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Octobre 1987 - Septembre 1988 : Chercheur post-doctoral au département de physique
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1.5 Sur les astéröıdes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1 Evolution physique des petits corps [9], [13] . . . . . . . . . . . . . . . . 9
1.5.2 Evolution du système Ida/Dactyl [16], [17], [18], [20] . . . . . . . . . . . . 11

1.6 Conclusion et perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 DIFFUSION CHAOTIQUE 21

3 APPLICATIONS DE POINCARE DES SYSTEMES HAMILTONIENS 44

4 SUR LES ANNEAUX PLANETAIRES 90
4.1 Analyse de données de Voyager . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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1.1 Présentation

Au début de mon travail de recherche, je me suis intéressé à la dynamique de différents corps
célestes: particules des anneaux planétaires, galaxies. Tout d’abord, j’ai étudié le problème de
Hill plan circulaire [2], [3], en collaboration avec M. Hénon. Cette approximation est bien
adaptée à l’étude du mouvement de deux petits corps proches l’un de l’autre en orbites planes,
quasi-circulaires, autour d’un corp massif. Nous avons ainsi déterminé des formules analy-
tiques donnant les effets de l’interaction gravitationnelle entre deux satellites pour les petits
paramètres d’impact (orbites en fer à cheval) et pour les grands paramètres d’impact. Ceci
me permit d’aborder la simulation numérique des anneaux planétaires [66], [67], [6]. L’étude
détaillée du problème de Hill me permit de mettre en évidence un phénomène ignoré jusque là
en mécanique céleste: la diffusion chaotique (chapitre 2). Ce phénomène est lié à la présence
d’orbites périodiques instables et il fut possible de montrer les liens avec certains résultats
théoriques sur les points homoclines et hétéroclines. Puis, lors de mon séjour à Oxford, j’ai
abordé le problème de la dynamique galactique sous deux aspects: modèles analytiques à base
de fonctions de distribution dans l’espace des phases et simulations numériques du problème à
N corps [23].

Les diverses études que j’avais entreprises m’ont fréquemment amené à étudier des sections
de Poincaré. Cet outil puissant peut s’avérer parfois très coûteux en temps de calcul du fait des
intégrations numériques d’équations différentielles. Je me suis donc intéréssé au développement
d’une méthode “d’application synthétique” qui permet d’accélérer fortement le calcul d’une
section de Poincaré (chapitre 3). J’ai montré que cette méthode est efficace pour des systèmes
à deux et trois degrés de liberté, aussi bien en ce qui concerne la topologie de l’espace des
phases que du point de vue d’indicateurs quantitatifs comme l’exposant de Lyapunov.

Depuis cette époque, j’ai élargi mon approche de l’étude des anneaux planétaires (chapitre
4). Tout d’abord, et afin de pouvoir mieux comparer les résultats des simulations aux ob-
servations, j’ai développé une méthode automatique d’analyse de données monodimension-
nelles telles que les données PPS des sondes Voyager (section 4.1). Cette méthode, qui repose
sur les transformées en ondelettes, donne une mesure objective de la validité des structures
détectées. Ce nouvel outil permet la détermination détaillée du profil des structures des an-
neaux planétaires observés par les sondes Voyager I et II et une comparaison fructueuse avec
les modèles numériques et semi-analytiques. Ainsi, l’étude de l’anneau de la division de Encke
dans les anneaux de Saturne a permis de mieux déterminer l’excentricité du satellite Pan, et
celle des données concernant Uranus de mettre en évidence trois nouveaux anneaux en plus des
profils des anneaux ǫ et δ.

J’ai aussi entrepris une approche par un formalisme hydrodynamique de la modélisation
des anneaux planétaires (section 4.2). Il s’agit de préparer des simulations numériques dans
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lesquelles les effets à grande distance sont calculés de façon déterministe et les effets à courte
distance (collisions inélastiques, gravitation locale) sont pris en compte sous la forme d’une “vis-
cosité”. Le modèle réalisé évalue la viscosité dans un disque képlérien et permet de déterminer la
viscosité locale (transport statistique classique) et non–locale (due à la taille finie non nulle des
particules) pour des particules soumises à des collisions inélastiques sans hypothèse préalable
sur la distribution des vitesses. Cette approche est particulièrement robuste pour les faibles
profondeurs optiques où les simulations classiques atteignent leurs limites. Le formalisme que
j’ai développé permet l’étude d’un mélange de deux populations de tailles différentes et de la
gravitation entre les particules pour un coût très faible.

Les anneaux planétaires ne représentent qu’un cas parmi d’autres de petits corps dans
le système solaire. J’ai aussi porté mon attention sur une autre classe d’objets: les astéröıdes
(chapitre 5). Plus encore peut-être que dans les anneaux planétaires, les collisions jouent un rôle
important dans l’évolution des astéröıdes et le lien qui existe entre les conditions à l’origine du
système et ce que nous pouvons observer maintenant (section 5.1). Les effets qui m’intéressent
sont l’érosion (collisions à faible vitesse, anneaux planétaires), la cratérisation (collisions à
grande vitesse avec de petits projectiles) et la fragmentation (collisions à grande vitesse de gros
projectiles). J’ai donc développé un algorithme évaluant le résultat d’une collision entre deux
corps qui tend à harmoniser les différentes théories existantes, à les rendre auto-cohérentes
et à produire des données utilisables dans des simulations d’évolution. En particulier, nous
considérons des fonctions de distribution de masse sur des intervalles finis et prenons en compte
une éventuelle ré-accrétion des fragments. Nous avons ensuite, avec A. Campo-Bagatin et P.
Farinella, testé la sensibilité des modèles d’évolution aux différents paramètres décrivant les
effets des collisions.

Les images transmises par la sonde Galileo ont permis, à partir de la fin de 1993, de mieux
connâıtre l’astéröıde 243 Ida (section 5.2). Les images à haute résolution nous donnent de très
nombreux renseignements sur la surface de Ida en particulier en ce qui concerne les cratères
et la présence de blocs rocheux. Il s’agit de la première observation de tels blocs à la surface
d’un corps de cette taille. Leur distribution est de plus irrégulière, avec une forte concentration
sur la face avant par rapport à la rotation de Ida. En collaboration avec l’équipe d’imagerie
de la sonde Galileo, j’ai modélisé la dynamique des fragments éjectés lors des collisions pour
étudier la localisation des points de ré-impact. La distribution observée a des implications sur
les modèles de collisions et de cratérisation. L’étude de la distribution en taille des cratères
nous a aussi apporté des précieux renseignements sur la physique des collisions et ses effets sur
l’état de surface d’un astéröıde, ainsi que sur la distribution des projectiles (petits fragments
issus d’autres collisions entre les astéröıdes).

Les images de Galileo ont aussi révélé la présence d’un satellite: Dactyl. Cette découverte re-
lance les études sur les satellites d’astéröıdes. Nous avons abordé différents aspects du problème:
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quelles informations sur la masse de Ida peut-on déduire de la connaisance partielle de l’orbite
de Dactyl; les études dynamiques précédentes indiquant une origine commune pour Ida et
Dactyl, comment peut-on créer une telle configuration; quels sont les processus susceptibles
de stabiliser ou déstabiliser une orbite dans l’environnement très particulier de Ida (rotation
rapide d’un corps irrégulier très allongé) pour des durées allant de quelques dizaines de mil-
lions à un milliard d’années; quels phénomènes dynamiques ou physiques doit-on prendre en
compte pour expliquer une éventuelle survie de Dactyl pendant un milliard d’années là où
les modèles classiques donnent une durée de vie collisionnelle de l’ordre de cent à deux cents
millions d’années ?

1.2 Diffusion chaotique [24]

Depuis plusieurs années, de nombreuses études ont été menées sur le chaos dans les systèmes
hamiltoniens classiques bornés et des outils puissants ont été développés et appliqués. Par
opposition, peu de choses étaient connues sur le problème du chaos dans la diffusion classique
lorsque j’ai rencontré ce phénomène dans le problème de Hill. Cependant, depuis près de
vingt ans, il y avait eu des observations numériques de comportements complexes - chaotiques:
modèles classiques de la diffusion moléculaire inélastique [69], [52], [48], [72], [62]; rencontres de
satellites [3]; dynamique des vortex [46]; diffusion par un potentiel [47], [57]. Mais le phénomène
n’avait pas été étudié pour lui-même.

Le problème physique que nous considérons est fort simple: il s’agit de la rencontre de deux
satellites en orbites circulaires proches autour d’une planète. Les équations du mouvement sont
non intégrables et sans réelle singularité. Malgré la continuité des équations, le comportement
asymptotique présente un grand nombre de discontinuités par rapport aux paramètres initiaux.
Tout porte à croire qu’il y a un nombre infini de discontinuités. Ce phénomène est dû à la
présence, dans la section de Poincaré, des points homoclines et hétéroclines correspondant à
des orbites périodiques instables. Dans le cas précis du problème de Hill, la variété instable
d’une orbite périodique coupe la variété stable d’une deuxième orbite périodique instable. Ainsi,
en partant près de la variété stable de la première orbite, on s’en éloignera le long de la
variété instable. On passera alors proche de la deuxième variété stable, et on repartira à
l’infini en suivant l’une ou l’autre des branches de la deuxième variété instable. Le choix de
la branche dépend du côté duquel on arrive pour la première fois au voisinage de la deuxième
variété stable. Une variation continue des paramètres initiaux fait varier continuement les
points le long de la variété instable et donc le premier point au voisinage de la deuxième
variété instable passe alternativement d’un côté à l’autre, donnant lieu à un comportement
asymptotique complètement différent.
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Du fait des difficultés numériques, M. Hénon [55] a développé un modèle simple où une
particule ponctuelle soumise à une accélération constante rebondie sur deux disques. Cela
conduit à une famille d’orbites à un paramètre avec diffusion chaotique. Dans ce modèle, il
est possible de caractériser entièrement l’ensemble des discontinuités qui forment un ensemble
de Cantor dont on peut calculer la dimension fractale. On peut ainsi définir une dynamique
symbolique analogue au décalage de Bernoulli ou “transformation du boulanger” [61].

1.3 Applications de Poincaré des systèmes hamiltoniens

[7], [12]

Les applications de Poincaré sont largement utilisées dans tous les domaines de la dynamique
non linéaire, et en particulier en mécanique céleste [54]. Mais le calcul de ces applications est très
gourmand en temps de calcul car il est nécessaire d’intégrer des équations différentielles pour
les obtenir. Plusieurs auteurs ont essayé de remplacer le système hamiltonien qui les intéresse
par une application symplectique [81]. Mais ces applications ne sont valables que localement
et un important travail analytique doit être accompli pour chaque nouveau problème que l’on
souhaite traiter.

Nous avons développé, en collaboration avec Claude Froeschlé, une méthode efficace en
terme de temps de calcul pour étudier des applications de Poincaré pour des systèmes hamil-
toniens quelconques. Nous découpons la surface de section en parallélogrammes (cellules) et
calculons les valeurs de l’application de Poincaré aux sommets. Nous utilisons ensuite cette con-
naissance parcellaire de l’application pour définir une approximation polynômiale dans chaque
cellule. Pour ce faire, nous utilisons soit uniquement les valeurs de l’application sur plusieurs
nœuds du réseau, soit les valeurs de l’application et de ses dérivées aux nœuds les plus proches.
Différentes techniques ont été mises en œuvre pour minimiser les détériorations dans les cellules
situées au bord du domaine de définition. Les polynômes d’ordre élevé qui utilisent plus que
les nœuds plus proches voisins nécessitent dans ce cas des formules non-symétriques, ce qui
augmente l’erreur. Il est préférable d’utiliser des formules incluant les dérivées et n’utilisant
que les nœuds plus proches voisins. Il est aussi possible de diminuer localement la taille des
cellules.

La méthode a été testée à deux dimensions sur l’application “standard” et dans le cas du
problème de Hill. Dans les deux cas, nous avons obtenu un excellent accord entre l’application
interpolée et le cas réel aussi bien sur le plan de la géométrie de l’espace des phases que sur
l’exposant caractéristique de Lyapunov. D’une manière générale, la correspondance entre les
surfaces de section s’améliore lorsqu’on augmente le nombre de points de la grille et l’ordre de
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l’approximation polynômiale.
Nous avons aussi comparé notre application synthétique avec l’application “standard” à

4 dimensions. Nous avons ainsi pu montrer que tous les exposants caractéristiques de Lya-
punov sont bien reproduits de même que le temps d’explosion dans un phénomène de “collage-
explosion”. Pour une application de dimension quatre, les zones stables ne forment pas une
barrière hermétique. Une orbite initialement confinée dans une zone chaotique finira après un
certain temps par diffuser vers une autre région chaotique. Cette technique diminue le temps
de calcul par un facteur d’au moins 10 et peut être utilisée pour l’étude des zones stables et
chaotiques dans de nombreux problèmes de dynamique (par exemple, la ceinture des astéröıdes).

1.4 Sur les anneaux planétaires

1.4.1 Analyse de données de Voyager [8], [11], [36]

Les images transmises par les sondes Voyager ont montré que les anneaux planétaires sont le
siège de phénomènes dynamiques d’une grande complexité encore mal compris, en particulier
le confinement et les bords raides des anneaux, les lacunes et la distribution en taille des
particules dans les anneaux. L’étude approfondie du problème de Hill a servi de base à plusieurs
simulations de l’évolution des anneaux. Le phénomène de répulsion entre particules pour les
“grands” paramètres d’impact et les orbites en fer à cheval expliquent la création de lacunes,
le confinement des anneaux et l’apparition d’annelets au centre des grandes divisions (Encke
[73]). Les simulations auto-cohérentes par méthode de Monte Carlo développées dans ma
thèse [66], [67], [68], ainsi que les simulations déterministes avec particules tests [75], [76], [77]
permettent de relier les paramètres physiques utilisés au profil précis des lacunes ou dépressions
et des annelets. Afin de pouvoir départager les différentes possibilités, il convient de comparer
les résultats obtenus numériquement avec les observations des sondes Voyager I et II. Les
structures fines que nous cherchons à détecter sont de faible amplitude et le rapport signal sur
bruit (rapport de l’amplitude de la structure à l’écart type du bruit) est très faible.

Avec Philippe Bendjoya et Frank Spahn, nous avons développé une méthode de détection de
signal dans un ensemble de données à une dimension fondée sur une technique de reconnaissance
de forme dans l’espace des coefficients de la transformée en ondelettes des données initiales.
La comparaison de ces coefficients à ceux obtenus pour un signal aléatoire, présentant le même
histogramme de valeurs que le signal étudié, permet de déterminer un ensemble de coefficients
correspondant à des structures. Il nous a ainsi été possible de détecter des signaux ayant un
rapport signal sur bruit de l’ordre de 1. Cette méthode a d’abord été employée pour analyser
les données sur la division de Encke dans les anneaux de Saturne. Nous avons montré que
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l’annelet central a une largeur d’environ 14 km et un profil à deux pics, avec une ébauche de
troisième pic. En admettant une taille de 20 km pour le satellite Pan [73], cela implique une
excentricité de l’orbite de Pan de l’ordre de 10−4. Nous avons aussi établi un catalogue des
structures des anneaux externes de Uranus à partir des données d’occultation de σ Sagitarii.
L’anneau ǫ, le plus large et le plus externe est constitué d’un plateau central et de pics latéraux.
Nous avons également mis en évidence trois nouveaux anneaux; deux situés entre l’anneau ǫ

et l’anneau δ, le troisième à l’intérieur de l’anneau δ. Le plus externe de ces anneaux pourrait
correspondre à l’anneau I détecté par Lane et al. [58].

1.4.2 Viscosité des anneaux planétaires [14]

Le transport de moment angulaire est un mécanisme clef qui gouverne les structures à
grande échelle des anneaux planétaires. Il détermine le temps d’étalement radial et le com-
portement des ondes. Les études analytiques suivent généralement le formalisme conventionnel
de la mécanique statistique utilisant une version modifiée de l’équation de Boltzmann pour
représenter la dynamique dans un champ de particules en mouvement képlérien [51], [74],
[40]. De telles approches nécessitent un formalisme mathématique complexe qui rend difficile
la modélisation des effets critiques des collisions. Récemment, une approche heuristique plus
physique conduisit à des résultats semblables à ceux obtenus par les modèles analytiques et
permit d’étudier la viscosité (coefficient caractérisant le transport de moment angulaire) dans
le cas de disques ou anneaux planétaires présentant un gradient radial de densité [64]. Tous
ces modèles considèrent des particules ponctuelles et des interactions locales. Or les particules
peuvent avoir des tailles importantes et l’interaction peut être à grande distance, comme dans
le cas de la gravitation, par exemple.

Richard Greenberg et moi-même avons développé un modèle de collisions entre particules
sphériques en orbites képlériennes autour d’un corps central. Les collisions sont caractérisées
par un coefficient de rebond radial qui détermine la variation de la composante radiale (par
rapport au centre des particules) de la vitesse relative au cours de la collision. L’intégration
d’un système intégro-différentiel nous permet d’obtenir la distribution des vitesses à l’équilibre.

A partir de là, nous déterminons le transport “local” et le transport “non-local”. Le trans-
port local est évalué en sommant sur la distribution des vitesses le moment angulaire transporté
par chaque particule qui passe au travers d’un cercle de référence (on s’intéresse ainsi aux par-
ticules qui sont localisées sur ce cercle de référence). Dans notre modèle, nous tenons compte
de la taille des particules. De ce fait, une particule située d’un côté du cercle de référence
peut subir une collision avec une particule située de l’autre côté, faisant ainsi passer du mo-
ment angulaire d’un côté à l’autre, sans pour autant qu’aucune des particules soit jamais située
sur le cercle de référence (transport non-local). Cet effet est d’une grande importance lorsque
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la taille des particules est du même ordre de grandeur que l’excursion radiale. Nous avons
montré que la viscosité locale varie avec la taille des particules contrairement au résultat de la
théorie classique. La viscosité non-locale quant à elle est négligeable pour les petites particules,
mais devient dominante pour les grosses particules, surtout lorsque la profondeur optique est
importante.

Notre modèle va nous permettre d’étudier la viscosité pour un mélange de particules de
tailles différentes. Dans les anneaux de Saturne, il semble que la plus grande partie de la
masse soit due aux grosses particules, alors que la profondeur optique est dominée par les
petites particules. Il est donc intéressant de mesurer la viscosité de petites particules dont
la dynamique est contrôlée par de grosses particules. De même, les effets non-locaux doivent
être considérés lorsqu’on inclut les effets de la gravitation lors des rencontres proches. Notre
formalisme va nous permettre d’estimer la viscosité en présence de la gravitation.

1.5 Sur les astéröıdes

1.5.1 Evolution physique des petits corps [9], [13]

Les astéröıdes sont souvent considérés comme étant des corps ayant moins évolué que les
planètes depuis la formation du système solaire. Ils pourraient ainsi représenter de bons traceurs
des conditions initiales lors de la génèse du système solaire. Cependant, même s’ils ne sont pas
différenciés et ne présentent pas d’évolution physique propre, ils évoluent dynamiquement.
Leurs orbites présentent des inclinaisons relatives et des excentricités non négligeables, ce qui
donne lieu à des collisions à grande vitesse, de l’ordre de quelques kilomètres par seconde. Cela
a pour effet de modifier la distribution de la taille des corps ainsi que leur état de surface et
leur structure interne.

Pour étudier l’évolution des astéröıdes, il est nécessaire de savoir modéliser l’effet de ces
collisions à haute vitesse. Des expériences de laboratoire ont été réalisées afin de décrire les
résultats des collisions en terme de quelques paramètres d’entrée simples tels que la masse et
la vitesse du projectile, la masse de la cible et la réponse du matériau de la cible à un impact
[49]. Malheureusement, ces expériences utilisent des cibles de petite taille alors que les corps
célestes qui nous intéressent peuvent avoir plusieurs centaines de kilomètres de diamètre. Dans
ce cas, l’autogravité peut jouer un rôle important en augmentant la solidité intérieure de la cible
et en permettant une ré-accrétion partielle des fragments. Des expériences de fragmentation
menées sous forte pression ont été réalisées [56] pour quantifier l’effet sur la solidité et ont
permis d’étalonner les lois analytiques pour les grandes cibles.

Du point de vue théorique, notre compréhension des processus physiques complexes qui ont
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lieu lors des collisions est encore assez limitée. Les travaux récents portent sur des hypothèses
sur les critères de fracture et sur la géométrie du champ de vitesse des fragments [65], ou
sur l’intégration numérique d’équations hydrodynamiques adaptées aux phénomènes à deux ou
trois dimensions [70], [71], [63], [41].

Les résultats des expériences montrent une large dispersion des tailles et des vitesses des
fragments. Cependant, les distributions obtenues ainsi que celles issues des modèles numériques
et semi-analytiques sont bien approximées par des lois de puissance. Ma première contribution
à l’étude de ce problème fut de développer un modèle numérique consistant qui permet de
prédire le résultat d’impacts entre des astéröıdes (ou autre petits corps du système solaire).
Il est basé sur un ensemble de paramètres qui peuvent être estimés à partir des évidences
expérimentales disponibles. Il inclut aussi la possibilité de ré-accumulation des fragments éjectés
possédant une vitesse inférieure à une vitesse d’évasion judicieusement choisie. Toutes les
fonctions de distribution de la masse des fragments sont modélisées à partir de lois de puissance
tronquées. Dans un modèle cohérent, il faut tenir compte de discontinuités aux deux extrémités
des distributions. Les modèles de fracture nous permettent de déterminer la taille du plus gros
fragment en fonction des conditions de la collision. La distribution passe donc de 0 à 1 de façon
discrète pour cette taille là. De même la taille des particules a une limite inférieure non nulle
ce qui évite d’ailleurs une divergence de la masse totale pour des exposant élevés. La vitesse
des particules atteint aussi une limite supérieure, liée au mécanisme de transfert de moment
cinétique. La limite utilisée dans nos simulations est liée à la vitesse de propagation des ondes
sonores. Finalement, une possible corrélation entre la taille des fragments et leur vitesse est
prise en compte, soit de façon déterministe, soit de façon probabiliste.

En collaboration avec Paolo Farinella, nous avons testé la dépendance entre les paramètres
d’entrée et les distributions obtenues. En particulier, nous avons étudié l’efficacité du processus
de ré-accrétion gravitationnelle en fonction des paramètres de collision et de la relation entre
taille et vitesse des fragments. Aussi bien la taille au-delà de laquelle la plus grande part de la
masse des fragments va se ré-accumuler que l’énergie collisionnelle nécessaire pour disperser les
fragments “à l’infini” s’avèrent très sensibles au choix de cette relation.

Nous avons utilisé ce modèle de fragmentation dans un code simulant l’évolution collision-
nelle des astéröıdes dans le but de déterminer l’effet de cette sensibilité sur la distribution finale
de la taille des astéröıdes. Partant d’une distribution initiale en loi de puissance, nous obtenons
à la fin de l’évolution une distribution ondulée qui dépend fortement de la relation entre vitesse
moyenne et masse des fragments ainsi que de la dispersion des vitesses. La dépendance est plus
prononcée pour les tailles (de quelques dizaines à quelques centaines de kilomètres) auxquelles
la ré-accumulation gravitationnelle est la plus effective.
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1.5.2 Evolution du système Ida/Dactyl [16], [17], [18], [20]

Les images de l’astéröıde Ida 243 prises par la sonde Galileo au mois d’août 1993 nous
révélèrent une surface modelée principalement par des cratères dus à des collisions avec d’autres
corps de la ceinture d’astéröıdes. En particulier, elles mirent en évidence l’existence de blocs de
rocher à la surface de Ida, avec une distribution concentrée à l’un des bouts de l’astéröıde [60].
Il s’agit d’une première évidence observationnelle que les effets dynamiques peuvent se refléter
sur la morphologie de la surface, comme cela avait été suggéré dans le cas des deux satellites
de Mars: Phobos et Deimos [44], [42]. Du fait de la défaillance de l’antenne principale de
communication de la sonde, il fallut attendre jusqu’au 17 février 1994 pour recevoir les images
qui nous firent découvrir Dactyl, satellite de Ida. Avant la découverte de Dactyl, de nombreuses
observations furent rapportées qui indiquaient que des satellites d’astéröıdes pouvaient exister
[79], [80]. Cependant aucune de ces observations ne fut considérée comme convaincante et on
commença à douter de l’existence des satellites [50]. Au moins quatre images à haute résolution
de Dactyl permettent une étude de sa surface et là aussi, il est clair que son état actuel est le
résultat de collisions.

Je me suis donc intéréssé, en compagnie de Paul Geissler, à la dynamique dans le système
Ida/Dactyl. Cette dynamique est fortement influencée par la faible densité (entre 2,3 g/cm3

et 3 g/cm3), la forme très allongée (axes principaux de 58,9 km, 25,4 km et 18,6 km pour
l’ellipsöıde triaxial qui approxime le mieux Ida) et la rapide rotation de l’astéröıde (période
de rotation de 4,63 heures). Nous avons exploré le processus d’évasion et de ré-accrétion de
fragments sur Ida et Dactyl à l’aide de simulations numériques en trois dimensions. Nous
avons tout d’abord étudié les effets de la rotation, le point de lancement et la vitesse d’éjection
des fragments dans le cas d’un ellipsöıde triaxial ayant la forme approximative et la densité
de Ida. Les fragments éjectés à faible vitesse ré-impactent près du cratère et forment une
couverture d’éjecta bien définie avec une asymétrie entre face avant et face arrière par rapport
à la rotation. L’effet global de ce genre de cratérisation est de produire une couche épaisse
de régolites uniformément distribuée. Par opposition, aucune couverture n’est créée quand les
fragments sont éjectés à grande vitesse, de l’ordre de la vitesse d’évasion. En fait, la plupart
des fragments s’échappent du système et ceux qui ré-impactent le font après un temps passé en
orbite significatif comparé à la période de rotation de l’astéröıde. L’effet global est de produire
une couche de régolites plus mince, moins uniforme, avec des concentrations sur les faces avant.

A l’aide d’un modèle de forme de Ida réaliste [78], nous avons montré qu’une des zones
étendues de couleur/albédo uniforme qui domine les parties nord et ouest de Ida peut s’expliquer
par la ré-accrétion de fragments issus du très grand et récent cratère “Azzura”. La vitesse
d’éjection requise pour reproduire les observations des couleurs est de l’ordre de quelques mètres
par seconde, en accord avec les modèles qui prévoient que les cratères de plusieurs kilomètres
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sur Ida se forment dans un régime dominé par la gravité et produisent une couche locale de
régolites. Les fragments éjectés à une vitesse d’environ 10 m/sec dans la direction de rotation
s’élèvent au dessus de l’astéröıde et sont ensuite balayés par la face avant de l’autre côté de
l’astéröıde. Les lieux d’atterissage de ces fragments correspondent bien à la distribution de
blocs observée dans les images à haute résolution.

Le modèle précédent nous permet d’expliquer certaines particularités de la topographie de
Ida, liées à son histoire récente. Pour mieux connâıtre son histoire globale, il faut prendre en
compte son appartenance à la famille de Koronis et aussi les données statistiques déduites de
l’observation de sa surface. L’étude de l’astéröıde Gaspra [53] a déjà permis de montrer que
la distribution en taille des projectiles est particulièrement pentue et que les secousses dues
aux grandes collisions affectent la couverture de cratère en effaçant fréquemment tous les petits
cratères sur toute la surface. La population de cratères de Ida est très différente de celle de
Gaspra. Il nous a donc fallu élaborer un scénario qui tienne compte des différences des propriétés
physiques et d’environnement tout en utilisant un même modèle physique pour les collisions.
Les contraintes d’environnement nous permettent déjà d’estimer une limite supérieure de l’âge
de Ida: 1,5 milliard d’années, âge maximum de la famille de Koronis [45]. La dynamique dans
le système de Ida rend très improbable que Dactyl puisse être un morceau de Ida, arraché
puis mis en orbite. Il est plus probable que Dactyl soit un compagnon primordial, créé en
même temps que Ida lors de la fragmentation de l’astéröıde parent de la famille Koronis. Or
l’espérance de vie collisionnelle de Dactyl est de l’ordre de la centaine de millions d’années. Par
ailleurs, les orbites de Dactyl déduites des observations sont instables à très court terme (moins
d’un an) pour une densité de Ida supérieure à 3 g/cm3. Ida étant situé plus près du centre
de la ceinture d’astéröıdes, les projectiles sont environ 40% plus nombreux que dans le cas de
Gaspra, mais leur vitesse moyenne est inférieure (3,55 km/sec contre 5,0 km/sec [43]) du fait
de la faible excentricité de l’orbite de Ida. Nous avons montré que la distribution des cratères
autorise deux âges contradictoires pour Ida: soit de l’ordre de 50 millions d’années, soit plus
d’un milliard d’années. L’espérance de vie de Dactyl milite en faveur de la première solution.
L’état dégradé de certains cratères favoriserait plus la deuxième solution, à moins d’invoquer
une population de projectiles dominée par les petites particules. Un scénario où Dactyl serait
le reste d’un satellite érodé ou fragmenté puis ré-accrété autoriserait aussi l’âge le plus vieux.

Du fait des conditions d’observation (ligne de visée proche du plan de l’orbite), il n’est pas
possible de définir exactement l’orbite de Dactyl. On ne peut qu’obtenir une famille d’orbites
possibles, paramétrée par la masse de Ida. Une grande masse de Ida est à rejeter à cause de
l’instabilité à très court terme (densité supérieure à 3,1 g/cm3). Pour une faible masse de Ida,
l’orbite serait hyperbolique, ce que nous devons rejeter aussi pour des raisons statistiques: la
probabilité de voir un astéröıde étranger au système capturé temporairement sur une orbite
hyperbolique est inférieure à 2 × 10−17. Une étude à moyen terme de la stabilité nous a permis
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de montrer que les orbites correspondant à une masse de Ida légèrement plus grande (densité
2,1 g/cm3 à 2,3 g/cm3) sont chaotiques et finissent par s’échapper à l’infini. On peut donc
exclure ces orbites. Pour une densité comprise entre 2,3 g/cm3 et 2,5 g/cm3, les orbites sont
aussi chaotiques, mais elles semblent être piégées dans une région non connectée à l’infini. On
obtient donc un chaos “stable” similaire à celui mis en évidence par Laskar [59] pour la Terre.

Les intégrations numériques réalisées sur plus de 3000 ans (soit plus de 1 million d’orbites)
pour les densités intermédiaires montrent une grande stabilité. Cependant pour le long terme,
il faut très certainement tenir compte d’effets dissipatifs. Plusieurs observations laissent penser
que le système Ida/Dactyl a évolué par dissipation: l’inclinaison de l’orbite de Dactyl sur le
plan équatorial de Ida est faible, de l’ordre de 8◦, la période de rotation de Dactyl est longue,
supérieure à 8 heures (malgré la faible taille de Dactyl), et il est possible que la rotation soit
synchrone avec le mouvement orbital (le grand axe de Dactyl est orienté en direction de Ida).
Il est donc important de déterminer les résonances présentes dans le système. Nous avons
étudié les commensurabilités entre la période orbitale de Dactyl et la période de rotation de
Ida. Pour les résonances d’ordre faible, seule la 5:1 est en accord avec la position de Dactyl au
moment de la rencontre de Galileo avec Ida et semble assez large pour capturer Dactyl. Pour
les ordres élevés, l’imprécision sur les paramètres osculateurs ne nous permet pas de conclure.
Pour des résonances d’ordres supérieurs à 50, les commensurabilités se recouvrent, expliquant
le chaos et la diffusion vers des orbites d’évasion. Une première série de simulations d’effets
dissipatifs modélisés par des forces de trâınée a mis en évidence l’importance de résonances
secondaires. Lorsque l’orbite de Dactyl est capturée dans une résonance principale, son ex-
centricité augmente, jusqu’à croiser une commensurabilité entre la fréquence d’oscillation de
la direction du péricentre et la période de rotation de Ida. L’orbite devient alors chaotique
et en fonction de l’importance de la dissipation, soit sort de la résonance principale, soit part
sur une orbite d’évasion. L’étude plus approfondie des forces de trâınée (dues aux collisions
incessantes avec de petites particules, comme en témoigne l’état de surface de Dactyl) et des
forces de marées, que j’ai entreprise, devrait apporter de précieux renseignements sur l’histoire
du système Ida/Dactyl et contraindre plus précisement la densité de Ida.

1.6 Conclusion et perspectives

Les travaux présentés dans ce dossier traitent de différents aspects des petits corps du
système solaire et de méthodes numériques développées pour ces études. Nous nous sommes
intéréssés à la dynamique de petits corps tels que les astéröıdes et les anneaux planétaires,
ainsi qu’à l’effet des collisions à grande vitesse entre des corps de tailles allant de la poussière à
plusieurs centaines de kilomètres. Une nouvelle technique de traitement de signal, utilisant la
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transformation en ondelettes, a été développée pour dépouiller des données unidimensionnelles
fortement bruitées. L’étude de la dynamique nous a amenés à développer une nouvelle technique
d’intégration de systèmes hamiltoniens. Nous avons aussi mis en évidence et expliqué une classe
particulière de chaos: la diffusion chaotique.

L’algorithme que nous avons mis au point pour évaluer la viscosité est bien adapté à l’étude
de systèmes à deux dimensions et avec une profondeur optique faible ou moyenne. Nous avons
ainsi pu mettre en évidence la variation de la viscosité locale et non-locale en fonction de
la taille des particules et de la profondeur optique. Cette approche va donner lieu à divers
développements qui sont au cœur d’une thèse de Ph.D. à l’Université d’Arizona. Il s’agit tout
d’abord de faire une description tri-dimensionnelle des collisions afin de mieux modéliser les
anneaux ou disques épais, ou les petites particules dans les anneaux ou disques fins. De par
sa structure, ce modèle est particulièrement bien adapté à l’étude de systèmes diffus comme
le disque du proto-système solaire. Nous avons aussi la possibilité de remplacer la fonction
de diffusion par collisions seules par une fonction de diffusion par gravitation et collisions.
Cela permettra une meilleure représentation des anneaux ou disques froids (faible excentricité
relative des particules). Afin de pouvoir étudier aussi des systèmes denses, nous allons modifier
l’évaluation de la fréquence de collision pour tenir compte de la diminution de l’espace accessible
lorsque la profondeur optique augmente ainsi que du phénomène de collage des particules.

L’étude à long terme du système Ida/Dactyl impose la prise en compte de l’évolution
physique des astéröıdes. Pour cela il est nécessaire de raffiner la modélisation de la fragmenta-
tion et de la cratérisation des corps lors d’impacts à grande vitesse. En particulier, il nous faut
mieux comprendre l’effet de la taille de la cible (gravitation) et de son état physique (roc solide
ou agrégat). Des expériences avec des corps plus gros (de l’ordre du mètre ou plus) et sous forte
pression pour simuler la gravitation devront être menées en conjonction avec des simulations
numériques utilisant des codes de type SPH. Il nous faudra ensuite intégrer ces résultats dans
nos modèles d’évolution physique et dynamique du système Ida-Dactyl pour obtenir un scénario
complet et des contraintes sur la physique des collisions. Cela nous permettra en particulier
de mieux dater ces deux corps. Et que dire de l’effet des forces de marée sur un corps très
allongé ? Comment varie cet effet en fonction de la structure interne des corps, notamment en
ce qui concerne les temps caractéristiques de dissipation ? J’ai entrepris la modélisation des
effets des forces de marée sur un corps allongé. La dissipation ainsi obtenue, ajoutée à celle
due aux frottements visqueux (collisions avec les poussières de la ceinture d’astéröıdes et les
éjecta des cratères de Ida) determine l’évolution de l’orbite de Dactyl, en particulier lors des
captures dans les résonances de moyen mouvement. Il est spécialement important de savoir si
l’excentricité augmente ou diminue pour prévoir une éventuelle sortie de la résonance.

Comme le montrent les travaux exposés dans cette thèse, les outils numériques représentent
un complément indispensable aux observations et expériences physiques de laboratoire. L’astro-
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nome moderne doit savoir non seulement utiliser les outils numériques existants, mais aussi en
créer d’autre pour répondre aux exigences croissantes de la recherche actuelle. Au vu des gigan-
tesques bases de données emmagasinées par les grands téléscopes et les sondes interplanétaires,
il parâıt nécessaire de développer de nouveaux outils de traitement du signal capable d’extraire
automatiquement de l’information avec un rapport signal sur bruit faible, de l’ordre de 1.
Pour être pleinement utilisables, ces méthodes devront donner un niveau de signification des
informations extraites et être indépendantes de tout modèle. L’algorithme que j’ai développé
permet déjà de traiter quasi automatiquement un signal unidimensionnel, d’éliminer le bruit et
de séparer le fond du signal. La prochaine étape de ce travail est de généraliser cette méthode
à deux dimensions et d’inclure une détection et un comptage automatique des structures ou
objets extraits du signal original.

Parmi les objets susceptibles de nous éclairer sur les origines du système solaire, les astéröıdes
forment un groupe important car relativement facilement observables et n’ayant pas eu d’évolution
physique interne propre. Cependant ils évoluent physiquement par interaction collisionnelle
avec leurs semblables. Les expériences de laboratoires envisageables de nos jours étant limitées
à de petits corps, il est important de définir de nouveaux algorithmes de calcul pour la
modélisation de la structure interne des corps.

De plus en plus, nous cherchons à déterminer la dynamique à long terme des petits corps
du système solaire. Le long terme s’entend comme un temps long par rapport à la plus petite
échelle de temps caractéristique du système étudié. Les techniques d’intégrations symplectiques
classiques, obtenues par perturbation d’un hamiltonien intégrable, ne sont pas applicables dans
un cas tel que le système Ida/Dactyl où l’hamiltonien est très éloigné d’un système intégrable
connu. Là encore, il nous faut définir de nouveaux outils purement numériques exempts de
toute modélisation physique pour une plus grande versatilité.

La simulation numérique représente dans de nombreux cas nos grands instruments et nos
appareils de laboratoire. De même qu’il faut sans cesse améliorer les instruments d’observation,
inventer de nouveaux détecteurs, de nouvelles procédures d’acquisitions de données, il faut
développer de nouveaux moyens de calculs, tant au niveau matériel que logiciel, en poussant
les performances aux limites de la physique des semi-conducteurs et en faisant coopérer de
plus en plus de machines. Il est nécessaire de définir de nouveaux algorithmes de calculs
pouvant tirer parti du parallélisme hétérogène offert de nos jours par les réseaux. De nombreuses
simulations en mécanique céleste et en traitement du signal possèdent l’indépendance voulue
pour être parallélisées. A partir de l’expérience que j’ai acquise en parallélisation, aussi bien
sur des machines fortement parallèles telles que la Connection Machine sur des problèmes
d’intégration de systèmes à N corps, que sur des ensembles de machines hétérogènes pour des
problèmes à parallélisme moins massif comme l’intégration d’équations intégro-différentielles,
je vais collaborer à la parallélisation de divers gros codes numériques. Le premier exemple
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sera probablement le code de formation de planètes dans le disque du proto-système solaire,
développé au Planetary Science Institute, à Tucson.
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Abstract

The phenomenon of chaotic scattering is described in the context of satellite encoun-
ters. We consider a one-parameter family of orbits obtained by starting with two satellites
on circular, coplanar and close orbits. We numerically find that this family exhibits a large
number of discontinuities, probably an infinite number. This phenomenon seems to be
due to the existence of homoclinic and heteroclinic points of unstable periodic orbits. We
model the chaotic scattering by a simple billiard: a point particle bounces on two disks
and in addition is subjected to a constant acceleration. This leads to a one-parameter
family with chaotic scattering. With the help of symbolic dynamics, the structure of the
family can be completely elucidated.

1 Introduction

In the last few years, many studies have been carried out on the chaos in bound classical hamil-
tonian systems and powerful methods have been developed and applied. In contrast, less work
has been done on chaos in classical scattering systems. However, for nearly twenty years, there
have been numerical observations of complicated - chaotic - behavior in continuous scattering
problems: classical models for inelastic molecular scattering (Rankin and Miller 1971, Gottdi-
ener 1975, Fitz and Brumer 1979, Schlier 1983, Noid et al. 1986), satellite encounters (Petit
and Hénon 1986), vortex dynamics (Eckhardt and Aref 1989), potential scattering (Eckhardt
and Jung 1986, Jung and Scholz 1987). But until recently, this phenomenon had not been
studied for itself.

We found this kind of behavior in a simple physical problem: the encounter of two satellites
on close circular orbits around a planet (namely, Saturn). In section 2, we describe in detail
the physical problem and derive the equations of motion. One would notice that the equations
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of motion are non integrable and contain no true singularities. In section 3, we present more
precisely the chaos that appears in our problem: the asymptotic behavior of the system is
discontinuous with respect to the initial parameters. Then, in section 4, we give some hints on
what creates this phenomenon. In view of the numerical difficulties which were encountered
in exploring this problem, a simple ”model” problem was developped (Hénon, 1988) which is
just complex enough to exhibit all the features we are interested in. This model is described in
section 5.

2 The physical problem

The physical problem we consider is a particular case of the three body problem. Two light
bodies M2 and M3 describe initially coplanar and circular orbits, with slightly different radii,
around a heavy central body M1. Bodies M2 and M3 are initially far apart, so that their
mutual attraction is negligible. However, the inner body has a slightly larger angular velocity
and eventually catches up with the outer body; the distance from M2 to M3 becomes small and
their mutual attraction is no longer negligible. We shall call this an encounter. This study can
be applied to different problems in astronomy: planetary rings dynamics, motion of coorbital
satellites (Janus and Epimetheus of Saturn) or planetary formation. For convenience, M1 will
be called the planet and M2, M3 will be called the satellites. The difference between the radii
of the initial circular orbits will be called the impact parameter.

Analytic approximations of the solution are available in two cases:
(i) When the impact parameter is sufficiently large, the result of the encounter is only a

slight deflection of M2 and M3 from their previous circular orbits. These deflections can then
be obtained by a perturbation theory (Goldreich and Tremaine 1979, 1980).

(ii) When the impact parameter is very small, the interaction of M2 and M3 produces
a ”horseshoe” motion: M2 and M3 ”repel” each other azimutally and never come in close
proximity. This case can also be treated by a perturbation theory (Dermott and Murray 1981,
Yoder et al. 1983).

Between these two asymptotic cases, however, no theory exists, and apparently only a
numerical integration of the equations of motion can give the answer. In order to have an
accurate numerical study, we first reduce the equations to a simpler form: the classical set of
Hill’s equations. Only a brief review of this reduction will be given here; details can be found
in Hénon and Petit 1986. We assume that the mass of either satellite is small compared to the
mass of the planet:

m2 ≪ m1, m3 ≪ m1, (1)

where mi is the mass of body Mi. We assume also that the distance between the two satellites
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is small compared to their distance to the planet. In a zero-order approximation, the two
satellites can then be considered as a single body in orbit around the planet. This orbit will be
called the mean orbit, and will be assumed to be circular. We call a0 the radius of the mean
orbit. (The precise definition of a0 does not matter, as long as it is nearly equal to the radii of
the satellite orbits). The angular velocity on the mean orbit is

ω0 =
√

Gma−3
0 , (2)

where m is the total mass of the system:

m = m1 +m2 +m3. (3)

We define

µ =
m2 +m3

m
. (4)

Let Xi, Yi be the coordinates of body i in an inertial system. We introduce dimensionless
coordinates by

X ′

i =
Xi

a0
, Y ′

i =
Yi

a0
, m′

i =
mi

m
, t′ = ω0t, (5)

and for simplicity we drop the primes in what follows. In the new variables, the radius of the
orbit, the angular velocity, the mass of the system, and the gravitational constant are all equal
to 1. We choose the origin of time so that the two satellites are in the vicinity of X = 1, Y = 0
at t = 0. We introduce new coordinates ξ, η, which will be called Hill’s coordinates:

Xi −X1 = (1 + µ1/3ξi) cos t− µ1/3ηi sin t,

Yi − Y1 = (1 + µ1/3ξi) sin t− µ1/3ηi cos t, (i = 2, 3) (6)

We go over to new coordinates ξ∗, η∗, ξ, η, describing, respectively, the position of the center
of mass and the relative position of the two satellites:

ξ∗ =
m2ξ2 +m3ξ3
m2 +m3

, η∗ =
m2η2 +m3η3
m2 +m3

, ξ = ξ3 − ξ2, η = η3 − η2. (7)

The equations for the motion of the center of mass are linear and easily integrated (Hénon and
Petit 1986). The equations of relative motion are approximately

ξ̈ = 2η̇ + 3ξ − ξ

ρ3
, η̈ = −2ξ̇ − η

ρ3
, ρ =

√

ξ2 + η2, (8)
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which are Hill’s equations (Hill 1978). The error in these equations is of order of µ1/3. They
become exact in the limit of vanishing satellite masses. Taking this limit is equivalent to zoom
on the two satellites and the main effect is to repel the planet to infinity and transform circular
orbits in straight lines.

The most important points to notice on these equations are:
(i) There is no parameter left in the equations (the same equations are valid in every physical

case).
(ii) As is easily shown, the initial conditions for relative motion of circular orbits are given by

only one parameter: the impact parameter h. Therefore, the set of solutions is a one-parameter
family, and it seems reasonable to try to study it. We can even reduce the study to positive
values of h because of the symmetries of the equations of motion.

Hill’s equations admit the integral

Γ = 3η2 +
2

ρ
− ξ̇2 − η̇2 (9)

which can be called the Jacobi integral by analogy with the restricted problem. We can write
the Jacobi integral in terms of the initial conditions:

Γ =
3

4
h2. (10)

We have performed a detailed study of the entire familly 0 < h < ∞. Figure 1, taken from
a collection of several hundred pictures, represents the relative motion of the two satellites. For
convenience, we shall think of the special case m2 ≫ m3, and identify the origin of the (ξ, η)
system with the satellite M2; the curves then simply represent the motion of M3. An interesting
feature is that the third body always escapes either upward or downward, but never stays close
for ever. This is in agreement with a general result by Marchal (1977) which shows that the
set of ”capture orbits” is of zero measure. For a more detailed explanation of the equation of
motion and of the orbits, see Hénon and Petit (1986) and Petit and Hénon (1986).

3 Chaotic scattering

The familly exhibits an interesting feature that we call ”transitions”. Roughly speaking, when
h varies continuously, one can observe discontinuities. For given values of h, the orbit shape
changes suddenly and an orbit that used to escape downward starts to escape upward, or the
converse. This is the phenomenon that we want to develop now.
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Fig. 1: Family of encounter orbits. Each frame corresponds to one particular value of the reduced

impact parameter h. The curve represents the relative motion of one satellite with respect to the other,

in Hill’s coordinate (ξ in abscissa, η in ordinate). The first approach is downwards from η = +∞.
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Consider an example. When h decreases from large values, the shape of the orbit changes
continuously with h and the third body always escapes downward (first four plots of fig. 1).
Suddenly, something happens and it escapes upward. The change (transition) occurs for hmax =
1.718779940. It can be thought of as a discontinuity of the shape of the orbit. But we need
a more quantitative description of this discontinuity. If we look at the equations of motion,
we find that there is no true singularity in it (the 1/ρ2 singularity can be removed by the
Levy-Cevita regularization). So the position of the third body at a given time t is a continuous
function of the impact parameter h. The orbits are absolutely not chaotic. But if we look at
parameters describing the asymptotic motion as functions of h, we see very sharp variations at
values of h corresponding to the changes of escape side. Especially, consider the final impact
parameter h′ (defined from the mean motion for t → ∞). Using the Jacobi integral, it can
be shown that |h′| ≥ h. In the general case of asymptotically eccentric orbits, we call k the
”reduced” (transformed into Hill’s coordinates) eccentricity of the relative motion. One can
show that

Γ =
3

4
h2 − k2. (11)

When we start with circular orbits and finish with eccentric orbits, the equality

Γ =
3

4
h2 =

3

4
h′2 − k′2 (12)

holds. Therefore, h′2 ≥ h2, which leads to the previous inequality. A downward escape corre-
sponds to h′ > 0 and an upward escape to h′ < 0. Therefore a change of escape side leads to a
change of sign for h′ and a discontinuity of step at least 2h. This is what we mean by discon-
tinuity. The set of discontinuity values of h being very complex, we shall speak of ”chaotic”
behavior of the familly.

We will now describe rapidly the set of discontinuities. Consider an orbit defined by an
arbitrary value h0. Typically, the following happens: when decreasing h from h0, the orbit
changes continuously down to h1 where there is a discontinuity in the sense defined above.
We call this a ”transition value”. Numerically, it is not difficult (even if time consuming) to
localize this value with any accuracy. Similarly, if we increase h from h0, we reach a second
transition value h2. The interval between h1 and h2 is called a ”continuity interval”. There are
two particular cases: a continuity interval ranges from hmax to ∞, an other one ranges from 0
to hmin = 1.336117188 (figure 2). Suppose we have localized an interval of continuity. We do
it again, starting from another value h0 out of the range [h1, h2]. We find another interval of
continuity and so on. One could expect to find all the intervals to be contiguous. This would
give an exhaustive description of the orbit family.
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Fig. 2: A Schematic representation of the largest continuity intervals.

But life is not that simple. Experiment shows that intervals are never contiguous. If one
takes a point in an unexplored interval, one will find a new continuity interval which doesn’t
touch a previous interval neither on the left nor on the right. This gives birth to two new
unexplored intervals. This goes on and on to infinity. One result is that there is no possible
exhaustive description of the family. This must remind the reader of the classical definition of
the Cantor set. The difference here is that the intervals are not regularly ordered. The actual
structure can be seen on the function h′ = f(h) (figure 3). We can easily see the two external
intervals [0, hmin] and [hmax,+∞] and the three largest inner continuity intervals.

4 Some hints

We shall now try to explain how the discontinuities occur. In order to reconcile the continuity
of the orbits with the discontinuity of the asymptotic behavior (h′), the family must go through
an orbit with infinite capture time. This is achieved by having an orbit asymptotic to a periodic
orbit. For example, figure 4 represents the transition orbit we find when decreasing h from large
values: h = hmax. The orbit tends to a bean shaped periodic orbit. This limiting orbit is easily
identified: it belongs to the one-parameter family a of periodic orbits, emanating from the
Lagrangian point L2 (Hénon 1969, Fig. 2). It is an unstable periodic orbit, which is necessary
in a Hamiltonian system since it admits an asymptotic orbit.

It will be helpful to introduce at this point a surface of section defined for instance by
η = 0 and η̇ > 0: for each crossing of an orbit with the ξ axis in the positive direction (η
increasing), we plot a point with the coordinates ξ, ξ̇ (figure 5). An orbit is then represented by
a sequence of points. For a given value of Γ, a point in the surface of section defines completely
the corresponding orbit: ξ, ξ̇, η are immediately known and η̇ can be computed from (??). In
particular the next intersection point can be found. This defines a mapping of the surface of
section onto itself, known as a Poincaré map.
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Fig. 3: Final impact parameter h′ as a function of the initial impact parameter h. The region between

the two dashed lines is forbidden.
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Note that for the orbits we are concerned with, we get generally a finite (small) number of
points in the surface of section: three points for the orbit with h = 1.71863 for instance. An
orbit can also have no point at all in that surface (h > 2.4). The periodic orbit is represented
by a fixed point P (figure 5). The stability index of that orbit is of order 320, corresponding
to two real eigenvalues λ1 = 1/640 and λ2 = 640. The eigenvalue smaller than 1 in modulus
(λ1) is associated with a one-parameter family of incoming orbits tending towards the periodic
orbit. The orbit of figure 4 is a member of this family. An orbit of this family is represented
by an infinite sequence of points on the stable invariant manifold Ws of P and converges
exponentially towards P (Y0, Y1, Y2, . . . ). Since the periodic orbit is unstable, there are also
outgoing orbits, tending towards the periodic orbit for t → −∞. They form a one-parameter
family associated with the eigenvalue larger than 1 in modulus (λ2). They are represented by
points (. . . , Z−2, Z−1, Z0, . . . ) located on the unstable invariant manifold Wu of P and which
diverge exponentially from P .

Consider now an orbit of our family with h slightly different from hmax, say larger. The
points in the surface of section are slightly beside Ws (crosses on the picture). They stay close
to Ws until they reach the vicinity of P , then they go away along Wu. An important point is
that λ2 is positive. So the points go along only one branch of Wu. Here, it is the upper right
branch. The corresponding orbits are quite regular. Particularly, they all escape downward
and vary continuously when h increases (figure 6a). This accounts for the continuity interval
for h > hmax.

For h = hmax, the point crosses Ws and for h < hmax, the points escape along the left branch
of Wu. The two branches of Wu are in two different parts of phase space. This explains the
transitions. The orbits for h < hmax are shown on figure 6b. Things are much more complicated
than before. Sometimes orbits escape upward, some time downward. So there is no continuity
interval on the left of hmax. This explains the complex structure of the continuity intervals. For
h < hmax, instead of escaping directly, the orbit will first go in the vicinity of an other unstable
periodic orbit. This orbit will itself give birth to a transition phenomenon, that we shall call
a second order transition. In this way, one can construct a hierarchical structure of transitions
of higher and higher order. Suppose we have an orbit going close to one periodic orbit then
close to a second one. By changing h, we can push the points in the surface of section closer
to the first fixed point. Particularly, one can manage to have the same pattern along Wu and
one or more additional points in the vicinity of P . This corresponds to orbits with the same
escape but with one or more additional turns around the first periodic orbit (figure 7). In the
first plot, the orbit follows the periodic orbit during half a turn, in the second during one and
a half and in the third during two and a half (even if this is not visible one the figure). This
gives rise to a geometrical progression of ratio λ1 in the values of h.
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Fig. 4: An orbit of the Satellite Encounter family which is asymptotic to an unstable periodic orbit.
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Fig. 5: Sketch of the surface of section. The value of λ1 has been artificially increased to show the

structure more clearly.
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Fig. 6: (a) Outgoing orbits for h above the critical value hmax. (b) Outgoing orbits for h below

hmax.
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From all our numerical integrations, it seems that only two family of periodic orbits are
involved: family a mentioned above and the symmetrical family b also described in Hénon
1969.

The necessary ingredients for this kind of behavior is the existence of periodic orbits and
heteroclinic or homoclinic points (intersection points of invariant manifolds of two different or
one single periodic orbit). But it is very difficult to go any further with this problem due to
the large value of the eigenvalue (∼ 640).

Other authors have observed similar behavior in scattering problems. Recently, Jung and
Scholz (1988) have studied the scattering of a charged particle by a magnetic dipole. Due to
the smaller value of the eigenvalue, they have been able to compute the stable and unstable
manifolds of the periodic orbit with great details (solid line in Fig. 6 of their paper). It happens
in their case that they need only one periodic orbit due to the presence of a homoclinic point.
The dots in that figure represent the first intersection of the surface of section when varying
the initial parameter. They also transported the invariant manifold into the space of initial
parameters (Fig. 11 of the same paper). If now we draw a line across the figure, corresponding
to the variation of one of the initial parameters, we shall see immediately the existence of a
complex structure. For comparison, we did the same thing in the satellite problem (figure 8)
but the structure is far too thin to be seen.

5 The inclined billiard

According to Moser (1973), in the vicinity of a homoclinic point, it is theorically possible to
define a symbolic dynamics which is Bernoulli. This gives a better description of the dynamics
of the system. But in our problem, we haven’t been able to define it so far. So a model
problem was designed which is complex enough to exhibit all the features we are interested
in, and simple enough so that all the calculations can be done analytically. This model is the
inclined billiard (Hénon, 1988). It is defined as follows: a particle moves in the (X, Y ) plane
and bounces elastically on two fixed disks with radius r and with their centers in (−1,−r) and
(1,−r) respectively. In addition, it is subjected to a constant acceleration g which pulls it in
the negative Y direction. To make the computation affordable, one considers the limit where r
is large and approximates the circles (disks) by parabolas. The ”disks” extend then from −∞
to ∞ in the X direction and the number of rebounds of the particle on them is now always
infinite. We suppose that initially the particle is started at (h, Y0) where Y0 is large. So we can
neglect the thickness of the profile of the disks. Only the slopes are of consequence.

We consider the surface of section defined by the collisions. The coordinates in this surface
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Fig. 7: Three orbits with essentially the same outgoing but different behavior during the close

encounter. The orbit goes along the unstable periodic orbit for half a turn on the left, for one and a

half in the middle and for two and a half on the right plot.
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Fig. 8: Image of the invariant manifolds in the space of initial parameters.
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are X, the horizontal abscissa of the collision and W , the tangential velocity of the particle.
After a tedious calculation, one can finally obtain the mapping:

uj+1/2 = Wj +

√
2E

r
f(Xj),

Xj+1 = Xj +
2
√
2E

g
Uj+1/2, (13)

Wj+1 = Uj+1/2 +

√
2E

r
f(Xj+1),

with

f(X) =
{

X + 1 for X < 0,
X − 1 for X ≥ 0,

where Uj+1/2 is the horizontal velocity between the collisions and E the energy of the particle.
Arbitrarily, we have decided that the intersection of the two disks belongs to the right disk.
We introduce a new parameter Φ, related to the energy by

coshΦ = 1 +
4E

gr
, (14)

and the new variables u and w

U = u

√

√

√

√

g

2r

(

2 +
4E

gr

)

, W = w

√

√

√

√

g

2r

(

2 +
4E

gr

)

, (15)

in order to rewrite the mapping in a dimensionless form:

Xj+1 = Xj coshΦ + wj sinhΦ− sj(coshΦ− 1),

wj+1 = Xj sinhΦ + wj coshΦ− (sj coshΦ + sj+1) tanh
Φ

2
, (16)

sj = signXj .

The parameter Φ cannot be eliminated since it is related to the eigenvalue of the fixed point.
It is easy to show that there are five kinds of asymptotic regimes:

1. right-escaping orbit: Xj → +∞, wj → +∞.
2. right-asymptotic orbit: Xj → +1, wj → 0.
3. left-escaping orbit: Xj → −∞, wj → −∞.
4. left-asymptotic orbit: Xj → −1, wj → 0.
5. oscillating orbit: Xj and wj are bounded but have no limit.
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We will now define a symbolic dynamics to represent the essence of the dynamics of the
billiard. To each orbit we associate a semi-infinite sequence d1, d2, · · · of 0 and 1. The orbit is
described by the sequence of points in the surface of section and each point is represented by
0 if it is a collision on the left disk and 1 if it is a collision on the right disk, rather than by its
coordinates. Then we define a number A by its binary representation:

A = 0.d1d2d3 · · · =
∞
∑

j=1

2−jdj.

Clearly, 0 ≤ A ≤ 1. A given sequence defines one value of A, but there might be two sequences
with the same value of A:

� If A is of the form k.2−n, where k and n are natural numbers, A is called a round number
and has two representations: 0.d1 · · · dn−10111 · · · and 0.d1 · · · dn−11000 · · ·.

� In the other case, A is a non-round number and the sequence is oscillating.

There is a simple correspondence between the types of orbits, the D sequence and A.

orbit D sequence A
right-escaping 1-ending round
right-asymptotic 1-ending round
left-escaping 0-ending round
left-asymptotic 0-ending round
oscillating oscillating non-round

In a continuity interval, the orbit changes continuously, so A is constant. This suggests to
look at the function A(h). Figure 9 shows the numerical result for λ = eΦ = 3. The reader will
have recognized a Devil’s staircase. It is possible to explain completely this figure, provided
that eΦ ≥ 3. One can show the following:

� A is a non-decreasing function of h.

� A is a continuous function of h.

� If A is non-round, it corresponds to a unique value of h defined by:

h = (eΦ − 1)
+∞
∑

j=1

e−jΦsj. (17)
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Fig. 9: The function A(h) for eΦ = 3.
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Fig. 10 Structure of the h-orbits corresponding to a round value of A (here A = 1

2
). (a) right-

asymptotic orbit; (b), (c) right-escaping orbits; (d), (e) left-escaping orbits; (f) left-asymptotic orbit.
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� If A is round, things are more interesting. A corresponds to a horizontal step, that is to
a continuity interval h− ≤ h ≤ h+. All the steps have the same structure. Consider the
central step on figure 9 (the largest). The leftmost point corresponds to an asymptotic
orbit (a) (figure 10) on the right: A = 0.0111 · · · = 1/2. When h increases, the orbit
escapes rightward and the sequence doesn’t change. This is true for interval (b). After
orbit (c), there is a discontinuity: the slope for the first collision changes suddenly and we
go to orbit (d). Now, A = 0.1000 · · ·, that is still 1/2. Here, there is a small miracle: the
orbit changes completely through (c) but not A. The discontinuity at X = 0 disappears
completely in A. Then there is the interval (e) of left escaping orbits and finally the left
asymptotic orbit (f). One can easily compute the values of h− and h+ from A:

h− = (eΦ − 1)
n−1
∑

j=1

e−jΦsj − (eΦ − 2)e−nΦ,

h+ = (eΦ − 1)
n−1
∑

j=1

e−jΦsj + (eΦ − 2)e−nΦ. (18)

We have thus fully solved the ”inverse problem” and obtained a complete classification of
h-orbits. For non-round A, there is a single h given by (??), corresponding to an oscillating
orbit. For round A, there is a finite closed interval of h values h− ≤ h ≤ h+ (or an infinite
interval in the special cases A = 0 and A = 1). This explains the Devil’s staircase appearance
of the figures.

There are two additional results that can be proved:

� The curve A(h) has exact self-similarity. The curve as a whole extends from h = −1 to
h = +1 and from A = 0 to A = 1. In the lower left corner is an exact replica of the whole
picture, reduced by a factor eΦ horizontally and 2 vertically, extending from h = −1 to
h = −1 + 2e−Φ and from A = 0 to A = 1/2. There is an identical replica in the upper
right corner.

� The set of values of h corresponding to bounded orbits forms a Cantor set, with measure
0 and with fractal dimension

ln(2)/Φ. (19)

In the borderline case eΦ = 3, we obtain exactly the classical Cantor set (repeated ex-
clusion of the middle third). The asymptotic orbits form an enumerable subset of the
bounded orbits; this subset also has the dimension (??).
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Abstract

Different methods are proposed and tested for transforming a non linear differential
system, and more particulary a hamiltonian one, into a map without having to integrate
the whole orbit as in the well known Poincaré return map technique. We construct piece-
wise polynomial maps by coarse-graining the phase surface of section into parallelograms
using values of the Poincaré maps at the vertices to define a polynomial approximation
within each cell. The numerical experiments are in good agreement with both the real
symplectic and Poincaré maps. The agreement is better when the number of vertices
and the order of the polynomial fit increase. Computations of Lyapunov Characteristic
Exponents give a measure of how well the fit approximate the different maps.

1 Introduction

Poincare return maps are widely used in all fields of non linear dynamics including celestial
mechanics (see Hénon 1981). However return maps often require a lot of computer time since
it is necessary to integrate the differential equations to plot them. In order to investigate the
long-term stability of test particles in the solar system many authors have therefore sought
simpler and more tractable equations which approximate at least qualitatively the original
newtonian equations. This is the aim of classical perturbation theory which uses canonical
transformations of the variables in order to successively push the non integrable part of the
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hamiltonian to higher and higher orders. Such an approach continued until the implications of
Poincaré’s theoretical work in this field were fully appreciated in the sixties with the computer
revolution (see Hénon 1981). Poincaré showed that most hamiltonian systems do not possess
the integrals required to reduce the solution to quadratures and that trajectories near unstable
periodic orbits possess extraordinary complexity. Then in order to keep this complexity one
has to resort to numerical experiments. Therefore it is important to increase the computing
speed. A first attempt was made using numerical averaging which led to an order of magnitude
increase in speed. Let us emphasize that this kind of approach,used by Schubart (1968) in
the framework of asteroidal resonant motions, differs radically from the so called averaging
principle (see Arnold 1976): Schubart does not drop short periodic terms and does not use
series expansions. Therefore with Schubart’s averaging there is no restriction for eccentricities
or resonance type, and chaotic behavior is still present (see Froeschle and Scholl 1981). The
next step which drastically increases the speed of the computation is to replace the hamiltonian
dynamical system by a symplectic mapping (an area preserving mapping for systems with
two degrees of freedom). This programme has been carried out quite successfully to analyze
the long-term behavior of asteroids near resonances with Jupiter (see Wisdom 1982, Murray
1986, Sidlichovsky 1986). However the so-called Chirikov- Wisdom method for building such
mappings near resonances is not reliable with the same accuracy all over the phase space. The
key point is: the truncated secular part of the hamiltonian should be solvable analytically
as well as not changing the topology of the phase space too much. Actually the higher the
eccentricity becomes the less reliable is the mapping. Therefore even for the 3/1 resonance,
(whose shape was brilliantly explained by Wisdom using his mapping), after the first increase
of eccentricity the features of the real orbits may be significantly different from those of the
mapping orbits. In the same spirit Sagdeev and Zaslavsky (1987) and Petrosky and Broucke
(1988) have derived a two dimensional mapping which describes the dynamics of long period
cometary motion within the framework of the restricted three body problem. The basic idea
is again to separate out an integrable part (the two body motion) valid for large period of
time where the comet is far from the ”collision zone” (i.e. the zone where Jupiter interacts
strongly with the comet) and a collisional part. This collision induces a change in the energy
and angular momentum of the comet and this is modelled by taking into account, using Fourier
analysis, the fact that the time interval between ”collisions” is very large compared with the
”collision” duration. Hadjidemetriou (1986) also solved the unperturbed equations and found
the corresponding mapping on a surface of section. Then he perturbed the mapping in such a
way that some structures of the phase space known through numerical experiments (stability
or unstability of some families of periodic orbits for the given example: 3/1 commensurability)
was included in the perturbed mapping. Finally, and again in the framework of the restricted
three-body problem (Sun-Jupiter-test particle), a mapping has been derived by Duncan, Quinn
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and Tremaine (1989) in order to study the long term evolution of planetesimal like orbits i.e.
orbits with small eccentricities in the solar system. They used the approximation based on
the fact that planets have small eccentricities and the fractional difference in semi major axes
between the orbit of a test particle which is nearly circular and the nearest planet is small.
Then the perturbations to the motion of the test particle are localised near conjunction with
the planet and the first-order perturbations to the orbital elements can be computed analytically
using Hill’s equations (Hénon and Petit 1986) or equivalently Gauss’ or Lagrange’s equations.
Away from conjunction, as for the nearly parabolic case, the perturbing effect of the planet is
assumed to be negligible and hence the orbital elements after conjunction remain unchanged
until the next conjunction. All these mappings have been devised using the same kind of
approach: use of special features of the motion i.e. resonant orbits, near parabolic or near
circular orbits. These mappings are reliable as long as one remains within the domain of validity
of the approximations, made in order to isolate an integrable part and some instantaneous
perturbations. In any case, these mappings are not reliable for close approaches, which are
at the origin of the stochastic motion of short-period comets and of Appolo-Amor asteroids
(Milani et al 1989). This underlying stochasticity is at the basis of the mappings worked out
by Rickman and Vaghi (1976) and Froeschle and Rickman (1980). Within the framework of
the elliptic restricted three body problem their mapping consists in regarding the perturbations
of the orbital elements for one orbital revolution as a stochastic variable. More precisely, for
different cells in phase space, separate distributions of perturbations are calculated. The orbital
evolution is then simulated as a sequence of perturbations randomly chosen according to the
calculated distribution. The validity of such procedures has been recently studied by Froeschle
and Baille (1989) who have shown some drawbacks of the method which may be considered as
being valid only from a statistical point of view and again only within some regions of phase
space. The point to be emphasized is that even inside regular regions the method introduces a
diffusion which has no physical meaning.

All these mappings are ad hoc and are valid only in some regions of phase space and for
specific purposes. We wish to build a mapping valid everywhere in phase space following an
idea already used by Varosi et al (1987) but in the framework of non hamiltonian systems,
i.e. systems where attractors do exist. The method consists of coarse-graining the phase space
surface of section and then interpolating the values of the image of a point. In section 2
we present and discuss the different interpolations we have used in addition of the linear one
already used by Varosi et al (1987). In section 3 we give the numerical results concerning the
different synthetic mappings compared with both the standard map and the Poincare map of
the restricted three body problem.

3



2 The synthetic mappings

The basic idea of the synthetic mapping is to interpolate the image of a point, when given the
images of a set of points located at the vertices of a grid. The simplest way to achieve this is to
use linear interpolation (Varosi et al, 1987). Unfortunately, this requires a rather fine graining
of the phase space, i.e. we have to compute a lot of points on the grid. We shall try to find
more accurate methods. The more commonly used methods of higher order are the Taylor and
Spline interpolations.

2.1 Taylor interpolation

We know the value of the functions x(n+1) = f(x(n), y(n)) and y(n+1) = g(x(n), y(n)) at discrete
points xi and yj. The points are equally spaced in x and y. We want to interpolate the values
of f and g at any point. We first derive the interpolation formula in one dimension. We write
the Taylor expansion for f about a point in the middle of a given interval, x′ = (xi + xi+1)/2:

f(x) = f(x′) + (x− x′)f ′(x′) +
(x− x′)2

2
f ′′(x′) +

(x− x′)3

6
f ′′′(x′)

+
(x− x′)4

24
f (4)(x′) +

(x− x′)5

120
f (5)(x′) + O

(

(x− x′)6
)

. (1)

We use a centered point to insure the symmetry of the formula. We need to know the value of
f and its derivatives at x′. For this we write (??) for xi−2, xi−1 and xi:

f(xi−2) = f(x′)−
5h

2
f ′(x′) +

25h2

8
f ′′(x′)−

125h3

48
f ′′′(x′)

+
625h4

384
f (4)(x′)−

3125h5

3840
f (5)(x′) + O(h6),

f(xi−1) = f(x′)−
3h

2
f ′(x′) +

9h2

8
f ′′(x′)−

27h3

48
f ′′′(x′)

+
81h4

384
f (4)(x′)−

243h5

3840
f (5)(x′) + O(h6), (2)

f(xi) = f(x′)−
h

2
f ′(x′) +

h2

8
f ′′(x′)−

h3

48
f ′′′(x′)

+
h4

384
f (4)(x′)−

h5

3840
f (5)(x′) + O(h6),

where h = xi+1−xi. The corresponding formulae for f(xi+1), f(xi+2) and f(xi+3) are obtained
from those for f(xi), f(xi−1) and f(xi−2) respectively by changing the minus signs into plus
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signs. Neglecting terms of order 6 or higher, one can inverts (??) and write f(x′), f ′(x′), f ′′(x′),
f ′′′(x′), f (4)(x′)and f (5)(x′) as functions of f(xi−2), f(xi−1), f(xi), f(xi+1), f(xi+2) and f(xi+3).

f(x′) =
1

256
[3f(xi−2)− 25f(xi−1) + 150f(xi)

+150f(xi+1)− 25f(xi+2) + 3f(xi+3)], (3)

hf ′(x′) =
1

1920
[− 9f(xi−2) + 125f(xi−1)− 2250f(xi)

+2250f(xi+1)− 125f(xi+2) + 9f(xi+3)],

h2f ′′(x′) =
1

48
[− 5f(xi−2) + 39f(xi−1)− 34f(xi)

−34f(xi+1) + 39f(xi+2)− 5f(xi+3)], (4)

h3f ′′′(x′) =
1

8
[f(xi−2)− 13f(xi−1) + 34f(xi)

−34f(xi+1) + 13f(xi+2)− f(xi+3)],

h4f (4)(x′) =
1

2
[f(xi−2)− 3f(xi−1) + 2f(xi)

+2f(xi+1)− 3f(xi+2) + f(xi+3)],

h5f (5)(x′) = [− f(xi−2) + 5f(xi−1)− 10f(xi)

+10f(xi+1)− 5f(xi+2) + f(xi+3)].

By substituting into (??), we obtain:

f(x) = Φ−2(
x− x′

h
)f(xi−2) + Φ−1(

x− x′

h
)f(xi−1)

+Φ0(
x− x′

h
)f(xi) + Φ1(

x− x′

h
)f(xi+1) (5)

+Φ2(
x− x′

h
)f(xi+2) + Φ3(

x− x′

h
)f(xi+3),

where the functions Φn(X), n = −2,−1, 0, 1, 2, 3 read:

Φ−2(X) =
1

3840
[45− 18X − 200X2

+80X3 + 80X4
− 32X5],

Φ−1(X) =
1

3840
[− 375 + 250X + 1560X2

−1040X3
− 240X4 + 160X5],
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Φ0(X) =
1

3840
[2250− 4500X − 1360X2

+2720X3 + 160X4
− 320X5], (6)

Φ1(X) =
1

3840
[2250 + 4500X − 1360X2

−2720X3 + 160X4 + 320X5],

Φ2(X) =
1

3840
[− 375− 250X + 1560X2

+1040X3
− 240X4

− 160X5],

Φ3(X) =
1

3840
[45 + 18X − 200X2

−80X3 + 80X4 + 32X5].

To interpolate a two dimensional function, we need an array of 36 values of f . For the 6
different values of y (viz. yi−2, yi−1, yi, yi+1, yi+2 and yi+3), one evaluates the value of f at the
given x. Then one uses these values to interpolate along the y-axis.

2.2 Accuracy and cost

The main goal of this work is to accelerate the iterations of a mapping from a Hamiltonian
flow. Therefore one of the crucial points for long term iterations is the area preservation. The
error in the position of the image of a point is of order 6. Let (x0, y0) be the real image and
(x, y) the interpolated one. We can write:

x = x0 + ǫx(x0, y0)h
6, y = y0 + ǫy(x0, y0)h

6. (7)

A small displacement from the interpolated point is related to that from the real image by:

dx = dx0

[

1 +
∂ǫx
∂x

h6

]

+
∂ǫx
∂y

h6dy0,

dy = dy0

[

1 +
∂ǫy
∂y

h6

]

+
∂ǫy
∂x

h6dx0. (8)

Therefore the relative error of the small area is of order 6:

dx.dy = dx0.dy0
[

1 + O(h6)
]

. (9)

Futhermore, suppose we are interested in details of size ǫ in the phase portrait. The size of
the grid needed to represent such a detail is of order ǫ1/5. For example, to represent a detail of
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size 0.001, one needs a grid of size 0.25. So one needs to know the real value of the image at
only a few points. This is very interesting for hamiltonian flows that are very long to integrate
numerically.

But one never gets something from nothing, and one has to pay for this advantage. The cost
is the number of operations involved. For a 2D mapping (two dimensional mapping), we first
evaluate the six polynomials (??), i.e. 30 multiplications and 30 additions for the x component.
Then, we evaluate six times (??) for the six different values of y. And this is repeated for
the 2 components of the image. This second step requires 72 multiplications and 60 additions.
Then we evaluate the six polynomials (??) for the y component and evaluate (??) for the 2
components of the image. The total cost is 144 multiplications and 130 additions. This is far
from negligible. For a four dimensional mapping, the cost increases to 6336 multiplications and
5300 additions.

2.3 Taylor interpolation of order 3

All the above calculations can be done for a lower order approximation, say for a Taylor
expansion of order 3. In this case the error is of order h4. To interpolate we need to know the
image of four points for one dimension. The polynomials involved are:

Φ−1(X) =
1

48

[

−3 + 2X + 12X2
− 8X3

]

,

Φ0(X) =
1

48

[

27− 54X − 12X2 + 24X3
]

, (10)

Φ1(X) =
1

48

[

27 + 54X − 12X2
− 24X3

]

,

Φ2(X) =
1

48

[

−3− 2X + 12X2 + 8X3
]

.

This amounts to 64 multiplications and 54 additions for a 2D mapping, and 1408 multiplications
and 1068 additions for a 4D one.

2.4 Spline interpolation

The idea underlying the use of a Spline is to represent a curve by a piece-wise polynomial
curve which is as smooth as possible. For a Spline of order 3, we use four points and write the
interpolated value as a linear combination of the function at those points:

f(x) = Φ−1(
x− x′

h
)f(xi−1) + Φ0(

x− x′

h
)f(xi)
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+Φ1(
x− x′

h
)f(xi+1) + Φ2(

x− x′

h
)f(xi+2), (11)

where functions Φi are polynomials of degree 3. Futhermore these polynomials are chosen
so that: the resulting functions and their respective first derivative are continuous. This is
achieved if:

f ′(xi) =
f(xi+1)− f(xi−1)

2h
,

f ′(xi+1) =
f(xi+2)− f(xi)

2h
, (12)

which implies the following values for the Φi’s:

Φ−1(0) = 0, Φ−1(1) = 0, Φ′

−1(0) = −0.5, Φ′

−1(1) = 0,
Φ0(0) = 1, Φ0(1) = 0, Φ′

0(0) = 0, Φ′

0(1) = −0.5,
Φ1(0) = 0, Φ1(1) = 1, Φ′

1(0) = 0.5, Φ′

1(1) = 0,
Φ2(0) = 0, Φ2(1) = 0, Φ′

2(0) = 0, Φ′

2(1) = 0.5. (13)

Solving these equations, one finally finds:

Φ−1(X) = −0.5X
(

1−X2
)

,

Φ0(X) = (1−X)
(

1 +X − 1.5X2
)

,

Φ1(X) = X
(

0.5 + 2X − 1.5X2
)

, (14)

Φ2(X) = −0.5X2 (1−X) .

A straightforward calculation shows that this is a second order method, i.e, the error is of order
h3. Despite the continuity of the first derivative, this is worse than the Taylor expansion of order
3, because we are more interested in the accuracy than in the smoothness of the interpolation.

All these schemes use more points than just the vertices of the cell in question. In cases
where there is a limit for one variable, these points may fall in a region where the mapping
is not defined. Therefore we need asymmetrical formulae to handle the border cells. These
formulae are given in Appendix A.

3 Results

Obviously the different synthetic mappings which have been described in section 2, have two
key parameters: the number of divisions in each direction N = (total number of cells)(1/D),
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where D (D = 2 in this paper) is the dimension of the surface of section and the order M of
the Taylor expansion. In order to explore the validity of the synthetic approach we applied our
method to two cases:

1 An algebraic area preserving mapping for which the computation of orbits is very fast.
This allows us to calculate a lot of orbits and to perform enough iterations for a meaningful
comparison.

2 A special case of the restricted three body problem studied by Duncan et al (1989).

Fig. 1: (a)
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Standard mapping pictures for a = −1.3. (b and c) are enlargements of the small boxes shown in figs.

1a and 1b respectively. (d, e and f) same as figs. 1a,b,c for the synthetic mapping T5 and N=20. (g,

h and i) same as figs. 1d,e,f for N=40.

Fig. 2: (a-

i) same as figs. 1a-i with the asymmetrical formulae for the T5 maps.

First we used the well-known standard mapping (Froeschle, 1970; Chirikov, 1979; Lichten-

10



berg and Lieberman, 1983):

x(n+1) = x(n) + a sin(x(n) + y(n)) (mod 2Π)

y(n+1) = x(n) + y(n) (mod 2Π).

Fig. 1a shows orbits of the standard mapping for a = −1.3. Indeed such a mapping
exhibits all the characteristics and well known features of problems with two degrees of freedom
such as invariant curves, islands and stochastic zones where the points wander about in a
chaotic way. Figs 1b and 1c are magnifications of the small boxes indicated in figs 1a and 1b
respectively. At this magnification details like second order islands become evident and the
quality of the approximation for the synthetic map is easily visualised. Figs 1g, 1h and 1i
correspond respectively to the same orbits and same magnifications as 1a, 1b and 1c for the
Taylor interpolation mapping of order M = 5 (T5) where the grid is characterized by N = 40.
We obtain results which look the same as for the original map. For a grid corresponding
to N = 20 (figs 1d, 1e and 1f), it is interesting to notice the agreement of the details in
magnifications e and f. This agreement is remarkable since the dimension of the cell (0.31) is
much bigger than the dimension of the smallest islands seen in fig 1f (0.005). Of course the
invariant curve of the largest island of 1f shows some thickness which disappears for N = 40 but
would reappear under further magnification. This phenomenon is due to the fact that synthetic
mappings like T5 only conserve areas up to order 6. Let us remark that the computation
corresponding to fig. 1 were performed using an extended grid so that we only used the
symmetrical interpolation formulae. Since there are cases where one can’t cross a given limit,
we have tested the asymmetrical interpolation formulae as explained in section 2 (see Appendix
A for formulae). Fig. 2 shows the same orbits as fig. 1 for the new formulae. The discrepancy in
the sharpness of the invariant curves is particularly obvious in fig. 2f where most of the points
are in a region corresponding to the asymmetrical formulae. The problem is less stringent for
larger values of N since the portion of phase space needing asymmetrical formulae decreases.
Of course for all problems where it is possible, symmetrical formulae should be used. In order to
make a more quantitative test of the statistical fine-scaled structure of the orbits resulting from
the synthetic mappings we have computed and plotted the Lyapunov Characteristic Number
(LCN) (see Benettin et al 1980, Froeschle C, 1984). We consider two orbits starting at P0 and
P ′

o and denote by d = dist(P0, P
′

0), the distance between P0 and P ′

0. After time τ , P0 is in
P1 and P ′

0 in P ′

1 and we put d1 = dist(P1, P
′

1). By a homothesis of the center P1 with a ratio
d/d1 we get two new starting points P1 and P ′′

1 such that dist(P1, P
′′

1 ) = d and we iterate the
process. It is well known that the quantity

Γ(n, p, d, τ) =
1

nτ

n
∑

i=1

ln(di/d) (15)
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tends to a limit, independent of d and τ , which is the largest LCN as n goes to infinity. We
must keep in mind that strictly speaking the LCN’s are limiting values as t → ∞; evidently
these cannot in practice be computed. We then define the Lyapunov characteristic indicators
(LCIs) as the truncated values of the LCNs for a finite time. The variation of λ = ln(Γ) with n
for τ = 10 and d = 10−8, is shown on fig. 3, for an invariant curve of the Taylor mapping and
with the same initial conditions for the different synthetic maps T1, T3, T5 and S3. The grid
is such that N = 100. For T1 the fit is quite good up to 104 iterations. After that the map
shows a strong contracting character and looses its area preserving property. The same occurs
but for larger n to the spline approximation S3. The Taylor approximations T3 and T5 are
better and show the appearance of divergence from the real mapping after 106 iterations for
T3 and 107 for T5. Fig. 4 exhibits the variations of λ as a function of N (coarse graining) for
a given value of the LCI, Γ(n, p, d, τ) = Γ(10000, p, 10−8, 10). Again the Taylor approximations
T3 and T5 show the best fits to the real integrable case. The way λ varies for a cross section
on the x-axis at y0 = 0 and a = −1.3 is shown as a function of the different mappings (viz.
standard map, T1, T3, T5 and S3) in figs. 5a, 5b, 5c for N = 20, 50 and 100 respectively. The
initial conditions x0, y0 are changed along the x-axis (y0 = 0) in steps of 0.1 on the plateaux,
and 0.02 at the borders. We again underline the excellence of the fit for the Taylor expansion
and also for chaotic orbits the constancy of the values of λ independently of both the coarse
graining and the order of the approximation.

Fig. 3: Variation of the values of the Lyapunov Characteris-

tic Indicators (LCI) for initial conditions corresponding to an invariant curve. The standard map and

corresponding synthetic maps are considered.

For more clarity, we consider only the real and T5 mappings for three different values of
N = 20, 50 and 100 and in fig. 6a we plot λ versus x, as in figs. 5a, 5b, 5c. For N = 100, the
curves are superimposed and the fit is still very good for N = 50. When N is only equal to

12



20 some slight quantitative differences can be observed but, since the size and location of the
stochastic zone remain the same, qualitatively the agreement is excellent. In fig. 6b we present
the enlargement of the right hand border of the secondary island which lies to the far left of
fig. 6a for −2.48 ≤ x0 ≤ −2.45 (see region I in fig. 6a). The previous results are confirmed.

Fig. 4: Variation of the values of the Lyapunov Characteris-

tic Indicator (LCI) computed at 100000 iterations against N which characterises the thinness of the

grid for different synthetic maps corresponding to the standard map (a = −1.3) and for the same

initial conditions (x0 = 0.5, y0 = 0) corresponding to an invariant curve of the standard map.

Fig. 5a: Variation along the x-axis of the values of the

Lyapunov Characteristic Indicator (LCI) computed at 100000 iterations at y0 = 0 for a value N = 20

of the coarse graining parameter.
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Fig. 5b: Same as fig. 5a for N = 50

Fig. 5c: Same as fig. 5a for N = 100

Finally we have tested the method on a special case of the restricted three body problem
for which Duncan et al (1989) have developed a special mapping. Fig. 7a exhibits orbits of the
Poincare map taking as surface of section the plane defined by the eccentricity and the mean
longitude as polar coordinates, when the particle is in conjonction with the planet (i.e. in the
rotating frame, when y = 0 and y′ > 0). In figs. 7b, c, d are plotted the corresponding orbits
for synthetic mappings T1, T3, T5 for a grid with N = 100. If the linear mapping T1 shows
only poor qualitative similarities with the Poincare map, the T3 map correctly reproduces the
locations, shapes and sizes of zones of regular orbits. Of course the T5 map is even better. It
should be noted that in order to obtain the same accuracy we needed to use a smaller grid size
(i.e. more points) than for the standard map since the functions which have to be interpolated
are less regular. In this case, we needed about 80 minutes to compute the Poincare map by
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integrating the equations of motion (fig. 7a) and only 2 seconds for T5 (fig. 7d). However one
has to allow for the time needed to compute the grid.

Fig. 6: (a) same as fig.

5 for the synthetic mapping T5 and for different values of the parameter grid. (b) enlargement of the

border of a secondary island (zone I) for −2.48 ≤ x0 ≤ −2.45.

Let us remark that the same accuracy as that obtained by the T5 map can be obtained
even with the T1 map by drastically decreasing the size of the grid cells (i.e. by increasing N).
Actually for such an increase in the number of vertices, the price to pay is very small since the
additional Poincare return map values at the vertices can be computed using the more precise
mapping T5. Figs. 7e,f show the T1 and T3 mappings for a grid with N = 400, where 15/16 of
the N2 map values at the vertices have been computed using T5 through the already computed
grid with N = 100. The time needed to compute the 10000 points of the initial grid is about 5
hours 40 minutes and it took only 70 seconds to compute the 150000 news points. In this case
T5 is about 300 times faster than the integration. And when looking at the long term evolution,
one will still save time if one wants to iterate for 200000 or more steps, since T1 is about 16
times faster than T5. Indeed the accuracy of T1 is greatly improved. Of course the same
holds for T3. This combination of the order of interpolation and of different coarse graining,
i.e. of different mappings appears very promising for four dimensional mappings where the
computational time of T5 is far from negligible as shown in section 2.3
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Fig. 7: (a) Trajectories of the

Poincaré map of the restricted three body problem, in the plane (eccentricity, mean longitude) (polar

coordinates) at conjonction with the planet, for the Neptune - Sun mass ratio m/M⊙ = 5.178 10−5

and Jacobi constant 3.0080694. (b, c and d) same as fig. 7a for the synthetic maps T1, T3 and T5.

(e and f) Same as fig. 7b,c for a grid with N = 400 obtained with T5.
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4 Conclusion

Synthetic maps appear to be valuable tools for celestial mechanics. However for problems
with more than two degrees of freedom the situation is less straightforward. The number of
operations required for the Taylor approxmation increases drastically with the dimension of the
surface of section. Of course as shown above a lower order map can be used by decreasing the
grid size but a second difficulty is the task of storing and recalling the values of the computed
images at the vertices. In any case some compromises have to be made between the number of
cells and the order of the polynomial approximation. All of these problems will be developed
in a forthcoming paper.

Appendix A

The interpolating formula for the border cells are of the same form as before:

f(x) =
∑

Φn(
x− x′

h
)f(xi+n). (16)

We first give the formulae for mapping T5. For x0 ≤ x ≤ x1, the Φn(X) are:

Φ0(X) =
1

3840
[945− 3378X + 3800X2

−1840X3 + 400X4
− 32X5],

Φ1(X) =
1

3840
[4725 + 2010X − 10760X2

+7280X3
− 1840X4 + 160X5],

Φ2(X) =
1

3840
[− 3150 + 2860X + 11760X2

−11360X3 + 3360X4
− 320X5], (17)

Φ3(X) =
1

3840
[1890− 2220X − 6800X2

+8800X3
− 3040X4 + 320X5],

Φ4(X) =
1

3840
[− 675 + 870X + 2360X2

−3440X3 + 1360X4
− 160X5],

Φ5(X) =
1

3840
[105− 142X − 360X2

+560X3
− 240X4 + 32X5].
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For x1 ≤ x ≤ x2, we have:

Φ−1(X) =
1

3840
[− 105 + 142X + 360X2

−560X3 + 240X4
− 32X5],

Φ0(X) =
1

3840
[1575− 4230X + 1640X2

+1520X3
− 1030X4 + 160X5],

Φ1(X) =
1

3840
[3150 + 4140X − 5360X2

−1120X3 + 1760X4
− 320X5], (18)

Φ2(X) =
1

3840
[− 1050 + 20X + 4560X2

−160X3
− 1440X4 + 320X5],

Φ3(X) =
1

3840
[315− 90X − 1400X2

+400X3 + 560X4
− 160X5],

Φ4(X) =
1

3840
[− 45 + 18X + 200X2

−80X3
− 80X4 + 32X5].

By symmetry, we have for xn−2 ≤ x ≤ xn−1:

Φ−4(X) =
1

3840
[− 45− 18X + 200X2

+80X3
− 80X4

− 32X5],

Φ−3(X) =
1

3840
[315 + 90X − 1400X2

−400X3 + 560X4 + 160X5],

Φ−2(X) =
1

3840
[− 1050− 20X + 4560X2

+160X3
− 1440X4

− 320X5], (19)

Φ−1(X) =
1

3840
[3150− 4140X − 5360X2

+1120X3 + 1760X4 + 320X5],

Φ0(X) =
1

3840
[1575 + 4230X + 1640X2
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−1520X3
− 1030X4

− 160X5],

Φ1(X) =
1

3840
[− 105− 142X + 360X2

+560X3 + 240X4 + 32X5].

Finally, for xn−1 ≤ x ≤ xn, the formulae are as follow:

Φ−5(X) =
1

3840
[105 + 142X − 360X2

−560X3
− 240X4

− 32X5],

Φ−4(X) =
1

3840
[− 675− 870X + 2360X2

+3440X3 + 1360X4 + 160X5],

Φ−3(X) =
1

3840
[1890 + 2220X − 6800X2

−8800X3
− 3040X4

− 320X5], (20)

Φ−2(X) =
1

3840
[− 3150− 2860X + 11760X2

+11360X3 + 3360X4 + 320X5],

Φ−1(X) =
1

3840
[4725− 2010X − 10760X2

−7280X3
− 1840X4

− 160X5],

Φ0(X) =
1

3840
[945 + 3378X + 3800X2

+1840X3 + 400X4 + 32X5].

We now give the formulae for mapping T3. Firstly for x0 ≤ x ≤ x1:

Φ0(X) =
1

48

[

15− 46X + 36X2
− 8X3

]

,

Φ1(X) =
1

48

[

45 + 42X − 84X2 + 24X3
]

,

Φ2(X) =
1

48

[

−15 + 6X + 60X2
− 24X3

]

, (21)

Φ3(X) =
1

48

[

3− 2X − 12X2 + 8X3
]

.

And for xn−1 ≤ x ≤ xn:

Φ−3(X) =
1

48

[

3 + 2X − 12X2
− 8X3

]

,
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Φ−2(X) =
1

48

[

−15− 6X + 60X2 + 24X3
]

,

Φ−1(X) =
1

48

[

45− 42X − 84X2
− 24X3

]

, (22)

Φ0(X) =
1

48

[

15 + 46X + 36X2 + 8X3
]

.
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Abstract

In paper I polynomial interpolating formulae of order 3 and 5 have been proposed and
tested for transforming a non–linear differential Hamiltonian system into a map without
having to integrate whole orbits as in the well known Poincaré return map technique.
The precision of the computations increases drastically with the order of the polynomial
fit which requires an extended amount of local information, i.e. information about neigh-
bouring points. The first part of the paper deals with another type of interpolation where
the information, within the same accuracy, refers only to the nearest neighbours but takes
into account gradient information. The results are in very good agreement with those ob-
tained using an order 3 symmetrical interpolation formula well inside the phase space.
Moreover the new method is more effective at the border of the phase space when com-
pared with asymmetrical interpolation. The second part of the paper deals with higher
dimensional mappings, i.e. mappings for hamiltonian systems with 3 degrees of freedom.

1 Introduction

Poincaré maps are widely used for studying the qualitative behaviour of differential equations
(see Henon 1981). In order to study stability problems, many authors have sought explicit
algebraic mappings which approximate, at least qualitatively, the Poincaré maps obtained from
the original Newton equations. Froeschlé and Petit (1990, paper I) have reviewed some of these
mappings. They rely on some approximations made in order to separate either — in the case of
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deterministic mappings — an integrable part and some instantaneous perturbations, or — for
stochastic mappings — a source of endogeneous/exogeneous stochasticity (see Froeschlé and
Rickman, 1988). These mappings are all ad hoc and are reliable only in a limited region of
phase space where the approximations are valid. In paper I we built a mapping valid everywhere
in phase space, following an idea already used by Varosi et al. (1987) but in the framework
of non–Hamiltonian systems (i.e., systems where attractors do exist). The method consists of
coarse–graining the phase–space surface of section and then interpolating the value of the image
of a point. Linear interpolation requires a rather fine graining of the phase space, hence it is
necessary to compute a lot of points on the grid. However, Taylor expansions of order 3 and
5 can provide very good results as long as symmetrical interpolation formulae are applied, for
which it is necessary to use an extended grid, i.e. a grid extended over the region of phase space
one wants to explore. Since there are cases where one cannot cross a given limit, asymmetrical
interpolation formulae have been tested, but their accuracy was found to be inferior. Therefore
we have developed another type of interpolation, where the information, including that relative
to the gradients, is stored only for the nearest–neighbour vertices. Thus, not only images of
vertices are computed, but also tangential mappings at each vertex of the grid. The second
part of the paper deals with higher dimensional mappings i.e. Poincaré maps for Hamiltonian
systems with three degrees of freedom.

2 The synthetic mappings

The basic idea of the synthetic mapping is to interpolate the image of a point, when those of
a set of points located at the vertices of a grid are given.

In paper I we derived the interpolating formulae for accuracy of order 3 and 5. These
formulae require the use of respectively 4 and 6 points along each dimension of the mapping.
In other words, we need a certain amount of non–local information. In the following, we use
more local information, i.e. we look only at the nearest neighbours but we take more information
at these points in order to have the same accuracy.

2.1 Taylor interpolation

Assume that we know the values of the functions x(n+1) = f(x(n), y(n)) and y(n+1) = g(x(n), y(n))
at discrete points xi and yj and also their derivatives with respect to x, y and the cross
derivatives with respect to x and y. The points are equally spaced in x and y. We want to
interpolate the values of f and g at any point. We first derive the interpolation formula in one
dimension. We write the Taylor expansion for f about a point in the middle of a given interval,
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x′ = (xi + xi+1)/2:

f(x) = f(x′) + (x− x′)f ′(x′) +
(x− x′)2

2
f ′′(x′)

+
(x− x′)3

6
f ′′′(x′) + O

(

(x− x′)4
)

, (1)

f ′(x) = f ′(x′) + (x− x′)f ′′(x′)

+
(x− x′)2

2
f ′′′(x′) + O

(

(x− x′)3
)

.

We use the middle point to ensure the symmetry of the formula. We need to know the value
of f and its derivatives at x′. For this we write (??) for xi:

f(xi) = f(x′)−
h

2
f ′(x′) +

h2

8
f ′′(x′)

−
h3

48
f ′′′(x′) + O(h4), (2)

f ′(xi) = f ′(x′)−
h

2
f ′′(x′) +

h2

8
f ′′′(x′) + O(h3),

where h = xi+1 − xi. The corresponding formulae for f(xi+1) and f ′(xi+1) are obtained from
(??) respectively by replacing the minus signs with plus signs. Neglecting terms of order 4
or higher, one can invert (??) and write f(x′), f ′(x′), f ′′(x′) and f ′′′(x′) as functions of f(xi),
f(xi+1), f

′(xi) and f ′(xi+1).

f(x′) =
1

8
[4f(xi) + 4f(xi+1) + hf ′(xi)− hf ′(xi+1)],

hf ′(x′) =
1

4
[− 6f(xi) + 6f(xi+1)− hf ′(xi)− hf ′(xi+1)], (3)

h2f ′′(x′) = −hf ′(xi) + hf ′(xi+1)

h3f ′′′(x′) = 6[2f(xi)− 2f(xi+1) + hf ′(xi) + hf ′(xi+1)].

By substituting into (??) we obtain:

f(x) =
f(xi)

2
[1− 3h+ 4h3]

+
f(xi+1)

2
[1 + 3h− 4h3] (4)
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+
f ′(xi)

8
[1− 2h− 4h2 + 8h3]

+
f ′(xi+1)

8
[− 1− 2h+ 4h2 + 8h3].

To interpolate a two dimensional function, we iterate the one dimensional interpolation.
We want to know the image of point (x, y). Assume that we know the images and gradients at
points (x, yi) and (x, yi+1). Then we evaluate the image using eq. (??). This means that we
must first interpolate f and ∂f

∂y
at these two points. f at (x, yi) (resp. (x, yi+1)), is obtained

from f and ∂f

∂x
at (xj, yi) and (xj+1, yi) (resp. (xj, yi+1) and (xj+1, yi+1)). For the value of ∂f

∂y

at (x, yi), we interpolate using ∂f

∂y
and ∂2f

∂x∂y
at the vertices.

2.2 A special 2D case

When using the previous algorithm, we reproduce the Taylor expansion up to order 3 in every
direction. So in n dimensions, the n-dimensional Taylor expansion is reproduced up to global
order 3 and we also have terms of the expansion up to global order 3n. In the case of a two-
dimensional mapping, we need to know 16 values to interpolate one point. But if we want to
have the interpolation only up to global order 3, we need only to determine 10 constants. We
need to use values only at the four nearest neighbours and give them the same importance.
So we have 12 conditions: f , ∂f

∂x
and ∂f

∂y
at the four points. Here again we expand around the

middle point (x′ = (xi+xi+1)/2, y
′ = (yj + yj+1)/2) with all the terms up to global order 3 and

two terms of global order 4, and neglecting the other terms of order 4 and higher:

f(x, y) = f(x′, y′) + (x− x′)fx(x
′, y′) + (y − y′)fy(x

′, y′)

+
(x− x′)2

2
fxx(x

′, y′) +
(y − y′)2

2
fyy(x

′, y′)

+(x− x′)(y − y′)fxy(x
′, y′) +

(x− x′)3

6
fxxx(x

′, y′)

+
(x− x′)2(y − y′)

2
fxxy(x

′, y′) +
(x− x′)(y − y′)2

2
fxyy(x

′, y′)

+
(y − y′)3

6
fyyy(x

′, y′) +
(x− x′)3(y − y′)

6
fxxxy(x

′, y′)

+
(x− x′)(y − y′)3

6
fxyyy(x

′, y′), (5)

fx(x, y) = fx(x
′, y′) + (x− x′)fxx(x

′, y′) + (y − y′)fxy(x
′, y′)
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+
(x− x′)2

2
fxxx(x

′, y′) +
(y − y′)2

2
fxyy(x

′, y′)

+(x− x′)(y − y′)fxxy(x
′, y′) +

(x− x′)2(y − y′)

2
fxxxy(x

′, y′)

+
(y − y′)3

6
fxyyy(x

′, y′),

fy(x, y) = fy(x
′, y′) + (x− x′)fxy(x

′, y′) + (y − y′)fyy(x
′, y′)

+
(x− x′)2

2
fxxy(x

′, y′) +
(y − y′)2

2
fyyy(x

′, y′)

+(x− x′)(y − y′)fxyy(x
′, y′) +

(x− x′)3

6
fxxxy(x

′, y′)

+
(x− x′)(y − y′)2

2
fxyyy(x

′, y′).

Writing that these equations must be satisfied with the 12 values we know at the four corners
of the cell, we find:

f(x, y) =
f(xi, yi)

4
[1 + 3h+ 3k + 8hk − 4h3(1 + 2k)− 4k3(1 + 2h)]

+
f(xi−1, yi)

4
[1− 3h+ 3k − 8hk + 4h3(1 + 2k)− 4k3(1− 2h)]

+
f(xi, yi−1)

4
[1 + 3h− 3k − 8hk − 4h3(1− 2k) + 4k3(1 + 2h)]

+
f(xi−1, yi−1)

4
[1− 3h− 3k + 8hk + 4h3(1− 2k) + 4k3(1− 2h)]

+
fx(xi, yi)

16
[(1 + 2k)(−1− 2h+ 4h2 + 8h3)]

+
fx(xi−1, yi)

16
[(1 + 2k)(1− 2h− 4h2 + 8h3)] (6)

+
fx(xi, yi−1)

16
[(1− 2k)(−1− 2h+ 4h2 + 8h3)]

+
fx(xi−1, yi−1)

16
[(1− 2k)(1− 2h− 4h2 + 8h3)]

+
fy(xi, yi)

16
[(1 + 2h)(−1− 2k + 4k2 + 8k3)]

+
fy(xi−1, yi)

16
[(1− 2h)(−1− 2k + 4k2 + 8k3)]

5



+
fy(xi, yi−1)

16
[(1 + 2h)(1− 2k − 4k2 + 8k3)]

+
fy(xi−1, yi−1)

16
[(1− 2h)(1− 2k − 4k2 + 8k3)]

The great advantage of this formula over the one derived from (??) is that it does not require
knowing the second order cross derivative of f . Suppose the mapping is given by numerical
integration of differential equations. It is conceptually easy to obtain the first order derivatives
of the mapping by a similar integration (see below). But the determination of the second
order cross derivative requires a numerical differentiation which is not always easy to do. The
problem is that it is not possible to generalize to higher dimensions. In dimension 3, we have
32 conditions (8 nearest neighbours, each with 4 values), and the terms of global order less
or equal to 3 give only 20 unknown coefficients. Therefore, we have to choose arbitrarily 12
terms of global order larger than 3. We made a few choices which all lead to singular matrices.
However there must exist a choice that gives a non singular matrix, but it might prove very
difficult to find. And when increasing the number of dimensions, we increase even more the
number of terms we have to choose arbitrarily.

3 Derivative evaluation

In the previous algorithms, we need to know the derivatives of the mapping. We have to
compute the first order derivatives with the same order of precision as the orbit. Consider the
differential equation:

dX

dt
(t) = F (X, t). (7)

Since we want to know a derivative, we integrate this equation for two nearby points: X and
X + ǫ. The evolution of the second point is governed by equation:

dX

dt
(t) +

dǫ

dt
(t) = F (X + ǫ, t) = F (X, t) + L(X,t).ǫ+O(ǫ2), (8)

where L is the Jacobian matrix. Since ǫ is an infinitely small vector, its evolution is governed
by the well known variation equations:

dǫ

dt
(t) = L(X,t).ǫ (9)

This is a linear equation, so we can normalize ǫ as we wish.
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Let us introduce the following notation. Γ denotes the intersection of the surface of section
S and the constant energy surface E. Then we call TΓP the space tangent to Γ at point P .
We consider a point X0 ∈ Γ and a basis {e

(0)
i } of TΓX0

(in our case, the basis consists of
two linearly independant vectors). We need to know the image X1 ∈ Γ of X0 and the image

{e
(1)
i } ∈ TΓX1

of {e
(0)
i }. For a Hamiltonian system with two degrees of freedom, we have four

dimensional phase space (x1, x2, x3, x4). We define the surface of section by x2 = 0 and x4 > 0
(in our particular case, x2 = y and x4 = dy/dt) and the surface of constant energy by E = E0.
The coordinates (ǫ1, ǫ2, ǫ3, ǫ4) of the vector ǫ in TΓX0

are constrained to

ǫ2 = 0, (10)

∇E.ǫ = 0.

A problem arises when integrating simultaneously equations (??) and (??), because when
the orbit crosses Γ, that is in X1, the image of ǫ does not necessarily belong to TΓX1

. We come
back to the classical variation method and consider the neighbouring point X1 + ǫ where ǫ is
again infinitely small. Using an Euler integration scheme with time step h we integrate until
time t when the point reaches Γ:

X(t+ h) + ǫ(t+ h) = X(t) + ǫ(t) + h
d(X + ǫ)

dt
∈ Γ. (11)

We have to solve equation (??) for h in order to have x2(t + h) + ǫ2(t + h) = 0, where x2 and
ǫ2 are the second components of X and ǫ. We simplify the equation by neglecting the term
h dǫ/dt which is a small quantity of order 2. Since X1 = X(t) is in Γ, we have x2(t) = 0. So
the time step h is given by:

h = −
ǫ2(t)
dx2(t)
dt

, (12)

and the final vector ǫ(t+ h) is:

ǫ(t+ h) =



ǫi(t)−
ǫ2(t)

dxi(t)
dt

dx2(t)
dt



 , i = 1 . . . 4. (13)

Since we are interested in the derivatives, the final vectors will be divided by the modulus of
the initial vectors and therefore, we can use unit length vectors to perform the computations,
since each operation is linear with respect to ǫ.

We are now able to write explicitly a synthetic mapping from Γ into Γ using the gradient
method. We consider the Hill’s problem in a rotating frame (cf Duncan et al., 1989, Froeschlé
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and Petit, 1990). The coordinates are x1 = x, x2 = y, x3 = dx/dt = ẋ and x4 = dy/dt = ẏ.
The surface of section is defined by y = 0, ẏ > 0 and E = const. (Jacobi constant). We do not
plot x, ẋ directly since for a given value of x, there is a maximum value of |ẋ| allowed and we
do not get a rectangular grid. So we plot z = x, λ = ẋ/|ẋ|max, where λ belongs to [−1, 1]. The
limiting value of |ẋ| is:

|ẋ|max =

√

x2 +
2(1− µ)

µ− x
+

2µ

µ− x− 1
− E. (14)

In the general interpolation scheme (derived from equation ??), we need the second order
cross derivative. This has to be computed by mean of numerical differenciation. We know the
images of a point X0 and two vectors e1 and e2. For the cross derivative, we integrate equation
(??) for vector e1 but with the Jacobian matrix evaluated along the orbit of point X0 + ǫ e2.
This second orbit (very close to the first one) is not actually computed but we approximate it
by taking X(t) + ǫ e2(t).

4 Memory management

So far we have always supposed that we know the value of the mapping and eventually its
derivatives on a discrete grid. But this can be very memory consuming. In the case of a
four dimensional mapping, with 50 points in each dimension, we need to store information for
6 250 000 points. Each point accounts for at least 4 values (when we do not use the derivatives,
16 values for each component if we use derivatives, which means 64 values for each point)
needing 8 bytes each (we are using double precision arythmetic). This amount to 2. 108 bytes
of storage.

But a typical orbit will visit only a small part of the total space, especially if it is an
invariant orbit. Therefore in order to reduce storage requirements, we only store images of
those grid points which are needed to compute the orbit. The storage scheme is based on
the hashing technique: to compute the image of a point, we need to know the images of the
neighbouring points of the grid. These images are computed and then labelled for the purpose
of identification. The labels are just integer indices (at a point of the grid we can make a one to
one correspondance with integers). The images are stored in a list which is ordered according
to the label index. To compute the next image, we again need to compute the images of the
new neighbouring points. Some of them are already computed and we have to locate them in
the list, others have to be computed and inserted in the list. These two problems of location
and insertion can be time consuming hence we use the double trick of a linked-list (for fast
insertion) and a hash function (for fast location) (see Appendix A). In fact this hash function
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allows one to split a large list into a collection of shorter lists. Actually, applying the hash
function to a label gives the entry point of the list where that particular label is stored. In
practice, the hash function is simply the remainder modulo M :

h(k) = 1 + k mod M, (15)

where k is the labelling index and M an arbitrary integer.
Since the amount of computer memory is limited, we may need, for those orbits that visit a

large region, to delete some previous points before storing new ones. These cases are, of course,
more time consuming. For technical details, see Appendix A.

5 Results

5.1 The two dimensional case

An extensive study of the point set Taylor interpolation scheme for the two dimensional case
can be found in paper I. We present first a sample of results using point set and tangential
Taylor interpolation of order 3. As a model problem we adopt the standard mapping:

x(n+1) = x(n) + a sin(x(n) + y(n)), (mod 2π)

y(n+1) = x(n) + y(n). (mod 2π)

Fig. 1: (a) Plots of the standard mapping for a = −1.3. (b) and (c) are enlargements of the small

boxes shown in (a), respectively at the right border and at the top border.

This has been selected since the computation of orbits is very fast and allows us to calculate
many orbits and perform enough iterations for a meaningful comparison. Moreover, for the

9



tangential Taylor interpolation, the computation of the derivatives of the mapping does not
present any problem. Fig. 1 shows orbits of the standard mapping for a = −1.3. These
mappings exhibit all the well–known typical features of problems with two degrees of freedom,
such as invariant curves, “islands”, and stochastic zones where the points wander in a chaotic
way. Figs. 1b and 1c are magnifications of the small boxes indicated in Fig. 1a. At this
magnification level, details like second–order islands become evident and the approximation
levels of the synthetic maps are easily visualized. Figs. 2a and 2b correspond to the same
orbits and the same magnifications as Figs. 1b–c, but using the Taylor interpolation mapping
of order M = 3 with decentered formulae on the edges of the mapping; here the grid was regular

Figs. 2a–b: Same as in Figs. 1b–c but using a Taylor approximation of order 3 with a regular grid

and decentered formulae. Figs. 3a–b: The same as in Figs. 1b–c but using a Taylor approximation

of order 3 with a non–regular grid and decentered formulae. Figs. 4a–b: The same as in Figs. 1b–c

but using a Taylor approximation of order 3 with a regular grid and the gradient method.
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and characterized by 40 cells. The results are very similar to those of the original map, except for
the box close to the border. Figs. 3a–b correspond to the same formulae, but with cells having
half the size of the previous ones close to the edges. Apparently this does not greatly improve
the quality of the mapping in the border boxes. On the other hand, a definite improvement is
obtained using the gradient formulae, as shown in figs. 4a–b. One can see that fig. 4b is much
closer to fig. 1c than fig. 2b and even more than fig. 3b. And fig. 4a is closer to fig. 1b than
fig. 2a.

We also tested the method on a restricted three body problem for which Duncan et al.
(1989) have developed a special mapping. Fig. 5a exhibits orbits of the Poincaré map taking
as surface of section the plane defined by the eccentricity and the mean longitude as polar
coordinates, when the particle is in conjunction with the planet (i.e, in the rotating frame,
when y = 0 and y′ > 0). In fig. 5b are plotted the corresponding orbits for synthetic mapping
T3 (N = 100). Fig. 5c shows the corresponding orbits for the tangential Taylor interpolation of
order 3. In this case the tangential derivatives have been estimated using the method described
in $ 3. The agreement is as good as with the corresponding point set interpolation. We must
emphasize that all three figures correspond to the same initial conditions. One of these is at
the very border of a stable region, which explains why there is one more invariant curve in fig.
5c. On the other hand, in the chaotic regions, the points do not all fit on the grid, and we have
to stop the integration very early in the synthetic cases, although not for the real mapping.
This explains the different number of points in the chaotic regions.

Fig. 5a: Trajectories of the Poincaré map of the restricted three–body problem, in the plane giving (as

polar coordinates) eccentricity and mean longitude at conjunction with the planet, for the Neptune–

to–Sun mass ratio m/M0 = 5.178 10−5 and a Jacobi constant of 3.0080694. Fig. 5b: Same as Fig.

5a but for the point set Taylor 3 interpolation with N = 100. Fig. 5c: Same as Fig. 5b but for the

tangential Taylor 3 interpolation.
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5.2 Poincaré maps for Hamiltonian systems with three degrees of
freedom

5.2.1 Graphical display of symplectic four dimensional mappings

When the number of degrees of freedom is equal to 3, the surface of section has 4 dimensions
and interpretations of the results are more difficult. Again, using a symplectic four-dimensional
mapping appears suitable as a model problem in order to test both the different synthetic
mappings and the hash function method. Furthermore a four-dimensional surface of section
is populated by points and not by a continuous trajectory, even if they lie on an invariant
surface. Therefore, since we compute a finite number of points, if we perform other sections,
the probability of a point falling on an arbitrarily chosen surface vanishes. Therefore, we must
take not a true section but rather a slice having a small yet finite thickness in order to catch
some points. Figs. 6a and 7a are examples taken from Froeschlé (1972) for the four-dimensional
mapping:

x(n+1) = x(n) + a1 sin(x
(n) + y(n)) + b sin(x(n) + y(n) + z(n) + w(n)), (mod 2π)

y(n+1) = x(n) + y(n), (mod 2π)

z(n+1) = z(n) + a2 sin(z
(n) + w(n)) + b sin(x(n) + y(n) + z(n) + w(n)), (mod 2π)

w(n+1) = z(n) + w(n). (mod 2π)

A trajectory is a set of points in the (x, y, z, w) space. It is first projected on the three-
dimensional (x, y, z) space; then a series of nine slices is taken, defined by |z − z0| < 0.01 with
nine regularly spaced values for z0. Parameter values are a1 = −1.3, a2 = −1 for both figures;
b = 0.075 for fig. 6 and b = 0.275 for fig 7. In the first case, the points fall on well defined curves
in each slice; this suggests that they fall on a two-dimensional surface in (x, y, z) space. In the
second case, the situation is rather different: the points appear to fill a three-dimensional region
in (x, y, z) space. Both figures have been obtained by the tangential Taylor 3 (τ3) synthetic
mapping. Figures for the point-set Taylor 3 (T3) mapping are identical. For figures with real
mapping, see Figs. 11.d and 11.f from Froeschlé (1972). But again the figures are identical at
least in the integrable case (b = 0.075).
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Fig. 6: Slices of the subspace (x, y, z) for the tangential Taylor 3 interpolation of the four-dimensional

standard map, for a1 = −1.3, a2 = −1. and b = 0.075, the starting point being P = (1, 0, 0.5, 0.5).

Then slices are defined by |z − z0| < 0.01 with z0 = −1.5 + i/3, where i varies from 1 to 9 from left

to right and top to bottom.
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Fig. 7: Same as fig. 6, but with b = 0.275.

5.2.2 The Lyapounov characteristic numbers (LCNs)

A rather different technique consists in determining numerically the Lyapounov characteristic
exponents of the trajectories. This allows one to distinguish between quasi-periodic and chaotic
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orbits and to map the regular and chaotic regions in phase space. The question raised by
Froeschlé (1970) about the number of quasi-integrals for a one parameter set of orbits of the
non planar restricted three-body problem has been solved more easily, using LCEs, by Gonczi
and Froeschlé (1981). The combination of the two methods (slice cutting and LCEs) has been
very useful for discovering and illustrating a sticking-exploding phenomenon. Of course, this
technique does not provide any information about the shape of an orbit in phase space, nor
about the set of points in the space of section since it gives just two numbers for each trajectory.

Fig. 8a: Positive Lyapounov characteristic indicators for the same orbit as in fig. 6 with b = 0.075,

for the real mapping. Fig. 8b: Same as fig. 8a for the synthetic mapping τ3.

Fig. 8a shows, on a log-log scale, the behaviour of the two positive Lyapounov characteristic
indicators γn

i (whose limits are identified with the Lyapounov characteristic numbers) as a
function of time (i.e. the number n of iterations), for initial conditions taken in the ordered
region (P = (1, 0, 0.5, 0.5)), with b = 0.075. Both γn

i appear to be decreasing functions of time.
The largest shows very little departure from the expected linear behaviour.

Fig. 8b shows the same numbers but computed from the synthetic mappings τ3. The general
behaviour is similar to the previous case, albeit the slope is slightly smaller and the secondary
Lyapounov number presents some pathologic patterns. This discrepency is due to the fact
that some grid points we use belong to the chaotic zone and therefore influence the computed
numbers. This has been tested first by using a finer grid (N = 100 instead of N = 50). The
discrepency between the real and the synthetic mapping almost disappears. Then we have
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computed the Lyapounov characteristic indicators with the former grid (N = 50) for an orbit
closer to the center, that is well within the stable region. This allowed to use only points in
the stable region. In this case again, the descrepency disappears.

The agreement between the real mapping and the T3 synthetic mapping is even more
dependent of the size of the grid. Since we use grid points further away from the actual point
we are looking at, we have more chance to mix stable and choatic regions. This can easily be
seen on figs. 9a and 9b which represent, respectively, the dominant and secondary Lyapounov
characteristic numbers for different grid sizes.

Fig. 9a: Dominant Lyapounov characteristic numbers for the same orbit as in fig. 6 with b = 0.075,

for the real mapping, the synthetic mapping T3 with N = 50, N = 70 and N = 100. Fig. 9b: Same

as fig. 9a for the secondary Lyapounov characteristic number.

In order to visualize the evolution in time and show in more concrete terms the sticking–
exploding phenomenon we have plotted on figs. 10a-c the median slices (|z| < 0.01) of the
projections along the w axes of the points Pn for (i − 1) × 40000 ≤ n < i × 40000, with i
varying from 1 to 9 from left to right and top to bottom, and b = 0.275, for the real, T3 and
τ3 mappings respectively. Figs. 11a-c show the corresponding variations of the two positive
γn
i . Note that one should not pay too much attention to the fact that the times of explosion

coincide, since this time is distributed according to a Poisson distribution (Froeschlé and Petit,
1992). We found slightly worse agreement for the explosion time when using the real mapping
on two different computers that handle the last bit in floating point operations differently, and
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that put the operations in different order due to differences in the compilers.

Fig. 10a: Median slice (|z| < 0.01) for the orbit of fig. 6 with b = 0.275 for the real mapping. In

each square are plotted the points of 40000 successive iterations.
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Fig. 10b: Same as fig. 10a for the synthetic mapping T3.
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Fig. 10c: Same as fig. 10a for the synthetic mapping τ3.
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Fig. 11a: Positive Lyapounov characteristic numbers for the same orbit as in fig. 10a, for the real

mapping. Fig. 11b: Same as fig. 11a for the synthetic mapping T3. Fig. 11c: Same as fig. 11a for

the synthetic mapping τ3.

6 Conclusions

Synthetic maps appear to be valuable tools for celestial mechanics. Depending on the dynamical
constraints of the problem like border zones, different interpolations can be used. Even for
problems with more than two degrees of freedom, where the situation is less straightforward
the use of a hash function has allowed us to overcome difficulties associated with the task of
storing and recalling the values of the computed images at the vertices.
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Appendix A

We first describe the algorithm for finding a value in an ordered linked-list. We have records
composed of labelled data. We store and retrieve data according to the value of the label. The
basic idea is to directly reference locations in a table by doing arithmetic transformations of
labels into table addresses.
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The first step in a search using hashing is to compute a hash function which transforms
the search label into a table address. Almost no hash function is perfect, and two or more
labels might hash to the same table address: the second part of a hashing search is a collision

resolution process which deals with such labels. The collision resolution method we describe
here uses linked lists, and is appropriate in a highly dynamic situation where the number of
search labels cannot be predicted.

Hashing is a good example of a “time–space tradeoff”. If there were no memory limitations,
then we could do any search with only one memory access by simply using the label as a memory
address. If there were no time limitations, then we could get by with only a minimum amount
of memory by using a sequential search method. Hashing provides a way of using a reasonable
amount of memory and time to strike a balance between these two extremes. Efficient use of
available memory and fast access to the memory are prime concerns of any hashing method.
Hash functions

The first problem we must address is the computation of the hash function which transforms
labels into table addresses. This is an arithmetic computation with properties similar to those of
random number generators. What is needed is a function which transforms labels (here integers
derived from the indices of points in the grid) into integers in the range [1,M ] where M is the
number of entries in the table. An ideal hash function is one which is easy to compute and
approximates a “random” function: for each input, every output should be “equally likely”.
The method we use here is, for any label k, to compute h(k) = 1 + k mod M . This is a
straightforward method which is easy to compute in many environments and spreads the label
values out well.
Separate chaining

The hash function above will convert labels into table addresses: we still need to decide how to
handle the case when two labels hash to the same address. The most straightforward method
is to simply build a linked list, for each table address, of the records whose labels hash to
that address. Since the labels which hash to the same table position are kept in a linked list,
they might as well be kept in order. This leads directly to a generalization of the elementary
list searching method. Rather than maintaining a single list with a single list header node,
we maintain M lists with M list header nodes. Obviously, the amount of time required for a
search depends on the length of the lists (and the relative positions of the labels in them).

Details can be provided by the authors on request.
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Abstract

Here we summarize the models and their similarities with respect to the gravitational
influence of small satellites (moonlets) embedded in planetary rings, which have been
developed by Petit and Hénon (1987a,b; 1988) and by Spahn (1987; Spahn et al. 1989;
1992). The results and their applicabilities are shown in the case of the Encke–gap Moon
Pan located in the outer A–ring of Saturn’s rings. To compare the model–profiles with
the experimental ones (optical depth profile measured by Voyager–photopolarimeter), the
structures embedded in the latter have been confirmed statistically using the “wavelet”
analysis method. This analysis points to a size of Pan of about 13 km and an eccentricity
of 10−4 of its orbit.
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1 Motivation

Much work has been done with respect to the gravitational action of satellites - embedded and
outer ones - on planetary rings, which have culminated in the prediction and detection of the
satellite Pan in the Encke division of Saturn’s rings (Showalter et al. 1986; Showalter 1991).

In this paper we will give a brief summary of the work done concerning the question: “ What
is the gravitational influence of a small satellite (moonlet) on the radial density distribution of
ring–material in the close radial surrounding of its orbit ?”

In Section 2 we summarize the models developed by Petit and Hénon (1987a; b; 1988;
hereafter PH 1; 2; 3), and by Spahn (1987; Spahn and Wiebicke 1989; Spahn et al. 1992;
hereafter S 1; 2; 3). We enlighten the similarities of the models and the good agreement of a
few of their results, which then will be taken together to look for moonlet-like structures in the
Voyager occultation data. This is especially done in Section 3 where we compare the results of
the models with the radial density- profiles of Saturn’s rings measured by the Photopolarimeter
(PPS) of Voyager 2 at the Encke division of Saturn’s ring where satellite Pan has been discovered
recently. This gives a possibility to prove directly the value of the results of the models.
Therefore the information about the real structure in the rings has to be separated from the
large noise of the PPS-data. This has been realized with the wavelet analysis method which
yields a noise-reduced optical depth profile.

In Section 4 the results of the comparison between model and experiment will be discussed
and also a small overview of still remaining work can be found there.

2 The models

The main common assumptions of either approaches (PH 1; 2; 3; S 1; 2; 3) are:

1. plane motion of all bodies (planet, moonlet, ring-particles);

2. a narrow radial region is considered (compared to the whole radial extension of the rings);

3. the standard-model of spherical, undestructible ring-particles has been applied.

With these assumptions, both models has been applied in order to solve the problem of the
gravitational influence of the embedded moonlet on the time-evolution of the radial distribution
of ring-particles in the close vicinity (region of overlapping resonances) of the orbit of the
perturbing moon. That distribution is given by the function f(m, r, t), f.dm.dr being the
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number of particles in the radial interval [r, r + dr] and in the mass-range [m,m + dm] at a
given time t. Then the evolution of f(m, r, t) can be written by mean of a continuity equation

∂tf(m, r, t) = Â(f, r, t) · f (1)

in a very general form.
For more details concerning the meaning of Eq. (1) we refer to the derivation of equation

(44) in PH2 and of equation (3) in S2.
The operator Â governs the radial transport of the ring–matter and is generally dependent

on the gravity of the perturbing moonlet, as well as the interactions between the ring–particles -
gravity and direct physical collisions - represented by the dependency of Â on f itself (PH2; 3).
The integro-differential equation (1) is of a fairly complicated form which makes it impossible
to get a general analytical solution. Therefore numerical approaches have been used (PH; S)
in order to solve this equation for special cases, e.g. single and bimodal size distributions.

The advantage of the model developed by Petit and Hénon (1987a; b; 1988) is the wide
physical generality taken into account in equation (1), which is presented by including:

a) arbitrary size distribution of the ring-particles;

b) particle interactions ⇒ gravity and direct inelastic collisions (fixed coefficient of restitution
ǫ = constant < 1; see PH1).

The price for this wide generality is a relatively low number of particles - N = 500 · · · 1000
- taken for the numerical treatment of Eq. (1), which gives a fairly rough resolution of the final
radial density profiles.

Such resulting profiles are shown in the fig. 1 for the special case of a bimodal size (mass)
distribution for the ring- particles (one moonlet and many much smaller particles). The time
evolution of the radial particle distribution is given for a comparatively massive moonlet. In
this case the moonlet is able to create an empty gap which is divided by a faint ringlet, covering
the orbit of the moonlet (fig. 1f). The ringlet consists of particles in “tadpole” and “horseshoe”
orbits (Dermott and Murray 1981). Of high importance is the fact that Petit and Hénon (1988)
have been able to obtain an equilibrium width of the gap created by the moonlet, that is a
result of the balance between the torque exerted from the moonlet to the ring–material and the
torque caused by the particle interactions itself (viscous torque; see also Lissauer et al. 1981).
They obtained for that width W :

W ≈

{

M1/3
m , for Mm < M0,

M2/3
m , for Mm ≥M0,

(2)
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Fig. 1: Time evolution of the radial distribution of very small particles (m ≪ Mm) around the orbit

of a moonlet at the “position”= 0.0. The different parts belong to snapshots at different elapsed time

of the computer-experiment. Clearly visible is the formation of a gap which is separated by a faint

ringlet around the “position”= 0.0 (Figure taken from PH3).
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where M0 is the mass threshold depending on the different model parameter (PH3). The order
of magnitude is M0 ≈ 1013kg which corresponds to a size of an icy moonlet of a diameter
D ≈ 2.7km.

In the model of Spahn (1987; S2; S3) particle interactions have been neglected and only the
gravitational influence of the moonlet on the ring–material near its orbit has been taken into
account. This simplification has enabled to consider (S3):

1. N = 5000 · · · 50, 000 particles, giving a high radial resolution of the density profiles;

2. n (up to three) co-orbital moonlets of different masses;

3. eccentric orbits of the moonlets.

However in that model no equilibrium width of the created gap can be expected because of
the neglect of the particle interactions - no viscous torque is counteracting the torque exerted by
the moon. Here the advantage is to study in detail the dependency of the shape (radial profile)
and the width of the inner ringlet on the orbital motion of a massive moonlet (Mm > M0).
Concerning the mass-dependence of the radial density profile Spahn and Wiebicke (1989) have
obtained results comparable to Petit and Hénon (1988). Assuming a given random motion of the
ring–particles (expressed by a mean orbital eccentricity e; S2), caused by particle interactions
and additional outer perturbations (Goldreich and Tremaine 1978; PH1), the inner ringlet is
vanishing with decreasing mass of the moonletMm, while the gap-width scales as “W ∝M1/3

m ”.
For very massive moonlets (h ≈ [Mm/3Mp]

1/3 ≈ Rm/[km] · 10−4 ≫ e, e ≤ 10−6, Mp, Rm and
h are the mass of the planet, the radius and the Hill-scale of the moonlet, respectively), the
inner ringlet is surprisingly stable and exhibits a detailed structure.

Furthermore, because of the comparable large number of particles N = 5000 · · · 50, 000 it
has been found (S3), that the density–profile of the inner ringlet shows a detailed structure
which contains information about orbital parameters of the moonlet. This is shown in fig.
2, where the different radial density–profiles - taken after a few synodic periods when the
structure changes only slightly in time - correspond to different eccentricities em of the orbit
of the moonlet. Obviously, the larger em the narrower the width of the ringlet becomes, which
is quite easily seen in fig. 2d where the ringlets caused by moonlet in a circular orbit (solid
line), and originated by a moonlet in an eccentric orbit (em = 1.5h; dashed line), are compared
directly. The width Wr of the ringlet can be written

Wr ≈ C(em) · am · h(Mm), (3)

where am is the semi–major axis of the orbit of the moonlet. The factor C(em) is a nearly
linearly decreasing function of em and takes values C(em = 0) ≈ 3.0 · · ·C(em = 1.5h) ≈ 1.2.
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Fig. 2: Radial profiles of σ(b, t = constant) (b - impact parameter) for different eccentricities em of

the orbit of the moonlet (case of a “cold” ring ⇒ mean-eccentricity of the ring-particles e → 0). A

narrowing of the ringlet-width is really obvious, and furthermore the shape of the density-profile is

turning from a double peaked to a triple peaked one with increasing em. All profiles show a quasi-

symmetry σ(b) ≈ σ(−b) with respect to the orbit of the moonlet at b = 0.0.
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At the same time the double-peaked shape of the ringlet-profile turns to a triple peaked one
with increasing eccentricity em .

Summarizing, the results for

1. the gap-formation and its equilibrium–width (Eq. (2)) of Petit and Hénon (1988);

2. the information about the ringlet found by Spahn et al. (1992) (the ringlet-width and
the shape of its density-profile);

3. as well as the fact that all profiles obtained (PH 3; S2; 3) are quite symmetric with respect
to the mean radial location of the moonlet-orbit, according to σ(b) ≈ σ(−b);

could now be used to search for small embedded satellites. Before doing this in a future work,
the value of the above findings will be tested in the case of satellite Pan, embedded in the
Encke–gap of Saturn’s rings. This is presented in the next section.

3 The action of satellite Pan in the Encke-gap

If the results of our models are of any value for the reality, they should be visible also in the
optical depth-profile of such a ring-region where a satellite is moving. This is the case for the
Encke-division in the A-ring of Saturn, where Showalter (1991) has discovered recently a new
satellite - named Pan. Fig. 3 shows the optical depth profile τ(r) of the Encke–division, which
has been obtained with the Photopolarimeter (PPS–data) of Voyager 2. At first one recognizes
a wide gap - of 315km width - around the orbit of Pan, which is one of the predictions mentioned
above (Section 2). Using this value for the width and applying the relation (2) of PH3 we find
that one needs a moonlet of mass Mm ≈ 1.2 1015kg to create such a gap. For an icy moon
the corresponding size would be about Dm ≈ 13km . This satellite would be able to confine
a ringlet of a width of Wr ≈ 25km, if the moon is assumed to move in a circular orbit. The
narrowing of the ringlet–width (we see only a 15 km wide ringlet) can be explained by an
eccentric orbit of Pan, with an eccentricity of ePan ≈ hPan ≈ 10−4 (according to relation (3)).
Then the radial profile of the ringlet should be triple–peaked (see fig. 2).

The bottom parts of fig. 3 show enlargements of that ringlet region which correspond to
the resolutions of 450m and 900m (processed by binning the PPS-data), respectively. They
seem to have the required symmetry, τ(b) ≈ τ(−b) and furthermore, the τ -profile of the ringlet
seems to have at all resolutions the expected triple–peaked shape. However, the shape of the
profile of the ringlet is in fact not sure because of the large fluctuations of the PPS–data in the
Encke–division.
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Fig. 3: a) Optical depth profile τ(r) near the Encke-division in Saturn’s A-ring, measured by the

Photopolarimeter (PPS) of Voyager 2. Clearly visible: a gap with a faint ringlet at its center, where

the orbit of Pan is located. Both features - the gap and the ringlet - have been predicted by the models

(see Section 2; PH3, and S1). b-c) Enlargements of the region around the faint ringlet at 450m and

900m resolution, respectively. Both examples of the ringlet data seem to have the symmetry with

respect to the orbit of Pan (vertical dashed lines), and appear to be triple peaked.
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To weight the structure seen in the ringlet-profile we carried out a modified t-test, which
seemed to favour the significance of the triple-peaked structure. However, this was not abso-
lutely convincing.

Consequently, to be more sure about the nature of the structure, we have carried out an
independent test by applying the wavelet-analysis method.

The wavelet transform of a signal is the decomposition of this signal onto a basis of functions
obtained by dilatations and translations of a unique function called the mother wavelet. It
allows to analyse a signal with respect of both a scale parameter and a location parameter, so
that it is possible to focus the analysis of the signal at a given location and for a given scale.

Let s(x) be a signal depending only on a space-variable, Ψ(x) the mother wavelet. The
wavelet transform of s(x) is then a two variable function C(a, b) depending on a scale variable
a and on a location variable b:

C(a, b) = 〈s(x), ψa,b(x)〉 with ψa,b =
1

a
Ψ(
x− b

a
) (4)

where 〈h(x), g(x)〉 =
∫

+∞

−∞
h(x)g∗(x)dx and where g∗(x) denotes the complex conjugate of g(x).

C(a0, b0) can be seen as the details present in s(x) at the scale a0 in the vicinity of b0. A wavelet
is a zero mean function and rapidly vanishing, which insures from a practical point of view a
good localization both in space and scale. From the wavelet transform it is then possible to
reconstruct the signal through a reconstruction formula (see Grossmann and Morlet 1985). Our
aim has been to use the wavelet transform as a signal processing tool to extract the behavior of
the signal in the vicinity of the ringlet, the noise having been removed. The range of considered
scales has been chosen in a geometrical progression:

ai+1 = ai ∗ 2
1/12

which insures a practically continuous analysis in scale (see Grossmann et al. 1987), a0 and
amax being defined in order to consider the signal from its step of sampling to its mean. In
order to make cross comparisons, two analysing wavelets have been chosen: the mexican hat
and the french hat (see Bendjoya and Slezak 1992) which are well suited for hole or structure
detections. As preliminary encouraging results we will only present here the reconstruction
obtained with the mexican hat wavelet. It is to be noticed that the french hat wavelet analysis
gives quite comparable results and will be published later (see Bendjoya et al. 1992).

For each scale ai, a wavelet coefficient is computed at each point of the sampled signal
and to reach our goal we have to eliminate the non significant coefficients and also the scales
corresponding to the statistically estimated noise. One disposes then of a set of coefficients on
a range of scale which allows to reconstruct without noise the behavior of the signal on this
range of scales.
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Fig. 4: a) A gray level representation of the wavelet transform of the signal. The x-axis gives the

radial distance from the center of the Encke–ringlet (orbital radius of 133 576 km), and the y-axis the

scale axis. The coefficient less than the threshold are in gray (black for the smallest ones). The gray

levels are renormalized for each scale. The black stripe at the very small scale is due to the sampling

effect. The dashed line indicates the limiting scale from which the reconstruction is done. b) The

reconstructed photon–count signal. The x-axis is the same as above. The y-axis gives the deviation

from the mean photon–count in the Encke–division (no extinction of the star signal). Negative value

means extinction, that is presence of ring–material.
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Therefore, we determine the scales corresponding to the noise then we define a threshold
for the coefficients scale by scale. Then we have a set of wavelet coefficients on a range of scales
not taking into account the noise, and moreover only the statistically significant coefficients are
considered for each scale. The scale below which everything is considered as noise, and also
the thresholds of the wavelet coefficients, are derived from the wavelet analysis of a random
signal generated with the constraint to fit the distributions of the values of the PPS signal.
For each scale of the wavelet transform of the generated signal we compute the distribution
of the coefficients. This strategy allows to decrease significantly and quantify the statistical
fluctuations in the wavelet coefficients. The minimum scale to consider for the reconstruction
without noise has been evaluated to be a40 which corresponds to 250 m. Fig. 4a shows the
wavelet transform of this signal displayed in a space-scale plane by a gray level representation.
This figure is derived from the PPS–photon–count profile I, which is related to the optical depth
by τ ∝ ln (I0/I) (I0 is the photon flux of the occulted star). Since we wanted to detect holes, for
each scales the coefficients lower than the threshold are in gray (black for the smallest ones) and
the higher ones in white. The dashed line visualizes the scale from which the reconstruction
is made. Fig. 4b shows the reconstructed signal from the set of retained coefficients. This
reconstruction is made with a threshold at 1- σ. The structure in three peaks of the ringlet
appears obviously. It is to be noticed that this peculiar structure persists for more restrictive
thresholds. The existence and the symmetry of the ringlet–peaks around the moonlet position
as well as the width of the ringlet are in fairly good accordance with the expected results from
the model recalled in the second section of this paper. Another ringlet seems also be pointed
out by this analysis around the location 133 542 km from the center of Saturn.

4 Discussion

In this paper we have been able to confirm results of theoretical work concerning the gravi-
tational influence of a small satellite, embedded in the rings, on the ring material around its
orbit, by analysing the PPS–data of Saturn’s rings in the vicinity of the orbit of the satellite
Pan. We have been able to estimate the size of Pan to be about 13km deduced from the width
of the Encke–division, by assuming that the division is swept free by the satellite Pan itself
(PH3).

Furthermore, we have compared the shape of PPS–photon–count profile of the Encke–gap–
ringlet, as well as its width with theoretical predictions (S3). To do this it has been necessary
to remove the noise from the PPS–data in the Encke division, which has been carried out using
the wavelet–analysis method. The noise-reduced photon count profile shows three significant
depletions inside the ringlet region, pointing to a triple–peaked density profile of the ringlet.
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This is in accordance with the results of the model and points to an eccentric orbit of Pan
- eccentricity em ≈ 10−4. The width of the ringlet confirms the size estimation of Petit and
Hénon (1988).

However, the data analysis presented here is only a first step in analysing the radial density
profiles of planetary rings. Future work should address the following points:

1. application of different wavelet-functions to the same ring region;

2. refinement of the estimate of the wavelet-coefficient threshold which separates the noise
from “real” structures;

3. applying the wavelet-analysis to other rings (or ring regions), where also small satellites
are expected to exist.

With respect to the theoretical modelling the following outstanding questions concerning
moonlets in planetary rings are of interest:

1. What about the stability of the inner ringlet, if viscous transport processes, sources (the
surface of the moonlets) and sinks (meteorite bombardement) of ring matter is taken into
consideration?

2. How does the azimuthal distribution of the matter in the ringlet looks like (2D - simula-
tions)?

Both sets of problems will be investigated in subsequent papers.
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Abstract

In this paper we present a new method which allows us to extract signal from low
(of the order of 1) signal to noise ratio data. The noise is almost completely removed,
and the significance of the resulting signal is quantified against pure chance fluctuations.
The technique is based on a wavelet transform, and uses a crude pattern–recognition
algorithm in the space–scale plane to extract the interesting information. This method
has been applied to simulated signals with signal to noise ratio ranging from 0.4 to 2.
and the reconstructed signals are shown. From the wavelet transform coefficients, it is
possible to gain some quantitative information on the size of the detected structures. As a
first real case application, we present the analysis of the Encke gap ringlet in the Saturn’s
rings. We show that its detailed shape contain at least two peaks, and that its total width
is about 8 km, while the width of the left peak is about 1.5 km.
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1 Introduction

The Voyager 2 PPS data, obtained from the occultation of the star δ Scorpii by the Saturn’s
rings, have provided a spatial resolution in the radial direction better than 100 m (Lane et

al. 1982 ; Esposito et al. 1983a). Many kinds of structures, at every scale length, have been
discovered from these data in Saturn’s rings. A certain number of papers have been devoted
to the analyses of these data pointing out different kind of features such as density waves
(Esposito et al. 1983a, 1983b; Brophy and Rosen, 1992), gaps (Petit and Hénon, 1988), sharp
edges (Borderies et al. 1989),and wakes (Showalter et al. 1986). A global catalog of 216 features
has been established by Esposito et al. 1987. The main philosophy of this catalog was to present
the significant features, not to study the detailed shape of low signal-to-noise ratio features. It
appears interesting to study such fine details in order to compare the observations with some
theoretical models. Indeed, in what concerns a ringlet due to the presence of an embedded
moonlet, different models lead to different shapes of the ringlet. This shape is strongly related
to the orbital elements of the moonlet and its mass and size (Spahn et al. 1992). Another
interest is to study structures like small variations in the optical depth as an indirect detection
of large particles (from 100 m to a few kilometers in size) that are too small to be directly
detected.

The purpose of this paper is to present a new method of signal processing based on the
wavelet transform. This method allows us to detect, count and reconstruct localized bumps
and/or depletions, with a drastic decrease of noise. Since this method is essentially a local one,
the main limitation of this method occurs when one is trying to detect weak structures close
to strong ones. An iterative process of analysis is then needed. The method is not based on
any modelling of the noise (Gaussian, Poissonian ...), and gives, as it will be shown, satisfying
results even for very low signal-to-noise ratio signals (of order of 0.5). In section 2 we briefly
recall the principles of the wavelet transform and present the strategy we have applied to use
this transform in detection of significant structures. In section 3 we applied this method on
simulated signals. We show the details of the algorithm concerning : the noise elimination, the
quantification of the significance of detected structures, and the behavior of the reconstructed
signal as function of the level of significance. As a first real case application we present the
reconstruction of the Encke gap ringlet.

2 The method

This section is divided in two parts. The first part gives a summary of the main results on the
wavelet transform that will be used in this paper. More details can be found in Daubechies,
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1988, Mallat, 1989 and Meyer, 1989. The second part describes the method we have built to
extract information and remove noise from the wavelet transform coefficients.

2.1 Wavelets transform

We want to study a non–periodic signal S(x) and obtain information on both the location and
the size of the characteristic features (later on called structures). We first recall a few basics
about the well–known Fourier transform.

The Fourier transform is good at giving the “frequency” (size). And it is a projection on
an orthogonal basis. Hence, there exists a unique decomposition and reconstruction formula
for a given function. But there is no relationship between the local behavior of S(x) and the
amplitude of the Fourier coefficients. This information is so deeply buried in the phases of the
coefficients that it is not useful. Another problem is that the functions sin(x) and cos(x) are
not compactly supported (they are not identically null outside of a finite interval). Therefore
we need to know the behavior of S(x) at infinity in order to compute the coefficients, unless
we are dealing with a periodic signal. The Fourier coefficients are simply the inner products of
S(x) and a set of functions derived from two functions sin(x) and cos(x) by a scaling:

sin(x) → sin(ωx), cos(x) → cos(ωx) (1)

The wavelet transform of S(x) is the decomposition on a basis of functions wa,b(x), all
derived from a unique function w(x), called the “mother wavelet”, by translation and scaling:

wa,b(x) = a−1/2w(a−1(x− b)) (2)

The coefficient a−1/2 is not mandatory. One can choose any other exponent for a, depending
on the kind of normalization one is interested in. The exponent 1/2 is useful for normalizing
the energy (the square of the modulus of the coefficients). The function w(x) must satisfy a
“compatibility condition”:

∫

∞

0

|ŵ(ω)|2

|ω|
dω < ∞, (3)

where ŵ(ω) is the Fourier transform of w(x), in order to be a wavelet. This means, in particular,
that the integral of the wavelet should vanish. It must also be well localized both in space and
in scale. Mathematically speaking, we choose an integer r (r is called the order of the wavelet),
and we impose the properties:

� For all x ∈ R (set of reals), all m ∈ N (set of natural integers), and 0 ≤ q ≤ r, there exist
Cm such that:

∣

∣

∣

∣

∣

dqw(x)

dxq

∣

∣

∣

∣

∣

≤ Cm(1 + |x|)−m. (4)
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� The collection
2j/2w(2jx− k), j ∈ Z, k ∈ Z (5)

is an orthonormal basis of L2(R).

The first of these conditions insures the smoothness of w(x), and both conditions together
imply that the moments of w(x), up to order r vanish. S. Mallat (1989) discovered a systematic
approach to find solutions to this problem. I. Daubechies (1988) showed that, for any r, there
exist compactly supported functions w(x) satisfying the above conditions.

The wavelet coefficients of S(x) are simply:

dj,k =
∫

∞

−∞

S(x)wj,k(x)dx, (6)

and the unique way of recovering S(x) from the coefficients is:

S(x) =
∑

j

∑

k

dj,kwj,k(x). (7)

The previous formula gives S(x) as a sum of details from the finest scale to the largest
one. One can also choose another orthonormal basis consisting of the collection wj,k(x), j ∈ N ,
k ∈ Z (set of relative integers), together with the collection q(x − k), k ∈ Z, where q(x) is
a new smooth function with a rapid decay at infinity. Obviously, the two functions q(x) and
w(x) cannot be chosen independently. In this basis, S(x) can uniquely be written as:

S(x) =
∑

k∈Z

ckq(x− k) +
∑

j∈N

∑

k∈Z

dj,kwj,k(x) = E0(S) +
∑

j∈N

Dj(S) (8)

where ck =
∫

∞

−∞
S(x)qk(x)dx =

∫

∞

−∞
S(x)q(x − k)dx. This means that S(x) is the sum of a

smooth part E0(S) and a sequence of finer and finer fluctuations Dj(S). The function q(x) is
a smoothing function that allows us to cut the doubly infinite sum of eq. (7). The q(x − k)’s
account for the large scale fluctuations, the wj,k’s for the small ones. Obviously, the resolution
corresponding to the smooth part can be chosen arbitrarily.

Consider now a real sampled signal. The ranges of variation of j and k are now finite.
The scale range is defined by the sampling step for the smallest one (finest resolution) and the
length of the signal for the largest (coarsest resolution). The range of variation of k is also
defined by the length of the signal. Among the many possibilities for the two functions q(x)
and w(x), we choose:

q(x) = 1− |x| for |x| ≤ 1, (9)

= 0 otherwise,
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and:

w(x) =
|x|

4
−

1

2
for 1 < |x| ≤ 2,

=
1

2
−

3|x|

4
for |x| ≤ 1, (10)

= 0 otherwise,

The process of computing the wavelet coefficients can be done iteratively. The first trivial step
is to take the function q(x) with the same resolution as the sampled signal. We only have to
compute the c0k’s (the superscript refers to the number of the step in the iterative process).
From the formula for q(x), one can see that the c0k’s are simply the sampled values of S(x) (the
integrals are changed into summations since we are dealing with a discrete set of points). Then
we consider a resolution twice as large. We choose the normalizing coefficients such that we
replace q(x) by q(x/2)/2. There is only one level of fine fluctuations to add to the smoothed
part to recover the signal, and it is defined by the set of d1,k = d1k. We can now repeat the
same procedure to the smoothed part of level 1. This will give us two new sets of coefficients
c2k and d2k. With our choice of q(x) and w(x), the formulae to obtain the cjk’s and the djk’s are
very simple:

cjk =
1

2
cj−1

k +
1

4

(

cj−1

k−2j−1 + cj−1

k+2j−1

)

, j ≥ 1, (11)

and:
djk = cj−1

k − cjk. (12)

One can see that the cjk’s are obtained by applying a low–pass filter to the cj−1

k ’s. The djk’s
being obtained by a difference between two levels of cjk’s are in fact the result of a band–pass
filter applied to the signal. Due to the shape of the function q(x), the associated wavelet w(x)
is often called the “linear wavelet”.

For the reconstruction formula, things are quite simple. We are interested in reconstructing
the sampled values, not the signal S(x). When adding the cjk’s and the djk’s, we get the cj−1

k .
Hence, the reconstruction formula is:

S(xk) = cjmax

k +
jmax
∑

j=1

djk, (13)

where jmax is the maximum scale corresponding to the length of the signal.
A more general description of this method has been given by S. Mallat (1989) in the frame-

work of the multiresolution analysis.
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The wavelet transform described above is the one that allows us to work with the coefficients
in order to remove the noise in a real signal (we are working with coefficients in an orthogonal
basis).

2.2 Signal processing

Our aim is to use the wavelet transform as a signal processing tool to extract the behavior
of the signal while removing the noise. We also want to have the possibility to compute
the statistical significance of detections. The main philosophy of the procedure consists in
isolating, in the space–scale plane where the wavelet transform of the signal is unfolded, the
patterns made by coefficients pointing out structures with a level of significance versus the noise
fluctuations. Then the signal is reconstructed from the selected coefficients. The patterns of
significant wavelet coefficients are exhibited by means of a double thresholding. A first one is
very restrictive, leading to the detection of very significant structures within the signal, with
a drastic decrease of the noise, and a second one which allows the addition of more and more
local details as it is chosen more and more permissive. These thresholdings are made scale by
scale by comparing the wavelet coefficients derived from the studied signal to the distribution
of coefficients computed from a pseudo–random signal. The pseudo–random signal is generated
from the signal. For each point xk of the signal, we draw at random a value Spse(xk) of the
pseudo–random signal, according to the probability distribution computed from the real signal.
This strategy has already been applied in asteroid family detection (Bendjoya et al. , 1991)
and allows us to take into account the intrinsic distribution of the noise instead of having to
model it.

The wavelet transform of a white noise signal gives fluctuating coefficients, with no notice-
able pattern in the space–scale plane (see Fig. 1). Also of importance is the fact that almost
no coefficients deviate greatly from the mean. Fig. 1b displays a representation by a gray
scale coding of the wavelet transform coefficients of the signal performed by means of the linear
wavelet. The y-axis stands for the scales and the x-axis for the positions. For a given scale
the value of a coefficient is coded by a gray level which varies linearly from black to white with
the value of the coefficient in the range the mean of the coefficients plus or minus four times
the standard deviation of the coefficients at the given scale. The normalization is made scale
by scale. For a noiseless signal, there is a definite pattern in the space–scale plane (see Fig.
2). Particularly, some coefficients deviate by a large amount from the mean, and they tend to
the mean on each side of the maximum for each scale (this is due to the absence of structures
on each side), with a width proportional to the scale. In the following, in order to determine
the mean and quantify a “large deviation”, we evaluate the mean and standard deviation, for
each scale, of the coefficients of the wavelet transform of a pseudo–signal Sps(x). As mentioned

6



above, this pseudo–signal is a random data set having the same cumulative distribution as the

Fig. 1:

a) A white noise signal. The x–axis is the position, and the y–axis is the signal intensity S(x) b) Gray

scale representation of the coefficients of the wavelet transform of the noise signal of Fig. 1a, using the

linear wavelet (see section 2). The x–axis is the position, and the y–axis is the number of the scale.

For a given scale the value of a coefficient is coded by a gray level which varies linearly from black

to white with the value of the coefficient in the range the mean of the coefficients plus or minus four

times the standard deviation of the coefficients at the given scale. The correspondence between value

and gray level is made scale by scale.
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Fig. 2:

a) A three peak noiseless signal artificially generated. b)Same as Fig. 1b for the signal of Fig. 2a.

signal under study S(x).
We use a pattern–recognition algorithm in order to isolate the significant patterns in the

space–scale plane. This is done by a double thresholding. First, we search for points in the
space–scale plane with a very high level of significance (the seeds). Those seeds are the points
where the coefficients deviate by a large amount, i.e. by more than a given number times the
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standard deviation, from the mean. This defines a first threshold, the seed–threshold Tse(ai).
Usually we take Tse(ai) = 5σSps

(ai), where σSps
(ai) is the standard deviation of the coefficients

of scale ai of the pseudo–random signal. The thresholding is done by retaining the points where
the coefficients minus the mean, defined above, are larger (resp. smaller) than Tse (resp. −Tse)
for a bump (resp. hole) detection. The seeds give a rough estimate of the size, position and
shape of significant structures in S(x). In order to add details to these detected structures, we
need to take into account some coefficients in the vicinity of the seeds.

We define a second threshold, the skeleton–threshold Tsk which determines the points that
might be associated with the seeds. Usually 1.5σSps

(ai) ≤ Tsk(ai) ≤ 2σSps
(ai). Among the

points that are selected by this second weaker threshold, those that are connected by nearest
neighbor relation to a seed actually belong to a pattern. In other words, a wavelet coefficient is
included if the absolute value of its difference from the mean value is above the threshold, and
if it is adjacent to a “seed” either in the location index or the scale index direction. These new
points are new seeds. The procedure of extension is iterated until no new point is added. As
seen before (Fig. 2) a structure in S(x) gives significant coefficients on a range of scales. The
most significant ones, corresponding to the seeds which belong to restricted range of scales (see
Fig. 5a). Therefore we have to extent the seed along the scale axis. Furthermore, at a given
scale, only the coefficients in the middle of the structure are selected by the seed–threshold.
However the structure contributes to coefficients that are not selected by Tse but are significant
according to Tsk (see Fig. 5b). Then we must consider them. At this stage of the procedure we
have a set of coefficients, with a level of significance defined by Tsk but the cores of the patterns
thus defined are significant at the level defined by Tse.

Once we have determined the skeletons, we use the reconstruction formulae with the coeffi-
cients of the skeletons unchanged, and the other ones put scale by scale to the mean. Unfortu-
nately, if we do so, the reconstruction of a bump (resp. hole) gives rise to a hole (resp. bump)
on each side of the signal. Due to the shape of the analysing wavelet, a bump, for example,
gives coefficients that are larger than the mean in its central part and smaller than the mean
on its edges (see Fig. 3, the wavelet coefficients of a Dirac). Therefore, in order to avoid this
reconstruction bias, we must include also the coefficients that are smaller than the mean in the
vicinity of the skeleton of the bump. The size of the vicinity is the extent of the wavelet at
each scale. A precise description of the algorithm to avoid the bias is done in Appendix A.

The different steps of the procedure can be summarized as follow : (i) a first restrictive
thresholding Tse allows to localize the strongly significant structures within the signal, and
eliminate nearly all noise; (ii) the seeds formed by the coefficients selected by Tse are then
enriched along both the scale and the space axis by related coefficients coming from a second
more permissive thresholding Tsk; (iii) in order to avoid some bias of reconstruction, some
coefficients are considered in the vicinity of the skeletons defined by the enriched seeds; (iv) the
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non selected coefficients are changed to the mean of each scale; (v) the signal is reconstructed
from the coefficients obtained after step (iv).

Fig. 3:

a) A Dirac signal. b) Same as Fig. 1b for the signal of Fig. 3a.
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3 Applications

3.1 Simulated signal

The models of gravitational interactions between the particles of a planetary ring and a moonlet
orbiting within this ring has led Petit and Henon (1988) to exhibit the formation of a stable
ringlet from numerical simulations. Collisions between particles were taken into account. This
restricted the number of particles used in the simulations, which in turn prevented the analysis
of fine details within the ringlet. The hydrodynamic approach of Spahn et al. (1992) allows us
to propose as a stable solution a ringlet the density of which is inhomogeneous and presents a
symmetric feature composed by three ”peaks” in the distribution of matter.

By analyzing the Voyager data in the Encke gap of Saturn’s A ring, Showalter (1991)
detected the moonlet Pan which may be responsible for a ringlet in this area. The diameter
of this moonlet was estimated by Showalter to be around 20 km. An analysis made by Spahn
on the Voyager 2/PPS data by means of a t-test method seemed to show the presence of a
three-peak structure (private communication). Unfortunately the very low signal to noise ratio
(of order of 1) of the data prevented him from convingcingly detecting this peculiar structure
with the methods he used. This signal exhibits different structures on a very large range of
characteristic sizes. Therefore the wavelet transform appears well-suited for processing such a
signal.

The idea is to create first a signal with a three–peaked structure and add to it different
realizations of gaussian noise in order to simulate the Voyager data. The wavelet analysis
method has been performed for different shapes of the three–peak structure, different signal to
noise ratios and different realizations of the noise.

3.2 Wavelet coefficients

Fig. 2a shows a noiseless simulated three-peak structure and Fig. 4a the same with an added
noise realization. We define the signal to noise ratio (S/N) as the ratio between the amplitude
of the structure (here, 1) and the standard deviation of the gaussian noise we have added.
This definition gives a local meaning to S/N . In our case, we are not interested in large scale
structures but rather in local ones. Fig. 4a shows a signal to noise ratio of 1.2, since the
standard deviation is 0.833 and the amplitude of the noiseless signal is 1.

Fig. 4b displays the gray level coded coefficients obtained from the wavelets analysis of the
signal of Fig. 4a. Fig. 5a shows the coefficients selected by the first thresholding Tse (here,
Tse(ai) = 5σSps

(ai)). One can easily distinguish the patterns forming the seeds in the space–
scale plane of the wavelet coefficients. One can also remark how the noise corresponding to the
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small scales is eliminated.

Fig. 4:

a) Superposition of Fig. 2a and a white noise leading to a signal to noise ratio of 1.2. b)Same as Fig.

1b for the signal of Fig. 4a.

Fig. 5b shows the skeletons of coefficients created by adding to the seeds the connected
coefficients coming from the second thresholding (Tsk(ai) = 1.6σSps

(ai)) and also a contour plot
of the coefficients added to avoid bias reconstruction (see section 2.2 step (iii)).
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Fig.

5: a) Gray scale representation of the coefficients selected by the first and most restrictive thresholding

(Tse(ai) = 5.0σSps
(ai)), extracted from the coefficients of Fig. 4b (a zoom is made around the region

of interest). b) Coefficients satisfying the second thresholding (Tsk(ai) = 1.6σSps
(ai)) and connected

to the previous ones have been added. The contour plot shows the location of positive coefficients

added to avoid reconstruction biases.

3.3 Reconstructed signals

The main problem at this step of the analysis is to define the “best” second threshold. The
“best” Tsk (quoted hereafter T ∗

sk) must be understood as the threshold which is permissive
enough to add fine details to the localized structures, but also strict enough to avoid the
reappearance of localized sharp features, with a relatively large amplitude, and which can be
associated with noise. One must keep in mind that there are always finite probabilities that
some true features of the signal will be lost by thresholding and some noise spikes will make it
through the threshold. The goal is to optimize the trade–off by picking the “best” threshold,
avoiding any qualitative criterion. For the choice of T ∗

sk we have developed a strategy relying
on the philosophy of the wavelet transform.

The idea is to get an indicator of the presence of noise in the reconstructed signal and to
choose T ∗

sk as the value of the threshold for which this indicator changes suddenly. As we have
already pointed out, the wavelet transform provides a multi-resolution analysis in which small
details in the signal are represented at the small scales. More precisely the noise is mainly
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detected by the first scale. Therefore we compute the first scale of the wavelet transform on
the reconstructed signals obtained for different Tsk. The indicator of the presence of noise is
the standard deviation of the wavelet coefficients at this smallest scale.

Fig. 6: The standard deviation (in a

log scale) of the wavelet coefficients at the smallest scale computed from the reconstructed signals ,

as a function of Tsk

Fig. 6 shows the plot of this standard deviation as a function of Tsk (in a semi-log repre-
sentation). The curve is typically made of plateaus and sharp changes. In each plateau there
is no significant change of the reconstructed signal. Each sharp change (when decreasing Tsk

) corresponds to the adding of new details and eventually some noise. Among a set of discret
values of Tsk, from 2.5 downto 0.5 sampled by a step of 0.1, we choose the smallest value of Tsk

for each plateau. This gives us one or several values of T ∗

sk for which we reconstruct the signal.
Fig. 7 shows the different reconstructed signals as a function of various choices of Tsk. One

can see how the noise is gradually added as Tsk decreases. By a simple look to this series of
reconstructed signals (from bottom right to top left), one is tempted to choose as the value of
T ∗

sk, the one before the alteration of the smoothness of the reconstructed signal. Practically, in
fig. 7, we would choose T ∗

sk(ai) = 1.6σSps
(ai), which correspond to the lower limit of the plateau

in fig. 6.
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Fig. 7: The

series of reconstructed signals (three peaks structures with a noise leading to S/N = 1.2), for a set of

Tsk from 0.5 to 2.4 with a step of 0.1
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Figs. 8 shows the reconstructed signal (full line) superimposed on the simulated noiseless
structure (dashed line), for T ∗

sk(ai) = 1.6σSps
(ai). One can appreciate the quality of the re-

construction of this signal with a signal to noise ratio of 1.2 The noise is eliminated and the
reconstructed structure has a level of significance of, at least, 1.6σSps

(for each scale) versus
chance fluctuations which corresponds for a gaussian distribution of the wavelet coefficient to
a level of confidence of 94.5 %. However, the core of the structure (the part which is associated
to the coefficients selected by Tse(ai)) has a level of significance of 5.σSps

, corresponding to
a confidence of 99.99997 %. Thus, the details added with Tsk are more significant than other
coefficients with amplitudes of the same order of magnitude since they are connected by nearest
neighbor relation to this particularly robust core.

Fig. 8: Full line: the signal recon-

structed from the coefficients of Fig. 5c. Dashed line: the initial noiseless signal.

This reconstructed signal is typical of ones that we obtained from several noise simulations.
No major discrepancies occurs in the reconstructed signals when different noise realizations are
performed. Only the depths of the different peaks varies a little but not significantly. When
looking at fig. 8 one can remark that the left peak is less completely reconstructed than the
central and right ones. This is due to the presence of the larger and deeper central peak which
spoils the detection of this smaller and shallower peak. In fact, there are no coefficients selected
by the two thresholding that correspond to that peak. But the presence of the peak modifies
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the value of the coefficients in the vicinity of the central peak, where we incorporate coefficients
to eliminate reconstruction biases. Hence the small branch at scale 7 in Fig. 5b.

Fig. 9: a)

Reconstruction (full line) of a signal similar to that of Fig. 4a, with a signal to noise ratio of 0.4. The

second threshold Tsk is chosen with the procedure described in section 3.3. The dashed line shows the

initial signal before adding the noise. b) Same as Fig. 8a with signal to noise ratio of 0.8. c) Same as

Fig. 8a with signal to noise ratio of 1.6. d) Same as Fig. 8a with signal to noise ratio of 2.0.

In addition to the shape of the structure, one can also gain some quantitative information.
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The depths (or amplitude) of the different peaks and their respective width can be estimated
from the reconstructed signal. The estimated widths of the three detected peaks have been
found equal to 54, 129 and 38 from left to right which are good estimations of the real values:
about 50, 132 and 57 respectively. These widths have been estimated at the base of each peak.
The size of the global structure, measured at the base of the left peak, is found to be 249 to be
compared to 256 for the real structure. In what concerns the depths we find respectively 0.11,
0.41 and 0.51 to be compared with 0.25, 0.43 and 0.68. The depth of the overall structure,
estimated relative to the mean position of the plateau on each side, is 0.88 (true value: 1.0).

In order to have an idea of how the reconstruction process is influenced by the signal to
noise ratio, we show in Figs. 9a-d the reconstructed signals for S/N = 0.4, 0.8, 1.6 and 2.0
respectively. Obviously, for very small S/N the algorithm is not able to resolve the internal
details of the structure, but it is still able to find it, with the rather good estimate of the
size. It appears from these simulations that this method gives satisfying results on signals with
signal-to-noise ratio greater than about 0.4.

Fig. 10: Reconstruction (full line) of a

signal with a signal to noise ratio of 1.2 and a different noise realization from that of Fig. 8. The

worst case found in our study.

All the signals we showed up to now have been created with the same realization of the
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noise, only changing its amplitude. This noise realization was typical of the ensemble. Fig. 10
shows the worst case we have found among different generations of noise and pseudo–random
signal for a signal to noise ratio of 1.2. This was the only case nearly as bad, the other ones
being closely similar to the reconstruction displayed in fig. 8

Fig. 11:

The four typical kinds of the reconstruction of a single gaussian peak with a signal-to-noise ratio of

1.2. a) smooth mono peak ; b) mono-peak with a very sharp and strong feature ; c) double peak ; d)

triple peak.
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We have also applied our method to a signal with three Gaussian peaks to test the effect of
the shape of the peaks. No significant effect of the structure shape has been found. We have
also simulated a single Gaussian peak in order to estimate the percentage and the importance
(in a qualitative sense) of false detections of weak features. For this purpose we have generated
100 mono-peak signals with different realizations of the noise, but keeping the same signal-
to-noise ratio fixed at 1.2. The structure has been automatically reconstructed following the
above described procedure. Four types of reconstructed signals appeared with the following
percentages : 1) smooth mono peak (59 %) ; 2) mono-peak with a very sharp and strong
feature (12 %) on the side. This kind of feature can unambiguously be interpreted as being
due to the presence of a strong localized noise ; 3) a double peak (21 %) 4) a triple peak (8
%). These two later cases are to be qualitatively compared to the simulations of the three peak
structures (fig. 8 ). The four typical kinds of reconstructed peaks are displayed in figs. 11 (a
to d respectively for cases 1 to 4)

Summarizing the results of the different reconstructions, we have been able to : (i) recover
more than 70 % of mono peaks, (ii) differentiate the false detections of two and three peaks
from the real ones (see figs. 11 c-d and 9 a-d), (iii) to detect and reconstruct the three peaks
structures even with low signal-to-noise ratio. This have led us to apply the whole procedure,
first in the debated, as previously mentioned, Encke gap of the Saturn A ring.

3.4 Data of Voyager in the Encke gap in Saturn’s A ring

In the previous section, we have shown the possibilities and also the limitations of the method.
Particularly, we have seen that this method tends to eliminate the small peaks rather than
adding peaks due to the noise. We will then apply our technique to the PPS Voyager data in
order to examine the detailed structure of the ringlet found in the Encke division. Our aim is
to give some new and independent information which will validate or invalidate the theory of
Spahn (1992).

The PPS data of Voyager 2 have been obtained by counting photons coming from a star of
reference and occulted by the different parts of Saturn’s rings. Fig. 12 shows the analyzed data
in the Encke gap of the Saturn A ring. Since we are counting the number of photons coming
through the rings, the smaller the density of ring material, the larger the number plotted.
Hence a decrease in the level of the signal (what we have called a depletion) corresponds to
an increase of the ring density. The data used here are raw data. This choice has been driven
by the wish to avoid any preliminary smoothing as it is done when dealing with the optical
depth for which a background must be estimated (see Esposito et al. 1987). The overall goal
is merely to assess the efficiency of this method.

Figs. 13 a-b display the reconstructed signals with Tse(ai) = 5σSps
(ai) and Tsk(ai)/σSps

(ai) =
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1.3, and 0.8 respectively. The structures have been automatically reconstructed for these two
values of Tsk, following the criterion we have imposed for the reconstruction. In fig. 13a two
peaks are well identified and there is also the trace of a third one (on the right side of the central
peak). This later appears when reconstructing from the weaker Tsk. Its level of confidence,
versus noise fluctuations, is therefore smaller and one can see in fig. 13b how noise is added on
the left peak at this level of detection. This means that that this third smallest peak is very
close to the level of noise.

Fig. 12: Voyager 2 PPS data of the

Encke gap region in Saturn’s rings. The x–axis gives the radial distance from the center of Saturn in

kilometers, the y–axis gives the photon counts.

In order to get quantitative information from the reconstructed signal we consider both
figures. The global structure is located at 133580.7 km from the center of Saturn and has a
typical width of 14.2 km. This value is estimated in fig 13a just above the right peak detected
in fig 13b. The left peak is centered at 133576.8 km and has a width of 3.3 km (from fig. 13a).
The central one is 8.75 km wide and finally the right one is 3.3 km wide, located at 133586.0
km from the center of Saturn. From the the top of each peak we estimate the depths at 2.2,
2.8, 1.5 units respectively, for the left central and right peaks (keeping in mind that we deal
with photon counts, and so, with integers). Finally from the mean position of the plateau on
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each outer side of the structure the depth of the global feature is measured at 6.5 units.

Fig.

13: a) Reconstruction of the signal of Fig. 12 with Tsk(ai) = 1.3σSps
(ai). b) with Tsk(ai) =

0.8σSps
(ai).

In order to make some conclusions about the physical parameters of satellite Pan, which is
possibly responsible to the ringlet, we plan to apply our method on the results of numerical
simulations modelling the interactions between the moonlet and the ring’s particles.

In the theory of Spahn, the azimuthally integrated radial density profile was symmetric
about the position of the moonlet. But the real ringlet has no reason to be symmetric due to
the asymmetry in the position of outer satellites. Moreover, recent numerical simulations show
that the radial density profile varies from three to two peaks depending on the azimuth relative
to the position of the moonlet.

4 Comparison with other methods

In order to make a rough comparison between our method of structure detection and some
already existing techniques, we present in fig. 14 the result of another analysis. This later is a
classical one which relies on the use of a low pass filter applied to the Fourier Transform of the
signal. The low pass filter is a smooth window with a cut-off frequency from which the higher
frequencies are removed from the spectrum of the signal. Theses high frequency components,
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are mostly noise, and do not contribute to the signal as reconstructed by the inverse Fourier
transform. Fig. 14a and 14b display respectively the reconstructed signal for two different
widths of the low pass filter.

Fig.

14: The same data as in fig.12 analyzed by means of the low pass filter Fourier analysis for 2 different

value of the cut-off frequency.

In this method, the noise is globally decreased instead of locally. Hence, it clearly appears
that, even if a three peak structure seems to be extracted from the signal the amplitude of the
fine features is of the same order of the fluctuations due to the noise. Moreover there is no way
to quantify the level of detection of these features and hence to distinguish them quantitatively
from the noise.

5 Conclusion

We now have a powerful signal processing tool which is able to detect structures even in a
strongly noisy signal and which allows one to quantify the level of significance of the detected
structures versus the noise fluctuations. Moreover the quality of the reconstructed signal and
the information available through wavelet analyses performed by different wavelets lead to a
fairly good estimation of the physical parameters of the detected structures. We have been able
to remove the noise from the raw data of the Voyager 2/PPS experiment in the region of the
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Encke gap. The Encke gap ringlet exhibits, with a high level of confidence, a two peak profile.
According to Spahn et al. (1992), this points to a nearly circular orbit of Pan. However, the
reconstructed profile shows only qualitative agreement with their model. They obtained very
sharp and narrow peaks at the edges, while the right edge of the reconstructed structure is
rather smooth (Fig. 13a). On the other hand, taking the size of Pan found by Showalter (1991)
of about 20km in diameter (icy composition assumed), the satellite should be able to confine
a ringlet of width W > 30km. But we see only W ≈ 14km. However, Spahn et al. .(1992)
showed that the higher the eccentricity of the orbit of the embedded moonlet – here Pan – the
smaller the width W of the ringlet (Eq. 8 and Fig. 2 in Spahn et al. , 1992). According to their
findings the satellite Pan should have an eccentricity of the order of its Hill-scale: ePan ≈ 10−4.
If we assume that this is correct, then the ringlet should show a three peak structure similar to
the artificial signal presented in Fig. 2a. However, there is a hint for the existence of a third
peak (albeit of very small amplitude), but with a lower level of confidence.

Recent simulations (Spahn et al. , 1993) point at deficiencies of the model of Spahn et al.

(1992). These new investigations, where the assumption of axisymmetry has been dropped,
show that the previous results are correct only if averaged azimuthally, while the actual radial
density profile can depend on the azimuthal longitude in the case of eccentric moonlet orbits.
So it might happen that one observes a single, or double or also a triple–peaked ringlet profile
for the same model-run. Thus the existence of the central and a companion peak cannot be
excluded, where the third peak appears even at another azimuthal longitude.

However this first application on the Encke gap ringlet has been performed with raw data
(photon count). Since all the theoretical models use either surface mass density or optical
depth, some parameters cannot be reached by analyzing raw data. We need to transform these
data in optical depth profile in order to obtain the values of these parameters. We are now
performing analyses in a systematic way on the Voyager data of Saturn and Uranus rings. The
results will be presented in a forthcoming paper.

Appendix A

We describe here the algorithm to add coefficients in order to avoid reconstruction biases. As
previously mentioned, a depletion in the signal gives negative coefficients at its location and
positive coefficients on each side (see section 2.2 and Fig. 2b). If we don’t keep the positive
coefficients, the reconstruction will give bumps on each side of the reconstructed depletion.
Therefore, we want to keep these coefficients. The algorithm is as follows. For each scale, do:

i find the sets of contiguous coefficients selected by the thresholding,
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ii on each side of each contiguous set (neighboring in both the scale and location directions),
determine a range the size of which is the extent of the wavelet at that scale,

iii in each range, keep the coefficients that are greater [resp. smaller] than the mean for the
detection of a depletion [resp. bump],

iv add the coefficients that are smaller [resp. greater] than the mean, but not selected by the
thresholding and lie between a set of contiguous selected coefficients and the coefficients
added in step (iii) (this avoids discontinuities on the edges of the reconstructed structures).
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Abstract. A new signal processing analysis, based on the wavelet trans-
form has been developed. It allows the detection and the reconstruction
of fine structures in a very noisy signal. It removes the noise and gives a
quantified level of detection of the structures against chance fluctuations.
This powerful method has been applied on the PPS Voyager 2 data on the
Uranus rings. A preliminary catalog of structures found in the σ Sagitarii
occultation experiment, is proposed here.

1. Introduction

The data obtained in the PPS (recording of brightness of star δ Sco using a
photopolarimeter) experiment of Voyager 2 have revealed a whole hierarchy of
structures in planetary rings, at all scales and with a wide range of amplitudes.
In order to determine physical parameters of the rings and embedded (or shep-
herding) satellites we have to be able to determine precisely the density profile
of features with a signal to noise ratio of the order of 1. In this paper, we briefly
describe a new method of signal processing based on the wavelet transform. The
method has be fully described in Bendjoya et al. 1993. We will recall here the
main philosophy of the analysis and we will propose, as an example of applica-
tion, an inventory of the fine structures detected in the σ Sagitarii occultation
experiment of Voyager 2.

2. Philosophy of the method

The signal processing tool presented here is particularly well suited for the de-
tection and reconstruction of structures (bumps or depletions) embedded in a
very noisy signal. Simulations have been performed and have shown that the
method remains powerful for signals with a signal-to-noise ratio of order of one.
The method gives a reconstruction of the underlying structures precise enough to
derive physical parameters with a relative uncertainty of order of 10 %. Moreover
the detection of these structures can be quantified against chance fluctuations
by giving a level of significance.

The method relies on the following model: a signal is a sum of details at
different scales i.e. different characteristic sizes. A natural assumption is that the
significant information is not equivalently displayed at all scales. For example,

1



the small scales are generally related to the noise while a structure lives on a set
of larger scales, determined by its shape, depth and width.

The idea is then to decompose the signal onto a peculiar band pass filter
basis which allows one to separate the details at the different scales. This basis
is called the wavelet basis and the decomposition of the signal onto this basis
is called the wavelet transform. The wavelet transform acts like a local mathe-
matical zoom which allows detection and reconstruction of a structure without
noise by taking into account only the details corresponding to that structure.

A signal is defined with a cutoff frequency f : the sampling step. The
procedure of the wavelet transform consists in applying a low pass filter with a
cutoff frequency of f/2. We thus obtain a smoothed function of the signal. A
”good” choice (Daubechie, Mallat) of the low pass filter allows the derivation of
a band pass filter just by taking the difference point by point between the signal
and the smoothed function. This band pass filter extracts the details contained
in the frequency band [f/2, f ]. By iterating the same filtering on the smoothed
function, we get on one hand a new smoothed function with a cutoff of f/4 and
on the other hand the details we lost when passing from a resolution to the next
one. Fig. 1 illustrates the whole procedure.
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Filter
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Figure 1. Scheme of the wavelet transform algorithm.

The band pass filter bank provides a basis onto which the signal is decom-
posed. This basis is the wavelet basis and is chosen so that each element is a
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zero mean function. Since the successive steps are obtained by difference we can
reconstruct the signal by simply adding the last smoothed function with all the
details. This is the scheme of a multi resolution analysis. Fig. 2 shows concretely
how it works: starting from the signal one can see the successive smoothed func-
tions and the details at different scales. Since the wavelet basis is composed by
zero mean functions, the details (also known as the wavelet coefficients) have a
zero mean.

Figure 2. Left: the original signal sampled at frequency f (top), the details in
the frequency range [f/2; f ] (middle) and the details in the frequency range

[f/4; f/2] (bottom). Right: the successive smoothed signals at frequencies f/2
(top), f/4 (middle) and f/8 (bottom).

Since the noise is generally associated with the smallest scales the idea is to
reconstruct the signal by adding the last smoothed function and a set of selected
coefficients discarding those corresponding to the noise. In order to select these
coefficients, we do a thresholding in the wavelet plane. The thresholding of the
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wavelet coefficients is done by comparing for each scale the wavelet coefficients
derived from the signal with those derived from a pseudo random signal. This
later is built randomly from the signal following the same histogram of values.
In such a way the noise is not derived from a model and no assumption is made
on it. Due to the shape of the wavelet (zero mean function) a bump of the size
of the studied scale will give high positive coefficients. Similarly, a depletion
will give large amplitude negative coefficients. the threshold is computed from
the distribution of the wavelet coefficients of the pseudo random signal. When
looking for bumps, the threshold is the mean value of the considered scale plus
a given number n times the r.m.s. When looking for depletions, the threshold is
the mean value of the considered scale minus a given number n times the r.m.s.
Among the wavelet coefficients computed from the real signal, only those greater
(in absolute value) than the threshold will be kept for the reconstruction. By
construction the pseudo random signal and the signal itself are similar at the
small scales (scales of the noise). A sufficiently high threshold (n of order of
4) will discard the wavelet coefficients of these smallest scales and hence the
noise. On the other hand at larger scales the pseudo random signal will not
provide high (in absolute value) coefficients but the true signal will. If there is a
structure, it will be conserved for the reconstruction. Fig. 3 displays a scheme
of the thresholding procedure.
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Figure 3. Scheme of the thresholding procedure.

In fact the reconstruction is made after a second thresholding more permis-
sive than the first, whose role is to remove the noise. This second thresholding
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(typically n between 1 and 2) allows to add locally details to the structures de-
tected after the first thresholding. Finally the level of detection (or of confidence
against chance fluctuations) is given by the second thresholding for the finest
details and by the first thresholding for the structure as a whole.

This is the main difference with the more classical filtering methods such
as Fourier Transform or binning which perform a global filtering and are unable
to add details (small scales or high frequency) only where it is needed.

3. Results

3.1. A simulated structure

In order to show the efficiency of the method we have built an artificial structure
with a three peak shape (fig. 4a) and plunged it in a gaussian noise in order to
get a signal to noise ratio (S/N) of 1.2 (fig. 4b). We define the signal to noise
ratio (S/N) as the ratio between the amplitude of the structure (here, 1) and
the standard deviation of the gaussian noise we add. This definition gives a local
meaning to S/N . In our case, we are not interested in large scale structures but
rather in local ones. The signal shown in fig. 4b has a signal to noise ratio of 1.2,
since the standard deviation is 0.833 and the amplitude of the noiseless signal
is 1. Fig. 4c displays the reconstructed signal (solid line) superimposed to the
original structure (dashed line).

The choice of such a shape for the simulated structure has been suggested by
the models of gravitational interactions. The rings are known to be maintained
by the gravitational interaction with satellites (Goldreich and Tremaine 1978,
Shu 1984, Shu et al. 1985 a,b). The effect of an embedded satellite is to clear
a gap (provided its mass is large enough) and retain a faint ringlet on the same
orbit as itself. The profile of such a ringlet can have two or three peaks (Spahn
et al. 1992).

The first thresholding of the wavelet coefficients is 4 times the r.m.s of co-
efficient distribution from the pseudo random signal. We recall that this first
thresholding remove the noise and detect the structure. The second threshold-
ing has been automatically chosen by the procedure equal to 1.5. This second
pass add locally details to the detected structure. The value of this second
thresholding corresponds to a level of significance against chance fluctuation of:
93.3%. One can see the great ability of the method to remove noise, to detect
and to reconstruct precisely fine structures. The two bumps on each side of the
reconstructed three peak depletion are due to the property of the wavelets to
be zero mean functions. This phenomenon is all the more so marked since the
underlying structure is thinner.
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Figure 4. a) the simulated three peaks structure; b) the analysed signal with
S/N = 1.2; c) the superposition of the reconstructed signal and the initial

structure (dashed line).

The wavelet analysis method has been performed for different shapes of the
three–peak structure, different signal to noise ratios and different realizations
of the noise (see Bendjoya et al. 1993) leading to very good detections and
reconstructions.

3.2. The Voyager 2 PPS data

The Voyager 2 PPS data analysed here were obtained from the occultation of
the star σ Sagitarii by the Uranus’ rings. During the occultations the spacecraft
passed behind the ǫ and δ rings in a nearly tangential occultation as viewed
from Voyager as it approached Uranus. Every 10 msec the PPS recorded the
brightness of the occulted star, with successive data points separated by 10 m
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in distance from Uranus’ center for ǫ ring and 3.8 m for δ ring. These data have
been provided to us by Mark Showalter from the PDS.

We have made the analysis on subsets of 32,000 data points with an over-
lapping of 16,000 points. This overlapping enables us to avoid the edge effects
such as false detection or missing detection. The detection and reconstruction
have been performed in a fully automated manner. Local analyses have been
performed around the detected structures. The data are provided with the num-
ber of the record and the photon counts. The conversion to the radii (from the
center of the planet) is made assuming an uninclined equatorial ring (French et
al. 1988).

3.3. Inventory of the Uranus rings structures in the σ Sagitarii oc-
cultation experiment

Results are displayed in fig. 5 and in table 1. In this table the widths have
been computed at the widest location of the reconstructed structure. We recall
that all these reconstructed structures have been detected with a threshold of
4 σ. The thresholds given in column 4 of table 1 correspond to the second
thresholding and give the level of confidence of the details added to the global
structure.

We only present here the structures found both in ingress and egress. We
will not discuss here the possible origin of the fine structures especially inside
the ǫ and δ rings. A forthcoming paper will be devoted to a comparison between
theoretical models and the detection of these fine details. Nevertheless one can
obviously see how the noise is removed and how the quality of the reconstruc-
tion can bring clues to the modelling of the formation and the stability of the
rings. Moreover the detection and reconstruction of these fine structures can be
indicators of the presence of embedded moonlets.

Among the 1,400,000 data points, the analysis has provided the detection
and reconstruction of the well known ǫ and δ rings plus three new ringlets. We
have called these ringlets respectively Iwv, IIwv and IIIwv. The ”wv” subscript
stands for ”wavelet” and its role is to avoid any confusion with possible previous
classifications.

The ringlet Iwv, located at 50685 km (ingress) and 50680 km (egress) from
the center of Uranus could be associated with Ring I detected by Lane et al.
(1986) from the occultation of β Persei. However they found a width of 16 km
where we get a width of the order of a few hundred meters. But they did not
detect the ring in the σ Sagitarii occultation, due to their method of analysis
based on binning. This would be consistent with a narrowing of the thick part
of the ring. In such a case our method allows detection of features not accessible
to older methods.

The newly detected ringlet IIwv, located at 50,023 km is quite wide since
its wider part is almost 6 km at ingress and a little more than 2 km at egress.
The very good agreement in position between ingress and egress is a factor in
favor of the detection of a real feature, in addition to the rather large value of
the second threshold which give a high confidence in the reality of the details of
the profiles (94.5% at ingress and 98.6% at egress). As for the optical depth of
this ringlet, it is comparable at egress to the optical depth of ring Iwv at ingress.
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Although the last new detected ringlet, located at 47,977.4 km, is very
narrow, it has been found both at ingress and egress and it correspond to a
rather large number of data point since the precision in radial distance at that
location is 1.4 m. And even if the level of confidence in all the fine details is not
extremely high (90.3% and 91.9%), the structure itself has been detected at 4σ,
i.e. with a confidence of 99.997%.

Table 1. List of detected features

Name Midpoint range Width (km) Threshold
ǫ (I) 50,870 30.7 1.4
ǫ (E) 50,748 21.7 1.4
Iwv (I) 50,684.9 0.25 1.6
Iwv (E) 50,680.3 0.075 1.5
IIwv (I) 50,023.4 5.8 1.6
IIwv (E) 50,023.1 2.26 2.2
δ (I) 48,300.5 7.6 1.4
δ (E) 48,301.7 7.6 1.1
IIIwv (I) 47,977.4 0.10 1.3
IIIwv (E) 47,972.7 0.11 1.4
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Figure 5. Reconstruction of structures detected in the σ Sagitarii occultation
data both for ingress (left) and egress (right).

4. Conclusion

We presented here a powerful signal processing tool for detection of faint struc-
tures in 1 dimension data set. It allowed us to analyse the σ Sagitarii occultation
observations performed by Voyager 2. In addition to the well known ǫ and δ
rings, we also found 3 new probable rings. One of these (ring Iwv) is probably
the same as Ring I detected by Lane et al. (1986) in the β Persei. In the ǫ ring,
we are able to separate a plateau in the center of the ring and peaks on each
side. By comparison, the standard methods exhibit a noisy reconstructed signal
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which makes it difficult to separate real peaks. The detection of the new features
may need to be confronted to the analysis of β Persei occultation observations.
This analysis, which we are undertaking now, will allow us to explore the Uranus
ring system closer to the planet. The present analysis was performed on a data
set extending only down to 47900 km from the center of Uranus. The analysis
of both data set will allow us to compare observation with the predictions of
theoretical models.

Acknowledgments. We would like to thank Mark Showalter for provid-
ing us with the data used in this study. We are grateful to Franck Spahn for
continuous interesting discussions.
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Abstract

A kinetic model based on a numerical algorithm, rather than Boltzman’s equation,
yields the viscosity and velocity distribution for colliding, finite-size particles in a planetary
ring. Results are similar to those of many-particle simulations, and show that non-local
effects due to the finite size are dominant in many cases of interest. Only for small
particles does the viscosity decrease with increasing optical thickness sufficiently for the
standard ringlet instability model to apply. This numerical kinetic theory will allow study
of multi-size particle distributions, as well as scattering due to gravitational interactions
or alternative collision models.
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1 Introduction

Angular momentum transport is a key process driving the large-scale structure of planetary
rings. It determines the time-scale for radial spreading, which is remarkably short in the case of
Saturn’s rings, and the behavior of wave structures. Analytical studies of momentum transport
generally follow traditional formulations of statistical mechanics, with modified versions of
Boltzman’s equation representing the dynamics in a keplerian swarm of particles (Goldreich
and Tremaine 1978, Shu and Stewart 1985, Araki and Tremaine 1986). Such approaches often
involve complicated mathematics that can obscure the underlying physical processes and make
the modeling of critical collisional effects difficult to evaluate.

Greenberg (1988) took a more heuristic and physical approach which led to results similar
to earlier analyses. Greenberg’s approach was used by Ojakangas and Greenberg (1990) to
examine momentum transport in the case of a disk or planetary ring with a radial surface density
gradient. The general approach involves estimating the concurrent redistribution of velocity
due to collisions and due to keplerian motion. The collisions tend to reduce orbital eccentricities
due to the effect of impact energy loss on relative velocities; collisions may also tend to increase
some eccentricities as scattering creates a more isotropic relative-velocity distribution relative
to the elliptical distribution associated with swarms of orbiting particles. At the same time
keplerian motion tends to drive an isotropic distribution toward a distribution with an excess
of radial velocity components. Modeling these competing effects on velocities gives a steady-
state velocity distribution, which in turn can be integrated to find momentum transport and
its coefficient, the viscosity ν.

Another approach to study of transport processes has been to construct numerical many-
particle simulations in which the actual motion of individual particles is computed and tracked.
Simulations by Wisdom and Tremaine (1988) and by Salo (1991) have provided considerable
insight into the dynamics of such systems.

In computing viscosity, two components of momentum transport must be taken into account.
One component is found by determining (to some level of approximation) the probability dis-
tribution of the velocity of particles’ centers at a representative point in a model planetary
ring. Then the momentum transport is evaluated by integrating over the velocity distribution,
weighted by the probability, the angular momentum carried as particles move radially through
the test locality. Because this calculation ignores transport by interactions between particles
centered at different locations, it yields the so-called “local” component of the viscosity.

However, “non-local” transport must be considered if the particles have significant finite
size. Particles centered on opposite sides of a shear plane may collide and transport momentum
without their centers actually crossing over. This contribution to the viscosity is potentially
important if the particles’ sizes approach the scale of their eccentric motion, ae (alternatively
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called their random or thermal motion by some authors). Similarly, non-local effects must be
considered if mutual gravitational effects near encounter are to be included, as well as collisions,
in a momentum transport model.

The evaluation of viscosity ν by Goldreich and Tremaine (1978) included only the local
component. Their work showed a decrease in ν as the optical thickness τ of the ring increased
above unity. That result inspired explanations for the ringlet structure of Saturn’s rings, because
it was shown to lead to potential ringlet-forming instabilities (Ward 1981, Lin and Bodenheimer
1981). Greenberg’s (1988) analysis also only considered the local component of ν.

Araki and Tremaine (1986) did include the non-local transport due to finite-size particles,
but they invoked a statistical approach that cannot be readily interpreted in terms of the
physics of individual particle collisions. An important result was that ν increases with τ , even
for τ > 1. This work showed that non-local effects can be very important, and that they seemed
to eliminate the possibility of ringlet instabilities.

The many-particle simulations by Wisdom and Tremaine (1988) and by Salo (1991) yielded
similar results, with ring particle radii of 1m. Salo did suggest that reduction of the particle
size in the model to 1cm might give the dependence of ν on τ that is required for the ringlet
instability.

In this paper, we study the effects of the collisional process using a numerical algorithm
that tracks the evolution of the velocity distribution, by statistically taking into account the
continual processes of mutual collision among particles and of keplerian motion. The model
includes finite-size particles and accounts for both local and non-local transport. The algorithm
is based on the physical description of the mechanics by Greenberg (1988). This approach
provides great flexiblity in incorporating physical models of the outcomes of collisions, without
the constraints of fitting a Boltzman formulation. Moreover, because the Boltzman equation
generally has to be solved numerically in any case, it does not really provide any advantage over
our algorithmic computation. Our results are complementary to the many-particle simulations,
providing statistical results rather than the experiment-specific results of the simulations.

Our formalism is structured to allow eventual inclusion of the effect of gravitation between
particles, in cases where Hill’s approximation is valid. In principle, a “close encounter” may
involve collisions alone in the case without gravitation, or both collisions and gravitation when
Hill’s approximation applies. Results with gravitational effects will be described in future work;
the computational results obtained in this paper involve only collisions. First we describe a
two-dimensional (“flat ring”) model. Then in Sec. IV, we describe corrections that approximate
a three-dimensional model. The results confirm the essential results of the earlier work, and
lay the groundwork for inclusion of gravitational encounters and alternative collision models.
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2 Method of Computation

The local viscosity is a parameter describing the transport of momentum across a boundary,
due to particles crossing that boundary. In the case of disks, the relevant boundary is a circle
around the central planet. The radial and tangential components of the velocity of particles
relative to the circular orbital velocity at a point on that circle are given by Vr and Vt. The
momentum transported is proportional to Vt and the rate of transport is proportional to Vr.
Hence the rate of transport of momentum is proportional to 〈VrVt〉, which is the key quantity
to be evaluated. Viscosity is readily calculated by scaling to the density and systematic velocity
shear (e.g. Greenberg 1988).

The non-local transport is due to exchange of angular momentum between pairs of colliding
particles, each with one particle centered inside the shear boundary and the other outside. We
must then sum over all possible collisions involving such pairs and compute the transfer of
angular momentum, which is not included in the calculation of local viscosity.

For both cases (local and non-local), we first need to know the equilibrium velocity distri-
bution in order to determine the frequencies of all the possible collisions and of all boundary
crossings. This is done by integrating the equation of evolution of the velocity distribution
function which accounts for the keplerian shift and the scattering due to collisions.

We have developed a numerical model that computes the evolution of the velocity distri-
bution in (Vr, Vt) space by taking a series of small time steps, and in each one moving the
particles along keplerian paths (the 2/1 ellipses described by Greenberg 1988) and also redis-
tributing them according to collisional statistics. For the keplerian motion we use the epicyclic
approximation, i.e. the calculations are first-order in orbital eccentricity. In each time step,
the probable number of collisions between every pair of points in (Vr, Vt) space is computed for
each time step (see Eq. 2 below), and particles are then redistributed according to a collisional
scattering model.

For the cases considered here, in our scattering model the particles are assumed to be solid
spheres, and the collisions occur with no tangential friction (i.e. perfectly slippery particles so
that relative tangential velocity at the contact point is unchanged). A coefficient of restitution
ǫ with a value between 0 and 1 describes the change in the radial component of the relative
velocity due to energy loss at impact. In most of our numerical experiments, ǫ is assumed
to be a function of impact velocity, according to the data of Bridges et al. (1984). This
collisional model is fairly conventional in ring dynamics studies, although some models (unlike
ours) compute ǫ from the mean velocity of the system, rather than separately for each impact
geometry.

In order to compute the contribution to momentum transport due to collisions between one
particle centered on one side of the boundary and another particle centered on the other side
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(non-local), we account for all possible collisions that transport momentum in this way. We
assume initially a two-dimensional model in which every particle is on the same orbital plane.
In effect, all collisional dynamics are identical to that of hockey pucks on a plane, or of infinitely
long, vertically oriented cylinders. After discussing the results of this two-dimensional case, we
will describe modifications that simulate a three-dimensional disk, i.e. one that is thicker than
the particle size so that particles can pass above and below one another.

Consider Fig. 1, which shows a particle #1 with its center barely on one side of a shear
boundary, being hit by a second particle on the other side. We let r0 be the distance from the
center of the primary to the circular shear boundary under consideration, and R1 and R2 are
the radii of the particles. The particles’ surface number density is given by

Nsurf =
∫

e

∫

θ
n(e, θ)dedθ, (1)

where θ is the mean anomaly of the particle, e is orbital eccentricity, and n the number of par-
ticles (per area of the disk) with e, θ. (At any position in the disk, the velocity is characterized
by e, θ.) The number of particles #2 hitting #1 during a time dt at an orientation within dβ
of the position β is

N2,hit = n(e2, θ2)de2dθ2(R1 +R2)dβ|Vv|dt, (2)

where Vv is the component of the relative velocity perpendicular to the surface of the particles
at the point of contact. From the epicyclic approximation (first order in e) of keplerian motion,
Vv is given by:

Vv = Ω0r0

[

(e2 sin(θ2)− e1 sin(θ1)) sin(β)

+
(

e2 cos(θ2)− e1 cos(θ1)− 3
R1 +R2

r0
sin(β)

)

cos(β)

2

]

, (3)

where Ω0 is the keplerian circular angular velocity at r0.
For any given contact orientation β, a more general momentum-transfer impact might have

the two particles at any distance from the primary such that the shear boundary lies between
their centers. In Fig. 1, for example, the two particles could be shifted leftward, keeping β
constant. The radial distance of particle #1 from the primary can be expressed as:

r(λ) = r0 − λ(R1 +R2)sin(β) (4)

where the coefficient (0 > λ > 1) expresses the position relative to the shear boundary. In Fig
1, λ is very small.
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Fig. 1: Geometry of impact between two finite-sized

particles centered at different distances from a planet. The vertical dashed line just to the right of

the center of particle #1 is the shear boundary under consideration and lies along a constant radial

distance from the planet.

Next consider the change in angular momentum during a collision. Before the impact, the
angular momentum of particle #1 is:

A1(r) = Ω(r)r2(1 +
e1
2
cos(θ1)). (5)

Expanding to first order in the small quantities e and (r − r0)/r0, we obtain:

Ω(r) = Ω0 + (r − r0)
dΩ

dr
(r = r0)

= Ω0

[

1 +
3

2
λ sin(β)

R1 +R2

r0

]

(6)

r2 = r20

[

1− 2λ sin(β)
R1 +R2

r0

]

(7)
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A1(r) = Ω0r
2
0(1−

λ

2
sin(β)

R1 +R2

r0
+

e1
2
cos(θ1)). (8)

Let us call δA the outward transport of angular momentum for one collision. Taking into
account that particle #1 may be closer to the primary than #2 (sin(β) > 0 as in Fig. 1) or
farther out (sin(β) < 0), we have:

δA = −sign(sin(β))(A′

1 − A1) (9)

where primes denote after–collision quantities. The transport of angular momentum per unit
of time is:

dA

dt
=

∫

e2

de2

∫

θ2

dθ2

∫

e1

de1

∫

dθ1

dθ1n(e2, θ2)n(e1, θ1)

×
∫

dβ(R1 +R2)|Vv|
∫ max(r(0),r(1))

min(r(0),r(1))
δA(r)2πrdr

=
∫

e2

de2

∫

θ2

dθ2

∫

e1

de1

∫

dθ1

dθ1n(e2, θ2)n(e1, θ1)

×
∫

dβ(R1 +R2)|Vv|2π
∫ 1

0
dλ| sin(β)|(R1 +R2)r(λ)δA(λ)

=
∫

e2

de2

∫

θ2

dθ2

∫

e1

de1

∫

dθ1

dθ1n(e2, θ2)n(e1, θ1) (10)

×
∫

dβ(R1 +R2)
2Ω0r

2
02πr0(− sin(β))|Vv|(

e′1
2
cos(θ′1)−

e1
2
cos(θ1)).

Note that to first order in e, r(λ)δA(λ) is actually independent of λ.
From numerical evaluation of (10), we can calculate the non–local angular momentum trans-

port and hence the viscosity.

3 Results for single-size particles in a flat ring

Our first numerical experiments were applied to a two-dimensional ring with particles all of
a single size. Initial conditions were selected with a distribution of orbital eccentricities at a
distance of 105 km from a Saturn-mass primary, such that there is a linear decrease of the
number of bodies with each e value, from a maximum at e = 0 to zero at some selected
value. Usually the initial maximum e is about 2 × 10−7, corresponding to er0 being about
20m. The initial conditions also have the particles at any point being uniformly distributed in
mean anomaly θ, i.e. the longitudinal distance from their own pericenters. Each of the cases
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explored in this paper reached a steady state after about 2 hours of CPU time on an HP 735/99
computer independent of the optical depth.

As discussed by Greenberg (1988), the distribution in (e, θ) maps directly into (Vr, Vt) space.
The coordinates eccentricity e vs. mean anomaly θ are essentially polar coordinates equivalent
to local velocity coordinates, as defined by Ojakangas and Greenberg. A population of particles
with a single e value and a uniform distribution in θ would be distributed in (Vr, Vt) space along
ellipses with a 2:1 axis ratio, elongated in the Vr direction. Particles with θ = 0 lie on the +Vt

axis, those with θ = π/2 lie twice as far from the origin on the +Vr axis, etc.

Fig. 2a: Initial velocity

distribution for a case with two-meter- radius particles in a two-dimensional ring with optical thickness

τ = 1, represented by eccentricity and mean anomaly, which map directly into (Vr, Vt).

Fig. 2a shows the initial distribution for a case with two-meter radius particles in a disk
with optical thickness τ = 1. This case is similar to conditions in Saturn’s A and C rings
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(Marouf et al. 1983), where most of the mass is due to particles several meters across with
optical thickness of those particles approaching unity (although most of the total optical depth
is due to much smaller particles that play a less important role in the dynamics).

Fig. 2b: The steady-

state distribution reached after only half an orbital period.

Fig. 2b shows the distribution after about half an orbital period. The particle distribution
has clustered at values of θ that correspond to positive values of VrVt, consistent with previous
evaluations of this distribution. Remarkably, the distribution shown in Fig. 2b is already almost
a steady-state; Several orbits later there is negligible further change. This rapid evolution to
the steady state is consistent with analytical estimates of collision rates that carefully account
for collision cross-sections (eg. Ojakangas and Greenberg, 1990). (A conventional rule of thumb
that collision frequencies are roughly 2τ per orbit gives too low a rate.)

The average velocity and angular momentum transport in this steady state are summarized
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in Table 1. This first case appears on the first line with τ = 1 (the fifth line of data in Table
1.). The thermal velocity (9 × 10−4m/s) is almost five times larger than that required for a
steady-state in Goldreich and Tremaine’s (GT) model (2× 10−4m/s). By itself, this change in
V inserted into the GT theory would yield an increase in the kinematic viscosity by a factor
proportional to V 2, i.e. about twenty, as seen in comparing column νGT (1.7 × 10−5m2/s)
with ν ′

GT (3.3 × 10−4m2/s). When we compute the viscosity from the local mass transport in
our steady-state population (Fig. 2b), we get a similar, but somewhat larger, value νlocal =
4.1× 10−4m2/s. The non-local viscosity is yet an order of magnitude higher, 2.8× 10−3m2/s.

Fig. 3: A time sequence (a,b,c) showing the evolution of the velocity distribution in a case where

the coefficient of restitution ǫ is less than the critical value for equilibrium. Velocities damp to a

steady-state governed by particle size.

It is certainly reasonable that inclusion of the non-local component of viscosity would in-
crease the total viscosity. However, non-local effects are also responsible for the increase in V ,
because particles can reach across the shear boundary, collide, and convert shear velocity into
eccentric motion. Thus the steady-state velocity distribution itself is modified by the non-local
effects. As a consequence, even what we have called the local viscosity is modified by non-local
effects, to the extent that the velocity distribution is affected.

An important caveat regarding these results is that they are based on the two-dimensional
model. As shown in Table 1, in this case ae is almost four times larger than the particle radius.
In a real planetary ring, partitioning of collisional energy out of the plane would produce ring
thickness comparable to ae, so the validity of the 2D model becomes marginal. However, as
shown in Sec. IV, when modifications are made to the model to account for ring thickness, the
trends found in this first case are confirmed, even more strongly.

Next consider a similar case except that ǫ is assumed to be fixed at a value of 0.4, rather
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than dependent on V . According to the GT model, for τ = 1, a fixed ǫ of that value would
result in indefinite decrease in average V , with no steady-state viscosity value. Figs. 3a,b,c
show a time sequence in such a case. From the initial state in Fig. 3a, after half an orbital
period (t=3 in Fig. 3b) the distribution is nearly at the steady state (Fig. 3c). Results are
summarized on line 11 of Table 1. The mean V has only dropped to a value slightly smaller
that in the case of variable ǫ. Here ae is very close to the particle diameter, so it is already
outside the range of validity of the GT model. The finite size of the particles sets a lower
limit on the damping of random velocity, which is evident because we have included non-local
effects. Viscosity values are similar to those computed in the previous case; again the non-local
component of viscosity is dominant.

As shown in Table 1, cases with ǫ fixed at lower values, 0.1 and 0.3, lead to very similar dis-
tributions. Again, V damps to a value controlled by the particle size such that ae is comparable
to R. V and computed viscosity values are similar to those obtained for ǫ = 0.4.

Changing the fixed value of ǫ to 0.5 yields the sequence shown in Figs. 4a,b,c. Here random
velocities quickly increase to high values. By 5% of an orbital period (Fig. 4b), most particles,
which originally had ae less than ∼ 4m, have ae > 10m. During the next several periods, the
remainder of the particles have ae pumped up to > 10m (Fig. 4c). According to these results,
the critical value of epsilon for a steady state is between 0.4 and 0.5, considerably lower than
the value ∼ 0.8 found by earlier studies.

Fig. 4: A time sequence (a,b,c) showing the evolution of the velocity distribution in a case where

the coefficient of restitution ǫ is greater than the critical value for equilibrium. Velocities increase

indefinitely.

Steady state results for other cases with R = 2m are shown in Figs. 5 and 6, where ǫ
depends on V as in Fig. 2a-b, but here τ is 0.1 and 10, respectively. Numerical results for these
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cases are given in Table 1, including also the case with τ = 0.01. In all these cases, viscosity
is considerably larger than the local component. For larger τ , the non-local component of
viscosity becomes overwhelming. For smaller τ , collisions are relatively infrequent, so a large
part of the momentum transport is expected to be due to particles crossing the shear boundary;
Table 1 shows that the non-local part is not dominant (although still very important) for small
τ . Even in the case of low τ , we are finding total kinematic viscosity 50 times larger than given
by the GT model, for example.

τ ǫ R ae our V VGT νGT ν′
GT

νlocal νnon−local

(×104) (×104) (×105) (×105) (×105) (×105)

.01 V 2. 11. 13.6 5 .2 1.52 4.55 3.24

.1 V 2. 11. 13.5 5 2. 14.8 37.3 36.5

.1 V .2 2.4 3.02 5 2. .742 3.12 1.27

.1 V .01 .54 .665 5 2. .036 .134 .0346

1. V 2. 7.2 8.95 2 1.7 32.9 41.4 281.
1. V .5 2.5 3.12 2 1.7 4.01 5.29 28.9
1. V .2 1.2 1.54 2 1.7 .976 1.07 6.11
1. V .01 .34 .423 2 1.7 .0737 .0221 .109

1. .1 2. 4.1 5.13 10.8 14.2 119.
1. .3 2. 5.4 6.67 18.6 26.6 185.
1. .4 2. 6.3 7.79 25.0 36.4 235.

10. V 2. 6.0 7.41 1 .08 4.47 24.6 2270.
10. V .2 1.0 1.28 1 .08 .134 .596 47.1
10. V .01 .30 .378 1 .08 .0116 .0118 .823

Table 1: Summary of results for the two-dimensional model in mks units (viscosities are in m2/s).

Column “τ” shows the optical thickness; “ǫ” shows the coefficient of restitution, with V indicating a

velocity-dependent value based on the experimental results of Bridges et al. (1984); “R” shows the

particle radius in meters; “our V ” shows the RMS magnitude of velocity vector (Vr, Vt); “ae” shows

the value of ae corresponding to “our V ”, for comparison with R; “VGT ” shows the RMS velocity

according to the theory of Goldreich and Tremaine (1978, “GT”), such that the corresponding value

of ǫ (from Bridges et al., 1984) gives a steady-state; “νGT ” shows the corresponding kinematic viscosity

according to GT’s theory. “ν ′GT ” is found by inserting the value of “our V ” into the GT theory (i.e.

their Fig. 4), instead of the value of V used in the previous column; “νlocal” is based on our evaluation

of the mass transport due to particles crossing the shear boundary in the steady-state population that

evolves in our numerical model; “νnon−local” is based on our evaluation of the non-local transport as

calculated according to the theory described in Section II.
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Fig. 5: Steady-state re-

sult for τ = 0.1 shows expected clustering near θ = 45◦ and 225◦, as discussed by Greenberg (1988).

Another meaningful trend is seen in the comparison of Figs. 5 and 6, showing why local
viscosity decreases both for very large and very small τ (a result first found by GT). For low τ ,
Greenberg (1988) showed that particles should be widely distributed in θ with modest concen-
trations near θ = 45◦ and 225◦, such that local viscosity (recall proportional to 〈VrVt〉) is small.
This result is clearly demonstrated in Fig. 5. At the opposite extreme of large τ , concentrations
in the θ distribution are stronger, but viscosity is limited because the concentrations are only
slightly above θ = 0◦ and 180◦.
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Fig. 6: Steady-state re-

sult for τ = 10 shows expected clustering near θ = 0◦ and 180◦.

Results discussed so far all assumed particle radii of 2m. Table 1 also shows results for
smaller particles. For R = 20cm, V is reduced by a factor ∼ 5 relative to the 2m cases for the
same τ . These values, as well as the local viscosity, are fairly close to the GT values, which
are independent of particle size. This closer agreement with GT for smaller bodies probably
reflects the diminished importance of particles’ physical extent in converting keplerian shear to
random motion.

For still smaller particles (see the cases with R = 1cm in Table 1), several of the trends
discussed above continue to hold. For τ > 1 the non-local viscosity remains very important,
but for smaller τ , the non-local viscosity becomes less than the local component, the only place
on Table 1 where that occurs. Note however that for these small particles, the steady state
random motion is such that ae is typically > 30 times the particle size. Because random motion
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would be partitioned to include out-of-plane motion, the two-dimensional model is probably
only relevant for real planetary rings where particles with R > 20cm dominate dynamical
processes. Moreover, it must be recognized that any results for the case τ > 1 are artificial in
a two-dimensional case.

4 Three-dimensional cases

In order to evaluate the effect of significant ring thickness, we have modified our numerical
model in the following way. We account for collisional partitioning of random motion between
in-plane and out-of-plane components by taking the ring thickness h to be equal to 2ae. We
again model each particle as a cylinder, with its axis perpendicular to the orbital plane, but now
we assume that the length of the axis is equal to the diameter 2R of the particle. This allows us
to reduce the collision frequency by a factor 2R/h. In all other ways the algorithm remains as in
the 2D model. Although the vertically aligned cylinders do not allow for modelling of exchange
between in-plane and out-of-plane motion, the assumption of equiparition is reasonable and the
cylinder do allow us to account for the less well-understood in-plane transport processes.

Results using this three-dimensional model are shown in Table 2. In addition, the viscosity
values are shown graphically in Fig. 7. We consider the cases in the same order as they were
discussed in Section III. For τ = 1 and R = 2m, with the velocity-dependent ǫ, we find that
the steady-state random velocity is nearly twice what we found with the 2-D algorithm, giving
a comparable increase in the local viscosity (both versions, ν ′

GT and νlocal). However, the non-
local viscosity decreases by a factor of 5 relative to the 2-D model, because of the reduced
impact rate in the thicker disk. The local viscosity is about 40 times that given by the GT
theory, and the non-local component doubles the mass transport above the local component
alone.

Next we considered the effect of using a fixed value of epsilon, still with τ = 1 and R = 2m.
As in the 2D case, we confirm that sufficiently large ǫ values lead to indefinite increase in
random velocity and in corresponding values of ae (e.g. for ǫ = 0.6); smaller ǫ values (e.g. the
case ǫ = 0.5 shown in Table 2) lead to values of ae comparable to the particle size. The critical
ǫ value for a steady state is between 0.5 and 0.6, larger than given by the 2D calculations, but
still less than the equilibrium value ǫ = 0.8 found by GT in their model (with local-viscosity
only).

Exploring the effects of varying τ for a fixed particle size R = 2m, we find similar trends to
the 2D models. Viscosity is considerably larger than νGT , especially for larger τ . However, the
values are not as extreme as in the 2D case. For small τ the total viscosity is only a few times
larger than νGT , while for τ = 10, it is still several orders of magnitude larger.
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Fig. 7: Viscosity values for

cases shown in Table 2. All cases shown are for the velocity-dependent ǫ, and the dot sizes correspond

to the particle radii in Table 2 (smallest dot is for R = 1cm, largest is for R = 2m). Note the decrease

in ν
GT

as τ increases above 1, which would imply the possibility of ringlet instability. The difference

in values between ν
GT

and ν′
GT

indicates the effect of the different velocities found in our calculations

relative to Goldreich and Tremaine’s theory. The GT theory yields the local component of viscosity

only, and can be compared with our results in the column labeled νlocal. The total viscosity for each

case is shown in the last column, which is the sum of the last two columns in Table 2 (νlocal plus

νnon−local). The right hand column of this figure (νtotal) shows that only for the cm-scale particles

does ν decrease with increasing τ , so as to drive ringlet instabilities.
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τ ǫ R ae our V VGT νGT ν′
GT

νlocal νnon−local

(×104) (×104) (×105) (×105) (×105) (×105)

.01 V 2. 8.6 15.4 5 .2 1.95 .799 .637

.01 V .01 3.2 5.85 5 .2 .281 .214 .000021

.1 V 2. 8.6 15.3 5 2. 19.0 8.92 6.53

.1 V .2 3.5 6.34 5 2. 3.27 1.38 .0729

.1 V .01 2.1 3.76 5 2. 1.15 .511 .00038

1. V 2. 8.6 14.9 2 1.7 91.1 64.8 74.6
1. V .5 3.7 6.41 2 1.7 16.9 11.6 5.42
1. V .2 2.6 4.56 2 1.7 8.52 5.71 1.04
1. V .01 2.1 3.64 2 1.7 5.45 3.53 .0162

1. .5 2. 10.2 17.8 130. 69.5 74.5

10. V 2. 6.3 9.06 1 .08 6.68 47.6 726.
10. V .2 1.2 1.73 1 .08 .243 1.51 9.13
10. V .01 .48 .713 1 .08 .0413 .167 .0521

Table 2: Results for the three-dimensional model. See caption of Table 1 for definitions of quantities

shown.

For R = 20cm, the local viscosity values are comparable to the 2D results. The non-local
component is much smaller than found with the 2D model: For τ ≤ 1, it is negligible compared
to the local component, but for τ = 10 it is much larger than the local component and 100
times larger than νGT .

For cm-size particles, where ae >> R, we expected the 2D results to be invalid. The 3D
model does give very different results. In general the non-local viscosity is small compared with
the local component, and the local component is comparable to νGT .

5 Conclusions

Our computations of angular momentum transport in planetary rings, taking into account the
role of the finite sizes of particles, confirms significant effects on the relative velocity distribution
among colliding particles and on transport processes, due to collisions between particles whose
centers are at different distances from the central planet. The latter effect is responsible for the
non-local component of the viscosity. The various trends of interest are apparent in Fig. 7.

Generally, the rms random velocity appears to be quite close to the value based on Goldreich
and Tremaine’s original theory for cases with the smallest particle sizes (cm-scale). This result
can be seen comparing the velocity values in Table 2, or by comparing νGT and ν ′

GT in Table
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2 or Fig. 7. (The difference between those two viscosity values is due only to the difference in
random velocity.) On the other hand, the velocity values we find for multi-meter particles is a
few times larger than the GT value. This result is reasonable: A model that accounts for the
finite size of particles would in fact be expected to be most relevant for larger particles rather
than for small particles, which can be approximated by infinitesimal sizes.

Similarly, computations of momentum transport, as characterized by the kinematic viscosity
components νlocal and νnon−local, show greatest deviation from the GT results for the larger
bodies. Evidently the ability to reach radially and transmit momentum during a collision is
most effective for larger bodies. Even the local component is affected by the finite particle
size because of the effect on the random velocity. There is also a strong and not unexpected
correlation with optical thickness τ : the greater frequency of collisions with larger τ means
that a proportionately greater contribution to momentum transport comes during collisions
than during the free radial motion of particles, which was assumed dominant process in the
GT theory.

Fig. 7 shows that, although νtotal increases with τ for larger particles, it decreases strongly
for cm-size particles as τ increases above 1. That result seems to support Salo’s (1991) sugges-
tion that the ringlet instability mechanism may be possible for rings that are predominantly
composed of the smaller particles.

Our results can also be compared with the many-particle simulations of Wisdom and
Tremaine (1988) and of Salo (1991), which gave results very similar to one another. For the
cases that they considered, with particle radii of 1m, we have computed and compared our own
values of ν/ΩR2 (c.f. Salo’s Fig. 5c) with those given by Salo (Fig. 8). Note that the non-local
component is in fairly good agreement, generally about 10% higher than the many-particle
simulations. The results are remarkably consistent given the completely different calculational
process. The local component also agrees very well for values of τ < 0.5, but diverges substan-
tially for larger τ . In general for all of these cases with R = 1m, the steady-state rms relative
velocity among particles is about 20% higher in our calculations than in the many- particle
simulations.

There are several possible reasons for the disagreement between our results especially for
the larger values of τ . First, our three-dimensional model is really a corrected version of a
two- dimensional calculation. More precise results will require a full three-dimensional cal-
culation, which could still use our statistical approach. Second, our model does not include
the effects of physical packing among particles which can occur when the filling factor (the
fraction of space filled with the volume of particles) becomes high. This effect can in principle
be included by modifying the statistical treatment, including restricting the range of possible
collision geometries in a tightly packed system.
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Fig. 8: Comparison of viscos-

ity values found for a set of cases explored in the many-body simulations of Salo (1991) and recomputed

by our statistical method. The local component differs significantly for τ > 0.5, but the non-local

component agrees remarkably well.

The computational technique introduced here provides insight into the statistical processes
that determine viscosity, supplementing the results of direct numerical many-body simulations.
Moreover, it has the potential for application to other interesting models. We plan to consider
momentum transport in systems with two or more different sizes of particles for example. It
will also be possible to examine the effects of gravitational interactions among particles, which
may introduce a significant non-local component to the viscosity under some circumstances.
Such results may be applicable to other dynamical systems, such as planetesimal populations
during planet formation, as well as to known planetary rings. Such conditions are ideally suited
for application of our technique, because the added features will involve very little additional
computation time, and the low τ conditions are in the regime where our approach is strongest
and where direct numerical simulations may be impractical. Non-local interactions, whether
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due to finite size of colliding bodies or mutual gravitation clearly play an important role in
momentum transport in a variety of kind of astronomical disks.
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Abstract

We present a self–consistent numerical algorithm aimed at predicting the outcomes
of high–velocity impacts between asteroids (or other small bodies of the solar system),
based on a set of model input parameters which can be estimated from the available ex-
perimental evidence, and including the possible gravitational reaccumulation of ejected
fragments whose velocity is less than a suitably defined escape velocity. All the frag-
ment mass distributions are modelled by truncated power laws, and a possible correlation
between fragment ejection velocity and mass is taken into account in different ways, in-
cluding a probabilistic one. We analyze in particular the effectiveness of the gravitational
reaccumulation process in terms of different choices of the collisional parameters and the
assumed relationship between fragment speed and mass. Both the transition size beyond
which solid targets are likely to reaccumulate a large fraction of the fragment mass and
the collision energy needed to disperse most of the fragments are sensitive functions of
the assumed fragment velocity versus mass relationship. We also give some examples of
how our algorithm can be applied to study the origin and collisional history of small solar
system bodies, including the asteroid 951 Gaspra (recently imaged by the Galileo probe)
and the asteroid families.
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1 Introduction

As a consequence of their non–negligible eccentricities and mutual inclinations, the orbits of
most asteroids can occasionally intersect each other, opening the way to the occurrence of
high–velocity impacts. A typical main–belt asteroid undergoes collisions with other (normally,
much smaller) asteroids at an average velocity of 5.8 km/s and at a rate of the order of
3 × 10−18 (R/km)2Npr yr−1, where R and Npr are the assumed target radius and number of
projectiles (Farinella and Davis, 1992). As a consequence, mutual impacts — whose outcomes
range from small–scale cratering events to catastrophic target break–up — have played a crucial
role in the evolution of the asteroid belt (the pioneering work in this field dates back to the 50s,
e.g. Öpik, 1951, and Piotrowski, 1953; for a recent a review, we refer to Davis et al., 1989). In
the 80s it has been also realized that disruptive impacts may have been important in the origin
and evolution of other types of small solar system bodies, like some icy satellites of the outer
planets (Farinella et al., 1983), the planetary rings (Harris, 1984), and the interplanetary dust
complex (Sykes et al., 1989).

In order to model the outcomes of collisional events occurring in the solar system, hyper-
velocity impact experiments have been carried out in the laboratory at a much smaller scale
(for reviews, see Davis et al., 1986; Fijiwara et al., 1989), and from the observed results some
simple empirical relationships have been derived to describe the collisional outcomes in terms
of several basic input parameters, such as the projectile and target masses, the impact velocity,
some coefficients describing the impact response of the target’s material, and sometimes the
incidence angle (when it is relevant to distinguish between “central” and “grazing” impacts).
For the sake of simplicity, both the target and the projectile are normally considered as nearly
homogeneous and spherical bodies (see Chapman et al., 1989, for a discussion of possible com-
plications). It is important to keep in mind that at least one physically fundamental difference
exists between small laboratory targets and real celestial bodies, which are tens or hundreds of
km across: in the latter case, self–gravity is not negligible, and this has two important conse-
quences. First, self–compression can strengthen the interior of the bodies making more difficult
to fracture and shatter them, and second — if fragmentation occurs — mutual gravity can
cause the partial reaccumulation of the ejected fragments into a so–called pile of rubble.

From the theoretical point of view, our understanding of the complex physical processes
which take place after an energetic impact is still quite limited. Research work on this subject
is currently in progress, based either on semiempirical working hypotheses about the fracture
criteria and the geometry of fragment velocity fields (Paolicchi et al., 1989, 1992), or on the
integration of suitable hydrodynamical equations in two or three dimensions (Ryan et al., 1990;
Ryan and Melosh, 1992; Nolan et al., 1992; Asphaug et al., 1992). However, the corresponding
numerical experiments are still so complicated and demanding (in terms of CPU time and
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memory) that they cannot be used to explore the full range of the relevant parameters, in order
to interpolate and extrapolate to actual solar system conditions, nor to simulate the long–term
collisional evolution of systems like the asteroid belt or the planetary rings. Therefore, the
results of both the laboratory and the numerical experiments need to be incorporated into
suitable scaling algorithms, requiring a number of input parameters (which depend on the
“initial conditions” of the impact and the detailed physical processes following it) and capable
of predicting in a fast and effective manner the outcome of any possible impact occurring in
the system under scrutiny.

In this paper (Secs. 2 to 5) we present such a numerical algorithm, which is physically
simple (but still fully self–consistent) and at the same time fairly realistic, as it includes models
for the effects of self–gravity and fragment reaccumulation. This algorithm is a follow–up and
a refinement of those used in the past by Greenberg et al. (1978), Davis et al. (1979, 1985,
1989), and Farinella et al. (1992), as it includes some additional physical effects. In Sec. 6
we shall discuss how much the predictions of our algorithm are sensitive to different choices
of some collisional parameters, and how the effectiveness of the gravitational reaccumulation
process depends upon the assumed relationship between the ejection velocity and the mass
of the fragments. We shall also give some examples of how this algorithm can be applied to
model the origin of asteroid families and the collisional evolution of different types of small
solar system bodies.

2 The fragmentation threshold

In this and the next three sections we are going to describe our algorithm to predict the
outcome of a collision between two (spherical and homogeneous) bodies of masses Mi, densities

ρi, diameters Di = (6Mi/πρi)
1/3, impact strenghts Si (the index i is always equal to either 1 or

2), when the relative velocity is Vrel and the relative kinetic energy is Erel = M1M2V
2
rel/2(M1+

M2). The impact strength S is defined as the mimimum specific energy delivered to each
body to cause catastrophic fragmentation of it. We are implicitly assuming that an abrupt
transition always occurs between the cratering and shattering regimes. This is supported by the
experimental results, which show that the transition from localized target damage to widespread
fragmentation is associated with a modest increase of the impact energy (see e.g. Fujiwara et

al., 1977, Fig. 10). For targets having a significant self–gravity, recent hydrocode modelling
work by Nolan et al. (1992) and Greenberg et al. (1992) suggests that the transition may be
less distinct than indicated by laboratory experiments, in the sense that a very large crater
can form and remain on the surface even though a significant fraction of the target material is
shattered and reaccumulated. While we shall keep our “catastrophic transition” assumption,
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we shall treat the formation of giant craters in a way that does not conflict with the above
results (see Sec. 4).

We further assume that in the shattering case the available energy is partitioned in equal
parts to the two colliding bodies (Hartmann, 1988), so for each of them fragmentation occurs if
Erel > 2SM/ρxcr (here xcr is a numerical coefficient which will be justified later). The value of
S is obtained from that observed in laboratory impact fragmentation experiments (S0) through
the scaling formula:

Si =
(

S0,i +
πγ

15
Gρ2iD

2

i

)(

Di

0.2 m

)−1/4

, (1)

where the term proportional to D2 is due to self-compressional strengthening of the interior of
each body (see Davis et al., 1985), while the D−1/4 factor is consistent with strain–rate scaling
with size (Housen and Holsapple, 1990). The numerical coefficient γ is possibly material–
dependent and has to be determined by experiments (see e.g. Housen et al., 1991). For
solid materials like basalt or concrete, abundant experimental evidence indicates that S0 ≈
3× 106 J/m3.

Given Si and the other impact parameters, our goal is to compute the mass distribution
of the bodies generated by the impact. Since (i) this is is possible only for a finite number of
target–projectile pairs (M1,M2), and (ii) it is normally useless to keep track of all the masses
of the individual fragments, in our numerical computations we normally grouped the fragments
into a limited number (ranging between ≈ 20 and 100) of discrete, logarithmic mass bins, having
their limits (and central values) scaled by a constant amount (typically, a factor g = 2). In other
words, we considered a geometric sequence of Nbin “central” mass values mbin,k = gk−1mbin,1

(k = 1, ..., Nbin), with every bin spanning the range (mbin,k/
√
g,mbin,k

√
g). In order to compute

the amount of mass reaccumulated by self–gravity after an impact, we also considered the fate
of the low–mass “tail” of the distribution, ranging between the assumed lower cutoff of the
fragment mass (Mdust, see later) and the lower limit of the first bin (mbin,1/

√
g).

3 Shattering events

When one body is shattered, the mass of the largest remaining fragment is given by Mmax,i =
Mifl,i, where

fl,i =
1

2

(

SiMi

ρiErel/2

)1.24

, (2)
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in agreement with the experimental relationship derived by Fujiwara et al. (1977), which
predicts that when the critical energy threshold for fragmentation is just reached, a “core”
half the mass of the original body survives, while this fraction decreases rapidly for increasing
impact energies. Actually, the previous formula is valid for head–on impacts; if we take into
account that oblique impacts are on the average less effective in shattering the involved bodies,
fl,i can be averaged over the incidence angles leading to

fl,i = 3f
2/3
l,i − 2fl,i (3)

(Davis et al., 1985). Hereinafter by fl,i we will always mean the averaged value fl,i given
by Eq.(3). In order to keep the definition of threshold collision as that generating a largest
fragment with half the mass of the target, the condition for fragmentation given in Sec. 2
includes a numerical factor xcr = 4−1/1.24 ∼= 0.327, derived by noting that fl,i = 1/2 when
fl,i = 1/8. This implies that the effective strength of the targets versus impacts from random
directions is about 3 times higher than the value found in the laboratory for head–on impacts.

Next, we need to model the mass distribution of the fragments. Following many previous
investigations (e.g., Hartmann, 1969; Kresàk, 1977; Greenberg et al., 1978; Zappalà et al., 1984;
Fujiwara et al., 1989), we shall assume here a simple, albeit somewhat artificial, mathematical
model: a Pareto power–law distribution truncated at a mimimum cut–off mass Mdust and
consistent with the fact thatMmax,i = fl,iMi is the mass of the largest fragment. More precisely,
we defineNi(≥ m) to be the number of fragments of body i having mass larger thanm andMi(≤
m) and Mi(> m) the total mass of fragments of body i with an individual mass respectively
smaller and larger than m; we assume that Ni(≥ m) has a discontinuity at m = Mmax,i and that
we know that there is just one fragment of mass Mmax,i. If Θ(x) is the Heaviside step function
(= 0 for x < 0 and = 1 for x ≥ 0) and δ(x) is the Dirac delta function (δ(x) = dΘ(x)/dx), then
we have

Ni(≥ m) = Bim
−biΘ(Mmax,i −m)Θ(m−Mdust) + Bi(Mdust)

−bi [1−Θ(m−Mdust)] , (4)

where bi is the characteristic exponent of the cumulative size distribution, and Bi = (Mmax,i)
bi ,

so that Ni(≥ Mmax,i) = 1. The differential (or incremental) fragment size distribution is then
given by:

ni(m) dm = −dNi(≥ m)

=
[

biBim
−bi−1Θ(Mmax,i −m) + δ(m−Mmax,i)

]

Θ(m−Mdust)dm , (5)
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while for the total mass accounted by fragments of mass smaller than any given value m we
obtain (provided bi 6= 1):

Mi(≤ m) =
∫ m

0

m ni(m) dm

=
biBi

1− bi

[

m1−bi − (Mdust)
1−bi

]

[1−Θ(m−Mmax,i)] (6)

+

[

biBi

1− bi

[

(Mmax,i)
1−bi − (Mdust)

1−bi
]

+Mmax,i

]

Θ(m−Mmax,i) .

Of course, the cumulative mass accounted by fragments larger than m will be Mi(> m) =
Mi −Mi(≤ m). Since mass conservation implies Mi(≤ Mmax,i) = Mi, from Eq. (6) we get the
condition

Mi(1− fl,i) =
biBi

1− bi
[(Mmax,i)

1−bi − (Mdust)
1−bi ] , (7)

which allows us to rewrite Eq.(6) as

Mi(≤ m) =
bi(Mmax,i)

bi

1− bi

[

m1−bi − (Mdust)
1−bi

]

[1−Θ(m−Mmax,i)]

+MiΘ(m−Mmax,i) . (8)

Eq.(7) is important because from it, once Mi, Mdust (which are “input parameters”) and fl,i
(or Mmax,i, to be derived from Eqs.(2,3)) are known, the exponent b can be derived in a unique
way. For this purpose, Eq.(7) can be rewritten as

b =
M

Mdust
(1− fl)

M
Mdust

−
(

Mmax

Mdust

)b (9)

and solved numerically by an iterative method. As pointed out with simplified formulae (ig-
noring e.g. the lower cutoff Mdust) by Greenberg et al. (1978) and Farinella et al. (1982), the
assumption that the fragment mass distribution is given by a single–exponent power law allows
us to uniquely specify its “free parameters” Bi and bi. However, we have to stress here that this
assumption is certainly an oversimplification of reality. Indeed, many experiments show that a
much better fit is obtained by using different exponents in different mass ranges (Fujiwara et

al., 1989); the same property is shared by the real asteroid population (Cellino et al., 1991).
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On the other hand, the physical meaning of the transition masses (or sizes) for which the best–
fitting exponents change is not currently well understood; the corresponding values probably
depend both on the material properties and on the impact parameters. As a consequence, we
did not feel justified at this stage to introduce in our algorithm such a complicating feature as
a two– or three–exponents power law to represent the fragment mass distribution — implying
several more free parameters to be given in input, whose choice would be almost arbitrary.

It is easy to see that the critical value bi = 1 separates the case in which most of the mass
is in the largest bodies (bi < 1) from the opposite one. Actually, note that when Mdust ⇒ 0,
bi ⇒ 1− fl,i (rather than the commonly used relationship b = (1 + fl)

−1, see e.g. Greenberg et

al., 1978). For Mdust > 0, the “supercatastrophic” cases when fl ≪ 1 can yield b > 1.
How many fragments are going to escape from the gravitational well of the two colliding

bodies? A detailed answer would require the knowledge of the original position of the fragments
inside their parent bodies, and of their motion immediately after the ejection. Although this
problem could be tackled with models such as that of Paolicchi et al. (1989), its treatment
is well beyond the scopes of the present work. Instead, we are going to derive an “effective
escape velocity” Vesc defined by analogy with the usual definition of surface escape velocity
of a celestial body, and to assume that only the fragments ejected with speeds exceeding Vesc

will escape “to infinity” (i.e., will achieve independent heliocentric orbits). We use the energy
balance equation

1

2
(M1 −Mmax,1 +M2 −Mmax,2)V

2

esc +Wtot = Wfr,1 +Wfr,2 +Wh , (10)

where we have assumed that after the impact both the colliding bodies are shattered (if this is
not the case for body i, Wfr,i will have to be changed into Wcrat,i, to be derived in Sec. 4) and
that the largest fragment from either of them has negligible kinetic energy (this is consistent
with experimental results by Fujiwara and Tsukamoto, 1980, Nakamura and Fujiwara, 1991,
and others). The various W terms in Eq.(10) stand for the following potential energies: Wtot

is the total potential energy of the two bodies just before fragmentation, that is

Wtot = −3GM
5/3
1

5Q1

− 3GM
5/3
2

5Q2

− GM1M2

Q1M
1/3
1 +Q2M

1/3
2

, (11)

where Qi = (4πρi/3)
−1/3; Wfr,i is the sum of the self-gravitation potential energy of each

fragment of body i, derived form the mass distribution (5):

Wfr,i =
3G

5Qi

∫ m=∞

m=0

m5/3 ni(m) dm = − 3G

5Qi

5M
5/3
max,i − 3biM

bi
max,iM

5/3−bi
dust

5− 3bi
(12)
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and Wh is an estimate of the potential energy when the escaped fragments are separated by a
distance of the order of the Hill’s radius of the total colliding mass in the gravitational field of
the central mass (for the asteroids, the Sun) of mass M0 and orbital distance R0:

Wh = −3G(M1 +M2)
5/3

5

(3M0)
1/3

R0

. (13)

4 Cratering events

Assume now that for body i, Erel < 2SiMi/ρixcr, so that it is not shattered by the collision. In
this case a crater is formed on it. If the case of a small–scale collision, resulting into a crater
of mass smaller than 1% of the target mass, we assume that the mass Mcrat excavated from
the crater (and converted into ejected fragments) is just proportional to the impact energy,
through a crater excavation coefficient α to be given in input and depending on the material
properties (for “soft” and “hard” materials, laboratory data yield α ≈ 4 × 10−4 s2/m2 and
α ≈ 10−5 s2/m2, respectively; see Stöffler et al., 1975, and Dobrovolskis and Burns, 1984, p.
467). For larger craters, we still assume a linear dependence of the excavated mass on Erel,
but with coefficients such that the largest possible crater — created when Erel is just less than
the fragmentation threshold 2SiMi/ρixcr — has a mass of 1/10 that of the target. Note that
this is much more than the largest crater predicted by conventional scaling theories, which has
a diameter of the order of the target radius and a volume ≈ 3% of the target volume; rather,
our assumption is in agreement with the recent results of numerical hydrocode simulations of
asteroid impacts, suggesting that such giant craters (or concavities) can be formed without
complete break–up of the target, but damaging the material structure enough for generating a
substantial amount of regolith (Greenberg et al., 1992).

Imposing continuity for Mcrat = Mi/100, we obtain the relationships

Mcrat = αErel for Erel ≤
Mi

100α
, (14)

Mcrat =
9ρixcrα

200Siα− ρixcr

Erel +
Mi

10

ρixcr − 20Siα

ρixcr − 200Siα
for

Mi

100α
< Erel , (15)

In the cratering case, the largest surviving body has always a mass Mi −Mcrat; we shall again
assume a single–exponent power law mass distribution of the ejected fragments, but with an
exponent bi having the constant value 0.8, instead of being related to the impact parameters
(as in the shattering case). As a consequence, the largest fragment from the crater has a mass
fl,iMcrat, with fl,i given by the implicit equation
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fl,i = 1− bi + bif
bi
l,i

(

Mdust

Mcrat

)1−bi

, (16)

which can be easily solved numerically. Also, in the cratering case the post–impact potential
energy is given by

Wcrat,1 = − 3G

5Qi

∫ m=∞

m=0

m5/3 ni(m) dm− 3G(Mi −Mcrat)
5/3

5Qi

= − 3G

5Qi

5M
5/3
max,i − 3biM

bi
max,iM

5/3−bi
dust

5− 3bi
− 3G(Mi −Mcrat)

5/3

5Qi

, (17)

which has to be substituted in Eq.(10) for Vesc instead of Wfr,i.

5 Ejection velocity vs. mass relationship and reaccumu-

lation

Most models of asteroid collisional evolution (e.g., Davis et al., 1985, 1989) neglect any possible
correlation between the ejection velocity and the mass of the fragments (both from shattering
and for cratering events), and just assume that the fraction of the total fragment mass ejected
with speeds exceeding some given value V is (V/Vmin)

−k, Vmin being a fixed lower cutoff to the
ejection velocity. Such a relationship was observed for crater ejecta (with k ≈ 9/4) by Gault et
al. (1963), and later confirmed by other experiments. On the other hand, recent experimental
evidence (Davis and Ryan, 1990; Nakamura and Fujiwara, 1991) indicates that some correlation
exists, with the largest fragments normally going somewhat slower; this is also predicted by the
semiempirical models of Paolicchi et al., 1989, 1992). It is easy to show (see e.g. Nakamura
and Fujiwara, 1991) that in this case the relationship given above for the mass fraction ejected
at speeds > V still holds provided the fragment speeds are proportional to the power −r of
their mass, with r = (1− b)/k.

Here we shall assume that there is a definite correlation between the mass and the velocity
of a fragment, which is modelled either in a deterministic way (e.g., through a definite formula
relating the two quantities), or stochastically (see later). We define Ei = Erel/2 as the energy
received by body i at impact, and Efr,i = fkeEi as the total kinetic energy of ejecta from body
i, where fke is an input parameter specifying which fraction of the impact energy is partitioned
into kinetic energy of the fragments (for a detailed discussion about this anelasticity parameter,
see Davis et al., 1989). In order to avoid any possible divergence of the kinetic energy of the
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fragments, we set a high velocity cutoff Vmax to the distribution (a reasonable phyical motivation
for this is that the fragment velocity is unlikely to exceed the sound velocity in the material,
of the order of some km/s). To give the explicit relationship between the velocity v and the
mass m of a fragment, we must distinguish two cases according to the sign of ri. If ri > 0:

v = Cim
−ri for M̄i ≤ m ≤ Mmax,i

v = Vmax for m < M̄i . (18)

where M̄i = (Vmax/Ci)
−1/ri . On the other hand, if ri < 0 (this case is treated for consistency,

see later):

v = Cim
−ri for Mdust ≤ m ≤ M̄i

v = Vmax for M̄i < m . (19)

The constant coefficient Ci is obtained from an energy conservation equation. Consistently with
the definition of Vesc, in the shattering case the largest fragment is assumed to have a negligible
kinetic energy in the reference frame of the center of mass. On the other hand, this is not
true in the cratering case. Therefore, we will insert the corresponding term in the conservation
equation multiplied by a factor λi, with λi = 0 for shattering and λi = 1 for cratering. We also
define V̄i = Ci (Mmax,i)

−ri . We now have two possibilities: either for all fragments Cim
−ri is

smaller than Vmax, in which case we just solve the equation:

Efr,i = lim
ǫ→0

∫ Mmax,i−ǫ

Mdust

v2

2
mni(m)dm+ λi

V̄ 2
i

2
Mmax,i

= λiC
2

i

M1−2ri
max,i

2
+

C2
i

2

biM
bi
max,i

1− bi − 2ri

[

M1−bi−2ri
max,i −M1−bi−2ri

dust

]

(20)

and obtain

Ci =

√

√

√

√

√

2Efr,i

λiM
1−2ri
max,i +

biM
bi
max,i

1−bi−2ri

[

M1−bi−2ri
max,i −M1−bi−2ri

dust

]

, (21)

or for some fragments (i.e. those having mass Mdust if ri > 0 or Mmax,i if ri < 0) Cim
−ri > Vmax,

in which case the correct equations are different depending on the sign of ri: for ri > 0 we have
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Efr,i = lim
ǫ→0

∫ Mmax,i−ǫ

M̄i

v2

2
mni(m)dm+

V 2
max

2
M(≤ M̄i) + λi

V̄ 2
i

2
Mmax,i , (22)

M(≤ M̄i) =
bi

1− bi
M bi

max,i

[

M̄1−bi
i −M1−bi

dust

]

(23)

and

Efr,i = λiC
2

i

M1−2ri
max,i

2
+

V 2
max

2

bi
1− bi

M bi
max,i

[

M̄1−bi
i −M1−bi

dust

]

+
C2

i

2

biM
bi
max,i

1− bi − 2ri

[

M1−bi−2ri
max,i − M̄1−bi−2ri

i

]

(24)

= C2

i

M1−2ri
max,i

2

[

λi +
bi

1− bi − 2ri

]

+ Cki
i bi

M bi
max,iV

2−ki
max

2

[

1

1− bi
− 1

1− bi − 2ri

]

−V 2
max

2

bi
1− bi

M bi
max,iM

1−bi
dust ;

on the other hand, for ri < 0 we have:

Efr,i =
∫ M̄i

Mdust

v2

2
mni(m)dm+

V 2
max

2
M(> M̄i) , (25)

M(> M̄i) =
bi

1− bi
M bi

max,i

[

M1−bi
max,i − M̄1−bi

i

]

+ λiMmax,i , (26)

Efr,i =
V 2
max

2

biM
bi
max,i

1− bi

[

M1−bi
max,i − M̄1−bi

i

]

+ λi
V 2
max

2
Mmax,i

+
C2

i

2

biM
bi
max,i

1− bi − 2ri

[

M̄1−bi−2ri
i −M1−bi−2ri

dust

]

(27)

= −C2

i

M bi
max,i

2

bi
1− bi − 2ri

M1−bi−2ri
dust + Cki

i bi
M bi

max,iV
2−ki
max

2

[

1

1− bi − 2ri
− 1

1− bi

]

+
V 2
max

2
Mmax,i

[

λi +
bi

1− bi

]

.

Thus, Ci is the solution of the equation
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aCki
i + b− C2

i = 0 , (28)

where

a = M2ri+bi−1

max,i V 2−ki
max

[

2biri
[(1− 2ri − bi)λi + bi] (1− bi)

]

b = 2M2ri−1

max,i

[

1− bi − 2ri
(1− 2ri − bi)λi + bi

] [

Efr,i +
V 2
max

2

bi
1− bi

M bi
max,iM

1−bi
dust

]

(29)

for ri > 0, and:

a = M2ri+bi−1

dust V 2−ki
max

[

2ri
1− bi

]

b = 2M2ri+bi−1

dust M−bi
max,i

[

bi + 2ri − 1

bi

] [

Efr,i −
V 2
max

2
Mmax,i

(

λi +
bi

1− bi

)]

(30)

for ri < 0. Our program first tries the explicit formula (19); then, if the Vmax cutoff turns out
to be relevant, it solves numerically Eqs. (22). Also, we keep the freedom of giving as an input
parameter either ri or ki, and then deriving the other one through the simple relationship

ri =
1− bi
ki

. (31)

This implies that in the “supercatastrophic” case bi > 1, when most of the fragment mass is
concentrated at small sizes, we obtain the somewhat counterintuitive result that either ri or ki
has a negative value.

All the previous formulae have been derived for a deterministic relationship between v and
m, as given by Eqs. (17). A more realistic treatment may assume that the same relationship

has instead a probabilistic nature, i.e., it holds for the r.m.s. value V0 =
√

〈v2〉 of a Maxwellian
distribution function for v:

P (v;V0) =

√

2

π

3
√
3v2

V 3
0

exp

(

− 3v2

2V 2
0

)

. (32)

Note that the mean kinetic energy for bodies of a given mass m is still given by mV 2
0 /2. There-

fore, neglecting statistical fluctuations, we can keep the same energy conservation equations
obtained before to compute the constant Ci in this case (provided Vmax is now interpreted as

12



the higher cutoff to V0). Also in this probabilistic case, we have the choice of fixing in input
either ri or ki.

The self–gravitational reaccumulation process is then treated as follows. The impact is
assumed to always generate a remnant body formed by the two largest remnants from the
colliding bodies (either the largest shattered fragment(s) or the cratered target(s)), plus the

non–escaping fraction of the smaller fragments. Let us define Mesc,i = (Ci/Vesc)
1/ri , namely the

mass corresponding to the escape velocity. In the deterministic case, if ri > 0, the reaccumulated
(non–escaping) fragments are those with mass in the range between max(Mdust,Mesc,i) and
Mmax,i ; if ri < 0, the reaccumulation range is between Mdust and min(Mesc,i,Mmax,i). The
corresponding total mass is easily found by integrating between these limits m.ni(m)dm, with
ni(m)dm given by Eq.(5).

In the probabilistic case, the whole range between Mdust and Mmax,i is considered. For the
mass bins containing ≤ 100 bodies, the non–escaping fragments are drawn at random by using
the velocity distribution (24) — more precisely, given V0 (derived from m through equations
similar to (17)), a number is drawn at random according to the distribution (24), and then
compared to Vesc. For the mass bins containing more than 100 fragments, we just compute the
fraction of non–escaping fragments f from

f =
∫ Vesc

0

√

2

π

3
√
3v2

V 3
0

exp− 3v2

2V 2
0

dv ; (33)

calling erf(v) the error function

erf(v) =
2√
π

∫ v

0

exp−x2dx , (34)

we get

f = − 2√
π

√

3

2

Vesc

V0

exp−3V 2
esc

2V 2
0

+ erf





√

3

2

Vesc

V0



 . (35)

As for the “tail” of the mass distribution (i.e., the fragments having masses between Mdust

and the lower limit of the smallest mass bin, mbin,1/
√
g), we keep the option of dealing with it

“deterministically” or in agreement with the probabilistic procedure. In the former case, the
reaccumulated tail mass is the integral ofm.ni(m)dm between the values max(Mdust,Mesc,i) and
min(Mmax,i,mbin,1/

√
g) (provided ri > 0), or between Mdust and min(Mesc,i,Mmax,i,mbin,1/

√
g)

(if ri < 0).
On the other hand, the “probabilistic” tail treatment is done by taking into account the

velocity distribution (24). This is made by evaluating the double integral
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I = bM b
max

∫ mbin,1/
√
g

Mdust

∫ Vesc

0

P (v;V0(m))m−bdv dm . (36)

If V0 = Vmax, the integral over the mass can be done analytically and that over the velocity
reduces to (25); otherwise a numerical calculation is carried out.

6 Some results and applications

In this Section we shall illustrate some results of our model by means of appropriate plots. We
are not going here to explore systematically the multi–dimensional space of our input model
parameters in order to study how the collision outcomes depend on them, but only to touch on
some specific issues, which we believe are important from the physical point of view. Therefore,
we have assumed a set of nominal input values as follows: density ρ = 2500 kg/m3; impact
velocity Vrel = 5.81 km/s; lower cutoff of the fragment mass Mdust = 10−5 kg; higher cutoff of
the fragment ejection velocity Vmax = 5 km/s; pre–scaling impact strength S0 = 3× 106 J/m3

(S was then derived by means of Eq. (1), with γ = 1); anelasticity parameter fke = 0.1;
crater excavation coefficient α = 10−4 s2/m2. For our numerical computations we used 50
logarithmic mass bins spaced by a factor 2 (i.e., a factor 1.26 in size), with central values of
the corresponding radii ranging from 1.211× 10−2 km to 103 km.

Figs. 1 and 2 give an idea of the mass distribution predicted by the model for shattered
bodies of radii ranging from 1 km to 103 km (roughly, the size range where most observable
asteroids and natural satellites are found). We have plotted in the same frame the mass ratio fl
between the largest fragment and the target (or the total mass excavated in the crater) and the
exponent b of the cumulative fragment mass distribution (see Eqs. (2), (3) and (9)) versus the
logarithm of the radius R of the parent body, by taking a fixed value (either 10−4 or 10−3) of the
projectile–to–target mass ratio M2/M1. As shown by Fig. 1, both b and fl approach the limit
value 1/2 when M2/M1 and R are such that the threshold between shattering and cratering
impacts is reached (this occurs going towards larger target radii, due to the increase of S with
size (see Eq.(1)). b is of course closer to 1 (and fl to zero) for more disruptive collisions, owing
to a lower strength or a larger projectile–to–target mass ratio. For craters, on the other hand,
both b and fl are assumed to have constant values (see Sec. 4). Notice that for the nominal
values of S0 and Vrel, a collision involving a projectile of 1/10 the size of the target normally
causes extensive break–up, and generates a swarm of fairly small fragments. For an asteroid
200 km across, such as the parent bodies of several asteroid families, the average collision rate
quoted in Sec. 1 implies that such collisions have a probability of order unity of occurring
over the solar system lifetime (taking into account that several thousands of bodies of diameter
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≈ 20 km exist in the main asteroid belt, see Cellino et al., 1991).
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Fig. 1: b and fl versus the

logarithm of the radius of the parent body for the nominal values of the impact parameters and a

projectile–to–target mass ratio of 10−4.
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Fig. 2: The same as Fig. 1,

but for M2/M1 = 10−3.
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The curves shown in Figs. 1 and 2 are not significantly changed when the lower mass cutoff
of the fragments Mdust is modified within reasonable bounds. Actually, as discussed in Sec. 3,
this parameter becomes relevant only for supercatastrophic impacts, namely when b is close to
1. This is illustrated in Fig. 3, where the relationship between fl and b is plotted for three
values of Mdust (differing from each other by orders of magnitude) in the supercatastrophic
case M2/M1 = 1. Note that for b smaller than unity the approximation fl ∼= (1 − b), which
corresponds to the limit Mdust ⇒ 0, is fairly accurate.

0.90 0.95 1.00 1.05 1.10
b

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

fl

M1=M2=1e19

Mdust=1e-2
Mdust=1e-5
Mdust=1e-14

Fig. 3: fl versus b for M1 =

M2 = 1019 kg and different values of Mdust.

Fig. 4 shows, for three different values of the projectile–to–target mass ratio, how the
averaged escape velocity Vesc defined by Eq.(10) (normalized to the surface escape velocity of
M1) varies as a function of b. As shown by Farinella et al. (1988), when M2 ≪ M1 and b is
close to 1, the limiting value of the normalized escape velocity is about 0.77. The curves shown
in Fig. 4 are somewhat different from that appearing in Fig. 1 of the above–mentioned paper,
because (i) we now take into account the mass of the projectile (so the curves are shifted upward
for higher values of M2/M1), and (ii) we have made the assumption that the largest fragment,
whose mass is higher for smaller values of b, has always a negligible kinetic energy. Fig. 4 shows
that taking a constant value ≈ 0.8 for the normalized escape velocity after shattering impacts
is normally a good approximation. As shown by Fig. 5, using Mdust > 0 has little influence on
the escape velocity.
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Fig. 4: The average fragment

escape velocity, normalized to the surface escape velocity of M1, versus b for three different values of

the projectile–to–target mass ratio.
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Fig. 5: The same as Fig. 4 for

M2/M1 = 1, but for three different values of Mdust.
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One of the most interesting aspects of the algorithm presented in this paper is that it allows
us to model in several alternative ways the gravitational reaccumulation process, through the
use of different fragment velocity vs. mass relationships, as discussed in Sec. 5. Qualitatively
speaking, the reaccumulation process is due to the fact that, for targets having escape velocities
of tens to hundreds of m/s, the amount of energy sufficient for fragmenting them is normally
not enough to accelerate all the fragments to speeds exceeding Vesc. Thus the slower fragments
fall back and reaccumulate onto the largest one, giving rise to a so–called pile of rubble. The
relevance of this process for asteroid evolution has been discussed in detail more than a decade
ago by Davis et al. (1979) and Farinella et al. (1982). But of course the quantitative aspects
of it depend in a critical manner on the conversion efficiency of the projectile’s kinetic energy
into kinetic energy of fragments (i.e., the anelasticity coefficient fke), as well as on the way the
available kinetic energy is partitioned among fragments of different masses. We shall focus here
on the latter issue.
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Figure 6. The fraction of reac-

cumulated mass for an impact with M2/M1 = 10−3 against a target of radius 100 km, versus the log-

arithm of the impact energy. The latter parameter is normalized to the minimum energy required for

fragmentation. Different fragment velocity vs. mass relationships are used (see text), with D standing

for “deterministic model” and P for “probabilistic model”.

Fig. 6 shows, for a target 100 km in radius and M2/M1 = 10−3, the fraction of reaccu-
mulated mass versus the logarithm of the impact energy, normalized to the critical energy for
fragmentation. Clearly, with our nominal parameter choice, there is a gap of more than two
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orders of magnitude between the fragmentation threshold and the energy needed to disperse
to infinity a significant fraction of the target mass. As a consequence, most asteroids of ra-
dius ≈ 100 km have been probably shattered but not disrupted (i.e., have reaccumulated) as a
consequence of the most energetic collisions they have undergone over the history of the solar
system. Fig. 6 also shows that the reaccumulation process is confined to a narrow energy range
if we assume k = 9/4, i.e. we require that for every velocity V (exceeding a lower cutoff) the
total mass ejected with higher speeds is ∝ V −9/4. The reason for this is that since r = (1−b)/k
(see Sec. 5) and b is close to 1 (see Fig. 2), the exponent r in this case is small, implying
that the velocity of fragments has a weak dependence on their mass: thus, there is an abrupt
transition between the case when nearly all the fragments are slower than Vesc and the opposite
one. The transition is less sharp in the probabilistic case, since in this case for every mass the
fragment velocities have a significant chance variability — and it is much smoother when r
(instead of k) is fixed to the value 1/6, consistent with experimental data. In this case, even
after a supercatastrophic impact a significant fraction of mass is always reaccumulated, because
most of the mass resides in small fragments and is forced to move comparatively fast, so that
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Figure 7. The same as Fig. 6,

but treating always in a deterministic case the small–size tail of the fragment mass distribution.

conservation of energy causes the largest fragments to be slow and to reaccumulate. Fig. 7
shows what happens if the bodies in the small–size tail of the mass distribution (fragments
smaller than about 20 m) are treated deterministically, as described in Sec. 5: while the
r = 1/6 curve is unaffected, because in this case the tail fragments are always fast enough to
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escape, there is a significant change in the k = 9/4 case.
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Fig. 8: The fraction of reaccu-

mulated mass for a shattering impact with M2/M1 = 10−3 versus the logarithm of the target radius.

The same four models have been used as in Fig. 6.

A physically important consequence of the different behaviors of the k = 9/4 and the r = 1/6
models is apparent from Figs. 8 and 9, which give, for the same models used to draw Fig. 6 and
7, the fraction of reaccumulated mass versus target size. Again, for the k = 9/4 models (but
less for the probabilistic ones), there is a comparatively sudden transition from negligible to
substantial reaccumulation, which occurs when the velocity of most fragments becomes lower
than Vesc. This would imply comparatively short collisional lifetimes of small asteroids — say,
in the 1 to 50 km diameter range. Also, in this case small asteroids would be unlikely to be
rubble piles, but would mostly look like single, competent fragments. The opposite conclusion
would follow from the r = 1/6 models, for which the figures show that even small bodies are
always reaccumulated; recall, however, that when Vesc is small only a small number of massive
fragments may become reaggregated. This is possibly an effective mechanism to form km–sized
contact or nearly–contact binary asteroids, such as recently observed by radar (Ostro et al.,
1990).
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Fig. 9: The same as Fig. 8,

but treating always in a deterministic case the small–size tail of the fragment mass distribution.
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Fig. 10: The same as Fig. 8,

but for M2/M1 = 10−4.
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Fig. 11: The same as Fig. 8,

but for M2/M1 just exceeding the threshold value for fragmentation.

For a smaller projectile–to–target mass ratio (10−4, still sufficient for fragmentation), Fig. 10
shows that both the r = 1/6 models and the k = 9/4 models display a transition from complete
fragment escape (with the chance exception of some large fragments in the probabilistic cases,
giving rise to irregular curves) to substantial reaccumulation. Of course here the transition
occurs at smaller target sizes (less than 10 km radius), but there is a shift of about a factor 3
between the two types of models, due to the lower velocity of the big fragments in the r = 1/6
cases. For a barely shattering impact (Fig. 11), on the other hand, all the models yield similar
results, with the transition occurring at a radius of ≈ 5 km (plus or minus a factor 2) and large
fluctuations in the probabilistic cases.

When M2/M1 = 10−5, we are in the cratering case (see Sec. 4), with Eqs.(14) yielding
between 2% and 3% of excavated mass (see Fig. 12; the crater mass increases with target
size because of the decreasing impact strength in this size range). Again the reaccumulation
of crater ejecta is effective at smaller sizes in the r = 1/6 models, and is anyway practically
complete for bodies exceeding 100 km diameter.
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Fig. 12: The same as Fig. 8,

but for M2/M1 = 10−5. This mass ratio results in a cratering event.

These results provide some hints to the collisional history of 951 Gaspra, the asteroid about
13 km in mean diameter recently approached and imaged by the Galileo probe (Belton et al.,
1992). Gaspra’s global shape is strongly irregular, with two very large concavities (about 8 km
across) evident on its limb. However, the general appearance of the surface is fairly smooth, with
no sharp edges and a relative paucity of km–sized craters (while several linear “grooves” are
apparent). To explain these features and the distribution of colors and albedo variations, which
hints to the presence of surface regolith, Greenberg et al. (1992) have suggested that Gaspra’s
interior is a rubble pile, overlain by a substantial regolith layer; the large concavities would
represent giant impact basins, formed by events close to the catastrophic break–up threshold.
This interpretation is consistent with our models, in particular those including a significant
ejecta velocity vs. mass dependence, as they show that even for bodies as small as Gaspra
a large fraction of the material ejected after impacts can be reaccumulated by self–gravity
both in the shattering and in the cratering regime (see Figs. 10–12). Thus Gaspra may have
been originated in a shattering event followed by the reaggregation of a few large blocks; the
subsequent formation of some giant craters may have produced the surface regolith and erased
the small–scale topography.
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Fig. 13: The critical mass ra-

tio for disruption versus the logarithm of the target size, for the four models used in the previous

figures. The bottom (dashed) line is the threshold mass ratio for fragmentation.
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Figs. 13 and 14 show another type of diagram, which should be compared with Fig. 5
of Davis et al. (1985) and Fig. 5 of Housen and Holsapple (1990). Here the lower (dashed)
curve corresponds to the critical projectile–to–target mass ratio for fragmentation, which is
a function of size because of the strength scaling relationship (1). The other curves give the
threshold mass ratio for collisional disruption, with one half of the target mass dispersed to
infinity. While for small asteroids, whose gravity is not efficient in reaccumulating fragments,
the fragmentation and disruption thresholds coincide, for asteroids ≈ 100 km across there is a
large gap between the two thresholds, due to the gravitational reaccumulation process. In this
case, the curves show that the for the r = 1/6 models a sudden discontinuity appears when a
critical size is exceeded, while for the k = 9/4 case there is a more gradual transition. This
behaviour can be explained as follows: in the k = 9/4 case, when all the fragment velocities are
close to each other, a modest specific energy (i.e., mass ratio) increase may be enough to exceed
Vesc; on the other hand, in the r = 1/6 case, after self–gravity has become strong enough to
reaccumulate the largest fragments, a moderate increase in the specific energy causes a mass
shift to fragments of smaller sizes, which receive a larger fraction of the available energy, thus
preventing the largest fragments from starting faster (and being able to escape).
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Fig. 15: The reaccumulated

mass fraction versus M2/M1 for the deterministic r = 1/6 and k = 9/4 models and for two values of

the target radius, close to each other but on the two sides of the critical value for which reaccumulation

starts to be effective.

25



-5.0 -4.0 -3.0 -2.0 -1.0 0.0
Log(M2/M1)

0.0

0.2

0.4

0.6

0.8

1.0
M

re
ac

t/M
to

t
Probabilistic

r=1/6, R=5.25 km
k=9/4, R=5.25 km
r=1/6, R=5.75 km
k=9/4, R=5.75 km

Fig. 16: The same as Fig. 15

but for the probabilistic models.

This sudden “runaway reaccumulation” phenomenon in the r = 1/6 models is illustrated
in Figs. 15 and 16. Here the reaccumulated mass fraction is plotted versus M2/M1 for two
values of the target radius, close to each other but on the two sides of the critical value. While
with the k = 9/4 model the reaccumulated mass always decreases in a nearly–monotonic way
when the impact gets more energetic, the opposite happens with the r = 1/6 model: for the
lower size, when the fragmentation threshold is exceeded by a small amount, there is still a
small drop of the reaccumulated mass fraction to values < 1/2, but this drop disappears at
the larger size, since in this case more energetic collisions result initially into more effective
reaccumulation; only for much higher mass ratios the reaccumulated fraction decreases, falling
again below 1/2 only for values of M2/M1 exceeding the fragmentation threshold by almost two
orders of magnitude.

This is just an example of what we believe is an important finding of this work: for
asteroidal–sized bodies, even keeping fixed the (poorly known) parameter fke, the predicted
collisional outcomes depend in a sensitive way on the adopted fragment velocity vs. mass
model. Take for instance the formation of an asteroid family from a target ≈ 200 km across,
which requires a collisional event capable of ejecting to infinity a substantial fraction of the
mass of the parent body. Fig. 13 shows that, even keeping fke = 0.1 and limiting ourselves
to the four models described earlier, the required projectile–to–target mass ratio ranges from
about 1/300 (k = 9/4, probabilistic) to 1/30 (r = 1/6, deterministic), implying a projectile
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diameter between 30 km and 65 km. This entails about a factor 4 of uncertainty in the available
number of projectiles (≈ 1100 versus 300, respectively; see Fig. 3 of Cellino et al., 1991), with
a similar uncertainty in the collision lifetimes and therefore in the expected number of families.
With the average collision rate derived by Farinella and Davis (1992; see Sec. 1) and the cur-
rent population of main–belt asteroids, the expected number of disrupted 200 km–sized parent
bodies may range between 1.5 and 5. The agreement with the results of family searches such as
that of Zappalà et al. (1990) is good, but reducing the uncertainty would be very important.

7 Conclusions and future work

The algorithm described in this paper is simple enough to be applied in a quick and effective
way to a variety of studies on the collisional evolution of small solar system bodies. In Sec. 6
we have presented some examples related to the evolution of asteroids and the origin of asteroid
families, but similar analyses — with comparable resulting uncertainties — could be performed
for other cases of catastrophic or nearly–catastrophic impacts occurred in the solar system. A
list might include: the formation of Vesta’s family from a giant crater preserving intact most of
the basaltic crust of this asteroid (Davis et al., 1985; Rosa et al., 1992); the collisional origin of
the dust bands discovered by IRAS (Sykes et al., 1989); the formation of reaccumulated, rapidly
spinning (or binary) asteroids (Farinella et al., 1982, 1985; Weidenschilling et al., 1989); the
origin of very large craters and impact basins observed on many natural satellites (Chapman and
McKinnon, 1986); the collisional disruption of Hyperion (Farinella et al., 1983); the formation
of planetary rings from disrupted satellites (Harris, 1984).

Of course, many input parameters of the collisional models — and also the validity of several
empirical relationships used in Secs. 2 to to 6 — are still subject to considerable uncertainty.
We are confident that this uncertainty will be reduced in the near future as result of the
combination between further laboratory experiments and complex numerical simulations of the
collisional disruption process. We think that the algorithm presented here is simple and flexible
enough to easily incorporate new theoretical and experimental results. Once this is done, the
output of our code can be written as a three–dimensional matrix, specifying how many objects
end up in the i–th mass bin following a collision between two bodies lying in the j-th and k–th
mass bins. This matrix can then be read by a program aimed at simulating the time evolution
of an initial asteroid (or planetesimal, or planetary ring particle) population by computing in
any time step for every pair of mass bins the expected number of collisions, as in the work
of Greenberg et al. (1978), Davis et al. (1979, 1985, 1989), and Farinella et al. (1992). We
are going to present in a forthcoming paper some results on the sensitivity of the outcomes of
the simulated asteroid collisional evolution (in terms of the observable size distribution), with
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respect to the fragment velocity vs. mass correlation models, as discussed in Sec. 6, and other
poorly known input parameters. We also plan to develop in the future, along the same lines
discussed here, a more comprehensive algorithm capable of computing impact outcomes, not
only in terms of sizes but also including spins, i.e., angular momenta of rotation — for the
physics involved in this problem see Davis et al. (1989), Cellino et al. (1990) and Farinella et

al. (1992).
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Zappalà for useful discussions and comments. J.–M. Petit’s stay in Pisa in 1991 was supported
through the CNRS–CNR researcher exchange agreement. P. Farinella acknowledges financial
support by the Observatoire de la Côte d’Azur and the EEC research grant no. SC1–0011–
C(GDF).

References

[1] Asphaug, E., Benz, W., & Melosh, H.J., . Asteroid impact studies with SPH 3D
(abstract). Bull. Amer. Astr. Soc., in press,

[2] Belton, M.J.S., Veverka, J., Thomas, P., Helfenstein, P., Simonelli, D.,
Chapman, C., Davies, M.E., Greeley, R., Greenberg, R., Head, J., Murchie, S.,
Klaasen, K., Johnson, T.V., McEwen, A., Morrison, D., Neukum, G., Fanale,
F., Anger, C., Carr, M., Pilcher, C., . Galileo encounter with 951 Gaspra: First
pictures of an asteroid. Science 257, pp. –−.
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Abstract. We have applied the algorithm developed by Petit and Farinella (1993) to
model the outcomes of impacts between asteroids of different sizes, to show that a crucial
feature of these models is the assumed relationship between velocity and mass of fragments
ejected after a shattering impact. Not only how the mean velocity depends upon mass is
important to determine the extent of fragment reaccumulation, but also the distribution
of velocities about the mean values. The available experimental evidence on this issue is
still sparse, and does not constrain the collisional models well enough to allow us to make
reliable predictions on the outcomes of impacts between bodies of size much larger than
the laboratory targets. As a consequence, when the collisional outcome models are used
as an input for simulations of the asteroid collisional history since the origin of the solar
system, the results show a strong sensitivity to the assumed velocity vs. mass relationship.
This sensitivity is stronger in the diameter range (a few tens to a few hundreds of km)
where the self–gravitational reaccumulation of fragments is most effective, but may extend
also to much smaller sizes.
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1. Introduction

Developing realistic models of the outcomes of asteroidal impacts is a basic prerequisite
to understanding the collisional history of asteroid sizes and rotations since the end of the
accretion phase 4.5 × 109 yr ago (Davis et al. 1989). Such impacts occur at velocities of
several km/s, and most current knowledge on their outcomes is based on extrapolations
of small–scale laboratory experiments (Davis et al. 1986; Fujiwara et al. 1989). Recently,
it has become possible to measure at the same time the size and the ejection velocity for
large numbers of fragments generated in the impact or explosive break–up of a solid target
(Davis and Ryan 1990; Nakamura and Fujiwara 1991; Nakamura et al. 1992; Giblin et al.
1994), and a correlation beween these two quantities has been detected. For large–scale
cratering events, a similar correlation had been found by Vickery (1986, 1987), through an
analysis of the distribution of secondary craters surrounding some large impact craters on
Mercury, the Moon and Mars. This is potentially an important finding, because fragment
ejection velocities determine the extent to which material ejected from the target can be
reaccumulated by self–gravity, so as to form a regolith layer (for cratering events) or a
so–called pile of rubble (in the case of break–up; see Davis et al. 1979, Farinella et al.
1982).

Petit and Farinella (1993) have presented a self–consistent numerical algorithm aimed
at predicting the collisional outcomes, based on a set of model input parameters which
can be estimated from the available experimental evidence, and including the possible
gravitational reaccumulation of ejected fragments whose velocity is less than a suitably
defined escape velocity. The possible correlation between fragment ejection velocity and
mass has been taken into account in different ways, including a probabilistic one. In that
paper the effectiveness of the gravitational reaccumulation process has been analyzed for
different choices of the collisional parameters and different assumptions on the relationship
between fragment speed and mass. Both the transition size beyond which a large fraction
of the fragment mass is likely to be reaccumulated and the collision energy needed to
disperse “to infinity” most of the fragments were found to be sensitive functions of the
assumed fragment velocity vs. mass relationship.

The purpose of this paper is that of assessing how much this sensitivity may affect the
final size distributions of asteroids obtained from collisional evolution codes such as those
described in Greenberg et al. (1978), Davis et al. (1979, 1985, 1989, 1994), Farinella et al.
(1992) and Campo Bagatin et al. (1994). These codes simulate the collisional history of
asteroids by evolving in time the numbers of objects residing in a set of discrete size bins.
At any given time step, the expected number of collisions between bodies belonging to any
pair of bins is computed, and in each case the collisional outcome algorithm provides the
size distribution of the objects resulting from the impacts, which are then redistributed
in the bins. In this way, given an initial size distribution (presumably resulting from the
primordial accretion phase) and a suitable set of impact response parameters, the size
distribution resulting from 4.5× 109 yr of evolution can be calculated, and then compared
with the real one as determined from astronomical observations.

The remainder of this paper is organized as follows. In Sec. 2 we recall briefly the
main assumptions embedded in our collisional outcome model and the adopted parameter
choice. In Sec. 3 we discuss some results from this model. In Sec. 4 we present several
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numerical simulations of the collisional evolution of the entire asteroid population, and
comment on the importance of the assumed fragment velocity vs. mass relationship. Some
conclusions from this work and the remaining open problems are summarized in Sec. 5.

2. The collisional outcome model

The collisional outcome algorithm of Petit and Farinella works in the following way. For
each colliding body the available impact energy per unit volume is compared with a frag-
mentation threshold S (called impact strength), which is assumed to vary with size ac-
cording to the strain–rate scaling theory of Housen and Holsapple (1990) and to include a
gravitional self–compressional term in agreement with Davis et al. (1985) and Housen et
al. (1991); this term is multiplied by a free input parameter γ. When a body is shattered,
the mass ratio between the largest fragment and the parent body fl is assumed to be a
decreasing function of the impact energy according to an empirical relationship determined
by Fujiwara et al. (1977), and the fragment mass distribution is modelled by a truncated
power law whose lower cutoff is an input parameter Mdust and whose exponent (−b for the
cumulative distribution) becomes larger and larger as fl decreases. On the other hand, in
the cratering case the fragment mass distribution is assumed to have a fixed exponent, and
the total mass excavated from the crater is determined from an empirical formula relating
it to the impact energy (for small craters, this is a simple linear relationship; the ratio
α between crater mass and projectile energy is called crater excavation coefficient, and is
another input parameter of the model).

In order to determine how many fragments escape from the gravitational well of the
colliding bodies, an effective escape velocity Vesc is computed by a suitable energy balance
equation, assuming that the largest fragment has always a negligible kinetic energy and
taking into account the self–gravitational energy of the fragments. It is assumed that the
total kinetic energy of the fragments is given by a fixed fraction of the projectile’s kinetic
energy (this fraction is the so–called anelasticity parameter fKE), and then this constraint
is used in computing their velocity distribution, as explained below. The fragments whose
velocity exceeds Vesc are assumed to escape “to infinity”, the other ones are reaccumulated
onto the largest fragment.

Most models of asteroid collisional evolution (e.g., Davis et al. 1985, 1989) neglect any
possible correlation between the ejection velocity and the mass of the fragments (both from
shattering and for cratering events), and just assume that the fraction of the total fragment
mass ejected with speeds exceeding some given value v is (v/Vmin)

−k, Vmin being a fixed
lower cutoff to the ejection velocity. Such a relationship was observed for crater ejecta
(with k ≈ 9/4) by Gault et al. (1963); see Housen (1992) for a recent re–analysis of these
experiments. On the other hand, recent experimental evidence (Davis and Ryan, 1990;
Nakamura and Fujiwara, 1991; Nakamura et al. 1992) indicates that some correlation
between fragment velocity and mass does exist, with the largest fragments on average
going somewhat slower; this is also predicted by the semiempirical models of Paolicchi et
al. (1989, 1992). It is easy to show (see e.g. Nakamura and Fujiwara 1991) that in this case
the relationship given above for the mass fraction ejected at speeds > v still holds provided
the fragment speeds are proportional to the power −r of their mass m, with r = (1− b)/k.
The experimental results appear to be consistent with r ≈ 1/6, although the dispersion of
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the data is considerable and smaller values of r cannot be ruled out (Takagi et al. 1992).
Petit and Farinella (1993) have used such a power relationship in either a deterministic

way (i.e., assuming that a fragment of given mass has exactly the velocity value predicted
by the empirical formula) or a probabilistic way (see below). Either r or k can be chosen
as the input parameter specifying the adopted velocity vs. mass relationship, with the
fragment velocity always bound to be less than a higher cutoff Vmax.

In the probabilistic case, for every fragment mass m the V0 ∝ m−r relationship was
assumed to hold for the r.m.s. value V0 =

√

〈v2〉 of a Maxwellian probability distribution
function for the fragment velocity v:
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The choice of a Maxwellian velocity distribution had the following motivations: (i) it
roughly matches the (limited) experimental data available, which show a large dispersion
of the velocities measured for every mass, rather than a strong correlation; (ii) a Maxwellian
distribution for the magnitude of the velocity vector arises whenever the three components
of it follow Gaussian distributions with zero averages and equal sigmas — the simplest
assumption for a nearly–isotropic velocity field; (iii) Eq. (1) is consistent with a fairly
simple method to compute the individual fragment velocities, as the mean kinetic energy
for bodies of mass m is simply given by mV 2

0
/2, so the energy conservation equation to

derive the normalization of the V0 vs. m relationship is the same as in the deterministic
case. Thus for each fragment an ejection velocity value is drawn at random using the
distribution (1), and is compared to Vesc to determine whether the fragment escapes or is
reaccumulated (actually, this is done only when mass bins containing no more than 100
fragments are considered; otherwise Eq. (1) is integrated to obtain the fraction of escaping
fragments for the given mass). Thus, whereas in the deterministic case when r > 0 all
the fragments smaller than some threshold mass (corresponding to v = Vesc) are always
reaccumulated, the transition is more gradual in the probabilistic case.

In this work, we have adopted the following “standard” set of input parameter values:
density ρ = 2500 kg/m3; impact velocity Vrel = 5.85 km/s; lower cutoff of the fragment
mass Mdust = 10−5 kg; higher cutoff of the fragment ejection velocity Vmax = 5 km/s;
pre–scaling impact strength (at laboratory target sizes of 0.2 m) S0 = 106 J/m3 (S was
then scaled up assuming a value γ = 1 for the coefficient of the self–compressional term);
anelasticity parameter fKE = 0.1; crater excavation coefficient α = 10−4 s2/m2. This
parameter choice is derived from the available astronomical and experimental evidence, as
discussed in Fujiwara et al. (1989) and Davis et al. (1989). In particular, the S0 value is
within the typical range — spanning about an order of magnitude — observed for “rocky”
materials such as basalt, granite, etc. (see Fujiwara et al. 1989, Fig. 2; note that Petit and
Farinella 1993 adopted a value 3 times larger), whereas the value of fKE is some 5 times
larger than inferred from the experiments, but consistent with the properties of asteroid
families (see Davis et al. 1989, Fig. 1). In view of their large uncertainty, we shall discuss
in Sec. 4 some results obtained by choosing different values for these two parameters. For
our numerical computations we used 50 logarithmic mass bins spaced by a factor 2 (i.e., a
factor 1.26 in size), with central values of the corresponding radii ranging from 1.211×10−2
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km to 103 km. As concerns the fragment velocity vs. mass relationship, we have chosen
as an input parameter either k = 9/4 or r = 1/6, using r = (1 − b)/k to determine the
missing coefficient, as explained earlier — note that this would give at the same time the
“experimental” values r = 1/6 and k = 9/4 for b = 5/8, which is reasonable since it can
be shown that as Mdust ⇒ 0, b ⇒ (1 − fl), and fl < 1/2 is the definition of shattering
impact (see Petit and Farinella 1993, Sec. 3).

The output of the collisional outcome algorithm can be written as a three–dimensional
matrix, specifying how many objects (escaping fragments, cratered targets, reaccumulated
rubble piles) end up in the i–th mass bin following a collision between two bodies lying
in the j-th and k–th mass bins. This matrix can then be read by a program aimed at
simulating the time evolution of an initial asteroid population by computing in any time
step for every pair of mass bins the expected number of collisions, as in the work of
Greenberg et al. (1978), Davis et al. (1979, 1985, 1989, 1994), Campo Bagatin et al.
(1994) and Farinella et al. (1992). This will be further detailed below.

3. Results from the collisional outcome model

Let us start by commenting some plots that illustrate the results of the collisional outcome
algorithm summarized in the previous Section. Fig. 1 shows, for a target 100 km in radius
and a 10−3 projectile–to–target mass ratio, the fraction of reaccumulated mass vs. the
logarithm of the impact energy, normalized to the threshold energy for fragmentation. A
gap of two to three orders of magnitude is apparent between the fragmentation threshold
and the energy needed to disperse to infinity a significant fraction of the target mass. As
a consequence, with this parameter choice most asteroids of radius ≈ 100 km would have
been shattered but not completely disrupted (i.e., they would have partially reaccumulated)
as a consequence of the most energetic collisions undergone over the history of the solar
system. Fig. 1 also shows that the reaccumulation process is confined to a narrower energy
range in the k = 9/4 case, i.e. when we require that for every velocity V (exceeding a
lower cutoff) the total mass ejected with higher speeds is ∝ V −9/4. The reason for this
is that since r = (1− b)/k (see Sec. 2) and for such supercatastrophic collisions b is close
to 1, the exponent r in this case is small, implying that the velocity of fragments has a
weak dependence on their mass: thus, there is an abrupt transition between the case when
nearly all the fragments are slower than Vesc and the opposite one. The transition is less
sharp in the probabilistic case, since in this case for every mass the fragment velocities
have a significant dispersion about the mean value — and it is much smoother when r
(instead of k) is fixed to the value 1/6. In this case, even after a supercatastrophic impact
a significant fraction of the target mass is reaccumulated, because most of the mass resides
in small fragments and is forced to move comparatively fast, so that conservation of energy
causes the largest fragments to be slow and reaccumulate.

The same phenomenon can be seen in Fig. 2, where the fraction of reaccumulated
mass is plotted vs. target size. Again, for the k = 9/4 cases (but less for the probabilistic
one), there is a comparatively sharp transition from negligible to substantial reaccumu-
lation, which occurs when the velocity of most fragments becomes lower than Vesc. As
remarked by Petit and Farinella (1993), this behavior would imply comparatively short
collisional lifetimes for small asteroids, which would be unlikely to become rubble piles,
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but would mostly look like single, competent fragments. The opposite conclusion would
follow from the r = 1/6 models, for which Fig. 2 shows that even small bodies are always
reaccumulated; recall, however, that when Vesc is small only a small number of massive
fragments may become reaggregated.
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Figure 1. The fraction of reaccumulated mass for an impact with 10−3 projectile–to–
target mass ratio against a target of radius 100 km, vs. the logarithm of the impact energy.
The latter parameter is normalized to the minimum energy required for fragmentation.
Different fragment velocity vs. mass relationships are used (see text), with D standing for
“deterministic model” and P for “probabilistic model”.

Fig. 3 shows another type of diagram, which should be compared with Fig. 5 of Davis
et al. (1985) and Fig. 5 of Housen and Holsapple (1990). Here the lower (dashed) curve
corresponds to the critical projectile–to–target mass ratio for fragmentation, which is a
function of size because of the strength–scaling relationship. The other curves give the
threshold mass ratio for collisional disruption, with one half of the target mass dispersed
to infinity. While for small asteroids, whose gravity is not efficient in reaccumulating
fragments, the fragmentation and disruption thresholds coincide, in agreement with Fig. 1
for asteroids ≈ 100 km across there is a large gap between the two thresholds, due to the
gravitational reaccumulation process. In this case, the curves show that for the r = 1/6
models a sudden discontinuity appears when a critical size is exceeded, while for the
k = 9/4 case there is a more gradual transition. This behaviour can be explained as
follows: in the k = 9/4 case, when all the fragment velocities are close to each other, a
modest specific energy (i.e., projectile–to–target mass ratio) increase may be enough to
exceed Vesc; on the other hand, in the r = 1/6 case, after self–gravity has become strong
enough to reaccumulate the largest fragments, a moderate increase in the specific energy
causes a mass shift to fragments of smaller sizes, which receive a larger fraction of the
available energy, thus preventing the largest fragments from starting faster (and being
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able to escape).
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Figure 2. The fraction of reaccumulated mass for a shattering impact with 10−3

projectile–to–target mass ratio vs. the logarithm of the target radius. The same four
models have been used as in Fig. 1.
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Figure 3. The critical mass ratio for disruption vs. the logarithm of the target size,
for the four models used in Figs. 1 and 2. The bottom (dashed) line shows the projectile–
to–target threshold mass ratio for fragmentation, derived from scaling laws for the impact
strength S as described in the text.
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4. Simulations of asteroid collisional evolution

We now come to the numerical simulations of the collisional history of the asteroid
belt. In summary, we have developed a code which integrates numerically (by a simple
variable–stepsize Eulerian technique) the following set of first–order differential equations:

dNk

dt
=

nbin
∑

i,j=1

fijkpij
(Ni − δij)Nj

(1 + δij)
−B

Nk

Dk
, (2)

where Nk are the populations of the nbin (= 50) mass bins; fijk is the number of fragments
injected into the k–th bin by an impact between two asteroids belonging to the i–th and the
j–th mass bins, as determined by the collisional outcome algorithm described earlier; pij
is the rate of impacts for a pair of asteroids belonging to the same two bins (derived from
their impact cross section and the average intrinsic collision probability as estimated by
Farinella and Davis 1992); δij (= 1 if i = j and 0 otherwise) accounts for collisions between
asteroids residing in the same bin; and the last term in the right–hand member accounts
for the removal of small particles due to the Poynting–Robertson drag, whose efficiency is
assumed to be inversely proportional to the (mean) particle diameter Dk of the k–th bin
(for the constant coefficient B the value 1/(4.5× 1010) m/yr has been adopted).

Note that using the same matrix fijk over the whole evolution time span requires that
we assume that the impact response parameters defined in Sec. 2 do not change with time.
Actually, one may expect that when an asteroid is converted by an energetic collision into
a rubble pile (a weakly bonded aggregate of fragments), its subsequent behaviour becomes
very different from the previous one. There is some experimental evidence that this is not
the case, however, at least as far as the impact strength S0 is concerned (Ryan et al. 1991).
As for fKE and k, the available data are too few to justify the development of a specific
model for rubble piles.

As for the initial conditions, the starting population was built by joining two power
law distributions at a transition diameter of 100 km, with 400 bodies assumed to exceed
this size and being distributed according to the cumulative law N(> D) ∝ D−3.5 (with
the only exception of the four largest size bins, containing Ceres, Pallas and Vesta, which
were assumed to start already with 1, 0, 0 and 2 bodies). For D < 100 km, we used the
cumulative distribution N(> D) ∝ D−3. This choice for the initial population is the same
we have made in Davis et al. (1994) and Campo Bagatin et al. (1994), and similar to those
made in Davis et al. (1989) and Farinella et al. (1992), and we refer to those papers for
a discussion on its motivations. We stress that we did not aim in this work at obtaining
a match to the real asteroidal size distribution or at exploring the full space of the model
parameters, but only at assessing the importance of making different assumptions about
the fragment velocity distribution.

Figs. 4 to 6 show the results of these simulations and their sensitivity to the assumed
relationship between fragment velocity and mass. In Fig. 4 the two cases using a “determin-
istic” relationship (see Sec. 2) are compared to the “standard” case used in all previous
work on asteroid collisional evolution, in which no dependence of velocity on mass was
assumed (in this case a mass fraction [1 − (Vesc/Vmin)

−9/4] was simply assumed to reac-
cumulate for Vesc > Vmin, with the lower cutoff velocity Vmin derived from fKE through
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conservation of energy). Of course, the largest difference appears between the standard
case and the r = 1/6 case, which corresponds to the strongest velocity vs. mass depen-
dence. Whereas this difference is always considerable for asteroids ≈ 100 km in size, in the
r = 1/6 case it is still significant at diameters down to ≈ 100 m. There are two concurring
reasons for this behaviour: (i) in the r = 1/6 case some gravitational reaccumulation occurs
even on very small targets (see Sec. 3, Fig. 2), because the largest fragments are always
very slow, hence the response to impacts of small asteroids is affected by the behaviour of
fragment velocities; (ii) since most small asteroids are first– or multi–generation fragments
escaped after the break–up (and partial reaccumulation) of larger parent asteroids, their
final abundance is sensitive to the efficiency of gravitational reaccumulation onto larger
bodies. On the other hand, the k = 9/4 case differs from the standard one mainly in the
size range (between 40 and 200 km in diameter) where reaccumulation is most important.

Figure 4. Results of numerical simulations of the asteroid collisional history. The
dotted line corresponds to the assumed initial population, while the other curves are the
final size distribution derived with different assumptions about the fragment velocity vs.
mass relationship. Note that in this type of diagram, showing incremental populations of
equal logarithmic bins vs. logarithm of their central diameter, a power–law size distribution
appears as a straight line of slope coinciding with the index of the corresponding cumulative

distribution.

Figs. 5 and 6 show the differences between the deterministic and the probabilistic
cases for both the r = 1/6 and the k = 9/4 case. Although some difference propagates to
smaller sizes, the largest discrepancy lies in the reaccumulation–effective diameter range
around 100 km. These results show that the final size distribution of the observable aster-
oids depends sensitively not only upon the assumed relationship between mean fragment
velocity and mass, but also on the dispersion of that velocity about the mean for any
given mass. This highlights the crucial importance of obtaining new experimental data on
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fragment velocity distributions.

Figure 5. The same as Fig. 4, but comparing the results obtained with the deter-
ministic and probabilistic models in the case k = 9/4 (see text).

Figure 6. The same as Fig. 5, but for the case r = 1/6 (see text).

How does the sensitivity to the velocity vs. mass relationship discussed in this paper
compare with the sensitivity to plausible changes of other input parameters which are
needed to run the collisional outcome model? Figs. 7 and 8 show how the results of the
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“standard” case already displayed in Fig. 4 are affected when S0 is changed by plus or
minus an order of magnitude (Fig. 7), and fKE is changed by plus or minus a factor of two
(Fig. 8). Changing S0 has very strong effects, as the final asteroid populations at some sizes
(e.g., a few km) are changed by orders of magnitude. Note, however, that the resulting
effects are not obvious: for instance, in the diameter range between about 10 and 50 km,
the final populations are more depleted when the asteroids are assumed to be stronger.
This is caused by the fact that these bodies are more frequently disrupted by km–sized
projectiles, which on the contrary are much more abundant. This type of effect, together
with the presence of a small–size cutoff in the evolving size distribution, is responsible
for the “wavy” appearance of the final distribution, with the typical wavelength inversely
correlated to S0 (Campo Bagatin et al. 1994). Even if the results of the simulations are
very sensitive to S0, however, we recall that for any given material this parameter can
be measured in the laboratory much more easily than the fragment velocities, as such
measurements do not need complex fast–framing imaging devices, but only an a posteriori

assessment of the impact outcome.

Figure 7. The same as Fig. 4, but comparing the standard case (with S0 = 106

J/m3) to the results obtained by changing S0 by plus or minus an order of magnitude.

The results illustrated in Fig. 8 are even more interesting in the present context. The
changes resulting when fKE varies by a factor of four (i.e., typical fragment velocities vary
by a factor of two, as fKE is related to the total kinetic energy) are not negligible, and
they can be interpreted easily. The final populations are almost insensitive to the value of
fKE at small sizes, where self–gravitational effects are negligible, whereas the location of
the “bump” caused by the onset of reaccumulation (at diameters ≈ 10 km) is somewhat
shifted. Also, for the largest asteroids (diameters > 100 km) higher fragment velocities
result into a less effective reaccumulation, hence in a stronger depletion. However, it is
worth remarking that the changes shown in Fig. 8 are smaller than those displayed in
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Fig. 4 and 6, and similar to those displayed in Fig. 5. Thus, knowing how the fragment
velocities are related to their mass and also how they are distributed for any given mass
about the mean value, is at least as important as determining the average magnitude of
these velocities (i.e., measuring fKE).

Figure 8. The same as Fig. 4, but comparing the standard case (with fKE = 0.1) to
the results obtained by changing fKE by plus or minus a factor of two.

5. Conclusions

Numerical simulations of the asteroid collisional evolution are motivated by the desire
to understand how the current asteroid population has been processed starting from an
original population of newly accreted proto–asteroids, which would have been the build-
ing blocks for an asteroidal planet if the accumulation process had not been interrupted.
However, to derive information about this primordial population, we need to use realistic
physical models of how collisions have affected asteroids of different sizes, in particular
how frequently they are disrupted and how many new smaller (fragment) asteroids are
generated in this case.

In this paper we have shown that a crucial feature of these models is the relationship
between fragment ejection velocity and mass. Not only how the mean velocity depends
upon mass is important, but also the distribution of velocities about the mean values. The
available experimental evidence on this issue is still sparse, and does not constrain the
collisional models well enough to allow us to make reliable predictions on the outcomes of
impacts between bodies tens to hundreds of km in size. This adds to the current uncertainty
on the values of collisional parameters such as S0 and fKE and the appropriate scaling
laws for them, and as a consequence we are still unable to simulate the evolution of the
asteroid size distribution over billions of years having full confidence that the results will
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tell us the history of the real belt. Hopefully, further experimental and modelling work
will improve this situation.
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Abstract

Asteroid Ida’s satellite Dactyl was observed over 51
2 hours by the Galileo spacecraft

imaging system. The observed motion has been fit by a family of orbits parameterized
by the mass of Ida (Byrnes and D’Amario 1994, Belton et al. 1996). We have tested
the stability of these orbits and found that those with semi-major axis a ≤ 65 km (cor-
responding to Ida’s density ≥ 3.1 g cm−3) are unstable over time scales of a few days
to a few months. Ida’s density must therefore be ≤ 3.1 g cm−3. It is most likely that
Dactyl was created at the same time as Ida (Durda 1996). Therefore, it is important to
understand the longer term stability of candidate orbits. We have numerically integrated
motion about a realistically shaped model for Ida. We find periodic orbits at the 5:1, 6:1,
7:1, etc., commensurabilities with Ida’s rotation that are stable for at least 3000 years.
These orbits have their pericenter locked at longitudes in the range 35◦ − 70◦ on Ida (not
exactly at the short principal axis because of Ida’s irregular shape). The 11:2, 13:2, etc.
commensurabilities are also stable over those timescales. However, among the low-order
mean-motion resonances only the 5:1 resonance allows Dactyl to have been at longitudes
that fit the Galileo observations and is large enough to trap the satellite. If Dactyl’s orbit
is stabilized for the long term by commensurabilities, the mass (and hence density) of
Ida may be constrained to one specific value, e.g. 2.93 g cm−3, the value corresponding
to the 5:1 spin-orbit resonance. A comparison between the stability of the 5:1 orbit and
neighboring non-resonant orbits is underway, and preliminary results are presented.

1



1 Introduction

243 Ida’s satellite Dactyl was discovered in imaging data returned by the Galileo spacecraft
after its August 28, 1993 encounter with the asteroid (Belton and Carlson 1994). Because
Galileo was targeted to fly by Ida at too great a distance for Doppler data to be useful in
determining the asteroid’s mass, the discovery provided a fortuitous opportunity to find the
mass and mean density of Ida if an orbit for the satellite could be determined. Dactyl appeared
in 47 of the returned images, defining an orbital arc some 51

2
hours long. Unfortunately, Dactyl’s

orbital plane about Ida was nearly coincident with Galileo’s trajectory past the asteroid, so
no single orbit could be unambiguously defined from the limited imaging data alone. The
observed orbital motion fits a family of Keplerian orbits, each corresponding to a particular
assumed mass of Ida (Byrnes and D’Amario 1994, Belton et al. 1995, 1996). These orbits
range from nearly circular orbits to hyperbolic trajectories for the lowest density cases. The
hyperbolic cases may be ruled out based on Hubble Space Telescope searches for Dactyl in the
vicinity of Ida after its discovery (Belton et al. 1995) and from statistical arguments on the
likelihood of observing a passing asteroid just during the short time of the encounter so close
to Ida (Belton et al. 1996). Further constraints on the orbit of Dactyl, and thus on the mass
and density of Ida, come from dynamical studies of orbital stability. In Section II we describe
the dynamical constraints that can be placed on the range of allowable Dactyl orbits that have
been found by short term integration using both a simple triaxial ellipsoidal shape model and
a realistic irregular shape model for Ida (Thomas et al. 1996). We then describe in Section
III our search for stable resonant orbits about a realistically shaped Ida which fit the observed
locations of Dactyl. The long-term stability of resonant orbits is discussed in Section IV and
our conclusions summarized in Section V.

2 Dynamical constraints on allowable orbits

To study the stability of orbits around a rapidly rotating, elongated asteroid, we first mod-
eled the primary asteroid as a triaxial ellipsoid with parameters similar to Ida: principal axes
56 km, 24 km, and 21 km, assumed density of 3.5 g cm−3 and rotating with a period of 4.6
hours (Petit et al. 1994). With such a primary, at Dactyl’s close distance orbits can be quite
irregular. We found that the most critical parameter governing stability is the pericenter dis-
tance. For low enough pericenter distances, orbits impact the primary or escape within a few
hundred periods. For retrograde orbits (motion opposite the sense of rotation), the critical
pericenter distance is about 50 km. For prograde orbits (Dactyl’s orbit is prograde), motion is
unstable if the pericenter is lower than about 70 km. Such a restriction would rule out a large
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range of orbital fits by Byrnes and D’Amario, and allow only those orbits that correspond to a
mass density less than about 3 g cm−3.

In order to test that result, we systematically examined the stability of elliptical osculating
orbits fit to the Galileo images by Byrnes and D’Amario. This series of numerical experiments
used the improved “best fit” triaxial ellipsoid reported by Thomas et al. (1996), with axes 59.8
km, 25.4 km, and 18.6 km. We integrate the equations of motion in a rotating frame where Ida
is at rest:

ẍ = 2ωẏ + ω2x− ∂U(x, y, z)

∂x
,

ÿ = −2ωẋ+ ω2y − ∂U(x, y, z)

∂y
, (1)

z̈ = −∂U(x, y, z)

∂z
,

where U(x, y, z) is the gravitational potential of the primary and ω the rotation speed, the
rotation axis being parallel to the z axis. The potential of the triaxial ellispoid is then given by
elliptical integrals (Chauvineau et al. 1993). We used Bulirsch and Stoer integrator, with self
adaptive time step, and required a relative precision of 10−10 at each time step. It turns out that
the precision was about 10−12 to 10−13 for each time step and even after more than a million
orbits, the Jacobi constant had changed by only 10−8 in relative value. The initial conditions are
derived from the osculating elements for each mass of Ida, the density values being somewhat
different from those listed by Byrnes and D’Amario due to the improved volume determination
by Thomas et al. (1996). The shape model used here has more symmetry than the real Ida
has, hence one might expect to have more stable orbits. But even so, prograde orbits with a
pericenter distance less than 65 km exhibit strong short term instabilities. They either impact
Ida or escape the asteroid in only a few hours to days. An orbit is said to escape if its binding
energy is positive while its distance to Ida is large enough, namely 500 km. All significant
changes in energy occur near pericenter. At large distances, the rotation of Ida averages out
its effect on energy. Fig. 1 shows the results of a numerical integration of the osculating orbit
from Byrnes and D’Amario with Ida’s mass M = 5.70 × 1016 kg, ρ = 3.54 g cm−3. We have
plotted the orbit in the frame rotating with Ida. The central ellipse represents the projection
of Ida on the (x, y) plane. The semimajor axis of this orbit is 70.0 km with a pericenter
distance of about 40.6 km (for the keplerian orbit). The satellite makes five revolutions before
impacting Ida after a little under 37 hours. Fig. 2 illustrates a slightly longer-lived escaping
case (GM = 0.0034 km3s−2) with a pericenter of about 56.2 km. Between each close approach,
the energy oscillates around a constant value (Fig. 2b). At each passage at pericenter, the
energy gets an impulse and changes by a potentially large amount. The satellite has four close
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encounters with Ida and during the last one, after 29 days in orbit, receives enough energy to
escape.
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Fig. 1: Short

term instability orbits for large mass of the primary. Orbit is plotted in the frame rotating with

Ida. The central ellipse represents the projection of primary (a triaxial ellipsoid) on the (x, y).

GM = 0.0038 km3s−2.

Orbits with pericenter distances larger than 65 km were found to be stable for at least a year,
corresponding to hundreds of orbital periods. Fig. 3 shows such a case for GM = 0.0032 km3s−2,
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with pericenter distance of 68.3 km. The orbital energy remains constant and stable, except
for oscillations due to the rotation of Ida, showing no signs of impending instability over the
100 day timescale of the integrations.
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Fig. 2: (a)

Same as Fig. 1 for GM = 0.0034 km3s−2. (b) Time evolution of energy per unit mass of the satellite.

Negative energy corresponds to a bounded orbit, positive energy to an escaping orbit.

We next explored the influence of the irregular shape of Ida on the short-term instability
limits. We used the shape model for Ida derived by Thomas et al. (1996) and filled it with
spheres. The spheres have different masses and hence sizes: small spheres on the outer parts of
Ida, to better represent the irregular mass distribution, and larger spheres inside the body, to
save computing time. Masses of the packed spheres are chosen to approximate uniform density
over the entire asteroid. The fate of individual orbits is different from what we found in the
triaxial ellipsoid case, but the boundary between instability (impact or escape) and stability
is not changed. The real shape model is slightly rounder than the triaxial ellipsoid, especially
at the ends which may explain why we found fewer colliding orbits with the real shape. Fig.
4 shows, for the realistic shape model, the same initial orbits as Fig. 1. In both cases the
satellite escapes after a few days to a little over one year in orbit. In order to better determine
the limit between stable and unstable orbits, we interpolated osculating elements for parameter
values GM in the range 0.00320 km3s−2 − 0.00340 km3s−2. For the triaxial ellipsoid, the limit
of stability is GM = 0.00329 km3s−2, and for a realistic shape model including 52 spheres used
in this study, GM = 0.00333 km3s−2. We used different shape models (e.g. different filling with
spheres of the Thomas et al. shape model) and found that the limit did not change much.
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Fig. 3: Same as Fig. 2b for GM = 0.0032 km3s−2.
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Fig. 4: Same as Fig. 1 for a realistic shape model

for the primary.

On the “low-mass” end of the osculating orbit family, the orbits are hyperbolic. As discussed
in the introduction, such an orbit has been ruled out for Dactyl (Belton et al. 1995, 1996).
This means that values of M ≤ 3.38 × 1016 kg can be disgarded. We therefore focussed on
elliptical orbits and estimated the Lyapunov characteristic number (LCN, Benettin et al. 1980,
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Froeschle C. 1984). This number characterizes the divergence rate of two neighbouring orbits.
Let us consider a differential equation:

dX

dt
(t) = F (X, t). (2)

We want to know how the point X(t) + ǫ(t) diverges from X(t), where ǫ(t) is a small quantity.
We expand equation (2) to find the equation governing the evolution of ǫ(t):

dX

dt
(t) +

dǫ

dt
(t) = F (X + ǫ, t) = F (X, t) + L(X,t) · ǫ+O(ǫ2), (3)

where L(X,t) is the Jacobian matrix at point X and time t. Since ǫ is an infinitely small vector,
its evolution is governed by the well know variation equation:

dǫ

dt
(t) = L(X,t) · ǫ. (4)

This is a linear equation, so we can normalize ǫ as we wish. It is well know that the quantity:

Γ(ǫ(0), T ) =
1

T

||ǫ(T )||
||ǫ(0)|| (5)

is independent of ǫ(0) and tends to a limit, which is the largest LCN, as T goes to infinity. A
strictly positive LCN means that two neighbouring points will diverge exponentially in time.
This is what we call a chaotic motion. In practice, we define the Lyapunov characteristic
indicators as the truncated values of the LCNs for a finite time. We found that the orbits
with M ≤ 3.9× 1016 kg (e.g. large e) are chaotic. The Lyapunov characteristic indicator levels
off after some 107 to 109 seconds. However a chaotic orbit for Dactyl can not be ruled out.
While an orbit may be formally chaotic, its behavior may be well-bounded, regular, and with
an indefinite lifetime. An example of such a case is the motion of terrestrial planets (Laskar
1990).

In our case, orbits with M ≤ 3.6×1016 kg are chaotic leading to eventual satellite escape. Fig.
5a shows the time evolution of the Lyapunov characteristic indicator for GM = 0.0024 km3s−2.
Here again we stopped the integration when the satellite was detected to be on an escaping
orbit (positive binding energy at a distance larger than 500 km). We computed the semi-major
axis and eccentricity at apocenter. The osculating elements defined at apocenter are in good
agreement with the values averaged over one orbit and match fairly well the two-body osculating
elements given by Byrnes and D’Amario. The semi-major axis and eccentricity follow a kind
of random walk with, however, a slight tendency to increase. This results in a decrease of
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the “averaged pericenter distance” defined by q = a(1 − e) where a and e are the values at
apocenter (Fig. 5b). When this pericenter distance reaches 74 km, the process speeds up. This
occurs when e is about 0.9 and a is 740 km. The semi-major axis starts to diverge and increases
toward 1 by larger increments. After a few more revolutions, the satellite goes on a hyperbolic
orbit and escapes.
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Fig. 5: (a)

Time evolution of the Lyapunov characteristic indicator for GM = 0.0024 km3s−2. The orbit is

chaotic and the satellite eventually escapes. (b) Time evolution of the “averaged pericenter distance”

q = a(1− e) where a and e are the semi-major axis and eccentricity defined at apocenter.

On the other hand, the orbit for GM = 0.0025 km3s−2, even though chaotic, seems to be
stable over the 1011 sec (about 3000 years) of integration. Fig. 6a shows the time evolution
of the Lyapunov characteristic indicator which levels off at a value of the order of 10−8.1 after
some 109 sec. Despite this formal “chaos”, the osculating elements seem to be trapped in a
finite region not connected with the region of escaping orbits. Fig. 6b shows the time evolution
of the semi-major axis. Although chaotic, its range of variation is limited to 350 m around a
value of 195.32 km. Similarly, its eccentricity has a value of 0.5836 ± 0.0006.

None of the orbits given by Belton et al. (1996) with 4.2 × 1016 kg ≤ M ≤ 4.8 × 1016 kg
showed a sign of instability over the 1011 sec of integration. Nor are they chaotic: their Lyapunov
characteristic indicator decreases regularly with time, linearly in a log-log plot (e.g. Fig. 7,
GM = 0.0031 km3s−2).
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Fig. 6: (a)

Same as Fig. 5a for GM = 0.0025 km3s−2. The orbit is chaotic but the satellite does not escape. (b)

Time evolution of the semi-major axis at apocenter.
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Fig. 7: Same as Fig. 5a for GM = 0.0031 km3s−2.

The orbit is stable for over 3000 years.

The boundary for stable prograde orbits found from these integrations is indicated in Fig.
8, where the family of candidate orbits obtained by Belton et al. are also shown. The range of
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possible orbits is 0.0025 km3s−2 ≤ GM ≤ 0.0033 km3s−2 or 3.7× 1016 kg ≤ M ≤ 4.95× 1016 kg.
Assuming a volume of 16,100 km3 (Thomas et al. 1996) this results in a mean density ρ in the
range 2.3 g cm−3 − 3.07 g cm−3.

To further restrict the range of possible masses we must consider longer term stability.

Fig. 8: Pericenter distance of Galileo fit orbits ver-

sus mass of Ida. Only the central part with Ida’s mass in the range 3.65 × 1016 kg − 4.95 × 1016 kg

allows for long lived orbits.

3 Stable resonant orbits

3.1 Orbital interactions with elongated primaries

Dactyl has almost certainly been orbiting Ida over a geologic timescale. It is extremely
unlikely that we would have encountered Ida at the one rare moment that a small, dynamically
unstable satellite was formed. It is most likely that Dactyl was created with Ida (Durda 1996),
altough it is possible that it formed later, e.g. as ejecta from a large cratering event on the
asteroid. In any case, it is unlikely that a short-lived satellite would be in orbit just as Galileo
encountered Ida. In Ida’s complex dynamical environment irregular motion may likely be the
rule. Resonant orbits may offer a means to stabilize orbits for time scales comparable to the
age of Ida.

In our studies with triaxial primaries we explored special classes of stable, resonant, periodic
orbits that may extend the range of possible conditions that can lead to a long-lived satellite.
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Here, in order to reduce the volume of phase space to explore, we restrict ourselves to zero
inclination orbits, e.g. in Ida’s equatorial plane. One class of orbit, prograde and synchronous
at a longitude 90◦ from the long axis, was thought a priori to be stable. Such an orbit is in effect
trapped in the gravitational harmonic “topography”. We found a set of stable synchronous at
that longitude about a primary with dimensions 36 km:29 km:27 km. However, we discovered
that such orbits proved to be unstable for a triaxial primary as elongated as Ida. Similar results
were reported by Scheeres (1994).

Fig. 9: (a)

p:1 commensurable retrograde orbit plotted in a fixed frame. Dots indicate the position of the satellite

when the primary is orientated as shown (central ellipse). This orbit is highly eccentric: e ∼ 0.47. (b)

Pericenter longitude relative to primary’s long axis versus pericenter distance.

We did find a class of stable, highly eccentric, retrograde orbits that are commensurate
with Ida’s rotation period. This discovery came about by noting that, for motion near (but not
exactly at) a p:1 commensurability, pericenter longitude precesses through 360◦, but pericenter
distance q = a(1− e) is correlated with the rotational phase of Ida: when pericenter is located
near the long axis of Ida, the pericenter distance is greater than average. Further investigation
revealed that orbits could be found which were trapped with pericenter 90◦ from the long axis.
In the case of prograde orbits, the stability zone does not extend as close to the primary as
for retrograde orbits. However, we found the same kind of trapping phenomenon. This type
of orbit is very strongly stabilized. Consider the case shown in Fig. 9a. This figure shows four
revolutions of a retrograde orbit with pericenter near 48 km. The dots indicate the position of
the satellite at times when the primary is oriented as shown (central ellipse). Fig. 9b shows
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that the longitude of pericenter is locked to −90◦. The dots in Fig. 9b correspond to the
passage at pericenter. This motion is stabilized by crossing pericenter only near the shorter
axis of Ida. Similar orbits can be found for the 5:1, 6:1, 7:1, etc., commensurabilities.

Next consider commensurabilities of the form 11:2, 13:2, 15:2, etc. In such cases, the location
of pericenter alternates, first on one side of Ida and then on the other. Numerical integration
shows that pericenter longitudes still avoid the long axis, just as for the p:1 cases. Such a
retrograde orbit is shown in Fig. 10a. Fig. 10b (analogous to Fig. 9b) shows the alternating
position of pericenter. Even though pericenter can come very close to Ida, the orbit is stable
and pericenter is confined far from the long axis so as to protect the satellite from impact.

Fig. 10:

Same as Fig. 9 for a (2p+ 1):2 commensurability.

These studies indicate that exchanges of energy and angular momentum must occur when
the satellite is close to the primary, especially close to the bulge. For the stable orbits, the
energy oscillates, but on average does not change. This kind of orbit stabilization may be
able to counteract long-term perturbations, such as solar tides or tidal torques, which might
otherwise destabilize orbits on timescales comparable to, or less than, the age of Ida.

These stability studies with a triaxial primary identify a locking mechanism between the
rotational phase of the asteroid and the sub-satellite longitude and distance of pericenter,
maintained by the force due to the elongated bulge at close approach. By holding pericenter
away from the bulge, this effect helps stabilize the orbit. To examine the underlying physics
of this stabilizing interaction between the primary’s bulge and an orbiting satellite, we can
approximate the primary’s shape as a set of three spheres: a larger central sphere whose
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diameter was chosen to match the shorter principal axes of Ida, and two smaller spheres placed

Fig. 11: (a) 5:1 commensurable prograde orbit plotted in a fixed frame. Dots indicate the position

of the satellite when it is aligned with the primary’s long axis. The open star indicates the satellite

position when it is at 45◦ off short axis before passage at pericenter. The solid straight line through

the focus of the orbit is the long axis of the primary at that time. Dash-dotted lines indicate the ori-

entation of the perturbing forces on the satellite. The dashed ellipse is the projection of the primary

and the solid circles the three sphere model. (b) Change in energy per unit mass per unit time for

the triaxial primary (dashed line) and the three sphere model (solid line). (c) Energy per unit mass

of the satellite versus phase relative to the primary’s long axis for one orbit.

opposite each other roughly filling the remainder of Ida’s long dimension (central body in Fig.
11a).

When the satellite is about 45◦ away from the long axis, the perturbation of the two small
spheres is maximum. Obviously, any effect is stronger close to pericenter than at any other
location along the orbit. In Fig. 11a, we represent an orbit at the 5:1 commensurability, in
the inertial frame, the dots show the location of the satellite when it is aligned with the long
axis of the primary. The open star denotes its position when it is at 45◦ off the short axis, just
before passage at pericenter, and the solid straight line through the focus of the orbit is the
long axis of the primary at that time. The two dash-dotted lines indicate the orientation of the
perturbing forces on the satellite, the dashed ellipse is the projection of the ellipsoid and the
three solid circles are the projections of the three spheres. If pericenter is just aligned with the
small axis of the primary, then the locations when the satellite is 45◦ from the short-axis, both
before and after passage at pericenter, are symetrical and the two perturbations cancel each
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other. On the other hand, if passage at pericenter occurs before (or after) passage along the
short axis, then the perturbation felt for the preceeding passage at 45◦ is stronger (or weaker)
than the one felt for the following passage at 45◦. We estimated the change in orbital energy of
the satellite due to the gravitational interactions with the two long axis bulges (simulated by
the two smaller spheres) along the orbit. For this, we computed the difference in acceleration
due to the three spheres and the keplerian acceleration due to a point mass with the same mass
as the primary, and multiplied it (dot product) by the orbital velocity. This energy change
was compared with the energy change found directly from the numerical integration with the
triaxial primary (Fig. 11b, solid is for the three sphere model, dashed line for the triaxial
ellispoid model). The magnitude and sign of the energy changes found in both cases compared
quite favorably, verifying the perturbing influence of the bulges in changing the orbital energy
of the satellite. The net effect is a change of the mean energy of the orbit, resulting in a change
in the orbital period. Fig. 11c shows the energy per unit of mass of the satellite during the
orbit shown in Fig. 11a. One can easily see the assymetry around passage at pericenter (phase
between 800◦ and 1000◦). For example, the average energy per unit mass before pericenter is
about -19.1 J/kg, while after, it is about -18.9 J/kg.

This change in orbital energy (and, hence, semimajor axis) results in a slight change in the
orbital period, causing the time of the next pericenter passage to slightly advanced or retarded,
depending on the phase of pericenter relative to the long axis. This causes a precession in
the longitude of pericenter which always acts to return the longitude of pericenter toward its
location at 90◦ longitude. Thus, a pericenter location aligned with the short axis of a triaxial
primary exists in a kind of potential minimum: any precession of pericenter off the short axis
results in a “torque” (due to interactions with the long axis bulges) returning pericenter toward
90◦ longitude. The orbit of such a hypothetical satellite is thus stabilized, motivating us to
search for similar stable, commensurate orbits about the real Ida which would be consistent
with the observed orbit and locations of Dactyl.

3.2 Numerical Integrations With a Realistic Shape Model

Using a realistic shape model for Ida (Thomas et al. 1996) and numerical integrations of
Dactyl’s motion, we searched for resonant orbits which were consistent with the fit Keplerian
orbits (Hurford et al. 1995). Here again, we consider only orbits in Ida’s equatorial plane.
However, this can be inforced only for the initial conditions. Then, due to the irregular shape
of Ida, the orbit goes off-plane, but the inclination never exceeds a few hundredth of a degree.
The 5:1, 6:1, and 7:1 commensurabilities were low-order cases within the range of likely stable
orbits found from our previous simulations, and within the range of candidate osculating orbital
periods from the Galileo data (Byrnes and D’Amario 1994). For a candidate commensurable
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period, we interpolate the Byrnes and D’Amario fit orbits with a step of 0.01 g cm−3 in density
over the range bracketing the correct orbital period. We use the density corresponding to the
interpolated orbital period closest to the one under consideration, and get inital conditions
of velocity and position for Dactyl. After numerically integrating the motion of the satellite
for one complete orbit, the initial conditions are adjusted to reach the correct period. Once
the commensurable period have been found, the orbital eccentricity is compared with the
interpolated Byrnes and D’Amario value.

As we have already seen in the triaxial simulations, the rotation of elongated Ida under the
orbiting satellite causes regular, periodic variations in the orbital osculating elements. The short
period variation, synodic with the revolution of Dactyl, is caused by rotation of the long axis of
Ida under the satellite. This variation is modulated by the longer orbital period of Dactyl, with
the larger variation in orbital elements corresponding with the times of pericenter passage. In
order to compare our values of the orbital parameters with the Galileo fit osculating elements,
we time averaged the elements obtained from our numerical integrations over one complete
orbital period.

If the value of e does not fit the osculating e for the specified density, the initial conditions
are adjusted, along the “commensurable” orbit family, until an e matching the Keplerian fit
has been found. Given these density and initial conditions, we perform an integration for many
orbit periods to verify that the orbit is stable (pericenter librating about a fixed Ida longitude).
If the orbit is indeed stable and librating, we compare the averaged semi-major axis a to the
interpolated one. If it is larger, then we change the density to the next lower, if it is smaller, we
change to the next higher density and we iterate the procedure. This gives a family of orbits
commensurable with Ida’s rotational period which actually intersect with the observational fit
orbits in only one point, as seen in Fig. 12.
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Fig. 12:

Comparison between Galileo fit orbits and p:1 commensurable orbits. The commensurable orbits are

forced to have the eccentricity of the fit orbit with the same mass of Ida.

As an example, Fig. 13a shows the oscillation of the longitude of pericenter for the 5:1
resonant orbit having values of a and e matching the osculating orbits found by Byrnes and
D’Amario. Fig. 13b shows the orbit with Ida in its orientation when Dactyl is at pericenter
(filled circle). As seen in our triaxial models, pericenter is locked away from the longer axis
of Ida, although centered near a longitude of 45◦, only on one side, instead of 90◦, not at all
surprising considering Ida’s complex, irregular shape. For the 6:1 and 7:1 commensurabilities
also the pericenter librates about a longitude which is not aligned with the short axis. The
pericenter longitude of the zero libration resonant orbit for the 6:1 and the 7:1 commensurability
is around 40◦. The libration amplitude may be reduced from the one illustrated by adjusting
the initial conditions of the integration while maintaining the values of a and e which allow the
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orbits to match those observed by Galileo. The pericenter of the zero libration resonant orbit
is located near the centroid of the plotted libration paths.

Fig. 13:

(a) Longitude of pericenter relative to Ida’s long axis versus pericenter distance for a possible fit orbit

in the 5:1 commensurability. (b) Fit orbit with Dactyl at pericenter and Ida oriented as should be

from Galileo images and time necessary for Dactyl to reach pericenter.

3.3 Global view of p:1 commensurabilities

We want to have a more global view of the p:1 commensurabilities, in terms of their location
and width in the (a, e) plane, for each of the allowed fit orbits of Byrnes and D’Amario.
Therefore, we consider the hamiltonian of the system in the rotating frame, written in term of
“actions” and “angles”. For a resonant orbit, one of the angles and its conjugate action do not
evolve. Hence, the hamiltonian has an extremum value with respect to these variables and the
resonance. Let us write the hamiltonian in cartisian coordinates:

H =
µ

2
(ẋ2 + ẏ2 + ż2)− ωµ(xẏ − yẋ) + U(x, y, z), (6)

where the dots designate time derivatives, µ is the product of the mass of the primary by the
gravitational constant, and U(x, y, z) is the gravitational potential generated by the primary.
We introduce the Delaunay variables:

l = mean anomaly
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L =
√
µa

g = argument of pericenter (7)

G =
√

µa(1− e2)

h = longitude of node

H = G cos(i)

where i is the inclination of the orbit. Here and in the following, the capital letters represent
action variables, while lowercase letters stand for the the conjugate angle variable. We then
rewrite the hamiltonian as:

H = − µ2

2L2
− ωH + Upert(x, y, z), (8)

with

µx =
[

cos(h) cos(g)− H

G
sin(h) sin(g)

]

L2(cos(E)− e)

+
[

− cos(h) sin(g)− H

G
sin(h) cos(g)

]

GL sin(E)

µy =
[

sin(h) cos(g) +
H

G
cos(h) sin(g)

]

L2(cos(E)− e) (9)

+
[

− sin(h) sin(g) +
H

G
cos(h) cos(g)

]

GL sin(E)

µz =

√

1− H2

G2
sin(g)L2(cos(E)− e)

E − e sin(E) = l

E being the eccentric anomaly, and Upert(x, y, z) the perturbation potential, e.g. the difference
between the true potential and the potential generated by a point with the same mass as
the primary and located in its center of mass. In order to reduce the number of dimensions
and make the problem computationally tractable, we restrict ourselves to orbits lying in the
equatorial plane, e.g. i = 0. To be sure that an orbit starting in the equatorial plane will
remain in this plane, we use a shape model symmetric with respect to the (x, y) plane. This
leads to a canonical change of variables:

γ = g + h

Γ = H (10)

m = g

M = G−H
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γ represents the longitude of pericenter. Since Ida is rotating fast, the pericenter longitude
is moving fast in retrograde direction with respect to Ida’s long axis. In the equatorial plane
M = 0 and the angle m = g is undefined, so H can be considered as a function of 4 variables
only. We are interested in commensurability between the orbital period and the rotational
period of the primary. Hence, we expect the angle −pl − γ to be almost constant, or slowly
varying. So we introduce another canonical change of variables:

σ = −pl − γ

S = −Γ (11)

n = l

N = L− pΓ

When we are close to a p:1 commensurability, n = l varies rapidly compared to σ. So we look
at the averaged hamiltonian

H̄ =
1

2Π

∫ 2Π

0
H dn. (12)

The averaged hamiltonian H̄ no longer depends on n, the mean anomaly. Remember that
n and N are conjugate variables and ṅ = ∂H̄

∂N
and Ṅ = −∂H̄

∂n
. Hence N is a constant of

motion and can be considered as a parameter. There are only 2 variables left, and we look
for extrema of the surface H̄(S, σ). A contour plot of such a surface is given in Fig. 14 for
µ = 0.00315 km3s−2, N = −2020250 m2s−1 corresponding to a = 82.64 km and e = 0.127 for
the value of S = −506085 m2s−1 at resonance point A. One can see that there exists only one
allowed orientation of the pericenter for a resonant orbit, on one side of the primary, and not
2 as in the case of a symmetrical primary.

For a given value of Ida’s mass, we derive the order of commensurability p as being the
integer closest to the fit orbit’s orbital period divided by the rotational period of Ida. Then
we consider a range of values for N , and for each of these values, we look for the extremum of
H̄(S, σ). Once we have obtained N and S, we compute a and e which give us the location of
the exactly resonant orbit for that particular mass of Ida. For the same value of σ as for this
extremum, we search for the two values of S yielding to the same value of H̄(S, σ) as at the
saddle point (Fig. 14, point B). This gives the limits of the resonance zone. The solid lines in
Fig. 15 represent the resonant orbits, while the dashed lines limit the resonance zones. Fit orbits
are on the dot-dashed line, and the symbols represent the interpolated fit orbit for the for the
same mass of Ida as for the resonant orbits. Actually, the values of a and e are averaged values
over one orbit. But they are good approximations of a and e values of commensurable orbits at
apocenter. Hence we use these values as osculating elements at apocenter, derive position and
velocity of the satellite at apocenter assuming a keplerian orbit, and then integrate the orbit
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for at least one libration around the resonant point. Then we average the a, e and direction
of apocenter and iterate the process. After two or three iterations, one gets an orbit which is

Fig. 14: Contour plot of the averaged hamiltonian as a function of S and σ for N = −2020250 m2s−1

and p = 5. Point A denote the resonance point, and point B the saddle point.

Fig. 15: Location of resonant orbits in the (a, e)

plane. Solid lines represent the commensurabilities, dashed lines limit the regions of librating orbits,

the dotted line corresponds to a pericenter distance of 65 km and the dash-dotted line shows the fit

orbit familly. The pairs of symbol show the location of resonant orbits together with the corresponding

fit orbit (same e, same mass of Ida). The roughness of the resonance zones is due to the appearance

of a second resonance on the other side of Ida for large orbits.

fairly close to the resonant one (small libration).
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The map of resonances gives a hint of the reason for the chaotic behaviour of orbits with
M ≤ 3.6 × 1016 kg. In Fig. 16, we present the p:1 commensurabilities in the vicinity of the
fit orbit for GM = 0.0024 km3s−2. The filled circle represents the fit orbit, its size being
approximately the size of Dactyl. Remember however that the coordinates are only averaged
values of a and e. Hence, during its wandering around Ida, Dactyl will enter the resonances
which overlap a lot for eccentricities not much larger than Dactyl’s one. Overlapping resonances
lead to chaos. And this chaotic region is easily connected to infinity, hence the possible escape
of the satellite.

Fig. 16: Same as Fig. 15 for the fit orbit with

GM = 0.0024 km3s−2.

3.4 Which Resonant Orbits Fit The Galileo Data?

If Dactyl indeed exists on one of these stable, commensurate orbits, not only must the
orbital elements of the satellite be consistent with the observations, the rotational orientation
of Ida relative to Dactyl’s position must match as well. At the epoch 28 August, 1993 16:52:05
UT all the osculating orbits pass through a reference point ∼ 90 km from Ida at longitude
85◦, indicated in Fig. 17. Several of the osculating Byrnes and D’Amario orbits are shown
for a range of discrete values of GM for Ida. For comparison the 5:1, 6:1, and 7:1 resonant
orbits found from our numerical integrations have GM = 0.00315, 0.00298, and 0.00287 km3s−2,
respectively (remember however that these values depend on the shape model used to perform
the integrations). Knowing the period and orientation in space of the osculating orbits allows
us to advance Dactyl along a given orbit from the reference position to the pericenter of that
orbit. During the time of travel to pericenter Ida rotates from its indicated orientation, resulting
in a pericenter passage for the 5:1, 6:1, and 7:1 resonant orbits at Ida longitude in the range
80◦ − 95◦, 250◦ − 260◦, and 90◦ − 100◦, respectively (Fig. 13b for the 5:1 case). In Fig. 18,
we plot the Ida longitude of Dactyl at pericenter passage versus semi-major axis for one of the
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shape models. Here again, the solid lines represent the resonant orbits and the dashed lines the
limit of the resonance zone. Interpolated fit orbit are marked by symbols on the dot-dashed line
which shows the family of fit orbits. Corresponding symbols on the solid lines show the resonant
orbits for the same mass of Ida. From our numerical integrations we know that for each of the
resonant orbits Dactyl’s pericenter occurs at an Ida longitude in the range ∼ 30◦ − 110◦.

Fig. 17:

Possible fit orbits of Dactyl for different values of parameter GM. The central ellipse shows the ori-

entation of Ida at eqoch 28 August, 1993 16:52:05 UT, Dactyl being located at the intersection of all

orbits. The arrows point toward the spacecraft.

The observed position of Dactyl and orientation of Ida at the Galileo fly-by epoch is consis-
tent with pericenter in the stable range for the 5:1 and the 7:1 resonant orbits. For the nominal
values of the true anomaly at the epoch of Galileo encounter, we need large amplitude librating
orbits. The position of Dactyl is known with a rather high accuracy, but the uncertainty on the
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velocity is of the order of 10%. Hence, the determination of the true anomaly, or the orientation
of the pericenter, is quite uncertain. The error on that angle can be larger than 10◦, which in
terms of Ida’s orientation translates to a 50◦ or 70◦ possible variation. On the 6:1 orbit Ida
would be oriented almost 180◦ from the required phase at pericenter and can therefore be ruled
out as a match to the observations. The 11:2 and 13:2 commensurabilities were examined as
well and may also be ruled out due to inconsistent Ida orientations at Dactyl pericenter passage.

Fig. 18: Pericenter longitude relative to Ida’s long

axis versus semi-major axis. The meaning of each line is the same as in Fig. 15.

Looking at the width of the resonance zones (Fig. 15), one can see that it is very unlikely
that a body the size of Dactyl can be trapped in the 7:1 resonance. For the nominal eccentricity
the width is of the order of 200 m, and it reaches 1.4 km (size of Dactyl) only for e > .3. In
the case of the 5:1 resonance, the width for the fit eccentricity is of the order of 700 m and one
needs to get only to e = .24 to reach the size of Dactyl. Therefore, the 5:1 commensurability
seems to be the one in which Dactyl is most likely to be trapped if it is indeed in a resonance.

The value of M = 4.72 × 1016 kg (Byrnes and D’Amario 1994) for the 5:1 orbit would
correspond to a density of Ida of ρ = 2.93 g cm−3 for a volume of 16,100 km3 (Thomas et al.
1996).

4 Long-term stability of resonant orbits

We have shown that of the low order resonant orbits within the zone of stable orbits about
Ida, it is likely that only the 5:1 commensurability allows Dactyl to have been at Ida longitudes
consistent with the Galileo observations while being in a large isolated resonance. Next we
consider whether this resonant orbit is any more stable over long timescales than nearby, non-
commensurate orbits. To address this question we have performed a series of very long timescale
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(at least thousands of years) numerical integrations of the 5:1 orbit and neighboring non-
resonant orbits. Owing to our determination of commensurable orbits, we considered only
orbits with zero inclination (e.g. in the equatorial plane of Ida) but with the same other
osculating elements as the fit orbits of Byrnes and D’Amario. This is not greatly different
from the actual Dactl’s inclination of ∼ 8◦ and this does not change much the results. Our
preliminary results indicate that the resonant orbit offers no significant advantage over other
orbits in stabilizing Dactyl for the long term. We have studied the time evolution of the
Lyapunov characteristic indicator for the 5:1 orbit The result is very similar to the one shown
in Fig. 7. The logarithm of the Lyapunov indicator is decreasing linearly with logarithm of
time for at least 1011 sec, indicating a stable, non-chaotic orbit for Dactyl with zero Lyapunov
exponent (the limit at infinite time of the Lyapunov indicator). We also looked at two nearby,
non-resonant, initialy in equatorial plane orbits and found a time evolution of the Lyapunov
characteristic indicator which is undistinguishable from the 5:1 commensurability one, showing
that these to orbits are just as stable. Although this study is still in progress, our preliminary
conclusion is that although consistent with the observed location of Dactyl, from the standpoint
of relative stability the 5:1 orbit offers no special benefit in the long-term dynamical stability
of Dactyl, in the absence of dissipation.

In another approach to understanding resonant orbits as a stabilizing influence, we are
examining the role resonances play in stabilizing the decay of orbits due to dissipative forces.
As an example we study the case of collisional drag. As Dactyl orbits Ida it also passes through
a variable cloud of impact generated orbital debris, lofted into temporary trajectories about
Ida after large cratering impacts (Geissler et al. 1996). Passage through this debris creates a
small drag on the satellite, causing its orbit about Ida to slowly decay. Regardless of Dactyl’s
provenance, it may have since been captured into a stable resonant orbit after evolving inward
toward Ida due to debris-induced drag. Fig. 19a shows the evolution of the semimajor axis of
an Ida satellite near the 5:1 resonance under the influence of a gas-drag-like force. The orbit is
seen to decay at a steady rate until captured into the 5:1 resonance. As is typical in a resonance
with an induced drag force, the eccentricity of the orbit slowly increases (Fig. 19b) until the
satellite enters a secondary resonance overlapping the primary one (Henrard and Moons 1992).
The orbit then evolves along this secondary resonance on a chaotic path. Eventually, it crosses
the separatrix of the primary resonance and continues to evolve inward. Of course the drag force
studied in this case is very large and is simply used to illustrate the nature of the capture and
stability properties of a resonance. Actual debris drag forces for Dactyl will be much smaller
in magnitude and may not be strong enough to remove the satellite from a resonance once it
has been captured. Therefore, a satellite evolving under dissipative forces will be trapped in
the 5:1 resonance and may stay there for geological times. Further work on this problem is
underway.
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Fig. 19:

(a) Time evolution of the semi-major axis of the fit orbit for GM = 0.0031 km3s−2, when subject to

a gaz drag like dissipative force. The dissipative force per unit mass is of the form −λ~V where ~V is

the velocity in the inertial frame, and λ = 10−10 s−1. Between 108 and 2 × 108 seconds, the orbit is

trapped in the 5:1 resonance. (b) Time evolution of the eccentricity. While the satellite is trapped

in the 5:1 resonance, its eccentricity increases until it reaches a secondary resonances and eventually

exits from the primary resonance.

5 Conclusions

We have tested the stability of orbits around Ida with numerical integrations and find that
Dactyl is restricted to orbits with pericenter distances greater than 65 km. Galileo observations
of Dactyl’s positions are fit by a family of orbits parameterized by the mass of Ida. Our stability
studies thus allow us to constrain the density of Ida to ρ ≤ 3.1 g cm−3. On the low mass end
of the family, Belton et al. (1995, 1996) ruled out the hyperbolic orbits. Using numerical
integrations with a realistic shape model for Ida, we were able to constrain the low end limit
of allowed orbits to a higher density. For ρ ≤ 2.3 g cm−3 the elliptical fit orbits are actually
chaotic and go on escaping orbits after some 1000 years. We numerically integrated the fit
orbits for ρ in the range 2.3 g cm−3−3.07 g cm−3 over more than 3000 years and found no hint
of instability on this time scale. We argue that in order to have discovered Dactyl at all, it must
exist in an orbit that is dynamically long-lived and we suggest orbits commensurate with the
rotation of Ida as good candidates. We demonstrate that such resonant orbits are stabilized by
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interactions with the long-axis bulges of an elongated primary. We find that of the candidate
resonant orbits consistent with the observed family of orbits, only the 5:1 resonance allows
Dactyl at Ida longitudes consistent with the Galileo observations of Dactyl’s position and Ida’s
orientation. If Dactyl indeed exists on this resonant orbit, Ida’s density is constrained to one
specific value: ρ = 2.93 g cm−3.
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