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Summary

This chapter gives an overview of the physics at stake and of the main contributions in this thesis.
We begin with some important physical definitions, namely those of plasmas, nuclear fusion and
tokamaks. Then we introduce the kinetic formalism and give several examples of kinetic models
for plasmas. Finally, we summarize the main contributions of this thesis, first presenting our
results regarding linear magnetized Vlasov systems and then focusing on the nonlinear magnetized
Vlasov–Poisson system.
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Chapter 1. General Introduction

1.1 Physical motivation

1.1.1 Plasmas and nuclear fusion

When a gas is heated to a very high temperature, electrons are ripped from the orbit of the
nucleus of the atom to which they are attached. The result is a globally neutral mixture of
charged particles, ions and electrons, which is called a plasma. Plasmas are considered as the
fourth state of matter, next to solids, liquids and gases.

The term plasma was first introduced by the Nobel prize winning physicist and chemist Irving
Langmuir in 1928 [83] to describe a ionized gas. However, even though a plasma is similar to a
gas in the sense that it has no definite shape or volume, there are fundamental differences between
these two states of matter, notably with respect to the interactions between particles. Indeed,
in a gas the main interactions are binary collisions, which means a single particle can interact
with only one other particle at a time. In a plasma, even though collisions still occur, long range
electric and magnetic forces impose a collective behavior, which means a single charged particle
is constantly interacting with all the other charged particles that form the plasma. At the same
time, the local non-neutrality of the plasma generates self-induced electromagnetic forces that
also influence how the particles evolve. Furthermore, electrons and ions possess opposite charges
and vastly different masses, which means that they behave differently in many circumstances,
with various types of plasma-specific waves and instabilities emerging as a result. These different
physical realities make plasmas very complicated objects to study and understand.

The use of plasmas in everyday life has now become frequent. We can quote neon tubes or plasma
screens. There are also a certain number of industrial applications: amplifiers in telecommunication
satellites, plasma etching in microelectronics, and X-ray production. Even though it is almost
absent in its natural state on Earth it’s important to highlight that plasma constitutes 99 of the
mass of the universe. Notably stars are made of plasmas and the energy they give off comes
from the process of fusion of light nuclei like protons. This process of nuclear fusion releases
huge amounts of energy: for the same mass, the fusion of light atoms releases an energy nearly
four million times greater than that of a chemical reaction such as the combustion of coal, oil or
gas, and four times greater than that of nuclear fission reactions which are currently powering
commercial nuclear power plants. Thus, harnessing the energy from this transformation has now
arguably become one of the most important potential applications of plasma physics, and various
research projects around the world have been launched in order to master nuclear fusion.

The most important (in terms of scale and funding) of these projects is the ITER (originally
International Thermonuclear Experimental Reactor) program, an international collaboration that
aims to demonstrate the feasibility of electricity production via controlled nuclear fusion [74]. To
achieve this, ITER is currently building the largest tokamak in the world in Cadarache in the
south of France. A tokamak is a large toroidal chamber where the nuclear reactions inside the
plasma using deuterium-tritium fuel will take place. This fuel has been chosen because the most
accessible fusion reaction consists of fusing nuclei of deuterium and tritium (isotopes of hydrogen)
to obtain a helium atom and a very energetic neutron which will be used to produce the heat
necessary to make electricity.
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1.1. Physical motivation

Figure 1.1 – Deuterium-tritium nuclear reaction [49].

In order for this reaction to take place, the plasma needs to be heated to extreme temperatures,
approximately 108 degrees Celsius or ten times the temperature at the core of the sun. At
the same time the nuclear reaction doesn’t require a huge amount of material to be initiated,
illustrated by the fact that the density inside the tokamak will be of the order of 1020 particles
per cubic meter or around 105 less dense than air. Heating the material inside the plasma to such
temperatures requires enormous amounts of energy, and thus far no tokamak has ever managed
to generate a positive net energy output. Until now, the best energy input-energy output ratio
has been obtained by the Joint European Torus (JET) which achieved a ratio Q = 0.67. The
first main objective of the ITER tokamak is to achieve "plasma energy breakeven" (Q = 1) and
scientists hope that the Q ratio for ITER will eventually exceed 10. Furthermore, the extreme
temperatures inside the tokamak, a machine only a dozen meters in diameter, means that the
temperature gradient inside the torus will be enormous and that the particles forming the plasma
will rapidly escape if unconfined. To remedy this, important magnetic fields are generated by
coils around the chamber in order to create a helicoidal field that confines the plasma [73].

Figure 1.2 – Helicoidal field confining a plasma in a tokamak [51].
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Chapter 1. General Introduction

Hence, it is important to consider models that take into account both the inherent collective
dynamics of the plasma as well as these external magnetic forces that heavily influence the
evolution of the system.

1.1.2 The Maxwell–Boltzmann distribution function

In this thesis, we are going to be looking at models often used to describe the evolution of a plasma:
kinetic models. These models describe matter at what is called a "mesoscopic scale" between
the microscopic and macroscopic scales. This is relevant for plasmas where the microscopic
description of the system, particle by particle, is too complex to be used in practice (due in part
to the collective dynamics mentioned above) and where macroscopic models like fluid models are
too coarse to capture the essential mechanisms and obtain a realistic description of the plasma.

Historically, the mathematical basis for kinetic models was introduced by Maxwell in [92, 93] to
describe the behavior of an ideal gas. In these works, he introduced a function describing the
distribution of particle speeds of the molecules in the gas. Boltzmann later conducted a more
theoretical study [17] in order to derive this distribution function from physical considerations,
laying the foundations for statistical physics in the process. This Maxwell–Boltzmann distribution
function f quantifies the number of particles moving with a velocity between v and v + dv.

f(v) = ρ
( m

2πkT

) 3
2

exp

(
−m |v − u|

2

2kT

)
(1.1.1)

with ρ the total number of particles, m the mass of a single particle, k the Boltzmann constant,
T the absolute temperature and u the macroscopic or collective velocity.

When a plasma is at thermodynamic equilibrium, its distribution function is given by the Maxwell–
Boltzmann distribution function. In this context, fluid models are relevant to describe the system.
However, when the plasma is far from thermodynamic equilibrium, a kinetic description of the
system is necessary and the plasma is fully characterized by the Vlasov–Maxwell system.

1.2 Kinetic formalism and the Vlasov equation

1.2.1 A hierarchy of kinetic models

In a kinetic model for plasmas, each species of particle in the plasma is characterized by a positive
distribution function fα(t, x, v). This function fα quantifies the probability at time t that a
particle will be at position x with velocity v. To put it another way, the quantity fα(t, x, v)dxdv
corresponds to the number of particles at time t that are in box of volume dxdv centered around
(x, v).

Now we present a hierarchy of kinetic models increasing in complexity. In the rest of this
subsection, we will denote by P the set of different species of particles inside the plasma, qα
the charge of the particles of species α, mα the mass of of particles of species α, ε0 the vacuum
permittivity, µ0 the magnetic permeability and c the speed of light.

Free transport If we consider free particles that aren’t subject to any kind of internal or external
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1.2. Kinetic formalism and the Vlasov equation

force, then this system is characterized by the free transport equation

∂tfα + v · ∇xfα = 0. (1.2.1)

Solving this sort of transport equation is straightforward and solutions are given by the expression

fα(t, x, v) = f iniα (x− tv, v) (1.2.2)

where f iniα is the initial distribution function for the species of particle α.

Linear Vlasov When we consider an added external electromagnetic field (Eext, Bext), than the
particles in the plasma are subject to an electromagnetic or Lorentz force

Fext(t, x, v) = qα(Eext(t, x) + v ∧Bext(t, x)) (1.2.3)

and the system is described by the linear Vlasov equation given by

∂tfα + v · ∇xfα +
Fext
mα
· ∇vfα = 0. (1.2.4)

We can explicitly write the solution to this equation

fα(t, x, v) = f iniα (X(0; t, x, v), V (0; t, x, v)) (1.2.5)

where (X,V ) is the solution to the following Cauchy problem
d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) =

qα
mα

Fext(s,X(s; t, x, v), V (s; t, x, v)),
(1.2.6)

with
(X(t; t, x, v), V (t; t, x, v)) = (x, v). (1.2.7)

This equation and its solution are more complex than for (1.2.1), because even though (1.2.4) is
a linear partial differential equation (PDE) and Eext and Bext are given external fields that don’t
depend on the system, one needs to solve a nonlinear ordinary differential equation (ODE) to
solve the equation.

Vlasov–Poisson Instead of considering outside forces acting on the system, one can consider
that the particles in the plasma are in self-interaction through the Coulombian force Fα exerted
at time t and position x on a particle of charge qα

Fα(t, x) = qα
∑
β∈P

qβ
4πε0

∫
R3

x− y
|x− y|3

ρβ(t, y)dy = qαE(t, x) (1.2.8)

where ρβ(t, x) =
∫
R3 fβ(t, x, v)dv is the macroscopic density for the species of particle β and E is

the electrostatic field.

The electrostatic field E derives from a potential Φ

E(t, x) =
∑
β∈P

qβ
4πε0

∫
R3

−∇x
(

1

|x− y|

)
ρβ(t, y)dy = −∇xΦ(t, x), (1.2.9)
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Chapter 1. General Introduction

with

Φ(t, x) =
∑
β∈P

qβ
4πε0

∫
R3

(
1

|x− y|

)
ρβ(t, y)dy. (1.2.10)

Thus, since G3(x) := 1
4π|x| is the Green function for −∆, Φ is the solution to the Poisson equation

−∆xΦ =
∑
α∈P

qα
ε0
ρα. (1.2.11)

Hence, the system is modeled by the so-called Vlasov–Poisson system for Coulombian interaction
∂tfα + v · ∇xfα −

qα
mα
∇xΦ · ∇vfα = 0, α ∈ P,

−∆xΦ =
∑
α∈P

qα
ε0
ρα.

(1.2.12)

It is important to highlight that the force Fα exerted on the particle of charge qα is expressed
using the distribution function for the entire system, including the particle in question. This
approximation is valid because the system or plasma we consider is made up of a large number of
particles and so the effect of a single particle is considered negligible compared to the collective
effect of the whole system.

The Vlasov–Poisson given by (1.2.12) describes the behavior of particles in Coulombian interaction.
In truth, this system was first derived in 1915 by Jeans [75] in the context of stellar dynamics.
Indeed, when one considers a system of identical points of massm characterized by the distribution
function f , each particle is subject to the gravitational force Fg generated by all the other particles,
given by the following expression:

Fg(t, x) = −Γm2

∫
R3

∫
R3

x− y
|x− y|3

f(t, y, v)dvdy. (1.2.13)

Fg is an attractive force that also derives from a potential Φg. Hence, this system of points is
modeled by the Vlasov–Poisson system for Newtonian interaction

∂tf + v · ∇xf +
1

m
∇xΦ · ∇vf = 0,

−∆xΦg(t, x) = 4πΓm

∫
R3

f(t, x, v)dv.
(1.2.14)

Since the systems of PDEs (1.2.12) and (1.2.14) are nonlinear, the well-posedness problem is
much more complicated than for the previous equation. This problem was solved at the beginning
of the nineties using two different methods that lead to two distinct papers [87, 103].

Vlasov–Maxwell In the previous model given by (1.2.12), the speed of the charged particles in
the plasma was considered small enough so that the contribution of the magnetic field to the
electromagnetic Lorentz force (1.2.3) became negligible. Now we consider a plasma where this
assumption is no longer valid, so that we have to take into account the self-induced magnetic force
resulting from the motion of the charged particles. The electromagnetic field (E,B) generated is

6



1.2. Kinetic formalism and the Vlasov equation

given by the Maxwell equations, first introduced (in part) in [94]

divxE =
∑
α∈P

qα
ε0
ρα,

rotxE = −∂tB,
divxB = 0,

− 1

c2
∂tE + rotxB = µ0

∑
α∈P

qαjα,

(1.2.15)

where jα(t, x)
∫
R3 f(t, x, v)vdv is the current density for the species of particle α.

Hence, the plasma is completely modeled by the Vlasov–Maxwell system of PDEs which couples
the Maxwell equations with the Vlasov equation

∂tfα + v · ∇xfα +
qα
mα

(E + v ∧B) · ∇vfα = 0, α ∈ P,

divxE =
∑
α∈P

qα
ε0
ρα,

rotxE = −∂tB,
divxB = 0,

− 1

c2
∂tE + rotxB = µ0

∑
α∈P

qαjα.

(1.2.16)

As explained above, this system of PDEs captures all the properties of the plasma and provides
a complete description of the system. The well-posedness for (1.2.16) is still an open problem.
However, weak solutions to the Vlasov–Maxwell system were shown to exist in [43] by DiPerna
and Lions.

Vlasov–Landau For this paragraph on collisional kinetic models, to simplify the discussion and
the notations we will only consider a single species of particles. In certain configurations, one
needs to take into account the collisions between particles in the plasma. In practice, this means
adding a collision operator in the r.h.s. of the Vlasov equation. We begin by presenting the
Boltzmann collision operator Q, introduced in [17] to model the collisions in a gas, and given by
the following expression:Q(f, f) =

∫
R3

∫
S2

B(v − v∗, ω)(f ′f ′∗ − ff∗)dv∗dω,

f = f(t, x, v), f∗ = f(t, x, v∗), f
′ = f(t, x, v′∗), f

′
∗ = f(t, x, v′∗).

(1.2.17)

v and v∗ are the velocities of the incoming particles (before collision), v′ and v′∗ are the velocities
of the outgoing particles (after collision) and are given in terms of v and v∗ by{

v′ = v − ((v − v∗) · ω)ω,

v′∗ = v∗ + ((v − v∗) · ω)ω,
(1.2.18)

for some ω ∈ S2 which parametrizes the set of admissible outgoing velocities under the constraints
v + v∗ = v′ + v′∗ and |v|

2
+ |v∗|2 = |v′|2 + |v′∗|

2, and B(v − v∗, ω) is the differential cross-section,
which measures the probability of the collision process (v, v∗) 7→ (v′, v′∗). If we assume that
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Chapter 1. General Introduction

collisions are the only interactions inside the gas, then the system is modeled by the Boltzmann
equation

∂tf + v · ∇xf = Q(f, f). (1.2.19)
With regards to the existence of solutions to the Boltzmann equation, using their innovative
theory of renormalized solutions [45] just like for the Vlasov–Maxwell system, DiPerna and Lions
showed existence of weak solutions to (1.2.19) in [44, 47]. More recently, a very complete review
on the results related to collisional kinetic theory was assembled by Villani in [124].

For plasmas, since the interaction between particles is Coulombian, the Boltzmann operator isn’t
necessarily well-defined. To remedy this we use a Boltzmann type operator called the Landau
collision operator QL [81, 82] given by

QL(f, f) = ∇v ·
(∫

R3

a(v − v∗)[f∗(∇f)− f(∇f)∗]dv∗

)
. (1.2.20)

Here a(z) is a symmetric degenerate nonnegative matrix, proportional to the orthogonal projection
onto z⊥:

aij(z) =
L

|z|

(
δij −

zij

|z|2

)
. (1.2.21)

Finally, if we take into account both electromagnetic interactions and collisions in the plasma,
the system is described by the Landau equation:

∂tf + v · ∇xf + F · ∇vf = QL(f, f), (1.2.22)

with the electromagnetic field F determined by the Poisson equation in the electrostatic case or
the Maxwell equations in the electrodynamic setting.

Like for the Vlasov–Maxwell system, for many Vlasov type models with collisions, including the
Landau equation, the well-posedness is still an open problem (see [66, 123] for recent advances).
Progress has also been made when the solutions are assumed to be perturbations of Maxwellians
[22, 65, 120, 119, 129, 130].

1.2.2 Vlasov–Poisson with an external magnetic field

In this thesis, the model that will be at the center of most of our discussions will be the Vlasov–
Poisson system with an external magnetic field or magnetized Vlasov–Poisson system. This model
will be studied in both the full space framework, where the phase space is Rd × Rd, and in the
periodic setting, where the phase space is T d×Rd with T d = [0 , 1]per = Rd/Zd the d-dimensional
torus. Furthermore, to simplify the discussion, in the rest of the thesis, we make the assumption
that the ion distribution in our system is constant. This is a physically sensible assumption given
that ions are much heavier than electrons (the ion-to-electron mass ratio is of order 103), which
means that at the time-scale of the electron dynamics ions can be considered static. Hence we
will consider the magnetized Vlasov–Poisson system for electrons given by

∂tf + v · ∇xf +
q

m
(E + v ∧B) · ∇vf = 0,

−∆xΦ =
qion
ε0

ρ0 +
q

ε0
ρ,

ρ(t, x) =

∫
R3

f(t, x, v)dv,

E(t, x) = −∇xΦ(t, x),

(1.2.23)
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1.3. Spectral theory for magnetized linear kinetic models

where f = f(t, x, v) is the electron distribution function, q = −1, 602× 10−19 C is the negative
charge of the electron, m = 9, 109× 10−31 kg is the mass of the electron, E is the self-generated
electric field, Φ is the electric potential and B is an external magnetic field which we will consider
either constant or bounded throughout the manuscript. qion corresponds to the positive charge of
the ions in the system and ρ0 is the constant ion macroscopic density. In the full space framework
we can take ρ0 = 0 because (f,Φ) = (0, 0) is a solution to (1.2.23), whereas in the periodic setting
we need ρ0 to be strictly positive and we take ρ0 =

∫
T d
∫
Rd f(0, x, v)dxdv. This is due to the

nature of the Poisson equation on the torus.

As mentioned above, when a plasma is at thermodynamic equilibrium, the distribution of
particles follows (1.1.1). Hence, it is natural that one uses the Maxwell-Boltzmann distribution
to find a stationary solution to (1.2.23). In chapter 2, we will linearize (1.2.23) by considering
that the solution (f,Φ) is a perturbation of such a stationary solution (f0,Φ0), so we write
(f,Φ) = (f0,Φ0) + ε(u, ϕ) for ε > 0. To the first order in ε, (u, ϕ) is the solution to the following
linearized Vlasov–Poisson system with magnetic field:

∂tu+ v · ∇xu+
q

m
(F · ∇vf0 + v ∧B · ∇vu) = 0,

−∆xϕ =
q

ε0

∫
R3

u(t, x, v)dv,

F (t, x) = −∇xΦ(t, x),

(1.2.24)

with F the perturbation of the electric field.

For the rest of this chapter, we will normalize all the physical constants except the charge q to
1. With regards to the charge q we normalize q to −1 in the subsection on the linear system
(section 1.3) and q to 1 in the subsection on the nonlinear system (section 1.4). This is just for
cosmetic purposes because the normalization of q doesn’t influence the results in the following
chapters, meaning we could have normalized q to any constant.

As explained above, fusion plasmas are systems that are subject to an external magnetic field
whose role is to confine the plasma despite the enormous thermal agitation and gradient of
temperature inside the tokamak. Motivated by this important physical and industrial application,
this thesis aims to investigate how the kinetic models that describe the system are modified in
the presence of an added external magnetic field. We summarize the contributions of this thesis
in the next two sections.

1.3 Spectral theory for magnetized linear kinetic models

The first question that arose was one regarding the linear magnetized Vlasov–Poisson system
(1.2.24). In a seminal paper [80] published in 1946 where he studied the linearized Vlasov–Poisson
system, Lev Landau showed that longitudinal space charge waves in plasma are damped (decrease
exponentially as a function of time), predicting what is now known as Landau damping. This
phenomenon was confirmed experimentally by Malmberg and Wharton in 1964 [90]. In another
seminal paper [14] published in 1958, Ira Bernstein proved that when a plasma is subject to a
constant external magnetic field, certain electrostatic waves (now known as Bernstein modes)
perpendicular to the magnetic field are undamped. A crucial point is that these waves exist
independently of the strength of the magnetic field, which means there is a discontinuity between
Landau’s theory on unmagnetized electrostatic plasmas and Bernstein’s theory on magnetized
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Chapter 1. General Introduction

plasmas, known as the Bernstein–Landau paradox.

In chapter 2, we investigate this phenomenon by studying (1.2.24) in a periodic 1d-2v configuration,
meaning that the distribution function u depends on one coordinate x in position and two
coordinates v = (v1, v2) in velocity with (x, v) ∈ T × R2. We reformulate system (1.2.24) using
the Maxwell–Ampère equation (written with the unknowns of (1.2.24))

∂tF =

∫
uvdv. (1.3.1)

With this reformulation, we succeed in interpreting the Bernstein–Landau paradox in terms of
the spectrum of a self-adjoint operator associated to the Vlasov–Ampère system. Furthermore,
we build semi-Lagrangian schemes to show how the eigenfunctions constructed in our analysis
can be considered as new test functions for these magnetized kinetic models.

In this subsection we summarize these results on our new interpretation of the Bernstein–Landau
paradox. Here when we refer to magnetized Vlasov type systems, we are referring to the linearized
systems, because in the next subsection we study the nonlinear Vlasov–Poisson system. First we
explain why the symmetric operator associated to the magnetized Vlasov–Poisson system isn’t
self-adjoint, which is why we study the magnetized Vlasov–Ampère system instead. Then we
detail the spectral decomposition of the magnetized Vlasov–Ampère operator. As said above, this
allows us to give a spectral interpretation of the Bernstein–Landau paradox. Finally we explicate
the semi-Lagrangian schemes used to test these eigenfunctions.

1.3.1 From the magnetized Vlasov–Poisson system to the magnetized
Vlasov–Ampère system

The main objective of the work in chapter 2 is to try to understand the Bernstein–Landau paradox.
Our approach consists in studying the magnetized Vlasov–Poisson system in the framework of
spectral theory. Such an approach is justified by the fact that there exists a wide literature devoted
to the spectral properties of the linear (unmagnetized) Vlasov–Poisson system [7, 23, 34, 36, 37, 38].
As said above, we will be working in a 1d-2v configuration which means the position coordinate
for the distribution function f is given by the real variable x ∈ T and the velocity v variable is
two-dimensional v = (v1, v2). Hence, we consider the distribution function f := f(t, x, v) which is
solution the 1d-2v nonlinear Vlasov–Poisson system with constant magnetic field B0 = (0, 0, ωc)

∂tf + v1∂xf − E∂v1
f + ωc (−v2∂v1

+ v1∂v2
) f = 0,

∂xE(t, x) = 2π −
∫
R2

fdv.
(1.3.2)

We linearize (1.3.2) around the stationary solution (f0, E0) with f0(v) := exp(v
2

2 ) (with v2 =
v2

1 + v2
2) a Maxwellian equilibrium and E0 = 0 a null reference electric field. This corresponds to

writing the following expansion:

f(t, x, v) = f0(v) + ε
√
f0(v)u(t, x, v) +O(ε2), (1.3.3)

and
E(t, x) = E0 + εF (t, x) +O(ε2). (1.3.4)
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1.3. Spectral theory for magnetized linear kinetic models

Then we only keep the terms linear in ε to obtain the (linear) magnetized Vlasov–Poisson system

∂tu+ v1∂xu+ Fv1

√
f0 + ωc (−v2∂v1

+ v1∂v2
)u = 0,

∂xF = −
∫
R2

u
√
f0dv,∫

[0,2π]

F = 0,

(1.3.5)

where the unknowns are u and F the perturbations of the distribution function and the electric
field. The condition ∫

[0,2π]

F = 0 (1.3.6)

implies ∫
[0,2π]

∫
R2

u
√
f0dxdv = 0. (1.3.7)

Hence, we naturally define the Hilbert space L2
0(T × R2) (endowed with the canonical L2 scalar

product (·, ·)H) defined by

L2
0(T × R2) :=

{
u ∈ L2(T × R2) with

∫
[0,2π]

∫
R2

u
√
f0dxdv = 0

}
. (1.3.8)

Note that the unknowns u, F are assumed to be periodic in x. Now we rewrite system (1.3.5) in
the framework of spectral theory highlighting the magnetized Vlasov–Poisson operator H

i∂tu = Hu (1.3.9)

and H given by

H = H0u− iv1

√
f0F with ∂xF = −

∫
R2

u
√
f0dv. (1.3.10)

H0 is the only self-adjoint extension (this is proved in chapter 2) of h0 the free transport operator
associated to the Vlasov equation without coupling with the electric field

h0 = i (−v1∂x + ωc(v2 ∂v1
− v1 ∂v2

)) (1.3.11)

and defined for smooth functions.

Unfortunately the operator H defined on D[H] = D[H0] isn’t self-adjoint, which means studying
the magnetized Vlasov–Poisson system isn’t the right setting to use spectral theory. To remedy
this, we replace the Poisson equation with the Ampère equation given by

∂tF = I∗
∫
R2

v1

√
f0 u dv, (1.3.12)

where I∗ is the space operator such that I∗g = g − [g] and the mean value in space of a function
g is denoted by [g]. We need to modify the Ampère equation (1.3.1) by adding this operator
I∗ to guarantee the equivalence between the Vlasov–Poisson and Vlasov–Ampère systems (with
some added assumptions on the initial condition). Now we can write the Vlasov–Ampère system,

∂tu+ v1∂xu+ Fv1

√
f0 + ωc (−v2∂v1

+ v1∂v2
)u = 0,

∂tF = I∗
∫
R2

v1

√
f0 udv.

(1.3.13)
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Just like for the magnetized Vlasov–Poisson system, we rewrite this system in the framework of
spectral theory, with a Hilbert space H (endowed with the canonical L2 scalar product (·, ·)H)
defined by

H := L2((0, 2π)× R2)⊕ L2
0(0, 2π), (1.3.14)

with

L2
0(0, 2π) :=

{
F ∈ L2(0, 2π) :

∫ 2π

0

F (x) dx = 0

}
. (1.3.15)

Now we can write

i∂t

(
u
F

)
= H

(
u
F

)
, (1.3.16)

where H is the magnetized Vlasov–Ampère operator given by

H =

[
H0 −iv1 e

−v2

4

iI∗
∫
R2 v1 e

−v2

4 · dv 0

]
(1.3.17)

and defined on
D[H] := D[H0]⊕ L2

0(0, 2π). (1.3.18)

We prove that H0 is self-adjoint because it is unitarily equivalent to a multiplication operator.
Then we write

H =

[
H0 0
0 0

]
+ V, (1.3.19)

and we can show V is a symmetric operator that sends H into H. This implies that H is
self-adjoint thanks to the Kato–Rellich theorem [76, Chapter 5, Theorem 4.3].

Finally, we emphasize that this approach is optimal because the L2 regularity on the solution (u, F )
is the minimum requirement to properly pose the problem. This L2 framework is further justified
by the fact that the L2 regularity is propagated in time, because the magnetized Vlasov–Ampère
system is endowed with the following energy relation:

d

dt

(∫
[0,2π]×R2

u2

2
dxdv +

∫
[0,2π]

F 2

2
dx

)
= 0. (1.3.20)

1.3.2 Interpretation of the Bernstein–Landau paradox with the spec-
trum of the magnetized Vlasov–Ampère operator

We have shown that working with the Vlasov–Ampère system (1.3.13) is the right framework
because we can find a self-adjoint operator H associated to this system. Now we study the
spectrum and eigenfunctions of H. We begin by presenting the orthogonal decomposition of the
Hilbert space H into subspaces Hpp,Hac,Hsc defined according to the spectrum of H (a classical
result found in [107, 128]),

H = Hpp ⊕Hac ⊕Hsc. (1.3.21)

where Hpp (resp. Hac, Hsc) corresponds to the pure point (resp. absolutely continuous, resp. sin-
gular continuous) part of the spectrum. The pure point subspace is spanned by the eigenfunctions
of H

Hpp = {ϕ ∈ H : H = λϕ for some λ ∈ R} . (1.3.22)
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1.3. Spectral theory for magnetized linear kinetic models

We refer to [107] for precise definitions of Hac and Hsc because we won’t be manipulating these
subspaces.

In our study, we are interested in how the spectrum evolves with the cyclotron frequency ωc. For
ωc = 0, it was proved in [36, 37] that the spectrum of the Vlasov–Ampère operator H is made up
of an absolutely continuous part and a kernel. Landau damping is a direct consequence of this
result because for a self-adjoint operator V we have that exp(−itV )P0 goes weakly to 0 (with P0

the projection on the subspace Hac). For ωc 6= 0, we are going to compute the eigenvalues and
eigenfunctions of H. One of the main results of chapter 2 is that when ωc 6= 0 the operator H
only has pure point spectrum.

Theorem 1.3.1 (Charles, Després, Rege and Weder, [26]). We assume that ωc > 0. Then the
Vlasov–Ampère operator H : D[H]→ H given by (1.3.17) satisfies

H = Hpp. (1.3.23)

One way to prove this result is simply by explicitly computing the eigenvalues and eigenfunctions
of H, which in practice means finding the solutions to the system

H0u− iv1 e
−v2

4 F = λu,

iI∗
∫
R2

v1 e
−v2

4 u dv = λF,
(1.3.24)

with λ ∈ R and
(
u
F

)
∈ D[H]. To perform these computations we rely on three natural

decompositions of Hpp. The first one is based on Fourier decomposition in the position variable
x (because the unknowns u, F are periodic in x), while the second one relies on the classical
relation involving the kernel of H and its orthogonal H = Ker[H] ⊕ Ker[H]⊥. The third one
is based on distinguishing the eigenfunctions with vanishing electric field F . In the following
table we enumerate the different eigenfunctions of H and distinguish them using these three
decompositions.

Eigenfunctions Ker Electric field F Fourier mode n λ Ref.

V
(0)
n Ker[H] 6= 0 n ∈ Z∗ 0 (2.5.18)

M
(0)
n,j Ker[H] = 0 n ∈ Z 0 (2.5.18), (2.4.2)

Vm,j Ker[H]⊥ = 0 n = 0 mωc with m 6= 0 (2.5.26), (2.4.2)
Wn,m,j Ker[H]⊥ = 0 n ∈ Z∗ mωc with m 6= 0 (2.5.37)
Yn,m Ker[H]⊥ 6= 0 n ∈ Z∗ λn,m with m 6= 0 (2.5.54), (2.5.51)

In chapter 2, we prove that the eigenfunctions enumerated above form a complete set of H.

Theorem 1.3.2 (Charles, Després, Rege and Weder, [26]). Let H be the magnetized Vlasov–
Ampère operator defined in (1.3.17) and (1.3.18). Then, the eigenfunctions of H are a complete
set in H.

Theorem 1.3.1 is a corollary of this result and thanks to our computations we can also enumerate
the different eigenvalues of H with their multiplicities.

Theorem 1.3.3 (Charles, Després, Rege and Weder, [26]). Let H be the magnetized Vlasov–
Ampère operator defined in (1.3.17) and (1.3.18). Then H is self-adjoint and it has pure point
spectrum. The eigenvalues of H are given by:
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1. The infinite multiplicity eigenvalues λ(0)
m := mωc,m ∈ Z.

2. The simple eigenvalues λn,m, n,m ∈ Z∗, given by the roots to equation (2.5.51).

Thanks to this result, for any initial data (u, F ) we can express the solution of (1.3.13) as a
sum of terms (uλ, Fλ) = exp(−itλ) ((u, F ), (vλ, Gλ))H (vλ, Gλ) where (vλ, Gλ) is a normalized
eigenfunction of H associated to the eigenvalue λ. This means that for non trivial initial data, the
solution to the magnetized Vlasov–Ampère system is the sum of an oscillatory function (λ 6= 0)
and of a constant function (λ = 0). Hence, for ωc > 0 Landau damping does not occur.

To conclude this subsection, we give an interpretation of the Bernstein–Landau paradox using
the results detailed above. This interpretation actually shows that there is no paradox, because it
can be explained by a classical property of spectral theory, namely that for a self-adjoint operator
depending on a parameter, the domain of the operator can change sharply at certain values of
the parameter.

Interpretation of the Bernstein–Landau paradox: In the limit when the magnetic field
goes to zero the spectrum of the magnetized Vlasov–Ampère operator changes drastically from
pure point to absolutely continuous, due to a sharp change on its domain.

1.3.3 Numerical tests using semi-Lagrangian schemes

In chapter 2, we use a numerical method to approximate the solutions of the magnetized Vlasov–
Ampère system, with the aim to test the eigenfunctions given above. As we have already said,
we rely on a semi-Lagrangian method with splitting (and we use cubic spline interpolation).
Semi-Lagrangian schemes were first introduced by Cheng and Knorr in 1976 [30] to approximate
solutions to the 1d-1v Vlasov–Poisson system. Since these schemes require a grid for the phase
space, they are quite slow and inefficient in large dimensions. For plasma simulations in large
dimensions (2d-2v and above) Particle-in-Cell (PIC) methods [32] are used far more extensively.
Here, since we are working in a 1d-2v setting (our phase space is of dimension 3), semi-Lagrangian
schemes are appropriate tools to approximate the solutions of (1.3.13). The originality of semi-
Lagrangian schemes, compared to other numerical methods, is that they use the characteristics
of the approximated system to compute the solution at each time step. In this subsection, we are
going to present the backward semi-Lagrangian method, showing how this method exploits the
characteristics of the system. Then we will detail the different steps of the numerical method
from chapter 2 used to approximate the magnetized Vlasov–Ampère system.

We consider a 1d transport equation ∂tf + b ·∂xf = 0 with b : Rd → R, then we set X := X(s; t;x)
for the characteristic (X is the characteristic equal to x ∈ R at time t ≥ 0). We call xi the
points of the regular grid in position with h the position step and we call tn the points of the
discretization in time with ∆t the time step. The classical semi-Lagrangian scheme is called
"backward" because we compute the approximation fn+1 of the solution f at time tn+1 using
the approximation fn at the previous time tn. Now we detail the three steps that make up this
semi-Lagrangian scheme:

1. For every point xi of the grid in position, we compute the value at time tn of the characteristic
X(tn; tn+1, xi) equal to xi at time tn+1.

2. Thanks to the fact that f is the solution to a transport equation, we have the following

14



1.3. Spectral theory for magnetized linear kinetic models

relation:

f(t, x) = f(s,X(s; t, x))

for all x ∈ Rd and t, s ≥ 0. In the discretized setting, this means we can express fn+1 using
fn and the characteristic calculated at the previous step because for each xi we have

fn+1(xi) = fn(X(tn; tn+1, xi)). (1.3.25)

Hence we obtain the desired approximation at the next time fn+1(xi) by computing
fn(X(tn; tn+1, xi)).

3. However, sinceX(tn; tn+1, xi) isn’t necessarily a point xi of the grid, we compute fn(X(tn; tn+1, xi))
with the values fn(xi) using cubic spline interpolation, which is a very common interpolation
technique for semi-Lagrangian schemes. In practise, this consists in finding the interpolation
function fnS of the solution f by using the approximation fn. Since this is a cubic spline
interpolation function, we can decompose fnS on the basis of the cubic B-splines:

fnS (x) =
∑
j

αnj S
3(x− xj) (1.3.26)

with S3 given by

S3(x) =
1

6h


(

2− |x|h
)3

if h ≤ |x| < 2h,

4− 6
(
x
h

)2
+ 3

(
|x|
h

)3

if 0 ≤ |x| < h,

0 otherwise.

(1.3.27)

The coefficients αnj are determined by evaluating fnS at the points of the grid, for all xi we
have

fnS (xi) = fn(xi). (1.3.28)

Thanks to the expression of S3 (the support of S3 is of length 4h) and (1.3.28), we can
compute the coefficients αnj by solving a linear system.

Finally, the approximation of f at time tn+1 is given by

fn+1(xi) = fnS (X(tn; tn+1, xi)) =
∑
j

αnj S
3 (X(tn; tn+1, xi)− xj) (1.3.29)

with the αnj calculated with the values fn(xi).

To finish this paragraph we give a figure representing the different steps of the backward semi-
Lagrangian scheme in the case of the free transport equation (1.2.1).
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Figure 1.3 – Representation of the semi-Lagrangian approach [41].

As mentioned above, to approximate the magnetized Vlasov–Ampère system, we combine the semi-
Lagrangian method with a splitting procedure. Such a procedure corresponds to approximating
the solution of ∂tf + (A+ B)f = 0 by solving ∂tf +Af = 0 and ∂tf +Bf = 0 one after the other.

Hence, we split the magnetized Vlasov–Ampère system so as to only solve transport equations
with constant advection terms.

∂t

(
u
F

)
+ (A+ B + C +D)

(
u
F

)
= 0,

with A,B, C,D given in (2.8.5).

Combining this splitting procedure with the backward semi-Lagrangian method, we construct the
following scheme to solve the magnetized Vlasov–Ampère system.

1. Initialization:

The initial distribution function and electric field Uini =

(
uini
Fini

)
are given functions.

2. Going from tn to tn+1:

Assume we know Un, the approximation of U =

(
u
F

)
at time tn.

• We compute U∗ by solving ∂tU +AU = 0 with a semi-Lagrangian scheme during one
time step ∆t with initial condition Un.

• We compute Û by solving ∂tU + BU = 0 with a Runge-Kutta 2 scheme during one
time step ∆t with initial condition U∗. Here we don’t use a semi-Lagrangian scheme
because BU is just a source term.

• We compute U∗∗ by solving ∂tU + CU = 0 with a semi-Lagrangian scheme during one
time step ∆t with initial condition Û.

• We compute Un+1 by solving ∂t U +DU = 0 with a semi-Lagrangian scheme during
one time step ∆t with initial condition U∗∗.

16



1.4. Mathematical properties of the magnetized Vlasov–Poisson system

The numerical results for this scheme can be found in chapter 2, notably by consulting fig. 2.2
and fig. 2.3.

1.4 Mathematical properties of the magnetized Vlasov–Poisson
system

The second question that was addressed in this thesis concerns certain mathematical properties for
the (nonlinear) magnetized Vlasov–Poisson system (1.2.23). The existence of classical solutions
to the (unmagnetized) Vlasov–Poisson system for general initial data (1.2.12) was proved at the
beginning of the nineties in two separate papers. The first work by Pfaffelmoser [103] relied on a
careful analysis of the characteristics of the system (that we will define later on). This enabled
him to obtain a uniform (in x, v) estimate on the support in velocity of the solution f on a local
interval of existence (which exists thanks to the results in [79]), which is sufficient to obtain global
existence. This method was simplified in a subsequent paper by Schäffer [114] where the estimate
on the support in velocity of f was also improved. The second work by Lions and Perthame [87]
is based on the propagation of velocity moments of the distribution function defined for k ≥ 0 by

Mk(t) =

∫
R3

∫
R3

|v|k f(t, x, v)dvdx. (1.4.1)

In [87], this propagation property is obtained by controlling a certain norm of the electric field
in order to get a Grönwall inequality on the velocity moment. This approach also guarantees
propagation of the regularity of the initial data, proving the existence of classical solutions for
Vlasov–Poisson. An interesting point is that even though these two approaches differ greatly, in
both of these methods a fundamental assumption is to limit the influence of high velocities on
the dynamics of the system. Finally in [99], Pallard combined the two approaches to prove an
optimal version of the main result from [87].

With regards to uniqueness, Robert [48] first proved uniqueness for compactly supported weak
solutions. Then Loeper [88] managed to extend this result by proving uniqueness for solutions
with bounded macroscopic density, using techniques from optimal transportation. Finally, in
a recent paper [95], Miot generalized Loeper’s uniqueness condition, and in the process proved
that for certain initial data with unbounded macroscopic density, the Vlasov–Poisson system is
well-posed.

In chapter 4 and chapter 5, we study propagation of velocity moments, propagation of regularity
and uniqueness for the magnetized Vlasov–Poisson system. We highlight how in the case of a
constant magnetic field B = (0, 0, ω) (chapter 4), we can combine the method of propagation of
moments from [87] and an induction procedure involving the cyclotron period Tc = 2π

ω to prove
the propagation of velocity moments for the magnetized Vlasov–Poisson system. For a general
bounded and Lipschitz magnetic field, we combine the results by Pallard [99] and an analogous
induction procedure involving the cyclotron period Tc = 1

‖B‖∞
to show propagation of velocity

moments. Finally, we show how the uniqueness conditions found in [88, 95] can be adapted to
our setting.

In this subsection we summarize these results, first by highlighting how, as said above, the proofs
of our main results regarding propagation of moments combine the main methods developed for
the unmagnetized Vlasov–Poisson system [87, 99, 103, 114] with an induction argument that
involves the cyclotron period. Then, we show how the uniqueness conditions found in [88, 95],
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Chapter 1. General Introduction

which are conditions on the Lp norms of the macroscopic density ρ, are modified in the magnetized
setting to become conditions involving the velocity moments of the initial data f in.

To finish this introduction, we mention an important point related to the method of propagation
of velocity moments. This method relies on the regularization procedure introduced by Arsenev
in [4] to prove the existence of weak solutions for Vlasov–Poisson. This is due to the fact that in
[87, 99], all the a priori estimates in the proofs are true only for smooth solutions. However, since
these estimates depend only on constants and quantities that are conserved by the regularization
procedure, we can pass to the limit in the approximate or regularized system from [4]. This is
also true for the estimates that we find in chapter 4 and chapter 5, which means we can also use
Arsenev’s approximate system. Since this is an important part in the proofs, in chapter 3 we detail
exactly what we mean by "conserved quantities" and present the approximate Vlasov–Poisson
system from [4].

1.4.1 Propagation of velocity moments with an induction procedure
depending on the cyclotron period

Propagation of moments with a constant magnetic field

In chapter 4, we prove the propagation of velocity moments for the three-dimensional magnetized
Vlasov–Poisson system for electrons (1.2.23) with a constant magnetic field given by B = (0, 0, ω)
and ω > 0 (theorem 1.4.2 written below), which we rewrite here without the electric potential
and with the physical constants normalized to 1:

∂tf + v · ∇xf + (E + v ∧B) · ∇vf = 0,

E(t, x) =
1

4π

∫
R3

∫
R3

x− y
|x− y|3

f(t, y, v)dvdy.
(1.4.2)

As said above, we are going to rely on the main result from [87] (given in the following theorem),
where the propagation of velocity moments for weak solutions to Vlasov–Poisson was proved.

Theorem 1.4.1 (Lions and Perthame, [87]). Let f in ≥ 0, f in ∈ L1 ∩ L∞(R3 ×R3). We assume
that ∫

R3×R3

|v|m f in(x, v)dxdv < +∞ if m < m0 (1.4.3)

where 3 < m0. Then there exists a solution f ∈ C(R+;Lp(R3×R3))∩L∞(R+;Lp(R3×R3)) (for
all 1 ≤ p < +∞) of the Vlasov–Poisson system ( (1.4.2) with ω = 0) satisfying

sup
t∈[0 ,T ]

∫∫
R3×R3

|v|m f(t, x, v)dxdv < +∞, (1.4.4)

for all T < +∞, m < m0.

First, following the different steps from [111] where the ideas of [87] were simplified, we are going
to summarize the proof of theorem 1.4.1. Then we will present the main result from chapter 4
which is analogous to theorem 1.4.1 for (1.4.2) and show how these different steps change in the
proof of our result. By doing this, we hope to illustrate why an induction procedure involving the
cyclotron period is necessary in the magnetized case. In the following discussions, the quantity C

18



1.4. Mathematical properties of the magnetized Vlasov–Poisson system

will denote a constant that depends only on conserved quantities and that can change from one
line to the other.

� Step 1: A differential inequality on Mk We differentiate the velocity moment of order
k Mk, and by using the Vlasov equation and integrating by parts, we can write the following
estimate: ∣∣∣∣ ddtMk(t)

∣∣∣∣ =

∣∣∣∣∫∫ k |v|k−2
v · Efdvdx

∣∣∣∣ . (1.4.5)

Thanks to a classical moment inequality, this last estimate yields the following differential
inequality: ∣∣∣∣ ddtMk(t)

∣∣∣∣ ≤ C ‖E(t)‖k+3Mk(t)
k+2
k+3 . (1.4.6)

This inequality shows us that, in order to obtain a satisfactory Grönwall inequality on Mk,
we need to control ‖E(t)‖k+3 with the quantity Mk(t)

1
k+3 .

� Step 2: A representation formula for ρ We go back to the Vlasov equation and write
it like a linear transport equation with the nonlinear term E · ∇vf considered as a source
term. This means we can write the solution of the Vlasov equation using this "new" source
term and the characteristics of the free transport equation (1.2.1) which are defined by

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = 0.

(1.4.7)

We immediately get (X(s; t, x, v), V (s; t, x, v)) = (x+ (s− t)v, v), and so we can write the
distribution function f using this other point of view

f(t, x, v) = f in(x− tv, v)−
∫ t

0

E · ∇vf(s, x+ (s− t)v, v)ds. (1.4.8)

The second integral term can be written as divx · · ·+ divv . . . thanks to the characteristics
and the fact that E is independent of v. After integration in v, this results in the following
representation formula for ρ:

ρ(t, x) =

∫
R3

f in(x− tv, v)dv + divx
∫ t

0

∫
R3

(s− t)(fE)(s, x+ (s− t)v, v)dvds. (1.4.9)

� Step 3: Control of the electric field This is actually the most difficult step. Thanks to
(1.4.9), we can estimate ‖E(t)‖k+3 simply because E = −∇xG3?ρ. With the help of different
classical functional inequalities, we show that to estimate ‖E(t)‖k+3 we need to estimate
the k + 3-norm of Σ(t, x) :=

∫ t
0

∫
R3(s− t)(fE)(s, x+ (s− t)v, v)dvds =

∫ t
0
σ(s, t, x)ds. The

analysis of the term σ yields an estimate which depends on M
1
k+3

k

‖σ(s, t, ·)‖k+3 ≤ ‖σ(s, t, ·)‖k+3 ≤
C

s
Mk(t− s)

1
k+3 . (1.4.10)

This is almost the desired estimate, except for the singularity at t = 0. We deal with this
issue by splitting the integral

∫ t
0
σ =

∫ t0
0
σ +

∫ t
t0
σ where

∫ t0
0
σ is a "small time" part that
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Chapter 1. General Introduction

we estimate roughly and
∫ t
t0
σ a "large time" part that we estimate with (1.4.10). Then we

can optimize the parameter t0 in order to obtain the following estimate on ‖E(t)‖k+3:

‖E(t)‖k+3 ≤ C(1 + sup
0≤s≤t

Mk(s))
1
k+3 ln

(
1 + sup

0≤s≤t
Mk(s)

)
. (1.4.11)

� Step 4: A Grönwall inequality for the moments on [0 , T ] Thanks to (1.4.11), we
get a linear Grönwall inequality for y(t) = 1 + sup

0≤s≤t
Mk(s) on [0 , T ] which concludes the

proof of theorem 1.4.2.

Now we give the main result from chapter 4.

Theorem 1.4.2 (Rege, [110]). Let k0 > 3, T > 0, f in = f in(x, v) ≥ 0 a.e. with f in ∈ L1 ∩
L∞(R3 × R3) and assume that ∫∫

R3×R3

|v|k0 f indxdv <∞. (1.4.12)

Then there exists a weak solution

f ∈ C(R+;Lp(R3 × R3)) ∩ L∞(R+;Lp(R3 × R3)) (1.4.13)

(1 ≤ p < +∞) to the Cauchy problem for the Vlasov–Poisson system with magnetic field (1.4.2)
in R3 × R3 such that ∫∫

R3×R3

|v|k f(t, x, v)dxdv ≤ C < +∞, 0 ≤ t ≤ T, (1.4.14)

for all k such that 0 ≤ k ≤ k0, and with C = C(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)) > 0.

As we already mentioned, we use the same steps as in the proof of theorem 1.4.1 and we show
why an added induction procedure depending on Tc is necessary.

� Step 1: A differential inequality on Mk We differentiate Mk in the same way and
obtain the same estimate (1.4.6) because the magnetic part of the Lorentz force vanishes in
the computations (this is physically coherent because Mk(t) is a macroscopic quantity and
the magnetic force doesn’t work on the system)∣∣∣∣ ddtMk(t)

∣∣∣∣ =

∣∣∣∣∣∣
∫∫

k |v|k−2
v · (E + v ∧B)︸ ︷︷ ︸

=v·E

fdvdx

∣∣∣∣∣∣ . (1.4.15)

Hence, just like in the unmagnetized setting, we need to control ‖E(t)‖k+3 with the quantity
Mk(t)

1
k+3 .

� Step 2: A representation formula for ρ We follow the same procedure by considering
the nonlinear term E · ∇vf as a source term. However now we have to deal with the
characteristics of the following transport equation:

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = V (s; t, x, v) ∧B.

(1.4.16)
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1.4. Mathematical properties of the magnetized Vlasov–Poisson system

The characteristics (which we will write X(s), V (s) in the rest of this discussion) are a
bit more complicated than for (1.4.7), but we can still compute them explicitly, and since
∂xV = 0 and ∂xX = Id, we find a decomposition for f given by

f(t, x, v) = f in(x− tv, v) + divx
∫ t

0

fHds+ divv
∫ t

0

fGds, (1.4.17)

with the coordinates of G,H being linear combinations of the coordinates of E. This means
that after integration in v, we have a similar representation formula for ρ compared to
(1.4.9):

ρ(t, x) =

∫
R3

f in(x− tv, v)dv + divx
∫ t

0

∫
R3

(fH)(s,X(s), V (s))dvds. (1.4.18)

� Step 3: Control of the electric field We proceed to estimate ‖E(t)‖k+3 using the
same tools, which means we need to estimate Σ(t, x) :=

∫ t
0

∫
R3(fH)(s,X(s), V (s))dvds =∫ t

0
σ(s, t, x)ds. The analysis of the term σ yields the following estimate

‖σ(s, t, ·)‖k+3 ≤ C
√

2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

Mk(t− s)
1
k+3 , (1.4.19)

where we see a new term
(

ω2s2

2(1−cos(ωs))

) 2
3

compared to (1.4.10) in the unmagnetized case.

This means we now have singularities at multiples of the cyclotron period t = 2π
ω ,

4π
ω , . . .

and we notice that the singularity in t = 0 that was present in the unmagnetized case still
remains. We can deal with this singularity in t = 0 like in the unmagnetized case but
unfortunately that’s not the case for the others. Hence the first step is to show propagation
of moments on [0 , Tω] with Tω = Tc

2 = π
ω (in fact we can take any time < Tc).

� Step 4: A Grönwall inequality for the moments on [0 , Tω] For t ∈ [0 , Tω], thanks
to the previous analysis we can show the following estimate

‖E(t)‖k+3 ≤ C(1 + sup
0≤s≤t

Mk(s))
1
k+3 ln

(
1 + sup

0≤s≤t
Mk(s)

)
. (1.4.20)

This is the same as (1.4.11) except here the constant C depends on ω. Thanks to (1.4.20),
we get a linear Grönwall inequality for y(t) = 1 + sup

0≤s≤t
Mk(s) on [0 , Tω] which proves

propagation of moments on [0 , Tω].

� Step 5: Propagation of moments for all time by induction The main argument here
is that the constants in (1.4.20) depend only on Tω, k, ω which are constants,

∥∥f in∥∥
1
,
∥∥f in∥∥∞ , Ein

(Ein is the initial energy of the system) which are conserved quantities, and Mk(f in) which
is finite. Since we are looking to prove by induction that Mk(t) is bounded for all time, the
assumption Mk(f in) < +∞ is the initialization in our induction. With these observations,
we can follow the previous steps on any time interval [nTω , (n+ 1)Tω], and this concludes
the proof of theorem 1.4.2.
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Propagation of moments with a general bounded magnetic field

We present one of the main results of chapter 5, which extends the main theorem of chapter 4,
where we show propagation of velocity moments for weak solutions to the magnetized Vlasov–
Poisson system (1.4.2) with a general magnetic field. However, we note that in chapter 5 we
succeed in showing this result only in the case of a magnetic field B := B(t) that depends on time
and that is independent of the position x. In chapter 5, we explain why our proof only works for
such a magnetic field and also present a lead to adapt our proof to the case of a more general
magnetic field B := B(t, x) that also depends on x.

We also assume that B verifies
B ∈W 1,∞(R+). (1.4.21)

This is a natural regularity assumption on B which enables us to have well-posed characteristics
in the case of smooth solutions.

As mentioned above, our method relies on the paper by Pallard [99], where propagation of velocity
moments for weak solutions to Vlasov–Poisson was proved for any velocity moment of order
k > 2, improving theorem 1.4.1 from [87]. An important idea in [99] is to combine the Eulerian
point of view developed in [87], where the authors studied the behavior of velocity moments, and
the Lagrangian point of view developed by Pfaffelmoser in [103] and improved by Schäffer in
[114], where the existence of classical solutions to Vlasov–Poisson was shown by studying the
characteristics of the system. More precisely, in [99] Pallard exploited this second Lagrangian
approach to obtain an a priori bound depending on the characteristics. This approach involves
studying the following quantity defined for any t > 0 and δ ∈ ]0 , t[:

Q(t, δ) := sup

{∫ t

t−δ
|E(s,X(s; 0, x, v))| ds, (x, v) ∈ R3 × R3

}
. (1.4.22)

Indeed, Q(t, δ) quantifies the evolution of the characteristics of the Vlasov–Poisson system given
by 

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)),

(1.4.23)

with
(X(t; t, x, v), V (t; t, x, v)) = (x, v). (1.4.24)

All the following results and inequalities in this subsection will be written for smooth solutions
in both unmagnetized and magnetized frameworks, mainly because the quantity Q(t, δ) isn’t
necessarily well defined for functions in Lebesgue spaces. However the result on propagation
of velocity moments is true for general initial data f in ∈ L1 ∩ L∞(R3 × R3) which verifies the
assumptions of theorem 1.4.1 (with 2 < m0) thanks to the approximation procedure mentioned
above. The main contribution in [99] was to show a uniform bound for Q, which is given in the
next theorem.

Theorem 1.4.3 (Pallard, [99]). Let f in ∈ C1
c (R3×R3) with f in ≥ 0 and let f ∈ C1

c (R+×R3×R3)
be the unique classical solution to the Vlasov–Poisson system. Then for any k > 2, T > 0 we have

sup
0≤t≤T

Q(t, t) ≤ C(T
1
2 + T

7
5 ), (1.4.25)
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with C that only depends on

k, E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,

∫∫
|v|k f in(x, v)dvdx. (1.4.26)

The propagation of velocity moments is a direct consequence of (1.4.25) because we can write∫∫
R3×R3

|v|k f(t, x, v)dvdx =

∫∫
R3×R3

|V (t; 0, x, v)|k f in(x, v)dvdx

≤
∫∫

R3×R3

(|v|+Q(t, t))kf in(x, v)dvdx

≤ 2k−1

(∫∫
R3×R3

|v|k f in(x, v)dvdx+Q(t, t)k
∥∥f in∥∥

1

)
.

As said above, the estimate (1.4.25) on Q(t, t) is obtained by studying the characteristics (1.4.23).
Hence we fix (t, x∗, v∗) ∈ [0 , T ] × R3 × R3 and set (X∗, V∗)(s) = (X∗, V∗)(s; t, x∗, v∗). For any
δ ∈ [0 , t] we can estimate Q(t, δ) by controlling

∫ t
t−δ E(s,X∗(s))ds independently of (x∗, v∗).

Thanks to the definition of E we can write∫ t

t−δ
E(s,X∗(s))ds ≤

∫ t

t−δ

∫
ρ(s, x)dx

4π |x−X∗(s)|2
ds =

∫ t

t−δ

∫∫
f(s, x, v)dxdv

4π |x−X∗(s)|2
ds =

I∗(t, δ)

4π
.

In [99], I∗(t, δ) is estimated by splitting the space of integration [t− δ , t]×R3×R3 in three parts.
This method is inspired from Schäffer’s paper [114] where such a splitting was used to show the
existence of smooth solutions to the Vlasov–Poisson system. The partition from [114] is modified
in [99] by introducing a small parameter ε > 0 (specified in chapter 5) and the three parts of the
partition are given by

G = {(s, x, v) : min(|v| , |v − V∗(s)|) < P} ,
B = {(s, x, v) : |x−X∗(s)| ≤ Λε(s, v)} \G,
U = [t− δ , t]× R3 × R3\(G ∪B),

with

P = 210Q(t, δ) and Λε(s, v) = L(1 + |v|2+ε
)−1 |v − V∗(s)|−1 with L > 0. (1.4.27)

Using obvious notations, we write I∗ = IG∗ + IB∗ + IU∗ . The set G is considered the "good" set
because it’s a part of the integration space where the velocities are bounded. The set B is the
"bad" set because the velocities are large and the distance |x−X∗(s)| is small which means the
singularity in the integral is stronger. Finally U is considered the "ugly" set. In [99, 114], IG∗ and
IB∗ are estimated using static estimates, while the time integral is exploited in a crucial way to
obtain a sharp estimate for IU∗ . Similarly, in the magnetized case IG∗ and IB∗ are estimated using
the same static estimates as in the unmagnetized case. However the estimate for IU∗ inherently
depends on the characteristics of the system, which adds a difficulty in the magnetized case
because of the modified characteristics.

As said above, in both unmagnetized and magnetized frameworks, we exploit the time integral to
estimate IU∗ , so with the change of variables (y, w) = (X(s; t, x, v), V (s; t, x, v)) = (X(s), V (s))
we can write

IU∗ =

∫ t

t−δ

∫∫
f(s, y, w)1U (s, y, w)dydw

|x−X∗(s)|2
ds =

∫∫ ∫ t

t−δ

1U (s,X(s), V (s))

|X(s)−X∗(s)|2
dsf(t, x, v)dxdv.
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This last inequality is true because f is the solution to a transport equation and so is constant
along the characteristics.

Now we give an important lemma from [99].

Lemma 1.4.4 (Pallard, [99]). For any (x, v) ∈ R6 we have:∫ t

t−δ

1U (s,X(s), V (s))

|X(s)−X∗(s)|2
ds ≤ C (1 + |v|2+ε

)

L
(1.4.28)

with C = C(E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞).

A crucial point in the proof of lemma 1.4.4 is that if there exists s1 ∈ [t − δ , t] such that
(s1, X(s1), V (s1)) ∈ U then for all s ∈ [t− δ , t] we have the following estimates for the velocity
characteristic (in the unmagnetized case):

2−1 |v| ≤ |V (s)| ≤ 2 |v| ,
2−1 |v − v∗| ≤ |V (s)− V∗(s)| ≤ 2 |v − v∗| .

(1.4.29)

This result is intuitive because V (s1) ≥ P = 210Q(t, δ) which means V (s1) is 210 larger than
the variation of V (·) on [t− δ , t], which implies that V (·) doesn’t vary much on [t− δ , t]. Since
V (t) = v, we can estimate |V (s)| taking v as a reference point to obtain (1.4.29).

In the magnetized case, we try to obtain similar estimates using the characteristics now defined
by 

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)) + V (s; t, x, v) ∧B(s,X(s; t, x, v)),

(1.4.30)

with
(X(t; t, x, v), V (t; t, x, v)) = (x, v). (1.4.31)

The evolution of the velocity characteristic in this framework is quantified by the following
inequality for s ∈ [t− δ , t]:

|V (s)| ≤ (|v|+Q(t, δ)) exp(δ ‖B‖∞). (1.4.32)

This estimate is obtained via a classical Grönwall inequality because thanks to (1.4.30) we have

|V (s)| ≤ |v|+
∫ t

s

|E(τ,X(τ ; t, x, v))| dτ +

∫ t

s

|V (τ ; t, x, v)| ‖B‖∞ dτ.

The inequality (1.4.32) highlights how the evolution of V (·) is influenced by the strength of the
magnetic field. Indeed, the estimates (1.4.29) are no longer verified in the magnetized case if the
magnetic field is large enough. One way around this is to limit our analysis to an interval [0 , TB ]
with TB (defined more precisely in chapter 5) depending on the cyclotron period Tc = 1

‖B‖∞
,

exactly like in the constant magnetic case presented previously. Hence, on [0 , TB ] we manage to
adapt the analysis from [99] and we obtain an estimate on Q(t, t) analogous to (1.4.25).

Proposition 1.4.5 (Rege, [109]). For all T > 0 such that T ≤ TB (TB defined in chapter 5),
we have the following estimate on Q(t, t)

Q(t, t) ≤ C exp(T ‖B‖∞)
2
5 (T

1
2 + T

7
5 ), (1.4.33)

24



1.4. Mathematical properties of the magnetized Vlasov–Poisson system

with C that depends on

k, E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,

∫∫
|v|k f in(x, v)dvdx.

Like in the constant magnetic field case, we rely on an induction procedure to prove the bounded-
ness of Q(t, t) for all time. First we can write for all n ∈ N

Q(nTB , nTB) =

n−1∑
p=0

Q((p+ 1)TB , TB).

Then for all p we can use the same analysis as previously to estimate Q((p+ 1)TB , TB)

Q((p+ 1)TB , TB) ≤ C exp(T ‖B‖∞)
2
5 (T

1
2

B + T
7
5

B ) (1.4.34)

but with the constant C now depending on

k, E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,

∫∫
|v|k f((p− 1)TB , x, v)dvdx.

However by an immediate induction we can show that for all p, Mk(pTB) verifies

Mk(pTB) ≤ Cp(k, ‖B‖∞ , E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,Mk(0)). (1.4.35)

This induction procedure is illustrated by the following implications

Mk(0) ≤ C ⇒ Q(TB , TB) ≤ C(Mk(0))⇒Mk(TB) ≤ C(Q(TB , TB)) = C(Mk(0)) . . .

Hence, thanks to this proof by induction, we obtain an estimate on Q(t, t) for 0 ≤ t ≤ T with
T > 0

Q(t, t) ≤ C, (1.4.36)

with C that depends on

T, k, ‖B‖∞ , E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,

∫∫
|v|k f in(x, v)dvdx.

Using an inequality similar to (1.4.32) also obtained thanks to a Grönwall inequality, we prove
that this estimate on Q(t, t) implies the propagation of velocity moments of order k > 2 for the
magnetized Vlasov–Poisson system.

1.4.2 Uniqueness via conditions on the moments

To finish this section on the results regarding the magnetized Vlasov–Poisson system, we present
some uniqueness conditions for solutions to (1.4.2). Contrary to the previous subsection, these
uniqueness conditions are valid for a general magnetic field B := B(t, x) that depends on time
and position, and that verifies

B ∈W 1,∞(R+ × R3). (1.4.37)

As mentioned above, we mainly rely on two papers by Loeper [88] and Miot [95] in which new
uniqueness conditions for the Vlasov–Poisson system were proved. To illustrate our contributions,
we first present some ideas from these papers. The main result from [88] is given by the following
theorem:
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Chapter 1. General Introduction

Theorem 1.4.6 (Loeper, [88]). Given f in ≥ 0 with f in ∈ L1 ∩L∞(R3 ×R3), given T > 0, there
exists at most one weak solution to the Vlasov–Poisson system such that

ρ ∈ L∞([0 , T ]× R3). (1.4.38)

This theorem shows that the boundedness of the macroscopic density is a sufficient condition
for uniqueness. The proof is based on the control of a certain distance Q(t) (not to be confused
with Q(t, t) from the previous subsection) between two solutions f1, f2 (with ρ1, ρ2 and E1, E2

the corresponding macroscopic densities and electric fields) to the Vlasov–Poisson system which
is given by

Q(t) :=
1

2

∫
R6

f in(x, v) |Y1(t, x, v)− Y2(t, x, v)| dxdv, (1.4.39)

with Yi(t, x, v) = (Xi(t; 0, x, v), Vi(t; 0, x, v)) and (Xi, Vi) i = 1, 2 the characteristics defined by
(1.4.7). Using optimal transportation techniques and the assumption ρ1, ρ2 ∈ L∞([0 , T ]× R3),
Loeper proves in [88] that Q verifies a Grönwall inequality. More precisely, this Grönwall inequality
is obtained thanks to two estimates involving the Wasserstein distances of order 2 between f1

and f2, and between ρ1 and ρ2, which we write W2(f1, f2) and W2(ρ1, ρ2). We recall that the
Wasserstein distance of order p ≥ 1 corresponds to a distance on the space of Borel probability
measures and its definition is given in [88, Definition 2.1].

The first estimate involves controlling the H−1 norm of ρ1 − ρ2 using optimal transportation
techniques to obtain the following estimate:

‖ρ1 − ρ2‖H−1 ≤ max(‖ρ1‖∞ , ‖ρ2‖∞)
1
2W2(ρ1, ρ2). (1.4.40)

The second estimate on the other hand is a consequence of the main assumption of theorem 1.4.6
ρ ∈ L∞([0 , T ]× R3). This condition yields loglipschitz regularity for the electric field

|E(t, x)− E(t, y)| ≤ (‖ρ‖1 + ‖ρ‖∞) |x− y| (1 + |ln |x− y||). (1.4.41)

Thanks to these two estimates, we obtain the following first order differential inequality on Q:

d

dt
Q(t) ≤ CQ(t)

(
1 + ln

1

Q(t)

)
(1.4.42)

where C depends only on ‖ρi‖∞, i = 1, 2. Thanks to this Grönwall type inequality, we have that
if Q(0) = 0 then Q(t) = 0 on [0 , T ], which yields uniqueness because Q(t) controls W2(f1, f2) [88,
Lemma 3.6].

In [95], using similar techniques, Miot generalized theorem 1.4.6 by showing a new uniqueness
condition for the Vlasov–Poisson system involving the Lp norms (p ≥ 1) of ρ.

Theorem 1.4.7 (Miot, [95]). Let T > 0. There exists at most one weak solution f ∈ L∞([0 , T ], L1∩
L∞(R3 × R3)) to the Vlasov–Poisson system on [0 , T ] such that

sup
[0 ,T ]

sup
p≥1

‖ρ(t)‖p
p

< +∞. (1.4.43)

Using this condition, Miot also proved that for certain initial data with unbounded macroscopic
density the Vlasov–Poisson system is well-posed.
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Theorem 1.4.8 (Miot, [95]). There exists f in ≥ 0 a.e. with f in ∈ L1 ∩ L∞(R3 ×R3) such that

ρ0(x) = C ln−(|x|), ∀x ∈ R3 (1.4.44)

and which defines a unique weak solution to the Vlasov–Poisson system.

A crucial point in [95], contrary to the method used in [88], is to exploit the second-order
structure of the characteristics of the Vlasov–Poisson system. This approach yields a second-order
differential inequality on the distance D(t) =

∫∫
R6 |X1(t, x, v)−X2(t, x, v)| f in(x, v)dxdv which

in turn implies uniqueness.

When we add an external magnetic field, we show in chapter 4 and chapter 5 that these results
can be adapted to find new uniqueness conditions for solutions to the magnetized Vlasov–Poisson
system. In truth, if we assume that the magnetic field is constant, then the uniqueness conditions
from [88, 95] stay the same (this is proved in chapter 4). However, if one considers a general
magnetic field verifying (1.4.37), then we need additional conditions on certain velocity moments
of the solution (1.4.46) to guarantee uniqueness compared to the unmagnetized case. These
conditions are necessary to control the extra terms in D(t) that appear because of the added
magnetic field.

Theorem 1.4.9 (Rege, [109]). Let T > 0 and B verify (1.4.37). Furthermore, let f in ≥ 0 a.e.
with f in ∈ L1 ∩ L∞(R3 × R3) and such that∫∫

R3×R3

|v|m f in(x, v)dxdv < +∞, (1.4.45)

for some m > 6.

If f in also satisfies

∀k ≥ 1,

∫∫
R3×R3

|v|k f in(x, v)dxdv ≤ (C0k)
k
3 , (1.4.46)

for some constant C0 independent of k, then there exists at most one solution f to (5.1.1). If
such a solution f exists then it will verify the following bound on the Lp norms of ρ:

sup
[0 ,T ]

sup
p≥1

‖ρ(t)‖p
p

< +∞. (1.4.47)

1.5 List of publications, preprints and numerical codes

This thesis has resulted in the following publications, preprints and numerical codes:

• [26] F. Charles, B. Després, A. Rege, and R. Weder, The magnetized Vlasov–Ampère system
and the Bernstein–Landau paradox, Journal of Statistical Physics, 183:23, 2021.

• [108] A. Rege, Numerical codes in Python to implement semi-Lagrangian methods for the
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Chapter 2. The magnetized Vlasov–Ampère system and the Bernstein–Landau
paradox

Summary

This chapter corresponds to a joint work with Frédérique Charles, Bruno Després and Ricardo
Weder and has been published in the Journal of Statistical Physics [26].

We study the Bernstein–Landau paradox in an electrostatic plasma, which consists in that in
the presence of the magnetic field, the electric field and the charge density fluctuation have an
oscillatory behavior in time. We consider this problem from a new point of view. Instead of
analyzing the linear magnetized Vlasov–Poisson system, as is usually done, we study the linear
magnetized Vlasov–Ampère system because we can reformulate this system as a Schrödinger
equation with a self-adjoint magnetized Vlasov–Ampère operator. This self-adjoint operator
has a complete set of orthonormal eigenfunctions. In the limit when the magnetic field goes to
zero the spectrum of the magnetized Vlasov–Ampère operator changes drastically from pure
point to absolutely continuous in the orthogonal complement to its kernel, due to a sharp
change on its domain. This spectral property explains the Bernstein–Landau paradox. Finally, we
present numerical simulations that illustrate the Bernstein–Landau paradox using semi-Lagrangian
schemes.

2.1 Introduction

Collisionless motion of an electrostatic plasma can exhibit wave damping, a phenomenon identified
by Landau in [80] which is now called Landau damping. It consists in the decay for large times
of the electric field. There is a very extensive literature on Landau damping. See for example,
[34, 37, 36, 112, 118, 122], and the references quoted there. For a recent deep mathematical study
of Landau damping in the nonlinear case see [96]. On the contrary, it is known that magnetized
plasmas can prevent Landau damping [14]. In fact, it was shown by Bernstein [14] that in the
presence of a constant magnetic field the electric field does not decay for large times, and that,
actually, it has an oscillatory behavior as a function of time. This phenomenon is called the
Bernstein–Landau paradox, see for example [121], because it seems paradoxical that even an
arbitrarily small, but nonzero, value of the external constant magnetic field can be the cause of
this radical change in the behaviour of the electric field for large times. The standard theory
of the Bernstein–Landau paradox in the physics literature is based on the representation of the
solutions to the magnetized Vlasov–Poisson system of equations in terms of a series of Bernstein
modes. See, for example, [118, section 9.16] and [122, section 4.4.1].

It is the purpose of the present work to revisit the Bernstein–Landau paradox from a new point
of view. Instead of considering the magnetized Vlasov–Poisson system we study the magnetized
Vlasov–Ampère system. We write the magnetized Vlasov–Ampère system as a Schrödinger
equation where the magnetized Vlasov–Ampère operator plays the role of the Hamiltonian. We
construct a realization of the magnetized Vlasov–Ampère operator as a self-adjoint operator in
the Hilbert space, that we call H, that consists of the charge density functions that are square
integrable and of the electric fields that are square integrable and of mean zero. Actually, the
square of the norm of H is the energy. From the physical point of view this permits us to use the
conservation of the energy in a very explicit way. On the mathematical side, this allows us to bring
into the fore the powerful methods of the spectral theory of self-adjoint operators in a Hilbert space.
There is a very extensive literature in spectral theory, see for example [76, 107, 104, 105, 106].
This approach has previously been used in the case without magnetic field to analyze Landau
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damping in [36, 37]. Within this framework the study of the Bernstein–Landau paradox reduces
to the proof that the magnetized Vlasov–Ampère operator only has pure point spectrum, i.e., that
its spectrum consists only of eigenvalues. Then, the fact that the magnetized Vlasov–Ampère
operator has a complete set of orthonormal eigenfunctions follows from the abstract spectral theory
of self-adjoint operators. We expand the general solutions to the magnetized Vlasov–Ampère
system in the orthonormal basis of eigenfunctions of the magnetized Vlasov–Ampère operator.
The coefficients of this expansion are the product of the scalar product of the initial state with
the corresponding eigenfunction, and of the phase e−itλ, where t is time and λ is the eigenvalue
of the eigenfunction. This representation of the solution shows the oscillatory behavior in time
for λ 6= 0, or constant in time for λ = 0, that is to say the Bernstein–Landau paradox. Moreover,
our representation of the solution as an expansion in the orthonormal basis of eigenfunctions of
the magnetized Vlasov–Ampère operator converges strongly in H for any initial data in H, that
is to say for any square integrable initial state without any further restriction in regularity and
decay. Note that our result is optimal, since square integrability is the minimum that we can
require, even to pose precisely the problem. A physical state has to have finite energy, i.e., it has
to be square integrable.Note moreover, that we prove that the Bernstein modes are not complete.
In fact, we prove in theorem 2.6.3 that for general initial data with finite energy, and that satisfy
the Gauss law, the charge density fluctuation is a sum of two terms. One of them is oscillatory in
time (see (2.6.16)) and it coincides with the standard series of Bernstein modes given in [13, 14].
The other term, given in (2.6.15), is constant in time, and it is a series of eigenfunctions with
eigenvalue zero, of the magnetized Vlasov-Ampére system, and that satisfy the Gauss law. It
appears that the fact that the Bernstein modes are not enough to expand the general charge
density fluctuation, and that one has also to consider static modes is a new result, that has not
been observed previously in the literature. We prove that the spectrum of the magnetized
Vlasov–Ampère operator is pure point in two different ways.

In the first one, we actually compute the eigenvalues and we explicitly construct a orthonormal
basis of eigenfunctions, i.e., a complete set of orthonormal eigenfunctions. This, of course, gives
us much more than just that the expansion of the charge density fluctuation, and is interesting
in its own right, because it can be used for many other purposes. As we mentioned above,
our analysis shows that the Bernstein modes alone are not a complete orthonormal system. In
addition to the eigenfunctions with eigenvalue zero that contribute to the static part of the
charge density fluctuation, to have a complete orthonormal system in the Hilbert space, H of
configurations with finite energy, it is necessary to add other eigenfunctions that are associated with
eigenvalues at all the integer multiples of the cyclotron frequency, including the zero eigenvalue.
These other eigenfunctions have nontrivial density function, but the electric field and the charge
density fluctuation are zero. Recall that the charge density fluctuation is obtained averaging the
density function over the velocities. In consequence, these other eigenfunctions do not appear
in the expansion of the charge density fluctuation. Anyhow, these eigenfunctions are physically
interesting because they show that there are plasma oscillations such that at each point the charge
density fluctuation and the electric field are zero. Some of them are time independent. Note that
since our eigenfunctions are orthonormal, these special plasma oscillations actually exist on their
own, without the excitation of the other modes. It appears to us that this fact, or at least the
exact form of these eigenfunctions, with zero charge density fluctuation and zero electric field,
has not been observed previously in the literature.

In the second one we use an abstract operator theoretical argument based on the celebrated Weyl
theorem on the invariance of the essential spectrum of a self-adjoint operators in Hilbert space.
This argument allows us to prove that the magnetized Vlasov–Ampère operator has pure point
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spectrum. It gives a less detailed information about where the eigenvalues are located, and it
tells us nothing about the eigenfunctions. However, it is enough for the proof of the existence
of the Bernstein–Landau paradox without going through the detailed calculations of the first
approach. It also tells us why the Bernstein–Landau paradox exists from a general principle in
spectral theory.

On the contrary in the case where the magnetic field is zero, it was proven in [36, 37] that the
spectrum of the magnetized Vlasov–Ampère operator is made of an absolutely continuous part
and of a kernel. The Landau damping follows from the well known fact that for a self-adjoint
operator H, the operator e−itHP0 goes weakly to zero as t→ ±∞ (here P0 is the projection on
the absolutely continuous part of the spectrum). It has been remarked in [34] that there are
"interesting analogies with Lax and Phillips scattering theory " [84]. In fact, the results of [36, 37]
prove that it is not just an analogy, but the consequence of a convenient reformulation of Landau
damping in terms of the magnetized Vlasov–Ampère system. The sharp change in the spectrum of
the magnetized Vlasov–Ampère operator when the magnetic field goes to zero, i.e. from pure point
to absolutely continuous in the orthogonal complement to its kernel, may appear to be paradoxical
because the formal magnetized Vlasov–Ampère operator is formally analytic in the magnetic field.
The issue is that the domain of the self-adjoint realization of the magnetized Vlasov–Ampère
operator changes abruptly when the magnetic field is zero. It is a well known fact in the spectral
theory of families of linear operators that the spectrum can change sharply at values of the
parameter where the domain of the operator sharply changes. For a comprehensive presentation
of these results the reader can consult, for example, [76]. Summing up, this shows that there is no
paradox in the Bernstein–Landau paradox, just a well known fact of spectral theory, but, of course,
in the physics literature the domains of the operators are usually not taken into account. Perhaps
the reason why the absence of Landau damping for arbitrarily small magnetic fields is considered
as paradoxical is related to the fact that the magnetized Vlasov–Poisson system somehow hides
the underlying mathematical physics structure of our problem, in spite of the fact that it is a
convenient tool, particularly for computational purposes. Let us explain what we mean. The full
Maxwell equations consist of the Maxwell-Faraday equation, the Ampère equation, the Gauss
law, and the Gauss law for magnetism, i.e., the divergence of the magnetic field is zero. In our
case the Maxwell-Faraday equation and the Gauss law for magnetism are automatically satisfied.
So, of the Vlasov-Maxwell equations, only the Vlasov equation remains, as well as the Ampère
equation, and the Gauss law. Furthermore, the Gauss law is a constraint that is only necessary
to impose at the initial time, since it is propagated by the magnetized Vlasov–Ampère system.
Further, both the Vlasov and the Ampère equations are evolution equations. So, the natural way
to proceed is to solve the magnetized Vlasov–Ampère system as an evolution problem, and to
restrict the initial data to those who satisfy the Gauss law. The situation with the magnetized
Vlasov–Poisson system is somewhat different because the Ampère equation is not explicitly taken
into account. So, one could think that the magnetized Vlasov–Poisson system is incomplete. The
remedy is that instead of imposing the Gauss law only at the initial time, it is required at all
times. We actually prove in section 2.2 that the magnetized Vlasov–Poisson system is indeed
equivalent to the magnetized Vlasov–Ampère system plus the validity of the Gauss law at the
initial time. However, the magnetized Vlasov–Poisson system is a hybrid one where the Vlasov
equation is an evolution equation and the Poisson equation is an elliptic equation, without time
derivative. This is one way to understand why in the magnetized Vlasov–Poisson system the
basic mathematical physics of our problem is not so apparent. On the contrary, as we mentioned
above, the magnetized Vlasov–Ampère system is an evolution problem, that moreover, as we
already mentioned, and as we explain in section 2.2, has a conserved energy that is explicitly
expressed in terms of the density function and the electric field that appear in the magnetized
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Vlasov–Ampère system. These two facts are the reasons why the magnetized Vlasov–Ampère
system has a self-adjoint formulation in Hilbert space, and then, it is clear that there is no paradox
in the Bernstein–Landau paradox, as we explained above.

Once the self-adjointness of the magnetized Vlasov–Ampère formulation is established, it is
a matter of explicit calculations to determine the eigenfunctions. The technicalities of the
calculations are related to the fact that three different natural decompositions are combined. The
first one is based on Fourier decomposition (factors einx), the second one is based on a direct sum
of the kernel of the operator and its orthogonal (it will be denoted as H = Ker[H]⊕Ker[H]⊥) and
the third one starts from the determination of the eigenfunctions with a vanishing electric field
(it will be denoted as F = 0). The combination of these three decompositions is made compatible
with convenient notations.

Passing to the limit ωc → 0 in the representation formulae is possible in principle. This requires
a careful analysis. We do not consider this problem in this work except in the very last remark
in appendix B. Nevertheless, in lemma 2.5.3 two consecutive eigenvalues are different by the
constant ωc and in lemma 2.5.6 two consecutive eigenvalues are different by a value that is smaller
than 2ωc. Therefore, at the limit ωc → 0, the discrete spectrum fills the entire real line with
density and so it approaches the spectrum of the limit problem without magnetic field. A recent
mathematical work [13] studied the Vlasov and the Vlasov-Fokker-Planck equations in a box, in
three dimensions in configuration and in velocity space, and with a constant background magnetic
field. They consider the Landau damping, the Bernstein–Landau paradox and the enhanced
collisional relaxation in the limit when the collision frequency goes to zero. Since in this chapter
we study the case when there are no collisions, we will only comment on the results of [13] when
the collision frequency is zero. We denote by T 3 the three-dimensional torus, ie., T 3 := [0, 2π]3per.
In the collisionless case, [13] considers the following linearized magnetized Vlasov–Poisson system
for (x,v) ∈ T 3 × R3, where x = (x, y, z), and v = (v1, v2, v3),

∂tG(t,x,v) + v · ∇xG(t,x,v) +
q

m
F(t,x) · ∇vf

0(v) +
q

m
v ×B0 · ∇vG(t,x,v) = 0,

F(t,x) = −∇x

∫
T 3

W (x− y) ρ(t,y) d3y,∫
T 3×R3

G(t,x,v) d3x d3v = 0,

G(0,x,v) = Gin(x,v),

(2.1.1)

where,

ρ(t,x) :=

∫
R3

G(t,x,v) d3v,

and
W (x) :=

q

4π

1

(2π)3

∑
k∈Z3\{0}

1

|k|2
eik·x,

q,m > 0, and B0 = (0, 0, B0), B0 > 0. Moreover,

f0(v) =
1

2π
e−

v2
1+v2

2
2

(
1√

2πT‖
e
−−v

2
3

2T‖ + f̃(v2
3)

)
, (2.1.2)

with T‖ > 0.
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To state the results of [13] we first introduce some notations. Let us define the Fourier coefficients
of f ∈ L2(T 3) as follows,

f̂(k) :=

∫
T 3

e−ik·x f(x) d3x, k = (k1, k2, k3) ∈ Z3.

Then,

f(x) =
1

(2π)3

∑
k∈Z3

eik·x f̂(k).

Denoting < v >:=
√

1 + |v|2, the Hσ
m norm of a function f is defined as follows [13],

‖f‖2Hσm :=

∫
T 3×R3

< v >2m | < ∇ >σ f(x,v)|2 d3xd3v,

with ∇ = ∇x,v the differential operator both in x and v.

In [13] the following theorem is stated.

Theorem 2.1.1 (Bedrossian and Wang, Theorem 1 [13]). Let < v >m Gin ∈ Hσ, for σ ≥ 0, and
m > 2. Suppose that ‖f̃‖Hσ′m ≤ δ0, with σ

′ > σ + 5/2, and |T‖ − 1|+ δ0 sufficient small depending
on universal constants and B0. Then, the following holds.

a) The Landau damping for z−dependent modes:

‖|∂z|1/2 < ∇, ∂zt >σ ρ(t)‖L2
tL

2
x
.σ,σ′,m ‖Gin‖Hσm .

b) If k3 = 0,and we additionally have σ > 5/2, then for all k⊥ := (k1, k2, 0) and n ∈ N, ∃!
bn,k = bn,k( qmB0) ∈ (n, n+ 1) and coefficients r±n,k depending on Gin such that (with the
convention that r−0,k is distinct from r0,k),

ρ̂(t,k⊥, 0) =

∞∑
n=0

rn,k e
i
bn,kqB0

m t + r−n,k e
−i

bn,kqB0
m t, (2.1.3)

and further, there holds,

|r±n,k| ≤
1

< k >α< n >γ
‖Gin‖Hσm ,

where α, β, γ are such that γ = min(β + 1, 2β − 1), α+ 2β − 1
2 ≤ σ, and β + 1 < m.

Item a) of Theorem 1 of [13] (theorem 2.1.1 above) is concerned with the Landau damping of the
z−dependent modes (see also [14]), that is to say, of the modes that depend on the coordinate z,
along the direction of the magnetic field B0. In this work we do not consider this problem, since
as we work in 1 + 2 dimensions our modes only depend on the coordinate x that is orthogonal to
the direction of the magnetic field B0.

Item b) of Theorem 1 of [13] (theorem 2.1.1 above) considers the expansion of the Fourier
coefficients, ρ̂(t, k⊥, 0) of the charge density fluctuation in terms of the Bernstein modes, that is
to say the Bernstein–Landau paradox, in the case of 3 + 3 dimensions. This is the problem that
we consider in 1 + 2 dimensions in this work.
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We now proceed to discuss this result. Let us first show that if ρ̂(t, k⊥, 0) in (2.1.3) is time
independent, then it has to be identically zero. Assume then, that ρ̂(t,k⊥, 0) = ρ̂(k⊥, 0). Since
all the bn,k are different from each other, and different from zero, then one deduces

0 = limT→∞
∫ T

0
ρ̂(k⊥, 0) e∓i

bj,kqB0
m t dt

= limT→∞
∫ T

0

(∑∞
n=0 rn,k e

i
bn,kqB0

m t + r−n,k e
−i

bn,kqB0
m t

)
e∓i

bj,kqB0
m t dt

= r±j,k.

(2.1.4)

Hence, r±n,k = 0 for all n ∈ N, and all k = (k⊥, 0). Therefore, item b) of Theorem 1 of [13]
(theorem 2.1.1 above) implies that for the time independent solutions to (2.1.1) the Fourier
coefficient of the charge density, ρ̂(k⊥, 0), is identically zero for all k⊥. Recall that ρ̂(k) is the
Fourier coefficient of ρ(x), that is to say,

ρ̂(k) :=

∫
T 3

ρ(x) e−ikxdx.

Then, inverting the Fourier series,

ρ(x) =
1

(2π)3

∑
k∈Z3

eikx ρ̂(k). (2.1.5)

Further, by (2.1.5) ∫
T
ρ(x, y, z) dz =

1

(2π)2

∑
(k1,k2)∈Z2

ei(k1x+k2y) ρ̂(k1, k2, 0).

Hence, as for time independent solutions, if (2.1.3) holds, ρ̂(k⊥, 0) = 0, we have proven that
for the solutions given in Item b) of Theorem 1 of [13] (theorem 2.1.1 above), if their are time
independent, necessarily ∫

T
ρ(x⊥, x3) dx3 = 0. (2.1.6)

However, in appendix B we construct an explicit family of time-independent solutions to (2.1.1),
that satisfy the hypotheses of item b) of Theorem 1 of [13] (theorem 2.1.1 above) with ρ̂(k⊥, 0)
that is not identically zero, and where (2.1.6) does not hold. This shows that the result of item
b) of Theorem 1 of [13] (theorem 2.1.1 above) is devoted to the behaviour of a special class of
solutions. This is clear by comparison with the physical literature [6, 14, 121] which is based
on the study of a dispersion relation. The dispersion relation is mathematically justified in [13],
in particular with a summability argument of the contributions of all poles of the dispersion
relation. Nevertheless the pole 1/z, that corresponds to time-independent solutions, is discarded
in equation (2.14) in [13], and in this sense, the works [6, 13, 14] focus on a subclass, or special
class, of solutions. In our work, we do not make such hypothesis or restriction and that is why
we recover a stationary solution as in [121, eq. (55)]. Note that in appendix B we write the
model for ions like in [13], for the purpose of making the comparison with the results of [13] more
transparent. In the rest of this chapter we write the model for electrons. Actually, the models for
ions and electrons are the same, up to a change in the sign of the cyclotron frequency and of the
electric field (see remark 2.2.1). This is actually in agreement with our theoretical expansions in
(2.6.14)-(2.6.16) that show that in general the charge density fluctuations have a time-independent
part and a time-dependent part. Further, our result in (2.6.14)-(2.6.16) solves, in the case of one
dimension in space and two dimensions in velocity, the problem posed in Remark 3 of [13] of
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justifying the expansion in the Bernstein modes of the charge density fluctuation, without the
regularity in space and decay in velocity that they assume in Theorem 1 of [13] (theorem 2.1.1
above). Our model is one dimensional in space and two dimensional in velocity. However, there
is no difficulty to write it in three dimensions in space and velocity, because Maxwellian functions
have a natural compatibility with separation of variables techniques. In principle, the extension
of our results to three dimensions in space and velocity is possible with due attention paid to
the anisotropy introduced by the magnetic field. Indeed, it is known [13, 14] that the physics
is different in the orthogonal direction (treated in this work) and in the parallel direction (not
treated in his work). In fact, in [13, 14] it is proved that there is damping in the direction of the
magnetic field, and no damping perpendicular to the magnetic field. We leave this 3-dimensional
study for further research.

The organization of this work is as follows. In section 2.2 we introduce the magnetized Vlasov–
Poisson and the magnetized Vlasov–Ampère systems, and we prove their equivalence. In section 2.3
we give the notations and definitions that we use. In section section 2.4 we consider the case
of a pure magnetized Vlasov equation without coupling. We construct a self-adjoint realization
of the magnetized Vlasov operator, we explicitly compute the eigenvalues and we explicitly
construct an orthonormal system of eigenfunctions that is complete, i.e., it is a basis of the Hilbert
space. In section 2.5 we construct a self-adjoint realization of the magnetized Vlasov–Ampère
operator, we compute the eigenvalues, and we construct an orthonormal systems of eigenfunctions
that is complete, that is to say that is a basis of the Hilbert space. In section 2.6 we obtain a
representation of the general solution to the magnetized Vlasov–Ampère system as an expansion in
our orthonormal basis of eigenfunctions. In particular we prove the convergence of the Bernstein
expansion [13, 14], under optimal conditions on the initial state. In section 2.7 we give an operator
theoretical proof of the existence of the Bernstein–Landau paradox, with an argument based on
the Weyl theorem for the invariance of the essential spectrum. In section 2.8 we illustrate our
results, using semi-Lagrangian schemes to highlight how the eigenfunctions constructed in our
study can be considered as new test functions for this kind of kinetic system. In appendix A we
study the properties of the secular equation. Finally, in appendix B we construct explicit families
of time-independent solutions to the linearized magnetized Vlasov–Poisson system.

2.2 The magnetized Vlasov–Poisson and the magnetized Vlasov–
Ampère systems

We adopt the Klimontovitch approach [77, 62] where the Newton equation of a very large number
of charged particles with velocity v moving in an electromagnetic field is approximated by a
continuous density function f(t, x, v) ≥ 0. The variable t is time. We assume that the charged
particles undergo a one dimensional motion, and that the real variable x is the position of the
charged particles. Furthermore, we suppose that the velocity, v, of the charged particles is two
dimensional, i.e., v = (v1, v2) ∈ R2. Further, we take the motion of the charged particles along
the first coordinate axis of the velocity of the charged particles. The density function is a solution
of a Vlasov equation,

∂tf + v1∂xf + F · ∇vf = 0. (2.2.1)

We assume, for simplicity, that the motion of the charged particles is a 2π-periodic oscillation,
that is a usual assumption [34]. Hence, we look for solutions to (2.2.1), f(t, x, v), for t ∈ R, x ∈
[0, 2π], v = (v1, v2) ∈ R2, that are periodic in x, i.e., f(t, 0, v) = f(t, 2π, v). The electromagnetic
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Lorentz force,
F(t, x) =

q

m
(E(t, x) + v ×B(t,x)) , (2.2.2)

is divergence free with respect to the velocity variable, that is ∇v ·F = 0. The Maxwell’s equations
are simplified, assuming that the magnetic field B(t,x) = B0 is constant in space-time. Following
the convention adopted in [6, 121], we suppose that the two dimensional velocity v is perpendicular
to the constant magnetic field, i.e., B0 = (0, 0, B0), B0 > 0. Moreover, we assume that the electric
field is directed along the first coordinate axis, E(t, x) = (E(t, x), 0, 0). We adopt a convenient
normalization adapted to electrons, that is qref = −1 and mref = 1, where qref is the charge of
the electron, and mref is the mass of the electron. The electric field satisfies the Gauss law,

∂xE(t, x) = 2π −
∫
R2

fdv, (2.2.3)

where 2π is the constant density of the heavy ions, that do not move. We take the density of the
ions equal to 2π to simplify some of the calculations below. The term −

∫
R2 f dv is the charge

density of the particles with charge −1.

With these notations and normalizations (2.2.1), and (2.2.3) are written as the following system,
∂tf + v1∂xf − E∂v1

f + ωc (−v2∂v1
+ v1∂v2

) f = 0,

∂xE(t, x) = 2π −
∫
R2

fdv.
(2.2.4)

We denote the cyclotron frequency by ωc := B0.

Remark 2.2.1. The model written for positive ions instead of (negatively charged) electrons is
similar to ((2.2.4)), with the only modification that the sign in front of the electric field and in
front of ωc is changed in both equations.

We retain the potential part of the electric field

E(t, x) = −∂xϕ(t, x), (2.2.5)

where the potential ϕ(t,x) is a solution to the Poison equation,

−∆ϕ = 2π −
∫
R2

fdv. (2.2.6)

The electric field and the potential are assumed to be periodic with period 2π, i.e. E(t, 0) =
E(t, 2π), ϕ(t, 0) = ϕ(t, 2π). Note that since the potential ϕ(t, x) is periodic it follows from (2.2.5)
that the mean value of the electric field is zero,∫ 2π

0

E(t, x) dx = 0. (2.2.7)

Two important properties of the magnetized Vlasov–Poisson system (2.2.4), (2.2.5), and (2.2.6)
are that the density function satisfies the maximum principle

inf
(x,v)∈[0,2π]×R2

fini(x, v) ≤ f(t, x, v) ≤ sup
(x,v)∈[0,2π]×R2

fini(x, v),
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where fini is the initial value of the solution, f(t, x, v), and that the total energy is constant in
time,

d

dt

(∫
[0,2π]×R2

|v|2

2
fdxdv +

∫
[0,2π]

|E|2

2
dx

)
= 0. (2.2.8)

Following [14], a linearization of the equations around a homogeneous Maxwellian equilibrium
state f0(v), where, f0(v) := e

−v2

2 is performed. Here the Maxwellian distribution is normalized
for Tref kB = 1, where Tref is the reference temperature and kB is Boltzmann’s constant. It
corresponds to the expansion

f(t, x, v) = f0(v) + ε
√
f0(v)u(t, x, v) +O(ε2), (2.2.9)

and
E(t, x) = E0 + εF (t, x) +O(ε2), (2.2.10)

with a null reference electric field E0 = 0. Inserting (2.2.9) and (2.2.10) into (2.2.4), and keeping
the terms up to linear in ε, one gets the linearized magnetized Vlasov–Poisson system written as,

∂tu+ v1∂xu+ Fv1

√
f0 + ωc (−v2∂v1 + v1∂v2)u = 0,

∂xF = −
∫
R2

u
√
f0dv,∫

[0,2π]

F = 0,

(2.2.11)

where in the third equation we have added the constraint that the mean value of the electric
field F is zero, as in (2.2.7). Moreover, the electric field F (t, x) = −∂xϕ(t, x) is obtained from a
potential as in (2.2.5), where the potential is periodic, ϕ(t, 0) = ϕ(t, 2π), and it solves the Poisson
equation,

−∆ϕ = −
∫
R2

u
√
f0dv. (2.2.12)

Observe that the second equation in (2.2.11) is the Gauss law,

∂xF (t, x) = ρ(t, x), (2.2.13)

where ρ(t, x) is the charge density fluctuation of the perturbation of the Maxwellian equilibrium
state,

ρ(t, x) := −
∫
R2

u(t, x, v)
√
f0(v)dv. (2.2.14)

The study of the solutions to the magnetized Vlasov–Poisson system is the standard method to
analyze the dynamics of a very large number of charged particles moving in the presence of a
constant external magnetic field. For the case of the Bernstein–Landau paradox see, for example,
[14], [121], [118, section 9.16], [122, section 4.4.1] and [13]. We now present an alternate method
to study this problem. One of Maxwell’s equations is called the Ampère equation and is given by:

∂tF =

∫
R2

v1 u
√
f0dv, (2.2.15)

where we have taken the dielectric constant ε0 = 1. We consider here the following modified
Ampère equation

∂tF = I∗
∫
R2

v1

√
f0 u dv, (2.2.16)
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where I∗ is the space operator such that I∗g = g − [g] and the mean value in space of a function
g is denoted by [g], that is to say, I∗g(x) := g(x) − 1

2π

∫ 2π

0
g(y) dy. With this convention the

magnetized Vlasov–Ampère system is written as follows,
∂tu+ v1∂xu+ Fv1

√
f0 + ωc (−v2∂v1

+ v1∂v2
)u = 0,

∂tF = I∗
∫
R2

v1

√
f0 udv.

(2.2.17)

To the magnetized Vlasov–Ampère system (2.2.17), we add conditions for Fini := F (0, ·) and
uini = u(0, ·, ·) the integral constraint, ∫ 2π

0

Fini dx = 0, (2.2.18)

is satisfied at initial time, and the Gauss law (2.2.13), (2.2.14) is also satisfied at the initial time,

d

dx
Fini = −

∫
R2

uini

√
f0dv. (2.2.19)

Lemma 2.2.2. The linearized magnetized Vlasov–Poisson system (2.2.11) is equivalent to the
magnetized Vlasov–Ampère system (2.2.17) with initial conditions that satisfies (2.2.18), (2.2.19).

Proof. Let (u, F ) be a solution to the magnetized Vlasov–Ampère system (2.2.17) that satisfy
(2.2.18), (2.2.19). It follows from the Ampère equation that

∂t

∫ 2π

0

F (t, x) dx =

∫ 2π

0

I∗
∫
R2

v1

√
f0 u = 0

and consequently the integral constraint (2.2.18) is propagated for all times. The Gauss law
(2.2.19) is also propagated to all times by the magnetized Vlasov–Ampère system, as we proceed
to prove. Multiplying the first equation in (2.2.17) by

√
f0, integrating in v over R2, using that

f0 is an even function of |v| and using integration by parts, we prove the following continuity
equation,

∂t

∫
R2

u
√
f0dv + ∂x

∫
R2

v1u
√
f0dv = 0. (2.2.20)

Deriving (2.2.16) with respect to x we obtain, 0 = ∂x
(
∂tF − I∗

∫
R2 v1u

√
f0dv

)
= ∂x

(
∂tF −

∫
R2 v1u

√
f0dv

)
,

because ∂x = ∂xI
∗. Then, by (2.2.20)

0 = ∂t

(
∂xF +

∫
R2

u
√
f0 dv

)
,

from which the Gauss law follows for all times. We have proven that a solution to the magnetized
Vlasov–Ampère system (2.2.17) that satisfies the initial conditions (2.2.18), (2.2.19) solves the
magnetized Vlasov–Poisson system (2.2.11).
Conversely let (u, F ) be a solution to the magnetized Vlasov–Poisson system (2.2.11). Then by
the second equation in (2.2.11) and (2.2.20),

0 = ∂x∂tF + ∂t

∫
R2

u
√
f0dv = ∂x

(
∂tF −

∫
R2

v1u
√
f0dv

)
.

So ∂tF =
∫
R2 v1u

√
f0dv+C(t), where C(t) is constant in space. Then, ∂tI∗F = I∗

∫
R2 v1u

√
f0dv.

But F has zero mean value, so I∗F = F , and it follows that the Ampère law in (2.2.16) holds.
Hence, the magnetized Vlasov–Poisson system implies the magnetized Vlasov–Ampère system
(2.2.17) and the initial conditions (2.2.18), (2.2.19).
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From now on we only consider the magnetized Vlasov–Ampère system (2.2.17) with conditions
(2.2.18), (2.2.19). A fundamental energy relation is easily shown for solutions to the magnetized
Vlasov–Ampère formulation (2.2.17)

d

dt

(∫
[0,2π]×R2

u2

2
dxdv +

∫
[0,2π]

F 2

2
dx

)
= 0. (2.2.21)

It is the counterpart of the energy identity (2.2.8), so the term
∫

[0,2π]×R2

∫
v
u2

2 dxdv is identified

with the kinetic energy of the negatively charged particles, and the term
∫

[0,2π]
F 2

2 dx is the energy
of the electric field. This identity is known since [3, 78]. As we show in the next sections, the
identity (2.2.21) is the basis of our formulation of the magnetized Vlasov–Ampère system as a
Schrödinger equation in a Hilbert space, where the magnetized Vlasov–Ampère operator plays
the role of the self-adjoint Hamiltonian.

Once the reformulation of (2.10.31) within the Lax and Philipps abstract scattering theory [84]
has been performed with a convenient self-adjoint operator, linear Landau damping is implied
by the fact that, in the case ωc = 0, the spectrum of the operator is made up of an absolutely
continuous part and a kernel [37]. It is clear that the magnetic operator ωc (−v2∂v1

+ v1∂v2
) is

formerly analytic with respect to ωc, but it is also a singular perturbation. Explained in terms of
the dynamics of the system (2.10.31), our results will recover the seminal results of [14] and the
recent mathematical works of [13]. But we will take the full benefit of having a rigorous scattering
structure. In particular, in our context the questions asked in Remark 3 in [13], "how to justify
the Bernstein mode expansion", are automatically answered by the spectral decomposition of
self-adjoint operators and by the fact that the transport operator v1∂xu+ ωc (−v2∂v1

+ v1∂v2
)

with non zero cyclotron frequency has only pure point spectrum. This will be explained in due
place.

2.3 Notations and Definitions

We will write the magnetized Vlasov–Ampère system as a Schrödinger equation with a self-adjoint
Hamiltonian in an appropriate Hilbert space. We find it convenient to borrow some terminology
from quantum mechanics. For this purpose, we first introduce some notations and definitions.
We designate by R+ the positive real semi-axis, i.e., R+ := [0 ,+∞[, and by R2 the real plane.
The set of all integers is denoted by Z and the set of all nonzero integers by Z∗. The positive
natural numbers are designated by N∗. By C we designate the complex numbers. We denote
by C a generic constant whose value does not have to be the same when it appears in different
places. By C∞([0, 2π]) we designate the set of all infinitely differentiable functions in [0, 2π],
and by C∞0 (R2) we denote the set of all infinitely differentiable functions in R2 with compact
support. Let B be a set of vectors in a Hilbert space, H. We denote by Span[B] the closure for
strong convergence in H of all finite linear combinations of elements of B, in other words,

Span[B] := closure


N∑
j=1

αjXj : αj ∈ C, Xj ∈ B, N ∈ N∗
 .

LetM be a subset of a Hilbert space H. We define the orthogonal complement ofM, in symbol,
M⊥, as follows,

M⊥ := {f ∈ H : (f, u)H = 0, for allu ∈M}.
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Let H be a Hilbert space, and let Hj , j = 1, . . . , N, 2 ≤ N ≤ ∞, be mutually orthogonal closed
subspaces of H, that is to say,

Hj ⊂ H⊥m, and Hm ⊂ H⊥j , j 6= m, 1 ≤ j,m ≤ N.

Note that if Hj and Hm are mutually orthogonal, then one has (f, u)H = 0, f ∈ Hj , u ∈ Hm. We
say that H is the direct sum of the Hj , j = 1, . . . , N, 2 ≤ N ≤ ∞, mutually orthogonal closed
subspaces of H, and we write,

H = ⊕Nj=1 Hj ,

if for any f ∈ H, there are fj ∈ Hj , j = 1, . . . , N, such that, f =
∑N
j=1 fj . Note that the

fj , j = 1, . . . , N are unique for a given f, and that ‖f‖2H =
∑N
j=1 ‖fj‖2H.

Let A be an operator in a Hilbert space H, and let us denote by D[A] the domain of A. We say
that the operator B is an extension of the operator A, in symbol, A ⊂ B, if D[A] ⊂ D[B], and if
Au = Bu, for all u ∈ D[A]. Suppose that the domain of A is dense in H. We denote by A† the
adjoint of A, that is defined as follows,

D[A†] := {v ∈ H : (Au, v)H = (u, f)H, for some f ∈ H, and for allu ∈ D[A]},

and
A†v = f, v ∈ D[A†].

We say that A is symmetric if A ⊂ A†, and that A is self-adjoint if A = A†, that is to say if
D[A] = D[A†], and Au = A†u, u ∈ D[A] = D[A†]. An essentially self-adjoint operator has only
one self-adjoint extension. For any operator A we denote by Ker[A] := {u ∈ D[A] : Au = 0} the
set of all eigenvectors of A with eigenvalue zero. For more information on the theory of operators
in Hilbert space the reader can consult [76] and [107].

We denote by L2(0, 2π) the standard Hilbert space of functions that are square integrable in
(0, 2π). Furthermore, we designate by L2

0(0, 2π) the closed subspace of L2(0, 2π) consisting of all
functions with zero mean value, i.e.,

L2
0(0, 2π) :=

{
F ∈ L2(0, 2π) :

∫ 2π

0

F (x) dx = 0

}
. (2.3.1)

Note that since all the functions in L2(0, 2π) are integrable over (0, 2π) the space L2
0(0, 2π) is well

defined. Further, we denote by L2(R2) the standard Hilbert space of all functions that are square
integrable in R2. Let us denote by A the tensor product of L2(0, 2π) and of L2(R2), namely,

A := L2(0, 2π)⊗ L2(R2). (2.3.2)

For the definition and the properties of tensor products of Hilbert spaces the reader can consult
[107, Section 4, Chapter 2]. We often make use of the fact that the tensor product of an
orthonormal basis in L2(0, 2π) and an orthonormal basis in L2(R2) is an orthonormal basis in A.
As shown in [107, Section 4, Chapter 2], the space A can be identified with the standard Hilbert
space L2((0, 2π)× R2) of square integrable functions in (0, 2π)× R2 with the scalar product,

(u, f)L2((0,2π)×R2) :=

∫
(0,2π)×R2

u(x, v) f(x, v) dx dv,

where x ∈ (0, 2π) and v = (v1, v2) ∈ R2. Our space of physical states, that we denote by H, is
defined as the direct sum of A and L2

0(0, 2π).

H := A⊕ L2
0(0, 2π). (2.3.3)
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We find it convenient to write H as the space of the column vector-valued functions,
(
u
F

)
where

u(x, v) ∈ A and F (x) ∈ L2
0(0, 2π). The scalar product in H is given by,

((
u
F

)
,

(
f
G

))
H

:= (u, f)A + (F,G)L2(0,2π).

Note that by the identity (2.2.21) the H-norm of the solutions to the magnetized Vlasov–Ampère
system is constant in time. This is the underlying reason why we will be able in later sections
to formulate the magnetized Vlasov–Ampère system as a Schrödinger equation in H with a self-
adjoint realization of the magnetized Vlasov–Ampère operator playing the role of the Hamiltonian.
Moreover, the square of the norm of H is the constant energy of the solutions to the magnetized
Vlasov–Ampère system.

Let us denote by H1(0, 2π) the standard Sobolev space [2] of all functions in L2(0, 2π) such that
its derivative in the distribution sense is a function in L2(0, 2π), with the scalar product,

(F,G)H1(0,2π) := (F,G)L2(0,2π) + (∂xF, ∂xG)L2(0,2π).

We designate by H1,0(0, 2π) the closed subspace of H1(0, 2π) that consists of all functions in
F ∈ H1(0, 2π) such that F (0) = F (2π) and that have mean zero. Namely,

H1,0(0, 2π) :=

{
F ∈ H1(0, 2π) : F (0) = F (2π), and

∫ 2π

0

F (x) dx = 0

}
.

Note [2] that as the functions in H1(0, 2π) have a continuous extension to [0, 2π], the space
H1,0(0, 2π) is well defined.

We denote by L2(R+, rdr) the standard Hilbert space of functions defined on R+ with the scalar
product,

(τ, η)L2(R+,rdr) :=

∫ ∞
0

τ(r) η(r) r dr.

2.4 The magnetized Vlasov equation without coupling

In this section we consider the case without electric field, i.e. the magnetized Vlasov equation.
The results of this section will be useful in the study of the full magnetized Vlasov–Ampère
system, that we carry over in section 2.5.

The magnetized Vlasov equation can be written as the following Schrödinger equation in A,

i∂tu = i (−v1∂x + ωc(v2 ∂v1
− v1 ∂v2

))u. (2.4.1)

In the following proposition we obtain a complete orthonormal system of eigenfunctions for the
magnetized Vlasov equation (2.4.1). To this end, we introduce the polar coordinates (r, ϕ) of the
velocity v ∈ R2.

Proposition 2.4.1. Let {τj}∞j=1 be an orthonormal basis of L2(R+, rdr). Let ϕ ∈ [0 , 2π[, r > 0,

be polar coordinates in R2, v1 = r cosϕ, v2 = r sinϕ. For (n,m, j) ∈ Z2 × N∗ we define,

un,m,j :=
ein(x− v2ωc

)

√
2π

eimϕ√
2π

τj(r). (2.4.2)
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Then, the un,m,j , (n,m, j) ∈ Z2 × N∗ are an orthonormal basis in A. Furthermore, each un,m,j is
an eigenfunction for the magnetized Vlasov equation (2.4.1) with eigenvalue λ(0)

m = mωc,

i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2))un,m,j = λ(0)
m un,m,j , (n,m, j) ∈ Z2 × N∗. (2.4.3)

Moreover, the eigenvalues λ(0)
m ,m ∈ Z, have infinite multiplicity.

Proof. We first prove that the un,m,j , (n,m, j) ∈ Z2 × N∗ are an orthonormal basis in A. Clearly,
it is an orthonormal system. To prove that it is a basis it is enough to prove that if a function in
A is orthogonal to all the un,m,j , (n,m, j) ∈ Z2 ×N∗, then, it is the zero function. Hence, assume
that u ∈ A satisfies,

(u, un,m,j)A = 0, (n,m, j) ∈ Z2 × N∗. (2.4.4)

Denote gn(v) :=
∫ 2π

0
e−inx u(x, v) dx. By the Cauchy-Schwarz inequality, one has |gn(v)|2 ≤

2π
∫ 2π

0
|u(x, v)|2 dx. Further, since u ∈ A, it follows that gn ∈ L2(R2). By (2.4.4), for each fixed

n ∈ Z, ∫
(0,2π)×R+

gn(v) ein
v2
ωc e−imϕ τj(r) dϕ r dr = 0, (m, j) ∈ Z× N∗.

As the functions 1√
2π
eimϕ τj(r),m ∈ Z, j ∈ N∗ are an orthonormal basis in L2(R2), one has

that gn(v) ein
v2
ωc = 0 for a.e. v ∈ R2. Moreover, as ein

v2
ωc is never zero, we obtain, gn(v) = 0,

for a.e. v ∈ R2, i.e.,
∫ 2π

0
e−inx u(x, v) dx = 0, n ∈ Z. As the functions 1√

2π
einx, n ∈ Z are an

orthonormal basis in L2(0, 2π), it follows that u(x, v) = 0. This completes the proof that the
un,m,j , (n,m, j) ∈ Z2×N∗, are an orthonormal basis of A. Equation (2.4.3) follows from a simple
calculation using that ∂v1 = v1

r ∂r −
v2

r2 ∂ϕ, ∂v2 = v2

r ∂r + v1

r2 ∂ϕ, and v2 ∂v1 − v1 ∂v2 = −∂ϕ.
Note that the eigenvalues λ(0)

m have infinite multiplicity because all the un,m,j with m fixed and
n ∈ Z, j ∈ N∗ are orthogonal eigenfunctions for λ(0)

m .

Let us denote by h0 the formal magnetized Vlasov operator with periodic boundary conditions in
x, that we define as follows,

h0u := i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2))u, (2.4.5)

with domain,
D[h0] := D, (2.4.6)

where by D we denote the following space of test functions,

D := {u ∈ C∞0 ([0, 2π]× R2) :
dj

dxj
u(0, v) =

dj

dxj
u(2π, v), j = 1, . . .}, (2.4.7)

where by C∞0 ([0, 2π]×R2) we designate the space of all infinitely differentiable functions, defined
in [0, 2π]× R2, and that have compact support in [0, 2π]× R2.

We will construct a self-adjoint extension of h0. For this purpose, we first introduce some
definitions. Let us denote by l2(Z2 × N∗) the standard Hilbert space of square summable
sequences, s =

{
sn,m,j , (n,m, j) ∈ Z2 × N∗

}
with the scalar product,

(s, d)l2(Z2×N∗) :=
∑

(n,m,j)∈Z2×N∗
sn,m,j dn,m,j .
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Let U be the following unitary operator from A onto l2(Z2 × N∗),

Uu :=
{

(u, un,m,j)A, (n,m, j) ∈ Z2 × Z
}
. (2.4.8)

We denote by Ĥ0 the following operator in l2(Z2 × N∗),{
(Ĥ0 s)n,m,j , (n,m, j) ∈ Z2 × N∗

}
:=
{
λ(0)
m sn,m,j , (n,m, j) ∈ Z2 × N∗

}
, (2.4.9)

with domain, D[Ĥ0], given by,

D[Ĥ0] :=
{{
sn,m,j , (n,m, j) ∈ Z2 × N∗

}
∈ l2(Z2 × N∗) :

{
λ(0)
m sn,m,j , (n,m, j) ∈ Z2 × N∗

}
∈ l2(Z2 × N∗)

}
.

(2.4.10)
The operator Ĥ0 is self-adjoint because it is the multiplication operator by the real eigenvalues
λ

(0)
m defined on its maximal domain.

Proposition 2.4.2. Let us define

H0 = U† Ĥ0 U, D[H0] := {u ∈ A : Uu ∈ D[Ĥ0]}. (2.4.11)

Then, H0 is self-adjoint. Its spectrum is pure point, and it consists of the eigenvalues λ(0)
m ,m ∈ Z.

Moreover, each eigenvalue λ(0)
m ,m ∈ Z, has infinite multiplicity. Further, h0 ⊂ H0.

Proof. H0 is unitarily equivalent to the self-adjoint operator Ĥ0, and in consequence H0 is
self-adjoint. Let us prove that h0 ⊂ H0. Suppose that u ∈ D[h0]. Integrating by parts we obtain,

(h0u, un,m,j)A = (u, h0 un,m,j)A = λ(0)
m (u, un,m,j)A , (n,m, j) ∈ Z2 × N∗.

Hence,

Uh0u :=
{

(h0u, un,m,j)A, (n,m, j) ∈ Z2 × N∗
}

=
{
λ(0)
m (u, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
∈ l2

(
Z2 × N∗

)
,

(2.4.12)
where we used that h0u ∈ A, Hence,

Uu ∈ D[Ĥ0].

Moreover,

H0u = U†Ĥ0Uu = U†
{
λ(0)
m (u, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
= U†Uh0u = h0u.

This completes the proof that h0 ⊂ H0. As h0 ⊂ H0 and one has the completeness of the
eigenfunctions of h0 by proposition 2.4.1, it follows that the spectrum ofH0 is pure point, it consists
of the eigenvalues λ(0)

m ,m ∈ Z, and each eigenvalue λ(0)
m ,m ∈ Z, has infinite multiplicity.

We write the magnetized Vlasov equation (2.4.1) as a Schrödinger equation with a self-adjoint
Hamiltonian as follows,

i∂tu = H0u.

We call H0 the magnetized Vlasov operator.

Actually, we can give more information on h0.
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Proposition 2.4.3. Let h0 be the formal magnetized Vlasov operator defined in (2.4.5) and
(2.4.6), and let H0 be the magnetized Vlasov operator defined in (2.4.11). We have that,

h†0 = H0,

and, furthermore, h0 is essentially self-adjoint, i.e., H0 is the only self-adjoint extension of h0.

Proof. Suppose that f ∈ D[h†0]. Then

(h0u, f)A = (u, h†0f)A. (2.4.13)

Hence, by (2.4.12) and (2.4.13)

(h0u, f)A = (Uh0u,Uf)l2(Z2×N∗) =
∑

(n,m,j)∈Z2×N∗ λ
(0)
m (u, un,m,j)A (f, un,m,j)A =

∑
(n,m,j)∈Z2×N∗ (u, un,m,j)A (h†0 f, un,m,j)A.

(2.4.14)

Since (2.4.14) holds for all u in the dense set D[h0] we obtain,{
λ(0)
m (f, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
=
{

(h†0f, un,m,j)A, (n,m, j) ∈ Z2 × N∗
}
∈ l2(Z2 × N∗).

(2.4.15)
It follows that, {

λ(0)
m (f, un,m,j)A, (n,m, j) ∈ Z2 × N∗

}
∈ l2(Z2 × N∗). (2.4.16)

This implies that f ∈ D[H0] and that h†0f = H0f . Then, h†0 ⊂ H0. We prove in a similar way
that if f ∈ D[H0], then f ∈ D[h†0] and that, H0f = h†0f. This implies that H0 ⊂ h†0. Hence
the proof that h†0 = H0 is complete. Finally let A be a self-adjoint operator such that h0 ⊂ A.
Then, A† ⊂ h†0 = H0. But as A = A†, we obtain that A ⊂ H0, and then, H†0 ⊂ A†, but as
A = A†, H0 = H†0 , we have H0 ⊂ A, and finally A = H0. This proves that H0 is the only
self-adjoint extension of h0.

2.5 The full magnetized Vlasov–Ampère system with cou-
pling

In this section we consider the full magnetized Vlasov–Ampère system. We write the system as a
Schrödinger equation in the Hilbert space H as follows

i∂t

(
u
F

)
= H

(
u
F

)
, (2.5.1)

where the magnetized Vlasov–Ampère operator H is the following operator in H,

H =

[
H0 −iv1 e

−v2

4

iI∗
∫
R2 v1 e

−v2

4 · dv 0

] (
where we use the notation e

−v2

4 = e−
|v|2

4 = e−
v2
1+v2

2
4

)
.

(2.5.2)
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In a more detailed way, the right-hand side of (2.5.1) is defined as follows,

H

(
u
F

)
:=

(
H0u− iv1 e

−v2

4 F

iI∗
∫
R2 v1 e

−v2

4 u dv

)
. (2.5.3)

We recall that I∗ gives zero when applied to constant functions in L2(0, 2π). The domain of H is
defined as follows,

D[H] := D(H0)⊕ L2
0(0, 2π). (2.5.4)

We write H in the following form,
H = H0 + V, (2.5.5)

where

H0 :=

[
H0 0
0 0

]
, (2.5.6)

and

V :=

[
0 −iv1 e

−v2

4

iI∗
∫
R2 v1 e

−v2

4 · dv 0

]
. (2.5.7)

Clearly, H0 is self-adjoint with D[H0] = D[H]. Moreover, V, with D[V] = H, is bounded in H.
Observe that the presence of I∗ in V assures us that V sends H in to H. Further, it follows from
a simple calculation that V is symmetric in H. Then, by the Kato–Rellich theorem, see theorem
4.3 in page 287 of [76], the operator H is self-adjoint. We proceed to prove that H has pure point
spectrum. Actually, we will explicitly compute the eigenvalues and a basis of eigenfunctions. We
do this in several steps.

Remark 2.5.1. The Gauss law in strong sense for a function
(
u(x, v)
F (x)

)
∈ H reads,

∫
R2

u(x, v) e
−v2

4 dv + F ′(x) = 0. (2.5.8)

Later, in remark 2.6.1, we write the Gauss law in weak sense, and we show that it can, equivalently,
be expressed as a orthogonality relation with a subset of the eigenfunctions in the kernel of the
magnetized Vlasov–Ampère operator H.

2.5.1 The kernel of H

In this subsection we compute a basis for the kernel of the magnetized Vlasov–Ampère operator
H. We have to solve the equation

H

(
u
F

)
= 0. (2.5.9)

Inserting (2.5.3) in (2.5.9) we obtain,


i (−v1∂x + ωc(v2 ∂v1

− v1 ∂v2
))u− iv1 e

−v2

4 F = 0,

iI∗
∫
R2

v1 e
−v2

4 u dv = 0.
(2.5.10)
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Denote,

ψ(x) :=

∫ 2π

x

F (y) dy − 1

2π

∫ 2π

0

yF (y)dy. (2.5.11)

Then, as F ∈ L2
0(0, 2π), we have that ψ ∈ H1,0(0, 2π). Further,

F (x) = −ψ′(x). (2.5.12)

Let us designate γ(x, v) := u(x, v)− e−v
2

4 ψ(x). Hence, the first equation in (2.5.10) is equivalent
to the following equation

H0 γ = 0. (2.5.13)

Then, the general solution to the first equation in (2.5.10) can be written as

u(x, v) = e
−v2

4 ψ(x) + γ(x, v), (2.5.14)

with F = −ψ′, where ψ ∈ H1,0(0, 2π), and γ solves (2.5.13). Furthermore, by (2.5.14) the second
equation is (2.5.10) is equivalent to,

I∗
∫
R2

v1 e
−v2

4 γ dv = 0. (2.5.15)

Then, we have proven that the general solution to (2.5.10) can be written as,(
u
F

)
=

(
e
−v2

4 ψ(x) + γ(x, v)
−ψ′(x)

)
, (2.5.16)

where ψ ∈ H1,0(0, 2π), F = −ψ′, and γ solves (2.5.13). By proposition 2.4.1 the general solution
can be written as

γ =
∑

(n,j)∈Z×N∗
(γ, un,0,j)A un,0,j . (2.5.17)

Using (2.4.2) we prove by explicit calculation that un,0,j , n ∈ Z and j ∈ N∗, satisfies (2.5.15). So
the general solution (2.5.17) satisfies (2.5.13) and (2.5.15).

In the following lemma we construct a basis of Ker[H], using the results above.

Lemma 2.5.2. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and, (2.5.4).
Let un,0,j be the eigenfunctions defined in (2.4.2). Then, the following set of eigenfunctions of H
with eigenvalue zero,{

V(0)
n :=

1√
2π + n2

einx√
2π

(
e
−v2

4

−i n

)
, n ∈ Z∗

}
∪
{

M
(0)
n,j :=

(
un,0,j

0

)
, (n, j) ∈ Z× N∗

}
, (2.5.18)

is linearly independent and it is a basis of Ker[H].

Proof. Let us first prove the linear independence of the sets of functions (2.5.18). We have to
prove that if a linear combination of the eigenfunctions (2.5.18) is equal to zero then, each of the
coefficients in the linear combination is equal to zero. For this purpose we write the general linear
combination of the eigenfunctions in (2.5.18) with a convenient notation. Let M1 be any finite
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subset of Z∗ and let M2 be any finite subset of Z× N∗. Then, the general linear combination of
the eigenfunctions in (2.5.18) can be written as follows,

∑
n∈M1

αn
1√

2π + n2

einx√
2π

(
e
−v2

4

−i n

)
+

∑
(l,p)∈M2

β(l,p)

(
ul,0,p

0

)
,

for some complex numbers αn, n ∈M1, and β(l,p), (l, p) ∈M2. Suppose that,

∑
n∈M1

αn
1√

2π + n2

einx√
2π

(
e
−v2

4

−i n

)
+

∑
(l,p)∈M2

β(l,p)

(
ul,0,p

0

)
= 0.

Suppose that for some αln , n = 1, . . . , N, and some βql,jp , l = 1, . . . ,M, p = 1, . . . , P, where
ln ∈ Z \ {0}, n = 1, . . . , N, ln 6= lm, if n 6= m, and ql ∈ Z, l = 1, . . . ,M, jp ∈ N∗, p = 1, . . . , P,
(ql, jp) 6= (qm, jq), if (l, p) 6= (m, q),

N∑
n=1

αln
1√

2π + l2n

eilnx√
2π

(
e
−v2

4

−i ln

)
+

M∑
l=1

P∑
p=1

βql,jp

(
uql,0,jp

0

)
= 0. (2.5.19)

Since the second component of the functions in the second sum is zero, we have
∑
n∈M1

αn
1√

2π+n2

einx√
2π
n =

0. Further, as the
einx√

2π
, n ∈ M1 are orthogonal to each other, we have that, αn = 0, n ∈ M1.

Furthermore, as the αn, n ∈M1 are equal to zero, we obtain
∑

(l.p)∈M2
β(l,p)ul,0,p = 0. Moreover,

since the ul,0,p, (l, p) ∈M2 are an orthonormal set, β(l,p) = 0, (l, p) ∈M2. This proves the linear
independence of the set (2.5.18). Moreover, by (2.5.16) with ψ(x) = einx√

2π
, n ∈ Z∗, and f = 0,

each of the functions
1√

2π + n2

einx√
2π

(
e
−v2

4

−i n

)
n ∈ Z∗,

is an eigenvector of H with eigenvalue zero. Similarly, by (2.5.16) with ψ(x) = 0, and f = un,0,j ,
one has that each of the functions,(

un,0,j
0

)
, (n, j) ∈ Z× N∗,

is an eigenfunctions of H with eigenvalue zero. By the Fourier transform, the set of functions,
einx√

2π
, n ∈ Z, is a complete orthonormal set in L2(0, 2π). Then, in particular, any ψ ∈ H1,0(0, 2π),

can be represented as follows,

ψ(x) =
∑
n∈Z∗

(
ψ,

einx√
2π

)
L2(0,2π)

einx√
2π
, (2.5.20)

where the series converges in the norm of L2(0, 2π). Note that there is no term with n = 0 because
the mean value of ψ is zero. Then, by (2.5.20),(

e
−v2

4 ψ(x)
−ψ′(x)

)
=
∑
n∈N∗

(
ψ,

einx√
2π

)
L2(0,2π)

einx√
2π

(
e
−v2

4

−i n

)
. (2.5.21)

Finally, it follows from (2.5.16), (2.5.17) and (2.5.21) that the set (2.5.18) is a basis of the kernel
of H.
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2.5.2 The eigenvalues of H different from zero and their eigenfunctions

In this subsection we compute the non-zero eigenvalues of H and we give explicit formulae for
the eigenfunctions that correspond to each eigenvalue. By (2.5.3) we have to solve the system of
equations 

H0u− iv1 e
−v2

4 F = λu,

iI∗
∫
R2

v1 e
−v2

4 u dv = λF,
(2.5.22)

with λ ∈ R \ {0}, and
(
u
F

)
∈ D[H]. We first consider the case where the electric field, F , is zero,

and then, when it is different from zero.

The case with zero electric field

We have to compute solutions to (2.5.22) of the form,(
u
0

)
∈ D[H], (2.5.23)

with u ∈ D[H0]. Introducing (2.5.23) into the system (2.5.22) we obtain,


H0u = λu,

iI∗
∫
R2

v1 e
−v2

4 u dv = 0.
(2.5.24)

We seek for eigenfunctions of the form,

u(x, v) :=
1√
2π

ein(x− v2ωc
) 1√

2π
eimϕ τ(r), (n,m) ∈ Z2, (2.5.25)

where (r, ϕ) are the polar coordinates of v ∈ R2, and the function τ will be specified later. We
first consider the case when n = 0. In this case the second equation in (2.5.24) is satisfied because
the operator I∗ gives zero when applied to functions that are independent of x. Hence, we are
left with the first equation only, that is the problem that we solved in section 2.4. Then, as we
seek non zero eigenvalues we have to have m 6= 0 in (2.5.25). Using the results of section 2.4 we
obtain the following lemma.

Lemma 2.5.3. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and, (2.5.4).
Let {τj}∞j=1 be an orthonormal basis of L2(R+, rdr). Let ϕ ∈ [0, 2π), r > 0, be polar coordinates
in R2, v1 = r cosϕ, v2 = r sinϕ. For (m, j) ∈ Z∗ × N∗ let u0,m,j be the eigenfunction defined in
(2.4.2). Then, the set

Vm,j :=

{(
u0,m,j

0

)
, (m, j) ∈ Z∗ × N∗

}
, (2.5.26)

is an orthonormal set in H. Furthermore, each function on this set is an eigenvector of H

corresponding the eigenvalue λ(0)
m = mωc 6= 0,

HVm,j = λ(0)
m Vm,j , (m, j) ∈ Z∗ × N∗. (2.5.27)

Moreover, each eigenvalue λ(0)
m has infinite multiplicity.
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Proof. The lemma follows from proposition 2.4.1 and since the second equation in (2.5.24) is
always satisfied for functions that are independent of x.

Let us now study the second case, namely n 6= 0. We have to consider the second equation in
the system (2.5.24). We first prepare some results. For m ∈ Z let Jm(z), z ∈ C, be the Bessel
function. We have that

Jm(−z) = (−1)m Jm(z), J−m(−z) = Jm(z). (2.5.28)

For the first equation see formula 10.4.1 in page 222 of [53] and for the second see formula 9.1.5
in page 358 of [1]. The Jacobi-Anger formula, given in equation 10.12.1, page 226 of [53], yields,

eiz sinϕ =
∑
m∈Z

eimϕ Jm(z). (2.5.29)

The Parseval identity for the Fourier series applied to (2.5.29) gives,∑
m∈Z

Jm(z)2 = 1, z ∈ R. (2.5.30)

Differentiating the Jacobi-Anger formula with respect to ϕ we obtain,

z cosϕeiz sinϕ =
∑
m∈Z

meimϕ Jm(z). (2.5.31)

Taking in (2.5.31) z = −nr/ωc, with n 6= 0, recalling that v1 = r cosϕ, v2 = r sinϕ, and using the
first equation in (2.5.28) we get,

v1 e
−inv2ωc = −ωc

n

∑
m∈Z

meimϕ (−1)m Jm

(
nr

ωc

)
, n 6= 0. (2.5.32)

From (2.5.32) we obtain,∫ 2π

0

v1 e
−inv2ωc eimϕ dϕ = 2π

mωc

n
(−1)m J−m

(
nr

ωc

)
= 2π

mωc

n
Jm

(
nr

ωc

)
, n 6= 0, (2.5.33)

where in the last equality we used both equations in (2.5.28). Using (2.5.32) and taking n,m 6= 0
we prove that the second equation in (2.5.24) with u given by (2.5.25) is equivalent to,∫ ∞

0

e−
r2

4 Jm

(
nr

ωc

)
τ(r) r dr = 0. (2.5.34)

Taking m = 0 is possible, but it will be discarded below in lemma 2.5.4. Let us denote by Vn,m
the orthogonal complement in L2(R+, rdr) to the function, e−

r2

4 Jm

(
nr
ωc

)
, that is to say,

Vn,m :=

{
f ∈ L2(R+, rdr) :

(
f, e−

r2

4 Jm

(
nr

ωc

))
L2(R+,rdr)

= 0

}
, n,m ∈ Z∗. (2.5.35)

Note that Vn,m is an infinite dimensional subspace of L2(R+, rdr) of codimension equal to one.
We prove the following lemma using the results above.
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Lemma 2.5.4. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and (2.5.4).
Let τn,m,j , n,m ∈ Z∗, j ∈ N∗ be an orthonormal basis in Vn,m and define,

fn,m,j :=
1√
2π

ein(x− v2ωc
) 1√

2π
eimϕ τn,m,j(r), n,m ∈ Z∗, j ∈ N∗. (2.5.36)

Then, the set {
Wn,m,j :=

(
fn,m,j

0

)
, n,m ∈ Z∗, j ∈ N∗.

}
(2.5.37)

is an orthonormal set in H. Furthermore, each function on this set is an eigenvector of H

corresponding the eigenvalue λ(0)
m = mωc 6= 0,

HWn,m,j = λ(0)
m Wn,m,j n,m ∈ Z∗, j ∈ N∗. (2.5.38)

Moreover, each eigenvalue λ(0)
m has infinite multiplicity.

Proof. The lemma follows from (2.5.24), (2.5.34), (2.5.35) and (2.5.36). Note that the case m = 0
does not appear because we are looking for eigenfunctions with eigenvalue different from zero.
Furthermore, the eigenvalues λ(0)

m have infinite multiplicity because all the eigenfunctions Wn,m,j

with a fixed m and all n ∈ Z∗, j ∈ N∗, are orthogonal eigenfunctions for the eigenvalue, λ(0)
m .

The case with electric field different from zero

From the physical point of view this is the most interesting situation, since it describes the
interaction of the electrons with the electric field. Moreover, it is the most involved technically.
We look for eigenfunctions of the form,

1√
2π

(
ein(x− v2ωc ) τ(v)

einxG

)
, (2.5.39)

where G is a constant. Since we wish that the electric field is nonzero we must have G 6= 0. Hence,
to fulfill that

∫ 2π

0
F (x) dx = 0, we must have n 6= 0. The eigenvalue system (2.5.22) recasts as,

(−iωc∂ϕ − λ)τ = iG v1 e
−v2

4 ein
v2
ωc ,

λG = i

∫
R2

v1 e
−v2

4 e−in
v2
ωc τ(v) dv.

(2.5.40)

Changing n into −n in (2.5.32) and using the first equation in (2.5.28) we obtain,

v1 e
i
nv2
ωc =

ωc

n

∑
m∈Z

meimϕ Jm

(
nr

ωc

)
, n 6= 0. (2.5.41)

Plugging (2.5.41) into the first equation in the system (2.5.40) we get,

(−iωc∂ϕ − λ)τ(r, ϕ) = iG e
−r2

4
ωc

n

∑
m∈Z∗

meimϕ Jm

(
nr

ωc

)
, n 6= 0. (2.5.42)
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A solution to (2.5.42) is given by

τ(r, ϕ) = iG e
−r2

4
1

n

∑
m∈Z∗

mωc

mωc − λ
eimϕ Jm

(
nr

ωc

)
, n 6= 0, (2.5.43)

for λ 6= mωc,m ∈ Z∗. Introducing (2.5.43) into the second equation in the system (2.5.40), and
simplifying by G 6= 0 we get,

λ = − 1

n

∑
m∈Z∗

mωc

mωc − λ

∫
R2

e
−r2

2 eimϕ e−in
v2
ωc Jm

(
nr

ωc

)
v1 dv, n 6= 0, λ 6= mωc, m ∈ Z∗.

(2.5.44)
Plugging (2.5.33) into (2.5.44) and using that dv = rdrdϕ, we obtain,

λ = −2π

n2

∑
m∈Z∗

m2 ω2
c

mωc − λ
an,m, n 6= 0, λ 6= mωc, m ∈ Z∗. (2.5.45)

where we denote

an,m :=

∫ ∞
0

e
−r2

2 Jm

(
nr

ωc

)2

rdr > 0, m ∈ Z. (2.5.46)

Equation (2.5.45) is a secular equation that we will study to determine the possible values of
λ. Remark that (2.5.45) coincides with the secular equation obtained by [13] and [14]. First we
write it in a more convenient form. Note that thanks to the two equations in (2.5.28) we have
J−m(z) = (−1)mJm(z) and then an,−m = an,m. Using also mωc

mωc−λ = 1 + λ
mωc−λ , we can write∑

m∈Z∗

m2 ω2
c

mωc − λ
an,m =

∑
m∈Z∗

(
mωc +

mωcλ

mωc − λ

)
an,m = λ

∑
m∈Z∗

mωc

mωc − λ
an,m. (2.5.47)

Simplifying by λ 6= 0 and using (2.5.47) we write (2.5.45) as

1 = −2π

n2

∑
m∈Z∗

mωc

mωc − λ
an,m, n 6= 0, λ 6= mωc, m ∈ Z∗. (2.5.48)

By (2.5.30) we have
∑
m∈Z∗

an,m < +∞ and thus the series in (2.5.48) is absolutely convergent.

Secondly we proceed to write (2.5.48) in another form that we find convenient. Using again
an,−m = an,m we have ∑

m∈Z∗

mωc

mωc − λ
an,m = 2

∞∑
m=1

m2 ω2
c

m2ω2
c − λ

an,m. (2.5.49)

Let us denote

g(λ) := 4π

∞∑
m=1

m2 ω2
c

m2ω2
c − λ2

an,m, λ 6= mωc, m ∈ Z∗. (2.5.50)

Then using (2.5.49), (2.5.48) is equivalent to

g(λ) = −n2, n ∈ Z∗, λ 6= mωc, m ∈ Z∗. (2.5.51)

Since the function g is even it is enough to study it for λ ≥ 0. It has simple poles as λ = mωc,m ∈
N∗. It is well defined for λ ∈ ∪∞m=0Im, where,

I0 := [0 , ωc[, Im := ]mωc , (m+ 1)ωc[, m ∈ N∗. (2.5.52)
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Lemma 2.5.5. The function g is positive in I0. For m ≥ 1, g is monotone increasing in the
interval Im and the following limits hold,

limλ→ (mωc)
− = +∞, limλ→ (mωc)

+ = −∞. (2.5.53)

Proof. The fact that g is positive in I0 follows from the definition of g in (2.5.50). Furthermore,
since an,m > 0,m ≥ 1, and the functions λ 7→ m2 ω2

c
m2ω2

c−λ2 are monotone increasing away from the
poles, we have that g is increasing in Im,m ≥ 1, and that the limits in (2.5.53) hold.

In the following lemma we obtain the solutions to (2.5.51)

Lemma 2.5.6. For n ∈ Z∗, the equation (2.5.51) has a countable number of real simple roots,
λn,m in ]mωc , (m+ 1)ωc[,m ≥ 1. By parity λn,m := −λn,−m, m ≤ −1 is also a root. There is no
root in ]−ωc , ωc[. Furthermore, λn1,m1 = λn2,m2 if and only if n1 = n2, and m1 = m2,

Proof. The first two items follow from lemma 2.5.5 and the parity of g. The third point is
true because g is positive in ]−ωc , ωc[. Finally, if λn1,m1

= λn2,m2
, we have, m1 = m2, because

λn1,m1 ∈ ]m1ωc , (m1 + 1)ωc[ and λn2,m2 ∈ ]m2ωc , (m2 + 1)ωc[. Furthermore, if n1 6= n2, then,
λn1,m 6= λn2,m, because, otherwise, −n2

1 = g(λn1,m) = g(λn2,m) = −n2
2, and this is impossible.

Using (2.5.39) and (2.5.43) we define,

Yn,m :=
1√
2π

einx
(
e−in

v2
ωc ηn,m(v)
−n i

)
, n,m ∈ Z∗, (2.5.54)

where
ηn,m(v) := e

−r2
4

∑
q∈Z∗

q ωc

qωc − λn,m
eiqϕ Jq

(
nr

ωc

)
, n,m ∈ Z∗. (2.5.55)

For m ∈ Z∗, λn,m is the root given in lemma 2.5.6. Note that we have simplified the factor i
n in

(2.5.43) and we have taken G = 1. Remark that, formally, Yn,m is an eigenfunction of H,

HYn,m = λn,m Yn,m. (2.5.56)

However, we have to verify that Yn,m ∈ H. We have

‖Yn,m‖H =
√
‖ηn,m‖2L2(R2) + n2,

and

‖ηn,m(v)‖2L2(R2) = 2π
∑
q∈Z∗

(
qωc

qωc − λn,m

)2

an,q, (2.5.57)

where we used the first equation in (2.5.28). We now prove that ‖ηn,m(v)‖2L2(R2) < +∞ and
exhibit an asymptotic expansion of this quantity which will be used later.

Lemma 2.5.7. We have,

‖ηn,m(v)‖2L2(R2) =
n4

2π

1

an,m

(
1 +O

(
1

m2

))
+O

(
1

m2

)
, m→ ±∞. (2.5.58)
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Proof. Recall that for m ≤ −1, λn,m = −λn,−m. Then,

‖ηn,m(v)‖2L2(R2) = ‖ηn,−m(v)‖2L2(R2) , m ≤ −1. (2.5.59)

Hence, it is enough to consider the case m ≥ 1. We decompose the sum in (2.5.57) as follows,

‖ηn,m(v)‖2L2(R2) :=

4∑
j=1

h(j)(λn,m), (2.5.60)

where,

h(1)(λn,m) := 2π
∑
q≤−1

(
qωc

qωc − λn,m

)2

an,q, (2.5.61)

h(2)(λn,m) := 2π
∑

1≤q≤m−1

(
qωc

qωc − λn,m

)2

an,q, (2.5.62)

h(3)(λn,m) := 2π

(
mωc

mωc − λn,m

)2

an,m, (2.5.63)

and

h(4)(λn,m) := 2π
∑

m+1≤q

(
qωc

qωc − λn,m

)2

an,q. (2.5.64)

Since
(

qωc
qωc−λn,m

)2

≤ q2

(m+1)2 , q ≤ −1, we have,

∣∣∣h(1)(λn,m)
∣∣∣ ≤ 2π

∑
q≤−1

q2

(m+ 1)2
an,−q ≤ C

1

(m+ 1)2
, (2.5.65)

where in the last inequality we used (2.9.2). Assuming that m is even, we decompose h(2)(λn,m)
as follows,

h(2)(λn,m) := h(2,1)(λn,m) + h(2,2)(λn,m), (2.5.66)

where,

h(2,1)(λn,m) := 2π
∑

1≤q≤m/2

(
qωc

qωc − λn,m

)2

an,q, (2.5.67)

and

h(2,2)(λn,m) := 2π
∑

m/2<q≤m−1

(
qωc

qωc − λn,m

)2

an,q, (2.5.68)

Since
(

qωc
qωc−λn,m

)2

≤ 4 q2

m2 , 1 ≤ q ≤ m
2 ,

and, using (2.9.2) we obtain,∣∣∣h(2,1)(λn,m)
∣∣∣ ≤ 2π

∑
1≤q≤m/2

4
q2

m2
an,q ≤ C

1

m2
. (2.5.69)
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Furthermore, as,
(

qωc
qωc−λn,m

)2

≤ q2, m/2 < q ≤ m− 1, and by (2.9.2), we have

∣∣∣h(2,2)(λn,m)
∣∣∣ ≤ 2π

∑
m/2<q≤m−1

q2 an,q ≤ Cp
1

mp
(2.5.70)

for all p > 0. When m is odd we decompose h(2)(λn,m) as in (2.5.66) with

h(2,1)(λn,m) := 2π
∑

1≤q≤(m−1)/2

(
qωc

qωc − λn,m

)2

an,q, (2.5.71)

and

h(2,2)(λn,m) := 2π
∑

(m−1)/2<q≤m−1

(
qωc

qωc − λn,m

)2

an,q, (2.5.72)

and we prove that (2.5.69) and (2.5.70) hold arguing as in the case where m is even. This proves
that, ∣∣∣h(2)(λn,m)

∣∣∣ ≤ C 1

m2
. (2.5.73)

The technical result (2.9.22) in appendix A is λn,m = mωc + 2πmωc
an,|m|
n2 + an,|m|O

(
1
|m|

)
. It

yields

h(3)(λn,m) =
n4

2π

1

an,m

(
1 +O

(
1

m2

))
, m→∞. (2.5.74)

Moreover, by (2.9.2) and (2.9.22) there is an m0 such that(
qωc

qωc − λn,m

)2

≤ 2 q2, q ≥ m+ 1,m ≥ m0.

Then, using (2.9.2) we obtain for all p > 0,∣∣∣h(4)(λn,m)
∣∣∣ ≤ 4π

∑
m+1≤q

q2 an,q ≤ Cp
1

mp
, m ≥ m0. (2.5.75)

Equation (2.5.58) follows from (2.5.59), (2.5.60), (2.5.65), (2.5.66), (2.5.73), (2.5.74), and, (2.5.75).

Since Yn,m ∈ H we can define the associated normalized eigenfunctions as follows. Let us denote,

bn,m :=
√
‖ηn,m‖2L2(R2) + n2 = ‖Yn,m‖H. (2.5.76)

The normalized eigenfunctions are given by,

Zn,m :=
1

bn,m
Yn,m, n,m ∈ Z∗. (2.5.77)

The normalized eigenfunctions (2.5.77) are the Bernstein modes [14].

Then, we have,
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Lemma 2.5.8. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and (2.5.4).
Let λn,m, n,m ∈ Z∗, be the roots to equation (2.5.51) obtained in lemma 2.5.6. Then, each
λn,m, n,m ∈ Z∗, is an eigenvalue of H with eigenfunction Zn,m.

Proof. The fact that the λn,m, n,m ∈ Z∗, are eigenvalues of H with eigenfunction Zn,m follows
from (2.5.54), (2.5.56), and (2.5.58).

In preparation for lemma 2.5.9 below, we briefly study the asymptotic expansion for large |m| of
the normalized eigenfunction. By (2.5.55), (2.5.65), (2.5.73), and (2.5.75), we have,∥∥∥∥ηn,m − e−r24

mωc

mωc − λn,m
eimϕ Jm

(
nr

ωc

)∥∥∥∥
L2(R2)

= O

(
1

|m|

)
, m→ ±∞. (2.5.78)

Note that (2.5.65), (2.5.73), and (2.5.75) were only proven for m ≥ 1, and then, they only imply
(2.5.78) for m→∞. However, using both equations in (2.5.28) and as λn,−m = −λn,m we prove
that (2.5.78) with m→∞ implies (2.5.78) with m→ −∞. Then, by (2.5.58),∥∥∥∥ 1

bn,m
ηn,m −

1

bn,m
e
−r2

4
mωc

mωc − λn,m
eimϕ Jm

(
nr

ωc

)∥∥∥∥
L2(R2)

=
√
an,|m|O

(
1

m2

)
, m→ ±∞.

(2.5.79)
Let us denote,

η(a)
n,m := − 1√

2πan,|m|
e
−r2

4 eimϕ Jm

(
nr

ωc

)
, n,m ∈ Z∗. (2.5.80)

By (2.9.22) and (2.5.58),

1

bn,m

mωc

mωc − λn,m
= − 1√

2πan,|m|

(
1 +O

(
1

|m|

))
, m→ ±∞. (2.5.81)

Then, by (2.5.80) and, (2.5.81)∥∥∥∥ 1

bn,m
e
−r2

4
mωc

mωc − λn,m
eimϕ Jm

(
nr

ωc

)
− η(a)

n,m

∥∥∥∥
L2(R2)

= O

(
1

|m|

)
, m→ ±∞. (2.5.82)

Let us now define the asymptotic function that is the dominant term for large m of the normalized
eigenfunction Zn,m

Z(a)
n,m :=

1

bn,m

1√
2π

einx
(
e−in

v2
ωc η

(a)
n,m

−in

)
, n,m ∈ Z∗. (2.5.83)

In the next lemma we show that for large m the eigenfunction Zn,m is concentrated in Z
(a)
n,m.

Lemma 2.5.9. Let an,m be the quantity defined in (2.5.46), let Zn,m be the eigenfunction defined
in (2.5.77), and let Z

(a)
n,m be the asymptotic function defined in (2.5.83). We have that,∥∥∥Zn,m − Z(a)

n,m

∥∥∥
H
≤ C 1

|m|
, m→ ±∞, n ∈ Z∗. (2.5.84)

Proof. The lemma follows from (2.9.2), (2.5.79), and (2.5.82)
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2.5.3 The completeness of the eigenfunctions of H

In this subsection we prove that the eigenfunctions of the magnetized Vlasov–Ampère operator H
are a complete set in H. That is to say, that the closure of the set of all finite linear combinations
of eigenfunctions of H is equal to H, or in other words, that H coincides with the span of the set
of all the eigenfunctions of H. For this purpose we first introduce some notations. By (2.5.20)

L2(0, 2π) = ⊕n∈ZSpan
[
einx√

2π

]
, (2.5.85)

and

L2
0(0, 2π) = ⊕n∈Z∗Span

[
einx√

2π

]
. (2.5.86)

Furthermore, by (2.5.85) and (2.5.86),

H = ⊕n∈ZHn, (2.5.87)

where
H0 := L2(R2)⊕ {0}, (2.5.88)

and

Hn := Span
[
einx√

2π

]
⊗
(
L2(R2)⊕ C

)
, n ∈ Z∗. (2.5.89)

Alternatively, H0 can be written as the Hilbert space of all vector valued functions of the form
(u, 0)T , u ∈ L2(R2), where the injection of L2(R2) onto the subspace of A consists of all the
functions in A that are independent of x. In other words, we identify f(v) ∈ L2(R2) with the
same function f(v) ∈ A that is independent of x. Moreover, Hn can be written as the Hilbert
space of all vector valued functions of the form,

einx√
2π

(
u(v)
α

)
, u ∈ L2(R2), α ∈ C.

Furthermore, H can be written as the Hilbert space of all vector valued functions of the form(
u0(v)

0

)
+
∑
n∈Z∗

einx√
2π

(
un(v)
αn

)
,

where un ∈ L2(R2), αn ∈ C, n ∈ Z∗, and, further,
∑
n∈Z∗ ‖un‖2L2(R2) <∞, and

∑
n∈Z∗ |αn|2 <∞.

The strategy of the proof that the eigenfunctions of H are complete in H will be to prove that the
eigenfunctions of a given n are complete on the corresponding Hn. For this purpose we introduce
the following convenient spaces. A first space is defined as follows,

W0 := Span
[{

M
(0)
0,j

}
j∈N∗

]
⊕ Span

[
{Vm,j}m∈Z∗,j∈N∗

]
⊂ H0 (2.5.90)

where the eigenfunctions M
(0)
0,j , j ∈ N∗, are defined in (2.5.18) and the eigenfunctions Vm,j ,m ∈

Z∗, j ∈ N∗ are defined in (2.5.26). Next we introduce the space,

W(1)
n := Span

[
{Wn,m,j}n,m∈Z?,j∈N∗

]
⊂ Hn, n 6= 0, (2.5.91)
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where the eigenfunctions Wn,m,j , n,m ∈ Z?, j ∈ N∗ are defined in (2.5.37). We also need the
following space,

W(2)
n := Span

[
{Zn,m}n,m∈Z∗

]
⊂ Hn, n 6= 0, (2.5.92)

where the eigenfunctions Zn,m, n,m ∈ Z∗ are defined in (2.5.77). Finally, we define the space,

W(3)
n := Span

[{
V(0)
n

}
n∈Z∗

∪
{

M
(0)
n,j

}
n∈Z∗,j∈N∗

]
⊂ Hn ∩Ker[H], n 6= 0, (2.5.93)

where the eigenfunctions V
(0)
n and M

(0)
n,j are defined in (2.5.18).

Theorem 2.5.10. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and
(2.5.4). Then, the eigenfunctions of H are a complete set in H. Namely,

H0 = W0, (2.5.94)

Hn = W(1)
n ⊕W(2)

n ⊕W(3)
n , n ∈ Z∗. (2.5.95)

Furthermore,
H = W0 ⊕n∈Z∗

(
W(1)

n ⊕W(2)
n ⊕W(3)

n

)
. (2.5.96)

Proof. Note that W0 is orthogonal to W
(1)
n ,W

(2)
n , and W

(3)
n because W0 is the span of eigen-

functions with n = 0 and W
(1)
n ,W

(2)
n , and W

(3)
n are the span of eigenfunctions with n different

from zero. Furthermore, the W
(1)
n ,W

(2)
n , and W

(3)
n are orthogonal among themselves because

they are the span of eigenfunctions with different eigenvalues. Furthermore the W
(1)
n ,W

(1)
q , with

n 6= q, are orthogonal to each other because they are the span of eigenfunctions that contain
the factor, respectively, einx, eiqx. Similarly, W

(2)
n ,W

(2)
q , n 6= q are orthogonal to each other and

W
(3)
n ,W

(3)
q , n 6= q are also orthogonal to each other. Equation (2.5.94) is immediate because the

span of u0,m,j ,m ∈ Z, j ∈ N∗ is equal to L2(R2). We proceed to prove (2.5.95). We clearly have,

W(1)
n ⊕W(2)

n ⊕W(3)
n ⊂ Hn, n ∈ Z∗. (2.5.97)

Our goal is to prove the opposite embedding, i.e.,

Hn ⊂W(1)
n ⊕W(2)

n ⊕W(3)
n , n ∈ Z∗. (2.5.98)

Consider the decomposition,

Hn = W(1)
n ⊕

(
W(1)

n

)⊥
, (2.5.99)

where
(
W

(1)
n

)⊥
denotes the orthogonal complement of W

(1)
n in Hn. Recall that

W(2)
n ⊕W(3)

n ⊂
(
W(1)

n

)⊥
n ∈ Z∗. (2.5.100)

Our strategy to prove (2.5.98) will be to establish,(
W(1)

n

)⊥
⊂W(2)

n ⊕W(3)
n , n ∈ Z∗. (2.5.101)
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It follows from the definition of W
(2)
n in (2.5.92) and of W

(3)
n in (2.5.93) that the following set of

eigenfunctions is a basis of W
(2)
n ⊕W

(3)
n ,
Zn,m, n,m ∈ Z∗,
M

(0)
n,j , n ∈ Z∗, j ∈ N∗,

V
(0)
n , n ∈ Z∗.

(2.5.102)

Furthermore, it is a consequence of the definition of W
(1)
n in (2.5.91) and of the definition of

Z
(a)
n,m in (2.5.83) that the following set of functions is an orthonormal basis of

(
W

(1)
n

)⊥


Z
(a)
n,m, n,m ∈ Z∗,

M
(0)
n,j , n ∈ Z∗, j ∈ N∗,

Q,

, (2.5.103)

where the asymptotic functions Z
(a)
n,m, n,m ∈ Z∗ are defined in (2.5.83), the eigenfunctions

M
(0)
n,j , n ∈ Z∗, j ∈ N∗ are defined in (2.5.18), and Q is given by,

Q :=

(
0
1

)
. (2.5.104)

Any X ∈
(
W

(1)
n

)⊥
can be uniquely written as,

X =
∑
m∈Z∗

(
X,Z(a)

n,m

)
H

Z(a)
n,m +

∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HQ. (2.5.105)

We define the following operator from
(
W

(1)
n

)⊥
into

(
W

(1)
n

)⊥
,

ΛX :=
∑
m∈Z∗

(
X,Z(a)

n,m

)
H

Zn,m +
∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HV(0)

n . (2.5.106)

We will prove that (2.5.101) holds by showing that Λ is onto,
(
W

(1)
n

)⊥
. We write Λ as follows,

Λ = I + K, (2.5.107)

where K is the operator,

KX :=
∑
m∈Z∗

(
X,Z(a)

n,m

)
H

(
Zn,m − Z(a)

n,m

)
+ (X,Q)H

(
V(0)
n −Q

)
. (2.5.108)

We will prove that K is Hilbert–Schmidt. For information about Hilbert–Schmidt operators see
[107, Section 6, Chapter 6]. For this purpose we have to prove that K∗K is trace class. Since

the functions in (2.5.103) are an orthonormal basis of
(
W

(1)
n

)⊥
, we can verify the trace class

criterion under the form,∑
m∈Z∗

(
KZ(a)

n,m,KZ(a)
n,m

)
H

+
∑
j∈N∗

(
KM

(0)
n,j ,KM

(0)
n,j

)
H

+ (KQ,KQ)H <∞. (2.5.109)
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However, by (2.5.108)
∑
m∈Z∗

(
KZ

(a)
n,m,KZ

(a)
n,m

)
H

=
∑
m∈Z∗

∥∥∥(Zn,m − Z
(a)
n,m)

∣∣∣2
H
< ∞, where

we used, (2.5.84). Moreover,
∑
j∈N∗

(
KM

(0)
n,j ,KM

(0)
n,j

)
H

= 0, and, clearly, (KQ,KQ)H < ∞.
Hence, K is Hilbert–Schmidt, and then, it is compact. It follows from the Fredholm alternative,
see the Corollary in page 203 of [107], that to prove that Λ is onto it is enough to prove that it is

invertible. Suppose that X ∈
(
W

(1)
n

)⊥
satisfies ΛX = 0. Then, by (2.5.106)

∑
m∈Z∗

(
X,Z(a)

n,m

)
H

Zn,m +
∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HV(0)

n = 0. (2.5.110)

However, as the eigenfunctions Zn,m are orthogonal to the M
(0)
n,jand to V

(0)
n , we have,∑

m∈Z∗

(
X,Z(a)

n,m

)
H

Zn,m = 0, (2.5.111)

and, ∑
j∈N∗

(
X,M

(0)
n,j

)
H

M
(0)
n,j + (X,Q)HV(0)

n = 0. (2.5.112)

Since the eigenfunctions Zn,m are mutually orthogonal, it follows from (2.5.111) that
(
X,Z

(a)
n,m

)
H

=

0, m ∈ Z∗. Moreover, by lemma 2.5.2 the eigenfunctions M
(0)
n,j , j ∈ N∗ and ,V(0)

n are linearly

independent, and, then (2.5.112) implies
(
X,M

(0)
n,j

)
H

= 0, j ∈ N∗, and (X,Q)H = 0. Finally,

as the set (2.5.103) is an orthonormal basis of
(
W

(1)
n

)⊥
we have that X = 0. Then, Λ is onto(

W
(1)
n

)⊥
and (2.5.101) holds. Since also (2.5.100) is satisfied we obtain W

(2)
n ⊕W

(3)
n =

(
W

(1)
n

)⊥
,

n ∈ Z∗. This completes the proof of the theorem

Theorem 2.5.11. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and
(2.5.4). Then H is self-adjoint and it has pure point spectrum. The eigenvalues of H are given by.

1. The infinite multiplicity eigenvalues, λ(0)
m := mωc,m ∈ Z.

2. The simple eigenvalues λn,m, n,m ∈ Z∗, given by the roots to equation (2.5.51) obtained in
lemma 2.5.6.

Proof. We have already proven that H is self-adjoint below (2.5.7). The spectrum of H is pure
point because it has a complete set of eigenfunctions, as we proved in theorem 2.5.10. The
fact that the eigenvalues of H are equal to the λ(0)

m ,m ∈ Z, and the λn,m, n,m ∈ Z∗ follows
from lemma 2.5.2, lemma 2.5.3, lemma 2.5.4 and lemma 2.5.8. The λ(0)

m ,m ∈ Z have infinite
multiplicity because by lemma 2.5.2, lemma 2.5.3, and lemma 2.5.4 each λ(0)

m has a countable
set of orthogonal eigenfunctions. Let us prove that the eigenvalues λn,m are simple. Suppose
that for some n,m ∈ Z∗ the eigenvalue λn,m has multiplicity bigger than one. Then, there is
an eigenfunction, P, such that HP = λn,m P, and with P orthogonal to Zn,m. However since
by lemma 2.5.6 λn1,m1

= λn2,m2
if and only if n1 = n2, and m1 = m2, it follows that P is

orthogonal to the right hand side of (2.5.96), but hence, P is orthogonal to H, and then P = 0.
This completes the proof that the λn,m are simple eigenvalues.
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2.5.4 Orthonormal basis for the kernel of H

In section 2.5.1 we constructed a linear independent basis for the kernel of the magnetized
Vlasov–Ampère operator H. In this subsection we prove that, for an appropriate choice of the
orthonormal basis of L2(R+, rdr) that appears in the definition of the eigenfunctions M

(0)
n,j in

(2.5.18), we can construct an orthonormal basis for the kernel of H. The choice of the orthonormal
basis is n dependent. For n ∈ Z∗, let τ (n)

j , j = 1, . . . be any orthonormal basis of L2(R+, rdr)
where the first basis function is

τ
(n)
1 (r) :=

1
√
an,0

e
−r2

4 J0

(
nr

ωc

)
, n ∈ Z∗, (2.5.113)

with an,0 defined in (2.5.46). Note that this implies that the τ (n)
j , j = 2, . . . is an orthonormal

basis of the subspace Vn,0 that we defined in (2.5.35). Moreover, in the definition of the un,0,j in
(2.4.2) let us use this basis. In particular it yields

un,0,1 :=
ein(x− v2ωc

)

√
2π

1√
2π

1
√
an,0

e
−r2

4 J0

(
nr

ωc

)
, n ∈ Z∗. (2.5.114)

The eigenfunctions M
(0)
n,j =

(
un,0,j

0

)
, n ∈ Z∗, j ∈ N∗, of H precised with (2.5.113) are now a

particular case of the ones defined in (2.5.18). However, we keep the same notation for M
(0)
n,j for

a sake of readability.

For the other eigenfunctions we can use different orthonormal basis of L2(R+, rdr), if we find
it convenient. It follows from simple calculations that the eigenfunctions V

(0)
n , n ∈ Z∗, defined

in (2.5.18) are mutually orthogonal and that the eigenfunctions M
(0)
n,j , (n, j) ∈ Z∗ × N∗, are also

mutually orthogonal. Moreover, since the functions einx, n ∈ Z∗ are orthogonal in L2(0, 2π) to
the function equal to one, the eigenfunctions V

(0)
n , n ∈ Z∗, and M

(0)
0,j , j ∈ N∗ are orthogonal. Let

us compute the scalar product of the V
(0)
n , n ∈ Z∗, and the M

(0)
n,j , n ∈ Z∗, j = 1, . . . .

(
V(0)
n ,M

(0)
m,j

)
H

= δn,m
1√

2π + n2

(
e
−v2

4 ,
e−in

v2
ωc

√
2π

τj(r)

)
A

, n ∈ Z∗,m ∈ Z∗, j ∈ N∗.

(2.5.115)
Moreover, by the Jacobi-Anger formula (2.5.29), with z = −nr

ωc
,(

e
−v2

4 ,
e−in

v2
ωc

√
2π

τj(r)

)
A

=

(
e
−v2

4 ,

(∑
m∈Z

eimϕ Jm

(
−nr
ωc

))
1√
2π

τj(r)

)
A

, n ∈ Z∗, j ∈ N∗.

Hence, by (2.5.113) and the second equation in (2.5.28)(
e
−v2

4 ,
e−in

v2
ωc

√
2π

τj(r)

)
A

= δj,1
√

2π
√
an,0, n ∈ Z∗. (2.5.116)

By (2.5.115) and (2.5.116),(
V(0)
n ,M

(0)
m,j

)
H

= δn,m δj,1

√
2πan,0√

2π + n2
, n ∈ Z∗,m ∈ Z∗, j ∈ N∗. (2.5.117)
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This proves that the V
(0)
n , n ∈ Z∗, and the M

(0)
n,j , n ∈ Z∗, j = 2, . . . , are orthogonal to each

other, and also that V
(0)
n , and M

(0)
n,1, n ∈ Z∗, are not orthogonal. We apply the Gramm–Schmidt

orthonormalization process to V
(0)
n , and M

(0)
n,1, n ∈ Z∗, and we define the eigenfunctions,

E(0)
n := M

(0)
n,1 −

(
M

(0)
n,1,V

(0)
n

)
H

V(0)
n , n ∈ Z∗, (2.5.118)

and the normalized eigenfunctions,

F(0)
n :=

E
(0)
n

‖E(0)
n ‖H

, n ∈ Z∗. (2.5.119)

By (2.5.117), (2.5.118), and (2.5.119),

F(0)
n =

2π + n2

2π(1− an,0) + n2

(
M

(0)
n,1 −

√
2πan,0√

2π + n2
V(0)
n

)
, n ∈ Z∗. (2.5.120)

Note that by (2.5.30) and (2.5.46) an,0 < 1, and then 1− an,0 > 0.

Using the results above we prove the following theorem.

Theorem 2.5.12. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and
(2.5.4). Then, the following set of eigenfunctions of H with eigenvalue zero,{

V(0)
n , n ∈ Z∗

}
∪
{

M
(0)
0,j , j ∈ N∗

}
∪
{

M
(0)
n,j , n ∈ Z∗, j = 2, . . .

}
∪
{

F(0)
n , n ∈ Z∗

}
, (2.5.121)

is an orthonormal basis of Ker[H]. The eigenfunctions V
(0)
n , and M

(0)
0,j , are defined in (2.5.18),

and the eigenfunctions, M
(0)
n,j , and F

(0)
n , are defined, respectively, in (2.5.18) with (2.5.114), and

(2.5.119).

Proof. The lemma follows from lemma 2.5.2

2.5.5 Orthonormal basis with eigenfunctions of H

In this subsection we show how to assemble an orthonormal basis for H with eigenfunctions of H,
using the eigenfunctions that we have already computed. We first obtain an orthonormal basis
for Ker[H]⊥, with the eigenfunctions of H with eigenvalue different from zero.

Theorem 2.5.13. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3) and,
(2.5.4). Then, the following set of eigenfunctions of H with eigenvalue different from zero,

{Vm,j ,m ∈ Z∗, j ∈ N∗} ∪ {Wn,m,j , n,m ∈ Z∗, j ∈ N∗} ∪ {Zn,m, n,m ∈ Z∗} , (2.5.122)

is an orthonormal basis of Ker[H]⊥. Moreover, the eigenfunctions Vm,j ,Wn,m,j , and Zn,m are
defined, respectively in (2.5.26), (2.5.37), and (2.5.77).

Proof. Equation (2.5.96) can be written as follows,

H =

[
Span

[{
M

(0)
0,j

}
j∈N∗

]
⊕n∈Z∗ W(3)

n

]
⊕
[
Span

[
{Vm,j}m∈Z∗,j∈N∗

]
⊕W(1)

n ⊕W(2)
n

]
.

(2.5.123)
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Moreover, by lemma 2.5.2

Ker[H] = Span
[{

M
(0)
0,j

}
j∈N∗

]
⊕n∈Z∗ W(3)

n . (2.5.124)

Further, as H = Ker[H]⊕Ker[H]⊥, it follows from (2.5.123), (2.5.124)

Ker[H]⊥ = Span
[
{Vm,j}m∈Z∗,j∈N∗

]
⊕W(1)

n ⊕W(2)
n . (2.5.125)

Finally, using the definitions of W
(1)
n in (2.5.91) and of W

(2)
n in (2.5.92) we obtain that the set

(2.5.122) is an orthonormal basis of Ker[H]⊥.

In the following theorem we present an orthonormal basis for H with eigenfunctions of H.

Theorem 2.5.14. Let H be the magnetized Vlasov–Ampère operator defined in (2.5.3), and
(2.5.4). Then, the following set of eigenfunctions of H,{

V
(0)
n , n ∈ Z∗

}
∪
{

M
(0)
0,j , j ∈ N∗

}
∪
{

M
(0)
n,j , n ∈ Z∗, j = 2, . . .

}
∪
{

F(0)
n , n ∈ Z∗

}
∪

{Vm,j ,m ∈ Z∗, j ∈ N∗} ∪ {Wn,m,j , n,m ∈ Z∗, j ∈ N∗} ∪ {Zn,m, n,m ∈ Z∗} ,
(2.5.126)

is an orthonormal basis of H. The eigenfunctions,V(0)
n , and M

(0)
0,j are defined in (2.5.18). The

eigenfunctions, M
(0)
n , and F

(0)
n are defined, respectively in (2.5.18) with (2.5.114), and (2.5.119).

Moreover, the eigenfunctions Vm,j ,Wn,m,j , and Zn,m are defined, respectively in (2.5.26),
(2.5.37), and (2.5.77).

Proof. The result follows from theorem 2.5.12, and theorem 2.5.13.

2.6 The general solution to the magnetized Vlasov–Ampère
system, and the Bernstein–Landau paradox

In this section we give an explicit formula for the general solution of the Vlasov–Ampère system
with the help of the orthonormal basis of H with eigenfunctions of H. Let us take a general initial
state,

G0 =

(
u
F

)
∈ H.

Then, by theorem 2.5.14, the general solution to the magnetized Vlasov–Ampère system with
initial value at t = 0 equal to G0 is given by,

G(t) := e−itH G0, (2.6.1)

and, furthermore,
G(t) = G1 + G2(t), (2.6.2)

where the static part G1 is time independent, and the dynamical part G2(t) is oscillatory in time.
They are given by,

G1 =
∑
n∈Z∗

(
G0,V

(0)
n

)
H

V(0)
n +

∑
j∈N∗

(
G0,M

(0)
0,j

)
H

M
(0)
0,j +

∑
n∈Z∗,j≥2

(
G0,M

(0)
n,j

)
H

M
(0)
n,j

+
∑
n∈Z∗

(
G0,F

(0)
n

)
H

F(0)
n ,

(2.6.3)
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and

G2(t) =
∑

m∈Z∗,j∈N∗
e−itλ

(0)
m (G0,Vm,j , )H Vm,j +

∑
n,m∈Z∗,j∈N∗

e−itλ
(0)
m (G0,Wn,m,j)H Wn,m,j

+
∑

n,m∈Z∗
e−itλn,m (G0,Zn,m)H Zn,m.

(2.6.4)
We still have to impose the Gauss law (2.2.13), (2.2.14), or equivalently (2.5.8), to our general
solution to the magnetized Vlasov–Ampère system (2.2.17). For the eigenfunction M

(0)
n,j , n ∈

Z∗, j ≥ 2, the Gauss law (2.5.8) is equivalent to(
M

(0)
n,j ,V

(0)
n

)
H

= 0,

that is valid by the orthogonality of the M
(0)
n,j and the V

(0)
n . We prove in the same way that the

Gauss law (2.5.8) holds for the eigenfunctions F
(0)
n ,Wn,m,j , and Zn,m.We prove that Vm,j satisfies

the Gauss law by direct computation. It remains to consider the eigenfunctions M
(0)
0,j , j ∈ N∗,

defined in (2.5.18). For the M
(0)
0,j , the Gauss law (2.5.8) reads,∫ ∞

0

e
−v2

4 τj dv = 0, j ∈ N∗. (2.6.5)

We can make sure that (2.6.5) holds for all but one j by choosing the orthonormal basis in
L2(R+, rdr) that we use in the definition of the M

(0)
0,j , j ∈ N∗, as follows. As we proceed in

(2.5.113)-(2.5.114) for n ∈ Z∗, we specify the choice of the orthonormal basis (τj)j∈N∗ in (2.4.2)
and (2.5.18) for n = 0. We take an orthonormal basis, τ (0)

j , j ∈ N∗, in L2(R+, rdr), such that,

τ
(0)
1 (r) := e

−v2

4 . (2.6.6)

With this choice of the τ (0)
j , j ∈ N∗, the Gauss law (2.5.8) holds for M

(0)
0,j , j = 2, . . . . Hence, with

this choice, the general solution of the magnetized Vlasov–Ampère system given in (2.6.1) and
that satisfies the Gauss law (2.5.8) can be written as in (2.6.2) with the dynamical part G2(t) as
in (2.6.4), but with the static part G1 given by

G1 =
∑
j≥2

(
G0,M

(0)
0,j

)
M

(0)
0,j +

∑
n∈Z∗,j≥2

(
G0,M

(0)
n,j

)
M

(0)
n,j +

∑
n∈Z∗

(
G0,F

(0)
n

)
F(0)
n . (2.6.7)

This exhibits the Bernstein–Landau paradox. Namely, the general solution contains a time
independent part and a part that is oscillatory time. There is no part of the solution that tends to
zero as t→ ±∞, that is to say, there is no Landau damping in the presence of the magnetic field.

Remark 2.6.1. This remark concerns the space HG for the Gauss law and its orthogonal
complement.

Let us denote,
HG := Span

[{
V(0)
n , n ∈ Z∗

}
∪M

(0)
0,1

]
,

where the eigenfunctions V
(0)
n are defined in (2.5.18) and the eigenfunction M

(0)
0,1 is defined in

(2.5.18), (2.6.6). Note that it follows from the results above that the condition that each one of
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the eigenfunctions that appear in (2.6.3), and (2.6.4) satisfies the Gauss law is equivalent to ask
that the eigenfunction is orthogonal to HG. Then, it follows from (2.6.1), (2.6.2), (2.6.3), and
(2.6.4), that general solution to the magnetized Vlasov–Ampère system given in (2.6.1) satisfies
the Gauss law (2.5.8) if and only if G0 ∈ H⊥G.

The Hilbert space HG is a closed subspace of the kernel of H. So, the Gauss law is equivalent
to have the initial state in the orthogonal complement to a closed subspace of the kernel of H.
Actually, it is usually the case that when the Maxwell equations are formulated as a self-adjoint
Schrödinger equation in the Hilbert space of electromagnetic fields with finite energy, the Gauss
law is equivalent to have the initial data in the orthogonal complement of the kernel of the
Maxwell operator. See for example [127]. Let us further elaborate on the condition G0 ∈ H⊥G.
We introduce the space of test functions DT := {ϕ ∈ C∞[0, 2π] : dl

dxl
ϕ(0) = dl

dxl
ϕ(2π), l = 0, . . .}.

Let us expand ϕ ∈ DT in Fourier series

ϕ(x) =
∑
n∈Z

1√
2π

einxϕn, where ϕn :=
1√
2π

∫ 2π

0

ϕ(x) e−inx dx, n ∈ Z. (2.6.8)

Integrating by parts we prove that

|ϕn| ≤
Cl
|n|l

, l ∈ N, n ∈ Z∗. (2.6.9)

By a simple calculation, and using (2.6.8) and (2.6.9) we prove that,(
ϕ(x) e

−v2

4

− d
dxϕ(x)

)
=
∑
n∈Z∗

ϕn
√

2π + n2 V (0)
n +

√
2π ϕ0 M

(0)
0,1 ∈ HG. (2.6.10)

Suppose that (
u(x, v)
F (x)

)
∈ H⊥G. (2.6.11)

Then, by (2.6.10)((
u(x, v)
F (x)

)
,

(
ϕ(x) e

−v2

4

− d
dxϕ(x)

))
H

=

∫ 2π

0

ρ(x)ϕ(x) dx−
∫ 2π

0

F (x)
d

dx
ϕ(x) dx = 0, ϕ ∈ DT,

(2.6.12)
where ρ(x) is defined in (2.2.14). By (2.6.12) we see (u, F )T satisfies the Gauss law (2.2.13),
(2.2.14), or equivalently (2.5.8), in weak sense, where the weak derivatives are defined with respect
to the test space DT. Conversely, if (u, F )T satisfies (2.6.12) for all ϕ ∈ DT, we prove in a similar
way that (2.6.11) holds taking ϕ(x) = einx, n ∈ Z.

Remark 2.6.2. Observe that the general solution of the magnetized Vlasov–Ampère system,
G(t) = (u(t, x, v), F (t, x))T given in (2.6.1) and that satisfies the Gauss law (2.5.8) fulfills the
condition that the total charge fluctuation is equal to zero,∫

[0,2π]×R2

u(t, x, v)e
−v2

4 dx dv = 0. (2.6.13)

This is true because each one of the the eigenfunctions that appear in the expansion (2.6.2), with
G2(t) as in (2.6.4) and G1(t) as in (2.6.7) satisfy this condition.
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Let us now consider the expansion of the charge density fluctuation of the perturbation to the
Maxwellian equilibrium state, ρ(t, x), that we defined in (2.2.14). We compute the expansion of
ρ(t, x) multiplying the first component of the left- and right- hand sides of (2.6.2), by e−v

2/4,
integrating both sides of the resulting equation over v ∈ R2 , and using (2.6.4), and (2.6.7).
For this purpose, note that for a function in (u, 0)T ∈ H with electric field zero the Gauss law
(2.2.13), (2.2.14) implies that the charge density fluctuation of the function is zero. In particular
the charge density fluctuation of the eigenfunctions M

(0)
0,j , j ≥ 2,M

(0)
n,j , n ∈ Z∗, j ≥ 2,Vm,j ,m ∈

Z∗, j ∈ N∗,Wn,m,j , n,m ∈ Z∗, j ∈ N∗ is equal to zero.

Then, if we apply the expansion (2.6.2), with G1(t) given in (2.6.7) and G2(t) given in (2.6.4) to
the charge density fluctuation of the general solution to the magnetized Vlasov–Ampère system
(2.6.1) that satisfies the Gauss law, only the terms with , F

(0)
n , n ∈ Z∗, and Zn,m, n,m ∈ Z∗

survive. and we obtain,
ρ(t, x) = ρstat(x) + ρdin(t, x), (2.6.14)

where,

ρstat := −
∑
n∈Z∗

(
G0,F

(0
n

) ∫
R2

F(0,1)(x, v) e
−v2

4 dv, (2.6.15)

is the static part of the charge density fluctuation, and where F(0,1)(x, v) is the first component
of F

(0)
n . Moreover,

ρdin(t, x) =
∑

n,m∈Z∗
e−itλn,m (G0,Zn,m)H ρn,m(x), (2.6.16)

is the time dependent part of the charge density fluctuation. Here, ρn,m(x) is the charge density
fluctuation of the eigenfunction Zn,m that is given by

ρn,m(x) = − 1

bn,m
√

2π
einx

∫
R2

e
−r2

4 e−in
v2
ωc ηn,m(v) dv, n,m ∈ Z∗, (2.6.17)

where we used (2.5.77). The right-hand side of (2.6.16) is the expansion of the charge density
fluctuation in the Bernstein modes, [14], [13]. Note however, that for general initial data there is
also the static part of the charge density fluctuation (2.6.15), that is not reported in [14], [13].
This means that the Bernstein modes Zn,m, n,m ∈ Z∗ are not complete, and that to expand the
charge density fluctuation, ρ(t, x) with the general initial data, G0 that has finite energy and
that satisfies the Gauss law, one has to add the contribution of the static part ρstat(x) given by
the modes, F

(0)
n , n ∈ Z∗. It appears that this fact has not been observed before.

In the following theorem we prove that the expansion (2.6.14), (2.6.15), (2.6.16) of the charge
density fluctuation converges for initial data in H.

Theorem 2.6.3. Let ρ(t, x) be the charge density fluctuation defined in (2.2.14). Then, for
any initial state, G0 ∈ H, that satisfies the Gauss law, the expansion, (2.6.14), (2.6.15), (2.6.16)
converges strongly in the norm of L2(0, 2π).

Proof. We denote by G(t, x, v) the following quantity,

G :=
∑
n∈Z∗,

(
G0,F

(0)
n

)
F(0,1)
n +

∑
n,m∈Z∗

e−itλn,m (G0,Zn,m)H Z(1)
n,m, (2.6.18)
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where Z
(1)
n,m is the first component of the eigenfunction Zn,m. Then,

ρ(t, x) = −
∫
R2

G(t, x, v) e
−v2

4 dv. (2.6.19)

Hence, since G(t, x, v) ∈ A, it follows from Fubini’s theorem that for a.e. x ∈ (0, 2π), G(t, x, ·) ∈
L2(R2), and as also e

−v2

4 ∈ L2(R2), the integral in the right-hand side of (2.6.19) exists, and
then, the charge density fluctuation ρ(t, x) is well defined. Furthermore, by the Cauchy-Schwarz
inequality ρ(t, x) ∈ L2(0, 2π). We denote,

ρN (t, x) := −
∑

n∈Z∗,|n|≤N

(
G0,F

(0
n

)
H

∫
R2

F(0,1)(x, v) e
−v2

4 dv+

∑
n,m∈Z∗,|n|+|m|≤N

e−itλn,m (G0,Zn,m)H ρn,m(t, x). (2.6.20)

We will prove that ρN (t, x) converges to ρ(t, x) in norm in L2(0, 2π), i.e. that the series, (2.6.14),
(2.6.15) and (2.6.16) converges strongly in L2(R2). We designate,

GN :=
∑

n∈Z∗,|n|≤N

(
G0,F

(0)
n

)
F(0,1)
n +

∑
n,m∈Z∗,|n|+|m|≤N

e−itλn,m (G0,Zn,m)H Z(1)
n,m. (2.6.21)

We have that
lim
N→∞

‖G−GN‖A = 0. (2.6.22)

Furthermore,

−
∫
R2

GN (t, x, v) e
−v2

4 dv = ρN (t, x). (2.6.23)

Hence,

ρ(t, x)− ρN (t, x) = −
∫
R2

(G(t, x, v)−GN (t, x, v)) e
−v2

4 dv. (2.6.24)

Finally, by (2.6.22), (2.6.24), and the Cauchy- Schwarz inequality,∫ 2π

0

|ρ(t, x)− ρN (t, x)|2 dx =

∫ 2π

0

∣∣∣∣∫
R2

(G(t, x, v)−GN (t, x, v))e
−v2

4 dv

∣∣∣∣2 dx
≤ 2π

∫ 2π

0

∫
R2

|(G(t, x, v)−GN (t, x, v)|2 dx dv = 2π ‖G−GN‖2A → 0, as N →∞.

(2.6.25)
This completes the proof that the expansion (2.6.14), (2.6.15), (2.6.16) converges strongly in the
norm of L2(0, 2π).

Remark 2.6.4. The eigenfunctions M
(0)
0,j , j ≥ 2,M

(0)
n,j , n ∈ Z∗, j ≥ 2,Vm,j ,m ∈ Z∗, j ∈

N∗,Wn,m,j , n,m ∈ Z∗, j ∈ N∗, do not appear in the expansion (2.6.14), (2.6.15), (2.6.16) of
the charge density fluctuation. Still, as we mentioned in the introduction, these eigenfunctions
are physically interesting because they show that there are plasma oscillations such that at each
point the charge density fluctuation is zero and the electric field is also zero. Some of them are
time independent. Note that since our eigenfunctions are orthonormal, these special plasma
oscillations actually exist on their own, without the excitation of the other modes. It appears
that this fact has not been observed previously in the literature.
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2.7 Operator theoretical proof of the Bernstein–Landau para-
dox

We first study the operator H0 that appears in the formula for H that we gave in (2.5.5),(2.5.6),
and (2.5.7). Let us recall the representation of H as the direct sum of the Hn given in (2.5.87).
Using proposition 2.4.1 we see that the functions (un, αn)T in Hn can be written as

(
un(x, v)
αn

)
=

 ∑
m∈Z,j∈N∗

un,m,j(x, v) (un, un,m,j)A

αn

 , (2.7.1)

where for n = 0, αn = 0. Then, by proposition 2.4.1

H0

(
un(x, v)
αn

)
= H0,n

(
un(x, v)
αn

)
, (2.7.2)

where by H0,n we denote the operator in Hn given by,

H0,n

(
un(x, v)
αn

)
:=

∑
m∈Z,j∈N∗

(
λ

(0)
m un,m,j(x, v) (un, un,m,j)A

0

)
,

with domain D[H0,n] := {(un, αn)T :
∑
m∈Z,j∈N (λ

(0)
m )2|(un, un,m,j)A|2 <∞. Observe that H0,n

is the restriction of H0 to Hn, and that,

H0 = ⊕n∈Z H0,n. (2.7.3)

Further, the spectrum of H0,n is pure point and it consists of the infinite multiplicity eigenvalue
λ

(0)
m ,m ∈ Z. Then, the spectrum of H0 is also pure point and it consists of the infinite multiplicity

eigenvalues λ(0)
m ,m ∈ Z. Recall that the discrete spectrum of a self-adjoint operator consists of

the isolated eigenvalues of finite multiplicity, and that the essential spectrum is the complement
in the spectrum of the discrete spectrum. So, we have reached the conclusion that the spectrum
of H0 coincides with the essential spectrum and it is given by the infinite multiplicity eigenvalues
λ

(0)
m ,m ∈ Z. Let us now consider the operator V that appears in (2.5.7). For einx (τ(v), αn)T ∈ Hn,

Veinx
(
τ(v)
αn

)
= einx

(
−iv1e

−v2

4 αn

iI∗
∫
R2 v1 e

−v2

4 τ(v) dv

)
.

Then, V sends Hn into Hn, and that it acts in the same way in all the Hn. Let us denote by Vn

the restriction of V to Hn. Then, we have,

V = ⊕n∈Z Vn. (2.7.4)

furthermore, by (2.5.5), (2.7.3), and (2.7.4),

H = ⊕Hn, (2.7.5)

where Hn = H0,n + Vn. Further, it follows from (2.7.4) that Vn is a rank two operator, hence,
it is compact. Then, it is a consequence of the Weyl theorem for the invariance of the essential
spectrum, see Theorem 3, in page 207 of [16], that the essential spectrum of Hn, n ∈ Z is given
by the infinite multiplicity eigenvalues λ(0)

m ,m ∈ Z. Hence, by (2.7.5) the essential spectrum of H
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is given by the infinite multiplicity eigenvalues λ(0)
m ,m ∈ Z. However, since the complement of the

essential spectrum is discrete, we have that the spectrum of H consists of the infinite multiplicity
eigenvalues λ(0)

m ,m ∈ Z, and of a set of isolated eigenvalues of finite multiplicity that can only
accumulate at the essential spectrum and at ±∞. We know from the results of section 2.5 that
these eigenvalues are the λn,m, n,m ∈ Z∗, and that they are of multiplicity one. However, the
operator theoretical argument does not tell us that. However, it tells us that the spectrum of H
is pure point and that H has a complete orthonormal set of eigenfunctions. This implies that
the Bernstein -Landau paradox exists. Let us elaborate on this point. As we mentioned in the
introduction, it was shown by [36, 37] that the Landau damping can be characterized as the fact
that when the magnetic field is zero e−itH goes weakly to zero as t → ±∞. Let us prove that
when the magnetic field is non zero this is not true. We prove this fact using only the operator
theoretical results of this section, i.e. without using the detailed calculations of section 2.5. Let
us denote by γj , j = 1, . . . , the eigenvalues of H, repeated according to their multiplicity, and let
Xj , j = 1, . . . be a complete set of orthonormal eigenfunctions, where the eigenfunction Xj , is
associated with the eigenvalue, γj , j = 1, . . . . We know explicitly from section 2.5 the eigenvalues
and an orthonormal basis of eigenvectors, but we do not need this information here. Suppose
that e−itH goes weakly to zero as t→ ±∞. Then, for any X,Y ∈ H,

lim
t→±∞

(
e−itHX,Y

)
H = 0. (2.7.6)

Let us prove that there is no non trivial X ∈ H such that (2.7.6) holds for all Y ∈ H. We have
that,

(
e−itHX,Y

)
H =

∞∑
l=1

e−itγl(X,Xl)H (Xl,Y)H.

However, let us take Y = Xj , j = 1, . . . . Then, lim
t→±∞

(
e−itHX,Yj

)
H = lim

t→±∞
e−itγj (X,Xj)H,

j = 1, . . . , is a non-zero constant if γj = 0, and it is oscillatory if γj 6= 0, unless (X,Xj)H =
0, j = 1, . . . . However, if (X,Xj)H = 0, j = 1, . . . , then, X = 0. It follows that (2.7.6) only holds
for X = 0.

2.8 Numerical results

The objective of this section is to illustrate the numerical behavior of the eigenfunctions constructed
previously. More precisely, we will construct a numerical scheme that approximates the solution
of the magnetized Vlasov–Ampère system initialized with an eigenfunction and compare this
numerical solution with the theoretical dynamics of the system. The numerical results below
show that the difference between the theoretical and numerical solutions is small, confirming the
theoretical analysis. Furthermore, we will use the eigenfunctions to initialize a code solving the
non-linear magnetized Vlasov–Poisson system showing how we can approximate the solution of
the non-linear system with our linear theory. Finally, using the same non-linear code, we will
illustrate the Bernstein–Landau paradox, as in the spirit of [52, 91], by initializing with a standard
test function traditionally used to highlight Landau damping and show how the damping is lost
when we add a constant magnetic field.

71



Chapter 2. The magnetized Vlasov–Ampère system and the Bernstein–Landau
paradox

2.8.1 Computing the eigenvalues

As in (2.5.54), we consider an eigenfunction(
wn,m
Fn

)
, (2.8.1)

of the operator H associated to the Fourier mode n 6= 0 and the eigenvalue λn,−m = −λn,m where
wn,m and Fn are given by

wn,m = ein(x− v2ωc )e−
r2

4

∑
p∈Z∗

pωc
pωc + λn,m

eipϕJp

(
nr

ωc

)
andFn = −ineinx. (2.8.2)

Furthermore, λn,m is one of the roots of a secular equation (2.5.48), which could be written as

α(λ) = 0,

where the secular function α(λ) is given by

α(λ) = −1− 2π

n2

∑
m∈Z∗

mωc
mωc + λ

an,m. (2.8.3)

In (2.8.3) an,m is defined by (2.5.46). The secular function α(λ) is a convergent series with poles
at the multiples of the cyclotron frequency ωc. Note that the function α in (2.8.3) and the
function g in (2.5.51) are linked by the relation

α(λ) = −1− 1

n2
g(λ). (2.8.4)

and consequently one can easily deduce properties of α from those of g proved in lemma 2.5.5.

Figure 2.1 – Secular function for ωc = 0.5 and n = 1
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The plot in fig. 2.1 illustrates the properties of α (deduced from lemma 2.5.5 and relation (2.8.4)),
most notably that there is unique root (hence an eigenvalue for H) in (mωc, (m+ 1)ωc) for m ≥ 1,
and ((m− 1)ωc,mωc) for m ≤ −1. With a standard numerical method (dichotomy or Newton),
we can determine the roots of α. For example, with (n,m) = (1, 2), we find λ1,2 ≈ 1.19928. This
eigenvalue λ1,2 will be used in all the following numerical tests.

2.8.2 Solving the linear magnetized Vlasov–Ampère system with a
Semi-Lagrangian scheme with splitting

To approximate the linear system (2.2.17) or (2.5.1)-(2.5.2), we use a semi-Lagrangian scheme
[30, 15], which is a classical method to approximate transport equations of the form ∂tf +
E(x, t)∂xf = 0, coupled with a splitting procedure. A splitting procedure corresponds to
approximating the solution of ∂tf + (A+ B)f = 0 by solving ∂tf +Af = 0 and ∂tf + Bf = 0
one after the other.

Hence, the magnetized Vlasov–Ampère system is split so as to only solve transport equations
with constant advection terms.

∂t

(
u
F

)
+ (A+ B + C +D)

(
u
F

)
= 0,

with

A =

(
v1∂x

0

)
, B =

 Fv1e
− v

2
1+v2

2
4

1∗
∫
ue−

v2
1+v2

2
4 v1dv1dv2

 , C =

(
−ωcv2∂v1

0

)
, D =

(
ωcv1∂v2

0

)
.

(2.8.5)

The algorithm used to solve the linearized magnetized Vlasov–Ampère system can thus be
summarized as follows

1. Initialization Uini =

(
wn,m
Fn

)
given in (2.8.1).

2. Going from tn to tn+1

Assume we know Un, the approximation of U =

(
u
F

)
at time tn.

• We compute U∗ by solving ∂tU +AU = 0 with a semi-Lagrangian scheme during one
time step ∆t with initial condition Un.

• We compute Û by solving ∂tU + BU = 0 with a Runge-Kutta 2 scheme during one
time step ∆t with initial condition U∗.

• We compute U∗∗ by solving ∂tU + CU = 0 with a semi-Lagrangian scheme during one
time step ∆t with initial condition Û.

• We compute Un+1 by solving ∂t U +DU = 0 with a semi-Lagrangian scheme during
one time step ∆t with initial condition U∗∗.
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2.8.3 Results for the magnetized Vlasov–Ampère system

The solution of the magnetized Vlasov–Ampère system initialized with an eigenfunctions Uini =(
wn,m
Fn

)
as in (2.8.1) is simply given by

U(t) = eiλn,mt Uini. (2.8.6)

Recall that (2.8.1) is an eigenfunction of H with eigenvalue λn,−m = −λn,m. In the following
results, we have taken (n,m) = (1, 2), ωc = 0.5, Nx = 33 (number of points of discretization
in position), Nv1

= Nv2
= 63 (number of points of discretization in both velocity variables),

Lv1
= Lv2

= 10 (numerical truncation in both velocity variables) and, most importantly, Tf = π
λ1,2

.
This means that U(Tf) = exp

(
iπ2
)
Uini = iUini, and then, the solution of the system at t = Tf

corresponds to the initial condition where the real and imaginary parts have been exchanged (up
to a sign).

Figure 2.2 – Real and imaginary parts of the first component of U(t) given by (2.8.6) in v1 − v2

plane for x = 0.
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Figure 2.3 – Modulus of the first component of U(t) given by (2.8.6) in v1 − v2 plane for x = 0,
and real and imaginary parts of F .

The figures show that the solution of the system behaves according to the theory.

2.8.4 Results for the non-linear magnetized Vlasov–Poisson system

We now look at how the solution of the non-linear magnetized Vlasov–Poisson system (2.2.4)
behaves when initialized with an eigenfunction of the Hamiltonian H of the magnetized Vlasov–
Ampère system. The idea is that for a certain time, the solution for the non-linear magnetized
Vlasov–Poisson system follows the same dynamics as the solution for the linearized magnetized
Vlasov–Poisson system. We consider the magnetized Vlasov–Poisson system because it is more
convenient for numerical purposes. Recall that the linearized magnetized Vlasov–Poisson and the
magnetized Vlasov–Ampère systems are equivalent. Furthermore, the articles [14, 52, 121, 91]
have studied the Bernstein–Landau paradox using the magnetized Vlasov–Poisson system. We
use almost the same numerical scheme as in the previous subsection to approximate the solution
of the system.

The Vlasov equation, namely the first equation in (2.2.4), in the non-linear magnetized Vlasov–
Poisson system is split so as to only solve transport equations with constant advection terms,

∂tu+ (A+ B + C)u = 0,

with A = v1∂x, B = − (E + ωcv2) ∂v1
and C = ωcv1∂v2

. To update the electric field, the strategy
adopted is the same as in [30] where the Poisson equation is solved at each time step. On this
numerical computation we consider real valued solutions f,E.
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Let us denote by u the perturbation of the charge density function, f, and by F be the perturbation
of the electric field, E. The functions u, F solve the linearized magnetized Vlasov–Poisson system
(2.2.11). Recall that we proven in section 2.5 that the linearized magnetized Vlason-Poisson and
magnetized Vlasov–Ampère systems are equivalent. Then, we can use the real part of (2.8.6) to
write the expression of u, F when initializing with, uini, Fini, with uini = Re(wn,m), Fini = Re(Fn).
Recall that wn,m, and Fn are defined in (2.8.2). Then, we have,(

u(t)
F (t)

)
= Re(U(t)) =

(
cos(λmt) Re(wn,m)− sin(λmt) Im(wn,m)

cos(λmt) Re(Fn)− sin(λmt) Im(Fn)

)
(2.8.7)

where U(t) is given by (2.8.6).

The objective of this subsection is to show that we can approximate the solution of the non-linear
system using (2.8.7), which means that the solutions of both linear and non-linear systems are
close to each other for a certain time.

The algorithm used to solve the non-linear magnetized Vlasov–Poisson system can be summarized
as follows:

1. Initialization fini = f0 +ε
√
f0 Re(wn,m) and Eini = εRe(Fn) are given, where ε is a scalar

which controls the amplitude of the perturbation. We take ε = 0.1.

2. Going from tn to tn+1

Assume we know fn and En, the approximations of f and E at time tn.

• We compute f∗ by solving ∂tf + v1∂xf = 0 with a semi-Lagrangian scheme during
one time step ∆t with initial condition fn.

• We compute En+1 by solving the Poisson equation with f∗.

• We compute f̂ by solving ∂tf − (En+1 +ωcv2)∂v1
f = 0 with a semi-Lagrangian scheme

during one time step ∆t with initial condition f∗.

• We compute fn+1 by solving ∂tf + ωcv1∂v2f = 0 with a semi-Lagrangian scheme
during one time step ∆t with initial condition f̂ .

As in section 2.8.3 we take (n,m) = (1, 2), ωc = 0.5, Nx = 33 (number of points of discretization
in position), Nv1

= Nv2
= 63 (number of points of discretization in both velocity variables),

Lv1
= Lv2

= 10 (numerical truncation in both velocity variables) and, Tf = π
λ1,2

. In the following
figures, we are comparing respectively the theoretical perturbations, u, F, that are given by (2.8.7),
and the numerical perturbations,

un =
fn − f0

ε
√
f0

, andFn =
En

ε
,

where fn and En are given by the above algorithm.
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Figure 2.4 – u in v1 − v2 plane for x = 0 and electric field F .

The figures show that we can approximate the solution of the non-linear magnetized Vlasov–
Poisson system using solutions of the linear magnetized Vlasov–Poisson system, initialized with
the eigenfunctions of the Hamiltonian, H of the magnetized Vlasov–Ampère system.

2.8.5 The Bernstein–Landau paradox

In this subsection we illustrate the Bernstein–Landau paradox numerically, and we compare it
with the Landau damping, using the above algorithm (similarly to [52]). In order to compare the
numerical solutions to the non-linear Vlasov–Poisson system with the approximate analytical
solution found in [117] in the case ωc = 0, we take below the charge of the ions equal to one.
With this convention the non-linear Vlasov–Poisson system is written as,


∂tf + v1∂xf − E∂v1

f + ωc (−v2∂v1
+ v1∂v2

) f = 0.

∂xE(t, x) = 1−
∫
R2

fdv.
(2.8.8)

Furthermore, also with the purpose of comparing with the approximate analytical solution of
[117], we initialize with the density function fLD given by,

fLD(x, v1, v2) =
1

2π
(1 + ε cos kx) e

−v2

2 , ε = 0.001, k = 0.4. (2.8.9)

In this simulation the position interval is [0, 2π
k ], since we keep periodic solutions. To introduce

the approximate analytical solution of [117] let us consider the Vlasov–Poisson system (2.8.8)
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with ωc = 0, 
∂tf + v1∂xf − E∂v1

f = 0,

∂xE(t, x) = 1−
∫
R2

fdv,
(2.8.10)

and initialized with (2.8.9).

Let us look for a solution of the form,

f(t, x, v) = f1(t, x, v1)
1√
2π

e
−v2

2
2 . (2.8.11)

Then, f(t, x, v) satisfies the (2.8.10) and it is initialized with (2.8.9) if and only if f1(t, x, v1) is a
solution of the following Vlasov–Poisson system in one dimension in space and velocity,


∂tf1 + v1∂xf1 − E1∂v1

f1 = 0,

∂xE1(t, x) = 1−
∫
R
f1dv1,

(2.8.12)

initialized with,

f1(0, x, v1) =
1√
2π

(1 + ε cos kx) e
−v2

1
2 , ε = 0.001, k = 0.4. (2.8.13)

Furthermore, note that

E(t, x) = E1(t, x). (2.8.14)

Then, we can compute an approximate E(t, x) using the approximate solution to (2.8.12), (2.8.13)
given in page 58 of [117]. Namely,

E(x, t) ≈ 4ε× 0, 424666 exp(−0, 0661t) sin(0, 4x) cos(1, 2850t− 0, 3357725). (2.8.15)

We have taken the values given in the second line of the table in page 58 of [117]. This approximate
solution is a good approximation of the exact solution for large times.
Further, (2.8.15) is a classical test function to highlight Landau damping, more precisely the
damping of the electric energy. In the figures below we report (2.8.15) in the black curves.
Moreover, the figure below illustrates how when ωc 6= 0, the damping is replaced by a recurrence
phenomenon of period Tc = 2π

ωc
, which follows the behaviour observed in [6, 121]. We take

ωc = 0.1, and as in section 2.8.3, we use, Nx = 33 (number of points of discretization in position),
Nv1

= Nv2
= 63 (number of points of discretization in both velocity variables), Lv1

= Lv2
= 10

(numerical truncation in both velocity variables).
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Figure 2.5 – Damped and undamped electric field

The recurrence visible on the right-hand side figure, i.e. the Bernstein paradox, is a fully "physical"
phenomenon originating from the non-zero magnetic field and is to be distinguished from the
recurrence in semi-Lagrangian schemes studied in [89], which deals with a purely numerical
phenomenon. Let us show that this recurrence is a consequence of our series based on the
eigenvectors expansion in the regime of non zero magnetic field. For this purpose, we take the
charge of the ions equal to 2π, and solutions with period 2π, to be able to use our results of the
previous sections. We consider the initial data.

G0 := (u0(x, v), F0(x)) =

(
e
−v2

4 cos lx,−2π

l
sin lx

)
, l ∈ Z∗, (2.8.16)

which satisfies the Gauss law. To compute the electric field with the expansion of the solution to
the magnetic Vlasov–Ampère system given in (2.6.2), (2.6.4), (2.6.7) we only need to consider
the eigenfunctions with non zero electric field, namely, F

(0
n and Zn,m. Recalling that the electric

field is the second component of (2.6.2) we obtain,

F (x, t) =
∑
n∈Z∗

(
G0,F

(0
n

)
F(0,2)
n (x) +

∑
n,m∈Z∗

e−iλn,mt (G0,Zn,m)H Z(2)
n,m(x) =

(
G0,F

(0
l

)
F

(0,2)
l (x) +

∑
m∈Z∗

e−iλl,mt (G0,Zl,m)H Z
(2)
l,m(x), (2.8.17)

where we denote by F
(0,2)
n , respectively, Z

(2)
n,m the second component of F

(0)
n , and of Zn,m. Then,

using (2.2.10) with E0 = 0, and (2.8.17) we get the approximate formula for the electric field,

E(x, t) ≈ ε<F (t) = ε<
(
G0,F

(0
l

)
F

(0,2)
l (x) + ε<

∑
m∈Z∗

e−iλl,mt (G0,Zl,m)H Z
(2)
l,m(x). (2.8.18)

This approximate formula for the electric field shows the recurrence observed in the right-hand
side of fig. 2.5. For clarity, we indicate the real part in (2.8.18), but note that since the initial data
G0 in (2.8.16) is real valued, and the solution to the magnetic Vlasov-Ampère system (2.2.17) is
unique, actually the electric field given by (2.8.17) is real valued.
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2.9 Appendix A

In this appendix we further study the properties of the secular equation (2.5.50), (2.5.46), and
(2.5.51). For later use we prepare the following result.

Proposition 2.9.1. Let an,m, n ∈ Z∗,m = 1, . . . , be the quantity defined in (2.5.46). Then, there
is a constant, C, that depends on n, such that,

an,m ≤ C
1√
m

[
en2

2ω2
cm

]m
, m = 1, . . . , (2.9.1)

where e is Euler’s number. In particular, for any p > 0 there is a constant C, that depends on n
and p, such that,

an,m ≤ C
1

mp
. (2.9.2)

Proof. By equation (10.22.67) in page 245 of [53]

an,m = e
−n2

ω2
c Im

(
n2

ω2
c

)
, (2.9.3)

with In(z) a modified Bessel function. Furthermore, by equation (10.41.1) in page 256 of [53],

Im

(
n2

ω2
c

)
=

1√
2πm

(
en2

2ω2
cm

)m
(1 + o(1)), m→∞. (2.9.4)

Equation (2.9.1) follows from (2.9.3) and (2.9.4). Finally, (2.9.2) follows from (2.9.1).

We continue the analysis of the secular equation. Let λn,m,m ≥ 2 be the root given in (2.5.6).
Recall that λn,m ∈ ]mωc , (m+ 1)ωc[. Then, to isolate terms that can be large as λn,m is close to
mωc or to (m+ 1)ωc, we decompose g(λn,m) as follows,

g(λn,m) = g(1)(λn,m) + g(2)(λn,m) + g(3)(λn,m) + g(4)(λn,m), (2.9.5)

where,

g(1)(λn,m) := 4π
∑

1≤q≤m−1

q2 ω2
c

q2ω2
c − λ2

n,m

an,q, (2.9.6)

g(2)(λn,m) := 4π
m2 ω2

c

m2ω2
c − λ2

n,m

an,m, (2.9.7)

g(3)(λn,m) := 4π
(m+ 1)2 ω2

c

(m+ 1)2ω2
c − λ2

n,m

an,m+1, (2.9.8)

g(4)(λn,m) := 4π
∑

q≥m+2

q2 ω2
c

q2ω2
c − λn,m

an,q. (2.9.9)

Lemma 2.9.2. Let g(1)(λn,m) be the quantity defined in (2.9.6). Then, there is a constant Cn
such that, ∣∣∣g(1)(λn,m)

∣∣∣ ≤ Cn 1

m2
, m ≥ 2. (2.9.10)
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Proof. First suppose that m is even. Then, m/2 is an integer, and we can decompose g(1)(λn,m)
as follows,

g(1)(λn,m) = g(1,1)(λn,m) + g(1,2)(λn,m), (2.9.11)

where,

g(1,1)(λn,m) := 4π
∑

1≤q≤m/2

q2 ω2
c

q2ω2
c − λ2

n,m

an,q, (2.9.12)

and

g(1,2)(λn,m) := 4π
∑

m/2<q≤m−1

q2 ω2
c

q2ω2
c − λ2

n,m

an,q. (2.9.13)

Note that, ∣∣∣∣ 1

q2ω2
c − λ2

n,m

∣∣∣∣ ≤ 2

m2ω2
c
, q = 1, . . . ,

m

2
. (2.9.14)

Then, by (2.9.2), (2.9.12) and, (2.9.14)

∣∣∣g(1,1)(λn,m)
∣∣∣ ≤ 4π

2

m2ω2
c

m/2∑
1

q2 ω2
c an,q ≤ C

1

m2
. (2.9.15)

Furthermore, we have ∣∣∣∣ 1

q2ω2
c − λ2

n,m

∣∣∣∣ ≤ 1

ωc

1

mωc
, q =

m

2
, . . . ,m− 1. (2.9.16)

Then, by (2.9.2), (2.9.13) and, (2.9.16),∣∣∣g(1,2)(λn,m)
∣∣∣ ≤ 4π

1

ωc

1

mωc

∑
m/2<q≤m−1

q2 ω2
can,q ≤ Cp

1

mp
, p = 1, . . . . (2.9.17)

Equation (2.9.10) follows from (2.9.11), (2.9.15) and, (2.9.17). In the case where m is odd,
(m− 1)/2 is an integer, and we decompose g(1)(λn,m) as in (2.9.11) with,

g(1,1)(λn,m) := 4π
∑

1≤q≤(m−1)/2

q2 ω2
c

q2ω2
c − λn,m

an,q, (2.9.18)

and

g(1,2)(λn,m) := 4π
∑

(m−1)/2<q≤m−1

q2 ω2
c

q2ω2
c − λ2

n,m

an,q, (2.9.19)

and we proceed as in the case of m even.

In the following lemma we estimate g(4)(λn,m).

Lemma 2.9.3. Let g(4)(λn,m) be the quantity defined in (2.9.9). Then, for every p > 0 there is
a constant Cp such that, ∣∣∣g(4)(λn,m)

∣∣∣ ≤ Cp 1

mp
, m ≥ 2. (2.9.20)
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Proof. Note that, ∣∣∣∣ 1

q2ω2
c − λ2

n,m

∣∣∣∣ ≤ 1

ωc

1

(m+ 3)ωc
, q ≥ m+ 2. (2.9.21)

Equation (2.9.20) follows from (2.9.2), (2.9.9) and, (2.9.21).

In the following lemma we estimate how λn,m approaches mωc as m→ ±∞.

Lemma 2.9.4. We have,

λn,m = mωc + 2πmωc
an,|m|

n2
+ an,|m|O

(
1

|m|

)
, m→ ±∞. (2.9.22)

Proof. Note that since λn,−m = −λn,m it is enough to prove equation (2.9.22) when m→∞.

Using (2.9.10) and (2.9.20) we write (2.5.51) as follows

4π
m2 ω2

c

λ2
n,m −m2ω2

c
an,m = n2 + g(3)(λn,m) +O

(
1

m2

)
, m→∞. (2.9.23)

Moreover, as g(3)(λn,m) ≥ 0, we get,

4π
m2 ω2

c

λ2
n,m −m2ω2

c
an,m ≥ n2 +O

(
1

m2

)
, m→∞.

Then, there is an m0 such that 4π
m2 ω2

c
λ2
n,m−m2ω2

c
an,m ≥ π

4 , m ≥ m0, and then, λ2
n,m ≤ m2ω2

c +

16m2 ω2
c an,m, m ≥ m0, and taking the square root we obtain

mωc ≤ λn,m ≤ mωc
√

1 + 16 an,m, m ≥ m0. (2.9.24)

This already shows that λn,m is asymptotic to ωc for large m. However, we can improve this
estimate to obtain (2.9.22). By (2.9.2) and (2.9.24) for every p > 0,

((m+ 1)ωc − λn,m)
−1

=
1

ωc

(
1 +O

(
1

mp

))
, m→∞. (2.9.25)

Further, introducing (2.9.8) and (2.9.25) into (2.9.23), and using (2.9.2) we obtain,

4π
m2 ω2

c

λ2
n,m −m2ω2

c
an,m = n2 +O

(
1

m2

)
, m→∞. (2.9.26)

We rearrange (2.9.26) as follows,

λn,m −mωc =
4π

n2

m2 ω2
c

λn,m +mωc
an,m +

1

n2
(λn,m −mωc)O

(
1

m2

)
, m→∞. (2.9.27)

By (2.9.24)
λn,m −mωc ≤ mωcO (an,m) , m→∞. (2.9.28)

Further,

(λn,m +mωc)
−1

= (2mωc + λn,m −mωc)
−1

=
1

2mωc
(1 +O (an,m)), m→∞. (2.9.29)

Expansion (2.9.22) follows from (2.9.28) and, (2.9.29).
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2.10 Appendix B

2.10.1 A family of stationary solutions

In this appendix we explicitly construct a family of time-independent solutions to the linearized
magnetized Vlasov–Poisson system. We first construct the family in dimension 1+2 (one dimension
in space, two dimensions in velocity), which corresponds to the setting of our work. Then, we
generalize our family of solutions to the case dimension 3+3 (three dimensions in space, three
dimensions in velocity) that is the case considered by Bedrossian and Wang [13].

2.10.2 Dimension 1+2

For the purpose of making the comparison with [13] more transparent we consider the Vlasov
equation,

∂tf + v1∂xf + F · ∇vf = 0, (2.10.1)

with the electromagnetic Lorenz force,

F(t, x) =
q

m
(E(t, x) + v ×B0(t, x)) . (2.10.2)

Taking B0 6= 0 the plasma is magnetized. The variable x is in the periodic torus x ∈ T = [0, 2π]per.
The velocity variables are (v1, v2) ∈ R2. We take the charge q > 0 (remark 2.2.1) the mass m > 0,
and we assume, as before, that the magnetic field B(t,x) = B0 is constant in space-time. We
suppose again that the two-dimensional velocity v is perpendicular to the constant magnetic field,
i.e., B0 = (0, 0, B0), B0 > 0. Moreover, we assume that the electric field is directed along the first
coordinate axis, E(t, x) = (E(t, x), 0, 0), that it has mean zero,∫

T
E(t, x) dx = 0,

and that it satisfies the Gauss law,

∂xE(t, x) =
1

4π

(
−1 + q

∫
R2

fdv

)
, (2.10.3)

where as in [13] we introduced the factor 1
4π in the right-hand side of the Gauss law, and we have

taken the charge of the heavy particles equal to minus one.

We linearize the equations around a homogeneous Maxwellian equilibrium state f0(v), where,

f0(v) :=
1

2π
e
−v2

2 .

This corresponds to the expansion,

f(t, x, v) = f0(v) + εh(t, x, v) +O(ε2), (2.10.4)

and
E(t, x) = E0 + εF (t, x) +O(ε2), (2.10.5)
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with a null reference electric field E0 = 0. Inserting (2.10.4) and (2.10.5) into (2.10.1)-(2.10.3),
and keeping the terms up to linear in ε, we obtain the linearized magnetized Vlasov–Poisson
system


∂th+ v1∂xh−

q

m
Fv1f0 −

q

m
B0 (−v2∂v1

+ v1∂v2
)h = 0,

∂xF =
q

4π

∫
R2

h dv1dv2,

∫
T
F (t, x) dx = 0.

(2.10.6)

As we look for time-independent solutions, we have to solve,


v1∂xh−

q

m
Fv1f0 −

q

m
B0 (−v2∂v1

+ v1∂v2
)h = 0,

∂xF =
q

4π

∫
R2

h dv1 dv2,

∫
T
F (t, x) dx = 0.

(2.10.7)

Note that,
(−v2∂v1

+ v1∂v2
) f0(v1, v2) = 0. (2.10.8)

Our objective hereafter is to construct a family of non trivial smooth solutions to (2.10.7) that
have fast decay in velocity.

Lemma 2.10.1. There exists an explicit family of non trivial smooth solutions (h, F ) to the
time-independent linearized magnetized Vlasov–Poisson system (2.10.7), where F = −ϕ′(x), with
ϕ ∈ C∞(T ), and where the function h can be taken either with l continuous derivatives with
respect to v, l = 1, 2, . . . , or infinitely differentiable with respect to v. Moreover, for each fixed
x ∈ T , h ∈ L1(R2). Further, the absolute value of h and of all its derivatives can be taken bounded
by Gaussian functions of v, uniformly in x ∈ T . Moreover, h+ q

mϕf0 can be taken with compact
support in v, uniformly in x ∈ T .

Proof. We introduce an electric potential ϕ ∈ C1(T ) as

F (x) = −ϕ′(x),

with ϕ(2π) = ϕ(0) and ϕ′(2π) = ϕ′(0). Plugging in the first equation in (2.10.7), we obtain

v1∂x

[
h(x, v1, v2) +

q

m
ϕ(x)f0(v1, v2)

]
− q

m
B0 (−v2∂v1

+ v1∂v2
)h = 0.

Let us define
G(x, v1, v2) = h(x, v1, v2) +

q

m
ϕ(x)f0(v1, v2). (2.10.9)

Since we have (2.10.8), G satisfies the equation

v1∂xG(x, v1, v2)− q

m
B0 (−v2∂v1

+ v1∂v2
)G(x, v1, v2) = 0. (2.10.10)

Let us make another change of function which is valid since B0 6= 0,

H(x, v1, v2) = G(x− mv2

qB0
, v1, v2)⇐⇒ G(x, v1, v2) = H(x+

mv2

q B0
, v1, v2). (2.10.11)

The equation (2.10.10) is rewritten as

q

m
ωc (−v2∂v1 + v1∂v2)H(x, v1, v2) = 0. (2.10.12)
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Under this form, it is easy to find a general solution which writes

H(x, v1, v2) = K(x, v2
1 + v2

2)

where K is an arbitrary smooth function which decreases sufficiently fast at infinity with respect
to its second variable. For example, we can take,

K(x, v2
1 + v2

2) = einxg(v2
1 + v2

2), n ∈ Z \ {0}, (2.10.13)

where g(v2
1 + v2

2) ∈ Cl(R2), l = 1, 2, . . . , or g(v2
1 + v2

2) ∈ C∞(R2), and g(v2
1 + v2

2) ∈ L1(R2). For
example, g can be taken with compact support, or a Gaussian. Going back to the perturbation h,
one obtains the representation formula

h(x, v1, v2) = − q

m
ϕ(x)f0(v1, v2) +K(x+

mv2

q B0
, v2

1 + v2
2),

where the electric potential ϕ remains to be determined. All functions h of this form satisfy the
first equation of (2.10.7).

It remains to verify the Gauss law, that is the second equation of (2.10.7). The right hand side
of the Gauss law is

q

4π

∫
h dv1 dv2 =

q

4π

(
− q

m
ϕ(x) +

∫
K(x+

mv2

q B0
, v2

1 + v2
2) dv1 dv2

)
.

So the Gauss law is rewritten as

−ϕ′′(x) +
q2

4πm
ϕ(x) =

q

4π

∫
K(x+

mv2

q B0
, v2

1 + v2
2) dv1 dv2.

Using (2.10.13), one gets

−ϕ′′(x) +
q2

4πm
ϕ(x) =

q

4π
einx

∫
ein

mv2
qB0 g(v2

1 + v2
2) dv1 dv2.

This is an equation for the electric potential. The periodic solution is explicit,

ϕ(x) =
1

n2 + q2

4πm

q

4π
einx

∫
ein

mv2
qB0 g(v2

1 + v2
2)dv1dv2. (2.10.14)

The remaining properties of the solution (h, F ) follow immediately from the explicit representation
of (h, F ).

Remark that the solutions given by lemma 2.10.1 satisfy,∫
T
h(x, v1, v2) dx = 0,

∫
T
F (x) dx = 0,

and in particular, ∫
T ×R2

h(x, v1, v2) dx dv1 dv2 = 0.

The solutions given by lemma 2.10.1 are in agreement with (2.6.1), (2.6.2), (2.6.4), (2.6.7), and
also with (2.6.14), (2.6.15), (2.6.16).
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2.10.3 Dimension 3+3

We now consider solutions to the magnetized Vlasov–Poisson system in T 3 ×R3, where T 3 is the
three-dimensional torus, T 3 := [0, 2π]3per.We denote x := (x, y, z) ∈ T 3, and v = (v1, v2, v3) ∈ R3.
The Vlasov equation is given by,

∂tf(t,x,v) + v · ∇xf(t,x,v) + F(t,x) · ∇vf(t,x,v) = 0, (2.10.15)

with the electromagnetic Lorenz force,

F(t,x) =
q

m
(E(t,x) + v ×B0(t,x)) , (2.10.16)

where q > 0,m > 0, and we assume, as before, that the magnetic field B(t,x) = B0 is constant
in space-time, and that it is directed along the third coordinate, i.e., B0 = (0, 0, B0), B0 > 0.
Moreover, we assume that the electric field satisfies the Gauss law,

∇x ·E(t,x) =
1

4π
ρ(t,x), ρ(t,x) := [−1 + q

∫
R3

f(t,x,v) d3v]. (2.10.17)

Further, we assume that the electric field has mean zero,∫
T 3

E(t,x) d3x = 0. (2.10.18)

We linearize equations (2.10.15)-(2.10.18) around a homogeneous Maxwellian equilibrium state
f0(v), where,

f0(v) := f0(v1, v2)
1√

2πT‖
e
−v2

3
2T‖ ,

where T‖ > 0 is the temperature along the magnetic field. It corresponds to (2.1.2) by taking
f̃ = 0. This corresponds to the expansion,

f(t,x,v) = f0(v) + εG(t,x,v) +O(ε2), (2.10.19)

and
E(t,x) = E0 + εF(t,x) +O(ε2), (2.10.20)

with a null reference electric field E0 = 0. Inserting (2.10.19) and (2.10.20) into (2.10.15)-(2.10.17),
and keeping the terms up to linear in ε, we obtain the linearized magnetized Vlasov–Poisson
system,


∂tG(t,x,v) + v · ∇xG(t,x,v) +

q

m
F(t,x) · ∇vf

0(v) +
q

m
v ×B0 · ∇vG(t,x,v) = 0,

∇x · F(t,x) =
q

4π
ρ(t,x), ρ(t,x) :=

∫
R3

G(t,x,v) d3v,

∫
T 3

F(t,x) d3x = 0.

(2.10.21)
We look for solutions to (2.10.21) that satisfy,∫

T 3×R3

G(t,x,v) d3x d3v = 0. (2.10.22)
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Under the condition (2.10.22) the Gauss law, that is the second equation in (2.10.21), is equivalent
to the following equation,

F(t,x) = −∇x

∫
T 3

W (x− y) ρ(t,y) d3y with W (x) :=
q

4π

1

(2π)3

∑
k∈Z3\{0}

1

|k|2
eik·x. (2.10.23)

Since we are looking for time-independent solutions we have to solve,
v · ∇xG(t,x,v) +

q

m
F(t,x) · ∇vf

0(v) +
q

m
v ×B0 · ∇vG(t,x,v) = 0,

∇x · F(t,x) =
q

4π
ρ(t,x), ρ(t,x) :=

∫
R3

G(t,x,v) d3v,

∫
T 3

F(t,x) d3x = 0.

(2.10.24)
Let (h, F ) be one of the solutions to (2.10.7) given by lemma 2.10.1. We define,

G(x,v) = h(x, v1, v2)
1√

2πT‖
e
−v2

3
2T‖ , and F(x) =

 F (x)
0
0

 . (2.10.25)

Lemma 2.10.2. Let (h(x, v1, v2), F (x)) be one of the solutions to the time-independent linearized
magnetized Vlasov–Poisson system (2.10.7) given by lemma 2.10.1. Then, the pair (G(x,v),F(x))
defined in (2.10.25) is a solution to the time-independent linearized magnetized Vlasov–Poisson
system (2.10.24) in T 3 × R3, with F ∈ C∞(T 3), and where the function h can be taken either
with l continuous derivatives with respect to v, l = 1, 2, . . . , or infinitely differentiable with respect
to v. Moreover, for each fixed x ∈ T 3, h ∈ L1(R3). Further, the absolute value of h and of all its
derivatives can be taken bounded by Gaussian functions of v, uniformly in x ∈ T 3. Further, the
solution (G(x,v),F(x)) satisfies (2.10.22).

Proof. We detail the calculations for the convenience of the reader. One has

v · ∇xG(x, y, z, v1, v2, v3) = v1∂xh(x, v1, v2) 1√
2πT‖

e
−v2

3
2T‖ ,

∇vG(x, y, z, v1, v2, v3) =



∂v1
h(x, v1, v2) 1√

2πT‖
e
−v2

3
2T‖

∂v2
h(x, v1, v2) 1√

2πT‖
e
−v2

3
2T‖

h(x, v1, v2) ∂v3

1√
2πT‖

e
−v2

3
2T‖


,

F(x, y, z) · ∇vf
0 = −F (x) v1 f

0,

v ×B0 =


B0v2

−B0v1

0

 ,

(v ×B0) · ∇vG(x, y, z, v1, v2, v3) = B0 (v2∂v1
− v1∂v2

)h(x, v1, v2) 1√
2πT‖

e
−v2

3
2T‖ .

(2.10.26)
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paradox

Therefore, by (2.10.26) one gets the first equation in the linearized magnetized Vlasov–Poisson
system (2.10.24),

v · ∇xG(t,x,v) +
q

m
F(t,x) · ∇vf

0(v) +
q

m
v ×B0 · ∇vG(t,x,v) = 0. (2.10.27)

Moreover, one has ∇x · F(x) = ∂xF (x), and

∫
R3 G(x,v) d3v =

∫
R2 h(x, v1, v2)dv1dv2 ×

∫
R

1√
2π‖

e
−v2

3
2T‖ dv3

=
∫
R2 h(x, v1, v2)dv1dv2.

So one obtains immediately the Gauss law

∇x · F(x) =
q

4π
ρ(t,x). (2.10.28)

The fact that (2.10.22) holds, and the properties of the solution (G,F) stated in the lemma hold,
follow immediately from the definition of the pair (h, F ).

Then the pair (G,F) is a time independent solution to the linearized magnetized Vlasov equation,

v · ∇xG − F · ∇v(f0 τ(v3))− (v × B0) · ∇vG = 0, (2.10.29)

and of the Gauss law,

∇x · F(x, y, z) = −
∫
R3

Gdv. (2.10.30)

In the notation of Theorem 1 of [13]

ρ̂(t, k⊥, 0) = G(x, y, z, v1, v2, v3),

with k⊥ = (n, 0, 0). Moreover, f0
3 = τ, and f̃3 = 0. Further, in [13] the charge q is taken positive

and we take it equal to −1. However, the charge can be changed from one to minus one by the
change of coordinate x→ −x. Note, moreover, that since we take f0 = f0(v1, v2) = e−(v2

1+v2
2)/2

and in [13] f0 = 1
2π e

−(v2
1+v2

2)/2, we have to multiply our solution by 1
2π , i.e. ( 1

2πG,
1

2π F).

2.10.4 The unmagnetized case ωc = 0

It is instructing to calculate stationary solutions of the unmagnetized Vlasov–Poisson equations

v1∂xg + Fv1f0 = 0,

∂xF = −
∫
R2

gdv1dv2,∫
[0,2π]

F = 0,

(2.10.31)

One obtains
v1∂x [g(x, v1, v2)− ϕ(x)f0(v1, v2)] = 0.

It yields the representation

g(x, v1, v2)− ϕ(x)f0(v1, v2) = M(v1, v2)
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where M is arbitrary. Plugging in the 2nd equation of (2.10.31), one gets the Poisson equation

−ϕ′′(x) + 2πϕ(x) = −
∫
M(v1, v2)dv1dv2.

Since the right hand side is independent of x, the solution is also independent of x

ϕ(x) = − 1

2π

∫
M(v1, v2)dv1dv2.

Therefore the electric field vanishes

F (x) = −ϕ′(x) = 0.

Also the mass is zero ∫
R2

gdv1dv2 = 0.

Hence, for the unmagnetized case, stationary solutions are trivial.

For the solutions (G,F) to the time-independent linearized magnetized Vlasov–Poisson system
(2.10.24), that fulfills (2.10.22), the Fourier coefficient ρ̂(n, 0, 0) is, in general, not zero, and,
moreover, they satisfy the assumption of Theorem 1 of Bedrossian andWang, [13] (see theorem 2.1.1
above). For example, we can take g(v2

1 + v2
2) = e−v

2
1+v2

2 .

2.10.5 Limit B0 → 0

An interesting question is passing to the limit B0 → 0 in the right-hand side of (2.10.14). One
has weak convergence to zero of the right-hand side under standard integrability conditions on g
since

lim
B0→0

∫
R2

ein
mv2
qB0 h(v2

1 + v2
2)dv1dv2 = 0

because of the oscillating term ein
mv2
qB0 . Therefore, by (2.10.14) the solutions of (2.10.7) given by

lemma 2.10.1 satisfy
ϕ

B0→0
= 0.

The weak limit recovers the classical results in the non magnetized case.
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Poisson system

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.1.2 Different types of solutions . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Global existence of weak solutions . . . . . . . . . . . . . . . . . . . 98

Summary

In this chapter, we present the main mathematical properties of the magnetized Vlasov–Poisson
system, detailing the most important a priori estimates and listing the different types of solutions
to this system. Then we give a result on the existence of weak solutions to the magnetized
Vlasov–Poisson system, analogous to the result in the unmagnetized framework. Finally, we detail
the approximation procedure, first introduced by Arsenev in [4], that is central in the proof of
both results. This approximation procedure is also used implicitly in the proof of our results
regarding propagation of velocity moments in chapter 4 and chapter 5.

3.1 Introduction

We study the Vlasov–Poisson system with an external magnetic field, which we will call the
magnetized Vlasov–Poisson system for the rest of this chapter, in a 3-dimensional framework.
This system describes the behavior of a cloud of charged particles subject to an external magnetic
field and is given by the following set of equations:

∂tf + v · ∇xf + (E + v ∧B) · ∇vf = 0,

E(t, x) =
1

4π

∫
R3

∫
R3

x− y
|x− y|3

f(t, y, v)dvdy,
(3.1.1)

with 
f|t=0(x, v) := f in(x, v) ≥ 0

E|t=0(x) := Ein(x) :=
1

4π

∫
R3

∫
R3

x− y
|x− y|3

f in(y, v)dvdy.
(3.1.2)
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Throughout this chapter, we will assume that the magnetic field B verifies

B ∈W 1,∞(R3). (3.1.3)

We also define some macroscopic quantities, namely the macroscopic particle density ρ and the
electric current j: 

ρ(t, x) :=

∫
R3

f(t, x, v)dv with ρ|t=0(x) := ρin,

j(t, x) :=

∫
R3

vf(t, x, v)dv with j|t=0(x) := jin.

(3.1.4)

3.1.1 A priori estimates

In (3.1.1), the distribution function f is determined by the Vlasov equation which is a transport
equation with a divergence free vector field. Furthermore, the electric potential Φ (E derives
from the electric potential E = −∇xΦ) satisfies a Poisson equation. Thanks to these properties,
we can derive many a priori estimates for the magnetized Vlasov–Poisson system, which we list
below.

1. (Maximum principle) If the characteristics of the system are well-defined, then we can
express the solution f using f in and the characteristics. In this context for all t ≥ 0 and for
a.e. (x, v) ∈ R3 × R3 we have

0 ≤ f(t, x, v) ≤ sup
(x,v)∈R3×R3

f in(x, v). (3.1.5)

2. (Conservation of Lp norms) Since (x, v) → (v,E + v ∧ B) is a divergence free vector
field, we deduce that for all smooth functions β : R+ → R+ we have for all t ≥ 0∫

R3×R3

β(f(t, x, v))dxdv =

∫
R3×R3

β(f in(x, v))dxdv. (3.1.6)

In particular, all the Lp norms (1 ≤ p <∞) are conserved and letting p→∞ we also find
that the L∞ norm is conserved:

‖f(t)‖p =
∥∥f in∥∥

p
(3.1.7)

for all 1 ≤ p ≤ ∞.

3. (Local conservation of mass) Taking the macroscopic density ρ, we can write the
following formal calculations:

∂tρ = −
∫
R3

v · ∇xf + (E + v ∧B) · ∇vfdv = −divx j −
∫
R3

divv ((E + v ∧B)f)dv.

the last term is the second inequality is zero which means the macroscopic quantities ρ, j
verify the following continuity equation:

∂tρ(t, x) + divx j(t, x) = 0. (3.1.8)
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4. (Conservation of energy) We multiply the Vlasov equation by |v|2, integrate over R3×R3

and integrate by parts to obtain formally

d

dt

∫
R3×R3

|v|2 1

2
fdxdv = −

∫
R3×R3

(E + v ∧B) · vfdxdv = −
∫
R3×R3

E · vfdxdv

= −
∫
R3

E ·
(∫

R3

vfdv

)
dx

= −
∫
R3

E · jdx

=

∫
R3

Φ(t, x)divx j(t, x)dx

= −
∫
R3

Φ(t, x)∂tρ(t, x)dx

=

∫
R3

Φ(t, x)∂t∆xΦ(t, x)dx

= −
∫
R3

∇xΦ(t, x) · ∂t∇xΦ(t, x)dx

= − d

dt

∫
R3

1

2
|E(t, x)|2 dx.

Finally, we can write the conservation of energy∫
R3×R3

|v|2 f(t, x, v)dxdv +

∫
R3

|E(t, x)|2 dx =

∫
R3×R3

|v|2 f indxdv +

∫
R3

∣∣Ein(x)
∣∣2 dx.
(3.1.9)

5. (Uniform estimates) We start by presenting an interpolation inequality for velocity
moments. Let g := g(x, v) ≥ 0 such that g ∈ L∞(R3 × R3) and

∫
R3×R3 |v|k g(x, v)dxdv <

+∞. Then we have for 0 ≤ k′ ≤ k and r = k+3
k′+3∥∥∥∥∫

R3

|v|k
′
g(·, v)dv

∥∥∥∥
r

≤ c(k, k′) ‖g‖
k−k′
k+3
∞

(∫
R3×R3

|v|k g(x, v)dxdv

) k′+3
k+3

. (3.1.10)

The proof of this inequality can be found in the appendix of chapter 4.

Now we recall the weak Young inequality, whose proof can be found in [85].

Let 1 < p, q, r < ∞ with 1
p + 1

q = 1 + 1
r , then for all functions f ∈ Lp(Rn), g ∈ Lq,w(Rn)

the convolution product f ? g =
∫
Rn f(y)g(· − y)dy ∈ Lr(Rn) and satisfies the weak Young

inequality
‖f ? g‖r ≤ c ‖f‖p ‖g‖q,w (3.1.11)

with c = c(p, q, n) and by definition g ∈ Lq,w(Rn) iff g is measurable and

sup
τ>0

(
τ (vol {x ∈ Rn | |g(x)| > τ})

1
q

)
<∞. (3.1.12)

Furthermore, we can define a norm on Lq,w(Rn) given by

‖g‖q,w = sup
|A|<∞

|A|−
1
q′

∫
A

|g(x)| dx. (3.1.13)
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These inequalities yield uniform estimates under certain assumptions. Indeed if we assume
that f in ∈ L1∩L∞(R3×R3) such that |v|2 f ∈ L1(R3×R3) then we have uniform estimates
on ρ, j and E, which we now list:

sup
t≥0
‖ρ(t, ·)‖q ≤ C (3.1.14)

with 1 ≤ q ≤ 5
3 and C independent of q. This estimate is a consequence of the conservation

of Lp norms, the conservation of energy and the interpolation inequality.

sup
t≥0
‖j(t, ·)‖q ≤ C (3.1.15)

with 1 ≤ q ≤ 5
4 and C independent of q. Just like for the previous estimate on ρ, this

is a consequence of the conservation of Lp norms, the conservation of energy and the
interpolation inequality.

sup
t≥0
‖E(t, ·)‖q ≤ C (3.1.16)

with 3
2 < q ≤ 15

4 and C independent of q. This estimate is a consequence of the uniform
estimate on ρ and the weak Young inequality.

Most of these estimates can be proved rigorously by assuming sufficient regularity on the unknowns
f,E and by using the following lemma:

Lemma 3.1.1 (Conservation law, [60]). Let a ∈ C(R+, L
1(Rd)), b ∈ L1((0, T ) × Rd,Rd), c ∈

L1((0, T )× Rd) such that

∂ta+ divxb = c in D′(R∗+ × Rd), (3.1.17)

then
d

dt

∫
Rd
a(t, x)dx =

∫
Rd
c(t, x)dx in D′(R∗+). (3.1.18)

3.1.2 Different types of solutions

We present the different notions of solutions for the magnetized Vlasov–Poisson system.

Definition 3.1.2 (Classical solutions). Let T > 0 and f := f(t, x, v) ≥ 0. Then f is a classical
solution to the magnetized Vlasov–Poisson system (3.1.1) if f ∈ C1([0 , T ]×R3×R3), if E := E(t, x)
is Lipschitz with respect to x and if f verifies (3.1.1) in the strong sense.

In [103], Pfaffelmoser proved the existence of classical solutions to the Vlasov–Poisson system
(B = 0). Using very similar ideas, Schäffer subsequently improved this result [114]. Both these
proofs relied on estimating the support in velocity of the solution to Vlasov–Poisson (while
initializing the system with f in smooth and with compact support). The support in velocity of
the solution is controlled by Q := Q(t) defined by

Q(t) = 1 + sup
{
|v| : ∃x ∈ R3, τ ∈ [0 , t] such that f(τ, x, v) 6= 0

}
. (3.1.19)

We give Schäffer’s existence theorem [114].
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Theorem 3.1.3. Let f in ∈ C1
c (R3 × R3). Then the Cauchy problem for the Vlasov–Poisson

system ( (3.1.1) with B = 0) has a unique solution C1 solution, and for any p > 33
17 , there exists a

constant cp such that
Q(t) ≤ cp(1 + t)p. (3.1.20)

For the magnetized Vlasov–Poisson system, we proved the existence of classical solutions in
chapter 4 for a constant magnetic field and in chapter 5 for a general magnetic field by showing
propagation of velocity moments, which also yields propagation of regularity.

Now we present the notion of weak solutions.

Definition 3.1.4. Let f ∈ L∞(R+;L1(R3 × R3) ∩ L2(R3 × R3)), f is a weak solution of the
magnetized Vlasov–Poisson system if f |v|2 ∈ L∞(R+;L1(R3 × R3)) and we have

∂tf + divx(vf) + divv((E + v ∧B)f) = 0 in D′(R+ × R3 × R3). (3.1.21)

The initial condition is verified in the sense of distributions, i.e. for all φ ∈ C∞c (R3 × R3), the
function

t 7→
∫∫

R3×R3

f(t, x, v)φ(t, x)dxdv (3.1.22)

is continuous on R+ and satisfies∫∫
R3×R3

f(0, x, v)φ(t, x)dxdv =

∫∫
R3×R3

f in(x, v)φ(t, x)dxdv. (3.1.23)

In [4], Arsenev proved the existence of weak solutions to the Vlasov–Poisson system with an
approximation procedure. This result can easily be adapted to (3.1.1), and in the following
section we present an analogous result for the magnetized Vlasov–Poisson system with B verifying
(3.1.3).

Finally we present the notion of renormalized solutions to (3.1.1) developed in [42]. It was notably
shown in [42] that one requires weaker conditions to have existence of such renormalized solutions
compared to the assumptions demanded for the existence of weak solutions that we will present
in theorem 3.2.1. This notion, which was developed to study the Vlasov–Poisson system, can
easily be adapted to the magnetized Vlasov–Poisson system.

Definition 3.1.5. Let f ∈ L∞(R+;L1(R3×R3)), f is a renormalized solution of the magnetized
Vlasov–Poisson system if E ∈ L∞(R+, L

3
2 ,w(R3)) and if we have

∂tβ(f) + divx(vβ(f)) + divv((E + v ∧B)β(f)) = 0 in D′(R+ × R3 × R3), (3.1.24)

for all β ∈ C(R+) such that β is bounded.

In this thesis, we haven’t explored the existence of such solutions for the magnetized Vlasov–
Poisson system. However, in [42] DiPerna and Lions proved a result where they detailed necessary
and sufficient conditions to have equivalence between weak solutions and renormalized solutions.

Theorem 3.1.6. Let f ∈ L∞(R+, L
1(R3 × R3)).
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1. If f is a renormalized solution to the Vlasov–Poisson system and if f ∈ L∞(R+, L
p0(R3 ×

R3)) with p0 = 12+3
√

5
11 , F ∈ L∞(R+, L

p′0(R3)) then f is a weak solution of the Vlasov–
Poisson system.

2. If f is a weak solution to the Vlasov–Poisson system and if f ∈ L∞(R+, L
p1(R3 × R3))

with p1 = 7+
√

13
4 , |v|2 f ∈ L∞(R+, L

1(R3 × R3)) then f is a renormalized solution of the
Vlasov–Poisson system.

This theorem can be adapted to the magnetized Vlasov–Poisson system with B verifying (3.1.3),
which means the results on existence of weak solutions in chapter 4 and chapter 5 imply the
existence of renormalized solutions to (3.1.1).

3.2 Global existence of weak solutions

As already announced above, we now present a theorem of existence of weak solutions to the
magnetized Vlasov–Poisson system (3.1.1). This result is analogous to the theorem proved by
Arsenev in [4] for the Vlasov–Poisson system and we show it by adapting the method from [4].

Theorem 3.2.1. Let f in := f in(x, v) with f in ∈ L1 ∩ L∞(R3 × R3), f in ≥ 0 a.e. and assume
that

1

2

∫∫
R3×R3

|v|2 f indxdv +
1

2

∫
R3

∣∣Ein∣∣2 dx := E in <∞. (3.2.1)

Let B := B(t, x) with B verifying (3.1.3).

Then there exists a global weak solution f ∈ L∞
(
R+, L

1 ∩ L∞(R3 × R3)
)
to the Cauchy problem

for the magnetized Vlasov–Poisson system (3.1.1). This solution satisfies

0 ≤ f(t, x) ≤
∥∥f in∥∥∞ , for a.e. (x, v) ∈ R3 × R3 and ∀t ≥ 0 (3.2.2)

together with the Lp norm conservation for all t ≥ 0 and 1 ≤ p ≤ ∞

‖f(t)‖p =
∥∥f in∥∥

p
<∞, (3.2.3)

and the energy bound for a.e. t ≥ 0

1

2

∫∫
R3×R3

|v|2 f(t, x, v)dxdv +
1

2

∫
R3

|E(t, x)|2 dx ≤ E in <∞. (3.2.4)

Just like in [4], this result is shown by regularizing the initial data and considering an approximate
magnetized Vlasov–Poisson system, which is constructed with the following procedure:

Let ζ ∈ C∞(R3) which satisfies

ζ(x) = ζ(−x) ≥ 0 for x ∈ R3, supp(ζ) ⊂ B(0, 1) and
∫
R3

ζ(x)dx = 1. (3.2.5)

For ε > 0, we define

ζε(x) := ε−3ζ
(x
ε

)
and ξε(x) := ε−6ζ

(x
ε

)
ζ
(v
ε

)
. (3.2.6)
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3.2. Global existence of weak solutions

We also define the Green function for the Laplacian

G3(x) =
1

4π

1

|x|
. (3.2.7)

This allows us to write the approximate magnetized Vlasov–Poisson system

∂tfε + v · ∇xfε + Eε · ∇vfε + v ∧B · ∇vfε = 0,

Eε = (ζε ? ζε ? G3) ? ρε(t, ·),

ρε(t, x) =

∫
R3

fε(t, x, v)dv,

fε|t=0 = ξε ? (1ε|x|<11ε|v|<1f
in) := f inε .

(3.2.8)

To prove the existence of weak solutions to (3.1.1), we require an intermediate existence result
for the approximate magnetized Vlasov–Poisson system.

Proposition 3.2.2. Let f in := f in(x, v) with f in ∈ L1 ∩L∞(R3×R3), f in ≥ 0 a.e. and assume
that

1

2

∫∫
R3×R3

|v|2 f indxdv +
1

2

∫
R3

∣∣Ein∣∣2 dx := E in <∞. (3.2.9)

Let B := B(t, x) with B verifying (3.1.3).

Then we have the following estimates for the initial data of (3.2.8) f inε :

1

2

∫∫
R3×R3

|v|2 f inε dxdv +
1

2

∫
R3

∣∣∣Ẽinε ∣∣∣2 dx := E inε <∞ (3.2.10)

with
Ẽinε = −ζε ?∇xK3 ? ρ

in
ε , (3.2.11)

and
ρinε :=

∫
R3

f inε (x, v)dv, (3.2.12)

there exists a unique weak solution fε ∈ C(R+, L
1 ∩L∞(R3×R3)) to the approximate magnetized

Vlasov–Poisson system (3.2.8).

This solution satisfies

0 ≤ fε(t, x) ≤
∥∥f in∥∥∞ , for a.e. (x, v) ∈ R3 × R3 and ∀t ≥ 0, (3.2.13)

together with Lp norm conservation for all t ≥ 0,

‖fε(t)‖p =
∥∥f inε ∥∥p <∞, (3.2.14)

and the energy bound for all t ≥ 0,

1

2

∫∫
R3×R3

|v|2 fε(t, x, v)dxdv +
1

2

∫
R3

∣∣∣Ẽε(t, x)
∣∣∣2 dx = E inε <∞, (3.2.15)

where
Ẽε(t, ·) := (ζε ?∇xK3) ? ρε(t, ·). (3.2.16)

Thanks to this result, we can show that fε →
ε→0

f , with f solution to (3.1.1) like in theorem 3.2.1,
using the various estimates presented in section 3.1 to obtain compactness.
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Summary

This chapter corresponds to a work that has been published in the SIAM Journal on Mathematical
Analysis [110].

We show propagation of moments in velocity for the three-dimensional Vlasov–Poisson system
with a uniform magnetic field B = (0, 0, ω) by adapting the work of Lions and Perthame. The
added magnetic field also produces singularities at times which are the multiples of the cyclotron
period t = 2πk

ω , k ∈ N. This result also allows us to show propagation of regularity for the
solution. For uniqueness, we extend Loeper’s result by showing that the set of solutions with
bounded macroscopic density is a uniqueness class.
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Chapter 4. The Vlasov–Poisson system with a uniform magnetic field: propagation
of moments and regularity

4.1 Introduction

We consider the Cauchy problem for the Vlasov–Poisson system with an external magnetic field,
which is given by

∂tf + v · ∇xf + E · ∇vf + v ∧B · ∇vf = 0,

E(t, x) =
1

4π

∫
R3

x− y
|x− y|3

ρ(t, y)dy with ρ(t, x) :=

∫
R3

f(t, x, v)dv,

f(0, x, v) = f in(x, v) ≥ 0.

(4.1.1)

This set of equations governs the evolution of a cloud of charged particles, where f(t, x, v) is the
distribution function at time t ≥ 0, position x ∈ R3, and velocity v ∈ R3. E corresponds to the
self-consistent electric field and B is an external, constant, and uniform magnetic field given by

B =

0
0
ω

 , (4.1.2)

where ω > 0 is the cyclotron frequency.

The unmagnetized Vlasov–Poisson system has been extensively studied with the works of Arsenev
[4] for weak solutions, Okabe and Ukai in dimension 2 [97], and Bardos and Degond for small
initial data [8]. In the case of general initial data in dimension 3, two main approaches have
been developed. The first one is based on the study of the charateristic curves with the papers
from Pfaffelmoser [103] and Schäffer [114]. The second approach, first introduced for Vlasov
type equations by Lions and Perthame [87], is based on the propagation of moments of the
distribution function. This has resulted in several works where similar propagation properties are
shown in the case of more general systems [58] and also in the case of more general assumptions
[24, 29, 99, 100].

As for the Vlasov–Poisson system with an external magnetic field, it is a system of considerable
importance for the modeling of tokamak plasmas. For this reason, there exists an abundant
literature on the case with a strong magnetic field, where the aim is to derive asymptotic models
[18, 35, 56, 57, 63, 64] and devise numerical methods that capture this asymptotic behavior
[31, 55]. The Vlasov–Poisson system with an external and homogeneous magnetic field has also
been studied in the half-space and in an infinite cylinder in [115, 116].

With the external magnetic field, the first difficulty is finding an appropriate representation
formula for the macroscopic density, since the characteristics are a lot more complex than in
the case without a magnetic field. The second and most arduous difficulty is the existence of
singularities at times t = 0, 2π

ω ,
4π
ω , . . . , which correspond to the cyclotron periods, when we try

to control the electric field. We manage to avoid these singularities because our estimates are
valid for t ∈ [0 , Tω] with Tω = π

ω which is independent of f in. This allows us to reiterate our
analysis on [Tω , 2Tω] and so on.

Hence, in this chapter, we succeed in extending the results of [87] to the case of Vlasov–Poisson
with a homogeneous external magnetic field. This is a first step to proving propagation of moments
in the case of a nonhomogeneous magnetic field.
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4.2. Results

First, we detail our main result and several additional results in section 4.2. Then, in section 4.3,
we continue by presenting the basic definitions and lemmas that will be necessary for the proof of
our main result in section 4.4, which is the core of this work. More precisely, we will give the new
representation formula for the macroscopic density in section 4.4.1 and show how we control the
electric field with the magnetized characteristics in section 4.4.2. To treat the singularities that
appear, we establish a Grönwall inequality on [0 , Tω] in section 4.4.3 and show how this leads to
propagation of moments for all time in section 4.4.4. In section 4.4.5, we explore a method where
we place the magnetic part of the Lorentz force in the source term, which doesn’t work, but is so
simple that it’s still interesting to mention. We will give the proofs of our additional results in
section 4.5. In particular, we will explicate a new condition on the initial data so as to obtain the
boundedness of the macroscopic density. Finally, in section 4.6 we will present a few questions
and extensions related to the results in this chapter.

4.2 Results

First we give some notation and definitions.

For k ≥ 0 we denote the kth order moment density and the kth order moment in velocity of a
non-negative, measurable function f : R6 → [0 ,∞[ by

mk(f)(x) :=

∫
|v|k fdv and Mk(f) :=

∫
mk(f)(x)dx =

∫∫
|v|k fdvdx.

We write E(t) for the energy of system (4.1.1), which is given by

E(t) :=
1

2

∫∫
R3×R3

|v|2 f(t, x, v)dxdv +
1

2

∫
R3

|E(t, x)|2 dx, (4.2.1)

and we also write Ein := E(0).

Last we define the notion of solutions for the magnetized Vlasov–Poisson system (4.1.1), which is
analogous to the notion of weak solutions used in Arsenev [4].

Definition 4.2.1. Let f ∈ L∞(R+;L1(R3 × R3) ∩ L2(R3 × R3)), f is a weak solution of the
magnetized Vlasov–Poisson system if f |v|2 ∈ L∞(R+;L1(R3 × R3)) and we have

∂tf + divx(vf) + divv((E + v ∧B)f) = 0 in D′(R+ × R3 × R3). (4.2.2)

4.2.1 Main result

First we present this chapter’s main result: propagation of velocity moments for the Vlasov–Poisson
system with an external magnetic field.

Theorem 4.2.2 (Propagation of moments). Let k0 > 3, T > 0, f in = f in(x, v) ≥ 0 a.e. with
f in ∈ L1 ∩ L∞(R3 × R3) and assume that∫∫

R3×R3

|v|k0 f indxdv <∞. (4.2.3)
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Then there exists a weak solution

f ∈ C(R+;Lp(R3 × R3)) ∩ L∞(R+;Lp(R3 × R3)) (4.2.4)

(1 ≤ p < +∞) to the Cauchy problem for the Vlasov–Poisson system with magnetic field (4.1.1)
with B given by (4.1.2) in R3 × R3 such that∫∫

R3×R3

|v|k f(t, x, v)dxdv ≤ C < +∞, 0 ≤ t ≤ T, (4.2.5)

for all k such that 0 ≤ k ≤ k0, and with C = C(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)) > 0.

Remark 4.2.3. As said in [87], the assumptions in theorem 4.2.2 guarantee that the initial
energy Ein is finite.

Remark 4.2.4. Like in the original paper, all the a priori estimates that will be presented
in the proof are true for smooth solutions (C∞ with compact support). Since our estimates
depend only on T, k, ω,

∥∥f in∥∥
1
,
∥∥f in∥∥∞ , Ein,Mk(f in), it is sufficient to pass to the limit in the

approximate magnetized Vlasov–Poisson system. This approximate system is obtained by applying
the regularization procedure introduced by Arsenev [4] to prove the existence of weak solutions.

Let’s first mention that to prove the existence of weak solutions to (4.1.1) is relatively straightfor-
ward by adapting Arsenev’s work [4], even when the external magnetic field isn’t homogeneous.
The only requirement is to have B ∈W 1,∞(R+ × R3).

As said above, theorem 4.2.2 is an extension of the main result in [87]. To obtain (4.2.5), we
follow approximately the same strategy, which is to establish a linear Grönwall inequality on the
velocity moment. First, by writing a differential inequality on the velocity moment, we realize
that to obtain a Grönwall inequality on the moments, we need to control a certain norm of the
electric field. To do this, we require the information gained from the Vlasov equation. Hence, by
using the characteristics, we can express the macroscopic charge density with a representation
formula, which will in turn allow us to control the norm of the electric field. In our case, the added
magnetic field significantly complicates the characteristics and the initial proof by extension.

4.2.2 Additional results

Now we state a result regarding propagation of regularity for solutions to (4.1.1), where the initial
condition is sufficiently regular. This is also an extension of a result stated in [87] to the case
with a magnetic field. However, here we present this result and its proof with much more detail
than in [87] by adapting section 4.5 of [60].

Theorem 4.2.5 (Propagation of regularity). Let h ∈ C1(R) such that

h ≥ 0, h′ ≤ 0 and h(r) = O(r−α) with α > 3,

and let f in ∈ C1(R3) be a probability density on R3 × R3 such that f in(x, v) ≤ h(|v|) for all x, v
and which verifies ∫∫

R3×R3

(1 + |v|k0)f in(x, v)dxdv <∞ (4.2.6)

with k0 > 6.
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Then there exists a weak solution of the Cauchy problem for the Vlasov–Poisson system with
magnetic field (4.1.1) (f,E) ∈ C1(R+ × R3 × R3)× C1(R+ × R3) satisfying the decay estimate

sup
(t,x)∈[0 ,T ]×R3

f(t, x, v) + |Dxf(t, x, v)|+ |Dvf(t, x, v)| = O(|v|−α) (4.2.7)

for all T > 0.

Next, we state a result on the uniqueness of solutions to (4.1.1) which is a direct adaptation of
Loeper’s paper [88].

Theorem 4.2.6 (Uniqueness). Let f in ∈ L1 ∩ L∞(R3 × R3) be a probability density such that
for all T > 0

‖ρ‖L∞([0 ,T ]×R3) < +∞ (4.2.8)

then there exists at most one solution to the Cauchy problem for the Vlasov–Poisson system with
magnetic field (4.1.1).

Finally, we give a proposition that allows us to build solutions with bounded macroscopic density,
which is analogous to the condition given in Corollary 3 in [87].

Proposition 4.2.7. Let f in verify the assumptions of theorem 4.2.2 with k0 > 6 and assume
that f in also satisfies

ess sup{f in(y + vt, w), |y − x| ≤ (R+ ω |v|)t2eωt, |w − v| ≤ (R+ ω |v|)teωt}
∈ L∞([0 , T [× R3

x, L
1(R3

v))
(4.2.9)

for all R > 0 and T > 0.

Then, the solution of (4.1.1) verifies

ρ ∈ L∞([0 , T ]× R3
x) (4.2.10)

for all T > 0.

4.3 Preliminaries

As said above, we now present some basic results necessary for the proofs. First we recall the
weak Young inequality. The proof of this basic inequality can be found in [85].

Lemma 4.3.1 (Weak Young inequality). Let 1 < p, q, r <∞ with 1
p + 1

q = 1 + 1
r , then for all

functions f ∈ Lp(Rn), g ∈ Lq,w(Rn) the convolution product f ? g =
∫
Rn f(y)g(· − y)dy ∈ Lr(Rn)

and satisfies

‖f ? g‖r ≤ c ‖f‖p ‖g‖q,w (4.3.1)

with c = c(p, q, n) and by definition g ∈ Lq,w(Rn) iff g is measurable and

sup
τ>0

(
τ (vol {x ∈ Rn | |g(x)| > τ})

1
q

)
<∞. (4.3.2)
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Furthermore, we can define a norm on Lq,w(Rn) given by

‖g‖q,w = sup
|A|<∞

|A|−
1
q′

∫
A

|g(x)| dx. (4.3.3)

Now we present three lemmas that will be used repeatedly to prove propagation of moments in
section 4.4. We begin with a fundamental velocity moment inequality detailed in lemma 4.3.2,
which yields uniform estimates on the electric field that we present in lemma 4.3.3. Then we
give lemma 4.3.4 which is a basic functional inequality. To lighten the presentation, we place the
proofs of these lemmas in the appendix 4.7.

Lemma 4.3.2. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1, 0 ≤ k′ ≤ k < ∞, and r =
k+ 3

q

k′+ 3
q+ k−k′

p

. If

f ∈ Lp+(R6) with Mk(f) <∞, then mk′(f) ∈ Lr(R3) and

‖mk′(f)‖r ≤ c ‖f‖
k−k′

k+ 3
q

p Mk(f)

k′+ 3
q

k+ 3
q , (4.3.4)

where c = c(k, k′, p) > 0.

Lemma 4.3.3. The estimate
‖E(t)‖p ≤ C, t ∈ [0 , T [ (4.3.5)

holds for p ∈ ] 3
2 ,

15
4 ] with the constant C = C(

∥∥f in∥∥
1
,
∥∥f in∥∥∞ , Ein) independent of p, so that we

also have the estimate
‖E(t)‖ 3

2 ,w
≤ C, t ∈ [0 , T [. (4.3.6)

Lemma 4.3.4. For all functions g ∈ L1 ∩ L∞(R3) and h ∈ L 3
2 ,w(R3),∫

R3

|gh| dx ≤ 3

(
3

2

) 2
3

‖g‖
1
3
1 ‖g‖

2
3
∞ ‖h‖ 3

2 ,w
(4.3.7)

Last we give a Calderón–Zygmund inequality, whose proof one can find in [50].

Lemma 4.3.5 (Calderón–Zygmund). If Ω ∈ Lq(Sd−1), q > 1 so that
∫
Sd−1 Ω(ω)dS(ω) = 0, we

consider the tempered distribution T = vp
Ω( x
|x| )
|x|d ∈ S

′(Rd). The operator φ ∈ D(Rd) 7→ T ? φ can
be uniquely extended into a bounded operator on Lp(Rd) for p ∈ ]1 ,∞[.

4.4 Proof of propagation of moments

As said above, we extend the main result of [87] to the case of Vlasov–Poisson with a homogeneous
magnetic field. However, here, we use the same steps for the proof as in [111], where the ideas of
[87] are presented.

We begin by considering k0, T , and f in that follow the assumptions of theorem 4.2.2. Then, as in
[111], we can write a differential inequality on Mk with 0 ≤ k ≤ k0.

We differentiate Mk, and by integration by parts, a Hölder inequality, and (4.3.2) with p =∞, q =
1, k′ = k − 1, we obtain
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∣∣∣∣ ddtMk(t)

∣∣∣∣ =

∣∣∣∣∫∫ |v|k (−v · ∇xf − (E + v ∧B) · ∇vf)dvdx

∣∣∣∣
=

∣∣∣∣∫∫ |v|k divv ((E + v ∧B)f) dvdx

∣∣∣∣
=

∣∣∣∣∫∫ k |v|k−2
v · Efdvdx

∣∣∣∣
≤
∫∫

k |v|k−1
fdv |E| dx

≤ k ‖E(t)‖k+3 ‖mk−1(f)‖ k+3
k+2

and finally ∣∣∣∣ ddtMk(t)

∣∣∣∣ ≤ C ‖E(t)‖k+3Mk(t)
k+2
k+3 (4.4.1)

with C = c(k) ‖f(t)‖
1
k+3
∞ = C(k,

∥∥f in∥∥∞). The computations above are almost the same as in
the original case because the magnetic part vanishes. This means that, like in the unmagnetized
case, we need to control ‖E(t)‖k+3 to obtain a Grönwall inequality on Mk.

4.4.1 A representation formula for ρ

Now we turn to the next step of the proof. Following [111], we write a representation formula for
the macroscopic density using the characteristics associated to the Vlasov equation. With the
added magnetic field, the characteristics are much more complicated than in the unmagnetized
case. This translates to a generalized representation formula for the macroscopic density.

Lemma 4.4.1. We have the representation formula for ρ,

ρ(t, x) =

∫
v

f in(X0(t), V 0(t))dv︸ ︷︷ ︸
=:ρ0(t,x)

+ divx
∫ t

0

∫
v

(fHt) (s,X(s; t, x, v), V (s; t, x, v)) dvds (4.4.2)

with (X(s; t, x, v), V (s; t, x, v)) the characteristics associated to the transport operator ∂t + v ·∇x +
v ∧ B · ∇v (here E · ∇vf is considered as a source term in the Vlasov equation) which are the
solution to

d

ds
(X(s; t, x, v), V (s; t, x, v)) = (V (s; t, x, v), ωV2(s; t, x, v),−ωV1(s; t, x, v), 0) ,

(X(t; t, x, v), V (t; t, x, v)) = (x, v),
(4.4.3)

and after resolving the system are given by
V (s; t, x, v) =

 v1 cos(ω(s− t)) + v2 sin(ω(s− t))
−v1 sin(ω(s− t)) + v2 cos(ω(s− t))

v3

 ,

X(s; t, x, v) =

x1 + v1

ω sin(ω(s− t)) + v2

ω (1− cos(ω(s− t)))
x2 + v1

ω (cos(ω(s− t))− 1) + v2

ω sin(ω(s− t))
x3 + v3(s− t))

 (4.4.4)
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with (X0(t), V 0(t)) = (X(0; t, x, v), V (0; t, x, v)) and

Ht (s, x) =

 sin(ω(s−t))
ω E1(s, x) + cos(ω(s−t))−1

ω E2(s, x)
1−cos(ω(s−t))

ω E1(s, x) + sin(ω(s−t))
ω E2(s, x)

(s− t)E3(s, x)

 (4.4.5)

with Ei the coordinates of the electric field E.

Proof. First, thanks to the Vlasov equation, which we see as a transport equation in x and v
with source term −E · ∂vf , we can express f by solving the characteristics and by applying the
Duhamel formula

f(t, x, v) = f in(X0(t), V 0(t))−
∫ t

0

divv(fE)(s,X(s; t, x, v), V (s; t, x, v))ds,

where (X(·, t, x, v), V (·, t, x, v)) is the solution to (4.4.3), hence the expressions in (4.4.4). Now if
we consider

Gt(s, x) =

cos(ω(s− t))E1(s, x)− sin(ω(s− t))E2(s, x)
sin(ω(s− t))E1(s, x) + cos(ω(s− t))E2(s, x)

E3(s, x)

 ,

then

divv
∫ t

0

fGt(s,X(s; t, x, v), V (s; t, x, v))ds

=

∫ t

0

cos(ω(s− t))∂v1
(fE1 (s,X(s; t, x, v), V (s; t, x, v)))

−
∫ t

0

sin(ω(s− t))∂v1
(fE2 (s,X(s; t, x, v), V (s; t, x, v)))

+

∫ t

0

sin(ω(s− t))∂v2
(fE1 (s,X(s; t, x, v), V (s; t, x, v)))

+

∫ t

0

cos(ω(s− t))∂v2
(fE2 (s,X(s; t, x, v), V (s; t, x, v)))

+

∫ t

0

∂v3 (fE3 (s,X(s; t, x, v), V (s; t, x, v)))

=

∫ t

0

cos sin

ω
∂x1(fE1) +

cos(cos−1)

ω
∂x2(fE1) + cos2 ∂v1(fE1)− cos sin ∂v2(fE1)

+

∫ t

0

− sin2

ω
∂x1(fE2) +

sin(1− cos)

ω
∂x2(fE2)− cos sin ∂v1(fE2) + sin2 ∂v2(fE2)

+

∫ t

0

(1− cos) sin

ω
∂x1(fE1) +

sin2

ω
∂x2(fE1) + sin2 ∂v1(fE1) + cos sin ∂v2(fE1)

+

∫ t

0

cos(1− cos)

ω
∂x1

(fE2) +
cos sin

ω
∂x2

(fE2) + cos sin ∂v1
(fE2) + cos2 ∂v2

(fE2)

+

∫ t

0

(s− t)∂x3
(fE3) + ∂v3

(fE3)

=

∫ t

0

divv(fE)(s,X(s), V (s))ds+ divx
∫ t

0

(fHt)(s,X(s), V (s))ds,
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where in the second to last equality, cos = cos(ω(s − t)) (same for sin), ∂xi(fEi) is always
evaluated at (s,X(s; t, x, v), V (s; t, x, v)) (same for ∂vi(fEi)), and where in the last equality we
write (X(s), V (s)) for the characteristics instead of (X(s; t, x, v),
V (s; t, x, v)). Then we integrate with respect to v, which gives us (4.4.2).

Remark 4.4.2. The expression of Ht and the characteristics are coherent because Ht −→
ω→0

−tE
and (X0, V 0) −→

ω→0
(x − tv, v). These expressions obtained when ω → 0 correspond to the

representation formula for ρ in the unmagnetized case.

4.4.2 Control of the electric field with the characteristics

Thanks to lemma 4.4.1 which gives us a new representation formula for ρ, we can start to write
the estimates to control the electric field, still following the steps from [111]. A first difficulty here
is adapting the estimates to this new context. We also see the appearance of the singularities
mentioned above at (4.4.17), which will be a major difficulty.

First estimates

Thanks to the representation formula (4.4.2) for ρ, E(t, ·) is given by

E(t, x) = − (∇K3 ? ρ) (t, x) = E0(t, x) + Ẽ(t, x), (4.4.6)

where K3 is Green’s function for the Laplacian in dimension 3 given by

K3(x) =
1

4π

1

|x|
, (4.4.7)

and 
E0(t, x) = − (∇K3 ? ρ0) (t, x),

Ẽ(t, x) = −∇K3 ?

(
divx

∫ t

0

∫
v

(fHt) (s,X(s; t, x, v), V (s; t, x, v)) dvds

)
.

(4.4.8)

The first term E0 is easier to control.

Lemma 4.4.3. We have the following estimate for E0:∥∥E0(t, ·)
∥∥
k+3
≤ C(k,

∥∥f in∥∥
1
,Mk(f in)). (4.4.9)

Proof. Thanks to the weak Young inequality, we can write∥∥E0(t, ·)
∥∥
k+3
≤ ‖∇K3‖ 3

2 ,w
‖ρ0(t, ·)‖p (4.4.10)

with p = 3k+9
k+6 . And the 3k+9

k+6 norm of ρ0(t, ·) can in turn be controlled using lemma 4.3.2, where
k′ = 0, r = 3k+9

k+6 , p =∞, q = 1, and with a simple change of variables

‖ρ0(t, ·)‖ 3k+9
k+6
≤ c ‖f‖

l
l+3
∞

(∫∫
|v|l f in(X0(t), V 0(t))dxdv

) 3
l+3

= CMl(0)
3
l+3
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with l+3
3 = 3k+9

k+6 .

Since k > 3, l
3 = 2k+3

k+6 ≤
2k+k

6 = k
3 . Hence l ≤ k, and thanks to lemma 4.3.2 with p = ∞, q =

1, k′ = l we obtain Ml(0) ≤ c
∥∥f in∥∥ k−lk

1
Mk(0)

l
k .

This gives us a bound on ρ0(t, ·),

‖ρ0(t, ·)‖ 3k+9
k+6
≤
(
c
∥∥f in∥∥ k−lk

1
Mk(0)

l
k

) 3
l+3

= C(k,
∥∥f in∥∥

1
,Mk(f in)) (4.4.11)

with l+3
3 = 3k+9

k+6 .

To estimate the second term Ẽ, we first notice that it can be written as

3∑
q,p=1

∂q∂pK3 ?

∫ t

0

∫
v

fHtdvds

so that we can apply the Calderón–Zygmund inequality (lemma 4.3.5)

∥∥∥Ẽ(t, ·)
∥∥∥
k+3
≤

∥∥∥∥∥∥∥∥∥
∫ t

0

∫
v

(fHt) (s,X(s; t, x, v), V (s; t, x, v)) dvds︸ ︷︷ ︸
Σ(t,x)

∥∥∥∥∥∥∥∥∥
k+3

. (4.4.12)

To simplify the expression of Σ, we consider the classical change of variables

φ(v1, v2, v3) =

 v1 cos(ω(s− t)) + v2 sin(ω(s− t))
−v1 sin(ω(s− t)) + v2 cos(ω(s− t))

v3


= V (s; t, x, v)

as well as the change of variable in time α(s) = t− s, so that Σ can now be written

Σ(t, x) =

∫ t

0

∫
v

f(t− s,X∗(s, x, v), v)D(t− s, s,X∗(s, x, v))dvds (4.4.13)

with

D (t, s, x) =

− sin(ωs)
ω E1(t, x) + cos(ωs)−1

ω E2(t, x)
1−cos(ωs)

ω E1(t, x)− sin(ωs)
ω E2(t, x)

−sE3(t, x)

 (4.4.14)

and

X∗(s, x, v) =

x1 − v1

ω sin(ωs) + v2

ω (cos(ωs)− 1))
x2 + v1

ω (1− cos(ωs))− v2

ω sin(ωs)
x3 − v3s

 . (4.4.15)

We first study σ(s, t, x) defined by

σ(s, t, x) =

∫
v

f(t− s,X∗(s, x, v), v)D(t− s, s,X∗(s, x, v))dvds. (4.4.16)
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Lemma 4.4.4. We have the following estimate for σ:

‖σ(s, t, ·)‖k+3 ≤ C
√

2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

Mk(t− s)
1
k+3 . (4.4.17)

Proof. Thanks to lemma 4.3.4 we obtain

|σ(s, t, x)| ≤ c ‖D(t− s, s,X∗(s, x, ·))‖ 3
2 ,w
‖f‖

2
3
∞ ‖f(t− s,X∗(s, x, ·), ·)‖

1
3
1 . (4.4.18)

Let’s first look at the weak 3
2 -norm of D(t − s, s,X∗(s, x, ·)) in (4.4.18). In the following

computations D (respectively, E) and its coordinates Di (respectively, Ei) are always evaluated at
(t−s, s,X∗(s, x, ·)) (respectively, (t−s,X∗(s, x, ·))) and cos = cos(ωs) (respectively, sin = sin(ωs)).

By definition,

‖D‖23
2 ,w

=

3∑
i=1

‖Di‖23
2 ,w

so first we estimate ‖D1‖23
2 ,w

:

‖D1‖23
2 ,w
≤ sin2

ω2
‖E1‖23

2 ,w
+

(1− cos)2

ω2
‖E2‖23

2 ,w
+ 2
|sin| |(1− cos)|

ω2
‖E1‖ 3

2 ,w
‖E2‖ 3

2 ,w

≤ sin2

ω2
‖E1‖23

2 ,w
+

(1− cos)2

ω2
‖E2‖23

2 ,w
+

(1− cos)2

ω2
‖E1‖23

2 ,w
+

sin2

ω2
‖E2‖23

2 ,w

=
2(1− cos)

ω2

(
‖E1‖23

2 ,w
+ ‖E2‖23

2 ,w

)
.

The computations are the same for ‖D2‖23
2 ,w

so that we can write

‖D‖23
2 ,w
≤ 4(1− cos(ωs))

ω2

(
‖E1‖23

2 ,w
+ ‖E2‖23

2 ,w

)
+ s2 ‖E3‖23

2 ,w
(4.4.19)

and since for all x ∈ R, 2(1− cos(x)) ≤ x2

‖D‖23
2 ,w
≤ 2s2

(
‖E1‖23

2 ,w
+ ‖E2‖23

2 ,w

)
+ s2 ‖E3‖23

2 ,w
≤ 2s2 ‖E‖23

2 ,w
. (4.4.20)

Now let’s try to express ‖E1(t− s,X∗(s, x, ·))‖ 3
2 ,w

, by definition

‖E1(t− s,X∗(s, x, ·))‖ 3
2 ,w

= sup
|A|<∞

|A|−
1
3

∫
A

|E1(t− s,X∗(s, x, v))| dv, (4.4.21)

and if we consider the change of variables ψ(v) = X∗(s, x, v), for s > 0, whose Jacobian matrix is
given by

Jac(ψ) =

 − sin(ωs)
ω

cos(ωs)−1
ω 0

1−cos(ωs)
ω

− sin(ωs)
ω 0

0 0 −s

 , (4.4.22)

we can write ∫
A

|E1(t− s,X∗(s, x, v))| dv =

∫
ψ(A)

|E1(t− s, u))| |Jac(ψ)|−1
du.
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So finally

‖E1(t− s,X∗(s, x, ·))‖ 3
2 ,w

= sup
|A|<∞

|A|−
1
3

∫
ψ(A)

|E1(t− s, u))| |Jac(ψ)|−1
du

= sup
|A|<∞

|ψ(A)|−
1
3

 |A|
|ψ(A)|︸ ︷︷ ︸


=|Jac(ψ)|−1

− 1
3

|Jac(ψ)|−1
∫
ψ(A)

|E1(t− s, u))| du

= sup
|A|<∞

|ψ(A)|−
1
3 |Jac(ψ)|−

2
3

∫
ψ(A)

|E1(t− s, u))| du

= |Jac(ψ)|−
2
3 ‖E1(t− s, ·)‖ 3

2 ,w
.

The computations are the same for ‖E2(t− s,X∗(s, x, ·))‖ 3
2 ,w

and ‖E3(t− s,X∗(s, x, ·))‖ 3
2 ,w

so
that

‖E(t− s,X∗(s, x, ·))‖ 3
2 ,w

= |Jac(ψ)|−
2
3 ‖E(t− s, ·)‖ 3

2 ,w

=

(
ω2

2s(1− cos(ωs))

) 2
3

‖E(t− s, ·)‖ 3
2 ,w

.
(4.4.23)

Combining (4.4.20) and (4.4.23) we obtain the following estimate

‖D(t− s, s,X∗(s, x, ·))‖ 3
2 ,w
≤
√

2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

‖E(t− s, ·)‖ 3
2 ,w︸ ︷︷ ︸

≤C

. (4.4.24)

and since ‖f‖∞ ≤ C we have

|σ(s, t, x)| ≤ C
√

2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

‖f(t− s,X∗(s, x, ·), ·)‖
1
3
1 (4.4.25)

so that

‖σ(s, t, ·)‖k+3 ≤ C
√

2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

∥∥∥∥∥
(∫

f(t− s,X∗(s, ·, v), v)dv

) 1
3

∥∥∥∥∥
k+3

. (4.4.26)

Furthermore, for any function ψ we have

‖ψα‖p = ‖ψ‖ααp (4.4.27)

so that ∥∥∥∥∥
(∫

f(t− s,X∗(s, ·, v), v)dv

) 1
3

∥∥∥∥∥
k+3

=

∥∥∥∥∫ f(t− s,X∗(s, ·, v), v)dv

∥∥∥∥ 1
3

k+3
3

, (4.4.28)

and thanks to lemma 4.3.2 with p =∞, q = 1, k′ = 0, r = k+3
3 we obtain the desired estimate

‖σ(s, t, ·)‖k+3 ≤ C
√

2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

Mk(t− s)
1
k+3

with C = C(k,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein).
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Like in the unmagnetized case, we exactly obtain the desired exponent 1
k+3 on Mk in our estimate.

However, as mentioned above, we also see the singularities at times 2πq
ω , q ∈ N.

To deal with the singularities that stem from the added magnetic field, we notice that all our
estimates depend only on k, ω, and f in, which means that if we can show propagation of moments
on an interval [0 , Tω], then we can reiterate our analysis with the new initial condition f in1 = f(Tω)
and so on.

Since the singularities depend on ω, it is logical to take Tω that also depends on ω (this also
justifies the notation). As said above, we choose to take Tω = π

ω (in fact, we could have taken
any t ∈ ]0 , 2π

ω [).

Now to control ‖Σ(t, ·)‖k+3 with Mk(t)
1
k+3 we write

Σ(t, x) :=

∫ t0

0

· · ·+
∫ t

t0

. . . , (4.4.29)

where t0 ∈ ]0 , Tω[. This is an idea from the original paper [87]. The interval [0 , t0] is considered
small and thus we control the large t contribution (

∫ t
t0
) precisely (with Mk(t)β , β ≤ 1

k+3 ) and
the small t contribution (

∫ t0
0
) less precisely (with Mk(t)γ , γ > 0). This last imprecise estimate

is compensated by the fact that we integrate on a short length segment. However, the main
difference with the unmagnetized case is that now we need t0 to be small compared to Tω = π

ω to
deal with the singularities.

Small time estimates

First we estimate the small contribution in time, as in [111], but with the added difficulty of the
singularities.

Proposition 4.4.5. We have the following estimate for the small contribution in time:∥∥∥∥∫ t0

0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ Ct2−
3
d

0 (1 + t)
l+3
k+3

(
1 + sup

0≤s≤t
Mk(s)

) 3(l+3)

(k+3)2

(4.4.30)

with C = C(k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein) and l is an exponent defined in the proof.

Proof. Thanks to the Hölder inequality with 1
d + 1

d′ = 1, we can write

|σ(s, t, x)|

≤
(∫

R3

|D (t− s, s,X∗(s, x, v))|d dv
) 1
d
(∫

R3

f (t− s,X∗(s, x, v), v)
d′
dv

) 1
d′

≤
√

2s

(
ω2

2s(1− cos(ωs))

) 1
d

‖E(t− s, ·)‖d ‖f‖
1
d
∞

(∫
R3

f (t− s,X∗(s, x, v), v) dv

) 1
d′

.

This last inequality is obtained by using the same method as for the estimate (4.4.20) where we
can show that

|D (t− s, s,X∗(s, x, v))| ≤
√

2s |E (t− s,X∗(s, x, v))|
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and by applying the change of variable (4.4.22). Using (4.4.27) with α = 1
d′ , p = k + 3 and

lemma 4.3.2 with p =∞, q = 1, k′ = 0, r = k+3
d′ , this implies

∥∥∥∥∫ t0

0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ C sup
0≤s≤t

‖E(t− s, ·)‖d

× sup
0≤s≤t

∥∥∥∥(∫
R3

f (t− s,X∗(s, x, v), v) dv

)∥∥∥∥ 1
d′

k+3
d′

∫ t0

0

s

(
ω2

s(1− cos(ωs))

) 1
d

ds

≤ C sup
0≤s≤t

‖E(t− s, ·)‖d sup
0≤s≤t

Ml(t− s)
1
k+3

∫ t0

0

s

(
ω2

s(1− cos(ωs))

) 1
d

ds,

where thanks to lemma 4.3.2, the new exponent l verifies k+3
d′ = l+3

3 . Furthermore, we saw in
lemma 4.3.3 that the electric field is uniformly bounded in Ld(R3) for 3

2 < d ≤ 15
4 (so 15

11 ≤ d
′ < 3).

This implies the following estimate, with k+3
d′ = l+3

3 and 15
11 ≤ d

′ < 3:∥∥∥∥∫ t0

0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ C

(∫ t0

0

s

(
ω2

s(1− cos(ωs))

) 1
d

ds

)
sup

0≤s≤t
Ml(s)

1
k+3 . (4.4.31)

Thanks to lemma 4.7.1 we have that

sup
0≤s≤t

Ml(s) ≤ C(1 + t)l+3

(
1 + sup

0≤s≤t
Mk(s)

) 3(l+3)
k+3

so that finally we obtain∥∥∥∥∫ t0

0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ C


∫ t0

0

s

(
ω2

s(1− cos(ωs))

) 1
d

︸ ︷︷ ︸
ζ(s)

ds

 (1 + t)
l+3
k+3

(
1 + sup

0≤s≤t
Mk(s)

) 3(l+3)

(k+3)2
(4.4.32)

with C = C(k,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein).

Now we must study
∫ t0

0
ζ(s)ds (in the case without magnetic field I = [0 , t0] and ζ(s) = s1− 3

d ).

We have ∫ t0

0

ζ(s)ds = ω
3
d−2

∫ ωt0

0

s

(
1

s(1− cos(s))

) 1
d

ds

= ω
3
d−2

∫ ωt0

0

s1− 3
d

(
s2

(1− cos(s))

) 1
d

ds.

Since ωt0 ≤ ωt ≤ π, the function s 7→
(

s2

(1−cos(s))

) 1
d

is bounded on [0 , ωt0] (independently of t0)
so that finally ∫ t0

0

ζ(s)ds ≤ Cω 3
d−2

∫ ωt0

0

s1− 3
d ds ≤ Cω 3

d−2(ωt0)2− 3
d . (4.4.33)
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Large time estimates

Now we look at the large t contribution, where our hope is to get a logarithmic dependence in t0
just like in [87, 111].

Proposition 4.4.6. We have the following estimate for the large contribution in time:∥∥∥∥∫ t

t0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ C ln

(
t

t0

)
sup

0≤s≤t
Mk(s)

1
k+3 (4.4.34)

with C = C(k,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein).

Proof. Using (4.4.17), we can write

∥∥∥∥∫ t

t0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ C sup
0≤s≤t

Mk(s)
1
k+3

∫ ωt

ωt0

1

s

(
s2

(1− cos(s))

) 2
3

ds

≤ C sup
0≤s≤t

Mk(s)
1
k+3

∫ ωt

ωt0

1

s
ds

because in the same way as above the function s 7→
(

s2

(1−cos(s))

) 1
d

is bounded on [ωt0 , ωt]

(independently of t0, t, or ω) so that finally∥∥∥∥∫ t

t0

σ(s, t, ·)ds
∥∥∥∥
k+3

≤ C ln

(
t

t0

)
sup

0≤s≤t
Mk(s)

1
k+3

with C = C(k,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein).

4.4.3 A Grönwall inequality for t ∈ [0 , Tω]

Now we try to show propagation of moments on [0 , Tω] by establishing a Grönwall inequality like
in [87, 111]

Proposition 4.4.7. Theorem 4.2.2 is true for T = Tω.

Proof. First, we define
µk(t) := sup

0≤s≤t
Mk(s). (4.4.35)

Next combining (4.4.11), (4.4.30), and (4.4.34), we obtain the following estimate for all t ∈ [0 , T ]:

‖E(t, ·)‖k+3 ≤ ‖ρ0(t, ·)‖ 3k+9
k+6

+ Ct
2− 3

d
0 (1 + t)

l+3
k+3 (1 + µk(t))

3(l+3)

(k+3)2

+ C ln

(
t

t0

)
µk(t)

1
k+3 .

(4.4.36)
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Now, as was previously announced, we can absorb the term (1 + µk(t))
3(l+3)

(k+3)2 by choosing a small
t0 such that t0 < t ≤ Tω. We choose t0 in a different way than what was done in [87] and [111]
by using the natural variable t

t0
. Hence t0 is defined by the following relation:

(
t0
t

)2− 3
d (1 + µk(t))

3(l+3)

(k+3)2 = 1 (4.4.37)

(the exponent 2− 3
d is non-negative). Thus, we automatically have the inequality t0 < t ≤ Tω.

Then we can bound the three terms in (4.4.36) so as to obtain

‖E(t, ·)‖k+3 ≤ C1 + C2t
2− 3

d (1 + t)
l+3
k+3 + C3

3(l + 3)

(2− 3
d )(k + 3)2

µk(t)
1
k+3 ln (1 + µk(t))

≤ C (1 + µk(t))
1
k+3 (1 + ln (1 + µk(t)))

(4.4.38)

with C = C(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)).

So now thanks to the inequality (4.4.1) we can write

d

dt
Mk(t) ≤ C (1 + µk(t)) (1 + ln (1 + µk(t))) (4.4.39)

and integrating the inequality on [0 , t] we conclude that

Mk(t) ≤Mk(0) + C

∫ t

0

(1 + µk(s)) (1 + ln (1 + µk(s))) ds

for all t ∈ [0 , T ].

Setting y(t) = 1 + µk(t), we have

0 < y(t) ≤ y(0) + C

∫ t

0

y(s)(1 + ln y(s))ds, (4.4.40)

thus
Cy(t)(1 + ln y(t))

y(0) + C
∫ t

0
y(s)(1 + ln y(s))ds

≤ C(1 + ln y(t))ds, (4.4.41)

and integrating in time gives

ln

(
y(t)

y(0)

)
≤ ln

(
y(0) + C

∫ t
0
y(s)(1 + ln y(s))ds

y(0)

)
≤ C

∫ t

0

(1 + ln y(s))ds. (4.4.42)

Hence t 7→ ln y(t) verifies a classical Grönwall inequality,

ln y(t) ≤ ln y(0) + Ct+ C

∫ t

0

ln y(s)ds ≤ ln y(0) + CT + C

∫ t

0

ln y(s)ds, (4.4.43)

which implies

ln y(t) ≤ (ln y(0) + CT ) exp (Ct)⇔ y(t) ≤ exp (CT exp (Ct)) y(0)exp(Ct) (4.4.44)

for all t ∈ [0 , T ] with C = C(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)).
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4.4.4 Propagation of moments for all time

We conclude the proof of theorem 4.2.2 by showing propagation of moments for all time. Since
the constant C in our estimate in proposition 4.4.7 depends only on T, k, ω,

∥∥f in∥∥
1
,
∥∥f in∥∥∞ , Ein,

and Mk(f in), we can reiterate the procedure on any time interval Ip = [pTω , (p+ 1)Tω]. Indeed,
T, k and ω are constant ‖f(t)‖1, and ‖f(t)‖∞ are conserved in time, the energy is bounded, and
Mk(f) is exactly the quantity we are studying.

Proposition 4.4.8. Theorem 4.2.2 is true for all T > Tω.

Proof. First, we show by induction on n that for all n ∈ N∗

y(nTω) ≤ βn−1β
αn−1

n−2 β
αn−1αn−2

n−3 . . . β
αn−1αn−2...α1

0 y(0)αn−1...α0 (4.4.45)

with βp = exp (CpT exp (CpTω)) and αp = exp (CpTω) with

Cp = Cp(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f(pTω)))

= Cp(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f in)).

The initial case is simply a consequence of proposition 4.4.7. Proving the induction step is also
easy because thanks to the induction hypothesis, f(nTω) verifies the assumptions of theorem 4.2.2.
This means we can apply the same analysis as in the previous subsections while initializing system
(4.1.1) with f(nTω).

Hence we obtain
y((n+ 1)Tω) ≤ exp (CnT exp (Cnt)) y(nTω)exp(Cnt) (4.4.46)

with Cn = Cn(T, k, ω,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein,Mk(f(nTω))). The induction step is completed by

writing βn = exp (CnT exp (Cnt)) and αn = exp (Cnt) and by applying the induction hypothesis
(4.4.45).

To conclude we consider t ∈ [0 , T ] with T > Tω and we write t = (n + r)Tω with n ∈ N and
0 ≤ r < 1. Like in the induction proof above, we can apply the same analysis as in the previous
section while initializing with f(nTω) to obtain

y(t) ≤ exp
(
CnT exp

(
Cn

(
t− nπ

ω

)))
y
(nπ
ω

)exp(Cn(t−nπω ))
. (4.4.47)

The proof is complete since we showed just before that we can bound y(nπω ).

4.4.5 Difficulty of controlling the electric field with the magnetic field
in the source term

In this section, we present a strategy for the proof of theorem 4.2.2 that does not permit us to
conclude, but which is still interesting to detail because of its simplicity.

The idea is to consider the magnetic term v ∧ B · ∇v not as an added transport term in the
Vlasov equation but as a source term. This allows us to write a new representation formula for
the macroscopic density using the characteristics of the unmagnetized Vlasov–Poisson system.
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Lemma 4.4.9. We have a representation formula for ρ,

ρ(t, x) = ρ0(t, x)− divx
∫ t

0

s

∫
v

(f (E + v ∧B)) (t− s, x− sv, v) dvds. (4.4.48)

Proof. We use the methods of characteristics and the Duhamel formula but this time with the
magnetic term in the source term, which allows us to write

f(t, x, v) = f in(x− tv, v)

−
∫ t

0

(E + v ∧B) (s, x+ (s− t)v) · ∇vf(s, x+ (s− t)v, v)ds

= f in(x− tv, v)−
∫ t

0

divv ((E + v ∧B) f) (t− s, x− sv, v)ds,

where we used the change of variable s = t− s and because divv (E + v ∧B) = 0.

Now we notice that

divv ((E + v ∧B) f(t− s, x− sv, v)) = −sdivx ((E + v ∧B) f(t− s, x− sv, v))

+ divv ((E + v ∧B) f) (t− s, x− sv, v).

Using this equality and integrating in v we obtain (4.4.48).

Now we define 
ΣE(t, x) =

∫ t

0

s

∫
v

E(t− s, x− sv)f (t− s, x− sv, v) dvds,

ΣB(t, x) =

∫ t

0

s

∫
v

v ∧B(t− s, x− sv)f (t− s, x− sv, v) dvds,

Σ(t, x) = ΣE(t, x) + ΣB(t, x).

(4.4.49)

Thanks to the Calderón–Zygmund inequality, to estimate the k + 3-norm of E(t, ·), we only need
to estimate the k + 3-norms of ΣE(t, ·) and ΣB(t, ·).

Using the exact same analysis as in [87, 111], we obtain the estimate for ΣE(t, ·) with µ(t) defined
as in (4.4.35),

‖ΣE(t, ·)‖k+3 ≤ Ct
2− 3

d
0 (1 + t)

l+3
k+3 (1 + µk(t))

3(l+3)

(k+3)2 + C ln

(
t

t0

)
µk(t)

1
k+3 , (4.4.50)

and then we choose t0 like at (4.4.37) to obtain

‖ΣE(t, ·)‖k+3 ≤ C (1 + µk(t))
1
k+3 (1 + ln (1 + µk(t))) , (4.4.51)

which is a good estimate, analogous to (4.4.38).

Next we try to estimate ‖ΣB(t, ·)‖k+3,

|ΣB(t, x)| = ω

∣∣∣∣∣∣
∫ t

0

s

∫
v

 v2

−v1

0

 f (t− s, x− sv, v) dvds

∣∣∣∣∣∣
≤ ω

∫ t

0

s

∫
v

|v| f (t− s, x− sv, v) dvds = ω

∫ t

0

sm1(f (t− s, x− s·, ·))ds,
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so that

‖ΣB(t, ·)‖k+3 ≤ ω
∫ t

0

sds sup
0≤s≤t

‖m1(f (t− s, x− s·, ·))‖k+3

= ωt2 sup
0≤s≤t

‖m1(f (t− s, x− s·, ·))‖k+3 .

Unfortunately, ‖m1(t)‖k+3 can’t be controlled by Mk(t)α because when we apply lemma 4.3.2
with p =∞, q = 1, k′ = 1 (which is the optimal case) we obtain

‖m1(t)‖k+3 ≤ c ‖f‖
l−1
l+3
∞ Ml(t)

4
l+3 (4.4.52)

with k + 3 = l+3
4 , which implies l > k.

Indeed, its seems logical that with the added v in the magnetic part of the Lorentz force,
controlling ΣB requires a velocity moment of higher order than with ΣE . Thus ‖ΣB(t, ·)‖k+3

can’t be controlled with Mk(t), which means we can’t deduce a Grönwall inequality on Mk(t)
with this method.

4.5 Proof of additional results

4.5.1 Proof of propagation of regularity

First we begin by presenting the proof of the propagation of regularity. Here we directly adapt
subsection 4.5 of [60].

Remark 4.5.1. The mass conservation and the energy bound can be directly deduced from the
assumptions of theorem 4.2.5∫∫

R3×R3

f(t, x, v)dxdv =Min =

∫∫
R3×R3

f indxdv <∞, (4.5.1)

1

2

∫∫
R3×R3

|v|2 f(t, x, v)dxdv +
1

2

∫
R3

|E(t, x)|2 dx ≤ Ein <∞ (4.5.2)

for a.e. t ≥ 0.

Proof. First step: L∞ bound for E. Even though this step is the same in both magnetized and
unmagnetized cases, in an effort to be clear, we detail the proof here.

Thanks to theorem 4.2.2, we have
Mk(t) ≤ CT (4.5.3)

for all 0 ≤ k ≤ k0 and all t ∈ [0 , T ]. By lemma 4.3.2 with p =∞, q = 1, k′ = 0, k = k0, we obtain

‖ρ(t)‖ k0+3
3
≤ CT (4.5.4)

for all t ∈ [0 , T ].
Then we write

E(t) = −∇xK3 ? ρ(t) = −
(
1B(0,1)∇xK3

)
? ρ(t)−

(
1B(0,1)c∇xK3

)
? ρ(t) := I + J (4.5.5)

119



Chapter 4. The Vlasov–Poisson system with a uniform magnetic field: propagation
of moments and regularity

where
1B(0,1)∇xK3 = O(|x|−2

1|x|<1) ∈ Lm(R3) for 1 ≤ m ≤ 3

2
(4.5.6)

and
1B(0,1)c∇xK3 = O(|x|−2

1|x|≥1) ∈ L∞(R3) (4.5.7)

so that we conclude (this time thanks to the classical Young inequality)

‖I‖∞ ≤ ‖ρ(t)‖ k0+3
3

∥∥1B(0,1)∇xK3

∥∥
k0+3
k0

≤ C1 ‖ρ(t)‖ k0+3
3

(4.5.8)

and
‖J‖∞ ≤ ‖ρ(t)‖1

∥∥1B(0,1)c∇xK3

∥∥
∞ ≤ C2 ‖ρ(t)‖1 . (4.5.9)

This finally implies
‖E(t)‖∞ ≤ C1CT + C2Min. (4.5.10)

Second step: L∞ bound for ρ. We seek to show an inequality of the type

f(t, x, v) ≤ h(|v| −AT t) (4.5.11)

for all t ∈ [0 , T ].

And so we compute
d

dt

∫∫
R3×R3

(f(t, x, v)− h(|v| −AT t))+dxdv. (4.5.12)

First we can write

∂t(f(t, x, v)− h(|v| −AT t))+

= (∂tf + h′(|v| −AT t)AT )1f(t,x,v)≥h(|v|−AT t)

= (−v · ∇xf − (E + v ∧B) · ∇vf + h′(|v| −AT t)AT )1f(t,x,v)≥h(|v|−AT t)

= −v · ∇x(f(t, x, v)− h(|v| −AT t))+

− (E + v ∧B) · ∇v(f(t, x, v)− h(|v| −AT t))+

+ h′(|v| −AT t)

AT − (E + v ∧B) · v
|v|︸ ︷︷ ︸

=E· v|v|

1f(t,x,v)≥h(|v|−AT t)

so finally we obtain

d

dt

∫∫
R3×R3

(f(t, x, v)− h(|v| −AT t))+dxdv

=

∫∫
R3×R3

h′(|v| −AT t)
(
AT − E ·

v

|v|

)
1f(t,x,v)≥h(|v|−AT t)dxdv.

(4.5.13)

We now choose AT = ‖E‖∞ ⇒ AT − E(t, x) · v|v| ≤ 0 a.e., and since h′ ≤ 0 then we have

d

dt

∫∫
R3×R3

(f(t, x, v)− h(|v| −AT t))+dxdv ≤ 0. (4.5.14)

120



4.5. Proof of additional results

So the condition
f in(x, v) ≤ h(|v|) (4.5.15)

implies that
f(t, x, v) ≤ h(|v| −AT t). (4.5.16)

Since w in non-increasing, this gives us the L∞ bound on ρ

‖ρ‖L∞([0 ,T ]×R3) ≤ RT (4.5.17)

Third step: Bound for Dx,vf . We set

L(t) := ‖Dxf(t)‖∞ + ‖Dvf(t)‖∞ (4.5.18)

and differentiate the Vlasov equation in x and v to obtain

(∂t + v · ∇x + (E + v ∧B) · ∇v)
(
Dxf
Dvf

)
=

(
0 DxE(t, x)T

I Dv(v ∧B(t, x))

)(
Dxf
Dvf

)
with

Dv(v ∧B(t, x)) =

 0 −B3(t, x) B2(t, x)
B3(t, x) 0 −B1(t, x)
−B2(t, x) B1(t, x) 0

 =: A(t, x) (4.5.19)

so that

(∂t+v·∇x+(E+v∧B)·∇v)(|Dxf |+|Dvf |) ≤ (1+|DxE(t, x)|+|A(t, x)|)(|Dxf |+|Dvf |). (4.5.20)

Then setting

J(t) :=

∫ t

0

(1 + ‖DxE(s)‖∞ + ‖A(s)‖∞)ds (4.5.21)

we have

(∂t + v · ∇x + (E + v ∧B) · ∇v)
(

(|Dxf |+ |Dvf |)e−J(t)
)

≤ (|Dxf |+ |Dvf |)e−J(t)(|DxE(t, x)|+ |A(t, x)| − ‖DxE(t)‖∞ − ‖A(t)‖∞) ≤ 0.

By the maximum principle we thus have

(|Dxf |+ |Dvf |)e−J(t) ≤ (‖Dxf(0)‖∞ + |Dvf(0)|)e−J(0) = L(0) (4.5.22)

and finally
L(t) ≤ L(0)eJ(t). (4.5.23)

Fourth step: Bound for DxE. Like in the unmagnetized case, thanks to an extension of the
Calderón-Zygmund inequality, we can bound DxE(t).

First we write
DxE(t) = ∇2

xK3 ? ρ(t), (4.5.24)

and estimate DxE thanks to the following lemma, which extends the Calderón-Zygmund inequality
to the case p =∞.
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Lemma 4.5.2. Let Ω ∈ C(S2) such that
∫
S2 Ω(y)dσ(y = 0) and let

G = vp
Ω( x
|x| )

|x|3
. (4.5.25)

Then for all ϕ ∈ L∞(R3)

‖G ? ϕ‖ ≤ ‖Ω‖∞
(∣∣S2

∣∣+ ‖ϕ‖1 +
∣∣S2
∣∣ ‖ϕ‖∞ ln (1 + ‖Dxϕ‖∞)

)
. (4.5.26)

Applying this lemma, we obtain

‖DxE(t)‖∞ ≤ C (1 + ln (1 + ‖Dxρ(t)‖∞)) . (4.5.27)

Fifth step: Bound for Dxρ. Recall that

(∂t + v · ∇x + (E + v ∧B) · ∇v)
(

(|Dxf |+ |Dvf |)e−J(t)
)
≤ 0 (4.5.28)

Setting g(t, x, v) := |Dxf |+ |Dvf |)e−J(t) we have

d

dt

∫∫
R3×R3

(g(t, x, v)− h(|v| −AT t))+dxdv

≤
∫∫

R3×R3

w′(|v| −AT t)
(
AT − E ·

v

|v|

)
1g(t,x,v)≥h(|v|−AT t)dxdv ≤ 0.

so that ∫∫
R3×R3

(g(t, x, v)− h(|v| −AT t))+dxdv ≤ 0 (4.5.29)

and since (f in +
∣∣Dxf

in
∣∣+
∣∣Dvf

in
∣∣)(x, v) ≤ h(|v|) for all (x, v) ∈ R3 × R3, we deduce that

(|Dxf |+ |Dvf |)(t, x, v) ≤ eJ(t)h(|v| −AT t). (4.5.30)

Integrating in v we obtain

|Dxρ(t, x)| ≤ eJ(t)

∫
R3

h(|v| −AT t)dv ≤ RT eJ(t). (4.5.31)

So, like in the unmagnetized case, we have the following bound

|Dxρ(t, x)| ≤ RT eJ(t) (4.5.32)

for all t ∈ [0 , T ] and a.e. x ∈ R3.

Sixth step: Last estimate. First, let’s mention that A ∈ L∞([0 , T ]×R3) because B ∈ L∞([0 , T ]×
R3).

J(t) =

∫ t

0

(1 + ‖DxE(s)‖∞ + ‖A(s)‖∞)ds

≤ T +

∫ t

0

C (1 + ln (1 + ‖Dxρ(s)‖∞)) + ‖A(s)‖∞ ds

≤ T (1 + C + ‖A‖∞) +

∫ t

0

Cln
(

1 +RT e
J(s)
)

︸ ︷︷ ︸
≤ln((1+RT )eJ(s))

ds

≤ T (1 + C + ‖A‖∞) + CTT ln(1 +RT ) + CT

∫ t

0

J(s)ds.
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Thanks to the Grönwall inequality

J(t) ≤ T (1 + C + ‖A‖∞ + CT ln(1 +RT ))eTCT . (4.5.33)

Thus we obtain the three following estimates:

‖Dxρ(t)‖∞ ≤ RT exp(T (1 + C + ‖A‖∞ + CT ln(1 +RT ))eTCT ) = R′T , (4.5.34)

‖DxE(t)‖∞ ≤ CT (1 + ln(1 +R′T )), (4.5.35)

and
L(t) ≤ L(0) exp(T (1 + C + ‖A‖∞ + CT ln(1 +RT ))eTCT ). (4.5.36)

4.5.2 Proofs regarding uniqueness

Now we turn to the proof of theorem 4.2.6, which is a direct adaptation of Loeper’s paper [88].

Proof. To prove our theorem, we only need to adapt subsection 3.2 from [88]. Thus we consider
two solutions of (4.1.1) f1, f2 with initial datum f0. We write the corresponding densities, electric
fields, and characteristics ρ1, ρ2, E1, E2, and Y1, Y2. We define the following quantity Q:

Q(t) =
1

2

∫∫
R3×R3

f0(x, v) |Y1(t, x, v)− Y2(t, x, v)|2 dxdv. (4.5.37)

Now we only need to differentiate Q

Q̇(t) =

∫∫
R3×R3

f0(x, v)(Y1(t, x, v)− Y2(t, x, v)) · ∂t(Y1(t, x, v)− Y2(t, x, v))dxdv

=

∫∫
R3×R3

f0(x, v)(X1(t, x, v)−X2(t, x, v)) · (V1(t, x, v)− V2(t, x, v))dxdv

+

∫∫
R3×R3

f0(x, v)(V1(t, x, v)− V2(t, x, v)) · (E1(t,X1)− E2(t,X2))dxdv

+

∫∫
R3×R3

f0(x, v)(V1(t, x, v)− V2(t, x, v)) · ((V1(t, x, v)− V2(t, x, v)) ∧B)dxdv

We notice that the last term is null.

Using the analysis from [88], we conclude that

d

dt
Q(t) ≤ CQ(t)

(
1 + ln

1

Q(t)

)
(4.5.38)

and thus Q(0) = 0⇒ Q(t) = 0 for all t ≥ 0.

Last, we detail the proof of proposition 4.2.7.

123



Chapter 4. The Vlasov–Poisson system with a uniform magnetic field: propagation
of moments and regularity

Proof. Like in Corollary 3 of [87], with k0 > 6, we have sufficient regularity on E to consider the
weak characteristics associated to system (4.1.1). Hence the solution to (4.1.1) is given by

f(t, x, v) = f in(X0(t), V 0(t)),

where X0(t), V 0(t) = (X(0; t, x, v), V (0; t, x, v)), and we have

Ẋ(s; t, x, v) = V (s; t, x, v), V̇ (s; t, x, v) = E(s,X(s; t, x, v)) + V (s; t, x, v) ∧B

with X(t; t, x, v) = x and V (t; t, x, v) = v. To simplify things, we write X(s) and V (s) for the
characteristics. Since k0 > 6, we can show that E is bounded on [0 , T ]×R3 so that we can write
for s ∈ [0 , t] (using the same notation as in [87])

|v − V (s)| ≤ R(t− s) + ω

∫ t

s

|V (u)| du

≤ R(t− s) + ω

∫ t

s

|V (u)− v| du+ ω

∫ t

s

|v| du

≤ (R+ ω |v|)(t− s) exp((t− s)ω)

≤ (R+ ω |v|)t exp(tω),

where the inequality between lines 2 and 3 is obtained thanks to the basic Grönwall inequality.
Hence we can now write

|x+ vt−X(0)| ≤ (R+ ω |v|)t2 exp(tω)

so that we obtain

f(t, x, v) ≤ sup{f in(y + vt, w), |y − x| ≤ (R+ ω |v|)t2eωt, |w − v| ≤ (R+ ω |v|)teωt}. (4.5.39)

The condition (4.2.9) is deduced from this inequality in the same way as in [87] and implies that
ρ is bounded.

4.6 Remarks

There are several extensions and variants that would be interesting to explore in relation to this
work.

The first extension that was already mentioned is to consider a nonhomogeneous magnetic field.
For example, if we take a smooth B, this means that the characteristics associated to the Vlasov
equation without the nonlinearity ∇vf ·E are well defined. However, these characteristics cannot
be written explicitly like (4.4.4), which makes it impossible to obtain a representation formula for
ρ like (4.4.2). A solution would be to explore the method developed in [58]. In this paper, with
an added space-moment hypothesis, the authors proved propagation of velocity moments of order
k > 2 by splitting the Lorentz force into two parts, a long range part and a short range part. In
our framework, we would of course split the magnetic part of the Lorentz force v∧B into two parts
and we would expect it to work for any bounded external magnetic field B ∈W 1,∞(R+ × R3).

A second extension would be to adapt Castella’s paper [24] on space moments to the magnetized
Vlasov–Poisson system in order to consider solutions of (4.1.1) with infinite kinetic energy.
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Finally, in the context of magnetic confinement, following [56], it seems reasonable to think that
the propagation of velocity moments is verified when ω → +∞. One would need to show that the
condition (4.2.6) is propagated to the homogenized system obtained when ω → +∞ and given by



∂tf + v‖ · ∇xf + E‖ · ∇vf = 0,

E(t, x) =
1

4π

∫
R3

x− y
|x− y|3

ρ(t, y)dy,

f|t=0 =
1

2π

∫ 2π

0

f in(x, u(v, τ))dτ,

(4.6.1)

where for any constant vectorM, v‖ = (v · M)M (same for E‖) and u(v, τ) is the rotation of
angle τ aroundM applied to v. In our framework, we have of courseM = (0, 0, 1)T .

4.7 Appendix

We begin by detailing the proofs of the three preliminary lemmas in section 4.3.

First we present the fundamental moment inequality.

Proof of lemma 4.3.2. The proof of lemma 4.3.2 is conducted using a very classical procedure,
where we split the v-integral defining mk′(f) into small and large v’s and optimize with respect
to the splitting parameter.

mk′(f)(x) ≤
∫
|v|≤R

|v|k
′
fdv +

∫
|v|>R

|v|k
′
fdv

≤ ‖f(x, ·)‖p

(∫
|v|≤R

|v|k
′q
dv

) 1
q

+Rk
′−k
∫
|v|>R

|v|k fdv

≤ c ‖f(x, ·)‖pR
k′+ 3

q +Rk
′−kmk(f)(x)

because
∫
|v|≤R |v|

k′q
dv =

(
4π

k′q+3

) 1
q

Rk
′+ 3

q . Then we minimize the above quantity with respect
to R which gives us,

Rmin = c

(
mk(f)(x)

‖f(x, ·)‖p

) 1

k+ 3
q

The proof is finished by elevating the last inequality to the power r, integrating over x and
applying a Hölder inequality once again.

This gives us the uniform estimates on the electric field.

Proof of lemma 4.3.3. First, since C in (4.3.5) is independent of p, the estimate

τpvol
{
x ∈ R3 | |E(t, x)| > τ

}
≤ Cp, τ > 0
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holds for p ∈ ] 3
2 ,

15
4 ] and so also in the limiting case p = 3

2 , so that

‖E(t)‖ 3
2 ,w
≤ C, t ∈ [0 , T [.

The estimate (4.3.5) is obtained by observing that E(t) = −∇xK3 ? ρ is a convolution product in
x, by the weak Young inequality (4.3.1) and by the fact ρ ∈ L 5

3 (R3) ∩ L1(R3) (ρ ∈ L 5
3 follows

from lemma 4.3.2 with k′ = 0, k = 2, p =∞, q = 1). Let’s detail this to be clear, thanks to (4.3.1)

with −∇xK3 ∈
(
L

3
2 ,w(R3)

)3

and ρ ∈ Lp(R3) for all p ∈ [1 , 5
3 ], we get

‖E(t)‖r ≤ ‖∇xK3‖ 3
2 ,w
‖ρ(t)‖p (4.7.1)

so that E(t) ∈ Lr(R3) for all r = 3p
3−p with p ∈ ]1 , 5

3 ], hence for all r ∈ ] 3
2 ,

15
4 ]. Finally, the

constant in (4.3.5) is independent of time because for 0 < α ≤ 1 such that p = 1−α
1 + α

5
3

‖ρ(t)‖p ≤ ‖ρ(t)‖1−α1 ‖ρ(t)‖α5
3
≤ c ‖ρ(t)‖1−α1 ‖f(t)‖

2α
5
∞ M2(t)

3α
5 = C(

∥∥f in∥∥
1
,
∥∥f in∥∥∞ , Ein) (4.7.2)

And last we give the proof of the basic functional inequality (4.3.7).

Proof of lemma 4.3.4. When we consider the layer cake representation of g (see [85, theorem
1.13]), we can write∫

|h|>τ
|h| dx =

∫
|h|>τ

∫ ∞
t=0

1{|h|>t}(x)dtdx

=

∫ τ

t=0

∫
|h|>τ

1{|h|>t}(x)dxdt+

∫ ∞
t=τ

∫
|h|>τ

1{|h|>t}(x)dxdt

= τvol (|h| > τ) +

∫ ∞
t=τ

vol (|h| > t) dt

= τ
3
2
vol (|h| > τ)

τ
1
2

+

∫ ∞
t=τ

t
3
2
vol (|h| > t)

t
3
2

dt

≤ ‖h‖
3
2
3
2 ,w

τ−
1
2 + 2 ‖h‖

3
2
3
2 ,w

τ−
1
2 = 3 ‖h‖

3
2
3
2 ,w

τ−
1
2

and hence ∫
R3

|gh| dx =

∫
|g|≤τ

|gh| dx+

∫
|g|>τ

|gh| dx ≤ τ ‖g‖1 + 3 ‖h‖
3
2
3
2 ,w

τ−
1
2 ‖g‖∞ .

If we choose τ = ‖h‖ 3
2 ,w

(
3
2

) 2
3

(
‖g‖∞
‖g‖1

) 2
3

the assertion follows.

Finally, we present a technical estimate on the moments that was used to control the small time
contribution (4.4.30). We separate this result from the main proof to lighten the presentation,
but also because the proofs are identical in both magnetized and unmagnetized cases. One can
find the proof of this lemma in [111, pp. 43–44]. To clarify our work, we present a more detailed
version of the proof below.
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Lemma 4.7.1. Let k > 3 and d′ ∈ ] 3
2 ,

15
4 ], then for l such that k+3

d′ = l+3
3 we have the following

estimate on Ml(t):

sup
0≤s≤t

Ml(s) ≤ C(1 + t)l+3

(
1 + sup

0≤s≤t
Mk(s)

) 3(l+3)
k+3

(4.7.3)

with C = C(k,
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , Ein).

Proof. We first use the differential inequality (4.4.1)

d

dt
Ml(t) ≤ C ‖E(t)‖l+3Ml(t)

k+2
k+3

so
(l + 3)

d

dt
Ml(t)

1
l+3 ≤ C ‖E(t)‖l+3 ,

which implies

Ml(t) ≤
(
Ml(0)

1
k+3 +

C

m+ 3

∫ t

0

‖E(s, ·)‖l+3 ds

)m+3

≤
(
Ml(0)

1
k+3 +

Ct

m+ 3
sup

0≤s≤t
‖E(s, ·)‖l+3

)m+3

.

This last inequality indicates that we need to control the q-norm of E(t, ·) for any q ≥ l + 3 with
Mk(t), and this can be done by simply using the weak Young inequality and lemma 4.3.2 with
p =∞, q = 1, k′ = 0, r = k+3

3 ,

‖E(s, ·)‖q = ‖∇K3 ? ρ(t, ·)‖q ≤ C ‖ρ(t, ·)‖ k+3
3
≤ CMk(t)

3
k+3 (4.7.4)

with 1 + 1
q = 2

3 + 3
k+3 ⇒ q = 3k+9

6−k , which implies that k < 6. Furthermore, we want q ≥ l + 3⇔
6− k ≤ d′ ∈ [ 15

11 , 3[ so this implies k > 3.

Finally, with 3 < k < 6, we can choose d′ ∈ [ 15
11 , 3[ so that l defined by k+3

d′ = l+3
3 verifies q ≥ l+3

(q = 3k+9
6−k ). With all this, the interpolation inequalities on Lp spaces allow us to write

‖E(s, ·)‖l+3 ≤ ‖E(s, ·)‖θ2 ‖E(s, ·)‖θq (4.7.5)

θ ∈ [0 , 1].

Using this estimate and Young’s classical inequality implies (4.7.3).

If k ≥ 6, then for all q ∈ ]6 ,+∞[ there exists 3 < k̄ < 6 such that

q =
3k̄ + 9

6− k̄
and ‖E(s, ·)‖q ≤ C ‖ρ(t, ·)‖ k̄+3

3

≤ CMk̄(t)
3
k̄+3 . (4.7.6)

Mk̄(t) <∞ because thanks to lemma 4.3.2 with p = 1, q =∞, k′ = k̄, r =
k+ 3

q

k′+ 3
q+ k−k′

p

= 1 we have

‖mk̄(t)‖r = Mk̄(t) ≤ c ‖f‖
k−k̄
k

1 Mk(t)
k̄
k ≤ CMk(t)

k̄
k <∞

127



Chapter 4. The Vlasov–Poisson system with a uniform magnetic field: propagation
of moments and regularity

for all 3 < k̄ < 6.

Thus we choose 3 < k̄ < 6 such that q ≥ l + 3 with k+3
d′ = l+3

3 as before, and now we try to
estimate ‖E(s, ·)‖q with Mk(t),

‖E(s, ·)‖q ≤ C ‖ρ(s, ·)‖ k̄+3
3

≤ C ‖ρ(s, ·)‖1−α1 ‖ρ(s, ·)‖αk+3
3
≤ C

(
1 + ‖ρ(s, ·)‖ k+3

3

)
≤ C(1 +Mk(t))

3
k+3 .

This last estimate combined with the interpolation inequality (4.7.5) results in (4.7.3).
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Summary

This chapter corresponds to an ongoing work that has yet to be published [109].

We study certain mathematical properties of the three-dimensional Vlasov–Poisson system in
the full space with a general bounded magnetic field. First, we study the propagation of velocity
moments for solutions to the system. We note that we only manage to prove propagation of
velocity moments for the magnetized Vlasov–Poisson system if we assume that B := B(t) is
independent of the position variable x. However, we are confident that our proof can be adapted to
more general magnetic fields that depend on x. We rely on Pallard’s optimal result regarding the
unmagnetized Vlasov–Poisson system and we combine it with an induction procedure depending
on the cyclotron frequency Tc = 1

‖B‖∞
. This induction procedure, similar to the one used by the

author in the case of a constant magnetic field, is necessary because we can only get satisfactory
estimates on a small time scale compared to the cyclotron period. Second, we manage to extend
a result by Miot regarding uniqueness for Vlasov–Poisson to the magnetized case. This result
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relied heavily on the second-order structure of the Cauchy problem for the characteristics. The
main difficulty in the magnetized case is that we lose this second-order structure.

5.1 Introduction

We study the Cauchy problem for the three-dimensional Vlasov–Poisson system with a general
bounded magnetic field, which we will call magnetized Vlasov–Poisson system for the rest of the
chapter, given by the following set of equations:

{
∂tf + v · ∇xf + (E + v ∧B) · ∇vf = 0,

f(0, x, v) = f in(x, v) ≥ 0.
(5.1.1)

where f in is a positive measurable function and f := f(t, x, v) is the distribution function of
particles at time t ∈ R+, position x ∈ R3 and velocity v ∈ R3. The self-consistent electric field
E := E(t, x) is given by:

E = −∇xG3 ∗ ρ, (5.1.2)

with G3 = 1
4π

1
|x| the Green function for the Laplacian and ρ(t, x) :=

∫
R3 f(t, x, v)dv the macroscopic

particle density.

B := B(t, x) is an magnetic field which will be considered bounded and lipschitz throughout this
work:

B ∈W 1,∞(R+ × R3). (5.1.3)

This system models the evolution of a set of charged particles that interact through the Coulomb
force, and thus it is relevant for the study of various physical systems, most notably plasmas.

The mathematical theory for the unmagnetized (B = 0) Vlasov–Poisson system has been studied
and developed in a great number of different works. In the three-dimensional framework, Arsenev
[4] was the first to prove the existence of global weak solutions through a regularization procedure
that preserves the main a priori estimates. The existence of global classical solutions for general
initial data was established at the beginning of nineties in two separate works by Pfaffelmoser
[103] and Lions, Perthame [87]. The first approach, extended and developed in [69, 114], relies on
a very sharp study of the characteristics of the Vlasov–Poisson system while the latter approach,
extended and developed in [24, 58, 100, 102, 113], is based upon the propagation of velocity
moments. Even if these two approaches differ greatly, in both cases a key condition is to limit
the influence of high velocities on the dynamics, by either considering initial data with compact
support [103] or having a finite velocity moment of sufficiently high order (k > 3) [87] . More
recently, Pallard combined the two approaches in [99], where he showed how to exploit the first
approach by Pfaffelmoser to prove propagation of velocity moments, extending the main result of
[87] by showing that this propagation property is true for moments of order 2 < k ≤ 3.

Going back to the magnetized Vlasov–Poisson system (5.1.1), the propagation of velocity moments
for (5.1.1) with constant magnetic field B = (0, 0, ω) (with ω > 0 the cyclotron frequency) was
proven by the author in [110] by extending the method of propagation of velocity moments from
[87] and adapting the uniqueness condition explicated in [87]. In order to extend the moment
method, an important point in [110] was to establish a representation formula for the macroscopic
density ρ. This was carried out by explicitly computing the characteristics of the transport
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equation
∂tf + v · ∇xf + v ∧B · ∇vf = 0 (5.1.4)

and then using the Duhamel formula, which just meant considering the Vlasov equation as a
transport equation with the non-linear term E · ∇vf seen as a source term. Furthermore, in
this analysis singularities at times t = 0, 2π

ω ,
4π
ω , ..., which are just multiples of the cyclotron

period Tω = 2π
ω , appeared in the velocity moment estimates because of the added magnetic field.

This was remedied by the fact that all the estimates depended only on quantities conserved
for all time and on the initial velocity moment, allowing for an induction argument to prove
propagation of moments for all time. Unfortunately, in our configuration with a general magnetic
field, this analysis breaks down at the first hurdle, simply because we can’t explicitly compute
the characteristics of (5.1.4), even with a smooth B.

The first main result of this chapter, which is the continuation of [110], is to prove the propagation
of velocity moments for (5.1.1) with a general magnetic field B := B(t) that is independent of the
position variable. As said in the summary, we are confident that our proof can be adapted to the
case of a more general magnetic field B := B(t, x). For this reason, we present this conjecture
and precise that we only succeed in proving it in the case of a magnetic field independent of x.
We manage to obtain this result by combining Pallard’s method [99] with an induction argument
using the cyclotron period similar to the one in [110]. However, in this chapter we don’t obtain
explicit singularities like in [110] because we use the "Lagrangian" point of view (study of the
characteristics) from [103] instead of using the "Eulerian" point of view (study of the distribution
function) from [87, 110]. This means we need to work on a small time scale compared to the
cyclotron period Tc = 1

‖B‖∞
to obtain estimates analogous to those in [99]. This is due to the

fact that on time scales comparable to Tc or greater than Tc, the variations of the characteristics
are large and so the method in [99] fails. The second difficulty is to show that the estimates
from [99] are also valid in our framework up to a certain time depending on Tc, and that these
estimates depend only on quantities that don’t prevent us from using the induction argument.
Finally, propagation of velocity moments also implies propagation of the regularity of the initial
data which means we have existence of classical solutions to (5.1.1). This result is detailed in
[110] (theorem 2.5) for a constant magnetic field under additional conditions on f in (f in decays
faster in velocity) but can be easily extended to the case of a general B.

Now we turn to results regarding uniqueness. First let’s mention the major contribution by
Loeper [88] who proved, for the unmagnetized Vlasov–Poisson system, that the set of solutions
with bounded microscopic density was a uniqueness class. This result was also extended to (5.1.1)
for a constant B in [110] and we discuss how to prove a similar result for a general B below. Then
in [95], Miot improved the result by showing uniqueness under the condition that the Lp norms
of the macroscopic density grow at most linearly with respect to p. This allows for solutions with
unbounded macroscopic density, more precisely with logarithmic blow-up.

This chapter’s second main result is to prove that this uniqueness condition is also valid for (5.1.1),
but only with added assumptions on the velocity moments of the initial data. Contrary to our
result on propagation of velocity moments, we succeed in finding new uniqueness conditions even in
the case of a B := B(t, x) that depends on x. In [95], a key point was exploiting the second-order
structure of the characteristics of the Vlasov–Poisson system. This explains why the uniqueness
condition from [95] doesn’t apply to the two-dimensional Euler model for incompressible fluids,
which presents many similarities with Vlasov–Poisson, whereas the condition from [88] works for
both models. It is simply due to the fact that the characteristics of the Euler model only verify
a first-order ODE. In our case, the main difficulty is that the added magnetic field breaks the
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second-order structure of the Cauchy problem for the characteristics. We manage to get around
this by proving that the characteristics in the magnetized case can be controlled by assuming
more regularity on B and with the additional assumptions on the moments of the initial data
mentioned above. With these additional assumptions, we deduce a new uniqueness condition
which is actually the same as the sufficient condition imposed on the initial data to verify the
uniqueness criterion in [95, theorem 1.2]

Outline of the chapter: This chapter will be organized as follows. We will finish this section
by giving some notations and the classical a priori estimates satisfied by (5.1.1). In section 5.2
the main results of the chapter will be presented. Then section 5.3 will be devoted to the proof of
propagation of velocity moments (5.1.1). More precisely, we will explain how we find estimates
that are equivalent to those in [99] up to a time TB depending on the cyclotron frequency and
show how we can then use the same induction argument as in [110] to conclude. We finish with
section 5.4 where we detail our proof of uniqueness for solutions to (5.1.1), highlighting how
additional assumptions on the moments of the initial data allow us to control the added terms
due to the added magnetic field in the analysis.

5.1.1 Preliminaries

Let’s first detail the two main a priori bounds that we can deduce from system (5.1.1). The first
bound is a direct consequence of the Vlasov equation where the coefficients are divergence-free.

‖f(t)‖p =
∥∥f in∥∥

p
(5.1.5)

for all time t and exponents p ∈ [0 ,+∞].

The second bound is the conservation of the energy E(t) of the system, with

E(t) :=
1

2

∫∫
R3×R3

|v|2 f(t, x, v)dxdv +
1

2

∫
R3

|E(t, x)|2 dx = E(0) < +∞. (5.1.6)

Furthermore, thanks to the conservation of the energy E(t), we have the following bounds.

Lemma 5.1.1. For all t ≥ 0, we have M2(t) ≤ C1 and ‖ρ(t)‖ 5
3
≤ C2 with the constants C1, C2

depending only on E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞.

We also present the standard notation for velocity moments: for any k > 2 and t ≥ 0 we define:

Mk(t) = sup
0≤s≤t

∫∫
|v|k f(s, x, v)dvdx. (5.1.7)

As said before we will use the Lagrangian formulation detailed in [103], so we define the charac-
teristics (X,V ) of (5.1.1) which are solutions to the following Cauchy problem:


d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)) + V (s; t, x, v) ∧B(s,X(s; t, x, v)),

(5.1.8)
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with
(X(t; t, x, v), V (t; t, x, v)) = (x, v). (5.1.9)

Then like in [99], we define for any t > 0 and δ ∈ ]0 , t[.

Q(t, δ) := sup

{∫ t

t−δ
|E(s,X(s; 0, x, v))| ds, (x, v) ∈ R3 × R3

}
. (5.1.10)

For the unmagnetized Vlasov–Poisson system, Q(t, δ) quantifies the evolution of the characteristics
on the interval [t− δ , t]. However, in our context with the added magnetic field, Q(t, δ) will only
quantify a part of the characteristic evolution.

5.2 Results

5.2.1 Propagation of moments

We now give the first main result of this section, which is the propagation of velocity moments of
order k > 2, extending theorem 1 in [99] to the magnetized Vlasov–Poisson system. A said above,
our proof requires that B := B(t). However, since we are confident that this result is also true
for B := B(t, x), we present this conjecture and precise that it is only true in the case B := B(t).

Conjecture 5.2.1 (Propagation of moments). Let k0 > 2, T > 0, f in = f in(x, v) ≥ 0 a.e. with
f in ∈ L1 ∩ L∞(R3 × R3) and assume that∫∫

R3×R3

|v|k0 f indxdv <∞. (5.2.1)

Then there exists a weak solution

f ∈ C(R+;Lp(R3 × R3)) ∩ L∞(R+;Lp(R3 × R3)) (5.2.2)

(1 ≤ p < +∞) to the Cauchy problem for the Vlasov–Poisson system with magnetic field (5.1.1)
in R3 × R3 such that

sup
0≤t≤T

∫∫
R3×R3

|v|k0 f(t, x, v)dvdx ≤ C (5.2.3)

with C that depends only on

T, k0, ‖B‖∞ , E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,

∫∫
R3×R3

|v|k0 f indxdv. (5.2.4)

In section 5.3, we will highlight exactly where our proof fails if we assume that B depends on x.

Remark 5.2.2. If f in satisfies the assumptions of the previous theorem, then all the moments
of order k such that 0 ≤ k < k0 are also propagated for the solution f , simply because of the
following Hölder inequality∫∫

|v|k f(t, x, v)dvdx ≤ ‖f‖
k0−k
k0

1

(∫∫
|v|k0 f(t, x, v)dvdx

) k
k0

(5.2.5)

where we use the decomposition |v|k f = f
k0−k
k0 |v|k f

k
k0 and the exponents p = k0

k0−k , q = k0

k .
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Like in [87, 110], we assume we have smooth solutions to conduct the proof in section 5.3, and
since the a priori estimates depend only on (5.2.4) we can pass to the limit in the approximate
Vlasov–Poisson system first introduced in [4]. In fact, conjecture 5.2.1 will be a consequence of
the main estimate in this chapter which will only hold for these smooth solutions because it is an
estimate on Q (given in (5.1.10)), which isn’t necessarily well-defined for functions in Lebesgue
spaces. We now give this estimate on Q.

Main estimate on Q:
For all T > 0 we have

N(T ) := sup
0≤t≤T

Q(t, t) ≤ C, (5.2.6)

with C that depends on the constants in (5.2.4). In the following remark, we explain how
conjecture 5.2.1 is a consequence of (5.3.4).

Remark 5.2.3. The estimate on propagation of velocity moments (5.2.3) in conjecture 5.2.1
follows from the estimate on N(T ) (5.2.6) because we have:∫∫

R3×R3

|v|k f(t, x, v)dvdx =

∫∫
R3×R3

|V (t; 0, x, v)|k f in(x, v)dvdx

≤
∫∫

R3×R3

(|v|+N(T ))k exp(kt ‖B‖∞)f in(x, v)dvdx

≤ 2k−1 exp(kt ‖B‖∞)

(∫∫
R3×R3

|v|k f in(x, v)dvdx+N(T )k
∥∥f in∥∥

1

)
The first inequality above is obtained through a Grönwall inequality on |V (t; 0, x, v)|, indeed
thanks to (5.1.8) we can write

V (t; 0, x, v) = v +

∫ t

0

E(s,X(s; 0, x, v))ds+

∫ t

0

V (s; 0, x, v) ∧B(s,X(s; 0, x, v))ds (5.2.7)

which implies

|V (t; 0, x, v)| ≤ |v|+Q(t, t) + ‖B‖∞
∫ t

0

|V (s; 0, x, v)| ds

≤ |v|+N(T ) + ‖B‖∞
∫ t

0

|V (s; 0, x, v)| ds

This is the classical Grönwall inequality which allows us to conclude that

|V (t; 0, x, v)| ≤ (|v|+N(T )) exp(t ‖B‖∞). (5.2.8)

The second inequality is just due to the fact that 2k−1(1 + xk) ≥ (1 + x)k for x ≥ 0.

We finish this section by mentioning that, contrary to what is done in [99], we don’t state any
results on to the periodic case. This is simply explained by the fact that there are no results
related to the existence of weak solutions to (5.1.1) in the periodic case. One possibility would be
to adapt [12] to the magnetized case, and then combine the results from [99] for the periodic case
and the proof of conjecture 5.2.1 to show propagation of moments in the periodic case.
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5.2. Results

5.2.2 Uniqueness

For all the uniqueness results and so also in section 5.4, we assume the same regularity on B
(5.1.3).

We first mention a very important result by Loeper [88] where it was shown that the boundedness
of the macroscopic density ρ was a sufficient condition for uniqueness in the Vlasov–Poisson
system. This result was extended to the Vlasov–Poisson system with constant magnetic field
in [110] and the proof can be adapted to the case of a general magnetic field verifying (5.1.3).
However, in the magnetized case, we require extra conditions on the velocity moments and space
moments of the initial data f in, as shown in the following theorem:

Theorem 5.2.4. Let B verify (5.1.3), let f in = f in(x, v) ≥ 0 a.e. with f in ∈ L1 ∩L∞(R3 ×R3)
and assume that ∫∫

R3×R3

|v|6 f indxdv <∞ and
∫∫

R3×R3

|x|4 f indxdv <∞. (5.2.9)

Then there exists at most one weak solution f to (5.1.1) with initial data f in such that

ρ ∈ L∞([0 , T ]× R3
x) (5.2.10)

for all T > 0.

However, to exploit this result, one needs to build solutions to (5.1.1) with bounded macroscopic
density. Hence, in the next proposition, we give an explicit condition that guarantees the existence
of solutions to (5.1.1) with a bounded ρ.

Proposition 5.2.5. Let B verify (5.1.3) and be independent of x, let f in satisfy the assumptions
of conjecture 5.2.1 with k0 > 6. We also assume that f in is such that for all R > 0 and T > 0

gR(t, x, v) ∈ L∞([0 , T ]× R3
x, L

1(R3
v)), (5.2.11)

where
gR(t, x, v) = sup

(y,w)∈St,x,v,R
f in(y + vt, w) (5.2.12)

with

St,x,v,R =
{

(y, w) : |y − x| ≤ (R+ ‖B‖∞ |v|)t
2e‖B‖∞t, |w − v| ≤ (R+ ‖B‖∞ |v|)te

‖B‖∞t
}
.

(5.2.13)
Then the weak solution f of (5.1.1) (provided by our result on propagation of velocity moments
from the last subsection) verifies

ρ ∈ L∞([0 , T ]× R3
x)

for all T > 0.

This proposition was shown in [110, proposition 2.7] in the case of a constant magnetic field and
remains unchanged when we take a general B.

Now we present a theorem which is the second main result of this chapter, where we show that the
uniqueness criterion proved in [95] (theorems 1.1 and 1.2) also applies to (5.1.1) with B verifying
(5.1.3), improving theorem 5.2.4 because it allows for solutions with unbounded macroscopic
density.
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Theorem 5.2.6. Let T > 0 and B verify (5.1.3). Furthermore, let f in ≥ 0 a.e. with f in ∈
L1 ∩ L∞(R3 × R3) and such that∫∫

R3×R3

|v|m f in(x, v)dxdv < +∞, (5.2.14)

for some m > 6.

If f in also satisfies

∀k ≥ 1,

∫∫
R3×R3

|v|k f in(x, v)dxdv ≤ (C0k)
k
3 , (5.2.15)

for some constant C0 independent of k, then there exists at most one solution f to (5.1.1). If
such a solution f exists then it will verify the following bound on the Lp norms of ρ:

sup
[0 ,T ]

sup
p≥1

‖ρ(t)‖p
p

< +∞. (5.2.16)

Remark 5.2.7. In our framework, an important difference with [95] is that the uniqueness
criterion isn’t given by the inequality on the macroscopic density (5.2.16) but rather the stronger
assumption on the moments of the solution (5.2.15).

As mentioned above, the assumptions of theorem 5.2.6 are less restrictive than the condition
(5.2.10) and thus allow us to consider initial data with unbounded macroscopic density. This
result is illustrated by the following theorem ([95, theorem 1.3]):

Theorem 5.2.8 (Miot, [95]). There exists f in ≥ 0 a.e. such that f in ∈ L1 ∩ L∞(R3 × R3)
satisfying the assumptions of theorem 5.2.6 and such that

ρ0(x) =
4π

3
ln−(|x|), ∀x ∈ R3, (5.2.17)

where ln− = max(− ln(x), 0) is the negative part of the function ln.

In section 5.4, we will detail the proof of theorem 5.2.6 first because it is the main result of
this section. Then we will present the proof of theorem 5.2.4 where ingredients from the proof
of theorem 5.2.6 are used, notably the boundedness of the velocity characteristic. However in
theorem 5.2.4 we require a condition on the space moment of the initial data (5.2.9) which isn’t
the case in theorem 5.2.6.

Finally, with regards to uniqueness for Vlasov–Poisson, a major open problem is finding a
uniqueness condition in the periodic case. Indeed, it would be very interesting to see if the
conditions found in [88, 95] could be adapted to the periodic case.

5.3 Proofs regarding propagation of velocity moments

In this section, we shall denote by C a constant that can change from one line to another but
that only depends on

E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ . (5.3.1)
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As mentioned above, the whole proof is conducted using smooth functions.

We consider k > 2 and ε > 0 small enough, say ε ∈ ]0 , ε0[ with ε0 ≤ (k−2)
2k . As said in the

introduction, the main difference with the analysis in [99] is that we’re going to show propagation
of moments for all time by using an induction argument using the cyclotron period Tc = 1

‖B‖∞
.

We begin with the initialization, so we’re first going consider T > 0 with T ≤ TB, where TB is
the unique real number such that

TB ∈ R∗+ and ‖B‖∞ TB exp(TB ‖B‖∞) = a, (5.3.2)

with a > 0. In our method, since we can only obtain estimates on Q for TB � Tc, we just need a
small enough so we set a = 2−10.

Thus, we show propagation of velocity moments on [0 , TB ] using the following result.

Proposition 5.3.1. For all T > 0 such that T ≤ TB, (5.2.6) is verified. More precisely we have
the following estimate on Q(t, t)

Q(t, t) ≤ C exp(T ‖B‖∞)
2
5 (T

1
2 + T

7
5 ) (5.3.3)

with C that only depends on

k, E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,Mk(0).

Remark 5.3.2. This estimate is the analogous of the estimate (13) in [99]. In our magnetized
framework, we only manage to generalize this result up to the time TB .

The following section will be devoted to the proof of this proposition, and just like in [99]
the proof is done in three steps which correspond to proposition 5.3.3, proposition 5.3.6 and
proposition 5.3.7.

5.3.1 The case T ≤ TB

Proposition 5.3.3. For any 0 ≤ δ ≤ t ≤ T ≤ TB we have:

Q(t, δ) ≤ C(δQ(t, δ)
4
3 + δ

1
2 (1 +M2+ε(T ))

1
2 ) (5.3.4)

Proof. Let (t, x∗, v∗) ∈ [0 , T ]×R3×R3 and set (X∗, V∗)(s) = (X,V )(s; t, x∗, v∗). For any δ ∈ [0 , t]
we have by definition of E∫ t

t−δ
|E(s,X(s; t, x∗, v∗))| ds ≤

∫ t

t−δ

∫
ρ(s, x)dx

4π |x−X∗(s)|2
ds

Our objective in the rest of this section will be to estimate the integral:

I∗(t, δ) :=

∫ t

t−δ

∫
ρ(s, x)dx

|x−X∗(s)|2
ds =

∫ t

t−δ

∫∫
f(s, x, v)dvdx

|x−X∗(s)|2
ds (5.3.5)
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Now we will use a procedure that is inspired from [114] which consists in splitting [t−δ , t]×R3×R3

into three parts. Here the partition is slightly different because, following [99], we introduce ε > 0.

G = {(s, x, v) : min(|v| , |v − V∗(s)|) < P} ,
B = {(s, x, v) : |x−X∗(s)| ≤ Λε(s, v)} \G,
U = [t− δ , t]× R3 × R3\(G ∪B),

with

P = 210Q(t, δ) exp(δ ‖B‖∞) and Λε(s, v) = L(1 + |v|2+ε
)−1 |v − V∗(s)|−1 (5.3.6)

and L > 0 to be fixed later. The main difference here with [99] is the definition of P , because the
added magnetic modifies the evolution of the characteristic in velocity V (s). Furthermore, we
take the same numerical constant 210 in the definition of P as in [99] is (in truth this constant just
needs to be large enough). Using obvious notations, we write I∗ = IG∗ + IB∗ + IU∗ . The first two
integrals will be more straightforward to estimate than IU∗ , which involves the set U considered
as the "ugly set" according to [59].

The first two contributions IG∗ , IB∗ are treated the same in both magnetized and unmagnetized
cases, simply because the modifications made to the sets G,B to take into account the added
magnetic field don’t change the computations required to estimate IG∗ and IB∗ . We succinctly
present how to control both integrals following the calculations from [99]. The first bound is
obtained by using a standard functional inequality.

For κ ∈ L∞(R3) ∩ L 5
3 (R3) we have

∥∥∥κ ∗ |·|−2
∥∥∥
∞
≤ c ‖κ‖

5
9
5
3

‖κ‖
4
9
∞ , (5.3.7)

with c a numerical constant.

We apply (5.3.7) to the quantity:

ρG(s, x) =

∫
B(0,P )∪B(V∗(s),P )

f(s, x, v)dv ≤ ρ(s, x), (5.3.8)

which implies the following control on IG∗ (t, δ):

IG∗ (t, δ) ≤ C(δP
4
3 ). (5.3.9)

To estimate the contribution on B, we first integrate in the space variable using a spherical change
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of variable.

IB∗ (t, δ) ≤
∫ t

t−δ

∫
v

∫
|x−X∗(s)|≤Λε(s,v)

f(s, x, v)dx

|x−X∗(s)|2
dvds,

≤
∫ t

t−δ

∫
v

(
4π

∫ Λε(s,v)

0

∥∥f in∥∥∞
r2

r2dr

)
dvds,

≤ C
∫ t

t−δ

∫
v

L

(1 + |v|2+ε
) |v − V∗(s)|

dvds,

≤ C
∫ t

t−δ

(∫
|v|≤|v−V∗(s)|

L

(1 + |v|2+ε
) |v|

dv +

∫
|v|>|v−V∗(s)|

L

(1 + |v − V∗(s)|2+ε
) |v − V∗(s)|

dv

)
ds,

≤ C
∫ t

t−δ

∫
v

L

(1 + |v|2+ε
) |v|

dvds,

≤ C
∫ t

t−δ

∫
R3

Lr

(1 + r2+ε)
drds,

≤ CδL.

The last contribution IU∗ (t, δ) can be written

IU∗ (t, δ) =

∫ t

t−δ

∫∫
f(s, x, v)1U (s, x, v)

|x−X∗(s)|2
dvdxds =

∫∫ ∫ t

t−δ

1U (s,X(s), V (s))

|X(s)−X∗(s)|2
dsf(t, x, v)dvdx

(5.3.10)
where we have the obvious notation (X,V )(s) = (X,V )(s; t, x, v). Estimating this quantity is
difficult and will occupy us for the rest of the proof of proposition 5.3.3.

The following lemma is very important in our proof because it highlights why we need to use the
induction procedure mentioned above. In the unmagnetized case , we estimate IU∗ by noticing
that because of the definition of U , the characteristic V (s) stays close to v on [t− δ , t] because v
is large compared to P and P is much larger Q(t, δ) which quantifies the total variation of V (s)
on [t − δ , t]. However in the magnetized case, this stays true only under the condition (5.3.2)
because if the magnetic field is large than the variations of V (s) on [t − δ , t] can also be very
large compared to P .

Lemma 5.3.4. Let s1 ∈ [t− δ , t] such that (s1, X(s1), V (s1)) ∈ U , then for all s ∈ [t− δ , t] we
have

2−1 |v| ≤ |V (s)| ≤ 2 |v| , (5.3.11)

and
2−1 |v − v∗| ≤ |V (s)− V∗(s)| ≤ 2 |v − v∗| . (5.3.12)

Proof. First, because of the definition of U , we can write

min(|V (s1)| , |V (s1)− V∗(s1)|) ≥ P. (5.3.13)

Let’s start by proving the first bound (5.3.11), thanks to (5.1.8) we have for all s ∈ [t− δ , t]

V (s)− V (s1) =

∫ s

s1

E(τ,X(τ))dτ +

∫ s

s1

V (τ) ∧B(τ,X(τ))dτ
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Furthermore, one of the properties of the characteristics is that we have for all (x, v) ∈ R3 × R3

and τ, t ∈ R+

X(τ ; t, x, v) = X(τ ; 0, X(0; t, x, v), V (0; t, x, v))

and also that the function (x, v) 7→ X(τ ; t, x, v) is a C1-diffeomorphism which means that

sup

{∫ t

t−δ
|E(s,X(s; t, x, v))| ds, (x, v) ∈ R3 × R3

}
= sup

{∫ t

t−δ
|E(s,X(s; 0, x, v))| ds, (x, v) ∈ R3 × R3

}
= Q(t, δ).

Thus we can write

|V (s)− V (s1)| ≤ Q(t, δ) + ‖B‖∞

(
δ ‖V (s1)‖+

∣∣∣∣∫ s

s1

|V (τ)− V (s1)| dτ
∣∣∣∣)

which is a Grönwall inequality, so we finally have for all s ∈ [t− δ , t]

||V (s)| − |V (s1)|| ≤ |V (s)− V (s1)| ≤ (Q(t, δ) + ‖B‖∞ δ |V (s1)|) exp(δ ‖B‖∞). (5.3.14)

This last inequality highlights the main difference with the unmagnetized case, indeed when
we use V (s1) as a reference point to quantity the variation of V (s), we see that the added
term ‖B‖∞ δ |V (s1)| exp(δ ‖B‖∞), which is just the added variation of the velocity characteristic
resulting from the magnetic field, is potentially unbounded. This is due to the fact that even if
0 ≤ δ ≤ T , ‖B‖∞ is potentially large. This is the reason we introduce the time TB which depends
on the cyclotron frequency ‖B‖∞.

Now using this last inequality, thanks to the relation between P and Q(t, δ) given in (5.3.6), to
(5.3.13), and to (5.3.2) (because t ≤ TB) we have

|V (s)| ≤ |V (s1)| (1 + ‖B‖∞ δ exp(δ ‖B‖∞)) + 2−10P

≤ |V (s1)|
(
1 + 2−10 + 2−10

)
= |V (s1)|

(
1 + 2−9

)
and using the same relations but this time for − |V (s1)| we can write

|V (s1)|
(
1− 2−10 − 2−10

)
≤ |V (s1)| (1− ‖B‖∞ δ exp(δ ‖B‖∞))− 2−10P

≤ |V (s1)| (1− ‖B‖∞ δ exp(δ ‖B‖∞))−Q(t, δ) exp(δ ‖B‖∞)

≤ |V (s)|

These inequalities are valid for all s ∈ [t − δ , t] and so in particular for s = t. And so we can
write

2−1 |V (s)| ≤ |V (s)| 1− 2−9

1 + 2−9
≤ |v| ≤ |V (s)| 1 + 2−9

1− 2−9
≤ 2 |V (s)| (5.3.15)

which is equivalent to (5.3.11).

Now let’s look at the inequality (5.3.12). Like for (5.3.11), we try to write a Grönwall inequality
but this time on Z(s) = |(V (s)− V∗(s))− (V (s1)− V∗(s1))|.

(V (s)− V∗(s))− (V (s1)− V∗(s1)) =

∫ s

s1

E(τ,X(τ))dτ +

∫ s

s1

V (τ) ∧B(τ,X(τ))dτ

−
∫ s

s1

E(τ,X∗(τ))dτ −
∫ s

s1

V∗(τ) ∧B(τ,X∗(τ))dτ.
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This allows us to write

Z(s) ≤ 2Q(t, δ) +

∣∣∣∣∫ s

s1

(V (τ) ∧B(τ,X(τ))− V∗(τ) ∧B(τ,X∗(τ))) dτ

∣∣∣∣
≤ 2Q(t, δ) +

∫ s

s1

|V (τ) ∧ (B(τ,X(τ))−B(τ,X∗(τ)))|+ |(V∗(τ)− V (τ)) ∧B(τ,X∗(τ))| dτ

≤ 2Q(t, δ) + 2δ ‖B‖∞ 2 |V (s1)|

+ ‖B‖∞

(
δ |(V∗(s1)− V (s1))|+

∫ s

s1

|(V (τ)− V∗(τ))− (V (s1)− V∗(s1))| dτ
)

where in the second term in the last inequality we used the bound |V (s)| ≤ |V (s1)| (1 + 2−9) ≤
2 |V (s1)| that we established just before.

This is the point where we require that B := B(t).

Thus we have our Grönwall inequality on Z(s) which gives us

Z(s) ≤ (2Q(t, δ) + 4δ ‖B‖∞ |V (s1)|+ ‖B‖∞ δ |(V∗(s1)− V (s1))|) exp(δ ‖B‖∞). (5.3.16)

If we decompose the magnetic part of the Lorentz forces using V∗(s) then we get an analogous
inequality but this time with |V∗(s1)|:

Z(s) ≤ (2Q(t, δ) + 4δ ‖B‖∞ |V∗(s1)|+ ‖B‖∞ δ |(V∗(s1)− V (s1))|) exp(δ ‖B‖∞). (5.3.17)

Of course, we can take the mean of the two inequalities to obtain

Z(s) ≤ (2Q(t, δ) + 2δ ‖B‖∞
|V∗(s1)|+ |V (s1)|

2
+ ‖B‖∞ δ |(V∗(s1)− V (s1))|) exp(δ ‖B‖∞).

(5.3.18)
In each of these inequalities, the second term in the inequality depends on |V∗(s1)| , |V (s1)|
which means that we can’t get a lower bound on |V (s)− V∗(s)| because we can’t compare
|V (s1)− V∗(s1)| with |V (s1)| , |V∗(s1)|. However, if B := B(t) then we don’t have this extra term
because we can just write

Z(s) ≤ 2Q(t, δ) +

∫ s

s1

|(V (τ)− V∗(τ)) ∧B(τ)| , (5.3.19)

and we obtain (5.3.12) by following exactly the same procedure used above to prove (5.3.11) but
this time by exploiting the bound |(V∗(s1)− V (s1))| > P .

Going back to the case B := B(t, x), we might be able to obtain a better estimate on Z(s) by
controlling the term B(τ,X(τ))−B(τ,X∗(τ)) more precisely. However, since such an estimate
would involve the quantity |x− x∗|, we would certainly have to modify the sets G,B,U in order
to bound |x− x∗|. This is the lead that we want to explore to prove the conjecture 5.2.1 with
B := B(t, x).

Lemma 5.3.5. For any (x, v) ∈ R6 we have∫ t

t−δ

1U (s,X(s), V (s))

|X(s)−X∗(s)|2
ds ≤ C

(
1 + |v|2+ε

L

)
. (5.3.20)
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Proof. If (s,X(s), V (s)) /∈ U for all s ∈ [t − δ , t] then the estimate (5.3.20) is verified. Now
we assume that there exists s1 ∈ [t − δ , t] such that (s1, X(s1), V (s1)) ∈ U , then thanks to
lemma 5.3.4 we can write

Λε(s, V (s)) ≥ L(1 + (2 |v|)2+ε)−1(2 |v − v∗|)−1 ≥ 2−3−εΛε(t, v) (5.3.21)

and hence
1U (s,X(s), V (s))

|X(s)−X∗(s)|2
≤

1R3\B(X∗(s),2−3−εΛε(t,v))(X(s))

|X(s)−X∗(s)|2
≤ h(|Y (s)|), (5.3.22)

where Y (s) = X(s)−X∗(s) and h(u) = min(|u|−2
, 43+εΛε(t, v)−2). Since h is a non-increasing

function, we look for a lower bound on |Y (s)|.

For any s0 ∈ [t− δ , t] we have, thanks to (5.3.12)

|Y (s)| ≥ |Y (s0) + (s− s0)Y ′(s0)| −
∣∣∣∣∫ s

s0

(s− u)Y ′′(u)du

∣∣∣∣
≥ |Y (s0) + (s− s0)Y ′(s0)| − 2 |s− s0| (Q(t, δ) + δ ‖B‖∞ |v − v∗|).

Now we consider s = s0 that minimizes |Y (s)|2 when s ∈ [t−δ , t], then this implies (s−s0)Y (s0) ·
Y ′(s0) ≥ 0 and so

|Y (s0) + (s− s0)Y ′(s0)|2 ≥ |Y ′(s0)|2 |s− s0|2 (5.3.23)

and thanks to (5.3.12) we get |Y ′(s0)| ≥ 2−1 |v − v∗| and when we evaluate (5.3.12) in s1 this
also yields Q(t, δ) ≤ 2−9 |v − v∗| exp(−δ ‖B‖∞) so we have

|Y ′(s0)| − 2(Q(t, δ) + δ ‖B‖∞ |v − v∗|) ≥ |v − v∗| (2
−1 − 2−8 |v − v∗| exp(−δ ‖B‖∞)− 2δ ‖B‖∞)

≥ |v − v∗| (2−1 − 2−8 − 2δ ‖B‖∞).

We need the quantity (2−1 − 2−8 − 2δ ‖B‖∞) to be strictly positive and so once again we need
the condition (5.3.2) for δ ‖B‖∞ to be small and this inequality to be verified. Now we have
|Y (s)| ≥ α |v − v∗| |s− s0| with α > 0. Just as in [99], we bring this inequality into (5.3.22),
integrate with respect to the time variable and estimate the integral as follows to obtain (5.3.20):∫ t

t−δ
h(|Y (s)|)ds ≤

∫ t

t−δ
h(α |v − v∗| |s− s0|)ds,

≤
∫ +∞

0

h(α |v − v∗| r)dr,

= (α |v − v∗|)−1

∫ +∞

0

h(r)dr,

= (α |v − v∗|)−1

(∫ 2−3−εΛε(t,v)

0

43+εΛε(t, v)−2dr +

∫ +∞

2−3−εΛε(t,v)

1

r2
dr

)
,

= (α |v − v∗|)−1(23+εΛε(t, v)−1 + 23+εΛε(t, v)−1),

≤ C

(
1 + |v|2+ε

L

)
.
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Now integrating in x, v and using the mass conservation, we finally obtain

IU∗ (t, δ) ≤ CL−1(1 +M2+ε(T )). (5.3.24)

We gather all the above estimates to conclude

I∗(t, δ) ≤ C(δ (Q(t, δ) exp(δ ‖B‖∞))
4
3 + δL+ L−1(1 +M2+ε(T )))

≤ C(δQ(t, δ)
4
3 + δL+ L−1(1 +M2+ε(T )))

where the last inequality is justified by the fact that thanks to (5.3.2) we have exp(δ ‖B‖∞) ≤
exp(g(2−10)) where g is the inverse of the function x 7→ x exp(x) on R+. We conclude in the
same way as in [99], firstly by optimizing the parameter L and then by noticing that the pair
(x∗, v∗) is arbitrary so that we have

sup
{
I∗(t, δ), (x∗, v∗) ∈ R3 × R3

}
≥ Q(t, δ). (5.3.25)

Finally, we obtain (5.3.4).

The next two propositions allow us to conclude. The proof of proposition 5.3.6 is identical to
the one in [99] because it doesn’t rely on the characteristics of the system, but rather on real
analysis arguments. In an effort of clarity, and also because some arguments of the proof are
more detailed in this chapter than in [99], we place the proof of proposition 5.3.6 in the appendix.

Proposition 5.3.6. For any t ∈ [0 , T ] with T ≤ TB, we have

Q(t, t) ≤ C(t
1
2 + t)(1 +M2+ε(T ))

4
7 . (5.3.26)

Now we state the last result necessary in the proof of proposition 5.3.1.

Proposition 5.3.7. There exists τ(ε, k) > 0 such that for any t ∈ [0 , T ] we have

Q(t, t) ≤ C(1 +Mk(0))τ(ε,k) exp(T ‖B‖∞)
2
5 (T

1
2 + T

7
5 ). (5.3.27)

Remark 5.3.8. We notice that we obtain the same estimate (5.3.27) as in [99] when the magnetic
field B is zero.

Proof. Using the same argument as in (5.2.3), we can write

Mk(t) ≤ 2k−1 exp(kt ‖B‖∞)
(
Mk(0) +N(T )k

∥∥f in∥∥
1

)
(5.3.28)

with N(T ) defined in conjecture 5.2.1.

Now to obtain the desired estimate we have to bound M2+ε(t), which we manage with the Hölder
inequality. Thus for any t ∈ [0 , T ] we have∫∫

|v|2+ε
f(t, x, v)dxdv ≤

(∫∫
|v|2 f(t, x, v)dxdv

) 2+ε−k
2−k

(∫∫
|v|k f(t, x, v)dxdv

) ε
k−2

.

(5.3.29)
With the conservation of the energy E(t), this Hölder inequality implies that

M2+ε(T ) ≤ CMk(T )
ε

k−2 (5.3.30)
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and bringing this inequality into (5.3.28) it yields

M2+ε(T ) ≤ C exp(
kε

k − 2
T ‖B‖∞)

(
Mk(0) +N(T )k

∥∥f in∥∥
1

) ε
k−2 . (5.3.31)

Now thanks to (5.3.26) we can deduce

M2+ε(T ) ≤ C exp(
kε

k − 2
T ‖B‖∞)

(
Mk(0) +N(T )k

∥∥f in∥∥
1

) ε
k−2

≤ C exp(
kε

k − 2
T ‖B‖∞)

(
Mk(0) + (T

1
2 + T )k(1 +M2+ε(T ))

4k
7

∥∥f in∥∥
1

) ε
k−2

≤ C exp(
kε

k − 2
T ‖B‖∞)(1 +Mk(0))

ε
k−2 (T

1
2 + T )

kε
k−2 (1 +M2+ε(T ))

4kε
7(k−2)

Like in [99], we write σ(ε, k) = 4kε
7(k−2) and notice that if we take ε small enough we have

σ(ε, k) ∈ ]0 , 1[. More precisely, if ε < ε0 then σ(ε, k) ≤ 2
7 ,

kε
k−2 ≤

1
2 and ε

k−2 ≤
1
2k and we find

M2+ε(T ) ≤ C(1 +Mk(0))
1
2k exp(T ‖B‖∞)

1
2 (1 + T )

1
2 (1 +M2+ε(T ))

2
7 , (5.3.32)

where we used T
1
2 + T ≤ 2(1 + T ). Now since the right term in the last inequality is larger than

1 up to a constant C, we deduce that

(1 +M2+ε(T ))
5
7 ≤ C(1 +Mk(0))

1
2k exp(T ‖B‖∞)

1
2 (1 + T )

1
2 (5.3.33)

which finally yields

1 +M2+ε(T ) ≤ C(1 +Mk(0))
7

10k exp(T ‖B‖∞)
7
10 (1 + T )

7
10 . (5.3.34)

Then, using (5.3.26) again we deduce

Q(t, t) ≤ C(T
1
2 + T )(1 +Mk(0))

2
5k exp(T ‖B‖∞)

2
5 (1 + T )

2
5

≤ C(1 +Mk(0))
2
5k exp(T ‖B‖∞)

2
5 (T

1
2 + T

7
5 ).

This concludes the proof of proposition 5.3.7 and proposition 5.3.1.

5.3.2 The case T ≥ TB

We conclude the proof of (5.2.6) by showing that Q(t, t) is bounded for all time.

Proposition 5.3.9. The inequality (5.2.6) is valid for all T ≥ TB.

Proof. For all t ∈ [0 , T ], we write t = nTB + tr with n ∈ N and tr ∈ [0 , TB [. Since the constant
C in proposition 5.3.1 depends only on T, k, ‖B‖∞ ,

∥∥f in∥∥
1
,
∥∥f in∥∥∞ , E(0) and Mk(0), we can

reiterate the procedure on any time interval Ip = [pTB , (p+ 1)TB ]. Indeed, T, k and ‖B‖∞ are
constants ‖f(t)‖1 and ‖f(t)‖∞ are conserved in time and the energy E(t) is bounded. This means
we can write

Q(t, t) ≤
n−1∑
p=0

Q((p+ 1)TB , TB) +Q(t, tr)

≤ C
n∑
p=0

(1 +Mk(pTB))
2
5k exp(TB ‖B‖∞)

2
5 (T

1
2

B + T
7
5

B ).
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Furthermore, we can show by an immediate induction that for all p ∈ N with p ≤ n, Mk(pTB) is
bounded such that

Mk(pTB) ≤ Cp(k, ‖B‖∞ , E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ ,Mk(0)). (5.3.35)

This is just because Mk(pTB) ≤ C1 ⇒ Q((p + 1)TB , TB) ≤ C2 ⇒ Mk((p + 1)TB) ≤ C3 with
C1, C2, C3 depending on (5.2.4). This concludes the proof of proposition 5.3.9 and conjecture 5.2.1.

5.4 Proofs regarding uniqueness

A said above, we manage to prove uniqueness using the conditions presented in section 5.2.2 with
a magnetic field B := B(t, x) that depends on time and position. The subsections 5.4.1, 5.4.2
and 5.4.3 will be devoted to the proof of theorem 5.2.6 and subsection 5.4.4 will be devoted to
the proof of theorem 5.2.4. In this section, we shall denote by C a constant that can change from
one line to another but that only depends on

E(0),
∥∥f in∥∥

1
,
∥∥f in∥∥∞ , T,

∫∫
|v|m f in. (5.4.1)

5.4.1 Proof of the estimate on the Lp norms of ρ (5.2.16)

We consider f in that satisfies the assumptions of theorem 5.2.6 and let f be the solution given by
conjecture 5.2.1 with initial data f in. By construction, we have propagation of moments:

sup
t∈[0 ,T ]

∫∫
R3×R3

|v|m f(t, x, v)dxdv < +∞. (5.4.2)

Now thanks to a classical velocity moment inequality, we show how to control the Lp norms of
the macroscopic density with velocity moments, this inequality is given by

‖ρ(t)‖ k+3
3
≤ C ‖f(t)‖

k
k+3
∞ Mk(t)

3
k+3 . (5.4.3)

with C independent of k. Since we want ρ to verify (5.2.16), this means that we need to prove

∀k ≥ 1, sup
t∈[0 ,T ]

(‖f(t)‖
k
k+3
∞ Mk(t)

3
k+3 ) ≤ Ck. (5.4.4)

Since the solution f ∈ L∞([0 , T ], L∞(R3 × R3)), we finally need to show

∀k ≥ 1, sup
t∈[0 ,T ]

Mk(t)
3
k+3 ≤ Ck. (5.4.5)

First, we recall that thanks to (5.4.2) where m > 6 we can infer that ρ ∈ L∞([0 , T ], Lp(R3)) with
p = m+3

3 > 3 and following (5.4.25) we have E ∈ L∞([0 , T ], L∞(R3)). Then we write

d

dt
|V (t, x, v)|k = k |V (t, x, v)|k−1 V̇ (t, x, v) · V (t, x, v)

|V (t, x, v)|
,
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and thanks to the bound on E and the definition of the characteristics (5.1.8) we can infer that
for all k > m

|V (t, x, v)|k ≤ |v|k + k

∫ t

0

|V (s, x, v)|k−1 (E(s,X(s, x, v)) + V (s, x, v) ∧B(s,X(s, x, v))) · V (s, x, v)

|V (s, x, v)|
ds

≤ |v|k + k ‖E‖∞
∫ t

0

|V (s, x, v)|k−1
ds.

Since the contribution of magnetic field B vanishes, the following computations are the same as in
the unmagnetized case [95]. In an effort to be clear, we explicit these computations nonetheless.

Integrating this last inequality with respect to f in(x, v)dxdv we get

Mk(t) ≤Mk(0) + k ‖E‖∞
∫ t

0

Mk−1(s)ds. (5.4.6)

Thus by induction we deduce that sup
t∈[0 ,T ]

Mk(t) is finite for all k > m. furthermore, by another

classical velocity moment inequality we obtain that

Mk−1(s) ≤ ‖f(s)‖
1
k
1 Mk(s)

k−1
k . (5.4.7)

Since ‖f(t)‖1 is conserved, we get

Mk(t) ≤Mk(0) + Ck

∫ t

0

Mk(s)
k−1
k ds, . (5.4.8)

Differentiating this inequality allows us to write

M ′k(t) ≤ CkMk(t)
k−1
k ⇔ d

dt
(Mk(t)

1
k ) ≤ C ⇒ sup

t∈[0 ,T ]

Mk(t)
1
k ≤Mk(0)

1
k + C.

By assumption on Mk(0) we find for all t ∈ [0 , T ]

Mk(t)
1
k ≤ (C0k)

1
3 + C ≤ (Ck)

1
3 ≤ (Ck)

1
3 + 1

k , (5.4.9)

which finally implies that
sup

t∈[0 ,T ]

Mk(t)
3
k+3 ≤ Ck. (5.4.10)

5.4.2 Estimate on the characteristics

We consider two solutions f1, f2 ∈ L∞([0 , T ], L1 ∩ L∞(R3 × R3)) such that ρ1, ρ2 verify

ρ1, ρ2 ∈ L∞([0 , T ], Lp(R3)) (5.4.11)

for some p > 3. This regularity on ρ1,2 is guaranteed by the condition (5.2.14) thanks to
the estimate (5.4.3). Then we write Y1 = (X1, V1) and Y2 = (X2, V2) for the corresponding
characteristics, which are both solutions to (5.1.8) with t = 0. This means we can simplify
the notation and will write Yi(t; 0, x, v) = Yi(t, x, v), i = 1, 2. Regarding the existence of such
characteristics, the condition (5.4.11) yields sufficient regularity on the electric field Ei, i = 1, 2,
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so that with the added regularity assumption on the magnetic field (5.1.3) we can define weak
characteristics thanks to theorem III.2 (section III.2) in [45].

Now we introduce the distance

D(t) =

∫∫
R3×R3

|X1(t, x, v)−X2(t, x, v)| f in(x, v)dxdv. (5.4.12)

From (5.1.8) we can infer that

X1(t, x, v)−X2(t, x, v) =

∫ t

0

∫ s

0

E1(τ,X1(τ, x, v))− E2(τ,X2(τ, x, v))

+ V1(τ, x, v) ∧B(τ,X1(τ, x, v))− V2(τ, x, v) ∧B(τ,X2(τ, x, v))dτds

(5.4.13)

which yields that

D(t) ≤
∫ t

0

∫ s

0

∫
R6

|E1(τ,X1(τ, x, v))− E2(τ,X2(τ, x, v))|

+ |V1(τ, x, v) ∧B(τ,X1(τ, x, v))− V2(τ, x, v) ∧B(τ,X2(τ, x, v))| f in(x, v)dxdvdτds

≤
∫ t

0

∫ s

0

∫
R6

|E1(τ,X1(τ, x, v))− E2(τ,X2(τ, x, v))| f in(x, v)dxdvdτds

+ ‖B‖∞
∫ t

0

∫ s

0

∫
R6

|V1(τ, x, v)− V2(τ, x, v)| f in(x, v)dxdvdτds

+

∫ t

0

∫ s

0

∫
R6

|V2(τ, x, v)| |B(τ,X1(τ, x, v))−B(τ,X2(τ, x, v))| f in(x, v)dxdvdτds

= I(t) + J(t) +K(t)

The term I(t) is the quantity estimated thanks to the method in [95]. As for the other two terms
J(t) and K(t), since we want to use the same method as in [95] which is to exploit the fact that
the characteristics of the Vlasov equation verify an ODE of order 2, we need them to be controlled
by
∫ t

0

∫ s
0
D(τ)1− 3

p dτds. This is true and the estimates are given in the following proposition.

Proposition 5.4.1. For all t ∈ [0 , T ] and for all p > 3, we have the following estimates:

I(t) ≤ CpCρ1,ρ2

∫ t

0

∫ s

0

D(τ)1− 3
p dτds (5.4.14)

K(t) ≤ (CpKB +KB,p)

∫ t

0

∫ s

0

D(τ)1− 3
p dτds (5.4.15)

J(t) ≤ ‖B‖∞
∫ t

0

∫ s

0

∫ τ

0

(CpCρ1,ρ2
+ (CpKB +KB,p))D(u)1− 3

p dudτds

+ ‖B‖2∞ exp(T ‖B‖∞)

∫ t

0

∫ s

0

∫ τ

0

∫ u

0

(CpCρ1,ρ2
+ (CpKB +KB,p))D(w)1− 3

p dwdudτds.

(5.4.16)
with

Cρ1,ρ2
= max

(
1 + ‖ρ1‖L∞([0 ,T ],Lp) , 1 + ‖ρ2‖L∞([0 ,T ],Lp)

)
,

KB,p = 2 ‖B‖W 1,∞ ‖E2‖∞ exp(T ‖B‖∞),

KB = 2 ‖B‖W 1,∞ exp(T ‖B‖∞),

and where C denotes a constant that depends only on T,
∥∥f in∥∥∞ ,

∥∥f in∥∥
1
.
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Proof of proposition 5.4.1. As said above, the term I(t) is the quantity estimated thanks to the
method in [95], so we treat it identically to find the estimate (5.4.14).

Let’s first look at the term K(t). Since B ∈W 1,∞(R+×R3) then for all t ∈ [0 , T ] and α ∈ ]0 , 1]

B(t) ∈ C0,α(R3) (5.4.17)

with Hölder coefficient CB(t) verifying CB(t) ≤ max(2 ‖B‖∞ , ‖∇B‖∞) ≤ 2 ‖B‖W 1,∞ .

Then we simply have for all p > 3

K(t) ≤ 2 ‖B‖W 1,∞

∫ t

0

∫ s

0

∫
R6

|V2(τ, x, v)| |X1(τ, x, v)−X2(τ, x, v)|1−
3
p f in(x, v)dxdvdτds

(5.4.18)
Now we need to estimate the velocity characteristic V2, and using (5.1.8) we can write once again

|V (t, x, v)| ≤ |v|+
∫ t

0

|E(s,X(s, x, v))| ds+ ‖B‖∞
∫ t

0

|V (s, x, v)| ds

≤ |v|+ T ‖E‖∞ + ‖B‖∞
∫ t

0

|V (s, x, v)| ds.

This classical Grönwall inequality yields for all t ∈ [0 , T ]

|V (t, x, v)| ≤ (|v|+ T ‖E‖∞) exp(t ‖B‖∞). (5.4.19)

So that we can write

K(t) ≤ 2 ‖B‖W 1,∞ exp(T ‖B‖∞),∫ t

0

∫ s

0

∫
R6

(|v|+ T ‖E2‖∞) |X1(τ, x, v)−X2(τ, x, v)|1−
3
p f in(x, v)dxdvdτds,

= K1(t) +K2(t).

(5.4.20)

By applying Jensen’s inequality for concave functions to x 7→ x1− 3
p we obtain

K2(t) ≤ KB,p

∫ t

0

∫ s

0

D(τ)1− 3
p dτds. (5.4.21)

Then we estimate K1(t) by writing f in = (f in)
1
p (f in)

1
p′ where 1

p + 1
p′ = 1, so that with the Hölder

inequality applied to |v| (f in)
1
p and |X1(τ, x, v)−X2(τ, x, v)|1−

3
p (f in)

1
p′ with the exponents p

and p′ we have

K1(t) ≤ KB

(∫
R6

|v|p f in(x, v)dxdv

) 1
p
∫ t

0

∫ s

0

(∫
R6

|X1(τ, x, v)−X2(τ, x, v)|(1−
3
p )p′

f in(x, v)dxdv

) 1
p′

dτds.

Using (5.2.15) we have
(∫

R6 |v|p f in(x, v)dxdv
) 1
p ≤ (C0p)

1
3 ≤ Cp. Furthermore, we can once

again use the Jensen inequality because (1− 3
p )p′ = p−3

p
p
p−1 = p−3

p−1 < 1, which gives us

K1(t) ≤ CpKB

∫ t

0

∫ s

0

D(τ)1− 3
p dτds. (5.4.22)

This concludes the proof of (5.4.16).
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To estimate the last term J(t), we also use (5.1.8) to obtain a Grönwall inequality on |V1(t)− V2(t)|,
and since the computations are complicated we write V1,2(s), X1,2(s) for the characteristics. First
we write

|V1(t)− V2(t)| ≤
∫ t

0

|E1(s,X1(s))− E2(s,X2(s))| ds+ ‖B‖∞
∫ t

0

|V1(s)− V2(s)| ds

+

∫ t

0

|V2(s)| |B(s,X1(s))−B(s,X2(s))| ds.

Now using (5.4.17) and (5.4.19) we deduce

|V1(t)− V2(t)| ≤
∫ t

0

|E1(s,X1(s))− E2(s,X2(s))| ds+ ‖B‖∞
∫ t

0

|V1(s)− V2(s)| ds

+ (KB |v|+KB,p)

∫ t

0

|X1(s)−X2(s)|1−
3
p ds

which is just the Grönwall inequality on |V1(t)− V2(t)| we were looking for and which yields

|V1(t)− V2(t)| ≤
∫ t

0

|E1(s,X1(s))− E2(s,X2(s))|+ (KB |v|+KB,p) |X1(s)−X2(s)|1−
3
p ds

+

∫ t

0

(∫ s

0

|E1(τ,X1(τ))− E2(τ,X2(τ))|+ (KB |v|+KB,p) |X1(τ)−X2(τ)|1−
3
p dτ

)
× ‖B‖∞ exp((t− s) ‖B‖∞)ds.

Now we insert this inequality in the definition of J(t) to obtain

J(t) ≤ ‖B‖∞
∫ t

0

∫ s

0

∫ τ

0

∫
R6

(
|E1(u,X1(u))− E2(u,X2(u))|+ (KB |v|+KB,p) |X1(u)−X2(u)|1−

3
p

)
× f in(x, v)dxdvdudτds

+ ‖B‖2∞ exp(T ‖B‖∞)×∫ t

0

∫ s

0

∫ τ

0

∫ u

0

∫
R6

(
|E1(w,X1(w))− E2(w,X2(w))|+ (KB |v|+KB,p) |X1(w)−X2(w)|1−

3
p

)
× f in(x, v)dxdvdwdudτds.

(5.4.23)
Like previously, we can use the Jensen inequality to bound the terms KB,p |X1 −X2|1−

3
p , the

relation (5.4.14) to bound the terms |E1 − E2| and the Hölder inequality used to estimate K1(t)

to bound KB |v| |X1 −X2|1−
3
p .

This gives the desired estimate (5.4.15) on J(t):

J(t) ≤ ‖B‖∞
∫ t

0

∫ s

0

∫ τ

0

(CpCρ1,ρ2 + (CpKB +KB,p))D(u)1− 3
p dudτds

+ ‖B‖2∞ exp(T ‖B‖∞)

∫ t

0

∫ s

0

∫ τ

0

∫ u

0

(CpCρ1,ρ2 + (CpKB +KB,p))D(w)1− 3
p dwdudτds.

149



Chapter 5. Propagation of velocity moments and uniqueness for the magnetized
Vlasov–Poisson system

5.4.3 A second order inequality on D(t)

We begin by looking at the dependence of KB,p with respect to p. The only term in KB,p which
depends on p is ‖E2‖∞, and since ρ2 ∈ L∞([0 , T ], Lp(R3)) with p > 3, then we can deduce the
desired L∞ bound on E2 because for all t ∈ [0 , T ]

‖E2(t)‖∞ ≤
∥∥1|x|≥1∇G3

∥∥
∞ ‖ρ2(t)‖1 +

∥∥1|x|<1∇G3

∥∥
q
‖ρ2(t)‖p (5.4.24)

with 1
p + 1

q = 1.

From this last inequality we can finally deduce

‖E2‖∞ ≤ C(1 + ‖ρ2‖L∞([0 ,T ],Lp)), (5.4.25)

where C depends only on
∥∥f in∥∥

1
.

Now we consider that the solutions f1, f2 verify the assumptions of theorem 5.2.6. This means
that max(‖ρ1‖L∞([0 ,T ],Lp) , ‖ρ2‖L∞([0 ,T ],Lp)) ≤ Cp for all p ≥ 1, and so thanks to (5.4.25) and
proposition 5.4.1 we have for all p > 3

D(t) ≤ C1p
2

∫ t

0

∫ s

0

D(τ)1− 3
p dτds

+ C2(p2 + p)

∫ t

0

∫ s

0

∫ τ

0

D(u)1− 3
p dudτds

+ C3(p2 + p)

∫ t

0

∫ s

0

∫ τ

0

∫ u

0

D(w)1− 3
p dwdudτds,

(5.4.26)

where C1, C2, C3 are constants that depend on T,
∥∥f in∥∥∞ ,

∥∥f in∥∥
1
, ‖B‖∞ , ‖∇B‖∞.

Let F(t) =
∫ t

0

∫ s
0
D(τ)1− 3

p dτds. Since F is increasing by construction and since p > 3 we can
finally conclude that

D(t) ≤ Cp2

∫ t

0

∫ s

0

D(τ)1− 3
p dτds, (5.4.27)

with C that depends on T,
∥∥f in∥∥∞ ,

∥∥f in∥∥
1
, ‖B‖∞ , ‖∇B‖∞.

Finally, we obtain the same second order differential inequality as in [95], for all t ∈ [0 , T ] we
have:

F ′′(t) ≤ Cp2F(t). (5.4.28)

From this inequality, we use the same method as in [95] to conclude that for all t ∈ [0 , T ] we have
f1(t) = f2(t) a.e. on R3 × R3. This concludes the proof of theorem 5.2.6.

5.4.4 Proof of theorem 5.2.4

We finish this section with the proof of theorem 5.2.4, which is the extension of Loeper’s result
[88] to the magnetized Vlasov–Poisson system. As said above, this proof was already done for
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B constant in [110]. In fact in [110], it was already proved that under the assumptions (5.2.11),
(5.2.12), and (5.2.13), the macroscopic density ρ is bounded (5.2.10), and this proof doesn’t
change in the case of a general magnetic field.

Like in the theorem 5.2.6, we require additional assumptions on the moments of f in to obtain
uniqueness (compared to the unmagnetized case). However, these assumptions on the moments
aren’t as strong as in theorem 5.2.6 because the boundedness of ρ is already a strong assumption.

To prove our theorem, we only need to adapt subsection 3.2 from [88]. Thus we consider two
solutions of (5.1.1) f1, f2 with initial datum f in that verifies the assumptions of theorem 5.2.4.
Like in the previous proof, we write the corresponding densities, electric fields, and characteristics
ρ1, ρ2, E1, E2, and Y1(t, x, v), Y2(t, x, v) = (X1(t, x, v), V1(t, x, v)), (X2(t, x, v), V2(t, x, v)). To
simplify the presentation, we will write Yi(t) for the characteristics. We define the following
quantity Q:

Q(t) =
1

2

∫
R6

f in(x, v) |Y1(t, x, v)− Y2(t, x, v)|2 dxdv. (5.4.29)

Now we differentiate Q (which we couldn’t do with the distance D (5.4.12)) splitting the magnetic
part of the Lorentz force V ∧B like in the previous section:

Q̇(t) =

∫
R6

f in(x, v)(Y1(t)− Y2(t)) · ∂t(Y1(t)− Y2(t))dxdv,

=

∫
R6

f in(x, v)(X1(t)−X2(t)) · (V1(t)− V2(t))dxdv

+

∫
R6

f in(x, v)(V1(t)− V2(t)) · (E1(t,X1(t))− E2(t,X2(t)))dxdv

+

∫
R6

f in(x, v)(V1(t)− V2(t)) · [V2(t) ∧ (B1(t,X1(t))−B2(t,X2(t))] dxdv

+

∫
R6

f in(x, v)(V1(t)− V2(t)) · [(V1(t)− V2(t)) ∧B(t,X1(t))] dxdv.

First, we notice that the last term is null, which means we only need to control the second to
last term (due to the added magnetic field) which we denote P (t). The first term is bounded
by Q(t) and the second term can be estimated using the analysis from [88] and is bounded by
Q(t) ln( 1

Q(t) ). To control P (t) we first use the bound on the velocity characteristic (5.4.19).

P (t) ≤ ‖B‖W 1,∞

∫
R6

f in(x, v) |V1(t)− V2(t)| |V2(t)| |X1(t)−X2(t)| dxdv,

≤ ‖B‖W 1,∞

∫
R6

f in(x, v) |V1(t)− V2(t)| (|v|+ T ‖E2‖∞)eT‖B‖∞ |X1(t)−X2(t)| dxdv,

= R(t) + S(t).

We recall that since ‖ρ1,2‖∞ ≤ +∞ we can bound ‖E1,2‖∞ thanks to (5.4.25) and the interpolation
inequality:

‖Ei‖∞ ≤ C(‖ρ‖1 , ‖ρ‖∞) := Cρ, (5.4.30)

with i = 1, 2.

This means we can simply estimate S(t) with the Cauchy–Schwarz inequality applied on the
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functions (f in)
1
2 |V1(t)− V2(t)| and (f in)

1
2 |X1(t)−X2(t)|.

S(t) ≤ TCρCB,T
(∫

R6

f in(x, v) |V1(t)− V2(t)|2
) 1

2
(∫

R6

f in(x, v) |X1(t)−X2(t)|2
) 1

2

≤ TCρCB,TQ(t),

with CB,T = ‖B‖W 1,∞ eT‖B‖∞ .

To control R(t) we first use the Cauchy–Schwarz inequality and then the bound on the velocity
characteristic (5.4.19), which also gives us a bound on the position characteristic.

R(t) ≤ CB,T
∫
R6

f in(x, v) |v| |Y1(t)− Y2(t)|2 dxdv

≤ CB,T
∫
R6

f in(x, v) |v| |Y1(t)− Y2(t)|
(
|V1|2 + |V2|2 + |X1|2 + |X2|2

) 1
2

dxdv

≤ CB,TQ(t)

∫
R6

f in(x, v) |v|2
(
|V1|2 + |V2|2 + |X1|2 + |X2|2

)
dxdv

≤ CB,TQ(t)

∫
R6

f in(x, v) |v|2 2

(
(|v|+ TCρ)

2e2T‖B‖∞ +
(
|x|+ T (|v|+ TCρ)e

T‖B‖∞
)2
)
dxdv︸ ︷︷ ︸

=I

.

Thanks to the assumption (5.2.9) of theorem 5.2.4, I is bounded because we have

I ≤ C
(∫

f in |v|6 ,
∫
f in |x|4

)
. (5.4.31)

From these estimates, we conclude that

d

dt
Q(t) ≤ CQ(t)

(
1 + ln

1

Q(t)

)
(5.4.32)

with C := C
(
T, ‖B‖W 1,∞ , ‖ρ‖1 , ‖ρ‖∞ ,

∫
f in |v|6 ,

∫
f in |x|4

)
.

With this inequality we can show, using standard Grönwall type arguments, that Q(0) = 0⇒
Q(t) = 0 for all t ≥ 0, which concludes the proof of theorem 5.2.4.

5.5 Appendix

As said above, we present a slightly more detailed version of the proof of proposition 5.3.6
compared to the one found in [99].

Proof of proposition 5.3.6. Let t ∈ [0 , T ]. We note here H = 1 +M2+ε(T ) and for any δ ∈ [0 , t]

we define N1(t, δ) = δQ(t, δ)
4
3 and N2(t, δ) = (δH)

1
2 as in the left hand side of inequality (5.3.4).

We set:
I = {δ ∈ [0 , t] : N1(t, δ) ≥ N2(t, δ)}. (5.5.1)
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First let’s suppose that I is empty. Then Q(t, δ) . N2(t, δ) thanks to (5.3.4) for any δ ∈ [0 , t],
which means that

Q(t, δ) . (δH)
1
2 ≤ t 1

2 (1 +M2+ε(T ))
4
7 , (5.5.2)

so that (5.3.26) is automatically verified. Now we suppose that there exists δ∗(t) ∈ ]0 , t] such
that N1(t, δ∗(t)) = N2(t, δ∗(t)). It comes:

Q(t, δ∗(t)) = (δ∗(t)
−1H)

3
8 . (5.5.3)

Then we use the inequality (5.3.4) again soQ(t, δ∗(t)) . N1(t, δ∗(t))+N2(t, δ∗(t)) = 2N2(t, δ∗(t)) .
(δH)

1
2 , which implies that

H−
1
7 . δ∗(t) (5.5.4)

and again using (5.5.3) we obtain

Q(t, δ∗(t)) . H
3
7 .

Now let c−1
∗ be the implicit constant in (5.5.4), which depends only on the constants in (5.3.1),

thanks to (5.5.4) we can write for any t ∈ [c∗H
− 1

7 , T ]

Q(t, c∗H
− 1

7 ) . H
3
7 (5.5.5)

Then for any such t, we can write t = nc∗H
− 1

7 + r with n ∈ N∗ and r < c∗H
− 1

7 and thanks to
the last inequality we obtain

Q(t, t) ≤ Q(r, r) +

n∑
p=1

Q(pc∗H
− 1

7 + r, c∗H
− 1

7 )

. (rH)
1
2 + nH

3
7

. c∗(rH)
1
2 + nc∗H

− 1
7H

4
7

. c∗t
1
2H

1
2 + tH

4
7

So that finally for all t ∈ [c∗H
− 1

7 , T ] we have

Q(t, t) . (t
1
2 + t)H

4
7 . (5.5.6)

Lastly, if t ≤ c∗H−
1
7 then thanks to (5.5.2) and (5.5.4) we can write

Q(t, t) . (tH)
1
2 . (5.5.7)

This concludes the proof of proposition 5.3.6 because H > 1.
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Résumé Cette thèse est consacrée à l’étude de modèles cinétiques qui décrivent des plasmas sans
collisions soumis à un champ magnétique externe.
Dans une première partie, nous nous intéressons aux plasmas électrostatiques soumis à un champ
magnétique externe constant, où l’on constate que certaines ondes ne sont pas amorties. Ce phénomène,
qui ne dépend pas de l’intensité du champ magnétique, est connu sous le nom de paradoxe de Bernstein–
Landau, car il met en évidence une discontinuité avec la théorie des plasmas non magnétisés, où les
ondes longitudinales de charge d’espace, dont le champ électrique, sont amorties. Habituellement, ces
propriétés physiques sont étudiées en considérant le système de Vlasov–Poisson linéarisé. Dans ce travail,
nous parvenons à réinterpréter le paradoxe de Bernstein–Landau en reformulant ce système comme une
équation de type Schrödinger, ce qui nous amène à considérer le système de Vlasov–Ampère magnétisé.
Grâce à cette reformulation, nous expliquons le paradoxe de Bernstein–Landau par rapport au spectre
d’un certain opérateur auto-adjoint associé à Vlasov–Ampère magnétisé. Enfin, nous construisons des
schémas semi-Lagrangiens pour tester les vecteurs propres de l’opérateur Vlasov–Ampère magnétisé.
Dans une deuxième partie, nous étudions certaines propriétés mathématiques du système de Vlasov–
Poisson magnétisé, en nous concentrant d’abord sur la propagation des moments en vitesse pour les
solutions faibles. Dans le cas d’un champ magnétique constant, nous utilisons une approche eulérienne
afin de contrôler directement les moments en vitesse. La présence d’un champ magnétique génère des
singularités aux multiples de la période cyclotron. Dans le cas d’un champ magnétique quelconque, nous
utilisons une méthode lagrangienne en étudiant cette fois les caractéristiques du système pour obtenir
des estimations a priori qui impliquent la propagation des moments. Une contribution originale de ce
travail est que, afin de démontrer la propagation de moments pour tout temps dans les deux cas, on
utilise un raisonnement par récurrence impliquant la période cyclotron. Enfin, nous mettons en évidence
de nouvelles conditions d’unicité pour les solutions du système de Vlasov–Poisson magnétisé avec des
hypothèses supplémentaires sur les moments en vitesse.

Mots clefs: Vlasov–Poisson, Champ magnétique, Paradoxe de Bernstein–Landau, propagation de
moments en vitesse, période cyclotron, unicité

Abstract This thesis is devoted to the study of kinetic models that describe collisionless plasmas
subject to an external magnetic field.
In a first part, we explore how in electrostatic plasmas subject to a constant external magnetic field
certain waves are undamped, independently of the strength of the magnetic field. This phenomenon,
known as the Bernstein–Landau paradox, highlights a discontinuity with the theory of unmagnetized
plasmas, where the longitudinal space charge waves, which include the electric field, are damped. Usually,
we study these physical properties by considering the linearized Vlasov–Poisson system. In this work, we
manage to reinterpret the Bernstein–Landau paradox by reformulating this system as a Schrödinger type
equation which leads us to consider the magnetized Vlasov–Ampère system. With this reformulation, we
explain the Bernstein–Landau paradox with respect to the spectrum of a certain self-adjoint magnetized
Vlasov–Ampère operator. Finally, we build semi-Lagrangian schemes to test the eigenfunctions of the
magnetized Vlasov–Ampère operator.
In a second part, we study certain mathematical properties of the magnetized Vlasov–Poisson system,
focusing first on the propagation of velocity of moments for weak solutions. In the case of a constant
magnetic field, we use a Eulerian approach in order to control the velocity moments directly. Because
of the added magnetic field, we find singularities at multiples of the cyclotron period. In the case of a
general magnetic field, we use a Lagrangian method, focusing on the characteristics of the system to
obtain a priori estimates that imply propagation of moments. An original feature of this work is that, in
both cases, we rely on an induction procedure involving the cyclotron period to prove propagation of
velocity moments for all time. Finally, we find new uniqueness conditions for solutions to the magnetized
Vlasov–Poisson system that include assumptions on the velocity moments.

Keywords: Vlasov–Poisson, Magnetic field, Bernstein–Landau paradox, propagation of velocity moments,
cyclotron period, uniqueness
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