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Abstract

This thesis focuses on the mathematical analysis of an anaerobic digestion model

involving three species and three resources in a chemostat. The model includes several

specific ecological interactions between these species, such that competition, syntrophy,

and inhibition. More precisely, we analyze the mechanistic model describing the anaerobic

chlorophenol mineralization in a three-tiered microbial food-web. We investigate the effects

of including three inflowing concentrations, the mortality of the species, together with the

inhibition of the third substrate on the first species. In this general case, we prove that

the system can have up to eight types of steady states and we give a complete analysis by

determining the necessary and sufficient conditions for their existence, according to the

operating parameters. Then, we study the local stability in the case when the maintenance

is ignored, where we can reduce the system to a three-dimensional one. We examine the

effect of adding the hydrogen input concentration to the chlorophenol mineralization model

and analyze the bifurcation diagrams by varying the input concentration of chlorophenol

as a bifurcation parameter. We show that the positive steady state, which corresponds to

the coexistence of the three microorganisms, can be unstable and that the system exhibits

rich behaviors including bistability, coexistence, and emergence of a limit cycle through

a supercritical Hopf bifurcation. When the mortality terms are present in the model,

we use the Liénard-Chipart stability criterion to determine explicitly the necessary and

sufficient local stability properties, when the eigenvalues of the Jacobian matrix can not be

calculated. Subsequently, we give a numerical analysis of the bifurcation diagrams which

suggested the presence of a supercritical Hopf bifurcation emerging through the positive

steady state with the appearance of a stable periodic solution. Finally, we focus on the

study of the operating diagrams which illustrate the existence and stability regions of the

steady states. Our analytical study results in the discovery of several interesting regions,

namely the existence of an instability region of the positive steady state, a fact that has

not been detected, previously, by the numerical study.
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Résumé

Cette thèse porte sur l’analyse mathématique d’un modèle de la digestion anaérobie

qui comprend trois espèces microbiennes et trois ressources dans un chémostat. Le modèle

implique plusieurs interactions écologiques spécifiques entre ces espèces, telles que la

compétition, la syntrophie et l’inhibition. Plus précisément, nous analysons mathématique-

ment un modèle décrivant la minéralisation anaérobie du chlorophénol dans une châıne

alimentaire microbienne à trois niveaux. Nous étudions les effets des trois substrats en

entrée, de la mortalité des espèces, ainsi que celui de l’inhibition du troisième substrat

sur la première espèce. Dans ce cas général, nous prouvons que le système peut avoir

huit types d’équilibres et nous donnons une analyse complète en déterminant les condi-

tions nécessaires et suffisantes pour leur existence, en fonction des paramètres opératoires.

Ensuite, nous étudions la stabilité locale du modèle sans termes de mortalité qu’on a pu

réduire à un modèle en dimension trois. Nous examinons l’effet de l’ajout de l’hydrogène

en entrée au modèle de minéralisation du chlorophénol et nous analysons les diagrammes

de bifurcation en faisant varier la concentration du chlorophénol en entrée en tant que

paramètre de bifurcation. Nous montrons que l’équilibre positif, qui correspond à la

coexistence des trois microorganismes, peut être instable, et que le système présente

des comportements très riches comprenant la bi-stabilité, la coexistence et l’émergence

d’un cycle limite à travers une bifurcation de Hopf super-critique. Lorsque les termes de

mortalité sont présents dans le modèle, nous utilisons le critère de stabilité de Liénard-

Chipart pour déterminer explicitement les conditions nécessaires et suffisantes de la sta-

bilité locale, quand on ne peut pas calculer les valeurs propres des matrices Jacobiennes.

Par la suite, nous donnons une analyse numérique des diagrammes de bifurcation qui a

suggéré la présence d’une bifurcation de Hopf super-critique émergeant à travers l’équilibre

positif avec l’apparition d’une solution périodique stable. Enfin, nous nous concentrons

sur l’étude des diagrammes opératoires qui illustrent les régions d’existence et de sta-

bilité des équilibres. Notre étude analytique aboutit à la découverte de plusieurs régions

intéressantes, comme l’existence d’une région d’instabilité de l’équilibre positif, qui n’a pas

été détectée, auparavant, par l’étude numérique.
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General introduction

The protection of the environment and the preservation of natural resources are major

concerns of our world. The fight against pollution is in fact an important issue that

requires knowledge of the functioning of microbial ecosystems and an understanding of the

mechanisms that allow different microbial species to maintain themselves in ecosystems

involved in human or animal health. These microorganisms are sources of contamination

of surface water and groundwater, but can also be used to treat wastewater. Water is

a renewable resource and the quality of the water is more and more important. Lack

of water and/or quality is a big problem in some parts of the world. Consequently, to

maintain and improve the quality of water resources we can use biological reactors. As

explained in [25], a bioreactor is an enclosure containing a nutrient medium consisting of

a cocktail of various substrates which one or more populations of microorganisms grow.

Bioreactors are used to perform operations for transforming matter through biological

pathways. These bioreactors are classified according to their mode of operation, in other

words, the way in which they are supplied with the matter, and depending on whether

microorganisms are free in the medium or fixed on support; the latter could itself be fixed

or mobile. As a result, it is possible to distinguish continuously-fed systems, systems

whose supply is semi-continuous, and those operating in closed mode. For example, the

chemostat is a closed biological reactor which makes it possible to reduce the quantity of

polluting substances contained in the wastewater so that the water finally released into

the natural environment does not degrade the latter. The use of wastewater in agriculture

often reduces the environmental impact it would have and can help communities increase

their harvests and preserve precious resources of water and nutrient.

Today, treatment techniques and treatment plants are constantly evolving. One of the

effective methods for the treatment of wastewater is anaerobic digestion. This process

transforms the organic matter in absence of oxygen, into methane and carbon dioxide

(biogas) considered as a new form of energy. To understand the biological reactions and

to predict the behavior of the processes, we use mathematical theories to model these

reactions by nonlinear ordinary differential equations systems. Several models of anaerobic

digestion have been proposed in the literature [7, 10, 29, 65, 67, 68]. We list in review

some of them in chapter 1.

In this thesis work, we study mathematically some of these models developed around
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the decontamination of wastewater and their use, and we propose a model relevant to

improvements for applications, that is more in tune with reality. The aim of this thesis

is to perform the mathematical analysis of a model of three microbial species and three

substrates in a chemostat. The study of these models allows us to understand the dif-

ferent mechanisms that could lead to improve the bioprocesses and control the metabolic

pathways of some ecosystems of interest. More precisely, we are interested in a mech-

anistic model describing the anaerobic mineralization of chlorophenol in a three-tiered

food-web in the chemostat. This model has been studied numerically in the literature in

[64] and mathematically in the particular cases where the second and the third substrate

concentrations are neglected in [51] and where the maintenance is not considered in [57].

We reconsider in this work the three-tiered model and we give the theoretical study in

the general case including the three input substrate concentrations as well as maintenance.

The thesis is structured as follows:

In chapter 1, we begin with a working definition of a chemostat and present the min-

imal model of the chemostat which is a two-dimensional model that describes a single

substrate and a single biomass interaction. We expose, as well, extensions of this mini-

mal model which are widely studied in the chemostat literature. We then put in review

some two-tiered models and provide some definitions of biological interactions between

the species of microorganisms as competition, commensalism, mutualism, and syntrophy.

Finally, we briefly describe the process of anaerobic digestion and explain the different

phases of this process.

Chapter 2 is dedicated to the analysis of the mathematical model of the three-tiered

microbial species in competition on three resources in the chemostat from [64], which takes

into account three inflowing concentrations, including the terms of mortality and inhibi-

tion of the third substrate on the first species. By considering a general class of growth

functions, we provide a complete theoretical description of the steady states of the model

and we determine the necessary and sufficient conditions of their existence.

Chapter 3 is devoted to the theoretical analysis of the local stability of the three-tiered

model according to the operating (control) parameters in the particular case without main-

tenance (decay) terms. We give the necessary and sufficient properties of the stability of

the steady states. Then, we study the asymptotic behaviors of the chlorophenol model ac-

cording to the control parameters. Thus, we analyze numerically the bifurcation diagram

by varying one-parameter. We prove that the coexistence steady state can be unstable

and we give numerical evidence for a supercritical Hopf bifurcation with the appearance

of a stable periodic orbit.

In chapter 4, we are interested in analyzing the local stability of the model, by consid-
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General introduction

ering the general case including maintenance terms. We give the necessary and sufficient

conditions of the stability of the steady states, with respect to the operating parameters

of the process. In previous studies, this stability analysis was performed only numerically.

Moreover, we analyze the dynamical behavior of the model with maintenance and we ap-

ply our theoretical results on the existence and stability of steady states. We give two

bifurcation diagrams, showing that the model can present rich behavior including bista-

bility, coexistence and emergence of the limit cycle due to Hopf bifurcation.

The final chapter 5 deals with the mathematical description of the operating diagrams

of the three-tiered model in both cases: with and without decay terms. Using the theoret-

ical results on the existence and local stability of the steady states, provided in previous

chapters, we construct the operating diagrams with respect to four operating parameters

(the dilution rate and the three input concentrations of the substrates) to analyze the

dynamic behavior of the process according to the regions of these diagrams.

Finally, we give a general conclusion on the results obtained and we present perspectives

and possible extensions of our work.
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Chapter 1. Introduction to competition models in a chemostat

1.1 Introduction

In this chapter, we introduce and discuss the fundamental notions that will be used

throughout the thesis. We start to define the experimental device “the chemostat”, we

present the minimal model of the chemostat, and we expose the extensions of this model

which are widely studied in the chemostat literature. Next, we recall some two-step

models studied in the literature which describe the different biological interactions between

microbial species that are the competition, commensalism, mutualism and syntrophy, and

we describe the effects of the maintenance (or decay). Finally, we briefly describe the

process of anaerobic digestion by explaining, in the same way, their different phases.

1.2 The Chemostat

The chemostat is an experimental device that is a basic piece of laboratory appara-

tus. It is used to study microorganisms and especially their growth characteristics on a

substrate. We consult [25], which describes in some details the theory of the chemostat,

and from which this part was elaborated.

The continuous culture of the species of microorganisms or plant cells produced in

a laboratory device called “Chemostat”, which is defined as an enclosure containing the

reaction volume, in which microorganisms (biomass) are put in the presence of a limiting

substrate and the other non-limiting resources essential to their development and repro-

duction. It is used in scientific areas related to the acquisition of knowledge that is both

fundamental, such as ecology or evolutionary biology, and applied such as wastewater

treatment. There are several works in the literature relating to chemostats both in the

biological journals [37, 43] and in mathematical journals [25, 56, 63]. It is also very useful

in different fields as explained in [56]. This device presents two main characteristics: its

content is assumed to be perfectly homogeneous and its volume V is kept constant. In

fact, it is a bioreactor whose mode of feeding is continuous, i.e, the input flow and outflow

rates are identical (Fin = Fout), see [25].

In the chemostat, a nutrient element or a substrate s, that is necessary for the growth

of a biomass x (bacterium), enters the chemostat with an input flow Fin and concentration

sin. The dilution rate is equal to

D =
Fin
V
,

which describes the relationship between the flow of the medium Fin and the culture

volume in the bioreactor V .

We schematize the chemostat as follows:
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Figure 1.1: The Chemostat.

1.2.1 Simple chemostat model

To establish the chemostat equations, we will start by introducing the simplest possible

model of chemostat that is called the “minimal model” of the chemostat, which is based

on the transformation of substrate s by the presence of a microorganism x, which is

schematized as follows:

s
µ(s)−→ x,

where µ is a harvesting rate in the first equation of (1.1) and a specific growth rate in the

second, which only depends on the substrate concentration s. This schema leads to obtain

the minimal model which is written as:

ds

dt
=D

(
sin − s

)
− µ(s)

γ
x

dx

dt
= (µ(s)−D)x,

(1.1)

where sin is the inflowing substrate concentration, γ is the yield of the conversion of

substrate into biomass, which is constant. Furthermore, we assume that the function

s → µ(s) is continuous, has a continuous derivative, is positive and is equal to zero at 0.

In the literature there exist several types of growth functions. The most known are the

growth functions of Monod-type and Haldane-type.

• Monod-type function:

The most classic growth function of Monod (or function of Michaelis-Menten) is

written as follows:

µ(s) = µmax
s

Ks + s
,

where µmax is the maximum growth rate of µ and Ks is the semi-saturation constant,

noticing that µ(Ks) = µmax/2.

A growth function µ is said to be of Monod-type if it satisfies the following properties:

- µ is defined for s ≥ 0 and is bounded.

Doctoral thesis Page 7|142 Sarra Nouaoura



Chapter 1. Introduction to competition models in a chemostat

- µ(0) = 0.

- µ is strictly increasing.

• Haldane-type function:

The growth function of Haldane is written as follows:

µ(s) = µmax
s

s+Ks + s2/KI

,

where KI is the inhibition constant.

A growth function µ is said to be of Haldane-type if it satisfies the following prop-

erties:

- µ is defined for s ≥ 0, is positive and µ(0) = 0.

- There exists sm > 0, such that for s ∈ [0, sm[, µ′(s) > 0 and for s ∈ [sm,+∞[, µ′(s) <

0.

- lims→+∞ µ(s) = 0.

µmax

s

µ(s)
µ(sm)

sm
s

µ(s)

Figure 1.2: Growth functions: On the left, ‘Monod-type’ and on the right ‘Haldane-type’.

The behavior of system (1.1) is well known. Thus, we summarize the behavior of this

model in following Tables 1.1 and 1.2 for both types of growth function. The details are

given in [25].

Table 1.1: Existence and stability of steady states of (1.1) for the growth rate µ of Monod-

type.

Condition s∗ < sin s∗ ≥ sin

SS0 =
(
sin, 0

)
Unstable GAS

SS1 = (s∗, x∗), s∗ = s∗(D)

is solution of µ(s) = D and

x∗ = γ(sin − s∗)
GAS Does not exist

GAS and LES mean globally asymptotically stable and locally exponentially stable,

respectively. In the next section, we will propose two possible extensions of the minimal

model.
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Table 1.2: Existence and stability of steady states of (1.1) for the growth rate µ of Haldane-

type.

Condition sin < s1∗ s1∗ < sin < s2∗ s2∗ < sin

SS0 =
(
sin, 0

)
LES Unstable LES

SS1 = (s1∗, x1∗), s1∗ = s1∗(D) < s2∗(D)

is solution of µ(s) = D and

x1∗ = γ(sin − s1∗)

Does not exist LES LES

SS2 = (s2∗, x2∗), s2∗ = s2∗(D) > s1∗(D)

is solution of µ(s) = D and

x2∗ = γ(sin − s2∗)

Does not exist Does not exist Unstable

1.2.2 Model with several species in the chemostat

In this section, we assume that n species of microorganisms (n ≥ 2) compete for a

single substrate in the chemostat. We assume that the dilution rates of the substrate and

species are different, so the minimal model (1.1) becomes:

ds

dt
=D

(
sin − s

)
−

n∑
i=1

µi(s)

γi
xi

dxi
dt

= (µi(s)−Di)xi, i = 1, . . . , n,

(1.2)

where xi is the concentration of the ith species, µi is the growth function and Di represents

the disappearance rate of bacteria i, which can be modeled by:

Di = αiD + ai,

where αi represents the bacteria proportion that leaves the reactor, and ai represents the

mortality rate of species i.

The mathematical analysis of the competition model of two or more species for a

limiting resource can be found in [25, 28, 56]. Using same dilution rates D = Di and

monotonic growth rates, the classical result well-known as the Competitive Exclusion

Principle (CEP) is shown, in a generic case, where the microorganism that has the lowest

breakeven concentration of substrate outweighs the competition on all other species. Other

approaches have been expanded in the literature: a model with the input microorganism

concentrations at the chemostat [25, 48]. For example, when bioreactors for the treatment

of wastewater with waters to be treated obviously contain all kinds of bacteria. In [25], the

authors studied the case of n different species consuming a single substrate in a chemostat

with D = Di and density-dependent growth rates.
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1.2.3 Model with several species and multiple substrates in the

chemostat

The general model of n species xi competing for m resources sj proposed in [36] is:

dsj
dt

= Dj

(
sinj − sj

)
−

n∑
i=1

µi,j(S)

γi,j
xi, j = 1 . . . ,m,

dxi
dt

=

(
m∑
j=1

µi,j(S)−Di

)
xi, i = 1, . . . , n,

(1.3)

where S = (s1, . . . , sm), sj is the concentration of the jth substrates, xi is the concentration

of the ith species, sinj > 0 is the jth input substrate concentration.

In ecosystems, it is common to note that microorganisms occupying the same ecological

niche feed on several limiting resources. Resources are defined as entities that stimulate

population growth, at least over some range of availability, and which are consumed and

include various forms of materials and energy. So it is necessary to introduce important

distinctions between resources. Among the different classifications of limiting resources

introduced in ecology, we will cite two classifications that are widely used in competi-

tion models: substitutable substrates and complementary or essential substrates. Two

substrates are called substitutable if one can be replaced by the other. Two substrates

are called complementary(essential) if they are both essential for growth (see [33, 59]).

There was a lot of research, both experimental and theoretical, concerning the growth of

microorganisms on substitutable resources (see [33, 38] and the references therein): the

authors have shown that coexistence is possible. There are relatively few studies regarding

growth on complementary resources (see [8, 9, 59]).

Several approaches have been proposed in the literature to analyze mathematically

models of competition several species on multi-substrates, see for example [34, 36, 60],

and more recent works [13, 50] where the authors considered competition models between

two species for two resources. In [18, 40, 41, 51, 57, 64], the authors study model (1.3)

restricted to three organisms and three substrates. This study has suggested the emergence

of interesting dynamical behavior through its specific ecological interactions, which include

competition, syntrophy, and product inhibition.

In this thesis, we do not consider this type of competition models.

1.3 Two-tiered models

A two-tiered models are commonly used to describe relationships between two bacterial

populations. Several of these models have been proposed in the literature, see for example

[4, 6, 11, 15, 45, 53, 58, 70]. They take the form of four-dimensional mathematical models

with a cascade of two biological reactions where one substrate s0 is consumed by one

microorganism x0 in a chemostat to produce a product s1 that serves as the main limiting
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substrate for a second microorganism x1. This is represented by the following reaction

scheme:

s0
µ0−→ x0 + s1, s1

µ1−→ x1,

where µ0 and µ1 are the bacterial growth rates, depending eventually on one or both

substrates. The substrate concentrations s0 and s1 are introduced in the chemostat with

the input concentrations sin
0 and sin

1 , respectively. The model for a two-tiered “food chain”,

can be written as the following dynamical system of ODEs:
ṡ0 = D

(
sin

0 − s0

)
− µ0 (.)x0

ẋ0 = [µ0 (.)− α0D − a0]x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0 (.)x0 − µ1 (.)x1

ẋ1 = [µ1 (.)− α1D − a1]x1

(1.4)

where D is a dilution rate. α0 and α1 are coefficients that belong to [0, 1], with a0x0 and

a1x1 are the maintenance (decay) terms, a0 and a1 are positive parameters.

If the growth rate µ0 depends only on substrate s0 and µ1 depends only on s1, that

is, µ0(.) = µ0(s0), µ1(.) = µ1(s1), then the system describes a commensalism relationship.

The system has a cascade structure and the number of steady states and their stability as

functions of model inputs and parameters have be investigated, [4, 5, 47, 53, 55, 58]. An

important contribution to the modeling of a two-tiered as a commensalism system is the

model of [5]. If µ0 depends on both substrates s0 and s1, and µ1 depends on substrate

s1, that is, µ0(.) = µ0(s0, s1), µ1(.) = µ1(s1), then the system describes a syntrophic

relationship. The mathematical analysis of such two-tiered models is more delicate than

for commensalism models (see [23] and the references therein).

In [23], the authors have studied a two-tiered microbial food chain, by analyzing the

joined effects of syntrophy, mortality, substrate inhibition and input concentrations. Using

a general class of growth rates, the operating diagrams illustrate the effects of inhibition

and the new input substrate concentration on the reduction of the coexistence region

and the emergence of a bi-stability region. They proved that for a large class of models

and despite the additional complication of substrate inhibition and distinct removal rates,

the maintenance cannot destabilize a two-tiered microbial ‘food chain’, regardless of the

biological parameters.

The two-tiered models may involve several relationships between species, such as com-

petition, commensalism, mutualism, and syntrophy, and may include, maintenance (or

decay) terms, which we will detail in the following subsections.

1.3.1 Competition

The competition is a natural biological interaction between two or more organisms

or species in which all species are damaged. Competition means a mutually negative

interaction between populations. There are two types of competition: the interaction

is said to be intraspecific competition when the two microorganisms are of the same
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species, while competition between individuals of different species is known as interspecific

competition. This interaction can be represented schematically by:

x0 ←− s0 −→ x1.

↖ s1 ↗

According to the scheme above, this interaction can be mathematically formalized as

follows: both species denoted x0 and x1 grow on two substrates s0 and s1.

The chemostat model predicts that the coexistence of two or more microbial popu-

lations competing for a single non-reproducing nutrient is not possible, in the generic

case. Only the species with the lowest ‘break-even’ concentration survives. This result,

known as the Competitive Exclusion Principle (CEP), has a long history in the liter-

ature of bio-mathematics, [46] and the references therein. Several mathematical mod-

els in the literature with competition relationship have been considered, see for instance

[1, 19, 20, 22, 30, 56].

In [1], the authors have considered a model with several species in competition for a

single resource, they have taken into account the intra-specific interactions. Using a growth

rates are increasing and the dilution rates are distinct, the operating diagram illustrates

the effect of the intra-specific competition on the coexistence region of the species. In [22],

the authors have studied the model of two species competing for a single resource in the

chemostat, by taking into account the inter- and intraspecific interactions. The growth

functions are monotonic and the dilution rates are distinct. They gave the results of global

asymptotic stability for the competition model of two species. The operating diagrams

describe the effect of the intra- and interspecific interference on the disappearance of

coexistence region and the occurrence of bi-stability region.

1.3.2 Commensalism

The commensalism is a natural biological phenomenon between two living beings. In

biology, commensalism means a lasting interaction between individuals of different species

where one of the partners derives a benefit from the association while the other finds

neither advantage nor real inconvenience. If the host and the commensal populations

are indicated by x0 and x1, respectively, then the interaction of commensalism can be

represented schematically by:

s0 −→ x0 −→ s1 −→ x1.

According to the scheme above, the primary substrate s0 is utilized by the host popula-

tion x0, with the simultaneous production of the secondary substrate s1 which is further

consumed by the commensal population x1 for growth.

There are several examples of mixed cultures of commensal populations [4, 5, 47, 53, 58].

The first of the above cultures have been proposed in [47] for the direct conversion of
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cellulosic and hemicellulosic biomass to ethanol. In this paper, the authors have given

a mathematical study of a commensalism type model (1.4), where they considered two

substrates and two species, with a0 = a1 = 0 and α0 = α1 = 1.

1.3.3 Mutualism

The mutualism is a natural biological phenomenon occurring between two or more

organisms (or populations) that belong to different species, in which the organisms both

benefit from this relationship. During this interaction, there is an interplay benefit (it is

not therefore commensalism). Similar actions that occur between individuals of the same

species are called cooperation, that is, two organisms mutually cooperate to produce the

necessary substrate for the growth of the other type.

If two populations of bacteria are indicated by x0 and x1, respectively, then, this

interaction can be represented schematically by:

x0 −→ s1 −→ x1.

↖ s0 ↙

According to the scheme above, this reaction can be mathematically formalized as follows:

the first species denoted x0 grows on a substrate s0 forming an intermediate product s1.

This intermediate product is necessary for the growth of a second species x1. Producing

substrate s0 as product which is necessary for the growth of x0, so the second species x1

can not develop if the first species x0 is not present and the first species x0 can not develop

if the second species x1 is not present.

There are several models in the literature with mutualism relationship, see for instance

[2, 16, 61, 66, 72]. In [61], the authors have studied the dynamics of two interacting

microbial species in the chemostat. Both species compete for a common resource, while

also being mutualists through cross-feeding. They derived an extended Lotka-Volterra

model, which has a quadratic term modeling the competition, while the typical linear

term describes the mutualistic interaction. They showed that bistability occurs when the

mutual dependence on the cross-feeding nutrients is sufficiently high.

1.3.4 Syntrophy

The syntrophy is a biological phenomenon that allows two or more bacteria to multiply

in an environment that the necessary growth factors are missing for one of them. A

syntrophic relationship is a biological relationship of necessity between bacterial species

that can not develop separately.

If two populations of bacteria are indicated by x0 and x1, respectively, then, the inter-

action of syntrophy can be represented schematically by:

s0 −→ x0 + s1, s1 −→ x1.
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According to the scheme above, the first species denoted x0 grows on a substrate s0 forming

an intermediate product s1. This intermediate product is necessary for the growth of a

second species x1. Then, the second species x1 can not grow if the first species x0 is not

present, it is a relation of trophic interest.

A syntrophic relationship between two organisms refers to growth functions where µ0

depends on both substrates s0 and s1 and µ1 depends only on s1, i.e µ0(.) = µ0(s0, s1)

et µ1(.) = µ1(s1). There are several models in the literature describing a syntrophic

relationship, see for instance [17, 31, 32, 52, 62, 69, 71]. In [69], the authors have studied

the interactions of a growing bacterial population on methane. The important results of

this study focused on the conditions under which a stable coexistence equilibrium could

occur. In [31], the authors have studied model (1.4) for syntrophic associations between H2-

producing acetogenic bacteria and H2-utilizing bacteria, they have considered the growth

functions µ0 and µ1 of Monod-type in s0 and the function µ0 is decreasing in s1, a0 =

a1 = 0 and α0 = α1 = 1, with the absence of an input term of s1 (sin1 = 0). An

extension of this work studied in [32], which considers the case where s0 also appears in

µ1, (µ1(.) = µ1(s0, s1)). The authors have showed a bistability behavior that can not

be observed when µ1(.) depends only on s0. In [52], the authors considered the general

situation of a growth function µ1(.) = µ1(s0, s1), which increases in s1 and decreases in s0

with sin1 = 0 and have shown, contrary to the case where µ1(.) only depends on s1, that

a multiplicity of positive equilibria can occur. Other models for which µ0(.) = µ0(s0, s1)

and µ1(.) = µ1(s0, s1), present the multiplicity of positive equilibria, are found in [62]. All

these studies do not take into account the terms of maintenance. In [13], using a general

class of growth rates, the authors have analyzed the joined effects of syntrophy, mortality,

and new input concentrations. The operating diagram shows that, whatever the region of

space considered, there exists only one locally exponentially stable steady state.

1.3.5 The effects of decay

As explained in [50], maintenance is the consumption of energy by an organism that

is used for all biological processes other than growth. It is modeled either by adding a

negative term on the substrate dynamic without associating it to growth or by considering

a decay term on the biomass dynamics. For more information about the modeling of

maintenance, [39].

Several works have focused on the effect of maintenance (mortality) on the behavior of

the system, see for instance [13, 21, 50, 68, 71]. A previous study investigated the effect of

maintenance on the stability of a model comprising two species and two substrates [71].

In this work, the authors were the first to consider the effects of maintenance terms in

the system (1.4), in particular, in the case where the growth functions are of the form

(µ0(.) = µ0(s0, s1), µ1(.) = µ1(s1)), where µ0 is increasing in s0 and decreasing in s1 and

the Monod function for µ1, and (a0 > 0, a1 > 0), and sin1 = 0 and α0 = α1 = 1. The

authors asserted the possibility of the Hopf bifurcation of the positive steady state in the
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case with maintenance.

In [50], the authors have generalized [71] by allowing a larger class of growth functions

and they have generalized [17] by taking account the maintenance terms, in particular, in

the case where µ1 is increasing in s1 with α0 = α1 = 1 and sin1 = 0. They proved that

the positive steady state is stable as long as it exists, that is to say, maintenance does

not affect the stability of the considered two-tiered microbial ‘food chain’. Important and

interesting extensions of the two-tiered models are the eight-dimensional mathematical

models, which include syntrophy and inhibition [67, 68], and the model with five state

variables studied in [7, 17].

1.4 Anaerobic digestion

Introducing an additional microorganism and substrate to the two-tiered model of

[71] leads to a three-tiered model describing the chlorophenol mineralization, [64]. This

model is considered in the next chapters. This mineralization may occur under aerobic

(in presence of oxygen) or anaerobic (in absence of oxygen) conditions. The anaerobic

process is called anaerobic digestion or methanisation which is a natural biological process

of decomposition of organic matter by microorganisms (bacteria) that are activated under

anaerobic conditions. On an industrial scale, this process takes place in a closed bioreactor,

to produce biogas rich in methane and some carbon dioxide. This biogas is a source of

energy that can be used directly to replace natural gas. This natural process is used mainly

for the depollution of wastewater or for converting surplus sludge produced in wastewater

treatment plants into more stable products [29], it also makes it possible to treat waste

while recovering a renewable energy source.

Under the action of microbial populations, the organic matter converts into biogas

through a sequence of stages. Indeed, the process of anaerobic digestion takes place

through four stages:

- The first stage is hydrolysis which is very important for the anaerobic digestion

process since in this phase the organic macromolecules (cellulose, polysaccharides, protein,

lipids,...) converts into monomer (sugars, amino acids, fatty acids,...). This step is limiting

in the case of anaerobic digestion of insoluble complex substrates.

- In the second stage acidogenesis, acidogenic bacteria transforms the products of the

previous phase into carbon dioxide, hydrogen, organic acids, alcohols. Acetic acid is a

volatile fatty acid.

- The third stage is acetogenesis and allows to convert the molecules that result from the

second stage into carbon dioxide. But their activity is inhibited by an excess of hydrogen

in the medium.

- The final step methanogenesis (methane formation) is the anaerobic degradation of

organic matter. The microorganisms that perform this step are hydrogenophilic methano-

genesis bacteria which convert carbon dioxide to methane with the help of hydrogen and
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acetoclate methanogenesis bacteria convert acetate to methane.

The complexity of the anaerobic digestion process has motivated the development

of complex models. Several models of anaerobic digestion exist in the literature, see

[7, 10, 29, 65, 67, 68], such as the widely used Anaerobic Digestion Model No.1 (ADM1)

[29]. In engineered biological systems, mechanistic modeling reached consensus with the

development of the Activated Sludge Models [26, 27], for wastewater treatment processes,

followed by the Anaerobic Digestion Model No.1, a few years later. The development

of ADM1 was enabled largely due to the possibilities for better identification and char-

acterization of functional microbial groups responsible for the chemical transformations

within anaerobic digesters. The full (ADM1) model is highly parameterized with a large

number of physical, chemical and biological processes described by 32 state variables and

numerous algebraic expressions. Whilst suitable for dynamic simulation, a more rigorous

mathematical analysis and the control of the model are very difficult which were made on

sub-models or reduced models of this model. To the author’s knowledge, only numerical

investigations of the full model are available in [7]. Due to the analytical intractability of

the full (ADM1), simpler mechanistic models of microbial interaction have been proposed

in view of a better understanding of the anaerobic digestion process. For a recent review

of mathematical modeling of anaerobic digestion, the reader is referred to [65].

1.5 Conclusion

In this first chapter, we gave an overview of some mathematical models of the chemo-

stat. First, we presented the chemostat and its minimal model and exposed some ex-

tensions of this minimal model. We then recalled the two-tiered models, treated in the

literature. Finally, we described anaerobic digestion and its different phases.

In the next chapters, we will study the extensions of [71], by introducing an additional

microorganism and substrate to create a three-tiered feeding chain model, considered in

[64]. In chapter 2, we begin by listing all the possible steady states of the system, followed

by conditions for their existence and uniqueness. The local stability and the bifurcation

diagrams of the model in both cases without and with maintenance terms are presented

in chapter 3 and chapter 4. In final in chapter 5, we perform the operating diagrams for

showing the asymptotic behaviors of this model.
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2.1 Introduction

In this chapter, we study a three-tiered microbial food-web model of the anaerobic

digestion in the chemostat, involving three species and three resources, with three input

substrates, including the terms of maintenance and inhibition of the third substrate on

the first species. The model is a six-dimensional system of ordinary differential equations.

This model has recently been proposed and investigated numerically in [64]. Then, by

considering the case of a large class of growth rates, we generalize and extend these ana-

lytical studies.

This chapter is organized as follows. In section 2.2, we start by presenting the mathe-

matical model of the three-tiered microbial species from [64], which takes into account the

phenol and the hydrogen inflowing concentrations as well as the maintenance terms. Next,

in section 2.3, we give the general assumptions on the microbial growth functions and we

give a preliminary result on positivity and boundedness of solutions, we then describe

the steady states of the model and determine the necessary and sufficient conditions of

existence of these steady states in the case with maintenance.

2.2 Three-tiered food-web model

The mathematical model developed in [64], by introducing an additional microorgan-

ism and substrate into a two-tiered feeding chain model in previous work [71], has six

components, three substrate (chlorophenol, phenol and hydrogen) and three organisms

(chlorophenol-dechlorinating bacterium, the phenol degrader and the hydrogenotrophic

methanogen) variables. As explained in [64], the chlorophenol degrader utilizes both

chlorophenol and hydrogen for growth, producing phenol as a product. Phenol is con-

sumed by the phenol degrader forming hydrogen, which also is inhibitory to its growth.

The hydrogenotrophic methanogen scavenges this hydrogen and acts as the primary syn-

troph, as shown in a schematic representation in Figure 2.1. This form of the interaction

between microorganisms is called a food-web, that is, an interconnection of food chains,

see [44].
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Chapter 2. Three-tiered microbial food-web model

Figure 2.1: The three-tiered chlorophenol mineralizing food-web.

Following [51, 64], the three-step model that we propose to study is:

Ẋch =(Ychf0 (Sch, SH2)−D − kdec,ch)Xch

Ẋph =(Yphf1 (Sph, SH2)−D − kdec,ph)Xph

ẊH2=(YH2f2 (SH2)−D − kdec,H2)XH2

Ṡch =D
(
Sin

ch − Sch

)
− f0 (Sch, SH2)Xch

Ṡph =D
(
Sin

ph − Sph

)
+ 224

208
(1− Ych) f0 (Sch, SH2)Xch − f1 (Sph, SH2)Xph

ṠH2 =D
(
Sin

H2
− SH2

)
− 16

208
f0 (Sch, SH2)Xch + 32

224
(1− Yph) f1 (Sph, SH2)Xph

−f2 (SH2)XH2 ,

(2.1)

where Xch, Xph and XH2 denote, respectively, the chlorophenol, phenol and hydrogen

degrader concentrations; Sch, Sph and SH2 are the chlorophenol, phenol and hydrogen sub-

strates concentrations; Sin
ch, S

in
ph and Sin

H2
are the substrate concentrations in the feed bottle;

kdec,ch, kdec,ph and kdec,H2 represent the decay rates; D is the dilution rate of the chemostat;

Ych, Yph and YH2 are the yield coefficients. 224/208 (1− Ych) is the fraction of chlorophe-

nol converted to phenol; 32/224 (1− Yph) is the fraction of phenol that is transformed to

hydrogen and 16/208 is the fraction of hydrogen consumed by the chlorophenol degrader

Xch. The functions f0, f1 and f2, are the following specific growth rates that take the

form:

f0 (Sch, SH2) =
km,chSch

KS,ch + Sch

SH2

KS,H2,c + SH2

,

f1 (Sph, SH2) =
km,phSph

KS,ph + Sph

1

1 + SH2/KI,H2

, f2 (SH2) =
km,H2SH2

KS,H2 + SH2

,

(2.2)

where km,i for i = {ch, ph,H2} are the maximum specific growth rates related to the

chlorophenol, phenol, and hydrogen degraders, respectively. KS,i are the half-saturation

coefficients, respectively, for each organism. KS,H2,c is the half-saturation constant for

hydrogen in the chlorophenol degrader. KI,H2 is the inhibition term, and 1/(1+SH2/KI,H2)

represents the inhibition of phenol degrader by the hydrogen.
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Several authors have studied this three-tiered model (2.1), see recent works [18, 40, 41,

51, 57, 64]. In [64] most of the results on the existence and stability of steady states of

model (2.1) were obtained only numerically, using specific growth rates given in (2.2). They

have numerically performed several operating diagrams with respect to the four operating

parameters, showing the role, and the importance of each control parameter. Recently, a

rigorous mathematical analysis of this model (2.1) was done in [51] with general growth

rates but only the chlorophenol inflowing concentration has been taken into account. In

this work, the authors show that the system can have at most three types of steady states

when Sin
ch > 0 and Sin

ph = Sin
H2

= 0: the washout steady state, a coexistence steady state of

three species and a steady state where only the hydrogen degrader is extinct. The local

stability analysis is achieved when the maintenance is excluded from the model, where this

six-dimensional model is reduced to a three-dimensional one. A numerical evidence shows

that, when maintenance is included, the positive steady state can destabilize through a

supercritical Hopf bifurcation with the appearance of a stable periodic orbit [51] which

was not depicted in [64]. In [57], the authors have considered the three-tiered model in

the case without maintenance and persistence results were analytically proved. Using

numerical estimation, it is shown in [57] that the system has a rich dynamics including

Hopf, Bogdanov-Takens and Bautin bifurcations. In [18], the three-tiered model of [64]

was studied by neglecting the part of hydrogen produced by the phenol degrader as well

as maintenance terms, which gives rise to a less realistic model. However, the existence

and stability of steady states were analytically studied and a global analysis is performed,

proving the asymptotic persistence of the three bacteria. We extende here the results of

[51], by considering the three inflowing concentrations (Sin
ch ≥ 0, Sin

ph ≥ 0 and Sin
H2
≥ 0).

We analytically determine the necessary and sufficient conditions of the existence of the

steady states in the case with maintenance, for a large class of growth rates, instead of

specific kinetics, as in [64].

2.3 Analysis of the model

We use the following simplified notations in (2.1), as given in [51].

X0 = Xch, X1 = Xph, X2 = XH2 , S0 = Sch, S1 = Sph, S2 = SH2 . (2.3)

The inflowing concentrations are given by:

Sin
0 = Sin

ch, Sin
1 = Sin

ph, Sin
2 = Sin

H2
, (2.4)

the death rates are a0 = kdec,ch, a1 = kdec,ph, a2 = kdec,H2 (with units d−1), and the yield

coefficients are

Y0 = Ych, Y1 = Yph, Y2 = YH2 , Y3 =
224

208
(1− Y0), Y4 =

32

224
(1− Y1).
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Chapter 2. Three-tiered microbial food-web model

With these notations, (2.1) can be written as follows:

Ẋ0=−DX0 + Y0f0 (S0, S2)X0 − a0X0

Ẋ1=−DX1 + Y1f1 (S1, S2)X1 − a1X1

Ẋ2=−DX2 + Y2f2 (S2)X2 − a2X2

Ṡ0 =D
(
Sin

0 − S0

)
− f0 (S0, S2)X0

Ṡ1 =D
(
Sin

1 − S1

)
+ Y3f0 (S0, S2)X0 − f1 (S1, S2)X1

Ṡ2 =D
(
Sin

2 − S2

)
+ Y4f1 (S1, S2)X1 − Y5f0 (S0, S2)X0 − f2 (S2)X2.

(2.5)

To reduce the number of yield parameters and ease the mathematical analysis, we can

rescale system (2.5) using the following change of variables proposed in [50, 51]:

x0 =
Y

Y0

X0, x1 =
Y4

Y1

X1, x2 =
1

Y2

X2, s0 = Y S0, s1 = Y4S1, s2 = S2, (2.6)

where Y = Y3Y4, with

ω =
16

208Y
=

1

2(1− Y0)(1− Y1)
,

which is a positive constant.

sin
0 = Y Sin

0 , sin
1 = Y4S

in
1 , sin

2 = Sin
2 . (2.7)

We obtain the following system:

ẋ0 = (µ0(s0, s2)−D − a0)x0

ẋ1 = (µ1(s1, s2)−D − a1)x1

ẋ2 = (µ2(s2)−D − a2)x2

ṡ0 = D
(
sin

0 − s0

)
− µ0(s0, s2)x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0(s0, s2)x0 − µ1(s1, s2)x1

ṡ2 = D
(
sin

2 − s2

)
− ωµ0(s0, s2)x0 + µ1(s1, s2)x1 − µ2(s2)x2,

(2.8)

where si, i = 0, 1, 2 are the three substrates concentrations (chlorophenol, phenol and

hydrogen, in the application); xi are the three microbial species concentrations; µi are

the specific growth rates given by (2.9), usually take the form of a double Monod, a

Monod with hydrogen inhibition acting on the phenol degrader and represented in µ1 (see

(2.9)), and a Monod kinetics, respectively; sin
i is the input substrate concentration in the

chemostat; ai are the maintenance (or decay) rate for i = 0, 1, 2 and corresponding to

chlorophenol, phenol and hydrogen, respectively. All the yield coefficients in (2.5) are

normalized to one except of ω.

The specific growth functions (2.2) become the following functions satisfying Hypothe-

ses H1 to H8:

µ0(s0, s2) = Y0f0

(s0

Y
, s2

)
, µ1(s1, s2) = Y1f1

(
s1

Y4

, s2

)
, µ2(s2) = Y2f2(s2).
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Therefore, the growth functions take the form:

µ0(s0, s2) =
m0s0

K0 + s0

s2

L0 + s2

, µ1(s1, s2) =
m1s1

K1 + s1

1

1 + s2/KI

, µ2(s2) =
m2s2

K2 + s2

, (2.9)

where

m0 = Y0km,ch, K0 = Y KS,ch, L0 = KS,H2,c, m1 = Y4km,ph,

K1 = Y4KS,ph, KI = KI,H2 , m2 = Y2km,H2 , K2 = KS,H2 .

2.3.1 Assumptions and preliminary result

In this work, we consider a large class of growth rates. Following [50], we assume that

the bacterial growth functions are continuously differentiable (C1) and satisfy the following

conditions:

H1 For all s0 > 0 and s2 > 0, it exists m0 > 0, such that 0 < µ0(s0, s2) ≤ m0 < +∞ and

µ0(0, s2) = 0, µ0(s0, 0) = 0.

H2 For all s1 > 0 and s2 ≥ 0, it exists m1 > 0, such that 0 < µ1(s1, s2) ≤ m1 < +∞ and

µ1(0, s2) = 0.

H3 For all s2 > 0, it exists m2 > 0, such that 0 < µ2(s2) ≤ m2 < +∞, µ2(0) = 0.

H4 For all s0 > 0 and s2 > 0,
∂µ0

∂s0

(s0, s2) > 0,
∂µ0

∂s2

(s0, s2) > 0.

H5 For all s1 > 0 and s2 > 0,
∂µ1

∂s1

(s1, s2) > 0,
∂µ1

∂s2

(s1, s2) < 0.

H6 For all s2 > 0,
dµ2

ds2

(s2) > 0.

H7 The function s2 7→ µ0(+∞, s2) is monotonically increasing and the function s2 7→
µ1(+∞, s2) is monotonically decreasing.

Hypothesis H1 means that the function µ0 is uniformly bounded, and that no growth can

occur for species x0 without substrates s0 and s2. Hypothesis H2 means that there is a

uniform bound for µ1, and that no growth can occur for species x1 without substrate s1.

Hypothesis H3 means that the function µ2 is uniformly bounded, and that the production

of s2 is necessary for the growth of the species x2. Hypothesis H4 means that the growth

rate of species x0 increases with substrates s0 and s2. Hypothesis H5 means that the

growth rate of the species x1 increases with the substrate s1 but is auto-inhibited by the

production of s2. Hypothesis H6 means that the growth rate of species x2 increases with

substrate s2. Hypothesis H7 means that the maximum growth rate of the species x0 and

x1 increase and decreases, respectively, with the concentration of substrate s2.
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Firstly, we give the next result on the solutions of model (2.8), where we prove that

they are non-negative and bounded, which is a prerequisite for any reasonable model of

the chemostat.

Proposition 2.1. For any non-negative initial conditions, all solutions of system (2.8)

are bounded and remain non-negative for all t > 0. Moreover, the set

Ω =
{

(x0, x1, x2, s0, s1, s2) ∈ R6
+ : Z = ωx0 + x1 + x2 + 2s0 + 2s1 + s2 ≤ 2sin

0 + 2sin
1 + sin

2

}
is positively invariant and is a global attractor for the dynamics (2.8).

Proof. Since the vector field defined by (2.8) is C1, the uniqueness of solution to initial

value problems holds. From (2.8), for i = 0, 1, 2,

xi(τ) = 0, for any τ > 0 ⇒ ẋi(τ) = 0.

If xi(0) = 0, then xi(t) = 0 for all t since the boundary face where xi ≡ 0 is invariant

in the vector field C1 by system (2.8). If xi(0) > 0, then xi(t) > 0 for all t since xi ≡ 0

cannot be reached in finite time by trajectories such that xi(0) > 0 by the uniqueness of

solutions. On the other hand, one has

s0(τ) = 0, for any τ > 0 ⇒ ṡ0(τ) = Dsin
0

s1(τ) = 0, for any τ > 0 ⇒ ṡ1(τ) = Dsin
1 + µ0(s0(τ), s2(τ))x0(τ)

s2(τ) = 0, for any τ > 0 ⇒ ṡ2(τ) = Dsin
2 + µ1(s1(τ), 0)x1(τ).

Similarly to case xi, if ṡi(τ) = 0, then si(t) > 0 for all t. In addition, if ṡi(τ) > 0, then

si(t) > 0 for all t. Indeed, for example, consider the case of s0 where D and sin
0 are

positive with s0(0) > 0. Assume that it exists τ > 0 such that s0(τ) = 0 and s0(t) > 0

for all t ∈ (0, τ). It follows that ṡ0(τ) 6 0, which is the desired contradiction with

ṡ0(τ) = Dsin
0 > 0.

Further, by considering z = ωx0 + x1 + x2 + 2s0 + 2s1 + s2, we obtain from (2.8)

ż = D
(
2sin

0 + 2sin
1 + sin

2 − z
)
− ωa0x0 − a1x1 − a2x2 6 D

(
2sin

0 + 2sin
1 + sin

2 − z
)
.

Using Gronwall’s lemma, we have

z(t) 6 2sin
0 + 2sin

1 + sin
2 +

(
z(0)−

(
2sin

0 + 2sin
1 + sin

2

))
e−Dt, for all t > 0. (2.10)

Consequently,

z(t) 6 max
(
z(0), 2sin

0 + 2sin
1 + sin

2

)
, for all t > 0. (2.11)

Thus, the solutions of (2.8) are positively bounded and are defined for all t > 0. From

(2.11), it can be deduced that the set Ω is positively invariant and from (2.10), it is a

global attractor for (2.8).
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2.3.2 Analysis of the steady states

A steady state of (2.8) is obtained by setting the right-hand sides equal to zero:

[µ0 (s0, s2)−D − a0]x0 = 0 (2.12)

[µ1 (s1, s2)−D − a1]x1 = 0 (2.13)

[µ2 (s2)−D − a2]x2 = 0 (2.14)

D
(
sin

0 − s0

)
− µ0 (s0, s2)x0 = 0 (2.15)

D
(
sin

1 − s1

)
+ µ0 (s0, s2)x0 − µ1 (s1, s2)x1 = 0 (2.16)

D
(
sin

2 − s2

)
+ µ1 (s1, s2)x1 − ωµ0 (s0, s2)x0 − µ2 (s2)x2 = 0. (2.17)

A steady state exists (or is said to be ‘meaningful’) if and only if all its components are

non-negative. This predicts eight possible steady states, that we denote by Eijk, i, j, k = 0

or 1, with i = 0 if the species x0 = 0, j = 0, if the species x1 = 0 and k = 0 if the species

x2 = 0:

E000, where x0 = 0, x1 = 0 and x2 = 0: the washout steady state where all populations

are extinct. This steady state always exists.

E001, where x0 = 0, x1 = 0 and x2 > 0: only the hydrogenotrophic methanogen population

is maintained.

E100, where x0 > 0, x1 = 0 and x2 = 0: only the chlorophenol degraders are maintained.

E110, where x0 > 0, x1 > 0 and x2 = 0: the hydrogenotrophic methanogens are washed

out.

E101, where x0 > 0, x1 = 0 and x2 > 0: only the phenol degraders are washed out.

E111, where x0 > 0, x1 > 0 and x2 > 0: all three populations are present.

E010, where x0 = 0, x1 > 0 and x2 = 0: only the phenol degraders are present.

E011, where x0 = 0, x1 > 0 and x2 > 0: only the chlorophenol degraders are washed out.

These steady states are denoted in [64], respectively, by SS1, SS2,. . ., SS8.

Notice that the steady states E001, E100, E101, E010 and E011 do not exist in the case

considered in [51]. In this particular case, only the steady states E000, E110 and E111 exist,

they were labeled in [51] by SS1, SS2 and SS3, respectively.

For the description of steady states, we need to define some auxiliary functions. The

existence and definition domains of these functions are all relatively straightforward and

can be found in [51].
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Definition 2.1. Let M0(y, s2), M1(y, s2), M2(y) and M3(s0, z) be defined by:

• For s2 ≥ 0 and 0 ≤ y < µ0(+∞, s2), s0 = M0(y, s2) is the unique solution of equation

µ0(s0, s2) = y.

• For s2 ≥ 0 and 0 ≤ y < µ1(+∞, s2), s1 = M1(y, s2) is the unique solution of equation

µ1(s1, s2) = y.

• For 0 ≤ y < µ2(+∞), s2 = M2(y) is the unique solution of equation µ2(s2) = y.

• For s0 ≥ 0 and 0 ≤ z < µ0(s0,+∞), s2 = M3(s0, z) is the unique solution of equation

µ0(s0, s2) = z.

Then, we have the next result.

Lemma 2.1. Under assumptions H4, H5 and H6, we have:

• For all y ∈ [0, µi(+∞, s2)), i = 0, 1 and s2 ≥ 0 :
∂M0

∂s2

(y, s2) < 0,
∂M1

∂s2

(y, s2) > 0.

• For all y ∈ [0, µi(+∞, s2)), i = 0, 1 and s2 ≥ 0 :
∂M0

∂y
(y, s2) > 0,

∂M1

∂y
(y, s2) > 0.

• For all y ∈ [0, µ2(+∞)), we have:
dM2

dy
(y) > 0.

• For all z ∈ [0, µ0(s0,+∞)) and s0 ≥ 0 :
∂M3

∂z
(s0, z) > 0.

Proof. According to the equivalence

si = Mi(y, s2) ⇐⇒ y = µi(si, s2), i = 0, 1,

we have, for all y ∈ [0, µi(+∞, s2)) and s2 ≥ 0

µi (Mi(y, s2), s2) = y. (2.18)

The derivative of (2.18), with respect to s2, implies that

∂Mi

∂s2

(y, s2) = −
[
∂µi
∂s2

(Mi(y, s2), s2)

] [
∂µi
∂si

(Mi(y, s2), s2)

]−1

.

From H4 and H5, it follows that,

∂M0

∂s2

(y, s2) < 0 and
∂M1

∂s2

(y, s2) > 0.

On the other hand, the derivative of equation (2.18), with respect to y, implies that

∂Mi

∂y
(y, s2) =

[
∂µi
∂si

(Mi (y, s2) , s2)

]−1

.
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From H4 and H5, it follows that ∂Mi

∂y
(y, s2) > 0, for i = 0, 1.

Next, from the equivalence:

s2 = M2(y) ⇐⇒ y = µ2(s2),

we have, for all y ∈ [0, µ2(+∞))

µ2(M2(y)) = y. (2.19)

Derivating (2.19), with respect to y and using H6 implies that,

dM2

dy
(y) =

[
dµ2

ds2

(M2(y))

]−1

> 0.

Finally, according to the equivalence

s2 = M3 (s0, z) ⇐⇒ z = µ0 (s0, s2) ,

we have, for all z ∈ [0, µ0 (s0,+∞)) and s0 ≥ 0,

µ0 (s0,M3 (s0, z)) = z. (2.20)

Derivating (2.20), with respect to z and using H4, we obtain

∂M3

∂z
(s0, z) =

[
∂µ0

∂s2

(s0,M3 (s0, z))

]−1

> 0.

For D ≥ 0 satisfying the conditions D + a0 < µ0(+∞,+∞) and D + a1 < µ1(+∞, 0),

there exist unique values s0
2 = s0

2(D) and s1
2 = s1

2(D) (see Figure 2.2), such that:

µ0

(
+∞, s0

2(D)
)

= D + a0, µ1

(
+∞, s1

2(D)
)

= D + a1. (2.21)

D + a0

D + a1

s02 s12

µ0(+∞, s2)

µ1(+∞, s2)

s2

Figure 2.2: Existence conditions of s0
2 and s1

2.

Let I1 and I2 be the intervals defined by:

I1 =
{
D ≥ 0 : s0

2 < s1
2

}
, I2 =

{
D ∈ I1 : s0

2 < M2(D + a2) < s1
2

}
. (2.22)
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Notice that I1 is not empty, since for D small enough, s0
2 is close to 0, while s1

2 goes to

+∞ (see Figure 2.2 and Table 3.4 for the expressions of s0
2 and s1

2 as functions of D).

Using these notations, we consider the function Ψ defined for s2 ∈ (s0
2, s

1
2) and D ∈ I1

by:

Ψ (s2, D) = (1− ω)M0(D + a0, s2) +M1(D + a1, s2) + s2. (2.23)

Lemma 2.2. The function Ψ satisfies the following properties:

• If ω < 1, then, for all D ∈ I1 the function s2 7→ Ψ(s2, D) is positive and

lim
s2→s02

Ψ(s2, D) = +∞, lim
s2→s12

Ψ(s2, D) = +∞.

• If ω = 1, then, for all D ∈ I1 the function s2 7→ Ψ(s2, D) is positive, monotonically

increasing and

Ψ
(
s0

2, D
)
> 0, lim

s2→s12
Ψ(s2, D) = +∞.

• If ω > 1, then, for all D ∈ I1 the function s2 7→ Ψ(s2, D) is monotonically increasing

and

lim
s2→s02

Ψ(s2, D) = −∞, lim
s2→s12

Ψ(s2, D) = +∞.

(a)

s02s
∗1
2 s∗22 s12

φ1(D)

Ψ(s2)

(1− ω)sin0 + sin1 + sin2

s2

(b)

s02 s∗2 s12

Ψ(s2)

(1− ω)sin0 + sin1 + sin2

s2

(c)

s02 s∗2 s12

Ψ(s2)

(1− ω)sin0 + sin1 + sin2

s2

Figure 2.3: Graphical definition of Ψ: (a) case ω < 1 , (b) case ω = 1, (c) case ω > 1.

Proof. From (2.21), we have

M0

(
D + a0, s

0
2

)
= +∞ and M1

(
D + a1, s

1
2

)
= +∞.

It follows that (see Figure 2.3):

for all ω ≥ 0, we have lim
s2→s12

Ψ(s2, D) = +∞.

for all ω > 1, we have lim
s2→s02

Ψ(s2, D) = −∞.
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for all ω < 1, we have lim
s2→s02

Ψ(s2, D) = +∞.

From Lemma 2.1, we have,

∂Ψ

∂s2

(s2, D) = (1− ω)
∂M0

∂s2

(D + a0, s2) +
∂M1

∂s2

(D + a1, s2) + 1 > 0, for ω ≥ 1, (2.24)

Therefore, for ω ≥ 1 the function s2 7→ Ψ(s2, D) is monotonically increasing.

Following [51], we add a hypothesis on the function Ψ which then assures that there

are at most two steady states of the form E110.

H8 In the case ω < 1, the function Ψ has a unique minimum s2 on the interval (s0
2, s

1
2),

such that
∂Ψ

∂s2

(s2, D) < 0 on (s0
2, s2) and

∂Ψ

∂s2

(s2, D) > 0 on (s2, s
1
2).

Hypothesis H8 is fulfilled with the specific growth rates (2.9) of chapter 3.

Definition 2.2. The functions φ1 be defined for I1, φ2 and φ3 be defined for I2 and ϕi, i =

0, 1 are defined for D ∈ {D ≥ 0 : s0
2 < M2(D + a2)} and D ∈ {D ≥ 0 : M2(D + a2) < s1

2}
by:

φ1(D) = inf
s02<s2<s

1
2

Ψ(s2, D) = Ψ(s2(D), D),

φ2(D) = Ψ (M2(D + a2), D) , φ3(D) =
∂Ψ

∂s2

(M2(D + a2), D) ,

ϕ0(D) = M0(D + a0,M2(D + a2)), ϕ1(D) = M1(D + a1,M2(D + a2)).

(2.25)

Remark 2.1. From Lemma 2.2, we have φ1(D) = −∞ if ω > 1 and φ1(D) > 0 if ω ≤ 1 (see

Figure 2.3). Moreover, if ω = 1 then, φ1(D) = Ψ (s0
2, D). Since Ψ is convex, the equation

Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2 (2.26)

has a solution s2 = s2

(
D, sin

0 , s
in
1 , s

in
2

)
if and only if

(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1(D).

If ω ≥ 1 then, s2, if it exists, is unique. If ω < 1 then, there exist at least two solutions

s∗12 < s∗22 in the interval (s0
2, s

1
2), which are equal when (1−ω)sin

0 + sin
1 + sin

2 = φ1(D), such

that
∂Ψ

∂s2

(
s∗12 , D

)
< 0 and

∂Ψ

∂s2

(
s∗22 , D

)
> 0.

The solutions s∗12 and s∗22 lead to two steady states E1
110 and E2

110.

Definition 2.3. Let ψ0 and ψ1 be the functions defined for s0 ∈
[
max

(
0, sin

0 − sin
2 /ω

)
,+∞

)
and s1 ∈

[
0, sin

1 + sin
2

]
, respectively, by:

ψ0 (s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
, ψ1 (s1) = µ1

(
s1, s

in
1 + sin

2 − s1

)
. (2.27)
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Lemma 2.3. The equation ψ0 (s0) = y has a solution in the interval

J0 =
[
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
,

if and only if µ0

(
sin

0 , s
in
2

)
> y. If it exists, this solution is unique. The equation ψ1 (s1) = y

has a solution in the interval

J1 =
[
0, sin

1

)
if and only if µ1

(
sin

1 , s
in
2

)
> y. If it exists, this solution is unique.

Proof. We have

dψ0

ds0

(s0) =
∂µ0

∂s0

(s0, s
in
2 − ω(sin

0 − s0)) + ω
∂µ0

∂s2

(s0, s
in
2 − ω(sin

0 − s0)),

which is positive thanks to H4. Therefore, ψ0 is monotonically increasing. Moreover, if

sin
2 − ωsin

0 > 0, one has

ψ0 (0) = µ0

(
0, sin

2 − ωsin
0

)
= 0,

and if sin
2 − ωsin

0 ≤ 0 one has sin
0 − sin

2 /ω ≥ 0, so that,

ψ0

(
sin

0 − sin
2 /ω

)
= µ0

(
sin

0 − sin
2 /ω, 0

)
= 0.

Thus, ψ0

(
max

(
0, sin

0 − sin
2 /ω

))
= 0. On the other hand, ψ0

(
sin

0

)
= µ0

(
sin

0 , s
in
2

)
. Therefore,

there exists a unique s0 ∈ J0 satisfying ψ0 (s0) = y, if and only if µ0

(
sin

0 , s
in
2

)
> y. We

have
dψ1

ds1

(s1) =
∂µ1

∂s1

(
s1, s

in
1 + sin

2 − s1

)
− ∂µ1

∂s2

(
s1, s

in
1 + sin

2 − s1

)
,

which is positive thanks to H5. Therefore, ψ1 is monotonically increasing. On the other

hand,

ψ1(0) = µ1

(
0, sin

1 + sin
2

)
= 0 and ψ1(sin

1 ) = µ1

(
sin

1 , s
in
2

)
.

Thus, there exists a unique s1 ∈ J1 satisfying ψ1 (s1) = y if and only if µ1(sin
1 , s

in
2 ) > y.

2.3.3 Existence of the steady states

We can state now the necessary and sufficient conditions of existence of the steady

states in the following Theorem.

Theorem 2.1. Assume that Hypotheses H1 to H6 hold. The steady states E000, E001,. . .,

E011, of (2.8) are given in Table 2.1. Assume also that H7 and H8 hold. The necessary

and sufficient conditions of existence of the steady states are given in Table 2.2.
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Table 2.1: The steady states of (2.8). The functions M0, M1 and M2 are given in Defini-

tion 2.1, ϕ0 and ϕ1 are given in Definition 2.2 and Ψ is defined by (2.23).

s0, s1, s2 x0, x1, x2

E000 s0 = sin
0 , s1 = sin

1 , s2 = sin
2 x0 = 0, x1 = 0, x2 = 0

E001 s0 = sin
0 , s1 = sin

1 , s2 = M2(D + a2) x0 = 0, x1 = 0, x2 = D
D+a2

(
sin

2 −M2(D + a2)
)

E100

s0 = s0

(
D, sin

0 , s
in
2

)
is a solution of ψ0(s0) = D + a0

s1 = sin
1 + sin

0 − s0

s2 = sin
2 − ω

(
sin

0 − s0

)
x0 = D

D+a0

(
sin

0 − s0

)
x1 = 0

x2 = 0

E110

s2 = s2

(
D, sin

0 , s
in
1 , s

in
2

)
is a solution of

Ψ (s2, D) = (1− ω)sin
0 + sin

1 + sin
2

s0 = M0 (D + a0, s2)

s1 = M1 (D + a1, s2)

x0 = D
D+a0

(
sin

0 − s0

)
x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
x2 = 0

E101
s0 = ϕ0(D), s1 = sin

0 + sin
1 − s0

s2 = M2(D + a2)

x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0

x2 = D
D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
E111

s0 = ϕ0(D)

s1 = ϕ1(D)

s2 = M2(D + a2)

x0 = D
D+a0

(
sin

0 − s0

)
x1 = D

D+a1

(
sin

0 + sin
1 − s1 − s0

)
x2 = D

D+a2

(
(1− ω)(sin

0 − s0) + sin
1 − s1 + sin

2 − s2

)
E010

s0 = sin
0 , s1 = s1

(
D, sin

1 , s
in
2

)
is a solution of ψ1(s1) = D + a1

s2 = sin
1 − s1 + sin

2

x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
x2 = 0

E011
s0 = sin

0 , s1 = ϕ1(D)

s2 = M2(D + a2)

x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)

Proof. Adding (2.15) to (2.12), substrating (2.12) from (2.13)+(2.16) and adding (2.12)

multiplied by ω to (2.14) and (2.17) and substrating (2.13), we obtain the set of equations
D
(
sin

0 − s0

)
− (D + a0)x0 = 0

D
(
sin

1 − s1

)
+ (D + a0)x0 − (D + a1)x1 = 0

D
(
sin

2 − s2

)
− ω (D + a0)x0 + (D + a1)x1 − (D + a2)x2 = 0.

(2.28)

We can solve (2.28) and obtain x0, x1 and x2 with respect of s0, s1 and s2:

x0 =
D

D + a0

(
sin

0 − s0

)
(2.29)

x1 =
D

D + a1

(
sin

0 − s0 + sin
1 − s1

)
(2.30)

x2 =
D

D + a2

(
(1− ω)

(
sin

0 − s0

)
+ sin

1 − s1 + sin
2 − s2

)
. (2.31)
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Table 2.2: The necessary and sufficient existence conditions of steady states of (2.8). The

functions M0, M1 and M2 are given in Definition 2.1, φ1, φ2, ϕ0 and ϕ1 are given in

Definition 2.2, while µi and Ψ are given by (2.9) and (2.23).

Steady states Existence conditions

E000 Always exists

E001 µ2

(
sin

2

)
> D + a2

E100 µ0

(
sin

0 , s
in
2

)
> D + a1

E110

(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1 (D), sin

0 > M0 (D + a0, s2) and

sin
0 + sin

1 > M0 (D + a0, s2) +M1 (D + a1, s2)

with s2 is solution of Ψ(s2) = (1− ω)sin
0 + sin

1 + sin
2

E101 sin
0 > ϕ0(D) and sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)

E111
(1− ω)sin

0 + sin
1 + sin

2 > φ2 (D), sin
0 > ϕ0(D) and

sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

E010 µ1

(
sin

1 , s
in
2

)
> D + a1

E011 sin
1 > ϕ1(D) and sin

1 + sin
2 > ϕ1(D) +M2(D + a2)

We can also solve (2.28) and obtain s0, s1 and s2 with respect of x0, x1 and x2:

s0 = sin
0 −

D + a0

D
x0 (2.32)

s1 = sin
1 +

D + a0

D
x0 −

D + a1

D
x1 (2.33)

s2 = sin
2 − ω

D + a0

D
x0 +

D + a1

D
x1 −

D + a2

D
x2. (2.34)

For E000, x0 = x1 = x2 = 0. Hence, (2.32), (2.33) and (2.34) result in

s0 = sin
0 , s1 = sin

1 and s2 = sin
2 .

This steady state always exists.

For E001, x0 = x1 = 0 and x2 > 0. Hence, (2.32) and (2.33) result in

s0 = sin
0 and s1 = sin

1 .

Therefore, (2.31) results in

x2 =
D

D + a2

(
sin

2 − s2

)
. (2.35)

Since x2 > 0, (2.14) results in µ2(s2) = D + a2. Therefore,

s2 = M2(D + a2). (2.36)

E001 exists if and only if x2 > 0, that is to say sin
2 > M2(D + a2), which is equivalent to

µ2

(
sin

2

)
> D + a2,

Doctoral thesis Page 31|142 Sarra Nouaoura



Chapter 2. Three-tiered microbial food-web model

thanks to H6.

For E100, x1 = x2 = 0 and x0 > 0. (2.29) results in

x0 =
D

D + a0

(
sin

0 − s0

)
. (2.37)

Using this expression together with x1 = x2 = 0 in (2.33) and (2.34) result in

s1 = sin
1 + sin

0 − s0 and s2 = sin
2 − ω(sin

0 − s0). (2.38)

Since x0 > 0, (2.12) results in

µ0(s0, s2) = D + a0. (2.39)

Replacing s2 by its expression (2.38) with respect of s0 in (2.39) results in

ψ0(D) = D + a0, (2.40)

where ψ0 is the function defined in (2.27). E100 exists if and only if equation (2.40) has a

positive solution and x0, s1 and s2 defined by (2.37) and (2.38), respectively, are positive.

This condition is equivalent to say that

0 < s0 < sin
0 and s0 > sin

0 − sin
2 /ω.

Therefore, (2.40) must have a solution in the interval J0. Using Lemma 2.3, (2.40) has a

unique solution in the interval J0 if and only if

µ0

(
sin

0 , s
in
2

)
> D + a0.

For E110, x0 > 0, x1 > 0 and x2 = 0. Hence, (2.29) and (2.30) result in

x0 =
D

D + a0

(
sin

0 − s0

)
and x1 =

D

D + a1

(
sin

0 − s0 + sin
1 − s1

)
. (2.41)

Using x0 > 0 and x1 > 0, (2.12) and (2.13) result in

µ0(s0, s2) = D + a0 and µ1(s1, s2) = D + a1.

Therefore, using the definitions of M0 and M1, we have

s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2). (2.42)

Using (2.41) together with x2 = 0 in (2.34), we have

s2 = sin
2 − ω

(
sin

0 − s0

)
+ sin

0 − s0 + sin
1 − s1. (2.43)

Replacing s0 and s1 by their expressions (2.42) with respect of s2 in (2.43), it follows that,

s2 is a solution of

Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2 , (2.44)
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where Ψ is the function defined by (2.23). According to Remark 2.1 E110 exists if and only

if

(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1(D),

and the solution s2 of (2.44) is such that x0 and x1-components are positive, which is

equivalent to

sin
0 > M0(D + a0, s2) and sin

0 + sin
1 > M0(D + a0, s2) +M1(D + a1, s2).

The existence of a unique or two steady states of the form E110 according to ω follow

immediately from Remark 2.1.

For E101, x0 > 0, x2 > 0 and x1 = 0. (2.29) results in

x0 =
D

D + a0

(
sin

0 − s0

)
. (2.45)

Using this expression together with x1 = 0 in (2.33) results in

s1 = sin
1 − s0 + sin

0 . (2.46)

Using this expression in (2.34) results in

x2 =
D

D + a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
. (2.47)

Using x0 > 0 and x2 > 0, (2.12) and (2.14) result in

µ0(s0, s2) = D + a0 and µ2(s2) = D + a2.

Therefore, using the definitions of M0, M2 and ϕ0, we find that

s2 = M2(D + a2) and s0 = ϕ0(D). (2.48)

E101 exists if and only if x0, s1 and x2-components are positive. This condition is equivalent

to

sin
0 > ϕ0(D) and sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D).

For E111, x0 > 0, x1 > 0 and x2 > 0. Then, as a consequence of (2.12)-(2.14), we

obtain

µ0(s0, s2) = D + a0, µ1(s1, s2) = D + a1, µ2(s2) = D + a2.

Using the definitions of M0, M1, M2, ϕ0 and ϕ1 yields

s2 = M2(D + a2), s0 = ϕ0(D), s1 = ϕ1(D).

The x-components of E111 are given by (2.29), (2.30) and (2.31). Thus, E111 exists if and

only if its x-components are positive, that is,

sin
0 > ϕ0(D), sin

1 + sin
0 > ϕ0(D) + ϕ1(D) and (1− ω)sin

0 + sin
1 + sin

2 > φ2(D).
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For E010, x0 = x2 = 0 and x1 > 0. Hence, (2.32) results in

s0 = sin
0 .

From (2.30), we have

x1 =
D

D + a1

(
sin

1 − s1

)
. (2.49)

Using this expression together with x0 = x2 = 0 in (2.34) results in

s2 = sin
1 − s1 + sin

2 . (2.50)

Since x1 > 0, then, as a consequence of (2.13), we obtain

µ1(s1, s2) = D + a1. (2.51)

Replacing s2 by its expression (2.50) with respect of s1 results in

ψ1(D) = D + a1. (2.52)

E010 exists if and only if (2.52) has a positive solution and x1 and s2 defined by (2.49)

and (2.50), respectively, are positive. This last condition is equivalent to 0 < s1 < sin
1 .

Consequently, (2.52) must have a solution in the interval J1. Using Lemma 2.3, there

exists a unique s1 ∈ J1, satisfying (2.52), if and only if

µ1(sin
1 , s

in
2 ) > D + a1.

For E011, x0 = 0, x1 > 0 and x2 > 0. Hence, (2.32) results in

s0 = sin
0 .

Using this expression in (2.30) and (2.31) results in

x1 =
D

D + a1

(
sin

1 − s1

)
, x2 =

D

D + a2

(
sin

1 − s1 + sin
2 − s2

)
.

Since x1 > 0 and x2 > 0, as a consequence of (2.13) and (2.14), we have

µ1(s1, s2) = D + a1 and µ2(s2) = D + a2.

Therefore, using the definitions of the functions M2 and ϕ1, it follows that

s2 = M2(D + a2), s1 = ϕ1(D).

For the components x1 and x2 to be positive, the necessary and sufficient condition is that

sin
1 > ϕ1(D) and sin

1 + sin
2 > ϕ1(D) +M2(D + a2).
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Remark 2.2. Recall from Remark 2.1 that φ1(D) = −∞ when ω > 1. Therefore, in this

case, the condition (1− ω)sin
0 + sin

1 + sin
2 ≥ φ1 (D) of existence of E110 is always satisfied.

In the particular cases, where sin
1 = 0 or sin

2 = 0, some of the steady states described

in Theorem 2.1 do not exist and the existence conditions of the existing steady states can

be simplified. More precisely, we have the following result.

Proposition 2.2. If sin
1 = 0 then, E010 and E011 do not exist. If sin

2 = 0, E001, E100 and

E101 do not exist. If sin
1 = sin

2 = 0, we have:

• The steady states E001, E100, E101, E010 and E011 do not exist.

• If ω > 1, E110 and E111 do not exist. If ω < 1, E110 and E111 exist, respectively, if

and only if

(1− ω)sin
0 > φ1(D) and (1− ω)sin

0 > φ2(D). (2.53)

Proof. If sin
1 = 0, then µ1

(
sin

1 , s
in
2

)
= 0, so that the conditions

µ1

(
sin

1 , s
in
2

)
> D + a1 and sin

1 > ϕ1(D)

of existence of E010 and E011, respectively, cannot be satisfied. Therefore, E010 and E011

do not exist. If sin
2 = 0, then µ2

(
sin

2

)
= 0 and µ0

(
sin

0 , s
in
2

)
= 0, so that the existence

conditions

µ2

(
sin

2

)
> D + a2 and µ0

(
sin

0 , s
in
2

)
> D + a0

of E001 and E100 cannot be satisfied, respectively. Moreover, the second existence condition

of E101 implies that

sin
0 < ϕ0(D)− M2(D + a2)

ω
< ϕ0(D),

which is in contradiction with the first existence condition of E101. Therefore, E001, E100

and E101 do not exist. This confirms the results obtained in [51] in the case where sin
1 =

sin
2 = 0, where the steady states E001, E100, E101, E010 and E011 do not exist.

Assume that sin
1 = sin

2 = 0. If ω = 1, the first existence condition of E110 in Table 2.2 is

written 0 > φ1(D). This condition cannot be satisfied, since φ1(D) = Ψ (s0
2, D) > 0 from

Remark 2.1. Thus, E110 does not exist if ω = 1. When ω > 1, we have s2 is solution of

equation

(1− ω)
(
sin

0 − s0

)
= s1 + s2.

Since s1 > 0 and s2 > 0, then we have necessarily

(1− ω)
(
sin

0 − s0

)
> 0,

so that sin
0 − s0 < 0, which contradicts the positivity of the x0-component of E110 in

Table 2.1. Thus, E110 does not exist if ω > 1. When sin
1 = sin

2 = 0, the s2-component of

E110 becomes the solution of equation

sin
0 = M0 (D + a0, s2) +

M1 (D + a1, s2) + s2

(1− ω)
.
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If 0 < ω < 1, then

sin
0 > M0 (D + a0, s2) +M1 (D + a1, s2) > M0 (D + a0, s2) ,

thus, the second and the third existence conditions of E110 in Table 2.2 are satisfied when

ω < 1. Therefore, E110 exists if and only if (1− ω)sin
0 > φ1(D).

Regarding the steady state E111 in the particular case sin
1 = sin

2 = 0, the first existence

condition in Table 2.2 becomes

(1− ω)sin
0 > φ2(D), (2.54)

which is equivalent to

(1− ω)
(
sin

0 − ϕ0(D)
)
> ϕ1(D) +M2(D + a2).

When ω > 1, this last inequality cannot hold, since sin
0 > ϕ0(D), so that E111 does not

exist. If ω < 1, condition (2.54) implies that

(1− ω)sin
0 > (1− ω)ϕ0(D) + (1− ω)ϕ1(D),

that is,

sin
0 > ϕ0(D) + ϕ1(D) > ϕ0(D),

which are the second and the third existence conditions of E111 in Table 2.2. Thus, (2.54)

is the only existence condition of E111.

Remark 2.3. From Tables 2.1 and 2.2, we can see that:

- E000 and E001 coalesce, when D + a2 = µ2

(
sin

2

)
.

- E000 and E100 coalesce, when D + a0 = µ0

(
sin

0 , s
in
2

)
.

- E000 and E010 coalesce, when D + a1 = µ1

(
sin

1 , s
in
2

)
.

- E001 and E101 coalesce, when sin
0 = ϕ0(D).

- E100 and E101 coalesce, when sin
2 − ωsin

0 = M2(D + a2)− ωϕ0(D).

- E011 and E001 coalesce, when sin
1 = ϕ1(D).

- E1
110 and E2

110 coalesce, when sin
0 (1− ω) = φ1(D)− sin

1 − sin
2 .

- E011 and E111 coalesce, when sin
0 = ϕ0(D).

- E101 and E111 coalesce, when sin
0 + sin

1 = ϕ0(D) + ϕ1(D).

- E110 and E111 coalesce, when sin
0 (1− ω) = φ2(D)− sin

1 − sin
2 .
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- E010 and E011 coalesce, when sin
1 + sin

2 = M2(D + a2) + ϕ1(D).

Remark 2.4. Assume that sin
1 = sin

2 = 0. Then, only the steady states E000, E110 and E111

can exist. The existence conditions (2.53) of E110 and E111, respectively, are equivalent to

the following conditions given in Lemmas 3 and 4 of [51]:

sin
0 > F1(D) :=

φ1(D)

1− ω
and sin

0 > F2(D) :=
φ2(D)

1− ω
.

Hence, we recover the results of [51] where the study is restricted to the case sin
1 = sin

2 = 0.

2.4 Conclusion

In this chapter, we have investigated mathematically the steady states of the three-

tiered chlorophenol mineralizing “food-web” model proposed by [64] involving three or-

ganisms and three substrates with general growth functions and by considering the effects

of the phenol and the hydrogen inflowing concentrations as well as the maintenance terms.

We have described all steady states of system (2.8) and we have provided the existence

conditions according to the control parameters. The analysis of the steady states of system

(2.8) proves the existence of eight types of steady states: the washout steady state which

always exists, a coexistence steady state where all degrader populations are maintained

and six other steady states corresponding to the extinction of one or two degrader popula-

tions. Each type of steady state is unique, if it exists, except that of the exclusion only of

the hydrogen degraders (E110). Using Hypothesis H8 which satisfies the specific growth

rates (2.9), there are at most two steady states of type E110.

In the following chapter, we determine the local stability analysis of the three-tiered

model in the particular case, when the maintenance (decay) is excluded from the model.

We illustrate the change in the asymptotic behavior of the chlorophenol model by bifur-

cation diagrams according to one-parameter, by using the results of this chapter.

The results of this chapter have been published in [40].
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Chapter 3. Stability of the three-tiered food-web model without decay

3.1 Introduction

In this chapter, we are interested in analyzing the local stability of the three-tiered

microbial model, by considering a large class of growth rates, instead of specific kinetics,

when the maintenance is excluded.

This chapter is organized as follows. In section 3.2, we present the three-step food-

web model with three input substrate concentrations, when the terms of maintenance are

zero and describe the steady states of the model and their existing conditions. Next, in

section 3.3, we determine explicitly the necessary and sufficient local stability conditions

of the steady states according to the operating parameters, followed by the bifurcation

diagram with respect to the chlorophenol input concentration as a bifurcating parameter in

section 3.4. In section 3.5, we give some numerical simulations to illustrate the theoretical

results.

3.2 Three-tiered model without decay terms

Putting the mortality terms equal to zero ai = 0, for i = 0, 1, 2 in model (2.8), which

corresponds to (kdec,ch = kdec,ph = kdec,H2 = 0) of model (2.1), leads to the following model:

ẋ0 = µ0(s0, s2)x0 −Dx0

ẋ1 = µ1(s1, s2)x1 −Dx1

ẋ2 = µ2(s2)x2 −Dx2

ṡ0 = D
(
sin

0 − s0

)
− µ0(s0, s2)x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0(s0, s2)x0 − µ1(s1, s2)x1

ṡ2 = D
(
sin

2 − s2

)
− ωµ0(s0, s2)x0 + µ1(s1, s2)x1 − µ2(s2)x2.

(3.1)

We suppose that the growth functions µi, i = 0, 1, 2 in system (3.1) satisfy the assump-

tions H1 to H8 of chapter 2. The solutions of system (3.1) verify Proposition 2.1, with

the set Ω in this case is given by

Ω =
{

(x0, x1, x2, s0, s1, s2) ∈ R6
+ : Z = ωx0 + x1 + x2 + 2s0 + 2s1 + s2 = 2sin

0 + 2sin
1 + sin

2

}
.

In Table 3.1, the steady states of (3.1) and their necessary and sufficient existence

conditions are easily deduced from Table 2.1 and Table 2.2, respectively, in chapter 2 by

putting ai = 0, i = 0, 1, 2.

3.3 Local stability of the steady states

In this section, we determine the local stability conditions of steady states of model

(3.1). Any reference to steady state stability should be considered as local exponential
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Table 3.1: The steady states of (3.1) and their necessary and sufficient existence conditions.

Steady state Existence condition

E000 =
(
0, 0, 0, sin

0 , s
in
1 , s

in
2

)
Always exists

E001 =
(
0, 0, sin

2 −M2(D), sin
0 , s

in
1 ,M2(D)

)
µ2

(
sin

2

)
> D

E100 =
(
sin
0 − s0, 0, 0, s0, s1, s2

)
,

where s0 = s0

(
D, sin

0 , s
in
2

)
is a solution of ψ0(s0) = D,

s1 = sin
1 + sin

0 − s0, s2 = sin
2 − ω

(
sin

0 − s0

) µ0

(
sin

0 , s
in
2

)
> D

E110 =
(
sin
0 − s0, s

in
0 − s0 + sin

1 − s1, 0, s0, s1, s2

)
,

where s0 = M0 (D, s2), s1 = M1 (D, s2)

and s2 = s2

(
D, sin

0 , s
in
1 , s

in
2

)
is a solution of

Ψ (s2, D) = (1− ω)sin
0 + sin

1 + sin
2

(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1 (D)

and the solution s2 satisfies

sin
0 > M0 (D, s2) and

sin
0 + sin

1 > M0 (D, s2) +M1 (D, s2)

E101 =
(
sin
0 − s0, 0, s

in
2 − s2 − ω

(
sin
0 − s0

)
, s0, s1, s2

)
,

where s0 = M0(D, s2), s1 = sin
0 + sin

1 − s0, s2 = M2(D)

sin
0 > ϕ0(D) and

sin
2 − ωsin

0 > M2(D)− ωϕ0(D)

E111 = (x0, x1, x2, s0, s1, s2),

where s0 = M0(D, s2), s1 = M1(D, s2), s2 = M2(D)

x0 = sin
0 − s0, x1 = sin

1 + sin
0 − s1 − s0,

x2 = (1− ω)(sin
0 − s0) + sin

1 − s1 + sin
2 − s2

(1− ω)sin
0 + sin

1 + sin
2 > φ2 (D) ,

sin
0 > ϕ0(D) and

sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

E010 =
(
0, sin

1 − s1, 0, s
in
0 , s1, s

in
1 − s1 + sin

2

)
,

where s1 = s1

(
D, sin

1 , s
in
2

)
is a solution of ψ1(s1) = D

µ1

(
sin

1 , s
in
2

)
> D

E011 =
(
0, sin

1 − s1, s
in
1 − s1 + sin

2 − s2, s
in
0 , s1, s2

)
,

where s1 = M1 (D, s2), s2 = M2 (D)

sin
1 > ϕ1(D) and

sin
1 + sin

2 > ϕ1(D) +M2(D)

stability (LES). Indeed, the local exponential stability is given by the sign of the real parts

of the eigenvalues of the Jacobian matrix of system (3.1) evaluated at the steady states, or

by the stability criterions in the more complicated cases, as the Routh-Hurwitz criterion

and the Liénard-Chipart stability criterion. These stability criterions allow us to conclude

to the local stability of a steady state without explicitly calculating the eigenvalues of the

Jacobian matrix.

The study of the stability of E111 requires the following definition.

Definition 3.1. Let
(
D, sin

0 , s
in
1 , s

in
2

)
7→ φ4

(
D, sin

0 , s
in
1 , s

in
2

)
be defined by:

φ4(D, sin
0 , s

in
1 , s

in
2 ) =(EIx0x2 + EGφ3(D)x0x1)(Ix2 + (G+H)x1 + (E + ωF )x0)

+ (Ix2 + (G+H)x1 + ωFx0)GIx1x2,
(3.2)

where

E =
∂µ0

∂s0

(s0, s2), F =
∂µ0

∂s2

(s0, s2), G =
∂µ1

∂s1

(s1, s2),

H = −∂µ1

∂s2

(s1, s2), I =
dµ2

ds2

(s2).

(3.3)
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and are evaluated at the steady state E111. We have used the opposite sign of the partial

derivative H = −∂µ1/∂s2, such that all constants involved in the computation become

positive.

Now, we state our main result.

Theorem 3.1. Assume that H1 to H8 hold. The necessary and sufficient stability con-

ditions of the steady states of (3.1) are given in Table 3.2.

Table 3.2: The necessary and sufficient conditions of local stability of steady states of

(3.1).

Stability conditions

E000 µ0

(
sin

0 , s
in
2

)
< D, µ1

(
sin

1 , s
in
2

)
< D and µ2

(
sin

2

)
< D

E001 sin
0 < ϕ0(D) and sin

1 < ϕ1(D)

E100
µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
< D and sin

2 − ωsin
0 < M2(D)− ωϕ0(D),

with s0 solution of equation ψ0(s0) = D

E110
(1− ω)sin

0 + sin
1 + sin

2 < φ2(D), φ3(D) > 0 and
∂Ψ

∂s2

(s2, D) > 0,

with s2 solution of equation Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

E101 sin
0 + sin

1 < ϕ0(D) + ϕ1(D)

E111 φ3(D) ≥ 0 or φ3(D) < 0 and φ4(D, sin
0 , s

in
1 , s

in
2 ) > 0

E010 sin
1 + sin

2 < M3

(
sin

0 , D
)

+M1

(
D,M3

(
sin

0 , D
))

and sin
1 + sin

2 < M2(D) + ϕ1(D)

E011 sin
0 < ϕ0(D)

Proof. To facilitates the local stability analysis, we use the following change of variables:

z0 = x0 + s0, z1 = x1 + s1 − x0, z2 = ωx0 − x1 + x2 + s2. (3.4)

Therefore, model (3.1) can be reduced to a cascade system which takes the form:

ẋ0 = −Dx0 + µ0 (z0 − x0, z2 − ωx0 + x1 − x2)x0

ẋ1 = −Dx1 + µ1 (z1 + x0 − x1, z2 − ωx0 + x1 − x2)x1

ẋ2 = −Dx2 + µ2 (z2 − ωx0 + x1 − x2)x2

ż0 = D
(
sin

0 − z0

)
ż1 = D

(
sin

1 − z1

)
ż2 = D

(
sin

2 − z2

)
(3.5)

The steady states E000, E001,. . ., E011 of (3.5) now take the form
(
x0, x1, x2, s

in
0 , s

in
1 , s

in
2

)
,

where the xi-components of each steady state are given by those in Table 3.1. The Jacobian
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matrix of (3.5) has the block triangular form:

J =

 J1 J2

0 J3

 ,
where

J1 =

 µ0 (s0, s2)−D − (E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 µ1 (s1, s2)−D − (G+H)x1 Hx1

−ωIx2 Ix2 µ2 (s2)−D − Ix2

 ,
(3.6)

J2 =

 Ex0 0 Fx0

0 Gx1 −Hx1

0 0 Ix2

 , J3 =

 −D 0 0

0 −D 0

0 0 −D

 ,
where the functions E, F , G, H and I, defined by (3.3), are evaluated at the steady state.

Since J is a block triangular matrix, its eigenvalues are −D with multiplicity 3, together

with the eigenvalues of the 3×3 upper-left matrix J1. Thus, the local exponential stability

(LES) of the steady states is determined by the sign of the real parts of the eigenvalues of

J1.

For E000, the matrix J1 is:

J1 =

 µ0

(
sin

0 , s
in
2

)
−D 0 0

0 µ1

(
sin

1 , s
in
2

)
−D 0

0 0 µ2

(
sin

2

)
−D

 .
The eigenvalues of J1 are

λ1 = µ0

(
sin

0 , s
in
2

)
−D, λ2 = µ1

(
sin

1 , s
in
2

)
−D and λ3 = µ2

(
sin

2

)
−D.

Therefore, for E000 to be stable, it is necessary and sufficient that λ1 < 0, λ2 < 0 and

λ3 < 0. Thus, E000 is stable if and only if

µ0

(
sin

0 , s
in
2

)
< D, µ1

(
sin

1 , s
in
2

)
< D and µ2

(
sin

2

)
< D,

which are the same as the stability conditions of E000 in Table 3.2.

For E001, the matrix J1 is:

J1 =

 µ0

(
sin

0 ,M2(D)
)
−D 0 0

0 µ1

(
sin

1 ,M2(D)
)
−D 0

−ωIx2 Ix2 −Ix2

 .
The eigenvalues of J1 are

λ1 = µ0

(
sin

0 ,M2(D)
)
−D, λ2 = µ1

(
sin

1 ,M2(D)
)
−D and λ3 = −Ix2.

Doctoral thesis Page 43|142 Sarra Nouaoura



Chapter 3. Stability of the three-tiered food-web model without decay

Therefore, for E001 to be stable, it is necessary and sufficient that λ1 < 0 and λ2 < 0.

Thus, E001 is stable if and only if

µ0

(
sin

0 ,M2(D)
)
< D and µ1

(
sin

1 ,M2(D)
)
< D.

Since M0 and M1 are increasing (see Lemma 2.1), these conditions are equivalent to

sin
0 < M0(D,M2(D)) and sin

1 < M1(D,M2(D)),

which are the same as the stability conditions of E001 in Table 3.2.

For E100, the matrix J1 is:

J1 =

 −(E + ωF )x0 Fx0 −Fx0

0 µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
−D 0

0 0 µ2

(
sin

2 − ω
(
sin

0 − s0

))
−D

 .
The eigenvalues of J1 are

λ1 = −(E + ωF )x0, λ2 = µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
−D

and λ3 = µ2

(
sin

2 − ω
(
sin

0 − s0

))
−D.

Therefore, for E100 to be stable, it is necessary and sufficient that λ2 < 0 and λ3 < 0.

Thus, E100 is stable if and only if

µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
< D and µ2

(
sin

2 − ω
(
sin

0 − s0

))
< D, (3.7)

where s0 is the solution in the interval J0 of equation ψ0 (s0) = D. Since M2 is increasing

(see Lemma 2.1), the second condition of (3.7) is equivalent to

sin
2 − ω

(
sin

0 − s0

)
< M2(D) ⇐⇒ s0 <

(
M2(D)− sin

2

)
/ω + sin

0 . (3.8)

As the function ψ0 is increasing, (3.8) is equivalent to

ψ0(s0) < ψ0

((
M2(D)− sin

2

)
/ω + sin

0

)
. (3.9)

From the definition of the function ψ0 together with the condition ψ0(s0) = D defining s0,

we deduce that (3.9) is equivalent to

D < µ0

((
M2(D)− sin

2

)
/ω + sin

0 ,M2(D)
)
.

Since M0 is increasing (see Lemma 2.1), then E100 is stable if and only if

µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
< D and M0(D,M2(D)) <

(
M2(D)− sin

2

)
/ω + sin

0 ,

which are the same as the stability conditions of E100 in Table 3.2.
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For E110, the matrix J1 is:

J1 =

 −(E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 −(G+H)x1 Hx1

0 0 µ2(s2)−D

 .
The eigenvalue is simply

λ1 = µ2(s2)−D.

The others are those of the matrix −(E + ωF )x0 Fx0

(G+ ωH)x1 −(G+H)x1

 .
The eigenvalues of this matrix are λ2 and λ3, such that

λ2λ3 = (E(G+H)− (1− ω)FG)x0x1 and λ2 + λ3 = − ((E + ωF )x0 + (G+H)x1) < 0.

Hence, the eigenvalues λ2 and λ3 are of a negative real part if and only if

E(G+H)− (1− ω)FG > 0. (3.10)

Let us prove that this condition (3.10) is equivalent to ∂Ψ
∂s2

(s2, D) > 0. Using (3.3) and

Lemma 2.1, we obtain

∂M0

∂s2

(D, s2) = −F
E

and
∂M1

∂s2

(D, s2) =
H

G
.

Using (2.24), it follows that

∂Ψ

∂s2

(s2, D) =
F

E
(ω − 1) +

H

G
+ 1 =

E(G+H) + (ω − 1)FG

EG
. (3.11)

Since E and G are positive, condition (3.10) is equivalent to ∂Ψ
∂s2

(s2, D) > 0. Consequently,

as µ2 is increasing, E110 is stable if and only if

s2 < M2(D) and
∂Ψ

∂s2

(s2, D) > 0. (3.12)

When s1
2 ≤ M2(D), the s2-component of E110 satisfies s2 < s1

2 ≤ M2(D). Thus, E110 is

stable if and only if the first and the second conditions of (3.12) hold. When M2(D) < s1
2,

we will prove that (3.12) is equivalent to the stability conditions of E110 given in Table 3.2.

To this end, assume first that ω > 1. If s2 < M2(D), then s0
2 ≤ s2 < M2(D) < s1

2. From

Lemma 2.3, the mapping s2 7→ Ψ(s2, D) is increasing for all s2 ∈ (s0
2, s

1
2) (see Figure 2.3(b-

c)). Hence, the condition s2 < M2(D) is equivalent to

(1− ω)sin
0 + sin

1 + sin
2 = Ψ(s2, D) < Ψ (M2(D), D) = φ2(D). (3.13)
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In addition, s2 < M2(D) implies that φ3(D) > 0 for all D ∈ I2. Now, when ω < 1,

from Lemma 2.3 and using H8, equation (2.44) has at most two solutions s∗12 < s∗22 , such

that
∂Ψ

∂s2

(s∗12 , D) < 0 and
∂Ψ

∂s2

(s∗22 , D) > 0 (see Figure 2.3(a)). Thus, the steady state

E1
110 corresponding to s∗12 is unstable. For the steady state E2

110 corresponding to s∗22 ,

the condition s∗22 < M2(D) implies the first and the second stability conditions of E110

since the mapping s2 7→ Ψ(s2, D) is increasing on (s2, s
1
2). On the other hand, if the first

stability condition of E110 or equivalently (3.13) holds, then

s∗22 < M2(D) or s0
2 < M2(D) < s∗12 .

This last condition is in contradiction with the second condition of stability of E110. There-

fore, E110 is stable if and only if

(1− ω)sin
0 + sin

1 + sin
2 < φ2(D), φ3(D) > 0 and

∂Ψ

∂s2

(s2, D) > 0.

For E101, the matrix J1 is:

J1 =

 −(E + ωF )x0 Fx0 −Fx0

0 µ1

(
sin

0 + sin
1 −M0(D,M2(D)),M2(D)

)
−D 0

−ωIx2 Ix2 −Ix2

 .
Its known eigenvalue is

λ1 = µ1

(
sin

0 + sin
1 −M0(D,M2(D)),M2(D)

)
−D.

The two other are those of the matrix: −(E + ωF )x0 −Fx0

−ωIx2 −Ix2

 .
The eigenvalues of this matrix are λ2 and λ3 such that,

λ2λ3 = EIx0x2 > 0 and λ2 + λ3 = − ((E + ωF )x0 + Ix2) < 0.

Hence, the real parts of the eigenvalues λ2 and λ3 are negative. Therefore, E101 is stable

if and only if

µ1

(
sin

0 + sin
1 −M0(D,M2(D)),M2(D)

)
< D,

which is equivalent to

sin
0 + sin

1 < M1(D,M2(D)) +M0(D,M2(D)),

which is the same as the stability condition of E101 in Table 3.2.
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For E111, the matrix J1 is:

J1 =

 −(E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 −(G+H)x1 Hx1

−ωIx2 Ix2 −Ix2

 .
The eigenvalues are given by the characteristic polynomial P3, which is given by:

P3 = λ3 + c1λ
2 + c2λ+ c3 = 0, (3.14)

where

c1 = Ix2 + (G+H)x1 + (E + ωF )x0,

c2 = (E(G+H)− (1− ω)FG)x0x1 + EIx0x2 +GIx1x2, c3 = EGIx0x1x2.
(3.15)

To satisfy the Routh-Hurwitz criterion, we require ci > 0, for i = 1, 3 and c1c2 − c3 > 0.

Notice that:

c1c2 − c3 =(EIx0x2 + EGφ3(D)x0x1)(Ix2 + (G+H)x1 + (E + ωF )x0)

+ (Ix2 + (G+H)x1 + ωFx0)GIx1x2.
(3.16)

Then, we always have c1 > 0 and c3 > 0. From (3.11), we deduce that

(E(G+H)− (1− ω)FG) = EGφ3(D).

Therefore, if φ3(D) ≥ 0, then, (E(G+H)− (1−ω)FG) ≥ 0. Hence, c1c2− c3 > 0, so that

E111 is LES.

On the other hand, since we always have c1 > 0 and c3 > 0, according to the Routh-

Hurwitz criterion, E111 is LES if and only if

φ4

(
D, sin

0 , s
in
1 , s

in
2

)
:= c1c2 − c3 > 0,

where the function φ4 can be written as its expression (3.2).

For E010, the matrix J1 is:

J1 =

 µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
−D 0 0

(G+ ωH)x1 −(G+H)x1 Hx1

0 0 µ2

(
sin

1 − s1 + sin
2

)
−D

 .
The eigenvalues of J1 are

λ1 = µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
−D, λ2 = −(G+H)x1 and λ3 = µ2

(
sin

1 − s1 + sin
2

)
−D.

Therefore, for E010 to be stable, it is necessary and sufficient that λ1 < 0 and λ3 < 0.

Thus, E010 is stable if and only if

µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
< D and µ2

(
sin

1 − s1 + sin
2

)
< D, (3.17)
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where s1 is the solution in the interval J1 of equation ψ1(D) = D. Recall that the functions

M2 and M3 are increasing (see Lemma 2.1). Thus,

µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
< D ⇐⇒ s1 > sin

1 + sin
2 −M3(sin

0 , D)

and

µ2

(
sin

1 − s1 + sin
2

)
< D ⇐⇒ s1 > sin

1 + sin
2 −M2(D).

As the function ψ1 is increasing, then, we deduced that

ψ1(s1) > ψ1

(
sin

1 + sin
2 −M3(sin

0 , D)
)

and ψ1(s1) > ψ1

(
sin

1 + sin
2 −M2(D)

)
.

From ψ1(s1) = µ1

(
s1, s

in
1 − s1 + sin

2

)
= D, then, the conditions of the stability of E010 are

equivalent to

µ1

(
sin

1 + sin
2 −M3(sin

0 , D),M3(sin
0 , D)

)
< D and µ1

(
sin

1 + sin
2 −M2(D),M2(D)

)
< D.

Since M1 is increasing. Thus, E010 is stable if and only if

sin
1 + sin

2 < M1

(
D,M3(sin

0 , D)
)

+M3(sin
0 , D) and sin

1 + sin
2 < M1 (D,M2(D)) +M2(D),

which are the same as the stability conditions of E010 in Table 3.2.

For E011, the matrix J1 is:

J1 =

 µ0

(
sin

0 ,M2(D)
)
−D 0 0

(G+ ωH)x1 −(G+H)x1 Hx1

−ωIx2 Ix2 −Ix2

 .
Its known eigenvalue is

λ1 = µ0

(
sin

0 ,M2(D)
)
−D.

The two other are those of the matrix: −(G+H)x1 Hx1

Ix2 −Ix2

 .
The eigenvalues of this matrix are λ2 and λ3 such that,

λ2λ3 = GIx1x2 > 0 and λ2 + λ3 = − ((G+H)x1 + Ix2) < 0.

Hence, the real parts of the eigenvalues λ2 and λ3 are negative. Therefore, E011 is stable

if and only if

µ0

(
sin

0 ,M2(D)
)
< D,

which is equivalent to

sin
0 < M0(D,M2(D)),

which is the same as the stability condition of E011 in Table 3.2.

Remark 3.1. From Remark 2.1, when it exists, E1
110 is unstable. When E2

110 exists, the

third stability condition
∂Ψ

∂s2

(s∗22 , D) > 0 in Table 3.2 is always satisfied. However, the

other stability conditions can be not satisfied, so that, this steady state can be unstable.
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3.4 Bifurcation diagram

In this section, we study numerically the qualitative behavior of system (3.1) when

considering Sin
ch as the bifurcation parameter. Throughout this section, we assume that

the biological parameters are fixed at the values provided in Table 3.3.

Table 3.3: Nominal parameter values, where i = {ch, ph,H2}. Units are expressed in

Chemical Oxygen Demand (COD).

Parameter Wade et al. [64] Unit

km,ch
km,ph

km,H2

29
26
35

kgCODS/kgCODX/d

KS,ch

KS,H2,c

KS,ph

KI,H2

KS,H2

0.053
10−6

0.302
3.5×10−6

2.5×10−5

kgCOD/m3

Ych

Yph

YH2

0.019
0.04
0.06

kgCODX/kgCODS

kdec,i 0 d−1

For the specific kinetics (2.9), straightforward computations show that the various

functions Mi, s
0
2, s1

2, Ψ, φi, ϕi and ψi are given by the expressions in Table 3.4. Notice

that, from the expression of Ψ in Table 3.4, a straightforward calculation shows that, for

all s2 ∈ (s0
2, s

1
2),

∂2ψ

∂s2
2

(s2, D) =
(1− ω)2K0(D + a0)

m0 −D − a0

L0 + s0
2

(s2 − s0
2)

3 +
2K1(KI + s1

2)

(s1
2 − s2)

3 ,

which is positive since ω < 1 and m0 > D+a0. Thus, the function s2 7→ Ψ(s2, D) is convex

and fulfills H8 (see Figure 2.3(a)). Furthermore, model (2.1) is of the form (2.8) where the

growth functions (2.9) satisfy Hypotheses H1 to H8, where kdec,i = 0. Consequently, the

results of this section apply to model (2.1). For this section, we put ai = 0, for i = 0, 1, 2

in Table 3.4.

Now, we fix the following input concentrations with the dilution rate

Sin
ph = 0, Sin

H2
= 2.67×10−5 and D = 0.01,

corresponding to Figure 3(a) in [64] when kdec,i = 0, i = {ch, ph,H2} and plot the one-

parameter bifurcation diagram in Sin
ch. As a consequence of Table 3.1 and Theorem 3.1, we

obtain the following result which determines the existence and the stability of the steady

states of (2.1) with respect to the input concentration Sin
ch.
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Table 3.4: Notations, intervals and auxiliary functions in the case of growth functions

given by (2.9).

Auxiliary functions Definition domain

M0(y, s2) =
yK0(L0 + s2)

m0s2 − y(L0 + s2)
Defined for 0 ≤ y <

m0s2

L0 + s2

.

M1(y, s2) =
yK1(KI + s2)

m1KI − y(KI + s2)
Defined for 0 ≤ y <

m1KI

KI + s2

.

M2(y) =
yK2

m2 − y
Defined for 0 ≤ y < m2.

M3(s0, z) =
zL0(K0 + s0)

m0s0 − z(K0 + s0)
Defined for 0 ≤ z <

m0s0

K0 + s0

.

s0
2(D) =

L0(D + a0)

m0 −D − a0

Defined for D + a0 < m0.

s1
2(D) =

KI(m1 −D − a1)

D + a1

Defined for D + a1 < m1.

Ψ(s2, D) = (1− ω)
(D + a0)K0(L0 + s2)

m0s2 − (D + a0)(L0 + s2)

+
(D + a1)K1(KI + s2)

m1KI − (D + a1)(KI + s2)
+ s2

Defined for D ∈ I1 and

s0
2(D) < s2 < s1

2(D).

φ1(D) = inf
s02(D)<s2<s12(D)

Ψ(s2, D) Defined for D ∈ I1.

φ2(D) = Ψ(M2(D + a2), D) Defined for D ∈ I2.

φ3(D) = ∂Ψ
∂s2

(M2(D + a2), D) Defined for D ∈ I2.

ϕ0(D) = M0(D + a0, (M2(D + a2)))
Defined for

D ∈ {D ≥ 0 : s0
2 < M2(D + a2)}.

ϕ1(D) = M1(D + a1, (M2(D + a2)))
Defined for

D ∈ {D ≥ 0 : M2(D + a2) < s1
2}.

ψ0(s0) =
m0s0

(
sin

2 − ω
(
sin

0 − s0

))
(K0 + s0) (L0 + sin

2 − ω (sin
0 − s0))

Defined for

s0 ∈
[
max

(
0, sin

0 −sin
2 /ω

)
,+∞

)
.

ψ1(s1) =
m1s1KI

(K1 + s1) (KI + sin
1 + sin

2 − s1)
Defined for s1 ∈

[
0, sin

1 + sin
2

)
.

Proposition 3.1. Assume that the biological parameters in (2.1) are given as in Table 3.3.

Assume that Sin
ph = 0, Sin

H2
= 2.67×10−5, D = 0.01 and kdec,ch = kdec,ph = kdec,H2 = 0. Let

σi, i = 1, . . . , 6 be the bifurcation values defined in Table 3.5. The existence and stability

of steady states of (2.1), with respect to the input concentration Sin
ch is given in Table 3.6.

The nature of the bifurcations when Sin
ch crosses the values σi, i = 1, . . . , 6 is given in
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Table 3.7.

Table 3.5: Definitions of the critical values of σi, i = 1, . . . , 6. All functions are given in

Table 3.4, while φ4 is given by (3.2).

Definition Value

σ1 = M0

(
D,Sin

H2

)
/Y 0.001017

σ2 = (φ1(D)− Sin
H2

)/((1− ω)Y ) 0.009159

σ3 = ϕ0(D)/Y 0.010846

σ4 = (Sin
H2
−M2(D) + ωϕ0(D))/(ωY ) 0.011191

σ5 = (φ2(D)− Sin
H2

)/((1− ω)Y ) 0.016575

σ6 is the solution of equation φ4(Sin
ch) = 0 0.029877

Table 3.6: Existence and stability of steady states, with respect to Sin
ch. In the following,

the letter S (resp. U) means that the corresponding steady state is stable (resp. unstable).

No letter means that the steady state does not exist.

Interval of Sin
ch E000 E001 E100 E1

110 E2
110 E101 E111

(0, σ1) U S

(σ1, σ2) U S U

(σ2, σ3) U S U U U

(σ3, σ4) U U U U U S

(σ4, σ5) U U S U U

(σ5, σ6) U U S U U U

(σ6,+∞) U U S U U S

Table 3.7: Nature of the bifurcations corresponding to the critical values of σi, i = 1, . . . , 6,

defined in Table 3.5. There exists also a critical value σ∗ ' 0.029638 corresponding to the

value of Sin
ch where the stable limit cycle disappears when Sin

ch is decreasing.

Type of the bifurcation

σ1 Transcritical bifurcation of E000 and E100

σ2 Saddle-node bifurcation of E1
110 and E2

110

σ3 Transcritical bifurcation of E001 and E101

σ4 Transcritical bifurcation of E100 and E101

σ5 Transcritical bifurcation of E1
110 and E111

σ∗ Disappearance of the stable limit cycle

σ6 Supercritical Hopf bifurcation
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Proof. Using the change of variables (2.7) and from Tables 3.1 and 3.2, the necessary and

sufficient conditions of existence and stability of steady states of (2.1) are summarized in

Table 3.8 when Sin
ph = 0 and kdec,i = 0. Since sin

1 = Y4S
in
ph = 0, E010 and E011 do not exist,

as shown in Proposition 2.2. Using Table 3.8, we see that:

Table 3.8: Existence and local stability conditions of steady states of (2.1), when Sin
ph = 0

and kdec,i = 0. All functions are given in Table 3.4, while µi and φ4 are given by (2.9) and

(3.2).

Existence conditions Stability conditions

E000 Always exists µ0

(
Y Sin

ch, S
in
H2

)
< D, µ2

(
Sin

H2

)
< D

E001 µ2

(
Sin

H2

)
> D Y Sin

ch < ϕ0(D)

E100 µ0

(
Y Sin

ch, S
in
H2

)
> D

µ1

(
Y Sin

ch − s0, S
in
H2
− ω

(
Y Sin

ch − s0

))
< D

Sin
H2
− ωY Sin

ch < M2(D)− ωϕ0(D)

with s0 solution of ψ0(s0) = D

E110

(1− ω)Y Sin
ch + Sin

H2
> φ1(D),

Y Sin
ch > M0(D, s2) +M1(D, s2)

with s2 solution of

Ψ(s2, D) = (1− ω)Y Sin
ch + Sin

H2

(1− ω)Y Sin
ch + Sin

H2
< φ2(D),

∂Ψ
∂s2

(s2, D) > 0, φ3(D) > 0

E101
Y Sin

ch > ϕ0(D),

Sin
H2
− ωY Sin

ch>M2(D)− ωϕ0(D)
Y Sin

ch < ϕ0(D) + ϕ1(D)

E111
(1− ω)Y Sin

ch + Sin
H2
> φ2(D),

Y Sin
ch > ϕ0(D) + ϕ1(D)

φ3(D)>0 or φ3(D)<0 and φ4(D,Sin
ch, S

in
H2

)>0

• E000 always exists and is unstable since the second stability condition in Table 3.8

does not hold, as

µ2

(
Sin

H2

)
' 1.0845 > D = 0.01. (3.18)

• E001 exists, since the existence condition in Table 3.8 holds from (3.18). It is stable

if and only if

Sin
ch < ϕ0(D)/Y =: σ3.

• E100 exists if and only if µ0

(
Y Sin

ch, S
in
H2

)
> D, which is equivalent to

Sin
ch > (M0(D,Sin

H2
))/Y =: σ1.

For Sin
ch = σ1, there is a transcritical bifurcation of E100 and E000, which have the

same components at σ1 (see Table 3.1). Consider the function y = F (Sin
ch) defined

by:

F (Sin
ch) = µ1(Y Sin

ch − s0, S
in
H2
− ω(Y Sin

ch − s0)), (3.19)

where s0 depends also on Sin
ch. The first stability condition of E100 in Table 3.8 is

written F
(
Sin

ch

)
< D. Figure 3.1 shows that this condition holds for all Sin

ch > σ1,
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since the maximum of the function F is smaller than 0.0013 and D = 0.01. From

the second stability condition, E100 is stable if and only if

Sin
ch >

Sin
H2
−M2(D) + ωϕ0(D)

ωY
=: σ4.

y

F
(
Sin

ch

)

Sin
ch

σ1

y

F
(
Sin

ch

)

Sin
ch

σ1

Figure 3.1: Curve of the function y = F
(
Sin

ch

)
showing that F

(
Sin

ch

)
< 0.0013, for all

Sin
ch > σ1.

• Recall that ω ' 0.53 < 1 for the set of parameters given in Table 3.3. Therefore,

equation Ψ(s2, D) = (1 − ω)Y Sin
ch + Sin

H2
admits two solutions s∗12 and s∗22 which

correspond to two steady states E1
110 and E2

110, respectively. When it exists, E1
110 is

unstable, as stated in Remark 3.1. From Table 3.8, the first existence condition of

these steady states holds if and only if

Sin
ch ≥

φ1(D)− Sin
H2

(1− ω)Y
=: σ2.

Figure 3.2 shows that the second existence condition of E1
110 and E2

110 in Table 3.8

holds, for all Sin
ch ∈ [σ2, 0.05], since the straight line of equation y = Y Sin

ch is above the

curves of the functions y = M0 (D, s∗i2 ) + M1 (D, s∗i2 ), for i = 1, 2, respectively. E2
110

is unstable since the third stability condition does not hold as φ3(D) ' −6513 < 0.

Therefore, E1
110 and E2

110 exist and are unstable for all Sin
ch ≥ σ2. They disappear for

Sin
ch < σ2. For Sin

ch = σ2 there is a saddle-node bifurcation. For Sin
ch = σ5 there is a

transcritical bifurcation of E1
110 and E111.

• From Table 3.8, E101 exists if and only if

σ3 :=
ϕ0(D)

Y
< Sin

ch <
Sin

H2
−M2(D) + ωϕ0(D)

ωY
=: σ4.

For Sin
ch = σ3, there is a transcritical bifurcation of E101 and E001. For Sin

ch = σ4, there

is a transcritical bifurcation of E101 and E100. When it exists, E101 is stable since

Sin
ch < σ4 ' 0.011191 <

ϕ0(D) + ϕ1(D)

Y
' 0.013717.
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y

y
=
Y
S
in
ch

y =
M0

( D, s∗12
) +

M1

( D, s∗12
)

y = M0

(
D, s
∗2
2

)
+M1

(
D, s
∗2
2

)

Sin
ch

σ2

Figure 3.2: The green line of equation y = Y Sin
ch is above the red and blue curves of the

functions M0 (D, s∗i2 ) +M1 (D, s∗i2 ), i = 1, 2.

• From Table 3.8, E111 exists if and only if

Sin
ch >

φ2(D)− Sin
H2

(1− ω)Y
=: σ5 ' 0.016575, Sin

ch >
ϕ0(D) + ϕ1(D)

Y
' 0.013717.

Then, E111 exists if and only if Sin
ch > σ5. For the stability of E111, we have φ3(D) < 0

and we plot the functions φ4 with respect to Sin
ch. Figure 3.3 shows that the equation

φ4(Sin
ch) = 0 has a unique solution σ6 ' 0.029877 such that φ4(Sin

ch) < 0, for all

σ5 < Sin
ch < σ6 and φ4(Sin

ch) > 0, for all Sin
ch > σ6.

(a)
y

φ4

(
Sin

ch

)

σ5 σ6

Sin
ch

(b)
y

φ4

(
Sin

ch

)

Sin
ch

σ5

σ6

Figure 3.3: (a) Curve of the function φ4, for Sin
ch > σ5 and the solution σ6 of equation

φ4

(
Sin

ch

)
= 0. (b) Magnification for Sin

ch ∈ (σ5, 0.034).

To give numerical evidence of the Hopf bifurcation occurring through the positive

steady state E111 as Sin
ch varies, we determine the eigenvalues of the matrix J1 defined

by (3.6) and evaluated at this steady state. Figure 3.4(a) shows that one eigenvalue

λ1

(
Sin

ch

)
remains negative for all Sin

ch ∈ (σ5, 0.05]. Figure 3.4(b) shows that the

two other eigenvalues are real and distinct for all Sin
ch ∈ (σ5, σ

?) and we denote

them by λ2

(
Sin

ch

)
and λ3

(
Sin

ch

)
, then, they become a complex-conjugate pair for all

Sin
ch ∈ (σ?, 0.05), and we denote them by

λ2,3

(
Sin

ch

)
= α

(
Sin

ch

)
± iβ

(
Sin

ch

)
,
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(a)
σ5

Sin
ch

λ1

(b)

λ3

λ2 α

σ5-

σ?
6 σ6

Sin
ch

Figure 3.4: Three eigenvalues of the matrix J1 evaluated at E111 as functions of Sin
ch. (b)

Real part of the pair of eigenvalues λ2,3, for Sin
ch ∈ (σ?, 0.05] where σ? = 0.018.

which becomes purely imaginary for the particular value Sin
ch = σ6 such that α(σ6) =

0, with β(σ6) 6= 0. Moreover, one has

dα

dSin
ch

(σ6) < 0.

Therefore, E111 changes its stability through a supercritical Hopf bifurcation with

the emergence of a stable limit cycle.

To detect the limit cycle, we take an initial condition closes enough to the positive

steady state E111 of size order ε = 10−2. Figures 3.5 and 3.6 depict the bifurcation

0 0.02 0.040.01 0.03 0.050.005 0.015 0.025 0.035 0.045

0

0.001

0.0002

0.0004

0.0006

0.0008

0.0001
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0.0007

0.0009

0 0.010.002 0.004 0.006 0.008 0.012 0.014

0e00

2e−06

4e−06

6e−06

1e−06

3e−06

5e−06

7e−06

(a)
Xch

E000 E001E100

E2
110 E111

E1
110

σ1 ���σ2 σ3��� σ4AAK AAKσ5 ���σ∗AAKσ6

Sin
ch

(b)
Xch

E000 E001

E100 E101

σ1 σ3σ4

Sin
ch

Figure 3.5: (a) Projections of the ω-limit set in variable Xch as a function of Sin
ch ∈ [0, 0.05].

(b) Magnification of the transcritical bifurcations occurring at σ1, σ3 and σ4 when Sin
ch ∈

[0, 0.015].

diagrams of system (2.1) where Xch and XH2 are represented as functions of the bifurcation

parameter Sin
ch and show the existence of a stable limit cycle for a certain range of the values

of Sin
ch. Figures 3.5(b), 3.6(b) and 3.7 show magnifications of the bifurcation diagrams

illustrating the transcritical bifurcations occurring at σ1, σ3, σ4 and σ5, the saddle-node

bifurcation occurring at σ2, the Hopf bifurcation occurring at σ6, and the disappearance
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110 E2
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σ1 ���σ2 σ3��� σ4AAK AAKσ5 ���σ∗ AAKσ6

Sin
ch

(b)
XH2

E000

E001

E100

E101

σ1 σ3σ4

Sin
ch

Figure 3.6: (a) Projections of the ω-limit set in variable XH2 as functions of Sin
ch ∈ [0, 0.11],

reveal the occurrence and disappearance of stable limit cycles. (b) Magnification of the

transcritical bifurcations when Sin
ch ∈ [0, 0.018].
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(b)
Xch E2

110

E1
110

E111

E000 E001 E100

σ∗ σ6

Sin
ch

Figure 3.7: (a) Magnification of saddle-node bifurcation at Sin
ch = σ2 and the transcritical

bifurcation at Sin
ch = σ5 when Sin

ch ∈ [0.006, 0.02]. (b) Magnification of the appearance and

disappearance of stable limit cycles when Sin
ch ∈ [0.0294, 0.0302].

of the cycle occurring at σ∗. In Figure 4.13(b), the steady states E000 and E001 cannot

be distinguished since they have both a zero Xch-component. Since for Sin
ch < σ3, E001 is

stable and E000 is unstable, the Xch = 0 axis is plotted in blue, which is the color for E001

in Table 3.9. In Figure 3.6(b) E000 and E001 are distinguished but it is not the case for

E000 and E100, since they have both a zero XH2-component. As E100 is stable and E000

is unstable for Sin
ch > σ4, the XH2 = 0 axis is plotted in purple as the color of E100 in

Table 3.9.

Table 3.9: Colors used in Figures 3.5 and 3.7. The solid (resp. dashed) lines are used for

stable (resp. unstable) steady states.

E000 E001 E100 E1
110 E2

110 E101 E111

Red Blue Purple Dark Green Magenta Green Cyan

In [57], a numerical study of the bifurcation diagram with respect to the parameter D

is given in the case without maintenance and sin
1 = sin

2 = 0. Figure 6 in [57] shows that

the disappearance of the stable limit cycle occurs through a saddle-node bifurcation with
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another unstable limit cycle. We conjecture that in our case also the stable limit cycle

disappears by a confluence with an unstable limit cycle at Sin
ch = σ∗.

3.5 Numerical simulations

We present in this section, several numerical simulations which illustrate the main

results of the last section namely the bistability with convergence either to E100 or to a

stable limit cycle according to the initial conditions, when Sin
ch ∈ (σ∗, σ6), and bistability

with convergence toward E100 or E111, when Sin
ch > σ6.

For the numerical simulations presented in the following figures, we used the dimen-

sionless form of (2.1) used in [64]. Indeed, in the original form (2.1), numerical instabilities

arise in numerical schemes. To reduce the number of parameters describing the dynamics

and facilitate numerical simulations, the following rescaling of the variables was used in

[64]:

N0 =
Xch

KS,chYch

, N1 =
Xph

KS,phYph

, N2 =
XH2

KS,H2YH2

,

R0 =
Sch

KS,ch

, R1 =
Sph

KS,ph

, R2 =
SH2

KS,H2

, τ = km,chYcht.

(3.20)

Then, with these changes of variables, the system given in (2.1) reduced to system

dN0

dτ
= (ν0(R0, R2)− α− k0)N0

dN1

dτ
= (ν1(R1, R2)− α− k1)N1

dN2

dτ
= (ν2(R2)− α− k2)N2

dR0

dτ
= α(u0 −R0)− ν0(R0, R2)N0

dR1

dτ
= α(u1 −R1) + ω0ν0(R0, R2)N0 − ν1(R1, R2)N1

dR2

dτ
= α(u2 −R2)− ω2ν0(R0, R2)N0 + ω1ν1(R1, R2)N1 − ν2(R2)N2.

(3.21)

The operating parameters are

α =
D

km,chYch

, u0 =
Sin

ch

KS,ch

, u1 =
Sin

ph

KS,ph

, u2 =
Sin

H2

KS,H2

.

The yield coefficients are

ω0 =
KS,ch

KS,ph

224

208
(1− Ych), ω1 =

KS,ph

KS,H2

32

224
(1− Yph), ω2 =

16

208

KS,ch

KS,H2

.

The death rates are

k0 =
kdec,ch

km,chYch

, k1 =
kdec,ph

km,chYch

, k2 =
kdec,H2

km,chYch

.

The growth functions are

ν0(R0, R2) =
R0

1 +R0

R2

KP +R2

, ν1(R1, R2) =
φ1R1

1 +R1

R2

1 +KIR2

, ν2(R2) =
φ2R2

1 +R2

, (3.22)
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where the biological parameters are given by

φ1 =
km,phYph

km,chYch

, φ2 =
km,H2YH2

km,chYch

, KP =
KS,H2,C

KS,H2

, KI =
KS,H2

KI,H2

.

For this section, we put ki = 0, for i = 0, 1, 2 in (3.21). In the following, the projec-

tions of the orbits of the six-dimensional phase space into the three-dimensional space

(Xch, Xph, XH2) illustrate the appearance and disappearance of limit cycles for different

values of Sin
ch where E000, E001, E1

110 and E2
110 are unstable. Then, we have the following

possible pictures.

• For Sin
ch ∈ (σ5, σ

∗), E111 is a saddle-focus and the numerical simulations show the

convergence for any initial condition to the stable node E100, where there is the com-

petitive exclusion of the second and third species. Figure 3.8 shows the convergence

to

E100 ' (6.582× 10−6, 0, 0, 0.029204, 3.660× 10−4, 5.38× 10−8),

for an initial condition in a neighborhood of

E111 ' (3.55× 10−4, 6.69× 10−4, 5.29× 10−5, 0.0108, 0.00303, 1.2× 10−7),

of size order 2× 10−3.

0e002e−044e−046e−04 1e−043e−045e−04

0

0.0010e00

2e−05

4e−05

6e−05

8e−05

1e−05

3e−05

5e−05

7e−05

9e−05

XH2

Xch

Xph

E111

E2
110

E1
110

E000
E001

E100

Figure 3.8: Case Sin
ch = 0.02955 < σ∗: the solution of (2.1) converges to E100.

• For Sin
ch ∈ (σ∗, σ6), the system exhibits sustained oscillations, which implies that

limit cycle is stable. Figure 3.9 shows bistability with two basins of attraction: one

toward the limit cycle and the second toward E100. Indeed, for initial conditions in

a neighborhood of

E111 ' (0.539, 0.089, 59.995, 0.257, 0.032, 0.014),
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0e002e−044e−046e−04
1e−043e−045e−04

0

0.001

0.0005

0e00

2e−05

4e−05

6e−05

8e−05

1e−05

3e−05

5e−05

7e−05

9e−05

XH2

Xch

Xph

E111

E2
110

E1
110

E100 E001

E000

Figure 3.9: Case Sin
ch = 0.029639 ∈ (σ∗, σ6): bistability of the limit cycle (in red) and E100.

of size order 5.5× 10−3 and 9.8× 10−3, the trajectories in yellow and blue converge

toward the stable limit cycle in red, while the green trajectory converges toward the

steady state

E100 ' (0.002, 0, 0, 1.870, 0.001, 0.003),

for the initial condition in a neighborhood of E111 of size order 1.001× 10−2.

• For Sin
ch > σ6, E111 changes its stability and becomes a stable focus point via a

supercritical Hopf bifurcation. Figure 3.10 shows the bistability of

E100 ' (4.8× 10−8, 0, 0, 0.0347, 3.66× 10−4, 0.00351) and

E111 ' (4.59× 10−4, 8.99× 10−4, 7.51× 10−5, 0.0108, 0.00303, 1.2× 10−7),

where the blue trajectory converges to the stable focus E111 for the initial condition

in a neighborhood of E111 of size order 2.1×10−2, and the green trajectory converges

to E100 for the initial condition in a neighborhood of E111 of size order 4× 10−2.

Figure 3.11 illustrates the time course of system (2.1) in the case of exclusion of the

second and the third species and the convergence to the steady state E100. Figure 3.12

illustrates a positive, periodic, solution representing the coexistence of the three species.

The sustained oscillations prove the stability of the limit cycle. However, Figure 3.13

shows the time course of the green trajectory in Figure 3.9. Finally, Figure 3.14 illustrates

the convergence of the positive steady state which becomes a stable focus. Figure 3.15

shows the time course of the green trajectory in Figure 3.10.

Remark 3.2. The plots of Figures 3.1 to 3.4 were performed with Maple [35], which is used,

in particular, for the computations the eigenvalues of the Jacobian matrix evaluated at

E111. The plots of Figures 3.5 to 3.7 were performed with Scilab [54] by using the formulas

of the steady state components given in Table 3.4. The plots of Figures 3.8 to 3.15 were

performed with Scilab [54], which the trajectories in these figures presented according to
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E111

•

E2
110

E1
110 E100

E001

E000

Figure 3.10: The case σ6 < Sin
ch = 0.035: bistability with convergence either to E111 or to

E100.

the variables of model (2.1), using the change of variables (3.20). The plot of the limit

cycle was obtained by solving the ordinary differential equations using the default solver

“lsoda” from the ODEPACK package in Scilab.
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Figure 3.11: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.02955 (in

kgCOD/m3): Convergence to the stable steady state E100.
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Figure 3.12: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.029639 (in

kgCOD/m3): Convergence to the stable limit cycle.
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Figure 3.13: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.029639 (in

kgCOD/m3): Convergence to the stable steady state E100.
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Figure 3.14: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.035 (in

kgCOD/m3): Convergence to the positive steady state E111.

3.6 Conclusion

In this chapter, we were interested in determining the local stability of the steady

states of the three-tiered model (2.1), in the particular case where maintenance is ignored.

We consider general growth rates. The phenol and the hydrogen input concentrations are

taken into account. We analytically determined the necessary and sufficient conditions

of stability of all steady states according to the operating parameters. We have analyzed

the bifurcation diagrams of system (2.1) by varying the chlorophenol input concentration

when sin
1 = 0. It shows that the system exhibits a bi-stability where the coexistence steady

state can destabilize undergoing a supercritical Hopf bifurcation with the occurrence of a

stable limit cycle. These interesting phenomena have been already depicted in [51], in the

particular case sin
0 > 0 and sin

1 = sin
2 = 0. The possibility of the Hopf bifurcation of the

positive steady state is analytically proved in [57], in the case without maintenance. The

destabilization of the positive steady state was not detected by the numerical analysis of

the operating diagrams in [64].

We focus in chapter 4 on the analysis of the stability of system (2.1), by considering

the maintenance terms, where the system cannot be reduced to a three-dimensional one,

and we illustrate the effects of the maintenance terms on the behavior of the process.

The results of this chapter have been published in [40].
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Figure 3.15: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.035 (in

kgCOD/m3): Convergence to the steady state E100.
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Chapter 4. Stability of the three-tiered food-web model with decay

4.1 Introduction

In this chapter, we describe the local stability analysis of the three-tiered microbial

model in the case including decay terms. In this case, we cannot reduce it to a three-

dimensional one.

This chapter is structured as follows. In section 4.2, we give the necessary and sufficient

local stability properties of all steady states. We give the bifurcation diagrams with

respect to the dilution rate, first, and then to the chlorophenol input concentration as the

bifurcating parameters in section 4.4. We illustrate our results by numerical simulations

in section 4.5.

4.2 Local stability of the steady states

In this section, we are interested to study analytically the local stability of each

steady state of system (2.8). In view of using the Liénard-Chipart stability criterion. The

asymptotic stability of E111 requires a new definition and notations.

J = µ0(s0, s2), K = µ1(s1, s2), L = µ2(s2). (4.1)

Definition 4.1. The characteristic polynomial of the matrix Jacobian for system (2.8)

evaluted at E111 is given by:

P6(λ) = λ6 + c1λ
5 + c2λ

4 + c3λ
3 + c4λ

2 + c5λ+ c6,

where the ci are defined in Table 4.1.

Our main result is stated in Theorem 4.1. To prove our statement, we need the Liénard-

Chipart stability criterion (see Gantmacher [24], Theorem 11) which represents almost half

that of the Routh-Hurwitz theorem which facilitates the study of the asymptotic behavior

of dynamic systems especially for dimensions beyond five. It is known that for a polynomial

of degree four the Routh-Hurwitz conditions can be written as in the following Lemmas,

see, for instance, Theorem 11 [12].

Lemma 4.1. Consider the fourth-order polynomial P (λ) with real coefficients given by:

P (λ) = c0λ
4 + c1λ

3 + c2λ
2 + c3λ+ c4.

All of the roots of the polynomial P (λ) have a negative real part if and only if

ci > 0, for i = 1, 3, 4 and r1 = c3r0 − c2
1c4 > 0, (4.2)

where r0 = c1c2 − c0c3.
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Table 4.1: The Liénard-Chipart coefficients for E111. The functions E, F , G, H, I, J ,

K and L, defined by (3.3) and (4.1), are evaluated at the components of E111 given in

Table 2.1. Notice that they are depending on the operating parameter D.

c1 = 3D + (E + Fw)x0 + (G+H)x1 + Ix2

c2 = 3D2 + (2D + J)(E + ωF )x0 + (2D +K)(G+H)x1 + EIx0x2 +GIx1x2

+(2D + L)Ix2 + (E(G+H)− (1− ω)FG)x0x1

c3 = D3 +D(D + 2J)(E + ωF )x0 +D(D + 2K)(G+H)x1 +D(D + 2L)Ix2

+EI(D + J + L)x0x2 +GI(D +K + L)x1x2 + EGIx0x1x2 + (E(G+H)

−(1− ω)FG)(D + J +K)x0x1

c4 = D2(E + ωF )Jx0 +D2(G+H)Kx1 +D2ILx2 + EI(DJ +DL+ JL)x0x2

+GI (DK +DL+KL)x1x2 + EGI(J +K + L)x0x1x2 + (E(G+H)

−(1− ω)FG)(DJ +DK + JK)x0x1

c5 = DEIJLx0x2 +DGIKLx1x2 +D(E(G+H)− (1− ω)FG)JKx0x1

+EGI (JK + JL+KL)x0x1x2

c6 = EGIJKLx0x1x2

r0 = c1c2 − c3, r1 = c1c4 − c5, r2 = c3r0 − c1r1, r3 = c5r0 − c2
1c6

r4 = r1r2 − r0r3, r5 = r3r4 − c1c6r
2
2

Proof. From the Liénard-Chipart stability criterion (see Gantmacher [24], Theorem 11),

all of the roots of the polynomial P have a negative real part if and only if

ci > 0, i = 1, 3, 4, det(∆2) > 0 and det(∆4) > 0, (4.3)

where ∆2 and ∆4 are the Hurwitz matrices defined by:

∆2 =

[
c1 c3

c0 c2

]
and ∆4 =


c1 c3 0 0

c0 c2 c4 0

0 c1 c3 0

0 c0 c2 c4

 .
Conditions (4.3) are equivalent to

ci > 0, i = 1, 3, 4, r0 = c1c2 − c0c3 > 0 and r1 = c3r0 − c2
1c4 > 0. (4.4)

When all conditions (4.4) hold, the condition r1 > 0 implies that r0 > 0. Thus, conditions

(4.4) are equivalent to (4.2).

Lemma 4.2. Consider the six-order polynomial P (λ) with real coefficients given by:

P (λ) = c0λ
6 + c1λ

5 + c2λ
4 + c3λ

3 + c4λ
2 + c5λ+ c6.
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All of the roots of the polynomial P (λ) have a negative real part if and only if

ci > 0, i = 1, 3, 5, 6, r4 > 0 and r5 > 0, (4.5)

where r4 = r1r2 − r0r3 and r5 = r3r4 − c1c6r
2
2, with

r0 = c1c2 − c0c3, r1 = c1c4 − c0c5, r2 = c3r0 − c1r1 and r3 = c5r0 − c2
1c6.

Proof. From the Liénard-Chipart stability criterion (see Gantmacher [24], Theorem 11),

all of the roots of the polynomial P have a negative real part if and only if

ci > 0, i = 1, 3, 5, 6, det(∆2) > 0, det(∆4) > 0 and det(∆6) > 0, (4.6)

where ∆2, ∆4 and ∆6 are the Hurwitz matrices defined by:

∆2 =

[
c1 c3

c0 c2

]
, ∆4 =


c1 c3 c5 0

c0 c2 c4 c6

0 c1 c3 c5

0 c0 c2 c4

 , ∆6 =



c1 c3 c5 0 0 0

c0 c2 c4 c6 0 0

0 c1 c3 c5 0 0

0 c0 c2 c4 c6 0

0 0 c1 c3 c5 0

0 0 c0 c2 c4 c6


.

Conditions (4.6) are equivalent to

ci > 0, i = 1, 3, 5, 6, r0 > 0, r4 = r1r2 − r0r3 > 0, r5 = r3r4 − c1c6r
2
2 > 0. (4.7)

When all conditions (4.7) hold, the condition r5 > 0 implies that r3 > 0, that is, c5r0 > c6c
2
1

which implies that r0 > 0. Hence, conditions (4.7) are equivalent to (4.5).

We can now state and prove our main result.

Theorem 4.1. Assume that H1 to H8 hold. The necessary and sufficient conditions of

local stability of the steady states of (2.8) when the maintenance is included are given in

Table 4.2.

Proof. The local stability of the steady states is determined by the eigenvalues of the
Jacobian matrix of system (2.8) evaluated at the steady state. The Jacobian matrix of
(2.8) corresponds to the 6× 6 matrix:

J =



J −D − a0 0 0 Ex0 0 Fx0

0 K −D − a1 0 0 Gx1 −Hx1

0 0 L−D − a2 0 0 Ix2

−J 0 0 −D − Ex0 0 −Fx0

J −K 0 Ex0 −D −Gx1 Fx0 +Hx1

−ωJ K −L −ωEx0 Gx1 −D − ωFx0 −Hx1 − Ix2


,

where the functions E, F , G, H, I, J , K and L are defined by (3.3) and (4.1), and are

evaluated at the steady state.
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Table 4.2: The necessary and sufficient conditions of local stability of steady states of

(2.8).

Stability conditions

E000 µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1, µ2

(
sin

2

)
< D + a2

E001 sin
0 < ϕ0(D) and sin

1 < ϕ1(D)

E100

µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
< D + a1 and

sin
2 − ωsin

0 < M2(D + a2)− ωϕ0(D),

with s0 solution of equation ψ0(s0) = D + a0.

E110
(1− ω)sin

0 + sin
1 + sin

2 < φ2(D), φ3(D) > 0 and
∂Ψ

∂s2

(s2, D) > 0,

with s2 solution of equation Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2 .

E101 sin
0 + sin

1 < ϕ0(D) + ϕ1(D)

E111 c3 > 0, c5 > 0, r4 > 0 and r5 > 0

E010
sin

1 + sin
2 < M3

(
sin

0 , D + a0

)
+M1

(
D + a1,M3

(
sin

0 , D + a0

))
sin

1 + sin
2 < M2(D + a2) + ϕ1(D)

E011 sin
0 < ϕ0(D)

For E000, the Jacobian matrix J evaluated at E000 is:

J =



J −D − a0 0 0 0 0 0

0 K −D − a1 0 0 0 0

0 0 L−D − a2 0 0 0

−J 0 0 −D 0 0

J −K 0 0 −D 0

−ωJ K −L 0 0 −D


.

Thus, E000 is stable if and only if

µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1 and µ2

(
sin

2

)
< D + a2,

which are the same as the stability conditions of E000 in Table 4.2.

For E001, the Jacobian matrix J evaluated at E001 is:

J =



J −D − a0 0 0 0 0 0

0 K −D − a1 0 0 0 0

0 0 0 0 0 Ix2

−J 0 0 −D 0 0

J −K 0 0 −D 0

−ωJ K −L 0 0 −D − Ix2


.

By developing the determinant of the matrix J − λId, where Id is the 6 × 6 identity

matrix, with respect to the first, second, fourth and fifth lines, respectively, we obtain, the
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eigenvalues

λ1 = µ0

(
sin

0 ,M2(D + a2)
)
−D − a0, λ2 = µ1

(
sin

1 ,M2(D + a2)
)
−D − a1, λ3 = λ4 = −D.

The other eigenvalues λ5 and λ6 are given by the characteristic polynomial of the following

matrix:

J2 =

 0 Ix2

−L −D − Ix2

 .
Thus,

λ5λ6 = LIx2 > 0 and λ5 + λ6 = −(D + Ix2) < 0.

Hence, the eigenvalues λ5 and λ6 are of negative real parts. Therefore, E001 is stable if

and only if

µ0

(
sin

0 ,M2(D + a2)
)
< D + a0 and µ1

(
sin

1 ,M2(D + a2)
)
< D + a1.

Since M0 and M1 are increasing (see Lemma 2.1), these conditions are equivalent to

sin
0 < M0(D + a0,M2(D + a2)) and sin

1 < M1(D + a1,M2(D + a2)),

which are the same as the stability conditions of E001 in Table 4.2.

For E100, the Jacobian matrix J evaluated at E100 is:

J =



0 0 0 Ex0 0 Fx0

0 K −D − a1 0 0 0 0

0 0 L−D − a2 0 0 0

−J 0 0 −D − Ex0 0 −Fx0

J −K 0 Ex0 −D Fx0

−ωJ K −L −ωEx0 0 −D − ωFx0


.

By developing the determinant of the matrix J − λId, with respect to the second and

third lines, and the fifth column, respectively, we obtain, the eigenvalues

λ1 = µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
−D − a1,

λ2 = µ2

(
sin

2 − ω
(
sin

0 − s0

))
−D − a2, λ3 = −D.

The other eigenvalues are given by the characteristic polynomial P3 of the following matrix:

J3 =

 0 Ex0 Fx0

−J −D − Ex0 −Fx0

−ωJ −ωEx0 −D − ωFx0

 .
Denote Ci and Li, i = 1, 2, 3, the columns and lines of the matrix J3 − λId. The re-

placements of L3 by L3 − ωL2 and C2 by C2 + ωC3 preserve the determinant and lead

to

P3(λ) = −(λ+D)

∣∣∣∣∣∣
−λ (E + ωF )x0

−J −(λ+D + (E + ωF )x0)

∣∣∣∣∣∣ .
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The eigenvalues of J3 are λ4 = −D, λ5 and λ6 such that

λ5λ6 = J(E + ωF )x0 > 0 and λ5 + λ6 = −D − (E + ωF )x0 < 0.

Hence, the real parts of λ5 and λ6 are negative. Therefore, E100 is stable if and only if

µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
< D+a1 and µ2

(
sin

2 − ω
(
sin

0 − s0

))
< D+a2, (4.8)

with s0 is the solution in the interval J0 of equation µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
= D + a0.

Since M2 is increasing, we have the following equivalence:

µ2

(
sin

2 − ω
(
sin

0 − s0

))
< D + a2 ⇐⇒ s0 <

M2(D + a2)− sin
2

ω
+ sin

0 .

As the function ψ0 is increasing, we deduce that, ψ0(s0) < ψ0

(
M2(D + a2)− sin

2

ω
+ sin

0

)
.

From ψ0(s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
= D + a0, we deduce that, the second condition

of the stability of E100 is equivalent to

D + a0 < µ0

(
M2(D + a2)− sin

2

ω
+ sin

0 ,M2(D + a2)

)
.

Hence, we have

sin
2 − ωsin

0 < M2(D + a2)− ωM0 (D + a0,M2(D + a2)) .

Consequently, E100 is stable if and only if

µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
< D+a1, s

in
2 −ωsin

0 < M2(D+a2)−ωM0(D+a0,M2(D+a2)).

Then, these conditions are the same as stability conditions of E100 in Table 4.2.

For E110, the Jacobian matrix J evaluated at E110 is:

J =



0 0 0 Ex0 0 Fx0

0 0 0 0 Gx1 −Hx1

0 0 L−D − a2 0 0 0

−J 0 0 −D − Ex0 0 −Fx0

J −K 0 Ex0 −D −Gx1 Fx0 +Hx1

−ωJ K −L −ωEx0 Gx1 −D − ωFx0 −Hx1


.

By developing the determinant of the matrix J − λId, with respect to the third line,

we obtain the eigenvalue λ1 = µ2(s2) − D − a2. The other eigenvalues are given by the

characteristic polynomial P5 of the following matrix:

J5 =


0 0 Ex0 0 Fx0

0 0 0 Gx1 −Hx1

−J 0 −D − Ex0 0 −Fx0

J −K Ex0 −D −Gx1 Fx0 +Hx1

−ωJ K −ωEx0 Gx1 −D − ωFx0 −Hx1

 .
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Denote Ci and Li, i = 1, ..., 5, the columns and lines of the matrix J5− λId. The replace-

ments of L5 by L5 +L4 + (1− ω)L3, C3 by C3−C4 + ωC5, C4 by C4−C5 and then L4 by

L3 + L4 preserve the determinant and lead to

P5(λ) = −(λ+D)

∣∣∣∣∣∣∣∣∣
−λ 0 (E + ωF )x0 −Fx0

0 −λ −(G+ ωH)x1 (G+H)x1

−J 0 −λ−D − (E + ωF )x0 Fx0

0 −K (G+ ωH)x1 −λ−D − (G+H)x1

∣∣∣∣∣∣∣∣∣ .
Hence, we obtain, the eigenvalue λ2 = −D. The other eigenvalues are given by the

following characteristic polynomial:

P4(λ) = λ4 + c1λ
3 + c2λ

2 + c3λ+ c4 = 0,

where the coefficients ci for i = 1, . . . , 4 are given by

c1 =2D + (E + ωF )x0 + (G+H)x1,

c2 =D2+(E + ωF )(D + J)x0+(G+H)(D +K)x1+(E(G+H)−(1−ω)FG)x0x1,

c3 =D(E + ωF )Jx0 +D(G+H)Kx1 + (E(G+H)− (1− ω)FG)(J +K)x0x1,

c4 =(E(G+H)− (1− ω)FG)JKx0x1.

From Lemma 4.1, all of the roots of the fourth-order polynomial have negative real parts

if and only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c2
1c4 − c2

3 > 0. (4.9)

We always have c1 > 0. Moreover, c3 > 0 and c4 > 0 if and only if

E(G+H)− (1− ω)FG > 0. (4.10)

Let us denote

A = G+H, B =
E(G+H)− (1− ω)FG

G+H
and C =

G+ ωH

G+H
F.

Note that B > 0 if and only if condition (4.10) is satisfied. Then, we can write ci, for

i = 1, . . . , 4 and r1 as follows:

c1 = 2D + (B + C)x0 + Ax1,

c2 = D2 + (B + C)(D + J)x0 + A(D +K)x1 + ABx0x1,

c3 = D(B + C)Jx0 +DAKx1 + AB(J +K)x0x1, c4 = ABJKx0x1,
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We can write r1 as follows:

r1 =DJ
[
(D + J)(B + C)3 −B3J

]
x3

0 +D2A3Kx3
1 +B2A2(B + C)(J +K)x3

0x
2
1

+B2A3(J +K)x2
0x

3
1 +BA

[
D(2J +K)(B + C)2 + CJ2(2B + C)

]
x3

0x1

+DBA3(J + 2K)x0x
3
1 + 3D3A2Kx2

1 +D2J
[
3D(B + C)2 + CJ(2B + C)

]
x2

0

+BA2
[
D(J +K)(5B + 3C) + C

(
J2 +K2

)]
x2

0x
2
1 +DA [C (DC(2J +K)

+CJ(J + 2K) +DB(9J + 5K) + 2BJ2
)

+DB2(7J + 4K)
]
x2

0x1 +DA2[DB(4J

+ 7K) + CK(2J +K) +DC(J + 2K)]x0x
2
1 + 2D4J(B + C)x0 + 2D4AKx1

+D2A[D(J +K)(5B + 3C) + 2CJK]x0x1 +
(
D2 +DBx0 +DAx1 +BAx0x1

)
(BJx0 − AKx1)2.

Hence, conditions (4.9) are verified if and only if (4.10) is satisfied. Let us prove that

condition (4.10) is equivalent to
∂Ψ

∂s2

(s2, D) > 0. Using (3.3), we obtain

∂M0

∂s2

(D + a0, s2) = −F
E

and
∂M1

∂s2

(D + a1, s2) =
H

G
.

Using (2.24), it follows that

∂Ψ

∂s2

(s2, D) = −F
E

(1− ω) +
H

G
+ 1 =

E(G+H)− (1− ω)FG

EG
.

Since E and G are positive, condition (4.10) is equivalent to
∂Ψ

∂s2

(s2, D) > 0. Consequently,

since µ2 is increasing, it follows that E110 is stable if and only if

s2 < M2(D + a2) and
∂Ψ

∂s2

(s2, D) > 0, (4.11)

which are equivalent to the stability conditions in Table 4.2 because this first condition

of (4.11) is equivalent the first and the second one of E110 in Table 4.2 (similarly to the

proof of Theorem 3.1 in previous chaptre).

For E101, the Jacobian matrix J evaluated at E101 is:

J =



0 0 0 Ex0 0 Fx0

0 K −D − a1 0 0 0 0

0 0 0 0 0 Ix2

−J 0 0 −D − Ex0 0 −Fx0

J −K 0 Ex0 −D Fx0

−ωJ K −L −ωEx0 0 −D − ωFx0 − Ix2


.

By developing the determinant of the matrix J −λId, with respect to the second and fifth

lines, respectively, we obtain, the eigenvalues

λ1 = µ1

(
sin

0 + sin
1 −M0(D + a0,M2(D + a2)),M2(D + a2)

)
−D − a1 and λ2 = −D.
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The other eigenvalues are given by the characteristic polynomial:

P4(λ) = λ4 + c1λ
3 + c2λ

2 + c3λ+ c4 = 0,

where

c1 = 2D + (E + ωF )x0 + Ix2,

c2 = D2 + (E + ωF )(D + J)x0 + I(D + L)x2 + EIx0x2,

c3 = D(E + ωF )Jx0 +DILx2 + EI(J + L)x0x2,

c4 = EIJLx0x2.

From Lemma 4.2 the roots of the fourth-order polynomial are of negative real parts if and

only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c2
1c4 − c2

3 > 0. (4.12)

We always have:

ci > 0, for i = 1, 3, 4.

We show that: r1 > 0. Indeed, we can write that:

r1 =DJ
[
(D + J)(E + ωF )3 − E3J

]
x3

0 +D2I3Lx3
2 + E2I2(E + ωF )(J + L)x3

0x
2
2

+ E2I3(J + L)x2
0x

3
2 +

[
DEI(2J + L)(E + ωF )2 + EFωIJ2(2E + ωF )

]
x3

0x2

+DEI3(J + 2L)x0x
3
2 + 3D3I2Lx2

2

[
3D3J(E + ωF )2 +D2FωJ2(2E + ωF )

]
x2

0

+ EI2
[
D(J + L)(5E + 3ωF ) + Fω

(
J2 + L2

)]
x2

0x
2
2 +DI [Fω (DFω(2J + L)

+FωJ(J + 2L) +DE(9J + 5L) + 2EJ2
)

+DE2(7J + 4L)
]
x2

0x2 +DI2 [DE (4J

+7L) + FωL(2J + L) +DFω(J + 2L)]x0x
2
2 + 2D4J(E + ωF )x0 + 2D4ILx2

+D2I [D(J + L)(5E + 3ωF ) + 2FωJL]x0x2 +
(
D2 +DEx0 +DIx2 + EIx0x2

)
(EJx0 − ILx2)2.

Thus, r1 > 0. Consequently, the conditions (4.12) are satisfied. Therefore, E101 is stable

if and only if λ1 < 0, that is to say

µ1

(
sin

0 + sin
1 −M0(D + a0,M2(D + a2)),M2(D + a2)

)
< D + a1.

Since M1 is increasing (see Lemma 2.1), this condition is equivalent to

sin
0 + sin

1 < M0(D + a0,M2(D + a2)) +M1(D + a1,M2(D + a2)),

which is the same as the stability condition of E101 in Table 4.2.

For E111, the Jacobian matrix J evaluated at E111 = (x0, x1, x2, s0, s1, s2) is given by:

J =



0 0 0 Ex0 0 Fx0

0 0 0 0 Gx1 −Hx1

0 0 0 0 0 Ix2

−J 0 0 −D − Ex0 0 −Fx0

J −K 0 Ex0 −D −Gx1 Fx0 +Hx1

−ωJ K −L −ωEx0 Gx1 −D − ωFx0 −Hx1 − Ix2


.
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The characteristic polynomial is given by:

P6(λ) = λ6 + c1λ
5 + c2λ

4 + c3λ
3 + c4λ

2 + c5λ+ c6,

where ci are defined in Table 4.1. Note that, c1 and c6 are positive. From Lemma 4.2 all

of the roots of the sixth-order polynomial have the negative real part if and only if

ci > 0, i = 3, 5 and rj > 0, j = 4, 5, (4.13)

where rj are defined in Table 4.1.

For E010, the Jacobian matrix J evaluated at E010 is:

J =



J −D − a0 0 0 0 0 0

0 0 0 0 Gx1 −Hx1

0 0 L−D − a2 0 0 0

−J 0 0 −D 0 0

J −K 0 0 −D −Gx1 Hx1

−ωJ K −L 0 Gx1 −D −Hx1


.

By developing the determinant of the matrix J − λId, with respect to the first, third and

fourth lines, respectively, we obtain, the eigenvalues

λ1 = µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
−D−a0, λ2 = µ2

(
sin

1 − s1 + sin
2

)
−D−a2 and λ3 = −D.

The other eigenvalues are given by the characteristic polynomial P3 of the following matrix:

J3 =

 0 Gx1 −Hx1

−K −D −Gx1 Hx1

K Gx1 −D −Hx1

 .
Denote Ci and Li, i = 1, 2, 3, the columns and lines of the matrix J3 − λId. The replace-

ments of L3 by L2 + L3 and C2 by C2 − C3 preserve the determinant and lead to

P3(λ) = −(λ+D)

∣∣∣∣∣∣
−λ (G+H)x1

−K −(λ+D + (G+H)x1)

∣∣∣∣∣∣ .
The eigenvalues of J3 are λ4 = −D, λ5 and λ6 such that

λ5λ6 = K(G+H)x1 > 0 and λ5 + λ6 = −D − (G+H)x1 < 0.

Hence, the real parts of λ5 and λ6 are negative. Therefore, E010 is stable if and only if

µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
< D + a0 and µ2

(
sin

1 − s1 + sin
2

)
< D + a2,

with s1 is the solution in the interval J1 of equation µ1

(
s1, s

in
1 − s1 + sin

2

)
= D+a1. Recall

that, the functions M2 and M3 are increasing thanks to Lemma 2.1. Thus,

µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
< D + a0 ⇐⇒ s1 > sin

1 + sin
2 −M3(sin

0 , D + a0),

Doctoral thesis Page 75|142 Sarra Nouaoura



Chapter 4. Stability of the three-tiered food-web model with decay

µ2

(
sin

1 − s1 + sin
2

)
< D + a2 ⇐⇒ s1 > sin

1 + sin
2 −M2(D + a2).

As the function ψ1 is increasing, then, we deduced that

ψ1(s1) > ψ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0)
)

and ψ1(s1) > ψ1

(
sin

1 + sin
2 −M2(D + a2)

)
.

From ψ1(s1) = µ1

(
s1, s

in
1 − s1 + sin

2

)
= D+a1, then, the conditions of the stability of E010

are equivalent to

µ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0),M3(sin
0 , D + a0)

)
< D + a1,

µ1

(
sin

1 + sin
2 −M2(D + a2),M2(D + a2)

)
< D + a1.

Since M1 is increasing (see Lemma 2.1), then, E010 is stable if and only if

sin
1 + sin

2 < M1

(
D + a1,M3(sin

0 , D + a0)
)

+M3(sin
0 , D + a0),

sin
1 + sin

2 < M1 (D + a1,M2(D + a2)) +M2(D + a2),

which are the same as the stability conditions of E010 in Table 4.2.

For E011, the Jacobian matrix J evaluated at E011 is:

J =



J −D − a0 0 0 0 0 0

0 0 0 0 Gx1 −Hx1

0 0 0 0 0 Ix2

−J 0 0 −D 0 0

J −K 0 0 −D −Gx1 Hx1

−ωJ K −L 0 Gx1 −D −Hx1 − Ix2


.

By developing the determinant of the matrix J −λId, with respect to the first and fourth

lines, respectively, we obtain, the eigenvalues

λ1 = µ0

(
sin

0 ,M2(D + a2)
)
−D − a0 and λ2 = −D.

The other eigenvalues are given by the characteristic polynomial:

P4(λ) = λ4 + c1λ
3 + c2λ

2 + c3λ+ c4 = 0,

where

c1 = 2D + (G+H)x1 + Ix2,

c2 = D2 + (G+H)(D +K)x1 + I(D + L)x2 +GIx1x2,

c3 = D(G+H)Kx1 +DILx2 +GI(K + L)x1x2,

c4 = GIKLx1x2.

From Lemma 4.2 the roots of the fourth-order polynomial are of negative real parts if and

only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c2
1c4 − c2

3 > 0. (4.14)
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We always have:

ci > 0, for i = 1, 3, 4.

We show that: r1 > 0. Indeed, we can write that:

r1 =DK
[
(D +K)(G+H)3 −G3K

]
x3

1 +D2I3Lx3
2 +G2I2(G+H)(K + L)x3

1x
2
2

+G2I3(K + L)x2
1x

3
2 +

[
DGI(2K + L)(G+H)2 +GHIK2(2G+H)

]
x3

1x2

+DGI3(K + 2L)x1x
3
2 + 3D3I2Lx2

2 +
[
3D3K(G+H)2 +D2HK2(2G+H)

]
x2

1

+GI2
[
D(K + L)(5G+ 3H) +H

(
K2 + L2

)]
x2

1x
2
2 +DI [H (DH(2K + L)

+HK(K + 2L) +DG(9K + 5L) + 2GK2
)

+DG2(7K + 4L)
]
x2

1x2 +DI2 [DG(4K

+7L) +HL(2K + L) +DH(K + 2L)]x1x
2
2 + 2D4K(G+H)x1 + 2D4ILx2

+D2I [D(K + L)(5G+ 3H) + 2HKL]x1x2 +
(
D2 +DGx1 +DIx2 +GIx1x2

)
(GKx1 − ILx2)2.

Thus, r1 > 0. Consequently, the conditions (4.14) are satisfied. Finally, E011 is stable if

and only if

µ0

(
sin

0 ,M2(D + a2)
)
< D + a0.

Since M0 is increasing (see Lemma 2.1), this condition is equivalent to

sin
0 < M0(D + a0,M2(D + a2)),

which is the same as the stability condition of E011 in Table 4.2.

Remark 4.1. For all steady states, except for the positive one E111, we see that −D is an

eigenvalue whose multiplicity corresponds to the number of extinct species.

From Tables 2.2 and 4.2, we have the following results, which are also valid in the case

without maintenance (see Tables 3.1 and 3.2).

Corollary 4.1. • If E001 or E100 or E010 exists then, E000 is unstable.

• If E111 exists then, E001, E110, E101 and E011 are unstable.

• If E101 exists then, E001 and E100 are unstable.

• If E010 exists then, E010 is unstable.

Proof. If E001 exists then, its condition of existence µ2

(
sin

2

)
> D + a2 holds. Therefore,

the condition µ2

(
sin

2

)
< D + a2 of stability of E000 is not satisfied.

If E100 exists then, its condition of existence µ0

(
sin

0 , s
in
2

)
> D + a0 holds. Therefore,

the condition µ0

(
sin

0 , s
in
2

)
< D + a0 of stability of E000 is not satisfied.

If E010 exists then, its condition of existence µ1

(
sin

1 , s
in
2

)
> D + a1 holds. Therefore,

the condition µ1

(
sin

1 , s
in
2

)
< D + a1 of stability of E000 is not satisfied.
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If E111 exists then, the conditions

(1− ω)sin
0 + sin

1 + sin
2 > φ2(D), sin

0 > ϕ0(D), sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of E001 or E011 is not satisfied,

the condition (1 − ω)sin
0 + sin

1 + sin
2 < φ2(D) of stability of E110 is not satisfied, and the

condition sin
0 + sin

1 < ϕ0(D) + ϕ1(D) of stability of E101 is not satisfied.

If E101 exists, then, its conditions of existence

sin
0 > ϕ0(D) and sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of E001 or E011 is not satisfied and

the condition sin
2 − ωsin

0 < M2(D + a2)− ωϕ0(D) of stability of E100 is not satisfied.

If E011 exists, then, its conditions of existence sin
1 + sin

2 > ϕ1(D) + M2(D + a2) holds.

Therefore, the condition sin
1 +sin

2 < ϕ1(D)+M2(D+a2) of stability of E010 is not satisfied.

4.3 Proofs for the results of [64] on existence and

stability of the steady states of the model

The aim of this section is to give rigorous proofs for the results of [64] on existence

and stability of the steady states of model (2.1). Notice that the results in [64] were given

with respect to the dimensionless form (3.21) of (2.1) by using the variables (3.20) and

the growth functions (3.22). The variables (3.20) are related to our variables (2.6) by the

formulas

x0 = N0K0, x1 = N1K1, x2 = N2K2, s0 = R0K0, s1 = R1K1, s2 = R2K2, t = τ/m0.

Hence, results given in variables (3.20) can be easily translated into results given in vari-

ables (2.6) and vice versa.

From Tables 2.2 and 4.2, the existence and stability of steady states of model (2.1) can

be determine for the specific growth functions (2.9). Using the functions and notations

given in Table 3.4, we have the following results:

E000 =
(
0, 0, 0, sin

0 , s
in
1 , s

in
2

)
always exists. It is stable if and only if

µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1 and µ2

(
sin

2

)
< D + a2.

These conditions are equivalent to the conditions of E000 (SS1) were established in [64],

section C1, given in terms of variables (3.20) and growth functions (3.22).

E001 = (0, 0, x2, s0, s1, s2) is given by:

s0 = sin
0 , s1 = sin

1 , s2 =
K2(D + a2)

m2 −D − a2

, x2 =
D

D + a2

(
sin

2 − s2

)
. (4.15)
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It exists if and only if sin
2 > s2, where s2 is given by (4.15). It is stable if and only if

µ0

(
sin

0 , s2

)
< D + a0 and µ1

(
sin

1 , s2

)
< D + a1.

Formulas (4.15) together with the conditions of existence and stability of E001 (SS2) were

established in [64], section C2, using variables (3.20) and growth functions (3.22).

E100 = (x0, 0, 0, s0, s1, s2) is given by:

x0 =
D

D + a0

(
sin

0 − s0

)
, s1 = sin

1 + sin
0 − s0, s2 = sin

2 − ω
(
sin

0 − s0

)
, (4.16)

where s0 is a solution of equation

m0s0

(
sin

2 − ω
(
sin

0 − s0

))
(K0 + s0) (L0 + sin

2 − ω (sin
0 − s0))

= D + a0. (4.17)

Notice that (4.17) is a quadratic equation. Only its solution in the interval

J0 =
[
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
is to be considered. E100 exists if and only if the following condition holds

µ0

(
sin

0 , s
in
2

)
> D + a0. (4.18)

It is stable if and only if

µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
< D + a1,

sin
2 − ωsin

0 < M2(D + a2)− ωM0 (D + a0,M2(D + a2)) ,
(4.19)

where s0 is the solution in the interval J0 of equation (4.17). Formulas (4.16) together

with equation (4.17) giving s0 and the stability condition (4.19) were established in [64],

section C3, using variables (3.20) and growth functions (3.22). However, neither condition

(4.18) of existence of E100 (SS3) nor the signs of other eigenvalues of the Jacobian matrix

were explicitly established in [64], section C3, where the existence and stability of E100

(SS3) were checked only numerically by considering the roots of polynomials of degrees 2

and 3, respectively, see formulas (C.3) and (C.7) in [64].

E110 = (x0, x1, 0, s0, s1, s2) is given by:

s0 =
(D + a0)K0(L0 + s2)

m0s2 − (D + a0)(L0 + s2)
, s1 =

(D + a1)K1(KI + s2)

m1KI − (D + a1)(KI + s2)
,

x0 =
D

D + a0

(
sin

0 − s0

)
, x1 =

D

D + a1

(
sin

0 − s0 + sin
1 − s1

)
,

(4.20)

where s2 is a solution of equation

(1− ω)
(D + a0)K0(L0 + s2)

m0s2 − (D + a0)(L0 + s2)
+

(D + a1)K1(KI + s2)

m1KI − (D + a1)(KI + s2)
+ s2

= (1− ω)sin
0 + sin

1 + sin
2 .

(4.21)
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Notice that (4.21) reduces to a cubic equation in s2. Only its solutions in the interval

(s0
2, s

1
2) are to be considered. The steady states E1

110 and E2
110 exist if and only if the

following conditions hold

sin
0 > s0, sin

0 + sin
1 > s0 + s1 and (1− ω)sin

0 + sin
1 + sin

2 ≥ φ1 (D) , (4.22)

where s0 and s1 are defined by (4.20). E1
110 is unstable whenever it exists and E2

110 is stable

if and only if

(1− ω)sin
0 + sin

1 + sin
2 < φ2(D), and φ3(D) > 0. (4.23)

Here φ2 and φ3 are defined in Table 3.4. Formulas (4.20) together with equation (4.21)

giving s2 were established in [64], section C4, using variables (3.20) and growth functions

(3.22). However, neither condition (4.22) of existence of E110 (SS4) nor its condition of

stability (4.23) have been established explicitly in [64], section C4, where the existence

and stability of E110 (SS4) were checked only numerically by considering the roots of a

polynomial of degree 5, see formula (C.20) in [64].

E101 = (x0, 0, x2, s0, s1, s2) is given by:

s2 =
(D + a2)K2

m2 −D − a2

, s0 =
(D + a0)K0(L0 + s2)

m0s2 − (D + a0)(L0 + s2)
, s1 = sin

0 − s0 + sin
1 ,

x0 =
D

D + a0

(
sin

0 − s0

)
, x2 =

D

D + a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
.

(4.24)

It exists if and only if the following conditions hold

sin
0 > s0, sin

2 − ωsin
0 > s2 − ωs0, (4.25)

where s0 and s2 are given by (4.24). E101 is stable if and only if

sin
0 + sin

1 < M0 (D + a0,M2(D + a2)) +M1 (D + a1,M2(D + a2)) . (4.26)

Formulas (4.24) together with conditions (4.25) of existence and (4.26) of stability of E101

(SS5) were established in [64], section C5, using variables (3.20) and growth functions

(3.22). However, the signs of other eigenvalues of the Jacobian matrix have been checked

only numerically by considering the roots of a polynomial of degree 4, see formula (C.31)

in [64].

E111 = (x0, x1, x2, s0, s1, s2) is given by:

s2 =
(D + a2)K2

m2 −D − a2

, s0 =
(D + a0)K0(L0 + s2)

m0s2 − (D + a0)(L0 + s2)
, s1 =

(D + a1)K1(KI + s2)

m1KI − (D + a1)(KI + s2)
,

x0 =
D

D + a0

(
sin

0 − s0

)
, x1 =

D

D + a1

(
sin

0 − s0 + sin
1 − s1

)
,

x2 =
D

D + a2

(
(1− ω)

(
sin

0 − s0

)
+ sin

1 − s1 + sin
2 − s2

)
.

(4.27)
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It exists if and only if the following conditions hold

sin
0 > s0, sin

0 + sin
1 > s0 + s1, (1− ω)sin

0 + sin
1 + sin

2 > φ2(D), (4.28)

where s0 and s1 are given by (4.27). E111 is stable if and only if

ci > 0, i = 3, 5, and rj > 0, j = 4, 5, (4.29)

where ci and rj are defined in Table 4.1. Formulas (4.27) together with conditions (4.28)

of existence of E111 (SS6) were established in [64], section C6, using variables (3.20) and

growth functions (3.22). However, the Liénard-Chipart stability conditions (4.29) were

not considered in [64], where the stability of E111 (SS6) was checked only numerically by

considering the roots of a polynomial of degree 6, see formula (C.42) in [64].

E010 = (0, x1, 0, s0, s1, s2) is given by:

s0 = sin
0 , x1 =

D

D + a1

(
sin

1 − s1

)
, s2 = sin

1 − s1 + sin
2 , (4.30)

where s1 is a unique solution of equation

m1s1KI

(K1 + s1) (KI + sin
1 + sin

2 − s1)
= D + a1. (4.31)

Notice that (4.31) is a quadratic equation. Only its solution in the interval

J1 =
[
0, sin

1

)
is to be considered. E010 exists if and only if the following condition holds

µ1

(
sin

1 , s
in
2

)
> D + a1. (4.32)

E010 is stable if and only if

sin
1 + sin

2 < M1

(
D + a1,M3

(
sin

0 , D + a0

))
+M3

(
sin

0 , D + a0

)
,

sin
1 + sin

2 < M1(D + a1,M2(D + a2)) +M2(D + a2).
(4.33)

Formulas (4.30) together with equation (4.31) giving s1 and stability condition (4.33)

were established in [64], section C7, using variables (3.20) and growth functions (3.22).

However, condition (4.32) of existence of E010 (SS7) has not been established explicitly in

[64], section C7, where the existence of E010 (SS7) and the signs of other eigenvalues of the

Jacobian matrix were checked only numerically by considering the roots of a polynomial

of degree 3, see formula (C.53) in [64].

E011 = (0, x1, x2, s0, s1, s2) is given by:

s0 = sin
0 , s2 =

(D + a2)K2

m2 −D − a2

, s1 =
(D + a1)K1(KI + s2)

m1KI − (D + a1)(KI + s2)
,

x1 =
D

D + a1

(
sin

1 − s1

)
, x2 =

D

D + a2

(
sin

1 − s1 + sin
2 − s2

)
.

(4.34)
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It exists if and only if the following conditions hold

sin
1 > s1, sin

1 + sin
2 > s1 + s2, (4.35)

where s1 and s2 are given by (4.34). E011 is stable if and only if

sin
0 < M0 (D + a0,M2(D + a2)) . (4.36)

Formulas (4.34) together with conditions (4.35) of existence and (4.36) of stability of E011

(SS8) were established in [64], section C8, using variables (3.20) and growth functions

(3.22). However, the signs of other eigenvalues of the Jacobian matrix have been checked

only numerically by considering the roots of a polynomial of degree 4, see formula (C.62)

in [64].

4.4 Bifurcation diagrams

In this section, we determine numerically the asymptotic behaviors of the three-tiered

model by including decay terms. We assume that the biological parameter values are the

same in Table 3.3, except for kdec,i = ai = 0.02. To compare with the findings of the

numerical study of [64] in the case including decay, we perform the bifurcation diagrams

with respect to the parameter D, and then to Sin
ch, to examine the effects of decay terms

on the behavior of model (2.1). We compare our results to those in the case without

maintenance terms. We consider the same values of the two input concentrations Sin
ph = 0

and Sin
H2

= 2.67× 10−5 of Figure 3(a) in [64]. In this case, the steady states E010 and E011

do not exist, see Proposition 2.2.

4.4.1 Bifurcation diagram with respect to D

Giving a fixed value for Sin
ch = 0.1. Using the results of the existence conditions in

Table 2.2 in previous chapter 2 and from Table 4.2, we have the following result, which

determines the existence and the stability of the steady states of (2.1) with respect to the

dilution rate D.

Proposition 4.1. Let Sin
ph = 0, Sin

H2
= 2.67 × 10−5 and Sin

ch = 0.1. Using the biological

parameter values in Table 3.3, while kdec,i = 0.02, the bifurcation values δi, i = 1, . . . , 7

are provided in Table 4.3. The bifurcation analysis of (2.1) according to D is given in

Table 4.4. The bifurcation types at the critical values δi are defined in Table 4.5.

Proof. Using the change of variables (2.7) and Tables 2.2 and 4.2. The necessary and

sufficient existence and stability conditions of steady states of (2.1) are summarized in

Table 4.6 when Sin
ph = 0, Sin

H2
= 2.67×10−5 and Sin

ch = 0.1. Using Table 4.6, we see that:

E000 always exists and it is stable if and only if

D > µ0

(
Y Sin

ch, S
in
H2

)
− a0 := δ6 and D > µ2

(
Sin

H2

)
− a2 := δ7.
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Table 4.3: Critical parameter values δi, for i = 1, . . . , 7. All functions are given in Table 3.4,

while µi and r5 are given in (2.9) and Table 4.1.

Definition Value

δ1 is the largest root of equation r5 = 0 0.010412

δ2 is the root of φ2(D)− Sin
H2
− (1− ω)Y Sin

ch = 0 0.068641

δ3 is the root of φ1(D)− Sin
H2
− (1− ω)Y Sin

ch = 0 0.068814

δ4 is the root of Sin
H2

+ ω
(
ϕ0(D)− Y Sin

ch

)
−M2(D + a2) = 0 0.267251

δ5 is the root of ϕ0(D)− Y Sin
ch = 0 0.267636

δ6 = µ0

(
Y Sin

ch, S
in
H2

)
− a0 0.327130

δ7 = µ2

(
Sin

H2

)
− a2 1.064526

Table 4.4: Existence and stability of steady states, with respect to D. The bifurcation

values δi, i = 1, . . . , 7 are given in Table 4.3.

Interval E000 E001 E100 E1
110 E2

110 E101 E111

0 < D < δ1 U U S U U U

δ1 < D < δ2 U U S U U S

δ2 < D < δ3 U U S U S

δ3 < D < δ4 U U S

δ4 < D < δ5 U U U S

δ5 < D < δ6 U S U

δ6 < D < δ7 U S

δ7 < D S

Table 4.5: Bifurcation types corresponding to the critical values of δi, i = 1, . . . , 7, defined

in Table 4.3. There exists also a critical value δ∗ ' 0.009879 < δ1 corresponding to the

value of D where the stable limit cycle disappears when D is increasing.

Bifurcation types

δ∗ Disappearance of the stable limit cycle

δ1 Supercritical Hopf bifurcation

δ2 Transcritical bifurcation of E2
110 and E111

δ3 Saddle-node bifurcation of E1
110 and E2

110

δ4 Transcritical bifurcation of E100 and E101

δ5 Transcritical bifurcation of E001 and E101

δ6 Transcritical bifurcation of E000 and E100

δ7 Transcritical bifurcation of E000 and E001
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Table 4.6: Existence and local stability conditions of steady states of (2.1), when Sin
ph = 0.

Existence conditions Stability conditions

E000 Always exists µ0

(
Y Sin

ch, S
in
H2

)
< D + a0, µ2

(
Sin

H2

)
< D + a2

E001 µ2

(
Sin

H2

)
> D + a2 Y Sin

ch < ϕ0(D)

E100 µ0

(
Y Sin

ch, S
in
H2

)
> D + a0

µ1

(
Y Sin

ch − s0, S
in
H2
− ω

(
Y Sin

ch − s0

))
<D+a1

Sin
H2
− ωY Sin

ch < M2(D + a2)− ωϕ0(D)

with s0 solution of ψ0(s0) = D + a0

E110

(1− ω)Y Sin
ch + Sin

H2
≥ φ1(D),

Y Sin
ch > M0(D+a0, s2)+M1(D+a1, s2)

with s2 solution of

Ψ(s2, D) = (1− ω)Y Sin
ch + Sin

H2

(1− ω)Y Sin
ch + Sin

H2
< φ2(D), φ3(D) > 0

∂Ψ
∂s2

(s2, D) > 0

E101
Y Sin

ch > ϕ0(D),

Sin
H2
− ωY Sin

ch>M2(D + a2)− ωϕ0(D)
Y Sin

ch < ϕ0(D) + ϕ1(D)

E111
(1− ω)Y Sin

ch + Sin
H2
> φ2(D),

Y Sin
ch > ϕ0(D) + ϕ1(D)

c3 > 0, c5 > 0, r4 > 0, r5 > 0

Thus, E000 is stable if and only if D > max(δ6, δ7) = δ7 (see Table 4.3 for all critical

parameter values δi, i = 1, . . . , 7).

From Table 4.6, E001 exists if and only if D < δ7. From the eigenvalues λ1 and λ2 of

J evaluated at E001, we deduce that E001 is stable if and only if

F1(D) := µ0

(
Y Sin

ch,M2(D + a2)
)
−D − a0 < 0 ⇐⇒ δ5 < D < δ7,

where δ5 is the solution of equation F1(D) = 0 (see Figure 4.1).

δ5

F1(D)

D
δ7

Figure 4.1: Stability of E001, for all D ∈ (δ5, δ7): change of sign of the function F1.

E100 exists if and only if D < δ6 and it is stable if and only if

F2(D) := µ1

(
Sin

chY − s0, S
in
H2
− ω

(
Sin

chY − s0

))
−D − a1 < 0,

F3(D) := Sin
H2

+ ω
(
ϕ0(D)− Y Sin

ch

)
−M2(D + a2) < 0,

that is, D < δ4, where δ4 is the solution of equation F3(D) = 0 (see Figure 4.2).
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F2(D)

D
δ6

F3(D)

D
δ6δ4

Figure 4.2: Stability of E100, for all D < δ4: signs of the functions F2 and F3.

From Remark 2.1, the system can have at most two steady states of the form E110

denoted by E1
110 and E2

110 as ω ' 0.53 < 1. Their first existence condition in Table 4.6

holds if and only if

F4(D) := φ1(D)− Sin
H2
− (1− ω)Y Sin

ch ≤ 0 ⇐⇒ D ≤ δ3,

where δ3 is the solution of equation F4(D) = 0 (see Figure 4.3(a)). Their second existence

condition holds for all D ≤ δ3, since the straight line of equation y = Y Sin
ch is above the

curve of the function y = M0 (D + a0, s
∗i
2 )+M1 (D + a1, s

∗i
2 ), for i = 1, 2, which correspond

to E1
110 and E2

110, respectively, see Figure 4.3(b). From Remark 2.1 and Table 4.6, E1
110 is

(a)

F4(D)

D
δ3

(b)y

D

y = Y Sin
ch

y = M
0
(
D + a0 , s∗1

2
)
+M

1
(
D + a1 , s∗1

2
)

y = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)
δ3

Figure 4.3: Existence of E110, for all D ≤ δ3: (a) change of sign of the function F4. (b)

the green line of equation y = Y Sin
ch is above the red and blue curves of the functions

M0 (D + a0, s
∗i
2 ) +M1 (D + a1, s

∗i
2 ), i = 1, 2, respectively.

unstable for all 0 < D < δ3 while E2
110 is stable if and only if

F5(D) := φ2(D)− Sin
H2
− (1− ω)Y Sin

ch > 0 and φ3(D) > 0,

that is, D ∈ (δ2, δ3) where δ2 is the solution of equation F5(D) = 0 (see Figure 4.4). Indeed,

F5(D) > 0 for all D ∈ (δ2, δ3) and φ3(D) > 0 for all D ∈ (δ′2, δ3) where δ′2 ' 0.057865 is

the solution of equation φ3(D) = 0 such that δ′2 < δ2.

E101 exists if and only if F1(D) > 0 and F3(D) > 0, that is, δ4 < D < δ5. E101 is stable

if and only if

F6(D) := ϕ0(D) + ϕ1(D)− Y Sin
ch > 0,
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(a)

D

F5(D)

δ2��� AAKδ3

(b)

D
δ2

F5(D)

δ3

(c)

D

δ′2
δ3

φ3(D)

Figure 4.4: Stability of E110, for all D ∈ (δ2, δ3): (a) Curve of the function F5. (b)

Magnification of F5, for D ∈ [0.0685, 0.0688]. (c) Curve of the function φ3.

(a)

F6(D)

D

δ4��� δ5AAK

(b)

F6(D)

D
δ4 δ5

Figure 4.5: Stability of E101, for all D ∈ (δ4, δ5) and existence of E111 for all D < δ2: (a)

curve of the function F6. (b) Magnification of F6(D), for D ∈ [δ4, δ5].

that is, for all D ∈ (δ4, δ5) (see Figure 4.5).

E111 exists if and only if F5(D) < 0 and F6(D) < 0, that is, for all D < δ2 where δ2

is the solution of the equation F5(D) = 0 (see Figure 4.4(a-b) and Figure 4.5). Indeed,

F5(D) < 0 for all D < δ2 and F6(D) < 0 for all D < δ′′2 where δ′′2 ' 0.113033 is the solution

of equation F6(D) = 0 such that δ2 < δ′′2 . To determine the stability of E111, the functions

c3, c5, r4 and r5 are plotted with respect to D < δ2. Figure 4.6 shows that c3(D), c5(D),

r4(D) and r5(D) are all positive if and only if δ1 < D < δ2 where δ1 ' 0.010412 is the

solution of equation r5(D) = 0.

To give numerical evidence of the Hopf bifurcation occurring for D = δ1, we determine

numerically the eigenvalues of the Jacobian matrix of system (2.1) at E111 and we plot

them with respect to D. Figure 4.7(a-b) shows that two eigenvalues denoted by λ1(D)

and λ2(D) are real and remain negative for all D ∈ [0, δ2). Figure 4.7(c) shows that the

two other eigenvalues λ3(D) and λ4(D) form a complex-conjugate pair denoted by

λ3,4(D) = α3,4(D)± iβ3,4(D), for all D ∈ [0, δ?),

where the real part α3,4 remains negative and δ? ' 0.068504. Then, they become real,

negative and distinct for all D ∈ (δ?, δ2). Similarly, Figure 4.7(d) shows that the two last

eigenvalues λ5(D) and λ6(D) form a complex-conjugate pair denoted by

λ5,6(D) = α5,6(D)± iβ5,6(D), for all D ∈ [0, δ?),
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(a)

D

c3

δ2

(b)

D

c5

δ2

(c)

D

r4

δ2

(d)

D

r5

δ1

δ2

(e)

D
δ1

r4 r5

Figure 4.6: (a-b-c-d) Curves of c3, c5, r4 and r5 as functions of D, for 0 < D < δ2. (e)

Magnification of the curves of r4 and r5, for D ∈ [0, 0.012].

where the real part α5,6 is positive for all D ∈ [0, δ1) and negative for all D ∈ (δ1, δ
?).

Then, for all D ∈ (δ?, δ2), they become real, negative and distinct. At the particular value

D = δ1, the pair λ5,6(D) is purely imaginary such that α5,6(δ1) = 0, with β5,6(δ1) 6= 0.

Moreover, one has
dα5,6

dD
(δ1) < 0.

This is consistent with Figure 4.8(b) showing that, as D decreases and crosses δ1, the

steady state E111 becomes unstable and we have a supercritical Hopf bifurcation, leading

to the appearance, from the steady state E111, of small-amplitude periodic oscillations.

(a)

δ2
D

λ1

(b)

δ2
D

λ2

(c)
D

δ2δ?
���6

λ3

λ4

α3,4

(d)

D

δ2AAK���
δ1

δ?
λ5

λ6

α5,6

Figure 4.7: The eigenvalues of the Jacobian matrix at E111 as functions of D, when

Sin
ch = 0.1, Sin

ph = 0 and Sin
H2

= 2.67×10−5. (c-d) The real parts α3,4 and α5,6 for D ∈ [0, δ?).
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To illustrate the emergence of limit cycle and to understand what happens with the

limit cycle born via the supercritical Hopf bifurcation when D is varied, we present in

Figure 4.8 the one-parameter bifurcation diagram for system (2.1) of Xch depending on

the dilution rate D when all other parameters are fixed. When magnified, we observe

more clearly the disappearance of the limit cycle at δ∗, the Hopf bifurcation at δ1, the

transcritical bifurcations at δ2, δ4 and δ5 and the saddle-node bifurcation at δ3, see Fig-

ure 4.8(b-c-d). In Figure 4.8, E000 and E001 cannot be distinguished since they have both

a zero Xch-component. As E001 is stable and E000 is unstable for D < δ7, the Xch = 0 axis

is plotted in blue as the color of E001 in Table 3.9.
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E100
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Figure 4.8: (a) Bifurcation diagram of Xch versus D ∈ [0, 1.2] in model (2.1). (b) Magnifi-

cation on the appearance and disappearance of stable limit cycles for D ∈ [0.0095, 0.0108].

(c) Magnification on the transcritical bifurcation at D = δ2 and the saddle-node bifurca-

tion at D = δ3 for D ∈ [0.0685, 0.069]. (d) Magnification on the transcritical bifurcations

for D ∈ [0.2665, 0.2685].

Remark 4.2. Following [41], not all of the behaviors described in Table 4.4 were reported

in [64]. For Sin
ch = 0.1. Note that the destabilization of E111 (SS6) via a Hopf bifurcation

with the emergence of a stable limit cycle has not been observed in [64]. Moreover, the

region of existence and stability of E101 (SS5), which was depicted in Figure 3(b) of [64]

in the case where Sin
H2

= 2.67×10−2, was not reported in Figure 3(a) of [64]. Our results

show that this region also exists when Sin
H2

= 2.67×10−5, and explain why it was not

detected by the numerical analysis given in Figure 3(a) of [64]: E101 (SS5) occurs in a

very small region since, for Sin
ch = 0.1 it corresponds to δ4 < D < δ5, where δ4 ' 0.267251

and δ5 ' 0.267636, with δ5− δ4 of order 10−4. However, while from a mathematical point
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of view the diagram shown in [64] is incorrectly labeled, in biological terms, such a small

region of E101 (SS5) would likely not be attained.

4.4.2 Bifurcation diagram with respect to S in
ch

Now, we constructe the bifurcation diagram according to the chlorophenol input con-

centration as the bifurcating parameter Sin
ch. We consider Sin

ph = 0 and Sin
H2

= 2.67× 10−5,

corresponding to Figure 3(a) in [64] and we fix D = 0.01. Using Table 4.6, we have the

following result.

Proposition 4.2. Let Sin
ph = 0, Sin

H2
= 2.67 × 10−5 and D = 0.01. Using the biological

parameter values in Table 3.3, while kdec,i = 0.02, the bifurcation values σi, i = 1, . . . , 6

are provided in Table 4.7. The bifurcation analysis of (2.1) according to Sin
ch is given in

Table 4.8. The bifurcation types at the critical values σi are defined in Table 4.9.

Table 4.7: Critical parameter values σi, for i = 1, . . . , 6. All functions are given in Ta-

ble 3.4, while r5 is given in Table 4.1. Note that σ1 < σ3 < σ4 < σ2 < σ5 < σ6, compare

with the case without maintenance.

Definition Value

σ1 = M0

(
D + a0, S

in
H2

)
/Y 0.003173

σ2 = (φ1(D)− Sin
H2

)/((1− ω)Y ) 0.029402

σ3 = ϕ0(D)/Y 0.013643

σ4 = (Sin
H2
−M2(D + a2) + ωϕ0(D))/(ωY ) 0.013985

σ5 = (φ2(D)− Sin
H2

)/((1− ω)Y ) 0.033292

σ6 is the largest root of equation r5 = 0 0.1025

Table 4.8: Existence and stability of steady states, with respect to Sin
ch. The bifurcation

values σi, i = 1, . . . , 6 are given in Table 4.7.

Interval E000 E001 E100 E1
110 E2

110 E101 E111

0 < Sin
ch < σ1 U S

σ1 < Sin
ch < σ3 U S U

σ3 < Sin
ch < σ4 U U U S

σ4 < Sin
ch < σ2 U U S

σ2 < Sin
ch < σ5 U U S U U

σ5 < Sin
ch < σ6 U U S U U U

σ6 < Sin
ch U U S U U S
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Table 4.9: Bifurcation types corresponding to the critical values of σi, i = 1, . . . , 6, defined

in Table 4.7. There exists also a critical value σ∗ ' 0.099295 ∈ (σ5, σ6) corresponding to

the value of Sin
ch where the stable limit cycle disappears when Sin

ch is decreasing.

Bifurcation types

σ1 Transcritical bifurcation of E000 and E100

σ2 Saddle-node bifurcation of E1
110 and E2

110

σ3 Transcritical bifurcation of E001 and E101

σ4 Transcritical bifurcation of E100 and E101

σ5 Transcritical bifurcation of E1
110 and E111

σ6 Supercritical Hopf bifurcation

σ∗ Disappearance of the stable limit cycle

Proof. From Table 4.6, we have:

Since the second stability condition of E000 in Table 4.6 does not hold

µ2

(
Sin

H2

)
' 1.0845 > D + a2 = 0.03, (4.37)

E000 always exists and is unstable.

Since the existence condition of E001 in Table 4.6 holds (see inequality (4.37)), E001

exists and is stable if and only if

Sin
ch < ϕ0(D)/Y =: σ3.

E100 exists if and only if

Sin
ch > M0

(
D + a0, S

in
H2

)
/Y =: σ1.

Let F
(
Sin

ch

)
be the function defined by

F
(
Sin

ch

)
= µ1

(
Sin

chY − s0, S
in
H2
− ω

(
Sin

chY − s0

))
. (4.38)

The first stability condition of E100 in Table 4.6 holds for all Sin
ch > σ1, that is, F

(
Sin

ch

)
<

D+a1 since the maximum of F is smaller than 0.0013 while D+a1 = 0.03 (see Figure 4.9).

From the second stability condition in Table 4.6, E100 is stable if and only if

Sin
ch >

(
Sin

H2
−M2(D + a2) + ωϕ0(D)

)
/(ωY ) =: σ4.

The first existence condition of E110 in Table 4.6 holds, if and only if

Sin
ch ≥

(
φ1(D)− Sin

H2

)
/((1− ω)Y ) =: σ2.

Their second existence condition holds, for all Sin
ch ∈ [σ2, 0.11], since the straight line of

equation y = Sin
chY is above the curves of the functions y = M0 (D + a0, s

∗i
2 )+M1 (D + a1, s

∗i
2 ),

Doctoral thesis Page 90|142 Sarra Nouaoura



Chapter 4. Stability of the three-tiered food-web model with decay

y

F
(
Sin

ch

)

Sin
ch

σ1

y

F
(
Sin

ch

)
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Figure 4.9: Curve of the function y = F
(
Sin

ch

)
defined by (4.38).

y

y
=
Y
S
in
ch

y =
M0

( D +
a0
, s
∗1
2

) +
M1

( D +
a1
, s
∗1
2

)

y = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)

Sin
ch

σ2

Figure 4.10: The green line of equation y = Y Sin
ch is above the red and blue curves of the

functions M0 (D + a0, s
∗i
2 ) + M1 (D + a1, s

∗i
2 ), for i = 1, 2, which correspond to E1

110 and

E2
110, respectively.

for i = 1, 2, respectively (see Figure 4.10). Thus, E1
110 and E2

110 exist and are unstable for all

Sin
ch > σ2 since the second stability condition does not hold where φ3(D) ' −1996.917 < 0.

E101 exists if and only if σ3 := ϕ0(D)/Y < Sin
ch < σ4. When it exists, E101 is stable

since

Sin
ch < σ4 ' 0.013985 < (ϕ0(D) + ϕ1(D))/Y ' 0.02304.

E111 exists if and only if

Sin
ch >

φ2(D)− Sin
H2

(1− ω)Y
=: σ5 ' 0.033292, Sin

ch >
ϕ0(D) + ϕ1(D)

Y
' 0.02304.

Hence, E111 exists if and only if Sin
ch > σ5. To determine the stability of E111, the functions

c3, c5, r4 and r5 are plotted with respect to Sin
ch > σ5. Figure 4.11 shows that c3(Sin

ch),

c5(Sin
ch), r4(Sin

ch) and r5(Sin
ch) are all positive if and only if Sin

ch > σ6 where σ6 ' 0.1025 is

the largest root of equation r5

(
Sin

ch

)
= 0.

To give numerical evidence of the Hopf bifurcation occurring for Sin
ch = σ6, we determine

numerically the eigenvalues of the Jacobian matrix of system (2.1) at E111 and we plot

them with respect to Sin
ch. Figure 4.12(a-b) shows that two eigenvalues denoted by λ1

(
Sin

ch

)
and λ2

(
Sin

ch

)
are real and remain negative for all Sin

ch ∈ (σ5, 0.11]. Figure 4.12(c) shows
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Figure 4.11: (a-b-d) Curves of c3, c5, r4 and r5 as functions of Sin
ch, for Sin

ch > σ5. (c-e-f)

Magnifications of the curves c5 and r4, for Sin
ch ∈ [σ5, 0.04] and of r5, for Sin

ch ∈ [σ5, 0.035].

(a)

σ5
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λ1

(b)

σ5

Sin
ch

λ2

(c)

Sin
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σ5

σ?6
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α3,4
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σ5 ��� σ6σ?6

λ5

λ6

α5,6

Figure 4.12: The eigenvalues of the Jacobian matrix at E111 as functions of Sin
ch, when D =

0.01, Sin
ph = 0 and Sin

H2
= 2.67×10−5. (c-d) The real parts α3,4 and α5,6, for Sin

ch ∈ (σ?, 0.11].

that the two other eigenvalues λ3

(
Sin

ch

)
and λ4

(
Sin

ch

)
are real, negative and distinct for all

Sin
ch ∈ (σ5, σ

?) where σ? ' 0.03467. Then, they become a complex-conjugate pair denoted

by

λ3,4

(
Sin

ch

)
= α3,4

(
Sin

ch

)
± iβ3,4

(
Sin

ch

)
, for all Sin

ch ∈ (σ?, 0.11],

where the real part α3,4 remains negative.
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Figure 4.12(d) shows that the two last eigenvalues λ5

(
Sin

ch

)
and λ6

(
Sin

ch

)
are real, pos-

itive and distinct for all Sin
ch ∈ (σ5, σ

?]. Then, they become a complex-conjugate pair

denoted by

λ5,6

(
Sin

ch

)
= α5,6

(
Sin

ch

)
± iβ5,6

(
Sin

ch

)
, for all Sin

ch ∈ (σ?, 0.11],

so that the real part α5,6 is positive for all Sin
ch ∈ (σ?, σ6) and negative for all Sin

ch ∈
(σ6, 0.11]. At the particular value Sin

ch = σ6, the pair λ5,6

(
Sin

ch

)
is purely imaginary such

that α5,6(σ6) = 0, with β5,6(σ6) 6= 0. Moreover, one has

dα5,6

dSin
ch

(σ6) < 0.

This is consistent with Figures 4.13, 4.14 and 4.15, showing that, as Sin
ch decreases and

crosses σ6, the steady state E111 changes its stability through a supercritical Hopf bifur-

cation with the emergence of a stable limit cycle that we illustrate in Figures 4.19 and

4.17.

Figures 4.13 and 4.14 show the one-parameter bifurcation diagrams of Xch and XH2

versus Sin
ch in system (2.1), respectively. The magnifications of the bifurcation diagrams

are illustrated in Figure 4.13(b), Figure 4.14(b) and Figure 4.15 showing the transcritical

bifurcations at σ1, σ3, σ4 and σ5, the saddle-node bifurcation at σ2, the Hopf bifurcation

at σ6 and the disappearance of the cycle at σ∗. In Figure 4.13(b), E000 and E001 cannot

be distinguished since they have both a zero Xch-component. As E001 is stable and E000 is

unstable for Sin
ch < σ3, the Xch = 0 axis is plotted in blue as the color of E001 in Table 3.9.

In Figure 4.14(b), E000 and E001 are distinguished but it is not the case for E000 and E100,

since they have both a zero XH2-component. As E100 is stable and E000 is unstable for

Sin
ch > σ4, the XH2 = 0 axis is plotted in purple as the color of E100 in Table 3.9.
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Figure 4.13: (a) Bifurcation diagram of Xch versus Sin
ch ∈ [0, 0.11] in model (2.1) show-

ing the appearance and disappearance of stable limit cycles. (b) Magnification on the

transcritical bifurcations for Sin
ch ∈ [0, 0.018].

Remark 4.3. As explained in Remark 4.2, the operating diagram of Figure 3(a) in [64]

for D = 0.01 does not accurately describe the transition from the region labeled E001
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Figure 4.14: (a) Bifurcation diagram of XH2 versus Sin
ch ∈ [0, 0.11] in model (2.1). (b)

Magnification on the transcritical bifurcations for Sin
ch ∈ [0, 0.018].
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Figure 4.15: (a) Magnification on the saddle-node bifurcation at Sin
ch = σ2 and the tran-

scritical bifurcation at Sin
ch = σ5 for Sin

ch ∈ [0.028, 0.035]. (b) Magnification on the limit

cycles for Sin
ch ∈ [0.098, 0.105].

(corresponding to the stability of (SS2)) to the E100 region (corresponding to the stability

of (SS3)). Our results show that this transition is via a E101 (SS5) region, which is very

thin, since it corresponds to σ3 < Sin
ch < σ4, where σ3 ' 0.013643 and σ4 ' 0.013985.

This region was missing in Figure 3(a) in [64], since σ4 − σ3 is of order 10−4. Indeed,

the limitations of the operating diagram in Figure 3(a) in [64] is due to the numerical

resolution: the stability of E101 (SS5) occurs in a very small region and may not be

detected if the step size was for example an order of magnitude greater than σ4 − σ3.

Remark 4.4. As explained in Remark 4.3, except for E111, the maintenance does not

destabilize the steady states. Only their regions of existence and stability, with respect

to the operating parameters, can be modified. For E111, it is more difficult to answer the

question of whether or not it can be destabilized by including maintenance terms. The

bifurcations diagrams depicted in Figures 4.13, 4.14 and 4.15, and the results given in

Proposition 4.2, permit to answer this question at least for the following values of the

operating parameters Sin
ph = 0, Sin

H2
= 2.67× 10−5, D = 0.01 and Sin

ch ≥ 0. The comparison

of the results obtained in Table 4.8 with those given in Table 3.6 shows only minor changes

in the bifurcation values σi, i = 1, . . . , 6. Therefore, even for E111, the maintenance does

not destabilize the system: only the regions of stability, with respect to the operating

parameters, are slightly modified. Note that the change of the bifurcation values σi is
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predictable since their formulas in Table 4.7 involve the added decay terms. However, the

saddle-node bifurcation at σ2 arises after and not before the transcritical bifurcations at

σ3 and σ4 as in the case without maintenance.

4.5 Numerical simulations

In this section, we confirm the main findings in the previous section. Using the rescaling

of the variables (3.20) given in [64], and the dimensionless form (3.21) of (2.1), we perform

numerical simulations which show the behavior of system according to initial conditions

given in Table 4.10. We illustrate, in particular, the three-dimensional phase plot in three

interesting cases where the steady states E000, E001, E1
110 and E2

110 are unstable:

Table 4.10: The initial conditions of solutions of model (2.1) in Figures 4.16 - 4.22. The

initial conditions of (3.21) are given by Xi(0) = X∗i + ε and Si(0) = S∗i + ε, i = 0, 1, 2

where X∗i and S∗i are the components of E111 and ε is given in the second column. When

there is more than one trajectory in the figure, its color is indicated in the first column.

Figure

Color
ε (Xch(0), Xph(0), XH2(0), Sch(0), Sph(0), SH2(0))

Figure 4.16 9.7 10−3
(
5.44 10−4, 1.17 10−3, 8.80 10−5, 1.42 10−2, 1.29 10−2, 6.05 10−7

)
Figure 4.17

Pink

Blue

Green

10−2

3.2 10−2

3.5 10−2

(
5.54 10−4, 1.20 10−3, 9.00 10−5, 1.42 10−2, 1.29 10−2, 6.12 10−7

)(
5.76 10−4, 1.46 10−3, 9.00 10−5, 1.53 10−2, 1.96 10−2, 1.16 10−6

)(
5.79 10−4, 1.50 10−3, 9.00 10−5, 1.55 10−2, 2.05 10−2, 1.24 10−6

)
Figure 4.18

Blue

Green

6 10−2

7 10−2

(
6.71 10−4, 1.95 10−3, 1.04 10−4, 1.68 10−2, 2.80 10−2, 1.86 10−6

)(
6.81 10−4, 2.07 10−3, 1.04 10−4, 1.74 10−2, 3.11 10−2, 2.11 10−6

)
Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

2 10−3

3.5 10−2

6 10−2

7 10−2

(
5.46 10−4, 1.10 10−3, 9.00 10−5, 1.37 10−2, 1.05 10−2, 4.12 10−7

)(
5.79 10−4, 1.50 10−3, 9.00 10−5, 1.55 10−2, 2.05 10−2, 1.24 10−6

)(
6.71 10−4, 1.95 10−3, 1.04 10−4, 1.68 10−2, 2.80 10−2, 1.86 10−6

)(
6.81 10−4, 2.07 10−3, 1.04 10−4, 1.74 10−2, 3.11 10−2, 2.11 10−6

)

• For Sin
ch ∈ (σ5, σ

∗), the numerical simulations done for various positive initial condi-

tions permit to conjecture the global asymptotic stability of E100. Figure 4.16 shows

that the trajectorie in green converges toward the stable steady state

E100 '
(
2.19 10−6, 0, 0, 9.77 10−2, 3.65 10−4, 9.17 10−8

)
.
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110
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Figure 4.16: Case Sin
ch = 0.098 < σ∗: the solution of (2.1) converges to E100.

• For Sin
ch ∈ (σ∗, σ6), the system exhibits bistability with two basins of attraction: one

toward the stable limit cycle and the second toward E100. Figure 4.17 illustrates

that the trajectories in pink and blue converge toward the stable limit cycle in red,

while the green trajectory converges toward

E100 '
(
2.19 10−6, 0, 0, 9.92 10−2, 3.65 10−4, 9.12 10−8

)
.

For the initial condition in Table 4.10, the time course in Figure 4.19 illustrates the

positive, periodic solution representing the coexistence of the three species. The

sustained oscillations prove the stability of the limit cycle. However, Figure 4.20

shows the time course of the green trajectory in Figure 4.17.

00.001 0.00020.00040.00060.00080.0012

0

0.002

0.001

0e00

2e−04

1e−04

5e−05

1.5e−04

XH2

Xch

Xph

E111

E2
110

E1
110

E100

Figure 4.17: Case σ∗ < Sin
ch = 0.0995 < σ6: bistability with convergence either to the

stable limit cycle (in red) or to E100.

• For Sin
ch > σ6, the system exhibits bistability between E111 and E100. Figure 4.18

shows that the blue trajectory converges to the stable focus

E111 '
(
6.10 10−4, 1.22 10−3, 1.04 10−4, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
,

while the green trajectory converges to

E100 '
(
2.19 10−6, 0, 0, 1.10 10−1, 3.65 10−4, 8.79 10−8

)
.
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Figures 4.21 and 4.22 illustrate the time courses corresponding to the blue and the

green trajectories in Figure 4.18, respectively.

0
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0

0.002

0.001

0.003

0e00

2e−04

1e−04

3e−04

5e−05

1.5e−04

2.5e−04

XH2

Xch

Xph

E111•

E2
110

E1
110

E100

Figure 4.18: Case σ6 < Sin
ch = 0.11 : bistability with convergence either to E111 or to E100.

Numerical simulations have shown that the stable limit cycle disappears at the critical

value σ∗ ∈ (σ5, σ6) as Sin
ch decreases. Similarly to the numerical study of the bifurcation

diagram with respect to the parameter D in [57] in the case without maintenance and

sin
1 = sin

2 = 0, we conjecture that in our case also the stable limit cycle disappears through

a saddle-node bifurcation with another unstable limit cycle when Sin
ch decreases.

Remark 4.5. The plots of Figures 4.1 to 4.7 and 4.9 to 4.12 were performed with Maple

[35]. The plots of Figure 4.8 and Figures 4.13 to 4.18 were performed with Scilab [54].

Using the same method as in the previous chapter.
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Figure 4.19: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.0995 (in

kgCOD/m3): Convergence to the stable limit cycle.
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Figure 4.20: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.0995 (in

kgCOD/m3): Convergence to the stable steady state E100. (b) Magnification of (a) show-

ing that the solution of (2.1) converges to the nonzero Xch-component of E100.
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Figure 4.21: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.11 (in kgCOD/m3):

Convergence to the positive steady state E111.
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Figure 4.22: Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sin
ch = 0.11 (in kgCOD/m3):

Convergence to the stable steady state E100. (b) Magnification of (a) showing that the

solution of (2.1) converges to the nonzero Xch-component of E100.

4.6 Conclusion

In this chapter, we gave a complete stability analysis of the dynamics of the model (2.1)

when the maintenance is included. We have managed to characterize the stability in this

six-dimensional system which cannot be reduced to a three-dimensional one as in the case

neglecting maintenance, although it is generally accepted that the Routh-Hurwitz theorem

is intractable beyond five dimensions. For this, we have used the Liénard-Chipart stability

criterion to simplify the mathematical analysis by reducing considerably the number of the

Routh-Hurwitz conditions to check. We have performed the bifurcation diagrams, first,

with the dilution rate, and second with chlorophenol inflowing concentration as the bifur-

cating parameters, showing that one of the operating diagrams obtained numerically in

[64] has omitted important transition phenomena between steady states. We highlighted

several possible asymptotic behaviors in this six-dimensional system, including the bista-

bility between the coexistence steady state and a boundary steady state, or the bistability

between a positive limit cycle and a boundary steady state, so that the long term behavior

depends on the initial condition. We proved that the positive steady state of coexistence

of all species can be unstable and we give numerical evidence for the supercritical Hopf

bifurcation, in the case including chlorophenol and hydrogen input concentrations.

We can also show that maintenance does not destabilize the steady states. Then, in

chapter 5, we will use the theoretical results of the existence and stability of all steady
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states to construct analytically the operating diagrams in both cases with and without

decay that give the regions of existence and stability of the steady states, in the space of

the four operating parameters which were determined numerically in previous work in [64].

The results of this chapter have been published in [41].
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5.1 Introduction

In this final chapter, we are interested to illustrate the mathematical study of the three-

tiered model by studying analytically the operating diagrams which show the dynamic

behavior of the system according to the conventional chemostat operating parameters

(the dilution rate and the input concentrations of the substrates) in both cases with and

without maintenance, using the analytical findings of the existence and stability of all the

steady states, provided in previous chapters.

The operating diagram is the bifurcation diagram for which the values of the bio-

logical parameters are fixed. It is very useful for biologists because it allows predicting

qualitatively the different asymptotic behaviors of the process according to its control pa-

rameters. As it was claimed in [56], the operating diagram probably remains the most

useful answer for the analysis of the behavior of the model according to the parameters.

This diagram shows how robust or how extensive is the parameter region where some

asymptotic behavior emerges. The operating diagram is often performed numerically or

theoretically both in the biological literature [53, 64, 71] and the mathematical literature

[1, 3, 14, 22, 23, 49–51]. In [64], several operating diagrams have been presented, they

have been numerically constructed by varying the four control parameters. The authors

did not use the analytical expressions of the curves which separate the regions of existence

and stability conditions. They determined numerically the steady states for a realistic

range of operational and kinetic parameters and used the numerical method which con-

sists of determining the existence and the stability region point by point at all the steady

state. By considering sets of operating parameters and repeating this method with nu-

merous ones, the diagrams are drawn, showing the region of stability of each steady state.

The operating diagrams presented in [51] were obtained analytically in the case without

maintenance and numerically in the case with maintenance where the authors were able

to provide analytical expressions of the boundaries between the different stability regions

allowing to give operating diagrams describing the exhaustive behavior of the system.

5.2 Operating diagrams

The operating diagrams show how behaves the system when the operating parameters

D, Sin
ch, Sin

ph and Sin
H2

are varying in (2.1). These diagrams are used to visualize in particular,

for a different set of operating parameters, the existence and local stability of steady states.

To plot the operating diagrams, we must fix the values of the biological parameters as in

Table 3.3, and two of the four operating parameters D, Sin
ch, Sin

ph and Sin
H2

in order to

have a better vision and understanding because it is very difficult to visualize all the

regions of the operating diagram in four-dimensional space. In what follows, we study the

operating diagrams of system (2.1) in the cases with and without maintenance terms. In

subsection 5.2.1, we fix Sin
ph and Sin

H2
and we determine the operating diagrams in the plane
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(
Sin

ch, D
)

and in subsection 5.2.2, we give the operating diagrams in the
(
Sin

H2
, Sin

ph

)
plane

where Sin
ch and D being constant.

Using the change of variables (2.7), we summarized the necessary and sufficient exis-

tence and stability conditions of steady states of (2.1) in the case with maintenance as

stated in Table 5.1, which deduced easily from Tables 2.2 and 4.2 in the previous chapters.

Table 5.1: The necessary and sufficient existence and local stability conditions of steady

states of (2.1) in the case of maintenance. All functions are given in Table 3.4, while µi
and r5 are given by (2.9) and Table 4.1.

Existence conditions Stability conditions

E000 Always exists
µ0

(
Sin

chY, S
in
H2

)
< D + a0,

µ1

(
Sin

phY4, S
in
H2

)
< D + a1, µ2

(
Sin

H2

)
< D + a2

E001 µ2

(
Sin

H2

)
> D + a2 Sin

chY < ϕ0(D) and Sin
phY4 < ϕ1(D)

E100 µ0

(
Sin

chY, S
in
H2

)
> D + a0

µ1

(
Sin

chY + Sin
phY4 − s0, S

in
H2
− ω

(
Sin

chY − s0

))
< D + a1

and Sin
H2
− ωSin

chY < M2(D + a2)− ωϕ0(D)

with s0 solution of equation ψ0(s0) = D + a0

E110

(1− ω)Sin
chY + Sin

phY4 + Sin
H2
≥ φ1(D),

Sin
chY > M0 (D + a0, s2),

Sin
chY + Sin

phY4 > M0 (D + a0, s2)

+M1 (D + a1, s2),

with s2 solution of equation

Ψ(s2) = (1− ω)Sin
chY + Sin

phY4 + Sin
H2

(1− ω)Sin
chY + Sin

phY4 + Sin
H2
< φ2(D),

∂Ψ

∂s2
(s2, D) > 0 and φ3(D) > 0

E101
Sin

chY > ϕ0(D),

Sin
H2
− ωSin

chY > M2(D + a2)− ωϕ0
Sin

chY + Sin
phY4 < ϕ0(D) + ϕ1(D)

E111

(1− ω)Sin
chY + Sin

phY4 + Sin
H2
> φ2(D),

Sin
chY > ϕ0(D),

Sin
chY + Sin

phY4 > ϕ0(D) + ϕ1(D)

c3 > 0, c5 > 0, r4 > 0, r5 > 0

E010 µ1

(
Sin

phY4, S
in
H2

)
> D + a1

Sin
phY4 + Sin

H2
< M1

(
D + a1,M3

(
Sin

chY,D + a0

))
+M3

(
Sin

chY,D + a0

)
,

Sin
phY4 + Sin

H2
< ϕ1(D) +M2(D + a2)

E011
Sin

phY4 > ϕ1(D),

Sin
phY4 + Sin

H2
> ϕ1(D) +M2(D + a2)

Sin
chY < ϕ0(D)

For the case without maintenance, the necessary and sufficient conditions of existence

and local stability can be deduced from Table 5.1 by taking ai = 0, i = 0, 1, 2, except the

stability of E111 which is given by

φ3(D) ≥ 0, or φ3(D) < 0 and φ4(D,Sin
ch, S

in
ph, S

in
H2

) > 0, (5.1)
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where φ3 and φ4 are given in Definition 2.2 and (3.2).

First, from Table 5.1, we define in Table 5.2 the surfaces Γi, i = 1, . . . , 18 which

delimited the different regions of the
(
Sin

ch, S
in
ph, S

in
H2
, D
)
-space.

Table 5.2: Definitions of the equations of the surfaces Γi, i = 1, . . . , 18. All functions are

given in Table 3.4, while µi and φ4 are given by (2.9) and (3.2), r5 is given in Table 4.1.

s∗i2 , i = 1, 2 are the solutions of Ψ(s2, D) = (1− ω)Y Sin
ch + Y4S

in
ph + Sin

H2
.

Γ1 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY (1− ω) = φ1(D)− Sin
phY4 − Sin

H2

}
Γ2 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY (1− ω) = φ2(D)− Sin
phY4 − Sin

H2

}
Γ3 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, φ4

(
D,Sin

ch, S
in
ph, S

in
H2

)
= 0
}

Γ4 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, r5

(
D,Sin

ch, S
in
ph, S

in
H2

)
= 0
}

Γ5 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = M0

(
D + a0, S

in
H2

)}
Γ6 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = ϕ0(D)
}

Γ7 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY ω = Sin
H2

+ ωϕ0(D)−M2(D + a2)
}

Γ8 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = M0

(
D + a0, s

∗1
2

)}
Γ9 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = M0

(
D + a0, s

∗2
2

)}
Γ10 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = ϕ0(D) + ϕ1(D)− Sin
phY4

}
Γ11 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, µ1

(
Sin

phY4 + Sin
chY − s0, S

in
H2
− ω

(
Sin

chY − s0

))
= D + a1

}
Γ12 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = M0

(
D + a0, s

∗1
2

)
+M1

(
D + a1, s

∗1
2

)
− Sin

phY4

}
Γ13 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

chY = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)
− Sin

phY4

}
Γ14 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, M1

(
D + a1,M3

(
Sin

chY,D + a0

))
+M3

(
Sin

chY,D + a0

)
= Sin

phY4 + Sin
H2

}
Γ15 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, D + a1 = µ1

(
Sin

phY4, S
in
H2

)}
Γ16 =

{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

phY4 + Sin
H2

= M2(D + a2) + ϕ1(D)
}

Γ17 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, Sin

phY4 = ϕ1(D)
}

Γ18 =
{(
Sin

ch, S
in
ph, S

in
H2
, D
)
, D + a2 = µ2

(
Sin

H2

)}

5.2.1 Operating diagrams with respect to
(
S in

ch, D
)
, S in

ph and S in
H2

fixed

Giving a fixed value for Sin
ph and Sin

H2
, then, the intersections of the surfaces Γi, i =

1, . . . , 14 with the
(
Sin

ch, D
)
-plane are curves as functions of Sin

ph and Sin
H2

. However, the

intersections of surfaces Γi i = 15, . . . , 18 with this plane are straight lines. Following

[64], we consider several cases to examine the effect of the operating parameters Sin
ph and
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Sin
H2

in the cases with and without maintenance on the behavior of the model. First, only

chlorophenol input is added to the system (Sin
ph = Sin

H2
= 0). Then, the hydrogen input

is added to the system and the phenol input is excluded, (Sin
ph = 0 and Sin

H2
> 0). Next,

the phenol input is added and the hydrogen input is excluded, (Sin
ph > 0 and Sin

H2
= 0).

Finally, the hydrogen and phenol inputs are added to the system, (Sin
ph > 0 and Sin

H2
> 0).

Only chlorophenol is in the input

Assume that Sin
ch > 0, Sin

ph = Sin
H2

= 0. In this case, system (2.1) has only the steady

states E000, E1
110, E2

110 and E111, see Table 5.1. The operating diagram in the plane
(
Sin

ch, D
)

is shown in Figure 5.1. Figure 5.1(a) looks very similar to Figure 5.1(b) except near of the

origin, as it is shown in the magnifications at the right of Figure 5.1(a-b). In the case with

maintenance, the value of Sin
ch, in which the positive steady state E111 is destabilized is

greater than in the case without maintenance. Note that, each region that has a different

asymptotic behavior is colored by a distinct color as in [64].

(a)

J1
J2

J3

Γ1

Γ2

Γ3

��	
Sin

ch

D

J1

J3

J4
J5

Γ1

?

Γ2

?

Γ3
�

Sin
ch

D

(b)

J1

J2

J3

J5

��	

Γ1

Γ2

Γ4

��	 Sin
ch

D

J1

J2�

J3J4

? J5

Γ1Γ2

Γ4
Sin

ch

D

Figure 5.1: Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = Sin
H2

= 0. (a) case

without maintenance and on the right a magnification for D ∈ [0, 0.078] showing the

regions J4 and J5. (b) case with maintenance and on the right a magnification for D ∈
[0, 0.1] showing the regions J4 and J5.

The existence and the stability of the steady states of (2.1) in the five regions Ji,
i = 1, . . . , 5, of the operating diagrams of Figure 5.1 are determined in Table 5.3.

Remark 5.1. Each region is denoted by its steady states, indicating which are stable

and which are unstable. That is, region Jk = (ab, cd) means that when the operating

parameters are taken in Jk, then the steady states SSa and SSb are stable, the steady

states SSc and SSd are unstable, and there is no other steady state.
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Table 5.3: Existence and stability of steady states in the regions of the operating diagram

of Figure 5.1 when Sin
ch > 0 and Sin

ph = Sin
H2

= 0.

Region E000 E1
110 E2

110 E111 Color

SS1 SS41 SS42 SS6

J1 = (1) S Red

J2 = (142, 41) S U S Teal

J3 = (16, 4142) S U U S Yellow

J4 = (1, 4142) S U U Red

J5 = (1, 41426) S U U U Sienna

We can deduce from Table 5.3 and Figure 5.1 when Sin
ch > 0 and Sin

ph = Sin
H2

= 0

that there are no new regions that emerge under the influence of the maintenance terms.

Moreover, Figure 5.1(b) corresponds to Figure 2 in [64] and highlights the existence of

the region J5 of instability of E111 (SS6), a fact that was not reported in [64]. Actually,

the behavior of the system when Sin
ph = Sin

H2
= 0 was already clarified in [51], where

the instability of E111 has studied analytically in the case without maintenance, but only

numerically in the case including maintenance. In fact, Figure 5.1(a) is the same as

Figure 4 in [51]. Both figures are obtained analytically by plotting the curves separating

the regions Jk. However, although Figure 5.1(b) shows the same behavior as Figure 9 in

[51], our figure is obtained analytically by plotting the curves separating the regions, while

Figure 9 in [51] was obtained only numerically. Thus, our theoretical study confirms the

numerical findings presented in [51], in the case including maintenance.

These results are supported by numerical experimentation and are proven as in the

following.

Construction of Figure 5.1. We illustrate the method used to plot the operating diagram

presented in Figure 5.1. We assume that the biological parameter values of model (2.1)

are provided in Table 3.3 and Sin
ph = Sin

H2
= 0. In this case, only the three steady states

E000, E110 and E111 exist (see Proposition 2.2). Using Table 5.1 and from Proposition 2.2,

the steady states E110 and E111 exist, respectively, if and only if

(1− ω)Sin
chY ≥ φ1(D) and (1− ω)Sin

chY > φ2(D). (5.2)

First, we consider the case with maintenance: E000 always exists and it is stable, since

all stability conditions in Table 5.1 hold, as

µ0

(
Sin

chY, S
in
H2

)
= µ1

(
Sin

phY4, S
in
H2

)
= µ2

(
Sin

H2

)
= 0 < D + ai, i = 0, 1, 2.

From the first condition of (5.2), E110 exists in the region bounded by the curve Γ1

defined in Table 5.2 and located at the right of this curve, see Figure 5.2. From Remark 3.1,

when it exists, E1
110 is unstable and the second stability condition of E2

110 in Table 5.1 is
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always satisfied. The third stability condition of E2
110 holds for all D > D, where D is the

unique solution of φ3(D) = 0 (see Figure 5.3). The first stability condition of E2
110 holds

for all
(
Sin

ch, D
)

in the region bounded by the curve Γ2 defined in Table 5.2 and located

at the left of this curve. Numerical computations show that the curves Γ1 and Γ2 are

(a)

Γ1

Γ2

D

J1

J2

J3

Sin
ch

D
(b)

Γ1 Γ2

D

J1

J3

J2
6

J4

?
Sin

ch

D

Figure 5.2: The curves Γ1 and Γ2 and the line D = D, in the case with maintenance.

φ3

D
D

Figure 5.3: The curve of the function φ3 in the case with maintenance.

tangent for D = D and φ2(D) < φ1(D) for all D in their definition domains. Then, E2
110 is

stable in the region located between the two curves Γ1 and Γ2 and above the line D = D

(see Figure 5.2).

From the second condition of (5.2), E111 exists in the region bounded by the curve

Γ2 and located at the right of this curve, see Figure 5.2. For the stability of E111, we

must determine the signs of the various conditions of stability in Table 5.1 in the plane(
Sin

ch, D
)
, for all D > 0 and Sin

ch > σ(D), where σ(D) is the existence condition of E111

given by σ(D) := φ2(D)/(1 − ω)Y . To this end, we show in Figure 5.4 the signs of the

functions Sin
ch 7→ c3(D,Sin

ch), Sin
ch 7→ c5(D,Sin

ch), Sin
ch 7→ r4(D,Sin

ch) and Sin
ch 7→ r5(D,Sin

ch) for

several values of D ∈ D and Sin
ch > σ(D). Figure 5.4(a) illustrates the function c3(D,Sin

ch)

is positive. Figure 5.4(b-c-d) illustrate the uniqueness of the solution Sin,ci

ch (D), i = 1, 2, 3

of equation c5(D,Sin
ch) = 0, r4(D,Sin

ch) = 0 and r5(D,Sin
ch) = 0, respectively.

Using Maple [35], we plot the curves of equations c5(D,Sin
ch) = 0, r4(D,Sin

ch) = 0 and

r5(D,Sin
ch) = 0. Then, Figure 5.5 shows that the stability conditions of E111 given by

c5(Sin
ch, D) > 0, r4(Sin

ch, D) > 0 and r5(Sin
ch, D) > 0

are satisfied for all (Sin
ch, D) in the region bounded by the curve Γ4 defined in Table 5.2

and located at the right of this curve, which corresponds to equation r5

(
Sin

ch, D
)

= 0.
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(a)
c3(Sin

ch)

Sin
ch

(b)
c5(Sin

ch)

Sin
ch

(c)
r4(Sin

ch)

Sin
ch

(d)
r5(Sin

ch)

Sin
ch

Figure 5.4: The curves of the functions c3, c5, r4 and r5, for Sin
ch > σ(D) (in red) and for

several fixed values of D, showing the solutions in green of c5(D,Sin
ch) = 0, r4(D,Sin

ch) = 0

and r5(D,Sin
ch) = 0.

Therefore, E111 is stable (resp. unstable) in the region J3 (resp. J5) bounded by the

curve Γ4 and located at the right (resp. left) of this curve (see Figure 5.6).

Sin
ch

D

r5 < 0r4 < 0

c5 < 0
HHj

c5 = 0
HHj

r4 = 0

�
��	 r5 > 0

r4 > 0

c5 > 0

Γ4(r5 = 0)

Γ2

Γ1

@@R

Figure 5.5: Various signs of conditions c5 > 0, r4 > 0 and r5 > 0.

Table 5.4 summarizes the various regions in the operating diagrams in the case with

maintenance for the different conditions according to Sin
ch and D.

Now, in the case without maintenance, we use the same method as in the case with

maintenance, we obtain that E000 is always exists and it is stable.

E110 exists in the region bounded by the curve Γ1 and located at the right of this curve,

see Figure 5.7. E1
110 is unstable, while E2

110 is stable in the region bounded by the curve
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(a)

Γ1

Γ2

Γ4
��	

J1

J2

J3

J5

��	 Sin
ch

D
(b)

Γ1 Γ2

Γ4

J1

J2
�

J3

J4

? J5
Sin

ch

D

Figure 5.6: The curves Γ1, Γ2 and Γ4 in the case with maintenance.

Table 5.4: Existence and stability of steady states of (2.1) according to the five regions Ji
of the operating diagrams of Figure 5.1(b) in the case with maintenance.

Condition 1 Condition 2 Region E000 E1
110 E2

110 E111

D > 0 (1− ω)Sin
chY < φ1(D) J1 S

D ≥ D
φ1(D) < (1− ω)Sin

chY < φ2(D) J2 S U S

φ2(D) < (1− ω)Sin
chY J3 S U U S

D < D

φ2(D) < (1− ω)Sin
chY and r5 > 0 J3 S U U S

φ1(D) < (1− ω)Sin
chY < φ2(D) J4 S U U

φ2(D) < (1− ω)Sin
chY and r5 < 0 J5 S U U U

Γ2 and located at the left of this curve.

(a)

Γ1

Γ2

D

J1

J2

J3

Sin
ch

D
(b)

Γ1 Γ2

D
J1

J3

J2
6

J4 Sin
ch

D

Figure 5.7: The curves Γ1 and Γ2 and the line D = D, in the case without maintenance.

E111 exists in the region bounded by the curve Γ2 and located at the right of this

curve, see Figure 5.7. The stability conditions of E111 are given by (5.1). Figure 5.8

shows that E111 is stable for all D ≥ D. Inversely, when D < D, we must determine

the sign of the function φ4(D,Sin
ch). To this end, using similar arguments in the case

with maintenance, we show in Figure 5.9 the signs of the function Sin
ch 7→ φ4(D,Sin

ch) for

several values of D ∈ [0, D[, illustrate the uniqueness of the solution Sin,c
ch (D) of equation

φ4(D,Sin
ch) = 0. Indeed, φ4(D,Sin

ch) < 0 for all Sin
ch ∈ [σ(D), Sin,c

ch (D)[ and φ4(D,Sin
ch) > 0

for all Sin
ch > Sin,c

ch (D). Using Maple [35], we plot the curve Γ3 of equation φ4(D,Sin
ch) = 0

defined in Table 5.2. We have φ4(D,Sin
ch) < 0 in the region bounded by the curve Γ3 and

located at the left of this curve (see Figure 5.10). Inversely, φ4(D,Sin
ch) > 0 in the region

bounded by the curve Γ3 and located at the right of this curve (see Figure 5.10).
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φ3

D
D

Figure 5.8: The curve of the function φ3 in the case without maintenance.

D

φ4(Sin
ch)

Sin
ch

Figure 5.9: The curves of the function φ4(Sin
ch) for Sin

ch > σ(D) (in red) and for several

fixed values of D, showing the solution in green of φ4(D,Sin
ch) = 0.

(a)

Γ1

Γ2

D

J1

J2

J3

Sin
ch

D
(b)

Γ1 Γ2

Γ3�

D

J1

J2
�

J3

J5

J4

?
Sin

ch

D

Figure 5.10: The curves Γ1, Γ2 and Γ3, and the line D = D in the case without mainte-

nance.

Table 5.5 summarizes the various regions in the operating diagrams in the case without

maintenance for the different conditions according to Sin
ch and D.

Table 5.5: Existence and stability of steady states of (2.1) according to the five regions Ji
of the operating diagrams of Figure 5.1(a) in the case without maintenance.

Condition 1 Condition 2 Region E000 E1
110 E2

110 E111

D > 0 (1− ω)Sin
chY < φ1(D) J1 S

D ≥ D
φ1(D) < (1− ω)Sin

chY < φ2(D) J2 S U S

φ2(D) < (1− ω)Sin
chY J3 S U U S

D < D

φ2(D) < (1− ω)Sin
chY and φ4 > 0 J3 S U U S

φ1(D) < (1− ω)Sin
chY < φ2(D) J4 S U U

φ2(D) < (1− ω)Sin
chY and φ4 < 0 J5 S U U U
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Hydrogen is in the input

We assume that Sin
ch > 0, Sin

ph = 0 and Sin
H2
> 0 and we illustrate the operating diagrams

in
(
Sin

ch, D
)
-plane in both cases with and without maintenance. In this case, system (2.1)

has further three steady states E001, E100 and E101, see Proposition 2.2.

We consider the inflowing concentrations Sin
ph = 0 and Sin

H2
= 2.67×10−5. These values

are those of Figure 3(a) in [64]. Figure 5.11(a) represents the operating diagram in the

plane
(
Sin

ch, D
)
, in the case without maintenance. The three magnifications shown in Fig-

ure 5.11(b-c-d) put in evidence the regions J8, J10 and Ji, i = 12, . . . , 21. Figure 5.12(a)

represents the operating diagram in
(
Sin

ch, D
)
-plane, in the case with maintenance. The

magnifications presented in Figure 5.12(b-c-d) show the regions J1 and Ji, i = 6, . . . , 13

are similar to those in Figure 5.11. The addition of hydrogen input substrate leads to the

occurrence of sixteen new regions besides the region J1 which is identical to that of the

operating diagram in Figure 5.1. Figures 5.11 and 5.12 are constructed using the same

method as Figure 5.1, which consists in plotting the curves separating the regions.

(a)

J1

J6

J7

J9
J10

J11

Γ18

Γ5

Γ6,Γ7
Γ1
Γ2

Sin
ch

D
(b)

J6 J7 J8� J9
J10
6

J12

?J14

?

J11

J16

AAU
J13

J15AAK

Γ5 Γ6Γ7 Γ1 Γ2

Γ11

Γ3

Sin
ch

D

(c)

J6 J7
J9
AAK

J13

J12

J19
-

J11

AAU
J16J15

J14

J20

AAKJ17

J8
-

J18

AAU

Γ5 Γ6Γ7

Γ1

?

Γ2

Γ11

Γ12

?
Γ13

?
Γ10
-

Γ3

Sin
ch

D

(d)

J13

J12

J14

J15

J16

J17

J18

J19

J20

J21
AAK

Γ2Γ6 Γ7

Γ11

Γ3Γ10
-

Sin
ch

D

Figure 5.11: (a) Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = 0, Sin
H2

= 2.67×10−5

and kdec,i = 0. (b) Magnification for D ∈ [0, 0.13] showing the regions Ji, i = 12, . . . , 16.

(c) Magnification for D ∈ [0, 0.013] showing the regions J8 and Ji, i = 17, . . . , 20. (d)

Magnification for D ∈ [0, 0.002] showing the region J21.

The existence and the stability of the steady states of (2.1) in the seventeen regions J1

and Ji, i = 6, . . . , 21, of the operating diagrams in Figures 5.11 and 5.12, are determined

in Table 5.6.
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(a)
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D
(b)

J6

J7
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Γ6 Γ7
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Γ4
Sin

ch

D

(c)

J6 J7

J9
�J8 J10

6

J12

? J13

J11

Γ5 Γ6Γ7
Γ1
Γ2

Γ4

Sin
ch

D

(d)

J6 J7 J8-

J9

Γ5 Γ6Γ7

Sin
ch

D

Figure 5.12: (a) Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = 0 and Sin
H2

=

2.67 × 10−5 with maintenance. (b) Magnification for D ∈ [0, 0.6]. (c) Magnification for

D ∈ [0, 0.12] showing the regions J12 and J13. (d) Magnification for D ∈ [0, 0.03] showing

the region J8.

The Hopf bifurcation occurs at the boundary between regions J11 and J13, see Figures

5.11 and 5.12, and in J13 close to the boundary with J11 a periodic orbit in E111 emerges,

as illustrated in Figure 3.9 and Figure 4.17 in the previous chapters. We see also that the

regions Ji, i = 14, . . . , 21 are empty in the case with maintenance. Thus, the maintenance

has an effect on the disappearance of the regions. Moreover, in the case without mainte-

nance and for small values of the dilution rate D, there cannot be any destabilization of

E111. However, the coexistence of the three species around a limit cycle can occur, in the

case with maintenance. On the other hand, our study of the operating diagrams in both

cases with and without maintenance show the emergence of new regions which are not

reported in Figure 3(a), namely the stability region of E101 (SS5), the stability region of

E100 (SS3) with the instability region of E111 (SS6), and the region J21 when all the steady

states exist and are unstable, except E1
110 (SS4) which does not exist. For the positive

initial conditions in a neighborhood of E111 all these steady states converge to the stable

limit cycle. These regions are very thin and in a biological point of view, such regions

would likely not be attained.

Construction of Figure 5.11. We illustrate the method used to plot the operating diagram

presented in Figure 5.11 in the case without maintenance. We assume that Sin
ph = 0 and

Sin
H2

= 2.67×10−5. E010 and E011 do not exist when Sin
ph = 0. Using Table 3.8, we see that:
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Table 5.6: Existence and stability of steady states in the regions of the operating diagrams

of Figures 5.11 and 5.12.

Region E000 E001 E100 E1
110 E2

110 E101 E111 Color

SS1 SS2 SS3 SS41 SS42 SS5 SS6

J1 = (1) S Red

J6 = (2, 1) U S White

J7 = (2, 13) U S U White

J8 = (5, 123) U U U S Blueviolet

J9 = (3, 12) U U S Dimgray

J10 = (342, 1241) U U S U S Green

J11 = (36, 124142) U U S U U S Pink

J12 = (3, 124142) U U S U U Dimgray

J13 = (3, 1241426) U U S U U U Magenta

J14 = (2, 134142) U S U U U White

J15 = (2, 1342) U S U U White

J16 = (6, 12342) U U U U S Blue

J17 = (6, 123425) U U U U U S Blue

J18 = (5, 12342) U U U U S Blueviolet

J19 = (5, 1234142) U U U U U S Blueviolet

J20 = (., 123426) U U U U U Brown

J21 = (., 1234256) U U U U U U Silver

E000 always exists. From Table 3.8, the first stability condition of E000 holds in the

region bounded by the line Γ18 and located above this line. The second stability condition

of E000 holds in the region bounded by the curve Γ5 and located at the left of this curve.

Then, E000 is stable in the region located above the line Γ18, see Figure 5.13.

Γ5

Γ18

D

Sin
ch

Figure 5.13: The line Γ18 and the curve Γ5.

From Table 3.8, E001 exists in the region bounded by the line Γ18 and located below

this line, and it is stable in the region bounded by the curve Γ6 and located at the left of

this curve, see Figure 5.14.

E100 exists in the region bounded by the curve Γ5 and located below this curve (see

Figure 5.13). From Table 3.8, the first (resp. second) stability condition of E100 holds for
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Γ6

Γ18

D

Sin
ch

Figure 5.14: The line Γ18 and the curve Γ6.

all
(
Sin

ch, D
)

in the region bounded by the curve Γ11 (resp. Γ7) and located above (resp.

below) this curve. Then, E100 is stable in the region located between the two curves Γ7

and Γ11, see Figure 5.15.
(a)

Γ5

Γ7

Γ11

��	 Sin
ch

D
(b)

Γ5 Γ7

Γ11

Sin
ch

D

Figure 5.15: The curves Γ5, Γ7 and Γ11.

From Table 3.8, the first existence condition of E1
110 and E2

110 holds in the region

bounded by the curve Γ1 and located at the right of this curve, see Figure 5.16. The second

existence condition of E1
110 (resp. E2

110) holds for all
(
Sin

ch, D
)

in the region bounded by the

curve Γ12 (resp. Γ13) and located at the left (resp. right) of this curve, see Figure 5.16.

Then, E1
110 exists in the region located between the curves Γ1 and Γ12, while E1

110 exists in

the region located at the right of the curves Γ1 and Γ13, see Figure 5.16. From Remark 3.1,

Γ1

Γ12

Γ13

D

Sin
ch

Figure 5.16: The curves Γ1, Γ12 and Γ13.

when it exists, E1
110 is unstable and the second stability condition of E2

110 in Table 3.8 is

always satisfied. The third stability condition of E2
110 holds for all D > D (see Figure 5.3).

The first stability condition of E2
110 holds for all

(
Sin

ch, D
)

in the region bounded by the

curve Γ2 and located at the left of this curve. Then, E2
110 is stable in the region located

between the two curves Γ1 and Γ2 and above the line D = D (see Figure 5.17).

From Table 3.8, the first (resp. second) existence condition of E101 holds for all
(
Sin

ch, D
)

in the region bounded by the curve Γ6 (resp. Γ7) and located at the right (resp. left) of
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(a)

Γ2

Γ2

D

Sin
ch

D
(b)

Γ1 Γ2

Γ12

?

D

? Sin
ch

D

Figure 5.17: The curves Γ1, Γ2 and Γ12, and the line D = D.

this curve. Then E101 exists in the region located between the two curves Γ6 and Γ7, and

it is stable in the region bounded by the curve Γ10 and located at the right of this curve

(see Figure 5.18).
(a)

Γ6,Γ7

Γ10

Sin
ch

D
(b)

Γ6 Γ7 Γ10

Sin
ch

D

Figure 5.18: The curves Γ6, Γ7 and Γ10.

From Table 3.8, the first and the second existence conditions of E111 hold for all
(
Sin

ch, D
)

in the region bounded by the curves Γ2 and Γ10 and located at the right of these curves, see

Figure 5.20. From Table 3.8 and Figure 5.3(a), E111 is stable for allD ≥ D. Inversely, when

D < D, using similar arguments, we determine the sign of the function φ4(D,Sin
ch). To this

end, we show in Figure 5.19 the signs of the function Sin
ch 7→ φ4(D,Sin

ch) for several values

of D ∈ [0, D[, illustrate the uniqueness of the solution Sin,c
ch (D) of equation φ4(D,Sin

ch) = 0.

Then, we have φ4(D,Sin
ch) < 0 in the region bounded by the curve Γ3 and located at the

left of this curve (see Figure 5.20). Inversely, φ4(D,Sin
ch) > 0 in the region bounded by the

curve Γ3 and located at the right of this curve (see Figure 5.20).

D

φ4(Sin
ch)

Sin
ch

Figure 5.19: The curves of the function φ4, for Sin
ch > σ(D) (in red) and for several fixed

values of D, showing the solution in green of φ4(D,Sin
ch) = 0.

Table 5.7 defines the various regions in the operating diagrams in the case without

maintenance according to Sin
ch and D.
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(a)

Γ10

Γ2

D

Sin
ch

D
(b)

Γ10Γ2 Γ3

Sin
ch

D

Figure 5.20: The curves Γ2, Γ3 and Γ10, and the line D = D.

Table 5.7: Definitions of the regions corresponding to the operating diagrams of Figure 5.11

when Sin
ph = 0 in the case without maintenance.

Region Definition

J1 µ2

(
Sin

ch

)
< D and for all Sin

ch ≥ 0

J6 µ2

(
Sin

ch

)
< D and Sin

chY < M0

(
D,Sin

H2

)
J7

M0

(
D,Sin

H2

)
< Sin

chY < ϕ0(D), Sin
ch(1− ω)Y < φ1(D)− Sin

H2
,

Sin
chY < M0 (D, s∗22 ) +M1 (D, s∗22 )

J8 ϕ0(D) < Sin
chY <

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω and Sin

chY (1− ω) < φ1(D)− Sin
H2

J9

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω < Sin

chY <
(
φ1(D)− Sin

H2

)
/(1− ω)

J10 D < D and φ1(D)− Sin
H2
≤ Sin

chY (1− ω) < φ2(D)− Sin
H2

J11
φ2(D)− Sin

H2
< Sin

chY (1− ω), µ1

(
Sin

chY − s0, S
in
H2
− ω

(
Sin

chY − s0

))
< D

and φ4

(
D,Sin

ch, S
in
H2

)
> 0,

J12
D < D, φ1(D)− Sin

H2
≤ Sin

chY (1− ω) < φ2(D)− Sin
H2

and Sin
H2

+ ωϕ0(D)−M2(D) < Sin
chωY

J13
D < D, φ2(D)− Sin

H2
< Sin

chY (1− ω), µ1

(
Sin

chY − s0, S
in
H2
− ω

(
Sin

chY − s0

))
< D,

and φ4

(
D,Sin

ch, S
in
H2

)
< 0

J14

(
φ1(D)− Sin

H2

)
/(1− ω) ≤ Sin

chY < ϕ0(D) and M0

(
D, s∗22

)
+M1

(
D, s∗22

)
< Sin

chY

J15 M0

(
D, s∗22

)
+M1

(
D, s∗22

)
< Sin

chY < M0

(
D, s∗12

)
+M1

(
D, s∗12

)
, Sin

chY < ϕ0(D)

J16

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω < Sin

chY < M0

(
D, s∗12

)
+M1

(
D, s∗12

)
and φ4

(
D,Sin

ch, S
in
H2

)
> 0

J17 ϕ0(D) + ϕ1(D) < Sin
chY <

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω and φ4

(
D,Sin

ch, S
in
H2

)
> 0

J18 ϕ0(D) < Sin
chY < ϕ0(D) + ϕ1(D) and Sin

chY < M0

(
D, s∗12

)
+M1

(
D, s∗12

)
J19

ϕ0(D) < Sin
chY <

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω, φ1(D)− Sin

H2
< Sin

chY (1− ω)

and M0

(
D, s∗12

)
+M1

(
D, s∗12

)
< Sin

chY

J20

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω < Sin

chY < M0

(
D, s∗12

)
+M1

(
D, s∗12

)
,

φ4

(
D,Sin

ch, S
in
H2

)
< 0

J21 ϕ0(D) + ϕ1(D) < Sin
chY <

(
Sin

H2
+ ωϕ0(D)−M2(D)

)
/ω and φ4

(
D,Sin

ch, S
in
H2

)
< 0
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Phenol is in the input

Assume that Sin
ch > 0, Sin

ph > 0 and Sin
H2

= 0, we construct the operating diagrams in(
Sin

ch, D
)
-plane in both cases with and without maintenance terms. In this case, system

(2.1) has further two steady states E010 and E011. However, the steady states E001, E100

and E101 do not exist since Sin
H2

= 0, see Proposition 2.2.

We consider the input concentrations Sin
ph = 10−2 and Sin

H2
= 0. These values are

those of Figure 5(a) in [64]. Figure 5.21(a) represents the operating diagram in the plane(
Sin

ch, D
)
, in the case without maintenance. The magnifications shown in Figure 5.21(b-c)

put in evidence the regions Ji, i = 22, . . . , 30. Figure 5.22(a) represents the operating

diagram in the case with maintenance. The magnification presented in Figure 5.22(b)

shows that the regions Ji j = 1, . . . , 5 and Ji, i = 22, . . . , 30 are similar to those in

Figure 5.21. The addition of phenol input substrate leads to the emergence of twelve new

regions Ji, i = 22, . . . , 32, besides the regions Jj, j = 1, . . . , 5 which are identical to those

of the operating diagram in Figure 5.1. Figures 5.21 and 5.22 are constructed using the

same method as Figure 5.11, which consists in plotting the curves separating the regions.

(a)

J1

J2

J3

J24

Γ1
Γ2

Γ15

Sin
ch

D
(b)

J1

J5�

J3

J24

J22

���

J23
���

J4

?J28

?

J27

?

J25

J26
-

Γ15

Γ16

Γ8 = Γ14

���
Γ6Γ9

Γ1
Γ2

Γ3
�

Sin
ch

D

(c)

J1 J4
J5

J3

J24

J23

J22J28J27

J26

J25

J29

6 J30
A
AK

Γ1 Γ2 Γ3

Γ15

Γ16

Γ6

Γ8 = Γ14

Γ9

Sin
ch

D

Figure 5.21: Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = 10−2, Sin
H2

= 0 and

kdec,i = 0. (b) Magnification for D ∈ [0, 0.078] showing the regions Ji, for i = 22, . . . , 28.

(c) Magnification for D ∈ [0.02, 0.04] showing the regions J29 and J30.

The existence and the stability of the steady states of (2.1) in the sixteen regions Ji,
i = 1, . . . , 5 and Jj, j = 22, . . . , 32 of the operating diagrams of Figures 5.21 and 5.22 are

summarized in Table 5.8.

The positive steady state E111 loss its stability via a Hopf bifurcation by crossing the

boundary from the region J3 to J5, see Table 5.8 and Figures 5.21 and 5.22, and in J5
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(a)

J1

J2

J3

J24

AAU

Γ1
Γ2

Γ15

Sin
ch

D
(b)

J1

J4
J5

J3

J32 J31
���

J22

���

J23

?

J24���

J30

J28

A
AU

J26
J25

J27

J29

A
AU

Γ1

?Γ2

?

Γ4

Γ15

Γ16
Γ8 = Γ14

Γ6Γ9

Sin
ch

D

Figure 5.22: Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = 10−2, Sin
H2

= 0 and

kdec,i > 0. (b) Magnification for D ∈ [0, 0.058] showing the regions Ji, for i = 22, . . . , 32.

Table 5.8: Existence and stability of steady states in the regions of the operating diagrams

of Figures 5.21 and 5.22.

Region E000 E1
110 E2

110 E111 E010 E011 Color

SS1 SS41 SS42 SS6 SS7 SS8

J1 = (1) S Red

J2 = (142, 41) S U S Teal

J3 = (16, 4142) S U U S Yellow

J4 = (1, 4142) S U U Red

J5 = (1, 41426) S U U U Sienna

J22 = (67, 14142) U U U S S Chocolate

J23 = (6, 1427) U U S U Blue

J24 = (6, 14278) U U S U U Blue

J25 = (8, 1427) U U U S Orange

J26 = (8, 17) U U S Orange

J27 = (7, 1) U S Olive

J28 = (7, 14142) U U U S Olive

J29 = (8, 141427) U U U U S Orange

J30 = (7, 141426) U U U U S Olive

J31 = (., 14267) U U U U Cyan

J32 = (., 142678) U U U U U RosyBrown

close to the boundary with J3 a limit cycle in E111 occurs. We see also that there are new

regions J31 and J32 that appear under the influence of the maintenance terms. Notice

that, in the case with maintenance and for D fixed, the value of Sin
ch which E111 loss its

stability is larger than in the case without maintenance. Moreover, in the case without

maintenance and for small values of D, there cannot be any destabilisation of E111, while

the coexistence around a limit cycle can appears in the case with maintenance. On the

other hand, our theoretical study of the operating diagrams in both cases with and without

maintenance show that there are new behaviors, namely the existence of bistability region
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J22 of E111 and E010 (SS7), which occurs in a small area between J3 and J23, the instability

regions J5,J30,J31 of E111, and the region J32 when all the steady states exist and are

unstable, except E1
110 (SS41) which does not exist. For the positive initial conditions in

a neighborhood of E111 all these steady states converge to the stable limit cycle. These

regions are not reported in the case including maintenance in Figure 5(a) of [64].

Phenol and hydrogen are in the input

To better understand the effect of both control parameters the phenol and the hydrogen

input concentrations on system (2.1), we assume that Sin
ch > 0, Sin

ph > 0 and Sin
H2
> 0 and

we perform the operating diagram in both cases with and without maintenance terms.

(a)

J1

J6

J7 AAU

J9
J8

�
��

J33

AAU
J38

?
J16
���J34J36

Γ18

Γ5

Γ2

Γ6, Γ7

Γ17

Sin
ch

D
(b)

J6

J7

J9

J8 J10�
��J33 J16

J34J36

J39
AAK

J38

@@R

Γ5Γ6

?

Γ7

�
�� Γ1

Γ11 = Γ12Γ13 Γ2
Γ17

Sin
ch

D

(c)

J6 J7 J8 J16

J34J36

J39

J17
AAK

J35

J37J38

Γ5 Γ6 Γ7
Γ13
Γ2
Γ17

Γ10

Sin
ch

D
(d)

J34J35

J36

J37
�

J40J41J42�

Γ6 Γ13 Γ7

Γ15

Sin
ch

D

(e)

I37 I36

I35

6

I42 I41

I44

6
Γ15

Γ13

Γ6Γ5

Γ9�

Sin
ch

D
(f)

I37I38

I43

I42

I44

6 Γ15

Γ13

Γ5

Γ9

Sin
ch

D

Figure 5.23: Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = 1, Sin
H2

= 2.67 × 10−2

and kdec,i = 0. (b) Magnification for D ∈ [0, 0.6] showing the regions J10 and J39. (c)

Magnification for D ∈ [0, 0.37] showing the regions J17, J35 and J37. (d) Magnification for

D ∈ [0, 0.002] showing the regions J40, J41 and J42. (e) Magnification for D ∈ [0, 0.00012]

showing the region J44. (f) Magnification for Sin
ch ∈ [0, 0.00005] showing the region J43.
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We consider the input concentrations Sin
ph = 1 and Sin

H2
= 2.67×10−2, corresponding to

Figure 5(d) in [64]. Figure 5.23(a) represents the operating diagram in
(
Sin

ch, D
)
-plane, in

the case without maintenance. The magnifications show in Figure 5.23(b-c-d-e-f) put in

evidence the regions J16, J17, Ji, i = 33, . . . , 44. Figure 5.24(a) represents the operating

diagram in the case with maintenance. The magnifications presented in Figure 5.24(b-

c) show that the regions J1 and Ji, i = 6, . . . , 13 are defined as those in Figure 5.23.

We see also that the maintenance has an effect on the disappearance of regions Ji, i =

39, . . . , 44. Moreover, the two input substrates hydrogen and phenol are added to the

system contribute to the emergence of twelve new regions Ji, i = 33, . . . , 44 beside the

regions J1, J16, J17, Ji, i = 6, . . . , 10 which are identical to that of the operating diagram

in Figure 5.23. Since the concentrations of Sin
ph and Sin

H2
are large enough comparing with

the case of Figure 5.22 where Sin
ph = 10−2 and Sin

H2
= 0, all asymptotic behaviors were

detected in Figure 5(d) of [64]. Figures 5.23 and 5.24 are constructed using the same

method as Figure 5.11, which consists in plotting the curves separating the regions.

(a)

J1
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J7

J9

AAU

J8

�
��

J33

AAU
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?
J16���J34J36

Γ18

Γ5

Γ2

Γ6,Γ7

Γ17
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D
(b)

J6

J7

J9

J8
J10
���

J33
J16

J34J36

J39
A
AK

J38

@@R

Γ5Γ6

?

Γ7

�
�� Γ1

Γ11 = Γ12

Γ2
Γ17

Γ13

Sin
ch

D

(c)

J6 J7 J8 J9

J16

J34

J33

J35J36

J37

J38

J39

J17
AAK

Γ5 Γ6

Γ7

Γ17

Γ10

Γ11,Γ13

Γ2

Sin
ch

D

Figure 5.24: Operating diagram in the plane
(
Sin

ch, D
)
, when Sin

ph = 1, Sin
H2

= 2.67 × 10−2

and kdec,i > 0. (b) Magnification for D ∈ [0, 0.55] showing the regions J10 and J39. (c)

Magnification for D ∈ [0.2, 0.4] showing the regions J17, J35 and J37.

The existence and the stability of the steady states of (2.1) in the twenty regions J1,

J16, J17, Ji i = 6, . . . , 10 and Ji, i = 33, . . . , 42, of the operating diagrams of Figures 5.23

and 5.24 are summarized in Table 5.9.
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Table 5.9: Existence and local stability of steady states in the regions of the operating

diagrams of Figures 5.23 and 5.24.

Region E000 E001 E100 E1
110 E2

110 E101 E111 E010 E011 Color

SS1 SS2 SS3 SS41 SS42 SS5 SS6 SS7 SS8

J1 = (1) S Red

J6 = (2, 1) U S White

J7 = (2, 13) U S U White

J8 = (5, 123) U U U S BlueViolete

J9 = (3, 12) U U S DimGray

J10 = (342, 1241) U U S U S Green

J16 = (6, 12342) U U U U S Blue

J17 = (6, 123425) U U U U U S Blue

J33 = (42, 123) U U U S Purple

J34 = (6, 123428) U U U U S U Blue

J35 = (6, 1234258) U U U U U S U Blue

J36 = (6, 12358) U U U U S U Blue

J37 = (8, 123) U U U S Orange

J38 = (8, 12) U U S Orange

J39 = (6, 1235) U U U U S Blue

J40 = (6, 1234278) U U U U S U U Blue

J41 = (6, 12342578) U U U U U S U U Blue

J42 = (8, 123427) U U U U U S Orange

J43 = (8, 12427) U U U S Orange

J44 = (8, 12342) U U U U S Orange

5.2.2 Operating diagrams with respect to
(
S in

H2
, S in

ph

)
, S in

ch and D

fixed

Now, let D and Sin
ch be fixed, then, the intersections of the surfaces Γi for i =

3, 4, 8, 9, 11, 12, 13, 15 with the
(
Sin

H2
, Sin

ph

)
-plane are curves as functions of Sin

ch and D. How-

ever, the intersections of the surfaces Γj, j = 1, 2, 5, 7, 10, 14, 16, 17, 18 with this plane are

straight lines.

We consider the input concentrations Sin
ch = 0.5 and D = 0.25. These values are those

of Figure 6(a) in [64]. The operating diagram in the plane
(
Sin

H2
, Sin

ph

)
is shwon in Figures

5.25 and 5.26 for the values of the chlorophenol input concentration and the dilution rate

in both cases without and with considering maintenance, respectively. The magnification

shown in Figure 5.25(b) put in evidence the regions J2, J3, J40, Ji, i = 22, . . . , 24 and

Jj, j = 45, . . . , 49. The magnification presented in Figure 5.26(b) shows the regions J1,

J2, J3, J40, Ji, i = 22, . . . , 24 and Jj, j = 45, . . . , 51. We see from the operating diagram
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provided in Figure 5.26 that there are new regions J1, J9, J33, J50 and J51 that appear

under the influence of the maintenance terms. Figures 5.25 and 5.26 are constructed using

the same method as Figure 5.11, which consists in plotting the curves separating the

regions.

(a)

J10

J11

J16

J17 J39

J36J35J34

Γ2

Γ11 = Γ12

Γ13Γ7

Γ17

Sin
H2

Sin
ph

(b)

J10

J11

J16

J34
J40J45J24

J23

J22

J3

J2 J49

J48

J47

J46

Γ2

Γ11 = Γ12

Γ15

Γ17

Γ18Γ5

Γ14

Sin
H2

Sin
ph

Figure 5.25: (a) Operating diagram in the plane
(
Sin

H2
, Sin

ph

)
, when D = 0.25, Sin

ch = 0.5

and kdec,i = 0. (b) Magnification of (a) for Sin
H2
∈ [0, 10−5] showing the regions J2, J3,

J40, Ji, i = 22, . . . , 24 and Jj, j = 45, . . . , 49.

(a)

J9

J10

J11

��	 J16

J17 J39

J36J35J34

J33
Γ1

Γ2

Γ13Γ7

Γ17

Γ11 = Γ12

Sin
H2

Sin
ph

(b)

J1

J2

J9J51

J49

J48

J47

J46

J45J24

J23

J22J50 AAKJ3 J10

J11

J16

J34
J40

Γ1

Γ11 = Γ12
Γ2

Γ15

Γ17

Γ18Γ5

Γ14

Sin
H2

Sin
ph

Figure 5.26: (a) Operating diagram in the plane
(
Sin

H2
, Sin

ph

)
, when D = 0.25, Sin

ch = 0.5

and kdec,i > 0. (b) Magnification of (a) for Sin
H2
∈ [0, 10−5] showing the regions J1, J2, J3,

J40, Ji, i = 22, . . . , 24 and Jj, j = 45, . . . , 51.

The existence and the stability of the steady states of (2.1) in the twenty-four regions

Ji of the operating diagrams of Figures 5.25 and 5.26 are summarized in Table 5.10.

We can deduce from Table 5.10 and the operating diagram shown in Figures 5.25 and

5.26 plotting for varying concentrations of hydrogen and phenol addition, that there are

new regions that occur under the influence of the maintenance terms. Notice that the

stability regions of the steady states E000, E100 and E2
110, and the bistability region of

E2
110 and E010 do not exist in the case without maintenance. Moreover, the bistability

region J50 of E2
110 and E010 (SS7) occurs between J3 and J23 which is very thin and is not

reported in the case including maintenance in Figure 6(a) of [64].
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Table 5.10: Existence and local stability of steady states in the regions of the operating

diagrams of Figures 5.25 and 5.26.

Region E000 E001 E100 E1
110 E2

110 E101 E111 E010 E011 Color

SS1 SS2 SS3 SS41 SS42 SS5 SS6 SS7 SS8

J1 = (1) S Red

J2 = (142, 41) S U S Teal

J3 = (16, 4142) S U U S Yellow

J9 = (3, 12) U U S DimGray

J10 = (342, 1241) U U S U S Green

J11 = (36, 124142) U U S U U S Pink

J16 = (6, 12342) U U U U S Blue

J17 = (6, 123425) U U U U U S Blue

J22 = (67, 14142) U U U S S Chocolate

J23 = (6, 1427) U U S U Blue

J24 = (6, 14278) U U S U U Blue

J33 = (42, 123) U U U S Purple

J34 = (6, 123428) U U U U S U Blue

J35 = (6, 1234258) U U U U U S U Blue

J36 = (6, 12358) U U U U S U Blue

J39 = (6, 1235) U U U U S Blue

J40 = (6, 1234278) U U U U S U U Blue

J45 = (6, 134278) U U U S U U Blue

J46 = (6, 13427) U U U S U Blue

J47 = (6, 1342) U U U S Blue

J48 = (36, 14142) U S U U S Pink

J49 = (342, 141) U S U S Green

J50 = (427, 141) U U S S Navy

J51 = (3, 1) U S DimGray

5.3 Bifurcations

In this section, we determines the nature of bifurcations of system (2.1) that might

happen by crossing the various regions of the operating parameters space-
(
D,Sin

ch, S
in
ph, S

in
H2

)
through the surfaces of Γi where the steady states coalesce and can change their stability.

Proposition 5.1. The bifurcations of the steady states of (2.1) arising on the boundaries

of regions Ji for i = 1, . . . , 51, according to the operating parameters Sin
ch, Sin

ph, S
in
H2

and D,

are listed in Table 5.11.
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Table 5.11: The bifurcations according to subsets of surfaces Γi. A saddle-node bifurcation

is indicated by SNB, a transcritical bifurcation by TB and a Hopf bifurcation by HB.

Γi Conditions Transition Bifurcation

Γ1 (1− ω)Sin
chY ≥ φ1(D)− Sin

phY4 − Sin
H2

J1 to J2

SNB: E1
110 = E2

110

J1 to J4

J7 to J14

J8 to J19

J9 to J10

J9 to J12

J26 to J29

J27 to J28

J51 to J49

Γ2 (1− ω)Sin
chY > φ2(D)− Sin

phY4 − Sin
H2

J2 to J3

TB: E2
110=E111

J4 to J5

J10 to J11

J12 to J13

J33 to J16

J28 to J30

J49 to J48

J50 to J22

Γ3 φ4(D,Sin
ch, S

in
ph, S

in
H2

) < 0

J3 to J5

HB of E111

J11 to J13

J16 to J20

J17 to J21

J22 to J30

Γ4 r5(D,Sin
ch, S

in
ph, S

in
H2

) < 0

J3 to J5

HB of E111

J11 to J13

J22 to J30

J23 to J31

J24 to J32

Γ5 Sin
chY > M0(D + a0, S

in
H2

)

J1 to J51

TB: E000=E100

J2 to J49

J3 to J48

J6 to J7

J23 to J46

J24 to J45

J37 to J38

J43 to J42

Γ6 Sin
chY > ϕ0(D)

J7 to J8 TB: E001=E101

J14 to J19 TB: E001=E101

J15 to J18 TB: E001=E101

J25 to J24 TB: E111=E011

J25 to J32 TB: E111=E011

J37 to J36 TB: E111=E011

J42 to J41 TB: E101=E111
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J44 to J35 TB: E101=E111

Γ7 Sin
chY ω > Sin

H2
−M2(D + a2) + ωϕ0(D)

J8 to J9

TB: E100=E101

J17 to J16

J19 to J12

J21 to J20

J35 to J34

J41 to J40

Γ8 = Γ14
Sin
chY > M0(D + a0, s

∗1
2 ) or M1(D + a1,M3(Sin

chY,D + a0) J22 to J23
TB: E1

110=E010
+M3(Sin

chY,D + a0) > Sin
phY4 + Sin

H2
J30 to J31

Γ10 Sin
chY > ϕ0(D) + ϕ1(D)− Sin

phY4

J8 to J39

TB: E101=E111J18 to J17

J18 to J21

Γ11 = Γ12

µ1(Sin
phY4 + Sin

chY − s0, Sin
H2
− ω(Sin

chY − s0)) > D + a1
J10 to J33

TB: E100=E1
110

J11 to J16

or J13 to J20

Sin
chY > M0(D + a0, s

∗1
2 ) +M1(D + a1, s

∗1
2 )− Sin

phY4
J22 to J23

J48 to J47

Γ13 Sin
chY > M0(D + a0, s

∗2
2 ) +M1(D + a1, s

∗2
2 )− Sin

phY4 J9 to J33 TB: E100=E2
110

Γ15 µ1(Sin
phY4, S

in
H2

) > D + a1

J1 to J27

TB: E000=E010

J2 to J50

J3 to J22

J4 to J28

J5 to J30

J34 to J40

J35 to J41

J38 to J43

J44 to J42

J47 to J46

Γ16 ϕ1(D) +M2(D + a2) < Sin
phY4 + Sin

H2

J23 to J24

TB: E010=E011
J27 to J26

J28 to J29

J31 to J32

Γ17 Sin
phY4 > ϕ1(D)

J6 to J38

TB: E010=E011

J7 to J37

J16 to J34

J17 to J35

J23 to J24

J39 to J36

J46 to J45

Γ18 µ2(Sin
H2

) > D + a2

J6 to J1

TB: E010=E011

J9 to J51

J10 to J49

J11 to J48

J16 to J47

J40 to J45

Proof. From Table 5.2, the surface Γ1 is defined by Sin
chY (1− ω) = φ1(D)− Sin

phY4 − Sin
H2

.
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Using Tables 2.1 and 5.1, we can see that E1
110 and E2

110 coalesce and are non hyperbolic

steady states on the surface Γ1. Using Table 5.1, if Sin
chY (1− ω) ≥ φ1(D)− Sin

phY4 − Sin
H2

,

we have a transition from J1 to J2 where E1
110 and E2

110 emerge unstable and stable,

respectively, in the positive octant R4
+, which correspond of the saddle node bifurcation.

From Table 5.2, the surface Γ2 is defined by Sin
chY (1−ω) = φ2(D)−Sin

phY4−Sin
H2

. Using

Tables 2.1 and 5.1, we can see that E2
110 and E111 coalesce and are non hyperbolic steady

states on the surface Γ2. Using Table 5.1, if Sin
chY (1− ω) > φ2(D)− Sin

phY4− Sin
H2

, we have

a transition from J2 to J3 where E2
110 becomes unstable and E111 appears stable, which

correspond of the transcritical bifurcation.

From Table 5.2, the surface Γ3 is defined by φ4(D,Sin
ch, S

in
ph, S

in
H2

) = 0. Using Table 5.1,

if φ4(D,Sin
ch, S

in
ph, S

in
H2

) > 0, we have a transition from J3 to J5 where the positive steady

state E111 loss its stability via Hopf bifurcation on the surface Γ3.

All other cases are left to the reader since they can be treated similarly.

Remark 5.2. We have studied the types of bifurcations of the various transitions by surfaces

but not by the intersections of curves and lines which are generically points and represent

special cases which are not possible from the biological point of view. However, their

studies of bifurcations can be studied in the same way.

5.4 Conclusion

In this chapter, we gave an analytical study of the operating diagram of model (2.1).

Our study incorporated the effect of the maintenance as well as the effect of the three input

substrate concentrations on the process behavior. We compare with the results in [64],

obtained by numerical methods. Our main aim was to present the mathematical analysis of

the operating diagrams of the model. Using the characterization of existence and stability

conditions of the steady states, we have presented the operating diagram of system (2.1)

in order to analytically determine the dynamical behavior of the model according to the

control parameters Sin
ch, Sin

ph, S
in
H2

and D. In the operating diagrams shown in Figure 5.1

obtained for Sin
ph = Sin

H2
= 0 in the cases with and without maintenance, we have found

the same regions in both cases, with variations only in their shape and extend, and we

have confirmed the numerical results of [51] in the case with maintenance. Moreover, we

have discovered interesting regions, which are unreported by the numerical study of the

operating diagram in Figure 2 in [64]. In the operating diagrams shown in Figures 5.11

and 5.12 obtained for Sin
ph = 0, in Figures 5.21 and 5.22 obtained for Sin

H2
= 0 and in Figures

5.25 and 5.26 obtained for D = 0.25 and Sin
ch = 0.5, we have proven that there are regions

appear and disappear under the influence of the maintenance terms, and the emergence of

new important regions, which previously undetectable by the numerical analysis in [64].

For comparison, we have detected a stability region of the steady state E101 (SS5), the

existence of the bistability regions between the steady states E111 (SS6) and E010 (SS7),
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and between E2
110 (SS4) and E010 (SS7), where are not reported in Figure 3(a), Figure

5(a) and Figure 6(a), respectively, of [64]. More interestingly, we have also discovered

instability regions of the positive steady state E111 (SS6) in the operating diagrams shown

in Figures 5.11 to 5.22, which are unreported in [64] in the case when maintenance is

included in the system.

Our results give a better understanding of the operating diagrams performed by the

numerical method in [64] and allow us to answer the delicate question where the mainte-

nance does not destabilize the steady states but modify the boundary between the region

of stability and the region of instability, and has an effect on the appearance and the

disappearance of some regions.

The results of this chapter are the subject of a submitted publication in [42].
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General conclusion

In this thesis, we have investigated the dynamics of three interacting microbial species

describing the anaerobic mineralization of chlorophenol, in a three-step food-web, intro-

duced by Wade et al. [64]. More precisely, we have focused on the mathematical analysis

of the model, extending the previous works. We have generalized the approach presented

in [51] by including multiple substrate inflow into the model and characterizing the stabil-

ity of steady state in the case including maintenance. We have extended [64] by allowing a

larger class of growth functions and [18, 57] by including maintenance. Our main aim was

to give a complete analysis of the model by a combination of theoretical results and numer-

ical techniques to obtain information on the qualitative behaviors of this six-dimensional

system and to fully clarify the findings of the previous numerical analysis. We have high-

lighted several complex dynamics of the process. In chapter 2, by considering a large class

of growth kinetics, the phenol and hydrogen input concentrations together with mainte-

nance terms, which were neglected in the previous analytical analysis, we have proven that

our system can have up to eight steady states: the washout steady state which always

exists, a positive steady state where all degrader microbial populations coexist, and six

other steady states corresponding to the extinction of one or two degrader populations.

When they exist, all steady states are unique, except the steady state where chlorophenol

and phenol degraders are maintained and the hydrogen degrader is eliminated (E110). We

have developed the existence conditions of all steady states with respect to the operating

parameters. The results on the existence of some steady states were obtained previously

only numerically without knowing their exact number. In chapter 3, when decay terms

are ignored, we could reduce the original six-dimensional system to an equivalent three-

dimensional one. This made it possible to obtain explicitly the expressions of conditions

of the local stability of all identified steady states according to the four operating param-

eters D, sin
0 , sin

1 and sin
2 which correspond to the dilution rate, the chlorophenol, phenol

and hydrogen input substrate concentrations, respectively. We have analyzed the bifurca-

tion diagrams by varying the chlorophenol input concentration when the hydrogen input

is added to the model and the phenol input is excluded. We have proven that, except

for the positive steady state, all the steady states can only appear or disappear through

transcritical or saddle-node bifurcations. Then, we could show that the system exhibits

a bi-stability and the coexistence steady state can destabilize undergoing a supercritical
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Hopf bifurcation with the occurrence of a stable periodic solution. The destabilization

of the positive steady state was not detected by the previous numerical analysis of the

operating diagram in [64]. In order to gain more insight into the behavior of the system,

from the bifurcation diagrams with Sin
ch as the bifurcating parameter (see Figures 3.5 to

3.7), we have proven that, if the concentration of the chlorophenol input Sin
ch is low, both

the chlorophenol and phenol degraders are eliminated from the reactor and only the hy-

drogen degrader is maintained (E001 is the only stable steady state). Rising a little more

the concentration of Sin
ch, only the chlorophenol and hydrogen degraders are maintained

(E101 is the only stable steady state). Adding more Sin
ch, only the chlorophenol degrader

is maintained (E100 is the only stable steady state). For higher concentration of Sin
ch,

the system exhibits a bistability behavior where either only the chlorophenol degrader is

maintained (E100 is stable) or the coexistence of three microbial species may occur around

periodic oscillations (E111 is unstable and a stable limit cycle exists). In chapter 4, when

the maintenance terms are present in the model, we have managed to characterize the

stability of the steady states of the six-dimensional system. The stability analysis is much

more delicate since the differential system cannot be reduced to a three-dimensional one

as in the case without maintenance. We have used the Liénard-Chipart stability crite-

rion to simplify the mathematical analysis by reducing considerably the number of the

Routh-Hurwitz conditions to check. Then, we gave the necessary and sufficient conditions

of the local stability of the steady states, with respect to the operating parameters of the

process. On the other hand, we highlighted several possible asymptotic behaviors in this

six-dimensional system, using two bifurcation diagrams with the dilution rate and then,

with the chlorophenol input concentration as the bifurcating parameters (see Figure 4.8

and Figures 4.13 to 4.15). We have shown that one of the operating diagrams obtained

numerically in [64] has omitted important transition phenomena between steady states.

If the dilution rate is too low, only the chlorophenol degrader is maintained (E100 is the

only stable steady state). Increasing slightly the dilution rate D, the system exhibits

a bistability behavior where either only the chlorophenol degrader is maintained (E100 is

stable) or the coexistence of three microbial species may occur around periodic oscillations

(E111 is unstable and a stable limit cycle exists). Increasing a little more D, the system

exhibits a bistability behavior where either only the chlorophenol degrader is maintained

or the coexistence of three microbial species occurs at the positive steady state (E100 and

E111 are both stable). Increasing further D, the system exhibits a bistability between only

the chlorophenol degrader and both the chlorophenol and phenol degraders (E100 and E2
110

are both stable). Rising a little more the value of D, only the chlorophenol degrader is

maintained. Then, only the chlorophenol and hydrogen degraders are maintained (E101

is the only stable steady state). Adding a little more, both the chlorophenol and phenol

degraders are eliminated from the reactor and only the hydrogen degrader is maintained

(E001 is the only stable steady state). For higher dilution rate, there is washout of all three

microbial populations (E000 is the only stable steady state). We proved that the positive

steady state of coexistence of all species can be unstable and we give numerical evidence
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for the supercritical Hopf bifurcation, in the case including chlorophenol and hydrogen

input concentrations. The possibility of the Hopf bifurcation of the positive steady state

was previously observed in [51] in the case without phenol and hydrogen input concen-

trations. In chapter 5, by using the operating diagrams we could show the behaviors of

the system by varying the microbial operating parameters. To plot these operating di-

agrams, we must fix the values of the biological parameters and we must fix two of the

four parameters while varying the others. These diagrams can be useful for interpreting

experimental results. For Sin
ph = Sin

H2
= 0, the operating diagrams in the

(
Sin

ch, D
)

plane of

Figure 5.1 show the same number of regions in both cases with and without maintenance,

with variations only in their shape and extension. In the case of maintenance, our analyt-

ical study of the operating diagrams confirms the numerical results of [51] where a stable

limit cycle bifurcates from the positive steady state via a Hopf bifurcation. This behavior

is unreported in the numerical operating diagram of Figure 2 in [64]. Considering the

inflowing concentrations Sin
ph = 0 and Sin

H2
= 2.67×10−5 of Figure 3(a) in [64], Figure 5.11

shows the destabilization of the positive steady state in the case without maintenance. In

the regions J20 and J21, all the steady states are unstable so that there is coexistence

around a limit cycle for any positive initial conditions. Adding the maintenance terms to

the system, the regions Ji, i = 14, . . . , 21 disappear. In addition, Figure 5.12 shows that

the regions J8 (stability of E101 (SS5)) and J13 (stability of E100 (SS3) with instability of

E111 (SS6)) have been omitted in [64]. Crossing J11 to J13, there is bistability of E100 and

a limit cycle. In the regions J8 and J13, the outcome of the process is different than that

found in the numerical operating diagram in [64]. Similarly, for the input concentrations

Sin
ph = 10−2 and Sin

H2
= 0 as in Figure 5(a) of [64], Figures 5.21 and 5.22 prove that the

region J22 (bistability of E111 (SS6) and E010 (SS7)), and the regions J5,J30,J31 and

J32 (instability of E111) were not been detected. However, when the input concentrations

Sin
ph = 1 and Sin

H2
= 2.67×10−2 are large enough as in Figure 5(d) of [64], our analyti-

cal operating diagrams in Figures 5.23 and 5.24 show that all asymptotic behaviors were

detected. Finally, when Sin
ch = 0.5 and D = 0.25 are fixed as in Figure 6(a) of [64], our

operating diagrams in
(
Sin

H2
, Sin

ph

)
plane of Figures 5.25 and 5.26 prove that the regions Ji,

i = 1, 3, 9, 11, 22, 48, 50, 51 are unreported. In fact, there can be stability of only E000 (J1)

or E100 (J9 and J51), or bistability of E000 and E111 (J3) or of E100 and E111 (J11 and J48)

or of E111 and E010 (J22) or of E110 and E010 (J50). The findings of our mathematical study

permit a better understanding of the operating region of the coexistence of all species and

its dependence on the biological parameters and show the omission of several important

asymptotic behaviors in the numerical study of [64]. Especially validated models with

realistic parametrization from experimental data, more attention should be paid to nu-

merical resolution. However, the theoretical study of the operating diagram remains the

only way to ensure the accuracy of the results. Moreover, our results allow us to answer

the difficult question about the effect of maintenance on the destabilization of the steady

states. We proved that it does not destabilize them but modifies the boundary between

the region of stability and the region of instability and has an effect on the appearance
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General conclusion

and the disappearance of some regions.

Several questions remain open and will be subject of future work, such as the study of

the global behavior of the system. Indeed, using the Thieme’s theory, we can deduce the

global properties of the 6-dimensional system from the 3-dimensional reduced one, in the

case without maintenance. A sensitivity study with relation to the biological parameters

can be carryed out, in view to get an idea on the robustness and the genericity of the

phenomena. We aim too to perform a theoretical and numerical study of the operating

diagrams for different parameter values of the maintenance, in order to examine their

effects on the stability regions and the attraction basins in the case of bistability.
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