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Abstract
A tiling is a covering of the plane by tiles which do not overlap. We are
mostly interested in edge-to-edge rhombus tilings, this means that the tiles
are unit rhombuses and any two tiles either do not intersect at all, intersect
on a single common vertex or along a full common edge.

Substitutions are applications that to each tile associate a patch of tiles
(which usually has the same shape as the original tile but bigger), a substi-
tution can be extended to tilings by applying it to each tile and gluing the
obtained patches together. Substitutions are a way to grow and define tilings
with a strong hierarchical structure.

Discrete planes are edge-to-edge rhombus tilings with finitely many edge
directions that can be lifted in Rn and which approximate a plane in Rn,
such a tiling is also called planar. Note that discrete planes are a relaxed
version of cut-and-project tilings.

In this thesis we mostly study edge-to-edge substitution rhombus tilings
lifted in Rn. We prove that the Sub Rosa tilings are not discrete planes, the
Sub Rosa tilings are edge-to-edge substitution rhombus tilings with n-fold
rotational symmetry that were defined by Jarkko Kari and Markus Rissa-
nen [KR16] and which were good candidates for being discrete planes. We
define a new family of tilings which we call the Planar Rosa tilings which are
subsitution discrete planes with n-fold rotational symmetry.

We also study the multigrid method which is a construction for cut-
and-project tiling and we give an explicit construction for cut-and-project
rhombus tilings with global n-fold rotational symmetry.
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Résumé
Un pavage est un recouvrement du plan par des tuiles qui ne se chevauchent
pas. Nous nous intéressons principalement aux pavages dont les tuiles sont
des losanges unitaires et qui sont exacts c’est à dire que si on prend deux
tuiles dans le pavage soit elles ne se touchent pas, soit elles ont un unique
sommet en commun, soit elles ont une arête entière en commun.

Les substitutions sont des applications qui à chaque tuile associent un
ensemble de tuiles appelé motif (dont la forme est habituellement la même
que celle de la tuile initiale mais en plus grand), une substitution peut être
étendue aux pavages en l’appliquant à chaque tuile séparément et en recollant
les motifs obtenus. Les substitutions permettent de construire des pavages
avec une forte structure hiérarchique.

Les plans discrets sont des pavages exacts par losanges unitaires avec un
nombre fini de directions d’arêtes n que l’on peut relever dans Rn et qui
lorsqu’on les relève approximent un plan. On dit aussi pavages planaires
pour plans discrets. Notons que les plans discrets sont une version relâchée
des pavages coupe-et-projections.

Dans cette thèse nous étudions principalement les pavages substitutifs par
losange relevés dans Rn. Nous prouvons que les pavages Sub Rosa ne sont
pas des plans discrets, les pavages Sub Rosa sont des pavages substitutifs par
losange avec symétrie rotationnelle d’ordre n qui ont été définis par Jarkko
Kari et Markus Rissanen [KR16] et qui étaient de bons candidats pour être
des plans discrets. Nous définissons une nouvelle famille de pavages que l’on
appelle les pavages Planar Rosa qui sont des plans discrets substitutifs avec
symétrie rotationnelle d’ordre n.

Nous étudions aussi la méthode de la multigrille qui permet de construire
des pavages coupe-et-projection. On utilise cette méthode pour donner une
construction explicite pour des pavages coupe-et-projection par losanges avec
symétrie rotationnelle globale d’ordre n.
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Chapter 1

Introduction

Tilings. Tilings are coverings of the Euclidean plane by tiles without over-
lap. They are studied in many branches of Mathematics and Computer
Science such as decidability [Ber66], dynamical systems [Rob04], topology
[Sad08] and mathematical crystallography [BG13].

Aperiodic tilesets, which are sets of tiles that can tile the whole plane
but only in a non-periodic way, are at the center of the study of tilings: they
are linked to decidability problems such as the Domino Problem, they can
induce minimal infinite dynamical systems and specific aperiodic tilesets are
used to model quasicrystals.

The first aperiodic tileset was discovered by Robert Berger [Ber66]. This
tileset consisted of 20426 Wang tiles which are square tiles with a color on
each edge and with the condition that two adjacent tiles must have the same
color on their common edge.

In the decade that followed aperiodic tilesets with simple geometric tiles
were discovered by Roger Penrose [Pen74]. The Penrose rhombus tiles are
two rhombus tiles with decorations (cuts and notches) on the edges, these
decorations (local rules) enforce the aperiodicity of any tiling with these tiles.

Figure 1.1: A small fragment of the Penrose rhombus tilings without deco-
rations.
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Long-range order. In the 1980s Dan Shechtman discovered quasicrystals
[SBGC84] which are materials that have long-range order shown by a sharp
X-ray diffraction pattern (see Figure 1.2) but no transnational symmetry
(periodicity).

This discovery contradicted the belief, which was held as an axiom in the
crystallographic community, that only crystals (periodic materials) had sharp
X-ray diffraction patterns. Together with the crystallographic restriction,
which states that a lattice can only have 2,3,4 or 6 fold rotational symmetry,
this “axiom” implied in particular that a sharp diffraction pattern with 10-
fold symmetry was impossible.

However the Al-Mn quasicrystal alloy observed by Dan Shechtman [SBGC84]
had a sharp X-ray diffraction pattern with 10-fold symmetry, for more de-
tails on this discovery and its repercussions see the preface and introduction
of [Sen96]. Note that since the rotational symmetries of materials translate
to their diffraction pattern, high-order rotational symmetries in quasicrystals
are of particular interest to physicists.

Shortly after the discovery of quasicrystals the similarities between the
properties of the Al-Mn alloy and Penrose’s fivefold tilings [Pen74] were ob-
served [AG86] and quasiperiodic tilings quickly became one of the commonly
used mathematical models to study quasicrystals, see [Sen96].

However quasiperiodicity is not sufficient for long-range order so a new

(a) The diffraction pattern of a frag-
ment of Penrose rhombus tiling.

(b) The diffraction pattern of a qua-
sicrystal from [Wik].

Figure 1.2: Long-range order shown by diffraction patterns on tilings and
quasicrystals .
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class of tilings was defined: the cut-and-project tilings. The idea of cut-and-
projection is to see tilings of the plane as the projection onto an irrational
plane of a discrete surface in higher dimension, for more details on cut-and-
project tilings see for example [Sen96] or [BG13]. The generic cut-and-project
tilings have pure point diffraction pattern which makes them a strong model
for quasicrystals.

In this thesis we also consider quasiperiodic discrete planes which are
a relaxed version of cut-and-project tilings. Quasiperiodic discrete planes
also have long-range order and their diffraction pattern is usually essentially
discrete which makes them a sufficient model for quasicrystals.

Substitutions. Substitutions are applications that to each tile associate
a patch of tiles that usually has the same shape, they are generalized to
application on tilings by applying the substitution rule separately to each
tile and then merging the results. Numerous examples of substitutions and
substitution tilings can be found online in the Tilings Encyclopedia [FGH].

Substitution tilings have a strong hierarchical structure and this was used
to produce many aperiodic tilings. The original proof of aperiodicity of
Berger [Ber66], Robinson [Rob71] and Penrose use the hierarchical structure
induced by substitution even though the tilings and tilesets in question were
defined by local rules, the idea in theses three cases is that the local rules force
the tile to be arranged in such a way that we can group then in so-called
metatiles which have the same shape and same local rules as the original
prototiles. See for example Figure 1.3b where we show how tiles from a

(a) The Penrose substitution.
(b) A fragment of Penrose rhombus
tiling with the partition in metatiles
superimposed.

Figure 1.3: The hierarchical structure in the Penrose rhombus tiling.
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Penrose rhombus tiling can be grouped in metatiles which are drawn in bold
lines, remark that for the Penrose tilings some tiles overlap on two metatiles.

Note that under reasonable assumptions on the substitution, substitution
tilings can also be defined by local rules [Moz89,GS98,FO10].

Substitution are also particularly useful to compute tiling invariants. It
is sometimes quite easy to show that tilings are conjugate (also called mutu-
ally locally derivable or MLD for short) for example the three tilings defined
by Penrose called the Penrose pentagonal tiling, the Penrose kite-and-dart
tiling and the Penrose rhombus tiling are conjugate and it is simply a matter
of describing the way a Penrose rhombus tiling can be locally derived from
a Penrose pentagonal or kite-and-dart tiling and vice-versa [Pen74]. The
conjugacy problem is undecidable and in practice proving non-conjugacy re-
quires to compute tiling invariants such as cohomology groups and prove that
the invariants are different. There exist methods to compute the cohomol-
ogy group of different classes of tilings [Kal05,GHK13,BGL21] but the most
developped and most used technique is for substitution tilings [AP98].

Main results. As we just explained, tilings with long-range order and
especially with high-order rotational symmetry are of particular interest to
physicists and crystallographists and substitutions give us a tool to study the
tilings in an intricate way.

In this thesis we study tilings that have long-range order (cut-and-project
tilings or quasiperiodic discrete planes) and can be defined by substitution
with an emphasis on high-order rotational symmetry.

Our first result concerns the Sub Rosa substitution tilings defined by
Jarkko Kari and Markus Rissanen in [KR16]. These tilings have 2n-fold
rotational symmetry but they unfortunately are not discrete planes.

Theorem 1 (Fernique, Kari, L.2020). For any n > 3 the canonical Sub Rosa
tiling Tn can be lifted to a discrete surface of Rn and:

1. The canonical Sub Rosa tilings T3 and T5 are discrete planes.

2. For n = 4 and for any n > 6 the canonical Sub Rosa tiling Tn is not a
discrete plane.

The same holds when replacing the canonical Sub Rosa tiling Tn by the set of
Sub Rosa substitution tilings Xσn.

10



The natural followup question was: does there exist a similar family of
substitution discrete planes with 2n-fold rotational symmetry.

Our second result is the existence of substitution discrete planes with
n-fold rotational symmetry. For this we define a new family of substitu-
tion tilings which we call Planar Rosa substitution tilings or Planar Rosa
substitution discrete planes.

Theorem 2 (Kari, L. 2020). For any n > 3 the canonical Planar Rosa tiling
T ′n is a substitution discrete plane with global 2n-fold rotational symmetry.
For any n > 3 the Planar Rosa tilings i.e. tilings in Xσ′n, are substitution
discrete planes with local 2n-fold rotational symmetry.

Theorems 1 and 2 (restricted to the case of odd n) were submitted in
[KL20].

For the proof of Theorem 2 we use the n-fold multigrid dual tilings Pn(1
2
).

The fact that the tilings Pn(1
2
) are rhombus tilings may be considered as “folk”

but we were unable to find it in the litterature and this result is interesting
in itself so we decided to prove it in Theorem 3.

This result is an effective construction for rhombus quasiperiodic cut-and-
project tilings with global n-fold rotational symmetry. A SageMath program
which generates these tilings and outputs their svg files is publicly available
in [Lut21b].

Theorem 3 ( [Lut21a]).

1. For any n > 4 the n-fold multigrid dual tiling Pn(1
2
) is a quasiperiodic

rhombus cut-and-project tiling with global 2n-fold rotational symmetry.

2. For any odd n > 5 the n-fold multigrid dual tiling Pn( 1
n
) is a quasiperi-

odic rhombus cut-and-project tiling with global n-fold rotational symme-
try.
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Overview of the thesis. In Chapter 2 we give all the classical definitions
for the study of tilings, substitution tilings, discrete planes and multigrid
dual tilings. We also present the Penrose rhombus tilings, the Ammann-
Beenker tilings and a few known results related to this thesis. Sections 2.1
to 2.8 can be considered as an introduction to tilings with an emphasis on
substitution tilings and discrete planes with all necessary definitions and
examples. Sections 2.9 to 2.12 are a quick overview on more advanced related
results.

In Chapter 3 we study the Sub Rosa substitution tilings and prove Theo-
rem 1. In Section 3.3 we give general considerations on how substitutions and
expansions are lifted in Rn which gives us a sufficient condition for the pla-
narity of substitution tilings and a sufficient condition for the non-planarity
of substitution tilings. In Section 3.4 we prove Theorem 1 for odd n and in
Section 3.5 we prove it for even n. The first key point is the fact that the Sub
Rosa expansions are lifted to circulant integral linear applications in Rn, the
second key point is a link between the sequence of rhombuses on the edges of
the Sub Rosa metatiles and the eigenvalues of the lifted expansion and the
last key point is just trigonometric considerations that give us an exact value
for the eigenvalues of Sub Rosa expansions. From this we conclude using the
sufficient conditions of Section 3.3

In Chapter 4 we present the construction for Planar Rosa substitution
discrete planes and prove Theorem 2. The Planar Rosa substitution are
defined similarly to Sub Rosa substitution by a sequence of rhombuses along
the edges of the metatiles i.e. by the boundary of the metatiles. The two key
points are to prove that the boundary of the metatiles ensures the fact that
the Planar Rosa substitutions are planar i.e. they generate discrete planes,
and that the interior of the metatiles are tileable with unit rhombuses. For
the planarity we re-use the work of Chapter 3, for the tileability we use
the Kenyon criterion [Ken93] and some regions of multigrid dual tilings.
Actually for a given n what we define is an infinite sequence of candidate
substitutions and we prove that infinitely many of them are both planar and
tileable as primitive substitutions. The Planar Rosa substitution is defined
as the smallest of these candidate substitutions which is both planar and
tileable as a primitive substitution.

In Chapter 5 we study n-fold multigrids and their dual tilings to prove
Theorem 3. This theorem is actually a consequence of the more technical
Theorem 16 on the regularity of n-fold multigrids. We prove that the reg-
ularity or singularity of n-fold multigrids is equivalent to some diophantine

12



trigonometric equations, we then use a known result on trigonometric dio-
phantine equations [CJ76] to prove the theorem.

In Chapter 6 we present several examples of multigrid dual tilings, Sub
Rosa tilings and Planar Rosa tilings. We use these examples to illustrate some
remarks on Planar Rosa tilings and multigrid dual tilings. The Planar Rosa
tilings presented here have long-range order and are substitution tilings, they
would be nice objects to study tiling invariants and in particular we could
study their cohomology group with the techniques developped in [AP98].

In Chapter 7 we present a few unanswered questions and conjectures in
relation with the work presented here.

13



Chapter 2

Tilings

In this chapter we will present the general definitions for tilings of the Eu-
clidean plane R2, then more specific definitions for the notion of order on
tilings, substitution tilings, tilings lifted in Rn and planarity. Readers famil-
iar with these notion can skip these sections. We will then present known
classes of tilings and known tilings such as the Penrose rhombus tilings and
the Ammann-Beenker tilings. Other examples of tilings are presented in
Chapter 6. In Sections 2.10 and 2.11 we present more advanced results
which are related to the work presented in this thesis.

2.1 Geometrical tilings of the plane
Tilings are coverings of the space (here the Euclidean plane R2) without
overlap by a set of tiles. In this section we will give the basic definitions for
tilings and tiling subshifts.

Definition 2.1.1 (Tile, rhombus tiles, edges and vertices). A (geometrical)
tile is a compact set t of R2 which is the closure of its interior.

A unit rhombus tile t can be described as

t = (p, ~u ∧ ~v) = {p+ λ~u+ µ~v, 0 6 λ, µ 6 1}

with p a point of R2 and ~u,~v two non-collinear unit vectors of R2.

14



Figure 2.1: Examples of tiles : classical jigsaw tiles, polygons and circles are
tiles.

The set of edges of a unit rhombus t denoted E (t) is

E (t) := {{p+ λ~u, 0 6 λ 6 1},
{p+ λ~v, 0 6 λ 6 1},
{p+ ~v + λ~u, 0 6 λ 6 1},
{p+ ~u+ λ~v, 0 6 λ 6 1}}

The set of vertices of a unit rhombus t denoted V (t) is

V (t) = {p, p+ ~u, p+ ~v, p+ ~u+ ~v}

The notions of edges and vertices of a tile can be generalized to all polygon
tiles, but no formal definition will be given as non-rhombus tiles will only be
used in basic examples.

Definition 2.1.2 (Tiling). A tiling noted T is a countable set of non-overlapping
tiles which covers R2 , i.e. a set {ti, i ∈ N} of tiles such that

•
⋃
i∈N

ti = R2

• ∀i, j ∈ N, i 6= j ⇒ t̊i ∩ t̊j = ∅

When the tiles are polygons we define the set of edges and of vertices of
the tiling by

E (T ) :=
⋃
i∈N

E (ti) V (T ) :=
⋃
i∈N

V (ti) .

In this work we are interested not only in tilings but on set of tilings,
however we are not interested in any sets of tilings but on sets that are
consistent with the definition and the structure of tilings. In this context the
“nice” sets are called Subshifts.
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Figure 2.2: The Chair tiling.

Definition 2.1.3 (Subshift). There are two equivalent definitions for tiling
subshifts:

• a subshift is a set of tilings which is closed for the cylinder topology
[Rob04] and invariant by translation

• given a set of patterns called forbidden patterns and denoted by F , the
subshift XF is the set of all tilings that contain none of the forbidden
patterns.

We will not go into details on the cylinder topology on tilings since it is
not the main topic of this work, see [Rob04] for more details. Remark that
the set of patterns F is not necessarily finite, when it is finite the subshift
XF is called Subshift of Finite Type.

In this work we only consider tilings where the set of the tiles are copies
on a finite set of prototiles i.e. the set of tiles is finite up-to translation. In all
generality the “up-to translation” relation can be replaced by any congruence.

Definition 2.1.4 (Prototiles and Congruence). We call prototiles (or some-
times tile shapes) the canonical representants of the set of geometrical tiles
(possibly with labels) quotiented by a congruence relation which we denote
≡. By default we consider the up-to translation congruence, we sometimes
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use up-to translation and rotation congruence or the up-to isometry congru-
ence. For example unit rhombus prototiles can be described only by their two
vectors and we write them as t = ~u ∧ ~v.

A finite set of prototiles is called a tileset and is denoted by T.

The Chair tiling in Figure 2.2 has four prototiles up-to translation but
only one up to translation and rotation. The Pinwheel tiling in Figure 2.3 has
infinitely many prototiles up to translation but only two up to translation and
rotation and only one up to isometry (see Section 2.4 for precise definition
of these two tilings).

Definition 2.1.5 (Edge-to-edge tiling). A polygon tiling is called edge-to-
edge when any two tiles that intersect, either intersect on a full common edge
or on a single common vertex i.e. a tiling {ti, i ∈ N} is edge-to-edge when

∀i, j ∈ N, i 6= j ⇒ ti ∩ tj = ∅
or ∃e ∈ E (ti) ∩ E (tj) , ti ∩ tj = e

or ∃v ∈ V (ti) ∩ V (tj) , ti ∩ tj = {v}

Remark that the Chair tiling of Figure 2.2 and the Pinwheel tiling of
Figure 2.3 are not edge-to-edge, though if we allow to add vertices in to split
edges in two they are edge-to-edge.

Definition 2.1.6 (Patch and Pattern). A patch is a simply-connected set of
non-overlapping tiles, i.e. a connected set of non-overlapping tiles with no
holes.

Figure 2.3: The Pinwheel tiling.
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Figure 2.4: Patches and patterns of the Chair tiling.

A pattern is a patch up to translation, or in general up to the congruence
relation we consider on the tiles.

We say that P is a patch of a tiling T (resp. of another patch P ′) if it is
a subset of the tiling (resp. of the other patch) i.e. P ⊆ T (resp. P ⊆ P ′).

We say that a pattern P appears in T denoted by P / T (resp. in a
patch P ′) if there is a patch P ′′ of the tiling (resp. of the patch P ′) which is
congruent to P , recall that when it is not otherwise mentioned we consider
the up-to translation congruence.

For example in Figure 2.4 in the upper-left corner are 12 highlighted
patches which are all equal up to translation so they are the same pattern
up to translation, in the bottom right corner are 4 highlighted patches which
are equal up to translation and rotation so they are not the same pattern up
to translation but they are the same pattern up to translation and rotation.

Remark that in this definition a patch or a pattern does not necessarily
need to appear in an infinite valid tiling.

Definition 2.1.7 (Deceptions and Fragments). A patch or pattern is called
a fragment of tiling when it appears in some infinite valid tiling.
A patch or pattern is called a deception when there is no infinite valid tiling
which contains it.
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Figure 2.5: Balls of the Chair tiling.

For some definitions and some properties we are interested in a specific
kind of patches: the balls of the tiling.

Definition 2.1.8 (Balls and local complexity). Let D(r, p) be the disk of
centre p and radius r of R2 and let T be a tiling of R2.

We call ball of centre p and radius r of T the patch

BT (p, r) := {t ∈ T |t ⊆ D(r, p)}.

The tiling T is said to have finite local complexity if for any a radius r the
set {BT (p, r), p ∈ R2} is finite up to translation.
Otherwise the tiling is said to have infinite local complexity.

For example in Figure 2.5 are highlighted 12 balls of various radiuses,
remark that balls of the same radius can vary in shape and in number of
tiles.

The Pinwheel tiling of Figure 2.3 is an example of tiling with infinite local
complexity and this is due to the fact that the tile appears in infinitely many
orientations [Rad94,Rad97]. Other than this specific example we will only
consider tilings with finite local complexity.
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2.2 Local rules
Local rules are in all generality a set of condition that can be checked locally
and that in addition to the usual tiling condition, restrict the possible valid
tilings of a given tileset. The edge-to-edge condition of Definition 2.1.5 for
example can be seen as a local rule. Local rules can also be seen as a way to
impose conditions on the validity of a tiling without using tiles of complex
shapes for example the cut-and-notch Penrose rhombus tiles that where used
to define the Penrose rhombus tiling [Pen74] and their coloured rhombus
equivalent shown in Figure 2.29 page 48, or even to simplify tiles that are
not connex such as in the case of the Socolar-Taylor tile that can either be
realized as a non-connex tile or a labelled hexagon tile [ST11]

There are three ways to define local rules either by forbidden pattern, by
an atlas of allowed local configurations or by a colouring or labelling of the
tiles. We will first quickly present the forbidden patterns definition and the
atlas definition without going in much details, and then give a more detailed
presentation of colouring of tiles.

Let us consider a tileset T of finitely many polygon prototiles.
Let F called set of forbidden patterns be a set of edge-to-edge patterns

from tileset T. A tiling T is admissible for F when no pattern of the set F
is a pattern of T . We denote XF called subshift of F the set of valid tilings
for F . When F is finite then XF is called Subshift of Finite Type or SFT,
see [Rob04] for more details.

Given an integer r, a r-pattern of centre x is an edge-to-edge pattern of
tiles P such that x is a vertex of P and any tile of P is linked to x by a path
of at most r edges.
A r-atlas or r-vertex-atlas is a set of r-patterns and is usually denoted by Ar.
Given a tiling T we denote by Pr(T ) the set of all r-patterns that appear
in T . A tiling T is called valid for the atlas Ar when Pr(T ) ⊆ Ar, and we
denote by XAr the set of tilings valid for Ar called subshift of Ar. In Figure
2.6 is shown the 0-atlas of the Penrose rhombus tiling (for more details see
Section 2.7).

Let us remark that when the tileset T allows only edge-to-edge tilings
of finite local complexity, SFT (subshifts defined by a finite set of forbid-
den patterns) and r-atlas subshifts (subshifts defined by some r-atlas) are
equivalent.

Let us now present local rules through labelling or colouring, though the
definition can be given for any shape of geometrical tiles we will restrict to
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Figure 2.6: The 0-atlas for Penrose rhombus tiling up to translation and
rotation.

Figure 2.7: Example of a square tile and the graphical representation of a
Wang tile with integer labels or with colours.

polygon tiles and edge-to-edge tilings.

Definition 2.2.1 (Labelled or coloured tile). A labelled or coloured tile is a
couple (t, l) where t is a polygon tile and l is a function from t to a finite set
of labels or colours.
A labelled prototile is a labelled tile up to translation (or up to a congru-
ence). Two labelled tiles that have the same geometrical tile but not the same
labelling function are not equivalent up-to translation.
A finite set of labelled prototiles is called a labelled tileset and is denoted by
T.

The Wang tiles which are unit square tiles with colours on the edges (see
Figure 2.7 are the most simple and classical example of coloured tiles.

Definition 2.2.2 (Tiling valid for local rules). A valid tiling (resp. patch)
for labelled tileset T is a countable set of labelled tiles T := {(ti, li), i ∈ N}
(resp. a finite set of labelled tiles) such that:

• each tile (ti, li) is equal up-to translation to some prototile (t, l) ∈ T

• the set {ti, i ∈ N} is an edge-to-edge tiling of R2, see Definition 2.1.5
(resp. an edge-to-edge patch)

• for any two tiles (t0, l0) and (t1, l1) that share an edge e then the la-
bellings of the two tiles agree on their common edge i.e. l0(e) = l1(e)
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Figure 2.8: The Jeandel-Rao Wang tileset [JR21].

Figure 2.9: A fragment of Jeandel-Rao tiling.

Valid patterns are up-to the translation valid patches.
The set (subshift) of valid tilings for a labelled tileset T is denoted by XT.

See Figure 2.8 for an example of labelled tileset and Figure 2.9 for a
fragment of valid tiling.

Definition 2.2.3 (Label simplification and sofic tilings). Given two finite
sets of labels L′ ⊂ L and a projection π : L → L′, we define the operator of
label simplification on labelled tiles by π by π((t, l)) = (t, π ◦ l), the operator
is generalized to patches and tilings by applying it separately on each tile.

A set of labelled tilings X is called sofic when there exists a labelled tileset
T such that X is the projection of the set of valid tilings for T by some label
simplification i.e. X = π(XT).

A set of geometrical tilings X is called sofic whene there exists a labelled
tileset T such that X = π(XT) with the trivial projection π.

The label simplification operator is very similar to factor maps and slid-
ing block codes [LM21]. In the definition of sofic geometrical tilings, it is
considered that a geometrical tile t is a labelled tile (t, 0) with the null label
function.

The set of Penrose rhombus tilings presented in Section 2.7 and the set
of Ammann-Beenker tilings presented in Section 2.8 are both sofic.
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(a) A simple weakly periodic tiling. (b) A simple strongly periodic tiling.

Figure 2.10: Weak and strong periodicity.

2.3 Order
The notions of order are central in the study of tilings. We will first define
periodicity which is the most basic notion of order and we will then move on
to notions of order for aperiodic tilings.

Definition 2.3.1 (Periodicity). A geometrical or labelled tiling T is periodic
of period ~v 6= ~0 when it is invariant under the translation of vector ~v i.e. any
ball of centre p of the tiling is equal to the ball of centre p+~v up to translation
i.e.

∀r ∈ R+, p ∈ R2, BT (p, r) ≡ BT (p+ ~v, r).

A tiling that admits two non-collinear periods is called strongly-periodic or
fully-periodic. A tiling which is periodic but not strongly-periodic is called
weakly-periodic. A tiling that admits no periods is called non-periodic.

Remark that for tilings of Rd with d > 2, a tiling is strongly periodic
when it admits a base of Rd for periods and it is weakly periodic when it
admits at least 1 period but is not strongly periodic.

Definition 2.3.2 (Aperiodic subshifts and tilesets). A subshift X is called
aperiodic when it is not empty and it contains no periodic tiling.
A geometrical or labelled tileset T is called aperiodic when its induced subshift
XT is aperiodic.

Remark that a tiling that admits no period is called non-periodic and
not aperiodic, only a subshift is called aperiodic when it contains no periodic
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Figure 2.11: Robinson tileset, classical version with square tiles cut and
notches.

Figure 2.12: The hierarchical structure of Robinson tilings.

tiling. Sometimes a tiling that belong to an aperiodic subshift (i.e. its orbit
closure is aperiodic) is called aperiodic.

Theorem 4 ( [Ber66]). There exist aperiodic tilesets.

This theorem was first formulated and proved on Wang tiles with a tileset
of 20426 tiles up-to translation but it was quickly reduced to 56 tiles by
Robinson in [Rob71] which are represented in Figure 2.11 up-to isometry,
the hierarchical structures of Robinson tilings are shown in Figure 2.12. The
minimal number of tiles up-to translation in an aperiodic Wang tileset is
11 [JR21], the Jeandel-Rao tileset in Figure 2.8 is aperiodic and minimal for
the number of tiles up to translation among aperiodic Wang tilesets.

Though it is not strongly related to our topic let us mention that the
existence of aperiodic tilings is closely related to the Domino Problem.
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Figure 2.13: Examples of tilings with local 10-fold rotational symmetry.

Problem 2.3.1 (Domino problem). Given a geometrical or labelled tileset
T, does there exist a valid tiling for T.

Theorem 5 ( [Ber66]). The domino problem is undecidable.

The proof is based on the embedding of Turing machine computation
in a specific aperiodic tiling, a nice introduction to this topic can be found
in [JV17] which has been published in [AA17].

Now that we have defined periodicity we will define other notions of order.

Definition 2.3.3 (Global and local n-fold rotational symmetry). A tiling is
said to have global n-fold rotational symmetry when there exists a point p
such that the tiling is invariant under the rotation of centre p and angle 2π

n
.

A tiling T is said to have local n-fold rotational symmetry when for every
pattern P that appears in T , the pattern P ′ obtained by rotating P by 2π

n

is also a pattern of T . Alternatively we can define local n-fold rotational
symmetry as the tiling and the tiling rotated by 2π

n
having the same patterns

up to translation.

The best known result regarding periodicity and rotational symmetries for
tilings is the crystallographic restriction which can be formulated as follows.
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Figure 2.14: The Penrose tilings are uniformly recurrent, here we picked a
pattern and highlighted all its occurrences (up to translation). Remark that
this pattern also appears in another orientation but we did not highlight
these occurrences.

Theorem 6 (Crystallographic restriction). If a periodic tiling has global or
local n-fold rotational symmetry then n ∈ {1, 2, 3, 4, 6}, conversely if a tiling
has global or local n-fold rotational symmetry with n /∈ {1, 2, 3, 4, 6} then the
tiling is non-periodic.

Definition 2.3.4 (Uniform recurrence). A tiling T is called uniformly re-
current when for any pattern P that appears in T there exists a radius r such
that P appears in every ball of radius r in T i.e.

∀P / T , ∃r ∈ R+, ∀p ∈ R2, P / BT (p, r).

One can easily remark that every strongly-periodic tiling is uniformly-
recurrent, however it is not necessarily the case for weakly-periodic and non-
periodic tilings. See Figure 2.14 for an illustration of uniform recurrence.

Definition 2.3.5 (Quasiperiodic). A tiling which is non-periodic and uniformly-
recurrent is called quasiperiodic.
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Remark that a tiling which is non-periodic and uniformly-reccurent is
aperiodic in the sense that its induced subshift is aperiodic.

In this work we are mostly interested in rhombus edge-to-edge quasiperi-
odic tilings with n-fold rotational symmetry, see Sections 2.7 and 2.8 for
classical examples of such tilings.

Another way of describing the order of tilings is through their diffraction
patterns. We will not give precise definitions here but we will give the general
ideas, see the article [BDDG16] for an introduction and the book [BG13] for
full definitions and discussions on this topic.

The idea of studying tilings through their diffraction patterns comes from
physics and more precisely crystallography which is the study of arrangement
of atoms (or molecules) in a homogeneous solid. Crystallographists use X-ray
diffraction of thin slices of material to study its atomic structure, the idea
being that each atom diffracts the incoming X-ray and all the diffracted waves
superpose to form a diffraction pattern. If the material has a strongly ordered
structure the diffraction pattern is a collection of bright points called pure-
point diffraction pattern (see Figure 2.15), on the contrary if the material has
no ordered structure the diffraction pattern is uniform.

It was originally believed that pure point diffraction patterns where equiv-
alent with crystals (periodic arrangement), however in the 80s new materials
were discovered that had no periodic arrangement but had pure-point diffrac-
tion pattern [SBGC84]. Such materials are now called quasi-crystals.

Pure-point diffraction, or essentially discrete diffraction which is a weaker
property, can be used as a definition of long-range order for tilings. In the
context of tilings the X-ray diffraction is replaced with a Fourier transform
on the vertex set. We will see in Section 2.5 the classes of discrete planes and
cut-and-project tilings which have respectively essentially discrete diffraction
patterns and pure-point diffraction patterns.
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(a) An experimental diffraction pattern
with 10-fold rotational symmetry [Wik].

(b) The diffraction pattern of the canon-
ical Ammann-Beenker tiling with 8-fold
rotational symmetry [BDDG16].

Figure 2.15: Diffraction patterns.

2.4 Substitutions
Substitutions were first introduced in the study of words so let us first define
them in this context.

Let Σ be a finite set called alphabet. Let Σ∗ be the set of finite words,
ε be the empty word and Σ+ be the set of non-empty finite words and · be
the concatenation.

Definition 2.4.1 (Substitution on words). A substitution σ is a non-erasing
morphism of Σ∗ i.e. for any letter a ∈ Σ, σ(a) 6= ε and for any two words
u, v, σ(u · v) = σ(u) · σ(v).

We usually define a substitution by the image of the letters.
For example the Fibonnacci substitution σf : 0 → 01, 1 → 0 and the

tribonnacci substitution σt : 0→ 01, 1→ 02, 2→ 0
Let ΣZ be the set of bi-infinite words on alphabet Σ.

Definition 2.4.2 (Factors). Let u be a finite word and v be a possibly-infinite
word on the same alphabet Σ. We say that u is a factor of v denoted by u / v
when there exists two possibly empty and possibly infinite words wp and ws
such that w = wp · u · ws.
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Definition 2.4.3 (Infinite words and substitution). A bi-infinite word w ∈ Z
is called regular for σ when for any finite factor u of w there exists a letter
a ∈ Σ and an integer k such that u / σk(a).

A bi-infinite word is w called fixpoint of σ when w = σ(w).

The study of substitution on words is linked to the study of dynamical
systems, Sturmian words, Rauzy fractal, S-adic systems and many other
domains, see for example [Fog02].

Let us first remark that a bi-infinite word w ∈ ΣZ can be seen as a tiling
of the line R by segments as shown in Figure 2.16.

Now we can define substitutions on tilings.
Let T be a finite set of polygon prototiles called tileset, remark we are

only interested in edge-to-edge tilings so we chose a formalism adapted to
that case which we borrowed from [FO10].

Definition 2.4.4 (Substitution on tiles, combinatorial substitution). A sub-
stitution on tileset T is an application σ that to each prototile associates a
patch of tiles paired to an application ∂σ that to each edge e of a prototile t
associates a subset of external edges of σ(t).
The images σ(t) of the prototiles by the substitution are called metatiles.
The substitution is extended to an application on patches of tiles or tilings
by applying the substitution separately on each tile and gluing the obtained
metatiles together in such a way that it conserves the combinatorial structure
i.e. if a patch P comprises two tiles t0 and t1 adjacent along edge e then the
patch σ(P ) is obtained from gluing the two patches of σ(t0) and σ(t1) along
the set of edges ∂σ(t0, e) and ∂σ(t1, e) which have to be equal.

We actually relax the definition of the boundary application ∂σ by al-
lowing ∂σ(t, e) to contain boundary edges and boundary tiles, under the

(a) The Fibonacci substitution σf on segments.

(b) A factor of the Fibonacci word as a tiling of the real line.

Figure 2.16: Words as tilings of the line by segments.
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condition that when a tile is in ∂σ(t0, e) and t0 is adjacent to t1 by edge e
then ∂σ(t1, e) contains the same tile and the two copies overlap exactly.

In Figure 2.17a we represent up to rotation a substitution on two pro-
totiles called the Penrose substitution. On the left of the figure are the two
rhombus tiles and on the right are the images of the two tiles by the substi-
tution, in the images the dashed lines represent the expanded shape of the
original tile. On each tile one edge e and its image by the substitution ∂σ(e)
have been highlighted.

In Figure 2.17b we represent how to apply the substitution on a patch of
three tiles: first aply the substitution separately on each tile and then glue
it back together in a way that if two tiles t0 and t1 share an edge e then the
images σ(t0) and σ(t1) share the meta-edge ∂σ(e). In the figure the internal
edges and their images are highlighted.

Let us remark that under this definition there is no reason that the sub-
stitution can be applied to any edge-to-edge patch (connected and with no
holes) to obtain a valid patch i.e. also edge-to-edge connected, with no holes
and which respects the combinatorial structure. For example the canonical
Penrose substitution represented in Figure 2.17b cannot be applied to the
star pattern (10 narrow rhombus tiles around a vertex).

Definition 2.4.5 (Metatiles). For each prototile t in the tileset, the sequence(
σk(t)

)
k∈N is called the sequence of metatiles for t.

Figure 2.18 is an example of sequence of metatiles for the wide rhombus
in the Penrose substitution. Narrow rhombus have been coloured in blue for
easier readability of the patterns in the tiling, they are not labels used for
local rules.

This definition assumes that the substitution can be applied on any σk(t)
to obtain a valid patch of tiles i.e. an edge-to-edge connected patch with no
holes. Also we want that for each prototile t the sequence

(
rin(σk(t))

)
k
of

the radius of the inscribed circle of the metatile σk(t) tends to infinity.

Definition 2.4.6 (Degenerate and non-degenerate substitution). A substi-
tution σ such that there is a tile t and an integer k such that the substitution
cannot be applied to σk(t) to obtain a edge-to-edge connected patch with no
holes, is called degenerate. A substitution σ such that there is a tile t such
that the sequence

(
rin(σk(t))

)
k
, of the radius of the inscribed circle of the

metatiles of t does not tend to infinity (for example if it is bounded) is also
called degenerate. Otherwise it is called non-degenerate.
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(a) The image of the two rhombus protiles up to rotation.

(b) The substitution applied on a patch.

Figure 2.17: The Penrose substitution as a combinatorial substitution.

We will only consider non-degenerate substitutions. So in the rest “substi-
tution” will mean “non-degenerate substitution”. There are classes of substi-
tution that ensure non-degeneracy. Note that we imposed the edge-to-edge
condition on high-order metatiles for the definition, this is due to the fact
that we are interested in edge-to-edge tilings, but in general non-degeneracy
is not necessarily defined with the edge-to-edge condition.

Definition 2.4.7 (Edge-hierarchic substitution). A substitution σ is called
edge-hierarchic when there exists a linear application of R2 called expansion
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Figure 2.18: Metatiles of the wide rhombus for the Penrose substitution.

and denoted by ϕ such that for any prototile t, the metatile σ(t) has exactly
the shape of ϕ(t) i.e.

∀t ∈ T,
⋃

t′∈σ(t)

t′ = ϕ(t)

Examples of edge-hierarchic substitutions are shown in Figure 2.19 and
the corresponding tilings are in Figures 2.2 and 2.3. However edge-hierarchy
is very restrictive and most of the well-known cases are not edge-hierarchic,
for example the Penrose substitution on rhombus tiles in Figure 2.18 is not
edge-hierarchic though it is possible to split the rhombuses in two triangles
to obtain an edge-hierarchic substitution. Note that the fact that first-order
metatiles are edge-to-edge for an edge-hierarchic substitution does not imply
that second order metatiles will be edge-to-edge.

Another class of (less restrictive) substitution are the vertex-hierarchic
substitution.

Definition 2.4.8 (Vertex-hierarchic substitution). A substitution σ is called
vertex-hierarchic when there exists a linear application of R2 called expansion
and denoted by ϕ such that for any prototile t, the vertices of the expanded
tile ϕ(t) are vertices of the metatile σ(t) and also the areas of ϕ(t) and of
σ(t) are the same i.e.

∀t ∈ T, V (ϕ(t)) ⊂ V (σ(t)) and Area (ϕ(t)) = Area (σ(t))
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(a) The Chair substitution. (b) The Pinwheel substitution.

Figure 2.19: Edge hierarchic substitution.

The condition that the areas of the expanded tile and of the metatile are
the same is to be understood as a way to force the expansion to actually be
the shape of the substitution. In some cases we can play around with this area
condition, for example for the Penrose substitution in Figure 2.18 the tiles
that overlap the expanded tile (in doted lines) are actually cut by the edge of
the expanding tile along one of their diagonals with one half of the tile inside
the expanded tile and one half outside. When applying the substitution on
two adjacent tiles such overlapping tiles will superpose exactly as in Figure
2.17b, when counting the Area (ϕ(t)) these overlapping tiles are only counted
as half. With this consideration the Penrose substitution is vertex-hierarchic.

Now that we have defined substitutions their metatiles and some classes
of substitution that are easier to work with let us define the tiling space
defined by a substitution.

Definition 2.4.9 (Tilings regular for a substitution). A pattern of tiles P is
said to be admissible for a substitution σ when there exists a prototile t and
an integer k such that P appears in σk(t).

A tiling T is said to be regular for a substitution σ when all the patterns
that appear in T are admissible for σ i.e.

∀P / T , ∃t ∈ T, ∃k ∈ N, P / σk(t)

The set of regular tilings for a substitution σ is called the tiling space of
σ, or subshift of σ and is denoted by Xσ.

Up to translation and rotation the Chair tiling has only one prototile,
so we represent only one sequence of metatiles in Figure 2.20, but up to
translation it has 4 sequences of metatiles. The Chair tilings are defined by
the fact that their patterns all appear in a sequence of metatiles shown in
Figure 2.20.
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Figure 2.20: The sequences of metatiles for the Chair substitution.

Definition 2.4.10 (Primitivity). A substitution σ is called primitive of order
k when for any two prototiles t and t′, t′ appears in σk(t).
A substitution is called primitive when there exists an integer k such that it
is primitive of order k.

In this definition the appearance of t′ in σk(t) is understood to be only
up to translation and not up to rotation. In the case where the prototiles are
defined up to translation and rotation one must understand that every tile
t′ in every orientation must appear in σ(t).

For example the Penrose rhombus substitution is primitive of order 4, the
Chair substitution is primitive of order 2 and the Pinwheel substitution is
not primitive.

Proposition 2.4.1 (Primitivity and uniform recurrence). Let σ be a primi-
tive substitution. Every tiling regular for σ is uniformly recurrent.

Proof. This is a classical result but we will give a proof nonetheless to fa-
miliarize the reader with substitution. Let σ be a primitive substitution of
order k, T be a tiling regular for σ and P be a pattern that appears in T .
Let us prove that there exists a radius r such that for all p ∈ R2, P /BT (p, r).

Since T is regular for σ there exists a prototile t0 and an integer k0 such
that P / σk0(t0).
Since σ is primitive of order k, for any prototile t, t0 appears in σk(t).
So P appears in σk+k0(t) for any tile t.
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Figure 2.21: Two slightly different fragments of regular tilings for the Chair
substitution.

Let r be twice the maximum radius of the circumscribed circle of all metatiles
σk+k0(t), since the tileset is finite this maximum exists and is finite.
By definition of r, in any ball of radius r there is at least one metatile or
order k + k0, and since P appears in every metatile of order k + k0 then P
appears in every ball of radius r.

The other good thing about primitive substitution is that no metatile can
be absent of a regular tiling.

Proposition 2.4.2 (Primitivity and metatiles). Let σ be a (non-degenerate)
primitive substitution. Every metatile σk(t) appears in every tiling regular
for σ.

Proof. Let σ be a non-degenerate primitive (of order k0) substitution, let
σk(t) be a metatile of this substitution and let T be a tiling regular for the
substitution.

For any prototile t′, for any k′ > k + k0, σk(t) / σk
′
(t′) by primitivity of

order k0. By regularity of the tiling, there exists at least one prototile of
order k′ > k + k0 that appears in the tiling, so σk(t) appears in the tiling.

The fact that a prototile of order at least k + k0 necessarily appears in
the tiling derives from the fact that the diameter of the circumscribed circle
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to metatiles of order less that k + k0 is bounded by finiteness of the tileset
and of the possible k1 < k + k0 i.e.

∃B ∈ R+, ∀t1 ∈ T, ∀k1 < k + k0, rext(σ
k1(t1)) 6 B

But every finite patch of the tiling, including those of inscribed circle bigger
than this bound B must appear in the sequence of metatiles. So metatiles of
arbitrarily large order appear in the tiling.

Another way to define a tiling set from a substitution is as follows.

Definition 2.4.11 (Limit set of a substitution). The limit set of a substitu-
tion σ is the set of tilings T that have an infinite sequence of pre-images by
σ i.e.

∃ (Tk)k∈N , T0 = T and ∀k, σ(Tk+1) = Tk

And the limit set of a substitution may contain fixpoint tilings.

Definition 2.4.12 (Fixpoints). A fixpoint of substitution σ is a tiling T
such that σ(T ) = T . A fixpoint is called regular when it is regular for the
substitution, and singular otherwise.
We sometimes say that T is a fixpoint of σ when in fact there exists some
integer k > 1 such that T is a fixpoint of σk i.e. σk(T ) = T .

The usual way to create a fixpoint is to start from a patch called seed
and to iterate the substitution on it.

Definition 2.4.13 (Seed). Given a substitution σ a seed is a patch of tiles
P0 such that P0 ⊂ σ(P0), in this definition P0 is a patch and not a pattern
and when we say P0 ⊂ σ(P0) it is to be understood that the seed P0 is not
moved by the substitution (see Figure 2.22).
A seed is called regular when it is admissible for the substitution i.e. it appears
in some metatile σk(t), and singular otherwise.

Proposition 2.4.3 (Fixpoint from a seed). Given a substitution σ and a
seed P0, the tiling T∞ = lim

k→∞
σk(P0) exists, has the patches σk(P0) as central

patterns and is a fixpoint of the substitution.
If the seed is regular then so is the tiling.
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Figure 2.22: A regular seed for the chair substitution and its images.

Proof. Since the work presented here is little concerned with topology of
tiling spaces we will not go at length on how we define in all generality the
convergence of sequences of tilings. Here we consider the classical cylinder
topology on tilings [Rob04] .
This result is based on two things, the fact that P0 is a seed so if we define
Pk = σk(P0) we have

P0 ⊂ P1 ⊂ P2 ⊂ P3 · · · ⊂ Pk ⊂ Pk+1 . . .

with the ⊂ relation meaning that the patch appears at precisely its own
position and not up-to translation. Moreover since the substitution is non-
degenerate for each prototile the sequence of the radius of the inscribed circles
of metatiles tends to infinity. So the sequence of the inscribed circles of the
patches Pk tends to infinity. So the limit tiling exists and is a fixpoint.
Moreover if the seed is regular there exists a prototile t0 and an integer k0

such that P0 appears in σk0(t0), so each Pk appears in σk0 + k(t0). So every
finite patch that appears in T appears in some Pk so it appears in some
σk0+k(t0). So when the seed is regular the tiling is also regular.

Let us remark however that a singular seed does not necessarily induce
a singular tiling, it may so happen that the singularity disappears at some
step ki of the substitution. In that case σki(P0) is a regular seed for the same
tiling.

A family of singular fixpoint tilings with rotational symmetries is pre-
sented in [Har05], and a family of regular fixpoint tilings with rotational
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Figure 2.23: A Chair fixpoint tiling.

symmetries is presented in [KR16] and will be presented in details in Chap-
ter 3.

If we combine Propositions 2.4.1 and 2.4.3 we get the following corollary
which will be used throughout this work.

Corollary 2.4.1 (Uniformly recurrent fixpoint tilings). Let T be a set of
unit rhombus prototiles and let σ be a non-degenerate primitive edge-to-edge
substitution on T.
Let P0 be a regular seed for σ.
The tiling T := lim

k→∞
σk(P0) exists and is a uniformly-recurrent edge-to-edge

rhombus tiling which is a regular fixpoint of the substitution.

Though it is not worded identically it is this result which is used in [KR16]
to prove the existence of regular substitution tilings with n-fold rotational
symmetry for any n, it is also one of the results used in Chapter 4 to prove
Theorem 2.

As illustrated in this section substitutions on tilings can be used to define
tiling spaces and to study the topology, the dynamics, or the combinatorics
of tiling spaces. But substitution can also be used to define specific tilings
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through the fixpoint construction presented above and it is this last aspect
that this work is primarily interested.

Let us also remark that most of the classical tilings can be defined by
substitution such as the Penrose tiling [Pen74], the Amman-Beenker tiling
[Bee82], the Robinson tiling [Rob71] and many other that can be found for
example in the Tilings encyclopedia [FGH].

The hierarchical structures provided by the metatiles in a substitution
tiling are often use to prove such results as aperiodicity [Ber66,Rob71], how-
ever some proofs of aperiodicity are done without substitution nor hierarchi-
cal structures such as the 14-tiles aperiodic Wang tileset defined by Jarkko
Kari in [Kar96] and then refined to 13 tiles in [Cul96] which has been proven
to not be substitutive by the cylindricity argument of Thierry Monteil which
was orally presented in [Mon], another example is the 11-tiles aperiodic Wang
tileset in [JR21] though it can be derived from a substitution tiling [Lab19].

2.5 Planarity
A rhombus tiling with finitely many edge directions can be lifted to a discrete
surface of Rn where n is the number of edge directions. Before defining the
lifting let us define discrete surfaces.

Let n be a positive integer and let (~e0, ~e1, . . . , ~en−1) be the canonical basis
of Rn.

Definition 2.5.1 (Discrete squares and segments). A discrete square is de-
fined by:

• its position x ∈ Zn

• its two directions i1 and i2 with 0 6 i1, i2 < n and i1 6= i2

as the set
(x, i1 ∧ i2) := {x+ λ ~ei1 + µ ~ei2 , 0 6 λµ 6 1}.

We similarly define discrete segments as (x, i) := {x + λ~ei, 0 6 λ 6 1
with x ∈ Zn and 0 6 i < n.

Definition 2.5.2 (Discrete surface). A discrete surface S is a collection of
discrete squares S := {si, i ∈ I ⊆ N} such that:

• S is simply-connected
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(a) A discrete surface. (b) Examples wich are not discrete surfaces .

Figure 2.24: Discrete surfaces and collections of squares that are not discrete
surfaces in R3.

• for any discrete segment (x, i) there are at most two squares in S that
have (x, i) as an edge

• in the boundary of S which is the set of discrete segments that are
the edge of exactly one square of S, there are either only unbounded
connected components or the boundary is exactly a cycle.

Definition 2.5.3 (Lift). Any edge-to-edge rhombus patch or tiling with n
edge directions {~v0, ~v1, . . . ~vn−1} can be lifted to a discrete surface of Rn by

• picking a vertex that is mapped to the origin of Rn

• mapping each edge direction ~vi to ith vector of the canonical basis the
~ei

This lift is unique up to choice of the origin vertex and the lift operator is
denoted by ̂ .
Definition 2.5.4 (Discrete plane or planar tiling). A rhombus tiling T with
n edge directions is called planar or a discrete plane when its lifted version
T̂ approximates a 2D real plane E of Rn in the sense that it stays within
bounded distance of E i.e.

∃E plane of Rn, ∃d ∈ R+, ∀s ∈ T̂ , d(s, E) < d

The approximated plane E is called slope of the tiling.
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We can also define discrete planes in terms of E⊥-diameter.

Definition 2.5.5 (V-diameter, orthogonal subspace and alternate definition
for discrete planes). Given a subspace V and a set X we define V-diameter
of X as

V-diameter(X) := sup
x0,x1∈X

‖ΠV(x0 − x1)‖

with ΠV the orthogonal projection onto V.
Given a subspace V we denote by V⊥ the orthogonal subspace or orthogonal

supplement to V.
A rhombus tiling T with n edge directions is called planar or a discrete

plane when its lifted version T̂ approximates a 2D real plane E of Rn in the
sense that the E⊥-diameter of T is finite.

A more restrictive version of planarity is cut-and-projection. There are
many equivalent definitions for cut-and-project tilings which can be found
in [BG13] but we will present a simple definition based on the lifting of tilings.

Definition 2.5.6 (Cut-and-project tiling and window). A rhombus tiling T
with n edge directions is called cut-and-project when there exist a 2D plane
E of Rn called slope and a compact W of Rn called thickness such that

• T is planar of slope E

• the vertex set of the lifted tiling V
(
T̂
)
is exactly equal to the intersec-

tion of the cone E + W with Zn i.e.

V
(
T̂
)

= (E + W) ∩ Zn

• W is the closure of its interior i.e.

W = W̊

The orthogonal projection of W onto the orthogonal space E⊥ is called
window of the tiling and is denoted by Ω.

Definition 2.5.7 (Canonical cut-and-project tiling). A cut-and-project tiling
T is called canonical when the thickness is a translate of the unit hypercube
which we denote H .
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Figure 2.25: A sketch of what E +H looks like in dimension 4.

The idea behind this refinement of planarity is that it is not only planar
but also very regular. A consequence of the fact that the vertices of a cut-and-
project tiling are exactly (E+W)∩Zn is that we can define a cut-and-project
tiling just by its slope and thickness, this gives us the vertex set of the tiling,
then we get the edges by linking vertices that are neighbour in Zn and we
can project the obtained discrete surface onto E to get a rhombus tiling of
the plane.

In all generality any lattice L of Rn could be used in place of Zn but
we will only consider this case here. Note that the pair (Zn, E) is called a
cut-and-project scheme.

Examples of canonical cut-and-project tilings are the Penrose tiling (see
Section 2.7) and the Ammann-Beenker tiling (see Section 2.8).

Now that we have presented the formalism of tilings, of substitutions and
of planarity, let us recall the Theorems 1 and 2.

Theorem 1 (Fernique, Kari, L.2020). For any n > 3 the canonical Sub Rosa
tiling Tn can be lifted to a discrete surface of Rn and:

1. The canonical Sub Rosa tilings T3 and T5 are discrete planes.

2. For n = 4 and for any n > 6 the canonical Sub Rosa tiling Tn is not a
discrete plane.

The same holds when replacing the canonical Sub Rosa tiling Tn by the set of
Sub Rosa substitution tilings Xσn.

Theorem 2 (Kari, L. 2020). For any n > 3 the canonical Planar Rosa tiling
T ′n is a substitution discrete plane with global 2n-fold rotational symmetry.
For any n > 3 the Planar Rosa tilings i.e. tilings in Xσ′n, are substitution
discrete planes with local 2n-fold rotational symmetry.
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In the remaining sections of this chapter I will present related results,
constructions and I will present in details two notable tiling subshifts: the
Penrose rhombus tilings and the Ammann-Beenker tilings.

2.6 The multigrid method
In the 80s Nicolaas Govert de Bruijn introduced a new algebraic construction
to study tilings which he called the Pentagrid and which was designed at first
to study the Penrose tilings [DB81]. This construction was later generalized
to multigrids to produce tilings with n-fold rotational symmetry for any n,
and a generalized version of this construction was proved to be equivalent
to the projection method in [GR86]. So the multigrid is a way of describing
cut-and-project tilings with n-fold rotational symmetry for arbitrary n.

Definition 2.6.1 (Grid and multigrid). Let ξ be a unit complex number and
γ be a real number. The grid of direction ξ and offset γ is defined as

H(ξ, γ) :=
{
z ∈ C | Re

(
z · ξ̄

)
− γ ∈ Z

}
Let (ξi)06i<n be pairwise non-collinear unit complex numbers and (γi)06i<n be
real numbers. The multigrid of directions ξ and offsets γ is

Gξ(γ) :=
⋃

06i<n

H(ξi, γi)

Definition 2.6.2 (n-fold multigrid). Let n > 3 be an integer. Let us define
ζ as

ζ =

{
ei

2π
n if n is odd

ei
π
n if n is even

and let us define γ = (γi)06i<n ∈ [0, 1)n. The n-fold multigrid of offset γ is
defined as

Gn(γ) :=
⋃

06i<n

H(ζ i, γi)

by extension we write Gn(x) for Gn(x, x, . . . , x) with x ∈ [0, 1).

A grid H(ζk, γk) is a set of equidistant lines orthogonal to ζk and with
offset γk from the origin. Examples of multigrid of order 4 and 5 are shown
in Figure 2.26 with the vectors orthogonal to the grid also shown.
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(a) G4(
1
2). (b) G5(

1
2).

Figure 2.26: Examples of multigrids.

From a multigrid Gξ(γ) we can define a tiling Pξ(γ) by a duality process.
This tiling is dual to the multigrid in the sense that the multigrid, seen as a
graph, is the adjacency graph of the tiling, see Figure 2.28 for an example.
We will define this tiling only in the n-fold case, but one can easily adapt it
to the general case by replacing the directions ζ in by ξi.

Definition 2.6.3 ( Grid function and dual tiling). To define the dualization
we first define two functions: K from C to Zn and f from C to C defined by

K(z) :=
(⌈
Re
(
z · ζ̄ i

)
− γi

⌉)
06i<n

and f(z) :=
n−1∑
i=0

⌈
Re
(
z · ζ̄ i

)
− γi

⌉
ζ i.

Let us now define the dual tiling Pn(γ) by its set of vertices V (Pn(γ)) and
of edges E (Pn(γ)) with

V (Pn(γ)) := f(C)

E (Pn(γ)) := {(x, y), x, y ∈ V (Pn(γ)) | ∃i, y = x+ ζ i}.

Lets remark that the function f is constant on every cell of the multigrid,
this means that we have one vertex of the dual tiling for each cell of the
multigrid, for example see the red and yellow cells and their dual vertices
in Figure 2.28. Moreover if vertices x and y are dual to two cell which are
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Figure 2.27: Some possible intersection points in G5(γ) and their dual tiles .

adjacent along an edge of H(ζk, γk) then y = x± ζk so y and x are linked by
an edge of direction ζk.

Now let us take an intersection point of the multigrid Gn(γ) where k lines
intersect. This intersection point is surrounded by 2k cells which are each
adjacent to their 2 neighbours. So this intersection point is dualized to a 2k-
gon tile with unit sides as shown in Figure 2.27, in particular if k = 2 then it
is dualized to a rhombus. Remark that the dual of a line of the multigrid is
a chain or ribbon of tiles that share an edge, see for example the green and
blue lines and their duals in Figure 2.28.

Definition 2.6.4 (Regular multigrid). A multigrid Gn(γ) is called singular
when there is at least one intersection point where at least 3 lines intersect,
it is otherwise called regular.

Proposition 2.6.1 (Dual of a regular grid). The dual of a regular grid is a
rhombus edge-to-edge tiling.

Now that we have presented the formalism of regular multigrids in detail
let us recall the Theorem 3.

Theorem 3 ( [Lut21a]). 1. For any n > 4 the n-fold multigrid dual tiling
Pn(1

2
) is a quasiperiodic rhombus cut-and-project tiling with global 2n-

fold rotational symmetry.

2. For any odd n > 5 the n-fold multigrid dual tiling Pn( 1
n
) is a quasiperi-

odic rhombus cut-and-project tiling with global n-fold rotational symme-
try.

As the n-fold multigrid dual tilings have an explicit and easily computable
construction, this result gives an explicit and effective construction for cut-
and-project rhombus tilings with global n-fold rotational symmetry and local
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(a) The pentagrid G5(
1
2). (b) The dual tiling P5(

1
2).

Figure 2.28: Example of a regular multigrid and its dual tiling.

2n-fold rotational symmetry for the Pn( 1
n
) tilings and global and local 2n-fold

rotational symmetry for the Pn(1
2
) tilings.

As seen in Sections 2.7 and 2.8 the canonical Penrose tiling can be defined
as Pn( 1

n
) with n = 5, and the canonical Ammann-Beenker tiling can be

defined as Pn(1
2
) for n = 4.

2.7 Penrose rhombus tilings
The Penrose rhombus tilings are a family of rhombus tilings defined by Roger
Penrose in [Pen74,Pen79] which are non-periodic and have local 10-fold ro-
tational symmetry. Originally Penrose was primarily interested in tilings by
pentagons (with some additional tiles to join the pentagons) and then he
proved the equivalence with tilings with kite and darts tiles and then with
tilings with rhombus tiles. The two rhombus tiles in the Penrose rhombus
tilings are the unit rhombus with angles π

5
and 4π

5
, and the unit rhombus

with angles 2π
5

and 3π
5

depicted in Figure 2.29d.
In the set of Penrose rhombus tilings there is a specific tiling which we call

canonical Penrose rhombus tiling and which we denote by TPen and which
has global 5-fold rotational symmetry.
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Definition 2.7.1 (Penrose tilings). The set XPen of Penrose rhombus tilings
can be defined or characterized in many ways:

1. XPen is a sofic subshift

XPen = π(XT0) = π(XT1) = π(XT2)

with labelled tilesets T0, T1 and T2 defined in Figure 2.29

2. XPen is the substitutive subshift

XPen = XσPen

with substitution σPen defined in Figure 2.31

3. XPen is the set of cut-and-project tilings with slope (E5 + t) and thick-
ness H with

E5 =

〈
(ei

2kπ
5 )06k<5

〉
and H is the unit hypercube and offset t ∈ R5 such that (E5 + t)∩Z5 = ∅
and such that there exists a point p ∈ (E5 + t) such that the sum of its
coordinates is in Z.

4. XPen is the closure of the set of 5-fold multigrid dual tilings P5(γ) with
γ ∈ [0, 1[5 such that

∑
06k<5

γk = 0[mod 1] and such that the grid G5(γ)

is regular

The first definition [Pen79] was with two rhombus tiles with cut-and-
notches up to isometry as pictured in Figure 2.29a with two pairs of cut-
notch the “shark-tooth” and the “bent-arm”, it is equivalent to rhombus tiles
with arrow-labels [DB81] or coloured arcs as pictured in Figure 2.29 with
the equivalence “shark-tooth” equals single-arrow equals bold red line and
“bent-arm” equals double-arrow equals thin blue line.

The second definition of Penrose tilings is as a substitutive subshift with
the substitution of Figure 2.31a, in this figure the narrow rhombus is coloured
in blue this colour is just here to help differentiate the narrow and the wide
rhombus in big fragments of tilings and to help recognize patterns in a big
fragment of tiling. For an easier use of the substitution we can define the
substitution on the labelled tiles as shown in Figure 2.31b, these two defini-
tions give the same metatiles up-to-labelling but when using the unlabelled
substitution it can be quite tedious to compute the metatiles.
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Remark also that there exists an equivalent edge-hierarchic substitution
(also called stone substitution) with labels shown in Figure 2.32, the idea is
to bisect the two rhombus tiles and labels are needed to force each half-tile
to pair with a tile to form a rhombus.

The equivalence between the sofic definition (from cut-and-notches or la-
bels) and the substitution definition is hinted at in the original paper [Pen79],
though for a complete proof see [Sen96] or [BG13].

(a) Original tileset T0 with cuts and notches.

(b) Tileset T1 with arrow labels.

(c) Tileset T2 with coloured arcs.

(d) Tileset TPen with no labels.

Figure 2.29: Penrose rhombus tiles.
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(a) Patch with the cut-
and-notch tileset T0.

(b) Patch with the arrows
tileset T1.

(c) Patch with the
coloured arcs tileset T2.

Figure 2.30: A patch with tilesets T0, T1 and T2.

The third definition by the projection method is also thoroughly discussed
in [Sen96] but we will not go into details of the projection method because
we can look at it from the point of view of multigrids which I prefer.

The fourth definition is due to Nicolas Govert De Bruijn in [DB81] and
this paper contains the proof of equivalence with the sofic definition. The
condition that

∑
06k<5

γk = 0[mod 1] is quite easy to check but the second

condition is not easy to check, in [DB81] there is an exact characterization
of pentagrid that are regular among those that respect the first condition,
however that condition is hard to check and does not generalize easily when
the first condition is not satisfied. Remark that the dual of regular pentagrids
with

∑
06k<5

γk 6= 0[mod 1] are rhombus tilings that do not belong to the set of

Penrose tilings, for example see the tilings in Figure 2.13 page 25 which are
multigrid dual tilings but the one on the right has pattern that do not exist
in Penrose tilings.

Remark that the Penrose rhombus tilings can be defined by local rules
without labels, either by a finite set of forbidden patterns or by a finite set of
allowed patterns. We were unable to find a reference for this result though
it is mentionned in [Bee82] and cited as “De Bruijn, oral communication”.

Definition 2.7.2 (Canonical Penrose rhombus tiling). The canonical Pen-
rose rhombus tiling TPen is a rhombus tiling with global 5-fold rotational sym-
metry and 10-fold local rotational symmetry that can be defined in three ways:

1. TPen is the regular fixpoint tiling of substitution σ2
Pen from the seed of
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(a) Geometrical Penrose substitution
σPen.

(b) Penrose substitution σ′Pen with la-
bels.

Figure 2.31: Penrose substitutions.

Figure 2.33

2. TPen is the multigrid dual tiling P5(1
5
) (or P5(4

5
) up to rotation)

3. TPen is the canonical cut-and-project tiling of slope E5 +
(

1
5
, 1

5
, 1

5
, 1

5
, 1

5

)
Let us first remark that there is no definition of the canonical Penrose

rhombus tiling with local rules. Remark also that up to translation and rota-

Figure 2.32: Penrose substitution σ′′Pen with rhombus tiles split in triangles.
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Figure 2.33: The seed for TPen and its images by σPen, see that the seed
appears at the center of its image by σ2

Pen.

(a) G5(
1
5). (b) P5(

1
5).

Figure 2.34: The canonical Penrose rhombus tiling as a multigrid dual.

tion there are two tilings in XPen that have global 5-fold rotational symmetry
which are TPen = P5(1

5
) ≡ P5(4

5
) and σPen(TPen) = P5(3

5
) ≡ P5(2

5
).

The first definition is as the fixpoint of σ2
Pen from the seed shown in 2.33,

as shown in the figure we have indeed that the seed is at the centre of its
image by σ2

Pen. And the seed is a regular pattern for σPen and σ2
Pen because

it appears in σ4
Pen of both prototiles.

The second definition as multigrid dual tiling and the third as a cut-and-
project tiling are essentially the same definition due to the correspondance
between multigrid dual tilings and cut-and-project tilings [GR86].

For the cut-and-project definition we can study the window Ω of the tiling
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which is the projection of the set of vertices of the tiling V (TPen) on the
orthogonal subspace E⊥5 , for a detailed description of the window see [Sen96].

2.8 Ammann-Beenker tilings
Another famous family of rhombus tilings are the Ammann-Beenker tilings
defined independently by Ammann in the 70s and by Beenker in [Bee82]. The
Ammann-Beenker tiles are a unit square and a unit rhombus with angles π

4

and 3π
4
.

Definition 2.8.1 (Ammann-Beenker tilings). The set of Ammann-Beenker
denoted by XAB can be characterized in many ways:

1. XAB is a sofic subshift
XAB = π(XT)

with labelled tileset T in Figure 2.35a and with the condition that the
green corner shapes form little houses

2. XAB is the closure of the set of 4-fold multigrid dual tilings P4(γ) such
that the grid G4(γ) is regular

3. XAB is a substitutive subshift

XAB = XσAB

with the substitution σAB from Figure 2.37

4. XAB is the set of canonical cut-and-project tilings with slope (E4 + t)
with t such that (E4 + t) has no point with integer coordinates.

The first definition, due to Ammann dates from the 70s even if it was
only published in [GS87, AGS92], is with 2 decorated tiles up to isometry
represented in Figure 2.35a and with the condition that the green corner
shapes form house shapes as in Figure 2.36b this condition forbids patterns
such as the one in Figure 2.36a. Note that by changing the decorations
we can have equivalent tilings without the additional house condition, but
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(a) The tileset T with decorations. (b) Tileset TAB with no decorations.

Figure 2.35: The Ammann-Beenker tiles.

(a) An illegal pattern. (b) Legal patterns.

Figure 2.36: The house condition on Ammann-Beenker tiles.

in that case we have more tiles up to isometry (both the rhombus and the
square will have copies with different decorations).

The second definition, due to Beenker in [Bee82], was inspired by the
pentagrid approach of the Penrose tilings by De Bruijn in [DB81] and uses a
4-fold multigrid or tetragrid.

The third definition as a substitutive subshift is present in [GS87,AGS92]
remark that just as in the case of Penrose tilings we have an equivalent
edge-hierarchic substitution with labels by bisecting the square tile in two.
Remark also that we can use either the labelled or unlabelled substitution
in this definition, however the labelled one is easier to manipulate because
the substitution can be applied to any valid pattern. Whereas if we use the
unlabelled substitution it can be quite tricky to determine whether the sub-
stitution can be applied to a given patch, determining if the substitution can
be applied is as hard as determining if the patch is valid and as mentionned
above this can not be done locally.

The fourth definition can be seen as a corollary of the tetragrid definition.
Remark that there is no definition of Ammann-Beenker tilings by vertex-

atlas or by a finite set of forbidden patterns. The labelling of the tiles is
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(a) Unlabelled substitution. (b) Labelled substitution.

Figure 2.37: Ammann-Beenker substitution σAB.

necessary to define it by local rules only, and this labelling can not be decided
locally from an unlabelled tiling. It means that there is no local algorithm
that from input a tiling with squares and rhombuses either outputs a correct
Ammann labelling of the tiling when there exists one, for more details on
this see [Sen96,BG13].

Definition 2.8.2 (Canonical Ammann-Beenker tiling). The canonical Ammann-
Beenker tiling TAB has three equivalent definitions:

1. TAB is the regular fixpoint tiling of substitution σAB from seed S4 shown
in Figure 2.38

2. TAB is the multigrid dual tiling P4(1
2
)

3. TAB is the canonical cut-and-project tiling of slope E4 +
(

1
2
, 1

2
, 1

2
, 1

2

)
Remark that as in the case of the canonical Penrose rhombus tiling there

is no definition of the Canonical Ammann-Beenker tiling with local rules.
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Figure 2.38: The seed for the Ammann-Beenker substitution σAB, remark
that it is at the centre of its image by σAB.

2.9 Canonical substitution tilings
Canonical substitution tilings were defined and studied by Edmund Harriss
[Har04].

Definition 2.9.1 (Canonical substitution tilings). A canonical substitution
tiling is a tiling T such that:

1. T is regular for some vertex hierarchic substitution (with condition on
the expansion ϕ(t) = λt)

2. T is a canonical cut-and-project tiling

As seen in Sections 2.7 and 2.8 the Penrose tilings and Ammann-Beenker
tilings are canonical substitution tilings. The most classic examples for sub-
stitution cut-and-project tilings that are not canonical (which means that
the thickness of the cut-and-project tiling is not the unit hypercube) is actu-
ally for tilings of the line where the thickness is a Rauzy fractal [AI+01], an
example of non-canonical substitution cut-and-project tiling in dimension 2
is given in Section 2.10.

To state Harriss’ theorem we need a refinement on the definition of canon-
ical cut-and-project tilings. Given a tiling T which is cut and project of slope

55



E we decompose the orthogonal subspace E⊥ as an orthogonal direct sum

E⊥ =W ⊕R

where R is a rational subspace which means that it is generated by vectors
with integer coordinates, and W is a totally irrational subspace (contains no
point of Zn except the origin).

Remark that the rationality of R together with the fact the window Ω
(projection of T on E⊥) is bounded implies that ΠR(V (T )) is finite. We
denote

ΠR(V (T )) := {ri, 0 6 i < m}
and we can partition the window as

Ω :=
⊔

06i<m

Ωi × {ri}

with Ωi ⊂ W .

Theorem 7 (Harriss2004). A canonical projection tiling T with decompo-
sition E , W , R and offset t + r with t ∈ W and r ∈ R is a canonical
substitution tiling if and only if

1. E , W , R are eigenspace of a quadratic expansion matrix M i.e.

• M is a square integer matrix
• dim(E) = dim(W)

• M has eigenvalue λ on E and ±λ−1 on W for some quadratic unit
λ

• ΠE⊕W(MZn) = ΠE⊕W(Zn)

• ΠE⊕W(Zn) and ΠR(Zn) are lattices

2. M has the vertex hierarchic property

3. the rational offset of the projection tiling r is in ΠR(Zn ⊗Q(λ)) where
λ is the expanding eigenvalue of M

This characterization is quite complex but we will only consider the first
three conditions on the quadratic expansion matrix. The spaces E and W
must be of the same dimension and must be quadratic. These conditions
are very restrictive and mean that there are no canonical substitution tilings
with arbitrarily high rotational symmetry.

56



2.10 Generalized substitutions
Generalized substitutions are a framework introduce by Pierre Arnoux and
Shunji Ito for the study of Rauzy fractals and their dynamics in [AI+01] and
generalized in [SAI01,AFHI11].

The idea of this framework is to start from a generalized substitution on
words with n letters and from this to define a substitution on discrete lines
of Rn, a substitution on discrete surfaces of Rn and actually substitutions on
discrete k-surfaces of Rn for any 0 6 k < n.

This framework is very powerful but also quite complicated to use. It is
well understood for n = 3 [AI+01, Fer07, Jol13]but only one case has been
extensively studied for n = 4 in [AFHI11].

Definition 2.10.1 (Generalized substitution). A generalized substitution σ
on alphabet A = {0, 1, 2, . . . (n − 1)} is a substitution where we accept
inverted letters noted a−1 in the image of letters. It can also be defined as
non-erasing morphisms on the free group on n elements.

We give as example to illustrate this framework the substitution studied
in [AFHI11]

σ :

0 → 1
1 → 2
2 → 3
3 → 30−1

Now let us define the generalized k-surfaces on which we will define the
geometrical realizations of σ.

Definition 2.10.2 (Generalized k-surfaces). For 0 6 k < n the set of gen-
eralized discrete k-surfaces denoted Gk is the set of formal sums of discrete
k-facets where :

• The set of discrete vertices or discrete 0-facets is Zn, we denote its
elements either (x) or (x, •)

• For 1 6 k < n a discrete k-facet is a couple (x, i0 ∧ i1 ∧ · · · ∧ ik−1) with
x ∈ Zn and 0 6 i0 < i1 < · · · < ik−1 < n, the geometrical realization of
(x, i0 ∧ i1 ∧ · · · ∧ ik−1) is

{x+
∑

06j<k

λj~eij , 0 6 λj 6 1}

where (~ei)06i<n is the canonical basis of Rn
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On generalized k-surface for k > 1 we define the boundary operator ∂k :
Gk → Gk−1. The boundary operator is defined on the facets (and extended by
linearity) by

∂k(x, i0 ∧ i1 ∧ · · · ∧ ik−1) =
∑

06j<k

(−1)j
(
(x, i0 ∧ · · · ∧ ij−1 ∧ ij+1 ∧ . . . ik−1)

− (x+ ~eij , i0 ∧ · · · ∧ ij−1 ∧ ij+1 ∧ . . . ik−1)
)

Note that we take the convention that (x, i−1) := −(x−ei, i), (x, i∧ j) :=
−(x, j ∧ i) and (x, i ∧ i) = 0.

On these generalized k-surfaces we can define the geometrical realiza-
tions Ek(σ) which have the nice property of commuting with the boundary
operator.

Definition 2.10.3 (Geometrical realizations of σ).

• We define the 0-geometrical realization E0(σ) on the 0-facets which are
Zn and we extend it by linearity. On Zn, E0(σ) is the linear application
obtained by abelianization of σ usually called incidence matrix.

• For 1 6 k < n define the k-geometrical realization Ek(σ) on the k-facets
and we extend it by linearity.

Ek(σ)(x, i0 ∧ . . . ik−1) :=∑
06l0<|σ(i0)|

· · ·
∑

06lk−1<|σ(ik−1)|

(E0(σ)(x) +
∑

06j<k

abel(preflj−1(σ(ij)),

σ(i0)l0 ∧ σ(i1)l1 ∧ · · · ∧ σ(ik−1)lk−1
)

where σ(i)l is the lth letter of σ(i), prefl(σ(i)) is the prefix of length l
of σ(i), |σ(i)| is the length of σ(i) and abel(u) is the vector of Zn of
which the jth coordinate is the number of occurrences is the number of
occurrences of the letter j in σ(i).

When all goes well the image of “good” surface by Ek(σ) is a “good”
surface, where “good” means that it can be lifted from a simply connected
patch of rhombus tiles.

Let us go back to the example. The 0-geometrical realization of σ is

E0(σ) :=


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 1

 .
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The 1-geometrical realization of σ is

E1(σ) :

(0, 0) → (0, 1)
(0, 1) → (0, 2)
(0, 2) → (0, 3)
(0, 3) → (0, 3)− (e3 − e0, 0)

.

Note that E1(σ)(0, 3) = (0, 3) + (e3, 0
−1) by definition of E1 and we get

E1(σ)(0, 3) = (0, 3)− (e3 − e0, 0) with (x, i−1) = −(x− ei, i).
The 2-geometrical realization of σ is

E2(σ) :

(0, 0 ∧ 1) → (0, 1 ∧ 2)
(0, 0 ∧ 2) → (0, 1 ∧ 3)
(0, 0 ∧ 3) → (0, 1 ∧ 3) + (e3 − e0, 0 ∧ 1)
(0, 1 ∧ 2) → (0, 2 ∧ 3)
(0, 1 ∧ 3) → (0, 2 ∧ 3) + (e3 − e0, 0 ∧ 2)
(0, 2 ∧ 3) → (e3 − e0, 0 ∧ 3)

.

Let us detail the computations of two special cases:

E2(σ)(0, 0 ∧ 3) = (0, 1 ∧ 3)− (e3 − e0, 1 ∧ 0) = (0, 1 ∧ 3) + (e3 − e0, 0 ∧ 1)

E2(σ)(0, 2 ∧ 3) = (0, 3 ∧ 3)− (e3 − e0, 3 ∧ 0) = 0 + (e3 − e0, 0 ∧ 3).

Let us define two planes Pe and Pc in R4 where Pe is the expanding
eigenspace and Pc the contracting subspace of E0(σ), we define πe the pro-
jection on Pe along Pc and πc the projection on Pc along Pe. For a formal
definition of Pe and Pc we define λ, λ, µ, µ the eigenvalues ofX4−X3+1 which
is the characteristic polynomial of E0(σ) with |λ| > 1 > |µ|. By convention
Im(λ), Im(µ) > 0. We have

Pe =

〈
1
λ
λ2

λ3


〉

Pc =

〈
1
µ
µ2

µ3


〉
.

Lemma 2.10.1 ( [AFHI11]).

• E2(σ) induces a geometrical substitution on the tiles πe(i ∧ j) which is
represented in Figure 2.41
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Figure 2.39: On the left the projection of the canonical basis of R4 onto Pe,
and on the right onto Pc.

• The tile (−e2, 2 ∧ 3) is a seed for E2(σ), more precisely

(−e2, 2 ∧ 3) ∈ E2(σ)3(−e2, 2 ∧ 3),

as shown in Figure 2.42

Let us denote by Te the fixpoint tiling obtained by E2(σ) from the seed
(−e2, 2 ∧ 3).

Theorem 8 ( [AFHI11]). Te is a substitution cut-and-project tiling of slope
Pe and with a fractal window.

Generalized substitutions σ and their geometrical realizations Ek(σ) al-
low us to generate cut-and-project substitution tilings with rhombus tiles of
which the slope is determined by the abelianization of σ which we also call
the 0-geometrical realization E0(σ).

Under the condition that σ is an automorphism of the free group we can
also define the geometrical dual realizations of σ.

For simplicity we use a Poincaré map to associate the dual of a k-facet
to a n− k facet.

Definition 2.10.4 (Poincaré map, dual geometric realization).

60



Figure 2.40: Tiles on Pe.

Figure 2.41: The geometrical realization E2(σ) on Pe, the bold point repre-
sents the origin and in E2(σ)(0, 2 ∧ 3) the dashed line represents the path
from the origin to the tile.

61



(a) The first 3 iterations, remark that (−e2, 2 ∧ 3) is in E2(σ)
3e(−e2, 2 ∧ 3).

(b) The first 4 iterations of E2(σ)
3, remark that the patch grows in every direction.

Figure 2.42: Iterating E2(σ) from (−e2, 2 ∧ 3), the bold point represents the
origin.
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• the Poincaré map ϕk is defined as

ϕk ((i0 ∧ i1 ∧ . . . ik−1)∗) = (−1)i0+i1+···+ik−1(j0 ∧ j1 ∧ · · · ∧ jn−k−1),

where {i0, i1, . . . ik−1} and {j0, j1, . . . jn−k−1} are a partition of
{0, 1, . . . n− 1} with i0 < i1 < · · · < ik−1 and j0 < j1 < . . . jn−k−1.

• the geometric dual realization of dimension k denoted by Ek(σ) is de-
fined as

Ek(σ) := ϕn−k ◦ E∗n−k(σ) ◦ ϕ−1
n−k,

where E∗n−k(σ) is the dual application of En−k(σ).

The geometrical realizations and the geometrical dual realizations com-
mute with the boundary operator i.e.

∂kEk(σ)(f) = Ek−1(σ)(∂kf) ∂kE
k(σ)(f) = Ek−1(σ)(∂kf),

where ∂kf is the boundary of the generalized k-surface f .

Theorem 9 ( [Ei03]). Let σ be an automorphism of the free group on n
elements, let σ̃ := σ−1 be the mirror image of the inverse automorphism σ−1.
We have

Ek(σ) = Ek(σ̃).

In our example E2(σ) also induces a geometrical substitution on the tiles
projected on Pc, (0, 0 ∧ 1) is a seed for E2(σ) which generates a cut-and-
project fixpoint substitution tiling of slope Pc with a fractal window.

As we have illustrated in this Section, the formalism of generalized sub-
stitution is very powerful and can be used to generate substitution cut-and-
project tilings (that are not necessarily canonical) but the formalism is quite
heavy and cumbersome which is why, though it has been widely used to
study tilings in codimension 1 [AI+01, Fer07, Jol13], it has little been used
for cut-and-project tilings in codimension more than 1. The only case fully
studied in the literature is in [AFHI11] which is the example we presented
above.
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2.11 Expansions of self-similar tilings and cut-
and-project sets

In this Section our goal is to quickly present the results of [Kwa16] on the ex-
pansions of substitution tilings and the results of [MMP20] on the expansions
of self-similar cut-and-project sets.

The main topic of this thesis being substitution discrete planes and substi-
tution cut-and-project tilings, the question of expansions and their eigenspaces
and eigenvalues will arise constantly. It is therefore important to discuss
known results on these expansions.

Though the following results apply to tilings of Rd or to n→ d cut-and-
project sets for arbitrary d, we are interested only on tilings of the plane and
n→ 2 cut-and-project sets so we will state these results only in this specific
case.

Theorem 10 ( [Kwa16]). If ϕ : R2 → R2 is the expansion of an edge-
hierarchic substitution fixpoint tiling with finite local complexity, then:

1. ϕ is Integral Algebraic: every eigenvalue of ϕ is an algebraic integer,
equivalently there exists a real vector space V with a lattice L ⊂ V and
an integral linear transformation M : V → V for which there exists a
M-invariant splitting V = E ⊕K so that the restriction M |E is linearly
conjugate to ϕ.

2. ϕ is Perron : for every eigenvalue λ of ϕ with multiplicity mul(λ) and
any µ algebraic conjugate of λ then either |λ| > |µ| or µ is also an
eigenvalue with eigenvalue mul(µ) > mul(λ).

Let us introduce a little terminology on cut-and-project sets before stating
the next theorem. A pair (L, E) where L is a lattice of Rn (in our case Zn)
and E is a subspace of Rn (in our case E is a 2-dimensional subspace) is called
a cut-and-project scheme and it is called:

1. non-degenerate when the orthogonal projection onto E , π restricted to
Zn is injective

2. aperiodic when the orthogonal projection onto E⊥, π⊥ restricted to Zn
is injective

3. irreducible when π⊥(Zn) is dense in E⊥
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4. generic when it is non-degenerate, aperiodic and irreducible

Given a generic cut-and-project scheme we can define cut-and-project sets
by their window Ω. The cut-and-project set of window Ω is denoted by Σ(Ω)
and is defined by

Σ(Ω) := π ◦ π−1
⊥ (Ω),

where π is the orthogonal projection onto E and π⊥ the orthogonal projection
onto the orthogonal subspace E⊥. Remark that here Σ(Ω) is a set of points
and not necessarily a tiling.

Theorem 11 ( [MMP20]). Let ϕ ∈M2 (R) be a non-singular matrix diago-
nalizable over C. Then there exists a generic cut-and-project scheme (L, E)
and a cut-and-project set Σ(Ω) satisfying ϕΣ(Ω) ⊂ Σ(Ω) if and only if the
spectrum of ϕ has the following properties:

1. ϕ is Integral Algebraic: every eigenvalue of ϕ is an algebraic integer

2. every complex number µ of modulus |µ| > 1 algebraically conjugate to
an eigenvalue λ of ϕ is also an eigenvalue of ϕ.

3. for every eigenvalue λ of ϕ of modulus |λ| > 1 and for every µ alge-
braically conjugate to λ we have mulϕ(λ) > mulϕ(µ) and the inequality
is strict for at least one µ.

Remark that both Theorems are conditions on the eigenvalues of ϕ but
Theorem 11 is a necessary and sufficient condition for ϕ to be the expansion
of a self-affine cut-and-project set whereas Theorem 10 is only a necessary
condition for ϕ to be the expansion of a self-affine tiling.

Remark also that the cut-and-project scheme usually used to describe
Penrose tilings is not generic, indeed it is (Z5, E5) with E5 called 5-fold slope
defined by:

E5 :=
〈
(cos(2iπ

5
))06i<5, (sin(2iπ

5
))06i<5

〉
,

and the projection π⊥(Z5) is not dense in E⊥5 because E⊥5 contains the line
∆ = 〈(1, 1, 1, 1, 1)〉 on which the projection of Z5 is Z. However as detailed
in [Har04] we can decompose E⊥5 in a rational subspace and a totally irra-
tional subspace. Once we have decomposed between a rational subspace and
a totally irrational subspace we give a new definiton of generic which is suit-
able. We will not give all the details here since it is not the core subject of
this work.

65



2.12 Tileability of finite domains
In this section we give a quick overview of the question of tileability of a finite
domains with a given set of tiles. As explained in Section 2.3 the tileability
of the full plane with a given set of tiles is undecidable [Ber66] and in all
generality the tileability of finite domains with a set of tiles is a very complex
problem [Thu90, BNRR95] which (when we can formalize it in a suitable
way) is NP-complete, in particular the tileability of simply connected finite
domain with Wang Tiles is NP-complete [Lev86,PY13]. However there are
special cases of tilesets and/or of domains for which the tileability becomes
polynomial.

In our study of substitution discrete planes we initially define substitution
from the boundary of the metatiles and we then are faced with the problem
of the tileability of the interior of these metatiles. See [KR16] and Chapter
3 for the case of Sub Rosa substitutions and see Chapter 4 and in particular
Section 4.3 for the case of Planar Rosa substitutions.

In this specific case the tiles are unit rhombuses and the finite domain is
a polygon with edges of unit length, for this case the problem of tileability is
quadratic and we can use the Kenyon criterion and algorithm for tileability
[Ken93]. The Kenyon criterion and the way we use it for the construction of
Planar Rosa substitutions is detailed in Section 4.3 page 103.
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Chapter 3

Sub Rosa substitution tilings

3.1 Definition and construction
The Sub Rosa tilings is a family of substitution rhombus tilings with 2n-fold
rotational symmetry defined by Jarkko Kari and Markus Rissanen in [KR16].
For the definition of n-fold rotational symmetry see Definition 2.3.3 page 25.

Figure 3.1: The Sub Rosa substitution of order 5 represented up to rota-
tion, remark that there is the same sequence of rhombi on each side of each
metatile.
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In the Sub Rosa construction the substitution rule is mostly given by the
sequence of edges and rhombuses called edge word which appears along all
the edges of the substitution as in Figure 3.1 where on each edge of each
metatile we have the same sequence of rhombuses which we code by 131131
on all the edges of the metatiles. Note that the Sub Rosa substitution are
vertex-hierarchic and that the induced expansion is a homothety.

Let us first define the Rosa patterns, denoted by R1
2 in [KR16], from which

the name Sub Rosa is derived.

Definition 3.1.1 (Rosa pattern R(n)). For an integer n > 3 the Rosa pat-
tern which we denote by R(n) is the pattern formed of a star of 2n copies
of the (π

n
, (n−1)π

n
) rhombuses around a vertex with their narrow angle to the

centre vertex, surrounded by a ring of 2n copies of the (2π
n
, (n−2)π

n
) rhombuses

with angle 2π
n

towards the centre, surrounded again by a ring of 2n copies
of (3π

n
, (n−3)π

n
) rhombuses and so forth until a ring of ( (n−2)π

n
, 2π
n

) with angle
(n−2)π

n
toward the centre.

For n = 5 it means that the Rosa R(5) has 3 layers: a star of narrow
(π

5
, 4π

5
) rhombuses, then a ring of wide (2π

5
, 3π

5
) rhombuses with narrow angle

towards the centre and then a second ring of wide rhombus but with wide
angle towards the centre as depicted with other examples in Figure 3.2.

The Sub Rosa tilings are actually regular fixpoint tilings from the seed
R(n) with a suitable substitution. We denote by σn the Sub Rosa substi-
tution, which we decompose in an expansion ϕn and a subdivision ρn as in
Figure 3.3. The Sub Rosa substitutions are such that there is the same se-
quence of rhombuses on each side of the metatiles and which we denote by
Σ(n) and which we write as words with letters in the alphabet {0, 1, . . . n−1}
where 0 denotes a unit edge, and i denotes the rhombus of angles iπ

n
and (n−i)π

n

Figure 3.2: Rosa patterns R1
2 or R(n) for n ∈ {3, 4, 5, 6, 7}.
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Figure 3.3: The decomposition σ5 = ρ5 ◦ ϕ5 and the edge word Σ(5).

bisected through the iπ
n
angle. When manipulating words we denote by · the

concatenation, by u the mirror image of word u, and sometimes we denote
by | the middle of a word when we want to emphasize it. For example as
shown in Figures 3.1 and 3.3the edge word for Sub Rosa 5 is Σ(5) = 131|131.

Let us now give the construction of the edge words Σ(n), note that there
are two distinct constructions, one for odd n and one for even n.

Definition 3.1.2 (Edge word for odd n). Given k odd, let us define so(k) :=
135 . . . (k − 2) the word of odd integers from 1 to k − 2. Given n odd, let us
define the edge word Σ(n) by

Σ(n) := so(n) · so(3) · so(5) . . . so(n− 2)|so(n− 2) · so(n− 4) . . . so(3) · so(n).

Recall that here the | symbol only represents the middle of the word.

Σ(1) |
Σ(3) 1|1
Σ(5) 131|131
Σ(7) 135131|131531
Σ(9) 1357131531|1351317531
Σ(11) 135791315317531|135713513197531

Table 3.1: The first values of the edge word Σ(n) for odd n.
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Definition 3.1.3 (Edge word for even n). Given k even, let us define se(k) :=
024 . . . (k − 2) the word of even integers from 0 to k − 2. Given n even, let
us define the edge word Σ(n) by

Σ(n) := se(n) · se(2) · se(4) . . . se(n− 2)|se(n− 2) · se(n− 4) . . . se(2) · se(n).

For examples of Σ(n) see the Tables 3.1 and 3.2.

Σ(0) |
Σ(2) 0|0
Σ(4) 020|020
Σ(6) 024020|020420
Σ(8) 0246020420|0240206420
Σ(10) 024680204206420|024602402086420

Table 3.2: The first values of the edge word Σ(n) for even n.

Definition 3.1.4 (Substitution σn). The substitution σn is defined as having
the edge word Σ(n) on each side of each metatile and a portion of the rosa
R(n) centred on each corner of each metatile as shown in Figure 3.4.

This definition gives us the boundary of the metatiles of the substitu-
tion but not the interior of the metatiles as shown in Figure 3.4. It is not
straightforward from this definition that the shapes defined are tileable.

Proposition 3.1.1 (KR16). For any n > 3 the interior of the metatiles of
σn are tileable.

The proof of this proposition can be found in [KR16] and relies on the
Kenyon criterion [Ken93] for tileability of a polygon by parallelograms which
we mentionned in Section 2.12 and which we present and use in Chapter 4.

We now consider the interior of the substitution σn to be tiled, this means
that we consider the substitution to be well-defined. The substitution σn
defines a set of edge-to-edge rhombus tilings with local 2n-fold rotationnal
symmetry Xσn . Let us now define a canonical Sub Rosa tiling Tn with global
2n-fold rotationnal symmetry.
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Figure 3.4: The definition of σ5 with the edge word Σ(5) on each edge and a
portion of R(5) in each corner of the metatiles.

Proposition 3.1.2 (KR16). For any n > 3

1. the substitution σn is primitive

2. the rosa R(n) is a regular seed for σn

Proof. The proof of this proposition is based on the definition of σn as having
a portion of the rosa R(n) pattern in each corner of each metatiles. Indeed
this implies that:

1. if we take a tile t, if we combine the four corners of σn(t) then we get
a full rosa R(n) and the rosa contains every tile in every orientation.
So for any tile t, σn(t) contains every tile in every orientation which is
the definition of σn being primitive
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Figure 3.5: The substitution σ5 applied to the rosa R(5), remark that R(5)
appears at the centre of σ5(R(5)).

2. at the centre of σn(R(n)) we have a star of 2n narrow metatiles σn(t)
with t the rhombus with π

n
and π−1

n
. Recall that on each corner of these

σn(t) we have a portion of R(n), so overall at the centre of σn(R(n))
we have R(n) which means that R(n) is a seed for σn, see Figure 3.5
for the case of σ5(R(5)).

Definition 3.1.5 (Canonical Sub Rosa tiling Tn). The Sub Rosa tiling is the
limit tiling Tn := lim

k→∞
σkn(R(n)).

Theorem 12 (KR16). For every n > 3, there exists a quasiperiodic rhombic
substitution tiling with global 2n-fold rotational symmetry.
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Proof. A suitable tiling is Tn. From Proposition 2.4.3 Tn is quasiperiodic and
a regular fixpoint for σn. Tn has 2n-fold rotational symmetry because R(n)
has 2n-fold rotational symmetry.

3.2 Main result
Sub Rosa tilings are edge-to-edge rhombus tilings with finitely many edge
directions so we can lift these tilings to discrete surfaces of Rn. The question
that follows is whether these lifted tilings are discrete planes, recall that it
means that the lifted discrete surface approximates a plane.

Theorem 1 (Fernique, Kari, L.2020). For any n > 3 the canonical Sub Rosa
tiling Tn can be lifted to a discrete surface of Rn and:

1. The canonical Sub Rosa tilings T3 and T5 are discrete planes.

2. For n = 4 and for any n > 6 the canonical Sub Rosa tiling Tn is not a
discrete plane.

The same holds when replacing the canonical Sub Rosa tiling Tn by the set of
Sub Rosa substitution tilings Xσn.

In Section 3.3 we will show that under reasonable assumptions on a sub-
stitution σ, the planarity of the tilings Xσ is determined by the expansion ϕ
induced by σ. We will also show that in the case of Sub Rosa substitution the
induced expansion ϕn is lifted in Rn to a linear application and the planarity
of the tilings in Xσn is linked to the eigenspaces end eigenvalues of ϕn.

Since the construction of Sub Rosa substitution is separated between odd
and even integer we will study the lifted version separately. In Section 3.4
we will study the eigenspaces and eigenvalues of ϕn and provide a proof of
the Theorem for odd n. In Section 3.5 we will study do the same for even n.

3.3 Lifted substitutions and expansions
In this section we will consider the planarity or non-planarity of substitutions.
Let fix some n > 3.

Let us first consider (non-degenerate) primitive substitutions σ of edge-
to-edge rhombus tilings with n edge directions. Recall that non-degeneracy
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means that for any prototile t the sequence of the radius of inscribed circle
of the metatiles (rin(σk(t)))k∈N is unbounded, which means that from any
prototile the metatiles grow to span the full plane.

Proposition 3.3.1 (Planarity of primitive substitutions). Let σ be a (non-
degenerate) primitive substitution.

1. if there exists a tiling T regular for σ and a 2D plane E of Rn such that
T is a discrete plane of slope E, then every tiling T ′ regular for σ is a
discrete plane of slope E.

2. if there exists a tiling T regular for σ which is not planar (there exist
no slope of planarity), then every tiling T ′ regular for σ is not planar.

Proof. The proof is based on the fact that tilings regular for a primitive
substitution have the same set of patterns: the metatiles of the substitution
(see Proposition 2.4.2).

1. if there exists a tiling T regular for σ and a 2D plane E such that
T is planar with bound d along E , then by Proposition 2.4.2 every
metatile σk(t) appears in T , there exists a translation vector ~v such
that σk(t) + ~v ∈ T which means that d(σk(t) + ~v, E) 6 d. We can
reformulate it as the fact that the diameter of the projection of σk(t)
on the orthogonal subspace E⊥, which we call E⊥-diameter, is bounded
by 2d.
Let us take a tiling T ′ regular for σ, any finite patch is included in a
metatile and so any finite patch has E⊥-diameter bounded by 2d, which
means that the full tiling T ′ has E⊥-diameter bounded by 2d. We can
conclude two things: there exists a plane E ′ parallel to E such that T ′
is planar with slope E ′ and with the same bound d, or simply that there
exists a bound d′ such that T ′ is planar of slope E with bound d′, here
d′ = d(E , E ′) + d.

2. similarly if there exist a non-planar tiling T regular for σ then for any
plane E there exists a sequence of metatiles of unbounded E⊥-diameter.
This sequence of metatiles appears in any tiling T ′ regular for σ. So
no tiling admissible for σ is planar.
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Figure 3.6: In these examples σa, σb and σc are such that the image of two
parallel edges are congruent, but σd is not.

This means that for primitive substitutions, the substitution itself (and
its metatiles) determines the planarity of regular tilings.

Definition 3.3.1 (Planar substitution). A substitution σ is called planar of
slope E when its regular tilings are planar of slope E.

Remark that here E is considered to be a vector subspace and not an afine
subspace because the slope of a substitution is defined up-to-translation.We
will now characterize the planarity of specific substitutions.

Let us consider substitutions σ of edge-to-edge rhombus tilings with n
edge directions such that the image of two parallel edges by the substitution
is the same up to translation i.e. for any two tiles t, t′ and any two edges
e ∈ t and e′ ∈ t′ such that e ≡ e′ we have ∂σ(e) ≡ ∂σ(e′), see Figure 3.6
for examples and counter examples. Note that we can relax this condition to
the fact that the image of two parallel edges by the substitution is the same
up to reordering as in the case of the Ammann-Beenker substitution.

Lemma 3.3.1 (Expansions). Let ϕ be the expansion associated to a substi-
tution of edge-to-edge rhombus tilings with n edge directions such that the
image of two parallel edges by the substitution is the same up to translation
(and possibly reordering).
The expansion ϕ is lifted in Rn to a linear application of Zn.

Proof. The condition means that when lifting a tiling T and its image σ(T )
in Rn, for every vector of the canonical basis ~ei there exists a sequence of
vectors of the canonical basis denoted σ(~ei) such that for any two vertices
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of T linked by ~ei, their image by the substitution are linked by σ(~ei). This
means that the expansion ϕ induced by the substitution is a linear application
of Zn.

The nice thing about this linear application ϕ is that it is closely linked
to the planarity of σ and that we can use the tools of linear algebra to study
ϕ and its properties.

Proposition 3.3.2 (Necessary condition for planarity). If a primitive σ is
planar of slope E and its induced expansion is a linear application of Zn then:

• E is an (not necessarily strictly) expanding stable subspace for ϕ

• any stable subspace V included in the orthogonal E⊥ subspace, is a (not
necessarily strictly) contracting subspace for ϕ

Here we say that E is a (not necessarily strictly) expanding stable sub-
space for ϕ when ∀x ∈ E , ϕ(x) ∈ E and ‖ϕ(x)‖ > ‖x‖.

Proof. These necessary conditions for planarity are quite straightforward by
contradiction:

• if the ϕ is not expanding along E then the substitution is degenerate
(the metatiles do not span the full plane, the radius of the inscribed
circle of the metatiles will be bounded)

• if there is a stable expanding subspace V for ϕ included in E⊥, then
it means that the metatiles will have unbounded V-diameter which
implies unbounded E⊥-diameter so the substitution σ is not planar of
slope E . Here we use the fact that since all n edge directions appear in
the metatiles (recall that the substitution is primitive) then there are
vertices of the metatiles that have non-zero V-component.

From this necessary condition for planarity we can deduce a sufficient
condition for non-planarity and a sufficient condition for planarity which we
will use in Sections 3.4, 3.5, 4.4 and 4.5.

Proposition 3.3.3 (Sufficient condition for non-planarity). If σ is a prim-
itive subsitution and its induced expansion ϕ is a linear application of Zn
such that there exists a strictly expanding stable subspace V of Rn for ϕ of
dimension dim(V) > 3 then σ is not a planar substitution.
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Proof. By contradiction assume that there is a planar substitution σ of slope
E with its induced expansion ϕ being a linear application such that V is a
stable strictly expanding subspace of dimension at least 3. By Proposition
3.3.2 E is a strictly expanding stable subspace for ϕ. So we can decompose
V = V0 ⊕ V1 with V0 ⊂ E and V1 ⊂ E⊥ and with both V0 and V1 stable
subspaces, remark that V0 is possibly the trivial subspace but since dim(V) =
3 and dim(E) = 2 we have dim(V1) > 1 so it is a strictly expanding stable
subspace of ϕ which is a subspace of E⊥ this contradicts Proposition 3.3.2.

Proposition 3.3.4 (Sufficient condition for planarity). If σ is a primitive
subsitution and its induced expansion ϕ is a linear application of Zn such
that there exists a plane E with :

1. E is a strictly expanding stable subspace for ϕ

2. E⊥ is a strictly contracting stable subspace for ϕ

then σ is planar of slope E.

Proof. Let σ be such a substitution, ϕ be its induced expansion and E a
plane such that its orthogonal E⊥ is a strictly contracting subspace for ϕ.
As seen in Proposition 3.3.1 the important thing for the planarity of σ is the
E⊥-diameter of the metatiles. We will show that the sequence (D+

k )k∈N is
bounded where D+

k is the maximum E⊥-diameter of the metatiles of order k
of the substitution i.e.

D+
k := max

t∈T
E⊥-diameter(σk(t)).

We denote by Π the orthogonal projection on E⊥, recall that for a set X the
E⊥-diameter of X is sup

x0,x1∈X
‖Π(x0 − x1)‖ = sup

x0,x1∈X
‖Π(x0)− Π(x1)‖.

Actually we will prove that

∃λ < 1, ∃C ∈ R+, ∀k ∈ N, D+
k+1 6 λD+

k + C. (3.1)

Once we prove this inequation, we get that the sequence (D+
k )k∈N is bounded

and from that we get that the substitution ϕ is planar of slope E .
Let us now prove Inequation 3.1. Our hypothesis is that ϕ is strictly

contracting on E⊥ i.e.

∀x ∈ E⊥, ‖ϕ(x)‖ < ‖x‖.
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Since E⊥ is of finite dimension we get that there is a contracting factor strictly
smaller than 1 i.e.

∃λ < 1, ∀x ∈ E⊥, ‖ϕ(x)‖ 6 λ‖x‖.

This comes from the compactness of the unit sphere in E⊥ and continuity of
the function x→ ‖ϕ(x)‖.

Let us prove Inequation 3.1 with λ the contracting factor of ϕ and C =
2D+

1 .
Let us take an integer k ∈ N and a tile t ∈ T. Let us show that

E⊥-diameter(σk+1(t)) 6 λD+
k + 2D+

1 .

The first step to get this inequation is to decompose σk+1(t) = σ ◦ σk(t) =
σ(σk(t)) which means that σk+1(t) can be decomposed in first order metatile,
which are arranged in a σk(t) patterns. In other words σk+1(t) is the same
as if we replace the tiles t′ of σk(t) by their metatiles σ(t′) as illustrated in
Figure 3.7 with a very simple substitution.

Figure 3.7: The metatiles of the Chair substitution decomposed as σk(t) =
σ ◦ σk−1(t) for k ∈ {2, 3, 4}.

Remark that in Figure 3.7 the substitution used is the chair substitution
and is not a rhombus substitution, this choice is due to the fact that the
point we want to illustrate is a very broad property of substitution tilings,
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so we chose the simplest possible substitution on which it is true for clearer
figures. For more details on the Chair substitution see Sections 2.1 and 2.4.

Let us take two vertices p0, p1 in σk+1(t), there exists p′0, p′1 corners of
first-order metatiles in the decomposition σ ◦ σk(t) such that p0 belongs to a
first-order metatile of corner p′0 and p1 to a first-order metatile of corner p′1,
see Figure 3.8 for an example with the Chair substitution. We have

‖Π(p0 − p1)‖ 6 ‖Π(p0 − p′0)‖+ ‖Π(p′0 − p1′)‖+ ‖Π(p′1 − p1)‖.

Figure 3.8: Decomposition of the path p0 → p1 as p0 → p′0 → p′1 → p1

in σ4(t) with p′0 and p′1 being corners of the metatiles in the decomposition
σ4(t) = σ ◦ σ3(t).

Since p0 and p′0 belong to the same metatile we have ‖Π(p0 − p′0)‖ 6 D+
1

and for the same reason ‖Π(p1 − p′1)‖ 6 D+
1 . Since p′0 and p′1 are corners

of first order metatiles in the decomposition σ ◦ σk(t) they actually belong
to ϕ ◦ σk(t), so there exists p′′0 and p′′1 in σk(t) such that ϕ(p′′0) = p′0 and
ϕ(p′′1) = p′1. This means that ‖Π(p′0− p′1)‖ 6 λ‖Π(p′′0− p′′1)‖ and since p′′0 and
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p′′1 belong to a metatile of order k we have ‖Π(p′′0 − p′′1)‖ 6 D+
k . So overall

‖Π(p0 − p1)‖ 6 ‖Π(p0 − p′0)‖+ ‖Π(p′0 − p1′)‖+ ‖Π(p′1 − p1)‖
6 ‖Π(p′0 − p1′)‖+ 2D+

1

6 λ‖Π(p′′0 − p′′1)‖+ 2D+
1

6 λD+
k + 2D+

1 .

And with
D+
k+1 = max

t∈T
sup

p0,p1∈σk+1(t)

‖Π(p0 − p1)‖.

We can conclude that
D+
k+1 6 λD+

k + 2D+
1 .

Remark that we did not use the first condition in the proof, however this
condition is related to the scaling factor and to the fact that a substitution
is non-degenerate.

3.4 Proof for odd n

In this section n is an odd integer and n > 3.

3.4.1 Lifting

The Sub Rosa substitution σn and the canonical Sub Rosa tiling Tn have n
edge directions denoted {~vk, 0 6 k < n} which are exactly the n-th root of
unit i.e. ~vk = ei 2kπ

n .
As shown in Figures 3.9 and 3.10 we lift the tilings of Xσn with

~̂vk =
̂
ei

2kπ
n := ~ek.

Remark that this means that in the set {±~vk, 0 6 k < n} in the rotation
ordering, the neighbours of ~vk are −~v

k+dn2 e and −~vk−d
n
2 e where indices are

modulo n, and in the positive orientation rotation ordering we have

−~v
k−dn2 e ≺ ~vk ≺ −~vk+dn2 e.
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Figure 3.9: Edge directions for Sub Rosa n with n = 5.

Remark that 2
⌈
n
2

⌉
= n + 1 which means that we have that the neighbours

of −~v
k+dn2 e are as expected :

~vk ≺ −~vk+dn2 e ≺ ~vk+1.

So overall, as seen shown in Figures 3.9 an 3.11, we have

~v0 ≺ −~vdn2 e ≺ ~v1 ≺ −~v1+dn2 e ≺ ~v2 ≺ · · · ≺ ~vn−1 ≺ −~v−dn2 e ≺ ~v0

3.4.2 Expansion matrix

As detailed in Section 3.1 the Sub Rosa substitution σn is defined as having
the same sequence of rhombuses and edges on the edges of the metatiles (up
to translation and rotation). In particular this means as seen in Section 3.3
that the Sub Rosa expansion ϕn is lifted to a linear application of Zn.

Definition 3.4.1 (Decomposition of Rn for odd n). We decompose Rn as
the orthogonal direct sum

Rn = ∆⊕
⊕

06k<bn2 c
Ekn ,

with ∆ := 〈(1)06i<n〉 and

Ekn :=

〈(
cos(2i(2k+1)π

n
)
)

06i<n
,
(

sin(2i(2k+1)π
n

)
)

06i<n

〉
=

〈(
ei

2i(2k+1)π
n

)
06i<n

〉
.
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Figure 3.10: To lift σ5 in R5 one only has to lift each edge direction ~vi to the
corresponding vector of the canonical basis ~ei.

Proposition 3.4.1 (Eigenspaces of ϕn for odd n). For odd n, ϕn is a
circulant or cyclic linear application and its eigenspaces are ∆ and Ekn for
0 6 k <

⌊
n
2

⌋
.

The fact that ϕn is a circulant linear application is just a rewriting of the
fact that the image of all edges ~vi is the same up to rotation, and all circulant
application have ∆ and Ekn for eigenspaces. We will not go in details now on
that since we will actually prove stronger results later.

Remark that what determines ϕn is the edges of the metatiles, and in
the Sub Rosa case these edges are all the same sequence of rhombuses called
the edge word Σ(n). Actually what determines ϕn is the edge word up to
reordering so we define the abelianized edge word.

Definition 3.4.2 (Abelianized edge word). The abelianized edge word de-
noted by [Σ(n)] is a vector on m coordinates where m is the number of differ-
ent letters in the word/alphabet, where [Σ(n)]i is the number of occurrences
of the ith letter of the alphabet in Σ(n).

For odd n, the letters that appear in Σ(n) are the odd k from 1 to n− 2.
So there are

⌊
n
2

⌋
letters in Σ(n), and [Σ(n)] = ([Σ(n)]i)06i<bn2 c with [Σ(n)]i

the number of rhombuses of angle 2i+ 1 in Σ(n).
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From the definition of Sub Rosa edge words we can get an exact formula
for the abelianized [Σ(n)].

Lemma 3.4.1 (Exact formula for the abelianized edge word). For odd n we
have

[Σ(n)] = (n− (2i+ 1))06i<bn2 c = 2
(⌊

n
2

⌋
− i
)

06i<bn2 c .

Proof. Recall that Σ(n) is defined as
Σ(n) = so(n) ·so(3) ·so(5) . . . so(n− 2)|so(n−2) ·so(n−4) . . . so(3) ·so(n) with
so(k) = 135 . . . (k−2) which has abelianized word [so(k)] = (1)06i<b k2c. From
this we immediately get that Σ(n) has n − 1 occurrences of the rhombus of
angle 1, n− 3 occurrences of the rhombus of angle 3, etc until 2 occurrences
of the rhombus of angle n− 2. Which we can write
[Σ(n)] = (n− (2i+ 1))06i<bn2 c.

We will use this exact formula later but for now let us focus on the link
between the abelianized edge word [Σ(n)] and the expansion ϕn.

Proposition 3.4.2 (Expansion matrix of ϕn for odd n). For odd n, ϕn is a
circulant linear application of the form

ϕn =


m0 mn−1 . . . m1

m1 m0 . . . m2
... . . . . . . ...

mn−1 mn−2 . . . m0



with ∀i ∈ {0, 1, . . .
⌊n

2

⌋
− 1}, midn2 e = (−1)i [Σ(n)]i

and m−(i+1)dn2 e = (−1)i+1 [Σ(n)]i .

Proof. In the Sub Rosa substitution for odd n the edge of the metatiles
bisects the rhombus tiles along their odd angle (see Figure 3.1)so it means
the metatiles are rotated by an angle −π

14
compared to the tiles. So the if we

take the edge ~v0 (or in Rn, the edge ~e0), its image ∂σ(~v0) is a succession of
rhombuses where the rhombus of angle π

n
has edges ~v0 and its successor in

the negative rotation ordering which is −~v−dn2 e, and the rhombus of angle
(2i+1)π

n
has edges (−1)i~vidn2 e which is the ith successor of ~v0 in the positive
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Figure 3.11: Edges of rhombuses along the edge of the metatiles for n = 9.

rotation ordering, and (−1)i+1~v(i+1)dn2 e which is the ith successor of −~v−dn2 e
in the negative rotation ordering as shown in Figure 3.11. So each rhombus
of angle (2i+1)π

n
contributes as (−1)i to midn2 e and as (−1)i+1 to m(i+1)dn2 e.

3.4.3 Eigenvalues of the Sub Rosa expansion matrices

From this characterization of the expansion ϕn as a circulant matrix with
coefficients determined by the abelianized edge word [Σ(n)] we can compute
the eigenvalues of ϕn.

Definition 3.4.3 (The eigenvalue matrix for odd n). Let us define the matrix

Nn :=

(
2 cos(

(2i+ 1)(2j + 1)π

2n
)

)
06i,j<bn2 c

.

Proposition 3.4.3 (Eigenvalues of the Sub Rosa expansion for odd n). For
odd n, the SubRosa expansion ϕn admits the spaces E jn for 0 6 j <

⌊
n
2

⌋
and ∆ as eigenspaces. We denote by λj(n) the eigenvalue of the SubRosa
substitution of order n on eigenspace E jn and λ∆(n) on ∆. We note |λ(n)|
the vector of modules of the eigenvalues λj(n). We have λ∆(n) = 0 and

|[Σ(n)] ·Nn| = |λ(n)|.
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More precisely we have

λj(n) =

b
n
2
c−1∑
i=0

[Σ(n)]i 2 cos

(
(2j + 1)(2i+ 1)π

2n

) e−i
(2j+1)π

2n

=

b
n
2
c−1∑
i=0

(n− (2i+ 1))2 cos

(
(2j + 1)(2i+ 1)π

2n

) e−i
(2j+1)π

2n

=

b
n
2
c−1∑
i=0

4(
⌊
n
2

⌋
− i) cos

(
(2j + 1)(2i+ 1)π

2n

) e−i
(2j+1)π

2n .

Proof. Before giving a formal proof let us point out that 2 cos( (2i+1)(2j+1)π
2n

)

is the diagonal of a rhombus of angle (2i+1)(2j+1)π
n

, and that the rhombus of
type i is lifted to some square that has angle (2i+1)π

n
when projected in E0

n

but angle (2i+1)(2j+1)π
n

when projected on E jn. So if we look at the eigenvalues
as the scaling factors of the expansion projected on the planes E jn then each
rhombus contributes by the length of its diagonal which is 2 cos( (2i+1)(2j+1)π

2n
).

Let us now give a formal proof.
The main idea of the proof is to decompose the matrix of the expansion

in a sum of elementary matrices Mi(n) which each correspond to one type of
rhombus on the diagonal:

ϕn =

bn
2
c−1∑
i=0

[Σ(n)]i ·Mi(n).

For example with the Sub Rosa 5 expansion (shown in Figure 3.1) we have

ϕ5 = 4M0(5) + 2M1(5).

The matrixMi(n) is a circulant matrix with one diagonal with value one and
a diagonal of value −1 which represent an expansion with one rhombus of
index i (angle 2i+1) on the edge of the metatile. Let us denote I(i) and J(i)
the indices of these non-zero diagonals where I(i) := i

⌈
n
2

⌉
= in+1

2
and the

diagonal I(i) has value (−1)i, and where J(i) := −(i+ 1)
⌈
n
2

⌉
= −(i+ 1)n+1

2

and the diagonal J(i) has value (−1)i+1.
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Let z be a complex number such that zn = 1 and Z be the vector
(zk)06k<n. We have

Z ·Mi(n) = (−1)i(zI(i) − zJ(i)) · Z.

With z = (ei
2(2j+1)π

n ) we get that E jn is eigenspace of Mi(n) with eigenvalue

λi,j(n) = (−1)i
(
ei

2(2j+1)I(i)π
n − ei

2(2j+1)J(i)π
n

)
= (−1)iei

2(2j+1)i n+1
2 π

n + (−1)i+1e−i
2(2j+1)(i+1)n+1

2 π

n

= (−1)iei
(2j+1)i(n+1)π

n + (−1)i+1e−i
(2j+1)(i+1)(n+1)π

n

= (−1)iei(2j+1)iπei
(2j+1)iπ

n + (−1)i+1e−i(2j+1)(i+1)πe−i
(2j+1)(i+1)π

n

= (−1)i(−1)iei
(2j+1)iπ

n + (−1)i+1(−1)i+1e−i
(2j+1)(i+1)π

n

= ei
(2j+1)iπ

n + e−i
(2j+1)(i+1)π

n

=

(
2 cos

(
(2j + 1)(2i+ 1)π

2n

))
e−i

(2j+1)π
2n .

Let us remark that the argument of λi,j(n) is −(2j+1)π
2n

and it does not
depend on i.

For z = 1 we get λi,∆(n) = 0.
From these two results on the elementary matrices we have that the spaces

E jn and ∆ are eigenspaces of ϕn with λ∆ = 0 and

λj(n) =

bn2 c∑
i=0

[Σ(n)]i λi,j(n)

=

b
n
2
c−1∑
i=0

(n− (2i+ 1))2 cos

(
(2j + 1)(2i+ 1)π

2n

) e−i
(2j+1)π

2n

=

b
n
2
c−1∑
i=0

4(
⌊
n
2

⌋
− i) cos

(
(2j + 1)(2i+ 1)π

2n

) e−i
(2j+1)π

2n .
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Recall that the eigenvalues of the expansion ϕn is linked to the planarity
of the substitution σn. Indeed from Proposition 3.3.3, |λ0(n)|, |λ1(n)| > 1 is
a sufficient condition for the non-planarity of σn and from Proposition 3.3.4,
|λi(n)| < 1 for all i > 0 is a sufficient condition for planarity of slope E0

n.
We will now compute the actual values of the eigenvalues |λj(n)|.

Proposition 3.4.4 (Value of the eigenvalues λj(n) for odd n).

1. For any integers j and n such that 0 6 j <
⌊
n
2

⌋
|λj(n)| =

cos
(

(2j+1)π
2n

)
sin2

(
(2j+1)π

2n

) .
2. For fixed j, the sequence (|λj(n)|)n odd and n>2j+1 is increasing.

Proof. We define Cj,k := |λj(2k + 1)| we will now study Cj,k for 0 6 j < k

, we also define θj,k := (2j+1)π
2(2k+1)

. We will first prove the formula and then we
will use it to prove the fact that the sequence (Cj,k)k∈N,k>j is increasing at j
fixed.

1. Let us take j, k such that 0 6 j < k. We have

Cj,k = |λj(2k + 1)| =
k−1∑
i=0

4(k − i) cos

(
(2j + 1)(2i+ 1)π

2(2k + 1)

)

=
k−1∑
i=0

4(k − i) cos ((2i+ 1)θj,k) .

We will now prove that

Cj,k · sin2(θj,k) = cos(θj,k).

With θj,k ∈ (0, π
2
) for j < k, we have sin θj,k > 0, we get

Cj,k =
cos θj,k
sin2 θj,k

.

We will write θ for θj,k for the sake of simplicity.
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The sketch proof is as follows:

Cj,k sin2 (θ) =
k−1∑
i=0

4(k − i) cos ((2i+ 1)θj,k) sin2 (θ) (3.2)

=
k−1∑
i=0

(k − i) (2 cos((2i+ 1)θ)− cos((2i+ 3)θ)− cos((2i− 1)θ))

(3.3)
= cos θ. (3.4)

From line (3.2) to (3.3) we rewrite cosines and sines as sum of expo-
nential, then we expand the product and pair the exponential terms by
argument and find three cosine terms. From line (3.3) to (3.4) we split
the sum in three, reindex to have cos((2i+1)θ) terms in each sum, then
we merge back and the terms of the sum cancel out, we end out only
with boundary terms which sum up to cos θ. Now the same proof but
with all details:

Cj,k sin2 (θ)

=
k−1∑
i=0

4(k − i) cos

(
(2j + 1)(2i+ 1)π

2(2k + 1)

)
sin2 (θ)

=
k−1∑
i=0

4(k − i)e
i(2i+1)θ + e−i(2i+1)θ

2

(
eiθ − e−iθ

2i

)2

=
k−1∑
i=0

k−i
2

(
ei(2i+1)θ + e−i(2i+1)θ

) (
2− ei2θ − e−i2θ

)
=

k−1∑
i=0

k−i
2

(
2ei(2i+1)θ + 2e−i(2i+1)θ − ei(2i+3)θ

− e−i(2i−1)θ − ei(2i−1)θ − e−i(2i+3)θ
)

=
k−1∑
i=0

(k − i) (2 cos((2i+ 1)θ)− cos((2i+ 3)θ)− cos((2i− 1)θ))

=
k−1∑
i=0

(k − i)2 cos((2i+ 1)θ)−
k−1∑
i=0

(k − i) cos((2i+ 3)θ)
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−
k−1∑
i=0

(k − i) cos((2i− 1)θ)

=
k−1∑
i=0

(k − i)2 cos((2i+ 1)θ)−
k∑
i=1

(k + 1− i) cos((2i+ 1)θ)

−
k−2∑
i=−1

(k − 1− i) cos((2i+ 1)θ)

=
k−1∑
i=0

(k − i)2 cos((2i+ 1)θ)

−
k−1∑
i=0

(k + 1− i) cos((2i+ 1)θ) + (k + 1) cos θ − cos (2j+1)π
2

−
k−1∑
i=0

(k − 1− i) cos((2i+ 1)θ) + 0 cos((2k − 1)θ)− k cos θ

=
k−1∑
i=0

(2(k − i)− (k + 1− i)− (k − 1− i)) cos((2i+ 1)θ)

+ (k + 1− k) cos θ

= cos θ.

2. Let us fix j ∈ N. Let us consider the function

f : k → cos θj,k
sin2 θj,k

with k > j.

For simplicity consider instead

h : x→
cos 1

x

sin2 1
x

with x > 2
π
.

We have

h′(x) =

1
tan2 1

x

+ 1
sin2 1

x

x2 sin 1
x

.

For x > 2
π
we have h(x) > 0 and h′(x) > 0 . We also have h( 2

π
) = 0 and

h −→
x→∞

∞ so there exists a x1 := h−1(1) such that x > x1 ⇔ h(x) > 1.
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Now we can translate these results on h to results on f , we have f(k) >
0 for k > j and f is an increasing function, moreover there exists a and
b such that f(k) > 1 for all k > a · j + b, with a ≈ 1.74 and b ≈ 0.37.
For the eigenvalues for small n see Table 3.3.

3.4.4 Conclusion

When we compile the previous results we get the Theorem restricted to odd
n as stated below.

Proposition 3.4.5 (Planarity of Sub Rosa substitutions σn for odd n).

1. σ3 and σ5 are planar, their regular tilings are discrete planes of slope
E3 and E5.

2. for all odd n > 7, the Sub Rosa substitution σn is not planar and its
regular tilings are not discrete planes

Proof. The first step of the proof is to compute the eigenvalues of the Sub
Rosa expansion ϕn for small n. Recall that ϕn has eigenspaces Ekn for
0 6 k <

⌊
n
2

⌋
with eigenvalues λk(n) and ∆ with eigenvalue λ∆ = 0 as

detailed in Proposition 3.4.4. In Table 3.3 you can find the modules of the
eigenvalues of ϕn for n ∈ {3, 5, 7, 9, 11}, these modules can be computed
using the formula provided by Proposition 3.4.4 or by usual tools of linear
algebra applied on the matrices ϕn for which we have explicit descriptions.

Table 3.3: Approximate module of the eigenvalues of Sub Rosa expansions
for small n.

n |λ0(n)| |λ1(n)| |λ2(n)| |λ3(n)| |λ4(n)|
3 3.46 - - - -
5 9.96 0.90 - - -
7 19.69 2.01 0.53 - -
9 32.66 3.46 1.09 0.39 -
11 48.87 5.27 1.76 0.76 0.30

Now let us give the proof of the Proposition:
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1. we apply Proposition 3.3.4.

• ϕ3 has eigenvalues λ0(3) = 4 cos(π
6
)e−iπ

6 ≈ 3.46e−iπ
6 and λ∆ = 0,

so it is strictly expanding along E0
3 and strictly contracting along

E0⊥
3 = ∆. So σ3 is planar of slope E3 = E0

3 .
• ϕ5 has eigenvalues

λ0(5) = (8 cos( π
10

) + 4 cos(3π
10

))e−i
π
10 ≈ 9.96e−i

π
10 .

λ1(5) = (8 cos(3π
10

)− 4 cos( π
10

))e−i
3π
10 ≈ 0.90e−i

3π
10 .

λ∆ = 0.

So ϕ5 is strictly expanding along E0
5 and strictly contracting along

E0⊥
5 = E1

5 ⊕∆, and the substitution σ5 is planar of slope E5 = E0
5 .

2. we apply Propositions 3.3.3 and 3.4.4.
From Proposition 3.4.4 we get that for any odd n > 7,

|λ0(n)| > |λ0(7)| ≈ 19.69 > 1 and |λ1(n)| > |λ1(7)| ≈ 2.01 > 1.

So the expansion ϕn is strictly expanding on the stable subspace E0
n⊕E1

n

which is of dimension 4. This implies by Proposition 3.3.3 that σn is
not planar.

3.5 Proof for even n

The proof is very similar to the proof for odd n presented in Section 3.4,
however we will give all the details so that this Section is independent from
the previous Section. This means that there will be some redundancy. The
main differences are the way we lift to Rn, the coefficients of the expansion
matrix and the formula for the eigenvalues of the expansion matrix.

3.5.1 Lifting

For even n we have n edge directions which we write as {±~vk, 0 6 k < n} =

{±ei kπ
n , 0 6 k < n}. So we lift Sub Rosa tilings to Rn with ~̂vk = êi kπ

n := ~ek.
With this choice, in the positive rotation ordering we have

~v0 ≺ ~v1 ≺ ~v2 · · · ≺ ~vn−1 ≺ −~v0 ≺ −~v1 · · · ≺ −~vn−1 ≺ ~v0.
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Figure 3.12: Edge directions in Sub Rosa for even n = 6.

3.5.2 Expansion matrix

As detailed in Section 3.1 the Sub Rosa substitution σn is defined as having
the same sequence of rhombuses and edges on the edges of the metatiles (up
to translation and rotation). In particular this means as seen in Section 3.3
that the Sub Rosa expansion ϕn is lifted to a linear application of Zn.

Definition 3.5.1 (Decomposition of Rn for even n). We decompose Rn as
the orthogonal direct sum

Rn =
⊕

06k<n
2

Ekn .

Ekn :=

〈(
cos( i(2k+1)π

n
)
)

06i<n
,
(

sin( i(2k+1)π
n

)
)

06i<n

〉
=

〈(
ei
i(2k+1)π

n

)
06i<n

〉
.

Proposition 3.5.1 (Eigenspaces of ϕn for even n). For even n, ϕn is a
pseudo-circulant linear application and its eigenspaces are Ekn for 0 6 k < n

2
.

Here pseudo-circulant linear application means that if we write ϕn as a
matrix (mi,j)06i,j<n then |mi,j| = |mi′,j′ | whenever i− j ≡ i′− j′[mod n] with
mi,j = mi′,j′ when i− j = i′ − j′ and mi,j = −mi′,j′ when i− j = i′ − j′ ± n,
for example see the matrices ϕ4 and ϕ6 below.
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Figure 3.13: Lifting σ6.

ϕ4 =


4 2 0 −2
2 4 2 0
0 2 4 2
−2 0 2 4

 ϕ6 =


6 4 2 0 −2 −4
4 6 4 2 0 −2
2 4 6 4 2 0
0 2 4 6 4 2
−2 0 2 4 6 4
−4 −2 0 2 4 6

 .

The fact that ϕn is a pseudo-circulant linear application is simply due to
the definition of σn as having the same sequence of edges and rhombuses on
the edges of the metatiles combined with the way we order the set of vertices
{±~vk, 0 6 k < n}, see Figures 3.12 and 3.13.

As for the odd case we will not prove this proposition as we will prove a
stronger proposition later.

Remark that what determines ϕn is the edges of the metatiles, and in
the Sub Rosa case these edges are all the same sequence of rhombuses called
the edge word Σ(n). Actually what determines ϕn is the edge word up to
reordering so we define the abelianized edge word.

Definition 3.5.2 (Abelianized edge word for even n). The abelianized edge
word denoted by [Σ(n)] is a vector on m coordinates where m is the number of
different letters in the word/alphabet, with [Σ(n)]i is the number of occurences
of the ith letter of the alphabet in Σ(n).
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For even n, the letters that appear in Σ(n) are the even k from 0 to n−2.
So there are n

2
letters in Σ(n), and [Σ(n)] = ([Σ(n)]i)06i<bn2 c with [Σ(n)]i the

number of edges for i = 0 and the number rhombuses of angle 2i for i > 0 in
Σ(n).

From the definition of Sub Rosa edge words we can get an exact formula
for the abelianized [Σ(n)].

Lemma 3.5.1 (Exact formula for the abelianized edge word for even n). For
odd n we have

[Σ(n)] = (n− 2i)06i<n
2

= 2
(
n
2
− i
)

06i<n
2

.

Proof. Recall that Σ(n) is defined as
Σ(n) = se(n) · se(2) · se(4) . . . se(n− 2)|se(n − 2) · se(n − 4) . . . se(2) · se(n)
with se(k) = 024 . . . (k − 2) which has abelianized word [se(k)] = (1)06i< k

2
.

From this we immediately get that Σ(n) has n occurences of the edge, n− 2
occurences of the rhombus of 2π

n
, etc until 2 occurences of the rhombus of

angle (n−2)π
n

. Which we can write [Σ(n)] = (n− 2i)06i<n
2
.

We will use this exact formula later but for now let us focus on the link
between the abelianized edge word [Σ(n)] and the expansion ϕn.

Proposition 3.5.2 (Expansion matrix of ϕn for even n). For even n, ϕn is
a pseudo-circulant linear application of the form

ϕn =


m0 −mn−1 . . . −m1

m1 m0 . . . −m2
... . . . . . . ...

mn−1 mn−2 . . . m0


with ∀0 6 i < n

2
, mi = [Σ(n)]i

and ∀1 6 i < n
2
, mn−i = − [Σ(n)]i .

Proof. In the Sub Rosa substitution for even n the edge of the metatiles is
a succession of edges and rhombuses which are bisected tiles along an even
angle (see Figure 3.14), it means that if we take the edge ~v0 (or in Rn the
edge ~e0) its image ∂σ(~v0) is a succession of edges ~v0 and rhombuses where
the rhombus of angle 2π

n
has edges ~v1 and −~vn−1, and similarly the rhombus
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of angle 2kπ
n

has edges ~vk and −~vn−k as in Figure 3.14. Remark also that on
the edge of the metatiles we have only rhombuses with even angles but they
appear in both possible orientations.

Figure 3.14: The edges and rhombuses on the edge of the metatile for even
n.

3.5.3 Eigenvalues of the Sub Rosa expansion matrices

Just as for odd n, from this characterization of the expansion ϕn as a pseudo-
circulant matrix with coefficients determined by the abelianized word [Σ(n)]
we can compute the eigenvalues of ϕn.

Definition 3.5.3 (The eigenvalue matrix for even n). Let us define the ma-
trix

Nn :=
(
ci cos( i(2j+1)π

n
)
)

06i,j<n
2

with ci =

{
1 when i = 0

2 otherwise
.

Proposition 3.5.3 (Eigenvalues of the Sub Rosa expansion for even n). For
even n, the Sub Rosa expansion ϕn admits the spaces E jn for 0 6 j < n

2
as

eigenspaces. We denote by λj(n) the eigenvalue of ϕn on eigenspace E jn. We
note λ(n) the vector of the eigenvalues. We have

[Σ(n)] ·Nn = λ(n).
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which we can reformulate as

λj(n) = [Σ(n)]0 +
∑

16i<n
2

[Σ(n)]i 2 cos( i(2j+1)π
n

)

= n+
∑

16i<n
2

(n− 2i)2 cos( i(2j+1)π
n

)

= n+
∑

16i<n
2

4(n
2
− i) cos( i(2j+1)π

n
).

Before giving a formal proof let us point out two things:

• for even n the eigenvalue are real numbers (contrary to the odd case)
which means that there is no rotation component to the expansion

• just as for the odd case, seeing 2 cos i(2j+1)π
n

as the diagonal of the
rhombus of angle 2i(2j+1)π

n
gives us a good intuition on this result.

Proof. The idea is the same as for the odd case. Let n be an even integer,
we decompose

ϕn :=
∑

06i<n
2

[Σ(n)]iMi(n).

with M0(n) the identity matrix (which corresponds to having a unit edge on
the edge of the metatile) and for i 6= 0 Mi(n) the pseudo-circulant matrix
(see Proposition 3.5.2 ) with diagonal i with value 1 and diagonal n− i with
value −1 (which corresponds to having a unit rhombus of angle 2iπ

n
on the

edge of the metatile).
Let z be a complex number such that zn = −1 and Z be the vector

Z := (zk)06k<n. We have Z ·M0(n) = Z and for i 6= 0 we have

Z ·Mi(n) = (zi − zn−i)Z.

For 0 6 j < n
2
and z = ei

(2j+1)π
n we get that E jn is an eigenspace ofM0(n) with

eigenvalue 1 and for 1 6 i < n
2
we get that E jn is an eigenspace of Mi(n) with

eigenvalue ei
i(2j+1)π

n − ei
(n−i)(2j+1)π

n = 2 cos i(2j+1)π
n

. Since all the eigenvalues
are real numbers they sum and we have that ϕn has eigenspaces E jn with
eigenvalues

λj(n) = [Σ(n)]0 +
∑

16i<n
2

[Σ(n)]i 2 cos( i(2j+1)π
n

).
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Recall that the eigenvalues of the expansion ϕn is linked to the planarity
of the substitution σn. Indeed from Proposition 3.3.3, |λ0(n)|, |λ1(n)| > 1 is
a sufficient condition for the non planarity of σn. We will now give the exact
formula for the eigenvalues.

Proposition 3.5.4 (Value of the eigenvalues λj(n) for even n).

1. For any even n and any 0 6 j < n
2
we have

λj(n) =
1

sin2( (2j+1)π
2n

)
.

2. For fixed j, the sequence (λj(n))n even and n>2j is increasing

3. For any even n, for any 0 6 j < n
2
we have

λj(n) > 1.

Proof. For simplicity we define C ′j,k := λj(2k) and θ′j,k := (2j+1)π
4k

. We will
first prove the formula and then we will use it to prove the fact that the
eigenvalues are increasing with n (or k) at fixed j.

1. Let us take j, k such that 0 6 j < k. We have

C ′j,k = 2k +
∑

16i<k

4(k − i) cos i(2j+1)π
2k

= 2k +
∑

16i<k

4(k − i) cos(2iθ′j,k).

Let us now prove that

C ′j,k sin2(θ′j,k) = 1.

For simplicity we write θ for θ′j,k.

C ′j,k sin2(θ)

=

(
2k +

k−1∑
i=1

4(k − i) cos(2iθ)

)
sin2(θ)
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=

(
2k +

k−1∑
i=1

4(k − i) cos(2iθ)

)(
1− cos(2θ)

2

)

= k(1− cos(2θ)) +
k−1∑
i=1

2(k − i) cos(2iθ)(1− cos(2θ))

= k(1− cos(2θ)) +
k−1∑
i=1

(k−i)
2

(ei2iθ + e−i2iθ)(2− ei2θ − e−i2θ)

= k(1− cos(2θ)) +
k−1∑
i=1

(k−i)
2

(2ei2iθ + 2e−i2iθ − ei2(i+1)θ − e−i2(i−1)θ − ei2(i−1)θ − e−i2(i+1)θ)

= k(1− cos(2θ))

+
k−1∑
i=1

(k − i)(2 cos(2iθ)− cos(2(i+ 1)θ)− cos(2(i− 1)θ))

= k(1− cos(2θ)) +
k−1∑
i=1

2(k − i) cos(2iθ)

−
k−1∑
i=1

(k − i) cos(2(i+ 1)θ)−
k−1∑
i=1

(k − i) cos(2(i− 1)θ)

= k(1− cos(2θ)) +
k−1∑
i=1

2(k − i) cos(2iθ)

−
k∑
i=2

(k − (i− 1)) cos(2iθ)−
k−2∑
i=0

(k − (i+ 1)) cos(2iθ)

= k(1− cos(2θ)) +
k−1∑
i=1

2(k − i) cos(2iθ)

−

(
(
k−1∑
i=1

(k − (i− 1)) cos(2iθ))− k cos(2θ) + 1 cos(2kθ)

)

−

(
(
k−1∑
i=1

(k − (i+ 1)) cos(2iθ)) + (k − 1)− 0

)
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= k(1− cos(2θ)) +
k−1∑
i=1

(2(k − i)− (k − i+ 1)− (k − i− 1)) cos(2iθ)

+ k cos(2θ)− cos(2k(2j+1)π
4k

)− (k − 1)

= k(1− cos(2θ)) + k cos(2θ) cos( (2j+1)π
2

)− k + 1

= 1.

With 0 < θ′j,k <
π
2
we have the expected formula.

2. This derives from the fact that the function

k 7→ 1

sin2( (2j+1)π
4k

)

has the same behaviour as

x 7→ 1

sin2( 1
x
)

and this function is strictly increasing on
]

2
π
, +∞

[
.

3. We use the formula given in 1. for any even n and any 0 6 j < n
2
we

have
(2j+1)π

2n
∈
]
0, π

2

[
.

So sin2( (2j+1)π
2n

) ∈ ]0, 1[ which means that

λj(n) > 1.

3.5.4 Conclusion

With the third item of Proposition3.5.4 and Proposition 3.3.3 we get the
Theorem restricted to the even case.

Proposition 3.5.5 (Non-planarity of Sub Rosa substitutions for even n).
For all even n > 4 the Sub Rosa substitution σn is not planar and its regular
tilings are not discrete planes.
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Table 3.4: Approximate values of the eigenvalues of Sub Rosa expansions for
small even n.

n λ0(n) λ1(n) λ2(n) λ3(n) λ4(n) λ6(n)
4 6.83 1.17 - - - -
6 14.93 2 1.07 - - -
8 26.27 3.24 1.45 1.04 - -
10 40.86 4.85 2 1.26 1.03 -
12 58.70 6.83 2.70 1.59 1.17 1.02

Proof. From Proposition 3.5.4 we have that all the eigenvalues of the Sub
Rosa expansions are greater than 1. From this we get that for any even n > 4
the full space Rn is an expanding stable subspace of dimension > 4 for ϕn.
So by Proposition 3.3.3 the substitution σn associated to ϕn is not planar.

See Table 3.4 for approximate values of the eigenvalues of ϕn for small
even n.

100



Chapter 4

Planar Rosa : substitution n-fold
discrete planes

4.1 Introduction
The Sub Rosa tilings [KR16] were good candidates for substitution discrete
planes with n-fold rotational symmetry, but as stated in Theorem 1 and
presented in Chapter 3 they are not discrete planes.

In this Chapter we present a new family of tilings which we call the Planar
Rosa tilings which are substitution discrete planes with 2n-fold rotational
symmetry.

Theorem 2 (Kari, L. 2020). For any n > 3 the canonical Planar Rosa tiling
T ′n is a substitution discrete plane with global 2n-fold rotational symmetry.
For any n > 3 the Planar Rosa tilings i.e. tilings in Xσ′n, are substitution
discrete planes with local 2n-fold rotational symmetry.

The definition of the Planar Rosa substitutions denoted by σ′n needs sev-
eral intermediate steps and is separated between odd and even n, they can
be found in Definitions 4.4.5 page 121 and 4.5.5 page 134.

For the canonical Planar Rosa tilings which are regular fixpoint tilings
actually do not use the Rosa pattern as a seed but the simple star pattern.

Definition 4.1.1 (Star pattern S(n)). The star pattern S(n) is the pattern
of 2n rhombuses of angle π

n
around a vertex as shown in Figure 4.1.

By definition of the Planar Rosa substitution σ′n, S(n) is a good seed for
σ′n (see Sections 4.4.6 page 129 and 4.5.6 page 142).
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Figure 4.1: Star S(n) for n ∈ {5, 7, 9}.

Definition 4.1.2 (Canonical Planar Rosa tilings). For any n > 3, the canon-
ical Planar Rosa tiling T ′n is defined as the regular fixpoint tiling of the Planar
Rosa substitution σ′n from the seed S(n).

Examples of Planar Rosa substitutions and canonical Planar Rosa tilings
are presented in Chapter 6.

In Section 4.2 we present two different strategies for the construction of
Planar Rosa substitutions. In Section 4.3 we study the tileability of Sub
Rosa-like metatiles given their edge-word. In Sections 4.4 and 4.5 we give
the construction and proofs separately for odd n and for even n.

4.2 Strategy

4.2.1 Adapting Sub Rosa

As seen in Chapter 3, the Sub Rosa substitutions σn are easy to lift in Rn

and there is a nice relation between the edge word Σ(n) and the eigenvalues
of the Sub Rosa expansion ϕn (Propositions 3.4.3 and 3.5.3). However with
the Sub Rosa construction we get eigenvalues that are incompatible with
planarity since ϕn is strictly expanding on a 4-dimensional subspace.

The goal here is to define Sub Rosa-like substitutions such that the as-
sociated expansion ϕ is strictly expanding along E0

n and strictly contracting
on its orthogonal supplement. Recall that Sub Rosa-like substitutions are
defined by their edge word Σ. The two key points are:

1. the construction of the edge word Σ to ensure planarity,

2. the tilability of the metatiles defined by their edge word Σ.

For a given n the idea is that we define a sequence
(
Σ(j)

)
j∈N of edge words

such that
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• there are infinitely many indices j such that the expansion ϕ(j) associ-
ated to Σ(j) is planar of slope E0

n,

• there exists N ∈ N, such that for any j > N the metatiles defined by
the edge word Σ(j) are tileable and the corresponding substitution is
primitive.

We call Planar Rosa substitution denoted by σ′(n) the substitution defined
by Σ(j) for the smallest j such that it is both planar and tileable.

From the Planar Rosa substitution σ′(n) we define an associated regular
fixpoint tiling with global 2n-fold rotational symmetry from the seed S(n).

4.2.2 Adapting Pn(12)

In the previous Subsection we presented a strategy based on modifying the
Sub Rosa substitution to get planar substitutions. Here we present another
approach based on starting from a cut-and-project tiling with 2n-fold rota-
tional symmetry and approximating it by a substitution to get a substitution
planar tiling. Note that here the term of approximating a tiling is not to be
understood in the usual sense of cylinder topology on tilings, the main point
of this approximation process is to keep the slope when lifted in Rn.

As it will be seen in Chapter 5 the n-fold multigrid dual tiling Pn(1
2
) is a

cut-and-project rhombus tiling with 2n-fold rotational symmetry. Moreover
Pn(1

2
) contains an infinite cone of angle π

n
with the same sequence of unit

edges and bisected rhombuses on both sides of the cone, we denote this
sequence by ω(n). The idea now is to consider this infinite cone as some
kind of metatile of infinite size. We will define larger and larger substitutions
whose metatiles of angle π

n
approximate this cone. There are of course a lot

of details to work out as will be seen in the following sections.
These two strategies are actually two ways of looking at the construction

we present in Sections 4.4 and 4.5.

4.3 Tileability of Sub Rosa-like metatiles
The tileability of a finite domain with a given set of prototiles is, in all
generality, a NP-complete problem (see Section 2.12 for more background on
this topic). However here we are interested in the tileability of a very specific
kind of finite domains: Sub Rosa-like metatiles. Recall that Sub Rosa-like
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Figure 4.2: Examples of polygons defined by Sub Rosa-like metatiles for
n ∈ {5, 6}.

metatiles are defined by the sequence of edges and rhombuses on their edges
which is the same on all sides (up to translation and rotation) and which
is called edge word and denoted by Σ. In this section we will use the term
pseudosubstitution for a substitution that is defined only on the edges of the
metatiles, we say that it extends to a substitution when the metatiles can be
tiled with unit rhombuses.

The finite domain defined by a Sub Rosa-like metatile is a polygon (see
Figure 4.2) and we aim to tile it with rhombuses which are specific cases of
parallelograms. This means that we can use the Kenyon criterion for tilings
polygons with parallelograms [Ken93].

The first step of the Kenyon method is to fix an origin vector on the
polygon to tile. Let us note (a1, . . . , am) the sequence of oriented edges when
going along the edge of the parallelogram counterclockwise from the starting
point and back to it . We note ~aj called edge type the vector of the edge aj,
all the ~aj are in the set of directions of the tiling i.e. ~aj ∈ {±~vk, k = 1..n}.

Suppose the interior of the polygon is actually tiled. As seen in Figure
4.3 from each edge of the polygon starts a chain of rhombuses (shaded in the
figure) that share the same edge type, and at the two ends of this chain are
two edge of the polygon with the same edge type but opposite directions.
Note that chains are also called ribbons or worms. These chains define a
matching on the edges that have the following properties:

1. two edges that are matched have same absolute edge type and opposite
orientation,
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Figure 4.3: In shaded two chains of rhombuses.

2. two matched pairs of edges of the same absolute edge type cannot cross
each other with respect to the cyclic ordering of the edges. Indeed two
chains with the same edge type cannot cross, otherwise it would create
a “flat” rhombus,

3. two matched edges must “see” each other in the parallelogram in the
sense that there is a monotone increasing path according to ~a⊥j in the
interior of the parallelogram from one edge to the other. Indeed other-
wise it would mean that the chain circles back on itself,

4. the matching is peripherally monotonous : for any two matched pairs
{a, a′} and {b, b′} such that in the cyclic ordering a < b < a′ < b′, we
have [a]⊥ · [b] > 0. That ensures that at the crossing rhombus of the
two chains the rhombus actually exists.

We call Kenyon matching a matching on the oriented edges that follow
these properties.

Theorem 13 (Kenyon, 93). The polygon is tileable by parallelograms if and
only if a Kenyon matching exists.

Sketch of the proof. See the Kenyon article for full proof [Ken93]. The main
idea is that for the parallelogram to be tileable, any edge must match to an
edge of same absolute type and opposite direction such that there is a chain
of parallelograms between the two matched edges (see Figure 4.3). And when
two such chains cross, then their crossing is a parallelogram which edges are
the edges of the two matched pairs.
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In the case of our substitution tilings, we study the tileability of the
polygons which are defined by the same sequence of rhombuses and edges
on all four edges of the metatiles. Recall that in the edge word Σ of a Sub
Rosa-like substitution a 0 encodes a unit edge and an integer k encodes a
rhombus bisected along its angle kπ

n
. For n odd, the letters in the edge word

are the odd integers from 1 to n − 2, and for even n the letters in the edge
word are the even numbers from 0 to n− 2.

Given the constraints on Sub Rosa-like substitutions the edge word Σ is
a palindrome and is the same on each edge of every metatile. That is why we
only consider one word. Recall that, as discussed in Chapter 3, the expansion
ϕ is determined by the abelianized edge word [Σ]. So the expansion, and the
planarity of the substitution, are determined by the abelianized edge word
i.e. the edge word up to reordering, but for tileability the order is very
important.

For technical reasons we will introduce the counting functions of the edge
word:

Definition 4.3.1 (Counting function). Given some integer n > 3 and an
edge word Σ = u0u1 . . . um−1 of length m. For an edge/rhombus type i and a
position x ∈ {0, . . .m} we define fi(x) := |u0 . . . ux−1|i the number of letters
i in the prefix of length x of the edge word Σ.

We also define f−1
i (y) the length of the shortest prefix of Σ with y oc-

curences of the letter i. If there is no such prefix then f−1
i (y) := +∞, also if

y < 0 then f−1
i (y) := −∞ and f−1

i (0) := 0.
For i = n we define fi(x) := 0 and for n < i < 2n we define fi(x) :=

−f2n−i(x). For these cases we do not define f−1
i .

Let us remark a few things regarding this definition:

• f−1
i is not an inverse function since fi is not bijective. However for
any i, y such that there is at least y occurrences of the letter i we
have fi(f−1

i (y)) = y, and for any x such that ux−1 = i we also have
f−1
i (fi(x)) = x (but but when ux−1 6= i we have f−1

i (fi(x)) < x ),

• the fact that i is a edge/rhombus type means that it is either an odd
number between 1 and n − 2 which codes a unit rhombus of angle iπ

n

when n is odd or an even number between 0 and n− 2 where 0 codes a
unit edge and i 6= 0 codes a unit rhombus of angle iπ

n
when n is even,
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• we give a definition of fi(x) for n 6 i < 2n because later on they will
appear and we want to give them a meaning,

• we fix f−1
i (y) = +∞ if there are less than y occurences of the letter i in

the edgeword for simplicity. This allows us to not have to check whether
the number of occurences of the letter i before using f−1

i . We also use
the convention that +∞ > +∞ for the simplicity of some statements
(which have sense for values that are not infinity). We could also just
say that the formulas that involve f−1

i are understood only in the non-
infinity case. The same goes for f−1

i (y) = −∞ in the case that y is
negative.

The Kenyon conditions translates into inequalities on the counting func-
tions fj. But for a concise formulation we need an additional definition.

Definition 4.3.2 (Almost-balancedness ). We call a word u n-almost-balanced
when for any letters i1 < i2 and any factor subword v of u we have |v|i1 −
|v|i2 > −n.

The idea is that the frequency of apparition of i1 is greater than the
frequency of apparition of i2 when i1 < i2, so the idea is that |v|i1−|v|i2 should
be positive for large v, but for small factors v we can have negative values
for example if we take v = i2 as subword of u. This quite unusual definition
of n-almost-balancedness bounds the negative values that |v|i1 − |v|i2 can
take. For example for a binary Sturmian word u with letters i1 and i2 and
frequency of i1 larger than frequency of i2, u is 1-almost-balanced.

The main result of this section is the following.

Proposition 4.3.1 (Tileability). Let us consider a pseudosubstitution of 2-
almost-balanced edge word Σ and counting functions fi.
If for any letters i1 < i2 we have fi1(m) > fi2(m) > 0 where m is the length
of the edge word Σ and for any prefix length x1 such that at position x1 − 1
in the edge word there is an edge or rhombus i1 we have

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1), (4.1)

then all the metatiles of the pseudosubstitution defined by Σ are tileable.
Which means that Σ actually defines a substitution.

Recall that when n is odd the letters in the edge word are the odd integers
1 6 i < n and they represent rhombuses of angle iπ

n
on the edge of the
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metatile, and when n is even the letters in the edge word are the even integers
0 6 i < n and 0 represents an unit edge and non-zero i represent rhombuses
of angle iπ

n
on the edge of the metatile.

This proposition gives us a sufficient condition for tileability of the metatiles
that we will use for the construction of the Planar Rosa substitutions which
are planar substitutions with 2n-fold rotational symmetry in Sections 4.4 and
4.5. This proposition was formulated as an implication because that is how
we use it, but it is actually an equivalence.

Let us give two quick examples with n = 5. Let us first consider the edge
word Σ = 1331, with i1 = 1, i2 = 3, we have fi1(m) = fi2(m) = 2 which
contradicts the first condition and additionally for x = 4 we have

f−1
|i2−2| ◦ fi2(x) = f−1

1 ◦ f3(4) = f−1
1 (2) = 4,

and
f−1
|i1−2| ◦ fi1(x) = f−1

1 ◦ f1(4) = 4,

which also contradicts the second condition. This implies that the narrow
metatile of edge word Σ = 1331 is not tileable.

Now let us consider the edge word Σ = 131131, with i1 = 1 and i2 = 3
we have fi1(m) = 4 and fi2(m) = 2 so the first condition holds, now we need
to check

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1),

for any position x1 where there is a rhombus of type i1.
We will now present the proof of this proposition with several lemmas

and propositions to cut this in smaller pieces and make for hopefully under-
standable proofs.

First we will assume the metatiles to be tileable to see what conditions
we get on the counting functions fj, we will later show the converse.

Proposition 4.3.2. If the metatile with angle kπ
n

is tileable then for any
i1 < i2 and any prefix length x1 such that at position x1− 1 in the edge word
there is a rhombus i1 we have

f−1
|i2−2k| ◦ fi2(x1) < f−1

|i1−2k| ◦ fi1(x1). (4.2)

The unwritten assumption here is that there are at least fi2(x1) rhombuses
of type |i2 − 2k| in the edgeword, in the case that there are not enough
rhombuses of type |i2 − 2k| we have imposed the convention that f−1

|i2−2k| ◦
fi2(x1) = +∞ which “solves” this degenerate case.
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Figure 4.4: A chain of rhombuses around the narrow corner of the metatile.

Proof. Let us assume the metatile is tileable. Let us see how chains of paral-
lelograms behave in our case. For simplicity consider the narrowest metatile,
we assume it is tileable and that we have a valid Kenyon matching. Take
a chain of edge type ~a that links a rhombus of type i1 on the side 1 of the
metatile to a rhombus of type i′1 on the side two as in Figure 4.4.

On side 1, the direction ~a1 can only be found on the rhombuses of type j,
because the direction of the edges of rhombus is determined by the general
direction of the side and half the angle of the rombus. Call x1 − 1 the index
of this rhombus on side 1 (starting the indexes from the corner with side 2).
There are fi1(x1) rhombuses of type i1 between the corner and the chain on
side 1. On side 2, for the same reason the direction ~−a1 only appears on
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Figure 4.5: A second chain of rhombuses around the narrow corner.

the edge of i′1 rhombuses and there are fi′1(x
′
1) such rhombuses between the

corner and the chain. And since the matching is valid, two chains of same
absolute edge type cannot cross each other (condition 2), so every rhombus
i1 of side one between the corner and the chain is matched to a rhombus
of type i′1 of side two also between the corner and the chain. So we have
fi1(x1) = fi′1(x

′
1) that we can reformulate f−1

i′1
(fi1(x1)) = x′1.

We can also remark that since the angle of the corner of the metatile is π
n
,

the half-angles of the rhombuses are i1π
2n

and i′1π

2n
and their sides are parallel

so we have i′1 = |i1−2|. More generally around a corner of angle kπ
n

we would
have i′1 = |i1 − 2k|. Now let us consider a second chain on that setting.
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Take a type of rhombus i2 > i1 and note x2− 1 the last position at which
a rhombus i2 appears between the corner and the chain of direction ~a1 as in
Figure 4.5. Denote ~a2 the edge of the rhombus facing the corner and consider
the chain that starts at this edge. As for the first chain, this one is linked to
some rhombus of type i′2 = |i2 − 2| on side 2 which is at position x′2 and we
have f−1

i′2
(fi2(x2)) = x′2. But since there is no rhombus of type i2 between x2

and x1 − 1 we have fi2(x2) = fi2(x1).
Since i2 > i1 we have 〈~a⊥2 |~a1〉 6 0 so the two chains cannot cross (see

Figure 4.5), this means that x′2 < x′1. So overall

f−1
i′2
◦ fi2(x1) < f−1

i′1
◦ fi1(x1).

Now if we modify this situation a little bit. Suppose that the chains
connect to the opposite side as in Figure 4.6. Then we have the following
proposition.

Proposition 4.3.3. If the metatile with angle kπ
n

is tileable then for any
i1 < i2 and any prefix length x1 such that at position x1− 1 in the edge word
there is a rhombus i1 we have

f−1
i2

(
fi2(x1)− f|i2−2k|(m)

)
< f−1

i1

(
fi1(x1)− f|i1−2k|(m)

)
. (4.3)

.

The unwritten assumption in this statement is that that fi2(x1)−f|i2−2k|(m) >
0 (and same for i1), that is why we imposed the convention that f−1

i (y) = −∞
for negative y.

Proof. The quantity f|i2−2k|(m) is the total number of rhombuses of type
|i2− 2k| on the edge adjacent to the angle see Figure 4.6, so it is the number
of rhombuses of type i2 that will be matched to rhombuses of type |i2 − 2k|
on the adjacent edge. Once we remove those rhombuses, rhombuses of type
i2 match to rhombuses of type i2 on the matching edge, hence the Equation
(4.3).

Overall, if the metatile with angles kπ
n

and (n−k)π
n

is tileable then for any
i1 < i2 and any prefix length x1 such that at position x1−1 in the edge word
there is a rhombus i1 we have Equations (4.2) and (4.3) for the two angles.
So four equations hold. Let us see how the converse goes.
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Figure 4.6: The two chains linking opposite sides.

Proposition 4.3.4. Let us consider the metatile of angles kπ
n

and (n−k)π
n

.
If f1 > f3 > . . . > fn−2 > 0 (when n is odd) or f0 > f2 > . . . > fn−2 > 0
(when n is even) and if for any i1 < i2 and any prefix length x1 such that at
position x1 − 1 in the edge word there is a rhombus i1 we have

f−1
|i2−2k| ◦ fi2(x1) < f−1

|i1−2k| ◦ fi1(x1), (4.4)

f−1
|i2−2(n−k)| ◦ fi2(x1) < f−1

|i1−2(n−k)| ◦ fi1(x1), (4.5)

f−1
i2

(
fi2(x1)− f|i2−2k|(m)

)
< f−1

i1

(
fi1(x1)− f|i1−2k|(m)

)
, (4.6)

f−1
i2

(
fi2(x1)− f|i2−2(n−k)|(m)

)
< f−1

i1

(
fi1(x1)− f|i1−2(n−k)|(m)

)
, (4.7)

then the metatile is tileable.

Let us remark once again that in the two degenerate cases ( the case of
f−1
i (y) with either y negative or y greater than the number of occurences of
the letter i in the full word) we have infinite values with the convention that
−∞ < −∞ and +∞ < +∞.
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Figure 4.7: Atlas of possible (but not necessarily valid) crossing types.

Proof of Lemma 4.3.4. By contradiction suppose the metatile is not tileable.
We will prove that one of the inequations is broken. If the metatile is not
tileable, then by Theorem 13 there exists an invalid crossing of chains. Any
two chains that cross are of one of the types described in Figure 4.7. The
first case is the one described in the proof of Proposition 4.3.2 above and in
Figure 4.5, same for the case 2. So if the invalid crossing is of type 1 or type
2 then Equation (4.4) is broken which contradicts the hypothesis.
Type 3 corresponds to Equation (4.6).
Type 4, 5 and 6 are never invalid.

Type 7 : Let us first consider the sub-case where the two rhombus whose
chain cross are actually the same type of rhombus. This means that we have
a situation where the two chains leaving from the two sides of a rhombus
are crossing. Let us show it is never the case. For simplicity we consider
k < n−k. And let us consider that the rhombus in question has (odd) angle
iπ
n
. If n − k − 2i < n/2 it means that the two directions of the sides of the

rhombus have matching rhombuses on the adjacent edges of the metatile. If
we call x the position of the rhombus, x′ the position of the rhombus to which
the left side matches and x′′ the position of the rhombus to which the right
side matches this means that x′ < x < x′′. But if we have n− k − 2i > n/2,
assuming that the wide angle of the metatile is to the right of the rhombus
we have x′′ < x because on the adjacent edge of the metatile there are rhom-
buses that have the exact same edge direction as our rhombus these are the
rhombuses of type 2k + i, so the rhombus x matches to a rhombus x′′ which
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is more to the left. But the left side of the rhombus matches to x′ < x and
even x′ < x′′ < x because there are strictly more rhombuses of type |i− 2k|
(to which the left direction matches) on the left edge of the metatile, than
rhombuses of type i + 2k (which have the same direction the same are the
right side) on the right edge of the metatile, so x′ is offset by strictly more
positions of rhombuses of type i to the left of x than x′′. So the two sides of
a same rhombus cannot spawn crossing worms.
Now consider that we have a crossing of that type with two different rhom-
buses, then if we look at the worm leaving the right side of the left rhombus
it crosses the worm leaving the right side of the right rhombus (otherwise the
two worms leaving the left rhombus would cross), but also the worm leaving
the left side of the right rhombus crosses the worm leaving the left side of the
left rhombus (for the same reason), and at least one of these two crossing is
invalid and of Type 2 or 3. So by the previous result if the equations hold a
crossing of type 7 is impossible.

For the following, consider that the left rhombus is of type i, the right
rhombus is of type j. And the edge we are interested in are a for the left
rhombus and b for the right.
Type 8 : Such a crossing is invalid only if 〈a⊥|b〉 < 0 with a and b the
direction of the edges. And this can only be possible if i > k or j > k if we
consider that the angle on the metatile between the two rhombuses is kπ

n
. For

simplicity let us assume i > k, in that case the edge direction a is matched,
on an adjacent edge of the metatile, to rhombuses of type |2k − i| < i, there
are more vectors of type |2k − i| than of type i so the rhombus cannot be
matched to a rhombus of the opposite edge of the metatile. So such a crossing
cannot be invalid.
Type 9 : Such a crossing is invalid only if 〈a⊥|b〉 < 0 with a and b the
direction of the edges. And this can only be possible if j > k if we consider
that the angle on the metatile between the two rhombuses is (n−k)π

n
. In that

case the edge direction b is matched, on an adjacent edge of the metatile, to
rhombuses of type |2k − j| < j, there are more vectors of type |2k − j| than
of type j so the rhombus cannot be matched to a rhombus of the opposite
edge of the metatile. So such a crossing cannot be invalid.
Type 10 : Such a crossing is invalid only if 〈a⊥|b〉 < 0 with a and b the
direction of the edges. And this can only be possible if i > k or j > k if
we consider that the angle on the metatile between the two rhombuses is
(n−k)π

n
.For simplicity let us assume i > k, in that case the edge direction a is

matched, on an adjacent edge of the metatile, to rhombuses of type |2k−i| <
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i, there are more vectors of type |2k−i| than of type i so the rhombus cannot
be matched to a rhombus of the opposite edge of the metatile. So such a
crossing cannot be invalid.

We can actually do better than this: under the almost-balancedness as-
sumption we only need to prove the Equation (4.4) with k = 1.

First let us observe that the Equation (4.4) with k = 1 implies that there
are more rhombuses i1 than rhombuses i2 whenever i1 < i2.

Lemma 4.3.1. If for any edge or rhombus type i1 < i2 and any prefix length
x1 such that at position x1 − 1 in the edge word there is a rhombus i1

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1), (4.8)

then we have f1 > f3 > . . . > fn−2 when n is odd, and we have f0 > f2 >
f4 > . . . > fn−2 when n is even.

Proof of Lemma 4.3.1. Let us first recall that the edge word Σ is a palin-
drome. This result would not necessarily hold otherwise.
We will prove it for the case of odd n, the case of even n is the same up to
replacing the odd rhombus types by even edge or rhombus types. Take and
odd i < n−2, assume that f1 > f3 > . . . > fi, let us prove that fi > fi+2. By
contradiction suppose that there exists x2 such that fi+2(x2) > 1+fi(x2). We
take x2 to be the smallest prefix length at which it holds. We have ux2 = i+2.
Take x1 the smallest prefix length greater than x2 such that ux1−1 = i. Such
an index exists, because the first occurrence of i is before the first occurrence
of i + 2 from Equation (4.8), so the last occurrence of i is after the last oc-
currence of i + 2. By definition fi(x1) = fi(x2) + 1 and fi+2(x1) > fi+2(x2),
so fi(x1) 6 fi+2(x1). But by f|i−2| > fi we have f−1

|i−2|(fi(x1)) 6 x1. This is
impossible because when we apply Equation (4.8) with i1 = i and i2 = i+ 2
on x1, we get

f−1
i ◦ ii+2(x1) < f−1

i−2 ◦ fi(x1) 6 x1,

which implies fi+2(x1) < fi(x1).

From this lemma we can obtain this nice result on the counting functions.
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Lemma 4.3.2. If Equation (4.4) holds for k = 1 then Equations (4.4) and
(4.5) hold for any 1 6 k < n.

Proof. Let us prove that from Equation (4.4) with k = 1 we can obtain it
with k = 2.
This means that we assume that for any i1 < i2 and any x1 such that ux1−1 =
i1 we have

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1),

and we want to prove that for any i1 < i2 and any x1 such that ux1−1 = i1
we have

f−1
|i2−4| ◦ fi2(x1) < f−1

|i1−4| ◦ fi1(x1).

Let us take i1, i2, x1 such that i1 < i2 and ux1−1 = i1. If i1 > 1 we have
|i1 − 4| =

∣∣|i1 − 2| − 2
∣∣ so it becomes straightforward with

f−1
|i1−4| ◦ fi1(x1) = f−1

|i1−4| ◦ f|i1−2| ◦ f−1
|i1−2| ◦ fi1(x1).

Otherwise we have i1 = 1 and i2 > 3 so we need to compare f−1
|i2−4| ◦ fi2 and

f−1
3 ◦ f1 with |i2 − 4| 6 i2. From Lemma 4.3.1 we have that f1 > f3 and
f|i2−4| > fi2 so f

−1
3 ◦f1(k1) > x1 > f−1

|i2−4|◦fi2(x1) moreover the first inequality
is strict because ux1 = 1, so overall f−1

3 ◦ f1(k1) > f−1
|i2−4| ◦ fi2(x1).

To also get Equations (4.6) and (4.7) we need the almost-balancedness
assumption.

Under the assumption that u is 2-almost-balanced we always have Equa-
tion (4.6) and (4.7).

Lemma 4.3.3. Under the assumption that the edgeword Σ is 2-almost-
balanced (with our unusual definition 4.3.2) and if f1(m) > f3(m) > · · · >
fn−2(m) > 0 (or f0(m) > f1(m) > . . . fn−2(m) > 0 when n is even) with
m = |Σ| the length of the whole word then for any 0 < k < n, for any i1 < i2
and for any x1 such that ux1−1 = i1 we have

f−1
i2

(
fi2(x1)− f|i2−2k|(m)

)
< f−1

i1

(
fi1(x1)− f|i1−2k|(m)

)
.

Proof. Let us take such k, i1, i2, x1.
Let us solve two special cases:
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• if i1 > |i1 − 2k| then we never have fi1(x1) > f|i1−2k|(m) so there exist
no such k, i1, i2, x1,

• if |i1 − 2k| > n − 2 then there is no rhombus of angle |i1 − 2k| in the
edge word and either |i1 − 2k| = n in which case f|i1−2k|(m) = 0 or
|i1 − 2k| > n in which case f|i1−2k|(m) = −f2n−|i1−2k|(m) < 0. These
cases actually are the same as the other because we have f1(m) >
f3(m) > · · · > fn−2(m) > fn(m) > fn+2(m) > · · · > f2n−2(m) with the
definition of fi(m) = −f2n−i(m) for i > n.

If we are not in these cases then we have |i1 − 2k| > i1 so this means that
|i1 − 2k| = 2k − i1 and i1 < k.
If i2 > |i2 − 2k| then the inequation is simple with

fi2(x1)− f|i2−2k|(m) 6 0⇒
f−1
i2

(
fi2(x1)− f|i2−2k|(m)

)
= 0 < f−1

i1

(
fi1(x1)− f|i1−2k|(m)

)
.

Otherwise we have i1 < i2 < k < |i2 − 2k| < |i1 − 2k| 6 n− 2. In that case
we have f|i2−2k|(m) > f|i1−2k|(m). Since fi1(x1)− f|i1−2k|(m) > 0 there exists
a x′1 < x1 such that ux′1 = i1 and fi1(x′1) = fi1(x1)− f|i1−2k|(m).
Let us now remark that fi2(x1)− f|i2−2k|(m) 6 fi2(x1)− (f|i1−2k|(m) + 1) 6
fi2(x

′
1) because |ux′1ux′1+1 . . . ux1−1|i2 6 2 + |ux′1ux′1+1 . . . ux1−1|i1 ( by Defini-

tion 4.3.2)
so |ux′1ux′1+1 . . . ux1−1ux1 |i2 6 1 + |ux′1ux′1+1 . . . ux1−1ux1|i1 and

fi2(x1)− fi2(x′1) = |ux′1ux′1+1 . . . ux1−1ux1|i2
6 1 + |ux′1ux′1+1 . . . ux1−1ux1 |i1
6 1 + fi1(x1)− fi1(x′1)

6 1 + f|i1−2k|(m).

So overall

f−1
i2

(
fi2(x1)− f|i2−2k|(m)

)
6 f−1

i2
◦ fi2(x′1)

< f−1
i1
◦ fi1(x1) = f−1

i1

(
fi1(x1)− f|i1−2k|(m)

)
.
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4.4 Construction for odd n

4.4.1 Lifting and eigenvalues

Here n is an odd integer greater than 3 and we are considering Sub Rosa-
like substitutions of order n i.e. with unit rhombus prototiles of angles kπ

n

and (n−k)π
n

. Sub Rosa-like substitutions are lifted in the same way as Sub
Rosa substitutions, we will here recall the most important definitions and
propositions but proofs and explanations will be found in Section 3.4.

Definition 4.4.1 (Decomposition of Rn for odd n). We decompose Rn as
the orthogonal direct sum

Rn = ∆⊕
⊕

06k<bn2 c
Ekn .

with ∆ := 〈(1)06i<n〉 and

Ekn :=

〈(
cos(2i(2k+1)π

n
)
)

06i<n
,
(

sin(2i(2k+1)π
n

)
)

06i<n

〉
=

〈(
ei

2i(2k+1)π
n

)
06i<n

〉
.

Given a Sub Rosa-like substitution σ with expansion ϕ and edge word Σ
we have:

Proposition 4.4.1 (Expansion matrix of ϕ for odd n). ϕ is a circulant linear
application of the form

ϕn =


m0 mn−1 . . . m1

m1 m0 . . . m2
... . . . . . . ...

mn−1 mn−2 . . . m0

 ,

with ∀i ∈ {0, 1, . . .
⌊n

2

⌋
− 1}, midn2 e = (−1)i [Σ]i ,

and m−(i+1)dn2 e = (−1)i+1 [Σ]i .

Definition 4.4.2 (The eigenvalue matrix for odd n). Let us define the matrix

Nn :=

(
2 cos(

(2i+ 1)(2j + 1)π

2n
)

)
06i,j<bn2 c

.
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Proposition 4.4.2 (Eigenvalues of Sub Rosa-like expansions for odd n).
The Sub Rosa-like expansion ϕ of edge word Σ admits the spaces E jn for 0 6
j <

⌊
n
2

⌋
and ∆ as eigenspaces. We denote by λj its eigenvalue on eigenspace

E jn and λ∆ on ∆. We note |λ| the vector of modules of the eigenvalues λj.
We have λ∆ = 0 and

|[Σ] ·Nn| = |λ|.

More precisely we have

λj =

b
n
2
c−1∑
i=0

[Σ]i 2 cos

(
(2j + 1)(2i+ 1)π

2n

) e−i
(2j+1)π

2n .

4.4.2 Choosing the edge word

Recall that here n is a fixed odd integer. The important thing for planarity is
the abelianized edge word [Σ] and actually mostly the rhombus frequencies.

Definition 4.4.3 (Optimal rhombus frequency vector for odd n). Let us
define the optimal rhombus frequency vector γ̃ as

γ̃ :=
γ

2‖γ‖2
with γ :=

(
cos( (2i+1)π

2n
)
)

06i<bn2 c
.

We call this vector the optimal rhombus frequency vector because we have:

Lemma 4.4.1. With the eigenvalue matrix Nn and the optimal rhombus
frequency vector γ̃ we have

γ̃ ·Nn = (1, 0, . . . 0)

Proof. Remark that 2γ is the first line of Nn. The idea is that Nn is very
similar to a Discrete Cosine Transform matrix and is orthogonal (up to renor-
malization). The fact that DCT is orthogonal is a classical result and we will
not give a full proof.

From this we get the following result
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Lemma 4.4.2 (Approximating the optimal rhombus frequency for odd n).
There exists ε > 0 such that for any x ∈ ]2, +∞[ and any Sub Rosa-like
substitution σ of edge word Σ and eigenvalues λj we have

d ([Σ] , xγ̃) < ε =⇒


|λ0| > 1

|λ1| < 1
...
|λbn

2
c−1| < 1

=⇒ σ is planar of slope E0
n.

Proof. The first step is a combination of the uniform continuity of the vector-
matrix product together with x > 2 and

xγ̃ ·Nn = (x, 0, 0 . . . , 0).

Indeed by uniform continuity there is an ε > 0 such that

d ([Σ] , xγ̃) < ε =⇒ d ([Σ] ·Nn, xγ̃ ·Nn) < 1.

Which can be reformulated with Proposition 4.4.2 and Lemma 4.4.1 as

d ([Σ] , xγ̃) < ε =⇒


|λ0| > 1

|λ1| < 1
...
|λbn

2
c−1| < 1

.

And with Proposition 3.3.4 we can conclude to the planarity of σ.

This means that if [Σ], as a point in Zb
n
2 c, is close enough to the line 〈γ〉

then the associated Sub Rosa-like substitution σ is planar.
We will now define a sequence of edge words

(
Σ(j)

)
j∈N such that

[
Σ(j)

]
is infinitely often arbitrarily close to the line 〈γ〉. To approximate 〈γ〉 we
use the billiard word of direction γ, for more background on billiard words
see [AMST94].

Definition 4.4.4 (Definition of the sequence of edge words for odd n). Let
Γ be the line 〈γ〉 = {tγ, t ∈ R} and Γ 1

2
be the line 〈γ〉+ (1

2
, . . . 1

2
).
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1. Let ω be the one-way-infinite billiard word of line Γ 1
2
starting on (1

2
, . . . 1

2
),

this means that we build the bi-infinite word ω by travelling the line and
adding a letter 2i + 1 each time it crosses an hyperplane of type Hi,k

with
Hi,k := {x ∈ Rb

n
2
c | 〈x|~ei〉 = k},

with k ∈ N and ~ei a vector of the canonical basis of Rbn2 c. Let us stress
that when the line crosses an hyperplane of normal ~ei we add a letter
2i+1 instead of the classical letter i, indeed the letters of ω will represent
rhombuses on the boundary of the substitution’s metatiles, and in that
case the rhombuses are bisected by the metatile’s edge through their odd
angles.

2. We define the sequence of edge words as
(
Σ(j)

)
j∈N as

Σ(j) := prefj(ω)prefj(ω),

where prefj(ω) is the prefix of length j of ω, and prefj(ω) is its mirror
image.

3. We define the sequence of Sub Rosa-like pseudosubstitutions (σ(j))j∈N
where σ(j) is the pseudosubstitution of edge worde Σ(j). We denote by
ϕ(j) the expansion associated to σ(j).

The main result of this section is the fact that in this sequence (σ(j))j∈N
there are primitive planar substitutions.

Proposition 4.4.3. There exists j such that σ(j) is a primitive planar sub-
stitution of slope E0

n.

We call the smallest such substitution Planar Rosa substitution.

Definition 4.4.5 (The Planar Rosa substitution for odd n). The Planar
Rosa substitution σ′n is defined as σ′n = σ(j0) with

j0 = min{j ∈ N | ϕ(j) is planar of slope E0
n and

σ(j) is a primitive substitution}.

We cut this proposition in three lemmas:

Lemma 4.4.3 (Planarity of σ(j) for odd n).

∃∞j ∈ N, ϕ(j) is planar of slope E0
n.
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Lemma 4.4.4 (Tileability of σ(j) for odd n).

∃N0 ∈ N, ∀j > N0, σ(j)is a substitution,

i.e. the metatiles defined by the edge word Σ(j) are tileable.

Lemma 4.4.5 ( Primitivity of σ(j) for odd n).

∃N1 ∈ N, ∀j > N1, if σ(j) is a substitution then it is primitive.

We will prove these three lemmas in the next three Subsections. Note
that the definition of Planar Rosa substitution implies the second part of
Theorem 2 (planarity of the substitution tilings) for odd n i.e. the fact
that Planar Rosa tilings are substitution discrete planes with local n-fold
rotational symmetry. The first part of Theorem 2 (i.e. the regular fixpoint
tiling) for odd n is proved in Section 4.4.6.

4.4.3 Proof of Lemma 4.4.3 (planarity)

In this subsection we prove Lemma 4.4.3. For the proof of planarity of σ(j)

we introduce the discrete billiard line (pi)i∈N:

Definition 4.4.6 (Billiard line). Let (pi)i∈N be the sequence of points of Zbn2 c
associated to the billiard word ω with p0 = 0. This means that for all j,

ωj = 2i+ 1 =⇒ pj+1 − pj = ~ei.

The choice of having the word ω and the sequence of points (pi)i∈N be
associated to the line Γ 1

2
instead of the line Γ is motivated by the fact that the

exact sequence of rhombus ω appears in the De Bruijn multigrid tiling Pn(1
2
)

and we will use it in Subsection 4.4.4 to prove the tileability of metatiles.
Remark that the definition of Σ(j) ensures that it is a palindromic word

and that
[
Σ(j)

]
= 2pj.

Proposition 4.4.4. The sequence (pi)i∈N approximates the line Γ, which
means that for any positive ε there are infinitely many points pi that are
ε-close to the line Γ

∀ε > 0, ∃∞i > 0, d(pi,Γ) < ε.
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(a) Folded line.
(b) Billiard sequence.

Figure 4.8: Ideas for the proof of Theorem 15.

Corollary 4.4.1. The sequence (
[
Σ(i)

]
)i∈N approximates the line Γ, which

means that for any positive ε there are infinitely many abelianized edge word[
Σ(i)

]
that are ε-close to the line Γ

∀ε > 0, ∃∞i > 0, d(
[
Σ(i)

]
,Γ) < ε.

The corollary is just a rewriting of the fact that by definition
[
Σ(j)

]
= 2pj.

There are several ways we could present this proposition. We could use
a linear flow approach based on [HK03] (Part 1, chapter 5) or we could use
a cut-and-project approach by rewriting Theorem 7.2 of [BG13] with the
formalism of [Har04] as:

Theorem 14. Let Λ be a canonical cut and project set with the cut-and-
project scheme (V ,W ,R,Zn) where V ⊕ W ⊕ R = Rn. Let (xi)i∈N be an
exhaustive sequence of the points of Λ ordered by increasing norm i.e. Λ =
{xi, i ∈ N} and ∀i, ‖xi + 1‖ > ‖xi‖. Then the sequence (πV⊥(xi))i∈N is
uniformly distributed in the window Ω.

But we use a known result on billiard words and discrete lines.

Theorem 15 (folk.). Let (pi)i∈N be a billiard sequence of line Γ and π be the
orthogonal projection onto Γ⊥. Every projected point π(pi) is an accumulation
point of the projected sequence (π(pi))i∈N.
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Proof. The idea is to first consider the folded line Γ in the torus as seen in
Figure 4.8a, and consider the sequence (xi)i∈N of the intersection points of Γ
with the boundary of the torus. This sequence has the property that each
of its points is an accumulation point of the sequence, this can be proved by
Poincaré Recurrence Theorem applied to the translation Γ(t, x) in the torus.
Then we only need remark that the sequence (π(pi)) and (xi) very similar:
if there are two points xi1 and xi2 that are on the same hyper-facet of the
torus and that are ε-close, then the corresponding π(pi1) and π(pi2) are also
ε-close as is illustrated with points x3, x8, x13 and p3, p8, p13 in Figure 4.8.
The result follows.

Combining Corollary 4.4.1 and Lemma 4.4.2 we get Lemma 4.4.3

4.4.4 Proof of Lemma 4.4.4 (tileability)

In this subsection we prove Lemma 4.4.4: n is a fixed integer and we prove
that for the sequence of pseudosubstitutions (σ(j))j∈N defined by their edge
word Σ(j) there exists an integer N0 such that for any j > N0, σ(j) is a
substitution i.e. the metatiles defined by the pseudosubstitution are tileable.

Let us recall that Σ(j) is defined as

Σ(j) := prefj(ω)prefj(ω),

where ω is the billiard word of direction γ. This means that the corners of
metatiles have v = prefj(ω) on both sides as shown in Figure 4.9.

Let us fix j, with the counting functions fi(x) of the edge word Σ(j) as
defined in Section 4.3 we can apply Proposition 4.3.1 which means that if we
have :

• Σ(j) is 2-almost-balanced (Definition 4.3.2 page 107)

• for any odd i1 < i2 and any position x1 such that at position x1 in the
edge word Σ(j) there is a rhombus i1 we have

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1),

then the metatiles defined by edge word Σ(j) are tileable which means that
σ(j) is a substitution.

Lemma 4.4.6 (The edge word are 2-almost-balanced). For any j the edge
word Σ(j) is 2-almost-balanced.
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Figure 4.9: Sketch of the metatile with v = prefj(ω) for some j.

Proof. Recall that 2-almost-balancedness is that for any letters i1 < i2 and
any factor subword v of Σ(j) we have |v|i1 − |v|i2 > −2. This is a direct
consequence of the fact that ω is a billiard word so it is 1-almost-balanced
and that any factor subword v of Σ(j) can be decomposed of as v = v0 · v1

with v0 a factor of ω and v1 the mirror image of a factor of ω.
Remark that n-almost-balancedness takes only one factor at a time (as

a difference to the usual balancedness on word which takes two factors
and counts the difference of number of a letter on these two factors), so
it works well with projection on a subset of letters. And we can see the
1-almost-balancedness of general billiard word as a consequence of the 1-
almost-balancedness of 2-letters billiard words i.e. Sturmian words. The
1-almost-balancedness of Sturmian words derives from the fact that they are
1-balanced (in the usual sense).

So for the tileability of metatiles we now need only to prove the second
item: the inequality on the counting functions. And for that we will split it
in two: the first half of the edge word (position x1 < j) and the second half
(position x1 > j).

The first half: the corner

Here we look at the case x1 < j.
The key point is that if the inequality

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1),
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were broken for x1 6 j and with position x1 such that in the edge word there
is a rhombus i1 at position x1 then the full cone of angle π

n
and edge words

ω would not be tileable.
We denote by f̃i(x) the counting function for the infinite edge word ω.

We have by definition f̃i(x) = fi(x) for any x < j. And assuming that the
infinite cone is tileable then f̃−1

|i−2|◦f̃i(x) 6 x so we actually have f−1
|i−2|◦fi(x) =

f̃−1
|i−2| ◦ f̃i(x).

So we if the inequality is broken in the first half of the edge word and the
cone in tileable then we also break the inequality of the counting function of
the infinite cone which is impossible because it is tileable.

Lemma 4.4.7 (The infinite cone is tileable). The infinite cone of angle π
n

and edge words ω is tileable.

Proof. This is due to the fact that the cone appears in the multigrid dual
tiling Pn(1

2
) which is a rhombus tiling as stated in Theorem 3 and proved in

Chapter 5. Let us now prove that the infinite cone indeed appears in Pn(1
2
).

In order to prove this we look at the vertical half line iR+ in Pn(1
2
), in the

multigrid Gn(1
2
) on the vertical half line we have a succession of intersection

points which correspond in the dual tiling to a succession of rhombuses which
turns out to be exactly ω.

The exact position of the intersection points of the line Γ 1
2
with some

hyperplane Hi,k = {x ∈ Rbn2 c | 〈x|~ei〉 = k} is

Γ 1
2
∩Hi,k = (1

2
, . . . 1

2
) +

k − 1
2

cos
(

(2i+1)π
2n

)γ.
This comes from the fact that the ith coordinate of vector γ is γi = cos

(
(2i+1)π

2n

)
and that the vector from (1

2
, . . . 1

2
) to Hi,k is (k − 1

2
)~ei.

And in Pn(1
2
) a rhombus of angle (2i+1)π

n
on the vertical half-line corre-

sponds in the multigrid Gn(1
2
) to an intersection of the grids of orientation

ζ i
′ and ζn−i′ for i′ = n−(2i+1)

2
, H(ζ i

′
, 1

2
)∩H(ζn−i

′
, 1

2
) where ζ = ei π

2n and these
intersection points are exactly at positions Ii on the vertical half-line with

Ii :=

{
k − 1

2

cos( (2i+1)π
n

)
, k ∈ N

}
.
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Overall the succession of letters in the billiard word ω and the succession
of rhombuses on the vertical half-line in Pn(1

2
) are the same.

By 2n-fold rotational symmetry of Pn(1
2
) there is the same sequence of

rhombuses on the rotated half-line ieiπ
nR+, so we have an infinite cone of

angle π
n
with edge word ω on both sides in Pn(1

2
).

Overall the inequality

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1),

holds for any i1 < i2 and any x1 < j such that there is a rhombus i1 at
position x1 in the edge word Σ(j).

We now have to look at the second half of the edge word, and here things
get tricky.

The second half: the middle

Here the idea is to look at the a new function gi1,i2(x) with i1 < i2 defined as

gi1,i2(x) := f−1
|i1−2| ◦ fi1(x)− f−1

|i2−2| ◦ fi2(x).

The tilability of the metatiles of edge word Σ(j) is now reduced to gi1,i2(x) >
0 for any x > j such that at there is a rhombus of type i1 on position x in
Σ(j).

The idea is that since the frequency of apparition of i1 in the word ω
(and in the word Σ(j)) is strictly bigger than the frequency of apparition of
i2 the idea is that gi1,i2(x) has a general increasing trend and (if Σ(j) is long
enough) there is a N0 such that for any x > N0, gi1,i2(x) > 0.

Once we get that we only need to take j > N0 and then the metatiles
defined by Σ(j) are tileable because the for any x > j > N0 we have gi1,i2(x) >
0.

Now for the positivity of gi1,i2(x). Let us recall that by construction of ω
we have f̃2k+1(x) ≈ x γk

‖γ‖ and by definition of Σ(j) there is a δ only dependent
on the dimension n such that |f2k+1(x) − x γk

‖γ‖ | < δ for any k and x. For
example δ = 2

√
n works. This means that∣∣∣∣gi1,i2(x)− x

(
γi′1
γi′′1
−

γi′2
γi′′2

)∣∣∣∣ < 2δ +
δ‖γ‖
γi′′1

+
δ‖γ‖
γi′′2

,
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with i′1 =
⌊
i1
2

⌋
, i′′1 = |i′1 − 2|, i′2 =

⌊
i2
2

⌋
, i′′2 = |i′2 − 2|. Remark that with

γ =
(

cos( (2i+1)π
2n

)
)

06i<bn2 c
,

we have that
γi′1
γi′′1
−

γi′2
γi′′2

> 0 for i1 < i2. Which means that for

x >
2δ + δ‖γ‖

γi′′1
+ δ‖γ‖

γi′′2
γi′1
γi′′1
−

γi′2
γi′′2

,

we have gi1,i2(x) > 0 (and this bound is finite).
Now take

N0 := max
i1<i2

2δ + δ‖γ‖
γi′′1

+ δ‖γ‖
γi′′2

γi′1
γi′′1
−

γi′2
γi′′2

 .

For any x > N0 and any i1 < i2 we have gi1,i2(x) > 0.

Overall for any j > N0 the metatiles defined by the edge word Σ(j) are
tileable which means that σ(j) is a substitution.

4.4.5 Proof of Lemma 4.4.5 (primitivity)

In this subsection we prove Lemma 4.4.5, recall that n is a fixed odd integer.
Let N1 be the index of the first occurrence of the rhombus on angle (n−2)π

n

in the word ω. For any j > N1 the pseudosubstitution σ(j) is primitive (if it
is a substitution). Remark that here we are only interested in the primitivity
of σ(j) if it is a substitution and not in the tileability of the metatiles.

Let us fix some j > N1, by definition on ω and of Σ(j), Σ(j) contains all
the types of rhombuses i.e. all the rhombus with odd angle 2i + 1 bisected
by the edge. So for a tile t, on the boundary of σ(j)(t) there are every type
of rhombus in two orientations (because there are two edges orientation on a
rhombus tile). Now if we look at the tiles of the boundary of σ2

(j)(t) we have
every type of rhombus in every orientation as shown in Figure 4.10, because
on the boundary rhombuses of σ(j)(t) there are all the edge orientations.

So for j > N1, σ(j) is primitive of order at most 2 (if it is a substitution).
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Figure 4.10: Primitivity of σ(j) for n = 5 and j = 3.

This then conclude the proof of Proposition 4.4.3 which implies that the
Planar Rosa substitutions are well defined.

Note that actually the Planar Rosa substitutions are primitive of order 1
but the proof is quite tricky, for even n we give in Subsection a proof from
which we can derive a proof of primitivity of order 1 for Planar Rosa for odd
n.

4.4.6 Regular fixpoint tiling

Here we complete the proof of Theorem 2 for odd n. The one thing to prove
is that the star S(n) is indeed a regular seed for σ′n.

The fact that S(n) is a seed is straightforward, indeed in the definition of
σ′n we have the fact that on the edges of the metatiles there is a sequence of
bisected rhombuses starting by a bisected rhombus of angle π

n
. This means

that in the π
n
angle of the metatile we have two rhombuses of angle π

n
(which

overlap out of the metatile) can be seen in Figure 4.10. From that we im-
mediately get that at the centre of σ′n(S(n)) we have S(n), hence it is a
seed.

Regularity is a bit more tricky because we have no exact description of
the tiles. What we show is that for any prototile t, S(n) appears in σ′n

n(t)
for any tile t. The idea is that for any tile t there is a interior vertex in
σ′n(t), around this vertex are at least three tiles of angles k0π

n
, k1π

n
and k2π

n

with 1 6 k0, k1, k2 6 n − 1. And in the kth image of an angle kπ
n

there is a
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Figure 4.11: Corners of metatiles.

portion of the star S(n) as shown in Figure 4.11. So in σ′n
max(k0,k1,k2)(σ′n(t))

there is the star S(n), since max(k0, k1, k2) 6 n − 1 and S(n) ⊂ σ′n(S(n))
then starn ⊂ σ′n

n(t), hence S(n) is a regular seed for σ′n. This concludes the
proof of Theorem 2 for odd n.

4.5 Construction for even n

The construction for even n is very similar to the one for odd n, much as
it was for the Sub Rosa substitutions. We will here mostly just state the
definitions and propositions. The only thing that is very different is the
proof of the primitivity of Planar Rosa substitutions.

4.5.1 Lifting and eigenvalues

Sub Rosa-like substitutions for even n are lifted exactly as the Sub Rosa
substitutions in Chapter 3.

Sub Rosa-like substitutions are defined as having the same sequence of
rhombuses and edges on the edges of the metatiles (up to translation and
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rotation). In particular this means as seen in Section 3.3 that Sub Rosa-like
expansions ϕ are lifted to linear applications of Zn.

Definition 4.5.1 (Decomposition of Rn for even n). We decompose Rn as
the orthogonal direct sum

Rn =
⊕

06k<n
2

Ekn ,

Ekn :=

〈(
cos( i(2k+1)π

n
)
)

06i<n
,
(

sin( i(2k+1)π
n

)
)

06i<n

〉
=

〈(
ei
i(2k+1)π

n

)
06i<n

〉
.

Proposition 4.5.1 (Sub Rosa-like expansion matrix for even n). For even
n, the Sub Rosa-like expansion ϕ of edge word Σ is a pseudo-circulant linear
application of the form

ϕn =


m0 −mn−1 . . . −m1

m1 m0 . . . −m2
... . . . . . . ...

mn−1 mn−2 . . . m0

 ,

with ∀i ∈ {0, . . . , n
2
}, mi = [Σ]i ,

and ∀i ∈ {1, . . . , < n
2
}, mn−i = − [Σ]i .

Definition 4.5.2 (The eigenvalue matrix for even n). Let us define the ma-
trix

Nn :=
(
ci cos( i(2j+1)π

n
)
)

06i,j<n
2

with ci =

{
1 when i = 0

2 otherwise
.

Proposition 4.5.2 (Eigenvalues of Sub Rosa-like expansions for even n).
For even n, the Sub Rosa-like expansion ϕ of edge word Σ admits the spaces
E jn for 0 6 j < n

2
as eigenspaces. We denote by λj the eigenvalue of ϕ on

eigenspace E jn. We note λ the vector of the eigenvalues. We have

[Σ] ·Nn = λ,

which we can reformulate as

λj = [Σ]0 +
∑

16i<n
2

[Σ]i 2 cos( i(2j+1)π
n

).
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4.5.2 Choosing the edge word

The idea here is the same as in the odd case, we define an optimal rhombus
frequency vector γ and its associated infinite billiard word ω. From this we
define a sequence of longer and longer edge words as prefj(ω)prefj(ω) and
we prove that in this sequence there is an edge word which defines a primitive
substitution which is planar for slope E0

n. We call Planar Rosa substitution
σ′n the substitution induced by the smallest suitable edge word.

Recall that here n is a fixed even integer. And that the important thing for
planarity is the abelianized edge word [Σ] and actually mostly the rhombus
frequencies.

Definition 4.5.3 (Optimal rhombus frequency vector for even n). Let us
define the optimal rhombus frequency vector γ̃ as

γ̃ :=
2γ

n
with γ :=

(
cos( iπ

n
)
)

06i<n
2

.

We call this vector the optimal rhombus frequency vector because of the
two following lemmas:

Lemma 4.5.1. With the eigenvalue matrix Nn and the optimal rhombus
frequency vector γ̃ we have

γ̃ ·Nn = (1, 0, . . . 0).

Proof. Remark that γ is very similar to the first column of Nn, the only
difference are the coefficients ci. The idea is that Nn is very similar to a
Discrete Cosine Transform matrix and is orthogonal (up to renormalization).
We will not give a full proof.

Lemma 4.5.2 (Approximating the optimal rhombus frequency for even n).
There exists ε > 0 such that for any x ∈ ]2, +∞[ and any Sub Rosa-like
substitution σ of edge word Σ and eigenvalues λj we have

d ([Σ] , xγ̃) < ε =⇒


|λ0| > 1

|λ1| < 1
...
|λn

2
−1| < 1

=⇒ σ is planar of slope E0
n.
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The proof is the same as for odd n.
As in the case of odd n, we will now define a sequence of edge words(

Σ(j)

)
j∈N such that

[
Σ(j)

]
is infinitely often arbitrarily close to the line 〈γ〉. To

approximate 〈γ〉 we use the billiard word of direction γ, for more background
on billiard words see [AMST94].

Definition 4.5.4 (Definition of the sequence of edge words for even n). Let
Γ be the line 〈γ〉 = {tγ, t ∈ R} and Γ 1

2
be the line 〈γ〉+ (1

2
, . . . 1

2
).

1. Let ω be the one-way-infinite billiard word of line Γ 1
2
starting on (1

2
, . . . 1

2
),

this means that we build the bi-infinite word ω by travelling the line and
adding a letter 2i each time it crosses an hyperplane of type Hi,k with

Hi,k := {x ∈ Rb
n
2
c | 〈x|~ei〉 = k},

with k ∈ N and ~ei a vector of the canonical basis of Rbn2 c. Let us stress
that when the line crosses an hyperplane of normal ~ei we add a letter
2i instead of the classical letter i, indeed the letters of ω will represent
rhombuses on the boundary of the substitution’s metatiles, and in that
case the rhombuses are bisected by the metatile’s edge through their an
even angle (and 0 represents a simple edge).

2. We define the sequence of edge words as
(
Σ(j)

)
j∈N as

Σ(j) := prefj(ω)prefj(ω),

where prefj(ω) is the prefix of length j of ω, and prefj(ω) is its mirror
image.

3. We define the sequence of Sub Rosa-like pseudosubstitutions (σ(j))j∈N
where σ(j) is the pseudosubstitution of edge worde Σ(j). We denote by
ϕ(j) the expansion associated to σ(j).

The main result of this section is the fact that in this sequence (σ(j))j∈N
there are primitive planar substitutions with the corner condition. We call
corner condition the fact that there is a π

n
rhombus on each side in each

corner, see Figure 4.12. This additional condition is necessary for the regular
fixpoint tiling (see Subsection 4.5.6).

Proposition 4.5.3. There exists j such that σ(j) is a primitive planar sub-
stitution of slope E0

n with the corner condition.
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We call the smallest such substitution Planar Rosa substitution.

Definition 4.5.5 (The Planar Rosa substitution for even n). The Planar
Rosa substitution σ′n is defined as σ′n = σ(j0) with

j0 = min{j ∈ N | ϕ(j) is planar of slope E0
n and

σ(j) is a primitive substitution with the corner condition}.

We cut this proposition in three lemmas:

Lemma 4.5.3 (Planarity of σ(j) for even n).

∃∞j ∈ N, ϕ(j) is planar of slope E0
n.

Lemma 4.5.4 (Tileability of σ(j) for even n).

∃N0 ∈ N, ∀j > N0, σ(j)is a substitution with the corner condition,

i.e. the metatiles defined by the edge word Σ(j) are tileable with the corner
condition.

Lemma 4.5.5 ( Primitivity of σ(j) for even n).

∃N1 ∈ N, ∀j > N1, if σ(j) is a substitution with the corner condition
then it is primitive.

We will prove these three lemmas in the next three Subsections. Note that
the definition of Planar Rosa substitution implies the second part of Theorem
2 for even n i.e. the fact that Planar Rosa tilings are substitution discrete
planes with local n-fold rotational symmetry. The first part of Theorem 2
(i.e. the regular fixpoint tiling) for even n is proved in Section 4.5.6.

4.5.3 Proof of Lemma 4.5.3 (planarity)

In this subsection we prove Lemma 4.5.3, recall that n is a fixed even integer.
The proof for planarity works exactly as for the odd case.

Definition 4.5.6 (Billiard line). Let (pi)i∈N be the sequence of points of Zn
2

associated to the billiard word ω with p0 = 0. This means that for all j,

ωj = 2i =⇒ pj+1 − pj = ~ei.
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Figure 4.12: The corner condition : the π
n
rhombus on each side in each

corner of each metatile for n = 6.

Proposition 4.5.4. The sequence (pi)i∈N approximates the line Γ, which
means that for any positive ε there are infinitely many points pi that are
ε-close to the line Γ

∀ε > 0, ∃∞i > 0, d(pi,Γ) < ε.

Corollary 4.5.1. The sequence (
[
Σ(i)

]
)i∈N approximates the line Γ, which

means that for any positive ε there are infinitely many abelianized edge word[
Σ(i)

]
that are ε-close to the line Γ

∀ε > 0, ∃∞i > 0, d(
[
Σ(i)

]
,Γ) < ε.

The corollary is just a rewriting of the fact that by definition
[
Σ(j)

]
= 2pj.

The proof for the proposition is the same as for the odd case (Proposition
4.4.4 page 122).

From this we get Lemma 4.5.3.

4.5.4 Proof of Lemma 4.5.4 (tileability)

In this subsection we prove Lemma 4.5.4, recall that n is a fixed even integer.
The proof for tileability is very similar to the odd case but there is one slight
difference, we have the additional corner condition: on each corner along
each meta-edge there is a π

n
rhombus (see Figure 4.12). Remark that for the

π
n
corner of the narrowest metatile we have only one π

n
rhombus, for every

other corner of metatiles we have two π
n
rhombuses: one on each side.

We recall that the edge word is Σ(j) = prefj(ω)prefj(ω) where ω is a
billiard word of direction γ. This means that in each corner of each metatile
we have a portion of cone with edge word prefj(ω) on both sides and with
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rhombus π
n
in the corner as in Figure 4.12. We have no problem of tileability

in these portions of cone due to the fact that the infinite cone with edge word
ω and with rhombus π

n
in the corner is tileable, this comes from the fact that

it appears in the multigrid dual tiling Pn(1
2
).

Let us fix j, with the counting functions fi(x) of the edge word Σ(j) as
defined in Section 4.3 we can apply Proposition 4.3.1 which means that if we
have :

• Σ(j) is 2-almost-balanced (Definition 4.3.2 page 107)

• for any even i1 < i2 and any position x1 such that at position x1 in the
edge word Σ(j) there is a rhombus i1 we have

f−1
|i2−2| ◦ fi2(x1) < f−1

|i1−2| ◦ fi1(x1),

then the metatiles defined by edge word Σ(j) are tileable which means that
σ(j) is a substitution.

Remark that here the counting function and the edge word do not take
into account the extra condition of having a π

n
rhombus on each side of each

corner. We will address that in the next few paragraphs.
Let us recall that Σ(j) is 2-almost-balanced (see Lemma 4.4.6), so we

only need to prove the second condition which we split between the first half
x1 < j and the second half x1 > j.

The first half: the corners

As explained above, the inequality in the first half of the edge word is due
to the fact that the infinite cone of angle π

n
with edge word ω on both sides

is tileable because it appears in the multigrid tiling Pn(1
2
), see Section 2.6

page 43 for a definition of multigrids and see Chapter 5 page 144 for the
proof of the fact that Pn(1

2
) is a rhombus tiling with global 2n-fold rotational

symmetry.

Lemma 4.5.6 (The infinite cone is tileable). The infinite cone of angle π
n

and edge word ω on both sides is tileable with rhombus tiles.

Proof. In the multigrid Pn(1
2
) the sequence ω of edges and rhombuses appears

on the horizontal half line R+, indeed in the multigrid Gn(1
2
) the horizontal

half line R+ crosses either vertical grid lines (which correspond in the dual
tiling to edges on the horizontal half line) or crossing points of two grid lines
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H(ζ i, 1
2
) ∩H(ζn−i, 1

2
) with ζ = eiπ

n which corresponds to a rhombus of angle
2iπ
n
. Edges appears in positions I0 with

I0 := {k − 1
2
, k > 1},

and rhombuses of angle 2iπ
n

appear in position Ii with

Ii =

{
k − 1

2

cos( iπ
n

)
, k > 1

}
.

These positions are exactly the coordinates of the intersection of the line Γ 1
2

with the hyperplanes H(i, k) (recall the Definition of ω as the billiard word
of line Γ 1

2
), so indeed ω appears on the horizontal half-line in Pn(1

2
).

By global 2n-fold rotational symmetry of Pn(1
2
) we get that ω also appears

on the rotated half line ζR. So the cone of angle π
n
and edge word ω on both

sides indeed appears in Pn(1
2
).

The second half: the middle

Here the same proof as for odd n works.
The main point is to define gi1,i2(x) for even i1 < i2 as

gi1,i2(x) := f−1
|i1−2| ◦ fi1(x)− f−1

|i2−2| ◦ fi2(x).

As the functions fi1 is determined by the edge word Σ(j) which approx-
imates the line Γ (though it approximates it only half as well as ω due to
the definition of the edgeword as Σ(j) = prefj(ω)prefj(ω)) so we get the
existence of a δ such that∣∣∣∣gi1,i2(x)− x

(
γi′1
γi′′1
−

γi′2
γi′′2

)∣∣∣∣ < 2δ +
δ‖γ‖
γi′′1

+
δ‖γ‖
γi′′2

,

with i′1 := i1
2
, i′′1 := |i′1 − 2|, i′2 := i2

2
and i′′2 := |i′2 − 2|.

With γ =
(
cos( iπ

n
)
)

06i<n
2

and i1 < i2 we have

γi′1
γi′′1
−

γi′2
γi′′2

> 0,

so we can define N0 as in the odd case.
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For x > N ′0 we have gi1,i2(x) > 0 for any i1 < i2 with

N ′0 := max
i1<i2

2δ + δ‖γ‖
γi′′1

+ δ‖γ‖
γi′′2

γi′1
γi′′1
−

γi′2
γi′′2

 .

Remark that in the definition of N ′0 in the max it is implicit that i1 and i2
are edges or rhombus types, so they are even numbers between 0 and n− 2.
This means that N ′0 is a maximum of a finite set of real numbers, which
means that it is indeed a real number (and not infinity).

The corner condition: the π
n
rhombuses in the corners

There are two ways to prove that the metatiles are tileable in such a way
that there is a π

n
rhombus on each side in each corner: we can either modify

the framework we introduced to prove tileability to adapt to this case, or
we can start from the tileability of the meta-tiles without this condition and
look at the conditions on the Kenyon matching to ensure that it is possible
to have a π

n
rhombus on each side in each corner.

Since the framework we introduced for tileability in Section 4.3 is quite
difficult to modify (and to re-prove all the results) we will adopt the second
approach. However we could just consider that the first two letters in the
edge-word are merged and not re-prove all the results, we still would have
the fact that gi1,i2(x) > 0 for x > N0 for some N0 (possibly a greater value
than the N0 without the condition) and we would still have the tileability in
the corners from the fact that in the multigrid dual tiling Pn(1

2
) we have a

star of narrow rhombuses at the centre so we have the infinite cone with π
n

rhombus on each sides of the corner.
For the sake of completeness we will still present the second approach.

For the metatiles to be tileable with a rhombus π
n
on each side in each corner

it is sufficient to have, in the Kenyon matching, the fact that the chains that
leave from the first edge and from the first rhombus cross as in Figure 4.13

Let us consider the metatile corner kπ
n
. There are actually four cases:

1. 1 6 k < n
2
in which case both the edge 0 and the rhombus 2 match

to the adjacent side of the metatile. In that case the two chains cross
because 0 is matched to the first rhombus of type 2k and 2 to the first
rhombus of type 2k − 2. Since 2k > 2k − 2 we have that the first
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Figure 4.13: The chains in the corner for Planar Rosa 6.

occurence of 2k− 2 is before the first occurence of 2k in the edge word
Σ(j). Which means that the chains leaving the first 0 and the first 2
cross.

2. k = n
2
in which case the edge 0 matches to the opposite side of the

metatile and the rhombus 2 to the adjacent side of the metatile which
means that the chains leaving the first 0 and the first 2 cross.

3. k = n
2

+ 1 in which case both 0 and 2 match to the opposite side of
the metatile, but there is no edge parallel to 2 on the adjacent side of
the metatile. Which means that the first 2 is matched to the first 2
of the opposite side but the first 0 is not matched to the first 0 of the
opposite side so the chains cross.

4. n
2

+ 1 < k 6 n − 1 in which case both 0 and 2 match to the opposite
side of the metatile and both have parallel edges on the adjacent side
of the metatile. On the adjacent side, the edge direction 0 appears on
rhombuses 2k′ with k′ := n − k and the edge direction of 2 appears
on rhombuses 2(k′ + 1). Let us now look at where the chains of the
first 0 and the first 1 appear. On the adjacent side there are f2k′(2j)
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rhombuses of type 2k′ and f2(k′+1)(2j) rhombuses of type 2(k′ + 1)
because the length of the edge Σ(j) is 2j. So the first 0 is matched to
f−1

0 (f2k′(2j)+1) and the first 2 is matched to f−1
2 (f2(k′+1)(2j)+1). For

the two chains to cross we need

f−1
0 (f2k′(2j) + 1) > f−1

2 (f2(k′+1)(2j) + 1)

Now is the time we recall that since Σ(j) is defined as prefj(ω)prefj(ω)
the counting functions have a simple approximate value. More precisely
there exist a bound δ > 0 such that

|f−1
0 (f2k′(2j) + 1)− 2j

γk′

γ0

| 6 δ

|f−1
2 (f2(k′+1)(2j) + 1)− 2j

γk′+1

γ1

| 6 δ

So we have∣∣∣∣f−1
0 (f2k′(2j) + 1)− f−1

2 (f2(k′+1)(2j) + 1)− 2j

(
γk′

γ0

− γk′+1

γ1

)∣∣∣∣ 6 2δ

However with 0 < k′ < n
2
− 1 and γi = cos( iπ

n
) we have

γk′

γ0

− γk′+1

γ1

= cos(k
′π
n

)−
cos( (k′+1)π

n
)

cos(π
n
)

> 0

Indeed we have cos( (k′+1)π
n

) = cos(k
′π
n

) cos(π
n
)− sin(k

′π
n

) sin(π
n
) and with

0 < k′ < n
2
− 1 we get cos( (k′+1)π

n
) < cos(k

′π
n

) cos(π
n
).

Overall this means that there exists N ′′0 (which we can define in a
similar way as N ′0 in the previous subsection) such that for any j > N ′′0
the chains of the first 0 and the first 2 cross in every metatile corner of
angle k > n

2
+ 1

Overall we get the existence of N ′′0 such that for any j > N ′′0 if the
metatiles are tileable then they are tileable with a rhombus on each side in
every corner of every metatile.

Now take N0 = max(N ′0, N
′′
0 ) for any j > N0, σ(j) is a substitution with

a rhombus on each side of every corner of every metatile.
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4.5.5 Proof of Lemma 4.5.5 (primitivity)

In this subsection we prove Lemma 4.5.5, recall that n is a fixed even integer.
The proof of primitivity is very different than the proof for odd n, indeed

for odd n we only used the boundary of the metatiles because all rhombus
types appear in the edgeword in the odd case. However for the even case on
the boundary only the rhombuses with even angles appear in the edge-word.
So we will give a proof that needs the interior of the tiles.

What we will prove is that there exists N1 such that for any j > N1 if
σ(j) is a substitution (with π

n
rhombus on each side of each corner of every

metatile) then it is primitive of order 2. To prove that the first step is that
the π

n
rhombus appears in the image of any tile for our substitution since we

imposed it. The second step is that for the for j > N1 for some N1 the image
of the π

n
rhombus contains every tile in every orientation.

The idea is that in the infinite cone of angle π
n
and with ω on both sides

there are all the rhombus types in every orientation. This is simply due
to the fact that in the multigrid dual tiling Pn(1

2
) a rhombus type (and an

orientation) is the dual of a specific grid-line crossing, for example a rhombus
with sides ζ i and ζj is the dual of a crossing H(ζ i, 1

2
) ∩H(ζj, 1

2
), and in the

infinite cone every two grids cross. So in the infinite cone in the dual tiling
there are every rhombuses in all orientations.

Now for each rhombus and orientation (which we denote by t) we take
its position closest to the corner in the infinite cone and we look at the two
chains of rhombuses which cross on this rhombus, more specifically we look
at which positions on the edge ω these chain enter the cone. Now denote by
jt the maximum of the four positions (of entry of the chains that cross at t).
For any j > jt, if the metatile of angle π

n
and of edge word Σ(j) is tileable

then it contains the rhombus and orientation t because the Kenyon matching
of the metatile contains a crossing that forces rhombus t. With T the set of
all rhombus prototiles (in every orientation) we define

N1 := max
t∈T

jt.

From that we get that for any j > N1, if σ(j) is a substitution (with a kπ
n

rhombus on each side in every corner of every metatile) then it is primitive
of order 2.

141



Figure 4.14: The narrowest metatile for Planar Rosa 6 (i.e. metatile of angle
π
6
).

4.5.6 Regular fixpoint tiling

Here we complete the proof of Theorem 2 for even n. Just as in the odd case,
the one thing to prove is that the star S(n) is indeed a regular seed for σ′n.

The fact that S(n) is a seed is straightforward, indeed in the definition of
σ′n we have the fact that on the edges of the metatiles there is a sequence of
unit edges and bisected rhombuses starting by a unit edge. This means that
in the π

n
angle of the metatile we have one rhombus of angle π

n
as shown in

Figure 4.14. From that we immediately get that at the centre of σ′n(S(n))
we have S(n), hence it is a seed.

Regularity is a bit more tricky because we have no exact description of
the tiles. What we show is that for any prototile t, S(n) appears in σ′n

1+n
2 (t)

for any tile t. The idea is that for any tile t there is a interior vertex in
σ′n(t), around this vertex are three tiles of angles k0π

n
, k1π

n
and k2π

n
with

1 6 k0, k1, k2 6 n − 1. And in the
⌈
k
2

⌉th image of an angle kπ
n

there is a
portion of the star S(n) as shown in Figure 4.11. So in σ′n

k3(σ′n(t)) there
is the star S(n), with k3 = max(

⌈
k0
2

⌉
,
⌈
k1
2

⌉
,
⌈
k2
2

⌉
) 6 n

2
. From this we get

that σ′n
1+n

2 (t) contains S(n), which means than S(n) is a regular seed. This
concludes the proof of Theorem 2 for even n.
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Figure 4.15: Corners of metatiles.
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Chapter 5

Regular n-fold multigrids and
their dual tilings

In this chapter we present our result on multigrids, their dual tilings and
the link with the substitution planar tilings presented in Chapter 4, these
results were submitted and accepted to Automata2021 [Lut21a]. Recall that
the definitions for multigrids and their dual tilings can be found in Section
2.6 page 43.

5.1 Main result
The main result of this chapter is on the properties of some specific n-fold
multigrid dual tilings.

Theorem 3 ( [Lut21a]).

1. For any n > 4 the n-fold multigrid dual tiling Pn(1
2
) is a quasiperiodic

rhombus cut-and-project tiling with global 2n-fold rotational symmetry.

2. For any odd n > 5 the n-fold multigrid dual tiling Pn( 1
n
) is a quasiperi-

odic rhombus cut-and-project tiling with global n-fold rotational symme-
try.

Theorem 3 is actually a corollary of a more technical result on the regu-
larity of n-fold multigrids.

Theorem 16 ( [Lut21a]).
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1. for any n > 3 and any non-zero rational offset r ∈ Q∩ ]0, 1[ the n-fold
multigrid Gn(r) is regular

2. for any odd n > 3 and any tuple of non-zero rational offsets γ =
(γi)06i<n ∈ (Q ∩ ]0, 1[)n the n-fold multigrid Gn(γ) is regular

See Figures 5.1 and 5.3 or Chapter 6 page 157 for examples of tilings
Pn(1

2
) and Pn( 1

n
), these figures have been produced using a SageMath pro-

gram which is available in [Lut21b]. Remark that Theorem 16 is not an exact
characterization of regular n-fold multigrid but rather an easily checked suf-
ficient condition for regularity. In [DB81] N. G. de Bruijn gives an exact
characterization of regular pentagrids in the specific Penrose case (sum of
the offsets is an integer), but this characterization is not easily generalized
to the non-Penrose case and to all n-fold multigrids.

The fact that the grids Gn(1
2
) are regular and that their dual tilings Pn(1

2
)

are rhombus tilings is used in Chapter 4 for the construction of the Planar
Rosa substitutions.

In Section 5.2 we show how Theorem 3 is a corollary of Theorem 16, in
Section 5.3 we present the link between the regularity of multigrids and some
trigonometric diophantine equations, in Section 5.4 we present the result of
Conway an Jones on trigonometric diophantine equations and in Section 5.5
we give the proof of Theorem 16.

5.2 From regular n-fold multigrids to tilings with
global n-fold symmetry

Let n > 3 be an integer. By Theorem 16 the multigrid Gn(1
2
) and Gn( 1

n
)

are regular, so their dual tilings Pn(1
2
) and Pn( 1

n
) are edge-to-edge rhombus

tilings. As mentioned in Section 2.6, the multigrid dual tilings are cut-and-
project [GR86] and therefore also uniformly recurrent.

Let us remark that the dualization process commutes with rotations
around the origin, so if a multigrid has some rotational symmetry around
the origin then so does its dual tiling.

So for odd n, Pn( 1
n
) has global n-fold rotational symmetry because the

grid also has global n-fold rotational symmetry, indeed applying the rotation
of angle 2π

n
centered on the origin to the multigrid sends ζkn to ζk+1

n and since
the offset is the same on all directions the rotated multigrid is the same as
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(a) 7-fold : P7(
1
7). (b) 8-fold : P4(

1
2). (c) 9-fold : P9(

1
9).

(d) 10-fold : P5(
1
2). (e) 11-fold : P11(

1
11). (f) 12-fold : P6(

1
2).

Figure 5.1: Central patch of the multigrid dual tiling with exactly n-fold
rotational symmetry for n ∈ {7, 8, 9, 10, 11, 12}.

the original one. However this does not hold for even n since in that case we
chose ζn = eiπ

n so we have ζnn = eiπ = −1 = −ζ0
n so the grid of offset 1

n
for

even n > 4 does not have any rotational symmetry.
Also for odd n, Pn(1

2
) has global 2n-fold rotational symmetry because the

image of ζ0
n by the rotation of angle π

n
is

ei
π
n = −ei

(n+1)π
n = −ei

2dn2 eπ
n = −ζd

n
2 e

n

so with 1− 1
2

= 1
2
(i.e. the offset in direction ζ in and in its reverse direction−ζ in

is the same) we get global 2n-fold rotational symmetry for Gn(1
2
) and Pn(1

2
).

For even n we use also the fact that with offset 1
2
we get that the offset along

ζ in is the same as along the opposite direction −ζ in together with ζn = ei
π
n

which means that ζn+i
n = −ζ in to get global 2n-fold rotational symmetry for

Gn(1
2
) and Pn(1

2
).
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When we combine these with the crystallographic restriction which im-
plies that for any n > 4 these tilings are non-periodic we get Theorem 3.
Remark that for even n, Pn(1

2
) has global 2n-fold rotational symmetry and

Pn
2
(1

2
) has exactly n-fold global rotational symmetry. So for any n there ex-

ists a tiling with exactly n-fold global rotational symetry, see the examples
for n ∈ {7, 8, 9, 10, 11, 12} in Figure 5.1, and for n = 23 in Figure 5.3.

Remark also that for odd n, for any r ∈ Q ∩ ]0, 1[ the multigrid Gn(r)
is regular and the multigrid dual tiling Pn(r) has global n-fold rotational
symmetry, except the specific case r = 1

2
that has global 2n-fold rotational

symmetry. The choice of r = 1
n
is mainly due to the fact that the canonical

Penrose rhombus tiling is P5(1
5
) so Pn( 1

n
) is in that sense a generalization of

the canonical Penrose rhombus tiling.
Note that Theorem 3 is stated for n > 3 because for n = 3 the multigrid

dual tilings with offset 1
2
and 1

3
are periodic.

5.3 Regularity of n-fold multigrids and trigono-
metric equations

In this section we present the link between the regularity or singularity of
n-fold multigrids and some trigonometric equations.

Proposition 5.3.1 (Regularity of multigrids and trigonometric equations).
Let n ∈ N, and γ0, γ1, . . . γn−1 be offsets in [0, 1[. Assume that for any p, q
such that 0 < q < p < n and any r0 ∈ Z − γ0, rq ∈ Z − γq and rp ∈ Z − γp
we have either Inequation (5.1) when n is odd, or Inequation (5.2) when n
is even.

(n odd ) r0 sin 2(p−q)π
n

+ rp sin 2qπ
n
− rq sin 2pπ

n
6= 0 (5.1)

(n even ) r0 sin (p−q)π
n

+ rp sin qπ
n
− rq sin pπ

n
6= 0 (5.2)

Then the grid Gn(γ0, γ1, . . . γn−1) is regular.

Proof. We will prove this proposition by contradiction i.e. we assume a
grid is singular and we show that it implies the existance of r0, rp, rq such
that the Inequation (5.1) is contradicted if n is odd, and Inequation (5.2) is
contradicted if n is even.

We will actually prove it for odd n, the proof for even n is exactly the
same and it is only needed to replace the formula of ζkn which in the even
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Figure 5.2: Intersection of three lines (in a singular multigrid).

case is ei kπ
n instead of ei 2kπ

n , which means that in the angles we remove the
factor 2.

Let n be an odd integer and let γ0, γ1, . . . γn−1 ∈ [0, 1[ such that
Gn(γ0, γ1, . . . γn−1) is singular. This means that there exist z ∈ C at the
intersection of three lines, up to relabeling and rotation we chose to consider
it is at the intersection of H(ζ0

n, γ0), H(ζqn, γq) and H(ζpn, γp) for some 0 <
q < p < n, see Figure 5.2. This means that there exist k0, kq, kp ∈ Z such
that 

Re(z) = k0 − γ0

Re(z · ζ̄qn) = kq − γq
Re(z · ζ̄pn) = kp − γp

Write z = k0 − γ0 + iy, ζn = e
2iπ
n and rewrite k0 − γ0, kp − γp, kq − γq as

r0, rp, rq. Now we have
z = r0 + iy

r0 cos 2qπ
n

+ y sin 2qπ
n

= rq

r0 cos 2pπ
n

+ y sin 2pπ
n

= rp

Let us now cancel out the y terms by substituting the third line by sin 2pπ
n
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times the seconde equality minus sin 2qπ
n

times the third equality.
z = r0 + iy

r0 cos 2qπ
n

+ y sin 2qπ
n

= rq

r0(cos 2qπ
n

sin 2pπ
n
− cos 2pπ

n
sin 2qπ

n
) = rq sin 2pπ

n
− rp sin 2qπ

n

Now let us study the third line to simplify it.

r0 cos 2qπ
n

sin 2pπ
n
− r0 cos 2pπ

n
sin 2qπ

n
= rq sin 2pπ

n
− rp sin 2qπ

n

⇔ r0

(
cos 2qπ

n
sin 2pπ

n
− cos 2pπ

n
sin 2qπ

n

)
= rq sin 2pπ

n
− rp sin 2qπ

n

⇔ r0 sin 2(p−q)π
n

+ rp sin 2qπ
n
− rq sin 2pπ

n
= 0.

Overall we obtain

r0 sin 2(p−q)π
n

+ rp sin 2qπ
n
− rq sin 2pπ

n
= 0,

which is exactly the contradiction of Inequation (5.1).

In the next section we consider the solutions to these kind of trigonometric
equations.

5.4 Trigonometric diophantine equations
We call rational angles the set πQ. We consider now equations of the type

A cos(a) +B cos(b) + C cos(c) = 0 (5.3)

with a, b and c rational angles.
In the previous paragraph we had sine instead of cosine but we can always

convert sine to cosine, and we had A ∈ Z− γ for some real number 0 6 γ <
1 and similarly for B and C but now we will consider A,B and C to be
rationals.

Theorem 17 ( [CJ76]). Suppose we have at most four distinct rational an-
gles strictly between 0 and π

2
for which some rational linear combination of

their cosines has rational value but no proper subset has this property.
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Then the appropriate linear combination is proportional to one from the fol-
lowing list:

cos
(
π
3

)
= 1

2
(5.4)

− cos(ϕ) + cos
(
π
3
− ϕ

)
+ cos

(
π
3

+ ϕ
)

= 0 (0 < ϕ < π
6
) (5.5)

cos
(
π
5

)
− cos

(
2π
5

)
= 1

2
(5.6)

cos
(
π
7

)
− cos

(
2π
7

)
+ cos

(
3π
7

)
= 1

2
(5.7)

cos
(
π
5

)
− cos

(
π
15

)
+ cos

(
4π
15

)
= 1

2
(5.8)

− cos
(

2π
5

)
+ cos

(
2π
15

)
− cos

(
7π
15

)
= 1

2
(5.9)

cos
(
π
7

)
+ cos

(
3π
7

)
− cos

(
π
21

)
+ cos

(
8π
21

)
= 1

2
(5.10)

cos
(
π
7

)
− cos

(
2π
7

)
+ cos

(
2π
21

)
− cos

(
5π
21

)
= 1

2
(5.11)

− cos
(

2π
7

)
+ cos

(
3π
7

)
+ cos

(
4π
21

)
+ cos

(
10π
21

)
= 1

2
(5.12)

− cos
(
π
15

)
+ cos

(
2π
15

)
+ cos

(
4π
15

)
− cos

(
7π
15

)
= 1

2
(5.13)

See the original article [CJ76] for the proof. The proof is based on a more
general result on vanishing sums of roots of unity. And this is proved using
complex numbers and the theory of vanishing formal sums. If we adapt this
result for sum of three cosines that have value zero we get.

Corollary 5.4.1. Let a 6 b 6 c be rational angles strictly between 0 and π
2

and not all equal, and let A, B, C be non-zero rationals.
If A cos(a) +B cos(b) + C cos(c) = 0 then either

a = π
5

b = π
3

c = 2π
5

B = C = −A

or


0 < a < π

6

b = π
3
− a

c = π
3

+ a

B = C = −A

Proof. We just need to apply Theorem 17. First remark that there is no
solution for A cos(a)+B cos(b) = 0 with a and b distinct and strictly between
0 and π

2
, and A and B non zero. Now with 0 < a < b < c < π

2
, we have

either a combination of Equations (5.4) and (5.6) (first case) or Equation
(5.5) (second case).

And in the case that one of the angle is 0, we get the following.
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Corollary 5.4.2. Let a 6 b be rational angles strictly between 0 and π
2
and

not all equal, and let A, B, C be non-zero rationals.
If A cos(a) +B cos(b) = C then either

a = π
5

b = 2π
5

A = −B = 2C

or

{
a = b = π

3

A+B = 2C

Proof. Just as above we just apply Theorem 17.

5.5 Proof of Theorem 16
Here we use Proposition 5.3.1 and Corollary 5.4.1 to prove Theorem 16.

5.5.1 For odd n

First let us remark that in Theorem 16 the first statement when restricted
to odd n is a strict subcase of the second statement, so here we will prove
the second statement which is as follows: for any odd n > 3 and any tuple
of non-zero rational offsets γ = (γi)06i<n ∈ (Q ∩ ]0, 1[)n the n-fold multigrid
Gn(γ) is regular. We reformulate this with Proposition 5.3.1 as: for any
odd n > 3, for any 0 < p < q < n and any three non-zero rational offsets
γ0, γp, γq, for any r0 ∈ Z− γ0, rp ∈ Z− γp and rq ∈ Z− γq we have

r0 sin 2(p−q)π
n

+ rp sin 2qπ
n
− rq sin 2pπ

n
6= 0.

Actually we prove a slitghly reformulated version: for any odd n > 3, for any
0 < p < q < n and any three non-zero rationals r0, rp, rq ∈ Q\{0} we have

r0 sin 2(p−q)π
n

+ rp sin 2qπ
n
− rq sin 2pπ

n
6= 0.

To apply Corollary 5.4.1 we first need to translate the formula with sine and
with angles in [0, 2π[ as a formula with cosine and angles in

]
0, π

2

[
.

Lemma 5.5.1 (Sine and Cosine). For θ ∈ [0, 2π[ we have

sin(θ) = (−1)b
θ
πc cos

(
(−1)b

2θ
π c(
⌊
θ
π

⌋
π + π

2
− θ)

)
and (−1)b

2θ
π c(
⌊
θ
π

⌋
π + π

2
− θ) ∈

[
0, π

2

]
.
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Proof. This result is just a rewriting of :

• if 0 6 θ < π
2
then sin(θ) = cos(π

2
− θ) and (π

2
− θ) ∈

[
0, π

2

]
• if π

2
6 θ < π then sin(θ) = cos(θ − π

2
) and (θ − π

2
) ∈

[
0, π

2

]
• if π 6 θ < 3π

2
then sin(θ) = − cos(3π

2
− θ) and (3π

2
− θ) ∈

[
0, π

2

]
• if 3π

2
6 θ < 2π then sin(θ) = − cos(θ − 3π

2
) and (θ − 3π

2
) ∈

[
0, π

2

]

We define ε(θ) := (−1)b
θ
πc and ϕ(θ) := (−1)b

2θ
π c(
⌊
θ
π

⌋
π+ π

2
− θ). Remark

that this means that θ =
⌊
θ
π

⌋
π + π

2
− (−1)b

2θ
π cϕ(θ).

Let n, p, q be integers such that n is odd, n > 3 and 0 < q < p < n. By
contradiction suppose that there exists r0,rp and rq non-zero rationals such
that

r0 sin(2(p−q)π
n

) + rp sin(2qπ
n

)− rq sin(2pπ
n

) = 0.

By Lemma 5.5.1 we have

r0ε(
2(p−q)π

n
) cos(ϕ(2(p−q)π

n
)) + rpε(

2qπ
n

) cos(ϕ(2qπ
n

))− rqε(2pπ
n

) cos(ϕ(2pπ
n

)) = 0.

Which we reformulate as

r′0 cos(θ0) + r′p cos(θq) + r′q cos(θp) = 0

with r′0 := r0ε(
2(p−q)π

n
), r′p := rpε(

2qπ
n

), r′q := −rqε(2pπ
n

) and θ0 := ϕ(2(p−q)π
n

),
θq := ϕ(2qπ

n
), θp := ϕ(2pπ

n
).

Remark that for odd n and any 0 < k < n we have 2kπ
n

/∈ {0, π
2
, π, 3π

2
}, so

ϕ(2kπ
n

) /∈ {0, π
2
}. This implies that 0 < θ0, θp, θq <

π
2
.

Moreover for odd n we have that θ0, θp, θq are not all equal. By con-
tradiction if θ0 = θp = θq we have that 2pπ

n
, 2qπ
n
, 2(p−q)π

n
∈ ϕ−1({θ0}) =

{π
2
− θ0,

π
2

+ θ0,
3π
2
− θ0,

3π
2

+ θ0} which is impossible. So we have

r′0 cos(θ0) + r′p cos(θq) + r′q cos(θp) = 0

with non-zero rationals r′0, r′p, r′q and with three angles strictly between 0 and
π
2
and not all equal.
So we can apply Corollary 5.4.1 and we now have two cases:

1. {θ0, θp, θq} = {π
5
, π

3
, 2π

5
}
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2. {θ0, θp, θq} = {θ, π
3
− θ, π

3
+ θ} for some 0 < θ < π

6

Let us now show that both cases lead to a contradiction. In the first case we
have that {2pπ

n
, 2qπ
n
, 2(p−q)π

n
} = {θ1, θ2, θ3} with

θ1 ∈ ϕ−1({π
5
}) = {3π

10
, 7π

10
, 13π

10
, 17π

10
}

θ2 ∈ ϕ−1({π
3
}) = {π

6
, 5π

6
, 7π

6
, 11π

6
}

θ3 ∈ ϕ−1({2π
5
}) = { π

10
, 9π

10
, 11π

10
, 19π

10
}

This is impossible because by definition 2pπ
n

= 2qπ
n

+ 2(p−q)π
n

and we have no
θ1, θ2, θ3 as defined above such that one is the sum of the two other.

In the second case we have that {θ0, θp, θq} = {θ, π
3
− θ, π

3
+ θ} for some

0 < θ < π
6
. Now we use 2pπ

n
= 2qπ

n
+ 2(p−q)π

n
and by definition we have

2pπ
n

=
⌊

2p
n

⌋
π + π

2
− (−1)b

4p
n cθp =

⌊
2p
n

⌋
π + π

2
± θp

2qπ
n

=
⌊

2q
n

⌋
π + π

2
− (−1)b

4q
n cθq =

⌊
2q
n

⌋
π + π

2
± θq

2(p−q)π
n

=
⌊

2(p−q)
n

⌋
π + π

2
− (−1)b

4(p−q)
n cθ0 =

⌊
2(p−q)
n

⌋
π + π

2
± θ0

By assembling these two we get

(
⌊

2p
n

⌋
−
⌊

2q
n

⌋
−
⌊

2(p−q)
n

⌋
− 1)π + π

2
= ±θp ± θ0 ± θq

And with {θ0, θp, θq} = {θ, π
3
− θ, π

3
− θ} we get

(±θp ± θ0 ± θq) ∈ {±3θ,±θ,±2π
3
± θ}

However this is impossible since for 0 < θ < π
6
, we have(

Zπ + π
2

)
∩ {±3θ,±θ,±2π

3
± θ} = ∅

By contradiction we proved that for odd n, any n-fold multigrid with
non-zero rational offsets is regular.

5.5.2 For even n

Let us now prove the first statement of Theorem 16 for even n which is: for
any even n > 4 and any non-zero rational offset r ∈ Q ∩ ]0, 1[ the n-fold
multigrid Gn(r) is regular. We reformulate it using Proposition 5.3.1 as:
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for any even n > 4 and any non-zero rational offset r ∈ Q ∩ ]0, 1[, for any
0 < q < p < n and any r0 ∈ Z− r, rp ∈ Z− r and rq ∈ Z− r we have

r0 sin (p−q)π
n

+ rp sin qπ
n
− rq sin pπ

n
6= 0.

We will prove this by contradiction. Let n > 4 be an even integer and r be
a non-zero rational offset. Suppose that there exists p, q, r0, rp, rq with p, q
integers, 0 < q < p < n and r0 ∈ Z− r, rp ∈ Z− r and rq ∈ Z− r, such that

r0 sin (p−q)π
n

+ rp sin qπ
n
− rq sin pπ

n
= 0.

We apply Lemma 5.5.1 with the fact that since 0 < pπ
n
, qπ
n
, (p−q)π

n
< π we have

ε(kπ
n

) = 1 and ϕ(kπ
n

) = (−1)b
2k
n c(π

2
− θ) for k ∈ {p, q, (p− q)}. We obtain

r0 cos θ0 + rp cos θq − rq cos θp = 0

with θ0 = ϕ( (p−q)π
n

), θp = ϕ(pπ
n

) and θq = ϕ( qπ
n

). And since 0 < pπ
n
, qπ
n
, (p−q)π

n
<

π we have θ0, θp, θq ∈
[
0, π

2

[
. In particular since n is even we can have pπ

n
= π

2

which means that we can have θp = 0 (and also for θ0 or θq). Note also that
with n even (contrary to the odd case) we can have θ0 = θp = θq, for example
with n = 6, q = 2 and p = 4 we have θ0 = θp = θq = π

6
. Which means that

now we have a disjunction of four cases:

1. θ0 = θp = θq

2. 0 < θ0, θp, θq <
π
2
and not all equal

3. two of the angles are 0 and the other one is not

4. one of the angles is 0 and the other two are not

The first case reduces to (r0 + rp − rq) cos θ0 = 0 and with θ0 ∈
[
0, π

2

[
we have cos θ0 6= 0 so (r0 + rp − rq) = 0 but this is impossible because
(r0 + rp − rq) ∈ Z− r and 0 /∈ (Z− r) for r ∈ (Q ∩ ]0, 1[).

The second case is the same as the one discussed in Subsection 5.5.1
above, the main thing we used in the proof for odd n is the fact that 2pπ

n
=

2qπ
n

+ 2(p−q)π
n

but we have the same for even n with pπ
n

= qπ
n

+ (p−q)π
n

. So the
proof holds and this case is impossible.

The third case is impossible because for two angles to be 0, we need two
of {pπ

n
, qπ
n
, (p−q)π

n
} to be π

2
but this is impossible with 0 < q < p < n.
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The fourth case reduces to A cos a+B cos b = C with A,B,C ∈ Z−r ⊂ Q
so we can apply Corollary 5.4.2 and we get that either a = b = π

3
or a = π

5

and b = 2π
5
. The first subcase is impossible because {θ0, θp, θq} = {0, π

3
}

implies {pπ
n
, qπ
n
, (p−q)π

n
} ⊆ {π

6
, π

2
, 5π

6
} and this is incompatible with pπ

n
= qπ

n
+

(p−q)π
n

. The second subcase is also impossible for the same reason as (up to
interchanging θ0, θp and θq) we would have θ0 = 0, θp = π

5
and θq = 2π

5

which means that (p−q)π
n

= π
2
, pπ

n
∈ {3π

10
, 7π

10
} and qπ

n
∈ { π

10
, 9π

10
} and this is

incompatible with pπ
n

= qπ
n

+ (p−q)π
n

.
Note that only in the first case we use the fact that the offset are all the

same r ∈ Q∩]0, 1[, the three other case work for any non-zero rational offsets
as for the odd cases. And actually we could refine the condition because what
is important here is that 0 /∈ (Z−γ0−γq+γp) with γ0, γp and γq the rational
offsets. So for even n if we have a tuple of rational offsets γ = (γi)06i<n such
that for any distinct i, j, k we have γi−γj−γk 6= 0 then the multigrid Gn(γ)
is regular.
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Figure 5.3: A central patch of the multigrid dual tiling P23( 1
23

) with 23-fold
rotational symmetry.

156



Chapter 6

Examples of tilings

In this chapter we present examples of rhombus edge-to-edge tilings that
can be lifted in some Rn. Some of these tilings are discrete planes and
some are not, some of these tilings are substitution tilings and some are not
necessarily (no substitution was found for them). I have decided to classify
them by the dimension n to which we lift them (which means that they have
n edge directions and that they have at most 2n-fold rotational symmetry),
for simplicity we call them n-fold tilings.

Note that here we present specific tilings rather than necessarily tiling
spaces and that all the tilings we present have global n-fold or 2n-fold rota-
tional symmetry, in the figures the center of symmetry is at the center of the
figure.

In the following tilings the colours are not labels, they are just there to
help differentiate the different tile shapes and also to help recognize patterns.
The choice of colours for tilings is always complicated and the notion of good
choice of colours is highly subjective. The Sub Rosa tilings for n ∈ {4, 6, 7}
are in shades of grey, the Planar Rosa tilings (and Sub Rosa 5 because it is
equal to Planar Rosa 5) are in light “pastel” colours and the multigrid duals
are in stronger colours.

The n-fold multigrid dual tilings figures presented in this chapter were
computed using the SageMath program publicly available in [Lut21b].

In this chapter we also show experimental diffraction patterns that we
compute from fragments of the tilings, see Figures 6.10, 6.16, 6.23 and 6.34.

These diffraction patterns confirm that the n-fold multigrid dual tilings
(including Ammann-Beenker and Penrose) have pure-point diffraction pat-
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tern which was expected since they are canonical cut-and-project tilings.
The experimental diffraction patterns for the Planar Rosa tilings seem

to be essentially discrete which was expected since they are quasiperiodic
discrete planes. Given the size of the fragments (a few tens of thousands of
vertices) compared to the size of the substitution (a few hundred vertices in
the biggest metatiles) these experimental diffraction patterns are not conclu-
sive. Note also that the way we tile the interior of the Planar Rosa metatiles
affects the diffraction pattern, and especially when we use a “small” fragment
to compute the diffraction pattern.

The experimental diffraction patterns for the Sub Rosa tilings (for n 6= 5)
are comparatively “noisy” and do not seem to be essentially discrete : there
are bright peaks but a lot of small peaks around. The fact that there are
bright peaks even if the tilings are not discrete planes is probably due to the
fact that the Sub Rosa tilings are quasiperiodic (and even linearly recurrent)
so they still have some long-range order. Note also that the diffraction pat-
tern of a small fragment of any edge-to-edge rhombus tiling (even a random
tiling) has peaks, see for example the diffraction pattern of a fragment of a
random tiling with rhombus tiles Figure 6.1. So the peaks in the experimen-
tal diffraction patterns of Sub Rosa tilings might be due in big part to the
fact that we did not use large enough fragments.

(a) Fragment of 2000 vertices. (b) Fragment of 20000 vertices.

Figure 6.1: The diffraction patterns of two fragments of different size of the
same random tiling. Though there is no long-range order in this tiling, the
diffraction pattern of the small fragment has bright peaks.
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6.1 4-fold tilings
In this section we present three rhombus tilings which have 4 edge directions
and that we lift in R4.

The first tiling we present is the canonical Ammann-Beenker tiling which
has global 8-fold rotational symmetry and is both a tetragrid dual tiling
(hence a cut-and-project tiling) and a substitution tiling. The second tiling
we present is the canonical Sub Rosa 4 tiling which is a substitution tiling
with global 8-fold rotational symmetry but is not a discrete plane. The third
tiling we present is the Planar Rosa 4 tiling which is a substitution discrete
plane with global 8-fold rotational symmetry.

The Ammann-Beenker tiling and the Planar Rosa 4 tiling have the same
slope E0

4 . Note also that the Ammann-Beenker substitution is much smaller
than the Planar Rosa substitution which means that it is much easier to work
with, however the Ammann-Beenker substitution breaks the symmetries of
the tiles (the image of the square tile by the substitution does not have the
symmetries of the square, see Figure 6.2) which means that in essence the
Ammann-Beenker substitution is applied on labelled tiles (each square has an
orientation) whereas the Planar Rosa 4 substitution preserves the symmetries
of the tiles (see Figure 6.7).

6.1.1 Ammann-Beenker

The Ammann-Beenker (canonical) tiling was already presented in Section 2.8
page 52. In particular it is both the tetragrid or 4-fold multigrid dual tiling
P4(1

2
) and the fixpoint of the substitution σAB from the star S(4).

Figure 6.2: The Ammann-Beenker substitution.
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Figure 6.3: A fragment of the (canonical) Amman-Beenker tiling.
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6.1.2 Sub Rosa 4

The (canonical) Sub Rosa 4 tiling (see Figures 6.5 and 6.6) is the regular
fixpoint of the Sub Rosa substitution σ4 (see Figure 6.4) from the rosa R(4)
(or equivalently from the star S(4)) and is not a discrete plane.

Figure 6.4: The Sub Rosa substitution σ4.

The fact that it is not a discrete plane is stated in Theorem 1 and dis-
cussed and proved in Chapter 3, it is due to the fact that the underlying
expansion ϕ4 is strictly expanding along the full space R4. More precisely
ϕ4 has eigenspaces E0

4 and E1
4 with eigenvalues λ0 ≈ 6.83 and λ1 ≈ 1.17, for

more details on this see Section 3.5 page 91.
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Figure 6.5: A fragment of the (canonical) Sub Rosa 4 tiling.

Figure 6.6: A bigger fragment of the Sub Rosa 4 tiling.
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6.1.3 Planar Rosa 4

The (canonical) Planar Rosa 4 tiling is the regular fixpoint of the Planar
Rosa substitution σ′4 from the star S(4) and is discrete plane. See Figure 6.7
for the substitution σ′4 and see Figures 6.8 and 6.9 for the (canonical) Planar
Rosa 4 tiling.

Figure 6.7: The Planar Rosa 4 substitution σ′4.

The substitution σ′4 is defined by its edgeword Σ which is of the form
Σ(j) = prefj(ω)prefj(ω) with ω the infinite billiard word of direction γ =
(cos iπ

4
)06i<2. For more details see Subsection 4.5.2 page 132.

ω = 020200202020020200202020020200202002020200202002020 . . .

In Table 6.1 we present the edgewords Σ(j) of the candidates for σ′4. σ′4 is
the first one that is both planar and tileable as a primitive substitution with
the corner condition, for more details see Subsection 4.5.2.

Table 6.1: Edgeword, approximate eigenvalues, planarity and tileability of
candidates for σ′4.

Σ(j) λ0 λ1 Planar Tileable
00 2 2 No No

0220 4.83 -0.83 Yes No
020020 6.83 1.17 No Yes

02022020 9.66 -1.66 No No
0202002020 11.66 0.34 Yes Yes

So σ′4 is defined by its edgeword Σ(5) = 0202002020. See Figure 6.7 for
the substitution σ′4 and Figure 6.8 for the Planar Rosa 4 tiling.

Remark that the edgeword Σ(3) defines the Sub Rosa 4 substitution and
as discussed before it is not planar.
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Figure 6.8: A small central fragment of the Planar Rosa 4 tiling.

Figure 6.9: A bigger central fragment of the Planar Rosa 4 tiling
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6.1.4 Diffraction patterns of 4-fold tiling

In Figure 6.10 we show experimental diffraction patterns computed from
fragments of the Ammann-Beenker, Sub Rosa 4 and Planar Rosa 4 tilings.

(a) Ammann-Beenker.

(b) Sub Rosa 4. (c) Planar Rosa 4.

Figure 6.10: Experimental diffraction patterns from central fragments of 4-
fold tilings with 20000 vertices.
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The experimental diffraction pattern of the Ammann-Beenker tiling (Fig-
ure 6.10a) is pure-point and shows a strong long-range order which was ex-
pectd because it is a cut-and-project tiling.

The experimental diffraction pattern of the Planar Rosa 4 tiling (Figure
6.10c) seems to be essentially discrete and suggests that the Planar Rosa 4
tiling has long-range order.

The experimental diffraction pattern of the Sub Rosa 4 tiling (Figure
6.10b) does not seem to be essentially discrete (though there are some bright
peaks there are quite a lot a small peaks) which suggests that it has little
long-range order .

6.2 5-fold tilings
In this section we present three rhombus tilings which have 5 edge directions
and that we lift in R5. The first tiling we present is the Penrose rhombus
tiling which has global 5-fold rotational symmetry and is both a pentagrid
(5-fold multigrid) dual tiling and a susbtitution tiling, the second is the
Anti-Penrose rhombus tiling which has global 10-fold rotational symmetry
and is also a pentagrid but (to our knowledge) is not a substitution tiling,
the third tiling we present is both the Sub Rosa 5 and Planar Rosa 5 tiling
(both construction give the same substitution σ5 = σ′5 and same canonical
tiling) which is a substitution discrete plane with global 10-fold rotational
symmetry.

Note that all three tilings have the same slope E0
5 . Note also that the

Penrose substitution is much smaller than the Sub Rosa 5 (and Planar Rosa
5) substitution, however the Penrose substitution breaks the symmetries of
the tiles whereas the Sub Rosa 5 (and Planar Rosa 5) substitution preserves
the symmetries of the tiles.

6.2.1 Penrose

The canonical Penrose tiling was discussed details in Section 2.7 page 46, here
we will just recall that it can be defined as the pentagrid (5-fold multigrid)
dual tiling P5(1

5
). This tiling is cut-and-project, has global 5-fold rotational

symmetry and is also a substitution tiling.
Remark however that in the Penrose substitution (see Figure 2.31 page

50) the image of two parallel edges are not parallel and that the substitution
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does not preserve the symmetries of the tiles. This means that in essence
the substitution is applied on labelled tiles (and can not be applied to any
patch of tiles) and is hard to manipulate when lifted in R5 in the sense
that its expansion does not naturally lift to a linear application. No “nice”
substitution (in the sense that it would preserve the symmetries of the tile
and be easily lifted in R5) is known for the Penrose tiling.

Figure 6.11: The (canonical) Penrose tiling.

6.2.2 Anti-Penrose

The pentagrid dual tiling P5(1
2
) is sometimes called Anti-Penrose rhombus

tiling and is a cut-and-project tiling with global 10-fold rotational symmetry.
To our knowledge it is unknown whether it is a substitution tiling or not.

167



Figure 6.12: The Anti-Penrose tiling.

6.2.3 Sub Rosa 5

The Sub Rosa 5 tiling is a regular fixpoint for the Sub Rosa substitution σ5

from the rosa R(5) (or equivalently from the star S(5)) and is a discrete plane
of slope E0

5 . The fact that it is a discrete plane is stated in Theorem 1 and
discussed and proved in Chapter 3 and is due to the fact that the underlying
expansion ϕ5 is strictly expanding along E0

5 and strictly contracting along
the orthogonal subspace. The Sub Rosa expansion ϕ5 has two 2-dimensional
eigenspaces E0

5 and E1
5 and one 1-dimensional eigenspace ∆ with eigenvalues

λ0, λ1 and λ∆. We have:

|λ0| ≈ 9.96 |λ1| ≈ 0.90 λ∆ = 0.

168



Figure 6.13: The Sub Rosa 5 substitution σ5.

The substitution σ5 is represented in Figure 6.13 and a fragment of the Sub
Rosa 5 tiling is represented in Figure 6.14.

Figure 6.14: The Sub Rosa 5 tiling.
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6.2.4 Planar Rosa 5

The Planar Rosa 5 tiling is the regular fixpoint of the Planar Rosa substitu-
tion σ′5 from the star S(5) and is discrete plane.

The substitution σ′5 is defined by its edgeword Σ which is of the form
Σ(j) = prefj(ω)prefj(ω) with ω the infinite billiard word of direction γ =

(cos (2i+1)π
10

)06i<5. For more details see Section 4.4 page 118.

ω = 1313113113131131131311313113113131131311311313113113131131 . . .

In Table 6.2 we show the edgewords Σ(j) of the candidates for σ′5. σ′5 is
the first one that is both planar and tileable as a primitive substitution.

Table 6.2: Edgeword, approximate eigenvalues, planarity and tileability of
candidates for σ′5.

Σ(j) |λ0| |λ1| λ∆ Planar Tileable
11 3.80 2.35 0 No No

1331 4.16 1.45 0 No No
131131 9.96 0.90 0 Yes Yes

So actually σ′5 is defined as having edge word 131131 which is the same as
the edgeword of the Sub Rosa substitution σ5 presented in Figure 6.13. We
can therefore define it as identical to Sub Rosa 5 (see Figure 6.14), however
any way of tiling the Sub Rosa-like metatiles would work.
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Figure 6.15: A bigger fragment of the (canonical) Sub Rosa 5 tiling.

6.2.5 Diffraction patterns of 5-fold tilings

In Figure 6.16 we show experimental diffraction patterns computed from
fragments of the Penrose, Anti-Penrose and Sub Rosa 5 tilings, recall that
Planar Rosa 5 and Sub Rosa 5 are the same tiling.

The Penrose and the Anti-Penrose tilings have pure-point diffraction pat-
terns and the Sub Rosa 5 / Planar Rosa 5 tiling seems to have essentially
discrete diffraction pattern.

This illustrates the fact that the Penrose and Anti-Penrose tilings which
are canonical cut-and-project have strong long-range order and the Sub Rosa
5 / Planar Rosa 5 tiling which is a quasiperiodic discrete plane also has long-
range order.
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(a) Penrose. (b) Anti-Penrose.

(c) Sub Rosa 5 and Planar Rosa 5.

Figure 6.16: Experimental diffraction patterns from central fragments of 5-
fold tilings with 30000 vertices.
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6.3 6-fold tilings
In this section we present 3 rhombus tilings which have 6 edge directions and
which we lift in R6.

The first tiling we present is the 6-fold multigrid dual tiling P6(1
2
) which

is cut-and-project and has global 12-fold rotational symmetry however to our
knowledge it is not a substitution tiling, the second tiling we present is the
(canonical) Sub Rosa 6 tiling which is a substitution tiling with global 12-fold
rotational symmetry however it is not a discrete plane, and the third tiling
we present is the (canonical) Planar Rosa 6 tiling which is a substitution
discrete plane with global 12-fold rotational symmetry.

Note that P6(1
2
) and the (canonical) Planar Rosa 6 tiling have the same

slope E0
6 .

6.3.1 P6(
1
2)

The tiling P6(1
2
) in Figure 6.17 is a cut-and-project rhombus tiling with 12-

fold rotational symmetry.

Figure 6.17: P6(1
2
).
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6.3.2 Sub Rosa 6

Figure 6.18: The σ6 substitution.

Figure 6.19: A small central fragment of the Sub Rosa 6 tiling.

The Sub Rosa 6 tiling of Figure 6.19 is defined as the fixpoint tiling of
substitution σ6 represented in Figure 6.18 from the rosa R(6) (or equivalently
from the star S(6)). This substitution and its tilings are not planar, indeed
the underlying expansion ϕ6 is expanding on the whole space R6 more pre-
cisely on eigenspaces E0

6 ,E1
6 and E2

6 it has eigenvalues λ0 ≈ 14.93, λ1 = 2 and
λ2 ≈ 1.07. For more details see Section 3.5 page 91.
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Figure 6.20: A bigger central fragment of the Sub Rosa 6 tiling.

6.3.3 Planar Rosa 6

The Planar Rosa 6 tiling in Figure 6.22 is defined as the fixpoint tiling of
substitution σ′6 represented in Figure 6.21 from the star S(6). By definition
of σ′6 this tiling is a discrete plane and it has 12-fold rotational symmetry.

The substitution σ′6 is defined by its edgeword Σ which is of the form
Σ(j) = prefj(ω)prefj(ω) with ω the infinite billiard word of direction γ =
(cos iπ

6
)06i<3. For more details see Subsection 4.5.2 page 132.

ω = 024020240204202040202402024020420204020240204202042002 . . .

In Table 6.3 we show the candidates for σ′6. σ′6 is the first one that is both
planar and tileable as a primitive substitution with the corner condition.

So σ′6 is defined by its edgeword Σ(14) = 0240202402042002402042020420.
See Figure 6.21 for the substitution σ′6 and Figure 6.22 for the Planar Rosa
6 tiling.
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Figure 6.21: The σ′6 substitution.

Figure 6.22: The Planar Rosa 6 tiling.
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Table 6.3: Edgeword, approximate eigenvalues, planarity and tileability of
candidates for σ′6.

Σ(j) λ0 λ1 λ2 Planar Tileable
00 2 2 2 No No

0220 5.46 2 −1.46 No No
024420 7.46 −2 0.54 No No

02400420 9.46 0 2.54 No No
0240220420 12.92 0 −0.93 Yes No

024020020420 14.93 2 1.07 No Yes
02402022020420 18.39 2 −2.39 No No

0240202442020420 20.39 −2 −0.39 No No
024020240042020420 20.39 0 1.61 No Yes

02402024022042020420 25.85 0 −1.86 No No
0240202402002042020420 27.85 2 0.14 No Yes

024020240204402042020420 29.86 −2 2.14 No No
02402024020422402042020420 33.32 −2 −1.32 No No

0240202402042002402042020420 35.32 0 0.68 Yes Yes

6.3.4 Diffraction patterns of 6-fold tilings

In Figure 6.23 we show experimental diffraction patterns computed from
fragments of the multigrid dual tiling P6(1

2
), the Sub Rosa 6 tiling and the

Planar Rosa 6 tiling.
The P6(1

2
) tiling has a pure-point diffraction pattern because it is a canon-

ical cut-and-project tiling and has strong long-range order.
The Planar Rosa 6 tiling seems to have an essentially discrete diffraction

pattern and the Sub Rosa 6 tiling does not seem to have an essentially discrete
diffraction pattern.

These two diffraction pattern are not quite as different as the diffraction
pattern of the 4-fold tilings, this might be due to the size of the fragment we
uses to compute these diffraction pattern, it would seem that with high-order
rotational symmetry and big substitutions we might need significantly bigger
fragments to have significatively different diffraction pattern.
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(a) P6(
1
2).

(b) Sub Rosa 6. (c) Planar Rosa 6.

Figure 6.23: Experimental diffraction patterns computed from central frag-
ments of 6-fold tilings with 30000 vertices.
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6.4 7-fold tilings
In this section we present five rhombus tilings that can be lifted in R7, this
means that they have 7 edge directions.

The first two tiling we present are the 7-fold multigrid dual tilings P7(1
7
)

and P7(1
2
) which are cut-and-project tilings with respectively 7-fold and 14-

fold global rotational symmetry but to our knowledge they are not substitu-
tion tilings. The third tiling we present is the (canonical) Sub Rosa 7 tiling
which is a substitution tiling with global 14-fold rotational symmetry but it
is not a discrete plane. The fourth tiling we present is the (canonical) Planar
Rosa 7 tiling which is a substitution discrete plane with 14-fold rotational
symmetry. The fifth and last tiling we present is an alternative substitution
discrete plane with 14-fold rotational symmetry that has a smaller scaling
factor than the Planar Rosa 7 substitution.

Note that P7(1
7
), P7(1

2
), the Planar Rosa 7 tiling and the alternative 7-fold

substitution discrete plane we present all have the same slope E0
7 .

6.4.1 P7(
1
7) and P7(

1
2)

The multigrid dual tilings P7(1
7
) and P7(1

2
) are quasiperiodic cut-and-project

rhombus tilings with respectively 7-fold and 14-fold global rotational sym-
metry.
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Figure 6.24: P7(1
7
).
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Figure 6.25: P7(1
2
).
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6.4.2 Sub Rosa 7

The Sub Rosa 7 tiling is the fixpoint tiling of substitution σ7 represented in
Figure 6.26 from the seed R(7). This tiling is has global 14-fold rotational
symmetry but is not a discrete plane because the underlying expansion ϕ7 is
strictly expanding along a subspace of dimension 4.

Figure 6.26: The susbstitution σ7.

As detailed in Section 3.4 page 80 we decompose R7 as the direct sum
E0

7 ⊕ E1
7 ⊕ E2

7 ⊕∆, where E i7 and ∆ are eigenspaces of ϕ7. ϕ7 has eigenvalues
λ0, λ1, λ2 and λ∆ with

|λ0| ≈ 19.69

|λ1| ≈ 2.01

|λ2| ≈ 0.53

λ∆ = 0.

So ϕ7 is strictly expanding along E0
7 ⊕ E1

7 and is therefore not planar.
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Figure 6.27: A fragment of the tiling Sub Rosa 7.

6.4.3 Planar Rosa 7

The Planar Rosa 7 tiling is the fixpoint tiling of substitution σ′7 represented
in Figure 6.28 from the seed S(7). By definition of σ′7 it is a discrete plane
and it has global 14-fold rotational symmetry.

The substitution σ′7 is defined by its edgeword Σ which is of the form
Σ(j) = prefj(ω)(prefj(ω)) with ω the infinite billiard word of direction
(cos (2i+1)π

14
)06i<3. For more details see Section 4.4 page 118.

ω = 13513135131135131531315131351313151313513153113513131531135 . . .

In Table 6.4 we show the candidates for σ′7. σ′7 is the first one that is both
planar and tileable as a primitive substitution.

So σ′7 is defined by its edgeword Σ = Σ(11) = 1351313513113153131531.
This substitution is huge: it has a scaling factor of approximately 35.48
and it has 22 bisected rhombuses on the edge of the metatiles. However we
can find a smaller planar substitution if we deviate from the Planar Rosa
construction.
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Figure 6.28: The susbstitution σ′7.

Table 6.4: Edgeword, approximate modulus of eigenvalue, planarity and
tileability of candidates for σ′7.

Σ(j) |λ0| |λ1| |λ2| λ∆ Planar Tileable
11 3.90 3.13 1.73 0 No No

1331 7.03 1.40 2.16 0 No No
135531 8.76 2.51 0.96 0 No No

13511531 12.66 0.62 2.70 0 No No
1351331531 15.79 1.11 1.20 0 No No

135131131531 19.69 2.01 0.53 0 No Yes
13513133131531 22.81 0.28 3.37 0 No No

1351313553131531 24.55 3.62 0.24 0 No No
135131351153131531 28.45 0.50 1.50 0 No Yes

13513135133153131531 31.58 2.23 2.40 0 No No
1351313513113153131531 35.48 0.90 0.67 0 Yes Yes

184



Figure 6.29: A small fragment of the tiling Planar Rosa 7.
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Figure 6.30: A bigger fragment of the tiling Planar Rosa 7.
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6.4.4 A smaller planar 7-fold Sub Rosa-like substitution

The Sub Rosa-like substitution σ′′7 in Figure 6.31 is primitive and is planar
of slope E0

7 . The alternative 7-fold tiling in Figure 6.32 is the regular fixpoint
of σ′′7 from the star S(7) and it is a substitution discrete plane of slope E0

7

with global 14-fold rotational symmetry.
σ′′7 is defined by its edge word Σ′′ = 135131531, it is indeed a Sub Rosa-like

substitution because it is defined by a palindromic edge word but remark that
it is a palindrome of odd length, we can actually define it from the billiard
word ω as Σ′′ = pref4(ω)ω4pref4(ω) = ω0ω1ω2ω3ω4ω3ω2ω1ω0.

The underlying expansion ϕ′′7 has eigenvalues λ0, λ1, λ2, λ∆ on eigenspaces
E0

7 , E1
7 , E2

7 and ∆ with

|λ0| ≈ 14.23 |λ1| ≈ 0.25 |λ2| ≈ 0.75 λ∆ = 0.

Figure 6.31: The substitution σ′′7 .

Remark also that the metatiles of σ′′7 do not have all the symmetries of
the tiles. The metatiles (π

7
, 6π

7
) and (5π

7
, 4π

7
) both have an octagonal pattern

at the very center which breaks the reflection symmetry around the long
diagonal, however they preserve the symmetry around the short diagonal.
The metatile (3π

7
, 4π

7
) has the symmetries of the tile.
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Figure 6.32: A smaller fragment of the fixpoint tiling of σ′′7 from the seed
S(7).
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Figure 6.33: A big fragment of the fixpoint tiling of σ′′7 from the seed S(7).
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6.4.5 Diffraction pattern of 7-fold tilings

In Figure 6.34 we show the experimental diffraction patterns computed from
fragments of these tilings.

The 7-fold dual tilings P7(1
7
) and P7(1

2
) have very similar pure-point

diffraction patterns (Figures 6.34a and 6.34b) which show their strong long-
range order.

The Planar Rosa 7 tiling and the σ′′7 fixpoint tiling seem to have essentially
discrete diffraction patterns (Figures 6.34d and 6.34e) which suggests that
they still have long-range order.

The Sub Rosa 7 tiling does not seem to have an essentially discrete diffrac-
tion pattern (Figure 6.34c), though there seem to be some peaks there are
more like clouds of small peaks.

Note that the Planar Rosa 7 tiling diffraction pattern and the σ′′7 fixpoint
tiling diffraction pattern have quite a lot of “noise” (i.e. small peaks around
the bright peaks), this is probably due to the fact that computed the diffrac-
tion pattern of relatively small fragments. Note that with small fragments
(relatively to the size of the substitution) the diffraction pattern the “noise”
of the diffraction pattern is strongly dependent on the way the interior of the
metatiles of the substitution are tiled.
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(a) P7(
1
7). (b) P7(

1
2).

(c) Sub Rosa 7.

(d) Planar Rosa 7. (e) σ′′7 fixpoint tiling.

Figure 6.34: Experimental diffraction patterns computed from central frag-
ments of 7-fold tilings with 30000 vertices.
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6.5 Other examples of multigrid dual tilings
Examples of multigrid dual tilings have been provided in Chapter 5 in Figures
5.1, 5.3 and previously in this chapter. We will give two additional examples
which are P10(1

2
) and P11(1

2
) in Figures 6.36 and 6.37.

The point of these figures is that they are the first two tilings Pn(1
2
) that

do not have the rosa pattern R(n) at their centre. For n < 10 the tiling
Pn(1

2
) contains the rosa pattern R(n) at its centre, however for n > 10 it is

no longer the case.
The rosa patterns are defined in Definition 3.1.1 page 68 and the rosa

patterns R(10) and R(11) are depicted in Figure 6.35. In the multigrid dual
tilings P10(1

2
) and P11(1

2
) the last layer (pink-red tiles) of the rosa R(n) is

missing.
Remark that this translates to Planar Rosa substitutions: for n > 10

we cannot have a portion of the rosa pattern R(n) in each corner of each
metatile. This is due to the fact that for n > 10 the infinite billiard word
does not start with the sequence 135 . . . (n− 2) (or 0246 . . . (n− 2) when n is
even) and therefore the sequence of rhombuses on the edges of the metatiles
is incompatible with a rosa pattern. This is the reason why we defined the
Planar Rosa tilings from the seed S(n) instead of R(n).

(a) R(10). (b) R(11).

Figure 6.35: The rosa patterns.
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Figure 6.36: P10(1
2
).

Figure 6.37: P11(1
2
).
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Chapter 7

Conjectures and future work

7.1 Planar Rosa substitution tilings
Conjecture 1. The Planar Rosa substitution tilings are cut-and-project sub-
stitution tilings with 2n-fold rotational symmetry.

In Theorem 2 we stated that the Planar Rosa substitution tilings are
substitution discrete planes with 2n-fold rotational symmetry. The difference
between a discrete plane of slope E and a cut-and-project tiling of slope E is
the properties of the window Ω which is the projection of the vertex set onto
the orthogonal subspace E⊥. For a cut-and-project tiling the vertex set V is
exactly the projection on E of set of point of Zn that project inside Ω

V = {πE(x), x ∈ Zn|πE⊥(x) ∈ Ω},

and for generic cut-and-project tilings Ω is the closure of its interior. For
discrete planes the only conditions are that all the vertices project inside Ω
and that Ω is bounded.

In our case which is not generic we decompose the orthogonal subspace
in a rational subspace R and a totally irrational subspace E ′ in which case
Ω takes finitely many values on R and for each value xi on R we denote
Ωi the projection of the points of Ω that have R value xi. The condition
is that each Ωi is the cloture of its interior, see [Har04] for more details on
this decomposition of the orthogonal subspace as a rational subspace and a
totally irrational subspace.

Tackling this conjecture raises many questions, the first of which is linked
to the fact that the Planar Rosa substitutions are defined by the boundary
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of the metatiles. This means that these substitution are defined up-to tiling
of the interior of the metatiles.

Let us remark that, for any metatile with a given boundary any two
possible tilings of this metatiles are flip-connected. This means that there
is a series of flips (a flip is the action of inverting or “punching” a cube, see
Figure 7.1 for an idea of what a flip is) that link one tiling to the other. This
result is stated in [Ken93] but the proof is flawed, however one can deduce a
valid proof from a similar result on discrete surfaces in [BFR08].

(a) The two possible types of flip.

(b) A sequence of flips on a patch of tiles.

Figure 7.1: Examples of flips and flip connected patches with the Penrose
rhombus tiles.

Question 7.1.1. Let σ and σ′ be two flip-connected substitutions with a
common good seed S such that the fixpoint tiling of σ from seed S is cut-and-
project. Is the fixpoint tiling of σ′ from seed S also cut-and-project?

Here flip-connected substitutions means that for any prototile t, σ(t) and
σ′(t) are flip-connected. This question comes naturally from the fact that
the Planar Rosa substitutions are defined up-to flip. If Question 7.1.1 has a
negative answer then Conjecture 1 will be much harder to address as there
will need to be an explicit definition of the interior of the tiles.
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Concerning the way we tile the interior of the Planar Rosa tiles, there is
a second conjecture:

Conjecture 2. The Planar Rosa substitutions can be defined in such a way
that substitution preserves the symmetries of the tiles i.e. the metatiles have
all the symmetries of the prototiles.

Let us first explain this conjecture a little bit: the Penrose substitution
and the Ammann-Beenker substitution do not preserve the symmetries of
the tiles (see Sections 2.7 page 46 and 2.8 page 52) indeed all the prototiles
are rhombuses and have reflection symmetry around both diagonals, whereas
the metatiles do not have these reflection symmetries. Which means that one
has to label the tiles to apply the substitution. On the other hand the Sub
Rosa substitutions and the Planar Rosa substitutions for small n preserve
the symmetries of the tiles (see the Sub Rosa and Planar Rosa examples in
Chapter 6). However no proof of that was given for all n.

Remark that in Chapter 6 the alternative 7-fold substitution does not
preserve the symmetries of the tiles, however the bigger Planar Rosa 7 sub-
stitution does preserve the symmetries of the tiles.

7.2 General substitution discrete planes
Conjecture 3. Let M ∈ Mn(Z) such that it admits a strictly expanding
stable subspace E of dimension 2 and is strictly contracting on the orthogonal
subspace E⊥.
There exists a substitution discrete plane of slope E.

Let us first remark that if E is the slope of a substitution discrete plane
for a rhombus substitution σ such that its expansion ϕ is lifted to an integral
linear application in Rn then E is a stable expanding subspace for ϕ and E⊥
is stable contracting for ϕ but not necessarily strictly (see Section 3.3 page
73).

Let us remark that for n = 3 this conjecture holds and it is due to a
theorem which comes from the dual application of a pisot substitution on
three letters. We reformulate it here to fit with the present context.

Theorem 18 ( [Fer07]). Let M ∈ M3(Z) such that it admits a strictly
expanding stable plane E and is strictly contracting on the orthogonal line
E⊥.
There exists a substitution discrete plane of slope E.
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The ideas for this result comes from [AI+01] (see Section 2.10 page 57 for
the relevant definitions for generalized substitutions and their dual applica-
tions), it was formalized in [Fer07] and refined in [Jol13].

Let us also remark that this conjecture is compatible with the existing
results on self-affine tilings and self-similar cut-and-project sets discussed in
Section 2.11 page 64. Indeed the idea in this conjecture is that the expansion
ϕ is lifted to M which is an integer matrix with a two dimensional strictly
expanding subspace E and a n− 2 dimensional strictly contracting subspace
E⊥. This means that ϕ has both the properties of Theorem 10 [Kwa16] and
Theorem 11 [MMP20].

In the case that M is the abelianization or 0-geometrical realization of
some generalized substitution σ of which the 2-geometrical realization is
a geometric substitution then the result follows. The thing is that given
the 0-geometrical realization it is hard to find a suitable σ of which the 2-
geometrical realization is a geometrical substitution or to prove that no such σ
exists. Our goal is that we would be able to find a second matrixM ′ that has
the same strictly expanding stable subspace E and is also strictly contract-
ing on the orthogonal subspace E⊥, and which would be the 0-geometrical
realization of some suitable σ.

197



List of Figures

1.1 A small fragment of the Penrose rhombus tilings without dec-
orations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Long-range order shown by diffraction patterns on tilings and
quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The hierarchical structure in the Penrose rhombus tiling. . . . 9

2.1 Examples of tiles : classical jigsaw tiles, polygons and circles
are tiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Chair tiling. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The Pinwheel tiling. . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Patches and patterns of the Chair tiling. . . . . . . . . . . . . 18
2.5 Balls of the Chair tiling. . . . . . . . . . . . . . . . . . . . . . 19
2.6 The 0-atlas for Penrose rhombus tiling up to translation and

rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Example of a square tile and the graphical representation of a

Wang tile with integer labels or with colours. . . . . . . . . . . 21
2.8 The Jeandel-Rao Wang tileset [JR21]. . . . . . . . . . . . . . . 22
2.9 A fragment of Jeandel-Rao tiling. . . . . . . . . . . . . . . . . 22
2.10 Weak and strong periodicity. . . . . . . . . . . . . . . . . . . . 23
2.11 Robinson tileset, classical version with square tiles cut and

notches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 The hierarchical structure of Robinson tilings. . . . . . . . . . 24
2.13 Examples of tilings with local 10-fold rotational symmetry. . . 25
2.14 The Penrose tilings are uniformly recurrent, here we picked a

pattern and highlighted all its occurrences (up to translation).
Remark that this pattern also appears in another orientation
but we did not highlight these occurrences. . . . . . . . . . . 26

2.15 Diffraction patterns. . . . . . . . . . . . . . . . . . . . . . . . 28
2.16 Words as tilings of the line by segments. . . . . . . . . . . . . 29

198



2.17 The Penrose substitution as a combinatorial substitution. . . . 31
2.18 Metatiles of the wide rhombus for the Penrose substitution. . . 32
2.19 Edge hierarchic substitution. . . . . . . . . . . . . . . . . . . . 33
2.20 The sequences of metatiles for the Chair substitution. . . . . . 34
2.21 Two slightly different fragments of regular tilings for the Chair

substitution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.22 A regular seed for the chair substitution and its images. . . . . 37
2.23 A Chair fixpoint tiling. . . . . . . . . . . . . . . . . . . . . . . 38
2.24 Discrete surfaces and collections of squares that are not dis-

crete surfaces in R3. . . . . . . . . . . . . . . . . . . . . . . . . 40
2.25 A sketch of what E +H looks like in dimension 4. . . . . . . . 42
2.26 Examples of multigrids. . . . . . . . . . . . . . . . . . . . . . . 44
2.27 Some possible intersection points in G5(γ) and their dual tiles . 45
2.28 Example of a regular multigrid and its dual tiling. . . . . . . . 46
2.29 Penrose rhombus tiles. . . . . . . . . . . . . . . . . . . . . . . 48
2.30 A patch with tilesets T0, T1 and T2. . . . . . . . . . . . . . . 49
2.31 Penrose substitutions. . . . . . . . . . . . . . . . . . . . . . . 50
2.32 Penrose substitution σ′′Pen with rhombus tiles split in triangles. 50
2.33 The seed for TPen and its images by σPen, see that the seed

appears at the center of its image by σ2
Pen. . . . . . . . . . . . 51

2.34 The canonical Penrose rhombus tiling as a multigrid dual. . . 51
2.35 The Ammann-Beenker tiles. . . . . . . . . . . . . . . . . . . . 53
2.36 The house condition on Ammann-Beenker tiles. . . . . . . . . 53
2.37 Ammann-Beenker substitution σAB. . . . . . . . . . . . . . . . 54
2.38 The seed for the Ammann-Beenker substitution σAB, remark

that it is at the centre of its image by σAB. . . . . . . . . . . . 55
2.39 On the left the projection of the canonical basis of R4 onto Pe,

and on the right onto Pc. . . . . . . . . . . . . . . . . . . . . . 60
2.40 Tiles on Pe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.41 The geometrical realization E2(σ) on Pe, the bold point repre-

sents the origin and in E2(σ)(0, 2∧3) the dashed line represents
the path from the origin to the tile. . . . . . . . . . . . . . . . 61

2.42 Iterating E2(σ) from (−e2, 2∧3), the bold point represents the
origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 The Sub Rosa substitution of order 5 represented up to ro-
tation, remark that there is the same sequence of rhombi on
each side of each metatile. . . . . . . . . . . . . . . . . . . . . 67

199



3.2 Rosa patterns R1
2 or R(n) for n ∈ {3, 4, 5, 6, 7}. . . . . . . . . . 68

3.3 The decomposition σ5 = ρ5 ◦ ϕ5 and the edge word Σ(5). . . 69
3.4 The definition of σ5 with the edge word Σ(5) on each edge and

a portion of R(5) in each corner of the metatiles. . . . . . . . 71
3.5 The substitution σ5 applied to the rosa R(5), remark that R(5)

appears at the centre of σ5(R(5)). . . . . . . . . . . . . . . . . 72
3.6 In these examples σa, σb and σc are such that the image of two

parallel edges are congruent, but σd is not. . . . . . . . . . . . 75
3.7 The metatiles of the Chair substitution decomposed as σk(t) =

σ ◦ σk−1(t) for k ∈ {2, 3, 4}. . . . . . . . . . . . . . . . . . . . 78
3.8 Decomposition of the path p0 → p1 as p0 → p′0 → p′1 → p1

in σ4(t) with p′0 and p′1 being corners of the metatiles in the
decomposition σ4(t) = σ ◦ σ3(t). . . . . . . . . . . . . . . . . . 79

3.9 Edge directions for Sub Rosa n with n = 5. . . . . . . . . . . . 81
3.10 To lift σ5 in R5 one only has to lift each edge direction ~vi to

the corresponding vector of the canonical basis ~ei. . . . . . . 82
3.11 Edges of rhombuses along the edge of the metatiles for n = 9. 84
3.12 Edge directions in Sub Rosa for even n = 6. . . . . . . . . . . 92
3.13 Lifting σ6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.14 The edges and rhombuses on the edge of the metatile for even

n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Star S(n) for n ∈ {5, 7, 9}. . . . . . . . . . . . . . . . . . . . . 102
4.2 Examples of polygons defined by Sub Rosa-like metatiles for

n ∈ {5, 6}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 In shaded two chains of rhombuses. . . . . . . . . . . . . . . . 105
4.4 A chain of rhombuses around the narrow corner of the metatile.109
4.5 A second chain of rhombuses around the narrow corner. . . . . 110
4.6 The two chains linking opposite sides. . . . . . . . . . . . . . . 112
4.7 Atlas of possible (but not necessarily valid) crossing types. . . 113
4.8 Ideas for the proof of Theorem 15. . . . . . . . . . . . . . . . . 123
4.9 Sketch of the metatile with v = prefj(ω) for some j. . . . . . . 125
4.10 Primitivity of σ(j) for n = 5 and j = 3. . . . . . . . . . . . . . 129
4.11 Corners of metatiles. . . . . . . . . . . . . . . . . . . . . . . . 130
4.12 The corner condition : the π

n
rhombus on each side in each

corner of each metatile for n = 6. . . . . . . . . . . . . . . . . 135
4.13 The chains in the corner for Planar Rosa 6. . . . . . . . . . . . 139

200



4.14 The narrowest metatile for Planar Rosa 6 (i.e. metatile of
angle π

6
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.15 Corners of metatiles. . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 Central patch of the multigrid dual tiling with exactly n-fold
rotational symmetry for n ∈ {7, 8, 9, 10, 11, 12}. . . . . . . . . 146

5.2 Intersection of three lines (in a singular multigrid). . . . . . . 148
5.3 A central patch of the multigrid dual tiling P23( 1

23
) with 23-

fold rotational symmetry. . . . . . . . . . . . . . . . . . . . . . 156

6.1 The diffraction patterns of two fragments of different size of
the same random tiling. Though there is no long-range order
in this tiling, the diffraction pattern of the small fragment has
bright peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 The Ammann-Beenker substitution. . . . . . . . . . . . . . . . 159
6.3 A fragment of the (canonical) Amman-Beenker tiling. . . . . . 160
6.4 The Sub Rosa substitution σ4. . . . . . . . . . . . . . . . . . . 161
6.5 A fragment of the (canonical) Sub Rosa 4 tiling. . . . . . . . . 162
6.6 A bigger fragment of the Sub Rosa 4 tiling. . . . . . . . . . . . 162
6.7 The Planar Rosa 4 substitution σ′4. . . . . . . . . . . . . . . . 163
6.8 A small central fragment of the Planar Rosa 4 tiling. . . . . . 164
6.9 A bigger central fragment of the Planar Rosa 4 tiling . . . . . 164
6.10 Experimental diffraction patterns from central fragments of

4-fold tilings with 20000 vertices. . . . . . . . . . . . . . . . . 165
6.11 The (canonical) Penrose tiling. . . . . . . . . . . . . . . . . . . 167
6.12 The Anti-Penrose tiling. . . . . . . . . . . . . . . . . . . . . . 168
6.13 The Sub Rosa 5 substitution σ5. . . . . . . . . . . . . . . . . . 169
6.14 The Sub Rosa 5 tiling. . . . . . . . . . . . . . . . . . . . . . . 169
6.15 A bigger fragment of the (canonical) Sub Rosa 5 tiling. . . . . 171
6.16 Experimental diffraction patterns from central fragments of

5-fold tilings with 30000 vertices. . . . . . . . . . . . . . . . . 172
6.17 P6(1

2
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.18 The σ6 substitution. . . . . . . . . . . . . . . . . . . . . . . . 174
6.19 A small central fragment of the Sub Rosa 6 tiling. . . . . . . . 174
6.20 A bigger central fragment of the Sub Rosa 6 tiling. . . . . . . 175
6.21 The σ′6 substitution. . . . . . . . . . . . . . . . . . . . . . . . 176
6.22 The Planar Rosa 6 tiling. . . . . . . . . . . . . . . . . . . . . . 176

201



6.23 Experimental diffraction patterns computed from central frag-
ments of 6-fold tilings with 30000 vertices. . . . . . . . . . . . 178

6.24 P7(1
7
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.25 P7(1
2
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.26 The susbstitution σ7. . . . . . . . . . . . . . . . . . . . . . . . 182
6.27 A fragment of the tiling Sub Rosa 7. . . . . . . . . . . . . . . 183
6.28 The susbstitution σ′7. . . . . . . . . . . . . . . . . . . . . . . . 184
6.29 A small fragment of the tiling Planar Rosa 7. . . . . . . . . . 185
6.30 A bigger fragment of the tiling Planar Rosa 7. . . . . . . . . . 186
6.31 The substitution σ′′7 . . . . . . . . . . . . . . . . . . . . . . . . 187
6.32 A smaller fragment of the fixpoint tiling of σ′′7 from the seed

S(7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.33 A big fragment of the fixpoint tiling of σ′′7 from the seed S(7). 189
6.34 Experimental diffraction patterns computed from central frag-

ments of 7-fold tilings with 30000 vertices. . . . . . . . . . . . 191
6.35 The rosa patterns. . . . . . . . . . . . . . . . . . . . . . . . . 192
6.36 P10(1

2
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.37 P11(1
2
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.1 Examples of flips and flip connected patches with the Penrose
rhombus tiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

202



List of Tables

3.1 The first values of the edge word Σ(n) for odd n. . . . . . . . 69
3.2 The first values of the edge word Σ(n) for even n. . . . . . . . 70
3.3 Approximate module of the eigenvalues of Sub Rosa expan-

sions for small n. . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4 Approximate values of the eigenvalues of Sub Rosa expansions

for small even n. . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Edgeword, approximate eigenvalues, planarity and tileability
of candidates for σ′4. . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Edgeword, approximate eigenvalues, planarity and tileability
of candidates for σ′5. . . . . . . . . . . . . . . . . . . . . . . . 170

6.3 Edgeword, approximate eigenvalues, planarity and tileability
of candidates for σ′6. . . . . . . . . . . . . . . . . . . . . . . . 177

6.4 Edgeword, approximate modulus of eigenvalue, planarity and
tileability of candidates for σ′7. . . . . . . . . . . . . . . . . . . 184

203



List of Definitions

Definition 2.1.1 (Tile, rhombus tiles, edges and vertices) . . . . . . 14
Definition 2.1.2 (Tiling) . . . . . . . . . . . . . . . . . . . . . . . . 15
Definition 2.1.3 (Subshift) . . . . . . . . . . . . . . . . . . . . . . . 16
Definition 2.1.4 (Prototiles and Congruence) . . . . . . . . . . . . . 16
Definition 2.1.5 (Edge-to-edge tiling) . . . . . . . . . . . . . . . . . 17
Definition 2.1.6 (Patch and Pattern) . . . . . . . . . . . . . . . . . 17
Definition 2.1.7 (Deceptions and Fragments) . . . . . . . . . . . . . 18
Definition 2.1.8 (Balls and local complexity) . . . . . . . . . . . . . 19
Definition 2.2.1 (Labelled or coloured tile) . . . . . . . . . . . . . . 21
Definition 2.2.2 (Tiling valid for local rules) . . . . . . . . . . . . . 21
Definition 2.2.3 (Label simplification and sofic tilings) . . . . . . . . 22
Definition 2.3.1 (Periodicity) . . . . . . . . . . . . . . . . . . . . . . 23
Definition 2.3.2 (Aperiodic subshifts and tilesets) . . . . . . . . . . 23
Definition 2.3.3 (Global and local n-fold rotational symmetry) . . . 25
Definition 2.3.4 (Uniform recurrence) . . . . . . . . . . . . . . . . . 26
Definition 2.3.5 (Quasiperiodic) . . . . . . . . . . . . . . . . . . . . 26
Definition 2.4.1 (Substitution on words) . . . . . . . . . . . . . . . 28
Definition 2.4.2 (Factors) . . . . . . . . . . . . . . . . . . . . . . . . 28
Definition 2.4.3 (Infinite words and substitution) . . . . . . . . . . . 29
Definition 2.4.4 (Substitution on tiles, combinatorial substitution) . 29
Definition 2.4.5 (Metatiles) . . . . . . . . . . . . . . . . . . . . . . . 30
Definition 2.4.6 (Degenerate and non-degenerate substitution) . . . 30
Definition 2.4.7 (Edge-hierarchic substitution) . . . . . . . . . . . . 31
Definition 2.4.8 (Vertex-hierarchic substitution) . . . . . . . . . . . 32
Definition 2.4.9 (Tilings regular for a substitution) . . . . . . . . . . 33
Definition 2.4.10 (Primitivity) . . . . . . . . . . . . . . . . . . . . . 34
Definition 2.4.11 (Limit set of a substitution) . . . . . . . . . . . . 36
Definition 2.4.12 (Fixpoints) . . . . . . . . . . . . . . . . . . . . . . 36

204



Definition 2.4.13 (Seed) . . . . . . . . . . . . . . . . . . . . . . . . . 36
Definition 2.5.1 (Discrete squares and segments) . . . . . . . . . . . 39
Definition 2.5.2 (Discrete surface) . . . . . . . . . . . . . . . . . . . 39
Definition 2.5.3 (Lift) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 2.5.4 (Discrete plane or planar tiling) . . . . . . . . . . . 40
Definition 2.5.5 (V-diameter, orthogonal subspace and alternate def-

inition for discrete planes) . . . . . . . . . . . . . . . . . . . . 41
Definition 2.5.6 (Cut-and-project tiling and window) . . . . . . . . 41
Definition 2.5.7 (Canonical cut-and-project tiling) . . . . . . . . . . 41
Definition 2.6.1 (Grid and multigrid) . . . . . . . . . . . . . . . . . 43
Definition 2.6.2 (n-fold multigrid) . . . . . . . . . . . . . . . . . . . 43
Definition 2.6.3 ( Grid function and dual tiling) . . . . . . . . . . . 44
Definition 2.6.4 (Regular multigrid) . . . . . . . . . . . . . . . . . . 45
Definition 2.7.1 (Penrose tilings) . . . . . . . . . . . . . . . . . . . . 47
Definition 2.7.2 (Canonical Penrose rhombus tiling) . . . . . . . . . 49
Definition 2.8.1 (Ammann-Beenker tilings) . . . . . . . . . . . . . . 52
Definition 2.8.2 (Canonical Ammann-Beenker tiling) . . . . . . . . . 54
Definition 2.9.1 (Canonical substitution tilings) . . . . . . . . . . . 55
Definition 2.10.1 (Generalized substitution) . . . . . . . . . . . . . 57
Definition 2.10.2 (Generalized k-surfaces) . . . . . . . . . . . . . . . 57
Definition 2.10.3 (Geometrical realizations of σ) . . . . . . . . . . . 58
Definition 2.10.4 (Poincaré map, dual geometric realization) . . . . 60

Definition 3.1.1 (Rosa pattern R(n)) . . . . . . . . . . . . . . . . . 68
Definition 3.1.2 (Edge word for odd n) . . . . . . . . . . . . . . . . 69
Definition 3.1.3 (Edge word for even n) . . . . . . . . . . . . . . . . 70
Definition 3.1.4 (Substitution σn) . . . . . . . . . . . . . . . . . . . 70
Definition 3.1.5 (Canonical Sub Rosa tiling Tn) . . . . . . . . . . . 72
Definition 3.3.1 (Planar substitution) . . . . . . . . . . . . . . . . . 75
Definition 3.4.1 (Decomposition of Rn for odd n) . . . . . . . . . . 81
Definition 3.4.2 (Abelianized edge word) . . . . . . . . . . . . . . . 82
Definition 3.4.3 (The eigenvalue matrix for odd n) . . . . . . . . . . 84
Definition 3.5.1 (Decomposition of Rn for even n) . . . . . . . . . . 92
Definition 3.5.2 (Abelianized edge word for even n) . . . . . . . . . 93
Definition 3.5.3 (The eigenvalue matrix for even n) . . . . . . . . . 95

Definition 4.1.1 (Star pattern S(n)) . . . . . . . . . . . . . . . . . . 101
Definition 4.1.2 (Canonical Planar Rosa tilings) . . . . . . . . . . . 102

205



Definition 4.3.1 (Counting function) . . . . . . . . . . . . . . . . . . 106
Definition 4.3.2 (Almost-balancedness ) . . . . . . . . . . . . . . . . 107
Definition 4.4.1 (Decomposition of Rn for odd n) . . . . . . . . . . 118
Definition 4.4.2 (The eigenvalue matrix for odd n) . . . . . . . . . . 118
Definition 4.4.3 (Optimal rhombus frequency vector for odd n) . . . 119
Definition 4.4.4 (Definition of the sequence of edge words for odd n) 120
Definition 4.4.5 (The Planar Rosa substitution for odd n) . . . . . . 121
Definition 4.4.6 (Billiard line) . . . . . . . . . . . . . . . . . . . . . 122
Definition 4.5.1 (Decomposition of Rn for even n) . . . . . . . . . . 131
Definition 4.5.2 (The eigenvalue matrix for even n) . . . . . . . . . 131
Definition 4.5.3 (Optimal rhombus frequency vector for even n) . . 132
Definition 4.5.4 (Definition of the sequence of edge words for even n)133
Definition 4.5.5 (The Planar Rosa substitution for even n) . . . . . 134
Definition 4.5.6 (Billiard line) . . . . . . . . . . . . . . . . . . . . . 134

206



List of Propositions

Proposition 2.4.1 (Primitivity and uniform recurrence) . . . . . . . 34
Proposition 2.4.2 (Primitivity and metatiles) . . . . . . . . . . . . . 35
Proposition 2.4.3 (Fixpoint from a seed) . . . . . . . . . . . . . . . 36
Proposition 2.6.1 (Dual of a regular grid) . . . . . . . . . . . . . . . 45

Proposition 3.1.1 (KR16) . . . . . . . . . . . . . . . . . . . . . . . . 70
Proposition 3.1.2 (KR16) . . . . . . . . . . . . . . . . . . . . . . . . 71
Proposition 3.3.1 (Planarity of primitive substitutions) . . . . . . . 74
Proposition 3.3.2 (Necessary condition for planarity) . . . . . . . . 76
Proposition 3.3.3 (Sufficient condition for non-planarity) . . . . . . 76
Proposition 3.3.4 (Sufficient condition for planarity) . . . . . . . . . 77
Proposition 3.4.1 (Eigenspaces of ϕn for odd n) . . . . . . . . . . . 82
Proposition 3.4.2 (Expansion matrix of ϕn for odd n) . . . . . . . . 83
Proposition 3.4.3 (Eigenvalues of the Sub Rosa expansion for odd n) 84
Proposition 3.4.4 (Value of the eigenvalues λj(n) for odd n) . . . . 87
Proposition 3.4.5 (Planarity of Sub Rosa substitutions σn for odd n) 90
Proposition 3.5.1 (Eigenspaces of ϕn for even n) . . . . . . . . . . . 92
Proposition 3.5.2 (Expansion matrix of ϕn for even n) . . . . . . . . 94
Proposition 3.5.3 (Eigenvalues of the Sub Rosa expansion for even n) 95
Proposition 3.5.4 (Value of the eigenvalues λj(n) for even n) . . . . 97
Proposition 3.5.5 (Non-planarity of Sub Rosa substitutions for even

n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Proposition 4.3.1 (Tileability) . . . . . . . . . . . . . . . . . . . . . 107
Proposition 4.4.1 (Expansion matrix of ϕ for odd n) . . . . . . . . . 118
Proposition 4.4.2 (Eigenvalues of Sub Rosa-like expansions for odd

n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Proposition 4.5.1 (Sub Rosa-like expansion matrix for even n) . . . 131

207



Proposition 4.5.2 (Eigenvalues of Sub Rosa-like expansions for even
n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Proposition 5.3.1 (Regularity of multigrids and trigonometric equa-
tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

208



List of Theorems

Theorem 1 (Fernique, Kari, L.2020) . . . . . . . . . . . . . . . . . . 10
Theorem 2 (Kari, L. 2020) . . . . . . . . . . . . . . . . . . . . . . . 11
Theorem 3 ( [Lut21a]) . . . . . . . . . . . . . . . . . . . . . . . . . 11

Theorem 4 ( [Ber66]) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Theorem 5 ( [Ber66]) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Theorem 6 (Crystallographic restriction) . . . . . . . . . . . . . . . 26
Theorem 7 (Harriss2004) . . . . . . . . . . . . . . . . . . . . . . . . 56
Theorem 8 ( [AFHI11]) . . . . . . . . . . . . . . . . . . . . . . . . . 60
Theorem 9 ( [Ei03]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Theorem 10 ( [Kwa16]) . . . . . . . . . . . . . . . . . . . . . . . . . 64
Theorem 11 ( [MMP20]) . . . . . . . . . . . . . . . . . . . . . . . . 65

Theorem 12 (KR16) . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Theorem 13 (Kenyon, 93) . . . . . . . . . . . . . . . . . . . . . . . 105
Theorem 15 (folk.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Theorem 16 ( [Lut21a]) . . . . . . . . . . . . . . . . . . . . . . . . . 144
Theorem 17 ( [CJ76]) . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Theorem 18 ( [Fer07]) . . . . . . . . . . . . . . . . . . . . . . . . . 196

209



Bibliography

[AA17] S. Akiyama and P. Arnoux. Substitution and Tiling Dynam-
ics: Introduction to Self-inducing Structures. Springer, 2017.
doi:10.1007/978-3-030-57666-0.

[AFHI11] P. Arnoux, M. Furukado, E. Harriss, and S. Ito. Algebraic
numbers, free group automorphisms and substitutions on the
plane. Transactions of the American Mathematical Society, 2011.
doi:10.1090/S0002-9947-2011-05188-3.

[AG86] M. Audier and P. Guyot. Al4mn quasicrystal atomic structure,
diffraction data and penrose tiling. Philosophical Magazine B,
1986. doi:10.1080/13642818608238966.

[AGS92] R. Ammann, B. Grünbaum, and G. C. Shephard. Ape-
riodic tiles. Discrete & Computational Geometry, 1992.
doi:10.1007/BF02293033.

[AI+01] P. Arnoux, S. Ito, et al. Pisot substitutions and rauzy fractals.
Bulletin of the Belgian Mathematical Society Simon Stevin, 2001.
doi:10.36045/bbms/1102714169.

[AMST94] P. Arnoux, C. Mauduit, I. Shiokawa, and J. Tamura. Complexity
of sequences defined by billiard in the cube. Bulletin de la Société
Mathématique de France, 1994. doi:10.24033/bsmf.2020.

[AP98] J. E. Anderson and I. F. Putnam. Topological invariants for sub-
stitution tilings and their associated c∗-algebras. Ergodic Theory
and Dynamical Systems, 1998. doi:10.1017/S0143385798100457.

[BDDG16] M. Baake and U. Damanik Davidand Grimm. What is aperiodic
order?, 2016. doi:10.1090/noti1394.

210

https://dx.doi.org/10.1007/978-3-030-57666-0
http://dx.doi.org/10.1090/S0002-9947-2011-05188-3
https://doi.org/10.1080/13642818608238966
https://doi.org/10.1007/BF02293033
http://dx.doi.org/10.36045/bbms/1102714169
https://dx.doi.org/10.24033/bsmf.2220
https://doi.org/10.1017/S0143385798100457
http://dx.doi.org/10.1090/noti1394


[Bee82] F. P. M. Beenker. Algebraic theory of non-periodic tilings of the
plane by two simple building blocks: a square and a rhombus.
1982.

[Ber66] R. Berger. The undecidability of the domino problem. American
Mathematical Soc., 1966.

[BFR08] O. Bodini, Th. Fernique, and É. Rémila. A characterization of
flip-accessibility for rhombus tilings of the whole plane. Informa-
tion and Computation, 2008. doi:10.1016/j.ic.2008.03.008.

[BG13] M. Baake and U. Grimm. Aperiodic Order: A Mathematical
Invitation. Cambridge University Press, 2013.

[BGL21] Nicolas Bedaride, Franz Gahler, and Ana G. Lecuona. Cohomol-
ogy groups for spaces of 12-fold tilings, 2021. arXiv:2012.00379.

[BNRR95] D. Beauquier, M. Nivat, E. Rémila, and M. Robson. Tiling fig-
ures of the plane with two bars. Computational Geometry, 1995.
doi:10.1016/0925-7721(94)00015-N.

[CJ76] J. Conway and A. Jones. Trigonometric diophantine equations
(on vanishing sums of roots of unity). Acta Arithmetica, 1976.
doi:10.4064/aa-30-3-229-240.

[Cul96] K. Culik. An aperiodic set of 13 wang tiles. Discrete Mathematics,
1996. doi:10.1016/S0012-365X(96)00118-5.

[DB81] N. G. De Bruijn. Algebraic theory of penrose’s nonperiodic tilings
of the plane. i and ii. Kon. Nederl. Akad. Wetensch. Proc. Ser.
A, 1981. doi:10.1016/1385-7258(81)90016-0.

[Ei03] H. Ei. Some properties of invertible substitutions of rank d, and
higher dimensional substitutions. Osaka Journal of Mathematics,
2003.

[Fer07] Th. Fernique. Pavages, Fractions Continues et Géométrie Dis-
crète. PhD thesis, université Montpellier II, 2007.

[FGH] D. Fretthlöh, F. Gähler, and E. Harriss. Tilings encyclopedia.
tilings.math.uni-bielefeld.de.

211

https://doi.org/10.1016/j.ic.2008.03.008
https://arxiv.org/abs/2012.00379
https://doi.org/10.1016/0925-7721(94)00015-N
https://dx.doi.org/10.4064/aa-30-3-229-240
https://doi.org/10.1016/S0012-365X(96)00118-5
https://dx.doi.org/10.1016/1385-7258(81)90016-0
https://tilings.math.uni-bielefeld.de/


[FO10] Th. Fernique and N. Ollinger. Combinatorial substitutions and
sofic tilings, 2010. arXiv:1009.5167.

[Fog02] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and
combinatorics. Lecture Notes in Mathematics. Springer, 2002.

[GHK13] F. Gähler, J. Hunton, and J. Kellendonk. Integral cohomology
of rational projection method patterns. Algebraic & Geometric
Topology, 2013. doi:10.2140/agt.2013.13.1661.

[GR86] F. Gahler and J. Rhyner. Equivalence of the generalised grid
and projection methods for the construction of quasiperiodic
tilings. Journal of Physics A: Mathematical and General, 1986.
doi:10.1088/0305-4470/19/2/020.

[GS87] B. Grünbaum and G. C. Shephard. Tilings and patterns. Courier
Dover Publications, 1987.

[GS98] C. Goodman-Strauss. Matching rules and substitution tilings.
Annals of Mathematics, 1998. doi:10.2307/120988.

[Har04] E. O. Harriss. On canonical substitution tilings. PhD thesis,
University of London, 2004.

[Har05] E. O. Harriss. Non-periodic rhomb substitution tilings that admit
order n rotational symmetry. Discrete & Computational Geome-
try, 2005. doi:10.1007/s00454-005-1175-1.

[HK03] B. Hasselblatt and A. Katok. A first course in dynamics: with a
panorama of recent developments. Cambridge University Press,
2003.

[Jol13] T. Jolivet. Combinatorics of pisot substitutions. TUCS Disser-
tations, 2013.

[JR21] E. Jeandel and M. Rao. An aperiodic set of 11 wang tiles. Ad-
vances in Combinatorics, Jan 2021. doi:10.19086/aic.18614.

[JV17] E. Jeandel and P. Vanier. The Undecidability of the Domino
Problem. CIRM, chaire Jean-Morlet, 2017.

212

https://arxiv.org/abs/1009.5167
https://dx.doi.org/10.2140/agt.2013.13.1661
https://dx.doi.org/10.1088/0305-4470/19/2/020
https://doi.org/10.2307/120988
https://doi.org/10.1007/s00454-005-1175-1
http://dx.doi.org/10.19086/aic.18614


[Kal05] P. Kalugin. Cohomology of quasiperiodic patterns and matching
rules. Journal of Physics A: Mathematical and General, 2005.
doi:10.1088/0305-4470/38/14/004.

[Kar96] J. Kari. A small aperiodic set of wang tiles. Discrete Mathematics,
1996. doi:10.1016/0012-365X(95)00120-L.

[Ken93] R. Kenyon. Tiling a polygon with parallelograms. Algorithmica,
1993. doi:10.1007/BF01228510.

[KL20] J. Kari and V. H. Lutfalla. Substitution planar tilings with n-fold
rotational symmetry, 2020. arXiv:2010.01879.

[KR16] J. Kari and M. Rissanen. Sub rosa, a system of quasiperi-
odic rhombic substitution tilings with n-fold rotational symmetry.
Discrete & Computational Geometry, 2016. doi:10.1007/s00454-
016-9779-1.

[Kwa16] J. Kwapisz. Inflations of self-affine tilings are integral algebraic
perron. Inventiones mathematicae, 2016. doi:10.1007/s00222-
015-0633-5.

[Lab19] S. Labbé. Substitutive structure of jeandel–rao aperiodic tilings.
Discrete & Computational Geometry, 2019. doi:10.1007/s00454-
019-00153-3.

[Lev86] L. A. Levin. Average case complete problems. SIAM Journal on
Computing, 1986. doi:10.1137/0215020.

[LM21] D. Lind and B. Marcus. An introduction to symbolic dynamics
and coding. Cambridge university press, 2021.

[Lut21a] V. H. Lutfalla. An Effective Construction for Cut-
And-Project Rhombus Tilings with Global n-Fold Ro-
tational Symmetry. In AUTOMATA 2021, 2021.
doi:10.4230/OASIcs.AUTOMATA.2021.9.

[Lut21b] V. H. Lutfalla. n-fold multigrid dual tilings, 2021. Software
doi:10.5281/zenodo.4698387.

[MMP20] Z. Masáková, J. Mazáč, and E. Pelantová. On generalized self-
similarities of cut-and-project sets, 2020. arXiv:1909.10753.

213

https://doi.org/10.1088/0305-4470/38/14/004
https://doi.org/10.1016/0012-365X(95)00120-L
https://dx.doi.org/10.1007/BF01228510
https://arxiv.org/abs/2010.01879
https://dx.doi.org/10.1007/s00454-016-9779-1
https://dx.doi.org/10.1007/s00454-016-9779-1
https://doi.org/10.1007/s00222-015-0633-5
https://doi.org/10.1007/s00222-015-0633-5
https://doi.org/10.1007/s00454-019-00153-3
https://doi.org/10.1007/s00454-019-00153-3
https://doi.org/10.1137/0215020
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.9
https://dx.doi.org/10.5281/zenodo.4698387
https://arxiv.org/abs/1909.10753


[Mon] T. Monteil. Against the hierarchy. Oral presentation.

[Moz89] S. Mozes. Tilings, substitution systems and dynamical sys-
tems generated by them. Journal d’analyse mathématique, 1989.
doi:10.1007/BF02793412.

[Pen74] R. Penrose. The role of aesthetics in pure and applied mathe-
matical research. Bull. Inst. Math. Appl., 1974.

[Pen79] R. Penrose. Pentaplexity a class of non-periodic tilings of the
plane. The mathematical intelligencer, 1979.

[PY13] I. Pak and J. Yang. Tiling simply connected regions with
rectangles. Journal of Combinatorial Theory, Series A, 2013.
doi:10.1016/j.jcta.2013.06.008.

[Rad94] C. Radin. The pinwheel tilings of the plane. Annals of Mathe-
matics, 1994. doi:10.2307/2118575.

[Rad97] C. Radin. Aperiodic tilings, ergodic theory, and rotations. NATO
ASI Series C Mathematical and Physical Sciences-Advanced
Study Institute, 1997.

[Rob71] R. M. Robinson. Undecidability and nonperiodicity for
tilings of the plane. Inventiones mathematicae, 1971.
doi:10.1007/BF01418780.

[Rob04] E. A. Robinson. Symbolic dynamics and tilings of rˆ d. In Pro-
ceedings of Symposia in Applied Mathematics, 2004.

[Sad08] Lorenzo Adlai Sadun. Topology of tiling spaces, volume 46. Amer-
ican Mathematical Soc., 2008.

[SAI01] Y. Sano, P. Arnoux, and S. Ito. Higher dimensional extensions
of substitutions and their dual maps. Journal d’Analyse Mathé-
matique, 2001. doi:10.1007/BF02790261.

[SBGC84] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn.
Metallic phase with long-range orientational order and no
translational symmetry. Physical review letters, 1984.
doi:10.1103/physrevlett.53.1951.

214

https://doi.org/10.1007/BF02793412
https://doi.org/10.1016/j.jcta.2013.06.008
https://doi.org/10.2307/2118575
https://dx.doi.org/10.1007/BF01418780
https://doi.org/10.1007/BF02790261
https://doi.org/10.1103/physrevlett.53.1951


[Sen96] M. Senechal. Quasicrystals and geometry. CUP Archive, 1996.

[ST11] J. E. S. Socolar and J. M. Taylor. An aperiodic hexago-
nal tile. Journal of Combinatorial Theory, Series A, 2011.
10.1016/j.jcta.2011.05.001.

[Thu90] W. P. Thurston. Conway’s tiling groups. The American Mathe-
matical Monthly, 1990. doi:10.1080/00029890.1990.11995660.

[Wik] Wikipedia contributors. Quasicrystals. [Online; accessed in april
2021].

215

https://doi.org/10.1016/j.jcta.2011.05.001
https://doi.org/10.1080/00029890.1990.11995660
https://en.wikipedia.org/wiki/Quasicrystal

	Introduction
	Tilings
	Geometrical tilings of the plane
	Local rules
	Order
	Substitutions
	Planarity
	The multigrid method
	Penrose rhombus tilings
	Ammann-Beenker tilings
	Canonical substitution tilings
	Generalized substitutions
	Expansions of self-similar tilings and cut-and-project sets
	Tileability of finite domains

	Sub Rosa substitution tilings
	Definition and construction
	Main result
	Lifted substitutions and expansions
	Proof for odd n
	Lifting
	Expansion matrix
	Eigenvalues of the Sub Rosa expansion matrices
	Conclusion

	Proof for even n 
	Lifting
	Expansion matrix
	Eigenvalues of the Sub Rosa expansion matrices
	Conclusion


	Planar Rosa : substitution n-fold discrete planes
	Introduction
	Strategy
	Adapting Sub Rosa 
	Adapting Pn( repstopdf12)

	Tileability of Sub Rosa-like metatiles
	Construction for odd n
	Lifting and eigenvalues
	Choosing the edge word
	Proof of Lemma 4.4.3 (planarity)
	Proof of Lemma 4.4.4 (tileability)
	Proof of Lemma 4.4.5 (primitivity)
	Regular fixpoint tiling

	Construction for even n
	Lifting and eigenvalues
	Choosing the edge word
	Proof of Lemma 4.5.3 (planarity)
	Proof of Lemma 4.5.4 (tileability)
	Proof of Lemma 4.5.5 (primitivity)
	Regular fixpoint tiling


	Regular n-fold multigrids and their dual tilings
	Main result
	From regular n-fold multigrids to tilings with global n-fold symmetry
	Regularity of n-fold multigrids and trigonometric equations
	Trigonometric diophantine equations
	Proof of Theorem 16
	For odd n
	For even n


	Examples of tilings
	4-fold tilings
	Ammann-Beenker
	Sub Rosa 4
	Planar Rosa 4
	Diffraction patterns of 4-fold tiling

	5-fold tilings
	Penrose
	Anti-Penrose
	Sub Rosa 5
	Planar Rosa 5
	Diffraction patterns of 5-fold tilings

	6-fold tilings
	P6( repstopdf12)
	Sub Rosa 6
	Planar Rosa 6
	Diffraction patterns of 6-fold tilings

	7-fold tilings
	P7( repstopdf17) and P7( repstopdf12)
	Sub Rosa 7
	Planar Rosa 7
	A smaller planar 7-fold Sub Rosa-like substitution
	Diffraction pattern of 7-fold tilings

	Other examples of multigrid dual tilings

	Conjectures and future work
	Planar Rosa substitution tilings
	General substitution discrete planes


