Introduction

Les travaux présentés ici s'inscrivent dans un cadre qui se situe à l'interface des mathématiques et de la mécanique théorique. Un des objectifs est de s'emparer de problématiques mathématiques fortes qui ont une portée mécanique, à la fois théorique et appliquée. De ce fait, la nature effective des résultats reste toujours un élément essentiel de l'approche envisagée.

Une des problématiques centrales de la mécanique, et pour ne pas dire de la physique, est de réussir à décrire des phénomènes indépendamment de l'observateur. Cette indépendance se traduit par le principe d'indifférence matérielle [START_REF] Marsden | Mathematical foundations of elasticity[END_REF][START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]. Que ce soit dans les cas linéaires ou non linéaires, on postule l'existence de fonctions tensorielles. Par exemple, on introduit couramment un tenseur qui caractérise la déformation et un autre qui caractérise la contrainte (tel le tenseur de Cauchy). Le principe d'indifférence matérielle nécessite alors d'introduire des fonctions équivariantes de ces tenseurs [START_REF] Spencer | Ronald Rivlin and invariant theory[END_REF].

C'est à ce stade qu'intervient naturellement la théorie des représentations des groupes et la théorie des invariants, appliquées spécifiquement au cas du groupe O(3, R) des transformations orthogonales de R 3 , ou bien de l'un de ses sous-groupes (fini ou infini). Dans les années 1950 en mécanique Rivlin [START_REF] Rivlin | Collected papers of r.s. rivlin[END_REF] initia des questions de calculs effectifs de bases d'intégrité, en ne considérant dans un premier temps que des modèles faisant intervenir des tenseurs d'ordre 1 et 2. Pendant une bonne vingtaine d'années, et partant du texte pourtant réputé difficile The classical groups de Weyl [START_REF] Weyl | The classical groups[END_REF], un grand nombre de résultats effectifs furent obtenus, établissant des listes de bases d'intégrité et de bases fonctionnelles (ou bases de séparants) sous l'action du groupe O(3, R) (le cas dit isotrope), du groupe SO(3, R) (le cas dit hémitrope), mais aussi des bases d'intégrité de covariants, même si ce n'était pas le vocabulaire employé. Un livre regroupant des travaux de Boehler, Spencer et Betten [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF] résume très bien à la fois les problématiques ainsi que l'ensemble des résultats effectifs obtenus. Notons aussi que Smith [START_REF] Smith | Integrity bases forn symmetric second order tensor the crystal classes[END_REF][START_REF] Smith | Integrity bases for a symmetric tensor and a vector-the crystal classes[END_REF] obtint des bases d'intégrité pour des représentations tensorielles simples des groupes cristallographiques [START_REF] Sternberg | Group theory and physics[END_REF], sous-groupes finis du groupe O(3, R).

Au-delà des tenseurs d'ordre 2, le cas d'une base d'intégrité pour l'espace des tenseurs d'élasticité, d'ordre 4, restait inaccessible, même si quelques tentatives avaient été faites 9 par Betten [START_REF] Betten | Integrity basis for a second-order and a fourth-order tensor[END_REF] ou encore Boehler-Kirilov-Onat [17]. Cela dit, c'est dans ce dernier article [17] que le lien fut établi, via une complexication, entre les représentations tensorielles du groupe SO(3, R) et les représentations du groupe SL(2, C) sur les espaces de formes binaires, et donc la théorie classique des invariants [START_REF] Peter | Classical invariant theory[END_REF]. Sur cette découverte, il y a d'ailleurs une certaine "ironie" particulière : alors qu'il a fallu une bonne dizaine d'années pour que cette communauté obtienne des résultats effectifs sur des bases d'intégrité d'espaces nS 2 (R 3 ) de n tenseurs symétriques d'ordre 2, un même résultat avait été obtenu en 1899 par Young [START_REF] Young | The Irreducible Concomitants of any Number of Binary Quartics[END_REF] sur des espaces nS 4 de n formes quadriques, traduction en complexe de l'espace nS 2 (R 3 ).

C'est donc au cours de ma thèse effectuée entre 2011 et 2014 que j'ai repris ce lien entre les représentations tensorielles du groupe SO(3, R) et, par complexification, les représentations du groupe SL(2, C). Un des résultats majeurs de ce travail a été l'obtention d'une base d'intégrité de l'espace des tenseurs d'élasticité (Théorème 2.3.2 et [art8, section 7]), de dimension 21 en 3D. Le calcul effectif d'une telle base d'intégrité n'a pu se faire que par une relecture et une réécriture des travaux des anciens, les plus actifs ayant été Gordan, Sylvester ou encore Cayley (voir l'article historique [START_REF] Hunger | Toward a history of nineteenth-century invariant theory[END_REF]). Bien sûr, après les apports d'Hilbert, Noether, Weyl, etc. (pour ne citer que les premiers, tant la liste est longue), la théorie des invariants a acquis une maturité certaine, mais le versant effectif a été entièrement mis de côté, alors même que l'effectivité était au coeur des travaux initiaux. En fait, il est possible que la difficulté et la complexité des calculs étaient telles que toute tentative dans ce sens semblait vaine.

Par la suite, il y eut cependant le développement de l'umbral calculus par Kung-Rota [START_REF] Joseph | The invariant theory of binary forms[END_REF], dont le but était de clarifier la méthode symbolique des anciens. Quelques algorithmes issus de l'umbral calculus ont été proposés [START_REF] Sturmfels | Algorithms in invariant theory[END_REF], mais leur complexité semblait peu adaptable pour traiter des cas non triviaux. Un passage marquant dans le texte de Kung-Rota précise alors [START_REF] Joseph | The invariant theory of binary forms[END_REF]Further works 9] : "Gordan's method of transvectants for his proof of the finiteness theorem was based on an ingenious method of substitutions of brackets into brackets. After Hilbert's work, Gordan's ideas were abandoned".

En prenant cette observation au pied de la lettre, j'ai entièrement repris et modernisé ces travaux [art11], donnant ainsi une nouvelle version des algorithmes de Gordan (Algorithme 3.2.7 et Théorème 3.1.2). J'ai alors déterminé des bases d'intégrité explicite pour des covariants d'espaces de formes binaires non triviaux : dans [art11] figurent des bases d'intégrité pour les covariants de S 6 ⊕ S 4 et S 6 ⊕ S 4 ⊕ S 2 , et dans [art9] figurent notamment des bases d'intégrité de covariants pour S 9 et S 10 (Théorème 3.3.5) , obtenues avec Reynald Lercier dans le cadre du groupe de travail TEDI (Théorie Effective des Invariants).

Précisons d'ailleurs que Shioda, dès 1968, put retrouver une base d'intégrité de l'espace S 8 des formes binaires de degré 8, alors qu'une base de covariants avait déjà été obtenue par von Gall [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF] en 1880. Par un véritable tour de force, Shioda put aussi préciser la struc-ture algébrique de l'algèbre des invariants, en exhibant pour la première fois un système de paramètres et en effectuant sa résolution libre explicite. Un des points-clés de cette approche est l'utilisation de l'opération de tranvection, intimement liée à la décomposition de Clebsch-Gordan du produit tensoriel de deux espaces SL(2, C) irréductibles, et par un procédé qui traduit le calcul en un système linéaire diophantien, Gordan put obtenir un algorithme de calcul pour les formes binaires, encore efficace aujourd'hui. Il est ainsi possible que cette idée de construire des transvectants en tant que projecteurs équivariants d'un produit tensoriel d'irréductibles pour un groupe fini puisse là aussi produire des algorithmes efficaces.

L'obtention de ces bases d'intégrité a alors été le point d'entrée de bien d'autres questions effectives qu'il restait à attaquer autour de cet espace des tenseurs d'élasticité. Et même plus, il s'est avéré que ces questions effectives s'ouvraient naturellement aux représentations linéaires réelles (V, G) d'un groupe de Lie compact. Le fait d'être dans le cas réel provient bien sûr des liens qu'il faut conserver avec la mécanique et leurs applications, mais le processus de complexification permet d'étudier des situations classiques en théorie des invariants, à savoir les représentations linéaires complexes de groupes linéairement réductifs. Le point le plus saillant qui a surgi autour de ces études porte sur le lien entre la stratification isotropiques de l'espace des orbites [START_REF] Bredon | Introduction to compact transformation groups[END_REF][START_REF] Ln Mann | Finite orbit structure on locally compact manifolds[END_REF] et sa stratification semi-algébrique [START_REF] Procesi | Inequalities defining orbit spaces[END_REF], tout ceci en restant dans le cas réel.

En fait, l'observation initiale est que l'espace des orbites V/G peut se décrire directement avec l'algèbre des invariants R[V] G , à la fois pour séparer les orbites [2] mais aussi pour avoir la structure semi-algébrique de V/G par la positivité d'une matrice de Gram [START_REF] Procesi | Inequalities defining orbit spaces[END_REF], du moins théoriquement. Malheureusement, ces idées restent très difficiles à mettre en oeuvre : en effet, il faut à la fois se lancer dans le calcul explicite d'une base d'intégrité, et ensuite manipuler une famille d'invariants et une matrice de Gram souvent trop grande (il y a 297 invariants générateurs dans le cas de l'élasticité, et donc une matrice de Gram formelle de taille 297 × 297).

Une première étude sur ce lien a alors été initiée par Auffray-Kolev-Petitot [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF], en se restreignant au cas d'une représentation irréductible (de dimension 9) de SO(3, R), incluse dans l'espace des tenseurs d'élasticité, à savoir l'espace H 4 (R 3 ) des tenseurs harmoniques d'ordre 4. Pour cet espace, dont le complexifié est équivariant à l'espace (S 8 , SL(2, C)), une base d'intégrité de 9 invariants avait été écrite sous forme tensorielle, et la structure isotropique, composée de 8 strates [17], était déjà connue [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]. Ce n'est finalement pas par l'étude d'une matrice de Gram que la stratification isotropique a été étudiée, mais par la détermination d'une tranche linéaire associée à chaque strate, et la réduction du problème à la représentation d'un groupe de monodromie. Dans les cas d'un groupe de monodromie très simple (allant du groupe cyclique Z 2 au groupe de permutation S 3 ), les calculs ont pu aboutir et exhiber, pour les 6 strates isotropes de plus petite dimension, des équations algébriques explicites. Malheureusement, même pour une monodromie du type S 3 , les équa-tions ont été difficiles à obtenir, et toute généralisation aux autres strates isotropiques ainsi qu'à l'espace des tenseurs d'élasticité semblait peu envisageable.

Maintenant, les strates isotropiques d'une représentation (V, SO(3, R)) sont définies géométriquement et caractérisées par une classe d'isotropie explicite, donnée par la classe de conjugaison d'un sous-groupe fermé de SO(3, R). Un algorithme de calcul effectif de ces classes, développé dans des premiers travaux faits en collaboration avec Auffray [art14, art13] et repris dans [art5], permet à ce jour de connaître exactement la stratification isotropique de tels espaces. L'étape suivante consiste alors à décrire ces strates. Dans le travail commun fait avec Boris Kolev, Rodrigue et Boris Desmorat [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], l'exploitation des covariants, plus riches du point de vue géométrique que les invariants, a permis d'obtenir des équations algébriques explicites des 8 strates de l'espace des tenseurs d'élasticité (Théorème 6.2.1). Cependant, pour pouvoir effectuer des calculs, il a fallu définir une algèbre de covariants, en redéfinissant complètement la notion déjà existante de covariant d'une représentation donnée [START_REF] Dolgachev | Lectures on invariant theory[END_REF][START_REF] Kraft | Classical Invariant Theory, a Primer[END_REF]. Dans le même esprit que ce qui existe pour les algèbres de covariants des formes binaires [START_REF] Peter | Classical invariant theory[END_REF], l'algèbre des covariants d'une représentation tensorielle (V, SO(3, R)) n'est alors rien d'autre que l'algèbre des invariants R[V ⊕ R 3 ] SO (3,R) . En allant plus loin, il a été possible d'exhiber un isomorphisme explicite [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] entre les algèbres de covariants d'espaces tenseurs (V, SO(3, R)) et les algèbres d'invariants d'espace (V ⊕ S 2 , SL(2, C)), où V est un espace de formes binaires et S 2 est l'espace des formes quadratiques. En fait, dans des travaux antérieurs réalisés avec Boris Kolev, Boris et Rodrigue Desmorat [art7], le lien entre les représentations de SO(3, C) et SL(2, C) avait déjà été rendu explicite (Théorème 5.2.1), et c'est finalement dans [art4] qu'il a été entièrement précisé. Par ces résultats, une base d'intégrité de l'algèbre des covariants de l'espace (H n (R 3 ), SO(3, R)) est directement déduite de l'algèbre des invariants de (S 2n ⊕ S 2 ), ellemême obtenue à partir d'une base de covariants de S 2n (Théorème 5.2.2). Il a ainsi été possible de calculer une base de covariants explicite de l'espace (H 4 2], oubliant ainsi le lien avec les formes binaires (qui n'ont servi que d'intermédiaire théorique). Ce résultat a nécessité de construire une nouvelle opération covariante sur les tenseurs [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] : le produit vectoriel généralisé (Définition 5.3.5). Au final, par cette nouvelle opération tensorielle, les équations algébriques explicites des 8 strates de l'élasticité (Théorème 6.2.1) ont été obtenues à l'aide d'une base d'intégrité des covariants de (H 4 (R 3 ), SO(3, R)). En application de ces résultats, et au cours de l'encadrement d'une étudiante de M2 (Sophie Abramian), Boris Desmorat, Boris Kolev, Rodrigue Desmorat et moi-même [art1] avons établi un algorithme pour déterminer la classe d'isotropie explicite d'un tenseur d'élasticité donné (Figure 6.1). À mes yeux, tous ces résultats sont en fait la première étape d'un projet à plus long terme qui consiste à étudier plus en détail ce lien entre les stratifications isotropiques et semi-algébriques d'une représentation linéaire réelle d'un groupe de Lie compact, en passant d'ailleurs par l'étude de ce lien sur d'autres représentations tensorielles qui interviennent en mécanique des matériaux (en 2D ou 3D, en piézoélectricité, piézomagnétisme, etc.).

En parallèle de cette thématique, et pour aborder des questions liées à la détermination de paramètres physiques, telle la généralisation du coefficient de raideur d'un matériau élastique en 1D, j'ai aussi travaillé sur la notion de séparants d'une représentation (V, G). Dans le cas complexe, il existe déjà la notion d'algèbre séparante [START_REF] Derksen | Computational invariant theory, enlarged[END_REF][START_REF] Sonia | Separating invariants[END_REF], et la communauté mécanique des années 1970 avait une notion similaire, appelée base fonctionnelle [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF]. Encore une fois, dans le cas des espaces de tenseurs d'ordre au plus 2, des tables de familles minimales séparantes pour SO(3, R) et O(3, R) ont été obtenus explicitement, à la fois par Smith [START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF] et Wang [START_REF] Wang | A new representation theorem for isotropic functions : An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions. II. Vector-valued isotropic functions, symmetric ten tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions[END_REF]. Généraliser ces approches dans le cas de l'élasticité semblait difficile, même si une famille séparante polynomiale était déjà donnée par une base d'intégrité, de cardinal encore trop grand pour être manipulable. Une idée, déjà présente dans l'article de Boehler et al.[17], est alors de chercher des familles d'invariants polynomiaux ou rationnels qui ne séparent que des orbites génériques. Par cette approche, il est alors possible de connaître une borne minimale pour le cardinal d'une famille de séparants génériques. En effet, dans le cas des représentations complexes du groupe SO(3, C), et donc de son revêtement universel SL(2, C), on sait que le corps des invariants est rationnel, c'est-à-dire qu'il s'agit d'une extension transcendante pure de C, dont le degré de transcendance et donné par la dimension de l'orbite générique (donc 18 dans le cas de l'élasticité). Ce résultat de rationalité a en fait été établi par Katsylo [START_REF] Pi Katsylo | Rationality of fields of invariants of reducible representations of sl2[END_REF] pour toute représentation de dimension finie du groupe SL(2, C). Par un travail effectué avec Rodrigue Desmorat, Nicolas Auffray, Boris Desmorat et Boris Kolev [art4], des résultats effectifs de Maeda [START_REF] Maeda | On the invariant field of binary octavics[END_REF] sur des corps d'invariants de formes binaires ont été traduits sous forme tensorielle. Il a ainsi été possible de construire une famille génératrice du corps des invariants de l'espace complexe (H 4 (C 3 ), SO(3, C)) mais aussi de l'espace réel (H 4 (R 3 ), SO(3, R)) (Théorème 7.2.1). En exploitant ce résultat, il est alors possible de construire une famille de 21 séparants génériques polynomiaux des tenseurs d'élasticité (Théorème 7.3.1) puis une famille optimale de 18 séparants génériques rationnels (Corollaire 7.3.2). Comme précédemment, de telles thématiques peuvent être abordées dans d'autres domaines de la mécanique théorique, et j'envisage aussi de chercher à construire des algorithmes de calcul de familles génératrices d'invariants rationnels, sachant que d'autres pistes ont été envisagées par Hubert et al. [START_REF] Görlach | Rational Invariants of Even Ternary Forms Under the Orthogonal Group[END_REF][START_REF] Hubert | Rational invariants of a group action. construction and rewriting[END_REF][START_REF] Hubert | Smooth and algebraic invariants of a group action : Local and global constructions[END_REF].

L'organisation de ce mémoire est le suivant. Dans le Chapitre 1, je donne une présentation succincte des espaces d'orbites et de leur lien avec la théorie des invariants, sachant que tous les résultats présentés se trouvent dans la littérature mentionnée. La notion de stratification isotropique est précisée dans la Section 1.1, puis je rappelle sa caractérisation semi-algébrique dans la Section 1.2. Il y a ensuite les notions essentielles issues de la théorie classique des invariants que je résume dans la Sous-section 1.3.1, en définissant notamment l'opération de transvection et son lien avec l'algèbre des covariants de formes binaires. C'est dans la Sous-section 1.3.2 et la Sous-section 1.3.3 que figure une liste de résultats sur les algèbres et les corps des invariants des représentations linéaires (souvent complexes) de groupes linéairement réductifs, utiles par la suite. Enfin, il y a dans la Section 1.4 des rappels sur les représentations linéaires des groupes SO(3, R), SO(3, C) et SL(2, C), sachant que les représentations de ces deux derniers groupes sont fortement liées. Je conclus alors cette première partie par la Sous-section 1.4.2 qui détaille l'espace des tenseurs d'élasticité, en précisant des formules de décomposition en irréductibles ainsi que sa stratification isotropique.

La Partie II couvre l'ensemble de mes contributions, en commençant par des résultats de thèse très brièvement présentés dans le Chapitre 2. Il sera ensuite question dans le Chapitre 3 de nouveaux résultats obtenus dans le cadre de la théorie classique des invariants : je donne dans les Sections 3.1 et 3.2 ma version des algorithmes de Gordan qui ont été réécrits et réinterprétés, puis une base d'intégrité des covariants de formes binaires de degrés 9 et 10 dans la Section 3.3. Je présente dans le Chapitre 4 ce qui concerne des problèmes de reconstructions équivariantes de tenseurs, l'idée étant de paramétrer des modèles tensoriels avec des tenseurs plus simples à manipuler (tels les tenseurs d'ordre 2). Ce problème est alors abordé dans le cas de l'élasticité, dans la Section 4.3, où des formules explicites de reconstruction sont données pour deux strates parmi les 8. Il y a dans le Chapitre 5 tout ce qui concerne la notion d'algèbre de covariants d'une représentation linéaire, et je précise dans la Section 5.2 le lien explicite entre les algèbres de covariants d'espaces de tenseurs et une algèbre d'invariants de formes binaires. Je donne alors dans la Section 5.4 une base d'intégrité minimale de l'algèbre des covariants de l'espace (H 4 (R 3 ), SO(3, R)), écrite sous forme tensorielle. Dans le Chapitre 6, le lien entre la stratification isotropique d'une représentation réelle (V, G) d'un groupe de Lie compact et sa stratification semi-algébrique est précisé, en se focalisant sur le cas des représentations tensorielles du groupe SO(3, R). Je donne ainsi dans la Section 6.2 des équations algébriques explicites des 8 classes d'isotropie de l'espace des tenseurs d'élasticité, exploitant pour cela la base d'intégrité de l'algèbre des covariants de l'espace (H 4 (R 3 ), SO(3, R)). Dans le Chapitre 7, la notion de séparants génériques d'une représentation linéaire apparaît, et je précise son lien avec une famille génératrice du corps des invariants associé. Une fois traduit sous forme tensorielle des résultats de Maeda sur les formes binaires de degré 8, ce dans la Section 7.2, je donne dans la Section 7.3 deux familles de séparants génériques polynomiaux (l'une de 21 invariants, l'autre de 19), puis une famille de 18 séparants génériques rationnels. Je conclus alors cette partie par le Chapitre 8 qui concerne la détermination des symétries d'ordre 2 de tenseurs totalement symétriques, obtenues à l'aide d'équations algébriques réduites. Ce mémoire se termine finalement par la Partie III qui précise les différentes questions et perspectives que j'envisage pour la suite, autour de ce qui concerne les espaces d'orbites et la théorie des invariants (Chapitre 9), puis des applications possibles en mécanique (Chapitre 10).

Chapitre 1 A survey about orbit space and invariant theory

Here, we recall some important facts about orbit space and invariant algebra associated to a linear representation V of a compact Lie group G, which is the starting point of many questions we develop in Part II. Note that no result here comes from my personal contribution, and I refer in each case to the classical literature on the subject. First of all, the orbit space can be described using its isotropic stratification, detailed in Section 1.1. Then, in the real case, Procesi-Schwarz [START_REF] Procesi | Inequalities defining orbit spaces[END_REF], following Abud-Sartori [2], made explicit its semi-algebraic structure using a finite integrity basis of the invariant algebra, which is summarized in Section 1.2.

To exploit results from invariant theory, on both theoretical and effective grounds, the complexification of the real representation leads us to consider a complex representation of a linearly reductive group. We thus recall in Section 1.3 some important results about the associated algebra of polynomial invariants and the associated field of rational invariants, with special interest in classical invariant theory quickly summarized in Subsection 1.3.1.

Our research work in the field of continuum mechanics makes us consider linear representations of the rotation group SO(3, R) in R 3 , related to the special linear group in two dimensions, where some models are presented in Section 1.4. Finally, we mention in Subsection 1.4.2 the main effective results known about the space of elasticity tensors.

Isotropic stratification of orbit space

Let us first recall some finiteness results about isotropy classes of the action of a compact Lie group G on a locally compact manifold X [START_REF] Vladimir | Lie groups and lie algebras i : Foundations of lie theory lie transformation groups[END_REF][START_REF] Ln Mann | Finite orbit structure on locally compact manifolds[END_REF]. For each g ∈ G, such an action will simply be denoted

x ∈ X → g x ∈ X and for any x ∈ X we define its isotropy subgroup as

G x := {g ∈ G, g x = x}.
We say that two points x, y ∈ X belong to the same isotropy class if both G x and G y are conjugate. Taking [H] 

:= { gHg -1 , g ∈ G } to be the conjugacy class of a subgroup H ⊂ G, this translates into G y ∈ [G x ].
The question now arises of the finiteness of different isotropy classes, widely studied in the 60's [START_REF] Bredon | Introduction to compact transformation groups[END_REF][START_REF] Ln Mann | Finite orbit structure on locally compact manifolds[END_REF][START_REF] George D Mostow | On a conjecture of Montgomery[END_REF]. The main result is :

Theorem 1.1.1 (Mann 1962 [START_REF] Ln Mann | Finite orbit structure on locally compact manifolds[END_REF]). Let X be an orientable manifold whose homology groups H i (M, Z) are finitely generated. Then the number of different isotropy classes of any action of a compact Lie group is finite.

From now on, we only focus on a linear representation

ρ : V -→ GL(V) (1.1)
of a compact Lie group G on a finite dimensional real vector space V. In such a specific case, finiteness is directly deduced from Mann's theorem, while weaker results can be used (see for instance [START_REF] Palais | The classification of G-spaces[END_REF]Corollary 1.7.26] or [60, Theorem 1.9]).

Let us now define for each isotropy class [H] the associated stratum

Σ [H] := { v ∈ V, G v ∈ [H] }
which is a smooth submanifold of V [2,[START_REF] Bredon | Introduction to compact transformation groups[END_REF], also G-stable. Taking N(H) := { g ∈ G, gHg -1 = H } to be the normalizer of H and Fix(H) the fixed point set of H defined by

Fix(H) := { v ∈ V, ρ(h)v = v, ∀h ∈ H } , we have [5] dim(Σ [H] ) = dim(Fix(H)) + dim(G) -dim(N(H)), dim Σ [H] /G = dim(Fix(H)) -dim(Γ(H))
with Γ(H) := N(H)/H the monodromy group. In these formulae, the dimension of the fixed point set can be computed using the character χ of the representation and the trace formula [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF] dim

(Fix(H)) = 1 |H| ∑ h∈H χ ρ (h)
for a finite group G, with an analogue using Haar integral for an infinite compact group G.

The linear representation (V, G) finally induces an isotropic stratification

V = Σ [H 1 ] . . . Σ [H n ] (1.2)
into a finite disjoint union of strata. On the set of conjugacy classes of closed subgroups of G, there is a partial ordering defined as follows (see [18, Proposition 1.9]) :

[H 1 ] [H 2 ] ⇐⇒ ∃g ∈ G, gH 1 g -1 ⊂ H 2 ,
and we deduce a (reverse) partial ordering on the strata :

Σ [H 2 ] Σ [H 1 ] ⇐⇒ [H 1 ] [H 2 ].
The maximal stratum Σ max , corresponding to the minimum isotropy class, is in fact a dense and open set in V, and any v ∈ Σ max can be said to be generic.

Example 1.1.2. Ihrig and Golubitsky obtained the finite set of isotropy classes for all SO(3, R) and O(3, R) irreducible representations [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF], modelled for instance on the space H 3 (R 3 ) of nth degree harmonic polynomials [START_REF] Sternberg | Group theory and physics[END_REF] (nth degree homogeneous polynomials in R 3 with null Laplacian). Figure 1.1 (issued from [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF]) gives the isotropic stratification of the irreducible representation of SO(3, R) on the space H 3 (R 3 ) of third degree harmonic polynomials, where an arrow

[H 1 ] → [H 2 ] means here that [H 1 ] [H 2 ]
. The notations are as follow : Z n is the cyclic group of order n, D n is the diedral group of order 2n and T is the orientation preserving symmetry group of a tetraedron, of order 12. Note also that dimensions of fixed point sets are directly obtained from [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF]Theorem 3.2].

[1]

[Z 2 ] dim(Σ [Z 2 ] ) = 5, dim(Σ [Z 2 ] /SO(3)) = 2 dim(Σ [Z 3 ] ) = 5, dim(Σ [Z 3 ] /SO(3)) = 2 [Z 3 ] [D 2 ] dim(Σ [D 2 ] ) = 5, dim(Σ [D 2 ] /SO(3)) = 2 [D 3 ] dim(Σ [D 3 ] ) = 4, dim(Σ [D 3 ] /SO(3)) = 1 [T] dim(Σ [T] ) = 4, dim(Σ [T] /SO(3)) = 1 [SO(2)] dim(Σ [SO(2)] ) = 3, dim(Σ [SO(2)] /SO(3)) = 1 [SO(3)] Figure 1.1 -Isotropic stratification of (H 3 (R 3 ), SO(3))

Orbit space and invariant theory

Take some linear representation of a compact Lie group G on a real vector space V. Such a linear representation will simply be denoted v → gv instead of ρ(g)v) and it induces a linear representation on the coordinate ring R[V] :

(g p)(v) := p(g -1 v),
so we can define the invariant algebra

R[V] G := { p ∈ R[V], g p = p }
which is finitely generated [START_REF] Hilbert | Theory of algebraic invariants[END_REF]. A finite integrity basis { J 1 , . . . , J N } is defined to be a generating set of such an algebra, so that

R[V] G = R[J 1 , . . . , J N ].
A very important fact which occurs in the real case is that the invariant algebra, and thus a finite integrity basis, always separates the orbits [2], meaning that

∃g ∈ G, v 1 = gv 2 ⇐⇒ ∀k = 1, . . . , N, J k (v 1 ) = J k (v 2 ).
Remark 1.2.1. Finiteness in Hilbert's theorem extends to the case of complex representations of reductive groups, which can be viewed as complexifications of compact Lie groups [START_REF] Schwarz | The topology of algebraic quotients[END_REF]. Nevertheless, the separating property is no longer true in this situation [START_REF] Derksen | Computational invariant theory, enlarged[END_REF].

A stronger link has been established between the invariant algebra and the orbit space, initially described by Abud-Sartori [2] and then clearly established by Procesi-Schwarz [START_REF] Procesi | Inequalities defining orbit spaces[END_REF]. More precisely, if we consider the polynomial mapping

v ∈ V → J(v) := (J 1 (v), . . . , J N (v)) ∈ R N ,
then the image X := Im(J) ⊂ R N is a semi-algebraic set, and J induces a proper homeomorphism between V/G and X [START_REF] Procesi | Inequalities defining orbit spaces[END_REF].

Take now a G-invariant scalar product •, • G on V (which always exists, using for instance Haar integral) and define a symmetric matrix Gram(v) for any v ∈ V by :

Gram ij (v) := dJ i (v), dJ j (v) G ∈ R[V] G , 1 ≤ i, j ≤ N,
where dp is the differential of p. Using the integrity basis, we thus know that Gram ij (v) can be written as

Gram ij (v) = p ij (J 1 (v), . . . , J N (v))
for certain polynomials p ij (not necessary unique), so we obtain a N × N symmetric matrix Gram(J) with coefficient in R[J 1 , . . . , J N ]. The main result is finally [START_REF] Procesi | Inequalities defining orbit spaces[END_REF] :

X = { (J 1 , . . . , J N ) ∈ R N , Gram(J) is positive semidefinite } .
Here, as the symmetric matrix Gram(J) is positive semidefinite,it can be expressed using the determinant of its principal minors. Such a result is, of course, very important, but it relies firstly on the knowledge of an integrity basis and secondly on a rewriting procedure in the invariant algebra. The computational aspects for each of these steps can easily become unattainable, as for instance in the case of the 21-dimensional space of elasticity tensors where an integrity basis is given by 297 invariants (see Subsection 1.4.2 and Section 2.3).

Finally, let us mention here that the semi-algebraic set X has a natural stratification [START_REF] Coste | An Introduction to Semialgebraic Geometry[END_REF], which seems to have strong connection with the isotropic stratification of the orbit space detailed in section 1.1.

Example 1.2.2. Take back here the irreducible representation (H 3 (R 3 ), SO(3, R)) from Example 1.1.2, which is equivalent to the SO(3, R) representation on the space H 3 (R 3 ) of third order harmonic tensors (totally symmetric and traceless, see Subsection 1.4.1). Given any orthonormal basis (e 1 , e 2 , e 3 ) of R 3 , an SO(3, R) invariant scalar product on H 3 (R 3 ) is given by H (1) , H (2) 

:= H (1) pqr H (2) pqr , H 1 , H 2 ∈ H 3 (R 3 )
where we have used Einstein convention on repeated indices. From Smith-Bao [START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF], a minimal integrity basis is given by

J 2 := H ijk H ijk , J 4 := b ij b ij , J 6 := v i v i , J 10 := H ijk v i v j v k , J 15 := ε ijk v i b jp v p H kqr v q v r
where ε ijk is the third order Levi-Civita symbol and b = (b ij ) (resp. v = (v i )) is the second order tensor (resp. first order tensor) defined by b ij := H ipq H jpq (resp. v i := H ijk b jk ).

The semi-algebraic set X ⊂ R 5 is obtained from a 5 × 5 symmetric matrix defined in R[J 2 , J 4 , J 6 , J 10 , J 15 ]. Nevertheless, all computations has to be done in the free algebra

R[h 1 , . . . , h 7 ] = R[H 3 (R 3 )].
In this algebra : J 4 is an homogeneous polynomial consisting of 56 monomials, while J 6 , J 10 and J 15 respectively consist of 189, 1632 and 10699 monomials.

For the rewriting procedure, we know two strategies (see also [START_REF] Lercier | Hyperelliptic curves and their invariants : geometric, arithmetic and algorithmic aspects[END_REF]) :

1. A first one using an elimination procedure from Gröbner bases [START_REF] Cox | Ideals, varieties, and algorithms[END_REF] ; 2. Another one using linear algebra : each polynomial invariant in the Gram matrix is some kth degree homogeneous invariant in R[J 2 , J 4 , J 6 , J 

Effective invariant theory

Main questions addressed in effective invariant theory, as emphasized by Vinberg [START_REF] Vinberg | Effective invariant theory[END_REF], are in a way very simple : once we have Hilbert's finiteness result of a given invariant algebra, how can we obtain an explicit integrity basis, and how to describe this algebra. Such an effective problematic was particularly present from the beginning of classical invariant theory, which is summarized in Subsection 1.3.1. The theoretical framework initiated by Hilbert [START_REF] Hilbert | Theory of algebraic invariants[END_REF] and enriched by Noether's contribution to algebra [START_REF] Margaret | Emmy noether : the mother of modern algebra[END_REF][START_REF] Bartel | A history of algebra : From al-khwārizmī to emmy noether[END_REF], then gave rise to important theoretical results that we briefly present in Subsections 1.3.2 and 1.3.3. We also mention here important works on this subject of effective invariant theory from Derksen and al. [START_REF] Derksen | Computation of invariants for reductive groups[END_REF][START_REF] Derksen | Computing invariants of algebraic groups in arbitrary characteristic[END_REF][START_REF] Derksen | Computational invariant theory, enlarged[END_REF][START_REF] Kemper | Calculating invariant rings of finite groups over arbitrary fields[END_REF][START_REF] Kemper | Computing invariants of reductive groups in positive characteristic[END_REF].

Classical invariant theory

Classical invariant theory has been the source of several studies, both from the point of view of the history of science [START_REF] Crilly | The rise of Cayley's invariant theory (1841-1862[END_REF][START_REF] Crilly | The decline of Cayley's invariant theory (1863-1895[END_REF][START_REF] Hunger | Toward a history of nineteenth-century invariant theory[END_REF] and from the sociological point of view [START_REF] Fisher | The death of a mathematical theory. A study in the sociology of knowledge[END_REF]. It carries within it many issues inherent in the more general framework of invariant theory which, among other things, seeks to describe objects independently of their representations [START_REF] Vinberg | Effective invariant theory[END_REF]. Of course, an abundant literature exists on this subject [START_REF] Dolgachev | Lectures on invariant theory[END_REF][START_REF] Elliott | Literatur-Berichte : An Introduction to the algebra of quantics[END_REF][START_REF] Glenn | A treatise on the theory of invariants[END_REF][START_REF] Hilton | The algebra of invariants[END_REF][START_REF] Peter | Classical invariant theory[END_REF][START_REF] Sturmfels | Algorithms in invariant theory[END_REF], and we will only give results here that focus on effectiveness.

Let us now consider the standard linear representation of the special linear group

SL(2, C) := { γ := a b c d , ad -bc = 1 } (1.3)
on a space of binary forms. Here, a binary form f of degree n is a homogeneous complex polynomial in two variables u, v of degree n :

f(ξ ξ ξ) = a 0 u n + a 1 u n-1 v + • • • + a n-1 uv n-1 + a n v n , ξ ξ ξ := (u, v) ∈ C 2 , a k ∈ C.
The set of all binary forms of degree n is a complex vector space of dimension n + 1 which will be denoted by S n . The special linear group SL(2, C) then acts naturally on C 2 and induces a left action on S n , given by

(ρ(γ)f)(ξ ξ ξ) := f(γ -1 ξ ξ ξ),
where γ ∈ SL(2, C). The spaces S n are all the irreducible holomorphic SL(2, C) representations (where holomorphic means here that morphism (1.1) is holomorphic, see [START_REF] Knapp | Representation theory of semisimple groups : an overview based on examples[END_REF] for instance) and every complex holomorphic linear representation

V of SL(2, C) can be de- composed into a direct sum V S n 1 ⊕ • • • ⊕ S n p .
The Clebsch Gordan decomposition in the specific case of SL(2, C) representations writes

S n ⊗ S p = min(n,p) r=0 S n+p-2r (1.4)
and an explicit equivariant projection from S n ⊗ S p to S n+p-2r is obtained by transvection [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF] :

Definition 1.3.1.
The transvectant of index r of two binary forms f ∈ S n and g ∈ S p is defined as

(f, g) r := (n -r)! n! (p -r)! p! r ∑ i=0 (-1) i r i ∂ r f ∂ r-i u∂ i v ∂ r g ∂ i u∂ r-i v , (1.5) 
which is a binary form of degree n + p -2r (vanishes if r > min(n, p)).

Example 1.3.2. For two binary forms which are nth powers of linear forms

(aξ ξ ξ) n := (a 1 u + a 2 v) n , (bξ ξ ξ) p := (b 1 u + b 2 v) p , (1.6) 
we get the particularly simple and classical formula [START_REF] Hilton | The algebra of invariants[END_REF] ((

aξ ξ ξ) n , (bξ ξ ξ) p ) r = [ab] r (aξ ξ ξ) n-r (bξ ξ ξ) p-r ,
where by definition

[ab] := a 1 b 2 -a 2 b 1 .
In a way, such an expression is the starting point of the symbolic method [START_REF] Gurevich | Foundations of the theory of algebraic invariants[END_REF][START_REF] Sturmfels | Algorithms in invariant theory[END_REF].

This transvection operation makes it possible to obtain equivariant binary forms, using a polynomial mapping. More specifically, we consider the covariant algebra of a space of binary forms : Definition 1.3.3. The covariant algebra of V is a bi-graded algebra defined as

Cov(V) := C[V ⊕ C 2 ] SL(2,C) = d,m≥0 Cov d,m (V),
where Cov d,m (V) is the homogeneous space of covariants of total degree d in f ∈ V, and total degree m in ξ ∈ C 2 , called the order of a covariant. Such an algebra is in fact of finite type, the proofs being obtained for the first time and in a constructive way by Gordan [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF] (see [art11] for a reformulation of this statement and a modern version of the proof, all summarized in Chapitre 3). Being of finite type, we can also focus on minimal bases of covariant algebras. For a space V of binary forms let us define

C + := ∑ d+m>0 Cov d,m (V)
which is an ideal of the graded algebra Cov(V). 

Then C 2 + is itself graded by each (d, m) such that d + m > 0. Let now δ d,m be the codimension of (C 2 + ) d,m in Cov d,m (V).
n(V) := ∑ d,m δ d,m .
Finally we now focus on

Definition 1.3.4. A family { h 1 , . . . , h s } is a minimal integrity basis of Cov(V) if its image in the vector space C + /C 2
+ is a basis. In that case, we have s = n(V) . The first challenge of classical invariant theory was in fact to obtain explicit minimal integrity bases of covariant algebras. A website, maintained by Brouwer [START_REF] Andries | Invariants of binary forms[END_REF], lists all the last known explicit results of such generating families, and we give only some examples with references in Table 1 Young (1899) [START_REF] Young | The Irreducible Concomitants of any Number of Binary Quartics[END_REF] Table 1.

-Minimal integrity bases of covariant algebras

Note that the history of classical invariant theory is nowadays very well documented [START_REF] Hunger | Toward a history of nineteenth-century invariant theory[END_REF]. For the record, it involved an English school [START_REF] Cayley | A seventh memoir on quantics[END_REF][START_REF] Sylvester | Tables of the Generating Functions and Groundforms for the Binary Quantics of the First Ten Orders[END_REF] as well as a German school [START_REF] Aronhold | Theorie der homogenen funktionen dritten grades von drei veränderlichen[END_REF][START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF], and the first issue was the finiteness (or not) of these covariant algebras, from the effective point of view. Gordan's proof, as well as his algorithm, little understood by the English school [START_REF] Hunger | Toward a history of nineteenth-century invariant theory[END_REF], had led to notable effective results (cf. Table 1.2). All computations used transvection operations and clever rewriting rules on iterated transvectants [START_REF] Abdesselam | The higher transvectants are redundant[END_REF][START_REF] Hilton | The algebra of invariants[END_REF][START_REF] Stroh | Ueber die asyzygetischen Covarianten dritten Grades einer binären Form[END_REF]. Moreover, it was in 1968 that Shioda obtained a remarkable result [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF], without any computer, on the covariant algebra of a binary form of degree 8, starting with von Gall's results [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF].

Many attempts were made to understand and reconsider the symbolic method, starting for instance with Weyl's contribution on invariant theory [START_REF] Weyl | The classical groups[END_REF]. It was then followed by Kung-Rota [START_REF] Joseph | The invariant theory of binary forms[END_REF], Dieudonné-Carrell [START_REF] Dieudonné | Invariant theory, old and new[END_REF], or even more recently by Olver [START_REF] Peter | Classical invariant theory[END_REF]. An algorithm using the symbolic method is mentioned in [START_REF] Joseph | The invariant theory of binary forms[END_REF], also reconsidered in [START_REF] Sturmfels | Algorithms in invariant theory[END_REF], but as far as we now, these approaches could not lead to new effective results.

Invariant algebra of linearly reductive groups

Let us consider here some linear group representation (W, Γ) of a linearly reductive group Γ on a finite-dimensional complex vector space W. The invariant algebra C[W] Γ is a specific case of a graded algebra of finite type. We essentially focus here on some way to obtain an explicit integrity basis.

A first idea is to get a bound on the degrees of the generators, like Noether's bound for finite groups given by its order [START_REF] Sturmfels | Algorithms in invariant theory[END_REF]. For linear algebraic groups, theoretical results exist on this bound [START_REF] Derksen | Polynomial bounds for rings of invariants[END_REF], but up to our knowledge, associated bounds were not accessible in classical cases : for the space of binary octics [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF], this lead to a bound of 262 144. We summarize in Table 1.3 some known results on these bounds, where we have set 18 Derksen [START_REF] Derksen | Polynomial bounds for rings of invariants[END_REF] Table 1

β(W) := min { d, C[W] Γ can be generated by polynomials of degree ≤ d } . Group Space Bound Reference Γ finite arbitrary V |G| Noether [102] SL(2, C) S n β(S n ) ≤ n 6 Jordan [75] SL(3, C) V n := S n (C 3 ) β(V n ) ≤ 27/8(n + 2)(n + 1)n

.3 -Some degree bounds on generators of C[W] Γ

We now mention some important notions leading to more effective algorithms, all related to graded algebras of finite type, such as the one of Hilbert series, system of parameters and Cohen-Macaulay property.

Let us consider some graded algebra

A = k≥0 A k
where A k is the homogeneous space of kth degree elements of A. Its Hilbert series encode the dimensions of the homogeneous spaces :

H A (z) := ∑ k≥0 dim(A k )z k .
As we are interested in invariant algebra, we mention :

Theorem 1.3.5 (Molien-Weyl formula [START_REF] Littelmann | On the Poincaré series of the invariants of binary forms[END_REF]). For any finite-dimensional (real or complex) representation (W, G, ρ) of a compact Lie group G, with A the algebra of G invariant polynmials, one has

H A (z) = G 1 det(Id -ρ(g)z) dµ,
where dµ is the Haar measure on G.

In fact, there is no distinction to make between the invariant algebras of a compact Lie group G and the ones of its complexification Γ := G C . We have indeed [art8] :

Lemma 1.3.6. The complexification of the real algebra R[V] G is isomorphic to the invariant algebra C[W] Γ , where W := V C (resp. Γ := G C
) is the complexification of the real vector space V (resp. of the compact Lie group G).

Remark 1.3.7. In the case of the special linear group SL(2, C), this means that we can make use of the special unitary group SU(2) (this approach is known as the unitary trick [START_REF] Dolgachev | Lectures on invariant theory[END_REF]). From this and the Molien-Weyl formula, Hilbert series of covariant algebras for binary forms are easily obtained, using for instance a Maple package due to Bedratyuk [9].

The Hilbert series of an algebra of finite type is strongly linked to a generating family. Indeed, as a consequence of Hilbert's syzygy theorem we have [START_REF] Hilbert | Theory of algebraic invariants[END_REF] : Lemma 1.3.8. Let { a 1 , . . . , a m } be a generating family of a graded algebra A, all homogeneous of degrees deg(a i ) = d i (i = 1, . . . , m). Then the Hilbert series of A writes

H A (z) = f (z) (1 -z d 1 ) . . . (1 -z d m ) , with a certain f ∈ Z[z].
In fact, from the use of a system of parameters and the Cohen-Macaulay property, it is possible to go one step further. Let first recall [START_REF] Lang | Algebra, third[END_REF] : Lemma 1.3.9. Let A be graded algebra over C of finite type and of transcendence degree s. Then there exists a homogeneous system of parameters { α 1 , . . . , α s } of A, meaning that :

1. Each α i is homogeneous ; 2. The family { α 1 , . . . , α s } is algebraically independent ; 3. A is a C[α 1 , . . . , α s ]-module of finite type, so that A = p 1 C[α 1 , . . . , α s ] + • • • + p k C[α 1 , . . . , α s ], p 1 , . . . , p k ∈ A (1.7)
Remark 1.3.10. For the invariant algebra R[V] G of a compact Lie group representation, its transcendence degree is given by the dimension of the generic stratum, which is dim(V)dim(G) + dim(H min ), where [H min ] is the minimum isotropy class (see Section 1.1).

And for invariant algebras C[W]

Γ we have :

Theorem 1.3.11 ). Suppose (W, Γ) is a linear representation of a linearly reductive group Γ on a finite-dimensional (complex or real) vector space W. Then the invariant algebra C[W] Γ is Cohen-Macaulay, meaning that there exists a homogeneous system of parameters

{ θ 1 , . . . , θ s } such that C[W] Γ is a free C[θ 1 , . . . , θ s ]-module of finite type (i.e.˛the decomposi- tion (1.7) is a direct sum).
We thus deduce (see [START_REF] Sturmfels | Algorithms in invariant theory[END_REF] for instance) :

Corollary 1.3.12. There exists a finite set { η 1 , . . . , η r } of invariants so that C[W] Γ has the Hironaka decomposition

C[W] Γ = η 1 C[θ 1 , . . . , θ s ] ⊕ • • • ⊕ η r C[θ 1 , . . . , θ s ].
Furthermore, writing d i := deg(θ i ) and e j := deg(η j ), the Hilbert series H of C[W] Γ is given by

H(z) = z e 1 + • • • + z e r (1 -z d 1 ) • • • (1 -z d s )
.

Such a corollary is a starting point of an algorithm in effective invariant theory, summarized as follows : This was successfully applied in classical invariant theory, where new results where obtained recently for the invariant algebra of binary forms of degrees 9 and 10 [21, [START_REF] Andries | The invariants of the binary nonic[END_REF][START_REF] Popoviciu | Invariants of binary forms[END_REF]. However, the 'trickiest' point concerns the computation of degrees of a homogeneous system of parameters. There is of course important work by Dixmier in the context of binary forms [START_REF] Dixmier | Quelques résultats de finitude en théorie des invariants[END_REF], followed in the same context by some effective results [START_REF] Andries | The degrees of a system of parameters of the ring of invariants of a binary form[END_REF][START_REF] Popoviciu | Invariants of binary forms[END_REF], but we do not yet know an effective algorithm, even in the case of binary forms, to obtain an explicit homogeneous system of parameters. Thus, up to our knowledge, even though we know an integrity basis of elasticity tensors (cf. Section 2.3), a system of parameters has still not been exhibited.

Rational invariants and orbit space

When addressing the question of separating the orbits for reductive groups Γ, the complex invariant algebra fails to reflect all features of the orbit space, while for compact groups G Section 1.2 stated it succeeds. To deal with the separating property in the complex and linearly reductive case, one way is to consider the field of rational invariants :

C(W) Γ := { r ∈ C(W), r(γw) = r(w), ∀γ, w ∈ Γ × W } .
An interesting point about the field of rational invariants is that it is always finitely generated (even for non reductive groups), as it is a subfield of the finitely generated field C(W) [START_REF] Bartel | Modern algebra[END_REF]. Some recent works [START_REF] Hubert | Rational invariants of a group action. construction and rewriting[END_REF][START_REF] Hubert | Smooth and algebraic invariants of a group action : Local and global constructions[END_REF] addressed the question of an effective computation of a generating set for C(W) Γ , but this effective approach on rational invariants remains to be deepened.

The first interesting theoretical result is that the field of rational invariants is able to separate orbits in general position, where we have the following theorem, initially stated in the scope of any group action (not necessarily linear) : Theorem 1.3.13 (Rosenlicht [121]). Let (W, Γ) be a linear representation of a linearly reductive group on a finite dimensional complex vector space W. Then there exists an invariant dense open subset X 0 ⊂ W and a finite set { r 1 , . . . , r s } ⊂ C(W) Γ separating orbits in X 0 :

∀w 1 , w 2 ∈ X 0 , ∃γ ∈ Γ, w 1 = γw 2 ⇐⇒ r k (w 1 ) = r k (w 2 ), k = 1, . . . , s
All vectors in X 0 are said to be in general position (or generic). Such a theorem in strongly connected to the useful Lemma : Lemma 1.3.14 (Lemma 2.1 in [START_REF] Popov | Invariant theory[END_REF]). If a finite set M ⊂ C(W) Γ separates orbits in general position, then it generates the field C(W) Γ . Now, the field of rational invariants contains the field of quotients QC[W] Γ of the integral domain C[W] Γ . More specifically, the following result, which applies to all the groups that concern us here, like SO(3, R), SO(3, C), SL(2, C) and SU(2) : Theorem 1.3.15 (Theorem 3.3 in [START_REF] Popov | Invariant theory[END_REF]). Let (W, Γ) be a complex linear representation of a linearly reductive group Γ such that the neutral component Γ 0 has no non-trivial characters, then we have

C(W) Γ = QC[W] Γ .
From all this we also have [116, Taking back the special linear group SL(2, C) given by (1.3), we can define an explicit two-fold universal covering (see also [START_REF] Sternberg | Group theory and physics[END_REF])

π : SL(2, C) → SO(3, C), γ → Ad γ , (1.8) 
where

Ad γ : M → γMγ -1 , γ ∈ SL(2, C), M ∈ sl(2, C)
is the adjoint action of SL(2, C) on its Lie algebra sl(2, C). Note that when restricted to the real Lie group SU(2

) := { γ ∈ SL(2, C); γt γ = I } , it induces the well-known two-fold covering π : SU(2) → SO(3, R), γ → Ad γ .
(1.9)

Irreducible representations of the 3D rotation group

Explicit models for irreducible SO(3, k) representations are given by the so-called harmonic tensor spaces which we now describe.

First of all, nth order tensor may always be considered as a multilinear mapping

T : k 3 × • • • × k 3 → k, (x 1 , . . . , x n ) → T(x 1 , . . . , x n ).
Let T n (k 3 ) be the space of nth order tensors (thanks to the quadratic form, we do not distinguish here between the covariant and contravariant tensors). The standard SO(3, k)

representation on T n (k 3 ) is given by (ρ n (g)T)(x 1 , . . . , x n ) := T(g -1 x 1 , . . . , g -1 x n ), (1.10) 
where T ∈ T n (k 3 ) and g ∈ SO(3, k). Define S n (k 3 ) to be the SO(3, k) stable subspace of totally symmetric tensors of order n, meaning that for all S ∈ S n (k 3 ), the map

(x 1 , . . . , x n ) → S(x 1 , . . . , x n )
is invariant under any permutation of (x 1 , . . . ,

x n ) ∈ (k 3 ) n .
Contracting two indices i, j on a totally symmetric tensor S does not depend on the particular choice of the pair i, j. Thus, we can refer to this contraction without any reference to a particular choice of indices. We will denote this contraction as tr T, which is a totally symmetric tensor of order n -2 and is called the trace of T. Iterating the process leads to

tr k T := tr(tr(• • • (tr T)))
which is a totally symmetric tensor of order n -2k. Definition 1.4.1. A harmonic tensor of order n is a totally symmetric tensor T ∈ S n (k 3 ) such that tr T = 0. The space of harmonic tensors of order n will be denoted by

H n (k 3 ). It is a vector subspace of S n (k 3 ) of dimension 2n + 1.
The subspace H n (k 3 ) of S n (k 3 ) is invariant under the action of SO(3, k) and we have [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF] : Theorem 1.4.2. For any non-negative integer n, (H n (k 3 ), ρ n ) is an irreducible SO(3, k) representation, with ρ n given by (1.10). Moreover, every irreducible SO(3, k) representation is equivariantly isomorphic equivariant to (H n (k 3 ), ρ n ) for some non-negative integer n.

Remark 1.4.3. The fact that the real and the complex irreducible representations of the threedimensional rotation group are given by the same model is in fact a particular case of a theorem about real and complex irreducible SO(2n + 1, k) linear representations, which are obtained by a complexification process [START_REF] Frank | Lectures on lie groups[END_REF][START_REF] Bröcker | Representations of compact lie groups[END_REF][START_REF] Iwahori | On real irreducible representations of lie algebras[END_REF]. As a classical fact, this is not true for SO(2) irreducible representations.

From the two-fold coverings (1.8) and (1.9), we obtain : Lemma 1.4.4. For any non-negative integer n, the irreducible representation (H n 

(C 3 ), SO(3, C)) (resp. (H n (R 3 ), SO(3, R))
) is equivariantly isomorphic equivariant to the irreducible representation (S 2n , SL(2, C)) (resp. SU(2)), where S p is the space of pth degree binary forms.

We also deduce from Theorem 1.4.2 that every SO(3, k)-representation V splits into a direct sum of harmonic tensor spaces H n (k 3 ) (see [START_REF] Bröcker | Representations of compact lie groups[END_REF][START_REF] Sternberg | Group theory and physics[END_REF]). Such a direct sum is called an harmonic decomposition of V.

We now recall a well-known correspondence between totally symmetric tensors of order n and homogeneous polynomials of degree n on k 3 , which extends the well-known correspondence between a symmetric bilinear form and a quadratic form via polarization. Indeed, let us define

φ : S ∈ S n (k 3 ) → p(x) := S(x, . . . , x), x := (x, y, z) ∈ k 3
which is a linear equivariant isomorphism between the tensor space S n (k 3 ) and the polynomial space P n (k 3 ) of homogeneous polynomials of degree n on k 3 . This equivariance has to be understood with respect to the SO(3, k) representation on the polynomial space P n (k 3 ) given by (ρ(g)p)(x

) := p(g -1 • x), g ∈ SO(3, k).
The inverse S = φ -1 (p) can be recovered by polarization. More precisely, the expression p(t 1 x 1 + • • • + t n x n ) is a homogeneous polynomial in the variables t 1 , . . . , t n and we get

S(x 1 , . . . , x n ) = 1 n! ∂ n ∂t 1 • • • ∂t n t 1 =•••=t n =0 p(t 1 x 1 + • • • + t n x n ).
Remark 1.4.5. Note that the Laplacian operator acts on p = φ(T) as

φ(T) = n(n -1)φ(tr T).
Thus, totally symmetric tensors with vanishing trace correspond via φ to harmonic polynomials, i.e polynomials with vanishing Laplacian). This justifies the denomination of harmonic tensors for elements of H n (k 3 ). More generally, for any non-negative integer k, we have

k φ(T) = n! (n -2k)! φ(tr k T). (1.11)
The equivariant isomorphism φ sends H n (k 3 ) to H n (k 3 ), the space of homogeneous harmonic polynomials of degree n. Thus, the spaces H n (k 3 ) provide alternative models for irreducible representations of the rotation group SO(3, k).

The space of elasticity tensors

In the theory of linear elasticity [START_REF] Morton E Gurtin | The linear theory of elasticity[END_REF]85,[START_REF] Love | A treatise on the Mathematical Theory of Elasticity[END_REF], the Cauchy stress tensor σ σ σ (a second order symmetric tensor) which models the internal forces of a material is a linear function of the infinitesimal strain-displacement tensor ε ε ε (also a second order symmetric tensor). The generalized Hook's law then postulates the linear relation

σ σ σ = E : ε ε ε
where notation ':' means a double contraction and E is the fourth order elasticity tensor, with the following symmetries

E(x 1 , x 2 , x 3 , x 4 ) = E(x 2 , x 1 , x 3 , x 4 ) = E(x 1 , x 2 , x 4 , x 3 ) = E(x 3 , x 4 , x 1 , x 2 ), ∀x i ∈ R 3 .
We thus define the space of 3D elasticity tensors as Ela := S 2 (S 2 (R 3 )), which is a 21dimensional vector space. Any tensor E has a Kevin matrix representation : taking an orthonormal basis e 1 , e 2 , e 3 of R 3 we deduce an orthonormal basis (e 11 , e 22 , e 33 , e 23 , e 13 , e 12 ) of S 2 (R 3 ) given by :

e ii := e i ⊗ e i , e ij := √ 2 2
(e i ⊗ e j + e j ⊗ e i ), i = j.

From this, any elasticity tensor E ∈ S 2 (S 2 (R 3 )) can be represented by a 6 × 6 symmetric matrix, denoted [E].

Any elasticity tensor allows to characterize the elastic behavior of a homogeneous material, once its orientation is given. However, any new orientation of the same material, induced by some rotation g ∈ SO(3), will then define another tensor

E = ρ Ela (g)E, ρ Ela := ρ 4 | Ela , (1.12) 
where ρ 4 is the standard SO(3, R) representation (1.10) on the space of fourth order tensor. Thus, as observed by Boehler-Kirilov-Onat [17], a homogeneous elastic material will not be characterized by a single tensor E but rather by an orbit in the representation (Ela, SO(3, R), ρ Ela ). In order to reach an understanding of elastic mechanical materials (in the linear case), it is therefore necessary to exploit the mathematical notions developed in previous sections : establish its harmonic decomposition, its isotropic stratification, etc., and this with an effective approach.

An explicit harmonic decomposition was first obtained by Backus [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF] :

Theorem 1.4.6 (Harmonic decomposition of Ela). The irreducible decomposition of the space (Ela, SO(3, R), ρ Ela ) is given by

Ela = H 0 (R 3 ) ⊕ H 0 (R 3 ) ⊕ H 2 (R 3 ) ⊕ H 2 (R 3 ) ⊕ H 4 (R 3 )
ant it remain the same when considering the induced SO(3, C) representation on Ela C :

Ela C = H 0 (C 3 ) ⊕ H 0 (C 3 ) ⊕ H 2 (C 3 ) ⊕ H 2 (C 3 ) ⊕ H 4 (C 3 ).
In fact, such a decomposition was obtained with explicit formulae. More precisely, an elasticity tensor E admits the following harmonic decomposition [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF] :

E = α q ⊗ (4) q + β q ⊗ (2,2) q + q a + q ⊗ (2,2) b + H (1.13)
with q being the Euclidean canonical bilinear 2-form represented by the components (δ ij ) in any orthonormal basis. This defines a linear equivariant mapping

(α, β, a, b, H) ∈ H 0 (k 3 ) ⊕ H 0 (k 3 ) ⊕ H 2 (k 3 ) ⊕ H 2 (k 3 ) ⊕ H 4 (k 3 ) → E ∈ Ela(k).
In formula (1.13), is the totally symmetric tensor product, and the Young-symmetrized tensor products ⊗ (2,2) , between two symmetric second-order tensors c, d, is defined as follows :

(c ⊗ (2,2) d) ijkl = 1 6 2c ij d kl + 2d ij c kl -c ik d jl -c il d jk -d ik c jl -d il c jk .
An inverse equivariant mapping is obtained as follows. Let us first define the dilatation tensor d := tr 12 E and the Voigt tensor v := tr 13 E, where tr ij is the trace operation contracting indices i and j. From this we have

α = 1 15 (tr d + 2 tr v) , β = 1 6 (tr d -tr v) , a = 2 7 d + 2v , b = 2 d -v
where d := d -1 3 tr(d) q and v := v -1 3 tr(v) q are said to be the deviatoric parts of d and v respectively.

The isotropic stratification was first obtained by Forte-Vianello [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], detailed in Figure 1.2. Such an isotropic stratification encodes the different kinds of anisotropy in linear elasticity. The subgroups mentioned in this result are : the cyclic (resp. diedral) subgroup Z n (resp. D n ), the cubic subgroup O of order 24 and the orthogonal subgroup O(2). All the names used here are the classical names coming from Crystallography. 

Deuxième partie

Contributions

Chapitre 2

Results issued from my PhD

My PhD thesis work, carried out between 2011 and 2014, gave rise to two essential contributions that I summarize here. The first one, presented in section 2.1, concerns the implementation of an algorithm for the effective computation of isotropy classes of a linear representation (V, G) of a compact Lie group, once the isotropy classes of the irreducible representations of the group G are known, as well as the clips table (Definition 2.1.1) of the G closed subgroup conjugation classes. This algorithm is made effective in the case of O(3, R) and SO(3, R), for which the results of the isotropy classes of irreducible representations are given in [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF], and the clips tables are established in [art5]. I then present in Section 2.2 results about explicit isotropy classes of standard O(3, R) representations on spaces of totally symmetric tensors of even order (Theorem 2.2.1) and odd order (Theorem 2.2.2).

I also present in Section 2.3 the main result concerning an integrity basis of the elasticity tensor, directly deduced from an integrity basis of the joint invariants algebra of the space of binary forms (Theorem 2.3.2).

Results presented here come from the publications [art14, art13, art12, art5, art8].

Clips operation and effective algorithm for isotropy classes

Let first define Conj(G) to be the set of all conjugacy classes of a given group G :

Conj(G) := { [H], H ⊂ G, H subroup } .
We now define a binary operation, called the clips operation, on the set Conj(G).

Definition 2.1.1. Given two conjugacy classes [H 1 ] and [H 2 ] of a group G, we define their clips as the following subset of conjugacy classes :

[H 1 ] [H 2 ] := { [H 1 ∩ gH 2 g -1 ], g ∈ G } . 37 
This definition immediately extends to two families (finite or infinite) F 1 and F 2 of conjugacy classes :

F 1 F 2 := [H i ]∈F i [H 1 ] [H 2 ].
Remark 2.1.2. The clips operation was already introduced, with no specific name, in [START_REF] Chossat | A classification of 2-modes interactions with SO(3) symmetry and applications, Dynamics, bifurcation and symmetry[END_REF], the notation being P(H 1 , H 2 ). In this article, the authors only focus on the SO(3, R) case, not dealing with a general theory.

This clips operation thus define a binary operation on the set P (Conj(G)) which is associative and commutative. We have moreover

[1] [H] = { [1] } and [G] [H] = { [H] } ,
for every conjugacy class [H], where 1 := { e } and e is the identity element of G.

Consider now a linear representation (V, G) of a group G and define I(V) to be the set of all its isotropy classes (or orbit types). The central observation is that the isotropy classes of a direct sum of representations is obtained by the clips of their respective isotropy classes [art5, Lemme 2.3] : Lemma 2.1.3 (Result from PhD). Let V 1 and V 2 be two linear representations of G. Then

I(V 1 ⊕ V 2 ) = I(V 1 ) I(V 2 ).
Using this lemma, we deduce a general algorithm to obtain the isotropy classes I(V) of a finite dimensional representation of a compact Lie group G, provided we know :

1. a decomposition V = i W i into irreducible representations W i of G. 2. the isotropy classes I(W i ) for the irreducible representations W i ; 3. the tables of clips operations [H 1 ] [H 2 ] between conjugacy classes of closed subgroups [H i ] of G.

Isotropy classes of O(3, R) linear representations

We can successfully apply the algorithm given above for O(3, R) linear representations. Indeed, isotropy classes for irreducible O(3, R) and SO(3, R) representations were obtained in [START_REF] Chossat | Steady-state bifurcation with O(3)-symmetry[END_REF][START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF][START_REF] Michel | Symmetry defects and broken symmetry. configurations hidden symmetry[END_REF]. Furthermore, clips table for their closed subgroups were established during my PhD thesis [art14, art13, art5, 104], so we obtain an effective algorithm. All subgroups mentioned in the following theorem are defined for instance in [art5, 73].

Recall first that the standard representation ρ n of SO(3, R) on the space T n (R 3 ) of nth order tensor is given by (1.10). Then we have : Theorem 2.2.1 (PhD result [art14, 104]). Let (T 2n (R 3 ), SO(3, R), ρ 2n ) be the standard SO(3, R) representation on T 2n (R 3 ) and consider also its induced representation (S 2n (R 3 ), SO(3, R), ρ 2n ) on the space of totally symmetric tensors. Then we have :

Representation

Isotropy classes

(T 2 (R 3 ), ρ 2 ) [1], [Z 2 ], [D 2 ], [SO(2)], [O(2)], [SO(3)] (T 4 (R 3 ), ρ 4 ) [1], [Z 2 ], . . . , [Z 4 ], [D 2 ], . . . , [D 4 ], [SO(2)], [O(2)], [T], [O], [SO(3)] (T 2n (R 3 ), ρ 2n ), n ≥ 3 [1], [Z 2 ], . . . , [Z 2n ], [D 2 ], . . . , [D 2n ], [SO(2)], [O(2)], [T], [O], [I], [SO(3)] (S 4 (R 3 ), ρ 4 ) [1], [Z 2 ], [D 2 ], [D 3 ], [D 4 ], [O(2)], [O], [SO(3)] (S 2n (R 3 ), ρ 2n ), n ≥ 3 [1], [Z 2 ], . . . , [Z 2(n-1) ], [D 2 ], . . . , [D 2n ], [O(2)], [T], [O], [I], [SO(3)]
We then propose general results for the group O(3). For the standard representations of O(3, R) on tensor spaces, the only relevant case is the one of odd-order tensors, as in the even case, such representations reduce to the SO(3, R) one.

Theorem 2.2.2 (PhD result [art13,104]). Let (T 2n+1 (R 3 ), O(3, R), ρ 2n+1 ) be the standard O(3, R) representation on T 2n+1 (R 3 ). Then we have Representation Isotropy classes (T 1 (R 3 ), ρ 1 ) [O(2) -] (T 3 (R 3 ), ρ 3 ) [1], [Z 2 ], [Z 3 ], [D v 2 ], [D v 3 ], [Z - 2 ], [Z - 4 ], [D 2 ], [D 3 ], [D h 4 ], [D h 6 ], [O -], [SO(2)], [O(2)], [O(2) -], [SO(3)], [O(3)] (T 5 (R 3 ), ρ 5 ) [1], [Z 2 ], . . . , [Z 5 ], [D v 2 ], . . . , [D v 5 ], [Z - 2 ], [Z - 4 ], . . . , [Z - 8 ], [D 2 ], . . . , [D 5 ], [D h 4 ], [D h 6 ], . . . , , [D h 10 ], [T], [O -], [O], [SO(2)], [O(2)], [O(2) -], [SO(3)], [O(3)] (T 2n+1 (R 3 ), ρ 2n+1 ), n ≥ 3 [1], [Z 2 ], • • • , [Z 2n+1 ], [D v 2 ], • • • , [D v 2n+1 ], [Z - 2 ], • • • , [Z - 4n ], [D 2 ], • • • , [D 2n+1 ], [D h 4 ], • • • , [D h 2(2n+1) ], [T], [O -], [O], [I], [SO(2)], [O(2)], [O(2) -], [SO(3)], [O(3)]
It should be noted here that these effective results have important consequences in the field of continuum mechanics. Indeed, since the work of Forte-Vianello [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], anisotropy is directly modelled by the notion of isotropy class of a linear SO(3, R) or O(3, R) representation. By our approach, it is thus possible to obtain explicitly the different anisotropies of a given model, this by an algorithm based on clips tables [art14, art13, art5] not shown here.

Remark 2.2.3. The search for isotropy classes, and thus possible physical anisotropies, is equally relevant to the 2D models. The O(2) and SO(2) groups are then involved, and clips operation approaches have been formulated in [art10].

Integrity basis of elasticity tensors

Let us consider the space of elasticity tensors Ela = S 2 (S 2 (R 3 )) defined in Subsection 1.4.2, endowed with the natural SO(3, R) representation (1.12). As we already mentioned, the invariant algebra R[Ela] SO(3,R) can separate the orbits [2] :

∃g ∈ SO(3, R), E 2 = ρ Ela (g)E 1 ⇐⇒ I(E 1 ) = I(E 2 ), ∀I ∈ R[Ela] SO(3,R)
From this, we deduce that any finite integrity basis defines homogeneous material elastic parameters (like a 3D generalization of stiffness coefficient in one dimensional elasticity, with classical Hook law). As far as we know, such a finite integrity basis was unknown until now.

Remark 2.3.1. In 2D case, the space of elasticity tensors is given by the 6-dimensional vector space S 2 (S 2 (R 2 )). Such a space is endowed with a natural O(2) representation, and a finite integrity basis (with 5 invariants) has already been obtained in many ways [START_REF] Blinowski | Two-dimensional Hooke's tensors-isotropic decomposition, effective symmetry criteria[END_REF][START_REF] Forte | A unified approach to invariants of plane elasticity tensors[END_REF][START_REF] Grédiac | On the direct determination of invariant parameters governing the bending of anisotropic plates[END_REF][START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vianello | An integrity basis for plane elasticity tensors[END_REF].

The starting point to obtain such an integrity basis is the harmonic decomposition taken from Lemma 1.4.6. We also know from Lemma 1.3.6 that :

R[Ela] SO(3,R) C C[Ela C ] SO(3,C) , (2.1) 
and thus we deduce from lemma 1.4.4 that

R[Ela] SO(3,R) C C[S 8 ⊕ S 4 ⊕ S 4 ⊕ S 0 ⊕ S 0 ].
Finally, as a result of my PhD, I obtained :

Theorem 2.3.2 (PhD result). An integrity basis of the invariant algebra R[Ela] SO(3,R) is given by 297 invariants, deduced from an explicit finite integrity basis of S 8 ⊕ S 4 ⊕ S 4 ⊕ S 0 ⊕ S 0 , obtained by transvection operations.

Note also that an explicit integrity basis of the real algebra R[Ela] SO(3,R) was obtained later in tensorial form in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF].

Chapitre 3

Covariant algebra of binary forms

Let us consider a linear representation (V, SL(2, C)), with V = S n 1 ⊕ • • • ⊕ S n p . The ques- tion addressed here is to obtain an explicit integrity basis for the covariant algebra Cov(V), defined in Subsection 1.3.1. Up to our knowledge, the last explicit results were established for the invariant algebras Inv(S 9 ) and Inv(S 10 ) [START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Andries | The invariants of the binary nonic[END_REF]. In these articles, computations are done using a degree bound deduced from a homogeneous system of parameters (see Subsection 1.3.2). Now, according to us, there is no effective algorithm to obtain a homogeneous system of parameters of a graded algebra of finite type, while some attempts are proposed in [START_REF] Hashemi | Efficient Algorithms for Computing Noether Normalization[END_REF][START_REF] Kemper | An algorithm to calculate optimal homogeneous systems of parameters[END_REF][START_REF] Logar | A computational proof of the Noether normalization lemma[END_REF]. Furthermore, in the specific cases we had to deal with, as the one of S 8 ⊕ S 4 ⊕ S 4 , two difficulties appeared :

1. According to Brion's result from [START_REF] Brion | Invariants de plusieurs formes binaires[END_REF], there is no multi-homogeneous system of parameters for this algebra, so the approaches developed by Brouwer-Popoviciu [START_REF] Brouwer | The invariants of the binary decimic[END_REF] seem not to be applicable.

2. Even if we know such a homogeneous system of parameters, the degree bound can be very high, which was a serious impediment in our situation of the 19 dimensional space S 8 ⊕ S 4 ⊕ S 4 . For instance, in the case of the 11-dimensional space S 10 , the bound obtained in [START_REF] Brouwer | The invariants of the binary decimic[END_REF] is 48.

In fact, taking up some works from the XIXth Century, and especially the memoir of Gordan [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF], it turned out that there were two very efficient algorithms (at least for the computation time). These two algorithms were rewritten and modernized in [art11], presented here as Theorem 3.1.2 and Algorithm 3.2.7. Working together with Reynald Lercier [art9] during the workshop TEDI (Théorie effective des invariants), we obtained new effective results (see Section 3.3) for integrity basis of the covariant algebras of binary nonic and binary decimic (Theorem 3.3.5).

Gordan's algorithm for joint covariant algebras revisited

I first give Gordan's algorithm to obtain an integrity basis of a joint covariant algebra Cov(V 1 ⊕ V 2 ), once an integrity basis of each covariant algebra Cov(V 1 ) and Cov(V 2 ) is known. From now on, let us suppose that

A := {f 1 , . . . , f p } ⊂ Cov(V 1 ), B := {g 1 , . . . , g q } ⊂ Cov(V 2 ),
are finite integrity bases for Cov(V 1 ) and Cov(V 2 ) respectively. Taking back the transvection operation introduced in Subsection 1.3.1, we first have [art11] :

Lemma 3.1.1. The covariant algebra Cov(V 1 ⊕ V 2 ) is generated by all transvectants f α 1 1 . . . f α p p , g β 1 1 . . . g β q q r , α i , β j ∈ N,
with any non-negative integer r.

Define now a i (resp. b j ) to be the order of the covariant f i (resp. g j ). To each nonvanishing transvectant

f α 1 1 • • • f α p p , g β 1 1 • • • g β q q r , ( 3.1) 
we can associate an integer solution κ := (α, β, u, v, r) of the linear Diophantine system S(A, B) :

a 1 α 1 + • • • + a p α p = u + r, b 1 β 1 + • • • + b q β q = v + r. (3.2) 
Conversely, to each integer solution κ of S(A, B), we can associate a well defined transvectant (3.1). Recall an integer solution κ of S(A, B) is reducible if we can decompose κ as a sum of non-trivial solutions. In fact, we know that there exists a finite family of irreducible integer solutions of the system (3.2) (see [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF] Sturmfels | Algorithms in invariant theory[END_REF] for details on linear Diophantine systems), so that we deduce a finite integrity basis of

Cov(V 1 ⊕ V 2 ) [art11] : Theorem 3.1.2. The covariant algebra Cov(V 1 ⊕ V 2
) is generated by the (generally non minimal) finite family of transvectants

f α 1 1 • • • f α p p , g β 1 1 • • • g β q q r
corresponding to irreducible solutions of the linear Diophantine system S(A, B) (3.2).

Gordan's algorithm for simple covariant algebras revisited

There exists a second algorithm, much more subtle, to obtain a finite integrity basis of a simple covariant algebra Cov(S n ) once we know integrity bases for all Cov(S p ) with p < n. Such an algorithm was successfully applied by Gordan's himself [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF] and by von Gall [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF][START_REF] Gall | Das vollstandige formensystem der binaren form 7ter ordnung[END_REF] to binary forms of degrees up to 8. It can also be found in Grace-Young [START_REF] Hilton | The algebra of invariants[END_REF], while it was modernized and rewritten in [art11]. A key element of this algorithm is to use the Cayley operator [START_REF] Peter | Classical invariant theory[END_REF] instead of the transvection operation, so as to obtain another (infinite) generating family issued from the symbolic method [START_REF] Peter | Classical invariant theory[END_REF][START_REF] Weyl | The classical groups[END_REF], closely tied with the bracket algebra [START_REF] Joseph | The invariant theory of binary forms[END_REF][START_REF] Sturmfels | Algorithms in invariant theory[END_REF]. From a graphical approach initiated by Sylvester [START_REF] Sylvester | On an Application of the New Atomic Theory to the Graphical Representation of the Invariants and Covariants of Binary Quantics, With Three Appendices[END_REF] and then reconsidered by Olver-Shakiban [START_REF] Olver | Graph theory and classical invariant theory[END_REF] and myself [art11], I was able to obtain a new formulation and new proof of termination of this algorithm.

Let us now introduce two differential operators, each commuting with the SL(2, C) action :

• The Cayley operator [START_REF] Peter | Classical invariant theory[END_REF], which is a bi-differential operator acting on the tensor product f(x α )g(x β ) of two complex analytic functions :

Ω αβ f(x α )g(x β ) := ∂f ∂x α ∂g ∂y β - ∂f ∂y α ∂g ∂x β , x α := (x α , y α ), x β := (x β , y β ).
• The polarization operator acting on a complex analytic function f(x α ) :

σ α (f(x α )) = x ∂f ∂x α + y ∂f ∂y α .
Transvectant operation can be rewriting using those differential operators : Lemma 3.2.1. Given two binary forms f ∈ S n and g ∈ S p , their transvectant of index 0 ≤ r ≤ min(n, p) is given by (f,

g) r := Ω r αβ σ n-r α σ p-r β f(x α )g(x β ) . It is zero if r > min(n, p).
From this, we deduce a symbol operator which defines the Clebsch-Gordan projector π r associated to an index r transvectant (see Subsection 1.3.1), given by :

Ω r αβ σ n-r α σ p-r β ,
and such a monomial will be represented by the colored directed graph (colored digraph) :

α β r
where the atom α (resp. β) is colored by S n (resp. S p ).

More generally, any monomial 

φ D = Ω w 1 αβ • • • Ω w s γ σ n α -w 1 α σ n β -w 1 β • • • σ n γ -w s γ σ n -w s (3.
M = φ D (f(x α )g(x β ) • • • l(x γ )h(x )) ∈ S k , k = n α + n β + • • • + n γ + n -2(w 1 + • • • + w s )
were each f(x α ), . . . , h(x ) is called an atom of M.

Note that such a molecular covariant is zero if one weight is larger than min(n α , . . . , n ), and, following Gordan [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF], we define : 

D := Ω βα Ω 2 βγ σ 5 α σ 2 β σ 5 γ . For any product f(x α )g(x β )h(x α ) ∈ S 6 ⊗ S 5 ⊗ S 7
, we obtain the molecular covariant

g β h γ f α 2 which is of grade 2.
The following result is known as the first fundamental theorem for binary forms [START_REF] Joseph | The invariant theory of binary forms[END_REF][START_REF] Peter | Classical invariant theory[END_REF] and define an (infinite) family of generators for Cov(V). Theorem 3.2.5. Given a space V = S n 1 ⊕ • • • ⊕ S n s of binary forms, the covariant algebra Cov(V) is generated by the (infinite) family of molecular covariants.

For the specific case of a covariant algebra Cov(S n ), we thus have to consider molecular covariants where each atom is the same binary form f ∈ S n , so we have : Corollary 3.2.6. The covariant algebra Cov(S n ) is generated by the (infinite) family of molecular covariants of maximum grade n. Such a result is the starting point of Gordan's algorithm for the covariant algebra Cov(S n ), as we only have to construct family of covariants from grade 2 up to grade n, which is the end point of the algorithm. Details are given in [art11], and we only propose here the final algorithm.

First recall that, for any family of covariants A = { f 1 , . . . , f p } ⊂ Cov(S n ) and B = { g 1 , . . . , g q } ⊂ Cov(S n ), we can obtain a family of covariants C(A, B) deduced from the irreducible solutions of the Diophantine system S(A, B) given by (3.2). Algorithm 3.2.7 (Gordan's algorithm [art11]). Take S n to be 'a' space of nth degree binary forms and define

H 2k := (f, f) 2k ∈ S 2n-4k , A 0 := { f } , f ∈ S n .
From k = 1 to n/2 -1 do one of the following :

1. if n > 4k, that is H 2k ∈ S p with p > n, then define B k-1 := { H 2k } and A k := C(A k-1 , B k-1 ) ; 2. if n = 4k then define B k-1 := {H 2k } and A k := C(A k-1 , B k-1 ) ∪ { ∆ }, where ∆ is the invariant ∆ := f f f n 2 n 2 n 2 3. if n < 4k, that is H 2k ∈ S p with p < n, we suppose already known a covariant basis B k-1 of S 2n-4k . Then we define A k := C(A k-1 , B k-1
).

Last step Depending on n's parity :

1. if n = 2q is even then an integrity basis is given by A

q-1 ∪ { (f, f) n } ; 2. if n = 2q + 1 then define B q-1 := { H 2q } ⊂ S 2
and an integrity basis is given by C(A q-1 , B q-1 ) ∪ { H 2q , H 2q 2 }.

Integrity bases for binary nonic and binary decimic covariant algebras

As new results were obtained by Popoviciu-Brouwer [START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Andries | The invariants of the binary nonic[END_REF] about explicit integrity bases for the invariant algebras Inv(S 9 ) and Inv(S 10 ), the question about integrity bases of the associated covariant algebras was only known as a conjecture. I summarize here how we 'get rid' of that conjecture, while all details can be found in [art9]. Note that the simple application of Algorithm 3.2.7 was not enough as the number of solutions of the different diophantine equations was very big. So, we also had to use techniques coming from Cohen-Macaulayness and degree's bound obtained from a homogeneous system of parameters (see Subsection 1.3.2). Let us first explain the main ideas, before we give some technical details.

(1) At each step of Algorithm 3.2.7 for simple covariant algebra, we only focus on the Diophantine equations (and not the computation of the associated binary forms). From this, we obtain all the degrees and the orders of a finite integrity basis. (2) We use a theoretical bound on the order of generators, obtained from Lemma 3.3.1, and we can eliminate some solutions from previous Diophantine equations. [START_REF] Frank | Lectures on lie groups[END_REF] From Cohen-Macaulayness of mth order covariants Cov m (S n ) and already known degrees of a homogeneous system of parameters for the invariant algebras Inv(S n ) (n = 9, 10), we deduce a degree bound for generators (see Corollary 1.3.12). (4) From points (1) to (3), we deduce all the couples (degrees,orders) of finite integrity bases for Cov(S n ), but we do not compute the covariants from the associated Diophantine solutions. Instead, we obtain a minimal integrity basis from Olver's algorithm (see [START_REF] Peter | Classical invariant theory[END_REF] and [START_REF] Lercier | Hyperelliptic curves and their invariants : geometric, arithmetic and algorithmic aspects[END_REF] for an implementation), which produces a minimal generating set by increasing degree, using iterated transvection operations. Now, let us give the main theoretical results we need to use for this approach. First recall that, for any linear representation (V, SL(2, C)) of a space V of binary forms, there is a natural bi-graduation of the covariant algebra Cov(V) using the degree and the order of a covariant (see Subsection 1.

3.1).

There is now an important upper-bound on the order of generators. For every integer n, take first λ to be the maximal integer such that n = 2 λ + ν and define

λ n := (λ -1)2 λ + ν(λ + 1) + 2.
(3.4)

Then we have [START_REF] Hilton | The algebra of invariants[END_REF] :

Lemma 3.3.1.
For every space V = s i=0 S n i (n 0 . . . n s ) of binary forms, the covariant algebra Cov(V) is generated by covariants of maximum order λ n s .

As a corollary, the covariant algebra Cov(S 9 ) (resp. Cov(S 10 )) is generated by covariants of maximum order 22 (resp. 26).

Take now M to be a finitely generated graded R-module and take θ 1 , . . . , θ s to be a homogeneous system of parameters for R. When the module M is Cohen-Macaulay (see Subsection 1.3.2), we know that M is a free C[θ 1 , . . . , θ s ]-module. Thus there exists m 1 , . . . , m p ∈ M such that a Hironaka decomposition of M is

M = m 1 C[θ 1 , . . . , θ s ] ⊕ . . . ⊕ m p C[θ 1 , . . . , θ s ] . (3.5)
For a covariant algebra Cov(V), let us observe that for every integer m > 0, the space Cov m (V) of m-th order covariants is an Inv(V)-module.

We have an important result due to Van Den Bergh [START_REF] Van Den Bergh | Cohen-Macaulayness of modules of covariants[END_REF][START_REF] Van Den Bergh | Modules of covariants[END_REF]. For every integer n, let us define

σ n :=      (n + 1) 2 4 if n is odd , n(n + 2) 4 otherwise .
Taking now V to be the space of binary forms s i=0 S n i and letting σ V be ∑ s i=0 σ n i , we can state the following. Theorem 3.3.2. For every integer m < σ V -2, the Inv(V)-module Cov m (V) of m-th order covariants is Cohen-Macaulay.

As a corollary, the Inv(S 9 )-module Cov m (S 9 ) is Cohen-Macaulay for every integer m < 25 and the Inv(S 10 )-module Cov m (S 10 ) is Cohen-Macaulay for every integer m < 30. We finally have some known results about homogeneous system of parameters for binary nonic and binary decimic invariant algebras [START_REF] Brouwer | The invariants of the binary decimic[END_REF][START_REF] Andries | The invariants of the binary nonic[END_REF]44] 

Chapitre 4 Reconstruction problem for tensorial SO(3, R) representations

Tensorial SO(3) representations naturally occurs in continuum mechanics, where we introduce order 3 tensors (in piezoelectricty), order 4 tensors (in linear elasticity), and so on. The idea is to try to use small order tensors (usually up to 2), or tensors with geometrical information (like to encode the anisotropy) so the mechanical model will be simplified. Such tensors are said to be structural tensors in the mechanical community [START_REF] Boehler | A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy[END_REF][START_REF] Liu | On representations of anisotropic invariants[END_REF][START_REF] Man | Remarks on isotropic extension of anisotropic constitutive functions via structural tensors[END_REF]. The purpose here is to make clear the mathematical framework of such problems, leading to questions about decomposition (not necessary linear) and equivariant reconstruction (Definition 4.0.2). In a work done with Boris Kolev, Boris and Rodrigue Desmorat [art7], we introduced the harmonic product (Definition 4.1.2) so to obtain intrinsic equivariant reconstruction formulae for harmonic tensors. When applied to the space of fourth order harmonic tensors, same work [art7] leads to explicit equivariant reconstruction formulae using second order covariants, in the only possible cases, such as the transversely isotropic case ([O(2)] isotropy, in Theorem 4.3.1), and the orthotropic case ([D 2 ] isotropy, in Theorem 4.3.3). All these results could be introduced in the framework of continuum mechanics, as new insight was proposed for damage crack model [art6].

Let us now provide the following two definitions.

Definition 4.0.1 (Decomposition). Let T be some nth order tensor. A decomposition of T into other tensors (possibly scalars)

T k ∈ T n k (R 3 ) (k = 1, . . . , N) is a mapping F : (T 1 , . . . , T N ) → T = F (T 1 , . . . , T N ).
The decomposition is equivariant if F is an equivariant mapping, when considering the standard representations of SO(3, R).

Definition 4.0.2 (Reconstruction). Given a decomposition

T = F (T 1 , . . . , T N )
of a tensor T into other tensors (possibly scalar), a reconstruction of T is a section S of F . The reconstruction is equivariant if both F and S are equivariant mappings.

Note here that for an equivariant reconstruction, all T k = T k (T) are covariant tensors (or invariants if there are scalars). A first equivariant reconstruction can be obtained via the harmonic components deduced from the harmonic decomposition (see Subsection 1.4.1). To go one step further and try non-linear equivariant reconstruction, we need to introduce new operations, such as the harmonic product of harmonic tensors (see Definition 4.1.2 below).

When applied to elasticity, we address the question of reconstruction using only covariants up to order 2, all summarized in Section 4.3, after we make clear in Section 4.2 some geometric obstruction about symmetry classes of such tensorial reconstructions.

Harmonic product

A simple observation here is that, from a theoretical point of view, harmonic tensors and binary forms are isomorphic. Obviously, any product of two binary form is another binary form, but a tensor product of harmonic tensors is not a harmonic tensor. To overcome this problem, we need to build an equivariant projection of tensor products into a space of harmonic tensors. This will be done using total symmetrization of the tensor product, denoted , and an explicit harmonic decomposition of the spaces of totally symmetric tensors. This was in fact initiated in the work of Kanatani [START_REF] Kanatani | Distribution of directional data and fabric tensors[END_REF].

First of all, the harmonic decomposition of the space S n (k 3 ) is given by [START_REF] Sternberg | Group theory and physics[END_REF] S n (k

3 ) = H n (k 3 ) ⊕ H n-2 (k 3 ) ⊕ • • • ⊕ H n-2r (k 3 ), r = [n/2].
More precisely, we have [art7] :

Proposition 4.1.1. Every totally symmetric tensor S ∈ S n (k 3 ) of order n can be decomposed uniquely as

S = H 0 + q H 1 + • • • + q r-1 H r-1 + q r H r ,
where H k is a harmonic tensor of order n -2k and q k means the symmetrized tensorial product of k copies of the Euclidean quadratic form q. The harmonic part (S) 0 := H 0 is the orthogonal projection of S onto H n (k 3 ).

An explicit expression of such a decomposition can be obtained recursively as follows. Let first define

H r :=      1 2r + 1 tr r S, if n is even, 3 2r + 3 tr r S, if n is odd,
which is a scalar for even n or a vector for odd n. Then we have :

H k = µ(k) n! (n -2k)! tr k S - r ∑ j=k+1 q j H j , with µ(k) := (2n -4k + 1)!(n -k)! (2n -2k + 1)!k!(n -2k)! ,
which leads to H 0 after r iterations. Note that in this equation, tr k S -∑ r j=k+1 q j H j is the orthogonal projection of tr k S on H n-2k (k 3 ). We finally have Definition 4.1.2 (Harmonic product of harmonic tensors). Let H 1 ∈ H n 1 (k 3 ) and H 2 ∈ H n 2 (k 3 ) be two harmonic tensors with n 1 , n 2 two non-negative integers. Then the harmonic product between H 1 and H 2 is defined to be

H 1 * H 2 := (H 1 H 2 ) 0 .
Example 4.1.3 (Harmonic product of two vectors). For two vectors v 1 , v 2 ∈ H 1 (k 3 ), we get

v 1 * v 2 = 1 2 (v 1 ⊗ v 2 + v 2 ⊗ v 1 ) - 1 3 (v 1 • v 2 )q.
Example 4.1.4 (Harmonic product of two second order harmonic tensors). For two second order harmonic tensors h 1 , h 2 ∈ H 2 (k 3 ), we get

h 1 * h 2 = h 1 h 2 - 2 7 q (h 1 h 2 + h 2 h 1 ) + 2 35 tr(h 1 h 2 ) q q.

Obstruction to an equivariant reconstruction

Let us now consider the standard SO(3, R) representations on tensor spaces T n (R 3 ), for non-negative integers n. Any equivariant reconstruction of a tensor has consequences on symmetry groups, more precisely [art7] : Lemma 4.2.1. Consider an equivariant decomposition T = F (T 1 , . . . , T N ) and suppose that there exists an equivariant reconstruction S, so that T k are covariant tensors. Then

G T = k G T k , (4.1) 
where G A is the symmetry group of the tensor A.

According to Lemma 4.2.1, the existence of an equivariant reconstruction associated to an equivariant decomposition

T = F (κ 1 (T), . . . , κ N (T))
requires some conditions on the symmetry groups of the involved covariants T k = κ k (T). For a decomposition involving symmetric second-order covariant tensors, we have the following result (for details on closed subgroups of SO(3, R), see [art5, 73] for instance).

Corollary 4.2.2. If T = F (T 1 , . . . , T N ) is an equivariant decomposition of T into second-order symmetric covariant tensors T k , then [G T ] ∈ { [1], [Z 2 ], [D 2 ], [O(2)], [SO(3, R)] } ,
where [H] means the conjugacy class of a subgroup H ⊂ SO(3, R).

Reconstructions of elasticity tensors by means of second order covariants

The problem of an equivariant reconstruction of elasticity tensors using second order tensors is important as it can lead to a simpler model, compared to the one using a fourth order tensor. Such a problem is closely related to the so-called isotropic extension of anisotropic constitutive functions via structural tensors developed by Boehler [START_REF] Boehler | A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy[END_REF] and Liu [START_REF] Liu | On representations of anisotropic invariants[END_REF] independently (see also [START_REF] Boehler | Introduction to the invariant formulation of anisotropic constitutive equations[END_REF][START_REF] Man | Remarks on isotropic extension of anisotropic constitutive functions via structural tensors[END_REF]). Now, Corollary 4.2.2 implies, in particular, that there is no equivariant reconstruction by means of second order symmetric covariant tensors of a fourth order harmonic tensor H (and thus of the elasticity tensor E) belonging to the cubic, the trigonal or the tetragonal symmetry classes (see Subsection 1.4.2 for definition of these classes). Such restriction was already known by the mechanical community [START_REF] Liu | On representations of anisotropic invariants[END_REF].

In this section, we provide explicit equivariant reconstructions for transverse-isotropic and orthotropic fourth order harmonic tensors. Note however that to overcome the geometrical constraints in the trigonal and in the tetragonal cases, we establish for these symmetry classes reconstruction formulas by means of second order covariants up to a single cubic fourth order covariant remainder [art7, Section 6].

Let us now define the following second-order (polynomial) covariants introduced in [17] :

d 2 := tr 13 H 2 , d 3 := tr 13 H 3 , d 4 := d 2 2 , d 5 := d 2 (H : d 2 ), d 6 := d 3 2 , d 7 := d 2 2 (H : d 2 ), d 8 := d 2 2 (H 2 d 2 ), d 9 := d 2 2 (Hd 2 2 ), d 10 := d 2 2 (H 2 d 2 2 ), (4.2) 
where H 2 := H : H and H 3 := H : H 2 . We also make use of the following invariants :

J k := tr d k , k = 2, . . . , 10, (4.3) 
which constitute an integrity basis for H 4 (R 3 ) (see [17]).

The transversely isotropic class

A harmonic tensor H ∈ H 4 (R 3 ) is transversely isotropic ([O (2) 
] isotropy) if and only if there exists g ∈ SO(3, R) such that H = g H 0 where H 0 has the normal matrix form, in Kelvin representation (see Subsection 1.4.2) :

H 0 =         3δ δ -4δ 0 0 0 δ 3δ -4δ 0 0 0 -4δ -4δ 8δ 0 0 0 0 0 0 -8δ 0 0 0 0 0 0 -8δ 0 0 0 0 0 0 2δ        
, where δ = 0 and [5, Section 5.2]

J 2 = 0, δ = 7J 3 18J 2 .
Thus, by a direct computation of the second order covariant d 2 (see Eq. (4.2)) and its deviatoric part d 2 , we get the following result :

Theorem 4.3.1. For any transversely isotropic fourth-order harmonic tensor H, we have

H = 63 25 1 J 3 (H) d 2 (H) * d 2 (H).

The orthotropic class

A harmonic tensor H ∈ H 4 (R 3 ) is orthotropic ([D 2
] isotropy) if and only if there exists g ∈ SO(3, R) such that H = g H 0 where H 0 has the following normal matrix form, in Kelvin representation :

H 0 =         λ 2 + λ 3 -λ 3 -λ 2 0 0 0 -λ 3 λ 3 + λ 1 -λ 1 0 0 0 -λ 2 -λ 1 λ 2 + λ 1 0 0 0 0 0 0 -2 λ 1 0 0 0 0 0 0 -2 λ 2 0 0 0 0 0 0 -2 λ 3         , ( 4.4) 
where λ 1 , λ 2 , λ 3 are three distinct real numbers. Note that this normal form is however not unique : any permutation of the λ k provides an alternative normal form, but this is the only ambiguity. It is therefore useful to introduce the three elementary symmetric functions

σ 1 := λ 1 + λ 2 + λ 3 , σ 2 := λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 , σ 3 := λ 1 λ 2 λ 3 (4.5) 
which are independent of a particular normal form, as being invariant under any permutation of the λ i . Moreover, it was shown in [5, Section 5.5] that the discriminant

∆ 3 := (λ 2 -λ 1 ) 2 (λ 2 -λ 3 ) 2 (λ 3 -λ 1 ) 2 ,
which is strictly positive, belong to the invariant algebra R[H 4 ] SO (3,R) , and that the σ k are themselves in the field of rational invariants R(H 4 ) SO (3,R) , with explicit expression given in [art7]. Consider now the matrix

λ λ λ 0 :=   λ 1 0 0 0 λ 2 0 0 0 λ 3   .
Since both H 0 and λ λ λ 0 have the same symmetry group, namely D 2 , the following definition λ λ λ(H) := g λ λ λ 0 , if H = g H 0 does not depend on the rotation g and thus defines a covariant mapping from the orthotropic stratum Σ [D 2 ] in H 4 (R 3 ) to the space of symmetric second order tensors. We have then : Lemma 4.3.2. Let H be an orthotropic fourth-order harmonic tensor. Then, the deviatoric part λ λ λ (H) = λ λ λ(H) -1/3 tr(λ λ λ(H))q of the second order covariant λ λ λ(H) can be written as

λ λ λ (H) = 1 8∆ 3 α 2 d 2 (H) + α 3 d 3 (H) -54σ 3 d 4 (H) + 11σ 2 d 5 (H) (4.6) 
where

α 2 := 2(112σ 2 1 σ 3 + 21σ 1 σ 2 2 -270σ 2 σ 3 ), α 3 := 8(14σ 1 σ 3 -11σ 2 1 σ 2 + 15σ 2 2 ).
Let us now introduce the positive invariant

σ eq := σ 2 1 -3σ 2 ,
and the Lode invariant defined by

L := 1 σ 3 eq σ 3 1 - 9 2 σ 1 σ 2 + 27 2 σ 3 ∈ ] -1, 1[.
With these notations, we obtain the following result [art7] :

Theorem 4.3.3. For any orthotropic fourth-order harmonic tensor H, we have

H = h 1 λ λ λ (H) * λ λ λ (H) + 2h 2 λ λ λ (H) * (λ λ λ (H) 2 ) + h 3 (λ λ λ (H) 2 ) * (λ λ λ (H) 2 ) , (4.7) 
where λ λ λ (H) is defined by (4.6) and the three invariants h k are given by

h 1 := 5σ 1 + 7Lσ eq 2(1 -L 2 )σ 2 eq , h 2 := - 3(5Lσ 1 + 7σ eq ) 2(1 -L 2 )σ 3 eq , h 3 := 9(5σ 1 + 7Lσ eq ) 2(1 -L 2 )σ 4 eq .
Both Theorems 4.3.1 and 4.3.3 produce formulae for equivariant reconstruction with second order covariants of any fourth order harmonic tensor belonging to transversely isotropic and orthotropic class. Other classes cannot have similar reconstruction formulae as a consequence of geometric obstruction (Corollary 4.2.2). Nevertheless, it was possible to obtain equivariant reconstruction for the tetragonal ([D 4 ] isotropy) and the trigonal class ([D 3 ] isotropy), given by [art7, Theorems 6.4, 6.9]. In such cases, there is an indeterminacy that results in the appearance of a cubic remainder, coming from the geometry and the link between groups D 3 , D 4 and O. Definition 5.1.1 (Type W covariant). Given two representations (V, ρ) and (W, σ) of a group G, we define Pol(V, W) to be the space of polynomial mappings p from V to W (i.e. each component function is a polynomial expression of the components of v ∈ V, and such in any basis). A polynomial covariant of V of type W is a G-equivariant polynomial mapping p : V → W, in the sense that

p(ρ(g)v) = σ(g) (p(v)) , ∀v ∈ W, ∀g ∈ G.
The problem with this definition is that the set Pol(V, W) G of polynomial covariant of V of type W is only a vector space and not an algebra. Using the natural linear representation of G on V ⊕ W * , induced by ρ and , we extend this definition as follows, so to obtain an finitely generated algebra for compact (or linearly reductive) Lie groups [START_REF] Hilbert | Theory of algebraic invariants[END_REF]. Definition 5.1.2. Let (V, ρ) and (W, ) be finite dimensional representations of a group G. The covariant algebra of V of type W, noted Cov(V, W), is defined as the invariant algebra

R[V ⊕ W * ] G ,
where W * is the dual vector space of W. Remark 5.1.3. We can define similarly the contravariant algebra of V of type W as R[V ⊕ W] G . However, if W and W * are equivalent representations (for instance if the representation W is unitary), we do not have to distinguish between these two algebras which are canonically isomorphic.

Note that the covariant algebra Cov(V, W) has a natural bi-graduation. It is the direct sum of the finite dimensional vector spaces Cov d,k (V, W) of bi-homogeneous polynomial p(v, ω) :

• of total degree d in v ∈ V, called the degree of the covariant ;

• of total degree k in ω ∈ W * , called the order of the covariant. Furthermore, the subspace of covariants of order 0 is identical to the invariant algebra of V.

Remark 5.1.4. The vector space of polynomial covariants Pol(V, W) G can thus be identified with

Cov 1 (V, W) = +∞ k=0 Cov k,1 (V, W),
the vector space of first-order covariants.

In this memoir, we essentially focus on the case when G = SO(3, R) and W is the Euclidean space R 3 (in which case, we do not have to make any difference between the covariant and the contravariant algebras), and we set

Cov(V) := R[V ⊕ R 3 ] SO(3,R) .
An element p ∈ Cov(V) is thus a polynomial which can be written as

p(v, x) = ∑ i,j,k p ijk (v)x i y j z k , where each coefficient p ijk (v) is a polynomial function of v satisfying p(ρ(g)v, x) = p(v, g -1 x),
for all v ∈ V, x ∈ R 3 and g ∈ SO(3, R). As a consequence, any homogeneous polynomial covariant of v ∈ V of degree d and of type S k (R 3 ) can thus be identified with a polynomial in Cov d,k (V).

Covariant algebra of tensors towards binary forms

We now focus on covariant algebras R[V ⊕ R 3 ] SO(3,R) (and its complex counterpart), where we suppose V is given by some SO(3, R) tensorial representation. The question is to obtain an explicit integrity basis of such an algebra. In fact, in the case of irreducible representations (see section 1.4), it is possible to deduce an integrity basis of Cov(H n (R 3 )) from the one of Cov(S 2n ).

First, let us define an explicit equivariant isomorphism between the spaces (H n (C 3 ), SO(3, C)) and (S 2n , SL(2, C)), theoretically given by Lemma 1.4.4. In fact this isomorphism derives from an equivariant mapping introduced first in Cartan's theory of spinors going back to 1913 (see [START_REF] Cartan | The theory of spinors[END_REF]Chapter 3]) and rediscovered later by Backus [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF]. More precisely, let us introduce the Cartan map

φ : C 2 → sl(2, C), ξ ξ ξ → ξ ξ ξ ξ ξ ξ ω = -uv u 2 -v 2 uv , ( 5.1) 
where

ξ ξ ξ = u v , ξ ξ ξ ω = -v u ,
and ξ ξ ξ ω means the covariant version of the vector ξ ξ ξ, defined using the determinant ω on C 2 (a nondegenerate bilinear form). The main property of this mapping is that it is SL(2, C)equivariant as we have :

φ(γξ ξ ξ) = Ad γ φ(ξ ξ ξ) = γ -1 φ(ξ ξ ξ)γ, ∀γ ∈ SL(2, C).
Choosing the following basis In this basis, the Cartan map (5.1) writes 

0 1 -1 0 , 0 i i 0 , i 0 
φ : C 2 → C 3 , (u, v) → x = u 2 + v 2 2 , y = u 2 -v 2 2i , z = iuv . ( 5 
(φ * (h))(u, v) := h u 2 + v 2 2 , u 2 -v 2 2i , iuv .
It is an SL(2, C)-equivariant isomorphism.

This equivariant isomorphism produces an explicit isomorphism between the covariant algebras C[H n (C 3 ) ⊕ C 3 ] SO (3,C) and C[S 2n ⊕ S 2 ] SL (2,C) . It is now possible to directly deduce the algebra C[S 2n ⊕ S 2 ] SL(2,C) from the one of Cov(S 2n ), using the covariant linear mapping

ς : Cov(S 2n ) → C[S 2n ⊕ S 2 ] SL(2,C) , h → ς(h) := 1 (r!) 2 (h, w r ) 2r , w ∈ S 2
(5.3) so that we have [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] :

The r-contraction of two tensors is an O(3, k)-equivariant mapping T p (k 3 ) × T q (k 3 ) → T p+q-2r (k 3 ),

and for n = p = q, the n-contraction corresponds to the canonical scalar product on T n (k 3 ).

Definition 5.3.3 (Symmetric r-contraction). The symmetric r-contraction between two totally symmetric tensors S 1 ∈ S p (k 3 ) and S 2 ∈ S q (k 3 ) is defined as

(S 1 (r) • S 2 ) s .
Remark 5.3.4. The polynomial counterpart of the symmetric r-contraction is obtained as follows. If S 1 , S 2 correspond respectively to the polynomials p 1 , p 2 , then, (S 1 (r)

• S 2 ) s corresponds to the polynomial

p = (p -r)! p! (q -r)! q! ∑ k 1 +k 2 +k 3 =r r! k 1 !k 2 !k 3 ! ∂ r p 1 ∂x k 1 ∂y k 2 ∂z k 3 ∂ r p 2 ∂x k 1 ∂y k 2 ∂z k 3 .
The third covariant operation is the generalized cross product, which extends the standard cross product between vectors of k 3 to symmetric tensors of arbitrary order. Definition 5.3.5 (Generalized cross product [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]). The generalized cross product (or Lie-Poisson product) between two totally symmetric tensors S 1 ∈ S p (k 3 ) and S 2 ∈ S q (k 3 ) is defined as

S 1 × S 2 := -S 1 • ε ε ε • S 2 s ∈ S p+q-1 (k 3 ).
where ε ε ε is the Levi-Civita tensor. In any orthonormal basis (e 1 , e 2 , e 3 ), we get

(S 1 × S 2 ) i 1 •••i p+q-1 := (ε i 1 jk S 1 ji 2 •••i p S 2 ki p+1 •••i p+q-1
) s , ε ijk := det(e i , e j , e k ). Remark 5.3.6. The generalized cross product is skew-symmetric :

S 2 × S 1 = -S 1 × S 2 .
Its polynomial counterpart is (up to a scaling factor) the Lie-Poisson bracket on so * (3, k), the dual of the Lie algebra of the rotation group (isomorphic to k 3 ). More precisely, if p 1 , p 2 are the polynomial representatives of S 1 , S 2 , then the polynomial representative of S 1 × S 2 is

1 pq {p 1 , p 2 } LP = 1 pq det(x, ∇p 1 , ∇p 2 ).
This product is equivariant relative to the rotation group SO(3, k) but not to the full orthogonal group O(3, k), since in that case :

(ρ p (g)S 1 ) × (ρ q (g)S 2 ) = (det g) ρ p+q-1 (g)(S 1 × S 2 ) .

will focus on polynomial covariants of order one and two of a vector v ∈ V and relate the symmetry class of Cov 1 (v) and Cov 2 (v) with their respective dimension. First, we need to extend the concept of isotropy classes to a finite or infinite family of vectors belonging to different (or same) representations of G. Definition 6.1.1. Let F be a finite or infinite family of vectors belonging to different (or same) representations of G. We define the isotropy group of F as the subgroup

G F := v∈F G v .
The symmetry class of F is the conjugacy class of G F in G. Remark 6.1.2. Note that if F is a vector space and (v i ) i∈I is any generating set of F , then

G F = i∈I G v i .
In particular, if (v 1 , . . . , v p ) is a basis of F , then

G F = p j=1 G v j .
Now, from section 2.2 the possible isotropy classes for the space Cov 1 (v) are 

Characterization of the isotropy class of an elasticity tensor

We now state a theorem which characterizes, using polynomial covariants, the isotropy class of an elasticity tensor, so that it produces explicit algebraic equations of each isotropy sratum. This result comes from, among other things, many lemmas and theorems established for the characterization of a fourth order harmonic tensor using an integrity basis of its covariant algebra (see Theorem 5.4.1). All technical details are given in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]. Recall finally that the generalized cross product is given by Definition 5.3.5 and that SO(3, R) subgroups are detailed in [art5, 59]. 3. Let B := (u 1 , u 2 , u 3 ) be the associated orthonormal basis of R 3 .

4. Define g as the rotation given by

g =   u 1 • e 1 u 1 • e 2 u 1 • e 3 u 2 • e 1 u 2 • e 2 u 2 • e 3 u 3 • e 1 u 3 • e 2 u 3 • e 3  
and then

E := g E F o Isotropic E isotrope ([SO(3, R)]) E cubic ([O]) T. Iso. Compute E Using 6.2.2 E trigonal ([D 3 ]) • E transversely isotropic ([O(2)]) E tetragonal ([D 4 ]
)

Ortho E orthotropic ([D 2 ]) Mono F m E monoclinic ([Z 2 ]
)

Triclinic E triclinic ([1]
) 

d 2 = 0 d 2 = 0 d 2 = 0 E 2 1123 + E 2 1113 = 0 E 2 1123 + E 2 1113 = 0 E 1212 = (E 1111 -E 1122 )/

Rational invariants and weak separating sets

Even though effective techniques are known to obtain minimal integrity bases of some tensor spaces (or spaces of binary forms), the manipulation of such bases remains difficult in practice. Let us recall for example that the space of elasticity tensors has an integrity basis of 297 invariants, and the isotropic strata equations were obtained, in a very condensed form, using polynomial covariants instead of this integrity basis. Similarly, an integrity basis of the algebra of invariants of binary forms of degree 10 (and thus of H 5 (C 3 )) is composed of 106 invariants (with degree up to 21).

Recall now that another question addressed about the orbit space is the one of separating the orbits. In the real case, the invariant algebra has such a property, but to reduce the problem, it may be interesting to look for a generating family of a separating algebra, introduced by Kemper and Derksen [START_REF] Derksen | Computational invariant theory, enlarged[END_REF]Definition 2.3.8] and further developed by Dufresne [START_REF] Dufresne | Separating invariants and finite reflection groups[END_REF][START_REF] Dufresne | The cohen-macaulay property of separating invariants of finite groups[END_REF][START_REF] Sonia | Separating invariants[END_REF]. Note here that it can also be defined in the complex case. Informally speaking, such an algebra can separate as much as the invariant algebra. Nevertheless, we couldn't get access to an effective algorithm to determine a generating family of such an algebra, even if some polarization techniques exist [START_REF] Draisma | Polarization of separating invariants[END_REF]. It also turns out that this notion of separating algebra has been extensively studied by the mechanical community [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF][START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Wang | A new representation theorem for isotropic functions : An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions. II. Vector-valued isotropic functions, symmetric ten tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions[END_REF], before the work of Derksen-Kemper and al., but only within the specific framework of tensors of order at most 2. For instance, it has been established that a minimal separating family for the space (4S 2 (R 3 ), SO(3, R)) (four second order symmetric tensors) is composed of 40 polynomial invariants [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF][START_REF] Pennisi | On the irreducibility of professor gf smith's representations for isotropic functions[END_REF], which remains not obvious to manipulate in practice, going up to 98 for 6 second order symmetric tensors.

Passing through rational invariants then makes it possible to preserve the property of separation, but by considering only generic orbits (see Subsection 1.3.3). In the case of linear representations of SO(3, C), and thus linear representations of SL(2, C), we know then that the field of invariant is a purely transcendental extension of C [START_REF] Pi Katsylo | Rationality of fields of invariants of reducible representations of sl2[END_REF]. As a consequence, there exists, at least theoretically a separating family of cardinal the dimension of the generic stratum. This drastically reduces the number of separators, even if this separation applies only to generic vectors. Nevertheless, it remains to explicitly determine such a generating family, which we have been able to obtain for the space of elasticity tensors, while it appears that such a family is also a generating family in the real case.

I will now summarize the essence of what allowed us to achieve this result. In Section 7.1 is defined what is meant by a separating set, different from the one introduced by Kemper-Derksen [START_REF] Derksen | Computational invariant theory, enlarged[END_REF], while more freedom is obtained from a weak separating set defined thereafter (Definition 7.1.3). In collaboration with Rodrigue Desmorat, Nicolas Auffray, Boris Desmorat and Boris Kolev [art4], a generating set of 6 rational invariants of C(H 4 (C 3 )) SO(3,C) (and its real part) is produced in Theorem 7.2.1. It is the tensorial counterpart of a result by Maeda [START_REF] Maeda | On the invariant field of binary octavics[END_REF] about a generating family 6 rational invariants of the field of rational invariants C(S 8 ) SL (2,C) . Finally in section 7.3, Theorem 7.3.1 gives a weak separating set of 21 polynomial invariants of the space of elasticity tensors, leading to an optimal weak separating set of 18 rational invariants, obtained in Corollary 7.3.2. We also produce another weak separating set of 19 polynomial invariants in Corollary 7.3.3, with higher degrees compare to the ones from Theorem 7.3.1. All such results are coming from [art4].

Separating sets and weak separating sets

The weaker concept of separating set, often called a functional basis in the mechanical community [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF][START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF], is formulated in invariant theory as follows, where we consider some linear representation (V, G) of a group G.

Definition 7.1.1 (Separating set). A finite set of

G-invariant functions { s 1 , . . . , s n } over V is a separating set if s i (v 1 ) = s i (v 2 ), i = 1, . . . , n =⇒ ∃g ∈ G, v 1 = gv 2 for all v 1 , v 2 ∈ V. A separating set is minimal if no proper subset of it is a separating set.
Note that this definition is very general and the functions s 1 , . . . , s n are not required to be polynomial. We now recall what is meant by a generic vector (also called vector in general position) using the Zariski topology on V, where a closed set in the Zariski topology is defined as

Z := { v ∈ V; f (v) = 0, ∀ f ∈ S }
with S is any set of polynomials in v. A remarkable fact concerning this topology is that a non-empty closed set is either the whole space or has Lebesgue measure zero [START_REF] Caron | The zero set of a polynomial[END_REF][START_REF] Pinchon | Angular parametrization of rectangular paraunitary matrices[END_REF] Such a definition means informally speaking that, the probability of a randomly chosen vector being generic is 1 and that we omit, in the results, some vectors satisfying certain algebraic relations. Note, however, that this notion of genericity is arbitrary and there is a lot of freedom in the choice of such a class of generic vectors. Finally we propose : Definition 7.1.3 (Weak separating set). Given some non-empty Zariski open set Z c ⊂ V, a finite set of G-invariant functions { s 1 , . . . , s n } over V is called a weak separating set (or a weak functional basis) if

s i (v 1 ) = s i (v 2 ), i = 1, . . . , n =⇒ ∃g ∈ G, v 1 = gv 2 . for all v 1 , v 2 ∈ Z c .
Such a notion of a weak separating set is closely related to the one of a generating family of the field of invariant (see Subsection 1.3.3). We now focus on the cases of fourth order tensors and the one of elasticity tensors.

Rational invariants of fourth order harmonic tensor

A minimal generating set of 9 generators for the invariant algebra of S 8 is known since at least 1880 (see [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF][START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF]). In 1990 [99, Theorem B], Maeda produced a system of 6 rational invariants which generate the invariant field C(S 8 ) SL(2,C) , so he obtains effective rationality of such a field, following theoretical result from Katsylo about this rationality [START_REF] Ivanovich | Rationality of the orbit spaces of irreducible representations of the group sl2[END_REF]. Now, using the pull back of the Cartan map introduced in Section 5.2, these rational invariants translate into rational invariants of C(H 4 (C 3 )) SO (3,C) , and they also remain a generating set of the real field of rational invariants R(H 4 (R 3 )) SO (3,R) .

In the following result, we have introduced the notation * k w 7 for the harmonic product of k copies of w 7 (see Section 4.1 for the harmonic product). All covariant operations used are given in Section 5.3, such as the generalized cross product. We point out, moreover, that the first-order covariant w 7 , the third-order covariant T 6 as well as the sixth-order covariant J 18 are all harmonic. All indices of polynomial covariants in the list refer to their degrees in H, and details of the proof can be found in [art4] 

Chapitre 8 Order two symmetries for tensorial representations

We already know an algorithm to obtain the isotropy stratification of any SO(3, R) or O(3, R) linear representation (see Section 1.1). From a work done with Boris Desmorat, Boris Kolev and Rodrigue Desmorat [art3, art2], optimal algebraic equations were obtained to detect order two symmetries of a given tensor, which can be related directly to its symmetry group. Note for instance that, for the space (Ela, SO(3, R)), each isotropy class can be characterized using such order two symmetries [START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF]. It should also be pointed out that plane symmetries of an elasticity tensor have a physical interpretation, as they define propagation directions of longitudinal waves [START_REF] Norris | On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes[END_REF].

A general statement is given by Theorem 8.0.2, producing algebraic equations for order two symmetries of a totally symmetric tensor of order n, both for the standard O(3, R) representation and also the twisted one. This first theorem is established in [art3] with a very technical proof, which deepens the link between totally symmetric tensors and homogeneous polynomials. The same collaboration leads in [art2] to application of those results in the case of elasticity and piezoelectricity, related to tensor spaces which are no more spaces of totally symmetric tensors.

Take now any second order element of O(3, R), given by some plane symmetry

s(ν ν ν) := q -ν ν ν ⊗ ν ν ν,
defined by a normal ν ν ν of the plane, or the corresponding symmetry axis r(ν ν ν, π) := -s(ν ν ν).

Let T ∈ T n (R 3 ) be some nth order tensor and n be the standard O(3, R) representation on T n (R 3 ) (see (1.10)) or the twisted one given by ρn (g) := det(g)ρ n (g), ∀g ∈ O(3, R).
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Chapitre 9

Espace des orbites et théorie effective des invariants

Comme illustré dans la Partie II, une majorité de mes travaux porte sur la description de l'espace des orbites associé à une représentation réelle (V, G) d'un groupe de Lie compact, ce qui nous amène aussi à considérer, par complexification, une représentation linéaire complexe d'un groupe linéairement réductif. Autour de ces questions, un point de départ peut être ce qui est énoncé par Vinberg lui même dans son article effective invariant theory [START_REF] Vinberg | Effective invariant theory[END_REF], en deux questions :

1. "Classification of the space V up to transformations in the group G."

"Description of the algebra R[V]

G of invariant polynomials in V."

Ce type de questions est globalement posé dans le cadre de la géométrie algébrique complexe, et nous souhaitons donc creuser le même type de questions dans le cas réel. Il y a donc plusieurs pistes qui restent à explorer et/ou à approfondir, ce que nous détaillons maintenant.

Stratification semi-algébrique et stratification isotropique

Comme rappelé dans la Section 1.2, les travaux de de Abud-Sartori [2] puis de Procesi-Schwarz [START_REF] Procesi | Inequalities defining orbit spaces[END_REF] ont montré qu'il y a un lien très fort entre l'algèbre des invariants R[V] G d'une représentation réelle d'un groupe de Lie compact et la structure semi-algébrique de l'espace des orbites V/G, via une matrice de Gram. De cette structure semi-algébrique, on sait alors qu'on peut en déduire une stratification associée. Il est énoncé dans [2] un résultat qui nous semble encore conjectural et que nous souhaitons donc creuser : alors π met en bijection les composantes connexes de la stratification isotropique de V et celles de la stratification semi-algébrique de Im(π). D'autres pistes sont évoquées dans [2], qui mettent en lien le rang de la matrice de Gram (voir Section 1.2) et la dimension des strates isotropiques. En fait, au cours de l'étude de l'espace (Ela, SO(3, R)) des tenseurs d'élasticité, il s'est avéré que nous avons pu établir explicitement des équations algébriques des strates isotropiques, autrement dit, on peut envisager la : Conjecture 9.1.2. Pour toute représentation linéaire réelle (V, G) d'un groupe de Lie compact, toute strate isotropique est une variété algébrique réelle. On conjecture aussi qu'il s'agit d'une variété algébrique affine.

Un exemple, plus simple que celui de l'élasticité, est aussi donné par le cas de l'espace (H 2 Pour obtenir des équations explicites, une idée consiste à suivre la même piste que celle suivie pour l'élasticité (voir Section 6.2), à savoir exploiter une base d'intégrité de l'algèbre des covariants de H 3 (R 3 ), laquelle base d'intégrité n'est pas encore connue à ce jour et reste donc à calculer, et cette conjecture peut aussi être envisagée dans le cas du groupe O(2) (pour les modèles plan en mécanique). ce que le corps des invariants C(W) Γ est une extension purement transcendantale du corps C ?

Une telle question se pose évidemment pour d'autres types de corps, mais le cadre le plus classique est celui du corps des complexes. Un cas très particulier, qui reste un mystère à ce jour, concerne le corps des invariants C(C n ) A n pour la représentation diagonale du groupe alterné A n sur l'espace C n . L'algèbre des invariants est engendrée par les fonctions symétriques élémentaires σ 1 , . . . , σ n , qui forme un système de paramètres, ainsi que δ := ∏ i<j (x jx i ).

Le corps des invariants est donné par C(σ 1 , . . . , σ n )[δ], mais on a la conjecture suivante, démontrée jusqu'à n = 5 (voir Maeda [START_REF] Maeda | Noether's problem for a5[END_REF] pour ce dernier cas) : Conjecture 9.4.1 (Noether). Pour tout entier n ≥ 1, le corps des invariants C(C n ) A n est une extension purement transcendantale de C : il existe n invariants rationnels r 1 , . . . , r n tels que C(C n ) A n = C(r 1 , . . . , r n ).

Dans les cas des représentations linéaires du groupe SL(2, C), la rationalité a été démontrée par Katsylo : d'abord pour les représentations irréductibles [START_REF] Ivanovich | Rationality of the orbit spaces of irreducible representations of the group sl2[END_REF], puis pour tout type de représentations [START_REF] Pi Katsylo | Rationality of fields of invariants of reducible representations of sl2[END_REF]. Par la suite, Maeda [START_REF] Maeda | On the invariant field of binary octavics[END_REF] a précisé ce résultat, le rendant plus constructif (même si Katsylo avait déjà proposé une approche assez constructive), et donnant une famille génératrice minimale de 6 invariants du corps C(S 8 ) SL (2,C) . Ces résultats ont pu être traduits sous forme tensorielle, et ils sont restés valables dans le cas du corps des réels. Nous souhaiterions généraliser ce résultat et construire des familles génératrices minimales explicites pour le corps des invariants R(V) SO(3,R) , pour tout espace de tenseurs V. De telles familles donnent alors naturellement des séparants génériques, et le cas de l'espace Piez = S 2 (R 3 ) ⊗ R 3 reste à traiter en mécanique des milieux continus.

Projecteurs de Clebsch-Gordan de groupes finis

Le calcul des bases d'intégrités des formes binaires s'appuie sur des opérations de transvection (voir Sous-section 1.3.1) qui s'interprètent en fait comme des projecteurs de Clebsch-Gordan. En effet, pour tout entier p, q, le transvectant d'indice r (qui se calcule explicitement par la formule (1.5)) est associé à un projecteur équivariant τ r : S p ⊗ S q -→ S p+q-2r .

Une observation faite dès les premiers temps de la théorie classique des invariants est que les covariants de formes binaires s'obtiennent tous par opérations de transvections. C'est par la suite Gordan [START_REF] Gordan | dass jede Covariante und Invariante einer Bineren Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist[END_REF] qui put obtenir un procédé de réduction de la famille génératrice (infinie) donnée par transvections et finalement donner un algorithme de calcul effectif de bases d'intégrité.

Notre idée est ainsi d'aborder ces questions des projecteurs de Clebsch-Gordan dans le cas des groupes finis, à savoir la construction effective de projecteurs équivariants

π : V 1 ⊗ V 2 -→ V 3
pour trois représentations irréductibles données d'un groupe fini. La question serait ensuite de voir dans quelle mesure les approches de Gordan, qui ramène le calcul des invariants à des problèmes d'équations entières, ne peut pas se généraliser dans ces cas. Une première étape consisterait à étudier le cas particulier des groupes de permutations, et notamment le groupe des permutations d'ordre 4, isomorphe au sous-groupe des rotations qui préservent un cube.

Chapitre 10

Applications à la mécanique

Les lois de comportements (linéaires ou non linéaires) font naturellement apparaître des espaces de tenseurs, stables par l'action naturelle de O(3, R) ou SO(3, R). Les questions géométriques sont inhérentes à la formulation de ces lois, car le principe d'indifférence matériel impose naturellement de travailler sur des objets équivariants.

Dans le cas des lois linéaires, la notion d'anisotropie est traduite par la notion de classe de symétrie (ou classe d'isotropie). Par les opérations de clips, on est maintenant en mesure de connaître simplement les classes d'isotropie d'un espace de tenseurs donné (voir Section 2.2). Une fois cette classification effectuée, il reste néanmoins un travail à faire pour déterminer, pour un tenseur donné, quelle est sa classe d'isotropie, ce qui peut être fait en travaillant sur le lien entre stratification semi-algébrique et stratification isotropique (voir Section 9.1). Alors que ce travail a été effectué dans le cas de l'élasticité [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], il reste à appliquer ces méthodes dans le cas de la piézoélectricité notamment.

Ensuite, pour toute question de classification des matériaux, comme nous l'avons déjà vu dans le cas de l'élasticité, il est nécessaire de décrire des espaces d'orbites. Notons que ces questions de classifications restent à aborder dans d'autres cas que celui de l'élasticité, notamment celui de la piézoélectricité (où nous avons aussi déterminé une base d'intégrité finie dans [START_REF] Olive | Géométrie des espaces de tenseurs, une approche effective appliquée à la mécanique des milieux continus[END_REF]). Cela a aussi été mentionné plus haut : il reste ici à effectuer un travail de simplification, en essayant par exemple d'exploiter la notion d'invariants rationnels, pour que nos résultats soient effectivement exploitables.

Les questions de géométrie des espaces de tenseurs appliquées à la mécanique des milieux continus ne se limitent pas au seul cas linéaire. En effet, sous l'impulsion de Rivlin [START_REF] Pipkin | The formulation of constitutive equations in continuum physics. I[END_REF][START_REF] Rivlin | Stress-deformation relations for isotropic materials[END_REF][START_REF] Rivlin | Collected papers of r.s. rivlin[END_REF][START_REF] Smith | Integrity bases for a symmetric tensor and a vector-the crystal classes[END_REF] dans les années 1950, il y eut un développement important de théories non-linéaires caractérisées par l'utilisation d'invariants, par exemple dans le cas des matériaux de Mooney-Rivlin [START_REF] Yibin | Nonlinear elasticity : theory and applications[END_REF][START_REF] Marsden | Mathematical foundations of elasticity[END_REF].

Dans le cas non-linéaire isotrope, l'approche consiste à postuler l'existence d'une éner-89 gie de déformation fonction des invariants du tenseur des déformations. On peut tenter de généraliser cette approche : 1) dans le cas où d'autres tenseurs interviennent dans la formulation de l'énergie (pour prendre en compte par exemple la conduction thermique ou des effets électromagnétiques,) ou 2) dans le cas de l'anisotropie. Dans toutes ces situations, la théorie dite des représentations tensorielles a été développée [12-14, 125, 147], ce qui revient à déterminer des bases d'intégrité finies d'espaces de tenseurs d'ordres inférieurs ou égaux à deux. L'utilisation de tenseurs de structure [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF], pour modéliser des situations anisotropes, se limite seulement à certaines classes d'isotropie [art7] dans le cas où ces tenseurs sont d'ordre 2 : il serait ainsi intéressant d'exploiter d'autres approches directement issues de la théorie des invariants, qui consistent à déterminer une base d'intégrité associée au sous-groupe caractérisant l'anisotropie étudiée, puis de comparer les deux méthodes. Enfin, les approches géométriques interviennent dans le lien existant entre groupes de symétries et lois de conservation [START_REF] Olver | Conservation laws in elasticity. I. General results[END_REF][START_REF] Olver | Conservation laws in continuum mechanics, Nonclassical continuum mechanics[END_REF][START_REF] Peter | Applications of lie groups to differential equations[END_REF]. Il s'agit d'un champ d'étude très actif, appliqué notamment aux cas non-linéaires [START_REF] Af Cheviakov | Symmetry properties of two-dimensional ciarlet-mooney-rivlin constitutive models in nonlinear elastodynamics[END_REF][START_REF] Cheviakov | Fully non-linear wave models in fiber-reinforced anisotropic incompressible hyperelastic solids[END_REF][START_REF] Ganghoffer | Relevance of symmetry methods in mechanics of materials[END_REF][START_REF] Magnenet | A new methodology for determining the mechanical behavior of polymers exploiting lie symmetries : application to a stick-like material[END_REF][START_REF] Magnenet | Continuous symmetries and constitutive laws of dissipative materials within a thermodynamic framework of relaxation : Part i : Formal aspects[END_REF], champ dans lequel mes compétences et mes connaissances en théorie des invariants, d'un point de vue effectif, pourraient intervenir de façon significative. Le Laboratoire de Mécanique et Technologie (LMT), dont je fais maintenant partie, ouvre aussi plusieurs perspectives de recherches. Pour les questions d'identification de paramètres, des collaborations peuvent s'envisager sur des projets dans les bio-matériaux, où des modèles anisotropes linéaires sont mis en jeu, avec des thématiques portées par Christophe Cluzel (LMT). Ensuite, la formulation géométrique de la mécanique (en théorie des coques et en théorie des plaques notamment) nécessite de travailler sur des concepts de géométrie différentielle, le but étant de proposer des lois intrinsèques et de définir proprement les objets mécaniques utilisés dans les modèles. De telles approches, mettant l'accent sur la géométrie différentielle, sont aussi initiées dans des thématiques de réduction de modèles, où des problématiques d'interpolation sur des variétés de Grassmann sont étudiées en collaboration avec Emmanuel Baranger du LMT.

  (R 3 ), SO(3, R)) (Théorème 5.4.1). Notons d'ailleurs qu'une telle base d'intégrité est écrite sous forme tensorielle [105, Table

  Since the algebra Cov(V) is of finite type, there exists an integer p such that δ d,m = 0 for d + m p and we can define the invariant number :

1 .

 1 Compute the Hilbert series of C[W] Γ from the Molien-Weyl formula ; 2. Exhibit degrees of a homogeneous system of parameters of the algebra C[W] Γ ; 3. Deduce a bound β := max(d i , e j ) for the generators of C[W] Γ and compute, for each homogeneous space (C[W] Γ ) k with k ≤ β, a linear basis.

  Proposition 3.4] : Proposition 1.3.16. For any complex linear representation (W, Γ) of a linearly reductive group, the algebra of invariant C[W] Γ separates orbit in general position if and only if C(W) Γ = QC[W] Γ . In this case there exists a finite set of polynomial invariants that separate orbits in general position, and the transcendence degree of C[W] Γ is equal to the codimension of an orbit in general position. 1.4 Linear representations of SO(3, k) and SL(2, C) Let us consider the canonical quadratic form q(x) := x 2 + y 2 + z 2 on k 3 , wih k = R or k = C. The orthogonal group O(3, k) is the group of linear transformation preserving this metric, and SO(3, k) is the subgroup of all elements g ∈ O(3, k) with det(g) = 1. Note here that the complexification of SO(3, R) is exactly SO(3, R) C = SO(3, C).
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 12 Figure 1.2 -Isotropic stratification of (Ela, SO(3, R)).

Definition 3 . 2 . 3 (

 323 Grade of a molecular covariant). The grade of a molecular covariant is the maximum weight of its associated colored digraph. Example 3.2.4. Let us consider the molecule D = β γ α 2 coloured with S n α := S 6 , S n β := S 5 and S n γ := S 7 . This molecule defines the SL(2, C)equivariant homomorphism φ

  0 -i , of the Lie algebra sl(2, C) (corresponding to multiplication by i of Pauli matrices), allows us to identify sl(2, C) with C 3 , using the parametrization iz x + iy -x + iy -iz .

. 2 )Theorem 5 . 2 . 1 .

 2521 Finally we have[START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] : By pull-back, the Cartan map induces a linear isomorphism φ * : H n (C 3 ) → S 2n given by

[ 1 ]

 1 , [SO(2)], [SO(3, R)], whereas, for Cov 2 (v), they are [1], [Z 2 ], [D 2 ], [O(2)], [SO(3, R)].

Theorem 6 . 2 . 1 .

 621 Let E = (H, a, b, λ, µ) ∈ Ela be a harmonic decomposition of an elasticity tensor E, where H ∈ H 4 , a, b ∈ H 2 and λ, µ are scalars. Then 1. E is isotropic ([SO(3, R)] isotropy class) if and only if a = b = d 2 = 0. 2. E is cubic ([O] isotropy class) if and only if a = b = d 2 = 0 and d 2 = 0, with d 2 := d 2 -1/3 tr(d 2 )q.

3 .

 3 E is transversely isotropic ([SO(2)] isotropy class) if and only if (d 2 , a, b) is transversely isotropic and H × d 2 = H × a = H × b = 0. 4. E is tetragonal ([D 4 ] isotropy class) if and only if (d 2 , a, b) is transversely isotropic, tr(H × d 2 ) = tr(H × a) = tr(H × b) = 0, and H × d 2 = 0, or H × a = 0, or H × b = 0. 5. E is trigonal ([D 3 ] isotropy class) if and only if (d 2 , a, b) is transversely isotropic, d 2 × (H : d 2 ) = a × (H : a) = b × (H : b) = 0, and tr(H × d 2 ) = 0, or tr(H × a) = 0, or tr(H × b) = 0.

(a) If u 3 = 1 = e 3 × u 3 e 3 × u 3 and u 2 = u 3 × u 1 .(b) If u 3 =

 31332313 ±e 3 , define u ±e 3 then define u 1 := e 1 and u 2 := u 3 × u 1 .
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 61 Figure 6.1 -Algorithm to obtain the isotropy class of an elasticity tensor

Conjecture 9 . 1 . 1 .

 911 Etant donnée une représentation linéaire réelle (V, G) d'un groupe de Lie compact et I 1 , . . . , I N une base d'intégrité minimale de R[V] G . En notant π : V/G -→ R N , Orb(v) → (I 1 (v), . . . , I N (v))

0 Table 9 . 1 -

 091 (R 3 ), SO(3, R)) des tenseurs harmoniques d'ordre 2, où les équations algébriques des strates sont données dans le tableauStrateEquations algébriquesIsotropie [D 2 ] a × a 2 = 0 Isotropie [O(2)] a × a 2 = 0 et a = 0 Isotropie [SO(3, R)] a = Équations algébriques des strates pour (H 2 (R 3 ), SO(3, R))Cette conjecture pourrait être vérifiée et rendue explicite dans le cas de l'espace des tenseurs piézo-électriques, donné par Piez := S 2 (R 3 ) ⊗ R 3 , avec la représentation standard du groupe (3, R) : Conjecture 9.1.3. Chacune des 16 strates isotropes[START_REF] Zou | Symmetry types of the piezoelectric tensor and their identification[END_REF] de la stratification isotropique de l'espace (Piez, O(3, R)) est une variété algébrique affine, dont on peut établir les équations explicites.

  10 , J 15 ], where we can easily obtain a generating set from Diophantine equations. For instance, dJ 4 , dJ

	generated by the family { J 4 2 , J 2 2 J 4 , J 2 J 6 , J 2 4 } and we get		6 is linearly
		dJ 4 , dJ 6 =	2 45	J 4 2 -	2 9	J 2 2 J 4 +	8 3	J 2 J 6 +	4 15	J 2 4 .
	We finally propose in Table 1.1 the computation time, all being done using Macaulay2
	software [63].								
	Invariant	# of monomials Time, strategy 1 Time, strategy 2
	dJ 2 , dJ 4 = 2J 2 4 dJ 4 , dJ 6	56 755				2.14289 s N/A		0.00162821 s 0.067198 s
	Table 1.1 -Two examples of computation time

  .2.

	Algebra	n(V)	Explicit minimal basis
	Cov(S 5 )	23	Gordan (1868) [61]
	Cov(S 6 )		

26 Gordan (1868) 

[

61] Cov(S 6 ⊕ S 2 ) 99 von Gall (1888) [146], Brouwer and Popoviciu (2011) [25] Cov(S 7 ) 147 Cröni (2002) [38], Bedratyuk (2009) [8] Cov(S 8 ) 69 von Gall (non minimal, 1880) [145] Cröni [38], Bedratyuk (2008) [7] Popoviciu (2014) [117] Cov(nS 4 ), n ≥ 1 in

[START_REF] Young | The Irreducible Concomitants of any Number of Binary Quartics[END_REF] 

  [START_REF] Frank | Lectures on lie groups[END_REF] defines a molecular SL(2, C) equivariant morphism on some tensor product S n α ⊗ • • • S n of binary forms, so it can be encoded into a colored digraph. We have thus a new kind of covariant :

Definition 3.2.2.

A molecular covariant M is defined as a binary form in the image Im(φ D ) of a molecular equivariant morphism φ D given by (3.3) :

: Proposition 3.3.3. (a) The algebra Inv(S 9

  ) has a homogeneous system of parameters of degrees[START_REF] Aronhold | Theorie der homogenen funktionen dritten grades von drei veränderlichen[END_REF][START_REF] Aronhold | Theorie der homogenen funktionen dritten grades von drei veränderlichen[END_REF][START_REF] Bedratyuk | A complete minimal system of covariants for the binary form of degree 7[END_REF][START_REF] Boehler | On irreducible representations for isotropic scalar functions[END_REF][START_REF] Boehler | A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy[END_REF][START_REF] Boehler | Introduction to the invariant formulation of anisotropic constitutive equations[END_REF][START_REF] Af Cheviakov | Symmetry properties of two-dimensional ciarlet-mooney-rivlin constitutive models in nonlinear elastodynamics[END_REF]. It has also homogeneous systems of parameters of degrees 4, 8, 10, 12, 12, 14, 16, degrees 4, 4, 10, 12, 14, 16, 24, degrees 4, 4, 8, 10, 12, 16, 42 and degrees 4, 4, 8, 10,12, 14, 48. (b) The algebra Inv(S 10 ) has a homogeneous system of parameters of degrees 2, 4, 6, 6, 8, 9, 10, 14. As already detailed in Subsection 1.3.2, we thus deduce from Hilbert series and Lemma 3.3.1 a degree bounds for generators of some mth order covariant module : The Inv(S 9 )-module of mth order covariants Cov m (S 9 ) are generated by covariants of maximum degrees d m given in the following table, for m 22 : Similarly, the Inv(S 10 )-module of mth order covariants Cov m (S 10 ) are generated by covariants of maximum degree d m given in the following table, for m 26 :

	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Max deg. d m 66 61 64 63 62 63 64 63 62 65 64 63 62 63 64 63 62 63 64 63 62 63 62 Ord. m 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Lemma 3.3.4. Ord. m Max deg. d m 59 45 46 45 46 47 46 45 46 45 46 45 45 45

All in all, the calculations that follow, detailed in

[art9]

, enable us to prove : Theorem 3.3.5. A minimal basis for the covariant algebra Cov(S 9 ) (resp. Cov(S 10 )) is given by a family of 476 covariants (resp. 510 covariants) with explicit expression in [art9, Appendix A] (resp. in [art9, Appendix B]).

Proposition 6.1.3.

  Given v ∈ V, dim(Cov 1 (v)) is either 0, 1 or 3. Moreover, the isotropy class of Cov 1 (v) is :1. [SO(3, R)] if and only if Cov 1 (v) = { 0 } ; 2. [SO(2)] if and only if dim Cov 1 (v) = 1 ; 3. [1] if and only if dim Cov 1 (v) = 3. The case of Cov 2 (v) is more involved, but we obtain (see details in [105, Section 7]) : Proposition 6.1.4. Given v ∈ V, dim Cov 2 (v) is either 1, 2, 3, 4 or 6. Moreover, the isotropy class of Cov 2 (v) is : 1. [SO(3, R)] if and only if dim Cov 2 (v) = 1 ; 2. [O(2)] if and only if dim Cov 2 (v) = 2 ; 3. [D 2 ] if and only if dim Cov 2 (v) = 3 ; 4. [Z 2 ] if and only if dim Cov 2 (v) = 4 ; 5. [1] if and only if dim Cov 2 (v) = 6.

  6. E is orthotropic ([D 2 ] isotropy class) if and only if the family of second-order tensorsF o := { d 2 , a, b, c 3 , c 4 , H : a, H : b, H : a 2 , H : b 2 } Ela such that the triplet (d , v , d 2 ) is transverely isotropic. Output : A rotation g ∈ SO(3) and an elasticity tensor E = g E such that its symmetry group contains either Z 3 or Z 4 .1. Compute the triplet of covariant deviators(d , v , d 2 ) of E. The triplet (d , v , d 2 )being transversely-isotropic, then one of them is transversely isotropic and call it t.2. Let u 3 be the unit eigenvector corresponding to the single eigenvalue of t, which is obtained by solving the linear system :

	(b) Or d 2 = 0, so that H is cubic.		
	Procedure 6.2.2 (Transversely isotropic triplet). .	
	Input : E ∈ t -2	tr(t 3 ) tr(t 2 )	q u = 0.
	is orthotropic.		

  . A non-empty Zariski open set is moreover open and dense in the usual topology. Now we have : (Genericity). A vector v belonging to some (finite dimensional) vector space V is called generic (or as in general position by algebraic geometers) if it belongs to a non-empty Zariski open set of V.

	Definition 7.1.2

  . D 3 , D 4 , D 5 , D 6 , D 11 , V 3 , V 4 , V 5 , V 6 , V 11 , separate generic tensors E = (λ, µ, d , v , H), defined by the following conditions : (1) the pair (d 2 , d 3 ) is triclinic ; (2) d 2 is orthotropic.

	Corollary 7.3.3. The following 19 polynomial invariants
			λ,	µ,		M 12
	K 14 := M 12 i 2 ,	K 27 := M 12	2 i 3 ,	K 40i := M 12	i 4 ,
	K 40k := M 12	3 k 4 ,	K 80 := M 12	6 k 8 ,	K 93 := M	k 9 ,

Chapitre 5

Covariant algebra of a linear representation

When considering classical invariant theory, the initial notion of a polynomial invariant naturally generalizes to the one of covariant. According to Parshall [START_REF] Hunger | Toward a history of nineteenth-century invariant theory[END_REF], Eisenstein was the first to study the geometry of a binary cubic using an associated binary quadratic form [START_REF] Eisenstein | Allgemeine auflösung der gleichungen von den ersten vier graden[END_REF], which appeared to be its Hessian. The peculiarity here is that it is possible to construct an equivariant object of the same type and, furthermore, it is possible to define an algebra of such covariants (see Subsection 1.3.1). The idea is to generalize this notion to any linear representation (V, G) of a group G, which is proposed for instance by Kraft and Procesi [START_REF] Kraft | Classical Invariant Theory, a Primer[END_REF], while other one can be found in [START_REF] Dolgachev | Lectures on invariant theory[END_REF].

In fact, a definition is proposed in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], with Boris Kolev, Rodrigue and Boris Desmorat as co-authors, of the notion of a covariant algebra of any linear representation (Definition 5.1.2). The covariant algebras of SO(3, k) tensorial representations (k = R or C) are of particular interest, and they can be directly deduced from the standard covariant algebras of binary forms (Theorem 5.2.1 and Theorem 5.2.2). Now, to obtain a minimal integrity basis of a covariant algebra for tensorial representations in intrinsic tensorial form, the same collaboration [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] led to the definition of a new covariant operation, namely the generalized cross product (Definition 5.3.5). In section 5.4, all previous results were applied to obtain an explicit minimal integrity basis in tensorial form for the covariant algebra Cov(H 4 (R 3 )) of fourth order harmonic tensors, strongly linked to the space of elasticity tensors (Theorem 5.4.1).

Covariant algebra of type W

Let us now recall a definition due to Kraft and Procesi of a type W covariant [START_REF] Kraft | Classical Invariant Theory, a Primer[END_REF] : 57 Theorem 5.2.2. Let { h 1 , . . . , h N } be a minimal basis for Cov(S 2n ). Then a minimal basis for the joint invariant algebra

In fact, a consequence of such a result is that any minimal integrity basis of Cov(S 2n ) can directly be translated into a minimal integrity basis of [105, Appendix B] for more details).

Covariant operations on tensor spaces

In this section, we introduce three operations on tensors, which commute with the action of the rotation group SO(3, k) (and the orthogonal group O(3, k)) and are thus called covariant operations. The first one is the classical symmetric tensor product. Definition 5.3.1. The symmetric tensor product between two tensors T 1 ∈ T p (k 3 ) and S 2 ∈ T q (k 3 ) is defined as

where the total symmetrisation T s ∈ S n (k 3 ) of a tensor T ∈ T n (k 3 ), is defined as

where S n is the symmetric group on n letters.

Remark 5.3.2. When restricted to totally symmetric tensors, the polynomial counterpart of the symmetric tensor product is just the usual product of polynomials. This product is thus associative and commutative. It is equivariant relative to either the rotation group SO(3, k) and to the full orthogonal group O(3, k).

The second one is the r-contraction between two tensors T 1 ∈ T p (k 3 ) and T 2 ∈ T q (k 3 ) over one or several subscripts. This operation uses the Euclidean structure represented by the canonical Euclidean metric tensor q = (q ij ) and its inverse q -1 = (q ij ). It is defined as follows :

5.4 A minimal integrity basis for the covariant algebra of H 4 As detailed in Section 5.2, Cov(H 4 ) is connected with the invariant algebra Inv(S 8 ⊕ S 2 ). This algebra is itself connected to the covariant algebra of binary forms of degree 8, Cov(S 8 ) ( Theorem 5.2.2). A minimal covariant basis for Cov(S 8 ) is known at least partially since 1880 and was first produced by von Gall [START_REF] Gall | Ueber das vollständige System einer binären Form achter Ordnung[END_REF] (see also [START_REF] Bedratyuk | On complete system of covariants for the binary form of degree 8[END_REF][START_REF] Cröni | Zur Berechnung von Kovarianten von Quantiken[END_REF]). We finally obtained (all details being in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]) : Theorem 5.4.1. The polynomial covariant algebra of H 4 is generated by a minimal basis of 70 homogeneous covariant polynomials. An explicit basis is given by [105, table 2].

Chapitre 6

Isotropic stratification of real representations

We know that any real representation (V, G) of a compact Lie group is endowed with an isotropic stratification as well as a semi-algebraic stratification (see Section 1.1 and Section 1.2). Here I focus on the specific case of linear SO(3, R) representations on a tensor space V, for which I already mentioned an explicit procedure to determine the isotropic stratification (see section 2.2). Using a common work done with Boris Kolev, Rodrigue and Boris Desmorat [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], I first establish the link between the isotropic classes and tensorial covariant vector spaces (Propositions 6.1.3 and 6.1.4). The case of elasticity is discussed in section 6.2, where it is possible to establish explicit algebraic equations of its 8 isotropic strata (Theorem 6.2.1), based on the covariant algebra of (H 4 (R 3 ), SO(3, R)) from Theorem 5.4.1. Finally, I propose an algorithm obtained in [art1], so to get an explicit isotropy class of a given elasticity tensor. Note that explicit algebraic equations of 6 elasticity strata (of smaller dimensions) had been obtained in polynomial form in [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF], leading to expressions that are sometimes very difficult to manipulate.

Tensorial covariant and symmetry classes

Given a linear representation V of SO(3, R) and v ∈ V, we define Cov k (v) as the set of all k-order polynomial covariants of v (see chapitre 5). Note that whereas Cov(V) is a polynomial algebra, and Cov k (V) is an infinite dimensional vector space, Cov k (v) is the set of all evaluations of these covariants on the vector v. As such, it is a subspace of the finite dimensional real vector space P k (R 3 ) of homogeneous polynomials of degree k on R 3 , or equivalently of the space S k (R 3 ) of totally symmetric tensors of order k. In this section, we 8. E is triclinic ( [START_REF] Abdesselam | The higher transvectants are redundant[END_REF] isotropy class) if and only if none of the preceding conditions holds.

Algorithm for symmetry class detection

Take E ∈ Ela to be any elasticity tensor. We propose here a detailed algorithm to obtain the symmetry class of E. Note also that there exists an algorithm to obtain its normal form [art1]. First, let us take back the two families F o and F m defined in Theorem 6.2.1. Now, the algorithm to obtain symmetry class of a given elasticity tensor E ∈ Ela is summarized in Figure 6.1 and detailed below (all being detailed in [art1]) :

1. If F o is triclinic, then F m is necessarily triclinic, so that E is triclinic from Theorem 6.2.1.

2. If F o is monoclinic then (a) Either F m is monoclinic, and then from Theorem 6. • w 7 := H . . . T 6 is a first order harmonic covariant of degree 7 ;

is an invariant of degree 12 ; • J 18 := ((T 6 • T 6 ) s ) 0 × T 6 is a sixth order covariant of degree 18.

Weak separating sets for elasticity tensors

Take back here the space of elasticity tensors and let us write

with d := d -1/3 tr(d)q (the same for v ) and λ := tr d, µ := tr v, where d and v are defined in Subsection 1.4.2. We need to recall here that a pair (a, b) of second order harmonic tensors is said to be triclinic if its symmetry group reduces to identity (see Definition 6.1.1). The corresponding isotropy stratum in H 2 (R 3 ) ⊕ H 2 (R 3 ) is defined by the Zariski open set (see [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]Theorem 8.6]) :

where ε ε ε is the Levi-Civita symbol in 3 dimensions and [a, b] := abba the commutator. In the same way, a tensor a ∈ H 2 (R 3 ) is said to be orthotropic if its isotropy class is [D 2 ] (with D 2 the diedral group of order 4). The corresponding Zariski open set is given by [105, Lemma 8.1] : a 2 × a = 0. We will now formulate our main theorem, using the notation (ab) s := ab + ba. ),

separate generic tensors E defined by the followng conditions : (1) the pair (d 2 , d 3 ) is triclinic ; (2) d 2 is orthotropic.

In fact, we get an optimal result as stated by the corollary below (all details being in [art4]).

Corollary 7.3.2. The following 18 rational invariants

In Theorem 7.2.1, it can be observed that the denominator of each rational invariant

is a power of the polynomial invariant of degree 12

We have thus the following second corollary.

Finding a second order symmetry of T translates into finding a unit vector ν ν ν ∈ R 3 such that n (s(ν ν ν))T = T or n (r(ν ν ν, π))T = T. (8.1) Writing such equations with ν ν ν = (x, y, z) unknown leads to tensorial homogeneous equations of degree 2n. In fact, such degree can be reduced to degree n equations for totally symmetric tensors, leading to what we call optimal algebraic equations.

In the following, we use the notation

for any vector w ∈ R 3 . Furthermore, for any totally symmetric tensor S ∈ S n (R 3 ), rcontraction between S and w k is noted S (r)

• w k (see section 5.3). In any orthonormal basis e 1 , e 2 , e 3 of R 3 , for any r ≤ k, coordinates of S (r)

• w k are given by :

(S

• w k ) i 1 ...i n-r = S i 1 ...i n-r j 1 ...j r w j 1 . . . w j r .

A first step to get the reduced algebraic equations is to establish exact algebraic expression (of degree 2n) of second order symmetries equations (8.1) related to nth order totally symmetric tensors : Lemma 8.0.1 ([art3]). Let S be any totally symmetric nth-order tensor and ν ν ν ∈ R 3 a unit vector. Then,

In order to establish the reduced algebraic equations, we need to introduce the following :

• Given n ≥ 1, we set r := n/2 , q := (n + 1)/2 , and define the (n + 1) × (n + 1) matrix B n by

where i, j ∈ [0, n].

• We denote by B 1 n the q × q matrix obtained from B n by deleting the columns 0, q + 1, q + 2, . . . , n, and the rows 0, 1, 3, . • Finally, we set

The subscripts i and j of the matrix

j ), i varies from 1 to r + 1 and j from 0 to r. Using among other things the generalized cross product and the totally symmetric product (see section 5.3), we then get (all details and technical proofs can be found in [art3]) : Theorem 8.0.2. Let (S n , ) be a linear representation with = ρ n or = ρn and r := n 2 , q := n + 1 2 , so that q = r, if n is even and q = r + 1, if n is odd.

1. A unit vector ν ν ν defines a plane/axial symmetry of a tensor S ∈ (S 2r , ρ 2r ) or an axial symmetry of a tensor S ∈ (S 2r , ρ2r ) if and only if 

• ν ν ν k = 0. (8.7)

Troisième partie

Questions et perspectives