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Résumé

Cette thèse est consacrée à l’étude de différents graphes aléatoires, définis par des propriétés

locales (comme la distribution des degrés des sommets ou la probabilité que deux sommets

donnés soient reliés par une arête), et dont on cherche à déterminer des caractéristiques globales,

notamment leur géométrie et le comportement de marches aléatoires. Elle se compose de trois

parties indépendantes. À chaque fois, le graphe aléatoire étudié admet un arbre comme limite

locale, et une comparaison fine entre l’arbre et le graphe permet de transposer des propriétés

du premier au second.

• La première partie (Chapitre 2) porte sur la limite d’échelle d’un graphe aléatoire critique,

un modèle de configuration avec des degrés indépendants et distribués selon une même

loi de puissance à queue lourde : elle a une variance, mais pas de troisième moment. Il

était connu que les plus grandes composantes connexes de ce graphe ont une taille Θ(na)

pour un graphe à n sommets, le paramère a dépendant du modèle. On montre que leur

structure converge vers une version biaisée d’un arbre aléatoire continu particulier, l’arbre

stable, auquel on rajoute un nombre fini de cycles.

• La seconde partie (Chapitre 3) est consacrée au champ libre gaussien sur des graphes

aléatoires d-réguliers. On étudie la percolation du champ libre au-dessus d’un niveau fixé.

Si on baisse ce niveau en-dessous d’un certain seuil critique, on établit l’émergence avec

grande probabilité d’une unique composante connexe géante englobant une proportion

positive des sommets, entourée d’ilôts de taille logarithmique, tandis que seuls ces derniers

survivent au-dessus du seuil critique. On montre alors que ce grand continent admet

de remarquables similitudes avec la composante géante d’un graphe aléatoire célèbre, le

modèle d’Erdős-Rényi.

• La troisième partie (Chapitre 4) traite de marches aléatoires sur des relèvements aléatoires

(”random lifts”) d’un graphe fini quelconque donné. Ces relèvements sont des graphes peu

denses mais avec de bonnes propriétés de connectivité et une structure assez régulière,

l’arbre associé étant périodique. On prouve que la marche aléatoire sur ces graphes admet

un cutoff, c’est-à-dire qu’il y a une transition brusque entre le moment où le marcheur

est encore localisé autour de son point de départ, et celui où on a définitivement perdu sa

trace.

Les deux dernières parties ont été réalisées à Paris sous la direction de Justin Salez entre 2017 et

2021. La première est issue d’une collaboration avec Christina Goldschmidt (Oxford Statistics),

initiée en 2016 lors d’un stage de recherche et poursuivie jusqu’en 2020.

Mots-clés : graphes aléatoires, limites d’échelles, champ libre gaussien, châınes de Markov,

temps de mélange.
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Abstract

This thesis is devoted to the study of different random graphs, defined by local properties (such

as the distribution of the degrees of the vertices, or the probability that two given vertices share

an edge). We investigate some of their global characteristics, in particular their geometry and

the behaviour of random walks. It consists of three independent parts. In each of them, the

local limit of the random graph is a tree, and a fine comparison between the tree and the graph

allows to implement properties of the former on the latter.

• The first part (Chapter 2) is about the scaling limit of a critical random graph, more pre-

cisely a configuration model with independent and identically distributed degrees having

power-law heavy tail behaviour: there is a variance, but no third moment. It was known

that the largest connected components of this graph scale like Θ(na) if the graph is on n

vertices, for some model-dependent constant a. We prove that their structure converges

to a biased version of a particular random R-tree, the stable tree, to which one adds a

finite number of cycles.

• The second part (Chapter 3) is devoted to the Gaussian free field on random d-regular

graphs. We study its percolation above a fixed level. If this level is below a certain critical

threshold, we establish the emergence with high probability of a unique giant component

containing a positive proportion of the vertices, surrounded by islets of logarithmic size,

while only the latter survive above the critical threshold. We show that this big continent

shares remarkable similarities with the giant component of a famous random graph, the

Erdős-Rényi model.

• The third part (Chapter 4) deals with random walks on random lifts of an arbitrary

finite base graph. Random lifts are sparse graphs with good connectivity properties and

a regular structure, the associated tree being periodic. We prove that the random walk

on these graphs admits a cutoff, i.e. there is a brutal transition between the time when it

is still localised around its starting point, and the time when we have completely lost its

track.

The last two parts have been realised in Paris under the supervision of Justin Salez, between

2017 and 2021. The first part stems from a collaboration with Christina Goldschmidt (Oxford

Statistics), started in 2016 during a research internship and continued until 2020.

Keywords: random graphs, scaling limits, gaussian free field, Markov chains, mixing time.
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Chapter 1

Introduction

For over half a century, a wide variety of random graphs have been studied. They were initially

introduced as combinatorial and probabilistic objects. The randomness allows to bypass the

difficulty to build explicit instances, when one wants to prove the existence of graphs satisfying

a given property (P): it suffices to show that (P) is satisfied with positive probability by a

graph chosen in a certain random way. We refer the interested reader to the book of Alon and

Spencer [19] for pioneering examples of this probabilistic method, in the works of Szele and

Erdős in the 1940s.

Nowadays, many random graphs play a central role in the modelling of real-world networks.

Popular examples include epidemic spreads, the Internet, interactions between proteins, social

networks, and so on. The survey of Newman [118], published in 2003, gives a taste of this

diversity. Many applications have been developed since, so that an exhaustive state-of-the-art

review would probably be very difficult.

To this inter-disciplinarity corresponds an intra-disciplinarity in probability: recent works on

random graphs mix techniques from combinatorics, stochastic analysis, branching processes

or ergodic theory for instance. On March 8, 2021 in the MathSciNet database (https://

mathscinet.ams.org/mathscinet/index.html), there were 12315 papers containing the words

”random graphs” in the review text, 2531 of them dating from 2016 or later. 820 and 209 of

them respectively had the MSC category 60G (Stochastic processes) as primary or secondary.

For the category 05 (Combinatorics), these numbers were 2738 and 713, for the category 37

(Dynamical systems and ergodic theory), 244 and 78.

Both this wide range of applications in various sciences and these numerous connections between

different areas of mathematics make random graphs a rich field of study. This thesis illustrates

the latter phenomenon. It consists of three parts on purely theoretical models of sparse random

graphs, each related to different perspectives and research communities within probability. They

are united however by the interaction of several techniques coming from these environments.

In this Introduction, we present some essential features of sparse random graphs, and set the

results of this thesis in that context (Section 1.2 for Chapter 2, Section 1.3 for Chapter 3 and

Section 1.4 for Chapter 4).
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1.1 Sparse random graphs

Large sparse random graphs. Many probabilistic results on random graphs only hold asymp-

totically with respect to the ”size” of the graph, which is often defined as its number of vertices

or edges. In this Introduction, (Gn)n≥1 will denote a sequence of (possibly random) undirected

graphs, with vertex set Vn and edge set En, and such that |Vn| = n. This sequence is said to be

sparse if |En| = o(n2). In other words, only a vanishing proportion of the potential n(n− 1)/2

edges exist. In this Introduction, all graphs will satisfy |En| = Θ(n).

One fundamental example of sparse random graph that will illustrate several of the points below

is the Erdős-Rényi random graph, simultaneously introduced by Gilbert [79] and Erdős and

Rényi [75] in 1959. For n ≥ 1 and c ∈ [0, n], ER(n, c/n) is the graph on n vertices such that for

every pair of vertices x, y, there is an edge between x and y with probability c/n, independently

of all other pairs of vertices. We set c to be a positive constant: the average number of edges

is c/n × n(n − 1)/2 = c(n − 1)/2 = Θ(n) so that by the law of large numbers, ER(n, c/n) is

sparse with high probability.

From local rules to global behaviour. Many models are defined by the local interac-

tions between vertices. One knows typically the probability that two vertices share an edge, as

in the Erdős-Rényi graph, or the distribution of the degrees of the vertices. A generic example

in this case is the configuration model: one assigns (in a deterministic or random way) a

degree di to the i-th vertex of Vn, for every 1 ≤ i ≤ n. Then Gn is sampled uniformly at random

among all graphs with this degree distribution (this requires that the sum of the di’s be even,

one can for instance replace dn by dn + 1 if this is not the case).

Then, one tries to infer properties on the global behaviour of Gn as n → +∞. The questions

investigated are often among the following.

• Size: what is the size of the largest of connected components? For instance, what is the

probability that Gn is connected as n→ +∞?

• Connectivity: what are the diameter or the typical distance between vertices? How many

edges should one remove to disconnect a component?

• Geometry: consider a connected component as a metric space embedded with the standard

graph distance (the distance between two vertices being the length of the shortest path),

rescaled by the typical distance. Does its distribution converge to some (compact) metric

space? If yes, in which metric(s) does the convergence hold?

• Random walks: at what speed does the distribution of a random walker converge to the

invariant distribution on a connected component of Gn?

Exploration and comparison with a branching process. A natural way to infer these

global properties is to explore the graph neighbour by neighbour, using the random local con-
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struction rules. To keep track of this exploration, one records some statistics, for instance the

sum of the degrees of the first k vertices visited, k = 1, 2, . . . Due to the sparsity, it is frequently

the case that there are few or even no cycles on large parts of the graph. Moreover, the con-

struction rules often entail that each exploration step is almost independent of the previous

ones, or only depends on a simple parameter such as the number of vertices already discovered.

Hence the part of the graph that we explore can be compared to a branching process T . The

latter turns out to be the local limit of Gn, i.e. if x is a uniform vertex of Gn and k ∈ N an

arbitrary radius, the distribution of the ball B(x, k) converges to that of B(T, k). See [59] for

a very accessible lecture on this crucial notion. For instance, it is known that the local limit of

ER(n, c/n) is a Galton-Watson tree with a Poisson reproduction law of parameter c.

1.2 The phase transition

Phase transition. Changing some parameters of the model can lead to spectacular modifi-

cations of the global picture of Gn. There is often an abrupt phase transition, depending on

whether a vertex discovered in the exploration leads in average to more or less than one new

neighbour. Generally, if this average is below 1, a typical component that we explore will be

close to a subcritical branching process, for instance a subcritical Galton-Watson tree, whose

size has exponential moments. Hence, the largest connected components of the graph encom-

pass only O(log n) vertices. This is the subcritical phase.

On the contrary, if we see more that one new neighbour in average, a connected component

of Gn has a positive chance to grow exponentially, until a positive proportion of the vertices

have been discovered (which substantially affects the law of the number of new neighbours of

each vertex). Then, there is a unique ”giant” component of size Θ(n), with good connectivity

properties. This is the supercritical phase. The limit case, when this number is close to 1, is

generally harder to characterize. The possible existence and properties of a critical regime that

would drastically differ from both the subcritical and supercritical ones usually offer thrilling

research directions.

For instance, Erdős and Rényi [74] showed in 1960 that ER(n, c/n) undergoes such a phase

transition. The supercritical regime corresponds to c > 1 and the subcritical regime to c < 1.

Random graphs at criticality. When the average number of new neighbours is 1, we might

expect that the part of the graph that we explore is close to a critical branching process.

In the critical phase c = 1, Aldous [13] established in a celebrated paper in 1997 that the

largest connected components of ER(n, 1/n), whose number grows to infinity with n, are of size

Θ(n2/3). To do so, he built an exploration process, that roughly counts the number of vertices

”seen” (i.e. we have explored one of their neighbours) but not yet explored. It converges to

a slightly modified Brownian motion when suitably rescaled. This exponent 2/3 comes in fact
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from the fractal invariance of the Brownian motion: after n2/3 vertices have been seen, each

discovered vertex leads in average to (n− n2/3)/n = 1− n−1/3 new vertices. If we want a con-

nected component to survive, we should discover at least 1 new vertex at each explored vertex,

so that there is a ”deficit” of order n2/3 × n−1/3 = n1/3 vertices, that can be compensated by

the Brownian fluctuations of order (n2/3)1/2 = n1/3 of the stack of vertices seen but not yet

explored.

Fifteen years later, Addario-Berry, Broutin and Goldschmidt [6] found a scaling limit for the

structure of these largest components: when scaling the distances by a factor n−1/3, they con-

verge to a sequence of random trees, with a finite number of identifications of pairs of vertices

to create cycles. These random trees are modifications of the Continuum Random Tree (CRT),

a random tree which is coded by an excursion of the Brownian motion above 0. The CRT is an

unavoidable bridge between random graphs and stochastic calculus, and has been thoroughly

studied since the 1990s (see [10, 11, 12, 95]).

Universal scaling limits. This phase transition has been investigated on various other random

graphs: configuration models, inhomogeneous random graphs, preferential attachment models,

and so on (see for instance [36, 50, 61, 76, 115], we give a detailed bibliographical account in

Section 2.2.5 of Chapter 2). The book of van der Hofstad [135] gives a modern panorama of

these models. It turns out that in most cases, one of the following two scenarii happens:

(I) the degree distribution of a vertex x ∈ Vn chosen uniformly at random has a finite third

moment. Then the largest connected components have size Θ(n2/3), the diameter and

typical distances between vertices are Θ(n1/3).

(II) this degree distribution has a finite second moment but its third moment is infinite. If

P(deg(x) = k) ∼
k→+∞

L(k)k−(α+2) for some α ∈ (1, 2) and some slowly varying function

L (for simplicity, think of it as a positive constant), then the largest connected compo-

nents have size Θ(nα/(α+1)). The diameter and typical distances between vertices are

Θ(n(α−1)/(α+1)).

When the degree distribution has infinite variance, there are enough ”hubs” (vertices with

arbitrarily large degrees as n→ +∞) so that all pairs of hubs are connected, and every vertex

is connected to a hub, hence distances in Gn are drastically shrunk.

In both (I) and (II), one usually shows that the exploration process, when suitably rescaled,

converges to a (possibly modified) Lévy process. The case (II) is often the hardest from a

technical point of view: there are many large degrees that make some key functionals non-

integrable but not enough to simplify the structure of Gn as in the infinite variance case.

In Chapter 2, we study a natural generic model that belongs to this case. It is a critical

configuration model with i.i.d. degrees whose distribution ν satisfies (II). We prove that the

rescaled largest connected components converge to modifications of a random tree coded by an
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α-stable Lévy process, the α-stable tree, with a finite number of vertex identifications to create

cycles (Theorem 2.1.1). These limiting spaces are new objects for α ∈ (1, 2), whose study has

recently been initiated in [82]. This convergence generalizes what happens in the special case

α = 2 (which belongs to (I) - the CRT is the α-stable tree for α = 2).

The originality and interest of our method lies in a measure-change that gives the law of the

degrees met in the exploration w.r.t. a sequence of i.i.d. degrees distributed as ν̃, the size-bias

of ν. It quantifies naturally an intuitive phenomenon, the progressive ”degree depletion” of the

vertices met during the exploration. In the latter, each new vertex is picked with a probability

proportional to its degree, hence according to the size-bias of the distribution of the remaining

degrees. But ν̃ dominates stochastically ν, so that we tend to visit the vertices with a larger

degree first. This measure-change converges in the limit, to express how our limiting spaces are

obtained from stable trees. It would be interesting to look for a generalization of this procedure

to other graphs.

Contrary to many works on similar models, our approach is independent from the multiplicative

coalescent. The latter dynamic, already studied by Aldous in his seminal paper [9], is suited to

models with a monotonicity w.r.t. their parameters, like ER(n, p/n): edges are progressively

added as one raises the value of p, and the probability that a link appears between two connected

components is approximately proportional to the product of their sizes.

1.3 The Gaussian Free Field

The Gaussian Free Field on transient graphs. On an infinite transient graph G, one can

define a centred Gaussian process (ϕ(x))x∈G indexed by its vertices, such that its covariances

are given by the Green function ΓG: for two vertices x, y of G,

Cov(ϕ(x), ϕ(y)) = ΓG(x, y) =
∑
k≥0

P(Xk = y),

where (Xk)k≥0 is a Simple Random Walk (SRW) on G, starting at x. This process is called

the Gaussian Free Field (GFF) on G. By this construction involving the Green function,

the GFF is deeply connected to structural properties of G and to the behaviour of SRWs on G.

In the past two decades, several generalizations of the second Ray-Knight theorem have been

found [73, 97, 104, 125], linking the distribution of the GFF with that of the local times of

the random walk on G. In the same spirit, connections with random interlacements have been

established [130, 131].

One way to study the GFF is to look at its level-sets. For h ∈ R, the level-set above h of

ϕ, denoted E≥h, is the subgraph of G induced by the set of vertices {x, ϕ(x) ≥ h}. Level-set

percolation of the GFF has been investigated since the 1980s [48, 111]. The last decade has

witnessed blossoming literature on classical graphs, in particular Zd ([65, 68, 104, 121, 123])

and transient trees ([3, 130, 132]).
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One central question is whether there exists (with positive probability) an infinite connected

component in E≥h, depending on h. In particular, is there a phase transition, i.e. does a non-

degenerate threshold hG ∈ R exist, such that the answer is yes for h < hG and no for h > hG?

Compared to classical percolation models, such as Bernoulli bond percolation where all edges

are independent, the GFF level-set percolation brings long-range correlations that may play an

important role, in particular in graphs like Zd where the Green function decays only polynomi-

ally w.r.t. the distance between vertices. Very recently, GFF percolation has even been used to

show a result on Bernoulli bond percolation [67].

GFF level-sets on finite graphs. If Gn is connected, one can define an analogous field on

Gn, the zero-average Gaussian Free Field. Its covariance is given by the zero-average Green

function ΓGn : for x, y ∈ Vn,

ΓGn(x, y) :=

∫ +∞

0
(P(Xt = y)− πn(y)) dt,

where (Xt)t≥0 is a continuous-time SRW on Gn: its trajectory is that of a SRW, and the time

intervals between two consecutive jumps are i.i.d. with law Exp(1). πn is the invariant distri-

bution of the SRW on Gn.

If (Gn)n≥0 has a local limit G, a natural question is whether some characteristics of the GFF

on G can be transferred to the zero-average GFF on Gn. For instance, one might ask whether

a phase transition for the existence of an infinite connected component of the level-set E≥h in

G corresponds to a phase transition for the emergence of a ”macroscopic” component of size

Θ(n) in the level-set E≥hn above h in Gn.

For G = Td the d-regular tree, Sznitman [132] showed that there exists a level-set percolation

threshold h? ∈ (0,∞). Abächerli and Černý [4] proved that if Gn is a typical d-regular graph,

then for h > h? (subcritical phase), the connected components of E≥hn have size O(log n), and

for h < h? (supercritical phase), a positive proportion of the vertices are in mesoscopic compo-

nents of size at least Θ(na), for some non explicit constant a > 0. The question on the existence

of a macroscopic component (i.e. a = 1) was left open.

In Chapter 3, we give a positive answer for most regular graphs: if Gn is a uniform random

d-regular graph, then w.h.p. E≥hn has a unique giant component C(n)
1 of size Θ(n). More pre-

cisely, |C(n)
1 | = η(h)n(1+o(1)), where η(h) > 0 is the probability that the connected component

Ch of a given vertex of Td in the level-set above h is infinite (Theorem 3.1.1).

We also show that C(n)
1 shares several ”global” properties with the giant component of ER(n, p/n)

for p > 1 (hence in the supercritical regime), concerning the diameter, the typical distance be-

tween vertices, the core and the kernel (Theorem 3.1.2). The local limit of C(n)
1 is Ch conditioned

to be infinite.

Our proofs rely on an annealed exploration of a new kind, in which we reveal progressively the

structure of Gn and the zero-average GFF on it. We also need to refine some properties of
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the component Ch in Td shown in [3]. In a work in progress [57], we study closely Ch and the

random walk on it, proving its ballisticity.

It would be exciting to determine what happens when h = h?: are we in (I) or (II), or does the

GFF level-set percolation lead to a new universality class of critical random graphs?

1.4 The mixing time

Mixing time and cutoff. A natural way to explore a graph and record information on its

structure is to study random walks on its vertices. A quantity of great interest is the mixing

time, i.e. the time it takes for a random walk to be approximately distributed according to the

invariant probability measure on the graph. Formally, let Pn be the transition matrix of the

discrete-time Simple Random Walk (SRW) on Vn. Suppose that Gn is connected, so that there

is a unique invariant distribution πn. For ε > 0 and for a vertex x of Gn, the ε-mixing time

from x is

t(n)
x (ε) := inf{t ∈ N ∪ {0}, ‖P tn(x, ·)− πn‖TV ≤ ε}.

One often examines the worst-case mixing time t
(n)
max(ε) := sup{t(n)

x (ε), x ∈ Vn}. Other

distances than the total variation distance might be considered.

The mixing time delivers essential information on the geometry of the graph. For instance, it

provides a lower bound for the typical distance between vertices. If the latter is much smaller

than the mixing time, then the graph may have a weak expansion, or traps that delay the

random walk. If the 1/10-mixing time is much larger than the 1/2-mixing time, then there

might be a bottleneck in the graph that is hard to cross for the random walk, and so on.

The mixing time also plays a crucial role in Monte Carlo simulations, as it gives a good estimate

for their running time. The books of Levin, Peres and Wilmer [98] and of Montenegro and

Tetali [114] give a broad panorama of both historical and modern techniques on mixing times.

We say that there is cutoff when for all ε, ε′ ∈ (0, 1),

t
(n)
max(ε)/t

(n)
max(ε′)→ 1 as n→ +∞.

In other words, the cutoff means that the mixing of the random walk happens abruptly. First

examples of this phenomenon were given in the 1980s for random walks on finite groups (see

[14] or [63] on the symmetric group) or on spaces that can be factored into a n-product of a

base space (such as Zn2 in [9]). This ”algebraic” direction is still investigated nowadays. See for

instance [83, 85] on random Cayley graphs of abelian groups.

Expanders. A wide class of graphs where random walks mix fast and cutoff might happen

are the expander graphs. We say that the sequence (Gn)n≥1 is expanding if its isoperimetric

constant is bounded away from 0, i.e. there exists c > 0 such that for large enough n,

cn := inf
S⊆Vn,|S|≤n/2

|∂S|
|S|
≥ c,
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where ∂S ⊆ Vn\S is the set of vertices having one neighbour in S. The very accessible survey of

Hoory, Linial and Widgerson [87] provides a good overview of the study of these graphs. Some

explicit constructions of expanders have been achieved since the 1980s, using number theory

and combinatorial arguments. The book of Lubotzky [103] gives a good account on it. Finding

such constructions is a difficult task. It is much easier to prove the existence of expanders

via a probabilistic argument. If Gn is a d-regular graph on n vertices (i.e. all vertices have

degree d) chosen uniformly at random, then a combinatorial computation shows that with high

probability, Gn is an expander.

This expansion property is equivalent to the existence of a spectral gap: let λn be the second

largest eigenvalue of Pn (the largest is 1, Pn being a stochastic matrix). Then lim infn→+∞ cn > 0

if and only if lim infn→+∞ λn > 0. The implication (expansion ⇒ spectral gap) was first for-

mulated by Cheeger [53] in 1969, for Riemannian manifolds. To our knowledge, the earliest

adaptation to random walks on discrete graphs is due to Alon and Milman [17] in 1984. It is

classical that a spectral gap bounded away from 0 implies in turn that the SRW on Gn mixes in

O(log n) steps, provided we make it lazy, i.e. at each step, the random walker flips a balanced

coin and stays on its position if and only if the result is heads. Conversely, if the mean degree of

a vertex of Gn is bounded, and the degree distribution is sufficiently regular, one might expect

that the SRW does not mix in less than Θ(log n) steps. Therefore, the mixing should happen

after Θ(log n) steps.

Cutoff on sparse expanders. A major breakthrough came in 2010, when Lubetzky and

Sly proved that the SRW on the random d-regular graph has a cutoff [101].

Theorem [Lubetzky & Sly, 2010] If Gn is a uniform d-regular random graph, then for every

ε ∈ (0, 1),

t
(n)
max(ε)− d

d−2 logd−1 n√
logd−1 n

P−→
2
√
d(d− 1)

(d− 2)3/2
Φ−1(ε),

where Φ(x) :=
∫ +∞
x (2π)−1/2 exp(−u2/2)du for x ∈ R is the tail distribution of the standard

normal.

Rather than a simple asymptotic on the mixing time, this result is very similar to a central

limit theorem, with a precise cutoff window Θ(
√

log n). In fact, it reflects the behaviour of

the entropy of the SRW on Td. If P(d) is the transition matrix of the SRW on Td, then

t−1/2(logd−1 P
t
(d)(X0, Xt) − d−2

d t) converges in distribution to a centred Gaussian variable as

t → +∞. Then, by counting arguments limiting w.h.p. the occurrence of cycles around the

trajectory of the SRW on Gn, one can show that logd−1 P
t
(d)(X0, Xt) and logd−1 P

t
n(X0, Xt) are

close. The mixing happens when P tn(X0, Xt) ' 1/n, and this occurs with positive probability

for t = d
d−2 logd−1 n+ Θ(

√
logd−1 n).

Since then, several results were proved on similar models, following roughly this pattern: cutoff

happens at an entropic time, the constant being given by a law of large numbers for the entropy
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of the random walk on the local limit of (Gn)n≥1. In the same article, Lubetzky and Sly also

showed a cutoff for the Non-Backtracking Random Walk (NBRW, i.e. a SRW conditioned at

each step on not going back along the edge it has just crossed). See also [29] for the SRW

on the largest component of a supercritical Erdős-Rényi random graph, or [27] for the NBRW

on a configuration model. Very recently, Hermon, Sly and Sousi [84] found a generic way to

produce cutoff by adding new edges to a deterministic graph Gn (on which one makes mild

assumptions), via a perfect matching of its vertices.

Over the last few years, there has been increasing interest in mixing times on dynamical graphs

(typically, edges are re-sampled at random at a given rate), when the mixing time profile is

already well-known on a static version of the graph, see [24, 51, 128].

In Chapter 4, we study the random walk on random lifts of a fixed graph G, which is a natural

way to combine the ”product of a base space” and the ”expanding sparse graph” perspectives

for cutoff. To obtain a uniform random n-lift of G, take n copies of the vertices of G, and for

every pair of vertices u, v sharing an edge e in G, draw an edge from the i-th copy of u to the

σe(i)-th copy of v, the σe’s being independent uniform random permutations of {1, . . . , n}.
Our main result is Theorem 4.1.1: we prove the cutoff for the random walk at entropic time,

with a cutoff window Θ(
√

log n) (with an explicit Gaussian profile only for the lower bound).

We make very few assumptions on the base graph G. In particular, we allow weights on the

edges that make the random walk non-reversible. The proof relies on a fine understanding of

the random walk on the universal cover of G, a periodic tree TG, which is the local limit of

Gn. Then, a careful exploration, where the structure of Gn is revealed along the trajectory of

a random walk, allows to transpose properties from TG to Gn. A byproduct of our method is

the computation of the diameter of random lifts (Theorem 4.3.1).

In addition, we prove that the NBRW on non-weighted random lifts has a cutoff, with a Gaussian

profile for the cutoff window (Theorem 4.2.3).
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Chapter 2

Scaling limit of a critical

configuration model with power-law

degrees

This chapter stems from the preprint [58], that has been submitted to Annals of Probability

and accepted with major revisions.

Abstract. We prove a metric space scaling limit for a critical random graph with independent

and identically distributed degrees having power-law tail behaviour with exponent α+ 1, where

α ∈ (1, 2). The limiting components are constructed from random R-trees encoded by the

excursions above its running infimum of a process whose law is locally absolutely continuous

with respect to that of a spectrally positive α-stable Lévy process. These spanning R-trees

are measure-changed α-stable trees. In each such R-tree, we make a random number of vertex-

identifications, whose locations are determined by an auxiliary Poisson process. This generalises

results which were already known in the case where the degree distribution has a finite third

moment (a model which lies in the same universality class as the Erdős–Rényi random graph)

and where the role of the α-stable Lévy process is played by a Brownian motion.
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2.1 Introduction

2.1.1 Overview

In recent years, a wide variety of random graph models have been introduced and studied. Many

of these models undergo a phase transition of the following type: below some threshold, the

connected components are microscopic in size (in the sense that they each contain a negligible

proportion of the vertices) and possess few cycles, whereas above the threshold, there is a

component which occupies a positive fraction of the vertices and contains many cycles, and all

other components are again microscopic. We are particularly interested in the behaviour exactly

at the point of the phase transition, and in a precise description of the sizes and geometric

properties of the components, which is typically much more delicate than in the sub- and

supercritical cases. We will first give a brief overview of the setting in which we are interested,

and of our main results, deferring a more detailed account with proper definitions, as well as a

summary of the pre-existing literature, to the next section.

We consider a uniform random graph on n vertices with a given degree sequence, where the

degrees themselves are independent and identically distributed random variables, D1, . . . , Dn.

(If
∑n

i=1Di is odd, we replace Dn by Dn + 1.) For simplicity, we impose the condition that

P (D1 ≥ 1) = 1, so that there are no isolated vertices. We also assume that P (D1 = 2) < 1

(otherwise we have a random 2-regular graph, which contains many cycles of macroscropic

size [23]) and that var (D1) <∞ (otherwise the graph behaves very differently; see [129]). The

phase transition then occurs when the parameter θ := E [D1(D1 − 1)] /E [D1] passes through

1: if θ < 1 then the proportion of vertices in the largest component tends to 0 in probability

as n → ∞, whereas if θ > 1, this proportion instead converges to a strictly positive constant,

again in probability as n→∞.

At the critical point θ = 1, there is a sequence of components whose sizes are comparable

(rather than a single giant component, as in the supercritical case) and which, even after

rescaling, retain some randomness in the limit. The sizes and geometric properties of these

components depend on the tail of the distribution of D1. In particular,

• if E
[
D3

1

]
<∞ then the largest components have sizes on the order of n2/3 and diameters
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on the order of n1/3;

• if P (D1 = k) ∼ ck−(α+2) for some constant c > 0 and α ∈ (1, 2) then the largest compo-

nents have sizes on the order of nα/(α+1) and diameters on the order of n(α−1)/(α+1).

(It will be convenient to refer to the first of these as the “α = 2 case”.)

These scaling properties are either proved or conjectured to be universal, that is to hold for

whole families of random graph models with similar asymptotic degree distributions. We will

discuss the issue of universality in some detail below.

2.1.2 Our results

Let us now state our scaling limit theorem. Let Gn1 , G
n
2 , . . . be the (vertex-sets of the) compo-

nents of the critical random graph, listed in decreasing order of size, with ties broken arbitrarily.

We think of these as measured metric spaces, by endowing Gni with the graph distance, dni , and

the counting measure on its vertices, µni . Formally, each is an element of the Polish space of

isometry-equivalence classes of measured metric spaces endowed with the Gromov–Hausdorff–

Prokhorov distance, which we will define properly below.

Theorem 2.1.1. Fix α ∈ (1, 2]. Then under the conditions above, there exists a sequence of

random compact measured metric spaces (G1, d1, µ1), (G2, d2, µ2), . . . (whose law depends on α)

such that, as n→∞,((
Gni , n

−(α−1)/(α+1)dni , n
−α/(α+1)µni

)
, i ≥ 1

)
d−→ ((Gi, di, µi) , i ≥ 1)

in the sense of the product Gromov–Hausdorff–Prokhorov topology.

The same result also holds for a multigraph with the same degree sequence generated ac-

cording to the configuration model (see Section 2.2.1 for more details).

In the terminology of [7], (Gi, di) is a random R-graph for each i ≥ 1. For reasons which will

shortly become clear, we refer to the whole limiting object as the α-stable graph if α ∈ (1, 2) or

the Brownian graph (instances of which have already occurred several times in the literature)

if α = 2.

This theorem, in particular, implies the scaling properties mentioned above. The α = 2 case

may be deduced from a more general theorem due to Bhamidi and Sen [37], proved by different

methods. For α ∈ (1, 2), Bhamidi, Dhara, van der Hofstad and Sen [36] considered the setting of

critical percolation on a supercritical uniform random graph with given degree sequence, having

similar tail behaviour to ours, and proved a scaling limit theorem in the sense of the product

Gromov-weak topology. (We understand that this will be improved to a convergence in the

product Gromov–Hausdorff–Prokhorov topology for critical degree sequences satisfying certain

conditions in forthcoming work [35].) We will describe the results of [36] in more detail below

and will, for the moment, simply observe that there are situations which are covered by both
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theorems, and where the limit objects must therefore be the same, but where this is certainly

not obvious from their respective constructions.

One of the most striking aspects of our results is the characterisation of the limit spaces

which we are able to give, which is completely new for α ∈ (1, 2), and generalises one which was

already known for α = 2. In order to give this characterisation, we must first introduce some

stochastic processes which play a key role.

Let µ = E [D1]. For α ∈ (1, 2), let L be a spectrally positive α-stable Lévy process with

Laplace transform

E [exp(−λLt)] = exp

(
cΓ(2− α)

µα(α− 1)
λαt

)
, λ ≥ 0, t ≥ 0,

where c > 0 is the constant such that P (D1 = k) ∼ ck−(α+2). Such a process can be thought

of as encoding a forest of continuum trees; the standard way to do this goes via a (somewhat

complicated) functional of L called the height process H (we will define this properly below).

Let

Cα =
cΓ(2− α)

α(α− 1)
.

We will create a new pair (L̃, H̃) of processes via change of measure as follows: for suitable

test-functions f : D([0, t],R)2 → R, let

E
[
f(L̃u, H̃u, 0 ≤ u ≤ t)

]
= E

[
exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α+ 1)µα+1

)
f(Lu, Hu, 0 ≤ u ≤ t)

]
.

(2.1)

For α = 2, letting µ = E [D1] and β = E [D1(D1 − 1)(D1 − 2)], we instead take

Lt =

√
β

µ
Bt and Ht = 2

√
µ

β

(
Bt − inf

0≤s≤t
Bs

)
,

where B is a standard Brownian motion (in the Brownian setting, the associated height process

has the same distribution as a reflected Brownian motion, up to a scaling constant). In this

case, define

E
[
f(L̃u, H̃u, 0 ≤ u ≤ t)

]
= E

[
exp

(
− 1

µ

∫ t

0
sdLs −

βt3

6µ3

)
f(Lu, Hu, 0 ≤ u ≤ t)

]
. (2.2)

In either case, let

Rt = L̃t − inf
0≤s≤t

L̃s, t ≥ 0.

Now write (ζi, i ≥ 1) for the ordered sequence of lengths of excursions of R above 0. These

excursions give rise to spanning R-trees for the limiting components. For i ≥ 1, let ε̃i : [0, ζi]→
R+ be the ith longest excursion of R (with its argument translated in the natural way to [0, ζi]).

For i ≥ 1, let h̃i : [0, ζi]→ R+ be the corresponding (continuous) excursion of H above 0 (which

has the same length as ε̃i). Let (T̃1, d̃1, µ̃1), (T̃2, d̃2, µ̃2), . . . be the measured R-trees encoded

by h̃1, h̃2, . . . respectively, and write pi for the canonical projection from [0, ζi] to T̃i, for i ≥ 1.
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Conditionally on R, now consider a Poisson point process on R+×R+ of intensity 1
µ1{x≤Rt}dtdx.

(Equivalently, we can think of this as a Poisson point process of intensity 1/µ in the area under

the graph of R.) The points tell us how to identify vertices in the R-trees in order to create

cycles. For i ≥ 1, suppose that a number Mi ≥ 0 of points fall within the ith longest excursion

ε̃i. Given ε̃i, we then have Mi ∼ Poisson
(

1
µ

∫∞
0 ε̃i(u)du

)
. If Mi ≥ 1, write

(si,1, xi,1) , (si,2, xi,2) , . . . , (si,Mi , xi,Mi)

for the points themselves (with their first co-ordinates translated to the interval [0, ζi]). For

i ≥ 1 and 1 ≤ k ≤Mi, let

ti,k = inf{t ≥ si,k : ε̃i(t) ≤ xi,k}.

Now for i ≥ 1, let (Gi, di, µi) be the measured metric space obtained from (T̃i, d̃i, µ̃i) by making

no change if Mi = 0 or, if Mi ≥ 1, by identifying the Mi pairs of points

(pi(si,1), pi(ti,1)) , . . . , (pi(si,Mi), pi(ti,Mi)) .

(Formally, this is done by taking the quotient metric space in a standard way which is described

in detail, for example, just before Lemma 21 of [6].)

Conditionally on the ordered lengths ζ1, ζ2, . . . of the excursions and numbers M1,M2, . . . of

Poisson points, we may give an attractive alternative description of the excursions encoding the

spanning forests of the α-stable and Brownian graphs. These are closely related to the canonical

family of random R-trees encompassing the Brownian continuum random tree [10, 11, 12] and

α-stable trees [70, 69], which are the scaling limits of critical Galton–Watson trees conditioned

to have size n with offspring distribution in the domain of attraction of a Normal or α-stable

distribution respectively.

First consider α ∈ (1, 2), and let e be a normalised (i.e. length 1) excursion of the stable

process L, and let h be the associated normalised excursion of the height process, which would

encode an α-stable tree. Now for m ∈ Z+, define tilted excursions ẽ(m) and h̃
(m) via

E
[
g(ẽ(m), h̃(m))

]
=

E
[
g(e,h)

(∫ 1
0 e(u)du

)m]
E
[(∫ 1

0 e(u)du
)m] , (2.3)

for suitable test-functions g : D([0, 1],R+) × C([0, 1],R+) → R. Let (T̃ (m), d̃(m), µ̃(m)) be the

R-tree (T̃ (m), d̃(m)) encoded by h̃
(m), along with its natural mass measure µ̃(m). Write p̃(m)

for the projection [0, 1] → T̃ (m). If m ≥ 1, now sample m pairs of points in the tree as

follows. First pick (s1, x1), . . . , (sm, xm) independently and uniformly from the area below the

excursion ẽ
(m) and above the x-axis according to the normalised Lebesgue measure. Define

ti = inf{t ≥ si : ẽ(m)(t) ≤ xi}. Finally, identify p̃(m)(si) and p̃(m)(ti) for 1 ≤ i ≤ m in order to

obtain (G(m), d(m), µ(m)). Set (G(0), d(0), µ(0)) = (T̃ (0), d̃(0), µ̃(0)).

Something very similar works in the Brownian case. Here, we take e to be a normalised

Brownian excursion (which is, in particular, continuous); in this context, h = 2e, so there is
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no need to consider two different excursions. The function 2e encodes the Brownian continuum

random tree (in the normalisation adopted by Aldous [10]). Again define ẽ
(m) as at (2.3)

and let (T̃ (m), d̃(m), µ̃(m)) be the measured R-tree encoded by 2ẽ(m), and write p̃(m) for the

projection [0, 1] → T̃ (m). If m ≥ 1, now sample m pairs of points in the tree as follows. First

pick (s1, x1), . . . , (sm, xm) independently and uniformly from the area below the excursion ẽ
(m)

and above the x-axis according to the normalised Lebesgue measure. Define ti = inf{t ≥
si : ẽ(m)(t) ≤ xi}. Finally, identify p̃(m)(si) and p̃(m)(ti) for 1 ≤ i ≤ m in order to obtain

(G(m), d(m), µ(m)). Set (G(0), d(0), µ(0)) = (T̃ (0), d̃(0), µ̃(0)).

Theorem 2.1.2. Conditionally on the lengths ζ1, ζ2, . . . of the excursions and the numbers

M1,M2, . . . of points, the measured R-graphs (G1, d1, µ1), (G2, d2, µ2), . . . are independent with

(Gi, di, µi)
d
=
(
G(Mi), ζ

(α−1)/α
i d(Mi), ζiµ

(Mi)
)

for each i ≥ 1.

This shows that, in order to understand further the geometric properties of our limit object,

a key role will be played by the family of random R-graphs ((G(m), d(m), µ(m)),m ≥ 0). These

are studied in depth for α ∈ (1, 2) in the companion paper [82]; the Brownian case was the

subject of the earlier paper [5]. From the absolute continuity relation (2.3), for any α ∈ (1, 2]

it is straightforward to see that (G(m), d(m), µ(m)) has Hausdorff dimension α/(α − 1) almost

surely, since this is true of the appropriate Brownian/α-stable tree and one cannot change the

fractal dimension by making finitely many vertex-identifications.

The branch-points of the α-stable tree are almost surely all infinitary (i.e. removing any of

them breaks the tree into infinitely many connected components), and this property is inherited,

via absolute continuity, by (T̃ (m), d̃(m)) for α ∈ (1, 2). It follows from the properties of the

excursion e(m) (see [82] for an in-depth discussion) that the vertex-identifications in (T̃ (m), d̃(m))

are almost surely all from a leaf to a branch-point of infinite degree. In contrast, in the α = 2

case, the vertex-identifications are almost surely all from a leaf to a point of degree 2 (see [6, 5]).

In [5, 82], it is further shown that one may explicitly determine the law of the kernel of G(m)

(that is, the multigraph with edge-lengths which encodes its cycle structure), and that G(m) may

be constructed by gluing together randomly rescaled Brownian/stable trees. Finally, it is shown

in [5, 82] that G(m) possesses a line-breaking construction, that is, a recursive construction which

starts from the kernel and successively glues on line-segments of random lengths to random

points, obtaining a convergent sequence of approximations to the final R-graph.

2.2 Background

In this section, we give some background material on our random graph model, and discuss the

previously known results on its critical behaviour. We also give a brief account of the scaling

27



limit theory for Galton–Watson trees. We then give an overview of the proof of Theorem 2.1.1.

This is followed by a brief summary of some related literature, and some open problems. Finally,

at the end of this section, we give a plan of the rest of the paper.

For a sequence of random variables (An)n≥0 and a sequence (an)n≥0 of real numbers, we

write An = OP(an) to mean that (An/an)n≥0 is tight. We write An = ΘP(an) to mean that

An = OP(an) and A−1
n = OP(a−1

n ). We write An = oP(an) to mean An/an
p→ 0 as n→∞.

2.2.1 The configuration model

We wish to sample a graph uniformly at random from among the graphs with the given degrees

D1, D2, . . . , Dn. There is a standard method for doing this, which originated (in varying degrees

of generality) in the work of Bender and Canfield [28], Bollobás [43] and Wormald [139], called

the configuration model. (We refer the reader to the recent book of van der Hofstad [135] for a

full account of the configuration model and for proofs of the results quoted below.) We begin by

first describing the setting where the vertex degrees are deterministic. More precisely, suppose

that we have vertices labelled 1, 2, . . . , n where vertex i has degree di, for 1 ≤ i ≤ n. Suppose

that di ≥ 1 for all 1 ≤ i ≤ n and that
∑n

i=1 di is even. To vertex i, attach di stubs or half-

edges. Label the
∑n

i=1 di half-edges in some arbitrary way, and then choose a pairing of them,

uniformly at random. Join the paired half-edges together to make full edges, and then forget the

labelling of the half-edges. In general, this procedure yields a multigraph (i.e. with self-loops,

or multiple edges). However, if there exist one or more simple graphs with the given degree

sequence (that is, if the degree sequence is graphical) then, conditionally on the event that the

configuration model yields a simple graph, that graph is uniform among the possibilities.

We are concerned with the setting where the degrees themselves are independent and identi-

cally distributed random variables D1, D2, . . . , Dn. An immediate issue is that we cannot guar-

antee that
∑n

i=1Di is even. We get around this problem by always assuming that if
∑n

i=1Di

is odd, then we in fact give vertex n degree Dn + 1. For the regime and properties in which

we are interested, this makes only a negligible difference, and we will ignore it in the sequel.

Write ν = (νk)k≥1 for the probability mass function of D1, that is νk = P (D1 = k), k ≥ 1. Let

Mn(ν) be the multigraph resulting from the configuration model with these degrees. It remains

to resolve the issue that the degree sequence may, in principle, be non-graphical. However, it is

possible to show that if D1 has finite variance and θ = θ(ν) = E [D1(D1 − 1)] /E [D1] then

lim
n→∞

P (Mn(ν) is simple) = exp(−θ/2− θ2/4),

and the right-hand side is strictly positive (see for instance Proposition 7.13 of [135]). Let Gn(ν)

be a graph with the distribution of Mn(ν) conditioned to be simple; this is our uniform random

graph with i.i.d. ν-distributed degrees, and is the main object of study in this paper.

If νk ∼ ck−(α+2) for some α ∈ (1, 2) as k → ∞, we will have that max1≤i≤nDi =

ΘP(n1/(α+1)). We will see in the sequel that vertices of degree Θ(n1/(α+1)) play an important
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role in the structure of the graph, and “show up” in the scaling limit as vertices of infinite degree

(often known as hubs). However, since α > 1, with high probability we will not observe edges

directly joining two vertices of degree Θ(n1/(α+1)) and, indeed, the vertices of highest degree will

be typically well-separated. If E
[
D3

1

]
< ∞, on the other hand, then max1≤i≤nDi = oP(n1/3)

and there are no hubs in the limit.

An important property of the configuration model is that the pairing of the edges may be

generated in a progressive manner. This makes possible the use of an exploration process in order

to capture properties of the (multi-)graph. We do this in a depth-first manner, conditionally on

the vertex-degrees, and making use of the arbitrary labelling we gave the half-edges, as follows.

Start from a vertex v chosen with probability proportional to its degree Dv. We will maintain

a stack, namely an ordered list of half-edges which we have seen but not yet explored. Put

the Dv half-edges attached to v onto this stack, in increasing order of label, so that the lowest

labelled half-edge is on top of the stack. At every subsequent step, if the stack is non-empty,

take the top half-edge and sample its pair uniformly at random from those available (i.e. the

others on the stack and those which we have not yet observed in our exploration). If the pair

half-edge belongs to a vertex w which has not yet been observed (i.e. if the pair half-edge does

not lie in the stack), remove the paired half-edges from the system, and add the remaining

Dw − 1 half-edges attached to w to the top of the stack, again in increasing order of label. If

ever the stack becomes empty, select a new vertex with probability proportional to its degree,

and put all of its half-edges onto the stack. Repeat until the whole graph has been exhausted.

Notice that the stack is empty at the end of a step if and only if we have reached the end of

a component, and that in each step except the one at the start of a component, we pair two

half-edges. Let Rn(k) be the size of the stack at step k. Then, for example, we may read off the

numbers of edges in the successive components as the lengths minus 1 of the excursions above

0 of the process (Rn(k), k ≥ 0). It turns out that this process, as we shall explain below, in fact

encodes much more information about the multigraph.

Write |G| for the size of the vertex set of a graph G. For a connected graph G, write s(G) for

its surplus, that is how many more edges it has than any of its spanning trees (which necessarily

have |G| − 1 edges). Write Gn1 , G
n
2 , . . . for the connected components of Gn(ν), in decreasing

order of size, with ties broken arbitrarily. Similarly, write Mn
1 ,M

n
2 , . . . for the ordered connected

components of Mn(ν).

2.2.2 The phase transition and critical behaviour of the component sizes

As we have already mentioned, Gn(ν) undergoes a phase transition in its component sizes

depending on its parameters [112, 113, 90]. Indeed, if θ(ν) ≤ 1, then the largest connected

component Gn1 of Gn(ν) is such that |Gn1 |/n
p→ 0. On the other hand, if θ(ν) > 1 then

|Gn1 |/n
p→ ρ(ν), where ρ(ν) is some strictly positive constant. These results also hold for

Mn(ν). To give an idea of why the quantity θ(ν) is important, imagine performing the depth-
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first exploration outlined above, but ignoring any edges which create cycles. Then it is not hard

to see that, at each step which is not the start of a component, the degree of the vertex to which

the half-edge on the top of the stack connects (as long as it does not connect to something on

the stack and thus create a cycle) is a size-biased pick from among the remaining possibilities.

So, at least close to the beginning, the exploration process should look approximately like a

branching process with offspring distribution given by D∗ − 1, where P (D∗ = k) = kνk/E [D1].

But then θ(ν) = E [D∗ − 1], and so the critical point for the approximating branching process

is indeed θ(ν) = 1. Our interest is in this precisely critical case, and a significant part of this

paper is devoted to making the heuristic argument just outlined precise.

The following theorem, due to Joseph [91], summarises some of the possible behaviours for

the component sizes in the case θ(ν) = 1. A version of part (i) was proved independently by

Riordan [122] (see below for further discussion). Let

`2↓ =

(x1, x2, . . .) ∈ RN : x1 ≥ x2 ≥ . . . ≥ 0,
∑
i≥1

x2
i <∞

 .

Theorem 2.2.1. (i) Suppose that P (D1 = 2) < 1, E [D1] = µ and

E [D1(D1 − 1)(D1 − 2)] = β. Let B be a standard Brownian motion, and let

L̃t =

√
β

µ
Bt −

β

2µ2
t2, t ≥ 0 and Rt = L̃t − inf

0≤s≤t
L̃s, t ≥ 0. (2.4)

Then

n−2/3(|Gn1 |, |Gn2 |, . . .)
d−→ (ζ1, ζ2, . . .)

as n→∞ in `2↓, where (ζ1, ζ2, . . .) are the lengths of the excursions above 0 of the process

(Rt)t≥0. The same result holds with (|Gn1 |, |Gn2 |, . . .) replaced by (|Mn
1 |, |Mn

2 |, . . .).

(ii) Suppose that limk→∞ k
α+2P (D1 = k) = c for some constant c > 0 and some α ∈ (1, 2),

and that E [D1] = µ. Let X be the process with independent increments whose law is

specified by its Laplace transform

E [exp(−λXt)] = exp

(∫ t

0
ds

∫ ∞
0

dx(e−λx − 1 + λx)
c

µ

1

xα+1
e−xs/µ

)
, λ ≥ 0, t ≥ 0,

and let

L̃t = Xt −
cΓ(2− α)

α(α− 1)µα
tα, t ≥ 0 and Rt = L̃t − inf

0≤s≤t
L̃s t ≥ 0. (2.5)

Then

n−α/(α+1)(|Mn
1 |, |Mn

2 |, . . .)
d−→ (ζ1, ζ2, . . .)

as n→∞ in `2, where (ζ1, ζ2, . . .) are the lengths of the excursions above 0 of the process

(Rt)t≥0.
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The sequences (ζ1, ζ2, . . .) appearing in Theorem 2.2.1 must, of course, have the same dis-

tributions as the lengths of the excursions above 0 of the processes (Rt, t ≥ 0) from the Intro-

duction. Indeed, the processes L̃ defined in (2.4) and (2.5) have the same distributions as those

defined at (2.2) and (2.1), respectively. We prove this in Proposition 2.3.2 below.

Joseph [91] conjectures that Theorem 2.2.1 (ii) should also hold with Mn(ν) replaced by

Gn(ν). We show in the sequel (Section 2.5.3) that this is indeed true (this has been proved

independently by Dhara, van der Hofstad, van Leeuwaarden and Sen [62]). In consequence, all

of our scaling limit results hold interchangeably for Gn(ν) and Mn(ν).

The common structure exhibited by the two parts of Theorem 2.2.1 is no coincidence. In both

cases, the proof proceeds via an exploration of the graph similar to the one described earlier.

As outlined above, locally, the components resemble critical branching processes. Since the

components have small surplus, the excursions of the stack-size process above 0 approximately

encode the component sizes. Moreover, the stack-size process behaves approximately like a

reflected random walk. A weak convergence result for the stack-size process then yields the

convergence of the component sizes.

Riordan [122], in fact, proves a more refined version of Theorem 2.2.1 (i), but under the

(non-optimal) assumption that the degrees are bounded. Firstly, his results are stated for a

uniform random graph with a given n-dependent deterministic degree sequence (d
(n)
i )i≥1, where

the moment conditions on D1 are replaced by appropriate convergence results for the moments

of the degree of a uniformly chosen vertex. In particular, he is able to consider the components

anywhere in the critical window, rather than precisely at θ = 1. (We refer the reader to [122]

for the details.) Secondly, he takes account also of the surplus of each component. Jointly with

the convergence of the rescaled component sizes, he shows that

(s(Gn1 ), s(Gn2 ), . . .)
d−→ (M1,M2, . . .)

for a non-trivial random sequence (M1,M2, . . .) ∈ ZN
+. The sequence (M1,M2, . . .) is again

obtained using the process R in (2.4): on top of the graph of the random function R, superpose

a Poisson point process of intensity 1/µ in the plane. Then Mi is the number of points falling

in the area beneath the excursion ε̃i and above the x-axis, for i ≥ 1.

The first result of this kind was proved by Aldous [13] for the Erdős-Rényi random graph,

G(n, p) at its critical point. More precisely, consider the graph GER
n obtained by taking n

vertices and connecting any pair of them by an edge independently with probability p = 1/n.

Write GER,n
1 , GER,n

2 , . . . for the components listed in decreasing order of size. Define L̃ and R as

in (2.4) with β = µ = 1, let ζ1, ζ2, . . . be the lengths of the excursions of R and let M1,M2, . . .

be the numbers of points of a Poisson process of intensity 1 falling in each excursion.

Theorem 2.2.2 (Aldous [13]). As n→∞,(
n−2/3(|GER,n

1 |, |GER,n
2 |, . . .), (s(GER,n

1 ), s(GER,n
1 ), . . .)

)
d−→ ((ζ1, ζ2, . . .), (M1,M2, . . .))
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where the convergence is in `2 for the component sizes and in the sense of the product topology

for the surpluses.

The limit is the same as in Theorem 2.2.1 (i) in the case β = µ = 1. This should be intuitively

unsurprising, since the vertex degrees in the Erdős–Rényi random graph approximately behave

like i.i.d. Poisson(1) random variables, for which Theorem 2.2.1 would apply with β = µ = 1.

(Aldous’ theorem in fact treats the whole critical window, i.e. G(n, 1/n + λn−4/3) for λ ∈ R.

The effect is to introduce an extra drift of λt into the process L̃; we omit the very similar details

for the sake of brevity.)

2.2.3 Branching processes and their metric space scaling limits

As alluded to above, the components of our critical random graphs behave approximately like

critical branching process trees. It will be useful to spend a little time now exploring what

happens in the true branching process setting, since what we do later will be analogous. Suppose

that we take a sequence of i.i.d. Galton–Watson trees, with offspring distribution represented by

some non-negative random variable Y with E [Y ] = 1 and P (Y = 1) < 1. (This entails that each

of the trees has finite size almost surely.) We use the standard encoding of this forest in terms

of its  Lukasiewicz path or depth-first walk, given by S(0) = 0 and S(k) =
∑k

i=1(Yi−1) for k ≥ 1

(see Le Gall [95] or Duquesne and Le Gall [70] for more details). Here, as usual, we explore the

vertices of the forest in depth-first order, and Yi is the number of children of the ith vertex that

we visit; these get added to the stack to await processing. The stack-size process is essentially a

reflected version of S, given by (1 + S(k)−min0≤j≤k S(j))k≥0. It is straightforward to see that

the individual trees correspond to excursions above the running minimum of (S(k))k≥0; it is

technically easier to work with the depth-first walk than with the stack-size process, since S it

is an unreflected random walk. An even more convenient encoding of the forest is given by the

height process, which tracks the generation of the successive vertices listed in depth-first order.

(It is, however, considerably harder to understand its distribution.) In terms of the depth-first

walk, the height process (G(n))n≥0 is defined by G(0) = 0 and

G(n) := #

{
j ∈ {0, 1, . . . , n− 1} : S(j) = min

j≤k≤n
S(k)

}
. (2.6)

The different trees now correspond to excursions above 0 of G.

The following generalised functional central limit theorem indicates some of the possible

scaling limits for S in this setting (see, for example, Theorem 3.7.2 of Durrett [71]).

Theorem 2.2.3. (i) Suppose that E [Y ] = σ2 <∞. Then

n−1/2(S(bntc), t ≥ 0)
d−→ σ(Bt, t ≥ 0)

as n→∞, in D(R+,R), where B is a standard Brownian motion.
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(ii) Suppose that limk→∞ k
α+1P (Y = k) = c for some constant c > 0 and some α ∈ (1, 2).

Then

n−1/α(S(bntc), t ≥ 0)
d−→ (Lt, t ≥ 0)

as n→∞, in D(R+,R), where L is a spectrally positive α-stable Lévy process, with Laplace

transform

E [exp(−λLt)] = exp

(
cΓ(2− α)

α(α− 1)
λαt

)
, λ ≥ 0, t ≥ 0.

We now turn to the behaviour of the height process. In the Brownian case, this turns out to

be asymptotically the same as that of the reflected depth-first walk, up to a scaling constant.

In the stable case, however, matters are a little more complicated. Consider the α-stable Lévy

process L. Chapter 1 of Duquesne & Le Gall [70] shows that it is possible to make sense

of a corresponding continuous height process, defined as follows. First, for 0 ≤ s ≤ t, let

L̂
(t)
s = Lt − L(t−s)− and let M̂

(t)
s = sup0≤r≤s L̂

(t)
r . Then define Ht to be the local time at level

0 of the process L̂(t) − M̂ (t). We may choose the normalization in such a way that

Ht = lim
ε↓0

1

ε

∫ t

0
1{M̂(t)

s −L̂
(t)
s ≤ε}

ds (2.7)

in probability. Theorem 1.4.3 of [70] shows that H has continuous sample paths with probability

1, and so we may (and will) work with a continuous version in the sequel. Corollary 2.5.1 of

[70] entails the following joint convergences.

Theorem 2.2.4 (Duquesne & Le Gall [70]). (i) Suppose that E [Y ] = σ2 <∞. Then

(n−1/2S(bntc), n−1/2G(bntc), t ≥ 0)
d−→
(
σBt,

2

σ

(
Bt − inf

0≤s≤t
Bs

)
, t ≥ 0

)
.

as n→∞ in D(R+,R2).

(ii) Suppose that limk→∞ k
α+1P (Y = k) = c for some constant c > 0 and some α ∈ (1, 2).

Then we have (
n−1/αS(bntc), n−(α−1)/αG(bntc), t ≥ 0

)
d−→ (Lt, Ht, t ≥ 0)

as n→∞ in D(R+,R2).

There is also a conditional version of Theorem 2.2.4 for the depth-first walk Sn and height

process Gn of a single Galton–Watson tree, conditioned to have total progeny n. (Let us

assume that P (Y = k) > 0 for all k ≥ 0, so that the event of having total progeny n has

positive probability for all n; this is not really necessary, but will facilitate the statement of the

theorem.)

Theorem 2.2.5. (i) (Marckert & Mokkadem [107]). Suppose that E [Y ] = σ2 <∞. Then

(n−1/2Sn(bntc), n−1/2Gn(bntc), 0 ≤ t ≤ 1)
d−→
(
σe(t),

2

σ
e(t), 0 ≤ t ≤ 1

)
,

as n→∞ in D([0, 1],R2), where e is a standard Brownian excursion.
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(ii) (Duquesne [69]). Suppose that limk→∞ k
α+1P (Y = k) = c for some constant c > 0 and

some α ∈ (1, 2). Then we have(
n−1/αSn(bntc), n−(α−1)/αGn(bntc), t ≥ 0

)
d−→ (e(t),h(t), 0 ≤ t ≤ 1)

as n → ∞ in D([0, 1],R2), where e is a normalised excursion of L and h is the corre-

sponding normalised excursion of H.

We now describe briefly how a limiting height process excursion may be used to define a

limit R-tree (and the reader to the survey paper of Le Gall [95] for more details). Suppose

first that h : [0, ζh] → R+ is any continuous function such that h(0) = h(ζh) = 0. Define a

pseudo-metric on [0, 1] via

dh(x, y) = h(x) + h(y)− 2 min
x∧y≤z≤x∨y

h(z), x, y ∈ [0, ζh].

Define an equivalence relation ∼ on [0, ζh] by declaring x ∼ y if dh(x, y) = 0. Now let Th =

[0, ζh]/∼ and endow it with the distance dh in order to obtain a metric space (which is compact:

one checks easily that it is a Hausdorff space, and that it is sequentially compact). Then

(Th, dh) is the R-tree encoded by h. Write ph : [0, ζh] → Th for the canonical projection. We

may additionally endow (Th, dh) with a natural “uniform” measure µh having total mass ζh,

obtained as the push-forward of the Lebesgue measure on [0, ζh] onto the tree (and concentrated

on the leaves of Th). Write M for the space of compact metric spaces each endowed with a

finite (non-negative) Borel measure, up to measure-preserving isometry. We equip M with the

Gromov–Hausdorff–Prokhorov distance dGHP, defined as follows. (See Section 2.1 of [7] for more

details and proofs of the results claimed below, as well as further references to the literature.)

Let (X, d, µ) and (X ′, d′, µ′) be elements of M. We say that C is a correspondence between X

and X ′ if C ⊆ X ×X ′ and, whenever x ∈ X, there exists x′ ∈ X ′ such that (x, x′) ∈ C and vice

versa. The distortion of the correspondence C is

dist(C) := sup{|d(x1, x2)− d′(x′1, x′2)| : (x1, x
′
1), (x2, x

′
2) ∈ C}.

Write C(X,X ′) for the set of correspondences between X and X ′. Write M(X,X ′) for the set

of non-negative Borel measures on X ×X ′. Write p and p′ for the canonical projections from

X ×X ′ to X and X ′ respectively. We define the discrepancy of π ∈M(X,X ′) with respect to

µ and µ′ to be

disc(π;µ, µ′) = ‖µ− p∗π‖+ ‖µ′ − p′∗π‖,

where ‖ν‖ is the total variation of the signed measure ν. We define the Gromov–Hausdorff–

Prokhorov distance by

dGHP((X, d, µ), (X ′, d′, µ′)) := inf
C∈C(X,X′), π∈M(X,X′)

{
1

2
dist(C) ∨ disc(π;µ, µ′) ∨ π(Cc)

}
.

34



Then (M, dGHP) is a Polish space. We observe a very useful upper bound for the Gromov–

Hausdorff–Prokhorov distance between R-trees encoded by continuous excursions:

dGHP((Th, dh, µh), (Tg, dg, µg))

≤ 2 max

{
sup

0≤x≤ζh∧ζg
|h(x)− g(x)|, sup

ζh∧ζg<x≤ζh
h(x) + sup

ζh∧ζg<x≤ζg
g(x),

1

2
|ζh − ζg|

}
, (2.8)

The random R-trees encoded by 2e for α = 2 and h for α ∈ (1, 2) are known as the Brownian

continuum random tree, for which we will write (T (2), d(2)) (with mass measure µ(2)), and the

α-stable tree, for which we will write (T (α), d(α)) (with mass measure µ(α)), respectively. (Note

that because of our choice of Laplace exponent, this is a constant multiple of the usual α-stable

tree.)

Let Tn be our Galton–Watson tree conditioned to have size n. The natural way to take a

scaling limit of the tree itself is to consider it as a metric space using the graph distance dn.

Create a (probability) measure µn by assigning mass 1/n to each vertex of Tn. An important

consequence of Theorem 2.2.5 and the bound (2.8) is the following.

Theorem 2.2.6. (i) Suppose that E [Y ] = σ2 <∞. Then(
Tn,

σ√
n
dn, µn

)
d−→
(
T (2), d(2), µ(2)

)
.

as n→∞ for the Gromov–Hausdorff–Prokhorov topology.

(ii) Suppose that limk→∞ k
α+1P (Y = k) = c for some constant c > 0 and some α ∈ (1, 2).

Then (
Tn, n

−(α−1)/αdn, µn

)
d−→
(
T (α), d(α), µ(α)

)
,

as n→∞ for the Gromov–Hausdorff–Prokhorov topology.

Returning now to the setting of Theorem 2.2.4, the excursions of the limiting height process

can heuristically be thought of as defining a forest of random R-trees. (Since there is neither a

shortest nor a longest excursion, there is no sensible way to list these trees. For definiteness, let

us instead think of restricting to an interval [0, t] in time, for which there is a longest excursion,

and then list the trees in decreasing order of size.) Using the scaling properties of the underlying

Lévy processes, these consist of randomly rescaled copies of the Brownian continuum random

tree in case (i) or α-stable trees in case (ii), respectively. We refer to these as the Brownian and

stable forests.

2.2.4 Our method

Our approach to proving Theorem 2.1.1 is as follows. Firstly, we show that the law of the

depth-first walk of the graph is (up to a small error) absolutely continuous with respect to that

of a centred random walk which is in the domain of attraction of the spectrally positive α-stable
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Lévy process L. This enables us to give an alternative (and perhaps more “conceptual”) proof

of Theorem 2.2.1. We also show that the convergence of the depth-first walk can be boosted to

a joint convergence with the corresponding height process. The joint convergence of this pair

of coding functions in the setting of a sequence of i.i.d. Galton–Watson trees, Theorem 2.2.4, is

a highly non-trivial result. The corresponding result in our setting, however, follows relatively

straightforwardly from Theorem 2.2.4 via absolute continuity and some integrability lemmas.

The height process is the key ingredient in proving a metric space convergence for these

graphs, and allows us to show the convergence of a spanning forest of our graph. In order to

obtain the full metric space convergence, we must also control the edges which form cycles. We

call these back-edges. We prove that the number of back-edges edges in the “large components”

is a tight quantity. This firstly allows us to resolve Conjecture 8.5 of Joseph [91], by showing

that all of the above results extend to the case where the multigraph is conditioned to be simple.

Secondly, we are able to capture the full graph structure by tracking also the locations of these

back-edges in the spanning forest. We finally show that all of these quantities can be passed

through to the limit in such a way that we get convergence to the stable graph.

2.2.5 Related work on scaling limits of critical random graphs, universality,

and open problems

This paper is a contribution to a now extensive literature on scaling limits of critical random

graphs. In this section, we will place our work in context by giving a summary of related results.

As mentioned above, the first critical random graph to be studied from the perspective of

scaling limits was the Erdős-Rényi random graph, in the work of Aldous [13], who considered

both component sizes and surpluses. Addario-Berry, Broutin and Goldschmidt [6, 5] built on

Aldous’ work in order to prove convergence to the β = µ = 1 Brownian graph, in the sense

of an `4 version of the Gromov–Hausdorff distance. (It is straightforward to improve this to a

convergence in an `4 version of the Gromov–Hausdorff–Prokhorov distance, which appears as

Theorem 4.1 of Addario-Berry, Broutin, Goldschmidt & Miermont [7].)

Several models have been proved to lie in the same universality class as the Erdős–Rényi

random graph, which is roughly characterised by the property that the degree of a uniformly

chosen vertex converges to a limit with finite third moment. Already in [13], Aldous had, in

fact, also considered another model: a rank-one inhomogeneous random graph in which, for each

n ≥ 1, we are given a sequence of weights w(n) = (w
(n)
1 , w

(n)
2 , . . . , w

(n)
n ) and each pair of vertices

{i, j} is connected independently with probability 1−exp(−q(n)w
(n)
i w

(n)
j ), for 1 ≤ i, j ≤ n. Such

graphs may be constructed dynamically by assigning an exponential clock to each potential edge

and including the edge when the clock rings. It is straightforward to see that, in consequence,

the component sizes then evolve according to the multiplicative coalescent. In his Proposition

4, Aldous gave conditions on sequences (w(n), q(n))n≥1 for which one gets convergence of the

rescaled component weights to the same limit as for the component sizes in the Erdős–Rényi
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case. These results were generalised by Bhamidi, van der Hofstad and van Leeuwaarden [40] to

give convergence of the rescaled component sizes in the Norros–Reittu model [119] (for which

q(n) above is replaced by 1/
∑n

i=1w
(n)
i ) to the sequence (ζ1, ζ2, . . .) appearing in Theorem 2.2.1

(i), with a general β and µ. The convergence of the component sizes was also treated in a

similar setting but with i.i.d. vertex weights by Turova [134].

Nachmias and Peres [115] proved the convergence of the rescaled component sizes for critical

percolation on a random d-regular graph, for d ≥ 3, to the excursion lengths of the reflected

Brownian motion with parabolic drift for appropriate β and µ. As we have already detailed

above, Riordan [122] and Joseph [91] proved analogous results for the critical configuration

model with asymptotic degree distribution possessing finite third moment, with Riordan treating

the surpluses as well as the component sizes. Dhara, van der Hofstad, van Leeuwaarden and

Sen [61] improved these results to give the scaling limit of the sizes and the surpluses under a

minimal set of conditions on the (deterministic) vertex degrees, which essentially amount to the

convergence in distribution of the degree of a uniform vertex, along with the convergence of its

third moment. In a somewhat different direction, Bhamidi, Budhiraja and Wang [33] considered

critical random graphs generated by Achlioptas processes [42] with bounded size rules. They

again proved convergence of the rescaled component sizes, along with the surpluses, as a process

evolving in the critical window, building on results for the barely subcritical regime proved in

[34]. Federico [76] has recently proved a scaling limit for the component sizes of the random

intersection graph which is related to that of the Erdős–Rényi model.

Turning now to the metric structure, very general results concerning the domain of attraction

of the Brownian graph have been proved by Bhamidi, Broutin, Sen and Wang [32], building

on earlier work for the Norros–Reittu model by Bhamidi, Sen and Wang [38]. In particular,

[32] gives a set of sufficient conditions under which one obtains convergence in the Gromov–

Hausdorff–Prokhorov sense to the Brownian graph. It is also demonstrated in that paper

that these conditions are fulfilled for certain critical inhomogeneous random graphs (of the

stochastic block model variety), and for critical percolation on a supercritical configuration

model with finite third moment degree distribution. A crucial role is played by dynamical

constructions of the graphs in question, and by the idea that some pertinent statistic of the

evolving graph may be well approximated by the multiplicative coalescent. Bhamidi and Sen [37]

later proved convergence to the Brownian graph for the critical configuration model (rather than

for percolation on the supercritical case) in the Gromov–Hausdorff–Prokhorov sense, under the

same set of minimal conditions as in [61], and used it to deduce geometric properties of the

vacant set left by a random walk on various models of graph.

We have mentioned a few examples of critical percolation on graphs for which the resulting

cluster sizes lie in the universality class of the Brownian graph. This is expected to be true in

much greater generality: for a wide variety of finite base graphs which are sufficiently “high

dimensional”, although the percolation critical point will be model-dependent, the behaviour
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in the vicinity of that critical point should essentially be the same as in the mean-field case

of percolation on the complete graph, i.e. the Erdős–Rényi model. We refer the reader to the

book of Heydenreich and van der Hofstad [86] for an in-depth discussion of this universality

conjecture.

The results of the present paper primarily concern cases where the degree of a uniformly

chosen vertex has infinite third moment and a power-law tail with exponent α+ 1 ∈ (2, 3), and

in this context the picture is more complicated. As in the Brownian case, it is to be expected

that, as long as the degree of a uniformly chosen vertex has the right properties, we should get

the same scaling limit irrespective of precisely which model we consider. It is technically more

straightforward to consider rank-one inhomogeneous random graphs than the configuration

model. In the context of component sizes, this was first done by Aldous and Limic [15] for

the rank-one model treated by Aldous in [13] but with appropriately altered conditions on the

weight sequence. These different conditions correspond to different extremal entrance laws for

the multiplicative coalescent. Aldous and Limic obtained the analogue of Theorem 2.2.1 for the

component weights, where the limit is now given by the ordered lengths of the excursions above

the running infimum of the thinned Lévy process,κBt + λt+
∑
i≥1

ϑi(1{Ei≤t} − ϑit)


t≥0

, (2.9)

where Ei ∼ Exp(ϑi) for each i ≥ 1, κ ≥ 0, λ ∈ R, and ϑ1 ≥ ϑ2 ≥ . . . ≥ 0 is a sequence such

that
∑

i≥1 ϑ
3
i < ∞ and, if κ = 0, also

∑
i≥1 ϑ

2
i = ∞. This was extended in the κ = 0 case by

Bhamidi, van der Hofstad and van Leeuwaarden [41] to give the convergence of the component

sizes for the Norros–Reittu model with a specific weight sequence. Heuristically, the choice

of entrance law for the multiplicative coalescent is determined by the properties of the barely

subcritical graph. For the configuration model, the first work in the power-law setting was that

of Joseph [91] detailed above for the case of i.i.d. degrees. The convergence of the sizes and

surpluses for much more general (deterministic) degree sequences were treated by Dhara, van

der Hofstad, van Leeuwaarden and Sen [62], with the possible scaling limits being driven by the

same κ = 0 thinned Lévy processes as in the Norros–Reittu model.

A significant challenge in obtaining a metric space convergence in the power-law setting is

that one often does not have direct access to a scaling limit result for the height process of

the spanning forest discovered by a depth-first exploration. (That we have such a result in

the case of i.i.d. degrees is of considerable help to us.) The first metric space scaling limit in

the power-law setting was obtained by Bhamidi, van der Hofstad and Sen [39] for the Norros–

Reittu model with the specific weight sequence used in [41]. Here, the convergence is in the

product Gromov–Hausdorff–Prokhorov sense, and the limit object is constructed by making

vertex identifications in tilted inhomogeneous continuum random trees (of the sort introduced

by Aldous and Pitman in [16]).
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Broutin, Duquesne and Wang [50, 49] use a very different approach in order to prove a unified

metric space scaling limit for the Norros–Reittu model with very general weight sequences.

They are able to treat situations where the scaling limit of the depth-first walk is a thinned

Lévy process for any κ ≥ 0, λ ∈ R and sequence (ϑ1, ϑ2, . . .), recovering the generality of Aldous

and Limic’s paper [15]. They embed spanning subtrees of the components of the graph inside a

forest of Galton–Watson trees, and exploit the convergence of this (bigger) forest on rescaling

to the sequence of R-trees encoded by a Lévy process (as in Duquesne and Le Gall [70]), whose

height process also converges. This enables them to obtain the convergence of the height process

of the true spanning forest in the Gromov–Hausdorff–Prokhorov sense; the surplus edges can

also be tracked, in order to obtain a product Gromov–Hausdorff–Prokhorov convergence of the

whole ordered sequence of graph components.

Let us finally turn to the work of Bhamidi, Dhara, van der Hofstad and Sen [36], who proved

a metric space scaling limit analogous to that of [39] for critical percolation on a supercritical

configuration model. Among the settings studied so far, theirs is the closest to ours, although

the technical content is very different (their work relies on the analysis of some susceptibility

functions in the barely subcritical regime, while we do not study the latter). We will describe

it precisely, in order to provide a comparison with Theorem 2.1.1. They take a (deterministic)

degree sequence dn1 , d
n
2 , . . . , d

n
n such that

∑n
i=1 d

n
i is even and, if Dn is the degree of a typical

vertex, then

(i) n−1/(α+1)dni → ϑi as n → ∞ for each i ≥ 1, where ϑ1 ≥ ϑ2 ≥ . . . ≥ 0 is such that∑
i≥1 ϑ

3
i <∞ but

∑
i≥1 ϑ

2
i =∞;

(ii) Dn
d−→ D as n → ∞, along with the convergence of its first two moments, for some

random variable D with P (D = 1) > 0, E [D] = µ and E [D(D− 1)] /E [D] = θ > 1, and

lim
K→∞

lim sup
n→∞

n−3/(α+1)
∑

i≥K+1

(dni )3 = 0.

Let θn = E [Dn(Dn − 1)] /E [Dn] (which, by (ii), converges to θ > 1). They then perform

percolation at parameter

pn(λ) =
1

θn
+ λn−(α−1)/(α+1),

for some λ ∈ R, which yields a graph in the critical window. In this setting, their Theorem 2.2 is

the precise analogue of our Theorem 2.1.1 but with the convergence in the product Gromov-weak

topology and with the limit object ((Gi, di, µi), i ≥ 1) constructed by making vertex identifica-

tions in the tilted inhomogeneous continuum random trees mentioned above. (We understand

that this convergence will be improved to a product Gromov–Hausdorff–Prokhorov convergence

under an extra technical condition in work in preparation [35].) A precise description of the

limit object would be too lengthy to undertake here, but it is instructive to compare the scaling

limit of the depth-first walk in the two settings. For us, this is the measure-changed stable Lévy
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process L̃; for Bhamidi, Dhara, van der Hofstad and Sen it is the thinned Lévy process in (2.9)

with κ = 0. To make the connection between the results, suppose now we take D such that

P (D = 1) > 0, E [D] = µ, E [D(D− 1)] /E [D] = θ > 1 and P (D = k) ∼ ck−α−2. Let dn1 , . . . , d
n
n

be an ordered sample of i.i.d. random variables D1, . . . ,Dn with the same distribution as D.

Then conditions (i) and (ii) above are satisfied almost surely for some sequence of random vari-

ables ϑ1, ϑ2, . . . (see Section 2.2 of [62]). Perform percolation at parameter p = 1/θ to obtain

new degrees D1, D2, . . . , Dn which are mildly dependent but whose ordered version behaves very

similarly to the order statistics of a i.i.d. sample which satisfy the conditions of our theorem. (In

particular, using results of Janson [89], such mild dependence can be shown to have a negligible

effect on the properties of the graph.) Then it should be the case that Bhamidi, Dhara, van

der Hofstad and Sen’s limit object is the same as the stable graph. In particular, the process

defined at (2.9) with κ = 0 and λ = 0 should, for this particular random sequence (ϑ1, ϑ2, . . .),

have the same law as L̃. Similarly, if it is the case that the scaling limit is the same as for the

analogous inhomogeneous random graph setting, then our limit object should also coincide with

a particular annealed version of that of Broutin, Duquesne and Wang [50, 49].

It is perhaps worth emphasising that, in contrast to the bulk of the other papers cited here,

the multiplicative coalescent (and its relationship to percolation) appears nowhere in our proofs,

and is conceptually absent from our approach.

Let us now give a list of open problems and conjectures arising from our work.

(i) Prove that the stable graph is, indeed, an annealed version of the limit object from [36]

or [50, 49].

(ii) The convergence in our main theorem occurs with respect to the product Gromov–

Hausdorff–Prokhorov topology. For sequences A = (A1, A2, . . .) and B = (B1, B2, . . .) of

compact measured metric spaces, we may obtain stronger topologies using the distances

distp(A,B) =

∑
i≥1

dGHP(Ai, Bi)
p

1/p

(2.10)

for p ≥ 1. For the Erdős–Rényi random graph, the analogous convergence to the Brownian

graph holds in the sense of dist4. We conjecture that it should be possible to improve our

main result for α ∈ (1, 2] to a convergence in the sense of dist2α/(α−1).

(iii) One reason for wanting to prove such a result is that it would imply the convergence in

distribution of the diameter of the whole graph (i.e. the largest distance between any two

vertices in the same component). In order to prove convergence in dist2α/(α−1), we would

need bounds on the component diameters in terms of powers of their sizes for the whole

graph (we can do this for the parts explored up to time O(nα/(α+1)) using the methods

of this paper, but that is not sufficient). A finer understanding of the barely subcritical

regime for the configuration model would presumably help to resolve this issue.
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(iv) As shown in Proposition 2.6.2, the measure change used in this paper makes sense for a

large family of spectrally positive Lévy processes (see Section 2.6.1 for the precise con-

ditions). Any such Lévy process may be intuitively thought of as encoding a forest of

continuum trees, although the analogue of Theorem 2.2.4 holds only with the imposition

of extra regularity conditions (see Theorem 2.3.1 of [70]). Is it possible to find a sequence

of degree distributions (νn)n≥1, depending now on n and such that the regularity con-

ditions are satisfied, so that if we take D
(n)
1 , . . . , D

(n)
n to be i.i.d. random variables with

distribution νn then we get convergence of our discrete measure change to its continuum

analogue? Or does the self-similarity inherent in the Brownian and stable settings play a

key role? If a generalisation to the Lévy case is possible, what is the connection to thinned

Lévy processes, or to the approach of Broutin, Duquesne and Wang [50, 49]?

For simplicity we have restricted our attention in this paper to the case where θ(ν) = 1.

The critical window is obtained by considering the situation where the degrees Dn
1 , . . . , D

n
n are

i.i.d. but now with some n-dependent degree distribution νn, such that E [Dn
1 ] → µ for some

µ as n → ∞, θ(νn) = 1 + λn−(α−1)/(α+1) and P (Dn
1 = k) ∼ ck−α−2 as k → ∞, for some fixed

λ ∈ R. This regime is the subject of work in progress by Serte Donderwinkel.

2.2.6 Plan of the rest of the paper

In Section 2.3, we study the process L̃ which gives rise to the stable graph. In particular, we

establish the local absolute continuity relation between L̃ and L, and present some results in

excursion theory. The section concludes with the proof of Theorem 2.1.2. In Section 2.4, we

study a forest which is closely related to Mn(ν). We show that the absolute continuity relation

(2.1), (2.2) may be seen as the limit of a discrete measure change between the degrees in the

order we observe them when we explore this forest in a depth-first manner and an i.i.d. sequence

of random variables whose law is the size-biased version of ν. The main result of this section is

Theorem 2.4.1, which gives the joint convergence of the depth-first walk and height process of

the discrete forest to their continuum counterparts. In Section 2.5, we explore the multigraph

Mn(ν) in a depth-first manner, and record its structure via coding functions close to those of

the forest in Section 2.4, and show their convergence in law. We also deal with the occurrence

of the back-edges, and prove that Mn(ν) and Gn(ν) cannot have different scaling limits. We

must then extract the individual components of the graph in decreasing order of size, and prove

that their individual coding functions converge. We adapt an approach of Aldous [13] using

size-biased point processes; this is perhaps the most technical part of the paper. Section 2.5

culminates in the proof of Theorem 2.1.1. The Appendix contains various technical results. In

particular, in Section 2.6.1 we give a formulation of the measure change in (2.1) and (2.2) for

a general class of Lévy processes, which may be of independent interest. In Section 2.6.4, we

show the natural result that a single component of Gn(ν) or Mn(ν) conditioned to have size
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bxnα/(α+1)c has a component of the α-stable graph of size x as its scaling limit.

2.3 The limit object: the stable graph

2.3.1 An absolute continuity relation for spectrally positive α-stable Lévy

processes

We begin by discussing the coding function R discovered by Joseph [91], which was defined in

(2.5). Fix α ∈ (1, 2), µ ∈ (1, 2) and c > 0. Recall that L is the spectrally positive α-stable Lévy

process having Lévy measure π(dx) = c
µx
−(α+1)dx. This process has Laplace transform

E [exp(−λLt)] = exp(tΨ(λ)), λ ≥ 0, t ≥ 0,

where

Ψ(λ) =

∫ ∞
0

c

µ
x−(α+1)dx(e−λx − 1 + λx) =

Cα
µ
λα,

with

Cα =
cΓ(2− α)

α(α− 1)
.

Recall also that X is the unique process with independent increments such that

E [exp(−λXt)] = exp

(∫ t

0
ds

∫ ∞
0

dx(e−λx − 1 + λx)
c

µ

1

xα+1
e−xs/µ

)
, λ ≥ 0, t ≥ 0.

Let

At = −Cα
tα

µα

and define

L̃t = Xt +At.

We observe that X is a martingale and A is a finite-variation process, so this is, in fact, the

Doob–Meyer decomposition of the process L̃.

Proposition 2.3.1. We have

L̃t → −∞ a.s.

as t→∞.

Proof. Lemma B.3 of Joseph [91] gives the convergence in probability; we adapt his argument.

Since At is deterministic and tends to −∞, it will be sufficient to prove that

lim sup
t→∞

t−αXt = 0 a.s.

Consider a Poisson point process on R+ × R+ of intensity

c

µ
x−(α+1)e−xs/µ ds dx,
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with points {(s,∆s)}. Let X(1) be the martingale arising from compensating the jumps of

magnitude at most 1, formally defined as the ε → 0 limit of the family {X(1,ε), ε > 0} of

processes given by

X
(1,ε)
t =

∑
s≤t

∆s1{ε<∆s<1)} −
∫ t

0
ds

∫ 1

ε
dx
c

µ
x−αe−xs/µ,

and let

X
(2)
t =

∑
s≤t

∆s1{∆s≥1} −
∫ t

0
ds

∫ ∞
1

dx
c

µ
x−αe−xs/µ.

Then Xt = X
(1)
t +X

(2)
t . By Doob’s L2-inequality, we have

E

[(
sup

0≤s≤t

∣∣∣X(1)
s

∣∣∣)2
]
≤ 4E

[
(X

(1)
t )2

]
= 4

∫ t

0
ds

∫ 1

0
dx
c

µ
x−(α−1)e−xs/µ.

The integral on the right-hand side is bounded above by Ctα−1 for some constant C > 0.

Indeed, for every s > 0,∫ 1

0
dx
c

µ
x−(α−1)e−xs/µ = sα−2

∫ s/µ

0

c

µα−1
u−(α−1)e−udu ≤ cΓ(2− α)

µα−1
sα−2.

Hence, applying Markov’s inequality, we get

P
(

sup
n−1<s≤n

∣∣∣X(1)
s

∣∣∣ > n(α+1)/2

)
≤ C

n2
.

As this is summable in n, the Borel–Cantelli lemma gives that

P
(

sup
n−1<s≤n

∣∣∣X(1)
s

∣∣∣ > n(α+1)/2 i.o.

)
= 0.

Since α > 1, it follows that

lim sup
t→∞

t−αX
(1)
t = 0 a.s.

Turning now to X(2), for all t ≥ 0 we have the straightforward bound

sup
t≥0

X(2)
s ≤

∑
s≥0

∆s1{∆s≥1}.

The right-hand side has expectation∫ ∞
0

ds

∫ ∞
1

dx
c

µ
x−αe−xs/µ = c

∫ ∞
1

dx x−(α+1)

∫ ∞
0

ds
x

µ
e−xs/µ = c

∫ ∞
1

x−(α+1)dx =
c

α
.

This computation also entails that

inf
t≥0

X
(2)
t ≥ − c

α
.

Hence by Markov’s inequality, we have for all n ≥ 1:

P
(

sup
n−1<s≤n

∣∣∣X(2)
s

∣∣∣ > n(α+1)/2

)
≤ c

αn(α+1)/2
.

As for X(1), the Borel–Cantelli lemma gives that

lim sup
t→∞

t−αX
(2)
t = 0 a.s.

The result follows.

43



The main purpose of this section is to expand considerably our understanding of the pro-

cesses L̃ and R. Our first new result says that the law of the process L̃ is absolutely continuous

with respect to the law of the Lévy process L on compact time-intervals.

Proposition 2.3.2. For every t ≥ 0, we have the following absolute continuity relation: for

every non-negative integrable functional f : D([0, t],R)→ R+,

E
[
f(L̃s, 0 ≤ s ≤ t)

]
= E

[
exp

(
− 1

µ

∫ t

0
sdLs − Cα

tα+1

(α+ 1)µα+1

)
f(Ls, 0 ≤ s ≤ t)

]
.

This proposition is a consequence of a more general change of measure for spectrally positive

Lévy processes, Proposition 2.6.2, which is proved in the Appendix below.

In the Brownian case, we instead have Lt =
√

β
µBt, where B is a standard Brownian motion,

L̃t =

√
β

µ
Bt −

β

2µ2
t2, (2.11)

and Proposition 2.6.2 gives

E
[
f(L̃s, 0 ≤ s ≤ t)

]
= E

[
exp

(
− 1

µ

∫ t

0
sdLs −

β

6µ3
t3
)
f (Ls, 0 ≤ s ≤ t)

]
.

In order to harmonise notation, let us define C2 := β/2, so that Proposition 2.3.2 is valid as

stated for all α ∈ (1, 2].

Remark 2.3.3. The absolute continuity cannot be extended to t = ∞: the process (Lt, t ≥ 0)

is recurrent whereas, by Proposition 2.3.1 for α ∈ (1, 2) or (2.11) for α = 2, we have L̃t → −∞
a.s. as t→∞. (In particular,

(
exp

(
− 1
µ

∫ t
0 sdLs − Cα

tα+1

(α+1)µα+1

)
, t ≥ 0

)
is a martingale which

is not uniformly integrable.)

Recall that H is the height process which corresponds to L. Then for any α ∈ (1, 2], we may

define a pair (L̃, H̃) of processes via change of measure as follows: for suitable test-functions

f : D([0, t],R)2 → R,

E
[
f(L̃u, H̃u, 0 ≤ u ≤ t)

]
= E

[
exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α+ 1)µα+1

)
f(Lu, Hu, 0 ≤ u ≤ t)

]
.

2.3.2 Excursion theory

We begin with some notation. Write D+(R+,R+) for the space of càdlàg functions f : R+ → R+

with only positive jumps. We write E for the space of excursions, that is

E = {ε ∈ D+(R+,R+) : ∃t > 0 s.t. ε(s) > 0 for s ∈ (0, t) and ε(s) = 0 for s ≥ t}.

For ε ∈ E , let ζ(ε) be the lifetime of ε, that is the smallest t such that ε(s) = 0 for s ≥ t. Let

E∗ = E ∪ {∂}, where the extra state, ∂, represents the empty excursion, with ζ(∂) = 0.
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Let It = inf0≤s≤t Ls. It is standard that the process −I acts as a local time at 0 for the

reflected Lévy process (Lt− inf0≤s≤t Ls, t ≥ 0) (see Chapter VII of Bertoin [31] or Section 1.1.2

of Duquesne and Le Gall [70]). Indeed, we may decompose the path of the reflected process

into excursions above 0. Now write

σ` = inf {t ≥ 0 : It < −`} ,

so that (σ`, ` ≥ 0) is the inverse local time. We observe that σ` is a stopping time for the (usual

augmentation of the) natural filtration of (Lt)t≥0. For ` ≥ 0, write

ε(`) =

(`+ Lσ`−+u, 0 ≤ u ≤ σ` − σ`−) if σ` − σ`− > 0

∂ otherwise.

Then the following theorem is standard (see Theorem VII.1.1 of Bertoin [31], converting from

the spectrally negative case, or Miermont [109] for a convenient reference).

Theorem 2.3.4. The inverse local time process (σ`, ` ≥ 0) is a stable subordinator of index

1/α and, more specifically, with Lévy measure

µ1/α

C
1/α
α αΓ(1− 1/α)

x−1−1/αdx.

Moreover, the point measure on R+ × E given by∑
s≥0:σs−σs−>0

δ(s,ε(s)) (2.12)

is a Poisson random measure of intensity d`⊗ N(de), where the excursion measure N satisfies

N(ζ(e) ∈ dx) =
µ1/α

C
1/α
α αΓ(1− 1/α)

x−1−1/αdx.

Consider the excursions occurring before time σ`. With probability 1, only finitely many

of these are longer than η in duration for any η > 0. So, in particular, they may be listed in

decreasing order of length as (ε
(`)
i , i ≥ 1).

Since L is self-similar, it is possible to make sense of normalised versions of N i.e. N(x)(·) =

N(·|ζ(e) = x), which are probability measures. (Again see Miermont [109] for more details.)

For example, the law of e under N(x) is the same as the law of(
(x/ζ(e))1/α

e(ζ(e)s/x), 0 ≤ s ≤ x
)

under N(·|ζ(e) > η) for any fixed η > 0. In particular, we have that under N(x), the rescaled

excursion (x−1/α
e(xu), 0 ≤ u ≤ 1) has the same law as e under N(1). It follows that the

excursions ε(s) appearing in (2.12) may be thought of in two parts: as their lengths ζ(ε(s)) =

σs − σs− and their normalised “shapes” e(s) :=
(
ζ(ε(s))−1/αε(s)(ζ(ε(s))u), 0 ≤ u ≤ 1

)
where,
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crucially, the collection of shapes (e(s), s ≥ 0) is independent of the collection of excursion

lengths (ζ(ε(s)), s ≥ 0).

We observe that the excursions of the Lévy process L above its running infimum and the

excursions of the height process H are in one-to-one correspondence and have the same lengths.

In particular, we can make sense of an excursion of the height process h derived from e, under

N or its conditioned versions. The scaling relation for the height process is that under N(x) the

rescaled excursion (x−(α−1)/α
h(xu), 0 ≤ u ≤ 1) has the same law as h under N(1). The usual

stable tree is encoded by (a scalar multiple of) a height process with the distribution of h under

N(1).

Much of this structure can be transferred into our setting, by absolute continuity. Recall

that

Rt = L̃t − inf
0≤s≤t

L̃s, t ≥ 0.

We will make use of the following properties.

Lemma 2.3.5. The following statements hold almost surely.

(i) For each ε > 0, R has only finitely many excursions of length greater than or equal to ε.

(ii) The set {t : Rt = 0} has Lebesgue measure 0.

(iii) If (l1, r1) and (l2, r2) are excursion-intervals of R and l1 < l2, then L̃l1 > L̃l2.

(iv) For a ≥ 0, let Ba = {b > a : L̃b− = infa≤s≤b L̃s}. Then Ba does not intersect the set of

jump times of L̃.

Proof. Part (i) is a consequence of Lemma B.3 of Joseph [91]. For parts (ii), (iii) and (iv), we

first argue that the claimed properties are almost surely true for the Lévy process L and then

use absolute continuity to deduce them for L̃.

The analogues of both (ii) and (iii) are standard for L (see, for example, Chapter VII of

Bertoin [31]; indeed, these properties are necessary for Theorem 2.3.4 to work). It follows by

absolute continuity that P (Leb({s ≤ t : Rs = 0}) = 0) = 1 and

P
(
L̃l1 > L̃l2 for all (l1, r1), (l2, r2) excursion-intervals of R with l1 < l2 ≤ t

)
= 1,

for fixed t > 0. But then (ii) and (iii) follow by monotone convergence.

By the stationarity and independence of increments of L, it is sufficient to prove (iv) for

a = 0. But this then follows from Corollary 1 of Rogers [124]. In particular, if we let J be the

set of jump-times of L̃, by absolute continuity we get P (Ba ∩ [0, t] ∩ J 6= ∅) = 0 for any t > 0.

By monotone convergence again, we obtain P (Ba ∩ J 6= ∅) = 0.

Let Ĩt = inf0≤s≤t L̃s. As for the reflected stable process, we have that −Ĩ acts as a local

time at 0 for R. We write (σ̃`, ` ≥ 0) with σ̃` = inf{t > 0 : Ĩt < −`} for the inverse local
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time, (ε̃(`), ` ≥ 0) for the collection of excursions above 0, indexed by local time (with ε̃(`) = ∂

if σ̃` − σ̃`− = 0), and (ẽ(`), ` ≥ 0) for their shapes. In order to understand the laws of these

quantities, we first need to prove two preliminary results, Lemma 2.3.6 and Proposition 2.3.7.

Lemma 2.3.6. Let α ∈ (1, 2]. Then for any θ > 0,

EN(1)

[
exp

(
θ

∫ 1

0
e(t)dt

)]
<∞.

Proof. This is well known in the α = 2 case; see, for example, Section 13 of Janson [88]. For

α ∈ (1, 2), observe that ∫ 1

0
e(t)dt ≤ sup

t∈[0,1]
e(t).

By Theorem 9 of Kortchemski [92] (see also the discussion at the top of the 12th page), for

any δ ∈ (0, α
α−1), there exist constants C1, C2 > 0 such that

EN(1)

(
sup
t∈[0,1]

e(t) ≥ u

)
≤ C1 exp(−C2u

δ),

for every u ≥ 0. (Note that since Kortchemski works with the Lévy process having Laplace

exponent λα, his normalised excursions are a constant scaling factor different from ours. But

this changes the bound only by a constant.) Since we may take δ > 1, the result follows.

For t ≥ 0 write

Φ(t) := exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α+ 1)µα+1

)
.

Proposition 2.3.7. Let α ∈ (1, 2]. For any ` ≥ 0 we have that (Φ(t∧σ`), t ≥ 0) is a uniformly

integrable martingale and, thus, E [Φ(σ`)] = 1.

Proof. By Lemma 2.6.1 with θ = 1
µ , γ = δ = 0 and π(dx) = c

µx
−(α+1)dx, (Φ(t), t ≥ 0)

is a non-negative martingale of mean 1. Since for any ` ≥ 0, σ` is a stopping time for L

and since Φ has right-continuous trajectories, (Φ(t ∧ σ`), t ≥ 0) is a martingale (w.r.t to the

natural filtration of L). So by the almost sure martingale convergence theorem, we must have

Φ(t ∧ σ`) → Φ(σ`) almost surely as t → ∞. Then (Φ(t ∧ σ`), t ≥ 0) is uniformly integrable if

and only if this convergence also holds in L1. By Fatou’s lemma, we get E [Φ(σ`)] ≤ 1, so that

Φ(σ`) is integrable. Now, for any t > 0,

E [|Φ(σ`)− Φ(t ∧ σ`)|] = E
[
|Φ(σ`)− Φ(t)|1{σ`>t}

]
≤ E

[
Φ(σ`)1{σ`>t}

]
+ E

[
Φ(t)1{σ`>t}

]
.

Observe that by the definition of the measure-changed process, we have E
[
Φ(t)1{σ`>t}

]
=

P (σ̃` > t). So

E [|Φ(σ`)− Φ(t ∧ σ`)|] ≤ P (σ̃` > t) + E
[
Φ(σ`)1{σ`>t}

]
.

47



Since Φ(σ`) is integrable (and hence uniformly integrable) and since σ` <∞ almost surely, we

have limt→∞ E
[
Φ(σ`)1{σ`>t}

]
= 0. By Proposition 2.3.1, we have that L̃t → −∞ almost surely

as t→∞, and so σ̃` <∞ almost surely. So limt→∞ P (σ̃` > t) = 0 and we get

E [|Φ(σ`)− Φ(t ∧ σ`)|]→ 0

as t → ∞. Hence, (Φ(t ∧ σ`), t ≥ 0) is uniformly integrable and, in particular, we may deduce

that E [Φ(σ`)] = 1.

We are now in a position to characterise the joint law of (σ̃s, 0 ≤ s ≤ `) and (ε̃(s), s ≤ `). We

will find it convenient to list the excursions occurring before local time ` has been accumulated

in decreasing order of length, as (ε̃
(`)
i , i ≥ 1). Proposition 2.3.7 implies that we may use the

Radon–Nikodym derivative Φ(t) to change measure at the random times σ`. As earlier, we

write (ε
(`)
i , i ≥ 1) for the excursions of L occurring before time σ` in decreasing order of length.

For an excursion ε ∈ E∗ = E ∪ {∂}, write a(ε) =
∫ ζ(ε)

0 ε(u)du for its area.

Proposition 2.3.8. For suitable test functions f and g1, g2, g3, . . ., and any n ≥ 1, we have

E

[
f(σ̃s, 0 ≤ s ≤ `)

n∏
i=1

gi

(
ε̃

(`)
i

)]

= E

[
exp

(
1

µ

∫ `

0
σrdr −

Cασ
α+1
`

(α+ 1)µα+1

)
f(σs, 0 ≤ s ≤ `)

×E

exp

 1

µ

∑
j>n

a(ε
(`)
j )

∣∣∣∣∣ζ(ε
(`)
k ), k > n

 n∏
i=1

E

[
exp

(
1

µ
a(ε

(`)
i )

)
gi

(
ε

(`)
i

) ∣∣∣∣∣ζ(ε
(`)
i )

] .
In particular, the excursions (ε̃

(`)
i , i ≥ 1) are conditionally independent given their lengths.

Moreover, for any i ≥ 1 and any suitable test function g,

E
[
g
(
ε̃

(`)
i

) ∣∣∣ ζ(ε̃
(`)
i ) = x

]
=

EN(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)
g(e)

]
EN(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)]
=

EN(1)

[
exp

(
x1+1/α

µ

∫ 1
0 e(t)dt

)
g(x1/α

e(·/x))
]

EN(1)

[
exp

(
x1+1/α

µ

∫ 1
0 e(t)dt

)] .

Proof. By integration by parts and writing Ls = Is + (Ls − Is), noting that Lσ` = −`, we get

− 1

µ

∫ σ`

0
sdLs =

`σ`
µ

+
1

µ

∫ σ`

0
Lsds =

`σ`
µ

+
1

µ

∫ σ`

0
Isds+

1

µ

∫ σ`

0
(Ls − Is)ds.

Changing variable in the middle term, and using the fact that Iσs = −s, we obtain

`σ`
µ

+
1

µ

∫ `

0
Iσsdσs +

1

µ

∫ σ`

0
(Ls − Is)ds =

`σ`
µ
− 1

µ

∫ `

0
sdσs +

1

µ

∫ σ`

0
(Ls − Is)ds.

Another integration by parts yields that this is equal to

1

µ

∫ `

0
σsds+

1

µ

∫ σ`

0
(Ls − Is)ds.
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Finally, we can integrate the excursions of L− I separately to obtain that this is equal to

1

µ

∫ `

0
σsds+

1

µ

∑
s≤`

a(ε(s)).

Hence,

Φ(σ`) = exp

 1

µ

∫ `

0
σrdr +

1

µ

∑
s≤`

a(ε(s))− Cα
σα+1
`

(α+ 1)µα+1

 . (2.13)

Now,

E

[
f(σ̃s, 0 ≤ s ≤ `)

n∏
i=1

gi

(
ε̃

(`)
i

)]

= E

exp

 1

µ

∫ `

0
σrdr +

1

µ

∑
s≤`

a(ε(s))− Cα
σα+1
`

(α+ 1)µα+1

 f(σs, 0 ≤ s ≤ `)
n∏
i=1

gi

(
ε

(`)
i

)
= E

[
exp

(
1

µ

∫ `

0
σrdr − Cα

σα+1
`

(α+ 1)µα+1

)
f(σs, 0 ≤ s ≤ `)

×E

exp

 1

µ

∑
s≤`

a(ε(s))

 n∏
i=1

fi

(
ε

(`)
i

) ∣∣∣(σs, 0 ≤ s ≤ `)
 ,

As discussed below Theorem 2.3.4, the excursions of the stable Lévy process are condition-

ally independent given their lengths, which yields the first expression in the statement of the

proposition. The final statement is an immediate consequence of the scaling property for sta-

ble excursions; we observe that this change of measure for the excursions is well-defined by

Lemma 2.3.6.

Lemma 2.3.5 (i) implies that we can list all the excursions of R in decreasing order of length:

write (ε̃i, i ≥ 1) for this list. Write (h̃i, i ≥ 1) for the corresponding height process excursions.

Proposition 2.3.9. The pairs of excursions (ε̃i, h̃i, i ≥ 1) are conditionally independent given

their lengths (ζ(ε̃i), i ≥ 1), with law specified by

E
[
g
(
ε̃i, h̃i

) ∣∣∣ ζ(ε̃i) = x
]

=
EN(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)
g(e,h)

]
EN(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)]
=

EN(1)

[
exp

(
x1+1/α

µ

∫ 1
0 e(t)dt

)
g(x1/α

e(·/x), x(α−1)/α
h(·/x))

]
EN(1)

[
exp

(
x1+1/α

µ

∫ 1
0 e(t)dt

)] .

Proof. The excursions of R occurring before local time ` has been accumulated are a strict

subset of all the excursions that ever occur. By Lemma 2.3.5, we have that

sup{ζ(ε) : ε is an excursion of R starting after time t} p→ 0
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as t→∞ and −Ĩt →∞ as t→∞. The latter implies that σ̃` <∞ a.s., and since −Ĩt <∞ for

each t > 0, we also have σ̃` →∞ as `→∞. Hence,

sup{ζ(ε) : ε is an excursion of R starting after time σ̃`}
p→ 0

as `→∞. It follows that

(ζ(ε̃
(`)
i ), i ≥ 1)→ (ζ(ε̃i), i ≥ 1) a.s.

in the product topology, as ` → ∞. The result then follows from Proposition 2.3.8 since the

expressions there do not depend on the value of `.

This enables us to give the proof of Theorem 2.1.2 assuming the definition of ((Gi, di, µi), i ≥
1) from L̃ given following Theorem 2.1.1.

Proof of Theorem 2.1.2. With Proposition 2.3.9 in hand, it remains to deal with the Poisson

points which give rise to the vertex-identifications. We have straightforwardly that, given ε̃i,

the number Mi of points falling under the excursion is conditionally independent of the other

excursions and has a Poisson distribution with parameter 1
µ

∫∞
0 ε̃i(u)du. Moreover, conditionally

on the number of points, their locations are i.i.d. uniform random variables in the area under

the excursion. For any suitable test function g,

E
[
g
(
ε̃i, h̃i

)
1{Mi=m}

∣∣∣ ζ(ε̃i) = x
]

= E

[
g
(
ε̃i, h̃i

)
exp

(
− 1

µ

∫ ∞
0

ε̃i(u)du

)
1

m!

(
1

µ

∫ ∞
0

ε̃i(u)du

)m ∣∣∣∣∣ ζ(ε̃i) = x

]

=
EN(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)
g(e,h) exp

(
− 1
µ

∫ x
0 e(t)dt

)
1
m!

(
1
µ

∫ x
0 e(t)dt

)m]
EN(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)]
and so

E
[
g
(
ε̃i, h̃i

) ∣∣∣ ζ(ε̃i) = x,Mi = m
]

=
EN(x)

[(
1
µ

∫ x
0 e(t)dt

)m
g(e,h)

]
EN(x)

[(
1
µ

∫ x
0 e(t)dt

)m]
=

EN(1)

[(∫ 1
0 e(t)dt

)m
g(x1/α

e(·/x), x(α−1)/α
h(·/x))

]
EN(1)

[(∫ 1
0 e(t)dt

)m] .

The claimed result follows.

2.4 Convergence of a discrete forest

The multigraph Mn(ν) contains cycles with probability tending to 1 as n → ∞. However, its

components will turn out to be tree-like, in that they each have a finite surplus, with probability
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1. In this section, we study an idealised version of the depth-first walk of the multigraph,

ignoring cycles.

Let (D̂n
1 , D̂

n
2 , . . . , D̂

n
k ) be D1, D2, . . . , Dn arranged in size-biased random order. More pre-

cisely, let Σ be a random permutation of {1, 2, . . . , n} such that

P (Σ = σ|D1, . . . , Dn) =
Dσ(1)∑n
j=1Dσ(j)

Dσ(2)∑n
j=2Dσ(j)

· · ·
Dσ(n)

Dσ(n)

and define

(D̂n
1 , D̂

n
2 , . . . , D̂

n
n) = (DΣ(1), DΣ(2), . . . , DΣ(n)).

Now let S̃n(0) = 0 and, for k ≥ 1,

S̃n(k) =
k∑
i=1

(D̂n
i − 2).

Then S̃n is the depth-first walk of a forest of trees in which the ith vertex visited in depth-first

order has D̂n
i − 1 ≥ 0 children. Define the corresponding height process,

G̃n(k) = #

{
j ∈ {0, 1, . . . , k − 1} : S̃n(j) = inf

j≤`≤k
S̃n(`)

}
.

The purpose of this section is to recover Theorem 8.1 of Joseph [91] and, indeed, to strengthen

it by adding the convergence of the height process to that of the depth-first walk. We will prove

the following.

Theorem 2.4.1. We have(
n−

1
α+1 S̃n(bn

α
α+1 tc), n−

α−1
α+1 G̃n(bn

α
α+1 tc), t ≥ 0

)
d−→ (L̃t, H̃t, t ≥ 0)

as n→∞ in D(R+,R)2.

In order to prove this theorem, we will begin by showing that there is an analogue in the

discrete setting of the change of measure used to define L̃.

Write Z1, Z2, . . . , Zn for i.i.d. random variables with the size-biased degree distribution, i.e.

P (Z1 = k) =
kνk
µ
, k ≥ 1.

Observe that µ ∈ (1, 2) since, firstly, D1 ≥ 1 and, secondly, E
[
D2

1

]
= 2µ and we must have

var (D1) = µ(2− µ) > 0. Then we have E [Z1] = 2, P (Z1 ≥ 1) = 1 and P (Z1 = k) ∼ c
µk
−(α+1)

as k →∞ if α ∈ (1, 2), or var (Z1) = β/µ if α = 2.

Proposition 2.4.2. For any k1, k2, . . . , kn ≥ 1, we have

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

)
= k1νk1k2νk2 . . . knνkn

n∏
i=1

(n− i+ 1)∑n
j=i kj

.
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Moreover, for 0 ≤ m ≤ n and k1, k2, . . . , km ≥ 1, let

φnm(k1, k2, . . . , km) := E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i kj + Ξn−m

]
,

where Ξn−m has the same law as Dm+1 +Dm+2 + · · ·+Dn. Then for any suitable test-function

g : Zm+ → R+,

E
[
g(D̂n

1 , D̂
n
2 , . . . , D̂

n
m)
]

= E [φnm(Z1, Z2, . . . , Zm)g(Z1, Z2, . . . , Zm)] . (2.14)

We have not found a precise reference for the contents of Proposition 2.4.2. The analogue

of (2.14) for continuous random variables is equation (1) of Barouch & Kaufman [25]; see

Proposition 1 of Pitman & Tran [120] for a proof. The proof of Proposition 2.4.2 is elementary

and may be found in the Appendix.

We now show that the Radon–Nikodym derivative in the change-of-measure formula con-

verges in distribution under appropriate conditions. Until the end of this section, we restrict

our attention to the case α ∈ (1, 2); the proof for the Brownian case is similar but a little more

involved, so we defer it to Section 2.6.3 in the Appendix.

Proposition 2.4.3. Let

Φ(n,m) := φnm(Z1, Z2, . . . , Zm)

and recall that

Φ(t) = exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α+ 1)µα+1

)
.

Then for fixed t > 0, Φ(n, btn
α
α+1 c) d−→ Φ(t) as n → ∞. Moreover, the sequence of random

variables (Φ(n, btn
α
α+1 c))n≥1 is uniformly integrable.

In order to prove this, we will need some technical lemmas.

First, we consider the asymptotics of S(k) =
∑k

i=1(Zi − 2). The generalised functional

central limit theorem, Theorem 2.2.3 (ii), entails that

n−1/(α+1)
(
S
(
btnα/(α+1)c

)
, t ≥ 0

)
d−→ (Lt, t ≥ 0) (2.15)

as n → ∞ in D(R+,R), where L is the spectrally positive α-stable Lévy process introduced in

the previous section. We will need to deal with functionals of S converging, which we will do

via the continuous mapping theorem (Theorem 3.2.4 of Durrett [71]). We give here the details

for the functional which will arise most frequently in the sequel.

Lemma 2.4.4. For any t ≥ 0,

1

n

btn
α
α+1 c−1∑
k=0

S(k)
d−→
∫ t

0
Lsds

as n→∞.
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Proof. We have

1

n

btn
α
α+1 c−1∑
k=0

S(k) =
1

n

∫ btn α
α+1 c

0
S(bvc)dv =

∫ n
− α
α+1 btn

α
α+1 c

0
n−

1
α+1S(bun

α
α+1 c)du,

by changing variable. Then the convergence in law follows from the fact that n−
α
α+1 btn

α
α+1 c → t

and the continuous mapping theorem.

Lemma 2.4.5. Let L(λ) := E [exp(−λD1)]. Then as λ→ 0,

L(λ) = exp

(
−µλ+

µ(2− µ)

2
λ2 − Cαλ

α+1

(α+ 1)
+ o(λα+1)

)
. (2.16)

Proof. First observe that

L′′′(λ) = −E
[
D3

1 exp(−λD1)
]

= −
∞∑
k=1

k3e−λkνk.

Since νk ∼ ck−(α+2), the right-hand side is finite and, by the Euler–Maclaurin formula, asymp-

totically equivalent to ∫ ∞
0

cx1−αe−λxdx = cλα−2Γ(2− α),

as λ→ 0. In other words,

L′′′(λ) = −cλα−2Γ(2− α) + o(λα−2),

where o is for λ → 0. We also have E [D1] = µ and E
[
D2

1

]
= 2µ. So integrating three times,

we obtain

L(λ) = 1− µλ+ µλ2 − cΓ(2− α)

(α− 1)α(α+ 1)
λα+1 + o(λα+1),

and it is straightforward to see that this implies

L(λ) = exp

(
−µλ+

µ(2− µ)

2
λ2 − Cαλ

α+1

(α+ 1)
+ o(λα+1)

)
.

Lemma 2.4.6. For m = O(nα/(α+1)), we have

exp

(
m− (2 + µ)

2µ

m2

n

)[
L
(
m

nµ

)]n−m
= (1 + o(1)) exp

(
− Cαm

α+1

(α+ 1)µα+1nα

)
.

Proof. By (2.16), it is sufficient to show that

m− (2 + µ)

2µ

m2

n
+ (n−m)

(
−µm
nµ

+
µ(2− µ)

2

m2

n2µ2
− Cα

(α+ 1)

mα+1

nα+1µα+1

)
= − Cαm

α+1

(α+ 1)µα+1nα
+ o(1),

as n → ∞. But this is now easily seen to be true on cancellation and using m = O(nα/(α+1)).

The result follows.
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Lemma 2.4.7. Let s(0) = 0 and s(i) =
∑i

j=1(kj − 2) for i ≥ 1. Then if m = O(nα/(α+1)), we

have

φmn (k1, k2, . . . , km) ≥ exp

(
1

nµ

m∑
i=0

(s(i)− s(m))− Cαm
α+1

(α+ 1)µα+1nα

)
(1 + o(1)),

where the o(1) term is independent of k1, . . . , km ≥ 1.

Proof. First rewrite
m∏
i=1

(n− i+ 1) = nm
m−1∏
i=1

(
1− i

n

)
.

Then

φmn (k1, k2, . . . , km) =
m−1∏
i=1

(
1− i

n

)
E

[
m∏
i=1

(
nµ∑m

j=i kj + Ξn−m

)]

= E

exp

m−1∑
i=1

log

(
1− i

n

)
−

m∑
i=1

log

Ξn−m
nµ

+
1

nµ

m∑
j=i

kj

 .
Now note that for any x ∈ (−1,∞), we have log(1 + x) ≤ x. We also have log(1 − i/n) ≥
−i/n−m2/n2 for 1 ≤ i ≤ m− 1. So

φmn (k1, k2, . . . , km)

≥ E

exp

−m−1∑
i=1

i

n
− m3

n2
−m

[
Ξn−m
nµ

− 1

]
− 1

nµ

m∑
i=1

m∑
j=i

kj


= exp

(
−m(m− 1)

2n
− m3

n2
+m+

1

nµ

m∑
i=1

(
s(i)− s(m)− 2(m− i+ 1)

))

× E
[
exp

(
− m
nµ

Ξn−m

)]
= exp

(
−m(m− 1)

2n
− m3

n2
+m+

1

nµ

m∑
i=0

(s(i)− s(m))− m(m+ 1)

nµ

)

× E
[
exp

(
− m
nµ

Ξn−m

)]
= exp

(
1

nµ

m∑
i=0

(s(i)− s(m))

)
exp

(
m− (2 + µ)

2µ

m2

n

)[
L
(
m

nµ

)]n−m
× exp

(
(µ− 2)m

2µn
− m3

n2

)
.

We have m3/n2 = O(n
α−2
α+1 ) = o(1) and so the final exponential tends to 1 as n → ∞. The

desired result then follows from Lemma 2.4.6.

Lemma 2.4.8. Let (Xn)n≥1, (Yn)n≥1 be two sequences of non-negative random variables such

that Xn ≥ Yn and E [Xn] = 1 for all n. Suppose that X is another non-negative random variable

such that E [X] = 1 and Yn
d−→ X. Then Xn

d−→ X and (Xn)n≥1 is uniformly integrable.
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Proof. We first prove that Xn
d−→ X, using Portmanteau’s theorem. Let f be a bounded

and uniformly continuous function, we have E [f(Yn)] → E [f(X)]. It is enough to show that

E [f(Yn + Zn)] − E [f(Yn)] → 0, where Zn := Xn − Yn. Zn is a non-negative random variable

such that E [Zn] → 0, hence Zn converges to 0 in probability. Fix ε > 0, and let δ > 0 be

such that |f(x1) − f(x2)| ≤ ε for all x1, x2 ∈ R satisfying |x1 − x2| ≤ δ. For n large enough,

P (|Zn| ≥ δ) ≤ δ. Thus,

|E [f(Yn + Zn)]− E [f(Yn)] | ≤ ε+ δ‖f‖∞.

Since ε and δ can be chosen arbitrarily small, this yields Xn
d−→ X.

Now, we prove that Xn → X in L1, which implies the uniform integrability. By Skorokhod’s

representation theorem, we may work on a probability space where Xn → X almost surely.

Consider (X −Xn)+. For any given ε > 0, we may choose K such that E
[
X1{X≥K}

]
< ε

(since E [X] < ∞). So E
[
(X −Xn)+1{X≥K}

]
< ε. But also E

[
(X −Xn)+1{X<K}

]
→ 0 as

n→∞ because it is less than δ +KP ((X −Xn)+ > δ) for any δ > 0. So E [(X −Xn)+]→ 0.

Since E [X] = E [Xn], we also have E [(Xn −X)+] = E [(X −Xn)+] → 0. So finally

E [|Xn −X|]→ 0.

Proof of Proposition 2.4.3. Recall that S(k) =
∑k

i=1(Zi−2). By Lemma 2.4.7, form = btn
α
α+1 c,

Φ(n,m) ≥ Φ(n,m) := exp

(
1

nµ

m∑
i=0

(S(i)− S(m))− Cαm
α+1

(α+ 1)µα+1nα

)
(1 + o(1)).

By (2.15) and Lemma 2.4.4, we have

1

nµ

m∑
i=0

(S(i)− S(m))
d−→ 1

µ

∫ t

0
(Ls − Lt)ds.

Hence, by the continuous mapping theorem,

Φ(n, btn
α
α+1 c) d−→ exp

(
1

µ

∫ t

0
(Ls − Lt)ds−

Cαt
α+1

(α+ 1)µα+1

)
= exp

(
− 1

µ

∫ t

0
sdLs −

Cαt
α+1

(α+ 1)µα+1

)
,

and the right-hand side is, of course, Φ(t), which has mean 1. We also have

E
[
Φ(n, btn

α
α+1 c)

]
= 1 for all n. So by Lemma 2.4.8, we must have

Φ(n, btn
α
α+1 c) d−→ Φ(t)

as n→∞, as well as the claimed uniform integrability.

We are now ready to prove Theorem 2.4.1.
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Proof of Theorem 2.4.1. It is sufficient to show that for any t ≥ 0 and any bounded continuous

test-function f : D([0, t],R)2 → R,

E
[
f
(
n−

1
α+1 S̃n(bn

α
α+1uc), n−

α−1
α+1 G̃n(bn

α
α+1uc), 0 ≤ u ≤ t

)]
→ E

[
f(L̃u, H̃u, 0 ≤ u ≤ t)

]
,

as n → ∞. Let us write S
n
(u) = n−

1
α+1S(bn

α
α+1uc) and, similarly,

G
n
(u) = n−

α−1
α+1G(bn

α
α+1uc). Then, by changing measure, we wish to show that for any t ≥ 0

and any bounded continuous test-function f : D([0, t],R)2 → R,

E
[
Φ(n, btn

α
α+1 c)f(S

n
(u), G

n
(u), 0 ≤ u ≤ t)

]
→ E [Φ(t)f(Lu, Hu, 0 ≤ u ≤ t)] ,

as n→∞. From the proof of Proposition 2.4.3, we have that

E
[∣∣∣Φ(n, btn

α
α+1 c)− Φ(n, btn

α
α+1 c)

∣∣∣]→ 0

as n→∞, and so it will suffice to show that

E
[
Φ(n, btn

α
α+1 c)f(S

n
(u), G

n
(u), 0 ≤ u ≤ t)

]
→ E [Φ(t)f(Lu, Hu, 0 ≤ u ≤ t)] .

But

Φ(n, btn
α
α+1 c) = exp

(
1

µ

∫ t

0
(S

n
(u)− Sn(t))du− Cαbtn

α
α+1 cα+1

(α+ 1)µα+1nα

)
.

In particular, for a path x ∈ D([0, t],R), let

Θ(x, t) = exp

(
1

µ

∫ t

0
(x(u)− x(t))du− Cαt

α+1

(α+ 1)µα+1

)
and observe that Θ is a continuous functional of its first argument. Then we have

E
[∣∣∣Φ(n, btn

α
α+1 c)−Θ(S

n
, t)
∣∣∣]→ 0.

So it suffices to show that

E
[
Θ(S

n
, t)f(S

n
(u), G

n
(u), 0 ≤ u ≤ t)

]
→ E [Θ(L, t)f(Lu, Hu, 0 ≤ u ≤ t)] .

But this now follows from Theorem 2.2.4 and uniform integrability.

2.5 The configuration multigraph

The processes S̃n and G̃n encode a forest of trees where the numbers of children of the vertices,

visited in depth-first order, are D̂n
i −1, i ≥ 1. Let us write F̃n(ν) for this forest. In this section,

we wish to encode similarly the multigraph Mn(ν). Let us first describe the organisation of this

section.

In Section 2.5.1, we simultaneously generate and explore Mn(ν) using the depth-first ap-

proach outlined in the Introduction: we view each connected component of the graph as a
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spanning tree explored in a depth-first manner plus some additional edges, creating cycles, that

we call back-edges. In Section 2.5.2, we prove that the exploration process is close enough to

S̃n in order to have the same scaling limit, and add the joint convergence of the locations of

the back-edges in Section 2.5.3 (Theorem 2.5.5). In Section 2.5.4, we split the multigraph into

its components by showing that the (rescaled) ordered sequence of component sizes converges

to the sequence of ordered excursion lengths of the continuous process R (Proposition 2.5.6).

We improve this result in Section 2.5.5 by adding in the locations of the back-edges under

each excursion (Proposition 2.5.12). In Section 2.5.6, we study the height process and show in

Proposition 2.5.16 the joint convergence of the height process excursions and the locations of

the back-edges. This finally allows us to prove Theorem 2.1.1 in Section 2.5.7.

2.5.1 Exploration of the multigraph

We work conditionally on the sequence

(D̂n
1 , D̂

n
2 , . . . , D̂

n
n). Let us declare that the vertex of degree D̂n

i is called vi. This means that we

have already determined the (size-biased by degree) order in which we will observe new vertices.

We will couple F̃n(ν) and Mn(ν) by using the same ordering on the new vertices we explore.

Recall that we start from vertex v1 with degree D̂n
1 . We maintain a stack, namely an ordered

list of half-edges which we have seen but not yet explored (remember that the half-edges come

with an arbitrary labelling for this purpose). We put the D̂n
1 half-edges of v1 onto this stack,

in increasing order of label, so that the lowest labelled half-edge is on top of the stack. At

a subsequent step, suppose we have already seen the vertices v1, v2, . . . , vk. If the stack is

non-empty, take the top half-edge and sample its pair. This lies on the stack with probability

proportional to the height of the stack minus 1 or belongs to vk+1 with probability proportional

to
∑n

i=k+1 D̂
n
i . In the first case we simply remove both half-edges from the stack. In the second,

we remove the half-edge at the top of the stack (which has just been paired) and replace it by

the remaining half-edges (if any) of vk+1. If the stack is empty, we start a new component at

vk+1.

Let us now describe the forest Fn(ν) from which we will recover Mn(ν). Whenever there is

a back-edge in Mn(ν), say from vertex vk to vertex vi with i ≤ k, remove the back-edge and

replace it by two edges, one from vk to a new leaf and the other from vi to a new leaf. To

recover Mn(ν) it is then sufficient to remove the edges to the new leaves and put in a new edge

from vi to vk.

Our aim is to encode the forest Fn(ν), firstly via its depth-first walk and then by its height

process. We will simultaneously keep track of marks which tell us which vertices we should

identify in order to recover the multigraph.

Our first observation is that the vertex-sets of pairs of components in F̃n(ν) correspond

precisely to the vertex-sets of subcollections of components in Mn(ν). (This is illustrated in

Figure 2.1 to which the reader is referred in the following argument.) More precisely, without
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loss of generality, let the pair of components of F̃n(ν) be the first two, on vertices v1, v2, . . . , vm1

and vm1+1, vm1+2, . . . , vm1+m2 . Suppose that the same vertices in Mn(ν) are adjacent to b

back-edges. Now vertices v1 and vm1+1 each possess one more half-edge in Mn(ν) than they

do in F̃n(ν) (since in F̃n(ν), if vi is the first vertex of a component, it has D̂i − 1 edges and

not D̂i). In particular, adding an edge between v1 and vm1+1 clearly produces a tree with

m1 + m2 vertices and 1
2

∑m1+m2
i=1 D̂n

i = m1 + m2 − 1 edges. We now “rewire” this tree to

obtain the relevant components of Mn(ν). The effect of adding a back-edge is to shunt all of

the subsequent subtrees along in the depth-first order. (See Figure 2.1.) The overall effect is

that each back-edge causes a new component to come into existence. Each time we observe a

back-edge, it occupies two half-edges, so there are two subtrees which get pushed out of the

component. The earlier of these subtrees in the depth-first order becomes the basis for the

next component of Mn(ν). The root of this component has one more child than it had in the

original tree. This allows the absorption of the second subtree, whose root gets attached by its

free half-edge to the root of the component. Subsequent back-edges similarly each generate one

new component. Following this through, we see that we end up with b+1 components of Mn(ν).

(For the purposes of intuition, note that because the vast majority of vertices lie in components

of size o(nα/(α+1)), with high probability at most one of them will be of size Θ(nα/(α+1)) and

thus show up in the limit. So, at least heuristically, this rewiring process cannot affect what we

see in the limit.)

It is clear that the effects of adding back-edges are relatively local and so it is at least

intuitively clear that the depth-first walk of the forest Fn(ν) should be similar to that of F̃n(ν),

as long as there are not too many back-edges. Let Xn denote the depth-first walk of Fn(ν). We

will now describe how to construct Xn from S̃n, and also how to keep track of the back-edges.

We will write Rn(k) for the number of half-edges on the stack at step k. We will let Nn count

the occurrences of back-edges, and Un the positions of their targets on the stack. We will write

Mn(k) for a set of marks (in N) at step k, indicating back-edges which have not yet been closed,

and τn(k) for the number of vertices already seen at step k (note that we see a new vertex if

and only if the current step does not involve a back-edge). Finally, let Cn(k) be the number

of components of Fn(ν) we have fully explored by time k. So we will have that for all k ≥ 1,

Cn(k) = −min0≤`≤kX
n(`), and that Rn(k) = Xn(k) + Cn(k).

We start from Xn(0) = Nn(0) = 0, Mn(0) = ∅ and τn(0) = 0. For k ≥ 0, we might

encounter the following three situations.

• New component.

If Xn(k) = min0≤i≤k−1X
n(i)− 1 or k = 0, let τn(k+ 1) = τn(k) + 1, Nn(k+ 1) = Nn(k),

Mn(k + 1) =Mn(k) and

Xn(k + 1) = Xn(k) + S̃n(τn(k) + 1)− S̃n(τn(k)) + 1.

• Start a back-edge or not.
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Figure 2.1: For simplicity, the labels given are those corresponding to the depth-first order.

Top: the first two components of the forest F̃n(ν). Middle: the first four components of Mn(ν),

on the same vertices. Three back-edges are marked in red. The subtree surgery required to get

from F̃n(ν) to Mn(ν) is indicated. The back-edge from 5 to 8 moves the subtree from 9 to the

next available half-edge, also belonging to 5. This shifts further the subtrees from 13 and 16:

13 is connected to 1, which has one more edge in Mn(ν) than in F̃n(ν) (D̂1 instead of D̂1 − 1),

as any first vertex of a connected component of Mn(ν). 16 starts a new component. Bottom:

the first four components of the forest Fn(ν) with marks.
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If Xn(k) > min0≤i≤k−1X
n(i)− 1 and Xn(k) /∈Mn(k),

– With probability

Xn(k)−min0≤i≤kX
n(k)− |Mn(k)|

Xn(k)−min0≤i≤kXn(k)− |Mn(k)|+
∑n

j=τn(k)+1 D̂
n
j

,

let τn(k+1) = τn(k) and Xn(k+1) = Xn(k)−1. Let Nn(k+1) = Nn(k)+1, sample

Un(k + 1) uniformly from{
min

0≤i≤k
Xn(i), . . . , Xn(k)− 1

}
\Mn(k),

and let Mn(k + 1) =Mn(k) ∪ {Un(k + 1)}.

– With probability ∑n
j=τn(k)+1 D̂

n
j

Xn(k)−min0≤i≤kXn(k)− |Mn(k)|+
∑n

j=τn(k)+1 D̂
n
j

let τn(k + 1) = τn(k) + 1,

Xn(k + 1) = Xn(k) + S̃n(τn(k) + 1)− S̃n(τn(k)),

Nn(k + 1) = Nn(k) and Mn(k + 1) =Mn(k).

• Close a back-edge?

If Xn(k) > min0≤i≤k−1X
n(i) − 1 and Xn(k) ∈ Mn(k) then let τn(k + 1) = τn(k),

Xn(k + 1) = Xn(k)− 1, Nn(k + 1) = Nn(k), and Mn(k + 1) =Mn(k) \ {Xn(k)}.

It is straightforward to check that this is the depth-first walk of the forest Fn(ν). We observe

that for k ≥ 1 we have

Xn(k) + min
0≤i≤k

Xn(i) = S̃n(τn(k)) + 1−Nn(k)−#{i ≤ k : |Mn(i)| < |Mn(i− 1)|}.

Hence, Xn(k) + min0≤i≤kX
n(i) is the number of half-edges seen but not yet paired or reserved

for back-edges, in the currently explored connected component (the (j + 1)-th component if

−min0≤i≤kX
n(i) = j). Indeed,

S̃n(τn(k)) + 1 = (D̂1 − 1)− 1 + D̂2 − 2 + . . .+ D̂τn(k)−1 − 2 + D̂τn(k) − 1

is the number of half-edges seen and not paired in the spanning forest of the components explored

so far. Nn(k) + #{i ≤ k : |Mn(i)| < |Mn(i − 1)|} is the number of half-edges that have been

paired in or reserved for back-edges. Note that |Mn(i)| increases (resp. decreases) by 1 exactly

when a back-edge is initiated (resp. closed). Nn(k) counts the number of back-edges started.

In particular,

S̃n(τn(k))− 2Nn(k) ≤ Xn(k) + min
0≤i≤k

Xn(i)− 1 ≤ S̃n(τn(k)). (2.17)
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2.5.2 Convergence of the depth-first walk and marks

Let us first prove a bound on the number Nn(k) of back-edges which have occurred by step k.

Lemma 2.5.1. For every t > 0, the sequences of random variables
(
Nn(btnα/(α+1)c)

)
n≥1

and(
sup0≤k≤btnα/(α+1)c |τn(k)− k|

)
n≥1

are tight.

Proof. Fix t > 0. We observe that k − 2Nn(k) ≤ τn(k) ≤ k so that it is enough to prove that(
Nn(btnα/(α+1)c)

)
n≥1

is tight. At time i, the number of half-edges on the stack is Rn(i), and

the total number of unpaired half-edges is
∑n

j=τn(i)+1 D̂
n
j , so that the probability to start a

back-edge is
Rn(i)∑n

j=τn(i)+1 D̂
n
j

Note that if the component we are exploring at step i began at step j, then Rn(i) ≤ 2 +∑τn(i)
k=τn(j)(D̂

n
k − 2), since at most D̂n

τn(j) + . . . + D̂n
τn(i) half-edges have been seen, and at least

2(τn(i) − τn(j)) of them have been used to connect the first τn(i) − τn(j) + 1 vertices of the

component. Hence,

Rn(i) ≤ 2 + max
0≤j≤i

S̃n(τn(j))− min
0≤j≤i

S̃n(τn(j)) ≤ 2 + max
0≤j≤i

S̃n(j)− min
0≤j≤i

S̃n(j),

since τn({1, . . . , i}) ⊆ {1, . . . , i}.
As underlined in the beginning of Section 2.5.1, we can realize Mn(ν) by first drawing

the sequence (D̂n
i )1≤i≤n, and then proceeding to the pairings of the half-edges through the

exploration. Conditionally on (D̂n
i )1≤i≤n, for every i ≥ 1 and whatever happened in the first

i− 1 steps of the exploration, the probability to create a back-edge at time i is at most

2 + max0≤j≤btnα/(α+1)c S̃
n(j)−min0≤j≤btnα/(α+1)c S̃

n(j)∑n
j=τn(i)+1 D̂

n
j

.

Note also that τn(i) + 1 ≤ btnα/(α+1)c + 1 for every i ≤ btnα/(α+1)c. Therefore, conditionally

on (D̂n
i )1≤i≤n, the random variable Nn(btnα/(α+1)c) is stochastically dominated by a Binomial

random variable with parameters btnα/(α+1)c and

2 + max0≤j≤btnα/(α+1)c S̃
n(j)−min0≤j≤btnα/(α+1)c S̃

n(j)∑n
j=btnα/(α+1)c+1 D̂

n
j

.

For K > 0, define

E1 =

{
2 + max

1≤i≤btnα/(α+1)c
S̃n(i)− min

0≤i≤btnα/(α+1)c
S̃n(i) ≤ Kn1/(α+1)

}
and

E2 =


n∑

j=btnα/(α+1)c+1

D̂n
j ≥ n

 .
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Fix ε > 0. Theorem 2.4.1, Lemma 2.6.5 and the fact that µ > 1 imply that there exists K > 0

such that for n large enough,

P (E1 ∩ E2) ≥ 1− ε.

On the event E1 ∩ E2, we have

2 + max0≤j≤btnα/(α+1)c S̃
n(j)−min0≤j≤btnα/(α+1)c S̃

n(j)∑n
j=btnα/(α+1)c+1 D̂

n
j

≤ K

nα/(α+1)
.

Let Y ∼ Bin(btnα/(α+1)c, 2K/nα/(α+1)). Then there exists K ′ > 0 such that for n large enough,

P
(
Nn(btnα/(α+1)c) ≥ K ′

)
≤ P

(
Y ≥ K ′

)
+ P ((E1 ∩ E2)c) ≤ 2ε.

Since ε > 0 was arbitrary, the result follows.

In particular, the steps on which back-edges occur are negligible on the timescale in which

we are interested. Write Ĩt = inf0≤s≤t L̃s for t ≥ 0 and recall that

Rt = L̃t − Ĩt.

Proposition 2.5.2. As n→∞,(
n−1/(α+1)S̃n(btnα/(α+1)c), n−1/(α+1)Rn(btnα/(α+1)c), n−1/(α+1)Cn(btnα/(α+1)c), t ≥ 0

)
d−→
(
L̃t, Rt,−1

2 Ĩt, t ≥ 0
)
,

in D(R+,R)3.

Proof. Let k ≥ 1, and let j be such thatXn(j) = min0≤`≤kX
n(`). ThenXn(j)+min0≤`≤j X

n(`) =

2Xn(j), and by (2.17), we have

2Xn(j) ≥1 + min
0≤`≤k

(S̃n(τn(`))− 2Nn(`))

≥1 + min
0≤`≤k

S̃n(τn(`))− 2Nn(k),

since (Nn(i))i≥0 is non-increasing. Thus, by (2.17), we have

1 + min
0≤`≤k

S̃n(τn(`))− 2Nn(k) ≤ 2 min
0≤`≤k

Xn(`) ≤ 1 + min
0≤`≤k

S̃n(τn(`)).

By Theorem 2.4.1 and the continuous mapping theorem,(
n−1/(α+1) min

0≤`≤bsnα/(α+1)c
S̃n(`), s ≥ 0

)
d−→ (Ĩs, s ≥ 0)

and combining this with Lemma 2.5.1 and recalling that Cn(k) = −min0≤`≤kX
n(`) yields(

n−1/(α+1)Cn(bsnα/(α+1)c), s ≥ 0
)

d−→ (−1
2 Ĩs, s ≥ 0)
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Another application of (2.17) gives

1 + S̃n(τn(k))− 2Nn(k)− 2 min
0≤i≤k

Xn(i) ≤ Rn(k) ≤ 1 + S̃n(τn(k))− 2 min
0≤i≤k

Xn(i)

and since

(n−1/(α+1)S̃n(τn(btnα/(α+1)c)), t ≥ 0)
d−→ (L̃t, t ≥ 0)

we have (
n−1/(α+1)Rn(btnα/(α+1)c), t ≥ 0

)
d−→ (Rt, t ≥ 0),

jointly with the convergence of the minimum.

Thus the exploration of F̃n(ν) sees approximately twice as many components as that of

Fn(ν) but the limiting reflected process is the same for both. In particular, asymptotically the

two processes have the same longest excursions. This fact will play an important role in the

sequel.

2.5.3 Back-edges

We will now show that the parts of the multigraph we observe up until well beyond the timescale

in which we are interested are, with high probability, simple. To this end, let An(k) be the

number of loops and edges created parallel to an existing edge, up until step k of the depth-first

exploration of Fn(ν). Call these anomalous edges.

Proposition 2.5.3. Suppose α
α+1 < β < α

2 . Then we have

P
(
An(bnβc) > 0

)
→ 0

as n→∞.

Proof. We adapt the proof of Lemma 7.1 of Joseph [91] (which applies in the finite third moment

setting). Self-loops are obviously associated with a unique vertex. We associate extra edges

created parallel to an existing edge with their vertex which is discovered first in the depth-first

exploration. Consider a particular vertex of degree d in the exploration before time bnβc. Its

kth half-edge (in the order that we process them) creates a self-loop with probability bounded

above by
d− k∑n

i=bnβc+1 D̂
n
i

.

It creates a multiple edge with probability at most

k − 1∑n
i=bnβc+1 D̂

n
i

.

This vertex therefore possesses an anomalous edge with probability bounded above by

d(d− 1)∑n
i=bnβc+1 D̂

n
i

.
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Hence, by the conditional version of Markov’s inequality,

P
(
An(bnβc) > 0

∣∣∣ D̂n
1 , D̂

n
2 , . . . , D̂

n
n

)
≤

( ∑bnβc
i=1 (D̂n

i )2∑n
i=bnβc+1 D̂

n
i

)
∧ 1.

But
∑n

i=bnβc+1 D̂
n
i =

∑n
i=1 D̂

n
i −

∑bnβc
i=1 D̂n

i ≥
∑n

i=1 D̂
n
i −

∑bnβc
i=1 (D̂n

i )2. By Lemmas 2.6.4 and

2.6.5 and the bounded convergence theorem, we obtain that

P
(
An(bnβc) > 0

)
→ 0

as n→∞.

Let ρ(n) = inf{k ≥ 0 : An(k) > 0} and note that the event that Mn(ν) is simple is equal to

{ρ(n) = ∞}. The last proposition shows that we observe any anomalous edges long after the

timescale in which we explore the largest components of the graphs. This allows us to conclude

that all of the results we prove using only the timescale nα/(α+1) for the multigraph are also true

conditionally on {ρ(n) =∞}. In this way, we may give a proof of Conjecture 8.6 of Joseph [91].

(See also Theorem 3 of [62].)

Theorem 2.5.4. Conditional on {ρ(n) =∞}, as n→∞,(
n−1/(α+1)Rn(bsnα/(α+1)c, n−1/(α+1)Cn(bsnα/(α+1)c, s ≥ 0

)
d−→
(
Rs,−1

2 Ĩs, s ≥ 0
)
,

in D(R+,R)2.

Proof. Given Propositions 2.5.2 and 2.5.3, this follows in exactly the manner as Joseph’s The-

orem 3.2 follows from his Theorem 3.1.

Henceforth, using exactly the same argument, statements about our processes should be

understood to hold either unconditionally or conditionally on the event {ρ(n) =∞}.
We now turn to the locations of the back-edges that do occur. Recall that if a back-edge

occurs at step k, then Un(k) is its index in the stack. For steps k such thatNn(k)−Nn(k−1) = 0,

declare Un(k) = ∂, where ∂ denotes that no mark occurs.

Theorem 2.5.5. We have(
n−1/(α+1)Rn(bsn

α
α+1 c), n−1/(α+1)Cn(bsnα/(α+1)c, Nn(bsn

α
α+1 c),

n−1/(α+1)Un(bsn
α
α+1 c), s ≥ 0

)
d−→ (Rs,−1

2 Ĩs, Ns, Us, s ≥ 0),

where ((Ns, Us), s ≥ 0) is a marked Cox process of intensity Rs/µ at time s ≥ 0, and the marks

are uniform on [0, Rs] i.e.

Us

= ∂ if Ns −Ns− = 0

∼ U[0, Rs] if Ns −Ns− = 1.
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Equivalently, conditionally on (Rs, s ≥ 0), ∑
0≤s≤t:

Ns−Ns−=1

δ(s,Us)

is a Poisson point process on {(s, x) ∈ R+ × R+ : x ≤ Rs} of constant intensity 1/µ. Here, the

convergence is in the Skorokhod topology for the first three co-ordinates and in the topology of

vague convergence for counting measures on R2
+ for the fourth.

We observe that, in particular, for fixed t ≥ 0 we have sup0≤s≤tRs <∞ a.s. and so Nt <∞
a.s.

Proof. We refine the argument from the proof of Lemma 2.5.1. At step k, conditionally on the

sequence (D̂i)1≤i≤n and on the first k − 1 steps of the exploration, the probability of seeing a

back-edge is
Rn(k)− |Mn(k)|

Rn(k)− |Mn(k)|+
∑n

j=τn(k)+1 D̂
n
j

,

where |Mn(k)| ≤ Nn(k). Now

n∑
i=k+1

D̂n
i ≤ Rn(k)− |Mn(k)|+

n∑
i=τn(k)+1

D̂n
i ≤

n∑
i=1

D̂n
i +Rn(k).

But then by Lemma 2.5.1, Proposition 2.5.2, Lemma 2.6.5 (in the Appendix) and Slutsky’s

lemma, we obtain

nα/(α+1)

(
Rn(bsnα/(α+1)c)− |Mn(bsnα/(α+1)c)|

Rn(bsnα/(α+1)c)− |Mn(bsnα/(α+1)c)|+
∑n

j=τn(bsnα/(α+1)c)+1 D̂
n
j

, 0 ≤ s ≤ t

)
d−→ 1

µ
(Rs, 0 ≤ s ≤ t). (2.18)

Let Fnk = σ((D̂n
1 , D̂

n
2 , . . . , D̂

n
n), Xn(i), Nn(i),Mn(i), 0 ≤ i ≤ k). Then (Nn(k), k ≥ 0) is a

counting process with compensator

Nn
comp(k) =

k−1∑
j=1

Rn(j)− |Mn(j)|
Rn(j)− |Mn(j)|+

∑n
i=τn(j)+1 D̂

n
i

1{Xn(j)/∈Mn(j)}.

Since

k−1∑
j=1

Rn(j)− |Mn(j)|
Rn(j)− |Mn(j)|+

∑n
i=τn(j)+1 D̂

n
i

1{Xn(j)∈Mn(j)}

≤ Nn(k − 1) max
0≤j≤k−1

Rn(j)− |Mn(j)|
Rn(j)− |Mn(j)|+

∑n
i=τn(j)+1 D̂

n
i

and n−α/(α+1)Nn(btnα/(α+1)c) p→ 0 by Lemma 2.5.1, using (2.18) and the continuous mapping

theorem we get that

En(btnα/(α+1)c) :=

btnα/(α+1)c−1∑
j=0

Rn(j)− |Mn(j)|
Rn(j)− |Mn(j)|+

∑n
i=τn(j)+1 D̂

n
i

1{Xn(j)∈Mn(j)}
p→ 0.
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So by (2.18) and another application of the continuous mapping theorem, we obtain

Nn
comp(btnα/(α+1)c) =

k−1∑
j=1

Rn(j)− |Mn(j)|
Rn(j)− |Mn(j)|+

∑n
i=τn(j)+1 D̂

n
i

− En(btnα/(α+1)c)

d−→ 1

µ

∫ t

0
Rsds.

Finally, Theorem 14.2.VIII of Daley and Vere-Jones [60] (with F (n)
0 = σ(D̂k

i , k, i ≥ 1) for all

n ≥ 1, recall the construction of Mn(ν) in the beginning of Section 2.5.1) yields that(
n−1/(α+1)Rn(bsnα/(α+1)c), Nn(bsnα/(α+1)c), 0 ≤ s ≤ t

)
d−→ (Rs, Ns, 0 ≤ s ≤ t).

The marks are uniform on the vertices of the stack which do not already carry marks, and so it

is straightforward to see that they must be uniform in the limit.

2.5.4 Components of the finite graph

We now turn to the consideration of the individual components of the multigraph. Let σn(0) = 0

and for k ≥ 1, write

σn(k) = inf{j ≥ 0 : Cn(j) ≥ k}.

This is the time at which we finish exploring the kth component of the forest Fn(ν). Let

ζn(k) = σn(k)− σn(k − 1),

the corresponding length of the excursion, which is equal to the total number vertices within

the component, since precisely one of these is killed at each step. But then ζn(k) is also equal

to the number of vertices in the corresponding component of Mn(ν), plus twice the number of

back-edges. Let

εnk(t) = n−1/(α+1)
(
Xn(σn(k − 1) + btnα/(α+1)c)−Xn(σn(k − 1))

)
for 0 ≤ t ≤ n−α/(α+1)ζn(k) be the kth rescaled excursion ofXn, with length ζ(εnk) = n−α/(α+1)ζn(k)

and rescaled left endpoint gnk = n−α/(α+1)σn(k − 1).

Recall from Section 2.3 the notation (ε̃i, i ≥ 1) for the ordered excursions of R above

0 and ζ(ε̃i) for the lifetime of ε̃i. Denote by gi the left endpoint of ε̃i. Recall also that

`2↓ = {(x1, x2, . . .) ∈ RN : x1 ≥ x2 ≥ . . . ≥ 0,
∑

i≥1 x
2
i <∞}. Let Γ be a countable index set and

write `2+(Γ) for the set of non-negative sequences (xγ : γ ∈ Γ) such that
∑

γ∈Γ x
2
γ < ∞. Write

ord : `2+(Γ)→ `2↓ for the map which puts the elements of (xγ : γ ∈ Γ) into decreasing order. For

a sequence (εk, Ak)k≥1 where εk is an excursion of length ζ(εk) and Ak is some other random

variable, write

ord (ζ(εk), Ak, k ≥ 1)

for the same sequence put in decreasing order of ζ(εk).

This section is devoted to proving the following proposition.
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Proposition 2.5.6. We have (ζ(ε̃i), i ≥ 1) ∈ `2↓,

ord (ζ(εnk), k ≥ 1)
d−→ (ζ(ε̃i), i ≥ 1)

as n→∞ in `2↓, and

ord (ζ(εnk), gnk , k ≥ 1)
d−→ (ζ(ε̃i), gi, i ≥ 1),

where the convergence is in `2↓ for the first coordinate and in the product topology for the second.

We apply a method outlined in Proposition 15 of Aldous [13], which is most conveniently

recounted in Section 2.6 of Aldous and Limic [15]. This is very similar to Theorem 8.3 of

Joseph [91], who omits many of the details of the proof. We feel that the argument is sufficiently

subtle to merit a full account, which we now give.

Essentially, there are two steps to proving the desired convergence. First, we need to show

that the longest excursions of Rn and R occurring before some finite time match up for large

enough n. Then we need to show that long excursions of Rn cannot “wander off to time ∞”.

Proposition 2.5.7 below is designed to deal with these issues.

Following Aldous, we introduce the concept of a size-biased point process. Suppose we have

random variables Y = (Yγ : γ ∈ Γ) in `2+(Γ). Given Y, let Eγ ∼ Exp(Yγ) independently for

different γ ∈ Γ. Set

Σ(a) =
∑
γ∈Γ

Yγ1{Eγ<a} (2.19)

and note that Σ(a) < ∞ a.s. Let Σγ = Σ(Eγ). Then Ξ = {(Σγ , Yγ) : γ ∈ Γ} is the size-biased

point process (SBPP) associated with Y. Write π for the projection onto the second co-ordinate,

so that π({(sγ , yγ)}) = {yγ}.

Proposition 2.5.7 (Proposition 15 of [13] and Proposition 17 of [15]). Let Yn ∈ `2+(Γn) for

each n > 1, let Σn be the analogue of (2.19) and let Ξn be the associated SBPP. Suppose that

Ξn
d−→ Ξ∞,

as n→∞, for the topology of vague convergence of counting measures on [0,∞)×(0,∞), where

Ξ∞ is some point process satisfying

1. sup{s : (s, y) ∈ Ξ∞ for some y} =∞ a.s.

2. if (s, y) ∈ Ξ∞ then
∑

(s′,y′)∈Ξ∞:s′<s y
′ = s a.s.

3. max{y : (s, y) ∈ Ξ∞ for some s > t} p→ 0 as t→∞.

Then Y∞ := ord(π(Ξ∞)) ∈ `2↓ and ord(Yn)
d−→ ord(Y∞) in `2↓. In addition,

ord(Y n
γ ,Σ

n
γ , γ ∈ Γn)

d−→ ord(Yγ ,Σγ , γ ∈ Γ)

as n → ∞, where the convergence is in `2↓ for the first coordinate and in the product topology

for the second.
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The original statement does not mention the last convergence. It is, in fact, implicitly

contained in the proof of Proposition 15 given in [13], more precisely in the assertion that

the tightness of the sequence (Σn(a))n≥1 for arbitrary a > 0 and the convergence Ξn
d−→ Ξ∞

together imply the convergence ord(Yn)
d−→ ord(Y∞) in `2.

For k ≥ 1, we let

Y n
k = n−α/(α+1) [ζn(k)− (Nn(σn(k))−Nn(σn(k − 1)) + 1)] .

Recall that at the end of the exploration of the (k − 1)th component of Mn(ν) in depth-

first order, we choose a new vertex from the unexplored parts of the graph with probability

proportional to its degree. So we pick a component with probability proportional to the sum of

its degrees, which is twice the number of its edges. Since the number of steps it takes to explore

a component of Mn(ν) is the number of its vertices (which is the number of its non-back-edges

plus one) plus twice the number of back-edges (unlike the non-back-edges, a back-edge takes

one step to create and another step to close), it follows that Y n
k is the number of edges of the

kth component of Mn(ν) times n−α/(α+1).

For k ≥ 1, let

Σn
k =

k−1∑
i=1

Y n
i = n−α/(α+1) [σn(k − 1)−Nn(σn(k − 1))− k + 1] ,

and put

Ξn = {(Σn
k , Y

n
k ) : k ≥ 1}.

It is easy to see that Ξn then has the same distribution as the SBPP associated with

n−α/(α+1)(ζn(k)−Nn(σn(k)) +Nn(σn(k − 1))− 1, k ≥ 1).

Recall from Section 2.3 the notation (ε̃(`), ` ≥ 0) for the excursions of the reflected process

(Rt, t ≥ 0) indexed by local time `, and (σ̃`, ` ≥ 0) for the inverse local time process. Let Ξ∞

be the point process given by

Ξ∞ = {(σ̃`− , ζ(ε̃(`))) : ` ≥ 0, σ̃` − σ̃`− > 0}.

By Proposition 2.3.1 and Lemma 2.3.5, properties (1), (2) and (3) from Proposition 2.5.7 above

hold for Ξ∞. In order to apply Proposition 2.5.7, it thus remains to establish the convergence

of Ξn to Ξ∞. We do this by first proving a deterministic result for a suitable class of functions,

extending Lemma 7 of Aldous [13] from the setting of continuous functions to the setting of

càdlàg functions satisfying certain conditions.

For a càdlàg function f : [0,∞) → R with only positive jumps, let E(f) be the set of non-

empty intervals e = (l, r) such that f(l) = infs≤l f(s) = f(r) and f(s) > f(l) for all s ∈ (l, r).

We say that such intervals are excursions of f . Let S denote the set of functions f : [0,∞)→ R
satisfying the following conditions:

1. f is càdlàg and has only non-negative jumps.
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2. f(x)→ −∞ as x→∞.

3. If 0 ≤ a < b and f(b−) = infa≤s≤b f(s) then f(b) = f(b−).

4. For each ε > 0, E(f) contains only finitely many excursions of length greater than or

equal to ε.

5. The complement of ∪(l,r)∈E(f)(l, r) has Lebesgue measure 0.

6. If (l1, r1), (l2, r2) ∈ E(f) and l1 < l2, then f(l1) > f(l2).

Lemma 2.5.8. Let f ∈ S and let (fn)n≥1 be a sequence of càdlàg functions such that fn → f

as n→∞ in the Skorokhod sense. For each n ∈ N, let (tn,i)i≥1 be a strictly increasing sequence

such that

(i) tn,1 = 0 and limi→∞ tn,i =∞,

(ii) fn(tn,i) = infs≤tn,i fn(s),

(iii) for each s <∞, limn→∞maxi:tn,i≤s(fn(tn,i)− fn(tn,i+1)) = 0.

Write Ξ = {(l, r − l) : (l, r) ∈ E(f)} and Ξn = {(tn,i, tn,i+1 − tn,i) : i ≥ 1} for n ≥ 1. Then

Ξn → Ξ

as n → ∞, where the convergence holds in the topology of vague convergence of counting mea-

sures on [0,∞)× (0,∞).

Proof. We adapt the proof of Lemma 4.8 of Martin & Ráth [108]. Suppose that (l, r) is an

excursion of f . Fix ε ∈ (0, r − l). Since f ∈ S, there exists δ > 0 such that

f(x) ≥ f(l) + δ for all x ∈ [0, l − ε/2]

f(x) ≥ f(l) + δ for all x ∈ [l + ε/2, r − ε/2]

f(x) ≤ f(l)− δ for some x ∈ (r, r + ε/2].

The first line is a consequence of conditions (1) and (6) in the definition of the set S: if for

every n > 0, there exists xn ∈ [0, l−ε/2] such that f(xn) < f(l)+1/n, then by condition (1) there

would be an accumulation point x∞ ∈ [0, l−ε/2] of the sequence (xn)n≥1 such that f(x∞) ≤ f(l),

and hence there would exist an interval (l′, r′) with r′ < r such that f(r′) ≤ f(x∞) ≤ f(r). But

this contradicts (6).

The second line follows from a similar argument (there cannot be an accumulation point

x∞ ∈ [l + ε/2, r − ε/2] such that f(x∞) ≤ f(l) since (l, r) is an excursion interval). The third

line is again a consequence of condition (6) in the definition of the set S.
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Since we have fn → f in the Skorokhod sense, there exist n0 and a sequence of continuous

strictly increasing functions λn : [0,∞) → [0,∞) such that λn(0) = 0, limt→∞ λn(t) = ∞ and

for all n ≥ n0,

|fn(λn(x))− f(x)| < δ/2 for all x ∈ [0, r + ε/2]

and

|λn(x)− x| < ε/2 for all x ∈ [0, r + ε/2].

Then for n ≥ n0,

fn(λn(x)) ≥ f(l) + δ/2 for all x ∈ [0, l − ε/2]

fn(λn(x)) > f(l)− δ/2 for all x ∈ [l − ε/2, l + ε/2]

fn(λn(l)) < f(l) + δ/2

fn(λn(x)) ≥ f(l) + δ/2 for all x ∈ [l + ε/2, r − ε/2]

fn(λn(x)) ≤ f(l)− δ/2 for some x ∈ [r, r + ε/2].

For the second point, note that fn(λn(x)) > f(x) − δ/2 ≥ f(r) − δ/2 = f(l) − δ/2 for every

x ≤ l + ε/2 < r. Therefore,

fn(x) ≥ f(l) + δ/2 for all x ∈ [0, l − ε]

fn(x) > f(l)− δ/2 for all x ∈ [l − ε, l + ε]

fn(x) < f(l) + δ/2 for some x ∈ [l − ε/2, l + ε/2].

fn(x) ≥ f(l) + δ/2 for all x ∈ [l + ε, r − ε]

fn(x) ≤ f(l)− δ/2 for some x ∈ [r − ε/2, r + ε].

From the first and third inequalities, the set I := {x ∈ [l − ε, r + ε], fn(x) ≤ infy≤l−ε fn(y)} is

not empty. Let l(n) := inf I and let (xk)k≥1 be a decreasing sequence in I converging to l(n).

Since fn is right-continuous, fn(l(n)) = limk→∞ fn(xk), and fn(l(n)) ≤ infx≤l−ε fn(x), so that

l(n) = min I. Clearly,

fn(l(n)) = inf
x≤l(n)

fn(x)

Similarly, from the first, second, fourth and fifth inequalities, we obtain the existence of r(n) ∈
[r − ε, r + ε] such that

fn(r(n)) = inf
x≤r(n)

fn(x).

Now fix η > 0. We can find t > 0 such that there are no excursions of length exceeding η

in E(f) which intersect [t,∞). Then there exists a finite collection {(li, ri) : 1 ≤ i ≤ m} of

excursions in E(f) with li ≤ t + η for 1 ≤ i ≤ m and such that ∪1≤i≤m(li, ri) covers all of
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[0, t+ η] except for a set of Lebesgue measure at most η/2. Set ε = η/4m and apply the above

argument for each excursion, to see that for n sufficiently large, there exist disjoint intervals

(l
(n)
1 , r

(n)
1 ), . . . , (l

(n)
m , r

(n)
m ) such that

|l(n)
i − li| < η/4m and |r(n)

i − ri| < η/4m for 1 ≤ i ≤ m.

But then the remaining length in [0, t + η] is at most η and so, in particular, we must have

captured all possible intervals (tn,i, tn,i+1) with tn,i ≤ t+η and tn,i+1−tn,i ≥ η, up to an error of

at most η/4m at each end-point. The required vague convergence follows straightforwardly.

Lemma 2.5.9. We have L̃ ∈ S almost surely. Moreover,

Ξn
d−→ Ξ∞

as n → ∞, where the convergence holds in the topology of vague convergence of counting mea-

sures on [0,∞)× (0,∞).

Proof. L̃ is clearly càdlàg with only non-negative jumps almost surely. The other conditions

required for a function to lie in S follow from Proposition 2.3.1 and Lemma 2.3.5.

Now let f = L̃ and fn = n−1/(α+1)Xn(bnα/(α+1)·c). It is clear that Ξ∞ is Ξ of the previous

lemma for this f . For n ≥ 1, i ≥ 0, let tn,i = n−α/(α+1)σn(i). Then tn,0 = 0 and limi→∞ tn,i =

∞. By construction, the tn,i are times at which new infima of fn are reached. Moreover,

fn(tn,i)− fn(tn,i+1) = n−1/(α+1)(Xn(σn(i))−Xn(σn(i+ 1))) = n−1/(α+1).

Hence, the (tn,i)i≥1 satisfy the conditions in Lemma 2.5.8. It follows that

Ξn = {(tn,i, tn,i+1 − tn,i), i ≥ 1} d−→ Ξ

as n→∞. Now we have

Σn
i = tn,i − n−α/(α+1)[Nn(σn(i)) + i]

and

Y n
i = tn,i − tn,i−1 − n−α/(α+1)[Nn(σn(i))−Nn(σn(i− 1)) + 1].

Since n−α/(α+1)Nn(σn(i)) → 0 for each i ≥ 0, it is straightforward to see that Ξn and

{(tn,i, tn,i+1 − tn,i), i ≥ 1} can be made arbitrarily close in the vague topology by taking n

large. Hence, Ξn
d−→ Ξ∞ as desired.

Proposition 2.5.7 tells us that we may now extract the ordered excursion lengths, and that

we can add the convergence of the starting points of the excursions. This completes the proof

of Proposition 2.5.6. As an aside, we observe that Proposition 2.5.6 gives us an analogue of

Corollary 16 of [13], as follows.

Corollary 2.5.10. The point process Ξ∞ = {(σ̃(`), ζ(ε̃(`))) : ` ≥ 0, σ̃` − σ̃`− > 0} consisting of

the left endpoints and the lengths of the excursions of R is distributed as the SBPP associated

with the set of excursion lengths of R.
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2.5.5 Marked excursions

We now strengthen the convergence in Proposition 2.5.6 to a convergence of ordered marked

excursions. Let us first prove a deterministic analytic result, similar in spirit to Lemma 2.5.8,

which we shall use to handle the positions of the back-edges (recall that when a back-edge is

discovered, its other endpoint is explored at the first time when the corresponding mark in the

stack reaches the top of the stack).

Lemma 2.5.11. Let f ∈ S and let (fn)n≥1 be a sequence of càdlàg functions such that fn → f

as n → ∞ in the Skorokhod sense. For each n ∈ N, let (sn, yn) be a pair of points such that

sn ≥ 0 and yn ≤ fn(sn). Let (s, y) be such that s > 0, f(s−) = f(s) and 0 < y < f(s). Let

tn = inf{u ≥ sn : fn(u) ≤ yn} and t = inf{u ≥ s : f(u) ≤ y}. Suppose that (sn, yn) → (s, y),

that t is not a local minimum of f and that f(t−) = f(t). Then tn → t as n→∞.

Proof. Fix 0 < ε < t − s. Since f ∈ S, y < f(s), f(s−) = f(s), f(t−) = f(t) and t is not a

local minimum of f , there exists δ > 0 such that

f(x) ≥ y + δ for all x ∈ [s− ε/2, t− ε/2]

f(x) ≤ y − δ for some x ∈ (t, t+ ε/2].

As fn → f , there exist n0 and a sequence of continuous strictly increasing functions λn :

[0,∞)→ [0,∞) such that λn(0) = 0, limx→∞ λn(x) =∞ and, for all n ≥ n0,

|fn(λn(x))− f(x)| < δ/2 for all x ∈ [0, t+ ε/2]

and

|λn(x)− x| < ε/4 for all x ∈ [0, t+ ε].

Then

fn(λn(x)) ≥ y + δ/2 for all x ∈ [s− ε/2, t− ε/2]

fn(λn(x)) ≤ y − δ/2 for some x ∈ (t, t+ ε/2].

By taking n0 larger if necessary, we also have

|s− sn| < ε/4 and |y − yn| < δ/2

for all n ≥ n0. Then for all n ≥ n0, we have |λ−1
n (sn)− s| < ε/2 and so

fn(x) ≥ y + δ/2 for all x ∈ [sn, t− ε].

It follows that

fn(x) > yn for all x ∈ [sn, t− ε].

Moreover, it must be the case that fn goes below yn in the time-interval [λn(t−ε/2), λn(t+ε/2)],

i.e. we must have tn ∈ [λn(t− ε/2), λn(t+ ε/2)]. But then tn ∈ [t− ε, t+ ε] for all n ≥ n0. As ε

was arbitrary, the result follows.
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Let

Mn(k) = Nn(σn(k))−Nn(σn(k − 1)),

be the number of back-edges falling in the excursion εnk . Suppose that Mn(k) ≥ 1. Then for

1 ≤ r ≤ Mn(k), let gnk + snk,r be the rescaled time at which the rth back-edge is discovered in

the kth component and let n1/(α+1)xnk,r ≥ 0 be its position on the stack. Let gnk + tnk,r be the

rescaled time at which the corresponding marked leaf in the stack is killed, thus closing the rth

back-edge. It is the first time that the stack size goes below the height of that leaf after its

discovery (the stack being a LIFO queue), so that we have

tnk,r = inf{t ≥ snk,r : εnk(t) ≤ xnk,r − n−1/(α+1)}.

Finally, if Mn(k) ≥ 1, let Pnk =
∑Mn(k)

r=1 δ(snk,r,t
n
k,r)

define a point measure on [0, ζ(εnk)]2. If

Mn(k) = 0, let Pnk be the null measure. Let

Qn =
∑
k≥1

Mn(k)∑
r=1

δ(gnk+snk,r,g
n
k+tnk,r)

,

the point measure encompassing all of the pairs of rescaled times at which a back-edge is opened

and closed.

Turning now to the limiting process, recall that (ε̃i, i ≥ 1) are the excursions of R listed

in decreasing order of length, and that the sequence (ζ(ε̃i), i ≥ 1) lies in `2↓. Let Mi be the

number of marks falling in the excursion ε̃i, and if Mi ≥ 1, write si,1, . . . , si,Mi for the times

and xi,1, . . . , xi,Mi for the positions of the marks, respectively. For 1 ≤ r ≤Mi, let

ti,r = inf{t ≥ si,r : ε̃i(t) ≤ xi,r}.

If Mi ≥ 1, write Pi =
∑Mi

r=1 δ(si,r,ti,r), and if Mi = 0, let Pi be the null measure. Finally, let

Q =
∑
i≥1

Mi∑
r=1

δ(gi+si,r,gi+ti,r).

Recall that

σ̃n(i) = min{k : S̃n(k) ≤ −i}

and let ζ̃n(i) = σ̃n(i) − σ̃n(i − 1) be the length of the ith excursion of S̃n above its running

minimum. Since the components of F̃n(ν) again appear in size-biased order, an argument com-

pletely analogous to that above gives that n−α/(α+1)ord(ζ̃n(k), k ≥ 1) converges in distribution

to (ζ(ε̃i), i ≥ 1) in `2↓. In particular,

n−α/(α+1) max
i≥1

ζ̃n(i)
d−→ ζ(ε̃1),

where we recall that ζ(ε̃1) is the length of the longest excursion of R above 0; in particular, by

Proposition 2.3.1 and Lemma 2.3.5 we have ζ(ε̃1) <∞ a.s.
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For i ≥ 1, let M̃n(i) be the number of back-edges falling among the vertices corresponding

to the (2i − 1)th and 2ith components of F̃n(ν), and let Ñn
max = maxk≥1 M̃

n(k). On the pair

formed of the (2i− 1)th and 2ith components of F̃n(ν), at corresponding vertices, we have that

the size of the stack in Fn(ν) is bounded above by the size of the stack in F̃n(ν) plus 1.

Proposition 2.5.12. We have

ord (ζ(εnk), εnk ,Pnk , k ≥ 1)
d−→ (ζ(ε̃i), ε̃i,Pi, i ≥ 1)

as n→∞. Here, for each k ≥ 1, the convergence in the second co-ordinate is for the Skorokhod

topology and in the third for the Hausdorff distance on R2
+; then we take the product topology

over the different indices.

Proof. Because the points {(si,r, xi,r) : 1 ≤ r ≤ Mi} are picked uniformly from the Lebesgue

measure under the excursion ε̃i (recall that these points are the marks of a uniform Cox process

under R, Theorem 2.5.5), for each i ≥ 1, and such an excursion has only countably many

discontinuities (all of which are up-jumps), the conditions of Lemma 2.5.11 are fulfilled almost

surely. Combining this with Theorem 2.5.5, we may deduce the joint convergence in distribution

as n→∞ of

(n−1/(α+1)Rn(btnα/(α+1)c), t ≥ 0)→ (Rt, t ≥ 0)

in the Skorokhod topology and Qn → Q in the topology of vague convergence on R2
+.

By Skorokhod’s representation theorem, we may work on a probability space such that this

joint convergence holds almost surely. Fix K ∈ N. We have already shown that, given δ > 0,

there exist M > 0 and n0 sufficiently large such that, with probability at least 1 − δ, the K

longest excursions of both n−1/(α+1)Rn(b· nα/(α+1)c) and R occur in the time-interval [0,M ] for

all n ≥ n0. Since Qn → Q and Q has only finitely many points in [0,M ]2, we may deduce that

the K smaller point processes obtained by restricting Qn to each of the K longest excursion-

intervals converge in the sense of the Hausdorff distance to P1, . . . ,PK respectively. The result

follows.

We conclude this section with some technical bounds on the number of back-edges in a given

component, of which we will make use later.

Lemma 2.5.13. Almost surely, we have #{i ≥ 1 : Mi ≥ 2} <∞ and Nmax := supi≥1Mi <∞.

Proof. We will bound

E
[
#{i ≥ 1 : Mi ≥ 2}

∣∣∣(ζ(ε̃i))i≥1

]
=
∑
i≥1

P
(
Mi ≥ 2

∣∣∣ζ(ε̃i)
)
,

where we have used the independence of the excursions given their lengths. We use the crude
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bound P (Po(λ) ≥ 2) ≤ λ2. For any i ≥ 1, we have

P
(
Mi ≥ 2

∣∣∣ζ(ε̃i) = x
)

= P

(
Po

(
1

µ

∫ x

0
ε̃i(u)du

)
≥ 2

∣∣∣∣∣ ζ(ε̃i) = x

)

≤
EN(x)

[(
1
µ

∫ x
0 e(u)du

)2
exp

(
1
µ

∫ x
0 e(u)du

)]
EN(x)

[
exp

(
1
µ

∫ x
0 e(u)du

)]
≤ EN(x)

[(
1

µ

∫ x

0
e(u)du

)4
]1/2

EN(x)

[
exp

(
2

µ

∫ x

0
e(u)du

)]1/2

,

by the Cauchy–Schwarz inequality and the fact that the denominator is bounded below by 1.

By the scaling property of the excursion e,

EN(x)

[(
1

µ

∫ x

0
e(u)du

)4
]1/2

≤ Cx2(1+1/α)

for some constant C > 0. Define

f(x) := EN(x)

[
exp

(
2

µ

∫ x

0
e(u)du

)]1/2

= EN(1)

[
exp

(
2x1+1/α

µ

∫ 1

0
e(u)du

)]1/2

.

This is clearly an increasing function of x, so that for x ≤ ζ(ε̃1) we have f(x) ≤ f(ζ(ε̃1)), which

is almost surely finite by Lemma 2.3.6, since ζ(ε̃1) < ∞ a.s. By Proposition 2.5.6, we have∑
i≥1 ζ(ε̃i)

2 <∞ a.s. and so

E
[
#{i ≥ 1 : Mi ≥ 2}

∣∣∣(ζ(ε̃i))i≥1

]
≤ f(ζ(ε̃1))

∑
i≥1

ζ(ε̃i)
2(1+1/α) <∞ a.s.

It follows that

#{i ≥ 1 : Mi ≥ 2} <∞ a.s.

Since the area of any individual excursion ε̃i is finite, it contains an almost surely finite number

of points and this, together with the fact that only finitely many excursions contain more than

2 points, gives that Nmax <∞ a.s.

2.5.6 Height process

In order to deal with the metric structure, we also need to know that the height process asso-

ciated with Xn converges. Let

Hn(k) = #

{
j ∈ {0, 1, . . . , k − 1} : Xn(j) = inf

j≤`≤k
Xn(`)

}
so that Hn(k) is the distance from the root of the component being explored to the current

vertex at step k. See Figure 2.2 for an illustration. (Recall that Mn(ν) is obtained from Fn(ν)

by replacing pairs of marked leaves by back-edges.)
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Figure 2.2: Top: three components of Fn(ν). Left: Xn(k) drawn with the vertices on the

stack indicated. Empty squares represent half-edges which are available to be connected to as

back-edges. Filled squares are marked vertices. Right: the corresponding height process (with

the extra vertices in red).

Our aim in this section is to prove that Hn has H̃ as its scaling limit, and that we can

extract its marked excursions as for the exploration process. Recall that

G̃n(k) = #

{
j ∈ {0, 1, . . . , k − 1} : S̃n(j) = inf

j≤`≤k
S̃n(`)

}
,

which is the height process corresponding to the forest F̃n(ν). We will compare Hn and G̃n. It

will be sufficient to do this for pairs of components of F̃n(ν). To this end, suppose that for a ≥ 0

and m ≥ 1, vertices va+1, va+2, . . . , va+m form a pair of components of F̃n(ν), and that there are

b back-edges on these vertices in Mn(ν). Then the corresponding collection of components in

Fn(ν) together have m+2b vertices, which are visited at times c+a, c+a+1, . . . , c+a+m+2b−1

in the depth-first exploration, where c ≥ 0 is such that a = τn(c+ a). We compare Hn with G̃n

at the times τn(c+ a), τn(c+ a+ 1), . . . , τn(c+ a+m+ 2b− 1).

Lemma 2.5.14. We have

max
0≤i≤m+2b−1

|Hn(a+ c+ i)− G̃n(τn(a+ c+ i))| ≤ 1 + b+ 2b max
1≤i≤m

|G̃n(a+ i)− G̃n(a+ i− 1)|

Proof. Suppose first that b = 0. Until we come to the end of the first component of F̃n(ν), we

have

Hn(a+ i) = G̃n(τn(a+ i)).

Thereafter, we have Hn(a+i) = 1+G̃n(τn(a+i)), since the second component of F̃n(ν) becomes

a subtree attached to the root of the first component of Fn(ν).
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For b > 0, we encourage the reader to refer back to Figure 2.1.

Write ∆ = max1≤i≤m |G̃n(a + i) − G̃n(a + i − 1)|. The occurrence of a head or tail of

a back-edge at time k implies τn(k + 1) = τn(k). To get from F̃n(ν) to Fn(ν), we unplug

a sequence of subtrees and plug them back in further along in the depth-first order. Within

subtrees containing no back-edges, the increments of the height process remain the same as

they are in the corresponding subtrees of F̃n(ν). Finally, every time we start a new subtree

there is an extra difference of 1. It follows that the most by which the height process can be

altered in going from F̃n(ν) to Fn(ν) is an additive factor of 1 + b+ 2b∆.

We are now ready to state and prove the main result of this section.

Proposition 2.5.15. Jointly with the convergence in Theorem 2.5.5, we have that as n→∞,(
n−

α−1
α+1Hn(btnα/(α+1)c), t ≥ 0

)
d−→
(
H̃t, t ≥ 0

)
in D(R+,R+).

Proof. By Theorem 2.4.1, we have(
n−

α−1
α+1 G̃n(bn

α
α+1uc), u ≥ 0

)
d−→ (H̃u, u ≥ 0).

By Theorem 1.4.3 of Duquesne and Le Gall [70], (Hu, u ≥ 0) is almost surely continuous. By

the absolute continuity in Proposition 2.3.2, the same is true of (H̃u, 0 ≤ u ≤ t). It follows that

for any t > 0,

n−
α−1
α+1 sup

1≤j≤btnα/(α+1)c
|G̃n(j)− G̃n(j − 1)| d−→ 0 (2.20)

as n→∞.

By Lemma 2.5.13, if δ > 0, there exists Kδ <∞ such that

P (ζ(ε̃1) > Kδ) < δ and P (Nmax > Kδ) < δ.

In particular, starting from any time k, the number of steps until we next reach the beginning

of an odd-numbered component is bounded above by 2Kδn
α/(α+1) with probability at least

1− δ + o(1).

Now fix t > 0 and ε > 0. Then by Lemma 2.5.14, we have

P

(
n−

α−1
α+1 sup

0≤k≤btnα/(α+1)c
|Hn(k)− G̃n(τn(k))| > ε

)

≤ P
(
n−α/(α+1) max

i≥1
ζ̃n(i) > Kδ

)
+ P (Nn

max > Kδ)

+ P

(
1 +Kδ + 2Kδ sup

1≤j≤b(t+2Kδ)nα/(α+1)c
|G̃n(j)− G̃n(j − 1)| > εn

α−1
α+1

)
.
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Using (2.20), we obtain that

P

(
1 +Kδ + 2Kδ sup

1≤j≤b(t+2Kδ)nα/(α+1)c
|G̃n(j)− G̃n(j − 1)| > εn

α−1
α+1

)
→ 0

as n→∞. It follows that

lim sup
n→∞

P

(
n−

α−1
α+1 sup

0≤k≤btnα/(α+1)c
|Hn(k)− G̃n(τn(k))| > ε

)
< 2δ.

But δ > 0 was arbitrary and so by Lemma 2.5.1 we may deduce that(
n−

α−1
α+1Hn(bunα/(α+1)c), 0 ≤ u ≤ t

)
d−→
(
H̃u, 0 ≤ u ≤ t

)
.

Now let

hnk(t) = n−(α−1)/(α+1)Hn(σn(k − 1) + btnα/(α+1)c), 0 ≤ t ≤ n−α/(α+1)ζn(k).

Proposition 2.5.16. We have

ord (εnk , h
n
k ,Pnk , k ≥ 1)

d−→
(
ε̃i, h̃i,Pi, i ≥ 1

)
as n → ∞. Here, for each k ≥ 1, the convergence in the first co-ordinate is for the Skorokhod

topology and in the second for the topology of vague convergence of counting measures on [0,∞)2;

then we take the product topology over different k.

Proof. We derive this from Proposition 2.5.15 by applying the same reasoning as in the proof

of Proposition 2.5.12, using the fact that Rn and Hn have the same excursion-intervals.

2.5.7 The convergence of the metric structure

We have now assembled all of the ingredients needed in order to prove Theorem 2.1.1. Recall that

Mn
1 ,M

n
2 , . . . are the components of the random multigraph Mn(ν), listed in decreasing order of

size. We will make the distance and measure explicit in each by writing (Mn
i , d

n
i , µ

n
i )i≥1. Recall

also that Fn(ν) is the forest encoded by Hn. In order to recover Mn(ν) from Fn(ν) we remove

pairs of marked leaves and replace them by back-edges as described above.

Proof of Theorem 2.1.1. Write (hn(i),P
n
(i)) for the ith element of the sequence

ord (hnk ,Pnk , k ≥ 1). Write (Tni , d
n
i , µ

n
i ) for the tree with rescaled height process hn(i) and with

mass n−α/(α+1) on each vertex. (For i ≥ 1, these are the trees of the forest Fn(ν) listed in de-

creasing order of mass.) By Skorokhod’s representation theorem, we may work on a probability

space where the convergence (
hn(i),P

n
(i), i ≥ 1

)
→ (h̃i,Pi, i ≥ 1)

occurs almost surely. By (2.8), this entails that

dGHP((Tni , d
n
i , µ

n
i ), (T̃i, d̃i, µ̃i))→ 0 a.s.
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as n → ∞. In order to obtain (Mn
i , d

n
i , µ

n
i ) from (Tni , d

n
i , µ

n
i ) if Pn(i) =

∑mn
(i)

r=1 δsn(i),r,t
n
(i),r

we

must remove the vertices encoded by sn(i),r and tn(i),r and replace them by a single edge between

their parents, for each 1 ≤ r ≤ mn
(i). Since edges have rescaled length n−(α−1)/(α+1) → 0 it is

straightforward to see (in the same manner as in the Proof of Theorem 22 in [6]) that we get

dGHP((Mn
i , d

n
i , µ

n
i ), (Gi, di, µi))→ 0 a.s. (2.21)

as n→∞. The conclusion follows.

2.6 Appendix

2.6.1 A change of measure for spectrally positive Lévy processes

Let L be a spectrally positive Lévy process with Lévy measure π satisfying∫ ∞
0

(x ∧ x2)π(dx) <∞. (2.22)

Then we may write the Laplace transform of Lt as

E [exp(−λLt)] = exp(tΨ(λ)),

where

Ψ(λ) = γλ+
δ2λ2

2
+

∫ ∞
0

π(dx)(e−λx − 1 + λx).

We impose also that

γ ≥ 0, δ ≥ 0 (2.23)

and that at least one of the two following conditions holds:

δ > 0 or

∫ ∞
0

xπ(dx) =∞. (2.24)

As observed by Duquesne & Le Gall [70], assumptions (2.22), (2.23) and (2.24) together ensure

that L does not drift to +∞ and has paths of infinite variation.

We note that
∫ t

0 Ψ(θs)ds <∞ for all θ > 0 and all t > 0.

Lemma 2.6.1. For any θ > 0, we have

E
[
exp

(
−θ
∫ t

0
sdLs

)]
= exp

(∫ t

0
Ψ(θs)ds

)
= E

[
exp

(
θ

∫ t

0
(Ls − Lt)ds

)]
.

In consequence, the process(
exp

(
−θ
∫ t

0
sdLs −

∫ t

0
Ψ(θs)ds

)
, t ≥ 0

)
is a martingale.
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Proof. Let M(ds, dx) be a Poisson random measure on R+ of intensity ds ⊗ π(dx), and let

M̃(ds, dx) be its compensated version. Then

E
[
exp

(
−θ
∫ t

0

∫ ∞
0

sxM̃(ds, dx)

)]
= exp

(∫ t

0
ds

∫ ∞
0

π(dx)(e−θsx − 1 + θsx)

)
.

If B is a standard Brownian motion, we obtain

E
[
exp

(
−θ
∫ t

0
sdBs

)]
= exp

(
1

2
θ2

∫ t

0
s2ds

)
.

Since we may, in general, realise L as

Lt = −γt+ δBt +

∫ t

0

∫ ∞
0

xM̃(ds, dx),

where B and M̃ are independent, we obtain

E
[
exp

(
−θ
∫ t

0
sdLs

)]
= E

[
exp

(
θ

∫ t

0
γsds− θ

∫ t

0
δsdBs − θ

∫ t

0

∫ ∞
0

xsM̃(ds, dx)

)]
= exp

(
γ

∫ t

0
θsds+

1

2
δ2

∫ t

0
θ2s2ds+

∫ t

0
ds

∫ ∞
0

π(dx)(e−θsx − 1 + θsx)

)
= exp

(∫ t

0
Ψ(θs)ds

)
.

The second equality in the statement of the lemma follows on integrating by parts, and the

martingale property follows since L has independent increments.

This martingale plays an important role as a Radon–Nikodym derivative. Fix θ > 0 and

consider the processX with independent (but non-stationary) increments and Laplace transform

E [exp(−λXt)] = exp

(∫ t

0
ds

∫ ∞
0

π(dx)(e−λx − 1 + λx)e−θxs
)
.

(The process X may again be realised as a stochastic integral with respect to a compensated

Poisson random measure on R+ × R+, but this time with intensity exp(−xs)dsπ(dx).) Let

At = −1

θ
Ψ(θt) = −γt− 1

2
θδ2t2 − 1

θ

∫ ∞
0

π(dx)(e−θtx − 1 + θtx)

and L̃t = δBt +Xt + At. (Note that this is expressed as the Doob–Meyer decomposition of L̃,

with δBt +Xt the martingale part.)

Proposition 2.6.2. For any θ > 0 and every t ≥ 0, we have the following absolute continuity

relation: for every non-negative integrable functional F ,

E
[
F (L̃s, 0 ≤ s ≤ t)

]
= E

[
exp

(
−θ
∫ t

0
sdLs −

∫ t

0
Ψ(θs)ds

)
F (Ls, 0 ≤ s ≤ t)

]
.
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Proof. Observe first that Lemma 2.6.1 entails that the change of measure is well-defined for

each t ≥ 0.

Let us first deal with the case where γ = δ = 0. We use a decomposition of the Lévy measure

similar to that in Bertoin [30] or the proof of Proposition 1 in Miermont [110]:∫ t

0
ds

∫ ∞
0

π(dx)(e−λx − 1 + λx)e−θxs

=

∫ t

0
ds

∫ ∞
0

π(dx)(e−(λ+θs)x − 1 + (λ+ θs)x)−
∫ t

0
ds

∫ ∞
0

π(dx)(e−θxs − 1 + θxs)

−
∫ t

0
ds

∫ ∞
0

π(dx)λx(1− e−θxs)

=

∫ t

0
Ψ(λ+ θs)ds−

∫ t

0
Ψ(θs)ds−

∫ t

0
ds

∫ ∞
0

π(dx)λx(1− e−θxs).

The last integral on the right-hand side makes sense because of the integrability condition (2.22).

Indeed, it may be calculated as follows:∫ t

0
ds

∫ ∞
0

π(dx)λx(1− e−θxs) = λ

∫ ∞
0

xπ(dx)

∫ t

0
(1− e−θxs)ds

=
λ

θ

∫ ∞
0

π(dx)(e−θtx − 1 + θtx) =
λ

θ
Ψ(θt).

Hence,

E [exp(−λXt)] = exp

(∫ t

0
ds

∫ ∞
0

π(dx)(e−λx − 1 + λx)e−θxs
)

= exp

(
−λ
θ

Ψ(θt) +

∫ t

0
Ψ(λ+ θs)ds−

∫ t

0
Ψ(θs)ds

)
and we obtain

E [exp(−λ(Xt +At))] = exp

(∫ t

0
Ψ(λ+ θs)ds−

∫ t

0
Ψ(θs)ds

)
.

Consider the stochastic integral∫ t

0
(λ+ θs)dLs = λLt + θ

∫ t

0
sdLs.

We have

E
[
exp

(
−
∫ t

0
(λ+ θs)dLs

)]
= exp

(∫ t

0
Ψ(λ+ θs))ds

)
and so

E [exp(−λ(Xt +At))] = E
[
exp

(
−λLt − θ

∫ t

0
sdLs −

∫ t

0
Ψ(θs)ds

)]
.

Suppose now that 0 = t0 < t1 < · · · < tm = t. Let λ1, . . . , λm ∈ R+. Then, by the fact that

X has independent increments,

E

[
exp

(
−

m∑
i=1

λi(L̃ti − L̃ti−1)

)]
=

m∏
i=1

E
[
exp(−λi(L̃ti − L̃ti−1))

]
.
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By the same argument as above, we then have

E

[
exp

(
−

m∑
i=1

λi(L̃ti − L̃ti−1)

)]
=

m∏
i=1

E

[
exp

(
−
∫ ti

ti−1

(λi + θs)dLs −
∫ ti

ti−1

Ψ(θs)ds

)]

= E

[
exp

(
−

m∑
i=1

∫ ti

ti−1

(λi + θs)dLs −
∫ t

0
Ψ(θs)ds

)]
,

since L also has independent increments. Again by integration by parts, we then get that the

right-hand side is equal to

E

[
exp

(
−

m∑
i=1

λi(Lti − Lti−1)− θ
∫ t

0
sdLs −

∫ t

0
Ψ(θs)

)]
.

This yields the claimed result for γ = δ = 0.

Now let us instead suppose that γ ≥ 0, δ > 0 and there is no jump component i.e. Lt =

−γt+ δBt and L̃t = −γt+ δBt− δθt2/2. Then by the Cameron–Martin–Girsanov formula (see,

for example, Section 5.6 of Le Gall [96]),

E
[
f(L̃s, 0 ≤ s ≤ t)

]
= E

[
exp

(
−δθ

∫ t

0
sdBs − δ2θ2

∫ t

0
s2ds

)
f(Ls, 0 ≤ s ≤ t)

]
= E

[
exp

(
−θ
∫ t

0
sdLs −

∫ t

0
Ψ(θs)ds

)
f(Ls, 0 ≤ s ≤ t)

]
.

The result for general γ, δ and π now follows using the independence of X and B.

The α-stable case stated in Proposition 2.3.2 is obtained by setting γ = δ = 0, π(dx) =
c
µx
−(α+1)dx and θ = 1/µ. The Brownian case is obtained by taking γ = 0, δ =

√
β/µ, θ = 1/µ

and no Lévy measure π.

2.6.2 Size-biased reordering

In this section, we prove some elementary results about the size-biased reordering (D̂n
1 , D̂

2
n, . . . , D̂

n
n)

of the degrees. First, we prove Proposition 2.4.2.

Proof of Proposition 2.4.2. Denote the set of permutations of {1, 2, . . . , n} by Sn. By definition,

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

)
= P

(
DΣ(1) = k1, DΣ(2) = k2, . . . , DΣ(n) = kn

)
=
∑
σ∈Sn

P
(
Dσ(1) = k1, Dσ(2) = k2, . . . , Dσ(n) = kn,Σ = σ

)
=
∑
σ∈Sn

P
(
Dσ(1) = k1, Dσ(2) = k2, . . . , Dσ(n) = kn

) k1∑n
j=1 kj

k2∑n
j=2 kj

. . .
kn
kn

= n! νk1νk2 . . . νkn
k1∑n
j=1 kj

k2∑n
j=2 kj

. . .
kn
kn
,
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since D1, . . . , Dn are i.i.d. with law ν. Rearrangement of this expression yields

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

)
= k1νk1k2νk2 . . . knνkn

n∏
i=1

(n− i+ 1)∑n
j=i kj

=
k1νk1

µ

k2νk2

µ
· · · knνkn

µ

n∏
i=1

(n− i+ 1)µ∑n
j=i kj

.

Now

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
m = km

)
=

∑
km+1,...,kn≥1

P
(
D̂n

1 = k1, D̂
n
2 = k2, . . . , D̂

n
n = kn

)
=
k1νk1

µ

k2νk2

µ
· · · kmνkm

µ
µmn!

∑
km+1,...,kn≥1

km+1νkm+1 · · · knνkn
n∏
i=1

1∑n
j=i kj

=
k1νk1

µ

k2νk2

µ
· · · kmνkm

µ
µmn!

×
∑

km+1,...,kn≥1

m∏
i=1

1∑m
j=i kj +

∑n
j=m+1 kj

νkm+1 . . . νkn

n∏
`=m+1

k`∑n
j=` kj

=
k1νk1

µ

k2νk2

µ
· · · kmνkm

µ
µm

n!

(n−m)!

×
∑

km+1,...,kn≥1

m∏
i=1

1∑m
j=i kj +

∑n
j=m+1 kj

P
(
D̂n−m

1 = km+1, . . . , D̂
n−m
n−m = kn

)
.

We have that
∑n−m

j=1 D̂n−m
j

d
=
∑n

j=m+1Dj = Ξn−m. It follows that the last expression is equal

to
k1νk1

µ

k2νk2

µ
· · · kmνkm

µ

n!µm

(n−m)!
E

[
m∏
i=1

1∑m
j=i kj + Ξn−m

]
,

and the claimed result follows.

A simple consequence of Proposition 2.4.2 is the following stochastic domination.

Lemma 2.6.3. We have

(D̂n
1 , D̂

n
2 , . . . , D̂

n
n) ≤st (Z1, Z2, . . . , Zn).

Proof. By Proposition 2.4.2 we have

P
(
D̂n

1 ≥ d1, D̂
n
2 ≥ d2, . . . , D̂

n
n ≥ dn

)
= E

[
n∏
i=1

(n− i+ 1)µ∑n
j=i Zj

1{Z1≥d1,Z2≥d2,...,Zn≥dn}

]
.

Let

f(k1, k2, . . . , kn) =

n∏
i=1

(n− i+ 1)µ∑n
j=i kj

and

g(k1, k2, . . . , kn) = 1{k1≥d1,k2≥d2,...,kn≥dn}.
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Then f is a decreasing function of its arguments and g is an increasing function of its arguments.

It follows from the FKG inequality that

E [f(Z1, Z2, . . . , Zn)g(Z1, Z2, . . . , Zn)] ≤ E [f(Z1, Z2, . . . , Zn)]E [g(Z1, Z2, . . . , Zn)] .

But E [f(Z1, Z2, . . . , Zn)] = 1 and so

P
(
D̂n

1 ≥ d1, D̂
n
2 ≥ d2, . . . , D̂

n
n ≥ dn

)
≤ P (Z1 ≥ d1, Z2 ≥ d2, . . . , Zn ≥ dn) ,

as required.

Lemma 2.6.4. Fix α ∈ (1, 2) and suppose m = O(nβ) for some β < α/2. Then as n→∞,

1

n

m∑
i=1

(D̂n
i )2 p→ 0.

In particular, the above holds for m = btnα/(α+1)c.

Proof. By Lemma 2.6.3, it is sufficient to prove that

1

n

m∑
i=1

Z2
i

p→ 0.

By Theorem 2.5.9 of Durrett [71], we have

lim sup
m→∞

1

m1/β

m∑
i=1

Z2
i = 0 a.s.

if and only if
∞∑
m=1

P
(
Z2

1 > m1/β
)
<∞.

But P
(
Z2

1 > m1/β
)

= P
(
Z1 > m1/2β

)
= O(m−α/2β), which is summable since α > 2β.

Lemma 2.6.5. As n→∞,

1

n

n∑
i=btnα/(α+1)c+1

D̂n
i

p→ µ.

Proof. We have

n∑
i=btnα/(α+1)c+1

D̂n
i =

n∑
i=1

D̂n
i −

btnα/(α+1)c∑
i=1

D̂n
i =

n∑
i=1

Di −
btnα/(α+1)c∑

i=1

D̂n
i .

By the weak law of large numbers,

1

n

n∑
i=1

Di
p→ E [D1] = µ

and, since D̂n
i ≥ 1 for 1 ≤ i ≤ n, by Lemma 2.6.4 we have that

1

n

btnα/(α+1)c∑
i=1

D̂n
i

p→ 0.

The result follows.
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2.6.3 Convergence of the measure-change in the Brownian case

Recall that we have µ := E [D1], E
[
D2

1

]
= 2µ and β := E [D1(D1 − 1)(D1 − 2)], so that

E
[
D3

1

]
= β + 4µ.

Lemma 2.6.6. Let L(λ) := E [exp(−λD1)]. Then as λ→ 0,

L(λ) = exp

(
−λµ+

λ2µ(2− µ)

2
− λ3

6
(β + 4µ− 6µ2 + 2µ3) + o(λ3)

)
. (2.25)

Proof. The first three cumulants of D1 are

E [D1] = µ, var (D1) = µ(2− µ), E
[
(D1 − µ)3

]
= β + 4µ− 6µ2 + 2µ3,

and the result follows immediately.

Recall from Proposition 2.4.2 that

φnm(k1, k2, . . . , km) = E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i kj + Ξn−m

]
.

We prove the following lemma.

Lemma 2.6.7. Let s(0) = 0 and s(i) =
∑i

j=1(kj − 2) for i ≥ 1. Suppose that |s(i) − s(m)| ≤
n1/3 log n for all 0 ≤ i ≤ m. Then if m = Θ(n2/3), we have

φmn (k1, k2, . . . , km) ≥ exp

(
1

nµ

m∑
i=0

(s(i)− s(m))− βm3

6µ3n2

)
(1 + o(1)),

where the o(1) term is independent of k1, . . . , km ≥ 1 satisfying the conditions.

Proof. The method of proof is similar in spirit to, but somewhat more involved than, that of

Lemma 2.4.7. Let us first introduce some useful notation. Let D′i = Di − µ, the centred degree

random variables, and let ∆n−m := Ξn−m − µ(n −m) be their sum. Let ψ be the log-Laplace

transform of D′1,

ψ(λ) = logE
[
exp(−λD′1)

]
,

so that as λ→ 0, we have

ψ(λ) =
λ2µ(2− µ)

2
− λ3

6
(β + 4µ− 6µ2 + 2µ3) + o(λ3). (2.26)

Now,

φmn (k1, . . . , km)

=
m∏
i=1

(
1− i− 1

n

)

× E

[
exp

(
−

m∑
i=1

log

(
1 +

∆n−m + s(m)− s(i− 1) + 2(m− i+ 1)− µm
µn

))]
.
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We use Taylor expansion in order to approximate the exponent:

m∑
i=1

(
log

(
1− i− 1

n

)
− log

(
1 +

∆n−m + s(m)− s(i− 1) + (2− µ)m− 2(i− 1)

µn

))
(2.27)

= −m
2

2n
− m3

6n2
+ o(1)

− m∆n−m
nµ

+
1

nµ

m∑
i=0

(s(i)− s(m))− (2− µ)m2

nµ
+
m2

nµ
+ o(1)

+
m(∆n−m)2

2n2µ2
+

1

2µ2n2

m∑
i=0

(s(i)− s(m))2 +
(2− µ)2m3

2µ2n2
+

2m3

3µ2n2
− (2− µ)m3

µ2n2

+ o(1)

+
∆n−m
µ2n2

m∑
i=0

(s(m)− s(i))− (µ− 1)m2∆n−m
µ2n2

+
(2− µ)m

µ2n2

m∑
i=0

(s(m)− s(i))

− 2

µ2n2

m∑
i=0

i(s(m)− s(i)) + · · ·

As ∆n−m is a centred sum of i.i.d. random variables with finite variance, the central limit

theorem applies and we have that n−1/2∆n−m
d−→ N(0,

√
µ(2− µ)) as n → ∞. The desired

lower bound will, however, be obtained by restricting to the moderate deviation event

En =
{
−(2− µ)m− n7/12 ≤ ∆n−m ≤ −(2− µ)m+ n7/12

}
.

On this event, for any 0 ≤ i ≤ m, we have

|∆n−m| = O(n2/3), |s(m)− s(i)| = O(n1/3 log n) and |(2− µ)m− 2(i− 1)| = O(n2/3).

So we have

1

2µ2n2

m∑
i=0

(s(i)− s(m))2 = o(1),
(2− µ)m

µ2n2

m∑
i=0

(s(m)− s(i)) = o(1),

∆n−m
µ2n2

m∑
i=0

(s(m)− s(i)) = o(1), and − 2

µ2n2

m∑
i=0

i(s(m)− s(i)) = o(1),

and that the remainder term (hidden in the ellipsis) in the expansion of (2.27) is o(1). Using

these facts we see that, on En, the exponent (2.27) is equal to Fn + o(1), where

Fn :=
1

nµ

m∑
i=0

(s(i)− s(m))− (2− µ)m2

2µn
− (2− µ)(µ− 1)m3

3µ2n2

+
m(∆n−m)2

2n2µ2
−
(
m

µn
+

(µ− 1)m2

µ2n2

)
∆n−m.

In order to find a lower bound on E [exp(Fn)1En ], we first consider the expectation of the

stochastic part,

E
[
exp

(
m(∆n−m)2

2n2µ2
−
(
m

µn
+

(µ− 1)m2

µ2n2

)
∆n−m

)
1En

]
.
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Let θ > 0 (we shall choose a specific value for θ shortly) and define an equivalent measure Q
via

dQ
dP

= exp (−θ∆n−m − (n−m)ψ(θ)) .

Because the Radon–Nikodym derivative has a product form, under Q the random variables

D′1, D
′
2, . . . , D

′
n−m are still i.i.d. and each have mean

EQ
[
D′1
]

=
E [D′1 exp(−θD′1)]

E [exp(−θD′1)]
= −ψ′(θ)

and variance varQ(D′1) = ψ′′(θ). Now fix

θ =
m

µn
+
m2

µn2
,

so that

EQ[∆n−m] = −(n−m)ψ′(θ)

= −(n−m)

[
(2− µ)m

n
+

(2− µ)m2

n2
− (β + 4µ− 6µ2 + 2µ3)m2

2µ2n2

−(β + 4µ− 6µ2 + 2µ3)m3

2µ2n3
+ o

(
m3

n3

)]
= −(2− µ)m+O(n1/3)

and

varQ(∆n−m) = (n−m)ψ′′(θ) = µ(2− µ)(n−m) +O(n1/3).

Using Chebyshev’s inequality and the fact that n1/3 � n7/12, it follows that

Q(Ecn) ≤ Q(|∆n−m + (2− µ)m| > 1
2n

7/12) ≤ 5varQ(∆n−m)

n7/6
= O(n−1/6).

So

E
[
exp

(
m(∆n−m)2

2n2µ2
−
(
m

µn
+

(µ− 1)m2

µ2n2

)
∆n−m

)
1En

]
= exp

(
(n−m)ψ

(
m

nµ
+
m2

µn2

))
EQ

[
exp

(
m(∆n−m)2

2n2µ2
+
m2∆n−m
µ2n2

)
1En

]
≥ exp

(
(n−m)ψ

(
m

nµ
+
m2

µn2

))
Q(En)

× exp

(
m((2− µ)m− n7/12)2

2n2µ2
− m2((2− µ)m+ n7/12)

µ2n2

)

= (1 + o(1)) exp

(
(n−m)ψ

(
m

nµ
+
m2

µn2

)
+

(2− µ)2m3

2n2µ2
− (2− µ)m3

µ2n2

)
.
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Now,

(n−m)ψ

(
m

nµ
+
m2

µn2

)
= (n−m)

[
(2− µ)m2

2µn2
+

(2− µ)m3

µn3
− (β + 4µ− 6µ2 + 2µ3)m3

6µ3n3

]
+ o(1)

=
(2− µ)m2

2µn
+

(2− µ)m3

2µn2
− (β + 4µ− 6µ2 + 2µ3)m3

6µ3n2
+ o(1).

It follows that

φmn (k1, . . . , km)

≥ (1 + o(1))E [exp(Fn)1En ]

≥ (1 + o(1)) exp

(
(2− µ)m2

2µn
+

(2− µ)m3

2µn2
− (β + 4µ− 6µ2 + 2µ3)m3

6µ3n2

+
(2− µ)2m3

2n2µ2
− (2− µ)m3

µ2n2
− (2− µ)m2

2µn
− (2− µ)(µ− 1)m3

3µ2n2

+
1

nµ

m∑
i=0

(s(i)− s(m))

)

= (1 + o(1)) exp

(
1

nµ

m∑
i=0

(s(i)− s(m))− βm3

6µ3n2

)
,

as claimed.

The event {|S(i)−S(m)| ≤ n1/3 log n for 1 ≤ i ≤ m} has probability tending to 1 as n→∞,

and so the analogue of Proposition 2.4.3 now follows exactly as in the α ∈ (1, 2) case.

2.6.4 Convergence of a single large component for α ∈ (1, 2)

In this section, we consider a large component of the graph conditioned to have size bxnα/(α+1)c,
for α ∈ (1, 2) only, and do the main technical work necessary to prove that it converges in dis-

tribution to a single component of the stable graph conditioned to have size x. By arguments

analogous to those in Section 2.5, it is essentially sufficient to consider a single tree in the

forest F̃n(ν) of size bxnα/(α+1)c, described by an excursion of the corresponding coding func-

tions S̃n and G̃n. The main result of this section, Theorem 2.6.8, is a conditioned version of

Theorem 2.4.1, which says that these excursions converge jointly in distribution to normalised

excursions of L̃ and H̃ of length x. (This is precisely the analogue of Theorem 2.2.5 in the

measure-changed setting.) At the end of the section, we sketch how to obtain the metric space

scaling limit of a single large component of the graph.

For simplicity, we will make the assumption that the support of the law of D1 is Z+ so that

excursions of any strictly positive length occur with positive probability. This assumption is not

necessary, since the condition P (D1 = k) ∼ ck−(α+2) implies that the greatest common divisor

of {k ≥ 2 : P (D1 − 1 = k) > 0} is 1, so that the claimed results all hold for n sufficiently large.
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Recall that (S(k), k ≥ 0) is a random walk which is skip-free to the left and in the domain

of attraction of an α-stable Lévy process. Let

Em =
{
S(k) ≥ 0 for 0 < k < m, S(m) = −1

}
,

the event that the first m steps form an excursion above the running minimum. If m =

bnα/(α+1)xc then, by Theorem 2.2.5,

E
[
f
(
n−1/(α+1)S(bnα/(α+1)tc), n−(α−1)/(α+1)G(bnα/(α+1)tc), 0 ≤ t ≤ x

) ∣∣∣Em]
→ N(x) [f(e,h)] .

More generally, write

Em1,m2 =
{
S(m1) = min

0≤k≤m2−1
S(k) = S(m2) + 1

}
(so that Em = E0,m) and, similarly,

Ẽnm1,m2
=
{
S̃n(m1) = min

0≤k≤m2−1
S̃n(k) = S̃n(m2) + 1

}
,

so that Ẽnm1,m2
is the event that there is an excursion of S̃n above its running minimum between

times m1 and m2 (recall that S̃n and G̃n have the same excursion intervals). This, of course,

corresponds to a component of size m2 −m1. Observe that the corresponding excursion of the

height process starts and ends at 0. We will prove the following result.

Theorem 2.6.8. For any bounded continuous test function f , 0 ≤ t1 < t2 such that t2− t1 = x,

and m1 = bt1nα/(α+1)c, m2 = bt2nα/(α+1)c, m = m2 −m1 then

E
[
f
(
n−1/(α+1)[S̃n(b(t1 + t)nα/(α+1)c)− S̃n(bt1nα/(α+1)c)],

n−(α−1)/(α+1)G̃n(b(t1 + t)nα/(α+1)c), 0 ≤ t ≤ n−α/(α+1)m
)∣∣∣Ẽnm1,m2

]
→

N(x)
[
exp

(
1
µ

∫ x
0 e(t)dt

)
f(e,h)

]
N(x)

[
exp

(
1
µ

∫ x
0 e(t)dt

)]
as n→∞.

We need to prove a refinement of Lemma 2.4.7, to show that the change of measure is

well-behaved at times when the process attains a new minimum.

Proposition 2.6.9. Fix T > 0. For n ≥ 1 and m ≤ Tn
α
α+1 , let k

(n)
1 , k

(n)
2 , . . . , k

(n)
m ≥ 1 and let

s(n)(i) =
∑i

j=1(k
(n)
j −2) be such that s(n)(0) = 0 and s(n)(i) > s(n)(m) for 1 ≤ i ≤ m−1. Then

φmn (k
(n)
1 , k

(n)
2 , . . . , k(n)

m ) = (1 + δn) exp

(
1

nµ

m∑
i=0

(s(n)(i)− s(n)(m))− Cαm
α+1

(α+ 1)µα+1nα

)
,

where δn depends only on n and T , and δn → 0 as n→∞.
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We start with a technical lemma.

Lemma 2.6.10. Suppose that m = O(nα/(α+1)). Let E1, E2, . . . be i.i.d. standard exponential

random variables. Suppose that for each n we have a sequence a
(n)
1 , a

(n)
2 , . . . , a

(n)
m such that

a
(n)
i ∈ (0,Km/n) for all 1 ≤ i ≤ m for some constant K.

(a) We have
m∑
i=1

a
(n)
i (Ei − 1)→ 0

in L2.

(b) For any p > 1, there exists a constant C > 0 such that

E

[
exp

(
p

m∑
i=1

a
(n)
i (Ei − 1)

)]
≤ C exp

(
2pK2m3

n2

)
.

Both the convergence in (a) and the bound in (b) are uniform in sequences (a
(n)
i ) satisfying the

above conditions.

Proof. (a) Since the sum is centred, we have

E

( m∑
i=1

a
(n)
i (Ei − 1)

)2
 = var

(
m∑
i=1

a
(n)
i (Ei − 1)

)
=

m∑
i=1

(a
(n)
i )2 ≤ K2m3

n2
→ 0

as n→∞.

(b) For 0 < a < 1/2 we have

E [exp(aE1 − a)] =
e−a

1− a
= e−a

(
1 +

a

1− a

)
≤ exp

(
−a+

a

1− a

)
≤ exp(2a2).

So for sufficiently large n we have

E

[
exp

(
p

m∑
i=1

a
(n)
i (Ei − 1)

)]
≤ exp

(
2p

m∑
i=1

(a
(n)
i )2

)
≤ exp

(
2pK2m3

n2

)
.

Proof of Proposition 2.6.9. The lower bound does not rely on s(n) attaining a new minimum at

time m, and has already been proved in Lemma 2.4.7; we need a matching upper bound. To

ease readability, we will suppress the superscripts on k
(n)
i and s(n)(i). Now,

E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i kj + Ξn−m

]

=

m−1∏
i=1

(
1− i

n

)
E

[
m∏
i=1

nµ

s(m)− s(i− 1) + 2(m− i+ 1) + Ξn−m

]

=

m−1∏
i=1

(
1− i

n

)
E

[
exp

(
−

m∑
i=1

{
(s(m)− s(i− 1) + 2(m− i+ 1) + Ξn−m

nµ
− 1

}
Ei

)]
,
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where E1, E2, . . . are i.i.d. standard exponential random variables, independent of Ξn−m. We

shall first consider the expectation conditionally on E1, E2, . . . , Em. Write Am for the quantity

m−1∏
i=1

(
1− i

n

)

× E

[
exp

(
−

m∑
i=1

{
(s(m)− s(i− 1) + 2(m− i+ 1) + Ξn−m

nµ
− 1

}
Ei

)∣∣∣∣∣E1, . . . , Em

]
.

Let C > 0 be a constant to be chosen later. We will split E [Am] into two parts, so that

E

[
m∏
i=1

(n− i+ 1)µ∑m
j=i kj + Ξn−m

]
= E

[
Am1{

∑m
i=1 Ei>Cn

α/(α+1)}

]
+ E

[
Am1{

∑m
i=1 Ei≤Cnα/(α+1)}

]
.

We deal with the first term on the right-hand side first. Since kj ≥ 1 for all j and Ξn−m ≥ n−m
a.s., we have the crude bound

s(m)− s(i− 1) + 2(m− i+ 1) + Ξn−m ≥ n− i+ 1 > n−m > n/2

for 1 ≤ i ≤ m and all n sufficiently large that m/n < 1/2. Then

E
[
Am1{

∑m
i=1 Ei>Cn

α/(α+1)}

]
≤ E

[
exp

((
1− 1

2µ

) m∑
i=1

Ei

)
1{
∑m
i=1 Ei>Cn

α/(α+1)}

]

=

∫ ∞
Cnα/(α+1)

exp

(
x− x

2µ

)
e−xxm−1

Γ(m)
dx

=

∫ ∞
Cnα/(α+1)

exp

(
− x

2µ

)
xm−1

Γ(m)
dx

= (2µ)mP

(
1

2µ

m∑
i=1

Ei > Cnα/(α+1)

)
.

By Markov’s inequality, this last quantity is bounded above by

(2µ)mE

[
exp

(
1

2µ

m∑
i=1

Ei

)]
exp

(
−Cnα/(α+1)

)
=

(
(2µ)2

2µ− 1

)m
exp(−Cnα/(α+1))→ 0

as n→∞, as long as we take C > T (2 log(2µ)− log(2µ− 1)), which we henceforth assume.

Let us now turn to the expectation of Am on the event {
∑m

i=1Ei ≤ Cnα/(α+1)}. Since

m−1∏
i=1

(
1− i

n

)
≤ exp

(
−m(m− 1)

2n

)
,

we have

Am1{
∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp

(
−m(m− 1)

2n
+

1

nµ

m∑
i=1

(s(i− 1)− s(m))Ei −
m∑
i=1

(
2(m− i+ 1)

nµ
− 1

)
Ei

)

× E

[
exp

(
−

(
1

nµ

m∑
i=1

Ei

)
Ξn−m

)∣∣∣∣∣E1, . . . , Em

]
1{
∑m
i=1 Ei≤Cnα/(α+1)}.
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On the event
{∑m

i=1Ei ≤ Cnα/(α+1)
}

, we have 1
nµ

∑m
i=1Ei = o(1). Hence, we may apply

the asymptotic formula (2.16) for the Laplace transform of D1 to obtain that on the event{∑m
i=1Ei ≤ Cnα/(α+1)

}
we have

E

[
exp

(
−

(
1

nµ

m∑
i=1

Ei

)
Ξn−m

)∣∣∣∣∣E1, . . . , Em

]

= exp

−(n−m)

n

m∑
i=1

Ei +
(2− µ)

2µn

(
m∑
i=1

Ei

)2

− Cα
(α+ 1)nαµα+1

(
m∑
i=1

Ei

)α+1

+ o(1)

 .

It follows that

Am1{
∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp

 1

nµ

m∑
i=1

(s(i− 1)− s(m))Ei −
Cα

(α+ 1)nαµα+1

(
m∑
i=1

Ei

)α+1

+ o(1)


× exp

(2− µ)

2µn

(
m∑
i=1

Ei

)2

− 2

nµ

m∑
i=1

(m− i+ 1)Ei +
m

n

m∑
i=1

Ei −
m2

2n


× 1{∑m

i=1 Ei≤Cnα/(α+1)}.

Observe that

(2− µ)

2µn

(
m∑
i=1

Ei

)2

− 2

nµ

m∑
i=1

(m− i+ 1)Ei +
m

n

m∑
i=1

Ei −
m2

2n

=
(2− µ)

2µn

(
m+

m∑
i=1

Ei

)
m∑
i=1

(Ei − 1)− 2

nµ

m∑
i=1

(m− i+ 1)(Ei − 1)

+
m

n

m∑
i=1

(Ei − 1) +
m

nµ
.

So

Am1{
∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp

(
1

nµ

m∑
i=0

(s(i)− s(m))− Cαm
α+1

(α+ 1)µα+1nα
+ o(1)

)
exp(χn)1{

∑m
i=1 Ei≤Cnα/(α+1)}, (2.28)

where

χn =
1

nµ

m∑
i=1

(s(i− 1)− s(m))(Ei − 1)− 2

nµ

m∑
i=1

(m− i+ 1)(Ei − 1) +
m

n

m∑
i=1

(Ei − 1)

+
(2− µ)

2µn

(
m+

m∑
i=1

Ei

)
m∑
i=1

(Ei − 1)− Cαm
α+1

(α+ 1)nαµα+1

( 1

m

m∑
i=1

Ei

)α+1

− 1

 .

We need to understand the asymptotics of the expectation of the right-hand side of (2.28).

Recall that s has steps down of magnitude at most 1, so that we have the crude bound s(i)−
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s(m) ≤ m− i+ 1 ≤ m for all 0 ≤ i ≤ m. So by Lemma 2.6.10(a), we get

1

nµ

m∑
i=1

(s(i− 1)− s(m))(Ei − 1)− 2

nµ

m∑
i=1

(m− i+ 1)(Ei − 1) +
m

n

m∑
i=1

(Ei − 1)→ 0

in L2, as n→∞. We have

E

((2− µ)

2µn

(
m+

m∑
i=1

Ei

)
m∑
i=1

(Ei − 1)

)2

1{
∑m
i=1 Ei≤Cnα/(α+1)}


≤ (2− µ)2(T + C)2n2α/(α+1)

4µ2n2
E

 m∑
j=1

(Ej − 1)

2 ≤ (T + C)2Tn3α/(α+1)

µ2n2
→ 0,

since nα/(α+1)/n2 = n(α−2)/(α−1) = o(1). If m → ∞ as n → ∞, it follows straightforwardly

from the weak law of large numbers that(
1

m

m∑
i=1

Ei

)α+1
p→ 1

and so, for any m ≤ Tnα/(α+1), we have

Cαm
α+1

(α+ 1)nαµα+1

( 1

m

m∑
i=1

Ei

)α+1

− 1

 p→ 0.

These results imply that χn
p→ 0 on {

∑m
i=1Ei ≤ Cnα/(α+1)}, as n→∞ and so

exp(χn)1{
∑m
i=1 Ei≤Cnα/(α+1)}

p→ 1.

It remains to show that

E
[
exp(χn)1{

∑m
i=1 Ei≤Cnα/(α+1)}

]
→ 1

as n→∞, for which we require uniform integrability. Now, we have

exp

(
(2− µ)

2µn

(
m+

m∑
i=1

Ei

)
m∑
i=1

(Ei − 1)

)
1{
∑m
i=1 Ei≤Cnα/(α+1)}

≤ 1 + exp

(
(2− µ)

2µn
(C + 1)m

m∑
i=1

(Ei − 1)

)
.

Hence,

exp(χn)1{
∑m
i=1 Ei≤Cnα/(α+1)}

≤ exp

(
Cαm

α+1

(α+ 1)µα+1nα

)
×

[
exp

(
m∑
i=1

{
(s(i− 1)− s(m))

nµ
− 2(m− i+ 1)

nµ
+
m

n

}
(Ei − 1)

)

+ exp

(
m∑
i=1

{
(s(i− 1)− s(m))

nµ
− 2(m− i+ 1)

nµ
+
m

n
+

(2− µ)(C + 1)m

2µn

}
(Ei − 1)

)]
.
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Applying Lemma 2.6.10(b), we see that both terms are bounded in Lp for p > 1. Hence, the

sequence (exp(χn)1{
∑m
i=1 Ei≤Cnα/(α+1)}, n ≥ 1) is uniformly integrable and we may deduce that

E
[
exp(χn)1{

∑m
i=1 Ei≤Cnα/(α+1)}

]
→ 1,

which concludes the proof.

We will also need the following lemma.

Lemma 2.6.11. Fix θ > 0 and let m = bTnα/(α+1)c. Then we have the following uniform

integrability: for K > 0,

lim sup
K→∞

sup
n≥1

E

[
exp

(
θ

n

m∑
i=0

(S(i)− S(m))

)
1{ 1

n

∑m
i=0(S(i)−S(m))>K}

∣∣∣∣∣Em
]

= 0.

Proof. The proof uses similar ingredients to the proof of Lemma 2.3.6. On the event Em we

have

θ

n

m∑
i=0

(S(i)− S(m)) ≤ θm

n

(
1 + max

0≤i≤m
S(i)

)
≤ θT (α+1)/αm−1/α

(
1 + max

0≤i≤m
S(i)

)
.

So it will be sufficient to show that we have

lim sup
K→∞

sup
m≥1

E

[
exp

(
θm−1/α max

0≤i≤m
S(i)

)
1{m−1/α max0≤i≤m S(i)>K}

∣∣∣∣∣Em
]

= 0.

We have

E

[
exp

(
θm−1/α max

0≤i≤m
S(i)

)
1{m−1/α max0≤i≤m S(i)>K}

∣∣∣∣∣Em
]

=

∞∑
k=bKm1/αc+1

eθm
−1/αkP

(
max

0≤i≤m
S(i) = k

∣∣∣Em)

≤ e(K+1)θP
(
m−1/α max

0≤i≤m
S(i) > K

∣∣∣Em)
+

∞∑
k=bKm1/αc+2

θm−1/αeθm
−1/αkP

(
max

0≤i≤m
S(i) ≥ k

∣∣∣Em) ,
by summation by parts and the fact that eθm

−1/αk − eθm−1/α(k−1) ≤ m−1/αθeθm
−1/αk. Theorem

9 of Kortchemski [92] gives that for any δ ∈ (0, α/(α − 1)), there exist universal constants

C1, C2 > 0 such that

P
(
m−1/α max

0≤i≤m
S(i) ≥ u

∣∣∣Em) ≤ C1 exp(−C2u
δ).
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We take δ ∈ (1, α/(α− 1)). So then

E

[
exp

(
θm−1/α max

0≤i≤m
S(i)

)
1{m−1/α max0≤i≤m S(i)>K}

∣∣∣∣∣Em
]

≤ e(K+1)θP
(
m−1/α max

0≤i≤m
S(i) > K

∣∣∣Em)
+

∫ ∞
K

θeθxP
(
m−1/α max

0≤i≤m
S(i) ≥ x− 1

∣∣∣Em) dx
≤ C1 exp((K + 1)θ − C2K

δ) +

∫ ∞
K

C1θ exp(θx− C2(x− 1)δ)dx,

which clearly tends to 0 as K →∞ since δ > 1. The result follows.

Proof of Theorem 2.6.8. Recall that S(k) =
∑k

i=1(Zi − 2), where Z1, Z2, . . . are i.i.d. with the

size-biased degree distribution. Then we have

E
[
f
(
n−

1
α+1 [S̃n(b(t1 + ·)n

α
α+1 c)− S̃n(bt1n

α
α+1 c)], G̃n(b(t1 + ·)n

α
α+1 c)

) ∣∣∣Ẽnm1,m2

]
=

E
[
f
(
n−

1
α+1 [S̃n(b(t1 + ·)n

α
α+1 c)− S̃n(bt1n

α
α+1 c)], n−

α−1
α+1 G̃n(b(t1 + ·)n

α
α+1 c)

)
1Ẽnm1,m2

]
E
[
1Ẽnm1,m2

] .

Using the change of measure, this is equal to

E
[
Φ(n,bt2n

α
α+1 c)f

(
n
− 1
α+1 [S(b(t1+·)n

α
α+1 c)−S(bt1n

α
α+1 c)],n−

α−1
α+1G(b(t1+·)n

α
α+1 c)

)
1Em1,m2

]
E
[
Φ(n,bt2n

α
α+1 c)1Em1,m2

]

=
E
[
Φ(n,bt2n

α
α+1 c)f

(
n
− 1
α+1 [S(b(t1+·)n

α
α+1 c)−S(bt1n

α
α+1 c)],n−

α−1
α+1G(b(t1+·)n

α
α+1 c)

)∣∣∣Em1,m2

]
E
[
Φ(n,bt2n

α
α+1 c)

∣∣∣Em1,m2

] . (2.29)

By Proposition 2.6.9, we have that on the event Em1,m2 ,

Φ(n, bt2n
α
α+1 c) = (1 + o(1)) exp

(
1

µn

m2∑
i=0

(S(i)− S(m2))− Cαt
α+1
2

(α+ 1)µα+1

)
, (2.30)

where the o(1) is uniform on Em1,m2 . But using that S(m2) = S(m1)− 1, we get

Φ(n, bt2n
α
α+1 c) = (1 + o(1)) exp

(
1

µn

m1−1∑
i=0

(S(i)− S(m1)) +
m1

µn
− Cαt

α+1
2

(α+ 1)µα+1

)

× exp

(
1

µn

m2∑
i=m1

([S(i)− S(m1)]− [S(m2)− S(m1)])

)
.

The increments of the random walk S are independent, and so the first and second terms in this

product are independent. The first term is also independent of the argument of the function f .

So in both the numerator and denominator of the fraction (2.29), we may cancel a factor of

E

[
exp

(
1

µn

m1−1∑
i=0

(S(i)− S(m1)) +
m1

µn
− Cαt

α+1
2

(α+ 1)µα+1

)∣∣∣∣∣Em1,m2

]
.
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Using also the stationarity of the increments of S and the fact that m = m2 − m1, we then

obtain that (2.29) is equal to (1 + o(1)) times

E
[
exp
(

1
µn

∑m
i=0(S(i)−S(m))

)
f

(
n
− 1
α+1 S(btn

α
α+1 c),n−

α−1
α+1G(btn

α
α+1 c),0≤t≤n−

α
α+1m

)∣∣∣Em]
E
[
exp
(

1
µn

∑m
i=0(S(i)−S(m))

)∣∣∣Em] .

Lemma 2.6.11 gives us the requisite uniform integrability in order to now deduce the result from

Theorem 2.2.5 and the continuous mapping theorem.

Let us briefly sketch how this result gives a scaling limit for a single component of Mn(ν)

or Gn(ν) conditioned to have size bxnα/(α+1)c. First note that for any ε > 0 there exists a time

T > 0 such that any component of size bxnα/(α+1)c is discovered before time bTnα/(α+1)c with

probability exceeding 1 − ε, uniformly in n sufficiently large. Any such component discovered

before time bTnα/(α+1)c corresponds to a tree of size ≈ xnα/(α+1) in the forest encoded by S̃n

and G̃n and, indeed, this tree is asymptotically indistinguishable in the Gromov–Hausdorff–

Prokhorov sense from a spanning tree of the graph component. The locations of the back-edges

can then be handled in exactly the same way as in the unconditioned setting.

96



Chapter 3

Gaussian Free Field level-set

percolation on regular random

graphs

This chapter stems from the preprint [56], that has not yet been submitted.

Abstract. In this chapter, we study the level-set of the zero-average Gaussian Free Field on a

uniform random d-regular graph above an arbitrary level h ∈ (−∞, h?), where h? is the level-set

percolation threshold of the GFF on the d-regular tree Td. We prove that w.h.p as the number n

of vertices diverges, the GFF has a unique giant connected component C(n)
1 of size η(h)n+o(n),

where η(h) is the probability that the root percolates in the corresponding GFF level-set on

Td. This gives a positive answer to the conjecture of [4] for most regular graphs. We also prove

that the second largest component has size Θ(log n).

Moreover, we show that C(n)
1 shares the following similarities with the giant component of the

supercritical Erdős-Rényi random graph. First, the diameter and the typical distance between

vertices are Θ(log n). Second, the 2-core and the kernel encompass a given positive proportion

of the vertices. Third, the local structure is a branching process conditioned to survive, namely

the level-set percolation cluster of the root in Td (in the Erdős-Rényi case, it is known to be a

Galton-Watson tree with a Poisson distribution for the offspring).

3.1 Introduction

3.1.1 Overview

The Gaussian Free Field (GFF) on a transient graph G is a Gaussian process indexed by the

vertices. Its covariance is given by the Green function, hence the GFF carries a lot of informa-

tion on the structure of G and on the behaviour of random walks, giving a base motivation for
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its study.

Level-set percolation of the GFF has been investigated since the 1980s ([48, 111]). Lately, one

important incentive has been to gain information on the vacant set of random interlacements

([104, 131]), via Dynkin-type isomorphism theorems ([73, 125]). It was subject to much atten-

tion in the last decade on Zd ([65, 104, 121, 130]). On such a lattice where the Green function

decays polynomially with the distance between vertices, it provides a percolation model with

long-range interactions.

More recently, level-set percolation was studied on transient rooted trees ([3, 2, 132]). There is

a phase transition at a critical threshold h? ∈ R: if h < h?, the connected component of the

root in the level-set above h of the GFF has a positive probability to be infinite, and if h > h?,

this probability is zero.

One can define an analogous field on a finite connected graph, the zero-average Gaus-

sian Free Field, whose covariance is given by the zero-average Green function (see Sec-

tion 3.1.2). A natural question is whether some characteristics of the GFF on an infinite graph

G can be transferred to a sequence of finite graphs (Gn)n≥0 whose local limit is G. For instance,

one might ask whether a phase transition for the existence of an infinite connected component

of the level-set in G corresponds to a phase transition for the emergence of a ”macroscopic”

component of size Θ(|Gn|) in the level set in Gn. For G = Zd, Abächerli [1] studied the zero-

average GFF on the torus.

Abächerli and Černý recently investigated the GFF on the d-regular tree Td [3], and the zero-

average GFF on some d-regular graphs (large girth expanders) in a companion paper [4]. In

this setting, many essential questions (such as the value of h?, or the sharpness of the phase

transition at h? for the zero-average GFF) remain open. In this paper, we answer some of

them, and relate the percolation level-sets to other classical random graphs, in particular the

Erdős-Rényi model (Section 3.1.4).

To do so, we refine some properties of [3] on Td. In a work in progress [57], we study further

the GFF on Td and the random walk on the level-sets.

3.1.2 Setting

In all this work, we fix an integer d ≥ 3. We denote Td the infinite d-regular tree rooted at an

arbitrary vertex ◦, and Gn a uniform d-regular random graph for n ≥ 1 (if d is odd, consider

only even n). Let Vn be its vertex set and πn be the uniform measure on Vn, i.e. πn(x) = 1/n

for every x ∈ Vn.

Gaussian Free Field on regular trees

The GFF ϕTd on Td is a centred Gaussian field (ϕTd(x))x∈Td indexed by the vertices of Td,
and with covariances given by the Green function GTd : for all vertices x, y ∈ Td, we set
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Cov(ϕTd(x), ϕTd(y)) = GTd(x, y). Recall that

GTd(x, y) = ETd
x

∑
k≥0

1{Xk=y}


where (Xk)k≥0 is a discrete-time SRW (Simple Random Walk) on Td. In general, we will denote

PGµ the law of a SRW on a graph G with initial distribution µ.

Gaussian Free Field on finite graphs

If Gn is connected, the zero-average GFF ψGn on Gn is a centred Gaussian field (ψGn(x))x∈Gn

indexed by the vertices of Gn, and with covariances given by the zero-average Green function

GGn on Gn: for all x, y ∈ Gn, we set

Cov(ψGn(x), ψGn(y)) = GGn(x, y) := EGnx

[∫ +∞

0

(
1{Xt=y} −

1

n

)
dt

]
where (Xt)t≥0 is a continuous time SRW on Gn started at x with Exp(1) independent jump-

times. Precisely, let (ζi)i≥1 be a sequence of independent exponential variables of parameter

1. Let (Xk)k≥0 be a SRW started at x, independent of (ξi)i≥1. Then for all t ≥ 0, we define

Xt := Xk(t), with k(t) := supk≥0

∑k
i=1 ζi ≤ t.

The function GGn is symmetric, finite and positive semidefinite. This ensures that ψGn is well-

defined (see [1] for details, in particular Remark 1.2).

Two layers of randomness

Denote Pann and Eann the annealed law and expectation for the joint realization of Gn and of

ψGn on it. For a fixed realization of Gn, denote PGn and EGn the quenched law and expectation.

3.1.3 Results

Define the level set E≥hϕTd
:= {x ∈ Td |ϕTd(x) ≥ h}. Let Ch◦ be the connected component of E≥hϕTd

containing the root ◦. Similarly, define the level sets E≥hψGn
:= {x ∈ Gn |ψGn(x) ≥ h} for n ≥ 1.

For i ≥ 1, let C(n)
i be the i-th largest connected component of E≥hψGn

. In [132], Sznitman showed

that there exists a constant h? > 0 such that

if h > h?, η(h) := PTd(|Ch◦ | = +∞) = 0, and if h < h?, η(h) > 0. (3.1)

In [3] (Theorems 4.3 and 5.1), Abächerli and Černý showed that if h > h?, the size of Ch◦ has

exponential moments, and if h < h?, Ch◦ has a positive probability to grow exponentially. In

[4] (Theorems 3.1 and 4.1), they proved that Pann-w.h.p.: if h > h?, |C(n)
1 | = O(log n), and if

h < h?, at least ξn vertices of E≥hψGn
are in components of size at least nδ, for some constants

δ, ξ > 0 depending on h. They even found deterministic conditions on Gn, satisfied w.h.p., so

that these events hold PGn-w.h.p. (see the discussion in Section 3.1.4).

99



Thus, in the supercritical case h < h?, a positive proportion of the vertices is in at least

”mesoscopic” components (there is no explicit lower bound for δ).

This paper focuses exclusively on the supercritical case. We prove the existence of a giant

component:

Theorem 3.1.1. Let h < h?. It holds:

|C(n)
1 |
n

Pann−→ η(h), (3.2)

where
Pann−→ stands for convergence in Pann-probability as n → +∞. Moreover, there exists

K0 > 0 such that

Pann
(
K−1

0 log n ≤ |C(n)
2 | ≤ K0 log n

)
−→

n→+∞
1. (3.3)

Note that by Markov’s inequality, for any ε > 0 and any sequence of events (En)n≥1 such that

Pann(En) → 1, w.h.p. Gn is such that PGn(En) ≥ 1− ε. Thus, w.h.p. on Gn, the conclusions of

Theorem 3.1.1 hold with arbitrarily large PGn-probability.

We also establish some structural properties of C(n)
1 . Let C(n) be the 2-core of C(n)

1 , obtained

by deleting recursively the vertices of degree 1 of C(n)
1 and their edges. Let K(n) be the kernel

of C(n)
1 , i.e. C(n) where simple paths are contracted to a single edge, so that the vertices of K(n)

are those of C(n) with degree at least 3.

Theorem 3.1.2. Global structure of C(n)
1

Fix h < h?. There exist K1,K2 > 0 such that

|C(n)|
n

Pann−→ K1 (3.4)

and
|K(n)|
n

Pann−→ K2. (3.5)

Moreover, there exists K3 > 0 such that if D
(n)
1 is the diameter of C(n)

1 , then

Pann(D
(n)
1 ≤ K3 log n) −→

n→+∞
1. (3.6)

Last, there exists λh > 1 such that for every ε > 0,

π2,n({(x, y) ∈ (C(n)
1 )2, (1− ε) logλh n ≤ dC[n)

1

(x, y) ≤ (1 + ε) logλh n})
Pann−→ 1, (3.7)

where π2,n is the uniform measure on (C(n)
1 )2 and dC(n)

1

the usual graph distance on C(n)
1 . In

other words, the typical distance between vertices of C(n)
1 is logλh n.

We will see in Section 3.3 that λh is the growth rate of Ch◦ conditioned on being infinite.

Say that a random graph G is the local limit of the random graph sequence (Gn)n≥1 if Gn

converges to G in distribution w.r.t to the local topology (see for instance the lecture notes of

Curien [59] for a precise definition). We prove that the local limit of C(n)
1 is Ch◦ conditioned to

be infinite.
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Theorem 3.1.3. Local limit of C(n)
1

For every radius k ≥ 1, for every rooted tree T of height k, let V
(T )
n :={x ∈ C(n)

1 , BC(n)
1

(x, k) = T}
and pT := PTd(BCh◦ (◦, k) = T | |Ch◦ | = +∞). Then

|V (T )
n |
|C(n)

1 |
Pann−→ pT .

3.1.4 Discussion and open questions

GFF percolation versus bond percolation

The graph E≥hψGn
undergoes the same phase transition as some classical bond percolation models

for the size of the largest connected component. We draw a comparison with the Erdős-Rényi

random graph (i.e. bond percolation on the complete graph), introduced by Gilbert in [79]: for

a constant c > 0 and n ∈ N, ER(n, c/n) is the graph on n vertices such that for every pair of

vertices x, y, there is an edge between x and y with probability c/n, independently of all other

pairs of vertices. Erdős and Rényi [74] showed that the supercritical regime corresponds to

c > 1 and the subcritical regime to c < 1. Theorems 3.1.1, 3.1.2 and 3.1.3 hold for ER(n, c/n)

as n → +∞, for any fixed c > 1, the tree Ch◦ being replaced by a Galton-Watson tree whose

offspring distribution is Poisson with parameter c, and λh being replaced by c.

As for Bernoulli bond percolation on Gn (each edge of Gn is deleted with probability 1− p, in-

dependently of the others), the same phase transition holds for the size of the largest connected

component, the critical threshold being p = 1/(d− 1) (Theorem 3.2 of [18]).

The structure of C(n)
1

It was shown recently in [64] that the distribution of the giant component of ER(n, p/n) is con-

tinuous w.r.t. to a random graph which can be explicitly described. Its kernel is a configuration

model whose vertices have i.i.d. degrees with a Poisson distribution (conditioned on being at

least 3). In particular, it is an expander. The lengths of the simple paths in the 2-core are i.i.d.

geometric random variables. See Theorem 1 of [64] for details. This implies a result analogous

to Theorem 3.1.2 for ER(n, p/n).

We conjecture that the kernel K(n) is an expander for every h < h?. The main obstacle to

gathering information on its global structure is that if ψGn is revealed on a positive proportion

of the vertices of K(n) (and hence of Gn), then it could affect substantially ψGn on the remaining

vertices. In particular, if h > 0 is large enough, we could imagine that the average of ψGn on the

discovered vertices is positive. But by (3.18), the average of the GFF on the remaining vertices

would be negative, hence below the threshold h.

Deterministic regular graphs

The results of [4] and [18] hold in fact for any deterministic sequence of large-girth expanders

(conditions (I) and (II) in Proposition 3.2.1), which is w.h.p. the case for Gn. Very recently,

101



after a first preprint of our work, Černý [136] gave another proof of (3.2) that holds under

these deterministic conditions. He also showed that |C(n)
2 | = o(n) w.h.p. His approach is very

different, and uses notably a novel decomposition of the GFF as an infinite sum of fields with

finite range interactions, introduced in [68] and [67].

In our proofs, averaging on the randomness of Gn is a crucial ingredient to control the presence

of cycles on large subgraphs of Gn, and allows us to extend some arguments of [4], where ψGn is

locally approximated by ϕTd .

We conjecture that those deterministic conditions are not sufficient for (3.3) to hold. This was

shown for the Bernoulli bond percolation in [93] (Theorem 2): for every a ∈ (0, 1), one can build

a sequence (Gn)n≥1 satisfying (I) and (II) such that the second largest connected component

has at least na vertices (the second largest component first grows exponentially on a tree-like

ball until it has a polynomial size, and then is ”trapped” in zones where the expansion of the

graph is close to an arbitrarily small constant).

Behaviour at criticality

Almost nothing is known about Ch?◦ (even the value of h?), though one might conjecture that

it is a.s. finite, as critical Galton-Watson trees. In the Erdős-Rényi model, the critical case is

by far the most interesting. When p = 1 + Θ(n−1/3), the i-th largest connected component has

size ςin
2/3, where ςi is an a.s. finite random variable (see the celebrated paper by Aldous [13]).

Its structure is similar to a modified Brownian tree [6]. Hence, there is a finite but arbitrary

large number of components of the biggest order, and some of their main characteristics, such

as their cardinality, are random.

It would be interesting to look for the size and shape of |C(n)
i | for h = h?, or for an hypothetical

critical window (h?−εn, h?+εn) for a sequence (εn)n≥1 converging to 0 at an appropriate speed.

3.1.5 Proof outline

Our proofs rely on two main arguments:

1) An annealed exploration of E≥hψGn
(Proposition 3.2.4), where the structure of Gn is progres-

sively revealed (there is a standard sequential construction of Gn, see Section 3.2). Each

newly discovered vertex is given an independent standard normal variable. Then ψGn is

built via a recursive procedure, using these Gaussian variables (Proposition 3.2.3).

2) A comparison of ψGn and ϕTd (Proposition 3.4.1) : on a tree-like subgraph T of Gn, such

that there are no cycles in Gn at distance κ log log n of T for a large enough constant κ,

there is a bijective map Φ between T and an isomorphic subtree of Td and a coupling of

ψGn and ϕTd so that

sup
y∈T
|ψGn(y)− ϕTd(Φ(y))| ≤ log−1 n.
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We stress the fact that we reveal ψGn only after having explored Gn: if we reveal ψGn at a given

vertex, it conditions the structure of Gn and thus the pairings of the still unmatched half-edges,

so that we cannot use the sequential construction any more to further explore the graph. Hence,

during the exploration, we will need to build an approximate version of ψGn , depending on the

Gaussian variables of 1). This makes some proofs tedious, in particular that of (3.3).

The base exploration

The exploration that we will perform in all proofs, with some modifications, is as follows: pick

x ∈ Vn, and reveal its connected component CGn,hx in E≥hψGn
in a breadth-first way, as well as its

neighbourhood up to distance an = κ log log n. Until we meet a cycle, the explored zone is a

tree Tx, growing at least like Ch+log−1 n
◦ , and at most like Ch−log−1 n

◦ by 2).

On one hand, Ch+log−1 n
◦ has a probability ' η(h+ log−1 n) = η(h) + o(1) to be infinite, with a

growth rate λh > 1 (Section 3.3.2). On the other hand, the probability to create a cycle is o(1)

as long as we reveal o(
√
n) vertices (since we perform o(

√
n) pairings of half-edges having each

a probability o(
√
n)/n to involve two already discovered vertices). Thus, with Pann-probability

η(h) + o(1), Tx and ∂Tx will reach a size Θ(
√
n log−κ

′
n) for some constant κ′ > 0 (Proposi-

tion 3.5.1).

Conversely, Ch−log−1 n
◦ has a probability 1 − η(h − log−1 n) = 1 − η(h) + o(1) to be finite, and

with Pann-probability 1− η(h) + o(1), |CGn,hx | = o(
√
n) (Proposition 3.5.4).

Proof of (3.2).

First, we show that for any two vertices x, y ∈ Vn, there is a Pann-probability η(h)2 + o(1) that

they are connected in E≥hψGn
. To do so, we explore CGn,hx and CGn,hy , that we couple with indepen-

dent copies of Ch+log−1 n
◦ , so that with probability η(h)2+o(1), ∂Tx and ∂Ty have Θ(

√
n log−κ

′
n)

vertices. The explorations from x and y are disjoint with probability 1− o(1), since o(
√
n) ver-

tices have been explored. Then, we draw multiple paths between Tx and Ty (with an ”envelope”

of radius Θ(log log n) around each of them to allow the use of the approximation 2)), the join-

ing balls (Section 3.6.1). The probability that E≥hψGn
percolates through at least one of these

paths is 1− o(1).

Second, we prove by a second moment argument that Pann-w.h.p., the number of couples

(x, y) ∈ V 2
n such that y ∈ CGn,hx is (η(h)2 + o(1))n2 (Lemma 3.6.4).

Third, knowing that |CGn,hx | = o(
√
n) with Pann-probability 1 − η(h) + o(1), we deduce in the

same way that at least (1 − η(h) + o(1))n vertices are in connected components of size o(
√
n)

(Lemma 3.6.3).

Those two facts together force the existence of a connected component of size (η(h) + o(1))n.

Proof of (3.3).

The most difficult part is the upper bound. We show that for K0 large enough, for x ∈ Vn,
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Pann(K0 log n ≤ |CGn,hx | ≤ K−1
0 n) = o(1/n), and conclude by a union bound on x and a corollary

of the proof of (3.2), namely that |C(n)
2 |/n

Pann−→ 0.

The greater precision o(1/n) requires three additional ingredients:

• the size of Ch◦ conditioned on being finite has exponential moments (Proposition 3.3.6), in

particular, PTd(|Ch◦ | ≥ c log n, |Ch◦ | < +∞) = o(1/n) for a large enough constant c;

• when exploring k vertices around x, there is a probability Θ(k2/n) that a cycle arises, so

that we will need to handle at least one cycle to fully explore CGn,hx ;

• we need a better approximation of ψGn than log−1 n in 2): with probability at least

Θ(1/n), we will meet too many vertices with an approximate value of ψGn that are in

[h− log−1 n, h+ log−1 n], so that we can not tell whether they are in CGn,hx or not before

the end of the exploration. To remedy this, we replace the ”security radius” an in 2) by

some rn = Θ(log n), so that we approximate ψGn up to a difference n−Θ(1).

Other proofs.

The proofs of Theorems 3.1.2 and 3.1.3 are based on slightly modified explorations, and are

much simpler.

3.1.6 Plan of the rest of the paper

In Section 3.2, we review some basic properties of Gn (structure, Green function and GFF). In

Section 3.3, we study the GFF on Td. In Section 3.4, we establish a coupling between recursive

constructions of the GFF on Td and on a tree-like neighbourhood of Gn. In Section 3.5, we

explore the connected component of a vertex in E≥hψGn
. In Section 3.6, we prove (3.2). In

Section 3.7, we prove (3.3). In Section 3.8, we prove Theorems 3.1.2 and 3.1.3.

3.1.7 Further definitions

In this paper, edges are non-oriented, and thus graphs are undirected. For any graph G, denote

dG the standard graph distance on its vertex set V , and for every vertex x and R ≥ 0, let

BG(x,R) := {y, dG(x, y) ≤ R} and ∂BG(x,R+ 1) = BG(x,R+ 1) \BG(x,R). For any S ⊆ V ,

let similarly BG(S,R) := ∪x∈SBG(x,R) and ∂BG(S,R+ 1) = BG(S,R+ 1) \BG(S,R). If A is

a subgraph of G with vertex set S, denote BG(A,R) = BG(S,R). If x and y are neighbours,

we denote BG(x, y,R) the subgraph of G obtained by taking all paths of length R starting at x

and not going through y.

The tree excess of a finite graph G is tx(G) = e− v+ 1, where v := |V | and e is the number of

edges in G.An important remark (in particular for Proposition 3.4.1) is that for any subgraph

A of G and R ∈ N, tx(BG(A,R)) ≥ tx(A), with equality if and only if BG(A,R) has the same

number of cycles and the same number of connected components as A. Note also that if G is

connected, tx(G) = 0 if and only if G is a tree, i.e. has no cycle.

104



A rooted tree is a tree T with a distinguished vertex ◦, the root. The height hT (x) of a

vertex x in T is dT (◦, x). If T is finite, its boundary ∂T is the set of vertices of maximal

height. The subtree from x is the subtree made of the vertices y such that x is on any path

from ◦ to y. The offspring of x is the set of vertices of its subtree. For r ≥ 0, the r-offspring

of x is its offspring at distance r of x, and its offspring up to generation r is its offspring

at distance at most r. If y is in the 1-offspring of x, then y is a child of x, and x is its parent.

In this case, write x = y.

If x, y are neighbours in T , the cone from x out of y is the rooted subtree of T with root x

and vertex set {z ∈ T | y is not on the shortest path from x to z}.
An isomorphism between two rooted trees T and T ′ is a bijection Φ : T → T ′ preserving the

root and the height, and such that for all vertices x, y ∈ T , there is an edge between x and y if

and only if there is an edge between Φ(x) and Φ(y).

Unless mention of the contrary, all random walks are in discrete time. We will write TA (resp.

HA) for the first exit (resp. hitting) time of A by a SRW.

For two probability distributions µ, µ′ on R, we write µ ≤
st.

µ′ (or µ′ ≥
st.

µ) if µ′ dominates

stochastically µ, i.e. there exist two random variables X ∼ µ and X ′ ∼ µ′ on the same

probability space such that X ≤ X ′ a.s.

3.2 Basic properties of Gn

3.2.1 Structure and Green function

The graph Gn can be generated sequentially as follows: attach d half-edges to each vertex of

Vn. Pick an arbitrary half-edge, and match it to another half-edge chosen uniformly at random.

Choose a remaining half-edge and match it to another unpaired half-edge chosen uniformly

and independently of the previous matching, and so on until all half-edges have been paired.

The resulting multi-graph Mn is not necessary simple, i.e. it might have loops and multiple

edges. The probability that Mn is simple has a positive limit as n → +∞, and conditionally

on {Mn is simple}, Mn is distributed as Gn (see for instance Section 7 of [135], in particular

Proposition 7.13 for a reference).

In particular, an event true w.h.p. on Mn is also true w.h.p. on Gn, so that it is enough to

prove all our results onMn. In the rest of the paper, we will even write Gn forMn for the sake

of simplicity.

This Section is devoted to proving this result:

Proposition 3.2.1. There exists K3 > 0 such that w.h.p. as n→ +∞, Gn satisfies:

(I) Gn is a K3-expander, i.e. the spectral gap λGn of Gn is at least K3 (the spectral gap is the

smallest eigenvalue of I −P where I is the identity matrix and P the transition matrix of

the SRW on Gn),
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(II) for all x ∈ Gn, BGn(x, bK3 log nc) contains at most one cycle.

Moreover, there exists K4 > 0 such that w.h.p. on Gn, it holds: for all x ∈ Vn such that

tx(BGn(x, bK4 log lognc)) = 0, ∣∣∣∣GGn(x, x)− d− 1

d− 2

∣∣∣∣ ≤ log−6 n. (3.8)

If moreover y is a neighbour of x,∣∣∣∣GGn(x, y)− 1

d− 2

∣∣∣∣ ≤ log−6 n. (3.9)

Say that a given realization of Gn is a good graph when (I), (II), (3.8) and (3.9) hold. The

equations (3.8) and (3.9) illustrate the fact that GGn is close to GTd on a tree-like neighbourhood:

it is well-known that for all x, y ∈ Td,

GTd(x, y) =
(d− 1)1−dTd (x,y)

d− 2
. (3.10)

A quick computation can be found in [138], Lemma 1.24.

By Proposition 1.1 of [4], (I) and (II) imply that for some K5,K6 > 0 and for n large enough,

for all x, y ∈ Vn,

|GGn(x, y)| ≤ K5

(d− 1)dGn (x,y)
∨ n−K6 . (3.11)

Throughout this paper, we will often make binomial estimations, because the number of edges

between two sets of vertices in Gn is close to a binomial random variable, as highlighted in the

Lemma below. We will use repeatedly the following classical inequalities: for n ≥ m ≥ 0 and

p ∈ (0, 1), if Z ∼ Bin(n, p), one has

P(Z ≥ m) ≤
(
n

m

)
pm, P(Z ≤ m) ≤

(
n

m

)
(1− p)m,

(
n

m

)
≤ nm

m!
≤ nm. (3.12)

The following Lemma is an important consequence of the sequential construction of Gn.

Lemma 3.2.2 (Binomial number of connections). Let m ∈ N, let W0,W1 be disjoint

subsets of Vn. Write m0 := |W0| and m1 := |W1|. Suppose the only information we have on

Gn is a set E of its edges that has been revealed. Let mE := |E| and denote PE the law of Gn
conditionally on this information. Repeat the following operation m times: pick an arbitrary

vertex v ∈ W0 having at least one unmatched half-edge, and pair it with an other half-edge.

Add its other endpoint v′ in W0, if it was not already in it. Let s be the number of times that

v′ ∈W1. Suppose that mE +m+m1 < n. Then

s ≤
st.

Bin

(
m,

m1

n− (mE +m)

)
, (3.13)

In particular,

a) for any fixed k ∈ N, there exists C(k) > 0 so that for n large enough, if mE +m < n/2,

PE(s ≥ k) ≤ C(k)
(m1m

n

)k
. (3.14)
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b) for k = k(n)→ +∞ and n large enough, if we have mE +m < n/2 and kn > 6(m1 +m0 +

mE)m, then

PE(s ≥ k) ≤ 0.99k. (3.15)

Proof. Pick v ∈ W0, such that v has an unmatched half-edge e. There are at most m1 vertices

in W1, so that there are at most dm1 unmatched half-edges that belong to its vertices. And the

total number of unmatched half-edges is at least dn− 2(|E|+m) ≥ d(n−mE −m). Thus, the

probability that e is matched with a half-edge belonging to a vertex of W1 is not greater than
dm1

d(n−mE−m) = m1
n−(mE+m) . The successive matchings are performed independently, and (3.13)

follows.

Let Z ∼ Bin
(
m, m1

n−(mE+m)

)
. By (3.12), for k ∈ N, we have

PE(Z ≥ k) ≤
(
m
k

) (
m1

n−(mE+m)

)k
≤
(
m
k

) (
m1
n/2

)k
≤ 2k

k!
mk1m

k

nk
.

This yields (3.14). Moreover, if k → +∞ as n → +∞ and kn > 6(m1 + m0 + mE)m, by

Stirling’s formula, we have that for n large enough: PE(Z ≥ k) ≤
(

(2e+0.1)m1m
kn

)k
< 0.99k, and

(3.15) follows.

It is straightforward to adapt this when s counts the number of times that v′ was in W0 (and

there is no set W1). m1 is replaced by m0 +m in (3.13) and (3.14), and (3.15) does not change.

Throughout this paper, we will refer to these equations without mentioning explicitly if we

count the connections from W0 to W1 or from W0 to itself.

Proof of Proposition 3.2.1. By Theorem 1 of [44] and the Cheeger bound, Gn satisfies (I) w.h.p.

As for (II), fix K3 > 0. For all x ∈ Vn, one obtains BGn(x, bK3 log nc) by proceeding to at most

d(d − 1)bK3 lognc pairings of half-edges. If K3 is small enough, d(d − 1)bK3 lognc < n1/5 − 1 so

that by (3.14) with m0 = 1, mE = 0, m = d(d− 1)bK3 lognc and k = 2, for n large enough:

P(tx(BGn(x, bK3 log nc)) ≥ 2) ≤ C(2)
(
n2/5

n

)2
≤ n−11/10.

By a union bound on x ∈ Vn, w.h.p. Gn is such that for all x ∈ Vn, tx(BGn(x, bK3 log nc)) ≤ 1.

We now establish (3.8). Note that U := BGn(x, bK4 log lognc) and W := BTd(◦, bK4 log log nc)
are isomorphic. Then GUGn(x, x) = GWTd(◦, ◦), where we let

GAGn(y, z) := EGny [
∑TA

k=0 1{Xk=z}] for every y, z ∈ Vn and A ( Vn.

Recall that TA is the exit time of A by the SRW (Xk)k≥0. Similarly for every B ( Td and

y, z ∈ Td, we define

GBTd(y, z) := ETd
y [

TB∑
k=0

1{Xk=z}]. (3.16)

On one hand, by the strong Markov property applied to the exit time TW ,

GWTd(◦, ◦) = GTd(◦, ◦)−ETd◦ [GTd(◦, XTW )] = d−1
d−2 −ETd◦ [GTd(◦, XTW )].
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On the other hand, by Lemma 1.4 of [1], for all y, z ∈ Vn and A ( Vn:

GAGn(y, z) = GGn(y, z)−EGny [GGn(z,XTA)] +
EGny [TA]

n
, (3.17)

so that GUGn(x, x) = GGn(x, x)−EGnx [GGn(x,XTU )] + EGnx [TU ]
n . Therefore,∣∣∣∣GGn(x, x)− d− 1

d− 2

∣∣∣∣ ≤ |ETd
◦ [GTd(◦, XTW )]|+ |EGnx [GGn(x,XTU )]|+ EGnx [TU ]

n
.

By (3.10) and (3.11), if K4 is large enough, then for large enough n:

|ETd◦ [GTd(◦, XTW )]|+ |EGnx [GGn(x,XTU )]| ≤ log−7 n.

Note that TU is stochastically dominated by the hitting time H of bK4 log log nc by a SRW

(Zk)k≥0 on Z starting at 0, whose transition probabilities from any vertex are d−1
d towards the

right and 1/d towards the left. By Markov’s exponential inequality, there exists a constant

c > 0 such that for n large enough and every k > n1/10,

P(H ≥ k) ≤ P(Zk ≤ bK4 log lognc) ≤ P(Zk ≤ (d−2
d − 1/100)k) ≤ e−ck.

Hence for n large enough, EGnx [TU ] ≤ E[H] ≤ n1/10 +
∑

k≥n1/10 ke−ck ≤ n1/2. Thus,∣∣∣∣GGn(x, x)− d− 1

d− 2

∣∣∣∣ ≤ log−7 n+ n−1/2 ≤ log−6 n

for large enough n, and this yields (3.8). One proves (3.9) by the same reasoning.

3.2.2 GFF on Gn

The name ”zero-average” for the GFF on Gn (or on any finite connected graph) comes from the

fact that a.s., ∑
x∈Vn

ψGn(x) = 0 (3.18)

since Var
(∑

x∈Vn ψGn(x)
)

=
∑

x,y∈Vn GGn(x, y) = 0.

This prevents the existence of a domain Markov property. However, there exists a recursive

construction of ψGn :

Proposition 3.2.3 (Lemma 2.6 in [4]). Let A ( Vn, x ∈ Vn \A. Write σ(A) := σ({ψGn(y), y ∈
A}). Let (Xk)k≥0 be a SRW on Gn and let HA be the hitting time of A. Conditionally on σ(A),

ψGn(x) is a Gaussian variable, such that

EGn [ψGn(x)|σ(A)] = EGnx [ψGn(XHA)]− EGnx [HA]

EGnπn [HA]
EGnπn [ψGn(XHA)] (3.19)

and

VarGn(ψGn(x)|σ(A)) = GGn(x, x)−EGnx [GGn(x,XHA)] +
EGnx [HA]

EGnπn [HA]
EGnπn [GGn(x,XHA)]. (3.20)
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Combining this Lemma and the sequential procedure to build Gn, we obtain the following

construction.

Proposition 3.2.4 (Joint realization of Gn and ψGn). A realization of (Gn, ψGn) is given

by the following process. Let (ξi)i≥1 be a sequence of i.i.d. standard normal variables. A move

consists in:

• choosing an unpaired half-edge e and matching it to another unpaired half-edge chosen

uniformly at random (independently of (ξi)i≥1), or

• choosing x ∈ Vn and k ∈ N such that ξk has not yet been attributed, and attributing ξk to

x.

At each move, the choice of e, x or k might depend in an arbitrary way on the previous moves,

i.e. on the matchings and on the value of the normal variables attributed before, but not on

the value of the remaining normal variables. Perform moves until all half-edges are paired, and

every vertex x ∈ Vn has received a normal variable, that we denote ξx. Erase loops and replace

each multiple edge by a single edge.

To generate ψGn, let x1, . . . , xn be the vertices of Vn, listed in the order in which they received

their normal variable. Let ψGn(x1) :=
√
GGn(x1, x1)ξx1. For i = 2, . . . , n successively, define

Ai := {x1, . . . , xi−1}. Recall that we write σ(Ai) for σ({ψGn(y), y ∈ Ai}). Let

ψGn(xi) := EGn [ψGn(xi)|σ(Ai)] + ξxi
√

Var(ψGn(xi)|σ(Ai)).

It might be confusing that ψGn(xi) appears on both sides of the equation. Note that the

conditional expectation and variance on the RHS are σ(Ai)-measurable random variables.

Proof. Clearly, the graph obtained after pairing all the half-edges is distributed as Gn. ξx1 is a

standard normal variable independent of the realization of Gn. Finally, remark that for every

i ≥ 2, ξxi is a standard normal variable, independent of the realization of Gn and of σ(Ai), so

that we can conclude by Proposition 3.2.3.

Last, we prove that the maximum of |ψGn | on Gn has a subexponential tail.

Lemma 3.2.5 (Tail for the maximum of |ψGn |). Suppose that maxx∈Vn GGn(x, x) ≤ K5.

Then for all ∆ > 0, if n is large enough,

PGn
(

max
x∈Vn

|ψGn(x)| ≥ log2/3 n

)
≤ n−∆. (3.21)

In particular, by Proposition 3.2.1 and (3.11), w.h.p. Gn satisfies (3.21).

Proof. Let N ∼ N (0,K5). If n is large enough, then for all x ∈ Vn,

PGn
(
|ψGn(x)| ≥ log2/3 n

)
≤ PGn

(
|N | ≥ log2/3 n

)
≤ 2 exp

(
− log4/3 n

4K5

)
≤ n−∆−1

by Markov’s inequality applied to the function u 7→ exp
(

log2/3 n
2K5

u
)

. By a union bound on all

x ∈ Vn, we get PGn
(

maxx∈Gn |ψGn(x)| > log2/3 n
)
≤ n−∆.
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3.3 The Gaussian Free Field on Td

In Section 3.3.1, we characterize Ch◦ as a branching process, with a recursive construction (Propo-

sition 3.3.1). Then, in Section 3.3.2, we establish its exponential growth, conditionally on

{|Ch◦ | = +∞}. The main results are Propositions 3.3.4, 3.3.6 and 3.3.8.

3.3.1 Ch◦ as a branching process

There is an alternative definition of ϕTd , starting from its value at ◦ and expanding recursively

to its neighbours. It shows that Ch◦ is an infinite-type branching process, the type of a vertex x

being ϕTd(x).

Proposition 3.3.1 (Recursive construction of the GFF,[3]). Define a Gaussian field ϕ on

Td as follows: let (ξy)y∈Td be a family of i.i.d. N (0, 1) random variables. Let ϕ(◦) :=
√

d−1
d−2ξ◦.

For every y ∈ Td \ {◦}, define recursively ϕ(y) :=
√

d
d−1ξy + 1

d−1ϕ(y), where y is the parent of

y. Then

ϕ
d.
= ϕTd .

Proposition 3.3.1 is the corollary of a more general domain Markov property (see for instance

Lemma 1.2 of [123] where it is stated for Zd, but the proof can readily be adapted to any transient

graph). Let G be a transient graph, GG the Green function on it and ϕG the associated GFF.

For U ( G, and x, y ∈ G, let

GUG (x, y) := EGx

[
TU∑
k=0

1Xk = y

]
. (3.22)

Define the field ϕUG on G by ϕUG (x) := ϕG(x) − EGx [ϕG(XTU )] for all x ∈ G, TU being the exit

time from G.

Proposition 3.3.2 (Domain Markov property). The field ϕUG is a Gaussian field, indepen-

dent from (ϕG(x))x∈G\U , with covariances given by Cov(φUG (x), ϕUG (y)) = GUG (x, y).

We apply it with G = Td and U = Ty the subtree from y in Td, for every y ∈ Td \ {◦}, to get

Proposition 3.3.1. See [3], (1.4)-(1.9) for details.

Write PTd for the law of ϕTd , and PTd
a for PTd( · |ϕTd(◦) = a), a ∈ R (such conditioning is

well-defined, (ϕTd(x))x∈Td being a Gaussian process). This construction gives a monotonicity

property for ϕTd . A set S ⊆ RTd is said to be increasing if for any (Φ
(1)
z )z∈Td , (Φ

(2)
z )z∈Td ∈ RTd

such that Φ
(1)
z ≤ Φ

(2)
z for all z ∈ Td, (Φ

(1)
z )z∈Td ∈ S only if (Φ

(2)
z )z∈Td ∈ S. Say that the event

{ϕTd ∈ S} is increasing if S is increasing.

Lemma 3.3.3 (Conditional monotonicity). If E is an increasing event, then the map a 7→
PTd
a (E) is non-decreasing on R.
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Proof. Let a1, a2 ∈ R such that a1 > a2. It suffices to give a coupling between a GFF ϕ
(1)
Td

conditioned on ϕ
(1)
Td (◦) = a1 and a GFF ϕ

(2)
Td conditioned on ϕ

(2)
Td (◦) = a2 such that a.s., for

every z ∈ Td, ϕ
(1)
Td (z) ≥ ϕ(2)

Td (z). To do this, let (ξy)y∈Td be i.i.d. standard normal variables, and

define recursively ϕ
(1)
Td and ϕ

(2)
Td as in Proposition 3.3.1. Then for every z ∈ Td of height k ≥ 0,

ϕ
(1)
Td (z) = ϕ

(2)
Td (z) + (a1 − a2)(d− 1)−k.

3.3.2 Exponential growth

Let Zhk := Ch◦ ∩ ∂BTd(◦, k) be the k-th generation of Ch◦ . We first prove the following:

Proposition 3.3.4. There exists λh > 1 such that

lim
k→+∞

PTd(|Zhk | > λkh/k
2) = η(h)

and

lim
k→+∞

PTd(|Zhk | < kλkh) = 1.

Moreover, h 7→ λh is a decreasing homeomorphism from (−∞, h?) to (1, d− 1).

We will need the following Lemma (whose proof is immediate from Propositions 3.1 and 3.3 of

[132] and Proposition 2.1 (ii) of [3]), from which λh originates. Let ◦ be an arbitrary neighbour

of ◦. Let T+
d be the cone from ◦ out of ◦. Write Ch,+◦ := Ch◦ ∩ T+

d . For k ≥ 1, let Zh,+k :=

Ch,+◦ ∩ ∂BT+
d

(◦, k).

Lemma 3.3.5. Fix h < h?. There exist λh > 1 and a function χh that is continuous with a

positive minimum χmin on [h,+∞), that vanishes on (−∞, h) and such that

Mh
k := λ−kh

∑
x∈Zh,+k

χh(ϕTd(x))

is a martingale w.r.t. the filtration Fk := σ
(
ϕTd(x), x ∈ BT+

d
(◦, k)

)
, k ≥ 0, and has an a.s.

limit Mh
∞.

Proof of Proposition 3.3.4. We first establish that limk→+∞ PTd(|Zhk | > λkh/k
2) = η(h). Clearly,

lim supk→+∞ PTd(|Zhk | > λkh/k
2) ≤ PTd(|Ch◦ | = +∞) = η(h).

Conversely, denote E+ = {|Ch,+◦ | = +∞} and E+
k = {|Zh,+k | ≥ λkh/k2}. By Theorem 4.3 of [3],

lim
k→+∞

PTd(E+
k ) = PTd(E+) > 0. (3.23)

Hence, for any ε > 0, for k large enough,

PTd(E+
k ) ≥ PTd(E+)− ε. (3.24)
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Let T−d be the cone from ◦ out of ◦, Ch,−◦ := Ch◦∩T
−
d , and Zh,−k := Ch,−◦ ∩∂BT−d

(◦, k) for k ≥ 1. Let

E− = {|Ch,−◦ | = +∞} and E−k = {|Zh,−k | ≥ λkh/k2}. Define E := {ϕTd(◦) ≥ h}∩{ C
h,+
◦ is finite}

and Ek := {ϕTd(◦) ≥ h} ∩ { Z
h,+
k = ∅}. We have

PTd(E−k ∩ Ek) ≥ PTd(E− ∩ E)− PTd(E− ∩ E ∩ (Ek)c)− PTd(E− ∩ E ∩ (E−k )c).

Define Mh,−
∞ on Ch,−◦ as Mh

∞ on Ch,+◦ . From the proof of Theorem 4.3 in [3], we get that

PTd({Mh,−
∞ > 0} ∩ (E−k )c) → 0. And, by Proposition 4.2 in [3], PTd(E− ∩ {Mh,−

∞ = 0}) = 0,

so that PTd(E− ∩ (E−k )c) → 0. Moreover, (Ek)k≥0 is an increasing sequence of events and

E = ∪k≥1Ek, so that PTd(E ∩ (Ek)c)→ 0. Hence, for k large enough,

PTd(E−k ∩ Ek) ≥ PTd(E− ∩ E)− 2ε. (3.25)

Note that {|Ch◦ | = +∞} = E+ t (E− ∩ E), so that P(E+) + P(E− ∩ E) = η(h). And for all k ≥ 2,

E+
k t (E−k ∩ Ek) ⊆ {|Z

h
k | > λkh/k

2}, therefore, if k is large enough, by (3.24) and (3.25), one has

PTd(|Zhk | > λkh/k
2) ≥ η(h)− 3ε.

Since ε > 0 was arbitrary, limk→+∞ PTd(|Zhk | > λkh/k
2) = η(h).

Now, we show that PTd(|Zhk | < kλkh)→ 1. For all k ≥ 1, by definition of Mh
k ,

Mh
k ≥ χh,minλ

−k
h

∣∣Zhk ∣∣.
From the proof of Proposition 3.3 in [132], Mh

∞ is a.s. finite. Therefore, k−1λ−kh
∣∣Zhk ∣∣→ 0 a.s.,

and

PTd(|Zh,+k | ≥ kλkh/2)→ 0.

In the same way, PTd(|Zh,−k−1| ≥ kλ
k
h/2)→ 0. Since Zhk ⊆ Z

h,+
k ∪ Zh,−k−1, we are done.

The last part of the Proposition comes directly from Propositions 3.1 and 3.3 in [132].

Next, we establish finer results on the growth of Ch◦ . |Ch◦ | has exponential moments:

Proposition 3.3.6. There exists a constant K7 > 0 such that as k → +∞,

max
a≥h

PTd
a (k ≤ |Ch◦ | < +∞) = o(exp(−K7k)). (3.26)

Since {Zhk 6= ∅} ⊆ {|Ch◦ | ≥ k}, we have the following straightforward consequence:

Corollary 3.3.7. For k large enough, for every a ≥ h,

PTd
a (|Ch◦ | = +∞) ≤ PTd

a (Zhk 6= ∅) ≤ PTd
a (|Ch◦ | = +∞) + e−K7k.

In addition, there are large deviation bounds for the growth rate of Zhk :

Proposition 3.3.8. For every ε > 0, there exists C > 0 such that for every k ∈ N large enough,

max
a≥h

PTd
a (k−1 log |Zhk | 6∈ [log(λh− ε), log(λh + ε) + k−1 logχh(a)] | Zhk 6= ∅) ≤ exp(−Ck). (3.27)

This also holds when replacing Ch◦ by Ch,+◦ , and Zhk by Zh,+k .
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A crucial idea to prove Propositions 3.3.6 and 3.3.8 is to make a finite scaling, in order to

get a branching process that is uniformly supercritical w.r.t. to the value of ϕTd(◦). Indeed,

the fact λh > 1 does not ensure that the expected number of children of ◦ in T+
d (or even in

Td) conditionally on ϕTd(◦) = a is more than one for every a ≥ h, in particular if a is small.

However, due to the exponential growth of Ch◦ (and Ch,+◦ ) of Proposition 3.3.4, it turns out that

for ` ∈ N large enough, even conditionally on ϕTd(◦) = h, the expected number of vertices in

the `-offspring of ◦ is more than one, as stated in the Lemma below.

Lemma 3.3.9. There exists ` ∈ N such that for every a ≥ h,

ETd
a [|Zh` |] ≥ ETd

a [|Zh,+` |] ≥ ETd
h [|Zh,+` |] > 1.

We will use it in the proofs of Propositions 3.3.6 and 3.3.8, looking at the branching process

whose vertices are those of Ch◦ at height 0, `, 2`, etc.

Proof of Lemma 3.3.9. Write Ek := {|Zh,+k | ≥ λkh/k
2}. By (3.23), there exists ε > 0 small

enough such that for every k ≥ ε−1, PTd(Ek) ≥ ε. For a1 large enough, PTd(ϕTd(◦) ≥ a1) < ε/2.

Note that Ek is an increasing event, so that by Lemma 3.3.3, the map a′ 7→ PTd
a′ (Ek) is non-

decreasing. Therefore, for every a′ ≥ a1 and k ≥ M , if ν ∼ N (0, d−1
d−2) denotes the law of

ϕTd(◦),

PTd
a′ (Ek) ≥ PTd

a1
(Ek) ≥

∫ a1

−∞
PTd
b (Ek)ν(db) ≥ PTd(Ek)− PTd(ϕTd(◦) ≥ a1) ≥ ε/2.

From the construction of Proposition 3.3.1, it is straightforward that

p := PTd
h (◦ has one child z in Ch,+◦ , and ϕTd(z) ≥ a1) > 0.

Hence for ` ∈ N large enough,

ETd
h [|Zh,+` |] ≥ pε

2
×
λ`h
`2

> 1.

In addition, for every M ∈ R, {|{Zh,+` | ≥M} is an increasing event. By Lemma 3.3.3, for every

a ≥ h, ETd
a [|Zh,+` |] ≥ ETd

h [|Zh,+` |]. Since Zh,+` ⊆ Zh` a.s., the conclusion follows.

Proof of Proposition 3.3.6. Fix a ≥ h, and let ` ∈ N be such that the conclusion of Lemma 3.3.9

holds. Let F1 := ∂BCh◦ (◦, `). For j ≥ 1, if Fj 6= ∅, choose an arbitrary vertex zj ∈ Fj . Let Oj

be the `-offspring of zj in Ch◦ and let Fj+1 := Oj ∪ Fj \ {zj}. Thus, we explore Ch◦ by revealing

subtrees of height ≤ `, so that at each step, we see at most (d− 1) + . . .+ (d− 1)` ≤ d`+1 new

vertices. Hence, if |Ch◦ | ≥ k for some k ∈ N, there will be at least bk/d`+1c steps before Ch◦ is

fully explored.

By Lemma 3.3.3 (applied to {|Zh,+` | ≥ k} for every k ≥ 1), for every j ≥ 1, |Fj | dominates

stochastically a sum Sj of j i.i.d. random variables of law ρ`,h − 1, where

ρ`,h is the law of |Zh,+` | conditionally on ϕTd(◦) = h. (3.28)
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Therefore,

PTd
a (k ≤ |Ch◦ | < +∞) ≤

+∞∑
j=bk/d`+1c

P(Sj ≤ 0).

But a variable of law ρ`,h − 1 is bounded and has a positive expectation by Lemma 3.3.9,

therefore there exist c, c′ > 0 such that P(Sj ≤ 0) ≤ ce−c′j for all j ≥ 1. Hence,

PTd
a (k ≤ |Ch◦ | < +∞) ≤ c

+∞∑
j=bk/d`+1c

e−c
′j ≤ c exp(−c′bk/d`+1c)

1− e−c′

and (3.26) follows.

Proof of Proposition 3.3.8. Let ε > 0. By definition of Mh
k and Lemma 3.3.5,

{|Zh,+k | ≥ χh(a)(λh + ε)k} ⊆ {Mh
k ≥ λ

−k
h χh,minχh(a)(λh + ε)k}

so that by Markov’s inequality, for any a ≥ h,

PTd
a (|Zh,+k | ≥ χh(a)(λh + ε)k) ≤ PTd

a

(
Mh
k ≥ χh,minχh(a)

(
λh + ε

λh

)k)

≤ χ−1
h,min

(
λh

λh + ε

)k
χh(a)−1ETd

a [Mh
k ]

≤ χ−1
h,min

(
λh

λh + ε

)k
.

This yields the upper large deviation for Zh,+k (and for Zhk , using the facts that Zhk ⊆ Z
h,+
k ∪Zh,−k−1

and that |Zh,−k−1| and |Zh,+k−1| have the same law).

It remains to prove that for some C > 0 and k large enough,

max
a≥h

PTd
a (k−1 log |Zhk | ≤ log(λh − ε) | Zhk 6= ∅) ≤ exp(−Ck). (3.29)

We proceed in two steps. We first initiate the growth of Ch◦ by showing that if Z`n 6= ∅, the

probability that |Z`n| = o(n) decays exponentially with n, where ` is such that Lemma 3.3.9

holds. Then, if Z`n has at least Θ(n) vertices, each of them has a positive probability to have a

Kn-offspring of size at least λKnh /(Kn)3 ≥ (λh− ε)k with k := (K + `)n and for a large enough

constant K, independently of the others vertices. Hence the probability that |Zk| ≤ (λh − ε)k

decays exponentially with n, and thus with k.

First step. Recall the exploration of Ch◦ of the proof of Proposition 3.3.6, but perform it in

a breadth-first way: reveal first the `-offspring of ◦, then the `-offspring of each vertex of Zh` ,

then the `-offspring of each vertex of Zh2`, and so on. For n ≥ 1, if Zh`n 6= ∅, let j+ 1 be the first

step at which we explore the offspring of a vertex of Z`n. Note that j ≥ n. As in the proof of

Proposition 3.3.6, there exist ε, c, c′ > 0 such that P(Si ≤ εi) ≤ ce−c
′i for every i ≥ 1. Hence,

for every n ≥ 1,

min
a≥h

PTd
a (|Zh`n| ≥ εn |Zh`n 6= ∅) ≥ 1−

∑
i≥n

ce−c
′i ≥ 1− c

1− e−c′
e−c

′n. (3.30)
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Second step. Let K be a positive integer constant, and let F be the set of vertices z ∈ Zh`n
such that the Kn-offspring of z has at least λKnh /n3 vertices. This step mainly comes down to

showing that the probability that F is empty decays exponentially with n.

Define the events

En := {|Zh,+Kn | ≥ λKnh /n3} and E ′n := {|Zh,+Kn−1| ≥ λKnh /n3}.

We first show that

p := min
a≥h

PTd
a (En) > 0. (3.31)

By (3.23), lim infn→+∞ PTd(E ′n) =: p′> 0. Let a1 be such that P(ϕTd(◦)≥a1)<p
′/4. For n large

enough, ∫
a≥h P

Td
a (E ′n)ν(da) > p′/2, hence

∫ a1

h PTd
a (E ′n)ν(da) > p′/4,

where we recall that ν is the density of ϕTd(◦). Since E ′n is an increasing event, by Lemma 3.3.3:

mina≥a1 PTd
a (E ′n) ≥ p′/4.

By Lemma 3.3.3 again,

mina≥h PTd
a (∃z ∈ Zh,+1 , ϕTd(z) ≥ a1) = PTd

h (∃z ∈ Zh,+1 , ϕTd(z) ≥ a1) =: p′′ > 0.

Hence p ≥ p′p′′/4 and (3.31) is proved.

Note that |F | ≥
st.

Bin(|Zh`n|, p′′). Thus by (3.30), for n large enough,

min
a≥h

PTd
a (|F | ≥ 1|Zh`n 6= ∅) ≥ 1− PTd

a (|Zh`n| ≤ εn|Zh`n 6= ∅)− (1− p′′)εj ≥ 1− ce−c′n,

up to changing the values of the constants c and c′. Therefore,

max
a≥h

PTd
a

(
|Zh(K+`)n| < λKnh /n3 | Zh`n 6= ∅

)
≤ ce−c′j ≤ ce−c′n.

If K is large enough, then for n large enough, λKnh /n3 > (λh − ε)(K+`)(n+1), so that

max
a≥h

PTd
a

(
|Zh(K+`)n| < (λh − ε)(K+`)(n+1) | Zh`n 6= ∅

)
≤ ce−c′n.

We adjust the conditionning: {Zh(K+`)n 6= ∅} ⊆ {Z
h
`n 6= ∅}, and |Zh(K+`)n| < (λh − ε)(K+`)(n+1)

on {Zh`n 6= ∅} \ {Zh(K+`)n 6= ∅}. Therefore, there exists n0 ≥ 1 such that for all n ≥ n0,

max
a≥h

PTd
a

(
|Zh(K+`)n| < (λh − ε)(K+`)(n+1) | Zh(K+`)n 6= ∅

)
≤ c exp(−c′(K + `)(n+ 1)), (3.32)

where the new value of c′ depends on the constants K and `. This yields (3.29) for large enough

multiples of K+ `. One can readily replace each Zhm by Zh,+m in this reasoning (for any m ≥ 1),

to get the same result for Zh,+(K+`)n instead of Zh(K+`)n.

It remains to show the result for non multiples of K + `. Let k ≥ (K + `)n0. Write k =

115



(K + `)n+m, with 0 ≤ m ≤ (K + `)− 1. Note that on {Zhk 6= ∅}, Zhm has at least one vertex

whose (k −m)-offspring is not empty. Hence

max
a≥h

PTd
a

(
|Zhk | < (λh − ε)k | Zhk 6= ∅

)
≤ max

a≥h
PTd
a

(
|Zh,+k−m| < (λh − ε)k | Zh,+k−m 6= ∅

)
≤ max

a≥h
PTd
a

(
|Zh,+k−m| < (λh − ε)(k−m)+(K+`) | Zh,+k−m 6= ∅

)
≤ c exp(−c′(K + `)(n+ 1))

≤ ce−c′k,

where the third inequality comes from (3.32). Adapting this last computation for Zh,+k is

immediate. This concludes the proof of (3.27).

3.4 Approximate recursive construction of ψGn

Let κ > 0 be a constant, and let

an := bκ logd−1 log nc. (3.33)

The following statement is the main result of this section. It shows that a recursive construction

of ψGn , under some assumptions on the subset A ⊆ Vn of vertices where ψGn is already known,

is very close to the construction of ϕTd in Proposition 3.3.1. It is a crucial tool for comparing

ψGn and ϕTd in the exploration in the next section. It is analogous to Proposition 2.7 of [4],

where the assumptions on A are slightly different: they are suited to a deterministic d-regular

graph satisfying (I) and (II), while ours will be adapted to an annealed exploration, where the

randomness of Gn plays a role. Our proof is very similar, but we feel that the general argument

is sufficiently subtle and interesting to merit a full account.

Proposition 3.4.1. If the constant κ from (3.33) is large enough, then the following holds for n

large enough. Assume that Gn is a good graph as defined in Proposition 3.2.1, and that A ⊆ Vn
satisfies

• |A| ≤ n log−8 n,

• tx(BGn(A, an)) = tx(A), and

• maxz∈A |ψGn(z)| ≤ log2/3 n.

For every y ∈ ∂BGn(A, 1), writing y for the unique neighbour of y in A, we have:∣∣∣∣EGn [ψGn(y)|σ(A)]− 1

d− 1
ψGn(y)

∣∣∣∣ ≤ log−3 n (3.34)

and ∣∣∣∣VarGn(ψGn(y)|σ(A))− d

d− 1

∣∣∣∣ ≤ log−4 n. (3.35)
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We stress that the result holds deterministically in Gn.

A

y

y
an

Ty

Figure 1. The unicity of y comes from the fact that when building BGn(A, an) from A, no

cycle appears and no connected components of A join, since tx(BGn(A, an)) = tx(A).

In the proof, we will need the fact below, which is a consequence of Lemma 3.3 in [140] and of the

following observation. If (Xj)j≥0 is a SRW on Td, then the trajectory of its height (hTd(Xj))j≥0

is distributed as a random walk on N ∪ {0} with transition probabilities 1/d towards the left

neighbour and (d− 1)/d towards the right neighbour, and reflected at 0.

Lemma 3.4.2 (Geometric repulsion). Let s ∈ N, and A ⊆ Vn such that tx(BGn(A, s)) =

tx(A). Let x ∈ Vn \BGn(A, s), let (Xj)j≥0 be a SRW started at x and τ its first hitting time of

A. Then τ dominates stochastically a geometric random variable of parameter (d− 1)−s.

Proof of Proposition 3.4.1. Let us first prove (3.34). By Proposition 3.2.3,

EGn [ψGn(y)|σ(A)] = EGny [ψGn (XHA)]−
EGny [HA]

EGnπn [HA]
EGnπn [ψGn (XHA)] ,

where (Xj)j≥0 is a SRW on Gn. Write Ty for BGn(y, y, an − 1), which is a tree rooted at y by

our assumptions on A and y (it consists of the paths of length an − 1 starting at y and not

going through y).

Let ∂Ty be the (an − 1)-offspring of y in Ty. Let τ be the hitting time of ∂Ty by (Xj). Then

splitting the first term of the RHS above into two terms, we obtain

EGn [ψGn(y)|σ(A)] = EGny [ψGn (XHA) 1HA≤τ ] + EGny [ψGn (XHA) 1HA>τ ]

−
EGny [HA]

EGnπn [HA]
Eπn [ψGn (XHA)] .

(3.36)

On {HA ≤ τ}, XHA = y. And, PGny (HA ≤ τ) is the probability that a SRW on Z started at 1

with transition probabilities 1/d towards the left and (d− 1)/d towards the right hits 0 before
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an. It is classical that its difference with 1/(d−1) decays exponentially with an (see for instance

Theorem 4.8.9 in [72]). Hence, if κ is large enough,∣∣∣∣PGny (HA ≤ τ)− 1

d− 1

∣∣∣∣ ≤ log−6 n, (3.37)

and since maxz∈A |ψGn(z)| ≤ log2/3 n,∣∣∣∣EGny [ψGn (XHA) 1HA≤τ ]− 1

d− 1
ψGn(y)

∣∣∣∣ ≤ log−4 n.

Therefore, to establish (3.34), it is enough to show that∣∣∣∣EGny [ψGn (XHA) 1HA>τ ]− d− 2

d− 1
EGnπn [ψGn (XHA)]

∣∣∣∣ ≤ 3 log−5 n (3.38)

and ∣∣∣∣∣d− 2

d− 1
−

EGny [HA]

EGnπn [HA]

∣∣∣∣∣EGnπn [ψGn (XHA)] ≤ log−5 n. (3.39)

By the strong Markov property, letting pz := PGny (HA > τ,XH∂Ty
= z) for z ∈ ∂Ty, we have

EGny [ψGn (XHA) 1HA>τ ] =
∑

z∈∂Ty pzE
Gn
z [ψGn (XHA)].

For all z ∈ ∂Ty, by Lemma 3.4.2 (with s = an), if κ is large enough, then for large enough n,

PGnz (HA < log2 n) ≤ 1− (1− (d− 1)−an)log2 n ≤ 2 log2 n (d− 1)−an ≤ log−6 n.

Therefore,∣∣∣∣∣∣EGny [ψGn (XHA) 1HA>τ ]−
∑
z∈∂Ty

pz
∑
z′∈Vn

PGnz (Xblog2 nc = z′)EGnz′ [ψGn (XHA)]

∣∣∣∣∣∣
≤ PGnz (HA < log2 n) max

z∈A
|ψGn(z)|

≤ log−5 n.

By Corollary 2.1.5 of [126] and (I),
∣∣∣PGnz (

Xblog2 nc = z′
)
− πn(z′)

∣∣∣ ≤ e−λGn log2 n ≤ 1
n2 for n

large enough and all z, z′ ∈ Vn, so that∣∣∣∣∣∣EGny [ψGn (XHA) 1HA>τ ]−
∑
z∈∂Ty

pzE
Gn
πn [ψGn (XHA)]

∣∣∣∣∣∣ ≤ 2 log−5 n.

Finally, note that
∣∣∣∑z∈∂Ty pz −

d−2
d−1

∣∣∣ =
∣∣∣PGny (HA > τ)− d−2

d−1

∣∣∣ ≤ log−6 n by (3.37), and this

yields (3.38).

Let τ ′ be the hitting time of ∂Ty ∪{y} by (Xj). By the strong Markov property again, we have

EGny [HA] = EGny
[
τ ′
]

+
∑
z∈∂Ty

PGny (Xτ ′ = z)EGnz [HA] . (3.40)
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If (Zj)j≥0 is a SRW on Z starting at 1 with transition probabilities 1/d towards the left and

(d−1)/d towards the right, then τ ′ has the law of the hitting time of {0, an} by (Zj). Hence, for

all k ≥ 0, Py(τ ′ ≥ k) ≤ P(Zk ≤ an). But Zj is the sum of j i.i.d. increments that are bounded

a.s. and with mean (d−2)/d > 0. We apply the exponential Markov inequality and obtain that

for some γ > 0 and n large enough, for all k ≥ log n, P(Zk ≤ an) ≤ exp(−γk). Thus,

EGny
[
τ ′
]
≤ log n PGny (τ ′ ≤ log n) +

∑
k≥logn

k exp(−γk) ≤ 2 log n. (3.41)

By (3.20) of [140], EGnπn [HA] ≥ n
4|A| ≥ log8 n /4, so that dividing by EGnπn [HA] in (3.40), we get∣∣∣∣∣∣E

Gn
y [HA]

EGnπn [HA]
−
∑
z∈∂Ty

p′z
EGnz [HA]

EGnπn [HA]

∣∣∣∣∣∣ ≤ 8 log n

log8 n
≤ log−6 n,

where p′z := PGny (Xτ ′ = z). By (3.37),
∣∣∣∑z∈∂Ty p

′
z − d−2

d−1

∣∣∣ ≤ log−6 n. Therefore,∣∣∣∣∣EGny [HA]

EGnπn [HA]
− d− 2

d− 1

∣∣∣∣∣ ≤ 2 log−6 n+ max
z∈∂Ty

∣∣∣∣EGnz [HA]

EGnπn [HA]
− 1

∣∣∣∣ .
To conclude the proof of (3.39), and thus of (3.34), it is enough to show that

max
z∈∂Ty

∣∣∣∣EGnz [HA]

EGnπn [HA]
− 1

∣∣∣∣ ≤ 5 log−6 n. (3.42)

We adapt for this the proof of Proposition 3.5 in [140]. For all z ∈ ∂Ty, we can write

EGnz [HA]≤EGnz

[
HA1HA<log2 n

]
+
∑

z′∈Vn PGnz (Xblog2 nc = z′, HA ≥ log2 n)(EGnz′ [HA] + log2 n),

hence using Corollary 2.1.5 of [126] and the fact that πn is uniform on Vn,

EGnz [HA] ≤ log2 n+
∑
z′∈Vn

(
πn(z′) + e−λGn log2 n

)
EGnz′ [HA] ≤ log2 n+ (1 + ne−λGn log2 n)EGnπn [HA].

(3.43)

Recall that EGnπn [HA] ≥ log8 n/4. For n large enough, we have by (3.43):

EGnz [HA]

EGnπn [HA]
≤ 4 log2 n

log8 n
+ 1 + ne−λGn log2 n ≤ 1 + 5 log−6 n. (3.44)

Conversely,

EGnz [HA] ≥
∑
z′∈Vn

PGnz (Xblog2 nc = z′)EGnz′ [HA]−
∑
z′∈Vn

PGnz (Xblog2 nc = z′, HA ≤ log2 n)EGnz′ [HA]

≥
∑
z′∈Vn

(πn(z′)− e−λGn log2 n)EGnz′ [HA]−PGnz (HA ≤ log2 n) sup
z′∈Vn

EGnz′ [HA]

≥(1− ne−λGn log2 n)EGnπn [HA]−PGnz (HA ≤ log2 n) sup
z′∈Vn

EGnz′ [HA].

(3.43) and (3.44) are in fact true for all z ∈ Vn, so that for large enough n,

EGnz [HA]

EGnπn [HA]
≥1− ne−λGn log2 n −PGnz (HA ≤ log2 n)(1 + 5 log−6 n)

≥1− 2 log−6 n,

provided that κ is large enough: by Lemma 3.4.2 applied as below (3.39), we have
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PGnz (HA ≤ log2 n) ≤ log−6 n for every z ∈ ∂Ty.

Here lies the main difference with Proposition 3.5 of [140], where there might be more cycles in

BGn(A, an) than in A (i.e. the trees planted on the boundary of A might intersect). One has to

use a weaker version of Lemma 3.4.2, and the lower bound becomes 1 − |A| log−∆ n, ∆ being

any positive constant (κ has to be large enough w.r.t. ∆).

Thus, the proof of (3.34) is complete (note that the required lower bounds on κ given by

Lemma 3.4.2 are uniform in y and A).

We prove (3.35) in the same fashion. Note in particular that by (3.20),

VarGn(ψGn(y)|σ(A)) = GGn(y, y)−EGny [GGn (y,XHA)] +
EGny [HA]

EGnπn [HA]
EGnπn [GGn (y,XHA)]

so that we get, noticing that HA ≥ τ ′ (the hitting time of ∂Ty ∪ {y}) a.s.,∣∣∣∣VarGn(ψGn(y)|σ(A))− d

d− 1

∣∣∣∣ ≤ ∣∣∣∣GGn(y, y)−EGny [GGn (y,XHA) 1HA=τ ′ ]−
d

d− 1

∣∣∣∣
+

∣∣∣∣∣EGny [GGn (y,XHA) 1HA>τ ′ ]−
EGny [HA]

Eπn [HA]
EGnπn [GGn (y,XHA)]

∣∣∣∣∣
(3.45)

We have

EGny [GGn (y,XHA) 1HA=τ ′ ] = EGny [GGn (y,Xτ ′) 1HA=τ ′ ]

= EGny [GGn (y,Xτ ′)]−EGny [GGn (y,Xτ ′) 1HA>τ ′ ] .

Remark that

|EGny [GGn (y,Xτ ′) 1HA>τ ′ ] | ≤ maxz∈∂Ty |GGn(y, z)| ≤ log−5 n

if κ is large enough, by (3.11). Now, by (3.17) applied to the tree Ty (note that TTy = τ ′), we

get

|GGn(y, y)−EGny [GGn (y,Xτ ′)]−G
Ty
Gn(y, y)| ≤ EGny [τ ′]

n

By (3.41),
EGny [τ ′]

n = O(log−5 n), therefore, the first term of the RHS of (3.45) is

|GTyGn(y, y)− d
d−1 |+O(log−5 n).

But Ty is isomorphic to B := BT+
d

(◦, an − 1), so that

G
Ty
Gn(y, y) = GBTd(◦, ◦) = GTd(◦, ◦)−PTd◦ (TB = ◦)GTd(◦, ◦)−PTd◦ (TB 6= ◦)GTd(◦, z)

for any z ∈ T+
d at distance an − 1 of ◦, by cylindrical symmetry of T+

d . By (3.10), if κ is large

enough:

G
Ty
Gn(y, y) = d−1

d−2 −
P

Td
◦ (TB=◦)
d−2 +O(log−5 n).
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By the same reasoning as that leading to (3.37), PTd◦ (TB = ◦) = 1
d−1 + O(log−5 n) for κ large

enough, hence

|GTyGn(y, y)− d
d−1 | = O(log−5 n).

All in all, we get that the first term of the RHS of (3.45) is O(log−5 n).

One applies to the second term of the RHS of (3.45) the same reasoning as that for (3.38) and

(3.39). In particular, since Gn is a good graph, (3.11) yields maxx,y∈Vn |GGn(x, y)| ≤ K5, an

upper bound easier to use than maxz∈A |ψGn(z) | ≤ log2/3 n.

3.5 Exploration of ψGn around a vertex

3.5.1 Successful exploration

In this section, we prove that with Pann-probability arbitrarily close to η(h) as n → +∞,

|CGn,hx | ≥ n1/2 log−κ−6 n, CGn,hx being the connected component of a given vertex x in E≥hψGn
(Proposition 3.5.1), and κ the constant defined in (3.33).

To do so, we explore a tree-like neighborhood Tx of x in E≥hψGn
. We reveal Tx generation by

generation, and couple it with a realization of Ch+log−1 n
◦ ⊆ Td that is independent of the pairing

of the half-edges of Gn. By Proposition 3.2.4, a realization of ψGn is given by a recursive

construction with the same normal variables as those of the realization of ϕTd . When:

• that realization of Ch+log−1 n
◦ is infinite (which happens with probability η(h+ log−1 n) '

η(h)), and

• the conditions of Proposition 3.4.1 hold for each vertex of Tx, until a generation at which

|∂Tx| ≥ n1/2 log−κ−6 n (which happens with probability 1− o(1), mainly because we have

a probability o(1) to create a cycle when pairing o(
√
n) half-edges),

we can apply Proposition 3.4.1 to bound the difference between ϕTd and ψGn by log−1 n, ensur-

ing that Tx ⊆ CGn,hx , the connected component of x in E≥hψGn
.

The exploration. Fix x ∈ Vn. Let

bn := (d− 1)−an log−6 n, (3.46)

where we recall the definition of an from (3.33). Let (ξy)y∈Td be a family of independent

variables, each of law N (0, 1), independent of the pairing of the half-edges in Gn. Define the

GFF ϕTd as in Proposition 3.3.1.

At every step of the exploration, Tx will be a tree rooted at x, Tx its respective counterpart

in Td, rooted at ◦, and Φ an isomorphism from Tx to Tx. At step k, we will reveal the k-th

generation of Tx and Tx.

Precisely, the exploration from x consists of the following steps:
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• at step 0, Tx = {x} and Tx = {◦}. Reveal the pairings of the half-edges of BGn(x, an).

Stop the exploration if tx(BGn(x, an)) > 0 or if ϕTd(◦) < h+ log−1 n.

• at step k ≥ 1, reveal the edges of BGn(Tx, an + 1) that were not known at step k− 1. Let

Ok−1 be the set of the vertices of Tx of height k − 1. Stop the exploration if at least one

of the following conditions holds:

C1 a cycle appears in BGn(Tx, an + 1),

C2 |Ok−1| ≥ n1/2bn,

C3 Ok−1 = ∅ (i.e. no vertex was added to Tx during the (k − 1)-th step),

C4 k > logλh n.

Else, denote xk,1, xk,2, . . . , xk,m the neighbours (in Gn) of vertices of Ok−1 that are not

in Ok−2, for some m ∈ N (note that m = (d − 1)|Ok−1|, each vertex of Ok−1 having one

neighbour in Ok−2, its parent, and d−1 other neighbours at distance k of ◦). Add to Tx the

vertices xk,i of Ok−1 such that ϕTd(Φ(xk,i)) ≥ h+ log−1 n. Add to Tx the corresponding

vertices Φ(xk,i).

'Td
(◦) = 0:7

0:6 0:2

0:53

2:4

1:71:8

x3;1 x3;2

x3;3
x3;4

x3;5

x3;6

0:1

an

an

Figure 2. Illustration of the exploration with k = 3, an = 2, h = 0.3 and n = 148 (so that

log−1 n ' 0.2). Thick vertices and edges represent Tx after two steps. Red vertices have not

been included in Tx because ϕTd at their counterparts in Td is below h+ log−1 n. Any number

near a vertex v is ϕTd(Φ(v)).

If the exploration is stopped at some step k, at which only C2 is met, say that it is successful.

In this case, by Proposition 3.2.4, we can sample ψGn as follows: we reveal the remaining pairings

of half-edges in Gn. We set ψGn(x) = ϕTd(◦). For all k, i ≥ 1, if Ak,i = {x}∪{x`,j |(`, j) ≺ (k, i)}
where ≺ is the lexicographical order on N2, let

ψGn(xk,i) = EGn [ψGn(xk,i)|σ(Ak,i)] + ξk,i

√
Var(ψGn(xk,i)|σ(Ak,i)). (3.47)
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Note that the conditional expectation and variance of the RHS are σ(Ak,i)-measurable random

variables, so that this definition makes sense, even if ψGn(xk,i) appears on both sides of the

equation.

Let S(x) := {the exploration from x is successful}. We prove the following:

Proposition 3.5.1.

Pann(S(x) ∩ {Tx ⊆ CGn,hx }) −→
n→+∞

η(h). (3.48)

Remark 3.5.2 (Exploration size). Denote Rx the set of vertices seen during the exploration

(i.e. such at least one of their half-edges has been paired). Note that for n large enough, for

every x ∈ Vn, by C2, C4 and (3.46), Tx contains less than

n1/2(d− 1)−an log−6 n logλh n ≤ n
1/2(d− 1)−an log−4 n

vertices, so that

|Rx| ≤ n1/2(d− 1)−an log−4 n× (1 + (d− 1) + . . .+ (d− 1)an+1) ≤ n1/2 log−3 n.

In order to prove Proposition 3.5.1, we first show that Ch+log−1 n
◦ either has an exponential

growth at rate >
√
λh with probability close to η(h), or dies out before reaching height logλh n

with probability close to 1 − η(h). Although the proof is slightly technical, it relies merely on

Proposition 3.3.4 and on the continuity of the maps h′ 7→ λh′ and h′ 7→ η(h′).

Lemma 3.5.3. Let F (n)
k := {n1/2bn ≤ |Zh+log−1 n

k | ≤ dn1/2bn} and F ′(n)
k := {Zh+log−1 n

k−1 = ∅}
for k ≥ 1. Let k0 := inf{k ≥ 1, F (n)

k or F ′(n)
k happens}, F∗(n) := {k0 ≤ logλh n} ∩ F

(n)
k0

and

F ′∗(n) := {k0 ≤ logλh n} ∩ F
′(n)
k0

. Then, as n→ +∞:

Pann(F∗(n))→ η(h) and Pann(F ′∗(n)
)→ 1− η(h). (3.49)

Proof. Remark first that by construction, Pann acts like PTd on events that only depend on ϕTd .

Note that for every n ≥ 1, F ′∗(n) ∩ F∗(n) = ∅, implying Pann(F ′∗(n)) + Pann(F∗(n)) ≤ 1. Hence

it is enough to prove that

lim inf
n→+∞

Pann(F∗(n)) ≥ η(h) (3.50)

and

lim inf
n→+∞

Pann(F ′∗(n)
) ≥ 1− η(h) (3.51)

Let ε ∈ (0, η(h)). Let δ > 0 be such that |η(h + δ) − η(h)| ≤ ε and logλh+δ
> 9 logλh /10. The

map h′ → η(h′) is continuous on R \ {h?} by Theorem 3.1 of [3] and the map h′ → λh′ is an

homeomorphism from (−∞, h?) to (1, d−1) by Proposition 3.3.4, hence such δ exists. It is clear

that

lim inf
n→+∞

Pann
(
∃k ≤ logλh n, |Z

h+log−1 n
k | > n1/2bn

)
≥ lim inf

n→+∞
Pann

(
∃k ≤ logλh n, |Z

h+δ
k |> n1/2bn

)
≥ lim inf

n→+∞
Pann

(
|Zh+δ
blogλh

nc|> n1/2bn

)
≥ lim inf

n→+∞
Pann

(
|Zh+δ
blogλh

nc|> n9/10/ log2
λh
n
)
,

123



hence by the first equation of Proposition 3.3.4 applied to h+ δ,

lim inf
n→+∞

Pann
(
∃k ≤ logλh n, |Z

h+log−1 n
k | > n1/2bn

)
≥ η(h+ δ) ≥ η(h)− ε. (3.52)

Since each vertex of Td has at most d children, we have |Zh+log−1 n
k |≤d|Zh+log−1 n

k−1 | determin-

istically for all k ≥ 1. Hence, letting k′ := inf{k ≥ 0, |Zh+log−1 n
k | ≥ n1/2bn} when this set is

non-empty, F (n)
k′ holds, so that {∃k ≤ logλh n, |Z

h+log−1 n
k | > n1/2bn} ⊆ ∪k≤logλh

nF
(n)
k . Thus

lim inf
n→+∞

Pann(F∗(n)) ≥ lim inf
n→+∞

Pann
(
∪k≤logλh

nF
(n)
k

)
≥ η(h)− ε

by (3.52), and this shows (3.50).

For n ≥ e1/δ, Ch+δ
◦ ⊆ Ch+log−1 n

◦ ⊆ Ch◦ . Note that for n ≥ 1,

Pann(F ′∗(n)
)

≥ Pann
(
Zh+log−1 n
blogλh

nc−1 = ∅
)
−Pann

(
{Zh+log−1 n
blogλh

nc−1 = ∅} ∩ {∃k ≥ 1, |Zh+log−1 n
k | ≥ n1/2bn}

)
≥ Pann

(
Zhblogλh

nc−1 = ∅
)
− Pann

(
{|Ch+log−1 n
◦ | < +∞} ∩ {∃k ≥ 1, |Zh+log−1 n

k |≥ n1/2bn}
)

≥ Pann
(
Zhblogλh

nc−1 = ∅
)
− Pann

(
|Ch+log−1 n
◦ | < +∞ | ∃k ≥ 1, |Zh+log−1 n

k | ≥ n1/2bn

)
.

The first term of the RHS converges to 1 − η(h) as n → +∞. For any k ≥ 1 and for any

v ∈ BTd(◦, k), denoting Tv the possible subtree from v in Ch+log−1 n
◦ (if v ∈ Zh+log−1 n

k ) and

C◦(h, δ) the connected component of ◦ in ({◦} ∪ E≥h+δ
ϕTd

) ∩ T+
d ,

Pann(|Tv| < +∞|v ∈ Zh+log−1 n
k ) ≤ PTd

h (|C◦(h, δ)| < +∞)

by Lemma 3.3.3, independently of the other vertices of Zh+log−1 n
k . Thus,

Pann(|Ch◦ | < +∞ | ∃k ≥ 1, |Zhk | ≥ n1/2bn) ≤ PTd
h (|C◦(h, δ)| < +∞)n

1/2bn .

Therefore, it only remains to prove that PTd
h (|C◦(h, δ)| < +∞) < 1. By Lemma 3.3.3, the map

a 7→ PTd
a (|C◦(h, δ)| = +∞) is non-decreasing. By (3.23),∫ +∞

h+δ P
Td
a (|C◦(h, δ)| = +∞)ν(da) > 0,

where we recall that ν is the density of ϕTd(◦). Hence for some a1 ≥ h + δ, for every a ≥ a1,

PTd
a (|C◦(h, δ)| = +∞) ≥ PTd

a1
(|C◦(h, δ)| = +∞) > 0. And, there exists p > 0 such that

PTd
h (◦ has one child z such that ϕTd(z) ≥ a1) ≥ p.

Therefore, PTd
h (|C◦(h, δ)| = +∞) ≥ pPTd

a1
(|C◦(h, δ)| = +∞) > 0, and PTd

h (|C◦(h, δ)| < +∞) < 1.

(3.51) follows.

Proof of Proposition 3.5.1. We first establish that C1 happens with Pann-probability o(1). Then,

if there is no cycle in BGn(Tx, an), we can apply Proposition 3.4.1, to bound the difference be-

tween ϕTd and ψGn .
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By Remark 3.5.2, at most dn1/2 log−3 n matchings of half-edges are performed during the ex-

ploration. By (3.14) with k = m0 = 1, mE = 0 and m ≤ dn1/2 log−3 n, the probability to create

at least one cycle during these matchings is less than log−1 n for large enough n. Therefore,

Pann(C1 happens)→ 0. (3.53)

Note that if C1 does not happen, then on F∗(n), (resp. F ′∗(n)), C3 (resp. C2) is satisfied, but

not C4. Moreover, on F∗(n), (resp. F ′∗(n)), C2 (resp. C3) does not hold, so that

Pann(S(x)) ≥ Pann(F∗(n))− Pann(C1 happens)

and, since F∗(n) ∩ F ′∗(n) = ∅:

Pann(S(x)) ≤ Pann((F∗(n))c) + Pann(C1 happens) ≤ 1− Pann(F ′∗(n)) + Pann(C1 happens).

Thus, by (3.49) and (3.53),

Pann(S(x))→ η(h). (3.54)

Now, we compare ψGn with ϕTd (supposing that the exploration is over and that S(x) holds).

Note that by C4, Tx has a maximal height logλh n so that by the triangle inequality,

{Tx 6⊆ CGn,hx } ⊆ {∃y ∈ Tx, |ψGn(y)− ϕTd(Φ(y))| ≥ log−1 n} ⊆ ∪y∈TxE(y),

where E(x) := {|ψGn(x)− ϕTd(Φ(x))| ≥ log−3 n} and

E(y) := {|ψGn(y)− ϕTd(Φ(y))| ≥ |ψGn(y)− ϕTd(Φ(y))|+ 2 log−3 n} for y 6= x.

Suppose that Gn is a good graph. For xk,i ∈ Tx \ {x}, we can apply Proposition 3.4.1 on the

event E(n)
k,i := {maxy′∈Ak,i |ψGn(y′)|< log2/3n }, (note that |Ak,i| ≤ n1/2 by Remark 3.5.2 and

that tx(BGn(Ak,i, an)) = tx(Ak,i) by C1). Writing y = xk,i and ξ = ξΦ(xk,i), we get for n large

enough:

|ψGn(y)− ϕTd(Φ(y))| ≤

∣∣∣∣∣ψGn(y)− ϕTd(Φ(y))

d− 1

∣∣∣∣∣+ log−3 n

+

∣∣∣∣∣
(√

VarGn(ψGn(y)|σ(A))−
√
d− 1

d

)
ξ

∣∣∣∣∣
and ∣∣∣∣∣

√
VarGn(ψGn(y)|σ(A))−

√
d− 1

d

∣∣∣∣∣ ≤
∣∣∣∣∣
√
d− 1

d
− log−4 n−

√
d− 1

d

∣∣∣∣∣
≤ 11

10

√
d− 1

d

d

2(d− 1)
log−4 n

≤ log−4 n.

Let E ′(y) := E(y) ∩ E(n)
k,i . We have

PGn(E ′(y)) ≤ P(|ξ| log−4 n ≥ log−3 n) ≤ n−3 (3.55)
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by the exponential Markov inequality used as in the proof of Lemma 3.2.5. Moreover, by (3.8),

if κ is large enough, we obtain in the same manner:

PGn(E(x)) ≤ PGn(|ξ◦| log−4 n ≥ log−3 n) ≤ n−3. (3.56)

By Remark 3.5.2, we have |Tx| ≤ n1/2. By (3.55), (3.56) and a union bound on y ∈ Tx,

PGn(∪y∈TxE ′(y)) ≤ n−5/2 with E ′(x) := E(x). And PGn(∪(k,i):xk,i∈TxE
(n)
k,i ) ≤ n−2 for large enough

n, by Lemma 3.2.5.

Thus for n large enough, if Gn is a good graph,

PGn(Tx 6⊆ CGn,hx ) ≤ PGn(∪y∈TxE(y)) ≤ n−5/2 + n−2 ≤ n−1,

so that by Proposition 3.2.1 and (3.54):

Pann(S(x) ∩ {Tx ⊆ CGn,hx })→ η(h).

3.5.2 Aborted exploration

For x ∈ Vn, the lower exploration is the exploration of Section 3.5.1, modified by replacing

h+ log−1 n by h− log−1 n, so that we compare Tx and Ch−log−1 n
◦ . If it is stopped at some step

k at which only C3 is met, say that it is aborted. Write

A(x) := {the lower exploration from x is aborted} ∩ {CGn,hx ⊆ Tx}.

Proposition 3.5.4.

Pann(A(x)) −→
n→+∞

1− η(h). (3.57)

The proof follows from a direct adaptation of Lemma 3.5.3 and Proposition 3.5.1. Note in

particular that Pann(C1 happens) = o(1), and that Pann(A(x)) = Pann(Zh−log−1 n
k0−1 = ∅)+o(1) =

1− η(h) + o(1).

3.6 Existence of a giant component

In Section 3.6.1, we prove that two vertices x, y ∈ Vn are in the same connected component of

E≥hψGn
with Pann-probability −→

n→+∞
η(h)2 (Proposition 3.6.2). Then in Section 3.6.2, we use a

second moment argument to get concentration and to show (3.2).

3.6.1 Connecting two successful explorations

Let us describe our strategy to establish Proposition 3.6.2. We perform explorations as in

Section 3.5.1 from x and y. If they are both successful and do not meet (which happens

with probability ' η(h)2), we develop disjoint balls, denoted ”joining balls”, from ∂Tx to ∂Ty

(Section 3.6.1). Each of them is rooted at a vertex of ∂Tx, hits ∂Ty at exactly one vertex,
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and has a ”security radius” of depth an around its path from ∂Tx to ∂Ty (see Figure 3). The

construction of the joining balls only depends on the structure of Gn, and not on the values

of ψGn . Then, we realize ψGn on Tx, Ty and those balls (Section 3.6.1). If they are all disjoint

and tree-like, once we have revealed ψGn on Tx and Ty, this security radius allows us to apply

Proposition 3.4.1 to approximate ψGn on the paths from ∂Tx to ∂Ty by ϕTd .

Let us explain with a back-of-the-envelope computation how the joining balls allow to connect

Tx and Ty in E≥hψGn
. Since |Ty| ' n1/2bn by C2, the probability that for a given z ∈ ∂Tx, exactly

one of the vertices at distance bγ logd−1 log nc (and no vertex at distance < bγ logd−1 log nc)
from z is in ∂Ty is

' P(Bin((d− 1)γ logd−1 logn, n
1/2bn
dn ) = 1) ' logγ n× n−1/2bn.

And there are ' n1/2bn vertices in ∂Tx, hence we can expect that that the number of joining

balls is at least ' n1/2bn × logγ n × n−1/2bn = b2n logγ n, provided that we can control some

undesirable events (such as an intersection between balls, or a cycle in a ball). This is the

purpose of Lemma 3.6.1.

Moreover, we know that for large r ∈ N and v ∈ ∂BTd(◦, r), PTd(v ∈ Ch◦ ) is of order (λh/(d−1))r,

by Proposition 3.3.8. Taking r = γ logd−1 log n, the probability that E≥hψGn
percolates from ∂Tx

to ∂Ty through a given joining ball is ' logγ(logd−1 λh−1) n, if we can approximate ψGn by ϕTd .

For γ large enough w.r.t κ (recall (3.46) and (3.33), and recall that λh > 1),

b2n logγ n× logγ(logd−1 λh−1) n ≥ log−2κ−13 n × logγ logd−1 λh n >> 1,

so that with high probability, E≥hψGn
will percolate through at least one joining ball from ∂Tx to

∂Ty.

The joint exploration

For x, y ∈ Vn, write x
h↔ y if y ∈ CGn,hx . Let (ξz,v)z∈{x,y},v∈Td be an array of i.i.d. standard

normal variables independent from everything else. Define the joint exploration from x and

y as the exploration from x (with the (ξx,v)’s), then the exploration from y (with the (ξy,v)’s),

as in Section 3.5.1, with the additional condition

C5 the exploration is stopped as soon as Rx ∩Ry 6= ∅,

where Rx (resp. Ry) is the set of vertices seen during the exploration from x (resp. from y), as

defined in Remark 3.5.2. Note that the families (ξx,v)v∈Td and (ξx,v)v∈Td generate two indepen-

dent copies of ϕTd .

If both explorations are successful and C5 does not happen (denote S(x, y) this event), we

add the following steps to the joint exploration. Let γ > 0 and

a′n := bγ logd−1 log nc. (3.58)
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Denote z1, . . . , z|∂Tx| the vertices of ∂Tx. For j = 1, 2, . . . , |∂Tx| successively, build B∗(zj , a
′
n)

the subgraph of Gn obtained as follows (see Figure 3 for an illustration). Write

B∗j := ∪j′<jB∗(zj′ , a′n) and Qj := Rx ∪Ry ∪B∗j , (3.59)

so that Qj is the set of vertices seen in the exploration before the construction of B∗(zj , a
′
n).

Let initially B∗(zj , a
′
n) be the subtree from zj of height an in the tree BGn(Tx, an) (in blue in

Figure 3). For k ≤ a′n, write B∗(zj , k) := B∗(zj , a
′
n) ∩ BGn(zj , k). If B∗(zj , an) ∩ B∗j 6= ∅, say

that j is spoiled, and the construction of B∗(zj , a
′
n) stops.

Else, for k = an, an + 1, . . . , a′n− 2an− 2 successively, while tx(B∗(zj , k)∪Qj) = tx(Qj) (i.e. no

cycle has been discovered) and B∗(zj , k)∩BGn(Ty, an) = ∅, add to B∗(zj , a
′
n) the neighbours of

B∗(zj , k) and the corresponding edges (in red in Figure 3). If for some k ∈ {an, . . . , a′n−2an−2},
tx(B∗(zj , k)∪Qj) > tx(Qj) (i.e. at least one cycle is discovered) or B∗(zj , k)∩BGn(Ty, an) 6= ∅,
the construction of B∗(zj , a

′
n) stops.

If the construction has not been stopped for some k < a′n − 2an − 1, add the neighbours of

B∗(zj , a
′
n − 2an − 1) to B∗(zj , a

′
n) (also in red in Figure 3). If

|B∗(zj , a′n − 2an) ∩BGn(Ty, an)| 6= 1,

the construction of B∗(zj , a
′
n) stops.

Else, let vj(0) be the unique vertex of B∗(zj , a
′
n − 2an) ∩BGn(Ty, an). If

tx((B∗(zj , a
′
n − 2an) ∪Qj) \ {vj(0)}) > tx(Qj),

the construction of B∗(zj , a
′
n) stops.

Else, for k = a′n−2an, . . . , a
′
n−1 successively, while tx(B∗(zj , k)∪Qj) = tx(B∗(zj , a

′
n−2an)∪Qj),

add the neighbours of B∗(zj , k) to B∗(zj , a
′
n) (in green in Figure 3). Then, the construction of

B∗(zj , a
′
n) is completed. In this case only, and if

tx(B∗(zj , a
′
n) ∪Qj) = tx(B∗(zj , a

′
n − 2an) ∪Qj),

say that B∗(zj , a
′
n) is a joining ball. In other words, we obtain a joining ball if, revealing the

offspring up to generation a′n of zj , the (a′n− 2an) offspring of zj intersects ∂Ty at a unique ver-

tex vj(0), and no cycle is discovered in the whole construction (except when B∗(zj , a
′
n) reaches

∂BGn(Ty, an) at vj(0), if Tx and Ty were already connected in Qj by B∗(zj′ , a
′
n) for some j′ < j).

Write J := {j ≤ |∂Tx|, B∗(zj , a′n) is a joining ball} and S ′(x, y) := S(x, y)∩{|J | ≥ logγ−3κ−18 n}
(S(x, y) was define above (3.58)).
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y

x

vj(0)

an

an

B∗(zj; a
0

n)

B∗(zj; an)

Figure 3. Illustration of a joining ball B∗(zj , a
′
n). Here an = 2 and a′n = 9. Dashed lines

represent subtrees that have not been fully pictured. The blue tree has total height an, the red

trees a′n − 3an, and the green trees 2an.

Lemma 3.6.1. Fix γ > 3κ+ 18.

Pann(S ′(x, y)) −→
n→+∞

η(h)2.

Proof. Denote F∗(n)(x) (resp. F∗(n)(y)) the event F∗(n) for x (resp. y). Remark that the

realization of F∗(n)(x) (resp. F∗(n)(y)) only depends on the version of ϕTd defined by (ξx,v)v∈Td

(resp. by (ξy,v),v∈Td) and not on the pairings of Gn. Hence, F∗(n)(x) and F∗(n)(y) are indepen-

dent. As in the proof of Lemma 3.5.3, we get that

Pann(F∗(n)(x) ∩ F∗(n)(y)) = Pann(F∗(n)(x))Pann(F∗(n)(y))→ η(h)2

and Pann(F ′∗(n)(x) ∪ F ′∗(n)(y))→ 1− η(h)2.

Moreover, Pann(C1 or C5 happens) → 0. Indeed, by Remark 3.5.2, less than 2dn1/2 log−3 n

half-edges are revealed during the explorations from x and y, which allows to control C5 as we

did for C1 in (3.53). Thus,

lim sup
n→+∞

|Pann(S ′(x, y))− η(h)2| ≤ lim sup
n→+∞

Pann(S(x, y) ∩ {|J | < logγ−3κ−18 n})
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and it remains to prove that

lim sup
n→+∞

Pann(S(x, y) ∩ {|J | < logγ−3κ−18 n}) = 0. (3.60)

We proceed in two steps: in step 1, we control the number of spoiled vertices, and the number

of vertices of ∂BGn(Ty, an) that are hit when building the B∗(zj , a
′
n)’s (if a large proportion of

those vertices are in Qj , then it significantly affects the probability that B∗(zj , a
′
n) is a joining

ball). In step 2, we estimate the probability that for a given j, B∗(zj , a
′
n) is a joining ball,

provided that the bounds of step 1 hold. This gives a binomial lower bound for |J |.
Step 1. Note that by Remark 3.5.2 and (3.33), |∂BGn(Tx, an)|+ |∂BGn(Ty, an)| ≤ 2n1/2 log−1 n.

Note also that for every j ≤ |∂Tx|, B∗(zj , a′n) contains less than (d − 1)a
′
n ≤ logγ n half-edges.

Hence:

at every moment of the exploration, less than n1/2 logγ n half-edges have been seen. (3.61)

Let

B∗ := ∪j≤|∂Tx|B
∗(zj , a

′
n). (3.62)

To reveal the edges of B∗, one proceeds to at most n1/2 logγ n pairings of half-edges by (3.61).

Any pairing that results in an edge e between some B∗(zj , k) and BGn(Ty, an) then leads to at

most

1 + (d− 1) + . . .+ (d− 1)2an ≤ 3(d− 1)2an ≤ log2κ+1 n ≤ logγ−1 n

vertices of B∗(zj , a
′
n) ∩ BGn(Ty, an), since the construction of B∗(zj , a

′
n) stops if such an edge

happens at distance less than a′n − 2an of zj (and recall that we choose γ > 3κ+ 18 > 2κ+ 2).

Thus, by (3.15) with k = blog2γ+1 nc, m < n1/2 logγ n and m1 +m0 +mE < n1/2 logγ n (due to

3.61), for n large enough:

Pann(S(x, y) ∩ {|BGn(Ty, an) ∩B∗| ≥ log3γ n}) ≤ 0.99log2 n ≤ n−3. (3.63)

Let N be the total number of spoiled vertices. By (3.15) with the same parameters,

Pann(S(x, y) ∩ {N ≥ log3γ n}) ≤ n−3. (3.64)

Step 2. Recall the definition of B∗j from (3.59). For j ≤ m, denote

Sj := S(x, y) ∩ {|BGn(Ty, an) ∩B∗j | ≤ log3γ n} ∩ {zj is not spoiled}. (3.65)

Suppose that for every j ≥ 1,

Pann(B∗(zj , a
′
n) is a joining ball | Sj) ≥ n−1/2 logγ−2κ−10 n. (3.66)

On E := {|BGn(Ty, an) ∩ B∗| < log3γ n} ∩ {N < log3γ n}, the number of j’s such that Sj holds

is at least
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|∂Tx| − log3γ n ≥ n1/2 log−κ−7 n

by (C2) and (3.46). Thus, if Z ∼ Bin
(
bn1/2 log−κ−7 nc, n−1/2 logγ−2κ−10 n

)
,

Pann
(
S(x, y) ∩ {|J | ≤ logγ−3κ−18 n}

)
≤ P(Z ≤ logγ−3κ−18 n) + Pann(S(x, y) ∩ Ec).

For large enough n, Pann(S(x, y) ∩ Ec) = o(n−2) by (3.63) and (3.64). Moreover, one checks

easily (using γ > 3κ+ 18 and (3.12)) that for n large enough:

max0≤k≤blogγ−3κ−18 nc P(Z = k) ≤ 1/n.

This yields (3.60). Hence, it only remains to prove (3.66).

Remark that Pann(B∗(zj , a
′
n) is a joining ball | Sj) ≥ p1p2p3 where:

• p1 := Pann(E1|Sj) and E1 := Sj ∩ {no cycle is created and no connection to Qj is made

when revealing B∗(zj , a
′
n − 2an − 1)},

• p2 := Pann(E2|E1) where E2 := E1 ∩ {exactly one edge connects B∗(zj , a
′
n − 2an − 1) and

D := ∂BGn(Ty, an)\{BGn(BGn(Ty, an)∩B∗j , 2an)} }∩{no cycle is created and no connection

to ∂BGn(Ty, an) ∪B∗j is made when revealing the other edges of B∗(zj , a
′
n − 2an)},

• p3 := Pann(E3|E2) where E3 := E2∩{no cycle is created and no connection to ∂BGn(Ty, an)∪
B∗j is made when revealing the remaining edges of B∗(zj , a

′
n)}.

This definition of D guarantees that B∗(zj , a
′
n) will not intersect a previously realized joining

ball when growing the subtree from vj(0) in BGn(Ty, an).

(3.14) with k = 1, m0,m ≤ logγ n and mE ,m1 ≤ n1/2 logγ n due to (3.61) yields for n large

enough:

pi ≥ 1− C(1) logγ n
max(n1/2 logγ n, 2 logγ n)

n
≥ 1− n−1/3 (3.67)

for i ∈ {1, 3}. Therefore, p1p3 ≥ 1/2 for n large enough.

On E1, reveal the pairings of the half-edges of ∂B∗(zj , a
′
n − 2an − 1) one by one. E2 holds if:

• one given half-edge is matched to a half-edge of D, which happens with probability at

least |D|dn , and

• each other half-edge is matched to a half-edge that had not been seen before (by (3.61),

for each half-edge this happens with probability at least 1− n1/2 logγ n
dn−n1/2 logγ n

≥ 1− n1/2 logγ n
n ).

Since ∂B∗(zj , a
′
n − 2an − 1) has (d− 1)|∂B∗(zj , a′n − 2an − 1)| unpaired half-edges,

p2 ≥ (d− 1)|∂B∗(zj , a′n − 2an − 1)| |D|dn
(

1− n1/2 logγ n
n

)|∂B∗(zj ,a′n−2an−1)|−1

By (3.33) and (3.58), one checks easily that on E1,

logγ−2κ−1 n ≤ |∂B∗(zj , a′n − 2an − 1)| ≤ logγ n,

and that on Sj (defined in (3.65)),
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|D| ≥ |∂BGn (Ty ,an)|
2 ≥ n1/2 log−7 n

by (3.46) and C2. Hence for n large enough,

p2 ≥ (d− 1) logγ−2κ−1 n
n1/2 log−7 n

dn

(
1− n1/2 logγ n

dn

)logγ n

≥ 1

2
n−1/2 logγ−2κ−9 n.

With (3.67), this entails

Pann(B∗(zj , a
′
n) is a joining ball | Sj) ≥ p1p2p3 ≥ n−1/2 logγ−2κ−10

for n large enough (uniformly on the realization of B∗j ), and thus (3.66), so that the proof of

the Lemma is complete.

The field ψGn on the joint exploration

Suppose that we are on S ′(x, y). By Proposition 3.2.4, we can realize ψGn on Tx as in (3.47)

with the (ξx,v)v∈Td . Then we can realize it in a similar way on Ty with the (ξy,v)v∈Td , letting

recursively

ψGn(yk,i) = EGn [ψGn(yk,i)|σ(Ak,i)] + ξy,Φ(yk,i)

√
Var(ψGn(yk,i)|σ(Ak,i))

where Ak,i := Tx ∪ {y`,j |(`, j) ≺ (k, i)}, ≺ being the lexicographical order on N2, and Φ is the

isomorphism between Ty and Ty.

Recall that J = {j ≥ 1, B∗(zj , a
′
n) is a joining ball} and that for j ∈ J , we denote vj(0) the

unique vertex of B∗(zj , a
′
n − 2an) ∩ BGn(Ty, an). Since no cycle is discovered when revealing

B∗(zj , a
′
n)\B∗(zj , a′n−2an), the intersection of B∗(zj , a

′
n−an) and Ty is a unique vertex vj(an),

which is in the an-offspring of vj(0) in the tree B∗(zj , a
′
n) rooted at zj . Then we realize ψGn on

B∗(zj , a
′
n − 2an) and on the shortest path Pj from v(0) to v(an) as in (3.47), via a family of

i.i.d. N (0, 1) random variables (ξj,k,i)k,i≥0. In the tree Tj := B∗(zj , a
′
n− 2an)∪Pj with root zj ,

denoting zj,k,i the i-th vertex at generation k and

Aj,k,i := Tx ∪ Ty ∪ {∪j′<jT ′j} ∪ {yj,k′,i′ | (k′, i′) ≺ (k, i)}

the set of vertices where ψGn has already been revealed before zj,k,i, we let

ψGn(zj,k,i) = EGn [ψGn(zj,k,i)|σ(Aj,k,i)] + ξj,k,i

√
Var(ψGn(yj,k,i)|σ(Aj,k,i)). (3.68)

Write S∗(x, y) ⊆ S ′(x, y) the event that there exists j0 ≥ 1 and a path from zj0 to vj0(an) such

that ψGn(v) ≥ h for every vertex v of that path. In particular, on S∗(x, y), x and y are in the

same connected component of E≥hψGn
.

Recall the definitions of κ (3.33) and γ (Lemma 3.6.1).
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Proposition 3.6.2. If κ and γ/κ are large enough, then

Pann(S∗(x, y)) −→
n→+∞

η(h)2.

Proof of Proposition 3.6.2. Let γ > 3κ+ 18. By Lemma 3.6.1,

lim supn→+∞ Pann(S∗(x, y)) ≤ limn→+∞ Pann(S ′(x, y)) = η(h)2.

Let En := {Gn is not a good graph} ∪ {maxz∈Vn |ψGn(z)| ≥ log2/3 n}. By Proposition 3.2.1 and

Lemma 3.2.5, Pann(En)→ 0. Therefore, it is enough to show that

lim supn→+∞ Pann(Ecn ∩ (S ′(x, y) \ S∗(x, y)) ) = 0.

By a straightforward adaptation of the reasoning below (3.54),

limn→+∞ Pann(Ecn ∩ (S ′(x, y) \ S ′′(x, y)) ) = 0,

where S ′′(x, y) := S ′(x, y) ∩ {∀z ∈ Tx ∪ Ty, ψGn(z) ≥ h+ (log−1 n)/2}. Hence, we are left with

proving that

lim sup
n→+∞

Pann(Ecn ∩ (S ′′(x, y) \ S∗(x, y)) ) = 0. (3.69)

We use again a binomial argument. For j ∈ J in increasing order, generate the GFF on Tj as in

(3.68). Denote Ej the event that zj and vj(an) are in the same connected component of E≥hψGn
∩Tj .

Note that on S ′′(x, y), Tx ⊆ CGn,hx and Ty ⊆ CGn,hy , so that S ′′(x, y) ∩ (∪j∈JEj) ⊆ S∗(x, y).

Suppose that for every j ∈ J ,

Pann(Ej |S ′′(x, y) ∩ Ecn) ≥ logγ(K8/3−1) n, (3.70)

where K8 := logd−1((1+λh)/2). Then, letting Z ∼ Bin(blogγ−3κ−18 nc, logγ(K8/3−1) n), we have

Pann(Ecn ∩ (S ′′(x, y) \ S∗(x, y)) ) ≤ P(Z = 0).

But if κ and γ/κ are large enough so that

γ − 3κ− 18 + γ(K8/3− 1) = γK8/3− 3κ− 18 > 0,

we have limn→+∞ P(Z = 0) = 0 and this yields (3.69). Thus, we are left with showing (3.70).

We split the proof of (3.70) in two parts. First, we prove that

Pann(vj(0) ∈ Czj | (S ′′(x, y) ∩ Ecn) ) ≥ log(γ−2κ)(K8/2−1) n, (3.71)

where Czj is the connected component of zj in E≥hψGn
∩ B∗(zj , a′n − 2an). Second, we show that

for some constant K9 > 0 (uniquely depending on d and h),

Pann(∀v ∈ Pj , ψGn(v) ≥ h | (S ′′(x, y) ∩ Ecn ∩ {vj(0) ∈ Czj}) ) ≥ log−K9κ n. (3.72)

We prove that both hold for n large enough, uniformly in v ∈ Tj and on realization of the ψGn

on T1 ∪ . . . ∪ Tj−1, as long as we are in Ecn (so that we can apply Proposition 3.4.1).

(3.71) and (3.72) imply indeed that
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Pann(Ej |S ′′(x, y) ∩ Ecn) ≥ log(γ−2κ)(K8/2−1)−K9κ n ≥ logγ(K8/3−1) n

if γ/κ is large enough, which yields (3.70).

Part 1: proof of (3.71).

Since |Aj,k,i| ≤ n2/3 and tx(BGn(Aj,k,i, an)) = tx(Aj,k,i) for all k, i ≥ 0, we can apply Proposi-

tion 3.4.1 as below (3.54) to bound the difference between ψGn on Czj and ϕTd on an isomorphic

subtree of Td, with the following coupling: ϕTd(◦) := ψGn(zj), and then ϕTd is defined as in

Proposition 3.3.1 via (ξj,k,i)k,i≥0. Recall that on S ′′(x, y), we have that ψGn(zj) ≥ h+(log−1 n)/2.

By Proposition 3.3.8, for any δ > 0 and for large enough n,

min
a≥h+(log−1 n)/2

PTd
a

(
|Zh+(log−1 n)/2,+
a′n−2an

| ≥ (λh − δ)a
′
n−2an

)
≥ pPTd(E+)

2

where PTd(E+) > 0 (recall (3.23)) and

p := mina≥h+(log−1 n)/2 PTd
a (∃v ∈ BT+

d
(◦, 1), ϕTd(z) ≥ h+ 1) > 0.

Note in particular that for δ′ > log−1 n
2 such that λh+δ′ > λh − δ (such δ′ exists by Proposi-

tion 3.3.4, if n is large enough), Zh+δ′,+
a′n−2an

⊆ Zh+(log−1 n)/2,+
a′n−2an

.

Proposition 3.4.1 yields then

Pann
(
|∂Czj | ≥ (λh − δ)a

′
n−2an

∣∣∣∣S ′′(x, y) ∩ Ecn
)
≥ pP(E+)

2
+ o(1) ≥ pP(E+)

3
.

By cylindrical symmetry of BT+
d

(◦, a′n − 2an), we even have

Pann
(
v(0) ∈ ∂Czj

∣∣∣∣S ′′(x, y) ∩ Ecn
)
≥pP(E+)

3

(λh − δ)a
′
n−2an

|∂BT+
d

(◦, a′n − 2an)|

≥pP(E+)

3

(
λh − δ
d− 1

)a′n−2an

.

Since K8 = logd−1((1 + λh)/2), taking δ small enough yields (3.71).

Part 2: proof of (3.72).

Denote vj(1), . . . , vj(an − 1) the vertices from vj(0) to vj(an) on the path Pj . Remark that it

suffices to prove that there exists a constant K9 > 0 such that for n large enough, for every

k ∈ {1, . . . , an},

Pann
(
ψGn(vj(k)) ≥ h| (S ′′(x, y) ∩ Ecn ∩ {ψGn(vj(k − 1)) ≥ h})

)
≥ (d− 1)−K9 . (3.73)

In the notation of (3.68), vj(k) = yj,k+a′n−2an,1 for 1 ≤ k ≤ an. Write Ak := Aj,k+a′n−2an,1.

Suppose that for n large enough and all k ∈ {1, . . . , an}, on S ′′(x, y)∩Ecn∩{ψGn(vj(k−1)) ≥ h}:

EGn [ψGn(vj(k))|σ(Ak)] > −|h| − 1 (3.74)

and

VarGn(ψGn(vj(k))|σ(Ak)) >
1

d− 1
. (3.75)

Then (3.73) holds with
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K9 := − logd−1 P(Y ≥ (|h|+ |h|+1
d−1 )/

√
d− 1 ),

where Y ∼ N (0, 1). Thus, it is enough to establish (3.74) and (3.75).

For k ≥ 1, note that by construction of B∗(zj , a
′
n), vj(k − 1) and vj(an) are the only vertices

of ∂Ak at distance less than an of vj(k). Let (Xs)s≥0 be a discrete time SRW started at vj(k),

and τ := inf{s ≥ 0, dGn(vj(k), Xs) ≥ an}. Write H for the hitting time of Ak by (Xs). Letting

a1 := PGnvj(k)(XH = vj(k − 1), H < τ) and a2 := PGnvj(k)(XH = vj(an), H < τ),

we get as in the proof of Proposition 3.4.1 that for large enough n, for every realization of Gn
and ψGn(Ak) in S ′′(x, y) ∩ Ecn ∩ {ψGn(vj(k − 1)) ≥ h}:

EGn [ψGn(vj(k))|σ(Ak)] > a1ψGn(vj(k − 1)) + a2ψGn(vj(an))− log−1 n.

Since 0 ≤ a1 + a2 ≤ 1 and min(ψGn(vj(k − 1)), ψGn(vj(an))) ≥ h ≥ −|h|, (3.74) follows.

Split V := VarGn(ψGn(vj(k))|σ(Ak)) as follows:

V =GGn (vj(k), vj(k))−EGnvj(k)

[
GGn (vj(k), XH) 1{H<τ}

]
−EGnvj(k)

[
GGn (vj(k), XH) 1{H≥τ}

]
+

EGnvj(k)[H]

EGnπn [H]
EGnπn [GGn (vj(k), XH)] .

By (3.11), (3.8) and (3.9), if κ is large enough, for n large enough,

GGn (vj(k), vj(k))− a1GGn (vj(k), vj(k − 1))− a2GGn (vj(k), vj(an))>
d− 1

d− 2
− a1 + a2

d− 2
− log−1 n

≥ 1

d− 2
− log−1 n.

As below (3.45), we get that∣∣∣EGnvj(k)

[
GGn (vj(k), XH) 1{H<τ}

]
− a1GGn (vj(k), vj(k − 1))− a2GGn (vj(k), vj(an))

∣∣∣≤ log−1 n

and that∣∣∣∣∣EGnvj(k)

[
GGn (vj(k), XH) 1{H≥τ}

]
−

EGnvj(k)[H]

EGnπn [H]
EGnπn [GGn (vj(k), XH)]

∣∣∣∣∣ ≤ log−1 n.

These three inequalities imply that for large enough n, for every realization of Gn and ψGn(Ak)

in S ′′(x, y) ∩ Ecn ∩ {ψGn(vj(k − 1)) ≥ h}:

VarGn(ψGn(vj(k))|σ(Ak)) ≥ 1
d−2 − 3 log−1 n > 1

d−1 .

This shows (3.75) and the proof is complete.
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3.6.2 Average number of connections in E≥hψGn

Write x
h↔ y if x and y are in the same connected component of E≥hψGn

, for x, y ∈ Vn. In this

section, we prove (3.2) of Theorem 3.1.1 via an argument on the number of pairs of vertices

such that x
h↔ y. Let Sn be the set of pairs of distinct x, y ∈ Vn such that x

h↔ y. Let An ⊆ Vn
be the set of vertices x such that |CGn,hx | ≤ n1/2.

We first suppose that the following two Lemmas hold, and show (3.2). Then, we derive them

from Propositions 3.5.4 and 3.6.2, using a second moment argument.

Lemma 3.6.3. For every ε > 0, limn→+∞ Pann (|An| ≥ (1− η(h)− ε)n) = 1.

Lemma 3.6.4. For every ε > 0, limn→+∞ Pann(|Sn| ≥ (η(h)2/2− ε)n2) = 1.

Proof of (3.2). Fix ε > 0. Remark that every connected component of E≥hψGn
is either included

in An, or does not intersect An. Let (γ̂
(n)
i )i≥1 (resp. (γ

(n)
i )i≥1) be the sizes of the connected

components in An (resp. not in An), listed in decreasing order of size.

Let En := {|An| ≥ (1− η(h)− ε)n} ∩ {|Sn| ≥ (η(h)2/2− ε)n2}. On En, we have that∑
i≥1 γ̂

(n)
i (γ̂

(n)
i − 1) +

∑
i≥1 γ

(n)
i (γ

(n)
i − 1) = 2Sn ≥ η(h)2n2 − 2εn2.

Moreover, we have by definition of An:∑
i≥1 γ̂

(n)
i (γ̂

(n)
i − 1) ≤

∑
i≥1 γ̂

(n)
i

√
n ≤ n7/4.

Thus, for n large enough,

γ
(n)
1 (|Vn| − |An|) ≥

∑
i≥1

γ
(n)
i (γ

(n)
i − 1) ≥ (η(h)2 − 3ε)n2.

But |Vn| − |An| ≤ (η(h) + ε)n, so that

γ
(n)
1 ≥ η(h)2 − 3ε

η(h) + ε
n ≥ ((η(h)− 4η(h)−1ε)n.

Since γ
(n)
1 is the cardinality of a set included in Vn \An, one has γ

(n)
1 ≤ (η(h) + ε)n. Note that

for n large enough, γ
(n)
1 >

√
n ≥ γ̂(n)

1 . Therefore, γ
(n)
1 = |C(n)

1 |, and we have

((η(h)− 4η(h)−1ε)n ≤ |C(n)
1 | ≤ (η(h) + ε)n

on En. By Lemmas 3.6.3 and 3.6.4, limn→+∞ Pann(En) = 1. Since ε was arbitrary, the proof is

complete.

Remark 3.6.5. Note that we have |C(n)
2 | = max(γ

(n)
2 , γ̂

(n)
1 ). Since on En, γ̂

(n)
1 ≤

√
n and

γ
(n)
2 ≤ |Vn| − |An| − γ(n)

1 ≤ (1 + 4η(h)−1)εn,

we get that |C(n)
2 |/n

Pann−→ 0.
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Proof of Lemma 3.6.3. Let A′n be the set of vertices such that their lower exploration (Sec-

tion 3.5.2) is aborted. By Remark 3.5.2, for n large enough, A′n ⊆ An, and it is enough to prove

the Lemma for A′n instead of An.

Let ε ∈ (0, 1). By Proposition 3.5.4, for n large enough and every x ∈ Vn, we have

|Pann(x ∈ A′n)− (1− η(h))| ≤ ε. (3.76)

We claim that for n large enough, for all distinct x, y ∈ Vn,

|Covann(1x∈A′n ,1y∈A′n)| ≤ 4ε. (3.77)

Indeed, Covann(1x∈A′n ,1y∈A′n) = Pann(x, y ∈ A′n)−Pann(x ∈ A′n)Pann(y ∈ A′n). Then by (3.76),

we have

|Pann(x ∈ A′n)Pann(y ∈ A′n)− (1− η(h))2| ≤ 2ε+ ε2 ≤ 3ε.

Perform successively the lower explorations from x and then from y as in Section 3.5.2 (with

the additional condition C5). We get Pann(C5 happens) = o(1) in the same way than (3.53).

Then, revealing ψGn on Rx ∪Ry and comparing it to ϕTd as below (3.54), we obtain

|Pann(x, y ∈ A′n)− (1− η(h))2| ≤ ε.

This shows (3.77).

We now apply Bienaymé-Chebyshev’s inequality:

Pann(|A′n| ≤ (1− η(h)− 2ε1/4)n) ≤ Pann(| |A′n| − Eann[|A′n|] | ≥ ε1/4n)

≤ 1√
εn2

 ∑
x,y∈Vn

Covann(1x∈A′n ,1y∈A′n)


≤ n+ n(n− 1)4ε√

εn2

≤ 5
√
ε

for n large enough. Since ε can be taken arbitrarily small, the proof is complete.

Proof of Lemma 3.6.4. Let ε ∈ (0, 1). Denote S∗n the set of pairs x, y ∈ Vn such that S∗(x, y)

holds. Since S∗n ⊆ Sn, it is enough to prove the Lemma for S∗n instead of Sn. First, by

Proposition 3.6.2,

Eann[|S∗n|] ≥ (η(h)2 − ε)n(n−1)
2 ≥ (η(h)2/2− ε)n2

for large enough n. Second, we claim that for n large enough and all distinct x, y, w, t ∈ Vn,

|Covann(1S∗(x,y),1S∗(w,t))| ≤ 2ε. (3.78)

Remark that if this holds, then we can conclude by a second moment computation as in the

proof of Lemma 3.6.3. We have
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Covann(1S∗(x,y),1S∗(w,t)) = Pann(S∗(x, y) ∩ S∗(w, t))− Pann(S∗(x, y))Pann(S∗(w, t)).

By Proposition 3.6.2, for n large enough,

|Pann(S∗(x, y))Pann(S∗(w, t))− η(h)4| ≤ ε. (3.79)

Now, perform successively the exploration of Section 3.5.1 from x, then from y, then from z

and finally from t (via an array of i.i.d. standard normal variables (ξu,v)u∈{x,y,w,t},v∈Td). We

add the following condition: for any u ∈ {x, y, w, t}, the exploration from v is stopped as soon

as it meets a vertex seen in a previous exploration. The probability that this happens is o(1)

by Remark 3.5.2 and (3.14), since o(
√
n) vertices and half-edges are revealed during these four

explorations. Therefore, as for (3.54), we get that for n large enough,

Pann(the explorations from x, y, z, t are all successful) ∈ (η(h)4 − ε/2, η(h)4 + ε/2). (3.80)

If these explorations are successful, develop balls from ∂Tx to ∂Ty as described in Section 3.6.1,

with Qj := Rx ∪Ry ∪Rw ∪Rt ∪B∗j for zj ∈ ∂Tx. Then do the same from ∂Tw to ∂Tt, this time

with Qj := Rx ∪ Ry ∪ (∪z∈∂TxB∗(z, a′n)) ∪ Rw ∪ Rt ∪ B∗j for zj ∈ ∂Tw. Finally, reveal ψGn on

Tx, Ty, Tw, Tt and on the joining balls from Tx to Ty and from Tw to Tt, in that order.

One can adapt readily the proof of Lemma 3.6.1 to show that with Pann-probability 1−o(1), if the

four explorations are successful then there are at least logγ−3κ−18 n joining balls from ∂Tx (resp.

∂Tw) to ∂Ty (resp. ∂Tt). Note in particular that the estimations of (3.61), (3.63) and (3.64)

still hold. It is also straightforward to carry the arguments of the proof of Proposition 3.6.2,

and we finally have

|Pann(S∗(x, y) ∩ S∗(w, t))− Pann(the explorations from x, y, w, t are all successful)| ≤ ε/2.

Together with (3.79) and (3.80), this yields (3.78).

3.7 Uniqueness of the giant component

In this Section, we prove (3.3). We start by the lower bound in Section 3.7.1, showing the

existence Pann-w.h.p. of a component (different from C(n)
1 ) having Θ(log n) vertices.

Then, to show that |C(n)
2 | = O(log n) Pann-w.h.p., we perform an exploration of a new kind,

starting from some x ∈ Vn. It consists of three phases (Sections 3.7.2 to 3.7.4), during which

we assign a pseudo-GFF ψ̂Gn to the vertices that we visit. ψ̂Gn is defined via a recursive

construction that mimics Proposition 3.3.1, as long as there are no cycles (in Section 3.5, the

analogous of the pseudo-GFF was ϕTd on Tx). Finally, in Section 3.7.5, we reveal the true

values of ψGn one by one on the set of vertices we have explored via Proposition 3.2.4, and show

that either |CGn,hx | = O(log n), or |CGn,hx | = Θ(n), in which case CGn,hx = C(n)
1 by Remark 3.6.5.

Contrary to Section 3.5, we need this alternative to hold for every x ∈ Vn, Pann-w.h.p. By a
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union bound, it is enough to prove that

for x ∈ Vn, Pann({|CGn,hx | = O(log n)} ∪ {|CGn,hx | = Θ(n)}) = o(1/n). (3.81)

Let us sketch this exploration in the lines below.

First phase (Section 3.7.2). We explore the connected component C of x ∈ Vn in the set

{y ∈ Vn, ψ̂Gn(y) ≥ h − n−a} for some constant a > 0. More precisely, we give a mark to each

vertex y such that |ψ̂Gn(y) − h| ≤ n−a, and explore each connected component C′ of C \ M,

where M is the set of marked vertices, until

- (i) C′ is fully explored and has no more than O(log n) vertices, or

- (ii) bK log nc vertices of C′ have been seen but not yet explored, for some constant K fixed in

the second phase.

We replace an of (3.33) by a ”security radius” rn = Θ(log n). Adapting Proposition 3.4.1

(Lemma 3.7.7), this allows us in Section 3.7.5 to bound the difference between ψ̂Gn and ψGn by

n−a, so that for every connected component C′ of C \M, either C′ ⊆ CGn,hx or C′ ∩ CGn,hx = ∅.
If we kept an, ψ̂Gn would approximate ψGn only with precision log−Θ(1) n. With probability

Θ(1/n), there would be too much vertices y such that |ψ̂Gn(y)−h| ≤ log−Θ(1) n, hence for which

we cannot know by anticipation whether they will be in CGn,hx or not.

Moreover, we do not have P(C1 happens) = O(1/n) as soon as the number of vertices explored

goes to infinity with n. We will need to accept the possible occurrence of one cycle. When

this happens, we have to define ψ̂Gn in a slightly different manner. In Section 3.7.5, we need a

variant of Lemma 3.7.7 to control the difference between ψ̂Gn and ψGn (Lemma 3.7.8).

Second phase (Section 3.7.3). If (i) happens for every component C′, the exploration is

over. For each C′ such that (ii) happens, we explore its bK log nc remaining vertices, this time

in a fashion similar to Section 3.5.1. Each of these explorations has a probability bounded away

from 0 to be successful. If K is large enough, with probability at least 1− o(1/n), at least one

of these explorations is successful, and has a boundary of size Θ(n1/2bn).

Third phase(Section 3.7.4). For every C′ such that (ii) happens, we show that the successful

exploration of the second phase is connected to a positive proportion of the vertices of Vn, via

an adaptation of the joint exploration in Section 3.6.1. This yields (3.81).

3.7.1 Lower bound

In this section, we prove the existence of K0 > 0 such that

Pann(|C(n)
2 | ≥ K

−1
0 log n)→ 1. (3.82)

To show the existence of x ∈ Vn such that the size of its connected component is exactly of

order log n requires an exploration in which we compare CGn,hx to both Ch+log−1 n
◦ and Ch−log−1 n

◦ .

Then, the proof strategy simply consists in performing explorations from different vertices of Vn,

one after another, until one of them is successful. Proposition 3.3.6 hints that the probability
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that Ch◦ has size c log n should be of order n−f(c), where f is an unknown function of c > 0,

with f(c) −→
c→0

0. Hence, for K−1
0 = c small enough, performing at most n1/10 explorations will

be enough.

The exploration. Let K > 0. For x ∈ Vn, we modify the lower exploration of Section 3.5.2,

replacing C2 by |B
Ch−log−1 n
◦

(◦, k − 1)| ≥ 2K log n. If at some step k, the lower exploration is

stopped exclusively because of C3, and if |B
Ch+log−1 n
◦

(◦, k− 1)| ≥ K log n, say that it is success-

ful.

Pick x0 ∈ Vn. Denote S0 the set of vertices seen during its lower exploration (i.e. vertices

having at least one half-edge paired during the exploration). For 0 ≤ i ≤ bn1/10c, if the lower

exploration from xi is not successful, let Si be the set of vertices seen in the lower explorations of

x0, . . . , xi. Pick xi+1 ∈ Vn \ Si and perform its lower exploration, stopping it if a vertex of Si is

seen, in which case it is not successful. Let Ei,n := {the lower exploration from xi is successful}
and En := ∪bn

1/10c
i=0 Ei,n.

Suppose that the following result holds:

Lemma 3.7.1. If K is small enough, then limn→+∞ Pann(En) = 1.

On En, let i0 ≥ 1 be such that the lower exploration from xi0 is successful. Applying Proposi-

tion 3.4.1 as below (3.54), we get that

Pann(Ch+log−1 n
◦ ⊆ Φ(CGn,hxi0

) ⊆ Ch−log−1 n
◦ ),

where Φ is an isomorphism from CGn,hxi0
to Td. In this case, K log n ≤ |CGnxi0 | ≤ 2K log n. With

high Pann-probability, |C(n)
1 | > 2K log n by (3.2), so that CGn,hxi0

6= C(n)
1 . This yields (3.82) with

K = K−1
0 . It remains to establish the Lemma.

Proof of Lemma 3.7.1. Clearly, it is enough to show that for K small enough, for n large enough

and every 1 ≤ i ≤ n1/10,

Pann(Ei,n| ∩i−1
j=0 E

c
j,n) ≥ n−1/11, (3.83)

since it would imply that Pann(En) ≥ 1− (1− n−1/11)bn
1/10c −→

n→+∞
1.

For n ≥ 1 and 1 ≤ i ≤ bn1/10c, we have

Ei,n ⊇ Eline,n \ ({C1 happens} ∪ Ei,n,meet),

where

Ei,n,meet:={the lower exploration from xi meets Si−1},Eline,n:={Ch+log−1 n
◦ =Ch−log−1 n

◦ =LbK lognc}
and for any k ≥ 1, Lk is a ”line” subtree of Td, i.e. it is rooted at ◦, has k+ 1 vertices and total

height k.

During each exploration, less than n1/10 vertices and half-edges are seen for n large enough.

Thus |Si| ≤ n1/5. Hence, for i ≥ 1, by (3.14) with k = 1, m ≤ n1/10, m0 = 1 and mE ,m1 ≤ n1/5,

for n large enough:
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Pann(Ei,n,meet) + Pann(C1 happens) ≤ n−1/2.

Thus to establish (3.83), it only remains to show that for K small enough and n large enough,

Pann(Eline,n) ≥ n−1/12.

Let v1, . . . , vd be the children of ◦ in Td. Remark that for n large enough,

Pann(Eline,n) ≥ PTd(ϕTd(◦) ∈ [h+ 1/2, h+ 1])pp′bK logncp′′,

where

p := infa∈[h+1/2,h+1] PTd
a ({ϕTd(v1) ∈ [h+ 1/2, h+ 1]} ∩ {∀i ∈ {2, . . . , d}, ϕTd(vi) < h− 1}),

p′ := infa∈[h+1/2,h+1] PTd
a ({ϕTd(v1) ∈ [h+ 1/2, h+ 1]} ∩ {∀i ∈ {2, . . . , d− 1}, ϕTd(vi) < h− 1}),

p′′ := infa∈[h+1/2,h+1] PTd
a (∀i ∈ {1, . . . , d− 1}, ϕTd(vi) < h− 1).

Using Proposition 3.3.1, one checks easily that p, p′, p′′ > 0. Taking K < −(12 log p′)−1 yields

the result.

3.7.2 First phase

In this section, we define the first phase of the exploration, and show that it is successful with

Pann-probability 1− n−5/4 (Proposition 3.7.2). We will need a variant of Lemma 3.3.9, namely

Lemma 3.7.3. We postpone its statement and proof to the end of this section.

Let a,K,K ′ > 0. For every n ∈ N, define

rn := b0.05 logd−1 nc (3.84)

Let δ ∈ (0, h? − h) and ` ∈ N be such that the conclusion of Lemma 3.7.3 holds.

The exploration. Let x ∈ Vn.

I - We first assume that we do not meet any cycle throughout the exploration. Let M be the

set of marked vertices. Initially, M = ∅. Let ψ̂Gn(x) ∼ N (0, d−1
d−2). If ϕTd(◦) < h − n−a, stop

the exploration. Else, give a mark to x (hence add it to M).

While M 6= ∅, pick y ∈M in an arbitrary way and proceed to its subexploration.

The subexploration of y. Let Ty be the subexploration tree, that we will build by adding

subtrees of depth ` in a breadth-first way. Initially Ty = {y}.

While 1 ≤ |∂Ty| ≤ K log n, perform a step: take y1 ∈ ∂Ty of minimal height and if y1 6= x, let y1

be its only neighbour where ψ̂Gn has already been defined. Note that if y1 6= y, y1 is the parent

of y1 in Ty. Reveal all the edges of BGn(y1, y1, rn + `), where we recall that BGn(y1, y1, rn + `) is

the graph obtained by taking all paths of length rn + ` starting at y1 and not going through y1.
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Since we suppose that no cycle arises, BGn(y1, y1, `) is a tree, that we root at y1. If y1 = y = x,

replace BGn(y1, y1, rn + `) and BGn(y1, y1, `) by BGn(x, rn + `) and BGn(x, `) respectively.

We construct Ty(y1), the subtree of BGn(y1, y1, `) in {z, ψ̂Gn(z) ≥ h + n−a}. We start with

Ty(y1) = {y1}.
For k = 1, 2, ...`−1 successively, denote yk,1, . . . , yk,m the children of the (k−1)-th generation of

Ty(y1). Let (ξy1,k,i)k,i≥0 be an array of i.i.d. variables of law N (0, 1), independent of everything

else. Set

ψ̂Gn(yk,i) :=
1

d− 1
ψ̂Gn(yk,i) +

√
d

d− 1
ξy1,k,i. (3.85)

Add yk,i to Ty(y1) if ψ̂Gn(yk,i) ≥ h + n−a, and give a mark to yk,i (and thus add it to M) if

h− n−a ≤ ψ̂Gn(yk,i) < h+ n−a.

Finally, include Ty(y1) in Ty, add the vertices of ∂Ty(y1) to Ny and take y1 away from ∂Ty. The

step is then over.

If |∂Ty| 6∈ [1,K log n], the subexploration is finished. Say that it is fertile if |∂Ty| > K log n,

and infertile else (hence if ∂Ty = ∅).

If M = ∅, the exploration from y is finished.

II - Suppose now that a unique cycle C arises in the subexploration of y, when revealing the

pairings of BGn(y1, y1, rn + `) in the step from y1, for some y, y1 ∈ Vn. Let m := |C| be the

number of vertices in C. There are two cases.

Case 1: When C is discovered, there are already k consecutive vertices y1, . . . , yk of C where

ψ̂Gn has been defined, for some 1 ≤ k ≤ m − 1. Reveal BGn(C, rn). Denote z1, . . . , zm−k the

remaining vertices of C, such that z1 6= y2 is a neighbour of y1, and zi is a neighbour of zi−1 for

i ≥ 2. Give a mark to z1, . . . , zm−k and y1. Take y1 away from ∂Ty. If yk was in ∂Tỹ for some

ỹ whose subexploration was performed previously, take it away from that set.
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y1

y

ey

yk

yk−1

zm−k

z1

z2

Ty(y1)

Ty

Tey

C

y1

Figure 4. Case 1. Marked vertices are in red. C consists of the thick edges. Ty and Tỹ are

delimited by the purple contours. Remark that we could have y = ỹ (it is not the case here).

We now define ψ̂Gn on the zi’s. To do so, we mimic a recursive construction of the GFF on

Gm, the infinite connected d-regular graph Gm having a unique cycle Cm of length m (such a

construction always exists on a transient graph by Proposition 3.3.2, Proposition 3.3.1 being a

particular case of that on Td). Gm consists of a cycle Cm of length m, with d− 2 copies of T+
d

attached to each vertex of Cm, thus it is clear that the SRW is transient and that the Green

function and the GFF are well-defined.

Let uk, . . . , u1, v1, . . . , vm−k be the vertices of Cm, listed consecutively. Let U :=Gm\{u1, . . . , uk},
(Xj)j≥0 a SRW on Gm and recall that TU is the exit time of U . Define

α := PGm
v1

(XTU= u1, TU<+∞), β := PGm
v1

(XTU= uk, TU<+∞)1{k>1}

and γ := EGm
v1

[
∑TU−1

j=0 1{Xj=v1}],

and let (ξi)i≥1 be a family of i.i.d standard normal variables, independent of everything else.

Define

ψ̂Gn(z1) := αψ̂Gn(y1) + βψ̂Gn(yk) +
√
γξ1.

Then for i ≥ 2, define recursively

ψ̂Gn(zi) := αm−(k+i−1)ψ̂Gn(zi−1) + βm−(k+i−1)ψ̂Gn(yk) +
√
γm−(k+i−1)ξi (3.86)

where we set

Ui := Gm \ {u1, . . . , uk, v1, . . . , vi−1}, αm−(k+i−1) := PGm
vi (XTUi

= vi−1, TUi < +∞),

βm−(k+i−1) := PGm
vi (XTUi

= uk, TUi < +∞) and γm−(k+i−1) := EGm
vi [
∑TUi−1

j=0 1{Xj=vi}].

143



Case 2: ψ̂Gn has not been defined on any vertex of C. There exists a unique path of consecutive

vertices y1, . . . , yj for some j ≥ 2 such that yj ∈ C, and for 2 ≤ i ≤ j − 1, ψ̂Gn(yi) has not

been defined and yi 6∈ C. Reveal BGn({y1 . . . , yj−1} ∪ C, rn). Give a mark to the vertices of

{y1, . . . , yj−1} ∪ C. Take y1 away from ∂Ty.

y

C

yj

y1
y2

yj−1

y1

Figure 5. Case 2. Marked vertices are in red.

We define ψ̂Gn on {y1, . . . , yj−1} ∪ C in a way similar to Case 1. Let (ξi)i≥1 be a sequence of

i.i.d. standard normal variables, independent of everything else. For i = 1, 2, . . . , j, set

ψ̂Gn(yi) := α′j−iψ̂Gn(yi−1) +
√
γ′j−iξi, (3.87)

where α′j−i := PGm
z (H{z′} < +∞) and γ′j−i := EGm

z [
∑H{z′}−1

l=0 1{Xl=z}], z, z
′ being two neigh-

bours in Gm such that z (resp. z′) is at distance j − i (resp. j − i+ 1) of Cm. Then, define ψ̂Gn

on C as in Case 1 with k = 1.

After the discovery of C. Resume the subexplorations as before, starting by the subex-

ploration interrupted when C was discovered. For any marked vertex y: when proceeding to

the step from y1 in the subexploration from y, do not reveal the edges of BGn(y1, y1, rn + `) in

the direction of any already marked neighbour of y1.

III - If a second cycle arises, the exploration from x is over, and is not successful.

If at some point,

D1 M = ∅,

D2 ψ̂Gn has been defined on at most bK ′ log nc vertices, and

D3 at most one cycle has been discovered,

say that the first phase of the exploration from x is successful. Denote S1(x) this event. If all

subexploration trees were infertile, then the exploration from x is over, and said to be successful.

Denote S1,stop(x) this event.
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Proposition 3.7.2. Fix K, a > 0. If K ′ is large enough, then for large enough n and every

x ∈ Vn, Pann(S1(x)) ≥ 1− n−5/4.

Proof. In a nutshell, the argument is as follows: by our choice of ` and Lemma 3.7.3, the same

reasoning as that in the beginning of Proposition 3.3.6 shows that the size of a subexploration

tree has a bounded expectation (as n → +∞) with exponential moments. Hence if K ′′ > 0 is

large enough, with probability ≥ 1−n−2, the first K ′′ log n subexplorations encompass less than

K ′′2 log n vertices. The total number of vertices seen is at most K ′′2 log n×(d−1)2rn ≤ n3/10. In

that case, Lemma 3.2.2 entails that we see at most one cycle, with probability at least 1−n−4/3.

This allows to control |M|, since a cycle brings less than 2d`
′
rn = Θ(log n) marked vertices.

Without cycles, each vertex where ψ̂Gn is defined has a chance O(n−a) to get a mark. Hence for

K ′′ large enough, with probability at least 1− n−5/4, less than K ′′ log n vertices get a mark in

the first K ′′ log n explorations, ensuring that the exploration from x is finished - and successful.

Let E1,n be the event that two cycles are discovered before n3/10 vertices have been seen during

the exploration from x. By (3.14) with k = 2, m0 = 1, mE = 0 and m ≤ n3/10,

Pann(E1,n) ≤ n−4/3. (3.88)

Suppose that we perform the subexploration from some vertex y. Let y1 ∈ ∂Ty, with y1 6= y. If

no cycle arises when revealing the (rn + `)-offspring of y1, then |∂Ty(y1)| − 1, the increment of

|∂Ty| during that step, dominates stochastically ρ`,h,δ−1, by definition of ρ`,h,δ at Lemma 3.7.3,

as soon as n−a < δ. If a cycle arises (which happens at most once on Ec1,n), at most two

vertices are marked and taken away from ∂Ty. After j steps (if the subexploration is not over),

|∂Ty| ≥
st.
Sj−1 − 2, where Sj−1 is the sum of j − 1 i.i.d. random variables of law ρ`,h,δ − 1, hence

taking values in the bounded interval [0, d`], and with a positive expectation by Lemma 3.7.3

(the −1 in j − 1 comes from the fact that we do not include the step from y, and the +2 from

the possibility that two vertices can be taken away from ∂Ty if there is a cycle). Hence

Pann(the subexploration from y lasts more than j steps) ≤ P(Sj−1 ≤ K log n+ 2)

By the exponential Markov inequality, there exist constants c, c′ > 0 such that

for every j ≥ 2K(E[ρ`,h,δ]− 1)−1 log n, P(Sj−1 ≤ K log n+ 2) ≤ ce−c′j .

Now, let K ′′ > 0 and focus on the first bK ′′ log nc subexplorations (or on all subexplorations

if there are less than bK ′′ log nc of them). Let N be the total number of steps during those

subexplorations. On Ec1,n, N is stochastically dominated by a sum S of bK ′′ log nc i.i.d. variables

of some law µ (independent of n) such that

for every j ≥ 2K(E[ρ`,h,δ]− 1)−1 log n, µ([j,+∞)) ≤ ce−c′j .

Hence, letting E2,n := {N ≥ K ′′2 log n}, by the exponential Markov inequality,
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Pann(E2,n ∩ Ec1,n) ≤ Pann(S ≥ K ′′bK ′′ log nc) ≤ (E[ec
′Y/2]e−c

′K′′µ/2)bK
′′ lognc

for large enough n and for Y ∼ µ. Taking K ′′ large enough, we have for n large enough:

Pann(E2,n ∩ Ec1,n) ≤ n−2. (3.89)

In a step of a subexploration, less than (d− 1)2rn ≤ n1/10 new vertices are seen. When a cycle

C is revealed, there are at most 2rn new vertices in C (and on the path leading to C, in Case

2), so that less than 3rn(d − 1)rn ≤ n1/10 new vertices are seen. Therefore, on Ec1,n ∩ Ec2,n, less

than n3/10 vertices are seen during the first bK ′′ log nc subexplorations.

Moreover, in a step of a subexploration, less than d` vertices are added to the subexploration

tree. Hence if K ′ > K ′′2d`, on Ec2,n, D2 holds.

We now estimate the total number of vertices that will receive a mark. When a cycle C appears,

our construction implies that less than 3rn vertices receive a mark. When performing m steps

in a subexploration, the number of marked vertices obtained is stochastically dominated by a

binomial random variable Bin(m, d`n−a). Indeed, at each step, we reveal ψ̂Gn (and thus ϕTd)

on less than d` vertices. And for any vertex y ∈ Td \ {◦}, by Proposition 3.3.1,

max
a′≥h

PTd(ϕTd(y) ∈ [h− n−a, h+ n−a] |ϕTd(y) = a′) ≤ 2n−a√
2πd/(d− 1)

≤ n−a.

Hence, if E3,n is the event that more than 3rn + K′′

2 log n marks are given during the first

bK ′′ log nc subexplorations and if Z ∼ Bin(dK ′′2 log ne, C2d
`n−a),

Pann(Ec1,n ∩ Ec2,n ∩ E3,n) ≤ P
(
Z ≥ K ′′

2
log n

)
≤
(
dK ′′2 log ne
K′′

2 log n

)
(C2d

`n−a)
K′′
2

logn,

thus by(3.12), for large enough n,

Pann(Ec1,n ∩ Ec2,n ∩ E3,n) ≤
(
dK ′′2 log neC2d

`n−a
)K′′

2
logn
≤ n−2. (3.90)

Taking K ′′ > 1, on Ec1,n ∩ Ec2,n ∩ Ec3,n, less than 1 + 3rn + K′′

2 log n ≤ bK ′′ log nc vertices receive

a mark during the first bK ′′ log nc subexplorations, so that M = ∅ after at most bK ′′ log nc
subexplorations. Therefore, on Ec1,n ∩ Ec2,n ∩ Ec3,n, conditions D1, D2 and D3 hold. By (3.88),

(3.89) and (3.90), for large enough n

Pann(Ec1,n ∩ Ec2,n ∩ Ec3,n) ≥ 1− 2n−2 − n−4/3 ≥ 1− n−5/4,

and this concludes the proof.

We state here the variant of Lemma 3.3.9. Let δ ∈ [0, h? − h). For ` ≥ 1, write Z` for the `-th

generation of the connected component of ◦ in ({◦} ∪ E≥h+δ
ϕTd

) ∩ T+
d . Let ρ`,h,δ be the law of

|Z`| conditionally on ϕTd(◦) = h, so that ρ`,h = ρ`,h,0 (recall (3.28)). The following result is a

straightforward consequence of Lemma 3.3.9 (applied to h + δ instead of h) and from the fact

that PTd
h (∃v ∈ ∂B(◦, 1), ϕTd(v) ≥ h+ δ) > 0.

Lemma 3.7.3. For every δ ∈ [0, h? − h), if ` is large enough,

E[ρ`,h,δ] > 1.
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3.7.3 Second phase

If S1,stop(x) holds, i.e. all subexploration trees are infertile, the exploration is over. In this

Section, we suppose that S1(x)\S1,stop(x) holds. For every fertile tree, we perform an exploration

similar to that of Section 3.5.1 from each vertex of its boundary, and show that with probability

at least 1−n−6/5, at least one exploration per fertile tree is successful, and hence has a boundary

of size Θ(n1/2bn) (Proposition 3.7.4). We illustrate this second phase in Figure 6 below.

Let T1, . . . Tm be the fertile subexploration trees for some positive integer m. For every q ∈
{1, . . . ,m}, denote yq,1, yq,2, . . . the vertices of ∂Tq. For q = 1, 2, . . . successively, we perform the

explorations from yq,i, i ≥ 1 as defined in Section 3.5.1 (using an array of independent standard

normal variables (ξyq,i,k,j)k,j≥0). If y is the j-th vertex of the k-th generation in the exploration

tree of yq,i, let recursively

ψ̂Gn(y) :=
ψ̂Gn(y)

d− 1
+

√
d

d− 1
ξyq,i,k,j ,

so that ψ̂Gn plays the role of ϕTd on Td in Section 3.5.1. We implement two modifications:

• we do not explore towards yq,i, the parent of yq,i in Tq (hence we identify ψ̂Gn to the GFF

on a subtree of T+
d instead of Td), and

• we do not stop the exploration if ψ̂Gn(yq,i) < h+ log−1 n (we only know a priori from the

first phase that ψ̂Gn(yq,i) ≥ h+ n−a), and

• we stop the exploration if it meets a vertex already discovered in the first phase or during

the previous exploration of some yq′,j (thus with q′ < q, or q′ = q and j < i).

A vertex yq,i whose exploration is successful is back-spoiled if one vertex of its exploration is

seen later during the exploration of yq′,j . Let

E4,n := {∃q ≤ m, all successful explorations of yq,1, yq,2, . . . , are back-spoiled}

On S2(x) := (S1(x) \ S1,stop(x)) ∩ Ec4,n, say that the second phase is successful.

Proposition 3.7.4. If K of Proposition 3.7.2 is large enough, then for n large enough and

every x ∈ Vn,

Pann(S2(x) ∪ S1,stop(x)) ≥ 1− n−6/5 (3.91)

Proof. Say that yq,i is spoiled if it is met during the previous exploration of some yq′,j . Define

E5,n := {at least b1000 log nc vertices are spoiled or back-spoiled}. We claim that for n large

enough,

Pann(E5,n) ≤ n−2, (3.92)

and for some constant K10 > 0 (that only depends on d and h), for each of these vertices yq,i,

Pann(the exploration from yq,i is successful | yq,i is not spoiled) ≥ K10. (3.93)

147



On Ec5,n, if (3.93) holds, there are at least (K−1000) log n non-spoiled vertices on each ∂Tq (and

at most (K + 1) log n since each step of a subexploration brings less than log n vertices to ∂Tq),

where K was defined in the beginning of Section 3.7.2. And, if more than b1000 log nc vertices

of each ∂Tq are successful, one of them will be successful and not back-spoiled, thus fulfilling

the requirement of S2(x).

If K is large enough, for n large enough, the probability that no more than b1000 log nc explo-

rations from ∂Tq are successful is at most

(b(K+1) lognc
b1000 lognc

)
(1−K10)(K−1000) logn ≤ n

(
(K+1)K+1

10001000(K−999)K−999 (1−K10)K−1000
)logn

= o(n−3)

by Stirling’s formula. Hence by a union bound on 1 ≤ q ≤ m, noticing that m ≤ 2K ′/K for n

large enough by D2, we have:

Pann((S2(x) ∪ S1,stop(x))c) ≤ Pann(S1(x)c) + Pann(Ec5,n) +mn−3 ≤ 2n−5/4

by Proposition 3.7.2 and (3.92), and this concludes the proof. Hence, it remains to establish

(3.92) and (3.93).

x

C

infertile subtree

infertile

subtree

T1

T2

T3

T4

y1;1 y1;2

y2;1

y3;1

y3;2
y3;3

y4;1

y4;2
y4;3

y2;2

y1

y2

y4

Figure 6. Marked vertices are in red. There are four fertile subexploration trees (T1 rooted at

y1, T2 rooted at y2, T3 rooted at x and T4 rooted at y4), and two infertile ones. Lightgray

areas correspond to the explorations of the yq,i’s in the second phase. y2,2 is spoiled by y1,2.

y3,2 is back-spoiled by y3,3. Each of the subxploration trees will be either included in CGn,hx or

have no common vertex with CGn,hx , depending on the value of ψGn on the marked vertices.
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Proof of (3.92). Note that by D2, by Remark 3.5.2 and by (3.84),

less than n1/2 log−1 n vertices and half-edges have been seen in the first two phases. (3.94)

In particular, less than n1/2 log−1 n edges are built during second phase. Since there are at most

K ′ log n yq,i’s by D2, each new edge has a probability at most

K ′ log n/(n− n1/2 log−1 n) ≤ 2K ′n−1 log n

to spoil a vertex. Thus, the number of spoiled vertices is stochastically dominated by a random

variable Z ∼ Bin(n1/2 log−1 n, 2K ′n−1 log n). For n large enough,

P(Z ≥ 10) ≤
(
n1/2 log−1 n

10

) (2K′ logn
n

)10
≤ n5 log20 n

n10 ≤ n−3.

Moreover, by (3.15) with k = b999 log nc and m0,m1,mE ,m ≤ n1/2 log−1 n due to (3.94),

Pann(more than b999 log nc vertices are back-spoiled) ≤ n−3.

(3.92) follows.

Proof of (3.93). By (3.94) and (3.14) with k = 1 and m0,m1,mE ,m ≤ n1/2 log−1 n, for n

large enough,

Pann(a cycle is created during the exploration from yq,i) ≤ log−1 n.

The law of ψ̂Gn on the exploration tree from yq,i is that of ϕTd on an isomorphical subtree of

T+
d (and not Td, since we do not explore towards yq,i), with ϕTd(◦) = ψ̂Gn(yq,i). Denote Cn◦ the

connected component of ◦ in E≥h+log−1 n,+
ϕTd

∪ {◦}, and Zk its k-th generation for every k ≥ 0.

Then

Pann(the exploration from yq,i is successful|yq,i is not spoiled) ≥ pn − log−1 n,

where pn := minb≥h+n−a P
Td
b (∃k ≤ logλh n, |Zk| ≥ n

1/2bn) (recall that ψ̂Gn(yq,i) ≥ h+ n−a).

Let δ ∈ (0, h? − h). Clearly, there exists p′ > 0 such that for n large enough,

minb≥h+n−a P
Td
b (∃v ∈ Z1, ϕTd(v) ≥ h+ δ) > p′.

For ε > 0 small enough so that logd−1(λh+δ − ε) ≥ (3 logd−1 λh)/4 (such ε exists by continuity

of h′ 7→ λh′ , Proposition 3.3.4), for n ∈ N,

p′′n := min
b≥h+δ

PTd
b (∃k ≤ logλhn −1, |Zh+log−1 n,+

k | ≥ n1/2bn) ≥ min
b≥h+δ

PTd
b (|Zh+δ,+

blogλh
nc−1| ≥ n

1/2bn)

≥ min
b≥h+δ

PTd
b (|Zh+δ,+

blogλh
nc−1| ≥ (λh+δ − ε)blogλh

nc−1).

By Proposition 3.3.8, lim infn→+∞ p
′′
n =: p′′ > 0. Since pn ≥ p′p′′n for all n ≥ 1,

Pann(the exploration from yq,i is successful|yq,i is not spoiled) ≥ pn − log−1 n ≥ p′p′′

2

for n large enough, and we can take K10 = p′p′′

2 . This shows (3.93).
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3.7.4 Third phase

Suppose now that we are on S2(x). For 1 ≤ q ≤ m, denote yq one vertex of ∂Tq whose

exploration was successful and not back-spoiled in the second phase, Tyq its exploration tree,

and Bq the boundary of Tyq . In this section, we connect each Bq to Θ(n) vertices in a fashion

similar to Section 3.6.1. However, revealing the GFF on a positive proportion of the vertices

would prevent us to use an approximation of the GFF as in Proposition 3.4.1.

To circumvent this difficulty, denote R1,2 the set of vertices seen in the first two phases, and

partition Vn \R1,2 arbitrarily in sets D1, D2, . . . , Dr for some r ∈ N such that

|D1| = |D2| = . . . = |Dr−1| = bK11 log nc, (3.95)

for some constant K11 > 0. We will connect each Bq to a positive proportion of the vertices

of D1 only, with Pann-probability 1− n−3 (Proposition 3.7.5), before revealing the GFF on the

vertices of the first two phases, and on the connection from D1 to Bq in Section 3.7.5. The

result will follow by symmetry of the Di’s and a union bound on 1 ≤ i ≤ r − 1.

The exploration.

1) The w-explorations. Let w1, . . . , wbK11 lognc be the vertices of D1. We proceed successively

to the w-explorations of w1, w2, . . ., i.e. for i ≥ 1, we perform the exploration from wi as in

Section 3.5.1, but stop it if we reach a vertex seen in the first two phases or in the w-exploration

of some wj , j ≤ i − 1. In particular, if wi was discovered during the exploration of some

wj , j ≤ i − 1, say then that wi is w-spoiled and do not proceed to its w-exploration. Denote

Rw the set of vertices seen during all the w-explorations.

For i ≥ 1, if we explore wi and C2 happens, say that the w-exploration from wi is w-successful.

Let s0 be the number of w-successful vertices. Let wi1 , . . . , wis0 be the w-successful vertices with

i1 < . . . < is0 . Let Twij be the exploration tree of wij , for j ∈ {1, . . . , s0}. Take away

• from each ∂Twij : the vertices that are seen in the w-exploration of some wi, for i > ij ,

• from each Bq: the vertices z such that BGn(z, z, an) intersects Rw.

Say that those vertices are w-back-spoiled.

2) The joining balls. For q = 1, . . . ,m successively, we develop balls from Bq to the ∂Twij ’s,

1 ≤ j ≤ s0, with a few modifications w.r.t the construction of Section 3.6.1: let z1,q, z2,q, . . . be

the vertices of Bq. For zi,q ∈ Bq, let

B∗i,q := ∪(i′,q′):q′<q or q′=q,i′<iB
∗(zi′,q′ , a

′
n),

and let Ri,q := R1,2 ∪Rw ∪B∗i,q be the vertices seen before building B∗(zi, a
′
n).

Replace B∗j , Qj and BGn(Ty, an) of Section 3.6.1 by B∗i,q, Ri,q and ∪s0j=1BGn(Twij , an) respectively.

Say that B∗(zi,q, a
′
n) is a J-joining ball if it hits BGn(TwiJ , an) at one vertex after a′n − 2an

steps, and no other intersection with vertices seen previously is created.
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Proposition 3.7.5. For n large enough, we have

Pann(S2(x)∩{∃(J, q), there are less than logγ−3κ−18 n J-joining balls from Bq}) ≤ n−4 (3.96)

and if K11 is large enough, then for large enough n:

Pann(S2(x) ∩ {s0 ≤ log n}) ≤ n−4. (3.97)

Proof. Proof of (3.96). We adapt the proof of Lemma 3.6.1. Since there are less than log2 n

wi’s (and |R1,2| is controlled by (3.94)), we can replace (3.61) by

less than n1/2 logγ+2 n vertices are seen during the three phases. (3.98)

Let B∗ := ∪mq=1 ∪z∈Bq B∗(z, a′n). (3.63) becomes

Pann(S2(x) ∩ { |B∗ ∩ (∪s0j=1BGn(Tzij , an))| ≥ log3γ n}) ≤ n−5 (3.99)

Let N be the number of vertices of ∪mq=1Bq that are spoiled, i.e. the vertices z such that

B∗(z, an) = BGn(z, z, an) is hit by a previously constructed B∗(z′, a′n). (3.64) becomes

Pann(S2(x) ∩ {N ≥ log3γ n}) ≤ n−5. (3.100)

In addition, by (3.15) with k = log2 n, m0 = 1, m1,mE ,m ≤ n1/2 log−1/2 n,

Pann (E6,n) ≤ n−5, (3.101)

where E6,n := S2(x) ∩
{

more than log2 n vertices are w-back-spoiled
}

. Then, define

Si,q := S2(x) ∩ Ec6,n ∩ {|(∪
s0
j=1BGn(Twij , an)) ∩B∗i,q| ≤ log3γ n} ∩ {zi,q is not spoiled}.

It is straightforward to adapt the proof of (3.66) to get that for every 1 ≤ J ≤ s0, the probability

that B∗(zi,q, a
′
n) is a J-joining ball, conditionally on Si,q, is at least n−1/2 logγ−2κ−10 n. On

S2(x) ∩ {N ≤ log3γ n} ∩ Ec6,n, at least

n1/2bn − log2 n− log3γ n ≥ n1/2blog−κ−7 nc

zi,q’s are neither spoiled nor w-back-spoiled by (3.46). As in the end of the proof of Lemma 3.6.1,

if γ > 3κ+ 18, we get that for n large enough: for every (J, q) ∈ ({1, . . . , s0} ∩ {1, . . . ,m}) and

Z ∼ Bin(n1/2blog−κ−7 nc, n−1/2 logγ−2κ−10 n):

Pann(S2(x) ∩ {there are less than logγ−3κ−18 n J-joining balls from Bq})

≤ Pann
(
S2(x) ∩ ({ |B∗ ∩ (∪s0j=1BGn(Tzij , an))| ≥ log3γ n} ∪ {N ≥ log3γ n} ∪ E6,n)

)
+ P(Z ≤ logγ−3κ−18 n)

≤ 3n−5 + n max
0≤k≤logγ−3κ−18 n

P(Z = k) by (3.99), (3.100) and (3.101)

≤ 4n−5.
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Since s0 ≤ |D1| ≤ log2 n by (3.95) and m ≤ K ′ log n by D2, a union bound on (J, q) yields (3.96).

Proof of (3.97). We now estimate the probability that at most logn w-explorations are w-

successful. Note that by Remark 3.5.2 and (3.94),

|R1,2|+ |Rw| ≤ n1/2 log−1/2 n. (3.102)

Hence if C > 0 is large enough, by (3.15) with k = bC log nc andm0,m1,mE ,m ≤ n1/2 log−1/2 n,

Pann (S2(x) ∩ {more than C log n wi’s are w-spoiled}) ≤ n−5. (3.103)

Moreover, for every i ≥ 1, conditionally on the fact that wi is not w-spoiled, the probability that

the w-exploration from wi is stopped because it reaches a vertex of R1,2 or a vertex seen in the

exploration of some wj , j < i is o(1) by (3.14) with k = 1, m0 = 1, m1,mE ,m ≤ n1/2 log−1/2 n.

Hence, a straightforward adaptation of the proof of (3.54) yields

Pann(the exploration from wi is w-successful | S2(x) ∩ {wi is not w-spoiled}) ≥ η(h)/2.

(3.104)

Take K11 > 3C. By (3.103), (3.104) and (3.95), if Z ∼ Bin(b(K11 log n)/2c, η(h)/2) and n is

large enough,

Pann(S2(x) ∩ {s0 ≤ log n})≤ n−5 + P(Z ≤ log n).

One checks easily that if K11 is large enough, then for large enough n,

P(Z ≤ log n) ≤ n−5,

and (3.97) follows.

3.7.5 Revealing ψGn on the three phases

Let Rψ1 (resp. Rψ2 ) be the set of vertices where ψ̂Gn has been defined during the first (resp.

second) phase, and Rψ3 be the set of vertices in the w-successful w-explorations and on the

J-joining balls, for all 1 ≤ J ≤ m, on which we will realize ψGn on the third phase.

By Proposition 3.2.4, we can realize ψGn jointly with Gn by

• proceeding to the three phases of the exploration from x,

• revealing the remaining pairings of half-edges of the Gn,

• defining ψGn on Rψ1 ∪ R
ψ
2 , in the same order as ψ̂Gn has been defined, using the same

standard normal variables: we let

ψGn(x) := ψ̂Gn(x)
√

d−2
d−1

√
GGn(x, x),
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and for every y, we let Ay := {z ∈ Vn, ψ̂Gn(z) was defined before ψ̂Gn(y)} and

ψGn(y) := EGn [ψGn(y)|σ(Ay)] + ξy
√

Var(ψGn(y)|σ(Ay)),

for every y ∈ Rψ1 , where ξy is the normal variable used when defining ψ̂Gn(y),

• revealing ψGn on Rψ3 , and finally on Vn \ (Rψ1 ∪R
ψ
2 ∪R

ψ
3 ).

Let E7,n := {Gn is a good graph} ∩ {maxz∈Vn |ψGn(z)| ≤ log2/3 n},
Sψ1 (x) := S1(x) ∩ {sup

y∈Rψ1
|ψGn(y)− ψ̂Gn(y)| ≤ n−a/2},

Sψ2 (x) := S2(x) ∩ Sψ1 (x) ∩ {sup
y∈Rψ2

|ψGn(y)− ψ̂Gn(y)| ≤ (log−1 n)/2}, and

Sψ3,i(x) := Sψ2 (x) ∩ {∀q ∈ {1, . . . ,m} at least log n vertices of Di are connected to Tq in E≥hψGn
}

for every i ≥ 1.

Suppose that for a > 0 (defined in the beginning of Section 3.7.2) small enough, and for n large

enough:

Pann((S1(x) \ Sψ1 (x)) ∩ E7,n) ≤ n−3, (3.105)

Pann((S2(x) \ Sψ2 (x)) ∩ E7,n) ≤ n−3, (3.106)

and for every 1 ≤ i ≤ r − 1,

Pann((S2(x) \ Sψ3,i(x)) ∩ E7,n) ≤ n−3. (3.107)

Letting Sψ1,stop(x) := S1,stop(x) ∩ Sψ1 (x), (3.105), (3.106), 3.107) and (3.91) imply that

Pann((Sψ1,stop(x) ∪ (∩r−1
i=1S

ψ
3,i(x)) ) ∩ E7,n) ≥ 1− n−7/6. (3.108)

On Sψ1,stop(x) ∪ (∩r−1
i=1S

ψ
3,i(x)), we have the following alternative:

• either CGn,hx contains a subexploration tree Tq whose exploration was fertile, the explo-

ration from yq is successful and connected to at least log n vertices of every Di, 1 ≤ i ≤ r−1

in E≥hψGn
;

• or CGn,hx contains no such tree, and CGn,hx ⊆ Rψ1 , so that |CGn,hx | ≤ K0 log n, where we take

K0 ≥ K ′, and where K ′ is the constant of Proposition 3.7.2.

Note that the second case comprises Sψ1,stop(x) but is a priori not included in it: there could

exist fertile subexploration trees not connected to x in E≥hψGn
if ψGn is below h on the appropriate

marked vertices.

In the first case, CGn,hx contains at least log n vertices of each Di, 1 ≤ i ≤ r−1, so that by (3.94)

and (3.95) for n large enough:

|CGn,hx | ≥ (r − 1) log n ≥ log n
n− |R1,2| − |Dr|

K11 log n
≥ n

2K11
.
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Letting thus K12 := (2K11)−1, for every n large enough, we have on Sψ1,stop(x) ∪ (∩r−1
i=1S

ψ
3,i(x)):

|CGn,hx | ≤ K0 log n or |CGn,hx | ≥ K12n.

By (3.108) and a union bound on all x ∈ Vn,

Pann(K0 log n ≤ |C(n)
2 | ≤ K12n) ≤ n−1/6 + Pann(Ec7,n).

By Remark 3.6.5, |C(n)
2 | ≤ K12n Pann-w.h.p. By Proposition 3.2.1 and Lemma 3.2.5, we have

Pann(Ec7,n)→ 0 so that

Pann(|C(n)
2 | ≤ K0 log n)→ 1,

yielding (3.3). Hence, it remains to show (3.105), (3.106) and 3.107).

The field ψGn on the first phase: proof of (3.105)

Proposition 3.7.6. Let a,K0, ` be such that Proposition 3.7.2 holds with K ′ = K0, and such

that the conclusion of Lemmas 3.7.7 and 3.7.8 hold. Then for n large enough, (3.105) holds.

To prove Proposition 3.7.6, we need two variants of Proposition 3.4.1. The first consists in

replacing the ”security radius” an = Θ(log log n) by rn = Θ(log n).

Lemma 3.7.7. If a > 0 is small enough, then the following holds for n large enough. Assume

that Gn is a good graph, that A ⊆ Vn satisfies

• |A| ≤ n2/3,

• tx(BGn(A, rn)) = tx(A), and

• maxz∈A |ψGn(z)| ≤ log2/3 n.

For every y ∈ ∂BGn(A, 1), writing y for the unique neighbour of y in A, we have:∣∣∣∣EGn [ψGn(y)|σ(Ay)]−
1

d− 1
ψGn(y)

∣∣∣∣ ≤ n−2a (3.109)

and ∣∣∣∣VarGn(ψGn(y)|σ(Ay))−
d

d− 1

∣∣∣∣ ≤ n−2a. (3.110)

Proof. We follow the argument of Proposition 3.4.1, with a few adjustments.

First, the bounds in (3.37) and (3.38) are in fact e−can for some constant c > 0, and one can

replace an by rn.

Second, concerning the proof of (3.39), note that (3.41) still holds for large enough n since for

k ≥ 0.3 log n and a constant γ > 0 that depends neither on k nor on n,

P(Zk ≤ rn) ≤ P(Zk ≤ 0.05 log n) ≤ P(Zk ≤ d−2
2d k) ≤ e−γk.
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The condition |A| ≤ n2/3 implies that Eπn [HA] ≥ n1/3/4, so that we can adapt the argument

below (3.40), as well as the proof of (3.42).

The second variant of Proposition 3.4.1 corresponds to Case 1 and Case 2 of the first phase of

the exploration. Let us introduce some notations before stating the Lemma. Recall that for

m ≥ 3, Gm is the connected (and infinite) d-regular graph with a unique cycle Cm of length m.

Recall the definitions of αk, βk, γk, α
′
k and γ′k from (3.86) and (3.87).

For k ≥ 0, let zk be a vertex at distance k of the cycle Cm in Gm, and zk be a neighbour

of zk at distance k + 1 of Cm. Note that BGm(zk, zk, rn) (the subgraph of Gm obtained by

taking all paths of length rn starting at zk and not going through zk) contains Cm if and only

if k ≤ rn − dm/2e.

Lemma 3.7.8. If a > 0 is small enough, then the following holds for n large enough (uniformly

in m ≥ 3).

Assume that Gn is a good graph, that A ⊆ Vn is such that

• |A| ≤ n2/3,

• A is a tree, and

• maxz∈A |ψGn(z)| ≤ log2/3 n.

Case 1. Let y ∈ Vn, and suppose that

– y has a neighbour y in A,

– for some 1 ≤ k < m, there exists ŷ in A, a path P of length m− k from y to ŷ whose only

vertex in A is ŷ, and a path P ′ in A of length k−1 from ŷ to y, so that C := P ∪P ′∪(y, y)

is a cycle of length m (and ŷ = y if k = 1), and

– tx(BGn(A ∪ C, rn)) = 1.

Then ∣∣EGn [ψGn(y)|σ(A)]− αkψGn(y)− βkψGn(ŷ)
∣∣ ≤ n−2a (3.111)

and ∣∣VarGn(ψGn(y)|σ(A))− γk
∣∣ ≤ n−2a. (3.112)

Case 2. Let y ∈ Vn, and suppose that

– y has a unique neighbour y in A,

– for some 1 ≤ k ≤ rn − dm/2e, BGn(y, y, rn) is isomorphic to BGm(zk, zk, rn), and

– tx(BGn(A ∪ P ∪ C, rn)) = 1, where C is the cycle in BGn(y, y, rn) and P the path from y

to C.
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Then ∣∣EGn [ψGn(y)|σ(A)]− α′kψGn(y)
∣∣ ≤ n−2a (3.113)

and ∣∣VarGn(ψGn(y)|σ(A))− γ′k
∣∣ ≤ n−2a. (3.114)

Proof. We will only show (3.113) and (3.114). The other proofs are very similar and left to the

reader.

We start with the proof of (3.113). We follow the proof scheme of (3.34). Let τ be the hitting

time of ∂BGn(y, y, rn) \ {y} by a SRW (Xk)k≥0. Note that {HA ≤ τ} ⊆ {XHA = y}. We write

EGn [ψGn(y)|σ(A)] =PGny (XHA = y,HA ≤ τ)ψGn(y) + EGny [ψGn(XHA)1HA>τ ]

−
EGny [HA]

EGnπn [HA]
EGnπn [ψGn(XHA)].

Since BGn(y, y, rn) and BGm(zk, zk, rn) are isomorphic,

PGny (XHA = y,HA ≤ τ) = PGm
zk

(XH∂BGm (zk,zk,rn)
= zk) =: α′′k.

Since

{XH∂BGm (zk,zk,rn)
= zk} ⊆ {H{zk} < +∞}, we have α′′k ≤ α′k.

Reciprocally, on {H{zk} < +∞}\ {XH∂BGm (zk,zk,rn)
= zk}, a SRW starting at distance rn of Cm

has to reach Cm. As in the proof of (3.37), a comparison with a biased SRW on Z shows that

this happens with a probability O(e−crn) for some constant c > 0 uniquely depending on d and

we get that if a small enough, then for large enough n, |PGny (XHA = y,HA ≤ τ)− α′k| ≤ n−3a.

It remains to establish∣∣∣∣EGny [ψGn(XHA)1HA>τ ]−
EGny [HA]

EGnπn [HA]
EGnπn [ψGn(XHA)]

∣∣∣∣ ≤ n−3a. (3.115)

To do so, one adapts the proofs of (3.38) and (3.39) exactly as in the proof of Lemma 3.7.7: if

HA > τ , (Xk)k≥0 leaves BGn(A ∪ C ∪ P, rn) before hitting A. By Lemma 3.4.2 with s = rn, if

a is small enough, (Xk) does not hit A within the next log2 n steps with probability at least

(1− (d− 1)−rn)log2 n ≥ 1− 2 log2 n (d− 1)−rn ≥ 1− n−4a.

Then, we use Corollary 2.1.5 of [126] as six lines above (3.40): after blog2 nc steps, the fact

that Gn is an expander forces the empirical distribution of Xk to be very close to the uniform

distribution πn. (3.113) follows.

For (3.114), we follow the proof scheme of (3.35). If τ ′ is the exit time of BGn(y, y, rn), we have∣∣VarGn(ψGn(y)|σ(A))− γ′k
∣∣ ≤ ∣∣GGn(y, y)−EGny [GGn (y,XHA) 1HA=τ ′ ]− γ′k

∣∣
+

∣∣∣∣∣EGny [GGn (y,XHA) 1HA>τ ′ ]−
EGny [HA]

Eπn [HA]
EGnπn [GGn (y,XHA)]

∣∣∣∣∣ .
(3.116)
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We deal with the second term of the RHS as (3.115) to show that it is O(n−3a). As below

(3.45), we have

EGny [GGn (y,XHA) 1HA=τ ′ ] = EGny [GGn (y,Xτ ′)]−O(n−3a)

if a is small enough, by (3.11). Now, by (3.17) applied to D := BGn(y, y, rn) (note that TD = τ ′)

and (3.41) (which still holds, as remarked in the proof of Lemma 3.7.7), we get

|GGn(y, y)−EGny [GGn (y,Xτ ′)]−GDGn(y, y)| ≤ EGny [τ ′]
n = O(n−3a).

But D is isomorphic to E := BGm(zk, zk, rn), so that

GDGn(y, y) = GEGm(zk, zk) = GGm(zk, zk)−PGm
zk

(TE = zk)GGm(zk, zk)−PGm
zk

(TB 6= zk)GGm(zk, z)

for any z ∈ ∂BGm(E, 1) \ {zk}, by cylindrical symmetry of BGm(E, 1). One checks easily that

if a is small enough, then for n large enough,

GDGn(y, y) = GEGm(zk, zk) = GGm(zk, zk)−PGm
zk

(TE = zk)GGm(zk, zk) +O(n−3a).

One easily adapts the reasoning leading to (3.37), despite the presence of one cycle, to get

PGm
zk

(TE = zk) = PGm
zk

(H{zk} < +∞) +O(n−3a) for a small enough.

Note indeed that {TE = zk} ⊆ {H{zk} < +∞}. Reciprocally, if z ∈ ∂BGm(E, 1) \ {zk}, a SRW

starting at z has a probability decaying exponentially with rn to reach zk, since there are at

most two injective paths from z to zk, and each contains at least rn−3 vertices where the SRW

has a positive probability (only depending on d) to enter a subtree isomorphic T+
d and to never

leave it.

Since γ′k = GGm(zk, zk)−PGm
zk

(H{zk} < +∞)GGm(zk, zk), we obtain

|GDGn(y, y)− γ′k| = O(n−3a).

All in all, we get that the first term of the RHS of (3.116) is O(n−3a), and (3.114) follows.

Proof of Proposition 3.7.6. We proceed as below (3.54) in the proof of Proposition 3.5.1. Denote

En := {∃y ∈ Rψ1 , |ψGn(y)− ψ̂Gn(y)| ≥ n−a} ∩ E7,n ∩ S1(x).

On En, ψ̂Gn is defined on at most K0 log n vertices by D2 (and our choice of K ′ = K0), so that

by the triangle inequality, either |ψ̂Gn(x)− ψGn(x)| ≥ n−a log−2 n, or there exists y such that

|ψ̂Gn(y)− ψGn(y)| ≥ n−a log−2 n+ sup
y∈Rψy

|ψ̂Gn(y)− ψGn(y)|,

where Rψy is the set of vertices where ψ̂Gn has been defined before ψ̂Gn(y). Let

E(y) := {|ψ̂Gn(y)− ψGn(y)| ≥ n−a log−2 n+ sup
y∈Rψy

|ψ̂Gn(y)− ψGn(y)|} ∩ En
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For y 6= x, we can apply Lemma 3.7.8 (if ψ̂Gn(y) is defined in Case 1 or Case 2) or Lemma 3.7.7

(in the other cases), so that

Pann(E(y)) ≤ Pann(n−2a|ξy| ≥ n−a log−2 n− n−2a) ≤ Pann(|ξy| ≥ na/2) ≤ n−4

by the exponential Markov inequality, and Pann(E(x)) ≤ n−4 by the same argument, where we

set E(x) := {|ψ̂Gn(x)−ψGn(x)| ≥ n−a log−2 n}∩En. Hence, we get by a union bound on y ∈ Rψ1
that for large enough n,

Pann(En) ≤ n−4K0 log n ≤ n−3.

The conclusion follows.

The field ψGn on the second phase: proof of (3.106)

It is enough to show that for each yq,i whose exploration in the second phase is successful,

Pann
(
{supz∈Tyq,i\{yq,i}

|ψ̂Gn(z)− ψGn(z)| ≥ log−1 n
2 } ∩ E7,n

)
≤ n−4,

where Tyq,i is its exploration tree, and to conclude by a union bound on yq,i. This follows from

a straightforward adaptation of the reasoning below (3.54). Note that the n−3 in the RHS of

(3.55) can be replaced by any polynomial in n.

The field ψGn on the third phase: proof of (3.107)

By symmetry, it is enough to consider the case i = 1. Following readily the argument of the

proof of (3.70), we get that the probability that E≥hψGn
percolates through a given J-joining ball

is at least logγ(K8/3−1) n, for any J . By (3.96) and (3.97), and a union bound on every couple

(J, q) ∈ {1, . . . , s0} × {1, . . .m},

Pann((S2(x) \ Sψ3,1(x)) ∩ E7,n) ≤ 2n−4 + s0mP(Z = 0),

where Z ∼ Bin(blogγ−3κ−18 nc, logγ(K8/3−1) n). If κ and γ/κ are large enough, then for n large

enough,

P(Z = 0) = (1− logγ(K8/3−1) n)blogγ−3κ−18 nc ≤ n−4,

and (3.107) follows.

3.8 Properties of C(n)
1

3.8.1 The local limit: proof of Theorem 3.1.3

Proof of Theorem 3.1.3. The proof mimics the reasoning of Lemma 3.6.3. Let k ≥ 0 and let T

be a rooted tree of height k, with no vertex of degree more than d. Let x ∈ Vn. We perform an
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exploration as in Section 3.5.1. Denote ST (x) the event that the exploration is successful, that

ST (x) ⊆ CGn,hx and that BGn(x, k) = T . We claim that

Pann(ST (x)) −→
n→+∞

PTd(BTd(◦, k) = T, |Ch◦ | = +∞). (3.117)

The proof goes as those of Lemma 3.5.3 and Proposition 3.5.1. In the proof of Lemma 3.5.3,

replace F (n)
j by F (n)

T,j := F (n)
j ∩ {BCh◦ (◦, k) = T} and F ′(n)

j by F ′(n)
T,j := F ′(n)

j ∪ {BCh◦ (◦, k) 6= T},
for every j ≥ 1. We also check easily that

PTd(Ch+log−1 n
◦ ∩BTd(◦, k) = Ch−log−1 n

◦ ∩BTd(◦, k))→ 1

in order to determine BGn(x, k) Pann-w.h.p., as Proposition 3.5.1 only ensures that Ch+log−1 n
◦ ∩

BTd(◦, k) ⊆ BGn(x, k) w.h.p.

Moreover, we get as for (3.77):

sup
x,y∈Vn

|Covann(ST (x),ST (y))| −→
n→+∞

0. (3.118)

Let ε > 0. Applying Bienaymé-Chebyshev’s inequality as in Lemma 3.6.3, we get

Pann(| |ST | − PTd(BTd(◦, k) = T, |Ch◦ | = +∞)n| ≤ εn) −→
n→+∞

1, (3.119)

where ST is the set of vertices x ∈ Vn such that ST (x) holds. Let S ⊆ Vn be the set of vertices

such that their exploration is successful. By Theorem 3.1.1 and a reasoning as in the proof of

Lemma 3.6.3, with Pann-probability 1− o(1),

(i) |C(n)
2 | ≤ n1/3, so that ST ⊆ S ∩ C(n)

1 ,

(ii) | |C(n)
1 | − η(h)n| ≤ εn,

(iii) | |S| − η(h)n| ≤ εn.

Suppose that these three assumptions and (3.119) hold. By (i), ST = S ∩ V (T )
n . Therefore,

|ST | ≤ |V (T )
n | ≤ |ST |+ |C(n)

1 ∩ Sc|, so that by (ii), (iii) and (3.119),

(PTd(BTd(◦, k) = T, |Ch◦ | = +∞)− ε)n ≤ |V (T )
n | ≤ (PTd(BTd(◦, k) = T, |Ch◦ | = +∞) + 3ε)n.

Moreover, | |C(n)
1 | − η(h)n| ≤ εn by (ii), so that for ε small enough,

PTd(BTd(◦, k) = T, |Ch◦ | = +∞)

η(h)
−
√
ε ≤ |V

(T )
n |
|C(n)

1 |
≤ PTd(BTd(◦, k) = T, |Ch◦ | = +∞)

η(h)
+
√
ε.

But

PTd(BTd(◦, k) = T, |Ch◦ | = +∞)

η(h)
=

PTd(BTd(◦, k) = T, |Ch◦ | = +∞)

PTd(|Ch◦ | = +∞)

= PTd(BTd(◦, k) = T | |Ch◦ | = +∞).

And since we can take ε arbitrarily small, the conclusion follows.
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3.8.2 The core and the kernel: proof of (3.4) and (3.5)

We now prove (3.4) and (3.5) of Theorem 3.1.2, starting with (3.4). Let K1 (resp. K2) be the

probability that ◦ has at least 2 (resp. 3) children with an infinite offspring in Ch◦ , under PTd .

Suppose that for x, y ∈ Vn,

Pann(x ∈ C(n)) −→
n→+∞

K1 (3.120)

and

Covann(1x∈C(n) ,1y∈C(n)) −→
n→+∞

0. (3.121)

Then (3.4) follows by a second moment argument as in Lemma 3.6.3. Hence, it is enough to

prove (3.120) and (3.121).

Proof of (3.120). For x ∈ Vn, we perform the exploration in Section 3.5.1 from x, replacing C2

by the following condition: for every neighbour v of x, stop exploring the subtree from v at step

k+ 1 if the k-offspring of v has at least n1/2bn vertices. Stop the exploration if this happens for

at least two neighbours of x. In this case, say that the exploration is successful.

We adapt easily the proofs of Lemma 3.5.3 and Proposition 3.5.1 to show that for x ∈ Vn,

Pann(the exploration from x is successful) −→
n→+∞

K1. (3.122)

Indeed, K1 is the probability that the realization of ϕTd to which we couple ψGn is such that ◦ has

at least two children with an infinite offspring. Then, as in Lemma 3.5.3, there is a probability

1 − o(1) that the offspring of these children grows at an exponential rate close to λh (Propo-

sition 3.3.8). Thus, letting F (n)
v,k := ∪1≤j≤k{the j-offspring of v has at least n1/2bn vertices} for

every child v of ◦, and F (n)
core,k := ∪v1,v2 children of ◦(F

(n)
v1,k−1 ∩ F

(n)
v2,k−1), we get that

Pann(∪1≤k≤blogλh
ncF

(n)
core,k) −→n→+∞

K1

and

Pann(∪1≤k≤blogλh
nc{at most one child of ◦ has a non-empty k-offspring}) −→

n→+∞
1−K1.

As for (3.53), we see that we do not meet any cycle with Pann-probability 1− o(1). This yields

(3.122).

If the exploration from x is successful, let x1, x2 be two children of x such that the exploration

subtrees Tx1 and Tx2 from x1 and x2 satisfy min(|∂Tx1 |, |∂Tx2 |) ≥ n1/2bn. Then, let K > 0 and

let w1, . . . , wbK lognc ∈ Vn be vertices that have not been met in the exploration from x. Proceed

to their w-exploration as described in the first part of the construction in Section 3.7.4.

By Remark 3.5.2, o(
√
n) vertices are seen during the exploration from x and the w-explorations.

Applying (3.14) with k = 1, m0,m1,mE ,m = o(
√
n), we get that with Pann-probability 1−o(1),

none of the w-explorations intersects the exploration from x, and no wi is spoiled or back-spoiled.

As in (3.104), we get that for each wi, its w-exploration has probability at least η(h)/2 to be
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w-successful. Hence with Pann-probability at least 1 − (1 − η(h)/2)bK lognc = 1 − o(1), there

exists i0 such that the w-exploration from wi0 is successful. Denote ∂Twi0 the boundary of its

exploration tree. Write

Score(x) :={the exploration from x is successful}∩

{∃i0 ≥ 1, the w-exploration from wi0 is successful}.

We have just shown that

lim inf
n→+∞

Pann(Score(x)) ≥ lim inf
n→+∞

Pann(the exploration from x is successful) ≥ K1. (3.123)

Next, we grow joining balls from ∂Tx1 to ∂Twi0 , and then from ∂Tx2 to ∂Twi0 . We proceed as

in the second part of the construction in Section 3.7.4 with m = 2 and s0 = 1. Similarly to

(3.96), we get that

Pann(Score(x) ∩ (Score,joining,1 ∪ Score,joining,2)) = o(1),

with Score,joining,i := {there are less than logγ−3κ−18 n joining balls from ∂Txi to ∂Twi0} for i =

1, 2.

Finally, we reveal ψGn on the exploration from x, on the w-exploration from wi0 , on the joining

balls from ∂Tx1 to ∂Twi0 , and on the joining balls from ∂Tx2 to ∂Twi0 , in that order. Denote

Score,connect the event that there exists a joining ball B1 from ∂Tx1 to ∂Twi0 and another B2

from ∂Tx2 to ∂Twi0 such that miny∈Tx1∪Tx2∪Twi0∪B1∪B2 ψGn(y) ≥ h. As in the proof of Proposi-

tion 3.6.2, we get that Pann(Score(x) ∩ Sccore,connect) = o(1). Hence

lim infn→+∞ Pann(x, x1, x2, z are in a cycle of CGnx and |CGnx | ≥ n1/3)

≥ lim infn→+∞ Pann(Score(x)).

If |C(n)
2 | < n1/3, this cycle is in C(n)

1 , and thus in C(n) so that by (3.3), for large enough n and

any x ∈ Vn, one has by (3.123):

lim infn→+∞ Pann(x ∈ C(n)) ≥ lim infn→+∞ Pann(Score(x)) ≥ K1 .

Reciprocally, for x ∈ Vn, turn the exploration into a lower exploration, replacing h + log−1 n

by h − log−1 n (as in Section 3.5.2). Say that the lower exploration from x is aborted if for

some k ≤ log logn, at most one child of x has a non-empty (k − 1)-offspring. Let Acore(x) :=

{the lower exploration from x is aborted}. We get as in the proof of (3.122):

Pann(Acore(x)) −→
n→+∞

1−K1. (3.124)

Moreover, revealing ψGn on Tx, we can apply Proposition 3.4.1 as below (3.54) to get that

Pann(Acore(x) ∩ {CGn,hx ∩BGn(x, blog log nc) ⊆ Tx}) −→
n→+∞

1−K1. (3.125)

161



For each neighbour y of x, denote Cy its connected component in CGnx \ {x}. If the exploration

is aborted and CGn,hx ∩ BGn(x, blog log nc) ⊆ Tx, then x has at most one neighbour y such that

Cy ∪{x} is not a tree. Hence x 6∈ C(n). Thus, lim infn→+∞ Pann(x 6∈ C(n)) ≥ 1−K1 and (3.120)

follows.

Proof of (3.121). By (3.120), for x, y ∈ Vn,

Pann(x ∈ C(n))Pann(y ∈ C(n)) −→
n→+∞

K2
1 .

It remains to show that Pann(x, y ∈ C(n)) −→
n→+∞

K2
1 .

Perform the exploration from x as in the beginning of the proof of (3.120), then do the same

from y (and stop the latter if it reaches a vertex of the exploration from x). Since o(
√
n) vertices

are revealed during these explorations (see Remark 3.5.2), then by (3.14), the probability that

the exploration from y meets that of x is o(1). Thus by (3.122),

Pann(the explorations from x and y are both successful) −→
n→+∞

K2
1 .

Then, let x1, x2 (resp. y1, y2) be the children of x (resp. y) whose exploration is successful.

We complete the exploration in a fashion similar to that above (3.123). Let K > 0 and let

w1, . . . , wbK lognc ∈ Vn be vertices that have not been met in the explorations from x and y,

and proceed to their w-exploration. If there exists i0 ≥ 1 such that the w-exploration from wi0

is successful, build joining balls from ∂Tx1 , ∂Tx2 , ∂Ty1 and ∂Ty2 to Twi0 . Finally, reveal ψGn on

Tx, on Ty, on Twi0 and on the joining balls from ∂Tx1 , ∂Tx2 , ∂Ty1 and ∂Ty2 , in that order. As in

the proof of (3.123) and below, we get that

lim inf
n→+∞

Pann(x, y ∈ C(n)) ≥ K2
1 . (3.126)

Conversely, if we perform the lower explorations from x and y as defined in the end of the proof

of (3.120), we easily get that

Pann(∃z ∈ {x, y}, the lower exploration from z is aborted) −→
n→+∞

1−K2
1 .

Then, we reveal ψGn on Tz. Following the reasoning below (3.54), we get that Pann-w.h.p.,

BCGn,hz
(z, blog lognc) ⊆ Tz, and thus

Pann({the lower exploration from z is aborted} ∩ {z ∈ C(n)}) = o(1).

This yields

lim infn→+∞ Pann(∃z ∈ {x, y}, z 6∈ C(n)) ≥ 1−K2
1 .

Together with (3.126), this concludes the proof.

This reasoning can be readily adapted to prove (3.5), with a modification of the exploration

(requiring that at least three children of x have a successful exploration).

162



3.8.3 The typical distance: proof of (3.7)

The proof of (3.7) goes as that of (3.2), with a slight modification of the explorations of Sec-

tion 3.5. Those explorations were indeed stopped after at most logλh n steps. But since around
√
n vertices were explored, and since the growth rate of Ch◦ is close to λh, we can expect that

a successful exploration lasts in fact (1/2 + o(1)) logλh n steps. Then, connecting two such

explorations as in Proposition 2.5.16 (adding an additional distance Θ(log log n) = o(log n))

yields the diameter (since reciprocally, explorations lasting less steps will be too small to be

connected).

Proof of (3.7). Fix ε ∈ (0, 1). We start by the upper bound. In the exploration of Section 3.5.1,

replace C4 by the condition: stop the exploration if k ≥ (1/2+ε/3) logλh n. By Proposition 3.3.8,

as n→ +∞:

PTd
(
|Zhb(1/2+ε/3) logλh

nc| > n1/2bn

∣∣∣∣ |Ch+log−1 n
◦ | = +∞

)
→ 1.

Thus, Propositions 3.5.1, 3.6.2 and Lemma 3.6.4 remain unchanged. Note that if x, y are

connected in E≥hψGn
via the successful explorations from x and y and the joining balls from ∂Tx

to ∂Ty, then for n large enough:

d
E≥hψGn

(x, y) ≤ 2(1/2 + ε/3) logλh n+ a′n ≤ (1 + ε) logλh n.

Then, Lemma 3.6.4 implies that

Pann(E1,n ∩ E2,n ∩ E3,n) −→
n→+∞

1,

where E1,n := {|{(x, y) ∈ V 2
n , dE≥hψGn

(x, y) ≤ (1 + ε) logλh n}| ≥ (η(h)2 − ε)n2}.

We have to check that only o(n2) of the couples (x, y) described in E1,n are not in C(n)
1 , and that

|C(n)
1 |/n is indeed close to η(h). Note that by (3.2) and (3.3),

Pann(E1,n ∩ E2,n ∩ E3,n) −→
n→+∞

1,

where E1,n := {|{(x, y) ∈ V 2
n , dE≥hψGn

(x, y) ≤ (1 + ε) logλh n}| ≥ (η(h)2 − ε)n2},

E2,n := {∀i ≥ 2, |C(n)
i | ≤ K0 log n} and E3,n := {(η(h)− ε)n ≤ |C(n)

1 | ≤ (η(h) + ε)n}.

On E2,n, we have |{(x, y) ∈ V 2
n \ (C(n)

1 )2, d
E≥hψGn

(x, y) ≤ (1 + ε) logλh n}| ≤ n3/2, so that on

E1,n ∩ E2,n,

|{(x, y) ∈ (C(n)
1 )2, dC(n)

1

(x, y) ≤ (1 + ε) logλh n}| ≥ (η(h)2 − 2ε)n2.

Thus, on E1,n ∩ E2,n ∩ E3,n:

π2,n

(
{(x, y) ∈ (C(n)

1 )2, dC(n)
1

(x, y) ≤ (1 + ε) logλh n}
)
≥ η(h)2 − 2ε

(η(h) + ε)2
≥ 1− 2ε+ 2η(h)ε+ ε2

(η(h) + ε)2

≥ 1− (3 + 2η(h))

η(h)2
ε.
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It remains to show that the typical distance in C(n)
1 is at least (1− ε) logλh n. Modify the lower

exploration of Section 3.5.2: say that it is aborted if

• C1 did not happen, and

• it is stopped at some step k ≤ (1/2 − ε/2) logλh n, or less than n1/2−ε/10 vertices and

half-edges have been seen at step b(1/2− ε/2) logλh nc.

Suppose that

Pann(the lower exploration from x is aborted) = 1− o(1). (3.127)

For x, y ∈ Vn, perform the lower exploration from x, then that from y, and stop it if it meets a

vertex of the exploration from x. This happens with Pann-probability o(1) by (3.14) with k = 1,

m0,m1,m,mE = o(
√
n) (recall Remark 3.5.2).Hence by (3.127):

Pann(Eab(x, y))=1− o(1), with Eab(x, y):={the lower explorations from x and y are aborted},

Then, reveal ψGn on the exploration trees Tx and Ty. Applying Proposition 3.4.1 as below

(3.54), we get that:

Pann(Eab(x, y) ∩ Ex ∩ Ey) = 1− o(1),

with Ex:={BCGn,hx
(x, b(1/2−ε/2) logλh nc)⊆ Tx} and Ey :={BCGn,hy

(y, b(1/2−ε/2) logλh nc)⊆ Ty}.

On Eab(x, y) ∩ Ex ∩ Ey, if x, y ∈ C(n)
1 , then dC(n)

1

(x, y) ≥ (1 − ε) logλh n. Therefore, for ev-

ery x, y ∈ Vn, Pann(Ex,y) = o(1), with

Ex,y := {x, y ∈ C(n)
1 , dC(n)

1

(x, y) < (1− ε) logλh n}.

Similarly, for all distinct x, y, z, t ∈ Vn, we get that Pann(Ex,y ∩ Ez,t) = o(1), so that

Covann(1Ex,y ,1Ez,t) = o(1).

Thus by Bienaymé-Chebyshev’s inequality,

Pann(E3,n ∩ {|{(x, y) ∈ V 2
n , dC(n)

1

(x, y) ≤ (1− ε) logλh n}| ≥ εn
2}) −→

n→+∞
1.

For ε > 0 small enough and n large enough, on

E3,n ∩ {|{(x, y) ∈ V 2
n , dC(n)

1

(x, y) ≤ (1− ε) logλh n}| ≥ εn
2},

π2,n

(
{(x, y) ∈ (C(n)

1 )2, dC(n)
1

(x, y) ≤ (1− ε) logλh n}
)
≤ 2ε

η(h)2 . This concludes the proof of (3.7).

Thus, it remains to establish (3.127). Note first that Pann(C1 happens) = o(1) by (3.14) with

k = 1, m0 = 1, mE = 0 and m = o(
√
n) by Remark 3.5.2. Therefore, it is enough to prove that

PTd(|B
Ch−log−1 n
◦

(◦, b(1/2− ε/2) logλh nc+ an)| < n1/2−ε/8)→ 1,
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since if this event happens, less than n1/2−ε/10 vertices and half-edges have been seen at step

b(1/2− ε/2) logλh nc. By (3.33), it suffices to show that

PTd(|B
Ch−log−1 n
◦

(◦, b(1/2− ε/2) logλh nc)| < n1/2−ε/7)→ 1, (3.128)

To do so, we first prove that for n large enough and every log log n ≤ k ≤ (1/2− ε/2) logλh n,

PTd
(
|Zh−log−1 n
k | ≥ n1/2−ε/6

)
≤ e−Ck + n−3. (3.129)

Let δ > 0 such that λh ≤ λh−δ ≤ λh + ε/10 (which is possible since h′ 7→ λh′ is decreasing and

continuous, Proposition 3.3.4). By Proposition 3.3.8, there exists C > 0 (depending on ε) such

that for n large enough, for every log log n ≤ k ≤ (1/2− ε/2) logλh n and a ≥ h,

PTd
a

(
|Zh−log−1 n
k | ≥ n1/2−ε/5χh−δ(a)

)
≤ PTd

a

(
|Zh−δk | ≥ n1/2−ε/5χh−δ(a)

)
≤ PTd

a

(
log |Zh−δk | ≥ (1/2− ε/5)λh logλh n+ logχh−δ(a)

)
≤ PTd

a

(
log |Zh−δk | ≥ (λh−δ − ε/10)

1/2− ε/5
1/2− ε/2

k + logχh−δ(a)

)
≤ PTd

a

(
log |Zh−δk | ≥ (λh−δ − ε/10)(1 + 3ε/5)k + logχh−δ(a)

)
≤ PTd

a

(
log |Zh−δk | ≥ λh−δ(1− ε/10)(1 + 3ε/5)k + logχh−δ(a)

)
≤ PTd

a

(
log |Zh−δk | ≥ λh−δ(1 + ε/5)k + logχh−δ(a)

)
≤ e−Ck.

By Proposition 2.1 of [4], there exists c > 0 such that for all h′ ≤ h? and a ≥ d − 1, one has

χh′(a) ≤ ca1−logd−1 λh′ ≤ ca. Since χh′ is continuous on [h,+∞) (Lemma 3.3.5), we have for n

large enough maxh≤a≤log2 n χh−δ(a) < nε/30, so that

PTd
(
|Zh−log−1 n
k | ≥ n1/2−ε/6

)
≤ e−Ck + PTd(ϕTd(◦) ≥ log2 n)

Using the exponential Markov inequality as in Lemma 3.2.5, we get PTd(ϕTd(◦) ≥ log2 n) ≤ n−3.

This yields (3.129). Then, for n large enough, this implies

PTd(|BCh◦ (◦, b(1/2− ε/2) logλh nc)| ≥ n
1/2−ε/7)

≤ PTd(∃k ∈ [log log n, (1/2− ε/2) logλh n], |Zh−log−1 n
k | ≥ n1/2−ε/6)

≤
b(1/2−ε/2) logλh

nc∑
k=blog lognc

(e−Ck + n−3)

≤ 1/ log log n.

(3.128) and the conclusion follow.
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3.8.4 The diameter: proof of (3.6)

Recall that D
(n)
1 is the diameter of C(n)

1 . In Section 3.7, we have in fact proven that there exists

a constant K13 > 0 such that for En := {∀x ∈ C(n)
1 , |BC(n)

1

(x, bK13 log nc)| ≥ K12n}, we have

Pann(En) −→
n→+∞

1.

Namely, one can take K13 = K0 + 3log−1 λh.

Hence it is enough to show that on En, D
(n)
1 ≤ 6K−1

12 K13 log n, which will imply (3.6). We do

this by a short deterministic argument.

Let x1 ∈ C(n)
1 . If ∂BC(n)

1

(x1, 2bK13 log nc+ 1) = ∅, then

D
(n)
1 ≤ 4K13 log n+ 2.

Else, let x2 ∈ ∂BC(n)
1

(x1, 2bK13 log nc+ 1). For i = 1, 2, we have

|BC(n)
1

(xi, bK13 log nc)| ≥ K12n and BC(n)
1

(xi, bK13 log nc) ⊆ BC(n)
1

(x1, 4bK13 log nc).

Moreover, BC(n)
1

(x1, bK13 log nc) ∩BC(n)
1

(x2, bK13 log nc) = ∅. Thus, we have

|BC(n)
1

(x1, 4bK13 log nc)| ≥ 2K12n.

For i ≥ 2, if ∂BC(n)
1

(x1, (3i − 4)bK13 log nc + 1) = ∅, then D
(n)
1 ≤ 2(3i − 4)K13 log n + 2. Else,

let xi+1 ∈ ∂BC(n)
1

(x1, (3i− 4)bK13 log nc+ 1). As for i = 2, we get that

|BC(n)
1

(x1, (3i− 2)bK13 log nc)| − |BC(n)
1

(x1, (3i− 5)bK13 log nc)| ≥ |BC(n)
1

(xi,K13 log n)| ≥ K12n.

But there are only n vertices in Vn. Therefore, ∂BC(n)
1

(x1, (3i0− 4)bK13 log nc+ 1) = ∅ for some

i0 ≤ K−1
12 , and

D
(n)
1 ≤ 6K−1

12 K13 log n.

This shows (3.6).
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Chapter 4

Cutoff for random walks on random

lifts

Section 4.1 stems from the preprint [55], that has been accepted for publication by Annals of

Probability. Sections 4.2 and 4.3 are original material of this thesis.

4.1 Generic cutoff for random lifts of weighted graphs

Abstract. We prove a cutoff for the random walk on random n-lifts of finite weighted graphs,

even when the random walk on the base graph G of the lift is not reversible. The mixing time

is w.h.p. tmix = h−1 log n, where h is a constant associated to G, namely the entropy of its

universal cover. Moreover, this mixing time is the smallest possible among all n-lifts of G. In the

particular case where the base graph is a vertex with d/2 loops, d even, we obtain a cutoff for a

d-regular random graph, as did Lubetzky and Sly in [101] (with a slightly different distribution

on d-regular graphs, but the mixing time is the same).

4.1.1 Introduction

The cutoff phenomenon

The way random walks converge to equilibrium on a graph is closely related to essential ge-

ometrical properties of the latter (such as the typical distance between vertices, its diameter,

its expansion, the presence of traps or bottlenecks, etc.), giving an important motivation for

studying mixing times.

For a Markov chain on a discrete state space Ω, with transition matrix P , that has an invariant

distribution π, the ε-mixing time from x is

tx(ε) := inf{t ≥ 0, ‖P t(x, ·)− π‖TV ≤ ε}, (4.1)
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where ‖ν1−ν2‖TV := supS⊆Ω (ν1(S)− ν2(S)) is the total variation distance between the proba-

bility measures ν1 and ν2 on Ω. The worst-case mixing time tmax(ε) := sup{tx(ε), x ∈ Ω} is

often the quantity of main interest. Other distances than the total variation distance might be

considered. A straightforward computation shows that t 7→ ‖P t(x, ·)−π‖TV is a non-increasing

function, so that the definition of mixing time is relevant.

For a sequence of Markov chains (Ωn, Pn, πn)n≥0, there is cutoff when for all ε, ε′ ∈ (0, 1),

t
(n)
max(ε)/t

(n)
max(ε′)→ 1 as n→ +∞.

While the cutoff phenomenon remains far from being completely understood, first examples of

it were given in the 1980s for different random walks on finite groups (see [63] or [14] on the

symmetric group) or on spaces that can be factored into a n-product of a base space (such as

Zn2 in [9]), and this direction is still investigated nowadays (see for instance [83],[85] on random

Cayley graphs of abelian groups).

A class of graphs where random walks mix fast and where cutoff is expected are the expander

graphs. These are sequences (Gn)n≥1 of graphs whose size goes to infinity (say Gn has n ver-

tices) and whose isoperimetric constant is bounded away from 0: there exists c > 0 independent

of n such that for any subset S of at most n/2 vertices of Gn, |∂S| ≥ c|S|, where ∂S ⊆ Sc is

the set of vertices adjacent to vertices of S. The very accessible survey of Hoory, Linial and

Widgerson [87] provides a good overview of the study of these graphs. This expansion property

entails the existence of a spectral gap (this implication is called the ”Cheeger bound”, see [17]

for instance): the second largest eigenvalue of the transition matrix Pn of the SRW on Gn is

bounded away from the largest one as n→ +∞. It is classical that this spectral gap implies in

turn that the SRW on Gn mixes in O(log n) steps.

The simplest expander model is the random d-regular graph (i.e. Gn(d) is chosen uniformly

among graphs with n vertices having all degree d). Friedman [45] proved in 2002 that w.h.p.,

Gn(d) almost achieves the largest possible spectral gap, while Lubetzky and Sly [101] proved in

2008 that the SRW and the NBRW (Non-Backtracking Random Walk, i.e. a SRW conditioned

at each step on not going back along the edge it has just crossed) on Gn(d) admit a cutoff.

Several papers followed on cutoffs for other sparse graphs: see for instance [29] for the SRW on

the largest component of a supercritical Erdős-Rényi random graph, [27] for the NBRW on a

configuration model, or [84] for a generic perspective.

Very recently, there has been increasing interest in mixing times on dynamical graphs (typi-

cally, edges are re-sampled at random at a given rate), when the mixing time profile is already

well-known on a static version of the graph (for instance [24], [128] and [51]).

A natural way of combining the ”product of a base space” and the ”expanding sparse graph”

perspectives for cutoff is to consider random walks on random n-lifts of a fixed graph G, that

we define now.
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Random walks on weighted graphs

For a multigraph G (multiple edges and multiple loops are allowed), denote VG its vertex set

and EG its edge set. Every edge e ∈ EG gives rise to two opposite oriented edges. Denote
−→
E G

the set of oriented edges of G. For each −→e ∈
−→
E G , note −→e −1 its opposite. We study weighted

random walks by giving to each −→e ∈
−→
E G a nonnegative weight w(−→e ), so that

• every e ∈ EG has at least one orientation with positive weight,

• for all u ∈ VG , the sum of the weights of the oriented edges going out of u is 1.

We define the random walk (RW) on G as a discrete-time Markov Chain (Xt)t≥0 on VG with

transition matrix PG such that for all u, v ∈ VG ,

PG(u, v) =
1

2
1{u=v} +

1

2

∑
−→e :u→v

w(−→e ),

where ”−→e : u→ v” means that the initial vertex of −→e is u and its end vertex is v.

Random lifts

Fix now a finite multigraph G. A n-lift of G is a graph Gn with vertex set VGn := VG × [n], and

edge set EGn as follows: fix for each e ∈ EG an arbitrary ordering (u, v) of its endpoints and a

permutation σe ∈ Sn, and draw the edges {ui, vσe(i)} for all 1 ≤ i ≤ n (see Figure 1). Say that

u (resp. v) is the type of ui (resp. vσ(i)) and that e is the type of {ui, vσ(i)}.
When the σe’s are uniform independent permutations, Gn is a random n-lift of G.

For simplicity of the notations, write Vn, En and
−→
E n for the vertex set, edge set and oriented

edge set of Gn. Define as previously the type of an element of
−→
E n as the corresponding oriented

edge of
−→
E G , and give to each −→e ∈

−→
E n the weight of its type.

Denote π the invariant probability measure of the RW on G (if it exists). Note that the RW

on Gn has an invariant measure πn such that πn((x, i)) = π(x)/n for all x ∈ VG , i ∈ [n]. Write

Pn for the transition matrix of the RW on Gn. Let πmin and πmax be the smallest and largest

values taken by π on VG . Finally, we denote wmin > 0 the smallest positive weight in G and ∆

the largest degree in G (the degree of a vertex being the number of edges attached to it).

The graph structure of random lifts has been studied since the early 2000s (see [20], [21], [22]

and [99]). In particular, it is proved in [20] that random n-lifts are expanders w.h.p. as n goes to

infinity, as long as G has at least two cycles. More recently, spectral properties of lifts have been

investigated (see for instance [8], [66], [102]): Bordenave [45] generalized Friedman’s theorem to

the NBRW on random n-lifts of a finite graph, then Bordenave and Collins [46] established a

similar result for the SRW. Bordenave and Lacoin [47] proved that if the RW associated to G is

reversible, and if the invariant measure is uniform, then the RW on Gn admits a cutoff, with a

mixing time in h−1 log n+ o(log n) steps, for some constant h (the ”entropy”) depending on G.

169



u

v

x

0.30.2

0.4

u1

v1

x1

u2

v2

x2

u3

v3

x3

0.2

0.3

0.2

0.3

0.3

0.2

0.4

0.1

0.4

0.1

0.4

0.1

Figure 1: a weighted graph G and a 3-lift of G (not all weights are written on the picture).

σ{u,u} = (2 3 1), σ{u,v} = (2 1) (3), σ{u,x} = (1 3 2), σ{v,x,red} = (1) (2) (3), σ{v,x,black} = (2 1) (3).

Results

We characterize all (finite) irreducible graphs G such that there is w.h.p. cutoff for the random

walk on a random n-lift of G, and we prove that the cutoff window is of order
√

log n.

We introduce the following assumptions:

A.1 the RW on G is irreducible,
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A.2 [Two-cycles property] G has at least two oriented cycles which are not each other’s

inverse, where an oriented cycle of length m ≥ 1 is a cyclic order C = (−→e 1, . . . ,
−→e m)

of m oriented edges with positive weight such that the end vertex of −→e i is the initial

vertex of −→e i+1 and −→e i 6= −→e −1
i+1 for all i (mod m), and the inverse of this cycle is the

cycle C−1 = (−→e −1
m , . . . ,−→e −1

1 ).

Theorem 4.1.1. Suppose that G satisfies A.1 and A.2, and that Gn is a uniform random lift

of G. For any ε ∈ (0, 1), there exists K(ε) > 0 such that if t
(n)
max(ε) is the worst-case mixing

time of the RW on Gn, then w.h.p. on the realization of Gn as n→ +∞,

|t(n)
max(ε)− h−1 log n| ≤ K(ε)

√
log n (4.2)

the constant h > 0 being the entropy of the universal cover of G (see Section 4.1.3).

Let

Φ(λ) :=
1√
2π

∫ +∞

λ
e−

u2

2 du (4.3)

for λ ∈ R be the tail distribution of the standard normal. The following lower bound shows

that the mixing time of Theorem 4.1.1 is almost the smallest possible among all n-lifts of G:

Proposition 4.1.2. There exists σ > 0, uniquely depending on G, such that for any ε ∈ (0, 1),

for any arbitrary sequence (Gn)n≥1 of n-lifts of G,

lim inf
n→+∞

t
(n)
min(ε)− h−1 log n√

log n
≥ σΦ−1(ε), (4.4)

where t
(n)
min(ε) := minx∈Vn t

(n)
x (ε) is the best-case ε-mixing time (ie, the shortest mixing time

among all possible starting vertices).

Assumption A.2 is necessary in Theorem 4.1.1: remark that if G has at most one oriented cycle,

infx∈Vn πn ({y ∈ Vn, there is no oriented path from x to y}) is w.h.p. bounded away from 0.

We conjecture that the lower bound of Proposition 4.1.2 is optimal, so that the cutoff window

would have a Gaussian profile. This was established for the SRW on the random d-regular

graph Gn(d) in [101]. In this case, there is randomness for the speed of the walk (since it can

backtrack), but the degree of the vertices met by the walk is constant. Conversely, for the

NBRW on the configuration model whose cutoff window also exhibits this behaviour [27], there

is randomness for the degrees met by the walk, but not for the speed. In our setting, as for the

SRW on the configuration model [29], both the environment and the speed of the walk might

vary, and the result of this combination is not clear.

Theorem 4.1.1 is also true for a lazy random walk on Vn with any holding probability α ∈
(0, 1), i.e. for all u, v ∈ Vn, the transition matrix is P

(α)
n (u, v) = α1{u=v}+(1−α)

∑
−→e :u→v w(−→e )

(hence, the RW we defined in Section 4.1.1 and that we will study throughout this paper is lazy

with holding probability 1/2). This gives a new value of the entropy:

hα =
h

2(1− α)
. (4.5)
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The question whether this holds in the case α = 0 remains unsolved, see Appendix 2 (Section

4.1.7) for a discussion.

One might also investigate to what extent Theorem 4.1.1 holds when G changes with n. It is

proven in [101] that there is still cutoff for the RW on Gn(d) if d = no(1).

Examples

Our setting is very general, since it includes lifts of any finite Markov chain with positive holding

probability. We highlight two special cases below.

Random walks on the d-regular random graph

We can recover an approximate version of the result of [101] for the RW on d-regular graphs,

when d is even: in the very particular case when G consists of a single vertex and d/2 loops

having weight 1/d on both orientations, a random n-lift of G is a random d-regular multigraph

(but its distribution is neither that of a uniform d-regular multigraph, nor that of Gn(d)). Our

results allow us to conjecture the cutoff for the SRW (which is a RW with holding probability

α = 0): Proposition 4.1.2 holds for α = 0 and gives the lower bound,. The upper bound would

come from Theorem 4.1.1 with α > 0 arbitrarily small, but it is not clear that the arguments

would work for α = 0 (see Appendix 4.1.7). One gets h0 = (d−2) log(d−1)
d (tools for its compu-

tation are in Section 4.1.3). This is exactly the value of h in Theorem 1 of [101] for the SRW

on Gn(d). Their theorem states in addition that the cutoff window is of order
√

log n with a

Gaussian profile, hence corresponding to our lower bound.

Cutoff for non-Ramanujan graphs

It was recently proven that on every sequence of d-regular weakly Ramanujan graphs, the SRW

admits a cutoff [100] (a sequence Gn of d-regular graphs is said to be weakly Ramanujan

whenever for all ε > 0, every eigenvalue of the adjacency matrix of Gn is either ±d or in

[−2
√
d− 1−ε, 2

√
d− 1+ε] for n large enough). This was even extended to graphs having no(1)

eigenvalues anywhere in (−d+ ε′, d− ε′) for an arbitrary ε′ > 0.

Theorem 4.1.1 gives an alternative proof for the existence of sequences of non weakly Ramanujan

graphs having a cutoff. Indeed, take for G a connected d-regular graph which is not Ramanujan.

One computes easily that all eigenvalues of G are also eigenvalues of Gn, so that Gn is not weakly

Ramanujan.

Tools and reasoning

The graph we study has locally few cycles, so that the behaviour of the RW on Gn is closely

linked to that of a RW on its universal cover (TG , ◦), the infinite rooted tree obtained from

G by ”unfolding” all its non-backtracking paths starting at a given distinguished vertex ◦, the

root. A non-backtracking path is an oriented path (−→e 1, . . . ,
−→e m) such that −→e i+1 6= −→e −1

i
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for all i ≤ m− 1. Two vertices in TG are neighbours if and only if the non-backtracking path of

one of them is the non-backtracking path of the other without its last edge, see Figure 2 for an

example.

We will write abusively TG instead of (TG , ◦) when the root is irrelevant.

u

u u v x

x x v vu v x u v x

0.2 0.1

0.3 0.3

0.2

0.3

0.6

0.3

0.3
0.2

0.4
0.5

Figure 2: the first levels of the universal cover of G in Figure 1 (not all weights are on the

picture), rooted at u. Note that two non-backtracking paths start from u, since the blue edge

in G gives rise to two oriented edges opposite to each other.

This object, also called ”periodic tree”, has been thoroughly studied since the 1990s. We

postpone a precise history to Section 4.1.3. Our main references are an article on trees with

finitely many cone types [117], and another on regular languages [81].

Let (Xt)t≥0 be a RW on (TG , ◦) starting at the root. A key observation is that this RW is

transient. This is intuitive, since (TG , ◦) has an exponential growth by A.2 (that is, for some

C > 1 and all R large enough, there are more than CR vertices at distance R from the root) and

has a ”regular” structure for the RW (A.1 guarantees the existence of an invariant measure).

Thus, we can define its loop-erased trace, or ”ray to infinity” ξ := (ξt)t≥0, ξt being the last

vertex visited by the RW at distance t of the root.

Let Wt := − logW (Xt) where for x ∈ (TG , ◦), W (x) = P(x ∈ ξ). The following central limit

theorem sums up almost all the information we need on TG .

Theorem 4.1.3 (CLT for the weight on TG). There exist two constants hTG > 0, σTG ≥ 0,

only depending on TG, such that

Wt − hTG t√
t

law→ N (0, σ2
TG ), (4.6)

with the convention that N (0, 0) = δ0 is the Dirac distribution in 0.

The proof relies on the regularity of the structure of TG , that allows us to cut the trajectory of

(Xt)t≥0 into i.i.d. intervals between regeneration times at oriented edges of a certain fixed type.

This gives us almost directly a proof of Proposition 4.1.2. The proof of Theorem 4.1.1 proceeds

in three steps:

a ) we couple (Xt)t≥0 to a RW (Xt)t≥0 on Gn, imitating the analogous construction in [29]

for the configuration model. This coupling is viable as long as (Xt) does not meet cycles.

173



We can ensure this almost until the mixing time, for most starting points of the RW in

Gn. We stress that the RW on (TG , ◦) is strongly ”localized” around ξ:

Proposition 4.1.4 (Ray localization).

∀R, t ≥ 1, P(ξ ∩B(Xt, R) = ∅) ≤ C1 exp(−C2R),

where for all y ∈ (TG , ◦) and r ≥ 0, B(y, r) is the set of vertices y′ such that there is

an oriented path of length ≤ r from y to y′. This crucial observation allows us to reveal

a limited number of edges while coupling RWs on (TG , ◦) and Gn, hence reducing the

probability to meet a cycle. This leads to an ”almost mixing” of the RW on Gn after

h−1 log n + O(
√

log n) steps: the mass of P tn(X0, ·) is concentrated on values of order

n−1eO(
√

logn) for some t = h−1 log n+O(
√

log n).

Corollary 4.1.5 (Almost mixing). Let ε,K > 0 and a < 0. If −a and K are both large

enough (depending on G and ε), then for n large enough, with probability at least 1 − ε,
Gn is such that for all x ∈ Vn,

νn(Vn) ≥ 1− ε,

where νn(x′) := P
t′n
n (x, x′) ∧ exp(K

√
logn)

n for all x′ ∈ Vn , and t′n := h−1 log n+ a
√

log n.

b ) As in [29], a spectral argument relying on the good expanding properties of random lifts

(generalizing a little the result of [20]) allows us to make the last jump until the mixing

time. We emphasize the fact that this spectral property holds even if the RW on G is not

reversible.

c ) Finally, we extend the mixing to every starting point for the RW in Gn, proving that

(Xt)t≥0 quickly reaches a vertex to which we can apply a). We adapt the technique in

[26], which was originally designed for the configuration model considered in [29].

Plan

We start with basic but essential properties in Section 4.1.2. We study the universal cover of

G in Section 4.1.3, and prove Proposition 4.1.2 and Theorem 4.1.1 in Section 4.1.4, under some

additional assumptions on G introduced in Section 4.1.2. We show in Section 4.1.5 that those

assumptions on G are not necessary. We discuss the computation of the constant h in Section

4.1.6, and the case α = 0 in Section 4.1.7.

4.1.2 Basic properties

Three Lemmas

The next property is an essential tool for building Gn while exploring it via a walk on its vertices.

It is analogous to the classical construction of a configuration model.
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Lemma 4.1.6 (Edge by edge construction). A random lift Gn of G can be generated se-

quentially as follows. Consider n copies of G, split every edge e in two half-edges, respectively

attached to the first and second vertex of e. Define their respective type as the type of the

orientation of e starting at the first (resp. second) vertex. Perform the following operations:

1. pick arbitrarily an unmatched half-edge, say of type −→e ∈
−→
E G,

2. match it with another unmatched half-edge, uniformly chosen among those of type −→e −1,

3. repeat steps 1. and 2. until all half-edges are matched.

Proof. One checks easily that the obtained structure is a n-lift of G, and that all permutations

along edges of G are uniform and together independent, as in the definition.

Random walks on lifts admit a natural projection property (whose proof is straightforward):

Lemma 4.1.7 (Projection of the lift). Fix n ∈ N. Let Gn be a n-lift of G and let (Xt)t≥0 be

a RW on Gn. Let (Xt)t≥0 be the projection of (Xt)t≥0 on G, obtained by mapping Xt to its type

for all t ≥ 0.

Then (Xt)t≥0 is a RW on G.

Hence, walks on lifts inherit much of the structure of walks on the base graph.

It is well known that for a Markov chain (Xt)t≥0 on a finite set Ω with invariant measure π, for

any u ∈ Ω, limt→+∞ P(Xt = u) = π(u) provided that the chain is aperiodic. We finally state a

CLT refining this ergodic property (and not requiring aperiodicity):

Lemma 4.1.8 (CLT for Markov chains). Let f be a function from Ω to R. For n ∈ N, let

Sn :=
∑n−1

t=0 f(Xt). Let m :=
∑

u∈Ω f(u)π(u). Fix u ∈ Ω, X0 = u a.s. and let τu be the first

hitting time of u after 0. Let

v := π(u)E
[(∑τ(u)−1

t=0 f(Xt) − π(u)E[
∑τ(u)−1

t=0 f(Xt)]τu

)2
]

.

Then v does not depend on the choice of u and

Sn −mn√
n

→ N (0, v),

where N (0, 0) is the Dirac mass in 0. Moreover, if v = 0, |Sn −mn| is bounded.

This is a direct application of Theorem 16.1 and Corollary 16.1 (p.94) in [54].

Additional assumptions on G

Let us make the following additional assumptions on G (we will prove in that they are in fact

not necessary, in Section 4.1.5):

A.3 All oriented edges have a positive weight,
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A.4 every oriented edge lies on an oriented cycle.

For all u ∈ G and R ≥ 1, let ∂B(u,R) := B(u,R) \ B(u,R − 1) be the boundary of B(u,R).

When A.3 holds on G, every non-oriented path gives rise to two oriented paths of positive

weight (opposite to each other). We can define the distance d(x, y) between two vertices x, y

as the length of the shortest path with positive weight from x to y (and d is indeed a metric).

We state those definitions for G but might use them for other graphs.

4.1.3 Study of the universal cover

The goal of this Section is to prove Theorem 4.1.3. Fix an arbitrary vertex v∗ ∈ VG and an

arbitrary oriented edge −→e ∗ going out of v∗ (this choice has no importance for the sequel), and

root the universal cover of G at a vertex ◦ with label v∗.

Definitions for labelled rooted trees

Label each vertex x ∈ VTG by the vertex v ∈ VG such that the non-backtracking path in G
starting at v∗, and corresponding to the path from ◦ to x in (TG , ◦), terminates at v (see Figure

2). Give similarly a label in EG (resp.
−→
E G) to each edge (resp. oriented edge) of (TG , ◦). In

the literature, (TG , ◦) is sometimes called the directed cover of G, or periodic tree arising

from G. Remark that the universal cover of an irreducible n-lift of G is also (TG , ◦).
Due to A.3, the RW on (TG , ◦) is an irreducible Markov chain with invariant measure π̃ defined

as follows: for all x ∈ VTG with label u, π̃(x) = π(u). Denote PTG its transition matrix.

An isomorphism φ between two rooted trees (T, ◦) and (T ′, ◦′) is a bijection between the

vertices of (T, ◦) and those of (T ′, ◦′) such that φ(◦) = ◦′ and such that there is an edge

between x1 and x2 in (T, ◦) if and only if there is an edge between φ(x1) and φ(x2) in (T ′, ◦′).

Lemma 4.1.9 (Projection of the cover). If one projects (TG , ◦) on G by mapping each vertex,

edge and oriented edge to its label, then the projection of a RW on (TG , ◦) is a RW on G.

Remark that this result is analogous to Lemma 4.1.7. Its proof is straightforward. Note that

there exists at most |V | distinct rooted trees (TG , ◦) up to isomorphism. Indeed, two vertices in

VTG with the same label induce isomorphic rooted trees.

For x ∈ VTG , let he(x) := d(◦, x) be the height of x in (TG , ◦). The (rooted) subtree Tx
from x in (TG , ◦) is rooted at x, has vertex set Vx := {y ∈ VTG , x is on any path from ◦ to y},
and the same edges, weights and labels as (TG , ◦) on Vx. Note as previously that there exist

finitely many such subtrees up to isomorphism. Vx is the offspring of x. If y ∈ Vx, it is a

descendant of x at generation he(y)− he(x), and x is the (he(y)− he(x))-ancestor of y. If

in addition he(y) = he(x) + 1, y is a child of x and x is its parent. The height-R level of

Tx denotes ∂B(x,R), and B(x,R) ∩ Vx (resp. ∂B(x,R) ∩ Vx) is also called the offspring of x

up to generation R (resp. offspring of generation R, or R-offspring).
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An oriented edge in a rooted tree is upward if the height of its initial vertex is smaller than

the height of its end vertex, downward else. Its height is the height of its initial vertex. An

oriented path of upward (resp. downward) edges is an upward (resp. downward) path. In

a tree, there is at most one edge between two vertices x, y. We will denote {x, y}, (x, y) and

(y, x) the corresponding edge and oriented edges.

A little history and plan of Section 4.1.3

Lyons [105] and Takacs [133] have studied RWs on rooted periodic trees arising from simple

graphs, with weights corresponding to the SRW with a positive or negative bias towards the

root. Thus, this intersects our setting only when the bias vanishes, the RW being a SRW (hence,

it is reversible). The more general case of trees with finitely many cone types has been studied

by Nagnibeda and Woess [117] in 2002: these rooted weighted trees have finitely many subtrees

up to isomorphism (periodic trees obviously have finitely many cone types, whereas the converse

is not true). Their work relies on a fine understanding of the Green function initiated in [116],

which satisfies a finite system of (non-linear) equations, due to the repetitive structure of the

tree. Among others, they give a transience criterion for the RW in terms of the eigenvalues

of a matrix associated to the tree, and obtain a CLT for the rate of escape (or speed, i.e.

limt→+∞ he(Xt)/t) when it exists) in the transient case. Similar formulas for Green functions

were derived around the same time by Lalley [94] in the broader setting of regular languages.

Gilch [81] later gave a formula for the entropy of the RW on regular languages, i.e. a law of

large numbers for (logP k(X0,Xk))k≥0 where P is the transition matrix of the RW.

We extend slightly some of those results in the setting of periodic trees. We first give in Section

4.1.3 a simple transience criterion for the RW on the universal cover in terms of the base

graph (Proposition 4.1.10), which we have not found in the literature. In particular, under

assumptions A.1, A.2, A.3 and A.4 on G, the RW on (TG , ◦) is transient (Corollary 4.1.12).

A crucial argument from [78] is that whether the RW is reversible or not is irrelevant as soon

as the RW is irreducible and there exists an invariant measure (in our case, π̃). Hence, we

can apply a classical transience criterion for reversible RWs (see [106]), noticing that |B(◦, R)|
grows exponentially with R by A.2.

Thus, the loop-erased trace (ξt)t≥0 of the RW is an infinite injective path. It is a Markov chain

on (TG , ◦) with an easy description (Proposition 4.1.15). We can then define the entropic

weight of a vertex x ∈ VTG as the probability W (x) that x is in ξ if the RW starts at ◦. The

regularity of the structure of (TG , ◦) gives us a CLT for (logW (ξt))t≥0 (Corollary 4.1.16). Note

that in the analogous Proposition 3 of [29] (in this case, the graph is locally a Galton-Watson

tree), there is only a law of large numbers and a domination for the variance, and this prevents

already to determine the profile of the cutoff window.

It remains to prove, in Section 4.1.3, that the RW on (TG , ◦) has a positive speed. Precise

estimates on the Green function obtained by Lalley [94] and Nagnibeda and Woess [117] show in
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particular that for fixed x, y ∈ TG , PnTG (x, y) decays exponentially with n. We prove that there

exist random times (τi) with exponential moments (Proposition 4.1.19) such that in (TG , ◦),
he(Xτi) ≥ i and he(Xt) > he(Xτi) for all t > τi. Moreover, the trajectory of the RW after τi is

independent of the trajectory until τi. Hence we can decompose the RW into i.i.d. excursions

whose durations have exponential moments. This regularity allows us to prove that (he(Xt))t≥0

and (logW (Xt))t≥0 admit a CLT with nonzero mean (Theorem 4.1.3 and Proposition 4.1.20).

Transience of the RW on TG

In this section, we give necessary and sufficient conditions on G for the RW on (TG , ◦) to be

transient, and we prove Proposition 4.1.4.

Proposition 4.1.10. Suppose that A.1 holds for G. Then the RW on (TG , ◦) is transient if

and only if:

• either G satisfies Assumption A.2,

• or G has one oriented cycle (−→e 1, . . . ,
−→e m) for some m ≥ 1 such that

w(−→e 1)× . . .× w(−→e m) 6= w(−→e −1
m )× . . .× w(−→e −1

1 ).

Proof. If G has no oriented cycle, then (TG , ◦) is finite and isomorphic to G, and the RW is

recurrent.

From now on, assume that G has at least one oriented cycle. Lemma 4.1.11 below deals with

the case where A.4 does not hold for G. Hence, suppose now the contrary.

If A.2 does not hold, then by A.4, G is reduced to a cycle. Denote C = (−→e 1, . . . ,
−→e m) one

orientation of this cycle. (TG , ◦) is a line, and the transition probabilities along this line are

periodic and are given by the w(−→e i)’s and w(−→e −1
i )’s. It is recurrent if and only if w(−→e 1) ×

. . .×w(−→e m) = w(−→e −1
m )× . . .×w(−→e −1

1 ), see Woess [137] for a proof and a detailed study of this

one-cycle case. In a nutshell, one can compute that the probability that a RW on G starting at

the initial vertex x of −→e 1 runs through C before running through C−1 is

w(−→e 1)× . . .× w(−→e m)

w(e1)× . . .× w(−→e m) + w(−→e −1
m )× . . .× w(−→e −1

1 )
.

If (Xt)t≥0 is a RW on (TG , ◦), the law of its visits to the copies of x is that of a RW on Z
(where each integer represents a copy of x, and each interval between two consecutive integers

represents a copy of C) with transition probabilities

p(i, i+ 1) = 1− p(i, i− 1) =
w(−→e 1)× . . .× w(−→e m)

w(e1)× . . .× w(−→e m) + w(−→e −1
m )× . . .× w(−→e −1

1 )

for all i ∈ Z. Therefore, it is recurrent if and only if the above ratio is equal to 1/2, i.e.

w(−→e 1)× . . .× w(−→e m) = w(−→e −1
m )× . . .× w(−→e −1

1 ).
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Assume now that A.2 holds.

If A.3 does not hold, then at least one edge of G has exactly one orientation −→e with positive

weight. In this case, the RW on (TG , ◦) is not irreducible. However, due to Lemma 4.1.9 and

A.1, a RW (Xt)t≥0 started at ◦ has probability at least w
|
−→
E G |
min to cross an oriented edge with label

−→e after at most |
−→
E G | steps. Hence, if T := inf{t ≥ 0,Xt has label −→e }, then T is stochastically

dominated by a geometrical random variable of parameter p ∈ (0, 1) depending on G. After

this crossing, since TG is a tree, the RW can never come back to its starting point. Hence, it is

transient.

Assume now that A.3 holds, so that the RW on (TG , ◦) is irreducible (since all oriented edges

have a positive weight). By Lemma 5.1 in [78], it is enough to prove Proposition 4.1.10 when

the RW associated to G (and hence to (TG , ◦)) is reversible. Indeed, this result states that

if a discrete irreducible Markov chain admits an invariant measure, then it is transient if the

additive reversibilization of the chain is. The additive reversibilization of the RW on (TG , ◦) is

the RW on (T ∗G , ◦), where (T ∗G , ◦) is obtained from (TG , ◦) by modifying its weights as follows:

for all x, y ∈ VTG , set

w∗(x, y) =
1

2

(
w(x, y) +

π̃(y)

π̃(x)
w(y, x)

)
.

(T ∗G , ◦) is the universal cover of the graph G∗ defined as follows. Define

w∗(−→e ) := 1
2

(
w(−→e ) + π(u2)

π(u1)w(−→e −1)
)

for every −→e ∈
−→
E G with initial vertex u1 and end vertex u2. Let G∗ be the weighted graph

with the same vertex and edge sets as G, and with edge weights w∗(−→e ) for every −→e ∈
−→
E G . By

construction of G∗, the RW on G∗ is reversible. Therefore, the RW on (TG , ◦) is transient if the

RW on the universal cover of a reversible base graph G∗ is transient.

Now, we can apply a classical transience criterion for discrete reversible Markov chains. The

earliest proof we found traces back to 1983 (see [106]), and is derived from an analogous theorem

of Royden for Riemannian surfaces. It states that if a discrete reversible Markov chain has state

space Ω, transition matrix P and invariant measure Π, and if there exists a collection of weights

ν = (νi,j)i,j∈Ω such that:

(i) ∀i, j ∈ Ω, νi,j = −νj,i,

(ii) there exists i0 ∈ Ω such that for all i ∈ Ω,
∑

j∈Ω νi,j =

{
1 if i = i0,

0 else,

(iii)
∑

i,j∈Ω

ν2
i,j

Π(i)P(i,j) <∞,

then the Markov chain is transient (here, we use the convention 0/0 = 0). Looking at conditions

(i) and (ii), we can interpret u as a current flow entering at i0 and spreading to infinity through

an electrical network. The condition (iii) states that the kinetic (or electric) energy of the flow

is finite.
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In our setting, we consider the flow generated by a symmetric NBRW starting at ◦, i.e. moving

at each step to a uniform random child of its current position (hence not regarding the weights

w(−→e )): for all x ∈ (TG , ◦) of height R ≥ 2, let x1 be x’s parent and x2 be x1’s parent, and let

νx1,x =
νx2,x1

deg(x1)− 1
,

and set νx,x1 = −νx1,x. For every child x of ◦, let ν◦,x = −νx,◦ = 1/deg(◦). For all x, y ∈ VTG
such that none is the parent of the other, let νx,y = 0.

Then (i) holds obviously. (ii) is also straightforward. As for checking (iii), note that νx1,x is

the probability that a symmetric NBRW started at ◦ visits x. Hence the sum of the transitions

from one generation to the next is always 1, that is, for all R ≥ 0,∑
x∈∂B(◦,R),y∈∂B(◦,R+1)

νx,y = 1.

Remark that there exists ε > 0, only depending on G, such that for all neighbours x, y ∈ VTG ,

π̃(x)PTG (x, y) > ε. Therefore,

∑
x,y∈VTG

ν2
x,y

π̃(x)PTG (x, y)
< 2ε−1

∑
R≥0

 ∑
(x,y)∈∂

−→
B (◦,R)

ν2
x,y



≤ 2ε−1
∑
R≥0

max
(x,y)∈∂

−→
B (◦,R)

νx,y,

where ∂
−→
B (◦, R) is the set of oriented edges with initial vertex in ∂B(◦, R) and end vertex in

∂B(◦, R+1). Hence to check (iii), it is enough to prove that the sequence (sR)R≥1 is summable

with sR := max
(x,y)∈∂

−→
B (◦,R)

νx,y.

One checks easily that the irreducibility of the RW on G, A.2 and A.4 together imply that

every non-backtracking path on G, after at most |
−→
E G | steps, meets an oriented edge −→e leading

to at least two other oriented edges. Hence for all x ∈ (TG , ◦), if R = he(x) and x1 is the parent

of x, the shortest path from ◦ to x1 contains at least bR− 1/|
−→
E G |c such edges −→e , so that

νx1,x ≤ K(1/2)R/|
−→
E G | (4.7)

for some positive constant K. Hence sR ≤ K(1 − wmin)R/|
−→
E G | for all R ≥ 0, so that (sR)R≥0

decays geometrically and the transience is proved. This concludes the proof.

Suppose now that A.4 does not hold. G can be decomposed into a core c(G) satisfying A.4

and ”branches” attached to it. c(G) is constructed as follows: erase all vertices x of G such that

deg(x) = 1 (call them leaves), and delete the edge attached to x. Perform this process again

on the resulting multigraph, and so on, until no more vertex is erased. Denote G′ the graph

obtained by this algorithm. For every oriented edge −→e of G′, change its weight to w(−→e )/w′(x),
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where x is the initial vertex of −→e and w′(x) is the total weight of the edges in G′ starting at x:

this modified graph is c(G). Clearly, A.4 holds on c(G). Moreover, the RW associated to c(G)

is also irreducible (erasing a leaf from G does not affect the irreducibility).

Lemma 4.1.11. The RW on TG is transient if and only if the RW on Tc(G) is.

Proof. Remark that c(TG) = Tc(G), the erased vertices in TG being exactly those whose labels are

erased in G. Let (Xt)t≥0 be a RW on TG . Note that a.s., (Xt)t≥0 visits infinitely many distinct

vertices and edges of Tc(G). The trace of (Xn) on Tc(G) is defined as follows: for all p > m ≥ 1

such that (Xm−1,Xm), (Xp,Xp+1) ∈ Tc(G) and (Xi,Xi+1) 6∈ Tc(G) for all m ≤ i ≤ p − 1, erase

Xm,Xm+1, . . . ,Xp−1. Denote (X ′t )t≥0 the sequence of remaining Xi’s (ordered by increasing

labels). Remark that the way the weights are chosen in the definition of c(G) implies that (X ′t )
is a RW on Tc(G), and it is transient if and only if (Xt) is.

From now on and until the end of Section 4.1.4, assume that G satisfies A.1, A.2, A.3 and

A.4. Then Proposition 4.1.10 implies the following:

Corollary 4.1.12. The RW associated to (TG , ◦) is transient.

In Section 4.1.1, we defined the ray to infinity ξ of a RW (Xt)t≥0 in (TG , ◦) as:

ξ := {x ∈ VTG | ∃s ≥ 0,Xs = x and ∀t ≥ s, Xt ∈ Vx},

with ξt := ξ∩∂B(X0, t). The next Proposition expresses the following fact: due to the regularity

of TG , the RW is ”uniformly transient” and the probability to make R steps in a given direction

decreases exponentially w.r.t. R.

Proposition 4.1.13. For every base graph G, there exist two positive constants C1, C2 so that

if (Xt)t≥0 is a RW on (TG , ◦), then for all R ≥ 0 and x 6∈ B(◦, R),

P(∃t > 0, Xt = x) ≤ C1 exp(−C2R).

Since those constants are independent of the choice of ◦, the Markov Property gives the following

generalization: for all s > 0, y ∈ (TG , ◦) and x 6∈ B(y,R),

P(∃t > s, Xt = x|Xs = y) ≤ C1 exp(−C2R).

The proof of this proposition requires the following intermediate result.

Lemma 4.1.14. There exists a positive constant C0, independent of the choice of v∗, such that

for every child x of ◦, if (Xt)t≥0 is a RW starting at ◦, then:

P(∀t ≥ 1, Xt ∈ Vx) ≥ C0.

181



Proof. Since the RW on TG is transient, there exists an oriented edge (x1, x2) ∈
−→
E TG such that

a RW started at x1 has a probability p > 0 to visit x2 at its first step and to never come back to

x1. Note that this holds with the same value of p if one replaces x1 (resp. x2) by any x′1 ∈ VTG
(resp. any x′2 ∈ VTG ) such that (x′1, x

′
2) has the same label as (x1, x2). Let −→e be this label.

We claim that A.1, A.2 and A.4 together imply that:

for any −→e a,−→e b ∈
−→
E G with positive weight, there exists a non-backtracking path

(−→e 1, . . . ,
−→e m) in G with m ≤ |

−→
E G | such that −→e 1 = −→e a and −→e m = −→e b.

(4.8)

We apply this with the label of (◦, x) as −→e a and −→e b = −→e . Together with the projection property

of (TG , ◦) on G (Lemma 4.1.9), it implies that there is an upward path (−→e 1, . . . ,
−→e m) in TG such

that m ≤ |
−→
E G |, −→e 1 = (◦, x) and −→e m has label −→e (recall the definition of upward path from the

end of Section 4.1.3). Note that we have {(Xt) follows (−→e 1, . . . ,
−→e m) and then remains in TXm}

⊆ {∀t ≥ 1, Xt ∈ Vx}. Hence the Markov Property of the RW on TG implies that

P(∀t ≥ 1, Xt ∈ Vx) ≥ (wmin)m × p ≥ w|
−→
E G |
min p,

and we can take C0 = w
|
−→
E G |
min p.

It remains to prove (4.8). Let −→e a,−→e b ∈
−→
E G . The irreducibility of the RW (A.1) implies that

there is a non-backtracking path starting from −→e a and leading to an oriented edge whose end

vertex is the initial vertex xb of −→e b. Hence, the NBRW can reach −→e b or −→e −1
b (note that if

the NBRW reaches xb through −→e b−1, its next step cannot be −→e b). If w(−→e −1
b ) = 0, then the

NBRW might arrive at xb through another edge than −→e −1
b , hence its next step can be −→e b.

It remains to show that if w(−→e b)w(−→e −1
b ) 6= 0, there is a non-backtracking path from −→e −1

b to
−→e b. By A.4, there is a cycle C through −→e b and a cycle C′ through −→e −1

b , and we can impose by

A.2 that none of them is reduced to {−→e b,−→e −1
b }.

If C′ is not the inverse of C, let −→e c be the first oriented edge of C (starting from −→e b) such

that −→e −1
c is not in C′, and xc its initial vertex. Then xc is the end vertex of an oriented edge

−→e d of C′. Therefore, a NBRW can go from −→e −1
b to −→e d, then to −→e c and finally to −→e b since

−→e c,−→e b ∈ C.
If C′ is the inverse of C, by A.2, there is another oriented cycle in G. Since G is connected,

for some vertex xc of C, there is an oriented edge −→e c ∈
−→
E G \ {C ∪ C′}, with initial vertex xc.

By A.1, there exists a non-backtracking path starting at −→e c and ending at some oriented edge
−→e d ∈

−→
E G \ {C ∪ C′} whose end vertex xd is on C. Note that there is a non-backtracking path

from −→e d to any oriented edge of C. Hence, there is a non-backtracking path from −→e −1
b to −→e c,

then to −→e d and finally to −→e b.
Moreover, one might impose that this path from −→e a to −→e b is injective (by deleting its cycles),

so that m ≤ |
−→
E G |.

Proof of Proposition 4.1.13. Let R ≥ 0 and x ∈ VTG . By the same reasoning as in the paragraph

above (4.7), on the shortest path p from ◦ to x, there are at least m := b(R− 2)/|
−→
E G |c vertices
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(excluding ◦ and x) that are the initial vertex of two upward edges in (TG , ◦). Denote x1, . . . xm

the first m such vertices by increasing height, and yi the child of xi that is on p. Let Ei

(resp. E′i) be the event that (Xt)t≥0 hits xi (resp. yi). By Lemma 4.1.14, after hitting xi,

the RW has a probability at least C0 to escape through the child of xi that is not on p,

and to never hit yi. Hence by the strong Markov property, P(E′i|Ei) ≤ 1 − C0. Note that

E′m ⊆ Em ⊆ E′m−1 ⊆ . . . ⊆ E′1 ⊆ E1. Therefore,

P(∃t > 0, Xt = x) ≤P(E′m)

≤P(∩mi=1(Ei ∩ E′i))

≤P(E1)×
m−1∏
i=1

P(E′i|Ei)P(Ei+1|E′i)× P(E′m|Em)

≤(1− C0)m.

The conclusion follows.

As a corollary, we can prove Proposition 4.1.4:

Proof of Proposition 4.1.4. Note that ξ ∩ B(Xt, R) = ∅ implies that there exists y 6∈ B(Xt, R)

such that for some s > t, Xs = y, so that we can apply the previous Proposition.

CLTs for the RW on the universal cover

For x, y ∈ VTG such that w(x, y) > 0, let ŵ(x, y) := P(y ∈ ξ|X0 = x) be the probability that

the ray to infinity of a RW (Xt)t≥0 started at x goes through a given neighbour y of x. Note

that this quantity only depends on the label of (x, y) (denote it −→e ), so that one might define

ŵ(−→e ) = ŵ(x, y). Let Ĝ be G with weights (ŵ(−→e ))−→e ∈−→E G
instead of (w(−→e ))−→e ∈−→E G

.

Define the Non Backtracking Random Walk (NBRW) on Ĝ as a RW (Zt)t≥0 on
−→
E G , such

that for all −→e 1,
−→e 2 ∈

−→
E G and t ≥ 0,

P(Zt+1 = −→e 2|Zt = −→e 1) =


ŵ(−→e 2)

1−ŵ(−→e −1
1 )

if the end vertex of −→e 1 is the initial

vertex of −→e 2 and −→e 2 6= −→e −1
1 ,

0 else.

(4.9)

Lemma 4.1.14 ensures that for all −→e ∈
−→
E G , ŵ(−→e ) > 0 if w(−→e ) > 0. In particular, by our

assumptions on G, and the claim in the proof of Lemma 4.1.14, the NBRW associated to Ĝ is

irreducible, so that it has a unique invariant probability measure π̂.

Proposition 4.1.15. (Theorem F’ in [117]) Let (Xt) be a RW on TG with X0 = ◦, and let

ρt := (ξt, ξt+1) be the t-th upward edge of its ray to infinity ξ. Then (ρt)t≥0 is a NBRW on TĜ.

Its first oriented edge is chosen among those with initial vertex ◦, with probability given by ŵ.
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Proof. The assertion on the choice of the first oriented edge of (ρt) is clear by definition of ŵ.

It is then enough to prove that for all t0 ≥ 1, for all x ∈ VTG of height t0 + 1, and xi the vertex

of height i in the shortest path from ◦ to x, i ∈ {t0 − 1, t0}:

P(ρt0+1 = (xt0 , x)| ρt0 = (xt0−1, xt0)) =
ŵ(xt0 , x)

1− ŵ(xt0 , xt0−1)
. (4.10)

For simplicity, write p := P(ρt0+1 = (xt0 , x)| ρt0 = (xt0−1, xt0)). Let τ = inf{t ≥ 0, Xt = xt0}
and denote (ρ

(τ)
t )t≥0 the ray to infinity of (Xτ+t)t≥0. We have {ρt0 = (xt0−1, xt0)} = {τ <

+∞}∩ {ρ(τ)
1 6= xt0−1} and {ρt0+1 = (xt0 , x)} = {τ < +∞}∩ {ρ(τ)

1 = x}. Let (ρ0
t )t≥0 be the ray

to infinity of a RW started at xt0 . Then

p =
P({τ < +∞} ∩ {ρ(τ)

1 = x})
P({τ < +∞} ∩ {ρ(τ)

1 6= xt0−1})

=
P(τ < +∞)P(ρ0

1 = x)

P(τ < +∞)P(ρ0
1 6= xt0−1)

=
ŵ(xt0 , x)

1− ŵ(xt0 , xt0−1)

by the Strong Markov Property applied to the stopping time τ .

We define the entropic weight of a vertex x ∈ VTG as the probability that x is in the ray

to infinity of a RW started at ◦, and denote it W (x). Let (x0, . . . , xH) be the vertices on the

shortest path from ◦ to x, where H = he(x), so that x0 = ◦ and xH = x. By Proposition 4.1.15,

W (x) = ŵ(x0, x1)×
H−1∏
i=1

ŵ(xi, xi+1)

1− ŵ(xi, xi−1)
. (4.11)

Remark that the transition probabilities for the first step of the ray to infinity are different,

since one does not condition on the event that the RW starting at xi will not go to infinity

through xi−1.

Corollary 4.1.16. There exist hW > 0, σW ≥ 0 such that for all x ∈ VTG and (Xt)t≥0 a RW

on (TG , ◦) with X0 = ◦,
− logW (ξt)− h−1

W t√
t

→
t→+∞

N (0, σ2
W )

in distribution.

Proof. From equation (4.11), we have W (ξt) =
∏t−1
i=0 ŵ(`(ρi))∏t−2

i=0 1−ŵ(`(ρi))
, so that

− logW (ξt) = log ŵ(`(ρt−1)) +
t−2∑
i=0

[log ŵ(`(ρi))− log(1− ŵ(`(ρi)))] ,

where `(−→e ) is the label of −→e for every oriented edge −→e . By Proposition 4.1.15 and Lemma

4.1.9, (`(ρi))i≥0 is a NBRW on Ĝ. We conclude by Lemma 4.1.8, where the Markov chain is the

NBRW on Ĝ (hence Ω =
−→
E G), and with f(−→e ) = log ŵ(−→e )− log(1− ŵ(−→e )).
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It remains now to derive a similar result for (logW (Xt))t≥0, which requires in particular to

prove that the RW has a positive speed. Since (Xt)t≥0 is transient, θi := sup{t ≥ 0 |he(Xt) = i}
is a.s. well-defined and finite for all i ∈ N. Let θ̃i := θi+1 − θi be the time between the last

visits of the walk at level i and at level i + 1, for i ≥ 1. Let θ̃0 := θ1. Note that ξi = Xθi . We

have the following corollary of Theorem 2.5 in [94] (or Theorem C in [117]):

Proposition 4.1.17. There exist C3, C4 > 0 such that for all n ≥ 0 and x ∈ (TG , ◦),

PnTG (x, x) ≤ C3 exp(−C4n). (4.12)

We deduce the following:

Corollary 4.1.18. There exists C5 > 0 such that for all i, n ≥ 0, and for all −→e ∈
−→
E G such

that P((Xθi−1,Xθi) has label −→e ) > 0,

P(θ̃i ≥ n| (Xθi−1, Xθi) has label −→e ) ≤ C5 exp(−C4n) (4.13)

when i > 0 and P(θ̃0 ≥ n) ≤ C5 exp(−C4n).

Proof. For i = 0, this is a direct application of the above Proposition 4.1.17. Now, for i ≥ 1,

note that the law of (Xt)t≥θi is that of a RW started at Xθi conditioned on making its first step

not towards the parent of Xθi , and then never coming back to Xθi after the start. If A denotes

the event that this conditioning happens, then P(A) ≥ wminC0 by Lemma 4.1.14. Therefore,

(4.12) implies that for all n ≥ 1,

P(θ̃i ≥ n) ≤
∑
m≥n

P(Xθi+m = Xθi+1)

≤ 1

wminC0

∑
m≥n

C3 exp(−C4m)

≤C5 exp(−C4n)

for C5 ≥ C3
wminC0

.

We say that t ∈ N is an exit time if the oriented edge (Xt,Xt+1) is upward, has label −→e ∗ and

if Xs 6= Xt for all s ≥ t + 1 (recall that −→e ∗ ∈
−→
E G was arbitrarily picked at the beginning of

Section 4.1.3). For i ≥ 1, let τi be the i-th exit time and −→e i the corresponding exit edge. Note

that the −→e i’s are exactly the edges of type −→e in ρ. Let τ0 := 0 and τ̃i := τi+1 − τi for i ≥ 0 be

the i-th renewal interval. Remark that Proposition 4.1.15 implies that τi < ∞ for all i ≥ 1

a.s.

Let εi := (Xt)τi+1≤t≤τi+1 be the i-th excursion between two exit times. Let x∗ be the end ver-

tex of the oriented edge of label −→e ∗ starting at ◦. Let εi be the projection of εi on (Tx∗ , x∗), the

subtree of (TG , ◦) rooted at x∗: for every i ≥ 1, there is an isomorphism φi from (TXτi+1 ,Xτi+1)

to (Tx∗ , x∗) since Xτi+1 and x∗ have the same label. Let X t := φi(Xt) for t ≥ τi + 1 and define

εi := (X t)τi+1≤t≤τi+1 .
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Proposition 4.1.19. The random variables (εi)i≥1 are i.i.d., and there exist C6, C7 > 0 such

that for all m, i ≥ 0,

P(τ̃i ≥ m) ≤ C6 exp(−C7m). (4.14)

Proof. Note that for all i ≥ 1,

(X τi+t)t≥1
law
= (X̃t)t≥0, (4.15)

where (X̃t) is a RW on (TG , ◦) starting at x∗ and conditioned on never visiting ◦. Hence the

variables εi all have the same distribution.

As for the independence, note that for all i ≥ 1, conditionally on τ1, . . . , τi and X0, . . . ,Xτi ,
(4.15) holds. In particular, εi is independent from the sigma-algebra σ (ε0, . . . , εi−1). From this,

we deduce that the εi’s are together independent.

We now prove (4.14). Remark that conditionally on the label of the oriented edge (Xθi−1,Xθi),
θ̃i is independent of σ

(
(θ̃k)0≤k≤i−1

)
. By Corollary 4.1.18, there exists a probability distribution

Θ on N with expectation E := E[Θ] < +∞ such that P(Θ ≥ n) ≤ C5 exp(−C4n) for all n ≥ 1

and such that θi is stochastically dominated by Z1 + . . .+Zi, where the Zj ’s are i.i.d. variables

of law Θ.

For all t > 0 and all n ≥ 1,

P(θbn/2Ec ≥ n) ≤P(Z1 + . . .+ Zbn/2Ec ≥ n)

≤E[exp(tZ1)]bn/2Ec

etn

≤
(
E[exp(tZ1)]

e2Et

)bn/2Ec
for all t > 0 by Markov’s inequality. Note that for t < C4, E[exp(tZ1)] is finite, and that for

t → 0, E[exp(tZ1)] =
∑

j≥0 t
j E[Zj1 ]

j! = 1 + Et + O(t2). Thus, there exists t0 > 0 such that

0 < r < 1 where r := E[exp(t0Z1)] exp(−2Et0), and we have P(θbn/2Ec ≥ n) ≤ rbn/2Ec.
Let ϑ := inf{k ≥ 1, ρk has type −→e }. Remark that ŵ(−→e ′) > 0 if and only if ŵ(e′) > 0, for

every oriented edge −→e ′. Hence (4.8) holds on
−→
E G , and there exists p > 0 such that for any

−→e ′ ∈
−→
E G , a NBRW on

−→
E G starting at −→e ′ has a probability at least p to visit −→e after at most

|
−→
E G | steps. By Proposition 4.1.15 and Lemma 4.1.9, ϑ is stochastically dominated by |

−→
E G |

times a geometrical variable whose parameter only depends on G (recall that the NBRW on Ĝ
is irreducible, so that a NBRW on Ĝ will go through −→e after a geometrical time, independently

of its starting position).

Thus, there exist constants α, β > 0 such that for all m ≥ 0, P(−→e 1,
−→e 2 6∈ {ρ1, . . . , ρm}) ≤

α exp(−βm), implying that

P(τ2 ≥ θm) ≤ α exp(−βm).
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Hence, for all i ≥ 0, since the (τ̃i)i≥1 are i.i.d.,

P(τ̃i ≥ n) ≤ P(τ̃0 + τ̃1 ≥ n)

≤ P(θbn/2Ec ≥ n) + P(τ2 ≥ θbn/2Ec)

≤ rbn/2Ec + α exp(−βbn/2Ec).

This concludes the proof.

Recall that Wt := − logW (Xt) is the log-weight of the RW. We now prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Let W
(ε)
i := logW (Xτi)− logW (Xτi+1) for every i ≥ 1, and define the

quantity ŵmin := min
e∈
−→
E G ,ŵ(−→e )>0

ŵ(−→e ). Remark that for every i ≥ 1, W
(ε)
i ≤ −τ̃i log ŵmin.

By Proposition 4.1.19, the (W
(ε)
i )i≥1’s are i.i.d., and for some constant C ′ > 0 and all n ≥ 1,

P(W
(ε)
1 ≥ n) ≤ P(τ̃1 ≥ −n/ log ŵmin) = O(exp(C ′n/ log ŵmin)), so that W

(ε)
1 has moments of

any order. Let hw := E[W
(ε)
1 ]. Clearly, W

(ε)
1 > 0 a.s., so that hw > 0.

Now, cutting the trajectory of the RW into excursions between exit edges, we have

Wt = − logW (Xτ1)− logW (Xt) + logW (Xτrt ) +

rt−1∑
i=1

W
(ε)
i ,

where rt := max{i ≥ 0, τi ≤ t} for all t ≥ 0.

By Proposition 4.1.19 again, logW (Xτ1) + logW (Xt) − logW (Xτrt ) = o(
√
t) with high proba-

bility, so that by Slutsky’s Lemma, it is enough to show the existence of h, σ > 0 such that∑rt−1
i=1 W

(ε)
i − ht√
t

law→ N (0, σ2).

Let τ := E[τ̃1] ∈ (0,∞), W (ε)
i := W

(ε)
i − hw and τ i := τ̃i − τ . For all λ ∈ R, if we set

pλ := P
(∑rt−1

i=1 W
(ε)
i −

hwt
τ√

t
≤ λ

)
, we have

pλ =P

(
rt−1∑
i=1

W
(ε)
i ≤ hwt

τ
+ λ
√
t

)

=P

(
hwrt +

∑rt−1
i=1 W (ε)

i

τrt +
∑rt−1

i=1 τ i
×
∑rt−1

i=1 τ̃i
t

≤ hw
τ

+
λ√
t

)

=P

(
hw
τ

(
1 +

∑rt−1
i=1 W (ε)

i/(hwrt)

1 +
∑rt−1

i=1 τ i/(τrt)

)∑rt−1
i=1 τ̃i
t

≤ hw
τ

+
λ√
t

)
.

The sequence (W
(ε)
i )i≥1 is i.i.d., and E[W (ε)

1] = 0. Since rt ≤ t a.s., we have by Doob’s maximal

inequality:

P(|
∑rt−1

i=1 W (ε)
i| ≥ t3/5) ≤ P(sup1≤j≤t |

∑j
i=1W

(ε)
i| ≥ t3/5) = o(1).
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Therefore,
∑rt−1

i=1 W (ε)
i = o(t2/3) with high probability as t → +∞, and

∑rt−1
i=1 τ i = o(t2/3)

for the same reason. In addition, the strong law of large numbers implies that rt/t → 1/τ a.s.

Hence,

1 +
∑rt−1

i=1 W (ε)
i/(hwrt)

1 +
∑rt−1

i=1 τ i/(τrt)
= 1 +

1

rt

rt−1∑
i=1

(
W (ε)

i

hw
− τ i
τ

)
+Rt, (4.16)

where Rt = o(t−2/3) in probability.

Furthermore,
∑rt−1
i=1 τ̃i
t = 1 +

(τrt−t)−τ1
t = 1 + o(t−2/3) in probability, according to Proposition

4.1.19. Hence

hw
τ

(
1 +

∑rt−1
i=1 W (ε)

i/(hwrt)

1 +
∑rt−1

i=1 τ i/(τrt)

)∑rt−1
i=1 τ̃i
t

=
hw
τ

+
hw
τrt

rt−1∑
i=1

Zi +R′t,

where Zi := W (ε)
i

hw
− τ i

τ and R′t = o(t−2/3) in probability, and

P

(∑rt−1
i=1 W

(ε)
i −

hwt
τ√

t
≤ λ

)
=P

(
1

rt

rt−1∑
i=1

Zi ≤
τλ

hw
√
t
−R′t

)

=P

(
1
√
rt

rt−1∑
i=1

Zi ≤
τλ

hw

√
rt
t
−R′t

√
rt

)

=P

(
1
√
rt

rt−1∑
i=1

Zi ≤
√
τλ

hw
+R′′t

)
,

where R′′t = o(1) in probability.

The Zi’s are i.i.d. variables, and we have E[Z1] = 0 and σ2
Z := Var(Z1) > 0. Indeed by A.3, for

a fixed trajectory of ε1 (hence a given value of W (ε)
1), τ1 can take different values with positive

probability, so that Z1 is not deterministic. And Z1 has exponential moments by Proposition

4.1.19, so that σ2
Z is finite.

Let r′t := bt/τc. A consequence of the CLT applied to the series associated to the sequence

(τi)i≥1 is that |rt − r′t| ≤ t2/3 w.h.p., so that∣∣∣∣∣∣
rt−1∑
i=1

Zi −
r′t−1∑
i=1

Zi

∣∣∣∣∣∣ ≤ (t2/3)3/5 ≤ t2/5 and

∣∣∣∣∣
rt−1∑
i=1

Zi

∣∣∣∣∣ ≤ t3/5
w.h.p. by the same argument using Doob’s maximal inequality as above (4.16). Moreover, we

have w.h.p.

∣∣∣∣ 1√
rt
− 1√

r′t

∣∣∣∣ ≤ 1√
r′t

∣∣∣∣√ r′t
rt
− 1

∣∣∣∣ ≤ t−2/3 and
√
rt ≥ t4/9. Therefore,

∣∣∣∣∣∣ 1√
r′t

r′t−1∑
i=1

Zi −
1
√
rt

rt−1∑
i=1

Zi

∣∣∣∣∣∣ ≤
∣∣∣∣∣ 1
√
rt
− 1√

r′t

∣∣∣∣∣×
∣∣∣∣∣∣
r′t−1∑
i=1

Zi

∣∣∣∣∣∣+
1
√
rt

∣∣∣∣∣∣
rt−1∑
i=1

Zi −
r′t−1∑
i=1

Zi

∣∣∣∣∣∣
≤ t−2/3t3/5 + t−4/9t2/5

= o(1)
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w.h.p. so that

P

(∑rt−1
i=1 W

(ε)
i −

hwt
τ√

t
≤ λ

)
= P

 1√
r′t

r′t−1∑
i=1

Zi ≤
√
τλ

hw
+R

(3)
t


where R

(3)
t = o(1) with high probability. Applying the CLT to the series associated to the

sequence (Zi)i≥1 concludes the proof, and we have

hTG =
hw
τ

and σ2
TG =

h2
wσ

2
Z

τ
.

Note that we could not have applied directly the CLT to 1√
rt

∑rt−1
i=1 Zi since rt is random and

not a priori independent of the Zi’s (both depend on the τi’s).

Proposition 4.1.20. (Theorems D and E in [117]) There exist s, σs > 0 such that

he(Xt)
t

a.s.→ s (4.17)

and

he(Xt)− st√
t

law→ N (0, σ2
s). (4.18)

Proof. The proof is similar to that of Theorem 4.1.3. Again, the fact that σs > 0 is due to

A.3.

Remark 4.1.21. The convergences in Theorem 4.1.3 and Proposition 4.1.20 do not depend on

the choice of v∗. Moreover, Theorem 4.1.3, Proposition 4.1.20 and Corollary 4.1.16 give

hTG = shW . (4.19)

We discuss ways of computing hTG and s in the Appendix 1 (Section 4.1.6).

4.1.4 Proofs of Proposition 4.1.2 and Theorem 4.1.1

The lower bound: Proof of Proposition 4.1.2

For all n ≥ 1, let Gn be an arbitrary n-lift of G. The proof goes as follows: we couple a RW

(Xt)t≥0 on Gn with a RW (Xt)t≥0 on TG . The estimate provided by Theorem 4.1.3 on Wt implies

that Xt is concentrated on o(n) vertices with positive probability for t close to h−1 log n, and so

is Xt: cycles in Gn can only reinforce this concentration. This implies a lower bound on dx(t),

where

dx(t) := dTV (P tn(x, ·), πn), (4.20)

since πn is almost uniform on Vn.

Fix x ∈ Vn and ◦ ∈ VTG such that the label of ◦ is the type of x. Let (Xt)t≥0 be a RW on
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(TG , ◦) starting at the root. We couple (Xt) with a RW (Xt)t≥0 on Gn in the following manner:

let X0 = x a.s. For all t ≥ 0, Xt+1 is the unique vertex of Vn such that there is an oriented

edge from Xt to Xt+1 whose type is the label of (Xt,Xt+1). Clearly, (Xt) is well defined and is

indeed a RW on Gn.

We define a map φ from the set of oriented paths starting at x in Gn to that of oriented paths

starting at ◦ in TG : for all m ≥ 1 and p := (−→e 1, . . . ,
−→e m) an oriented path of length m in Gn,

φ(p) = (−→e ′1, . . . ,
−→e ′m) where −→e ′1 is the unique oriented edge such that its initial vertex is ◦, and

the label of −→e ′1 is the type of −→e 1, and for all i ≥ 2, −→e ′i is the unique edge such that its initial

vertex is the end vertex of −→e ′i−1 and the label of −→e ′i is the type of −→e i.

Remark 4.1.22. For all y ∈ VTG , if p1 (resp. p2) is an oriented path of length t ≥ 1 from ◦ to

y, then φ−1(p1) and φ−1(p2) end at the same vertex of Vn. The converse is not true as soon as

Gn has cycles: for every x′ ∈ Vn, there are two distinct non-backtracking paths p1 and p2 from x

to y′, and the oriented paths φ(p1) and φ(p2) lead to two different vertices y′1 and y′2 of (TG , ◦).

Now, let λ > λ′ ∈ R and define tn := b logn
hTG

+ λ′
σTG

h
3/2
TG

√
log nc. By Theorem 4.1.3 and Proposition

4.1.20,

lim inf
n→+∞

P({Wtn ≤ hTG tn − λσTG
√
tn} ∩ {|he(Xtn)− stn| > t2/3n )}) ≥ Φ(λ). (4.21)

For n ≥ 1, define the sets An := {Wtn ≤ hTG tn − λσTG
√
tn} ∩ {|he(Xtn) − stn| > t

2/3
n } and

Un := {y ∈ VTG |An ∩ {Xtn = y} 6= ∅}. Note that for all R > 0,

∑
y∈VTG ,he(y)=R

exp(−W (y)) = 1.

Hence for n large enough,

|Un| ≤(2t2/3n + 1) exp(hTG tn − λσTG
√
tn)

≤ log n

hTG
exp

(
log n+ (λ′ − λ)

σTG
2
√
hTG

√
log n

)

≤n exp

(
(λ′ − λ)

σTG
4
√
hTG

√
log n

)
.

Let Bn = {x′ ∈ Vn |An ∩ {Xtn = x′} 6= ∅}. By Remark 4.1.22, |Bn| ≤ |Un|, hence

dx(tn) ≥
∑
x′∈Bn

(P tnn (x, x′)− πn(x′))

≥P(An)− πmaxn−1|Bn|

≥P(An)− πmax exp

(
(λ′ − λ)

σTG
4
√
hTG

√
log n

)
,
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where we recall that πmax := maxv∈VG π(v). Thus, by (4.21),

lim inf
n→+∞

dx(tn) ≥ Φ(λ).

Note that this result is uniform in x, due to Remark 4.1.21. This concludes the proof with

h = hTG and σ =
σTG

h
3/2
TG

.

The upper bound: Proof of Theorem 4.1.1

From now on, we focus on the case where Gn is a uniform random lift of G. The proof consists

of three parts, as detailed in Section 4.1.1.

a) Almost mixing for a typical starting point

In this paragraph, we prove that with a large probability, Gn is such that a RW (Xt)t≥0 started

at a uniformly chosen vertex x ∈ Vn has a large probability to stay on a subtree T of Gn for

t′n := h−1 log n+ a
√

log n steps (hence not seeing cycles), where a is a constant given by Propo-

sition 4.1.23. This allows us to couple (Xt)t≥0 with a RW (Xt)t≥0 on TG (keep all the notations

of Section 4.1.3 for (Xt)).
As underlined in the Introduction, by Proposition 4.1.4, (Xt) stays close to its ray to infinity

(at distance O(log log n) during the first t′n steps), and this reduces the number of vertices of

Gn that (Xt) could explore. This ray localization also ensures that W (Xt) and P tn(x,Xt) are

close quantities, so that for some constant K, for most x′ ∈ Vn, P tnn (x, x′) ≤ eK
√

logn

n , and this

allows to deduce Corollary 4.1.5.

Let β > 0 be an arbitrary positive constant.

The exploration.

Let n ∈ N and N (β) := {y ∈ VTG , W (y) ≥ n−1 exp(β
√

log n)}. Set

R := bC log lognc (4.22)

with C large enough so that C1 exp(−C2R) = o(log−1 n). Let (Xt)t≥0 be a RW on (TG , ◦) started

at the root, independent of the realization of Gn. For every j ≥ 1, let tj be the hitting time of

B(◦, R + j) by (Xt). We reveal the structure of Gn edge by edge, starting from x and making

systematic use of Lemma 4.1.6. At every moment of the exploration, let φ be an isomorphism

between T and a subtree T of (TG , ◦), and denote Lk and Lk the respective height-k levels of T

and T for all k ≥ 0.

At step 0, T and T are reduced to their respective roots x and ◦, so that φ(x) = ◦. Let

X0 = φ−1(X0) = x.

Reveal B(x,R + 1). If there is a cycle in B(x,R + 1), stop the exploration. Else, include

B(x,R + 1) in T . If φ(B(x,R + 1)) 6⊆ N (β), stop the exploration. Else, let Xt := φ−1(Xt) for
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t ≤ t1.

For j ≥ 1, if the exploration has not been stopped before time tj , set xj := Xtj and let αj be

the R-ancestor of xj . Reveal the pairings of the yet unmatched half-edges of the non-marked

vertices of LR+j . Erase the edges closing a cycle, and place a mark at their endpoints. Extend

φ to LR+j+1, and place a mark at vertices y such that φ(y) 6∈ N (β). Let then Oj be the

(R + 1)-offspring of αj in T . Stop the exploration at time tj if there is a marked vertex in Oj .

Else, for tj < t ≤ tj+1, let Xt := φ−1(Xt) and stop the exploration at time t if Xt = αj .

Stop the exploration at time t′n if it was still running.

For k ≥ 1, we say that the exploration is k-successful if it does not stop before time k. If the

exploration is k-successful, then (Xt)0≤t≤k is a RW on Gn.

Remark that by construction, T is indeed a tree. Informally, we take at each level all possible

vertices v such that W (φ(v)) is above a certain threshold, without creating a cycle. In fact,

it will turn out in the sequel that by Theorem 4.1.3, (Xt) has a negligible probability to visit

before time t′n a vertex whose counterpart in TG has a small weight (provided a is small enough),

and keeping these vertices in T could create cycles, which we want to avoid. This construction

of T depends on β (but it will turn out that the choice of β is not important for the results of

this Section).

Remark also that the purpose of stopping the exploration if (Xt) visits αj after xj is to ensure

that (Xt) stays at distance ≤ R of its ray to infinity.

We insist that there are two sources of randomness: the matchings of the half-edges in Gn and

the trajectory of (Xt). Denote Pann the annealed probability on Gn and (Xt), and PGn the

quenched probability on (Xt) conditionally on the realization of Gn.

Proposition 4.1.23. Fix ε > 0. There exists a < 0 such that for n large enough,

Pann (the exploration is t′n-successful) ≥ 1− ε.

Proof. Remark that for every j ≥ 1, if the exploration is tj-successful, then it is not tj+1-

successful only if:

• (Xt) visits αj between its respective first visits at xj and xj+1, or

• a cycle appears while matching the (R+ 1)-offspring of αj+1, or

• W (φ(αj)) ≤ n−1 exp(β
√

log n)w
−(R+1)
min , or

• tj+1 > t′n.

Note in particular that if the third point does not hold, φ(Oj) ⊆ N (β) and no vertex in Oj is

marked because its counterpart would have a too small weight. For all j ≥ 1, let

Ej := {the exploration stops at a time t ∈ {tj−1 + 1, . . . , tj}} ∩ {tj ≤ t′n}.
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It is enough to prove that for a < 0 small enough, for n large enough, there exists J0 > 1 such

that

Pann({tJ0 ≤ t′n} ∪ {∪
J0
j=1Ej}) ≤ ε.

For n ≥ 1, let J0 := bh−1s log n + γ
√

log nc where the constant γ ≤ 0 is such that we have

P(W (ξJ0) > n−1 exp(β
√

log n)) ≥ 1− ε/8. By Corollary 4.1.16 and by (4.19), this is possible if

one takes γ small enough. Then if a < 0 is small enough, by Proposition 4.1.20, we have that

for n large enough,

Pann
(
tJ0 ≤ t′n

)
≤ ε/4.

Thus, it remains to prove that

Pann(∪J0
j=1Ej) ≤ 3ε/4. (4.23)

The probability that a cycle arises while revealing B(x,R+ 3) is at most

∆R+4 ∆R+4

|
−→
E G |n− 2∆R+4

= O
(

(log n)2C log ∆/n
)
.

Indeed, the set Lk contains at most ∆k vertices for all k ≥ 0, so that we proceed to at most

∆ + ∆2 + . . . + ∆R+3 ≤ ∆R+4 pairings of half-edges. Hence for each pairing, there remain at

least |
−→
E G |n − 2∆R+4 unmatched half-edges belonging to vertices not in T , and at most ∆R+4

unmatched half-edges belonging to vertices in T .

If B(x,R+ 3) has no cycle, for n large enough, for every y ∈ φ(B(x,R+ 2)),

W (y) ≥ wRmin > n−1 exp(β
√

log n),

so that there is no marked vertex in B(x,R+ 2). Thus,

Pann(E1) = o(1).

Now, for j ≥ 1, let E′j ⊆ Ecj be the event that (Xt) visits αj between its respective first visits

at xj and xj+1, let E′′j ⊆ Ecj ∩ (E′j)
c be the event that a cycle arises while revealing Oj+1, and

let E
(3)
j ⊆ Ecj ∩ (E′j)

c ∩ (E′′j )c be the event that W (φ(αj)) ≤ n−1 exp(β
√

log n)w−Rmin. Remark

that we have Ej+1 ⊆ E′j ∪ E′′j ∪ E
(3)
j .

On E′j , (Xt)t≥tj visits φ(αj), a vertex at distance R of its initial position. Thus, by the sec-

ond part of Proposition 4.1.13 and our choice for R in (4.22), Pann(E′j) ≤ C1 exp(−C2R) =

o
(
(log n)−1

)
, and this bound is uniform in j.

The R-offspring of αj+1 contains at most ∆R vertices. Hence, at most ∆R+1 pairings of half-

edges are performed to reveal Oj+1. We claim that LR+j contains at most ∆n exp(−β
√

log n)

vertices. If y ∈ LR+j and y′ is its parent, then φ(y′) ∈ N (β) ∩ LR+j−1. Since∑
y′′∈N (β)∩LR+j−1

W (y′′) ≤
∑

y′′∈∂B(◦,R+j−1)

W (y′′) = 1,
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and since W (φ(y′)) ≥ n−1 exp(β
√

log n), there are at most n exp(−β
√

log n) such vertices y′

(recall that φ is a bijection). Each has at most ∆ children, and this proves the claim. Thus,

the probability to create a cycle while revealing Oj+1, i.e. to connect a vertex of Oj+1 with a

vertex of Oj+1 ∪ LR+j is

O(n−1∆R+1(|LR+j |+ |Oj+1|)) = O(∆R exp(−β
√

log n)) = o
(
(log n)−1

)
.

Hence Pann(E′′j ) = o
(
(log n)−1

)
. Again, this is uniform in j.

We have E
(3)
j ⊆ E∗, with E∗ := {∃k ≤ t′n,W (Xk) ≤ n−1 exp(β

√
log n)w−Rmin}. Note that

E∗ ⊆ {∃k ≤ t′n, d(Xk, ξ) ≥ R} ∪ {W (ξJ0) ≤ n−1 exp(β
√

log n)} ∪ {tJ0 < t′n}.

By Proposition 4.1.13 and (4.22), a union bound on all 0 ≤ k ≤ t′n yields

Pann(∃k ≤ t′n, d(Xk, ξ) ≥ R) = o(1).

Moreover, by our choice of γ and a, we know that

Pann({W (ξJ0) ≤ n−1 exp(β
√

log n)} ∪ {tJ0 < t′n}) ≤ 3ε/8.

Hence, for n large enough, Pann(E∗) ≤ ε/2.

All in all, we have

Pann(∪J0
j=1Ej) ≤ Pann(E1) +

J0−1∑
j=1

Pann(E′j ∪ E′′j ∪ E
(3)
j )

≤ Pann(E1) +

J0−1∑
j=1

(Pann(E′j) + Pann(E′′j )) + Pann(E∗)

≤ ε/2 + o(1)

≤ 3ε/4

for n large enough. This establishes (4.23) and concludes the proof.

Remark 4.1.24. For large enough n, less than n exp(−2β
√

log n/3) vertices and edges of Gn are

discovered during the exploration. Indeed, as shown in the proof of Proposition 4.1.23, each level

of T has at most ∆n exp(−β
√

log n) vertices, and there are no more than h−1 log n levels, since

we stop the exploration after t′n ≤ h−1 log n steps. Hence, T has less than n exp(−3β
√

log n/5)

vertices. Each vertex seen in the exploration is either in T or a neighbour of a vertex of T , and

every vertex of Gn has at most ∆ edges and ∆ neighbours.

The result of Proposition 4.1.23 is annealed, and leads to a quenched result for ”most” realiza-

tions of Gn, Corollary 4.1.5.
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Proof of Corollary 4.1.5. Let ε,K > 0. Take a such that Proposition 4.1.23 holds. We have

1 − νn(Vn) =
∑

x′∈Vn P
t′n
n (x, x′) − νn(x′). Remark that for all a, b,m ∈ R, such that a ≥ b,

a− a ∧m ≤ (a− b) + (b− b ∧m), so that

1− νn(Vn) ≤
∑

x′∈Vn\T

P t
′
n
n (x, x′)− νn(x′)

+
∑
x′∈T

(
P t
′
n
n (x, x′)− P t′nn (x, x′, T )

)
+
(
P t
′
n
n (x, x′, T )− ν ′n(x′)

)
where P kn (x, x′, T ) is the probability that a RW on Gn started at x reaches x′ in k steps without

leaving the exploration tree T , and ν ′n(x′) := P
t′n
n (x, x′, T )∧ exp(K

√
logn)

n . Note that if the explo-

ration is t′n-successful, then (Xt)1≤t≤t′n stays in T . Applying Markov’s inequality to Proposition

4.1.23, we get that with probability at least 1−
√
ε, Gn is such that PGn

(
(Xt)1≤t≤t′n leaves T

)
≤

√
ε. For such Gn,∑

x′∈Vn\T

P t
′
n
n (x, x′)− νn(x′) +

∑
x′∈T

(
P t
′
n
n (x, x′)− P t′nn (x, x′, T )

)
≤
√
ε,

thus 1− νn(Vn) ≤
√
ε+ Sn with Sn :=

∑
x′∈T

(
P
t′n
n (x, x′, T )− ν ′n(x′)

)
. We now prove that for

n large enough and for any realization of Gn that satisfies PGn
(
(Xt)1≤t≤t′n leaves T

)
≤
√
ε,

Sn ≤
√
ε. (4.24)

Note that for all x′ ∈ T , we have P
t′n
n (x, x′, T ) = P

t′n
TG (◦, φ(x′),T) where P kTG (◦, φ(x′),T) is the

probability that a RW on (TG , ◦) started at ◦ reaches φ(x′) in k steps without leaving T, the

subtree of (TG , ◦) corresponding to T . Thus,

Sn ≤
∑
y′∈TG

P
t′n
TG (◦, y′,T)−

(
P
t′n
TG (◦, y′,T) ∧ exp(K

√
log n)

n

)

≤
∑
y′∈TG

P
t′n
TG (◦, y′)−

(
P
t′n
TG (◦, y′) ∧ exp(K

√
log n)

n

)

≤ 1−
∑
y′∈TG

(
P
t′n
TG (◦, y′) ∧ exp(K

√
log n)

n

)
≤ 1−

(
1− PGn

(
P
t′n
TG (X0,Xt′n) ≥ exp(K

√
log n)/n

))
≤ PGn

(
P
t′n
TG (X0,Xt′n) ≥ exp(K

√
log n)/n

)
.

Since (Xt)t≥0 is independent of the realization of Gn, we have that

PGn
(
P
t′n
TG (X0,Xt′n)≥ exp(K

√
log n)

n

)
= Pann

(
P
t′n
TG (X0,Xt′n)≥ exp(K

√
log n)

n

)
= P

(
P
t′n
TG (X0,Xt′n) ≥ exp(K

√
log n)

n

)
where P is the probability associated to (Xt). Let An be the R-ancestor of Xt′n . Clearly,

W (An) ≤ w−RminW (Xt′n) ≤ exp(
√

log n)W (Xt′n) for n large enough. Hence if K is large enough,

then by Theorem 4.1.3, for large enough n:
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P
(
W (An) ≤ exp(K

√
log n/2)/n

)
≥ 1−

√
ε.

And for every y, y′ ∈ TG such that y′ is in the R-offspring of y, we have that

{An = y, An ∈ ξ} ⊇ {Xt′n = y′} ∩ {(Xt)t≥t′n does not visit y}.

Since d(y, y′) = R, by Proposition 4.1.13 and the Markov property applied to (Xt) at time t′n,

P(An = y, An ∈ ξ) ≥ P t
′
n
TG (X0, y

′)× (1− C1 exp(−C2R)),

so that W (An) ≥ (1− C1 exp(−C2R))P
t′n
TG (X0,Xtn) P-a.s.

Hence, with P-probability at least 1−
√
ε, Xt′n is such that

P
t′n
TG (X0,Xt′n) ≤ exp(K

√
log n/2)/n

1− C1 exp(−C2R)
≤ exp(K

√
log n)

n
.

Therefore, PGn
(
P
t′n
TG (X0,Xt′n) ≥ exp(K

√
log n)/n

)
≤
√
ε and (4.24) is established. Thus, we

have proved that with probability at least 1 −
√
ε, Gn is such that νn(Vn) ≥ 1 − 2

√
ε. Since

ε > 0 was chosen arbitrarily, this concludes the proof.

b) The last jump for mixing

In this section, we complete the mixing initiated in Corollary 4.1.5, proving a weak version of

Theorem 4.1.1, for most starting points of the RW on Gn: for all ε > 0, there exists K(ε) > 0

such that if S ⊆ Vn is the set of vertices s satisfying |t(n)
s (ε) − h−1 log n| ≤ K(ε)

√
log n, then

πn(S)→ 1 as n→ +∞.

We use the fact that w.h.p., Gn is an expander:

Proposition 4.1.25 (Expansion). Let L(Gn) := minS⊆Vn, πn(S)≤1/2
W (S,Sc)
πn(S) for n ≥ 1, where

for all A,B ⊆ Vn, W (A,B) :=
∑

x∈A,y∈B,−→e :x→y πn(x)w(−→e ) is the total weight from A to B.

There exists L > 0 such that w.h.p. as n→ +∞,

L(Gn) ≥ L. (4.25)

We postpone the proof to the end of the section. In the literature, L(Gn) is usually called the

conductance of Gn. The largest L such that (4.25) holds is the Cheeger constant of (Gn)n≥0.

An interesting application of this property is the contraction of L2 norms:

Proposition 4.1.26. There exists κ > 0, only depending G, such that for all n, t ≥ 1, and all

x ∈ Vn,

V arπn(k
(n)
t,x − 1) ≤ V arπn(k

(n)
t−1,x − 1)(1− κL(Gn)2),

where k
(n)
t,x (x′) := P tn(x,x′)

πn(x′) for x, x′ ∈ Vn and t ≥ 0, and V arπn(f) :=
∑

x∈Vn f(x)2πn(x) for

f : Vn → R.
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This is a classical property. Arguments for the proof can be found in Section 2.3 (see in particular

(2.11) and (2.12)) and in Theorem 6.8 of [114]. We stress that it is not necessary for Pn to be

reversible, as long as it is lazy.

It remains to link the total variation distance and the L2 distance. By Corollary 4.1.5, for n

large enough and for all p ≥ 0, with probability at least 1− ε, Gn is such that:

dx(t′n + p) = ‖P t′n+p
n (x, ·)− πn(·)‖TV ≤ ε+ ‖νnP pn(, ·)− πn(·)‖TV

≤ ε+D‖νnP pn(, ·)− πn(·)‖L2(πn),

for some positive constant D (where νnP
p
n(, y) =

∑
x′∈Vn νn(x, x′)P pn(x′, y) for every vertex y,

and recall the definition of dy(t
′
n+p) from (4.20)). The last inequality is due to Cauchy-Schwarz

and the fact that πn,min := infu∈Vn π̂n(u) = πmin/n. By definition of νn, ‖νn − πn‖L2(πn) ≤
exp(2K

√
log n). Hence by Propositions 4.1.25 and 4.1.26, there exists a constant D′ such that

for q ≥ D′
√

log n,

‖νnP qn(, ·)− πn‖L2(πn) ≤ ε, (4.26)

so that dx(t′n + q) ≤ 2ε. This concludes the proof of this weak version of Theorem 4.1.1.

Proof of Proposition 4.1.25. The proof is a corollary from that of Theorem 1 in [20], which

states that there exists δ > 0 such that w.h.p.,

min
S⊆Vn, |S|≤|Vn|/2

|E(S, Sc)|
|S|

≥ δ,

where E(S, Sc) is the set of non-oriented edges with one endpoint in S and one in its complement.

Noticing that |E(S, Sc)| = |E(Sc, S)|, one might extend this property in the following way: for

all θ ∈ (0, 1), there exists δ(θ) > 0 such that w.h.p., minS⊆Vn, |S|≤θ|Vn|
|E(S,Sc)|
|S| ≥ δ(θ).

Let now S ⊆ Vn, such that πn(S) ≤ 1/2. Recall that the invariant distribution of the RW

associated to Gn is πn(x) = π(u)/n for all x ∈ Vn of type u. Then there exists θ0 ∈ (0, 1) such

that for any S ⊆ Vn, if πn(S) ≤ 1/2, then |S| ≤ θ0|Vn|. But W (S,Sc)
πn(S) ≥

wminπmin
πmax

|E(S,Sc)|
|S| .

This implies (4.25), with L ≥ δ(θ0)wminπmin/πmax.

c) Extending the starting point

Fix ε ∈ (0, 1). Let r := bC ′ log log nc for some constant C ′ > 0 such that r > 2R, where R was

defined in (4.22). Say that x ∈ Vn is a root if B(x, r) contains no cycle, and denote Rn the set

of roots. Denote λx the hitting measure on ∂B(x, r) of a RW started at x.

This section is organized as follows: first, we prove that with high probability on Gn, the random

walk has a high probability to reach a root in O(log log n) steps, uniformly in the starting point

(Proposition 4.1.28). Second, we prove that with high probability on Gn, for every root x of

Gn, a RW starting at x has a probability at least 1 − 3ε to leave B(x, r) at a vertex y from

which the exploration described in Section 4.1.4 a) is t′n-successful. This relies on the fact that

conditionally on {x ∈ Rn}:
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• the exploration from any given vertex y ∈ ∂B(x, r) has a probability at most ε not to be

successful (Lemma 4.1.30), so that the mean value of

λx(y ∈ ∂B(x, r), the exploration from y is successful)

is at least 1− ε,

• and the explorations from two vertices y, y′ ∈ ∂B(x, r) whose common ancestor in B(x, r)

is at distance at least R (which is the case for most such couples (y, y′) ) are almost inde-

pendent, so that for every x ∈ Rn, λx(y ∈ ∂B(x, r), the exploration from y is successful)

is concentrated around its mean.

Third, we give a proof of Theorem 4.1.1 (under A.3 and A.4), using the results of Sections

4.1.4 a) and 4.1.4 b).

Lemma 4.1.27. W.h.p. as n→ +∞, for every x ∈ Vn, B(x, 5r) contains at most one cycle.

Proof. We proceed via a counting argument similar to the beginning of the proof of Proposition

4.1.23, while estimating the probability that the exploration stops at step 0: take x ∈ Vn, proceed

to the O(∆5r) successive matchings of half-edges to generate B(x, 5r). Each matching has a

probability O(∆5r/n) to close a cycle. Hence, the probability that at least two matchings close

a cycle is O
(
(∆5r)2 × (∆5r/n)2

)
= o(1/n). By a union bound, P(∃x ∈ Vn, x 6∈ Bn) = o(1).

Proposition 4.1.28. Let c := 3
2s , where s is the constant of Proposition 4.1.20. For all δ > 0,

there exists n0 ≥ 1 such that for all n ≥ n0 and for all realizations of Gn such that Lemma

4.1.27 holds,

max
x∈Vn

P bcrcn (x, Vn \ Rn) ≤ δ. (4.27)

As a consequence, maxx∈Vn P
bcrc
n (x, Vn \ Rn)

P→ 0.

Proof. Fix δ > 0 and a realization of Gn such that Lemma 4.1.27 holds, for some n ≥ 0.

Let x ∈ Vn. If B(x, 5r) contains no cycle, then it is isomorphic to (TG , ◦) for some ◦ ∈ VTG on

its first 5r levels. For n large enough, for all ◦ ∈ VTG , P(4r/3 ≤ he(Xbcrc) ≤ 5r/3) ≥ 1 − δ if

(Xt)t≥0 is a RW on (TG , ◦) started at the root. Hence if (Xt)t≥0 is a RW on Gn started at x,

P(Xbcrc ∈ Rn) ≥ 1− δ.
Else, there is only one cycle in B(x, 5r). Hence B(x, 5r) is a cycle C with trees Tv attached to

its vertices v of degree at least 3. Let L ∈ N be such that for all ◦ ∈ VTG , for all y ∈ (TG , ◦) such

that he(y) ≥ L, P(∃t ≥ 0, Xt = y) ≤ δ where (Xt)t≥0 is a RW on (TG , ◦) started at the root

(for any δ, such L exists, by Proposition 4.1.13). Let C(L) be the set of vertices at distance

at most L of C, and let t0 := inf{t ≥ 0, Xt0 6∈ C(L)}. We claim that for n large enough,

P(t0 > blog rc) ≤ δ.
By the triangle inequality, all trees in B(x, 5r) rooted on C that Xt might visit for some
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t ≤ blog rc have a maximal height at least 5r− blog rc > L for n large enough. Hence for every

0 ≤ t ≤ blog rc,

• either Xt 6∈ C, and is at distance less than L from B(x, 5r) \ C(L),

• or it is on C, and it is at distance at most |V | from a vertex v of C of degree at least 3,

so that v is the root of a tree planted on C: a cycle in G cannot contain a path of |V + 1|
consecutive vertices of degree less than 3, and this holds for any n-lift of Gn.

Therefore, we have d(Xt, B(x, 5r) \C(x, L)) ≤ |V |+L. Hence P(Xt+|V |+L 6∈ C(x, L)) ≥ w|V |+Lmin

for all 0 ≤ t ≤ log r. Decomposing {1, blog rc} into intervals of length |V |+ L, we have

P(X1, X2, . . . , Xblog rc ∈ C(L)) ≤
(

1− w|V |+Lmin

)blog r/(|V |+L)c
≤ δ

for n large enough, and this proves the claim.

Suppose now that t0 ≤ blog rc. Note that there exists some (random) y ∈ C such that Xt0 is on

Ty. As remarked in the proof of the claim, Ty has height at least 5r− blog rc. Moreover, on its

first 5r−blog rc levels, (Ty, y) is isomorphic to a copy of (TG , ◦y) where ◦y is the type of y, from

which two branches starting at ◦y have been removed (corresponding to the two edges from y in

C). Recall that d(Xt0 , C) ≥ L+1. By definition of L and Proposition 4.1.20, for n large enough,

with probability at least 1 − 2δ, (Xt) does not visit y (and hence C) for t0 ≤ t ≤ t0 + cr, and

we have 4r/3 ≤ d(Xt0+cr, C) ≤ 5r/3. On this event and on {t0 ≤ blog rc}, B(Xbcrc, r) contains

no cycle so that Xbcrc ∈ Rn. Therefore, on this realization of Gn, PGn(Xbcrc ∈ Rn) ≥ 1 − 3δ

uniformly in the starting point x.

Hence, we have shown that for all δ > 0, for n large enough and Gn such that Bn = Vn,

max
x∈Vn

P bcrcn (x, Vn \ Rn) ≤ 3δ.

(4.27) follows, and we conclude by Lemma 4.1.27.

For x ∈ Rn, let Px be the probability distribution of Gn conditionally on the fact that x is a

root, and for all y ∈ ∂B(x, r), denote α(y, x) the vertex at distance R of y on its shortest path

to x.

In addition, if at most n exp(−β
√

log n/2) edges of Gn have been revealed (where β is the

constant fixed at the beginning of Section 4.1.4), and if all revealed paths starting from y and

leading to revealed cycles go through α(y, x), say that Gn is a good context for y.

Define the cut exploration from y as the exploration performed in 4.1.4, except that some

matchings may have already been revealed, and give a mark to α(y, x) (hence don’t explore the

offspring of φ(α) and stop the exploration if the RW hits α(y, x)). If the cut exploration from

y is t′n-successful, we say that it is good.

Proposition 4.1.29. With high probability on Gn, for all x ∈ Rn,

λx({y| the cut exploration from y is good}) ≥ 1− 3ε.
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To prove this statement, notice first that a cut-exploration from a good context has a large

probability to be good.

Lemma 4.1.30. For n ∈ N, let x ∈ Rn and y ∈ ∂B(x, r). Suppose that Gn has been partially

revealed and is a good context for y. Then we have

P (the cut exploration from y is good) ≥ 1− ε.

Proof. One checks that all the arguments in the proof of Proposition 4.1.23 remain valid. In

particular, the probability of creating a cycle while matching the (R + 1)-offspring of the R-

ancestor of the RW in the first t′n steps is o(1) and on the event that the exploration is not

stopped, the RW has a probability o(1) to visit α(y, x).

Proof of Proposition 4.1.29. Let x be a root. Let α1, . . . , αq be the vertices of ∂B(x, r − R),

with q = |∂B(x, r − R)|. For all i ∈ {1, q}, let Ai be the set of vertices y ∈ ∂B(x, r) such that

αi is on the shortest path from x to y. We say that Ai is intact whenever for all y ∈ Ai, for all

j < i and y′ ∈ Aj , no vertex in the cut exploration from y′ is matched to y. On the contrary, if

such a matching exists, say that the relevant edge is a mismatch. Denote Vα the set of vertices

αi such that Ai is not intact. Denote Vmis (resp. B) the set of y ∈ ∂B(x, r) which are not intact

(resp. which are intact and whose cut exploration is not good). It is enough to prove that

Px(λx(B ∪ Vmis) ≥ 3ε) = o(1/n),

where the o(1/n) is uniform in x ∈ Rn.

Let In be the cardinality of Vα, and Jn the number of mismatches. Clearly, In ≤ Jn a.s. and

there exists K ′ > 0, independent of x, such that for large enough n, |∂B(x, r)| ≤ logK
′
n. Hence

by Remark 4.1.24, while performing the cut explorations of all y ∈ Ai for all i ≤ q, less than

n exp(−β
√

log n/2) edges are created for n large enough. Edges arise from independent match-

ings, so that for n large enough, Jn is stochastically dominated by a sum of n exp(−β
√

log n/2)

independent Bernoulli random variables of parameter 2 logK
′
n/n. This entails for all integers

U ≥ 1:

Px(In ≥ U) ≤ Px(Jn ≥ U) ≤
(
n exp(−β

√
log n/2)

U

)(
2 logK

′
n

n

)U

≤

(
2 logK

′
n

exp(β
√

log n/2)

)U

since
(
M
N

)
≤ MN for M,N ∈ N. Letting U = b3

√
log n/βc, we obtain Px(In ≥ U) = o(1/n),

and this is uniform in x ∈ Rn. But if In ≤ b3
√

log n/βc, by Proposition 4.1.13,

λx(Vmis) ≤ P((Xt) hits a non-intact αi before leaving B(x, r) )

= O
(√

log ne−C2(r−R)
)
.
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For C ′ large enough in the definition of r,
√

log ne−C2(r−R) = o(1).

Therefore,

Px(λx(Vmis) ≥ ε) = o(1/n)

uniformly in x ∈ Rn. Hence, it remains to prove that Px(λx(B) > 2ε) = o(1/n).

For i ≤ q, let Fi be the σ-field generated by the cut explorations of the vertices in ∪ij=1Aj , and

define Yi := λx(B ∩ Ai), Zi := Yi − Ex(Yi| Fi−1) and Wi :=
∑i

j=1 Zj . According to Lemma

4.1.30, for all i ≤ q,

Ex(Yi| Fi−1) = 1{Ai is intact}
∑
y∈Ai

λx(y)Px(By|Fi−1)

≤ ελx(Ai),

where By = {the cut-exploration from y is not good}. In particular, λx(B) ≤ ε+Wq. And for

all i ≥ 0,

(Wi+1 −Wi)
2 = Z2

i+1 ≤ 2(Y2
i+1 + Ex(Yi+1| Fi)2)

≤ 2λx(Ai+1)2 + 2ε2λx(Ai+1)2

≤ 4λx(Ai+1)2,

so that
q−1∑
i=0

(Wi+1 −Wi)
2 ≤ 4

q∑
j=1

λx(Aj)
2 ≤ 4 max

1≤i≤q
λx(Ai).

By Proposition 4.1.13, max1≤i≤q λx(Ai) ≤ C1e
−C2(r−R). We apply Azuma-Hoeffding’s inequal-

ity to the martingale (Wi)1≤i≤q to get

Px(Wq ≥ ε) ≤ exp

(
− ε2

2C1e−C2(r−R)

)
= o(1/n),

so that Px(λx(B) > 2ε) = o(1/n), the o(1/n) being uniform in all x ∈ Rn. This concludes the

proof.

From this and the conclusions of 4.1.4 b), we deduce the following:

Corollary 4.1.31. For every ε > 0, with high probability on Gn, for all x ∈ Rn,

λx

(
{y | dy(bt′n +D′

√
log nc) ≤ ε}

)
≥ 1− ε,

where D′ is defined as in (4.26) and dy is defined in (4.20).

Proof of Theorem 4.1.1. Let ε > 0. Define Tn := t′n+D′
√

log n+cr+2s−1r. For any realization

of Gn and all vertices x, y ∈ Vn, P Tnn (x, y) =
∑

x′∈Vn P
cr
n (x, x′)P Tn−crn (x′, y), so that the distance
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to equilibrium starting from x satisfies

2dx(Tn) =
∑
y∈Vn

∣∣∣∣∣∣
∑
x′∈Vn

P crn (x, x′)P Tn−crn (x′, y)− πn(y)

∣∣∣∣∣∣
≤
∑
x′∈Vn

P crn (x, x′)‖P Tn−crn (x′, ·)− πn‖1

by the triangle inequality. Thus by Proposition 4.1.28, w.h.p. as n→ +∞, Gn is such that for

all x ∈ Vn,

dx(Tn) ≤ ε+ sup
x′∈Rn

dx′(Tn − cr). (4.28)

Fix a realization of Gn. For all x′ ∈ Rn, again by the triangle inequality,

dx′(Tn − cr) ≤
∑

y∈∂B(x′,r)

2s−1r∑
`=0

P `n(x′, y)dz(Tn − cr − `)

+ PGn(τe(x
′) > 2s−1r)

where τe(x
′) is the hitting time of ∂BGn(x′, r) by a RW started at x′. But t 7→ dy(t) is a

non-increasing function for all y ∈ Vn, so that

dx′(Tn − cr) ≤ PGn(τe(x
′) > 2s−1r) +

∑
y∈∂B(x′,r)

λx′(z)dy(t
′
n +D′

√
log n).

By Corollary 4.1.31, w.h.p. Gn is such that
∑

y∈∂B(x′,r) λx′(y)dy(t
′
n+D′

√
log n) ≤ 2ε. Moreover,

by Proposition 4.1.20, for n large enough, PGn(τe(x
′) > 2s−1r) ≤ ε for all x′ ∈ Rn: since

BGn(x′, r) is isomorphic to the ball of radius r in T by definition of Rn, a RW on BGn(x′, r)

behaves like a RW on T until it hits ∂BGn(x′, r). Combining this with (4.28), we obtain that

w.h.p., Gn is such that

sup
x∈Vn

dx(Tn) ≤ 3ε.

This concludes the proof of Theorem 4.1.1 when A.3 and A.4 hold.

4.1.5 Relaxing the assumptions

We now establish that assumptions A.3 and A.4 are not necessary for Proposition 4.1.2 and

Theorem 4.1.1.

Getting rid of A.3

Without loss of generality, we can assume that each edge admits at least one orientation with

positive weight. Suppose that A.3 does not hold, hence, that at least one edge has exactly one

orientation −→e with positive weight. In this case, the RW on (TG , ◦) is not irreducible any more.

It is still transient by Proposition 4.1.10. Moreover, assumptions A.1 and A.2 are enough to

imply that the RW can reach every isomorphism class of subtrees, independently of the choice
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of ◦, so all constants in Section 4.1.3 can be made independent of v∗ and −→e ∗.
As a consequence, all results of Section 4.1.3 hold, with the following exceptions. Introduce the

assumption (weaker than A.3):

A.3* At least one edge has both orientations with positive weight.

Then

• if A.3* does not hold, (Xt) can not backtrack and Proposition 4.1.20 becomes he(Xt) = t

a.s. for all t (hence s = 1),

• if A.3* does not hold and σW = 0 in Corollary 4.1.16, there exists KTG only depending

on G such that Theorem 4.1.3 becomes supt∈N |Wt − hTG t| ≤ KTG . Indeed, Xt = ξt for

all t ≥ 1 so that Wt = W (ξt) and hTG = hW , and by Lemma 4.1.8, σW = 0 implies that

|Wt − hTG t| is bounded.

This implies straightforwardly Proposition 4.1.2, possibly with σ = 0. One checks readily that

the reasoning of Sections 4.1.4 a), 4.1.4 b) and 4.1.4 c) is still true, so that Theorem 4.1.1 holds.

For Proposition 4.1.25 in particular, the original proof of Amit and Linial for simple non-directed

graphs is based on an argument that only requires A.1 and A.2: pick V ′ ⊆ Vn, that contains say

k vertices of a given type u. Those vertices lead to k vertices of type v by irreducibility of the RW

associated to G. Hence if V ′ has less than k(1 − ε) vertices of type v, W (V ′, V ′c)/πn(V ′) & ε,

and we can suppose that every type is represented in V ′ ’almost’ in the same proportion as

the others. By A.2, there exist two cycles C1 and C2 6= C−1
1 of G such that from each of

those k vertices of type u, we can go along two trajectories featuring the types of C1 and C2

respectively. If we want W (V ′, V ′c)/πn(V ′) . ε, then at least (1 − ε)k of the k C1-like (resp.

C2-like) trajectories should end in those k vertices of type u. Denote E1 (resp. E2) this event.

Remark that we can suppose that C1 and C2 don’t lie on the same set of non-oriented edges, so

that E1 and E2 are independent, and the probability that E1 happens is the probability that a

uniform permutation of {1, . . . , n} sends at least k(1 − ε) elements of {1, . . . , k} in {1, . . . , k}.
An estimation of this quantity via a union bound on the choice of the k(1 − ε) elements and

Stirling’s formula, and a union bound over all possible subsets V ′ ⊆ Vn of cardinality at most

Vn/2 finishes the proof.

The fact that B(x,R) contains more vertices than

B̃(x,R) := {y| there is an oriented path of length at most R from x to y}

does not change anything to our reasoning (we only need that |B̃(x,R)| grows exponentially

with R, which is the case by A.2).

Getting rid of A.4

As in Lemma 4.1.11, one can decompose G into a core c(G) satisfying A.4 and ”branches”

planted on this core. A similar decomposition holds for Gn, as a n-lift c(G)n of c(G) and
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branches isomorphic to those of c(G). By Lemmas 4.1.7 and 4.1.8, after t0 steps of a RW

(Xt)t≥0 in Gn, the number n(t0) of steps in c(G)n follows a CLT: (n(t0)− at0)/
√
t0 → N (0, b2)

for some constants a > 0, b ≥ 0 depending on G only. Moreover, the trajectory of (Xt) on c(G)n

is a RW associated to c(G)n by the strong Markov property, so that Theorem 4.1.1 holds (h is

replaced by ha). As for Proposition 4.1.2, the excursion theory presented in Section 4.1.3 is still

true, and so is Proposition 4.1.2.

4.1.6 Appendix 1: computing h = hTG and s

In general, computing exact values for hTG and s is a difficult problem. Nagnibeda and Woess

[117] give two formulas for s depending on Green functions. The first one (equation (5.8)) is

s−1 =
∑
−→e ∈
−→
E G

π̂(−→e )
F−→e −1(1)

w(−→e −1)(1− F−→e −1(1))
,

where π̂ is the invariant distribution of the NBRW associated to Ĝ (defined in Section 4.1.3),

and

F−→e (z) = Fx,y(z) :=
∑
n≥0

P(Xn = y and 6 ∃k < n, Xk = y|X0 = x)zn,

for all z ∈ C and x, y ∈ VTG such that the oriented edge (x, y) exists and has label −→e , is the

”first passage” Green function. Note that the series F−→e has a positive radius of convergence.

The functions (F−→e )−→e ∈−→E G
satisfy a non-linear system of equations given by

F−→e −1(z) = zw(−→e −1) + z
∑
−→e ′←−→e

w(−→e ′)F−→e ′−1(z)F−→e −1(z)

for all −→e ∈
−→
E G (Proposition 2.5 in [117]), where −→e ′ ← −→e means that the end vertex of −→e is

the initial vertex of e′. One can establish this by decomposing the trajectory of a RW (Xt)t≥0

as follows: if x, y are such that (x, y) has label −→e , and if Xt = y, then either Xt+1 = x, or

Xt+1 = y′ for some y′ ∈ TG \ {x}, which happens with probability w(−→e ′) where −→e ′ is the label

of (y, y′). Now, (Xt) can come back to x in k steps only by reaching y in k′ ≤ k − 1 steps and

then reaching x in k − k′ steps.

Letting q(x, y) := F(x,y)(1) the probability that (Xt) reaches y at least once if it starts at x, the

transition matrix Q̂ of the NBRW on TĜ satisfies

Q̂(−→e ,−→e ′) =
w(−→e ′)(1− q(−→e ′−1))∑

−→e ′′←−→e ,−→e ′′ 6=−→e w(−→e ′′)(1− q(−→e ′′−1))
. (4.29)

Indeed, if (x, y) and (y, y′) have respective labels −→e and −→e ′, if (Xt) starts at y, in order to leave

to infinity through y′:

• either it goes through (y, y′) and never returns back from w to v: this has probability

w(−→e ′)(1− q(−→e ′−1)),
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• or it goes through any (y, y′′), comes back to y, and will leave to infinity through y′: this

has probability
∑
−→e ′′←−→e w(−→e ′′)q(−→e ′′−1)ŵ(−→e ′).

Recall that ŵ(−→e ′) is the probability that (Xt) leaves to infinity through y. Hence

ŵ(−→e ′) = w(−→e ′)(1− q(−→e ′−1)) +
∑
−→e ′′←−→e w(−→e ′′)q(−→e ′′−1)ŵ(−→e ′),

thus

ŵ(−→e ′) =
w(−→e ′)(1− q(−→e ′−1))

1−
∑
−→e ′′←−→e w(−→e ′′)q(−→e ′′−1)

.

Recall that Q̂(−→e ,−→e ′) = ŵ(−→e ′)
1−ŵ(−→e −1)

, from which we derive the formula (4.29). Note that∑
−→e ′′←−→e w(−→e ′′)q(−→e ′′−1) < 1 since q(−→g ) < 1 for all −→g ∈

−→
E G . Then, it remains to com-

pute the unique invariant probability measure of Q̂.

Knowing (F−→e (1))−→e ∈−→E G
and π̂, one can compute s. However, those quantities are the solutions

of non-linear systems of equations, for which no explicit general solutions have been found.

Even for the seemingly simple case where G has only one oriented cycle (and the inverse cycle),

continuous fractions are involved to derive non simple expressions for the F−→e ’s in [137]. The

second formula for the speed in [117] is derived from a powerful theorem in [127], and involves

again those series. For the SRW on periodic trees, Takacs obtains similar equations and gives

explicit solutions for three particular cases (examples 4.7, 4.8 and 4.10 in [133]).

hW has a simple expression in terms of Q̂ and π̂, namely

hW =
∑
−→e ∈
−→
E G

π̂(−→e )(log(1− ŵ(−→e ))− log ŵ(−→e ), (4.30)

hence once one manages to compute s, computing hTG is straightforward (recall that hTG =

shW ).

Gilch [81] studies transient random walks in the more general context of regular languages, and

obtains a law of large numbers:

− logP tTG (X0,Xt)/t
a.s.→ h′ (4.31)

for some positive h′ if the random walk is transient. He proves that h′ is an analytic function

of the weights in G and discusses the possibilities to compute the entropy. He obtains a formula

that reduces to (4.19) in our particular context: h′ is given as the product of three factors,

h′ = λ−1`h(Y ) (Theorem 2.5), where in our particular setting, λ = 1 is the expected distance

between Xθi and Xθi+1
, h(Y ) = hW and ` = s is the rate of escape, whose computation in [80]

is the equivalent of that of [117] for regular languages.

Note that in our setting, (4.31) can be deduced from Kingman’s subadditive ergodic theorem.

We have P tTG (X0,Xt) ≥ P sTG (X0,Xs)P t−sTG (Xs,Xt) a.s. for all 0 ≤ s ≤ t. Moreover, if the label of

X0 is distributed according to π (hence, so is the label of Xr for all r ∈ N), the random variables

P t−sTG (Xs,Xt) and P t−sTG (X0,Xt−s) have the same distribution that only depends on t− s, and we
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can apply Kingman’s theorem to obtain (4.31). Since π is strictly positive on all labels and the

convergence is a.s., the result holds if the label of X0 is chosen arbitrarily. Note that this does

not imply that h′ > 0.

Remark 4.1.32. Comparing the formula in [81] with (4.19), we get h′ = hTG . However, one

can prove this equality without using the results of [81]. The fact that hTG ≤ h′ is a consequence

from the ray localization of Proposition 4.1.4. Indeed, for all ε > 0 w.h.p. as t goes to infinity,

P tTG (X0,Xt) ≥ exp(−(h′+ε)t), and (Xn)n≥t has a probability o(1) to visit the (log log t)-ancestor

of Xt (the o(1) is uniform conditionally on Xt, by Proposition 4.1.4), so that w.h.p., this ancestor

and Xt itself have a probability at least exp(−(h′ + 2ε)t) to be in the ray to infinity, so that

hTG ≤ h′ + 2ε.

Conversely, by (4.31), there exists a set St of at least exp((h′ − ε)t) vertices, such that Xt ∈ St
w.h.p. as t→ +∞ and such that for all x ∈ St, exp(−(h′+ε)t) ≤ P tTG (X0, x) ≤ exp(−(h′−ε)t).
By (4.18), we can impose that st− εt2/3 ≤ he(x) ≤ st + εt2/3. The fact that the vertices of St

are localized in less than 3εt2/3 consecutive levels implies that we can decompose St = tmi=1S
′
m

for some m ≥ |St|/∆3εt2/3 ≥ exp((h′ − 2ε)t) for t large enough, where S′i is a subtree of (TG , ◦)
with some root xi, and of height less than 3εt2/3. xi maximizes W (x) for x ∈ S′i, which implies

that W (xi) ≥ exp(−(hTG − ε)t) for all i ≤ m, and that
∑

1≤i≤mW (xi) ≥ m exp(−(hTG − ε)t).
Moreover, we can impose that xi is in the offspring of no other xj, so that

∑
1≤i≤mW (xi) ≤ 1.

From this, we deduce that hTG ≥ h′ − 3ε. Further details are left to the reader.

4.1.7 Appendix 2: is laziness necessary?

It is easily checked that the fact that α > 0 is not necessary except for the proof of Proposition

4.1.26, so that the rest of our reasoning still holds for α = 0 with minor changes (for instance,

one might have σ = 0 in Proposition 4.1.2 if G does not satisfy A.3* and if TG has a cylindrical

symmetry, and the RW on G might have a period d > 1, in which case one should look at the

RW (Xt)t≥0 at times {t = kd + r, k ∈ N}, for each residue r modulo d, details are left to the

reader).

A sufficient condition to guarantee that the results of [114] required for the proof of Proposition

4.1.26 hold would be that there exists c > 0 such that for all n large enough,

inf
f,V arπn (f)=1

EP ∗nPn(f, f) ≥ c inf
f,V arπn (f)=1

EPn(f, f) (4.32)

where EPn(f, f) := 1
2

∑
x,y∈Vn (f(x)− f(y))2 Pn(x, y)πn(x) and P ∗n(x, y) := πn(y)

πn(x)Pn(y, x), and

EP ∗nPn is defined analogously (note that πn is invariant for Pn and P ∗nPn).

This is clearly true for α > 0: for all x, y ∈ Vn,

P ∗nPn(x, y) ≥ P ∗n(x, y)Pn(x, x) ≥ αP ∗n(x, y),

hence EP ∗nPn(f, f) ≥ αEPn(f, f) for all f (note that EPn(f, f) = EP ∗n (f, f) for all f).
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4.2 An example with a precise cutoff window: the NBRW on

non-weighted graphs

4.2.1 Setting

Let G be a finite multigraph such that A.1, A.2 and A.4 hold. Suppose that for every u ∈ VG , all

oriented edges going out of u have the same weight (this uniformity on the weights is also called

the ”non-weighted” case). In particular, A.3 is satisfied. Denote N = n|
−→
E G | the cardinality of

−→
E n.

Let P (resp. Pn) be the transition matrix for the NBRW on
−→
E G (resp.

−→
E n), defined as in (4.9).

It is irreducible by (4.8). We suppose that it is also aperiodic. One checks easily that P is

bistochastic, so that its invariant measure is the uniform distribution. The same holds for Pn.

We will denote (Yk)k≥0 a NBRW on
−→
E n and (Y k)k≥0 its projection on

−→
E G . Note the following

analogue of Lemma 4.1.7, with an identical proof:

Lemma 4.2.1 (Lemma 4.1.7 for a NBRW). (Y k)k≥0 is a NBRW on
−→
E G.

We denote ρ the pairing of the half-edges of
−→
E n. We will abusively identify each half-edge u

with the oriented edge starting at u. We define tn,u(ε), tminn (ε) and tmaxn (ε) as the ε-mixing

times from u ∈
−→
E n, in the worst and in the best case, as in (4.1).

Let

µ :=
1

|
−→
E G |

∑
x∈
−→
E G

log deg(x)

be the average log-degree of an element of
−→
E G (and thus of

−→
E n), where we set, for −→e ∈

−→
E G :

deg(x) := |{y ∈
−→
E G , P (x, y) > 0}|. Define similarly deg(x) for x ∈

−→
E n. Fix −→e ∈

−→
E and let

σ2 :=
1

|
−→
E G |

E

τ−→e −1∑
t=0

log(deg(Zt)) −
1

|
−→
E G |

E

τ−→e −1∑
t=0

log(deg(Zt))

 τ−→e
2 ,

where (Zt)t≥0 is a NBRW on
−→
E G with Z0 = −→e a.s. and τ−→e is the first hitting time of −→e after

0. Note that deg(x) ≥ 1 for all x ∈
−→
E G by A.4 and that the maximal degree of an oriented

edge is ∆ − 1 ≥ 2 by A.2 (recall that ∆ is the maximal degree of a vertex in G). Thus µ and

σ are well-defined, and µ > 0. By Lemma 4.1.8, σ2 does not depend on the choice of −→e . We

make the additional assumption

A.5 σ2 > 0.

Note that σ2 = 0 iff τ−1
u

∑τ−→e −1
t=0 log(deg(Zt)) is constant a.s., so that many graphs G satisfy

A.5. For instance, it is enough that there are two cycles containing −→e on which the average

log-degree is not the same.

Without loss of generality, we impose σ > 0. For n ≥ 1, let

t∗n :=
log n

µ
and w∗n := σ

√
log n

µ3
. (4.33)
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4.2.2 Results

The results that we obtain are similar to those of Section 4.1.

Proposition 4.2.2. For any deterministic sequence (Gn)n≥1 of n-lifts of G, and for any ε ∈
(0, 1),

lim inf
n→+∞

tminn (ε)− t∗n
w∗n

≥ Φ−1(ε), (4.34)

where Φ was defined in (4.3).

Note that this does not depend on the lift structure. For a typical lift (when n is large), this

lower bound is attained:

Theorem 4.2.3. Suppose Gn is a uniform random lift. Then for any ε ∈ (0, 1),

tmaxn (ε)− t∗n
w∗n

P→ Φ−1(ε). (4.35)

Remark 4.2.4. One can derive easily from our proofs below that if A.5 does not hold (for

instance if all vertices have the same degree), then for all ε > 0, |tmaxn (ε)− t∗n|+ |tminn (ε)− t∗n| =
o(
√

log n). By comparison, in the case of a uniform regular graph, it has been shown in [101]

that the window around the mixing time is of constant size.

In Section 4.2.3, we give a short proof of Proposition 4.2.2 using a geometric growth argument,

estimating the weight of a typical path by Lemma 4.1.8. This also gives a lower bound for Theo-

rem 4.2.3. In Section 4.2.4, we show the upper bound. The proof is similar to the corresponding

theorem in [27], for the NBRW on configuration models.

4.2.3 Proof of Proposition 4.2.2

Let u ∈
−→
E n and take Y0 = u a.s. For k > 0, let wk be the weight of the path (Y0, . . . , Yk),

i.e. the probability that (Yj)j≥0 follows this path on its first k steps. Note that wk is also the

weight of (Y 0, . . . , Y k), since deg(Y j) = deg(Yj) for all j. From Lemma 4.2.1 and Lemma 4.1.8,

we deduce that

lim
k→+∞

P(logwk ∈ (−µk + aσ
√
k,−µk + bσ

√
k)) = Φ(a)− Φ(b). (4.36)

Fix ε ∈ (0, 1), take ε′ > ε and a < Φ−1(ε′). If k = bt∗n + a′w∗nc for some constant a′ < a, we

have for n large enough by (4.33):

µk − aσ
√
k ≤ µ

(
log n

µ
+ µa′σ

√
log n

µ3
− 1

)
− aσ

√√√√ log n

µ
+ a′σ

√
log n

µ3
− 1

≤ log n− (a− a′)σ

√
log n

µ
.
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Thus (4.36) with b large enough such that Φ(a)− Φ(b) > ε′ yields

P(wk ≥ τn) > ε′

for n large enough, where τn := exp(C
√

log n)/n for some arbitrary constant C ∈ (0, (a−a′)σ
2
√
µ ).

In other words, the NBRW has a probability at least ε′ to stay on paths of weight at least

τn during the first k steps. Since the probability that the walk took indeed a given path is

equal to its weight, there are at most ε′/τn such paths. Thus, there exists Tk ⊆
−→
E n such that

|Tk| ≤ ε′/τn and P[Yk ∈ Tk] ≥ ε′.
Thus for n large enough, the distance to equilibrium (defined as in (4.20)) satisfies

du(k) ≥
∑

v∈Tk
(
P kn (u, v)− 1

N

)
≥ ε′ − ε′

Nτn
≥ ε′(1− exp(−C

√
log n)) ≥ ε,

so that k ≤ tn,u(ε). This is uniform in u, so that lim infn→+∞
tminn (ε)−t∗n

w∗n
≥ a′. Since Φ−1 is

continuous, we can take a′ arbitrarily close to Φ−1(ε), and the proof is complete.

4.2.4 Proof of Theorem 4.2.3

The lower bound is a consequence of Proposition 4.2.2. We first suppose that the following

Propositions 4.2.5 and 4.2.6 hold to establish the upper bound, before proving them.

We say that u ∈
−→
E n is a root if the ball

−→
B (u, r) made of the oriented paths of length r starting

at u is a tree (i.e. it does not contain any cycle, even non-oriented), where

r := blog log nc.

LetRn ⊆
−→
E n be the set of roots. It is not true (even with high probability only) that all oriented

edges are roots, however, most of them are and the NBRW quickly reaches a root (Proposition

4.2.5), independently of the starting point. And from any given root u, the probability of

reaching any given root v after approximately t∗n + λw∗n steps is close to (1− Φ(λ))/N for any

constant λ (Proposition 4.2.6). From there, we can go quickly to any other oriented edge, again

due to Proposition 4.2.5 and to the fact that P is doubly stochastic.

Proposition 4.2.5. It holds that

max
u∈
−→
En

P rn(u,
−→
E n \ Rn)

P→ 0. (4.37)

Proposition 4.2.6. For an even integer t = t∗n + λw∗n + o(w∗n), it holds that

min
x∈Rn

min
y∈Rn\

−→
B (x,r)

P tn(x, ρ(y)) ≥ 1− Φ(λ) + oP(1)

N
. (4.38)

Now, consider t′ even such that t′ = t∗n+λw∗n+o(w∗n), and let t := t′−2r (note that t−t′ = o(w∗n)).

Since the pairing ρ of the half-edges is an involution and thus is bijective, we have for u ∈
−→
E n:

du(t′) = du(t+ 2r) =
∑
v∈
−→
En

(
1

N
− P t+2r

n (u, ρ(v))

)
+

. (4.39)

But for all v ∈
−→
E n,
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P t+2r
n (u, ρ(v)) ≥

∑
x∈Rn P

r
n(u, x)

∑
y∈Rn\

−→
B (x,r)

P tn(x, ρ(y))P rn(ρ(y), ρ(v)).

By Proposition 4.2.6, P tn(x, ρ(y)) ≥ 1−Φ(λ)+oP(1)
N for all x ∈ Rn and y ∈ Rn \

−→
B (x, r), and by

symmetry, P rn(ρ(y), ρ(v)) = P rn(v, y). Thus,

P t+2r
n (u, ρ(v)) ≥ 1− Φ(λ) + oP(1)

N

∑
x∈Rn

P rn(u, x)

∑
y∈Rn

P rn(v, y)−
∑

z∈
−→
B (x,r)

P rn(v, z)

 ,

where the oP(1) does not depend on u or v. Let Su be the set of oriented edges whose initial

vertex is in B(su, 4r), where su is the initial vertex of u. If v ∈
−→
E n \ Su, for every x ∈ Vn and

z ∈
−→
B (x, r), P rn(u, x)P rn(v, z) = 0, so that

P t+2r
n (u, ρ(v)) ≥ 1− Φ(λ) + oP(1)

N

(
1− max

z∈
−→
En

P rn(z,
−→
E n \ Rn)

)2

≥ 1− Φ(λ) + oP(1)

N

by Proposition 4.2.6. Plugging this in (4.39), we get

du(t′) ≤ Φ(λ) + oP(1) + 1
N |Su| ≤ Φ(λ) + oP(1),

since |Su| ≤ 1 + ∆ + . . .+ ∆4r+1 ≤
√
N (recall that the maximum degree of a vertex is ∆). This

is uniform in u, and we have

max
u∈
−→
En

du(t′) ≤ Φ(λ) + oP(1),

which yields the upper bound for Theorem 4.2.3.

Proof of Proposition 4.2.5

We say that u ∈
−→
E n is a bulb if

−→
B (u, 2r) contains at most one cycle (non necessarily oriented).

Let Bn ⊆
−→
E n be the set of bulbs. We first prove that

w.h.p., Bn =
−→
E n. (4.40)

Proof of (4.40). Let u ∈
−→
E n. Each oriented edge leads to at most ∆− 1 others, hence

−→
B (u, 2r)

contains at most

1 + (∆− 1) + . . .+ (∆− 1)2r ≤ (∆− 1)2r+1 =: K

oriented edges. Starting from u, we can explore its neighbourhood as described in Lemma 4.1.6,

proceeding to no more than K pairings. Each pairing has a probability at most K/(n−K) to

create a cycle, since at every moment of the construction, for each type in
−→
E G , there are at

most K unpaired half-edges in
−→
B (u, 2r) and at least n −K unpaired half-edges in

−→
E n. Thus,

if p is the probability that
−→
B (u, 2r) contains at least two cycles, a union bound on the couple

of pairings (i, j) where the first two cycles happen gives

p ≤
∑

1≤i<j≤K

(
K

n−K

)2

≤ K4

(n−K)2
≤ CK4

N2
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for some constant C > 0 since K = o(n) and N/n = |
−→
E G |. Note that K4 = o(N), so that there

is a probability o(1/N) that u is not a bulb. A union bound on u ∈
−→
E n yields the result.

Second, we prove that starting from a bulb, the probability that the NBRW is not on a root

after r steps is o(1), where the speed of convergence to 0 only depends on G (in particular, it

neither depends on the choice of the initial bulb, nor on the lift structure).

Let u ∈
−→
E n and take Y0 = u a.s. If

−→
B (u, 2r) contains no cycle, then the NBRW is in Rn at

each of the first r steps and we are done. Suppose that there is a unique cycle C in
−→
B (u, 2r).

Let Ct ⊆
−→
E n be the set of states from which the probability to be in Rn after r− t steps is less

than 1. For 1 ≤ t ≤ r, let pt be the probability that Yt ∈ Ct. It is enough to prove that

pr
P→ 0 (4.41)

uniformly in u and the structure of
−→
B (u, 2r). Remark that from any v ∈

−→
B (u, 2r), there is

at most one transition that the NBRW can take in order to keep a chance to attain C before

leaving
−→
B (u, 2r): else, there would be another cycle. There is one exception: when v is just

outside C and points toward a vertex on it. Again, due to the uniqueness of C, the walk can

meet such a v only once. Moreover, if (Yk) leaves this path to C, then Yr will surely be in Rn.

Therefore, for at least r − 1 steps,

pt+1 = pt/ deg(Yt).

Note that by A.2 and A.4, there exists an oriented edge on
−→
E G that the NBRW (Y k) cannot

avoid oriented edges of degree at least 2 for more than |
−→
E G | − 1 consecutive steps. Hence, the

same is true for (Yk), so that

pr ≤ 2−br/|
−→
E G |c.

This yields (4.41) and the conclusion follows.

Proof of Proposition 4.2.6

Consider two distinct half-edges x, y. Recall the sequential construction of Gn from Lemma

4.1.6. Pairing half-edges one after another, we grow a couple of trees Tx and Ty, starting from

x and y respectively. These trees will have final height t/2 (recall that t is even), and are made

of non-backtracking paths. We then estimate the probability that at least one half-edge of Tx
is matched with one of Ty, and this yields a lower bound of P tn(x, y). This procedure is called

”exposure process”. It was already used in [101] and then [27], which we follow more closely.

A noticeable difference with [27] is that one has to pay attention to the type of the leaves since

one can match two half-edges if and only if their types correspond.
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The construction

At the start, all half-edges are unpaired, and Tx and Ty are reduced to x and y respectively. A

move consists of three steps:

Step 1: pick an unpaired half-edge u ∈ T , where T := Tx ∪ Ty, of height less than t/2 and of

maximal weight. The height of u in T is the height of its vertex in Tx or Ty. The weight of

u, denoted $(u), is the weight of the path from x or y to u, depending on whether u ∈ Tx or

u ∈ Ty. Choose any total order of the half-edges to break possible ties.

Step 2: match u with a random (uniform) unpaired half-edge v.

Step 3: add the vertex of v and all its half-edges in T , if none of them was already in T . This

condition ensures that both Tx and Ty will not contain any cycle.

The construction ends when no half-edge remains available for Step 1.

After the construction, let F be the set of remaining unpaired half-edges in T , called leaves of

the trees. A leaf u is said to be good whenever $(u) > n−3/4. Let Lx and Ly be the sets of

good leaves of Tx and Ty. Denote H the set of the other leaves.

For any e ∈
−→
E G , let L−→ex and L−→ey be the subsets of good leaves of type −→e in Tx and type −→e −1

in Ty respectively. Define

Υ+
−→e :=

∑
(u,v)∈L−→ex ×L

−→e
y

$(u)$(v)1$(u)$(v)>θ, (4.42)

Υ−−→e :=
∑

(u,v)∈L−→ex ×L
−→e
y

$(u)$(v)1$(u)$(v)≤θ, (4.43)

and

Υ−→e := Υ+
−→e + Υ−−→e , (4.44)

where θ := 1
n log2 n

. We claim that it is enough to prove the following three Lemmas.

Lemma 4.2.7. For all ε > 0,

P

nP tn(x, y) ≤
∑
−→e ∈
−→
E G

Υ−−→e − ε

 = o

(
1

n2

)
. (4.45)

Lemma 4.2.8. For all ε > 0, and −→e ∈
−→
E G,

P

{∑
u∈L−→ex

$(u) <
1

|
−→
E G |

− ε} ∩ {x, y ∈ Rn}

 = o

(
1

n2

)
, (4.46)

and the same holds for L−→ey instead of L−→ex .

Lemma 4.2.9. For all ε > 0,

P

 ∑
−→e ∈
−→
E G

Υ+
−→e ≥

Φ(λ)

|
−→
E G |

+ ε

 = o

(
1

n2

)
. (4.47)
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Fix indeed ε > 0, and suppose that the conclusions of these Lemmas hold. Note that the

o(1/n2) is uniform over the pairs x, y ∈ Rn in every Lemma (since the events considered might

only depend on the types of x and y, for which we have no more than |
−→
E G | choices). Hence, by

a union bound, these conclusions hold w.h.p. for all pairs x, y ∈ Rn. Then

P tn(x, y) ≥ n−1

 ∑
−→e ∈
−→
E G

Υ−−→e − ε


≥ n−1

 ∑
−→e ∈
−→
E G

Υ−−→e +
∑
−→e ∈
−→
E G

Υ+
−→e −

(
Φ(λ)

|
−→
E G |

+ ε

)
− ε


≥ n−1

 ∑
−→e ∈
−→
E G

Υ−−→e +
∑
−→e ∈
−→
E G

Υ+
−→e

− Φ(λ)

N
− 2|
−→
E G |ε
N

by Lemmas 4.2.7 and 4.2.9. Moreover,

∑
−→e ∈
−→
E G

Υ+
−→e + Υ−−→e =

∑
−→e ∈
−→
E G

 ∑
u∈L−→ex

$(u)
∑
v∈L−→ey

$(v)


≥ |
−→
E G |

1

|
−→
E G |2

− ε

≥ 1

|
−→
E G |

− ε

by Lemma 4.2.8. This yields

P tn(x, y) ≥ 1

N
− |
−→
E G |ε
N

− Φ(λ)

N
− 2|
−→
E G |ε
N

≥ 1− Φ(λ)

N
− 3|
−→
E G |ε
N

.

Since ε > 0 was arbitrary, the conclusion follows.

The remaining subsections are devoted to establishing these Lemmas.

Proof of Lemma 4.2.7

Fix ε > 0. We use Stein’s method on concentration inequalities for exchangeable pairs, as

presented in [52]. We need the weights to be not too large, and this is the reason why we

needed to introduce Υ−−→e and Υ+
−→e . Since good leaves have height t/2, we have

P tn(x, ρ(y)) ≥
∑
−→e ∈
−→
E G

W−→e

with

W−→e :=
∑

u∈L−→ex ,v∈L
−→e
y
$(u)$(v)1u=ρ(v)1$(u)$(v)≤θ.
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Now, fix −→e ∈
−→
E G . The sets of half-edges of type −→e (resp. −→e −1) that are still unpaired at the

end of the construction have the same cardinality m. A uniform random matching between

those sets shall take place in order to complete the construction of the random lift (due to

Lemma 4.1.6). We apply Proposition 1.1 in [52] to the random variable W̃−→e :=
W−→e
θ : for any

a ≥ 0,

P(|W̃−→e − E[W̃−→e ]| ≥ a) ≤ 2 exp

(
−a2

4E[W̃−→e ] + 2a

)
,

where the expectation is taken with respect to the pairing. Note that E[W̃−→e ] = 1
mθΥ−−→e and

that m = n + o(n) uniformly over all possibilities for the exposure process. Therefore, taking

a = ε
2Nθ in the previous inequality for all −→e , we get

nP tn(x, ρ(y)) ≥
∑
−→e ∈
−→
E G

Υ−−→e − ε

with probability at least 1− exp(− ε2

Cnθ ) for some constant C (note that Υ−−→e is bounded above

by 1, so that E[W̃−→e ] ≤ 1
mθ ). Since ρ = 1/(n log2 n), this probability is 1 − o(1/n2) and we are

done.

Proof of Lemma 4.2.8

By symmetry, it is enough to prove the Lemma for L−→ex . Fix ε > 0. Take Y0 = x a.s. Then∑
u∈L−→ex

$(u) = PEP (Yt/2 is of type −→e and is on F \ H)

≥ PEP (Yt/2 is of type −→e )− P(Yt/2 6∈ F \ H),

where PEP is the law of (Yk) conditionally on the exposure process. Suppose that

P({
∑

u∈F\H

$(u) ≤ 2− ε/2} ∩ {x, y ∈ Rn}) = o

(
1

n2

)
. (4.48)

This entails that the event {PEP (Yt/2 is not located on F \H) > ε/2}∩{x, y ∈ Rn} has proba-

bility o(1/n2). Since P is bistochastic and irreducible, (Y k) has a unique stationary distribution,

which is uniform. For n (and thus t) large enough,

PEP (Yt/2 is of type −→e ) = PEP (Y t/2 is of type −→e ) > 1/|
−→
E G | − ε/2,

for every realization of the exposure process. Hence,

P

{∑
u∈L−→ex

$(u) <
1

|
−→
E G |

− ε} ∩ {x, y ∈ Rn}

 = o(1/n2).

Therefore, it only remains to establish (4.48).
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Proof of (4.48). Take δ = ε/4. We split the proof into two natural parts: first, we prove that

P

(∑
u∈H

$(u) ≥ δ

)
= o

(
1

n2

)
.

Second, we show that

P({
∑
u∈F

$(u) ≤ 2− δ} ∩ {x, y ∈ Rn}) = o

(
1

n2

)
. (4.49)

As for the first part, set Y0 = x a.s. Then

∑
u∈Hx

$(u) ≤ P

t/2−1∏
j=0

1

deg(Yj)
≤ n−3/4

 ,

where Hx := Tx ∩H. By Lemma 4.1.8,

P

t/2−1∏
j=0

1

deg(Yj)
≤ n−3/4

 = P

t/2−1∏
j=0

1

deg(Y j)
≤ n−3/4

 ≤ δ/2
for n large enough. We treat

∑
u∈Hy $(u) the same way, and the conclusion follows.

It remains to prove (4.49), which we do by introducing a martingale of which we control the

first and second moments.

Suppose that x, y ∈ Rn. Let τ be the random number of moves in the exposure process, and

(Fj)j≥0 be the natural filtration associated to this process: τ is a stopping time with respect

to this filtration. Let Uj be the set of unpaired half-edges in T after j moves for j ≥ 0, and

Kj :=
∑

u∈Uj $(u). Observe that the sequence (Kj)j≥0 is non-increasing, and that we have

K0 = Kr = 2 since x and y are roots. Then, when we pick an unpaired half-edge u ∈ T and

match it with another half-edge v, it might happen that v is also in T . Thus, we lose $(u) and

$(v). Formally, for j ≥ r + 1,

Kj = Kj−1 − 1j≤τ1vj∈Uj−1 ($(uj) +$(vj)) , (4.50)

where uj is the unpaired half-edge picked at the j-th move and vj is the half-edge to which it

is matched. Remark that $(uj) is Fj−1-measurable. It holds:

E [Kj −Kj−1|Fj−1] =− 1j≤τ

$(uj)P(vj ∈ Uj−1|Fj−1) +
∑

v∈Uj−1

$(vj)P(vj = v|Fj−1)


≥− 1j≤τ

(
$(uj)|Uj−1|+Kj−1

n− 2j + 1

)
.

Indeed, 2j − 2 half-edges have been paired, so that there are still at least n − 2j + 1 unpaired

half-edges (other than uj) of each type. Hence, for every v ∈ Uj−1, P(vj = v|Fj−1) ≤ 1
n−2j+1 ,

which implies

P(vj ∈ Uj−1|Fj−1) ≤ |Uj−1|
n−2j+1 and

∑
v∈Uj−1

$(vj)P(vj = v|Fj−1) ≤
∑
v∈Uj−1

$(v)

n−2j+1 =
Kj−1

n−2j+1 .
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We also have

(Kj −Kj−1)2 = 1j≤τ1vj∈Uj−1($(uj) +$(vj))
2,

hence

E
[
(Kj −Kj−1)2|Fk−1

]
≤ 1j≤τ

(
$(uj)

2|Uj−1|+ 2$(uj)Kj−1 +
∑

v∈Uj−1
$(v)2

n− 2j + 1

)
.

Since half-edges are selected in decreasing order of weight, for every u ∈ Uj−1, its parent has

weight at least $(uj), thus $(u) ≥ $(uj)
∆ . But the total weight of the elements of Uj−1 is

Kj−1 ≤ 2, so that |Uj−1| ≤ 2∆
$(uj)

. Note also that $(v)2 ≤ $(v) for any v. Hence

E [Kj −Kj−1|Fk−1] ≥ −1j≤τ
2∆ + 2

n− 2j + 1
, and

E
[
(Kj −Kj−1)2|Fk−1

]
≤ 1j≤τ

2∆$(uj) + 6

n− 2j + 1
.

We sum those inequalities for j = 1, . . . , τ . Observe that the sum of the weights of all the

half-edges u1, . . . , uτ that were once selected in the exposure process is at most t+2, since there

are t/2 + 1 generations on each tree Tx, Ty, the total mass on each generation being at most 1.

Hence

τn−3/4 ≤
τ∑
j=1

$(uj) ≤ t+ 2.

Since t = o(n1/8), we have τ = o(n) and we get for n large enough:

τ∑
k=1

E [Kj −Kj−1|Fk−1] ≥ −3∆tn−1/4 (4.51)

and
τ∑
k=1

E
[
(Kj −Kj−1)2|Fk−1

]
≤ 3∆tn−1/4. (4.52)

Denote α and β the RHS of (4.51) and (4.52) respectively. Fix γ > 0 and define the martingale

Mγ by setting Mγ(0) = 0 and

Mγ(k) :=
k∑
j=1

(Kj−1 −Kj) ∧ γ − E [(Kj−1 −Kj) ∧ γ|Fj−1] (4.53)

for k ∈ N. It is straightforward that P(|Mγ(k) −Mγ(k − 1)| ≤ γ) = 1, and we may apply

Proposition 2.1 (p.5) in [77] with a = 9γ, b = β and K = γ to get:

P(Mγ(τ) ≥ 9γ) ≤ e9

(
β

β + 9γ2

)9+β/γ2

≤ Cβ9

for some constant C > 0 uniquely depending on γ. And β = O(n−9/40) by definition of t in

Proposition 4.2.6 and by (4.52), so that

P(Mγ(τ) ≥ 9γ) = o

(
1

n2

)
. (4.54)
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To conclude, it is enough to show that for n large enough,

max
j≤τ
|Kj−1 −Kj | ≤ γ almost surely. (4.55)

Indeed, on {maxj≤τ |Kj−1 −Kj | ≤ γ}, Kτ ≥ K0 −Mγ(τ) +α. Moreover, K0 = 2 and α = o(1).

Together with (4.54), where we can take γ > 0 arbitrarily small, this yields the result.

The irreducibility of P and the existence of a half-edge with degree at least ∆ − 1 ≥ 2 imply

that every non-backtracking path on G meets an oriented edge with degree at least 2 every |
−→
E G |

steps at most. The same holds on the balls of radius r around x and y, which are included in

Tx and Ty respectively since x, y ∈ Rn. This divides the weight of each path in T by at least 2

after at most |
−→
E G | steps. Hence, for n large enough, for every j ≥ r, max($(uj), $(vj)) < γ/2

almost surely, so that maxj≤τ |Kj−1 − Kj | ≤ γ (recall that K0 = . . . = Kr = 2). This yields

(4.55).

Proof of Lemma 4.2.9

We proceed as in the first part of the proof of (4.48). Fix ε > 0 and −→e ∈
−→
E G . Let (Yj)j≥1 and

(Zj)j≥1 be independent NBRWs starting at x and y respectively. Let E be the event that Yt/2

is of type −→e , that Zt/2 is of type −→e −1, and that

t/2∏
j=1

1

deg(Yj) deg(Zj)
≥ θ.

Clearly, it holds that

Υ+
−→e ≤ P(E).

Denote (Zk)k≥0 the projection of (Zk)k≥0 on
−→
E G , which is a NBRW by Lemma ??. Note that

Yk and Y k are of the same type for all k, and similarly for (Zk), so that

P

t/2−r∏
j=1

1

deg(Yj) deg(Zj)
≥ θ

 = P

t/2−r∏
j=1

1

deg(Y j) deg(Zj)
≥ θ

 ,

where we recall that r = log log n. The proof of Lemma 4.1.8 in [54], which relies on an excursion

decomposition of the trajectory of the random walk, allows the following slight modification:

in the random walk (Xt)0≤t≤n, we can replace (Xt)n/2≤t≤n by a random walk (X ′t)0≤t≤n/2+1

starting at an arbitrary state in Ω. We apply this version of the Lemma by concatenating the

trajectories of (Y j)1≤j≤t/2−r and (Zj)1≤j≤t/2−r.

P

t/2−r∏
j=1

1

deg(Y j) deg(Zj)
≥ θ

 = P

t/2−r∑
j=1

log(deg(Y j)) + log(deg(Zj)) ≤ − log θ


=P

t/2−r∑
j=1

log(deg(Y j)) + log(deg(Zj)) ≤ µ(t− 2r) + λ
√
t− 2r + o(

√
t− 2r)


=Φ(λ) + o(1).
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Then, uniformly on Y t/2−r, Y t is of type −→e with probability 1

|
−→
E G |

+ o(1) since the stationary

distribution of the NBRW on
−→
E G is uniform, and the same holds for Zt (independently of Y t).

Hence

Υ+
−→e ≤

Φ(λ) + ε

|
−→
E G |2

,

and we obtain the desired result by summing on −→e ∈
−→
E G .

4.3 Diameter of random lifts

In this section, we compute the oriented diameter Dn of Gn. For n ≥ 1, we set

Dn := max
x,y∈Vn

min{k ≥ 0, y ∈
−→
B (x, k)}. (4.56)

We make the assumptions A.1, A.2 and A.4 on G. Note that the distribution of Dn only

depends on n and on which oriented edges of G have a positive weight. To compute the non-

oriented diameter, it is enough to give a positive weight to both orientations of every edge,

hence our setting already includes this case.

Let AG be the oriented adjacency matrix of G: it is a matrix indexed by
−→
E+
G ×
−→
E+
G where

−→
E+
G ⊆
−→
E G is the set of oriented edges with a positive weight, and for every (−→e ,−→e ′) ∈ (

−→
E+
G )2,

AG(−→e ,−→e ′) = 1{−→e −1 and −→e ′ start at the same vertex, and −→e ′ 6= −→e −1}.

Note that AG is irreducible by (4.8). Let D be the Perron-Frobenius eigenvalue of AG , i.e. its

largest eigenvalue, which is positive and simple by the Perron-Frobenius theorem. Then

Theorem 4.3.1. As n→ +∞,
Dn

log n

P→ log−1D.

Let us give a brief intuition on this result. Since Gn is an expander (Proposition 4.1.25) with

bounded degrees, its diameter should be of order log n. The constant log−1D comes from the

fact that D is the growth rate of the universal cover, and that there are too few cycles in Gn to

reduce this rate.

Remark 4.3.2. Using the same core/branches decomposition than in Section 4.1.5, we see

easily that the result holds without A.4, and that AG and Ac(G) have the same Perron-Frobenius

eigenvalue.

4.3.1 The growth rate of the universal cover

As in Section 4.1.3, root TG at some vertex ◦. Denote B̃(◦, R) the oriented ball centred at ◦ of

radius R, i.e. it consists of all oriented paths of length R started at ◦.
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Lemma 4.3.3.
log(|∂B̃(◦, R)|)

R
→

R→+∞
log−1D.

Naturally, this result is independent of the choice of ◦.

Proof. For R ≥ 1, let aR := |∂B̃(◦, R)|, and for every −→e ∈
−→
E G , let aR(−→e ) be the number of

vertices x in |∂B̃(◦, R)| such that if y is the parent of x, then (y, x) has type −→e . Denote −→a R
the vector (aR(−→e ))−→e ∈−→E G

. Then for every R ≥ 1, −→a R+1 = AG
−→a R so that by an immediate

induction:
−→a R = AR−1

G
−→a 1.

D is the largest eigenvalue of AG and has multiplicity 1. Moreover, by A.2, |B̃(◦, R)| grows

exponentially with R so that D > 1. Therefore, there exist constants c, c′ > 0, uniquely

depending on G, such that for every R ≥ 1,

aR =
∑
−→e ∈
−→
E G

aR(−→e ) ∈ [cDR, c′DR].

The conclusion follows.

4.3.2 Proof of Theorem 4.3.1

Lemma 4.3.3 and the fact that |B̃(x,R)| ≤ |B̃(◦, R)| for every x of the type of ◦ and every

R ≥ 1 imply that

lim inf
n→+∞

Dn

log n
≥
a.s.

log−1D.

It remains to prove that this lower bound is optimal. We proceed in three steps. Fix ε > 0.

First, we show that w.h.p., for every x ∈ Vn, the ball B̃(x,Rn) for Rn := b(1/2−ε) log−1D log nc
has no more than b2/εc+ 1 cycles, so that its successive generations grow exponentially at rate

logD, as B̃(◦, R) when R → +∞. Second, for y 6∈ B̃(x,Rn), we build similarly the ”adjoint”

ball B̃∗(y,Rn), made of the oriented paths reaching y. The corresponding adjacency matrix is

the transpose of AG , so that it has the same Perron-Frobenius eigenvalue D. Third, we use the

expansion to connect B̃(x,Rn) to B̃∗(y,Rn) in KGε log n steps, KG being a constant uniquely

depending on G.

Step 1 Let Rn := b(1/2 − ε) log−1D log nc. We claim that w.h.p., Gn is such that for every

x ∈ Vn,

n1/2−2ε ≤ |∂B̃(x,Rn)| ≤ n1/2−ε/2. (4.57)

Proof. Let kε = b2/εc+ 1. We first show that w.h.p., for every x ∈ Vn,

B̃(x,Rn) contains at most kε (non-oriented) cycles. (4.58)

Let x ∈ Vn. Reveal B̃(x,Rn) in a breadth-first way, by successive pairings of half-edges. Since

B̃(x,Rn) contains no more vertices of each type than B̃(◦, Rn), the total number s of pairings

satisfies
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s ≤ ∆|B̃(◦, Rn)| ≤ n1/2−ε/2

for n large enough, by Lemma 4.3.3. Hence, the probability that more than kε cycles appear

during those pairings is less than(
n1/2−ε/2

n− n1/2−ε/2

)kε (
bn1/2−ε/2c

kε

)
≤ 2kεn(1/2−ε/2)2kεn−kε ≤ n−3/2.

Note indeed that at each step of the construction, at most n1/2−ε/2 unpaired half-edges have

been discovered and at least n − n1/2−ε/2 half-edges of each type have not been paired. This

yields (4.58).

Then, let Tx be a spanning tree of B̃(x,Rn): when building B̃(x,Rn), do not include in Tx
the edges that close a cycle. For k = 1 to Rn and every −→e ∈

−→
E , let ak,n(−→e ) be the num-

ber of oriented edges of Tx from the k-th to the (k + 1)-th generation, and −→a k,n the vector

(ak,n(−→e ))−→e ∈−→E G
. It satisfies the same recursive equation as (−→a R)R≥0 in Lemma 4.3.3, with

at most kε ”−1” distributed arbitrarily to some ak,n(−→e ), for k ≥ 1 and −→e ∈
−→
E G . Unless

ak,n :=
∑
−→e ∈
−→
E G

ak,n(−→e ) = 0 for some k ≥ 1 (w.h.p., this happens for no x ∈ Vn, by Proposi-

tion 4.1.25), a bounded number of ”−1”’s does not prevent the exponential growth of ak,n at

rate logD. Indeed, in the first log log n generations, there are at least (2kε)
−1 log log n consecu-

tive generations without a −1, during which ak,n(−→e ) becomes larger than log log n for every −→e
(for n large enough). Then, each subsequent −1 divides the size of ak,ε(

−→e ) by a factor less than

2. Therefore, as in Lemma 4.3.3, there exist constants c, c′ > 0 such that for n large enough,

aRn,n ∈ [cDRn , c′DRn ]. The conclusion follows.

Step 2 Let y ∈ Vn \ B̃(x,Rn) and v∗(y,Rn) be the ball centred at y made of the oriented paths

of length Rn arriving at y. Define similarly B̃∗(◦, Rn). We can readily adapt Lemma 4.3.3 and

thus (4.57), AG being replaced by its transpose A∗G , the latter having the same Perron-Frobenius

eigenvalue.

Step 3 If B̃∗(y,Rn) intersects B̃(x,Rn), then there exists an oriented path from x to y of

length at most 2Rn ≤ logn
logD . Suppose that this is not the case. We expand B̃(x,Rn) until we

hit B̃∗(y,Rn).

Let KG := Lπmin/2, where we recall that πmin is the smallest weight of the invariant probability

distribution π of the SRW on G, and where L was defined in (4.25). By Proposition 4.1.25,

w.h.p. Gn is such that

for every x ∈ Vn and for i ≥ 1, |B̃(x,Rn + i)| ≥ (1 +KG)i|B̃(x,Rn)|, (4.59)

as long as |B̃(x,Rn + i)| ≤ nπmin/2. Let

R′n := 10ε log−1(1 +KG) log n.
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Starting from B̃(x,Rn), reveal B̃(x,Rn+R′n−|
−→
E G |) in a breadth-first way. If we hit B̃∗(y,Rn),

then there is an oriented path from x to y of length at most 2Rn +R′n. Else,

|∂B̃(x,Rn +R′n − |
−→
E G |)| ≥ n1/2+6ε

by (4.59). Then, by Step 1, Step 2 and the pigeon-hole principle, there exist −→e ,−→e ′ ∈
−→
E such

that

• there are at least |∂B̃∗(y,Rn)|/|
−→
E G | ≥ n1/2−3ε vertices of ∂B̃∗(y,Rn) that are the initial

vertex of an oriented edge of type −→e (and that edge does not belong to B̃∗(y,Rn)),

• there are at least |∂B̃(x,Rn+R′n−|
−→
E G |)|/|

−→
E G | ≥ n1/2+5ε vertices of ∂B̃(x,Rn+R′n−|

−→
E G |)

that are the initial vertex of an oriented edge of type −→e ′ (and that edge does not belong

to B̃(x,Rn +R′n − |
−→
E G |)).

Denote respectively Ay and Ax these sets of vertices. Now, we build a path of length at most

|
−→
E G | from Ax to Ay via a binomial argument. Let z1, z2, . . . be the vertices of Ax, listed in an

arbitrary order. For i = 1, 2, . . . successively, if no oriented path has been discovered from some

zj , j < i to Ay, reveal one path from zi to some oriented edge of type −→e (such a path exists by

(4.8) applied to −→e a = −→e ′ and −→e b = −→e ). The probability that this path ends on Ay is at least

n1/2−3ε/n. Therefore, the probability that for some i ≥ 1, one of these oriented paths lands on

Ay is at least

1− P(Z = 0), where Z ∼ Bin(bn1/2+5εc, n−1/2−3ε).

But for n large enough,

P(Z = 0) = (1− n−1/2−3ε)bn
1/2+5εc ≤ exp(bn1/2+5εc log(1− n−1/2−3ε)) ≤ exp(−nε) ≤ n−3.

By a union bound on x, y ∈ Vn, the probability that such a connection does not exist for some

x, y ∈ Vn is o(1).

All in all, we have shown that w.h.p., Gn is such that for every x, y ∈ Vn, there is an oriented

path of length at most

2Rn +R′n ≤ log−1D log n+ 10ε log−1(1 +KG) log n

from x to y. Since ε > 0 can be taken arbitrarily small, this concludes the proof of the upper

bound and hence of Theorem 4.3.1.
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[3] Angelo Abächerli and Jǐŕı Černý. Level-set percolation of the Gaussian free field on regular

graphs I: regular trees. Electronic Journal of Probability, 25(none):1 – 24, 2020.

[4] Angelo Abächerli and Jǐŕı Černý. Level-set percolation of the Gaussian free field on regular

graphs II: finite expanders. Electronic Journal of Probability, 25(none):1 – 39, 2020.

[5] Louigi Addario-Berry, Nicolas Broutin, and Christina Goldschmidt. Critical random

graphs: limiting constructions and distributional properties. Electron. J. Probab., 15:741–

775, paper no. 25 (electronic), 2010.

[6] Louigi Addario-Berry, Nicolas Broutin, and Christina Goldschmidt. The continuum limit

of critical random graphs. Probab. Theory Related Fields, 152(3–4):367–406, 2012.

[7] Louigi Addario-Berry, Nicolas Broutin, Christina Goldschmidt, and Grégory Miermont.

The scaling limit of the minimum spanning tree of the complete graph. Ann. Probab.,

45(5):739–805, 2017.

[8] Louigi Addario-Berry and Simon Griffiths. The spectrum of random lifts. https://

arxiv.org/abs/1012.4097, 2010.

[9] David Aldous. Random walks on finite groups and rapidly mixing markov chains. In
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