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Résumé

Lors d’un accident, dans le cas d’un choc frontal, une grande partie de l’énergie est générale-
ment dissipée par la déformation et l’écrasement de dispositifs fusibles. L’énergie dissipée
est alors incertaine car elle dépend de plusieurs paramètres incertains. Dans cette thèse, une
crash box est étudiée en tenant compte des incertitudes.

Le but de cette thèse est de propager des paramètres incertains à travers un problème
de crash. L’approche usuelle pour la quantification de l’incertitude (UQ) est la simulation
de Monte Carlo (MCS). Or la MCS nécessite un grand nombre d’évaluations du modèle.
Cela rend l’utilisation de cette approche très difficile dans le cadre d’un problème complexe,
comme un problème de collision. Pour surmonter cette difficulté, l’approche par métamodèle
est utilisée: on recherche alors un compromis entre précision et efficacité.

Pour notre problème dynamique, un premier métamodèle est développé : il combine le
modèle de krigeage et le modèle NARX (Nonlinear Auto-Regressive with eXogenous input).
Ce modèle, appelé KNARX creux, est généralement adapté à l’UQ des systèmes dynamiques
non linéaires en utilisant un faible nombre d’évaluations du modèle. Il est cependant incapable
d’estimer de façon satisfaisante les réponses d’un oscillateur simple impacté, représentatif d’un
problème de crash (car comportement non régulier).

Un nouveau métamodèle, appelé POD-PCE, est alors formulé. Il découple respectivement
le domaine temporel et le caractère aléatoire par l’utilisation d’une décomposition orthogonale
(POD) et d’un développement en chaos polynomiaux (PCE). Les incertitudes d’un oscillateur
impacté sont propagées à l’aide de ce modèle POD-PCE. Le modèle POD-PCE et le modèle
PCE fonctionnent bien avec un nombre assez faible d’évaluations du modèle par rapport à
l’approche MCS. L’approche POD-PCE est plus efficace que le modèle PCE parce que les
coefficients du modèle PCE doivent être calculés à chaque pas de temps, alors que l’aspect
temporel est pris en compte avec seulement quelques modes orthogonaux dans le cas du modèle
POD-PCE. Toutefois, le modèle POD-PCE prédit parfois des forces de contact négatives non
physiques, qui peuvent être réduites en utilisant des polynômes de degré élevé. L’utilisation
d’un polynôme de degré élevé peut toutefois s’avérer prohibitive pour le modèle PCE car la
détermination d’un nombre élevé de coefficients nécessite un grand nombre d’évaluations du
modèle. C’est pourquoi un modèle PCE basée sur une inférence bayésienne variationnelle
creuse (SVB) est proposé: il sélectionne les termes importants dans la base polynomiale
et réduit ainsi les problèmes liés à un sur-ajustement, tout en utilisant un faible nombre
d’évaluations du modèle. Il est observé que les forces négatives peuvent être réduites en
utilisant le modèle POD-SVB-PCE.

En outre, il est important de formuler un cadre adaptatif pour la sélection du nombre
d’évaluations du modèle et du degré polynomial. Pour cette raison, un modèle SVB-PCE
adaptatif est formulé. Il a été également couplé à l’approche POD pour formuler un modèle
POD-SVB-PCE adaptatif. Ce cadre adaptatif est finalement appliqué à une crash box écrasée
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par une masse rigide impactante pour propager les différentes incertitudes du modèle et
effectuer une analyse de sensibilité globale (GSA). Les exemples montrent que le modèle
adaptatif POD-SVB-PCE a la capacité de prédire des résultats satisfaisants avec un faible
nombre d’évaluations du modèle pour la plupart des réponses. Cependant, il est assez difficile
d’obtenir une bonne précision pour la force de contact, même en utilisant le nombre maximum
d’évaluations de modèle alloué ; la précision prédite pour la force de contact reste cependant
acceptable. La GSA dépendante du temps est réalisée efficacement, sans coût de calcul
supplémentaire, en post-traitant les paramètres du modèle adaptatif POD-SVB-PCE.

Mots-clés: Quantification des incertitudes, Développement en chaos polynomiaux, POD,
Crash, Analyse de sensibilité globale.



Abstract

The safety of a car occupant depends on several factors during an accident such as the seatbelt
condition, the number of occupants in the car, the structure of the car. Usually, in the case of
a frontal crash, a large part of the initial kinetic energy is dissipated in the compression of the
crash boxes and the dissipated energy may be uncertain due to several uncertain parameters.
A crash box is investigated in this thesis considering several uncertain parameters.

The main challenging task for the thesis is the propagation of the uncertain parameters
through a crash problem. The conventional approach for the uncertainty quantification (UQ)
is the Monte Carlo simulation (MCS). However, MCS requires a large number of model eval-
uations which prohibits to apply this approach in a complex problem (i.e. a crash problem).
To overcome this issue, the surrogate modeling approach is investigated in this thesis, which
maintains a trade-off between accuracy and efficiency.

As the crash problem is a dynamic problem, a first surrogate model called sparse KNARX
is developed in this thesis: it combines the Kriging model and a Nonlinear Auto-Regressive
with eXogenous input (NARX) model. The sparse KNARX model performs very well for UQ
of several nonlinear dynamical systems using low number of model evaluations. However, the
sparse KNARX model is unable to identify an impact oscillator (a representative system for
a crash problem) due to the non-smooth behavior.

For the impact problem, a new surrogate model is formulated, which decouples the time-
domain and the randomness by the proper orthogonal decomposition (POD) and the uncertain
parameters are propagated by the polynomial chaos expansion (PCE) approach: the resulting
surrogate model is called POD-PCE model. Further, it is applied to an impact oscillator for
UQ. The POD-PCE model and the PCE model perform well with quite low number of model
evaluations as compared to the MCS approach. The PCE model is constructed only for the
reduced number of proper orthogonal modes in case of the POD-PCE model whereas the
coefficients must be computed at each time-step in case of the PCE model. Although the
results are quite good, some non-physical negative contact forces are predicted by the POD-
PCE model, which may be reduced by using a high degree polynomial. At the same time,
the use of high degree polynomial is prohibitive for the PCE model as it requires a large
number of model evaluations. For that reason, a sparse variational Bayesian (SVB) based
PCE model is proposed in this thesis: it selects the important terms in the polynomial basis
and subsequently reduces the chances of overfitting with a low number of model evaluations.
It is observed that the non-physical negative forces can be reduced to some extent using the
POD-SVB-PCE model. However, it is impossible to mitigate the non-physical forces due to
the non-smooth behavior of the impact oscillator.

Further, it is important to formulate an adaptive framework such that the number of model
evaluations and the polynomial degree are selected adaptively. For that reason, an adaptive
SVB-PCE model is formulated and furthermore, it is coupled with the POD approach to
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formulate an adaptive POD-SVB-PCE model. This adaptive framework is applied to a crash
box under impact loading for UQ and global sensitivity analysis (GSA). The results show
that the adaptive POD-SVB-PCE model has the capability to predict a good result with a
low number of model evaluations for most of the responses. However, it is quite difficult to
achieve a good accuracy for the contact force with the adaptive POD-SVB-PCE model even
using the maximum allocated number of model evaluations; the predicted accuracy for the
contact force remains however acceptable. The time-dependent GSA is performed by post-
processing the adaptive POD-SVB-PCE model parameters which is quite efficient without
any additional computational cost.

Keywords: Uncertainty quantification, Global sensitivity analysis, Polynomial chaos ex-
pansion, Proper orthogonal decomposition, Crash box
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Bouc-Wen oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Uncertain parameters for the 2-DOF dynamical system . . . . . . . . . . . . 43
3.10 Accuracy of sparse KNARX in predicting instantaneous response characteris-

tics for the 2-DOF dynamical system . . . . . . . . . . . . . . . . . . . . . . . 46
3.11 Accuracy and efficiency of sparse KNARX in computing y1 (t) for the 2-DOF

dynamical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.12 Parameters of the impact oscillator . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Parameters of the uniformly distributed random variables for the impact oscillator 61
4.2 Accuracy of different surrogate models in assessing the stochastic response

quantities for the single impact oscillator by N = 20 . . . . . . . . . . . . . . 67
4.3 Accuracy of different surrogate models in assessing the stochastic responses for

the multiple impact oscillator using N = 50 . . . . . . . . . . . . . . . . . . . 73

5.1 Statistical moments of the response for the Ishigami function using N = 40
and p = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Percentage error (PE) and sparsity index (SI) for the Ishigami function using
N = 40 and p = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Statistical moments of the response for the high-dimensional function using
N = 85 and p = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Percentage error (PE) and sparsity index (SI) for the high-dimensional function
using N = 85 and p = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xxi



xxii LIST OF TABLES

6.1 Parameters of the uniformly distributed random variables for the crash boxes 123
6.2 Predicted mean relative error ε̄ and number of sample pointsN for the impactor

displacement of the crash boxes with the obtained adaptive POD-SVB-PCE
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Predicted mean relative error ε̄ and number of sample pointsN for the impactor
velocity of the crash boxes with the obtained adaptive POD-SVB-PCE model 131

6.4 Predicted mean relative error ε̄ and number of sample points N for the contact
force of the crash boxes with the obtained adaptive POD-SVB-PCE model . 139

6.5 Predicted percentage error (PE) for the maximum contact force of the crash
boxes by the obtained adaptive SVB-PCE model with pmax = 15 . . . . . . . 139

6.6 Predicted percentage error (PE) for the dissipated energy of the crash boxes
by the obtained adaptive SVB-PCE model with pmax = 15 . . . . . . . . . . . 142

6.7 Time-independent GSA results for the maximum of the contact force obtained
by the adaptive SVB-PCE model . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.8 Time-independent GSA results for the total dissipated energy obtained by the
adaptive SVB-PCE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.1 Different parameters used for the SDOF dynamical system . . . . . . . . . . . 162



List of Algorithms

4.1 Algorithm for the construction of POD-PCE model . . . . . . . . . . . . . . . 60
5.1 Pseudo-code for VB inference based PCE formulation . . . . . . . . . . . . . 88
5.2 Pseudo-code for the SVB-PCE model . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Algorithm for the construction of POD-SVB-PCE model . . . . . . . . . . . . 99
6.1 Pseudo-code for the adaptive SVB-PCE model . . . . . . . . . . . . . . . . . 112
6.2 Pseudo-code for the adaptive POD-SVB-PCE model . . . . . . . . . . . . . . 115

xxiii



xxiv LIST OF ALGORITHMS



Nomenclature

α Hyper-prior for Bayesian model

ε̄ Mean relative error

ε̄LOO Mean relative LOO error
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Chapter 1

Introduction

1.1 Context

Car accident is one of the major issues concerning road safety. More than 25000 life losses
were reported Commission (2019) in 2018 within the area of the European Union due to the
road accidents. In the eventually of an accident, one way to mitigate life loss is to properly
design the structure of the vehicle. Hence, safe design of a car components is a very important
issue in the current scenario.

During an accident, the main concern is the safety of the occupants. Safety of a car
passenger depends on several parameters such as design parameters of the car structure,
seatbelt condition during an accident, number of occupants and direction of accident. One
of the possible accident scenario is the accident due to a frontal impact. Usually, the kinetic
energy propagates through its safeguard (which provides safety to the car structure) during
an accident and the occupants get injured when the kinetic energy level is too high. Mainly,
the ‘bumper’ installed in front of a car is affected first by a frontal accident. Then, the kinetic
energy propagates in the car body through its several other protection devices. The mainly
affected protections after the bumper are the crash boxes. A car body along with the crash
boxes is shown in Figure 1.1. The kinetic energy dissipates through the crash boxes during a
frontal accident. Less absorption of the kinetic energy is a possible cause of life loss during
a frontal accident. Therefore, the design of the crash boxes is one of the important tasks for
designing a safe car.

Analysis of a crash box considering all the possible design parameters is one of the most
important criteria for the design of a safe car. Some of the important design parameters of the
crash boxes are material properties, geometrical shape, thickness, velocity of the car during
an accident, total mass of the car (including the occupants). Usually an impact dynamic
analysis is performed considering these parameters deterministic (Abramowicz, 1983; Shaik
Dawood et al., 2017; Dirgantara et al., 2013). Often some variability is noticed in the above-
mentioned design parameters due to the workmanship, fabrication procedure, non-uniform
plate thickness and the number of occupants. Therefore, deterministic analysis may produce
non-robust results which ultimately may lead to failure of the crash box during a frontal
accident. Therefore, a proper analysis of a crash box should be performed accounting the
variability in the design parameters.

As already mentioned, impact dynamic analysis is performed for analyzing a crash box
behavior during its design phase. Impact dynamic phenomenon has a quite complicated and

1
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Crash boxes

Figure 1.1: Frame structure of a car body (www.cgtrader.com)

nonlinear behavior. The failure and the responses of a crash box under impact loading can
be investigated through an experiment. However, conducting an experiment requires a lot
of auxiliary equipments, crash box specimen and workmanship. Therefore, performing an
experiment is always a costly and destructive procedure. Now, if we consider the above-
mentioned variability in the design parameters of a crash box then the experiment should be
performed more than several thousand times to make a conclusion on the obtained results.
On the contrary, a numerical approach doesn’t need any of these cost intensive and destruc-
tive procedures, and still produces a similar results as the experiment (Zarei et al., 2008;
Dirgantara et al., 2013; Shaik Dawood et al., 2017). Hence, accounting the variability in the
design parameters would be much easier by the numerical modeling of a crash box under im-
pact loading. The propagation of the variability through the numerical model allows for the
quantification of the variability of the response quantities (e.g. kinetic energy). The impact
phenomenon is a time-dependent behavior as the propagation of the kinetic energy through
a crash box depends on time. Therefore, to obtain the actual variability in the response
quantity, the variability in the design parameters should be propagated through a dynamical
system and the time-dependent behavior of the response quantities should be investigated.
The design parameters are the uncertain parameters and the propagation of the uncertain
parameters through an impact dynamical system is the main challenge of this thesis. Along
with this, all the design parameters may not contribute equally in the response quantity which
can be measured by the sensitivity of a design parameter on the response quantity (Saltelli
et al., 2010; Borgonovo and Plischke, 2016). For a dynamical system, the sensitivity of a
design parameter may vary in time. Therefore, time-dependent sensitivity analysis is also
necessary to know the contribution of a design parameter on a response quantity properly.

1.2 Uncertainty quantification of dynamical systems

The uncertainty quantification (UQ) of a dynamical system is generally performed through
three main steps:

1. First of all, the uncertain parameters (e.g. design parameters in a crash box) are char-
acterized. In this thesis, the uncertain parameters are modeled by a random variable or

www.cgtrader.com
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random field. The uncertain parameters are then characterized either from an available
large data-set or by expert’s knowledge.

2. The second step is the propagation of the uncertain parameters through the dynamical
system. In this step, the uncertain parameters are considered for the analysis of the
physical system to produce the uncertain response quantities. The uncertainty propa-
gation is a multi-step procedure which includes numerical formulation of the problem,
computational cost, performing numerical integration etc. Therefore, properly propa-
gating the uncertain parameters through a dynamical system is the main challenge.

3. In the third step, UQ is performed for the obtained uncertain response quantities. The
uncertain response quantities are then characterized through some statistical quanti-
ties such as mean, standard deviation and probability density function (PDF). For a
dynamical system, these quantities are time-dependent.

1.3 Objectives of the research
Inspired from the facts discussed in section 1.1, there are two main objectives of the present
research work, which are listed below.

1. The first objective of the research is to propose an efficient approach for UQ of stochastic
nonlinear dynamical systems in time domain.

• Surrogate modeling approach is the most efficient way for UQ. Therefore, the first
important aspect of the above-mentioned objective is to formulate a surrogate
model which can be used to suitably propagate the uncertain parameters for a
nonlinear dynamical system.
• The second important aspect of a surrogate model is to formulate adaptivity in the
number of model evaluations such that the number of model evaluations selected
adaptively for a response quantity.

2. The second objective of the thesis is to quantify uncertainty and perform sensitivity
analysis of the impact dynamical systems using the developed approach in the previous
step.

• UQ of an impact oscillator will be performed first.
• Then, UQ of a crash box under impact loading will be conducted in the time
domain.
• Global sensitivity analysis of the crash problem will be performed to identify the
influential uncertain parameters for the problem.

1.4 Outline of the thesis
This thesis is organized as follows:

Chapter 2 describes the available approaches for UQ of the dynamical systems. More
specifically, an extensive review of the available surrogate models is conducted. Along with
this, the more general approaches for UQ such as Monte Carlo simulation and the other
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sampling based approaches are also discussed. The need of the present research work is
identified from the extensive literature review.

Chapter 3 introduces a new approach for UQ of the nonlinear dynamical systems which
decouples the time domain and the randomness by the Nonlinear Auto-Regressive with eX-
ogenous input (NARX) model and the Kriging surrogate model, respectively. Applicability
of the developed approach is investigated on different nonlinear dynamical systems in this
chapter. The applicability of this approach is also discussed in the context of an impacted
dynamical system. Finally, the concluding remarks of this chapter and the limitations of this
approach are discussed which depict NARX is unable to capture the dynamics of an impact
oscillator. To address this issue, a different kind of surrogate model is developed in the next
chapter.

Chapter 4 introduces a different approach for the propagation of the uncertain input
parameters and for UQ of the dynamical systems to address the limitations arisen in the
previous chapter. Furthermore, UQ is performed for the impact oscillators using the developed
approach. To reduce the number of coefficients in the PCE model, a sparse PCE model is
developed in the next chapter.

Chapter 5 describes a method for the construction of a sparse PCE surrogate model based
on variational Bayesian inference. This approach helps in propagating uncertainty using a
reduced number of terms in the polynomial basis of a PCE model and it is used in the next
chapter along with the POD approach.

Chapter 6 explains an adaptive framework for UQ of impact dynamical systems in time
domain. UQ is performed for different uncertain response quantities of a crash box model.
In addition, a global sensitivity analysis is also performed to identify the most influential
uncertain input parameters for a particular response quantity.

Chapter 7 gives the concluding remarks of the present research work. The limitations
of the present research work are also discussed. Finally, some future developments of this
present research work are proposed to the research community.



Chapter 2

State-of-the-art review

Several approaches have been proposed in the literature for uncertainty propagation. Most
of the available approaches for uncertainty propagation of uncertain (stochastic) dynamical
systems are discussed in this chapter.

2.1 Monte Carlo simulation

Monte Carlo simulation (MCS) (Fishman, 1996; Caflisch, 1998; Rubinstein and Kroese, 2008)
is a quite famous and simple approach for UQ of any systems. Let us consider a dynamical
system having d uncertain parameters ξ = {ξ1, ξ2, . . . , ξd} ∈ Rd, and the uncertain quantity
of interest (QoI) is denoted by y (ξ, t). t denotes the time and the uncertain parameters are
assumed here independent of time. A large number of random samples is usually drawn for
each of the d dimensional uncertain parameters according to probability distributions, and a
deterministic simulation is performed for each sample to get the QoI. The usefulness of the
MCS approach is that it can predict accurate results for UQ. MCS was applied to propagate
uncertainty for stochastic dynamical system (Papadrakakis and Papadopoulos, 1996) in finite
element (FE) model. Furthermore, MCS approach has been used extensively for the stochastic
dynamical systems (Pradlwarter and Schuëller, 1997; Hurtado and Barbat, 1998). MCS has
been used for obtaining the stationary and the non-stationary PDF of non-linear oscillators
(Muscolino et al., 1997), and for nonlinear stochastic dynamical systems excited with the
stationary Poisson white noise (Muscolino et al., 2003).

Often the analytical results are not available for a given uncertain response quantity and
MCS computed results are considered as the reference solution in that case. However, the
convergence rate of the MCS approach is approximately proportional to 1√

NMCS
(Mai, 2016)

where NMCS is the number of samples. Hence, the convergence rate is quite slow for the MCS.
Often, in practice, the number of model evaluation (NMCS) is at least 106, which may lead to
a prohibitive computational cost depending on the cost of one model evaluation.

2.2 Sampling based approaches

MCS is based on the possibility of generating samples. Different methods for obtaining
samples are presented in the following sub-sections.

5
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2.2.1 Latin hypercube sampling

Latin hypercube sampling (LHS) approach (McKay et al., 1979; Stein, 1987; Helton and Davis,
2003) is commonly used to generate samples. LHS generates samples in the d-dimensional
unit hypercube [0, 1]d uniformly. Usually, the domains of the random variables are divided in
NMCS equal intervals and the samples are placed randomly at a single position in each of the
intervals. The usefulness of the LHS scheme is that the convergence rate is quite high using
this approach as compared to the random sampling based MCS approach. The computer
code for generating the LHS points can be found in (Iman and Conover, 1980). However, the
LHS points can also be generated using the Matlab function lhsdesign: it is utilized in this
thesis for generating LHS points.

2.2.2 Sobol sequence

Sobol sequence (Sobol, 1967, 1990), the so-called quasi-Monte Carlo (QMC) method is another
sampling based approach, which can be used for the MCS. Sobol sequence is also called as the
quasi-random low discrepancy sequence (Niederreiter, 1992; Dick and Pillichshammer, 2010).
In Sobol sequence, the samples are generated in the d-dimensional unit hypercube [0, 1]d
uniformly. It tries to minimize the intersite distance and the projected distance such that
most of the space in the unit hypercube can be filled. Hence, the convergence of the QMC
method is always better for the MCS approach. Algorithm for generating Sobol sequence
samples can be found in (Bratley, 1988). However, in many programming languages (e.g.
Matlab or Python), this algorithm has already been coded and is readily available. The quasi-
random sequence are deterministic: for example, the N first samples of the Sobol sequence
in d-dimension always gives the same numbers.

2.3 Surrogate modeling approach

As stated in the previous sections, the accuracy of the MCS approach can be quite high but,
the computational efficiency is quite low. Although it is possible to reduce the computational
cost by using the LHS or, Sobol sequence, still these approaches require a lot of model
evaluation to obtain an accurate result. To overcome this issue, the surrogate modeling
approaches (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Wan and Karniadakis,
2005) were developed by the researchers. Surrogate model is also known as meta-model. In
surrogate modeling, the stochastic response quantity is approximated by a suitable function
such that a trade-off can be maintained between the accuracy and the efficiency. According to
the mathematical form of the function, different surrogate models have been developed in the
past two decades. However, surrogate modeling approach can be broadly classified into two
different categories namely intrusive approach (Le Matre et al., 2001; Xiu and Karniadakis,
2002; Gerritsma et al., 2010) and non-intrusive approach (Sudret, 2008; Blatman and Sudret,
2010b; Luchtenburg et al., 2014). The general outline of formulating both the approaches are
discussed in the next sub-sections.

2.3.1 General outline of intrusive surrogate model

Although the mathematical formulation for all the surrogate models are different, the general
outline of formulating an intrusive surrogate model is described below:
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• First of all, the problem to be solved is mathematically formulated by some govern-
ing differential equations or by any discretization approach such as FE model, finite
difference model.

• In the second step, the QoI is replaced by a mathematical function of a suitable surrogate
model.

• Then, the problem is solved by a suitable approach (e.g. Galerkin projection) to get
the stochastic response quantity. For a dynamical system, a system must be solved at
each time-step during the time-integration procedure. Therefore, the intrusive approach
requires the mathematical formulation of a physical system to compute a stochastic QoI.

2.3.2 General outline of non-intrusive surrogate model

For the non-intrusive approach, the formulation is different than the intrusive approach. The
non-intrusive surrogate model is formulated generally in the following way:

• First of all, the QoI is required at some predefined samples. The samples can be obtained
from a field measurement or from some experimental design point approach (sampling
approach). Then, the QoI is evaluated at the predefined sample points. The physical
system is solved numerically by a deterministic model (e.g. FE model) for the number
of predefined sample points which is often considered as the computationally expensive
step.

• Then, a suitable mathematical model is identified based on the available physical infor-
mations to obtain the surrogate model.

• The accuracy of the surrogate model needs to be checked, which can be made using an
independent set of sample points. The responses predicted from the new set of samples
must be compared with the ‘exact’ QoI, i.e. obtained either from measurements or from
the initial model. However, cross-validation (Blatman and Sudret, 2011) can also be
used without any new sample to measure the accuracy of the surrogate model.

• The surrogate model in the previous step can be used to predict the QoI at a large set
of samples (NMCS) with a negligible computational cost as compared to the MCS of the
initial model. Furthermore, the statistical quantities (e.g. mean, standard deviation) of
the uncertain QoI can be computed easily from the predicted QoI.

Based on the mathematical form of the surrogate model, several surrogate models have
been developed in the past two decades. The most popular surrogate models are polynomial
chaos expansion (PCE) (Xiu and Karniadakis, 2002; Jacquelin et al., 2015a; Mai and Sudret,
2017; Bhattacharyya, 2018), Kriging (Santner et al., 2003; Kaymaz, 2005), support vector
machine (SVM) (Collobert and Bengio, 2001; Bourinet et al., 2011), radial basis function
(RBF) (Deng, 2006; Li et al., 2018; Wu et al., 2019), artificial neural network (Hosni Elhewy
et al., 2006; Tripathy and Bilionis, 2018) and moving least square method (Lancaster and
Salkauskas, 1981). Out of all the surrogate models, PCE and Kriging have been used exten-
sively for the development of a proper surrogate model for mechanical systems. Therefore,
PCE and Kriging models are described in the next sections in an elaborated way. Along with
this, SVM and RBF are also described briefly.
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2.4 Polynomial chaos expansion for dynamical systems

2.4.1 Formulation of polynomial chaos expansion

Polynomial Chaos Expansion (PCE) is one of the most widely used surrogate models for the
propagation and quantification of uncertainty. This method was first implemented in struc-
tural mechanics for the finite element (FE) approach by Ghanem and Spanos (1991) which is
also known as spectral approach. However, this approach was introduced by Wiener (1938)
for solving stochastic partial differential equation having Gaussian input random variable.
Further, it was modified by Xiu and Karniadakis (2002) to account the other types of sta-
tistical distributions (e.g. uniform, gamma). The already available PCE was coupled with
the Askey scheme (Koekoek and Swarttouw, 1996) to propose generalized PCE and this was
proved to be applicable for most of the random variables. The PCE has been used a lot in
different areas for almost two decades. The PCE model is discussed in this section considering
the time-dependent uncertain QoI.

Consider (Ω,F ,P) be the complete probability space, in which Ω is the sample space
consisting of all events F and P : F → [0, 1] is the probability measure. The uncertain
quantities can be described with random variables ξ = {ξ1, ξ2, . . . , ξd}: in the following, all
the random variables are assumed to be independent. ‘d’ is a non-zero integer and is the
number of uncertain parameters. According to the PCE (Xiu and Karniadakis, 2002), the
uncertain QoI of a dynamical system is expressed as:

y (ξ, t) =
∞∑
i=1

ai (t)φi (ξ) (2.1)

where y (ξ, t) is the time-dependent uncertain QoI. φi (ξ) are the multivariate orthogonal
polynomial basis functions and ai (t) are the time-dependent PCE coefficients. For the mul-
tivariate polynomials, if i > j then the degree of φi ≥ the degree of φj , and the degree of
φ1 = 0. The multivariate orthogonal polynomials are constructed from the tensor product of
the univariate orthogonal polynomials due to the independent random variables:

φi (ξ) =
d∏
j=1

ϕi,j (ξj) (2.2)

where ϕi,j (ξj) is the i-th univariate orthogonal polynomial basis function for the j-th random
variable. These orthogonal polynomials must satisfy the following condition with respect to
the joint PDF:

〈ϕi1ϕi2〉 =
∫
Rξ
ϕi1 (ξ)ϕi2 (ξ) fξ (ξ) dξ = h2δi1i2 (2.3)

where δi1i2 is the Kronecker delta which is 1 when i1 = i2 and zero for the other cases.
h is a constant: it is 1 for the orthonormal polynomial basis functions; 〈•〉 represents the
expectation operator on the orthogonal polynomials. The family of the univariate orthogonal
polynomial basis functions for a random variable is chosen as per the Askey scheme and the
orthogonal polynomials for different types of input random variables are given in Table 2.1.

For the practical implementation of the PCE model, the expression in Equation 2.1 is
truncated, which involves a finite number of terms in the polynomial basis. Hence, the
truncated PCE model is represented by:

y (ξ, t) ≈
n∑
i=1

ai (t)φi (ξ) (2.4)
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Table 2.1: Type of orthogonal polynomials for different types of input random variables in
PCE (Xiu and Karniadakis, 2002)

Variable type Random variable Type of orthogonal polynomial Support

Continuous

Gaussian Hermite [−∞,∞]
Gamma Laguerre [0,∞]
Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete

Poisson Charlier {0, 1, ...}
Binomial Krawtchouk {0, 1, ..., N}

Negative binomial Meixner {0, 1, ...}
Hypergeometric Hahn {0, 1, ..., N}

where n is the finite number of terms in the expansion. The total number of terms is calculated
as:

n =
(
d+ p
p

)
= (d+ p)!

d!p! (2.5)

where p is the maximum degree of the polynomials. The main difficulty in the PCE model is
the computation of the PCE coefficients. The PCE coefficients can be computed by several
ways. For the intrusive approach, the PCE coefficients are usually computed by the Galerkin
projection approach (Gerritsma et al., 2010; Jacquelin et al., 2015b). On the contrary, for the
non-intrusive approach, the PCE coefficients can be computed through different procedure
such as stochastic collocation approach (Gerstner and Griebel, 1998; Zhang et al., 2014; Ozen
and Bal, 2017b), regression approach (Blatman and Sudret, 2010b,a; Bhattacharyya, 2018).
Out of all, the Galerkin projection approach and the regression approach are discussed below.

2.4.2 Computation of PCE coefficients by Galerkin projection

The usual approach for computing the PCE coefficients in an intrusive approach is the
Galerkin projection. To illustrate this, consider a dynamical system having an uncertain
QoI y and the random variables are denoted by ξ:

L (ξ, t; y) = g (ξ, t) (2.6)

where, L is a differential operator and g (ξ, t) is a function with the random variables. Now,
the QoI y can be expressed by the PCE in Equation 2.4. Therefore, after substituting the
response in terms of PCE, Equation 2.6 can be written as:

L

(
ξ, t;

n∑
i=1

ai (t)φi (ξ)
)

= g (ξ, t) (2.7)

Now, it is required to project both sides of Equation 2.7 on each of the polynomial basis
functions to get the n differential equations which means tensorial multiplication is performed
with the both sides of the equation:

∀j = 1, 2, . . . , n
〈

L

(
ξ, t;

n∑
i=1

ai (t)φi (ξ)
)
, φj

〉
= 〈g (ξ, t), φj〉 (2.8)
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The unknown coefficients ai are then determined by solving the n deterministic differential
equations. As it can be seen from Equation 2.8 the system is time-dependent, the system
must be solved inside the time integration procedure. The time integration of the dynamical
system can be performed by the Runge-Kutta method, the Crank-Nicolson scheme (Crank
and Nicolson, 1996) or the Newmark’s time integration method (Newmark, 1959).

2.4.3 Computation of PCE coefficients by a regression approach

Regression approach is utilized to compute the PCE coefficients in a non-intrusive PCE model
formulation. Ordinary least square (OLS) approach is one of the appropriate solutions for
computing the unknown PCE coefficients. It is a non-intrusive approach and it requires
the QoI at some predefined sample points. Hence, N number of realizations of the random
variables is given by a matrix Ξ = {ξ1, ξ2, . . . , ξd} ∈ RN×d: ξi ∈ RN×1 is the vector having
all the N realizations for the i-th random variable whereas Ξi represents the i-th row of the
matrix Ξ (i.e. i-th realization for all the random variables), and Ξij represents the i, j-the
element of the matrix Ξ. The QoI is then evaluated at the N sample points utilizing a
deterministic code (e.g. FE model), which gives the matrix Y = {Y1, Y2, . . . , YN}T ∈ RN×nt :
nt is the total number of time-steps for the time integration of the dynamical system. Having
these quantities, the PCE model is approximated by Equation 2.4:

Y (Ξ, t) ≈
n∑
i=1

Φ(i) (Ξ) ai (t) (2.9)

where Φ (Ξ) ∈ RN×n is the polynomial basis matrix having all the polynomial basis functions
evaluated at the N sample points and Φ(i) (Ξ) ∈ RN×1 is the vector having all the N real-
izations of the i-th PC. ai (t) are the time-dependent PCE coefficients, which are computed
using the OLS approach. In the OLS approach, the coefficients are computed by minimizing
the mean square error:

∀tk, k ∈ {1, . . . , nt} a (tk) = arg min
a(tk)

1
N

N∑
i=1

Y (Ξi, tk)−
n∑
j=1

Φ(j) (Ξi) aj (tk)

2

(2.10)

The solution of the above-mentioned equation is explicitly given by:

∀tk, k ∈ {1, . . . , nt} a (tk) =
[
ΦT (Ξ) Φ (Ξ)

]−1
ΦT (Ξ)Y (Ξ, tk) (2.11)

The main difficulty with the Galerkin and the OLS approaches for a dynamical system is
that the coefficient vector is computed at each time-step and the number of time step nt is
quite high for a dynamical system, which may lead to a high computational cost.

2.4.4 Post-processing of PCE results

The statistical response quantities (e.g. mean and standard deviation) are the important
quantities for UQ of a system. PCE has the ability to compute the statistical moments using
almost no computational cost. Indeed, the multivariate polynomials are orthonormal with
respect to the marginal PDF of the input random variables which means:

∀i > 1 〈φi (ξ)〉 = 0 (2.12)
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〈φi (ξ)φj (ξ)〉 = δij (2.13)

The predicted mean and standard deviation are given by:

µ̂ (y (ξ, t)) = a1 (t) (2.14)

σ̂ (y (ξ, t)) =

√√√√ n∑
i=2

a2
i (t) (2.15)

Another important result for UQ is the PDF of the predicted response at a given time.
Usually the PDF can be estimated from the response with a large number of sample points.
Once the PCE coefficients are computed, the response quantity can be easily predicted by
Equation 2.9. Only the orthogonal polynomials are evaluated for a large number of samples
Npred. The PDF of the predicted response can be computed using the kernel density estimator
(Bowman and Azzalini, 1997):

f̂ĥ (Ypred (t)) = 1
Npredĥ

Npred∑
i=1

K

(
Ypred (t)− Ypred,i (t)

ĥ

)
(2.16)

where K (•) is a kernel smoothening function (e.g. uniform, normal) and ĥ is the bandwidth.
The above-mentioned procedure is incorporated in the Matlab software as ksdensity function
which is used in this thesis with the default settings.

2.5 PCE models applied to dynamical systems: available ap-
proaches

An extensive review is conducted here to get an outlook of the available approaches using
the PCE model for the dynamical systems. The present discussion is based on the two
different categories of surrogate modeling approach as discussed in section 2.3. Firstly, the
intrusive approaches are discussed: they require the differential equation of a dynamical
system. Afterwards, the non-intrusive approaches will be discussed.

2.5.1 Intrusive approaches

As discussed in the Galerkin projection approach (subsection 2.4.2), the intrusive approach
requires the governing differential equation of the system to propagate uncertainties through
the system. Hence, the stochastic QoI is directly computed by solving the governing dif-
ferential equation of a dynamical system. The PCE model was used in the context of the
nonlinear dynamical systems by Ghanem and Spanos (1993). The time-dependent QoI was
approximated by the PCE model while the PCE coefficients were computed using the Galerkin
approach as described previously in this chapter.

Further, an adaptive PCE model has been developed by Li and Ghanem (1998) to capture
the nonlinear behavior of a dynamical systems with higher order terms in the PCE basis.
Firstly, the PCE terms are separated in three categories: one linear contribution for K-
dimension (out of d-dimension), another linear contribution for the (d−K)-dimension and
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one nonlinear contribution for K-dimension only. Then, a Galerkin projection is performed
to compute the coefficients in each iteration only using the linear terms, and the L2 norm
of all the PCE coefficients is computed up to the available time series. The nonlinear term
is then added for a dimension (out of K-dimension) which produces large L2 norm. In this
way, the nonlinear terms are added with the existing linear PCE model. A duffing oscillator
excited with a random process acceleration has been investigated using this approach and it
was useful to capture the high order nonlinearity of the duffing oscillator.

The Galerkin projection approach has been also used by Le Matre et al. (2001) to solve the
stochastic incompressible Navier-Stokes equation. Until this investigation, the PCE model
was only applied the Gaussian input random variables. In 2002, Xiu and Karniadakis (2002)
proposed the generalized PCE model, which accounts the Gaussian and also the other types
of random variables as given in Table 2.1. The generalized PCE model is termed as PCE
model throughout this thesis. The PCE model was then applied to random oscillators by
Lucor et al. (2004) having different types of input random variables. Further, the adaptive
PCE model developed by Li and Ghanem (1998) was applied to a duffing oscillator (Lucor
and Karniadakis, 2004) subjected to random process excitation having the other types of
random variables. Although with the adaptive PCE, it was possible to reduce the error with
time as compared to the PCE model, the error in the prediction of the second order moment
was overestimated in the later time. Therefore, Lucor and Karniadakis (2004) observed that
the increase of the number of interaction terms between the random variables is improving
the accuracy in the later time.

A different kind of adaptive PCE model was proposed (Wan and Karniadakis, 2005) by
decomposing the random space in several segments which is called multi-element PCE (ME-
PCE) model. The idea behind the formulation of the ME-PCE was to decompose the random
space into the total number of random variables and, further, these sub-domains are divided
into two local random variables. The PCE model is then applied on the decomposed domains
with only two random variables which is much simpler as compared to the initial problem with
a large set of random variables. The ME-PCE model was applied to the Kraichnan-Orszag
three mode problem (Orszag and Bissonnette, 1967) and a stochastic advection-diffusion
problem. It was possible to propagate the uncertainties through the nonlinear dynamical
systems using low degree polynomials by the ME-PCE model with low computational cost
as it requires much less terms in the PCE basis and hence, the number of PCE coefficients
is much smaller in this case. Further, this ME-PCE model was applied to a stochastic flow
problem (Wan and Karniadakis, 2006) to investigate the uncertainty in the drag and lift
coefficients when a noisy flow is passing through a stationary circular cylinder.

To improve the accuracy of the Galerkin projection based PCE, a different kind of poly-
nomial basis function has been used by Le Maître et al. (2007) to propagate uncertain param-
eters through chemical systems. The polynomial basis functions have been constructed using
a multi wavelet basis, which is almost similar to the ME-PCE model (Wan and Karniadakis,
2005). The polynomial basis is not dependent on the dimensionality of the dynamical system
instead, it depends on the number of sub domains. Although this strategy has increased the
prediction accuracy, it is not so efficient as compared to the PCE model. The PCE model was
investigated by Le Maître et al. (2004) using Haar polynomial basis function (Burrus et al.,
1998) instead of the polynomial basis function proposed by Xiu and Karniadakis (2002).
The Haar polynomial basis function was found to be robust as compared to the Legendre
polynomial. A basis enrichment scheme was proposed by Ghosh and Ghanem (2008) for a
non-smooth random eigenvalue problem. It was seen that the enrichment was suitable to
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make a statistical characterization of the eigenvalues and the eigenvectors. However, the
enrichment is highly dependent on the knowledge about a physical system, hence, a general
framework for all the problems was not possible to propose. Further, two approaches have
been used by Ghosh and Ghanem (2008) to compute the PCE coefficients namely Galerkin
projection and Newton-Raphson iteration based approach, and both the approaches were
successfully applied in accordance with the basis enrichment scheme.

A quite interesting intrusive approach was proposed by Gerritsma et al. (2010), which is
called time-dependent generalized PCE (TDgPCE) model. This method utilized a different
kind of modification criterion for the basis function. The main problem with the PCE is that
the polynomial basis is not optimal with the increase of time for the long time integration
problems. Therefore, the main idea behind the TDgPCE is that the optimal polynomial basis
(i.e. with few terms and a low polynomial degree, but with a good accuracy) changes with
the time. A new polynomial basis is chosen at different times t. The new random functions
are constructed in a way such that they satisfy the condition of an ideal random function (Doi
and Imamura, 1969) i.e. the new random functions must satisfy the orthogonality condition
(Equation 2.3) to formulate a PCE model. The polynomials must change with the time so
that the PCE can capture the PDF of a QoI by an optimum set of polynomials. Same phe-
nomenon has been utilized by Gerritsma et al. (2010) to construct new orthogonal polynomial
functions. In the time integration procedure, the response in the previous time step is consid-
ered as the new random variable in the current time step. Therefore, instead of constructing
new basis function from the orthogonal family as given in Table 2.1, the new orthogonal
polynomial basis functions are constructed using the Gram-Schimdt orthogonalization pro-
cedure in terms of the predicted QoI of previous time steps and, at time t = ti the solution
is considered to be the new random variable for t = ti+1. Although the TDgPCE approach
was useful for propagating uncertainties through the Kraichnan-Orszag problem (Gerritsma
et al., 2010), it suffers to predict the time-dependent statistical moments for a single degree
of freedom (SDOF) dynamical system as investigated in Appendix A. The SDOF dynami-
cal system has been investigated for different natural frequencies in Appendix A and it was
found that TDgPCE approach was able to predict the stochastic response when the natural
frequency is close to the excitation frequency, however, it was unable to predict the stochastic
response quantity in the later time when the natural frequency is quite high as compared to
the excitation frequency. Another drawback of TDgPCE is that the new polynomial basis
function was constructed at each time-step for the Kraichnan-Orszag problem which is a quite
computationally expensive.

A different kind of dynamical PCE model was proposed by Ozen and Bal (2016, 2017a) to
handle the stochastic partial differential equation driven by Brownian motion. The dynamical
PCE (Ozen and Bal, 2017a) was applied to the stochastic Burgers equation and Navier-Stokes
equation driven by white noise force. A combination of TDgPCE and ME-PCE has been pro-
posed by Heuveline and Schick (2014) for the long time integration of dynamical systems.
The three mode Kraichnan-Orszag problem and a stochastic time-dependent chemical prob-
lem were investigated using the combined approach which improved the prediction accuracy
significantly. A different kind of PCE for the dynamical systems was proposed by Maitre
et al. (2010) based on time scale transformation. The time domain was rescaled to a smaller
time domain based on the idea taken from (Witteveen and Bijl, 2008a,b). Therefore, the PCE
was applied in the rescaled time domain to propagate the uncertain response quantity. This
approach was applied for UQ of a chemical process having two random variables and a good
accuracy was achieved for the long time integration. During the computation of the PCE
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coefficients by Galerkin projection, the right side of the spectral functions are rational and
it often requires high degree polynomial to assess a stochastic system properly. To enhance
the efficiency with low degree polynomial, a Krylov subspace projection approach (Nair and
Keane, 2002) has been used in conjunction with the PCE model by Kundu and Adhikari
(2013, 2014). Krylov subspace helps to predict the response quantity in the reduced domain
using low degree polynomial which subsequently reduced the computational cost.

The intrusive approach for the dynamical system has also been adopted in the frequency
domain (Jacquelin et al., 2015a,c, 2017). The first two moments of the steady-state response
for the linear dynamical systems was obtained in (Jacquelin et al., 2015c) by the PCE model.
However, the required polynomial degree was much high. For accelerating the approxima-
tion, Aitken’s criterion (Brezinski, 1996) has been used in (Jacquelin et al., 2015a), which
accelerates the convergence of the first two statistical moments. To accurately compute the
PDF and the statistical moments an extended Padé approximation (Matos, 1996) based PCE
has been developed in (Jacquelin et al., 2017): it was useful in predicting an accurate results
using low degree polynomial. Some other application of the Galerkin projection based PCE
model can be found in (Kundu and Adhikari, 2015; Pryse et al., 2018).

2.5.2 Non-intrusive approaches

The above discussion was solely based on the intrusive approach in which the governing
differential equations of the system are required. However, for a practical problem (e.g. FE
large scale problem), the governing differential equation is often not available or it is much
difficult to solve a system considering the mathematical form of a surrogate model. In that
case, it is necessary to apply the non-intrusive approaches for propagating the input random
variables through a dynamical system.

Initially, the non-intrusive approach was applied on the spectral projection based ap-
proach. Unlike the Galerkin projection approach, the PCE model as given in Equation 2.4
is projected on the polynomial basis functions and the coefficients are further computed us-
ing the statistical simulation. This approach was utilized by Ghosh and Iaccarino (2007) to
compute the PCE coefficients. Along with this, a different type of polynomial basis function
(a composition of sine and cosine function) has been used by Ghosh and Iaccarino (2007) to
propagate the uncertainties through a carbon monoxide surface oxidation model. Although
the results were sufficiently good, this basis function is dependent on the specific problem. A
different kind of non-intrusive approach was proposed by Pettit and Beran (2006) in which
the the Haar polynomial basis function (Burrus et al., 1998) has been used for constructing
the PCE model. Pettit and Beran (2006) have found that the coefficients corresponding to
the Haar polynomial bases can be computed more efficiently and accurately using the Mallat’s
pyramid algorithm (Strang and Nguyen, 1996; Burrus et al., 1998). This method was applied
for UQ of a sinusoidal function and a 2-DOF nonlinear dynamical system.

The OLS approach as discussed in section 2.4.3 was applied by Sudret (2008) for global
sensitivity analysis. It was adopted in the UQ domain for structural engineering problems by
Blatman and Sudret (2008). Along with this, the important polynomial bases were selected
using a forward-backward approach which ultimately improved the accuracy and the efficiency
of the predicted results. However, all these approaches were developed in the context of
static systems. Later, a sparse PCE model (Blatman and Sudret, 2011) has been combined
with the principal component analysis (PCA) (Jolliffe, 2002) approach for UQ of a one-
dimensional diffusion problem by Blatman and Sudret (2013). The important polynomials



2.5. PCE MODELS APPLIED TO DYNAMICAL SYSTEMS: AVAILABLE APPROACHES15

were identified by the least angle regression (LARS) (Efron et al., 2004) to formulate the
sparse PCE model (Blatman and Sudret, 2011). The uncertain parameters were propagated
by Blatman and Sudret (2013) using the sparse PCE model (Blatman and Sudret, 2011)
and the time-dependent behavior of the response quantity was addressed using the dominant
principal components by the PCA approach. The PCE coefficients have been computed by
using an alternating least square (ALS) approach (Beylkin and Mohlenkamp, 2002, 2005) by
Doostan and Iaccarino (2009); Doostan et al. (2013) to substantially reduce the computational
cost. The ALS approach helps in solving a high-dimensional problem with low rank and
the computational cost increases linearly with respect to the dimensionality of the problem.
However, this method has not been investigated in the context of dynamical systems.

A different type of non-intrusive approach was proposed by Luchtenburg et al. (2014),
which is almost similar to the TDgPCE approach. In this method, the orthogonal polynomial
basis has been modified with time using a flow map composition technique. A long-time
integration of a stochastic differential equation uses a short-time flow map of the orthogonal
polynomial basis function. More specifically, at the new time-step, new basis functions are
generated and the previous basis function is also used. As it uses flow maps of all the previous
time-steps, it is important to specify that the degree of the polynomial should be kept small
i.e. the response should be represented by low-degree orthogonal polynomial. Let us consider
a simple ordinary differential equation (ODE):

dy (t, ξ)
dt

= g (t, y; ξ) (2.17)

Now, consider ψtft0 be the flow map such that ψtft0 (ξ) is the solution of Equation 2.17.
Therefore, Equation 2.17 becomes:

dψtt0 (ξ)
dt

= g (t, y0; ξ) (2.18)

where y0 is the initial condition at t = 0. For any time ti, the long-time flow map is defined
by:

ψtit0 = ψtiti−1 ◦ ψ
ti−1
ti−2 ◦ · · · ◦ ψ

t2
t1 ◦ ψ

t1
t0 (2.19)

This equation defines the flow map for long-time integration problem whereas each of the
small part defines the short-time flow map. Consequently, any short time flow map (for
time-step ∆t) is defined by the PCE expansion as:

ψt0+∆t
t0 =

Q∑
j=0

n∑
i=1

ât0+∆t
t0,ij

φi (ξ) Θj (y) (2.20)

where Θj (y) is the basis function of the response quantity which is calculated in a similar way
to Equation 2.2. Q is the degree of the basis function Θj (y), which can be different from p.
The flow map for any time-step ∆t can be found by solving Equation 2.17. Equation 2.20 has
been solved by Luchtenburg et al. (2014) in a non-intrusive way by a stochastic collocation
method. UQ of a nonlinear double gyre flow has been carried out using this method (Lucht-
enburg et al., 2014) and it outperforms the PCE model with low degree polynomial. However,
this method struggles in computational efficiency for highly nonlinear and high-dimensional
problem. It is clearly stated by Luchtenburg et al. (2014) that the computational cost is
very high even for low-dimensional problem with low degree polynomial. The reason is that
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the degree of the resulting polynomial increases exponentially with the number of time-steps
and a very small time-step is required for a highly nonlinear problem. As the PCE model
was solved by the stochastic collocation approach (Luchtenburg et al., 2014), it also has a
drawback: the number of collocation points increases exponentially (Palar et al., 2016) with
the increase of the dimensionality of a system.

A different non-intrusive approach has been proposed by Spiridonakos and Chatzi (2015).
The time dependent nonlinear behavior and the randomness have been decoupled by the
Nonlinear Auto-Regressive with eXogenous input (NARX) model and the PCE model, re-
spectively: the resulting surrogate model is called PCE-NARX model. The nonlinear time
dependent behavior has been modeled using a polynomial NARX model (Chen and Billings,
1989) and the NARX model was formulated in a similar way to the PCE model as given
in Equation 2.4. In addition, the important NARX polynomial bases for a specific problem
were selected using genetic algorithm. The coefficients corresponding to the important poly-
nomials were uncertain and, then, were approximated by a sparse PCE model. The sparse
PCE model was constructed using a least square optimization procedure. Time-dependent
stochastic quantities of a nonlinear dynamic oscillator were predicted using the PCE-NARX
model: a good accuracy and efficiency have been achieved using the PCE-NARX surrogate
model. A similar kind of sparse PCE-NARX model was investigated by Mai et al. (2016) for
nonlinear dynamical systems, which used the sparse PCE model proposed in (Blatman and
Sudret, 2011). The polynomial NARX model was also used by Mai et al. (2016) and the im-
portant terms in the NARX polynomial basis were selected using the LARS approach (Efron
et al., 2004). The PCE coefficients were obtained by the OLS approach (Mai et al., 2016).
The sparse PCE-NARX model has been applied to a Duffing oscillator and Bouc-Wen oscil-
lator for UQ in the time domain and very good results were obtained with much less number
of model evaluations as compared to MCS. A different kind of non-intrusive approach was
proposed by the same researchers (Mai and Sudret, 2017) which is called time warping PCE.
A time warping PCE model was constructed in a similar way to the approach proposed by
Maitre et al. (2010) by rescaling the time domain. Then the PCA based PCE (Blatman
and Sudret, 2013) was applied on the rescaled time-dependent response quantities for UQ of
the dynamical systems. Recently, a mixed sparse grid collocation approach has been used in
conjunction with the PCE model by Bhusal and Subbarao (2019) to propagate uncertainties
through linear and nonlinear dynamical systems. The mixed sparse grid points were obtained
for a multi-dimensional problem based on the PDF of the input random variables, hence, the
PCE polynomial basis functions are much more representative for a dynamical system.

2.6 Kriging surrogate model

Out of all the surrogate models, Kriging (Krige, 1951; Sacks et al., 1989; Kaymaz, 2005),
also known as Gaussian process regression, has also emerged rapidly in the last two decades.
The name Kriging came after a South African engineer Krige (Krige, 1951) investigated this
approach for the statistical characterization of the mining engineering resources. Kriging was
applied on geo-statistics by Matheron (Matheron, 1963). Further, it was used to analyze
the data taken from a computational experiment (e.g. FE simulation) (Sacks et al., 1989;
Santner et al., 2003). Kriging has been used extensively for the reliability analysis problems
(Kaymaz, 2005; Echard et al., 2011; Gaspar et al., 2014; Lu et al., 2018a; Lelièvre et al.,
2018), for UQ problems having static QoI (Kersaudy et al., 2015; Mukhopadhyay et al., 2016;
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Bhattacharyya, 2018) and for the optimization problems (Dubourg et al., 2011; Durantin
et al., 2016; Moustapha et al., 2016).

2.6.1 Construction of the model

Recall the realizations of the d dimensional random variables Ξ = {ξ1, ξ2, . . . , ξd} and the
corresponding responses are given by Y = {Y (Ξ1) , Y (Ξ2) , . . . , Y (ΞN )}T ∈ RN×1. The
superscript T represents the transpose of the corresponding matrix or vector. The responses
are computed by a computational model M, therefore, Y (Ξ) = M (Ξ). Note that the
response quantity is independent of time here, which is given by the Kriging model as:

M (Ξ) = ψ (Ξ)β + Z (Ξ) (2.21)

In Equation 2.21, the first part of the expression ψ (Ξ)β represents the regression part (also
known as ‘trend’) of the model which can also be written as:

ψ (Ξ)β =
nβ∑
i=1

βiψi (Ξ) (2.22)

where ψi (Ξ) are the polynomial basis functions and βi are the corresponding coefficients of
the basis functions. nβ represents the total number of terms in the basis function which
depends on the degree of the polynomial. According to the form of the polynomial, the
Kriging model has several variants in the literature (Mukhopadhyay et al., 2016). Ordinary
Kriging considers only the constant term in the polynomial basis function. In contrast, the
regression function for universal Kriging model is given in Equation 2.22. The second part of
Equation 2.21 defines the Gaussian process with mean zero and the process covariance is:

cov [Z (Ξi) , Z (Ξj)] = σ2
ZR (Ξi,Ξj) ; i, j = 1, 2, . . . , N (2.23)

where, Ξi and Ξj are two different sample points, σ2
Z is the process variance and R (Ξi,Ξj)

is the auto-correlation function between two sample points. This auto-correlation function
maintains the smoothness of the fitted model. A variety of function has been adopted by the
researchers Kaymaz (2005); Rasmussen and Williams (2006); Bhattacharyya (2018); Sacks
et al. (1989) such as linear, exponential, Gaussian and Matérn auto-correlation functions. The
type of auto-correlation function should be chosen having proper knowledge of the response
function, but in reality the response is not known beforehand. However, previous researches
have shown Kaymaz (2005); Bhattacharyya (2018) that the Gaussian function is efficient in
fitting the Kriging model for most of the engineering problems. For that reason, the Gaussian
function is used for fitting the Kriging model in the present research work. The Gaussian
auto-correlation function is given by:

R (Ξi,Ξj) =
d∏

k=1
exp

[
−θk(ξi,k − ξj,k)2

]
(2.24)

The auto-correlation function is dependent on the hyper-parameter θ = {θ1, θ2, . . . , θd}
which is determined by the maximum likelihood estimation (MLE) Sacks et al. (1989). Thus,
the parameter θ is estimated by maximizing the log-likelihood function

` = −1
2
(
N ln σ2

Z + ln |R|
)

(2.25)
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In Equation 2.25, R is the correlation matrix of dimension N ×N and |R| is the determinant
of the correlation matrix. The correlation matrix for N sample points is given by:

R =

 R (Ξ1,Ξ1) · · · R (Ξ1,ΞN )
... . . . ...

R (ΞN ,Ξ1) · · · R (ΞN ,ΞN )

 (2.26)

2.6.2 Prediction

For the prediction using the Kriging model, the unknown parameters of the Kriging model
need to be computed first. The unknown parameters β̂ and σ2

Z are calculated as:

β̂ =
(
ψTR−1ψ

)−1
ψTR−1Y (2.27)

σ̂2
Z = 1

N

(
Y −ψβ̂

)T
R−1

(
Y −ψβ̂

)
(2.28)

Now consider any untried sample point for the prediction Ξ0 ∈ Rd. The function value at
the new sample Ξ0 is predicted by the best linear unbiased predictor (BLUP):

M̂ (Ξ0) = wT (Ξ0)Y (2.29)

where, wT (Ξ0) is the unknown weighted coefficient. The BLUP can be found by minimizing
the mean square error (MSE) which is given by

MSE
[
M̂ (Ξ0)

]
= E

[(
wT (Ξ0)Y −M (Ξ0)

)]
(2.30)

where, E[•] is the expectation operator. The minimization problem of MSE is solved subject
to the unbiased constraint

E
[
wT (Ξ0)Y

]
= E [M (Ξ0)] (2.31)

By solving the minimization problem, the BLUP and the variance are predicted as:

M̂ (Ξ0) = β̂Tψ (Ξ0) + rT (Ξ0) R−1
(
Y − β̂Tψ

)
(2.32)

σ2
M̂

(Ξ0) = σ̂2
Z

1−
[
ψT (Ξ0) rT (Ξ0)

] [ 0 ψT

ψ R

]−1 [
ψ (Ξ0)
r (Ξ0)

] (2.33)

where, r (Ξ0) = {R (Ξ0,Ξ1) ,R (Ξ0,Ξ2) , . . . ,R (Ξ0,ΞN )} is the correlation matrix between
the new untried sample point and the initial samples. Therefore, once the unknown param-
eters using the Kriging model are estimated, the prediction of the response at the untried
point can be made easily by utilizing Equation 2.32.
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2.7 Radial basis function surrogate model

Radial basis function (RBF) is another surrogate model, which has been used a lot for the
reliability analysis (Deng, 2006; Dai et al., 2011; Li et al., 2018) and sensitivity analysis
(Wu et al., 2016; Yun et al., 2018; Wu et al., 2019). RBF was proposed by Hardy (1971)
to figure out irregular topographic contour of geographical data. RBF is generally used as
a non-intrusive surrogate model. Therefore, it requires the response quantity evaluated at
some predefined sample points. For the formulation of the RBF model, the same notations
as defined in section 2.6.1 are used. The response quantity is predicted by the RBF model as
follows:

M̂ (Ξ0) =
N∑
i=1

γiκ (‖Ξ0 − Ξi‖) (2.34)

where M̂ (Ξ0) is the predicted response quantity at any untried sample Ξ0. κ (•) is the basis
function for the RBF model and γi are the coefficients of the RBF model. ‖Ξ0 − Ξi‖ is the
Euclidean distance between the predicted sample Ξ0 and the i-th sample point Ξi which can
be represented as:

‖Ξ0 − Ξi‖ =
√

(Ξ0 − Ξi)T (Ξ0 − Ξi) (2.35)

The unknown coefficients γi can be found by minimizing the mean square error as given in
Equation 2.10. Another important issue with the RBF model is the choice of a suitable basis
function κ. Several kernel functions are available for the RBF surrogate model (Tripathy,
2010) to construct the basis function. Note that, the prediction quantity in Equation 2.34
does not depend on time. Therefore, for a dynamical system, the RBF model must be
evaluated at each time step which is drawback similar to the previous surrogate models in
this chapter.

A RBF model based artificial neural network (ANN) has been used by Zakian (2017) for
the stochastic dynamic analysis of soil media in the frequency domain considering random
field shear modulus of the soil mass and the seismic excitation as the random process. RBF
based ANN model has also been used by Elanayar and Shin (1994) for the approximation of a
nonlinear state space model. RBF model has been used for the system identification problem
(Li and Zhao, 2006).

2.8 Support vector machine surrogate model

Support vector machine (SVM) (Cortes and Vapnik, 1995) is a tool for the statistical learning.
SVM is classified in two different categories namely SVM for classification and for regression.
The later is used as a surrogate model for the prediction of an uncertain response quantity.

SVM for regression is also used as a non-intrusive surrogate model, therefore, the same
sample matrix Ξ ∈ RN×d and the corresponding response vector Y ∈ RN×1 are used here for
the construction of the SVM surrogate model. The SVM model is given by:

M (Ξ) = Ξc+ C (2.36)

where c = {c1, c2, . . . , cd}T ∈ Rd×1 and C are the unknown parameters of the SVM model.
The SVM model parameters can be estimated in several ways according to the formulation.
One of the possible ways is the estimation of parameters such that the predicted results at the
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training samples are less than an error εSVM. The following optimization problem is solved
to get the parameters of the SVM model:

min 1
2 ‖c‖

2 +m
N∑
i=1

(ηi + η∗i ) (2.37)

s.t. Yi − Ξic− C ≤ (εSVM + ηi) ; ηi ≥ 0
Ξic+ C − Yi ≤ (εSVM + η∗i ) ; η∗i ≥ 0 (2.38)

where the second part of Equation 2.37 defines the risk part (Al-Anazi and Gates, 2010). ηi
and η∗i are the slake variables (Cheng et al., 2017), which focus on the symmetry boundary
by a loss function. The loss function is given by:

|Y −M (Ξ)| = 0; |Y −M (Ξ)| ≤ εSVM
= |Y −M (Ξ)| − εSVM; otherwise (2.39)

The optimization problem in Equation 2.37 is solved using the Lagrangian multiplier
approach. m and εSVM are chosen by the cross-validation (CV) approach. The SVM model in
Equation 2.36 ultimately expressed in terms of a kernel function after solving the optimization
problem in Equation 2.37. Several kernel functions are available in the literature (Cheng et al.,
2017) e.g. linear, polynomial, Gaussian.

The SVM surrogate model has been used for the reliability analysis (Bourinet et al., 2011;
Bourinet, 2016) and for the sensitivity analysis (Cheng and Lu, 2018a; Steiner et al., 2019).
The use of SVM for a dynamical system in time domain is a numerically intensive procedure
as the SVM model parameters must be obtained at each time step.

2.9 UQ of stochastic impact problems: Literature review
UQ of uncertain impact oscillator is one of the main objectives of this research. The vibro-
impact (VI) oscillator (Feng et al., 2009; Sampaio and Soize, 2007; Liao et al., 2018) is a class
of impact oscillator. The most important aspect of a VI oscillator is the non-smooth behavior
of the response quantities due to impact. The response behavior of a VI oscillator is very
complex. The response between two consecutive impacts of a VI oscillator usually behaves like
a continuous dynamical system and a different behavior is generally observed during an impact
(Zhu, 2015). Several random VI oscillators have been investigated in the literature (Jing and
Young, 1990; Namachchivaya and Park, 2005; Feng et al., 2009; Zhu, 2015). For obtaining the
stochastic behavior of the response quantity, the stochastic averaging method has been used
a lot in the literature (Namachchivaya and Park, 2005; Feng et al., 2008, 2009; Zhao et al.,
2016). The stochastic averaging method formulates a dynamical system as a low dimension
problem without changing the essential behavior of the system (Chai et al., 2018). Further, the
low dimensional governing differential equation is formulated using the Fokker-Planck (FP)
equation (Namachchivaya and Park, 2005; Zhu, 2014a,b) and the stationary PDF is computed
by solving the FP equation of the dynamical system. The stationary PDF of a Duffing
oscillator has been obtained by Zhu (2014a) using the FP equation under a Gaussian white
noise excitation. The stochastic averaging method has also been used to analyze a VI system
under Gaussian white noise excitation by Gu and Zhu (2014). A review of random impact
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vibration has been performed by Dimentberg and Iourtchenko (2004). A stochastic Duffing-
Van der Pol VI system has been analyzed by the stochastic averaging method (Feng et al.,
2009) under additive and multiplicative stochastic excitation. A friction problem has been
investigated (Qiao and Ibrahim, 1999) by the stochastic averaging technique. The friction
was considered by Qiao and Ibrahim (1999) when a rotating disc comes in contact with a
rigid pin. The FP equation was obtained for a vibro-impact Duffing-Van der Pol oscillator
by Kumar et al. (2016) after performing a non-smooth co-ordinate transformation such that
the non-smooth behavior of the system was described by a continuous dynamical system.

A different approach called exponential-polynomial closure (EPC) was used to solve the
FP equation by Zhu (2014a). The EPC approach has also been used in conjunction with the
FP equation in several researches (Zhu, 2014b, 2015). On the other hand, Iourtchenko and
Song (2006) rely on the MCS approach for obtaining the PDF of a VI system under inelastic
impact conditions.

The application of a surrogate modeling approach is very limited in the literature for an
impact dynamical system. Recently, a PCE model was used for a friction problem which can
be appraised as a contact problem (Nechak et al., 2011, 2013). The ME-PCE model has also
been used by Nechak et al. (2012) for uncertain dry friction system. The ME-PCE approach
has been used by Sarrouy et al. (2013) for uncertainty propagation through a brake sequel
linear system. The UQ was performed considering the eigenvectors as the QoI, and the friction
coefficient and the contact force between a disc and a pad were considered as the uncertain
parameters. A friction induced vibration problem as been investigated by Nechak and Sinou
(2017) using the PCE model. The Chebyshev polynomials were used in conjunction with the
PCE model to account the interval parameter uncertainties. The stability of an uncertain
break sequel problem has been investigated by Nechak et al. (2018) using the PCE model with
the Wiener-Haar expansion (Pettit and Beran, 2006). Further, to deal with a similar problem
investigated by Nechak and Sinou (2017), the hybrid PCE-Kriging surrogate model has been
used by Denimal et al. (2018) which increased the accuracy and the efficiency as compared
to the PCE model. All the above-mentioned investigations are mainly focused on the contact
problem and not exactly the impact problem which is the main focus of this thesis.

A car crash FE model has been investigated under impact condition by Moustapha et al.
(2016) for reliability based design optimization (RBDO). Mainly, a subsystem of a car was
investigated for the optimization under two uncertain parameters namely the initial speed and
the barrier position. The uncertain parameters were propagated using an adaptive Kriging
surrogate model to get the constraints for the solution of the optimization problem. Fur-
thermore, the same problem was investigated for UQ using Kriging and SVM approach by
Moustapha et al. (2018) and the contact force, the side-member compression, the left and the
right side-member force were considered as the QoI. For this problem, SVM was found better
as compared to Kriging surrogate model. Although the crash problem has been investigated
(Moustapha et al., 2016, 2018), the time-dependent uncertainty propagation through the sys-
tem was not investigated in their research. Therefore, the present research presented in this
thesis is tried to fill up the void in the research by addressing the uncertainty propagation
through impacted dynamical system (e.g. a crash problem).
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2.10 Need of the research
From all the available researches on the UQ of dynamical systems and UQ of impacted
dynamical systems, several researches need arise. All the needs are listed below:

• Most of the surrogate modeling approaches for dynamical systems were developed based
on the PCE model. Therefore, other surrogate modeling approaches (e.g. Kriging,
SVM) need to be investigated for UQ of nonlinear dynamical systems. This point will
be partially addressed in the present thesis.

• The surrogate modeling approaches investigated till now are either based on improve-
ment of the polynomial basis function or based on the dynamical behavior of a response
quantity (e.g. PCE-NARX model). These approaches are not always applicable for real
world engineering applications because these models have been developed focusing some
specific dynamical systems. In particular, the PCE-NARX model has not been applied
to impacted systems. This part will be investigated in the present research work.

• The main constraint of the PCE model for a dynamical system in time domain is that the
PCE coefficients need to be computed at each time-step which is often computationally
expensive. Consequently, it is necessary to investigate an approach for reducing the
number of PCE coefficients, which will be investigated in the present research work.

• UQ of stochastic impacted dynamical system is very limited in the literature. In most
of the cases, the stationary PDF was obtained for the VI oscillators. Very few research
works have been conducted on UQ of impact dynamical system by the surrogate model-
ing approach. Indeed, the surrogate modeling approaches have not been utilized for UQ
of impact oscillators (only used for friction problem). Hence, the surrogate modeling
approach needs to be investigated in the context of impacted oscillators. This part will
be addressed in the current research work.

• The non-intrusive surrogate models are constructed using the responses at some pre-
defined experimental design points. For a dynamical system, the required number of
sample points is not known beforehand. Therefore, a methodology is needed to obtain
the optimum number of samples for a dynamical system to minimize the computational
cost. This part is addressed in the present research work.



Chapter 3

Kriging-NARX model for
dynamical systems

3.1 Introduction

Most of the surrogate models for the dynamical systems have been developed based on PCE.
Out of all the surrogate approaches, the PCE-NARX model (Spiridonakos and Chatzi, 2015;
Mai et al., 2016) was found to be useful as it decouples the time dependent nonlinear behavior
and the randomness. The main idea behind the PCE-NARX model is that the time-dependent
nonlinear behavior is modeled by the NARX model and the uncertain parameters of the
dynamical system are propagated using the PCE surrogate model. The Auto-Regressive
with eXogenous input (ARX) model has been used along with PCE by several researchers
(Kopsaftopoulos and Fassois, 2013; Kumar and Budman, 2014; Sakellariou and Fassois, 2016).
Although it was possible to propagate the uncertainties through the nonlinear dynamical
systems properly by the PCE-NARX model, the other surrogate models should be explored in
the context of dynamical systems to reduce the computational cost by reducing the polynomial
degree of the surrogate model and the number of model evaluations.

Besides PCE, several other surrogate models have been developed in the literature as
mentioned in section 2.3. Out of all the other approaches, Kriging (Krige, 1951; Sacks et al.,
1989; Kaymaz, 2005) has emerged rapidly in the last two decades. The use of Kriging models
is limited in the literature for the dynamical systems. A Kriging model has been used by
McFarland et al. (2008) for the calibration and for the UQ of multivariate outputs (e.g. time-
dependent outputs). Further, the high-dimensional outputs were represented by PCA by
Higdon et al. (2008) and the Kriging model was applied on the reduced space. A similar
research work has been conducted by Guo and Hesthaven (2019) for the time-dependent
problems. The Kriging approach has been used in conjunction with the spectral approach for
the prediction of frequency response function (FRF) by Kundu et al. (2014).

The Kriging surrogate model deals with the global approximation and the local approxi-
mation. The global approximation is performed by the polynomial basis functions in a similar
way to the PCE model. Additionally, the local error is minimized using a Gaussian process.
To use the advantages of the Kriging surrogate model, a surrogate modeling approach is devel-
oped in this chapter by combining the NARX model with the Kriging model. NARX model is
used to capture the nonlinear time-dependent behavior of the response characteristics while
the uncertain parameters are propagated by the Kriging surrogate model. The developed

23
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methodology and the results of this chapter have been published in (Bhattacharyya et al.,
2019, 2020).

3.2 NARX model

3.2.1 Overview of NARX model

Nonlinear Auto-Regressive with eXogenous input (NARX) model is mainly used for the sys-
tem identification of the time-dependent response quantities. An extensive research has been
performed in the past for developing different types of NARX models (Leontaritis and Billings,
1985; Chen and Billings, 1989; Billings and Wei, 2005, 2008). The auto-regressive (AR) mod-
els are broadly categorized in two distinct category namely linear and nonlinear AR model.
The development and implementation procedure for most of the AR models are described by
Billings (2013). A brief overview of only the NARX model is presented in the present research
work.

NARX model was developed as a system identification tool for the nonlinear dynamical
systems (Chen and Billings, 1989; Wei and Billings, 2009; Billings, 2013). More specifically,
the time-dependent response characteristics of a dynamical system at the current time can be
predicted by the responses of some previous times and the excitation of some previous and
current times through a suitable NARX model. If we consider a dynamical system having
time-dependent excitation, then according to the NARX model, the dynamical system can
be expressed as:

y (t) = F [z (t)] + ε (t) (3.1)
where, z (t) =

{
x (t) , x (t−∆t) , x (t− 2∆t) , . . . , x (t− nxm∆t) , y (t−∆t) , y (t− 2∆t) , . . . ,

y (t− nym∆t)
}T is the vector having all the lagged system excitation and response com-

ponents which forms the time-dependent auto-regressive response model F [•]. ε (t) is the
residual of the NARX model which is supposed to be a normally independent distributed
(NID) process with zero mean and ∆t is the time-step chosen for the NARX model. nxm and
nym are the maximum time lags for the excitation and the response quantity, respectively.
It is obvious that the underlying form of the function F [•] must be nonlinear to capture
the strong non-linearity of a dynamical system. Consequently, different types of functions
have been used by the researchers such as polynomial (Cantelmo and Piroddi, 2010), wavelet
(Billings and Wei, 2005), sigmoid function (Sjöberg et al., 1995), radial basis function (Kang
Li et al., 2005) and neural network (Tsungnan Lin et al., 1996). Out of these, the effective-
ness of polynomial function has already been shown in the literature (Leontaritis and Billings,
1985; Cantelmo and Piroddi, 2010; Cheng et al., 2011). Therefore, a linear-in-parameter form
of polynomial can be used, it is represented by:

F [z (t)] =
M∑
i=1

aifi [z (t)] (3.2)

where M is the total number of terms in the NARX polynomial basis function, fi [z (t)] are
the polynomial basis functions and ai are the corresponding coefficients of the NARX model.
The polynomial basis for the NARX model is dependent on the time varying excitation
and response. Consequently, the polynomial basis vector (at a particular time ti) and the
coefficient matrix for a particular sample point k are represented by:

fk (ti,Ξk) = {f1 [zk (ti,Ξk)] , f2 [zk (ti,Ξk)] , . . . , fM [zk (ti,Ξk)]}T ; fk ∈ RM×1 (3.3)
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ak = {a1, a2, . . . , aM}; ak ∈ R1×M (3.4)

Now, if we discretize the total time T in nt number of times i.e. t ∈ {t1, t2, . . . , tnt}, the
polynomial basis matrix can be given by fk ∈ RM×nt .

The main issues with the NARX model are the formulation of a suitable basis to capture
the nonlinear behavior of a response for a nonlinear dynamical system and the estimation of
the coefficients for the NARX model.

3.2.2 Model formulation and parameter estimation of the NARX model

The polynomial basis function for the NARX model can be formulated by two variables, i.e.
excitation and response of the dynamical system, either as an independent variable basis
function (Spiridonakos and Chatzi, 2015) or as a composition of both variables (Mai et al.,
2016) with certain maximum degree of the polynomial basis. The linear-in-parameter NARX
model as given in Equation 3.2 is almost similar to the form of the PCE model (Xiu and
Karniadakis, 2002). It is useful to impose similar type of polynomial basis function for the
NARX model. Consequently, a similar type of polynomial basis function for the NARX model
has been used by Mai et al. (2016) which has been very accurate in capturing the non-linearity
of a dynamical system. Therefore, a similar form of polynomial basis has been adopted here.
Another important issue with the polynomial basis is the selection of the maximum time lags
nxm and nym for the excitation and the response, respectively. The maximum time lags are
selected according to the number of DOF of a dynamical system which are considered as twice
the number of DOF of the system (Spiridonakos and Chatzi, 2015; Mai et al., 2016).

On the other hand, the computation of the NARX coefficients is one of the challenging
tasks in the construction of the NARX model. The coefficients of the NARX model can
be computed easily by the OLS approach due to the linear-in-parameter model like PCE
(Xiu and Karniadakis, 2002). However, it has often be found in the literature (Blatman and
Sudret, 2011; Spiridonakos and Chatzi, 2015) that all the terms in the polynomial basis do
not get involved in predicting the response characteristics of a system. Thus, it is important
to capture the important terms in the polynomial basis function which are solely responsible
for the response behavior of a system. Recently, important NARX basis terms were identified
using genetic algorithm by Spiridonakos and Chatzi (2015).

3.2.3 Sparse NARX model

Due to the form of the NARX model (Equation 3.2), the important terms can be identified
with popularly used methods: least angle regression (LARS) (Efron et al., 2004) or least
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996). LASSO has been
used by Cantelmo and Piroddi (2010) to select the important terms in the NARX polynomial
basis. LARS has been used recently for the system identification problem (Zhang and Li,
2015) and for the identification of linear-in-parameter model (Zhao et al., 2017). LARS has
also been used for adaptive PCE (Blatman and Sudret, 2011) to reduce the number of terms in
the polynomial basis which enhanced the efficiency of the model. LARS is used here to select
the important terms of the NARX model polynomial basis function which would ultimately
reduce the total number of terms of the model.

As the NARX model is deterministic, one needs to fit a NARX model for each of the
initial sample points in case of a stochastic dynamical system: it can be computationally
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expensive. For that reason, it is important to obtain a single NARXmodel which can represent
the responses for all the sample points. The idea of formulating a single NARX model is
that the NARX model should be identified from the samples which have a highly nonlinear
behavior as compared to the other samples. For that reason, it is first required to select
the samples exhibiting high non-linearity. The responses having a highly nonlinear behavior
can be selected by the measurement of the non-linearity of the response (Spiridonakos and
Chatzi, 2015) or by specifying some threshold value for the response series (Mai et al., 2016).
A combination of both the mentioned methods (Spiridonakos and Chatzi, 2015; Mai et al.,
2016) has been utilized here to capture the highly nonlinear response series. Firstly, the
response versus the restoring force is plotted arbitrarily without performing any simulations
(keeping other parameters constant at their mean values). The intensity of the response is
increased up to a certain limit till the nonlinear behavior is noticed in the force-displacement
relationship. From the restoring force curve, the threshold value for a response series can
be selected easily by observing the starting point of the non-linearity of the response series.
Imposing the threshold value would reduce the number of samples to N1 < N . Now, for
each of the N1 samples, a sparse NARX model is formulated using the LARS algorithm.
Consequently, N1 full NARX models are formulated at the initial step. If we consider the
k-th experiment out of N1 experiments the for full NARX model, the response for the k-th
sample is given by:

Y (t,Ξk) ≈ akfk (Ξk) (3.5)

where, fk is the matrix having all the M terms of the NARX model polynomial basis for all
the time-steps with dimension M ×nt which is formulated recursively by the current and the
previous excitations, and the previous responses.

Remark 3.1. One should discretize the total time T with a suitable time-step ∆t (small
enough to capture the dynamics correctly). Besides, the time-step plays a vital role in case of
a NARX model. The same time-step for the time integration and for the construction of the
NARX model is used in this chapter.

The response series for the k-th sample point is known beforehand which is denoted by
Y (t,Ξk). Thus, the coefficients of the NARX model can be obtained by the minimization of
the residual error:

ε (t,Ξk) = Y (t,Ξk)− akfk (t,Ξk) (3.6)

The sum square error of the predicted response series is given by:
nt∑
i=1

[ε (ti,Ξk)]2 =
nt∑
i=1

[
Y (ti,Ξk)− akfk (ti,Ξk)

]2
(3.7)

The minimization of the sum square error can be solved to get the coefficients (ak) of the
NARX model. Before computing the NARX coefficients, the important terms of the NARX
polynomial basis are selected by LARS algorithm in this step for N1 number of NARX model.

Among the N1 NARX models, some models are identical. The unique NARX models are
selected from theN1 number of NARXmodels, such that all the models in the set of the unique
NARX models are different. Therefore, the number of NARX models is reduced to N2 ≤ N1.
It is obvious that the number of terms in all the unique NARX models must be M1 ≤ M .
Now, the response series of the dynamical system are predicted for the N samples by utilizing
the coefficients of each of the unique NARX models. For that reason, it is important to know
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the coefficients for all the N sample points beforehand. These coefficients are computed here
by the OLS approach using only the retained M1 terms in the polynomial basis matrix for
the corresponding unique sparse NARX model.

a (Ξk) = argmin
a

[
εT (Ξk) ε (Ξk)

]
= Y (Ξk)

[
fTk (Ξk)fk (Ξk)

]−1
fTk (Ξk)

k = 1, 2, . . . , N
(3.8)

Further, the responses for the dynamical system are reconstructed using the coefficients
obtained from Equation 3.8 at N sample points. To check the adequacy of a particular sparse
NARX model, the mean error (Mai et al., 2016) for each of the sample points is computed
as:

εk =

nt∑
i=1

[
Y (ti,Ξk)− Ŷ (ti,Ξk)

]2
nt∑
i=1

[
Y (ti,Ξk)− Ȳ (Ξk)

]2 (3.9)

where, Ȳ (Ξk) is the time average of the k-th response series which is given by:

Ȳ (Ξk) = 1
nt

nt∑
i=1

Y (ti,Ξk) (3.10)

The mean predicted error for all the sample points by a particular sparse NARX model
out of N2 sparse NARX models is given by:

ε̄ = 1
N

N∑
i=1

εi (3.11)

The finally selected sparse NARX model is the one having the predicted mean error for
the N sample points lower than a threshold value. The threshold value of the mean error is
imposed as 1× 10−3 in the present research work, which is proposed by Mai et al. (2016).

Remark 3.2. It is important to mention that if the predicted mean errors for two different
NARX model are found identical (or lower than the threshold value) then the sparse NARX
model having less number of terms in the polynomial basis is selected as the final sparse NARX
model.

3.3 Kriging-NARX model
The Kriging-NARX (KNARX) model is formulated here in a similar way to the sparse PCE-
NARX model (Mai et al., 2016). As mentioned in section 2.10, the PCE models have been
investigated mostly for stochastic dynamical systems. Therefore, to investigate the other
surrogate models, a step is taken here to construct the surrogate model using the NARX
model and the Kriging model. More specifically, the uncertain parameters are propagated by
the Kriging surrogate model for the KNARX model while the PCE model was used for the
sparse PCE-NARX model.

Consider a dynamical system having the uncertain parameters Ξ = {ξ1, ξ2, . . . , ξd}, then
the time dependent response for the k-th sample of the system can be represented by a NARX
model as:

y (t,Ξk) =
M∑
i=1

ai(Ξk)fi [zk (t)]; k = 1, 2, . . . , N (3.12)
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It is observed from Equation 3.12 that the coefficients of the NARX model are dependent
on the sample points, which does not make the model stochastic in nature. To get the
independent coefficients of the NARX model, the NARX coefficients are represented by the
Kriging surrogate model as given in Equation 2.21:

ai(Ξ) = ψ (Ξ)βi + Zi (Ξ) ; i = 1, 2, . . . ,M (3.13)

where ai ∈ RN×1 is the coefficient vector for the i-th term in the NARX model.

Remark 3.3. Each of the coefficients of the NARX model must be identified: therefore, the
Kriging model should be calibrated M times (M is the total number of terms for a full NARX
model). Each of the coefficients acts as the single response quantity for the Kriging model.

Further, the model is constructed by the Kriging surrogate model as discussed in section
2.6.1. Therefore, for all the sample points, the Kriging-NARX (KNARX) model is expressed
as:

y(t,Ξ) =
M∑
i=1

(ψ (Ξ)βi + Zi (Ξ)) fi [z (t)] (3.14)

The coefficient of the regression part β and the Gaussian process part Z (Ξ) are dependent
on the number of terms in the NARX model, whereas the polynomial basis function of the
Kriging model for all the NARX coefficients remain the same as the basis is purely dependent
on the uncertain parameters.

The response quantity of a dynamical system at some untried sample points Ξ0 can be
predicted by a BLUP as mentioned in Equation 2.32 in accordance with the full NARX model
in an auto-regressive manner.

ŷ (t,Ξ0) ≈
M∑
i=1

[
β̂Ti ψ (Ξ0) + rT (Ξ0) R−1

(
β̂Ti ψ (Ξ0)

)]
ψi [z (t)] (3.15)

Equation 3.15 predicts the time-dependent response characteristics of a dynamical system
having d uncertain parameters. It is evident from Remark 3.3 that the computational cost
increases with the increase of the number of terms in the NARX polynomial basis. For that
reason, the sparse NARX model as discussed in section 3.2.3 is used here in accordance with
the Kriging surrogate model. Consequently, the number of terms for the NARX model is
decreased to M1 < M which ultimately reduces the number of Kriging model calibration
(M1) and the computational cost. The algorithm for constructing the sparse KNARX model
is provided in Table 3.1.

3.4 Numerical application to nonlinear dynamical systems
The sparse KNARX model as described in the previous section has been utilized for UQ of
three nonlinear stochastic dynamical systems. For each of the examples, the accuracy of the
sparse KNARX model is measured using the predicted mean error as given in Equation 3.11
(taking MCS as the reference), and the value of the coefficient of correlation R2 between the
MCS results and the results predicted by a surrogate model. UQ for all the problems is made
by predicting the time dependent mean and standard deviation of the responses. Further,
the PDFs of the responses are also predicted at some times. The computational efficiency is
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Table 3.1: Algorithm for the sparse KNARX model

1. Declare the d number of uncertain variables with the type of distribution.

2. Generate N sample points for the uncertain variables.

3. Draw the restoring force versus response curve to decide the threshold value for captur-
ing the nonlinear response series.

4. Get the response of the dynamical system up to time T for each of the N samples.

5. Select the samples and the response series having high order non-linearity using some
threshold (according to step 3) on the response series. This step selects N1 samples
(N1 < N).

6. Decide the maximum time lags nxm and nym for the excitation and the response quan-
tity, respectively. Decide the type of NARX polynomial basis function along with the
maximum degrees also.

7. For each of the N1 samples, build the NARX model (see Equation 3.1 and Equation 3.2)
which has M number of terms.

8. Select the most important terms for each of the N1 NARX models using LARS (Efron
et al., 2004).

9. Select the N2 different sparse NARX models having similar terms in the NARX poly-
nomial basis (N2 ≤ N1).

10. Perform OLS on N samples for the N2 sparse NARX models to get the NARX coeffi-
cients of all the response series.

11. Reconstruct the N response series using the coefficients computed in step 10 by all the
N2 sparse NARX models.

12. Predict the mean error ε̄ for all the N2 number of sparse NARX models using Equa-
tion 3.11.

13. Select the most appropriate sparse NARX model having ε̄ lower than some threshold
value (1× 10−3 for the present case) and less terms (M1) in the NARX polynomial
(according to Remark 3.2).

14. Calibrate M1 < M number of Kriging models using the NARX coefficients as the
response parameter and the sample points generated in step 2 as the uncertain input
quantities.

15. Generate a large number of new untried samples for the prediction.

16. Predict the NARX coefficients for the untried samples using Kriging models generated
in step 14.

17. Predict the response series, in a auto-regressive way (see Equation 3.15), at the untried
samples generated in step 15 using the coefficients of step 16 and the M1 number of
NARX polynomial bases selected in step 13.
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Table 3.2: Uncertain parameters for the Duffing oscillator

Variable Distribution type Mean Standard deviation Unit
ω Uniform 2π π√

3 rad s−1

ζ Uniform 0.03 0.015√
3 −

ε Uniform 100 10√
3 −

A Normal 0.6 0.06 N
ωx Normal 1 0.1 rad s−1

measured through the computational cost (CPU time), the number of the surrogate model
used for the calibration and the number of initial sample points N . The first two problems
are also solved by the Kriging model to measure the efficiency and the accuracy of the sparse
KNARX model over the Kriging. For the first three examples, the results predicted with
sparse KNARX are also compared with the recently proposed sparse PCE-NARX surrogate
model (Mai et al., 2016).

According to step 2 of Table 3.1, a suitable sample point generation strategy is required
for the generation of the initial samples. Consequently, one of the most widely used sampling
strategies, LHS as used by Mai et al. (2016); Chatterjee and Chowdhury (2017), has been
utilized for the generation of the initial number of sample points, N .

3.4.1 Duffing oscillator

A non-linear Duffing oscillator is considered for the illustration of the proposed model. The
governing differential equations of the Duffing oscillator are given by:

ÿ (t) + 2ζωẏ (t) + ω2
[
y (t) + εy3 (t)

]
= x (t) (3.16)

x (t) = A sin (ωxt) (3.17)
In Equation 3.16, ω represents the natural frequency considering the undamped linear struc-
ture (ε = 0, ζ = 0), ζ is the damping ratio and ε controls the non-linearity of the system.
x (t) denotes the excitation part of the dynamical system which was considered in this case
(see Equation 3.17). The initial conditions are y (0) = 0 and ẏ (0) = 0. The numerical in-
tegration has been performed for T = 30 s with a time-step of ∆t = 0.01 s through Matlab
solver ode45. All the parameters of the Duffing oscillator were considered uncertain (i.e.
ξ = {ω, ζ, ε, A, ωx}). The distribution types along with the parameters of the distribution are
listed in Table 3.2.

The time dependent stochastic displacement of the Duffing oscillator was predicted by
the MCS, Kriging, sparse PCE-NARX (Mai et al., 2016) and sparse KNARX models. MCS
has been performed with 3 × 104 sample points and N = 50 samples have been generated
by LHS for the prediction of the stochastic response behavior using Kriging. The Kriging
model has been calibrated for each time-step (i.e. 3001 times). The step by step procedure
of constructing the sparse KNARX model (according to Table 3.1) is described below:

1. For the Duffing oscillator, d = 5 (see Table 3.2).

2. The sparse KNARX model was constructed using N = 25 LHS points.
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Figure 3.1: Displacement versus restoring force plot (blue curve) for the Duffing oscillator

3. For the construction of the sparse KNARX and the sparse PCE-NARX model, it is
important to specify the threshold value for capturing the nonlinear response series
according to step 3 of Table 3.1. Full NARX models are to be constructed on those
samples which satisfy the criterion of threshold value. For that reason, the displacement
y (t) versus restoring force fs = ω2 [y (t) + εy3 (t)

]
has been plotted in Figure 3.1 (keep-

ing other parameters constant at their mean values). From Figure 3.1, it is clear that
the displacement behaves almost linearly for y (t) ∈ [−0.045 m, 0.045 m] and beyond
this region, the displacement is highly nonlinear. Consequently, to capture the highly
nonlinear response series, the threshold value for the nonlinear displacement was set as
max (|y (t)|) > 0.045 m. Thus, only those samples will be picked for the construction of
NARX model which falls beyond the region y (t) ∈ [−0.045 m, 0.045 m].

4. The displacement series were then obtained with N = 25 samples. Out of all the
response series, the displacement versus the restoring force for two different samples
(13-th and 25-th sample point) are plotted in Figure 3.2. It is clearly seen that the 13-th
sample point exhibits higher order non-linearity than the 25-th sample point. It should
be noted that the region of displacement value is almost restricted in [−0.02 m, 0.02 m]
for the 25-th sample point which is far less than the specified threshold value. On the
other hand, the displacement is far beyond the threshold value and behaves nonlinearly
for the 13-th sample point.

5. After imposing the above-specified threshold criterion, only N1 = 2 samples were se-
lected as the highly nonlinear response series. Thus, only 2 full NARX models are
required for the Duffing oscillator using the sparse KNARX model (N = 25). The
following NARX basis function was chosen to construct the full NARX model:

fi [z (t)] = xli (t− nxi∆t) ymi (t− nyi∆t) (3.18)

where, x and y are the excitation and the response of the Duffing oscillator, respectively.

6. The maximum time lags were chosen as twice the number of DOF (Spiridonakos and
Chatzi, 2015; Mai et al., 2016) of the Duffing oscillator i.e. 2 with nx ∈ {0, 1, 2} and
ny ∈ {1, 2}. li ∈ {0, 1} and mi = {0, 1, 2, 3} were chosen with a maximum degree of
the polynomial i.e. li +mi ≤ 3 due to the cubic non-linearity of the problem. 22 terms
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Figure 3.2: Displacement versus restoring force plots (blue curves) of two different realizations
for the Duffing oscillator

Table 3.3: The polynomials selected by the LARS algorithm for the Duffing oscillator

Model 1 (M1 = 9) Model 2 (M1 = 8)
x (t) x (t)

x (t− 2∆t) x (t− 2∆t)
y (t−∆t) y (t−∆t)
y (t− 2∆t) y (t− 2∆t)
y2 (t−∆t) y2 (t−∆t)
y3 (t−∆t) y3 (t−∆t)
y3 (t− 2∆t) y3 (t− 2∆t)

x (t− 2∆t) y2 (t− 2∆t) x (t− 2∆t) y2 (t− 2∆t)
x (t− 2∆t) y (t− 2∆t)

were found in the polynomial basis for the full NARX model utilizing all the possible
combinations including the constant term i.e. i = 1, 2, . . . , 22 in Equation 3.18.

7. Therefore, 2 full NARX models were constructed using the basis function as given in
Equation 3.18, and they have 22 terms in the NARX polynomial basis matrix.

8. The sparse NARX models were then constructed using the LARS algorithm by selecting
the most important terms in the bases for both full NARX models.

9. The sparse NARX models were then retained; both sparse NARX models were found
unique, i.e. with a different set of terms in the polynomial basis. The polynomials
selected by the LARS algorithm for both NARX models are listed in Table 3.3.

10. The coefficients for all the 25 samples were obtained by the OLS approach for both
sparse NARX models. For this step, N ×N2 OLS problems were solved.

11. Then, the response series were reconstructed again in a recursive manner using the
coefficients and the polynomial bases.



3.4. NUMERICAL APPLICATION TO NONLINEAR DYNAMICAL SYSTEMS 33

12. ε̄ was then computed for both sparse NARX models for the N samples.

13. ε̄ by both sparse NARX models was found below the threshold value. Hence, Model 2
of Table 3.3 was chosen as the best sparse NARX model (according to Remark 3.2) and
the predicted mean error for the N = 25 samples was found as ε̄ = 1.68× 10−7.

14. The coefficient vector ai (Ξ) ∈ RN×1; i = 1, . . . , 8 corresponding to each of the polyno-
mials is uncertain. These 8 coefficient vectors were considered as the uncertain response
quantities for the Kriging model. Hence, the unknown parameters of the Kriging model
β̂, σ̂2

Z were computed by the MLE for all the 8 NARX coefficients separately. Conse-
quently, 8 Kriging models were identified.

15. The 3× 104 MCS samples were used here for the prediction by the surrogate model.

16. The 8 NARX coefficient vectors for the 3× 104 samples were then predicted using the
8 calibrated Kriging models by BLUP.

17. Further, the predicted coefficients and the selected polynomials were used to predict the
response series auto-regressively for the 3× 104 MCS samples.

The 25 LHS samples were also utilized to derive the sparse PCE-NARX (Mai et al.,
2016) model. The sparse PCE model was constructed using the UQLab module (Marelli and
Sudret, 2014). For the PCE model, the polynomial degree was varied between 1 and 20.
However, the predicted response has not converged using the sparse PCE-NARX model with
the same number of samples. For that reason, the number of samples for the sparse PCE-
NARX model was increased to N = 35 and the time dependent responses were predicted
with the sparse PCE-NARX model. Here, the final sparse NARX model was found having
M1 = 9 terms in the NARX polynomial basis which are

{
y (t−∆t) , y (t− 2∆t) , y2 (t−∆t) ,

y3 (t−∆t) , y3 (t− 2∆t) , x (t) , x (t− 2∆t) , x (t) y (t−∆t) , x (t− 2∆t) y2 (t− 2∆t)
}
.

To reduce further the computational cost, another study has been performed using less
number of initial samples with N = 21 (for sparse KNARX). In this case, 3 samples were
retained initially based on the criterion of threshold value of the response series and the 3
full NARX models were formulated using the basis function as mentioned in Equation 3.18.
The finally selected sparse NARX model was Model 1 of Table 3.3 and the predicted mean
error of the selected sparse NARX model was found as ε̄ = 1.80 × 10−7 for the 21 samples.
Further, the coefficients corresponding to the sparse NARX polynomial bases were modeled
using the Kriging surrogate model.

The time varying stochastic response characteristics were predicted by the time dependent
mean and standard deviation which are plotted in Figure 3.3. The figure clearly depicts the
efficiency (initial number of sample points N) and the accuracy of the sparse KNARX model
over the Kriging model. The sparse KNARX has predicted better results with fewer number
of model evaluations (N = 21). To illustrate the accuracy of the sparse KNARX, the instan-
taneous response characteristics are also plotted. The scatter diagrams and the PDFs of the
predicted response are plotted in Figure 3.4 at three different times (10 s, 20 s and 30 s). The
accuracy metrics of the instantaneous response characteristics are listed in Table 3.4. They
clearly suggest that the sparse KNARX and sparse PCE-NARX give much more accurate
results than Kriging. The accuracy of the sparse KNARX model is also comparatively higher
using less model evaluations than the sparse PCE-NARX model.
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Figure 3.3: Statistical response characteristics of the Duffing oscillator

Table 3.4: Accuracy of the surrogate models in predicting instantaneous response character-
istics for the Duffing oscillator

Method N Time instance εy(t) R2

Kriging 50

t = 10 s

337.8× 10−3 0.6622
Sparse PCE-NARX 35 9.6× 10−3 0.9904
Sparse KNARX 21 8.8× 10−3 0.9912
Sparse KNARX 25 4.6× 10−3 0.9954
Kriging 50

t = 20 s

926.9× 10−3 0.0731
Sparse PCE-NARX 35 4.4× 10−3 0.9956
Sparse KNARX 21 5.4× 10−3 0.9946
Sparse KNARX 25 3.1× 10−3 0.9969
Kriging 50

t = 30 s

1701.1× 10−3 −
Sparse PCE-NARX 35 2.3× 10−3 0.9977
Sparse KNARX 21 3.0× 10−3 0.9970
Sparse KNARX 25 2.0× 10−3 0.9980
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(a) Scatter plot at t = 10 s
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(c) Scatter plot at t = 20 s
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(e) Scatter plot at t = 30 s
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Figure 3.4: Comparison of instantaneous response characteristics for the Duffing oscillator at
different time instances
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Figure 3.5: Comparison of predicted max (|y (t)|) for the Duffing oscillator

Table 3.5: Comparison of accuracy and efficiency of the surrogate models for the Duffing
oscillator

Accuracy Efficiency
Method N ε̄ εmax(|y(t)|) R2

max(|y(t)|) nK CPU time (s)
Kriging 50 1.5 2100.7× 10−3 − 3001 530.95
Sparse PCE-NARX 35 1.1× 10−3 2.9× 10−3 0.9971 9 30.55
Sparse KNARX 21 1.2× 10−3 1.4× 10−3 0.9986 9 26.13
Sparse KNARX 25 5.9× 10−4 1.0× 10−3 0.9990 8 24.63
MCS 3× 104 − − − − 705.43

The stochastic absolute maximum displacement max (|y (t)|), plotted in Figure 3.5, ul-
timately measures the safety corridor for the dynamical system. It is seen clearly that the
sparse KNARX outperforms the Kriging and the sparse PCE-NARX with fewer samples in
predicting the PDF of max (|y (t)|), and the accuracy of the sparse KNARX given by the R2

value in Table 3.5 is very close to 1.0 with N = 25.

Further, the accuracy of the overall model was computed by the mean error (Equa-
tion 3.11) for the predicted responses and the error for the predicted max (|y (t)|). The
efficiency of the sparse KNARX has already been shown by the initial number of sample
points. An accurate result was predicted by the sparse KNARX even with less model eval-
uations (N = 21) as compared to the other methods. The efficiency of the sparse KNARX
was also measured by the number of surrogate model calibrations (nK) for a method and
by the CPU time. All the accuracy and the efficiency measurement metrics are reported in
Table 3.5. Table 3.5 suggests that the sparse KNARX model outperforms the Kriging and
the sparse PCE-NARX model in accuracy and efficiency. The CPU time is noticeably lower
with higher value of N for the sparse KNARX model due to fewer Kriging model calibration.
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Table 3.6: Uncertain parameters for the Bouc-Wen oscillator

Variable Distribution type Mean Standard deviation Unit
ζ Uniform 0.02 0.002 −
ω Uniform 2π 0.2π rad s−1

α Uniform 50 5 −
A Uniform 1 0.1 N
ωx Uniform π 0.1π rad s−1

3.4.2 Bouc-Wen oscillator

A non-linear Bouc-Wen oscillator (Bouc, 1967; Wen, 1976) was investigated in this example.
The governing differential equation for the Bouc-Wen oscillator is given by:

ÿ (t) + 2ζωẏ (t) + ω2 [ρy (t) + (1− ρ)w (t)] = −x (t)
ẇ (t) = γẏ (t)− α |ẏ (t)| |w (t)|n−1w (t)− βẏ (t) |w (t)|n

x (t) = A sin (ωxt)
(3.19)

where, ζ and ω are the damping ratio and the natural frequency of the oscillator respectively.
ρ = 0, γ = 1, β = 0 and n = 1 were considered for this problem. x (t) is the excitation and
w (t) is the hysteretic displacement as given by Wen (1976). The initial conditions at rest are
y (0) = 0, ẏ (0) = 0 and w (0) = 0. In a similar way to Mai and Sudret (2017), 5 uncertain
parameters were considered for the oscillator, which are ξ = {ζ, ω, α,A, ωx}. The statistical
distributions for all the uncertain parameters are given in Table 3.6.

The stochastic response was computed for the oscillator in the time domain t ∈ [0 s, 30 s]
with a time-step of ∆t = 0.005 s. As it has already been illustrated through the previous
example in section 3.4.1, Kriging is unable to predict the stochastic response behavior for the
non-linear dynamical systems even with more samples than the sparse KNARX. Therefore,
Kriging has not been utilized from now onward. In a similar way to the previous example,
the sparse KNARX model has been constructed with two different sizes of sample points
N = 40 and N = 10. A different type of basis function has been considered for the Bouc-Wen
oscillator according to Mai et al. (2016), which is given by:

fi [z (t)] =
{
xli(t− nxi∆t) |ẏ (t−∆t)|mi , ẏli(t− nyi∆t) |ẏ (t−∆t)|mi

}
(3.20)

In Equation 3.20, the basis function relies on the excitation and the velocity of the oscillator.
Thus, the velocity was computed by the sparse KNARX model and further, the displacement
of the system was obtained through numerical integration by utilizing the Matlab solver ode45.
li ∈ {0, 1} and mi ∈ {0, 1} were considered for the oscillator as Equation 3.19 is linear with
respect to the excitation and the velocity. nxm = nym = 4 was considered as the problem can
be appraised as a 2-DOF system due to the extra hysteretic displacement i.e. nx ∈ {0, . . . , 4}
and ny ∈ {1, . . . , 4}. 21 terms were found in the full NARX polynomial basis matrix by
utilizing Equation 3.20 and imposing all the mentioned conditions.

A threshold similar to the previous example was employed to detect the highly nonlin-
ear samples. The threshold value for the response of the Bouc-Wen oscillator was chosen as
max (|ẏ (t)|) > 0.3 m s−1. The threshold value reduced the number of samples from N = 40 to
N1 = 3 which means only 3 full NARX models were formulated utilizing the basis functions
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of Equation 3.20, and furthermore, the LARS algorithm has been employed to make the full
NARX models sparse. All the three sparse NARX models were found unique in this step.
Therefore, the coefficients for all the 40 initial samples were computed by the OLS for the 3
sparse NARX models and the mean errors (Equation 3.11) were predicted by computing the
time series in a recursive manner. The finally selected sparse NARX model produced a mean
error of ε̄ = 1.10×10−5 for the 40 samples and contains 8 terms in the polynomial basis matrix
which are

{
|ẏ (t−∆t)| , x (t) , x (t− 4∆t) , x (t− 4∆t) |ẏ (t−∆t)| , ẏ (t−∆t) , ẏ (t− 4∆t) ,

ẏ (t−∆t) |ẏ (t−∆t)| , ẏ (t− 4∆t) |ẏ (t−∆t)|
}
.

A similar procedure was adopted by substantially reducing the initial number of sample
points to N = 10. 4 samples were found mostly non-linear based on the previous threshold
value. Out of the 4 full NARX models, 2 were found as unique sparse NARX models after
applying the LARS for the detection of the most important terms. Therefore, one sparse
NARX model was selected based on the predicted mean error from both sparse NARX models.
The final sparse NARX model was found to have the same terms in the polynomial basis as
the previous one with N = 40.

The stochastic responses were also predicted here by the sparse PCE-NARX model (Mai
et al., 2016). However, the sparse PCE-NARX model was unable to predict the stochastic
response behavior with N = 40 model evaluations for the Bouc-Wen oscillator. For that
reason, the number of model evaluations was increased to N = 50 and the stochastic responses
were predicted with the same M1 = 8 terms in the sparse NARX model as in the sparse
KNARX model with N = 40.

The uncertain response characteristics predicted were the displacement and the velocity
of the Bouc-Wen oscillator. The time dependent mean and the standard deviation of y (t)
and ẏ (t) are shown in Figure 3.6 and Figure 3.7, respectively. The figures show that both
the statistical moments predicted by the sparse KNARX are following the MCS results with
utmost accuracy. However, the accuracies of the statistical moments are deteriorating from
the initial time-steps using the sparse PCE-NARX model even with more samples. The
scatter diagrams and the PDFs at three different times (10 s, 20 s and 30 s) are also plotted in
Figure 3.8 and Figure 3.9 for the displacement and the velocity, respectively. It is seen from
all the figures that the sparse KNARX performs well in all instances with very few samples.
The error metrics for all the instantaneous displacements and velocities are given in Table 3.7.
An excellent accuracy in terms of error ε and R2 value is noticed for all the time instances
for the sparse KNARX model.

For the prediction of the safety corridor under uncertainty, the scatter plots and the PDFs
of the maximum absolute displacement and velocity are plotted in Figure 3.10 and Figure 3.11,
respectively. The worst prediction is noticed for the PDFs by the sparse PCE-NARX model,
whereas an excellent accuracy is observed in both cases for the predicted maximum responses
by the sparse KNARX model. These plots, which represent the uncertain maximum response
behavior, can be utilized to measure the safety margin of the system.

In a similar way to the previous example, the accuracy and the efficiency measurement
metrics are given in Table 3.8. The table shows that the sparse KNARX has predicted results
with higher accuracy and lower computational cost. The efficiency of the proposed sparse
KNARX method is also observed over the recently proposed time warping PCE method (Mai
and Sudret, 2017) which required N = 100 (>> N = 10) samples to predict the stochastic
response behavior for the same example.
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Figure 3.6: Statistical response characteristics for the displacement of the Bouc-Wen oscillator
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Figure 3.7: Statistical response characteristics for the velocity of the Bouc-Wen oscillator

Table 3.7: Accuracy of the surrogate models in predicting the instantaneous response char-
acteristics for the Bouc-Wen oscillator

Displacement Velocity
Method N Time instance ε R2 ε R2

Sparse PCE-NARX 50
t = 10 s

660.0× 10−3 0.3370 44.0× 10−3 0.9557
Sparse KNARX 10 6.8× 10−3 0.9932 0.9× 10−3 0.9991
Sparse KNARX 40 3.8× 10−3 0.9962 0.5× 10−3 0.9995
Sparse PCE-NARX 50

t = 20 s
880.0× 10−3 0.1224 48.0× 10−3 0.9519

Sparse KNARX 10 8.6× 10−3 0.9914 1.0× 10−3 0.9990
Sparse KNARX 40 5.6× 10−3 0.9944 0.5× 10−3 0.9995
Sparse PCE-NARX 50

t = 30 s
1140.0× 10−3 − 50.0× 10−3 0.9503

Sparse KNARX 10 10.8× 10−3 0.9892 1.1× 10−3 0.9989
Sparse KNARX 40 7.8× 10−3 0.9922 0.5× 10−3 0.9995
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(a) Scatter plot at t = 10 s
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(c) Scatter plot at t = 20 s
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(d) PDF at t = 20 s

(e) Scatter plot at t = 30 s
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Figure 3.8: Prediction of instantaneous displacement characteristics for the Bouc-Wen oscil-
lator at different times
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(a) Scatter plot at t = 10 s
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(c) Scatter plot at t = 20 s
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(e) Scatter plot at t = 30 s
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Figure 3.9: Prediction of instantaneous velocity characteristics for the Bouc-Wen oscillator
at different times
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Figure 3.10: Comparison of predicted max (|y (t)|) for the Bouc-Wen oscillator
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Figure 3.11: Comparison of predicted max (|ẏ (t)|) for Bouc-Wen oscillator

Table 3.8: Accuracy and efficiency of the surrogate models in computing ẏ (t) for the Bouc-
Wen oscillator

Accuracy Efficiency
Method N ε̄ εmax(|y(t)|) R2

max(|y(t)|) nK CPU time (s)
Sparse PCE-NARX 50 9.3× 10−2 2.6× 10−1 0.7414 8 27.40
Sparse KNARX 10 1.9× 10−3 4.6× 10−3 0.9954 8 19.12
Sparse KNARX 40 8.0× 10−4 1.9× 10−3 0.9981 8 21.72
MCS 3× 104 − − − − 1223.17
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Figure 3.12: A 2-DOF dynamical system

Table 3.9: Uncertain parameters for the 2-DOF dynamical system

Variable Distribution type Mean Standard deviation Unit
ks Normal 2000 200 N m−3

ku Normal 2000 200 N m−1

ms Normal 20 2 kg
mu Normal 40 4 kg
c Normal 600 60 N s m−1

A Uniform 0.1 0.01√
3 m

ωx Uniform 2π 0.2π√
3 rad s−1

3.4.3 A 2-DOF dynamical system

Finally, a 2-DOF dynamical system (Mai et al., 2016) has been considered for the applicability
of the proposed sparse KNARX model. The dynamical system is shown in Figure 3.12 and
the governing differential equation of the problem is:

msÿ1 (t) = −ks[y1 (t)− y2 (t)]3 − c [ẏ1 (t)− ẏ2 (t)]
muÿ2 (t) = ks[y1 (t)− y2 (t)]3 + c [ẏ1 (t)− ẏ2 (t)] + ku [x (t)− y2 (t)]

x (t) = A sin (ωxt) (3.21)

where ms is the mass which is connected with the mass mu by a non-linear spring with
stiffness ks and a damper with damping coefficient c. ku is a linear spring attached to the
ground having a sinusoidal displacement function x (t).

In a similar way to Mai et al. (2016), all the parameters of the system are considered
uncertain i.e. ξ = {ks, ku,ms,mu, c, A, ωx}. The mean and the standard deviation of all the
uncertain parameters are given in Table 3.9.

The main aim of this example is to predict the uncertain response y1 (t) of mass ms which
is attached with the non-linear spring. This system has been solved by the sparse KNARX
model with two different number of sample points (N = 50 and N = 20). As it has been seen
from the previous two examples that the sparse PCE-NARX model is unable to predict the
stochastic response behavior of the dynamical systems using the same number of samples,
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the sparse PCE-NARX model is not utilized for this problem. However, one can refer to Mai
et al. (2016) for the results with the sparse PCE-NARX model of this example. The problem
has been solved in the time domain t ∈ [0 s, 30 s] with a time-step of ∆t = 0.01 s by ode45.
The initial conditions for the system at rest (t = 0 s) are given by:

y1 (0) = 0
ẏ1 (0) = 0
y2 (0) = 0
ẏ2 (0) = 0

(3.22)

For the construction of the NARX model, the NARX basis function was chosen similar
to the Duffing oscillator. The NARX basis function for this problem is given by:

fi [z (t)] = xli (t− nxi∆t) y
mi
1 (t− nyi∆t) (3.23)

In Equation 3.23, li ∈ {0, 1} and mi ∈ {0, 1, 2, 3} with li + mi ≤ 3 were chosen due to the
cubic non-linearity of the system. nx ∈ {0, 1, . . . , 4}, ny ∈ {1, . . . , 4} were chosen because
the system has 2-DOF. The full NARX model was constructed with this NARX basis which
has M = 58 terms. Initially, after investigating the response versus the restoring force, a
threshold criterion of the responses has been decided as max (|y1 (t)|) > 1.2 m which reduced
the number of samples to N1 = 10. Consequently, only 10 full NARX models were con-
structed by using the function mentioned in Equation 3.23. The sparsity was introduced
at this step by using the LARS algorithm on the 10 full NARX models to get the unique
sparse NARX models which further reduced the number of unique sparse NARX models to
N2 = 5. Thus, 5 unique sparse models were used to get the coefficients of the sparse NARX
models by OLS for N = 50 samples. The mean error for each of the sparse NARX mod-
els was computed using Equation 3.11 and the finally selected sparse NARX model has a
mean error of ε̄ = 2.95 × 10−4 with 5 terms in the NARX polynomial out of 58 which are{
y1 (t−∆t) , y1 (t− 4∆t) , y3

1 (t−∆t) , x (t− 4∆t) , x (t− 4∆t) y2
1 (t− 4∆t)

}
.

The same example has also been solved by reducing the initial number of sample points
to N = 20. For this case, initially, 3 samples were selected from the measure of non-linearity
and 3 full NARX models were constructed using the basis function as mentioned in Equa-
tion 3.23. Further, all the 3 NARX models were found unique sparse NARX model utilizing
the LARS. The predicted mean error for the 20 samples using the finally selected sparse
NARX model was ε̄ = 1.85 × 10−6 with 5 terms in the polynomial. Here, the 5 terms
are

{
y1 (t−∆t) , y1 (t− 4∆t) , x (t) , x (t− 4∆t) , x (t− 4∆t) y2

1 (t− 4∆t)
}
. The same number

of Kriging models were calibrated as the previous case to make the sparse NARX model
stochastic.

The time dependent mean and standard deviation of the displacement (y1) and veloc-
ity (ẏ1) were predicted. The time dependent statistical characteristics of displacement and
velocity are plotted in Figure 3.13 and Figure 3.14, respectively. Both figures suggest good
agreement between the sparse KNARX and the MCS even with very few sample points.

In a similar way to the previous examples, the instantaneous predicted displacements
by the sparse KNARX are compared with the MCS results at three different times. The
instantaneous scatterplots and the PDFs are plotted in Figure 3.15. The errors of the predicted
responses at three different times along with the R2 values are given in Table 3.10. The
results show a high accuracy of the sparse KNARX in predicting the instantaneous response
characteristics. The accuracy and the efficiency are also noticed for the sparse KNARX at
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Figure 3.13: Statistical response characteristics for displacement (y1 (t)) of the 2-DOF dy-
namical system
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Figure 3.14: Statistical response characteristics for velocity (ẏ1 (t)) of the 2-DOF dynamical
system
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Table 3.10: Accuracy of sparse KNARX in predicting instantaneous response characteristics
for the 2-DOF dynamical system

N Time instance εy1(t) R2

20
t = 10 s 11.6× 10−3 0.9884

50 1.1× 10−3 0.9989
20

t = 20 s 16.2× 10−3 0.9838
50 1.9× 10−3 0.9981
20

t = 30 s 16.2× 10−3 0.9838
50 2.3× 10−3 0.9977

Table 3.11: Accuracy and efficiency of sparse KNARX in computing y1 (t) for the 2-DOF
dynamical system

Accuracy Efficiency
Method N ε̄ εmax(|y1(t)|) R2

max(|y1(t)|) nK CPU time (s)
Sparse KNARX 20 8.9× 10−3 15.4× 10−3 0.9846 5 7.76
Sparse KNARX 50 1.2× 10−3 1.7× 10−3 0.9983 5 22.62
MCS 3× 104 − − − − 466.34

30 s (N = 50, εy1(t) = 2.3 × 10−3) as compared to the recently proposed sparse PCE-NARX
model (N = 100, εy1(t) = 4.21 × 10−3) (Mai et al., 2016). The accuracy of the stochastic
response behavior has also been checked by plotting the absolute maximum displacement and
the velocity in Figure 3.16 and Figure 3.17 respectively, which show good agreement with
MCS.

The global mean error of the predicted time series is measured by using Equation 3.11.
Along with this, the accuracy in predicting the maximum absolute displacement using different
sample points were calculated using Equation 3.9 and R2 value. All these results along with
the efficiency measurement metrics of the proposed sparse KNARX are listed in Table 3.11.
Here, the CPU time of the sparse KNARX model has not been emphasized by the number
of surrogate model calibration (nK), instead it is greatly affected by the initial number of
model evaluations (N). All the results show that the sparse KNARX performs very well at
all instances.

3.5 Failure of the auto-regressive model for an impact oscilla-
tor

The examples presented in this chapter have shown that the NARX model can capture the
nonlinear behavior of a dynamical system very well. For that reason, it was possible to
propagate the uncertain parameters through the nonlinear dynamical systems properly using
a low number of sample points. In this section, an impacted dynamical system is investigated
using several auto-regressive (AR) models to check the capability in capturing the nonlinear
behavior of an impacted oscillator. The main difference with the previous examples is that the
impact oscillators are non-smooth in nature. Before propagating the uncertain parameters,
first it is important to identify an oscillator using a suitable AR model. The NARX model
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Figure 3.15: Prediction of instantaneous displacement characteristics for 2-DOF dynamical
system at different time instances
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Figure 3.16: Comparison of predicted max (|y1 (t)|) for the 2-DOF dynamical system
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can be used for the identification of an impact oscillator when it is excited with an external
force (forced vibration problem). However, the oscillator investigated here is a free vibration
problem excited with the initial conditions. Therefore, the identification of a deterministic
impact dynamical system is investigated in this section using several AR models without the
exogenous input part. A brief description of several AR models used in this section is given
below.

3.5.1 Linear auto-regressive model

Let us consider a time dependent response quantity y (t) = {y (t1) , y (t2) , . . . , y (tnt)}. Here
t represents the discretized time vector and ti is an element of vector t. The main objective
of an AR model is to re-construct a specified time series. The linear AR model (Wold, 1938;
Box et al., 1994) is given by:

y (t) + a1y (t−∆t) + a2y (t− 2∆t) + · · ·+ anyy (t− ny∆t) = ε (t) (3.24)

where the ai are the coefficients of the linear AR model. ny is the maximum time lag of
the response and ε (t) is the residual of the fitted AR model which is supposed to be a
Gaussian white noise. The AR model specified here does not consider the excitation part.
The responses at any time-step is computed from the responses at the previous time-steps
along with the corresponding coefficients. Therefore, the identification of this linear AR model
requires finding out the coefficients in Equation 3.24. In the present work, the Matlab system
identification toolbox was used: the AR model was obtained by ar Matlab function. Several
strategies are available to find out the AR coefficients. A forward-backward approach (Marple,
S. L., 1987) is used to find out the AR model coefficients, which utilizes the minimization of
the sum of square of the residual error to identify the AR coefficients.

3.5.2 Nonlinear AR model

The nonlinear AR model is an extension of the linear AR model and is almost similar to the
NARX model. A similar form to the NARX model is used here for the nonlinear AR (NAR)
model. The NAR model is defined as:

y (t) = F [z (t)] + ε (t) (3.25)

where z (ti) = {y (t−∆t) , y (t− 2∆t) , . . . , y (t− ny∆t)}T is the vector having all the lagged
system response and F [•] is a nonlinear model with the lagged response terms. ny is the
maximum time lag of the response. Therefore, the most important aspect of the NAR model
is the type of nonlinear model. In a similar way to the NARX model, the NAR model is given
by:

F [z (t)] =
M∑
j=1

ajfj [z (t)] (3.26)

The parameters of the above-mentioned equation have been defined in Equation 3.2. The
computation of the NAR coefficients is one of the main issues in this model. Due to the
similar form to the NARX model, the NAR coefficients can also be computed by the OLS
approach. Therefore, the coefficients were computed by minimizing the residual error using
the OLS approach for the impacted dynamical systems.
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3.5.3 Nonlinear wavelet AR model

In the previous section, the polynomials were used in the AR model. A different form can
also be used for the underlying function F [z (t)]. A wavelet family (Qinghua Zhang, 1997)
has been used here for the nonlinear model of the NAR model to identify the response of an
impacted dynamical system. More specifically, a wavelet network (Qinghua Zhang, 1997) is
utilized in the present AR model to capture the non-linearity in the response quantity. The
wavelet based nonlinear AR model is readily available in the Matlab system identification
toolbox as wavenet function, this function was used in the present work.

3.5.4 Identification of an impact oscillator by AR models

Problem definition

A 2-DOF nonlinear impact oscillator was considered for the present investigation. The impact
oscillator is shown in Figure 3.18. The mass of the structure is mst and the mass of the
projectile is mp. The governing differential equation of the 2-DOF impact oscillator is given
by:

mstÿst + cstẏst + kstyst + fc = 0
mpÿp − fc = 0 (3.27)

where the structure mass mst is attached to the ground by a linear spring having stiffness
kst and by a damper with viscous damping cst. yst and yp are the displacements of the
structure and the projectile, respectively. fc is the contact force due to the contact between
the projectile with the nonlinear spring having stiffness kc and the contact was modeled by
the Hertz law (Johnson, 1985; Buezas et al., 2013). The contact force is defined as:

fc = kc(yst − yp)
3
2 ; yst ≥ yp

= 0 ; yst < yp (3.28)

The values of all the parameters (except kst) for the impact oscillator are given in Ta-
ble 3.12. The system was solved in the time domain t ∈

[
0 s, 10−3 s

]
with a time-step of

∆t = 10−6 s. The main objective of this study is the system identification of the projectile
responses (i.e. displacement and velocity). The responses are computed here under the initial
condition which are given by:

yst (0) = 0
ẏst (0) = 0
yp (0) = 0
ẏp (0) = −v0 (3.29)

where the initial velocity of the projectile is equal to v0 = 10 m s−1.
The impact oscillator was solved for two different conditions, namely a single impact

condition and a multi-impact condition by tuning the linear stiffness kst. For the single impact
and for the multi-impact conditions, kst = 2.4× 102 MN m−3/2 and kst = 2.4 MN m−3/2 were
considered, respectively.
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Figure 3.18: 2-DOF nonlinear impact oscillator

Table 3.12: Parameters of the impact oscillator

Parameter Value Unit
mst 60 g
mp 330 g
kc 16× 103 MN m−3/2

ζst 0.5% −
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Figure 3.19: Deterministic contact force for the single impact oscillator

System identification of a single impact oscillator in time domain
[
0 s, 10−3 s

]
A first attempt was taken to identify the above-described impact oscillator using the AR
models. For the linear AR model and the wavelet AR model, the only input is the maximum
time lag (ny) for the response quantity. On the other hand, the NAR model requires the
time lag and the maximum degree (m) of the nonlinear polynomial. In a similar way to the
NARX model, the time lag was chosen twice the DOF number of the system i.e. ny = 4 for
the linear AR model and the maximum degree for the NAR model was chosen as m = 3.
For the wavelet AR model, the time lag was chosen as ny = 1. The actual result was
computed by performing the time integration using the Matlab function ode45. The contact
force between the structure and the projectile is plotted in Figure 3.19 and it is seen that a
single impact occurs in the whole time span. The displacement and the velocity predicted
by all the methods are shown in Figure 3.20. It is seen from Figure 3.20a that the projectile
displacements predicted by all the methods are not following the actual result. It is seen
that the NAR model predicted displacement has diverged from the initial time-step. For the
projectile velocity (Figure 3.20b), the NAR model was also unable to predict the response
from the initial time. On the contrary, an excellent accuracy is observed for the wavelet AR
model whereas the linear AR model was unable to predict the velocity from the initial time
step.

System identification of the single impact oscillator in time domain
[
0 s, 1.9× 10−4 s

]
The system identification of the nonlinear impacted dynamical system is then much more
difficult than the smooth dynamical system with the conventional AR model for a long time.
Therefore, to reduce the complexity of the problem, a system identification is investigated in
this section for a shorter time span. More specifically, the system identification was performed
up to a small time beyond the impact duration. Therefore, the time domain was here t ∈[
0 s, 1.9× 10−4 s

]
with a time step of ∆t = 10−6 s. All the other parameters of the system were

unchanged. The predicted displacement and the predicted velocity are plotted in Figure 3.21.
It is noticeable that the time lags are different for each of the AR models. The time lags were
chosen from several trials. The linear AR model has predicted better result for the projectile
displacement whereas the wavelet AR model has predicted better result for the projectile
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Figure 3.20: Identification of the response quantities for the single impact oscillator in time
domain

[
0 s, 10−3 s

]

velocity. All the other AR models are incapable to predict the responses properly.

System identification of multi-impact oscillator

A multi-impact nonlinear dynamical system is now investigated. For the formulation of
the system as multi-impact dynamical system, the linear stiffness was decreased to kst =
2.4MN m−1. The time domain was decided slightly beyond the impact region t ∈

[
0s, 1.8× 10−3s

]
.

For the time integration, the time-step was chosen the same as for the single impact oscil-
lator. The contact force is plotted with respect to the time in Figure 3.22. It is seen from
the figure that the contact between the structure and the projectile has happened for five
times here. The system identification was performed for the projectile displacement and for
the projectile velocity. The predicted displacement and velocity by the AR models are shown
in Figure 3.23. Figure 3.23a shows that the results predicted by all the AR models for the
projectile displacement are not satisfactory. On the other hand, the projectile velocity is pre-
dicted quite well up to the first impact with the wavelet AR model (Figure 3.23b), however
the divergence is noticed after the first impact. All the other AR models were not capable to
predict the projectile velocity.

In conclusion, it has been observed from the above study that all the AR models have
failed to identify the response quantities of the deterministic impact oscillator properly. For
the single impact oscillator, the projectile displacement was predicted only within a short time
range which was also due to the fact that the response behaves like a half sinusoidal curve.
Although the projectile velocity for the single impact oscillator was predicted quite well by
the wavelet AR model, it has been observed that, in the case of the multi-impact oscillator,
the wavelet AR model can predict the velocity during the first impact only. Erroneous results
were also observed for the projectile displacement of the multi-impact oscillator. Therefore,
the identification of an impact oscillator is much more difficult than the one for a nonlinear
dynamical system due to its non-smooth nature.
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Figure 3.21: Identification of the response quantities for the single impact oscillator in time
domain
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Figure 3.22: Deterministic contact force for the multi-impact oscillator
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Figure 3.23: Identification of the response quantities for the multi-impact oscillator
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3.6 Concluding remarks
A surrogate model has been developed in this chapter by combining the NARX model and
the Kriging model, which is almost similar to the sparse PCE-NARX model (Mai et al.,
2016). The proposed model is known as the sparse KNARX model. The time-dependent
nonlinear behavior and the randomness have been decoupled using the NARX model and
the Kriging model, respectively. Several nonlinear dynamical systems have been investigated
using the sparse KNARX model and the results have been compared with the MCS and sparse
PCE-NARX model results. It has been found that the sparse KNARX has predicted the time-
dependent statistical moments accurately for all the examples using less model evaluations
than the sparse PCE-NARX model. Along with this, the time-dependent PDF was also
predicted quite well by the sparse KNARX model.

Although it was possible to identify properly the nonlinear dynamical system by the
NARX model, the main challenge of this thesis is the propagation of uncertainty through
an impact dynamical system. It is clear from the results presented in section 3.5 that the
non-smooth behavior of the response has not been identified properly by the AR models.
Hence, the sparse KNARX model can not be used for the stochastic impact oscillators and a
suitable approach for propagating uncertain parameters through a random impact oscillator is
investigated in chapter 4. Furthermore, this chapter has highlighted the interest of sparsity.
The LARS algorithm is currently used. However, it seems interesting to investigate other
alternatives. This will be done in chapter 5.
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Chapter 4

Proper orthogonal decomposition
based PCE model

4.1 Introduction

From the study of the previous chapter, it is clear that the NARX model or any other AR
models are fully dependent on the behavior of the response quantity and finding a suitable AR
model for the impacted dynamical system is very difficult due to the non-smooth behavior of
the response quantities. Although the AR models failed to identify the impacted dynamical
system in the previous chapter, it was learned from the previous study that decoupling the
time domain and the randomness can improve the efficiency of a surrogate model substantially.

The time domain and the randomness can also be decoupled using model order reduc-
tion (MOR) techniques (Chinesta et al., 2011; Chatterjee, 2000; Kunisch and Volkwein, 1999;
Schmid, 2010). MOR techniques include proper generalized decomposition (Chinesta et al.,
2011; Giner et al., 2013; Leon et al., 2018; Tsiolakis et al., 2019), proper orthogonal decom-
position (POD) (Chatterjee, 2000; Christensen et al., 1999; Peng and Mohseni, 2016; Holmes
et al., 2012), dynamic mode decomposition (Schmid, 2010; Abdo et al., 2019; De Vuyst and
Villon, 2019). POD has been used in dimensionality reduction of ordinary differential equation
(Moore, 1979) and partial differential equation (Kunisch and Volkwein, 1999, 2002). POD
has been used by Higdon et al. (2008) for the dimensionality reduction of high-dimensional
outputs. POD has used extensively for the fluid dynamics problems (Zimmermann and Görtz,
2010; Mohebujjaman et al., 2017; Christensen et al., 1999; Gunzburger et al., 2017). Mostly,
the coherent structure of a fluid flow has been studied by the POD approach (Sirovich, 1987;
Christensen et al., 1999; Holmes et al., 2012; Kostova-Vassilevska and Oxberry, 2018). POD
has the capability to decompose the spatio-temporal response of a system, by projecting the
response on a basis that depends on the space domain. PCA (also known as POD) based PCE
has been used by Blatman and Sudret (2013) for reducing the dimensionality of the stochastic
diffusion problem. The POD based PCE model was also used by Raisee et al. (2015) for the
stochastic heat diffusion problem. Recently, the Kriging model has been combined with the
POD approach (Guo and Hesthaven, 2019; Mohammadi and Raisee, 2019). The ‘trend’ of
the Kriging surrogate model was approximated with the PCE approach by Mohammadi and
Raisee (2019). Furthermore, the number of terms in the PCE model was reduced using the
POD approach. A time dependent problem has been investigated in (Guo and Hesthaven,
2019) using the POD and Gaussian process regression approaches.

57
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The POD approach has been utilized in this chapter along with the PCE model to propose
a new approach called POD-PCE approach. If we consider the PCE model, the PCE coeffi-
cients must be computed at each time-step for a dynamical system. Therefore, to reduce the
computations of the PCE coefficients, the time-dependent stochastic response is projected
on the POD modes, which depend on the time: therefore, the coefficients depend only on
the random variables. The methodology developed in this chapter has been published by
Jacquelin et al. (2019). The present research work is very close to the method developed
by Guo and Hesthaven (2019), but was developed independently: the proposed methodology
was obtained before being aware of their work.

4.2 Proper orthogonal decomposition

Proper orthogonal decomposition is mainly used for the identification of low order bases for
a given set of snapshots (Sirovich, 1987). The orthogonal bases are selected corresponding to
the dominating singular values of the snapshots. In our case, the time-dependent stochastic
response quantities behave almost similarly. Recall the responses of a dynamical system for
N initial samples Y (Ξ, t) ∈ RN×nt : each column of matrix Y contains the stochastic response
at each time-step. Hence, a kind of correlation matrix for the stochastic response quantity
(Berkooz et al., 1993) can be defined as:

C = Y (Ξ, t)T Y (Ξ, t) (4.1)

The above-mentioned correlation matrix C is often divided either by N (Feeny and Kappa-
gantu, 1998; Feeny, 2002) or by (N − 1) (Blatman and Sudret, 2013). However, dividing by a
constant has no real influence on the use of the POD approach in this study. The orthogonal
vectors are found from the eigenvalue decomposition of the correlation matrix C which should
satisfy the following condition:

CVi = λiVi; i = 1, . . . , nt (4.2)

where the Vi form an orthogonal basis and are called proper orthogonal modes (POM). The
λi are the eigenvalues of the decomposition and represent a kind of energy (Chatterjee, 2000)
related to the corresponding POM. The POM can also be obtained from the singular value
decomposition (SVD) (Chatterjee, 2000) in the following way:

Y = V ΣU (4.3)

where V is the matrix having all the POM and Σ is a diagonal matrix. Each column of
matrix V is given by a POM. The diagonal terms of Σ represent the kind of energy involved
in the corresponding POM. For the present work, the SVD as given in Equation 4.3 has been
utilized.

The POM are sorted according to the decreasing magnitude of the corresponding eigen-
values λi. The POM are normalized here as follows:

Vi = Vi
‖Vi‖

(4.4)

where ‖•‖ is the L2-norm of the corresponding vector.
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Having the orthonormal POM, the uncertain response series can be represented by:

y (ξ, t) =
nt∑
i=1

bi (ξ)V T
i (t) (4.5)

where the bi (ξ) are the random coefficients corresponding to the POM and need to be eval-
uated.

It should be noted from Equation 4.5 that the responses are projected on nt orthonormal
POM. However, in the present case N < nt. Hence, the total energy is recovered only in the
first N eigenvalues and the responses should be projected using only the first N POM, as only
the N first eigenvalues are different from zero. Furthermore, it has been seen in the literature
(Sirovich, 1987; Azeez and Vakakis, 2001) that only nb < N POM are usually required to
keep a given value (EPOD) of the total POD energy. Therefore, using the reduced number of
orthonormal POM, the random responses can be represented by:

y (ξ, t) ≈
nb∑
i=1

bi (ξ)V T
i (t) (4.6)

and the energy criterion is given by: ∑nb
i=1 λi∑N
i=1 λi

= EPOD (4.7)

In the literature, EPOD is usually between 99% and 99.99% (Sirovich, 1987; Ma et al., 2000;
Azeez and Vakakis, 2001).

4.3 POD-PCE model
It is noticeable from Equation 4.6 that the time-dependent uncertain response quantity is
represented by the POM and the corresponding coefficients, decoupling the time-dependent
behavior and the randomness. Indeed the POM are not dependent on the random variables
while the coefficients bi (ξ) are only dependent on the random variables. Therefore, the
coefficients in Equation 4.6 are random and can be estimated using the PCE model. The
random coefficients can be expressed using the truncated PCE model (refer to Equation 2.4)
as:

bi (ξ) ≈
n∑
j=1

aj,iφj (ξ) (4.8)

In the above-mentioned equation, bi (ξ) is considered as the response quantity for the PCE
model, which needs to be computed. Considering the N initial samples for the response
quantity Y (Ξ, t), the time-dependent response in Equation 4.6 is represented by:

Y (Ξ, t) =
nb∑
i=1

bi (Ξ)V T
i (t) (4.9)

where bi (Ξ) ∈ RN×1 is the i-th POD coefficient vector and Vi (t) ∈ Rnt×1 is the corresponding
POM. Each coefficient bi (Ξ) is known and is computed by projecting the random response
matrix Y (Ξ, t) on the corresponding orthonormal POM:

bi (Ξ) = Y (Ξ, t)Vi (t) ; i = 1, . . . , nb (4.10)
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Having the random POD coefficients, the PCE coefficient vector ai ∈ Rn×1 for the i-th
POM can be computed using the OLS approach as described in section 2.4.3. The PCE
coefficients are computed as:

∀i = 1, . . . , nb ai =
[
ΦT (Ξ) ΦT (Ξ)

]−1
ΦT (Ξ) bi (Ξ) (4.11)

Once the truncated PCE coefficients are computed, the combined POD-PCE model is
given by:

y (ξ, t) ≈
nb∑
i=1

n∑
j=1

aj,iφj (ξ)Vi (t) (4.12)

The step by step procedure to construct a POD-PCE model is given in Algorithm 4.1.

Algorithm 4.1 Algorithm for the construction of POD-PCE model
1: procedure POD-PCE(N, d, p)
2: Obtain N samples for the uncertain parameters by LHS
3: for i = 1 : N do
4: Y (Ξi, t) =M (Ξi, t)
5: Φi = Φ (Ξi) . Refer to Equation 2.2 and Equation 2.9
6: end for
7: (V, λ) = eig (C) or obtained with the SVD of Y . Refer to Equation 4.2 or to

Equation 4.3
8: Obtain nb by energy criterion . Refer to Equation 4.7
9: Obtain Vi . Refer to Equation 4.4

10: for i = 1 : nb do
11: Obtain POD coefficient bi (Ξ) . Refer to Equation 4.10
12: Obtain PCE coefficient vector ai . Refer to Equation 4.11
13: end for
14: end procedure

4.4 Post-processing of POD-PCE results
In a similar way to the statical system (refer to section 2.4.4), the time-dependent statistical
moments can be computed by post-processing the results obtained from the POD-PCE model.
The time-dependent mean is given by:

µ̂ (y (ξ, t)) = E
[
nb∑
i=1

bi (ξ)Vi (t)
]

=
nb∑
i=1

E

 n∑
j=1

aj,iφj (ξ)

Vi (t)

=
nb∑
i=1

a1,iVi (t) (4.13)

where a1,i is the PCE coefficient corresponding to the constant polynomial basis function for
the i-th POM. Therefore, the time-dependent mean can be computed only with the PCE
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Table 4.1: Parameters of the uniformly distributed random variables for the impact oscillator

Random variable Lower bound Upper bound Unit
mp 330− 33

√
3 330 + 33

√
3 g

kc 16× 103 − 1600
√

3 16× 103 + 1600
√

3 MN m−3/2

v0 −10 +
√

3 −10−
√

3 m s−1

coefficients and the POM. In a similar way, the time-dependent standard deviation can be
computed as:

σ̂ (y (ξ, t)) =

√√√√var
[
nb∑
i=1

bi (ξ)Vi (t)
]

=

√√√√ nb∑
i=1

var [bi (ξ)]V 2
i (t) + 2

∑
1≤i1<i2≤nb

cov [bi1 (ξ) bi2 (ξ)]Vi1 (t)Vi2 (t)

=

√√√√√ nb∑
i=1

 n∑
j=2

a2
j,i

V 2
i + 2

∑
1≤i1<i2≤nb

 n∑
j=2

aj,i1aj,i2

Vi1 (t)Vi2 (t) (4.14)

where var [•] and cov [•] represent the variance and covariance of the corresponding compo-
nent. It is seen clearly from Equation 4.13 and Equation 4.14 that both the time-dependent
statistical moments are computed from the POD-PCE model without any additional compu-
tational cost.

4.5 Application to an impact oscillator

In this section, UQ of the impact oscillator defined in section 3.5.4 has been investigated. UQ
has been performed for projectile displacement yp, projectile velocity ẏp and contact force fc
separately. The reference solution was computed by the MCS approach using LHS points.
For the PCE and POD-PCE models, the initial responses were computed on the LHS points.
The accuracy of the predicted result was measured using the mean relative error as given in
Equation 3.11. The MCS samples NMCS have been used for the prediction, therefore, the
number of samples in Equation 3.11 must be replaced by NMCS for the present case.

For the present investigation, mp, kc and v0 were considered uniformly distributed inde-
pendent random variables with a coefficient of variation equal to 0.1. The parameters of the
distribution for all the random variables are given in Table 4.1. The structure massmst = 60 g
and the damping ratio ζst = 0.5% were considered constants for this oscillator.

The number of contacts is tuned by varying kst, as done in the previous chapter. In the
present study, two cases have been investigated: (i) single impact (kst = 240 MN m−1), (ii)
multiple impact (kst = 2.4 MN m−1).

4.5.1 Case 1: Single impact oscillator

The impact oscillator is tuned here such that the contact between the structure and the
projectile occurs only once in the total time period. A value of kst = 240 MN m−1 was
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considered. The time domain for this system was t ∈ [0 ms, 1 ms]. The time integration was
performed using the Matlab function ode45 at a time-step of ∆t = 1 µs. As a result, nt = 1001
time-steps can be found in the full time domain.

For the reference solution, the stochastic responses were computed by MCS using NMCS =
104 model evaluations. On the other hand, the POD-PCE and the PCE models were con-
structed using much less model evaluations (N). Legendre polynomials were used for the
PCE models with degree p = 2 and p = 3. n = 10 and n = 20 terms were found in the
truncated PCE model for p = 2 and p = 3, respectively.

Influence of the number of model evaluations

First of all, the influence of N on the accuracy was studied for both surrogate models. The
evaluation of the mean relative errors for all the response quantities is shown in Figure 4.1. It
is seen clearly that with the increase of N the mean relative error reduces for all the response
quantities. It is noticeable that for a particular polynomial degree and a given N , ε̄ calculated
with the PCE and with the POD-PCE models are almost the same. However, a slightly higher
accuracy is noticed for the POD-PCE model for the contact force with p = 3 and the accuracy
of PCE models for the projectile velocity is greater than the one for the POD-PCE models.
These results suggest that the POD-PCE model and the PCE model give comparable results.
An accurate identification of a model with n coefficients is generally possible only if N ≥ n
(a rule of thumb is that N should be twice or three times the number of unknowns (n)).
Accordingly, the responses with p = 2 are in good agreement with the MCS responses with
N ≥ 10 because n = 10 terms were found in the PCE polynomials, whereas p = 3 requires at
least N = 20 model evaluation to compute the PCE coefficients accurately (n = 20). With
N = 20 and p = 3, the surrogate model has almost the same accuracy as that with p = 2
and N = 20. Moreover, the increment of the accuracy beyond N = 20 samples is much less
for all the response quantities. Therefore, a good accuracy is achieved using N = 20 for
all responses. For that reason, all the stochastic responses for the single impact oscillator
presented in the following are using N = 20.

Contact force

The time-dependent mean (µ̂) and standard deviation (σ̂) of the contact force are plotted in
Figure 4.2a and Figure 4.2b, respectively. It is seen that the contact between the structure
and the projectile occurs only once during the total time period. The mean and the standard
deviation are predicted quite well by both surrogates using N = 20. However, the PCE
coefficient vector was computed at each time-step for the PCE model (refer Equation 2.10).
Conversely, the time-dependent stochastic contact force was obtained with only nb = 5 POM
by the POD-PCE model. Hence, the PCE coefficient vector was computed only 5 times for the
POD-PCE model which is much less than 1001. The total number of computed coefficients
(ntot = n × nt for PCE and ntot = n × nb for POD-PCE) is shown in Table 4.2 for both
surrogates, which is 200 times more for the PCE model as compared to the POD-PCE model.
The time-dependent errors for the statistical moments were computed using the following
expression:

ε (t) = |Mom (YMCS)−Mom (Ypred)|
max |Mom (YMCS)| (4.15)

where Mom (•) is any statistical moment (µ̂ or σ̂) of the corresponding response quantity.
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(c) ε̄ for projectile velocity

Figure 4.1: Evaluation of the mean relative errors of all the stochastic response quantities for
the single impact oscillator
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As the time-dependent contact force is zero beyond the contact end, the zoomed view of
the time-dependent errors for µ̂fc and σ̂fc of the contact force are shown in Figure 4.3a and
Figure 4.3b, respectively. It is seen clearly that the magnitude of error in the prediction of σ̂fc
is higher than that in the prediction of µ̂fc . It can also be seen that the time-dependent errors
are sometimes almost zero by both surrogate models. It is noticeable that the time-dependent
accuracy of σ̂ is lower with p = 2 than with p = 3 in most of the times. The main reason is
that the number of sample points is 2n with p = 2 and it is n with p = 3. As discussed above,
the PCE coefficients can be computed much accurately if N ≥ 2n. The overall accuracies of
all the models were computed using Equation 3.11 and are listed in Table 4.2. It is noticeable
that the errors predicted by the POD-PCE models are slightly less than the PCE models.
Moreover, a good accuracy has been achieved by both surrogate models using few model
evaluations, but the POD-PCE model requires only 5 POM to achieve a good accuracy.

Projectile displacement

The time-dependent statistical moments of projectile displacement yp are shown in Figure 4.2c
and Figure 4.2d using N = 20. Good agreement of the surrogate predicted results with the
MCS results is noticed for both cases. The projectile displacement is linearly increasing with
time beyond the contact region as the velocity is constant during that period (Figure 4.2e).
As the PCE coefficients are time-dependent, the PCE coefficient vector was computed 1001
times. However, 99.99% of the energy was recovered using only 2 POM for the POD-PCE
model. Hence, the PCE coefficients vector was computed only twice instead of 1001 times
which ultimately led to compute only 0.2% coefficients for the POD-PCE models with respect
to the PCE models. The time-dependent errors for both statistical moments were computed
using Equation 4.15 and are plotted in Figure 4.3c and Figure 4.3d. Although the errors
are very low, lower errors were predicted using p = 3 for both surrogates in predicting µ̂.
Noticeably, the lower errors were obtained with p = 2 for σ̂ as compared to p = 3 which
suggest that, in the later case, the number of model evaluations should be increased to get
better results. The overall accuracy of both surrogates is measured using the mean relative
error which is listed in Table 4.2. It is noticeable from the table that almost the same
accuracies have been achieved using both surrogates: the POD-PCE model requires only 2
POM to achieve such a high level of accuracy.

Projectile velocity

In a similar way to the previous two responses, the stochastic projectile velocity was also
computed using the surrogate models. All the surrogate model parameters remain the same
for the projectile velocity. Time-dependent mean and standard deviation of ẏp are shown in
Figure 4.2e and Figure 4.2f, respectively. The prediction accuracies of all the surrogates are
very high and are very close to each other. For the POD-PCE model, the 99.99% energy level
is achieved using only nb = 3 POM: only 3 PCE coefficient vectors were computed for the
POD-PCE model instead of 1001 PCE coefficient vectors for the PCE model.

The time-dependent errors were also computed for the predicted stochastic velocity ẏp
and are shown in Figure 4.3e and Figure 4.3f. As the projectile velocity beyond the contact
period is constant, the time-dependent error is also constant in the region. Here the error for
σ̂ẏp by the POD-PCE model with p = 3 is much less as compared to the PCE model. As the
rule of thumb, the required number of model evaluations for the PCE model might be greater
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Figure 4.2: Time-dependent statistical moments of the stochastic response quantities for the
single impact oscillator: MCS was performed using NMCS = 104 model evaluations
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Figure 4.3: Time-dependent errors for the statistical moments of the stochastic responses of
single impact oscillator
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Figure 4.4: Comparison of responses for single impact oscillator at 5 samples:
mp ∈ {342.71, 292.84, 365.62, 310.35, 373.82}g, kc ∈ {13.97, 13.87, 14.61, 14.23, 13.63} ×
103MN m−3/2, v0 ∈ −{11.32, 9.51, 9.96, 9.11, 10.95}m s−1

than the number of terms in the PCE basis for some time-steps. For that reason, the time-
dependent error is higher with the PCE model at some time-steps. The overall accuracies of
all the surrogates are listed in Table 4.2. The mean relative errors by all the surrogates are
close to each other.

Comparison of predicted responses

To compare closely the surrogate models predicted results, the results obtained for 5 particular
samples randomly drawn are plotted in Figure 4.4, as well as the results calculated from the
identified surrogate models. It is seen that all the responses are predicted quite well by both
surrogate models for all the 5 samples.

4.5.2 Case 2: Multiple impact oscillator

The same oscillator as defined in section 3.5.4 is considered here with kst = 2.4 MN m−1

such that multiple contacts occur between the structure and the projectile. The time domain
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considered here is t ∈ [0 ms, 3 ms] and the time integration was performed at a time-step of
∆t = 1 µs. Consequently, nt = 3001 number of time-steps can be found in the total time
period.

Stochastic responses were computed considering the three input random variables as men-
tioned in Table 4.1. For the multiple impact oscillator, MCS was performed using 104 model
evaluations on LHS points for all the stochastic response quantities.

Influence of the number of model evaluations

In a similar way to the single impact oscillator, the influence of the number of model eval-
uations was investigated for the surrogate models. The initial number of samples for the
surrogate model was decided as N = 30. The relative error with respect to N for all the
responses is shown in Figure 4.5. It is noticeable that the accuracy is increased with the
increase of N for all the response quantities. The magnitude of error for the contact force
is quite higher as compared to the other response quantities because the jumps during the
contacts are quite high for the contact force and therefore, the non-smooth behavior is also
quite high. Moreover, a quite good accuracy was achieved using N = 50 samples for all the
response quantities. Hence, all the results presented in the following discussion used N = 50
samples.

Contact force

The first two statistical moments of the contact force are plotted in Figure 4.6a and Fig-
ure 4.6b. The surrogate models were constructed using N = 50 LHS points and predicted at
NMCS = 104 samples. It is seen clearly from the mean force that five contacts occur during the
whole time period and the maximum contact force occurs during the second contact. Despite
multiple impacts, the mean force was predicted quite well by both surrogates. However, tiny
discrepancies are noticed in the standard deviation of fc. The time-dependent errors were
also computed for both surrogates. The time-dependent errors are shown in Figure 4.7a and
Figure 4.7b for the impact duration only, as the force is always null after the impact. It is
noticeable that the time-dependent errors are quite low during the first two contacts for both
statistical moments. Furthermore, the errors started to increase more and more with time.
Indeed, it is difficult to predict such non-smooth uncertain behavior with smooth functions
(i.e. PCE). Both surrogates have predicted a lower error with p = 3 as compared to p = 2 for
σ̂. The level of overall accuracies is listed in Table 4.3. It is noticeable that a large number of
POM (nb = 31) was required to keep 99.99% of the POD energy with the retained POM: the
PCE coefficient vector was therefore computed 31 times. However, it is much less than the
computation of the coefficient vector for the PCE model, which is 3001 for the PCE model.
Indeed ntot for the POD-PCE model is approximately 1% of the time-dependent PCE model.

Projectile displacement

The stochastic projectile displacement yp was computed by both surrogates using 50 LHS
points. Time-dependent moments of yp are shown in Figure 4.6c and Figure 4.6d. Both
moments are predicted quite well using both surrogates. It is noticeable for the multiple
impact oscillator also that the projectile velocity is constant beyond the contact region. As
a result, the projectile displacement is linearly increasing with time. The time-dependent
errors were computed for the moments of yp and are plotted in Figure 4.7c and Figure 4.7d.
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Figure 4.5: Evaluation of mean relative error for all the stochastic response quantities of the
multiple impact oscillator
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0 0.5 1 1.5 2 2.5 3

Time (ms)

0.2

0.4

0.6

0.8

1

1.2

1.4
MCS
PCE (N=50,p=2)
PCE (N=50,p=3)
POD-PCE (N=50,p=2)
POD-PCE (N=50,p=3)

(f) Standard deviation of ẏp

Figure 4.6: Time-dependent statistical moments of the stochastic responses for the multiple
impact oscillator: MCS was performed using NMCS = 104 model evaluations
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Figure 4.7: Time-dependent errors for the statistical moments of the responses of multiple
impact oscillator
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In a similar way to the behavior of the responses, the errors are also linearly increasing with
time. Slightly lower errors were predicted by both surrogate models with p = 3 because the
number of model evaluations is greater than 2n for the present case. Here the time-dependent
errors with a particular polynomial degree p by both surrogates are following almost the same
path. Along with this, the overall accuracies of all the surrogates are listed in Table 4.3. It
seems that both approaches have predicted exactly the same mean relative errors, however,
the PCE coefficient vector was computed 3 times instead of 3001 for the POD-PCE model:
it is the main advantage of the POD-PCE model.

Projectile velocity

UQ was also performed on the projectile velocity. The stochastic response behavior in time
domain is shown in Figure 4.6e and Figure 4.6f. Jumps are noticed in the stochastic behav-
ior of ẏp. However, the moments were predicted quite well by both surrogates using much
less model evaluations as compared to MCS. The time-dependent errors for both statistical
moments are plotted in Figure 4.7e and Figure 4.7f. Lower errors are noticed using p = 3 for
both surrogate models during the contacts. The errors beyond the contact region are constant
with time as both statistical moments are constant beyond the contact period. The overall
accuracies are given in Table 4.3. It is noticeable that almost the same overall accuracies have
been achieved by both surrogates. However, for the POD-PCE model, the PCE coefficient
vector was computed only 9 times: it is 3001 for the PCE model.

Comparison of predicted responses

In a similar way to the single impact oscillator, the predicted stochastic responses by the
surrogates were plotted and compared with the MCS results at the same 5 samples. The
comparison is shown in Figure 4.8. It seems that the contact force is predicted quite well
during the first two contacts, whereas it is very difficult to predict the contact forces towards
the end of the contacts. ε̄ for these 5 samples was found to be the same as the ε̄ for the 104

samples. It is noticeable that for both methods some negative forces are predicted towards
the end of the contacts, which is not physically correct. On the other hand, the projectile
displacement and the projectile velocity are predicted quite well at the 5 samples using both
approaches compared to the contact force.

Influence of the number of model evaluations for the contact force

To mitigate the issue of the non-physical forces, the contact force was predicted by both
surrogates increasing the sample points. The predicted contact force along with the MCS
results with p = 3 is shown in Figure 4.9 using different samples. Although the number of
model evaluations was increased up to N = 300, it is seen from the figures that some negative
forces are always present. One of the possible reasons for the failure is that the polynomial
degree for the PCE model was sufficient. For that reason, the same study was performed by
increasing the polynomial degree to p = 5. The contact force was predicted by the surrogates
using p = 5 which is shown in Figure 4.10. It is seen from the figures that the negative forces
are always predicted even with N = 1000 and p = 5.
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(a) Contact force (b) Projectile displacement

(c) Projectile velocity

Figure 4.8: Comparison of responses for the multiple impact oscillator at 5 samples:
mp ∈ {342.71, 292.84, 365.62, 310.35, 373.82}g, kc ∈ {13.97, 13.87, 14.61, 14.23, 13.63} ×
103MN m−3/2, v0 ∈ −{11.32, 9.51, 9.96, 9.11, 10.95}m s−1
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(a) N = 100 (b) N = 150

(c) N = 200 (d) N = 250

(e) N = 300

Figure 4.9: Prediction of contact force at 5 samples with p = 3: —MCS, − · − · −PCE, - -
-POD-PCE
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(a) N = 100 (b) N = 150 (c) N = 200

(d) N = 250 (e) N = 300 (f) N = 500

(g) N = 1000

Figure 4.10: Prediction of contact force at 5 samples with p = 5: —MCS, − · − · −PCE, - -
-POD-PCE
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Influence of the polynomial degree for contact force

For further investigation, the surrogate models were constructed using N = 1000 samples
with increasing the polynomial degree p. The polynomial degree was varying from p = 6
to p = 15 and all the predicted results are shown in Figure 4.11. It is seen that with such
high number of model evaluations and large polynomial degree (p = 10), the non-physical
negative force is eliminated for the third contact. However, the non-physical force is always
predicted for the fourth and for the fifth contact period. Increasing the polynomial degree
to p = 14 and p = 15, it is seen that a worst contact force is predicted by both surrogate
models. Moreover, the issue of the non-physical negative force was minimized to some extent
by increasing the PCE polynomial degree and the number of model evaluations. It should
be noted from the figures (Figure 4.9, Figure 4.10 and Figure 4.11) that the non-physical
negative forces predicted by both surrogate models are following almost the same paths: it
implies the non-physical negative force was not governed by the POD approach instead, it
was predicted due to the PCE model. Indeed, the behavior of the contact force is almost
like Gibbs phenomenon (Gibbs, 1898, 1899) or the Runge phenomenon, and predicting the
non-smooth behavior using a smooth function (PCE model) is always very challenging.

4.6 Concluding remarks

A non-intrusive surrogate model has been presented in this chapter for the impact dynamical
systems, which is called POD-PCE model. The time-dependent non-smooth behavior and
the randomness have been decoupled using the POD approach and the uncertain parameters
have been propagated by the PCE model. The time-dependent UQ can be performed using
the conventional PCE surrogate model, but in that case the PCE coefficient vector has to be
computed at each time-step. For that reason, time-dependent uncertain response quantity
was projected on the reduced POM such that a low number of PCE coefficients is required.

A nonlinear impact oscillator has been investigated for UQ with both different conditions,
for which the sparse KNARX model has failed: a single contact between the structure and
the projectile was considered first, and then multiple contacts between the structure and the
projectile were considered. UQ was performed for the projectile displacement, the projectile
velocity and the contact force. The stochastic responses were computed very well by the PCE
and the POD-PCE models. For the POD-PCE model, the highest number of PCE coefficients
identification was about 1% (for contact force of the multiple impact oscillator) with respect
to the PCE model which is very less and at the same time, the predicted accuracies by the
POD-PCE model were almost similar to the PCE results. Obviously, the time to compute
the POM must be taken into account. However, as the number of model evaluations is low,
the required number of POM is low as well. Therefore, the numerical cost to compute the
POM is low, and the total numerical cost to obtain the POD-PCE model is much lower than
the one to obtain the PCE model at each time step.

Although both surrogate models predicted good results, some non-physical contact forces
were predicted for the multiple impact oscillator by both surrogate models at some sample
points. To eliminate such error, the number of model evaluations and the PCE polynomial
degree were increased. The non-physical contact force could be reduced to some extent with
these modifications, however, it was not possible to eliminate fully the non-physical contact
force prediction by both surrogate models. The non-physical forces may also be a consequence
of over-fitting, and may be minimized using a sparse PCE model by selecting the important
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(a) p = 6 (b) p = 7 (c) p = 8

(d) p = 9 (e) p = 10 (f) p = 11

(g) p = 12 (h) p = 13 (i) p = 14

(j) p = 15

Figure 4.11: Prediction of contact force at 5 samples with N = 1000 for different polynomial
degrees: —MCS, − · − · −PCE, - - -POD-PCE
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terms in the PCE polynomial basis. Consequently, a sparse PCE approach is investigated in
the next chapter.



Chapter 5

Variational Bayesian inference
based sparse PCE model

5.1 Introduction

The POD-PCE model as introduced in chapter 4 is effective in propagating the uncertain
parameters through an impact oscillator. Although the number of PCE coefficient estimation
was much less for the POD-PCE model as compared to the PCE model, the number of
coefficients would be high if a high polynomial degree is used. It has been often found in
the literature that all the polynomials in the PCE model do not contribute to the response
(Blatman and Sudret, 2008, 2011; Jakeman et al., 2015; Guo et al., 2018). Along with this,
the use of all the polynomials may not be optimal for a response. Therefore, selecting the
most appropriate terms in the PCE basis and computing the corresponding coefficients are
the main challenges for formulating a sparse PCE model. Indeed, choosing the important
terms in the PCE basis reduces the chances of overfitting and increases the accuracy of the
PCE model. For that reason, a sparse PCE model is investigated in this chapter.

Several sparse PCE model have already been investigated in the past two decades (Blat-
man and Sudret, 2011; Jakeman et al., 2015; Cheng and Lu, 2018a; Shao et al., 2017; Abraham
et al., 2018; Cheng et al., 2019). LARS (Efron et al., 2004) based sparse PCE model has been
investigated by Blatman and Sudret (2011) which is available in the UQLab (Marelli and
Sudret, 2014) open source software. A weighted regression approach was utilized by Jake-
man et al. (2015) to introduce the sparsity in the PCE model. A weighted `1 minimization
approach was used by Peng et al. (2014) and a gradient enhanced `1 minimization approach
has been used by Peng et al. (2016) for the formulation of sparse PCE model. Some other `1
minimization approach for constructing a sparse PCE model can be found in the literature
(Huan et al., 2018; Guo et al., 2018; Salehi et al., 2018). A homotopy algorithm D-MORPH
(Li and Rabitz, 2010) based sparse PCE has been developed by Cheng and Lu (2018b) and
a SVM based PCE model has been proposed by Cheng and Lu (2018a) for global sensitivity
analysis. Although several approaches have been investigated by the researchers to obtain a
sparse PCE model, less attention has been paid towards the investigation of a sparse PCE
model by Bayesian approach. A Bayesian inference based on Kashyap information criterion
has been utilized by Shao et al. (2017) for formulating a sparse PCE model and a different
type of Bayesian inference based sparse PCE model has been investigated by Zhou et al.
(2019b) allocating the priors for the important polynomials.

81
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A Bayesian inference based PCE is formulated in this chapter. Firstly, the PCE coefficients
are obtained with a variational Bayesian inference. Then, the important terms in the PCE
basis are identified using the automatic relevance determination approach.

5.2 Bayesian inference in PCE model

Bayesian inference has already been proved efficient and accurate in assessing model param-
eters for dynamical systems (Green, 2015) and pattern recognition (Bishop and Tipping,
2000; Karagiannis and Lin, 2014). For that reason, the coefficients of the PCE are estimated
here using a variational Bayesian (VB) inference (Drugowitsch, 2013; Fox and Roberts, 2012;
Ghahramani and Beal, 2001; Attias, 1999). The generalized framework for the Bayesian
inference and the VB inference in the context of PCE are described in the next sub-sections.

5.2.1 Generalized Bayesian inference in PCE

Recall the notations for the formulation of a PCE model. The uncertain parameters are
given by ξ and the corresponding realizations are given by the experimental design matrix
Ξ ∈ RN×d. The PCE model is formulated in this chapter considering the time-independent
QoI. The uncertain QoI is given by y and the QoI at the initial N realizations is given by
a vector Y ∈ RN×1. Therefore, the truncated PCE model defined in Equation 2.4 can be
represented as:

Y (Ξ) = Φ (Ξ) a+ εp (5.1)

where εp is the residual due to the truncation and is supposed to be a zero mean Gaussian
white noise with variance ς−1. The coefficients vector a ∈ Rn×1 is the only unknown in
Equation 5.1. The coefficient are computed here through the Bayesian estimation using
the available data i.e. Y (Ξ) and Φ (Ξ). Therefore, having the observed responses Y =
{Y1, Y2, . . . , YN}T , the posterior distribution of the Bayesian model parameter is represented
by Bayes’ rule as:

p (Θ|Y ) = p (Y |Φ,Θ) p (Θ)
p (Y ) (5.2)

where Θ is the Bayesian model parameter, which includes a: Θ will be defined below. In
Equation 5.2, p (Y |Φ,Θ) is the likelihood function which is computed based on the distribution
of the parameters and p (Θ) is the prior distribution of the model parameters before noticing
the available responses. p (Y ) is the marginal likelihood which is given by:

p (Y ) =
∫
p (Y |Φ,Θ) p (Θ) dΘ (5.3)

The main objective of the Bayesian framework is to assess the posterior distribution
having a proper knowledge of the prior and the likelihood functions. The distribution of the
likelihood function and the prior are formulated in Appendix B. Knowing that the Yi are
assumed to be normally distributed with mean Φia and variance ς−1 in which Φi is the i-th
row of the multivariate polynomial basis matrix. As indicated in Appendix B, the priors (a, ς)
are supposed to have a normal-gamma distribution, then the prior is further parameterized
by a hyper-prior α. According to the formulation, the Bayesian model parameter is given
by Θ ∈ {a, ς, α}. The dependency between all the Bayesian model parameters is shown
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N

Figure 5.1: Graphical model representing the dependencies between the Bayesian model pa-
rameters

in Figure 5.1. A0, B0 are the distribution parameters for ς and C0, D0 are the distribution
parameters for α.

Therefore, considering all the Bayesian model parameters, the joint distribution in Equa-
tion 5.2 can be represented by:

p (a, ς, α|Y ) = p (Y |Φ, a, ς) p (a|ς, α) p (ς) p (α)
p (Y ) (5.4)

The parameters of the Bayesian model Θ ∈ {a, ς, α} can be computed having the proper
knowledge of the priors and the hyper priors. In practice, we don’t have proper knowledge
about the priors. For that reason, several methods are available in the literature to assess
the posterior approximately based on random sampling (Gilks et al., 1996; Sun, 2013), which
require a large computational cost. To avoid the computational burden of the sampling based
approaches, a VB inference has been utilized here to infer the posterior.

5.2.2 Variational Bayesian inference

The VB inference is utilized here to estimate the posterior of the Bayesian inference model
parameter by a simple optimization process (Ghahramani and Beal, 2001). Indeed the ob-
jective is to find a distribution q (Θ) which is also known as variational distribution (Bishop,
2006) and a variational lower bound (VLB), which is constructed as:

L [q (Θ)] =
∫

Θ
q (Θ) ln p (Y |Θ) p (Θ)

q (Θ) dΘ =
∫

Θ
q (Θ) ln p (Θ|Y ) p (Y )

q (Θ) dΘ (5.5)

=
∫

Θ
q (Θ) ln p (Θ|Y )

q (Θ) dΘ +
∫

Θ
q (Θ) ln p (Y ) dΘ (5.6)

It should be noted that according to the definition of a probability distribution, the integral
of the variational distribution is

∫
Θ q (Θ) dΘ = 1. Therefore, Equation 5.6 is rearranged as:

L [q (Θ)] =
∫

Θ
q (Θ) ln p (Θ|Y )

q (Θ) dΘ + ln p (Y ) (5.7)

and the log-marginal likelihood is given by:

ln p (Y ) = L [q (Θ)] + KL (q (Θ) ‖ p (Θ|Y )) (5.8)
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where KL (•) is the Kullback-Leibler (KL) divergence from q to p which has the form of:

KL (q (Θ) ‖ p (Θ|Y )) = −
∫

Θ
q (Θ) ln p (Θ|Y )

q (Θ) dΘ (5.9)

The best estimate of p(Θ|Y ) is reached for the variational distribution that minimizes the
KL divergence (Bishop, 2006; Franck and Koutsourelakis, 2016). Accordingly, Equation 5.8
shows that the best estimate is found by maximizing the VLB L with respect to q (Θ). For
assessing the variational distribution, a flexible choice has been utilized using the mean field
theory of physics (Parisi, 1988; Peierls, 1938), called factorized distribution. The factorized
distribution is described in the next section in a detailed way.

5.2.3 Factorized distribution

The factorized distribution of q (Θ) is in the form of a product of the corresponding distribu-
tion (Bishop, 2006):

q (Θ) =
Ne∏
i=1

q (Θi) (5.10)

where Ne is the number of subsets in the Bayesian model parameter Θ. Here, we have three
parameters a, ς, α. However, due to the joint probability distribution, q (Θ) is subdivided in
two components. Hence, Equation 5.10 can be represented by

q (Θ) = q (a, ς) q (α) (5.11)

This equation defines Ne = 2 for the present Bayesian formulation. For the forthcoming
derivations, the notation given in Equation 5.10 will be used instead of Equation 5.11.

For the optimization, the lower bound L is maximized with respect to each element of
the distribution independently, while the other elements are kept fixed. Therefore, utilizing
the factorized distribution (see Equation 5.10) in Equation 5.5, and considering that all the
parameters are fixed except Θj , the VLB is represented as (Jacobs et al., 2018):

L [q (Θ)] =
∫ Ne∏

i=1
q (Θi)

(
ln p (Y,Θ)−

Ne∑
i=1

ln q (Θi)
)
dΘ (5.12)

=
∫
q (Θj)

∫ ln p (Y,Θ)
∏
i 6=j

q (Θi)dΘi

 dΘj

−
∫
q (Θj) ln q (Θj)dΘj + const (5.13)

=
∫
q (Θj) ln p̃ (Y,Θj)dΘj −

∫
q (Θj) ln q (Θj)dΘj + const (5.14)

where const denotes a constant term. In Equation 5.13, the terms ∑i 6=j
∫
q (Θi) ln q (Θi) d Θi

are incorporated in the constant term. A new distribution term is defined in Equation 5.14
as p̃ (y,Θj) (Bishop, 2006) which is given by:

ln p̃ (Y,Θj) =
∫

ln p (Y,Θ)
∏
i 6=j

q (Θi)dΘi = Ei 6=j [ln p (Y,Θ)] (5.15)

where Ei 6=j [•] defines the expectation with respect to all the distribution q (Θi) for i 6= j.
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The maximum of the VLB for the j-th distribution q (Θj), keeping others fixed at q (Θi 6=j),
is reached when q (Θj) = p̃ (Y,Θj) (Jacobs et al., 2018), which gives:

ln q (Θj) = Ei 6=j [ln p (Y,Θ)] (5.16)

Therefore, the optimal solution of the variational distribution is obtained utilizing Equa-
tion 5.16. The convergence of the lower bound is guaranteed (Boyd and Vandenberghe, 2004)
because the VLB is convex with respect to each of its components q (Θi). The convergence
of the VLB is described through the following equation, derived from Equation 5.5:

L [q (Θ)] =
∫

Θ
q (Θ) ln p (Y,Θ) dΘ−

∫
Θ
q (Θ) ln q (Θ) dΘ (5.17)

= EΘ [ln p (Y,Θ)]− EΘ [ln q (Θ)] (5.18)

5.3 Variational Bayesian inference based PCE
As already discussed in the previous section, the variational distribution is assessed by par-
titioning the Bayesian model parameters into two variational distributions. The two compo-
nents of the variational distribution are maximized separately while the other one is fixed.
Therefore, the variational posterior q (a, ς) is given by Equation 5.16, while keeping the other
one q (α) fixed:

ln qk (a, ς) = ln p (Y |Φ, a, ς) + Eα [ln p (a, ς|α)] (5.19)
where ln p (Y |Φ, a, ς) and ln p (a, ς|α) are given by Equation B.3 and Equation B.6, respec-
tively. In the following, k in the subscript represents the updated parameter for a particular
iteration in the optimization process. Therefore, substituting those expressions and absorbing
all the terms independent of a and ς in the constant, Equation 5.19 becomes:

ln qk (a, ς) =
(
n

2 +A0 − 1 + N

2

)
ln ς

− ς

2

(
aT
(
Eα [Λ] +

N∑
i=1

ΦT
i Φi

)
a+

N∑
i=1

Y 2
i − 2

N∑
i=1

YiΦia+ 2B0

)
+ const (5.20)

In a similar way to the Bayesian formulation, the VB inference for the q (a, ς) is also
inferred by the conjugate normal-gamma distribution:

qk (a, ς) = N
(
a|ak, ς−1Vk

)
Gam (ς|Ak, Bk) (5.21)

Equation 5.21 is similar to Equation B.5. Therefore, by equating the coefficient of − ς
2a

Ta
between Equation 5.21 and Equation 5.20, the parameter Vk is computed as (Jacobs et al.,
2018):

V −1
k =

N∑
i=1

ΦT
i Φi + Eα [Λ] (5.22)

The expectation on α is calculated via the moment of the corresponding distribution (Bishop,
2006). Therefore, the second term in Equation 5.22 is computed by:

Eα [Λ] = Λk (5.23)
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Similarly, the updated coefficients of the PCE model are found by equating the coefficients
of a between Equation 5.21 and Equation 5.20:

ak = Vk

N∑
i=1

ΦT
i Yi (5.24)

The coefficients of the PCE model are thus updated at each iteration of the optimization
process using Equation 5.24. However, to update the whole variational distribution q (a, ς), the
parameters of the gamma distribution must be updated. Expanding the gamma distribution,
Equation 5.21 can be represented as:

ln qk (a, ς) = lnN
(
a|ak, ς−1Vk

)
− ς

2

(
N∑
i=1

Y 2
i + 2B0 − aTk V −1

k ak

)

+
(
A0 − 1 + N

2

)
ln ς (5.25)

Equating the coefficient of ‘ς’ in Equation 5.25 and the PDF of a gamma distribution, the
updated parameter of the gamma distribution Bk is determined by:

Bk = B0 + 1
2

(
N∑
i=1

Y 2
i − aTk V −1

k ak

)
(5.26)

Similarly, equating the coefficients of ‘ln ς’, the other parameter of the gamma distribution
Ak is calculated as:

Ak = A0 + N

2 (5.27)

Therefore, the updated variational distribution of q (a, ς) is inferred by updating Equa-
tion 5.22, 5.24, 5.26 and 5.27 in each iteration of the optimization process.

In a similar way, the other part of the factorized distribution in Equation 5.11, q (α), is
also maximized considering q (a, ς) is fixed. Consequently, according to Equation 5.16, the
variational posterior for α is given by:

ln qk (α) = ln p (α) + Ea,ς [ln p (a, ς|α)] (5.28)

=
n∑
j=1

(C0 − 1) lnαj −D0αj + 1
2 lnαj −

αj
2 Ea,ς

[
ςa2
j

]
+ const (5.29)

In Equation 5.29, p (α) and p (a, ς|α) are given by Equation B.8 and Equation B.6, respectively.
All the terms independent of α are absorbed in the constant. For the conjugacy in the
variational distribution, q (α) is inferred by the gamma distribution:

ln qk (α) =
n∑
j=1

ln Gam
(
αj |Ck, Dkj

)
(5.30)

By comparing the coefficients of lnαj and αj between Equation 5.29 and 5.30, Ck and Dkj

are given by:

Ck = C0 + 1
2 (5.31)

Dkj = D0 + 1
2Ea,ς

[
ςa2
j

]
(5.32)
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The expectation over the parameters (Bishop, 2006) is given by:

Ea,ς
[
ςa2
j

]
= a2

kj

Ak
Bk

+ Vkjj (5.33)

where kjj in the subscript denotes the diagonal elements of the updated Vk matrix and kj
denotes the j-th coefficient in the updated PCE coefficient vector. The expectation on each
of the element of the diagonal matrix Λ is given by:

Eα [αj ] = Ck
Dkj

(5.34)

Therefore, Eα [Λ] is the matrix having all the diagonal elements computed by Equation 5.34:

Eα [Λ] = diag (Eα [α]) (5.35)

Ak and Ck are the constants which are not updated in the optimization procedure. In
contrast, Bk and Dk are updated in each iteration. Consequently, Bk and Dk are initialized
at their initial values B0 and D0, respectively. Along with this, ak and Vk are also initialized
for the optimization problem:

a|k=0 =
(
ΦTΦ

)−1
ΦT y (5.36)

V |k=0 = ΦTΦ (5.37)

The updated coefficient vector of the PCE model is computed by the updated coefficient
according to Equation 5.24 at the end of the maximization of the variational distribution
q (Θ). According to the above discussion, this maximization is performed in two segments
through the factorized distribution. The numerical computation procedure of VLB using
factorized distribution is described in Appendix C. The convergence of the maximization is
noticed through computing the VLB. As a consequence, at step k, the relative evaluation of
the VLB with respect to the previous step (in percent) is compared to a predefined threshold
TL:

L [q (Θ)]k − L [q (Θ)]k−1
L [q (Θ)]k−1

× 100 ≤ TL (5.38)

A pseudo-code of VB based PCE is given in Algorithm 5.1.

5.4 Sparse VB-PCE model by automatic relevance determi-
nation

The sparsity in the polynomial basis is introduced here using the Automatic Relevance De-
termination (ARD) (Burden et al., 2000; Li et al., 2002). It is noticed from Figure 5.1 that
‘a’ depends on the parameter ‘α’ in the Bayesian model. The hyper-priors are computed for
each element of the polynomial basis and measure the effectiveness of each of the polynomials.
Therefore, the hyper-priors are utilized here to select the important terms in the polynomial
basis.

The ARD value (Wipf and Nagarajan, 2008; Jacobs et al., 2018) is defined by α−1
j for the

corresponding coefficient aj in the PCE model. After performing the VB inference on the PCE
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Algorithm 5.1 Pseudo-code for VB inference based PCE formulation
1: procedure VBPCE(Φ, Y, TL, A0, B0, C0, D0)
2: k = 0
3: Compute Ak and Ck . Refer to Equation 5.27 and Equation 5.31
4: Bk = B0
5: Dk = D0
6: for j = 1 : n do
7: Compute Eα [αj ] . Refer to Equation 5.34
8: end for
9: Obtain matrix Eα [Λ] . Refer to Equation 5.35

10: while L[q(Θ)]k−L[q(Θ)]k−1
L[q(Θ)]k−1

× 100 > TL do
11: k = k + 1
12: Compute V −1

k . Refer to Equation 5.22
13: Update ak . Refer to Equation 5.24
14: Update Bk . Refer to Equation 5.26
15: for j = 1 : n do
16: Update Ea,ς

[
ςa2
j

]
. Refer to Equation 5.33

17: Update Dkj . Refer to Equation 5.32
18: Update Eα [αj ]k . Refer to Equation 5.34
19: end for
20: Obtain updated matrix Eα [Λ]k = diag (Eα [α]) . Refer to Equation 5.35
21: Update VLB L [q (Θ)]k . Refer to Equation C.8
22: end while
23: return a,L [q (Θ)] ,Eα [Λ]
24: end procedure
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model, the maximized VLB along with all the model parameters are available. Therefore, the
expectation of the hyper-prior as computed in Equation 5.34 is used to compute the ARD
value for the model which has n terms in the polynomial basis matrix. Therefore, the ARD
values for all the elements in the orthonormal polynomial basis are defined as:

As = diag
(
Eα [Λ]−1

)
(5.39)

where diag
(
Eα [Λ]−1

)
is the vector of the diagonal terms of the inverse sparse matrix contain-

ing the hyper-priors for all the terms in the polynomial basis. The superscript s represents
the number of iteration for the ARD value. Hence, after the convergence of the VB inference
(using Algorithm 5.1), the ARD value is calculated and some terms from the orthonormal
polynomial basis are discarded at this step based on the threshold value of ARD. The thresh-
old value for ARD is evaluated as:

lnT sA = min (ln As) + max (ln As)−min (ln As)
e

(5.40)

where the resolution of the threshold e can be tuned to increase or decrease the threshold
value. If the ARD value for an orthonormal polynomial falls below the threshold value (i.e.
ln As

i < lnT sA,i; i = 1, 2, . . . , n) then the orthonormal polynomial is discarded in the next
iteration. Therefore, the number of terms in the orthonormal polynomial Φs+1 is reduced in
the next iteration (ns+1 < ns).

Remark 5.1. The ARD values for some terms, which are highly relevant for the PCE model,
may be very high. Consequently, the threshold value is also high. Therefore, a less relevant
term (but relevant for the PCE model) with low ARD value may be discarded which results
in a less accurate PCE model. For that reason, the threshold value is obtained here using the
natural logarithm of the ARD value to discriminate between the less sensitive terms.

The final sparse PCE model is selected by calling the VB framework iteratively. Therefore,
the number of terms in the polynomial is reduced in each iteration and the iteration process
continues until one term remains in the orthonormal polynomial (n = 1). The final selection
is made by utilizing the VLB value associated with a particular sparse PCE model. The
chosen final sparse PCE model is the one which has the highest value of VLB L (Θ)s:

Φ∗ = Φs∗ (5.41)

where s∗ is the index having the maximum value of the VLB. The accuracy of the VB model
is fully dependent on the VLB. Therefore, choosing the sparse PCE model based on the VLB
value selects the most important terms in the orthonormal polynomial basis. The proposed
model is called sparse VB inference based PCE (SVB-PCE) model. A pseudo-code for the
SVB-PCE model is given in Algorithm 5.2.

5.5 Proposed UQ framework by SVB-PCE model
The proposed framework utilizes Algorithm 5.1 and Algorithm 5.2 for UQ. The important
terms in the orthonormal polynomial basis are selected using the VB algorithm based on ARD.
The PCE coefficients are also computed within the SVB framework, which is an advantage
of the method. The first two statistical moments (i.e. mean and standard deviation) can be
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Algorithm 5.2 Pseudo-code for the SVB-PCE model
1: procedure SVB-PCE(Φ, Y, e)
2: s = 0
3: Φ0 = Φ
4: while n > 1 do . Perform iteration until 1 term remains
5: s = s+ 1
6: (as,L [q (Θ)]s ,Eα [Λ]s) = VBPCE(Φs−1, Y, TL, A0, B0, C0, D0) . Refer to

Algorithm 5.1
7: Compute As . Refer to Equation 5.39
8: Calculate lnT sA . Refer to Equation 5.40
9: Φ− = ∅

10: for j = 1 : n do
11: if ln As ≤ lnT sA then
12: Φ− = Φ− ∪ Φj

13: end if
14: end for
15: Φs = Φs−1 \ Φ−
16: n = card (Φs)
17: end while
18: s∗ = ind (maxL (Θ)s)
19: Φ∗ = Φs∗

20: a∗ = as
∗

21: ind∗ = ind (card (Φ∗)) . Get the index of final set
22: return a∗,Φ∗, ind∗
23: end procedure



5.6. UQ OF TEST FUNCTIONS BY SVB-PCE MODEL 91

computed efficiently by post-processing the PCE coefficients as given in Equation 2.14 and
Equation 2.15.

The procedure of UQ using the SVB-PCE model is shown in Figure 5.2 which requires
the responses and the orthonormal polynomial bases at some initial sample points. LHS is
used here for the generation of the initial samples.

For the implementation of the SVB framework within PCE, some initial parameters of the
Bayesian model are required. The parameters of the hyper-prior are chosen, as proposed by
Jacobs et al. (2018), as A0 = C0 = 1× 10−2 and B0 = D0 = 1× 10−4. A threshold value for
the VLB L must be initialized in Algorithm 5.1. The threshold TL for the change in the VLB
with respect to the previous iteration is decided as 0.001%. The resolution for computing the
threshold of ARD value is chosen as e = 1000 which was proposed by Jacobs et al. (2018).

5.6 UQ of test functions by SVB-PCE model

In this section, the SVB-PCE model has been utilized for UQ of two mathematical functions.
UQ is made by estimating the first two statistical moments and the PDF of the stochastic
response. Both examples are also solved by the sparse PCE model based on the LARS
method (Blatman and Sudret, 2011): it is called LARS-PCE and was obtained with the
UQLab software (Marelli and Sudret, 2014).

The accuracy of the results obtained by the surrogate models has been measured with
respect to the MCS results and it has been computed using a percentage error (PE):

PE =

√√√√√∑NMCS

(
Y − Ŷ

)2

∑
NMCS

Y 2 × 100 (5.42)

where Y is the MCS solution and Ŷ is the solution predicted either by SVB-PCE or by
LARS-PCE. NMCS is the number of prediction samples.

The computational cost is affected by the total number of terms in the PCE orthonormal
polynomial basis. For that reason, a sparsity index (SI) has been computed. The SI is given
by the ratio of the number of terms detected by the sparse algorithms, to the number of
terms for the full PCE model: a low percentage of SI indicates a low computational cost.
A low SI reduces the chances of over-fitting using a limited number of model evaluations
which ultimately increases the accuracy of the PCE model. The computational cost is also
affected by the number of model evaluations. An accurate result with a low number of model
evaluations indicates a computationally efficient surrogate model.

5.6.1 Ishigami function

The Ishigami function is a benchmark mathematical functions which has been used many
times in the literature (Blatman and Sudret, 2010b; Cheng and Lu, 2018b): it is given by:

y = sin ξ1 + 7 sin2 ξ2 + 0.1ξ4
3 sin ξ1 (5.43)

where ξ1, ξ2 and ξ3 are statistically independent random variables uniformly distributed in
[−π, π]. It is noticed from Equation 5.43 that the function is nonlinear. The MCS was
performed on NMCS = 105 samples to get the reference solution.
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Figure 5.2: Flowchart of the SVB-PCE for UQ
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Figure 5.3: Evaluation of PE for different polynomial degrees by the SVB-PCE and the
LARS-PCE models

Table 5.1: Statistical moments of the response for the Ishigami function using N = 40 and
p = 8

Method µ̂y PE(%) σ̂y PE(%)
MCS 3.4917 - 3.7206 -

LARS-PCE 3.4312 1.73 3.2768 11.93
SVB-PCE 3.4908 0.03 3.7198 0.02

For the surrogate models, the SVB-PCE and the LARS-PCE models were identified with
different polynomial degrees p. Legendre polynomials were used for all the random variables.
The percentage error (PE) for different polynomials degrees is plotted in Figure 5.3 using
N = 35 and N = 40 LHS points separately. It is seen that with the increase of the polynomial
degree, PE for the SVB-PCE reduces rapidly as compared to the LARS-PCE model. For both
N = 35 and N = 40 samples, the SVB-PCE model predicted good results using polynomial
degree p = 8. On the other hand, PE of the LARS-PCE model is higher for most of the
polynomial degrees.

As the PE computed with p = 8 was quite low, it was used for the further study of the
Ishigami function. Therefore, the PE was computed by increasing the sample points starting
from N = 20 with the increase of 5 samples fixing p = 8: this process continued until PE
less than 2% was obtained. The evaluation of PE for both surrogates with N is plotted in
Figure 5.4. It is noticeable that PE ≤ 2% was obtained by the SVB-PCE model using only
N = 40 samples, whereas, the LARS-PCE model requires N = 70 samples.

The PDF was obtained using N = 40 and p = 8 for both surrogates. The PDF plots using
all the approaches are shown in Figure 5.5. It is seen clearly that the PDF obtained by the
SVB-PCE model is closer to the MCS result as compared to the LARS-PCE result.

The mean (µ̂y) and the standard deviation (σ̂y) were obtained by post-processing the PCE
coefficients and are presented in Table 5.1. The PE for the surrogate predicted moments were
computed using Equation 5.42 and are also reported in Table 5.1. It is seen from the table
that the most accurate results were obtained by the SVB-PCE model.
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Figure 5.4: Evaluation of PE with the increase of sample points for the Ishigami function
with p = 8
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Table 5.2: Percentage error (PE) and sparsity index (SI) for the Ishigami function using
N = 40 and p = 8

Method PE (%) SI
LARS-PCE 21.50 22/165 ≈ 13.33%
SVB-PCE 1.65 13/165 ≈ 7.88%
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Figure 5.6: Evaluation of variational lower bound (VLB) for the Ishigami function using
N = 40 and p = 8

The accuracy metric and the sparsity index (SI) are given in Table 5.2 for N = 40 and
p = 8. The accuracy is much higher for the SVB-PCE model using N = 40 samples. The
evaluation of the VLB for the SVB-PCE model with N = 40 and p = 8 is shown in Figure 5.6.
It is seen that the VLB value was increased up to a certain iteration then it was decreased,
and the s∗ is the index having the highest VLB value which selects the final sparse PCE
model for the Ishigami function. The SVB-PCE model requires few terms (only 13 out of 165
possible terms) from the orthonormal basis to achieve a high accuracy.

5.6.2 High-dimensional function

The second mathematical function considered here is the high-dimensional function (Marelli
and Sudret, 2014):

y = 3− 5
d

d∑
i=1

iξi + 1
d

d∑
i=1

iξ3
i + ln

[
1
3d

d∑
i=1

i
(
ξ2
i + ξ4

i

)]
(5.44)

where d = 20 is the number of random variables. All the random variables (ξi; i = 1, . . . , 20)
are uniformly distributed in [1, 2]. As a result, Legendre polynomials were used for computing
the PCE basis. For the reference solution, MCS was performed on NMCS = 105 samples. For
the SVB-PCE and the LARS-PCE models, the maximum degree of polynomial was considered
as p = 2. As a consequence, a total n = 231 terms were found in the polynomial basis of the
full PCE model.
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Figure 5.7: Evaluation of percentage error (PE) with the increase of sample points for the
high-dimensional function

Table 5.3: Statistical moments of the response for the high-dimensional function using N = 85
and p = 2

Method µ̂y PE (%) σ̂y PE (%)
MCS -32.9941 - 1.8729 -

LARS-PCE -33.1630 0.51 1.4811 20.92
SVB-PCE -32.9951 0.00 1.8742 0.07

For this example, a convergence study was performed to check the evolution of PE with the
increase of the model evaluation number. The initial number of samples was set as N = 50
LHS points and it was increased by 5 LHS points at each step until PE is less than 2%.
The evaluation of PE with the samples are shown in Figure 5.7. It is seen that this level of
accuracy is achieved by the SVB-PCE model using N = 85 LHS points, whereas it requires
N = 105 LHS points for the LARS-PCE model.

In a similar way to the previous example, the PDF of the response is plotted using N = 85
samples by both approaches along with the MCS result in Figure 5.8. It is seen clearly that
the SVB-PCE model has predicted a much accurate PDF which is almost following the PDF
computed by the MCS.

The first two statistical moments of the stochastic response were also computed by both
surrogate models and are listed in Table 5.3. Along with this, the PE was computed with
respect to the MCS results, which is listed in Table 5.3. µ̂y and σ̂y were obtained more
accurately by the SVB-PCE model as compared to the LARS-PCE model using the same
sample points.

The PE and the SI for the high-dimensional function are given in Table 5.4. The evaluation
of the VLB with the iteration number (s) is plotted in Figure 5.9. The highest VLB was
achieved at s = 77 which is denoted by s∗ on the figure. The trend of the evaluation is almost
similar as for the Ishigami function. The number of important terms in the polynomial basis
is a little higher for the SVB-PCE model, however, the PE is much lower for the SVB-PCE
model using N = 85 samples. These results are suggesting that the ability to detect the most
important terms is higher by the SVB-PCE as compared to the LARS-PCE model with 85
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Figure 5.8: PDF of the high-dimensional function by MCS, LARS-PCE and SVB-PCE using
N = 85 and p = 2

Table 5.4: Percentage error (PE) and sparsity index (SI) for the high-dimensional function
using N = 85 and p = 2

Method PE (%) SI
LARS-PCE 3.54 30/231 ≈ 12.99%
SVB-PCE 0.27 39/231 ≈ 16.88%

model evaluations.

5.6.3 Observations

The results presented above clearly suggest that the introduction of the sparsity in the PCE
model has improved the accuracy significantly using a limited number of model evaluations.
To identify a PCE model, the number of model evaluations must be at least equal to the num-
ber of terms in the PCE model otherwise, the model is probably inaccurate. Using the sparse
approach significantly reduces the number of terms in the PCE mode which ultimately reduces
the required number of model evaluations. For both presented test functions, the SVB-PCE
predicted results outperform the LARS-PCE predicted results. The Ishigami function was
predicted quite well by both surrogate models however, the LARS-PCE took almost the dou-
ble sample points as compared to the SVB-PCE model to achieve a PE lower than 2%. For the
high-dimensional function, the number of model evaluations was also greater by the LARS-
PCE model than the SVB-PCE model. The main advantage of the Bayesian formulation is
that it takes care about the residual error εp of the PCE model. Another advantage of the
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Figure 5.9: Evaluation of variational lower bound (VLB) for the high-dimensional function
using N = 85 and p = 2

SVB aprroach over the LARS approach is that the number of terms is selected through an op-
timization approach whereas for the LARS approach, one needs to specify an error criterion.
Furthermore, the PCE coefficients are computed within the Bayesian framework which does
not require additional OLS to compute the coefficients. Another advantage of the present
formulation is that the VB formulation is fully connected to the ARD. Therefore, obtaining a
sparse PCE model corresponding to the maximum VLB always selects the best PCE model.

5.7 POD-SVB-PCE model
The SVB-PCE model can be utilized for the impact oscillator, however, the SVB-PCE model
must be fitted at each time-step and it is the main drawback. For that reason, it was seen
in chapter 4 that the POD-PCE model was useful for propagating uncertainty through an
impact oscillator. To reduce further the number of terms or the number of coefficients in the
PCE model, the SVB-PCE model is used here instead of the PCE model. Therefore, after
obtaining the coefficient vector corresponding to each POM using Equation 4.10, the POD
coefficient vectors are represented by the SVB-PCE model as follows:

∀i = 1, . . . , nb bi (Ξ) ≈ Φ∗a∗ (5.45)

The POD coefficient vectors are then predicted at the new samples using Equation 5.45
and finally, the time-dependent stochastic response can be predicted using Equation 4.9. The
pseudo-code for the construction of the POD-SVB-PCE model is given in Algorithm 5.3.

5.8 Application of POD-SVB-PCE model to impact oscillator
It has been noticed from the study in chapter 4 that the stochastic modeling of the multiple
impact oscillator is much difficult as compared to the single impact oscillator. For that reason,
the multiple impact oscillator is considered here for the application of the POD-SVB-PCE
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Algorithm 5.3 Algorithm for the construction of POD-SVB-PCE model
1: procedure POD-SVB-PCE(N, d, p, e)
2: Obtain N samples for the uncertain parameters by LHS
3: for i = 1 : N do
4: Y (Ξi, t) =M (Ξi, t)
5: Φi = Φ (Ξi) . Refer to Equation 2.2 and Equation 2.9
6: end for
7: (V, λ) = eig (C) . Refer to Equation 4.2
8: Obtain nb by energy criterion . Refer to Equation 4.7
9: Obtain Vi . Refer to Equation 4.4

10: for i = 1 : nb do
11: Obtain POD coefficient bi (Ξ) . Refer to Equation 4.10
12: (a∗i ,Φ∗, ind∗)=SVB-PCE(Φ, bi (Ξ) , e) . Refer to Algorithm 5.2
13: end for
14: end procedure

model. The impact oscillator has been defined in section 3.5.4 and the stochastic modeling of
the multiple impact oscillator has been performed in section 4.5.2 by the POD-PCE model.
All the uncertain parameters were given in Table 4.1. In a similar way to chapter 4, the time
integration was performed in time domain t ∈ [0 ms, 3 ms] with a time step of ∆t = 1 µs. The
reference solution was computed by MCS with NMCS = 104 LHS points.

5.8.1 Contact force

As a good result was obtained in section 4.5.2 with the POD-PCE model using N = 50,
the evaluation of the mean relative error (Equation 3.11) was computed by increasing the
polynomial degree p with N = 50 for both surrogate models. The evaluation of the mean
relative error is shown in Figure 5.10a. It is seen that ε̄ is progressively decreasing with
the increase of p for the POD-SVB-PCE model whereas an opposite behavior is noticed for
the POD-PCE model. The main reason is that the number of terms in the PCE model
increases with the increase of polynomial degree. For instance, n = 286 terms are found in
the PCE model with polynomial degree p = 10. As a result, it is required to solve an under
determined problem (N < n), whose solution is inaccurate. To investigate this phenomenon
more accurately, the maximum number of selected terms by the SVB-PCE model is plotted
Figure 5.10c along with the number of terms for the PCE model. The maximum number of
selected terms for the POD-SVB-PCE model is given by nmax = max (card (a∗i )) ; i = 1, . . . , nb
whereas nmax = n for the POD-PCE model. It is seen that nmax is always much less than the
number of model evaluations for the POD-SVB-PCE model whereas nmax is greater than N
beyond p = 4. For that reason, the error by the POD-PCE model increases with the increase
of p. At the same time, the total number of coefficients (ntot) for both surrogate models is
shown in Figure 5.10b with the increase of the polynomial degree. For the POD-PCE model,
ntot = nbn and ntot = ∑nb

i=1 card (a∗i ) for the POD-SVB-PCE model. It is seen that the
total number of coefficients increases rapidly with the increase of p for the POD-PCE model.
On the contrary, only ntot = 107 coefficients were used to predict the contact force by the
POD-SVB-PCE model which has nb = 31 POM. Therefore, the usefulness of the SVB-PCE
model is that the POD-SVB-PCE model still predicts the stochastic response with a good
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Figure 5.10: Evolution of the mean relative error and the PCE coefficients with the increase of
polynomial degree p for the predicted contact force by the POD-PCE and the POD-SVB-PCE
models with N = 50

accuracy using a low number of model evaluations due to the much smaller number of terms
in the PCE model.

Further, the mean relative error was computed with the increase of the number of model
evaluations N with p = 10, which is shown in Figure 5.11a. The number of samples started
with N = 30 and is increased up to N = 60 at a step of 5 samples. For this case, the mean
error progressively decreased with the increase of N using both surrogate models. However,
the POD-PCE model was unable to predict a good accuracy because it required at least
N = 286 sample points to compute the PCE coefficients. A more clear picture is shown in
Figure 5.11c and it is seen that for all the cases, nmax is quite smaller compared to N for the
POD-SVB-PCE model. The total number of coefficients (ntot) is also shown in Figure 5.11b.
For all the sample points, ntot of the POD-SVB-PCE model is approximately 100 times lower
compared to the POD-PCE model.

From Figure 5.10a and Figure 5.11a it is clear that the prediction accuracy has been
improved by using the SVB-PCE model along with the POD model instead of the PCE
model. For this multiple impact oscillator, the predicted mean and standard deviation has
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Figure 5.11: Evaluation of the mean relative error with the increase of sample point N for
the predicted contact force by the POD-PCE and the POD-SVB-PCE model with p = 10
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Figure 5.12: Comparison of contact force at 5 samples predicted by the POD-PCE and the
POD-SVB-PCE models with N = 50 (zoom view over the impact duration)

already been discussed in section 4.5.2. As the predicted accuracy is quite good by the
POD-SVB-PCE model, the predicted statistical moments are not discussed here. Instead,
only the predicted responses for five samples are plotted in Figure 5.12. It is seen that the
non-physical negative forces are minimized with the POD-SVB-PCE model (p = 3) for the
last two contact forces (Figure 5.12a). The mean relative error for these five samples was
found as 10.53× 10−2 and 8.10× 10−2 for the POD-PCE and the POD-SVB-PCE models,
respectively. Furthermore, with increasing the polynomial degree to p = 10, the non-physical
forces are also minimized as the mean predicted relative error was found as 5.20× 10−2.
Although, the non-physical negative forces are minimized to some extent, it was not possible
to fully mitigate this problem even with the SVB-PCE model. The main reason is that the
contact force is non-smooth in nature and predicting such non-smooth behavior with smooth
functions (i.e. SVB-PCE model) is very difficult.

5.8.2 Projectile displacement

For the projectile displacement, a study has also been conducted to see the evolution of the
mean error with the increase of the polynomial degree p and it is shown in Figure 5.13a. It
is seen that almost the same error is predicted by both surrogate models with p = 3 and
furthermore, the predicted mean error deteriorates with the increase of polynomial degree for
the POD-PCE model as expected, when N < n. In contrast, the accuracy of the POD-SVB-
PCE model increases with the increase of the polynomial degree using N = 50. The relative
error for the POD-SVB-PCE model is almost constant after p = 7 which indicates that the
optimal SVB-PCE model was obtained with p = 7. It is seen from Figure 5.13c that the nmax
is quite low for the POD-SVB-PCE model even with p = 10. The total number of coefficients
required for both surrogate models is shown in Figure 5.13b. The POD-SVB-PCE model
requires only 15 coefficients (for nb = 3 POM) to achieve a good accuracy for the projectile
displacement with p = 10 whereas the POD-PCE model requires ntot = 858 coefficients to
predict the stochastic response.

In a similar way to the contact force, the mean relative error was computed with the
increase of sample points using p = 10: the evolution of ε̄ is shown in Figure 5.14a, the
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Figure 5.13: Evolution of the mean relative error and the PCE coefficients with the increase
of polynomial degree p for the predicted projectile displacement by the POD-PCE and the
POD-SVB-PCE models with N = 50
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Figure 5.14: Evaluation of the mean relative error with the increase of sample point N for
the predicted projectile displacement by the POD-PCE and the POD-SVB-PCE models with
p = 10

corresponding total number of coefficients is shown in Figure 5.14b and the maximum number
of PCE terms is shown in Figure 5.14c. It is seen that the POD-SVB-PCE model has predicted
an error lower than 10−2 using N = 30 samples with only ntot = 8 PCE coefficients and with
nmax = 4, which is accurate and efficient. For the POD-PCE model, the number of terms
in the basis is n = 286, which is higher than the number of model evaluations whereas the
maximum PCE terms in case of the POD-SVB-PCE model for all the samples are very low.
Therefore, using the SVB-PCE model not only reduces the number of PCE coefficients but
also reduces the number of model evaluations to achieve a good accuracy.

5.8.3 Projectile velocity

The behavior of the projectile velocity is different than the others. Several jumps have already
been noticed in Figure 4.6e. The mean relative error was computed with the increase of PCE
polynomial degree using N = 50 for both surrogate models: it is shown in Figure 5.15a. A
similar trend of the mean error is noticed for ẏp as it obtained for yp. The predicted mean
errors for both surrogate models are very close to each other with p = 3 and thereafter, it
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Figure 5.15: Evaluation of the mean relative error with the increase of polynomial degree p
for the predicted projectile velocity by the POD-PCE and the POD-SVB-PCE models with
N = 50

increases for the POD-PCE model due to the insufficient number of model evaluations. The
total number of PCE coefficients (ntot) and the maximum terms (nmax) in the PCE model are
also shown in Figure 5.15b and Figure 5.15c, respectively using different polynomial degrees.
It is seen that nmax is quite low for all the polynomial degrees by the POD-SVB-PCE model
and therefore the number of model evaluations was always greater than n. The total number
of coefficients is higher for ẏp as compared to yp because the number of POM is nb = 8 for
ẏp. For 8 POM, the POD-SVB-PCE has predicted the responses with a very low number of
coefficients without loosing the accuracy. Indeed, the number of terms in the POD-SVB-PCE
model is approximately 13.75% the number of terms in the POD-PCE model to keep almost
the same accuracy with p = 3. Furthermore, the required number of terms in the POD-SVB-
PCE model was only 2.32% with respect to the POD-PCE model to keep the mean error
below 10−3 with p = 10 and N = 50.

To check the influence of N , the mean error was computed increasing N with p = 10,
which is shown in Figure 5.16a. The number of POM was between 8 and 9 for the projectile
velocity. The predicted mean error is always greater than 1 for the POD-PCE model because
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Figure 5.16: Evaluation of the mean relative error with the increase of sample point N for the
predicted projectile velocity by the POD-PCE and the POD-SVB-PCE models with p = 10

the required number of model evaluations was very low. On the other hand, a good accuracy
is maintained by the POD-SVB-PCE model with all the N values because nmax was always
much less than N as shown in Figure 5.16c. It is also noticeable from Figure 5.16b that the
total number of coefficients was between 39 and 58 which is quite low with respect to the
POD-PCE model.

Finally, the predicted projectile velocity at 5 samples is plotted in Figure 5.17 for all
approaches. It is seen that the velocity is predicted quite well using both surrogate models
using p = 3. However, for the POD-SVB-PCE model, only ntot = 22 terms were required as
shown in Figure 5.15. For these 5 samples, ε̄ was found as 1.90× 10−3 and 2.23× 10−3 for
the POD-SVB-PCE and the POD-PCE models, respectively with p = 3. With p = 10, the
respective relative errors were 8.91× 10−4 and 13.76× 10−1. Therefore, the POD-SVB-PCE
model has predicted better results with p = 10 as compared to p = 3 for the 5 samples.
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Figure 5.17: Comparison of projectile velocity at 5 samples predicted by the POD-PCE and
the POD-SVB-PCE models with N = 50

5.9 Concluding remarks
In this chapter, a Bayesian inference based PCE has been formulated. The VB inference (Fox
and Roberts, 2012; Ghahramani and Beal, 2001) was used to computed the PCE coefficients.
Furthermore, the important terms in the PCE polynomial basis were selected using the ARD
approach (Wipf and Nagarajan, 2008; Jacobs et al., 2018). The usefulness of the VB inference
is that it considers the residual error of the truncated PCE model while computing the PCE
coefficients. The VB inference is fully connected with the ARD, therefore, the important
terms were selected using the results from the VB inference.

First of all, the applicability of the SVB-PCE model was tested on two mathematical
functions and the results were compared with the MCS and the LARS-PCE model (Blat-
man and Sudret, 2011). It was found that the SVB-PCE model required lower number of
terms with respect to the LARS-PCE model to achieve the same level of accuracy for both
mathematical functions. Furthermore, the SVB-PCE model has been coupled with the POD
approach to develop the POD-SVB-PCE model. The multiple impact oscillator investigated
in chapter 4 with the POD-PCE model has been investigated here by the POD-SVB-PCE
model and the results were compared with the POD-PCE model. The stochastic responses
were predicted quite well by the POD-SVB-PCE model with a very low number of PCE co-
efficients. For the contact force, it was possible to reduce the non-physical negative forces
to some extent, however, predicting a non-smooth function by a smooth function (PCE or
SVB-PCE) is always a challenging task. The main advantage of the SVB-PCE model is that
it was able to predict the stochastic response with a high degree polynomial and with a low
number of model evaluations as it selected few terms in the PCE model. On the contrary, the
POD-PCE model was unable to predict the stochastic responses properly with the increase
of polynomial degree as the number of coefficients was greater than the proposed number of
model evaluations. For that reason, a sparse PCE model is always useful when a high degree
polynomial basis is required and, at the same time, when the number of model evaluations
needs to be minimized.
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Chapter 6

Application to crash simulations

6.1 Introduction

The ARD based VB inference as introduced in chapter 5 was useful to select the number
of important coefficients for a PCE model. The POD-PCE model was used to reduce the
dimensionality of the impact oscillator model in the time domain. Furthermore, it was possible
to propagate the uncertain parameters through the impact oscillator using a high degree
polynomial and a reduced number of sample points by the the SVB-PCE model.

For a practical problem, the possible number of model evaluations is often limited. There-
fore, obtaining a good quality surrogate model with a low number of model evaluations is
very challenging. An appropriate surrogate model must be formulated according to the be-
havior of the response quantity, it is often called an adaptive surrogate model. An adaptive
PCE model was formulated by Blatman and Sudret (2011) for the static QoI to select the
number of model evaluations and the polynomial degree adaptively. This model was also
used by Ni et al. (2017) for a probabilistic power flow problem. A support vector regression
based adaptive PCE model was proposed by Cheng and Lu (2018a) to select the polynomial
degree for a static QoI properly. Although the available sparse PCE models can be utilized to
formulate an adaptive surrogate model for impacted dynamical system in time domain, the
main issue is that the surrogate model must be formulated at each time step: it is the main
computational issue.

An adaptive surrogate model is formulated in this chapter for impacted dynamical system
in time domain. More specifically, the POD-SVB-PCE model introduced in chapter 5 is for-
mulated as an adaptive surrogate model. Firstly, an adaptive SVB-PCE model is formulated
for a time-independent QoI and then, the adaptive POD-SVB-PCE model is formulated using
the adaptive SVB-PCE model and an error criterion. The adaptive surrogate model is then
applied to the UQ of a crash box under impact loading. Additionally, the sensitivity of the
uncertain parameters on the response quantity in the time domain is quantified using the
developed adaptive POD-SVB-PCE model.
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6.2 Adaptive SVB-PCE model

6.2.1 Sequential experimental design

It is often quite difficult to know beforehand the required number of model evaluations for
achieving a desired accuracy. Hence, it is important to increase the number of samples
in a sequential way such that an optimal number of model evaluations is performed for a
specific QoI. Adding extra samples with the existing samples should increase the accuracy of
a surrogate model. In this regards, Sobol sequence (Sobol, 1967, 1990) is one of the efficient
sampling schemes for generating the samples sequentially as described in section 2.2.2. The
convergence rate of the Sobol sequence is higher than the one with the classical Monte Carlo
method, which increases the accuracy with a given number of model evaluations. Hence,
Sobol sequence is used in this chapter for computing the model evaluations sequentially.

6.2.2 Adaptivity in the polynomial degree

The adaptivity in the polynomial degree is developed based on the leave one out (LOO) error.
The LOO error is computed in a similar way to the LOO error by Blatman and Sudret (2011).
In LOO error, the PCE model is evaluated using the samples Ξ \Ξi which is the set of all the
samples without the i-th sample, and the QoI is predicted at the i-th sample. Therefore, the
residual error for the i-th sample can be given by:

εres,i = Y (Ξi)− Ŷ −i (Ξi) (6.1)

where Ŷ −i (Ξi) is the predicted response at the i-th sample point by a PCE model constructed
without the i-th sample. This procedure is performed for each of the samples separately and
the LOO error is given by:

ErrLOO = 1
N

N∑
i=1

ε2
res,i (6.2)

As indicated by Blatman and Sudret (2011) for a linear regression problem, εres,i for the
i-th sample can be computed by developing a single PCE model as follows:

εres,i = Y (Ξi)− Ŷ (Ξi)
1− ri

(6.3)

and therefore, the LOO error can be computed as:

ErrLOO = 1
N

N∑
i=1

[
Y (Ξi)− Ŷ (Ξi)

1− ri

]2

(6.4)

where ri is the i-th diagonal term of the matrix Φ
(
ΦTΦ

)−1
ΦT and Φ is the PCE polynomial

basis matrix. The relative LOO error can be defined as:

εLOO = ErrLOO
var (Y ) (6.5)

where var (Y ) is the variance of the QoI at the N samples. Furthermore, εLOO is modified by
a multiplying constant as proposed by Chapelle et al. (2002):

ε∗LOO = εLOOΥ (p,N) (6.6)
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where Υ (p,N) is the multiplying constant, which is given by:

Υ (p,N) = N

N − p

1 +
trace

(
1
NΦTΦ

)−1

N

 (6.7)

Therefore, for a SVB-PCE model, the degree of the polynomial p is increased as long as
ε∗LOO is greater than a threshold value.

6.2.3 Formulation of adaptive SVB-PCE model

The adaptive SVB-PCE model is formulated using the procedures described in sections 6.2.1
and 6.2.2. Therefore, the number of sample points and the polynomial degree are increased
adaptively using a Sobol sequence and the LOO error. The procedure of sampling and for
adapting the polynomial degree is described below:

1. First, the minimum and the maximum polynomial degrees are specified as pmin and
pmax, respectively.

2. During the first iteration, the number of model evaluation and the polynomial degree are
fixed at Nk1 = Nini and pk2 = pmin, respectively. Nini is the initial number of samples,
k1 is the iteration number for the sample point adaptivity and k2 is the iteration number
for the degree adaptivity. Additionally, the maximum number of model evaluations is
often restricted according to the budget of the computational cost: it is also initialized
here as Nmax.

3. Then, the PCE basis matrix is constructed with the polynomial degree pk2 = pmin.

4. The sparse basis Φ∗k2
and the corresponding coefficients a∗k2

are obtained by the SVB
approach (refer to Algorithm 5.2).

5. The modified LOO error ε∗LOO,k2
is then computed using the sparse basis and the cor-

responding coefficients.

6. If the obtained ε∗LOO,k2
is above some threshold value ϑtol, then the polynomial degree

is increased by 1 and the steps 4 and 5 are then performed. This procedure continues
until ϑtol is achieved or, up to pmax.

7. However, the degree adaptivity procedure is terminated if ε∗LOO is increased in two
consecutive steps due to the over-fitting i.e. if ε∗LOO,k2

> ε∗LOO,k2−1 > ε∗LOO,k2−2. If the
same polynomial bases are selected in two consecutive steps, then the iteration is also
stopped and the sparse PCE model having the lowest modified LOO error is chosen
from this step.

8. At the end of degree adaptivity, the sparse bases, the highest polynomial degree and
the modified LOO error are recorded. If the modified LOO error has not reached the
threshold value, then the number of sample points is increased in the next step i.e.
Nk1 = Nk1−1 + Nincr. Nincr is the number of samples to be increased in each step.
The minimum polynomial degree is set as pmin = pk2 and pk2 is the highest polynomial
degree recorded during the degree adaptivity. In this way, the minimum polynomial
degree is updated.
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9. Now, steps 4 to 7 are carried out again. This procedure continues until the desired
accuracy ϑtol is achieved.

10. The number of model evaluations is increased up to Nmax and if the LOO error is still
higher than the threshold value then the sparse PCE model with the lowest LOO error
is chosen. The accuracy can be further increased by increasing Nmax or by increasing
the polynomial degree.

This proposed approach is called adaptive SVB-PCE model. An algorithm for the adaptive
SVB-PCE model is given in Algorithm 6.1.

Algorithm 6.1 Pseudo-code for the adaptive SVB-PCE model
1: procedure Adaptive SVB-PCE(Nini, Nincr, Nmax, pmin, pmax, ϑtol)
2: k1 = 1
3: k2 = 1
4: Nk1 = Nini

5: pk2 = pmin
6: while εLOO,k1 > ϑtol and Nk1 < Nmax do . Perform iteration until required accuracy

is achieved
7: Get the Sobol sequence samples Ξ ∈ RNk1×d

8: Get the QoI Y ∈ RNk1×1

9: while εLOO,k2 > ϑtol and pk2 ≤ pmax do
10: Obtain Φk2

11: Get a∗k2
,Φ∗k2

, ind∗k2 . Refer to Algorithm 5.2
12: Compute ε∗LOO,k2

. Refer to Equation 6.6
13: k2 = k2 + 1
14: pk2 = pk2−1 + 1
15: if εLOO,k2 > εLOO,k2−1 > εLOO,k2−2 then
16: k2 = k2 − 2
17: Terminate
18: else if indk2 = indk2−1 = indk2−2 then
19: Terminate
20: end if
21: end while
22: εLOO,k1 = εLOO,k2

23: a∗k1
= a∗k2

24: Φ∗k1
= Φ∗k2

25: ind∗k1 = ind∗k2
26: k1 = k1 + 1
27: Nk1 = Nk1−1 +Nincr

28: pmin = pk2

29: k2 = 1
30: pk2 = pmin
31: end while
32: return a∗k1

,Φ∗k1
, ind∗k1 , Nk1

33: end procedure
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6.3 Adaptive POD-SVB-PCE model

The adaptive SVB-PCE model as developed in section 6.2 is useful for propagating and
quantifying uncertainty for a statical QoI. However, for a dynamical system, the adaptive
SVB-PCE model must be formulated at each time-step. Therefore, an alternate way for the
dynamical systems is to use the POD approach along with the adaptive SVB-PCE model. It
was already shown in chapter 4, the UQ of an impact oscillator can be performed by a POD-
PCE model using a very low number of PCE model formulation. Further, it has been shown
in chapter 5 that the use of the SVB-PCE model can drastically reduce the number of terms
in the PCE basis. Consequently, using the adaptive SVB-PCE model along with the POD
approach would select the optimal number of terms for a PCE model with the optimal number
of model evaluations. However, it is evident from Equation 6.4 that the LOO error used for
the SVB-PCE model cannot be directly utilized for a time-dependent problem. Therefore, a
different kind of error criterion is used to formulate an adaptive POD-SVB-PCE model.

To formulate the adaptive POD-SVB-PCE model, the adaptive SVB-PCE model is used
for the prediction of the coefficient vectors of the POM. The mean error defined in Equa-
tion 3.11 is used as the LOO error for the formulation of the adaptive POD-SVB-PCE model.
The step by step procedure of formulating an adaptive POD-SVB-PCE model is described
below:

1. In a similar way to the adaptive SVB-PCE model, the minimum and the maximum
polynomial degrees are pmin and pmax. The initial number of model evaluations is defined
as Nκ = Nini; κ is the iteration number for the adaptive POD-SVB-PCE model. The
number of sample points to be added at each step (Nincr) is also specified.

2. In a similar way to the adaptive SVB-PCE model, the maximum number of model evalu-
ations Nmax is also initialized: Nmax should be specified according to the computational
budget.

3. Two threshold values for the LOO errors must be initialized as ϑtol and εtol for the SVB-
PCE model and for the POD-SVB-PCE model, respectively. εtol is used to terminate
the adaptive POD-SVB-PCE model for a time-dependent QoI.

4. For the κ-th step, the sample points are obtained with the Sobol sequence and the
corresponding model evaluations are also computed.

5. Then, POD is performed to decouple the time-dependent behavior and the randomness
which results in obtaining nb POM. The energy criterion given in Equation 4.7 is used
to keep the significant POM.

6. The coefficient vectors bi (i = 1, . . . , nb) are then obtained using Equation 4.10.

7. The important terms in the PCE basis are selected by using the degree adaptivity
part of Algorithm 6.1 for each of the coefficient vectors bi. At this step, the maximum
polynomial degree for each POM is recorded and it will be used in the next iteration as
the updated pmin. The LOO error for the POD-SVB-PCE model is then computed in
the following way:

• Firstly, the POD is performed without the j-th sample.
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• Then the coefficient vector corresponding to each POM is obtained using Equa-
tion 4.10. On obtaining the coefficient vectors, the PCE terms selected in step 7
are used to construct the PCE model. The PCE coefficients are computed here
using OLS approach.
• On obtaining the PCE coefficients, the response at the j-th sample is predicted.
The relative error at the j-th sample is computed as:

εLOO,j =
∑nt
i=1

[
Y (ti,Ξj)− Ŷ −j (ti,Ξj)

]2
∑nt
i=1

[
Y (ti,Ξj)− Ȳ (Ξj)

]2 (6.8)

where Ŷ −j (ti,Ξj) is the predicted response at the j-th sample with the surrogate
model constructed using all the samples without the j-th sample point. This error
is computed for all the Nκ sample points which lead to compute Nκ POD-SVB-
PCE models.
• The mean relative LOO error for the Nκ sample points is computed as:

ε̄LOO,κ = 1
Nκ

Nκ∑
i=1

εLOO,i (6.9)

8. If ε̄LOO,κ is greater than εtol then the number of model evaluations is increased as
Nκ = Nκ−1 + Nincr. Therefore, the response is evaluated for the extra Nincr samples
only.

9. After obtaining the response quantity at the extra points, step 5 to step 7 are performed
again and ε̄LOO is computed. The iteration continues until the mean LOO error has
reached the specified threshold value εtol or the maximum number of model evaluation
(Nmax) is reached.

An algorithm to obtain the adaptive POD-SVB-PCE is given in Algorithm 6.2.

6.4 Numerical formulation of a crash box
In this section, the numerical formulation of a crash box is discussed. Firstly, the finite
element (FE) formulation of a crash box is presented. However, the computational cost of a
full crash box is high. For that reason, a symmetrical quarter part of the full crash box is also
modeled. A similar kind of study has been conducted by several researchers (Langseth et al.,
1999; Zhang et al., 2007; Song et al., 2013; Zhou et al., 2017). To assess the influence of the
simplification, a deterministic analysis is carried out for the full crash box and the quarter
crash box model.

6.4.1 Finite element model of a crash box

As discussed in section 1.1, a full car model should be investigated to quantify the uncer-
tainty associated with the response quantities for a crash problem. However, a single model
evaluation of a car crash model requires almost 24 h (Moustapha et al., 2016) which limits to
model a full car crash numerically for UQ. Therefore, a crash box which is one of the main
parts during the dissipation of kinetic energy, is investigated here under the impact loading.
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Algorithm 6.2 Pseudo-code for the adaptive POD-SVB-PCE model
1: procedure Adaptive POD-SVB-PCE(Nini, Nincr, Nmax, pmin, pmax, ϑtol, εtol)
2: κ = 1
3: k2 = 1
4: Nκ = Nini

5: pk2 = pmin
6: while ε̄LOO,κ > εtol and Nκ ≤ Nmax do
7: Get the Sobol sequence samples Ξ ∈ RNκ×d
8: Get the time-dependent response matrix Y (Ξ, t) ∈ RNκ×nt
9: Get the POM the SVD of Y (Ξ, t) . Refer to Equation 4.3

10: Obtain nb POM using energy criterion . Refer to Equation 4.7
11: for i = 1 : nb do
12: Compute POD coefficient vector bi (Ξ) . Refer to Equation 4.10
13: while εLOO,k2 > ϑtol and pk2 ≤ pmax do . Perform SVB-PCE for i-th POD

coefficient
14: Obtain Φk2 . Obtain PCE basis matrix
15: Get a∗k2

,Φ∗k2
, ind∗k2 . Refer to Algorithm 5.2

16: Compute ε∗LOO,k2
. Refer to Equation 6.6

17: k2 = k2 + 1
18: pk2 = pk2−1 + 1
19: if ε∗LOO,k2

> ε∗LOO,k2−1 > ε∗LOO,k2−2 then
20: k2 = k2 − 2
21: Terminate
22: else if indk2 = indk2−1 = indk2−2 then
23: Terminate
24: end if
25: end while
26: aκ,i = a∗k2
27: indκ,i = ind∗k2
28: Φκ,i = Φ∗k2
29: pmin,i = pk2,i

30: k2 = 1
31: end for
32: for j = 1 : Nκ do . Loop for LOO error
33: Get Y −j . The response matrix without the j-th sample
34: Perform SVD of Y −j to get nb POM
35: for i = 1 : nb do
36: Obtain the POD coefficient vectors bi (Ξ \ Ξj)
37: Perform OLS to get the coefficient for Φκ,i (Ξ \ Ξj)
38: end for
39: Predict the response at the j-th sample
40: Compute mean relative LOO error ε̄LOO,κ . Refer to Equation 6.9
41: end for
42: end while
43: for i = 1 : nb do
44: return aκ,i,Φκ,i, indκ,i
45: end for
46: return POM, ε̄LOO,κ, Nκ

47: end procedure
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The crash boxes are thin walled structures with a predictable and stable collapse mode
(Lu and Yu, 2003). Different types of crash boxes have been investigated under impact
loading in the past decades (Alexander, 1960; Abramowicz, 1983; Wierzbicki and Abramowicz,
1983; Abramowicz and Jones, 1984; Dirgantara et al., 2013; Zhou et al., 2017, 2016). The
most conventional cross-sections are square, circular and triangular for designing a crash box.
Recently, several other types of crash boxes have also been investigated by the researchers
such as pentagonal (Song et al., 2013), hexagonal (Zhang and Zhang, 2012; Fan et al., 2013),
octagonal (Mamalis et al., 2003; Zhang and Zhang, 2012) and origami crash boxes (Zhou
et al., 2016, 2017; Yuan et al., 2019). To improve the efficiency in the energy dissipation,
composite material has also been used for crash box (Zarei et al., 2008; Shaik Dawood et al.,
2017).

A conventional rectangular shaped crash box with rounded corners was considered for
the present study and it is available in https://www.dynaexamples.com/. This crash box is
called as full crash box in the present study. The numerical modeling of the crash box was
performed with the LS-Dyna finite element program. Different FE model views of the crash
box are shown in Figure 6.1. All the dimensions are shown in the figure. The crash box is
fixed on the left side in Figure 6.1c (i.e. it is fixed at the bottom in the isometric view) and
a rigid mass (mI) strikes from the right side (in negative z direction) with some velocity (v).
At the beginning of the simulation, the impacting mass was close to the crash box, but not
in contact with it. The mass is known as the impactor for the present work. The contact was
modeled with the ‘automatic single surface’ contact option available in the LS-Dyna software
because the crash pattern is usually not predefined for a crash box and it can detect the
penetration of a shell element from both sides. The full crash box FE model has 1924 nodes
and 1876 four-node shell elements (ELEMENT_SHELL keyword was used in LS-Dyna).

The nominal thickness of the crash box is 5 mm. The crash box is made of steel with the
modulus of elasticity and the Poisson’s ratio of 200 GPa and 0.3, respectively. The crash box
was modeled with an elasto-plastic material behavior (MAT_PIECEWISE_LINEAR_PLASTICITY
keyword was used in LS-Dyna). The effective plastic stress-strain curve is shown in Figure 6.2.
It is to be noted that the effective plastic strain is plotted in Figure 6.2, which is given by:

γeff = γ − σ

E
(6.10)

where γ and γeff are the true strain and the effective strain, respectively. E is the elastic
modulus of steel and σ is the applied stress.

6.4.2 Finite element model of a quarter crash box

The quarter part of the crash box as shown in Figure 6.1, was modeled with LS-Dyna software.
The quarter crash box is shown in Figure 6.3. In a similar way to the full crash box, the
quarter crash box is fixed on the left hand side in Figure 6.3c and the impactor strikes it with
velocity v in the negative z direction. Additionally, two free sides have symmetric conditions.
The FE model was constructed with 469 four-node shell elements and a total 518 nodes were
there in the quarter crash box. The same material properties were used for this quarter
crash box as the previous one. As a result, the effective plastic stress-strain diagram shown
in Figure 6.2 was used to model the elasto-plastic behavior of the quarter crash box. The
thickness of the crash box was also the same i.e. 5 mm.

https://www.dynaexamples.com/
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(a) Isometric view
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(b) Plan view

Velocity
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(c) Front view

Figure 6.1: Geometrical views of FE model of the full crash box
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Figure 6.2: Plastic stress-strain diagram
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(a) Isometric view

58 mm

(b) Plan view

Velocity

272.48 mm

274 mm

(c) Front view

Figure 6.3: Geometrical views of FE model of the quarter crash box
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6.4.3 Deterministic analysis of crash boxes

A deterministic analysis of the above-mentioned crash boxes (full and quarter crash boxes)
is performed here to compare the response obtained for both crash boxes. The responses are
compared to check the adequacy of using the quarter crash box instead of the full crash box.
The deterministic analysis was performed using LS-Dyna FE explicit solver. The crash box
was crushed by an impactor with a mass of mI = 1100 kg for the full crash box. For the
quarter crash box, the impactor mass was divided by 4, i.e. is equal to 275 kg. The impactor
initial velocity was considered as v = 10 m s−1. The crash simulation was performed in the
time domain t ∈ [0 ms, 60 ms] at a time step of ∆t = 0.01 ms. As a result, the explicit contact
dynamic problem was solved for nt = 601 time steps.

Firstly, the failure shapes were compared for both crash boxes, and are shown in Figure 6.4
at different times. It is seen from Figure 6.4a that the first fold, the second fold and the third
fold during the failure occurred at 5 s, 15 s and 25 s, respectively. The symmetrical quarter
crash box also exhibits similar failure modes. Both crash boxes are fully crushed at around
t = 35 ms.

The impactor can be considered as a car and therefore the responses of the impactor is
investigated here. From the deterministic analysis, different time-dependent response quan-
tities were obtained for the impactor (displacement, velocity, contact force, kinetic energy,
internal energy), which are shown in Figure 6.5. The time-dependent displacement and ve-
locity of the impactor are shown in Figure 6.5a and Figure 6.5b, respectively. The relative
error for the corresponding responses were computed using Equation 3.9 and were found as
2.95× 10−5 and 1.41× 10−4, respectively. It is seen from the figures that for the impactor
displacement and velocity, the results of both crash boxes are following almost the same line.
As the impactor mass was rescaled for the symmetrical quarter crash box, it has predicted
almost the same response behavior with time. For the other response quantities (i.e. kinetic
energy, internal energy and contact force), the responses by the quarter crash box are almost
1/4-th of the full crash box. It is seen from Figure 6.5 that the scaled kinetic energy and
internal energy (with a factor 4) of the quarter crash box are almost identical to those of
the full crash box. The relative error for the kinetic energy and for the internal energy was
1.01× 10−5 and 7.77× 10−4, respectively. For the contact force, the scaled contact force for
the quarter crash box almost follows the same behavior as the contact force for the full crash
box and the relative error for the contact force was 2.22× 10−2.

From the above-presented results, it is clear that the results obtained from both crash
boxes are almost similar. Indeed the relative errors for all the responses are quite low. Fur-
thermore, the CPU time required for the full and the quarter crash boxes were 83 s and 51 s,
respectively. Therefore, using the quarter crash box would save approximately 40% compu-
tational cost without losing the accuracy. For that reason, UQ is performed only with the
quarter crash box in the next section.

6.5 Uncertainty quantification of quarter crash box

6.5.1 Problem definition

The quarter crash box is investigated here considering some uncertain parameters. UQ of
the quarter crash box was performed considering three different end conditions for the non
impacted side: (i) the end of the crash box is fixed as shown in Figure 6.3, (ii) the end of the
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(a) Full crash box

(b) Quarter crash box

Figure 6.4: Failure shapes at different times for both crash boxes under impact loading
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(c) Kinetic energy
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(d) Internal energy
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Figure 6.5: Comparison of the response quantities for both crash boxes for deterministic
analysis



122 CHAPTER 6. APPLICATION TO CRASH SIMULATIONS

Fixed

(a) Crash box 1 (CB1) (b) Crash box 2 (CB2) (c) Crash box 3 (CB3)

Figure 6.6: The symmetrical quarter crash box with different end conditions

crash box is free but a deterministic mass is attached at the end, (iii) the end is free and an
uncertain mass is attached at the end. All the three crash boxes are shown in Figure 6.6 and
are designated by crash box 1 (CB1), CB2 and CB3, respectively. The impactor mass and
the end mass are designated by mI and mE , respectively.

The crash boxes were analyzed considering three uncertain parameters namely the im-
pactor mass (mI), the thickness (H) of the crash boxes and the material property. The
uncertainty was considered in the material property by a multiplicative constant applied to
the stress component in the stress-strain curve i.e. the stress axis values in Figure 6.2 were
multiplied with a constant (cσ). For the CB3, an additional uncertain parameter was consid-
ered as the end mass. Therefore, the first two crash boxes were modeled using three uncertain
parameters and the last one was modeled with four uncertain parameters. All the uncertain
parameters were considered uniformly distributed and the distribution parameters are listed
in Table 6.1. The impactor velocity was considered constant as v = 10 m s−1 and the time
domain of the crash problem was t ∈ [0 ms, 60 ms] at a time-step of ∆t = 0.01 ms.

The failure shape for CB1 has already been shown in Figure 6.4b. The failure shape of
CB2 is shown in Figure 6.7. It is seen that the first fold happened at 5 ms and the second
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Table 6.1: Parameters of the uniformly distributed random variables for the crash boxes

Bounds for uncertain parameters
Variable name Random variable CB1 CB2 CB3 Unit
Impactor mass mI [225,275] [225,275] [225,275] kg
Crash box thickness H [5,6] [5,6] [5,6] mm
Stress multiplying factor cσ [0.8,1.2] [0.8,1.2] [0.8,1.2] −
End mass mE − − [225,275] kg

Figure 6.7: Failure shapes of CB2 at different time instances

fold started around 20 ms. After that, CB2 moves freely because the end is free. The same
behavior is observed for CB3.

Time-dependent UQ was performed considering the impactor displacement, impactor ve-
locity and the contact force as the QoI. For the safety of a car, the maximum contact force,
and the total energy dissipation can be regarded as one of the important QoI. Therefore, UQ
was also performed for the maximum contact force and the total energy dissipation.

6.5.2 Uncertainty quantification of crash boxes

UQ was performed by the adaptive POD-SVB-PCE model of the QoI (impactor displacement,
impactor velocity, contact force) for CB1, CB2 and CB3. Legendre polynomials were used for
the uncertain parameters. Two cases were investigated separately for each QoI considering
the domain of the polynomial degree as p ∈ {1, . . . , 5} and p ∈ {1, . . . , 10}. For the SVB-PCE
model, the threshold value for the LOO error was set to ϑtol = 1×10−3. On the contrary, the
adaptive POD-SVB-PCE model was constructed considering two different threshold values of
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Figure 6.8: Evolution of LOO error for the impactor displacement of crash boxes

εtol = 1× 10−2 and εtol = 1× 10−3.
The crash box was simulated with LS-Dyna to get the model evaluations and it was

performed by a Python program. A custom Python module enabled to extract the results
from LS-Dyna output files. As the cost of the FE formulation for a single model evaluation
is little high, it was not possible to get the MCS results for a large number of samples. For
the reference result, the MCS was performed at NMCS = 103 LHS points for all the crash
boxes. The required CPU times for CB1, CB2 and CB3 were 18.23 h, 13.38 h and 12.87 h,
respectively. For the adaptive POD-SVB-PCE model, Sobol sequence was used to increase
the number of model evaluation adaptively. The maximum number of model evaluations was
restricted to Nmax = 200.

Impactor displacement

Firstly, the adaptive POD-SVB-PCE model was constructed for the impactor displacement.
The initial number of model evaluation was fixed as Nini = 15 and the number of samples was
increased in step by Nincr = 5. The evolution of the LOO error for the impactor displacement
of CB1 and CB3 is shown in Figure 6.8. For CB2, the required accuracy of 1× 10−3 was
achieved in the first iteration with N = 15 only. It is observed from the figure that the desired
accuracy of 1× 10−3 was obtained using N = 35 and N = 20 samples for CB1 and CB3,
respectively. Furthermore, the same results were obtained whatever the maximum polynomial
degree. The main reason is that the highest polynomial degree was 5 even using pmax = 10.

The evolution of the POM number and the total number of PCE coefficients with the
sample number are shown in Figure 6.9 for CB1 and CB3. It is seen that the number of POM
is constant with the increase of the sample number and the total numbers of PCE coefficients
are quite small for all the sample points. Only ntot = 12 and ntot = 14 coefficients were
required to predict 3 POD coefficient vectors for CB1 and CB3, respectively. For CB2, the
impactor displacement was also obtained with 3 POM and the required number of coefficients
was ntot = 10 with a maximum PCE degree equal to 3.

Although the MCS result was not available for a large number of samples, the statistical
moments were estimated with NMCS = 103 sample points and then, the adaptive POD-SVB-
PCE model predicted statistical moments were compared with the MCS results, which are
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Figure 6.9: Evolution of the POM number (a)-(c) and the total number of PCE coefficients
(b)-(d) with the increase of the sample number for the impactor displacement of crash boxes
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Table 6.2: Predicted mean relative error ε̄ and number of sample points N for the impactor
displacement of the crash boxes with the obtained adaptive POD-SVB-PCE model

ε̄ (N)
εtol pmax CB1 CB2 CB3

1× 10−2 5 2.20× 10−3(20) 3.48× 10−4(15) 3.41× 10−4(20)
1× 10−3 5 1.26× 10−3(35) 3.48× 10−4(15) 3.41× 10−4(20)

shown in Figure 6.10. An almost similar variation of the statistical moments are observed for
CB2 and CB3, which may reveal that the uncertain end mass has probably no influence on
the results. For CB1, the most accurate result was predicted when the LOO error achieved
1× 10−3 and all the surrogate model predicted results are the same for CB2 and CB3.

The impactor displacement predicted by the adaptive POD-SVB-PCE model was also
compared with the FE computed results at 3 samples which are shown in Figure 6.11 for all
the crash boxes with a LOO error of 1× 10−3. The samples were selected randomly from
the 103 samples for all the crash boxes. It is seen that the displacements are predicted quite
well for all the crash boxes. Furthermore, the obtained adaptive POD-SVB-PCE models were
used to predict the responses at the 103 samples for all the crash boxes. The mean predicted
errors are listed in Table 6.2. For CB2 and CB3, the mean predicted errors are quite close
to each other, however CB2 took less samples than CB3. All the predicted errors are very
close to the LOO errors obtained for the corresponding adaptive POD-SVB-PCE models in
Figure 6.8. Therefore, the adaptive POD-SVB-PCE models are quite reliable to use for a
practical problem.

Impactor velocity

In a similar way to the impactor displacement, the adaptive POD-SVB-PCE model was also
obtained for the impactor velocity. The variation of the LOO error with the number of
sample points is shown in Figure 6.12. Unlike the impactor displacement, it is observed that
the desired accuracy was obtained by the adaptive POD-SVB-PCE model using a higher
number of samples: N = 50, N = 35 and N = 40 samples were required for CB1, CB2 and
CB3, respectively with pmax = 10. The effect of using a high polynomial degree is noticeable
in all three crash boxes. For CB1 and CB2, 10 model evaluations were saved with pmax = 10
while it saved 15 samples for CB3 with respect to pmax = 5. This is the main advantage of
an adaptive surrogate model.

The evolution of the number of POM and the required total number of PCE coefficients
are shown in Figure 6.13. The number of POM is noticeably higher for the impactor ve-
locity as compared to the impactor displacement. The required number of POM for CB1 is
comparatively higher as compared to CB2 and CB3. As a result, the total number of PCE
coefficients is also high for CB1. For all the crash boxes, the number of total PCE coefficients
is higher with pmax = 10 than with pmax = 5 which depicts higher degree terms were required
with pmax = 10 to propagate the uncertain parameters. As a result, it was possible to achieve
a good accuracy using a low number of samples with pmax = 10. Effectively, the required
maximum degrees on achieving the desired accuracy of 1× 10−3 were 5 (CB1, CB2, CB3)
with pmax = 5, and 7 (CB1), 10 (CB2) and 6 (CB3) with pmax = 10.

The time-dependent moments were computed for NMCS = 103 samples, and are shown
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Figure 6.10: Comparison of statistical moments for the impactor displacement of crash boxes
by different methods
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Figure 6.11: Comparison of the impactor displacement predicted by the adaptive POD-SVB-
PCE model with the MCS results at 3 samples (the samples were selected randomly)
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Figure 6.13: Evolution of the POM number (a)-(c)-(e) and the total number of PCE coeffi-
cients (b)-(d)-(f) with the increase of the sample number for the impactor velocity of crash
boxes
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Table 6.3: Predicted mean relative error ε̄ and number of sample points N for the impactor
velocity of the crash boxes with the obtained adaptive POD-SVB-PCE model

ε̄ (N)
εtol pmax CB1 CB2 CB3

1× 10−2 5 2.85× 10−3(15) 9.87× 10−3(20) 5.99× 10−3(20)
1× 10−2 10 2.33× 10−3(15) 8.57× 10−3(20) 5.99× 10−3(20)
1× 10−3 5 1.81× 10−3(60) 1.19× 10−3(45) 2.50× 10−3(55)
1× 10−3 10 1.17× 10−3(50) 1.13× 10−3(35) 2.35× 10−3(40)

in Figure 6.14. Both statistical moments were predicted quite well by the adaptive POD-
SVB-PCE model for all the crash boxes. Impactor velocity for CB2 and CB3 behaves almost
similarly. The most accurate standard deviation was predicted with pmax = 10 on achieving
an accuracy of 1× 10−3 and at the same time it required less samples than it required with
pmax = 5: for CB1 and CB2, 10 more samples were required with pmax = 5 and for CB3, 15
more samples were required to achieve an accuracy of 1× 10−3.

The impactor velocity predicted by the adaptive POD-SVB-PCE model was compared at
3 samples with the LS-Dyna computed results and it is shown in Figure 6.15. The samples
were chosen randomly. It is observed that the responses at the 3 samples were predicted quite
well with pmax = 5 and pmax = 10. The predicted responses with pmax = 10 are more accurate
than with pmax = 5 for CB2 and CB3. Furthermore, the obtained adaptive POD-SVB-PCE
models were validated using 103 samples (MCS results for these samples were obtained). The
predicted relative mean errors with 103 samples were computed by Equation 3.11 and are
listed in Table 6.3. The desired accuracy of 1× 10−2 was achieved using the same number of
samples with pmax = 5 and pmax = 10. However, some computational cost was reduced for all
the crash boxes with pmax = 10, with respect to pmax = 5 when the requested LOO error was
1× 10−3; the predicted errors are also lower with pmax = 10 using lower number of samples.

Contact force

The adaptive POD-SVB-PCE model was obtained with the same conditions as the previous
responses for the contact force also. The evolution of the LOO error for all the three crash
boxes is shown in Figure 6.16. The accuracy is progressively increasing with the increase
of the sample number for all the crash boxes. For both maximum polynomial degrees, the
minimum desired accuracy (1× 10−2) was not achieved even using the maximum number of
model evaluations for the CB1 and CB2. However, the minimum desired accuracy of 1× 10−2

was achieved for the CB3 using N = 55 and pmax = 10. For that reason, the number of model
evaluations was increased further to achieve an accuracy of 1× 10−3, however it did not reach
1× 10−3. For the CB2, the LOO error achieved with pmax = 10 is very close to 1× 10−2.
From the results of the impact oscillator, it is clear that obtaining a high accuracy for the
contact force is more difficult than for the other response quantities and a similar observation
is noticed here.

Furthermore, the evolution of the POM number and the evolution of the total number
of PCE coefficients with the increase of the sample number are shown in Figure 6.17 for all
the crash boxes. It is observed that the POM number was increased with the increase of
the sample number and a large number of POM is required to decouple the time-dependent
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Figure 6.14: Comparison of statistical moments for the impactor velocity of crash boxes by
different methods
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Figure 6.15: Comparison of the impactor velocity predicted by the adaptive POD-SVB-PCE
model with the MCS results at 3 samples (the samples were selected randomly)
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Figure 6.16: Evolution of LOO error for the contact force of crash boxes
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behavior and the randomness. For the CB1, nb = 79 POM was required using N = 200
samples to obtain 99.99% of the energy. On the contrary, to obtain the desired energy, a
lower number of POM was required for the CB2 and CB3: nb = 43 and nb = 44 POM
were required, respectively. The total number of PCE coefficients was also increased with the
samples for both maximum degrees in case of all crash boxes. The total number of coefficients
is quite small considering the large number of retained POM for CB1 and for CB2. However,
ntot is quite large for CB3: it took 3505 PCE coefficients to approximate 44 POM. One of the
reasons is that d = 4 random variables were there in CB3 whereas it was 3 for the other crash
boxes. For pmax = 10 and N = 200, the adaptive POD-SVB-PCE model detected ntot = 483
and ntot = 480 important PCE coefficients for CB1 and CB2, respectively.

The statistical moments were computed using the NMCS = 103 samples and the statistical
moments predicted by the adaptive POD-SVB-PCE model were compared with the MCS
results: they are shown in Figure 6.18. It is seen that the mean is predicted quite well using
both maximum PCE degrees of 5 and 10 for all the crash boxes. However, the standard
deviation predicted with pmax = 10 is slightly better than that predicted with pmax = 5. It is
noticeable that the surrogate model results are quite close to the MCS results even without
achieving the desired accuracy using a limited number of model evaluations (N = 200) for the
CB1 and CB2. For the CB3, the minimum desired accuracy of 1× 10−2 was achieved with
N = 55 samples and pmax = 10. Therefore, the standard deviation with N = 55 was also
predicted quite well for CB3. A significantly different variation of the statistical moments for
all the crash boxes is noticed from the figure. For the CB1, the mean contact force lasts for a
longer time than for CB2 and CB3 because the end was fixed for CB1. Further, the statistical
moments for CB2 and CB3 almost behave in a similar fashion.

To closely follow the prediction behavior, the surrogate model predicted results were
compared with the MCS results at 3 samples (chosen randomly) out of the 103 samples for
each of the three crash boxes. The comparison is shown in Figure 6.19. The results were
predicted with the adaptive POD-SVB-PCE model constructed with N = 200 samples for
CB1 and CB2 while N = 55 samples were used for the prediction of the contact force of CB3
with pmax = 10 and threshold value 1× 10−2. It is seen from the figures that the prediction
accuracies are quite good with both polynomial degrees for all the crash boxes. However,
some non-physical negative forces were predicted in a similar way to the impact oscillator
and these non-physical forces were minimized with pmax = 10. Furthermore, the adaptive
POD-SVB-PCE model predicted results were validated with the MCS results at 103 samples
and the mean relative error was computed for the 103 samples by Equation 3.11: the mean
relative error is given in Table 6.4. The highest prediction accuracy was obtained in case of
CB2 with pmax = 10. It is also noticeable that the prediction accuracies are very close to the
obtained LOO errors in Figure 6.16. It has been observed from this study that predicting the
contact force with the adaptive POD-SVB-PCE model is very challenging. Although some
discrepancies were noticed by the surrogate model results, the results are quite good using
only N = 200 model evaluations.

Maximum contact force

UQ was performed for the maximum contact force. As the maximum contact force is time-
independent, UQ was performed by the adaptive SVB-PCE model (Algorithm 6.1). The
domain of the PCE polynomial degree for the maximum contact force was set as p ∈ {1, 15}.
The initial number of model evaluations was Nini = 10. The number of samples is increased
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Figure 6.17: Evolution of the POM number (a)-(c)-(e) and the total number of PCE co-
efficients (b)-(d)-(f) with the increase of the sample number for the contact force of crash
boxes
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Figure 6.18: Comparison of statistical moments of the contact force for all crash boxes by
different methods
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(b) pmax = 10 for CB1
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(d) pmax = 10 for CB2
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(f) pmax = 10 for CB3

Figure 6.19: Comparison of the contact force predicted by the adaptive POD-SVB-PCE model
with the MCS results at 3 samples (the samples were chosen randomly)
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Table 6.4: Predicted mean relative error ε̄ and number of sample points N for the contact
force of the crash boxes with the obtained adaptive POD-SVB-PCE model

ε̄ (N)
εtol pmax CB1 CB2 CB3

1× 10−2 5 6.06× 10−2(200) 1.88× 10−2(200) 5.05× 10−2(200)
1× 10−2 10 5.60× 10−2(200) 1.71× 10−2(200) 8.03× 10−2(55)
1× 10−3 10 - - 2.34× 10−2(200)

Table 6.5: Predicted percentage error (PE) for the maximum contact force of the crash boxes
by the obtained adaptive SVB-PCE model with pmax = 15

PE(N)
εtol CB1 CB2 CB3

1× 10−3 5.06%(200) 0.90%(20) 0.87%(20)

by step of Nincr = 5 and the maximum number of model evaluations was fixed as Nmax = 200.
The adaptive SVB-PCE model was constructed only for one threshold value ϑtol = 1× 10−3

for all the crash boxes. The variation of the modified LOO error ε∗LOO with the increase of
sample number is shown in Figure 6.20 along with the variation of the PCE coefficient number.
It is observed that the desired accuracy was not achieved even with Nmax for CB1 while the
desired accuracy was achieved for CB2 and CB3 using much less samples (N = 20). The
number of PCE coefficients increased with the increase of the sample number: the number of
important terms for CB1 is quite high as compared to the others. However, the number of
terms in CB1 is quite small as compared to the total terms in the full PCE model (n = 816
for p = 15). On the contrary, CB2 and CB3 required only p = 3 and p = 4 to achieve the
desired accuracy.

The PDF was computed by the adaptive SVB-PCE model with 103 samples and it is
compared with the MCS results in Figure 6.21 for all the crash boxes. The reason of the
high number of model evaluations for CB1 is quite clear from the PDF. The right side tail of
the PDF for CB1 is quite long and obtaining a good result at this position is quite difficult
with a low number of model evaluations. The PDF for CB2 and CB3 are almost the same
and it is one of the reasons to achieve the desired accuracy using the same number of model
evaluations. For all the crash boxes, the PDFs predicted by the adaptive SVB-PCE model are
well in line with the reference PDFs from MCS. The percentage error (PE) was also computed
using Equation 5.42 for the 103 samples, it is listed in Table 6.5 for all the crash boxes. As
the desired accuracy was not achieved for CB1, the predicted error is higher for CB1 than for
the other two cases. On the other hand, the accuracy at the predicted samples is quite good
for CB2 and CB3.

Total dissipated energy

The total energy dissipated during the crash was computed by integrating the force-displacement
curve and UQ was performed for the dissipated energy using the adaptive SVB-PCE model.
All the parameters for the adaptive SVB-PCE model were the same as the ones for the max-
imum contact force study. The initial number of model evaluations was Nini = 10. The
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Figure 6.20: Evolution of the modified LOO error and the number of selected PCE coefficients
with the increase of the sample number for the maximum contact force of all the crash boxes
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Figure 6.21: PDF of the maximum contact force for all the crash boxes by different approaches



142 CHAPTER 6. APPLICATION TO CRASH SIMULATIONS

Table 6.6: Predicted percentage error (PE) for the dissipated energy of the crash boxes by
the obtained adaptive SVB-PCE model with pmax = 15

PE(N)
εtol CB1 CB2 CB3

1× 10−3 0.34%(15) 0.48%(60) 0.80%(40)

evolution of the LOO error and the selected PCE coefficients is shown in Figure 6.22 for all
the crash boxes. Unlike the maximum contact force, a low number of model evaluations was
required for CB1 here whereas much higher model evaluations was required for CB2 and CB3
to achieve the desired accuracy of 1× 10−3. For CB1, the required number of terms was only
n = 2 with maximum degree p = 1 while the required number of terms for CB2 and CB3 was
n = 34 and n = 22 with maximum degree p = 13 and p = 10, respectively.

The PDF was also determined on obtaining the desired accuracy with the adaptive SVB-
PCE model and it is shown in Figure 6.23 for all the crash boxes. It is seen that the distri-
bution pattern is almost uniform for CB1 and it is narrow for CB2 and CB3. The adaptive
SVB-PCE model has predicted quite good result for all the crash boxes. Further, The PE for
the predicted response at 103 samples was computed and are listed in Table 6.6. All the PE
are less than 1% which can be regarded as quite a good results.

6.6 Global sensitivity analysis of the crash box model

6.6.1 Adaptive POD-SVB-PCE model for time-dependent sensitivity anal-
ysis

Sensitivity analysis (SA) measures the effect of the uncertain parameters on a QoI for a system
(Saltelli et al., 2008). SA is globally divided in two distinct categories: local SA (Borgonovo
and Plischke, 2016) and global SA (GSA) (Sobol, 2001). The former measures the local
effect of an uncertain parameter on the QoI through the derivative of the QoI with respect
to the uncertain parameter (Helton, 1993). On the other hand, GSA measures the effect of
the whole input space on the QoI considering uncertainties (Borgonovo and Plischke, 2016;
Sobol, 2001). Various approaches are available in the literature for GSA such as regression
based approach (Helton, 1993), variance based approach (Iman and Hora, 1990; Sobol, 1993)
and moment independent approach (Borgonovo, 2007; Chakraborty and Chowdhury, 2017).
Out of all, the variance based approach has attained more popularity than the others.

The variance based approach for GSA was proposed by Iman and Hora (1990); Sobol
(1993) for the first time. The main idea of the variance based approach came from Efron
and Stein (1981), which is the computation of the contribution of variance in the output
quantity for a single or a combined effect of inputs. According to Sobol’ (Sobol, 1993), the
variance based approach is performed by decomposing the output variance into the single and
the combine effect of the inputs. Often this method is known as the ANalysis Of VAriance
(ANOVA) (Saltelli et al., 2010). The approach proposed by Sobol’ (Sobol, 1993, 2001) is
widely acknowledged to compute the sensitivity indices (SI), and derived from the decompo-
sition of the variance. To perform GSA for an uncertain system, multidimensional integrals
over the input space can be computed by MCS (Sobol, 1990) technique. The computation
procedure of Sobol’ sensitivity indices is described in Appendix D. Sobol (2001) proposed
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Figure 6.22: Evolution of the modified LOO error and the number of selected PCE coefficients
with the increase of sample number for the dissipated energy of all the crash boxes
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Figure 6.23: PDF of the dissipated energy for all the crash boxes by different approaches
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two different types of sensitivity indices: partial sensitivity indices (PSI) (also known as the
main effect SI or the first order SI) and total sensitivity indices (TSI). The former only takes
care of the variance contribution due to a particular term in the Sobol’ decomposition (See
Appendix D) whereas the later considers the total sensitivity of a random variable including
the interaction terms involving this variable.

In the present research work, the sensitivity analysis is performed considering the uncertain
parameters independent.

The main difficulty with the MCS approach is that it requires a large number of model
evaluations and it is not possible to obtain such large number of model evaluations for the
crash problem. To address this issue, several surrogate models have been developed in the
literature (Sudret, 2008; Blatman and Sudret, 2010a; Shao et al., 2017; Ge et al., 2015; Park
and Sandberg, 1991; Wu et al., 2019). The PSI and the TSI are computed here by post-
processing the PCE coefficients as explained by Sudret (2008). Therefore, after obtaining the
adaptive SVB-PCE model using Algorithm 6.1, var (y) can be computed from Equation 2.15.
For computing the PSI, the variance of the conditional expectation in Equation D.7 can be
obtained as:

varξi (Eξ∼i (y|ξi)) =
n∑
j=1

pξi,j 6=0&pξ∼i,j=0

a∗2j (6.11)

where pξi,j 6= 0&pξ∼i,j = 0 indicates that the j-th multivariate polynomial corresponding to
the j-th coefficient has a degree equal to zero for all the univariate polynomials except the one
related to the i-th variable, which one must not have a degree equal to zero. Therefore, the
PSI can be computed by directly substituting Equation 6.11 and the square of Equation 2.15
in Equation D.7. For the TSI, the conditional expectation in Equation D.8 is given by post-
processing of the PCE coefficients:

Eξ∼i (varξi (y|ξ∼i)) =
n∑
j=1

pξi,j 6=0

a∗2j (6.12)

The above-mentioned expressions can easily be extended to for a time-dependent response,
by defining time-dependent indices. The PSI and the TSI for time-dependent QoI are given
by:

Si (t) = varξi (E (y (t) |ξi))
var (y (t)) (6.13)

ST i (t) = E (varξi (y (t) |ξ∼i))
var (y (t)) (6.14)

The time-dependent variance var (y (t)) can be computed easily from Equation 4.14 after
obtaining the adaptive POD-SVB-PCE model. In a similar way to the time-dependent mean
and variance, the time-dependent sensitivity indices can also be computed using the PCE
coefficients and the POM. To compute the time-dependent PSI, the variance of the conditional
expectation in Equation 6.13 is given by:

varξi (E (y (t) |ξi)) =
nb∑
i1=1

nb∑
i2=1

cov [E (bi1 |ξi) ,E (bi2 |ξi)]Vi1 (t)Vi2 (t) (6.15)
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where V (t) is the POM obtained from the POD approach. cov [E (bi1 |ξi) ,E (bi2 |ξi)] is the
conditional covariance given by:

cov [E (bi1 |ξi) ,E (bi2 |ξi)] =
n∑
j=1

pi,j 6=0&p∼i,j=0

a∗j,i1a
∗
j,i2 (6.16)

For the time-dependent TSI, the expectation of the variance is given by:

E (varξi (y (t) |ξ∼i)) =
nb∑
i1=1

nb∑
i2=1


n∑
j=1

pξi,j
6=0

a∗j,i1a
∗
j,i2

Vi1 (t)Vi2 (t) (6.17)

Substituting Equation 6.17 in Equation 6.14, the time-dependent TSI can be computed with-
out any additional computational cost.

6.6.2 Global sensitivity analysis of the quarter crash boxes

Global sensitivity analysis for contact force

As discussed in the previous sub-section, a time-dependent GSA was performed using the
obtained adaptive POD-SVB-PCE result without any additional computational cost. The
GSA was performed using the adaptive POD-SVB-PCE model with N = 200 and pmax = 10
even if the minimum accuracy of 1× 10−2 was not obtained for CB1 and CB2. Therefore,
the GSA results obtained from the adaptive POD-SVB-PCE model for CB1 and CB2 may
not be accurate. PSI for the three crash boxes are shown in Figure 6.24 for all the uncertain
parameters. It is noticeable from the figure that PSI after some times are not plotted for all
the crash boxes because the variance is zero beyond the contact region. Along with the PSI,
a sensitivity index ratio (SIR) for all the uncertain parameters is also plotted in Figure 6.24,
which is defined as:

Sensitivity index ratio (SIR) = PSI
TSI (6.18)

SIR measures the influence of the interaction terms and it varies between 0 and 1 i.e. 0 ≤
SIR ≤ 1. The influence of the interaction terms is low when SIR is close to 1. However, when
SIR is close to zero, the TSI value must be checked to decide whether the influence of the
interactions is high or not: indeed, SIR may be close to zero when PSI is (almost) equal to
zero even with a low TSI value.

As the MCS results were unavailable, it was not possible to compare these results with
the actual results. It is observed from Figure 6.24 that the contact force is less sensitive
to the impactor mass than the other random variables for CB1. The PSI for H and cσ up
to about t = 15 ms behaves almost similarly. Afterwards, the crash box thickness is more
influential than the other parameters for most of the times. The SIR for H and cσ almost
behaves similarly up to t = 23 ms: a similar influence of the interaction terms is noticed for
both parameters. In this time period, the SIR is quite high for most of the times, therefore
a low influence of the interaction terms is noticed. The SIR for cσ is quite low after this
time period, therefore an influence of the interaction terms is noticed. However, an opposite
behavior is noticed for H and cσ around t = 40 ms. SIR for the impactor mass is quite low up
to t = 8 ms. However, in that particular case, this is due to the very low (almost zero) value
of PSI: TSI is about 0.05 and then the influence of mI through the interaction terms is low.
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For CB2 also, the contact force is less sensitive to the impactor mass than H and cσ. The
variation of the PSI for H and cσ is almost similar with time. It is seen from Figure 6.24d
that the influence of the interaction terms behaves similarly with time for H and cσ. For
both of these parameters, SIR is quite high (close to 1) during the initial time. Therefore, the
influence of the interaction terms is quite low during the initial times. SIR for the impactor
mass is between 0 and 0.4 from 11 ms to the end of the crash: it indicates a quite high
influence of the interaction terms during this time period. The influence of mI is very low for
CB2 and CB3.

The time-dependent PSI and SIR for CB3 are shown in Figure 6.24e and Figure 6.24f.
It is noticed that the material property and the crash box thickness are the most influential
for the contact force of CB3. PSI for the impactor mass and for the end mass is very low
during the crash: both masses have no influence on the contact force. SIR for both masses
is quite low but it is due to the fact that the PSI is very low: in fact, TSI is quite low as
well (between 0 and 0.3). Therefore, the interaction terms don’t have a strong influence on
the contact force for mI and mE . Similar to CB2, SIR for H and cσ is quite high during the
initial period of the crash: it indicates a very low influence of the interaction terms for both
of these parameters. SIR for H and cσ gets lower as the crash progresses which means the
influence of the interaction terms is increasing with time for both of these parameters.

Global sensitivity analysis for impactor velocity

In a similar way to the contact force, time-dependent GSA was also performed considering
impactor velocity as the QoI. The results were obtained with the adaptive POD-SVB-PCE
model after reaching the lowest threshold error i.e. εtol = 1× 10−3 and with pmax = 10.
Therefore, GSA was performed for CB1, CB2 and CB3 with the adaptive POD-SVB-PCE
model obtained with N = 50, N = 35 and N = 40, respectively.

The sensitivity indices on the impactor velocity are shown in Figure 6.25. The PSI of H
and cσ is higher as compared to the impactor mass PSI for all the crash boxes during the
crash. It is noticeable that the PSI for mI , H and cσ are very close to zero at the initial time,
and the initial SIR for these three uncertain parameters are very low. It suggests that the
interaction between these parameters is very high at the very beginning of the impact: this
is confirmed by a high value of TSI (at least greater than 0.5). Afterwards, SIR for all the
parameters of CB1 increases with time during the crash which indicates a low influence of the
interaction terms. Further, SIR of H starts decreasing after 30 ms for CB1. The lowest SIR
is noticed for the impactor mass of CB1 after the crash and therefore, as TSI is about 0.25, a
moderate influence of the interaction terms was found, which is confirmed by a TSI. The PSI
of mI is quite low during the crash for CB2 and CB3 as compared to the other parameters.
SIR for mI is close to 1 for CB2 and CB3. As a result, no such interaction effect is noticed.
However, the PSI of mE is the lowest one for CB3 during the crash. PSI of the impactor
mass starts increasing in case of CB2 and CB3 after the crash because the crash boxes were
moving freely only due to the impacting mass during this period and therefore, the velocity
was only governed by the impactor mass. Indeed it is seen from Figure 6.7 that the crash
box starts moving faster after 20 ms, and it happened because the impactor mass was stuck
to the crash box after forming two folds. For CB3, an effect is noticed during that period for
mE due to the same reason. The time-dependent sensitivity of the material property (cσ) is
slightly high as compared to the crash box thickness during the crash for CB2 and CB3. On
the other hand, the SIR for H and cσ starts decreasing after the crash, therefore the effect
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Figure 6.24: Time-dependent GSA results for all the uncertain parameters obtained by the
adaptive POD-SVB-PCE model considering contact force as the QoI
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of the interaction terms is noticeable after forming the folds, but this effect is low as the TSI
values are below 0.1.

Global sensitivity analysis for impacting mass kinetic energy

The sensitivity analysis was also performed considering the time-dependent kinetic energy of
the impactor mass. The adaptive POD-SVB-PCE model was constructed using the maximum
polynomial degree as pmax = 10. The initial number of model evaluations was set toNini = 15.
The threshold value for the LOO error was set as εtol = 1× 10−3. The evolution of the LOO
error with the sample number is shown in Figure 6.26. The adaptive POD-SVB-PCE model
was obtained using N = 20, N = 20 and N = 25 with nb = 5, nb = 3 and nb = 3 POM
for CB1, CB2 and CB3, respectively. The required corresponding maximum polynomial
degrees were 8, 4 and 3, respectively. Furthermore, the adaptive POD-SVB-PCE models
were validated with 103 MCS results. The relative LOO error for CB1, CB2 and CB3 was
found as 5.01× 10−4, 1.03× 10−3 and 1.15× 10−3, respectively.

GSA results for all the crash boxes were computed by post-processing the adaptive POD-
SVB-PCE models and are shown in Figure 6.27. At the beginning of the crash, the impactor
mass is the most influential for the kinetic energy of CB1 because the kinetic energy mainly
developed due to the mass at rest. As the crash progresses, the velocity starts decreasing and
the folds were started in CB1. Therefore, the PSI for H and cσ starts increasing with time.
PSI for all the three parameters is almost same at 16.5 ms and the SIR for all the parameters
is almost 1 at this time. Therefore, no effect of the interaction terms is noticed. SIR for all
the variables is almost 1 up to around 25 ms and afterwards, the influence of the interaction
terms is noticeable for all the parameters.

For CB2 and CB3, PSI for mI , H and cσ behaves almost similarly. As one end is free for
both these crash boxes, the kinetic energy was mostly governed by the impactor mass for all
the time. The PSI for mI is very close to 1 for most of the times, which also means that no
influence of the interaction terms is noticeable. For CB2, SIR for H and cσ almost behaves
similarly with time. SIR for these two parameters starts decreasing after 20 ms when the folds
were already occurred (Figure 6.7) and the crash box was moved under the impacting mass
only. For the same reason, SIR for H of CB3 is also quite low after 20 ms. SIR for the end
mass is quite low during the initial time of the crash; however, as TSI is about 0.1, a small
influence of the interaction terms is noticeable for mE .

Global sensitivity analysis for maximum contact force

GSA was performed for two time-independent QoI which are the maximum of the contact
force and the total dissipated energy.

For the maximum contact force, the adaptive SVB-PCE model obtained with the maxi-
mum accuracy was considered for GSA. Therefore, it was already shown in Figure 6.20 that
the LOO error for CB1 did not achieved the lowest desirable accuracy of 1× 10−3 using max-
imum number of model evaluations. Therefore, the SVB-PCE model with Nmax = 200 was
considered for GSA in case of CB1. As a result, the sensitivity indices for CB1 may be less
reliable than CB2 and CB3. For CB2 and CB3, the accuracy of 1× 10−3 was achieved with
N = 20, therefore, the corresponding adaptive SVB-PCE models were considered for GSA.
The PSI and the TSI for all the uncertain parameters (mI , H, cσ,mE) are given in Table 6.7.
It is observed that the TSI for all the uncertain parameters of CB1 is quite high as compared
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Figure 6.25: Time-dependent GSA results for all the uncertain parameters obtained by the
adaptive POD-SVB-PCE model considering impactor velocity as the QoI
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Figure 6.26: Evolution of LOO error for the kinetic energy
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Figure 6.27: Time-dependent GSA results for all the uncertain parameters obtained by the
adaptive POD-SVB-PCE model considering kinetic energy as the QoI
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Table 6.7: Time-independent GSA results for the maximum of the contact force obtained by
the adaptive SVB-PCE model

PSI TSI
Uncertain parameter CB1 CB2 CB3 CB1 CB2 CB3

mI 0.06 0.00 0.00 0.45 0.00 0.00
H 0.04 0.33 0.33 0.59 0.33 0.33
cσ 0.18 0.67 0.67 0.82 0.67 0.67
mE - - 0.00 - - 0.00

to the corresponding PSI: it indicates a strong interaction between the parameters for CB1.
Out of all the uncertain parameters, stress multiplying factor (cσ) is the most influential for
CB1. For the two other crash boxes, a different behavior is noticed, as the interactions have
no influence on the QoI. For the time-dependent contact force, mI had a noticeable effect
during the crash through interactions (see Figure 6.24): on the contrary, for CB2 and CB3,
mI has no influence on the maximum contact force. For all the crash boxes, the material
property and the crash box thickness are the main influential parameters for the maximum
contact force. The main reason is that the maximum contact force mostly occurred during
the initial strike and therefore the force generated depends mostly on the material property
and the crash box geometry.

Global sensitivity analysis for total dissipated energy

Finally, GSA was also performed considering the total dissipated energy as the time-independent
QoI. The adaptive SVB-PCE model was obtained using N = 15, N = 60 and N = 40 model
evaluations for CB1, CB2 and CB3, respectively. The GSA results for all the uncertain pa-
rameters (mI , H, cσ,mE) are listed in Table 6.8. It is seen that for all the crash boxes, the
only influential parameter is the impactor mass (mI), which may indicate that the total dis-
sipated energy is mainly sensitive to the energy that can be dissipated, but is not sensitive to
the way the energy is dissipated. On the contrary, the TSI for the material property (cσ) and
for the crash box thickness (H) is very low, which means that both parameters could be set
to their nominal values. Furthermore, for CB3, the PSI and the TSI of the end mass (mE)
were found as 0.13 and 0.15, respectively: these values are also very low and therefore, the
influence of the end mass on the total dissipated energy is very low. The PSI and the TSI
of the impactor mass are very close for all the crash boxes. Therefore, no significant effect
of the interaction terms is noticed. A similar behavior is also noticed for the other uncertain
parameters. Therefore, almost no sensitivity of the interaction terms is observed for the total
dissipated energy.

6.7 Concluding remarks

To adaptively select the number of model evaluations and the polynomial degree, two adaptive
surrogate models have been developed in this chapter, both for time-independent and time-
dependent QoI. A variance based LOO error was utilized to formulate the adaptive SVB-
PCE model for a time-independent QoI. For time-dependent QoI, the addition of the proper
orthogonal decomposition gave the adaptative POD-SVB-PCE model.
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Table 6.8: Time-independent GSA results for the total dissipated energy obtained by the
adaptive SVB-PCE model

PSI TSI
Uncertain parameter CB1 CB2 CB3 CB1 CB2 CB3

mI 1.00 0.99 0.85 1.00 0.99 0.86
H 0.00 0.00 0.00 0.00 0.01 0.02
cσ 0.00 0.00 0.00 0.00 0.01 0.01
mE - - 0.13 - - 0.15

UQ of several time-dependent QoI (impactor displacement, impactor velocity and contact
force) was performed for a quarter crash box by the adaptive POD-SVB-PCE model. Due
to the high computational cost, it was not possible to compare the results of the surrogate
model with the MCS results at a large number of samples. Nevertheless, MCS was performed
with 103 samples. Furthermore, UQ of some time-independent response quantities (maximum
contact force, total dissipated energy) was performed with the adaptive SVB-PCE model.

The POD-SVB-PCE and the SVB-PCE models were also used to perform GSA on the
crash box model for time-dependent and time-independent QoI, respectively.

Several important outcomes were observed during the study in this chapter, they are listed
below in three main categories namely general remarks on the surrogate models, remarks on
UQ of crash box and remarks on the GSA of the crash box.

1. The following remarks are drawn on the surrogate models developed in this chapter:

• The adaptive surrogate models were useful to select the number of model evalua-
tions and the number of PCE terms adaptively such that a good surrogate model
can be obtained without any over-fitting.
• The threshold LOO error of 1× 10−3 was found to be sufficient to achieve a good
surrogate model. All the obtained surrogate models in this chapter were validated
with 103 samples and the predicted accuracies were very close to the obtained LOO
error in most of the cases when the surrogate models achieved a LOO error less
than 1× 10−3.

2. The following remarks are drawn from the UQ study of the crash box.

• For the time-dependent contact force of the crash boxes, it was very difficult to
achieve the lowest desired accuracy of 1× 10−3 using maximum number of model
evaluations (Nmax = 200). However, an acceptable accuracy was achieved for the
contact force which was demonstrated by predicting the contact force at three
randomly chosen samples.
• For the other responses (impactor displacement and impactor velocity), it was
possible to achieve the accuracy of 1× 10−3 using much lower model evaluations
than the maximum samples. Therefore, the prediction accuracies were very good
for these responses.
• For the maximum contact force, it was not possible to achieve the LOO error of

1× 10−3 by the adaptive SVB-PCE model for CB1. On the other hand, the same
accuracy was achieved for CB2 and CB3 using very low samples.
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• For the dissipated energy, the required number of model evaluations was quite less
than the maximum number of samples (Nmax) to achieve an accuracy of 1× 10−3.

3. The conclusions drawn from the GSA are listed below.

• A time-dependent GSA was performed only by post-processing the PCE coefficients
and the POM obtained from an adaptive POD-SVB-PCE model.
• The time-dependent sensitivity indices of the material property and the crash box
thickness were found higher for the contact force as compared to the impactor mass
during the crash. The same behavior was also noticed for the impactor velocity.
On the contrary, the impactor mass was influential for the time-dependent kinetic
energy of CB2 and CB3.
• GSA for the maximum contact force and the total dissipated energy was performed.
For CB2 and CB3, the impactor mass did not have any effect on the maximum
contact force. All the other parameters have significant effect on the maximum
contact force. A different scenario was observed for the total dissipated energy:
the impactor mass was the only significant parameter for all the crash boxes.
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Chapter 7

Conclusions and future perspectives

The time-dependent uncertainty quantification (UQ) of a crash problem has been investi-
gated in the present research work. A crash problem is very much related to a dynamical
system. For that reason, it is important to investigate a suitable approach for UQ of dynam-
ical systems. UQ of a time-dependent dynamical response is often quite a challenging task.
The most conventional way for UQ of such problems is the MCS approach. However, the
large computational cost of crash simulations prohibits to apply the MCS approach for crash
problems. To address this problem, surrogate modeling approaches have been proposed in
the literature which makes a trade-off between the accuracy and the efficiency. Therefore,
proposing a suitable surrogate model for a crash problem was the main objective of this thesis.
The main conclusions drawn from the present study are discussed in this chapter.

7.1 Conclusions of the research

For achieving the first objective of the research, several available surrogate modeling ap-
proaches have been reviewed and it was found that most of the surrogate modeling approaches
can describe some specific classes of problems but cannot be used for a crash problem. The
most versatile surrogate modeling approach found from the review was the sparse PCE-
NARX model where the time-dependent behavior and the randomness were decoupled using
the NARX model and the PCE model, respectively. Therefore, it was possible to propa-
gate efficiently the uncertain parameters for the nonlinear dynamical systems by the sparse
PCE-NARX model.

Inspired by the sparse PCE-NARX model, a similar kind of surrogate model was proposed
to increase its efficiency with respect to the number of model evaluations, which is called sparse
KNARX model. The sparse KNARX model was used for UQ of several nonlinear dynamical
systems. It was found that UQ of nonlinear dynamical systems (Duffing oscillator, Bouc-Wen
oscillator and a 2-DOF dynamical system with cubic nonlinearity) can be performed by the
sparse KNARX model using much a less number of model evaluations as compared to the
sparse PCE-NARX model without losing accuracy. However, it was not possible to identify
the response of the impact oscillator using the available NARX models and it is the main
drawback of the sparse KNARX model.

Therefore, a different approach was investigated, based on the combined use of the POD
and the PCE: the objective was also to uncouple the time and the randomness, as did the
sparse PCE-NARX model or the sparse KNARX model. UQ of the time-dependent response
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can also be performed by the PCE model. However, the main issue with the PCE model is
that the PCE coefficients must be computed at each time-step. On the contrary, the uncertain
response quantity was projected on very low number of POD modes (POM) as compared to
the number of time-steps. UQ was performed for an impact oscillator using the POD-PCE
model with two different conditions: single impact and multiple impacts between a structure
and a projectile. It was possible to quantify the time-dependent uncertainty for the responses
of the projectile by the POD-PCE model which fulfill the first part of the first and second
objectives. For the projectile displacement and velocity, the POD-PCE model required a
very low number of POM. The contact force required the highest number of POM among
all the responses. The accuracy of the contact force was also a little lower than the other
responses. Furthermore, negative values of the contact force were predicted at some moments
by the POD-PCE model. It was possible to reduce these non-physical forces to some extent
by increasing the number of sample points. However, it was not possible to fully mitigate the
non-physical forces because it is much difficult to predict accurately a non-smooth response
(e.g. contact force) by a smooth function (PCE): that is why the same problem occurs with
the PCE model. Accordingly, this problem is not related to the use of the POD.

For the POD-PCE model, sometimes the required polynomial degree for the PCE model
may be high. As a result, the number of terms in the PCE model would also be high.
Therefore, a sparse variational Bayesian inference (SVB) based PCE model was proposed.
The PCE coefficients were computed using the VB inference and the necessary PCE terms
were selected using the automatic relevance determination (ARD) approach. The applicability
of the SVB-PCE model was checked using some examples and it was found that it is a very
useful alternative way to propagate the uncertain parameters. Furthermore, the SVB-PCE
model was coupled with the POD approach for UQ of the impact oscillator. It was found
that the required number of terms in a PCE model was quite low as compared to the full
PCE model. At the same time, it was possible to reduce the non-physical negative contact
forces using high degree polynomials and a low number of model evaluations.

An adaptive framework for the SVB-PCE and the POD-SVB-PCE has been proposed,
which was the ultimate goal of the first objective of the thesis. The main motivation behind
formulating these adaptive surrogate models was that the polynomial degree and the number
of model evaluations should be selected adaptively for a specific response quantity. Two
different kinds of leave-one-out (LOO) errors were utilized to measure the accuracies of the
surrogate models. Finally, an elaso-plastic crash box FE model under an impact loading
was investigated considering several uncertain parameters with different end conditions and
it was the final objective of the study. The adaptive surrogate models have been obtained
for different responses of the crash boxes and further, the adaptive surrogate models were
validated with 103 model evaluations. It was found that the adaptive POD-SVB-PCE model
predicted very good results when it reached a LOO error of less than 1× 10−3 for the impactor
displacement and for the impactor velocity. However, it was not possible to achieve a LOO
error of 1× 10−3 for the contact force using a limited number of model evaluations. As a result,
the adaptive POD-SVB-PCE model obtained for the contact force was less accurate than the
other responses. UQ of the time-independent responses was performed by the adaptive SVB-
PCE model and a LOO error of 1× 10−3 was sufficient to achieve a good result at the validated
samples. Furthermore, a global sensitivity analysis was performed by post-processing the
results of the adaptive surrogate models. It should be noted that the sensitivity analysis
results have not been compared with the MCS results due to the high computational cost.
The sensitivity analysis results for the contact force may be less accurate than the others
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because a LOO error of 1× 10−3 was not achieved for the surrogate models. The influence of
the material property and the crash box thickness was found to be high for the contact force
and for the impactor velocity whereas the impactor mass was found as the most influential
parameter for the kinetic energy. For the maximum contact force also, the material property
and the crash box thickness are the most influential parameters whereas the impactor mass
was the most influential parameter for the total absorbed energy.

The main achievement of this thesis is the proposed surrogate model (adaptive POD-
SVB-PCE model) for the UQ of time-dependent response. The proposed approach can also
be utilized for a sensitivity analysis of the uncertain parameters without any additional com-
putational cost.

7.2 Limitations of the research
Although the approaches developed in this thesis have given good results for the UQ of impact
problems, there are some limitations to apply the proposed approach for UQ.

The developed POD-PCE model can be used for UQ of any time-dependent stochastic
response. However, it has been noticed from the results of chapter 4 that some non-physical
negative contact forces were always predicted by the POD-PCE model or the PCE model.
It has been shown that increasing the number of model evaluations may improve the results
but some non-physical negative forces have still been predicted by the POD-PCE model.
Although the non-physical results were minimized to some extent with the sparse PCE (SVB-
PCE) model, it was not possible to mitigate totally the issue. The main reason is that the
developed adaptive POD-SVB-PCE model remains a smooth function and predicting a non-
smooth function (e.g. a contact force) using the developed approach is very difficult. However,
assessing the statistical moments (mean and standard deviation) by the adaptive POD-SVB-
PCE model gave more accurate results than the prediction of the individual time-dependent
response. This is the main limitation of the adaptive POD-SVB-PCE model for the non-
smooth dynamical systems investigated in this thesis.

7.3 Future scope of research
In the present research work, several parts of the drawbacks as pointed out in chapter 2
have been addressed. However, still several things related the current research should be
investigated in the future. The future research may include the following:

• As pointed out in the limitations, the present research cannot address fully the non-
smooth stochastic behavior of the contact force. Therefore, a suitable surrogate model
can be investigated, which can account the non-smooth behavior of the contact force
and mitigate the issue with the present research work.

• An adaptive surrogate model has been proposed in this thesis. However, the conven-
tional sample points generation strategy has been used in the current research work.
The new sample points can also be generated based on the information from the re-
sponses at the previous samples which is called adaptive experimental design technique
(Busby, 2009; Picheny et al., 2010; Zhou et al., 2019a). Therefore, an adaptive sampling
scheme can be investigated, which would increase the accuracy of the surrogate model
more efficiently.



160 CHAPTER 7. CONCLUSIONS AND FUTURE PERSPECTIVES

• The rectangular crash box has been investigated in the present thesis. However, some
recent research works have shown that the energy absorption is much better for the
tailored crash boxes (Lu et al., 2018b) or for the origami shaped crash boxes (Yuan
et al., 2019). Therefore, UQ of the other different kinds of crash boxes should also be
performed.

• It is evident from the previous researches that the stochastic modeling of full car crash
is very difficult. For that reason, only the crash box is investigated in the present thesis.
However, with a high performance computing facility, stochastic modeling of a car crash
can be investigated at least considering some parts of a car: this investigation would give
much better understanding about the stochastic behavior of the responses for several
crash conditions (e.g. oblique impact).



Appendix A

Investigation of a dynamical system
by TDgPCE

The accuracy of the TDgPCE (Gerritsma et al., 2010) has already been proved for time-
dependent ODE having some uncertain parameters (refer section 2.5.1). The TDgPCE model
was utilized for UQ of a single degree of freedom (SDOF) dynamical system and the results
are presented here.

A.1 Problem definition
In this section, the response characteristics of a SDOF linear dynamical system is studied.
The system considered for the present study is shown in Figure A.1. The governing differential
equation of the system is:

mÿ (t) + cẏ (t) + ky (t) = F (t)
y(0) = 0 ẏ(0) = 0 (A.1)

The uncertain parameter is the stiffness, and it is given by:

k = k(1 + δkξ) (A.2)

In Equation A.2, k is the deterministic stiffness of the dynamical system. The problem will be
solved for three different values of k (150 N m−1, 1500 N m−1, 15 000 N m−1). The uncertainty

m

k

c
F(t)

y(t)

Figure A.1: SDOF dynamical system
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Table A.1: Different parameters used for the SDOF dynamical system

Parameter Value Unit
m 1 kg
c 1 N m−1 s−1

δk 5 %
F0 10 N
ω 10 rad s−1

in the stiffness was incorporated through the parameter ξ. The problem has been solved
by Jacquelin et al. (2015c) using PCE for the steady-state response characteristics in the
frequency domain. However, it has already been shown by Mai and Sudret (2017) that PCE
cannot predict well the statistical response characteristics in time domain. For this reason,
TDgPCE will be utilized to assess the time dependent response characteristics under the
uncertain parameter. Note that, in Equation A.2, δk = 0 denotes deterministic system. ξ,
the uncertain parameter of the system, is supposed to be uniformly distributed in [−1, 1].
The system is excited by an external force F (t) which is given by:

F (t) = F0 cos (ωt) (A.3)

where F0 is the constant amplitude of the force and ω is the excitation frequency. All the
parameters used for this problem are listed in Table A.1.

A.2 Case 1: k̄ = 150 N m−1

The uncertain SDOF dynamical system as given in Equation A.1 was solved by the TDgPCE.
This problem was also solved using a PCE model to check the performance of TDgPCE over
PCE. Here, k = 150 N m−1 and the deterministic natural frequency of the system ωn =
12.25 rad s−1. In this case, ωn is quite close to the excitation frequency ω. The deterministic
damping ratio of the system is 4.08%. The differential equation has been solved using the
explicit fourth order Runge-Kutta method (Runge, 1895; Kutta, 1901) with a time step of
∆t = 0.001 s up to time T = 10 s to get the solution. As this is an intrusive approach, the
time-integration is performed with the PCE based differential equation.

The QoI for this problem was the displacement of the system. Legendre polynomials were
used for the uniformly distributed random variable ξ with polynomial degree p = 3. For
the TDgPCE model, the stopping parameter θ = 6 was considered (Gerritsma et al., 2010).
Furthermore, MCS was also performed on 5× 104 sample points to check the accuracy of the
surrogate model.

The time-dependent mean and variance of the displacement are plotted in Figure A.2. It
is seen clearly from Figure A.2 that the mean and the variance are predicted very well by
PCE and TDgPCE with low degree polynomials compared to the MCS, which is the reference
method.

A more precise comment can be made by investigating the PDF of the response at some
certain instances of time. For that reason, the PDFs of the response quantity are plotted in
Figure A.3 at 2.5 s, 5 s and 7.8 s. It is seen from the Figure A.3 that the PDFs are in line
with the MCS predicted results in the early time, however it starts deviating from the MCS
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Figure A.2: Statistical response characteristics of the linear SDOF system for k = 150 N m−1

predicted results in the later time for TDgPCE, which depicts the inability of the method in
capturing the PDF. It is also noticeable that the PDF of the displacement is bimodal in the
later time which is almost unimodal in the early time.

A.3 Case 2: k̄ = 1500 N m−1

In this section, the deterministic stiffness k = 1500 N m−1 is considered and ξ is also uniformly
distributed in [−1, 1]. Here, the deterministic natural frequency (ωn = 38.73 rad s−1) is not
so close to the excitation frequency (ω = 10 rad s−1) and the deterministic damping ratio is
1.29%. This problem was also solved by PCE and TDgPCE with degree of the polynomial
p = 3 to get the statistical response characteristics. The mean and the variance of the system
are plotted in Figure A.4 by all the three approaches. It seems that the mean predicted by
PCE and TDgPCE are in line with the MCS results, however, a small discrepancy is noticed
towards the later time.

In order to investigate the results more clearly, the PDFs are plotted at the similar time
instances as the previous case in Figure A.5. It is seen that the PDF is not predicted quite
well at 5 s and the worst PDF is noticed at 7.8 s, which represents the incapability of capturing
the dynamic behavior of the response in the later time.

A.4 Case 3: k̄ = 15 000 N m−1

The statistical response characteristics of the linear SDOF dynamical system has also been
studied for k = 15 000 N m−1. For this case, the deterministic natural frequency (ωn =
122.47 rad s−1) is much higher than the excitation frequency (ω). Statistical response pa-
rameters are presented in Figure A.6. Note that TDgPCE yields the results upto 9.27 s and
beyond this, TDgPCE did not converge. The incapability is more prominent from the PDF
plots (Figure A.7) of the response characteristic at the similar time instances like the previous
two cases. It is seen from Figure A.7 that the PDFs started deviating from the early time
instances and are not capable to capture the stochastic dynamic response behavior by the
TDgPCE model.
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Figure A.3: PDF of displacement at different time instances for k = 150 N m−1
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Figure A.4: Statistical response characteristics of the linear SDOF system for k = 1500 N m−1
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Figure A.5: PDF of displacement at different time instances for k = 1500 N m−1
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Figure A.6: Statistical response characteristics of the linear SDOF system for k =
15 000 N m−1
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Figure A.7: PDF of displacement at different time instances for k = 15 000 N m−1
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A.5 Discussion on failure of TDgPCE
At first glance, the TDgPCE model seemed to be very effective as the polynomial basis
function is updated with respect to time to get an optimal PCE basis, i.e. a PCE basis that
corresponds to the statistical distribution of the response. However, it has been observed from
the above study that the time-dependent stochastic response characteristics has not always
been predicted quite well by the TDgPCE model. Although the basis function is updated, the
nonlinear PCE coefficients may be too sensitive to the criterion of updating the basis function
for the time dependent response quantity. Hence, it was not possible to track the time varying
PDF properly by using the specified stopping criterion. Consequently, the predicted response
quantity has already become erroneous when it satisfied the specified stopping criterion.
Afterwards, the erroneous results have been predicted even with the updated polynomial basis
function because the polynomial basis function was constructed with the erroneous predicted
response quantity. Therefore, to capture the dynamics of the system by TDgPCE properly,
the required time-step might be small enough and the stopping parameter θ might be higher
than what was considered in the current study. Under these circumstances, the polynomial
basis functions might be updated at each time step (with a smaller time step) such that the
PDF of the system can be tracked properly. However, one concern about this strategy is that
the computational cost would be much higher if the polynomial basis function is constructed
frequently during the time-integration procedure. Hence, the high computational cost limits
the TDgPCE procedure to be applied in a much complex dynamical system having nonlinear
behavior and multiple uncertain input parameters.
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Appendix B

Distribution for the prior and
likelihood function

The distribution of the generalized Bayesian inference functions in section 5.2.1 are discussed
here. The likelihood function is formulated in the following way:

p (Y |Φ, a, ς) =
N∏
i=1

p (Yi|Φi, a, ς) (B.1)

=
N∏
i=1
N
(
Yi|Φia, ς

−1
)

(B.2)

=
(
ς

2π

)N
2

exp
(
− ς2

N∑
i=1

(Yi − Φia)2
)

(B.3)

where Yi are independent and identically distributed. In Equation B.2, N
(
Yi|Φia, ς

−1) de-
notes the PDF of the normal distribution of Yi with mean Φia and variance ς−1. Φi represents
the i-th row of the multivariate polynomial matrix. Considering Y as the random parameter,
the likelihood function shown in Equation B.3 belongs to the exponential family. As the
likelihood function is normally distributed, a conjugate normal-gamma distribution (Griffin
and Brown, 2010) is chosen for the prior which is given by (Jacobs et al., 2018):

p (a, ς|α) = p (a|ς, α) p (ς) (B.4)

= N
(
a|0, (ςΛ)−1

)
Gam (ς|A0, B0) (B.5)

= (2π)−
n
2 |Λ|

1
2
BA0

0
Γ (A0) ς

n
2 +A0−1 exp

(
− ς2

(
aTΛa+ 2B0

))
(B.6)

In Equation B.5, Gam (•) stands for the PDF of the gamma distribution and A0, B0 are
the parameters of the Gamma distribution. In a similar way to the likelihood function, the
normal distribution in the prior has been further parametrized by Λ, which is a diagonal
matrix such that α =

{
α1, α2, . . . , αNp

}T = diag (Λ) (see Equation B.5). The determinant of
Λ is given by:

|Λ| =
Np∏
i=1

αi (B.7)

169



170APPENDIX B. DISTRIBUTION FOR THE PRIOR AND LIKELIHOOD FUNCTION

To keep the continuity in the formulation and conjugacy in the prior, the hyper-prior is
given by the independent gamma distribution:

p (α) =
n∏
j=1

DC0
0

Γ (C0)α
C0−1
j exp (−D0αj) (B.8)

where C0 and D0 are the parameters of the gamma distribution for α.



Appendix C

Computation of variational lower
bound

The convergence of the variational distribution q (Θ) is checked by the variational lower bound
(VLB) in section 5.3. The VLB has already been formulated by the factorized distribution
in Equation 5.18. Expanding both the terms of the equation, the VLB is given by:

L [q (Θ)] = EΘ [ln p (Y,Θ)]− EΘ [ln q (Θ)] (C.1)
= Ea,ς [ln p (y|Φ, a, ς)] + Ea,ς,α [ln p (a, ς|α)] + Eα [ln p (α)]
− Ea,ς [ln q (a, ς)]− Eα [ln q (α)] (C.2)

All the terms of Equation C.2 can be found by taking the expectations over the previous
derivations. Therefore, taking the expectation of Equation B.3 (Bishop, 2006), the first term
is given by:

Ea,ς [ln p (Y |Φ, a, ς)] =N

2 (g (Ak)− lnBk − ln 2π)

− 1
2

N∑
i=1

(
Ak
Bk

(Yi − Φia)2 + ΦiVkΦT
i

)
(C.3)

where g (•) represents the Digamma function. The second term of Equation C.2 (Bishop,
2006) is computed taking expectation on Equation B.6:

Ea,ς,α [ln p (a, ς|α)] =n

2 (g (Ak)− lnBk + g (Ck)− ln 2π)−B0
Ak
Bk

− 1
2

n∑
j=1

(
lnDkj + Ck

Dkj

(
Ak
Bk

a2
kj + Vkjj

))
− ln Γ (A0) +A0 lnB0 + (A0 − 1) (g (Ak)− lnBk) (C.4)

Similarly, the later terms of the VLB are computed by taking expectations on Equation B.8,
5.21 and 5.30 and are given by (Bishop, 2006):

Eα [ln p (α)] =− n (ln Γ (C0) + C0 lnD0)

+
n∑
j=1

(
(C0 − 1)

(
g (Ck)− lnDkj

)
−D0

Ck
Dkj

)
(C.5)
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Ea,ς [ln qk (a, ς)] =n

2 (g (Ak)− lnBk − ln 2π − 1)− 1
2 ln |Vk| − ln Γ (Ak)

+Ak lnBk + (Ak − 1) (g (Ak)− lnBk)−Ak (C.6)

Eα [ln qk (α)] =
n∑
j=1

(
(Ck − 1) g (Ck) + lnDkj

)
− n (ln Γ (Ck) + Ck) (C.7)

The final expression for the VLB is given by substituting Equation C.3 to C.7 in Equa-
tion C.2:

L [q (Θ)] =− N

2 ln 2π + 1
2 ln |Vk| −B0

Ak
Bk
− 1

2

N∑
i=1

(
Ak
Bk

(Yi − Φiak)2 + ΦiVkΦT
i

)
+ ln Γ (Ak)−Ak lnBk +Ak − ln Γ (A0) +A0 lnB0

−
n∑
j=1

(
Ck lnDkj

)
+ n

(1
2 − ln Γ (C0) + C0 lnD0 + ln Γ (Ck)

)
(C.8)

At each iteration in the optimization procedure, the VLB is computed numerically using
Equation C.8.



Appendix D

Sobol’ sensitivity indices

Global sensitivity analysis in section 6.6.1 has been performed using Sobol’ sensitivity index.
According to Sobol (1993, 2001), the response can be decomposed into the main effect and the
interaction effect of the input variables (considering all the random variables independent)
as:

y = g (ξ) =g0 +
d∑
i=1

gi (ξi) +
∑

1≤i≤j≤d
gi,j (ξi, ξj) + · · ·

+
∑

1≤i1≤···≤is≤d
gi1,...,is (ξi1 , . . . , ξis) + · · ·+ g1,...,d (ξ1, . . . , ξd) (D.1)

where g0 is the constant of the expansion which is also the mean of y. One of the important
properties of the decomposition is that the summand of the decomposition must satisfy:∫

Ωξk
gi1,...,is (ξi1 , . . . , ξis) fξk (ξk) dξk = 0

1 ≤ i1 ≤ · · · ≤ is ≤ d; k ∈ {i1, . . . , is}
(D.2)

where Ωξk is the support of random variable ξk. Along with this, the orthogonality condition
must be satisfied by all the terms, except the constant one. It is given by:∫

Ω
gi1,...,is (ξi1 , . . . , ξis) gj1,...,jt (ξj1 , . . . , ξju) dξ = 0

∀ {i1, . . . , is} 6= {j1, . . . , ju}
(D.3)

Each term in Equation D.1 can be found by:

g0 =E (Y )
gi (ξi) =Eξ∼i (Y |ξi)− E (Y )

gi,j (ξi, ξj) =Eξ∼i,j (Y |ξi, ξj)− E (Y )
...

(D.4)

where Eξ∼i is the expectation with respect to all the variables except ξi, and similarly, Eξ∼i,j
is the expectation with respect to all the variables except ξi and ξj . Due to the orthogo-
nal property between the model terms in Equation D.1, the corresponding variance can be
represented as:

var (y) =
d∑
i=1

vari +
∑

1≤i≤j≤d
vari,j + · · ·+ var1,...,d (D.5)
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where var (y) is the total variance of the response quantity y. vari is the partial variance
of the response due to the i-th variable and so on. Therefore, after dividing both sides of
Equation D.5 by the total variance, the sensitivity indices are given by:

d∑
i=1

Si +
∑

1≤i≤j≤d
Si,j + · · ·+ S1,...,d = 1 (D.6)

where Si is the partial sensitivity index (PSI) for the i-th variable and S1,...,d is the combined
PSI for the interaction of the corresponding variables. Often the variance contribution of a
single variable is computed (Si) which is also known as the first order sensitivity index or the
main effect sensitivity index. More explicitly, Si can be written as (Saltelli et al., 2010):

Si = varξi (Eξ∼i (y|ξi))
var (y) ∈ [0, 1] (D.7)

where varξi (Eξ∼i (y|ξi)) measures the partial contribution of the variance on the output due
to variable ξi. On the other hand, the total sensitivity index (TSI) measures the whole effect
of a variable on the output quantity (Homma and Saltelli, 1996). TSI considers the PSI along
with the interaction terms for a particular variable. The TSI for the i-th variable is given by:

ST i = Eξ∼i (varξi (y|ξ∼i))
var (y) = 1− varξ∼i (Eξi (y|ξ∼i))

var (y) (D.8)

where varξ∼i (Eξi (y|ξ∼i)) is the variance contribution of all the terms other than ξi. PSI and
TSI are investigated in the present work. For the MCS computation, the procedure proposed
by Saltelli et al. (2010) can be utilized. Several other approaches can be found in the literature
(Sobol, 1993; Homma and Saltelli, 1996; Jansen, 1999; Sobol, 2007).



Appendix E

Long summary in French

E.1 Introduction

Les accidents de voiture sont l’une des questions majeures concernant la sécurité routière. En
2018, plus de 25 000 décès ont été signalés (Commission, 2019) dans l’Union européenne à la
suite d’accidents de la route. Dans le cas d’un accident, l’une des façons d’atténuer le nombre
de morts est de concevoir correctement la structure du véhicule. C’est pourquoi la conception
sûre des composants de la voiture est une problématique très importante.

Lors d’un accident, la principale préoccupation est la sécurité des occupants. La sécurité
d’un occupant d’une voiture dépend de plusieurs paramètres tels que les paramètres de concep-
tion de la structure de la voiture, la configuration des ceintures de sécurité lors d’un accident,
le nombre d’occupants et la direction du choc. Lors d’un accident, une partie de l’énergie
cinétique initiale est dissipée par des dispositifs de protection du véhicule. Les passagers sont
blessés lorsqu’ils subissent des décélérations trop importantes. Le pare-chocs installé à l’avant
d’une voiture est le premier à être touché par un accident frontal. Les protections les plus
touchées après le pare-chocs sont les crash boxes (longerons dissipateurs d’énergie). L’énergie
cinétique se dissipe à travers ces crash boxes lors d’un accident frontal. C’est pourquoi la
conception des longerons est l’une des tâches importantes pour concevoir une voiture sûre.

L’analyse d’une crash box en tenant compte de tous les paramètres de conception possibles
est un critère important pour la conception d’une voiture sûre. Parmi les paramètres de
conception des crash boxes, on trouve les propriétés des matériaux, la forme, l’épaisseur des
tôles, la vitesse de la voiture, la masse totale de la voiture (y compris celle des occupants). En
général, une analyse dynamique de l’impact est effectuée en tenant compte de ces paramètres
de manière déterministe (Abramowicz, 1983; Dirgantara et al., 2013). On constate souvent
une certaine variabilité dans les paramètres de conception mentionnés ci-dessus en raison du
processus de fabrication, de l’épaisseur non uniforme des plaques et du nombre d’occupants.
Par conséquent, l’analyse déterministe peut produire des résultats non robustes qui peuvent
finalement conduire à la défaillance de la crash box lors d’un accident frontal. C’est pourquoi
une analyse appropriée de la crash box doit être effectuée en tenant compte de la variabilité
des paramètres de conception.

Le phénomène dynamique produit par un impact est complexe, non linéaire et dépend du
temps. Par conséquent, pour obtenir la variabilité réelle de la grandeur étudiée, la variabilité
des paramètres de conception doit être propagée à travers le système dynamique et le com-
portement des variables d’intérêt en fonction du temps doit être étudié. Les paramètres de
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conception sont des paramètres incertains et la propagation de ces paramètres à travers un
système dynamique impacté est le principal défi de cette thèse. De plus, tous les paramètres
de conception peuvent ne pas contribuer de manière égale à la variable d’intérêt, ce qui peut
être mesuré par la sensibilité d’une variable d’intérêt vis à vis des paramètres de conception
(Saltelli et al., 2008). Pour un système dynamique, la sensibilité aux paramètres de concep-
tion peut varier dans le temps. Par conséquent, une analyse de sensibilité en fonction du
temps est également nécessaire pour connaître la contribution d’un paramètre de conception
à la sensibilité d’une variable d’intérêt.

Les principaux objectifs de cette thèse sont les suivants :

1. Examiner les techniques de quantification de l’incertitude (UQ) disponibles dans la
littérature et applicables aux systèmes dynamiques.

2. Rechercher un métamodèle efficace pour traiter l’UQ des systèmes dynamiques impactés.

3. Effectuer l’UQ et une analyse de sensibilité sur des systèmes dynamiques impactés (par
exemple, problème de type crash box) en utilisant l’approche développée dans l’étape
précédente.

E.2 Examen de l’état de l’art

Les approches disponibles pour l’UQ des systèmes dynamiques sont examinées dans ce chapitre.
L’approche la plus conventionnelle pour l’UQ est la simulation de Monte Carlo (MCS). Elle né-
cessite un grand nombre d’évaluations du modèle, ce qui empêche l’application de l’approche
MCS à un système complexe tel qu’un problème de crash. Pour résoudre ce problème, des
métamodèles ont été proposés par plusieurs chercheurs, tels que le développement en chaos
polynomiaux (PCE) (Xiu and Karniadakis, 2002), le krigeage (Santner et al., 2003), la méth-
ode Support Vector Machine (SVM) (Collobert and Bengio, 2001), la méthode Radial Basis
Function (RBF) (Deng, 2006).

Parmi tous les métamodèles, le chaos polynomial est celui le plus utilisé pour l’UQ des
systèmes dynamiques. Dans la littérature, le PCE a été utilisée pour l’UQ de deux manières,
à savoir l’approche intrusive et l’approche non intrusive. Dans l’approche intrusive, les équa-
tions différentielles régissant le système considéré sont utilisées et la réponse stochastique
est généralement calculée par une projection de Galerkin (Gerritsma et al., 2010). En re-
vanche, l’approche non intrusive ne nécessite pas de connaitre les équations différentielles,
mais plutôt la réponse obtenue pour certains échantillons prédéfinis (souvent appelés points
du plan d’expérience) ; le modèle PCE est généralement résolu par une approche de régression
(Blatman and Sudret, 2011). L’intérêt du modèle PCE est que les deux premiers moments
statistiques peuvent être calculés simplement en post-traitant les coefficients de l’expansion
polynomiale. Les modèles PCE intrusifs et non intrusifs développés pour les systèmes dy-
namiques dans le domaine temporel sont abordés dans ce chapitre.

Pour les systèmes dynamiques, le modèle PCE a surtout été étudié de manière intrusive.
Les bases du modèle PCE ont été posées par Ghanem et Spanos (Ghanem and Spanos, 1991)
dans le domaine de la dynamique des vibrations. Le modèle PCE a ensuite été amélioré pour
sélectionner la base polynomiale de manière adaptative (Li and Ghanem, 1998). En outre,
un modèle PCE multi-éléments a été proposé (Wan and Karniadakis, 2005) pour prendre
en compte correctement la dynamique d’un système dynamique dans le domaine temporel.
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Les coefficients du PCE ont été obtenus pour cette approche par la projection de Galerkin.
Par la suite, d’autres types de fonction de base ont été étudiés. Ainsi, les fonctions de Haar
se sont avérées plus efficaces pour évaluer une classe spécifique de systèmes dynamiques (Le
Maître et al., 2004). En outre, un PCE qui change avec le temps a été proposé (Gerritsma
et al., 2010); ainsi les fonctions de la base sont mises à jour au cours du temps pour avoir en
permanence une base polynomiale optimale pour une variable d’intérêt donnée.

Dans le cas de l’approche non intrusive, l’approche la plus utilisée pour obtenir les co-
efficients du PCE est la méthode des moindres carrés ordinaires. De manière similaire à
l’approche intrusive, les fonctions de Haar ont également été utilisées dans le modèle PCE
non intrusif (Pettit and Beran, 2006). Un PCE à déformation temporelle a été développé
(Mai and Sudret, 2017) en redimensionnant le domaine temporel afin de saisir avec précision
la dynamique d’un système.

Plusieurs autres métamodèles, telles que le krigeage, les méthodes SVM et RBF, sont
également abordés dans ce chapitre. Cependant, pour un système dynamique, la plupart des
métamodèles doivent être construits à chaque pas de temps et c’est leur principal inconvénient.
C’est pourquoi un métamodèle a été développé en combinant le modèle PCE avec le modèle
NARX (Nonlinear Auto-Regressive with eXogenous input), appelé modèle PCE-NARX creux
(Spiridonakos and Chatzi, 2015). Ce modèle est très intéressant car le modèle NARX traite
de l’aspect temporel alors que le modèle PCE est fonction des paramètres incertains. Par
conséquent, le nombre de métamodèles construits est réduit.

L’UQ de systèmes dynamiques stochastiques avec impact est très limité dans la littérature.
Dans la plupart des cas, la fonction de densité de probabilité (PDF) stationnaire a été obtenue
pour des oscillateurs de type vibro-impact. Très peu de travaux de recherche ont été menés
sur l’UQ de systèmes dynamiques avec impact en utilisant un métamodèle. Toutefois cette
approche a été utilisée pour les problèmes de contact glissant dans le cas du crissement, qui
sont des problèmes mettant en jeu des non-linéarités non régulières, comme pour les problèmes
d’impact.

Le principal inconvénient observé dans la revue de littérature est que les utilisations de
métamodèles pour un problème dynamique avec impact sont restreintes. Un autre problème
lié aux approches disponibles est que les métamodèles doivent être construits à chaque pas
de temps, ce qui est coûteux en temps de calcul. Bien que cette question ait été traitée par le
modèle PCE-NARX, la pertinence de ce modèle doit être étudiée pour un système dynamique
avec impact. Par ailleurs, les métamodèles autres que le modèle PCE n’ont pas beaucoup
servi à l’UQ des systèmes dynamiques. Ces problématiques sont abordées dans cette thèse.

E.3 Modèle Kriging-NARX pour les systèmes dynamiques

Comme indiqué précédemment, le PCE a été utilisé dans la plupart des cas dans l’étude
de systèmes dynamiques incertains. Toutefois le krigeage est utilisé dans ce chapitre pour
formuler un métamodèle. Par analogie avec le modèle PCE-NARX, un modèle KNARX a été
construit dans ce chapitre, combinant le krigeage et le modèle NARX. Le modèle NARX est
très utilisé pour l’identification des systèmes dynamiques non linéaires. Par conséquent, le
comportement non linéaire dépendant du temps a été modélisé à l’aide du modèle NARX. Le
modèle NARX a été formulé avec un modèle de type polynomial (presque similaire au modèle
PCE). L’utilité du modèle NARX est que la réponse à tout moment est prédite à partir de
la réponse aux pas de temps précédents et à partir de l’excitation au pas de temps présent et
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aux pas de temps précédents. Le modèle NARX est rendu creux à l’aide de l’approche LARS
(least angle regression). Il est donc possible d’identifier un système dynamique non linéaire
en utilisant un faible nombre de termes dans le modèle NARX. Comme le modèle NARX est
déterministe, le krigeage a été utilisé pour prendre en compte l’aspect stochastique. Un modèle
de krigeage a été construit pour chaque terme du modèle NARX creux. En conséquence, le
nombre de construction de modèles de krigeage reste faible par rapport au nombre total de
pas de temps pour le système dynamique.

Le modèle KNARX creux a été appliqué à plusieurs systèmes dynamiques non linéaires,
dont l’oscillateur de Duffing, l’oscillateur de Bouc-Wen et un système dynamique à deux
degrés de liberté. Les résultats ont été comparés aux simulations de Monte-Carlo et au
modèle PCE-NARX creux. Le modèle KNARX creux a prédit avec précision les moments
statistiques dépendant du temps pour tous les exemples en utilisant moins d’appels au modèle
initial que le modèle PCE-NARX creux. En outre, la PDF déterminée à différents instants a
également été assez bien prédite par le modèle KNARX creux.

Bien qu’il soit possible de propager assez bien les paramètres incertains grâce au modèle
KNARX creux, le modèle NARX n’a pas réussi à estimer la réponse d’un oscillateur soumis à
un impact. Plusieurs autres types de modèles auto-régressifs ont alors été étudiés : modèles
auto-régressifs linéaires, non linéaires et en ondelettes. Cependant, aucun de ces modèles auto-
régressifs n’a permis d’estimer de façon satisfaisante les différentes réponses de l’oscillateur
impacté. Par conséquent, il est clair, d’après l’étude de ce chapitre, que le modèle KNARX
ne peut pas être utilisé pour modéliser un système dynamique impacté, car les réponses sont
non linéaires et surtout non régulières.

E.4 Modèle PCE reposant sur une décomposition orthogonale
en modes propres de type POD

Comme les modèles autorégressifs n’ont pas permis d’estimer les réponses d’un système dy-
namique impacté, le modèle KNARX creux ne peut pas être utilisé pour l’UQ des systèmes
dynamiques impactés. Pour cette raison, un autre type de métamodèle est étudié dans ce
chapitre. Le comportement temporel et le caractère aléatoire ont été découplés en utilisant
le modèle KNARX creux : cette procédure est également possible en utilisant une technique
de réduction de modèle (MOR, Model Order Reduction) (Chatterjee, 2000; Chinesta et al.,
2011). Les techniques de MOR comprennent la PGD (Proper Generalized Decomposition),
la POD (Proper Orthogonal Decomposition), la décomposition en mode propres. La POD a
été utilisée pour la réduction de la dimensionnalité des équations différentielles ordinaires et
des équations aux dérivées partielles. La POD a été utilisée dans (Higdon et al., 2008) pour
la réduction de la dimensionnalité des sorties à haute dimension. La POD a été largement
utilisée pour les problèmes de dynamique des fluides pour étudier la structure cohérente de
l’écoulement (Christensen et al., 1999; Zimmermann and Görtz, 2010). La plupart du temps,
la structure cohérente de l’écoulement des fluides a été étudiée par l’approche POD. La POD
permet de décomposer la réponse spatio-temporelle d’un système, en projetant la réponse
sur une base qui dépend du domaine spatial. L’approche POD a été utilisée dans plusieurs
recherches pour la réduction de la dimensionnalité (Guo and Hesthaven, 2019; Raisee et al.,
2015).

L’approche POD a été utilisée en combinaison avec le modèle PCE pour proposer une
nouvelle approche appelée approche POD-PCE. Si l’on considère chaos polynomiaux, les
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coefficients du développement doivent être calculés à chaque pas de temps pour un système
dynamique. Par conséquent, pour éviter la répétition des calculs des coefficients du PCE, la
réponse du système dynamique incertain, dépendante du temps, est projetée sur les modes
POD (POM, Proper Orthogonal Modes), qui dépendent également du temps : les coefficients
ne dépendent donc que des variables aléatoires. Ainsi, le comportement dépendant du temps
et le caractère aléatoire ont été découplés : la POD traduit l’évolution temporelle de la réponse
alors que et les incertitudes sont prises en compte par le PCE. La méthodologie développée
dans ce chapitre a été publiée dans (Jacquelin et al., 2019).

Un oscillateur non linéaire soumis à un impact a été étudié dans deux configurations
différentes : premièrement avec un seul contact entre la structure et le projectile, puis avec
des contacts multiples. L’UQ a été réalisée pour le déplacement du projectile, la vitesse
du projectile et la force de contact. Les réponses stochastiques ont été estimées de façon
satisfaisante par les modèles PCE et POD-PCE. Pour le modèle POD-PCE, le plus grand
nombre de coefficients identifiés était d’environ 100 fois plus faible que le nombre de coefficients
du modèle PCE (pour la force de contact de l’oscillateur à impacts multiples) tout en ayant
une précision similaire pour ces deux modèles. Il est évident que le temps nécessaire au calcul
des modes POM doit être pris en compte. Cependant, comme le nombre d’évaluations du
modèle est faible, le nombre de POM est également faible. Par conséquent, le coût numérique
pour calculer les POM est faible et le coût numérique total pour obtenir le modèle POD-PCE
est beaucoup plus faible que celui pour obtenir le modèle PCE à chaque pas de temps.

Bien que ces deux métamodèles aient prédit de bons résultats, certaines forces de contact
non physiques car négatives ont été parfois prédites pour l’oscillateur ayant des impacts mul-
tiples. Pour éliminer ce problème, le nombre d’évaluations du modèle et le degré polynomial
du PCE ont été augmentés. La force de contact non physique a pu être réduite dans une
certaine mesure grâce à ces modifications ; cependant, il n’a pas été possible d’éliminer com-
plètement la prédiction de forces de contact négatives par les deux métamodèles. Les forces
non physiques peuvent également être la conséquence d’un sur-ajustement et peuvent être
minimisées en utilisant un modèle PCE creux en sélectionnant les termes importants dans
la base polynomiale du PCE. Par conséquent, une approche PCE creux est étudiée dans le
chapitre suivant.

E.5 Modèle PCE creux basé sur l’inférence bayésienne varia-
tionnelle

Il a été constaté dans le chapitre précédent que le modèle POD-PCE est efficace pour propager
l’incertitude à travers un oscillateur impacté. Bien que le nombre d’estimations des coefficients
du PCE soit beaucoup plus faible pour le modèle POD-PCE que pour le modèle PCE, le
nombre de coefficients est élevé si un degré polynomial élevé est utilisé. Il a souvent été
constaté dans la littérature que tous les polynômes du modèle PCE ne contribuent pas à la
réponse (Blatman and Sudret, 2008, 2011; Jakeman et al., 2015). De plus, l’utilisation de
tous les polynômes peut ne pas être optimale pour une réponse donnée. Par conséquent, la
sélection des termes les plus appropriés du PCE et le calcul des coefficients correspondants
sont les principaux défis à relever pour formuler un modèle PCE creux. En effet, le choix des
termes importants dans la base du PCE réduit les risques de sur-ajustement et augmente la
précision du modèle de PCE. C’est la raison pour laquelle un modèle PCE creux a été étudié.

Un modèle PCE creux basé sur l’inférence bayésienne a été formulé. L’inférence bayési-
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enne variationnelle (VB, Variational Bayesian Inference) (Ghahramani and Beal, 2001) a été
utilisée pour calculer les coefficients du PCE. En outre, les termes importants de la base
polynomiale du PCE ont été sélectionnés en utilisant l’approche de détermination automa-
tique de la pertinence (ARD, Automatic Relevance Determination) (Jacobs et al., 2018; Wipf
and Nagarajan, 2008); l’approche résultante est appelée modèle PCE basé sur l’inférence VB
creux (SVB-PCE). L’utilité de l’inférence VB est qu’elle prend en compte l’erreur résiduelle
du modèle PCE tronqué lors du calcul des coefficients du PCE. L’inférence VB est entière-
ment liée à l’ARD, c’est pourquoi les termes importants ont été sélectionnés en utilisant les
résultats de l’inférence VB.

Tout d’abord, la pertinence du modèle SVB-PCE a été testée sur deux fonctions test
mathématiques, à savoir la fonction d’Ishigami et une fonction non linéaire à vingt dimensions.
Les résultats calculés par le modèle SVB-PCE ont été comparés avec les simulations de Monte
Carlo et le modèle PCE creux (Blatman and Sudret, 2011) basé sur l’approche LARS (LARS-
PCE). Il a été constaté que le modèle SVB-PCE nécessitait un nombre de termes inférieur
à celui du modèle LARS-PCE pour atteindre le même niveau de précision pour les deux
fonctions mathématiques. En même temps, le nombre d’évaluations du modèle était inférieur
à celui du modèle LARS-PCE pour atteindre un pourcentage d’erreur de 2% par rapport
au résultat de la MCS. En conséquence, l’algorithme SVB peut être utilisé comme un outil
alternatif à la méthode LARS pour obtenir un modèle PCE creux.

Le modèle SVB-PCE a été couplé avec l’approche POD pour développer le modèle POD-
SVB-PCE. L’oscillateur à impacts multiples étudié dans le chapitre précédent avec le modèle
POD-PCE a été étudié ici par le modèle POD-SVB-PCE et les résultats ont été comparés avec
le modèle POD-PCE. Les réponses stochastiques ont été assez bien prédites par le modèle
POD-SVB-PCE avec un très faible nombre de coefficients. Pour la force de contact, il a été
possible de réduire dans une certaine mesure les forces négatives non physiques ; cependant,
la prédiction d’une fonction non régulière par une fonction régulière (PCE ou SVB-PCE)
est toujours une tâche difficile. Le principal avantage du modèle SVB-PCE est qu’il a été
capable de prédire la réponse stochastique avec un polynôme de haut degré et avec un faible
nombre d’évaluations du modèle car il a sélectionné peu de termes dans le modèle PCE. Au
contraire, le modèle POD-PCE n’a pas pu prédire correctement les réponses stochastiques
avec l’augmentation du degré polynomial car le nombre de coefficients était supérieur au
nombre d’évaluations du modèle qui avait été imposé. Pour cette raison, un modèle PCE
creux est toujours utile lorsqu’une base polynomiale à degré élevé est requise et, en même
temps, lorsque le nombre d’évaluations du modèle doit être réduit au minimum.

E.6 Application aux simulations de dynamique rapide

L’objectif principal de cette thèse étant l’UQ d’un problème de crash, une telle étude a
été finalement menée. Pour un problème réel, le nombre possible d’appels au modèle est
souvent limité. Il est donc très difficile d’obtenir un métamodèle de bonne qualité avec
un faible nombre d’évaluations de modèle. Un métamodèle approprié doit être formulé en
fonction du comportement de la variable d’intérêt, il est important d’utiliser un métamodèle
adaptatif. Un modèle PCE adaptatif a été formulé dans (Blatman and Sudret, 2011) afin de
sélectionner le nombre d’évaluations du modèle et le degré polynomial de manière adaptative.
Ce modèle a également été utilisé dans (Ni et al., 2017) pour un problème de flux de puissance
probabiliste. Bien que les modèles PCE disponibles puissent être utilisés pour formuler un



E.6. APPLICATION AUX SIMULATIONS DE DYNAMIQUE RAPIDE 181

métamodèle adaptatif pour un système dynamique impacté dans le domaine temporel, le
principal problème est que le métamodèle doit alors être formulé à chaque pas de temps :
c’est sa principale limitation. C’est pourquoi un nouveau métamodèle adaptatif a été proposé
dans ce chapitre.

Tout d’abord, un modèle SVB-PCE adaptatif a été formulé pour une réponse indépen-
dante du temps et ensuite, un modèle POD-SVB-PCE adaptatif a été formulé en utilisant
le modèle SVB-PCE adaptatif et un critère d’erreur de type leave-one-out (LOO). Le méta-
modèle adaptatif a finalement été appliqué à l’UQ d’une crash box percutée par une masse
rigide. Un quart de crash box est considéré pour la présente étude. Elle est percutée par une
masse (impacteur) qui est considérée comme incertaine. En outre, la loi de comportement de
la crash box et l’épaisseur de la crash box sont considérées comme des paramètres incertains.
Pour le quart de crash box, trois conditions différentes ont été étudiées: (i) l’extrémité de la
crash box est encastrée, (ii) l’extrémité de la crash box est libre mais une masse est attachée à
l’extrémité, et (iii) l’extrémité de la crash box est libre et attachée à une masse incertaine. Par
conséquent, pour la troisième condition, quatre paramètres incertains sont présents. En rai-
son du coût élevé des calculs, il n’a pas été possible de comparer les résultats du métamodèle
avec les résultats de la MCS pour un grand nombre d’échantillons. Néanmoins, la méthode
de Monte Carlo a été réalisée avec 1000 tirages. Trois réponses ont été prises en compte, à
savoir le déplacement de l’impacteur, la vitesse de l’impacteur et la force de contact.

En outre, la sensibilité temporelle aux paramètres incertains des variables d’intérêt a
été quantifiée en utilisant le modèle adaptatif POD-SVB-PCE développé. L’utilité du mod-
èle adaptatif POD-SVB-PCE est la possibilité de pouvoir calculer les moments statistiques
dépendant du temps et les indices de sensibilité simplement en post-traitant les coefficients
du modèle POD-SVB-PCE.

Les métamodèles adaptatifs ont été utiles pour sélectionner le nombre d’évaluations de
modèles et le nombre de termes du PCE de manière adaptative, de sorte qu’un bon méta-
modèle puisse être obtenu sans sur-ajustement. L’erreur seuil LOO de 1× 10−3 a été jugée
suffisante pour obtenir un bon métamodèle. Tous les métamodèles obtenus dans ce chapitre
ont été validés avec 1000 échantillons et les précisions prévues étaient très proches de l’erreur
LOO obtenue, lorsque les métamodèles ont obtenu une erreur LOO inférieure à 1× 10−3.

Le modèle POD-SVB-PCE adaptatif pour le déplacement et la vitesse de la masse rigide
a été obtenu avec une erreur LOO valant 1× 10−3 et utilisant moins d’échantillons que le
nombre maximum d’échantillons alloués (Nmax = 200). En ce qui concerne la force d’impact
appliquée sur les crash boxes, il a été très difficile d’obtenir la précision souhaitée de 1× 10−3

pour l’erreur LOO, même en utilisant le nombre maximum alloué d’évaluations du modèle.
Cependant, une précision acceptable a été obtenue pour la force de contact, ce qui a été
illustré en prédisant la force de contact sur trois échantillons choisis au hasard. L’UQ sur
la force de contact maximale et sur l’énergie dissipée totale a été réalisée avec le modèle
adaptatif SVB-PCE. La précision des prédictions du modèle adaptatif SVB-PCE était assez
bonne avec un nombre d’échantillons relativement faible.

L’analyse de sensibilité globale a été réalisée pour le quart de crash box avec le mod-
èle adaptatif POD-SVB-PCE obtenu pour la propagation d’incertitude. Les propriétés du
matériau et l’épaisseur de la crash box sont les paramètres les plus influents sur la force de
contact alors que la masse de l’impacteur est le paramètre le moins influent. Le même com-
portement a également été observé pour la vitesse de l’impacteur. Au contraire, la masse de
l’impacteur a une forte influence sur l’évolution de l’énergie cinétique de l’impacteur dans le
cas de la crash box avec extrémité libre. Les indices de sensibilité du maximum de la force
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de contact et de l’énergie totale dissipée ont été calculés en post-traitant les coefficients du
modèle SVB-PCE adaptatif. Pour la crash box avec extrémité libre, la masse de l’impacteur
n’a pas d’influence sur le maximum de la force de contact. Les autres paramètres (épaisseur,
matériau et masse attachée à la crash box) ont un effet significatif sur la force de contact
maximale. Un scénario différent a été observé pour l’énergie totale dissipée : la masse de
l’impacteur était le seul paramètre significatif pour l’ensemble des crash boxes.

E.7 Conclusions

L’objectif principal de la thèse était l’UQ pour un système dynamique incertain impacté.
Plusieurs métamodèles ont été développés dans cette thèse pour simuler le système dynamique
aléatoire. Tout d’abord, le modèle KNARX creux a été développé de manière similaire au
modèle PCE-NARX creux pour l’UQ des systèmes dynamiques non linéaires. Il a été possible
de propager les paramètres incertains avec le modèle KNARX creux de manière appropriée
et avec un faible nombre d’appels au modèle par rapport au modèle PCE-NARX creux.
Cependant, un modèle NARX approprié n’a pas été trouvé pour l’oscillateur impacté et c’est
le principal inconvénient du modèle KNARX creux dans le contexte de l’objectif de la thèse.

Par conséquent, une approche différente a été étudiée, basée sur l’utilisation combinée de
la POD et du PCE : l’objectif était de découpler le temps et le caractère aléatoire, comme
l’ont fait le modèle PCE-NARX ou le modèle KNARX creux. L’UQ de la réponse en fonction
du temps peut également être réalisée par le modèle PCE. Cependant, le principal problème
du modèle PCE est que les coefficients PCE doivent être calculés à chaque pas de temps. Au
contraire, la variable d’intérêt a été projetée sur un très petit nombre de modes POD (POM)
par rapport au nombre de pas de temps. L’UQ a été réalisée pour un oscillateur avec impact
en utilisant le modèle POD-PCE. Pour le déplacement et la vitesse du projectile, le modèle
POD-PCE a nécessité un très faible nombre de POM. La force de contact a nécessité le plus
grand nombre de POM parmi toutes les réponses. La précision de la force de contact était
également un peu plus faible que celle des autres réponses. De plus, des valeurs négatives de
la force de contact ont été prédites à certains moments par le modèle POD-PCE. Il n’a pas
été possible d’atténuer complètement le problème des valeurs négatives des forces de contact,
car il est très difficile de prédire avec précision une réponse non régulière (par exemple une
force de contact) par une fonction régulière (PCE) : c’est pourquoi le même problème se pose
avec le modèle PCE. Par conséquent, ce problème n’est pas lié à l’utilisation de la POD.

Pour utiliser des termes polynomiaux de degré élevé avec un faible nombre d’évaluations
du modèle, un modèle creux PCE basé sur l’inférence bayésienne variationnelle (SVB) a été
proposé. Les coefficients du PCE ont été calculés en utilisant l’inférence VB et les termes du
PCE ont été sélectionnés en utilisant l’approche ARD. L’applicabilité du modèle SVB-PCE a
été vérifiée à l’aide de quelques exemples et il s’est avéré qu’il s’agit d’un moyen alternatif très
utile pour obtenir un modèle creux. En outre, le modèle SVB-PCE a été couplé à l’approche
POD pour l’UQ de l’oscillateur avec impact. Il a été constaté que le nombre de termes
réellement nécessaires dans un modèle PCE était assez faible par rapport au modèle PCE
complet. En même temps, il a été possible de réduire les forces de contact négatives, non
physiques, en utilisant des polynômes de degré élevé tout en conservant un faible nombre
d’évaluations du modèle.

Un cadre adaptatif pour les modèles SVB-PCE et POD-SVB-PCE a été proposé. La
principale motivation derrière la formulation de ces métamodèles adaptatifs était que le degré
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polynomial et le nombre d’évaluations du modèle doivent être sélectionnés de manière adap-
tative pour chaque réponse étudiée. Deux différentes erreurs de type “leave-one-out” (LOO)
ont été utilisées pour mesurer la précision des métamodèles. Enfin, un modèle éléments fi-
nis de crash box élasto-plastique soumis à un chargement de type d’impact a été étudié en
considérant plusieurs paramètres incertains et pour différentes conditions aux limites. Il a
été constaté que les modèles adaptatifs POD-SVB-PCE pour le déplacement et la vitesse
de l’impacteur prévoyaient de très bons résultats lorsqu’ils atteignaient une erreur LOO in-
férieure à 1× 10−3. Cependant, il n’a pas été possible d’atteindre ce seuil pour la force de
contact en utilisant un nombre limité d’évaluations du modèle. En outre, une analyse de
sensibilité globale a été réalisée en post-traitant les résultats des métamodèles adaptatifs.

La principale réalisation de cette thèse est le métamodèle proposé (modèle adaptatif POD-
SVB-PCE) pour l’UQ de la réponse temporelle d’un système dynamique impacté. L’approche
proposée peut également être utilisée pour une analyse de sensibilité des paramètres incertains
sans coût de calcul supplémentaire.
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