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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by biological
and morphological processes which spread over decades, ultimately leading to cognitive
and behavioral decline. These processes can be monitored thanks to biomarkers and
imaging measurements. As the mechanisms underlying the evolution of the pathology
remain partially unknown, disease progression models have been introduced to describe
biomarkers progression in a data-driven manner. These methods hold great clinical
interest as they can be used for diagnosis, prognosis and monitoring drug efficacy in
clinical trials. Most of currently available approaches are essentially based on the joint
analysis of scalar biomarkers data, or on the analysis of multivariate data derived from
a single imaging modality only. Scalability of these methods to jointly account for high
resolution multi-modal imaging data is currently an issue to develop a comprehensive
model of the natural history of AD. Moreover, while current methods provide a descriptive
analysis of the biomarkers evolution, they don’t explicitly model their dynamical interplay,
nor they allow the statistical assessment of the efficacy of hypothetical interventions
scenarios. Within this context, the main objective of this thesis is to propose novel
methodological frameworks for modeling the natural history of AD through the analysis of
high-resolution multi-modal imaging data, while enabling the investigation of biomarkers
dynamics and intervention strategies.

First, we introduce a novel theory to identify the spatio-temporal dynamics characterizing
the pathological processes at stake during AD, by relying on the analysis of multi-
modal volumetric images. To this end, we decompose the spatio-temporal data through
matrix factorization between temporal and spatial sources, while constraining the spatio-
temporal sources to a set of biologically-inspired constraints in order to estimate a
realistic model of disease progression.

Second, we present a novel approach proposing to model AD progression by means of
a dynamical system relating clinical and multi-modal imaging markers. The method is
inspired by neural ordinary differential equations, to project the data in a low-dimensional
space in which we estimate the dynamical system underlying the pathological progression.
Thanks to our approach, we can simulate hypothetical scenarios of disease progression.
In particular, we investigate the effect of drug intervention on cognitive outcomes.
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Third, we evaluate our work on an independent memory clinic cohort. We show that our
dynamical model allows to accurately perform individual disease staging for patients
from the external cohort. This result highlights the potential of our model as a prognosis
tool or for monitoring treatment efficacy.

Overall, the computational methods presented in this thesis coherently account for
multi-modal neuroimaging and clinical data to provide a thorough description of AD
progression. Our approaches entail great potential for clinical application: whether to
simulate the effect of potential treatments on the pathological progression, or to provide
complementary information for diagnosis and prognosis through automatic disease
staging. The work presented in this thesis sets the basis for several research directions.
Our methods can be generalized to investigate other neurodegenerative disorders, such as
Huntington’s disease and Parkinson’s disease. Moreover, our framework can be extended
to provide personalized pathological evolution accounting for a set of relevant risk factors
which may affect AD course.

Keywords: Alzheimer’s disease; clinical trials; Magnetic Resonance Imaging; Positron
Emission Tomography; machine learning; Gaussian processes; variational autoencoder;
dynamical systems
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Résumé

La maladie d’Alzheimer est une maladie neuro dégénérative caractérisée par un ensem-
ble de processus biologiques et morphologiques s’étendant sur plusieurs décennies et
induisant un sévère déclin des capacités cognitives et comportementales. Ces processus
peuvent être suivis grâce à des biomarqueurs ainsi que des mesures extraites d’images
médicales. Alors que les mécanismes sous-tendant l’évolution de la pathologie restent
en partie inconnus, des modèles de progression de la maladie ont été présentés afin de
décrire l’évolution des biomarqueurs à partir de la seule analyse de données. Ces méth-
odes comportent un intérêt médical certain pour faciliter le diagnostic et le pronostic,
mais également afin de mesurer l’efficacité d’un médicament durant un essai clinique.
La plupart des méthodes qui existent actuellement se fondent sur l’analyse conjointe
de biomarqueurs scalaires, ou sur l’analyse de données multivariées extraites d’un type
d’imagerie donné. Le passage à l’échelle de ces méthodes pour l’analyse de données
en grande dimension issues de l’acquisition d’images multimodales est actuellement
un défi majeur, qui pourrait permettre de développer un modèle détaillé de l’histoire
naturelle de la maladie. De plus, bien que les méthodes proposées jusqu’ à maintenant
fournissent une analyse descriptive de l’évolution des biomarqueurs, elles ne modélisent
pas explicitement les interactions dynamiques entre eux, et ne permettent pas non plus
d’entreprendre une évaluation statistique de l’efficacité d’une hypothétique intervention
thérapeutique. Par conséquent, l’objectif principal de cette thèse est de proposer de nou-
velles méthodes permettant de modéliser l’évolution de la maladie d’Alzheimer à travers
l’analyse d’images médicales volumiques multimodales, ainsi que de permettre l’étude
des dynamiques des différents biomarqueurs et de l’effet potentiel d’une intervention
thérapeutique sur l’évolution de la maladie.

Dans la première partie, nous présentons une méthode dont l’objectif est d’identifier les
dynamiques spatio-temporelles qui caractérisent les processus en jeu durant la maladie
d’Alzheimer, en s’appuyant sur l’analyse d’images médicales volumiques multimodales.
Pour y parvenir, nous proposons de modéliser les données via une factorisation matricielle
entre des sources temporelles et spatiales. Nous imposons également un ensemble de
contraintes biologiques aux sources spatio-temporelles afin de garantir l’estimation d’un
modèle de progression de la maladie réaliste.
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Dans la seconde partie, nous proposons une approche originale qui consiste à modéliser la
progression de la maladie d’Alzheimer via un système dynamique reliant des évaluations
cliniques ainsi que des données extraites d’images multimodales. Notre méthode s’appuie
sur un autoencoder variationel afin de projeter les données dans un espace de faible
dimension. A l’intérieur de cet espace nous supposons l’existence d’un système dynamique
contrôlant la progression de la maladie et dont nous estimons les paramètres. Notre
méthode permet de simuler des scénarios de progression hypothétiques de la maladie.
Nous étudions en particulier l’effet de traitements potentiels sur les capacités cognitives.

Dans la troisième partie, nous testons notre second modèle sur une cohorte indépendante
provenant d’une clinique de la mémoire. Nous montrons que le modèle permet d’évaluer
de manière précise le stade clinique des sujets provenant de la cohorte externe. Ces
résultats soulignent le potentiel de notre modèle en tant qu’outil clinique, que ce soit
pour fournir un pronostic ou bien pour participer au suivi de l’efficacité de traitements.

Dans l’ensemble, les méthodes computationnelles présentées dans cette thèse exploitent
la disponibilité d’images multimodales afin d’estimer une progression détaillée de la
maladie d’Alzheimer. Outre l’exploration de l’évolution de la maladie, nos approches
possèdent un large éventail d’applications cliniques: que ce soit pour simuler l’effet de
traitements potentiels sur la progression pathologique, ou pour fournir des informations
complémentaires en termes de diagnostic et pronostic grâce à l’estimation automatique
du stade de la maladie. Enfin, le travail présenté dans cette thèse ouvre différentes
pistes de recherche. Par exemple, nos méthodes pourraient être appliquées à l’étude
d’autres maladies neuro dégénératives comme la maladie d’Huntington ou la maladie de
Parkinson. Enfin, une piste d’amélioration majeure serait de personnaliser les modèles
de progression de la maladie, en prenant en compte un ensemble de facteurs de risque
qui caractérisent les sous-types existant de la maladie d’Alzheimer.

Mots-clés: maladie d’Alzheimer; essais cliniques; Imagerie par Résonance Magnétique;
Tomographie par Émission de Positons; apprentissage automatique; processus Gaussiens;
autoencoder variationel; systèmes dynamiques
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Contents
1.1 Clinical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.2.2 Data-driven disease progression models . . . . . . . . . . . . 5
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1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Clinical Context

Dementia is a neurological disorder whose symptoms include memory loss, aphasia,
disorientation as well as further behavioral issues (apathy, self-neglect, mood swings),
ultimately precluding patients from living autonomously [Scott, 2007]. Due to the aging
of the population, the number of people living with this syndrome has more than doubled
in the past 30 years to approximately reach 43.8 million [Nichols, 2019]. This increase
in the prevalence of individuals suffering from dementia negatively impacts families and
raises growing public-health concerns [Etters, 2008].

1.1.1 Alzheimer’s disease

Alzheimer’s disease (AD), which was first described by Dr A. Alzheimer in 1906, is the
most common cause of dementia and accounts for 60% to 80% of the cases [Alzheimer
Association Report, 2020]. The pathology is classified as a proteinopathy defined by
two processes: an abnormal processing of amyloid precursor protein leading to the
formation in the brain cortex of amyloid-beta neuritic plaques, and accumulation of
hyperphosphorylated tau in neurofibrillary tangles [Braak, 1991; Braak, 1997; Hardy,
2002; Long, 2019]. While a definitive diagnosis can only be established by post-mortem
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examination showing abnormal deposits of both amyloid and tau, patients are tradition-
ally suspected to suffer from AD based on the presence of a characteristic multidomain
amnestic dementia [McKhann, 1984].

Nonetheless, recent studies showed that diagnosis of AD dementia based on a set of
neuro-psychological assessments is not necessarily associated with neuropathological
changes. In [Nelson, 2011], the authors estimated that 10% to 30% of patients clinically
diagnosed with AD dementia did not exhibit the typical neuropathological changes of
the disease. Moreover, it has been observed that between 30% to 40% of cognitively
unimpaired elderly individuals have abnormal amyloid and tau deposits at autopsy
[Knopman, 2003; Bennett, 2006]. These observations show that clinical symptoms are
neither specific nor sensitive to the toxic aggregation of amyloid and tau. Therefore,
it has been recently proposed to operate a clear distinction between the dementia
syndrome and one of its most common cause which is AD. Given this context, evidence
of abnormal deposits of amyloid and tau should be sufficient to assign the label "AD"
to an individual, independently from the existence of clinical symptoms [Jack, 2018].
Nevertheless, if only post-mortem examination allows to reliably diagnose the pathology,
while neuro-psychological assessments indicate a probable presence of AD but not a
definitive diagnosis, it is necessary to define specific biological criteria for identifying and
following patients during the disease course.

1.1.2 Monitoring and understanding Alzheimer’s disease
progression

One of the major challenges for understanding AD is that the pathology evolves asymp-
tomatically for a long period (between 15-20 years) before the manifestation of cognitive
and behavioral symptoms. Therefore, efforts have focused on finding a set of biomarkers
that would allow to detect and monitor pathophysiological changes characteristic of AD.
These efforts resulted in the identification of three main biomarkers categories, namely:
amyloid, tau and neurodegeneration [Jack, 2016]. This latter process encompasses
neuron losses and synaptic dysfunction, which highly correlate with clinical symptoms
[Terry, 1991]. Given this context, it was recently proposed to define AD as a "biological
construct identified by biomarkers" [Jack, 2018], and whose hallmark is the abnormal
deposition of both amyloid and tau in the brain cortex [Montine, 2012; Hyman, 2012].
This means that AD can be tracked via biomarkers which indicate the abnormality of
specific physiological processes. For instance, measurements of concentration of Cere-
brospinal fluid (CSF) Aβ42 and t-tau allow to detect pathological levels of amyloid-beta
and tau respectively [Blennow, 2003]. Besides CSF concentration, techniques such as
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) enabled
to define non-invasive imaging biomarkers which are suited to monitor many pathophys-
iological changes involved in AD. For example, abnormal deposition of amyloid-beta
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can be measured via (18)F-florbetapir-PET (AV45-) scan [Klunk, 2004; Clark, 2011].
Accumulation of neurofibrillary tangles is quantified thanks to (18)F-flortaucipir-PET
(Tau-) scans [Okamura, 2014; Barthel, 2020]. Finally, neurodegeneration is indicated
by cerebral atrophy and glucose hypometabolism from MRI scans [Fox, 2004] and
(18)F-fluorodeoxyglucose-PET (FDG-) [Herholz, 2012] imaging respectively.

The possibility to collect biomarkers fostered the conduct of longitudinal studies follow-
ing individuals over years, in order to investigate the set of neuropathological changes
occurring during AD, and to understand how they ultimately lead to dementia. Recently,
efforts have focused in developing models of disease progression which aimed at pro-
viding a global understanding of the large amount of biomarkers acquired [Aisen, 2010;
Frisoni, 2010; Jack, 2010; Jack, 2013b]. The objective of such models is to shed light on
the natural history of the disease course, which could facilitate early diagnosis of patients
suffering from AD and the design of therapeutic intervention. We show in Figure 1.1
the most common model of AD progression, which supports the idea that AD follows
a pathological cascade of events. This cascade would be triggered by the abnormal
deposition of amyloid-beta in the brain cortex, which occurs decades before the onset of
clinical symptoms. Formation of amyloid-beta plaques induces a burden of neurofibrillary
tangles detected by pathological accumulation of tau. This latter pathophysiological
phenomenon leads to the neurodegeneration process which is the proximate cause of
dementia.

Figure 1.1: Hypothetical model of AD progression. Key biomarkers at stake in AD evolve from a
normal to an abnormal stage. Reprinted from The Lancet Neurology, Vol. 12, Jack et
al., Tracking pathophysiological processes in AD: an updated hypothetical model of
dynamic biomarkers , 207–216, Copyright (2013), with permission from Elsevier.
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1.2 Disease Progression Modelling

While models such as the one from Figure 1.1 provide a precious groundwork for
understanding AD progression, they remain hypothetical in the sense that they are built
by organizing observations extracted from multiple studies in a comprehensive qualitative
diagram. Indeed, they lack quantification of key aspects such as the progression speed
of the different biomarkers, or the time between the reaching of abnormal levels for
these biomarkers and clinical symptoms onset. Moreover, there may exist additional
mechanisms driving the pathological progression that might be "missed" by a model solely
based on a global analysis of biomarkers. Therefore, the development of data-driven
models of disease progression based on the analysis of biomarkers data is fundamental
to validate current hypothesis about the evolution of the pathology. Furthermore, these
models would also provide a quantitative reference progression against which biomarkers
could be compared, thus allowing to stage the individual disease severity by locating
a subject along the disease course. This capability entails great potential to provide
complimentary insights for diagnosis, prognosis as well as in the context of clinical
trials. Indeed, there is currently need of testing pharmacological treatments during the
pre-symptomatic phase of the disease [Sperling, 2011; Aisen, 2018], when intervention
might be more likely to result in improvement of cognitive endpoints. Within this context,
models of disease progression are crucial as they could help identifying subjects during
the pre-symptomatic stage, thus reducing heterogeneity of participants. They could also
be used to monitor the efficacy of clinical trials.

1.2.1 Basic approaches and limitations

One of the first models of AD progression entirely informed by the analysis of longitudinal
data was proposed by [Bateman, 2012]. This study focused on patients suffering from
autosomal dominant AD, which is a sub-type of the disease genetically inherited. In this
particular case, the estimated years before onset (EYO) can be computed by subtracting
the age of the parents at onset with the age of the patient. Measures of amyloid
deposition, tau accumulation, glucose metabolism, cerebral atrophy and cognition were
collected for all the participants. The authors used a linear mixed model to regress each
of these biomarkers against the mutation status and EYO. Thus, they could estimate in
a data-driven manner the evolution of each biomarker over 40 years. Their findings
are in agreement with the hypothesis of the pathological cascade, as they showed that
deposition of amyloid beta starts approximately 20 years before the appearance of clinical
symptoms, followed by cerebral atrophy and a decrease of glucose metabolism, ultimately
leading to cognitive and behavioral impairment.

4 Chapter 1 Introduction



However, approaches such as the one proposed in [Bateman, 2012] are not suitable for
modeling sporadic forms of AD. This form of AD affects people without a family record
of the disease and accounts for 90% of the cases [Bekris, 2010]. As the pathological
cascade is initiated at different moments and evolves at heterogeneous speed, the age
at onset is generally unpredictable. Therefore, we cannot directly apply a conventional
regression model for estimating the evolution of the different biomarkers, due to the lack
of a temporal variable describing an absolute time-line of the disease course, such as the
EYO. Moreover, it would also be necessary to determine if the estimated progression can
be completely transposed to other sub-types of the pathology such as sporadic AD.

So far, there have been attempts trying to circumvent this difficulty through the analysis
of longitudinal data. For instance, in [Lo, 2011] the authors compute mean rates of
change for many biomarkers measured for hundreds of subjects followed during three
years. The participants were classified in three clinical groups: healthy controls, mild
cognitive impairment (MCI) and AD dementia. Thus, they could approximate the average
evolution of the different biomarkers per clinical group over three years, and derived a
"long-term" model of AD evolution by juxtaposing the progression from the healthy, MCI
and AD dementia groups. However, by dividing the disease course in three clinical stages
this approach provides a coarse temporal resolution of the pathological progression.
Another work presented in [Villemagne, 2013] overcomes this problem. The authors
propose to find the model best fitting the relationship between the individual rate of
change and its baseline value for different biomarkers. Then, the authors integrate the
fitted-model over time to obtain long-term trajectories for each biomarker. Their findings
suggest that AD is characterized by a long preclinical phase. Indeed, they estimate that
deposition of amyloid beta becomes abnormal 17 years before the onset of dementia,
while hippocampal atrophy and memory impairment reach pathological levels 4 years
and 3 years respectively before AD dementia diagnosis. However, the time-line describing
the disease progression is arbitrary, as it depends on abnormality cut-points defined
for each biomarkers. Since there exists different principles allowing to establish such
cut-points [Bartlett, 2012], this may affect the pathological progression they estimate.

Overall, these works illustrate the difficulty of estimating data-driven models of AD
progression, and the need to resort to more advanced mathematical approaches to
overcome the lack of an absolute temporal reference describing the disease course.

1.2.2 Data-driven disease progression models

Given this context, a variety of disease progression models aimed at automatically
characterizing AD evolution through the sole analysis of biomarkers measurements from
large cohort studies. The Event-Based Model (EBM) [Fonteijn, 2012; Young, 2014],
is one of the first fully data-driven methods tackling this problem. In the EBM, the
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pathological evolution is modelled as a sequence of events representing a collection of
biological, morphological and cognitive changes due to AD, and whose ordering needs to
be inferred. Each event is statistically defined as the transition of a given biomarker from
a normal to an abnormal state. The biomarkers are separately modeled as a mixture of
two Gaussians providing distributions of normal and abnormal values respectively. Data
is assumed to follow a generative model, and the most probable sequence of events is
inferred by maximizing the data likelihood. The EBM allows to estimate an ordering
of events spanning the full disease course in agreement with the hypothetical model
of [Jack, 2013b], while also assessing the uncertainty of the location of each event
within the sequence. Moreover, this approach enables to evaluate the disease stage of a
given individual by finding where it lies along the sequence of events. An extension of
this approach that improves the accuracy of individual disease staging was proposed in
[Venkatraghavan, 2019].

Nonetheless, the EBM is based on the simplistic assumption describing AD progression as
a discrete sequence of biomarkers transitions from normal to abnormal states. To over-
come this limitation, alternative approaches attempt to model long-term trajectories of
key biomarkers over a continuous time-line describing the disease history. Since we lack a
temporal axis that could be used as an absolute reference, these methods propose to map
the subjects’ observations on a common temporal scale associated with a long-term pro-
gression from healthy towards pathological states. This is generally done by introducing
an individual time-warping function [Jedynak, 2012]. Moreover, these methods also aim
to estimate a clinically plausible progression for each biomarkers, by constraining them
to follow a steady pathological evolution. To do so, the biomarkers’ dynamics can be
modelled by sigmoid functions as proposed in [Schiratti, 2015; Marinescu, 2019a]. Other
models adopt a non-parametric approach to allow a broader range of temporal profiles,
such as [Lorenzi, 2017; Lorenzi, 2018] who model the biomarkers’ dynamics thanks to
Gaussian Processes associated with a monotonicity constraint. Overall, these approaches
enable the estimation of long-term dynamics for a wide variety of scalar biomarkers along
a continuous time-line representing the disease course. They can be used to perform
individual disease staging, by identifying the time-point of the pathological progression
which best reflects the state of a subject with respect to its measurements.

1.2.3 Spatio-temporal approaches

Thus far, we reviewed models of disease progression that were based on the analysis
of scalar biomarkers data: amyloid level in the CSF, regional gray matter volumes,
clinical scores, etc. However, computational anatomy approaches such as Voxel-Based
Morphometry [Ashburner, 2000] or surface-based analysis [Fischl, 2000] allow to work
on a variety of data types like volumetric images or cortical shapes. This kind of
spatial information provides a richer anatomical description compared to data obtained
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by averaging regional imaging measurements. Therefore, building models of disease
progression based on the analysis of multivariate spatial data derived from a given
imaging modality could bring new insights on the topography and dynamics of the
changes affecting the brain during AD.

One of the first methods addressing this challenge was presented in [Koval, 2017; Koval,
2018], where the authors proposed a non-linear mixed-effect model to describe spatio-
temporal changes affecting the brain during AD based on cortical thickness data. The
fixed-effect accounts for a global progression, while the random-effects are estimated
using warping functions that evaluate how a given individual differs in space and time
from the average trajectory. Results show that the model is able to capture patterns of
cortical atrophy characteristic of AD. It can also be used to evaluate the individual disease
severity of a subject based on its cortical thickness measurements. However, although
the method accounts for the spatio-temporal shift of an individual with respect to the
estimated average pattern of cortical atrophy, the authors assume that atrophy follows a
unique spatio-temporal trajectory during AD. Since it was observed that brain regions can
be characterized by different atrophy rates [Whitwell, 2010], another approach recently
proposed to jointly estimate various spatio-temporal patterns of atrophy [Marinescu,
2019a]. To do so, they assign each vertex of the cortical surface to a cluster associated
with a specific sigmoid function describing the pathological progression. Results show that
the authors are able to detect differential spatio-temporal patterns of atrophy affecting
the brain during AD.

Apart from cortical thickness data, multi-modal volumetric images can provide anatomical
information not observable via the analysis of cortical shapes, while bringing insights on
additional pathological processes such as amyloid deposition. Therefore, there also exists
methods which aim to describe the pathological spatio-temporal changes associated
with AD based on the analysis of volumes of brain images. For instance [Bowles, 2018]
identifies patterns of regional atrophy due to AD by analyzing MRI images, while [Bilgel,
2016] describes the topography of amyloid deposition during AD based on the analysis
of amyloid-PET scans.

Overall, estimating models of disease progression through the analysis of multivariate
spatial data is a challenging task, due to the complexity and high-dimensionality of
this type of data. Therefore, the spatio-temporal methods presented so far usually face
tractability issues, and need to resort to advanced optimization techniques to estimate
the models parameters. For instance, in [Bilgel, 2016; Koval, 2018; Marinescu, 2019a]
parameters inference is carried out by relying on modified versions of the Expectation-
Maximization algorithm. Moreover, it is necessary in some cases to downsample the
volumetric images and cortical thickness data, such as in [Bilgel, 2016; Bowles, 2018]
and [Koval, 2017; Koval, 2018] respectively, to guarantee tractability of the methods.
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While this downsampling step enables these approaches to scale to the analysis of imaging
data, it prevents them from fully leveraging the spatial information they provide.

1.3 Current Challenges

In the previous section, we introduced disease progression modelling which aims at iden-
tifying and understanding the morphological and physiological processes at stake during
AD, based on the analysis of clinical and imaging data. Currently, the more advanced
methods rely on mathematical techniques that allow to model plausible long-term trajec-
tories of high-dimensional imaging data. Such models hold great potential to improve
our knowledge of the mechanisms driving AD, which still remain partially unknown.
They could also be used in clinical practice to provide complimentary information for
diagnosis, prognosis and for identifying patients at risk of cognitive decline, which is
critical to reduce heterogeneity in clinical trials. However, these approaches present some
limitations and disease progression models still face challenges.

One of the main limitation of current disease progression models is related to their scala-
bility to high resolution multi-modal imaging data. Until now, disease progression models
have been applied on multivariate data such as cortical thickness or on downsampled
volumetric images, but they do not scale to the joint analysis of 3-dimensional (3D)
multi-modal images at their native resolution. Yet, estimating long-term trajectories of
volumetric images could provide valuable insights about the topography of patholog-
ical patterns for each type of imaging modality. Indeed, the analysis of images at the
voxel level could enable the identification of pathological spatial changes that cannot be
detected at a lower resolution.

A second problem concerns the limited interpretation that can be made from disease
progression models. Although current methods enable to describe the evolution of
multiple biomarkers during AD, they don’t provide any information about the dynamical
interplay across them. However, investigating the interactions between the biomarkers
dynamics is essential to understand how the different pathological processes affect each
other. For instance, this could allow to determine the exact effect of amyloid deposition
on the disease course. Moreover, the presented approaches allow to perform individual
disease staging, which can prove particularly useful to monitor the effect of a treatment
during clinical trials, but they do not enable to predict the effect of a treatment on the
disease evolution. Such capability could be used to assess the efficacy of therapeutic
intervention in silico, which could help planning clinical trials.

Finally, a major challenge for disease progression models in the next years will be
their implementation in a clinical setting. Indeed, until now these models were mostly
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developed and applied on well-defined research datasets. As they hold promises to
assist with diagnosis and prognosis via individual disease staging, it is essential to assess
their generalization to independent cohorts in order to ultimately adopt them in clinical
routine. However, this assessment of disease progression models on independent cohorts
is a challenging task, which will require to deal with differences between datasets such
as data acquisition, missing data or data heterogeneity.

1.4 Objectives and Organization of the Thesis

In this thesis, we develop novel computational methods for modeling the natural history of
AD through the analysis of 3D multi-modal imaging data, while enabling the investigation
of biomarkers dynamics and intervention strategies. We also aim to demonstrate the
translational aspect of our approach by applying it on an independent cohort from a
memory clinic. The manuscript is organized in the following way in order to address the
previously stated limitations and challenges.

First, we present in Chapter 2 a model of AD progression based on the analysis of clinical
data and multi-modal volumetric images. This model aims at identifying the multiple
spatio-temporal trajectories characterizing the pathological processes at stake during
the disease progression. To do so, data is modelled via matrix factorization between
spatio-temporal sources, which are constrained by clinically plausible statistical priors.
Thanks to the proposed approach, we are able to disentangle different temporal processes
of amyloid deposition, glucose hypometabolism and gray matter atrophy associated to
specific regional patterns at a high spatial resolution.

Secondly, we introduce in Chapter 3 SimulAD, a computational framework allowing
to model AD progression through a dynamical system linking clinical and multi-modal
imaging-derived data. Similarly to Chapter 2, this approach can be used to estimate
a global model of progression for clinical and imaging markers. Most importantly,
by formulating AD progression through dynamical systems, we can investigate the
causal relationships between the processes driving the disease evolution, and simulate
hypothetical progression scenarios. In particular, we study for the first time in silico the
effect of anti-amyloid treatments on cognitive outcomes depending on intervention time
and drug dosage.

Thirdly, we present in Chapter 4 an application of SimulAD on an independent cohort
from the Geneva Memory Center (GMC). We develop a specific pre-processing pipeline
allowing to test our model on this external dataset. We propose a set experiments on the
GMC cohort to assess the generalization of the model of disease progression, as well as
its validity in terms of disease staging.

1.4 Objectives and Organization of the Thesis 9



Finally, we conclude the manuscript in Chapter 5 by summarizing the main contributions
of this work. We also present potential applications of our methods and build upon their
limitations to propose future research perspectives.

1.5 Publications

The contributions of the three central chapters of this manuscript led to the following
publications and submissions in conferences and peer-reviewed journals.

• Alzheimer’s disease modelling and staging through independent Gaussian process
analysis of spatio-temporal brain changes, Clément Abi Nader, Nicholas Ayache,
Philippe Robert, and Marco Lorenzi. International Workshop on Machine Learning
in Clinical Neuroimaging. Springer, 2018, pp. 3-14.

• Monotonic Gaussian Process for Spatio-Temporal Disease Progression Modeling in
Brain Imaging Data, Clément Abi Nader, Nicholas Ayache, Philippe Robert, and
Marco Lorenzi. NeuroImage 2020.

• Simulating the outcome of amyloid treatments in Alzheimer’s disease from imaging
and clinical data, Clément Abi Nader, Nicholas Ayache, Giovanni B. Frisoni, Philippe
Robert, and Marco Lorenzi. Accepted for publication at Brain Communications
2021.

• SimulAD: A dynamical model for personalized simulation and disease staging in
Alzheimer’s disease, Clément Abi Nader, Federica Ribaldi, Giovanni B. Frisoni,
Valentina Garibotto, Philippe Robert, Nicholas Ayache and Marco Lorenzi. Submit-
ted to Neurobiology of Aging 2021.
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In this chapter, we present a method to model Alzheimer’s disease (AD) progression
based on the analysis of high resolution multi-modal images. Our goal is to provide a
thorough description of the topographic pathological patterns characterizing AD, as well
as their associated dynamics of evolution. We postulate that each pathological process
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can be potentially characterized by multiple spatio-temporal trajectories that we aim
to identify. To do so, we propose a probabilistic generative framework in which the
data is modelled via a matrix factorization between spatio-temporal sources. In order
to ensure the plausibility of the estimated pathological progression, we introduce a set
of clinically-inspired constraints for the temporal and spatial sources. The chapter is
published in NeuroImage [Abi Nader, 2020] and is based on a previous work presented
at MLCN 2018 [Abi Nader, 2018].

Abstract. We introduce a probabilistic generative model for disentangling spatio-
temporal disease trajectories from collections of high-dimensional brain images. The
model is based on spatio-temporal matrix factorization, where inference on the
sources is constrained by anatomically plausible statistical priors. To model realistic
trajectories, the temporal sources are defined as monotonic and time-reparameterized
Gaussian Processes. To account for the non-stationarity of brain images, we model
the spatial sources as sparse codes convolved at multiple scales. The method was
tested on synthetic data favourably comparing with standard blind source separation
approaches. The application on large-scale imaging data from a clinical study allows
to disentangle differential temporal progression patterns mapping brain regions key
to neurodegeneration, while revealing a disease-specific time scale associated to the
clinical diagnosis.

2.1 Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are characterized by
morphological and molecular changes of the brain, ultimately leading to cognitive and
behavioral decline. Clinicians suggested hypothetical models of the disease evolution,
showing how different types of biomarkers interact and lead to the final dementia stage
[Jack, 2010]. In the past years, efforts have been made in order to collect large databases
of imaging and clinical measures, hoping to obtain more insights about the disease
progression through data-driven models describing the trajectory of the disease over
time. This kind of models are of critical importance for understanding the pathological
progression in large scale data, and would represent a valuable reference for improving
the individual diagnosis.

Current clinical trials in AD are based on longitudinal monitoring of biomarkers. Disease
progression modelling aims at providing an interpretable way of modelling the evolution
of biomarkers according to an estimated history of the pathology, as proposed for exam-
ple in [Donohue, 2014; Fonteijn, 2012; Jedynak, 2012; Lorenzi, 2017; Young, 2014].
Therefore, disease progression models are promising methods for automatically staging
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patients, and quantifying their progression with respect to the underlying model of
the pathology. These approaches entail a great potential for automatic stratification of
individuals based on their estimated stage and progression speed, and for assessment of
efficacy of disease modifying drugs. Within this context, we propose a spatio-temporal
generative model of disease progression, aimed at disentangling and quantifying the in-
dependent dynamics of changes observed in datasets of multi-modal data. With this term
we indicate data acquired via different imaging modalities such as Magnetic Resonance
Imaging (MRI) or Positron-Emission Tomography (PET), as well as non-imaging data
such as clinical scores assessed by physicians. Moreover, we aim at automatically inferring
the disease severity of a patient with respect to the estimated trajectory. Defining such a
disease progression model raises a number of methodological challenges.

AD spreads over decades with a temporal mismatch between the onset of the disease
and the moment where the clinical symptoms appear. Either age of diagnosis, or the
chronological age, are therefore not suitable as a temporal reference to describe the
disease progression in time. Moreover, as the follow-up of patients doesn’t exceed a few
years, the development of a model of long-term pathological changes requires to integrate
cross-sectional data from different individuals, in order to consider a longer period of
time. In virtue of the lack of a well defined temporal reference, observations from
different individuals are characterized by large and unknown variability in the onset and
speed of the disease. It is therefore necessary to account for a time-reparameterization
function, mapping each individuals’ observations to a common temporal axis associated
to the absolute disease trajectory [Jedynak, 2012; Schiratti, 2015]. This would allow to
estimate an absolute time-reference related to the natural history of the pathology.

The analysis of MRI and PET data, requires to account for spatio-temporally correlated
features (voxels, i.e. volumetric pixels) defined over arrays of more than a million entries.
The development of inference schemes jointly considering these correlation properties
thus raises scalability issues, especially when accounting for the non-stationarity of the
image signal. Furthermore, the brain regions involved in AD exhibit various dynamics
in time, and evolve at different speed [Whitwell, 2010]. From a modeling perspective,
accounting for differential trajectories over space and time raises the problem of source
identification and separation. This issue has been widely addressed in neuroimaging via
Independent Component Analysis (ICA) [Comon, 1994], especially on functional MRI
(fMRI) data [Calhoun, 2009]. Nevertheless, while fMRI time-series are usually defined
over a few hundreds of time points acquired per subject, our problem consists in jointly
analyzing short-term and cross-sectional data observations with respect to an unknown
time-line. This problem cannot be tackled with standard ICA, as time is generally an
independent variable on which inference is not required. Moreover, ICA retrieves spatial
sources based on the assumption of statistical independence. This assumption does not
necessarily lead to clinically interpretable findings. Indeed, dependency across temporal
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patterns can be still highly relevant to the pathology, for example when modeling
temporal delay across similar sources.

The problem of providing a realistic description of the biological processes is critical when
analyzing biomedical data, such as medical images. For example, to describe a plausible
evolution of AD from normal to pathological stages, smoothness and monotonicity are
commonly assumed for the temporal sources. It is also necessary to account for the
non-stationarity of changes affecting the brain from global to localized spatio-temporal
processes. As a result, spatial sources need to account for different resolutions at which
these changes take place. While several multi-scale analysis approaches have been
proposed to model spatio-temporal signals [Mallat, 1989; Bullmore, 2004; Hackmack,
2012], extending this type of methods to the high-dimension of medical images is
generally not trivial due to scalability issues. Finally, the noisy nature of medical images,
along with the large signal variability across observations, requires a modeling framework
robust to bias and noise.

In this work, we propose to jointly address these issues within a Bayesian framework
for the spatio-temporal analysis of large-scale collections of multi-modal brain data. We
show that this framework allows us to naturally encode plausibility constraints through
clinically-inspired priors, while accounting for the uncertainty of the temporal profiles
and brain structures we wish to estimate. Similarly to the ICA setting, we formulate
the problem of trajectory modeling through matrix factorization across temporal and
spatial sources. This is done for each modality by inferring their specific spatio-temporal
sources. To promote smoothness in time and avoid any unnecessary hypothesis on the
temporal trajectories, we rely on non-parametric modeling based on Gaussian Process
(GP). We account for a plausible evolution from healthy to pathological stages thanks
to a monotonicity constraint applied on the GP. Moreover, individuals’ observations are
temporally re-aligned on a common scale via a time-warping function. In case of imaging
data, to model the non-stationarity of the spatial signal, the spatial sources are defined
as sparse activation maps convolved at different scales. We show that our framework
can be efficiently optimized through stochastic variational inference, allowing to exploit
automatic differentiation and GPU support to speed up computations.

This work is organized as follows: Section 2.2 analyzes related work on spatio-temporal
modeling of neurodegeneration, while Section 2.3 details our method. In Section 2.4
we present experiments on synthetic data in which we compare our model to standard
blind source separation approaches. We finally provide a demonstration of our method
on the modeling of imaging data from a large scale clinical study. Prospects for future
work and conclusions are drawn in section 2.5. Additional derivations and experiments
are provided in Appendix 2.6.
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2.2 Related Work in Neurodegeneration Modeling

To deal with the uncertainty of the time-line of neurodegenerative pathologies, the
concept of time-reparameterization of imaging-derived features has been used in several
works. The underlying principle consists in estimating an absolute time-scale of disease
progression by temporally re-aligning data from different subjects. For instance, in
[Young, 2015] the time-evolution was approximated as a sequence of events which
need to be re-ordered for each patient. This approach thus considers the evolution of
neurodegenerative diseases as a collection of transitions between discrete stages. This
hypothesis is however limiting, as it doesn’t reflect the continuity of changes affecting
the brain along the course of the pathology.

To address this limitation, we rely on a continuous parameterization of the time-axis
as in [Lorenzi, 2017; Donohue, 2014]. In particular, individuals’ observations are time-
realigned on a common temporal scale via a time-warping function. Using a set of
relevant scalar biomarkers, this kind of approach allows to learn a time-scale describing
the pathology evolution, and to estimate a data-driven time-line markedly correlated
with the decline of cognitive abilities. Similarly, in [Bilgel, 2015] a disease progression
score was estimated using biomarkers from molecular imaging. These methods are
however based on the analysis of low-dimensional measures, such as collections of
clinical variables. Therefore, they do not allow to scale to the high dimension of multi-
modal medical images. Our work tackles this shortcoming thanks to a scalable inference
scheme based on stochastic variational inference.

Concerning the spatio-temporal representation of neurodegeneration, a mixed-effect
model was proposed by [Koval, 2017] to learn an average spatio-temporal trajectory of
brain evolution on cortical thickness data. The fixed-effect describes the average trajectory,
while random effects are estimated through individual spatio-temporal warping functions,
modeling how each subject differs from the global progression. Still, the extension of
this approach to image volumes raises scalability issues. It has also to be noted that,
to allow computational tractability, the brain evolution was assumed to be stationary
both in space and time, thus limiting the ability of the model to disentangle the multiple
dynamics of the brain structures involved in AD.

An attempt to source separation is proposed in [Marinescu, 2019a], through the decom-
position of cortical thickness measurements as a mixture of spatio-temporal processes.
This is performed by associating to each cortical vertex a temporal progression modeled
by a sigmoid function, which may be however too simplistic to describe the progression
of AD temporal processes. We propose to overcome this issue by non-parametric model-
ing of the temporal sources through GPs. Moreover, the model in [Marinescu, 2019a]
is lacking of an explicit vertex-wise correlation model, as it only assumes correlation
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between clustering parameters at the resolution of the mesh graph. For this reason, it
may still be sensitive to spatial variation at different scales and noise. We address this
problem by modeling the spatial sources through convolution of sparse maps at multiple
resolutions, allowing to deal with signal non-stationarity and robustness to noise.

2.3 Methods

In the following sections a matrix will be denoted by an uppercase letter X, its n-th row
will be given by Xn: and its n-th column by X :n. A column vector will be denoted by
a lowercase letter x. Subscript indices will be used to index the elements of matrices,
vectors or sets of scalars. Superscipt indices will allow to index the blocks of block
diagonal matrices.

2.3.1 Individual time-shift

To account for the uncertainty of the time-line of individual measurements, we assume
that the observations are defined with respect to an absolute temporal reference τ . This
is performed through a time-warping function tp = fp(τ), that models the individual
time-reparameterization. We choose an additive parameterization such that:

fp(τ) = τ + δp. (2.1)

Within this setting the individual time-shift δp encodes the temporal position of subject
p, which in our application can be interpreted as the disease stage of subject p with
respect to the long-term disease trajectory. We denote by δ = {δp}Pp=0 the set of time-shift
parameters.

2.3.2 Data modeling

We represent the spatio-temporal data D by a block diagonal matrix in which we
differentiate two main blocks Y and V as illustrated in Figure 2.1. Each sub-block Y m

is a matrix containing the data represented by one of the M imaging modalities we wish
to consider. These matrices have dimensions P × Fm, where P denotes the number of
subjects and Fm the number of imaging features for modality m, which in our case is the
number of voxels. The matrix V accounts for non-imaging or scalar data such as clinical
scores and has dimensions P × C, where C is the number of scalar features considered.
We postulate a generative model and decompose the data as shown in Figure 2.1.
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Figure 2.1: Spatio-temporal decomposition of each data block. A data matrix composed by M
imaging modalities is decomposed as the product of monotonic temporal sources Sm

and corresponding activation maps Am. Monotonic sources are also used to model
the scalar biomarkers V , while we assume additive constant terms Zm, and noise
Em.

For each sub-block Y m, the data is factorized in a set of Nm spatio-temporal sources
Y m = SmAm. The columns of the matrix Sm describe the non-linear temporal evolution
of the corresponding spatial maps contained in the rows of Am. Therefore, their product
represents the voxel-wise linear combination of the spatial maps modulated by the
corresponding temporal sources. The subjects share the same set of temporal sources
across S1, ..,SM , as these sources describe the temporal evolution of the group-wise
images through the regression problem specified in Figure 2.1. The data in matrix V is
modelled by a matrix U whose columns depict the temporal trajectories of the different
scalar scores. In the case of imaging data, we also consider a constant term modeling
brain areas which don’t exhibit any intensity changes over time. This is done by including
constant matrix terms Zm that we need to estimate. We assume for a given modality m
that the vectors Zm

p: are common to every subjects. Finally, for each modality m, scalar
score c, and subject p, we assume Gaussian observational noise Emp: ∼ N (0, σ2

mI), and
Hp,c ∼ N (0, ν2

c ) for respectively imaging and scalar information.

Therefore, if we consider the data from modality m and scalar c of patient p observed at
time fp(τ) we have:

Y m
p: (fp(τ), θm, ψm) = Smp: (fp(τ), θm)Am(ψm) +Zm

p: + Emp: ,

V p,c(fp(τ), θc) = Up,c(fp(τ), θc) + Hp,c.
(2.2)

We denote by θm and θc the temporal parameters related respectively to the modality m
and scalar feature c, while ψm represents the set of spatial parameters of modality m. We
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assume conditional independence across modalities and scalar scores given the time-shift
information:

p(Y ,V |A,S,Z,U , δ, σ, ν) =
(∏
m

p(Y m|Am,Sm,Zm, δ, σm)
)(∏

c

p(V :c|U :c, δ, νc)
)
.

(2.3)

Relying on classical regression formulation, we assume exchangeability across subjects
allowing us to derive the data likelihood for a given modality m. According to the
generative model we can write:

p(Y m|Am,Sm,Zm, δ, σm) =
(∏

p

1
(2πσ2

m)
Fm

2
exp(− 1

2σ2
m

||Y m
p: (fp(τ), θm, ψm)

− Smp: (fp(τ), θm)Am(ψm)−Zm
p: ||2)

)
.

(2.4)

Naturally, a similar equation holds for p(V :c|U :c, δ, νc).

Within a Bayesian modeling framework, we wish to maximize the marginal log-likelihood
log(p(Y ,V |Z, δ, σ, ν)), to obtain posterior distributions for the spatio-temporal processes.
Since the derivation of this quantity in a closed-form is not possible, we tackle this
optimization problem through stochastic variational inference. Based on this formulation,
in what follows we illustrate our model by detailing the variational approximations
imposed on the spatio-temporal sources, along with the priors and constraints we impose
to represent the data (Sections 2.3.3 and 2.3.4). Finally, we detail the variational lower
bound and optimization strategy in Section 2.3.5. For ease of notation we will drop the
m and c indexes in Sections 2.3.3 and 2.3.4. As a result the matrix S will indistinctly
refer to either any Sm or U , while matrix A will refer to any Am, and Y to any Y m.
For a given modality m, the number of patients P will be indexed by p, the number of
sources Nm or the number of scalar scores C will be indexed by n, and finally f will
index the number of imaging features Fm.

2.3.3 Spatio-temporal processes

Temporal sources

In order to flexibly account for non-linear temporal patterns, the temporal sources are
encoded in a matrix S in which each column S:n is a GP representing the evolution of
source n and is independent from the other sources. To allow computational tractability
within a variational setting, we rely on the GP approximation proposed in [Cutajar, 2017],
through kernel approximation via random feature expansion [Rahimi, 2008]. Within
this framework, a GP can be approximated as a Bayesian Neural Network with form:
S:n(t) = φ(t(ωn)T )wn. For example, in the case of the Radial Basis Function (RBF) co-
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variance, ωn is a linear projection in the spectral domain. It is equipped with a Gaussian
distributed prior p(ωn) ∼ N (0, lnI) with a zero-mean and a covariance parameterized
by a scalar ln, acting as the length-scale parameter of the RBF covariance. The non-linear
basis functions activation is defined by setting φ(·) = (cos(·), sin(·)), while the regression
parameter wn is given with a standard normal prior. The GP inference problem can be
conveniently performed by estimating approximated variational distributions for all the
ωn and wn (Section 2.3.5). We will respectively denote by Ω and W the block diagonal
matrices whose blocks are the (ωn)T and wn. Considering the N temporal sources, we
can write p(Ω) =

∏
n p(ωn) and p(W ) =

∏
n p(wn).

We wish also to account for a steady evolution of the temporal processes, hence constrain-
ing the temporal sources to monotonicity. This is relevant in the medical case, where
one would like to model the steady progression of a disease from normal to pathological
stages. In our case, we want to constrain the space of the temporal sources to the
set of solutions Cn = {S:n(t) | S′:n(t) ≥ 0 ∀ t}. This can be done done consistently
within the regression setting of [Riihimäki, 2010], and in particular with the GP random
feature expansion framework as shown in [Lorenzi, 2018]. In that work, the constraint
is introduced as a second likelihood term on the temporal sources dynamics:

p(C|S′, γ) =
∏
p,n

(1 + exp(−γS′p,n(t)))−1, (2.5)

where S′ contains every derivatives S′:n, γ controls the magnitude of the monotonicity
constraint, and C =

⋂
n Cn. According to [Lorenzi, 2018] this constraint can be specified

through the parametric form for the derivative of each S:n:

S′:n(t) = dφ(t(ωn)T )
dt

wn. (2.6)

This setting leads to an efficient scheme for estimating the temporal sources through
stochastic variational inference (Section 2.3.5).

Spatial sources.

According to the model introduced in Section 2.3.2, each observation Y p: is obtained as
the linear combination at a specific time-point between the temporal and spatial sources.
In order to deal with the multi-scale nature of the imaging signal, we propose to represent
the spatial sources at multiple resolutions. To this end, we encode the spatial sources
in a matrix A whose rows An: represent a specific source at a given scale. The scale is
prescribed by a convolution operator Σn, which is a applied to a map Bn: that we wish
to infer. This problem can be specified by defining An: = Bn:Σn, where Σn is an F × F
Gaussian kernel matrix imposing a specific spatial resolution. The length-scale parameter
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λn of the Gaussian kernel is fixed for each source, to force the model to pick details at
that specific scale. Due to the high-dimension of the data we are modeling, performing
stochastic variational inference in this setting raises scalability issues. For instance, if we
assume a Gaussian distribution N (µBn: , diag(Λ)) for Bn:, the distribution of the spatial
signal would be p(An:) ∼ N (µBn:Σ

n,Σndiag(Λ)(Σn)T ). As a result, sampling from
p(An:) is not computationally tractable due to the size of the covariance matrix, which
prevents the use of standard inference schemes on Bn:. This can be overcome thanks to
the separability of the Gaussian convolution kernel [Marquand, 2014; Lorenzi, 2015b],
according to which the 3D convolution matrix Σn can be decomposed into the Kronecker
product of 1D matrices, Σn = Σn

x ⊗Σn
y ⊗Σn

z . This decomposition allows to efficiently
perform standard operations such as matrix inversion, or matrix-vector multiplication
[Saatçi, 2011]. Thanks to this choice, we recover tractability for the inference of Bn:

through sampling, as required by stochastic inference methods [Kingma, 2013].

2.3.4 Sparsity

In order to detect specific brain areas involved in neurodegeneration, we propose to
introduce a sparsity constraint on the maps (or codes) Bn:. Consistently with our
variational inference scheme, we induce sparsity via Variational Dropout as proposed
in [Kingma, 2015b]. This approach leverages on an improper log-scale uniform prior
p(|Bn:|) ∝

∏
f 1/|Bn,f |, along with an approximate posterior distribution:

q1(B) =
N∏
n=1
N (Mn:, diag(αn,1M2

n,1...αn,FM
2
n,F )). (2.7)

In this formulation, the dropout parameter αn,f is related to the individual dropout prob-
ability pn,f of each weight by αn,f = pn,f (1− pn,f )−1. When the parameter αn,f exceeds
a fixed threshold, the dropout probability pn,f is considered high enough to ignore the
corresponding weight Mn,f by setting it to zero. However, this framework raises stability
issues affecting the inference of the dropout parameters due to large-variance gradients,
thus limiting pn,f to values smaller than 0.5. To tackle this problem, we leverage on the
extension of Variational Dropout proposed in [Molchanov, 2017]. In this setting, the
variance parameter is encoded in a new independent variable P n,f = αn,fM

2
n,f , while

the posterior distribution is optimized with respect to (M ,P ). Therefore, in order to
minimize the cost function for large variance P n,f → ∞ (αn,f → ∞ i.e pn,f → 1), the
value of the weight’s magnitude must be controlled by setting to zero the corresponding
parameter Mn,f . As a result, by dropping out weights in the code, we sparsify the
estimated spatial maps, thus better isolating relevant spatial sub-structures. Spatial
correlations in the images are obtained thanks to the convolution operation detailed in
Section 2.3.3.
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2.3.5 Variational inference

We detailed in the previous sections the choices of priors and constraints that we apply
to the spatio-temporal processes in order to plausibly model the data. To illustrate the
overall formulation of the method, we provide in Figure 2.2 the graphical model over
the M modalities in the case of imaging data. Naturally, this graph simplifies when we
deal with scalar data as we don’t need to account for any spatial dependence. To infer

δ
Figure 2.2: Graphical model for imaging data, Y = {Y m}.

the time-shift parameter δ, the sets of parameters θm, θc, and ψm, as well as Z, σ and ν,
we need to jointly optimize the data evidence according to priors and constraints:

log(p(Y ,V , C|Z, δ, σ, ν, γ)) =
∑
m

log(p(Y m, Cm|Zm, δ, σm, γm)) +
∑
c

log(p(V :c, Cc|δ, νc, γc)).

(2.8)

We tackle the optimization of Equation (2.8) via stochastic variational inference. Fol-
lowing [Cutajar, 2017] and [Lorenzi, 2018] we introduce approximations, q2(Ωm) and
q3(Wm) in addition to q1(Bm) in order to derive a lower bound Lm for each modality.
We recall that the temporal trajectories Sm and U are treated similarly as described
in Section 2.3.3. We also note that the choice of distributions q1, q2 and q3 is the same
across modalities, while their parameters will be inferred independently. This leads to:
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log(p(Y m, Cm|Zm, δ, σm, γm)) >Eq1,q2,q3 [log(p(Y m|Bm,Ωm,Wm,Zm, δ, σm))]

+ Eq2,q3 [log(p(Cm|Ωm,Wm, δ, γm))]

−D[q1(Bm)||p(Bm)]−D[q2(Ωm)||p(Ωm)]

−D[q3(Wm)||p(Wm)],

log(p(V c:, Cc|δ, νc, γc)) >Eq2,q3 [log(p(V c:|Ωc,W c, δ, σc))]

+ Eq2,q3 [log(p(Cc|Ωc,W c, δ, γc))]

−D[q2(Ωc)||p(Ωc)]−D[q3(W c)||p(W c)]

(2.9)

Where D refers to the Kullback-Leibler (KL) divergence. Combining the lower bounds of
the different modalities we obtain:

log(p(Y ,V , C|Z, δ, σ, ν, γ)) >
∑
m

Lm +
∑
c

Lc. (2.10)

A detailed derivation of the lower bound is given in Appendix 2.6.1. The approximated
distributions q2(Ωm) and q3(Wm) are factorized across GPs such that:

q2(Ωm) =
Nm∏
n=1

q2(ωn)m =
Nm∏
n=1

Nrf∏
j=1
N (Rn,j ,Q

2
n,j)m,

q3(Wm) =
Nm∏
n=1

q3(wn)m =
Nm∏
n=1

Nrf∏
j=1
N (T n,j ,V 2

n,j)m,

(2.11)

where Nrf is the number of random features used for the projection in the spectral
domain. Using Gaussian priors and approximations we introduced above, we can ob-
tain a closed-form formula for the KL divergence. Moreover, the choice of prior and
approximate posterior distribution for the maps of Bm leads to an approximation for the
divergence D[q1(Bm)||p(Bm)] detailed in [Molchanov, 2017]. This allows to analytically
compute all the KL terms in our cost function. Formulas for the KL divergences are
detailed in Appendix 2.6.2.

Finally, we optimize the individual time-shifts δ = {δp}Pp=0,Z, σ = {σm}Mm=1, ν = {νc}Cc=1
as well as the overall sets of spatio-temporal parameters θ = {θm}Mm=1 ∪ {θc}Cc=1 and
ψ = {ψm}Mm=1.

θ = {Rm
n:,Q

m
n:,T

m
n:,V

m
n:, ln, n ∈ [1, Nm]}Mm=1 ∪ {Rc:,Qc:,T c:,V

c
c:, lc}Cc=1,

ψ = {Mm
n:,P

m
n:, n ∈ [1, Nm]}Mm=1.

(2.12)

Following [Kingma, 2013] and using the reparameterization trick, we can efficiently
sample from the approximated distributions q1, q2 and q3 to compute the two expectation
terms from Equation (2.9) for each modality. We chose to alternate the optimization

22 Chapter 2 Monotonic Gaussian Process for Spatio-Temporal Disease Progression Modeling



between the spatio-temporal parameters and the time-shift. We set γm to the minimum
value that gives monotonic sources. This was done through multiple tests on data batches
with different numbers of imaging features Fm and sources Nm. We empirically found
that monotonicity was enforced when the magnitude of γm was in the order of Fm ×Nm.
The threshold for the dropout probability above which we set a weight Bm

n,f to zero
was fixed at 95% (i.e α = 19), while the σm and νm were optimized during training
along with the spatio-temporal parameters. The model is implemented and trained using
the Pytorch library [Paszke, 2019]. The complete experimental setting is detailed in
Appendix 2.6.3. We also provide a pseudo-code detailing the optimization procedure
in Appendix 2.6.4. In the following sections we will refer to our method as Monotonic
Gaussian Process Analysis (MGPA).

2.4 Experiments and Results

In this section we first benchmark MGPA on synthetic data to demonstrate its recon-
struction and separation properties while comparing it to standard sources separation
methods. We finally apply our model on a large set of medical data from a publicly avail-
able clinical study, demonstrating the ability of our method to retrieve spatio-temporal
processes relevant to AD, along with a time-scale describing the course of the disease.

2.4.1 Synthetic tests on spatio-temporal trajectory separation

For the synthetic tests we considered the case where the data is associated to a sin-
gle imaging modality only. We tested MGPA on synthetic data generated as a linear
combination of temporal functions and 3D activation maps at prescribed resolutions.
The goal was to assess the method’s ability to identify the spatio-temporal sources
underlying the data. We benchmarked our method with respect to ICA, Non-Negative Ma-
trix Factorization (NMF), and Principal Component Analysis (PCA), which were applied
from the standard implementation provided in the Scikit-Learn library [Pedregosa, 2011].

The benchmark was specified by defining a 10-folds validation setting, generating the
data at each fold as a linear combination of temporal sources S̃(t) = [S̃:0(t), S̃:1(t)], and
spatial maps Ã = [Ã0:, Ã1:]. The data was defined as Y p: = S̃p:(tp)Ã+ Ep: over 50 time
points tp, where tp was uniformly distributed in the range [0, 0.7], and Ep: ∼ N (0, σ2I).
The temporal sources were specified as sigmoid functions S̃p,i(tp) = 1/(1+exp(−tp+αi)),
while the spatial structures had dimensions (30× 30× 30) such that Ãi: = B̃i:Σ̃

i
. The

Σ̃i
were chosen as Gaussian convolution matrices with respective length-scale of λ = 2

mm and λ = 1 mm. The B̃i: were randomly sampled sparse 3D maps.

Variable selection. We applied our method by specifying an over-complete set of six
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sources with respective spatial length-scale of λ = {2, 2, 1, 1, 0.5, 0.5 mm}. Figure 2.3
shows an example of the sparse maps obtained for a specific fold. The model prunes
the signal for most of the maps, while retaining two sparse maps, B0: and B4:, whose
length-scale are λ = 2 mm and λ = 1 mm, thus correctly estimating the right number
of sources and their spatial resolution. As it can be qualitatively observed in Figure 2.3,
we notice that the estimated sparse code convolved with a Gaussian kernel matrix with
λ = 1 mm is closer to its ground truth than the one convolved with a length-scale λ = 2
mm. According to our tests, sparse codes associated to high resolution details (low λ)
are indeed more identifiable. On the contrary, the identifiability of images obtained via
a convolution operator with larger kernels (large λ) is lower, since these maps can be
equivalently obtained through the convolution of different sparse codes.

λ = 2 mm λ = 1 mm λ = 0.5 mm

Ground Truth

~

λ = 2 mm

~

λ = 1 mm

Estimated Sparse Codes

Figure 2.3: Slices extracted from the six sparse codes and the ground truth. Blue: Rejected
points. Yellow: Retained points.

Sources separation. We observe in Table 2.1 that the lowest Mean-Squared Error (MSE)
for the temporal sources reconstruction is obtained by MGPA, closely followed by ICA.
Similarly, our model and ICA show the highest Structural Similarity (SSIM) score [Wang,
2004], which quantifies the image reconstruction accuracy with respect to the ground
truth maps, while accounting for the inter-dependencies between neighbouring pixels.
An example of image reconstruction from a sample fold is illustrated in Figure 2.4. In this
standard benchmark, we note that MGPA leads to comparable results with respect to the
state of the art. In the following section, we compare the models in the more challenging
setting in which the time-line has to be estimated as well.

2.4.2 Synthetic tests on trajectory separation and time
reparameterization

In this test, we modify the experimental benchmark by introducing a further element of
variability associated to the time-axis. The temporal and spatial sources were modelled
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Table 2.1: MSE and SSIM between respectively the ground truth temporal and spatial sources
with respect to the ones estimated by the different methods.

Temporal (MSE) Spatial (SSIM)
MGPA (8± 4).10−5 98%± 1
ICA (6± 3).10−4 97%± 2
NMF (3± 2).10−2 40%± 17
PCA 0.44± 10−3 15%± 1

MGPA mapsICA maps

MGPA

Temporal sources

MGPA

0 21
Maps Intensity

S0Ground Truth

S1

Spatial maps

A0

A1

Figure 2.4: Spatio-temporal reconstruction when inference on the time-line is not required.
Spatial maps: Sample slice from ground truth images (A0 λ = 2 mm, A1 λ = 1 mm),
the maps estimated by ICA, and the ones estimated by MGPA. Temporal sources:
Ground truth temporal sources (red) along with sources estimated by ICA (green)
and MGPA (blue).
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following the same procedure as in Section 2.4.1, however the observations were mixed
along the temporal axis. To do so we generated longitudinal data as Y p,j,: = S̃p:(t)Ã+Ej:,
by sampling between 1 and 10 images per time-point and randomly re-arranging them
along the time-axis (cf. time-shift tp of each observation at initialization in Figures 2.5
and 2.6, panel “Time-Shift”). The goal was to assess the sources separation performances
of MGPA when the time-line is unknown. The experiment was run on 10 folds and Figures
2.5 and 2.6 illustrate the sources estimation for two different folds. We present these
two figures to demonstrate how the time-shift inference affects the temporal sources
reconstruction. Since the model is agnostic of a time-scale, we note that the time-shift
may have a different range than the original time-axis. However, its relative ordering
should be consistent with the original time points. We fitted a linear regression model
over the 10 folds between the original time and the estimated time-shift parameter, and
obtained an average R2 coefficient of 0.98 with a standard deviation of 0.005 (cf. Table
2.2). This is illustrated for two different folds in the Time-Shift panel of Figures 2.5 and

Table 2.2: MSE and SSIM between respectively the ground truth temporal and spatial sources
with respect to the ones estimated by MGPA. R2 coefficient of the linear regression
between the original time-line and the estimated time-shift.

Temporal (MSE) Spatial (SSIM) R2

MGPA (2± 0.8).10−2 95%± 4 0.98± 0.005

2.6, where we observe a strong linear correlation with the original time-line, meaning
that the algorithm correctly re-ordered the data with respect to the original time-axis.
However, we notice in Table 2.2 that the MSE of the temporal sources significantly
increased, due to the additional difficulty brought by the time-shift estimation. Indeed,
in order to reconstruct the temporal signal we need to perfectly re-align hundreds of
observations. This is the case in Figure 2.5 (optimal reconstruction result), where the
time-shift is highly correlated with the original time-line, allowing to distinguish every
single observation and reconstruct the original temporal profiles. Whereas in Figure 2.6
(sub-optimal reconstruction result), the estimated time-shift doesn’t exhibit a perfect fit,
and generally underestimates the time-reparameterization for the later and earlier time
points. This is related to the challenging setting of reconstructing the time-line identified
by the original temporal sources. Indeed, we observe that S:0 reaches a plateau for
early time points, while S:1 is flat for later ones. This behaviour increases the difficulty
of differentiating time points with low signal differences. As a result, it impacts the
time-shift optimization and adds variability to the time-shift estimation performances,
thus deteriorating the reconstruction of the temporal sources over the 10 folds compared
to the previous benchmark. The spatial sources estimation remains comparable to the one
without time-shift both quantitatively, with an average SSIM of 95%, and qualitatively, as
shown in Figures 2.5 and 2.6. Within this setting, ICA, NMF and PCA poorly perform
as they can’t reconstruct the time-line. Results obtained using these three methods are
provided in Appendix 2.6.5.
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Figure 2.5: Spatio-temporal reconstruction when inference on the time-line is required. Optimal
reconstruction result. Spatial maps: Sample slice from ground truth images (A0
λ = 2 mm, A1 λ = 1 mm) and estimated spatial sources. Temporal sources: In red
the original temporal sources, in blue the estimated temporal sources. Time-Shift:
Time-shift tp of each image at initialization (top), and after estimation (bottom). In
blue, linear fit with the ground truth.

Time-Shift tp
Ground Truth MGPA maps

Temporal sources
S0

0 21
Maps Intensity

S1
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Figure 2.6: Spatio-temporal reconstruction when inference on the time-line is required. Sub-
optimal reconstruction result. Spatial maps: Sample slice from ground truth images
(A0 λ = 2 mm, A1 λ = 1 mm) and estimated spatial sources. Temporal sources: In
red the original temporal sources, in blue the estimated temporal sources. Time-Shift:
Time-shift tp of each image at initialization (top), and after estimation (bottom). In
blue, linear fit with the ground truth.
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2.4.3 Application to spatio-temporal brain progression
modeling

Data processing

Data used in the preparation of this work were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. For up-to-date information, see www.adni-info.org.

We selected a cohort of 544 amyloid positive subjects of the ADNI database composed of
103 controls (NL), 164 Mild Cognitive Impairment (MCI), 114 AD patients, 34 healthy
individuals converted to MCI or to AD (NL converter) and 129 MCI converted to AD
(MCI converter). The term amyloid positive refers to subjects whose amyloid level in
the cerebrospinal fluid (CSF) is below the nominal cutoff of 192 pg/ml. Conversion to
MCI or AD was determined using the last follow-up available information. We provide in
Table 2.3 socio-demographic and clinical information across the different groups.

Table 2.3: Baseline socio-demographic and clinical information for study cohort. Average values
and standard deviation in parenthesis. NL: normal individuals, NL converter: nor-
mal subjects who converted to MCI or to AD, MCI: mild cognitive impairment, MCI
converter: MCI subjects who converted to AD, AD: Alzheimer’s patients. ADAS13:
Alzheimer’s Disease Assessment Scale-cognitive subscale, 13 items. FAQ: Functional
Assessment Questionnaire. FDG: (18)F-fluorodeoxyglucose Positron Emission Tomog-
raphy (PET) imaging. AV45: (18)F-florbetapir Amyloid PET imaging.

Group NL NL MCI MCI AD
converter converter

N 103 34 164 129 114
Age 73 (6) 78 (5) 73 (7) 73 (7) 74 (8)
Education (yrs) 16.3 (3) 16 (3) 15.7 (3) 16 (3) 15.6 (3)
ADAS13 9.1 (4.4) 11.4 (4.3) 14.6 (5.5) 20.4 (6.5) 31.6 (8.5)
FAQ 0.3 (0.7) 0.2 (0.6) 1.9 (2.8) 5.0 (4.6) 13.5 (6.9)
Entorhinal (cm3) 3.8 (0.5) 3.5 (0.5) 3.6 (0.6) 3.2 (0.7) 2.8 (0.6)
Hippocampus (cm3) 7.4 (0.9) 6.9 (0.7) 6.9 (0.9) 6.4 (0.9) 5.9 (0.8)
Ventricles (cm3) 31 (16) 42 (21) 39 (23) 40 (19) 48 (23)
Whole brain (cm3) 1033 (104) 1019 (91) 1058 (103) 1037 (102) 1005 (115)
FDG 1.3 (0.1) 1.3 (0.1) 1.2 (0.1) 1.1 (0.1) 1.0 (0.1)
AV45 1.3 (0.2) 1.3 (0.1) 1.3 (0.2) 1.4 (0.2) 1.5 (0.2)

MRI, FDG-PET and AV45-PET of each individual were processed in order to obtain respec-
tively, volumes of gray matter density, glucose uptake, and amyloid load in a standard
anatomical space.

MRI processing protocol. Baseline MRI images were analyzed according to the SPM12
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processing pipeline [Ashburner, 2000]. Each image was initially segmented into grey,
white matter and CSF probabilistic maps. Grey matter images were used for the following
analysis, normalized to a group-wise reference space via DARTEL [Ashburner, 2007], and
modulated using the Jacobian determinant of the subject-to-template transformation.
The subsequent modeling was carried out on the normalised images at the original spatial
resolution.

PET processing protocol. Individuals' baseline PET images were initially affinely aligned to
the corresponding MRI. After scaling the intensities to the cerebellum, the images were
normalized to the grey matter template obtained with DARTEL and smoothed with a
FWHM parameter of 4.55.

Images have dimension 102 × 130 × 107 before vectorization, leading to 1, 418, 820
spatial features per patient. These spatial features represent for each voxel their gray
matter concentration in the case of MRI images, their glucose metabolism for FDG-PET
images, or their amyloid concentration for AV45-PET images. To exploit the ability of
our model to automatically adapt to different spatial scales, we chose to keep the MRI
images at their native resolution for the analysis, and thus do not perform additional
smoohting to equalize to the PET FWHM. In addition to the imaging data of each patient,
we also integrate the ADAS13 score assessed by clinicians. High values of this score
indicate a decline of cognitive abilities. We consider three matrices Y MRI , Y FDG, and
Y AV 45 of dimension (543× 1, 418, 820) containing the images of all the subjects, and a
matrix V of dimension (543× 1) containing their ADAS13 score. From now on we will
refer to the data as the block diagonal matrix containing the four matrices Y MRI ,Y FDG,
Y AV 45, and V as described in Section 2.3.2. We note that the analysis is performed
by only considering a single scan per imaging modality and ADAS13 score for each
patient. Therefore, the temporal evolution has to be inferred solely through the analysis
of relative differences between the brain morphologies, glucose metabolisms, amyloid
concentrations and cognitive abilities across individuals.

Model specification

We aim at showing how MGPA applied on the data extracted from the ADNI cohort is able
to temporally re-align patients in order to describe AD progression in a plausible way,
while detecting relevant spatio-temporal processes at stake in AD. The model estimates
AD progression by relying on MR, FDG-PET, AV45-PET scans and ADAS13 score of each
patient. The temporal sources SMRI and SFDG associated respectively to the loss of
gray matter, and to the decrease of glucose uptake, are enforced to be monotonically
decreasing. On the contrary, the temporal sources SAV 45 and U :ADAS13, modeling
respectively the evolution of amyloid concentration, and ADAS13 score, are enforced
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to be monotonically increasing. Since we don’t consider any information about the
disease stage of each individual before applying our method, all the observations are
initialized at the same time reference τ = 0. Therefore, as for the tests in Section 2.4.2,
the time-shift reparameterization describes a relative re-ordering of the subjects not
related to a specific time-unit. To decompose the imaging data we apply our model
by specifying an over-complete basis of six sources with λ = {8, 8, 4, 4, 2, 2 mm}, to
cover both different scales and the associated variety of temporal evolution. Due to the
high-dimension of the data matrix, the computations were parallelized over six GPUs,
and the model required eighteen hours to complete the training. Details on the model
convergence during training are provided in Appendix 2.6.6.

Estimated spatio-temporal brain dynamics

In Figure 2.7 we show the spatio-temporal processes retained by the model for each
imaging modality. Interestingly, the model adapts to the spatial resolution of MRI and PET
images. Indeed, we notice that the model accounts for the high-resolution of MRI images
by retaining a source associated to the lowest length-scale (λ = 2 mm). Concerning PET
data, we observe that the induced sparsity discards the highest resolution codes (λ = 2
mm) for both FDG and AV45, highlighting the ability of the model to adapt to the coarser
resolution of the PET signal.

In the case of MRI data, two sources were retained at two different resolutions (λ = 4
mm and λ = 2 mm). Source SMRI

4 describes gray matter loss encompassing a large
extent of the brain with a focus on cortical areas (see AMRI

4 ). We note that this map also
targets subcortical areas such as the hippocampi, which are key regions of AD. Source
SMRI

2 (λ = 4 mm) indicates a mild decrease of gray matter which accelerates in the
latest stages of the disease, and targets the temporal poles (seeAMRI

2 ). It is interesting to
notice that this differential pattern of gray matter loss also affects the parahippocampal
region, whose atrophy is known to be prominent in AD [Echavarri, 2011]. These results
underline the complex evolution of brain atrophy, and the ability of the model to disen-
tangle spatio-temporal processes mapping different regions involved in the pathology
[Frisoni, 2010; Bateman, 2012]. Concerning the spatio-temporal processes extracted
from the FDG-PET data, we see on Figure 2.7 that the model retained two sources at the
coarsest resolutions (λ = 8 mm). Source SFDG1 indicates a pattern of hypometabolism
that tends to plateau and which involves most of the brain regions, thus describing a
global effect of the pathology on the glucose uptake. Source SFDG0 describes a linear
pattern of hypometabolism targeting areas such as the precuneus and the parietal lobe,
which are known to be strongly affected during the evolution of the disease [Brown,
2014]. Finally, the model extracted two spatio-temporal sources from the AV45-PET data
at two different resolutions (λ = 8 mm and λ = 4 mm). We observe that source SAV 45

2
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highlights an increase of amyloid deposition mapping a large extent of the brain, such
as the parietal and frontal lobes as well as temporal areas, thus concurring with clinical
evidence [Rodrigue, 2009]. Similarly to the FDG-PET processes, we have a source SAV 45

0
exhibiting a differential pattern of amyloid deposition targeting mostly frontal, temporal,
occipital areas and precuneus.

The estimated spatio-temporal processes can be combined to obtain an estimated evo-
lution SmAm of the brain along the time-shift axis for each modality. In Figure 2.8,
we show the ratio |Smp:A

m − Sm0:A
m|/Sm0:A

m between the image predicted at four time-
points tp and the image predicted at t0 for the three imaging modalities. This allows us
to visualize the trajectory of a brain going from a healthy to a pathological state in terms
of atrophy, glucose metabolism and amyloid load according to our model.

Finally, we also applied ICA, NMF and PCA on the ADNI data, showing that the as-
sociated results are characterized by poor interpretability and high variability. The
complete experimental setting and results are detailed in Appendix 2.6.7.

Model Consistency

To verify the plausibility of the fitted model, we compare in Figure 2.9 the concentration
predicted by the model and the raw concentration measures in different brain areas
for the three imaging modalities. We observe a decrease of gray matter and glucose
metabolism as we progress along the estimated time-line, allowing to relate large time-
shift values to lower gray matter density and glucose uptake. Moreover, we notice the
agreement between the predictions made by the model (in blue) and the raw concen-
tration measures (in red). In the case of AV45 data there is only a mild increase of
amyloid load according to the model, probably due to the fact that the subjects selected
in the cohort are already amyloid positive. As a result, they already show a high baseline
amyloid level concentration, close to plateau levels.

In Figure 2.10, we show the estimated GP U :ADAS13. We observe that the model is
able to plausibly describe the evolution of this cognitive score, while demonstrating a
larger variability than in the case of imaging modalities.

Plausibility with respect to clinical evidence

We assessed the clinical relevance of the estimated time-shift by relating it to independent
medical information which were not included in the model during training. To this end,
we compared the estimated time-shift to ADAS11, MMSE and FAQ scores. High values of
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Figure 2.7: Estimated spatio-temporal processes for the three imaging modalities. The time-scale
was re-scaled to the arbitrary range [0, 1].
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Figure 2.8: Ratio between the model prediction at time tp and the prediction at t0 for the three
imaging modalities. The time-scale was re-scaled to the arbitrary range [0, 1].

0.0 0.25 0.5 0.75 0.0 0.25 0.5 0.75

0.0 0.25 0.5 0.75 0.0 0.25 0.5 0.75 0.0 0.25 0.5 0.75

(L+R) (L+R) (L+R)

(L+R)

0.0 0.25 0.5 0.75

0.0 0.25 0.5 0.75

(L+R) (L+R)

(L+R) (L+R) (L+R)

0.0 0.25 0.5 0.75 0.0 0.25 0.5 0.75

Figure 2.9: Model prediction averaged on specific brain areas (blue line), and observed values
(red dots), along the estimated time-line for the three imaging modalities. L and R
respectively stand for left and right. The time-scale was re-scaled to the arbitrary
range [0, 1].

2.4 Experiments and Results 33



0.25 0.75

ADAS13 Evolution

Figure 2.10: Model prediction of the ADAS13 score (blue line), and observed values (red dots)
along the estimated time-line. The time-scale was re-scaled to the arbitrary range
[0, 1].

ADAS11 and FAQ or low values of MMSE indicate a decline of performances. We show
in Figure 2.11 that the estimated time-shift correlates with a decrease of cognitive and
functional abilities. In particular, a cubic model slightly better describes the relationship
between ADAS11 and the time-shift (according to BIC and AIC), with a significance
for the cubic coefficient of p = 0.04. Concerning MMSE and FAQ, quadratic and linear
models were almost equivalent; the significance of the linear coefficients was p < 0.01,
while the quadratic coefficient was never significant. Pearson correlation coefficients for
ADAS11, FAQ and MMSE were respectively of 0.49, 0.41, and −0.45, with corresponding
p-values p < 0.01.

The box-plot of Figure 2.12 shows the time-shift distribution across clinical groups.
We observe an increase of the estimated time-shift when going from healthy to patho-
logical stages. The high uncertainty associated to the MCI group is due to the broad
definition of this clinical category, which includes subjects not necessarily affected by
dementia. We note that MCI subjects subsequently converted to AD (MCI converter)
exhibit higher time-shift than the clinically stable MCI group, highlighting the ability of
the model to differentiate between conversion status. A similar distinction can be noticed
between NL and NL converter groups. We found significant differences between median
time-shift for NL-NL converter, MCI-MCI converter and MCI converter-AD (comparisons
p < 0.01, Figure 2.12). It is also important to recall that this result is obtained from the
analysis of a single scan per imaging modality and ADAS13 score for each patient.
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Figure 2.11: Evolution of the ADAS11 (left), FAQ (middle) and MMSE (right) along the estimated
time-line. The time-scale was re-scaled to the arbitrary range [0, 1].
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Figure 2.12: Distribution of the time-shift values over the different clinical stages. The time-scale
was re-scaled to the arbitrary range [0, 1].
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2.5 Discussion

We presented a generative approach to spatio-temporal disease progression modeling
based on matrix factorization across temporal and spatial sources. The proposed appli-
cation on a large set of medical images shows the ability of the model to disentangle
relevant spatio-temporal processes at stake in AD, along with an estimated time-scale
related to the disease evolution.

The model was compared to standard methods such as ICA, NMF and PCA since they
perform blind source separation similarly to our method. This allowed us to demonstrate
the advantages of building more complex approaches such as MGPA for the problem
we tackle in this work. Concerning the comparison with the state of the art in disease
progression modelling, to the best of our knowledge the two closest approaches are
[Marinescu, 2019a] and [Koval, 2017]. However, these two methods are specifically
designed for modelling data defined on brain surfaces. On the contrary, our method aims
at progression modeling using full 3D volumetric information. The data dimension we
tackle is thus an order of magnitude greater than the one of [Marinescu, 2019a] and
[Koval, 2017], preventing these methods to scale to the spatial geometry of our data.

There are several avenues of improvement for the proposed approach. We found that the
optimization is highly sensitive to the initialization of the spatial sources. This is typical of
such complex non-convex problems, and requires further investigations to better control
the algorithm convergence. More generally, the problem of source separation tackled in
this work is intrinsically ill-posed, as the given data can be explained by several solutions.
This was illustrated for example in our tests on synthetic data (Section 2.4.2), where the
identification of the sources was more challenging in the case of coarse resolution codes
and of flat temporal sources. We note however that this issue is general, and intrinsic to
the problem of disease progression modeling.

Indeed, identifiability ultimately remains a critical issue when training the model. Con-
cerning the spatio-temporal parameters, their number is extremely high due to the fact
that we scale our method to 3D volumetric images. Estimating a single spatial source
from a single modality requires to estimate the mean and variance of its sparse code, i.e
1, 418, 820× 2 = 2, 837, 640 parameters. In practice, hypotheses are explicitly introduced
to reduce the number of effective parameters. For instance, the convolution of the spatial
maps using Gaussian kernels allows to enforce smoothness, and thus reduces the number
of effective degrees of freedom via spatial correlation across the related parameters. This
is equivalent to the regularization applied to image registration problems, in which the
number of parameters is of the same order of magnitude than in our setting. Moreover,
our sparsity constraint allows to sensibly reduce the number of parameters at test time.
Indeed, after training, the sparse codes of the MRI sources have 2, 213, 359 non-zero
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elements instead of 17, 025, 840, which amounts in 87% reduction in the number of
parameters. In the case of the FDG-PET and AV45-PET sparse codes, the number of
non-zero elements at test time is respectively of 9, 023, 695 and 1, 362, 067, which is
equivalent to a reduction in the number of parameters of 53% and 92%. Nonetheless,
this high number of parameters still remains a factor of potential convergence issues
during the parameters estimation procedure. We present graphs in Appendix F showing
the evolution of the different terms composing the cost function during training. These
figures show convergence profiles typical of those obtained with stochastic variational
inference schemes, such as with Variational Autoencoders or Bayesian Neural Networks.
Moreover, the stability of the solution has been ensured through multiple runs of the
model. Finally, as mentioned in Section 2.3.4, the Variational Dropout framework leads
to stability issues affecting inference, which are mostly due to the use of an improper
prior. This problem may motivate the identification of alternative ways to induce sparsity
on the spatial maps.

In this work, we modeled the time-shift of each subject as a translation with respect to
a common temporal reference. However, since pathological trajectories are different
across individuals, it would be valuable to account for individual speed of progressions
by introducing a scaling effect, as it has been proposed for example in [Koval, 2017;
Schiratti, 2015]. This was not in the scope of the current study, as we focused on the
analysis of cross-sectional data, thus having only one data point per subject. Therefore,
one of the main extensions of this model will be the integration of longitudinal data for
each individual, which will allow a more specific time-reparameterization.

Our noise model for the reconstruction problem of Equation 2.2 is homoscedastic and
i.i.d. Gaussian with zero mean. For this reason, data variability for the entire image
is encoded by the variance parameter of the Gaussian noise. Similarly as in standard
regression problems, this modelling choice has been motivated to promote simplicity
of the model and computational efficiency. However, around 40% of the values in the
brain images do not provide relevant information as they represent zero and constant
background areas. For this reason, during training, the model can perfectly fit this
background and increases its confidence on the overall regression solution, thus lowering
the value of the noise variance σm (cf Figure 2.9). This is in contrast to what we observe
with the ADAS13 data (cf Figure 2.10), where the problem corresponds to standard
univariate regression. A potential way to fix this issue could be to train the model only
on non-zero image areas, or by implementing an heteroscedastic noise model. However,
this latter solution may further increase the number of model parameters.

The modeling results are also sensitive to the specification of the spatio-temporal pro-
cesses priors. In our case, the monotonicity constraint imposed to the GPs may be too
restrictive to completely capture the complexity of the progression of neurodegeneration.
From a clinical point of view, the model could also benefit from the integration of data
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measuring the concentration of Tau protein via PET imaging, in order to quantify key
neurobiological processes associated to AD [Kametani, 2018].

In order to guarantee that all the subjects belong to the same pathological trajectory
due to AD, the model has only been applied to a cohort of amyloid positive subjects.
However, this choice restricts the dynamics of evolution that we could estimate. Indeed,
only considering these subjects narrows down the time-line of the pathology, as we study
patients at potentially advanced disease stages. Therefore, it would be interesting in
a future work to apply the model on a cohort including amyloid negative subjects, to
model the brain dynamics over the whole disease natural history. This extension would
require to define a proper methodology for disentangling sub-trajectories associated,
for example with normal ageing and different pathological subtypes [Lorenzi, 2015a;
Sivera, 2019; Young, 2018]. Moreover, we know that many patients diagnosed with
AD can be associated to mixed pathologies such as vascular disease or Lewy bodies.
Therefore, a potential clinical application of our method could be to investigate if the
spatio-temporal dynamics estimated by MGPA are able to disentangle the contribution of
each comorbidity.

Assessment of clinical plausibility of MGPA on the ADNI must be corroborated by further
validation on independent datasets. Therefore, in a future work, we wish to validate the
model on different cohorts to demonstrate its generalization properties. The validation
step for each subject would be done by estimating the time-point minimizing the cost
between the images of each tested individual, and the image progression model previously
estimated on ADNI. The estimated time-shift would provide a measure of the pathological
stage of the individual with respect to the modelled trajectory, and could be then
compared with the clinical diagnosis of the subject, allowing to test the reliability of
our model. This additional validation step could ultimately allow to use the model as a
diagnostic instrument of AD. This validation would require an important effort in terms of
data harmonisation across multiple cohorts, as well as in terms of clinical interpretation.
For this reason, this work will be part of a subsequent publication.

We planned to release the source-code along with instructions in order for the model to
be used by a large audience. It will be available as a complementary tool on the platform
http://gpprogressionmodel.inria.fr/, which already offers a simple front-end to
Gaussian Process Progression model.
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2.6 Appendix

2.6.1 Lower bound derivation

In this Appendix, we detail the complete derivation of the lower bound.

log(p(Y m, Cm|Zm, δ, σm, γm)) = log
[ ∫

p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS
m

dt
, δ, γm)p(Bm)

p(Sm, dS
m

dt
|δ, γ)dBmdSm

]
= log

[ ∫
p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS

m

dt
, δ, γm)p(Bm)

p(dS
m

dt
|Sm, δ, γ)p(Sm)dBmdSm

]
.

(2.13)

By observing that dSm

dt is completely identified by Sm, the equation can be written as:

log(p(Y m, Cm|Zm, δ, σm, γm)) = log
[ ∫

p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS
m

dt
, δ, γm)p(Bm)

p(Sm)dBmdSm
]
.

(2.14)

Similarly this derivation can be applied to log(p(V :c, Cc|δ, νc, γc)).

log(p(Y m, Cm|Zm, δ, σm, γm)) = log
[ ∫

p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS
m

dt
, δ, γm)p(Bm)

p(Sm)dBmdSm
]

= log
[ ∫

p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)p(Bm)

p(Ωm)p(Wm)dBmdΩmdWm
]

= log
[ ∫

p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)p(Bm)

p(Ωm)p(Wm)q1(Bm)q2(Ωm)q3(Wm)
q1(Bm)q2(Ωm)q3(Wm)dB

mdΩmdWm
]

= log
[
Eq1,q2,q3

p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)
q1(Bm)q2(Ωm)q3(Wm)

p(Bm)p(Ωm)p(Wm)
q1(Bm)q2(Ωm)q3(Wm)

]
≥ Eq1,q2,q3

(
log

[p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)
q1(Bm)q2(Ωm)q3(Wm)

p(Bm)p(Ωm)p(Wm)
q1(Bm)q2(Ωm)q3(Wm)

])
= Eq1,q2,q3 [log(p(Y m|Bm,Ωm,Wm,Zm, δ, σm))]
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+ Eq2,q3 [log(p(Cm|Ωm,Wm, δ, γm))]

−D[q1(Bm)||p(Bm)]−D[q2(Ωm)||p(Ωm)]

−D[q3(Wm)||p(Wm)]. (2.15)

This derivation gives us the lower bound Lm of a given modality m. The same technique
can be used to derive a lower bound for log(p(V c:, Cc|δ, νc, γc)), and by summation over
m and c we obtain the lower bound of Equation 2.10 for log(p(Y ,V , C|Z, δ, σ, ν, γ)).

2.6.2 Kullback-Leibler computation

In this section we provide formulas for computing the three KL terms of the lower bound.
The total KL divergences are:

D[q1(B)||p(B)] =
∑
m

D[q1(Bm)||p(Bm)],

D[q2(Ω)||p(Ω)] =
∑
m

D[q1(Ωm)||p(Ωm)] +
∑
c

D[q1(Ωc)||p(Ωc)],

D[q3(W )||p(W )] =
∑
m

D[q3(Wm)||p(Wm)] +
∑
c

D[q3(W c)||p(W c)].

(2.16)

For ease of notation we will drop the m and c indices and will give formulas for a single
modality. In [Molchanov, 2017], authors provide an approximation of the KL for the
maps B:

−D[q1(B)||p(B)] =
∑
n,f

k1h(k2 + k3 log(αn,f ))− 0.5 log(1 + α−1
n,f )− k1, (2.17)

where h is the sigmoid function and k1 = 0.63576, k2 = 1.87320, k3 = 1.48695.
In the case of Ω and W , we’ve seen that they have Gaussian priors and approximations
which are detailed in Sections 2.3.3 and 2.3.5. As a result we can obtain closed-form
formulas for their KL, leading to:

D[q2(Ω)|p(Ω)] = 1
2
∑
n,j

Q2
n,jln +R2

n,jln − 1− log(Q2
n,jln),

D[q3(W )|p(W )] = 1
2
∑
n,j

V 2
n,j + T 2

n,j − 1− log(V 2
n,j).

(2.18)

By summation over the different modalities we finally obtain the total KL divergences.

2.6.3 Experimental setting

We provide in this Appendix details for the experiments on real data.
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• The number of random features for the GP estimation was set to 10, as it was
enough to recover the temporal sources in the synthetic experiments.

• The γ parameter controlling monotonicity was set to γm = 107 for each imaging
modality (Fm = 1, 418, 820 imaging features and Nm = 6 sources) and γc = 1 for
ADAS13 (Cc = 1 scalar feature).

• The lower bound was optimized using the ADAM optimizer [Kingma, 2015a].

• We used an alternate optimization scheme between the spatio-temporal parameters
and the time-shift of [2000, 1000] iterations repeated 20 times, followed by 30000
iterations in which we only optimized the spatio-temporal parameters.

• The expectation terms in the lower bound were approximated using only one
Monte-Carlo sample as proposed in [Kingma, 2013].

• The table below gives the learning rates (LR) of all the parameters of the model.

Table 2.4: Learning rates (LR) of the different parameters of the model.

θ M P Z σ, ν δ

lr 10−2 10−3 10−1 10−1 10−2 10−4

2.6.4 Optimization procedure

In this Appendix, we first provide a pseudo-code for sampling from a normal distribution
using the reparameterization trick (see Algorithm 1). The second pseudo-code (Algorithm
2) details the steps to compute the lower bound Lm for a given imaging modality m.
We recall that we want to optimize the following sets of parameters (see Section 2.3.5):
δ = {δp}Pp=0, Z, σ = {σm}Mm=1, ν = {νc}Cc=1, θ = {θm}Mm=1∪{θc}Cc=1, and ψ = {ψm}Mm=1.
Where P is the number of subjects, M the number of imaging modalities, C the number
of scalar features, and Nm the number of spatio-temporal sources for a given modality
m.

θ = {Rm
n:,Q

m
n:,T

m
n:,V

m
n:, ln, n ∈ [1, Nm]}Mm=1 ∪ {Rc:,Qc:,T c:,V c:, lc, }Cc=1,

ψ = {Mm
n:,P

m
n:, n ∈ [1, Nm]}Mm=1.

(2.19)

Similarly to Algorithm 2, we can derive a function LOSS_SCALAR when dealing with
scalar scores by removing the computations on the spatial sources. Finally the last
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pseudo-code (Algorithm 3) details the model optimization. For sake of clarity we denote
by Π, the set of all the spatio-temporal parameters of the model.

θ = {Rm
n:,Q

m
n:,T

m
n:,V

m
n:, ln, n ∈ [1, Nm]}Mm=1 ∪ {Rc:,Qc:,T c:,V c:, lc, }Cc=1,

ψ = {Mm
n:,P

m
n:, n ∈ [1, Nm]}Mm=1.

(2.20)

Similarly to Algorithm 2, we can derive a function LOSS_SCALAR when dealing with
scalar scores by removing the computations on the spatial sources. Finally the last
pseudo-code (Algorithm 3) details the model optimization. For sake of clarity we denote
by Π, the set of all the spatio-temporal parameters of the model.

Algorithm 1 Sampling from N (µ,Σ) using the reparameterization trick.

1: function RT(µ,Σ)
2: ε← random sample from N (0, I)
3: z = µ+ Σ

1
2 ε . Gives one sample from N (µ,Σ)

4: Return z
5: end function

Algorithm 2 Compute loss for a given imaging modality m.

1: function LOSS_IMAGE(Y m, θm, ψm,Z
m, σm, δ, γm, Nm, Fm, P )

For ease of notation we drop the m index in the pseudo-code.
2: for n=1 to N do . For each source
3: Bn: = RT(Mn:, diag(P n,:)) . Sampling from q1
4: ωn = RT(Rn:, diag(Q2

n:)) . Sampling from q2
5: wn = RT(T n:, diag(V 2

n:)) . Sampling from q3
6: An: = Bn:Σn . Convolution of the sparse code of source n at a given spatial

resolution
7: S:n(δ) = φ(δ(ωn)T )wn . Compute temporal trajectory of source n
8: S′:n(δ) = dφ(δ(ωn)T )

dδ wn . Compute derivative of temporal trajectory of source
n

9: end for
10: Ω← block diagonal matrix containing all the set of (ωn)T
11: W ← block diagonal matrix containing all the set of wn

12: Eq1,q2,q3 [log(p(Y |B,Ω,W ,Z, δ, σ))] ≈
∑
p−F

2 log(2πσ2) − 1
2σ2 ||Y p: − Sp:A −

Zp:||2
13: Eq2,q3 [log(p(C|Ω,W , δ, γ))] ≈ −

∑
p,n log((1 + exp(−γS′p,n(δ)))

. The two expectations terms are approximated using only one Monte-Carlo
sample as proposed in [Kingma, 2013].

14: KL = D[q1(B)||p(B)] +D[q2(Ω)||p(Ω)] +D[q3(W )||p(W )] . This tern is
computed using approximations and formulas of Appendix 2.6.2.

15: L = Eq1,q2,q3 [log(p(Y |B,Ω,W ,Z, δ, σ))] + Eq2,q3 [log(p(C|Ω,W , δ, γ))]− KL
16: Return L
17: end function
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Algorithm 3 Model optimization.

1: function OPTIMIZE(Y ,V ,Π, δ,n_iter0, n_iter1, n_iter2)
2: Initialize Π(0), δ(0)

3: i, j, k = 0
4: while i ≤ n_iter0 do
5: for l=1 to n_iter1 do . Optimizing spatio-temporal parameters only
6: L = 0
7: for m=1 to M do . For each modality
8: L += LOSS_IMAGE(Y m, θm, ψm,Z

m, σm, δ, γm, Nm, Fm, P )
9: end for

10: for c=1 to C do . For each scalar feature
11: L += LOSS_SCALAR(V :c, θc, νc, δ, γm, P )
12: end for
13: Compute dL

dΠ(j) through backpropagation

14: Π(j+1) = ADAM( dL
dΠ(j) ,Π(j), LR(Π)) . The spatio-temporal parameters

are optimized by gradient descent using the ADAM optimizer. LR refers to the overall
set of learning rates (cf Appendix 2.6.3)

15: j += 1
16: end for
17: for l=1 to n_iter2 do . Optimizing time-shift only
18: L = 0
19: for m=1 to M do
20: L += LOSS_IMAGE(Y m, θm, ψm,Z

m, σm, δ, γc, Nm, Fm, P )
21: end for
22: for c=1 to C do
23: L += LOSS_SCALAR(V :c, θc, νc, δ, γc, P )
24: end for
25: Compute dL

dδ(k) through backpropagation

26: δ(k+1) = ADAM( dL
dδ(k) , δ

(k), LR(δ))
27: k += 1
28: end for
29: i += 1
30: end while
31: end function
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2.6.5 Synthetic experiments using ICA, NMF and PCA

In this Appendix, we show results obtained with standard methods (ICA, NMF, PCA)
when applied within the experimental setting of Section 2.4.2. We recall that for these
experiments observations were randomly aligned along the time-axis. The goal was to
assess the ability of the different methods to reconstruct the spatio-temporal sources
underlying the data when the time-axis is unknown. Results obtained in Table 2.5 show
a substantial decrease of performances for the MSE and SSIM compared to MGPA (cf
Table 2.2 in Section 2.4.2). Indeed, these methods do not consider time as a variable
on which inference is required, thus preventing them from reconstructing correctly the
temporal sources. Figure 2.13 shows an example of reconstruction when using ICA. We
observe that even though the spatial reconstruction remains acceptable, the estimated
temporal sources are not interpretable as ICA reconstructs the data using the time-axis
on which observations have been mixed.

Table 2.5: MSE and SSIM between respectively the ground truth temporal and spatial sources
with respect to the ones estimated by the different standard methods.

Temporal (MSE) Spatial (SSIM)
ICA 0.24± 0.08 54%± 2
NMF 0.25± 0.03 22%± 14
PCA 0.66± 0.05 9%± 3

Ground Truth ICA maps S0

0 21
Maps Intensity

Spatial maps Temporal sources

S1

A0

A1

ICA

Original Time

ICA

Figure 2.13: Spatial maps: Sample slice from ground truth images (A0 λ = 2 mm, A1 λ = 1
mm), the maps estimated by ICA. Temporal sources: Ground truth temporal sources
(red) along with sources estimated by ICA (blue).
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2.6.6 Model convergence

We provide in this Appendix details on the model convergence when applied on the
ADNI data. The training was divided in three iterations of 30000 epochs each. During
the two first iterations the spatio-temporal parameters and the time-shift are trained
alternatively following a scheme of [2000,1000] epochs ten times. The third iteration
only optimizes the spatio-temporal parameters. In Figure 2.14, we show the evolution
of the total loss and the different terms composing it during training. The term recon-
struction cost stands for

∑
m Eq1,q2,q3 [log(p(Y m|Bm,Ωm,Wm,Zm, δ, σm))], monotonic-

ity cost for
∑
m Eq2,q3 [log(p(Cm|Ωm,Wm, δ, γm))] and KL for

∑
mD[q1(Bm)||p(Bm)] +

D[q2(Ωm)||p(Ωm)] + D[q3(Wm)||p(Wm)]. We observe that through the first two itera-
tions the reconstruction and monotonicity costs decrease, and become stable during the
last iteration. Differently, the KL cost increases during the first iteration as the model is
driven by the reconstruction and monotonicity constraints. The KL term decreases during
the second iteration, thus regularizing the model, before becoming stable during the
third iteration. We also note that the graphs in Figure 2.14 show convergence profiles
typical of those obtained with stochastic variational inference schemes, such as with
Variational Autoencoders or Bayesian Neural Networks.

2.6.7 Application of ICA, NMF and PCA on brain imaging data

In this Appendix, we provide the results obtained when applying ICA, NMF and PCA on
the ADNI data of Section 2.4.3. We used the three imaging modalities for each subject
and concatenated these images in a (544× 4256460) matrix. Our goal was to compare
the spatio-temporal processes extracted using these standard methods with the ones
from MGPA. We recall that in the case of MGPA the model automatically re-aligns the
observations following monotonic assumptions for each biomarker, while these standard
methods don’t perform any inference on the time variable. Therefore, we created three
experimental settings in which we changed the observations’ alignment. In the first one,
subjects were aligned by their chronological age (Figures 2.15, 2.16 and 2.17), in the
second one by ADAS13 (Figures 2.18, 2.19 and 2.20) and in the last one time was ran-
domly initialized like in the experiments of Section 2.4.3 (Figures 2.21, 2.22 and 2.23).
We extracted six spatio-temporal sources for each method and each time-alignment, like
in 2.4.3.

We observe that the temporal profiles are generally noisy and hard to interpret due
to the lack of constraints on the temporal evolution. This motivates the need of smooth
and monotonic constraints as in MGPA. Moreover, due to the concatenation of all the
modalities they all share the same temporal patterns. This is an important difference
with the modality-specific modelling of MGPA. Finally, we note that the spatial patterns
associated with these methods are very similar, independently from the time-initialization,
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Figure 2.14: Evolution of the total loss, reconstruction cost, monotonicity cost and KL during
training. Each iteration corresponds to 30000 epochs.
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while the temporal sources substantially differ. This is also true when time is randomly
initialized. These observations point to the challenge of giving a clinical interpretation
of the results obtained with these approaches, and therefore to the need of plausible
spatio-temporal constraints as provided in MGPA.
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Subjects aligned by age.
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Figure 2.15: Spatio-temporal processes extracted by ICA with subjects aligned by age.
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Figure 2.16: Spatio-temporal processes extracted by NMF with subjects aligned by age.
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Figure 2.17: Spatio-temporal processes extracted by PCA with subjects aligned by age.
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Subjects aligned by ADAS13.
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Figure 2.18: Spatio-temporal processes extracted by ICA with subjects aligned by ADAS13.

2.6 Appendix 53



Figure 2.19: Spatio-temporal processes extracted by NMF with subjects aligned by ADAS13.
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Figure 2.20: Spatio-temporal processes extracted by PCA with subjects aligned by ADAS13.
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Subjects randomly aligned.
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Figure 2.21: Spatio-temporal processes extracted by ICA with subjects randomly aligned.

2.6 Appendix 57



Figure 2.22: Spatio-temporal processes extracted by NMF with subjects randomly aligned.
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Figure 2.23: Spatio-temporal processes extracted by PCA with subjects randomly aligned.
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In the previous chapter, we presented a method allowing to identify differential temporal
processes of amyloid deposition, glucose hypometabolism and gray matter atrophy as
well as the brain regions targeted by these mechanisms. While this approach provides
valuable insights about Alzheimer’s disease (AD) evolution, it remains purely descriptive
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as it cannot explain the causal relationships between the pathological processes at
stake. However, investigating such relationships entails great interest, in particular for
simulating hypothetical scenarios of intervention, which could help planning clinical
trials. To address this challenge we present in this chapter a novel method, SimulAD,
which models AD progression through a dynamical system relating clinical and multi-
modal imaging data. Thanks to this approach, we can investigate the effect of drug
intervention on the disease progression, and particularly the impact of anti-amyloid
treatments on cognitive outcomes. This chapter has been accepted for publication in
Brain Communications [Abi Nader, 2021].

Abstract. In this study we investigate SimulAD, a novel quantitative instrument for
the development of intervention strategies for disease modifying drugs in Alzheimer’s
disease. SimulAD is based on the modeling of the spatio-temporal dynamics govern-
ing the joint evolution of imaging and clinical biomarkers along the history of the
disease, and allows the simulation of the effect of intervention time and drug dosage
on the biomarkers’ progression. When applied to multi-modal imaging and clini-
cal data from the Alzheimer’s Disease Neuroimaging Initiative the method enables
to generate hypothetical scenarios of amyloid lowering interventions. The results
quantify the crucial role of intervention time, and provide a theoretical justification
for testing amyloid modifying drugs in the pre-clinical stage. Our experimental
simulations are compatible with the outcomes observed in past clinical trials, and
suggest that anti-amyloid treatments should be administered at least seven years
earlier than what is currently being done in order to obtain statistically powered
improvement of clinical endpoints.

3.1 Introduction

The number of people affected by Alzheimer’s disease (AD) has recently exceeded 46
millions and is expected to double every 20 years [Prince, 2015], thus posing significant
healthcare challenges. Yet, while the disease mechanisms remain in large part unknown,
there are still no effective pharmacological treatments leading to tangible improvements
of patients’ clinical progression. One of the main challenges in understanding AD is that
its progression goes through a silent asymptomatic phase that can stretch over decades
before a clinical diagnosis can be established based on cognitive and behavioral symptoms.
To help designing appropriate intervention strategies, hypothetical models of the disease
history have been proposed, characterizing the progression by a cascade of morphological
and molecular changes affecting the brain, ultimately leading to cognitive impairment
[Jack, 2013a; Jack, 2013b]. The dominant hypothesis is that disease dynamics along the
asymptomatic period are driven by the deposition in the brain of the amyloid peptide,
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triggering the so-called “amyloid cascade” [Bateman, 2012; Braak, 1991; Delacourte,
1999; Murphy, 2010; Villemagne, 2013]. Based on this rationale, clinical trials have
been focusing on the development and testing of disease modifiers targeting amyloid
aggregates [Cummings, 2019b], for example by increasing its clearance or blocking its
accumulation. Although the amyloid hypothesis has been recently invigorated by a post-
hoc analysis of the aducanumab trial [Howard, 2020], clinical trials failed so far to show
efficacy of this kind of treatments [Schwarz, 2019], as the clinical primary endpoints
were not met [Egan, 2019; Wessels, 2019; Honig, 2018], or because of unacceptable
adverse effects [Henley, 2019]. In the past years, growing consensus emerged about
the critical importance of intervention time, and about the need of starting anti-amyloid
treatments during the pre-symptomatic stages of the disease [Aisen, 2018]. Nevertheless,
the design of optimal intervention strategies is currently not supported by quantitative
analysis methods allowing to model and assess the effect of intervention time and dosing
[Klein, 2019]. The availability of models of the pathophysiology of AD would entail
great potential to test and analyze clinical hypothesis characterizing AD mechanisms,
progression, and intervention scenarios.

Within this context, quantitative models of disease progression, Disease progression
Models referred to as DPMs, have been proposed [Fonteijn, 2012; Jedynak, 2012; Abi
Nader, 2020; Oxtoby, 2017; Schiratti, 2015], to quantify the dynamics of the changes
affecting the brain during the whole disease span. These models rely on the statisti-
cal analysis of large datasets of different data modalities, such as clinical scores, or
brain imaging measures derived from MRI, Amyloid- and Fluorodeoxyglucose- PET [Bil-
gel, 2015; Burnham, 2020; Donohue, 2014; IturriaMedina, 2016; Koval, 2018]. In
general, DPMs estimate a long-term disease evolution from the joint analysis of mul-
tivariate time-series acquired on a short-term time-scale. Due to the temporal delay
between the disease onset and the appearance of the first symptoms, DPMs rely on the
identification of an appropriate temporal reference to describe the long-term disease
evolution [Lorenzi, 2017; Marinescu, 2019a]. These tools are promising approaches for
the analysis of clinical trials data, as they allow to represent the longitudinal evolution
of multiple biomarkers through a global model of disease progression. Such a model
can be subsequently used as a reference in order to stage subjects and quantify their
relative progression speed [Insel, 2020; Li, 2019; Oxtoby, 2018; Young, 2014]. However,
these approaches remain purely descriptive as they don’t account for causal relationships
among biomarkers. Therefore, they generally don’t allow to simulate progression scenar-
ios based on hypothetical intervention strategies, thus providing a limited interpretation
of the pathological dynamics. This latter capability is of utmost importance for planning
and assessment of disease modifying treatments.

To fill this gap, recent works such as [Hao, 2016; Petrella, 2019] proposed to model AD
progression based on specific assumptions on the biochemical processes of pathological
protein propagation. These approaches explicitly define biomarkers interactions through

3.1 Introduction 63



the specification of sets of Ordinary Differential Equations (ODEs), and are ideally suited
to simulate the effect of drug interventions [IturriaMedina, 2017]. However, these
methods are mostly based on the arbitrary choices of pre-defined evolution models,
which are not inferred from data. This issue was recently addressed by [Garbarino,
2019], where the authors proposed an hybrid modeling method combining traditional
DPMs with dynamical models of AD progression. Still, since this approach requires
to design suitable models of protein propagation across brain regions, extending this
method to jointly account for spatio-temporal interactions between several processes,
such as amyloid propagation, glucose metabolism, and brain atrophy, is considerably
more complex. Finally, these methods are usually designed to account for imaging data
only, which prevents to jointly simulate heterogeneous measures [Antelmi, 2019], such
as image-based biomarkers and clinical outcomes, the latter remaining the reference
markers for patients and clinicians.

In this work we present SimulAD, a novel computational model of AD progression al-
lowing to simulate intervention strategies across the history of the disease. The model
is here used to quantify the potential effect of amyloid modifiers on the progression of
brain atrophy, glucose metabolism, and ultimately on the clinical outcomes for different
scenarios of intervention. To this end, we model the joint spatio-temporal variation
of different modalities along the history of AD by identifying a system of ODEs gov-
erning the pathological progression. This latent ODEs system is specified within an
interpretable low-dimensional space relating multi-modal information, and combines
clinically-inspired constraints with unknown interactions that we wish to estimate. The
interpretability of the relationships in the latent space is ensured by mapping each data
modality to a specific latent coordinate. The model is formulated within a Bayesian frame-
work, where the latent representation and dynamics are efficiently estimated through
stochastic variational inference. To generate hypothetical scenarios of amyloid lowering
interventions, we apply SimulAD to multi-modal imaging and clinical data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our results provide a meaningful
quantification of different intervention strategies, compatible with findings previously
reported in clinical studies. For example, we estimate that in a study with 100 individuals
per arm, statistically powered improvement of clinical endpoints can be obtained by
completely arresting amyloid accumulation at least 11 years before Alzheimer’s demen-
tia. The minimum intervention time decreases to 7 years for studies based on 1000
individuals per arm.

3.2 Materials and Methods

In the following sections, healthy individuals will be denoted as NL stable, subjects
with mild cognitive impairment as MCI stable, subjects diagnosed with Alzheimer’s
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disease dementia as AD dementia. We define conversion as the change of diagnosis
towards a more pathological state. Therefore, NL converters are subjects who were
diagnosed as cognitively normal at baseline and whose diagnosis changed either in MCI
or AD dementia during their follow-up visits. MCI converters are subjects who were
diagnosed as MCI at baseline and subsequently progressed to AD dementia. Diagnosis was
established using the DX column from the ADNIMERGE file (https://adni.bitbucket.
io/index.html), which reflects the standard ADNI clinical assessment based on Wechsler
Memory Scale, Mini-Mental State Examination, and Clinical Dementia Rating. Amyloid
concentration and glucose metabolism are respectively measured by (18)F-florbetapir
Amyloid (AV45)-PET and (18)F-fluorodeoxyglucose (FDG)-PET imaging. Cognitive and
functional abilities are assessed by the following neuro-psychological tests: Alzheimer’s
Disease Assessment Scale (ADAS11), Mini-Mental State Examination (MMSE), Functional
Assessment Questionnaire (FAQ), Rey Auditory Verbal Learning Test (RAVLT) immediate,
RAVLT learning, RAVLT forgetting, and Clinical Dementia Rating Scale Sum of Boxes
(CDRSB).

3.2.1 Study cohort and biomarkers’ changes across clinical
groups

Our study is based on a cohort of 442 amyloid positive individuals composed of 71 NL
stable subjects, 33 NL converters subjects, 131 subjects diagnosed with MCI, 105 MCI
converters subjects, and 102 AD dementia patients. Among the 131 MCI subjects, 78
were early MCI and 53 were late MCI. Concerning the group of MCI converters, 80
subjects were late MCI at baseline and 25 were early MCI. The term “amyloid positive”
refers to subjects whose amyloid level in the CSF was below the nominal cutoff of 192
pg/ml [Shaw, 2009] either at baseline, or during any follow-up visit, and conversion
to AD dementia was determined using the last available follow-up information. This
preliminary selection of patients aims at constituting a cohort of subjects for whom it is
more likely to observe “Alzheimer’s pathological changes” [Jack, 2018]. The length of
follow-up varies between 0 and 16 years. Further information about the data are available
on https://adni.bitbucket.io/reference/, while details on data acquisition and
processing are provided in Section 3.3.1.

We show in Table 3.1A socio-demographic information for the training cohort across the
different clinical groups. Table 3.1B shows baseline values and annual rates of change
across clinical groups for amyloid burden (average normalized AV45 uptake in frontal
cortex, anterior cingulate, precuneus and parietal cortex), glucose metabolism (average
normalized FDG uptake in frontal cortex, anterior cingulate, precuneus and parietal
cortex), for hippocampal and medial temporal lobe volumes, and for the cognitive ability
as measured by ADAS11. Compatibly with previously reported results [Schuff, 2009;
Cash, 2015], we observe that while regional atrophy, glucose metabolism and cognition
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show increasing rate of change when moving from healthy to pathological conditions,
the change of AV45 is maximum in NL stable, NL converters and MCI stable subjects.
We also notice the increased magnitude of ADAS11 in AD dementia as compared to the
other clinical groups. Finally, we note that glucose metabolism and regional atrophy
show comparable magnitudes of change.

The observations presented in Table 3.1 provide us with a coarse representation of the
biomarkers’ trajectories characterizing AD. The complexity of the dynamical changes we
may infer is limited, as the clinical stages roughly approximate a temporal scale describ-
ing the disease history, while very little insights can be obtained about the biomarkers’
interactions. Within this context, our model allows the quantification of the fine-grained
dynamical relationships across biomarkers at stake during the history of the disease.
Investigation of intervention scenarios can be subsequently carried out by opportunely
modulating the estimated dynamics parameters according to specific intervention hy-
pothesis (e.g. amyloid lowering at a certain time).

Table 3.1: A: Baseline socio-demographic information for training cohort (442 subjects for 2781
data points, follow-up from 0 to 16 years depending on subjects). Average values,
standard deviation in parenthesis. B: Baseline values (bl) and annual rates of change
(% change / year) of amyloid burden (average normalized AV45 uptake in frontal
cortex, anterior cingulate, precuneus and parietal cortex), glucose hypometabolism
(average normalized FDG uptake in frontal cortex, anterior cingulate, precuneus and
parietal cortex), hippocampus volume, medial temporal lobe volume, and ADAS11
score for the different clinical groups. Median values, interquartile range below. The
volumes of the hippocampus and the medial temporal lobe are averaged across left
and right hemispheres. NL: healthy individuals, MCI: individuals with mild cognitive
impairment. AD dementia: Alzheimer’s disease dementia. APOE4: apolipoprotein E
ε4. FDG: (18)F-fluorodeoxyglucose Positron Emission Tomography (PET) imaging.
AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake Value
Ratio. MTL: Medial Temporal Lobe. ADAS11: Alzheimer’s Disease Assessment Scale-
cognitive subscale, 11 items.

A: Socio-demographics
NL NL MCI MCI AD

stable converters stable converters dementia
N 71 33 131 105 102

Age (yrs) 74 (6) 76 (4) 72 (8) 73 (7) 74 (8)
Education (yrs) 16 (2) 17 (2) 16 (3) 16 (3) 16 (2)

APOE4-carrier (%) 41) 51) 61 75 71

B: Biomarkers and rates of change
NL NL MCI MCI AD

stable converters stable converters dementia
bl % change / bl % change / bl % change / bl % change / bl % change /

year year year year year
Global AV45 1.21 0.8 1.36 1.24 1.27 1.21 1.41 0.03 1.45 0.06

(SUVR) [1.06 ; 1.37] [0.1 ; 2.2] [1.28 ; 1.55] [0.43 ; 2.2] [1.12 ; 1.44] [0.1 ; 2.5] [1.29 ; 1.53] [-1.5 ; 1.4] [1.34 ; 1.57] [-1.9 ; 3.3]
Global FDG 1.27 -0.47 1.22 -1.6 1.28 -0.92 1.16 -3.1 1.04 -5.0

(SUVR) [1.19 ; 1.34] [-1.8 ; 0.9] [1.16 ; 1.33] [-2.2 ; -1.0] [1.19 ; 1.36] [-2.9 ; 0.0] [1.05 ; 1.25] [-4.8 ; -1.4] [0.97 ; 1.14] [-7.9 ; -2.0]
Hippocampus 3.7 -1.6 3.5 -1.8 3.5 -1.5 3.1 -3.8 2.8 -4.5

(ml) [3.4 ; 4.0] [-2.2 ; -0.4] [3.1 ; 3.8] [-3.3 ; -2.2] [3.1 ; 3.8] [-3.3 ; -0.7] [2.7 ; 3.4] [-5.1 ; -2.3] [2.5 ; 3.2] [-6.8 ; -2.0]
MTL 10.0 -0.8 9.8 -1.3 10.4 -1.0 9.1 -2.9 8.5 -5.0
(ml) [9.3 ; 10.5] [-2.0 ; 0.1] [8.5 ; 10.5] [-2.3 ; -0.7] [9.8 ; 11.2] [-2.2 ; 0.4] [8.2 ; 10.1] [-4.7 ; -1.5] [7.6 ; 9.3] [-7.9 ; -1.9]

ADAS11 5.0 0.1 8.0 1.7 9.0 1.2 14.3 5.0 22.0 10.3
[3.1 ; 7.0] [-0.2 ; 0.8] [5.0 ; 12.2] [-0.6 ; 2.8] [6.0 ; 11.6] [0.3 ; 2.8] [11.0 ; 20.0] [2.3 ; 8.4] [17.0 ; 28.0] [4.1 ; 21.0]
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3.2.2 Model overview

We provide in Figure 3.1 an overview of SimulAD. Baseline multi-modal imaging and
clinical information for a given subject are transformed into a latent variable composed of
four z-scores quantifying respectively the overall severity of atrophy, glucose metabolism,
amyloid burden, and cognitive and functional assessment. The model estimates the
dynamical relationships across these z-scores to optimally describe the temporal transi-
tions between follow-up observations. These transition rules are here mathematically
defined by the parameters of a system of ODEs, which is estimated from the data. This
dynamical system allows to compute the evolution of the z-scores over time from any
baseline observation, and to predict the associated multi-modal imaging and clinical
measures. It is important to note that this modelling choice requires to have at least one
visit per patient for which all the measures are available, in order to compute the z-scores
temporal evolution.

SimulAD thus enables to simulate the pathological progression of biomarkers across the
entire history of the disease. Once the model is estimated, we can modify the ODEs
parameters to simulate different evolution scenarios according to specific hypothesis. For
example, by reducing the parameters associated with the progression rate of amyloid,
we can investigate the relative change in the evolution of the other biomarkers. This
setup thus provides us with a data-driven system enabling the exploration of hypothetical
intervention strategies, and their effect on the pathological cascade.

3.2.3 Data modelling

We consider observations Xi(t) = [x1
i (t),x2

i (t), ...,xMi (t)]T , which correspond to multi-
variate measures derived from M different modalities (e.g clinical scores, MRI, AV45,
or FDG measures) at time t for subject i. Each vector xmi (t) has dimension Dm. We
postulate the following generative model, in which the modalities are assumed to be
independently generated by a common latent representation of the data zi(t):

p(Xi(t)|zi(t),σ2,ψ) =
∏
m

p(xmi (t)|zi(t), σ2
m, ψm)

=
∏
m

N (µm(zi(t), ψm), σ2
m),

zi(t) = Λ(zi(t0), t),

zi(t0) ∼ p(zi(t0)),

(3.1)

where σ2
m is measurement noise, while ψm are the parameters of the function µm which

maps the latent state to the data space for the modality m. For simplicity of notation
we denote zi(t) by z(t). We assume that each coordinate of z is associated to a specific
modality m, leading to an M-dimensional latent space. The Λ operator which gives the
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Figure 3.1: Overview of SimulAD. a) High-dimensional multi-modal measures are projected into
a 4-dimensional latent space. Each data modality is transformed in a corresponding
z-score zamy, zmet, zatr, zcli. b) The dynamical system describing the relationships
between the z-scores allows to compute their transition across the evolution of
the disease. c) Given the latent space and the estimated dynamics, the follow-up
measurements can be reconstructed to match the observed data.
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value of the latent representation at a given time t, is defined by the solution of the
following system of ODEs:

dzm(t)
dt

= kmz
m(t)(1− zm(t)) +

∑
j 6=m

αm,jz
j(t), m=1,...,M. (3.2)

For each coordinate, the first term of the equation enforces a sigmoidal evolution with
a progression rate km, while the second term accounts for the relationship between
modalities m and j through the parameters αm,j . This system can be rewritten as:

dz(t)
dt

= Wz(t)−Vz2(t) = g(z(t), θODE) where,

(
Wi,j

)
=

 ki if i=j,

αi,j otherwise;
and

(
Vi,j

)
=

 ki if i=j

0 otherwise,

(3.3)

θODE denotes the parameters of the system of ODEs, which correspond to the en-
tries of the matrices W and V. According to Equation 3.3, for each initial condi-
tion z(0), the latent state at time t can be computed through integration, z(t) =
z(0) +

∫ t
0 g(z(x), θODE)dx.

We resort to variational inference and stochastic gradient descent in order to optimize
the parameters of the model. The procedure is detailed in Appendices 3.6.1 and 3.6.2.

3.2.4 Simulating the long-term progression of AD

To simulate the long-term progression of AD we first project the AD dementia patients in
the latent space via the encoding functions. We can subsequently follow the trajectories
of these subjects backward and forward in time, in order to estimate the associated
trajectory from the healthy to their respective pathological condition. In practice, a
Gaussian Mixture Model is used to fit the empirical distribution of the AD dementia
subjects’ latent projection. The number of components and covariance type of the GMM
is selected by relying on the Akaike information criterion [Akaike, 1998]. The fitted GMM
allows us to sample pathological latent representations zi(t0), that can be integrated
forward and backward in time thanks to the estimated set of latent ODEs, to finally obtain
a collection of latent trajectories Z(t) = [z1(t), ..., zN (t)] summarising the distribution of
the long-term AD evolution.

3.2.5 Simulating intervention

In this section we assume that we computed the average latent progression of the disease
z(t). Thanks to the modality-wise encoding (cf. Appendix 3.6.1) each coordinate of
the latent representation can be interpreted as representing a single data modality.
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Therefore, we propose to simulate the effect of an hypothetical intervention on the
disease progression, by modulating the vector dz(t)

dt after each integration step such
that:

(dz(t)
dt

)∗
= Γdz(t)

dt
where, Γ =


γ1

. . .

γm

 . (3.4)

The values γm are fixed between 0 and 1, allowing to control the influence of the
corresponding modalities on the system evolution, and to create hypothetical scenarios
of evolution. For example, for a 100% (resp. 50%) amyloid lowering intervention we set
γamy = 0 (resp. γamy = 0.5).

3.2.6 Evaluating disease severity

Given an evolution z(t) describing the disease progression in the latent space, we propose
to consider this trajectory as a reference and to use it in order to quantify the individual
disease severity of a subject X. This is done by estimating a time-shift τ defined as:

τ = arg min
t
||f(X,φ1)− z(t)||1

=
∑
m

|f(xm, φ1)− zm(t)|.
(3.5)

This time-shift allows to quantify the pathological stage of a subject with respect to the
disease progression along the reference trajectory z(t). Moreover, the time-shift can still
be estimated even in the case of missing data modalities, by only encoding the available
measures of the observed subject.

3.2.7 Statistical analysis

The model was implemented using the Pytorch library [Paszke, 2019]. The estimated
disease severity was compared group-wise via two-sided Wilcoxon-Mann-Whitney test
(P < 0.01). Differences between the clinical outcomes distribution after simulation of
intervention were compared via two-sided Student’s T-test (P < 0.01). Shadowed areas
in the different figures show ± standard deviation of the mean.

3.3 Results

In the following, MRI, FDG-PET, and AV45-PET images are processed in order to respec-
tively extract regional gray matter density, glucose metabolism and amyloid load from
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a brain parcellation. The z-scores of gray matter atrophy (zatr), glucose metabolism
(zmet), and amyloid burden (zamy), are computed using the measures obtained by this
pre-processing step. The clinical z-score zcli is derived from neuro-psychological scores:
ADAS11, MMSE, FAQ, RAVLT immediate, RAVLT learning, RAVLT forgetting and CDRSB.
This panel of scores was chosen to provide a comprehensive representation of cognitive,
memory and functional abilities.

3.3.1 Data acquisition and pre-processing

Data used in the preparation of this work were obtained from the ADNI database. The
ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. For up-to-date information, see www.adni-info.org.

We considered four types of biomarkers, related to clinical scores, gray matter atrophy,
amyloid load and glucose metabolism, and respectively denoted by cli, atr, amy and met.
MRI images were processed following the longitudinal pipeline of Freesurfer [Reuter,
2012], to obtain gray matter volumes in a standard anatomical space. AV45-PET and FDG-
PET images were aligned to the closest MRI in time and normalized to the cerebellum
uptake. Regional gray matter density, amyloid load and glucose metabolism were
extracted from the Desikan-Killiany parcellation [Desikan, 2006]. We discarded white-
matter, ventricular, and cerebellar regions, thus obtaining 82 regions that were averaged
across hemispheres. Therefore, for a given subject, xatr,xamy and xmet are respectively
41-dimensional vectors. The variable xcli is composed of the neuro-psychological scores
ADAS11, MMSE, RAVLT immediate, RAVLT learning, RAVLT forgetting, FAQ, and CDRSB.
The total number of measures is of 2781 longitudinal data points. We recall that the
model estimation requires a visit for which all the measures are available in order to
obtain the z-scores evolution of a given subject, but can handle missing data in the
follow-up by finding the parameters that best match the available measures.

3.3.2 Progression model and latent relationships

We show in Figure 3.2 panel I) the dynamical relationships across the different z-scores
estimated by SimulAD, where direction and intensity of the arrows quantify the estimated
increase of one variable with respect to the other. Being the scores adimensional, they
have been conveniently rescaled to the range [0,1] indicating increasing pathological
levels. These relationships extend the summary statistics reported in Table 3.1 to a much
finer temporal scale and wider range of possible biomarkers’ values. We observe in Figure
3.2A, 3.2B and 3.2C that large values of the amyloid score zamy trigger the increase of
the remaining ones: zmet, zatr, and zcli. Figure 3.2D shows that large increase of the
atrophy score zatr is associated to pathological glucose metabolism indicated by large
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values of zmet. Moreover, we note that high zmet values also contribute to an increase of
zcli (Figure 3.2E). Finally, Figure 3.2F shows that high atrophy values lead to an increase
mostly along the clinical dimension zcli. This chain of relationships is in agreement with
the cascade hypothesis of AD [Jack, 2013a; Jack, 2013b].

Figure 3.2: Panel I: Estimated dynamical relationships across the different z-scores (A to F).
Given the values of two z-scores, the arrow at the corresponding coordinates indicates
how one score evolves with respect to the other. The intensity of the arrow gives the
strength of the relationship between the two scores. Panel II, left: Estimated long-
term latent dynamics (time is relative to conversion to AD dementia). Shadowed
areas represent the standard deviation of the average trajectory. Panel II, right:
Distribution of the estimated disease severity across clinical stages, relatively to
the long-term dynamics on the left. NL: normal individuals, MCI: mild cognitive
impairment, AD dementia: Alzheimer’s disease dementia.

Relying on the dynamical relationships shown in Figure 3.2 panel I), starting from any
initial set of biomarkers values we can estimate the relative trajectories over time. Figure
3.2 panel II) (left), shows the evolution obtained by extrapolating backward and forward
in time the trajectory associated to the z-scores of the AD dementia group. The x-axis
represents the years from conversion to AD dementia, where the instant t=0 corresponds
to the average time of diagnosis estimated for the group of MCI progressing to dementia.
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As observed in Figure 3.2 panel I) and Table 3.1, the amyloid score zamy increases and
saturates first, followed by zmet and zatr scores whose progression slows down when
reaching clinical conversion, while the clinical score exhibits strong acceleration in the
latest progression stages. Figure 3.2 panel II) (right) shows the group-wise distribution of
the disease severity estimated for each subject relatively to the modelled long-term latent
trajectories. The group-wise difference of disease severity across groups is statistically
significant and increases when going from healthy to pathological stages (Wilcoxon-
Mann-Whitney test p < 0.01 for each comparisons). The reliability of the estimation of
disease severity was further assessed through testing on an independent cohort, and by
comparison with a previously proposed disease progression modeling method from the
state-of-the-art [Lorenzi, 2017]. The results are provided in Appendix 3.6.7 and show
positive generalization results as well as a favorable comparison with the benchmark
method.

From the z-score trajectories of Figure 3.2 panel II) (left) we predict the progression
of imaging and clinical measures shown in Figure 3.3. We observe that amyloid load
globally increases and saturates early, compatibly with the positive amyloid condition of
the study cohort. Abnormal glucose metabolism and gray matter atrophy are delayed
with respect to amyloid, and tend to map prevalently temporal and parietal regions.
Finally, the clinical measures exhibit a non-linear pattern of change, accelerating during
the latest progression stages. These dynamics are compatible with the summary measures
on the raw data reported in Table 3.1.

3.3.3 Simulating clinical intervention

This experimental section is based on two intervention scenarios: a first one in which
amyloid is lowered by 100%, and a second one in which it is reduced by 50% with
respect to the estimated natural progression. In Figure 3.4 we show the latent z-scores
evolution resulting from either 100% or 50% amyloid lowering performed at the time
t=-20 years. According to these scenarios, intervention results in a sensitive reduction of
the pathological progression for atrophy, glucose metabolism and clinical scores, albeit
with a stronger effect in case of total blockage.

We further estimated the resulting clinical endpoints associated with the two amyloid
lowering scenarios, at increasing time points and for different sample sizes. Clinical
endpoints consisted in the simulated ADAS11, MMSE, FAQ, RAVLT immediate, RAVLT
learning, RAVLT forgetting and CDRSB scores at the reference conversion time (t=0). The
case placebo indicates the scenario where clinical values were computed at conversion
time from the estimated natural progression shown in Figure 3.2 panel II) (left). Figure
3.5 shows the change in statistical power depending on intervention time and sample
sizes. For large sample sizes (1000 subjects per arm) a power greater than 0.8 can be
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Figure 3.3: Estimated long-term evolution of cortical measurements for the different types
of imaging markers, and clinical scores. Shadowed areas represent the standard
deviation of the average trajectory. Brain images were generated using the software
provided in [Marinescu, 2019b].

Amyloid lowering intervention 100% at t = -20

z(t)

Time to AD dementia (years) 

Amyloid lowering intervention 50% at t = -20

Time to AD dementia (years) 

z(t)

Figure 3.4: Hypothetical scenarios of irreversible amyloid lowering interventions at t=-20 years
from Alzheimer’s disease dementia diagnosis, with a rate of 100% (left) or 50%
(right). Shadowed areas represent the standard deviation of the average trajectory.

74 Chapter 3 Simulating the Outcome of Amyloid Treatments in Alzheimer’s Disease



obtained around 7 years before conversion, depending on the outcome score, where
in general we observe that RAVLT forgetting exhibits a higher power than the other
scores. When sample size is lower than 100 subjects per arm, a power greater than 0.8
is reached if intervention is performed at the latest 11 years before conversion, with a
mild variability depending on the considered clinical score. We notice that in the case
of 50% amyloid lowering, in order to reach the same power intervention needs to be
consistently performed earlier compared to the scenario of 100% amyloid lowering for
the same sample size and clinical score. For instance, if we consider ADAS11 with a
sample size of 100 subjects per arm, a power of 0.8 is obtained for a 100% amyloid
lowering intervention performed 11.5 years before conversion, while in case of a 50%
amyloid lowering the equivalent effect would be obtained by intervening 15 years before
conversion.

We provide in Table 3.2 the estimated improvement for each clinical score at conversion
with a sample size of 100 subjects per arm for both 100% and 50% amyloid lowering
depending on the intervention time. We observe that for the same intervention time,
100% amyloid lowering always results in a larger improvement of clinical endpoints
compared to 50% amyloid lowering. We also note that in the case of 100% lowering,
clinical endpoints obtained for intervention at t=-15 years correspond to typical cutoff
values for inclusion into AD trials (ADAS11 = 13.7± 5.9, MMSE = 25.7± 2.5, see Table
3.4 in Appendix 3.6.8) [Kochhann, 2010; Gamberger, 2017].

3.4 Discussion

We presented SimulAD, a framework to jointly model the progression of multi-modal
imaging and clinical data, based on the estimation of latent biomarkers’ relationships
governing AD progression. The model is designed to simulate intervention scenarios in
clinical trials, and in this study we focused on assessing the effect of anti-amyloid drugs
on biomarkers’ evolution, by quantifying the effect of intervention time and drug efficacy
on clinical outcomes. Our results underline the critical importance of intervention time,
which should be performed sensibly early during the pathological history to effectively
appreciate the effectiveness of disease modifiers.

The results obtained with our model are compatible with findings reported in recent
clinical studies [Honig, 2018; Egan, 2019; Wessels, 2019]. For example, if we consider
500 patients per arm and perform a 100% amyloid lowering intervention for 2 years to
reproduce the conditions of the recent trial of Verubecestat [Egan, 2019], the average
improvement of MMSE predicted by our model is of 0.02, falling in the 95% confidence
interval measured during that study ([-0.5 ; 0.8]). While recent anti-amyloid trials such
as [Honig, 2018; Egan, 2019; Wessels, 2019] included between 500 and 1000 mild AD
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Figure 3.5: Statistical power of the Student t-test comparing the estimated clinical outcomes
at conversion time between placebo and treated scenarios, according to the year of
simulated intervention, lowering rate and sample size.
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Table 3.2: Estimated mean (standard deviation) improvement of clinical outcomes at predicted
conversion time for the normal progression case by year of simulated intervention
(100% and 50% amyloid lowering interventions). Results in bold indicate a statisti-
cally significant difference between placebo and treated scenarios (p<0.01, two-sided
t-test, 100 cases per arm). AD: Alzheimer’s disease dementia, ADAS11: Alzheimer’s
Disease Assessment Scale, MMSE: Mini-Mental State Examination, FAQ: Functional
Assessment Questionnaire, RAVLT: Rey Auditory Verbal Learning Test, CDRSB: Clinical
Dementia rating Scale Sum of Boxes.

Amyloid lowering intervention 100%
Point improvement per intervention time

Score
Years to AD −20 −15 −12.5 −10 −5 −3 −2 −1

ADAS11 11.1 (6.4) 5.2 (2.9) 3.0 (1.7) 1.6 (1.0) 0.3 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)
MMSE 4.9 (2.8) 2.3 (1.3) 1.3 (0.8) 0.7 (0.4) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
FAQ 9.6 (5.6) 4.5 (2.5) 2.6 (1.5) 1.4 (0.8) 0.2 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)
RAVLT immediate 15.3 (8.9) 7.2 (4.1) 4.2 (2.4) 2.3 (1.4) 0.5 (0.3) 0.2 (0.1) 0.1 (0.1) 0.0 (0.0)
RAVLT learning 2.7 (1.6) 1.3 (0.7) 0.7 (0.4) 0.4 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
RAVLT forgetting 37.2 (21.5) 17.7 (9.9) 10.5 (6.0) 5.8 (3.5) 1.3 (0.9) 0.5 (0.4) 0.2 (0.2) 0.1 (0.1)
CDRSB 3.5 (2.0) 1.6 (0.9) 0.9 (0.5) 0.5 (0.3) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Amyloid lowering intervention 50%
Point improvement per intervention time

Score
Years to AD −20 −15 −12.5 −10 −5 −3 −2 −1

ADAS11 5.0 (2.8) 2.4 (1.3) 1.4 (0.8) 0.8 (0.5) 0.2 (0.1) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0)
MMSE 2.2 (1.2) 1.1 (0.6) 0.6 (0.4) 0.3 (0.2) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
FAQ 4.3 (2.4) 2.1 (1.1) 1.2 (0.7) 0.7 (0.4) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
RAVLT immediate 6.9 (3.8) 3.4 (1.9) 2.0 (1.1) 1.1 (0.7) 0.2 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)
RAVLT learning 1.2 (0.7) 0.6 (0.3) 0.3 (0.2) 0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
RAVLT forgetting 16.7 (9.2) 8.3 (4.6) 5.0 (2.8) 2.8 (1.7) 0.6 (0.4) 0.2 (0.2) 0.1 (0.1) 0.0 (0.0)
CDRSB 1.6 (0.9) 0.8 (0.4) 0.4 (0.2) 0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
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dementia subjects per arm and were conducted over a period of two years at most, our
analysis suggests that clinical trials performed with less than 1000 subjects with mild AD
dementia may be consistently under-powered. Indeed, we see in Figure 3.5 that with
a sample size of 1000 subjects per arm and a total blockage of amyloid production, a
power of 0.8 can be obtained only if intervention is performed at least 7 years before
conversion.

These results allow to quantify the crucial role of intervention time, and provide a
theoretical justification for testing amyloid modifying drugs in the pre-clinical stage
[Sperling, 2011; Aisen, 2018]. This is for example illustrated in Table 3.2, in which we
notice that clinical endpoints are close to placebo even when the simulated intervention
takes place 10 years before conversion, while stronger cognitive and functional changes
happen when amyloid is lowered by 100% or 50% earlier. These findings may be
explained by considering that amyloid accumulates over more than a decade, and that
when amyloid clearance occurs the pathological cascade is already entrenched [Rowe,
2010]. Our results are thus supporting the need to identify subjects at the pre-clinical
stage, that is to say still cognitively normal, which is a challenging task. Currently, one of
the main criteria to enroll subjects into clinical trials is the presence of amyloid in the
brain, and blood-based markers are considered as potential candidates for identifying
patients at risk for AD [Zetterberg, 2019]. Moreover, recent works such as [Blennow,
2010; Westwood, 2016] have proposed more complex entry criteria to constitute cohorts
based on multi-modal measurements. Within this context, our model could also be used
as an enrichment tool by quantifying the disease severity based on multi-modal data as
shown in Figure 3.2 panel II) (right). Similarly, SimulAD could be applied to predict the
evolution of single patient given its current available measurements.

An additional critical aspect of anti-amyloid trials is the effect of dose exposure on the
production of amyloid [Klein, 2019]. Currently, β-site amyloid precursor protein cleaving
enzyme (BACE) inhibitors allow to suppress amyloid production from 50% to 90%. In
this study we showed that lowering amyloid by 50% consistently decreases the treatment
effect compared to a 100% lowering at the same time. For instance, if we consider a
sample size of 1000 subjects per arm in the case of a 50% amyloid lowering intervention,
80% power can be reached only 10 years before conversion instead of 7 years for a 100%
amyloid lowering intervention. This ability of SimulAD to control the rate of amyloid
progression is fundamental in order to provide realistic simulations of anti-amyloid
trials.

In Figure 3.2 panel I) we showed that amyloid triggers the pathological cascade affecting
the other markers, thus confirming its dominating role on disease progression. Assuming
that the data used to estimate the model is sufficient to completely depict the history of the
pathology, our model can be interpreted from a causal perspective. However, we cannot
exclude the existence of other mechanisms driving amyloid accumulation, which our
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model cannot infer from the existing data. Therefore, our findings should be considered
with care, while the integration of additional biomarkers of interest will be necessary to
account for multiple drivers of the disease. It is worth noting that recent works ventured
the idea to combine drugs targeting multiple mechanisms at the same time [Gauthier,
2019]. For instance, pathologists have shown tau deposition in brainstem nuclei in
adolescents and children [Kaufman, 2018], and clinicians are currently investigating the
pathological effect of early tau spreading on AD progression [Pontecorvo, 2019], raising
crucial questions about its relationship with amyloid accumulation, and the impact on
cognitive impairment [Cummings, 2019a]. In this study, 190 subjects underwent at
least one Tau-PET scan. However, when considering the subjects for whom there exists
one visit in which all the data modalities were available, the number of patients in the
study cohort decreased to 33. This low sample size prevented us from estimating reliable
trajectories for this biomarker. It is also important to note that among the 190 subjects
with at least one Tau-PET scan, only 19 of them had one follow-up visit. This means
that tau markers dynamics cannot be reliably estimated. Including tau data will require
studies on larger cohorts with complete sets of PET imaging acquisitions. This could be
part of future extensions of this work, where the inclusion of tau markers will allow to
simulate scenarios of production blockage of both amyloid and tau at different rates or
intervention time.

Lately, disappointing results of clinical studies led to hypothesize specific treatments
targeting AD dementia sub-populations based on their genotype [Safieh, 2019]. While
in our work we describe a global progression of AD, in the future we will account for
sub-trajectories due to genetic factors, such as the presence of 4 allele of apolipoprotein
(APOE4), which is a major risk for developing AD influencing both disease onset and
progression [Kim, 2009]. This could be done by estimating dynamical systems specific to
the genetic condition of each patient. This was not possible in this study due to a strong
imbalance between the number of carriers and non-carriers across the different clinical
groups (cf. Table 3.1). Indeed, we observe that the number of ADNI non-carriers is much
lower than the number of carriers, especially in the latest stages of the disease (MCI
converters and AD dementia). On the contrary, the majority of NL stable subjects are non-
carriers. Therefore, applying the model in such conditions would lead to a bias towards
more represented groups during the different stages of the disease progression (APOE4-
at early stages and APOE4+ at late ones), thus preventing us from differentiating the
biomarkers dynamics based on the genetic status. Yet, simulating dynamical relationships
specific to genetic factors is a crucial avenue of improvement of our approach, as it would
allow to evaluate the effect of APOE4 on intervention time or drug dosage. In addition to
this example, there exist numerous non-genetic aggravating factors that may also affect
disease evolution, such as diabetes, obesity or smoking. Extending our model to account
for panels of risk factors would ultimately allow to test in silico personalized intervention
strategies. Moreover, a key aspect of clinical trials is their economic cost. SimulAD could
be extended to help designing clinical trials by optimizing intervention with respect to
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the available funding. Given a budget, we could simulate scenarios based on different
sample size, and trials duration, while estimating the expected cognitive outcome.

Results presented in this work are based on a model estimated by relying solely on a
subset of subjects and measures from the ADNI cohort, and therefore they may not be
fully representative of the general AD progression. Indeed, subjects included in this
cohort were either amyloid-positive at baseline, or became amyloid-positive during their
follow-up visits. This was motivated by the consideration that evidence of pathological
amyloid levels is a necessary condition for diagnosing AD as it puts subjects within the
“Alzheimer’s disease continuum” [Jack, 2018]. By narrowing the list of subjects to a
subgroup of amyloid positive we increase the chances of selecting a set of patients likely
to develop the disease. Moreover, the inclusion of subjects at various clinical stages
allows to span the entire spectrum of morphological and physiological changes affecting
the brain. Through the joint analysis of markers of amyloid, neurodegeneration and
cognition, SimulAD estimates the average trajectory that best describes the progression
of the observed measures when going from NL individuals towards AD dementia patients.
The selection of amyloid positive patients aims at increasing the signal of Alzheimer’s
pathological changes within this cohort, in order to estimate long-term dynamics for the
biomarkers that can be associated to the disease. We believe that this modeling choice
is based on a clinically plausible rationale, and allows us to perform our study on a
sufficiently large cohort enabling the estimation of our model.

Bearing this in mind, we acknowledge the potential presence of bias towards the specific
inclusion criterion adopted in this work. Indeed, the present results may provide a
limited representation of the pathological temporal window captured by the model.
For example, applying SimulAD on a cohort containing amyloid-negative subjects may
provide additional insights on the overall disease history. However, this is a challenging
task as it would require to identify sub-trajectories dissociated from normal ageing
[Lorenzi, 2015a; Sivera, 2020]. Another potential bias affecting the results may come
from the choice of the clinical scores used to estimate our model. In this study, we
relied on a panel of 7 neuro-psychological assessments providing a comprehensive
representation of cognitive, memory and functional abilities: ADAS11, MMSE, RAVLT
immediate, RAVLT learning, RAVLT forgetting, FAQ, and CDRSB. The choice of these
particular scores is consistent with previous literature on DPM [Donohue, 2014; Lorenzi,
2017]. However, it is important to note that SimulAD can handle any type of clinical
assessment. Therefore, investigating the effect of adding supplementary clinical scores
on the model’s findings would be an interesting future application of our approach, and
could be done without any modification of its current formulation. Finally, in addition to
these specific characteristics of the cohort, there exists additional biases impacting the
model estimation. For instance, the fact that gray matter atrophy and glucose metabolism
become abnormal approximately at the same time in Figure 3.3 can be explained by
the high atrophy rate of change in some key regions in normal elders, such as in the
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hippocampus, compared to the rate of change of FDG (see Table 3.1). We note that this
stronger change of atrophy with respect to glucose metabolism can already be appreciated
in the clinically healthy group.

3.5 Conclusion

In this study we introduced SimulAD, a novel quantitative instrument for the development
of intervention strategies for disease modifying drugs in AD. Our framework enables the
simulation of the effect of intervention time and drug dosage on the evolution of imaging
and clinical biomarkers in clinical trials. The proposed data-driven approach is based on
the modeling of the spatio-temporal dynamics governing the joint evolution of imaging
and clinical measurements throughout the disease. The model is formulated within
a Bayesian framework, where the latent representation and dynamics are efficiently
estimated through stochastic variational inference. To generate hypothetical scenarios
of amyloid lowering interventions, we applied SimulAD to multi-modal imaging and
clinical data from ADNI. The results quantify the crucial role of intervention time, and
provide a theoretical justification for testing amyloid modifying drugs in the pre-clinical
stage. Our experimental simulations are compatible with the outcomes observed in past
clinical trials and suggest that anti-amyloid treatments should be administered at least 7
years earlier than what is currently being done in order to obtain statistically powered
improvement of clinical endpoints.
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3.6 Appendix

3.6.1 Variational inference

We rewrite p(Xi(t)|zi(t),σ2,ψ) as p(Xi(t)|zi(t0), θODE ,σ2,ψ). Assuming independence
between subjects, the marginal log-likelihood writes as:

L =
N∑
i

log
[
p(Xi(t)|θODE ,σ2,ψ)

]
=

N∑
i

log
[ ∫

p(Xi(t)|zi(t0), θODE ,σ2,ψ)p(zi(t0))dzi(t0)
]
.

(3.6)

For ease of notation, we drop the i index, and dependence on t and t0 is made implicit.
Within a Bayesian framework, we wish to maximize L in order to obtain a posterior
distribution for the latent variable z. Since derivation of this quantity is generally not
tractable, we resort to stochastic variational inference to tackle the optimization problem.
We assume a N (0, I) prior for p(z), and introduce an approximate posterior distribution
q(z|X) [Ghahramani, 2001], in order to derive a lower-bound (ELBO) E for the marginal
log-likelihood:

log p(X|θODE ,σ2,ψ) ≥ Eq(z|X)
[

log p(X|z, θODE ,σ2,ψ)
]

−D
[
q(z|X)|p(z)

]
= E ,

(3.7)

where D refers to the Kullback-Leibler (KL) divergence. We propose to factorize
the distribution q(z|X) across modalities such that, q(z|X) =

∏
m q(zm|xm), where

q(zm|xm) = N (f(xm, φ1
m), h(xm, φ2

m)), is a variational Gaussian approximation with
moments parameterized by the functions f and h. This modality-wise encoding of the
data enables to interpret each coordinate of z as a compressed representation of the
corresponding modality. Moreover, the lower-bound simplifies as:

E =
∑
m

Eq(z|X)
[

log p(xm|z, θODE , σ2
m, ψm)

]
−D

[
q(zm|xm)|p(zm)

]
. (3.8)

Details about the ELBO derivation and the computation of the KL divergence are given in
Appendices 3.6.3 and 3.6.4. A graphical model of the method is also provided in Figure
3.6, while Algorithm 4 details the steps to compute the ELBO.
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3.6.2 Model optimization

Using the reparameterization trick [Kingma, 2013], we can efficiently sample from the
posterior distribution q(z(t0)|X(t0)) to approximate the expectation terms. Moreover,
thanks to our choices of priors and approximations the KL terms can be computed in
closed-form. In practice, we sample from q(z(t0)|X(t0)) to obtain a latent representation
z(t0) at baseline, while the follow-up points are estimated by decoding the latent time-
series obtained through the integration of the ODEs of Equation 3.3. The model is trained
by computing the total ELBO for all the subjects at all the available time points. The
parameters ψ,φ1,φ2, θODE ,σ are optimized using gradient descent, which requires to
backpropagate through the integration operation.

In order to enable backpropagation through the ODEs integration we need to numerically
solve the differential equation using only operations that can be differentiated. In this
work, we used the Midpoint method which follows a second order Runge-Kutta scheme.
The method consists in evaluating the derivative of the solution at (ti+1 + ti)/2, which is
the midpoint between ti at which the correct z(t) is evaluated, and the following ti+1:

∫ ti+1

ti

g(z(x))dx ≈ h · g
(
z( ti + ti+1

2 )
)

≈ h · g
(
z(ti) + h

2 g(z(ti))
)
, h = ti+1 − ti.

(3.9)

Therefore, solving the system of Equation 3.3 on the interval [t0, ..., t] only requires
operations that can be differentiated, allowing to compute the derivatives of the ELBO
with respect to all the parameters, and to optimize them by gradient descent. Moreover,
in order to control the variability of the estimated latent trajectory z(t) due to the error
propagation during integration, we initialized the weights of φ1 and φ2 such that the
approximate posterior of the latent representation for each modality m at baseline was
following a N (0, 0.01) distribution. Finally, we also tested other ODE solvers such as
Runge-Kutta 4, which gave similar results than the Midpoint method with a slower
execution time due its more expensive approximation scheme.

Concerning the implementation, we trained the model using the ADAM optimizer
[Kingma, 2015a] with a learning rate of 0.01. The functions f, h and µm were pa-
rameterized as linear transformations. The model was implemented in Pytorch [Paszke,
2019], and we used the torchdiffeq package developed in [Chen, 2018] to backpropagate
through the ODE solver.
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3.6.3 Lower bound

We provide here the detailed derivation to obtain the ELBO of Equation 3.8.

log p(X|σ2,ψ) = log
[ ∫

p(X|z, θODE ,σ2,ψ)p(z)dz
]

= log
[ ∫

p(X|z, θODE ,σ2,ψ)p(z)q(z|X)
q(z|X)dz

]
= log

[
Eq(z|X)

p(X|z, θODE ,σ2,ψ)p(z)
q(z|X)

]
Jensen
≥ Eq(z|X)

[
log p(X|z, θODE ,σ

2,ψ)p(z)
q(z|X)

]
= Eq(z|X)

[
log p(X|z, θODE ,σ2,ψ)

]
−D

[
q(z|X)|p(z)

]
= E .

(3.10)

Given that:

p(X|z, θODE ,σ2,ψ) =
∏
m

p(xm|z, θODE , σ2
m, ψm), q(z|X) =

∏
m

q(zm|X), and p(z) = N (0, I).

(3.11)

We obtain:

E =
∑
m

Eq(z|X)
[

log p(xm|z, θODE , σ2
m, ψm)

]
−D

[
q(zm|xm)|p(zm)

]
. (3.12)

3.6.4 KL divergence

We have that:

q(zm|X) = N (f(xm, φ1
m), h(xm, φ2

m)),

p(zm) = N (0, 1).
(3.13)

We use the closed-form formula to calculate the KL divergence between two normal
distributions:

D
[
q(z|X)|p(z)

]
=
∑
m

D
[
q(zm|xm)|p(zm)

]
= 1

2
∑
m

[
− log(h(xm, φ2

m))− 1 + h(xm, φ2
m) + f(xm, φ1

m)2
]
.

(3.14)
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3.6.5 Graphical model

Figure 3.6 below provides the graphical model illustrating the method presented in
Section 3.2.3.

2

ODE

Figure 3.6: Graphical model of the proposed method.

3.6.6 Lower bound computation

Algorithm 4 below details the steps to compute the lower-bound for a given subject i at
time t.

Algorithm 4 Forward pass to compute the lower-bound for a given subject i at time t.

1: function COMPUTE_ELBO(X(t),X(t0), θODE ,ψ,φ,σ2)
For ease of notation we drop the i index in the pseudo-code.

2: Sample z(t0) ∼ q(z(t0)|X(t0)) =
∏
mN (f(xm(t0), φ1

m), h(xm(t0), φ2
m)) .

Baseline latent representation (reparameterization trick).
3: Compute z(t) = MIDPOINT (z(t0), g, θODE , t) . Predict latent representation

at time t by numerically solving the ODEs system.
4: Compute Eq(z(t0)|X(t0))

[
log p(xm(t)|z(t), θODE , σ2

m, ψm)
]
≈ −Dm

2 log(2πσ2
m) −

1
2σ2

m
||xm(t)− µm(z(t))||2 . Expectation term Equation 3.8.

5: Compute D
[
q(zm(t0)|xm(t0))|p(zm(t0))

]
= 1

2

[
− log(h(xm(t0), φ2

m)) − 1 +

h(xm(t0), φ2
m) + f(xm(t0), φ1

m)2
]

. KL divergence Equation 3.8.

6: Compute E =
∑
m Eq(z(t0)|X(t0))

[
log p(xm(t)|z(t), θODE , σ2

m, ψm)
]
−

D
[
q(zm(t0)|xm(t0))|p(zm(t0))

]
.

7: Return E
8: end function
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3.6.7 Time-shift comparison and validation

We compared our estimated disease severity (Figure 3.2 panel II right) with the one
obtained applying the monotonic Gaussian Process (GP) model of [Lorenzi, 2017]
from the state-of-the-art (Figure 3.7A). While both methods estimate significant time
differences when going from healthy to pathological stages, SimulAD captures a larger
temporal variability for both earlier and later stages of the disease, as shown in Figure
3.7B, highlighting a stronger separability across clinical stages.
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Figure 3.7: A: Distribution of the disease severity estimated by the monotonic GP method
[Lorenzi, 2017] on the training set. NL: normal individuals, MCI: mild cognitive
impairment, AD dementia: Alzheimer’s disease dementia. B: Comparison of the
disease severity estimated by SimulAD with respect to the one estimated by the
monotonic GP.

We also tested SimulAD on an independent testing cohort from the ADNI composed of
130 NL stable, 10 NL converters, 125 MCI stable, 7 MCI converters, and 12 AD dementia
subjects which were not necessarily amyloid positive. It is important to note that no PET-
FDG data was available for these subjects. We provide in Table 3.3 socio-demographic
and clinical information for the testing cohort across the different clinical groups. Despite
the fact that no FDG data was used to estimate the disease severity, we observe in Figure
3.8 that the method still exhibits good separating performances between clinical stages,
coherently with the clinical status of the testing individuals.

3.6.8 Simulated clinical endpoints

We provide in Table 3.4 the estimated values for each clinical score at predicted conversion
time for the normal progression case when performing the simulations presented in
Section 3.3.3.
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Table 3.3: Baseline socio-demographic and clinical information for testing cohort (284 subjects
for 2116 data points). Average values, standard deviation in parenthesis. NL: normal
individuals, MCI: mild cognitive impairment, AD dementia: Alzheimer’s disease
dementia. ADAS11: Alzheimer’s Disease Assessment Scale-cognitive subscale, 11
items. AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake
Value Ratio.

NL stable NL converters MCI stable MCI converters AD dementia
N 130 10 125 7 12

Age (yrs) 72 (6) 74 (8) 71 (8) 73 (9) 78 (6)
Education (yrs) 17 (2) 16 (2) 16 (3) 14 (3) 17 (2)

ADAS11 5.4 (2.8) 7.7 (4.1) 7.8 (3.3) 14.3 (5.2) 15.0 (6.7)
WholeBrain (cm3) 1063 (103) 1104 (98) 1054 (97) 966 (104) 1010 (108)

AV45 (SUVR) 0.9 (0.1) 1.0 (0.1) 1.0 (0.1) 1.1 (0.2) 1.2 (0.3)

Time to AD dementia (years) 

Disease severity across clinical stages (testing set)

NL stable

NL converters

MCI stable

MCI converters

AD dementia

-20.0 10.0-10.0 -5.0 5.0-15.0

Figure 3.8: Distribution of the disease severity estimated for the subjects of the testing set,
relatively to the long-term dynamics of Figure 3.2 panel II) (left) in the manuscript.
NL: normal individuals, MCI: mild cognitive impairment, AD dementia: Alzheimer’s
disease dementia.
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Table 3.4: Estimated mean (standard deviation) of the clinical outcomes at predicted conversion
time for the normal progression case by year of simulated intervention (100% and
50% amyloid lowering interventions). Results in bold indicate a statistically signifi-
cant difference between placebo and treated scenarios (p<0.01, two-sided t-test, 100
cases per arm). AD: Alzheimer’s disease dementia, ADAS11: Alzheimer’s Disease As-
sessment Scale, MMSE: Mini-Mental State Examination, FAQ: Functional Assessment
Questionnaire, RAVLT: Rey Auditory Verbal Learning Test, CDRSB: Clinical Dementia
Rating Scale Sum of Boxes.

Amyloid lowering intervention 100%
Score per intervention time

Score
Years to AD −20 −15 −12.5 −10 −5 −3 −2 −1

ADAS11 7.8 (8.9) 13.7 (5.9) 15.9 (5.0) 17.3 (4.5) 18.6 (4.2) 18.8 (4.1) 18.8 (4.1) 18.9 (4.1)
MMSE 28.3 (3.8) 25.7 (2.5) 24.8 (2.1) 24.2 (2.0) 23.6 (1.8) 23.5 (1.8) 23.5 (1.8) 23.5 (1.8)
FAQ 2.3 (7.9) 7.5 (5.2) 9.3 (4.5) 10.5 (4.0) 11.7 (3.7) 11.8 (3.7) 11.9 (3.7) 11.9 (3.7)
RAVLT immediate 39.2 (12.7) 31.0 (8.4) 28.1 (7.1) 26.1 (6.4) 24.3 (5.8) 24.0 (5.7) 23.9 (5.7) 23.9 (5.7)
RAVLT learning 4.9 (2.2) 3.4 (1.5) 2.9 (1.2) 2.6 (1.1) 2.2 (1.0) 2.2 (1.0) 2.2 (1.0) 2.2 (1.0)
RAVLT forgetting 49.9 (29.8) 69.4 (19.7) 76.6 (16.8) 81.3 (15.1) 85.9 (13.7) 86.6 (13.5) 86.9 (13.4) 87.0 (13.4)
CDRSB 1.0 (2.8) 2.9 (1.9) 3.6 (1.6) 4.0 (1.5) 4.4 (1.4) 4.5 (1.3) 4.5 (1.3) 4.5 (1.3)

Amyloid lowering intervention 50%
Score per intervention time

Score
Years to AD −20 −15 −12.5 −10 −5 −3 −2 −1

ADAS11 14.0 (5.9) 16.6 (4.8) 17.6 (4.5) 18.3 (4.4) 18.9 (4.2) 19.0 (4.2) 19.0 (4.2) 19.0 (4.2)
MMSE 25.6 (2.5) 24.5 (2.1) 24.0 (2.0) 23.7 (1.9) 23.5 (1.8) 23.4 (1.8) 23.4 (1.8) 23.4 (1.8)
FAQ 7.7 (5.2) 10.0 (4.3) 10.8 (4.1) 11.4 (3.9) 11.9 (3.7) 12.0 (3.7) 12.0 (3.7) 12.0 (3.7)
RAVLT immediate 30.5 (8.3) 27.0 (6.8) 25.6 (6.4) 24.7 (6.1) 23.8 (5.8) 23.7 (5.8) 23.6 (5.8) 23.6 (5.8)
RAVLT learning 3.3 (1.5) 2.7 (1.2) 2.5 (1.1) 2.3 (1.1) 2.2 (1.0) 2.1 (1.0) 2.1 (1.0) 2.1 (1.0)
RAVLT forgetting 70.9 (19.5) 79.4 (16.1) 82.7 (15.0) 84.9 (14.3) 87.1 (13.7) 87.4 (13.6) 87.6 (13.6) 87.6 (13.6)
CDRSB 3.0 (1.9) 3.8 (1.6) 4.1 (1.5) 4.3 (1.4) 4.5 (1.4) 4.5 (1.4) 4.6 (1.4) 4.6 (1.4)
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In the previous chapters we introduced two different approaches allowing to estimate a
model of Alzheimer’s disease (AD) progression. In both cases, the methods were devel-
oped on the Alzheimer’s Disease Neuroimaging Initiative cohort, but their generalization
to independent datasets was not evaluated. Yet, assessing the generalization properties of
disease progression models is essential in order to finally deploy them in clinical routine.
Given this context, we propose in this chapter to evaluate the generalization capabilities
of SimulAD by applying it on an independent cohort from the Geneva Memory Center.
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The goal of this preliminary validation is to demonstrate the reliability of the model
of disease progression provided by our approach, as well as its validity for performing
individual disease staging. This work has been submitted to the journal Neurobiology of
Aging.

Abstract. SimulAD is a disease progression model initially developed on the ADNI
database to simulate the evolution of clinical and imaging markers characteristic
of AD. Based on multi-modal and clinical imaging data, SimulAD estimates the
disease severity of a subject with respect to the simulated progression. In this
work, we assessed the generalization capabilities of SimulAD when applied to an
independent cohort from the Geneva Memory Center (GMC). The GMC cohort
included 93 subjects who underwent MRI, amyloid-PET, FDG-PET, tau-PET scans and
neuropsychological evaluations. The distribution of the disease severity estimated by
SimulAD was compared between clinical groups using Student’s t-test and Cohen’s
d. The relationship between SimulAD disease severity, and clinical scores and
imaging biomarkers was assessed using Spearman correlation coefficient. We also
simulated the evolution of clinical and imaging markers based on the GMC cohort,
and computed the average error between this model of evolution and the one
previously estimated on the ADNI database. The difference between SimulAD
disease severity of healthy, mild cognitive impairment and AD dementia groups was
statistically significant (p-values < 0.05; d ≥ 0.8). The disease severity correlated
with MMSE (ρ = −0.55), hippocampal atrophy (ρ = −0.62), glucose hypometabolism
(ρ = −0.67), amyloid burden (ρ = 0.31) and tau deposition (ρ = 0.62) (p-values
< 0.01). The average error between the evolutions estimated by SimulAD on the
ADNI and the GMC cohort were of 7%, 8%, 9%, 6% for MRI, FDG-PET, amyloid-PET
derived markers and clinical scores respectively. The evaluation of SimulAD on the
GMC cohort illustrates its robustness and generalization properties, highlighting
the interest of this model to support diagnosis and to identify individuals at risk of
cognitive decline over time.

4.1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder whose evolution has been
hypothesized to follow a cascade of events [Jack, 2013b]. Deposition of the beta-amyloid
protein in the brain cortex is believed to initiate this cascade, and to subsequently cause
the aggregation of hyperphosphorylated tau protein in neurofibrillary tangles. This is
followed by a process of neurodegeneration (i.e glucose hypometabolism and gray matter
atrophy) ultimately leading to dementia. An inherent difficulty in diagnosing AD is that
patients go through a long asymptomatic phase spanning approximately 10 to 20 years
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[Sperling, 2011] before showing clinical symptoms. To provide a biological assessment
of the disease, AD has been recently defined as a pathology characterized by three main
biomarkers categories, namely: amyloid, tau and neurodegeneration [Jack, 2018]. These
three biomarkers can be measured thanks to imaging techniques, such as Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography (PET), or in the case
of amyloid and tau, also by lumbar puncture and blood collection. Monitoring these
biomarkers is paramount in order to track the disease progression [Risacher, 2017], and
to potentially facilitate prevention or assessment of drug efficacy [Schwarz, 2019].

In the past years, the proliferation of studies collecting large amounts of biomarkers,
combined with the growth of machine learning, fostered the development of computa-
tional models for automated AD diagnosis. For instance, many studies focused on the
development of data-driven approaches for automatic assessment of clinical diagnosis
[Davatzikos, 2009; Falahati, 2014; Arbabshirani, 2017]. Based on the sole analysis of
imaging-derived data, these methods showed that it is possible to automatically identify
healthy controls, subjects with mild cognitive impairment, and patients suffering from
AD dementia, some of them reporting results comparable to diagnosis rates obtained
by expert physicians [Klöppel, 2008]. However, most of these approaches have been
exclusively developed to solve a predictive task, and generally don’t allow to under-
stand the mechanisms relating the different biomarkers throughout AD evolution. As
these mechanisms still remain partially unknown, different methods known as disease
progression models were therefore introduced in order to estimate, in a data-driven
fashion, the long-term progression of biomarkers [Jedynak, 2012]. Due to the lack of an
absolute time-line describing AD evolution, these models usually assume that the disease
is characterized by monotonic changes, such that the modelled biomarkers steadily
evolve from normal to pathological values. This assumption allows to reconstruct a
time-line on which we can track the disease progression [Lorenzi, 2017]. Moreover, these
methods can be applied to a variety of data types, such as cortical and subcortical shapes
[Marinescu, 2019a] or volumetric images [Khanal, 2016; Khanal, 2017], thus offering
a fine-grained spatial description of the changes affecting the brain. These models also
allow to automatically assess the individual disease severity by comparing the clinical
and imaging measurements of a given subject to the estimated disease progression. This
latter capability of disease progression models is usually referred as disease staging.
Ultimately, these approaches could potentially be used for identifying individuals at risk
of cognitive decline, or for assessing drug efficacy in clinical trials.

Since these statistical models have been mostly developed on publicly available research
datasets, such as the one provided by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), their generalization to external cohorts from memory clinics still requires addi-
tional testing and validation [Mendelson, 2017]. As clinical cohorts may fundamentally
differ from the ADNI one, whether it be in terms of data acquisition or study popula-
tion, automated diagnosis pipelines usually show a prominent decrease in performances.
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Regarding disease progression models, it is conceivable that biomarkers’ trajectories
estimated solely via the analysis of a single cohort may not be fully representative of the
natural disease course. This aspect would question the generalization of the progression
model when tested on subjects from independent clinical cohorts. It is therefore essential
to assess the generalization of this kind of models on independent datasets, with respect
to their specific biases which can encompass a broad range of differences between cohorts
such as data acquisition, missing data or data heterogeneity. These differences need to
be addressed to finally deploy disease progression models in a practical clinical setting
[Castro, 2020].

Recently, the event-based-model (EBM) [Fonteijn, 2012] and the Discriminative EBM
(DEBM) [Venkatraghavan, 2019] underwent an extensive evaluation effort. These
approaches model AD progression as a sequence of events representing the transition
of a set of biomarkers from a normal to an abnormal state. Both EBM and DEBM
have been applied on subjects from independent cohorts, providing accurate patients
staging [Archetti, 2019]. However, the kind of progression model estimated by these
methods presents important limitations. First, both approaches are based on the simplistic
assumption describing the pathological progression as a discrete sequence of biomarkers
transitions from normal to abnormal states, which doesn’t reflect the continuous nature
of the changes affecting the brain during the disease. Second, they allow the analysis
of summary measures only, such as regional brain uptake of grey matter density values,
and thus don’t enable the fine-grained quantification of the spatial patterns of changes
associated with the disease. Third, while these two models inform us about the sequence
of events characterizing AD, they don’t provide insights about the dynamical interplay
between biomarkers. Investigating such interactions would allow a deeper understanding
of how the pathological processes at stake during the disease affect each other. Fourth, the
EBM and the DEBM don’t allow to simulate hypothetical scenarios of disease progression.
Yet, such capability could be used to assess the effect of drug intervention on the disease
evolution in silico, which could help planning and monitoring clinical trials.

To address these limitations, more refined approaches to disease progression modeling
have been proposed, to enable the fine-grained description of the pathological evolution
in space and time [Bilgel, 2016; Koval, 2018; Marinescu, 2019a]. Within this context,
SimulAD [Abi Nader, 2021] is a recent method allowing the analysis of clinical scores and
multivariate imaging data extracted from MRI and PET scans to estimate a continuous
spatio-temporal model of disease progression. Compared to the EBM and the DEBM,
this approach offers a higher resolution for the imaging biomarkers, allowing to track
the evolution of regional changes affecting the brain along a continuous temporal scale
describing the disease course over 30 years. The trajectories estimated for clinical and
imaging markers can subsequently be used as a reference to assess the individual disease
severity, by locating subjects along the temporal scale describing the disease evolution.
Moreover, SimulAD estimates the dynamical relationships between key biomarkers at
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stake during AD progression, namely: amyloid deposition, glucose hypometabolism, cere-
bral atrophy, cognitive and behavioural decline. Based on these relationships, the model
can be applied to simulate the personalized evolution of any patient or group of patients
only from the knowledge of their baseline clinical and imaging measurements. Finally,
SimulAD enables to assess the impact of therapeutic intervention, such as anti-amyloid
treatment, on cognitive outcomes depending on the intervention time (cf. Chapter 3).

While SimulAD was previously trained on the ADNI cohort, its generalization to in-
dependent datasets has not been evaluated. As it generally holds for statistical and
machine learning models, one of the main difficulty for the generalization of SimulAD
to independent cohorts lies in the challenge of accounting for potential missing data,
heterogeneity due to different acquisition protocols or even data incompatibility between
cohorts. Yet, evaluating the generalization of SimulAD to independent cohorts is essential
to demonstrate the reliability of the dynamics allowing to personalize the models of
disease progression, as well as the validity of the approach for providing accurate disease
staging.

Within this context, we assess in this study the generalization capabilities of SimulAD.
To this end, we test the robustness and reliability of this approach when applied to an
independent dataset from a memory clinic, namely the Geneva Memory Center (GMC).
This cohort includes patients with cognitive complaints, who underwent a baseline clinical
and neuropsychological evaluation, MRI, amyloid-PET, (18)F-fluorodeoxyglucose-PET
(FDG-) and (18)F-flortaucipir-PET (tau-) scans. Our evaluation procedure relies on three
key aspects: (i) Development of a pre-processing pipeline allowing to apply SimulAD on
the GMC cohort; (ii) Assessment of SimulAD validity for individual disease staging. (iii)
Evaluation of the reliability of the progression of imaging and clinical markers estimated
by SimulAD.

4.2 Material and Methods

In this work subjects were divided in five clinical groups: cognitively healthy (NL stable),
individuals diagnosed with mild cognitive impairment (MCI stable), patient suffering
from Alzheimer’s disease dementia (AD dementia), subjects progressing from NL to
MCI or AD dementia (NL converters), and finally subjects progressing from MCI to AD
dementia (MCI converters).

4.2.1 Experimental cohort

The GMC cohort included 93 subjects: 23 NL stable, 28 MCI stable, 25 MCI converters,
17 AD dementia. In Table 4.1, we provide socio-demographic information across clinical
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groups for this dataset. The clinical spectrum of the cohort spans a broad range of cogni-
tive severity, from healthy to moderate and severe dementia. Conversion to AD dementia
was determined using the last available follow-up information. All the participants
were amyloid positive at baseline, and “amyloid positivity” was evaluated using visual
assessment performed by an expert nuclear medicine physician and following the tracer
manufacturers guidelines. Multi-modal biomarkers consisting of neuropsychological
tests and imaging-derived measures were collected. Each participant underwent the
Mini-Mental State Examination (MMSE). Moreover, imaging data coming from MRI,
FDG-PET, and amyloid-PET were available. In addition, a tau-PET scan was acquired for
50 subjects. Summary statistics about clinical and imaging-derived information across
clinical groups are reported in Table 4.1.

The cohort used to train SimulAD was composed by a subset of individuals from the
ADNI database. Further information on this cohort is available in Section 3.2.1.

Table 4.1: Baseline characteristic of the GMC cohort. Average values, standard deviation in
parenthesis. Acronyms: GMC: Geneva Memory Center; NL: cognitively healthy;
MCI: mild cognitive impairment; AD dementia: Alzheimer’s disease dementia; FDG:
(18)F-fluorodeoxyglucose Positron Emission Tomography (PET) imaging; SUVR: Stan-
dardized Uptake Value Ratio; MMSE: Mini Mental State Examination; Tau: (18)F-
flortaucipir PET imaging. Converters are NL patients progressing to MCI or AD
dementia, or MCI individuals progressing to AD dementia. Hippocampal volume:
extracted with Freesurfer. Amyloid burden: voxel-number weighted average of the
amyloid uptake in the frontal, anterior/posterior cingulate, lateral parietal, and lat-
eral temporal regions normalized to the cerebellum. Early amyloid: voxel-number
weighted average of the uptake extracted from the early-phase (6 min) of amyloid-
PET in the frontal, anterior/posterior cingulate, lateral parietal, and lateral temporal
regions normalized to the cerebellum. Glucose metabolism: voxel-number weighted
average of the FDG uptake in the angular, temporal, and posterior cingulate cortex
normalized to the cerebellum. Tau burden: voxel-number weighted average of the
tau uptake in the entorhinal, amygdala, parahippocampal, fusiform, inferior temporal,
and middle temporal regions normalized to the cerebellum. Missing data for 36a and
43b subjects.

Group NL stable MCI stable MCI converters AD dementia
GMC cohort

N 23 28 25 17
Female (%) 61 61 65 53
Age (years) 69.1 (7.5) 74.3 (6.5) 73.8 (4.6) 70.4 (11.1)

Education (years) 17.3 (3.9) 14.0 (3.1) 12.5 (4.7) 11.6 (3.8)
MMSE 28.5 (1.0) 25.2 (3.1) 23.7 (4.3) 18.2 (6.5)

Hippocampus (mm3) 4271 (435) 3621 (534) 3634 (448) 3409 (436)
Amyloid (SUVR) 0.70 (0.12) 0.93 (0.13) 0.91 (0.13) 0.89 (0.11)

Early amyloid (SUVR) 0.53 (0.03) 0.50 (0.03) 0.47 (0.02) 0.45 (0.03)
FDGa (SUVR) 0.57 (0.06) 0.54 (0.04) 0.52 (0.04) 0.49 (0.06)
Taub (SUVR) 0.60 (0.06) 0.81 (0.20) 0.94 (0.27) 1.21 (0.34)
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4.2.2 Image preprocessing

We derived volumes of gray matter density in a standard anatomical space by relying on
the longitudinal pipeline of Freesurfer [Reuter, 2012]. Regional gray matter density was
extracted from the Desikan-Killiany parcellation [Desikan, 2006]. amyloid-PET, FDG-PET
and tau-PET images were registered to their corresponding T1-MRI acquisition, and
normalized to the cerebellum uptake. Regional amyloid load, glucose metabolism and
tau burden were computed thanks to the PetSurfer software [Greve, 2014]. For every
imaging modality we discarded white-matter, ventricular, and cerebellar regions, thus
obtaining 82 regions that were averaged across hemispheres.

4.2.3 Modeling framework

SimulAD is based on the hypothesis that AD evolution can be mathematically modelled
by a set of key biomarkers following a dynamical system. These biomarkers are namely
clinical scores, gray matter atrophy, amyloid load and glucose metabolism. This assumption
has two consequences: the first one is that, at any given time, AD severity is uniquely
associated with the values of these biomarkers. The second one is that past and futures
states of the disease can be computed from the current ones thanks to mathematical
relationships linking the biomarkers evolutions.

To estimate the complex relationships between high-dimensional imaging and clinical
measures, the model first transforms baseline neuropsychological assessments and mea-
sures derived from MRI, amyloid-PET and FDG-PET data in a set of four corresponding
z-scores. The transformation consists in a weighted average of the measurements derived
from each type of data modality (i.e regional grey matter measurements in the case
of atrophy). The obtained z-scores are respectively denoted zcli, zatr, zamy zmet, and
describe the overall pathological status of an individual. We hypothesize that these four
z-scores are related by a set of relationships driving the disease progression, which are
mathematically modelled by a system of Ordinary Differential Equations (ODEs). This
system of ODEs provides us with an interaction rule that describes how the z-scores jointly
evolve over time. The parameters controlling the system of ODEs are optimized such
that the predicted evolution of the z-scores best matches the available follow-up clinical
and imaging measurements of each individual. Further details about the mathematical
formulation of the model are provided in Section 3.2.

Trajectory modelling. Thanks to this mathematical formulation, SimulAD can be used
to simulate the progression of changes characterizing AD by considering the subjects
diagnosed with AD dementia, and for whom we compute corresponding z-scores based
on their baseline measures. Relying on the estimated set of relationships between z-
scores we follow their evolution forward and backward in time, thus simulating the
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subjects’ evolution from their original healthy condition to their current pathological
state. We obtain z-scores trajectories summarizing the overall progression of AD, and
from which we can estimate the long-term evolution of the corresponding clinical and
imaging measurements.

Disease severity quantification. Relying on the reference trajectory estimated for the
four z-scores summarizing AD evolution, we can subsequently perform individual disease
staging. Based on the multi-modal imaging and clinical data of a given subject collected
at any visit, we compute z-scores for each type of marker, and find the time-point τ jointly
minimizing the distance between the individual z-scores and the reference trajectory.
In the rest of the paper, we will refer to this time-point as the disease severity. The
estimated disease severity τ locates a subject on the reference trajectory, thus quantifying
its pathological state. It is also important to note that the disease severity can still
be estimated even in the case of missing data, by only computing the z-scores of the
available measures of the observed subject. We provide mathematical details on the
disease severity estimation in Section 3.2.6.

4.2.4 Estimated model

The parameters of the resulting model, presented in Chapter 3, were estimated through
the analysis of multi-modal longitudinal data from the ADNI cohort. The clinical scores
consisted in the Clinical Dementia Rating Scale Sum of Boxes (CDRSB), Alzheimer’s
Disease Assessment Scale (ADAS11), Functional Assessment Questionaire (FAQ), Rey
Auditory Verbal Learning Test (RAVLT) learning, RAVLT immediate, RAVLT forgetting and
MMSE. Regional gray matter density, amyloid load and glucose metabolism were derived
following the procedure detailed in Section 4.2.2. No tau-PET data was included in the
model. Additional baseline socio-demographic information and summary statistics about
clinical and imaging data for the subjects from the ADNI cohort are provided in Section
3.2.1. The disease progression previously estimated by SimulAD on the ADNI database
is illustrated in Figures 3.2 and 3.3 in which we show the evolution of the z-scores and
their associated imaging and clinical measures.

4.2.5 Evaluation strategy

We considered the model of evolution estimated by SimulAD on the ADNI cohort as
the reference progression for AD. We evaluated SimulAD by conducting a series of
experiments on both ADNI and GMC cohorts which aimed at demonstrating respectively
the known-groups validity, the concurrent validity and the reliability of the model.
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Known-groups validity. We evaluated how the estimated disease severity discriminates
subjects across clinical groups within each cohort. It is expected that values of disease
severity should increase along with the severity of the clinical status. We further assessed
the group-wise consistency of the disease severity distribution, by comparing its values
for similar clinical groups between ADNI and GMC cohorts. Differences between groups
were assessed using Student’s t-test and Cohen’s d effect size.

Concurrent validity. We assessed the extent to which the estimated disease severity
correlates with validated clinical and imaging assessments. For each subject MMSE score
was available and imaging-biomarkers assessment as follows: hippocampal atrophy eval-
uated with Freesurfer, glucose metabolism and amyloid burden computed by extracting
standardized uptake value ratio in a composite mask of regions of interest (MetaROI
approach [Jagust, 2009; Landau, 2010; Landau, 2012]). In the case of GMC, we also
had 50 subjects who underwent a tau-PET scan. We compared their estimated disease
severity with respect to their tau burden computed in a composite mask of relevant
regions (MetaROI approach [Jack, 2017]). Correlation between the estimated disease
severity and the different variables was assessed using Spearman rank correlation (ρ).

Reliability. The two previous experiments aimed to quantify the validity of SimulAD in
terms of disease staging based on the reference progression previously simulated on the
ADNI database. We verified the consistency and robustness of the dynamics estimated
by SimulAD by simulating the evolution of clinical and imaging-derived markers based
on the GMC data. To this end, we applied the procedure described in Section 4.2.3 on
the AD dementia subjects from the GMC cohort, thus providing us with a new model of
progression for clinical and imaging measurements, as well as specific z-scores trajectories
personalized to the GMC cohort. We compared the disease progression models obtained
on ADNI and GMC cohorts by computing the average error between their z-scores
trajectories over time.

4.2.6 Data adjustment

In order to implement the aforementioned assessment strategy, a number of additional
pre-processing steps had to be carried out.

Missing measures imputation. We recall that SimulAD relies on 7 neuropsychological
tests (CDRSB, MMSE, ADAS11, FAQ, RAVLT learning, RAVLT immediate and RAVLT
forgetting) to compute the score zcli, and that the only common clinical test between
the ADNI and GMC cohorts is the MMSE. However, relying only on the MMSE would
bias the computation of zcli for the subjects from the GMC cohort. To overcome this
issue, we imputed the 6 missing clinical scores for all the subjects from the GMC cohort.
Imputation was carried out through k-means regressions trained on the ADNI database
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to predict each clinical score based on the MMSE and the measures of regional grey
matter volume. The trained models were subsequently applied on the GMC cohort to
estimate the associated clinical scores. We performed a 10-fold cross validation on the
ADNI database to evaluate the prediction performances of the models. We show in Table
4.2 the average and the 95% confidence interval of the relative error between the ground
truth and predicted score. The average relative error remains below 10% for the CDRSB,
ADAS11, RAVLT immediate and FAQ, while not exceeding 20% for the RAVLT learning
and RAVLT forgetting. We provide additional information about the estimation error in
Appendix 4.6.1.

FDG data harmonization. We can observe in Table 4.1 that in the GMC cohort 36
subjects out of 93 are missing an FDG-PET scan, thus preventing the computation of their
score zmet. For these subjects their disease severity can therefore be estimated only based
on three z-scores (zcli, zatr, zcli), leading to potential bias and mis-estimation compared
to the rest of the cohort. To prevent this issue we computed the regional FDG uptake for
every subjects of the GMC cohort based on their corresponding early-phase (6 min) of
amyloid-PET scan [Daerr, 2017]. This was done by fitting a linear regression between
the early-amyloid and FDG uptake of all the subjects for each brain region. Figure 4.1
illustrates the linear fit between early-amyloid and FDG regional uptake for three brain
regions. We show similar relationships for additional brain regions in Appendix 4.6.2.

Tracer bias correction. The amyloid-PET scan of 17 subjects from the GMC cohort was
acquired using the flutemetamol tracer, while the amyloid-PET scans of the remaining
subjects from both ADNI and GMC cohorts were acquired using florbetapir. To compensate
the effect of the tracer on the regional uptake for these subjects, we converted the
extracted amyloid burden on the centiloid scale and back to a florbetapir scale [Klunk,
2015; Battle, 2018; Navitsky, 2018]. We observe in Figure 4.2 that the correction reduces
the variability of the amyloid uptake values for the flutemetamol group, increasing the
overlapping with the florbetapir one. Appendix 4.6.3 provides histograms illustrating the
same effect in other brain regions.

Table 4.2: Relative error between the ground truth and k-means prediction of the different clini-
cal scores in the ADNI cohort. Average values and 95% confidence interval. CDRSB:
Clinic Dementia Rating Scale Sum of Boxes; ADAS11: Alzheimer’s Disease Assess-
ment Scale; FAQ: Functional Assessment Questionnaire; RAVLT: Rey Auditory Verbal
Learning Test. ADNI: Alzheimer’s Disease Neuroimaging Initiative. CI: Confidence
interval.

Score CDRSB ADAS11 RAVLT immediate RAVLT learning RAVLT forgetting FAQ
Relative error (%) 5.2 6.0 7.5 14.2 17.8 9.1

95% CI [1.4 ; 10.3] [3.2 ; 10.6] [5.2 ; 10.2] [10.7 ; 18.8] [10.3 ; 25.8] [1.5 ; 18.8]
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Caudal anterior cingulate Inferior parietal Entorhinal

Figure 4.1: Scatter plot between the regional early-amyloid uptake and the corresponding FDG
uptake for 57 patients of the GMC cohort. Solid black lines show the fitted linear
model between regional FDG and early-amyloid. The dashed-lines represent 95%
confidence interval. GMC: Geneva Memory Center. FDG: (18)F-fluorodeoxyglucose.
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Figure 4.2: Distribution of the regional amyloid uptake depending on the tracer used during
acquisition for the subjects from the GMC cohort. 76 amyloid-PET scans were
acquired using florbetapir and 17 using flutemetamol. Tracer correction indicates
that the regional amyloid uptake of subjects whose PET scan was acquired using
flutemetamol was converted to a florbetapir scale. GMC: Geneva Memory Center;
SUVR: Standardized Uptake Value Ratio; PET: Positron Emission Tomography.
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4.3 Results

4.3.1 Known-groups validity

In this section, we considered the pathological progression previously estimated in
Chapter 3 by SimulAD as a reference trajectory, and computed the disease severity of
the individuals from both cohorts based on the procedure of Section 4.2.3. We show in
Figure 4.3 the group-wise distribution of the disease severity estimated by SimulAD for
each subject in the ADNI and GMC datasets. We observe that for both cohorts the disease
severity increases when going from healthy to pathological stages. The group-wise
difference of disease severity across clinical groups is statistically significant for each
comparison (Student’s t-test p < 0.05) except in the case of MCI stable vs MCI converters
for the GMC cohort (cf. Table 4.3a). We also notice rather large differences between
clinical groups (d > 0.7, cf. Table 4.3a) for both cohorts except in the case of NL stable vs
MCI stable for the ADNI cohort and MCI stable vs MCI converters for the GMC database.
We also evaluated the consistency of the disease severity by comparing its distribution for
similar clinical groups across cohorts. We observe in Table 4.3b that the estimated disease
severity of similar clinical groups is not significantly different (p > 0.05), and differences
between cohorts are rather small (d ≤ 0.1), except in the case of MCI stable. We recall
that, apart from the MMSE, the clinical scores of the subjects from the GMC cohort were
imputed based on the procedure detailed in Section 4.2.6. We show in Figure 4.10 in
Appendix 4.6.4 that the estimation of the individual disease severity is robust to this
approximation.

Table 4.3: Comparison of the estimated disease severity distribution between clinical groups
within each cohorts (a) and between similar clinical groups across cohorts (b); We
report p-values of Student’s t-test as well as the associated effect size (Cohen’s d).

(a)

Within cohorts disease severity comparison
NL stable NL stable MCI stable MCI stable MCI converters

vs vs vs vs vs
NL converters MCI stable MCI converters AD dementia AD dementia

Cohort ADNI GMC ADNI GMC ADNI GMC ADNI GMC ADNI GMC
p-value 7.5 · 10−4 / 1.8 · 10−2 1.0 · 10−4 1.2 · 10−11 4.4 · 10−1 1.1 · 10−26 3.8 · 10−3 3.1 · 10−7 1.6 · 10−2

Cohen’s d 0.75 / 0.35 1.1 0.91 0.21 1.5 0.80 0.74 0.81

(b)

Between cohorts disease severity comparison
NL stable MCI stable MCI converters AD dementia

p-value 8.2 · 10−1 7.0 · 10−3 9.5 · 10−1 7.3 · 10−1

Cohen’s d 0.03 0.57 0.10 0.09
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Figure 4.3: Distribution of the disease severity estimated by SimulAD across clinical stages for
the ADNI and GMC cohorts relatively to the estimated model of disease progression
(Figure 3.2). ADNI: Alzheimer’s Disease Neuroimaging Initiative; GMC: Geneva
Memory Center; NL: cognitively healthy; MCI: mild cognitive impairment; AD
dementia: Alzheimer’s disease dementia. Converters are NL patients progressing to
MCI or AD dementia, or MCI individuals progressing to AD dementia.
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4.3.2 Concurrent validity

We show in Figure 4.4 the progression of standard clinical and imaging markers with
respect to the disease severity estimated by SimulAD for subjects from the ADNI and
GMC databases. For both cohorts, the disease severity significantly correlates with the
MMSE score (ADNI: ρ = −0.58, p < 0.01; GMC: ρ = −0.55, p < 0.01). Regarding
imaging-biomarkers, in both ADNI and GMC datasets the estimated disease severity
correlates with hippocampal volume (ADNI: ρ = −0.57, p < 0.01; GMC: ρ = −0.62,
p < 0.01), glucose metabolism (ADNI: ρ = −0.80, p < 0.01; GMC: ρ = −0.67, p < 0.01)
and amyloid burden (ADNI: ρ = 0.44, p < 0.01; GMC: ρ = 0.31, p < 0.01). Since 50
individuals from the GMC cohort underwent a tau-PET scan, we also compare their
estimated disease severity with their tau burden and show a significant correlation
between them in Figure 4.4 (ρ = 0.62, p < 0.01). This latter correlation of the disease
severity with a typical biomarker of AD that was not used for building the model supports
the reliability of such a measure to summarize the overall severity of AD.
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Figure 4.4: Relationships between the estimated disease severity and global cognition (MMSE),
hippocampal volume, glucose metabolism, amyloid burden and tau burden (only for
the GMC cohort). For each subject the estimated disease severity quantifies their
position with respect to the model of disease progression (Figure 3.2). The dashed-
lines represent 95% confidence interval. ADNI: Alzheimer’s Disease Neuroimaging
Initiative; GMC: Geneva Memory Center; SUVR: Standardized Uptake Value Ratio.
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4.3.3 Model reliability

In the previous sections, we assessed the disease severity of the subjects based on
the model of progression simulated on the ADNI cohort. In order to demonstrate the
reliability of the dynamics estimated by SimulAD, we simulated a new model of disease
progression personalized to the GMC cohort. We show in Figure 4.5 the predicted
evolution of imaging and clinical measurements based on this dataset. Similarly to
what has been observed on the model previously trained on the ADNI database (Figure
3.3), amyloid load increases and saturates early while following a uniform spatial
pattern. Amyloid deposition is followed by a delayed process of neurodegeneration, more
specifically a decrease of glucose metabolism and gray matter atrophy, mostly affecting
temporal and parietal regions. Finally, clinical scores such as the MMSE or the CDRSB
show a non-linear evolution accelerating during the latest stages of the disease.

We also compared the models of progression obtained on the ADNI and GMC cohorts.
Figure 4.6 shows the evolution of the different z-scores depending on the cohort used to
estimate the disease progression. These z-scores indicate the overall evolution of clinical
scores, cerebral atrophy, amyloid deposition and glucose metabolism during AD. Given
that the z-scores are not related to a physical unit but rather quantify the abnormality of a
particular process, they were re-scaled between 0 and 1 to illustrate the progression from
healthy towards pathological stages. We observe that the four z-scores exhibit similar
evolution patterns, whether they have been estimated on the ADNI or the GMC cohort.
When averaged across time, the error between the z-scores of the two cohorts is of 6%,
7%, 8% and 9% for zcli, zatr, zmet and zamy respectively. We provide in Appendix 4.6.5
the evolution of the error between the evolutions of clinical scores and imaging regional
measurements estimated based on the ADNI and the GMC cohort. When averaged over
time, brain regions and clinical scores, the error is of 3%, 6%, 7% and 12% for MRI,
FDG-PET, amyloid-PET derived regional measurements and clinical scores respectively.
Finally, in spite of the fact that most of the clinical scores were imputed in the GMC
cohort, Appendix 4.6.4 shows that the resulting z-scores trajectories are robust to this
estimation. Indeed, we observe that adding an additional error when imputing the
clinical scores in the GMC cohort leads to rather small changes for the estimated z-scores
trajectories compared to the results presented in Figure 4.6.

4.4 Discussion

In this study, we presented a thorough assessment of SimulAD on the independent GMC
clinical cohort. The model was initially estimated based on the analysis of longitudinal
imaging and clinical data from a subset of the ADNI database (cf. Chapter 3). Due to a
mismatch between cohorts in terms of missing measurements and data acquisition, we
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Figure 4.5: Simulated long-term evolution of cortical measurements for the different types of
imaging markers and clinical scores based on the GMC cohort. Shadowed areas
represent the standard deviation of the average trajectory. GMC: Geneva Memory
Center. Images were generated thanks to the BrainPainter software [Marinescu,
2019b].

Simulation of z-scores evolution on ADNI and GMC

Figure 4.6: Estimated long-term dynamics depending on the cohort used for simulating the
z-scores trajectories (time is relative to conversion to Alzheimer’s dementia). The
z-scores have been re-scaled between 0 and 1 to illustrate the progression of each
process from normal to pathological stages. ADNI: Alzheimer’s Disease Neuroimaging
Initiative; GMC: Geneva Memory Center.
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designed a pre-processing pipeline in order to enable the application of the model. We
subsequently carried out a set of experiments to evaluate the validity of our approach
and showed that the results obtained on the ADNI database were reproducible on the
GMC cohort, outlining the robustness and generalization properties of SimulAD.

The present results underlined the feasibility of applying our model in a clinical context.
We showed that SimulAD was able to differentiate subjects across clinical groups for both
cohorts (Figure 4.3, Table 4.3a). Known-groups validity was established by assessing the
similarity between cohorts of the estimated disease severity distribution for the NL stable,
MCI converters and AD dementia groups (Table 4.3b). Moreover, the estimated disease
severity correlated with clinical and imaging assessments in both cohorts, and especially
with tau burden on the GMC cohort. We recall that AD is defined by evidence of an
abnormal load of both amyloid and tau [Jack, 2018]. Therefore, given that the model
was estimated based on a subset of the ADNI cohort without accounting for tau-PET data,
the correlation between the disease severity and tau burden on an external dataset is an
appreciable demonstration of the concurrent validity of SimulAD. Finally, we observed
that, independently from the cohort used to simulate the disease progression, the long-
term evolution of the z-scores were similar between cohorts (Figure 4.6), thus outlining
the reliability of the proposed model of AD progression. Overall, these results indicate
general robustness of SimulAD when applied to independent cohorts characterized by
different imaging acquisition protocols.

Some results highlighted in the proposed analysis deserve further discussion. There is
no statistically significant difference between the estimated severity of the MCI stable
and converters in the GMC cohort, while there is a significant difference of the estimated
disease severity between the MCI stable of the ADNI and GMC cohorts. Concerning
the first remark, it is important to note that among the 28 MCI stable subjects of the
GMC cohort, a single visit only was available for 16 of them. It is therefore likely that
this sub-group contains potential converters who may bias the MCI stable group with
non-representative measurements. Regarding the second remark, we note in Figure
4.3 that the median disease severity of the MCI stable group of the ADNI dataset is
approximately of -8 years, while it is close to -4 years for the GMC cohort. This means
that, according to our model, the pathological condition of the group of MCI stable
from the GMC cohort is more severe than the one of the ADNI subset considered in
the study. This is in agreement with the fact that compared to the ADNI database, the
MCI stable subjects from the GMC cohort exhibit a statistically significant lower MMSE
score, lower volume of the hippocampus, lower glucose metabolism and higher amyloid
burden (p-values<0.05, Student’s t-test). Moreover, we note that the distribution of the
disease severity is conserved between both cohorts for NL stable, MCI converters and AD
dementia groups. This result may point to the generalization capabilities of the disease
severity estimation, which seems to be solely influenced by the clinical status. It also
shows the ability of the model to identify specific clinical sub-types.
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To our knowledge, the EBM and the DEBM are the only data-driven models of disease
progression which have been evaluated on several external cohorts [Archetti, 2019]. The
type of study here presented is therefore of relevant experimental value to enable the
future application of disease progression models. We note that SimulAD presents certain
advantages compared to standard event-based models, as it provides a finer-grained
description of the disease for both spatial and temporal scales, in which regional changes
affecting the brain are modelled on a continuous long-term time span. In addition, the
method allows to personalize the evolution of clinical and imaging measurements for
any patient or group of patients. Finally, the proposed mathematical formulation of
AD progression as a system of ODEs allows to go beyond a simple description of the
dynamics at stake during the disease evolution. In particular, we can simulate the impact
of an anti-amyloid treatment on cognitive outcomes.

As data-driven models are becoming more popular in healthcare thanks to their ability to
leverage large scale clinical data, it is of utmost importance to facilitate their transfer
from a research context to clinical practice. A growing number of regulatory institutions
provided guidelines to help designing machine learning models that could be applied in
clinical practice [Health, 2019]. The major problem revolves around the generalization
of the models beyond the dataset used to develop them, the main obstacle being their
robustness to biases [Ghassemi, 2019]. In this study, we developed a pipeline to mitigate
the biases due to data heterogeneity and missing measurements. This work included
data imputation for clinical data, and data standardization for PET imaging scans. Even
though SimulAD proved robust to these approximations, one of the main challenge
highlighted in this study points to the complexity of data integration across cohorts and
studies. In our particular case, neuropsychological tests could be standardized on a
common scale, thus allowing to replace a score by another if they assess similar functions,
while PET data could be systematically converted to the centiloid scale.

Finally, this study motivates further extensions of SimulAD that would foster its adoption
in clinical practice. For instance, a limitation of our model is the underlying hypothesis
that there exists a unique progression of AD which is common across individuals, while
the disease is in fact highly heterogeneous. SimulAD could be extended in the future to
account for multiple risk factors, such as the presence of APOE4 [Kim, 2009], thus leading
to a higher level of personalization of the predictions. Another avenue of improvement
would be to account for a larger panel of biomarkers, such as tau [Pontecorvo, 2019], in
order to better comprehend the disease progression. Currently, SimulAD is still a research
software and future efforts should focus on the development of a user-friendly platform
that could be deployed in clinical routine.
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4.5 Conclusion

We presented a preliminary validation of SimulAD on the clinical cohort of the GMC. The
results highlighted the reliability of the dynamics simulated by SimulAD for the disease
key biomarkers, and showed encouraging performances in terms of disease staging on
both cohorts. SimulAD is a promising modeling tool that may enable in the future the
identification of subjects for enrollment in clinical trials, or the monitoring of the efficacy
of disease modifying drugs.
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4.6 Appendix

4.6.1 Clinical scores imputation

To complete what was presented in Section 4.2.6 concerning the imputation of the
neuropsychological tests for the subjects of the GMC cohort, we show in Table 4.4 the
Krippendorff coefficient for each clinical score. This coefficient compares the inter-rater
agreement, which would be here the agreement between the ground truth score and the
estimated one. We observe that the value 0.8 is contained within the confidence interval
of the CDRSB, ADAS11, RAVLT immediate and FAQ, which makes the associated k-means
models reliable predictors according to the thresholds defined by Krippendorff. The
value 0.67 is contained within the confidence interval of the RAVLT learning and RAVLT
forgetting, which makes the corresponding k-means models acceptable for drawing
prudent conclusions. We also provide the distribution of the absolute prediction error for
all the scores across clinical groups in Figure 4.7.

Table 4.4: Krippendorff coefficient assessing the agreement between the ground truth and the k-
means prediction for all the clinical scores in the ADNI cohort. Average values and 95%
confidence interval. CDRSB: Clinic Dementia Rating Scale Sum of Boxes; ADAS11:
Alzheimer’s Disease Assessment Scale; FAQ: Functional Assessment Questionnaire;
RAVLT: Rey Auditory Verbal Learning Test. ADNI: Alzheimer’s Disease Neuroimaging
Initiative. CI: Confidence interval.

Score CDRSB ADAS11 RAVLT immediate RAVLT learning RAVLT forgetting FAQ
Krippendorff 0.77 0.77 0.80 0.61 0.69 0.78

95% CI [0.69 ; 0.83] [0.70 ; 0.83] [0.74 ; 0.85] [0.54 ; 0.68] [0.62 ; 0.75] [0.72 ; 0.84]

4.6.2 FDG prediction

We show in Figure 4.8 the fitted linear models between the FDG and early-AV45 uptake
of 57 subjects from the GMC cohort for additional brain regions, as well as their raw
values.

4.6.3 Tracer correction

As mentioned in Section 4.2.6, we provide in Figure 4.9 additional histograms showing
the effect of the tracer correction in different brain regions. Consistently with what has
been observed, we notice a reduction of the variability of the values for the flutemetamol
group.
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Figure 4.7: Distribution of the absolute error between the ground truth and k-means prediction
for all the neuro-psychological tests across clinical groups in the ADNI cohort. NL: cog-
nitively healthy; MCI: mild cognitive impairment; AD dementia: Alzheimer’s disease
dementia; CDRSB: Clinic Dementia Rating Sum of Boxes; ADAS11: Alzheimer’s
Disease Assessment Scale; MMSE: Mini-Mental State Examination; FAQ: Func-
tional Assessment Questionnaire; RAVLT: Rey Auditory Verbal Learning Test; ADNI:
Alzheimer’s Disease Neuroimaging Initiative.
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Caudal middle frontal Frontal pole

Lateral occipital Posterior cingulate

Transverse temporal Rostral anterior cingulate

Figure 4.8: Scatter plot between the regional early-amyloid uptake and the corresponding FDG
uptake for 57 patients of the GMC cohort. Solid black lines show the fitted linear
model between regional FDG and early-amyloid. The dashed-lines represent 95%
confidence interval. GMC: Geneva Memory Center FDG: (18)F-fluorodeoxyglucose
Positron Emission Tomography (PET) imaging.
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Figure 4.9: Comparison of the distribution of the regional amyloid uptake before and after
correction for the subjects from the GMC cohort, depending on the tracer used
during acquisition. 76 Amyloid-PET scans were acquired using florbetapir and 17
using flutemetamol. GMC: Geneva Memory Center; SUVR: Standardized Uptake
Value Ratio.
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4.6.4 Robustness to the clinical scores prediction

In the case of the GMC cohort six clinical scores over seven were imputed based on the
procedure detailed in Section 4.2.6. These approximated neuropsychological assessments
are used to compute the z-scores zcli of the individuals from the GMC cohort, thus
affecting their estimated disease severity shown in Figure 4.3, but also the progression
of the z-scores for the GMC cohort in Figure 4.6. We evaluate the impact of this
approximation by computing the group-wise disease severity and the progression of the z-
scores in three scenarios: (i) clinical scores are imputed following the procedure described
in Section 4.2.6; (ii) clinical scores are imputed with an additional approximation by
adding twice their respective average prediction error; (iii) clinical scores are imputed
with an additional approximation by subtracting twice their average prediction error. We
observe in Figures 4.10 and 4.11 that introducing this additional approximation error
when imputing the clinical scores leads to rather small changes compared with the results
obtained with the regular imputation, for both the group-wise disease severity and the
z-scores progression. This shows that SimulAD is robust to the imputation of the clinical
scores for the GMC cohort, and that despite the induced margin of error the estimated
disease severity and z-scores progression are reliable.

Scenario 1: Regular imputation Scenario 2: Imputation plus two average error Scenario 3: Imputation minus two average error

Estimated disease severity depending on the clinical scores imputation

Figure 4.10: Effect of the clinical scores imputation on the estimated disease severity for the
subjects from the GMC cohort. Scenario 1: Clinical scores are imputed following the
procedure described in Section 4.2.6. Scenario 2: Clinical scores are imputed with
an additional approximation by adding twice their respective average prediction
error. Scenario 3: Clinical scores are imputed with an additional approximation
by subtracting twice their average prediction error. ADNI: Alzheimer’s Disease
Neuroimaging Initiative; GMC: Geneva Memory Center; NL: cognitively healthy;
MCI: mild cognitive impairment; AD dementia: Alzheimer’s disease dementia.
Converters are cognitively unimpaired and MCI subjects whose clinical diagnosis
change during follow-up.

4.6.5 Comparison of the simulated evolution of clinical and
imaging measures based on ADNI and GMC cohorts

The similarity between the two models of disease progression based on the ADNI and
GMC cohorts respectively (cf. Section 4.3.3) is confirmed in Figure 4.12. In this figure,
we show the temporal evolution of the error between the clinical and regional imaging
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Scenario 1: Regular imputation

Scenario 2: Imputation plus two average error

Scenario 3: Imputation minus two average error

Comparison of z-scores progression between ADNI and GMC cohorts 
                  depending on clinical scores imputation

Figure 4.11: Effect of the clinical scores imputation on the long-term dynamics for the subjects
from the GMC cohort. Shadowed areas represent the standard deviation of the
average trajectory. Scenario 1: Clinical scores are imputed following the proce-
dure described in Section 4.2.6. Scenario 2: Clinical scores are imputed with
an additional approximation by adding twice their respective average prediction
error. Scenario 3: Clinical scores are imputed with an additional approximation
by subtracting twice their average prediction error. ADNI: Alzheimer’s Disease
Neuroimaging Initiative; GMC: Geneva Memory Center.
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measurements simulated based on the ADNI cohort and the ones based on the GMC
cohort. We observe that for imaging markers the regional error remains below 10% for
most regions across the different modalities, and reaches a maximum of approximately
20% in the case of amyloid deposition at the earliest stages of the disease. Concerning
clinical scores, the error remains below 10% and 20% for MMSE and RAVLT immediate
respectively. When averaged across time, brain regions and clinical scores, the error
is of 3%, 6%, 7% and 12% for MRI, FDG-PET, amyloid-PET data and clinical scores
respectively.

Figure 4.12: Modelled long-term evolution of the error between the progressions simulated
based on the ADNI and GMC cohorts respectively in terms of cortical measurements
and clinical scores. Shadowed areas represent the standard deviation of the average
trajectory. ADNI: Alzheimer’s Disease Neuroimaging Initiative; GMC: Geneva Mem-
ory Center; CDRSB: Clinic Dementia Rating Sum of Boxes; ADAS11: Alzheimer’s
Disease Assessment Scale; FAQ: Functional Assessment Questionnaire; RAVLT: Rey
Auditory Verbal Learning Test; MMSE: Mini-Mental State Examination.
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5Conclusion

Disease progression models allow to uncover the mechanisms underlying Alzheimer’s
disease (AD) evolution in a data-driven manner. In addition to providing valuable insights
about the pathological progression, they also offer a broad range of potential clinical ap-
plications. Indeed, these approaches are perfectly suited for diagnosis, prognosis and for
evaluating treatment efficacy. In this thesis, we developed two novel disease progression
models built upon state-of-the-art machine learning methods aiming at improving our
comprehension of the disease evolution. More specifically, our objective was threefold:
(i) propose a computational method able to leverage the availability of high-dimensional
multi-modal imaging data; (ii) investigate the causal relationships between the biomark-
ers evolution and enable the simulation of intervention scenarios; (iii) demonstrate
the generalization of our model and its validity in terms of disease staging in a clinical
context. In the following sections, we summarize the methodological contributions of
this thesis as well as the obtained results. We also propose new applications for our
methods and build upon their limitations to propose research perspectives for the field of
disease progression modelling.

5.1 Summary of the Main Contributions

Monotonic Gaussian Process for Spatio-Temporal Disease Progression
Modeling in Brain Imaging Data.

In Chapter 2, we introduced a novel method to estimate a model of AD progression which
leverages multi-modal volumetric images. We assumed that each pathological process can
be characterized by multiple spatio-temporal trajectories, and proposed to disentangle
them by modelling the data through a matrix factorization between temporal and spatial
sources. In order to enforce the estimation of a realistic pathological progression, we
introduced a set of clinically-inspired constraints for the temporal and spatial sources.
More precisely, the temporal sources were defined as monotonic Gaussian Processes to
ensure a steady pathological progression, while the spatial sources were modelled as
sparse maps convolved at different scales to deal with the non-stationarity of medical
images. The method enabled to disentangle different temporal profiles for amyloid
deposition, glucose hypometabolism and gray matter atrophy targeting brain regions
associated with neuropathological changes typical of AD. Moreover, these multiple spatio-
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temporal trajectories were following an estimated time-line representing the disease
progression and which was related to clinical diagnosis.

Main contributions:

• We proposed a novel methodology in which AD progression was formulated as
a sources separation problem. We introduced a set of constraints on the spatio-
temporal sources to ensure the estimation of a realistic disease progression. Our
approach was scalable to the analysis of volumetric multi-modal images, thus
allowing to describe the changes affecting the brain during AD at the highest spatial
resolution.

• The model identified differential temporal patterns of amyloid deposition, glucose
hypometabolism and gray matter atrophy mapping brain regions key to AD.

• The estimated time-line describing the disease course was associated to clinical
diagnosis and correlated with neuro-psychological scores.

Simulating the Outcome of Amyloid Treatments in Alzheimer’s Disease from
Imaging and Clinical data

Our goal in Chapter 3 was to provide a computational framework to study the interac-
tions between the biomarkers dynamics, while enabling the simulation of intervention
strategies. To do so we introduced SimulAD, a method modelling AD progression by
means of a dynamical system between clinical and multi-modal imaging-derived data.
Relying on a variational autoencoder framework, we encoded clinical and imaging data
in a lower-dimensional space, within which each dimension was associated to a given
process (i.e cognitive decline or gray matter atrophy). We postulated the existence of
a system of Ordinary Differential Equations (ODEs) in the latent space relating each
coordinate, and inferred its parameters through the analysis of longitudinal clinical
and imaging-derived data. Once the model was estimated, this formulation as a latent
system of ODEs allowed to directly modify the dynamics of certain processes, such as
amyloid deposition, and to investigate the impact of this modification on the pathological
progression. We showed that in order to result in statistically significant improvement of
cognitive outcomes, anti-amyloid treatment should be administered much earlier than
what is currently done. More precisely, we estimated that amyloid deposition should
be completely blocked at least seven years before a clinical diagnosis of dementia is
made, in order to observe a significantly powered improvement of neuro-psychological
evaluations.
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Main contributions:

• From the methodological point of view this approach proposed an original for-
mulation, by modelling AD progression as a dynamical system relating clinical
and multi-modal imaging-derived measurements. Thanks to this modelling choice,
we could study the causal relationships between different pathological processes
characteristic of AD.

• SimulAD allowed to estimate the long-term evolution of clinical and imaging-
derived measurements on a time-line spanning the whole disease course. This
time-line was used as a reference for individual disease staging with performances
comparable to a state-of-the-art approach [Lorenzi, 2017; Lorenzi, 2018].

• SimulAD enabled the creation of hypothetical scenarios of disease progression.
In particular, we simulated the effect of an anti-amyloid treatment on cognitive
endpoints depending on both intervention time and drug dosage. We showed that
it is critical to intervene during the pre-symptomatic phase in order to significantly
improve cognitive outcomes. This aspect of the model entails great potential for
providing quantitative guidelines when planning clinical trials.

SimulAD: A Dynamical Model for Personalized Simulation and Disease Staging
in Alzheimer’s Disease

In Chapter 4, we presented a preliminary validation of SimulAD on an independent cohort
from the Geneva Memory Center (GMC). Our objective was to assess the generalization
of SimulAD on an independent dataset, in order to demonstrate its interest in a clinical
context. The GMC study used to evaluate the model included subjects who underwent
clinical evaluations, MRI, Amyloid-PET, FDG-PET and Tau-PET scans. We developed a
specific pre-processing pipeline to correct the various biases between the ADNI cohort
(the training dataset) and the GMC cohort (the testing dataset). We showed that SimulAD
was able to differentiate subjects across clinical groups and that the disease severity
estimated by the method correlated with clinical evaluations and standard imaging
biomarkers. Finally, the progression of clinical and imaging markers simulated by our
approach was similar on both ADNI and GMC cohorts, highlighting the reliability of the
method.

Main contributions:

• We developed a pre-processing pipeline allowing to apply SimulAD on a cohort
from a memory clinic.
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• We showed that the progression of clinical and imaging-derived measurements
estimated by SimulAD on ADNI was reproducible based on the data from the GMC.
This result highlights the generalization of the pathological progression estimated
by our method.

• The disease severity estimated by SimulAD was associated with clinical diagnosis
for subjects from the GMC cohort. We also showed that it correlated with clinical
scores and well-established biomarkers of AD. These results support the validity of
SimulAD for staging patients.

5.2 Perspectives and Future Applications

5.2.1 Application to other neurodegenerative disorders

In this thesis, the proposed disease progression models were applied to uncover the long-
term trajectories of clinical and imaging markers characteristic of AD. Yet, our approaches
could be used to study other neurodegenerative disorders leading to dementia and that
share common features with AD.

For instance, Huntington’s disease is a neurodegenerative disorder whose symptoms
principally include motor and cognitive decline, causing devastating effects on patients
and greatly reducing their life expectancy [Ross, 2014]. The disease is characterized by a
pre-symptomatic period comparable to the one of AD, during which intervention is likely
to result in effective results. There exists a broad range of biomarkers allowing to track
the disease: motor and cognitive assessments, regional gray matter atrophy, FDG-PET
imaging data, but none of them is sufficient alone to accurately identify the individual
disease stage during the whole pathological progression. Parkinson’s disease is another
neurodegenerative disorder which also affects the motor system, ultimately leading to
dementia. While recent studies have shown that imaging techniques such as MRI and
PET might provide biomarkers that could help identifying and monitoring the disease
evolution [Poewe, 2017], the mechanisms underlying the pathological progression still
remain unclear.

Based on these observations, disease progression models seem to be perfectly suited to
provide valuable insights on the evolution of these neurodegenerative disorders. Lately,
the Event-Based Model presented in Chapter 1 was applied in order to reconstruct the
sequence of events of Huntington’s [Wijeratne, 2018] and Parkinson’s diseases [Oxtoby,
2021], from the analysis of clinical and imaging markers relevant to each pathology.
Similarly, we believe that the methods presented in Chapter 2 and 3 entail potential to
uncover the dynamics characterizing both Huntington’s disease and Parkinson’s disease.
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For instance, the model presented in Chapter 2 would enable the identification of
differential spatio-temporal patterns characteristic of these diseases, thus allowing to
obtain a fine-grained description of their topographic pathological patterns and associated
temporal dynamics. Moreover, the disease-specific time-line estimated by our approaches
could allow to identify patients at-risk to develop the disease or to monitor treatment
efficacy during clinical trials. Finally, by formulating the disease progression through a
system of latent ODEs as proposed in Chapter 3, we could simulate scenarios of drug
intervention that could help understanding the relationships between the pathological
processes at stake. This could prove particularly useful in the case of Parkinson’s disease,
where the interactions between the many pathways and mechanisms characterizing the
disease remain partially unknown.

5.2.2 Learning from multi-centric studies

In Chapter 4, we emphasized the importance of evaluating the generalization of disease
progression models on independent datasets, in order to support their adoption in
clinical routine. However, we could also consider the problem of generalization from
the training step. To this end, we could develop disease progression models based not
only on a single database, such as the one from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), but by relying on many cohorts. Moreover, this would allow to consider
additional biomarkers, which could provide essential information to better understand
AD progression.

Currently, there exists many studies composed of thousands of subjects for which multi-
modal imaging data was acquired. Obviously, the ADNI is the first one to come to mind,
as it has been used to develop hundreds of machine learning methods. However, studies
such as the Australian Imaging Biomarkers and Lifestyle (AIBL), Open Access Series
of Imaging Studies (OASIS) or the Amyloid Imaging to Prevent Alzheimer’s Disease
(AMYPAD) [Ellis, 2009; Marcus, 2010; Lopes Alves, 2020] also provide access to a
large variety of multi-modal imaging data for large cohorts. Jointly learning from these
databases could enable to estimate disease progression models with better generalization
properties, while including a larger panel of biomarkers.

Given this context, multi-task learning [Caruana, 1993; Baxter, 1997] is a relevant
solution to leverage the availability of large and complementary multi-centric studies.
For instance, in the case of SimulAD we could assume that the encoding and decoding
functions are specific to each cohort, while the parameters of the latent ODE system are
shared across them. Then, the model would be trained by minimizing the joint data
likelihood between the different datasets. In this way, the model would capture the
distribution of each dataset, while estimating a unique mechanism driving AD progression.
Thanks to this joint analysis of the multiple cohorts, we would therefore obtain a more
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generalized and reliable model of disease progression. Moreover, this could improve
the performances in terms of disease staging on independent cohorts. Finally, we could
consider additional biomarkers, such as tau, which is available in some studies but still
remains scarce compared to other biomarkers like amyloid.

5.2.3 Identifying subtypes of disease progression and
accounting for risk factors: towards precision medicine

We presented in Chapters 2 and 3 two methods allowing to estimate models of AD evolu-
tion. While our approaches provide valuable insights about the pathological progression,
they don’t account for important aspects of the disease.

For instance, a problem that was not addressed in this thesis is the existence of various
spatial patterns that can be associated with AD. Indeed, it has been shown that there
exists subtypes of AD [Murray, 2011] that are atypical in the sense that they differ
from the expected neuropathological changes. More specifically, it is usually considered
that there are three variants of AD based on the distribution of neurofibrillary tangles
(NFTs). Typical AD presents a rather uniform distribution of NFTs in the hippocampus,
hippocampal-sparing AD is characterized by lower counts of NFTs in the hippocampus,
while limbic-predominant AD shows a higher spread of NFTs in the hippocampus. These
subtypes of AD are associated with specific atrophy patterns [Whitwell, 2012], and can
therefore be identified thanks to structural MRI. Another issue that was not investigated
in this thesis is the effect of risk factors on the pathological progression. In particular,
it has been observed that genetic factors such as the presence of the allele ε4 of the
apolipoprotein (APOE4) strongly impacts the disease onset and progression [Kim, 2009].
Moreover, many studies have shown that cardiovascular risk factors and life-style seem
to play an important role in AD [Baumgart, 2015].

Overall, the aforementioned problems point to the direction of precision medicine.
Indeed, whether we try to identify a subtype of disease progression or to account for
specific risk factors, the underlying objective is to personalize the pathological evolution.
Within this context, the methods presented in this manuscript represent a first step but
need to be further extended. They allow to estimate a global progression of AD but don’t
account in their current formulation for the possibility to deviate from this trajectory. A
promising extension would be to associate our models with a clustering method, such
as Gaussian Mixture Models, in order to automatically identify various pathological
trajectories. This could be done in the case of SimulAD by clustering subjects within
the latent space and estimate a system of ODEs specific to each cluster. This modelling
approach might allow to identify multiple trajectories of AD progression, which would
better represent the heterogeneous nature of the pathology.
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