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Foreword
The writing of an Habilitation à Diriger des Recherches (HDR) thesis is not formatted and

therefore varies from a candidate to another. It leaves the author a free hand to adapt his/her

message and target specific readers. As far as I am concerned, I tried to provide a viewpoint on

the recent craze for topology in physics and to describe how abstract but powerful concepts,

mainly developed in (quantum) condensed matter physics, fruitfully spreads into various com-

munities that deal with classical waves. This manuscript is thus dedicated to non-specialists,

and a special effort has been made to ensure that the presentation of the main ideas is not

clogged up with technical details.

The present manuscript is constituted of two parts, each of them being composed of three

chapters. Part I is the heart of the HDR. Chapter 1 is a general introduction to the subject

far beyond the scope of my personal contributions and specifies also what I mean by topo-

logical waves. Chapter 2 proposes a consistent overview of a selection of my recent works,

roughly over the last two years. Results that are summarized in that chapter concern uni-

tary dynamics (periodically driven (Floquet) systems, scattering networks (including random

graphs)) and classical continuous media (including electromagnetic waves and fluid waves).

Finally, chapter 3 addresses a few perspectives for future works which I intend to tackle in

the next coming years. Derivations, calculations and other complementary informations are

intentionally missing. They can be found if necessary in the related published papers attached.

The risk when presenting works on topology in physics with almost no technical content, is

that the very topological aspects may remain too elusive and mysterious for non-specialists,

who may find the key ideas appealing but still would be unable to apply or even reproduce

them in the examples that are presented in this thesis. As a consequence, I added as a Part II, a

pedagogical introduction to a few basic (but not necessary simple) topological tools that were

used in Part I. This part can be read as an introduction course independently of Part I, with

explicit detailed derivations, and inversely, readers familiar with Chern numbers, winding

numbers and degrees of maps can skip Part II and only focus on its application to physical

waves discussed in Part I.
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Abstract
This manuscript of Habilitation à Diriger des Recherches thesis adresses works in theoretical

physics that deal with topological aspects of propagating waves.

The investigation of the topological properties of waves have mainly consisted in the study

of waves singularities in their intensity, phase or polarization. Inspired by the discovery of

topological phases of matter, whose quantum Hall effect discovered in 1980 and topological

insulators discovered in 2005 are some manifestations, new topological properties of waves

have been identified these last years. A few topological tools used and developed to describe

these quantum materials revealed the key cornerstone concept of bulk-edge correspondence,

that relates the topological characterization of electronic wavefunctions in a quantum ma-

terial to the existence of confined states at its boundaries, that make for instance possible

the transport of information without dissipation. This correspondence being applicable to

classical waves, it turned out to be a powerful tool to describe and predict the existence of

guided waves, from specifically designed metamaterials to natural systems.

This thesis, comprised of two parts, first presents this evolution by illustrating it with recent

results dealing with the existence of unidirectional confined waves (so-called ”chiral waves”) in

driven systems, random graphs, and continuous media such as gyrotropic optical systems and

geophysical fluids. The second part is an introduction of mathematical tools in topology that

are necessary to capture more technical aspects that underlie this common phenomenology

shared by plentiful waves physical systems.
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Résumé
Ce mémoire de thèse d’Habilitation à Diriger des Recherches présente des travaux en physique

théorique traitant d’aspects topologiques de la propagation d’ondes.

L’étude des propriétés topologiques des ondes s’est longtemps déclinée comme l’étude des

singularités d’intensité, de phase ou de polarisation d’un champ. Ces dernières années, de

nouvelles propriétés topologiques des ondes ont été identifiées, en s’inspirant de la découverte

des phases topologiques de la matière, dont l’effet Hall quantique entier découvert en 1980, et

les isolants topologiques découverts en 2005 en sont des manifestations. Certains des outils de

topologie utilisés et développés pour décrire ces matériaux quantiques ont permis de mettre

en évidence le concept fédérateur clé de correspondance bord-volume, qui relie la caractérisa-

tion topologique des fonctions d’onde électroniques d’un matériau quantique à l’existence

d’états confinés sur ces bords, ces derniers pouvant par exemple propager de l’information

sans dissipation. Cette correspondance pouvant être appliquée aux ondes classiques, elle s’est

avérée être un outil puissant pour décrire et prédire l’existence d’ondes guidées, que ce soient

dans des méta-matériaux conçus sur mesure ou dans des milieux naturels.

Cette thèse, composée en deux parties, présente d’abord cette évolution en l’illustrant de

résultats récents portant sur l’existence d’ondes confinées unidirectionnelles (dites « chirales »)

dans des systèmes dynamiques forcés, des graphes aléatoires, et des milieux continus tels

que des systèmes optiques gyrotropiques et des fluides géophysiques. La deuxième partie

propose une introduction des outils mathématiques de topologie permettant d’appréhender

les aspects plus techniques qui sous-tendent cette phénoménologie commune à de nombreux

systèmes physiques ondulatoires.
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1 Chern numbers in physics : a matter
of waves

Le troisième exemple va nous montrer comment nous pouvons apercevoir des

analogies mathématiques entre des phénomènes qui n’ont physiquement aucun

rapport ni apparent, ni réel, de telle sorte que les lois de l’un de ces phénomènes

nous aident à deviner celles de l’autre. [...] En résumé le but de la physique

mathématique n’est pas seulement de faciliter au physicien le calcul numérique

[...]. Il est encore, il est surtout de lui faire connaître l’harmonie cachée des choses

en les lui faisant voir d’un nouveau biais.

Henri Poincaré

La valeur de la science (1905)

1.1 Why topology in physics ? An apology of topology

The craze of physicists for topology has considerably increased since the discovery of new

electronic phases of matter around 2005, called topological insulators [42]. This growing

interest for topology is visible in the number of manuscripts submitted on the arXiv platform

over the years ; while almost 4 physics manuscripts were in average daily submitted during

the year 2000 with ”topological” in their title or their abstract, there are about 13 papers that

appeared each day during the last year (2018-19). Among those, almost 9 of them deal with

condensed matter, against only 1 in 2000. In the meantime, the Nobel prize in physics awarded

in 2016 David Thouless, Duncan Haldane and Michael Kosterlitz for ”theoretical discoveries of

topological phase transitions and topological phases of matter”, that cover different topological

properties of matter. This fast and continuing expansion reveals the successful input of topol-

ogy in physics whose applications diversified and spread over many areas beyond quantum

condensed matter. It has become such a staple and transversal tool for many physicists that

the appellation topological physics is sometimes employed to refer to this multi-faced commu-

nity, where a common theoretical tool federates fields that differ by their specific underlying

processes and mechanisms as well as by their typical energy, time or length scales.
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Chapter 1. Chern numbers in physics : a matter of waves

It is worth mentioning the historical interconnection between the early stages of topology and

physics, long before the rise of topological insulators, that can be traced back to the nineteenth

century, from the description of vortices in fluids (that are phase singularities of the velocity

field) to the attempt of describing the hypothetical atoms by knots [15]. Around the turn of the

nineteenth century, Henri Poincaré’s work embodies this intertwining of physics and topology.

For instance, stimulated by the three-body problem encountered in celestial dynamics, he

pioneered the investigation of singular points appearing in differential equations of motion

on different surfaces and showed that these singularities could be classified according to the

topology of these surfaces only, namely their genus g , that is roughly speaking the number of

”holes” in the surface (g = 0 for the sphere, g = 1 for the torus ...) [15].

If topology did not quickly become a natural mathematical tool for most physicists, as usual

as differential calculus, linear algebra, symmetry groups or probabilities, it nonetheless im-

pregnated physics throughout the twentieth century by manifesting itself through numerous

phenomena. The description of stable defects in materials and superfluids, sparkles of a wavy

sea, boundary modes in quasi-crystals, helicity in hydrodynamics, instantons in quantum

chromodynamics, quantization of the electrical transverse conductance, quantum computa-

tion etc..., use various topological tools such as homotopy theory, catastrophe theory, knots

theory, homology, cohomology, K-theory, C∗ algebra etc....

In the meantime, topology developed as an influential branch of mathematics. It can be

basically thought as geometry without metrics, i.e. without the notion of distances, shapes

and other local details (even though it is actually deeply connected to differential geometry,

for instance). Topology deals with refined notions of continuity and equivalence between

various objects under continuous deformations, such as functions, operators or spaces. It

relates local properties, such as singularities or geometrical properties of a space, such as

its curvature, to global properties, such as the genus of a surface. It is an active field of

mathematics that diversified through years in various branches such as differential topology,

combinatory topology, algebraic topology, and established several fruitful connections with

other branches such as geometry, knots theory, graph theory and partial differential equations

theory, that are widely used in physics. The interested readers could immerse themselves into

more dedicated books, such as History of Topology [15], to get a clearer overview on that point.

As often in mathematics, these developments were motivated by very concrete problems (such

as Poincaré’s three body problem) and reached highly abstract and technical considerations,

often too obscure for most physicists, and far too removed from physical or practical concerns.

Indeed, after Poincaré’s works, topology was essentially developed by mathematicians and for

mathematicians. It was not aimed to be of any use for physicists. And when the cream of the

crop of topologists and physicists gathered together in a shared room, like a common lounge

at the Princeton graduate school in the early forties, where ”people would sit around playing

Go, or discussing theorems. In those days topology was the big thing” as Richard Feynman

experienced [28], topological physics did not spontaneously emerge as an obvious and fruitful

combination. Actually topology and physics were so disconnected from each other that they

4



1.1. Why topology in physics ? An apology of topology

seemed to be irreconcilable, according to George Gamow, who noticed in the early sixties

that [31] "only the number theory and topology still remain purely mathematical disciplines

without any application to physics. Could it be that they will be called to help in our further

understanding of the riddles of nature?"

As a matter of fact, at that time, topology had already subtly and implicitly interfered in physics :

The famous example of the magnetic monopole introduced by Paul Dirac in 1931 [23] as an

attempt to justify the quantization of electric charges, and later the prediction of the Ehrenberg-

Siday-Aharonov-Bohm effect (1949-1959) [1] that accounts for the phase accumulated by

charge particles that surround a magnetic flux line without being coupled to the magnetic

field, are both re-interpreted nowadays through the prism of topology. Remarkably, these very

examples have also strongly influenced the rise of topological physics in condensed matter

these last decades.

For topology to become a natural tool for physicists, it required the breakthrough initiatives

of few creative minds who unexpectedly shown how physical systems could be naturally

described with topological concepts, sometimes simply because other approaches did not

work. This was the case, to cite a few, of Lars Onsager who predicted the existence of quan-

tized flux circulation in superfluid Helium, of Vadim Berezinski, John Kozterlitz and David

Thouless who understood the key role of pairs of topological defects (namely vortices) to

explain the transition to a superfluid state in two dimensions, of Michael Berry who revealed

both the generic emergence of wave front dislocations in the large wavelength limit and the

classification of stable shapes of caustics in the other limit, of Thouless, Kohmoto, Nightingale

and den Nijs when they recognized a topological invariant of complex fiber bundles, called

the first Chern number, in the transverse electric conductivity of a quantum Hall sample,

thus explaining its quantization. Inversely, physics also keeps stimulating topologists, for

instance when Charles Kane and Eugene Mele proposed a novel topological index in 2005 to

characterize the quantum spin Hall effect that they predicted [54, 55]. This dialog between

topology and physics has become more natural (even though not always easy) with time as it

has been greatly facilitated by these successful pioneering works.

The reasons for the success of topology in physics are manifold. First it is useful because

it can turn a complicated problem into a simpler one, by ”topological equivalence”, whose

precise meaning depends on the object one considers (a function, a surface or a more complex

structure), but typically deals with the notion of continuity between these two objects. Doing

so, it somehow erases ”unessential differences” and therefore reveals similarities between

what may look different at first sight. Objects that are then ”topologically equivalent” may

be ranked into the same ”box”, usually labelled with a number, called topological invariant.

Topology only makes distinction between boxes labelled differently, and confuses elements

in the same box. Thus, topology is also useful in physics, not because it provides a fine and

detailed information on the system, but on the contrary because this information is coarse.

This is in strong contrast, for instance, with universal fluctuations of conductance that gives

a fingerprint of a disorder configuration through the coherent propagation of electrons in
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Chapter 1. Chern numbers in physics : a matter of waves

diffusive metals. This coarse information allows classifications, that offer intelligibility to a

wide class of phenomena. Topology was thus used in physics to classify defects in ordered

phases, caustics of propagating waves and more recently phases of matter such as topological

insulators.

Classifications account for the insensibility to interchanges between elements in a box, to

follow the analogy. Topology is thus inherently related to a notion of robustness or stability

against any transformation that leaves an element in its box. The system or the physical

property of interest then inherits a topological protection which for instance helps explaining

robust transport properties, from quantum electrons to oceanic waves, and is envisioned to

be used in quantum computing.

Finally, topology also allows a common phenomenology between fields. This is in particular the

case of what one could call topological waves, that are the classical analogues of topological

phases. These are the main topic of this manuscript. All along the 19th century, the concept

of wave allowed a unified understanding of various phenomena such as sound, tides, light,

seisms and radio communications. It is thus not surprising that concepts of topology concern

all these waves, as soon as it applies to one of them.

Actually, topology of waves has a long history, almost as ancient as waves themselves, through

the study of their singularities. As recalled by Michael Berry in a limpid and synthetic article

[12], three distinct wave singularities were already known back to the ”miraculous 1830s” :

the singularity of the intensity discovered by George Airy in 1838 when studying rainbows

(and later revisited by Michael Berry within the broader concept of caustics and the formalism

of catastrophe theory developed by René Thom), the singularity of the phase, revealed by

William Whewell between 1833 and 1836 when discovering amphidromic points in the North

sea, which are phase singularity points of tide waves, where tide must vanish, and finally

the singularity of the polarization discovered by William Hamilton in 1832 that led to the

prediction of the conical refraction. The more modern field of singular optics is inherited from

these considerations. Topology of waves were also enriched in the late seventies, in particular

through several works of Michael Berry and his collaborators, for instance with the highlight of

wavefront dislocations of water waves that emerge when scattered by a vortex, thus providing

a classical analog of the aforementioned Aharonov-Bohm effect [80, 11]. This last example

anticipates how topological properties of quantum wave functions may inspire the search of

novel topological properties of waves. Indeed, during the last ten years, physicists realized that

topological properties similar to that of the integer quantum Hall effect and of the recently

discovered topological insulators could be engineered with classical waves of various kinds.

These topological properties are related to phase singularities of the complex eigenstates of

the system in a parameter (or reciprocal) space, and translate in real space as the existence of

confined modes at the boundary of the system that can be used to guide information, through

the celebrated bulk-edge correspondence. This burst started with electromagnetic waves in the

optical and micro-wave regimes, and was later pursued and extended to mechanical, elastic,

acoustic, plasma, oceanic and atmospheric waves. And the search is still on! Coincidently,
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Figure 1.1 – Sketch of an overview of the spread of topology in physics. Keywords in bold are the subjects of
chapter 2.

these topological properties, whose a few physical manifestations are illustrated in the rest of

the part I of this manuscript and described more mathematically in part II, are closely related

to the existence of degeneracies of eigenvalues of matrices (e.g. the Hamiltonian) precisely

like the conical refraction driven by the polarization singularities mentioned above, that is

certainly one of the very first manifestation of topology in physics.
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Chapter 1. Chern numbers in physics : a matter of waves

Let us end this broad introduction with the figure 1.1 that sketches an attempt of summarizing

this complex spreading of topology in physics (emphasized on low energy physics), and

highlights different influences and articulations around the recent rise of topological phases

and of topological waves. This is of course incomplete and subjective, but might help to have

a first overview of the interconnections between different fields and concepts.

1.2 From the quantum Hall effect to Chern insulators

1.2.1 The quantum Hall effect

The quantized (or quantum) Hall effect emerges as a universal phenomena in two-dimensional

electron gases subjected to a perpendicular magnetic field [61]. For a sufficiently large mag-

netic field, the longitudinal conductivity vanishes, as sketched in figure 1.2, meaning that

a longitudinal current cannot be induced by an electric field applied in the same direction.

The system thus becomes insulating. This insulating behavior can be understood easily from

the energy spectrum of the simple Landau model of a quantum free electron gas coupled

to a perpendicular magnetic field. Under the action of the magnetic field B , the quadratic

dispersion relation of the electrons becomes that of the quantum harmonic oscillator : it

consists in equally spaced non-dispersive (Landau) levels separated in energy by ħωc , where

ωc = eB/me is the cyclotron resonance frequency, with e is the elementary electric charge

and me the electron mass. Generically, the Fermi energy lies between two successive Landau

levels, and the system is thus insulating. This corresponds to the intuitive semiclassical picture

where the electrons describe close cyclotron orbits. When, on the contrary, it coincides with a

Landau level, for instance by sweeping the magnetic field, the system becomes suddenly con-

ductor. Accordingly, the longitudinal conductivity exhibits a series of pics when increasing the

magnetic field and vanishes everywhere else. This simple picture can be refines by introducing

disorder : the Landau levels acquire some finite width and the sudden rise of conductivity can

be interpreted as a quantum percolation transition, as understood by Chalker and Coddington

[17].

The main surprise in the quantum Hall effect was the remarkable precise quantization of the

transverse conductivity (or Hall conductivity) σH or equivalently of the Hall resistivity ρH as

σH = ρ−1
H = e2

h
n (1.1)

where n is an integer and h
e2 = 25812.807557Ω is called the von Klitzing constant. When

sweeping the magnetic field, the Hall conductivity thus exhibits a series of plateaus indexed by

an integer n, reproduced in figure 1.2. These plateaus coincide with the vanishing longitudinal

conductivity aforementioned and accordingly a jump between two plateaus is accompanied

with a percolation transition. The quantum Hall effect reflects an unusual electronic phase of

matter, as it cannot be naively ranked neither as an insulator nor as a metal.
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Figure 1.2 – Sketch of a typical measurement of the quantum Hall effect.

This effect was discovered by von Klitzing, Dorda and Pepper in 1980 in high mobility and low

temperature GaAs/AlGaAs hetero-junctions for sufficiently high magnetic fields (typically at

least a few Teslas) [61]. It was then reproduced in other two-dimensional electronic systems,

and in particular at room temperature in graphene, that is a single sheet of graphite, where

Carbon atoms organize according to a honeycomb lattice, as reviewed in [32].

The quantization of the Hall conductivity, and more specifically its high precision and repro-

ducibility, irrespective of the imperfections of the samples, was unexpected and puzzling. The

first step to its understanding was performed by Laughlin [65] who exploited the fact that the

quantization did not seem to depend on the detailed geometry of the sample. He proposed to

deform the Hall sample into an annulus, also called Corbino disk, so that the applied voltage

is changed into an ”angular” time-dependent flux through the disk Vϕ = −∂φ/∂t . In that

geometry, Laughlin showed, thanks to gauge invariance of the electronic wave functions,

that an adiabatic insertion of a quantum flux φ0 = h/e after a time t0, shifts a state of radial

quantum number m to the next m +1 toward the outer edge, which moves a charge −e in

that direction, leading to the radial current Ir = −e/t0. This shift of states is also referred

to as spectral flow. It is accompanied with a bias voltage Vϕ = h/et0 and thus a transverse

conductivity σx y = Ir /Vϕ =− e2

h .

The role of gauge invariance, both in quantum mechanics and classical electromagnetism,

plays a central role in this argument. It was further exploited by David Thouless, Mahito

Kohmoto and their collaborators in a series a papers [101, 62, 79, 78] where a more microscopic

approach was used to compute the transverse conductivity both in the linear response theory

(Kubo formula) and in the adiabatic regime, that both assume a weak bias voltage perturbation

so that no transition to excited states occurs. These works reveal that the Hall conductivity (1.1)

has a topological interpretation, as it relates the quantization number n to an integer-valued
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Chapter 1. Chern numbers in physics : a matter of waves

topological invariant Cm , called first Chern number, as

σH = e2

h

∑
m<mF

Cm (1.2)

where the sum runs over all the occupied states m below the Fermi energy. This Chern number

can be expressed as an integral of a local quantity Fn(kx ,ky ), called Berry curvature, over the

space of parameters, that is here the first Brillouin zone (or magnetic-Brillouin zone)

Cn = 1

2π

∫
T 2

dkx dky Fn ∈Z . (1.3)

The first Brillouin zone is the smallest periodic area in reciprocal space. As such, it can

be seen as a close two-dimensional torus T 2 for the eigenstates |ψm(kx ,ky )〉. This can be

extended to ”generalized boundary conditions” for a finite size (gapped) system without an

underlying lattice structure and possibly weak interactions [79, 78]. In that case, the use of

gauge invariance allows one to treat the Hall system as a torus whose two axes are fluxes φx

and φy that substitute kx and ky in (1.3).

The mathematical formula (1.3) was obtained (in a more formal and general way) by Shiing-

Shen Chern in 1945 [18] as a generalization of the Gauss-Bonnet formula that relates the

gaussian curvature κ of a close surface S to its genus g as

2(1− g ) = 1

2π

∫
S
κ dS (1.4)

which emphasizes the relation between local and global properties.

The emergence of a Chern number in the expression of the transverse conductivity was

unexpected. It revealed the topological nature of the quantum Hall effect. It has several

benefits : First, it helps understanding the robustness and the precision of the measured Hall

conductance, whose value cannot fluctuate. Second, it yields a new classification for the

electronic phases of matter beyond Landau paradigmatic symmetry-based theory of phase

transitions, that is based on topology. Instead of a local order parameter, topological phases

are described by the value of a topological invariant, namely the first Chern number here,

that encodes a global property of the system. Different plateaus of the Hall conductivity thus

correspond to distinct topological phases.

Not to be confused with this Gauss-Bonnet result, the surface under consideration in equation

(1.3), is fixed to be the torus. Still, the value of Cn may change because of a change of the Berry

curvature, which is not the curvature of the torus. It rather characterizes the continuous family

of complex eigenstatesψn(kx ,ky ) that are parametrized by kx and ky , and can be expressed as

Fn(kx ,ky ) = i(∂kxψ
∗
n)(∂kyψn)− i(∂kyψ

∗
n)(∂kxψn) (1.5)

where the ∗ stands for complex conjugation. Actually, time reversal symmetry, as an anti-
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1.2. From the quantum Hall effect to Chern insulators

unitary symmetry that reverses momentum, acts on quantum states asψ(kx ,ky ) →ψ∗(−kx ,−ky ).

As a consequence, the Berry curvature Fn(kx ,ky ) =−Fn(−kx ,−ky ) is an odd function in the

Brillouin zone, yielding vanishing Chern numbers. It is thus crucial to break time-reversal

symmetry in order to obtain a topological phase characterized with Chern numbers. One

way to break time-reversal symmetry is to insert a fixed magnetic field in the system. This

corresponds to the quantum Hall effect. But this is not the only possibility, and one may break

time-reversal by other means, e.g. with inserting magnetic impurities, by rotating the system

or by applying a time-dependent electric field. Systems that exhibit the same phenomenology

than that of the quantum Hall effect, but without a net magnetic flux through the sample, or

in other words without Landau levels, are said to realize an anomalous quantum Hall effect.

Furthermore, as their bands are labelled by Chern numbers, they are called Chern insulators.

A celebrated model for Chern insulators was cooked up by Duncan Haldane in 1988 [40].

This is a toy model for spinless electrons on the honeycomb lattice. When electrons hope to

second nearest neighbours sites, they pick-up a phase in such a way that the total flux through

the unit cell vanishes. Even though this model may seem artificial, it captures the essential

conditions to obtain a Chern insulator : breaking time-reversal symmetry by the additional

phase which opens a gap in a different way from what an on-site potential does. It inspired

many theoretical works (like the first model for the quantum spin-Hall effect [54]) as well as

numerous experimental works from photonic crystals [109] to trapped cold atoms [53] to cite

a few.

1.2.2 Chiral edge states

The existence of an extremely stable transverse conductivity means that the quantum Hall

phase cannot really be considered as an insulator, or at least in the usual sense, since a

transverse electric current can actually flow in the system. How is this possible since the energy

spectrum is gapped? Actually, as shown by Halperin [41], the energy spectrum is not gapped

anymore if one includes the boundary of the system, that adds a potential of confinement and

thus bends the Landau levels. If an edge is added, say along the y direction, then the Landau

levels acquire a dispersion along ky . This dispersion have a simple semiclassical interpretation :

At the Hamiltonian level, the presence of the magnetic field in the system enters through

a vector potential via the Peirels substitution, for instance ky → ky + e Ay = ky − eB x in the

Landau gauge, where x is the position variable perpendicular to the edge. This leads to the

definition of the center of the cyclotron orbit as xc = ky /eB and allows an interpretation of

the bending of the energy spectrum in real space via En(ky ) → En(xc ). It turns out that the

bending occurs when approaching the edge, while the Landau levels remain flat in the bulk.

The semiclassical interpretation is that for certain values of ky the cyclotron orbit touches the

edge and becomes open. The semi-classical electron ”skips” along the edge and consistently

have a finite group velocity. Thus, wherever the Fermi energy lies, it has to intersect the

bending dispersion relation meaning that dispersive states are available only close to the edge,

even in the presence of a small amount of disorder. These are more generally referred to as

chiral edge states. The chiralilty here means that the sign of the group velocity is fixed, and
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Chapter 1. Chern numbers in physics : a matter of waves

that there is no other accessible state at the same energy toward which they could couple

by exchanging momentum, especially in the presence of disorder. Chiral edge states are

thus expected to be immune against backscattering, meaning that they contribute to the

electric conductance G as modes m with a perfect transmission Tm = 1, according to the

Landauer formula G = e2/h
∑

m Tm and are thus insensitive to Anderson localization. A more

general approach of these transport properties, based on scattering matrices, and developed

mostly by Markus Büttiker, can take into account an arbitrary multi-terminal geometry with

different bias voltages between the terminals [14]. More sophisticated sample geometries

(4 terminals, 6 terminals...) are useful to relate explicitly the (theoretical) conductivity with

the (measured) conductance, and also to predict correctly the values of terminal-dependent

non-local conductances by only assuming the existence of the chiral edge states, and thus

corroborate their existence.

1.2.3 The bulk-edge correspondence

The simple semi-classical skipping orbits argument yields the uni-directional edge modes,

whose existence allows correct predictions of the measured quantized Hall conductance and

its multi-terminal generalizations [14]. It is remarkable that these edge modes are associated

to some back-scattering immunity, or robustness against effects of disorder such as Anderson

localization. This robustness must be put in parallel with the quantized bulk conductivity

that has a topological origin. Actually, there is a deep connection between the existence of

chiral edge states and the bulk topological invariant, called the bulk-edge correspondence,

and pioneered by Yasuhiro Hatsugai in 1993 [44, 43]. Originally, this correspondence was

derived for a Bloch electron on a square lattice subjected to a magnetic flux. It relates the

number of chiral edge states, i.e. that bridge an energy gap, to the Chern numbers of the

bands. More precisely, in a cylinder geometry (or infinite strip), a chiral edge state localized

at one boundary is necessarily accompanied with a counter-propagative chiral edge state

localized at the opposite boundary, by conservation of the current. This pair constitutes a loop

in a spectral gap : one edge state flowing from a band n to a band n +1 while the other flows

from the band n +1 to the band n, their group velocity necessarily having opposite signs, as

sketched in figure 1.3 (a).

An elegant construction, based on transfer matrix theory allows the assignment of each

energy gap to the genius of a Riemann surface of complex energies. The introduction of these

complex energies makes possible a common analysis of the bulk propagative modes and of

the evanescent edge states that live in these gaps. Within that picture, each pair of propagating

and counter-propagating chiral edge states, that are localized on opposite boundaries and

that bridge a gap in opposite directions, form a loop that winds around a hole of the Riemann

surface. This winding I j is a topological property of the (pair) of chiral edge state(s) that bridge

the gap j . The bulk-edge correspondence then relates this winding number to the Chern
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Figure 1.3 – Illustrations of the bulk-edge correspondence according to (a) Hatsugai in the case of an infinite
strip geometry and (b) Graf and Porta in the case of a half infinite geometry.

numbers as

I j − I j−1 = C j (1.6)

where the gap j lies just above the band j , thus establishing a simple relation between the

spectral flow of the chiral edge states and a topological index of the bulk bands. It thus confers

a topological nature to the chiral edge states : a Chern insulator is guaranteed to a have chiral

edge states whose spectral flow is determined by the relation (1.6).

Another point of view developed later by Gian Michele Graf and Marcelo Porta uses scattering

states [37]. This approach, rooted by Levinson theorem, counts the number of evanescent

states (i.e. edge states lying in the gap) that merge to a band, even though they do not cross

the gap, via the winding number of the determinant of a scattering matrix. In particular, this

approach applies to a semi-infinite system, as there is no need to form a loop made of two

counter-propagating edge states. There, the Chern number of a band j is related to the sum

n−
j (n+

j ) of the winding numbers associated to states that merge to the band from the gap

below (above) as

n−
j −n+

j = C j (1.7)

which amounts to count the number of states that merge to the band j when sweeping kx . An

example is shown in figure 1.3 (b).
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There are many other works that deal with the bulk-edge correspondence, not only about

Chern insulators, but also for other topological insulators in one and three dimensions and in

different symmetry classes. The universality of the bulk-edge correspondence is remarkable,

and it is also remarkable that this commonly accepted concept is still an active topic of

research.

1.3 Chern numbers beyond Chern insulating phases

Chern insulators have become a cornerstone of topological physics. They stimulated different

fruitful directions that are current active fields of research. Let us give a brief overview of the

main ones.

1.3.1 Fractional topological phases

Chern insulators constitute a building block to realize fractional topological phases without

Landau levels, called fractional Chern insulators, for which the transverse conductivity is

quantized by a rational number rather than by an integer, for instance σx y = 1
3

e2

h . Such

remarkable phases, first discovered in the fractional quantum Hall effect [102], can emerge

for specific partial filling factors of the bands, when repulsive interactions between electrons

become relevant and lead to a degenerate ground state separated from the other excited states

by an energy gap. A good starting point to implement such en exotic phase is then to consider

a Chern insulator whose bands are (almost) flat so that the kinetic energy becomes negligible

in comparison to the interaction [90, 97].

1.3.2 Symmetry-protected topological insulating phases

Chern insulators are actually a particular case of topological insulators, that are essentially

band insulators whose bulk wave functions own a topological property. Indeed, it turns out

that other topological insulating phases may exist when an additional symmetry is imposed.

In that case, bands of the gapped single-particle Hamiltonian are characterized by a topo-

logical invariant, that in general is not the first Chern number. Of main importance was the

theoretical discovery in 2005 by C. Kane and E. Mele of a new insulating topological phase in

two dimension protected by time-reversal symmetry [54]. Its physical manifestation, called

quantum spin Hall effect, was first observed in group of L. Molenkamp in HgTe/CdTe quantum

wells [63] following a theoretical prediction by Bernevig, Hugh and Zhang [9]. This new phase

can somehow be simply apprehend as a ”superposition” of two time-reversal copies of a Chern

insulator, so that the full system preserves time-reversal symmetry. In that simple limit, the

Chern number remains a good topological invariant to describe the phase. Actually, when

the two copies are coupled, by any term that preserves time-reversal symmetry, this simple

picture does not hold anymore and a new topological invariant, not referenced in the mathe-

matics literature, had to be introduced to correctly characterize the Kane and Mele phase [55].
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Unlike Chern numbers, this new invariant can only take two distinct values. It is said to be

a Z2-valued topological number. Soon after these theoretical and experimental discoveries,

other topological insulating phases were proposed and some of them were quickly observed,

such as three-dimensional topological insulators, also characterized by Z2-valued topological

numbers. This demonstrated the possibility to achieve new topological phases by exploring

different symmetry classes and dimensions. Single-particle gapped Hamiltonians were then

classified according to their symmetry classes, (unitary, anti-unitary such as time-reversal

symmetry, crystallographic ...), together with the space dimension, leading to classifications

of topological insulators and superconductors [94]. In this unexpected new world, where

boring insulators revealed their hidden beautiful diversity, Chern insulators constitute a single

example (but not the least) of topological insulating phases among many others.

1.3.3 Topological semi-metals

By definition, Chern insulators deal with gapped Hamiltonians. However, it was realized

[106, 75, 107, 7] and later observed in TaAs [113], that peculiar kinds of three-dimensional

semi-metals own a topological property characterized by the first Chern number. The band

structure of these materials is gapped everywhere, except at a few points in the Brillouin

zone where two bands touch linearly. In the vicinity of these two-fold degeneracy points,

the linearized Hamiltonian has the typical form of a Weyl Hamiltonian H ∼ vF k.σwith σ the

vector of Pauli matrices and where the celerity of light is substituted by the Fermi velocity vF

when the Fermi energy lies near by such points. For this reason, these semi-metals are called

Weyl semi-metals. Remarkably, the band touching points, or Weyl points, have a topological

property, often associated to the fact that a small perturbation cannot remove them by lifting

the degeneracy. Actually, Weyl points can be seen as hedgehog point defects in reciprocal

space, in respect of the spin (or pseudo-spin) structure 〈σ〉 that surrounds it. The orientations

of this hedgehog structure are opposite for each of the two eigenstates involved in the band

crossing. Furthermore, these two eigenstates, parametrized in reciprocal space around a

closed surface that surrounds the Weyl point, carry an opposite (non-vanishing) first Chern

number, called topological charge in this context.

1.3.4 Topological physics beyond condensed matter

An important fruitful development, that we will be concerned with for the rest of this review, is

the possibility to realize Chern insulators beyond electronic quantum systems, where atoms,

photons, or classical waves play the role of electrons.

In the absence of a Fermi energy, the condensed matter notion of a band insulator is ill-defined.

However, the dispersion relation is a meaningful concept. By engineering an ”artificial lattice”,

in order to mimic a solid, energy (or frequency) band structures can be defined in the Brillouin

zone. These bands are typically separated by gaps, in the absence of accidental degeneracies.

The existence of these gaps, implying that states at certain energies/frequencies cannot propa-
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gate through the system, is sufficient to generalize the concept of band insulator. The novelty

inherited from topological insulators, is that the bands (or should we say their corresponding

eigenstates parametrized over the Brillouin zone) can have a topological property, for instance

characterized by a Chern number.

In insulating phases, the physical content of Chern numbers lies both in the quantized Hall

conductivity and in the existence of chiral edge states. However, even though these two

properties are related to the same measurable transport property, they are not equivalent. In

particular, the expression of the conductivity as a Chern number lies on several hypothesis

such as the existence of a Fermi energy, but also the equivalence of gauge invariances of

electromagnetism (the applied electric field) and quantum mechanics (the electrons wave-

function in the material). These properties are specific to condensed matter systems, and

cannot be easily generalized to any other classical insulator (optical, acoustic ...). However,

the existence of chiral edge states, that is guaranteed by the bulk-edge correspondence, is a

spectral property that does not require these peculiar physical properties. As a consequence,

chiral edge states can be implemented in generalized band insulators beyond the electronic

ones, while the quantized transverse conductivity cannot. The bulk-edge correspondence is

the universal concept that allows the generalization of Chern insulators (and more generally

topological insulators) beyond quantum electronic systems. It offers new opportunities in the

manipulation of robust guided transport, in particular with classical waves.

This led to an impressive prominent diversification of platforms, from quantum to classical

artificial lattices (by contrast with quantum electronic materials) in order to engineer and to

probe topological properties, often (but not always) through the observation and the manipula-

tion of the boundary modes. This includes cold atoms trapped in optical lattices, gyromagnetic

photonic crystals, optical coupled waveguides arrays, circuits of quantum-electro-dynamical

systems, silicon ring resonator arrays, microwave resonator arrays, radio-frequency circuits,

electrical circuits, circuits quantum electrodynamics, bianisotropic metamaterials, exciton-

polariton lattices, optomechanical arrays, photonic mesh lattices, circulating airflow acoustic

lattices, gyroscope lattices, pendula lattices, geared metamaterials, origami metamaterials,

acoustic resonator lattices, structured plates, granular crystals, Helmoltz resonators lattices,

active liquid metamaterials, among others... Detailed descriptions of most of these setups

can be found in specific reviews dedicated to topological physics in different platforms in

photonics [82], acoustics [116] and ultra cold atoms [35].

The versatility of these platforms allows an experimental control of relevant physical param-

eters, different from those that can be usually tuned in condensed matter, such as hopping

amplitudes between neighbours sites, landscape of disorder, amplitude of the interactions,

shape of the system’s boundaries, and so on. Some of these platforms give also access to

physical observables that are usually out of reach in solids, such that the direct probe of

boundary modes or their dispersion relation.

The main conceptual difficulty to conceive ”artificial” topological insulators is to engineer
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1.3. Chern numbers beyond Chern insulating phases

”artificial” gauge fields, analogous to the electromagnetic vector potential in the quantum

Hall effect or in the Haldane model. In the case of Chern insulators, time-reversal symmetry

must be broken. This steers the search for appropriate mechanisms, in particular when

the particles or waves under consideration do not couple to a magnetic field. Many clever

solutions were found, as reviewed in [2] For instance, time-reversal symmetry breaking gauge

fields can be created for trapped (neutral) cold atoms from Raman transitions between internal

degrees of freedom [98, 34], for photons from a coupling with acoustic phonons [84], and for

acoustic waves from the irreversibility of a spontaneous active liquid flow confined in a lattice

composed of annular channels [96]. A fruitful general strategy consists in imposing a chirality

in the system, by means of a rotation. This idea can translate as : circularly shaking/irradiating

the system [81, 53, 33], including rotating elements (gyroscopes, rotors acoustics, circulators)

or changing in time the hopping parameters [58, 89]. These different processes all imply

(periodic) time-dependent couplings, and are referred to as Floquet engineering, whose

certain aspects are discussed in section 2.2.
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2 Topological chiral waves

Vous savez, les idées, elles sont dans l’air. Il suffit que

quelqu’un vous parle de trop près pour que vous les attrapiez!

Raymond Devos

2.1 Summary of the main results from the perspective of the bulk-

edge correspondence

This chapter reviews some of the main results obtained during the last two years that are hinged

around the search for chiral waves beyond Chern insulating phases. Two main directions have

been followed, that compose the two sections of this chapter : Floquet systems and topological

dynamics in section 2.2 and Topological waves in continuous media in section 2.3. Each in

their own way, these two directions show how the concept of bulk-edge correspondence can

be extended beyond electronic phases in crystals, to characterize the existence of topological

uni-directional guided waves in various systems from optics to geo-fluids.

In Floquet systems, that are periodically-driven systems, anomalous regimes can be found

where topological chiral edge states exist despite the vanishing of the Chern numbers C.

Instead, a dynamical topological invariant, quoted W ∈Z, can be defined from the evolution

operator rather than from the Hamiltonian. This index takes into account the full (unitary)

dynamics that turns out to enrich the topological properties of the system, with in particular

the existence of these anomalous chiral edge states. The bulk-edge correspondence can then

be rephrased in terms of this new index that correctly predicts the existence of chiral edge

states and therefore of chiral interface states between two Floquet systems of different indices

W . Unlike the Chern number, the W index is assigned to a spectral gap rather than to a band.

There is a close connection between Floquet systems and scattering networks, that model

the propagation of confined waves as a succession of free propagations and scattering events.

In particular, their evolution operator has topological properties similar to that of Floquet
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systems, encoded into a topological invariant W̃ ∈Z. Actually certain discrete-time dynamics

(or discrete-time drivings) can be mapped onto oriented scattering lattices. But scattering

networks are also interesting in themselves. First, because the topological invariant W̃ is ill-

defined as it depends on the choice of unit-cell (unlike W in periodically driven systems), and

thus does not predict correctly the existence of edge states, but only of interface states. Second,

because they exhibit anomalous chiral interface states in the total absence of periodicity; in

particular they show that these exotic topological uni-directional modes are not specific to

periodically driven systems and are actually quite generic in random scattering networks even

when the W̃ index cannot be defined at all.

Classical waves such as light and sound are commonly described in continuous media. In

the absence of a Brillouin zone, the characterization of their topological properties is more

involved, and requires a special care. When the Chern numbers C̃ can be properly defined

for the wave bands, it turns out that they do not guaranty the existence of chiral edge modes

whose existence and the number actually depend on the boundary conditions. However, it is

observed that the Chern number still enters a generalized anomalous bulk-edge correspon-

dence that also accounts for non-chiral edge states as well as for additional hidden bulk modes.

In contrast, the number of interface chiral modes is well described by the difference of Chern

numbers.

It is remarkable that the concept of bulk-edge correspondence survives these different ex-

tensions beyond its original formulation, and applies for spectra other than energy spectra

(e.g. quasi-energy or frequency) and for parameter spaces other than the Brillouin zone (e.g.

wave numbers). It is also remarkable that edges and interfaces do not play an identical role.

In particular, edges somehow make more troubles than interfaces, and for different reasons,

whether it is in scattering networks or in continuous media. In contrast, chiral interface states

can always be described by a ”local” approach, around the band touching point that separates

the two distinct gapped media. Such a band touching point is actually the source of a Berry

curvature F , whose flux is a Chern number C that directly accounts for the existence of

interface states through a spectral flow, irrespective of the possible ill-definition of the bulk

Chern numbers of the gapped systems from each side of the interface. In that sense, this

Chern number C is somehow more ”fundamental” than that of the gapped phases C. It also

allows the prediction of chiral modes in anisotropic media, along a line in space where a

”mass” parameter m changes sign, and by doing so generates the band touching at the origin

of the topological property. In this case, there is no actual edge in the system. The figure 2.1

summarizes this viewpoint.

This following presentation is aimed to be accessible to non specialists and is thus deprived of

calculations and technical details. These could be found in the related publications or preprint

attached in appendix. The basic technical aspects of topological properties that are discussed

in this chapter are introduced in detail in Part II.
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Figure 2.1 – Perspective of the concept of bulk-edge correspondence, from Chern insulators to Floquet systems,
scattering networks and continuous media.

2.2 Floquet systems and topological dynamics

2.2.1 Dynamically-induced gauge fields

Geometrical or topological effects are inherently related to a gauge field (see [2] for a review

in various systems). This is explicit in the quantized Hall effect or in the Haldane model

for Chern insulators, that both require the existence of magnetic fluxes, either due to an

external magnetic field that acts globally over the scale of the sample in the former case,

or that is imposed locally in a staggered way in the later one. It follows that in both cases,

the quantum particle experiences a static vector potential A(r ) that enters for instance the

Aharonov-Bohm phase that dresses the hopping energy coupling J between sites R and R ′

on the two-dimensional lattice as J → Jei e
ħ

∫ R′
R A dr and thus breaks time-reversal symmetry by

making this coupling complex. Engineering a phase entering as Jeiφ in the coupling terms is

thus the goal to reach to make topological properties appear.

In 2009, Takashi Oka and Hideo Aoki proposed to induce a Hall-like state by replacing the

external magnetic field by an in-plane circularly polarized light [81]. Non linear polarization

breaks the time-reversal symmetry of the Schrödinger equation, and one should expect that the

resulting effect is reversed when switching the polarization from clockwise to anti-clockwise,
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Chapter 2. Topological chiral waves

in the same way that one can reverse the orientation of the magnetic field in the quantized

Hall effect. The polarized light is considered through a classical time-periodic electric field

E(t) = E(t +T ), and it follows that the gauge field, namely the vector potential that satisfies

E(t) =−∂t A(t), is also periodic in time. Applying this idea to the low energy massless Dirac

fermions of graphene, Oka and Aoki shown that this ac driving opens a gap and generates a

Berry curvature with the same sign in the two valleys, so that the net effect does not vanish.

Applying an additional bias voltage, they shown numerically that a transverse conductivity

emerges giving rise to a photovoltaic Hall effect.

There is a deep connection between this approach and the Haldane model since in both

cases time-reversal symmetry is broken without adding a net magnetic flux through each

unit cell, and thus without changing the effective size of the Brillouin zone, unlike with an

actual magnetic field. This equivalence can be established more rigorously in the regime of

high frequency and low amplitude of driving. Beyond this regime, Floquet systems exhibit

a much richer topological phase diagram than that of the Haldane model, as we shown in

[21, 36]. In particular, as shown in figure 2.2, a topological transition that flips the sign of

the Chern number can be induced by increasing the amplitude E of the driving electric field,

while keeping the polarization fixed. This results from an interplay between gaps opening

mechanisms and the motion of the Dirac points, that are both controlled by the external

driving. It follows that the chirality of the edge states is reversed while the polarization of the

driving is not. This is where the similitude with the Haldane model and with the quantized

Hall effect breaks down. Our prediction was later confirmed in a photonics experiment by the

group of Mikael Rechtsman, where a fictitious in-plane circularly polarized electric field is

engineered in helical coupled waveguides arrays [39], an experimental platform that allowed

the first observation of chiral edge states in the Floquet systems in 2013 [89].

aE
/ω

Manipulation of Dirac points Floquet-Chern insulators

Figure 2.2 – The tight-binding model of a honeycomb lattice subjected to an in-plane rotating electric field
shows various topological phenomena such as the merging of Dirac points in the Floquet spectrum and Chern
phases that can be manipulated with the amplitude, the frequency and the polarization φ of the driving field.

The idea of Oka and Aoki was shortly followed by Inoue and Tanaka [50] and then by Lindner,

22



2.2. Floquet systems and topological dynamics

Refael and Galitski [68] who proposed the idea of a ”Floquet topological insulator” where a

quantum spin Hall effect could be triggered in a semiconductor by shining light on it. Similar

ideas of ’artificial gauge fields were already developed in the beginning of the 2000s in cold

atom systems; the state of the field in 2007 is reviewed in [70]. In any cases, this idea essentially

consists in creating an artificial gauge field by periodically driving the system. This driving

could have different physical origins such as a circularly polarized electric field in electronic

systems, a circular shaking of the optical trap for cold atoms or a helical change of optical

index in photonics waveguides arrays. In 2010, Kitagawa et al. also revisited the adiabatic

limit of Thouless pumping in one-dimensional insulators, and reinterpreted the quantization

of the pumped current over a period of drive as the winding of the quasi-energy in the one-

dimensional Brillouin zone, thus establishing an elegant equivalence between a first Chern

number of the instantaneous eigenstates in (k, t ) space and the winding of a spectral quantity

in k space [58]. At this stage, the use of Floquet physics essentially consisted in providing a

new way to engineer already known topological states. But it turned out that there was more

to be discovered.

2.2.2 Anomalous chiral edge states

Chiral edge states with vanishing Chern numbers

There is a key difference between usual Chern insulators as a static equilibrium phase and

Floquet Chern insulators. Without even addressing the physical problems of heating and

dissipation that must be considered to discuss the existence of steady states in electronic and

cold atoms driven systems, the spectral properties (and thus the topological properties) are

distinct to those of equilibrium systems. Indeed, the Hamiltonian H(t) is not invariant by

arbitrary translation in time, but only by multiples of the driving period T , that is H(t +T ) =
H(t). A direct consequence is that energy is only conserved up to 2π/T . A Floquet system

is somehow the time analog of a crystal : The momentum of a particle in a periodic spatial

potential of lattice spacing a is only conserved up to 2π/a. In that case, Bloch theorem

states that the wave function of this particle is parametrized by a quasi-momemtum k as

Ψk (r ) = eikr uk (r ) where uk (r ) = uk (r +a) has the spatial periodicity of the lattice, such that

two states Ψk and Ψk+G that differ from a vector G of the reciprocal lattice describe the

same physical state. Similarly, for Floquet systems, a quasi-energy ε is introduced, that

follows from the periodicity in time of the Hamiltonian. The Floquet theorem then states that

the solutions of the Schrödinger equation iħ∂tΨ(t) = H(t)Ψ(t) read Ψε(t) = eiεtΦε(t) where

Φε(t) = Φε(t +T ) and where Ψε(t) and Ψε+2π/T (t) describe the same physical state. Such

dynamical systems are equivalently described by their unitary evolution operator U (t , t0) that

satisfy iħ∂tU (t , t0) = H (t )U (t , t0) where t0 is an arbitrary initial time. In particular, the Floquet

operator1 UF =U (T + t0, t0) that is the evolution operator over one time period, plays a key

role in the analysis of periodically driven systems, as it describes the stroboscopic evolution

1The Floquet operator is not unique, as it depends on the choice of origin of times t0. Its eigenvectors depend
on this choice, not its eigenvalues. We shall ignore this depend in all the manuscript
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Chapter 2. Topological chiral waves

U (t0 +nT, t0) =U n
F . Moreover its eigenvalue spectrum {λ}, that lies on the unit circle in the

complex plane, is directly related to the quasi-energy defined above as λ= e−iεT .

In 2013, Mark Rudner, Netanel Lindner, Erez Berg and Michael Levin showed in an inspiring

paper that Floquet systems may possess specific topological properties without any equiv-

alence in usual static insulators [91]. In particular, they proposed a simple time-periodic

tight-binding model to illustrate the possible existence of chiral edge states that are not cap-

tured by the first Chern number, as it is usually the case in the static situation by virtue of

the bulk-edge correspondence. These edge states, dumbed as anomalous, appear in the

spectral gap of the Floquet operator. The key point to understand the failure of the bulk-edge

correspondence is that the eigenvalue spectrum e−iεT of UF is unbounded in sharp contrast

with Hermitian tight-binding Hamiltonians whose eigen-energy spectra are bounded. Indeed,

the bulk-edge correspondence states that the first Chern number of a bulk band n counts the

difference of the number of edge states that merge to the bulk states from the gap above the

band with those that merge to the bulk states from the gap below the band, when varying kx

(for a boundary that lies along the x direction). The periodicity of the Floquet phase spectrum

allows situations where each gap hosts the same number of chiral edge states so that the

Chern number of each band remains zero. The Chern numbers of the Floquet bands therefore

cannot reveal the number of chiral modes in that case. Illustrations of different scenarios of

Floquet chiral edge states are shown in figure 2.3.

A Floquet chiral edge state cannot be removed by a continuous deformation as long as the

quasi-energy gap does not close. This is the hallmark of a spectral flow which is the typical

signature of a topological property. How to figure out the topological invariant that accounts

for this property? The Chern number we mentioned concerns the eigenstates of the Floquet

operator UF , that only gives a ”snapshot” of the dynamical system after a time period. This

information is of course incomplete as it ignores the full ”movie”, namely the path in time

followed by the system during its evolution. The full evolution over a period is given by

the evolution operator U (t + t0, t0) that is unitary. Here one must remember that the group

of unitary operators is not simply connected, which means that two paths that connect

two unitaries are not necessarily homotopic. As a consequence, there can exist different

paths, i.e. different evolution operators, that connect U (t0, t0) = 1 to the Floquet operator

UF =U (T + t0, t0). This is how different time-evolutions can be topologically inequivalent,

whereas the bulk Floquet eigenstates (and thus the Chern numbers) remain the same. As

shown by Rudner, Lindner, Berg and Levin, this dynamical topological property is captured by

a winding number W ∈Z. More precisely, this topological index is defined with respect to a

spectral gap of the Floquet operator UF . Two spectral gaps may be associated with different

topological indices W . An important relation with Chern number of a band is that the W

indices evaluated in the gaps ”above” the band and ”below” the band are related as

Wabove −Wbelow = C . (2.1)

The winding numbers W thus provide a finer topological description than the first Chern
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2.2. Floquet systems and topological dynamics

Figure 2.3 – Quasi-energy spectral that show the different topological regimes in an infinite strip geometry, (top)
with time-reversal symmetry broken and (bottom) with time-reversal symmetry. The two models used are the one
by Rudner-Lindner-Berg-Levin in [91] and its time-reversal symmetric situation that we proposed in [16]

numbers C of the bands since the set of all Chern numbers can be inferred from the set of W

invariants, and not the other way around. The relation (2.1) is analogous to the one derived by

Hatsugai in the context of the quantized Hall effect [44, 43], which is consistent with the fact

that the index W j gives the number N j of chiral modes in the gap j .

A conceptual difference between the original bulk-edge correspondence and this anomalous

bulk-edge correspondence for Floquet systems is that W j is a bulk topological invariant while

N j is an edge topological invariant. Establishing the bulk-edge correspondence for Floquet

systems thus consists in proving the equality W j = N j between these two kinds of invariants.

This was performed by Tauber and Graf in 2018, by using a switch-function formalism that

enables a connection between the unbounded bulk infinite system and the bounded semi-

infinite one [38]. Besides, we showed with Clément Tauber that the geometrical interpretation

of the spectral flow of chiral edge states that bridge gaps, in terms of a winding number in

a complex energy Riemann surface [44, 43], can be generalized to unitary systems such as

Floquet systems : the existence of an additional gap that makes the spectrum periodic yields

an essential singularity in the Riemann surface around which edge states can wind. This
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Chapter 2. Topological chiral waves

winding corresponds to a spectral flow in the quasi-energy gap around π/T [99].

Phase rotation symmetry

From a topological perspective, the anomalous chiral edge states are certainly the most

intriguing novelty brought by the Floquet dynamics. The existence of these states is related to

an extra symmetry of the unitary dynamics that we have introduced in [22] and developed in

[19], called phase rotation symmetry, that acts on the Floquet operator as

ZUFZ
−1 = ei2π/N UF . (2.2)

where N is the number of bands. This symmetry rotates the eigenvalues of UF on the unit

circle and thus permutes the associated eigenvectors. It is specific to unitary systems, and

does not have any counterpart in a static Hamiltonian description. Importantly, it follows

from phase rotation symmetry that the Chern number of each band vanishes. Actually, the

symmetry (2.2) is a very strong constraint, and is in general never satisfied except at some

special points in parameter space where the spectrum is gapped. However, away from these

symmetric points, the value of the Chern numbers cannot change until a gap closes, owing

to its topological nature, ensuring the stability of the result. This property alone does not

guarantee that the system is in an anomalous regime rather than in a trivial one. However,

anomalous chiral states are guaranteed to exist at the interface between two Floquet systems

that can be continuously deformed to different phase rotation symmetric points : In that case,

the two subsystems have vanishing Chern numbers but cannot be continuously deformed

into each other unless the gap closes. An example of such interface states is shown in figure

2.4.

A few generalizations of anomalous boundary states

Experimental efforts have been made to engineer and observe anomalous edge states, in

particular in photonics [74, 71]. Generalizations to other dimensions and or symmetry classes

have been investigated. Along this line, an experimental collaboration with Matthieu Bellec

(LPMC Nice) led to the observation of chiral-symmetric-protected anomalous boundary states

of a one-dimensionnal Floquet system realized in optical coupled waveguides [8], a study

motivated by a former collaboration with Janos Asbóth [3] (Wigner Research Center, Budapest)

and by a theoretical work of Michel Fruchart [30] (former PhD student at the ENS-Lyon).

Besides, with Michel Fruchart, David Carpentier and Krzysztof Gawedzki, we also proposed

a new Z2-valued topological index to characterize time-reversal invariant Floquet systems

in two dimensions [16]. This index, named K , is a time-reversal symmetric version of the W

index : it is related to the Kane-Mele index of the quasi-energy bands of the Floquet operator

[55], and correctly predicts the existence of a robust helical edge state in the spectral gaps

of the Floquet operator, even in the anomalous regime where the Kane-Mele index of each

band vanishes, as shown in figure 2.3. Similarly to the seminal work of Kane and Mele for
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2.2. Floquet systems and topological dynamics

the quantum spin Hall effect [54], a minimal model was obtained by considering two time-

reversed (coupled) copies of the toy model for anomalous chiral edge states by Rudner and

collaborators. Our model was recently implemented in an array of coupled optical waveguides

in the group of Alexander Szameit (University of Rostock) to engineer and observe analogous

helical edge states protected by time-reversal symmetry in photonic [72].

2.2.3 Oriented scattering networks

Discrete-time periodic dynamics and oriented scattering networks

An interesting development of Floquet systems is the discovery of topological properties of

oriented scattering networks. As first pointed out by Ydong Chong and his collaborators

[67, 83], coherent waves that propagate in an oriented lattice whose nodes represent (unitary)

scattering events and the links can be span by the waves in only one direction, may have topo-

logical properties such as chiral boundary modes. In particular, anomalous chiral boundary

modes have been found experimentally both in mirco-waves and acoustic networks [47, 86].

This close similarity with Floquet systems originates from the fact that eigenmodes of the

scattering lattices are described by a unitary scattering matrix that is formally equivalent to a

Floquet evolution operator. In particular, we have shown that discrete-time periodically driven

tight-binding models can be mapped onto particular oriented scattering networks, called cylic

oriented lattices [19]. Such networks are peculiar oriented graphs in which any path followed

by a propagating signal necessarily consists in an ordered and periodic sequence of nodes

representing the scattering processes [22]. This is for instance the case of the archetypal toy

model proposed by Rudner, Lindner, Berg and Levin to illustrate the existence of anomalous

chiral edge states, that can be explicitly mapped onto the Chalker-Coddington model [17, 19]

(or rather its disorder-free version [45]), originally introduced to explain the transition be-

tween plateaus of conductivity in the quantum Hall effect . This Chalker-Coddington network,

represented in figure 2.4, is the simplest case of a cyclic oriented lattice.

Several differentiations must be done, however, between periodically driven systems and

scattering networks. The first one being that there is no external driving in scattering networks;

a wave is sent through the system and propagates freely according to the different transmis-

sion/reflection coefficients at the nodes and by following the orientation of the links. Thus,

time does not enter explicitly as it usually does in periodically driven systems. Instead, an effec-

tive discrete-(artificial) time approach is used that accounts for the cyclic sequence of nodes

(scattering events) the wave must follow during its spreading through the network, as it does

e.g in the Chalker-Coddington lattice. The evolution operator of a cyclic oriented scattering

network is formally equivalent, up to a transformation [22], to that of a Floquet discrete-time

quantum walk that can be realized with cold atoms or photons (see e.g. [59, 60, 4, 93]), except

that it applies to classical waves as well here. A topological index W can then be defined

for cyclic oriented lattices, by re-introducing a fictitious time that interpolates the different

instantaneous scattering events and thus redefines a time-ordered evolution operator [22].
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Figure 2.4 – (a) Chalker-Coddington network (also called L-lattice). Each node represents a scattering process
encoded into a unitary matrix. This network is a cyclic oriented lattice since any path on it has to follow a staggered
sequence of dark and white nodes. (b) Phase spectrum of the evolution operator for an interface between two
Chalker-Coddington lattices close to different phase rotation symmetric points. For numerical convenience, the
system was periodized so that two interfaces are considered instead of one, giving rise to two anomalous chiral
interface states, each localized at an interface.

However, if this procedure seems to be safe in usual quantum walks, it turns out to be more

subtle in scattering networks : There, the value of the W index depends on the choice of the

unit cell and is thus ill-defined as a bulk invariant [22]. This is very analogous to the Zak phase,

a winding number that accounts for the existence of zero-dimensional boundary modes of

the one-dimensional Peierls (or so-called SSH) chain, once a correct prescription is made to

choose the unit cell that accommodates the boundary of the lattice [92, 20]. This ambiguity is

due to the separation in space of the two degrees of freedom, namely the two pseudospins that

originate from the existence of two sublattices, and is indeed absent when these two degrees

of freedom occupy the same sites in real space, like for actual spins. Indeed, in the former

case, different boundary conditions can apply to each sublattice, while in the latter case, the

same boundary condition applies for both spins. Scattering lattices show that the existence of

anomalous chiral edge states is not guaranteed by the value of the bulk W index.

Of course, for the Peierls chain as well as for scattering networks, the existence of topological

interface modes is still guaranteed by the non-zero difference of indices from each side, even

though ill-defined. Actually, the existence of chiral anomalous interface modes turns out to be

quite simple to predict, and does not require any calculation. Their existence is guaranteed

in any oriented scattering network, even fully random, as a consequence of the the phase

rotation symmetry (or its generalization to disordered cases), that emerges for specific values

of the scattering parameters, that correspond to the classical configurations where the nodes

of the network allow a transmission 1 in one direction and 0 in every other directions [19]. It

follows that the waves are confined along close loops. Such decomposition of any (unitary)

scattering network into a union of disconnected closed loops is guaranteed by Veblen theorem.

Interestingly, the interface between two domains of distinct loops support a chiral mode, as

illustrated in figure 2.5. When the networks are cyclic oriented lattices, the phase rotation
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2.2. Floquet systems and topological dynamics

Figure 2.5 – (Left) Random scattering network. (Right) Interface between two distinct Veblen decompositions
that generalize the phase rotation symmetry to arbitrary Eulerian graphs. A chiral mode necessarily exist at the
interface between the two domains, and generalizes the anomalous chiral state of Floquet systems. The colors of
the faces encode the circulation of the oriented links that surround them.

symmetry operator can be found explicitly and the Chern numbers of the eigenmodes of the

(Floquet) evolution operator computed and found to vanish, as expected. Since the Chern

numbers vanish in the two adjacent domains, these modes correspond to the anomalous

chiral interface states of oriented scattering networks. In random networks, these chiral

interface modes generalize the notion of anomalous chiral interface states beyond cyclic

oriented lattices, and thus beyond Floquet systems, since no periodicity (in space or time) is

actually required to guarantee their existence.

Floquet winding metals

In Floquet systems, anomalous chiral edge states are made possible because the spectrum of

interest is the one of a phase, that is unbounded, unlike the energy. Another similar property

of phase spectra is that they can wind. In the adiabatic regime, and for one-dimensional

gapped systems, such a winding in the Brillouin zone was shown to be equivalent to the first

Chern number that enters the quantized pumped current found by Thouless [100, 58].2 An

interesting situation is the one, in two dimensions, that mixes both the winding of the bulk

bands in one direction and the existence of chiral anomalous edge states. Scattering networks

offer a simple realization of this double topological property that have no counter part in static

2In that case, the integral over dky in the expression (1.3) of the Chern number is replaced by an integral in dt
over a period of adiabatic driving.
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systems.

The idea is to start with an oriented scattering lattice with a preferential direction followed

by the wave during its propagation, as depicted in 2.6. This scattering network is very similar

to the one studied with Matthieu Bellec in 2017 in the search for chiral symmetry protected

anomalous boundary modes [8], except that dynamical phases φ j are added along certain

paths. When these phases are taken as multiples of a common phase φ, then this φ plays

the role of an extra synthetic dimension. The introduction of such a phase allowed the first

measurement in photonics of the Berry curvature of the bands via a semi-classical correction

to the group velocity of a wavepacket [111]. Combining the control in time of the scattering

parameters as in [8] together with the additional dynamical phase from [111] allows the real-

ization of a two-dimensional Floquet photonic crystal that possess a phase rotation symmetry

and thus that may exhibit anomalous chiral states [103].

More original situations are obtained when breaking the generalized inversion symmetry

PUF (kx ,φ)P−1 = UF (−kx ,−φ) (where UF is the Floquet operator and φ is considered on

the same footing as a quasi-momentum) by choosing the phases as φ1 ≡ m1/n1φ and φ2 ≡
m2/n2φwhere ni and mi are integers. In this case, all the bulk bands wind ν times along the φ

direction where ν is fully determined by a combination of (mi ,ni ). Examples of such Floquet

winding metals, with and without anomalous edge states, are shown in figure 2.6.

A first important consequence of the winding of the bulk bands is that the generalized group

velocity ∂φε has the same sign for every states but one, that is a chiral edge state, since the two

chiral edge states localized on opposite edges have to have group velocities with opposite signs.

It worth noticing that in the absence of a direct gap, the winding number W that characterizes

the topology of chiral edge states in Floquet systems is not defined. However, chiral interface

states can still be described locally as the spectral flow emanating from the degeneracy point

(band touching point) that separates a trivial winding metal from an anomalous one.

A second remarkable consequence of this winding is the unconventional dynamics of wavepack-

ets in position space when adiabatically increasing the phase φ, that periodically oscillate

while keeping the quasi-momentum kx constant. These oscillations are very different in

nature to Bloch oscillations, reported in photonics and cold atoms where the oscillation of the

wavepackets in the spatial direction is accompanied with a periodic oscillation in the Brillouin

zone.

2.3 Topological (classical) waves in continuous media

Most of the studies about topological insulating states use the framework of lattice models, and

thus take advantage of the existence of a Brillouin zone to define rather easily the topological

invariants, such as Chern numbers. The introduction of a periodic drive (Floquet systems) or

of an extra dynamical phase, extends the size of the effective Brillouin zone without changing

its nature of a compact close manifold, namely a torus, over which a differential form can be
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Figure 2.6 – (Left) Scattering network model. The scattering matrices S1 and S2 have different scattering
parameters to separate the bands and φ1 and φ2 have different amplitudes to wind the bands. (Right) (a), (b) and
(c) three examples of Floquet winding metals with ν=−2 for (a) and (b) and ν= 6 for (c). (d) shows the phase
diagram of a Floquet winding metal with ν=−2 in terms of the scattering parameters that enter the scattering
matrices S1 and S2 at the nodes of the network. (e) shows the localization of the edge state pointed out with an
arrow in (b).

integrated, such as the Berry curvature.

The absence of a Brillouin zone is therefore a source of theoretical difficulties when investi-

gating the topological properties. This is particularly true for disordered systems where more

sophisticated mathematics are required to address the problem, such as non-commutative

geometry [87]. This is also the case of continuum media, which are a natural framework to

investigate classical waves.

The study of topological properties in the continuum is not new. Actually, a few milestone

results were derived in the continuum, such as the quantization of electric charges by the

magnetic monopole from Dirac in 1931 [23], the existence of a zero-energy state in the Dirac

equation by Jackiw and Rebbi in 1976 [51], or the existence of a spectral flow and the related

chiral anomaly in 3He-A superfluid Helium as described in details by Volovik [106]. Continuum

models are also used in condensed matter as effective low energy approximations, and similar

effects (zero energy states, spectral flow, chiral anomaly ...) are then found, as for instance

in the seminal work by Raghu and Haldane where they pioneered topological photonics by

proposing the first classical analogue of the quantum Hall effect [88]. However, when the

physicists community started massively investigating topological properties of classical waves

these last few years, they mostly focussed on artificial lattices in order to mimic condensed

matter systems. While macroscopic classical waves are naturally described in continuum

media, their topological properties have been overlooked.
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x

y

Figure 2.7 – Shallow water fluid describing ocean or atmosphere over large distances.

The following paragraphs summarize recent contributions in the search for topological chiral

modes in continuum models describing classical fluid waves and electromagnetic waves.

2.3.1 Topological interface waves

Oceanic and atmospheric equatorial waves

Over large distances, the oceans and the atmosphere essentially consist in a thin layer of

fluid, as sketched in figure 2.7. Assuming a homogeneous density and incompressibility, the

momentum conservation and the mass conservation reduce to a two-dimensional model,

called shallow water model, that describes the fluid dynamics through a coupling between the

fluid’s thickness h(x, y, t ) and the horizontal velocity field u(x, y, t ), the vertical dependence of

the velocity being neglected. In Earth rotating frame, the shallow water model reads [104]

mass conservation ∂t h +∇· (hu) = 0 (2.3)

momentum conservation ∂t u+ (u ·∇)u =−g∇h − f n̂×u (2.4)

where g is standard gravity, and f n̂×u is the Coriolis force. Importantly, the Coriolis parameter

f breaks time-reversal symmetry, that acts as t →−t , u →−u and leaves h invariant. The

shallow water model thus essentially describes a two-dimensional system that breaks time-

reversal symmetry, and as such already bears some similarities with Hall systems to guide our

intuition.

Let us focus on the linear regime around a state of rest (ux = 0,uy = 0,h = H), so that one

can neglect the advection term (u ·∇)u. Note that when f = 0, the system (2.4) then implies

that the fields u(x, y, t) and h(x, y, t) are solutions of the d’Alembert equation with celerity

c = √
g H . We are interested in the role of the Coriolis force on these shallow water waves.

After Fourier transforms in space and time, that introduce wave numbers kx and ky and the

frequency ω, and a suitable change of variables, the linearized shallow water model reduces to
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2.3. Topological (classical) waves in continuous media

the following eigenvalues problem 0 −i f kx

i f 0 ky

kx ky 0


ux

uy

η

=ω(kx ,ky , f )

ux

uy

η

 (2.5)

with a slight abuse of notation for the velocity field components and where η denotes the

Fourier component of the small variation of h(x, y, t )−H . It worth noticing that this equation

is formally analogous to a Schrödinger eigenvalue equation for stationary modes, the 3×3

matrix being Hermitian, making explicit the parallel with topological quantum systems.

The dispersion relation, shown in figure 2.8, is made of three bands : a flat one at ω0 = 0

frequency and two symmetric ones at ω± =±
√

k2
x +k2

y + f 2. Frequency gaps open for f 6= 0,

that is when time-reversal symmetry is broken. For f = 0, the three bands touch. In other

words, there is a three-fold degeneracy point at (kx ,ky , f ) = (0,0,0). This degeneracy point

carries a topological information, similarly to that of a Weyl point encountered in condensed

matter : for each eigenstateψn(kx ,ky , f ) of (2.5), it is the source of a Berry curvature Fn whose

flux through the unit sphere that encloses it, is the first Chern number Cn . For the shallow

water model, one finds the triplet

(C−,C0,C+) = (2,0,−2) (2.6)

The Chern numbers Cn must be distinguished from those of a Chern insulator Cn . They do

not correspond to the number of chiral edge states; in particular there is no edge in the system.

In the language of Chern insulators, they could be understood as ”transition Chern numbers”,

that coincide with the differences of Chern numbers C of the two gapped phases separated

by the gap closure at f = 0. This difference of Chern numbers C gives the net number of

chiral interface states between the two phases, that generalizes the edge states when one of

the two systems is the vacuum. Following this analogy, the two distinct ”insulators” would

correspond for the shallow water model to the north and the south hemispheres. Indeed,

the Coriolis parameter f = 2Ω · n̂ being twice the projection of Earth rotationΩ on the local

vertical, it is therefore positive in the north hemisphere, negative in the south hemisphere

and vanishes at the equator that defines the interface. However, we will see in section 2.3.2

that each hemisphere cannot be rigorously considered as a Chern insulator. The topological

description of the equatorial waves in terms of C is thus sufficient and consistent.

The information content of the Chern numbers Cn is related to the original and more compli-

cated problem where the Coriolis parameter is actually a function of latitude f (y) rather than

a parameter. In equation (2.5), this dependence was neglected. Actually, we used the so-called

f -plane approximation, introduced by Kelvin to simplify the problem of the shallow water

model on the sphere. This approximation consists in considering that the fluid evolves locally

in a plane tangent to Earth where f is assumed to be constant. Then, to compute the Chern

numbers, one needs to consider a close surface in (kx ,ky , f ) parameter space. This implicitly

allows f to vary as an external parameter, as if the actual shallow water waves experienced
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Figure 2.8 – (a) Dispersion relation ω(kx ,ky , f ) of the shallow water model for fixed values of the Coriolis
parameter f . At (kx ,ky , f ) = (0,0,0) the three bands touch. This threefold degeneracy point, represented in (b), is
the source of a Berry curvature Fn for each eigenstate n of the parametrized problem (2.5), whose flux through the
unit sphere is the quantized first Chern number Cn . (c) Eigen-frequency spectrum ω̃(kx ) of the matrix of operators
(2.7) obtained for f (y) =βy . It shows a spectral flow with a non-dispersive Kelvin wave (in red) and a dispersive
Yanai wave (in blue). The number of modes Nn gained by each band n when sweeping kx is fixed by the Chern
number as Nn =−Cn .

a weak variation of f when propagating towards the equator.3 The Earth sphericity is thus

partially re-introduced in the problem, simply by considering that f can change sign.

If one considers now the latitude dependence of f explicitly, then the problem becomes much

harder to solve, since one has to diagonalize a matrix of operators that do not commute 0 −i f (y) kx

i f (y) 0 i∂y

kx i∂y 0


ũx

ũy

η̃

= ω̃(kx )

ũx

ũy

η̃

 . (2.7)

However, a remarkable property of the frequency spectrum ω̃(kx ) can be directly inferred

from the Chern numbers Cn computed above : Generically, this spectrum also consists in

bands ω̃n(kx ). A Chern number Cn then imposes that the band ω̃n(kx ) gains Cn states when

sweeping kx . This is a spectral flow, whose topological property is related to that of the

degeneracy point. These extra flowing states are missing in the dispersion relation of figure

2.8 (a). Their number is thus guaranteed by topology, irrespectively of the precise latitude

3This point can be formalized more quantitatively though semi-classical WKB approximation that we shall not
discuss here.
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dependence of the Coriolis parameter f (y), provided it changes sign somewhere. As it relates

bands of different frequencies, the spectral flow imposes the sign for the group velocity ∂kx ω̃.

It thus corresponds to unidirectional propagating waves. This result thus applies to any

rotating shallow water fluids on curved surfaces. For instance, it applies to a catenoid whose

curvature is opposite to that of the sphere, leading to an inverted equator; the unidirectional

modes would thus propagate in the opposite direction, the south ( f < 0) and north ( f > 0)

hemispheres being reversed.

Coming back to the geophysical context, the topological content of the shallow water model

guarantees that there exists 2 eastward propagating modes whose dispersion relation ω̃(kx )

”flows” toward the high frequency (Poincaré) band. The existence of these two unidirectional

modes are known as the Kelvin equatorial wave and the mixed Rossby-gravity (or Yanai) wave.

They constitute a remarkable and rare example in geophysics of waves that were theoretically

predicted before being observed [73, 57]. The role of these two waves was identified in several

important geophysical phenomena, such as the celebrated El Niño southern oscillations that

impact global climate [104]. These oscillations consist in a repeating increasing/decreasing

of the water temperature on the coasts of Peru (and near by) every 3 to 7 years. The El

Niño phenomenon corresponds to the increasing temperature part of these oscillations, that

considerably increases the rains in South America. The El Niño southern oscillations are a

complex non predictable phenomenon that results from a non linear coupling between the

Pacific ocean and the atmosphere [115, 108]. Its mechanisms implies an inflow of heat through

the Pacific ocean towards America. This energy is carried by a Kelvin equatorial wave that

brings the accumulation of heat from Indonesia and crosses the Pacific ocean in about two

months.4

To predict the existence of the Kelvin and the Yanai waves without the topological argument,

one needs to solve the shallow water model (2.7). In 1966, Taroh Matsuno had the fruitful

idea to linearize the Coriolis parameter in the vicinity of the equator, f ∼ βy [73]. This

approximation, known has the β-plane approximation, yields solutions that decompose as

Hermite polynomials, which gives rise to a discretization of the three bands in an infinite

numbers of sub-levels. Actually, Matsuno showed that the transverse velocity field uy (y)

is solution to an equation analogous to that of the quantum harmonic oscillator. This is a

striking coincidence that the same structure precisely also appears in the Landau levels of the

quantum Hall effect. The spectrum found by Matsuno is reproduced in figure 2.8 (c), except

that the negative frequencies are also represented. These are usually missing in the geophysics

literature for good physical reasons. However, they turn out to be quite useful to reveal the

complete spectral flow as a gain and loss of modes between the bands, in agreement with the

4The Kelvin wave that carries the heat anomaly through the Pacific ocean is not a surface Kelvin wave, whose
amplitude is typically a few centimeters high, but an internal Kelvin wave that propagates at the interface between
the top hot layer of the ocean, called thermocline, and the much thicker, stable and colder layer that lies below,
the abyss. A propagation of the increase of thickness of the thermocline at the expense of the abyss thus goes
along with a propagation of a heat anomaly, that translates a change of the average temperature integrated over
the thickness of the ocean. The amplitude of these internal Kelvin waves is about 100m, and its celerity is about
2m.s−1.
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Chern numbers. The solutions with the correct Coriolis term f (y) ∼ sin(y) were computed

more recently. The general aspect of the spectrum is preserved, and in particular the spectral

flow, as expected from its topological nature.

Equatorial Kelvin and Yanai waves were discovered in the sixties, but their topological origin

was only revealed recently. This is pretty surprising in view of the relative simplicity of the

linearized shallow water model in the β-plane approximation, in comparison to that of the

quantum Hall effect. We could speculate about how would have been the recent fruitful history

of topological condensed matter, but also of geophysics, if this discovery had been made at

the time of Matsuno, about 15 years before that of the quantum Hall effect. Anyhow, this

analysis shows how topology can reveal fundamental and concrete properties of waves in

nature, despite its high complexity, rather than in an artificial lattice that was engineered on

purpose. It provides a new interpretation for the existence of these waves. In the next example,

we show that the exact same approach may also lead to predictions in geo/astro-physics.

A polariton-like toy model as a guide to guided waves

The equatorial waves are associated to a three-fold degeneracy point. These are not the more

common degeneracies, and moreover, in general, the eigenstates of three-fold degeneracy

points do not necessarily have a Chern number. In the case of equatorial waves, it turns out

that the matrix in the system (2.5) decomposes into three matrices that satisfy a spin-1 algebra,

so that this problem is formally analogous to the celebrated example of a spin-1 particle

coupled to a slowly varying magnetic field in space that yields non-zero Chern numbers.5 In

the absence of this spin algebra, n-fold degeneracy points do not necessarily lead to a spectral

flow neither, and the Chern numbers must be computed accordingly. However, there is an

exception for 2-fold degeneracy points, which are fortunately the more likely. In particular,

when the dispersion relation around the 2-fold crossing point is linear (which is also the more

likely) the Chern numbers of the two bands is ±1.

A generic physical situation where such band crossings happen in wave physics is when a

non-dispersive propagating wave meets a resonator (or a resonant medium). Consider first

this situation in one-dimension, where the dispersion relation of the wave is ω= ckx , and the

mode of the resonator has an eigenfrequency Ω. The resulting superposition of these two

dispersion relations obviously gives a linear band-crossing, but in 1d parameter space (span

by kx ). To get topologically guided modes out of this simple situation, one needs to embed this

two-fold degeneracy point in the larger three-dimensional parameter space (kx ,ky ,m). One

thus needs to implement a dependence in ky and m through coupling γ(ky ,m) between the

wave and the resonator. This coupling is necessary complex in order to embed the degeneracy

point in the three-dimensional space span by the three Pauli matrices. One ends up with the

5See part II for more details.
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following heuristic Hermitian model(
ckx γ∗(ky ,m)

γ(ky ,m) Ω

)(
ϕ1

ϕ2

)
=ω

(
ϕ1

ϕ2

)
(2.8)

whose eigenvalues ω± = ckx+Ω
2 ±

√(
ckx−Ω

2

)2 +|2γ(ky ,m)|2, plotted in figure 2.9, are degener-

ated at (k0
x = Ω

c ,k0
y ,m0) with γ(k0

y ,m0) = 0 by construction. The fact that γ(ky ,m) is required to

be a complex number ensures that this Hamiltonian decomposes onto the three Pauli matrices

which guarantees that the degeneracy point carries a non-vanishing topological charge. If,

moreover, γ(ky ,m) varies linearly with ky and m around the degeneracy point, then the two

normalized eigenstates carry opposite Chern numbers whose value is ±1. A simple choice

is e.g. γ = ky + im. It may take higher values if this dependence is non linear.6 Then, the

existence of unidirectional guided modes that propagate along the direction x, is guaranteed

by the value of C+ provided that m changes sign in the direction y . The guided modes are

then localized around in the y direction where m changes sign. An example where m ∼ y is

shown in figure 2.9.

ω

Ω

ckx

cky

0

0
ω̃

Ω

ckx

Figure 2.9 – Spectra of the polariton-like toy model for (left) γ= ky + im and (right) γ= i∂y + iy

This heuristic approach, based on a tricky coupling between a wave and a resonator, suggests a

direction to obtain topological guided waves. In spirit, the modes resulting from this coupling

could be called polaritons. Polaritons are hybrid subwavelength states resulting from the

interaction between an ensemble of resonators and a propagating wave [85]. It is a broad

concept that applies in quantum mechanics [26, 46], where photons could be strongly coupled

to mechanical oscillators (e.g. phonons, plasmons) or to excitons (i.e. electron-hole pairs)

in semiconductors, as well as in classical mechanics for instance when an acoustic wave

couples to Helmoltz resonators whose size is smaller than the wavelength [66]. These different

platforms are used to engineer and investigate topological waves, most of the time when the

resonators are arranged on a lattice (periodic or quasi-periodic) as in [114, 6, 56].

6See Part II for more a detailed justification of this result, and concrete examples.
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Finally, it worth noticing that in this toy model, a coupling γ(ky ,m) cannot open a direct gap.

However, this does not preclude the existence of a spectral flow. Nevertheless, a situation where

a direct gap opens would allow a selective excitation of the guided waves in a certain range of

frequency, like for the equatorial waves. The next paragraph is dedicated to a manifestation of

this effect in fluid waves.

Acoustic-gravity waves in stratified compressible fluids

The main difficulty to make more realistic the polariton-like toy model (2.8) resides in the

implementation of the complex coupling γ(ky ,m). The following example shows how this

physics arises in fluids.

For the non-dispersive wave, let us consider an acoustic one. The continuum media must

therefore be compressible. Then, the resonator must be replaced here by an intrinsic frequency

of this media. This role will be played by the buoyancy frequency Ω≡ N of a stratified fluid

in density. Therefore, a natural starting point is a compressible three-dimensional fluid with

a gradient of the density ρ0(z) along the vertical z. Such stratification in density is actually

commonly taken into account in the description of atmospheres or oceans. Because of

gravity, the flow isotropy is broken, leading to two intrinsic frequencies : g /cs where cs is

sound velocity in the absence of stratification and the aforementioned buoyancy frequency

N =
√

−g (∂zρ0)/ρ0 − g 2/c2
s that characterizes the vertical oscillation of a fluid particle that

results from a competition between gravity and the Archimedes force in the stratified media. It

is typically about 10mHz in the Earth atmosphere. The equations of motion of the fluid follow

from from the following conservation laws

mass conservation ∂tρ+∇· (ρu) = 0 (2.9)

momentum conservation ∂t u+ (u ·∇)u =−ρg êz −∇p (2.10)

entropy conservation ds = 0 (2.11)

where the last line, that corresponds to the hypothesis of an adiabatic displacement of a fluid

particle, is added to close the system. Indeed, in the limit of a weak perturbation around a

state (ρ = ρ0,u = 0, p = p0), and after a suitable change of variables and a Fourier transform

with respect to t and x, the linearized system reads
0 0 0 cskx

0 0 iN −iS + ics∂z

0 −iN 0 0

cskx iS + ics∂z 0 0




ũx

ũz

ρ̃

p̃

= ω̃(kx )


ũx

ũz

ρ̃

p̃

 (2.12)

which is again analogous to the Schrödinger equation.7 In equation (2.12), the stratification

7To obtain equation (2.12), the sound velocity was assumed to be constant for simplification.

38



2.3. Topological (classical) waves in continuous media

parameter

S = cs

2g

(
N 2 −

(
g

cs

)2)
(2.13)

compares the two intrinsic frequencies introduced above. It is crucial in the description of the

problem, since it will play a role analogous to that of the Coriolis force in the shallow water

model. We shall thus use S instead of N to describe the stratification, the two variables being

related. In particular the condition N > 0 of a stable stratification imposes S >− g
2cs

.

In general, the stratification parameter S depends on the altitude z, and the equation (2.12) is

difficult to solve analytically. Instead, one can follow another strategy, and use the topological

approach to investigate under which conditions guided waves may emerge. For that purpose,

one considers the much simpler problem where S is a parameter (not a function of z) and then

Fourier transform the equation (2.12) with respect to time and space. Its eigenfrequencies

give the dispersion relation shown in figure 2.10 (a) that consists in four bands, called acoustic

and gravity. Its eigenvectors possibly encode a topological information related to a spectral

flow of (2.12). Searching for such a topological property actually simply reduces to looking for

degeneracy points in (kx ,kz ,S) parameter space.

Two such points actually exist and are located at (kx ,kz ,S) = (±g /c2
s ,0,0). Remarkably, the

existence of these two-fold degeneracy points is accompanied with a restoration of the vertical

mirror symmetry, that occurs when S = 0 and kz = 0 despite the presence of gravity. Besides,

the dispersion relation around these points corresponds to the superposition of an acoustic

wave (associated with a horizontal oscillatory motion in the x direction) and the intrinsic

buoyancy frequency of the stratified fluid (associated with a vertical oscillatory motion). This

corresponds to the polariton-like toy model presented in section 2.3.1. To emphasize this

point, one can obtain the coupling Hamiltonian that describes the two-band touching by

squaring the Fourier transform of (2.12) and then linearizing around each touching point

(±g /c2
s ,0,0). It reads(

1±2kx kz + iS

kz − iS N 2

)
(2.14)

in terms of dimensionless parameters, which is essentially (2.8). The Chern numbers of the

eigenstates of the bands that touch are thus ±1, which guarantees a spectral flow along the x

(horizontal) direction if S(z) changes sign at a given z = z0.

There is however one interesting difference with the polariton-like toy model, which is that

a direct gap opens in the full spectrum between the acoustic and the gravity waves when

S 6= 0, which is missed by the linearization to derive (2.14). As a consequence, the modes of

the spectral flow are the only one to be excited in a specific range of frequency around the

buoyancy frequency.

The prediction for the existence of a spectral flow can be checked numerically, by comparing
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Figure 2.10 – (a) Dispersion relation of the stratified compressible fluid in the linearized regime for different
values of the stratification parameter S. When S = 0, acoustic bands (in green) and internal-gravity bands (in
orange) touch linearly. This gives rise to two-fold degeneracies in (kx ,kz ,S) parameter space that carry topological
charges of ±1. (b) and (c) This guarantees a spectral flow if S(z) is a function that changes sign, which is in principle
possible without entering the convective regime. If S(z) does not change sign with z, no spectral flow is obtained.

the spectra obtained with two stratification profiles of the form S(z) = S0e−z/z0 +S∞ that only

differ by the sign of S∞, keeping in mind that S(z) >− g
2cs

must always be satisfied, otherwise

the fluid enters the convective regime. The results, shown in figure 2.10, clearly shows the

existence of a spectral flow around kx = ±g /c2
s when S∞ < 0 and no spectral flow when

S∞ > 0, in agreement with the topological approach. It is worth noticing that, inversely, the

observation of such confined waves would give an information on the stratification profile of

the fluid.

Remarkably, this spectral flow corresponds to acoustic waves that are insensitive to the stratifi-

cation in density, and remain non-dispersive. Besides, they are the only modes that can be

excited at a frequency around ω ∼ N . Such waves are analogous to the atmospheric Lamb

waves discovered by Horace Lamb in 1911 [64], with the strong differences that Lamb waves re-

quire both a solid boundary (the ground) and a fixed stratification parameter S < 0. In contrast,

the topological Lamb-like waves described here do not require any solid boundary, and the

question of their possible existence in gaseous planets or stars is thus relevant. Moreover, their

existence only depends on the zeroth of the stratification profile, and not on its specific shape,

while Lamb waves are surface waves whose existence depend on the boundary conditions

[49]. Fortunately, a solid ground constitutes a boundary condition for which Lamb waves exist,
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and those were observed in Earth atmosphere.

Finally, it is worth stressing that topological Lamb-like waves are not strictly speaking chiral,

since they appear as a pair of modes with opposite group velocities at the same frequency.

This is a consequence of the time-reversal symmetry that is preserved. In condensed matter,

an analogous effect, known as the quantum valley Hall effect, arises when inversion symmetry

is broken [112]. This effect is illustrated on the boron-nitride model in figure 2.11. In that

case, a double spectral flow arises when the sign of the on-site staggered potential m changes

sign. This spectral flow corresponds to two contra-propagative chiral states that are valley

polarized i.e. that are excited around different points of the Brillouin zone where the gap is the

smaller. Note that in contrast, Lamb-like waves propagate in two-dimensions inside a three

dimensional fluid: they are horizontally confined topological interface waves.

Figure 2.11 – Honeycomb lattice of Boron-Nitride. The two inequivalent sites carry opposite potential m. When
m is constant, it opens a gap. When it changes sign along a direction, it constitutes an interface that hosts two
counter-propagative chiral modes visible in the spectral flows that bride the gap around the points K and K ′.

Electromagnetic waves

The equatorial shallow water waves and the Lamb-like acoustic-gravity waves are two exam-

ples of guided modes in continuous fluids. Of course, the strategy to find other guided waves

from degeneracy points in the dispersion relation is not restricted to fluid waves and can be

used, for instance, for electromagnetic waves. Let us illustrate how guided Maxwell waves can

be generated in gyrotropic media.

In continuous media, the electric field E and the magnetic field B are related to the magnetizing
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field H and the electric displacement field D through the constitutive equations(
D

B

)
=

(
ε ξ

ζ µ

)(
E

H

)
(2.15)

where ε and µ are the permittivity and permeability 3×3 tensors respectively, and χ and ζ are

the magneto-electric ones. In the absence of source terms (current or charge density), the

dynamics of the fields B and D is given by the Maxwell equations

∂t

(
D

B

)
=

(
0 ∇×

−∇× 0

)(
E

H

)
(2.16)

that automatically satisfy the two other Maxwell equations ∇·B = 0 and ∇·D = 0. Injecting

the constitutive equations (2.15) leads to a close system for the dynamics for the pair of fields

(D,B) or equivalently (E,H).(
ε ξ

ζ µ

)
∂t

(
E

H

)
=

(
0 ∇×

−∇× 0

)(
E

H

)
(2.17)

The goal here is to consider two-dimensional systems, and see whether it is possible to

implement chiral modes by varying in space one of the material parameters entering the

permittivity or permeability tensors. For simplicity, these two tensors only are considered, the

magneto-electric ones being assumed to vanish.

There are two usual ways to define a two-dimensional electromagnetic field : the first one is

to physically confine the fields in the plane with two metallic plates [52], and the second one

is to deal with a three-dimensional system but assuming invariance along the transverse z

direction ( i.e. fixing kz = 0 after a Fourier transform of the Maxwell equations from real space

to reciprocal space). For the sake of simplicity, we shall opt for the second one.

For the discussion of examples, later we shall consider uniaxial responses of the material

concerning the permittivity tensor (gyro-electric effect) or the permeability tensor (gyro-

magnetic effect) with ẑ as the principal axis. In these case, the 6×6 set of Maxwell equations

simplifies into two uncoupled sets of 3×3 equations operating on (Ex ,Ey , Hz ) and (Hx , Hy ,Ez )

that are respectively referred to as transverse magnetic (TM) and transverse electric (TE)

modes.

Then one introduces a parametrized constitutive matrix M(ξ) that continuously interpolates

between two materials of constitutive matrices M1 and M2 as

M(ξ) = M1 +M2

2
+ξM1 −M2

2
(2.18)

that can represent, for instance, a metal (ε 6= 1,µ= 1), a ferrite (gyro-magnetic media, ε= 1,µ 6=
1) or a Drude cold plasma (gyro-electric media, ε 6= 1,µ= 1).
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2.3. Topological (classical) waves in continuous media

The first step in the search for chiral modes is to find degeneracy points in parameter space

(kx ,ky ,ξ). A quick inspection of the dispersion relation around these points already allows

one to make a guess about the absolute value of the Chern numbers, which can anyway be

computed numerically. Their values gives the spectral flow – say as a function of ky – when

the interpolation function ξ→ ξ(x) is now replaced by a function of the position, and thus

accordingly kx → i∂x .

The case of the gyro-electric media is shown below. In that case the permittivity tensor reads

εgyro-elec. =


1− ω2

p

ω2−ω2
c

iωc
ω2

p

ω(ω2−ω2
c )

0

−iωc
ω2

p

ω(ω2−ω2
c )

1− ω2
p

ω2−ω2
c

0

0 0 1− ω2
p

ω2

 (2.19)

where ωp is the plasma frequency and ωc is the cyclotron frequency, that is proportional to

the applied external magnetic field in the direction perpendicular to the plane Bext = Bz . A

possible parametrized matrix Mgyro-elec.(ξ) can consist in the interpolation between ε(1) =
εgyro-elec.(ωc > 0) and ε(2) = εgyro-elec.(ωc < 0) that corresponds for instance to taking ξ= Bz .

Under these conditions, the frequency spectrum is computed numerically for the TM modes

and shown in figure 2.12. It reveals three degeneracies (two of them being symmetric to each

other by ω→−ω), a three-fold degeneracy at (kx ,ky ,ω) = (0,0,0) and a two-fold degeneracy

at (kx ,ky ,ω) = (0,0,ω0). A guess of the absolute value of the Chern numbers associated to

these degeneracy points can be made by inspecting the dispersion relation around these

points. In the vicinity of the two-fold degeneracy point, the dispersion relation is quadratic

rather than linear, which suggests Chern numbers C =±2 rather than C =±1. The dispersion

relation in the vicinity of the three-fold degeneracy point is linear, as in the shallow water

model. This suggests also Chern numbers of value C =±2. A numerical calculation of these

Chern numbers confirms these guesses and also clarifies their signs.

These values of Chern numbers correctly predict the spectral flows when the parameter ξ=
Bz → Bz (x) is replaced by a function that changes sign with x, as shown in figure 2.13. The TM

modes show two double spectral flows of opposite chirality appearing at different frequencies.

The TE modes, that do not exhibit any topological property (because µ= 1) overlap with one

of the two spectral flows, but leave the second one, at low frequency, untouched.

Other topological spectral flow for Maxwell waves have been found for different interfaces

implying also metals and gyro-magnetic media (see attached paper).
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Figure 2.12 – Transverse magnetic modes for an anisotropic gyro-electric media whose permittivity matrix
ε̃(ξ) continuously interpolates between ε̃(ξ=−1) = ε(ωc > 0) and ε̃(ξ= 1) = ε(ωc < 0). Insets show the dispersion
relations in the vicinity of the degeneracy points.
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Figure 2.13 – Numerical frequency spectra of the TM modes and both TM and TE modes for the two-dimensional
gyro-electric media with cyclotron frequency that changes sign along the x direction. For numerical convenience,
two interfaces with a Bz ∼ tanh(x) profile have been considered to make the system periodic in the x direction.
The resulting interface chiral modes are represented in different colors (red or blue) according to their localization
around either interface.
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2.3. Topological (classical) waves in continuous media

2.3.2 Missing chiral edge states

A word about compactification

In the previous sections, we saw how the topological properties of degeneracy points in a

three-dimensional parameter space regulate spectral flows in anisotropic continuous media

with a ”mass term” changing sign on a line in space. At first sight, these different situations

could be interpreted as interface problems between two media with different topological

properties, the interface being defined where the mass term vanishes. Indeed, from each side

of the interface, where the sign of the mass term is fixed, the dispersion relation is gapped,

which somehow defines an insulating state. This intuition would be correct if one dealt with

lattices. There, Chern numbers could be defined from the bulk states in each side, as the

integral of the Berry curvature over the Brillouin zone. In continuous media, there are issues

that make this picture incorrect.

In the absence of a Brillouin zone, the Chern numbers are not systematically defined. It would

be tempting to consider instead the integral of the Berry curvature over the plane (kx ,ky )

C̃n = 1

2π

∫
R2

dkx dky Fn(kx ,ky ) . (2.20)

Obviously, the plane is not a closed manifold, and this quantity is not supposed to be a Chern

number. To define a meaningful topological invariant, the problem must be compactified,

i.e. a procedure must be found to map each parametrized eigenvector in the plane to a

closed surface such that the fiber-bundle is well-defined. One can then argue that the infinite

plane can be mapped onto a (Riemann) sphere by stereographic projection, but this does not

guaranty that the eigenmodes defined on the plane can be smoothly mapped onto the sphere.

In particular, it may happen that singularities that cannot be cured by a gauge transformation

appear, thus preventing the compactification. For instance, the massive two-dimensional

Dirac Hamiltonian, used as a cornerstone in topological physics, cannot be compactified,

and the integral (2.20) gives ±1/2 according to the sign of the mass. The same applies to the

polariton-like model of section 2.3.1, or to the shallow water model for which the integral

(2.20) gives the integer ±1 according to the sign of the Coriolis parameter.

This result being an integer, it may lead to some confusion about its topological nature and

therefore its role in the bulk-edge correspondence. Moreover, it turns out that the celebrated

coastal Kelvin wave, that was first observed by Kelvin along the coasts of lakes, and that is

solution of the shallow water model in the presence of the Coriolis force with impermeability

conditions (fluid velocity normal to the boundary vanishes) is precisely a chiral mode. On

this example, it turns out that the existence of one chiral mode coincides with the value of

(2.20), and the fact that this integral is not the first Chern number does not seem to be a big

deal after all. Actually, this coincidence is due to this peculiar choice of boundary conditions,

even though naturally justified physically. Other boundary conditions may indeed lead to the

disappearance of the chiral modes , as shown by Iga [48]. The bulk-edge correspondence is
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Chapter 2. Topological chiral waves

therefore not satisfied, which is consistent with the fact that the integral (2.20) is not a Chern

number for the non-compactified shallow water model.

The situation may seem disappointing, but is not desperate. The problem of the compactifica-

tion essentially originates from the multi-valuation of the eigenvectors at k →∞ that cannot

be identified to a single one (up to a phase) at the north pole of the Riemann sphere. This can

be regularized at infinity if one substitutes the mass term with m → m −εk2. Interestingly, the

amplitude of the number ε does not matter in the regularization, and can thus be as small

as desired. Beyond this mathematical trick, it may also happen that this term has a physical

significance. For instance, acoustic waves propagating in active fluid and transverse magnetic

modes in a gyro-electric media can both be described by equations formally equivalent to that

of the shallow water model with an additional regularization term ε that is the odd viscosity

is the first case and the non-local (classical) Hall conductivity in the second one. The same

procedure on the Dirac Hamiltonian leads to the Hamiltonian analogous to that describing
3He films

HDirac =
(

m kx − iky

kx + iky −m

)
→ Hregul. =

(
m −εk2 kx − iky

kx + iky −m +εk2

)
(2.21)

C̃± =±sign(m)

2
→ C± =±sign(m)+ sign(ε)

2
(2.22)

where ε plays the role of the inverse of the mass of the atoms, and m is the chemical potential.

Thanks to the regularization term ε, the integral (2.20) is a first Chern number Cn . In that

case, one can interpret the interface chiral modes (like the equatorial waves) as resulting from

the topological non equivalent topological properties of the eigenmodes from each side that

nevertheless have to match at the interface, thus implying a gap closing. In the end of the

day, the regularization procedure may seem unnecessary complicated to simply justify this

statement, as it does not lead to original predictions for interface states that the spectral-flow

approach based on degeneracy points could already tackle. The actual advantage of the

regularization procedure is that it allows one to define Chern numbers for the bulk waves, as it

is usually done for Bloch waves, and therefore to ask the question of chiral edge modes (not

interface modes) at the boundary of a continuous media. Namely, does this Chern number

correctly predict the number of chiral edge modes?

Anomalous bulk-edge correspondence in continuous media

The introduction of the term ε∆, where ∆ is the Laplacian operator, changes the order of the

differential equations to be solved, and therefore, demands two boundary conditions instead

of one when ε= 0. A natural choice is the Dirichlet boundary condition for one of the fields, i.e.

its vanishing at the boundary. In the shallow water model, this condition was imposed on the

velocity field’s component that is perpendicular to the boundary (impermeability condition)

to get the coastal Kelvin waves. Similarly, one can also impose this condition on one of the two
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2.3. Topological (classical) waves in continuous media

components of the eigenvectors of (2.21). What about the second boundary condition? There

are an infinite number of possibilities, and among them, one focuses on those that do not

violate hermiticity, that is, the solutions φ and ψ that satisfy the condition 〈φ, Hψ〉 = 〈Hφ,ψ〉,
for any φ,ψ ∈ L2(R×R+). This leaves again many possibilities, but a few examples, displayed

in figure 2.14, already show that the number of chiral edge modes that bridge the bulk gap is

in general not fixed by the Chern number of the regularized problem.

To understand and solve this paradox, one needs to remind that the Chern number of a band

counts the net number of states entering the band from the gap above and from the gap below

the band. In the continuum, the bands are not bounded, and are free to expand to infinity. As

a consequence, the notion of edge states entering a band of – say – positive frequency ”from

above”, is unclear. Moreover, in continuous media, a state entering a band from a gap at finite

frequency does not have to bridge this gap to connect another band, but can lay at large k

without crossing any other state. Therefore, an edge state entering a band is not necessarily a

chiral edge state that bridges the gap.

The number of edge states entering a band can be calculated from a scattering approach [37]

where one considers a incident bulk state that is reflected back to the bulk by the edge. The

scattering state is defined as the superposition of these two contra propagating states together

with evanescent states that are also solutions of the problem

Ψscat (y) =αψ(kx ,−κ)eiκy +βψ(kx ,κ)e−iκy +γψ(kx , f (kx ,κ))e−| f (kx ,κ)|y (2.23)

where α, β and γ are complex numbers, ψ is an eigenvector of the bulk problem ( i.e. in the

absence of a boundary), f is a function that can be determined explicitly, and κ is a positive

parameter that corresponds to ky in the absence of boundary. This parameter κ is crucial in

the analysis as it allows one to describe either the bottom of the projected band where chiral

edge states may enter (κ→ 0), as well as asymptotic top of the band (κ→∞). A scattering

matrix can be defined as

S(kx ,κ) = β

α
∈U (1) (2.24)

that is simply a scalar here. Importantly, its expression is fully fixed by the boundary conditions

(2 boundary conditions for 3 coefficients α, β and γ to determine). Following [37], a winding

of the argument of S when sweeping kx indicates the merging of an edge state into the bulk

bands. The two regimes κ→ 0 and κ→ 0 lead to winding numbers w0 and w∞ that indicate

the existence of modes entering a band, respectively from the gap and from the bulk. The

figure 2.14 shows the winding of the argument of the scattering matrix S for different models

and boundary conditions. When κ→ 0, the jump in the argument precisely corresponds to

the merging of an edge mode coming from (or going to) the gap. Again, this mode is not

necessarily chiral as it does not have to bridge the gap. Equivalently, the function ∂kx Arg(S)

shows a series of peaks centered around the values k i
x , whose width tends to zero as κ→ 0,

and whose area (in units of 2π) gives the number of modes that enter the band at kx = k i
x . The
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Chapter 2. Topological chiral waves

existence of a winding w∞ of Arg(S) in the limit κ→∞ is surprising: it indicates the existence

of an unexpected and different kind of modes at high frequency, dubbed ghost modes (as they

are not directly visible in the gap). These modes have to be taken into account to rephrase the

anomalous bulk-edge correspondence for continuous media as

Cn = Nchiral +Nnon-chiral +Nghost (2.25)

This relation is satisfied on the five examples of figure 2.14.
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Figure 2.14 – Examples of the anomalous bulk-edge correspondence for continuous media. Two models are
considered, the regularized Dirac model and the regularized shallow water model. Different boundary conditions
(BC), that satisfy self-adjointness, are applied at y = 0. The phase of the scattering matrix exhibits a winding w0+ at
the bottom of the band n =+ that is consistent with the number of edge states that enter this band from the gap.
Another winding number w∞+ can be computed at higher frequency/energy that accounts for modes that enter
the band from the bulk. The difference of these two winding numbers gives the Chern number of the band.
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3 Perspectives

La géométrie trompe, l’ouragan seul est vrai.

Victor Hugo, Les Misérables

Here is presented a brief and non-exhaustive list of directions that I intend to follow in the

next years. Some are natural follows-up of the works described in chapter 2. Others are more

speculative and risky, but probably also more original.

3.1 Scattering networks

3.1.1 Floquet ”metals” in photonics

An experimental collaboration with Alberto Amo, Pierre Suret and Clément Evain and Stéphane

Radoux from PhLAM laboratory (Lille, France) started a few months ago. One of the goals

of this collaboration is to implement and probe, in a photonic device, the Floquet winding

metals that were found and currently investigated by my PhD student Lavi K. Upreti. The idea

is to realize a coherent discrete-time Floquet walk for optical wave packets propagating in

coupled fibers, and whose time-evolution can be represented by an oriented graph with a

preferential direction as the one in figure 2.6 (a). Other unusual kinds of topological Floquet

metallic-like states with chiral edge-like modes and pumping effects, also recently found by

Lavi K. Upreti, constitute the core of this experimental collaboration.

On a more theoretical aspect, the definition of a topological index that describes the anoma-

lous chiral edge states in the metallic regime (i.e. in the absence of a spectral gap) is an

interesting open question.
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Chapter 3. Perspectives

3.1.2 Random oriented scattering networks

Another experimental collaboration is starting with the group of Romain Fleury, at EPFL

(Lausanne, Switzerland), whose goal is to investigate waves propagation in acoustic and

photonic scattering networks. It would be interesting to observe the non persistence of

anomalous chiral edge states under a change of boundary conditions that we predicted, and

compare with the expected robustness chiral edge states protected by Chern numbers. This

could be done for instance by engineering a Kagome oriented lattice rather than a square

L-lattice (e.g. Chalker-Coddington network). The next direction could be to observe the chiral

propagation of interface anomalous modes in random oriented networks, in particular in a

finite size disordered (in scattering amplitudes) intermediate region that bridges two domains

of opposite chirality, as suggested from the analysis with graph theory.

An important theoretical issue that is especially relevant for practical purposes, is the one

of the synchronization of the dynamics : In the theoretical framework developed so far, it

is implicitly assumed that the different wave packets that propagate along different links of

the graph reach simultaneously the scattering nodes. In other words, all the ”optical” paths

between two nodes are equals. This is a restrictive framework, in particular in random graphs

where the different links may have different lengths while their (say optical) indices remain

the same. Do interface chiral modes survive beyond this approximation?

On the longer term, two more speculative directions are envisioned. One of them would be to

investigate a continuous limit of random Eulerian oriented graphs beyond the original Chalker-

Coddington model [45, 117], in order to explore the conditions for the existence of topological

properties in non-periodic unitary dynamical coherent systems. The second line one would

consist in evaluating the role of anomalous chiral interface modes of random scattering

networks in the percolation transition, as these modes could also propagate energy through

the bulk of the system. Moreover, it is known from the Chalker-Coddington model that a

quantum percolation occurs at the transition between two plateaus of transverse conductivity

in the quantum Hall effect, which, in the clean limit, is understood as a topological transition

described by a Dirac Hamiltonian. It is thus natural to extend the description of this topological

transition to the disordered case by trying to establish a link with the topological nature of the

interface chiral states of random networks.

3.2 Continuous media

3.2.1 Geophysical and astrophysical fluids

The works dealing with fluid waves presented in this manuscript were obtained in close

collaboration with Antoine Venaille from the laboratoire de Physique of the ENS de Lyon.

This fruitful collaboration is continuing, in particular through the common supervising of a

PhD student, Nicolas Perrez, and the coming hiring of a postdoc on this topic in the next few

months. Different directions will be considered.
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Geo-physical fluids are a wonderful playground to study waves and offer a rare occasion to

apply topological concepts to natural phenomena. In particular, our two works on equatorial

waves and Lamb-like waves have a straightforward follow-up in the study of rotating stratified

fluids, which are common to describe oceans, atmospheres but also stars whose stratification

in density could in principle be strong enough to host the topological Lamb-like waves we

have proposed.

Other interesting directions are not only relevant for geophysical fluids, but also motivated by

condensed matter considerations.

For instance, the effect of a non homogeneous topography was neglected in our studies. It

could however play very important roles. For example, the effect of a disorder in topography

onto the shallow water waves and their possible localization have been overlooked. It could

be fruitful to revisit this problem, which is especially relevant for oceanic waves for instance,

through the spectrum of the expected topological robustness of the Kelvin and Yanai waves

against Anderson localization, in contrast to the other Rossby and Poincaré equatorial waves.

This might give an interpretation on the observational data that turn out to be much more

convincing for the two topological chiral modes than for the other waves. Smooth variations

of topography could also be considered to realize different kind of boundary conditions, in

view of questioning the topological nature of coastal waves beyond coastal Kelvin waves.

External periodic forcing due to the gravitational influence of the moon onto earth atmosphere

and oceans, could also be considered. This is particularly relevant as tides are known to be

related to coastal Kelvin modes. This would naturally lead us to consider the existence of

topological modes through the framework of Floquet theory in the context of geo-fluids.

Considering the wave dynamics around a mean flow rather than a state of rest is relevant in

geophysical fluids. This mean flow arises by linearizing the advection term. If the resulting

”Hamiltonian” is still linear, it becomes non-Hermitian and satisfies a PT -symmetry, ensuring

a real eigenvalue spectrum up to a threshold that is reached for a critical mean flow. Such

systems are currently intensively studied for their topological properties, in particular in

photonics where this symmetry can be engineered through a wise balance between gain and

loss.

An ambitious longer term perspective would be to revisit the El niño phenomena, as it consti-

tutes a physically relevant framework to address the interplay between non-linearities and

topology. Indeed, it is established that the equatorial Kelvin wave plays a key role in the

mechanism as a precursor of this phenomena. However, the role of the Yanai wave seems to

be much less discussed. Moreover, El niño models require a non-linear ocean-atmosphere

coupling, so basically a bi-layer of shallow water models. This gymnastic of stacking layers

to implement novel properties is standard in mesoscopic physics, from bilayer graphene

whose properties are distinct from that of monolayers, to three-dimensional Weyl semi-metals

that can be obtained by stacking two-dimensional Chern insulators on top of each others

in a subtle way. In those two examples, the resulting multi-layers systems host (topological)
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properties that are distinct from those of the single layer.

3.2.2 Spectral flows and bulk-edge correspondences in continuous media

Finally, further investigations will be led around the emergence of a spectral flow in continuous

media and the related bulk-edge correspondence.

For instance, it is remarkable that costal Kelvin waves are chiral modes that appear as a

spectral flow despite the ill-defined Chern number. This ill-definition suggests a direction

to understand the non-robustness of this chiral mode to a change of boundary conditions.

Atmospheric Lamb waves share this same particularity of appearing as a spectral flow but

being at the same time boundary conditions dependent. As a chiral mode that bridges a

spectral gap, the coastal Kelvin wave is the only accessible state in a certain range of frequency,

and is thus expected to be insensible to backscattering in the presence of disorder. It is thus

tempting to propose a definition of marginal topological waves, that would be immune against

back-scattering but whose existence would be boundary dependent.

Another important direction will be to improve the understanding of the ”ghost modes” that

we have introduced with Clément Tauber (ETH Zurich, Switzerland) and Antoine Venaille,

of their physical reality and possible observation. Along this line, I would like to bridge this

finding with the existence of a wavefront dislocation emerging in the wave functions around

an impurity in a topological material, as we recently found with Clément Dutreix (LOMA

Bordeaux, France, and former postdoc of mine) [25]. The idea that the bulk states carry a

topological information in their wavefront pattern in the presence of an impurity in one-

dimension should be generalizable in two dimensions where the impurity is replaced by an

edge. This would help characterizing the topological properties of waves by bridging two

topological aspects of waves : wavefront dislocations and the bulk-edge correspondence.
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Part IIMETHODOLOGY
A few topological tools for physicists
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4 Basic concepts

Les leçons ne servent généralement qu’à ceux qui les donnent.

Pierre Dac,

Y’a du mou dans la corde à noeuds

4.1 Homotopy, winding and degree

References for this section are the books of Nakahara [76], Frankel [29] and Dubrovin, Fomenko

and Navikov [24].

4.1.1 An heuristic introduction to homotopy

Homotopy is an intuitive key concept in topology that deals with continuous deformations of

objects. More specifically, one speaks about homotopy to characterize continuous interpola-

tions between two applications

A
f1→ B and A

f2→ B . (4.1)

The maps f1 and f2 are said to be homotopic when there exists a continuous application h

(t , s) : A× [0,1]
h→ B (4.2)

called homotopy, such that

h(t , s = 0) = f1(t ) and h(t , s = 1) = f2(t ) . (4.3)

When an homotopy exists, the functions f1 and f2 are somehow ”equivalent”, in the sense that

they are undistinguishable under continuous deformations. They thus belong to the same

class. Another function f3 that is not homotopic to f1, cannot be homotopic to f2 neither,
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or to any function that is homotopic to f1 and f2, and will therefore belong to a different

class. On can then classify continuous applications according to their homotopy class. Each

class is labelled with one or several numbers that characterize the homotopy property shared

by all the members of this class. These numbers are called homotopy invariants, since they

do not capture the difference between two homotopic applications, but only between two

non-homotopic applications. This is an example of a topological invariant.

The simplest example illustrating an homotopy invariant appears when considering close

curves (or loops). Obviously, in the plane, any loop can be continuously deformed into

each other. Each curve representing the set of images of a periodic continuous application

(A = S1 → B =R2), it follows that all these applications are homotopic to each other. This is a

pretty boring case, and all these maps have the same homotopic invariant. In particular, as

they can all be continuously deformed to a point, this homotopy invariant is 0.

To get something interesting, one can modify the target space B , for instance by simply

removing a point (e.g. the origin i.e. R2\{0}) as illustrated in figure 4.1 (a). there any curve has

to avoid the removed point, so that a loop that encircles it cannot be continuously deformed

into a loop that does not. It can only be deformed into to another loop that does encircle it as

well. In the same way, this loop cannot be deformed neither into a loop that winds the origin

twice, or more. The point appears as an obstruction that yields topological properties for the

loops, such that they can be classify according to their winding number respectively to the

removed point. This winding number is the homotopic invariant that classifies loops in the

punctured plane, or equivalently, all the continuous applications S1 → S1.

This set of all the homotopic classes, labelled by integer numbers corresponding to the winding

numbers of the loops, consists in a group, called fundamental group or Poincaré group, and

quoted π1(S1). This S1 means that we are essentially classifying applications whose target

space is S1, since the distance of the curve from the point around which it winds does not play

any role in the counting of winding numbers.

Note that the loops we are characterizing are oriented objects. They can be seen as trajectories.

Quite naturally, a given close curve encircling once the origin, has a winding number W =+1

if the loop is oriented counterclockwise and −1 otherwise. The group π1(S1) owns an infinite

number of elements, as the winding number can be an arbitrary positive or negative integer.

This is written as π1(S1) ∼=Z.

An important application of winding numbers in physics is the characterization of vorticies,

that are topological defects of two-dimensional vector fields. They are points where the

amplitude of the field vanishes and the phase becomes multi-valued and thus ill-defined.

Vortices can be classified by a winding number : that is the winding of the phase around the

singular point. Indeed, this number does not depend on the choice of loop one considers to

evaluate the winding. Two examples are shown in figure 4.1 (b).

The fact that the homotopy group π1(B) 6= {0} is non trivial, meaning that there exists different
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(b)

W = + 1 W = − 1

S1
A = fi

+

+

!B = ℝ2\{0}

+

+

+
-

f1
f2

f4
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Figure 4.1 – (a) Geometric illustrations of elements of the homotopy group π1(S1). The green loops represent
homotopic applications f1 and f2 from S1 to R2\{0}, whose winding number with respect to the removed point is
W = 1. These applications are not homotopic to f3 whose winding number is W = 0 neither to f4 whose winding
number is W = 2. (b) Examples of two vector fields that host topologically inequivalent defects (vortices).

classes of loops, is a probe of the simply connectedness of B . Roughly speaking, a space is not

simply connected when it has ”holes” in it, that make certain loops not contractible into a

single point. The plane and the sphere are simply-connected spaces, while the punctured

plane and the torus are not. In physics, the non-simply connectedness of the target space may

have different origins. For instance, as it was pointed out, a defect like a phase singularity may

play the role of the punctured point, leading to a classification of vector fields according to

their homotopy properties. This is what is meant by topological defect. It may also happen

that the non-simply connectedness of the target space is intrinsic to the physical object used

to describe the physics. This is the case of the unitary group U (n) of n ×n unitary matrices

that satisfies π1(U (n)) ∼=Z.1 This is of great importance in physics since evolution operators

and scattering matrices are represented by unitary matrices. We shall come back to that point

in more details in chapter 6.

So far, we have restricted ourselves to the base space A = S1, but other spaces of higher

dimension are also relevant in physics, for instance to classify the topological defects in

ordered phases of matter. Along this line, the Kleman-Toulouse formula states that topological

1Note that for n = 1, the unitary matrix reduced to a complexe number |z| = 1 that lies on the unit circle in the
complexe plane, so that the homotopy group reduces to the Poincaré group.
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defects of dimension d ′ may exist in a physical ordered phase in d dimensions provided that

d −1 = d ′+ c where c is the dimension of the ”cage” that surround the defect. As an example,

in a two dimensional system (d = 2), a point-like defect (d ′ = 0) is surrounded by a loop

(c = 1) and thus satisfies the Kleman-Toulouse formula. Such defects are the vortices already

introduced above and are characterized by the homotopy group π1(S1) ∼=Z. Another famous

example is the one of the ferromagnetic phase in d = 3, whose order parameter decomposes as

M(r) = M0n̂ where n̂ is a unit vector in R3 and thus belongs to S2. Thus, at each point r ∈ A that

surrounds the hypothetic defect, one can assign a vector in S2. If the defect is a point, then the

cage is a sphere S2 and therefore the homotopy group classifying the distinct vector fields is

π2(S2), while if it is a line defect, the cage is a loop S1 surrounding it and the corresponding

homotopy group is π1(S2). Actually, it turns out that these two groups are drastically different :

since π2(S2) ∼=Z while π1(S2) ∼= 0, meaning that there is an infinite number of topologically

distinct vector fields around the point defect but there is no line defect in a three-dimensional

ferromagnetic. Here we have used examples of homotopy groups of spheres, whose most are

still unknown, and that one can summarize as :

πn(Sm) =


0 n < m

Z n = m

big mess or unknown n > m e.g. π10(S3) =Z15

(4.4)

where Z15 means that there are 15 different homotopy classes for this group. We will not

continue into that direction but rather come back to the fundamental group and make more

precise the notion of winding number that will be useful for practical purposes.

4.1.2 Winding and degree

The winding of a loop γ f describes by a map S1 f→R2\{0} is characterized by an integer number

that counts the number of times the oriented loop winds around a singular point (e.g. the

origin). This winding number of f is thus nothing but the total angle span by the parametrized

curve γ f (t ) in units of 2π

W ( f ) = 1

2π

∫
γ f

dt
dθ(t )

dt
. (4.5)

This can be expressed geometrically by considering the trajectory r(t) on the curve and

seeing r(t) as an in-plane vector whose origin is the singular point. The velocity is then the

tangent vector to this curve at point r(t ). Their vector product points toward the perpendicular

direction to the plane with a positive or negative orientation according to the orientation of the

loop. The integral of this quantity, once normalized, from one point on the curve to another,

defines an angle. By integrating over the full trajectory one gets the total angle accumulated
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along the trajectory, which is the winding number of the map f in unit of 2π :

W ( f ) = 1

2π

∫
γ f

dt
r(t )× ṙ(t )

||r(t )||2 ·ez . (4.6)

As already mentioned, the distance ||r(t )|| of the curve to the singular point does not play any

role in the winding, as long as it does not vanish, as it is clear from Eq. (4.5). This justifies

that we shall make no difference between the maps S1 →R2\{0} to the punctured plane and

the maps S1 → S1 to the circle, since they are homotopic when they have the same winding

number. We shall denote this equivalence by the relation π(S1) 'π1(R2\{0}) and sometimes

abusively write S1 ' R2\{0}. Note that one can also see the punctured plane R2\{0} as the

punctured complex plane C\{0}, and thus write R2\{0} 'C\{0}, as well as S1 'U (1) where U (1)

denotes the complex numbers of modulus 1. This yields the following expression for the

winding number of a complex map t ∈ S1 → z(t ) ∈C\{0} where z(t )/|z(t )| = eiθ(t ) ≡ u ∈U (1)

W = 1

2πi

∫
S1

u∗ du

dt
dt = θ(t = 2π)−θ(t = 0)

2π
(4.7)

which coincides indeed with the definition of the winding number (4.5).

In practice, there is a more elegant and convenient way to compute the winding number : it is

obtained by drawing a half infinite originating at the singular point, and counts algebraically

the number of intersections of the loop with this line, as shown in figure 4.1. This information

is actually encoded into the sign of the integrand of (4.6), but the advantage in this method is

that one does not need to compute an integral. Noting θ0 the angular direction of the line, an

intersection of the line with the loop occurs for some images f (t (0)
i ), which we would abusively

note f (t (0)
i ) = θ0. Reciprocally, this defined pre-images t (0)

i = f −1(θ0) so that one would like to

write

W ( f ) = ∑
t (0)

i = f −1(θ0)

sgn

[
(r(t )× ṙ(t ))

∣∣∣
θ0

.ez

]
(4.8)

= ∑
t (0)

i = f −1(θ0)

sgn

[
dθ

dt

∣∣∣∣
θ0

]
. (4.9)

This expression of the winding number is called the degree of f . More generally, the degree of

a map A
f

→ B between two orientable spaces of same dimension reads

W ( f ) = deg( f ) ≡ ∑
t (0)

i = f −1(y0)

sgn

[
det

(
∂yα

∂tβ

)
y0

]
(4.10)

where tα and yβ denote the local coordinates of A and B respectively, and ∂yα

∂tβ
denotes the

Jacobian matrix that encodes this change of coordinates. Importantly, as illustrated with

the example of the loop, the degree does not depend on the choice of the image y0. It is an

homotopy invariant that generalizes the winding number of an application f : S1 → S1 to
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higher dimensions manifolds.

4.1.3 Winding of an Eulerian graph

As an homotopy invariant, the winding number is so to speak ”blind” to continuous defor-

mations of the oriented loop it characterizes. In particular, the loop may self-intersect. In

that case, it can be seen as an oriented graph whose nodes (or vertices in the language of

graph theory) are the self-intersections and the links between nodes (or edges) are oriented.

By construction, when following the entire parametrized curve γ(t ) as a trajectory, each link

can be span exactly once when completing a full cycle. Graphs satisfying this property are

called Eulerian, as they were introduced by Euler in its famous solution of the seven Bridges of

Königsberg problem2. Eulerian graphs have the unique remarkable property that each node is

the intersection of an even number of links, which is obviously satisfied in this construction.

This is a powerful result, as it is sufficient to check the parity of the nodes of any graph to certify

that it can be seen as a loop. As a consequence, the winding number (with respect to a point

O) of an oriented Eulerian graph is well defined, and is obtained geometrically by counting

algebraically the intersection number between any semi-infinite line originating at O and the

oriented links of the graph that are crossed by that arbitrary line. This winding property will

be used in chapter 6 to characterize topological properties of evolution operators.

4.2 Topological aspects of degeneracy points

4.2.1 Energy degeneracies as defects

As discussed in the previous section, winding numbers are defined with respect to a point,

which can be a defect in a solid for instance. The analogs of such defects exists in parameter

space Λ of coordinates λ= (· · ·λi · · ·) and consist in degeneracy points i.e. points of coordi-

natesλ(0) at which at least two energy levels of a physical system coincide En(λ(0)) = Em(λ(0)).

Let us detail this point by considering the simple but generic case of a 2×2 Hamiltonian

H(λ) = h0(λ)1+h(λ) ·σ (4.11)

where σ= (σx ,σy ,σz ) is the vector of Pauli matrices. The eigenenergies are

E±(λ) = h0(λ)±||h(λ)|| (4.12)

so that a degeneracy point atλ(0) satisfies

E+(λ(0)) = E−(λ(0)) ⇔||h(λ(0))|| = 0 . (4.13)

2The problem was to know whether it was possible, during a walk, to cross the seven bridges of Königsberg
exactly once. Graph theory shows that it is not possible, the corresponding graph being not Eulerian.
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If one removes this degeneracy point, one can introduce the normalized vector n(λ) ≡ h(λ)
||h(λ)||

that defines a map from parameter space to the unit sphere λ : A =Λ\{λ(0)}
n→ S2. We shall

refer to n as the normalized Hamiltonian map (and equivalently to h as the Hamiltonian map).

It is then tempting to classify such Hamiltonians according to the homotopy properties of

such maps, which are given by the homotopy group πA(S2). We saw that homotopy groups are

complicated and mostly unknown. Yet, in the case of a three-dimensional parameter space

A =R3\{0} ∼= S2, the homotopy group π2(S2) =Z is non-trivial (see (4.4)). Even though this is

a very particular case, it is also very common, if only because these three dimensions of the

base space may simply coincide with the three spatial dimensions. We already pointed out

the example of point-like defects in the three-dimensional ferromagnetic phase. Here are two

other milestone examples illustrating this case.

The first one is a spin one-half coupled to an external magnetic field of arbitrary orientation

n, for which the Hamiltonian reads H = −µB B n ·σ where µB is the Bohr magneton. Note

that in that case, the system is externally controlled by the magnetic field. This situation was

considered by Mikael Berry in is seminal paper of 1984 to illustrate the geometrical phase

accumulated by an eigenstate when the magnetic field is cyclically and adiabatically varied

[10].

The second example is found in condensed matter, when two Bloch bands of a solid touch

at some point in the Brillouin zone. In the neighbourhood of these degeneracy points, the

Hamiltonian as the typical form H =ħvg h(k) ·σ, where vg is the group velocity at the band

touching (that equals the Fermi velocity when the Fermi energy lies at the band crossing

points). Generically, unless some additional symmetry is present, h(k) is linear in k, so that

H effectively describes Weyl fermions, whose dispersion relation is also linear with k. Here

σ does not designate an actual spin, but rather an effective pseudo-spin that originates from

other degrees of freedom (e.g. orbitals or sublattices). Moreover, parameter space is the

reciprocal space andλ= k is not an external tunable parameter as a magnetic field. Still, this

model is formally equivalent to the previous one, and both are thus characterized by the same

homotopy group π2(S2) =Z, whose elements are characterized by the degree of the map n. An

expression of this degree will be derived in a next section.

4.2.2 Phase singularity of the eigenstates

The normalized eigenstatesΨ± of the Hamiltonian (4.11) read

Ψ+ = eiχ+√
2h(h −hz )

(
hx − ihy

h −hz

)
and Ψ− = eiχ−√

2h(h +hz )

(
hx + ihy

−h −hz

)
(4.14)

where h ≡ ||h|| and χ± is an arbitrary phase that depends on λ. For any value of λ, we have

a gauge freedom for the choice of χ±, like usually in quantum mechanics. This means that

for a given λ, there is not a single state that describes the system, but a family of them that

all differ to each other by a phase factor. This is, in a sense, a multi-valuation of the solution.
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In contrast, the projectors P± ≡ |Ψ±〉〈Ψ±| do not depend on the gauge and are thus always

single-valued. Once the gauge is chosen, the eigenstate should be single-valued as well. This

is however not always the case, as one can suspect from (4.14) when h =±hz .

To see it more clearly, let us use the spherical coordinates, and parametrize the spinor on the

Bloch sphere, where it becomes explicit that the eigenstates only depend on n (up to the gauge

choice) :

Ψ+ = eiχ+

(
cos θ2 e−iφ

sin θ
2

)
and Ψ− = eiχ−

(
sin θ

2 e−iφ

−cos θ2

)
. (4.15)

There, setting n = nz > 0 or equivalently θ = 0 (north pole), the eigenstateΨ+ becomes

Ψ+
θ=0= eiχ+

(
e−iφ

0

)
at the north pole of the Bloch sphere (4.16)

which is multi-valued even after the gauge has been fixed, unless we make the particular

gauge choice eiχ+ = eiφ. This fixes the multi-valued of the eigenstate, but only at the north

pole. Indeed, in this gauge, the eigenstate becomes multivalued at the south pole θ =π

Ψ+
θ=π=

(
0

eiφ

)
(with eiχ+ = eiφ) at the south pole of the Bloch sphere . (4.17)

Actually, the multi-valuedness of the eigenstates cannot be fixed by a global gauge choice.

Or say otherwise, there does not exist a smooth function χ that makes the eigenstate single-

valued everywhere on the Bloch sphere. One can only choose locally a gauge that makes the

eigenstate single-valued. Thus the eigenstates are only piece-wise single-valued. This reflects

a topological property of the eigenstates, as their phase cannot be defined smoothly globally

and has to have a singularity somewhere, similarly to a vortex. This topological property is

inherently related to the gauge freedom, and is described by the theory of fiber-bundles that

we need to briefly introduce now.

4.2.3 Some insights on fiber bundles

Fiber bundles constitute a rigorous construction of a product of spaces. Locally, the product

of two spaces, say a segment [−1,1] and a circle S1 is given by the usual cartesian product. But

globally, this does not necessarily hold since a twist may occur. In that case, the fiber-bundle is

said to be topological. This is the celebrated example of the Moebius strip that differs by a twist

from the cylinder. These two structures both result from the product of the segment with the

circle, but the Mobius strip can only be seen as the cartesian product [−1,1]×S1 locally. Fiber

bundles are in particular useful to make meaningful the notion of parametrized vector space.

The vector space (here the segment) is called the fiber, while the space that parametrizes the

fiber (here the circle) is called the base space.
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Another intuitive example of a fiber-bundle is the family of tangent vector spaces to the sphere

S2. In that case, the vector space is the tangent plane to the sphere and the base space is the

sphere itself. The tangent vector bundle is thus the collection of all tangent vectors at any

point of the sphere. This vector bundle is also topological, and its twist can be seen in the

tangent vector field to the sphere, that necessarily has two vortices, which are precisely points

where the phase (i.e. the angle of the tangent vectors with respect to an arbitrary direction) is

multi-valued. The position of these singularities depends on the gauge choice, in the language

of physicists, or of the section of the fiber bundle as mathematicians would say. But the total

vorticity, equals to 2 in that example, cannot change. This is a topological invariant of this

fiber bundle, and this result is known as the hairy ball theorem.

The fiber bundles we are interested in resemble this hairy ball : the base space is also the

sphere S2 but the fibers (the hairs) are complex vector spaces made of all eigenstatesΨ, that

only differ by a phase (or gauge choice), that is

F±(λ) = {eiχ±(λ)Ψ±(λ),eiχ±(λ) ∈U (1)} . (4.18)

A fiber F±(λ) thus defines the equivalent class of the states Ψ±(λ). The fiber bundle is also

associated to a family of projectorsλ→ P (λ), which, as already mentioned, are single valued.

States that belong to the same fiber have the same projector. The topological property of

the fiber bundle is also encoded into P (λ), and one can equivalently express the topological

invariant of the fiber bundle with the eigenstates or with the projectors.

The fiber-bundle constructed from the fibers (4.18) are referred to as U (1)-complex vector

bundles of rank 1. There are many others, of different dimensions, real or complex, with group

structures different from U (1), but this simple example already englobes many interesting

physical situations.

To express the topological invariants of fiber bundles, one needs now to introduce some

definitions of differential geometry.

4.2.4 Degree of the Hamiltonian map

Brief summary on differential calculus

There are many books that give detailed and consistent introductions to differential forms,

such as [76, 29] that are dedicated to physicists. Here we present a digest summary that

sketches a few basic definitions and results that are useful for the following.

Differential forms constitute a generalization of functions. A usual functionλ :Λ→ f (λ) ≡ω0

is then a 0-form, while its differential (provided it is differentiable) d f is an example of a 1-form.

More generally, a 1-form is a kind of vector, called covector as it transforms as a covariant

vector [29], and decomposes as ω1 =ωi
1dλi (where we use the implicit sum convention). If

the dimension of parameter space Λ, that is our base space, is N , then the set of 1-forms
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Ω1(Λ) is also of dimension N . A 2-form ω2 is a anti-symmetric tensor that decomposes as

ω2 =ω j k dλ j ∧dλk (with j < k), where the wedge product ∧ generalizes the vector product

defined in R3 to any dimension, by satisfying

dλ j ∧dλk =−dλk ∧dλ j (4.19)

and in particular dλ j ∧dλ j = 0. By extension an r-form is a totally anti-symmetric tensor

that decomposes as ωr =ωr
j1, j2,··· , jr

dλ j1 ∧dλ j2 ∧·· ·∧dλ jr , and in particular the setΩN (Λ) of

N-forms contains a single element ωN =ωN
1,2,··· ,N dλ1 ∧dλ2 ∧·· ·∧dλN .

As recalled at the beginning of this section, if f is a 0-form (a function) then d f is a 1-form.

This familiar result generalizes to any differential forms, with the exterior derivative on forms

d that constitutes a mapΩr (Λ)
d→Ωr+1(Λ); namely, the (exterior) derivative of an r-form is an

(r+1)-form. In practice it is obtained as

dωr ≡ ∂

∂λr+1

(
ωr

j1, j2,··· , jr

)
dλr+1∧dλ j1 ∧dλ j2 ∧·· ·∧dλ jr . (4.20)

Such an (r+1)-form, ωr+1 = dωr is called an exact form, as it is derived from an r-form (such as

d f ). It may also happen that a formω satisfies dω= 0. This is called a closed form. Importantly,

the anti-symmetric relation (4.19) imposes that d(dωr ) = 0, implying that any exact form is

closed. The reciprocal is not true.

A differential form is an object that one can integrate over manifolds. In particular, if the

dimension of a manifold M is r , then
∫

M ωr is a number. Of particular importance is the

volume form ΩSn , that is an n-form whose integral over a sphere Sn embedded in Rn+1 is 1. In

cartesian coordinates, it reads

ΩSn ≡
n+1∑
i=1

(−1)n+1 xi dx1 ∧·· ·∧dxi−1 ∧dxi+1 ∧·· ·dxn+1

γn
(
x2

1 +x2
2 · · ·+x2

n+1

)(n+1)/2
(4.21)

where γn = 2π
n+1

2 /Γ( n+1
2 ) with Γ(x) the Euler function, is the surface of the unit sphere Sn . Of

particular importance for the following are the two examples in R2 and R3

ΩS1 = xdy − ydx

2π
(
x2 + y2

) and ΩS2 = xdy ∧dz + ydz ∧dy + zdx ∧dy

4π
(
x2 + y2 + z2

)3/2
. (4.22)

A key result in differential calculus is Stokes theorem, that relates the integral of a differential

form ω with that of its derivative dω, when it exists everywhere over M , as

Stokes theorem :
∫

M
dω=

∫
∂M

ω (4.23)

where ∂M denotes the boundary of the manifold M .
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Expression of the degree

Finally, we will need a second theorem, known as Brouwer theorem, that relates the integrals

of a differential form over two different manifolds A and B of same dimension n. Consider

a differential form ω defined over the manifold B of local coordinates y = (y1, · · · , yn), i.e.

ω=ω j1,··· , jn (y)dy j1 ∧·· ·∧dy jn , and a map f between the two manifolds x : A → y = f (x) ∈ B .

Then one can define a form on A from ω, through the action of f . It is called the pull-back of

ω and reads

f ?ω=ω j1,··· , jn ( f (y))det

(
∂yα

∂xβ

)
dx j1 ∧·· ·∧dx jn (4.24)

where the Jacobian matrix accounts for the change of local coordinates. Then one has the

following

Brouwer theorem:
∫

A
f ?ω= deg f

∫
B
ω (4.25)

where the degree of f was defined in (4.10). An important application of the Brouwer theorem

is that it gives an integral formulation of the degree of a map, which one obtained when

applying the formula (4.25) when B = Sn for the volume formΩSn .

For instance, in the case where of the punctured plane B =R2\{0} ∼= S1, one gets

degh =
∫
λ∈S1

h?ΩS1 (4.26)

=
∫
λ∈S1

1

2πh2

(
hx dhy −hy dhx

)
. (4.27)

Interpreting h = (hx ,hx ) = (x(t ), y(t )) as a vector position that depends on a parameter t ∈ S1,

one recovers immediately the winding number W defined in (4.6).

We will be particularly interested in the case of Hamiltonian maps S2 h→ S2. In that case the

degree reads

degh =
∫
λ∈S2

h?ΩS2 (4.28)

=
∫
λ∈S2

1

4πh3

(
hx dhy ∧dhz +hy dhz ∧dhx +hz dhy ∧dhx

)
(4.29)

where the hi ’s are functions of λα so that dhi = ∂hi
∂λα

dλα, and one gets

degh = 1

4π

∫
λ∈S2

εi j k

h3 hi
∂h j

∂λα

∂hk

∂λβ
dλα∧dλβ (4.30)
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Finally, using the usual vectorial notation in R3, this expression takes the form

degh = 1

4π

∑
α,β

∫
S2

h

h3 ·
(
∂h

∂λα
× ∂h

∂λβ

)
dλα∧dλβ (4.31)

This formula has a direct meaningful geometrical interpretation : it tells that the degree of the

maps S2 h→ S2 is a wrapping number, meaning that it counts the number of times the vector

h/h = n wraps the target sphere S2 whenλ spans the entire base space S2.

4.3 Berry curvature and first Chern number

4.3.1 Topology from the eigenstates

The language of differential forms is particularly convenient to reveal the topological and

geometrical structures of physical systems. Of main importance to characterize the eigenstates

|Ψn(λ〉 of a quantum Hamiltonian that is smoothly parametrized over a base space Λ, or

actually any eigenstates of a parametrized linear Hermitian eigenvalues problem

H(λ) |Ψn(λ)〉 = En(λ) |Ψn(λ)〉 (4.32)

that one can encounter in particular in wave physics, are geometrical tools introduced by

Berry and Simon, called Berry connection and Berry curvature [10, 95]. The Berry connection

is a 1-form defined from each parametrized eigenstate as3

A (n)(λ) ≡ i〈Ψn |d |Ψn〉

= i〈Ψn | ∂

∂λ j
|Ψn〉dλ j

≡ A(n)
j (λ)dλ j

(4.33)

and the Berry curvature is an exact 2-form obtained as the derivative of the connection as

F (n)(λ) ≡dA (n)(λ)

= ∑
j<k

∂A(n)
k

∂λ j
−
∂A(n)

j

∂λk

dλ j ∧λk

≡ F j k dλ j ∧λk

(4.34)

It is thus a closed form i.e. dF (n) = 0. Note that the Berry connection is not gauge invariant :

when a gauge transformation is performed on a state |Ψ〉 → |Ψ̃〉 = eiχ(λ) |Ψ〉, then the Berry

3This definition fits the one of Berry and Simon but differs by a minus sign from the one mostly encountered in
solid states physics when dealing with Bloch bands.
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connection transforms as

A (n) → Ã (n) = i〈Ψ̃n |d |Ψ̃n〉 (4.35)

= −dχ+A (n) . (4.36)

Since dχ is an exact 1-form, then d(dχ) = 0 and therefore the Berry curvature F (n) is gauge

invariant. It is actually an observable quantity.

For now, let us express the Berry curvature in a more physical form. By taking the derivative

with respect to λ j of the eigenvalue equation (4.32) one gets the relation

〈Ψm |∂λ j |Ψn〉 =
〈Ψm |∂λ j H |Ψn〉

En −Em
(4.37)

that one can substitute in (4.34) after having injected a closure relation
∑

m |Ψm〉〈Ψm | = 1, to

end up with

F (n)(λ) = i
∑
j ,k

∑
m 6=n

〈Ψn |∂λ j H |Ψm〉〈Ψm |∂λk H |Ψn〉
(En −Em)2 dλ j ∧dλk (4.38)

The advantage of this formula is three-fold. First, it does not assume anymore that the

eigenstates are smooth with respect to the parameters λ. Second, using the anti-symmetry of

the wedge product, it is straightforward to show from (4.38), the important relation∑
n

F (n)(λ) = 0 (4.39)

which can somehow be seen as a conservation relation. It also implies that one necessarily

needs at least two intern degrees of freedom (orbital, spin, classical fields...) in the eigenvalues

problem (4.32) to have a non-zero Berry curvature. Finally, the denominator in the formula

(4.38) reveals a divergence of the curvature at the degeneracy points En(λ0) = Em(λ0), mean-

ing that F (n)(λ) is maximum forλwhere the gap is the smaller. These degeneracies, or level

crossings can be interpreted as the sources of Berry curvature, and thus act as monopoles,

that are referred to as Berry monopoles. Usually, a monopole has a charge, given by the flux of

the field it generates, through a closed surface that surrounds it. Such a charge can be defined

here and turns out to be an integer-valued topological number, called the first Chern number

Cn = 1

2π

∫
S2

F (n) ∈Z . (4.40)

The first Chern number Cn characterizes the topological property of the fiber bundle defined

as the collection of the parametrized eigenstates |Ψn(λ)〉 over the base space S2, as sketched

in figure 4.2. It encodes a global property, unlike the Berry curvature that is a local quantity.
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λZ

λx

λy

Ψ eiϕ2

Ψ eiϕ1

F±

P±
Smooth gauge 1

(North) 

Smooth gauge 2 
(South)

Berry monopole

Figure 4.2 – (a) U (1) fiber-bundle as a continuous collection of fibers F over the sphere defined in parameter
space λ. Two states in the same fiber only differ by a phase; they thus have the same projector onto the base
space. The impossibility to define smoothly this phase over the base space is a manifestation of the topological
property of the fiber bundle, encoded into the Chern number. (b) This Chern number is the quantized flux through
the sphere of the Berry curvature generated by the degeneracy point, called Berry monopole. The existence of a
non-zero Chern number imposes the 1-form Berry connection to be defined smoothly only piecewise.

Note that from (4.39) one immediately gets the topological charge conservation∑
n

Cn = 0 . (4.41)

For a two-fold degeneracy, the two collections of eigenstates parametrized on the surrounding

sphere have opposite topological charges. This is the most standard situation, encountered

for instance for Weyl fermions. More generally, for an n-fold degeneracy, the n different

eigenstates define as many fiber bundles whose Chern numbers are a priori different in

absolute value. The same degeneracy thus leads to different topological charges Cn that

depend on the fiber bundle. The fact that the Chern number is zero for a single level system is

consistent with the fact that the monopole consists in a degeneracy, that necessarily implies

at least two levels.

4.3.2 Topological charge of a two-fold degeneracy point

The simplest and also more common example of a physical model that exhibits topological

properties from a degeneracy point is the generic 2×2 Hamiltonian introduced in (4.11). We

shall use this model to give more insight about the meaning of the first Chern number and

show how to compute it by different ways.
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Chern number as an obstruction to Stokes theorem

We introduced the Berry curvature F as the exterior derivative of the 1-form Berry connection

A i.e. F ≡ dA . Their integrals are thus related via Stokes theorem (4.23)∫
S2

F =
∫
∂S2

A . (4.42)

Since the sphere S2 is a closed surface, it does not have a boundary (∂S2 = 0), and the right

hand member of this equality always vanishes. This wrong result originates from a mistake

one makes when stating that F = dA everywhere. However we saw that the Berry connection

(like the eigenstates) is ill-defined at some points that depend on the gauge choice. Therefore

the equality F = dA is only valid in a domain where these points have been excluded. Note

that previously, we integrated the Berry curvature that was derived from the Berry connection

in a specific gauge with the same equality. This is legitimate, since the Berry curvature is a

gauge invariant quantity : the expression one obtains with a specific gauge that makes smooth

the Berry connection in a certain domain, is the same as the one one gets with another gauge

that is smooth where the previous one was not. In other words, one can always find a gauge

where the equality F = dA holds, so that it is always safe to work with F . But one cannot

find a gauge that is smooth everywhere and would imply that F = dA is alway valid, unless

the fiber-bundle is topological trivial, as meant by (4.42). For this reason, the Chern number

is often said to be an obstruction to Stokes theorem, which gives another insight about its

topological meaning.

We must give up the Stokes theorem when considering the entire parameter space, that is S2

in our case. But one can still use it piecewise, on domains where F = dA is a valid equality.

These are defined with different gauges. Let us make it explicit for the stateΨ+ of the two-level

model :

south gauge: χ= 0 |ΨS
+〉 =

(
cos θ2 e−iφ

sin θ
2

)
valid for θ 6= 0 (4.43)

north gauge: χ=φ |ΨN
+ 〉 =

(
cos θ2

sin θ
2 eiφ

)
valid for θ 6=π (4.44)

from which the Berry connection is computed in the local spherical coordinates

A = i〈Ψ|∂θ |Ψ〉dθ+ i〈Ψ|∂φ |Ψ〉dφ (4.45)

leading to

south gauge: χ= 0 A S
+ = cos2 θ

2
dφ valid for θ 6= 0 (4.46)

north gauge: χ=π A N
+ =−sin2 θ

2
dφ valid for θ 6=π (4.47)

In passing, one can check that these two different expressions indeed yield the same Berry
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curvature F+ = −1
2 sinθdθ∧dφ whose expression is valid for any θ. This is actually (and

consistently) equal to 2πΩS2 in spherical coordinates.

The Chern number can now be computed via Stokes theorem by safely using F = dA on

different patches when this equality make sense, and for instance over north hemisphere (NH)

and south hemisphere (SH) respectively, as illustrated in figure 4.2 :

C+ = 1

2π

∫
S2

F+ (4.48)

= 1

2π

∫
NH

F++ 1

2π

∫
SH

F+ (4.49)

= 1

2π

∫
NH

dA N
+ + 1

2π

∫
SH

dA S
+ (4.50)

so that Stokes theorem can be safely used to get

C+ = 1

2π

∫
∂NH

A N
+ + 1

2π

∫
∂SH

A S
+ (4.51)

where the boundary of an hemisphere is the equator, that is defined by θ =π/2. The orientation

of the surface, encoded into dθ∧dφ rather than −dθ∧dφ in the Berry curvature tells that the

Chern number is the flux of F through the sphere, emanating from the monopole toward

the exterior. The line integral along the equator must keep track of this orientation, so that

the boundary of the north and south hemispheres is the same equator line γ but oriented in

opposite directions :

C+ = 1

2π

∫
γ
A N

+
∣∣
θ=π/2 −A S

+
∣∣
θ=π/2 =− 1

2π

∫ 2π

0
dφ=−1 (4.52)

after substitution of the Berry connections by their expression in their corresponding gauges.

One important remark is that the two connections are related by the gauge transformation

(4.36) that one can re-express as

|Ψ〉→ |Ψ̃〉 = eiχ(λ) |Ψ〉→A →A + ie−iχdeiχ (4.53)

where eiχ ∈U (1) is called the transition function. It tells how the two smooth pieces of the

fiber bundle (i.e. where the eigenstates are single-valued once the gauge is fixed) can be glued

together. A non-zero Chern number thus corresponds to a winding of this function

C = 1

2π

∫
γ
A − Ã =− 1

2πi

∫
γ

e−iχdeiχ , (4.54)

highlighting the ”twist” of the fiber bundle. So the value of C+ =−1 of the example can be

found directly without even specifying the explicit expression of the different connections,

since we know the gauge transformation between the two hemispheres.
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Chern number as a degree

The 1-form Berry connection associated to the eigenstate Ψ+, can be expressed with the local

coordinates (hx ,hy ,hz ) of the target space S2 embedded in R3 as

A+ = i〈Ψ+|∂hx |Ψ+〉dkx + i〈Ψ+|∂hy |Ψ+〉dky + i〈Ψ+|∂hz |Ψ+〉dkz . (4.55)

Of course, a gauge must be specified to compute it explicitly. For instance, in the south gauge,

one gets after a tedious calculation

A S
+ =−1

2

hy dhx −hx dhy

h(h −hz )
(4.56)

which is indeed well defined everywhere but at the north pole (hz = h). The Berry curvature

can then be calculated from its definition (4.34) and one finds

F+ =− 1

2h3

(
hx dhy ∧dhz +hy dhz ∧dhx +hz dhx ∧dhy

)=−2πΩS2 (4.57)

which does not depend on the gauge anymore. Now we add the information that h is a map

from the base space R3\{0} ∼= S2 to the target space R3\{0} ∼= S2. The Chern number can thus be

expressed as∫
S2

F+ =−2π
∫

S2
h?ΩS2 =−2πdegh

∫
S2
ΩS2 . (4.58)

The last integral being equals to 1 by definition, one gets the important result

C± =∓degh (4.59)

where the derivation for C− is similar. It is remarkable that for this basic model, the Chern

numbers of the two families of eigenstates exactly coincide with the degree of the Hamiltonian

map : the Chern numbers, that characterize the topology of the complex fiber-bundles, reduce

to the homotopy invariant wrapping number of the sphere. In practice, it could be very

convenient to compute the Chern numbers by using the definition of the degree (4.10) of the

Hamiltonian map. The difficulty of computing an integral is replaced by the one of finding the

pre-images as

C± = ∑
q(0)=h−1(y0)

sgndet

∂λ1 hx ∂λ1 hy ∂λ1 hz

∂λ2 hx ∂λ2 hy ∂λ2 hz

∂λ3 hx ∂λ3 hy ∂λ3 hz

∣∣∣
y0=h(λ(0))

(4.60)

where y0 is any regular point such that the determinant is not singular.
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Calculation of the topological charge in a few examples

For the sake of concreteness, let us compute the Chern number assigned to a two-fold degen-

eracy point by using the degree formula. Consider the simplest possible example of the Weyl

Hamiltonians HW± =±ħvF q ·σmeaning that h±(q) =±q, and the dispersion relation is linear

with q. The Chern numbers C (W±)− for the family of eigenstates Ψ− that surrounds the two

degeneracy points read

C (W±)
− = ∑

q(0)=h−1(y0)

sgndet

±1 0 0

0 ±1 0

0 0 ±1

∣∣∣
y0=h(q(0))

. (4.61)

In that case there is no need to specify a pre-image and one directly gets C (W±)− =±1, which is

often said to be the topological charge of the Weyl points, or its chirality or its helicity.

A less trivial example is provided by the following model, called ”double Weyl node”, for which

h(q) = (q2
y /2−q2

x /2, qx qy , qz ). The quadratic terms in momentum yield a quadratic dispersion

relation along qx and qy at the band touching point. The Jacobian matrix yields

det

(
∂hi

∂q j

)
=−(q2

x +q2
y ) (4.62)

whose value depends on the ”direction” y0 = h(q(0)
i ). Let us choose y0 = hx > 0. This implies

qx qy = 0 and qz = 0. There are thus two pre-images q(0)
1 = (0, qy > 0,0) and q(0)

2 = (0,−qy < 0,0)

of the point y0 = (q (0) 2
y /2,0,0). These two pre-images have the same negative contribution in

the degree formula so that finally C− =−2.

These two examples show that the topological charge of a two-fold degeneracy could be

|C | 6= 1 only when the dispersion relation is non-linear. Another physical example is found in

gyro-electric media, as discussed in chapter 2. This non-linearity is however not sufficient in

general. In contrast, for linear dispersion relations, the topological charge is fixed to |C | = 1.

Another way to obtain different Chern numbers is to consider an n-fold degeneracy point, as

we shall see in a next section.

4.4 Berry monopoles

The Berry model : a slowly rotating version of the Zeeman coupling

In its seminal paper of 1984, Berry introduced a simple model to illustrate the geometrical

phase accumulated by a state adiabatically driven along a cycle in parameter space, and now

days known as Berry phase [10].4 We shall deviate from its original purpose and present this

4The concept of geometric phase, known as holonomy in mathematics, is relevant beyond the approximation
of the adiabatic limit, and was generalized for instance by Aharonov and Anandan. For that reason, a distinction is
sometimes made in some books between the Berry phase that assumed adiabaticity and the geometric phase that
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4.4. Berry monopoles

model because it allows a simple and useful generalization of the topological charges ±C

beyond two-fold degeneracy points.

The model consists in an arbitrary spin Ŝ coupled to an external magnetic field B of orientation

n(θ,φ) = (sinθcosφ, sinθ sinφ,cosθ) that can vary adiabatically. Here, θ and φ represent the

polar and azimuthal angles in the laboratory frame respectively. This adiabatic prescription

was originally made to guarantee that no transition occurs between the different energy levels

and in particular that no level crossing may occur during the evolution. One can thus follow

in time an instantaneous state of the following Hamiltonian

H(θ,φ) = E n(θ,φ) · Ŝ (4.63)

where E =−µB B . In the case of a spin 1/2, this model consists in the two-level system that

was extensively presented in the previous sections, and for which the two-fold degeneracy

point at E = 0 carries topological charges C± =∓1. For higher spins S = 1,3/2,2 · · · , the Hilbert

space has dimension 2S +1 and therefore the point E = 0 is 2S +1-fold degenerated. We shall

see that such degeneracies yield higher Chern numbers.

One can compute the Berry curvature either by using the Stokes theorem in different regular

patches or by using the formula (4.38), both technics being equally good. But in both cases,

one needs an explicit dependence in the longitudinal and azimutal angles θ and φ of the

eigenstates and the Hamiltonian to differentiate them with respect to these variables. Let us

fix the quantization axis to be along the z direction in the laboratory frame, so that

Ŝz |m,ez〉 = m |m,ez〉 (4.64)

where Ŝz = ez · Ŝ. The operator Ŝz is related to the Hamiltonian n · Ŝ by a rotation, represented

by a unitary operator that depends on the longitudinal and azimutal angles U (θ,φ) as

n(θ,φ) · Ŝ ≡U (θ,φ)ez · ŜU †(θ,φ) =U (θ,φ) Ŝz U †(θ,φ) (4.65)

which relates the eigenstates of the ”rotated” Hamiltonian H(θ,φ) to those of Ŝz

H(θ,φ) |m,n〉 = E m |m,n〉
|m,n〉 ≡U (θ,φ) |m,ez〉 .

(4.66)

The rotation operator U (θ,φ) is not uniquely defined. For instance, one can choose for its

representation

U (θ,φ) = e−iφŜz e−iθŜy . (4.67)

Now that we have an explicit dependence in θ and φ of the Hamiltonian and its eigenstates,

one can differentiate them and compute the Berry curvature, for instance with formula (4.38).

does not.
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Formula (4.38) implies terms of the form

〈m,n|∂θH(θ,φ) |p,n〉〈p,n|∂φH(θ,φ) |p,n〉 (4.68)

that can be computed from (4.66) and (4.67), and recalling the expression of a rotation of Ŝz

by an angle θ around the y axis

e−iθŜy Ŝz eiθŜy = cosθŜz + sinθŜx (4.69)

one finds

〈m,n|∂θH(θ,φ) |p,n〉 = E 〈m,ez | Ŝx |p,ez〉 (4.70)

〈p,n|∂φH(θ,φ) |m,n〉 = E sinθ 〈p,ez | Ŝy |m,ez〉 (4.71)

These quantities can be computed with the spin ladder operators Ŝ+ = Ŝx + iŜy and Ŝ− =
Ŝx − iŜy , and one ends up with the important result

Fm =−m sinθdθ∧dφ (4.72)

that was first found by Berry. One recognizes the volume form 4πΩS2 = sinθdθ∧dφ of the

sphere S2 in spherical coordinates. It follows that its integral over S2 straightforwardly gives

the useful result

Cm =−2m . (4.73)

This result was originally derived in a different way by Avron, Sadun, Segert and Simon [5]. In

the case of a spin 1/2, where m =±1/2, one recovers the result C± =∓1 of the previous section.

For higher spins, the Chern numbers becomes higher and increase with the labelling of the

eigenstates, that is with the eigen-energies. In particular, the shallow water model discussed

in Part I, chapter 2 corresponds to a spin 1 problem, and its Chern numbers are directly infers

as (C−,C0,C+) = (2,0,−2).

Generalized Berry model

One can conclude this section by doing a step further, and noticing that this standard result

was derived for identity Hamiltonian maps whose degree is 1. This leads us to consider the

more general model

H = h(λ) · Ŝ (4.74)

that defines the Hamiltonian map

λ= B :R3\{0} ∼= S2 h→ h(λ) ∈R3\{0} ∼= S2 . (4.75)
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that may wrap the target sphere several times, and thus change the value of the Chern number.

Such a map is well defined for any spin value, and not only for spin 1/2, since the basis of

the spin algebra [Ŝα; Ŝβ] = iεαβγŜγ contains exactly three elements, and therefore h ∈R3\{0} for

each eigenstate |m,n〉 as long as the gap does not close.

Starting by recognizing the volume form sinθdθ∧dφ= 4πΩS2 of the sphere S2 in spherical

coordinates in the expression (4.72) of the Berry curvature, one can use the Brouwer theorem

(4.25) that leads to

Cm = 1

2π

∫
S2

Fm =−2m
∫

S2
h?ΩS2 =−2m degh

∫
S2
ΩS2 (4.76)

which gives the final result for the topological charges of the generalized Berry model (4.74)

Cm =−2m degh . (4.77)

This formula generalizes the formula (4.59) obtained for 2×2 Hamiltonians (m =±1/2), as

well as (4.73) Cm = −2m obtained for Berry monopoles (degh = 1). It shows that the value

of a topological charge originating from degeneracy points in parameter space R3 has may

have two distinct origins : the order of the degeneracy (property of Ŝ) and the wrapping of the

Hamiltonian map (homotopy property of h(λ)).
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Mais pour le principe, et pour l’exemple aussi,

Je trouve qu’il est bon d’exagérer ainsi.

Edmond Rostand,

Cyrano de Bergerac

As shown in chapter 4, band degeneracies are sources of geometrical Berry curvature. It

follows that, in three dimensional parameter space (λ1,λ2,λ3), U (1)-fiber bundles constructed

on the unit sphere enclosing the degeneracy point for each continuous family of eigenstate

Ψn(λ1,λ2,λ3) concerned with the band touching, have a non-trivial topology captured by the

first Chern number Cn . This topological property has a direct physical consequence on the

existence of chiral modes that emerge when a certain anisotropy (e.g. in space) is considered

for one of the parameters λi .

5.1 An anisotropic 2D Dirac Hamiltonian

A canonical example exhibiting a degeneracy point in condensed matter is given by the Dirac

Hamiltonian in two dimensions

HDirac(kx ,ky ,m) = kxσx +kyσy +mσz =
(

m kx − iky

kx + iky m

)
(5.1)

whose spectrum E± =±
√

k2
x +k2

y +m2 has a two-fold degeneracy at (kx ,ky ,m) = (0,0,0). Such

Hamiltonian generically describes a linear two-band crossing in two dimensions when m = 0.

It is a particular 2×2 Hamiltonian discussed in chapter 4 for which we shown that C± =∓1.

The physical manifestation of this Chern number appears when considering a ”dual” anisotropic

problem, where the mass term m is a smooth function of space, say along the x direction, that

changes sign somewhere. The system being not invariant by translation along x anymore, the

79



Chapter 5. Spectral Flow and degeneracy points

Hamiltonian becomes

HDirac(i∂x ,ky , x) =
(

m(x) i∂x − iky

i∂x + iky −m(x)

)
. (5.2)

Note that we have kept the same order for the entries (scalars or operators) of the matrix,

that corresponds to the ordered sequence of the three Pauli matrices. While HDirac(kx ,ky ,m)

is simply a matrix of numbers, HDirac(i∂x ,ky , x) is a matrix of objects that do not commute

in general, and is therefore more involved to diagonalize. However, the Chern numbers

computed for HDirac(kx ,ky ,m) already gives an important information on the spectrum of

HDirac(i∂x ,ky , x).

The full spectrum of HDirac(i∂x ,ky , x) can be computed quite easily in the simple case of a

linear spatial dependence of the mass m(x) ∼ x .1 The problem to be solved becomes a set of

two coupled differential equations where the only non-constant coefficients are linear with

x. This suggests solutions given by Hermite functions. A direct brute force diagonalisation

indeed leads to an Hermite equation for each of the components (ϕA ,ϕB ) of an eigenvector.

Instead, one can perform a unitary transformation that preserves the cyclic ordering of the

entries (i∂x ,ky , x) such that

H̃Dirac(x, i∂x ,ky ) = R HDirac(i∂x ,ky , x)R† =
(

ky x +∂x

x −∂x −ky

)
(5.3)

that is obtained for R = e−i π

2
p

2
(σx+σz )ei π4 σz . One recognizes the annihilation and creation

operators a = 1p
2

(y +∂y ) and a† = 1p
2

(y −∂y ), that satisfy [a, a†] = 1 and act on the Hermite

functions 〈x|n〉 =ϕn(x) = 1
(2n n!

p
π)1/2 e−

x2

2 Hn(x) as a |n〉 =p
n |n −1〉, a† |n〉 =p

n +1 |n +1〉 and

a†a |n〉 = n |n〉. The mode n ∈N corresponds to the number of zeros of ϕn(x). As recalled in

figure 5.1, the functions ϕn(x) are centered around x = 0 (i.e. 〈x〉n = 0) that is where the mass

term m changes sign, but their spreading increases with n as 〈x2〉n = 1
2 +n.

The rotated Hamiltonian (5.3) suggests solutions of the form(
ky

p
2ap

2a† −ky

)(
αn |n〉

αn+1 |n +1〉

)
= En

(
αn |n〉

αn+1 |n +1〉

)
(5.4)

where the αi are coefficients. This anzatz yields the discrete spectrum

E±
n =±

√
k2

y +2(n +1) n ∈N (5.5)

that is shown in black in figure 5.2. As for the bulk Dirac Hamiltonian, this spectrum is still

made of two branches of opposite energies that behave as E±
n ∼±|ky | for large ky , but they are

now constituted of an infinite number of discrete energy levels, that correspond to localized

1Such a choice corresponds for instance to a first order linearization of m(x) ∼ x(∂x m)|0 +O(x2) of the mass
term function that would change sign in x = 0 with a derivative equals to unity.
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Figure 5.1 – Illustration of the spatial dependence of a few Hermite functions.

modes around m = 0. In particular, since n ∈ N, the lower energy solution consists in two

branches E±
0 =±

√
k2

y +1 and an associated eigenstate is

Ψ0(x) =
(
〈x|0〉
〈x|1〉

)
=

(
1p
2x

)
e−

x2

2 . (5.6)

The anzatz above does not account for all the solutions. Actually, an additional solution is

suggested by the remarkable structure ofΨn , whose components ϕA
n and ϕB

n correspond to

successive shifted modes n and n +1. Then, by extrapolating this structure, one can easily

check that there exists another lower energy solution Ψn that one may somehow abusively

call ”n =−1”. This solution reads

Ψ−1(x) =
(

0

〈x|0〉

)
=

(
0

1

)
e−

x2

2 (5.7)

and satisfies(
ky

p
2ap

2a† −ky

)(
0

|0〉

)
= E−1

(
0

|0〉

)
(5.8)

which yields the single branch

E−1 =−ky . (5.9)

Unlike the other modes n ∈N, the dispersion relation of this extra mode cannot be inferred,

even qualitatively, from the bulk dispersion. It has several remarkable properties: It is (1) non-

dispersive, (2) localized and (3) minimally spread around where m(x) changes sign, (4) fully

polarized onto one component only (e.g. spin in Dirac equation, pseudo-spin in graphene,
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Figure 5.2 – Spectral flow for the Dirac Hamiltonian for m = x and m = y .

etc...), (5) the only accessible mode in the bulk gap and (6) it propagates with a negative group

velocity for any ky , i.e. it is a leftward chiral mode. Some of these properties, such as (1) and

(4), are specific to this model, while others such as (5) and (6) are the consequence of (I) the

existence of a bulk gap and (II) a more general property of this n =−1 mode, called spectral

flow, and that one could formulate as : Its dispersion relation continuously connects the two

energy branches E+ and E− when varying ky . As a result, the branch E+ ”looses” 1 mode while

the branch E− ”gains” 1 mode when varying ky . At this stage, one remarks that this gain/loss

of modes is captured by the first Chern numbers C± of the bulk states whose energies E+ = E−

match at some point in parameter space (kx ,ky ,m) = (0,0,0). Denoting by N± the algebraic

number of modes gained by the branch ±, one gets the

topological spectral flow C± =N± (5.10)

that relates a topological property of the bulk eigenstates degeneracy to the algebraic number

of modes N that is gained by the branch ± of the anisotropic physical system where the mass

term changes sign is space. A variation of the number of modes in a branch is necessarily

given by an integer number, but it is less obvious that this integer has a meaningful topological

interpretation. Besides, note that the vanishing of the sum of Chern numbers C++C− = 0

guarantees the balance between gained and lost modes when varying ky , in consistence with

the conservation of the number of modes. For that reason, the ”flowing” chiral mode n =−1 is

said to be topological.

Equation (5.10) is a simple version of the Atiyah-Singer index formula that relates the rank of

the projectors of Ĥ to the Chern numbers of the fiber bundles defined from the projectors of

the parametrized H . This H can be seen as a semi-classical limit of Ĥ , and inversely Ĥ can be

built from H by a quantization procedure, such as the Weyl quantization. Such quantization

procedure gives a rigorous framework to the substitution kx → i∂x . The existence of a spectral

82



5.2. A generalized ”spin-oscillator” model

gap of H away from (kx ,ky ,m) = (0,0,0) then guaranties that Ĥ has discrete spectrum in the

vicinity of ky = 0, via the Weyl law. Much more details can be found in the notes of Frédéric

Faure [27].

It worth finishing this section by discussing some subtleties regarding the relative sign between

C and N in (5.10). First note that this sign depends on sign(∂x m)|0 that was positive in

the example. The spectral flow would be reversed if m(x) was a decreasing function of x

when it changes sign. Second, this sign also depends on the relative cyclic ordering between

(kx ,ky ,m) and (i∂x ,ky , x). The latest follows, up to a cyclic permutation, the sequence : spectral

flow parameter (ky ) → position operator → derivative operator, meaning that each of these

elements multiplies alternatively the Pauli matrices σx , σy and σz in this cyclic order. For

the opposite sequence spectral flow parameter → derivative operator → position operator,

the topological spectral flow reads C± = −N±. This is what happens when considering for

instance an anisotropic mass in the y direction, where the Hamiltonian now reads

HDirac(kx , i∂y , y) =
(

y kx +∂y

kx −∂y −y

)
→︸︷︷︸

rotation

H̃Dirac(i∂y , y,kx ) =
(

kx i
p

2a†

i
p

2a −kx

)
(5.11)

and whose full energy spectrum, displayed in figure 5.2, shows a rightward chiral mode

connecting the two energy branches.

5.2 A generalized ”spin-oscillator” model

Highlighting the different key ingredients to generate a topological spectral flow in the anisotropic

Dirac Hamiltonian allows us to propose a richer model whose both Chern numbers and spec-

tral flows can still be completely solved analytically. In particular, this generalization includes

the shallow water model introduced in part I. Indeed, the simplicity of the anisotropic Dirac

Hamiltonian lies mainly on its decomposition in terms of (tensorial) products of Pauli matrices

with (bosonic) ladder operators â and â†, and of a spectral flow parameter (λ= kx or ky ) that

multiplies the diagonal (σz ) Pauli matrix. This structure can be generalized to arbitrary spins

as

operator Hamiltonian : Ĥ =τ1xŜx +τ2i∂x Ŝy +λŜz (5.12a)

”parameter” Hamiltonian : HCl =λ1Ŝx +λ2Ŝy +λŜz (5.12b)

where λ ∈ R and where the spin operators Ŝi satisfy the usual Lie algebra [Ŝα, Ŝβ] = iεαβγŜγ.

Note that for S = 1/2, one recovers the Dirac Hamiltonian (5.3) discussed in section 5.1 when

τ1 = τ2 = 1, as Ĥ = SHDirac.

The parameter Hamiltonian (5.12b) defines a Hamiltonian map from R3 to S2 of degree 1.

Its eigenvalue spectrum owns a 2S +1-fold degeneracy point at (λ = 0). According to the

formula (4.77), the parametrized families of eigenstates m are thus characterized by the Chern

numbers Cm =−2m. One thus expects this topological property to appear as a spectral flow
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in the spectrum of the operator (5.12a).

The spectrum of the operator Ĥ can be computed analytically by means of the generalized

ladder operators

âα = 1p
2α

(x +α∂x ) â†
α = 1p

2α
(x −α∂x ) (5.13)

that satisfy the relations

âα |n〉α =p
n |n −1〉α â†

α |n〉α =p
n +1 |n +1〉α (5.14)

[âα, â†
α] = 1 â†

αâα |n〉α = n |n〉α (5.15)

so that the operator Hamiltonian reads

Ĥ = τ
(
âα Ŝ++ â†

α Ŝ−
)
+λŜz (5.16)

with α= τ2

τ1
τ=

√
τ1τ2

2
(5.17)

and where Ŝ± = Ŝx ± iŜy are the spin ladder operators acting on states with (intrinsic or orbital)

momentum S and quantized projection m in the z direction as

Ŝ± |m〉 =
√

S(S +1)−m(m ±1) |m ±1〉 . (5.18)

We shall compute the spectrum E(λ) for arbitrary integer or half-integer S. For that purpose,

we use the following anzatz for the eigenstates

Anzatz 0: |Ψ〉 =∑S
m=−S ψm |n +S −m,m〉 (5.19)

with |n +S −m,m〉 ≡ |n +S −m〉⊗ |m〉 where |n +S −m〉 lives in Fock space and |m〉 lives in

(spin or orbital) momentum space. For a given value of n, this decomposition runs over 2S +1

base states. This anzatz reduces to the one of the Dirac Hamiltonian (5.4) when S = 1/2. Then,

applying the anzatz (5.19) to the operator (5.16), projecting on states 〈n +S −p, p| and using

the algebraic relations (5.15) and (5.18), one gets the eigenvalues equation

−Sλ β−S

β−S

. . .
. . .

. . .

βm−1 mλ βm

. . .
. . .

. . .

βS−1

βS−1 Sλ


︸ ︷︷ ︸

H (2S+1)
n



ψ−S

ψ−S−1
...

ψm
...

ψS−1

ψS


= En



ψ−S

ψ−S−1
...

ψm
...

ψS−1

ψS


(5.20)
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where we have defined the shorthand

βm =
√

(S(S +1)−m(m +1)(n +S −m)) . (5.21)

Denoting by H (2S+1)
n the matrix in (5.20), the associated characteristic polynomial P (2S+1)

n =
det(H (2S+1)

n −En Id) is of order 2S +1 in En with real coefficients. For each n ∈N, the secular

equation P (2S+1)
n = 0 yields 2S +1 real solutions, corresponding to 2S +1 energy branches En .

Examples for S = 1,3/2 and 2 are listed in figure 5.3. None of these solutions manifest a spectral
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Figure 5.3 – Eigenvalue spectrum of the Ĥ obtained with the anzatz 0 in (5.19) for S = 1, S = 3/2 and S = 2.

flow. Those that do develop a spectral flow can be constructed separately one by one. The

procedure is similar to that we followed for the Dirac Hamiltonian. These additional modes are

generated from a different anzats. Indeed, the Hilbert space has not been full explored with the

anzatz 0 (5.19) used above. In particular, note that the lowest allowed mode |0,#〉 is reached

when n = 0 and m = S, that is for αS |0,S〉. Therefore, this decomposition does not allow the

other basis states |n +S −m,m〉 to reach the fundamental mode |0,#〉, unless n is negative.

One can thus construct the missing solutions by removing |0,S〉 in the decomposition and by

replacing n =−1 in the other remaining basis states |n +S −m,m〉, that leads to

Anzatz -1: |Ψ−1〉 =∑S−1
m=−S α

(−1)
m |S −1−m,m〉 . (5.22)

The index −1 indicates that the decomposition now runs over 2S base states instead of 2S +1.

This anzatz gives a new eigenvalues problem whose matrix form H 2S
−1 is obtained from H (2S+1)

n

by removing the last ligne and the last column in (5.20) and by substituting n = −1. The

associated characteristic polynomial P (2S)
−1 = det(H (2S)

−1 −E Id) is of order 2S in E and yields 2S

energy branches that connect the energy branches obtained previously with anzatz 0.

If S > 1/2, there are still base states that have not been considered. One thus has to apply 2S

times the procedure by setting n =−p and then retrieve p base states, which gives

Anzatz -p: |Ψ−p〉 =∑S−p
m=−S α

(−p)
m |S −p −m,m〉 . (5.23)

until the Hilbert space has been fully considered. Each of these Anzatz yields a characteristic
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Chapter 5. Spectral Flow and degeneracy points

polynomial P 2S+1−p
−p of degree 2S+1−p in E and thus as many energy branches that participate

to the spectral flow. The procedure ends up with the solution

Anzatz -2S: |Ψ−2S〉 = |0,−S〉 (5.24)

whose egenenergy consists in the single non-dispersive branch E =−Sλ.
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Figure 5.4 – Eigenvalue spectrum of the Ĥ for S = 1, S = 3/2 and S = 2. The black branches are obtained with
the anzatz 0 and the colored spectral flows are obtained by applying the successive anzatz −p (5.23) : (red) p = 2S,
(blue) p = 2S −1, (green) p = 2S −2 and (yellow) p = 2S −3.

The complete spectra are shown in figure 5.4. The spectral flows satisfy the relation Nm =
Cm =−2m where Nm is the number of modes that are gained by the band m when sweepingλ.

It is instructive to see that some flowing modes do not cross the gap, and are thus completely

superposed to ”bulk” modes. These modes are not chiral neither, since their group velocity

changes sign when bridging two bands.

Finally, it is worth noticing that the eigenvalue spectrum obtained in the spin 1 case coincides

with that of the shallow water model, and more generally with many low frequency effective

descriptions of wave spectra, like for instance for the transverse magnetic (TM) modes of a two-

dimensional gyro-electric media, as discussed in chapter 2 in part I. The mapping between

Ĥ for S = 1 and ĤSW that is the Hermitian matrix representing the linearized shallow water

model in the Matsuno problem (see equation 2.7 with a linear dependence of f in y) can be

made explicitly by using the following unitary transformation

ĤSW =U †
swĤ Usw with Usw = 1p

2

 1 0 1

0
p

2 0

−1 0 1

 (5.25)

and the substitutions λ→ kx , x → i∂y and i∂x → y that reverse the spectral, as discussed in

the previous section, and in agreement with the spectrum found by Matsuno. Also, the Kelvin
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wave is obtained as

U †
sw |Ψ−2〉 =U †

sw

|0〉0

0

= 1p
2

|0〉0

|0〉

 (5.26)

which indeed describes a shallow water wave of fluid’s thickness and of azimuthal velocity

that are symmetric with respect to the equator, while the longitudinal velocity vanishes, as

expected. The Yanai wave, that constitutes the second contribution to the spectral flow, is

obtained similarly from |Ψ−1〉.
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6 Winding numbers in unitary dynam-
ics : from Floquet systems to scatter-
ing networks

J’fais des trous, des p’tits trous, encore des p’tits trous.

Des p’tits trous, des p’tits trous, toujours des p’tits trous.

Des trous de seconde classe.

Des trous d’première classe.

Serge Gainsbourg,

Le Poinçonneur Des Lilas

6.1 Winding numbers in the unitary dynamics

A Floquet system is referred to a physical system described by a time periodic Hamiltonian

H(t +T ) = H(t). It drives a time evolution encoded into the unitary operator U (t , t0) that

satisfies

i∂tU (t , t0) = H(t )U (t , t0) (6.1)

where t0 is an arbitrary initial time. This evolution operator is represented by a N ×N unitary

matrix U (λ), where the parameter(s) λ could denote time t or other parameters such as the

quasi-momentum k. These unitary matrices belong to the unitary group U(N ) that is not

simply-connected, i.e. π1 (U(N )) =Z. This quick inspection already tells us that topological

properties are expected to emerge in periodic dynamical systems, that is when the base space

λ ∈ A ' S1.

6.1.1 Winding of the Floquet operator

In periodically-driven systems, it is instructive to consider the Floquet operator UF ≡U (T,0).

In one-dimensional crystals, the Bloch-Floquet operator UF (k) depends on the quasi-momentum

k that lives in the one-dimensional Brillouin zone BZ1D. This provides us maps λ= k ∈ BZ1D '
S1 UF→ U(N ) where N is the number of degrees of freedom (basically the number of orbitals
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in the unit cell for a spinless model) that fixes the number of bands. Homotopy properties

of these maps are classified according to the group π1(U(N )) = Z, whose elements are the

invariants

W [UF ] = 1

2πi

∫
S1

tr

(
U−1

F
∂UF

∂k

)
dk (6.2)

where the trace runs over Floquet states |Ψn〉(k) that are eigenstates of UF (k) with eigen-

energies e−iεn T , where εn is called the quasi-energy. This winding number can thus be ex-

pressed as the sum of the windings of the (dimensionless) quasi-energies εn = εnT

W [UF ] =−
N∑

n=1

1

2π

∫
S1

∂εn(k)

∂k
dk . (6.3)

Adding a hypothesis of adiabaticity, i.e. that an instantaneous state |ψn(t ,k)〉 remains an

eigenstate during the time evolution, up to a phase, then the reduced winding number

W̃ [UF ] =−
Nocc∑
n=1

1

2π

∫
S1

∂εn(k)

∂k
dk (6.4)

is directly related to the Chern numbers Cn of the fiber bundles built from the parametrized

eigenstates |ψn(t ,k)〉 over the torus (t ,k) ∈ S1 ×S1 = T 2 = as

W̃ [UF ] =
Nocc∑
n=1

Cn ≡ C (6.5)

This Chern number C is itself directly related to the averaged current

J ≡
∫ T

0

dt

T
< j (t ) >= e

Nocc∑
n=1

∫ T

0

dt

T

∫
BZ1D

dk

2π
〈ψn | ∂x(t )

∂t
|ψn〉 (6.6)

as

J = e

T
C . (6.7)

This is the quantized current predicted by Thouless in 1993 [100], revisited by Kitagawa,

Berg, Rudner and Demler in 2010 as the winding of the quasi-energies [58], and observed

in cold atoms in 2015 [69, 77], that describes a charge pumping through an insulator that is

adiabatically periodically driven in time.

6.1.2 Winding of the time-evolution operator and anomalous chiral states

Consider now the time-evolution operator U (t) of a Floquet system. They define maps λ=
t ∈ S1 → U(N ) whose homotopy group π1(U(N )) ∈Z is non-trivial, suggesting that topological

properties may arise from the dynamics. Of course, to define a ”loop” in U(N ), one needs

a map that is periodic. This is in general not the case for time-evolution operators. Indeed,
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after a time T , the system has evolved through U (t = T ) which is generically different from

U (t = 0) = 1.

The trick to get a ”periodized” evolution operator consists in ”extracting” the periodic part of

the evolution operator. This is possible thanks to Floquet theorem: since U (t ) is solution of

the Shrödinger-like equation with periodic coefficient (Hamiltonian) H (t +T ) = H (t ) it admits

the decomposition

Floquet theorem: V (t ) =U (t )eiHefft

e−iHeffT ≡U (T )
(6.8)

that automatically satisfies V (t ) =V (t +T ).

As illustrated in figure 6.1 (a), the unitary operator V (t) somehow compares two paths in

the unitaries, that start from 1 and end at U (T ) : Path 1 is drawn by the evolution operator

U (t) given by a time-ordering exponential of the time dependent Hamiltonian H(t); Path 2

is given by a ”stroboscopic evolution” e−iHefft that is driven by a time-independent effective

Hamiltonian Heff. The first one describes the actual dynamics of the system, and thus encodes

the full ”movie” of the evolution, while the second one is just a shortcut that a priori only

reproduces faithfully a snapshot of the final scene. Following these two paths one after

the other, one ends up with a loop in the unitaries that is described by V (t). Is this loop

contractible? I.e. can path 1 be continuously deformed into path 2? Or say it more formally,

are the unitary operators U (t ) and e−iHefft homotop?

U(t)

eiHηefft

Vη(t)

π 0
η

eiεT

Id Unitaries

x

ψ(T )
ψ(0)

S1 T2

Vπ

V0
A =

= B

(a)

(b)

Figure 6.1 – Sketches of the construction of the periodized evolution operator Vη(t) and of its homotopy
properties that depend on the spectral gap η of the Floquet operator.

91



Chapter 6. Winding numbers in unitary dynamics : from Floquet systems to scattering
networks

The answer to this question is given by the winding number of this operator, defined as the

winding of its determinant

W [U ] = 1

2πi

∫ T

0
dt

∂

∂t
logdetV (6.9)

= 1

2πi

∫ T

0
tr

(
V −1 ∂V

∂t

)
dt (6.10)

= 1

2πi

∫
S1

tr
(
V −1dV

)
(6.11)

that generalizes the definition (4.7) of the winding number to N ×N unitary matrices. The

last line, written as the integral of a 1-form on the group U(N ), gives some insight about its

generalization for larger parameter spaces.

Indeed, it may happen that the evolution operator also depends periodically of other param-

eters. Of particular importance is the Bloch evolution operator U(k, t ) that also depends on

the quasi-momenta k. Thus the relevant ”winding numbers” must actually classify maps

(k, t ) ∈ S1 ×S1 ×·· ·×S1 V→ U(N ), with homotopy groups πn(U(N )). Are these groups trivial for

n > 1 ? Bott periodicity theorem answers that question by stating that

πn(U(N )) =
{

{0} n even

Z n odd .
(6.12)

So when n is odd, one can expect a topological property of the evolution operator. The

expression of the associated topological invariants generalizes that of the winding number

(6.11) obtained for n = 1. The case n = 3 is particularly physically relevant since it includes the

situation where the parameter space is made of the product of a two-dimensional Brillouin

zone BZ2D and a time-periodicity,1 namely periodically driven 2D lattices, a situation that is

encountered in many areas of physics such as condensed matter, cold atoms and photonics,

among others. This is the particular case we shall focus on.

The invariants that describe such periodic dynamics can be expressed with the periodized

evolution operator V (t ) as [13]

W [U ] = 1

24π2

∫
BZ2D

∫
S1

tr
(
V −1dV

)3 ∈Z (6.13)

where the power 3 means the application of the ∧ product three times as

V −1dV ∧V −1dV ∧V −1dV (6.14)

between the 1-forms

dV = ∂V

∂λ1
dλ1 + ∂V

∂λ2
dλ2 + ∂V

∂λ3
dλ3 (6.15)

1Here we admit that taking S3 or T 3 as the parameter space does not change the homotopy invariant.

92



6.1. Winding numbers in the unitary dynamics

with {λi } = {kx ,ky , t } and where we recall the rule dλ1 ∧dλ2 =−dλ2 ∧dλ1.

6.1.3 Gap invariants v.s. band invariants

A situation particularly interesting is the one where the spectrum of the Floquet operator

UF =U (T ) is gapped. In that case, the system stroboscopically mimics an insulator, called

Floquet insulator. Its quasi-energy spectrum can equivalently be seen as the one of the gapped

effective Hamiltonian Heff(k), following the spectral decomposition

UF =∑
n

e−iεn (k)Pn(k) (6.16)

Heff(k) =∑
n
εn(k)Pn(k) (6.17)

with the spectral projectors Pn(k) = |Ψn(k)〉〈Ψn(k)|. Since the quasi-energy bands εn(k) are

assumed to be well separated here, each projector Pn(k) defines the usual U(1)-fiber-bundle

over the two-dimensional Brillouin zone BZ2D characterized by the first Chern number Cn .

Notice that (6.17) was obtained by applying ”i ln” to (6.16). This is only sketchy since the

logarithm must be specified with a branch cut. To avoid any unwanted discontinuity in the

eigenstates, a reasonable choice is to fix the branch cut at a quasi-energy η that lies in one of

the spectral gaps. Doing so defines different effective Hamiltonians

Hη

eff(k) = i
∑
n

ln−η
(
e−iεn (k)

)
Pn(k) (6.18)

whose some of eigenvalues may be shifted by 2π according to the choice of the branch cut. It

follows that these Hamiltonian differ from each others by a projector on the bands that are

contained in between their branch cuts. To make it clearer, two effective Hamiltonians with

different branch cuts read

Hη=0
eff =

N∑
n=1

εnPn (6.19)

Hη

eff =
N∑

n=2
εnPn + (ε1 +2π)P1 (6.20)

where we used ln0 eiϕ = iϕ for 0 <ϕ< 2π, and therefore Hη

eff −H 0
eff2πP1. More generally if a set

of m quasi-energy bands is confined between two gaps η and η′, such that η< ε j · · ·ε j+m <
η′ < 2π then

Hη

eff(k)−Hη′

eff(k) = 2πPη,η′(k) . (6.21)

where Pη,η′(k) is the projector on the m statesΨ j (k). As a consequence their corresponding

93



Chapter 6. Winding numbers in unitary dynamics : from Floquet systems to scattering
networks

periodized evolution operators differ as

V −1
η (k, t )Vη′(k, t ) = e2iπtPη,η′ (k) (6.22)

which yields the key relation between the different invariants

Wη′ [U ]−Wη[U ] = Cη,η′ (6.23)

as found by Rudner, Lindner, Berg and Levin in 2013 [91]. This equation relates the gap homo-

topy invariants Wη[U ] of the full dynamics to the band (fiber-bundle) topological invariants Cn

of the Floquet operator U (t = T ). One immediately sees that the former has more information

than the latter, as expected since the information content of the entire evolution over a period

is greater than that of the last snapshot. This means that there are topological properties

in the dynamics that are not captured by the effective Hamiltonian, and more generally not

captured by any static Hamiltonian. In particular, when all the W invariants are equal, the

first Chern numbers of all the bands vanish. This is referred to as an anomalous topological

Floquet regime. Actually, it was shown that the number nη of chiral edge states in a spectral

gap η of the Floquet operator is [91]

nη =Wη[U ] . (6.24)

In the anomalous Floquet regime, the edge states are thus said to be chiral anomalous. For-

mulas (6.23) and (6.24) describe the bulk-edge correspondence in Floquet systems [91].

6.1.4 Phase rotation symmetry

The anomalous Floquet regime shows topological properties with no counterpart in static

systems, such as the chiral anomalous edge states. It would be thus interesting to find a way to

engineer them on purpose. What are the ingredients? First, one needs the Chern numbers

to vanish. This is not a sufficient condition, but it is necessary. Then one needs a way to

distinguish – say by homotopy – two dynamics. If two dynamical systems cannot be smoothly

deformed one into the other, and if their Chern numbers are zero, thus anomalous edge states

are expected to arise at their interface.

The vanishing of the Chern numbers can be seen as resulting from some constrain. Since

one wants the possibility to have chiral edge states at the same time, which is not possible

in static systems, this constrain must operate at the level of the evolution operator rather

than that of the Hamiltonian. A specificity of Floquet systems (and more generally unitary

systems) is that their spectrum, as a phase spectrum, is periodic. This periodicity allows the

existence of a possible phase-rotation symmetry that shifts all the eigenvalues on the unit

circle in the complex plane as e−iε1 → e−iε2 →···→ e−iεN → e−iε1 as well as their corresponding

eigenstates. A Floquet operator ŨF ∈ U(N ) (and more generally any unitary operator) is said

to be phase rotation symmetric when it exists a unitary operator Z , called phase rotation
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symmetry operator, such that [22]

ZŨFZ
−1 = ei2π/N ŨF . (6.25)

Note that it leaves the evolution operator over N periods invariant since

ZŨ N
F Z−1 = Ũ N

F . (6.26)

This symmetry is extremely demanding : it is satisfied only when all the eigenvalues e−iε are

equally spaced by an angle 2π/N on the unit circle, which is in general not the case for an

arbitrary gapped operator UF , hence the ∼ notation in (6.25).

Assume this symmetry is satisfied, then an eigenstate of ŨF is transformed as |ψn〉→Z |ψn〉 =
|ψn+1[N ]〉 which is also an eigenstate of ŨF , so that the projectors Pn(k) = |ψn(k)〉〈ψn(k)| are

related through the symmetry as

Pn(k) =Zn−1P1(k)Z−(n−1) (6.27)

Let us recall that the Chern number Cn can be expressed from the family of projectors k →
Pn(k) on the band n as

Cn ≡ Ch(Pn) = 1

2iπ

∫
trPndPn ∧dPn (6.28)

which is invariant under a (k independent) unitary transformation. In particular

Ch(Pn) = Ch(ZPnZ
−1) (6.29)

implying that the Chern numbers of each bands are equal for a phase rotation symmetric

evolution

C1 = Ch(P1) = Ch(ZnP1Z
−n) = Ch(P1+n) = C1+n . (6.30)

Since, in addition, the sum of the Chern numbers over each band vanishes

N∑
n=1

Cn = 0 (6.31)

it follows that the Chern number of each band vanishes. To summerize, the phase rotation

symmetry is a constrain that is specific to unitary systems and that imposes the vanishing of

the Chern numbers. This result may however seem to be useless since (6.25) is a very strong

condition to be fulfilled. The phase rotation symmetry is a fragile property that is only critically

satisfied for very specific evolution operators. In contrast, as a topological invariant, the Chern

numbers cannot change value unless one of the gaps closes. One is thus free to continuously

deform the bands, e.g. flatten them and organize them such that they are equally spaced on
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the unit circle, without changing the topological properties. In other words, it may exists a

homotopy that continuously connects UF (k) to ŨF (k) without closing the gaps. In that case,

the Chern numbers of UF all vanish.

In the next section, we will present a class of models for which these conditions are met.

6.2 Discrete-time dynamics as scattering networks

6.2.1 Graph representation of a periodically driven model

Discrete-time dependent tight-binding models were proposed on the honeycomb lattice [58]

and the square lattice [91] to realize Floquet "topological insulators". In these models, the

hopping energy terms J that couple nearest neighbors are successively switched on and off

around each plaquette in a clockwise or counter-clockwise way, therefore breaking time-

reversal symmetry during a period of drive. Each time period T is decomposed in a finite

time-ordered sequence of constant-in-time tight-binding Hamiltonians that describe arrays

of uncoupled dimers whose sites are coupled by Ji during a time τi , as depicted in figure 6.2

(a) for the square lattice.

The bulk (Bloch) Hamiltonian for this tight-binding model reads

H(t ,k) =


J1h1(k) 0 < t < τ1

J2h2(k) τ1 < t < τ2

J3h3(k) τ2 < t < τ3

J4h4(k) τ3 < t < T

(6.32)

where k is the quasi-momentum and h j is an hermitian matrix that reads

h1(k) =
(

0 eik+

e−ik+ 0

)
, h2(k) =

(
0 eik−

e−ik− 0

)

h3(k) =
(

0 e−ik+

eik+ 0

)
, h4(k) =

(
0 e−ik−

eik− 0

) (6.33)

with k± = k. e1±e2
2 where e1 and e2 are the vector basis of the Bravais lattice.

Setting the dimensionless phase coupling parameters θ j ≡ ħJ jτ j , an evolution operator

U j (k) = e−iθ j h j (k) can be assigned to each time step, and can be factorized as

U1(k) = B(k+)S(θ1)B(k+) U2(k) = B(k−)S(θ2)B(k−)

U3(k) = B(−k+)S(θ3)B(−k+) U4(k) = B(−k−)S(θ4)B(−k−)
(6.34)
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where

B(k) =
(

0 ei k
2

e−i k
2 0

)
, S j =

(
cosθ j −isinθ j

−isinθ j cosθ j

)
. (6.35)

Thus, each part of the evolution can be split into elementary steps that encode either a

displacement through B(k) or a coupling through the scattering matrix S j .

J1
τ1

J3
τ3

J3
τ3

J3
τ3

J1
τ1

J1
τ1

J3
τ3

J1
τ1

J1
τ1

J4 τ4 J2 τ2 J4 τ4 J2 τ2

J2 τ2 J4 τ4 J2 τ2 J4 τ4
e2

e1

S1 S3S3

S2

S2 S4

S4

S3

S3

S1

S1 S1

S1

S4

S2S4

S2

S4 S2 S4 S2

S2 S4 S2 S4

S3

S1

S3

S3

S1

S3

a1 a2 a3a4

b4b3 b2 b1

Figure 6.2 – (left) Discrete-time dependent tight-binding model for the square lattice and (right) its scattering
network representation (L-lattice). The successive time steps of duration τi with couplings of amplitude Ji
are represented in the same color than the scattering matrices they generate. A unit cell of the two lattices is
represented by a grey rectangle, and a basis of the Bravais lattice is given by~e1 and~e2. Note that while the tight-
binding model has two inequivalent sites per unit cell, the L-lattice has eight inequivalent oriented links (and four
scattering matrices).

The (Floquet) evolution operator after a time period from t = 0 to t = T , reads

UF (k) =U4(k)U3(k)U2(k)U1(k) . (6.36)

Substituting the U j ’s by their decomposition (6.34) yields

UF (k) = B(−k−)S4.Te1 S3T−e2 S2T−e1 S1B(k+) (6.37)

where Te j is a "sublattice dependent" translation operator in the directions ±e j /2 that reads

Te j ≡
ei

k.e j
2 0

0 e−i
k.e j

2

 . (6.38)

The definition of the Floquet evolution operator is not unique, as it depends on the choice of

origin of time. One can thus choose a different origin by a cyclic permutation of the unitary

steps in (6.36). Starting the evolution by the translation operation Te2 , one thus equivalently

describes the periodic dynamics by the Floquet operator

ŪF (k) = S4Te1 S3T−e2 S2T−e1 S1Te2 . (6.39)
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The expression (6.39) has a straightforward interpretation in real space : it shows that the

evolution can be seen as a staggered succession of local scattering processes S j followed by

a free propagation in the directions ±e1 or ±e2. Representing the scattering processes by

circles, and the free propagations by straight arrows in directions ±e j , one gets a version of

the celebrated scattering matrix network called L-lattice that was introduced by Chalker and

Coddington in the context of the quantum percolation transition between plateaus of the

quantized Hall effect (see figure 6.2 (b)) [17, 45]. The corresponding Floquet tight-binding

model is superimposed to this network in figure 6.2 (b) to emphasize the connection between

the two models. The construction of the oriented scattering network from the discrete-time

dependent tight-binding model becomes intuitive: the pairs of sites that are coupled during

a time-step in the tight-binding model are replaced by scattering matrices. These matrices

are then connected by oriented links whose orientation satisfies the time-ordering of the

dynamics. The oriented scattering lattice then obtained thus represents a periodic (Floquet)

dynamics. This periodicity is visible directly on the network since any path along the oriented

links encounters an ordered periodic sequence of scattering events. For this reason, such

networks can be qualified as cyclic. Note that a unit cell of this oriented lattice contains 4

scattering nodes and 8 oriented links, while the original tight-binding model only contains 2

inequivalent sublattices.

Finally, alternatively to the Floquet evolution operator and following Chalker, Coddington and

Ho, [17, 45], one can write down a "one-step" evolution operator on the network as

U (k) ≡


0 0 0 S4.Te1

S1.Te2 0 0 0

0 S2.T−e1 0 0

0 0 S3.T−e2 0

 . (6.40)

in the basis of the 8 oriented links (a1,b1, . . . , a4,b4) where the pair (a j ,b j ) enters the scattering

matrix S j . The form of the one-step evolution operator U is reminiscent of the cyclic structure

of the oriented network. The different Floquet evolution operators (i.e. defined with different

origins of time) are then simply inferred by taking U 4(k). A correspondence between the

Floquet (or discrete-time quantum walk) point of view given by (6.39) and the network point

of view given by (6.40), in particular for the characterization of their topological properties

through the winding number Wη[U ] is detailed in [22].

This writing of the evolution operator is natural for networks, and turns out to be useful to

reveal a phase rotation symmetry of this system.

6.2.2 Phase rotation symmetry of a cyclic graph

The L-lattice is an example of a cyclic oriented lattice. By definition, a cyclic oriented lattice is

a periodic (i.e. Bravais lattice) oriented network in which the oriented links that constitute

the unit cell can be followed in a cyclic sequence to form a closed loop. Since the nodes

98



6.2. Discrete-time dynamics as scattering networks

of the network represent scattering processes, one can choose the scattering parameters

θ j such that states (or wave packets transmitted along a link) are trapped along the loops

without being partially transferred to the next unit cell. In such a loops configuration the

lattice simply consists in an array of disconnected and identical loops, as illustrated in figure

6.3. Physically, it is clear that the system is in an insulating state, which guarantees that the

phase (or quasi-energy) bands are well separated by gaps, so that their Chern numbers are

well defined. Importantly, one can show that a loops configuration precisely corresponds to a

phase rotation symmetric point!

a1 a2 a3 a4

b4 b3 b2 b1

Figure 6.3 – Two domains of close loops with clockwise (red) and anti-clockwise (blue) circulation. These two
domains satisfy a phase rotation symmetry. As a consequence, their evolution operator have vanishing Chern
numbers. At the interface a chiral mode (green) of the Floquet anomalous regime appears.

Indeed, for such a configuration, the bulk evolution operator can always factorize as

U (k) = B(k)Π (6.41)

where B(k) is a diagonal unitary matrix encoding the phases (including the Bloch phases)

accumulated from one link to another, and whereΠ is a unitary matrix that owns one and only

one coefficient 1 on each of its raws and each of its columns. The matrices Π represent the

elements of the permutation group (or symmetric group SN ∈ SU (N )), which indeed captures

the loop structure. One can always re-order the successive links of the loops by a change of

basisΠ0 = MΠM−1 so that

Π0 =



0 · · · · · · 0 1

1 0 · · · 0

1
...

. . . 0

0 · · · 0 1 0


. (6.42)
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We notice that the eigenvalues of Π0 are the N roots of unity {τ,τ2, · · · ,τN } with τ = ei2π/N .

From there, one defines the diagonal matrix Z0 that lists these eigenvalues as

Z0 = diag
(
τ,τ2, · · · ,τN )

. (6.43)

It follows directly that

Z0Π0 =



0 · · · · · · 0 τ

τ2 0 · · · 0
... τ3 ...

. . . 0

0 · · · 0 τN 0


(Π0Z0)−1 =



0 τ−1 · · · 0
... 0 τ−2 · · · 0

. . .
. . .

0 τ1−N

τ−N 0 · · · 0 0


(6.44)

and thus

ZΠ (ΠZ)−1 = τ Id (6.45)

after the change of basis Z≡ M−1Z0M . The matrices B(k) and Z being diagonal, they com-

mute, so that one infers from (6.45) that the evolution operator of the network in a loops

configuration satisfies

ZU (k)Z−1 = ei2π/N U (k) . (6.46)

This is precisely the phase rotation symmetry defined in equation (6.25). As a consequence, the

N bands of U (k) carry a vanishing first Chern number, as long as the bands do not cross when

varying the parameters θ j ’s away from the critical value for which the loops configuration is

obtained.

The reasoning above not only relates the loops configuration to the phase rotation symmetry,

but also shows how to obtain the expression of the phase-rotation symmetry operator. For

concreteness, consider the two domains of disconnected loops represented in 6.3 in the L-

lattice. They are defined by blue clockwise cycles c1 : a1 → a2 → a3 → b4 → b1 → b2 → b3 → a4

and red counter-clockwise cycles c2 : a1 → a2 → a3 → a4 → b1 → b2 → b3 → b4 respectively.

The factorization (6.41) of the bulk evolution operator (6.40) in each domain defines the
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permutation matrices

Πc1 =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0


Πc2 =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


. (6.47)

The matrix M can then be obtained as M = B A−1 where A and B satisfy Π = AZ0 A−1 and

Π0 = BZ0B−1. These matrices are easily found explicitely

B =



τ8 τ8 τ8 τ8 τ8 τ8 τ8 τ8

τ7 τ6 τ5 τ4 τ3 τ2 τ τ8

τ6 τ4 τ2 τ8 τ6 τ4 τ2 τ8

τ5 τ2 τ7 τ4 τ τ6 τ3 τ8

τ4 τ8 τ4 τ8 τ4 τ8 τ4 τ8

τ3 τ6 τ τ4 τ7 τ2 τ5 τ8

τ2 τ4 τ6 τ8 τ2 τ4 τ6 τ8

τ τ2 τ3 τ4 τ5 τ6 τ7 τ8



Ac1 =



τ8 τ8 τ8 τ8 τ8 τ8 τ8 τ8

τ4 τ8 τ4 τ8 τ4 τ8 τ4 τ8

τ7 τ6 τ5 τ4 τ3 τ2 τ τ8

τ3 τ6 τ τ4 τ7 τ2 τ5 τ8

τ6 τ4 τ2 τ8 τ6 τ4 τ2 τ8

τ2 τ4 τ6 τ8 τ2 τ4 τ6 τ8

τ τ2 τ3 τ4 τ5 τ6 τ7 τ8

τ5 τ2 τ7 τ4 τ τ6 τ3 τ8


Ac2 =



τ8 τ8 τ8 τ8 τ8 τ8 τ8 τ8

τ4 τ8 τ4 τ8 τ4 τ8 τ4 τ8

τ7 τ6 τ5 τ4 τ3 τ2 τ τ8

τ3 τ6 τ τ4 τ7 τ2 τ5 τ8

τ6 τ4 τ2 τ8 τ6 τ4 τ2 τ8

τ2 τ4 τ6 τ8 τ2 τ4 τ6 τ8

τ5 τ2 τ7 τ4 λ τ6 τ3 τ8

τ τ2 τ3 τ4 τ5 τ6 τ7 τ8


(6.48)

leading to the phase rotation symmetry operators

Zc1 = diag(τ,τ5,τ2,τ6,τ3,τ7,τ8,τ4) Zc2 = diag(τ,τ5,τ2,τ6,τ3,τ7,τ4,τ8) (6.49)

for the two disjoint domains. Therefore, they both carry vanishing Chern numbers, and this

remains true away from the special phase rotation symmetry point when the two domains

do not simply consist in disconnected loops. On this example, the two domains differ by the

orientation of their loops, so that, at the interface, it necessarily exists an oriented path that

belongs to neither domain. This is an anomalous chiral interface state. This analysis is in

agreement with a direct calculation of the gap invariants Wc1 and Wc2 whose difference is 1,
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thus signaling the existence of an interface state.

The example above reveals that the existence of interface anomalous chiral states essentially

lies on the existence of the possible existence of domains of loops of opposite circulations

in the associated graph. This property is not specific to this model, and can actually be

generalized to arbitrary random oriented scattering networks as we shall see.

6.2.3 Topological chiral states in random scattering networks

It is unlikely that any oriented network can be mapped onto a periodically driven tight-

binding model, such as the L-lattice. A random network is in general not cyclic, and thus

does not reproduce the intrinsic periodic driving of a Floquet system. However, it turns out

that a chiral mode always exists at the interface between two domains of arbitrary oriented

scattering networks that can be continuously deformed (by changing the coupling parameters

without closing the gap) into domains of loops of opposite circulations, and that these two

opposite domains can always exist in any planar scattering network. This provides a natural

generalization of anomalous chiral states beyond Floquet systems.

Instead of extending the definition of the bulk invariants of the evolution operators (namely

the first Chern numbers and the W invariants) to random networks, we shall prove this

statement by means of elementary graph theory [110]. An oriented scattering network is

represented by an oriented graph, that is a set of nodes (or vertices) connected by oriented

links (or edges). The only physical constrain one imposes is that the nodes represent unitary

scattering processes. Therefore, for a given node, the number of incoming and outgoing

oriented links must be the same. This yields very peculiar graphs, called Eulerian graphs, that

have been defined in section 4.1.3.

Eulerian graphs have many nice properties. One of them is known as the two-colors theorem;

this theorem states that the faces of the graph can always be colored with two distinct colors so

that two adjacent faces are always colored differently.2 In a less artistic fashion, an orientation

of the links surrounding each face of the graph can be assigned bijectively with its color.

A second key theorem is due to Veblen [105]. Veblen theorem states that it is always possible to

decompose an Eulerian graph as a union of disjoint simple cycles.3 This is the generalization of

the domains of loops depicted in figure 6.3 where the loops are not identical anymore and may

differ from each other in size and shape. When the network is a periodic lattice, the Veblen

decomposition corresponds to a phase rotation symmetry point as discussed in the previous

section. Because of the two-colors theorem, there are two distinct Veblen decompositions,

according to the orientation of the loops.

2Or in other words, the dual graph of an Eulerian graphs (whose vertices coincide with the centers of the faces
of the original graph) is bipartite.

3This decomposition is not unique. Here we implicitly consider the ”minimal” decompositions i.e. where the
cycles simply coincide with the faces of the graph.
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Let us now consider an arbitrary scattering network i.e. Eulerian graph, as the one depicted in

figure 6.4 (a). Its faces can be colored according to the two-colors theorem, consistently with

the orientation of every links. Consider now two domains, D1 and D2 such that D2 surrounds

D1. They are separated by the graph I that constitutes the interface between D1 and D2. In

general, I has a finite width; it is not necessarily a single oriented path as in figure 6.3. Let us

consider two cases, shown in figure 6.4 (b) and (c), where D1 is fixed, but the interior boundary

of D2 is changed so that the two boundaries that delimit I have either the same circulations

(6.4 (b)) or opposite circulations (6.4 (c)), as emphasized by thick lines. As a consequence,

the domains D1 and D2 allow different Veblen decompositions in the first case, but the same

decomposition in the second case. This situation is a random version of the interface between

the two distinct loops configurations in the L-lattice in figure 6.3.

The statement is then the following : when the Veblen decompositions of the two domains

have opposite circulations, the flow entailed by the coherent discrete-time dynamics in the

interface graph is quantized while it is zero if the circulations are identical [19]. For instance it is

equals to +1 in the case shown in figure 6.4 (d), indicating the existence of a counter-clockwise

chiral mode. This flow can be defined formally and the statement above can be derived

mathematically. However it can also be justified in a more geometrical way by inspecting the

interface graph.

We already noticed that the relative orientations of the loops configurations in D1 and D2

is fixed by the relative circulation of their common boundaries with I , as indicated by thick

lines in figures 6.4 (b) and (c). This, in turn, fixes the parity of the width of I . This can be

seen from the colors of the faces of the interface graph that are adjacent to the inner and

outer frontier: they have the same color for I2 and different colors for I1. Again, this is simply

because the color of a face indicates the circulation of its links that surround it. Then, since by

construction the interface graphs are also Eulerian, it follows that the interface graphs I1 and

I2 have different winding numbers, as we defined in section 4.1.3. This is explicitly shown in

figure 6.5 (a) and (b).

Since the interface graphs are Eulerian, they can be span by visiting successively each link

(following their orientation). Examples of such Eulerian circuits are shown for I1 and I2 in

figures 6.5 (c) and (d). This existence of such circuit is not unique, but the winding number W

imposes that any of them must wind W times. A non zero winding number of the interface

graph also implies that the Veblen decomposition necessarily leaves a winding circuit, ass

shown for I1 in figure 6.5 (e). In contrast, the Veblen decomposition of I2 consists only in

disconnected loops that cannot allow any flow circulating around the graph. The quantization

of the flow mentioned above, that equals the winding number, indicates that the flow is

conserved in the interface graph whatever the value of the scattering parameters at its nodes,

and is is thus the same for these different decompositions or any disordered configuration

where these parameters would have been taken randomly.

To conclude this part, one should stress that it is remarkable that topological properties of a
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I1

D2

D1
I2

D2

D1

-

-

- -
-

-
-

-

Figure 6.4 – Random oriented scattering network. Consider two domains D1 and D2 and their finite size
interface I . The scattering parameters of the nodes of D1 can be continuously tuned to reach a clockwise Veblen
decomposition, while those of D2 are tuned to either a counterclockwise (left) or clockwise decomposition (right).
In the first case, the flow circulating around I is quantized and the winding number of I is 1. In the second case the
flow is zero, as well as the winding number of I .

dynamical system (Floquet or not) can be simply inferred geometrically from the properties of

the graphs, even in a disordered case.
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I1

W = 1

W = 1

I2

W = 0

W = 0

I1 I2

I1 I2

Figure 6.5 – Interface graphs I1 and I2 of the figure 6.4. (First line) Geometrical evaluation of their winding
number. (Second line) Decomposition of I1 into a close loop that winds once. Such decomposition is not possible
for I2. (Third line) I2 allows a Veblen decomposition in minimal cycles, while a close loop of winding equals to 1
necessarily survives the decomposition of I1
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