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Chapter 1

Preface

Throughout history, the main role of cryptography has been to keep sensible information

private, even in the presence of an adversary that has control over the communication

channel. Even though privacy remains central to cryptography, the �eld has expanded

and it incorporates other goals, such as data integrity and authenticity, access control or

electronic payments.

Once used only by the military, cryptography is now in widespread use and people bene�t

from it daily, even without know it. For example, when buying an item online a secure

channel is used to process the transaction and implicitly to ensure the privacy of your

credit card. Or, when communicating through messaging apps our private conversations

are protected using end-to-end encryption. With such a growing area of applicability, is

not surprising that modern cryptography intertwines concepts from mathematics, com-

puter science, engineering and physics.

Although a remarkable science, cryptography is also an art and a puzzling game. We

have to think as an attacker would, while defending the system against threats; we have

to juggle between speed, usability and security; we have to twist known concepts in order

to make them �t our scope; we have to design high level concepts, while keeping in mind

the low level ones etc. In�uenced by the plethora of concepts a cryptographer has to

manage, in this work we touch on di�erent areas of cryptography and we either take the

role of the designer or of the attacker. By presenting both sides of the same coin, we

wish that the reader will start to appreciate the beauty of this puzzling science and will

begin to see the relationships that arise between seemingly di�erent concepts.

1



Preface 2

1.1 Outline

We further present a brief synopsis of the seven main chapters contained in this work.

One of the most di�cult things about structuring this work was the interdependency of

some of the chapters. We have tried to present the material in this thesis in a logical

and natural order. Without further ado, here is the thesis outline.

Chapter 2 tackles secret key cryptography and is split into three parts. The �rst part

analyses the security of the (a�ne) Hill cipher and their corresponding modes of opera-

tion. De�nitions and background information are presented in Section 2.1.1. The core of

the �rst part consists of Sections 2.1.2 and 2.1.3 that contain several key ranking func-

tions and ciphertext only attacks. Experimental results are provided in Section 2.1.4

and some possible research directions are given in Section 2.1.5. The letter frequen-

cies and the Vigenère attack used in Section 2.1.4 are given in Appendices A and B.

Some possible methods for increasing the brute-force complexity for the Grain family of

stream ciphers are presented in the second part of this chapter. We introduce notations

and give a quick reminder of the Grain family technical speci�cations in Section 2.2.1.

Section 2.2.2 describes generic attacks against the Grain ciphers. In Section 2.2.3 we

provide the reader with a security analysis of IV padding schemes for Grain ciphers.

We underline various interesting ideas as future work in Section 2.2.4. We recall Grain

v1 in Appendix C, Grain-128 in Appendix D and Grain-128a in Appendix E. We do

not recall the corresponding parameters of Grain v0, even though the results presented

in this section still hold in that case. In Appendices F and G we provide test values

for our proposed algorithms. The last part of this chapter studies the e�ect of using

quasigroups isotopic to groups when designing SPNs. Hence, prerequisites are given in

Section 2.3.1. An SPN generalization is introduced in Section 2.3.2 and its security is

studied in Section 2.3.3.

In Chapter 3 we discuss several public key protocols and some of their applications.

The �rst part introduces several hardness assumptions necessary for proving the proto-

cols' security. Zero-knowledge protocols are studied in the second part of this chapter.

Therefore, we recall zero-knowledge concepts in Section 3.2.1. Inspired by Maurer's

Uni�ed-Zero Knowledge construction, in Section 3.2.2 we introduce a Uni�ed Generic

Zero-Knowledge protocol and prove it secure. We provide the reader with various spe-

cial cases of UGZK in Section 3.2.3. A hash variant of our core protocol is tackled in

Section 3.2.4 together with its security analysis. As a possible application for UGZK, in

Section 3.2.5 we describe a lightweight authentication protocol, discuss security and com-

plexity aspects and present implementation trade-o�s which arise from small variations

of the proposed result. In Section 3.2.6 we underline future work proposals. The third

part of this chapter contains a signature scheme inspired by Maurer's UZK paradigm.
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The necessary prerequisites are given in Section 3.3.1 and the exact details of the UDS

signature are provided in Section 3.3.2. An application for UDS is given in the fourth

part of this chapter. More precisely, after introducing preliminaries in Section 3.4.1,

we introduce a co-signing protocol built on the legally fair contract signing protocol of

Ferradi et. al in Section 3.4.2. We discuss some related open problems in Section 3.4.3.

Two public key encryption schemes are presented in the �fth part. In Section 3.5.1

we introduce de�nitions, security assumptions and schemes used throughout the sec-

tion. First we introduce in Section 3.5.2 a slight modi�cation of the generalized ElGamal

encryption scheme, that will be used in a subsequent chapter. Then, inspired by the Joye-

Libert PKE scheme and aiming at obtaining a relevant generalization, in Section 3.5.3

we propose a new scheme based on 2k residues, prove it secure in the standard model

and analyze its performance compared to other related cryptosystems. Future work is

presented in Section 3.5.3.5 and in Appendix H we present some optimized decryption

algorithms for our proposed scheme. The �nal part of this chapter provides the reader

with an application of our Joye-Libert based scheme to biometric authentication. Thus,

de�nitions and security requirements are presented in Section 3.6.1, while our proposed

authentication protocol is described in Section 3.6.2.

Some useful results for understanding the security of Cocks' identity based encryption

and of certain variations of it are provided in Chapter 4. Basic notions and Cocks'

scheme are presented in the �rst part of the chapter. The second part considers sets of

the form a ` X “ tpa ` xq mod n | x P Xu, where n is a prime or the product of two

primes n “ pq and X is a subset of Zn̊ whose elements have some given Jacobi symbols

modulo prime factors of n. The third part of the chapter points out two applications of

the previously mentioned results. The �rst one provides the reader with a deep analysis

of some distributions related to Cocks' IBE scheme and Galbraith's test, providing thus

rigorous proofs for Galbraith's test. The second application discussed, relates to the

computational indistinguishability of some distributions used for proving the security of

certain variations of Cocks' IBE. We were able to prove statistical indistinguishability

of those distributions without any hardness assumption. The chapter concludes with

Section 4.4.

An unconventional method for backdooring cryptographic systems is studied in Chap-

ter 5. The basic notions about kleptographic attacks are given in Section 5.1. The �rst

part of this chapter deal with a threshold kleptographic attack that can be implemented

in the generalized ElGamal signature. Thus, in Section 5.2.1 we describe a simpli�ed

attack on the generalized ElGamal signature and then extended it in Section 5.2.2. A

series of signatures that support the implementation of our attack are provided in Sec-

tion 5.2.3. Future work is presented in Section 5.2.4 and a two-party malicious signing
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protocol is presented in Appendix I. We provide a supplementary kleptographic mech-

anism in Appendix J. A method for infecting Maurer's UZK protocol is studied in the

second part of this chapter. In Sections 5.3.1 and 5.3.2 we present our new general klep-

tographic attacks and prove them secure. Instantiations of our attacks can be found in

Section 5.3.3. Some possible research directions are given in Section 5.3.4. In the third

part, we introduce a subscription based marketing model suitable for selling infected

devices. Hence, some additional preliminaries are given in Section 5.4.1. Based on the

ElGamal encryption algorithm, a series of kleptographic subscriptions that �t di�erent

scenarios are provided in Sections 5.4.2 to 5.4.4. We discuss some open problems in

Section 5.4.5. Hash channels are tackled in the last part of the chapter. By adapting and

improving Wu's mechanism we introduce new hash channels in Section 5.5.1. A series

of experiments are conducted in Section 5.5.2, while several applications are provided in

Section 5.5.3.

In Chapter 6 we study (pseudo-)random numbers generators. The �rst part of the chapter

deals with Adobe Flash Player's1 vulnerability in the pseudo-random number generator

used for constant blinding. We introduce the necessary prerequisites in Section 6.1.1. The

core of our seed recovering mechanism consists of Sections 6.1.2 and 6.1.3 and contains

a series of algorithms for inverting a generalized version of the hash function used by the

Flash Player. Experimental result are given in Section 6.1.4. Supplementary algorithms

may be found in Appendix K. The second part contain an architecture that can be used

to implement health tests for random numbers generators. De�nitions and background

information are presented in Section 6.2.1. Two classes of digital �lters that amplify

existing biases are described in Sections 6.2.2 and 6.2.3. Some possible applications are

given in Section 6.2.4. In Section 6.2.5 we apply our proposed architecture to broken

Bernoulli noise sources and present some experimental results. The theoretical model is

provided in Section 6.2.6. Some �ner measurements are provided in Section 6.2.7. In

Section 6.2.8 we underline future work proposals.

Chapter 7 contains several protocols that fall in the category of recreational cryptog-

raphy. Thus, in Section 7.1 we describe various schemes which aim at solving Yao's

millionaires' problem and provide the reader with their corresponding security analyses.

In Section 7.2 we present a set of protocols which act as solutions for comparing informa-

tion without revealing it and discuss their security. In Section 7.3 we describe a public

key cryptosystem constructed by means of an electrical scheme and tackle its security.

In Appendix L we recall various physical cryptographic solutions which appeared in the

literature, while in Appendix M we present a generic physical public key encryption

scheme useful for introducing students to di�erent properties of physical systems.

1versions 24.0.0.221 and earlier



Preface 5

1.2 Our Contributions

We further link our publish papers with some of the subsections presented in this work.

� Secret Key Cryptography

� Sections 2.1.2 to 2.1.4 and Appendix B [244]

� Sections 2.2.2 to 2.2.3 and Appendices F to G [172]

� Sections 2.3.2 to 2.3.3 [245]

� Public Key Cryptography

� Sections 3.2.2 to 3.2.5 [173]

� Section 3.3.2 and Section 3.4.2 [171]

� Section 3.5.2 [237]

� Section 3.5.3, Section 3.6.2 and Appendix H [174]

� Identity Based Cryptography

� Sections 4.2 to 4.3 [246, 247]

� Kleptographic Attacks

� Sections 5.2.1 to 5.2.3 and Appendices I to J [237]

� Sections 5.3.1 to 5.3.3 [239]

� Sections 5.4.2 to 5.4.4 [240]

� Sections 5.5.1 to 5.5.3 [242]

� (Pseudo-)Random Number Generators

� Sections 6.1.2 to 6.1.4 and Appendix K [241]

� Sections 6.2.2 to 6.2.7 [238, 243]

� Physical Cryptography

� Sections 7.1 to 7.3 and Appendix M [80]
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Chapter 2

Secret Key Cryptography

The simplest and also the most common method for protecting the con�dentiality of mes-

sages or authenticating a piece of information is to use a shared secret key between the

sender and the receiver. This is called secret/symmetric key cryptography. In this sce-

nario both participants use functions dependent on the same predetermined key. Usually,

the shared key is randomly generated.

Symmetric key algorithm are assumed to maintain their security properties as long as

adversaries cannot �nd the used key. This can mean three things: either the key is

kept secure by the party using it or the key is large enough to avoid brute forcing

it or the algorithm does not leak any information. In this chapter we will deal with

two of the aforementioned aspects. More precisely, we will show how the (a�ne) Hill

cipher and their corresponding modes of operation leak critical information through the

ciphertext. Then we will describe a method for extending the life of Grain instantiations

by increasing their corresponding brute force complexity. Finally, we provide the reader

with equivalent instantiations of substitution permutation networks.

2.1 (A�ne) Hill Cipher

Two classical ciphers based on linear algebra are the Hill cipher [144] and its a�ne version

[145]. Both use invertible matrices over integers modulo a to encipher messages, where

a is the size of the language alphabet A. The �rst step of the encryption process is the

encoding of each plaintext letter into a numerical equivalent. The simplest encoding is

"a" “ 0, "b" “ 1 and so on. After encoding, the plaintext is divided into blocks of size

k and, then, each block is multiplied with an invertible matrix of size k. In the a�ne

case, a second matrix is added to the result. After each block is transformed, the result

8
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is converted back into letters. To decipher messages, one must perform the above steps

in reverse.

Although both ciphers are vulnerable to known plaintext attacks1, e�cient ciphertext

only attacks have been developed only a decade ago [42] and only for the Hill cipher with

small ks. Note that as k increases simple brute force attacks fail. For example, in the

case of the Hill cipher with a “ 26, we have around 217 keys for k “ 2, 240 keys for k “ 3

and 273 keys for k “ 4 [42]. According to [201, 43], given a and k the exact number of

invertible matrices can be computed. Note that in the case of the a�ne Hill cipher the

computational e�ort made to brute force the Hill cipher is multiplied with ak.

In 2007, Bauer and Millward [42] introduced a ciphertext only attack for the Hill cipher2,

that was later improved in [266, 167, 178]. The attack was independently published by

Khazaei and Ahmadi [154]. The main idea of these attacks is to do a brute force attack

on the key rows, instead of the whole matrix, and then recover the decryption matrix.

In [157], Kiele suggests the usage of block-chaining procedures to complicate the algebraic

cryptanalytic techniques developed for the Hill cipher. We will show in this section how

to adapt the attacks described in [42, 266, 154] to di�erent modes of operation (not only

the block-chaining one) for both the Hill cipher and its a�ne version. Note that some

modes do not require the key to be invertible, thus the attack presented in [167] does not

work for all Hill based modes. For uniformity, we will only extend Yum and Lee's attack

and leave as future work the extension of [167] to modes requiring invertible matrices.

We stress that out of the three attacks [42, 266, 154] Yum and Lee's attack has the best

performance to message recovery ratio.

Another paper that motivated this study is [41]. The authors of [41] conjecture that

the fourth cryptogram of the Kryptos sculpture [9] is either encrypted using the a�ne

Hill cipher or some other sort of cipher mode of operation. We provide the reader with

a preliminary study of these conjectures. To prove or disprove these conjectures, one

has to �nd a way to adapt all the presented ciphertext attacks to the secret encoding

versions of the (a�ne) Hill cipher and their corresponding modes of operation. Various

partial answers for the secret encoding Hill cipher are provided in [266].

2.1.1 Preliminaries

Conventions. To minimize repetitions, we employ the following system. When reading

the attacks against the Hill based modes of operation we invite the reader to ignore
1i.e. after a number of known messages are encrypted, one can easily recover the encryption key(s)

if he has access to the corresponding ciphertexts.
2Bauer and Millward's attack for k “ 3 was previously and independently described online by Wutka

[257].
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red colored text, while in the case of the a�ne Hill based modes ignore the blue text.

Also, when describing algorithms we prefer using verbose names for variables, while for

mathematical descriptions we prefer notations. Additionally, when presenting algorithms

we consider only lower case messages represented by ASCII codes (i.e. "c" ´ "a" “
99´ 97 “ 2). The last convention used is to store constants in look-up tables when their

size is small (e.g. letter frequencies) and in maps, otherwise (e.g. quadgraph frequencies).

2.1.1.1 Ciphers

A cipher consists of three probabilistic polynomial-time algorithms: KeyGen, Encrypt

and Decrypt. The �rst one takes as input a security parameter and outputs the secret

key. The secret key together with the Encrypt algorithm are used to encrypt a message

m. The last algorithm decrypts any message encrypted using the known secret key.

Hill cipher. The Hill cipher is a poly-alphabetical cipher based on linear algebra in-

troduced by Lester S. Hill in [144]. We brie�y provide the algorithms for the Hill cipher.

Note that before encrypting/decrypting a text, the corresponding letters are encoded/de-

coded as follows: "a" to/from 0, "b" to/from 1 and so on.

KeyGen(λ): Set an integer k ě λ and choose K1
$ÐÝ GLpk,Zaq. Output the secret key

sk “ K1.

Encrypt(sk,m): Pad message m until |m| ” 0 mod k3. Divide m into blocks m “
m1} . . . }m`, where |mi| “ k. Compute cTi Ð K1 ¨ mT

i . Output the ciphertext

c “ c1} . . . }c`.

Decrypt(sk, c): Divide c into ` blocks c “ c1} . . . }c` and compute mT
i Ð K´1

1 ¨ cTi .
Recover m by removing the padding.

Example 2.1. For clarity, we further provide the reader with an example from [42]. The

message "matrixencryptioniseasy" is mapped into

12, 0, 19, 17, 8, 23, 4, 13, 2, 17, 24, 15, 19, 8, 14, 13, 8, 18, 4, 0, 18, 24.

If K1 Ð
˜

1 3

4 11

¸

, then the �rst block is encrypted into

˜

1 3

4 11

¸

¨
˜

12

0

¸

“
˜

12

22

¸

.

Therefore, we obtain the ciphertext "mwsdzzrdbnrbribrkweqmy".
3Usually a rarely used letter, such as "x", is appended to m until we get the desired length.
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A�ne Hill cipher. An a�ne variation of the Hill cipher was introduced in [145]. We

shortly provide the algorithms for the a�ne Hill cipher.

KeyGen(λ): Set an integer k ě λ and choose K1
$ÐÝ GLpk,Zaq and K2

$ÐÝ Mpk, 1,Zaq.
Output the secret key sk “ pK1,K2q.

Encrypt(sk,m): Pad message m until |m| ” 0 mod k. Divide m into blocks m “
m1} . . . }m`, where |mi| “ k. Compute cTi Ð K1 ¨mT

i `K2. Output the ciphertext

c “ c1} . . . }c`.

Decrypt(sk, c): Divide c into ` blocks c “ c1} . . . }c` and computemT
i Ð K´1

1 ¨pcTi ´K2q.
Recover m by removing the padding.

Other a�ne variations of the Hill cipher. In Table 2.1 we present all the possible

a�ne variations of the Hill cipher. Note that K3
$ÐÝ Mpk, 1,Zaq. After performing

some computations, we can see that for all variations we can recover mT
i using fpciq “

K 1
1 ¨ cTi `K 1

2. Since we are interested only in recovering the encrypted messages and not

the initial secret keys, all the presented attacks try to recover K 1
1 and K

1
2. Thus, for the

a�ne Hill cipher we only consider f for recovering mT
i .

Encrypt Decrypt K 1
1 K 1

2

cTi Ð K1 ¨mT
i `K2 mT

i Ð K´1
1 ¨ pcTi ´K2q K´1

1 ´K´1
1 K2

cTi Ð K1 ¨ pmT
i `K2q mT

i Ð K´1
1 ¨ cTi ´K2 K´1

1 ´K2

cTi Ð K1 ¨ pmT
i `K2q `K3 mT

i Ð K´1
1 ¨ pcTi ´K3q ´K2 K´1

1 ´K´1
1 K3 ´K2

Table 2.1: A�ne variations of the Hill cipher.

2.1.1.2 Cipher Modes of Operation

When we encrypt messages block by block, usually called the ECB mode of operation,

identical blocks are mapped into identical ciphertexts. Thus, block patterns are pre-

served. This is an information leakage that can lead to security breaches. To address

this issue several modes of operation where introduced in [98], such as CBC, CTR, CFB

and OFB.

In [27], the authors introduce a generalization of the CBC-MAC construction4. Based

on Alagic et al.'s generalization, we present a possible adaptation of the CBC, CTR and

CFB modes of operation to the (a�ne) Hill cipher.

4the XOR operation is replaced with a generic group operation
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Let Ek, Dk : Mpk, k,Zaq ÑMpk, k,Zaq be the matrix transformations of the (a�ne) Hill
cipher's encryption and decryption. We further describe the encryption and decryption

algorithms for CBC and CFB.

Encrypt(sk,m): Choose iv $ÐÝ Mp1, k,Zaq and pad message m until |m| ” 0 mod k.

Divide m into blocks m “ m1} . . . }m`, where |mi| “ k. Let m0 Ð iv. For CBC

compute ci Ð Ekpci´1 ` miq, while for CFB compute ci Ð Ekpci´1q ` mi. Let

c “ c1} . . . }c`. The output is ciphertext piv, cq.

Decrypt(sk, iv, c): Divide c into ` blocks c “ c1} . . . }c`. For CBC compute mi Ð
Dkpciq ´ ci´1 and for CFB compute mi Ð ci ´ Ekpci´1q. Recover m by removing

the padding.

In the case of CTR, the sender and the receiver each keep a state ctr. The initial value is

chosen at random ctr
$ÐÝMp1, k,Zaq. Before each encryption ctr is updated as follows:

Update(ctr): Let ctr “ pα0, . . . , αk´1q and iÐ k ´ 1. Compute the following

1. αi Ð pαi ` 1q mod a,

2. If αi ““ 0, then iÐ pi´ 1q mod k and go to step 1.

Now, the encryption and decryption algorithm for this mode of operation are:

Encrypt(sk,m): Pad message m until |m| ” 0 mod k. Divide m into blocks m “
m1} . . . }m`, where |mi| “ k. Compute ctr Ð Updatepctrq and ci Ð Ekpctrq `mi.

The output is ciphertext c “ c1} . . . }c`.

Decrypt(sk, iv, c): Divide c into ` blocks c “ c1} . . . }c`. Compute ctr Ð Updatepctrq
and mi Ð ci ´ Ekpctrq. Recover m by removing the padding.

Example 2.2. For clarity, we provide the reader with some examples for the Update

function. Let a “ 26 and k “ 2. Then Updatepp1, 2qq “ p1, 3q, Updatepp1, 25qq “ p2, 0q
and Updatepp25, 25qq “ p0, 1q.

Although our attacks do not apply to the OFB mode, for completeness we provide its

description.

Encrypt(sk,m): Choose iv $ÐÝ Mp1, k,Zaq and pad message m until |m| ” 0 mod k.

Divide m into blocks m “ m1} . . . }m`, where |mi| “ k. Let x0 Ð iv. Compute

xi Ð Ekpxi´1q and ci Ð mi ` xi. Let c “ c1} . . . }c`. The output is ciphertext

piv, cq.
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Decrypt(sk, iv, c): Divide c into ` blocks c “ c1} . . . }c`. Let x0 Ð iv. Compute

xi Ð Ekpxi´1q and mi Ð ci ´ xi. Recover m by removing the padding.

Remark 2.1. Note that the CFB, CTR and OFB modes do not require K1 to be

invertible.

2.1.1.3 Statistical Models

When brute forcing rows, we cannot tell immediately if the decrypted text is correct or

not. But we can statistically analyze the letters of the resulting text and check if they

are reasonable enough. Using the frequencies of the recovered letters and the frequencies

of the characters in original language, we can rank the rows according to their relevance

to the ciphertext.

In order to rank5 all possible rows for the decryption key, Yum and Lee [266] introduce

a goodness-of-�t score function. Compared to the score functions presented in [42, 154],

Yum and Lee's function describes the exact probability of the recovered plaintext. We

brie�y describe the goodness-of-�t score function in Algorithm 1.

Let EK and DK be the encryption and, respectively, decryption function of a cipher.

Also, let c Ð EKpmq be the given cryptogram and K 1 the key we want to rank. The

goodness-of-�t function takes as input the letter frequency table letter_freq associated

with the language m is written in (see Appendix A for some examples) and the letter

frequency table occurence observed in DK1pcq.

Algorithm 1. The goodness-of-�t score function.
Input: A vector of letter occurrences occurrence.
Output: The vector's goodness-of-�t score score.

1 Function goodness_of_fit(letter_freq, occurrence):
2 scoreÐ 1;
3 for i P r0, alphabet_sizeq do
4 score ˚“ letter_freqrisoccurrenceris{ occurrenceris!
5 end

6 return score;

To automatically separate meaningful messages from random texts, we use an approach

similar with the ones described in [137, 170]. When testing a list of strings for meaning, we

�rst score each of them using Algorithm 2 and then output the highest scoring message.

The �rst and second inputs of the score function are a string in and the block frequency

map (in our case either a digraph di_freq or a quadgraph quad_freq frequency map)

5according to their relevance to a given cryptogram
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associated with the language we are interested in. The fourth variable num_of_letters

controls if we are observing digraphs (i.e. num_of_letters “ 2) or quadgraph (i.e.

num_of_letters “ 4). When computing block frequency maps, some blocks may be

missing entirely from the training corpus. To avoid assigning a likelihood of zero to these

blocks, we use the ad hoc method found in [170]6.

Algorithm 2. The score function.
Input: A string in, the bound number_of_rows.
Output: The string's score score.

1 Function score_function(in, block_freq, block_freq, num_of_letters):
2 scoreÐ 0;
3 for i P r0, in. sizepq ´ num_of_lettersq do
4 tempÐ in.substrpi, num_of_lettersq;
5 if temp P block_freq then
6 score `“ block_freqrtemps;
7 end

8 else

9 score `“ block_default;
10 end

11 end

12 return score;

Remark 2.2. To ease description, all frequency tables/maps will be implicit when pre-

senting algorithms, unless otherwise speci�ed.

2.1.2 Ranking Functions

The �rst step in attacking the (a�ne) Hill cipher and the associated modes of operation

is to rank all possible rows according to their relevance to a given cryptogram. In

this section we describe the ranking functions latter used in the attacks presented in

Section 2.1.3.

2.1.2.1 (A�ne) ECB

In [266], the authors describe a ranking algorithm for the Hill cipher. We choose to

present it in this section (Algorithm 3, red text) because it is tightly linked with the

a�ne version that we introduce (Algorithm 3, blue text).

Let matrix_size “ k “ 2 and let enc “ c be a Hill cipher cryptogram. We illustrate the

in�uence of a given row on the decrypted plaintext p in Figure 2.1. We observe that if

6i.e. block_defaultÐ log10p0.01{num_of_blocksq, where the total number of blocks found in the
training corpus is denoted by num_of_blocks
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the �rst and second rows are equal we obtain the same letter pi after decryption. Thus, is

enough to decrypt the ciphertext using only the �rst row (hill_line_decrypt). Since we

do not have duplicates, the resulting text msg is k times shorter than c. After decryption

we compute the letter frequency observed inmsg and use the goodness_of_fit function

to obtain the row's score. After all the rows have been ranked, we sort them in descending

order according to their score. In the case of the a�ne Hill cipher the ranking algorithm

is similar. The main di�erence is that instead of having to brute force k0 and k1, we also

have to do an exhaustive search on k2 (Figure 2.2). The algorithm for the generic case

is given in Algorithm 3.

In some cases storing a vector of size ak7 might be troublesome. Thus, we further consider

that fit.sizepq “ B, where B is dependent on the available memory. Note that in this

case fit must be sorted and when an element is inserted we �rst check if its score is

higher than the lowest score from fit and if it is, the element replaces the lowest scoring

element from fit.

We usually work with small values of alphabet_size and the msg.sizepq and thus we

consider the complexity of the goodness_of_fit and of multiplication as Op1q. Hence,
the Hill version of Algorithm 3 performs Opakq hill_line_decryptions and sorts a vector
of size B. So, it has a complexity of Opkak ` B logBq. In the case of the a�ne Hill

cipher, the only change is that we perform Opak`1q affine_hill_line_decryptions. So,
the complexity becomes Opkak`1 `B logBq.

k0 k1

k0 k1
ˆ

ci0

ci1

“ pi

(a) Line 1.

k0 k1

k0 k1
ˆ

ci0

ci1

“ pi

pi

(b) Line 2.

Figure 2.1: Line propagation in ECB.

k0 k1

k0 k1
ˆ

ci0

ci1

`
k2

k2

“ pi

(a) Line 1.

k0 k1

k0 k1
ˆ

ci0

ci1

`
k2

k2

“ pi

pi

(b) Line 2.

Figure 2.2: Line propagation in a�ne ECB.

2.1.2.2 (A�ne) CBC, CTR, CFB

Again, let matrix_size “ 2 and let enc be a Hill cipher cryptogram. The e�ect of a

given row on the decrypted plaintext is shown in Figure 2.3 for CBC, in Figure 2.4 for
7ak`1 for the a�ne version
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Algorithm 3. The algorithm for ranking all possible rows for (a�ne) ECB.
Input: The ciphertext enc.
Output: A vector fit containing all possible rows sorted by the goodness-of-�t

score.
1 Function affine_hill_line_decrypt(conv, key1 , key2):

2 msg_intrenc.sizepq{matrix_sizes Ð t0u;
3 for i P r0, conv.sizepq{matrix_sizeq do
4 for j P r0,matrix_sizeq do
5 msg_intris Ð

pmsg_intris ` key1rjs ¨ convri ¨matrix_size`jsq mod alphabet_size;
6 end

7 msg_intris Ð pmsg_intris`key2ri mod matrix_sizesq mod alphabet_size;
8 end

9 return msg_int;
10 Function affine_ ecb_rank(enc):
11 for key1r0s, . . . , key1rmatrix_size´1s P r0, alphabet_sizeq do
12 for key2 P r0, alphabet_sizeq do
13 letter_freqralphabet_sizes Ð t0u;
14 conv Ð encodepencq;
15 msg_intÐ hill_line_decryptpenc, key1q;
16 msg_intÐ affine_hill_line_decryptpenc, key1, key2q;
17 msg Ð decodepmsg_intq
18 for i P r0,msg.sizepqq do
19 letter_freqrmsgris ´ "a"s``;
20 end

21 letter_freq.sortpq; \\only for Algorithm 6;
22 letter_freq.sortpq; \\only for Algorithm 6;
23 scoreÐ goodness_of_fitpletter_freq, letter_freqq;
24 fit.push_backppkey1, scoreqq;
25 fit.push_backppkey1, key2, scoreqq;
26 end

27 end

28 fit.sortpq;
29 return fit;

CTR and in Figure 2.5 for CFB. Compared to ECB, we can easily see that if the �rst

and second row are identical the resulting letters are di�erent. Thus, we need the full

decryption of the Hill cipher to rank rows. After decryption, we break the resulting msg

in two parts msg0 and msg1. The �rst part contains the letters in even positions and

the second one the letters in odd positions. After we score each part, we store them in

fitr0s and, respectively, fitr1s. The last step is to sort the two vectors in descending

order by score. The case of the a�ne Hill cipher is similar.

For the Hill modes attack, we perform Opakq decryptions, while for the a�ne version the
number of decryptions is Opak`1q. Both algorithms sort k vectors of size B. Thus, the
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complexities are Opk2ak ` kB logBq and Opk2ak`1 ` kB logBq for the Hill attack and,

respectively, for the a�ne attack.

k0 k1

k0 k1
ˆ

ci´1
0

ci´1
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(a) Line 1.
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Figure 2.3: Line propagation in CBC.
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Figure 2.4: Line propagation in CTR.
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Figure 2.5: Line propagation in CFB.

2.1.3 Message Recovering Attacks

After the ranking step is over, we can proceed to the recovering step. When searching for

the original message a lot of random text is produced. To �lter random messages from

ones with meaning we use the score_function to score each message and we always

output the highest scoring one.

2.1.3.1 (A�ne) ECB

The authors of [42, 266] describe the message recovering algorithm for the Hill cipher,

but they do not provide an automatic detection method for the original message. On

the other hand, the authors of [154] trade-o� success probability for an unique output.

The gap is �lled in [167]. We present the algorithm in this section (Algorithm 5, red

text), instead of Section 2.1.1, because of its link to the a�ne version we introduce

(Algorithm 5, blue text). Due to better results in practice, in Algorithm 5 we use a
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Algorithm 4. The algorithm for ranking all possible rows for (a�ne) CBC, CTR,
CFB.
Input: The ciphertext enc and the initialization vector iv.
Output: A family of vectors fit containing all possible rows sorted by the

goodness-of-�t score.
1 Function affine_mode_rank(enc, iv):
2 for ar0s, . . . , armatrix_size´1s P r0, alphabet_sizeq do
3 for b P r0, alphabet_sizeq do
4 letter_freqrmatrix_sizesralphabet_sizes Ð t0u;
5 for i P r0,matrix_sizeq do
6 for j P r0,matrix_sizeq do
7 key1risrjs Ð arjs;
8 end

9 key2ris Ð b;
10 end

11 conv Ð encodepencq;
12 msg_intÐ mode_decryptpenc, iv, key1q;
13 msg_intÐ affine_mode_decryptpenc, iv, key1, key2q;
14 msg Ð decodepmsg_intq
15 for i P r0,msg.sizepq{matrix_sizeq do
16 for j P r0,matrix_sizeq do
17 letter_freqrjsrmsgri ¨matrix_size`js ´ "a"s``;
18 end

19 end

20 letter_freq.sortpq; \\only for Algorithm 8;
21 for i P r0,matrix_sizeq do
22 letter_freqris. sortpq; \\only for Algorithm 8;
23 scoreÐ goodness_of_fitpletter_freq, letter_freqrisq;
24 fitris. push_backppa, scoreqq;
25 fitris. push_backppa, b, scoreqq;
26 end

27 end

28 end

29 for i P r0,matrix_sizeq do
30 fitris. sortpq;
31 end

32 return fit;

di�erent scoring function8 than the one from [167]9. Also, compared to [167], we only

output the highest scoring message without lowering the success probability.

After ranking all possible rows, we need to �nd the decryption key's rows (check_variants)

and their order (check_variant). Hence, Algorithm 5 checks all possible row combina-

tions with index less than number_of_rows “ B. Note that the success probability is

8based on quadgraphs
9based on the index of coincidence
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dependent on number_of_rows10. After selecting k rows from fit, we test all possible

row permutations11, decrypt enc and rank the result. If one of the decrypted texts has a

higher score than the stored message global_msg, we overwrite global_msg and update

global_score. The main di�erences between the Hill cipher attack and the a�ne Hill

cipher attack are: the call to the a�ne ranking algorithm, the creation of k2 and the call

to the a�ne decryption algorithm.

For the same reasons as in Section 2.1.2.1, we further consider the complexity of the

score_function asOp1q. After the row ranking step, both message recovering algorithms

perform OpB!{pB ´ kq!q decryptions. Thus, the complexities for the Hill attack and for

the a�ne attack are Opkak ` B logB ` k2B!{pB ´ kq!q and, respectively, Opkak`1 `
B logB ` k2B!{pB ´ kq!q.

2.1.3.2 A�ne ECB (Second Approach)

In [266], the authors propose a ranking method for the Hill cipher with unknown encoding

and decoding functions. The basic idea is that encoding functions act as substitution

ciphers and thus leave letter distributions intact. According to their method, to score a

row one needs to sort in ascending order both letter_freq and occurrence and then use

Algorithm 1 to obtain the row's score. Note that Yum and Lee do not provide a message

recovering algorithm.

The a�ne Hill cipher can be seen as the composition of a Hill cipher and a Vigenère

cipher. Thus, we use Yum and Lee's ranking method to �nd K 1
1's rows (ecb_rank), de-

crypt the cryptogram using the trial K 1
1 (hill_decrypt) and then use a Vigenère message

recovery algorithm (break_vigenere) to �nd K 1
2. This method is formally described in

Algorithm 6. Note that break_vigenere12 returns the score of the trial_msg. Unfor-

tunately, we can not use only this score to �lter messages. For example, when k “ 2

the texts easy and aeys have the same trial_score. Hence, we use a second scoring

system based on quadgrams to di�erentiate between trial messages with the same score.

Note that the only di�erence between check_variants_2 and check_variants is that

the latter is using the check_variant_2 function.

We consider the complexity of break_vigenere as being Op1q, since it is linear in the

cryptogram's size. Then, the complexity of the second algorithm is Opkak ` B logB `
k2B!{pB ´ kq!q.

10see Section 2.1.4 for the experimental results
11σi denotes the ith permutation of length mat_size
12see Appendix B for a concrete algorithm
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Algorithm 5. The algorithm for breaking (a�ne) ECB.
Input: The ciphertext enc, the bound number_of_rows.
Output: The best possible message global_msg and its associated score

global_score.
1 Function check_variant(enc, rows,& global_score,& global_msg):
2 best_scoreÐ ´8;
3 for i P r0,matrix_size!q do
4 for s P r0,matrix_sizeq do
5 for t P r0,matrix_sizeq do
6 key1rssrts Ð rowsrσirsss. key1rts;
7 end

8 key2rss Ð rowsrσirsss. key2;
9 end

10 trial_msg Ð hill_decryptpenc, key1q;
11 trial_msg Ð affine_hill_decryptpenc, key1, key2q;
12 trial_scoreÐ score_functionptrial_msg, quad_freq, quad_default, 4q;
13 if trial_score ą best_score then
14 best_scoreÐ trial_score;
15 best_msg Ð trial_msg;
16 end

17 end

18 if best_score ą global_score then
19 global_scoreÐ best_score;
20 global_msg Ð best_msg;
21 end

22 Function check_variants(enc, fit, number_of_rows):
23 global_scoreÐ ´8;
24 global_msg Ð "";
25 for i0 P r0, number_of_rowsq do
26 for i1 P ri0 ` 1, number_of_rowsq do
27 ¨ ¨ ¨
28 for imatrix_size´1 P rimatrix_size´2 ` 1, number_of_rowsq do
29 trial_rowsÐ ∅;
30 for j P r0,matrix_sizeq do
31 trial_rows.push_backpfitrijsq;
32 end

33 check_variantpenc, trial_rows, global_score, global_msgq;
34 end

35 end

36 end

37 return pglobal_score, global_msgq;
38 Function affine_ ecb_attack(enc, number_of_rows):
39 fitÐ affine_ ecb_rankpencq;
40 return check_variantspenc, fit, number_of_rowsq;
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Algorithm 6. The algorithm for breaking a�ne ECB (second approach).
Input: The ciphertext enc, the bound number_of_rows.
Output: The best possible message global_msg and its associated score

global_score.
1 Function check_variant _2(enc, rows,& global_score,& global_msg):
2 best_scoreÐ ´8;
3 for i P r0,matrix_size!q do
4 for s P r0,matrix_sizeq do
5 for t P r0,matrix_sizeq do
6 key1rssrts Ð rowsrσirsss. key1rts;
7 end

8 end

9 hill_msg Ð hill_decryptpenc, key1q;
10 ptrial_score, trial_msgq Ð break_vigenerephill_msgq;
11 if trial_score ą best_score then
12 best_scoreÐ trial_score;
13 best_msg Ð trial_msg;
14 end

15 if trial_score ““ best_score then
16 first_quad_scoreÐ

score_functionpbest_msg, quad_freq, quad_default, 4q;
17 second_quad_scoreÐ

score_functionptrial_msg, quad_freq, quad_default, 4q;
18 if second_quad_score ą first_quad_score then
19 best_msg Ð trial_msg;
20 end

21 end

22 end

23 if best_score ą global_score then
24 global_scoreÐ best_score;
25 global_msg Ð best_msg;
26 end

27 Function affine_ecb_attack_2(enc, number_of_rows):
28 fitÐ ecb_rankpencq;
29 return check_variants_2penc, fit, number_of_rowsq;

2.1.3.3 (A�ne) CBC, CTR, CFB

The main di�erence between ECB and the other modes is that after the ranking step is

over, in the former case we know the exact position of the key rows. Thus, in Algorithm 7

we iterate over all rows (check_variants_mode), decrypt the cryptogram and then score

the result (check_variant_mode).

The check_variants_mode function performs OpBkq decryptions. Thus, Algorithm 7's

complexity for the Hill based modes attack and for the a�ne versions is Opk2ak `
kB logB ` k2Bkq and, respectively, Opk2ak`1 ` kB logB ` k2Bkq.
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Algorithm 7. The algorithm for breaking (a�ne) CBC, CTR, CFB.
Input: The ciphertext enc, the initialization vector iv, the bound

number_of_rows.
Output: The best possible message global_msg and its associated score

global_score.
1 Function check_variant_mode(enc, iv, rows,& global_score,& global_msg):
2 for s P r0,matrix_sizeq do
3 for t P r0,matrix_sizeq do
4 key1rssrts Ð rowsrss.arts;
5 end

6 key2rss Ð rowsrss.b;
7 end

8 trial_msg Ð mode_decryptpenc, iv, key1q;
9 trial_msg Ð affine_mode_decryptpenc, iv, key1, key2q;
10 trial_scoreÐ score_functionptrial_msg, quad_freq, quad_default, 4q;
11 if trial_score ą global_score then
12 global_scoreÐ trial_score;
13 global_msg Ð trial_msg;
14 end

15 Function check_variants_mode(enc, fit, number_of_rows):
16 global_scoreÐ ´8;
17 global_msg Ð "";
18 for i0 P r0, number_of_rowsq do
19 for i1 P r0, number_of_rowsq do
20 ¨ ¨ ¨
21 for imatrix_size´1 P r0, number_of_rowsq do
22 trial_rowsÐ ∅;
23 for j P r0,matrix_sizeq do
24 trial_rows.push_backpfitrjsrijsq;
25 end

26 check_variant_modepenc, iv, trial_rows, global_score, global_msgq;
27 end

28 end

29 end

30 return pglobal_score, global_msgq;
31 Function affine_mode_attack(enc, number_of_rows):
32 fitÐ affine_mode_rankpenc, ivq;
33 return check_variants_modepenc, iv, fit, number_of_rowsq;

2.1.3.4 A�ne CBC, CTR, CFB (Second Approach)

As in the case of the a�ne Hill cipher, attacking a a�ne based mode can be interpreted

as attacking a Hill-Vigenère cipher mode of operation. We present this complementary

attack in Algorithm 8. Note that the only di�erence between check_variants_mode and

check_variants_mode_2 is that the former uses the check_variant_mode_2 function.

The time complexity of Algorithm 8 is Opk2ak ` kB logB ` k2Bkq.
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Algorithm 8. The algorithm for breaking a�ne CBC, CTR, CFB (second approach).
Input: The ciphertext enc, the initialization vector iv, the bound

number_of_rows.
Output: The best possible message global_msg and its associated score

global_score.
1 Function check_variant_mode_2(enc, iv, rows,& global_score,& global_msg):
2 for s P r0,matrix_sizeq do
3 for t P r0,matrix_sizeq do
4 key1rssrts Ð rowsrss.arts;
5 end

6 end

7 hill_msg Ð mode_decryptpenc, iv, key1q;
8 ptrial_score, trial_msgq Ð break_vigenerephill_msgq;
9 if trial_score ą global_score then
10 global_scoreÐ trial_score;
11 global_msg Ð trial_msg;
12 end

13 Function affine_mode_attack_2(enc, number_of_rows):
14 fitÐ mode_rankpenc, ivq;
15 return check_variants_mode_2penc, iv, fit, number_of_rowsq;

2.1.4 Experimental Results

We implemented Algorithms 5 to 8 in order to see the relation between B and the

algorithms' success probability13. To see the in�uence of the message's native language

on the attack algorithms' recovery rate, we tested this type of relation for eight languages:

Danish (DN), English (EN), Finnish (FN), French (FR), German (GE), Polish (PL),

Spanish (SP) and Swedish (SW). We also computed the running time of Algorithms 5

to 8 for the English language and k “ 2 (Section 2.1.4.5). Besides providing the reader

with some benchmarks, we also wanted to have a precise comparison14 between the two

a�ne attack approaches.

In our implementations, frequency tables have a “ 26 values and are derived from the

frequencies provided in [170]. For completeness, we describe the tables in Appendix A.

The quadgrams for the English language are downloaded from [170], while the digraph15

frequencies are computed from the quadgraph map. The algorithm for breaking Vigenère

is given in Appendix B.

For computing the success probability we used 100 texts with 100 letters (without diacrit-

ical marks) for each language. Each text was encrypted with a di�erent key(s)/initializa-

tion vector/counter. The texts are taken from news items found in the Leipzig Corpora

13We refer the reader to Sections 2.1.4.2 to 2.1.4.4 for the results.
14that takes into account the hidden constants found in asymptotic notations
15If abcd is a quadgraph, we consider ac as a digraph.



Secret Key Cryptography 24

Collection [119]. The keys, initialization vectors and counters are generated using the

default generator found in the GMP library [19]. When invertible keys were needed, we

computed the inverse using the Armadillo library [217] and tested if the determinant is

coprime with 26.

2.1.4.1 Unicity Distance of a Cipher

When analyzing the experimental results, the reader will observe di�erent message re-

covery rates for di�erent languages. These di�erences arise from distinct unicity dis-

tances16 for distinct languages. The exact formula for the unicity distance when a “ 26

is log2 26k{plog2 26 ´Hq, where H is the language's entropy. Note that in our case the

unicity distance is computed for one key row and we estimated the entropy from the fre-

quency tables provided in Appendix A. The results for the unicity distance are provided

in Table 2.2. We can see that in the case of the Polish language we need more letters per

row than for the Finnish language. This gap will be more pronounced when determining

the message recovery rates.

Language k “ 2 k “ 3 k “ 4

Danish 15.4323 23.1485 30.8647

English 18.2180 27.3270 36.4359

Finnish 12.0307 18.0460 24.0614

French 13.3713 20.0569 26.7425

German 15.6257 23.4386 31.2515

Polish 22.3918 33.5878 44.7837

Spanish 13.7891 20.6836 27.5781

Swedish 16.4837 24.7256 32.9674

Table 2.2: Unicity distance.

16The minimum ciphertext length required to determine the secret key almost uniquely.
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2.1.4.2 Hill Modes of Operation Message Recovery Rates

B DN EN FN FR GE PL SP SW

E
C
B 2 94 93 100 96 95 84 96 95

4 99 100 100 98 100 91 100 100

C
B
C 1 95 95 100 99 97 84 99 99

2 99 99 100 100 100 90 100 100

C
T
R 1 96 93 100 96 98 87 100 98

2 99 98 100 99 100 90 100 100

C
F
B 1 97 92 99 96 95 87 98 98

2 100 99 100 100 99 91 100 100

Table 2.3: Number of recovered messages for the Hill modes of operation when k “ 2.

B DN EN FN FR GE PL SP SW

E
C
B

8 88 59 97 90 71 22 87 80

16 95 77 100 95 86 45 96 94

32 97 87 100 98 94 68 99 99

C
B
C

4 86 57 99 92 71 18 91 78

8 93 68 99 96 80 34 96 86

16 96 80 100 96 89 55 97 96

C
T
R

4 64 40 84 65 46 11 68 45

8 80 59 94 87 67 19 83 66

16 91 75 97 93 80 48 92 77

C
F
B

4 85 53 99 90 73 12 89 78

8 93 66 99 94 81 36 94 87

16 96 79 100 97 91 52 96 96

Table 2.4: Number of recovered messages for the Hill modes of operation when k “ 3.
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B DN EN FN FR GE PL SP SW

E
C
B

512 78 48 97 89 72 10 85 74

1024 88 65 98 91 89 19 94 86

2048 95 80 99 95 94 39 95 93
C
B
C

32 78 50 97 89 69 13 88 72

64 87 67 99 91 86 21 93 84

128 93 78 99 95 94 45 95 93

C
T
R

32 71 37 91 77 55 6 80 64

64 87 58 97 90 79 21 90 83

128 93 75 100 95 94 40 99 88

C
F
B

32 78 48 97 88 69 14 86 73

64 87 65 98 91 85 18 92 85

128 93 75 99 95 95 45 94 95

Table 2.5: Number of recovered messages for the Hill modes of operation when k “ 4.

2.1.4.3 A�ne Hill Modes of Operation Message Recovery Rates (First Ap-

proach)

B DN EN FN FR GE PL SP SW

E
C
B

2 89 80 100 90 88 54 93 92

4 97 94 100 98 99 79 98 99

8 99 99 100 99 99 87 99 100

C
B
C

1 93 85 100 99 85 57 96 93

2 97 88 100 99 93 68 98 100

4 99 95 100 99 99 78 100 100

C
T
R

1 92 72 100 93 90 48 96 95

2 97 88 100 96 98 68 99 99

4 98 97 100 99 99 78 100 100

C
F
B

1 89 80 100 95 91 54 98 93

2 97 92 100 98 97 69 100 99

4 99 97 100 99 99 83 100 100

Table 2.6: Number of recovered messages for the a�ne Hill modes of operation when
k “ 2.
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B DN EN FN FR GE PL SP SW

E
C
B

32 70 43 97 86 49 3 85 63

64 84 50 99 91 62 11 87 75

128 93 65 99 93 79 21 94 88

C
B
C

32 71 40 98 86 47 5 83 61

64 82 50 99 93 65 11 90 74

128 90 65 99 93 78 25 95 97

C
T
R

32 35 13 56 40 19 3 37 18

64 58 28 85 63 36 6 60 45

128 81 49 98 82 59 13 83 77

C
F
B

32 70 38 97 87 50 3 83 74

64 84 49 99 93 64 8 89 86

128 91 63 99 93 77 23 94 96

Table 2.7: Number of recovered messages for the a�ne Hill modes of operation when
k “ 3.

B DN EN FN FR GE PL SP SW

E
C
B

16384 82 53 98 90 79 14 89 79

32768 92 69 99 93 93 26 94 88

65536 96 83 100 95 95 54 96 94

C
B
C

16384 80 53 98 89 76 14 88 78

32768 89 69 99 93 92 27 94 87

65536 96 80 100 95 95 61 96 93

C
T
R

16384 77 46 95 86 63 11 86 74

32768 87 66 98 92 89 26 92 85

65536 95 79 100 97 95 53 96 92

C
F
B

16384 81 53 98 89 76 15 88 77

32768 90 68 99 93 92 27 94 87

65536 96 81 100 95 95 59 96 93

Table 2.8: Number of recovered messages for the a�ne Hill modes of operation when
k “ 4.
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2.1.4.4 A�ne Hill Modes of Operation Message Recovery Rates (Second

Approach)

B DN EN FN FR GE PL SP SW
E
C
B

128 73 59 59 40 70 7 28 72

256 92 83 98 97 90 32 98 89

512 100 98 100 100 99 100 100 100

C
B
C

16 84 35 99 96 82 2 97 63

32 95 57 100 97 92 4 100 87

64 98 84 100 98 96 10 100 95

C
T
R

16 65 33 94 96 68 1 96 49

32 92 58 100 97 87 5 100 82

64 99 80 100 98 96 12 100 95

C
F
B

16 79 39 99 95 80 2 97 63

32 94 60 100 98 91 6 100 86

64 98 80 100 98 95 9 100 95

Table 2.9: Number of recovered messages for the secret coding a�ne Hill modes of
operation when k “ 2.

B DN EN FN FR GE PL SP SW

E
C
B

4096 24 25 63 71 44 0 71 32

8192 53 54 97 98 71 4 94 64

16384 99 93 100 100 98 89 100 97

C
B
C

4096 34 34 96 91 55 0 92 45

8192 68 62 100 99 79 3 100 76

16384 100 96 100 100 98 47 100 96

C
T
R

4096 30 36 88 88 54 0 91 44

8192 68 60 100 99 81 3 100 77

16384 100 96 100 100 98 41 100 100

C
F
B

4096 34 35 96 92 56 0 92 47

8192 65 62 100 99 82 3 100 74

16384 100 95 100 100 98 47 100 100

Table 2.10: Number of recovered messages for the secret coding a�ne Hill modes of
operation when k “ 3.
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B DN EN FN FR GE PL SP SW

E
C
B

200000 46 32 86 76 30 0 82 53

300000 73 64 96 98 71 2 95 78

400000 93 86 100 100 91 16 100 94

C
B
C

200000 54 38 89 83 37 0 91 56

300000 76 67 97 99 76 1 98 82

400000 93 87 100 100 91 5 100 94

C
T
R

200000 54 41 90 84 38 0 85 56

300000 76 67 96 95 73 2 98 82

400000 95 86 100 100 94 4 100 95

C
F
B

200000 54 38 90 83 38 0 91 54

300000 76 66 97 99 76 1 97 81

400000 94 87 100 100 91 6 100 94

Table 2.11: Number of recovered messages for the secret coding a�ne Hill modes of
operation when k “ 4.

2.1.4.5 Running time

In this section we provide some benchmarks for Algorithms 5 to 8. The algorithms were

run on a CPU Intel i7-4790 4.00 GHz and compiled with GCC with the O3 �ag activated

and the omp_get_wtime() function [15] was used to compute the running times. Due

to resource constrains, we stopped the experiments at k “ 3 for the Hill attacks and at

k “ 2 for the a�ne attacks. To obtain a fair comparison, when computing the running

times, we used higher B values than the one presented in Sections 2.1.4.2 to 2.1.4.4. We

present the exact margins in Table 2.12.

Mode
Hill A�ne Hill (1) A�ne Hill (2) Hill

(k “ 2) (k “ 2) (k “ 2) (k “ 3)
ECB 4 p100%q 8 p99%q 512 p98%q 128 p97%q
CBC 2 p99%q 4 p95%q 256 p96%q 128 p95%q
CTR 2 p98%q 4 p97%q 256 p98%q 128 p96%q
CFB 2 p99%q 4 p97%q 256 p98%q 128 p96%q

Table 2.12: The threshold B and the corresponding success probability for the English
language.

In Table 2.13, the second and third columns contain the total time necessary to recover

100 independent texts, the fourth and �fth columns the total time necessary to recover

8 texts. It is clear from the presented results that the �rst approach (A�ne Hill (1)) has

signi�cantly lower running times than the second approach (A�ne Hill (2)). Note that

in the case of the second approach the di�erence between the ECB attack and the rest
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of the attacks is due to the extra score_function calls made when the trial_score is

equal to the best_score.

Mode
Hill A�ne Hill (1) A�ne Hill (2) Hill

(k “ 2) (k “ 2) (k “ 2) (k “ 3)
ECB 0.94057 23.1658 1805.98 1415.60
CBC 1.75324 45.4769 379.762 1502.20
CTR 1.75827 45.9883 374.439 1423.39
CFB 1.75271 48.5864 360.428 1509.62

Table 2.13: Running times of Algorithms 5 to 8.

Let k “ 2. To see if the chosen bounds have the same success rate for other texts, we

encrypted 1000 independent texts17 and then we run Algorithms 5 and 7. The number

of plaintexts recovered is presented in Table 2.14. We can see that for the Hill based

modes the success probabilities are almost the same, while for the a�ne versions the

probabilities are a little lower than the initial estimations.

Cipher ECB CBC CTR CFB
Hill 995 987 982 982

A�ne Hill (1) 970 956 945 953

Table 2.14: Success rates for Algorithms 5 and 7 when k “ 2.

2.1.5 Future Work

The row ranking algorithms perform the same instructions for disjoint rows. Thus, an

interesting implementation direction is to parallelize Algorithms 3 and 4. The recov-

ering algorithms also perform the same instructions, but for independent keys. Hence,

Algorithms 5 and 7 can also be parallelized.

Another possible speed-up is to parallelize the algorithm presented [167] for the Hill

cipher. Note that this speed-up can also be applied to the Hill CBC mode. From a

theoretical point of view, it would be interesting to see if the Leap et.al.'s algorithm can

be tweaked to work for the a�ne Hill cipher. If it can be tweaked we might obtain faster

decryption times for the a�ne Hill and the corresponding CBC mode.

A time-memory trade-o� attack for the Hill cipher is presented in [178]. Thus, it might

be interesting to see if this attack can be adapted to the a�ne version and to the (a�ne)

modes of operation versions. From an implementation point of view, it might worth

seeing if McDevitt et.al.'s attack can be parallelized.

In [266], the authors provide a ranking algorithm when the encoding and decoding func-

tions are unknown, but they do not describe a message recovery algorithm. This cipher
17di�erent from the 100 texts used for computing the bounds
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can be seen as a composition of a substitution cipher, a Hill cipher and a second sub-

stitution cipher. Note that the two substitution ciphers do not necessarily have the

same key. A generic version of the secret coding cipher can be obtained by combining

a generic Vigenère cipher18, a Hill cipher and a second generic Vigenère cipher. Note

that in this case Yum and Lee's ranking algorithm still works. Hence, another possible

research direction is to �nd message recovery algorithms19 for this generic cipher.

In [145], Hill introduces a variation of the a�ne Hill cipher in which the elements of the

key matrix are matrices. Thus, an interesting problem is to study the impact of the

message recovering algorithms on the version presented in [145].

2.2 Grain Cipher Family

The Grain family of stream ciphers consists of four instantiations Grain v0 [140], Grain

v1 [141], Grain-128 [139] and Grain-128a [211]. Grain v1 is a �nalist of the hardware-

based eSTREAM portfolio [4], a competition for choosing both hardware and software

secure and e�cient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading of the LFSR

consists of an initialization vector (IV) and a certain string of bits P whose lengths and

structures depend on the cipher's version. Following the terminology used in [39], we

consider the IV as being padded with P . Thus, throughout this section, we use the term

padding to denote P . Note that Grain v1 and Grain-128 make use of periodic IV padding

and Grain-128a uses aperiodic IV padding.

A series of attacks against the Grain family padding techniques appeared in the literature

[38, 39, 64, 162] during the last decade. In the light of these attacks, we propose the

�rst security analysis20 of generic IV padding schemes for Grain ciphers in the periodic

as well as the aperiodic cases.

In this context, the concerns that arise are closely related to the security impact of

various parameters of the padding, such as the position and structure of the padding

block. Moreover, we consider both compact and fragmented padding blocks in our study.

We refer to the original padding schemes of the Grain ciphers as being compact (i.e.

a single padding block is used). We denote as fragmented padding the division of the

padding block into smaller blocks of equal length21.

18By a generic Vigenère cipher we understand a Vigenère cipher with random alphabets.
19that might use Yum and Lee's ranking algorithm
20against slide attacks
21we consider these smaller blocks as being spread among the linear feedback register's data
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By examining the structure of the padding and analyzing its compact and especially

fragmented versions, we actually study the idea of extending the key's life. The latter

could be achieved by introducing a variable padding according to suitable constraints.

Hence, the general question that arises is the following: what is to be loaded in the LFSRs

of Grain ciphers in order to obtain secure settings?. Note that our study is preliminary,

taking into account only slide attacks. We consider other types of attacks as future work.

We stress that �nding better attacks than the ones already presented in the literature

is outside the scope of this section, as our main goal is to establish sound personalized

versions of the Grain cipher. Hence, our work does not have any immediate implication

towards breaking any cipher of the Grain family. Nevertheless, our observations become

meaningful either in the lightweight cryptography scenario or in the case of an enhanced

security context (e.g. secure government applications).

Lightweight cryptography lies at the crossroad between cryptography, computer science

and electrical engineering. Thus, trade-o�s between performance, security and cost must

be considered. Given such constraints and the fact that embedded devices operate in

hostile environments, there is an increasing need for new and varied security solutions,

mainly constructed in view of the current ubiquitous computing tendency. As the Grain

family lies precisely within the lightweight primitives' category, we believe that the study

presented in the current section is of interest for the industry and, especially, government

organizations.

When dealing with security devices for which the transmission and processing of the IV

is neither so costly nor hard to handle (e.g. the corresponding communication protocols

easily allow the transmission), shrinking the padding up to complete removal might be

considered. More precisely, we suggest the use of a longer IV in such a context in order

to increase security. Moreover, many Grain-type con�gurations could be obtained if

our proposed padding schemes are used. Such con�gurations could be considered as

personalizations of the main algorithm and, if the associated parameters are kept secret,

the key's life can be extended.

2.2.1 Preliminaries

Conventions. During the following, capital letters will denote padding blocks and

small letters will refer to certain bits of the padding.

Grain is a hardware-oriented stream cipher initially proposed by Hell, Johansson and

Meier [140] and whose main building blocks are an n bit linear feedback shift regis-

ter (LFSR), an n bit non-linear feedback shift register (NFSR) and an output function.
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Because of a weakness in the output function, a key recovery attack [52] and a distin-

guishing attack [155] on Grain v0 were proposed. To solve these security issues, Grain

v1 [141] was introduced. Also, Grain-128 [139] was proposed as a variant of Grain v1.

Grain-128 uses 128-bit keys instead of 80-bit keys. Grain 128a [211] was designed to

address cryptanalysis results [34, 92, 91, 159, 231] against the previous version. Grain

128a o�ers optional authentication. We stress that, in this paper, we do not address the

authentication feature of Grain-128a.

Let Xi “ rxi, xi`1, . . . , xi`n´1s denote the state of the NFSR at time i and let gpxq
be the nonlinear feedback polynomial of the NFSR. gpXiq represents the corresponding
update function of the NFSR. In the case of the LFSR, let Yi “ ryi, yi`1, . . . , yi`n´1s
be its state, fpxq the linear feedback polynomial and fpYiq the corresponding update

function. The �lter function hpXi, Yiq takes inputs from both the states Xi and Yi.

We shortly describe the generic algorithms KLA, KSA and PRGA below. As KSA is

invertible, a state Si “ Xi}Yi can be rolled back one clock to Si´1. We further refer to

the transition function from Si to Si´1 as KSA´1.

NFSR LFSR

g f

h

zi

Figure 2.6: Output generator and key initialization of Grain ciphers.

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, an m-bit

initialization vector IV withm ă n and some �xed padding P P t0, 1uα, where α “ n´m.

The key is loaded in the NFSR, while the pair pIV, P q is loaded in the LFSR using a

one-to-one function further denoted as LoadIV pIV, P q.

Key Scheduling Algorithm (KSA). After running KLA, the output22 zi is XOR-ed

to both the LFSR and NFSR update functions, i.e., during one clock the LFSR and the

NFSR bits are updated as yi`n “ zi ` fpYiq, xi`n “ yi ` zi ` gpXiq.
22during one clock
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Pseudorandom Keystream Generation Algorithm (PRGA). After performing

KSA routine for 2n clocks, zi is no longer XOR-ed to the LFSR and NFSR update

functions, but it is used as the output keystream bit. During this phase, the LFSR and

NFSR are updated as yi`n “ fpYiq, xi`n “ yi ` gpXiq.

Figure 2.6 depicts an overview of KSA and PRGA. Common features are depicted in

black. In the case of Grain v1, the pseudorandom keystream generation algorithm does

not include the green path. The red paths correspond to the key scheduling algorithm.

The corresponding parameters of Grain v1 are described in Appendix C, while Grain-128

is tackled in Appendix D and Grain-128a in Appendix E. The appendices also include

the LoadIV functions and the KSA´1 algorithms for all versions.

Security Model. In the Chosen IV - Related Key setting (according to [39, Section

2.1]), an adversary is able to query an encryption oracle (which has access to the key

K) in order to obtain valid ciphertexts. For each query i, the adversary can choose the

oracle's parameters: an initialization vector IVi, a function Fi : t0, 1un Ñ t0, 1un and a

messagemi. The oracle encryptsmi using the Key-IV pair pFipKq, IViq. The adversary's
task is to distinguish the keystream output from a random stream.

Assumptions. Based on the results of the experiments we conducted, we further as-

sume that the output of KSA, KSA´1 and PRGA is independently and uniformly dis-

tributed. More precisely, all previous algorithms were statistically tested applying the

NIST Test Suite [13]. During our experiments we used the following setup:

1. Xi is a randomly generated n-bit state using the GMP library [19];

2. Y 2i is either 02α or 12α;

3. Yi “ Y 1i }Y 2i , where Y 1i is a randomly generated pm ´ αq-bit state using the GMP

library.

2.2.2 Generic Grain Attacks

As already mentioned in Section 2.2.1, the Grain family uses an NFSR and a nonlinear

�lter (which takes input from both shift registers) to introduce nonlinearity. If after

the initialization process, the LFSR is in an all zero state, only the NFSR is actively

participating to the output. As already shown in the literature, NFSRs are vulnerable

to distinguishing attacks [52, 267, 159].
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Weak Key-IV pair. If the LFSR reaches the all zero state after 2n clocks we say that

the pair pK, IV q is a weak Key-IV pair. An algorithm which produces weak Key-IV pairs

for Grain v1 is presented in [267]. We refer the reader to Algorithm 9 for a generalization

of this algorithm to any of the Grain ciphers.

Given a state V , we de�ne it as valid if there exists an IV P t0, 1um such that

LoadIV pIV, P q “ V , where P is the �xed padding. We further use a function ExtractIV pV q
which is the inverse of LoadIV p¨, P q. The probability to obtain a weak Key-IV pair by

running Algorithm 9 is 1{2α.

Algorithm 9. Generic Weak Key-IV Attack.
Output: A Key-IV pair pK 1, IV 1q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un and let V P t0, 1un be the zero LFSR state p0, ..., 0q
4 Run KSA´1pK}V q routine for 2n clocks and produce state S1 “ K 1}V 1
5 if V 1 is valid then

6 Set sÐ 1 and IV 1 Ð ExtractIV pV 1q
7 return pK 1, IV 1q
8 end

9 end

A re�ned version of the attack from [267] is discussed in [38] and generalized in Algo-

rithm 10. The authors of [38] give precise di�erences between keystreams generated using

the output of Algorithm 10 for Grain v1 (see Theorem 2.1), Grain-128 (see Theorem 2.2)

and Grain-128a (see Theorem 2.3).

Theorem 2.1. For Grain v1, two initial states S0 and S0,∆ which di�er only in the 79th

position of the LFSR, produce identical output bits in 75 speci�c positions among the

initial 96 key stream bits obtained during the PRGA.

Remark 2.3. More precisely, the 75 positions are the following ones:

k P r0, 95szt15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76, 80, 82, 83, 87, 90, 91, 93´ 95u.

Theorem 2.2. For Grain-128, two initial states S0 and S0,∆ which di�er only in the

127th position of the LFSR, produce identical output bits in 112 speci�c positions among

the initial 160 key stream bits obtained during the PRGA.

Remark 2.4. More precisely, the 112 positions are the following ones:

k P r0, 159szt32, 34, 48, 64, 66, 67, 79´ 81, 85, 90, 92, 95, 96, 98, 99, 106, 107, 112, 114, 117,

119, 122, 124´ 126, 128, 130´ 132, 138, 139, 142´ 146, 148´ 151, 153´ 159u.
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Theorem 2.3. For Grain-128a, two initial states S0 and S0,∆ which di�er only in the

127th position of the LFSR, produce identical output bits in 115 speci�c positions among

the initial 160 key stream bits obtained during the PRGA.

Remark 2.5. More precisely, the 115 positions are the following ones:

k P r0, 159szt33, 34, 48, 65´ 67, 80, 81, 85, 91, 92, 95, 97´ 99, 106, 107, 112, 114, 117,

119, 123´ 125, 127´ 132, 138, 139, 142´ 146, 149´ 151, 154´ 157, 159u.

Algorithm 10. Search for Key-IV pairs that produce almost similar initial
keystream.
Input: An integer r P t0, 2nu
Output: Key-IV pairs pK, IV q and pK 1, IV 1q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un and IV PR t0, 1um
4 Run KSApK}IV q routine for 2n clocks to obtain an initial state S0 P t0, 1u2n
5 Construct S0,∆ from S0 by �ipping the bit on position r
6 Run KSA´1pS0,∆q routine for 2n clocks and produce state S1 “ K 1}V 1
7 if V 1 is valid then

8 Set sÐ 1 and IV 1 Ð ExtractIV pV 1q
9 return pK, IV q and pK 1, IV 1q

10 end

11 end

We further present an algorithm that checks which keystream positions produced by

the states S and S∆ are identical (introduced in Algorithm 10). Note that if we run

Algorithm 11 we obtain less positions than claimed in Theorems 2.1 to 2.3, as shown in

Appendix F. This is due to the fact that Algorithm 11 is prone to producing internal

collisions and, thus, eliminate certain positions that are identical in both keystreams.

Note that Theorem 2.4 is a re�ned version of Remarks 2.3 to 2.5 in the sense that it

represents an automatic tool for �nding identical keystream positions.

Modi�ed Pseudorandom Keystream Generation Algorithm (PRGA1). To ob-

tain our modi�ed PRGA we replace ` (XOR) and ¨ (AND) operations in the original

PRGA with | (OR) operations.

Theorem 2.4. Let r be a position of Grain's internal state, q1 the number of desired

identical positions in the keystream and q2 the maximum number of search trials. Then,

Algorithm 11 �nds at most q1 identical positions in a maximum of q2 trials.
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Proof. We note that in Algorithm 11 the bit br on position r is set. If br is taken into

consideration while computing the output bit of PRGA then the output of PRGA1 is
also set due to the replacement of the original operations (` and ¨) with | operations.
The same argument is valid if a bit of Grain's internal state is in�uenced by br.

The above statements remain true for each internal state bit that becomes set during

the execution of Algorithm 11.

Algorithm 11. Search for identical keystream position in Grain.
Input: Integers r P t0, 2nu and q1, q2 ą 0
Output: Keystream positions ϕ

1 Set sÐ 0 and ϕÐ ∅
2 Let S P t0, 1u2n be the zero state p0, . . . , 0q
3 Construct S∆ from S by �ipping the bit on position r
4 while |ϕ| ď q1 and s ă q2 do

5 Set bÐ PRGA1pS∆q and update state S∆ with the current state
6 if b “ 0 then
7 Update ϕÐ ϕY tsu
8 end

9 Set sÐ s` 1

10 end

11 return ϕ

2.2.3 Proposed Ideas

2.2.3.1 Compact Padding

Attacks that exploit the periodic padding used in Grain-128 where �rst presented in

[64, 162] and further improved in [38]. We generalize and simplify these attacks below.

Setup. Let Y1 “ ry0, . . . , yd1´1s, where |Y1| “ d1, let Y2 “ ryd1`α, . . . , yn´1s, where
|Y2| “ d2 and let IV “ Y1}Y2. We de�ne

LoadIV pIV, P q “ Y1}P }Y2.

Let S “ rs0, . . . , sn´1s be a state of the LFSR, then we de�ne

ExtractIV pSq “ s0} . . . }sd1´1} . . . }sd1`α} . . . }sn´1.
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Padding. Let α “ λω and |P0| “ . . . “ |Pω´1| “ λ, then we de�ne P “ P0} . . . }Pω´1.

We say that P is a periodic padding of order λ if λ is the smallest integer such that

P0 “ . . . “ Pω´1.

Periodic padding of order α is further referred to as aperiodic padding.

Theorem 2.5. Let P be a periodic padding of order λ and let i “ 1, 2 denote an index.

For each (set of) condition(s) presented in Column 2 of Table 2.15 there exists an attack

whose corresponding success probability is presented in Column 3 of Table 2.15.

Conditions Success Probability

1. d1 ě λ or d2 ě λ 1{2λ

2. d1 ě λ and d2 ě λ 1{2λ´1

3. di ă λ 1{22λ´di

Table 2.15: Attack parameters for Theorem 2.5.

Proof. 1. The proof follows directly from Algorithms 13 and 15. Given the assump-

tions in Section 2.2.1, the probability that the �rst λ keystream bits are zero is

1{2λ.

2. The proof is a direct consequence of Item 1.

3. The proof is straightforward in the light of Algorithms 16 and 17. Given the

assumptions in Section 2.2.1, the probability that V 11 “ P0 is 1{2λ´d1 and the

probability that V 12 “ Pω´1 is 1{2λ´d2 . Also, the probability that the �rst λ

keystream bits are zero is 1{2λ. Since the two events are independent, we obtain

the desired success probability.

Algorithm 12. Pair1pσ, Sq.
Input: Number of clocks σ and a state S.
Output: A Key-IV pair pK 1, IV 1q or K

1 Run KSA´1pSq routine for σ clocks and produce state S1 “ pK 1}V 11}P }Pω´1}V 12q,
where |V 11 | “ d1 and |V 12 | “ d2 ´ λ

2 Set IV 1 Ð V 11}Pω´1}V 12
3 if pK 1, IV 1q produces all zero keystream bits in the first λ PRGA rounds then
4 return pK 1, IV 1q
5 end

6 return K
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Algorithm 13. Constructing Key-IV pairs that generate λ bit shifted keystream.
Output: Key-IV pairs pK 1, IV 1q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un, V1 PR t0, 1ud1´λ and V2 PR t0, 1ud2
4 Set IV Ð V1}P0}V2, S Ð K}V1}P0}P }V2 and outputÐ Pair1pλ, Sq
5 if output ‰ K then

6 Set sÐ 1
7 return pK, IV q and output

8 end

9 end

Algorithm 14. Pair2pσ, Sq.
Input: Number of clocks σ and a state S.
Output: A Key-IV pair pK 1, IV 1q.

1 Run KSApSq routine for σ clocks and produce state S1 “ pK 1}V 11}P0}P }V 12q, where
|V 11 | “ d1 ´ λ and |V 12 | “ d2

2 Set IV 1 Ð V 11}P0}V 12
3 return pK 1, IV 1q

Algorithm 15. Constructing Key-IV pairs that generate λ bit shifted keystream.
Output: Key-IV pairs pK 1, IV 1q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un, V1 PR t0, 1ud1 and V2 PR t0, 1ud2´λ
4 Set IV Ð V1}Pω´1}V2

5 if pK, IV q produces all zero keystream bits in the first λ PRGA rounds then
6 Set sÐ 1 and S Ð pK}V1}P }Pω´1}V2q
7 return pK, IV q and Pair2pλ, Sq
8 end

9 end

Remark 2.6. Let d2 “ 0, λ “ 1, P0 “ 1. If α “ 16, then the attack described in [162] is

the same as the attack we detail in Algorithm 17. The same is true for [64] if α “ 32.

Also, if α “ 32 then Algorithm 13 is a simpli�ed version of the attack presented in [38].

Remark 2.7. To minimize the impact of Theorem 2.5, one must choose a padding value

such that λ “ α and either d1 ă α or d2 ă α. In this case, because of the generic

attacks described in Section 2.2.2, the success probability can not drop below 1{2α. The
designers of Grain-128a have chosen d2 “ 0 and P “ 0xfffffffe. In [39], the authors

introduce an attack for Grain-128a, which is a special case of the attack we detail in

Algorithm 13.
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Algorithm 16. Constructing Key-IV pairs that generate λ bit shifted keystream.
Output: Key-IV pairs pK2, IV 2q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un and V2 PR t0, 1ud2
4 Set IV Ð LSBd1pP0q}V2

5 Run KSA´1pK}LSBd1pP0q}P }V2q routine for λ´ d1 clocks and produce state
S1 “ pK 1}V 11}P }V 12q, where |V 11 | “ λ and |V 12 | “ d2 ´ λ` d1

6 if V 11 “ p0 then

7 Set S Ð K 1}P0}P }V 12 and outputÐ Pair1pd1, Sq
8 if output ‰ K then

9 Set sÐ 1
10 return pK, IV q and output

11 end

12 end

13 end

Algorithm 17. Constructing Key-IV pairs that generate λ bit shifted keystream.
Output: Key-IV pairs pK2, IV 2q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un and V1 PR t0, 1ud1
4 Set IV Ð V1}MSBd2pPω´1q
5 if K, IV produces all zero keystream bits in the first λ PRGA rounds then
6 Run KSApK}V1}P }MSBd2pPω´1qq routine for λ´ d2 clocks and produce

state S1 “ pK 1}V 11}P }V 12q, where |V 11 | “ d1 ´ λ` d2 and |V 12 | “ λ
7 if V 12 “ Pω´1 then

8 Set sÐ 1 and S Ð pK 1}V 11}P }Pω´1q
9 return pK, IV q and Pair2pd2, Sq

10 end

11 end

12 end

Theorem 2.6. Let P be an aperiodic padding, 1 ď γ ă α{2 and d2 ă α. Also, let

i “ 1, 2 denote an index. If LSBγpP q “MSBγpP q, then for each condition presented in

Column 2 of Table 2.16 there exists an attack whose corresponding success probability

is presented in Column 3 of Table 2.16.

Condition Success Probability

1. di ě α´ γ 1{2α´γ

2. di ă α´ γ 1{22α´2γ´di

Table 2.16: Attack parameters for Theorem 2.6.
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Proof. 1. The �rst part of proof follows from Algorithm 13 with the following changes:

(a) λ is replaced by α´ γ;
(b) P0 is replaced by MSBα´γpP q;
(c) Pω´1 is replaced by LSBα´γpP q.

Therefore, the probability that the �rst α ´ γ keystream bits are zero is 1{2α´γ .
Similarly, the second part follows from Algorithm 15.

2. To prove the �rst part, we use the above changes on Algorithm 16, except that

instead of replacing Pω´1 we replace LSBd1pP0q withMIDrγ`d1´1,γspP q. Thus, we
obtain the probability 1{2α´γ . Similarly, for the second part we use Algorithm 17.

Remark 2.8. To prevent the attacks presented in the proof of Theorem 2.6, the padding

must be chosen such that MSBγpP q ‰ LSBγpP q, @ 1 ď γ ă α{2. Grain 128a uses such

a padding P “ 0xfffffffe. Another example was suggested in [64] to counter their

proposed attacks: P “ 0x00000001.

Constraints. Taking into account all the previous remarks, we may conclude that

good23 compact padding schemes are aperiodic and, in particular, satisfy MSBγpP q ‰
LSBγpP q, @ 1 ď γ ă α{2. Also, another constraint is the position of the padding, i.e.

d1 ă α or d2 ă α must be satis�ed.

Remark 2.9. In the compact padding case, the number of padding schemes that verify

the security restrictions represent 26% of the total 2α. The previous percentage and the

values we mention below were determined experimentally.

For α “ 16 and 0 ď d1, d2 ă 16 we obtain 17622 » 214 compact padding schemes

resistant to previous attacks. Thus, the complexity of a brute-force attack increases with

219.

For α “ 32 and 0 ď d1, d2 ă 32 we obtain 1150153322 » 230 compact padding schemes

resistant to previous attacks. Thus, the complexity of a brute-force attack increases with

236.

2.2.3.2 Fragmented Padding

Setup. Let α “ c¨β, where c ą 1. Also, let IV “ B0}B1} . . . }Bc and P “ P0}P1} . . . }Pc´1,

where |B0| “ d1, |P0| “ . . . “ |Pc´1| “ |B1| “ . . . “ |Bc´1| “ β and |Bc| “ d2. In this

23resistant to the aforementioned attacks



Secret Key Cryptography 42

case, we de�ne

LoadIV pIV, P q “ B0}P0}B1}P1} . . . }Bc´1}Pc´1}Bc.

Let S “ S0} . . . }S2c be a state of the LFSR, such that |S0| “ d1, |S1| “ . . . “ |S2c´1| “ β

and |S2c| “ d2. Then we de�ne

ExtractIV pSq “ S0}S2} . . . }S2c.

Theorem 2.7. Let i “ 1, 2 denote an index. In the previously mentioned setting, for

each (set of) condition(s) presented in Column 2 of Table 2.17 there exists an attack

whose corresponding success probability is presented in Column 3 of Table 2.17.

Conditions Success Probability

1. d1 ě β or d2 ě β 1{2β

2. d1 ě β and d2 ě β 1{2β´1

3. di ă β 1{22β´di

Table 2.17: Attack parameters for Theorem 2.7.

Proof. 1. We only prove the case i “ 1 as the case i “ 2 is similar in the light of Al-

gorithm 15. The proof follows directly from Algorithm 20. Given the assumptions

in Section 2.2.1, the probability that the �rst β keystream bits are zero is 1{2β .

Algorithm 18. Update1pq.
Output: Variable value

1 Set valueÐ P0

2 for i “ 1 to c´ 1 do
3 Update valueÐ value}Pi}Pi
4 end

5 return value

2. The proof is a direct consequence of Item 1.

3. Again, we only prove the case i “ 1. The proof is straightforward in the light of

Algorithm 21. Given the assumptions in Section 2.2.1, the probability that V 11 “ P0

is 1{2β´d1 . Also, the probability that the �rst β keystream bits are zero is 1{2β .
Since the two events are independent, we obtain the desired success probability.
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Algorithm 19. Pair3pσ, Sq.
Input: Number of clocks σ and a state S.
Output: A Key-IV pair pK 1, IV 1q or K

1 Run KSA´1pSq routine for σ clocks and produce state S1 “ pK 1}V 11}value}V 12q,
where |V 11 | “ d1 and |V 12 | “ d2 ´ β

2 Set IV 1 Ð V 11}P }V 12
3 if pK 1, IV 1q produces all zero keystream bits in the first β PRGA rounds then
4 return pK 1, IV 1q
5 end

6 return K

Algorithm 20. Constructing Key-IV pairs that generate β bit shifted keystream.
Output: Key-IV pairs pK 1, IV 1q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un, V1 PR t0, 1ud1´β and V2 PR t0, 1ud2
4 Set valueÐ P0}Update1pq, IV Ð V1}P }V2 , S Ð K}V1}value}V2 and

outputÐ Pair3pβ, Sq
5 if output ‰ K then

6 Set sÐ 1
7 return pK, IV q and output

8 end

9 end

Algorithm 21. Constructing Key-IV pairs that generate β bit shifted keystream.
Output: Key-IV pairs pK 1, IV 1q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do
3 Choose K PR t0, 1un and V2 PR t0, 1ud2
4 Set valueÐ Update1pq and IV Ð LSBα´β`d1pP q}V2

5 Run KSA´1pK}LSBd1pP0q}value}V2q routine for β ´ d1 clocks and produce
state S1 “ pK 1}V 11}value}V 12q, where |V 11 | “ β and |V 12 | “ d2 ´ β ` d1

6 if V 11 “ P0 then

7 Set S Ð K 1}P0}value}V 12 and outputÐ Pair3pd1, Sq
8 if output ‰ K then

9 Set sÐ 1
10 return pK, IV q and output

11 end

12 end

13 end

Remark 2.10. Let δ ă β and β ą 1. To prevent the attacks presented in Theorem 2.7,

we have to slightly modify the structure of the IV . We need at least one block |Bi| “ δ,

where 1 ď i ď c´ 1. We further consider that |Bi| “ δ, @ 1 ď i ď c´ 1.

Theorem 2.8. Let |Bi| “ δ, @ 1 ď i ď c ´ 1. Also, let 1 ď γ ď β, 1 ď t ď c and
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0 ď j ď t´ 1. If LSBγpPc´1´jq “MSBγpPt´1´jq @j then for each (set of) condition(s)

presented in Column 2 of Table 2.18 there exists an attack whose corresponding success

probability is presented in Column 3 of Table 2.18.

Conditions Success Probability

1. d1 ě β ´ γ ` pβ ` δqpc´ tq, δ ě β ´ γ 1{2β´γ`pβ`δqpc´tq

2.
d1 ě β ´ γ ` pβ ` δqpc´ tq, δ ă β ´ γ,

MSBβ´γ´δpPc´1´jq “ LSBβ´γ´δpPt´2´jq @j
1{2β´γ`pβ`δqpc´tq

3. d1 ă β ´ γ ` pβ ` δqpc´ tq, δ ě β ´ γ 1{22β´2γ`2pβ`δqpc´tq´d1

4.
d1 ă β ´ γ ` pβ ` δqpc´ tq, δ ă β ´ γ,

MSBβ´γ´δpPc´1´jq “ LSBβ´γ´δpPt´2´jq @j
1{22β´2γ`2pβ`δqpc´tq´d1

Table 2.18: Attack parameters for Theorem 2.8.

Proof. 1. The proof follows directly from Algorithm 24. Given the assumptions in

Section 2.2.1, the probability that the �rst β ´ γ ` pβ ` δqpc ´ tq keystream bits

are zero is 1{2β´γ`pβ`δqpc´tq.

Algorithm 22. Update2pstart, stopq.
Input: Indexes start and stop
Output: Variable value

1 Set valueÐ NULL
2 for i “ start to stop do
3 Choose Ci PR t0, 1uδ
4 Update valueÐ value}Ci}Pi
5 end

6 return value

Algorithm 23. Update3pvalue1, value2q.
Input: Variables value1 and value2

Output: Variable value
1 for i “ t to c´ 1 do
2 Choose Bi PR t0, 1uδ
3 Update value1 Ð value1}Bi}Pi and value2 Ð value2}Bi
4 end

5 Set valueÐ value1}value2

6 return value

The proofs for the remaining cases presented in Table 2.18 follow directly from previous

results. Thus, we omit them.



Secret Key Cryptography 45

Algorithm 24. Constructing Key-IV pairs that generate β ´ γ ` pβ ` δqpc´ tq bit
shifted keystream.
Output: Key-IV pairs pK 1, IV 1q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do

3 Choose K PR t0, 1un, V1 PR t0, 1ud1´β`γ´pβ`δqpc´tq and V2 PR t0, 1ud2
4 Set value1 Ð P0}Update2p0, c´ t´ 2q}Cc´t´1}MSBβ´γpPc´tq and

value2 Ð value1

5 Update value1 Ð value1}P0

6 for i “ 1 to t´ 1 do
7 Choose Bi PR t0, 1uδ´β`γ
8 Update value1 Ð value1}Bi}MSBβ´γpPc´t`iq}Pi and

value2 Ð value2}Bi}MSBβ´γpPc´t`iq
9 end

10 Set value1}value2 Ð Update3pvalue1, value2q and IV Ð V1}value2}V2

11 Run KSA´1pK}V1}value1}V2q routine for β ´ γ ` pβ ` δqpc´ tq clocks and
produce state S1 “ pK 1}V 11}value1}V 12q, where |V 11 | “ d1 and
|V 12 | “ d2 ´ β ` γ ´ pβ ` δqpc´ tq

12 Set IV 1 Ð V 11}value1}V 12
13 if pK 1, IV 1q

produces all zero keystream bits in the first β ´ γ ` pβ ` δqpc´ tq PRGA rounds
then

14 Set sÐ 1
15 return pK, IV q and pK 1, IV 1q
16 end

17 end

Theorem 2.9. Let |Bi| “ δ, @ 1 ď i ď c ´ 1. Also, let 1 ď γ ď β, 1 ď t ď c and

0 ď j ď t´ 2. If δ ě β ´ γ then for each (set of) condition(s) presented in Column 2 of

Table 2.19 there exists an attack whose corresponding success probability is presented in

Column 3 of Table 2.19.

Conditions Success Probability

1.
d1 ě δ ´ β ` γ ` βpc´ t` 1q ` δpc´ tq,
MSBγpPc´1´jq “ LSBγpPt´2´jq@j

1{2δ´β`γ`βpc´t`1q`δpc´tq

2.
d1 ă δ ´ β ` γ ` βpc´ t` 1q ` δpc´ tq,
MSBγpPc´1´jq “ LSBγpPt´2´jq@j

1{22δ´2β`2γ`2βpc´t`1q`2δpc´tq´d1

Table 2.19: Attack parameters for Theorem 2.9.

Proof. 1. The proof follows directly from Algorithm 25. Given the assumptions in

Section 2.2.1, the probability that the �rst δ ´ β ` γ ` βpc ´ t ` 1q ` δpc ´ tq
keystream bits are zero is 1{2δ´β`γ`βpc´t`1q`δpc´tq.

2. The proof is similar to the proof of Theorem 2.7, Item 3.
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Algorithm 25. Constructing Key-IV pairs that generate δ´β`γ`βpc´t`1q`δpc´tq
bit shifted keystream.
Output: Key-IV pairs pK 1, IV 1q and pK, IV q

1 Set sÐ 0
2 while s “ 0 do

3 Choose K PR t0, 1un, V1 PR t0, 1ud1´δ`β´γ´βpc´t`1q´δpc´tq, V2 PR t0, 1ud2 and
Cc´t`1 PR t0, 1uδ´β`γ

4 Set value1 Ð P0}Update2p1, c´ tq}Cc´t`1 and value2 Ð value1

5 Update value1 Ð value1}P0

6 for i “ 1 to t´ 1 do
7 Choose Bi PR t0, 1uδ´β`γ
8 Update value1 “ value1}LSBβ´γpPc´t`iq}Bi}Pi and

value2 “ value2}LSBβ´γpPc´t`iq}Bi
9 end

10 Set value1}value2 Ð Update3pvalue1, value2q and IV Ð V1}value2}V2

11 Run KSA´1pK}V1}value1}V2q routine for δ ´ β ` γ ` βpc´ t` 1q ` δpc´ tq
clocks and produce state S1 “ pK 1}V 11}value1}V 12q, where |V 11 | “ d1 and
|V 12 | “ d2 ´ δ ` β ´ γ ´ βpc´ t` 1q ´ δpc´ tq

12 Set IV 1 Ð V 11}value1}V 12
13 if pK 1, IV 1q

produces all zero keystream bits in the first δ ´ β ` γ ` βpc´ t` 1q ` δpc´ tq
PRGA rounds then

14 Set sÐ 1
15 return pK, IV q and pK 1, IV 1q
16 end

17 end

Remark 2.11. Taking into account the generic attacks described in Section 2.2.2, any

probability bigger than 1{2α is super�uous. As an example, when α “ 32 we obtain

a good padding scheme for the following parameters d2 “ 0, β “ 16, δ “ 14, P0 “
0x8000, P1 “ 0x7fff.

Remark 2.12. Let c “ 2, δ ď β ´ 2, γ ă β and P0 ‰ P1. The best success probability

of a slide attack when the following conditions are met:

γ ą 1 : LSBγpP1q ‰MSBγpP0q
LSBγpP0q ‰MSBγpP1q,

γ ą 0 : LSBγpP1q ‰MSBγpP1q
LSBγpP0q ‰MSBγpP0q,

is 1{2α´1`δ ě 1{2α. The number of padding schemes that verify the security restrictions
represent 2% of the total 2α. The previous percentage and the values we mention below

were determined experimentally.
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For α “ 16, β “ 8, 1 ď δ ď 6, γ ă 8 and d1 “ d2 “ 0 we obtain 1840 » 210 fragmented

padding schemes resistant to previous attacks. Thus, the complexity of a brute-force

attack increases with 214.

For α “ 32, β “ 16, 1 ď δ ď 14, γ ă 16 and d1 “ d2 “ 0 we obtain 117113488 » 223

fragmented padding schemes resistant to previous attacks. Thus, the complexity of a

brute-force attack increases with 228.

2.2.4 Future Work

A closely related study which naturally arises is analyzing the security of breaking the

padding into aperiodic blocks. Another idea would be to study how the proposed padding

techniques interfere with the security of the authentication feature of Grain-128a. A

question that arises is if the occurrence of slide pairs may somehow be converted into a

distinguishing or key recovery attack. Another interesting point would be to investigate

what would happen to the security of the Grain family with respect to di�erential, linear

or cube attacks in the various padding scenarios we outlined. One more future work idea

could be to analyze various methods of preventing the all zero state of Grain's LFSR.

2.3 Quasigroup Substitution Permutation Networks

In its most basic form, di�erential cryptanalysis [55] predicts how certain changes in the

plaintext propagate through a cipher. When considering an ideally randomizing cipher,

the probability of predicting these changes is 1{2n, where n is the number of input bits.

Thus, in the ideal case, it is infeasible for an attacker to use these predictions when n

is, for example, 128. Unfortunately, designers use theoretical estimates based on certain

assumptions that do not always hold in practice. Hence, di�erential cryptanalysis is

often the most e�ective tool against symmetric key cryptographic algorithms [188].

Quasigroups are group-like structures that, unlike groups, are not required to be asso-

ciative and to possess an identity element. The usage of quasigroups as building blocks

for cryptographic primitives is not very common. Regardless of that, various such cryp-

tosystems can be found in the literature [164, 117, 116, 35, 90, 160].

In this paper we introduce a straightforward generalization of substitution-permutation

networks (SPN) and study its security. By replacing the group operation ‹ between keys
and (intermediary) plaintexts with a quasigroup operation b we aimed at extending the

usage of quasigroups. Unfortunately, by means of di�erential cryptanalysis we prove that
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in the case of quasigroups isotopic with a group24 the problem of breaking an SPN using

b reduces to breaking an SPN using ‹ and a substitution box (s-box) di�erent from the

initial one. Thus, if we initialize the SPN with a random secret s-box, replacing ‹ with
b brings no extra security25. In the case of static s-boxes, changing ‹ with b might even

a�ect the SPN's security.

Although the design presented in this paper is not a successful one, we think that its

usefulness is twofold. 1 Most scienti�c reports and papers published appear as sanitized

accounts26 and this gives people a distorted view of scienti�c research [179, 146, 235, 255].

This leads to a view that implies that failure, serendipity and unexpected results are not a

normal part of science [146, 220]. Hence, this report provides students with an indication

of the real processes of experimentation. 2 Negative results and false directions are

rarely reported [146, 248] and, thus, people are bound to repeat the same mistakes. By

presenting our results, we hope to provide an opportunity for others to learn where this

path leads. Hence, preventing them to make the same mistakes27.

2.3.1 Preliminaries

2.3.1.1 Quasigroups

In this section we introduce a few basic notions about quasigroups. We base our expo-

sition on [230].

De�nition 2.1. A quasigroup pG,bq is a set G equipped with a binary operation b :

GˆGÑ G, in which speci�cation of any two of the values x, y, z in the equation xby “ z

determines the third uniquely.

De�nition 2.2. For a quasigroup pG,bq we de�ne the left division x mz “ y as the

unique solution y to x b y “ z. Similarly, we de�ne the right division z m y “ x as the

unique solution x to xb y “ z.

Lemma 2.1. The following identities hold

y mpy b xq “ x, pxb yq m y “ x,

y b py mxq “ x, pxm yq b y “ x.

24Note that this is the most popular method for generating quasigroups.
25i.e. we simply obtain another instantiation of the SPN
26Authors present their results as if they achieved them in a straightforward manner and not through

a messy process.
27In [236], the author advises people to write down their mistakes so that they avoid making them

again in the future.
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De�nition 2.3. Let pG,bq, pH, ‹q be two quasigroups. An ordered triple of bijections

π, ρ, ω of a set G onto the set H is called an isotopy of pG,bq to pH, ‹q if for any x, y P G
πpxq‹ρpyq “ ωpxbyq. If such an isotopism exists, then pG,bq, pH, ‹q are called isotopic.

A popular method for constructing quasigroups [116, 117, 160, 251] is the following.

Choose a group pG, ‹q (e.g. pZ2n ,‘q or pZ2n ,`q) and three random permutations π, ρ, ω :

G Ñ G. Then, de�ne the quasigroup operation as x b y “ ω´1pπpxq ‹ ρpyqq. To see

why this leads to a quasigroup, we note that x, y and z are mapped uniquely to πpxq,
ρpyq and ωpzq and, thus, any equation of the form πpxq ‹ ρpyq “ ωpzq is in fact uniquely

resolved in the base group G given any of πpxq, ρpyq and ωpzq.

Example 2.3. Let pG, ‹q “ pZ4,‘q, ω´1 “ t2, 1, 0, 3u, π “ t2, 1, 3, 0u and ρ “ t2, 0, 3, 1u.
The corresponding quasigroup operations for pZ4,bq can be found in Table 2.20.

b 0 1 2 3

0 2 0 1 3

1 3 1 0 2

2 1 3 2 0

3 0 2 3 1

m 0 1 2 3

0 1 2 0 3

1 2 1 3 0

2 3 0 2 1

3 0 3 1 2

m 0 1 2 3

0 3 0 1 2

1 2 1 0 3

2 0 3 2 1

3 1 2 3 0

Table 2.20: Quasigroup operations.

Example 2.4. Let pG, ‹q “ pZn,´q. Then G is isotopic with pZn,`q, where ω, π “ Id

and ρpiq “ n´ i mod n [251].

2.3.1.2 Group Di�erential Cryptanalysis

Di�erential cryptanalysis was initially introduced in [55] for pZ2n ,‘q and was extended

to abelian groups in [165]. We further extend the notion to non-commutative groups.

De�nition 2.4. Let G be a set equipped with a binary operation ‚ : GˆGÑ G. The
di�erence between two elements X,X 1 P pG, ‚q is de�ned as ∆‚pX,X 1q “ X ‚X 1.

De�nition 2.5. Let pG, ‹q be a group. We de�ne the group di�erential probabilities

LDP‹pσ, α, βq “ 1

|G|
ÿ

X,X1PG
∆‹pX´1,X 1q“α

r∆‹pσpXq´1, σpX 1qq “ βs

RDP‹pσ, α, βq “ 1

|G|
ÿ

X,X1PG
∆‹pX,X 1´1q“α

r∆‹pσpXq, σpX 1q´1q “ βs.

where σ : GÑ G is a permutation and α, β P G.
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Di�erential cryptanalysis exploits the high probability of certain occurrences of plaintext

di�erences and di�erences into the last round of the cipher [143]. Thus, an attacker �rst

computes the values of a round's LDP s (RDP s). Note that in the case of groups LDP s

are dependent only on the round's non-linear layer. Hence, in the case of SPNs only the

s-box's LDP values are needed. Once the LDP s are computed, the attacker examines

likely di�erential characteristics. By a di�erential characteristic χ we understand a se-

quence of input and output di�erences such that the output di�erence of a round is the

input di�erence of the next round. Using the most likely di�erential characteristic28 an

attacker exploits information coming into the last round of the cipher to derive parts of

the last layer's subkey. More precisely, he partially decrypts the last round for each pair

of ciphertexts29 for all possible partial subkeys. When the di�erence for the input to the

last round corresponds to the value expected from χ a counter incremented. The partial

subkey value with the highest counter is assumed to be the correct partial subkey. For a

concrete example of the whole process, we refer the reader to [143].

Example 2.5. Let pG, ‹q “ pZ8,‘q and σ “ t5, 1, 0, 3, 4, 2, 6, 7u. The di�erence dis-

tribution table for the ‘ operation and the σ s-box can be found in Table 2.21. For

simplicity, we multiplied all the LDP‘pσ, α, βq values by |G|. Note that in this case

LDP‘ “ RDP‘.

H
HHH

HHα
β

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 0 2 2 0 2 0

2 0 0 4 0 0 4 0 0

3 0 2 0 2 2 0 2 0

4 0 2 0 2 2 0 2 0

5 0 0 0 0 0 4 0 4

6 0 2 0 2 2 0 2 0

7 0 0 4 0 0 0 0 4

Table 2.21: Di�erence distribution table for ‘ and σ.

2.3.2 Quasigroup Substitution Permutation Network

Let n be a positive integer and pG,bq a quasigroup. An SPN (see Figure 2.7) is an

iterated structure that processes a plaintext for r rounds. Each round consist of a

substitution layer (S1, . . . , Sn), a permutation layer (Pi) and a key mixing operation.

Also, the SPN has an initial round that consists only of a key mixing operation. Note

28When constructing di�erential trails we ignore the case α, β “ e, where e is the identity element of
group G.

29corresponding to the pairs of plaintexts used to generate χ
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Figure 2.7: Quasigroup substitution permutation network.

that for each round i the key schedule algorithm (KS) derives the subkey ki from the

initial key.

Let pi “ p1
i } . . . }pni and ki “ k1

i } . . . }kni be the intermediary plaintext and, respectively,

the subkey for round i30. Then, a left quasigroup SPN has as a key mixing operation kib
pi “ k1

i bp1
i } . . . }kni bpni , while a right quasigroup SPN has pibki “ p1

i bk1
i } . . . }pni bkni .

Remark 2.13. Let Si be randomly chosen for all i values. When pG,bq “ pZ2n ,‘q,
the distribution of LDP values is studied in [198, 199]. These results are extended in

[138], where the authors consider a generic abelian group pG,bq. When all the s-boxes

are static31, the distribution of LDP s for pZ2n ,‘q is studied for example in [196, 65, 93].

30Note that pji , k
j
i P G for all j values.

31i.e are �xed and public for all of the SPN's implementations
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2.3.3 Quasigroup Di�erential Cryptanalysis

In this section we extend the notion of di�erential cryptanalysis to quasigroup SPNs.

After showing that our generalisation is correct, we use it to study the security of SPNs

based on quasigroups isotopic to a group.

De�nition 2.6. Let K be a key, pG,bq a quasigroup and ‚ P t m,mu. We de�ne the

quasigroup di�erential probabilities

DP‚pσ, α, βq “ 1

|G|
ÿ

X,X1PG
∆‚pX,X 1q“α

r∆‚pσpXq, σpX 1qq “ βs,

KDP mpσ, α, β,Kq “ 1

|G|
ÿ

X,X1PG
∆ mpX,X 1q“α

r∆ mpσpK bXq, σpK bX 1qq “ βs,

KDPmpσ, α, β,Kq “ 1

|G|
ÿ

X,X1PG
∆mpX,X 1q“α

r∆mpσpX bKq, σpX 1 bKqq “ βs,

where σ : GÑ G is a permutation and α, β P G.

Example 2.6. Let ω´1 “ t4, 7, 0, 5, 1, 2, 3, 6u, π “ t6, 1, 5, 2, 3, 0, 4, 7u and ρ “ t5, 1, 2, 6,
4, 0, 7, 3u. Using Example 2.5 as a starting point, in Table 2.22 we present the di�erence

distribution tables for b and σ. To see that in general DP is di�erent from KDP , we

also computed the keyed distribution tables for K “ 0. The results are presented in

Table 2.23.32

When G is an associative quasigroup33, we managed to prove (Lemma 2.2) that key bits

K have no in�uence on the input di�erence value ∆‚, where ‚ P t m,mu, and, thus, can
be ignored. In other words, a keyed s-box has the same di�erence distribution table as

an unkeyed s-box (Corollary 2.1).

Lemma 2.2. If b is associative, then the following identities hold

∆ mpK bX,K bX 1q “ ∆ mpX,X 1q
∆mpX bK,X 1 bKq “ ∆mpX,X 1q.

Proof. Using Lemma 2.1 we obtain

X b∆ mpX,X 1q “ X b pX mX 1q “ X 1,

32The code used to generate Tables 2.21 to 2.24 can be found at https://github.com/teseleanu/
quasigroup_differential_4_bit.

33The need for associativity was pointed out to the author by one of the anonymous reviewers.

https://github.com/teseleanu/quasigroup_differential_4_bit
https://github.com/teseleanu/quasigroup_differential_4_bit
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HH
HHHHα

β
0 1 2 3 4 5 6 7

0 5 0 0 1 1 0 1 0

1 0 2 1 1 1 1 2 0

2 1 1 3 1 2 0 0 0

3 0 1 0 3 0 1 1 2

4 0 1 1 0 3 0 1 2

5 1 1 0 2 1 3 0 0

6 1 2 1 0 0 1 3 0

7 0 0 2 0 0 2 0 4

(a) |G| ¨DP mpσ, α, βq
H
HHH

HHα
β

0 1 2 3 4 5 6 7

0 3 2 1 0 0 0 1 1

1 1 3 0 0 1 2 1 0

2 0 0 3 1 1 2 1 0

3 0 1 2 3 0 0 1 1

4 1 0 0 1 3 0 2 1

5 2 0 0 2 0 4 0 0

6 1 1 1 1 2 0 2 0

7 0 1 1 0 1 0 0 5

(b) |G| ¨DPmpσ, α, βq

Table 2.22: Di�erence distribution tables for b and σ.

that leads to

∆ mpK bX,K bX 1q “ pK bXq mpK bX 1q
“ pK bXq mrK b pX b∆ mpX,X 1qqs
“ pK bXq mrpK bXq b∆ mpX,X 1qs
“ ∆ mpX,X 1q.

Similarly we prove the second equation.

Corollary 2.1. If b is associative, then the following identities hold

KDP mpσ, α, β,Kq “ DP mpσ, α, βq,
KDPmpσ, α, β,Kq “ DPmpσ, α, βq.
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HH
HHHHα

β
0 1 2 3 4 5 6 7

0 1 0 2 1 0 1 0 3

1 2 0 0 2 1 1 1 1

2 0 0 4 0 0 2 2 0

3 1 0 2 1 3 0 1 0

4 1 1 0 0 1 3 0 2

5 2 1 0 3 0 1 1 0

6 1 1 0 0 2 0 3 1

7 0 5 0 1 1 0 0 1

(a) |G| ¨KDP mpσ, α, β,Kq
H
HHH

HHα
β

0 1 2 3 4 5 6 7

0 0 1 0 1 1 5 0 0

1 5 0 1 0 0 0 1 1

2 1 0 5 0 0 0 1 1

3 0 1 0 1 5 1 0 0

4 1 0 1 0 0 0 1 5

5 0 1 0 5 1 1 0 0

6 0 5 0 1 1 1 0 0

7 1 0 1 0 0 0 5 1

(b) |G| ¨KDPmpσ, α, β,Kq

Table 2.23: Keyed di�erence distribution tables for b and σ.

Proof. According to De�nition 2.1, given X and K there exists an unique element Y

such that X “ K b Y . Thus, we have

DP mpσ, α, βq “ 1

|G|
ÿ

X,X1PG
∆ mpX,X 1q“α

r∆ mpσpXq, σpX 1qq “ βs

“ 1

|G|
ÿ

KbY,KbY 1PG
∆ mpKbY,KbY 1q“α

r∆ mpσpK b Y q, σpK b Y 1qq “ βs

“ 1

|G|
ÿ

KbY,KbY 1PG
∆ mpY,Y 1q“α

r∆ mpσpK b Y q, σpK b Y 1qq “ βs

“ 1

|G|
ÿ

Y,Y 1PG
∆ mpY,Y 1q“α

r∆ mpσpK b Y q, σpK b Y 1qq “ βs

“ KDP mpσ, α, β,Kq,

where for the third equality we use Lemma 2.2. Similarly, we prove the second equation.

To see if our de�nition is a generalization for the group di�erential probability, we must
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recover LDP and RDP when pG,bq is a group. We prove this in Corollary 2.2. Note

that any group is associative and, according to Corollary 2.1, equivalence to DP su�ces.

Lemma 2.3. If pG,bq forms a group then the following identities hold

∆ mpX,X 1q “ ∆bpX´1, X 1q,
∆mpX,X 1q “ ∆bpX 1, X´1q.

Proof. Note that

∆ mpX,X 1q “ αðñ X b α “ X 1

ðñ X´1 bX 1 “ αðñ ∆bpX´1, X 1q “ α.

Similarly, we prove the second equation.

Corollary 2.2. If pG,bq forms a group thenDP mpσ, α, βq “ LDPbpσ, α, βq andDPmpσ, α, βq “
RDPbpσ, α, βq.

Proof. Note that

DP mpσ, α, βq “ 1

|G|
ÿ

X,X1PG
∆ mpX,X 1q“α

r∆ mpσpXq, σpX 1qq “ βs

“ 1

|G|
ÿ

X,X1PG
∆bpX´1,X 1q“α

r∆bpσpXq´1, σpX 1qq “ βs

“ LDPbpσ, α, βq.

Similarly we prove the second equation.

The action of deriving b from ‹ gives rise to a natural question: what happens if we

derive a new quasigroup operation b̂ from b? Unfortunately, according to Lemma 2.4

we end up with another isotopy of ‹. Thus, the problem of studying KDP for a chain

of isotopies is reduced to studying KDP for an isotopy of the base operation ‹.

Lemma 2.4. We de�ne x b̂ y “ ω̂´1pπ̂pxq b ρ̂pyqq. Then there exist ω1, π1, ρ1 such that

x b̂ y “ ω1´1pπ1pxq ‹ ρ1pyqq.
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Proof. Remark that

x b̂ y “ ω̂´1pπ̂pxq b ρ̂pyqq
“ ω̂´1pω´1pπpπ̂pxqq ‹ ρpρ̂pyqqq
“ ω1´1pπ1pxq ‹ ρ1pyqq,

where ω1 “ ω̂ ˝ ω, π1 “ π̂ ˝ π and ρ1 “ ρ̂ ˝ ρ.

When the base group pG, ‹q is commutative we observe (Lemma 2.5) that taking into

consideration both mand m for designing an SPN does not make sense.

Lemma 2.5. We de�ne x b̄ y “ ω´1pρpxq ‹ πpyqq “ z, x ¯mz “ y and z m̄ y “ x. If ‹ is
commutative then the following identities hold

KDP mpσ, α, β,Kq “ KDPm̄pσ, α, β,Kq,
KDPmpσ, α, β,Kq “ KDP¯mpσ, α, β,Kq.

Proof. The lemma's hypothesis implies that

xb y “ ω´1pπpxq ‹ ρpyqq
“ ω´1pρpxq ‹ πpyqq
“ y b̄x.

Thus, ∆ mpx, yq “ ∆ m̄ py, xq for any x, y P G. Hence,KDP mpσ, α, β,Kq “ KDPm̄pσ, α, β,Kq.
The second statement is proven similarly.

Corollary 2.3. If ‹ is commutative and π “ ρ then we have KDP mpσ, α, β,Kq “
KDPmpσ, α, β,Kq.

We further study the impact of the ω, π, ρ permutations on KDP .

Lemma 2.6. Let π1 “ ω´1 ˝ π, ρ1 “ ω´1 ˝ ρ, σ1 “ ω´1 ˝ σ ˝ ω. We de�ne x ˚ y “
π1pxq ‹ ρ1pyq “ z, xzz “ y and z{y “ x. Then the following identities hold

KDP mpσ, α, β,Kq “ KDPzpσ1, ωpαq, ωpβq, ωpKqq
KDPmpσ, α, β,Kq “ KDP{pσ1, ωpαq, ωpβq, ωpKqq.

Proof. First we rewrite

KDP mpσ, α, β,Kq “ 1

|G|
ÿ

XPG
∆bpX,αq“X 1

r∆bpσpK bXq, βq “ σpK bX 1qs.
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Let ωpXq “ Y , ωpX 1q “ Y 1 and ωpαq “ A. Then

X b α “ X 1 ðñ πpXq ‹ ρpαq “ ωpX 1q
ðñ π1pωpXqq ‹ ρ1pωpαqq “ ωpX 1q
ðñ π1pY q ‹ ρ1pAq “ Y 1

ðñ Y ˚A “ Y 1. (2.1)

Let ωpKq “ K 1. Then we obtain

σpK bXq “ σpω´1pπpKq ‹ ρpXqq
“ σpω´1pπ1pωpKqq ‹ ρ1pωpXqqqq
“ ω´1pσ1pπ1pK 1q ‹ ρ1pY qqq
“ ω´1pσ1pK 1 ˚ Y qq (2.2)

and similarly

σpK bX 1q “ ω´1pσ1pK 1 ˚ Y 1qq. (2.3)

Let ωpβq “ B. Using Equations (2.2) and (2.3) we obtain

σpK bXq b β “ σpK bX 1q ðñ ω´1pσ1pK 1 ˚ Y qq b β “ ω´1pσ1pK 1 ˚ Y 1qq
ðñ π1pσ1pK 1 ˚ Y qq ‹ ρpβq “ σ1pK 1 ˚ Y 1q
ðñ π1pσ1pK 1 ˚ Y qq ‹ ρ1pωpβqq “ σ1pK 1 ˚ Y 1q
ðñ σ1pK 1 ˚ Y q ˚B “ σ1pK 1 ˚ Y 1q. (2.4)

Using Equations (2.1) and (2.4) we obtain

KDP mpσ, α, β,Kq “ 1

|G|
ÿ

XPG
∆bpX,αq“X 1

r∆bpσpK bXq, βq “ σpK bX 1qs

“ 1

|G|
ÿ

Y PG
∆˚pY,Aq“Y 1

r∆˚pσ1pK 1 ˚ Y q, Bq “ σ1pK 1 ˚ Y 1qs

“ 1

|G|
ÿ

Y,Y 1PG
∆zpY,Y 1q“A

r∆zpσ1pK 1 ˚ Y q, σ1pK 1 ˚ Y 1qq “ Bs

“ KDPzpσ1, A,B,K 1q.

Similarly, we obtain KDPmpσ, α, β,Kq “ KDP{pσ1, A,B,Kq.
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Lemma 2.6 tells us that it is irrelevant from a di�erential point of view34 if we de�ne the

quasigroup operation with ω ‰ Id or ω “ Id. Thus, we further restrict our study35 to

the quasigroup operation xb y “ πpxq ‹ ρpyq.

Lemma 2.7. Let π1 “ ρ´1 ˝ π, σ1 “ ρ´1 ˝ σ ˝ ρ. We de�ne x ˚1 y “ ρpπ1pxq ‹ yq “ z,

xz1z “ y and z{1y “ x. Then the following identity holds

KDP mpσ, α, β,Kq “ KDPz1pσ1, ρpαq, ρpβq, ρpKqq.

Proof. Let ρpXq “ Y , ρpX 1q “ Y 1 and ρpαq “ A. Then

X b α “ X 1 ðñ πpXq ‹ ρpαq “ X 1

ðñ ρpπ1pρpXqq ‹Aq “ ρpX 1q
ðñ ρpπ1pY q ‹Aq “ Y 1

ðñ Y ˚1 A “ Y 1. (2.5)

Let ρpKq “ K 1. Then we obtain

σpK bXq “ σpπpKq ‹ ρpXqq
“ σpπ1pρpKqq ‹ Y q
“ ρ´1pσ1pρpπ1pK 1q ‹ Y qqq
“ ρ´1pσ1pK 1 ˚1 Y qq (2.6)

and similarly

σpK bX 1q “ ρ´1pσ1pK 1 ˚1 Y
1qq. (2.7)

Let ωpβq “ B. Using Equations (2.6) and (2.7) we obtain

σpK bXq b β “ σpK bX 1q ðñ ρ´1pσ1pK 1 ˚1 Y qq b β “ ρ´1pσ1pK 1 ˚1 Y
1qq

ðñ π1pσ1pK 1 ˚1 Y qq ‹ ρpβq “ ρ´1pσ1pK 1 ˚1 Y
1qq

ðñ ρpπ1pσ1pK 1 ˚1 Y qq ‹Bq “ σ1pK 1 ˚1 Y
1q

ðñ σ1pK 1 ˚1 Y q ˚1 B “ σ1pK 1 ˚1 Y
1q. (2.8)

34e.g. we obtain the same di�erential probability KDP
35without loss of generality
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Using Equations (2.5) and (2.8) we obtain

KDP mpσ, α, β,Kq “ 1

|G|
ÿ

XPG
∆bpX,αq“X 1

r∆bpσpK bXq, βq “ σpK bX 1qs

“ 1

|G|
ÿ

Y PG
∆˚1 pY,Aq“Y 1

r∆˚1pσ1pK 1 ˚1 Y q, Bq “ σ1pK 1 ˚1 Y
1qs

“ KDPz1pσ1, A,B,K 1q.

Lemma 2.8. Let ρ1 “ π´1 ˝ ρ, σ1 “ π´1 ˝ σ ˝ π. We de�ne x ˚2 y “ πpx ‹ ρ1pyqq “ z,

xz2z “ y and z{2y “ x. Then the following identity holds

KDPmpσ, α, β,Kq “ KDP{2pσ1, πpαq, πpβq, πpKqq.

Lemma 2.8 is proven similarly to Lemma 2.7 and, thus, its proof is omitted. Remark

that our scope is to see how certain di�erences in the input a�ect the output of the

non-linear layer. But our non-linear layer has either the form σpρpπpxq ‹ yqq or the form
σpπpx‹ρpyqqq. Thus, a simpler strategy would be to study directly σ1 “ ρ˝σ and σ2π˝σ
instead of σ. Taking into account the previous remark, we further restrict our study to

xb1 y “ πpxq ‹ y and xb2 y “ x ‹ ρpyq.

Example 2.7. Using Examples 2.5 and 2.6 as starting points, in Table 2.24 we present

the di�erence distribution tables for b1 and b2.

Example 2.8. Let G “ Z256. To see how the maximum values for LDP‘, KDP m1 and
KDPm2 are distributed, we run the following experiment 10000 times36. We randomly

generated π, ρ and then we computed the maximum values of 256 ¨ LDP‘37. Then we

generated 1000 keys and for each π and ρ we computed the mean value of the maximum

values of 256 ¨KDP m1 and 256 ¨KDPm2 . After gathering data from these experiments

we computed the expected value Erxs and the median absolute deviationMAD for each

di�erential probability. The results are presented in Table 2.25.

We can see from Examples 2.5 and 2.7 that the di�erence distribution tables for ‘, b1

and b2 have nothing in common. Also, Example 2.8 tells us that the average probability

of success for a di�erential attack is lower in the case of b1 and b2 than in the case of

‘. Thus, it might seem that we discovered a new method for improving SPNs.

36The associated code can be found at https://github.com/teseleanu/quasigroup_differential_
8_bit.

37In this case we excluded the value 256.

https://github.com/teseleanu/quasigroup_differential_8_bit
https://github.com/teseleanu/quasigroup_differential_8_bit
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HH
HHHHα

β
0 1 2 3 4 5 6 7

0 2 2 0 0 0 0 2 2

1 0 2 0 2 2 0 0 2

2 0 0 2 2 0 0 2 2

3 2 0 2 0 2 0 0 2

4 2 0 0 2 2 0 2 0

5 0 0 0 0 0 8 0 0

6 2 2 2 2 0 0 0 0

7 0 2 2 0 2 0 2 0

(a) |G| ¨KDP m1pσ, α, β,Kq
H
HHH

HHα
β

0 1 2 3 4 5 6 7

0 2 2 2 2 0 0 0 0

1 2 0 0 2 2 0 0 2

2 0 0 2 2 2 0 2 0

3 0 2 0 2 0 0 2 2

4 2 2 0 0 2 0 2 0

5 0 0 0 0 0 8 0 0

6 2 0 2 0 0 0 2 2

7 0 2 2 0 2 0 0 2

(b) |G| ¨KDPm2pσ, α, β,Kq

Table 2.24: Di�erence distribution tables for b1 and b2.

LDP‘ KDP m1 KDPm2

Erxs 11.3550 7.56167 7.56204

MAD 1.067740 0.036824 0.036817

Table 2.25: Distribution of maximal di�erential probabilities.

Unfortunately, this is not the case. Let's review what we want to do. We want to study

how input di�erences a�ect the output di�erences of a keyed s-box σK . Since K and,

for example, π are generated as a pair, for a di�erential attack to work we do not really

need to know K. The value πpKq su�ces. Thus, another way of studying the output

di�erences of SK is by using ∆‹. According to Lemma 2.9 the resulting di�erential

probability is independent of πpKq. Hence, the choice for the permutation that acts on

the key is irrelevant. This leads to the fact that using an isotopy is identical38 to using

the base operation.

Lemma 2.9. The following identities hold

∆‹ppπpKq ‹Xq´1, πpKq ‹X 1q “ ∆‹pX´1, X 1q,
∆‹pX ‹ πpKq, pX 1 ‹ πpKqq´1q “ ∆‹pX,X 1´1q.

38from a di�erential point of view
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Proof. We simply remark that

∆‹ppπpKq ‹Xq´1, πpKq ‹X 1q “ X´1 ‹ πpKq´1 ‹ πpKq ‹X 1

“ X´1 ‹X 1 “ ∆‹pX´1, X 1q.

Similarly we obtain the second equation.

To summarise all the lemmas and observations we provide the reader with Proposi-

tion 2.1.

Proposition 2.1. A quasigroup SPN derived from a group SPN using an isotopy has

the same di�erential security as the same group SPN instantiated with a di�erent s-box.



Chapter 3

Public Key Cryptography

One of the problems associated with secret key cryptography is key distribution. An

elegant solution for this inconvenience is provided by public/asymmetric key cryptogra-

phy. In an asymmetric setting a participant possesses a pair of keys: a public key and an

associated secret key. The public key is known by everybody and is bound to the partic-

ipant's identity. Using the public key, any party can send messages to the owner, while

he can read them using his secret key. Compared to secret key systems1, in the public

key setting there is no need for a secure channel in order to disseminate the participants'

public keys. Another attractive property of asymmetric algorithms is that their security

can, in most cases, be reduced to di�cult computational problems.

Although initially developed for solving the key distribution problem, public key cryp-

tography has expanded and incorporates other application such as encryption schemes,

digital signatures or zero-knowledge protocols. In this chapter we develop various ex-

amples for the previously mentioned applications and relate their security to some well

known hardness assumptions.

Conventions. For simplicity, public parameters will be implicit when describing an

algorithm.

3.1 Hardness Assumptions

The building blocks of public key cryptographic schemes are based on intractable com-

putational problems. By themselves, these computational problems do not solve any

1where a secure channel is needed to distribute the communication key to the participants

62
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cryptographic problem relevant to a user's security goal. But, through careful manipu-

lations, cryptographers manage to design primitives useful to this end. However, these

primitives are secure only if we assume PPT adversaries2.

In this section we provide the reader with two main classes of assumptions. The �rst

class relates to the discrete logarithm problem over cyclic groups and the second to the

factoring of composite integers.

3.1.1 Di�e-Hellman Assumptions

De�nition 3.1 (Computational Di�e-Hellman - cdh). Let G be a cyclic group of order

q, g a generator of G and let A be a PPT algorithm that returns an element from G on

input pgx, gyq. We de�ne

ADV cdh
G,g pAq “ PrrApgx, gyq “ gxy|x, y $ÐÝ Zq̊ s.

If ADV cdh
G,g pAq is negligible for any PPT algorithm A, we say that the Computational

Di�e-Hellman problem is hard in G.

De�nition 3.2 (Decisional Di�e-Hellman - ddh). Let G be a cyclic group of order q,

g a generator of G. Let A be a PPT algorithm which returns 1 on input pgx, gy, gzq if
gxy “ gz. We de�ne

ADV ddh
G,g pAq “ |PrrApgx, gy, gzq “ 1|x, y $ÐÝ Zq̊ , z Ð xys

´ PrrApgx, gy, gzq “ 1|x, y, z $ÐÝ Zq̊ s|.

If ADV ddh
G,g pAq is negligible for any PPT algorithm A, we say that the Decisional Di�e-

Hellman problem is hard in G.

De�nition 3.3 (Hash Di�e-Hellman - hdh). Let G be a cyclic group of order q, g a

generator of G and H : G Ñ Zq̊ a hash function. Let A be a PPT algorithm which

returns 1 on input pgx, gy, zq if Hpgxyq “ z. We de�ne

ADV hdh
G,g,HpAq “ |PrrApgx, gy, Hpgxyqq “ 1|x, y $ÐÝ Zq̊ s

´ PrrApgx, gy, zq “ 1|x, y, z $ÐÝ Zq̊ s|.

If ADV hdh
G,g,HpAq is negligible for any PPT algorithm A, we say that the Hash Di�e-

Hellman problem is hard in G.
2In practice all adversaries are computationally bounded.
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De�nition 3.4 (Entropy Smoothing - es). Let G be a cyclic group of order q, K the

key space and H “ thiuiPK a family of keyed hash functions, where each hi maps G to

Zq̊ . Let A be a PPT algorithm which returns 1 on input pi, yq if y “ hipzq, where z is

chosen at random from G. Also, let We de�ne

ADV es
H pAq “ |PrrApi, hipzqq “ 1|i $ÐÝ K, z $ÐÝ Gs ´ PrrApi, hq “ 1|i $ÐÝ K, h $ÐÝ Zq̊ s|.

If ADV es
H pAq is negligible for any PPT algorithm A, we say that H is Entropy Smoothing.

The action of choosing a random element from an entropy smoothing family H is further

referred to as �H is es�.

Remark 3.1. In [95], the authors prove that CBC-MAC, HMAC and Merkle-Damgård

constructions satisfy the above de�nition, as long as the underlying primitives satisfy

some security properties.

Remark 3.2. The hdh assumption was formally introduced in [24, 25], although it was

informally introduced as a composite assumption in [270, 48]. According to [48], the hdh

assumption is equivalent with the cdh assumption in ROM. If the ddh assumption is

hard in G and H is es, then the hdh assumption is hard in G [24, 193, 223]. In [112],

the authors show that the hdh assumption holds, even if the ddh assumption is relaxed

to the following assumption: G contains a large enough group in which ddh holds. One

particular interesting group is Zp̊ , where p is a �large�3 prime. According to [112], it is

conjectured that if G is generated by an element g P Zp̊ of order q, where q is a �large�4
prime that divides p ´ 1, then the ddh assumption holds. The analysis conducted in

[112] provides the reader with solid arguments to support the hypothesis that hdh holds

in the subgroup G Ă Zp̊ .

Hashed Di�e-Hellman Key Exchange (HKE). Based on the hdh assumption we

describe a key exchange protocol5 in Figure 3.1. A formal analysis of this design can be

found in [24, 25, 95].

3at least 2048 bits, better 3072 bits
4at least 192 bits, better 256 bits
5a high level description of the IKE protocols [136, 153]
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Alice Bob

xA
$ÐÝ Zq̊ xB

$ÐÝ Zq̊
yA Ð gxA yB Ð gxB

yAÝÝÝÝÝÝÝÝÝÑ
yBÐÝÝÝÝÝÝÝÝÝ

k Ð HpyxAB q k Ð HpyxBA q

Figure 3.1: The Hashed Di�e-Hellman key exchange protocol.

3.1.2 2k-th power residue

There are several ways to generalize the Legendre symbol to higher powers. We further

consider the 2k-th power residue symbol as presented in [259]. The classical Legendre

symbol is obtained when k “ 1.

De�nition 3.5. Let p be an odd prime such that 2k|p´ 1. Then the symbol

ˆ

a

p

˙

2k
“ a

p´1

2k mod p

is called the 2k-th power residue symbol modulo p, where a
p´1

2k P Zp.

Properties. The 2k-th power residue symbol satis�es the following properties

1. If a ” b mod p, then
ˆ

a

p

˙

2k
“

ˆ

b

p

˙

2k
;

2.
ˆ

a2k

p

˙

2k
“ 1;

3.
ˆ

ab

p

˙

2k
“

ˆ

a

p

˙

2k

ˆ

b

p

˙

2k
mod p;

4.
ˆ

1

p

˙

2k
“ 1 and

ˆ´1

p

˙

2k
“ p´1qpp´1q{2k .

Remark 3.3. The Jacobi symbol extends the Legendre symbol to composite moduli.

If n “ pe11 ¨ ¨ ¨ pemm is the prime factorization of the positive integer n, then the Jacobi

symbol of a modulo n is

ˆ

a

n

˙

“
ˆ

a

p1

˙e1

¨ ¨ ¨
ˆ

a

pm

˙em

.
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3.1.3 Modular Security Assumptions

De�nition 3.6 (Quadratic Residuosity - qr, Squared Jacobi Symbol - sjs and Gap
2k-Residuosity - gr). Choose two large prime numbers p, q ě 2λ and compute n “ pq.
Let A be a probabilistic polynomial-time (PPT) algorithm that returns 1 on input px, nq
or px2, nq or px, k, nq if x P QRn or Jn or JnzQRn. We de�ne

ADV qr

A pλq “
ˇ

ˇ

ˇ
PrrApx, nq “ 1|x $ÐÝ QRns ´ PrrApx, nq “ 1|x $ÐÝ JnzQRns

ˇ

ˇ

ˇ
,

ADV sjs

A pλq “
ˇ

ˇ

ˇ
PrrApx2, nq “ 1|x $ÐÝ Jns ´ PrrApx2, nq “ 1|x $ÐÝ J̄ns

ˇ

ˇ

ˇ
,

ADV gr

A,kpλq “
ˇ

ˇ

ˇ
PrrApx, k, nq “ 1|x $ÐÝ JnzQRns ´ PrrApx2k , k, nq “ 1|x $ÐÝ Zn̊s

ˇ

ˇ

ˇ
.

The Quadratic Residuosity assumption states that for any PPT algorithm A the advan-

tage ADV qr
A pλq is negligible.

If p, q ” 1 mod 4, then the Squared Jacobi Symbol assumption states that for any PPT

algorithm A the advantage ADV sjs
A pλq is negligible.

Let p, q ” 1 mod 2k. The Gap 2k-Residuosity assumption states that for any PPT

algorithm A the advantage ADV gr
A pλq is negligible.

Remark 3.4. In [51], the authors investigate the relation between the assumptions

presented in De�nition 3.6. They prove that for any PPT adversary A against the gr

assumption, we have two e�cient PPT algorithms B1 and B2 such that

ADV gr
A,kpλq ď

3

2

ˆ

pk ´ 1

3
q ¨ADV qr

B1
pλq ` pk ´ 1q ¨ADV sjs

B2
pλq

˙

.

3.2 Zero-Knowledge Protocols

The main issue addressed by ZKP is represented by identi�cation schemes (entity au-

thentication). Thus, building on the most important goal that a ZKP can achieve one

may �nd elegant solutions to various problems that arise in di�erent areas: digital cash,

auctioning, IoT, password authentication and so on.

A typical zero knowledge protocol involves a prover Peggy which possesses a piece of

secret information x associated with her identity and a veri�er V ictor whose job is to

check that Peggy really owns x. Two classical examples of such protocols (proposed for

smartcards) are the Schnorr protocol [219] and the Guillou-Quisquater protocol [131].

Working in an abstract framework, Maurer shows in [176] that the previously mentioned

protocols are actually instantiations of the same one.
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Building on Maurer's result, we considered of great interest providing the reader with

a generalized perspective of the Uni�ed Zero-Knowledge (UZK) protocol as well as a

hash variant of it. An important consequence of our generic approach is the uni�cation

of Maurer's [176], Feige-Fiat-Shamir's [103] and Chaum-Everste-Van De Graaf's [68]

protocols. Moreover, a special case of our protocol's hash version is the h-variant of the

Fiat-Shamir scheme [108, 115].

As the IoT paradigm arised, lightweight devices6 became more and more popular. Due

to the open and distributed nature of the IoT, proper security is needed for the entire

network to operate accordingly. Now let us consider the case of online wireless sensor

networks (WSNs). The lightweight nature of sensor nodes heavily restricts cryptographic

operations. Thus, the need for speci�c cryptographic solutions becomes obvious. The

Fiat-Shamir-like distributed authentication protocol presented in [78] represents such

an example. Based on this previous construction we propose a uni�ed generic zero-

knowledge protocol. Just as the result described in [78], our protocol can be applied for

securing WSNs and, more generally, IoT-related solutions. Nonetheless, our construction

o�ers �exibility when choosing the assumptions on which its security relies. A secondary

feature of our scheme is the possibility of reusing existing certi�cates when implementing

the distributed authentication protocol.

3.2.1 Preliminaries

3.2.1.1 Groups

Let pG, ‹q and pH,bq be two groups. We assume that the group operations ‹ and b are

e�ciently computable.

De�nition 3.7 (Homomorphism). Let f : GÑ H be a function (not necessarily one-to-

one). We say that f is a homomorphism if fpx ‹ yq “ fpxq b fpyq.

Throughout the rest of the paper we consider f to be a homomorphism as well as a

one-way function7. To be consistent with [176], we denote the value fpxq by rxs. Note
that given rxs and rys we can e�ciently compute rx ‹ ys “ rxs b rys, due to the fact that
f is a homomorphism.

6low-cost devices with limited resources, be it computational or physical
7meaning that it is infeasible to compute x from fpxq
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3.2.1.2 Zero-Knowledge Protocols

Let Q : t0, 1u˚ˆt0, 1u˚ Ñ ttrue, falseu be a predicate. Given a value y, Peggy will try
to convince Victor that she knows a value x such that Qpy, xq “ true. We further recall

some de�nitions from [103, 176, 125, 176].

De�nition 3.8 (Proof of Knowledge Protocol). An interactive protocol pP, V q is a proof
of knowledge protocol for predicate Q if the following properties hold

� Completeness: V accepts the proof when P has as input an x with Qpy, xq “ true;

� Soundness: there is an e�cient program K (called knowledge extractor) such that

for any P̂ (possibly dishonest) with non-negligible probability of making V accept

the proof, K can interact with P̂ and output (with overwhelming probability) an

x such that Qpy, xq “ true.

De�nition 3.9 (Zero Knowledge Protocol). A protocol pP, V q is zero-knowledge if for
every e�cient program V̄ there exists an e�cient program S, the simulator, such that

the output of S is indistinguishable from a transcript of the protocol execution between

P and V̄ . If the indistinguishability is perfect8, then the protocol is called perfect zero-

knowledge.

De�nition 3.10 (2-Extractable). Let Q be a predicate for a proof of knowledge. A

3-move protocol9 with challenge space C is 2-extractable if from any two triplets pr, c, sq
and pr, c1, s1q, with distinct c, c1 P C accepted by V ictor, one can e�ciently compute an

x such that Qpy, xq “ true.

According to [176], UZK (Figure 3.2) is a zero-knowledge protocol if the conditions from

Theorem 3.1 are satis�ed. If the challenge space C is small, then one needs several 3-move

rounds to make the soundness error negligible. We further assume that UZK satis�es

the conditions stated in Theorem 3.1.

Theorem 3.1. If values ` P Z and u P G are known such that gcdpc0 ´ c1, `q “ 1 for

all c0, c1 P C with c0 ‰ c1 and rus “ y`, then the protocol described in Figure 3.2 is

2-extractable. Moreover, a protocol consisting of α rounds is a proof of knowledge if

1{|C|α is negligible, and it is a zero-knowledge protocol if |C| is polynomially bounded.
8i.e. the probability distribution of the simulated and the actual transcript are identical
9in which Peggy sends r, V ictor sends c, Peggy sends s
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Peggy V ictor

Knows x. Knows y.
Computes y “ rxs.

step 1

Choose k $ÐÝ G.
Compute r Ð rks.

rÝÝÝÝÝÝÝÝÝÑ
step 2

Choose c $ÐÝ C Ă N.
cÐÝÝÝÝÝÝÝÝÝ

step 3

Compute sÐ k ‹ xc.
sÝÝÝÝÝÝÝÝÝÑ

step 4

If rss “ r b yc return true.

Else return false.

Figure 3.2: Maurer's Uni�ed Zero-Knowledge (UZK) Protocol.

3.2.1.3 Hash Functions

In the following, we consider the de�nitions from [115]. These concepts are further

applied in Section 3.2.4 within the security proof of our proposed generalization of the

h-variant protocol [108].

De�nition 3.11. Let δ ě 2 be an integer. An δ-collision for a hash function h is an

δ-tuple tmiuiPr1,δs such that hpm1q “ hpm2q “ . . . “ hpmδq.

De�nition 3.12. Let δ ě 2 be an integer. A hash function is δ-collision resistant if it is

computationally infeasible to �nd a δ-collision.

3.2.2 The Main Protocol

Inspired by Maurer's UZK protocol [176], we describe a UGZK protocol (Figure 3.3).

Note that the UZK scheme is a special case of the UGZK construction. We also prove

the security of our proposed construction in a Feige-Fiat-Shamir manner [103].
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3.2.2.1 Description

Let n be a positive integer and let i P r1, ns. For a given vector tziuiPr1,ns, the protocol
in Figure 3.3 is a proof of knowledge10 of a vector trxisuiPr1,ns such that zi “ rxis.
The challenge spaces Ci for the elements ci are chosen as arbitrary subsets of N, for all
i P r1, ns. For the sake of uniformity, we assume that all the challenge spaces Ci are equal
and we denote them by C. If |C| is chosen to be small, then several rounds are needed in

order to reduce the soundness error up to the point of being negligible.

When n “ 1 we obtain the UZK protocol introduced in [176]. Note that in this case G
and H need not be commutative.

Peggy V ictor

Knows txiuiPr1,ns. Knows tziuiPr1,ns.
Computes tziuiPr1,ns “ trxisuiPr1,ns.

Choose k $ÐÝ G.
Compute tÐ rks.

tÝÝÝÝÝÝÝÝÝÑ
Choose c “ tciuiPr1,ns $ÐÝ Cn Ă Nn.

cÐÝÝÝÝÝÝÝÝÝ
Compute r Ð k ‹ p‹ni“1x

ci
i q .

rÝÝÝÝÝÝÝÝÝÑ
If rrs “ tb pbni“1z

ci
i q return true.

Else return false.

Figure 3.3: A Uni�ed Generic Zero-Knowledge (UGZK) Protocol.

3.2.2.2 Security Analysis

Theorem 3.2. Let H be a commutative group and let j P r1, ns. If values `j P Z and

uj P G are known such that

� gcdpc2j ´ c1j , `jq “ 1 for all c1j , c2j P C with c1j ‰ c2j ,

� rujs “ z
`j
j ,

then by running the protocol described in Figure 3.3 for m rounds we obtain a proof

of knowledge protocol if 1{|C|nm is negligible, and a zero-knowledge protocol if |C|n is

polynomially bounded.
10provided that the conditions of Theorem 3.2 are satis�ed
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Proof. Let s “ |C|. To prove that P 's proof always convinces V , we evaluate the veri�-
cation condition:

rrs “ rk ‹ p‹ni“1x
ci
i qs “ rks b pbni“1rxisciq “ tb pbni“1z

ci
i q .

Note that a corrupt P̄ can cheat V with a negligible probability s´nm per iteration

by guessing the tciuiPr1,ns vector, preparing t “ rks b
`bni“1z

´ci
i

˘

in the �rst step, and

providing r “ k in the last step.

Next, we show that whenever V accepts P̄ 's proof with non-negligible probability, there

exists a knowledge extractor K that can print out all the xis with overwhelming prob-

ability. Let T be the truncated execution tree of pP̄ , V q for input I and random tape

RA. As in [103, Theorem 3], the algorithm we construct explores this tree by repeatedly

resetting P̄ to the root, providing the necessary steering requests and verifying which

one of the s sons of each explored vertex corresponds to a correct answer. V may ask

sn possible questions at each stage and, thus, the vertices in T may have polynomially

many sons in terms of |I|. A vertex is called heavy if its degree is larger than sn´1 (i.e.

if more than sn´1 executions of pP̄ , V q at this state are successful). Our goal in this part
of the proof is to show that all the xis can be computed from the sons of a heavy vertex

and that a PPT K can �nd a heavy vertex in T with overwhelming probability.

Let H be any heavy vertex in T and let Q be the set of queries in the form of vectors

tciuiPr1,ns which are properly answered by P̄ . It is easy to show that for any 1 ď j ď n a

set Q of more than sn´1 vectors (having the length n) must contain two vectors tc1iuiPr1,ns
and tc2i uiPr1,ns in which c1j ‰ c2j and c1i “ c2i for all i ‰ j. Since both queries were properly

answered, the two veri�cation conditions imply

rr1js “ t1j b
´

bni“1z
c1i
i

¯

and rr2j s “ t2j b
´

bni“1z
c2i
i

¯

.

However, P̄ must choose t before he obtains V 's query and, thus, t1j “ t2j . From r1j and
r2j we can obtain x̃j such that rx̃js “ zj , as

x̃j “ u
aj
j ‹ pr2´1

j ‹ r1jqbj ,

where aj and bj are computed using Euclid's extended gcd algorithm such that `jaj `
pc2j ´ c1jqbj “ 1.
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By rewriting the equations we get

rr2´1
j ‹ r1js “ rr2´1

j s b rr1js
“

´

b1
i“nz

´c2i
i

¯

b t2´1
j b t1j b

´

bni“1z
c1i
i

¯

“
´

bji“nz´c
2
i

i

¯

b
´

bni“jzc
1
i
i

¯

“ z
c1j´c2j
j ,

where for obtaining the last equality we used the commutative property of H. Thus,

rx̃js “ ruajj ‹ pr2´1
j ‹ r1jqbj s

“ rujsaj b prr2´1
j ‹ r1jsqbj

“ pz`jj qaj b pz
c1j´c2j
j qbj

“ z
`jaj`pc1j´c2j qbj
j

“ zj .

Now we show that at least half the vertices in at least one of the levels in T must be

heavy. Let αi be the ratio between the number of vertices at level i` 1 and the number

of vertices at level i in T . If αi ď p1{2sqsn for all 1 ď i ď m, then the total number

of leaves in T (which is the product of all these αi) is bounded by p1{2sqmsnm, which
is a negligible fraction of the snm possible leaves. Since we assume that this fraction is

polynomial, αi ą p1{2sqsn for at least one i, and thus at least half the vertices at this

level must contain more than sn{s sons.

To �nd a heavy vertex in T , K chooses polynomially many random vertices at each

level, and determines their degrees by repeated resets and executions of P̄ . To ensure a

uniform probability distribution in spite of the uneven degrees of the vertices, M should

explore random paths in the untruncated tree, and restart from the root whenever the

path encounters an improperly answered query. Since a non-negligible fraction of the

leaves is assumed to survive the truncation, this blind exploration of T can be carried

out in polynomial time.

The last part of the proof deals with the zero-knowledge aspect of the protocol. By using

resettable simulation in the sense of [125], the simulator S described in Algorithm 26 can

mimic the communication in pP, V̄ q with an indistinguishable probability distribution in

Opmsnq expected time, which is polynomial by our assumptions on sn.
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Algorithm 26. The simulator S.
Input: The public key tziuiPr1,ns
Output: A transcript L

1 foreach j P r1,ms do
2 Choose c “ tciuiPr1,ns at random from Cn

3 Select a random number r $ÐÝ G
4 Compute tÐ rrs b `b1

i“nz
´ci
i

˘

5 Call V̄ with input t and obtain a challenge c1
6 if c “ c1 then
7 LÐ LY tpt, c, rqu
8 end

9 else

10 Reset V̄ 's state and repeat this round with new random choices
11 end

12 end

13 return L

3.2.3 Special Cases of the UGZK protocol

In this section we describe a number of protocols as instantiations of our main UGZK

construction. Note that when n “ 1 we obtain the UZK protocol from [176]. Thus, some

schemes described in [176] are further reconsidered, while some examples are speci�c to

our UGZK protocol. Although in the original paper [176] Maurer shows how to use UZK

to prove the knowledge of a vector of secrets, our protocol UGZK is better in terms of

transcript size.

3.2.3.1 Proofs of Knowledge of a Multiple Discrete Logarithm

Let p “ 2q ` 1 be a prime number such that q is also prime. Select an element h P Hp

of order q in some multiplicative group of order p ´ 1. The multiple discrete logarithm

of a vector tziuiPr1,ns P Hn
p is a vector of exponents txiuiPr1,ns such that zi “ hxi , for all

i P r1, ns. We further describe a protocol for proving the knowledge of a multiple discrete

logarithm.

A protocol for proving knowledge of a multiple discrete logarithm can be obtained as

a special case of UGZK where pG, ‹q “ pZq,`q and H “ xhy. The one-way group

homomorphism is de�ned by rxs “ hx, while the challenge space C can be any arbitrary

subset of r0, q ´ 1s. The conditions of Theorem 3.2 are satis�ed for `j “ q and uj “ 0,

where j P r1, ns. When n “ 1 we obtain the Schnorr protocol [219]11. In the case n ě 1

and C “ t0, 1u we obtain the multiple logarithm protocol described in [68].

11This proof can be seen as a more e�cient version of a proposal made by Chaum et al. [68].
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Next we discuss a variation11 of the previously presented protocol. Let p “ 2fp1` 1 and

q “ 2fq1 ` 1 be prime numbers such that f , p1 and q1 are distinct primes. Select an

element h P ZN̊ of order f , where N “ pq. Note that p and q are secret.

Using the UGZK notations we have pG, ‹q “ pZf ,`q and H “ xhy. The one-way group

homomorphism is de�ned by rxs “ hx and the challenge space C can be any arbitrary

subset of r0, f ´ 1s. We can observe that the conditions of Theorem 3.2 are satis�ed for

`j “ f and uj “ 0, where j P r1, ns. When n “ 1 we obtain the Girault protocol [113].

3.2.3.2 Proofs of Knowledge of a Multiple eth-root

Let p and q be two large prime numbers. Compute N “ pq and choose a prime e such

that gcdpe, ϕpNqq “ 1. A multiple eth-root of a vector tziuiPr1,ns P pZN̊ qn is a base vector
txiuiPr1,ns such that zi ” xei mod N . Note that the multiple eth-root is not unique. We

further describe a protocol for proving the knowledge of a multiple eth-root.

Such a protocol can be obtained from UGZK with pG, ‹q “ pH,bq “ pZN̊ , ¨q. The

one-way group homomorphism is de�ned by rxs “ xe mod N and the challenge space C
can be any arbitrary subset of r0, e ´ 1s. The conditions of Theorem 3.2 are satis�ed

for `j “ e and uj “ z, where j P r1, ns. We stress that when e “ 2 we obtain the

protocol introduced by Feige, Fiat and Shamir [103]. In the case n “ 1 we obtain the

Guillou-Quisquater protocol [131]12.

3.2.3.3 Proofs of Knowledge of a Multiple Discrete Logarithm Representa-

tion

Let p “ 2q ` 1 be a prime number such that q is also prime. Select α elements

thjujPr1,αs P Hα
p of order q in some multiplicative group of order p´1. A multiple discrete

logarithm representation of a vector tziuiPr1,ns P pxh1, . . . , hαyqn is a vector of exponent

vectors ptx1,jujPr1,αs, . . . , txn,jujPr1,αsq such that zi “ h
xi,1
1 . . . h

xi,α
α , for all i P r1, ns. Note

that multiple discrete logarithm representations are not unique. We further describe a

protocol for proving the knowledge of a multiple discrete logarithm representation.

A protocol for proving the knowledge of a multiple representation can be instantiated

from UGZK by setting G “ Zαq with ‹ de�ned as a component-wise addition operation

and H “ xh1, . . . , hαy. The one-way group homomorphism is de�ned by rpx1, . . . , xαqs “
hx11 . . . hxαα and the challenge space C can be any arbitrary subset of r0, q ´ 1s. The

conditions of Theorem 3.2 are satis�ed for `j “ q and uj “ p0, . . . , 0q, where j P r1, ns.
12This proof is a generalization of a protocol introduced by Fiat and Shamir [108].
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When n “ 1 we obtain a protocol proposed by Maurer in [176] which is a generalization

of the protocols presented by Okamoto in [200] and Chaum et.al. in [68].

Chaum et al. [68] also provide a protocol variant for a composite n. Thus, by adapting the

protocol presented in Section 3.2.3.1 and tweaking the previously described one, we can

obtain a similar version for composite numbers. Using the notations from the protocol in

Section 3.2.3.1, we set G “ Zαf and H “ xh1, . . . , hmy, where h1, . . . , hα P Zn̊ are elements
of order f . The one-way group homomorphism is de�ned by rpx1, . . . , xαqs “ hx11 . . . hxαα

and the challenge space C can be any arbitrary subset of Zf . It is easy to see that `j “ f

and uj “ p0, . . . , 0q, where j P r1, ns.

3.2.3.4 Proofs of Knowledge of a Multiple eth-root Representation

Let p and q be two large prime numbers. Compute N “ pq and choose primes e1, . . . , eα

such that gcdpei, ϕpNqq “ 1, for i P r1, αs. A multiple eth-root representation of a vector

tziuiPr1,ns P pZN̊ qn is a vector of bases vector ptx1,jujPr1,αs, . . . , txn,jujPr1,αsq such that

zi ” xe1i,1 . . . x
eα
i,α mod N , for all i P r1, ns. Note that multiple eth-root representations

are not unique. We further describe a protocol for proving the knowledge of a multiple

eth-root representation.

A protocol for proving the knowledge of a multiple eth-root representation can be ob-

tained from UGZK if we set G “ pZN̊ qα with ‹ de�ned as multiplication applied

component-wise and pH,bq “ pZN̊ , ¨q. The one-way group homomorphism is de�ned

by rpx1, . . . , xαqs “ xe11 . . . xeαα mod N and the challenge space C can be any arbitrary

subset of r0, e ´ 1s, where e is a prime such that gcdpe, φpNqq “ 1. Since all ei are

coprime then there exist βis such that β1e1 ` . . . ` βαeα “ 1. Then, it is easy to see

that `j “ 1 and uj “ pzβ1j , . . . , zβαj q, where j P r1, ns. When n “ 1 we obtain a protocol

introduced in [239].

3.2.4 Hash Protocol Variant

In order to decrease the number of communication bits, Peggy can hash t and send Victor

the result. This method was proposed by Fiat and Shamir [108] and later analyzed in

[115]. We employ the same technique for the protocol presented in Figure 3.3 and analyze

its security.



Public Key Cryptography 76

3.2.4.1 Description

Let H be a hash function that maps elements from H into bit streams. The hash variant

of the protocol works as follows: in the �rst step Peggy sends Hptq to Victor (instead of

t) and the last step becomes

If Hptq “ H
`rrs b `bni“1z

´ci
i

˘˘

return true.

Else return false.

3.2.4.2 Security Analysis

Theorem 3.3. Let s “ |C|. If there exists a PPT algorithm P̄ such that the probability

that P̄ is accepted by an honest veri�er is greater than pδ´1q|C|´n`ε, where ε ą 0, then

there exists a PPT algorithm P̃ which, with overwhelming probability, either inverts r¨s
or �nds a δ-collision for h.

Proof. Let Ω be the set of p̃ elements in which P̃ picks its random values and E be the set

Cn, both of them characterized by the uniform distribution. For each value pω, eq P ΩˆE,
P̃ passes the protocol (and we say it is a success) or not. Let S be the subset Ω ˆ E

composed of all possible successes. Our assumption is that

|S|
|Ωˆ E| ą pr ´ 1q|C|´n ` ε

with ε ą 0 and |Ωˆ E| “ p̃ ¨ sn.

Let Er “ te P E | pω, eq is a successu and Ωr “ tω P Ω | |Er| ě ru. We have that

|S| ď |Ωr| ¨ sn ` pr ´ 1q ¨ pp̃´ |Ωr|q.

Thus,

|S|
|Ωˆ E| ď

„ |Ωr|
|Ω| ` pr ´ 1q ¨

ˆ

s´n ´ |Ωr|
|Ωˆ E|

˙

ď |Ωr|
|Ω| ` pr ´ 1q ¨ s´n

which implies

|Ωr|
|Ω| ě ε.

Let P̂ be the PPT algorithm obtained by resetting P̃ ε´1 times. With constant prob-

ability, P̂ picks ω in Ωr and the probability can be made close to 1 by repeating the
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execution of P̂ . At the end, δ values triuiPr1,δs are found such that, for distinct chal-

lenges tciuiPr1,δs P pCnqδ

H
´

rr1s b
´

bni“1z
´ci,1
i

¯¯

“ H
´

rr2s b
´

bni“1z
´ci,2
i

¯¯

“ . . . “ H
´

rrδs b
´

bni“1z
´ci,δ
i

¯¯

.

Now, we have two possibilities. In the �rst case, two of the values, say rr1sb
´

bni“1z
´ci,1
i

¯

and rr2s b
´

bni“1z
´ci,2
i

¯

, are equal before hashing. Let C´ “ t´c | c P Cu. Then,

rr1r
´1
2 s “

´

bni“1z
c1i
i

¯

, where c1 P C´Y C. This contradicts the intractability of r¨s. In the

second case, all these values are pairwise distinct and a δ-collision for H has been found.

This contradicts our assumption regarding H.

Remark 3.5. This result suggests the use of hash-functions which are only resistant

to δ-collisions (with δ ą 2), such that the hash values computed in the �rst pass can

be made much shorter. Indeed, the decrease of the security level can be balanced by

sending a slightly larger value of c in the second pass. More precisely, if δ “ sn
1
, we

choose c P Cn`n1 instead of c P Cn.

3.2.5 A Distributed Uni�ed Protocol

A Fiat-Shamir-like distributed authentication protocol was proposed in [78]. Given our

UGZK construction, we describe a generic collective authentication protocol which can

be seen as a natural follow up of the main result in [78].

3.2.5.1 Description

Let us consider an n-node network consisting of N1, ...,Nn. The nodes Ni can be seen

as users and the base station T as a trusted center. To achieve the authentication of the

entire network, we propose a uni�ed Fiat-Shamir-like construction which we detail next.

1. Let xi be a secret piece of information given to node Ni. First, the network

topology has to converge and a spanning tree needs to be constructed (e.g. with an

algorithm similar with the one presented in [185]). Then, T sends an authentication

request message to all the Ni directly connected to it, a message which contains

a commitment to c (see 3.) to ensure the protocol's zero-knowledge property even

against dishonest veri�ers.

2. After receiving an authentication request message:

� Each Ni generates a private ki and computes ti Ð rkis;
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� The Nis send authentication messages to all their (existing) children;

� After the children respond, nodes Ni compute ti Ð ti b pbjtjq and send the

result up to their parents. Note that the tjs are sent by the nodes' children.

Such a construction permits the network to compute the b operation of all the

tis and send the result tc to the top of the tree in d steps, where d represents the

degree of the spanning tree. We refer the reader to Figure 3.4 for a toy example of

this step.

3. T sends a random c P Cn as an authentication challenge to theNi directly connected

to it.

4. After receiving an authentication challenge c:

� Each Ni computes ri Ð ki ‹ xcii ;
� The Nis then send the authentication challenge to all their (existing) children;

� After the children respond, the Nis compute ri Ð ri ‹ p‹jrjq and send the

result to their parents. Note that the rjs are sent by the nodes' children.

The network therefore computes collectively the ‹ operation of all the ri's and

transmits the result rc to T . Again, we refer the reader to Figure 3.4 for a toy

example of this step.

5. After receiving rc, T checks that rrcs “ tc b pbni“1z
ci
i q, where z1, . . . , zn are the

public keys corresponding to x1, . . . , xn respectively.

T tc “ t4

N4 t4 “ rk4s b t1 b t2 b t3

N2

t2 “ rk2s
N3

t3 “ rk3s
N1

t1 “ rk1s

T rc “ r4

N4 r4 “ k4 ‹ xc44 ‹ r1 ‹ r2 ‹ r3

N2

r2 “ k2 ‹ xc22

N3

r3 “ k3 ‹ xc33

N1

r1 “ k1 ‹ xc11

Figure 3.4: The proposed algorithm running on a network consisting of 4 nodes:
computation of tc (left) and of rc (right).

Remark 3.6. The protocol we have just described may be interrupted at any step and

such an action results in a failed authentication.
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3.2.5.2 Security Analysis

Theorem 3.4. Let H be a commutative group and let j P r1, ns. If an adversary corrupts
n1 ă n nodes and if values `j P Z and uj P G are known such that

� gcdpc2j ´ c1j , `jq “ 1 for all c1j , c2j P C with c1j ‰ c2j ,

� rujs “ z
`j
j ,

then by running the protocol described in Section 3.2.5.1 for m rounds we obtain a

proof of knowledge protocol if 1{|C|pn´n1qm is negligible, and a zero-knowledge protocol

if |C|pn´n1q is polynomially bounded.

Proof. If an adversary corrupts n1 nodes, then n1 secret keys xi are known to him. Thus,
the protocol is equivalent with a UGZK protocol with n ´ n1 secrets. Hence, using

Theorem 3.2 we obtain our statement.

3.2.5.3 Complexity Analysis

The number of operations necessary for authenticating the whole network depends on

the topology. Precise complexity evaluations are given in Table 3.1. Note that each node

performs in average only a few operations (a constant number).

Let d be the degree of the minimum spanning tree of the network. Then, only Opdq
messages are sent and, if we do not consider atypical cases, d “ Oplog nq. Put di�erently,
throughout the authentication process only a logarithmic number of messages is sent.

3.2.5.4 Variations

When implementing the distributed zero knowledge protocol several trade-o�s are pos-

sible. Note that when doing so any combination of the trade-o�s described below may

be used.

Operation Number of computations

r¨s pn` 1qm
Exponentiation nm

b ď 2nm

‹ ď 2nm

Table 3.1: Complexity computations.
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3.2.5.5 Hash based variant.

A distributed version of the UGZK protocol's hash variant (presented in Section 3.2.4)

can be constructed. Using this �short commitment� version reduces somewhat the num-

ber of communicated bits, at the expense of a reduced security.

3.2.5.6 Short challenges variant.

In our protocol, the challenge c is sent throughout the network to all nodes. Assuming the

use of an ideal hash function h, we may use shorter challenge without a�ecting security.

� A short c is sent to the nodes Ni;

� Each Ni computes ci Ð hpc}iq, and uses ci as a challenge;

� The base station T computes ci and uses it to check authentication.

3.2.5.7 Multiple-secret variant.

Each node Ni could use a set of secret values txi,jujPr1,`s instead of only one xi. For the

algorithm to be as e�cient as possible the supplementary secrets can be expanded from

a concealed seed. For clarity purposes we describe the multiple secret variant for a single

node.

When receiving a challenge ci, each node computes a response

ri Ð ki ‹
´

‹`j“1x
ci,j
i,j

¯

.

This result be checked by the veri�er by applying the next formula:

rris “ ti b
´

b`i“1z
ci,j
i,j

¯

.

In the case of multiple nodes, the modi�ed protocol we obtain is a proof of knowledge

if 1{|C|pn´n1q`m is negligible and a zero-knowledge protocol if |C|pn´n1q` is polynomially
bounded.

Practical aspects. Applying the multiple-secret variant, the trade-o� between mem-

ory and communication can be adjusted, as the security level is `m (single-node com-

promission). Let µ be an integer. Therefore, if ` “ µ it su�ces to authenticate once
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to get the same security as t “ µ authentications with ` “ 113. It is obvious that such

an approach signi�cantly reduces bandwidth usage, a clearly desirable fact in the IoT

context.

3.2.6 Future work

In order to take advantage of our main protocol's characteristics, an interesting research

direction would be to apply it for obtaining generic versions of digital signature schemes

[208, 209] and Section 3.3 and legally fair contract signing protocols [104] and Section 3.4.

More generally, our proposal could be useful for future works on cryptographic protocol

design. In the case of failed network authentication an open problem is to devise new

batch veri�cation algorithms or adapt the ones constructed for digital signatures [106,

107] for �nding compromised nodes.

3.3 Signature Schemes

In 1986, Fiat and Shamir [108] described an important technique for deriving digital

signatures from zero-knowledge protocols. At its core, the signer uses a hash function

in order to create a virtual veri�er. This technique was later used by Schnorr to trans-

form his ZKP into a signature. The resulting signature was proven secure in ROM by

Pointcheval and Stern [208, 209].

The UZK framework incorporates the Schnorr ZKP. Hence, it is natural to apply the

Fiat-Shamir transform to UZK and thus extend Schnorr's signature. We will later use

the resulting signature as the main building block for the contract signing protocol we

propose in Section 3.3.2.

3.3.1 Preliminaries

De�nition 3.13 (Signature Scheme). A Signature Scheme consists of four PPT al-

gorithms: ParamGen, KeyGen, Sign and Veri�cation. The �rst one takes as input a

security parameter and outputs the system's parameters. Using these parameters, the

second algorithm generates the public key and the matching secret key. The secret key

together with the Sign algorithm are used to generate a signature σ for a message m.

Using only the public key, the last algorithm veri�es if a signature σ for a message m is

generated using the matching secret key.

13This corresponds to the protocol presented in Section 3.2.5.1.



Public Key Cryptography 82

Let us consider signature schemes which, on input a message m, produce triplets of the

form pσ1, hpm}σ1q, σ2q, independent of previous signatures. In these triplets we consider

σ2 as being dependent onm, σ1 and hpm}σ1q. In some cases hpm}σ1q is easily computable
from the available data and, thus, can be omitted. For such signatures, the following

security result can be proven [208, 209].

Lemma 3.1 (Forking Lemma). Let A be a PPT algorithm, given only the public data

as input. If A can �nd a valid signature14 pm,σ1, hpm}σ1q, σ2q with non-negligible prob-

ability, then, also with non-negligible probability, a replay of A with a di�erent hashing

oracle h1 outputs a second signature pm,σ1, h
1pm}σ1q, σ12q such that hpm}σ1q ‰ h1pm}σ1q.

Security Model. We further present the security model of [209] for signature schemes

of type pσ1, hpm}σ1q, σ2q.

De�nition 3.14 (Signature Unforgeability - ef-cma). The notion of unforgeability for

signatures is de�ned in terms of the following security game between the adversary A
and a challenger:

KeyGenpλq: The challenger C generates the public key, sends it to adversary A and

keeps the matching secret key to himself.

Query : Adversary A can perform any number of signature queries to the challenger.

Forgery : In this phase, the adversary outputs a tuple pm,σ1, hpm}σ1q, σ2q.

A wins the game if Verifypm,σ1, hpm}σ1q, σ2q “ True and A did not query the challenger

on m. We say that a signature scheme is unforgeable when the success probability of A
in this game is negligible.

Generalized ElGamal Signature. Originally described in [101], the ElGamal digital

signature scheme can easily be generalized to any �nite cyclic group G (see [180]). We

shortly describe the algorithms of the generalized ElGamal signature scheme.

ParamGenpλq: Generate a large prime number q, such that q ě 2λ. Choose a cyclic

group G of order q and let g be a generator of the group. Let h : G Ñ Zq be a
hash function. Output the public parameters pp “ pq, g,G, hq.

KeyGenpppq: Choose a $ÐÝ Zq̊ and compute y Ð ga. Output the public key pk “ y.

The secret key is sk “ a.

14i.e. if the Verify algorithm outputs True for this signature
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Signpm, skq: To sign a message m P G, �rst generate a random number k $ÐÝ Zq̊ . Then
compute the values r Ð gk and s Ð k´1rhpmq ´ a ¨ hprqs mod q. Output the

signature pr, sq.

Veri�cationpm, r, s, pkq: To verify the signature pr, sq of message m, compute v1 Ð
y
hprq
V ¨ rs and v2 Ð ghpmq. Output true if and only if v1 “ v2. Else output false.

Schnorr Signature. In [219], Schnorr introduces a digital signature based on the

discrete logarithm problem. Later on, the scheme was proven secure in the ROM by

Stern and Pointcheval [208]. We further recall the Schnorr signature.

ParamGenpλq: Generate two large prime numbers p, q, such that q ě 2λ and q|p ´ 1.

Select a cyclic group G of order p and let g P G be an element of order q. Let h :

t0, 1u˚ Ñ Zq̊ be a hash function. Output the public parameters pp “ pp, q, g,G, hq.

KeyGenpppq: Choose x $ÐÝ Zq̊ and compute y Ð gx. Output the public key pk “ y.

The secret key is sk “ x.

Signpm, skq: To sign a message m P t0, 1u˚, �rst generate a random number k $ÐÝ Zq̊ .
Then compute the values r Ð gk, eÐ hpr}mq and sÐ k´ xe mod q. Output the

signature pe, sq.

Veri�cationpm, e, s, pkq: To verify the signature pe, sq of message m, compute r Ð gsye

and uÐ hpr}mq. Output true if and only if u “ e. Otherwise, output false.

3.3.2 A UZK Based Digital Signature Scheme

We describe our proposed UZK based digital signature scheme (further referred to as

UDS) in Section 3.3.2.1. We further prove the security of our scheme in Section 3.3.2.2.

3.3.2.1 Description

By applying the Fiat-Shamir transform [108] to the UZK protocol in Figure 3.2 we obtain

the following signature scheme.

ParamGenpλq: Select a group G and an homomorphism r¨s : G Ñ H. Also, let h :

t0, 1u˚ Ñ C be a hash function, where C Ă N. Output the public parameters

pp “ pr¨s,G,H, hq.
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KeyGenpppq: Choose x $ÐÝ G and compute y Ð rxs. Output the public key pk “ y.

The secret key is sk “ x.

Signpm, skq: To sign a message m P t0, 1u˚, �rst generate a random number k $ÐÝ G.
Then compute the values r Ð rks, e Ð hpr}mq and s Ð k ‹ xe. Output the

signature pr, sq.

Veri�cationpm, r, s, pkq: To verify the signature pr, sq of message m, compute u Ð
hpr}mq. Output true if and only if rss “ r b yu. Otherwise, output false.

3.3.2.2 Security Analysis

The proofs presented in [208, 209] do not cover the generic case. Thus, we adapt the

initial results to the UDS case and provide the reader with the proof of Theorem 3.5.

Theorem 3.5. If an ef-cma attack on the UDS has non-negligible probability of success

in the ROM, then the homomorphism r¨s can be inverted in polynomial time.

Proof. If an attacker A can forge a UDS, then we are able to construct a simulator S that

interacts with A and forces it to produce a forgery. By using Lemma 3.1 we transform A
into a homomorphism inverter (i.e. that computes an x1 such that y “ rx1s). We further

show how S can simulate the three phases necessary to mount the ef-cma attack.

KeyGen Phase. In this phase S sets up the public key as y “ rxs and then activates A
with input y.

Query Phase. A will start to present queries to the S. Thus, S must respond to two

types of queries: hash and signature queries. S will maintain a table T containing

all the hash queries performed throughout the attack. At start T Ð ∅. We further

describe the simulations of the hash function in Algorithm 27 and the signature scheme

in Algorithm 28.

Algorithm 27. Hashing oracle Oh simulation for h.
Input: A hashing query qi from A

1 if Dhi, tqi, hiu P T then

2 eÐ hi
3 else

4 e
$ÐÝ C

5 Append tqi, eu to T
6 end

7 return e

Forgery Phase. After the query phase, A will eventually produce a forgery pr, sq.
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Algorithm 28. Signing oracle OS simulation.
Input: A signature query m

1 s
$ÐÝ G

2 e
$ÐÝ C

3 r Ð rss b y´e
4 uÐ m}r
5 if De1 ‰ e, tu, e1u P T then

6 abort
7 else

8 Append tu, eu to T
9 end

10 return pr, sq

When simulating the signing oracle OS there is a case when S aborts before completion:

this happens whenm}r has already been queried by A. In this case, S can not reprogram

Oh, which is why it must abort. SinceA does not know the random value r, the previously

described event occurs with a negligible probability qh{q, where qh is the number of

queries to Oh.

Therefore, A is turned into a forger for the UDS with probability p1´qh{qqqs ě 1´qhqs{q,
where qs is the number of signing queries to OS . As A has a success probability εsucc,

the success probability of A in the simulated environment is εsim “ p1´ qhqs{qqεsucc.

Algorithm 29. Hashing oracle O1h simulation for h.
Input: A hashing query qi from A, an index γ and a table T

1 if i ă γ then
2 eÐ hi, where pqi, hiq P T
3 Append tqi, eu to T̃
4 else if i “ γ then

5 e
$ÐÝ Czthγu, where pqγ , hγq P T

6 Append tqi, eu to T̃
7 else

8 if Dhi, tqi, hiu P T̃ then

9 eÐ hi
10 else

11 e
$ÐÝ C

12 Append tqi, eu to T̃
13 end

14 end

15 return e

Due to the ideal randomness of Oh, A queries Oh on m}r with probability 1´1{c, where
|C| “ c. Hence, let γ be the position of m}r in T from Oh. After A produces a forgery

pr, sq, S runs A with the same inputs and a di�erent h oracle (Algorithm 29). As before,
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S will maintain a table T̃ containing all the h queries performed throughout this phase

of the attack. At start T̃ Ð ∅. Then, by Lemma 3.1, A will produce a di�erent forgery

pr, s1q. Thus, we obtain c “ Ohpm}rq ‰ O1hpm}rq “ c1. Using the 2-extractable property

of UZK, we obtain an x1 such that y “ rx1s.

3.4 Legally Fair Contract Signing Protocols

Various contract signing schemes which fall into three di�erent design categories were

proposed during the last decades: gradual release [122, 207, 111, 127], optimistic [29,

63, 181] and concurrent [71] or legally fair [104] models. A typical co-signing protocol

involves two (mutually distrustful) signing partners, Alice and Bob wishing to compute

a common function on their private inputs.

Compared to older paradigms like gradual release or optimistic models, concurrent sig-

natures or legally fair protocols do not rely on trusted third parties and do not require

too much interaction between co-signers. As such features seem much more attractive for

users, we further consider legally fair co-signing protocols (rather than older solutions)

in this section.

Inspired by Maurer's generic perspective, we considered of great interest extending the

uni�cation paradigm to contract signing protocols. Therefore, we construct our main idea

considering the stringent issue of scheme compatibility which characterizes communica-

tion systems. Typical examples are the cases of certi�cates in a public key infrastructure

and the general issue of upgrading the version of a system. Thus, working in a general

framework may reduce implementation errors and save application development (and

maintenance) time.

In this section we present a uni�ed class of legally fair co-signing protocols without

keystones and prove its security. To be more precise, we propose a class of UDS (see

Section 3.3) based co-signing protocols that maintains the valuable properties15 of the

scheme presented in [104].

3.4.1 Preliminaries

In [104] the authors present a new contract signing paradigm that does not require key-

stones to achieve legal fairness. Their provably secure co-signature construction recalled

in Figure 3.5 is based on Schnorr digital signatures [219].

15legal fairness without keystones, guaranteed output delivery
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In Figure 3.5, L represents a local non-volatile memory used by Bob and C “ r0, q ´ 1s.
During the protocol, Alice makes use of a publicly known auxiliary signature scheme σxA
using her secret key xA.

Alice Bob

y Ð yA ¨ yB y Ð yA ¨ yB
kA

$ÐÝ Zq̊ kB
$ÐÝ Zq̊

rA Ð gkA rB Ð gkB

ρÐ hp0}rBq
ρÐÝÝÝÝÝÝÝÝÝ

tÐ σxAprA}Alice}Bobq rA,tÝÝÝÝÝÝÝÝÝÑ
if t is incorrect then abort

store t in L
rBÐÝÝÝÝÝÝÝÝÝ

if hp0}rBq ‰ ρ then abort

r Ð rA ¨ rB r Ð rA ¨ rB
eÐ hp1}m}r}Alice}Bobq eÐ hp1}m}r}Alice}Bobq
sA Ð kA ` exA mod q sB Ð kB ` exB mod q

store sB in L
sBÐÝÝÝÝÝÝÝÝÝ

if sB is incorrect then abort
sAÝÝÝÝÝÝÝÝÝÑ

if sA is incorrect then abort

sÐ sA ` sB mod q sÐ sA ` sB mod q
if tm, r, su is valid then
erase t, sB from L

Figure 3.5: The legally fair signature (without keystones) of message m.

Security model. According to the analysis presented in [104], a legally fair signature

scheme is secure when it achieves existential unforgeability against an active adversary

A with access to an unlimited amount of conversations and valid co-signatures, i.e. A
can perform the following queries:

� Hash queries: A can request the value of hpxq for an x of his choosing.

� Sign queries: A can request a valid signature t for a message m and a public key

yC of his choosing.

� CoSign queries: A can request a valid co-signature pr, sq for a message m and a

common public key yC,D of his choosing.
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� Transcript queries: A can request a valid transcript pm, ρ, rC , t, rD, sC , sDq of the
co-signing protocol for a message m of his choosing, between users C and D of his

choosing.

� SKExtract queries: A can request the private key corresponding to a public key.

� Directory queries: A can request the public key of any user.

The following de�nition captures the notion of unforgeability in the co-signing context:

De�nition 3.15 (Co-Signature Unforgeability). The notion of unforgeability for co-

signatures is de�ned in terms of the following security game between the adversary A
and a challenger:

KeyGenpλq: The challenger C generates all the public parameters and sends then to

adversary A.

Query : Adversary A can perform any number of queries to the challenger, as described

above.

Forgery : In this phase, the adversary outputs a tuple pm, r, s, yC,Dq.

A wins the game if Verifypm, r, sq “ True and there exist public keys yC , yD P D such

that yC,D “ yCyD and either of the following holds:

� A did not query SKExtract on yC nor on yD, and did not query CoSign on

pm, yC,Dq, and did not query Transcript on pm, yC , yDq nor pm, yD, yCq.

� A did not query Transcript on pm, yC , yiq for any yi ‰ yC and did not query

SKExtract on yC , and did not query CoSign on pm, yC , yiq for any yi ‰ yC .

We say that a co-signature scheme is unforgeable when the success probability of A in

this game is negligible.

3.4.2 A Contract Signing Protocol

We describe our main result, a UZK class of legally fair contract signing protocols in

Figure 3.6 and discuss its correctness. We further prove the security of our proposed idea

in Section 3.4.2.2 based on the security of the UDS scheme we describe in Section 3.3.2.

Compared to the initial work on legally fair contract signing protocols without keystones

[104], we give a more complete proof by taking into account the signature scheme σ too.
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3.4.2.1 Description

To illustrate our uni�ed paradigm, we now discuss a legally fair co-signing protocol built

from the UDS (Figure 3.6), which produces signatures compatible with standard UDS.

This contract signing protocol is provably secure in the ROM assuming the one-way

property of r¨s.

We further consider a more restrictive set of initial conditions compared to [176], in the

sense that we also assume that G is commutative16.

Alice Bob

y Ð yA b yB y Ð yA b yB
kA

$ÐÝ G kB
$ÐÝ G

rA Ð rkAs rB Ð rkBs
ρÐ hp0}rBq

ρÐÝÝÝÝÝÝÝÝÝ
tÐ σxAprA}Alice}Bobq rA,tÝÝÝÝÝÝÝÝÝÑ

if t is incorrect then abort

store t in L
rBÐÝÝÝÝÝÝÝÝÝ

if hp0}rBq ‰ ρ then abort

r Ð rA b rB r Ð rA b rB
eÐ hp1}m}r}Alice}Bobq eÐ hp1}m}r}Alice}Bobq
sA Ð kA ‹ xeA sB Ð kB ‹ xeB

store sB in L
sBÐÝÝÝÝÝÝÝÝÝ

if sB is incorrect then abort
sAÝÝÝÝÝÝÝÝÝÑ

if sA is incorrect then abort

sÐ sA ‹ sB mod q sÐ sA ‹ sB mod q
if tm, r, su is valid then
erase t, sB from L

Figure 3.6: A class of legally fair co-signature schemes.

16The group G is considered as being generic in [176].
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Correctness. To prove the correctness of the class of co-signing schemes described in

Figure 3.6 we use the commutative property of G which is preserved by fpxq:

rss “ rsA ‹ sBs
“ rsAs b rsBs
“ rkAs b rxAse b rkBs b rxBse

“ rkAs b rkBs b prxAs b rxBsqe

“ r b ye.

3.4.2.2 Security Analysis

To prove that the uni�ed co-signature protocol is secure in the ROM we use the following

strategy: assuming A is an e�cient forger for the co-signature scheme, we turn A into

an e�cient forger for UDS, then invoke Lemma 3.1 to prove the existence of an e�cient

inverter for the homomorphism r¨s. We further address two scenarios: when the attacker

plays Alice's role, and when the attacker plays Bob's.

3.4.2.3 Adversary Attacks Bob

Theorem 3.6. If AAlice plays the role of Alice and is able to forge a co-signature with

non-negligible probability, then we can construct an ef-cma attack on the UDS that has

non-negligible probability of success.

Proof. The proof consists in constructing a simulator SBob that interacts with the adver-
sary and forces it to actually produce a UDS forgery. Here is how this simulator behaves

at each step of the protocol.

KeyGen Phase. SBob is given a target public key y. As a simulator, SBob emulates not

only Bob, but also all oracles and the directory D (see Figure 3.7).

AAlice SBob

pp, ypp

activate

1

yB “ y b pyAq´1

2

SAlice ABob

pppp, y

activate

1

yA “ y b pyBq´1

2

Figure 3.7: The simulator SBob (left) or SAlice (right) answers the attacker's queries
to the public directory D.
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To inject a target y Ð rxs into A, the simulator SBob reads yA from D and poses as

an entity whose public-key is ySBob Ð y b pyAq´1. It follows that yA,SBob , the common

public-key of A and SBob will be precisely yA,SBob Ð ySBob b yA which, by construction,

is exactly y.

Then SBob activates AAlice, who queries the directory and gets yB. At this point in

time, AAlice is tricked into believing that she has successfully established a co-signature

public-key y with the �co-signer� SBob.

Query Phase. AAlice will start to present queries to S. Thus, S must respond to three

types of queries: hash queries, co-signature queries and transcript queries. We consider

oracle Oh as in Theorem 3.5. We further describe the simulation of the co-signature

protocol in Algorithm 30. When AAlice requests a conversation transcript, SBob replies

by sending pm, ρ, rA, t, rB, sB, sAq from a previously successful interaction.

Forgery Phase. After performing queries, AAlice eventually outputs a co-signature pr, sq
valid for yA,SBob where r “ rA b rB and s “ sA ‹ sB. By design, these parameters are

those of a UDS and therefore AAlice has produced a UDS forgery.

Algorithm 30. Co-signing oracle simulation for SBob.
Input: A co-signature query m from AAlice

1 sB
$ÐÝ G

2 e
$ÐÝ C

3 rB Ð rsBs b y´e
4 Send hp0}rBq to AAlice

5 Receive rA, t from AAlice

6 Send rB to AAlice

7 r Ð rA b rB
8 uÐ 1}m}r}Alice}Bob
9 if De1 ‰ e, tu, e1u P T then

10 abort
11 else

12 Append tu, eu to T
13 end

14 return sB

To understand SBob's co-signature reply (Algorithm 30), assume that AAlice is an honest

Alice who plays by the protocol's rules. For such an Alice, pr, sq is a valid signature with
respect to the co-signature public-key y.

There is a case in which SBob aborts the protocol before completion: this happens when
it turns out that 1}m}r}Alice}Bob}t has been previously queried by AAlice. In that case,

it is no longer possible for SBob to reprogram the oracle, which is why SBob must abort.
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Since AAlice does not know the random value rB, such a bad event would only occur with

a negligible probability exactly equal to qh{q, where qh is the number of queries to Oh.

Therefore, A is turned into a forger for the SFS with probability 1 ´ qh{q. As A has

a success probability εsucc, the success probability of A in the simulated environment is

εsim “ p1´ qh{qqεsucc.

Corollary 3.1. If AAlice plays the role of Alice and is able to forge a co-signature with

non-negligible probability, then the homomorphism r¨s can be inverted in polynomial

time.

3.4.2.4 Adversary Attacks Alice

Theorem 3.7. If ABob plays the role of Bob and is able to forge a co-signature with

non-negligible probability, then we can construct an ef-cma attack on the UDS that has

non-negligible probability of success if signature σxA can be simulated without knowing

the secret key xA.

Proof. Here also the proof consists in constructing a simulator, SAlice, that interacts with
the adversary and forces it to actually produce a UDS forgery. The simulator's behavior

at di�erent stages of the security game is as follows.

KeyGen Phase. SAlice is given a target public key y. Again, SAlice impersonates not only
Alice, but also all the oracles and D.

SAlice injects the target y into the game as described in Theorem 3.6. Now SAlice activates
ABob, who queries D (actually controlled by SAlice) to get yA. ABob is thus tricked into

believing that it has successfully established a co-signature public-key y with the �co-

signer� SAlice.

Query Phase. A will start to present queries to S. Thus, S must respond to four types

of queries: hash queries, signature queries, co-signature queries and transcript queries.

We consider oracles Oh as in Theorem 3.5. We denote by Oσ the simulation of σxA . We

further describe the simulation of the co-signature algorithm in Algorithm 31. When

AAlice requests a conversation transcript, SBob replies by sending pm, ρ, rA, t, rB, sB, sAq
from a previously successful interaction.

Forgery Phase. After performing queries, ABob eventually outputs a co-signature pr, sq
valid for ySAlice,ABob

where r “ rA b rB and s “ sA ‹ sB. By design, these parameters

are those of a UDS and therefore ABob has produced a UDS forgery.
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Algorithm 31. Co-signing oracle simulation for SAlice.
Input: A co-signature query m from ABob

1 Receive ρ from ABob

2 Query T to retrieve rB such that hp0}rBq “ ρ

3 sA
$ÐÝ G

4 e
$ÐÝ C

5 r Ð rB b rsAs b y´e
6 u1 Ð 1}m}r
7 if De1 ‰ e, tu1, e

1u P T then

8 abort
9 else

10 Append tu1, eu to T
11 end

12 rA Ð r b r´1
B

13 u2 Ð rA}Alice}Bob
14 tÐ Oσpu2q
15 Send rA, t to ABob

16 Receive rB from ABob

17 Receive sB from ABob

18 return sA

As in Theorem 3.6, Algorithm 31 may fail with probability qh{q. Thus, the success

probability of A in the simulated environment is εsim “ p1´ qh{qqεsucc.

Corollary 3.2. If ABob plays the role of Bob and is able to forge a co-signature with

non-negligible probability, then the homomorphism r¨s can be inverted in polynomial

time if signature σxA can be simulated without knowing the secret key xA.

3.4.3 Future Work

A couple of interesting related studies could be the analysis of our co-signature protocols'

resistance to SETUP (Secretly Embedded Trapdoor with Universal Protection) attacks

and the proposal of suitable countermeasures.

3.5 Public Key Encryption

The scope of a public key encryption scheme is to provide con�dentiality, while allow-

ing users to distribute their public keys widely and openly. Therefore, only a user in
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possession of the secret key can decrypt messages, while anyone in possession of the cor-

responding public key can encrypt data to send it to this one user. Usually, the design

of PKEs is typically based on computationally intractable problems in number theory.

In this section we describe two PKE schemes, one based on discrete logarithms and one

on factoring large numbers, that will be used in subsequent sections. Thus, the focus of

this section will be on these two schemes and their security properties.

3.5.1 Preliminaries

De�nition 3.16 (Public Key Encryption - PKE). A Public Key Encryption scheme

consists of three PPT algorithms: KeyGen, Encrypt and Decrypt. The �rst one takes as

input a security parameter and outputs the system's parameters, the public key and the

matching secret key. Encrypt takes as input the public key and a message and outputs

the corresponding ciphertext. The Decrypt algorithm takes as input the secret key and a

ciphertext and outputs either a valid message or an invalidity symbol (if the decryption

failed).

Security Model. For PKE schemes several security notions have been proposed [49].

We further describe two security notions in the chosen plaintext scenario: one that

protects messages and one that protect users' identity.

De�nition 3.17 (Indistinguishability from Random Bits - ind$). The security model of

indistinguishability from random bits for a PKE scheme AE is captured in the following

game:

KeyGenpλq: The challenger C generates the public key, sends it to adversary A and

keeps the matching secret key to himself.

Query : Adversary A sends C a message m. The challenger encrypts m and obtains the

ciphertext c0. Let c1 be a randomly chosen element from the same set as c0. The

challenger �ips a coin b P t0, 1u and returns cb to the adversary.

Guess: In this phase, the adversary outputs a guess b1 P t0, 1u. He wins the game, if

b1 “ b.

The advantage of an adversary A attacking a PKE scheme is de�ned as

ADV ind$
AE pAq “ |2Prrb “ b1s ´ 1|,
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where the probability is computed over the random bits used by C and A. A PKE scheme

is ind$ secure, if for any PPT adversary A the advantage ADV ind$
AE pAq is negligible.

De�nition 3.18 (Anonymity under Chosen Plaintext Attacks - ano-cpa). The secu-

rity model against anonymity under chosen plaintext attacks for a PKE scheme AE is

captured in the following game:

KeyGenpλq: The challenger C generates two public keys pk0 and pk1, sends them to

adversary A and keeps the matching secret keys to himself.

Query : Adversary A sends C a message m. The challenger �ips a coin b P t0, 1u and
encrypts m using pkb. The resulting ciphertext c is sent to the adversary.

Guess: In this phase, the adversary outputs a guess b1 P t0, 1u. He wins the game, if

b1 “ b.

The advantage of an adversary A attacking a PKE scheme is de�ned as

ADV ano-cpa
AE pAq “ |2Prrb “ b1s ´ 1|,

where the probability is computed over the random bits used by C and A. A PKE

scheme is ano-cpa secure, if for any PPT adversary A the advantage ADV ano-cpa
AE pAq

is negligible.

The ElGamal PKE scheme. The ElGamal encryption scheme was �rst described

in [101] and later generalized in [180]. It can be proven that the generalized ElGamal

encryption scheme is secure in the standard model under the ddh assumption [223].

We further describe the generalized version of the scheme and refer to it simply as the

ElGamal encryption scheme (EG).

ParamGenpλq: Generate a large prime number q, such that q ě 2λ. Choose a cyclic

group G of order q and let g be a generator of the group. Output the public

parameters pp “ pq, g,Gq.

KeyGenpppq: Choose x $ÐÝ Zq̊ and compute y Ð gx. Output the public key pk “ y.

The secret key is sk “ x.

Encryptionpm, pkq: To encrypt a message m P G, �rst generate a random number

k
$ÐÝ Zq̊ . Then compute the values cÐ gk and dÐ m ¨ yk. Output the pair pc, dq.

Decryptionpc, d, skq: To recover the original message compute mÐ d ¨ c´x.
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The Joye-Libert PKE scheme. The Joye-Libert (JL) scheme was introduced in

[149] and reconsidered in [51]. The scheme is proven secure in the standard model under

the gr assumption. We shortly describe the algorithms of the Joye-Libert cryptosystem.

KeyGen(λ): Set an integer k ě 1. Randomly generate two distinct large prime numbers

p, q such that p, q ě 2λ and p, q ” 1 mod 2k. Output the public key pk “ pn, y, kq,
where n “ pq and y P JnzQRn. The corresponding secret key is sk “ pp, qq.

Encrypt(pk,m): To encrypt a message m P r0, 2kq, we choose x $ÐÝ Zn̊ and compute

c ” ymx2k mod n. Output the ciphertext c.

Decrypt(sk, c): Compute z ”
ˆ

c

p

˙

2k
and �nd m such that the relation

„ˆ

y

p

˙

2k

m

”
z mod p holds. E�cient methods to recover m can be found in [150].

3.5.2 Multiplicative ElGamal Encryption

The ElGamal encryption scheme was �rst described in [101]. The underlying group of

the scheme is Zp, where p is a prime number. The scheme can easily be generalized to

any �nite cyclic group G. The description of the generalized ElGamal can be found in

[180]. Based on this description, we propose a new version of the ElGamal encryption

scheme, which will later be used to deploy our SETUP mechanisms. We prove that the

scheme is secure and that it preserves anonymity.

3.5.2.1 Description

KeyGenpλq: Generate a large prime number q, such that q ě 2λ. Choose a cyclic group

G of order q and let g be a generator of the group. Let H : G Ñ Zq̊ be a hash

function. Choose x $ÐÝ Zq̊ and compute y Ð gx. Output the system parameters

pp “ pq, g,G, Hq and the public key pk “ y. The secret key is sk “ x.

Encryptionpm, pkq: To encrypt a message m P Zq̊ , �rst generate a random number

k
$ÐÝ Zq̊ . Then compute the values α Ð gk, β Ð yk, γ Ð Hpβq and δ Ð m ¨ γ.

Output the pair pα, δq.

Decryptionpα, δ, skq: To decrypt ciphertext pα, δq, compute εÐ αx, ζ Ð Hpεq. Recover
the original message by computing mÐ δ ¨ ζ´1.

We need to prove that the scheme is sound. If the pair pα, δq is generated according to the
scheme, it is easy to see that δ¨ζ´1 ” m¨Hpykq¨rHpαxqs´1 ” m¨Hppgxqkq¨rHppgkqxqs´1 ”
m.
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3.5.2.2 Security Analysis

In this section we prove that the Multiplicative ElGamal is a secure encryption scheme

and it preserves anonimity. We denote by MEG the Multiplicative ElGamal scheme.

Theorem 3.8. MEG is ind$ secure in the standard model if and only if hdh is hard

in G. Formally, let A be an e�cient PPT ind$ adversary. There exists an e�cient

algorithm B such that

ADV ind$
MEGpAq ď 2ADV hdh

G,g,HpBq.

Proof. Let A be an ind$ adversary for MEG with access to �random coins� sampled

uniformly from a set R. We construct an adversary B for the hdh assumption and then

we provide an upper bound for the advantage of A.

Algorithm 32. The ind$ game.

1 Set the keys x $ÐÝ Zq̊ and y Ð gx,

2 Choose ρ $ÐÝ R and initialize mÐ Apρ, yq
3 Select b $ÐÝ t0, 1u and run the encryption algorithm k

$ÐÝ Zq̊ , α0 Ð gk, β Ð yk,
γ Ð Hpβq, δ0 Ð m ¨ γ

4 Choose α1
$ÐÝ G, δ1

$ÐÝ Zq̊ and b
$ÐÝ t0, 1u

5 return Apρ, y, αb, δbq

Algorithm 33. Algorithm B.
Input: U Ð gu and V Ð gv, for random u, v, and W is either Hpguvq or random

1 Set y Ð U

2 Choose ρ $ÐÝ R and initialize mÐ Apρ, yq
3 Set α0 Ð V and δ0 Ð m ¨W
4 Select α1

$ÐÝ G, δ1
$ÐÝ Zq̊ and b

$ÐÝ t0, 1u
5 Initialize b1 Ð Apρ, y, αb, δbq
6 if b “ b then
7 return 1
8 else

9 return 0
10 end

Algorithm 32 describes the ind$ game. The �rst row sets up the public key. In the second

row, A chooses the message m it wants to be challenged on. The challenger then picks

a random k and computes the encryption pα0, δ0q of m. It also picks random choices

pα1, δ1q from the same sampling sets, �ips a bit b and reveals pαb, δbq. A then computes

its guess b1 for b. A wins if b “ b1. Formally, the probability of A winning the ind$ game
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is

|2Prrb1 “ bs ´ 1| “ ADV ind$
MEGpAq. (3.1)

Algorithm 33 depicts the behavior of an adversary B who runs the ind$ distinguisher A

as a subroutine. B is given as input U, V,W , where U Ð gu and V Ð gv, for random

u, v, and W is either Hpguvq or random. Algorithm B outputs a bit indicating its guess

for which of these cases occurs, where 1 means B guesses W “ Hpguvq. Formally, the

hdh advantage of B is

ADV hdh
G,g,HpBq “ |PrrBpU, V,W q “ 1|W “ Hpguvqs

´ PrrBpU, V,W q “ 1|W $ÐÝ Zq̊ s|. (3.2)

Lets us consider the case W “ Hpguvq and compute the probability of B outputting 1.

We note that B is running A as the latter would run an attack on the ind$ security of

MEG. Thus, we have

PrrBpU, V,W q “ 1|W “ Hpguvqs “ Prrb “ b1|W “ Hpguvqs
“ 1

2
p2Prrb “ b1|W “ Hpguvqs ´ 1` 1q

“ 1

2
ADV ind$

MEGpAq `
1

2
. (3.3)

We will now compute the probability of B outputting 1 when W random. Then if we

multiply an element m from Zq̊ with an uniformly random element W of the same set,

we obtain an uniformly random element. Raising g to a random value v, yields a random

element of G because g generates G. Thus, α0, δ0, α1, δ1 are random. Since A has to

choose between random elements, we have that

PrrBpU, V,W q “ 1|W $ÐÝ Zq̊ s “ Prrb “ b1|W $ÐÝ Zq̊ s “
1

2
. (3.4)

Finally, the statement is proven by combining the equalities p3.1q ´ p3.4q.

Theorem 3.9. MEG is ano-cpa secure in the standard model if and only if hdh is

hard in G. Formally, let A be an e�cient PPT ano-cpa adversary. There exists an

e�cient algorithm B such that

ADV ano-cpa
MEG pAq ď 4ADV hdh

G,g,HpBq.
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Proof. Let A be an ano-cpa adversary forMEG with access to �random coins� sampled

uniformly from a set R. We construct two adversaries B1, B2 for the hdh assumption

and then we provide an upper bound for the advantage of A.

Algorithm 34. The ano-cpa game.

1 Set the keys x0
$ÐÝ Zq̊ , y0 Ð gx0 , x1

$ÐÝ Zq̊ and y1 Ð gx1

2 Choose ρ $ÐÝ R and initialize mÐ Apρ, y0, y1q
3 Select b $ÐÝ t0, 1u and run the encryption algorithm k

$ÐÝ Zq̊ , αÐ gk, β Ð ykb ,
γ Ð Hpβq, δ Ð m ¨ γ

4 return Apρ, y0, y1, α, δq

Algorithm 35. Algorithm B.
Input: U Ð gu and V Ð gv, for random u, v, and W is either Hpguvq or random

1 Set y0 Ð U , z $ÐÝ Zq̊ , y1 Ð gz, µ0 Ð HpV zq and µ1
$ÐÝ Zq̊

2 Choose ρ $ÐÝ R and initialize mÐ Apρ, y0, y1q
3 Select b $ÐÝ t0, 1u and set αÐ V , ω0 ÐW , ω1 Ð µb

4 Select b1 $ÐÝ t0, 1u and compute δ Ð m ¨ ωb1
5 Initialize b2 Ð Apρ, y0, y1, α, δq
6 if b1 “ b2 then
7 return 1
8 else

9 return 0
10 end

Algorithm 34 describes the ano-ind game. The �rst row sets up the public keys y0 and

y1. In the second row, the adversary selects the message m it wants to be challenged on.

The challenger then �ips a bit b, chooses a random k and it reveals the encryption of m

under yb. A then computes its guess b1 for b. A wins if b “ b1. Formally, the probability
of A winning the ano-ind game is

|2Prrb1 “ bs ´ 1| “ ADV ano-cpa
MEG pAq. (3.5)

Algorithm 35 depict the behavior of algorithm B who runs the ano-ind distinguisher A

as a subroutine. B is given as input U, V,W , where U Ð gu and V Ð gv, for random

u, v, andW is either Hpguvq or random. B outputs a bit indicating its guess for which of

these cases occurs, where 1 means B guesses W “ Hpguvq. Formally, the hdh advantage

of B is

ADV hdh
G,g,HpBq “ |PrrBpU, V,W q “ 1|W “ Hpguvqs

´ PrrBpU, V,W q “ 1|W $ÐÝ Zq̊ s|. (3.6)
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Let us consider the case W “ Hpguvq and compute the probability of B outputting 1.

There are two sub-cases when b “ 0 and when b “ 1. In the former sub-case, we note

that B is running A as the latter would run an attack on the ano-ind security ofMEG.

Thus, we have

PrrBpU, V,W q “ 1|W “ Hpguvqs “ Prrb1 “ b2|W “ Hpguvqs
“ Prrb1 “ b2|W “ Hpguvq, b “ 0sPrrb “ 0s
` Prrb1 “ b2|W “ Hpguvq, b “ 1sPrrb “ 1s
“ 1

4
p2Prrb “ b1|W “ Hpguvq, b “ 0s ´ 1` 1q

` 1

2
Prrb1 “ b2|W “ Hpguvq, b “ 1s

“ 1

4
ADV ano-cpa

MEG pAq ` 1

4

` 1

2
Prrb1 “ b2|W “ Hpguvq, b “ 1s. (3.7)

The probability of B outputting 1 when W is random is

PrrBpU, V,W q “ 1|W $ÐÝ Zq̊ s “ Prrb1 “ b2|W “ Hpguvqs
“ Prrb1 “ b2|W $ÐÝ Zq̊ , b “ 0sPrrb “ 0s
` Prrb1 “ b2|W $ÐÝ Zq̊ , b “ 1sPrrb “ 1s. (3.8)

Lets consider the sub-case b “ 1. If we multiply an element m from Zq̊ with an uniformly
random element ω0 or ω1 of the same set, we obtain an uniformly random element. Then

A has two decide between two pairs that have the same distribution. Thus, we have

Prrb1 “ b2|W $ÐÝ Zq̊ , b “ 1s “ 1

2
. (3.9)

In the sub-case b “ 0, we have that

Prrb1 “ b2|W $ÐÝ Zq̊ , b “ 0s “ Prrb1 “ b2|W “ Hpguvq, b “ 1s, (3.10)

since in both case A receives one random element and one of the form HpV eq, where e
is random. Thus, equality p3.8q becomes

PrrBpU, V,W q “ 1|W $ÐÝ Zq̊ s “
1

2
Prrb1 “ b2|W “ Hpguvq, b “ 1s ` 1

4
(3.11)

Finally, the statement is proven by combining the equalities p3.5q ´ p3.11q.
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3.5.3 A Generalisation of the Goldwasser-Micali Cryptosystem

The authors of [149] introduced a PKE scheme17 representing a rather natural extension

of the Goldwasser-Micali (GM) [123, 124] cryptosystem, the �rst probabilistic encryption

scheme. The Goldwasser-Micali cryptosystem achieves ciphertext indistinguishability

under the Quadratic Residuosity (qr) assumption. Despite being simple and stylish, this

scheme is quite uneconomical in terms of bandwidth18. Various attempts of generalizing

the Goldwasser-Micali scheme were proposed in the literature in order to address the

previously mentioned issue. The Joye-Libert scheme can be considered a follow-up of

the cryptosystems proposed in [190] and [79] and e�ciently supports the encryption of

larger messages.

Inspired by the Joye-Libert scheme, we propose a new public key cryptosystem, analyze

its security and provide the reader with an implementation and performance discussion.

We construct our scheme based on 2k-th power residue symbols. Our generalization of

the Joye-Libert cryptosystem makes use of two important parameters when it comes

to the encryption and decryption functions: the number of bits of a message and the

number of distinct primes of a public modulus n. Thus, our proposal not only supports

the encryption of larger messages (as in the Joye-Libert variant), but also operates on

a variable number of large primes (instead of two in the Joye-Libert case). Both these

parameters can be chosen depending on the desired security application.

Our scheme can be viewed as a �exible solution characterized by the ability of mak-

ing adequate trade-o�s between encryption speed and ciphertext expansion in a given

context.

3.5.3.1 Description

KeyGen(λ): Set an integer k ě 1. Randomly generate γ`1 distict large prime numbers

pi, i P r0, γ ` 1q such that pi ě 2λ and pi ” 1 mod 2k. Let n “ p0 ¨ . . . ¨ pγ . Select
yi

$ÐÝ Zn̊, i P r0, γq, such that the following conditions hold

1.
ˆ

yi
pi

˙

“ ´1;

2.
ˆ

yi
pγ

˙

“ ´1;

3.
ˆ

yi
pj

˙

2k
“ 1, where j ‰ i.

17reconsidered in [51]
18k ¨ log2 n bits are needed to encrypt a k-bit message, where n is an RSA modulus as described in

[123, 124]
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We denote by y “ tyiuiPr0,γq and p “ tpiuiPr0,γq. Output the public key pk “
pn, y, kq. The secret key is sk “ p.

Encrypt(pk,m): To encrypt message m P r0, 2kγq, �rst we divide it into γ blocks m “
m0} . . . }mγ´1. Then, we choose x

$ÐÝ Zn̊ and compute c ” x2k ¨śγ´1
i“0 y

mi
i mod n.

The output is ciphertext c.

Decrypt(sk, c): For each i P r0, γq, compute mi “ Decpippi, yi, cq.

Algorithm 36. Decpippi, yi, cq.
Input: The secret prime pi, the value yi and the ciphertext c
Output: The message block mi

1 mi Ð 0, B Ð 1
2 foreach s P r1, k ` 1q do
3 z Ð

ˆ

c

pi

˙

2s

4 tÐ
ˆ

yi
pi

˙

2s

5 tÐ tmi mod pi
6 if t ‰ z then
7 mi Ð mi `B
8 end

9 B Ð 2B

10 end

11 return mi

Correctness. Let mi “ řk´1
w“0 bw2w be the binary expansion of block mi. Note that

ˆ

c

pi

˙

2s
“

ˆ

x2k ¨śγ´1
v“0 y

mv
v

pi

˙

2s
“

ˆ

ymii
pi

˙

2s
“

ˆ

yi
pi

˙

řs´1
w“0 bw2w

2s

since

1.
ˆ

x2k

pi

˙

2s
“ 1, where 1 ď s ď k;

2.
ˆ

yj
pi

˙

2k
“ 1, where j ‰ i;

3.
řk´1
w“0 bw2w “

´

řs´1
w“0 bw2w

¯

` 2s ¨
´

řk´1
w“s bw2w´s

¯

.

As a result, the message block mi can be recovered bit by bit using pi.

Remark 3.7. The case γ “ k “ 1 corresponds to the Goldwasser-Micali cryptosystem

[123] and the case γ “ 1 corresponds to the Joye-Libert PKE scheme [149].
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Remark 3.8. In the KeyGen phase, we have to compute a special type of yi. An e�cient

way to perform this step is to randomly select yi,i
$ÐÝ Zp̊i , yi,γ

$ÐÝ Zp̊γ and wj
$ÐÝ Zp˚j ,

compute yj Ð w2k
j mod pj and �nally use the Chinese remainder theorem to compute

an element yi P Zn̊ such that yi ” yi,` mod p`.

3.5.3.2 Security Analysis

Theorem 3.10. Assume that the qr and sjs assumptions hold. Then, the proposed

scheme is ind$ secure in the standard model. Formally, let A be an e�cient PPT

adversary, then there exist two e�cient PPT algorithms B1 and B2 such that

ADV ind$
A pλq ď 3

2
γ

ˆ

pk ´ 1

3
q ¨ADV qr

B1
pλq ` pk ´ 1q ¨ADV sjs

B2
pλq

˙

.

Proof. To prove the statement, we simply replace the distribution of the public key y

for the encryption query. Let ni “ pipγ , i P r0, γq. Instead of choosing yi P JnizQRni
we choose yi from the multiplicative subgroup of 2k residues modulo ni. Under the gr

assumption, the adversary does not detect the di�erence between the original scheme and

the one with the modi�ed yis. In this case, the value c is not carrying any information

about the message. Thus, the ind-cpa security of our proposed cryptosystem follows.

Remark 3.9. Note that in Theorem 3.10 is su�cient to consider the gr assumption

modulo ni instead of modulo n. To prove this, lets consider an e�cient PPT distinguisher

B for the gr assumption modulo n. Then we construct an e�cient distinguisher C for

the gr assumption modulo ni.

Thus, on input pyi, k, niq, C �rst randomly selects γ ´ 1 primes tpjujPr0,γqztiu such that

pj ” 1 mod 2k and computes n “ ni ¨śjPr0,γqztiu pj . Then, using the Chinese theorem,

C computes a value ȳi such that ȳi ” yi mod ni and ȳi ” 1 mod n{ni. Finally, C sends

pȳi, k, nq to B and he outputs B answer. It is easy to see that C and B have the same

success probability.

3.5.3.3 Complexity Analysis

In our performance analysis we use the complexities of the mathematical operations

listed in Table 3.2. These complexities are in accordance with the algorithms presented

in [82]. We do not use the explicit complexity of multiplication, but instead we refer to

it as Mp¨q for clarity.
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Operation Complexity

Multiplication Mpµq “ Opµ logpµq logplogpµqqq
Exponentiation OpkMpµqq
Jacobi symbol OplogpµqMpµqq

Table 3.2: Computational complexity for µ-bit numbers and k-bit exponents.

For simplicity, when computing the ciphertext expansion, the encryption and the de-

cryption complexities, we consider the length of the prime numbers as being λ. Based

on the complexities presented in Table 3.2, we obtain the results listed in Table 3.3.

Scheme Ciphertext size Encryption Complexity

GM [123] 2λ ¨ η Op2Mp2λqηq
JL [149] 2λ ¨ rη

k
s Op2pk ` 1qMp2λqrη

k
sq

This work pγ ` 1q ¨ λ ¨ r η
γk

s Oppγ ` 1qpk ` 1qMppγ ` 1qλqr η
γk

sq

Scheme Decryption Complexity

GM [123] OplogpλqMpλqηq
JL [149] Opp2kλ` k2

2 qMpλqr
η

k
sq

This work Opγp2kλ` k2

2 qMpλqr
η

γk
sq

Table 3.3: Performance analysis for an η-bit message.

3.5.3.4 Implementation Details

We further provide the reader with benchmarks for our proposed PKE scheme.

We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00 GHz and used

GCC to compile it (with the O3 �ag activated for optimization). Note that for all

computations we used the GMP library [19]. To calculate the running times we used

the omp_get_wtime() function [15]. To obtain the average running time we chose to

encrypt 100 128-bit messages.

For generating the primes needed in the KeyGen phase we used the naive implementa-

tion19. A more e�cient method of generating primes is presented in [149, 51].

19i.e. we randomly generated r
$
ÐÝ r2λ´k, 2λ´k`1

q until the 2kr ` 1 was prime.
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We further list our results in Table 3.4 (running times in seconds). When analyzing

Table 3.4, note that in the case γ “ 1 we obtain the Goldwasser-Micali scheme (k “ 1)

and the Joye-Libert scheme (k “ 2, 4, 8). We stress that we considered λ “ 153620.

For completeness, in Table 3.5 we also present the ciphertext size (in kilobytes = 103

bytes) for the previously mentioned parameters.

Table 3.4: Average running times for a 128-bit message

Algorithm
γ “ 1

k “ 1 k “ 2 k “ 4 k “ 8 k “ 16

KeyGen 0.441997 0.475780 0.461101 0.440292 0.424711

Encrypt 0.006875 0.004460 0.003152 0.002389 0.001868

Decrypt 0.670574 0.669387 0.672676 0.669685 0.665928

Algorithm
γ “ 2

k “ 1 k “ 2 k “ 4 k “ 8

KeyGen 0.670943 0.684832 0.688289 0.719769

Encrypt 0.006601 0.005058 0.003982 0.003295

Decrypt 0.666815 0.665174 0.664918 0.664416

Algorithm
γ “ 4 γ “ 8

k “ 1 k “ 2 k “ 4 k “ 1 k “ 2

KeyGen 1.020130 1.122080 1.119700 1.958500 1.925660

Encrypt 0.008205 0.008011 0.006905 0.012401 0.015711

Decrypt 0.666383 0.666766 0.660244 0.660967 0.659406

Table 3.5: Ciphertext size for a 128-bit message

k “ 1 k “ 2 k “ 4 k “ 8 k “ 16

γ “ 1 49.152 24.576 12.288 6.1440 3.0720

γ “ 2 36.864 18.432 9.2160 4.6080 ´
γ “ 4 30.720 15.360 7.6800 ´ ´
γ “ 8 27.648 13.824 ´ ´ ´

3.5.3.5 Future Work

An attractive research direction for the future is the construction of lossy trapdoor func-

tions (based on the inherited homomorphic properties of our proposed cryptosystem).

Another appealing future work idea is to propose a threshold variant of our scheme and

to discuss security and e�ciency matters.

20According to NIST this choice of λ o�ers a security strength of 128 bits.
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3.6 Biometric Authentication

In biometric authentication protocols, when a user identi�es himself using his biometric

characteristics (captured by a sensor), the collected data will vary. Thus, traditional

cryptographic approaches (such as storing a hash value) are not suitable in this case, since

they are not error tolerant. As a result, biometric-based protocols must be constructed

in a special way and, moreover, the system must protect the sensitivity and privacy of

a user's biometric characteristics. Such a protocol is proposed in [61]. Its core is the

Goldwasser-Micali encryption scheme. Thus, a natural extension of the protocol in [61]

can be obtained using our generalization of the Joye-Libert scheme. Thus, we describe

such a biometric authentication protocol and discuss its security.

3.6.1 Preliminaries

We further consider the security model for biometric authentication described in [40] in

accordance with the terminology established in [61]. We stress that the authors of [61]

preferred a rather informal way of presenting their security model while the approach of

[40] is formal.

Participants and Roles. The data �ow between the di�erent roles assumed in the

authentication protocol of [40] is depicted in Figure 3.8.

S AS

DB

M
Client-side

Server-side

Figure 3.8: Data �ow and roles.

The server-side functionality consists of three components to ensure that no single entity

can associate a user's identity with the biometric data being collected during authenti-

cation. The roles assumed in the authentication protocol are:

� The Sensor (S) represents the client-side component. As in [61], we assume that

the sensor is capable of capturing the user's biometric data, extracting it into a

binary string21, and performing cryptographic operations such as PKE. We also as-

sume a liveness link between the sensor and the server-side components, to provide
21We further consider the binary string as a vector of �xed length blocks.
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con�dence that the biometric data received on the server-side is from a present

living person.

� The Authentication Server (AS) is responsible for communicating with the user

who wants to authenticate and organizing the entire server-side procedure. In a

successful authentication the AS obviously learns the user's identity, meaning that

it should learn nothing about the biometric data being submitted.

� The Database (DB) securely stores the users' pro�le and its job is to execute the

pre-decision part of classi�cation. Since the DB is aware of privileged biometric

data, it should learn nothing about the user's identity, or even be able to correlate

or trace authentication runs from a given (unknown) user.

� The Matcher (M) completes the authentication process by taking the output pro-

duced by the DB server and computing the �nal decision step. This implies that

the M possesses privileged information that allows it to make a �nal decision, and

again that it should not be able to learn anything about the user's real identity,

or even be able to correlate or trace authentication runs from a given (unknown)

user.

De�nition 3.19. Let v “ tviuiPr0,sq and w “ twiuiPr0,sq be two s-dimensional vectors.
Then the taxicab distance is de�ned as T pv, wq “ řs´1

i“0 |vi ´ wi|. The taxicab norm is

de�ned as T pv, 0q.

The �rst step in having a useful authentication protocol is for it to be sound. This

requirement is formalized in Requirement 1. Requirements 2. and 3. are concerned

with the sensitive22 relation between a user's identity and its biometric characteristics.

We want to guarantee that the only entity in the infrastructure that knows information

about this relation is the sensor.

Requirement 1. The matcher M can compute the taxicab distance T pbi, b1iq, where
bi is the reference biometric template and b1i is the fresh biometric template sent in the

authentication request. Therefore, M can compare the distance to a given threshold

value d and the server AS can make the right decision.

Requirement 2. For any identity IDi0 , two biometric templates b
1
i0
, b1i1 , where i0, i1 ě

1 and b1i0 is the biometric template related to IDi0 , it is infeasible for any of M, DB and

AS to distinguish between pIDi0 , b
1
i0
q and pIDi0 , b

1
i1
q.

22in terms of the system's security
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Requirement 3. For any two users Ui0 and Ui1 , where i0, i1 ě 1, if Uiβ , where β
$ÐÝ

t0, 1u makes an authentication attempt, then the database DB can only guess β with

a negligible advantage. Suppose the database DB makes a guess β1, the advantage is
|Prrb “ b1s ´ 1{2|.

3.6.2 A Biometric Authentication Protocol

In [61], the authors propose a biometric authentication protocol based on the Goldwasser-

Micali scheme. A security �aw23 of the protocol was indicated and �xed in [40]. A

natural extension of Bringer et al.'s protocol can be obtained using the scheme proposed

in Section 3.5.3.1. Thus, we describe our protocol in Section 3.6.2.1 and analyze its

security in Section 3.6.2.4. A performance analysis is provided in Section 3.6.2.5.

3.6.2.1 Description

3.6.2.2 Enrollment Phase

In the protocol we consider Ui's biometric template bi as being a γM -dimensional vector

bi “ tbi,jujPr0,Mq, where bi,j “ tbi,j,`u`Pr0,γq and bi,j,` P r0, 2kq.

In the enrollment phase, Ui registers pbi, iq at the database DB and pIDi, iq at the

authentication server AS, where IDi is Ui's pseudonym and i is the index of record bi

in DB. Let N denote the number of records in DB. Note that the matcher M possesses

a key pair psk, pkq for the scheme presented in Section 3.5.3.1.

We further denote by Eppk, ¨q and EJLppk, y`, ¨q the encryption algorithms for the scheme
presented in Section 3.5.3.1 with pk “ pn, y, kq and the Joye-Libert scheme24 with pk “
pn, y`, kq, where ` P r0, γq.

3.6.2.3 Veri�cation Phase

If a user Ui wishes to authenticate himself to AS, the next procedure is followed:

1. S captures the user's biometric data b1i and sends to AS the user's identity IDi

together with Eppk, b1iq “ tEppk, b1i,jqujPr0,Mq. Note that a liveness link is available

between S and AS to ensure that data is coming from the sensor are indeed fresh

and not arti�cial.
23The running time is exponential in the number of users
24Note that in this case we consider n to be a product of γ ` 1 primes.
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2. AS retrieves the index i using IDi and then sends EJLppk, y`, tjq to the database,
for ` P r0, γq and j P r0, Nq, where tj “ 1 if j “ i, tj “ 0 otherwise.

3. For every s P r0,Mq, DB computes

Eppk, bi,sq “
N´1
ź

j“0

γ´1
ź

`“0

EJLppk, y`, tjqbj,s,` mod n.

To prevent AS from performing an exhaustive search of the pro�le space, DB
re-randomizes the encryptions by calculating Eppk, bi,sq “ x2k

s Eppk, bi,sq, where
xs

$ÐÝ Zn̊. Then, DB sends Eppk, bi,sq, for s P r0,Mq to the authentication server.

4. AS computes vs, s P r0,Mq, where

vs “ Eppk, b1i,sq{Eppk, bi,sq mod n “ Eppk, b1i,s ´ bi,sq, (3.12)

and b1i,s´bi,s “ tb1i,s,`´bi,s,`u`Pr0,γq. Then, AS makes a random permutation among

vs, for s P r0,Mq, and sends the permuted vector ws, for s P r0,Mq, to M. Note

that Item 4 will return a valid result with high probability, thus we do not explicitly

require Eppk, bi,sq to be invertible.

5. M decrypts ws to check that the taxicab norm of the corresponding plaintext

vector

M´1
ÿ

s“0

γ´1
ÿ

`“0

|ws,`|

is equal to or less than d and sends the result AS.

6. AS accepts or rejects the authentication request accordingly.

Correctness (Requirement 1). We need to show that vs “ Eppk, b1i,s ´ bi,sq, for
s P r0,Mq. First observe that

Eppk, bi,sq “
N´1
ź

j“0

γ´1
ź

`“0

EJLppk, y`, tjqbj,s,`

”
N´1
ź

j“0

γ´1
ź

`“0

pr2k

j,γy
tj
` qbj,s,`

” r2k

i

γ´1
ź

`“0

y
bi,s,`
` mod n.
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Thus,

Eppk, b1i,sq{Eppk, bi,sq ” Eppk, b1i,s ´ bi,sq mod n.

It is obvious that the taxicab distance between bi and b1i

M´1
ÿ

s“0

γ´1
ÿ

`“0

|b1i,s,` ´ bi,s,`|

is equal to the taxicab norm of the plaintext vector corresponding to tvsusPr0,Mq and
twsusPr0,Mq.

3.6.2.4 Security Analysis

The proofs of Theorems 3.11 and 3.12 are similar to the security proofs from [61] and,

thus, are omitted. The only changes we have to make in the proofs of Theorems 3.11

and 3.12 is replacing Goldwasser-Micali with our scheme and, respectively, the Joye-

Libert scheme.

Theorem 3.11 (Requirement 2). For any identity IDi0 and two biometric templates

b1i0 , b
1
i1
, where i0, i1 ě 1 and b1i0 is the biometric template related to IDi0 , any M, DB

and AS can distinguish between pIDi0 , b
1
i0
q and pIDi0 , b

1
i1
q with negligible advantage.

Theorem 3.12 (Requirement 3). For any two users Ui0 and Ui1 , where i0, i1 ě 1, if

Uiβ , where β
$ÐÝ t0, 1u makes an authentication attempt, then the database DB can only

guess β with a negligible advantage.

3.6.2.5 Performance Analysis

It is easy to see that the sensor S and the matcher M perform only M encryptions and,

respectively, decryptions. Comparing our proposed protocol's complexity with Bringer

et al.'s, reduces to comparing the scheme from Section 3.5.3.1 with the Goldwasser-

Micali cryptosystem.25 On the authentication server's side, we perform γN Joye-Libert

encryptions (which can be precomputed) and M divisions. Bringer et al.'s protocol,

performs step 2 using the Goldwasser-Micali scheme and, thus, in step 4 they can use

multiplications instead of divisions 26. Since we took into consideration the �x from

[40] when proposing our protocol, we have to performM extra multiplications compared

25See Sections 3.5.3.3 and 3.5.3.4
26In Z2 addition and subtraction are equivalent.
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to the scheme in [61]. Since we have to assemble our scheme's ciphertexts from Joye-

Libert's ciphertexts we have a blowout of γ multiplications on the database's side. Thus,

we perform γMN{2 multiplications on average .



Chapter 4

Identity Based Cryptography

Identity-based cryptography was proposed in 1984 by Adi Shamir [222] who formulated

its basic principles and provided an identity-based signature scheme. In 2000, Sakai,

Ohgishi and Kasahara [216] have proposed an identity-based key agreement scheme, and

one year later, Cocks [77] and Boneh and Franklin [59] have proposed the �rst identity-

based encryption schemes. Cocks' scheme is based on quadratic residues, while Boneh

and Franklin's scheme is based on bilinear maps. Since then, some other IBE schemes

based on quadratic residues have been proposed [60, 147, 31, 76, 99, 100, 148], although

some of them are not secure (see [246] for details).

Cocks'scheme encrypts messages bit by bit and each encrypted bit is a pair of two

integers. The decryption consists of computing the Jacobi symbol of one of the two

integers in each pair. Although Cocks' IBE scheme is e�cient only for small messages,

it is very elegant and per se revolutionary. The scheme attracted the interest of many

researchers [60, 31, 76, 148]. A careful analysis of [77, 60, 31, 76, 148] shows that integers

of the form a`r, where a is an integer and r is a quadratic residue (modulo a given integer
n), play an important role in these papers. Particularly, it turns out to be important

to know the distribution of quadratic residues among all integers of the form a ` r. A

study in this direction was initiated by Perron [206] for the case of a prime modulus p.

However, most applications of quadratic residues to cryptography require the use of a

composite modulus n “ pq. We are thus faced with the need to extend Perron's results

to composite moduli. The same was advocated in [31] (see Section 2.3 in [31]). Here, the

authors avoided the extension of Perron's results to composite moduli with the price of

weaker indistinguishability results (this will be fully discussed in Section 4.3.1).

The contributions presented in this chapter are structured into two parts. The �rst part

(Section 4.2) considers sets of the form a ` X “ tpa ` xq mod n | x P Xu, where n is

a prime or the product of two primes n “ pq, and X is a subset of Zn̊ whose elements

112
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have some given Jacobi symbols modulo prime factors of n. For instance, X may be the

set of all integers in Zn̊ whose Jacobi symbol modulo p is 1 and Jacobi symbol modulo

q is ´1 (assuming n “ pq); we say that the Jacobi pattern of the integers in X, in this

case, is �`´�. Then, given a set a ` X, we look for the distribution of the quadratic

residues, quadratic non-residues, etc., in a ` X. We develop complete results for all

the Jacobi patterns of length one, + and - (this corresponds to quadratic residues and

non-residues modulo a prime) and Jacobi patterns of length two, ``, ´´, `´, and ´`
(this corresponds to moduli that are product of two distinct primes).

The results presented in Section 4.2 are a major extension of Perron's �ndings [206],

where only the distribution of quadratic residues in the set a`QRp, where p is a prime,
has been considered. Related studies to the one conducted in Section 4.3 were performed

in [86, 87, 204, 151], where the problem is to calculate the probability that

JppaqJppa` 1q ¨ ¨ ¨ Jppa` `´ 1q

meets some Jacobi residuosity modulo p, a priori given, for the ` elements, when a is

chosen uniformly at random from a P Zp̊ (p is a prime). Thus, in [204] it was shown that
the number of integers a with the property above is in between p{2` ´ ε and p{2` ` ε,

where ε “ `p3 ` ?pq. Dividing these two bounds by p we obtain the probability that

an integer a induces a given Jacobi residuosity for the ` consecutive elements. A direct

extension of this result to the case of RSA moduli may lead to �much larger bound� than

ε. In [151], an extension to RSA moduli has been proposed by generalizing [87]. Thus, it

was shown that the number of integers a with the property above is n{2``Op?n¨log2 nq,
where n is an RSA modulus and 1 ď ` ď p1{2´ δq log2 n, for some 0 ă δ ă 1{2.

The results developed in this chapter are di�erent than those mentioned above for at least

two main reasons. First of all, we have developed exact and not approximate formulas

for the number of integers with a given Jacobi pattern in sets a ` X. Secondly, the

increment factor is arbitrary in all our studies, while it is one in all the results mentioned

above.

The second part of the chapter's contribution (Section 4.3) points out some applications

of the results developed in the �rst part (Section 4.2). There are two main applications

discussed here. The �rst one relates to Galbraith's test for Cocks' IBE scheme. This test

was brie�y described in several papers such us [58, 31, 148], except that some claims were

not rigorously formulated and/or proved. Based on the results developed in Section 4.2,

we were able to make a deep analysis of some distributions related to Cocks' IBE scheme

and Galbraith's test, providing thus rigorous proofs for Galbraith's test.



Identity Based Cryptography 114

The second application discussed in Section 4.3 relates to the computational indistin-

guishability of some distributions in [31, 76, 148], under the quadratic residuosity as-

sumption. Based on the results developed in Section 4.2, we were able to prove statistical

indistinguishability of those distributions (without any assumption).

In addition to the applications already mentioned in Section 4.3, we believe that our

study in Section 4.2 is important also because it contributes to a better understanding

of the structure of Zn̊ with respect to Jacobi patterns of length at most two, which are

frequently employed in cryptography.

4.1 Preliminaries

Conventions. Positive integers n “ pq that are product of two distinct primes p and

q will be usually called RSA integers or RSA moduli. As a convention, we assume p ă q

for all RSA moduli n “ pq. For simplicity, the Jacoby symbol of an integer a modulo n

is denoted Jnpaq.

De�nition 4.1 (Identity Based Encryption - IBE). A Identity Based Encryption scheme

consists of four PPT algorithms: ParamGen, KeyGen, Encrypt and Decrypt. The �rst

one takes as input a security parameter and outputs the system's public parameters to-

gether with a master key. The KeyGen algorithm takes as input an identity ID together

with the public parameters and the master key and outputs a private key associated to

ID. The Encrypt algorithm, starting with a message m, an identity ID, and the public

parameters, encrypts m into some ciphertext c (the encryption key is ID or some binary

string derived from ID). The last algorithm decrypts c into m by using the private key

associated to ID.

Remark 4.1. A standard scenario on using IBE is as follows. Whenever Alice wants to

send a message m to Bob, she encrypts m by using Bob's identity IDpBq. In order to

decrypt the message received from Alice, Bob asks the key generator KeyGen to deliver

him the private key associated to IDpBq (if he does not already have it).

Security Model. Compared to PKE adversaries, an IBE attacker can corrupt several

users and obtain their private keys before attacking a certain user. Hence, an IBE model

has to take this into account. Such a model was introduced by [59].

De�nition 4.2 (Anonymity and Indistinguishability under Selective Identity and Chosen

Plaintext Attacks - anon-ind-id-cpa). The anon-ind-id-cpa security of an IBE scheme

S is formulated by means of the following game between a challenger C and a PPT

adversary A:
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KeyGenpλq: The challenger C generates the public parameters and sends them to

adversary A, while keeping the master key to himself.

Queries: The adversary issues a �nite number of adaptive queries. A query can be one

of the following types:

� Private key query. When A requests a query for an identity, the challenger

runs the Extract algorithm and returns the resulting private key to A.

� Encryption query. Adversary A can issue only one query of this type. He

sends C two pairs pID0,m0q and pID1,m1q consisting of two equal length

plaintexts m0 and m1 and two identities ID0 and ID1. The challenger �ips a

coin b P t0, 1u and encrypts mb using IDb. The resulting ciphertext c is sent

to the adversary. The following restrictions are in place: private key queries

for ID0 and ID1 must never be issued.

Guess: In this phase, the adversary outputs a guess b1 P t0, 1u. He wins the game, if
b1 “ b.

The advantage of an adversary A attacking an IBE scheme is de�ned as

IBEAdvSpAq “ |Prrb “ b1s ´ 1{2|

where the probability is computed over the random bits used by C and A. An IBE scheme

is anon-ind-id-cpa secure, if for any PPT adversary A the advantage IBEAdvSpAq is
negligible. If we consider ID0 “ ID1 in the above game, we obtain the concept of

ind-id-cpa security.

The Cocks IBE scheme. The Cocks encryption scheme [77] was the �rst IBE scheme

based on quadratic residues. It can be proven that Cocks' scheme is secure in ROM

under the qr assumption [77, 121, 148]. We further describe the generalized version of

the scheme [148].

ParamGenpλq: Randomly generate two large prime numbers p, q and compute n “ pq.

Generate uniformly at random e P Jǹ zQRn and output the public parameters

pp “ pn, e, hq, where h is a cryptographic hash function that maps identities into

Jǹ . The master key is the factorization pp, qq of n.

KeyGenpp, q, IDq: Let a “ hpIDq. Set a1 “ a, if a P QRn, and a1 “ ea, otherwise.

Uniformly at random choose a square root r of a1 and output it as the private key.
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Encryptionpm, IDq: Let a “ hpIDq. To encrypt a bit m P t´1, 1u, choose uniformly at
random t1, t2 P Zn̊ such that Jnpt1q “ Jnpt2q “ m. Compute c1 “ t1 ` at´1

1 mod n

and c2 “ t2 ` eat´1
2 mod n and output the ciphertext pc1, c2q.

Decryptionpc1, c2, rq: Set c “ c1 if r2 ” a mod n, or c “ c2, otherwise. Then, output

m “ Jnpc` 2rq.

Remark 4.2. For a givenm P t´1, 1u, the generation of an integer t P Zn̊ with Jnptq “ m

can be done by repetition because the probability of success for a random choice of t is

1{2. This is due to the fact that |Jǹ | “ |Jń | [224].

4.2 The set a ` Zn̊

In [206], Perron studied the set tpa` rqp | r P QRpu, where p ą 2 is a prime and a P Zp̊ ,
in order to establish how many of its elements are still quadratic residues modulo p. In

this section we extend Perron's study to sets

a`X “ tpa` xqn | x P Xu

where n is a prime or an RSA modulus, a P Zn̊, and X Ď Zn̊. When n is a prime, X

will be Zn̊, QRn, and QNRn; when n is an RSA modulus, X will be Zn̊, Jǹ , Jń , QRn,
QNRn, Jǹ zQRn, Jn̆ , and Jn̄ .

Given a set A “ a`X as above, we will partition A˚ “ AX Zn̊ into two subsets

� QRnpAq “ A˚ XQRn and

� QNRnpAq “ A˚ XQNRn,

if n is a prime, and into four subsets

� QRnpAq “ A˚ XQRn,
� pJǹ zQRnqpAq “ A˚ X pJǹ zQRnq,
� Jn̆ pAq “ A˚ X Jn̆ , and
� Jn̄ pAq “ A˚ X Jn̄ ,

if n is an RSA modulus. Moreover, in this last case, we will also consider Jǹ pAq “
A˚ X Jǹ and Jń pAq “ A˚ X Jń . The diagram in Figure 4.1 provides a pictorial view of

this case.
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QRn Jǹ zQRn

Jn̆ Jn̄

Jǹ

Jń

Zn̊ a` Zn̊

a`QRn a` Jǹ zQRn

a` Jn̆ a` Jn̄

a` Jǹ

a` Jń

QRnpa `QRnq
Jn̆ pa `QRnq Jn̄ pa `QRnq

pJǹ zQRnqpa `QRnq QRnpa ` Jǹ zQRnq
Jn̆ pa ` JnzQRnq Jn̄ pa ` JnzQRnq

pJǹ zQRnqpa ` Jǹ zQRnq

QRnpa ` Jn̆ q
Jn̆ pa ` Jn̆ q Jn̄ pa ` Jn̆ q

pJǹ zQRnqpa ` Jn̆ q QRnpa ` Jn̄ q
Jn̆ pa ` Jn̄ q Jn̄ pa ` Jn̄ q

pJǹ zQRnqpa ` Jn̄ q

ùñ

ùñ

Figure 4.1: Partitioning the set a` Zn̊ when n is an RSA modulus.

Now, our goal is to estimate the cardinalities of these subsets of Zn̊ and then to compute
probability distributions on them, such as P px P QRn : x Ð a ` Jn̄ q (this is the

probability that x is a quadratic residue when it is uniformly at random sampled from

a` Jn̄ ).

Perron's study developed in [206] corresponds, although not exactly in the form we use

in our paper, to the case of the set QRnpa`QRnq with a prime n.

4.2.1 Prime moduli

We will focus in this sub-section on the calculation of the cardinalities of the sets de�ned

above, when n ą 2 is a prime. Recall that, in this case, QRn “ Jǹ , QNRn “ Jń , and

Zn̊ is the disjoint union of the sets QRn and QNRn.

Proposition 4.1. Let p ą 2 be a prime and a P Zp̊ . Then,

1. a` Zp “ Zp and |pa` Zpq˚| “ |Zp̊ | “ p´ 1;

2. a` Zp̊ “ Zpztau and |pa` Zp̊q˚| “ |Zp̊ztau| “ p´ 2.

Proof. Both (1) and (2) are straightforward from de�nitions. However, we will provide

some details for the �rst part of (2).

Given x P Zp̊ , the integer pa`xqp is di�erent from a. Therefore, it is in Zpztau. Moreover,

for any y P Zpztau there exists x P Zp̊ such that pa` xqp “ y.
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Proposition 4.2. Let p ą 2 be a prime and a P Zp̊ . Then,

|pa`QRpq˚| “ p´ 2´ Jpp´aq
2

and

|pa`QNRpq˚| “ p´ 2` Jpp´aq
2

Proof. Let α P QRp. Clearly, pa ` αqp is co-prime to p i� α ­“ p´aqp. Therefore, if

p´aqp P QNRp then α ­“ p´aqp because α P QRp and, as a conclusion, all integers in

a`QRp are co-prime to p.

If p´aqp P QRp, exactly one integer in a`QRp, namely pa`p´aqpqp “ 0, is not co-prime

to p.

If we add to these remarks the fact that |QRp| “ pp ´ 1q{2, we obtain the �rst part of

the proposition.

The second part of this proposition follows a similar proof line to its �rst part. Alterna-

tively, it can be obtained from the set partitioning

pa` Zp̊q˚ “ pa`QRpq˚ Y pa`QNRpq˚,

Proposition 4.1, and the formula for |pa`QRpq˚|.

Corollary 4.1. Let p ą 2 be a prime and a, b P Zp̊ .

1. If a and b are of the same quadratic residuosity, then

(a) |pa`QRpq˚| “ |pb`QRpq˚| and
(b) |pa`QNRpq˚| “ |pb`QNRpq˚|;

2. If a and b are of opposite quadratic residuosities, then

|pa`QRpq˚| “ |pb`QNRpq˚|.

Proof. All the equalities simply follow from Proposition 4.2 and from the fact that p´aqp
and p´bqp are of the same quadratic residuosity in the �rst case, and are of opposite

quadratic residuosities in the second case.
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We go further to estimate |QRppAq| and |QNRppAq| for the aforementioned values of A.

We begin with the case of A “ a ` Zp̊ , which simply follows from Proposition 4.1 and

from the fact that |QRp| “ |QNRp| “ pp´ 1q{2 [194, 224].

Corollary 4.2. Let p ą 2 be a prime and a P Zp̊ . Then,

|QRppa` Zp̊q| “
p´ 2´ Jppaq

2

and

|QNRppa` Zp̊q| “
p´ 2` Jppaq

2

Proof. By Proposition 4.1, Item 2, QRppa ` Zp̊q “ QRppZp̊ztauq. If a P QRp, then
|QRppZp̊ztauq| “ |QRppZp̊q| ´ 1; otherwise, |QRppZp̊ztauq| “ |QRppZp̊q|. By taking into
account that |QRp| “ pp´ 1q{2, we obtain the �rst part of the proposition.

The second part of the proposition follows a similar proof line to its �rst part. Alterna-

tively, one may partition pa` Zp̊q˚ into QRppa` Zp̊q and QNRppa` Zp̊q, and then use

Proposition 4.1 and the �rst part of this corollary.

In [206], Perron proposed a very useful characterization of the quadratic residues in the

set a `QRp. However, he considered the integer 0 as a quadratic residue, which is not

the case in our paper. For this reason and for the sake of uniformity and completeness

of the paper we recall and adapt Perron's results to �t our case.

Lemma 4.1. Let p ą 2 be a prime, a P Zp̊ , and r P QRp. Then, pa` rqp P QRp if and
only if there exists u P Zp̊zSQRTppa,´aq such that r ”p 1

4

`

u´ a
u

˘2.

Proof. Let p ą 2 be a prime, a P Zp̊ , and r P QRp.

Assume �rst that r ”p 1
4

`

u´ a
u

˘2 for some u P Zp̊zSQRTppa,´aq. We remark that

r ıp 0 since u is not a square root of a. Then, the following congruences hold:

a` r ”p a` 1
4

`

u´ a
u

˘2

”p a` 1
4

´

u2 ´ 2a` a2

u2

¯

”p 1
4

´

u2 ` 2a` a2

u2

¯

”p 1
4

`

u` a
u

˘2
.

As u is not a square root of ´a modulo p, we deduce that a ` r ıp 0 and, therefore,

pa` rqp P QRp.
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Conversely, assume that pa ` rqp P QRp. Therefore, there exists t P Zp̊ such that

a ` r ”p t2. As r P QRp, there exists s P Zp̊ such that r ”p s2. Combining the two

congruences we obtain

ps´ tqps` tq ”p ´a.

As a P Zp̊ it follows that p´aqp P Zp̊ and, therefore, ps` tq cannot be divisible by p. So,
we may write

s´ t ”p ´ a

s` t
which leads to

s ”p 1

2

ˆ

ps` tq ´ a

s` t
˙

.

Now, we take u “ ps` tqp. It follows that u P Zp̊ and

r ”p s2 ”p 1

4

´

u´ a

u

¯2
.

It remains to prove that u R SQRTppa,´aq.

Because r P QRp, it follows that r ıp 0, which leads to the fact that u cannot be a

square root of a modulo p. Similarly, because pa` rqp P QRp it follows that a` r ıp 0.

As

a` r ”p 1

4

´

u` a

u

¯2
,

we deduce that u cannot be a square root of ´a modulo p.

Remark 4.3. One may reformulate Lemma 4.1 as follows:

Let p ą 2 be a prime, a P Zp̊ , and r P QRp. Then, pa` rqp P QRp if
and only if r ”p ps´aq24s , for some s P QRpzta,´au.

This reformulation shows that pa` rqp is a quadratic residue modulo p if and only if the

quadratic residue r can be written as an expression that depends of another quadratic

residue modulo p.

Lemma 4.2. Let p ą 2 be a prime and a P Zp̊ . Then, the function ψa : Zp̊zSQRTppa,´aq Ñ
QRp given by

ψapuq “ 1

4

´

u´ a

u

¯2
mod p,

for all u P Zp̊zSQRTppa,´aq, is a four-to-one map. Moreover, pa ` ψapuqqp P QRppa `
QRpq, for all u P Zp̊zSQRTppa,´aq.
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Proof. Let a P Zp̊ and u P Zp̊zSQRTppa,´aq. The form of ψapuq together with the fact

that u is not a square root of a modulo p show that ψapuq P QRp. Therefore, the function
ψa is well-de�ned.

The congruence
´

x´ a

x

¯2 ”p
´

u´ a

u

¯2

has four solutions in Zp̊ in the nondeterminate x, namely u, p´uqp, pa{uqp, and p´a{uqp.
If we prove that the four solutions above are pairwise incongruent modulo p, then ψa is

a four-to-one map.

Due to the fact that p ą 2 and pu, pq “ 1, we obtain u ıp ´u. In a similar way and

taking into consideration that pa, pq “ 1, we obtain a{u ıp ´a{u. Finally, the hypothesis
u R SQRTppa,´aq leads to the fact that neither u nor ´u can be congruent to a{u or

´a{u modulo p. Therefore, the four integers u, p´uqp, pa{uqp, and p´a{uqp are pairwise
incongruent modulo p.

A simple computation (see also the proof of Lemma 4.1) shows that

a` ψapuq ”p 1

4

´

u` a

u

¯2
.

Combining this with the fact that u R SQRTpp´aq, we obtain pa ` ψapuqqp P QRppa `
QRpq, for all u P Zp̊zSQRTppa,´aq.

The two lemmata proved above lead directly to the following very important result.

Theorem 4.1. Let p ą 2 be a prime and a P Zp̊ . Then,

|QRppa`QRpq| “
|Zp̊zSQRTppa,´aq|

4
.

We have now all the necessary elements to calculate the cardinals of the sets Y pa `
Xq, with X,Y P tQRp, QNRpu. For the sake of simplicity we introduce the following

notation.

Notation 4.1. Let p ą 2 be a prime and a P Z such that p does not divide a. We denote

by τ1
p,a, τ̄

1
p,a, τ

3
p,a, and τ̄

3
p,a the following symbols:

τ ip,a “
$

&

%

1, if ppq4 “ i and paqp P QRp
0, otherwise
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and

τ̄ ip,a “
$

&

%

1, if ppq4 “ i and paqp P QNRp
0, otherwise,

where i “ 1, 3.

These symbols have useful properties such as:

1. τ1
p,a “ τ1

p,´a, τ̄1
p,a “ τ̄1

p,´a, and τ3
p,a “ τ̄3

p,´a (when ppq4 “ 1, paqp is a quadratic

residue modulo p if and only if p´aqp is a quadratic residue modulo p);

2. Exactly one of these symbols is one, the others being zero (there are exactly two pos-

sibilities for ppq4 and exactly two possibilities for paqp with respect to its quadratic

residuosity; therefore, there are exactly four combinations and exactly one of them

holds for a given p and a);

3. The product of two or more symbols, all of them for the same integers p and a, is

zero (this follows immediately from the second property).

Corollary 4.3. Let p ą 2 be a prime, k “ p div 4, and a P Zp̊ . Then,

|QRppa`QRpq| “ k ´ τ1
p,a.

Proof. According to Theorem 4.1, everything comes down to the computation of

|Zp̊zSQRTppa,´aq|. Four cases are in order.

Case 1: p “ 4k` 1 for some integer k, and a P QRp. Then |SQRTppa,´aq| “ 4 because

p´aqp P QRp. As a result, |Zp̊zSQRTppa,´aq| “ 4k ´ 4.

Case 2: p “ 4k ` 1 for some integer k, and a P QNRp. Then |SQRTppa,´aq| “ 0

because p´aqp P QNRp. As a result, |Zp̊zSQRTppa,´aq| “ 4k.

Case 3: p “ 4k` 3 for some integer k, and a P QRp. Then |SQRTppa,´aq| “ 2 because

p´aqp P QNRp. As a result, |Zp̊zSQRTppa,´aq| “ 4k.

Case 4: p “ 4k ` 3 for some integer k, and a P QNRp. Then |SQRTppa,´aq| “ 2

because p´aqp P QRp. As a result, |Zp̊zSQRTppa,´aq| “ 4k.

All these cases lead to the statement in the corollary.

Corollary 4.4. Let p ą 2 be a prime, k “ p div 4, and a P Zp̊ . Then,

|QNRppa`QRpq| “ k ` τ3
p,a.
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Proof. The set pa ` QRpq˚ is partitioned into quadratic residues and quadratic non-

residues modulo p. Therefore,

|QNRppa`QRpq| “ |pa`QRpq˚| ´ |QRppa`QRpq|.

We will accomplish this computation on cases.

Case 1: p “ 4k`1 for some integer k, and a P QRp. Then, p´aqp P QRp and, therefore,
|pa`QRpq˚| “ 2k´1 (by Proposition 4.2) and |QRppa`QRpq| “ k´1 (by Corollary 4.3).

As a result, |QNRppa`QRpq| “ k.

Case 2: p “ 4k`1 for some integer k, and a P QNRp. Then, p´aqp P QNRp and, there-
fore, |pa`QRpq˚| “ 2k (by Proposition 4.2) and |QRppa`QRpq| “ k (by Corollary 4.3).

As a result, |QNRppa`QRpq| “ k.

Case 3: p “ 4k ` 3 for some integer k, and a P QRp. Then, p´aqp P QNRp and,

therefore, |pa ` QRpq˚| “ 2k ` 1 (by Proposition 4.2) and |QRppa ` QRpq| “ k (by

Corollary 4.3). As a result, |QNRppa`QRpq| “ k ` 1.

Case 4: p “ 4k`3 for some integer k, and a P QNRp. Then, p´aqp P QRp and, therefore,
|pa`QRpq˚| “ 2k (by Proposition 4.2) and |QRppa`QRpq| “ k (by Corollary 4.3). As

a result, |QNRppa`QRpq| “ k.

Corollary 4.5. Let p ą 2 be a prime, k “ p div 4, and a P Zp̊ . Then,

|QRppa`QNRpq| “ k ` τ̄3
p,a

and

|QNRppa`QNRpq| “ k ´ τ̄1
p,a.

Proof. The set Zp̊ is partitioned into QRp and QNRp. Therefore, a ` Zp̊ is a disjoint

set union

a` Zp̊ “ pa`QRpq Y pa`QNRpq

This leads to the set partitions

QRppa` Zp̊q “ QRppa`QRpq YQRppa`QNRpq

and

QNRppa` Zp̊q “ QNRppa`QRpq YQNRppa`QNRpq.
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As a conclusion,

|QRppa`QNRpq| “ |QRppa` Zp̊q| ´ |QRppa`QRpq|

and

|QNRppa`QNRpq| “ |QNRppa` Zp̊q| ´ |QNRppa`QRpq|

Now, the corollary follows from Corollaries 4.2 to 4.4.

Similar to Corollary 4.1 one can prove the following result.

Corollary 4.6. Let p ą 2 be a prime and a, b P Zp̊ .

1. If a and b are of the same quadratic residuosity, then

(a) |QRppa`QRpq| “ |QRppb`QRpq|,
(b) |QNRppa`QRpq| “ |QNRppb`QRpq|,
(c) |QRppa`QNRpq| “ |QRppb`QNRpq|, and
(d) |QNRppa`QNRpq| “ |QNRppb`QNRpq|;

2. If a and b are of opposite quadratic residuosities, then

(a) |QRppa`QNRpq| “ |QNRppb`QRpq| and
(b) |QNRppa`QNRpq| “ |QRppb`QRpq|.

We close this sub-section with a result which establishes an interesting bijection between

pa ` QRpq˚ and pb ` QNRpq˚. This bijection can be used to obtain alternative proofs

for some of the results already obtained in this sub-section.

Lemma 4.3. Let p ą 2 be a prime and a, b P Zp̊ of opposite quadratic residuosities.

Then, there exists a bijective map

f : pa`QRpq˚ Ñ pb`QNRpq˚

such that f maps QRppa ` QRpq onto QNRppb ` QNRpq and QNRppa ` QRpq onto
QRppb`QNRpq. Moreover, such a bijection can be found in Opplog pq2q time complexity.

Proof. Corollary 4.1 shows that |pa ` QRpq˚| “ |pb ` QNRpq˚| and, therefore, there
exists a bijection from pa ` QRpq˚ to pb ` QNRpq˚. Such a bijection can be easily
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found if we compute the unique solution e P Zp̊ to the linear congruence ax ”p b in the

non-determinate x. Once we have found the solution e, we consider the function

f : pa`QRpq˚ Ñ pb`QNRpq˚

given by fpxq “ pe ¨ xqp, for any x P pa`QRpq˚.

By taking into account that e must be a quadratic non-residue (a and b are of opposite

quadratic residuosities) and QNRp “ tpe ¨ αqp | α P QRpu, we easily obtain that f is

well-de�ned and bijective.

Let us show now that f maps QRppa`QRpq onto QNRppb`QNRpq. Indeed,

� Given x “ pa`αqp P QRppa`QRpq, where α P QRp, we have that pe ¨xqp P QNRp
and

pe ¨ xqp “ ppe ¨ aqp ` pe ¨ αqpqp “ pb` pe ¨ αqpqp P b`QNRp.

This shows that fpxq is a quadratic non-residue in b`QNRp;

� For any quadratic non-residue y “ pb` βqp P b`QNRp, the integer x “ pa` αqp,
where e ¨ α “ β, satis�es fpxq “ y; moreover, y “ pe ¨ xqp which shows that x is

a quadratic residue modulo p (because both y and e are quadratic non-residues

modulo p).

As a conclusion, f maps QRppa`QRpq onto QNRppb`QNRpq.

In a similar way it is shown that f maps QNRppa`QRpq onto QRppb`QNRpq. More-

over, to obtain f we only need to compute e, and this can be done in Opplog pq2q time
complexity [224].

4.2.2 Composite moduli

We are now extending the results in the previous sub-section to the case of RSA moduli

n “ pq, where p and q are distinct odd primes1. First of all, we recall a well-known

result, tailored for RSA moduli, that can be found in almost any standard book on

number theory, such as [194].

Theorem 4.2 ([194]). Let n “ pq be an RSA modulus. Then, the function f : Zn Ñ
Zp ˆ Zq given by

fpxq “ ppxqp, pxqqq,
1One may notice that the results developed in this section can easily be extended to moduli that are

product of more than two distinct odd primes.
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for any x P Zn, is bijective and maps Zn̊ onto Zp̊ ˆ Zq̊ .

One of the main applications of the bijection f in Theorem 4.2 is to show that Euler's

totient function φ is multiplicative. The bijection f has other applications as well, and

some of them will be discussed by us below.

Theorem 4.3. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f in

Theorem 4.2 has the following properties:

1. f maps pa` Zn̊q˚ onto ppaqp ` Zp̊q˚ ˆ ppaqq ` Zq̊ q˚;

2. f maps pa`QRnq˚ onto ppaqp `QRpq˚ ˆ ppaqq `QRqq˚;

3. f maps pa` Jǹ zQRnq˚ onto ppaqp `QNRpq˚ ˆ ppaqq `QNRqq˚;

4. f maps pa` Jn̆ q˚ onto ppaqp `QRpq˚ ˆ ppaqq `QNRqq˚;

5. f maps pa` Jn̄ q˚ onto ppaqp `QNRpq˚ ˆ ppaqq `QRqq˚.

Proof. We will only prove (3) (the other properties follow a similar proof line).

Let x P pa ` Jǹ zQRnq˚. Then, x P Zn̊ and x “ pa ` αqn, for some α P Jǹ zQRn.
Therefore, pxqp P Zp̊ , pxqq P Zq̊ , pxqp “ ppaqp ` pαqpqp, and pxqq “ ppaqq ` pαqqqq. As

1 “ Jnpαq “ Jpppαqpq ¨ Jqppαqqq

and α R QRn, it follows that

ppαqp, pαqqq P QNRp ˆQNRq.

Therefore,

fpxq P ppaqp `QNRpq˚ ˆ ppaqq `QNRqq˚.

To show that f is onto, we consider py, zq P ppaqp`QNRpq˚ˆppaqq`QNRqq˚. Therefore,
y P Zp̊ , z P Zq̊ , y “ ppaqp`βqp, and z “ ppaqq`γqq, for some β P QNRp and γ P QNRq.
Starting with β and γ, CRT gives rise to a unique α P Zn̊ such that pαqp “ β and

pαqq “ γ. Then,

Jnpαq “ Jppαq ¨ Jqpαq “ Jppβq ¨ Jqpγq “ p´1qp´1q “ 1,

which shows that α P Jǹ . Moreover, α R QRn because pαqp R QRp and pαqq R QRq.

Consider now x “ pa ` αqn. Clearly, x P a ` Jǹ zQRn. Moreover, x P pa ` Jǹ zQRnq˚
because pxqp “ y P Zp̊ and pxqq “ z P Zq̊ . Therefore, f is onto.
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Several consequences of Theorem 4.3 are in order.

Corollary 4.7. Let n “ pq be an RSA modulus and a P Zn̊. Then,

1. |pa` Zn̊q˚| “ pp´ 2qpq ´ 2q.

2. |pa`QRnq˚| “ pp´2´Jpp´aqqpq´2´Jqp´aqq
4 .

3. |pa` Jǹ zQRnq˚| “ pp´2`Jpp´aqqpq´2`Jqp´aqq
4 .

4. |pa` Jn̆ q˚| “ pp´2´Jpp´aqqpq´2`Jqp´aqq
4 .

5. |pa` Jn̄ q˚| “ pp´2`Jpp´aqqpq´2´Jqp´aqq
4 .

6. |pa` Jǹ q˚| “ pp´2qpq´2q`Jpp´aqJqp´aq
2 .

7. |pa` Jń q˚| “ pp´2qpq´2q´Jpp´aqJqp´aq
2 .

8. |pa`QNRnq˚| “ 3pp´2qpq´2q`Jpp´aqpq´2q`Jqp´aqpp´2q´Jpp´aqJqp´aq
4 .

Proof. (1) follows from Theorem 4.3(1) and Proposition 4.1, (2) from Theorem 4.3(2) and

Proposition 4.2, (3) from Theorem 4.3(3) and Proposition 4.2, (4) from Theorem 4.3(4)

and Proposition 4.2, and (5) from Theorem 4.3(5) and Proposition 4.2.

(6) is based on the disjoint set union

pa` Jǹ q˚ “ pa`QRnq˚ Y pa` Jǹ zQRnq˚

together with (2) and (3), while (7) is based on

pa` Jń q˚ “ pa` Jn̆ q˚ Y pa` Jn̄ q˚,

(4), and (5). The last property follows, for instance, from (7) and (3).

We present now other properties of the function f in Theorem 4.2, necessary to partition

the set pa` Zn̊q˚ in the same way Zn̊ is partitioned by Jacobi symbols.

Theorem 4.4. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f in

Theorem 4.2 has the following properties:

1. f maps QRnpa` Zn̊q onto QRpppaqp ` Zp̊q ˆQRqppaqq ` Zq̊ q;

2. f maps pJǹ zQRnqpa` Zn̊q onto QNRpppaqp ` Zp̊q ˆQNRqppaqq ` Zq̊ q;

3. f maps Jn̆ pa` Zn̊q onto QRpppaqp ` Zp̊q ˆQNRqppaqq ` Zq̊ q;
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4. f maps Jn̄ pa` Zn̊q onto QNRpppaqp ` Zp̊q ˆQRqppaqq ` Zq̊ q.

Proof. It is similar to the proof of Theorem 4.3.

Corollary 4.8. Let n “ pq be an RSA modulus and a P Zn̊. Then,

1. |QRnpa` Zn̊q| “ pp´2´Jppaqqpq´2´Jqpaqq
4 .

2. |pJǹ zQRnqpa` Zn̊q| “ pp´2`Jppaqqpq´2`Jqpaqq
4 .

3. |Jn̆ pa` Zn̊q| “ pp´2´Jppaqqpq´2`Jqpaqq
4 .

4. |Jn̄ pa` Zn̊q| “ pp´2`Jppaqqpq´2´Jqpaqq
4 .

5. |Jǹ pa` Zn̊q| “ pp´2qpq´2q`JppaqJqpaq
2 .

6. |Jń pa` Zn̊q| “ pp´2qpq´2q´JppaqJqpaq
2 .

7. |QNRnpa` Zn̊q| “ 3pp´2qpq´2q`Jppaqpq´2q`Jqpaqpp´2q´JppaqJqpaq
4 .

Proof. For (1)-(4) we use Theorem 4.4(1)-(4), respectively, and Corollary 4.2. The prop-

erties (5)-(7) are immediate consequences of (1)-(4).

We use now the function f in Theorem 4.2 to partition the set a`QRn.

Theorem 4.5. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f in

Theorem 4.2 has the following properties:

1. f maps QRnpa`QRnq onto QRpppaqp `QRpq ˆQRqppaqq `QRqq;

2. f maps pJǹ zQRnqpa`QRnq onto QNRpppaqp `QRpq ˆQNRqppaqq `QRqq;

3. f maps Jn̆ pa`QRnq onto QRpppaqp `QRpq ˆQNRqppaqq `QRqq;

4. f maps Jn̄ pa`QRnq onto QNRpppaqp `QRpq ˆQRqppaqq `QRqq.

Proof. It is similar to the proof of Theorem 4.3.

Corollary 4.9. Let n “ pq be an RSA modulus, k1 “ p div 4, k2 “ q div 4, and a P Zn̊.
Then,

1. |QRnpa`QRnq| “ pk1 ´ τ1
p,aqpk2 ´ τ1

q,aq.
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2. |pJǹ zQRnqpa`QRnq| “ pk1 ` τ3
p,aqpk2 ` τ3

q,aq.

3. |Jn̆ pa`QRnq| “ pk1 ´ τ1
p,aqpk2 ` τ3

q,aq.

4. |Jn̄ pa`QRnq| “ pk1 ` τ3
p,aqpk2 ´ τ1

q,aq.

5. |Jǹ pa`QRnq| “ 2k1k2 ` k1pτ3
q,a ´ τ1

q,aq ` k2pτ3
p,a ´ τ1

p,aq ` τ1
p,aτ

1
q,a ` τ3

p,aτ
3
q,a.

6. |Jń pa`QRnq| “ 2k1k2 ` k1pτ3
q,a ´ τ1

q,aq ` k2pτ3
p,a ´ τ1

p,aq ´ τ1
p,aτ

3
q,a ´ τ3

p,aτ
1
q,a.

7. |QNRnpa`QRnq| “ 3k1k2` k1p2τ3
q,a´ τ1

q,aq` k2p2τ3
p,a´ τ1

p,aq´ τ1
p,aτ

3
q,a´ τ3

p,aτ
1
q,a`

τ3
p,aτ

3
q,a.

Proof. For (1)-(4) we use Theorem 4.5(1)-(4), respectively, and Corollaries 4.3 and 4.4.

The properties (5)-(7) are immediate consequences of (1)-(4).

The following theorem shows how to partition a` Jǹ zQRn.

Theorem 4.6. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f in

Theorem 4.2 has the following properties:

1. f maps QRnpa` Jǹ zQRnq onto QRpppaqp `QNRpq ˆQRqppaqq `QNRqq;

2. f maps pJǹ zQRnqpa`Jǹ zQRnq onto QNRpppaqp`QNRpqˆQNRqppaqq`QNRqq;

3. f maps Jn̆ pa` Jǹ zQRnq onto QRpppaqp `QNRpq ˆQNRqppaqq `QNRqq;

4. f maps Jn̄ pa` JnzQRnq onto QNRpppaqp `QNRpq ˆQRqppaqq `QNRqq.

Proof. It is similar to the proof of Theorem 4.3.

Corollary 4.10. Let n “ pq be an RSA modulus, k1 “ p div 4, k2 “ q div 4, and a P Zn̊.
Then,

1. |QRnpa` Jǹ zQRnq| “ pk1 ` τ̄3
p,aqpk2 ` τ̄3

q,aq.

2. |pJǹ zQRnqpa` Jǹ zQRnq| “ pk1 ´ τ̄1
p,aqpk2 ´ τ̄1

q,aq.

3. |Jn̆ pa` Jǹ zQRnq| “ pk1 ` τ̄3
p,aqpk2 ´ τ̄1

q,aq.

4. |Jn̄ pa` Jǹ zQRnq| “ pk1 ´ τ̄1
p,aqpk2 ` τ̄3

q,aq.

5. |Jǹ pa` Jǹ zQRnq| “ 2k1k2 ` k1pτ̄3
q,a ´ τ̄1

q,aq ` k2pτ̄3
p,a ´ τ̄1

p,aq ` τ̄3
p,aτ̄

3
q,a ` τ̄1

p,aτ̄
1
q,a.

6. |Jń pa` Jǹ zQRnq| “ 2k1k2 ` k1pτ̄3
q,a ´ τ̄1

q,aq ` k2pτ̄3
p,a ´ τ̄1

p,aq ´ τ̄3
p,aτ̄

1
q,a ´ τ̄1

p,aτ̄
3
q,a.
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7. |QNRnpa ` Jǹ zQRnq| “ 3k1k2 ` k1pτ̄3
q,a ´ 2τ̄1

q,aq ` k2pτ̄3
p,a ´ 2τ̄1

p,aq ´ τ̄3
p,aτ̄

1
q,a ´

τ̄1
p,aτ̄

3
q,a ` τ̄1

p,aτ̄
1
q,a.

Proof. For (1)-(4) we use Theorem 4.6(1)-(4), respectively, and Corollary 4.5. The prop-

erties (5)-(7) are immediate consequences of (1)-(4).

For the partitioning of the set a` Jn̆ we have the following result.

Theorem 4.7. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f in

Theorem 4.2 has the following properties:

1. f maps QRnpa` Jn̆ q onto QRpppaqp `QRpq ˆQRqppaqq `QNRqq;

2. f maps pJǹ zQRnqpa` Jn̆ q onto QNRpppaqp `QRpq ˆQNRqppaqq `QNRqq;

3. f maps Jn̆ pa` Jn̆ q onto QRpppaqp `QRpq ˆQNRqppaqq `QNRqq;

4. f maps Jn̄ pa` Jn̆ q onto QNRpppaqp `QRpq ˆQRqppaqq `QNRqq.

Proof. It is similar to the proof of Theorem 4.3.

Corollary 4.11. Let n “ pq be an RSA modulus, k1 “ p div 4, k2 “ q div 4, and a P Zn̊.
Then,

1. |QRnpa` Jn̆ q| “ pk1 ´ τ1
p,aqpk2 ` τ̄3

q,aq.

2. |pJǹ zQRnqpa` Jn̆ q| “ pk1 ` τ3
p,aqpk2 ´ τ̄1

q,aq.

3. |Jn̆ pa` Jn̆ q| “ pk1 ´ τ1
p,aqpk2 ´ τ̄1

q,aq.

4. |Jn̄ pa` Jn̆ q| “ pk1 ` τ3
p,aqpk2 ` τ̄3

q,aq.

5. |Jǹ pa` Jn̆ q| “ 2k1k2 ` k1pτ̄3
q,a ´ τ̄1

q,aq ` k2pτ3
p,a ´ τ1

p,aq ´ τ1
p,aτ̄

3
q,a ´ τ3

p,aτ̄
1
q,a.

6. |Jń pa` Jn̆ q| “ 2k1k2 ` k1pτ̄3
q,a ´ τ̄1

q,aq ` k2pτ3
p,a ´ τ1

p,aq ` τ1
p,aτ̄

1
q,a ` τ3

p,aτ̄
3
q,a.

7. |QNRnpa` Jn̆ q| “ 3k1k2 ` k1pτ̄3
q,a ´ 2τ̄1

q,aq ` k2p2τ3
p,a ´ τ1

p,aq ` τ1
p,aτ̄

1
q,a ` τ3

p,aτ̄
3
q,a ´

τ3
p,aτ̄

1
q,a.

Proof. For (1)-(4) we use Theorem 4.7(1)-(4), respectively, and Corollaries 4.3 to 4.5.

The properties (5)-(7) are immediate consequences of (1)-(4).
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The last application of Theorem 4.1 we discuss in this subsection is with respect to the

set a` Jn̄ .

Theorem 4.8. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f in

Theorem 4.2 has the following properties:

1. f maps QRnpa` Jn̄ q onto QRpppaqp `QNRpq ˆQRqppaqq `QRqq;

2. f maps pJǹ zQRnqpa` Jn̄ q onto QNRpppaqp `QNRpq ˆQNRqppaqq `QRqq;

3. f maps Jn̆ pa` Jn̄ q onto QRpppaqp `QNRpq ˆQNRqppaqq `QRqq;

4. f maps Jn̄ pa` Jn̄ q onto QNRpppaqp `QNRpq ˆQRqppaqq `QRqq.

Proof. It is similar to the proof of Theorem 4.3.

Corollary 4.12. Let n “ pq be an RSA modulus, k1 “ p div 4, k2 “ q div 4, and a P Zn̊.
Then,

1. |QRnpa` Jn̄ q| “ pk1 ` τ̄3
p,aqpk2 ´ τ1

q,aq.

2. |pJǹ zQRnqpa` Jn̄ q| “ pk1 ´ τ̄1
p,aqpk2 ` τ3

q,aq.

3. |Jn̆ pa` Jn̄ q| “ pk1 ` τ̄3
p,aqpk2 ` τ3

q,aq.

4. |Jn̄ pa` Jn̄ q| “ pk1 ´ τ̄1
p,aqpk2 ´ τ1

q,aq.

5. |Jǹ pa` Jn̄ q| “ 2k1k2 ` k1pτ3
q,a ´ τ1

q,aq ` k2pτ̄3
p,a ´ τ̄1

p,aq ´ τ̄3
p,aτ

1
q,a ´ τ̄1

p,aτ
3
q,a.

6. |Jń pa` Jn̄ q| “ 2k1k2 ` k1pτ3
q,a ´ τ1

q,aq ` k2pτ̄3
p,a ´ τ̄1

p,aq ` τ̄3
p,aτ

3
q,a ` τ̄1

p,aτ
1
q,a.

7. |QNRnpa` Jn̄ q| “ 3k1k2 ` k1p2τ3
q,a ´ τ1

q,aq ` k2pτ̄3
p,a ´ 2τ̄1

p,aq ` τ̄3
p,aτ

3
q,a ` τ̄1

p,aτ
1
q,a ´

τ̄1
p,aτ

3
q,a.

Proof. For (1)-(4) we use Theorem 4.8(1)-(4), respectively, and Corollaries 4.3 to 4.5.

The properties (5)-(7) are immediate consequences of (1)-(4).

We have thus provided formulas for all cardinalities of the sets in Figure 4.1.
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4.2.3 Probability distributions on a ` Zn̊

The results developed in the previous sub-sections allow us to calculate various proba-

bility distributions on subsets pa ` Xq˚, where X is Zn̊, QRn, Jǹ zQRn, Jn̆ , Jn̄ , Jǹ ,
Jń , or QNRn. We will give below a few examples. The notation

P px P Y : xÐ pa`Xq˚q

stands for the probability that x is in Y when it is uniformly at random sampled from

pa`Xq˚, where Y is a subset of pa`Xq˚ as those in the previous sub-sections. Using

our notation, this probability can be calculated by

P px P Y : xÐ pa`Xq˚q “ |Y pa`Xq||pa`Xq˚| “
|pa`Xq˚ X Y |
|pa`Xq˚| .

We will provide below just a few examples of calculating such probabilities.

Corollary 4.13. Let n “ pq be an RSA modulus and a P Zn̊. Then, the following hold:

1. P px P QRn : xÐ pa`QRnq˚q “

$

’

&

’

%

1
4 , if a P Jǹ zQRn,
1
4 ´O

´

1?
n

¯

, otherwise.

2. P px P Jǹ zQRn : xÐ pa`QRnq˚q “

$

’

&

’

%

1
4 , if a P Jǹ zQRn,
1
4 `O

´

1?
n

¯

, otherwise.

3. P px P Jn̆ : xÐ pa`QRnq˚q “

$

’

&

’

%

1
4 , if a P Jǹ zQRn,
1
4 ´O

´

1?
n

¯

, otherwise.

4. P px P Jn̄ : xÐ pa`QRnq˚q “

$

’

&

’

%

1
4 , if a P Jǹ zQRn,
1
4 `O

´

1?
n

¯

, otherwise.

5. P px P Jǹ : xÐ pa`QRnq˚q “

$

’

&

’

%

1
2 , if a P QNRn,
1
2 `O

`

1
n

˘

, otherwise.

6. P px P Jń : xÐ pa`QRnq˚q “

$

’

&

’

%

1
2 , if a P QNRn,
1
2 ´O

`

1
n

˘

, otherwise.

7. P px P QNRn : xÐ pa`QRnq˚q “

$

’

&

’

%

3
4 , if a P Jǹ zQRn,
3
4 `O

´

1?
n

¯

, otherwise.
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Proof. We will only prove (1) as an example; the other properties follow a similar proof

line.

First, recall that by Corollaries 4.7 and 4.9 we have

P px P QRn : xÐ pa`QRnq˚q “ |QRnpa`QRnq||pa`QRnq˚|
“ 4pk1 ´ τ1

p,aqpk2 ´ τ1
q,aq

pp´ 2´ Jpp´aqqpq ´ 2´ Jqp´aqq ,

where k1 “ p div 4 and k2 “ q div 4. What we have now to do is to consider several

cases with respect to p, q, and a.

Case 1: a P Jǹ zQRn. Then, regardless of ppq4 and pqq4 we have p´ 2´ Jpp´aq “ 4k1,

q ´ 2´ Jqp´aq “ 4k2, and τ1
p,a “ 0 “ τ1

q,a. Therefore,

P px P QRn : xÐ pa`QRnq˚q “ 1

4
.

Case 2: a P Jn̄ . Then, regardless of ppq4 we have p ´ 2 ´ Jpp´aq “ 4k1 and τ1
p,a “ 0.

A simple computation on the two possible values of pqq4 leads to

P px P QRn : xÐ pa`QRnq˚q “

$

’

&

’

%

1
4

´

1´ 1
2k2´1

¯

, if pqq4 “ 1

1
4

´

1´ 1
2k2`1

¯

, if pqq4 “ 3

Case 3: a P Jn̆ . This case is similar to the previous one (simply switch k2 with k1 and

q with p).

Case 4: a P QRn. Then, we obtain

P px P QRn : xÐ pa`QRnq˚q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1
4

´

1´ 2k1`2k2´3
p2k1´1qp2k2´1q

¯

, if ppq4 “ 1 “ pqq4
1
4

´

1´ 2k1`2k2´1
p2k1´1qp2k2`1q

¯

, if ppq4 “ 1 and pqq4 “ 3

1
4

´

1´ 2k1`2k2´1
p2k1`1qp2k2´1q

¯

, if ppq4 “ 3 and pqq4 “ 1

1
4

´

1´ 2k1`2k2`1
p2k1`1qp2k2`1q

¯

, if ppq4 “ 3 “ pqq4

From these cases one can easily infer the result in (1).
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Remark 4.4. The probability in Corollary 4.13(1) is paired with that in Corollary 4.13(2).

The pairing means that when

P px P QRn : xÐ pa`QRnq˚q “ 1

4
´ c?

n

then

P px P JnzQRn : xÐ pa`QRnq˚q “ 1

4
` c?

n
,

for some constant c ą 0 (to see it, one has to do a similar calculation for Corollary 4.13,

Item 2 as we did for Corollary 4.13Item 1). The same happens with the probabilities in

Corollary 4.13, Items 3 and 4, Corollary 4.13,Items 5 and 6, and Corollary 4.13, Items 1

and 7.

4.3 Applications

We believe that the results developed in the previous section have important applications

to quadratic residuosity-based cryptography. We will illustrate some of these applications

in the next subsections.

4.3.1 Cocks' IBE Scheme and Galbraith's Test

According to [58], Galbraith developed a test to show that Cocks' IBE scheme is not

anonymous in the following sense. Given two random public keys (identities) a, b P Jǹ ,
one may distinguish with overwhelming probability whether a ciphertext c is encrypted

under the public key a or under the public key b. Galbraith's test (abbreviated GT),

was brie�y described in [58, 31], but some claims were not rigorously proved. Using the

results developed in the previous sections, we can complete GT description in [58, 31] by

rigorous arguments. First of all, let us introduce the following sets of integers:

Cnpaq “ tpt` at´1qn | t P Zn̊u
Cn̊paq “ Cnpaq X Zn̊

Gnpaq “ tc P Zn̊ | Jnpc2 ´ 4aq “ 1u

where n ą 2 and a P Zn̊.

When n is an RSA modulus and a P Jǹ , the set Cnpaq corresponds to the set of encryp-
tions in Cocks' IBE scheme, and Gnpaq corresponds to the set of all integers in Zn̊ that

�pass� GT [58, 31].
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We develop now some counting results, similar to the ones in Section 2, for Cnpaq, Cn̊paq,
and Gnpaq. We begin with the case of prime moduli.

Theorem 4.9. Let p ą 2 be a prime and a, c P Zp̊ . Then,

1. 0 P Cppaq if and only if ´a P QRp;

2. c P Cppaq if and only if c2 ´ 4a ”p 0 or pc2 ´ 4aqp P QRp.

Proof. For (1) we have:

0 P Cppaq ô t` at´1 ”p 0, for some t P Zp̊
ô a` t2 ”p 0, for some t P Zp̊
ô ´a ”p t2, for some t P Zp̊
ô ´a P QRp.

In order to prove (2) remark that c P Cppaq if and only if the quadratic congruence

t2 ´ ct` a ”p 0 (4.2)

has solutions in Zp̊ . Moreover, Section 4.3.1 has integer solutions if and only if its

discriminant ∆ “ pc2 ´ 4aqp is 0 or a quadratic residue modulo p. It remains to prove

that, in any of these two cases, Section 4.3.1 has solutions in Zp̊ .

If ∆ “ 0, then a ”p pc{2q2. The Section 4.3.1 has exactly one solution in Zp, namely
t “ pc{2qp. Moreover, t P Zp̊ because c P Zp̊ .

If ∆ P QRp, then the Section 4.3.1 has two solutions in Zp, namely ppc ` rq{2qp and

ppc ´ rq{2qp, where r and p´rqp are the two square roots of ∆ in Zp. If we assume

now that ppc ` rq{2q ”p 0 or ppc ´ rq{2q ”p 0, then pc ` rqpc ´ rq ”p 0 and, therefore,

c2´ r2 ”p 0. This leads to a contradiction because c2´ r2 ”p 4a and a P Zp̊ . Therefore,
ppc` rq{2qp and ppc´ rq{2qp are in Zp̊ .

Corollary 4.14. Let p ą 2 be a prime and a P Zp̊ . Then, Cp̊ paq can be written as a

disjoint set union Cp̊ paq “ C0
ppaq Y C1

ppaq, where

� C0
ppaq “ tc P Zp̊ | Jppc2 ´ 4aq “ 0u and

� C1
ppaq “ tc P Zp̊ | Jppc2 ´ 4aq “ 1u.

Proof. This is in fact a new way to express the statement in Theorem 4.9(2).
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Corollary 4.15. Let p ą 2 be a prime, k “ p div 4, and a P Zp̊ . Then,

1. |C0
ppaq| “ 2pτ1

p,a ` τ3
p,aq;

2. |C1
ppaq| “ 2|QRppa`QRpq| “ 2pk ´ τ1

p,aq;

3. |Cp̊ paq| “ 2pk ` τ3
p,aq;

4. |Cppaq| “ 2pk ` τ3
p,aq ` τ1

p,a ` τ̄3
p,a;

Proof. We count the integers in Cppaq with the help of Theorem 4.9 as follows:

(a) If a P QRp and r and p´rqp are the square roots modulo p of a, then p2rqp and
p´2rqp are the only (incongruent modulo p) integers in C0

ppaq;

(b) Each quadratic residue u “ p´4a`c2qp P p´4a`QRpq gives rise to two (incongruent
modulo p) integers in C1

ppaq, namely c and p´cqp;

(c) The integers obtained as above are pairwise incongruent modulo p;

(d) 0 P Cppaq if and only if ´a P QRp.

Therefore, the item (a) gives rise to |C0
ppaq| “ 2pτ1

p,a ` τ3
p,aq. The items (b) and (c) lead

to

|C1
ppaq| “ 2|QRpp´4a`QRpq| “ 2pk ´ τ1

p,´aq “ 2pk ´ τ1
p,aq “ 2|QRppa`QRpq|

(we have used Corollary 4.3, the fact that a and 4a have the same quadratic residuosity,

and τ1
p,a “ τ1

p,´a). From these, (3) follows immediately. To obtain (4) we count the

integer 0 as well, by means of (d).

Theorem 4.10. Let n “ pq be an RSA modulus and a P Zn̊. Then, the bijection f

in Theorem 4.2 maps the set Cnpaq onto Cpppaqpq ˆ Cqppaqqq and the set Cn̊paq onto
Cp̊ ppaqpq ˆ Cq̊ ppaqqq.

Proof. We will only prove the theorem for the case of the set Cn̊paq (the other case is
similar to this). Given c “ pt ` at´1qn P Cn̊paq, fpcq “ ppcqp, pcqqq. We may write

pcqp “ pptqp ` paqpptq´1
p qp and pcqq “ pptqq ` paqqptq´1

q qq. Then, clearly, ppcqp, pcqqq P
Cp̊ ppaqpq ˆ Cq̊ ppaqqq.

Conversely, given c1 “ pt1 ` paqpt´1
1 qp P Cp̊ ppaqpq and c2 “ pt2 ` paqqt´1

2 qq P Cq̊ ppaqqq,
one may compute by means of CRT an unique t P Zn̊ such that t ”p t1 and t ”q t2.
Then, it is straightforward to check that c “ pt`at´1qn P Cn̊paq and fpcq “ pc1, c2q.
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Given an RSA modulus n “ pq, a P Zn̊, and e1, e2 P t´1, 0, 1u, de�ne

Ce1,e2n “ tc P Zn̊ | Jppc2 ´ 4aq “ e1, Jqpc2 ´ 4aq “ e2u.

Now, we are ready to prove the following results regarding |Cnpaq|, |Cn̊paq|, and |Gnpaq|.

Corollary 4.16. Let n “ pq be an RSA modulus and a P Zn̊. Then, Cn̊paq can be

written as a disjoint set union Cn̊paq “ C0,0
n paq Y C0,1

n paq Y C1,0
n paq Y C1,1

n paq.

Proof. It follows directly from Theorem 4.10 and Corollary 4.14.

Corollary 4.17. Let n “ pq be an RSA modulus, k1 “ p div 4, k2 “ q div 4, and a P Zn̊.
Then,

1. |C0,0
n paq| “ 4pτ1

p,a ` τ3
p,aqpτ1

q,a ` τ3
q,aq;

2. |C0,1
n paq| “ 4pτ1

p,a ` τ3
p,aqpk2 ´ τ1

q,aq;

3. |C1,0
n paq| “ 4pτ1

q,a ` τ3
q,aqpk1 ´ τ1

p,aq;

4. |C1,1
n paq| “ 4|QRnpa`QRnq| “ 4pk1 ´ τ1

p,aqpk2 ´ τ1
q,aq;

5. |Cn̊paq| “ 4pk1 ` τ3
p,aqpk2 ` τ3

q,aq;

6. |Cnpaq| “ p2pk1 ` τ3
p,aq ` τ1

p,a ` τ̄3
p,aqp2pk2 ` τ3

q,aq ` τ1
q,a ` τ̄3

q,aq.

Proof. It follows directly from Theorem 4.10 and Corollary 4.15.

Theorem 4.11. Let n “ pq be an RSA modulus and a P Zn̊. Then,

1. Gnpaq “ C1,1
n paq Y C´1,´1

n paq.

2. |Gnpaq| “ 4|QRnpa` Jǹ q|.

Proof. (1) follows from the de�nitions of Gnpaq and C1,1
n paq. For (2) we remark �rst that

Gnpaq “ tc P Zn̊ | pc2qn P 4a` Jǹ u.

Then, observe that each u P QRn has exactly four square roots in Zn̊. Moreover, distinct

quadratic residues modulo n have distinct square roots in Zn̊. Then, (2) follows from

|QRnp4a` Jǹ q| “ |QRnpa` Jǹ q|.
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C1,1
n paq

Cn̊paq
C0,0

n paq
C0,1

n paq
C1,0

n paq
Gnpaq

C´1,´1
n paq

Figure 4.2: The sets Cn̊ and Gnpaq.

Theorem 4.11 provides a very good image on the relationship between Cn̊paq and Gnpaq;
this is pictorially represented in Figure 4.2. There is one more remark we would like to

make. Given c P Zn̊, there exists a P Jǹ such that c P Cn̊paq. Indeed, such an a can be

obtained as described in Algorithm 37.

Algorithm 37. Computing a.
Input: RSA modulus n “ pq and c P Zn̊.
Output: An integer a P Jǹ such that c P Cn̊paq.

1 while c2 ´ s1 R QRp do
2 s1

$ÐÝ QRp
3 end

4 a1 Ð ppc2 ´ s1q{4qp
5 while c2 ´ s2 R QRq do
6 s2

$ÐÝ QRq
7 end

8 a2 Ð ppc2 ´ s2q{4qq
9 Use CRT to compute a such that a ”p a1 and a ”q a2 return a

The probability of generating s1 as in the �rst step of Algorithm 37 is negligible close to

1{2 because

c2 ´QRp “
$

&

%

c2 `QRp, if ppq4 “ 1

c2 `QNRp, if ppq4 “ 3

and thus almost half of the integers in c2 ´ QRp are quadratic residues modulo p (by

Corollaries 4.3 and 4.5). Similarly, the probability of generating s2 as in the third step

of Algorithm 37 is negligible close to 1{2. The integer a computed in the �fth step of

Algorithm 37 is a quadratic residue modulo n because a1 and a2 are quadratic residues

modulo p and q, respectively. ` To show that c P Cn̊paq it is su�cient to remark that

c2´4a is a quadratic residue modulo n because, according to our construction, c2´4a ”p
s1, c2´4a ”q s2, and both s1 and s2 are quadratic residues modulo p and q, respectively.

We are now in a position to present Galbraith's test. Assume that an identity a P Jǹ
is given and we would like to decide whether an integer c P Zn̊ was encrypted under a.
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Directly from Corollary 4.17 it follows that c R Cnpaq if Jnpc2 ´ 4aq “ ´1. On the other

side, if Jnpc2 ´ 4aq “ 1, then the probability that c P Cn̊paq is

P pc P Cn̊paq : cÐ Gnpaqq “
|C1,1
n paq|
|Gnpaq| “

4|QRnpa`QRnq|
4|QRnpa` Jǹ q| “

1

2
´O

ˆ

1?
n

˙

(the property |QRnpa` Jǹ q| “ |QRnpa`QRnq| ` |QRnpa` Jǹ zQRnq| has been used,

together with Corollaries 4.9 and 4.10).

Algorithm 38 presents Galbraith's test. As we have already discussed, the probability

that Algorithm 38 outputs 1 is negligible close to 1/2. One may also remark that it

outputs 0 even for c P C0,0
n YC0,1

n YC1,0
n Ď Cn̊paq. However, the probability that Cocks'

IBE scheme outputs such ciphertexts is Op1{?nq (according to Corollary 4.17), which is

negligible.

Algorithm 38. Galbraith's Test.
Input: RSA modulus n, a P Jǹ , and c P Zn̊.
Output: 1, if c P Cn̊paq with probability negligible close to 1/2, and 0, otherwise.

1 if Jnpc2 ´ 4aq “ 1 then
2 return 1
3 end

4 else

5 return 0
6 end

When using Cocks' IBE scheme, the ciphertext consists of a sequence of encrypted bits

under the same identity. Therefore, Galbraith's test applied to each encrypted bit in the

sequence determines whether the ciphertext is encrypted under a given identity or not

with overwhelming probability.

4.3.2 Statistical indistinguishability

We will illustrate in this subsection the utility of the results developed in our paper to

prove statistical indistinguishability.

As argued in the previous subsection, Cocks' IBE scheme is not anonymous. In [31],

several results have been developed in order to obtain an anonymous variant of Cocks'

IBE scheme. In order to prove security of their schemes, the authors of [31] have �rst

established a series of computational indistinguishability results, denoted Lemma 2.1,

Lemma 2.2, and Lemma 2.3 (these results are also used in [76, 148]). The �rst indistin-

guishability result in [31] (Lemma 2.1) states that, given n an RSA modulus and a P Jǹ ,
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the distribution

Xn “ tJnpxq | xÐ pa`QRnq˚u

is computationally indistinguishable from the uniform distribution U on t´1, 1u, under
the QR assumption for RSAgen. The third result in [31] (Lemma 2.3) states that, given

n an RSA modulus and a P Jǹ , the distribution

Yn “ tJnpxq | xÐ p´4a`QRnq˚u

is computationally indistinguishable from the uniform distribution U on t´1, 1u, under
the QR assumption for RSAgen. Both proofs of Lemma 2.1 and 2.3 in [31] are directly

based on the anon-ind-id-cpa security of Cocks' IBE scheme.

Using the results developed in Section 2 we can prove stronger results for the two distri-

butions above.

Theorem 4.12. Let n be an RSA modulus and a P Jǹ . Then, the distributions

Xn “ tJnpxq | xÐ pa`QRnq˚u

and

Yn “ tJnpxq | xÐ p´a`QRnq˚u

are each of them statistically indistinguishable from the uniform distribution U on

t´1, 1u.

Proof. We will prove the theorem only for the case of Xn (the other case follows a similar

proof line). Therefore, we show that the statistical distance ∆pXn, Uq between Xn and

U is negligible, where

∆pXn, Uq “ 1

2

¨

˝

ÿ

bPt´1,1u
| P pXn “ bq ´ P pU “ bq |

˛

‚.

In order to compute P pXn “ bq we make use of Corollary 4.13. Thus, taking into

account that P pa P QRnq “ P pa P Jǹ zQRnq “ 1{2 because a P Jǹ , we obtain
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P pXn “ 1q “P px P Jǹ : xÐ pa`QRnq˚q
“P px P Jǹ : xÐ pa`QRnq˚ | a P QRnq ¨ P pa P QRnq`
P px P Jǹ : xÐ pa`QRnq˚ | a P Jǹ zQRnq ¨ P pa P Jǹ zQRnq

“
ˆ

1

2
`O

ˆ

1

n

˙˙

¨ 1

2
` 1

2
¨ 1

2
“ 1

2
`O

ˆ

1

n

˙

.

In a similar way one can obtain

P pXn “ ´1q “ 1

2
´O

ˆ

1

n

˙

.

Now, the statistical distance ∆pXn, Uq becomes

∆pXn, Uq “ 1

2

ˆˇ

ˇ

ˇ

ˇ

1

2
`O

ˆ

1

n

˙

´ 1

2

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

1

2
´O

ˆ

1

n

˙

´ 1

2

ˇ

ˇ

ˇ

ˇ

˙

“ O
ˆ

1

n

˙

.

Since n is exponentially large in the security parameter λ, the statistical distance is

negligible.

It is well-known that the statistical indistinguishability implies the computational indis-

tinguishability [120]. Therefore, the results mentioned above, namely Lemma 2.1 and

Lemma 2.3 in [31], simply follow from Theorem 4.12. Moreover, our result does not make

use of the QR assumption for RSAgen, nor of the security of Cocks' IBE scheme.

Lemma 2.2 in [31] states that the distributions

D0pλq “ tpa, c, nq | nÐ RSAgenpλq, aÐ Jǹ , cÐ Cn̊paqu

and

D1pλq “ tpa, c, nq | nÐ RSAgenpλq, aÐ Jǹ , cÐ GnpaqzCn̊paqu

are computationally indistinguishable under the QR assumption for RSAgen. Moreover,

the proof of this result in [31] uses the anon-ind-id-cpa security of Cocks' IBE scheme

(because it uses Lemma 2.1). However, this is not necessary if one uses Theorem 4.12

instead of Lemma 2.1 (see [31] for the proof of Lemma 2.2).

We would like to emphasize that a and n are �variable� in the distributions D0pλq and
D1pλq, while they are �xed in the distributions in Theorem 4.12. The variability of a

is very important to prove that D0pλq and D1pλq are computationally indistinguishable
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under the QR assumption. This property allows, given r P Jǹ , to �nd c and a such that

pc2 ´ 4aqn “ r. If a is �xed, �nding c with the above property would have required the

extraction of a square root of p4a ` rqn modulo n without knowing the factorization of

n (for details, the reader is referred to [31]).

Lemma 2.2 in [31] also implies that the distributions

D0,n,a “ tc | cÐ Cn̊paqu

and

D1,n,a “ tc | cÐ GnpaqzCn̊paqu,

where n is an RSA modulus and a P Jǹ , are computationally indistinguishable under

the QR assumption.

4.4 Future work

The results developed in Section 4.2 refer only to sequences of length two. A natural

question is whether they can be extended to sequences of length three or more, such as

QRnpa2 `QNRnpa1 ` Jn̆ qq

or

Jn̆ pa3 `QRnpa2 `QNRnpa1 ` Jn̆ qqq.

This question does not have a straightforward answer because we are looking for exact

formulas and the increment for our sets is arbitrary (a1, a2, a3, etc.).



Chapter 5

Kleptographic Attacks

As more and more countries require individuals and providers to hand over passwords and

decryption keys [22], we might observe an increase in the usage of subliminal channels.

Subliminal channels are secondary channels of communication hidden inside a potentially

compromised communication channel. The concept was introduced by Simmons [226,

227, 228] as a solution to the prisoners' problem. In the prisoners' problem Alice and

Bob are incarcerated and wish to communicate con�dentially and undetected by their

guard Walter who imposes to read all their communication. Note that Alice and Bob

can exchange a secret key before being incarcerated.

Classical security models assume that the cryptographic algorithms found in a device

are correctly implemented and according to technical speci�cations. Unfortunately, in

the real world, users have little control over the design criteria or the implementation

of a security module. When using a hardware device, for example a smartcard, the

user implicitly assumes an honest manufacturer that builds devices according to the

provided speci�cations. The idea of a malicious manufacturer that tampers with the

device or embeds a backdoor in an implementation was �rst suggested by Young and

Yung [261, 262]. As proof of concept, they developed secretly embedded trapdoor with

universal protection (SETUP) attacks. These attacks combine subliminal channels and

public key cryptography to leak a user's private key or a message. Young and Yung

assumed a black-box environment1, while mentioning the existence of other scenarios.

The input and output distributions of a device with SETUP should not be distinguishable

from the regular distribution. However, if the device is reverse engineered, the deployed

mechanism may be detectable.

1A black-box is a device, process or system, whose inputs and outputs are known, but its internal
structure or working is not known or accessible to the user (e.g. tamper proof devices).

143
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Although SETUP attacks were considered far-fetched by some cryptographers, recent

events [36, 205] suggest otherwise. As a consequence, this research area seems to have

been revived [32, 45, 94, 214]. In [47], SETUP attacks implemented in symmetric encryp-

tion schemes are referred to as algorithmic substitution attacks (ASA). The authors of

[47] point out that the sheer complexity of open-source software (e.g. OpenSSL) and the

small number of experts who review them make ASAs plausible not only in the black-box

model. ASAs in the symmetric setting are further studied in [45, 88] and, in the case of

hash functions, in [28]. A link between secret-key steganography and ASAs can be found

in [53].

A practical example of leaking user keys is the Dual-EC generator, a cryptographically

secure pseudorandom number generator standardized by NIST. Internal NSA documents

leaked by Edward Snowden [36, 205] indicated a backdoor embedded into the Dual-EC

generator. As pointed out in [54], using the Dual-EC generator facilitates a third party to

recover a user's private key. Such an attack is a natural application of Young and Yung's

work. Some real world SETUP attack examples may be found in [70, 69]. Building on

the earlier work of [250] and in�uenced by the Dual-EC incident, [94, 89] provide the

readers with a formal treatment of backdoored pseudorandom generators (PRNG).

A more general model entitled subversion attacks is considered in [32]. This model

includes SETUP attacks and ASAs, but generic malware and virus attacks are also

included. The authors provide subversion resilient signature schemes in the proposed

model. Their work is further extended in [214, 215], where subversion resistant solutions

for one-way functions, signature schemes and PRNGs are provided. In [214], the authors

point out that the model from [32] assumes the system parameters are honestly generated

(but this is not always the case). In the discrete logarithm case, examples of algorithms

for generating trapdoored prime numbers may be found in [126, 110].

A di�erent method for protecting users from subversion attacks are cryptographic reverse

�rewalls (RF). RFs represent external trusted devices that sanitize the outputs of infected

machines. The concept was introduced in [184, 96]. A reverse �rewall for signature

schemes is provided in [32].

5.1 Preliminaries

Covert channels [166] have the capability of transporting information through system

parameters apparently not intended for information transfer. Subliminal channels and

SETUP attacks are special cases of covert channels and achieve information transfer by
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modifying the original speci�cations of cryptographic primitives2. We further restrict

covert channels to two sub-cases: subliminal channels and SETUP attacks.

De�nition 5.1 (Subliminal channel). A Subliminal channel is an algorithm that can

be inserted in a system such that it allows the system's owner to communicate3 with a

recipient without their communication being detected by a third party4. It is assumed

that the prisoners' communication is encrypted using a secret/public key encryption

scheme and the decryption function is accessible to the recipient.

De�nition 5.2 (Secretly Embedded Trapdoor with Universal Protection - SETUP). A

Secretly Embedded Trapdoor with Universal Protection (SETUP) is an algorithm that

can be inserted in a system such that it leaks encrypted private key information to an

attacker through the system's outputs. Encryption of the private key is performed using

an asymmetric encryption scheme. It is assumed that corresponding the decryption

function is accessible only to the attacker.

Remark 5.1. Note that SETUP mechanisms are special cases of subliminal channels.

In the SETUP case, the sender is the system, the recipient is the attacker, while the

third party is the owner of the system.

De�nition 5.3 (Covert channel indistinguishability - ind-covert). Let C0 be a black-

box system that uses a secret key sk. Let E be the encryption scheme used by a covert

channel as de�ned above, in De�nitions 5.1 and 5.2. We consider C1 an altered version of

C0 that contains a covert channel based on E . Let A be a PPT algorithm which returns

1 if it detects that C0 is altered. We de�ne the advantage

ADV ind-covert
E,C0,C1

pAq “ |PrrAC1psk,¨qpλq “ 1s ´ PrrAC0psk,¨qpλq “ 1s|.

If ADV ind-covert
E,C0,C1

pAq is negligible for any PPT algorithm A, we say that C0 and C1 are

polynomially indistinguishable.

Remark 5.2. In the case of SETUP attacks we refer to covert channel indistinguisha-

bility as SETUP indistinguishability - ind-setup and we identify ADV ind-setup
C0,C1

pAq “
ADV ind-covert

E,C0,C1
pAq.

Remark 5.3. Remark 5.2 is a formalization of the indistinguishability property for a

regular SETUP mechanism described in [262]. The authors of [32] propose a more general

concept (public undetectability) that allows Mallory to tailor his attacks depending on

each of his victim's public key. The two formalizations, SETUP indistinguishability and

public undetectability, assume that the public parameters pg,G,Hq and the secret/public
2for example, by modifying the way random numbers are generated
3through the system's outputs
4The sender and receiver will further be called prisoners and the third party warden.
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key pair px, zq are honestly generated. In some cases, Mallory can also maliciously

generate these. This scenario is captured in [214] (cliptographic game). A consequence

of the three formalizations is that C0 and C1 have the same security.

Remark 5.4. In some cases, if sk is known, the covert channel can be detected by using

its description and parameters. Thus, depending on the context we will specify if A has

access to sk or not. If E is a public key encryption scheme we always assume that A has

access to the public key5.

Throughout the paper, when presenting covert channels, we make use of the following

additional algorithms:

� Subliminal/Malicious ParamGen ´ used by the prisoners/attacker(s) to generate

their (his) parameters;

� Subliminal/Malicious KeyGen ´ used by the prisoners/attacker to generate their

(his) keys;

� Extract ´ used by the recipient to extract the secret message;

� Recovering ´ used by the attacker to recover Charlie's secret key.

The algorithms above are not implemented in D. For simplicity, covert parameters will

further be implicit when describing an algorithm.

Trivial Subliminal Channel. The Schnorr signature supports a subliminal channel

based on rejection sampling. We further describe the trivial subliminal channel.

Signpm, skq: Choose k $ÐÝ Zq̊ and compute r Ð gk, until ω ” r mod 2. To sign a

message m P t0, 1u˚ compute the values e Ð hpr}mq and s Ð k ´ xe mod q.

Output the signature pe, sq.

Extractpe, sq : To extract the embedded message ω compute ω Ð gsye mod 2.

Young-Yung SETUP Attack on the Generalized ElGamal Signature. In [261,

262, 263, 264], the authors propose a kleptographic version of ElGamal signatures and

prove it secure in the standard model under the hdh assumption. The Young-Yung

SETUP mechanism can be easily adapted to the generalized ElGamal signature, while

maintaining its security. The algorithms of the generalized version are shortly described

below. We assume that user V is the victim of a malicious user M . After D signs at

least two messages, M can recover V 's secret key and thus impersonate V .
5found by means of reverse engineering the system, for example
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Malicious ParamGenpppq: Let H : G Ñ Zq̊ be a hash function. Output the public

parameter spM “ H. Note that H will be stored in D's volatile memory.

Malicious KeyGenpppq: Choose xM $ÐÝ Zq̊ and compute yM Ð gxM . Output the public

key pkM “ yM . The public key pkM and H will be stored in D's volatile memory.

The secret key is skM “ xM ; it will only be known by Mallory and will not be

stored in the black-box.

Signing Sessions: The possible signing sessions performed by D are described below.

Let i ě 1.

Session0pm0, skq: To sign message m0 P G, D does the following

k0
$ÐÝ Zq̊ , r0 Ð gk0 , s0 Ð k´1

0 rhpm0q ´ a ¨ hpr0qs mod q.

The value k0 is stored in D's volatile memory until the end of Session1.

Output the signature pr0, s0q.
Sessionipmi, sk, pkM q: To sign message mi P G, D does the following

zi Ð y
ki´1

M , ki Ð Hpziq, ri Ð gki , si Ð k´1
i rhpmiq ´ a ¨ hpriqs.

The value ki is stored in D's volatile memory until the end of Sessioni`1.

Output the signature pri, siq.

Recoveringpmi, ri´1, ri, si, skM q: Compute α Ð rxMi´1 and ki Ð Hpαq. Recover a by

computing

aÐ hpriq´1rhpmiq ´ ki ¨ siqs.

Remark 5.5. Let S be an honest generator for the values r used by the Generalized

ElGamal signature scheme and let σi denote the i-th internal state and ρi “ gσi the i-th

output of S. The mechanism described above can be seen as a malicious PRNG S̃ based

on the honest PRNG S. We de�ne the internal states and outputs of S̃ by

� σ̃0 “ σ0, ρ̃0 “ ρ0;

� σ̃i “ Hpyσ̃i´1

M q, ρ̃i “ gσ̃i , where i ě 1.

In [94], the authors state that the Dual-EC generator does not output bits that are

provably indistinguishable from random bits. To improve Dual-EC, they introduce S̃

and prove it secure under the hdh assumption.
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Young-Yung SETUP Attack on the Schnorr Signature. In [261, 262, 263, 264],

the authors propose a kleptographic version of Schnorr signatures and prove it ind-

setup secure in the standard model under the hdh assumption. The algorithms of the

SETUP attack are shortly described below. Note that afterD signs at least two messages,

Mallory can recover Charlie's secret key and, thus, impersonate Charlie. TheMalicious

ParamGen and Malicious KeyGen algorithms are identical to the Generalized ElGamal

version and thus are ommited.

Signing Sessions: The possible signing sessions performed by D are described below.

Let i ě 1.

Session0pm0, skq: To sign message m0 P G, D does the following

k0
$ÐÝ Zq̊ , r0 Ð gk0 , e0 Ð hpr0}m0q, s0 Ð k0 ´ xe0 mod q.

The value k0 is stored in D's volatile memory until the end of Session1.

Output the signature pr0, s0q.
Sessionipmi, sk, pkM q: To sign message mi P G, D does the following

zi Ð y
ki´1

M , ki Ð Hpziq, ri Ð gki , ei Ð hpri}miq, si Ð ki ´ xei mod q.

The value ki is stored in D's volatile memory until the end of Sessioni`1.

Output the signature pri, siq.

Recoveringpmi, ei´1, ei, si, skM q: Compute ri´1 Ð gsi´1yei´1 , αÐ rxMi´1 and ki Ð Hpαq.
Recover x by computing xÐ e´1

i pki ´ siq mod q.

5.2 Threshold Kleptographic Attacks

In this section, we extend the SETUP attacks of Young and Yung on digital signatures.

We introduce the �rst SETUP mechanism that leaks a user's secret key, only if ` out

of n malicious parties decide to do this. We assume that the signature schemes are

implemented in a black-box equipped with a volatile memory, erased whenever someone

tampers with it.

In the following we give a few examples where a threshold kleptographic signature may

be useful.

Since digitally signed documents are just as binding as signatures on paper, if a recipient

receives a document signed by A he will act according to A's instructions. Finding A's
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private key, can aid a law enforcement agency into collecting additional informations

about A and his entourage. In order to protect citizens from abuse, a warrant must be

issued by a legal commission before starting surveillance. To aid the commission and to

prevent abuse, the manufacturer of A's device can implement an ` out of n threshold

SETUP mechanism. Thus, A's key can be recovered only if there is a quorum in favor

of issuing the warrant.

Digital currencies (e.g. Bitcoin) have become a popular alternative to physical curren-

cies. Transactions between users are based on digital signatures. When a transaction is

conducted, the recipient's public key is linked to the transfered money. Only the owner

of the secret key can now spend the money. To protect his secret keys, a user can choose

to store them in a tamper proof device, called a hardware wallet. Let's assume that a

group of malicious entities manages to infect some hardware wallets and they implement

an ` out of n threshold SETUP mechanism. When ` members decide, they can transfer

the money from the infected wallets without the owner's knowledge. If ` ´ 1 parties

are arrested, the mechanism remains undetectable as long as the devices are not reverse

engineered.

In accordance with the original works, we prove that the threshold SETUP mechanisms

are polynomially indistinguishable from regular signatures. Depending on the infected

signature, we obtain security in the standard or random oracle model (ROM). To do

so, we make use of a public key encryption scheme (introduced in Section 3.5.2) and

Shamir's secret sharing scheme [221]. ROM security proofs are easily deduced from the

standard model security proofs provided in this section. Thus, are omitted.

Conventions. We further consider that the attacks presented from now on are imple-

mented in a device D that digitally signs messages. The owner of the device is denoted

by V and his public key by pkV . We assume that his secret key skV is stored only in

D's volatile memory6. The victim V thinks that D signs messages using the signature

scheme described in Section 3.3.1. We stress that KeyGen and Veri�cation algorithms

are identical to the ones from Section 3.3.1. Thus, KeyGen and Veri�cation are omitted

when presenting the attacks.

5.2.1 A SETUP Attack on the Generalized ElGamal Signature

We further introduce a new SETUP mechanism. Compared to Young-Yung's attack, it

is very easy to modify our mechanism to allow ` out of n malicious parties to recover V 's

6If V knows his secret key, he is able to detect a SETUP mechanism using its description and
parameters (found by means of reverse engineering a black-box, for example).
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secret key7. The best we were able to do, using Young-Yung's mechanism, was to devise

an ` out of ` threshold scheme8. We point out, that like Young-Yung's mechanism, our

proposed mechanism leaks data continuously to the attacker.

5.2.1.1 Description

To implement the attack, M works in almost the same environment as in Section 5.1.

Thus, we only mention the di�erences between the two environments.

Signing Sessions: The possible signing sessions performed by D are described below.

Let i ě 1.

Session0pm0, skV q: To sign message m0 P G, D does the following

k0
$ÐÝ Zq̊ , r0 Ð gk0 , s0 Ð k´1

0 rhpm0q ´ a ¨ hpr0qs mod q.

The value k0 is stored in D's volatile memory until the end of Session1.

Output the signature pr0, s0q.
Sessionipmi, skV , pkM q: To sign message mi P G, D does the following

ki Ð ki´1 ¨Hpyki´1

M q, ri Ð gki , si Ð k´1
i rhpmiq ´ a ¨ hpriqs mod q.

The value ki is stored in D's volatile memory until the end of Sessioni`1. We

remark that si is used as a data carrier for M . Output the signature pri, siq.

Recoveringpmi´1,mi, ri´1, ri, si´1, si, skM q: Compute α Ð rsi ¨HprxMi´1qs´1. Recover a

by computing

aÐ `

α ¨ hpmiq ´ s´1
i´1 ¨ hpmi´1q

˘ ¨ `α ¨ hpriq ´ s´1
i´1 ¨ hpri´1q

˘´1
mod q.

The correctness of the Recovering algorithm can be obtained as follows. From Sessioni´1

and Sessioni, we obtain the value of ki´1

ki´1 ” s´1
i´1rhpmi´1q ´ a ¨ hpri´1qs mod q (5.1)

ki´1 ” rsi ¨Hpyki´1

M qs´1 ¨ rhpmiq ´ a ¨ hpriqs mod q. (5.2)

From equalities p5.1q and p5.2q we obtain

a ¨ `α ¨ hpriq ´ s´1
i´1 ¨ hpri´1q

˘ ” α ¨ hpmiq ´ s´1
i´1 ¨ hpmi´1q mod q.

7We refer the reader to Section 5.2.2.
8We refer the reader to Appendix J.
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Using the above equality and the fact that yki´1

M “ rxMi´1, we obtain the correctness of the

Recovering algorithm.

Remark 5.6. Let T be an honest generator for the values r used by the Generalized

ElGamal signature scheme and let σi denote the i-th internal state and ρi “ gσi the i-th

output of T . The mechanism described above can be seen as a malicious PRNG T̃ based

on the honest PRNG T . We de�ne the internal states and outputs of T̃ by

� σ̃0 “ σ0, ρ̃0 “ ρ0;

� σ̃i “ σ̃i´1 ¨Hpyσ̃i´1

M q, ρ̃i “ gσ̃i , where i ě 1.

In the case of Dual-EC, if an attacker M knows output ρ̃i´1 then he can compute the

internal state σ̃i. In the case of T̃ , computing σ̃i also requires knowledge of the previous

internal state σ̃i´1. Since σ̃i´1 is secret, the generator is not harmful on its own. But, if

used to generate ephemeral keys gk for ElGamal based signatures9, it leads to a backdoor

that enables M to break the security of the system.

5.2.1.2 Security Analysis

In this section we state the security margin for our variant of the ElGamal signature

SETUP. We will defer the security proof of this scheme until the next section, since

the scheme is a special case of the scheme described in Section 5.2.2.1. We denote by

GEGS the Generalized ElGamal Signature and by N ´GEGS the scheme described in

the previous subsection.

Theorem 5.1. If the number of signatures is polynomial and hdh is hard in G then

GEGS and N ´ GEGS are ind-setup in the standard model. Formally, let A be an

e�cient PPT ind-setup adversary. There exists an e�cient algorithm B such that

ADV ind-setup
MEG,GEGS,N´GEGSpAq ď 4ΓADV hdh

G,g,HpBq,

where Γ is the number of infected signatures.

Remark 5.7. Similarly to Theorem 5.1, we obtain that if T is a secure PRNG10, then

T̃ is a secure PRNG in the standard model.

Remark 5.8. As in the case of Dual-EC, it is easy to see that if in theN´GEGS scheme,

we replace yM with y1M
$ÐÝ G, the SETUP mechanism becomes benign. The security

margin of the SETUP-free system remains the same as the one stated in Theorem 5.1.
9A well known vulnerability of ElGamal based signatures is that using the same k value twice, leads

to secret key recovery [66].
10The outputs of T are computationally indistinguishable from the uniform distribution.
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5.2.2 A Threshold SETUP Attack on the Generalized ElGamal Signa-

ture

In this section we introduce an ` out of n threshold SETUP attack, based on N ´ GEGS.
In this secret sharing scenario, user V is the victim of n malicious parties (denoted by

tMiu1ďiďn) that somehow convince the manufacturer of D to implement the described

SETUP mechanism. After D signs n`1 messages, any coalition of ` participantsMi can

recover V 's secret key. Once the key is obtained, V can be impersonated. We remark

that starting from signature `´ 1 some coalitions of Mi can impersonate V .

5.2.2.1 Description

To ease description, we assume without loss of generality, that the �rst ` participants

Mi decide to recover V 's secret key and denote by M “ tmiu0ďiď`, R “ triu0ďiď`,
S “ tsiu0ďiď`, SKM “ tskiu1ďiď`. We present our proposed threshold SETUP scheme

below.

Malicious Parties KeyGenpppq: Let H : G Ñ Zq̊ be a hash function. For each Mi,

1 ď i ď n, choose xi
$ÐÝ Zq̊ and compute yi Ð gxi . Output the public keys

pki “ yi. The public keys pki and H will be stored in D's volatile memory. The

secret keys are ski “ xi; they will only be known by the respective Mi and will not

be stored in the black-box.

Signing Sessions: The possible signing sessions performed by D are described below.

Let 1 ď i ď n and j ą n.

Session0pm0, skV q: To sign message m0 P G, D does the following

k0
$ÐÝ Zq̊ , r0 Ð gk0 , s0 Ð k´1

0 rhpm0q ´ a ¨ hpr0qs mod q.

The device also chooses tfju1ďjă` at random from Zq̊ and forms the polyno-

mial fpzq “ k0 ` f1 ¨ z ` . . . ` f`´1 ¨ z`´1. The polynomial fpzq is stored in

D's volatile memory until the end of Sessionn. Output the signature pr0, s0q.
Sessionipmi, skV , pkiq: To sign message mi P G, D does the following

ki Ð fpiq ¨Hpyk0i q, if fpiq ı 0 mod q;

ki
$ÐÝ Zq̊ , otherwise;

ri Ð gki , si Ð k´1
i rhpmiq ´ a ¨ hpriqs mod q.
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We remark that si is used as a data carrier for Mi. Output the signature

pri, siq.
Sessionjpmj , skV q: To sign message mj P G, D does the following

kj
$ÐÝ Zq̊ , rj Ð gkj , sj Ð k´1

j rhpmjq ´ a ¨ hprjqs mod q.

Output the signature prj , sjq.

RecoveringpM,R, S, SKM q: Compute αi Ð rsi ¨Hprxi0 qs´1 and ∆i Ðś

j‰i
j
j´i , i, j ď `.

Recover a by computing

aÐ
˜

ÿ̀

i“1

αi ¨ hpmiq ¨∆i ´ s´1
0 ¨ hpm0q

¸

¨
˜

ÿ̀

i“1

αi ¨ hpriq ¨∆i ´ s´1
0 ¨ hpr0q

¸´1

mod q.(5.3)

The correctness of the Recovering algorithm can be obtained as follows. From Session0,

we obtain the value of k0

k0 ” s´1
0 rhpm0q ´ a ¨ hpr0qs mod q. (5.4)

From Sessions i, we obtain Mi's share

fpiq ” rsi ¨Hpyk0i qs´1 ¨ rhpmiq ´ a ¨ hpriqs mod q.

Using Lagrange interpolation we use the shares fpiq, 1 ď i ď ` to recover k0

k0 ”
ÿ̀

i“1

rsi ¨Hpyk0i qs´1 ¨ rhpmiq ´ a ¨ hpriqs ¨∆i mod q. (5.5)

From equalities p5.4q and p5.5q we obtain

a ¨
˜

ÿ̀

i“1

αi ¨ hpriq ¨∆i ´ s´1
0 ¨ hpr0q

¸

”
ÿ̀

i“1

αi ¨ hpmiq ¨∆i ´ s´1
0 ¨ hpm0q mod q.

Using the above equality and the fact that yk0i “ rxi0 , we obtain the correctness of the

Recovering algorithm.

Remark 5.9. The probability that key recovery is not possible due to failure is ε “
1´ p1´ 1{qqn´``1. Since q is a large prime number, we have that ε » 0.

Remark 5.10. When all n participants are required to recover V 's secret key, the scheme

described in Appendix J requires two infected signatures, while the above scheme requires
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n infected signatures. Thus, the scheme described in this section is less e�cient in this

case. Unfortunately, we could not devise a method to extend the scheme described in

Appendix J to an ` out of n threshold scheme.

Remark 5.11. The mechanism described in this section requires the malicious parties to

directly compute V 's secret key. In some cases this raises security concerns. For example,

if the mechanism is used for surveillance purposes and a warrant is issued, if V 's secret

key is directly computed, when the warrant expires V can still be impersonated. In

Appendix I we present a two party protocol extension of our scheme in order to mitigate

this issue. We could not �nd an extension for the scheme described in Appendix J.

Remark 5.12. In the scheme described above, D plays the role of a trusted dealer, that

leaks the shares using a subliminal channel to the n participants. This design choice

was made in order to minimize communication between the malicious parties. The only

moment when the participants communicate is when ` of them want to recover V 's secret

key.

Another possible scenario, was to use a secret sharing protocol with or without a trusted

dealer between the n parties. After the participants agree on a shared public key

yM “ gxM , the manufacturer implements, for example, Young-Yung SETUP attack

on the generalized ElGamal signature 11. Note that this approach works without any

modi�cations to the SETUP mechanism.

Remark 5.13. Let P be an honest generator for the values r used by the Generalized

ElGamal signature scheme and let σi denote the i-th internal state and ρi “ gσi the i-th

output of P . The mechanism described above can be seen as a malicious PRNG P̃ based

on the honest PRNG P . We de�ne the internal states and outputs of P̃ by

� σ̃0 “ σ0, ρ̃0 “ ρ0;

� σ̃i “ fpiq¨Hpyσ0i q, ρ̃i “ gσ̃i , where fpzq “ σ0`σ1 ¨z`. . .`σ`´1 ¨z`´1 and 1 ď i ď n;

� σ̃j “ σj , ρ̃j “ ρj , where j ą n.

Because σ0 and σj , where j ą n, are identical for P and P̃ generator P̃ remains unpre-

dictable. In the case 1 ď i ď n, a group of ` malicious parties can prove that their ρ̃i

are not random, but they cannot compute P̃ 's internal states. Thus, when used on its

own P̃ is mostly harmless. Unfortunately, if it is used to generate r for ElGamal based

signatures, then ` malicious parties can recover the V 's secret key.
11that uses yM
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5.2.2.2 Security Analysis

In this subsection we prove that the threshold version described above, denoted S ´
GEGS, is indistinguishable from GEGS if the attacker corrupted at most ` ´ 1 out of

n malicious parties Mi.

Theorem 5.2. If hdh is hard in G then GEGS and S ´GEGS are ind-setup in the

standard model as long as at most `´ 1 malicious parties are corrupted by A. Formally,

let A be an e�cient PPT ind-setup adversary. There exists an e�cient algorithm B

such that

ADV ind-setup
MEG,GEGS,S´GEGSpAq ď 4pn´ `` 1qADV hdh

G,g,HpBq.

Proof. Let A be an ind-setup adversary that is trying to distinguish betweenGEGS and

S ´GEGS. A has access to �random coins� sampled uniformly from a set R. Without

loss of generality, we further assume that A has corrupted the �rst ` ´ 1 malicious

participants.

Algorithm 39. The ind-setup game.

1 Function init():

2 Choose the secret keys a, x1, . . . , xn
$ÐÝ Zq̊

3 Compute the public keys y Ð ga, y1 Ð gx1 , . . . , yn Ð gxn

4 Set L1 Ð
´

Y`´1
i“1txiu

¯

Y pYni“1tyiuq and iÐ 0

5 Function C0(a, m):

6 Choose k $ÐÝ Zq̊
7 Compute r Ð gk and sÐ k´1rhpmq ´ a ¨ hprqs
8 return pr, sq
9 Function C1(a, m):

10 if i “ 0 then

11 Choose k, f1, . . . , f`´1
$ÐÝ Zq̊ and set k0 Ð k

12 else if 0 ă i ď n and fpiq ı 0 mod q then

13 Compute k Ð fpiq ¨Hpyk0i q
14 else

15 Choose k $ÐÝ Zq̊
16 end

17 Compute r Ð gk, sÐ k´1rhpmq ´ a ¨ hprqs and iÐ i` 1
18 return pr, sq
19 init()

20 Choose b $ÐÝ t0, 1u and ρ $ÐÝ R

21 return ACbpa,¨qpρ, y,L1q
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Algorithm 39 describes the ind-setup game. The �rst and second rows set up the public

keys. Then the GEGS and S ´GEGS oracles are described. The challenger then �ips

a bit b and reveals oracle Cb. A then computes its guess b1 for b. A wins if b “ b1.

We proceed by modifying oracle C1 (described in Algorithm 39) into oracle C2 (described

in Algorithm 40). The only di�erence between the two oracles is that in C2 the values ki,

0 ă i ď `´1, are chosen at random. Since Shamir's secret sharing scheme is information

theoretically secure, an adversary cannot distinguish between C1 and C2.

Algorithm 40. Oracle C2.

1 Function C2(a, m):

2 if i “ 0 then

3 Choose k, f1, . . . , f`´1
$ÐÝ Zq̊ and set k0 Ð k

4 else if ` ď i ď n and fpiq ı 0 mod q then

5 Compute k Ð fpiq ¨Hpyk0i q
6 else

7 Choose k $ÐÝ Zq̊
8 end

9 Compute r Ð gk, sÐ k´1rhpmq ´ a ¨ hprqs and iÐ i` 1
10 return pr, sq

Since MEG is ind$ an adversary cannot distinguish between C0 and C2. Note that the

number of k values that A has to distinguish is n´ `` 1. Thus, we obtain the security

margin.

Remark 5.14. Similarly to Theorem 5.2, we obtain that if P is a secure PRNG, then

P̃ is a secure PRNG in the standard model.

Remark 5.15. As in the case of Dual-EC, it is easy to see that if in the S ´ GEGS

scheme, we replace yi with y1i
$ÐÝ G, 1 ď i ď n, the SETUP mechanism becomes benign.

The security margin of the SETUP-free system remains the same as the one stated in

Theorem 5.2.

5.2.3 Other Applications

The schemes described in Section 5.2.2 and Appendix J can either directly be used on

other signatures (e.g. variations of the Generalized ElGamal signature [180], Pointcheval-

Stern signature [208]) or indirectly, i.e. some work must be done to recover gk (e.g.

Schnorr signature [219] - see Example 5.1, DSA [23]).
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Example 5.1. To be more precise, we describe the method used in the case of Schnorr

signatures. We place ourselves in the subgroup of order q generated by a g P Zp̊ , where
p is prime. The signature generation algorithm is

k
$ÐÝ Zq̊ , r Ð hpgk||mq, sÐ a ¨ r ` k mod q.

In order to recover gk, one must compute

gs ¨ y´r ” gs´ar ” gk.

After �nding a method to recover gk, either directly or by computing it from the signa-

ture, it is fairly easy to use the methods described in Section 5.2.2 and Appendix J. All

the signatures presented in this section either have gk directly embedded in them or the

recovering mechanism is similar to the one presented in Example 5.1.

Some signature schemes that can be tampered with and also have the same security as

S ´ GEGS are: variations of the Generalized ElGamal signature [180], ECDSA [30],

ECDSA variants [175], Katz-Wang signature [152], KCDSA [168], Elliptic Curve GOST

[97], EDL signature Goh-Jarecki variant [118], EDL signature Chevallier variant [72] and

Elliptic Curve Nyberg-Rueppel [183].

If G is generated by an element g P Zp̊ of order q, we can apply the same methods and

obtain security in the standard model12 for the following algorithms: DSA [23], GOST

[182], Nyberg-Rueppel [197], Nyberg-Rueppel IEEE variant [183], Pointcheval-Stern sig-

nature [208], Schnorr signature [219] and Girault-Poupard-Stern (GPS) signature [114],

if parameter A used by the GPS signature is prime.

Schnorr [219] and Girault-Poupard-Stern signatures [114] are derived from identi�cation

schemes. As a consequence, we can apply similar methods to infect these identi�cation

schemes and compromise V 's secret key. Another identi�cation scheme that o�ers the

possibility of embedding a secret trapdoor is Okamoto's scheme [200].

Signcrypt algorithms [268, 269] use a variation of the ElGamal signature in order to

authenticate messages and use a key derivation function based on the recipient's secret

key in order to encrypt messages. So, if we embed the threshold SETUP mechanism in

the signature and manage to recover the signer's secret key, then we can also decrypt all

the messages that the signer receives.

Changing the setting to identity based signatures (IBS), we observe that Cha-Cheon IBS

[74], Hess IBS [142] and Paterson IBS [203] can be infected and the resulting schemes are

12We refer the reader to Remark 3.2.
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secure in ROM13. A signature that can be tampered with and obtain the same security

as S ´ GEGS, is Bellare-Namprempre-Neven IBS [46]. This signature o�ers an extra

feature, we can also modify the extraction algorithm, permitting ` out of n legitimate

users to obtain the master key (used by the central authority to generate keys for any

legitimate user).

When random numbers are not available or of questionable quality (e.g. malicious RNG),

one may use deterministic signatures. One such example is the deterministic variant

of the Schnorr signature scheme introduced in [189]. The authors suggest to choose

k Ð hpκ,m, ppq, where κ is a �xed secret. Unfortunately, this approach does not protect
V . When implementing a SETUP attack for this scheme, we must ensure the same

functionality as in the SETUP-free version (i.e. signing the same message multiple times

yields the same signature). In the following we give two attacks for this deterministic

signature. In the �rst attack, a malicious party replaces κ by κ1 Ð HpyaM q and recovers

V's secret key by computing aÐ hprq´1rhpmq´k ¨ss. This attack can be easily extended
to an ` out of ` attack14, but we were not able to extend it to an ` out of n attack. In

the second attack, D stores a list L containing the messages received as input and the

associated signatures. When a message m is received, D will �rst search m in L. If m is

found, D will return the stored signature, else it will generate a new infected signature.

If D runs out of memory, it reverts to k Ð hpκ,m, ppq. To save memory an attacker

could, for example, restrict D to maliciously signing only short messages.

5.2.4 Future Work

An interesting area of research would consist in �nding a method to extend SETUP

attacks applied to encryption schemes to threshold SETUP attacks. Also, it would be

interesting to see if one can mount a successful SETUP attack or threshold SETUP

attack if threshold signature schemes are used.

In Appendix J we describe an ` out of ` threshold SETUP mechanism that uses only

two sessions in order to recover V 's secret key. An extension to ` out of n may be more

e�cient than the approach from Section 5.2.2.1.

5.3 Unifying Framework

The initial model proposed by Young and Yung is the black-box model. For our intended

purposes this model su�ces, since the zero-knowledge protocols we attack were designed

13We refer the reader to Remark 3.2.
14We refer the reader to Appendix J.
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for smartcards. An important property is that infected smartcards should have inputs

and outputs indistinguishable from regular smartcards. However, if the smartcard is

reverse engineered, the deployed mechanism may be detectable.

There are two methods to embed backdoors into a system: either you generate special

public parameters (SPP) or you infect the random numbers (IRN) used by the system.

In the case of discrete logarithm based systems, SPP and IRN were studied in [261, 262,

263, 264, 126, 110]. We only found SPP [83, 261, 262, 265, 264] and not IRN in the case

of factorization based systems.

Using the same level of abstraction as in [176], we show how an attacker (calledMallory)

can insert a backdoor into the UZK protocol and extract Peggy's secret. When instanti-

ated, this attack provides new insight into SETUP attacks. In particular, we provide the

�rst IRN attack on a factoring based system and the �rst attack on systems based on

eth-root representations. We also provide the reader with new instantiations of Maurer's

uni�ed protocol: the Girault protocol, a new proof of knowledge for discrete logarithm

representation in Zn̊ and a proof of knowledge of an eth-root representation.

The second SETUP attack we introduce is a generalization of Young and Yung's work.

When instantiated with the Schnorr protocol, we obtain their results. We also provide

other examples not mentioned by Young and Yung.

Conventions. Compared to Section 3.2.1.1, we also assume that G is a cyclic group.

Note that this implies that G is commutative. Let g be a generator of G. We denote

by αg the element g ‹ . . . ‹ g obtained by repeatedly applying the group operation α´ 1

times.

We further consider that the attacks presented from now on are implemented in a device

D that is used by Peggy to prove the knowledge of x. We assume that x is stored only

in D's volatile memory15. Note that Peggy believes that D works in accordance with

the UZK protocol.

5.3.1 Main Uni�ed SETUP Attack

The protocol described in this section is a SETUP attack against UZK that allows

Mallory to extract Peggy's knowledge of x. We only show how to infect two sessions of

the protocol and assume that the rest of the sessions remain unmodi�ed.

15If Peggy knows her secret she is able to detect the SETUP mechanism using its description and
parameters (found by means of reverse engineering a black-box, for example).
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5.3.1.1 Description

Before stating the results, we �rst make some preliminary assumptions. Let h : H Ñ G
be a hash function and let i “ 0, 1 be an index. We assume that Peggy runs the protocols

at least two times (i.e. once for i “ 0 and once for i “ 1). We denote by y Ð rgsxM
Mallory's public key, while xM

$ÐÝ |G| is his secret key. Note that y is stored on D's

volatile memory. All the data we save will also be stored on D's volatile memory.

In Figure 5.1 we present the main protocol against UZK. We depict in red the modi-

�cations on UZK to obtain our SETUP attack. Note that after session 0 the index is

incremented.

Peggy V ictor

Knows x. Knows z.
Computes z “ rxs.

If i “ 0 then:

- choose α $ÐÝ |G| and store α,
- compute k0 Ð αg and t0 Ð rgsα.
Else:
- compute k1 Ð k0 ‹ hpyαq and t1 Ð rk1s,
- erase α.

tiÝÝÝÝÝÝÝÝÝÑ
Choose ci

$ÐÝ C Ă N.
ciÐÝÝÝÝÝÝÝÝÝ

Compute ri Ð ki ‹ xci .
riÝÝÝÝÝÝÝÝÝÑ

If rris “ ti b zci return true.

Else return false.

Figure 5.1: The main uni�ed SETUP attack.

We further show how Mallory can extract Peggy's knowledge if she uses a device that

is infected with US-1.

Theorem 5.3. If Peggy uses US-1 and UZK satis�es the conditions from Theorem 3.1,

then Mallory can compute an x̃ such that rx̃s “ z. More precisely,

x̃ “ ua ‹ pr´1
1 ‹ r0 ‹ hptxM0 qqb,

where a and b are computed using Euclid's extended gcd algorithm such that `a` pc0 ´
c1qb “ 1.
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Proof. From the de�nitions of r0 and r1 we obtain the following relations

rr0s “ rk0 ‹ xc0s “ t0 b zc0 and rr1s “ rk1 ‹ xc1s “ rk0 ‹ hpyαq ‹ xc1s “ t0 b rhpyαqs b zc1 .

Let β “ hpyαq “ hptxM0 q. We make use of

rr´1
1 ‹ r0s “ rr´1

1 s b rr0s “ z´c1 b rβs´1 b zc0 “ zc0´c1 b rβs´1

and Theorem 3.1 to see that Mallory can compute an x̃ such that rx̃s “ z

rx̃s “ rua ‹ pr´1
1 ‹ r0 ‹ βqbs

“ rusa b prr´1
1 ‹ r0s b rβsqb

“ pz`qa b pzc0´c1 b rβs´1 b rβsqb

“ z`a`pc0´c1qb “ z.

Remark 5.16. UZK can be transformed into a signature scheme using the Fiat-Shamir

transform [108]. Thus, obtaining a uni�ed signature scheme. Note that the SETUP

attacks described for UZK are preserved by the Fiat-Shamir transform, thereforeMallory

can recover Peggy's signing key by using either of them.

5.3.1.2 Security Analysis

We continue by stating the security margin for the ind-setup between UZK and US-1.

Theorem 5.4. If hdh is hard in xrgsy then UZK and US-1 are ind-setup in the standard

model. Formally, let A be an e�cient PPT ind-setup adversary. There exists an e�cient

algorithm B such that

ADV ind-setup
UZK,US-1pAq ď 2ADV hdh

xrgsy,rgs,hpBq.

Proof. Let A be an ind-setup adversary trying to distinguish between UZK and US-1.

We show that A's advantage is negligible. We construct the proof as a sequence of games

in which all the required changes are applied to US-1. Let Wi be the event that A wins

game i.
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Game 0. The �rst game is identical to the ind-setup game16. Thus, we have

|2PrrW0s ´ 1| “ ADV ind-setup
UZK,US-1pAq. (5.6)

Game 1. In this game, hpyαq from Game 0 becomes rgsz, where z $ÐÝ |G|. Since this is
the only change between Game 0 and Game 1, A will not notice the di�erence assuming

the hdh assumption holds. Formally, this means that there exists an algorithm B such

that

|PrrW0s ´ PrrW1s| “ ADV hdh
xrgsy,rgs,hpBq. (5.7)

Game 2. The last change we make is k0, k1
$ÐÝ G. Adversary A will not notice the

di�erence, since

� α is a random exponent and G is cyclic

� multiplying k0 with a random element yields a random element.

Formally, we have that

PrrW1s “ PrrW2s. (5.8)

The changes made to US-1 in Game 1 and Game 2 transformed it into UZK. Thus, we

have

PrrW2s “ 1{2. (5.9)

Finally, the statement is proven by combining the equalities p5.10q ´ p5.13q.

5.3.2 A Supplementary SETUP Attack

Compared to US-1, the supplementary protocol only allows Mallory to compute x in

some speci�c instantiations of UZK. Again, we only show how to infect two sessions of

the protocol.

16as in Remark 5.2
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5.3.2.1 Description

In Figure 5.2 we present a supplementary protocol against UZK. Again, we depict in red

the modi�cations made to UZK to obtain our SETUP attack. Note that after session 0

the index is incremented.

Peggy V ictor

Knows x. Knows z “ rxs.
If i “ 0 then:

- choose α $ÐÝ |G| and store α,
- compute k0 Ð αg and t0 Ð rgsα.
Else:
- compute k1 Ð hpyαq and t1 Ð rk1s,
- erase α.

tiÝÝÝÝÝÝÝÝÝÑ
Choose ci

$ÐÝ C Ă N.
ciÐÝÝÝÝÝÝÝÝÝ

Compute ri Ð ki ‹ xci .
riÝÝÝÝÝÝÝÝÝÑ

If rris “ ti b zci return true.

Else return false.

Figure 5.2: A supplementary uni�ed SETUP attack.

Unlike US-1, with US-2 Mallory cannot extract Peggy's knowledge except for some

particular instantiations of UZK. More precisely, if Mallory knows or can compute the

cardinal of G then he can extract Peggy's knowledge.

Theorem 5.5. If Peggy uses US-2 and |G| is publicly known, thenMallory can compute

an x̃ such that rx̃s “ z, with probability ϕp|G|q{|G|. More precisely,

x̃ “ pr1 ‹ phptxM0 qq´1qc´1
1 .

Proof. Let β “ hpyαq “ hptxM0 q. From the de�nition of r1 we can easily extract x by

computing

x “ pr1 ‹ k´1
1 qc´1

1 “ pr1 ‹ β´1qc´1
1 .
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5.3.2.2 Security Analysis

We further state the security margin for the ind-setup between UZK and US-2. We

omit the proof due to its similarity to Theorem 5.4.

Theorem 5.6. If hdh is hard in xrgsy then UZK and US-2 are ind-setup in the standard

model. Formally, let A be an e�cient PPT ind-setup adversary. There exists an e�cient

algorithm B such that

ADV ind-setup
UZK,US-2pAq ď 2ADV hdh

xrgsy,rgs,hpBq.

5.3.3 Special Cases of the Uni�ed SETUP Attacks

In this section we describe a number of attacks based on US-1 and US-2 for di�erent

instantiations UZK.

5.3.3.1 Proofs of Knowledge of a Discrete Logarithm

Let p “ 2q` 1 be a prime number such that q is also prime. Select an element h P Hp of

order q in some multiplicative group of order p´1. The discrete logarithm of an element

z P Hp is an exponent x such that z “ hx. We further describe a protocol for proving

the knowledge of a discrete logarithm.

The Schnorr protocol [219]17 is a special case of UZK where pG, ‹q “ pZq,`q andH “ xhy.
The one-way group homomorphism is de�ned by rxs “ hx and the challenge space C can

be any arbitrary subset of r0, q ´ 1s. According to [176], the conditions of Theorem 3.1

are satis�ed for ` “ q and u “ 0.

Standard instantiation of the Schnorr protocol de�ne Hp either as Zp̊ or as an elliptic

curve, so according to Remark 3.2, we can safely apply both SETUP attacks. Thus, for

the �rst attack we have the following parameters

g Ð 1, k0 Ð α, t0 Ð hα, k1 Ð k0 ` hpyαq, t1 Ð hk1 .

According to Theorem 5.3, Peggy's secret can be recovered by computing

x̃ “ pc0 ´ c1q´1pr0 ´ r1 ` hptxM0 qq.
17This proof can be seen as a more e�cient version of a proposal made by Chaum et al. [68].
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For the second attack the only change in the protocol is k1 Ð hpyαq. According to

Theorem 5.5, Mallory can recover Peggy's secret by computing

x̃ “ c´1
1 pr1 ´ hptxM0 qq.

Remark 5.17. Recovering x when Peggy uses US-2 was �rst described in a series of

papers by Young and Yung [261, 262, 263, 264]. Remark that in this setting computing

x is a little bit more e�cient than in the case of US-1.

We further describe a variation of the Schnorr protocol introduced by Girault [113]17.

Thus, let p “ 2fp1 ` 1 and q “ 2fq1 ` 1 be prime numbers such that f , p1 and q1 are
distinct primes. Select an element h P Zn̊ of order f , where n “ pq. Note that p and q

are secret.

Using the UZK notations we have pG, ‹q “ pZf ,`q and H “ xhy. The one-way group

homomorphism is de�ned by rxs “ hx and the challenge space C can be any arbitrary

subset of r0, f ´ 1s. It is easy to see that ` “ f and u “ 0 satisfy the two conditions of

Theorem 3.1.

Since hdh is hard in H18 then both attacks can be mounted. Note that the attacks can

be easily derived from the attacks on the Schnorr protocol.

5.3.3.2 Proofs of Knowledge of an eth-root

Let p and q be two safe prime numbers such that pp´ 1q{2 and pq´ 1q{2 are also prime.

Compute n “ pq and choose a prime e such that gcdpe, ϕpnqq “ 1. An eth-root of an

element z P Zn̊ is a base x such that z ” xe mod n. Note that the eth-root is not unique.

We further describe a protocol for proving the knowledge of an eth-root.

The Guillou-Quisquater protocol [131] is a special case of UZK where pG, ‹q “ pH,bq “
pZn̊, ¨q. The one-way group homomorphism is de�ned by rxs “ xe mod n and the chal-

lenge space C can be any arbitrary subset of r0, e´1s. According to [176], the conditions
of Theorem 3.1 are satis�ed for ` “ e and u “ z. Note that when e “ 2 we obtain the

protocol introduced by Fiat and Shamir [108].

Remark 5.18. Before stating the parameters for the SETUP attacks we must �rst

address two issues. The �rst issue is that both SETUP attacks assume that a generator

g is known to Mallory. This is needed in order to set-up Mallory's public key. But n

is generated internally by Peggy's device and no generator for Zn̊ is publicly available

in the general case. To remove this impediment we always choose p, q ” 3 or 5 mod 8.
18See Remark 3.2
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According to [177] this ensures us that 2 is a generator for both Zp̊ and Zq̊ . Hence, 2 is

also a generator for Zn̊. If p and q are stored only in Peggy's device, then she cannot

distinguish this particular choice of primes from other randomly chosen primes, since she

only has access to n.

The last issue that we have to address is the selection of Mallory's secret key. Let's

assume that n is a λ-bit integer. Since φpnq is unknown to Mallory, instead of choosing

xM
$ÐÝ |Zn̊|, he will choose xM $ÐÝ r0, 2λs. It is easy to see that the statistical distance

between the two distributions is pφpnq ´ 2λq{φpnq. Thus, it is negligible.

Since hdh is hard in H18 and it is infeasible to compute |G|, then only US-1 can be

applied. Thus, we have the following parameters for US-1

g Ð 2, k0 Ð 2α, t0 Ð 2αe, k1 Ð k0hpyαq, t1 Ð hk1 .

According to Theorem 5.3, Peggy's secret can be recovered by computing

x̃ ” za ¨ pr´1
1 r0 ¨ hptxM0 qqb mod n.

5.3.3.3 Proofs of Knowledge of a Discrete Logarithm Representation

Let p “ 2q ` 1 be a prime number such that q is also prime. Select m elements

h1, . . . , hm P Hp of order q in some multiplicative group of order p ´ 1. A discrete log-

arithm representation of an element z P xh1, . . . , hmy is a list of exponents px1, . . . , xmq
such that z “ hx11 . . . hxmm . Note that discrete logarithm representations are not unique.

We further describe a protocol for proving the knowledge of a discrete logarithm repre-

sentation.

A protocol for proving the knowledge of a representation is presented in [176]17. To

instantiate UZK and obtain Maurer's protocol we set G “ Zmq with ‹ de�ned as addition
applied component-wise and H “ xh1, . . . , hmy. The one-way group homomorphism is

de�ned by rpx1, . . . , xmqs “ hx11 . . . hxmm and the challenge space C can be any arbitrary

subset of r0, q ´ 1s. According to [176], the conditions of Theorem 3.1 are satis�ed for

` “ q and u “ p0, . . . , 0q. Note that when m “ 2 we obtain a protocol introduced by

Okamoto [200].

The SETUP attacks for this protocol can be easily derived from the attacks on the

Schnorr protocol and, thus, are omitted.

Chaum et al. [68] also provide a variant for their protocol when n is composite. Thus, by

adapting the Girault protocol and tweaking the Maurer protocol, we can obtain a more
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e�cient version of the Chaum et al. protocol. Using the notations from the Girault

protocol, we set G “ Zmf and H “ xh1, . . . , hmy, where h1, . . . , hm P Zn̊ are elements of

order f . The one-way group homomorphism is de�ned by rpx1, . . . , xmqs “ hx11 . . . hxmm

and the challenge space C can be any arbitrary subset of Zf . It is easy to see that ` “ f

and u “ p0, . . . , 0q. Note that US-1 and US-2 can also be mounted in this setting.

5.3.3.4 Proofs of Knowledge of an eth-root Representation

Let p and q be two prime numbers such that pp ´ 1q{2 and pq ´ 1q{2 are also prime.

Compute n “ pq and choose primes e1, . . . , em such that gcdpei, ϕpnqq “ 1, for 1 ď i ď m.

An eth-root representation of an element z P Zn̊ is a list of bases px1, . . . , xmq such that

z ” xe11 . . . xemm mod n. Note that eth-root representations are not unique. We further

describe a protocol for proving the knowledge of an eth-root representation.

A protocol for proving the knowledge of an eth-root representation can be obtained from

UZK if we set G “ pZn̊qm with ‹ de�ned as multiplication applied component-wise and

pH,bq “ pZn̊, ¨q. The one-way group homomorphism is de�ned by rpx1, . . . , xmqs “
xe11 . . . xemm mod n and the challenge space C can be any arbitrary subset of r0, e ´ 1s,
where e is a prime such that gcdpe, φpnqq “ 1. Since all ei are coprime then there

exist αis such that α1e1 ` . . . ` αmem “ 1. Then, it is easy to see that ` “ 1 and

u “ pzα1 , . . . , zαmq.

The US-1 SETUP attack for this protocol can be easily derived from the attack on the

Guillou-Quisquater protocol and, thus, is omitted.

5.3.4 Future Work

In Section 5.2 we can �nd an extensive list of signature schemes that are vulnerable to

SETUP attacks. Thus, an interesting direction of research is abstracting digital signa-

tures19 and devising a method for attacking all of them at once, instead of tweaking the

attacks for each individual signature.

5.4 Kleptographic Subscription Plans

One of the classical business models for kleptographic attacks is the following: a client20

C pays up front a manufacturer M , whom will later implement a certain backdoor

19not only the ones obtained using the Fiat-Shamir transform
20by de�nition a malicious entity



Kleptographic Attacks 168

in a tamper proof device and deliver that device to a victim. This model puts the

manufacturer at an advantage, because he can charge the customer and not implement

the requested backdoor. Since this transaction is illegal, the customer can not �le a

complain and legally retrieve his money. Thus, this might scare o� some of the potential

clients.

Another classical model is the following: a client pays the manufacturer half the money

up front and the rest after checking the correctness of the backdoor. If the manufacturer

does not take certain precautions, then the client is at an advantage. For example, C

checks the correctness of the backdoor, but fails to pay the second installment. This can

be easily avoided if a backdoor deactivation method is put in place by M21. A possible

deactivation strategy is forM to send D a special input that instructs the device to erase

all incriminating evidence. A similar approach is used in [88, 109] to trigger backdoors.

Both classical approaches have an inherent risk for the manufacturer: the client can

easily prove that M backdoored D either by decrypting all the messages send through

that device or by revealing the private keys stored in D. Thus, to make the risk worth

while the manufacturer must charge C a high embedding fee. This will certainly scare

away certain resource constrained clients (e.g. small businesses that do not have the

resources of a large corporation). To address this issue, we introduce a subscription

based model suitable for the ElGamal encryption algorithm.

Our model draws inspiration from the subscription services o�ered by companies like

Net�ix [6], Amazon [7] and HBO [8]. These companies give access to streaming content

in exchange for a monthly pay. In our case, a client pays for a backdoor that gives him

access to a limited number of private messages. Subsequently, the client has to renew

his subscription. This balances the risk and reward factors for the manufacturer22 and,

in consequence, M can lower embedding fees. A risk still remains: no guarantees of

output delivery for the clients. But, this is minimum in a subscription based model

because the goal of the manufacturer is to keep clients satis�ed, so they further renew

their subscription23.

Compared to the classical models, our proposed model has a di�erent issue that needs

to be tackled. Clients want access to their services as soon as they pay. But, illegal

transactions mostly use cryptocurrencies [75] and the average con�rmation time for this

type of transactions is large in some cases (e.g. for Bitcoin, it takes on average an hour

per transaction [2]). Thus, to give the manufacturer su�cient time for deactivating the

21As in the previous model, the transaction is illegal and thus, M can not take legal action against
C.

22M is exposed only for a limited period of time
23Cheating a client will only bring M a small amount of revenue.
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backdoor24 if the transaction is not valid, we employ a mechanism similar to time-lock

puzzles [213] .

Note that generic kleptographic countermeasures [214, 215, 135] can protect tamper

proof device's users against our proposed mechanisms. Unfortunately, unless users do

not explicitly require the implementation of these defences, a manufacturer is not obliged

to deploy them. Thus, M is free to implement any kleptographic mechanism.

5.4.1 Preliminaries

Conventions. All kleptographic subscriptions presented from now on are implemented

in a device D. The owner of the device is denoted by V and we assume that he is in

possession of his secret key. Note that V thinks that D contains an implementation of

the ElGamal scheme as described in Section 7.3. When one of the original ElGamal

algorithms is not modi�ed by the SETUP attack, the scheme will be omitted when

presenting the respective attack.

Throughout the paper, when presenting kleptographic subscriptions, we make use of the

following additional algorithms:

� Device's/Manufacturer's/Customer's KeyGen ´ used by the device/manufactur-

er/customer to generate its/his keys;

� Token ´ used by the customer/manufacturer to extract the access token;

� Extract ´ used by the customer to recover the messages sent by V .

The previously mentioned algorithms are not implemented in D. For simplicity, klepto-

graphic parameters will further be implicit when describing a scheme.

5.4.1.1 Security Assumptions

De�nition 5.4 (Pseudorandom Function - prf). A function F : G ˆ r1, ns Ñ S is a

prf if:

� Given a key K P G and an input X P r1, ns there is an e�cient algorithm to

compute FKpXq “ F pX,Kq.
24by means of special triggers
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� Let A be a PPT algorithm with access to an oracle O that returns 1 if O “ FKp¨q.
The prf-advantage of A, de�ned as

ADV prf
F pAq “

ˇ

ˇ

ˇ
PrrAFKp¨q “ 1|K $ÐÝ Gs ´ PrrAF p¨q “ 1|F $ÐÝ Fs

ˇ

ˇ

ˇ

must be negligible for any PPT algorithm A, where F “ tF : r1, ns Ñ Su.

De�nition 5.5 (Pseudorandom Permutation - prp). A prf P : G ˆ r1, ns Ñ r1, ns is
a prp if P is one-to-one and F from De�nition 5.4 is changed into F “ tF : r1, ns Ñ
r1, ns | F is one-to-oneu. The prp-advantage of A is denoted ADV prp

P pAq.

5.4.2 Free Subscription

The �rst type of subscription (denoted by FS) is an analog of public television channels.

Thus, anyone who is in possession of the transmitted ciphertexts can decrypt them after

a certain amount of tra�c has been sent. This protocol will form the basis for the

mechanisms presented in Sections 5.4.3 and 5.4.4.

Although, this kind of subscription does not bring any revenue, it can still be useful in

certain situations. For example, a disgruntled employee can embed it in the source code

of certain products before leaving the company. Then, he can anonymously point out

that the respective company implemented backdoors in their products. The scope of this

scenario is to damage the company's reputation.

5.4.2.1 Description

Let n be the maximum number of messages that a client needs to wait before recovering

all of V 's communications. Also, let F : Gˆt0, 1u˚ Ñ Zq̊ . When searching for the access

token, we make use of an auxiliary function Check that returns true if the decrypted

message is correct. We further present the algorithms for the free subscription SETUP

attack.

Device's KeyGenpppq: Choose xD $ÐÝ Zq̊ and p
$ÐÝ r0, ns. Output the device's secret key

skD “ pxD, pq.

Encryption Sessions: The possible encryption sessions performed by D are described

below. Let i ‰ p.

Encryptionipmi, pk, skDq: To encrypt a message mi P G, �rst compute ki Ð F pgxD , iq.
Then compute the values ci Ð gki and di Ð mi ¨ yki . Output the pair pci, diq.
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Encryptionppmp, pk, skDq: To encrypt a message mp P G, compute the values cp Ð gxD

and dp Ð mp ¨ yxD . Output the pair pcp, dpq. Erase p from D's memory.

Tokenpc1, d1, . . . , cn, dn, pkq: Let i “ 1. Compute ki`1 Ð F pci, i mod n ` 1q, mi`1 Ð
di`1 ¨ y´ki`1 and iÐ i` 1, until Checkpmiq “ true. Output the token p.

The ith Extractpci, di, pq: To recover the ith message compute ki Ð F pcp, iq and mi Ð
di ¨ y´ki .

Remark 5.19. It is easy to see that message mp can only be retrieved by the recipient.

5.4.2.2 Security Analysis

We further state the security margin without proof due to its similarity to the more

involved proof of Theorem 5.8.

Theorem 5.7. If F is a prf and i P r1, p´1s then EG and FS are ind-setup. Formally,

let A be an e�cient PPT ind-setup adversary. There exists an e�cient algorithm B

such that

ADV ind-setup
EG, FS pAq ď 2ADV prf

F pBq.

5.4.3 Paid Subscription

In this subsection, we describe a kleptographic analogue of payed television (denoted by

PS). Thus, C pays M for a session's access token, that only M can extract from D.

Note that these tokens are unique per session. So, a group of users can pay for only one

token and all of them will have access to that session's private messages. Although this

can be considered cheating, it is also a reality in other systems (e.g. paying for a Net�ix

account and sharing the credentials with one's friends). We will rectify this problem in

the next subsection.

5.4.3.1 Description

Let t be a security parameter and P : G ˆ r1, ns Ñ r1, ns. After the �rst message

is transmitted the manufacturer will send the clients a set of t positions pj needed to

compute the access token. Note thatM has a window of at least t´1 messages to receive

his payments. If one payment is declined, M can deactivate the backdoor before the t-th

message has been issued. A downside of this scheme is that if one of the clients fails to

pay for the token, then he deprives all users of their access.
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We further state one session of the protocol. After a predetermined number of messages

(greater than n) have elapsed, D can generate new keys and start a new session.

Manufacturer's KeyGenpppq: Choose xM $ÐÝ Zq̊ and compute yM Ð gxM . Output the

manufacturer's public key pkM “ yM . The secret key is skM “ xM . Store pkM in

D's internal memory.

Device's KeyGenpppq: Choose k0
$ÐÝ Zq̊ . For each j P r1, ts compute pj Ð P pyk0M , jq

and choose xj
$ÐÝ Zq̊ . Compute xD Ð x1 ` . . . ` xt. Store the device's secret key

skD “ pk0, p1, . . . , pt, x1, . . . , xt, xDq.

Encryption Sessions: The possible encryption sessions performed by D are described

below. Let i P r0, ns and i ‰ pj , for each j P r1, ts. The algorithm for Encryptioni

are identical to the public subscription and thus are omitted.

Encryption0pm0, pkq: To encrypt a message m0 P G compute the values c0 Ð gk0 and

d0 Ð m0 ¨ yk0 . Output the pair pc0, d0q. Erase k0 from D's memory.

Encryptionpj pmpj , pk, skDq: To encrypt a message mpj P G, compute the values cpj Ð
gxj and dpj Ð mpj ¨yxj . Output the pair pcpj , dpj q. Erase ppj , xjq fromD's memory.

Tokenpc0, skM q: For each j P r1, ts compute pj Ð P pcxM0 , jq. Output the token p “
pp1, ¨ ¨ ¨ , ptq.

The ith Extractpci, di, pq: To recover the ith message compute cp Ð cp1 ¨ . . . ¨ cpt and
ki Ð F pcp, iq and mi Ð di ¨ y´ki .

Remark 5.20. It is easy to see that messages m0,mp1 , . . . ,mpt can not be retrieved by

the customers.

5.4.3.2 Security Analysis

Theorem 5.8. If ddh is hard in G, P is a prp, F is a prf and pCtnq´1 is negligible then

EG and PS are ind-setup. Formally, let A be an e�cient PPT ind-setup adversary.

There exist three e�cient algorithms B1, B2 and B3 such that

ADV ind-setup
EG, PS pAq ď 2ADV ddh

G,g pB1q ` 2ADV prp
P pB2q ` 2ADV prf

F pB3q ` pCnt q´1.

Proof. Let A be an ind-setup adversary trying to distinguish between EG and PS. We

show that A's advantage is negligible. We construct the proof as a sequence of games in

which all the required changes are applied to PS. Let Wi be the event that A wins game

i.
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Game 0. The �rst game is identical to the ind-setup game25. Thus, we have

|2PrrW0s ´ 1| “ ADV ind-setup
EG,PS pAq. (5.10)

Game 1. In this game, instead of using yk0M as a key to P we use rP
$ÐÝ G. More precisely,

for each j P r1, ts we compute pj Ð P prP , jq. Since this is the only change between

Game 0 and Game 1, A will not notice the di�erence assuming the ddh assumption

holds. Formally, this means that there exists an algorithm B1 such that

|PrrW0s ´ PrrW1s| “ ADV ddh
G,g pB1q. (5.11)

Game 2. Since P is a prp then we can choose pj
$ÐÝ r1, ns, without A detecting the

change. Formally, this means that there exists an algorithm B2 such that

|PrrW1s ´ PrrW2s| “ ADV prp
P pB2q. (5.12)

Game 3. In each Encryptionpj algorithm we make the change cpj Ð gkj and dpj Ð
mpjy

kj , where kj
$ÐÝ Zq̊ . Since kjs and xjs have the same distribution, and the bjs are

uniformly distributed in r1, ns, then A can only detect the change using a brute-force

attack26. Formally, we have

|PrrW2s ´ PrrW3s| “ pCnt q´1. (5.13)

Game 4. The last change we make is ki
$ÐÝ Zq̊ . Adversary A will not notice the di�erence,

since F is a prf. Formally, this means that there exists an algorithm B3 such that

|PrrW3s ´ PrrW4s| “ ADV prf
P pB3q. (5.14)

The changes made to PS in Game 1 ´ Game 4 transformed it into EG. Thus, we have

PrrW4s “ 1{2. (5.15)

Finally, the statement is proven by combining the equalities p5.10q ´ p5.15q.

25as in Remark 5.2
26i.e. by trying each t-combination ctry of cis, until on input ctry the Extract algorithm outputs a

message m such that Checkpmq “ true.
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5.4.4 Targeted Subscription

As mentioned in the previous subsection, a coalition of clients can pay for only one

token27. To avoid this problem we bind a speci�c session to a certain client. We could

not �nd a method that allows multiple bindings per session. We further present the

proposed solution for binding users and sessions (denoted by TS).

5.4.4.1 Description

Customer's KeyGenpppq: Choose xC
$ÐÝ Zq̊ and compute yC Ð gxC . Output the

customer's public key pkC “ yC . The secret key is skC “ xC . Store pkC in D's

internal memory.

Encryption Sessions: The possible encryption sessions performed by D are described

below. Let i P r0, ns and i ‰ pj , for each j P r1, ts. The algorithms for Encryption0

and Encryptionpj are identical to the paid subscription and thus are omitted.

Encryptionipmi, pk, pkC , skDq: To encrypt a message mi P G, �rst compute ki Ð
F pyxDC , iq. Then compute the values ci Ð gki and di Ð mi ¨ yki . Output the

pair pci, diq.

The ith Extractpci, di, pq: To recover the ith message compute cp Ð cp1 ¨ . . . ¨ cpt and
ki Ð F pcxCp , iq and mi Ð di ¨ y´ki .

5.4.4.2 Security Analysis

Theorem 5.8 assures us that the client has negligible probability of reading V 's messages

withoutM 's help. We further prove a similar result for any PPT ind-setup adversaries.

Theorem 5.9. If ddh is hard in G, P is a prp and F is a prf then EG and TS are

ind-setup. Formally, let A be an e�cient PPT ind-setup adversary. There exist three

e�cient algorithms B1, B2 and B3 such that

ADV ind-setup
EG, TS pAq ď 4ADV ddh

G,g pB1q ` 2ADV prp
P pB2q ` 2ADV prf

F pB3q.

Proof. Game 0 ´ Game 2 and Game 4 are identical to the games presented in the proof

of Theorem 5.8 and thus, are omitted. Since only the customer is in position of xC , we

can not use the strategy presented in Theorem 5.8, Game 3. Thus, we present a modi�ed

version of Game 3.
27further used by the whole group to access messages
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Game 3'. In this game, we replace yxDC by rF
$ÐÝ Zq̊ . Due to the fact that ddh is hard

in G, A will not notice the change. Formally, this means that there exists an algorithm

B11 such that

|PrrW2s ´ PrrW31s| “ ADV ddh
G,g pB11q. (5.16)

Finally, the statement is proven by combining the equalities p5.10q´ p5.12q and p5.14q´
p5.16q.

5.4.5 Future Work

A couple of interesting open problems are the extension of subscription based services to

digital signatures and the implementation of multi-targeted subscriptions for one session.

5.5 Hash Channels

Most subliminal channels or SETUP attacks use random numbers to convey information

undetected. In consequence, all the proposed countermeasures focus on sanitizing the

random numbers used by a system. In the case of digital signatures, a di�erent but

laborious method for inserting a subliminal channel in a system is presented in [256].

Instead of using random numbers as information carriers, Alice uses the hash of the

message to convey the message for Bob. In order to achieve this, Alice makes small

changes to the message until the hash has the desired properties. Note that the method

presented in [256] bypasses all the countermeasures mentioned so far.

This section studies a generic method that allows the prisoners to communicate through

the subliminal-free signatures found in [214, 215, 73, 135, 32, 57]. To achieve our goal

we work in a scenario where all messages are time-stamped before signing. Note that

we do not break any of the assumptions made by the subversion-free proposals. This

work is motivated by the fact that most end-users to do not verify the claims made by

manufacturers28. Moreover, users often do not know which should be the outputs of a

device [163]. A notable incident in which users where not aware of the correct outputs

and trusted the developers is the Debian incident [50].

28Manufacturers might implement subversion-free signatures just for marketing purposes, while still
backdooring some of the devices produced.
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Conventions. The encryption of a message m P t0, 1u using one-time pad is denoted

by ω Ð m‘ b, where b is a random bit used only once.

We consider that the covert channels presented from now on are implemented in a device

D that digitally signs messages. In the case of subliminal channels, the prisoners are

denoted as Alice (sender) and Bob (receiver), while Walter is the guard. In the case

of SETUP attacks, the owner of the device is referred to as Charlie and the attacker

is usually Mallory. When the secret key sk is not known to the PPT algorithm A we

assume that sk is stored only in D's volatile memory. Note that Walter and Charlie

believe that D signs messages using the original speci�cations of the signature scheme

implemented in D. When one of the original signature's algorithm is not modi�ed by the

covert channel, the algorithm will be omitted when presenting the respective channel.

5.5.1 A Schnorr based Hash Channel

In order to be valid, legal documents need a timestamp appended to them before being

digitally signed [26, 132]. According to [26] the timestamp must include seconds. Note

that if the timestamp module is independent from the Sign module, then Walter or

Charlie can inject false timestamps into the signing module. Thus, we assume that the

timestamp module is integrated in the signing module. Using this framework we achieve

a subliminal channel by adapting and simplifying the idea from [256]. Note that we

embed our proposal in the Schnorr signature.

Let lim be an upper limit for the number of trials and ut the smallest time unit used

by the time stamping algorithm (e.g. seconds, milliseconds). We further present our

proposed subliminal channel.

Time Stampputq: Output the current time τ including ut.

Subliminal Signpm,ω, skq: Generate a random number k $ÐÝ Zq̊ and compute r Ð gk.

Let counter “ 1. Generate τ using the Time Stamp algorithm and compute

e Ð hpr}m}τq and counter “ counter ` 1, until e ” ω mod 2 or counter “ lim.

Compute sÐ k ´ xe mod q. Output the signature pe, sq.

Extractpm, e, s, pkq : To extract the embedded message compute ω Ð e mod 2. Remark

that the probability of event e ” ω mod 2 is 1´ 1{2lim.

The security of the Schnorr signature scheme is preserved, since we are not modifying

the scheme itself, but the way messages are processed. Let τh be the average time it

takes device D to compute hpr}m}τq for �xed bit-size bitm messages. To avoid detection



Kleptographic Attacks 177

by Walter or Charlie the manufacturer writes in D's speci�cation that for a message

of size bitm it takes lim ¨ τ to sign bitm messages. Thus, D remains consistent with

the speci�cations (i.e. ind-covert secure). The main restriction when choosing lim is

users' usability. Due to the hash-rate statistics reported for SHA-256 in [12, 14] we can

assume τh ă 1 second. Thus, the bottleneck becomes the time stamp (i.e. D can not

output a signature for time t at time t ´ 1). This can be mitigated by including �ner

time units into the timestamp (e.g milliseconds).

Remark 5.21. Let z Ð gt be the public key of Bob and b a bit Alice wants to send

to Bob. Then, we can easily transition to a public key subliminal channel by using the

HKE protocol and computing ω Ð b ‘ Hpzkq, where Gm “ t0, 1u. Since k is fresh for

each signature, Alice can continuously leak data to Bob. Note that we are using HKE

to encrypt the message so, ω is indistinguishable from a random bit. Thus, the scheme

is ind-covert secure under the hdh assumption. We further denote this public key

subliminal channel by hashp.

Remark 5.22. When dealing with longer messages there is a simpler way to transmit

them. Thus, let mi be the ith bit of m and Gm “ t0, 1u|m|. The device D can leak m

to Bob through |m| signing sessions by computing c Ð m ‘Hpzk0q and setting ω Ð ci

for the ith signing session, where 0 ď i ă |m|. Note that m is successfully transmitted

with a probability of p1´ 1{2limq|m|. This channel is further denoted by hash`. Remark

that if we replace Bob withMallory and set mÐ x, hash` is transformed into a SETUP

attack.

Remark 5.23. If adversary A has access to x, then he can compute all k numbers.

Thus, hashp and hash` can be detected if x can be retrieved from D, while the regular

hash channel it is not. Hence, in the public key setting we assume that x is only stored

in D's volatile memory29.

5.5.2 Stochastic Detection

In [161], the authors show that the execution time of the Young-Yung attack can be used

to distinguish honest devices from backdoored devices. Using Kucner et. al. observations

as a starting point, we run a series of experiments to see if our proposed methods can be

detected by measuring their execution time.

We implemented in C using the GMP library [19] the Schnorr signature (normal), the

trivial channel (trivial), the Young-Yung attack (yy), the hash channel (hash), the public

key hash channel (hashp) and hashp's extension to long messages (hash`). The programs

29The same assumption is make in Young-Yung's attack, since their mechanism can also be detected
when x is known to the attacker.
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were run on a CPU Intel i7-4790 4.00 GHz and compiled with GCC with the O3 �ag

activated. In our experiments for each prime size of 2048, 3072, 4096 and 8192 bits,

we ran the algorithms with 100 safe prime numbers from [16]. For each prime we mea-

sured the average running time for 128 random 2040 byte messages30 using the function

omp_get_wtimepq [15]. Before signing each message we added a 8 byte timestamp

with the current system time in milliseconds (clock_gettimepq). The hash function used
internally by the algorithms is either SHA256 or SHA512 [11].

When we implemented the hash channels we took advantage of the Merkle-Damgard

structure of SHA256 or SHA512. Thus, we computed and stored the intermediary value

hit obtained after processing 1984 (SHA256) or 1920 (SHA512) bytes. Then for each trial

we used hit to process the last block of the message. Note that the size of the messages

was selected such that after hit the SHA functions must process one full message block

and a full padding block (worst case scenario). Also, in our experiments lim tends

towards in�nity.

The results of our experiments are presented in Figures 5.3 to 5.10. We can see from the

plots that the Schnorr signature and the hash channel have similar execution times. We

further investigated this by computing the absolute time di�erence between a normal

execution (tn1) and a hash channel execution (th) or another normal execution (tn2).

The results are presented in Table 5.1. Note that the empirical evidence suggests that

the normal and hash channel executions are indistinguishable due to the noise added by

the operating system.
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Figure 5.3: Prime's size 2048 bits
with SHA256.
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Figure 5.4: Prime's size 2048 bits
with SHA512.

When we implemented hash` we distributed the HKE protocol execution over 128 Schnorr

signature computations. The downside of this method is that �rst we need to use 128

30By choosing 128 messages we simulated the following scenario: the secret key x is generated using
a PRNG with a seed of 128 bits and D leaks the seed.
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Figure 5.5: Prime's size 3072 bits
with SHA256.
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Figure 5.6: Prime's size 3072 bits
with SHA512.
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Figure 5.7: Prime's size 4096 bits
with SHA256.
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Figure 5.8: Prime's size 4096 bits
with SHA512.
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Figure 5.9: Prime's size 8192 bits
with SHA256.
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Figure 5.10: Prime's size 8192 bits
with SHA512.
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Prime's size SHA |tn1 ´ tn2 | |tn1 ´ th| |tn1 ´ t`|
2048

256 0.185621 0.138921 0.149650
512 0.122050 0.097460 0.101445

3072
256 0.462406 0.105996 0.150646
512 0.156232 0.156667 0.160375

4096
256 0.523229 0.354953 0.358049
512 0.118666 0.134868 0.085795

8192
256 1.381028 1.548863 1.586020
512 0.483661 0.629464 0.468742

Table 5.1: Time comparison.

Schnorr signatures for masking the HKE and then 128 hash channel signatures for leaking

the message. The results presented in this section are only for the �rst part, since

experimental data for hash channels is already presented. Note that the �rst part of

hash` is indistinguishable from the normal execution. As in the case of the hash channel,

we further investigated the indistinguishability claim by computing the absolute time

di�erence between a normal execution (tn1) and a hash` channel execution (t`). The

results are presented in Table 5.1. Note that the empirical evidence suggests that the

normal and hash` channel executions are indistinguishable due to the noise added by the

operating system.

Another remark is that the rest of the channels can be easily detected by measuring

their execution time. Thus, noise must be added to the Young-Yung attack or to the

Schnorr signature in order to make the subliminal channels undetectable. Note that the

trivial channel and the public key hash channel have similar execution times. Thus, any

technique used to mask the execution time of the trivial channel can also be used for the

public key hash channel.

Let T be the computation time for one signature. We denote by ErT s and σrT s
the expected value and the standard deviation of T . Kucner et. al. introduce the

RrT s “ σrT s{ErT s characteristic in order to measure computation time independently

of the actual speed of the processor. We computed RrT s for all channels and the re-

sults are presented in Table 5.2. We can observe from our experiments that the RrT s
characteristic �uctuates in practice. Also, from Table 5.2, it is easy to observe that

the RrT s characteristic for the Schnorr signature is always smaller than the one for the

trivial channel and the Young-Yung attack. Thus, we can distinguish these two channels

from an honest execution. Unfortunately, the results are inconclusive for the rest of the

channels.
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Prime's size SHA normal trivial yy hash hashp hash`

2048
256 0.128196 0.722334 0.322048 0.076789 0.138364 0.147544
512 0.035308 0.695684 0.131866 0.017010 0.033390 0.094461

3072
256 0.094644 0.751065 0.430531 0.044940 0.063633 0.095584
512 0.024800 0.718313 0.207609 0.024917 0.044754 0.092278

4096
256 0.131263 0.700937 0.582434 0.043187 0.045583 0.101174
512 0.051705 0.691449 0.326993 0.125705 0.089238 0.140214

8192
256 0.116920 0.704363 1.156188 0.172762 0.101328 0.132343
512 0.056456 0.708207 0.594154 0.057846 0.086518 0.121710

Table 5.2: RrT s characteristic.

5.5.3 Marketing Backdoors

In this section we provide the reader with state-of-the-art countermeasures used to obtain

subliminal-free signatures and show that three proposals are vulnerable to the hash

and hash` channels without masking the channels' execution time, while for the rest

the channels must be masked. Thus, a manufacturer can market a product as being

subliminal free31, while in reality it is not. Note that our proposed scenario does not

violate the assumptions made by the subversion-free protocols.

5.5.3.1 Russel et al. Subversion-Free Proposal

The authors of [214, 215] assume that all the random numbers used by a signature

scheme are generated by a malicious RNG (including the key generation step). Based on

this assumption, the authors describe and prove secure a generic method for protecting

users. Note that both the trivial channel and the Young-Yung attack can be modeled

as malicious RNGs. Unfortunately, in the hash channel scenario the security of their

method breaks down.

The philosophy behind Russel et al. method is to split every generation algorithm into

two parts: a random string generation part RG and a deterministic part DG. By exten-

sively testing DG the user can be ensured that the deterministic part is almost consistent

with the speci�cations. By using two independent RNG modules Source1, Source2 and

hashing their concatenated outputs, any backdoors implemented in the RNGs will not

propagate into DG. We further describe an instantiation of [215] using the Schnorr

signature scheme.

RandompSource1, Source2q: Generate s1
$ÐÝ Source1 and s2

$ÐÝ Source2. Output

hps1}s2q.
31by implementing one of these countermeasures
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KeyGenpppq: Generate x using the Random algorithm and compute y Ð gx. Output

the public key pk “ y. The secret key is sk “ x.

Signpm, skq: To sign a message m P t0, 1u˚, �rst generate k using the Random algo-

rithm. Then, compute the values r Ð gk, e Ð hpr}mq and s Ð k ´ xe mod q.

Output the signature pe, sq.

5.5.3.2 Hanzlik et al. Controlled Randomness Proposal

A method for controlling the quality of k is proposed in [135]. In order to do this, the

authors use a blinding factor U Ð gu that is installed by the owner of the device and

a counter i. The owner accepts a signature produced by D if and only if Check returns

true. Note that the Young-Yung SETUP attack is not possible due to the blinding

factor. We further present their modi�cations on the Sign algorithm.

Signpm,U, i, skq: To sign a message m P t0, 1u˚, �rst generate k0
$ÐÝ Zq̊ , compute

r1 Ð gk0 , k1 Ð HpUk0 , iq and increment i. Let k Ð k0k1. Compute the values

r Ð gk, e Ð hpr}mq and s Ð k ´ xe mod q. Output the signature pe, sq and the

control data pr1, iq.

Checkpe, s, r1, uq: Compute r Ð gsye and αÐ Hpr1u, iq. Output true only if and only

if r “ r1α. Otherwise, output false.

The authors underline that a subliminal channel32 exists, but due to the limited memory

of the signing device, hiding the time needed to implement their proposed channel is

di�cult. Note that our timestamp method proposed in Section 5.5.1 is much faster33

and, thus, in some cases is feasible for bypassing Hanzlik et al. mechanism.

5.5.3.3 Choi et al. Tamper-Evident Digital Signatures

Choi et al. [73] introduce the notion of tamper-evidence for digital signatures in order

to prevent corrupted nodes to covertly leak secret information. We further provide the

tamper-evident Schnorr signature.

ParamGenpλq: Generate two large prime numbers p, q, such that q ě 2λ and q|p ´ 1.

Select a cyclic group G of order p ´ 1 and let g P G be an element of order q.

Let h : t0, 1u˚ Ñ Zq̊ be a hash function and let ` be the number of permitted

signatures. Output the public parameters pp “ pp, q, g,G, h, `q.
32similar to the trivial channel described in Section 5.1
33i.e. computing a hash is faster than computing a modular exponentiation
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KeyGenppp, κq: Choose x $ÐÝ Zq̊ and compute y Ð gx. Also, choose ω`
$ÐÝ t0, 1uκ. For

1 ď i ď `, generate ki
$ÐÝ Zq̊ and compute ωi´1 Ð hpgki}ωiq. Output the public

key pk “ py, ω0q. The secret key is sk “ px, k1, . . . , k`, ω1, . . . , ω`q.

Signpmi, skq: To sign the ith message mi P t0, 1u˚, compute the values ri Ð gki ,

ei Ð hpri}ωi}miq and si Ð ki ´ xei mod q. Output the signature pei, si, ωiq.

Veri�cationpmi, ei, si, ωi, pkq: To verify the signature pei, si, ωiq of messagemi, compute

ri Ð gsiyei and u Ð hpri}ωi}miq. Output true if and only if u “ ei and ωi´1 Ð
hpri}ωiq. Otherwise, output false.

The authors work in the honest key generation model. Thus, the nodes can not manipu-

late the kis in any way. Fortunately, our hash channels use messages to leak con�dential

data. Thus, the nodes can still subliminally transmit data by using our proposed chan-

nels.

5.5.3.4 Ateniese et al. and Bohli et al. Subversion-Free proposals

The authors of [32] propose the usage of re-randomizable signatures and unique signatures

as countermeasures to backdoors induced by malicious RNGs. These proposals are secure

according to their security model [32]. A similar approach can be found in [57], where

the authors convert the Digital Signature Algorithm into a deterministic signature. Note

that both approaches assume honest key generation.

All these signature schemes work on �xed length messages and internally use a number

theoretic hash function34. In order to work on variable length messages a standard hash

function is used to process the message and the resulting hash is used as input for the

Naor-Reingold function. Thus, for each small change in the message we have to recom-

pute the hash hpmq, multiply |hpmq{2| integers from Zq̊ and perform an exponentiation

in G. So, our proposed hash channel on average doubles the time necessary to process

a message. In this case, the execution time of a hash channel is no longer similar to an

honest implementation and, thus, noise must be added to mask the backdoor.

34more precisely, the Naor-Reingold pseudo-random function [192, 193]



Chapter 6

(Pseudo-)Random Number

Generators

One of the most essential building blocks of cryptography are random numbers genera-

tors. In particular, for ensuring privacy or authenticity is vital that cryptographic keys

are randomly generated. Additionally, most cryptographic algorithms are randomized.

Generating random numbers by means of physical processes is usually time consuming

and expensive, thus in practice most applications use pseudo-random numbers genera-

tors. Such a generator is a deterministic algorithm that takes as input a small random

seed and expands it into a much longer sequence of bits. Not all PRNGs are suitable

for cryptographic application. One such example is the generator used by Adobe Flash

Player. Some of the basic PRNG security requirements are: not to be able to distinguish

it from a real RNG and not to be able to recover its internal state from its output. We

describe a seed recovering algorithm for the Flash Player PRNG in the �rst part of this

chapter.

A popular method for generating cryptographic keys or other random inputs is to have

an entropy pool that accumulates data from a physical noise source and a PRNG that

periodically reseeds from the pool and outputs data at a constant rate. To ensure proper

operation, before adding data to the entropy pool some lightweight tests are applied to

it. In the second part of this chapter we study a possible architecture for adding data to

the pool. Therefore, we provide the reader with experimental results and the theoretical

framework for our proposed architecture.

184
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6.1 Flash Player PRNG

JIT compilers (e.g. JavaScript and ActionScript) translate source code or bytecode into

machine code at runtime for faster execution. Due to the fact that the purpose of JIT

compilers is to produce executable data, they are normally exempt from data execution

prevention (DEP1). Thus, a vulnerability in a JIT compiler might lead to an exploit

undetectable by DEP. One such attack, called JIT spraying, was proposed in [56]. By

coercing the ActionScript JIT engine, Blazakis shows how to write shellcode into the

executable memory and thus, bypass DEP. The key insight is that the JIT compiler is

predictable and must copy some constants to the executable page. Hence, these constants

can encode small instructions and then control �ow to the next constant's location.

To defend against JIT spraying attacks, Adobe employs a technique called constant

blinding. This method prevents an attacker from loading his instructions into constants

and thus, blocks the delivery of his malicious script. The idea behind constant blinding

is to avoid storing constants in memory in their original form. Instead, they are �rst

XORed with some randomly generated secret cookie and then stored inside the memory.

If the secret cookie is generated by means of a weak PRNG2, the attacker regains his

ability to inject malicious instructions.

Instead of using an already proven secure PRNG, the Flash Player designers tried to

implement their own PRNG. Unfortunately, in [253, 1] it is shown that the design of the

generator is �awed. In [1] a brute force attack is implemented, while in [253] a re�ned

brute force attack is presented. These results have been reported to Adobe under the

code CVE-2017-3000 [21] and the vulnerability has been patched in version 25.0.0.127.

In this section, we re�ne the attack presented in [253] from a time complexity of Op221q
to one of Op211q. We also show that no matter the parameters used by the PRNG, the

�aw remains. More precisely we show that for any parameters the worst brute force

attack takes Op221q operations. In [253] the authors do not present the full algorithm

for reversing the PRNG, while in [1] we found the full algorithm, but it was not opti-

mized. For completeness, in Appendix K we also present an optimized version of the

full algorithm. Note that in this section we only focus on the Flash Player PRNG. For

more details about JIT spraying attacks and constant blinding we refer the reader to

[33, 56, 212, 253].

1The DEP mechanism performs additional checks on memory to help prevent malicious code from
running on a system.

2i.e., the seed used to generate the cookie can be recovered in reasonable time
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6.1.1 Preliminaries

6.1.1.1 Constant Blinding in Flash Player

In this subsection we describe the implementation of the Flash Player PRNG, as pre-

sented in [17]. The generator has four components (described in Listing 6.1): a seed

initialization function (RandomFastInit), a seed update function (RandomFastInit), a

hash function (RandomPureHasher) and a cookie generation function (GenerateRan-

domNumber). According to the source code, the hash function is adapted from [254].

Note that the variable uValue is initialized by a function found in the Windows API

(VMPI_getPerformanceCounter).

The role of the hash function is to make attackers unable to retrieve the seed value

(uValue) in reasonable time. Note that the default timeout in Flash Player is 15s. Thus,

an attacker must succeed in �nding the seed, predicate the secret value into the next

round and embed the desired value in the executable heap in 15s.

6.1.1.2 Shifting Signed Integers

According to [10], if we left shift a signed integer (e.g. iSeed) the result is unpredictable

and if we right shift a signed negative integer the result is implementation dependent.

Thus, we will make a clear distinction between implementation independent or dependent

attack strategies against the Flash Player PRNG. In some cases, the attacks devised for a

particular implementation are faster than the corresponding implementation independent

strategy (see Section 6.1.3).

For simplicity, when talking about targeted attacks we consider the behavior of shifts

implemented in Microsoft Visual Studio [10] and GCC [20] on x86 and x64 architectures.

Thus, left shifts are sign independent (e.g. 0b11000000 ! 1 “ 0b10000000) and right

shifts of signed integers use the sign bit to �ll vacated bit positions (e.g. 0b11000000 "s
1 “ 0b11100000 and 0b01000000 "s 1 “ 0b00100000).
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6.1.1.3 Previous Cryptanalysis Results

By abstracting the code described in Listing 6.1, we identify the three main components

of the cookie generation function, i.e.:

fpxq “ px ! 13q ‘ x´ px "s 21q,
gpxq “ pc3 ¨ x3 ` c2 ¨ x` c1q & 0x7fffffff` x,
hpxq “ 71 ¨ x mod 232.

If these functions are reversed, then the PRNG is broken. In [253], the authors propose

an algorithm for reversing f (Algorithm 41) and a backtracking algorithm for reversing g

(the complete description is presented in Algorithm 59). For completeness, we provide in

Appendix K the full algorithm (Algorithm 60) for reversing the PRNG (which includes

the inverse of h). Note that Algorithm 41 has a time complexity of Op221q and is

implementation independent.

1 #de f i n e c3 15731L

2 #de f i n e c2 789221L

3 #de f i n e c1 1376312589L

4 #de f i n e kRandomPureMax 0 x 7 f f f f f f f L

5

6 void RandomFastInit (pTRandomFast pRandomFast )

7 {

8 int32_t n = 31 ;

9 pRandomFast=>uValue = ( uint32_t ) (VMPI_getPerformanceCounter ( ) ) ;

10 pRandomFast=>uSequenceLength = (1L << n) = 1L ;

11 pRandomFast=>uXorMask = 0x14000000L ;

12 }

13

14 #de f i n e RandomFastNext (_pRandomFast ) \

15 (\

16 ( (_pRandomFast )=>uValue & 1L) \

17 ? ( (_pRandomFast )=>uValue = ( (_pRandomFast )=>uValue >> 1) ^ (

_pRandomFast )=>uXorMask) \

18 : ( (_pRandomFast )=>uValue = ( (_pRandomFast )=>uValue >> 1) ) \

19 )

20

21 int32_t RandomPureHasher ( int32_t iSeed )

22 {

23 int32_t iRe su l t ;

24

25 iSeed = ( ( iSeed << 13) ^ iSeed ) = ( iSeed >> 21) ;

26

27 iRe su l t = ( iSeed *( iSeed * iSeed * c3 + c2 ) + c1 ) & kRandomPureMax ;

28 iRe su l t += iSeed ;
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29 iRe su l t = ( ( iRe su l t << 13) ^ iRe su l t ) = ( iRe su l t >> 21) ;

30

31 re turn iRe su l t ;

32 }

33

34 int32_t GenerateRandomNumber (pTRandomFast pRandomFast )

35 {

36 i f ( pRandomFast=>uValue == 0)

37 {

38 RandomFastInit (pRandomFast ) ;

39 }

40 long aNum = RandomFastNext (pRandomFast ) ;

41 aNum = RandomPureHasher (aNum * 71L) ;

42

43 re turn aNum & kRandomPureMax ;

44 }

Listing 6.1: ActionScript PRNG implementation.

Algorithm 41. The algorithm for reversing f .
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S Ð ∅;
2 for low P r0, 0x7ffs do
3 tempÐ v & 0x7ff;
4 if temp ą low then

5 high “ p1 ! 11q ` low´ temp;
6 else

7 high “ low´ temp;
8 end

9 for mid P r0, 0x3ffs do
10 sÐ phigh ! 21q | pmid ! 11q | low;
11 if fpsq ““ v then
12 S Ð S Y s;
13 end

14 end

15 end

16 return S;

6.1.2 Reinterpreting

Let n be the word size in bits. As Algorithm 59 can be used to reverse any generic

polynomial g and the linear function h can be easily reversed, we only focus on reversing

the generic function

fpxq “ px ! `q ‘ x´ px "s rq,
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Conditions Time complexity
1 n´ r ď ` and n ď 2r Op2rq
2 n´ r ď ` and n ě 2r Opc242rq
3 n´ r ě ` and n ď 2r Op2rq
4 n´ r ě ` and n ě 2r Opc242rq

Table 6.1: Attack parameters for Lemma 6.1.

where 1 ď `, r ď n are integers. We further denote by v the output of fpxq.

Degenerate Cases. Let ct “ 10n´1 "s n. We consider the cases `, r P t0, nu as

degenerate due to di�erent inherent weakness induced by these choices. Thus, in our

study we do not take in consideration degenerate cases. We further present the weakness

associated with the degenerate cases:

� when r “ n and 0 ă ` ď n, the function fpxq “ x‘ px ! `q ` ct leaks ` bits of its
seed;

� when ` “ 0 and 0 ď r ď n, the function fpxq “ ´px "s rq leaks n ´ r bits of its

seed and v has the rest of the bits constant;

� when r “ 0 and 0 ă ` ď n, the function fpxq “ x‘ px ! `q ´ x always outputs a

v with ` trailing zeros;

� when ` “ n and 0 ă r ď n, the function fpxq “ x ´ px "s rq leaks r bits of its
seed.

We further present a series of attacks that are implementation independent. In the case

n´ r ď `, n ď 2r we generalized a di�erent algorithm than Algorithm 41, due to a more

direct adaptation to an implementation dependent version.

Lemma 6.1. Let c24 “ tn{ru` 1. For each (set of) condition(s) presented in Column 2

of Table 6.1 there exists an attack whose corresponding time complexity is presented in

Column 3 of Table 6.1.

Proof. When n ´ r ď `, we can explicitly write the function f as shown in Figure 6.1.

Note that the bits used to �ll vacated positions are represented as question marks. As

we want a compiler independent attack we consider the ? bits as unknown and tailor our

attacks accordingly.

In the �rst case, we �rst recover the most signi�cant n´ r bits (high) and then extract

the least signi�cant n´ r bits (low) from v ` high. For the rest of 2r´ n bits (mid) we

do an exhaustive search. This leads to a time complexity of Op2n´r22r´nq “ Op2rq.
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a1 . . . an´` an´``1 . . . ar ar`1 . . . an
‘ a``1 . . . an 0 . . . 0 0 . . . 0
“ t1 . . . tn´` tn´``1 . . . tr tr`1 . . . tn
` ? . . . ? ? . . . ? a1 . . . an´r

Figure 6.1: Bit representation of fpxq.

Algorithm 42. The algorithm for reversing f (Case 1).
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S Ð ∅;
2 for high P r0, 1n´rs do
3 tempÐ v ` high;
4 low Ð temp & 1n´r;
5 for mid P r0, 12r´ns do
6 sÐ phigh ! rq | pmid ! pn´ rqq | low;
7 if fpsq ““ v then
8 S Ð S Y s;
9 end

10 end

11 end

12 return S;

In the second case, we can do better than simply using Algorithm 42. We �rst recover

the least signi�cant r bits (low) and then use low to gradually recover the rest of the

bits (mid). This leads to the complexity Op2rpq ` 1qq.

When n´r ě `, we can explicitly write the function f as depicted in Figure 6.2. Note that

some of the bits resulted from the left shift overlap with some from the right shift. Thus,

in the third case we recover the least signi�cant n ´ r bits (low), add the overlapping

bits, and then recover the most signi�cant n ´ r bits (high) from v. For the rest of

2r ´ n bits (mid) we do an exhaustive search. So, similarly to the �rst case, we obtain

a complexity of Op2rq.

In the last case, we slightly modify the algorithm used in the second case to take

into account the overlapping bits. Thus, the resulting attack has the same complex-

ity Op2rpq ` 1qq.

a1 . . . ar ar`1 . . . an´` an´``1 . . . an

‘ a``1 . . . a``r a``r`1 . . . an 0 . . . 0

“ t1 . . . tr tr`1 . . . tn´` tn´``1 . . . tn

` ? . . . ? a1 . . . an´r´` an´r´``1 . . . an´r

Figure 6.2: Bit representation of fpxq.
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Algorithm 43. The algorithm for reversing f (Case 2 and 4).
Input: The value to reverse v.
Output: The set of possible solutions S.

1 Function Minus(temp1, temp2, size):
2 if temp2 ą temp1 then

3 high “ p1 ! psize`1qq ` temp1´ temp2;
4 else

5 high “ temp1´ temp2;
6 end

7 return high & 1size;
8 Function ComputeMid(low):
9 q Ð tpn´ rq{ru;
10 mÐ n´ r mod r;
11 midÐ 0;
12 for i P r1, qs do
13 temp1 Ð pmid ! rq | low;
14 temp1 Ð ptemp1‘ptemp1 ! `qq & 1ir; //only for Case 4
15 temp2 Ð v & 1ir;
16 midÐMinusptemp1, temp2, irq;
17 end

18 if m ‰ 0 then
19 temp1 Ð pmid ! rq | low;
20 temp1 Ð ptemp1‘ptemp1 ! `qq & 1n´r; //only for Case 4
21 temp2 Ð v & 1n´r;
22 midÐMinusptemp1, temp2, n´ rq;
23 end

24 return mid

25 Function Main(v):
26 S Ð ∅;
27 for low P r0, 1rs do
28 midÐ ComputeMidplowq;
29 sÐ pmid ! rq | low;
30 if fpsq ““ v then
31 S Ð S Y s;
32 end

33 end

34 return S;

Corollary 6.1. There exists an attack on the Flash Player PRNG with time complexity

Op221q.
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Algorithm 44. The algorithm for reversing f (Case 3).
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S Ð ∅;
2 for low P r0, 1n´rs do
3 temp1 Ð plow‘plow ! `qq & 1n´r;
4 temp2 Ð v & 1n´r;
5 highÐMinusptemp1, temp2, n´ rq;
6 for mid P r0, 12r´ns do
7 sÐ phigh ! rq | pmid ! pn´ rqq | low;
8 if fpsq ““ v then
9 S Ð S Y s;

10 end

11 end

12 end

13 return S;

Conditions Time complexity
1 n´ r ď ` and n ď 2r Opc132n´rq
3 n´ r ě ` and n ď 2r Opc132n´rq

Table 6.2: Attack parameters for Lemma 6.2.

a1 . . . an´` an´``1 . . . ar ar`1 . . . an
‘ a``1 . . . an 0 . . . 0 0 . . . 0
“ t1 . . . tn´` tn´``1 . . . tr tr`1 . . . tn
` a1 . . . a1 a1 . . . a1 a1 . . . an´r

Figure 6.3: Bit representation of fpxq.

6.1.3 Improving

In this subsection we consider implementation dependent attacks. For simplicity we

assume the behavior of the Microsoft Visual Studio and GCC compilers on x86 and x64

architectures. Other compilers' behaviors can be modeled similarly.

Lemma 6.2. Let c13 “ tr{`u` 1. For each (set of) condition(s) presented in Column 2

of Table 6.1 there exists an attack whose corresponding time complexity is presented in

Column 3 of Table 6.1.

Proof. When n´ r ď `, we can explicit the function f as shown in Figure 6.3. Note that

a1 is the sign bit used to �ll the gaps. With this in mind, we use the existing knowledge

(low) to gradually recover the 2r´n bits (mid). Thus, we improve the exhaustive search

of the mid part from Algorithm 42. This leads to a time complexity of Op2rpq ` 1qq.
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Algorithm 45. The improved algorithm for reversing f (Case 1).
Input: The value to reverse v.
Output: The set of possible solutions S.

1 Function Add(v, high):
2 if high P r0, 1n´r´1s then
3 tempÐ v ` high;
4 else

5 tempÐ v ` high‘1r0n´r;
6 end

7 return temp;
8 Function SpeedMid(low, temp, size, step):
9 q Ð tsize { stepu;
10 mÐ sizemod step;
11 temp1 Ð low;
12 for i P r0, q ´ 1s do
13 offsetÐ pi` 1q ¨ step;
14 temp2 Ð ptemp1‘ptemp " offsetqq & 1n´r;
15 midÐ mid | ptemp1 ! pi ¨ stepq;
16 temp1 Ð temp2

17 end

18 offsetÐ pq ` 1q ¨ step;
19 temp2 Ð ptemp1‘ptemp " offsetqq & 1m;
20 midÐ mid | ptemp1 ! pq ¨ stepq;
21 return mid;
22 Function Main(v):
23 S Ð ∅;
24 for high P r0, 1n´rs do
25 tempÐ Addpv, highq;
26 low Ð temp & 1`;
27 midÐ SpeedMidplow, temp, r ´ `, `q;
28 sÐ phigh ! rq | pmid ! `q | low;
29 if fpsq ““ v then
30 S Ð S Y s;
31 end

32 end

33 return S;

When n´r ě `, Figure 6.2 becomes Figure 6.4. In the third case, we adapt the algorithm

used in Case 1 to take into account overlapping bits. Thus, we obtain the same time

complexity.
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a1 . . . ar ar`1 . . . an´` an´``1 . . . an

‘ a``1 . . . a``r a``r`1 . . . an 0 . . . 0

“ t1 . . . tr tr`1 . . . tn´` tn´``1 . . . tn

` a1 . . . a1 a1 . . . an´r´` an´r´``1 . . . an´r

Figure 6.4: Bit representation of fpxq.

Algorithm 46. The improved algorithm for reversing f (Case 3).
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S Ð ∅; eÐ n´ r ´ `;
2 for low P r0, 1n´rs do
3 temp1 Ð plow‘plow ! `qq & 1n´r;
4 temp2 Ð v & 1n´r;
5 highÐMinusptemp1, temp2, n´ rq;
6 tempÐ Addpv, highq;
7 midÐ SpeedMidplow, temp, 2r ´ n` e, `q;
8 midÐ mid " e;
9 sÐ phigh ! rq | pmid ! pn´ rqq | low;
10 if fpsq ““ v then
11 S Ð S Y s;
12 end

13 end

14 return S;

Corollary 6.2. There exist an attack on the Flash Player PRNG with time complexity

Op211q.

Corollary 6.3. For any choice of ` and r there exists an attack whose time complexity

is at most Opn2n{2q.

Proof. According to Lemma 6.1, Cases 2 and 4 there exists an attack with complexity

Op2rq ď Op2n{2q. In Cases 1 and 3 we make use of the attacks presented in Lemma 6.2.

Thus, there exists an attack with complexity Opc132n´rq ď Opc132n{2q ď Opn2n{2q. As
a result, in the general case we obtain our statement.

Corollary 6.4. There exists an attack on the Flash Player PRNG with time complexity

at most Op221q independent of ` and r.
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Case 1 Case 2
pl “ 13, r “ 21q pl “ 23, r “ 11q

Algorithm 41 Algorithm 42 Algorithm 45 Algorithm 43
fpxq 2.16055s 2.82102s 0.00717478s 0.00608366s

PRNG 10.6442s 13.8981s 0.036917s 0.0334592s

Table 6.3: Running times for reversing the function f and the PRNG
(Cases 1 and 2).

Case 3 Case 4
pl “ 9, r “ 21q pl “ 19, r “ 11q

Algorithm 44 Algorithm 46 Algorithm 43
fpxq 2.77496s 0.00708749s 0.00809854s

PRNG 14.6386s 0.0432187s 0.0437757s

Table 6.4: Running times for reversing the function f and the PRNG
(Cases 3 and 4).

6.1.4 Experimental Results

We implemented Algorithms 42 to 46 and used 32 random seed values to test if our

algorithms succeed in recovering the seed for all 1 ď r ă 32 and 1 ď l ă 32. The com-

pilers we worked with are Microsoft Visual Studio 2017 version 15.7.5 with the C++14

extension activated and GCC version 5.4.0 with the C++11 extensions activated. The

tests were a success.

In another experiment we run Algorithms 42 to 46 and Algorithm 60 with 2000 random

seed values and used the function omp_get_wtime() [15] to compute the running time

necessary to invert the function f and the corresponding PRNG. The programs were run

on a CPU Intel i7-4790 4.00 GHz and compiled with GCC with the O3 �ag activated.

The results for the 2000 iterations can be found in Tables 6.3 and 6.4. Note that the

average time for brute forcing one value is 2.88861s for f and 13.2578s for PRNG.

6.2 Bias Ampli�ers

In [264] the authors propose an interesting mechanism that blurs the line between what

constitutes a Trojan horse and what does not. To detect their mechanism, a program

needs to somehow di�erentiate between a naturally unstable random number genera-

tor (RNG) and arti�cially unstable one (obtained by means of certain mathematical

transformations). To our knowledge, [264] is the only previous work that discuses this

topic.
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More precisely, in [264] a digital �lter is described. Usually, digital �lters are applied

to RNGs to correct biases3, but this �lter has an opposite purpose. When applied to a

stream of unbiased bits the �lter is benign. On the other hand, if applied to a stream of

biased bits the �lter ampli�es their bias. Thereby, making the RNG worse.

In this section we extend the �lter from [264]4, provide a new class of �lters and discuss

some new possible applications. When designing bias ampli�ers, a couple of rules must

be respected. The �rst one states that if the input bits are unbiased or have a maximum

bias (i.e. the probability of obtaining 1 is either 0 or 1) the �lter must maintain the

original bias. For unbiased bits this rule keeps the ampli�ers transparent to a user,

as long as the noise source functions according to the original design parameters. For

maximum bias the rule is a functional one. Since the RNG is already totally broken,

changing the bias does not make sense (from a designing point of view). The second rule

states that the �lter should amplify the bias in the direction that it already is. This rule

helps the designer amplify the bias in an easier manner.

The main application we propose for these �lters is RNG testing (e.g., boosting health

tests implemented in a RNG). Recent standards [158, 249] require a RNG to detect

failures and one such method for early detection can be to apply an ampli�er and then

do some lightweight testing5. Based on the results obtained in Sections 6.2.2 and 6.2.3,

we introduce a generic architecture for implementing health tests in Section 6.2.4.1.

More precisely, using a lightweight test on the ampli�ed bits the architecture can detect

deviations from the uniform distribution. To validate our architecture, we �rst run

a series of experiments on RNGs that generate uniformly independent and identically

distributed bits. We also show that our architecture can detect deviation from the initial

parameters of the u.i.i.d. source. In Section 6.2.5 we extend the preliminary results

to noise sources that have a Bernoulli distribution and show that the architecture can

detect, starting from the design phase, badly broken sources. To support our results we

develop a theoretical model and provide the reader with simulations based on our model.

Note that our theoretical model also explains why our architecture can detect deviation

from the initial parameters

Due to recent events [36, 205, 50, 69] RNGs have been under a lot of scrutiny. Thus,

wondering what kind of mechanisms can be implemented by a malicious third party in

order to weaken or destabilize a system becomes natural. Amplifying �lters provide a

novel example of how one can achieve this. Based on the failure detection mechanisms

3They are called randomness extractors [95].
4The �lter presented in [264] corresponds to the greedy ampli�er with parameter n “ 3 described in

Section 6.2.2.
5for example the tests described in [134]
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proposed in Section 6.2.4.1, we show, for example, how a manufacturer can manipulate

the architecture to become malicious.

6.2.1 Preliminaries

Conventions. In this section, we consider binary strings composed of independent bits

that follow a Bernoulli distribution Bpp̃q, where p̃ is the probability of obtaining a 1. The

probability of obtaining a 0 is denoted by q̃ “ 1´ p̃.

Let u be a binary string and A Ď Zn2 . Then wpuq denotes the hamming weight of u

and wpAq the set twpaq | a P Au. Note that since we are working with i.i.d. bits, for

any u, v P Zn2 such that wpuq “ wpvq, the equality Prrus “ Prrvs holds. Thus, from a

probabilistic point of view, it does not matter which element of the set tu P A | wpuq “ ku
we choose to work with.

The element minpAq (maxpAq) is the smallest (biggest) integer of the set A, while

minwpAq (maxwpAq) is an element from A that has the smallest (biggest) hamming

weight. We say that a pair of sets pS0, S1q is an equal partition of the set S if the

following hold: S “ S1 Y S2, S1 X S2 “ H and |S1| “ |S2|.

6.2.1.1 Digital Filters

In this section, we consider a digital �lter to be a mapping from Zn2 to Z2. If we contin-

uously apply a �lter to data generated by a RNG6, then three types of �lters arise:

� bias amplifier - the output data has a bigger bias than the input data;

� neutral filter - the output data has the the same bias as the input data;

� bias corrector7 - the output data has a smaller bias than the input data.

Let pS0, S1q be an equal partition of a set S. Let D be a digital �lter such that it maps S0

and S1 to 0 and 1, respectively (see Table 6.5). Also, let εD be the output bias of D. We

say that a bias amplifier is maximal if εD is maximal over all the equal partitions of

Zn2 . To compare bias amplifiers we measure the distance between PrrS1s and PrrS0s.

Before stating our results, some restrictions are needed. If the input bits are unbiased

(i.e. p̃ “ q̃ “ 1{2) or have a maximum bias (i.e. p̃ “ 0 or q̃ “ 0) we require the �lter to

maintain the original bias. If one replaces a bias corrector with a bias amplifier,

6Note that except for n “ 1 the bit rate of the RNG will drop.
7We prefer to use this notion instead of randomness extractor, because it simpli�es our framework.
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Bit 0 Bit 1

S0 S1

Table 6.5: Conversion table.

the ampli�er must behave as the corrector when the RNG has bias 0 or 1{2. The last

requirement is that the �lter ampli�es the bias in the direction that it already is. Without

loss of generality, we assume that the bias is towards 1.

6.2.1.2 Combinatorial Results

To ease description, we use the notation Cnk to denote binomial coe�cients. Pascal's

identity states that Cnk “ Cn´1
k ` Cn´1

k´1 , where 1 ď k ď n. Note that |tu P Zn2 | wpuq “
ku| “ Cnk . We further state a lemma from [67].

Lemma 6.3. Let si, i P r1, bs be integers such that s “ s1 ` . . . ` sb ď a. Then, the

number of integer solutions of the equation x1` . . .`xb “ a with the restrictions xi ě si

is Cb`a´s´1
b´1 .

6.2.2 Greedy Bias Ampli�ers

In this section we generalize and improve the bias amplifier described in [264]. We

�rst present a neutral filter and based on it we develop a maximal bias amplifier.

We can easily transform one into the other by changing the conversion table.

Lemma 6.4. Let S0 “ tu P Zn2 | u “ 0}v, v P Zn´1
2 u and S1 “ tu P Zn2 | u “ 1}v, v P

Zn´1
2 u. Then PrrS0s “ q̃ and PrrS1s “ p̃.

Proof. Since we are working with i.i.d. random bits the following holds

PrrS0s “
ÿ

vPZn´1
2

Prr0}vs “
ÿ

vPZn´1
2

q̃P rrvs “ q̃
ÿ

vPZn´1
2

Prrvs “ q̃.

Similarly, we obtain PrrS1s “ p̃.

Using Lemma 6.4 we can devise a neutral filter N by mapping all the elements of S0

and S1 to 0 and 1, respectively. Starting from the equal partition pS0, S1q (Lemma 6.4),
using a greedy algorithm (Algorithm 47), we devise a new equal partition that serves as

the core of a maximal bias amplifier.
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Number of switches Weight of S0 elements Weight of S1 elements
Cn´1

0 n´ 1 1

Cn´1
1 n´ 2 2

. . .
Cn´1
i´1 n´ i i

. . .

Table 6.6: Operations performed during the while loop.

Algorithm 47.

Input: An integer n

Output: An equal partition of Zn2
1 Set S0 “ tu P Zn2 | u “ 0}v, v P Zn´1

2 u and S1 “ tu P Zn2 | u “ 1}v, v P Zn´1
2 u

2 Set α “ maxwpS0q and β “ minwpS1q
3 while wpαq ă wpβq do
4 Set S0 “ pS0ztαuq Y tβu and S1 “ pS1ztβuq Y tαu
5 Update α “ maxwpS0q and β “ minwpS1q
6 end

7 return pS0, S1q

Lemma 6.5. Let k be a positive integer and let pS0, S1q be the output of Algorithm 47.

Then the following properties hold

1. If n “ 2k ` 1 then S0 “ tu | 0 ď wpuq ď ku and S1 “ tu | k ` 1 ď wpuq ď nu.
Also, PrrS0s “ řk

i“0C
n
i p̃

iq̃n´i and PrrS1s “ řk
i“0C

n
i p̃

n´iq̃i.

2. If n “ 2k then S0 “ tu | 0 ď wpuq ď k ´ 1u Y T0 and S1 “ tu | k ` 1 ď
wpuq ď nu Y T1, where pT0, T1q is an equal partition of tu P Zn2 | wpuq “ ku. Also,
PrrS0s “ řk´1

i“0 C
n
i p̃

iq̃n´i ` Cnk
2 pp̃q̃qk and PrrS1s “ řk´1

i“0 C
n
i p̃

n´iq̃i ` Cnk
2 pp̃q̃qk.

3. If ε “ 0 then PrrS0s “ PrrS1s “ 1
2 and if ε “ 1

2 then PrrS0s “ 0 and PrrS1s “ 1.

Proof. During the while loop Algorithm 47 swaps the elements whose weight is written

in Column 2, Table 6.6 with the elements that have their weight written in Column 3,

Table 6.6.

The while loop ends when wpαq ě wpβq. According to Table 6.6, this is equivalent with
n´ i ě i. When n “ 2k ` 1 we obtain that the while loop stops when i ď k ` 1. When

n “ 2k the loop stops when i ď k. Thus, we obtain the sets S0 and S1. The probabilities

PrrS0s and PrrS1s are a direct consequence of the structure of the sets and the fact that
Cnk “ Cnn´i. The last item is simply a matter of computation.
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Bit 0 Bit 1 p̃ Corr. Amp.

000, 001, 010, 100 111, 110, 101, 011 1
2 ` 3

2ε´ 2ε3 - X

000, 001, 010, 011 111, 110, 101, 100 1
2 ` ε - -

000, 001, 101, 011 111, 110, 010, 100 1
2 ` 1

2ε` 2ε3 X -

000, 110, 101, 011 111, 001, 010, 100 1
2 ` 4ε3 X -

000, 001, 010, 111 100, 110, 101, 011 1
2 ` 1

2ε` 2ε2 ´ 2ε3 X -

011, 110, 010, 100 000, 001, 101, 111 1
2 ` 2ε2 X -

011, 001, 010, 100 000, 110, 101, 111 1
2 ` 1

2ε` 2ε2 ´ 2ε3 X -

Table 6.7: Trigraph conversion table.

In Table 6.7 we present all the possible partitions of Z3
2. We mapped these partitions

to 0 and 1 in such a way that p̃ ą 1
2 . Note that bias ampli�cation happens only for

the partition presented in the �rst entry of the table8. This is not true in general.

For example, when n “ 5, we obtain another bias ampli�er if we map the set S11 “
pS1zt11100uq Y t11000u9 and S10 “ Z5

2zS11 to 1 and 0. We will now prove that pS10, S11q is
the basis of an ampli�er. Note that PrrS11s “ 1

2 ` 7
4ε´ 4ε3 ` 4ε5. Thus, we have

PrrS11s ´ p̃ “
ε

4

`

16ε4 ´ 16ε2 ` 3
˘ ą 0,

which is equivalent with

16t2 ´ 16t` 3 ą 0, (6.1)

where t “ ε2. Equation (6.1) has two solution t1 “ 1
4 and t2 “ 3

4 . Thus, the sign of

the quadratic function is negative only when 1
4 ă t ă 3

4 . By taking into account the

complement rule and that 0 ă ε ă 1
2 , we obtain an ampli�er by converting pS10, S11q to

p0, 1q.

Lemma 6.6. Let pS0, S1q be the output of Algorithm 47. If we map all the elements of

S0 and S1 to 0 and 1, respectively, then we obtain a maximal bias amplifier G.

Proof. According to Lemma 6.5 all the lowest and highest probability elements are in S0

and S1, respectively. Thus, the statement is true.
8The authors of [264] call it a RNG biasing Trojan horse.
9S1 is the set from Lemma 6.5.
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Lemma 6.7. Let pSn0 , Sn1 q be the output of Algorithm 47 for n “ 2k ` 1. Then the

following hold

1. PrrSn0 s “ PrrSn`1
0 s and PrrSn1 s “ PrrSn`1

1 s.

2. PrrSn0 s ´ PrrSn`2
0 s “ PrrSn`2

1 s ´ PrrSn1 s “ 2εCnk pp̃q̃qk`1.

3. PrrSn0 s ą PrrSn`2
0 s and PrrSn1 s ă PrrSn`2

1 s.

4. PrrSn1 s ´ PrrSn0 s ă PrrSn`2
1 s ´ PrrSn`2

0 s.

Proof. We prove the �rst statement using induction. When k “ 1 we have S1
0 “ t0u,

S1
1 “ t1u, S2

0 “ t00, 01u and S2
1 “ t10, 11u. Using Lemma 6.4, we obtain PrrS1

0s “ q̃ “
PrrS2

0s and PrrS1
1s “ p̃ “ PrrS2

1s. Thus, proving the statement for the case k “ 1.

We now assume that the statement is true for k (i.e. PrrSn0 s “ PrrSn`1
0 s and PrrSn1 s “

PrrSn`1
1 s) and we it for k ` 1. Applying Pascal's identity twice to PrrSn`2

0 s we obtain

PrrSn`2
0 s “

k`1
ÿ

i“0

Cn`2
i p̃iq̃n`2´i “ q̃n`2 ` pn` 2qp̃q̃n`1

`
k`1
ÿ

i“2

pCni ` 2Cni´1 ` Cni´2qp̃iq̃n`2´i. (6.2)

We rewrite Equation (6.2) as a sum of S1, S2, S3 (described next):

S1 “ q̃n`2 ` np̃q̃n`1 `
k`1
ÿ

i“2

Cni p̃
iq̃n`2´i

“ q̃2PrrSn0 s ` Cnk`1p̃
k`1q̃n`1´k, (6.3)

S2 “ 2p̃q̃n`1 ` 2
k`1
ÿ

i“2

Cni´1p̃
iq̃n`2´i

“ 2
k
ÿ

i“0

Cni p̃
i`1q̃n`1´i “ 2p̃q̃P rrSn0 s, (6.4)

S3 “
k`1
ÿ

i“2

Cni´2p̃
iq̃n`2´i “

k´1
ÿ

i“0

Cni p̃
i`2q̃n´i

“ p̃2PrrSn0 s ´ Cnk p̃k`2q̃n´k. (6.5)

Reassembling Equations (6.3) to (6.5) we obtain

PrrSn`2
0 s “ PrrSn0 s ` Cnk`1p̃

k`1q̃n`1´k ´ Cnk p̃k`2q̃n´k

“ PrrSn0 s ´ 2εCnk pp̃q̃qk`1. (6.6)
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Applying Pascal's identity twice to PrrSn`3
0 s we obtain

PrrSn`3
0 s “

k`1
ÿ

i“0

Cn`3
i p̃iq̃n`3´i ` Cn`3

k`2

2
pp̃q̃qk`2 “ q̃n`3 ` pn` 3qp̃q̃n`2

`
k`1
ÿ

i“2

pCn`1
i ` 2Cn`1

i´1 ` Cn`1
i´2 qp̃iq̃n`3´i ` Cn`3

k`2

2
pp̃q̃qk`2. (6.7)

Let α “ řk
i“0C

n`1
i p̃iq̃n`1´i. We rewrite Equation (6.7) as a sum of S4, S5, S6 (described

next):

S4 “ q̃n`3 ` pn` 1qp̃q̃n`2 `
k`1
ÿ

i“2

Cn`1
i p̃iq̃n`3´i

“ q̃2α` Cn`1
k`1 p̃

k`1q̃n`2´k, (6.8)

S5 “ 2p̃q̃n`2 ` 2
k`1
ÿ

i“2

Cn`1
i´1 p̃

iq̃n`3´i

“ 2
k
ÿ

i“0

Cn`1
i p̃i`1q̃n`2´i “ 2p̃q̃α, (6.9)

S6 “
k`1
ÿ

i“2

Cn`1
i´2 p̃

iq̃n`3´i “
k´1
ÿ

i“0

Cn`1
i p̃i`2q̃n`1´i

“ p̃2α´ Cn`1
k p̃k`2q̃n`1´k. (6.10)

Reassembling Equations (6.8) to (6.10) we obtain

PrrSn`3
0 s “ PrrSn`1

0 s ` Cn`1
k`1 p̃

k`1q̃n`2´k ´ Cn`1
k p̃k`2q̃n`1´k

´ Cn`1
k`1

2
pp̃q̃qk`1 ` Cn`3

k`2

2
pp̃q̃qk`2

“ PrrSn`1
0 s ´ Cnk pp̃q̃qk`1

"

n` 1

k ` 1

„

q̃2 ´ 1

2



`p̃q̃
„

´n` 1

k ` 2
` pn` 1qpn` 2qpn` 3q

2pk ` 1qpk ` 2qpk ` 2q
*

“ PrrSn`1
0 s ´ Cnk pp̃q̃qk`1

"

2

„

q̃2 ´ 1

2



` 2p̃q̃

*

“ PrrSn`1
0 s ´ 2εCnk pp̃q̃qk`1. (6.11)

Applying the induction step to Equations (6.6) and (6.11) we obtain that PrrSn`2
0 s “

PrrSn`3
0 s. The following equality is a consequence of the complement rule

PrrSn`2
1 s “ 1´ PrrSn`2

0 s “ 1´ PrrSn`3
0 s “ PrrSn`3

1 s.
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Figure 6.5: Greedy ampli�er.

This completes the proof the �rst statement. The remaining statements are a direct

consequence of Equation (6.6) and the complement rule.

Corollary 6.5. Let pSn0 , Sn1 q be the output of Algorithm 47 for n “ 2k ` 1. Then

PrrSn0 s ´ PrrSn`2
0 s ą PrrSn`2

0 s ´ PrrSn`4
0 s and PrrSn`2

1 s ´ PrrSn1 s ą PrrSn`4
1 s ´

PrrSn`2
1 s.

Proof. Using Lemma 6.7 we obtain that PrrSn0 s ´ PrrSn`2
0 s ą PrrSn`2

0 s ´ PrrSn`4
0 s is

equivalent with 2εCnk pp̃q̃qk`1 ą 2εCn`2
k`1 pp̃q̃qk`2. Rewriting the inequality we obtain

1 ą p2k ` 2qp2k ` 3q
pk ` 1qpk ` 2q p̃q̃.

The proof is concluded by observing that

p2k ` 2qp2k ` 3q
pk ` 1qpk ` 2q p̃q̃ ă 4

ˆ

1

4
´ ε2

˙

“ 1´ 4ε2 ď 1.

Figure 6.5a and Figure 6.5b are a graphical representation of Lemma 6.7 (n ď 17) and

Corollary 6.5 (n ď 15), respectively. The x-axis represents the original bias ε, while the

y-axis represents PrrSn1 s (Figure 6.5a) and PrrSn`2
1 s ´ PrrSn1 s (Figure 6.5b).
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Using the properties stated in Lemmas 6.5 and 6.7, we will next describe an equivalent

and simpli�ed version of Algorithm 47. Note that devising a greedy bias amplifier

only makes sense when n is odd.

Algorithm 48.

Input: An odd integer n

Output: An equal partition of Zn2
1 Set S0 “ S1 “ H
2 for i “ 0, . . . , 2n ´ 1 do

3 if wpiq ď k then

4 S0 “ S0 Y tiu
5 end

6 else

7 S1 “ S1 Y tiu
8 end

9 end

10 return pS0, S1q

6.2.3 Von Neumann Bias Ampli�er

Von Neumann introduced in [252] a simple, yet e�ective method for correcting the bias

of a RNG. Each time the RNG generates two random bits b1 and b2, the �lter outputs

b1 if and only if b1 ‰ b2. It is easy to see that Prrb1b2 “ 01s “ Prrb1b2 “ 10s “ p̃q̃.

Thus, the bias of the output data is 0. We further generalize Von Neumann's method

and explain how to replace it's conversion table in order to obtain a maximal bias

amplifier. Through this section we will restrict n to be of the form 2k, where k is a

positive integer.

Lemma 6.8. Let V “ tu P Zn2 | wpuq “ ku and let pV0, V1q be an equal partition of V .

Then PrrV0s “ PrrV1s “ Cnk
2 pp̃q̃qk.

Proof. Since pV0, V1q is an equal partition of V , we obtain that |V0| “ |V1| “ |V |
2 “ Cnk

2 .

Note that Prrus “ pp̃q̃qk, for any u P V . Combining these two facts we obtain the

statement of the lemma.
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Using Lemma 6.8 we can devise a corrector filter10 Vc by mapping all the elements

of V0 and V1 to 0 and 1, respectively. In Algorithm 49 we provide an example of how to

generate a pair pV0, V1q.

Algorithm 49.

Input: An integer n

Output: An equal partition of V

1 Set V0 “ V1 “ H and V “ tu P Zn2 | wpuq “ ku
2 Set α “ maxpV q and β “ minpV q
3 for i “ 1, . . . , Cnk {2 do
4 Set V0 “ V0 Y tβu and V1 “ V1 Y tαu
5 Update V “ V ztα, βu
6 Set α “ maxpV q and β “ minpV q
7 end

8 return pV0, V1q

We further show that the probabilities V0 and V1 get smaller if we increase n. This

translates in a lower bit rate if we apply Vc. Note that increasing n does not change the

bias of the output data, thus making Vc11 useless in practice if used only for correcting

biases.

Lemma 6.9. Let pV n
0 , V

n
1 q be the output of Algorithm 49 for n “ 2k. Then PrrV n

0 s ą
PrrV n`2

0 s.

Proof. We remark that PrrV n
0 s ą PrrV n`2

0 s is equivalent with

1 ą p2k ` 1qp2k ` 2q
pk ` 1qpk ` 1q p̃q̃.

The proof is now similar to Corollary 6.5 and thus is omitted.

Figure 6.6 is a graphical representation of Lemma 6.9 (n ď 18). The x-axis represents

the original bias ε, while the y-axis represents PrrV n
0 s.

Note that when p̃ “ 0 or q̃ “ 0 we obtain PrrV0s “ PrrV1s “ 0. When constructing

a bias amplifier Va we must have the same behavior. Thus, the strings we use to

construct Va need to contain at least a 0 and an 1. When n “ 2 the only strings that

contain 0 and 1 are 01 and 10, but these are the basis for the Von Neumann bias

10with the bias of the output data 0
11for n ě 4
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Figure 6.6: Von Neumann corrector.

corrector. Hence, when n “ 2 there are no bias amplifiers. This leads to the

restriction n ě 4. We again use a greedy approach (Algorithm 50) and devise a core for

Va.

Algorithm 50.

Input: An integer n
Output: Two sets V0 and V1

1 Set V0 “ V1 “ H and W “ Zn2 zt0n, 1nu
2 Set α “ minwpW q and β “ maxwpW q
3 for i “ 1, . . . , Cnk {2 do
4 Set V0 “ V0 Y tαu and V1 “ V1 Y tβu
5 Update W “W ztα, βu
6 Set α “ minwpW q and β “ maxwpW q
7 end

8 return pV0, V1q

Lemma 6.10. Let x be an integer such that
řx
i“1C

n
i ă Cnk {2 ă

řx`1
i“1 C

n
i . De�ne

y “ Cnk {2´
řx
i“1C

n
i , W0 Ă tu P Zn2 | wpuq “ x` 1u, W1 Ă tu P Zn2 | wpuq “ n´ x´ 1u,

such that |W0| “ |W1| “ y. Also, let pV0, V1q be the output of Algorithm 50. Then the

following properties hold

1. V0 “ tu P Zn2 | 1 ď wpuq ď xuYW0 and V1 “ tu P Zn2 | n´x ď wpuq ď n´1uYW1.

2. PrrV0s “ řx
i“1C

n
i p̃

iq̃n´i ` yp̃x`1q̃n´x´1 and PrrV1s “ řx
i“1C

n
i p̃

n´iq̃i

`ỹ̃pn´x´1qx`1.

3. If ε “ 0 then PrrS0s “ PrrS1s “ 1
2 and if ε “ 1

2 then p̃ “ 1 and q̃ “ 0.

Proof. The proof is a direct consequence of Algorithm 50 and thus is omitted.
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Figure 6.7: Von Neumann ampli�er.

Figure 6.7 is a graphical representation of Lemma 6.10 (n ď 18). The x-axis represents

the original bias ε, while the y-axis in Line 8 and Line 8 represents PrrV n
0 s and PrrV n

1 s,
respectively.

Lemma 6.11. Let pV0, V1q be the output of Algorithm 50. If we map all the elements

of V0 and V1 to 0 and 1, respectively, then we obtain a maximal bias amplifier Va.

Proof. According to Lemma 6.10 all the lowest and highest probability elements are in

V0 and V1, respectively. Thus, the statement is true.

Unfortunately, due to the nature of x and y, the best we could do is to heuristically pro-

vide a graphical representation of Conjecture 6.1 (Figure 6.8). We could not theoretically

prove it in general.

Conjecture 6.1. Let n be even, pSn´1
0 , Sn´1

1 q be the output of Algorithm 47 for n ´
1 and pV n

0 , V
n

1 q be the output of Algorithm 50 for n. Denote by Mn “ pPrrV n
1 s ´

PrrV n
0 sq{pPrrV n

1 s ` PrrV n
0 sq. Then Mn ăMn`2 and PrrSn´1

1 s ´ PrrSn´1
0 s ăMn.

Note that in the case of greedy ampli�ers the metric pPrrSn´1
1 s´PrrSn´1

0 sq{pPrrSn´1
1 s`

PrrSn´1
0 sq is equal to PrrSn´1

1 s ´ PrrSn´1
0 s. Thus, Conjecture 6.1 states that the Von

Neumann ampli�er for a given n is better at amplifying ε than its greedy counterpart.

We chose to state the conjecture such that it is true for all n ě 4, but, from Figure 6.8,

we can observe that as n grows the Von Neumann ampli�er becomes better at amplifying
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ε12. Note that in Figure 6.8 the x-axis represents the original bias ε, while the y-axis

represents the values PrrSn´1
1 s ´PrrSn´1

0 s (interrupted line) and Mn (continuous line).
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Figure 6.8: Comparing greedy ampli�ers (interrupted line) with Von Neumann am-
pli�ers (continuous line).

6.2.4 Applications

6.2.4.1 The Good

RNG standards [158, 249] require manufactures to implement some early detection mech-

anism for entropy failure. Health tests represent one such method for detecting major

failures. There are two categories of health tests: startup tests and continuous tests. The

former are one time tests conducted before the RNG starts producing outputs, while the

latter are tests performed in the background during normal operation.

We propose a generic architecture for implementing health tests (Figure 6.9). We

�rst store data D (obtained from the noise source) in a bu�er, then we apply a bias

amplifier to it and obtain data Da. Next, we apply some lightweight tests on Da. If

the tests are passed, the RNG outputs D, otherwise D is discarded. Note that the bias

amplifier can be implemented as a lookup table, thus obtaining no processing overhead

at the expense of Op2nq memory.

In our instantiations we used the health tests implemented in Intel's processors [134].

Intel's health tests Hi use a sliding window and count how many times each of the six

di�erent bit patterns (Column 1, Table 6.8) appear in a 256 bit sample. An example

of allowable margins for the six patterns can be found in Column 2, Table 6.8. The

12e.g the Von Neumann ampli�er for n “ 8 is better than the greedy ampli�ers for n “ 3, . . . , 17
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Figure 6.9: Generic architecture for implementing health tests.

thresholds mentioned in Tables 6.8 and 6.10 were computed using 106 256 bit samples

generated using the default RNG from the GMP library [19].

We �rst propose a continuous test using the greedy ampli�ers described in Section 6.2.2.

Depending on the available memory we can use one of the greedy ampli�ers and then ap-

ply Hi. Note that n should be odd due to Lemma 6.7. If the health test are implemented

in a processor it is much easier to use n “ 4, 8, 16. From the health bounds presented in

Table 6.8, we can observe that the di�erences between data without ampli�cation and

data with ampli�cation are not signi�cant. Thus, one can easily update an existing good

RNG13 by adding an extra bu�er and an ampli�cation module, while leaving the health

bounds intact. Note that due to the unpredictable number of output bits produced by a

Von Neumann ampli�er, greedy ampli�ers are better suited for continuous testing.

Bit Allowable number of occurrences per sample

pattern without amp. n “ 3 amp. n “ 5 amp. n “ 7 amp.

1 90 ă m ă 165 88 ă m ă 165 89 ă m ă 167 90 ă m ă 165

01 45 ă m ă 83 45 ă m ă 82 46 ă m ă 83 45 ă m ă 83

010 8 ă m ă 59 9 ă m ă 62 10 ă m ă 58 7 ă m ă 60

0110 1 ă m ă 38 2 ă m ă 34 2 ă m ă 35 2 ă m ă 34

101 10 ă m ă 59 10 ă m ă 61 10 ă m ă 60 9 ă m ă 63

1001 1 ă m ă 35 2 ă m ă 36 0 ă m ă 35 1 ă m ă 35

Table 6.8: Health bounds for greedy ampli�ers (amp.).

To test our proposed con�guration and obtain some metrics (Table 6.9) we conducted a

series of experiments with an u.i.i.d. noise source. More precisely, we generated 105000

256 bit samples using the Bernoulli distribution instantiated with the Mersenne Twister

engine (mt19937) found in the C++ random library [3]. Then, we applied the bias

13that already has Hi implemented
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amplifying �lters from Table 6.8 and counted how many samples are marked pass. In

the case of raw data, a sample is marked pass14 if it passes the Hi test from Column

1, Table 6.8. In the case of bias ampli�cation, if a 256 bit bu�er ba from Da passes

Hi, all the input bu�ers that where used to produce ba are marked pass. Note that to

implement our �lters we used lookup tables and thus we had no performance overhead.

From Table 6.9 we can easily see that when the bias is increased, the number of samples

that are marked pass is lower than Hi in the case of greedy ampli�ers. Also, note that

the rejection rate is higher as n increases. Thus, enabling us to have an early detection

mechanism for RNG failure.

ε
Number of samples marked pass

without amp. n “ 3 amp. n “ 5 amp. n “ 7 amp.

0.00 104999 104997 105000 105000
0.01 104999 104991 104990 105000
0.02 104996 104979 104945 104965
0.03 104988 104925 104685 104384
0.04 104949 104631 103545 101661
0.05 104856 103620 99370 91413
0.06 104598 100668 88845 69832
0.07 104002 93840 69810 41286
0.08 102763 81660 46110 17724
0.09 100411 64332 23460 5404
0.10 96381 44262 9005 1043
0.11 89967 26142 2625 105
0.12 80849 12882 570 0
0.13 69164 5253 65 0
0.14 55856 1704 0 0
0.15 41777 420 0 0
0.16 29039 87 0 0
0.17 18410 21 0 0
0.18 10470 6 0 0
0.19 5331 0 0 0
0.20 2393 0 0 0
0.21 992 0 0 0
0.22 335 0 0 0
0.23 102 0 0 0
0.24 32 0 0 0
0.25 11 0 0 0
0.26 2 0 0 0

Table 6.9: Greedy ampli�ers (amp.) metrics.

If the design of the RNG has a Von Neumann module, then Von Neumann ampli�ers

14The terminology used by Intel is that the sample is �healthy�.
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can be used to devise a startup test. Before entering normal operation, the Von Neu-

mann module can be instantiated using the conversion table of the corresponding am-

pli�er. For example, when n “ 4 one would use V0 “ t0001, 0010, 0100u and V1 “
t0111, 1011, 1101u15 instead of V0 “ t0011, 0101, 0110u and V1 “ t1001, 1010, 1100u16.
The resulting data can then be tested using Hi and if the test pass the RNG will discard

the data and enter normal operation. Note that the �rst bu�er from Figure 6.9 is not

necessary in this case. Note that Von Neumann ampli�ers require n ą 2, thus the speed

of the RNG will drop. This can be acceptable if the data speed needed for raw data

permits it, the RNG generates data much faster than the connecting cables are able to

transmit or the raw data is further used by a pseudo-random number generator (PRNG).

Bit Allowable number of occurrences per sample

pattern n “ 4 corr. n “ 4 amp. n “ 6 corr. n “ 6 amp.

1 88 ă m ă 166 91 ă m ă 167 89 ă m ă 167 90 ă m ă 168

01 43 ă m ă 83 44 ă m ă 83 44 ă m ă 85 45 ă m ă 82

010 9 ă m ă 59 10 ă m ă 60 7 ă m ă 58 9 ă m ă 60

0110 1 ă m ă 33 1 ă m ă 36 2 ă m ă 35 2 ă m ă 33

101 10 ă m ă 58 11 ă m ă 61 10 ă m ă 57 8 ă m ă 60

1001 0 ă m ă 34 2 ă m ă 35 1 ă m ă 34 1 ă m ă 34

Table 6.10: Health bounds for Von Neumann correctors (corr.) and ampli�ers (amp.).

We also conducted a series of experiments to test the performance of the proposed startup

test. This time, we generated u.i.i.d data until we obtained 1000 256-bit samples, applied

the bias correcting/amplifying �lters from Table 6.10 and counted how many of these

samples pass the Hi test from Column 1, Table 6.8. Another metric that we computed

is the number of input bits required to generate one output bit.

Note that in Table 6.11 we only wrote the n “ 2 corrector, since for n “ 4, 6 the

results are almost identical. From Table 6.11 we can easily observe that when the bias

is increased the number of samples that pass Hi is lower than the corrector in the

case of Von Neumann ampli�ers. As in the case of greedy ampli�ers, we can observe

that the rejection rate is higher as n increases. The experimental data also shows that

Von Neumann ampli�ers perform better than the greedy ampli�ers when rejecting bad

samples.

In Table 6.12 we can see that more data is required to generate one bit as n grows.

When the bias increases, we can observe that compared to Von Neumann correctors

the throughput of the corresponding ampli�ers is better. Thus, besides having an early
15the sets used to de�ne the maximal Von Neumann ampli�er
16the sets used to de�ne the Von Neumann corrector
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ε
Number of samples that pass Hi

n “ 2 corr. n “ 4 amp. n “ 6 amp.

0.00 1000 1000 1000
0.01 1000 1000 1000
0.02 1000 1000 995
0.03 1000 998 940
0.04 1000 981 721
0.05 1000 919 322
0.06 1000 806 79
0.07 1000 567 7
0.08 1000 310 0
0.09 1000 134 0
0.10 1000 53 0
0.11 1000 11 0
0.12 1000 2 0

Table 6.11: Von Neumann correctors (corr.) and ampli�ers (amp.) metrics.

detection mechanism, it also takes less time to detect if an RNG is broken if we use a

Von Neumann ampli�er.

Table 6.12: Von Neumann correctors (corr.) and ampli�ers (amp.) throughput.

ε
Number of input bits per number of output bits

n “ 2 corr. n “ 4 corr. n “ 4 amp. n “ 6 corr. n “ 6 amp.

0.00 3.9958 10.6646 10.6751 19.1374 19.2776
0.01 3.9978 10.6690 10.6817 19.1873 19.2548
0.02 4.0044 10.6852 10.6885 19.2513 19.2017
0.03 4.0106 10.7272 10.6873 19.3623 19.0892
0.04 4.0202 10.7956 10.6900 19.5129 18.9534
0.05 4.0352 10.8755 10.6952 19.7228 18.7933
0.06 4.0531 10.9713 10.6980 20.0087 18.5889
0.07 4.0755 11.1025 10.6876 20.3259 18.3405
0.08 4.1013 11.2489 10.6709 20.7180 18.0855
0.09 4.1264 11.3916 10.6841 21.1418 17.8104
0.10 4.1594 11.5733 10.6823 21.6591 17.5187
0.11 4.1956 11.7824 10.6862 22.2298 17.2154
0.12 4.2362 12.0062 10.7001 22.8814 16.9006

6.2.4.2 The Bad

One can easily turn the benign architecture presented in Figure 6.9 into a malicious

architecture (Figure 6.10). In the new proposed con�guration, health tests always output

pass and instead of outputting D the system outputs Da.

The malicious con�guration can be justi�ed as a bug and can be obtained from the orig-

inal architecture either by commenting some code lines (similarly to [50]) or by manip-

ulating data bu�ers (similarly to [69]). Note that code inspection or reverse engineering
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Figure 6.10: Generic architecture for infecting RNGs.

will reveal these so called bugs. A partial solution to detection can be implementing

the architecture in a tamper proof device and deleting the code if someone tinkers with

the device. Another partial solution is embedding the architecture as a submodule in a

more complex architecture (similarly to [50]). This solution is plausible due to the sheer

complexity of open-source software and the small number of experts who review them

[47].

Another problem is that the RNG will output Das instead of Ds and this translates to

lower data rates. A possible solution to this problem is to use Da as a seed for a PRNG

and then output the data produced by the PRNG. Thus, raw data is never exposed. A

problem with this approach is that in most cases the PRNG will also mask the bias. The

only case that is compatible with this approach is when the bias is large. Therefore one

can simply use an intelligent brute force to �nd the seed. Hence, breaking the system.

A more suitable approach to the aforementioned problem is to use a pace regulator [105].

This method uses an intermediary bu�er to store data and supplies the data consumer

with a constant stream of bits. Unfortunately, if data requirements are high, then the

regulator will require a lot of memory and in some cases the intermediary bu�er will be

depleted. Thus, failing to provide data.

A solution speci�c to greedy ampli�ers is to implement in all devices a neutral filter

after D and output the resulting data Dn. Thus, when a malicious version of the RNG

is required, one can simply replace the conversion table of the neutral filter with

the conversion table of the corresponding bias amplifier. For example, when n “ 3

one would change S0 “ t000, 001, 010, 100u and S1 “ t111, 110, 101, 100u17 with S0 “
t000, 001, 010, 100u and S1 “ t111, 110, 101, 011u18. It is easy to see that in this case

both Dn and Da have the same frequency.

17the sets used to de�ne the neutral filter
18the sets used to de�ne the maximal greedy ampli�er
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Since we are modifying the statistical properties of the raw data, a simple method for

detecting changes is black box statistical testing (for example using [13]). Thus, if a user

is getting suspicious he can detect the �bugs�. Again, a partial solution is to implement

the malicious architecture as a submodule inside a more complex architecture either in

tamper proof devices, either in complex software. Thus, eliminating the user's access to

raw data.

6.2.5 Empirical Investigation into Bernoulli Noise Sources

In this section we extend the experimental results from Section 6.2.4.1 to Bernoulli

sources. In order to implement Intel's health tests, we experimentally computed the

initial thresholds used inHi.19 The results are presented in Table 6.13 and were computed

using 106 256 bit samples generated based on the Bernoulli distribution instantiated with

the Mersenne Twister engine (mt19937) found in the C++ random library [3]. When

the data used to generate the thresholds follows a Bpp̃q distribution, we denote by Hipp̃q
the resulting health test.

Note that ε might be di�erent for each individual noise source (e.g. due to manufacturing

variations) and since our scope is to automatically detect large deviations, we had to

experimentally determine the initial bounds. A similar process needs to be carried out

internally by each RNG during a setup phase. Remark that since the bias is unknown,

using theoretical estimates increases design complexity.

Bit Allowable number of occurrences per sample

pattern p̃ “ 0.1 p̃ “ 0.2 p̃ “ 0.3 p̃ “ 0.4 p̃ “ 0.5

1 5´ 50 24´ 87 45´ 115 67´ 138 92´ 167
01 5´ 44 20´ 64 32´ 75 42´ 80 45´ 83
010 3´ 43 13´ 57 14´ 64 12´ 66 10´ 58
0110 0´ 12 0´ 21 0´ 27 2´ 32 1´ 35
101 0´ 14 0´ 27 1´ 39 5´ 50 9´ 61
1001 0´ 15 0´ 23 0´ 31 1´ 34 2´ 35

Table 6.13: Health bounds for Hipp̃q.

When the architecture presented in Figure 6.9 is instantiated with Hipp̃q we denote it by
Atpp̃q. To analyze the behavior of Atpp̃q we conducted a series of experiments. Thus, we

generated 450450 256 bit samples using the Bernoulli distribution Bpp̂q20 instantiated

with mt19937. Then, we applied the greedy bias amplifying �lters from Section 6.2.2

with amplifying factors n “ 1, 3, 5, 7, 9, 11, 13 and counted how many samples are marked

pass. The probability Ppass of a sequence to be marked pass is derived by dividing the

19Intel also experimentally generated, using their noise source, the initial thresholds.
20Note that in our experiments p̃ is �xed, while p̂ drifts from 0.01 to 0.99.



(Pseudo-)Random Number Generators 215

counter with 450450. The results are presented in Figure 6.17. Note that for p̃ P r0.5, 1.0s
the resulting plots are mirrored version of the plots obtained for p̃ P r0.0, 0.5s and thus

are omitted. We further consider p̃ ď 0.5.

Remark 6.1. Let n “ 9, 11, 13. We can easily see that the number of samples that are

marked pass is close to zero for p̃ ď 0.3 and is considerably lower (Ppass ă 0.60) when

0.3 ď p̃ ď 0.4. We can also observe that when p̃ ď 0.3, p̂ needs to drift at least 0.05 to

have Ppass ă 0.40. When p̃ “ 0.4, p̂ needs to drift at least 0.01 to have Ppass ă 0.85.

Thus, if we instantiate Atpp̃q with greedy ampli�ers with n “ 9, 11, 13 the architecture

can detect catastrophic RNG failure (i.e. p̃ ď 0.4).

Remark 6.2. Let p̃ “ 0.5. We can easily see that when n “ 9, 11, 13 and p̂ R p0.46, 0.54q
we have Ppass ă 0.97. Thus, the architecture enables us to detect when a good source

deviates21 with more than 0.04 from 0.5.

We also conducted a series of experiments to test the performance of Atpp̃q instantiated
with the Von Neumann bias amplifying �lters from Section 6.2.3 with amplifying factors

n “ 1, 4, 6, 8, 10, 12, 14. So, we generated data with Bpp̂q until we obtained 10000 256-bit

samples22, then we applied the Von Neumann bias amplifying �lters and counted how

many of these samples pass the Hipp̃q test. The results are presented in Figure 6.18.

Note that in this case Ppass is obtained by dividing the counter with 10000. Another

metric that we computed is the number of input bits required to generate one output

bit. The results are presented in Figure 6.11.

Remark 6.3. Let n ě 6. We can easily see that the number of samples that are marked

pass is close to zero for p̃ ď 0.4. We can also observe that when p̃ ď 0.3, p̂ needs to

drift at least 0.08 to have Ppass ă 0.42. When p̃ “ 0.4, p̂ needs to drift at least 0.03

to have Ppass ă 0.84. Thus, if we instantiate Atpp̃q with Von Neumann ampli�ers with

n “ 6, 8, 10, 12, 14 the architecture can detect catastrophic RNG failure. Also, remark

that the drift for Von Neumann ampli�ers is larger than in the case of greedy ampli�ers.

Remark 6.4. Let p̃ “ 0.5. We can easily see that when n “ 6 and p̂ R p0.47, 0.53q we
have Ppass ă 0.975, while for n ě 8 and p̂ R p0.48, 0.52q we have Ppass ă 0.985. Thus, the

architecture enables us to detect when a good source deviates with more than 0.03 and,

respectively, 0.02 from 0.5. Hence, Von Neumann ampli�ers provide us with a better

detection method than the greedy counterparts.

Remark 6.5. Although, Von Neumann ampli�ers are better suited to detect deviations

than greedy ampli�ers, we can observe that the data requirements �uctuate and even in

21The deviation might be an e�ect of components' ageing or malfunctioning.
22We generated less data than the greedy counterpart due to the ampli�er's high bit requirements

(see Figure 6.11).
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the uniform case e�ciency can get to as low 0.01495 bitsout{bitsin. This translates into
longer testing times that in the case of greedy ampli�ers where the data requirements

are �xed. Thus, when choosing between greedy and Von Neumman ampli�ers one need

to consider what is more important: faster testing times or better detection of source

deviations.
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Figure 6.11: Bit requirements for Von Neumann ampli�ers.

6.2.6 Theoretical Model

In this section we develop the theoretical framework that supports the �ndings presented

in Section 6.2.5. First we derive a series of lemmas that are later used for estimating

Ppass. Then, we provide the reader with a series of simulations.

6.2.6.1 Description

We �rst state a known result regarding the number of 1s (denoted by c1) in a sequence

of length m. Then, we determine the number of overlapping 01s (denoted by c01), 010s

(denoted by c010), 101s (denoted by c101), 0110s (denoted by c0110) and 1001s (denoted

by c1001) in a sequence of length m. Note that we assume that all the sequences are

generated by a Bernoulli noise source Bppq.

Lemma 6.12. Let k a positive integer. Then

Prrc1 “ ks “ Cmk ¨ pk ¨ qm´k.

Remark 6.6. Note that when the Hamming weight ω of a sequence is either 0 or m, we

have c01 “ c010 “ c101 “ c0110 “ c1001 “ 0. Thus, when computing the probability P of
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k occurrences of a pattern, the cases ω “ 0 and ω “ m add to P a term qm ` pm only

when k “ 0. For uniformity, we further consider the term qm ` pm as being implicit.

Lemma 6.13. Let k be a positive integer. Then

Prrc01 “ ks “
m´1
ÿ

ω“1

Cωk ¨ Cm´ωk ¨ pω ¨ qm´ω.

Proof. First we form a sequence Γ of k concatenated 01s. Thus, for a given Hamming

weight ω we are left with ω ´ k 1s and m ´ ω ´ k 0s that are unused. When inserting

the m´ 2k bits into Γ, for ease of description, we always insert 0s and 1s before a 0 and,

respectively, a 1 that is already in Γ. Remark that we can insert a number of 1s and

0s at the beginning and, respectively, the end of Γ without changing the number of 01

patterns.

After inserting in Γ the m´ 2k bits we obtain the sequence

1 . . . 1
l jh n

y0

0 . . . 0
l jh n

x1

0 1 . . . 1
l jh n

y1

1 . . . 0 . . . 0
l jh n

xk

0 1 . . . 1
l jh n

yk

1 0 . . . 0
l jh n

xk`1

with the restrictions

x1 ` . . .` xk`1 “ m´ ω ´ k, xi ě 0, i P r1, k ` 1s, (6.12)

y0 ` . . .` yk “ ω ´ k, yi ě 0, i P r0, ks. (6.13)

According to Lemma 6.3, the number of solutions that satisfy Equation (6.12) and Equa-

tion (6.13) is Cm´ωk and, respectively, Cωk . Using the number of solutions and the law of

total probability we obtain the desired result.

Lemma 6.14. Let k a positive integer. Then

Prrc010 “ ks “
m´1
ÿ

ω“1

ω
ÿ

r“k
Cm´ωr ¨ Crk ¨ Cω´rr´k ¨ pω ¨ qm´ω.

Proof. Let r be the maximum number of 01 patterns. Using a similar reasoning to the

proof of Lemma 6.13 we obtain the sequence

1 . . . 1
l jh n

y0

0 . . . 0
l jh n

x1

0 1 . . . 1
l jh n

y1

1 . . . 0 . . . 0
l jh n

xr

0 1 . . . 1
l jh n

yr

1 0 . . . 0
l jh n

xr`1
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with the restrictions

x1 ` . . .` xr`1 “ m´ ω ´ r, xi ě 0, i P r1, r ` 1s, (6.14)

y0 ` . . .` yr “ ω ´ r, y0 ě 0. (6.15)

According to Lemma 6.3 the number of solutions that satisfy Equation (6.14) is Cm´ωr .

To ensure that there are exactly k 010 patterns Equation (6.15) that have to satisfy the

following condition: exactly k out of r y1, . . . , yr must be 0. We further assume that

y1 “ . . . “ yk “ 0 and yk`1, . . . , yr ě 1. Note that the number of solutions obtained

under this assumption must be multiplied with a factor of Crk . Equation (6.15) now

becomes

y0 ` yk`1 ` . . .` yr “ ω ´ r, y0 ě 0, yi ě 1, i P rk ` 1, rs (6.16)

According to Lemma 6.3 the number of solutions for Equation (6.16) is Cω´rr´k . By adding
everything together and using the law of total probability we obtain the desired result.

Lemma 6.15. Let k be a positive integer. Then

Prrc101 “ ks “
m´1
ÿ

ω“1

m´ω
ÿ

r“k
Cωr ¨ Crk ¨ Cm´ω´rr´k ¨ pω ¨ qm´ω.

Proof. In this case, we consider r as the maximum number of 10 patterns and Γ as the

sequence composed of k concatenated 10s. Remark that we can insert a number of 0s

and 1s at the beginning and, respectively, the end of Γ without a�ecting r. Thus, after

inserting in Γ the m´ 2k bits, we obtain the sequence

0 . . . 0
l jh n

x0

1 . . . 1
l jh n

y1

1 0 . . . 0
l jh n

x1

0 . . . 1 . . . 1
l jh n

yr

1 0 . . . 0
l jh n

xr

0 1 . . . 1
l jh n

yr`1

with the restrictions

x0 ` . . .` xr “ m´ ω ´ r, x0 ě 0, (6.17)

y1 ` . . .` yr`1 “ ω ´ r, yi ě 0, i P r1, r ` 1s. (6.18)

According to Lemma 6.3 the number of solutions that satisfy Equation (6.18) is Cωr .

To ensure that there are exactly k 101 patterns Equation (6.17) that have to satisfy the

following condition: exactly k out of r x1, . . . , xr must be 0. We further assume that

x1 “ . . . “ xk “ 0 and xk`1, . . . , xr ě 1. Note that the number of solutions obtained
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under this assumption must be multiplied with a factor of Crk . Equation (6.17) now

becomes

x0 ` xk`1 ` . . .` xr “ m´ ω ´ r,
x0 ě 0, xi ě 1, i P rk ` 1, rs (6.19)

According to Lemma 6.3 the number of solutions for Equation (6.19) is Cm´ω´rr´k . By

adding everything together and using the law of total probability we obtain the desired

result.

Remark 6.7. In [234], an analysis for Prrc0110 “ ks is presented. But, the authors

consider bits that have a Bp0.5q distribution and that are arranged in a circle. Thus, in

our case, we need to reanalyze Prrc0110 “ ks.
Lemma 6.16. Let k be a positive integer. Then

Prrc0110 “ ks “
m´1
ÿ

ω“1

ω
ÿ

r“k

r´k
ÿ

s“t
Cm´ωr ¨ Crk ¨ Cr´ks ¨ Cω´2r`s

r´k´s ¨ pω ¨ qm´ω,

where t “ 2r ´ ω.

Proof. Let r be the maximum number of 01 patterns. Using a similar reasoning to the

proof of Lemma 6.13 we obtain the sequence

1 . . . 1
l jh n

y0

0 . . . 0
l jh n

x1

0 1 . . . 1
l jh n

y1

1 . . . 0 . . . 0
l jh n

xr

0 1 . . . 1
l jh n

yr

1 0 . . . 0
l jh n

xr`1

with the restrictions presented in Equations (6.14) and (6.15). According to Lemma 6.3

the number of solutions that satisfy Equation (6.14) is Cm´ωr .

To ensure that there are exactly k 0110 patterns Equation (6.15) that have to satisfy

the following condition: exactly k out of r y1, . . . , yr must be 1. We further assume that

y1 “ . . . “ yk “ 1 and yk`1, . . . , yr ‰ 1. Note that the number of solutions obtained

under this assumption must be multiplied with a factor of Crk .

Let s be the number of yi, i P rk ` 1, rs that are 0. We assume that yk`1 “ . . . “ yk`s.
Thus, yi ě 2 for i P rk` s` 1, rs. Note that the number of solutions obtained under this

assumption must be multiplied with a factor of Cr´ks .

Equation (6.15) now becomes

y0 ` yk`s`1 ` . . .` yr “ ω ´ r ´ k,
y0 ě 0, yi ě 2, i P rk ` s` 1, rs (6.20)
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According to Lemma 6.3 the number of solutions for Equation (6.20) is Cω´2r`s
r´k´s . By

adding everything together and using the law of total probability we obtain the desired

result.

Lemma 6.17. Let k a positive integer. Then

Prrc1001 “ ks “
m´1
ÿ

ω“1

m´ω
ÿ

r“k

r´k
ÿ

s“t
Cωr ¨ Crk ¨ Cr´ks ¨ Cm´ω´2r`s

r´k´s ¨ pω ¨ qm´ω,

where t “ 2r ´m` ω.

Proof. As in Lemma 6.15, r is the maximum number of 10 patterns and we obtain the

sequence

0 . . . 0
l jh n

x0

1 . . . 1
l jh n

y1

1 0 . . . 0
l jh n

x1

0 . . . 1 . . . 1
l jh n

yr

1 0 . . . 0
l jh n

xr

0 1 . . . 1
l jh n

yr`1

with the restrictions presented in Equations (6.17) and (6.18). According to Lemma 6.3

the number of solutions that satisfy Equation (6.17) is Cωr .

To ensure that there are exactly k 1001 patterns Equation (6.17) that have to satisfy

the following condition: exactly k out of r x1, . . . , xr must be 1. We further assume that

x1 “ . . . “ xk “ 1 and xk`1, . . . , xr ‰ 1. Note that the number of solutions obtained

under this assumption must be multiplied with a factor of Crk .

Let s be the number of xi, i P rk ` 1, rs that are 0. We assume that xk`1 “ . . . “ xk`s.
Thus, xi ě 2 for i P rk` s` 1, rs. Note that the number of solutions obtained under this

assumption must be multiplied with a factor of Cr´ks .

Equation (6.17) now becomes

x0 ` xk`s`1 ` . . .` xr “ m´ ω ´ r ´ k,
x0 ě 0, xi ě 2, i P rk ` s` 1, rs (6.21)

According to Lemma 6.3 the number of solutions for Equation (6.21) is Cm´ω´2r`s
r´k´s . By

adding everything together and using the law of total probability we obtain the desired

result.

To compute the probability Ppass that a sequence of length m is marked pass, we further

assume that the 6 statistical tests are independent. Note that this is a standard assump-

tion [13, 258] and o�ers us an estimate for the real probability. To derive the estimates

for the bias ampli�ers we use the probabilities from Lemmas 6.5 and 6.10.
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Lemma 6.18. For a greedy ampli�er with an ampli�cation factor n “ 2k ` 1 and a

Bernoulli noise source Bpp̃q we have that

Ppass »
6
ź

i“1

˜

bi
ÿ

`“ai
Prrci “ `s

¸

,

where ai, bi are the lower and upper limits for ci P tc1, c01, c010, c101, c0110, c1001u and
p “ řk

j“0C
n
j ¨ p̃n´j q̃j .

Lemma 6.19. For a Von Neumann ampli�er with an ampli�cation factor n “ 2k and a

Bernoulli noise source Bpp̃q we have that

Ppass »
6
ź

i“1

˜

bi
ÿ

`“ai
Prrci “ `s

¸

,

where ai, bi are the lower and upper limits for ci P tc1, c01, c010, c101, c0110, c1001u, p “
řx
j“1C

n
j p̃

n´j q̃j ` yp̃n´x´1q̃x`1, x is an integer such that
řx
j“1C

n
j ă Cnk {2 ă

řx`1
j“1 C

n
j

and y “ Cnk {2´
řx
j“1C

n
j .

6.2.6.2 Results

To test our model we implemented Lemmas 6.18 and 6.19 using the GMP library [19].

The results are presented in Figure 6.19 and, respectively, Figure 6.20. We can easily

remark that for p ‰ 0.1 the theoretical estimates are close to the experimental results

obtained in Section 6.2.5.

Let P “ t0.01, 0.02, . . . , 0.99u. To measure the exact distance between the experimental

En,p̃ and theoretical Tn,p̃ distributions, we computed the Kullback-Leibler divergence

KLpEn,p̃||Tn,p̃q “
ÿ

p̂PP
En,p̃pp̂q logpEn,p̃pp̂q{Tn,p̂pp̂qq

and the total variation distance

δpEn,p̃, Tn,p̃q “
ÿ

p̂PP
|En,p̃pp̂q ´ Tn,p̃pp̂q|{2.

Roughly speaking, KLpEn,p̃||Tn,p̃q represents the amount of information lost when Tn,p̃

is used to approximate En,p̃ and δpEn,p̃, Tn,p̃q represents the largest possible di�erence
between the probabilities that the two probability distributions can assign to the same

event [271]. The results for p̃ P t0.1, 0.11, . . . , 0.2, 0.3, 0.4, 0.5u are presented in Fig-

ures 6.12 and 6.13. We remark that for p̃ ě 0.20 we have KLpEn,p̃||Tn,p̃q » 0.01 and
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δpEn,p̃, Tn,p̃q » 0.02. Thus, the theoretical model is a good estimate for the real proba-

bility when p̃ ě 0.2. Also, note that Remarks 6.1 to 6.5 remain true for the theoretical

estimates.
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Figure 6.12: Kullback-Leibler divergence

When p̃ ă 0.2 the model starts to distance himself from the real probability, due to the

high correlations between the statistical tests. More precisely, the assumption made for

Lemmas 6.18 and 6.19 starts to fail. To see how the tests are correlated, we computed

the Pearson correlation coe�cient

rppT1, T2q “
ř1000
i“1 pt1i ´ t̄1qpt2i ´ t̄2q

b

ř1000
i“1 pt1i ´ t̄1q2

b

ř1000
i“1 pt2i ´ t̄2q2

,

where t1i and t2i represent the number of samples that pass test T1 and, respectively, T2

in experiment i, while t̄1 and t̄2 represent the associated expected values. The results

for p P P are presented in Figure 6.14. Note that in Figure 6.14 the correlation between
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Figure 6.13: Total variance distance
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testing for the allowable number of occurrences per sample for 1 and 01 patterns is

denoted by 01, for 1 and 010 patterns is denoted by 02 and so on.
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Figure 6.14: Tests correlation

6.2.7 Finer measurements

In this section we provide the reader with theoretical data for greedy ampli�ers when

p̃ P r0.41, 0.46s and for Von Neumann ampli�ers when p̃ P r0.43, 0.48s. According to

the Kullback-Leibler divergence and total variance distance presented in Figures 6.15

and 6.16 and this su�ces.

In the case of greedy ampli�ers, for p̃ ě 0.46 we cannot reliably detect the drift from

0.5 (Ppass ą 0.99). Let n “ 11, 13. For p̃ P r0.44, 0.45s, according to Table 6.15a, we
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Figure 6.15: Kullback-Leibler divergence
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Figure 6.16: Total variance distance

can detect the drift from 0.5 as long as the source is stable (i.e. p̂ ď 0.45). When

p̃ P r0.41, 0.44q, p̂ can drift with 0.01 and we still have Ppass ď 0.97. Thus, if we use

n “ 11, 13 Atpp̃q enables us to have an early detection mechanism for catastrophic RNG

failure (i.e. p̃ ď 0.45).

In the case of Von Neumann ampli�ers, for p̃ “ 0.49 we cannot reliably detect the drift

from 0.5 (Ppass ą 0.99), while for p̃ P r0.41, 0.42s and n ě 8 we have Ppass » 0.00. When

p̃ “ 0.48 and n ą 8, according to Table 6.15b, we can detect the drift from 0.5 as long

as the source is stable. In the case p̃ “ 0.47 we can detect the drift from 0.5 when the

source is stable and n “ 8, 10, while for n “ 12, 14 p̂ can drift with 0.01 and we still have

Ppass ď 0.97. Let n “ 8, 10, 12, 14. For p̃ P r0.43, 0.46s, p̂ can drift with 0.01 and we

still have Ppass ď 0.97. Thus, if we use n “ 10, 12, 14 Atpp̃q enables us to have an early

detection mechanism for catastrophic RNG failure (i.e. p̃ ď 0.48). Note that although

Von Neumann ampli�ers have a larger range for detecting deviations from 0.5, greedy

ampli�ers have faster testing times.

6.2.8 Future Work

A possible future direction would be to extended our results to other randomness ex-

tractors. Of particular interest, is �nding a method to turn a block cipher or a hash

function23 into an ampli�er.

Bias is not the only way for a RNG to go wrong. Another important feature that can

deviate is correlation. Thus, an interesting question is the following: can bias ampli�ers

23For a formal treatment of how one can use a block cipher or a hash function to extract randomness
we refer the reader to [95].
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Bit Allowable number of occurrences per sample

pattern p̃ “ 0.41 p̃ “ 0.42 p̃ “ 0.43 p̃ “ 0.44

1 70´ 141 72´ 144 74´ 147 76´ 149
01 43´ 82 43´ 81 44´ 81 44´ 82
010 13´ 68 13´ 66 13´ 66 13´ 62
0110 1´ 33 1´ 34 1´ 33 1´ 33
101 5´ 51 5´ 55 7´ 55 8´ 55
1001 1´ 34 1´ 34 1´ 36 1´ 36

Bit Allowable number of occurrences per sample

pattern p̃ “ 0.45 p̃ “ 0.46 p̃ “ 0.47 p̃ “ 0.48

1 79´ 151 81´ 154 85´ 157 87´ 161
01 44´ 83 44´ 84 44´ 84 45´ 84
010 13´ 61 12´ 61 10´ 60 10´ 60
0110 1´ 33 1´ 33 1´ 33 1´ 34
101 8´ 55 8´ 56 9´ 57 7´ 60
1001 2´ 36 2´ 35 1´ 34 1´ 36

Table 6.14: Health bounds for Hipp̃q.

p̃ “ 0.41 p̃ “ 0.42 p̃ “ 0.43
p̂ “ 0.41 p̂ “ 0.42 p̂ “ 0.42 p̂ “ 0.43 p̂ “ 0.43 p̂ “ 0.44

n “ 11 0.44 0.76 0.67 0.90 0.83 0.97

n “ 13 0.21 0.56 0.45 0.78 0.69 0.92

p̃ “ 0.44 p̃ “ 0.45
p̂ “ 0.44 p̂ “ 0.45 p̂ “ 0.45 p̂ “ 0.46

n “ 11 0.94 0.99 0.98 0.99

n “ 13 0.87 0.98 0.95 0.99

(a) Greedy ampli�ers

p̃ “ 0.43 p̃ “ 0.44 p̃ “ 0.45
p̂ “ 0.43 p̂ “ 0.44 p̂ “ 0.44 p̂ “ 0.45 p̂ “ 0.45 p̂ “ 0.46

n “ 8 0.00 0.09 0.05 0.41 0.27 0.77

n “ 10 0.00 0.00 0.00 0.14 0.07 0.52

n “ 12 0.00 0.00 0.00 0.02 0.01 0.23

n “ 14 0.00 0.00 0.00 0.00 0.00 0.05

p̃ “ 0.46 p̃ “ 0.47 p̃ “ 0.48
p̂ “ 0.46 p̂ “ 0.47 p̂ “ 0.47 p̂ “ 0.48 p̂ “ 0.48

n “ 8 0.68 0.97 0.90 0.99 0.99

n “ 10 0.41 0.90 0.78 0.99 0.98

n “ 12 0.16 0.76 0.57 0.97 0.95

n “ 14 0.03 0.52 0.32 0.93 0.89

(b) Von Neumann ampli�ers.

Table 6.15: Approximate theoretical values for Ppass.

detect when random data becomes correlated or other classes of ampli�ers need to be

developed?
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The theoretical model presented in this paper is devised only for Intel's health tests.

But the architecture presented in Figure 6.9 can be applied to any health test. Thus, an

important step into understanding the behavior of bias ampli�ers would be to model the

architecture's behavior when it is instantiated with other health tests and compare the

results with our initial �ndings.
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Figure 6.17: Experimental results for greedy ampli�ers.
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Figure 6.18: Experimental results for Von Neumann ampli�ers.
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Figure 6.19: Theoretical estimates for greedy ampli�ers.
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Figure 6.20: Theoretical estimates for Von Neumann ampli�ers.
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Figure 6.21: More theoretical estimates for greedy ampli�ers.
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Figure 6.22: More theoretical estimates for Von Neumann ampli�ers.



Chapter 7

Physical Cryptography

In this chapter we present a security analysis to a series of problems that can be seen as

abstract games. Our main motivation for studying such protocols is their teaching utility.

Note that we are not aware of any real-world application of any sort, as these problems

fall in the category of �recreational cryptography�. Although recreational, these protocols

can provide interesting insight and techniques that can be useful for understanding the

concepts on which the underlying problems are based.

Physical cryptography [130, 44, 191, 218] makes use of physical properties of systems

for encrypting and/or exchanging information (i.e. without using one-way functions).

Although a very interesting teaching tool, it can be shown that some of the proposed

methods are not safe in practice. Thus, our aim is to attack such physical protocols using

methods similar to classical side channel techniques.

Besides the obvious cryptographic teaching utility of physical cryptography schemes, we

believe that some of the schemes tackled in the current chapter may be successfully used

for introducing concepts corresponding to other domains. We provide the reader with

such examples in the following sections.

Although some authors acknowledge that their proposed protocols are only useful for

playing with children or introducing new concepts to non-technical audiences, the authors

of [129, 130, 128, 225] claim that their schemes can be securely implemented in real-life

scenarios. In [81], Courtois attacks one of the protocols proposed in [129], but the authors

contest his results in [130]. We independently conducted a simulation of the attack and

our results acknowledge Courtois' claim.

Conventions. We denote by U and V the private spaces of Alice and, respectively,

Bob. By �impenetrable� we further refer to an object that can not be broken or looked

233
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into no matter the means employed by an adversary. Note that, in practice, �impenetra-

ble� objects do not exist, but we use this concept for presenting the philosophical aspects

of di�erent cryptographic problems.

7.1 Yao's Millionaires' Problem

In [260] Yao introduced �Two Millionaires' Problem�. The problem can be de�ned as

follows. Alice has a private number a and Bob has a private number b. The goal of

the two parties is solving the inequality a ď b without revealing the actual values. We

further assume that a, b P r0, ns are integers.

In [129, 130, 225, 128] the authors present a number of solutions for the previously

mentioned problem based on physical principles. In this section we focus on describing

their proposed protocols together with our security analyses.

According to the original security model, during the following we consider Alice and Bob

as being honest but curious users, i.e. they can observe, measure and compute whatever

they like and try to get a hold on the other party's private numbers while following the

protocol's steps.

7.1.1 �Elevator� Solution.

Description. To recall the scheme we follow the descriptions given in [130, 128]. We

start by assuming that we have at our disposal a building with at least n �oors. Moreover,

we consider that the chosen building is equipped with an elevator. Alice positions herself

on �oor number a while Bob goes to �oor number b. Then, Bob takes an elevator (from

Bob's private space V ) going down and stopping at every �oor. Alice watches the elevator

doors on her �oor, making sure that Bob does not see her if the elevator doors open (here

is Alice's private space U). If she sees the elevator doors open, she knows that Bob's

number is larger. If not, then his number is smaller. Using such a protocol, Bob will not

know the result of the comparison until Alice shares it with him.

Security Analysis. The only security considerations of [130, 128] are that Bob can

lock the stairs and disable all elevators except one. This may prevent Alice from cheating

by running between di�erent �oors to get a better estimate of Bob's number.

During our analysis we found other various attack scenarios. We consider the steps of

the protocol as being sequential (i.e. �rst Alice gets to �oor a and then Bob gets to �oor

b).
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1. If Alice uses the same elevator as Bob she can simply conceal a small camera1

while ascending to �oor a. Thus, she can recover b as soon as Bob ascends to his

designated �oor. In order to mitigate such an attack, Bob must be ensured that

Alice uses a di�erent elevator or the stairs (i.e. making sure that Bob's elevator

remains somewhat protected).

2. If the �oor doors of Bob's elevator are not secured then Alice can open one of

the doors and attach a motion sensor to the elevator. By analyzing the elevator's

movement Alice can deduce b. Hence, Bob must be ensured that all the �oor doors

are secured against unauthorized access.

3. If Alice has access only to the stairs then she can install cameras on each of the n

�oors2. If Bob limits Alice's access to only one �oor (a) for security reasons, then

he can always check the access readers installed on each �oor and �nd a. These

attacks can also be mounted by Alice if Bob takes the stairs. As a result, the only

viable solution would be for Alice and Bob to use separate elevators.

4. Once Alice reaches a then she can use a microphone to detect the sound made by

the elevator's movement. By counting the number of times the elevator's engine

starts or the doors open Alice can deduce b. Hence, to prevent such an attack, Bob

can use a device for generating noise in order to mask the other relevant sounds.

This attack can also be mounted by Bob for deducing a.

When Alice and Bob simultaneously ascend to their designated �oors, the attack scenar-

ios Items 3 and 4 are still feasible.

We do not claim that the protocol is feasible in practice (the doors must be �impenetrable�

and the noise source must perfectly mask the sound of the elevator's movement). We

only claim that the example can be practically used to introduce Yao's problem to non-

specialized audiences and also to make people think of di�erent methods of attacking

the system.

7.1.2 �Race Track� Solution.

Description. For recalling the scheme we follow the description from [130]. Let us

consider that Alice and Bob have at their disposal a race track of length n. Then, the

two parties run toward each other from the opposite ends of the race track, maintaining

the speeds of a m{s (Alice), respectively b m{s (Bob). The party which reaches �rst

1We can also consider all types of small devices which incorporate cameras.
2If the building already has security cameras, a simpler solution is bribing the security guard and

watching the security footage to obtain b.
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the midpoint of the track leaves a mark there and runs back, knowing that he/she was

faster3. When the other party gets to the midpoint, he/she will know that he/she was

slower4. In order to create their private spaces in this scenario, Alice and Bob have to

construct an �impenetrable� fence across the track at the midpoint.

The authors of [130] state that the �race track� idea can be implemented on a computer

if two di�erent programs are allowed to work with the same �le at the same time. Thus,

consider that the shared �le is a bit string of length n, with all bits initially equal to 1.

Alice provides a program that goes over this bit string left to right, replacing the current 1

symbol by 0 at the speed of one symbol per a time units. Bob provides a similar program

going over the same bit string right to left, at the speed of one symbol per b time units.

When either of the two programs replaces n{2 symbols, it replaces the current symbol

by X and stops. In such a way, the two parties will know that whose program stops �rst

has the bigger number. Both programs will have to use the computer's internal clock.

Security Analysis. In [130] the authors mention that the �race track� solution only

works if both parties are honest and provide the reader with an attack scenario otherwise.

More precisely, the party who reaches the fence �rst does not run back but just waits to

see when the other party arrives, thus �guring out the other party's speed.

During our analysis we found that another restriction must hold. If Alice and Bob run

on a circular track when they are �close enough�5 to the midpoint they will be able to

see each other. Thus, even if the parties are honest, the previous attack is still valid.

To avoid such a scenario, a possible solution would be to put an �impenetrable�6 fence

such that both private spaces are isolated one from the other and also from the outside

world7.

The digital variant of the �race track� idea on a computer is, unfortunately, �awed. In

order for the protocol to be valid both users need read/write access to the �le. This

implies that any of the parties can choose two positions of the other parties' half of the

�le, continuously read the symbols corresponding to these positions and record the time

needed for the symbols to change. This can be easily extended to monitoring multiple

positions. Thus, each user can compute the other party's value.

3without knowing the actual speed of the other party
4again, without knowing the actual speed of the other party
5The precise di�erence between a and b depends on the race track's radius.
6from both a visual and acoustic point of view
7If, for example, we isolate the two areas using only a wall, one of the parties can use a drone for

spying the other.
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Teaching Utility. Although the digital variant is not secure, it can be used by teachers

as an implementation task. Thus, students can implement two programs that race each

other and also a third program that monitors the speed of either Alice and/or Bob.

7.1.3 �Communicating Vessels� Solution.

Description. To recall the scheme we follow the description from [130]. We start by

assuming that Alice has a communicating vessel CA in her private space U , while Bob

has a communicating vessel CB in his private space V . CA and CB are connected by a

horizontal pipe attached to their bottoms and, thus, a working system is constructed.

The shapes of the vessels are part of the parties' private keys. In the beginning the

system is �almost� �lled with water. Then, Alice starts pumping the water out of her

vessel at the speed of a gallons8 per second, while Bob starts pumping the water in his

vessel at the speed of b gallons per second. The parties are simply watching whether the

level of water is decreasing or increasing. If it is decreasing, then a ą b; if it is increasing,

then a ă b.

Security Analysis. According to the authors of [225] the �nal level of water in the

system depends not only on a and b, but also on the shapes of both vessels. Also, the

relation between a and quantities that can be measured outside of Alice's vessel depends

on the shape of Alice's vessel, which is unknown to anybody except Alice herself.

During our analysis we observed two main issues of the proposed protocol. First of all, if

the participants pump water in and out of the system the shapes of their communicating

vessels become irrelevant. In such a case, the authors might have thought about pouring

water instead of pumping it while constructing their scheme. Secondly, the shapes of

the vessels must be considered in such a way that the two parties can precisely mea-

sure �uctuations in their corresponding vessels. To explain this type of phenomena we

can consider the following exaggerated example: the shapes of Alice and Bob's vessels

correspond to those of two small arti�cial lakes and they pump water in and out with

negligible speeds (e.g. a milliliter per hour). Then, they can not accurately detect which

speed is greater than the other.

The scheme enhanced with our previous comments becomes equivalent with: Alice and

Bob have two cylinder shaped vessels such that they can accurately measure �uctuations

of the system. To detect Alice's value, Bob can use a graduated cylinder and measure the

volume's �uctuation. Then, using his own speed value b he can compute a. Hence, the

8or whatever units
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scheme is insecure for solving Yao's problem but it can be used as a public key encryption

scheme (see Appendix M).

Teaching Utility. Communicating vessels are a common example in physics teaching

(see for example [133]). More precisely, the scheme provides a good opportunity for a

teacher to introduce students to the dynamics of (ideal) �uids.

7.1.4 �Rope� Solution.

Description. For recalling the scheme we follow the description given in [129]. Alice

and Bob privately select c ă 0 and, respectively, d ą 0. We position Alice and Bob in a

plane, Alice at point A “ pa, cq and Bob at point B “ pb, dq. Also, we give them both

long pieces of rope. We assume that the scaling is such that Alice and Bob cannot see

each other's point.

First, Alice �xes one end of her rope at point A and selects as her private space U a

neighborhood of point A that cannot be seen by Bob. Bob, too, selects V as a neighbor-

hood of his point B. Then, Alice �xes the other end of her rope to a random point C in

the plane, far enough so that her neighborhood U can not be seen from C. After �xing

the rope, she positions the part of the rope inside U so that this part is not a straight

line. She then communicates the coordinates of point C to Bob.

Bob walks to point C, ties one end of his rope to Alice's rope, then walks back to his

point B, while unwinding (not pulling) his rope along the way. When Bob reaches his

B, he starts pulling the rope until Alice tells him to stop, which is as soon as Alice sees

that the part of the rope inside her neighborhood U is a straight line. To make sure that

it is not by accident that the part of the rope inside her neighborhood U is a straight

line, Alice asks Bob whether or not the part of the rope inside his neighborhood V is a

straight line. If it is not, then Alice starts pulling her end of the rope toward her point A

until Bob tells her to stop, which is as soon as Bob sees that the part of the rope inside

his neighborhood V is a straight line.

When the parts of the rope inside both neighborhoods U and V are straight, Alice and

Bob assume that their points A and B are connected by a straight rope, and they �nd

the slope s of the corresponding straight line by selecting any two points on the parts of

the line inside their private neighborhoods. Then, a ă b if and only if s ą 0.

Security Analysis. Some parts of the scheme described in [129] may seem redundant

according to the authors. As pointed out by them, if both parties are honest the protocol
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can be simpli�ed. To mitigate dishonest parties attacks, e.g. Alice must tell Bob to stop

as soon as she sees that the part of the rope inside her neighborhood U is a straight line.

Otherwise, Bob could triangulate Alice's point A by straightening the rope between A

and two di�erent points of his choice.

Since we do not consider the honest but curious attack model for this precise protocol,

another simple attack can be mounted. Bob can walk along Alice's rope until he is able

to determine the coordinates of point A. To prevent Alice from seeing Bob while he tries

to �nd A, he can use, for example, either a small drone or a powerful telescopic sight.

To avoid such a vulnerability of the protocol, the neighborhood U must be covered by

an �impenetrable� material and, also, to contain a large number of points such that it is

impossible for Bob to determine the exact position of A. When selecting the number of

points in U we also need to take into account the following scenario. After determining

the precise position of U in the plane Bob gets back to point C and follows the initial

protocol for determining s. Then, Bob can narrow down the number of possibilities for

A.

Teaching Utility. A variation of this protocol for key exchange may be the following.

Ted, a trusted third party, takes an in�nite rope and �xes one end of it at Alice's point A.

Similarly, Ted �xes another rope at Bob's point B. After �xing the ropes, Ted walks to

a random point T such that the distance to A and B is equal and then cuts the ropes at

point T . In the last step of the protocol Ted returns the ropes to Alice and, respectively,

Bob. The common key is the length of the two ropes.

Besides a good reason for a discussion about analytic geometry, this variations of the

protocol can be the starting point for describing the secure key exchange protocol for

the Internet of Things networks introduced in [195].

7.1.5 �Laboratory Scale� Solution.

Description. To recall the scheme we follow the description from [128]. We assume

that Alice and Bob have access to a laboratory scale9. Each of the two parties manu-

facture a weight corresponding to their private number (e.g. in grams). We also assume

that they have identical boxes10 where each of them can put their corresponding weight.

Alice enters the room where the scale is positioned and puts her box on one of the plates.

Then, Bob enters and puts his box on the other plate. If his plate goes down, then his

number is larger; otherwise, it is Alice's number that is larger.

9a simple mechanism with two plates that are in balance when no weight is placed on either of them
10which, in this case, are considered their private spaces
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Security Analysis. The authors argue in [128] that Alice and Bob do not have to be

in the same place at the same time to perform the comparison, but they still have to

be in the same place at some point, which may be inconvenient. In fact, if, say, Alice

is worried about Bob cheating (by putting di�erent weights on his plate to zoom in on

Alice's weight), then she would have to stay in the room and watch what Bob is doing.

Note that when we analyzed the solution we assume that the box is �impenetrable�.

Compared to the �rope� solution where Bob needs to cheat in order to detect the di-

mensions of U , here Bob knows the precise size of the covering box. This gives him an

upper limit of the weight's volume. If he knows the material of the weight, then he has

an upper limit of the value a. This could be easily mitigated by keeping the weight's

material secret.

7.2 Comparing Information Without Revealing It

The initial problem from which the study in [102] started is the following. Charlie

complains to one of his managers, Alice, about a sensitive matter and asks her to keep it

secret. A few months later, another manager, Bob, tells Alice that someone complained

to him, also with a con�dentiality request, about the same matter. Alice and Bob need a

way to determine if the same person complained to them without revealing the identity

of the complainer. The authors of [102] describe a series of complex protocols that try to

accomplish this task. But, the simplest solution was actually provided by the 13 year old

son of the �rst author: "Why not just ask Charlie whether he complained to Bob?". This

proves that sometimes experts try to �nd too complicated solutions for simple things.

We further present a few solutions that can still work when implemented using our cur-

rent technology. A legacy example may be considered the �airline reservation� solution.

While Bob is not in the same room Alice calls a speci�c airline and makes a particular

reservation in the name of her complainer. Then, Bob tries to cancel the reservation in

his complainer's name. Finally, Alice cancels or tries to cancel the reservation she made.

It is obvious that nowadays such a version of the protocol can not be functional anymore,

due to the fact that in order to cancel a reservation one needs to have extra pieces of

information (e.g. the reservation code).

For uniformity, we consider, as in Section 7.1, that Alice and Bob are honest but curious.



Physical Cryptography 241

7.2.1 Message for Bob

Description. We assume that Alice and Bob associate each candidate with a random

telephone number. Alice dials the number11 assigned to the person who complained to

her (Charlie) and asks to leave a message for Bob. It is clear that the one answering the

phone does not know who Bob is. A while after, Bob dials the number of the person

who complained to him and asks if anyone has left him a message.

Security Analysis. The authors of [102] provide a short security analysis. More

precisely: 1 if Alice does not supervise Bob, then Bob might try several candidates and

2 Dave might deny that a message was left for Bob.

The protocol was designed in a period of time in which telephones were only analog.

But, nowadays, we also have digital and mobile phones. Thus, we further consider all

the three cases when analyzing the security of the scheme. If Alice and Bob use the

same phone to run the protocol, then, in the digital and mobile cases, Bob can check

the call history of the phone to �nd out the identity of the complainer. Thus, to prevent

such an attack, Alice must delete the call history. Even if she does this, there is a small

probability that Dave will call back and, if Bob, is near the phone at that particular time,

he can see the phone number and deduce the identity of the complainer. This problem

can be easily recti�ed if Alice hides her number. Note that the previously mentioned

problems do not happen in the analog case.

If Alice and Bob use di�erent analog phones and Bob is nearby, he can redial the last

number and ask Dave which is his phone number. Thus, in the analog case Alice needs

to call another number afterwards12. In the digital case, Alice simply has to delete the

call history to avoid the redialing attack. If the protocol is run using mobile phones,

such an attack is even harder because Bob has to physically take Alice's phone. Even if

he manages to snatch Alice's phone, the device might be locked.

We conclude that in the analog case either version is secure (i.e. with one or two phones)

as long as Alice overwrites the call logs, while in the digital case it is better to use two

phones. We believe that the protocol is secure as long as the initial scenario is valid13

and our proposed countermeasures are taken into account.

11We denote the owner by Dave.
12to overwrite the call history
13A powerful enough Bob can always eavesdrop the landline or ask the operator for Alice's call history.
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7.2.2 Password

Description. We assume that Alice chooses to change her password in accordance

with Charlie's name. Next, Bob tries to log in as Alice. In order to do so, Bob uses the

name of the person who complained to him as a password.

Security Analysis. As in Section 7.2.1, Bob might try several candidates [102]. Ad-

ditional to the initial security analysis, there is always the possibility that Alice installs

either a key logger on the computer or a video camera inside the room and directly �nds

out Bob's password. Thus, the protocol is insecure.

Teaching Utility. In one version of the protocol, the authors of [102] suggest using

the �passwd� Linux command to run the scheme. This provides a good opportunity for

a teacher to introduce students to the Linux terminal basics and also how passwords are

stored in Linux.

7.2.3 Cups

Description. We start by assuming that we have a small number s of candidates.

Alice and Bob get s identical containers (e.g. by acquiring disposable cups), line them

up and label them14. Then, Alice puts a folded slip of paper saying �yes� in the cup of

Charlie and a slip saying �no� in the other s ´ 1 cups. Bob does the same. Next, Alice

and Bob remove the labels and shu�e the cups. To complete the protocol, both the

parties look inside the cups to see whether one of them contains two slips saying �yes�.

Security Analysis. If Alice and Bob use the suggested containers, Bob can always

check which cup contains the slip saying �yes�. Thus, it is better to use secure containers,

for example ballot boxes which are tamper-evident. Hence, even if Bob manages to break

into all the secure containers, Alice can detect that Bob cheated.

Teaching Utility. The secure version of the protocol may be seen as a toy version of

the voting process. Thus, it can be used as an introduction to elections and electoral

fraud.
14one for each candidate
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7.3 Public Key Encryption

Several public key cryptosystems based on di�erent laws of physics15 can be found in

[130]16. Although these solutions are hard to implement in the real world17, they provide

a very good teaching tool. More precisely, a teacher can interactively transition from

these toy protocols to precise explanations of the underlying physical laws.

Given the attack possibilities we observed while analyzing the schemes in [130], we chose

to only discuss the �capacitors� solution during the following.

7.3.1 �Capacitors� Solution.

Description. Assume that Alice wishes to send a secret positive number qa to Bob.

Let us consider that Alice has a capacitor C1 of the capacitance cA (denoting her public

key) and charge qA (denoting her secret message) in U . Similarly, Bob has a capacitor C2

of the capacitance cB (denoting his long-term private key) and a randomly chosen charge

qB (denoting his session private key) in V . Note that the private key is selected by Bob

randomly before each transmission from Alice. The capacitors are connected in such

a way that the plates holding the positive charges are connected by one wire, and the

plates holding the negative charges are connected by another wire (see Figure 7.1). Alice

has a switch that keeps the circuit disconnected until the actual transmission begins.

Also, Alice has an ammeter to monitor the electric current in the circuit. Bob has a

rheostat included in the circuit in V . This allows him to randomly change the resistance

of the whole circuit, and therefore also to change parameters of the electric current during

transmission.

According to the authors, Alice uses her switch to connect the circuit, starting the

redistribution of the electric charges between the two capacitors. When this process

is complete, she disconnects the circuit. After redistribution of charges, both Alice and

Bob, have new charges: QA and QB. Now, all that Bob has to do in order to compute the

secret of Alice is to apply the following mathematical expression: qA “ QB ¨p1` cA
cB
q´qB.

Security Analysis. To promote an idea which might be relevant in practice, some

experimental results should be presented. In this case, the authors gave an example of

a system used for information transmission based on physical properties of passive com-

ponents. Although the authors are theoretically right, Courtois contested the strength

15We refer the reader to Appendix M.
16A similar solution for Yao's problem is described in [128].
17The authors assume that only Alice and Bob interferes with the system.
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C1´ `

C2

´ `
RBptq

Alice

Bob

Figure 7.1: �Capacitors�
solution

C1´ `

C2

´ `
RBptq

S1

S2

S3

S4

Alice

Bob

Figure 7.2: Proposed �Capacitors�
solution

of their model in [81]. In our analysis, we propose a complete, yet simple way to demon-

strate both theories. The proposed scheme is represented in Figure 7.2. In order to do so,

we extended the electrical circuit proposed in [129] so that we could prove its functional-

ity by simulating it. Based on the fact that the authors gave no technical speci�cations

regarding the circuit, we analyzed several scenarios. The �rst one concerns the type of

capacitors used in the circuit. We tested the scheme using polarized and non-polarized

capacitors with speci�c given input values and concluded that, in simulation, the di�er-

ences are not signi�cant. Nevertheless, in practice, the type of capacitor used is very

important in order to avoid damaging the circuit.

To ease description, in order to validate the functionality of the �capacitors� solution we

randomly choose a set of parameters for the scheme. Our example can directly be used

in class to experimentally show that the solution is a viable one.

For obtaining a functional �capacitors� solution, we propose adding a power supply and

3 more switches (see Figure 7.2). The voltage generated by the power supply is 1 V . We

use a 10 µF capacitance for Alice's capacitor and a 1 µF capacitance for Bob's capacitor.

The rheostat is set at R1 “ 431 Ω and R1 “ 569 Ω. The simulation is done using the

electronic circuit simulator hosted by [5]. The �rst step of the simulation consists of

charging the capacitors, in order to obtain the initial values for the electric charges. For

charging the capacitors, switches S1, S2 and S4 must be connected. After this step, the

power supply is disconnected and the circuit is closed, meaning that switches S1 and

S2 must be disconnected and switch S3 must be connected. Switch S4 is Alice's switch.

Based on the values that were set as input, we measured the voltage drop Vd on each

capacitor and obtained the initial electric charges qA “ 899.09 nC (VdA “ 89.909 mV )

and qB “ 910.091 nC (VdB “ 910.091 mV ). After re-distributing charges (i.e. when

Alice connects the circuit) the charges become QA “ 10 nC (VdA “ 1 mV ) and QB “
1 nC (VdB “ 1 mV ). In the �nal step of the protocol, Bob computes Alice's electric
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Figure 7.3: Attack scenario �Capacitors� solution

charge:

qA “ QB ¨ p1` cA
cB
q ´ qB

“ 10 ¨ 10´9 ¨ p1` 10 ¨ 10´6

10´6
q ´ 910.091 ¨ 10´9

“ ´899.091 ¨ 10´9 C

In [81], Courtois presents a rather intrusive attack in which Eve inserts a switch between

Alice and Bob and measures the voltage (see Figure 7.3). In this case, switches S1 and

S2 are disconnected. Switch S3 is connected, Alice's switch is S4 and Eve's switch is S5.

S4 and S5 are disconnected. Eve measures the voltage between Alice and Bob, right after

Alice connects her switch. After the measurement, Eve connects her switch too. This

is a very simple way to determine VdA . Since Alice's capacitance is a public parameter,

Eve just computes:

qA “ cA ¨ VdA
“ 10 ¨ 10´6 ¨ 89.909 ¨ 10´3

“ 899.09 ¨ 10´9 C

After running the simulation, we observed that the attack scenario is a plausible one.

Note that the detection of Eve's attack depends on the quality of the equipment that

she possesses.

Initially, for protecting the circuit we thought of adding a plus of security by connecting

each capacitor to a di�erent power supply. It turned out this is not enough, since Eve can

measure the circuit in any point which surrounds each Alice's and Bob's private space.

Thus, we dropped the idea and choose the simpler version of the two.



Chapter 8

Appendices

A Letter Frequencies

To have uniform letter frequency tables, we added the probability of letters with diacrit-

ical marks to the probability of their base letter. For example, in Danish, the letter O

has a 0.0464 occurrence probability and the letter Ø one of 0.0094. We added the two

and we recorded O's probability as 0.0558. Note that the frequency tables we used for

computing our tables are from [170].

A, Å, Æ 0.0809 H 0.0162 O, Ø 0.0558 V 0.0233

B 0.0200 I 0.0600 P 0.0176 W 0.0007

C 0.0056 J 0.0073 Q 0.0001 X 0.0003

D 0.0586 K 0.0339 R 0.0896 Y 0.0070

E 0.1545 L 0.0523 S 0.0581 Z 0.0003

F 0.0241 M 0.0324 T 0.0686

G 0.0408 N 0.0724 U 0.0198

Table A.1: Relative frequencies of Danish letters.

A 0.0855 H 0.0496 O 0.0747 V 0.0106

B 0.0160 I 0.0733 P 0.0207 W 0.0183

C 0.0316 J 0.0022 Q 0.0010 X 0.0019

D 0.0387 K 0.0081 R 0.0633 Y 0.0172

E 0.1210 L 0.0421 S 0.0673 Z 0.0011

F 0.0218 M 0.0253 T 0.0894

G 0.0209 N 0.0717 U 0.0268

Table A.2: Relative frequencies of English letters.

246
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A, Ä 0.1580 H 0.0185 O, Ö 0.0605 V 0.0225

B 0.0028 I 0.1082 P 0.0184 W 0.0009

C 0.0028 J 0.0204 Q 0.0001 X 0.0003

D 0.0104 K 0.0497 R 0.0287 Y 0.0174

E 0.0797 L 0.0576 S 0.0786 Z 0.0005

F 0.0019 M 0.0320 T 0.0875

G 0.0039 N 0.0883 U 0.0501

Table A.3: Relative frequencies of Finnish letters.

A, À, Â 0.0808 H 0.0093 O, Ô, × 0.0546 V 0.0129

B 0.0096 I, Î, Ï 0.0726 P 0.0298 W 0.0008

C, Ç 0.0344 J 0.0030 Q 0.0085 X 0.0043

D 0.0408 K 0.0016 R 0.0686 Y 0.0034

E, È, É, Ê 0.1745 L 0.0586 S 0.0798 Z 0.0010

F 0.0112 M 0.0278 T 0.0711

G 0.0118 N 0.0732 U, Ù, Û, Ü 0.0559

Table A.4: Relative frequencies of French letters.

A, Ä 0.0688 H 0.0411 O, Ö 0.0299 V 0.0094

B 0.0221 I 0.0760 P 0.0106 W 0.0140

C 0.0271 J 0.0027 Q 0.0004 X 0.0007

D 0.0492 K 0.0150 R 0.0771 Y 0.0013

E 0.1599 L 0.0372 S, ÿ 0.0656 Z 0.0122

F 0.0180 M 0.0275 T 0.0643

G 0.0302 N 0.0959 U, Ü 0.0376

Table A.5: Relative frequencies of German letters.

A, � 0.0997 H 0.0125 O, Ó 0.0879 V 0.0000

B 0.0139 I 0.0809 P 0.0292 W 0.0478

C, � 0.0422 J 0.0226 Q 0.0000 X 0.0000

D 0.0323 K 0.0354 R 0.0506 Y 0.0370

E, � 0.0849 L, � 0.0418 S, � 0.0504 Z, �, � 0.0590

F 0.0041 M 0.0273 T 0.0394

G 0.0154 N, � 0.0602 U 0.0259

Table A.6: Relative frequencies of Polish letters.
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A 0.1250 H 0.0081 O 0.0898 V 0.0098

B 0.0127 I 0.0691 P 0.0275 W 0.0003

C 0.0443 J 0.0045 Q 0.0083 X 0.0019

D 0.0514 K 0.0008 R 0.0662 Y 0.0079

E 0.1324 L 0.0584 S 0.0744 Z 0.0042

F 0.0079 M 0.0261 T 0.0442

G 0.0117 N, Ñ 0.0731 U 0.0400

Table A.7: Relative frequencies of Spanish letters.

A, Ä, Å 0.1252 H 0.0209 O, Ö 0.0579 V 0.0242

B 0.0154 I 0.0582 P 0.0184 W 0.0014

C 0.0149 J 0.0061 Q 0.0002 X 0.0016

D 0.0470 K 0.0314 R 0.0843 Y 0.0071

E 0.1015 L 0.0528 S 0.0659 Z 0.0007

F 0.0203 M 0.0347 T 0.0769

G 0.0286 N 0.0854 U 0.0192

Table A.8: Relative frequencies of Swedish letters.

B Vigenère Cryptanalysis

In [233], the author describes an algorithm for breaking the Vigenère cipher. Because

of better results in practice, we changed the scoring function from [233] with a scoring

function based on digraphs. The result is presented in Algorithm 51.

C Grain v1

In the case of Grain v1, n “ 80 and m “ 64. The padding value is P “ 0xffff. The

values IV and P are loaded in the LFSR using the function LoadIV pIV, P q “ IV }P .
Given S P t0, 1u80, we de�ne ExtractIV pSq “MSB64pSq.

We denote by f1pxq the primitive feedback of the LFSR:

f1pxq “ 1` x18 ` x29 ` x42 ` x57 ` x67 ` x80.
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Algorithm 51. The algorithm for breaking the Vigenère cipher with key length
matrix_size.
Input: The ciphertext enc.
Output: The best possible message best_msg and its associated score best_score.

1 Function decrypt_vigenere(enc, key):
2 fragmentrmatrix_sizes Ð t""u;
3 for i P r0, enc.sizepq{matrix_sizeq do
4 for j P r0,matrix_sizeq do
5 fragmentrjs `“

pencri ¨matrix_size`js ´ "a"` keyq mod alphabet_size`"a";
6 end

7 end

8 return fragment;
9 Function compute_score(best_fragment_score):
10 best_scoreÐ 0;
11 for i P r0,matrix_sizeq do
12 best_score `“ best_fragment_scoreris;
13 end

14 return best_score;
15 Function recompose_msg(best_fragment):
16 best_msg Ð "";
17 for i P r0, enc_size {matrix_sizeq do
18 for j P r0,matrix_sizeq do
19 best_msg `“ best_fragmentrjsris;
20 end

21 end

22 return best_msg;
23 Function break_vigenere(enc):
24 best_fragment_scorermatrix_sizes Ð t´8u;
25 for key P r0, alphabet_sizeq do
26 fragmentÐ decrypt_vigenerepenc, keyq;
27 for i P r0,matrix_sizeq do
28 fragment_scoreris Ð

score_functionpfragmentris, digraph_freq, digraph_default, 2q;
29 if fragment_scoreris ą best_fragment_scoreris then
30 best_fragment_scoreris Ð fragment_scoreris;
31 best_fragmentris Ð fragmentris;
32 end

33 end

34 best_scoreÐ compute_scorepbest_fragment_scoreq;
35 best_msg Ð recompose_msgpbest_fragmentq;
36 end

37 return pbest_score, best_msgq;
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We denote by g1pxq the nonlinear feedback polynomial of the NFSR:

g1pxq “ 1` x18 ` x20 ` x28 ` x35 ` x43 ` x47 ` x52 ` x59 ` x66 ` x71 ` x80

` x17x20 ` x43x47 ` x65x71 ` x20x28x35 ` x47x52x59 ` x17x35x52x71

` x20x28x43x47 ` x17x20x59x65 ` x17x20x28x35x43 ` x47x52x59x65x71

` x28x35x43x47x52x59.

The boolean �lter function h1px0, . . . , x4q is

h1px0, . . . , x4q “ x1 ` x4 ` x0x3 ` x2x3 ` x3x4 ` x0x1x2 ` x0x2x3 ` x0x2x4

` x1x2x4 ` x2x3x4.

The output function is

z1
i “

ÿ

jPA1

xi`j ` h1pyi`3, yi`25, yi`46, yi`64, xi`63q,

where A1 “ t1, 2, 4, 10, 31, 43, 56u.

Algorithm 52. KSA´1 routine for Grain v1.
Input: State Si “ px0, . . . , x79, y0, . . . , y79q
Output: The preceding state Si´1 “ px0, . . . , x79, y0, . . . , y79q

1 v “ y79 and w “ x79

2 for t “ 79 to 1 do
3 yt “ yt´1 and xt “ xt´1

4 end

5 z “
ÿ

jPA1

xj ` h1py3, y25, y46, y64, x63q

6 y0 “ z ` v ` y13 ` y23 ` y38 ` y51 ` y62

7 x0 “ z`w`y0`x9`x14`x21`x28`x33`x37`x45`x52`x60`x62`x63x60`x37x33`
x15x9 ` x60x52x45 ` x33x28x21 ` x63x45x28x9 ` x60x52x37x33 ` x63x60x21x15 `
x63x60x52x45x37 ` x33x28x21x15x9 ` x52x45x37x33x28x21

D Grain-128

In the case of Grain-128, n “ 128 and m “ 96.The padding value is P “ 0xffffffff.

The values IV and P are loaded in the LFSR using the function LoadIV pIV, P q “ IV }P .
Given S P t0, 1u128, we de�ne ExtractIV pSq “MSB96pSq.
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We denote by f128pxq the primitive feedback of the LFSR:

f128pxq “ 1` x32 ` x47 ` x58 ` x90 ` x121 ` x128.

We denote by g128pxq the nonlinear feedback polynomial of the NFSR:

g128pxq “ 1` x32 ` x37 ` x72 ` x102 ` x128 ` x44x60 ` x61x125

` x63x67 ` x69x101 ` x80x88 ` x110x111 ` x115x117.

The boolean �lter function h128px0, . . . , x8q is

h128px0, . . . , x8q “ x0x1 ` x2x3 ` x4x5 ` x6x7 ` x0x4x8.

The output function is

z128
i “

ÿ

jPA128

xi`j ` yi`93 ` h128pxi`12, yi`8, yi`13, yi`20, xi`95, yi`42, yi`60, yi`79, yi`95q,

where A128 “ t2, 15, 36, 45, 64, 73, 89u.

Algorithm 53. KSA´1 routine for Grain-128.
Input: State Si “ px0, . . . , x127, y0, . . . , y127q
Output: The preceding state Si´1 “ px0, . . . , x127, y0, . . . , y127q

1 v “ y127 and w “ x127

2 for t “ 127 to 1 do
3 yt “ yt´1 and xt “ xt´1

4 end

5 z “
ÿ

jPA128

xi`j ` y93 ` h128px12, y8, y13, y20, x95, y42, y60, y79, y95q,

6 y0 “ z ` v ` y7 ` y38 ` y70 ` y81 ` y96

7 x0 “ z ` w ` y0 ` x26 ` x56 ` x91 ` x96 ` x84x68 ` x65x61 ` x48x40 ` x59x27 `
x18x17 ` x13x11 ` x67x3

E Grain-128a

In the case of Grain-128a, n “ 128 and m “ 96. The padding value is P “ 0xfffffffe.

The values IV and P are loaded in the LFSR using the function LoadIV pIV, P q “ IV }P .
Given S P t0, 1u128, we de�ne ExtractIV pSq “MSB96pSq.



Appendices 252

We denote by f128apxq the primitive feedback of the LFSR:

f128apxq “ 1` x32 ` x47 ` x58 ` x90 ` x121 ` x128.

We denote by g128apxq the nonlinear feedback polynomial of the NFSR:

g128apxq “ 1` x32 ` x37 ` x72 ` x102 ` x128 ` x44x60 ` x61x125 ` x63x67 ` x69x101

` x80x88 ` x110x111 ` x115x117 ` x46x50x58 ` x103x104x106 ` x33x35x36x40.

The boolean �lter function h128apx0, . . . , x8q is

h128apx0, . . . , x8q “ x0x1 ` x2x3 ` x4x5 ` x6x7 ` x0x4x8.

The output function is

z128a
i “

ÿ

jPA128a

xi`j ` yi`93 ` h128apxi`12, yi`8, yi`13, yi`20, xi`95, yi`42, yi`60, yi`79, yi`94q,

where A128a “ t2, 15, 36, 45, 64, 73, 89u.

Algorithm 54. KSA´1 routine for Grain-128a.
Input: State Si “ px0, . . . , x127, y0, . . . , y127q
Output: The preceding state Si´1 “ px0, . . . , x127, y0, . . . , y127q

1 v “ y127 and w “ x127

2 for t “ 127 to 1 do
3 yt “ yt´1 and xt “ xt´1

4 end

5 z “
ÿ

jPA128a

xj ` y93 ` h128apx12, y8, y13, y20, x95, y42, y60, y79, y94q

6 y0 “ z ` v ` y7 ` y38 ` y70 ` y81 ` y96

7 x0 “ z ` w ` y0 ` x26 ` x56 ` x91 ` x96 ` x3x67 ` x11x13 ` x17x18 ` x27x59 `
x40x48 ` x61x65 ` x68x84 ` x88x92x93x95 ` x22x24x25 ` x70x78x82

F Propagation of Single Bit Di�erentials

Parameters. In Theorem 2.4, let q2 “ 96 for Grain v11 and q2 “ 160 for Grain-128

and Grain-128a2.

1as in Theorem 2.1
2as in Theorem 2.2, respectively Theorem 2.3
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Table F.1: Propagation of a single bit di�erential in the case of Grain v1's LFSR.

Flipped

Bit

Position

Number of

Identical

Keystream

Bits

Positions of Identical

Keystream Bits

15 50 0-11, 13-17, 19-30, 33-35, 37, 38, 40-46, 48, 51, 53, 55, 58, 61-63, 71

31 59
0-5, 7-23, 25-27, 29-33, 35-41, 43-46, 49-51, 54, 56-59, 61, 62, 64, 67, 69,

74, 77, 79, 87

47 63
0, 2-21, 23, 24, 26-39, 41, 42, 45-49, 51-53, 55-57, 59, 60, 62, 65, 66, 70,

73-75, 77, 78, 80, 95

63 63
0-16, 18-27, 29-34, 36, 37, 39, 40, 42-45, 47-52, 54, 55, 58, 61-63, 65, 68, 69,

72, 73, 76, 81, 90, 91, 94

79 74
0-14, 16-32, 34-43, 45-50, 52, 53, 55, 56, 58-61, 63-68, 70, 71, 74, 77-79, 81,

84, 85, 88, 89, 92

Table F.2: Propagation of a single bit di�erential in the case of Grain v1's NFSR.

Flipped

Bit

Position

Number of

Identical

Keystream

Bits

Positions of Identical

Keystream Bits

15 23 0-4, 6-10, 12, 15, 16, 19, 20-22, 26, 27, 28, 29, 31, 33

31 32 1-19, 22-26, 28, 31, 32, 35, 36, 42, 43, 49

47 32 0-15, 17, 18, 20-25, 28, 29, 30, 32, 33, 35, 40, 41, 42

63 25 1-6, 8-16, 19, 21-23, 26, 29-31, 33, 39

79 41 0-15, 17-22, 24-32, 35, 37-39, 42, 45-47, 49, 55

Table F.3: Propagation of a single bit di�erential in the case of Grain 128's LFSR.

Flipped

Bit

Position

Number of

Identical

Keystream

Bits

Positions of Identical

Keystream Bits

31 92
0-10, 12-17, 19-22, 24-56, 58, 60-63, 65, 67-69, 71, 72, 74-79, 81-85, 87, 88,

90, 93, 94, 97, 100, 103, 109, 116, 119, 126, 129, 135, 141, 148

55 97
0-12, 14-34, 36-41, 43-46, 48, 49, 51, 53-65, 67-80, 86, 87, 89, 91-93, 95, 96,

100-102, 105-107, 109, 111, 112, 118, 121, 127, 133, 153, 159

79 101

1-18, 20-36, 38-41, 43, 45-57, 60-65, 67-70, 72, 73, 75, 78-88, 92-94, 96-99,

101, 103, 104, 110, 111, 113, 115, 119, 120, 125, 126, 130, 131, 133, 145,

151, 157

103 86
0-7, 9, 11-23, 25-39, 41, 44-54, 58-60, 62-65, 67, 69, 70, 73, 76-81, 84-86, 91,

92, 94, 96, 97, 99, 105, 109, 110-112, 116, 117, 123, 128, 143, 144
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127 108
0-31, 33, 35-47, 49-63, 65, 68-78, 82-84, 86-89, 91, 93, 94, 97, 100-105,

108-110, 115, 116, 118, 120, 121, 123, 129, 133-136, 140, 141, 147, 152

Table F.4: Propagation of a single bit di�erential in the case of Grain 128's NFSR.

Flipped

Bit

Position

Number of

Identical

Keystream

Bits

Positions of Identical

Keystream Bits

31 52 0-15, 17, 18, 20-28, 30-36, 39-42, 45, 48-50, 54-56, 58, 62, 63, 65, 66, 71, 72

55 65
0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 63-66, 69, 73, 74, 82, 87,

89, 95, 96

79 55
0-5, 7-14, 16-33, 35-42, 46, 48, 49, 52, 54, 55, 58, 60, 61, 63, 65, 68, 71,

74, 80

103 63
0-7, 9-13, 15-29, 31-38, 41-44, 47-50, 53-57, 59-61, 63-66, 70, 73, 79, 85, 87,

92, 98

127 87
0-31, 33-37, 39-53, 55-62, 65-68, 71-74, 77-81, 83-85, 87-90, 94, 97, 103, 109,

111, 116, 122

Table F.5: Propagation of a single bit di�erential in the case of Grain 128a's LFSR.

Flipped

Bit

Position

Number of

Identical

Keystream

Bits

Positions of Identical

Keystream Bits

31 83
0-10, 12-17, 19-22, 24-57, 60-63, 67-69, 71, 72, 74-79, 81-85, 87-89, 93, 94,

109, 111, 115

55 94
0-12, 14-34, 36-41, 43-46, 48-50, 53-65, 67-81, 86, 87, 91-93, 95, 96, 100-102,

105-108, 111, 112, 118, 133, 139

79 100
1-18, 20-36, 38-42, 45-57, 60-65, 67-70, 72-74, 78-89, 92-94, 96-100, 103,

104, 110, 111, 115, 119, 120, 125, 126, 130-132, 136, 157

103 93
0-8, 11-23, 25-40, 44-55, 58-60, 62-66, 69, 70, 72, 76-81, 84-87, 91, 92, 94,

96-98, 102, 109, 110-113, 116, 117, 123, 124, 128, 134, 143, 144, 149, 156

127 113
0-32, 35-47, 49-64, 68-79, 82-84, 86-90, 93, 94, 96, 100-105, 108-111, 115,

116, 118, 120-122, 126, 133-137, 140, 141, 147, 148, 152, 158

Table F.6: Propagation of a single bit di�erential in the case of Grain 128a's NFSR.

Flipped

Bit

Position

Number of

Identical

Keystream

Bits

Positions of Identical

Keystream Bits

31 44 0-15, 17, 18, 20-28, 30-36, 41, 49, 50, 54-56, 58, 63, 65, 66

55 55 0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 65, 74
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79 48 0-5, 7-14, 16-33, 35-39, 41, 46, 49, 52, 54, 55, 58, 60, 61, 63, 68

103 43 0-7, 9-13, 15-29, 31-38, 42, 53, 55-57, 59, 61

127 67 0-31, 33-37, 39-53, 55-62, 66, 77, 79-81, 83, 85

G Slide Attacks Examples

Within Tables G.1 to G.3, the padding is written in blue, while the red text denotes additional data necessary

to mount the proposed attacks. Test vectors presented in this section are expressed as hexadecimal strings. For

simplicity, we omit the 0x pre�x.

Table G.1: Examples of generic attacks (Algorithm 9).

Cipher Key LFSR Loading

Grain v1 a8af910f2755c064d713 1c60b94e09512adbffff

Grain 128 525c3676953ecec2bc5388f1474cdc61 b78d3637b6442501 5fa3ef63ffffffff

Grain 128a a04f944e6ca1e1406537a0ef215689a3 aaaebb010224478f 48567997fffffffe

Table G.2: Examples of compact padding attacks (index i “ 1).

Cipher Key LFSR Loading Keystream

Theorem 2.5

Condition 1

(Algorithm 13)

Grain v1

7e72b6f960cf9165

b891

1007bc3594e07f7f

7fa5

004e2da99a273923

83696e9e7120370a

72b6f960cf9165b8

9145

07bc3594e07f7f7f

a580

4e2da99a27392383

696e9e7120370a48

Grain 128

00166499157d39c9

5a723b601eccfffb

4a9a37ef1e3dfc13

7fff7fff7fffeb05

000076755ac4cd53

028caa577964929e

6499157d39c95a72

3b601eccfffb2fd1

37ef1e3dfc137fff

7fff7fffeb05d636

76755ac4cd53028c

aa577964929ef1c0

Grain 128a

b9e20a7619a8d622

5152cfa83eb73361

ef53aafa3c6c47ca

7fff7fff7ffff5cd

0000bac1203a11b5

54d69fd7f9f27b7f

0a7619a8d6225152

cfa83eb7336175a5

aafa3c6c47ca7fff

7fff7ffff5cd98ba

bac1203a11b554d6

9fd7f9f27b7fd545

Theorem 2.5

Condition 3

(Algorithm 16)

Grain v1

455b5df993b367e3

7b60

07f7f7fe9b4a3044

efd1

0095e584ea234610

f7ec250a948a8267

5b5df993b367e37b

604d

f7f7fe9b4a3044ef

d139

95e584ea234610f7

2ec250a948a8267c

Grain 128

9302f6b9d7136599

ac1caee130c596bb

8d7fff7fff7fff10

d59595e5568beb11

00007ca563c6831b

63868259f547cdff

f6b9d7136599ac1c

aee130c596bb0dc8

ff7fff7fff10d595

95e5568beb11628c

7ca563c6831b6386

8259f547cdff695b

Grain 128a

0f478aa147938251

5e0a94d3357764f4

cd7fff7fff7fffed

bb0e00ddcb18d1eb

000059362a172d87

48185e0850be7cb8

8aa1479382515e0a

94d3357764f4b8bb

ff7fff7fffedbb0e

00ddcb18d1eb0416

59362a172d874818

5e0850be7cb824a0
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Theorem 2.6

Condition 1

Grain v1

4febc079167f99bd

b1db

bd4710804f9eff0f

f0fa

000575b77251f394

6864d1bdc2510212

bc079167f99bdb1d

b338

710804f9eff0ff0f

a272

575b77251f394686

4d1bdc251021229b

Grain 128

5a0d4b3907f65ce5

f036b3671614244b

0bbd00872ecb0732

ffff00ffff00fffe

0000006b2014ecde

e8d499646ba08a9f

3907f65ce5f036b3

671614244be57112

872ecb0732ffff00

ffff00fffeaf68a2

6b2014ecdee8d499

646ba08a9fd93085

Grain 128a

6472c21093cd2225

4118e1a69230e0ac

2c9c47771ed4f648

ffff00ffff00ffde

0000009e196e7e86

6193867ea31b1df0

1093cd22254118e1

a69230e0ac668222

771ed4f648ffff00

ffff00ffdeb9f179

9e196e7e86619386

7ea31b1df09f306a

Theorem 2.6

Condition 2

Grain v1

701aa599737c957a

0b5e

07ff0ff0fdedd9bd

4d1b

000f9b9045f817c5

51a7c56c18e4ec02

aa599737c957a0b5

eb77

f0ff0fdedd9bd4d1

b1bf

f9b9045f817c51a7

c56c18e4ec025d85

Grain 128

30bfe11f3b7080be

47396a37f889b57c

aafdffff00ffff00

ff38ff5b14da5371

0000008a735f3adf

71728258dcaf47fd

1f3b7080be47396a

37f889b57cac5367

ff00ffff00ff38ff

5b14da53715a4291

8a735f3adf717282

58dcaf47fd6edad1

Grain 128a

c4b8607e854abc5f

7a74eba33d563ad1

950bffff00ffff00

ff7182c277b77e8f

000000681060aa4b

f10c0181bd7e4d95

7e854abc5f7a74eb

a33d563ad125aaff

ff00ffff00ff7182

c277b77e8f5db61f

681060aa4bf10c01

81bd7e4d957b5f2e

Table G.3: Examples of fragmented padding attacks (index i “ 1).

Cipher Key LFSR Loading Keystream

Theorem 2.7

Condition 1

(Algorithm 20)

Grain v1

cc0d50254f72d88d

3c71

3a86d17377777777

7b2c

04c79ebb4db7bc67

5644b3d0bf2a59a4

c0d50254f72d88d3

c714

a86d173777777777

b2cf

4c79ebb4db7bc675

644b3d0bf2a59a47

Grain 128

c506d0ca5bff72e1

6ea07fd8f98d7ba3

63ba70cf067f7f7f

7f7f7f7f7f879f9b

004e2c99a48677b4

c217f9e14e620d48

06d0ca5bff72e16e

a07fd8f98d7ba368

ba70cf067f7f7f7f

7f7f7f7f879f9be1

4e2c99a48677b4c2

17f9e14e620d4884

Grain 128a

0948bd1a0a5d275c

54744db3dc27cec8

895ba804147f7f7f

7f7f7f7f7f2f9892

003a5f1e38d9c446

70b0dc017377e698

48bd1a0a5d275c54

744db3dc27cec82b

5ba804147f7f7f7f

7f7f7f7f2f9892f1

3a5f1e38d9c44670

b0dc017377e698d7

Theorem 2.7

Condition 3

(Algorithm 21)

Grain v1

77a73157cabfa603

49dc

77777777318f59ac

6aff

0c61bfa06e1c2201

1dcefe673765acb7

7a73157cabfa6034

9dc3

7777777318f59ac6

affd

c61bfa06e1c22011

dcefe673765acb7f

Grain 128

9aca3bd2cf312080

769338bec86f9da6

7f7f7f7f7f7f7f7f

b6f7e83b3793f746

004624d2271d3420

104b2fd1058675fd

ca3bd2cf31208076

9338bec86f9da63f

7f7f7f7f7f7f7fb6

f7e83b3793f746ff

4624d2271d342010

4b2fd1058675fd45

Grain 128a

0e9eb1a896077e93

5b21de8700f3ef44

7f7f7f7f7f7f7f7f

29b03ff3e82cda8b

007f06d63e3545f6

b7c4b50d255b6663

9eb1a896077e935b

21de8700f3ef4462

7f7f7f7f7f7f7f29

b03ff3e82cda8bfc

7f06d63e3545f6b7

c4b50d255b6663ea
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Theorem 2.8

Condition 1

(Algorithm 24)

Grain 128

d3ea84c99a8b1354

71d8c320b870e109

ed52bf1b25ff0ff0

fff0ff0f4ed8f575

0001590b803ff3c9

972d96481a6e8ad4

a84c99a8b135471d

8c320b870e109120

2bf1b25ff0ff0fff

0ff0f4ed8f575dac

1590b803ff3c9972

d96481a6e8ad48ee

Grain 128a

9ee02802ccf920e6

868a8aa46113a406

ab24f8ab82ff0ff0

fff0ff0fd32dc4e9

00082e1cbbb25fa3

25518665a17f2efc

02802ccf920e6868

a8aa46113a40681d

4f8ab82ff0ff0fff

0ff0fd32dc4e9473

82e1cbbb25fa3255

18665a17f2efc2eb

Theorem 2.8

Condition 2

Grain 128

8d89931ae1e13215

77bba20640c193a1

f18ccfbf3cff0ff0

ff0ff0fde5af2b58

000e612c620ae176

5ded57a835b713ac

9931ae1e1321577b

ba20640c193a13b8

ccfbf3cff0ff0ff0

ff0fde5af2b58811

e612c620ae1765de

d57a835b713ace4a

Grain 128a

626262808f0ca24c

cc517bb93fb5c3cb

c4ca6f9535ff0ff0

ff0ff0fdfe92e568

0003f5a6d1b7f615

dfb32e34cea7cc4a

262808f0ca24ccc5

17bb93fb5c3cb22f

a6f9535ff0ff0ff0

ff0fdfe92e568a4f

3f5a6d1b7f615dfb

32e34cea7cc4a106

Theorem 2.8

Condition 3

Grain 128

416ddd14b4c096cb

0181ae8830ada69d

80ff0ff0fff0ff0f

d7ef096c7a8700a3

00076a8e9def620d

fe704b264988da02

ddd14b4c096cb018

1ae8830ada69d3b6

f0ff0fff0ff0fd7e

f096c7a8700a318f

76a8e9def620dfe7

04b264988da02cc0

Grain 128a

724d58601b44396d

60e83723a65bfa7b

84ff0ff0fff0ff0f

6c25a1d79af2a85c

0008ab9f20d8a418

932150d3ba97400e

d58601b44396d60e

83723a65bfa7b973

f0ff0fff0ff0f6c2

5a1d79af2a85c626

8ab9f20d8a418932

150d3ba97400ebd5

Theorem 2.8

Condition 4

Grain 128

97516dced374a089

88ce86acaa2ff1a4

3aff0ff0ff0ff0f1

12b72427d44b92f1

000a8e820bedfb8c

d9d651d8221f3b34

16dced374a08988c

e86acaa2ff1a4399

f0ff0ff0ff0f112b

72427d44b92f1bba

a8e820bedfb8cd9d

651d8221f3b34846

Grain 128a

a29ae6fb8b23f747

f3723e59df0d3a8e

4bff0ff0ff0ff0fc

92ace3a64691e733

000cd469723847db

72f6f856e51f9d96

ae6fb8b23f747f37

23e59df0d3a8eabb

f0ff0ff0ff0fc92a

ce3a64691e733a54

cd469723847db72f

6f856e51f9d96b38

Theorem 2.9

Condition 1

(Algorithm 25)

Grain 128

930cb0086c93293e

9722a710e28a1375

f767352c26395e8a

ffffb0ffff80fffb

0000000a44dcae9a

68c7b66389e440eb

086c93293e9722a7

10e28a1375ec5696

2c26395e8affffb0

ffff80fffbb6fcf2

0a44dcae9a68c7b6

6389e440ebbdf198

Grain 128a

270f72277e7540cf

9a58fa4426e28aae

c7df3ee9c792f5d5

ffffd0ffff00fff1

000000fd8bbdb3d3

a8c885704f43a022

277e7540cf9a58fa

4426e28aaebc06e1

e9c792f5d5ffffd0

ffff00fff13204c5

fd8bbdb3d3a8c885

704f43a022557a89

Theorem 2.9

Condition 2

Grain 128

895bea372ffe4e76

e84113dd18afa6b9

a8147ffff80fffffe

0fff2cd80e83e74

0000004b5394f9ba

f0f6a6ff3d921542

372ffe4e76e84113

dd18afa6b9fb5cef

fff80fffff0fff2c

d80e83e74e3d134e

4b5394f9baf0f6a6

ff3d9215422cbdbb

Grain 128a

70a2fecddbc94115

017b571df0854817

9e132ffff50ffffd

0fff5cf89b04484d

0000002839a6bec7

7a007d3d12b4d597

cddbc94115017b57

1df08548178142d5

fff50ffffd0fff5c

f89b04484d01fb4b

2839a6bec77a007d

3d12b4d597c9041b
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H Optimized Decryption Algorithms

In [150], the authors provide the reader with di�erent versions of the decryption algorithm

corresponding to the Joye-Libert cryptosystem. We present slightly modi�ed versions of

[150, Algorithm 3 and 4] in Algorithms 55 and 56. The authors also propose two other

optimizations [150, Algorithm 5 and 6], but their complexity is similar with Algorithm

3 and 4's complexity. Note that these optimizations contain a typo: in line 5, Algorithm

5 and line 6, Algorithm 6 we should have Ak´j ‰ Crk ´ js mod p instead of A ‰
Crk ´ js mod p.

For these algorithms to work we need to enhance the KeyGen algorithm of our proposed

cryptosystem. More precisely, we generate the γ ` 1 prime numbers pi with the supple-

mentary restriction pi ı 1 mod 2k`1. For 0 ď i ă γ, let p1i “ ppi´1q{2k. We precompute

Di “ y
´p1i
i for Algorithm 55 and Dirjs “ D2j´1

i mod pi, 1 ď j ď k ´ 1, for Algorithm 56

and augment the private key with these values. Remark that Algorithm 56 requires more

memory than Algorithm 55.

Algorithm 55. Fast decryption algorithm Version 1
Input: The secret values ppi, p1i, Diq, the value yi and the ciphertext c
Output: The message block mi

1 mi Ð 0, B Ð 1

2 C Ð cp
1
i mod pi

3 foreach j P r1, k ´ 1s do
4 z Ð C2k´j mod pi
5 if z ‰ 1 then
6 mi Ð mi `B
7 C Ð C ¨Di mod pi
8 end

9 B Ð 2B, D Ð D2 mod pi
10 end

11 if C ‰ 1 then
12 mi Ð mi `B
13 end

14 return mi
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Correctness. Let mi “ řk´1
w“0 bw2w be the binary expansion of block mi. We de�ne

αirss “ 2k´sp1i. Note that

cαirss ” px2k ¨
γ
ź

v“1

ymvv qαirss

” y
αirssřs´1

w“0 bw2w

i

” y
bs´12k´1p1i
i yαirss

řs´2
w“0 bw2w

” p´1qbs´1yαirss
řs´2
w“0 bw2w mod pi

since

1. px2kqαirss “ x2k´sppi´1q “ 1

2.
ˆ

yj
pi

˙

2k
“ 1, where j ‰ i

3.
řk´1
w“0 bw2w “

´

řs´1
w“0 bw2w

¯

` 2s ¨
´

řk´1
w“s bw2w´s

¯

4.
ˆ

yi
pi

˙

“ ´1

As a result, the message block mi can be recovered bit by bit using the values pi, p1i and
the vector Di.

Algorithm 56. Fast decryption algorithm Version 2
Input: The secret values ppi, p1i, Dir1s, . . . Dirk ´ 1sq, the value yi and the

ciphertext c
Output: The message block mi

1 mi Ð 0, B Ð 1

2 C Ð cp
1
i mod pi

3 foreach j P r1, k ´ 1s do
4 z Ð C2k´j mod pi
5 if z ‰ 1 then
6 mi Ð mi `B
7 C Ð C ¨Dirjs mod pi
8 end

9 B Ð 2B

10 end

11 if C ‰ 1 then
12 mi Ð mi `B
13 end

14 return mi
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H.0.1 Implementation Details

The complexities of Algorithms 55 and 56 are Opγpλ` k2

2 ` 3k
2 qMpλqr

η

γk
sq and Opγpλ`

k2

2 ` k
2 qMpλqr

η

γk
sq.

We further provide the reader with benchmarks for the optimized versions of our PKE

scheme.

Table H.1: Average running times for Algorithm 55.

Algorithm
γ “ 1

k “ 1 k “ 2 k “ 4 k “ 8 k “ 16

KeyGen 0.458942 0.456482 0.441694 0.453773 0.480818

Encrypt 0.006976 0.004521 0.003295 0.002397 0.001896

Decrypt 0.343437 0.171095 0.086448 0.043583 0.023451

Algorithm
γ “ 2

k “ 1 k “ 2 k “ 4 k “ 8

KeyGen 0.680506 0.668120 0.651916 0.772909

Encrypt 0.006693 0.005263 0.004054 0.003350

Decrypt 0.340996 0.170928 0.085498 0.043677

Algorithm
γ “ 4 γ “ 8

k “ 1 k “ 2 k “ 4 k “ 1 k “ 2

KeyGen 1.135950 1.174290 1.200390 2.041340 2.023290

Encrypt 0.008339 0.008142 0.007131 0.012590 0.015871

Decrypt 0.339094 0.170217 0.085524 0.336030 0.168950

Table H.2: Average running times for Algorithm 56.

Algorithm
γ “ 1

k “ 1 k “ 2 k “ 4 k “ 8 k “ 16

KeyGen 0.512341 0.470040 0.435809 0.522212 0.482328

Encrypt 0.006914 0.004496 0.003091 0.002375 0.001878

Decrypt 0.338572 0.170079 0.084772 0.042978 0.023005

Algorithm
γ “ 2

k “ 1 k “ 2 k “ 4 k “ 8

KeyGen 0.664869 0.740169 0.676827 0.675473

Encrypt 0.006617 0.005105 0.004002 0.003323

Decrypt 0.337033 0.168480 0.084523 0.043039

Algorithm
γ “ 4 γ “ 8

k “ 1 k “ 2 k “ 4 k “ 1 k “ 2

KeyGen 1.077020 1.062580 1.098260 1.957820 2.129930

Encrypt 0.008273 0.008070 0.007033 0.012446 0.015671

Decrypt 0.335889 0.168382 0.084759 0.331968 0.165645
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I Two-Party Malicious Signing

In [169], the author introduces a two-party protocol for signing with ECDSA. Based

on this idea, we sketch a protocol that extends S ´ GEGS. Using this extension, two

malicious parties M1 and M2 can impersonate V without explicitly computing skV .

As the Paillier cryptosystem [202] is later used in the protocol, we shortly describe its

homomorphic properties. We denote the public and private key pair of M1 by (pkp,

skp), Paillier encryption by Encppkp, ¨q and Paillier decryption by Decpskp, ¨q. Let n be

a large composite number in the Paillier scheme sense, c1 Ð Encppkp,m1q and c2 Ð
Encppkp,m2q, where messages m1,m2 P Zn. The upcoming properties hold

� the addition of m1 and m2 modulo n (represented by c1‘c2 in the current section):

Decpskp, c1c2 mod n2q “ m1 `m2 mod n;

� the multiplication of m1 by a constant t modulo n (represented by t d c1 in the

current section):

Decpskp, ct1 mod n2q “ tm1 mod n.

Before the malicious signing protocol can start, the two parties must agree on the pro-

tocol's parameters. In Figure I.1 we present the parameters agreement protocol. The

protocol uses an ideal commitment scheme and an ideal non-interactive zero-knowledge

proof. For concrete instantiation of the two, we refer the reader to [169].

M1 M2

α1 α2

QÐ gα1

Compute dl proof π1.

Generate a Paillier key-pair ppkp, skpq.
Generate a proof π2 that pkp

is generated correctly.

ckey Ð Encppkp, α1q
Generate a proof π3 of a dl in ckey.

Q,π1,π2,π3ÝÝÝÝÝÝÝÝÝÑ
Verify proofs π1, π2 and π3.

If false abort, else store ckey.

Figure I.1: Parameters generation.
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Let m3 be the message that M1 wants to sign. By combining equation p5.3q with the

GEGS signing operation we obtain the following equation for malicious signing m3

s3 Ð k´1
3 ξ´1

1 rξ1 ¨ hpm3q ´ ξ2 ¨ hpr3qs mod q, (1)

where

ξ1 Ð
˜

2
ÿ

i“1

αi ¨ hpriq ¨∆i ´ s´1
0 ¨ hpr0q

¸

and ξ2 Ð
˜

2
ÿ

i“1

αi ¨ hpmiq ¨∆i ´ s´1
0 ¨ hpm0q

¸

.

In Figure I.2 we describe in detail the two-party protocol for signing m3. To simplify the

protocol, instead of hpmq and hprq we simply write m and r. As in Figure I.1, we use a

commitment scheme and a zero knowledge protocol.

We can observe that, by using ckey and the homomorphic properties of the Paillier

cryptosystem, M2 can encrypt u1 Ð k33ξ1 and u2 Ð k´1
34 rξ1 ¨ hpm3q ´ ξ2 ¨ hpr3qs. After

M1 receives the ciphertexts, it decrypts them and computes k31u1 and k32u3. Now, M1

can compute m3's signature pr3, s3q, where k3 Ð k31k32k33k34.

J An ` out of ` Threshold Attack on the Generalized ElGa-

mal Signature

In this section, we introduce an ` out of ` threshold version of the Young-Yung SETUP

mechanism. In this particular case, the proposed scheme is more e�cient than the one

proposed in Section 5.2.2.

J.1 Description

To implement their attack, the ` malicious parties work in almost the same environment

as in Section 5.2.2. Thus, we only mention the di�erences between the environments.

We denote by PKM “ tpkiu1ďiď` and present these changes below.

Signing Sessions: The possible signing sessions performed by D are described below.

Let i ě 1.

Session0pm0, skV q: To sign message m0 P G, D does the following

k0
$ÐÝ Zq̊ , r0 Ð gk0 , s0 Ð k´1

0 rhpm0q ´ a ¨ hpr0qs.
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M1 M2

m3, α1 m3, α2, ckey

k31, k32
$ÐÝ Zq̊

R1 Ð gk31k32

Compute dl proof π1.
Compute commit τ to R1, π1.

τÝÝÝÝÝÝÝÝÝÝÑ
k33, k34

$ÐÝ Zq̊
R2 Ð gk33k34

Compute dl proof π2.
R2,π2ÐÝÝÝÝÝÝÝÝÝÝ

Verify proof π2.
If false abort.

R1,π1ÝÝÝÝÝÝÝÝÝÝÑ
Verify commit τ and proof π1.
If false abort.

r3 Ð Rk33k341

ρ1, ρ2
$ÐÝ Z˚

q2

v1 Ð α2r2∆2 ´ s´1
0 r0 mod q

c1 Ð Encppkp, pk33v1 mod qq ` ρ1qq
v2 Ð k33r1∆1 mod q
c2 Ð v2 d ckey and c3 Ð c1 ‘ c2
v3 Ð r3pα2m2∆2 ´ s´1

0 m0q mod q
v4 Ð k´1

34 pm3v1 ´ v3q mod q
c4 Ð Encppkp, v4 ` ρ2qq
v5 Ð k´1

34 pm3r1∆1 ´ r3m1∆1q mod q
c5 Ð v5 d ckey and c6 Ð c4 ‘ c5

c3,c6ÐÝÝÝÝÝÝÝÝÝÝ
r3 Ð Rk31k322

u1 Ð Decpskp, c3q
u2 Ð k31u1 mod q
u3 Ð Decpskp, c6q
s3 Ð k´1

32 u
´1
1 u3 mod q

Verify signature pr3, s3q.
If false abort, else output pr3, s3q.

Figure I.2: Two-party malicious signing.

The value k0 is stored in D's volatile memory until the end of Session1.

Output the signature pr0, s0q.
Sessionipmi, skV , PKM q: To sign message mi P G, D does the following

zi Ð py1 ¨ . . . ¨ y`qki´1 , ki Ð Hpziq, ri Ð gki , si Ð k´1
i rhpmiq ´ a ¨ hpriqs.

The value ki is stored in D's volatile memory until the end of Sessioni`1.

Output the signature pri, siq.
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Recoveringpmi, ri´1, ri, si, SKM q: Compute αi Ð rxii´1 and ki Ð Hpα1 ¨. . .¨α`q. Recover
a by computing

aÐ hpriq´1rhpmiq ´ ki ¨ siqs.

Remark J.1. Let Q be an honest generator for the values r used by the Generalized

ElGamal signature scheme and let σi denote the i-th internal state and ρi “ gσi the i-th

output of Q. The mechanism described above can be seen as a malicious PRNG Q̃ based

on the honest PRNG Q. We de�ne the internal states and outputs of Q̃ by

� σ̃0 “ σ0, ρ̃0 “ ρ0;

� σ̃i “ Hpziq, ρ̃i “ gσ̃i , where zi Ð py1 ¨ . . . ¨ y`qσ̃i´1 , i ě 1.

Unlike P̃ from Remark 5.13, Q̃ can be harmful by itself3. A coalition of `malicious parties

that know an output ρ̃i´1 can compute the next internal state σ̃i. Q̃ is a threshold variant

of the generator described in Remark 5.5.

J.2 Security Analysis

In this subsection we show that the scheme described above, denoted F ´GEGS, cannot
be distinguished from GEGS if adversary A corrupted at most ` ´ 1 malicious parties

Mi.

Theorem J.1. If the number of signatures is polynomial and hdh is hard in G then

GEGS and F ´ GEGS are ind-setup in the standard model as long as at most ` ´ 1

malicious parties are corrupted by A. Formally, let A be an e�cient PPT ind-setup

adversary. There exists an e�cient algorithm B such that

ADV ind-setup
MEG,GEGS,F´GEGSpAq ď 4ΓADV hdh

G,g,HpBq,

where Γ is the number of infected signatures.

Proof. Let A be an ind-setup adversary that is trying to distinguish betweenGEGS and

F ´GEGS. A has access to �random coins� sampled uniformly from a set R. Without

loss of generality, we further assume that A has corrupted the �rst ` ´ 1 malicious

participants.

Algorithm 57 describes the ind-setup game. The �rst and second rows set up the public

keys. Then the GEGS and F ´GEGS oracles are described. The challenger then �ips

a bit b and reveals oracle Cb. A then computes its guess b1 for b. A wins if b “ b1.
3i.e not only when used with ElGamal based signatures
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Algorithm 57. The ind-setup game.

1 Function init():

2 Choose the secret keys a, x1, . . . , x`
$ÐÝ Zq̊

3 Compute the public keys y Ð ga, y1 Ð gx1 , . . . , y` Ð gx`

4 Set L1 Ð
´

Y`´1
i“1txiu

¯

Y `Y`i“1tyiu
˘

and iÐ 1

5 Function C0(a, m):

6 Choose k $ÐÝ Zq̊
7 Compute r Ð gk and sÐ k´1rhpmq ´ a ¨ hprqs
8 return pr, sq
9 Function C1(a, m):

10 if i “ 0 then

11 Choose k0
$ÐÝ Zq̊

12 else

13 Compute zi Ð py1 ¨ . . . ¨ y`qki´1 and ki Ð Hpziq
14 end

15 Compute r Ð gki , sÐ k´1
i rhpmq ´ a ¨ hprqs and iÐ i` 1

16 return pr, sq
17 init()

18 Choose b $ÐÝ t0, 1u and ρ $ÐÝ R

19 return ACbpa,¨qpρ, y,L1q

Algorithm 58. The init() and C1 functions for the new ind-setup game.

1 Function init():

2 Choose the secret keys a, x1, . . . , x`
$ÐÝ Zq̊

3 Compute the public keys y Ð ga, y1 Ð gx1 , . . . , y` Ð gx`

4 Select xt
$ÐÝ Zq̊ and let yt Ð gxt

5 Set L1 Ð
´

Y`´1
i“1txiu

¯

Y `Y`i“1tyiu
˘

and iÐ 1

6 Function C1(a, m):

7 if i “ 0 then

8 Choose k0
$ÐÝ Zq̊

9 else

10 Compute zi Ð y
ki´1

t and ki Ð Hpziq
11 end

12 Compute r Ð gki , sÐ k´1
i rhpmq ´ a ¨ hprqs and iÐ i` 1

13 return pr, sq

We proceed by changing the initial ind-setup game (described in Algorithm 57) into a

new ind-setup game (described in Algorithm 58). In addition to the original set up, in

the new version, we choose an extra secret internal state yt. Another change is the way

we compute the ki values from oracle C1. In the original game we multiply the element

y1 ¨ . . . ¨ y`´1 from G with an uniformly random element y` of the same set and we obtain

an uniformly random element. In the new game we directly use a random value yt for
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computing the ki values, thus the change is statically indistinguishable. Since these are

the only changes, an adversary will not notice any di�erence between the ind-setup

games.

Since MEG is ind$ an adversary cannot distinguish between C0 and C1. Note that

the number of k values that A has to distinguish is n. Thus, we obtain the security

margin.

Remark J.2. Similarly to Theorem J.1, we obtain that if Q is a secure PRNG, then Q̃

is a secure PRNG in the standard model.

Remark J.3. As in the case of Dual-EC, it is easy to see that if in the F ´ GEGS

scheme, we replace yi with y1i
$ÐÝ G, 1 ď i ď n, the SETUP mechanism becomes benign.

The security margin of the SETUP-free system remains the same as the one stated in

Theorem J.1.

K Additional Algorithms

In [253] the algorithm used to invert g is not presented in full. Based on the descriptions

found in [253, 1] we present the full algorithm in Algorithm 59. Note that the algorithm

works for any generic polynomial g, not only for the one used in the Flash Player PRNG.

Note that &S means that we pass S by reference.

The only algorithm we found for reversing the Flash Player PRNG is described in [1].

We improve their attack in Algorithm 60. To reverse the bit manipulation function f

and the polynomial g we use the abstract functions Reverse_bit_manipulation and

Reverse_polynomial, respectively. Remark that Algorithm 60 works for any generic

polynomial g and any generic function hpxq “ p ¨ x mod 2n with p odd. In the Flash

Player case we have p´1 ” 3811027319 mod 232.

L Recreational Cryptographic Problems

The interest of the cryptographic community regarding various recreational cryptography

problems has grown in time. We further recall a series of physical cryptographic solu-

tions which appeared in the literature. Note that our list of recreational cryptographic

problems is, by no means, extensive.
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Algorithm 59. Backtracking algorithm for reversing g.
Input: The value to reverse v
Output: The set of possible solutions S

1 Function V erify_ith_bit(v, i, sol):
2 bit1 Ð gpsolq & p1 ! iq;
3 bit2 Ð v & p1 ! iq;
4 return bit1 ““ bit2;
5 Function Add_ith_bit(v, i, sol,&S, b):
6 solÐ sol | pb ! iq;
7 if V erify_ith_bitpv, i, solq ““ true then

8 iÐ i` 1;
9 Reverse_bitpv, i, sol, Sq;

10 end

11 Function Reverse_bit(v, i, sol,&S):
12 if i ““ n then
13 S Ð S Y sol;
14 return;
15 end

16 add_ith_bitpv, i, sol, S, 0q;
17 add_ith_bitpv, i, sol, S, 1q;
18 Function Reverse_polynomial(v):
19 S Ð ∅; //the set of possible solutions
20 iÐ 0; //the target bit
21 solÐ 0; //the current solution
22 reverse_bitpv, i, sol, Sq;
23 return S;

Algorithm 60. The algorithm for reversing the PRNG.
Input: The value to reverse v
Output: The set of possible solutions S

1 v1 Ð v | p1 ! pn´ 1qq;
2 Sbit Ð Reverse_bit_manipulationpvq YReverse_bit_manipulationpv1q;
3 Spol, Shash, S Ð ∅;
4 for sbit P Sbit do
5 Spol Ð Spol YReverse_polynomialpsbitq;
6 end

7 for spol P Spol do
8 Shash Ð Shash YReverse_bit_manipulationpspolq;
9 end

10 for shash P Shash do
11 sÐ shash ¨ p´1 mod 2n;
12 S Ð S Y s;
13 end

14 return S;

�Finding Waldo� Solution. The authors of [191] provide an insight on how to con-

vince people about knowing Waldo's location without revealing it. We initially assume
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that Alice and Bob have a large piece of cardboard4. As a �rst step, Alice cuts a Waldo

shaped hole in the middle of the cardboard. To prove that she knows where Waldo

is, Alice puts the shape precisely on top of Waldo while Bob is not looking and then

calls Bob to check. Given the previous steps of the protocol, Bob learns nothing about

the location of Waldo. Next, Alice must prove that she has the correct Waldo picture.

Therefore, she must pull the book beneath the cardboard in front of Bob's eyes without

revealing information about the place from which she is pulling the book5.

�Ali Baba Cave� Solution. A well known story for explaining the intuition behind

zero knowledge protocols is presented in [210]. The story is about a magical cave shaped

like a ring with an entrance on one side as well as a magical door blocking the opposite

side. We assume that Alice discovers the secret magical word that opens the door and

wants to prove to Bob that she knows the secret without revealing it. Thus, they agree to

label the left and right paths from the entrance head and tail. The protocol proceeds as

follows. Bob waits outside the cave as Alice goes in. Then, Alice �ips a coin to determine

the path she follows. Note that Bob is not allowed to see which path she takes. Bob

enters the cave, �ips a coin and shouts the outcome. If Alice knows the magical word

she opens the door, if necessary, and returns along the path chosen by Bob. If she lied

about knowing it, then she has a 50% chance of returning through the correct path (i.e.

by guessing Bob's outcome). If they repeat this protocol multiple times, the chance of

Alice tricking Bob decreases. Thus, if Alice always exits through the right path, Bob can

conclude that Alice really knows the secret word.

�Locked Boxes� Solution. A classical method for explaining symmetric encryption

is through the use of �impenetrable� locked boxes (see [44, 62]). More precisely, Alice

and Bob both have a copy of the key that opens a chest. To exchange messages, Alice

simply puts her letter in the box, locks it and sends it to Bob. Since Bob has an identical

copy of the key, he opens the chest and reads the letter. Another protocol that can be

explained using locked boxes is Shamir's three-pass protocol [180]. First, Alice puts her

message in a box, locks it with her private padlock and sends it to Bob. Then, Bob places

his private padlock on the box and sends it back to Alice. Once she receives the box, she

removes her padlock and sends the box to Bob. Finally, Bob removes his padlock and

reads Alice's message. In order to popularize cryptography to non-specialized audiences,

the authors of [44] used a toolbox or a loose chain to implement the previous physical

example of Shamir's protocol. The authors point out it is easy to prove6 to audiences

that a persistent code-breaker could always dismantle a padlock, or X-ray it, and hence
4at least twice as large as the picture in each dimension
5At least the hole should be covered while the book is pulled out.
6e.g. by showing a sawn up padlock
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crack the code (i.e. knowing the inside of the lock is isomorphic to knowing the key).

Thus, we have to employ other techniques than the secrecy of the encryption method.

By relaxing the security requirements from an �impenetrable� box to a tamper-evident

box (i.e. the receiver can detect if someone managed to open the box) the authors of

[186, 187] devise a series of secure protocols.

Ciphers Based on a Deck of Cards. Schneier designed the �Solitaire� cipher [218] for

the book �Cryptonomicon� [232]7. Solitaire was intended to be the �rst truly secure �pen

and paper� cipher. It requires only a pack of cards both for encryption and decryption.

A similar example is the �Mirdek� cipher [84].

�PEZ Dispenser� Solution. In [37] the authors present a solution for voting using a

PEZ dispenser. Consider a group of kids wishing to vote between two candidates without

revealing anything except the �nal outcome. Assume that they have a PEZ dispenser,

which may be previously loaded with some publicly known sequence of red and yellow

candies. The kids take turns. Each one decides how many candies to pop out of the

dispenser according to his vote. Note that no other kid can see the number or the colors

of these candies. Also, it is forbidden for the participants to weight the dispenser and,

thus, deduce the number of remaining candies. When this process ends, the color of

the candy on top has to correspond to the correct majority vote. The voting process is

completed when one of the kids pops an additional candy and announces its color.

�Phonebook� Solution. Khovanova recalls on her blog [156] that, for explaining one-

way functions, Micali used the following example of encryption. We start by assuming

that Alice and Bob obtain the same edition of the white pages book for a particular town.

For each letter Alice wants to encrypt, she �nds a person in the book whose last name

starts with this letter and uses his/her phone number as the encrypted version of that

letter. To decrypt the message Bob has to read through the whole book to �nd all the

numbers. The decryption will take a lot more time than the encryption. Unfortunately,

the technology changes and the example is not up to date anymore: reverse look-up is

always possible in a digital world. Furthermore, regarding the security of the scheme,

an 8th grader said: �If I were Bob, I would just call all the phone numbers and ask their

last names.� A similar example may be found in [44]. Such examples are very good for

teaching one-way functions to non-mathematicians.

7entitled �Pontifex� in the book
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�Colors� Solution. The Di�e-Hellman protocol can be depicted using colors as fur-

ther presented. An illustration using common paint may be found in [18]. The idea,

�rst proposed by Simon Singh [229], relies on two properties of colors: 1 it is easy to

mix two colors and 2 given a color that was obtained by mixing two other colors, it is

di�cult to reverse the process8. As a speci�c example, we may assume that yellow ‚ is

a public color. Let us further consider that Alice's secret color is blue ‚ and that Bob's

secret color is red ‚. The parties wish to agree on a new shared secret color. In the �rst

step, Alice sends green ‚ to Bob (i.e. the result of yellow ‚ mixed with blue ‚). Then,

Bob sends orange ‚ to Alice (i.e. the result of yellow ‚ mixed with red ‚). By mixing

the received color with the secret color, each party obtains the common secret brown ‚

(i.e. Alice mixes orange ‚ with her blue ‚ and Bob mixes green ‚ with red ‚).

Although insecure9, the digital version of the above protocol is a good teaching tool e.g.

when trying to explain beginners how to use colors in the case of programming languages

used in web development.

M Physical Public Key Encryption

We further present a generic protocol based on the protocols described in [130]. Alice

and Bob have access to a physical medium characterized by a parameter pptq, such that

pptq has two components p “ paptq ˝ pbptq, where ˝ is a group law and paptq, pbptq can
randomly be changed by varying t. In her private spaces U and V , Alice and Bob secretly

vary paptq and, respectively, pbptq. Note that Eve only has access to pptq. First Alice and
Bob randomly vary paptq and pbptq. When they agree to synchronize10, Alice and Bob

stabilize their parameters papt1q “ a and pbpt1q “ b. Bob can measure ppt1q “ a ˝ b and
deduce Alice's value a. Similarly, Alice can compute b.

Example M.1. We consider the setup from Section 7.1.3. Thus, the components that

Alice and Bob vary are their corresponding speeds values a and b. Once the system is

stabilized Bob can deduce a using the attack we described in Section 7.1.3, but Eve can

only deduce b´ a.

8and obtain the initial colors
9When mixing two colors which can be described in the RGB (Red-Green-Blue) color model one can

revert the process due to the uniqueness of each color. Note that such a phenomenon does not happen
when working with paint.

10through the use of an authenticated channel
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