and
activated by RA (Escriva et al.,, 2002, 2006). In sum, although there is so far no
experimental evidence suggesting that RAR is a functional receptor for RA in
lophotrochozoans, it is conceivable that the RARs of L. gigantea and C. capitata
might bind RA.

For rxr genes, we found homologs in almost all sampled species except in the
nematode C. elegans and in the cnidarian N. vectensis. However, the absence of rxr
in these two animals might be due to species-specific losses, since likely rxr
homologs have been identified before in both cnidarians (Kostrouch et al., 1998) and
nematodes (Shea et al., 2004). In general, this wide distribution of rxr genes in
metazoan animals is consistent with a role of RXR proteins as heterodimeric binding
partners of a whole suite of different nuclear receptors including RAR (reviewed in
Gronemeyer et al., 2004).

One interesting feature of this analysis is the confirmation of the absence of
most components of the RA machinery in appendicularian tunicates (Canestro et al.,
2006). Thus, O. dioica is an exception within chordates, because it lacks most
elements of the RA signaling cascade (rar, aldh1 and cyp26) and because it does not
seem to use the same pathway in AP patterning during embryonic development
(Canestro and Postlethwait, 2007). Instead, exogenous RA affects organogenesis in
O. dioica, which has been interpreted as a non-classical (i.e. RAR-independent)
morphogenetic role of RA in this animal (Cafiestro and Postlethwait, 2007). Since RA
signaling mediated by RAR plays important roles in the development of vertebrates,
cephalochordates (e.g. Branchiostoma floridae) and other tunicates, such as
ascidians (e.g. Ciona intestinalis) (Fujiwara, 2006), the absence of rar in
appendicularian tunicates is evidently a derived character resulting from lineage-
specific gene loss. This loss strongly suggests that at least some tunicate models
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cannot be used for studying the evolution of RA signaling in chordates and its roles
during development.

In contrast to this lineage-specific loss in appendicularian tunicates, we found
candidates for all key players of the RA signaling cascade, in particular rar, in
lophotrochozoans, which changes our perspective on the evolutionary origins of this
signaling cascade. Thus, RA signaling is probably not chordate- or deuterostome-
specific, but instead, this pathway might be present in both deuterostomes and
lophotrochozoans. This suggests that RA signaling was already present in
Urbilateria, the last common ancestor of protostomes and deuterostomes. Since both
the mediator of RA signaling (rar) and the RA-degrading machinery (cyp26) are
probably absent from the genomes of all three ecdysozoans studied, these main
components of the RA pathway might have secondarily been lost in the ecdysozoan
lineage. Although the prospects of a protostome RA signaling cascade are very
tempting, the in silico results require further analysis and experimental verification to
clearly establish whether RA signaling is functional and active during
lophotrochozoan development. Moreover, to more precisely reconstruct the
evolutionary history of the RA signaling cascade, it will be important to search for
components of this pathway in organisms located at basal positions within both the
lophotrochozoans and ecdysozoans.

Tissue-Specific Roles of RA Signaling during Development

It is now well established that, in addition to vertebrates, RA signaling is also
important for the development of invertebrate chordates, such as amphioxus and
ascidians. However, the role of RA signaling during development has been
extensively studied only in vertebrates and relatively little is known in other groups. In
the next part of the review, we focus on the roles of RA signaling in the developing
embryo — especially on the tissue-specific functions of RA — and compare these
functional roles between different animals.

Mesoderm, somitogenesis and left/right asymmetry

The most important tissues for RA production during embryonic development
of vertebrates are the presomitic mesoderm (PSM) and the newly formed somites
(reviewed in Dubrulle and Pourquie, 2004). In these tissues, RA is mainly
synthesized by RALDHZ2 (Niederreither et al., 1997). Even if this mesodermal
production also acts on other tissues, RA originating from PSM strongly influences
the process of somitogenesis in the mesoderm itself (Fig. 3). In vertebrate
somitogenesis, mesodermal units form along the AP embryonic axis. These repeated
units give rise to various muscles and to the axial skeleton. A determination front,
which travels along the AP extent of the PSM, controls the AP identity of the somites
and activates a segmentation clock involving notch signaling that subsequently
triggers somite segmentation and differentiation (reviewed in Dubrulle and Pourquie,
2004).

In vertebrates, RA signaling acts through two mechanisms in the
establishment of the directional, periodic and synchronous segmentation of the PSM
into somites: (i) the RA signaling pathway, together with FGF signaling, controls the
position along the AP body axis of the traveling determination front (reviewed in
Dubrulle and Pourquie, 2004) and (ii) RA signaling is required for symmetric
formation of the somites along the left/right body axis (Kawakami et al., 2005; Vermot
and Pourquie, 2005; Vermot et al., 2005). The first mechanism consists of reciprocal
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inhibition of fgf8 expression by RA and of raldh2 expression by FGF8, which leads to
the formation of opposite gradients of RA (anterior) and FGF8 (posterior) in the PSM
with the determination front of segmentation corresponding to the limit between these
two “gradients” (Diez del Corral et al., 2003). In general, RA signaling inhibits the
signals from the caudal source of FGF8, hence triggering somite formation by
activation of segmentation genes (Moreno and Kintner, 2004). Recent studies have
also proposed Wnt signaling as a key player in reciprocal inhibition of RA and FGF:
in chicken, wnt8c expression in the transition zone is activated by FGF8 emanating
from the posterior stem zone with WNT8C in turn activating expression of raldh2 at
more anterior levels of the AP (Olivera-Martinez and Storey, 2007).

Moreover, an integral part of the segmentation and differentiation process
during somitogenesis is the differential control in the PSM of hox gene expression by
the RA/FGF system. While FGF8 seems to preferentially activate the expression of
posterior hox genes at the 5 end of the cluster, RA triggers expression of anterior
hox genes in the 3’ part of the cluster. In the zone between the respective sources of
RA and FGF8, where low concentrations of RA and FGF8 coexist, the combination of
both signaling pathways triggers the induction of hox genes located at the center of
the cluster. Thus, AP patterning mediated by collinear hox gene expression is linked
to the segmentation machinery involved in somitogenesis (Dubrulle et al., 2001;
Zakany et al., 2001; Diez del Corral and Storey, 2004). The differential induction of
hox genes by RA/FGF along the AP axis of the paraxial mesoderm, resulting in a
specific hox code that defines differential AP positions, is essential for the global AP
patterning of the embryo (Fig. 3). Combinations of the expression of several hox
genes at any given point in the presomitic mesoderm will give rise to different
positional identities along the AP axis. This patterning of the paraxial mesoderm
leads, for example, to the AP specification of vertebral identities. This specification
involving RA signaling and hox genes also requires other factors, such as cdx1?
(Houle et al., 2000; Allan et al., 2001).

The role of RA in somitogenesis is well conserved within vertebrates, since
similar mechanisms have been identified in different vertebrate models, such as
mice, chicken and frogs (Dubrulle et al., 2001; Dubrulle and Pourquie, 2004; Moreno
and Kintner, 2004). However, it is not certain whether outside vertebrates,
somitogenesis involves RA signaling, because, while tunicates do not have somites
at all (Passamaneck and Di Gregorio, 2005), somitogenesis in cephalochordates
seems to differ somewhat from that in vertebrates. In the cephalochordate
amphioxus, there is no PSM and somite formation can be divided into two different
phases: the anteriormost somites arise from the dorsolateral wall of the archenteron
by enterocoelous outpocketing, while the remaining somites form asymmetrically one
at a time by budding directly from the tail bud (Schubert et al., 2001). Treatment with
exogenous RA does not appear to affect the number of somites, but seems to be
required for the proper positioning of somites along the AP axis, as RA treatment
shifts the somites anteriorly (Schubert et al., 2006b). Taken together, it is conceivable
that a function for RA signaling in segmentation of the somites evolved specifically in
the vertebrate lineage, probably in parallel with the elaboration of PSM. In this
context, it will be useful to study putative roles for RA signaling in mesodermal
segmentation of other invertebrates, such as annelids.

The second role for RA signaling in vertebrate somite formation is to enable
the symmetric formation of somites along the left/right body axis. Disruption of RA
synthesis in the PSM results in desynchronization of somite formation in mouse,
chicken and zebrafish embryos (Kawakami et al., 2005; Vermot and Pourquie, 2005;
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Vermot et al., 2005) resulting in asymmetric and asynchronous production of somites
on the left and on the right side of the body. Surprisingly, supernumerary somites
resulting from RA deficiency do not appear on the same side in chicken and mice
(Vermot and Pourquie, 2005). Thus, symmetric and synchronous somitogenesis in
vertebrates requires RA signaling as protection against asymmetric signals in the
segmenting PSM (Vermot and Pourquie, 2005). In amphioxus, the left and right
somite series are normally offset by half a segment (Schubert et al., 2001). Thus, a
role for RA signaling in establishing a symmetric arrangement of somites on the right
and left sides might have evolved specifically in the vertebrate lineage.

In addition to playing a role in maintaining symmetry during somite formation,
the RA signaling pathway might also be involved in early determination of global
left/right asymmetry during vertebrate development (Fig. 3). FGF-dependent
transport of vesicles loaded with RA and SHH to one side of the early embryo has
been suggested to be essential for the establishment of the left/right asymmetry in
vertebrates (Tanaka et al., 2005), although this hypothesis has subsequently been
challenged (Sirbu and Duester, 2006). In contrast, RA signaling probably controls
expression of genes involved in setting up left/right asymmetry in the early vertebrate
embryo, such as lefty, pitx and nodal (Chazaud et al., 1999; Tsukui et al., 1999). In
invertebrate chordates, as in other invertebrate deuterostomes, the establishment of
left/right asymmetry probably involves the same gene hierarchy as in vertebrates
(Chea et al., 2005; Duboc et al., 2004, 2005). For example, as in vertebrates,
homologs of shh, pitx and nodal are all expressed asymmetrically during amphioxus
development (Schubert et al., 2005; Yu et al., 2007). However, both in amphioxus
(Schubert et al., 2005) and ascidians (Hinman and Degnan, 1998) treatments with
exogenous RA do not obviously alter the establishment of the left/right body axis
suggesting that a role for RA signaling in establishing global left/right asymmetry in
the embryo is a vertebrate innovation (Schubert et al., 2005).

In addition to its roles in AP patterning and establishment of left/right
asymmetry, in vertebrate mesoderm, RA signaling is also involved in the
development of various organs and mesodermal derivatives (Fig. 3), such as kidneys
(Burrow, 2000; Wingert et al., 2007), limb buds (Tabin, 1995), skin appendages
(Chuong, 1993), muscles (Hamade et al., 2006) and the heart (Xavier-Neto et al.,
2001). For example, in the developing heart, RA acts directly on cardiac field
specification (Niederreither et al., 1999; Xavier-Neto et al., 2001), AP patterning
(Rosenthal and Xavier-Neto, 2000) and heart looping (Chazaud et al., 1999; Wasiak
and Lohnes, 1999). At least the role for RA signaling in AP patterning of the heart is
well conserved within vertebrates, as treatments with exogenous RA during
development result in similar phenotypes in mice (Xavier-Neto et al., 1999), chicken
(Osmond et al., 1991), zebrafish (Stainier and Fishman, 1992) and lampreys
(Kuratani et al., 1998). In the developing vertebrate heart, RA diffusing from posterior
paraxial and lateral mesoderm specifies posterior cardiac precursors to a cardiac
inflow chamber fate (i.e. atrium and sinus venosus). Moreover, a caudorostral wave
of raldh2 expression in the posterior cardiac field further increases RA concentrations
at the time these heart fates are established (Hochgreb et al., 2003). Since very few
studies have been focusing on the role of RA signaling during organogenesis in
invertebrates, it remains to be established whether this intricate RA-dependent
mechanism is vertebrate-specific or whether invertebrates pattern their hearts and
pumping organs with similar molecular mechanisms (reviewed in Simdes-Costa et
al., 2005).
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Endoderm patterning and pharyngeal development

Retinoid deficiency during embryonic development triggers severe defects of
endodermal structures. For instance, the pharyngeal endoderm is expanded in
vitamin A deficient quail embryos, while the postpharyngeal endoderm (i.e. the
posterior foregut) is reduced (Quinlan et al., 2002). Comparable phenotypes were
observed in zebrafish mutants lacking raldh2 activity (Stafford and Prince, 2002).
Conversely, addition of exogenous RA posteriorizes the foregut transforming anterior
regions into pancreas and liver, which usually form in the trunk endoderm (i.e. in the
midgut) (Stafford and Prince, 2002). In mice, high concentrations of RA are required
for the patterning of branchial arches 3 to 6, while the differentiation of the second
arch requires lower concentrations and the first branchial arch has undetectable
levels of RA (Wendling et al., 2000; reviewed in Mark et al., 2004). These data
suggest that in the pharynx very localized activity of RA along the AP axis is
necessary for proper patterning. Thus, in vertebrates, RA controls AP patterning of
the endoderm and the action of RA signaling is crucial anteriorly, in the developing
pharynx and pharyngeal endoderm (Fig. 3). It is now well established that the role of
RA signaling in patterning the pharyngeal endoderm is independent of the action of
neural crest cells (NCCs) (Veitch et al., 1999; Wendling et al., 2000; Matt et al., 2003)
that migrate from the central nervous system (CNS) into the pharyngeal region and
contribute to branchial arch morphogenesis (Noden, 1983): patterning of the
branchial arches occurs in the absence of NCCs (Veitch et al., 1999) and is
dependent on signals provided directly by the mesendoderm (Piotrowski and
Nusslein-Volhard, 2000). One of these signals is most likely RA (Wendling et al.,
2000), whose action in vertebrate pharyngeal patterning might, at least partially, be
mediated by activation of hox genes (Wendling et al., 2000; Matt et al., 2003).

In the cephalochordate amphioxus, which lacks migrating NCCs, patterning of
the pharyngeal endoderm is also RA-dependent (Holland and Holland, 1996; Escriva
et al., 2002; Schubert et al., 2005). Treatments with exogenous RA lead to a loss of
pharyngeal structures (e.g. mouth and gill slits) and push the posterior expression
limits of pharyngeal marker genes (e.g. pax7/9 and otx) anteriorly, while treatments
with an RA antagonist as well as functional knockdown of hox7 result in posterior
expansion of both pharyngeal structures and marker gene expression in the
pharyngeal endoderm (Holland and Holland, 1996; Escriva et al., 2002; Schubert et
al., 2005). Thus, in amphioxus foregut endoderm, RA signaling acts via hox7 to limit
the expression of genes required for pharyngeal specification (such as pax1/9 and
otx) to anterior, pharyngeal endoderm (Schubert et al., 2005). Interestingly, effects of
RA on the development of pharyngeal structures in ascidians are similar to those in
amphioxus and vertebrates. As in amphioxus, pax7/9 and otx are expressed in the
ascidian pharynx (Ogasawara et al., 1999; Hinman and Degnan, 2000) and in the
ascidian Herdmania curvata exogenous RA decreases otx expression and induces a
posteriorization of the endoderm leading to a complete loss of the branchial basket
(Hinman and Degnan, 1998, 2000). Moreover, in some tunicates, such as the
ascidian Ecteinascidia turbinata, a migratory cell population resembling vertebrate
NCCs has recently been described (Jeffery et al., 2004), but a role for these cells in
pharynx formation of tunicates remains elusive. These observations suggest that RA
signaling was already implicated in AP patterning of the endoderm in the last
common ancestor of all chordates. The involvement of NCCs in the formation of
pharyngeal structures probably appeared later in evolution (reviewed in Graham and
Smith, 2001; Trainor and Krumlauf, 2001) in parallel with the elaboration of new
developmental roles for NCCs (Jeffery et al., 2004; reviewed in Marlétaz et al., 2006;
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Schubert et al., 2006a), the fourth embryonic tissue layer (Hall, 2000). To better
understand the evolutionary origins of RA signaling in the endoderm it will be very
important to investigate the roles of this signaling cascade in endodermal patterning
of other invertebrates, such as hemichordates, mollusks or annelids.

In vertebrates, it has been shown that RA signals from the adjacent mesoderm
are also involved in organogenesis of endodermal derivatives (Fig. 3). For example,
pancreas and liver differentiation in the anterior trunk endoderm (i.e. in the anterior
midgut) requires RA signals from the lateral plate mesoderm (reviewed in Kumar and
Melton, 2003; Kumar et al., 2003). In contrast, more posteriorly located organs (e.g.
the intestine) do not seem to need RA signaling to form. Thus, at least in vertebrates,
patterning of the endoderm requires differential RA signaling activity along the AP
axis with RA responsive zones (posterior pharynx, anterior gut) and zones not
responsive to RA (anterior pharynx, posterior gut) (Wendling et al., 2000; Stafford
and Prince, 2002; Kumar et al., 2003; reviewed in Kumar and Melton, 2003; Mark et
al., 2004). These RA reactivity zones are created by localized sources of RA in
presumptive fore- and midgut and adjacent mesoderm (produced by RALDH1,
RALDH2 and RALDH3) combined with specific sinks of RA in the pharynx and organ
primordia (such as the lung) (established by CYP26A1, CYP26B1 and CYP26C1)
(MacLean et al., 2001; Abu-Abed et al., 2002; Blentic et al., 2003; Reijntjes et al.,
2005). In addition, localized endodermal expression of different rar paralogs further
fine-tunes this RA signaling activity along the AP axis of the developing endoderm
(Mollard et al., 2000; Bertrand et al., 2007). Finally, localized expression of rars in
dorsal and ventral areas of the vertebrate endoderm may even create differential RA
signaling activities along the dorsoventral (DV) body axis (Pan et al., 2007). To
understand how and when these complex patterns of RA signaling activity evolved in
the endoderm, it will be crucial to study in much greater detail the functions of RA in
the endoderm of different invertebrate systems.

Patterning of the central nervous system and neuronal differentiation

Functions of RA signaling in the central nervous system (CNS) have mainly
been investigated during the establishment of the AP axis. In the CNS, RA does not
globally specify the complete length of the AP axis, but instead has a more restricted
and specific action on different zones of the CNS (Fig. 3), most importantly on the
hindbrain (HB) (Godsave et al., 1998). Within the HB, which in vertebrates is both
morphologically and molecularly subdivided into rhombomeres (Lumsden and
Krumlauf, 1996), AP patterning is generally controlled by a hox code, involving
nested collinear expression of hox genes along the AP axis, which defines the
identity of each rhombomere (Trainor and Krumlauf, 2001). It is well established that
RA regulates this collinear expression of hox genes in the vertebrate HB (Murakami
et al., 2004; Glover et al., 2006). Treatments with RA induce an anterior expansion of
the HB and the spinal cord (SC) and inhibit formation of anterior brain structures such
as the forebrain (FB) and the midbrain (MB) (Durston et al., 1989). In addition, RA
affects expression of marker genes of specific brain regions. For example, otx2 and
en2 expression is repressed in the presence of exogenous RA, while HB marker
genes such as hoxb3 and hoxb4 are activated (Godsave et al., 1998). RA probably
acts in two steps during the development of the HB: (i) before somitogenesis, RA
induces the physical segmentation of rhombomeres and (ii) after the onset of
somitogenesis, RA defines rhombomere identities by controlling the establishment of
the hox code (Marshall et al., 1992; Wood et al., 1994).
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HB patterning also requires different levels of RA signaling with the
differentiation of posterior rhombomeres requiring higher concentrations of RA than
that of more anterior rhrombomeres (Dupé and Lumsden, 2001). Thus, RA functions
within the vertebrate HB probably rely on the formation of different zones of RA
activity. Recent publications suggest that differential RA responsiveness within the
HB relies on dynamic expression of cyp26 genes (Abu-Abed et al., 2001; Emoto et
al., 2005; Hernandez et al., 2007). Thus, a simple gradient of RA diffusing along the
AP axis is probably not responsible for creating differential RA activities in the
developing vertebrate HB (reviewed in Glover et al., 2006). In addition to the control
of RA availability by CYP26 enzymes, RA signaling in the HB is also influenced by
FGF signaling. For example, FGF8 originating from the MB antagonizes the action of
RA and thus inhibits RA-dependent activation of hox genes, which is crucial for
defining the anterior limits of hox gene expression in the HB (Irving and Mason,
2000).

In the amphioxus HB, collinear expression of hox genes is also regulated by
RA. Exogenous RA shifts hox expression anteriorly and RA antagonist pushes hox
expression posteriorly (Schubert et al., 2006b). Moreover, the expression domain of
otx, which marks the amphioxus FB, MB and anterior HB, is reduced by RA
treatment, while RA antagonist treatment expands the otx domain further into the
amphioxus HB. Thus, RA signaling in the amphioxus HB most likely limits expression
of otx to the amphioxus FB, MB and anterior HB. This particular function of RA
signaling in amphioxus is probably directly mediated by hox genes, such as hox1,
since functional RAREs have been described in the cis-regulatory regions of both
amphioxus hox1 and hox3 (Manzanares et al., 2000; Wada et al.,, 2006) and
knockdown of hox7 has the same effect as treatment with an RA antagonist
(Schubert et al., 2006b). In contrast, tunicates (e.g. ascidians and appendicularians)
have lost several hox genes and both cluster organization and collinear expression
have at least been partially lost (Ikuta et al., 2004; Seo et al., 2004; reviewed in
Canestro et al., 2007; Deschamps, 2007). Similarly, regulation of hox genes by RA
signaling in tunicates is derived. For example, the conserved RARE in the cis-
regulatory regions of hox7 genes has been lost in C. intestinalis (Wada et al., 2006).
Even so, treatments with RA affect the development of the anterior CNS in Phallusia
mammilata (De Bernardi et al., 1994) and the closure of the neural tube in C.
intestinalis (Nagatomo et al., 2003). Exogenous RA also activates and shifts
anteriorly the expression of hox7 in Halocynthia roretzi and C. intestinalis
(Katsuyama et al., 1995; Katsuyama and Saiga, 1998; Nagatomo and Fujiwara,
2003). Taken together, these data suggest that a role for RA-dependent hox codes in
specifying AP identities along the anterior CNS was probably present at the base of
the chordates. It is very likely that, in the tunicate lineage, this patterning mechanism
has at least partially been lost (reviewed in Hinman and Degnan, 2001; Fujiwara,
2006). To further address these hypotheses, future studies should focus on the roles
of RA in the development of the nervous systems of other invertebrates, such as
hemichordates, mollusks and annelids, with particular focus on the connection
between RA signaling and collinear expression of hox genes in establishing
positional identities along the AP body axis.

In addition to AP patterning, RA signaling in vertebrates is also involved in
dorsoventral (DV) patterning of the posterior CNS (i.e. the SC) as well as in
neurogenesis and neuronal specification within the developing CNS (reviewed in
Glover et al., 2006) (Fig. 3). In the SC, RA from somitic mesoderm specifies ventral
regions by activating expression of DV patterning genes (e.g. pax6, nkx6.1, pax3)
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(Wilson et al., 2004). This RA-dependent activation is either direct through induction
of target genes or indirect by disrupting transcriptional repression mediated by FGF
signaling (Diez del Corral et al., 2003; Novitch et al., 2003). Moreover, RA signaling
induces neurogenesis in the developing SC by inhibiting the antineurogenic FGF8
signal and by activating expression of proneural genes like NeuroM (Diez del Corral
et al., 2003). RA also promotes primary neurogenesis in frogs, such as Xenopus
laevis (Papalopulu and Kintner, 1996; Sharpe and Goldstone, 1997). Thus, RA
treatment of frog embryos increases the number of primary neurons in posterior
neuroectoderm and spreads them anteriorly, while reducing RA signaling activity has
the opposite effect (Sharpe and Goldstone, 2000; reviewed in Maden, 2002). Finally,
RA also acts on differentiation and specification of several neuronal populations,
such as motoneurons, in the developing vertebrate HB and SC. For example, RA
from paraxial mesoderm is required in the SC for the development of motoneuron
progenitors (Novitch et al., 2003), while RA signals emanating directly from
differentiating SC neurons are required for specification of a motoneuron fate
(Sockanathan et al., 2003). In the developing HB, RA signaling seems to be required
for the specification of particular motoneuron subtypes. RA treatment reduces the
number of HB branchial and visceral motoneurons by respecifying them as somatic
motoneurons. Inhibition of CYP26 and grafting of RA-soaked beads under the rostral
HB similarly leads to the formation of somatic motoneurons in the anterior part of HB
explants (Guidato et al., 2003a, b).

Involvement of RA signaling in motoneuron differentiation has also been
studied in the cephalochordate amphioxus. RA treatment reduces the number of
dorsal compartment motoneurons in the amphioxus MB and HB homolog.
Conversely, inhibition of RA signaling, as well as disruption of hox? function,
increases the number of motoneurons (Schubert et al., 2006b). These effects are
comparable to those on somatic motoneurons in the vertebrate HB. Unfortunately, no
other studies have addressed the roles of RA signaling in neuronal specification in
amphioxus, tunicates or any other invertebrates. It is thus difficult to propose a
scenario for the evolutionary origins of this role of RA signaling in development.

In addition to influencing neuronal differentiation and specification, RA also
promotes neurite outgrowth in developing vertebrates (Fig. 3). For example, vitamin
A deficient rat embryos exhibit defective axonal projections (White et al., 2000) and
vitamin A deficient quail embryos are characterized by both defective axonal
projections and impaired motoneuron outgrowth (Maden et al., 1996; Wilson et al.,
2003). Moreover, RA has been shown to activate neurite outgrowth in cultures of
various chicken and mouse cell types originating either from the developing CNS
(Wuarin et al., 1990; Corcoran et al., 2000) or from the developing peripheral nervous
system (Haskell et al., 1987; Quinn and De Boni, 1991; Plum and Clagett-Dame,
1996; Corcoran et al., 2000). Neuronal cell populations of invertebrates seem to
exhibit a similar response to RA: for example, treatments with RA induce neurite
outgrowth and growth cone turning in neurons isolated of the mollusk Lymnaea
stagnalis. Moreover, exogenous RA also enhances the viability of the mollusk
neurons in culture (Dmetrichuk et al., 2006), which might be mediated by RAR, since
our in silico analysis identified a putative rar homolog in the genome of L. gigantea,
which belongs to a different mollusk subclass (Fig. 2). If the action of RA on neurite
outgrowth and survival in mollusks is indeed mediated by a RAR/RXR heterodimer,
this function of RA signaling could well be conserved between vertebrates and
lophotrochozoans. This role of RA in neuronal outgrowth and cell survival might thus
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represent an ancestral function of RA signaling during development that was already
present in the last common ancestor of lophotrochozoans and deuterostomes.

Neural crest, placodes and their derivatives

Many evolutionary novelties of vertebrates arise from two cell populations:
NCCs and placodes. Placodes are neurogenic thickenings of the ectoderm, while
NCCs originate at the dorsal neural tube, delaminate and migrate through the
embryo, carrying the RA-dependent hox code into other tissue layers. Cranial
cartilage, bone and connective tissue are among the vertebrate-specific structures
derived from NCCs and placodes. RA signaling has different functions in NCCs and
placodes. For example, in the zebrafish mutant neckless (deficient for raldh2), NCCs
undergo abnormal apoptosis leading to cartilage defects in larval fish (Begemann et
al.,, 2001). Thus, RA signaling probably controls cell survival of NCCs (Fig. 3).
Moreover, exogenous RA triggers abnormal migration of NCCs from rhombomere 4
into the first branchial arch, which results in repatterning of the cartilage there (Plant
et al., 2000), probably due to alterations in the hox code of the NCCs. In vertebrates,
RA signaling also acts on NCCs that contribute to the formation of placode-derived
structures. For example, eye morphogenesis and retinal differentiation are controlled
by RA (McCaffery et al., 1999), which seems to act primarily on the NCC-derived
periocular mesenchyme. In this periocular mesenchyme, RA activates two specific
RAR/RXR heterodimers (RARB/RXRa and RARy/RXRa) that control expression of
genes important for optic development (e.g. foxc? and pitx2) (Matt et al., 2005). RA
signaling is also implicated in the development of other placodes, such as the
olfactory (Anchan et al., 1997; Mic et al., 2000), the otic (Dupé et al., 1999; White et
al., 2000; Romand et al., 2006) and the lateral line placodes (Gibbs and Northcutt,
2004) (Fig. 3).

Although definitive NCCs and placodes did not appear before the emergence
of vertebrates, possible evolutionary precursors of these tissues may be present in
some invertebrates (Holland and Holland, 1996; Jeffery et al., 2004; reviewed in
Schlosser, 2005; Marlétaz et al., 2006; Schubert et al., 2006a; Bassham et al., 2008).
It is thus interesting to assess whether RA signaling affects the development of these
invertebrate tissues. Such tissues include, for example, the adhesive papillae (or
palps) in the anteriormost general ectoderm of ascidians, which is thought to be
homologous either to the vertebrate olfactory placode (Mazet et al., 2005) or to
vertebrate cement and hatching glands (Manni et al., 2004). However, the vertebrate
cement and hatching glands might not be placodes in a strict sense, because they do
not share a common developmental origin with placodes (reviewed in Schlosser,
2005).

In several ascidian species, RA treatment leads to a complete loss of anterior
adhesive papillae (Denucé, 1991; De Bernardi et al., 1994; Katsuyama et al., 1995;
Hinman and Degnan, 1998; Katsuyama and Saiga, 1998; Yagi and Makabe, 2002;
Nagatomo et al., 2003), which is accompanied by upregulation of hox7 in the general
ectoderm including the region destined to give rise to the adhesive organ
(Katsuyama et al., 1995; Katsuyama and Saiga, 1998). Intriguingly, exogenous RA
leads to a loss of both the cement and the hatching gland in frogs (Sive et al., 1990;
Drysdale and Elinson, 1991), which, as in ascidians, is accompanied by upregulation
of hox1 expression in the ectoderm. In frogs, RA treatment at the mid-blastula results
in ubiquitous ectodermal expression of hox?1 genes during gastrulation (Kolm and
Sive, 1995).
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In amphioxus, the other group of invertebrate chordates, RA signaling in the
general ectoderm controls collinear expression of hox genes as well as specification
of neuronal subtypes (Schubert et al., 2004) (Fig. 3). Thus, while exogenous RA
shifts collinear expression of hox genes anteriorly, RA antagonist treatment
downregulates transcription of hox genes in the general ectoderm. Moreover,
Schubert et al. (2004) demonstrated that in the amphioxus general ectoderm the
differentiation of sensory neurons is sensitive to RA signals. During normal
development, these cells are scattered along the entire AP axis of the developing
general ectoderm and express a combinatorial code of different proneural genes
including coe, islet and err. Treatments with RA and RA antagonist shift the AP
distribution of sensory neurons in the general ectoderm and alter the combinatorial
code of proneural genes expressed in these cells (Schubert et al., 2004). The effect
of RA on the distribution of sensory neurons in the amphioxus general ectoderm is
reminiscent of the posteriorizing action of exogenous RA on lateral line neurons of
axolotls (Gibbs and Northcutt, 2004).

Concluding Remarks

In this review, we have presented our current understanding of the structure
and functions of the RA signaling during animal development. Moreover, we have
shown that RA signaling is neither vertebrate- nor chordate-specific and we have
presented data suggesting that RA signaling may not even be deuterostome-specific,
because the main players of RA signaling, in particular rar, are probably present in
the genomes of both annelids and mollusks. Since some effects of exogenous RA
have already been described in lophotrochozoans, especially on neurite outgrowth
and neuronal survival in mollusks (Dmetrichuk et al., 2006), it is conceivable that RA
signaling mediated by RAR/RXR heterodimers is functional in lophotrochozoans.
Although an experimental verification of this hypothesis is still lacking, these data
suggest that the origin of RA signaling should probably be pushed back to the last
common ancestor of all bilaterian animals (Urbilateria), where RA signaling might
have played a role in neurite outgrowth and neuronal survival during development
(Fig. 4). After the divergence of ecdysozoans, lophotrochozoans and deuterostomes,
RA signaling has evolved very differently in each of the three groups. Hence, while
RA signaling was apparently lost in ecdysozoans, it persisted in the two other clades.
In deuterostomes, very little is known about RA signaling in ambulacrarians
(echinoderms and hemichordates). In the chordate lineage, novel functions for RA
signaling probably arose in neuronal specification in the general ectoderm and the
CNS. Moreover, RA has evolved a fundamental role in AP patterning of the chordate
endoderm, general ectoderm and CNS. In all three tissue layers, these functions of
RA are mediated by hox genes suggesting that roles for RA signaling in AP
patterning and in regulation of the hox code might have evolved simultaneously. In
the lineage Ileading to vertebrates and tunicates (e.g. ascidians and
appendicularians), RA signaling has acquired roles in controlling NCC survival and
placode development. However, the exact timing of these events remains elusive.
Within tunicates, the sister group of vertebrates, RA signaling is present and
functional in ascidian embryos, while the RA machinery has been lost in
appendicularians. Further functions for RA signaling during development arose in the
vertebrate lineage, particularly in mesodermal (AP patterning, somitogenesis,
left/right asymmetry) and neural tissues (neurogenesis, DV patterning of the SC).
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This putative evolutionary history of the RA signaling cascade suggests at
least a few important directions for future investigations. Due to its presence and
roles in development of a wide range of animals, RA signaling could probably be
regarded as one of the core regulatory networks controlling animal development.
However, the independent loss of the RA machinery in two different lineages (i.e.
appendicularians and ecdysozoans) shows that embryos can also be patterned in the
absence of RA signaling (Cafnestro and Postlethwait, 2007). Moreover, the evolution
of vertebrates is characterized by the acquisition of a number of different RA-
dependent functions (Fig. 4). This elaboration of novel roles for RA during
development is probably correlated with the massive gene duplications that
characterize the evolution of vertebrates (for example, while there is only one rar and
one rxr in the cephalochordate amphioxus, tetrapods have three copies of each
gene) (Ohno, 1970). Although some studies have already addressed the relationship
between duplication of genes involved in RA signaling and acquisition of new
functions during development (Escriva et al., 2006), further work is needed to
decipher this interplay between gene number and acquisition of novel RA-dependent
functions in vertebrates.

Finally, most studies on roles of RA signaling during development have
focused on vertebrate model organisms. Although there are now some data on
developmental roles of RA signaling emerging from invertebrate chordates, there is
still an obvious lack of information on the role(s) of RA in non-chordates. Even if low
concentrations of 9-cis and all-frans RA have been observed in regenerating limb
blastemas of the crab Uca pugilator (Hopkins, 2001) and effects of treatments with
RA agonists or antagonists have been described in sea urchins (Sciarrino and
Matranga, 1995; Kuno et al., 1999), mollusks (Créton et al., 1993) crustaceans
(Chung et al., 1998; Hopkins, 2001; Soderhall et al., 2006), insects (Sun et al., 1993;
Picking et al., 1996; Shim et al., 1997), planarians (Romero and Bueno, 2001),
cnidarians (Muller, 1984) and sponges (Imsiecke et al., 1994; Nikko et al., 2001,
Wiens et al., 2003), the actual presence and putative roles for RA signaling during
development in these taxa remain elusive. Thus, to fully understand the origin and
evolution of RA signaling during embryonic development, we need to broaden the
sampling of animal taxa and apply more sophisticated experimental tools to non-
vertebrate model systems.
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Table 1. Conservation of residues contacting retinoic acid (RA) in the ligand binding pocket of retinoic
acid receptors (RARs) from different metazoan animals. The numbering of amino acid residues is
according to Renaud et al. (1995). Amino acids identical to those of human RARYy are shown in red
and residues directly interacting with the carboxylate moiety of the RA molecule (Lys236, Arg278 and

Ser289) are highlighted in blue.
Hum Phe Leu Lys Cys Leu Met Arg lle Arg Phe Ser Phe Gly Leu
RARy 230 | 233 | 236 | 237 | 271 272 | 274 | 275 | 278 | 288 | 289 | 304 | 393 | 400
Ph L L (c L Il A 11 Al Ph S Ph Gl L

Human

RARa e eu ys ys eu e rg e rg e er e Yy <
H;Algasn Phe Leu Lys Cys Leu Ile Arg lle Arg Phe Ser Phe Gly Leu

c. intReztRinalis Phe Leu Lys Cys Leu Phe Arg Ile Arg Phe Ser Phe Gly Val
Amphioxus Phe Leu Glu Thr Leu Ile Arg  Leu Arg Phe lle Phe  Gly  Leu

RAR

RAR Val Met Arg Ala Met Ile Arg Ile Arg Phe Thr Phe - -

L. gigantea
RAR

Ile Leu Gly Gly Met Ile Arg Leu Arg Phe Ser Phe Gly Leu

C. capitata

RAR Val Leu Ser Gly Leu Val Arg Leu Arg Phe Thr Phe Gly Leu
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Fig. 1. Retinoic acid (RA) and RA signaling. (a) Molecular structure of three different stereoisomeric
forms of RA. (b) Overview of the RA signaling cascade. Only the major actors of the pathway
(enzymes involved in retinoid synthesis, degradation, binding and signaling) are shown. Enzymes
implicated in RA synthesis and degradation are shown as black boxes. ADH: alcohol dehydrogenase;
ALDH: aldehyde dehydrogenase; CYP26: Cytochrome P450, subfamily CYP26; CRBP: cellular retinol
binding protein; CRABP: cellular retinoic acid binding protein; RA: retinoic acid; RAR: retinoic acid
receptor; RARE: retinoic acid response element; RXR: retinoid X receptor; SDR: short-chain

dehydrogenase/reductase.
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Fig. 2. Members of the retinoic acid (RA) signaling cascade in different metazoans. The presence of
assayed genes (rar, rxr, aldh1, aldh8, cyp26) is shown with colored boxes. The information given in
this figure is based on BLAST search results, which for rar and rxr have been verified by phylogenetic
analyses. Hatched boxes indicate situations where a given gene is absent from the genome of an
assayed species, but present in other species of the same phylum. ALDH: aldehyde dehydrogenase;
CYP26: Cytochrome P450, subfamily CYP26; RAR: retinoic acid receptor; RXR: retinoid X receptor.
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