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General introduction

The protection of the environment and the preservation of natural resources are major concerns of our world. The fight against pollution is in fact an important issue that requires knowledge of the functioning of microbial ecosystems and an understanding of the mechanisms that allow different microbial species to maintain themselves in ecosystems involved in human or animal health. These microorganisms are sources of contamination of surface water and groundwater, but can also be used to treat wastewater. Water is a renewable resource and the quality of the water is more and more important. Lack of water and/or quality is a big problem in some parts of the world. Consequently, to maintain and improve the quality of water resources we can use biological reactors. As explained in [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF], a bioreactor is an enclosure containing a nutrient medium consisting of a cocktail of various substrates which one or more populations of microorganisms grow. Bioreactors are used to perform operations for transforming matter through biological pathways. These bioreactors are classified according to their mode of operation, in other words, the way in which they are supplied with the matter, and depending on whether microorganisms are free in the medium or fixed on support; the latter could itself be fixed or mobile. As a result, it is possible to distinguish continuously-fed systems, systems whose supply is semi-continuous, and those operating in closed mode. For example, the chemostat is a closed biological reactor which makes it possible to reduce the quantity of polluting substances contained in the wastewater so that the water finally released into the natural environment does not degrade the latter. The use of wastewater in agriculture often reduces the environmental impact it would have and can help communities increase their harvests and preserve precious resources of water and nutrient.

Today, treatment techniques and treatment plants are constantly evolving. One of the effective methods for the treatment of wastewater is anaerobic digestion. This process transforms the organic matter in absence of oxygen, into methane and carbon dioxide (biogas) considered as a new form of energy. To understand the biological reactions and to predict the behavior of the processes, we use mathematical theories to model these reactions by nonlinear ordinary differential equations systems. Several models of anaerobic digestion have been proposed in the literature [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Bryers | Structured modeling of anaerobic digestion of biomass particulates[END_REF]29,[START_REF] Wade | Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes[END_REF][START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF]. We list in review some of them in chapter 1.

In this thesis work, we study mathematically some of these models developed around
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Page 1|142 Sarra Nouaoura the decontamination of wastewater and their use, and we propose a model relevant to improvements for applications, that is more in tune with reality. The aim of this thesis is to perform the mathematical analysis of a model of three microbial species and three substrates in a chemostat. The study of these models allows us to understand the different mechanisms that could lead to improve the bioprocesses and control the metabolic pathways of some ecosystems of interest. More precisely, we are interested in a mechanistic model describing the anaerobic mineralization of chlorophenol in a three-tiered food-web in the chemostat. This model has been studied numerically in the literature in [64] and mathematically in the particular cases where the second and the third substrate concentrations are neglected in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] and where the maintenance is not considered in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF].

We reconsider in this work the three-tiered model and we give the theoretical study in the general case including the three input substrate concentrations as well as maintenance.

The thesis is structured as follows:

In chapter 1, we begin with a working definition of a chemostat and present the minimal model of the chemostat which is a two-dimensional model that describes a single substrate and a single biomass interaction. We expose, as well, extensions of this minimal model which are widely studied in the chemostat literature. We then put in review some two-tiered models and provide some definitions of biological interactions between the species of microorganisms as competition, commensalism, mutualism, and syntrophy. Finally, we briefly describe the process of anaerobic digestion and explain the different phases of this process.

Chapter 2 is dedicated to the analysis of the mathematical model of the three-tiered microbial species in competition on three resources in the chemostat from [64], which takes into account three inflowing concentrations, including the terms of mortality and inhibition of the third substrate on the first species. By considering a general class of growth functions, we provide a complete theoretical description of the steady states of the model and we determine the necessary and sufficient conditions of their existence.

Chapter 3 is devoted to the theoretical analysis of the local stability of the three-tiered model according to the operating (control) parameters in the particular case without maintenance (decay) terms. We give the necessary and sufficient properties of the stability of the steady states. Then, we study the asymptotic behaviors of the chlorophenol model according to the control parameters. Thus, we analyze numerically the bifurcation diagram by varying one-parameter. We prove that the coexistence steady state can be unstable and we give numerical evidence for a supercritical Hopf bifurcation with the appearance of a stable periodic orbit.

In chapter 4, we are interested in analyzing the local stability of the model, by consid-
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General introduction

ering the general case including maintenance terms. We give the necessary and sufficient conditions of the stability of the steady states, with respect to the operating parameters of the process. In previous studies, this stability analysis was performed only numerically. Moreover, we analyze the dynamical behavior of the model with maintenance and we apply our theoretical results on the existence and stability of steady states. We give two bifurcation diagrams, showing that the model can present rich behavior including bistability, coexistence and emergence of the limit cycle due to Hopf bifurcation.

The final chapter 5 deals with the mathematical description of the operating diagrams of the three-tiered model in both cases: with and without decay terms. Using the theoretical results on the existence and local stability of the steady states, provided in previous chapters, we construct the operating diagrams with respect to four operating parameters (the dilution rate and the three input concentrations of the substrates) to analyze the dynamic behavior of the process according to the regions of these diagrams.

Finally, we give a general conclusion on the results obtained and we present perspectives and possible extensions of our work.
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Introduction

In this chapter, we introduce and discuss the fundamental notions that will be used throughout the thesis. We start to define the experimental device "the chemostat", we present the minimal model of the chemostat, and we expose the extensions of this model which are widely studied in the chemostat literature. Next, we recall some two-step models studied in the literature which describe the different biological interactions between microbial species that are the competition, commensalism, mutualism and syntrophy, and we describe the effects of the maintenance (or decay). Finally, we briefly describe the process of anaerobic digestion by explaining, in the same way, their different phases.

The Chemostat

The chemostat is an experimental device that is a basic piece of laboratory apparatus. It is used to study microorganisms and especially their growth characteristics on a substrate. We consult [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF], which describes in some details the theory of the chemostat, and from which this part was elaborated.

The continuous culture of the species of microorganisms or plant cells produced in a laboratory device called "Chemostat", which is defined as an enclosure containing the reaction volume, in which microorganisms (biomass) are put in the presence of a limiting substrate and the other non-limiting resources essential to their development and reproduction. It is used in scientific areas related to the acquisition of knowledge that is both fundamental, such as ecology or evolutionary biology, and applied such as wastewater treatment. There are several works in the literature relating to chemostats both in the biological journals [START_REF] Monod | La technique de culture continue. théorie et applications[END_REF][START_REF] Novick | Description of the chemostat[END_REF] and in mathematical journals [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF][START_REF] Smith | The theory of the chemostat, dynamics of microbial competition[END_REF][START_REF] Wade | Perspectives in mathematical modelling for microbial ecology[END_REF]. It is also very useful in different fields as explained in [START_REF] Smith | The theory of the chemostat, dynamics of microbial competition[END_REF]. This device presents two main characteristics: its content is assumed to be perfectly homogeneous and its volume V is kept constant. In fact, it is a bioreactor whose mode of feeding is continuous, i.e, the input flow and outflow rates are identical (F in = F out ), see [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF].

In the chemostat, a nutrient element or a substrate s, that is necessary for the growth of a biomass x (bacterium), enters the chemostat with an input flow F in and concentration s in . The dilution rate is equal to

D = F in V ,
which describes the relationship between the flow of the medium F in and the culture volume in the bioreactor V .

We schematize the chemostat as follows:
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Simple chemostat model

To establish the chemostat equations, we will start by introducing the simplest possible model of chemostat that is called the "minimal model" of the chemostat, which is based on the transformation of substrate s by the presence of a microorganism x, which is schematized as follows:

s µ(s) -→ x,
where µ is a harvesting rate in the first equation of (1.1) and a specific growth rate in the second, which only depends on the substrate concentration s. This schema leads to obtain the minimal model which is written as:

ds dt =D s in -s - µ(s) γ x dx dt = (µ(s) -D) x, (1.1) 
where s in is the inflowing substrate concentration, γ is the yield of the conversion of substrate into biomass, which is constant. Furthermore, we assume that the function s → µ(s) is continuous, has a continuous derivative, is positive and is equal to zero at 0. In the literature there exist several types of growth functions. The most known are the growth functions of Monod-type and Haldane-type.

• Monod-type function:

The most classic growth function of Monod (or function of Michaelis-Menten) is written as follows:

µ(s) = µ max s K s + s ,
where µ max is the maximum growth rate of µ and K s is the semi-saturation constant, noticing that µ(K s ) = µ max /2.

A growth function µ is said to be of Monod-type if it satisfies the following properties:

µ is defined for s ≥ 0 and is bounded.
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Chapter 1. Introduction to competition models in a chemostat µ(0) = 0.

µ is strictly increasing.

• Haldane-type function:

The growth function of Haldane is written as follows:

µ(s) = µ max s s + K s + s 2 /K I ,
where K I is the inhibition constant.

A growth function µ is said to be of Haldane-type if it satisfies the following properties:

µ is defined for s ≥ 0, is positive and µ(0) = 0.

-There exists s m > 0, such that for s ∈ [0, s m [, µ (s) > 0 and for s ∈ [s m , +∞[, µ (s) < 0.

lim s→+∞ µ(s) = 0. The behavior of system (1.1) is well known. Thus, we summarize the behavior of this model in following Tables 1.1 and 1.2 for both types of growth function. The details are given in [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF]. Table 1.1: Existence and stability of steady states of (1.1) for the growth rate µ of Monodtype.

Condition s * < s in s * ≥ s in SS 0 = s in , 0 Unstable GAS SS 1 = (s * , x * ), s * = s * (D) is solution of µ(s) = D and x * = γ(s in -s * )

GAS

Does not exist GAS and LES mean globally asymptotically stable and locally exponentially stable, respectively. In the next section, we will propose two possible extensions of the minimal model.
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Chapter 1. Introduction to competition models in a chemostat Condition

s in < s 1 * s 1 * < s in < s 2 * s 2 * < s in SS 0 = s in , 0 LES Unstable LES SS 1 = (s 1 * , x 1 * ), s 1 * = s 1 * (D) < s 2 * (D) is solution of µ(s) = D and x 1 * = γ(s in -s 1 * ) Does not exist LES LES SS 2 = (s 2 * , x 2 * ), s 2 * = s 2 * (D) > s 1 * (D) is solution of µ(s) = D and x 2 * = γ(s in -s 2 * )
Does not exist Does not exist Unstable

Model with several species in the chemostat

In this section, we assume that n species of microorganisms (n ≥ 2) compete for a single substrate in the chemostat. We assume that the dilution rates of the substrate and species are different, so the minimal model (1.1) becomes:

ds dt =D s in -s - n i=1 µ i (s) γ i x i dx i dt = (µ i (s) -D i ) x i , i = 1, . . . , n, (1.2) 
where x i is the concentration of the i th species, µ i is the growth function and D i represents the disappearance rate of bacteria i, which can be modeled by:

D i = α i D + a i ,
where α i represents the bacteria proportion that leaves the reactor, and a i represents the mortality rate of species i.

The mathematical analysis of the competition model of two or more species for a limiting resource can be found in [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF][START_REF] Hsu | A mathematical theory for singlenutrient competition in continuous cultures of micro-organisms[END_REF][START_REF] Smith | The theory of the chemostat, dynamics of microbial competition[END_REF]. Using same dilution rates D = D i and monotonic growth rates, the classical result well-known as the Competitive Exclusion Principle (CEP) is shown, in a generic case, where the microorganism that has the lowest breakeven concentration of substrate outweighs the competition on all other species. Other approaches have been expanded in the literature: a model with the input microorganism concentrations at the chemostat [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF][START_REF] Robledo | Global stability for a model of competition in the chemostat with microbial inputs, nonlinear analysis[END_REF]. For example, when bioreactors for the treatment of wastewater with waters to be treated obviously contain all kinds of bacteria. In [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF], the authors studied the case of n different species consuming a single substrate in a chemostat with D = D i and density-dependent growth rates.
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Model with several species and multiple substrates in the chemostat

The general model of n species x i competing for m resources s j proposed in [START_REF] Mazenc | On stability and stabilization for models of chemostats with multiple limiting substrates[END_REF] is:

ds j dt = D j s in j -s j - n i=1 µ i,j (S) γ i,j x i , j = 1 . . . , m, dx i dt = m j=1 µ i,j (S) -D i x i , i = 1, . . . , n, (1.3) 
where S = (s 1 , . . . , s m ), s j is the concentration of the j th substrates, x i is the concentration of the i th species, s in j > 0 is the j th input substrate concentration. In ecosystems, it is common to note that microorganisms occupying the same ecological niche feed on several limiting resources. Resources are defined as entities that stimulate population growth, at least over some range of availability, and which are consumed and include various forms of materials and energy. So it is necessary to introduce important distinctions between resources. Among the different classifications of limiting resources introduced in ecology, we will cite two classifications that are widely used in competition models: substitutable substrates and complementary or essential substrates. Two substrates are called substitutable if one can be replaced by the other. Two substrates are called complementary(essential) if they are both essential for growth (see [START_REF] Leon | Competition between two species for two complementary or substitutable resources[END_REF][START_REF] Tilman | Resource Competition and Community Structure[END_REF]). There was a lot of research, both experimental and theoretical, concerning the growth of microorganisms on substitutable resources (see [START_REF] Leon | Competition between two species for two complementary or substitutable resources[END_REF]38] and the references therein): the authors have shown that coexistence is possible. There are relatively few studies regarding growth on complementary resources (see [START_REF] Borsali | Contribution to the study of the effect of the inter-specificity on a two nutrients competition model[END_REF][START_REF] Borsali | Persistent competition models on two complementary nutrients with density-dependent consumption rates[END_REF][START_REF] Tilman | Resource Competition and Community Structure[END_REF]).

Several approaches have been proposed in the literature to analyze mathematically models of competition several species on multi-substrates, see for example [START_REF] Li | Competition for essential resources: a brief review, in: Dynamical systems and its applications in biology[END_REF][START_REF] Mazenc | On stability and stabilization for models of chemostats with multiple limiting substrates[END_REF][START_REF] Venkatesh | An optimal strategy to model microbial growth in a multiple substrate environment[END_REF], and more recent works [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] where the authors considered competition models between two species for two resources. In [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered model of anaerobic digestion[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF]64], the authors study model (1.3) restricted to three organisms and three substrates. This study has suggested the emergence of interesting dynamical behavior through its specific ecological interactions, which include competition, syntrophy, and product inhibition.

In this thesis, we do not consider this type of competition models.

Two-tiered models

A two-tiered models are commonly used to describe relationships between two bacterial populations. Several of these models have been proposed in the literature, see for example [4,[START_REF] Bernard | Advanced monitoring and control of anaerobic wastewater treatment plants: software sensors and controllers for an anaerobic digester[END_REF][START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] Dubey | Modelling the interaction of two biological species in a polluted environment[END_REF][START_REF] Powell | Stable coexistence of syntrophic associations in continuous culture[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Stephanopoulous | The dynamics of commensalism[END_REF][START_REF] Wu | A mathematical model of competition for two essential resources in the unstirred chemostat[END_REF]. They take the form of four-dimensional mathematical models with a cascade of two biological reactions where one substrate s 0 is consumed by one microorganism x 0 in a chemostat to produce a product s 1 that serves as the main limiting
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Chapter 1. Introduction to competition models in a chemostat substrate for a second microorganism x 1 . This is represented by the following reaction scheme:

s 0 µ 0 -→ x 0 + s 1 , s 1 µ 1 -→ x 1 ,
where µ 0 and µ 1 are the bacterial growth rates, depending eventually on one or both substrates. The substrate concentrations s 0 and s 1 are introduced in the chemostat with the input concentrations s in 0 and s in 1 , respectively. The model for a two-tiered "food chain", can be written as the following dynamical system of ODEs:

         ṡ0 = D s in 0 -s 0 -µ 0 (.) x 0 ẋ0 = [µ 0 (.) -α 0 D -a 0 ]x 0 ṡ1 = D s in 1 -s 1 + µ 0 (.) x 0 -µ 1 (.) x 1 ẋ1 = [µ 1 (.) -α 1 D -a 1 ]x 1 (1.4)
where D is a dilution rate. α 0 and α 1 are coefficients that belong to [0, 1], with a 0 x 0 and a 1 x 1 are the maintenance (decay) terms, a 0 and a 1 are positive parameters.

If the growth rate µ 0 depends only on substrate s 0 and µ 1 depends only on s 1 , that is, µ 0 (.) = µ 0 (s 0 ), µ 1 (.) = µ 1 (s 1 ), then the system describes a commensalism relationship. The system has a cascade structure and the number of steady states and their stability as functions of model inputs and parameters have be investigated, [4,[START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Reilly | Stability of commensalistic systems[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Simeonov | Stability analysis of some nonlinear anaerobic digestion models[END_REF][START_REF] Stephanopoulous | The dynamics of commensalism[END_REF]. An important contribution to the modeling of a two-tiered as a commensalism system is the model of [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. If µ 0 depends on both substrates s 0 and s 1 , and µ 1 depends on substrate s 1 , that is, µ 0 (.) = µ 0 (s 0 , s 1 ), µ 1 (.) = µ 1 (s 1 ), then the system describes a syntrophic relationship. The mathematical analysis of such two-tiered models is more delicate than for commensalism models (see [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF] and the references therein).

In [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF], the authors have studied a two-tiered microbial food chain, by analyzing the joined effects of syntrophy, mortality, substrate inhibition and input concentrations. Using a general class of growth rates, the operating diagrams illustrate the effects of inhibition and the new input substrate concentration on the reduction of the coexistence region and the emergence of a bi-stability region. They proved that for a large class of models and despite the additional complication of substrate inhibition and distinct removal rates, the maintenance cannot destabilize a two-tiered microbial 'food chain', regardless of the biological parameters.

The two-tiered models may involve several relationships between species, such as competition, commensalism, mutualism, and syntrophy, and may include, maintenance (or decay) terms, which we will detail in the following subsections.

Competition

The competition is a natural biological interaction between two or more organisms or species in which all species are damaged. Competition means a mutually negative interaction between populations. There are two types of competition: the interaction is said to be intraspecific competition when the two microorganisms are of the same
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Chapter 1. Introduction to competition models in a chemostat species, while competition between individuals of different species is known as interspecific competition. This interaction can be represented schematically by:

x 0 ←-s 0 -→ x 1 .
s 1

According to the scheme above, this interaction can be mathematically formalized as follows: both species denoted x 0 and x 1 grow on two substrates s 0 and s 1 .

The chemostat model predicts that the coexistence of two or more microbial populations competing for a single non-reproducing nutrient is not possible, in the generic case. Only the species with the lowest 'break-even' concentration survives. This result, known as the Competitive Exclusion Principle (CEP), has a long history in the literature of bio-mathematics, [START_REF] Rapaport | A new proof of the competitive exclusion principle in the chemostat[END_REF] and the references therein. Several mathematical models in the literature with competition relationship have been considered, see for instance [1,[START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Sur un modèle de compétition et de coexistence dans le chémostat[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Grover | Resource Competition[END_REF][START_REF] Smith | The theory of the chemostat, dynamics of microbial competition[END_REF].

In [1], the authors have considered a model with several species in competition for a single resource, they have taken into account the intra-specific interactions. Using a growth rates are increasing and the dilution rates are distinct, the operating diagram illustrates the effect of the intra-specific competition on the coexistence region of the species. In [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], the authors have studied the model of two species competing for a single resource in the chemostat, by taking into account the inter-and intraspecific interactions. The growth functions are monotonic and the dilution rates are distinct. They gave the results of global asymptotic stability for the competition model of two species. The operating diagrams describe the effect of the intra-and interspecific interference on the disappearance of coexistence region and the occurrence of bi-stability region.

Commensalism

The commensalism is a natural biological phenomenon between two living beings. In biology, commensalism means a lasting interaction between individuals of different species where one of the partners derives a benefit from the association while the other finds neither advantage nor real inconvenience. If the host and the commensal populations are indicated by x 0 and x 1 , respectively, then the interaction of commensalism can be represented schematically by:

s 0 -→ x 0 -→ s 1 -→ x 1 .
According to the scheme above, the primary substrate s 0 is utilized by the host population x 0 , with the simultaneous production of the secondary substrate s 1 which is further consumed by the commensal population x 1 for growth.

There are several examples of mixed cultures of commensal populations [4,[START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Reilly | Stability of commensalistic systems[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Stephanopoulous | The dynamics of commensalism[END_REF]. The first of the above cultures have been proposed in [START_REF] Reilly | Stability of commensalistic systems[END_REF] for the direct conversion of
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Chapter 1. Introduction to competition models in a chemostat cellulosic and hemicellulosic biomass to ethanol. In this paper, the authors have given a mathematical study of a commensalism type model (1.4), where they considered two substrates and two species, with a 0 = a 1 = 0 and α 0 = α 1 = 1.

Mutualism

The mutualism is a natural biological phenomenon occurring between two or more organisms (or populations) that belong to different species, in which the organisms both benefit from this relationship. During this interaction, there is an interplay benefit (it is not therefore commensalism). Similar actions that occur between individuals of the same species are called cooperation, that is, two organisms mutually cooperate to produce the necessary substrate for the growth of the other type.

If two populations of bacteria are indicated by x 0 and x 1 , respectively, then, this interaction can be represented schematically by:

x 0 -→ s 1 -→ x 1 . s 0
According to the scheme above, this reaction can be mathematically formalized as follows: the first species denoted x 0 grows on a substrate s 0 forming an intermediate product s 1 . This intermediate product is necessary for the growth of a second species x 1 . Producing substrate s 0 as product which is necessary for the growth of x 0 , so the second species x 1 can not develop if the first species x 0 is not present and the first species x 0 can not develop if the second species x 1 is not present.

There are several models in the literature with mutualism relationship, see for instance [2,[START_REF] El-Hajji | Association between competition and obligate mutualism in a chemostat[END_REF][START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. lotka-volterra equations[END_REF][START_REF] Wang | A mutualism-competition model characterizing competitors with mutualism at low density[END_REF][START_REF] Zhang | Mutualism or cooperation among competitors promotes coexistence and competitive ability[END_REF]. In [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. lotka-volterra equations[END_REF], the authors have studied the dynamics of two interacting microbial species in the chemostat. Both species compete for a common resource, while also being mutualists through cross-feeding. They derived an extended Lotka-Volterra model, which has a quadratic term modeling the competition, while the typical linear term describes the mutualistic interaction. They showed that bistability occurs when the mutual dependence on the cross-feeding nutrients is sufficiently high.

Syntrophy

The syntrophy is a biological phenomenon that allows two or more bacteria to multiply in an environment that the necessary growth factors are missing for one of them. A syntrophic relationship is a biological relationship of necessity between bacterial species that can not develop separately.

If two populations of bacteria are indicated by x 0 and x 1 , respectively, then, the interaction of syntrophy can be represented schematically by:

s 0 -→ x 0 + s 1 , s 1 -→ x 1 .
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Chapter 1. Introduction to competition models in a chemostat

According to the scheme above, the first species denoted x 0 grows on a substrate s 0 forming an intermediate product s 1 . This intermediate product is necessary for the growth of a second species x 1 . Then, the second species x 1 can not grow if the first species x 0 is not present, it is a relation of trophic interest. A syntrophic relationship between two organisms refers to growth functions where µ 0 depends on both substrates s 0 and s 1 and µ 1 depends only on s 1 , i.e µ 0 (.) = µ 0 (s 0 , s 1 ) et µ 1 (.) = µ 1 (s 1 ). There are several models in the literature describing a syntrophic relationship, see for instance [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF][START_REF] Kreikenbohm | Bistability in the chemostat[END_REF][START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF][START_REF] Volcke | Steady state multiplicity of two-step biological conversion systems with general kinetics[END_REF][START_REF] Wilkinson | Interactions in a mixed bacterial population growing on methane in continuous culture[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF]. In [START_REF] Wilkinson | Interactions in a mixed bacterial population growing on methane in continuous culture[END_REF], the authors have studied the interactions of a growing bacterial population on methane. The important results of this study focused on the conditions under which a stable coexistence equilibrium could occur. In [START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF], the authors have studied model (1.4) for syntrophic associations between H 2producing acetogenic bacteria and H 2 -utilizing bacteria, they have considered the growth functions µ 0 and µ 1 of Monod-type in s 0 and the function µ 0 is decreasing in s 1 , a 0 = a 1 = 0 and α 0 = α 1 = 1, with the absence of an input term of s 1 (s in 1 = 0). An extension of this work studied in [START_REF] Kreikenbohm | Bistability in the chemostat[END_REF], which considers the case where s 0 also appears in µ 1 , (µ 1 (.) = µ 1 (s 0 , s 1 )). The authors have showed a bistability behavior that can not be observed when µ 1 (.) depends only on s 0 . In [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF], the authors considered the general situation of a growth function µ 1 (.) = µ 1 (s 0 , s 1 ), which increases in s 1 and decreases in s 0 with s in 1 = 0 and have shown, contrary to the case where µ 1 (.) only depends on s 1 , that a multiplicity of positive equilibria can occur. Other models for which µ 0 (.) = µ 0 (s 0 , s 1 ) and µ 1 (.) = µ 1 (s 0 , s 1 ), present the multiplicity of positive equilibria, are found in [START_REF] Volcke | Steady state multiplicity of two-step biological conversion systems with general kinetics[END_REF]. All these studies do not take into account the terms of maintenance. In [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF], using a general class of growth rates, the authors have analyzed the joined effects of syntrophy, mortality, and new input concentrations. The operating diagram shows that, whatever the region of space considered, there exists only one locally exponentially stable steady state.

The effects of decay

As explained in [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], maintenance is the consumption of energy by an organism that is used for all biological processes other than growth. It is modeled either by adding a negative term on the substrate dynamic without associating it to growth or by considering a decay term on the biomass dynamics. For more information about the modeling of maintenance, [START_REF] Ni | Model-based characterization of endogenous maintenance, cell death and predation processes of activated sludge in sequencing batch reactors[END_REF].

Several works have focused on the effect of maintenance (mortality) on the behavior of the system, see for instance [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF]. A previous study investigated the effect of maintenance on the stability of a model comprising two species and two substrates [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF]. In this work, the authors were the first to consider the effects of maintenance terms in the system (1.4), in particular, in the case where the growth functions are of the form (µ 0 (.) = µ 0 (s 0 , s 1 ), µ 1 (.) = µ 1 (s 1 )), where µ 0 is increasing in s 0 and decreasing in s 1 and the Monod function for µ 1 , and (a 0 > 0, a 1 > 0), and s in 1 = 0 and α 0 = α 1 = 1. The authors asserted the possibility of the Hopf bifurcation of the positive steady state in the
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Chapter 1. Introduction to competition models in a chemostat case with maintenance.

In [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], the authors have generalized [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF] by allowing a larger class of growth functions and they have generalized [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF] by taking account the maintenance terms, in particular, in the case where µ 1 is increasing in s 1 with α 0 = α 1 = 1 and s in 1 = 0. They proved that the positive steady state is stable as long as it exists, that is to say, maintenance does not affect the stability of the considered two-tiered microbial 'food chain'. Important and interesting extensions of the two-tiered models are the eight-dimensional mathematical models, which include syntrophy and inhibition [START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF], and the model with five state variables studied in [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF].

Anaerobic digestion

Introducing an additional microorganism and substrate to the two-tiered model of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF] leads to a three-tiered model describing the chlorophenol mineralization, [64]. This model is considered in the next chapters. This mineralization may occur under aerobic (in presence of oxygen) or anaerobic (in absence of oxygen) conditions. The anaerobic process is called anaerobic digestion or methanisation which is a natural biological process of decomposition of organic matter by microorganisms (bacteria) that are activated under anaerobic conditions. On an industrial scale, this process takes place in a closed bioreactor, to produce biogas rich in methane and some carbon dioxide. This biogas is a source of energy that can be used directly to replace natural gas. This natural process is used mainly for the depollution of wastewater or for converting surplus sludge produced in wastewater treatment plants into more stable products [29], it also makes it possible to treat waste while recovering a renewable energy source.

Under the action of microbial populations, the organic matter converts into biogas through a sequence of stages. Indeed, the process of anaerobic digestion takes place through four stages:

-The first stage is hydrolysis which is very important for the anaerobic digestion process since in this phase the organic macromolecules (cellulose, polysaccharides, protein, lipids,...) converts into monomer (sugars, amino acids, fatty acids,...). This step is limiting in the case of anaerobic digestion of insoluble complex substrates.

-In the second stage acidogenesis, acidogenic bacteria transforms the products of the previous phase into carbon dioxide, hydrogen, organic acids, alcohols. Acetic acid is a volatile fatty acid.

-The third stage is acetogenesis and allows to convert the molecules that result from the second stage into carbon dioxide. But their activity is inhibited by an excess of hydrogen in the medium.

-The final step methanogenesis (methane formation) is the anaerobic degradation of organic matter. The microorganisms that perform this step are hydrogenophilic methanogenesis bacteria which convert carbon dioxide to methane with the help of hydrogen and
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Chapter 1. Introduction to competition models in a chemostat acetoclate methanogenesis bacteria convert acetate to methane.

The complexity of the anaerobic digestion process has motivated the development of complex models. Several models of anaerobic digestion exist in the literature, see [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Bryers | Structured modeling of anaerobic digestion of biomass particulates[END_REF]29,[START_REF] Wade | Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes[END_REF][START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF], such as the widely used Anaerobic Digestion Model No.1 (ADM1) [29]. In engineered biological systems, mechanistic modeling reached consensus with the development of the Activated Sludge Models [START_REF] Henze | Activated Sludge Model No[END_REF][START_REF] Henze | Activated Sludge Model No. 2D, ASM2[END_REF], for wastewater treatment processes, followed by the Anaerobic Digestion Model No.1, a few years later. The development of ADM1 was enabled largely due to the possibilities for better identification and characterization of functional microbial groups responsible for the chemical transformations within anaerobic digesters. The full (ADM1) model is highly parameterized with a large number of physical, chemical and biological processes described by 32 state variables and numerous algebraic expressions. Whilst suitable for dynamic simulation, a more rigorous mathematical analysis and the control of the model are very difficult which were made on sub-models or reduced models of this model. To the author's knowledge, only numerical investigations of the full model are available in [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF]. Due to the analytical intractability of the full (ADM1), simpler mechanistic models of microbial interaction have been proposed in view of a better understanding of the anaerobic digestion process. For a recent review of mathematical modeling of anaerobic digestion, the reader is referred to [START_REF] Wade | Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes[END_REF].

Conclusion

In this first chapter, we gave an overview of some mathematical models of the chemostat. First, we presented the chemostat and its minimal model and exposed some extensions of this minimal model. We then recalled the two-tiered models, treated in the literature. Finally, we described anaerobic digestion and its different phases.

In the next chapters, we will study the extensions of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF], by introducing an additional microorganism and substrate to create a three-tiered feeding chain model, considered in [64]. In chapter 2, we begin by listing all the possible steady states of the system, followed by conditions for their existence and uniqueness. The local stability and the bifurcation diagrams of the model in both cases without and with maintenance terms are presented in chapter 3 and chapter 4. In final in chapter 5, we perform the operating diagrams for showing the asymptotic behaviors of this model.

Introduction

In this chapter, we study a three-tiered microbial food-web model of the anaerobic digestion in the chemostat, involving three species and three resources, with three input substrates, including the terms of maintenance and inhibition of the third substrate on the first species. The model is a six-dimensional system of ordinary differential equations. This model has recently been proposed and investigated numerically in [64]. Then, by considering the case of a large class of growth rates, we generalize and extend these analytical studies. This chapter is organized as follows. In section 2.2, we start by presenting the mathematical model of the three-tiered microbial species from [64], which takes into account the phenol and the hydrogen inflowing concentrations as well as the maintenance terms. Next, in section 2.3, we give the general assumptions on the microbial growth functions and we give a preliminary result on positivity and boundedness of solutions, we then describe the steady states of the model and determine the necessary and sufficient conditions of existence of these steady states in the case with maintenance.

Three-tiered food-web model

The mathematical model developed in [64], by introducing an additional microorganism and substrate into a two-tiered feeding chain model in previous work [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF], has six components, three substrate (chlorophenol, phenol and hydrogen) and three organisms (chlorophenol-dechlorinating bacterium, the phenol degrader and the hydrogenotrophic methanogen) variables. As explained in [64], the chlorophenol degrader utilizes both chlorophenol and hydrogen for growth, producing phenol as a product. Phenol is consumed by the phenol degrader forming hydrogen, which also is inhibitory to its growth. The hydrogenotrophic methanogen scavenges this hydrogen and acts as the primary syntroph, as shown in a schematic representation in Figure 2.1. This form of the interaction between microorganisms is called a food-web, that is, an interconnection of food chains, see [44].
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Chapter 2. Three-tiered microbial food-web model Following [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]64], the three-step model that we propose to study is: ) is the fraction of phenol that is transformed to hydrogen and 16/208 is the fraction of hydrogen consumed by the chlorophenol degrader X ch . The functions f 0 , f 1 and f 2 , are the following specific growth rates that take the form:

                               Ẋch =(Y ch f 0 (S ch , S H 2 ) -D -k dec,ch )X ch Ẋph =(Y ph f 1 (S ph , S H 2 ) -D -k dec,ph )X ph ẊH 2 =(Y H 2 f 2 (S H 2 ) -D -k dec,H 2 )X H 2 Ṡch =D S in ch -S ch -f 0 (S ch , S H 2 ) X ch Ṡph =D S in ph -S ph + 224 208 (1 -Y ch ) f 0 (S ch , S H 2 ) X ch -f 1 (S ph , S H 2 ) X ph ṠH 2 =D S in H 2 -S H 2 -16 208 f 0 (S ch , S H 2 ) X ch + 32 224 (1 -Y ph ) f 1 (S ph , S H 2 ) X ph -f 2 (S H 2 ) X H 2 , (2.
f 0 (S ch , S H 2 ) = k m,ch S ch K S,ch + S ch S H 2 K S,H 2 ,c + S H 2 , f 1 (S ph , S H 2 ) = k m,ph S ph K S,ph + S ph 1 1 + S H 2 /K I,H 2 , f 2 (S H 2 ) = k m,H 2 S H 2 K S,H 2 + S H 2 , (2.2) 
where k m,i for i = {ch, ph, H 2 } are the maximum specific growth rates related to the chlorophenol, phenol, and hydrogen degraders, respectively. K S,i are the half-saturation coefficients, respectively, for each organism. K S,H 2 ,c is the half-saturation constant for hydrogen in the chlorophenol degrader. K I,H 2 is the inhibition term, and 1/(1+S H 2 /K I,H 2 ) represents the inhibition of phenol degrader by the hydrogen.
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Several authors have studied this three-tiered model (2.1), see recent works [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered model of anaerobic digestion[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF]64]. In [64] most of the results on the existence and stability of steady states of model (2.1) were obtained only numerically, using specific growth rates given in (2.2). They have numerically performed several operating diagrams with respect to the four operating parameters, showing the role, and the importance of each control parameter. Recently, a rigorous mathematical analysis of this model (2.1) was done in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] with general growth rates but only the chlorophenol inflowing concentration has been taken into account. In this work, the authors show that the system can have at most three types of steady states when S in ch > 0 and S in ph = S in H 2 = 0: the washout steady state, a coexistence steady state of three species and a steady state where only the hydrogen degrader is extinct. The local stability analysis is achieved when the maintenance is excluded from the model, where this six-dimensional model is reduced to a three-dimensional one. A numerical evidence shows that, when maintenance is included, the positive steady state can destabilize through a supercritical Hopf bifurcation with the appearance of a stable periodic orbit [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] which was not depicted in [64]. In [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF], the authors have considered the three-tiered model in the case without maintenance and persistence results were analytically proved. Using numerical estimation, it is shown in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] that the system has a rich dynamics including Hopf, Bogdanov-Takens and Bautin bifurcations. In [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF], the three-tiered model of [64] was studied by neglecting the part of hydrogen produced by the phenol degrader as well as maintenance terms, which gives rise to a less realistic model. However, the existence and stability of steady states were analytically studied and a global analysis is performed, proving the asymptotic persistence of the three bacteria. We extende here the results of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], by considering the three inflowing concentrations (S in ch ≥ 0, S in ph ≥ 0 and S in H 2 ≥ 0). We analytically determine the necessary and sufficient conditions of the existence of the steady states in the case with maintenance, for a large class of growth rates, instead of specific kinetics, as in [64].

Analysis of the model

We use the following simplified notations in (2.1), as given in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF].

X 0 = X ch , X 1 = X ph , X 2 = X H 2 , S 0 = S ch , S 1 = S ph , S 2 = S H 2 .
(2.

3)

The inflowing concentrations are given by:

S in 0 = S in ch , S in 1 = S in ph , S in 2 = S in H 2 , (2.4) 
the death rates are a 0 = k dec,ch , a 1 = k dec,ph , a 2 = k dec,H 2 (with units d -1 ), and the yield coefficients are

Y 0 = Y ch , Y 1 = Y ph , Y 2 = Y H 2 , Y 3 = 224 208 (1 -Y 0 ), Y 4 = 32 224 (1 -Y 1 ).
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Chapter 2. Three-tiered microbial food-web model With these notations, (2.1) can be written as follows:

                         Ẋ0 =-DX 0 + Y 0 f 0 (S 0 , S 2 ) X 0 -a 0 X 0 Ẋ1 =-DX 1 + Y 1 f 1 (S 1 , S 2 ) X 1 -a 1 X 1 Ẋ2 =-DX 2 + Y 2 f 2 (S 2 ) X 2 -a 2 X 2 Ṡ0 =D S in 0 -S 0 -f 0 (S 0 , S 2 ) X 0 Ṡ1 =D S in 1 -S 1 + Y 3 f 0 (S 0 , S 2 ) X 0 -f 1 (S 1 , S 2 ) X 1 Ṡ2 =D S in 2 -S 2 + Y 4 f 1 (S 1 , S 2 ) X 1 -Y 5 f 0 (S 0 , S 2 ) X 0 -f 2 (S 2 ) X 2 .
(2.5)

To reduce the number of yield parameters and ease the mathematical analysis, we can rescale system (2.5) using the following change of variables proposed in [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]:

x 0 = Y Y 0 X 0 , x 1 = Y 4 Y 1 X 1 , x 2 = 1 Y 2 X 2 , s 0 = Y S 0 , s 1 = Y 4 S 1 , s 2 = S 2 , (2.6) 
where

Y = Y 3 Y 4 , with ω = 16 208Y = 1 2(1 -Y 0 )(1 -Y 1 )
, which is a positive constant.

s in 0 = Y S in 0 , s in 1 = Y 4 S in 1 , s in 2 = S in 2 . (2.7) 
We obtain the following system:

                     ẋ0 = (µ 0 (s 0 , s 2 ) -D -a 0 )x 0 ẋ1 = (µ 1 (s 1 , s 2 ) -D -a 1 )x 1 ẋ2 = (µ 2 (s 2 ) -D -a 2 )x 2 ṡ0 = D s in 0 -s 0 -µ 0 (s 0 , s 2 )x 0 ṡ1 = D s in 1 -s 1 + µ 0 (s 0 , s 2 )x 0 -µ 1 (s 1 , s 2 )x 1 ṡ2 = D s in 2 -s 2 -ωµ 0 (s 0 , s 2 )x 0 + µ 1 (s 1 , s 2 )x 1 -µ 2 (s 2 )x 2 , (2.8) 
where s i , i = 0, 1, 2 are the three substrates concentrations (chlorophenol, phenol and hydrogen, in the application); x i are the three microbial species concentrations; µ i are the specific growth rates given by (2.9), usually take the form of a double Monod, a Monod with hydrogen inhibition acting on the phenol degrader and represented in µ 1 (see (2.9)), and a Monod kinetics, respectively; s in i is the input substrate concentration in the chemostat; a i are the maintenance (or decay) rate for i = 0, 1, 2 and corresponding to chlorophenol, phenol and hydrogen, respectively. All the yield coefficients in (2.5) are normalized to one except of ω.

The specific growth functions (2.2) become the following functions satisfying Hypotheses H1 to H8:

µ 0 (s 0 , s 2 ) = Y 0 f 0 s 0 Y , s 2 , µ 1 (s 1 , s 2 ) = Y 1 f 1 s 1 Y 4 , s 2 , µ 2 (s 2 ) = Y 2 f 2 (s 2 ).
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Chapter 2. Three-tiered microbial food-web model Therefore, the growth functions take the form:

µ 0 (s 0 , s 2 ) = m 0 s 0 K 0 + s 0 s 2 L 0 + s 2 , µ 1 (s 1 , s 2 ) = m 1 s 1 K 1 + s 1 1 1 + s 2 /K I , µ 2 (s 2 ) = m 2 s 2 K 2 + s 2 , (2.9) 
where

m 0 = Y 0 k m,ch , K 0 = Y K S,ch , L 0 = K S,H 2 ,c , m 1 = Y 4 k m,ph , K 1 = Y 4 K S,ph , K I = K I,H 2 , m 2 = Y 2 k m,H 2 , K 2 = K S,H 2 .

Assumptions and preliminary result

In this work, we consider a large class of growth rates. Following [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], we assume that the bacterial growth functions are continuously differentiable (C 1 ) and satisfy the following conditions: H1 For all s 0 > 0 and s 2 > 0, it exists m 0 > 0, such that 0 < µ 0 (s 0 , s 2 ) ≤ m 0 < +∞ and µ 0 (0, s 2 ) = 0, µ 0 (s 0 , 0) = 0.

H2 For all s 1 > 0 and

s 2 ≥ 0, it exists m 1 > 0, such that 0 < µ 1 (s 1 , s 2 ) ≤ m 1 < +∞ and µ 1 (0, s 2 ) = 0. H3 For all s 2 > 0, it exists m 2 > 0, such that 0 < µ 2 (s 2 ) ≤ m 2 < +∞, µ 2 (0) = 0.
H4 For all s 0 > 0 and s 2 > 0, ∂µ 0 ∂s 0 (s 0 , s 2 ) > 0, ∂µ 0 ∂s 2 (s 0 , s 2 ) > 0.

H5 For all s 1 > 0 and s 2 > 0,

∂µ 1 ∂s 1 (s 1 , s 2 ) > 0, ∂µ 1 ∂s 2 (s 1 , s 2 ) < 0. H6 For all s 2 > 0, dµ 2 ds 2 (s 2 ) > 0.
H7 The function s 2 → µ 0 (+∞, s 2 ) is monotonically increasing and the function s 2 → µ 1 (+∞, s 2 ) is monotonically decreasing.

Hypothesis H1 means that the function µ 0 is uniformly bounded, and that no growth can occur for species x 0 without substrates s 0 and s 2 . Hypothesis H2 means that there is a uniform bound for µ 1 , and that no growth can occur for species x 1 without substrate s 1 . Hypothesis H3 means that the function µ 2 is uniformly bounded, and that the production of s 2 is necessary for the growth of the species x 2 . Hypothesis H4 means that the growth rate of species x 0 increases with substrates s 0 and s 2 . Hypothesis H5 means that the growth rate of the species x 1 increases with the substrate s 1 but is auto-inhibited by the production of s 2 . Hypothesis H6 means that the growth rate of species x 2 increases with substrate s 2 . Hypothesis H7 means that the maximum growth rate of the species x 0 and x 1 increase and decreases, respectively, with the concentration of substrate s 2 .
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Chapter 2. Three-tiered microbial food-web model Firstly, we give the next result on the solutions of model (2.8), where we prove that they are non-negative and bounded, which is a prerequisite for any reasonable model of the chemostat. Proposition 2.1. For any non-negative initial conditions, all solutions of system (2.8) are bounded and remain non-negative for all t > 0. Moreover, the set

Ω = (x 0 , x 1 , x 2 , s 0 , s 1 , s 2 ) ∈ R 6 + : Z = ωx 0 + x 1 + x 2 + 2s 0 + 2s 1 + s 2 ≤ 2s in 0 + 2s in 1 + s in 2
is positively invariant and is a global attractor for the dynamics (2.8).

Proof. Since the vector field defined by (2.8) is C 1 , the uniqueness of solution to initial value problems holds. From (2.8), for i = 0, 1, 2,

x i (τ ) = 0, for any τ 0 ⇒ ẋi (τ ) = 0.

If x i (0) = 0, then x i (t) = 0 for all t since the boundary face where x i ≡ 0 is invariant in the vector field C 1 by system (2.8). If x i (0) > 0, then x i (t) > 0 for all t since x i ≡ 0 cannot be reached in finite time by trajectories such that x i (0) > 0 by the uniqueness of solutions. On the other hand, one has

s 0 (τ ) = 0, for any τ 0 ⇒ ṡ0 (τ ) = Ds in 0 s 1 (τ ) = 0, for any τ 0 ⇒ ṡ1 (τ ) = Ds in 1 + µ 0 (s 0 (τ ), s 2 (τ ))x 0 (τ ) s 2 (τ ) = 0, for any τ 0 ⇒ ṡ2 (τ ) = Ds in 2 + µ 1 (s 1 (τ ), 0)x 1 (τ ).
Similarly to case x i , if ṡi (τ ) = 0, then s i (t) 0 for all t. In addition, if ṡi (τ ) > 0, then s i (t) 0 for all t. Indeed, for example, consider the case of s 0 where D and s in 0 are positive with s 0 (0) 0. Assume that it exists τ > 0 such that s 0 (τ ) = 0 and s 0 (t) > 0 for all t ∈ (0, τ ). It follows that ṡ0 (τ ) 0, which is the desired contradiction with ṡ0 (τ ) = Ds in 0 > 0. Further, by considering

z = ωx 0 + x 1 + x 2 + 2s 0 + 2s 1 + s 2 , we obtain from (2.8) ż = D 2s in 0 + 2s in 1 + s in 2 -z -ωa 0 x 0 -a 1 x 1 -a 2 x 2 D 2s in 0 + 2s in 1 + s in 2 -z .
Using Gronwall's lemma, we have

z(t) 2s in 0 + 2s in 1 + s in 2 + z(0) -2s in 0 + 2s in 1 + s in 2 e -Dt , for all t 0. (2.10) Consequently, z(t) max z(0), 2s in 0 + 2s in 1 + s in 2 , for all t 0. (2.11)
Thus, the solutions of (2.8) are positively bounded and are defined for all t 0. From (2.11), it can be deduced that the set Ω is positively invariant and from (2.10), it is a global attractor for (2.8).
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Analysis of the steady states

A steady state of (2.8) is obtained by setting the right-hand sides equal to zero:

[µ 0 (s 0 , s 2 ) -D -a 0 ] x 0 = 0 (2.12) [µ 1 (s 1 , s 2 ) -D -a 1 ] x 1 = 0 (2.13) [µ 2 (s 2 ) -D -a 2 ] x 2 = 0 (2.14) D s in 0 -s 0 -µ 0 (s 0 , s 2 ) x 0 = 0 (2.15) D s in 1 -s 1 + µ 0 (s 0 , s 2 ) x 0 -µ 1 (s 1 , s 2 ) x 1 = 0 (2.16) D s in 2 -s 2 + µ 1 (s 1 , s 2 ) x 1 -ωµ 0 (s 0 , s 2 ) x 0 -µ 2 (s 2 ) x 2 = 0.
(2.17)

A steady state exists (or is said to be 'meaningful') if and only if all its components are non-negative. This predicts eight possible steady states, that we denote by E ijk , i, j, k = 0 or 1, with i = 0 if the species x 0 = 0, j = 0, if the species x 1 = 0 and k = 0 if the species x 2 = 0: E 000 , where x 0 = 0, x 1 = 0 and x 2 = 0: the washout steady state where all populations are extinct. This steady state always exists.

E 001 , where x 0 = 0, x 1 = 0 and x 2 > 0: only the hydrogenotrophic methanogen population is maintained.

E 100 , where x 0 > 0, x 1 = 0 and x 2 = 0: only the chlorophenol degraders are maintained.

E 110 , where x 0 > 0, x 1 > 0 and x 2 = 0: the hydrogenotrophic methanogens are washed out.

E 101 , where x 0 > 0, x 1 = 0 and x 2 > 0: only the phenol degraders are washed out.

E 111 , where x 0 > 0, x 1 > 0 and x 2 > 0: all three populations are present.

E 010 , where x 0 = 0, x 1 > 0 and x 2 = 0: only the phenol degraders are present.

E 011 , where x 0 = 0, x 1 > 0 and x 2 > 0: only the chlorophenol degraders are washed out.

These steady states are denoted in [64], respectively, by SS1, SS2,. . ., SS8.

Notice that the steady states E 001 , E 100 , E 101 , E 010 and E 011 do not exist in the case considered in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]. In this particular case, only the steady states E 000 , E 110 and E 111 exist, they were labeled in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] by SS1, SS2 and SS3, respectively.

For the description of steady states, we need to define some auxiliary functions. The existence and definition domains of these functions are all relatively straightforward and can be found in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF].
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Chapter 2. Three-tiered microbial food-web model Definition 2.1. Let M 0 (y, s 2 ), M 1 (y, s 2 ), M 2 (y) and M 3 (s 0 , z) be defined by:

• For s 2 ≥ 0 and 0 ≤ y < µ 0 (+∞, s 2 ), s 0 = M 0 (y, s 2 ) is the unique solution of equation µ 0 (s 0 , s 2 ) = y.

• For s 2 ≥ 0 and 0 ≤ y < µ 1 (+∞, s 2 ),

s 1 = M 1 (y, s 2 ) is the unique solution of equation µ 1 (s 1 , s 2 ) = y. • For 0 ≤ y < µ 2 (+∞), s 2 = M 2 (y) is the unique solution of equation µ 2 (s 2 ) = y.
• For s 0 ≥ 0 and 0 ≤ z < µ 0 (s 0 , +∞),

s 2 = M 3 (s 0 , z) is the unique solution of equation µ 0 (s 0 , s 2 ) = z.
Then, we have the next result.

Lemma 2.1. Under assumptions H4, H5 and H6, we have:

• For all y ∈ [0, µ i (+∞, s 2 )), i = 0, 1 and s 2 ≥ 0 : ∂M 0 ∂s 2 (y, s 2 ) < 0, ∂M 1 ∂s 2 (y, s 2 ) > 0.
• For all y ∈ [0, µ i (+∞, s 2 )), i = 0, 1 and s 2 ≥ 0 :

∂M 0 ∂y (y, s 2 ) > 0, ∂M 1 ∂y (y, s 2 ) > 0.
• For all y ∈ [0, µ 2 (+∞)), we have:

dM 2 dy (y) > 0.
• For all z ∈ [0, µ 0 (s 0 , +∞)) and s 0 ≥ 0 :

∂M 3 ∂z (s 0 , z) > 0.
Proof. According to the equivalence

s i = M i (y, s 2 ) ⇐⇒ y = µ i (s i , s 2 ), i = 0, 1,
we have, for all y ∈ [0, µ i (+∞, s 2 )) and s 2 ≥ 0

µ i (M i (y, s 2 ), s 2 ) = y. (2.18)
The derivative of (2.18), with respect to s 2 , implies that

∂M i ∂s 2 (y, s 2 ) = - ∂µ i ∂s 2 (M i (y, s 2 ), s 2 ) ∂µ i ∂s i (M i (y, s 2 ), s 2 ) -1
.

From H4 and H5, it follows that,

∂M 0 ∂s 2 (y, s 2 ) < 0 and ∂M 1 ∂s 2 (y, s 2 ) > 0.
On the other hand, the derivative of equation (2.18), with respect to y, implies that

∂M i ∂y (y, s 2 ) = ∂µ i ∂s i (M i (y, s 2 ) , s 2 ) -1
.
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Chapter 2. Three-tiered microbial food-web model From H4 and H5, it follows that ∂M i ∂y (y, s 2 ) > 0, for i = 0, 1. Next, from the equivalence:

s 2 = M 2 (y) ⇐⇒ y = µ 2 (s 2 ), we have, for all y ∈ [0, µ 2 (+∞)) µ 2 (M 2 (y)) = y. (2.19)
Derivating (2.19), with respect to y and using H6 implies that,

dM 2 dy (y) = dµ 2 ds 2 (M 2 (y)) -1 > 0.
Finally, according to the equivalence

s 2 = M 3 (s 0 , z) ⇐⇒ z = µ 0 (s 0 , s 2 ) ,
we have, for all z ∈ [0, µ 0 (s 0 , +∞)) and s 0 ≥ 0,

µ 0 (s 0 , M 3 (s 0 , z)) = z. (2.20) 
Derivating (2.20), with respect to z and using H4, we obtain

∂M 3 ∂z (s 0 , z) = ∂µ 0 ∂s 2 (s 0 , M 3 (s 0 , z)) -1 > 0.
For D ≥ 0 satisfying the conditions D + a 0 < µ 0 (+∞, +∞) and D + a 1 < µ 1 (+∞, 0), there exist unique values s 0 2 = s 0 2 (D) and s 1 2 = s 1 2 (D) (see Figure 2.2), such that:

µ 0 +∞, s 0 2 (D) = D + a 0 , µ 1 +∞, s 1 2 (D) = D + a 1 .
(2.21) Let I 1 and I 2 be the intervals defined by:

D + a 0 D + a 1 s 0 2 s 1 2 µ 0 (+∞, s 2 ) µ 1 (+∞, s 2 ) s 2
I 1 = D ≥ 0 : s 0 2 < s 1 2 , I 2 = D ∈ I 1 : s 0 2 < M 2 (D + a 2 ) < s 1 2 . (2.22)
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Notice that I 1 is not empty, since for D small enough, s 0 2 is close to 0, while s 1 2 goes to +∞ (see Figure 2.2 and Table 3.4 for the expressions of s 0 2 and s 1 2 as functions of D). Using these notations, we consider the function Ψ defined for s 2 ∈ (s 0 2 , s 1 2 ) and D ∈ I 1 by:

Ψ (s 2 , D) = (1 -ω)M 0 (D + a 0 , s 2 ) + M 1 (D + a 1 , s 2 ) + s 2 .
(2.23)

Lemma 2.2. The function Ψ satisfies the following properties:

• If ω < 1, then, for all D ∈ I 1 the function s 2 → Ψ(s 2 , D) is positive and lim s 2 →s 0 2 Ψ(s 2 , D) = +∞, lim s 2 →s 1 2 Ψ(s 2 , D) = +∞. • If ω = 1, then, for all D ∈ I 1 the function s 2 → Ψ(s 2 , D) is positive, monotonically increasing and Ψ s 0 2 , D > 0, lim s 2 →s 1 2 Ψ(s 2 , D) = +∞. • If ω > 1, then, for all D ∈ I 1 the function s 2 → Ψ(s 2 , D
) is monotonically increasing and lim

s 2 →s 0 2 Ψ(s 2 , D) = -∞, lim s 2 →s 1 2 Ψ(s 2 , D) = +∞. (a) s 0 2 s * 1 2 s * 2 2 s 1 2 φ 1 (D) Ψ(s 2 ) (1 -ω)s in 0 + s in 1 + s in 2 s 2 (b) s 0 2 s * 2 s 1 2 Ψ(s 2 ) (1 -ω)s in 0 + s in 1 + s in 2 s 2 (c) s 0 2 s * 2 s 1 2 Ψ(s 2 ) (1 -ω)s in 0 + s in 1 + s in 2 s 2 Figure 2.3: Graphical definition of Ψ: (a) case ω < 1 , (b) case ω = 1, (c) case ω > 1.
Proof. From (2.21), we have

M 0 D + a 0 , s 0 2 = +∞ and M 1 D + a 1 , s 1 2 = +∞.
It follows that (see Figure 2.3):

for all ω ≥ 0, we have lim

s 2 →s 1 2 Ψ(s 2 , D) = +∞.
for all ω > 1, we have lim

s 2 →s 0 2 Ψ(s 2 , D) = -∞.
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s 2 →s 0 2 Ψ(s 2 , D) = +∞.
From Lemma 2.1, we have,

∂Ψ ∂s 2 (s 2 , D) = (1 -ω) ∂M 0 ∂s 2 (D + a 0 , s 2 ) + ∂M 1 ∂s 2 (D + a 1 , s 2 ) + 1 > 0, for ω ≥ 1, (2.24)
Therefore, for ω ≥ 1 the function s 2 → Ψ(s 2 , D) is monotonically increasing.

Following [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], we add a hypothesis on the function Ψ which then assures that there are at most two steady states of the form E 110 . H8 In the case ω < 1, the function Ψ has a unique minimum s 2 on the interval (s 0 2 , s 1 2 ), such that ∂Ψ ∂s 2 (s 2 , D) < 0 on (s 0 2 , s 2 ) and

∂Ψ ∂s 2 (s 2 , D) > 0 on (s 2 , s 1 2 ).
Hypothesis H8 is fulfilled with the specific growth rates (2.9) of chapter 3.

Definition 2.2. The functions φ 1 be defined for I 1 , φ 2 and φ 3 be defined for I 2 and ϕ i , i = 0, 1 are defined for D ∈ {D ≥ 0 :

s 0 2 < M 2 (D + a 2 )} and D ∈ {D ≥ 0 : M 2 (D + a 2 ) < s 1 2 } by: φ 1 (D) = inf s 0 2 <s 2 <s 1 2 Ψ(s 2 , D) = Ψ(s 2 (D), D), φ 2 (D) = Ψ (M 2 (D + a 2 ), D) , φ 3 (D) = ∂Ψ ∂s 2 (M 2 (D + a 2 ), D) , ϕ 0 (D) = M 0 (D + a 0 , M 2 (D + a 2 )), ϕ 1 (D) = M 1 (D + a 1 , M 2 (D + a 2 )).
(2.25)

Remark 2.1. From Lemma 2.2, we have φ 1 (D) = -∞ if ω > 1 and φ 1 (D) > 0 if ω ≤ 1 (see Figure 2.3). Moreover, if ω = 1 then, φ 1 (D) = Ψ (s 0 2 , D). Since Ψ is convex, the equation Ψ(s 2 , D) = (1 -ω)s in 0 + s in 1 + s in 2 (2.26) has a solution s 2 = s 2 D, s in 0 , s in 1 , s in 2 if and only if (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ 1 (D). If ω ≥ 1 then, s 2 , if it exists, is unique. If ω < 1 then, there exist at least two solutions s * 1 2 < s * 2 2 in the interval (s 0 2 , s 1 2 ), which are equal when (1 -ω)s in 0 + s in 1 + s in 2 = φ 1 (D), such that ∂Ψ ∂s 2 s * 1 2 , D < 0 and ∂Ψ ∂s 2 s * 2 2 , D > 0.
The solutions s * 1 2 and s * 2 2 lead to two steady states E 1 110 and E 2 110 .

Definition 2.3. Let ψ 0 and ψ 1 be the functions defined for s 0 ∈ max 0, s in 0 -s in 2 /ω , +∞ and s 1 ∈ 0, s in 1 + s in 2 , respectively, by:

ψ 0 (s 0 ) = µ 0 s 0 , s in 2 -ω s in 0 -s 0 , ψ 1 (s 1 ) = µ 1 s 1 , s in 1 + s in 2 -s 1 .
(2.27)
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Chapter 2. Three-tiered microbial food-web model Lemma 2.3. The equation ψ 0 (s 0 ) = y has a solution in the interval

J 0 = max 0, s in 0 -s in 2 /ω , s in 0 ,
if and only if µ 0 s in 0 , s in 2 > y. If it exists, this solution is unique. The equation ψ 1 (s 1 ) = y has a solution in the interval

J 1 = 0, s in 1 if and only if µ 1 s in 1 , s in 2 > y.
If it exists, this solution is unique.

Proof. We have

dψ 0 ds 0 (s 0 ) = ∂µ 0 ∂s 0 (s 0 , s in 2 -ω(s in 0 -s 0 )) + ω ∂µ 0 ∂s 2 (s 0 , s in 2 -ω(s in 0 -s 0 )),
which is positive thanks to H4. Therefore, ψ 0 is monotonically increasing. Moreover, if

s in 2 -ωs in 0 > 0, one has ψ 0 (0) = µ 0 0, s in 2 -ωs in 0 = 0, and if s in 2 -ωs in 0 ≤ 0 one has s in 0 -s in 2 /ω ≥ 0, so that, ψ 0 s in 0 -s in 2 /ω = µ 0 s in 0 -s in 2 /ω, 0 = 0.
Thus, ψ 0 max 0, s in 0 -s in 2 /ω = 0. On the other hand, ψ 0 s in 0 = µ 0 s in 0 , s in 2 . Therefore, there exists a unique s 0 ∈ J 0 satisfying ψ 0 (s 0 ) = y, if and only if µ 0 s in 0 , s in 2 > y. We have

dψ 1 ds 1 (s 1 ) = ∂µ 1 ∂s 1 s 1 , s in 1 + s in 2 -s 1 - ∂µ 1 ∂s 2 s 1 , s in 1 + s in 2 -s 1 ,
which is positive thanks to H5. Therefore, ψ 1 is monotonically increasing. On the other hand,

ψ 1 (0) = µ 1 0, s in 1 + s in 2 = 0 and ψ 1 (s in 1 ) = µ 1 s in 1 , s in 2 .
Thus, there exists a unique

s 1 ∈ J 1 satisfying ψ 1 (s 1 ) = y if and only if µ 1 (s in 1 , s in 2 ) > y.

Existence of the steady states

We can state now the necessary and sufficient conditions of existence of the steady states in the following Theorem.

Theorem 2.1. Assume that Hypotheses H1 to H6 hold. The steady states E 000 , E 001 ,. . ., E 011 , of (2.8) are given in Table 2.1. Assume also that H7 and H8 hold. The necessary and sufficient conditions of existence of the steady states are given in Table 2.2.
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0 , s 1 , s 2 x 0 , x 1 , x 2 E 000 s 0 = s in 0 , s 1 = s in 1 , s 2 = s in 2 x 0 = 0, x 1 = 0, x 2 = 0 E 001 s 0 = s in 0 , s 1 = s in 1 , s 2 = M 2 (D + a 2 ) x 0 = 0, x 1 = 0, x 2 = D D+a 2 s in 2 -M 2 (D + a 2 ) E 100 s 0 = s 0 D, s in 0 , s in 2 is a solution of ψ 0 (s 0 ) = D + a 0 s 1 = s in 1 + s in 0 -s 0 s 2 = s in 2 -ω s in 0 -s 0 x 0 = D D+a 0 s in 0 -s 0 x 1 = 0 x 2 = 0 E 110 s 2 = s 2 D, s in 0 , s in 1 , s in 2 is a solution of Ψ (s 2 , D) = (1 -ω)s in 0 + s in 1 + s in 2 s 0 = M 0 (D + a 0 , s 2 ) s 1 = M 1 (D + a 1 , s 2 ) x 0 = D D+a 0 s in 0 -s 0 x 1 = D D+a 1 s in 0 -s 0 + s in 1 -s 1 x 2 = 0 E 101 s 0 = ϕ 0 (D), s 1 = s in 0 + s in 1 -s 0 s 2 = M 2 (D + a 2 ) x 0 = D D+a 0 s in 0 -s 0 , x 1 = 0 x 2 = D D+a 2 s in 2 -s 2 -ω s in 0 -s 0 E 111 s 0 = ϕ 0 (D) s 1 = ϕ 1 (D) s 2 = M 2 (D + a 2 ) x 0 = D D+a 0 s in 0 -s 0 x 1 = D D+a 1 s in 0 + s in 1 -s 1 -s 0 x 2 = D D+a 2 (1 -ω)(s in 0 -s 0 ) + s in 1 -s 1 + s in 2 -s 2 E 010 s 0 = s in 0 , s 1 = s 1 D, s in 1 , s in 2 is a solution of ψ 1 (s 1 ) = D + a 1 s 2 = s in 1 -s 1 + s in 2 x 0 = 0, x 1 = D D+a 1 s in 1 -s 1 x 2 = 0 E 011 s 0 = s in 0 , s 1 = ϕ 1 (D) s 2 = M 2 (D + a 2 ) x 0 = 0, x 1 = D D+a 1 s in 1 -s 1 x 2 = D D+a 2 s in 1 -s 1 + s in 2 -s 2
Proof. Adding (2.15) to (2.12), substrating (2.12) from (2.13)+(2.16) and adding (2.12) multiplied by ω to (2.14) and (2.17) and substrating (2.13), we obtain the set of equations

   D s in 0 -s 0 -(D + a 0 ) x 0 = 0 D s in 1 -s 1 + (D + a 0 ) x 0 -(D + a 1 ) x 1 = 0 D s in 2 -s 2 -ω (D + a 0 ) x 0 + (D + a 1 ) x 1 -(D + a 2 ) x 2 = 0.
(2.28)

We can solve (2.28) and obtain x 0 , x 1 and x 2 with respect of s 0 , s 1 and s 2 :

x 0 = D D + a 0 s in 0 -s 0 (2.29) x 1 = D D + a 1 s in 0 -s 0 + s in 1 -s 1 (2.30) x 2 = D D + a 2 (1 -ω) s in 0 -s 0 + s in 1 -s 1 + s in 2 -s 2 .
(2.31)
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Chapter 2. Three-tiered microbial food-web model Table 2.2: The necessary and sufficient existence conditions of steady states of (2.8). The functions M 0 , M 1 and M 2 are given in Definition 2.1, φ 1 , φ 2 , ϕ 0 and ϕ 1 are given in Definition 2.2, while µ i and Ψ are given by (2.9) and (2.23).

Steady states Existence conditions E 000

Always exists

E 001 µ 2 s in 2 > D + a 2 E 100 µ 0 s in 0 , s in 2 > D + a 1 E 110 (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ 1 (D), s in 0 > M 0 (D + a 0 , s 2 ) and s in 0 + s in 1 > M 0 (D + a 0 , s 2 ) + M 1 (D + a 1 , s 2 ) with s 2 is solution of Ψ(s 2 ) = (1 -ω)s in 0 + s in 1 + s in 2 E 101 s in 0 > ϕ 0 (D) and s in 2 -ωs in 0 > M 2 (D + a 2 ) -ωϕ 0 (D) E 111 (1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D), s in 0 > ϕ 0 (D) and s in 0 + s in 1 > ϕ 0 (D) + ϕ 1 (D) E 010 µ 1 s in 1 , s in 2 > D + a 1 E 011 s in 1 > ϕ 1 (D) and s in 1 + s in 2 > ϕ 1 (D) + M 2 (D + a 2 )
We can also solve (2.28) and obtain s 0 , s 1 and s 2 with respect of x 0 , x 1 and x 2 :

s 0 = s in 0 - D + a 0 D x 0 (2.32 
)

s 1 = s in 1 + D + a 0 D x 0 - D + a 1 D x 1 (2.33) s 2 = s in 2 -ω D + a 0 D x 0 + D + a 1 D x 1 - D + a 2 D x 2 .
(2.34)

For E 000 , x 0 = x 1 = x 2 = 0. Hence, (2.32), (2.33) and (2.34) result in

s 0 = s in 0 , s 1 = s in 1 and s 2 = s in 2 .
This steady state always exists. For E 001 , x 0 = x 1 = 0 and x 2 > 0. Hence, (2.32) and (2.33) result in

s 0 = s in 0 and s 1 = s in 1 .
Therefore, (2.31) results in

x 2 = D D + a 2 s in 2 -s 2 . (2.35) Since x 2 > 0, (2.14) results in µ 2 (s 2 ) = D + a 2 . Therefore,
s 2 = M 2 (D + a 2 ). (2.36) E 001 exists if and only if x 2 > 0, that is to say s in 2 > M 2 (D + a 2 ), which is equivalent to µ 2 s in 2 > D + a 2 ,
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Chapter 2. Three-tiered microbial food-web model thanks to H6. For E 100 , x 1 = x 2 = 0 and x 0 > 0. (2.29) results in

x 0 = D D + a 0 s in 0 -s 0 . (2.37)
Using this expression together with x 1 = x 2 = 0 in (2.33) and (2.34) result in

s 1 = s in 1 + s in 0 -s 0 and s 2 = s in 2 -ω(s in 0 -s 0 ). (2.38) Since x 0 > 0, (2.12) results in µ 0 (s 0 , s 2 ) = D + a 0 . (2.39)
Replacing s 2 by its expression (2.38) with respect of s 0 in (2.39) results in 

ψ 0 (D) = D + a 0 , (2.40 
µ 0 s in 0 , s in 2 > D + a 0 .
For E 110 , x 0 > 0, x 1 > 0 and x 2 = 0. Hence, (2.29) and (2.30) result in

x 0 = D D + a 0 s in 0 -s 0 and x 1 = D D + a 1 s in 0 -s 0 + s in 1 -s 1 . (2.41) 
Using x 0 > 0 and x 1 > 0, (2.12) and (2.13) result in

µ 0 (s 0 , s 2 ) = D + a 0 and µ 1 (s 1 , s 2 ) = D + a 1 .
Therefore, using the definitions of M 0 and M 1 , we have

s 0 = M 0 (D + a 0 , s 2 ) and s 1 = M 1 (D + a 1 , s 2 ). (2.42)
Using (2.41) together with x 2 = 0 in (2.34), we have

s 2 = s in 2 -ω s in 0 -s 0 + s in 0 -s 0 + s in 1 -s 1 . (2.43)
Replacing s 0 and s 1 by their expressions (2.42) with respect of s 2 in (2.43), it follows that, 

s 2 is a solution of Ψ(s 2 , D) = (1 -ω)s in 0 + s in 1 + s in 2 , ( 2 
+ s in 1 + s in 2 ≥ φ 1 (D)
, and the solution s 2 of (2.44) is such that x 0 and x 1 -components are positive, which is equivalent to

s in 0 > M 0 (D + a 0 , s 2 ) and s in 0 + s in 1 > M 0 (D + a 0 , s 2 ) + M 1 (D + a 1 , s 2 ).
The existence of a unique or two steady states of the form E 110 according to ω follow immediately from Remark 2.1. For E 101 , x 0 > 0, x 2 > 0 and x 1 = 0. (2.29) results in

x 0 = D D + a 0 s in 0 -s 0 . (2.45)
Using this expression together with x 1 = 0 in (2.33) results in

s 1 = s in 1 -s 0 + s in 0 . (2.46)
Using this expression in (2.34) results in

x 2 = D D + a 2 s in 2 -s 2 -ω s in 0 -s 0 . (2.47) 
Using x 0 > 0 and x 2 > 0, (2.12) and (2.14) result in

µ 0 (s 0 , s 2 ) = D + a 0 and µ 2 (s 2 ) = D + a 2 .
Therefore, using the definitions of M 0 , M 2 and ϕ 0 , we find that

s 2 = M 2 (D + a 2 ) and s 0 = ϕ 0 (D). (2.48) 
E 101 exists if and only if x 0 , s 1 and x 2 -components are positive. This condition is equivalent to

s in 0 > ϕ 0 (D) and s in 2 -ωs in 0 > M 2 (D + a 2 ) -ωϕ 0 (D). For E 111 , x 0 > 0, x 1 > 0 and x 2 > 0. Then, as a consequence of (2.12)-(2.14), we obtain µ 0 (s 0 , s 2 ) = D + a 0 , µ 1 (s 1 , s 2 ) = D + a 1 , µ 2 (s 2 ) = D + a 2 .
Using the definitions of M 0 , M 1 , M 2 , ϕ 0 and ϕ 1 yields

s 2 = M 2 (D + a 2 ), s 0 = ϕ 0 (D), s 1 = ϕ 1 (D).
The x-components of E 111 are given by (2.29), (2.30) and (2.31). Thus, E 111 exists if and only if its x-components are positive, that is,

s in 0 > ϕ 0 (D), s in 1 + s in 0 > ϕ 0 (D) + ϕ 1 (D) and (1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D).
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Chapter 2. Three-tiered microbial food-web model For E 010 , x 0 = x 2 = 0 and x 1 > 0. Hence, (2.32) results in

s 0 = s in 0 .
From (2.30), we have

x 1 = D D + a 1 s in 1 -s 1 . (2.49)
Using this expression together with x 0 = x 2 = 0 in (2.34) results in

s 2 = s in 1 -s 1 + s in 2 .
(2.50)

Since x 1 > 0, then, as a consequence of (2.13), we obtain

µ 1 (s 1 , s 2 ) = D + a 1 . (2.51)
Replacing s 2 by its expression (2.50) with respect of s 1 results in

ψ 1 (D) = D + a 1 . (2.52) 
E 010 exists if and only if (2.52) has a positive solution and x 1 and s 2 defined by (2.49) and (2.50), respectively, are positive. This last condition is equivalent to 0 < s 1 < s in 1 . Consequently, (2.52) must have a solution in the interval J 1 . Using Lemma 2.3, there exists a unique s 1 ∈ J 1 , satisfying (2.52), if and only if

µ 1 (s in 1 , s in 2 ) > D + a 1 .
For E 011 , x 0 = 0, x 1 > 0 and x 2 > 0. Hence, (2.32) results in

s 0 = s in 0 .
Using this expression in (2.30) and (2.31) results in

x 1 = D D + a 1 s in 1 -s 1 , x 2 = D D + a 2 s in 1 -s 1 + s in 2 -s 2 .
Since x 1 > 0 and x 2 > 0, as a consequence of (2.13) and (2.14), we have

µ 1 (s 1 , s 2 ) = D + a 1 and µ 2 (s 2 ) = D + a 2 .
Therefore, using the definitions of the functions M 2 and ϕ 1 , it follows that

s 2 = M 2 (D + a 2 ), s 1 = ϕ 1 (D).
For the components x 1 and x 2 to be positive, the necessary and sufficient condition is that

s in 1 > ϕ 1 (D) and s in 1 + s in 2 > ϕ 1 (D) + M 2 (D + a 2 ).
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Remark 2.2. Recall from Remark 2.1 that φ 1 (D) = -∞ when ω > 1. Therefore, in this case, the condition (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ 1 (D) of existence of E 110 is always satisfied.
In the particular cases, where s in 1 = 0 or s in 2 = 0, some of the steady states described in Theorem 2.1 do not exist and the existence conditions of the existing steady states can be simplified. More precisely, we have the following result. 

s in 0 < ϕ 0 (D) - M 2 (D + a 2 ) ω < ϕ 0 (D),
which is in contradiction with the first existence condition of E 101 . Therefore, E 001 , E 100 and E 101 do not exist. This confirms the results obtained in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] in the case where s in 1 = s in 2 = 0, where the steady states E 001 , E 100 , E 101 , E 010 and E 011 do not exist. Assume that s in 1 = s in 2 = 0. If ω = 1, the first existence condition of E 110 in Table 2.2 is written 0 φ 1 (D). This condition cannot be satisfied, since

φ 1 (D) = Ψ (s 0 2 , D) > 0 from Remark 2.1. Thus, E 110 does not exist if ω = 1. When ω > 1, we have s 2 is solution of equation (1 -ω) s in 0 -s 0 = s 1 + s 2 .
Since s 1 > 0 and s 2 > 0, then we have necessarily

(1 -ω) s in 0 -s 0 > 0,
so that s in 0 -s 0 < 0, which contradicts the positivity of the x 0 -component of E 110 in Table 2.1. Thus, E 110 does not exist if ω > 1. When s in 1 = s in 2 = 0, the s 2 -component of E 110 becomes the solution of equation

s in 0 = M 0 (D + a 0 , s 2 ) + M 1 (D + a 1 , s 2 ) + s 2 (1 -ω) .
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If 0 < ω < 1, then s in 0 > M 0 (D + a 0 , s 2 ) + M 1 (D + a 1 , s 2 ) > M 0 (D + a 0 , s 2 ) ,
thus, the second and the third existence conditions of E 110 in Table 2.2 are satisfied when ω < 1. Therefore, E 110 exists if and only if (1 -ω)s in 0 φ 1 (D). Regarding the steady state E 111 in the particular case s in 1 = s in 2 = 0, the first existence condition in Table 2.2 becomes

(1 -ω)s in 0 > φ 2 (D), (2.54) 
which is equivalent to

(1 -ω) s in 0 -ϕ 0 (D) > ϕ 1 (D) + M 2 (D + a 2 ).
When ω 1, this last inequality cannot hold, since s in 0 > ϕ 0 (D), so that E 111 does not exist. If ω < 1, condition (2.54) implies that -E 000 and E 001 coalesce, when D + a 2 = µ 2 s in 2 .

(1 -ω)s in 0 > (1 -ω)ϕ 0 (D) + (1 -ω)ϕ 1 (D), that is, s in 0 > ϕ 0 (D) + ϕ 1 (D) > ϕ 0 (D)
-E 000 and E 100 coalesce, when D + a 0 = µ 0 s in 0 , s in 2 .

-E 000 and E 010 coalesce, when

D + a 1 = µ 1 s in 1 , s in 2 .
-E 001 and E 101 coalesce, when s in 0 = ϕ 0 (D).

-E 100 and E 101 coalesce, when

s in 2 -ωs in 0 = M 2 (D + a 2 ) -ωϕ 0 (D).
-E 011 and E 001 coalesce, when s in 1 = ϕ 1 (D).

-E 1 110 and E 2 110 coalesce, when

s in 0 (1 -ω) = φ 1 (D) -s in 1 -s in 2 .
-E 011 and E 111 coalesce, when s in 0 = ϕ 0 (D).

-E 101 and E 111 coalesce, when

s in 0 + s in 1 = ϕ 0 (D) + ϕ 1 (D).
-E 110 and E 111 coalesce, when

s in 0 (1 -ω) = φ 2 (D) -s in 1 -s in 2 .
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s in 1 + s in 2 = M 2 (D + a 2 ) + ϕ 1 (D).
Remark 2.4. Assume that s in 1 = s in 2 = 0. Then, only the steady states E 000 , E 110 and E 111 can exist. The existence conditions (2.53) of E 110 and E 111 , respectively, are equivalent to the following conditions given in Lemmas 3 and 4 of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]:

s in 0 F 1 (D) := φ 1 (D) 1 -ω and s in 0 > F 2 (D) := φ 2 (D) 1 -ω .
Hence, we recover the results of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] where the study is restricted to the case s in 1 = s in 2 = 0.

Conclusion

In this chapter, we have investigated mathematically the steady states of the threetiered chlorophenol mineralizing "food-web" model proposed by [64] involving three organisms and three substrates with general growth functions and by considering the effects of the phenol and the hydrogen inflowing concentrations as well as the maintenance terms. We have described all steady states of system (2.8) and we have provided the existence conditions according to the control parameters. The analysis of the steady states of system (2.8) proves the existence of eight types of steady states: the washout steady state which always exists, a coexistence steady state where all degrader populations are maintained and six other steady states corresponding to the extinction of one or two degrader populations. Each type of steady state is unique, if it exists, except that of the exclusion only of the hydrogen degraders (E 110 ). Using Hypothesis H8 which satisfies the specific growth rates (2.9), there are at most two steady states of type E 110 .

In the following chapter, we determine the local stability analysis of the three-tiered model in the particular case, when the maintenance (decay) is excluded from the model. We illustrate the change in the asymptotic behavior of the chlorophenol model by bifurcation diagrams according to one-parameter, by using the results of this chapter.

The results of this chapter have been published in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF].
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Introduction

In this chapter, we are interested in analyzing the local stability of the three-tiered microbial model, by considering a large class of growth rates, instead of specific kinetics, when the maintenance is excluded. This chapter is organized as follows. In section 3.2, we present the three-step foodweb model with three input substrate concentrations, when the terms of maintenance are zero and describe the steady states of the model and their existing conditions. Next, in section 3.3, we determine explicitly the necessary and sufficient local stability conditions of the steady states according to the operating parameters, followed by the bifurcation diagram with respect to the chlorophenol input concentration as a bifurcating parameter in section 3.4. In section 3.5, we give some numerical simulations to illustrate the theoretical results.

Three-tiered model without decay terms

Putting the mortality terms equal to zero a i = 0, for i = 0, 1, 2 in model (2.8), which corresponds to (k dec,ch = k dec,ph = k dec,H 2 = 0) of model (2.1), leads to the following model:

                     ẋ0 = µ 0 (s 0 , s 2 )x 0 -Dx 0 ẋ1 = µ 1 (s 1 , s 2 )x 1 -Dx 1 ẋ2 = µ 2 (s 2 )x 2 -Dx 2 ṡ0 = D s in 0 -s 0 -µ 0 (s 0 , s 2 )x 0 ṡ1 = D s in 1 -s 1 + µ 0 (s 0 , s 2 )x 0 -µ 1 (s 1 , s 2 )x 1 ṡ2 = D s in 2 -s 2 -ωµ 0 (s 0 , s 2 )x 0 + µ 1 (s 1 , s 2 )x 1 -µ 2 (s 2 )x 2 . (3.1)
We suppose that the growth functions µ i , i = 0, 1, 2 in system (3.1) satisfy the assumptions H1 to H8 of chapter 2. The solutions of system (3.1) verify Proposition 2.1, with the set Ω in this case is given by

Ω = (x 0 , x 1 , x 2 , s 0 , s 1 , s 2 ) ∈ R 6 + : Z = ωx 0 + x 1 + x 2 + 2s 0 + 2s 1 + s 2 = 2s in 0 + 2s in 1 + s in 2 .
In Table 3.1, the steady states of (3.1) and their necessary and sufficient existence conditions are easily deduced from Table 2.1 and Table 2.2, respectively, in chapter 2 by putting a i = 0, i = 0, 1, 2.

Local stability of the steady states

In this section, we determine the local stability conditions of steady states of model (3.1). Any reference to steady state stability should be considered as local exponential

Doctoral thesis

Page 40|142 Sarra Nouaoura

Chapter 3. Stability of the three-tiered food-web model without decay Table 3.1: The steady states of (3.1) and their necessary and sufficient existence conditions.

Steady state

Existence condition

E 000 = 0, 0, 0, s in 0 , s in 1 , s in 2
Always exists

E 001 = 0, 0, s in 2 -M 2 (D), s in 0 , s in 1 , M 2 (D) µ 2 s in 2 > D E 100 = s in 0 -s 0 , 0, 0, s 0 , s 1 , s 2 , where s 0 = s 0 D, s in 0 , s in 2 is a solution of ψ 0 (s 0 ) = D, s 1 = s in 1 + s in 0 -s 0 , s 2 = s in 2 -ω s in 0 -s 0 µ 0 s in 0 , s in 2 > D E 110 = s in 0 -s 0 , s in 0 -s 0 + s in 1 -s 1 , 0, s 0 , s 1 , s 2 , where s 0 = M 0 (D, s 2 ), s 1 = M 1 (D, s 2 ) and s 2 = s 2 D, s in 0 , s in 1 , s in 2 is a solution of Ψ (s 2 , D) = (1 -ω)s in 0 + s in 1 + s in 2 (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ 1 (D) and the solution s 2 satisfies s in 0 > M 0 (D, s 2 ) and s in 0 + s in 1 > M 0 (D, s 2 ) + M 1 (D, s 2 ) E 101 = s in 0 -s 0 , 0, s in 2 -s 2 -ω s in 0 -s 0 , s 0 , s 1 , s 2 , where s 0 = M 0 (D, s 2 ), s 1 = s in 0 + s in 1 -s 0 , s 2 = M 2 (D)
s in 0 > ϕ 0 (D) and s in 2 -ωs in 0 > M 2 (D) -ωϕ 0 (D) E 111 = (x 0 , x 1 , x 2 , s 0 , s 1 , s 2 ), where s 0 = M 0 (D, s 2 ), s 1 = M 1 (D, s 2 ), s 2 = M 2 (D) x 0 = s in 0 -s 0 , x 1 = s in 1 + s in 0 -s 1 -s 0 , x 2 = (1 -ω)(s in 0 -s 0 ) + s in 1 -s 1 + s in 2 -s 2 (1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D) , s in 0 > ϕ 0 (D) and s in 0 + s in 1 > ϕ 0 (D) + ϕ 1 (D) E 010 = 0, s in 1 -s 1 , 0, s in 0 , s 1 , s in 1 -s 1 + s in 2 , where s 1 = s 1 D, s in 1 , s in 2 is a solution of ψ 1 (s 1 ) = D µ 1 s in 1 , s in 2 > D E 011 = 0, s in 1 -s 1 , s in 1 -s 1 + s in 2 -s 2 , s in 0 , s 1 , s 2 , where s 1 = M 1 (D, s 2 ), s 2 = M 2 (D) s in 1 > ϕ 1 (D) and s in 1 + s in 2 > ϕ 1 (D) + M 2 (D)
stability (LES). Indeed, the local exponential stability is given by the sign of the real parts of the eigenvalues of the Jacobian matrix of system (3.1) evaluated at the steady states, or by the stability criterions in the more complicated cases, as the Routh-Hurwitz criterion and the Liénard-Chipart stability criterion. These stability criterions allow us to conclude to the local stability of a steady state without explicitly calculating the eigenvalues of the Jacobian matrix.

The study of the stability of E 111 requires the following definition.

Definition 3.1. Let D, s in 0 , s in 1 , s in 2 → φ 4 D, s in 0 , s in 1 , s in 2
be defined by:

φ 4 (D, s in 0 , s in 1 , s in 2 ) =(EIx 0 x 2 + EGφ 3 (D)x 0 x 1 )(Ix 2 + (G + H)x 1 + (E + ωF )x 0 ) + (Ix 2 + (G + H)x 1 + ωF x 0 )GIx 1 x 2 , (3.2) 
where and are evaluated at the steady state E 111 . We have used the opposite sign of the partial derivative H = -∂µ 1 /∂s 2 , such that all constants involved in the computation become positive.

E = ∂µ 0 ∂s 0 (s 0 , s 2 ), F = ∂µ 0 ∂s 2 (s 0 , s 2 ), G = ∂µ 1 ∂s 1 (s 1 , s 2 ), H = - ∂µ 1 ∂s 2 (s 1 , s 2 ), I = dµ 2 ds 2 (s 2 ).
Now, we state our main result.

Theorem 3.1. Assume that H1 to H8 hold. The necessary and sufficient stability conditions of the steady states of (3.1) are given in Table 3.2.

Table 3.2: The necessary and sufficient conditions of local stability of steady states of (3.1).

Stability conditions

E 000 µ 0 s in 0 , s in 2 < D, µ 1 s in 1 , s in 2 < D and µ 2 s in 2 < D E 001 s in 0 < ϕ 0 (D) and s in 1 < ϕ 1 (D) E 100 µ 1 s in 0 + s in 1 -s 0 , s in 2 -ω s in 0 -s 0 < D and s in 2 -ωs in 0 < M 2 (D) -ωϕ 0 (D), with s 0 solution of equation ψ 0 (s 0 ) = D E 110 (1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D), φ 3 (D) > 0 and ∂Ψ ∂s 2 (s 2 , D) > 0, with s 2 solution of equation Ψ(s 2 , D) = (1 -ω)s in 0 + s in 1 + s in 2 E 101 s in 0 + s in 1 < ϕ 0 (D) + ϕ 1 (D) E 111 φ 3 (D) ≥ 0 or φ 3 (D) < 0 and φ 4 (D, s in 0 , s in 1 , s in 2 ) > 0 E 010 s in 1 + s in 2 < M 3 s in 0 , D + M 1 D, M 3 s in 0 , D and s in 1 + s in 2 < M 2 (D) + ϕ 1 (D) E 011 s in 0 < ϕ 0 (D)
Proof. To facilitates the local stability analysis, we use the following change of variables:

z 0 = x 0 + s 0 , z 1 = x 1 + s 1 -x 0 , z 2 = ωx 0 -x 1 + x 2 + s 2 . (3.4)
Therefore, model (3.1) can be reduced to a cascade system which takes the form:

                     ẋ0 = -Dx 0 + µ 0 (z 0 -x 0 , z 2 -ωx 0 + x 1 -x 2 ) x 0 ẋ1 = -Dx 1 + µ 1 (z 1 + x 0 -x 1 , z 2 -ωx 0 + x 1 -x 2 ) x 1 ẋ2 = -Dx 2 + µ 2 (z 2 -ωx 0 + x 1 -x 2 ) x 2 ż0 = D s in 0 -z 0 ż1 = D s in 1 -z 1 ż2 = D s in 2 -z 2 (3.5)
The steady states E 000 , E 001 ,. . ., E 011 of (3.5) now take the form x 0 , x 1 , x 2 , s in 0 , s in 1 , s in 2 , where the x i -components of each steady state are given by those in Table 3.1. The Jacobian
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Chapter 3. Stability of the three-tiered food-web model without decay matrix of (3.5) has the block triangular form:

J =   J 1 J 2 0 J 3   ,
where

J 1 =   µ 0 (s 0 , s 2 ) -D -(E + ωF )x 0 F x 0 -F x 0 (G + ωH)x 1 µ 1 (s 1 , s 2 ) -D -(G + H)x 1 Hx 1 -ωIx 2 Ix 2 µ 2 (s 2 ) -D -Ix 2   , (3.6) 
J 2 =   Ex 0 0 F x 0 0 Gx 1 -Hx 1 0 0 Ix 2   , J 3 =   -D 0 0 0 -D 0 0 0 -D   ,
where the functions E, F , G, H and I, defined by (3.3), are evaluated at the steady state. Since J is a block triangular matrix, its eigenvalues are -D with multiplicity 3, together with the eigenvalues of the 3×3 upper-left matrix J 1 . Thus, the local exponential stability (LES) of the steady states is determined by the sign of the real parts of the eigenvalues of J 1 . For E 000 , the matrix J 1 is:

J 1 =   µ 0 s in 0 , s in 2 -D 0 0 0 µ 1 s in 1 , s in 2 -D 0 0 0 µ 2 s in 2 -D   .
The eigenvalues of J 1 are

λ 1 = µ 0 s in 0 , s in 2 -D, λ 2 = µ 1 s in 1 , s in 2 -D and λ 3 = µ 2 s in 2 -D.
Therefore, for E 000 to be stable, it is necessary and sufficient that λ 1 < 0, λ 2 < 0 and λ 3 < 0. Thus, E 000 is stable if and only if

µ 0 s in 0 , s in 2 < D, µ 1 s in 1 , s in 2 < D and µ 2 s in 2 < D,
which are the same as the stability conditions of E 000 in Table 3.2. For E 001 , the matrix J 1 is:

J 1 =   µ 0 s in 0 , M 2 (D) -D 0 0 0 µ 1 s in 1 , M 2 (D) -D 0 -ωIx 2 Ix 2 -Ix 2   .
The eigenvalues of J 1 are

λ 1 = µ 0 s in 0 , M 2 (D) -D, λ 2 = µ 1 s in 1 , M 2 (D) -D and λ 3 = -Ix 2 .
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Therefore, for E 001 to be stable, it is necessary and sufficient that λ 1 < 0 and λ 2 < 0.

Thus, E 001 is stable if and only if

µ 0 s in 0 , M 2 (D) < D and µ 1 s in 1 , M 2 (D) < D.
Since M 0 and M 1 are increasing (see Lemma 2.1), these conditions are equivalent to

s in 0 < M 0 (D, M 2 (D)) and s in 1 < M 1 (D, M 2 (D)),
which are the same as the stability conditions of E 001 in Table 3.2. For E 100 , the matrix J 1 is:

J 1 =    -(E + ωF )x 0 F x 0 -F x 0 0 µ 1 s in 0 + s in 1 -s 0 , s in 2 -ω s in 0 -s 0 -D 0 0 0 µ 2 s in 2 -ω s in 0 -s 0 -D    .
The eigenvalues of J 1 are

λ 1 = -(E + ωF )x 0 , λ 2 = µ 1 s in 0 + s in 1 -s 0 , s in 2 -ω s in 0 -s 0 -D and λ 3 = µ 2 s in 2 -ω s in 0 -s 0 -D.
Therefore, for E 100 to be stable, it is necessary and sufficient that λ 2 < 0 and λ 3 < 0.

Thus, E 100 is stable if and only if

µ 1 s in 0 + s in 1 -s 0 , s in 2 -ω s in 0 -s 0 < D and µ 2 s in 2 -ω s in 0 -s 0 < D, (3.7) 
where s 0 is the solution in the interval J 0 of equation ψ 0 (s 0 ) = D. Since M 2 is increasing (see Lemma 2.1), the second condition of (3.7) is equivalent to

s in 2 -ω s in 0 -s 0 < M 2 (D) ⇐⇒ s 0 < M 2 (D) -s in 2 /ω + s in 0 . (3.8) 
As the function ψ 0 is increasing, (3.8) is equivalent to

ψ 0 (s 0 ) < ψ 0 M 2 (D) -s in 2 /ω + s in 0 . (3.9)
From the definition of the function ψ 0 together with the condition ψ 0 (s 0 ) = D defining s 0 , we deduce that (3.9) is equivalent to

D < µ 0 M 2 (D) -s in 2 /ω + s in 0 , M 2 (D) .
Since M 0 is increasing (see Lemma 2.1), then E 100 is stable if and only if

µ 1 s in 0 + s in 1 -s 0 , s in 2 -ω s in 0 -s 0 < D and M 0 (D, M 2 (D)) < M 2 (D) -s in 2 /ω + s in 0 ,
which are the same as the stability conditions of E 100 in Table 3.2.
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For E 110 , the matrix J 1 is:

J 1 =   -(E + ωF )x 0 F x 0 -F x 0 (G + ωH)x 1 -(G + H)x 1 Hx 1 0 0 µ 2 (s 2 ) -D   .
The eigenvalue is simply

λ 1 = µ 2 (s 2 ) -D.
The others are those of the matrix

  -(E + ωF )x 0 F x 0 (G + ωH)x 1 -(G + H)x 1   .
The eigenvalues of this matrix are λ 2 and λ 3 , such that

λ 2 λ 3 = (E(G + H) -(1 -ω)F G) x 0 x 1 and λ 2 + λ 3 = -((E + ωF )x 0 + (G + H)x 1 ) < 0.
Hence, the eigenvalues λ 2 and λ 3 are of a negative real part if and only if

E(G + H) -(1 -ω)F G > 0. (3.10) 
Let us prove that this condition (3.10) is equivalent to ∂Ψ ∂s 2 (s 2 , D) > 0. Using (3.3) and Lemma 2.1, we obtain

∂M 0 ∂s 2 (D, s 2 ) = - F E and ∂M 1 ∂s 2 (D, s 2 ) = H G .
Using (2.24), it follows that

∂Ψ ∂s 2 (s 2 , D) = F E (ω -1) + H G + 1 = E(G + H) + (ω -1)F G EG . (3.11) 
Since E and G are positive, condition (3.10) is equivalent to ∂Ψ ∂s 2 (s 2 , D) > 0. Consequently, as µ 2 is increasing, E 110 is stable if and only if

s 2 < M 2 (D) and ∂Ψ ∂s 2 (s 2 , D) > 0. (3.12) When s 1 2 ≤ M 2 (D), the s 2 -component of E 110 satisfies s 2 < s 1 2 ≤ M 2 (D).
Thus, E 110 is stable if and only if the first and the second conditions of (3.12) hold. When M 2 (D) < s 1 2 , we will prove that (3.12) is equivalent to the stability conditions of E 110 given in Table 3.2. To this end, assume first that ω 1. If 2 < M 2 (D) implies the first and the second stability conditions of E 110 since the mapping s 2 → Ψ(s 2 , D) is increasing on (s 2 , s 1 2 ). On the other hand, if the first stability condition of E 110 or equivalently (3.13) holds, then

s 2 < M 2 (D), then s 0 2 ≤ s 2 < M 2 (D) < s 1 2 . From Lemma 2.3, the mapping s 2 → Ψ(s 2 , D) is increasing for all s 2 ∈ (s 0 2 , s 1 2 ) (see Figure 2.3(b- c)). Hence, the condition s 2 < M 2 (D) is equivalent to (1 -ω)s in 0 + s in 1 + s in 2 = Ψ(s 2 , D) < Ψ (M 2 (D), D) = φ 2 (D). ( 3 
s * 2 2 < M 2 (D) or s 0 2 < M 2 (D) < s * 1 2 .
This last condition is in contradiction with the second condition of stability of E 110 . Therefore, E 110 is stable if and only if

(1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D), φ 3 (D) > 0 and ∂Ψ ∂s 2 (s 2 , D) > 0.
For E 101 , the matrix J 1 is:

J 1 =   -(E + ωF )x 0 F x 0 -F x 0 0 µ 1 s in 0 + s in 1 -M 0 (D, M 2 (D)), M 2 (D) -D 0 -ωIx 2 Ix 2 -Ix 2   .
Its known eigenvalue is

λ 1 = µ 1 s in 0 + s in 1 -M 0 (D, M 2 (D)), M 2 (D) -D.
The two other are those of the matrix:

  -(E + ωF )x 0 -F x 0 -ωIx 2 -Ix 2   .
The eigenvalues of this matrix are λ 2 and λ 3 such that,

λ 2 λ 3 = EIx 0 x 2 > 0 and λ 2 + λ 3 = -((E + ωF )x 0 + Ix 2 ) < 0.
Hence, the real parts of the eigenvalues λ 2 and λ 3 are negative. Therefore, E 101 is stable if and only if

µ 1 s in 0 + s in 1 -M 0 (D, M 2 (D)), M 2 (D) < D, which is equivalent to s in 0 + s in 1 < M 1 (D, M 2 (D)) + M 0 (D, M 2 (D)),
which is the same as the stability condition of E 101 in Table 3.2.
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For E 111 , the matrix J 1 is:

J 1 =   -(E + ωF )x 0 F x 0 -F x 0 (G + ωH)x 1 -(G + H)x 1 Hx 1 -ωIx 2 Ix 2 -Ix 2   .
The eigenvalues are given by the characteristic polynomial P 3 , which is given by:

P 3 = λ 3 + c 1 λ 2 + c 2 λ + c 3 = 0, (3.14) 
where

c 1 = Ix 2 + (G + H)x 1 + (E + ωF )x 0 , c 2 = (E(G + H) -(1 -ω)F G)x 0 x 1 + EIx 0 x 2 + GIx 1 x 2 , c 3 = EGIx 0 x 1 x 2 . (3.15)
To satisfy the Routh-Hurwitz criterion, we require c i > 0, for i = 1, 3 and c 1 c 2 -c 3 > 0.

Notice that:

c 1 c 2 -c 3 =(EIx 0 x 2 + EGφ 3 (D)x 0 x 1 )(Ix 2 + (G + H)x 1 + (E + ωF )x 0 ) + (Ix 2 + (G + H)x 1 + ωF x 0 )GIx 1 x 2 . (3.16) 
Then, we always have c 1 > 0 and c 3 > 0. From (3.11), we deduce that

(E(G + H) -(1 -ω)F G) = EGφ 3 (D). Therefore, if φ 3 (D) ≥ 0, then, (E(G + H) -(1 -ω)F G) ≥ 0. Hence, c 1 c 2 -c 3 > 0, so that E 111 is LES.
On the other hand, since we always have c 1 > 0 and c 3 > 0, according to the Routh-Hurwitz criterion, E 111 is LES if and only if

φ 4 D, s in 0 , s in 1 , s in 2 := c 1 c 2 -c 3 > 0,
where the function φ 4 can be written as its expression (3.2). For E 010 , the matrix J 1 is:

J 1 =   µ 0 s in 0 , s in 1 -s 1 + s in 2 -D 0 0 (G + ωH)x 1 -(G + H)x 1 Hx 1 0 0 µ 2 s in 1 -s 1 + s in 2 -D   .
The eigenvalues of J 1 are

λ 1 = µ 0 s in 0 , s in 1 -s 1 + s in 2 -D, λ 2 = -(G + H)x 1 and λ 3 = µ 2 s in 1 -s 1 + s in 2 -D.
Therefore, for E 010 to be stable, it is necessary and sufficient that λ 1 < 0 and λ 3 < 0.

Thus, E 010 is stable if and only if where s 1 is the solution in the interval J 1 of equation ψ 1 (D) = D. Recall that the functions M 2 and M 3 are increasing (see Lemma 2.1). Thus,

µ 0 s in 0 , s in 1 -s 1 + s in 2 < D and µ 2 s in 1 -s 1 + s in 2 < D, (3.17 
µ 0 s in 0 , s in 1 -s 1 + s in 2 < D ⇐⇒ s 1 > s in 1 + s in 2 -M 3 (s in 0 , D) and µ 2 s in 1 -s 1 + s in 2 < D ⇐⇒ s 1 > s in 1 + s in 2 -M 2 (D).
As the function ψ 1 is increasing, then, we deduced that

ψ 1 (s 1 ) > ψ 1 s in 1 + s in 2 -M 3 (s in 0 , D) and ψ 1 (s 1 ) > ψ 1 s in 1 + s in 2 -M 2 (D) . From ψ 1 (s 1 ) = µ 1 s 1 , s in 1 -s 1 + s in 2
= D, then, the conditions of the stability of E 010 are equivalent to

µ 1 s in 1 + s in 2 -M 3 (s in 0 , D), M 3 (s in 0 , D) < D and µ 1 s in 1 + s in 2 -M 2 (D), M 2 (D) < D. Since M 1 is increasing. Thus, E 010 is stable if and only if s in 1 + s in 2 < M 1 D, M 3 (s in 0 , D) + M 3 (s in 0 , D) and s in 1 + s in 2 < M 1 (D, M 2 (D)) + M 2 (D)
, which are the same as the stability conditions of E 010 in Table 3.2.

For E 011 , the matrix J 1 is:

J 1 =   µ 0 s in 0 , M 2 (D) -D 0 0 (G + ωH)x 1 -(G + H)x 1 Hx 1 -ωIx 2 Ix 2 -Ix 2   .
Its known eigenvalue is

λ 1 = µ 0 s in 0 , M 2 (D) -D.
The two other are those of the matrix:

  -(G + H)x 1 Hx 1 Ix 2 -Ix 2   .
The eigenvalues of this matrix are λ 2 and λ 3 such that,

λ 2 λ 3 = GIx 1 x 2 > 0 and λ 2 + λ 3 = -((G + H)x 1 + Ix 2 ) < 0.
Hence, the real parts of the eigenvalues λ 2 and λ 3 are negative. Therefore, E 011 is stable if and only if

µ 0 s in 0 , M 2 (D) < D, which is equivalent to s in 0 < M 0 (D, M 2 (D))
, which is the same as the stability condition of E 011 in Table 3 3.2 is always satisfied. However, the other stability conditions can be not satisfied, so that, this steady state can be unstable.
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Bifurcation diagram

In this section, we study numerically the qualitative behavior of system (3.1) when considering S in ch as the bifurcation parameter. Throughout this section, we assume that the biological parameters are fixed at the values provided in Table 3 

kgCOD S /kgCOD X /d K S,ch K S,H 2 ,c K S,ph K I,H 2 K S,H 2 0.053 10 -6 0.302 3.5×10 -6 2.5×10 -5 kgCOD/m 3 Y ch Y ph Y H 2 0.019 0.04 0.06 kgCOD X /kgCOD S k dec,i 0 d -1
For the specific kinetics (2.9), straightforward computations show that the various functions M i , s 0 2 , s 1 2 , Ψ, φ i , ϕ i and ψ i are given by the expressions in Table 3.4. Notice that, from the expression of Ψ in Table 3.4, a straightforward calculation shows that, for all s 2 ∈ (s 0 2 , s 1 2 ),

∂ 2 ψ ∂s 2 2 (s 2 , D) = (1 -ω)2K 0 (D + a 0 ) m 0 -D -a 0 L 0 + s 0 2 (s 2 -s 0 2 ) 3 + 2K 1 (K I + s 1 2 ) (s 1 2 -s 2 ) 3 ,
which is positive since ω < 1 and m 0 > D+a 0 . Thus, the function s 2 → Ψ(s 2 , D) is convex and fulfills H8 (see Figure 2.3(a)). Furthermore, model (2.1) is of the form (2.8) where the growth functions (2.9) satisfy Hypotheses H1 to H8, where k dec,i = 0. Consequently, the results of this section apply to model (2.1). For this section, we put a i = 0, for i = 0, 1, 2 in Table 3.4. Now, we fix the following input concentrations with the dilution rate As a consequence of Table 3.1 and Theorem 3.1, we obtain the following result which determines the existence and the stability of the steady states of (2.1) with respect to the input concentration S in ch .

S in ph = 0, S in H 2 =
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Chapter 3. Stability of the three-tiered food-web model without decay Table 3.4: Notations, intervals and auxiliary functions in the case of growth functions given by (2.9).

Auxiliary functions Definition domain

M 0 (y, s 2 ) = yK 0 (L 0 + s 2 ) m 0 s 2 -y(L 0 + s 2 ) Defined for 0 ≤ y < m 0 s 2 L 0 + s 2 . M 1 (y, s 2 ) = yK 1 (K I + s 2 ) m 1 K I -y(K I + s 2 ) Defined for 0 ≤ y < m 1 K I K I + s 2 . M 2 (y) = yK 2 m 2 -y Defined for 0 ≤ y < m 2 . M 3 (s 0 , z) = zL 0 (K 0 + s 0 ) m 0 s 0 -z(K 0 + s 0 ) Defined for 0 ≤ z < m 0 s 0 K 0 + s 0 . s 0 2 (D) = L 0 (D + a 0 ) m 0 -D -a 0 Defined for D + a 0 < m 0 . s 1 2 (D) = K I (m 1 -D -a 1 ) D + a 1 Defined for D + a 1 < m 1 . Ψ(s 2 , D) = (1 -ω) (D + a 0 )K 0 (L 0 + s 2 ) m 0 s 2 -(D + a 0 )(L 0 + s 2 ) + (D + a 1 )K 1 (K I + s 2 ) m 1 K I -(D + a 1 )(K I + s 2 ) + s 2 Defined for D ∈ I 1 and s 0 2 (D) < s 2 < s 1 2 (D). φ 1 (D) = inf s 0 2 (D)<s 2 <s 1 2 (D) Ψ(s 2 , D) Defined for D ∈ I 1 . φ 2 (D) = Ψ(M 2 (D + a 2 ), D) Defined for D ∈ I 2 . φ 3 (D) = ∂Ψ ∂s 2 (M 2 (D + a 2 ), D) Defined for D ∈ I 2 . ϕ 0 (D) = M 0 (D + a 0 , (M 2 (D + a 2 ))) Defined for D ∈ {D ≥ 0 : s 0 2 < M 2 (D + a 2 )}. ϕ 1 (D) = M 1 (D + a 1 , (M 2 (D + a 2 ))) Defined for D ∈ {D ≥ 0 : M 2 (D + a 2 ) < s 1 2 }. ψ 0 (s 0 ) = m 0 s 0 s in 2 -ω s in 0 -s 0 (K 0 + s 0 ) (L 0 + s in 2 -ω (s in 0 -s 0 )) Defined for s 0 ∈ max 0, s in 0 -s in 2 /ω , +∞ . ψ 1 (s 1 ) = m 1 s 1 K I (K 1 + s 1 ) (K I + s in 1 + s in 2 -s 1 )
Defined for s 1 ∈ 0, s in 1 + s in 2 .

Proposition 3.1. Assume that the biological parameters in (2.1) are given as in 

Definition

Value 3.8: Existence and local stability conditions of steady states of (2.1), when S in ph = 0 and k dec,i = 0. All functions are given in Table 3.4, while µ i and φ 4 are given by (2.9) and (3.2).

σ 1 = M 0 D, S in H 2 /Y 0.001017 σ 2 = (φ 1 (D) -S in H 2 )/((1 -ω)Y ) 0.009159 σ 3 = ϕ 0 (D)/Y 0.010846 σ 4 = (S in H 2 -M 2 (D) + ωϕ 0 (D))/(ωY ) 0.011191 σ 5 = (φ 2 (D) -S in H 2 )/((1 -ω)Y ) 0.016575 σ 6 is the solution of equation φ 4 (S in ch ) = 0 0.029877
E 000 E 001 E 100 E 1 110 E 2 110 E 101 E 111 (0, σ 1 ) U S (σ 1 , σ 2 ) U S U (σ 2 , σ 3 ) U S U U U (σ 3 , σ 4 ) U U U U U S (σ 4 , σ 5 ) U U S U U (σ 5 , σ 6 ) U U S U U U (σ 6 , +∞) U U S U U S

Existence conditions

Stability conditions E 000 Always exists

µ 0 Y S in ch , S in H 2 < D, µ 2 S in H 2 < D E 001 µ 2 S in H 2 > D Y S in ch < ϕ 0 (D) E 100 µ 0 Y S in ch , S in H 2 > D µ 1 Y S in ch -s 0 , S in H 2 -ω Y S in ch -s 0 < D S in H 2 -ωY S in ch < M 2 (D) -ωϕ 0 (D) with s 0 solution of ψ 0 (s 0 ) = D E 110 (1 -ω)Y S in ch + S in H 2 φ 1 (D), Y S in ch > M 0 (D, s 2 ) + M 1 (D, s 2 ) with s 2 solution of Ψ(s 2 , D) = (1 -ω)Y S in ch + S in H 2 (1 -ω)Y S in ch + S in H 2 < φ 2 (D), ∂Ψ ∂s 2 (s 2 , D) > 0, φ 3 (D) > 0 E 101 Y S in ch > ϕ 0 (D), S in H 2 -ωY S in ch > M 2 (D) -ωϕ 0 (D) Y S in ch < ϕ 0 (D) + ϕ 1 (D) E 111 (1 -ω)Y S in ch + S in H 2 > φ 2 (D), Y S in ch > ϕ 0 (D) + ϕ 1 (D)
φ 3 (D) 0 or φ 3 (D) < 0 and φ 4 (D, S in ch , S in H 2 ) > 0

• E 000 always exists and is unstable since the second stability condition in Table 3 

S in ch > (M 0 (D, S in H 2 ))/Y =: σ 1 .
For S in ch = σ 1 , there is a transcritical bifurcation of E 100 and E 000 , which have the same components at σ 1 (see Table 3.1). Consider the function y = F (S in ch ) defined by:

F (S in ch ) = µ 1 (Y S in ch -s 0 , S in H 2 -ω(Y S in ch -s 0 )), (3.19) 
where s 0 depends also on S in ch . The first stability condition of E 100 in Table 3.8 is written F S in ch < D. • Recall that ω 0.53 < 1 for the set of parameters given in 

σ 3 := ϕ 0 (D) Y < S in ch < S in H 2 -M 2 (D) + ωϕ 0 (D) ωY =: σ 4 .
For S in ch = σ 3 , there is a transcritical bifurcation of E 101 and E 001 . For S in ch = σ 4 , there is a transcritical bifurcation of E 101 and E 100 . When it exists, E 101 is stable since

S in ch < σ 4 0.011191 < ϕ 0 (D) + ϕ 1 (D) Y 0.013717.
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y y = Y S i n c h y = M 0 D , s * 1 2 + M 1 D , s * 1 2 y = M 0 D , s * 2 2 + M 1 D , s * 2 2 S in ch σ 2
* i 2 ) + M 1 (D, s * i 2 ), i = 1, 2.
• From Table 3.8, E 111 exists if and only if

S in ch > φ 2 (D) -S in H 2 (1 -ω)Y =: σ 5 0.016575, S in ch > ϕ 0 (D) + ϕ 1 (D) Y 0.013717.
Then, E 111 exists if and only if S in ch > σ 5 . For the stability of E 111 , we have φ 3 (D) < 0 and we plot the functions φ 4 with respect to S in ch . Figure 3.3 shows that the equation φ 4 (S in ch ) = 0 has a unique solution σ 6 0.029877 such that φ 4 (S in ch ) < 0, for all σ 5 < S in ch < σ 6 and φ 4 (S in ch ) > 0, for all S in ch > σ 6 . To give numerical evidence of the Hopf bifurcation occurring through the positive steady state E 111 as S in ch varies, we determine the eigenvalues of the matrix J 1 defined by (3.6) and evaluated at this steady state. Figure 3.4(a) shows that one eigenvalue λ 1 S in ch remains negative for all S in ch ∈ (σ 5 , 0.05]. Figure 3.4(b) shows that the two other eigenvalues are real and distinct for all S in ch ∈ (σ 5 , σ ) and we denote them by λ 2 S in ch and λ 3 S in ch , then, they become a complex-conjugate pair for all S in ch ∈ (σ , 0.05), and we denote them by

λ 2,3 S in ch = α S in ch ± iβ S in ch ,
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dα dS in ch (σ 6 ) < 0.
Therefore, E 111 changes its stability through a supercritical Hopf bifurcation with the emergence of a stable limit cycle.

To detect the limit cycle, we take an initial condition closes enough to the positive steady state E 111 of size order ε = 10 -2 .

Figures of the cycle occurring at σ * . In Figure 4.13(b), the steady states E 000 and E 001 cannot be distinguished since they have both a zero X ch -component. Since for S in ch < σ 3 , E 001 is stable and E 000 is unstable, the X ch = 0 axis is plotted in blue, which is the color for E 001 in Table 3.9. In Figure 3.6(b) E 000 and E 001 are distinguished but it is not the case for E 000 and E 100 , since they have both a zero X H 2 -component. As E 100 is stable and E 000 is unstable for S in ch > σ 4 , the X H 2 = 0 axis is plotted in purple as the color of E 100 in Table 3.9. In [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF], a numerical study of the bifurcation diagram with respect to the parameter D is given in the case without maintenance and s in 1 = s in 2 = 0. Figure 6 in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] shows that the disappearance of the stable limit cycle occurs through a saddle-node bifurcation with

(a) X ch E 000 E 001 E 100 E 2 110 E 111 E 1 110 σ 1 ¡ ¡ ! σ 2 σ 3 ¡ ¡ ! σ 4 e e u e e u σ 5 ¡ ¡ ! σ * e e u σ 6 S in ch (b) X ch E 000 E 001 E 100 E 101 σ 1 σ 3 σ 4 S in ch
(a) X ch E 2 110 E 1 110 E 111 E 000 E 001 E 100 σ 2 σ 3 ¡ ¡ ! e e u σ 4 σ 5 S in ch (b) X ch E 2 110 E 1 110 E 111 E 000 E 001 E 100 σ * σ 6 S in ch
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Chapter 3. Stability of the three-tiered food-web model without decay another unstable limit cycle. We conjecture that in our case also the stable limit cycle disappears by a confluence with an unstable limit cycle at S in ch = σ * .

Numerical simulations

We present in this section, several numerical simulations which illustrate the main results of the last section namely the bistability with convergence either to E 100 or to a stable limit cycle according to the initial conditions, when S in ch ∈ (σ * , σ 6 ), and bistability with convergence toward E 100 or E 111 , when S in ch > σ 6 . For the numerical simulations presented in the following figures, we used the dimensionless form of (2.1) used in [64]. Indeed, in the original form (2.1), numerical instabilities arise in numerical schemes. To reduce the number of parameters describing the dynamics and facilitate numerical simulations, the following rescaling of the variables was used in [64]:

N 0 = X ch K S,ch Y ch , N 1 = X ph K S,ph Y ph , N 2 = X H 2 K S,H 2 Y H 2 , R 0 = S ch K S,ch , R 1 = S ph K S,ph , R 2 = S H 2 K S,H 2 , τ = k m,ch Y ch t. (3.20) 
Then, with these changes of variables, the system given in (2.1) reduced to system

                     dN 0 dτ = (ν 0 (R 0 , R 2 ) -α -k 0 )N 0 dN 1 dτ = (ν 1 (R 1 , R 2 ) -α -k 1 )N 1 dN 2 dτ = (ν 2 (R 2 ) -α -k 2 )N 2 dR 0 dτ = α(u 0 -R 0 ) -ν 0 (R 0 , R 2 )N 0 dR 1 dτ = α(u 1 -R 1 ) + ω 0 ν 0 (R 0 , R 2 )N 0 -ν 1 (R 1 , R 2 )N 1 dR 2 dτ = α(u 2 -R 2 ) -ω 2 ν 0 (R 0 , R 2 )N 0 + ω 1 ν 1 (R 1 , R 2 )N 1 -ν 2 (R 2 )N 2 .
(3.21)

The operating parameters are

α = D k m,ch Y ch , u 0 = S in ch K S,ch , u 1 = S in ph K S,ph , u 2 = S in H 2 K S,H 2 .
The yield coefficients are

ω 0 = K S,ch K S,ph 224 208 (1 -Y ch ), ω 1 = K S,ph K S,H 2 32 224 (1 -Y ph ), ω 2 = 16 208 K S,ch K S,H 2 .
The death rates are

k 0 = k dec,ch k m,ch Y ch , k 1 = k dec,ph k m,ch Y ch , k 2 = k dec,H 2 k m,ch Y ch .
The growth functions are

ν 0 (R 0 , R 2 ) = R 0 1 + R 0 R 2 K P + R 2 , ν 1 (R 1 , R 2 ) = φ 1 R 1 1 + R 1 R 2 1 + K I R 2 , ν 2 (R 2 ) = φ 2 R 2 1 + R 2 , (3.22) 
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where the biological parameters are given by

φ 1 = k m,ph Y ph k m,ch Y ch , φ 2 = k m,H 2 Y H 2 k m,ch Y ch , K P = K S,H 2 ,C K S,H 2 , K I = K S,H 2 K I,H 2 .
For this section, we put k i = 0, for i = 0, 1, 2 in (3.21). In the following, the projections of the orbits of the six-dimensional phase space into the three-dimensional space (X ch , X ph , X H 2 ) illustrate the appearance and disappearance of limit cycles for different values of S in ch where E 000 , E 001 , E 1 110 and E 2 110 are unstable. Then, we have the following possible pictures.

• For S in ch ∈ (σ 5 , σ * ), E 111 is a saddle-focus and the numerical simulations show the convergence for any initial condition to the stable node E 100 , where there is the competitive exclusion of the second and third species. • For S in ch ∈ (σ * , σ 6 ), the system exhibits sustained oscillations, which implies that limit cycle is stable. Figure 3.9 shows bistability with two basins of attraction: one toward the limit cycle and the second toward E 100 . Indeed, for initial conditions in a neighborhood of E 111 (0.539, 0.089, 59.995, 0.257, 0.032, 0.014),
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Page 58|142 Sarra Nouaoura of size order 5.5 × 10 -3 and 9.8 × 10 -3 , the trajectories in yellow and blue converge toward the stable limit cycle in red, while the green trajectory converges toward the steady state E 100 (0.002, 0, 0, 1.870, 0.001, 0.003),

for the initial condition in a neighborhood of E 111 of size order 1.001 × 10 -2 .

• For S in ch > σ 6 , E 111 changes its stability and becomes a stable focus point via a supercritical Hopf bifurcation. Figure 3.10 shows the bistability of E 100 (4.8 × 10 -8 , 0, 0, 0.0347, 3.66 × 10 -4 , 0.00351) and E 111 (4.59 × 10 -4 , 8.99 × 10 -4 , 7.51 × 10 -5 , 0.0108, 0.00303, 1.2 × 10 -7 ), where the blue trajectory converges to the stable focus E 111 for the initial condition in a neighborhood of E 111 of size order 2.1 × 10 -2 , and the green trajectory converges to E 100 for the initial condition in a neighborhood of E 111 of size order 4 × 10 -2 . Figure 3.11 illustrates the time course of system (2.1) in the case of exclusion of the second and the third species and the convergence to the steady state E 100 . Figure 3.12 illustrates a positive, periodic, solution representing the coexistence of the three species. The sustained oscillations prove the stability of the limit cycle. However, Figure 3.13 shows the time course of the green trajectory in Figure 3.9. Finally, Figure 3.14 illustrates the convergence of the positive steady state which becomes a stable focus. the variables of model (2.1), using the change of variables (3.20). The plot of the limit cycle was obtained by solving the ordinary differential equations using the default solver "lsoda" from the ODEPACK package in Scilab. 

Conclusion

In this chapter, we were interested in determining the local stability of the steady states of the three-tiered model (2.1), in the particular case where maintenance is ignored. We consider general growth rates. The phenol and the hydrogen input concentrations are taken into account. We analytically determined the necessary and sufficient conditions of stability of all steady states according to the operating parameters. We have analyzed the bifurcation diagrams of system (2.1) by varying the chlorophenol input concentration when s in 1 = 0. It shows that the system exhibits a bi-stability where the coexistence steady state can destabilize undergoing a supercritical Hopf bifurcation with the occurrence of a stable limit cycle. These interesting phenomena have been already depicted in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], in the particular case s in 0 > 0 and s in 1 = s in 2 = 0. The possibility of the Hopf bifurcation of the positive steady state is analytically proved in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF], in the case without maintenance. The destabilization of the positive steady state was not detected by the numerical analysis of the operating diagrams in [64].

We focus in chapter 4 on the analysis of the stability of system (2.1), by considering the maintenance terms, where the system cannot be reduced to a three-dimensional one, and we illustrate the effects of the maintenance terms on the behavior of the process.

The results of this chapter have been published in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF].

Doctoral thesis

Page 62|142 Sarra Nouaoura 

Doctoral thesis

Page 63|142 Sarra Nouaoura

Introduction

In this chapter, we describe the local stability analysis of the three-tiered microbial model in the case including decay terms. In this case, we cannot reduce it to a threedimensional one. This chapter is structured as follows. In section 4.2, we give the necessary and sufficient local stability properties of all steady states. We give the bifurcation diagrams with respect to the dilution rate, first, and then to the chlorophenol input concentration as the bifurcating parameters in section 4.4. We illustrate our results by numerical simulations in section 4.5.

Local stability of the steady states

In this section, we are interested to study analytically the local stability of each steady state of system (2.8). In view of using the Liénard-Chipart stability criterion. The asymptotic stability of E 111 requires a new definition and notations.

J = µ 0 (s 0 , s 2 ), K = µ 1 (s 1 , s 2 ), L = µ 2 (s 2 ). (4.1) 
Definition 4.1. The characteristic polynomial of the matrix Jacobian for system (2.8) evaluted at E 111 is given by:

P 6 (λ) = λ 6 + c 1 λ 5 + c 2 λ 4 + c 3 λ 3 + c 4 λ 2 + c 5 λ + c 6 ,
where the c i are defined in Table 4.1.

Our main result is stated in Theorem 4.1. To prove our statement, we need the Liénard-Chipart stability criterion (see Gantmacher [START_REF] Gantmacher | Application of the theory of matrices[END_REF], Theorem 11) which represents almost half that of the Routh-Hurwitz theorem which facilitates the study of the asymptotic behavior of dynamic systems especially for dimensions beyond five. It is known that for a polynomial of degree four the Routh-Hurwitz conditions can be written as in the following Lemmas, see, for instance, Theorem 11 [START_REF] Coppel | Stability and Asymptotic Behavior of Differential Equations[END_REF]. Lemma 4.1. Consider the fourth-order polynomial P (λ) with real coefficients given by:

P (λ) = c 0 λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 .
All of the roots of the polynomial P (λ) have a negative real part if and only if

c i > 0, for i = 1, 3, 4 and r 1 = c 3 r 0 -c 2 1 c 4 > 0, (4.2) 
where r 0 = c 1 c 2 -c 0 c 3 .
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c 1 = 3D + (E + F w)x 0 + (G + H)x 1 + Ix 2 c 2 = 3D 2 + (2D + J)(E + ωF )x 0 + (2D + K)(G + H)x 1 + EIx 0 x 2 + GIx 1 x 2 +(2D + L)Ix 2 + (E(G + H) -(1 -ω)F G)x 0 x 1 c 3 = D 3 + D(D + 2J)(E + ωF )x 0 + D(D + 2K)(G + H)x 1 + D(D + 2L)Ix 2 +EI(D + J + L)x 0 x 2 + GI(D + K + L)x 1 x 2 + EGIx 0 x 1 x 2 + (E(G + H) -(1 -ω)F G)(D + J + K)x 0 x 1 c 4 = D 2 (E + ωF )Jx 0 + D 2 (G + H)Kx 1 + D 2 ILx 2 + EI(DJ + DL + JL)x 0 x 2 +GI (DK + DL + KL) x 1 x 2 + EGI(J + K + L)x 0 x 1 x 2 + (E(G + H) -(1 -ω)F G)(DJ + DK + JK)x 0 x 1 c 5 = DEIJLx 0 x 2 + DGIKLx 1 x 2 + D(E(G + H) -(1 -ω)F G)JKx 0 x 1 +EGI (JK + JL + KL) x 0 x 1 x 2 c 6 = EGIJKLx 0 x 1 x 2 r 0 = c 1 c 2 -c 3 , r 1 = c 1 c 4 -c 5 , r 2 = c 3 r 0 -c 1 r 1 , r 3 = c 5 r 0 -c 2 1 c 6 r 4 = r 1 r 2 -r 0 r 3 , r 5 = r 3 r 4 -c 1 c 6 r 2 2
Proof. From the Liénard-Chipart stability criterion (see Gantmacher [START_REF] Gantmacher | Application of the theory of matrices[END_REF], Theorem 11), all of the roots of the polynomial P have a negative real part if and only if c i > 0, i = 1, 3, 4, det(∆ 2 ) > 0 and det(∆ 4 ) > 0, (

where ∆ 2 and ∆ 4 are the Hurwitz matrices defined by:

∆ 2 = c 1 c 3 c 0 c 2 and ∆ 4 =      c 1 c 3 0 0 c 0 c 2 c 4 0 0 c 1 c 3 0 0 c 0 c 2 c 4      . Conditions (4.
3) are equivalent to

c i > 0, i = 1, 3, 4, r 0 = c 1 c 2 -c 0 c 3 > 0 and r 1 = c 3 r 0 -c 2 1 c 4 > 0. (4.4)
When all conditions (4.4) hold, the condition r 1 > 0 implies that r 0 > 0. Thus, conditions (4.4) are equivalent to (4.2).

Lemma 4.2. Consider the six-order polynomial P (λ) with real coefficients given by:

P (λ) = c 0 λ 6 + c 1 λ 5 + c 2 λ 4 + c 3 λ 3 + c 4 λ 2 + c 5 λ + c 6 .
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All of the roots of the polynomial P (λ) have a negative real part if and only if c i > 0, i = 1, 3, 5, 6, r 4 > 0 and r 5 > 0, (

where r 4 = r 1 r 2 -r 0 r 3 and r 5 = r 3 r 4 -c 1 c 6 r 2 2 , with

r 0 = c 1 c 2 -c 0 c 3 , r 1 = c 1 c 4 -c 0 c 5 , r 2 = c 3 r 0 -c 1 r 1 and r 3 = c 5 r 0 -c 2 1 c 6 .
Proof. From the Liénard-Chipart stability criterion (see Gantmacher [START_REF] Gantmacher | Application of the theory of matrices[END_REF], Theorem 11), all of the roots of the polynomial P have a negative real part if and only if

c i > 0, i = 1, 3, 5, 6, det(∆ 2 ) > 0, det(∆ 4 ) > 0 and det(∆ 6 ) > 0, (4.6) 
where ∆ 2 , ∆ 4 and ∆ 6 are the Hurwitz matrices defined by: When all conditions (4.7) hold, the condition r 5 > 0 implies that r 3 > 0, that is, c 5 r 0 > c 6 c 2 1 which implies that r 0 > 0. Hence, conditions (4.7) are equivalent to (4.5).

∆ 2 = c 1 c 3 c 0 c 2 , ∆ 4 =      c 1 c 3 c 5 0 c 0 c 2 c 4 c 6 0 c 1 c 3 c 5 0 c 0 c 2 c 4      , ∆ 6 =          c 1 c 3 c 5 0 0 0 c 0 c 2 c 4 c 6 0 0 0 c 1 c 3 c 5 0 0 0 c 0 c 2 c 4 c 6 0 0 0 c 1 c 3 c 5 0 0 0 c 0 c 2 c 4 c 6          . Conditions (4.
We can now state and prove our main result.

Theorem 4.1. Assume that H1 to H8 hold. The necessary and sufficient conditions of local stability of the steady states of (2.8) when the maintenance is included are given in Table 4.2.

Proof. The local stability of the steady states is determined by the eigenvalues of the Jacobian matrix of system (2.8) evaluated at the steady state. The Jacobian matrix of (2.8) corresponds to the 6 × 6 matrix:

J =          J -D -a 0 0 0 Ex 0 0 F x 0 0 K -D -a 1 0 0 Gx 1 -Hx 1 0 0 L -D -a 2 0 0 Ix 2 -J 0 0 -D -Ex 0 0 -F x 0 J -K 0 Ex 0 -D -Gx 1 F x 0 + Hx 1 -ωJ K -L -ωEx 0 Gx 1 -D -ωF x 0 -Hx 1 -Ix 2         
, where the functions E, F , G, H, I, J, K and L are defined by (3.3) 

< D + a 0 , µ 1 s in 1 , s in 2 < D + a 1 , µ 2 s in 2 < D + a 2 E 001 s in 0 < ϕ 0 (D) and s in 1 < ϕ 1 (D) E 100 µ 1 s in 0 + s in 1 -s 0 , s in 2 -ω s in 0 -s 0 < D + a 1 and s in 2 -ωs in 0 < M 2 (D + a 2 ) -ωϕ 0 (D), with s 0 solution of equation ψ 0 (s 0 ) = D + a 0 . E 110 (1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D), φ 3 (D) > 0 and ∂Ψ ∂s 2 (s 2 , D) > 0, with s 2 solution of equation Ψ(s 2 , D) = (1 -ω)s in 0 + s in 1 + s in 2 . E 101 s in 0 + s in 1 < ϕ 0 (D) + ϕ 1 (D) E 111 c 3 > 0, c 5 > 0, r 4 > 0 and r 5 > 0 E 010 s in 1 + s in 2 < M 3 s in 0 , D + a 0 + M 1 D + a 1 , M 3 s in 0 , D + a 0 s in 1 + s in 2 < M 2 (D + a 2 ) + ϕ 1 (D) E 011 s in 0 < ϕ 0 (D)
For E 000 , the Jacobian matrix J evaluated at E 000 is:

J =          J -D -a 0 0 0 0 0 0 0 K -D -a 1 0 0 0 0 0 0 L -D -a 2 0 0 0 -J 0 0 -D 0 0 J -K 0 0 -D 0 -ωJ K -L 0 0 -D          .
Thus, E 000 is stable if and only if

µ 0 s in 0 , s in 2 < D + a 0 , µ 1 s in 1 , s in 2 < D + a 1 and µ 2 s in 2 < D + a 2 ,
which are the same as the stability conditions of E 000 in Table 4.2. For E 001 , the Jacobian matrix J evaluated at E 001 is:

J =          J -D -a 0 0 0 0 0 0 0 K -D -a 1 0 0 0 0 0 0 0 0 0 Ix 2 -J 0 0 -D 0 0 J -K 0 0 -D 0 -ωJ K -L 0 0 -D -Ix 2         
.

By developing the determinant of the matrix J -λI d , where I d is the 6 × 6 identity matrix, with respect to the first, second, fourth and fifth lines, respectively, we obtain, the Doctoral thesis Page 69|142 Sarra Nouaoura
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λ 1 = µ 0 s in 0 , M 2 (D + a 2 ) -D -a 0 , λ 2 = µ 1 s in 1 , M 2 (D + a 2 ) -D -a 1 , λ 3 = λ 4 = -D.
The other eigenvalues λ 5 and λ 6 are given by the characteristic polynomial of the following matrix:

J 2 =   0 Ix 2 -L -D -Ix 2   .
Thus,

λ 5 λ 6 = LIx 2 > 0 and λ 5 + λ 6 = -(D + Ix 2 ) < 0.
Hence, the eigenvalues λ 5 and λ 6 are of negative real parts. Therefore, E 001 is stable if and only if

µ 0 s in 0 , M 2 (D + a 2 ) < D + a 0 and µ 1 s in 1 , M 2 (D + a 2 ) < D + a 1 .
Since M 0 and M 1 are increasing (see Lemma 2.1), these conditions are equivalent to

s in 0 < M 0 (D + a 0 , M 2 (D + a 2 )) and s in 1 < M 1 (D + a 1 , M 2 (D + a 2 )
), which are the same as the stability conditions of E 001 in Table 4.2.

For E 100 , the Jacobian matrix J evaluated at E 100 is:

J =          0 0 0 Ex 0 0 F x 0 0 K -D -a 1 0 0 0 0 0 0 L -D -a 2 0 0 0 -J 0 0 -D -Ex 0 0 -F x 0 J -K 0 Ex 0 -D F x 0 -ωJ K -L -ωEx 0 0 -D -ωF x 0         
.

By developing the determinant of the matrix J -λI d , with respect to the second and third lines, and the fifth column, respectively, we obtain, the eigenvalues

λ 1 = µ 1 s in 0 -s 0 + s in 1 , s in 2 -ω s in 0 -s 0 -D -a 1 , λ 2 = µ 2 s in 2 -ω s in 0 -s 0 -D -a 2 , λ 3 = -D.
The other eigenvalues are given by the characteristic polynomial P 3 of the following matrix:

J 3 =   0 Ex 0 F x 0 -J -D -Ex 0 -F x 0 -ωJ -ωEx 0 -D -ωF x 0   .
Denote C i and L i , i = 1, 2, 3, the columns and lines of the matrix J 3 -λI d . The replacements of L 3 by L 3 -ωL 2 and C 2 by C 2 + ωC 3 preserve the determinant and lead to

P 3 (λ) = -(λ + D) -λ (E + ωF )x 0 -J -(λ + D + (E + ωF )x 0 )
.
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The eigenvalues of J 3 are λ 4 = -D, λ 5 and λ 6 such that λ 5 λ 6 = J(E + ωF )x 0 > 0 and λ 5 + λ 6 = -D -(E + ωF )x 0 < 0.

Hence, the real parts of λ 5 and λ 6 are negative. Therefore, E 100 is stable if and only if

µ 1 s in 0 -s 0 + s in 1 , s in 2 -ω s in 0 -s 0 < D +a 1 and µ 2 s in 2 -ω s in 0 -s 0 < D +a 2 , (4.8)
with s 0 is the solution in the interval J 0 of equation µ 0 s 0 , s in 2 -ω s in 0 -s 0 = D + a 0 . Since M 2 is increasing, we have the following equivalence:

µ 2 s in 2 -ω s in 0 -s 0 < D + a 2 ⇐⇒ s 0 < M 2 (D + a 2 ) -s in 2 ω + s in 0 .
As the function ψ 0 is increasing, we deduce that,

ψ 0 (s 0 ) < ψ 0 M 2 (D + a 2 ) -s in 2 ω + s in 0 .
From ψ 0 (s 0 ) = µ 0 s 0 , s in 2 -ω s in 0 -s 0 = D + a 0 , we deduce that, the second condition of the stability of E 100 is equivalent to

D + a 0 < µ 0 M 2 (D + a 2 ) -s in 2 ω + s in 0 , M 2 (D + a 2 ) .
Hence, we have

s in 2 -ωs in 0 < M 2 (D + a 2 ) -ωM 0 (D + a 0 , M 2 (D + a 2 )) .
Consequently, E 100 is stable if and only if

µ 1 s in 0 -s 0 + s in 1 , s in 2 -ω s in 0 -s 0 < D+a 1 , s in 2 -ωs in 0 < M 2 (D+a 2 )-ωM 0 (D+a 0 , M 2 (D+a 2 )).
Then, these conditions are the same as stability conditions of E 100 in Table 4.2. For E 110 , the Jacobian matrix J evaluated at E 110 is:

J =          0 0 0 Ex 0 0 F x 0 0 0 0 0 Gx 1 -Hx 1 0 0 L -D -a 2 0 0 0 -J 0 0 -D -Ex 0 0 -F x 0 J -K 0 Ex 0 -D -Gx 1 F x 0 + Hx 1 -ωJ K -L -ωEx 0 Gx 1 -D -ωF x 0 -Hx 1         
.

By developing the determinant of the matrix J -λI d , with respect to the third line, we obtain the eigenvalue λ 1 = µ 2 (s 2 ) -D -a 2 . The other eigenvalues are given by the characteristic polynomial P 5 of the following matrix: 

J 5 =        0 0 Ex 0 0 F x 0 0 0 0 Gx 1 -Hx 1 -J 0 -D -Ex 0 0 -F x 0 J -K Ex 0 -D -Gx 1 F x 0 + Hx 1 -ωJ K -ωEx 0 Gx 1 -D -ωF x 0 -Hx 1        . Doctoral thesis Page 71|142 Sarra Nouaoura
-λ 0 (E + ωF )x 0 -F x 0 0 -λ -(G + ωH)x 1 (G + H)x 1 -J 0 -λ -D -(E + ωF )x 0 F x 0 0 -K (G + ωH)x 1 -λ -D -(G + H)x 1
.

Hence, we obtain, the eigenvalue λ 2 = -D. The other eigenvalues are given by the following characteristic polynomial:

P 4 (λ) = λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 = 0,
where the coefficients c i for i = 1, . . . , 4 are given by

c 1 =2D + (E + ωF )x 0 + (G + H)x 1 , c 2 =D 2 +(E + ωF )(D + J)x 0 +(G + H)(D + K)x 1 +(E(G + H)-(1-ω)F G)x 0 x 1 , c 3 =D(E + ωF )Jx 0 + D(G + H)Kx 1 + (E(G + H) -(1 -ω)F G)(J + K)x 0 x 1 , c 4 =(E(G + H) -(1 -ω)F G)JKx 0 x 1 .
From Lemma 4.1, all of the roots of the fourth-order polynomial have negative real parts if and only if

c i > 0, for i = 1, 3, 4 and r 1 = c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0. ( 4.9) 
We always have c 1 > 0. Moreover, c 3 > 0 and c 4 > 0 if and only if

E(G + H) -(1 -ω)F G > 0. (4.10)
Let us denote

A = G + H, B = E(G + H) -(1 -ω)F G G + H and C = G + ωH G + H F.
Note that B > 0 if and only if condition (4.10) is satisfied. Then, we can write c i , for i = 1, . . . , 4 and r 1 as follows:

c 1 = 2D + (B + C)x 0 + Ax 1 , c 2 = D 2 + (B + C)(D + J)x 0 + A(D + K)x 1 + ABx 0 x 1 , c 3 = D(B + C)Jx 0 + DAKx 1 + AB(J + K)x 0 x 1 , c 4 = ABJKx 0 x 1 ,
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We can write r 1 as follows:

r 1 =DJ (D + J)(B + C) 3 -B 3 J x 3 0 + D 2 A 3 Kx 3 1 + B 2 A 2 (B + C)(J + K)x 3 0 x 2 1 + B 2 A 3 (J + K)x 2 0 x 3 1 + BA D(2J + K)(B + C) 2 + CJ 2 (2B + C) x 3 0 x 1 + DBA 3 (J + 2K)x 0 x 3 1 + 3D 3 A 2 Kx 2 1 + D 2 J 3D(B + C) 2 + CJ(2B + C) x 2 0 + BA 2 D(J + K)(5B + 3C) + C J 2 + K 2 x 2 0 x 2 1 + DA [C (DC(2J + K) +CJ(J + 2K) + DB(9J + 5K) + 2BJ 2 + DB 2 (7J + 4K) x 2 0 x 1 + DA 2 [DB(4J + 7K) + CK(2J + K) + DC(J + 2K)]x 0 x 2 1 + 2D 4 J(B + C)x 0 + 2D 4 AKx 1 + D 2 A[D(J + K)(5B + 3C) + 2CJK]x 0 x 1 + D 2 + DBx 0 + DAx 1 + BAx 0 x 1 (BJx 0 -AKx 1 ) 2 .
Hence, conditions (4.9) are verified if and only if (4.10) is satisfied. Let us prove that condition (4.10) is equivalent to ∂Ψ ∂s 2 (s 2 , D) > 0. Using (3.3), we obtain

∂M 0 ∂s 2 (D + a 0 , s 2 ) = - F E and ∂M 1 ∂s 2 (D + a 1 , s 2 ) = H G .
Using (2.24), it follows that

∂Ψ ∂s 2 (s 2 , D) = - F E (1 -ω) + H G + 1 = E(G + H) -(1 -ω)F G EG .
Since 

J =          0 0 0 Ex 0 0 F x 0 0 K -D -a 1 0 0 0 0 0 0 0 0 0 Ix 2 -J 0 0 -D -Ex 0 0 -F x 0 J -K 0 Ex 0 -D F x 0 -ωJ K -L -ωEx 0 0 -D -ωF x 0 -Ix 2         
.

By developing the determinant of the matrix J -λI d , with respect to the second and fifth lines, respectively, we obtain, the eigenvalues

λ 1 = µ 1 s in 0 + s in 1 -M 0 (D + a 0 , M 2 (D + a 2 )), M 2 (D + a 2 ) -D -a 1 and λ 2 = -D.
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The other eigenvalues are given by the characteristic polynomial:

P 4 (λ) = λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 = 0,
where

c 1 = 2D + (E + ωF )x 0 + Ix 2 , c 2 = D 2 + (E + ωF )(D + J)x 0 + I(D + L)x 2 + EIx 0 x 2 , c 3 = D(E + ωF )Jx 0 + DILx 2 + EI(J + L)x 0 x 2 , c 4 = EIJLx 0 x 2 .
From Lemma 4.2 the roots of the fourth-order polynomial are of negative real parts if and only if c i > 0, for i = 1, 3, 4 and

r 1 = c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0. (4.12)
We always have:

c i > 0, for i = 1, 3, 4.
We show that: r 1 > 0. Indeed, we can write that:

r 1 =DJ (D + J)(E + ωF ) 3 -E 3 J x 3 0 + D 2 I 3 Lx 3 2 + E 2 I 2 (E + ωF )(J + L)x 3 0 x 2 2 + E 2 I 3 (J + L)x 2 0 x 3 2 + DEI(2J + L)(E + ωF ) 2 + EF ωIJ 2 (2E + ωF ) x 3 0 x 2 + DEI 3 (J + 2L)x 0 x 3 2 + 3D 3 I 2 Lx 2 2 3D 3 J(E + ωF ) 2 + D 2 F ωJ 2 (2E + ωF ) x 2 0 + EI 2 D(J + L)(5E + 3ωF ) + F ω J 2 + L 2 x 2 0 x 2 2 + DI [F ω (DF ω(2J + L) +F ωJ(J + 2L) + DE(9J + 5L) + 2EJ 2 + DE 2 (7J + 4L) x 2 0 x 2 + DI 2 [DE (4J +7L) + F ωL(2J + L) + DF ω(J + 2L)] x 0 x 2 2 + 2D 4 J(E + ωF )x 0 + 2D 4 ILx 2 + D 2 I [D(J + L)(5E + 3ωF ) + 2F ωJL] x 0 x 2 + D 2 + DEx 0 + DIx 2 + EIx 0 x 2 (EJx 0 -ILx 2 ) 2 .
Thus, r 1 > 0. Consequently, the conditions (4.12) are satisfied. Therefore, E 101 is stable if and only if λ 1 < 0, that is to say

µ 1 s in 0 + s in 1 -M 0 (D + a 0 , M 2 (D + a 2 )), M 2 (D + a 2 ) < D + a 1 . Since M 1 is increasing (see Lemma 2.

1), this condition is equivalent to

s in 0 + s in 1 < M 0 (D + a 0 , M 2 (D + a 2 )) + M 1 (D + a 1 , M 2 (D + a 2 )
), which is the same as the stability condition of E 101 in Table 4.2.

For E 111 , the Jacobian matrix J evaluated at E 111 = (x 0 , x 1 , x 2 , s 0 , s 1 , s 2 ) is given by:

J =          0 0 0 Ex 0 0 F x 0 0 0 0 0 Gx 1 -Hx 1 0 0 0 0 0 Ix 2 -J 0 0 -D -Ex 0 0 -F x 0 J -K 0 Ex 0 -D -Gx 1 F x 0 + Hx 1 -ωJ K -L -ωEx 0 Gx 1 -D -ωF x 0 -Hx 1 -Ix 2          . Doctoral thesis Page 74|142 Sarra Nouaoura
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The characteristic polynomial is given by:

P 6 (λ) = λ 6 + c 1 λ 5 + c 2 λ 4 + c 3 λ 3 + c 4 λ 2 + c 5 λ + c 6 ,
where c i are defined in Table 4.1. Note that, c 1 and c 6 are positive. From Lemma 4.2 all of the roots of the sixth-order polynomial have the negative real part if and only if c i > 0, i = 3, 5 and r j > 0, j = 4, 5, (

where r j are defined in Table 4.1.

For E 010 , the Jacobian matrix J evaluated at E 010 is:

J =          J -D -a 0 0 0 0 0 0 0 0 0 0 Gx 1 -Hx 1 0 0 L -D -a 2 0 0 0 -J 0 0 -D 0 0 J -K 0 0 -D -Gx 1 Hx 1 -ωJ K -L 0 Gx 1 -D -Hx 1         
.

By developing the determinant of the matrix J -λI d , with respect to the first, third and fourth lines, respectively, we obtain, the eigenvalues

λ 1 = µ 0 s in 0 , s in 1 -s 1 + s in 2 -D -a 0 , λ 2 = µ 2 s in 1 -s 1 + s in 2 -D -a 2 and λ 3 = -D.
The other eigenvalues are given by the characteristic polynomial P 3 of the following matrix:

J 3 =   0 Gx 1 -Hx 1 -K -D -Gx 1 Hx 1 K Gx 1 -D -Hx 1   .
Denote C i and L i , i = 1, 2, 3, the columns and lines of the matrix J 3 -λI d . The replacements of L 3 by L 2 + L 3 and C 2 by C 2 -C 3 preserve the determinant and lead to

P 3 (λ) = -(λ + D) -λ (G + H)x 1 -K -(λ + D + (G + H)x 1 )
.

The eigenvalues of J 3 are λ 4 = -D, λ 5 and λ 6 such that

λ 5 λ 6 = K(G + H)x 1 > 0 and λ 5 + λ 6 = -D -(G + H)x 1 < 0.
Hence, the real parts of λ 5 and λ 6 are negative. Therefore, E 010 is stable if and only if

µ 0 s in 0 , s in 1 -s 1 + s in 2 < D + a 0 and µ 2 s in 1 -s 1 + s in 2 < D + a 2 ,
with s 1 is the solution in the interval J 1 of equation

µ 1 s 1 , s in 1 -s 1 + s in 2 = D + a 1 .
Recall that, the functions M 2 and M 3 are increasing thanks to Lemma 2.1. Thus,

µ 0 s in 0 , s in 1 -s 1 + s in 2 < D + a 0 ⇐⇒ s 1 > s in 1 + s in 2 -M 3 (s in 0 , D + a 0 ), Doctoral thesis Page 75|142 Sarra Nouaoura
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µ 2 s in 1 -s 1 + s in 2 < D + a 2 ⇐⇒ s 1 > s in 1 + s in 2 -M 2 (D + a 2
). As the function ψ 1 is increasing, then, we deduced that

ψ 1 (s 1 ) > ψ 1 s in 1 + s in 2 -M 3 (s in 0 , D + a 0 ) and ψ 1 (s 1 ) > ψ 1 s in 1 + s in 2 -M 2 (D + a 2 ) .
From

ψ 1 (s 1 ) = µ 1 s 1 , s in 1 -s 1 + s in 2 = D + a 1 ,
then, the conditions of the stability of E 010 are equivalent to

µ 1 s in 1 + s in 2 -M 3 (s in 0 , D + a 0 ), M 3 (s in 0 , D + a 0 ) < D + a 1 , µ 1 s in 1 + s in 2 -M 2 (D + a 2 ), M 2 (D + a 2 ) < D + a 1 .
Since M 1 is increasing (see Lemma 2.1), then, E 010 is stable if and only if

s in 1 + s in 2 < M 1 D + a 1 , M 3 (s in 0 , D + a 0 ) + M 3 (s in 0 , D + a 0 ),
s in 1 + s in 2 < M 1 (D + a 1 , M 2 (D + a 2 )) + M 2 (D + a 2 )
, which are the same as the stability conditions of E 010 in Table 4.2.

For E 011 , the Jacobian matrix J evaluated at E 011 is:

J =          J -D -a 0 0 0 0 0 0 0 0 0 0 Gx 1 -Hx 1 0 0 0 0 0 Ix 2 -J 0 0 -D 0 0 J -K 0 0 -D -Gx 1 Hx 1 -ωJ K -L 0 Gx 1 -D -Hx 1 -Ix 2         
.

By developing the determinant of the matrix J -λI d , with respect to the first and fourth lines, respectively, we obtain, the eigenvalues

λ 1 = µ 0 s in 0 , M 2 (D + a 2 ) -D -a 0 and λ 2 = -D.
The other eigenvalues are given by the characteristic polynomial:

P 4 (λ) = λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 = 0,
where

c 1 = 2D + (G + H)x 1 + Ix 2 , c 2 = D 2 + (G + H)(D + K)x 1 + I(D + L)x 2 + GIx 1 x 2 , c 3 = D(G + H)Kx 1 + DILx 2 + GI(K + L)x 1 x 2 , c 4 = GIKLx 1 x 2 .
From Lemma 4.2 the roots of the fourth-order polynomial are of negative real parts if and only if c i > 0, for i = 1, 3, 4 and We always have:

r 1 = c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0. ( 4 
c i > 0, for i = 1, 3, 4.
We show that: r 1 > 0. Indeed, we can write that:

r 1 =DK (D + K)(G + H) 3 -G 3 K x 3 1 + D 2 I 3 Lx 3 2 + G 2 I 2 (G + H)(K + L)x 3 1 x 2 2 + G 2 I 3 (K + L)x 2 1 x 3 2 + DGI(2K + L)(G + H) 2 + GHIK 2 (2G + H) x 3 1 x 2 + DGI 3 (K + 2L)x 1 x 3 2 + 3D 3 I 2 Lx 2 2 + 3D 3 K(G + H) 2 + D 2 HK 2 (2G + H) x 2 1 + GI 2 D(K + L)(5G + 3H) + H K 2 + L 2 x 2 1 x 2 2 + DI [H (DH(2K + L) +HK(K + 2L) + DG(9K + 5L) + 2GK 2 + DG 2 (7K + 4L) x 2 1 x 2 + DI 2 [DG(4K +7L) + HL(2K + L) + DH(K + 2L)] x 1 x 2 2 + 2D 4 K(G + H)x 1 + 2D 4 ILx 2 + D 2 I [D(K + L)(5G + 3H) + 2HKL] x 1 x 2 + D 2 + DGx 1 + DIx 2 + GIx 1 x 2 (GKx 1 -ILx 2 ) 2 .
Thus, r 1 > 0. Consequently, the conditions (4.14) are satisfied. Finally, E 011 is stable if and only if µ 0 s in 0 , M 2 (D + a 2 ) < D + a 0 . Since M 0 is increasing (see Lemma 2.1), this condition is equivalent to

s in 0 < M 0 (D + a 0 , M 2 (D + a 2 )),
which is the same as the stability condition of E 011 in Table 4.2.

Remark 4.1. For all steady states, except for the positive one E 111 , we see that -D is an eigenvalue whose multiplicity corresponds to the number of extinct species.

From Tables 2.2 and 4.2, we have the following results, which are also valid in the case without maintenance (see Tables 3.1 and3

.2).

Corollary 4.1.

• If E 001 or E 100 or E 010 exists then, E 000 is unstable.

• If E 111 exists then, E 001 , E 110 , E 101 and E 011 are unstable.

• If E 101 exists then, E 001 and E 100 are unstable.

• If E 010 exists then, E 010 is unstable.

Proof. If E 001 exists then, its condition of existence µ 2 s in 2 > D + a 2 holds. Therefore, the condition µ 2 s in 2 < D + a 2 of stability of E 000 is not satisfied. If E 100 exists then, its condition of existence µ 0 s in 0 , s in 2 > D + a 0 holds. Therefore, the condition µ 0 s in 0 , s in 2 < D + a 0 of stability of E 000 is not satisfied. If E 010 exists then, its condition of existence µ 1 s in 1 , s in 2 > D + a 1 holds. Therefore, the condition µ 1 s in 1 , s in 2 < D + a 1 of stability of E 000 is not satisfied.
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If E 111 exists then, the conditions

(1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D), s in 0 > ϕ 0 (D), s in 0 + s in 1 > ϕ 0 (D) + ϕ 1 (D)
hold. Therefore, the condition s in 0 < ϕ 0 (D) of stability of E 001 or E 011 is not satisfied, the condition (1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D) of stability of E 110 is not satisfied, and the condition s in 0 + s in 1 < ϕ 0 (D) + ϕ 1 (D) of stability of E 101 is not satisfied. If E 101 exists, then, its conditions of existence

s in 0 > ϕ 0 (D) and s in 2 -ωs in 0 > M 2 (D + a 2 ) -ωϕ 0 (D)
hold. Therefore, the condition s in 0 < ϕ 0 (D) of stability of E 001 or E 011 is not satisfied and the condition s in 2 -ωs in 0 < M 2 (D + a 2 ) -ωϕ 0 (D) of stability of E 100 is not satisfied. If E 011 exists, then, its conditions of existence

s in 1 + s in 2 > ϕ 1 (D) + M 2 (D + a 2 ) holds. Therefore, the condition s in 1 + s in 2 < ϕ 1 (D) + M 2 (D + a 2
) of stability of E 010 is not satisfied.

Proofs for the results of [64] on existence and stability of the steady states of the model

The aim of this section is to give rigorous proofs for the results of [64] on existence and stability of the steady states of model (2.1). Notice that the results in [64] were given with respect to the dimensionless form (3.21) of (2.1) by using the variables (3.20) and the growth functions (3.22). The variables (3.20) are related to our variables (2.6) by the formulas

x 0 = N 0 K 0 , x 1 = N 1 K 1 , x 2 = N 2 K 2 , s 0 = R 0 K 0 , s 1 = R 1 K 1 , s 2 = R 2 K 2 , t = τ /m 0 .
Hence, results given in variables (3.20) can be easily translated into results given in variables (2.6) and vice versa.

From Tables 2.2 and 4.2, the existence and stability of steady states of model (2.1) can be determine for the specific growth functions (2.9). Using the functions and notations given in Table 3.4, we have the following results: E 000 = 0, 0, 0, s in 0 , s in 1 , s in 2 always exists. It is stable if and only if

µ 0 s in 0 , s in 2 < D + a 0 , µ 1 s in 1 , s in 2 < D + a 1 and µ 2 s in 2 < D + a 2 .
These conditions are equivalent to the conditions of E 000 (SS1) were established in [64], section C1, given in terms of variables (3.20) and growth functions (3.22). E 001 = (0, 0, x 2 , s 0 , s 1 , s 2 ) is given by: Formulas (4.15) together with the conditions of existence and stability of E 001 (SS2) were established in [64], section C2, using variables (3.20) and growth functions (3.22). E 100 = (x 0 , 0, 0, s 0 , s 1 , s 2 ) is given by:

s 0 = s in 0 , s 1 = s in 1 , s 2 = K 2 (D + a 2 ) m 2 -D -a 2 , x 2 = D D + a 2 s in 2 -s 2 . ( 4 
x 0 = D D + a 0 s in 0 -s 0 , s 1 = s in 1 + s in 0 -s 0 , s 2 = s in 2 -ω s in 0 -s 0 , (4.16) 
where s 0 is a solution of equation

m 0 s 0 s in 2 -ω s in 0 -s 0 (K 0 + s 0 ) (L 0 + s in 2 -ω (s in 0 -s 0 )) = D + a 0 . (4.17)
Notice that (4.17) is a quadratic equation. Only its solution in the interval

J 0 = max 0, s in 0 -s in 2 /ω , s in 0
is to be considered. E 100 exists if and only if the following condition holds

µ 0 s in 0 , s in 2 > D + a 0 . (4.18)
It is stable if and only if

µ 1 s in 0 -s 0 + s in 1 , s in 2 -ω s in 0 -s 0 < D + a 1 , s in 2 -ωs in 0 < M 2 (D + a 2 ) -ωM 0 (D + a 0 , M 2 (D + a 2 )) , (4.19) 
where s 0 is the solution in the interval J 0 of equation (4.17 

s 0 = (D + a 0 )K 0 (L 0 + s 2 ) m 0 s 2 -(D + a 0 )(L 0 + s 2 ) , s 1 = (D + a 1 )K 1 (K I + s 2 ) m 1 K I -(D + a 1 )(K I + s 2 ) , x 0 = D D + a 0 s in 0 -s 0 , x 1 = D D + a 1 s in 0 -s 0 + s in 1 -s 1 , (4.20) 
where s 2 is a solution of equation 

(1 -ω) (D + a 0 )K 0 (L 0 + s 2 ) m 0 s 2 -(D + a 0 )(L 0 + s 2 ) + (D + a 1 )K 1 (K I + s 2 ) m 1 K I -(D + a 1 )(K I + s 2 ) + s 2 = (1 -ω)s in 0 + s in 1 + s in 2 . ( 4 
s in 0 > s 0 , s in 0 + s in 1 > s 0 + s 1 and (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ 1 (D) , (4.22) 
where s 0 and s 1 are defined by (4.20). E 

s 2 = (D + a 2 )K 2 m 2 -D -a 2 , s 0 = (D + a 0 )K 0 (L 0 + s 2 ) m 0 s 2 -(D + a 0 )(L 0 + s 2 ) , s 1 = s in 0 -s 0 + s in 1 , x 0 = D D + a 0 s in 0 -s 0 , x 2 = D D + a 2 s in 2 -s 2 -ω s in 0 -s 0 . (4.24) 
It exists if and only if the following conditions hold

s in 0 > s 0 , s in 2 -ωs in 0 > s 2 -ωs 0 , (4.25) 
where s 0 and s 2 are given by (4.24). E 101 is stable if and only if 

s in 0 + s in 1 < M 0 (D + a 0 , M 2 (D + a 2 )) + M 1 (D + a 1 , M 2 (D + a 2 )) . ( 4 
s 2 = (D + a 2 )K 2 m 2 -D -a 2 , s 0 = (D + a 0 )K 0 (L 0 + s 2 ) m 0 s 2 -(D + a 0 )(L 0 + s 2 ) , s 1 = (D + a 1 )K 1 (K I + s 2 ) m 1 K I -(D + a 1 )(K I + s 2 ) , x 0 = D D + a 0 s in 0 -s 0 , x 1 = D D + a 1 s in 0 -s 0 + s in 1 -s 1 , x 2 = D D + a 2 (1 -ω) s in 0 -s 0 + s in 1 -s 1 + s in 2 -s 2 . ( 4 
s in 0 > s 0 , s in 0 + s in 1 > s 0 + s 1 , (1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D), (4.28) 
where s 0 and s 1 are given by (4.27). E 111 is stable if and only if c i > 0, i = 3, 5, and r j > 0, j = 4, 5, (4.29)

where c i and r j are defined in Table 4 E 010 = (0, x 1 , 0, s 0 , s 1 , s 2 ) is given by:

s 0 = s in 0 , x 1 = D D + a 1 s in 1 -s 1 , s 2 = s in 1 -s 1 + s in 2 , (4.30)
where s 1 is a unique solution of equation

m 1 s 1 K I (K 1 + s 1 ) (K I + s in 1 + s in 2 -s 1 ) = D + a 1 . (4.31) 
Notice that (4.31) is a quadratic equation. Only its solution in the interval

J 1 = 0, s in 1
is to be considered. E 010 exists if and only if the following condition holds

µ 1 s in 1 , s in 2 > D + a 1 . (4.32)
E 010 is stable if and only if 

s in 1 + s in 2 < M 1 D + a 1 , M 3 s in 0 , D + a 0 + M 3 s in 0 , D + a 0 , s in 1 + s in 2 < M 1 (D + a 1 , M 2 (D + a 2 )) + M 2 (D + a 2 ). ( 4 
s 0 = s in 0 , s 2 = (D + a 2 )K 2 m 2 -D -a 2 , s 1 = (D + a 1 )K 1 (K I + s 2 ) m 1 K I -(D + a 1 )(K I + s 2 ) , x 1 = D D + a 1 s in 1 -s 1 , x 2 = D D + a 2 s in 1 -s 1 + s in 2 -s 2 . ( 4 

Bifurcation diagrams

In this section, we determine numerically the asymptotic behaviors of the three-tiered model by including decay terms. We assume that the biological parameter values are the same in Table 3.3, except for k dec,i = a i = 0.02. To compare with the findings of the numerical study of [64] in the case including decay, we perform the bifurcation diagrams with respect to the parameter D, and then to S in ch , to examine the effects of decay terms on the behavior of model (2.1). We compare our results to those in the case without maintenance terms. We consider the same values of the two input concentrations S in ph = 0 and S in H 2 = 2.67 × 10 -5 of Figure 3(a) in [64]. In this case, the steady states E 010 and E 011 do not exist, see Proposition 2.2.

Bifurcation diagram with respect to D

Giving a fixed value for S in ch = 0.1. Using the results of the existence conditions in Table 2.2 in previous chapter 2 and from Table 4.2, we have the following result, which determines the existence and the stability of the steady states of (2.1) with respect to the dilution rate D. 4.5: Bifurcation types corresponding to the critical values of δ i , i = 1, . . . , 7, defined in Table 4.3. There exists also a critical value δ * 0.009879 < δ 1 corresponding to the value of D where the stable limit cycle disappears when D is increasing.

= 0 0.010412 δ 2 is the root of φ 2 (D) -S in H 2 -(1 -ω)Y S in ch = 0 0.068641 δ 3 is the root of φ 1 (D) -S in H 2 -(1 -ω)Y S in ch = 0 0.068814 δ 4 is the root of S in H 2 + ω ϕ 0 (D) -Y S in ch -M 2 (D + a 2 ) = 0 0.267251 δ 5 is the root of ϕ 0 (D) -Y S in ch = 0 0.267636 δ 6 = µ 0 Y S in ch , S in H 2 -a 0 0.327130 δ 7 = µ 2 S in H 2 -a 2 1.064526
E 101 E 111 0 < D < δ 1 U U S U U U δ 1 < D < δ 2 U U S U U S δ 2 < D < δ 3 U U S U S δ 3 < D < δ 4 U U S δ 4 < D < δ 5 U U U S δ 5 < D < δ 6 U S U δ 6 < D < δ 7 U S δ 7 < D S Table
Bifurcation types δ * Disappearance of the stable limit cycle δ 1 Supercritical Hopf bifurcation δ 2 Transcritical bifurcation of E 

0 Y S in ch , S in H 2 < D + a 0 , µ 2 S in H 2 < D + a 2 E 001 µ 2 S in H 2 > D + a 2 Y S in ch < ϕ 0 (D) E 100 µ 0 Y S in ch , S in H 2 > D + a 0 µ 1 Y S in ch -s 0 , S in H 2 -ω Y S in ch -s 0 < D+a 1 S in H 2 -ωY S in ch < M 2 (D + a 2 ) -ωϕ 0 (D) with s 0 solution of ψ 0 (s 0 ) = D + a 0 E 110 (1 -ω)Y S in ch + S in H 2 ≥ φ 1 (D), Y S in ch > M 0 (D+a 0 , s 2 )+M 1 (D+a 1 , s 2 ) with s 2 solution of Ψ(s 2 , D) = (1 -ω)Y S in ch + S in H 2 (1 -ω)Y S in ch + S in H 2 < φ 2 (D), φ 3 (D) > 0 ∂Ψ ∂s 2 (s 2 , D) > 0 E 101 Y S in ch > ϕ 0 (D), S in H 2 -ωY S in ch > M 2 (D + a 2 ) -ωϕ 0 (D) Y S in ch < ϕ 0 (D) + ϕ 1 (D) E 111 (1 -ω)Y S in ch + S in H 2 > φ 2 (D), Y S in ch > ϕ 0 (D) + ϕ 1 (D) c 3 > 0, c 5 > 0, r 4 > 0, r 5 > 0
Thus, E 000 is stable if and only if D > max(δ 6 , δ 7 ) = δ 7 (see Table 4.3 for all critical parameter values δ i , i = 1, . . . , 7). From Table 4.6, E 001 exists if and only if D < δ 7 . From the eigenvalues λ 1 and λ 2 of J evaluated at E 001 , we deduce that E 001 is stable if and only if

F 1 (D) := µ 0 Y S in ch , M 2 (D + a 2 ) -D -a 0 < 0 ⇐⇒ δ 5 < D < δ 7 ,
where δ 5 is the solution of equation F 1 (D) = 0 (see Figure 4.1). E 100 exists if and only if D < δ 6 and it is stable if and only if From Remark 2.1, the system can have at most two steady states of the form E 110 denoted by E 

F 2 (D) := µ 1 S in ch Y -s 0 , S in H 2 -ω S in ch Y -s 0 -D -a 1 < 0, F 3 (D) := S in H 2 + ω ϕ 0 (D) -Y S in ch -M 2 (D + a 2 ) < 0, that is, D < δ 4 ,
F 4 (D) := φ 1 (D) -S in H 2 -(1 -ω)Y S in ch ≤ 0 ⇐⇒ D ≤ δ 3 ,
where δ 3 is the solution of equation 

M 0 (D + a 0 , s * i 2 ) + M 1 (D + a 1 , s * i 2 ), i = 1, 2, respectively.
unstable for all 0 < D < δ 3 while E 2 110 is stable if and only if To give numerical evidence of the Hopf bifurcation occurring for D = δ 1 , we determine numerically the eigenvalues of the Jacobian matrix of system (2.1) at E 111 and we plot them with respect to D. where the real part α 5,6 is positive for all D ∈ [0, δ 1 ) and negative for all D ∈ (δ 1 , δ ). Then, for all D ∈ (δ , δ 2 ), they become real, negative and distinct. At the particular value D = δ 1 , the pair λ 5,6 (D) is purely imaginary such that α 5,6 (δ 1 ) = 0, with β 5,6 (δ 1 ) = 0. Moreover, one has dα 5,6 dD (δ 1 ) < 0. This is consistent with Figure 4.8(b) showing that, as D decreases and crosses δ 1 , the steady state E 111 becomes unstable and we have a supercritical Hopf bifurcation, leading to the appearance, from the steady state E 111 , of small-amplitude periodic oscillations.

F 5 (D) := φ 2 (D) -S in H 2 -(1 -ω)Y S in ch > 0 and φ 3 (D) > 0, that is, D ∈ (δ 2 , δ 3 )
(a) To illustrate the emergence of limit cycle and to understand what happens with the limit cycle born via the supercritical Hopf bifurcation when D is varied, we present in Figure 4.8 the one-parameter bifurcation diagram for system (2.1) of X ch depending on the dilution rate D when all other parameters are fixed. When magnified, we observe more clearly the disappearance of the limit cycle at δ * , the Hopf bifurcation at δ 1 , the transcritical bifurcations at δ 2 , δ 4 and δ 5 and the saddle-node bifurcation at δ 3 , see Fig- -c-d). In Figure 4.8, E 000 and E 001 cannot be distinguished since they have both a zero X ch -component. As E 001 is stable and E 000 is unstable for D < δ 7 , the X ch = 0 axis is plotted in blue as the color of E 001 in Table 3 (a) Remark 4.2. Following [START_REF] Nouaoura | Mathematical analysis of a three-tiered model of anaerobic digestion[END_REF], not all of the behaviors described in Table 4.4 were reported in [64]. For S in ch = 0.1. Note that the destabilization of E 111 (SS6) via a Hopf bifurcation with the emergence of a stable limit cycle has not been observed in [64]. Moreover, the region of existence and stability of E 101 (SS5), which was depicted in Figure 3(b) of [64] in the case where S in H 2 = 2.67×10 -2 , was not reported in Figure 3(a) of [64]. Our results show that this region also exists when S in H 2 = 2.67 × 10 -5 , and explain why it was not detected by the numerical analysis given in Figure 3(a) of [64]: E 101 (SS5) occurs in a very small region since, for S in ch = 0.1 it corresponds to δ 4 < D < δ 5 , where δ 4 0.267251 and δ 5 0.267636, with δ 5 -δ 4 of order 10 -4 . However, while from a mathematical point

δ 2 D λ 1 (b) δ 2 D λ 2 (c) D δ 2 δ ¡ ¡ ! T λ 3 λ 4 α 3,4 (d) 
X ch E 000 E 001 E 100 E 1 110 E 2 110 E 111 ' δ * T ¡ ¡ ! δ 1 T δ 2 δ 3 e e u δ 4 T δ 5 e e u δ 6 e e u δ 7 D (b) X ch E 000 E 001 E 100 E 1 110 E 2 110 E 111 δ * δ 1 e e u D (c) X ch E 000 E 001 E 100 E 1 110 E 2 110 E 111 T δ 2 δ 3 D (d) X ch E 000 E 001
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Page 88|142 Sarra Nouaoura 3.3, while k dec,i = 0.02, the bifurcation values σ i , i = 1, . . . , 6 are provided in Table 4.7. The bifurcation analysis of (2.1) according to S in ch is given in Table 4.8. The bifurcation types at the critical values σ i are defined in Table 4.9.

Table 4.7: Critical parameter values σ i , for i = 1, . . . , 6. All functions are given in Table 3.4, while r 5 is given in Table 4.1. Note that σ 1 < σ 3 < σ 4 < σ 2 < σ 5 < σ 6 , compare with the case without maintenance. Definition Value 

σ 1 = M 0 D + a 0 , S in H 2 /Y 0.003173 σ 2 = (φ 1 (D) -S in H 2 )/((1 -ω)Y ) 0.029402 σ 3 = ϕ 0 (D)/Y 0.013643 σ 4 = (S in H 2 -M 2 (D + a 2 ) + ωϕ 0 (D))/(ωY ) 0.013985 σ 5 = (φ 2 (D) -S in H 2 )/((1 -ω)Y ) 0.033292 σ 6 is the largest root of equation r 5 = 0 0.1025
E 101 E 111 0 < S in ch < σ 1 U S σ 1 < S in ch < σ 3 U S U σ 3 < S in ch < σ 4 U U U S σ 4 < S in ch < σ 2 U U S σ 2 < S in ch < σ 5 U U S U U σ 5 < S in ch < σ 6 U U S U U U σ 6 < S in ch U U S U U S Doctoral thesis Page 89|142 Sarra Nouaoura
Chapter 4. Stability of the three-tiered food-web model with decay 

µ 2 S in H 2 1.0845 > D + a 2 = 0.03, (4.37) 
E 000 always exists and is unstable.

Since the existence condition of E 001 in Table 4.6 holds (see inequality (4.37)), E 001 exists and is stable if and only if

S in ch < ϕ 0 (D)/Y =: σ 3 .
E 100 exists if and only if

S in ch > M 0 D + a 0 , S in H 2 /Y =: σ 1 .
Let F S in ch be the function defined by

F S in ch = µ 1 S in ch Y -s 0 , S in H 2 -ω S in ch Y -s 0 . (4.38) 
The first stability condition of E 100 in Table 4.6 holds for all S in ch > σ 1 , that is, F S in ch < D +a 1 since the maximum of F is smaller than 0.0013 while D +a 1 = 0.03 (see Figure 4.9). From the second stability condition in Table 4.6, E 100 is stable if and only if

S in ch > S in H 2 -M 2 (D + a 2 ) + ωϕ 0 (D) /(ωY ) =: σ 4 .
The first existence condition of E 110 in Table 4.6 holds, if and only if

S in ch ≥ φ 1 (D) -S in H 2 /((1 -ω)Y ) =: σ 2 .
Their second existence condition holds, for all S in ch ∈ [σ 2 , 0.11], since the straight line of equation y = S in ch Y is above the curves of the functions y = M 0 (D + a 0 , s 

* i 2 )+M 1 (D + a 1 , s * i 2 ), Doctoral thesis Page 90|142 Sarra Nouaoura
y y = Y S i n c h y = M 0 D + a 0 , s * 1 2 + M 1 D + a 1 , s * 1 2 y = M 0 D + a0 , s * 2 2 + M 1 D + a1 , s * 2 2 S in ch σ 2
M 0 (D + a 0 , s * i 2 ) + M 1 (D + a 1 , s * i 2 ), for i = 1,
S in ch > φ 2 (D) -S in H 2 (1 -ω)Y =: σ 5 0.033292, S in ch > ϕ 0 (D) + ϕ 1 (D) Y 0.02304.
Hence, E 111 exists if and only if S in ch > σ 5 . To determine the stability of E 111 , the functions c 3 , c 5 , r 4 and r 5 are plotted with respect to S in ch > σ 5 . Figure 4.11 shows that c 3 (S in ch ), c 5 (S in ch ), r 4 (S in ch ) and r 5 (S in ch ) are all positive if and only if S in ch > σ 6 where σ 6 0.1025 is the largest root of equation r 5 S in ch = 0. To give numerical evidence of the Hopf bifurcation occurring for S in ch = σ 6 , we determine numerically the eigenvalues of the Jacobian matrix of system (2.1) at E 111 and we plot them with respect to S in ch . that the two other eigenvalues λ 3 S in ch and λ 4 S in ch are real, negative and distinct for all S in ch ∈ (σ 5 , σ ) where σ 0.03467. Then, they become a complex-conjugate pair denoted by λ 3,4 S in ch = α 3,4 S in ch ± iβ 3,4 S in ch , for all S in ch ∈ (σ , 0.11], where the real part α 3,4 remains negative.

S in ch σ 5 σ T λ 3 λ 4 α 3,4 (a) σ 5 S in ch λ 1 (b) σ 5 S in ch λ 2 (c) 
S in ch σ 5 ¡ ¡ ! σ 6 σ T λ 5 λ 6 α 5,6 (d) 
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Chapter 4. Stability of the three-tiered food-web model with decay so that the real part α 5,6 is positive for all S in ch ∈ (σ , σ 6 ) and negative for all S in ch ∈ (σ 6 , 0.11]. At the particular value S in ch = σ 6 , the pair λ 5,6 S in ch is purely imaginary such that α 5,6 (σ 6 ) = 0, with β 5,6 (σ 6 ) = 0. Moreover, one has

dα 5,6 dS in ch (σ 6 ) < 0.
This is consistent with Figures 4.13, 4.14 and 4.15, showing that, as S in ch decreases and crosses σ 6 , the steady state E 111 changes its stability through a supercritical Hopf bifurcation with the emergence of a stable limit cycle that we illustrate in Figures 4. [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF] 4.14 show the one-parameter bifurcation diagrams of X ch and X H 2 versus S in ch in system (2.1), respectively. The magnifications of the bifurcation diagrams are illustrated in Figure 4.13(b), Figure 4.14(b) and Figure 4.15 showing the transcritical bifurcations at σ 1 , σ 3 , σ 4 and σ 5 , the saddle-node bifurcation at σ 2 , the Hopf bifurcation at σ 6 and the disappearance of the cycle at σ * . In Figure 4.13(b), E 000 and E 001 cannot be distinguished since they have both a zero X ch -component. As E 001 is stable and E 000 is unstable for S in ch < σ 3 , the X ch = 0 axis is plotted in blue as the color of E 001 in Table 3.9. In Figure 4.14(b), E 000 and E 001 are distinguished but it is not the case for E 000 and E 100 , since they have both a zero X H 2 -component. As E 100 is stable and E 000 is unstable for S in ch > σ 4 , the X H 2 = 0 axis is plotted in purple as the color of E 100 in Table 3 (a) (corresponding to the stability of (SS2)) to the E 100 region (corresponding to the stability of (SS3)). Our results show that this transition is via a E 101 (SS5) region, which is very thin, since it corresponds to σ 3 < S in ch < σ 4 , where σ 3 0.013643 and σ 4 0.013985. This region was missing in Figure 3(a) in [64], since σ 4 -σ 3 is of order 10 -4 . Indeed, the limitations of the operating diagram in Figure 3(a) in [64] is due to the numerical resolution: the stability of E 101 (SS5) occurs in a very small region and may not be detected if the step size was for example an order of magnitude greater than σ 4 -σ 3 .

(a) X ch E 000 E 001 E 100 E 1 110 E 111 E 2 110 σ 1 σ 3 ¡ ¡ ! σ 4 e e u σ 2 σ 5 σ * σ 6 S in ch (b) X ch E 000 E 001 E 100 E 101 σ 1 σ 3 σ 4 S in ch
σ 1 σ 3 ¡ ¡ ! σ 4 e e u σ 2 σ 5 σ * σ 6 S in ch (b) X H 2 E 000 E 001 E 100 E 101 σ 1 σ 3 σ 4 S in ch
X ch E 2 110 E 1 110 E 111 E 000 E 001 E 100 σ 2 σ 5 S in ch (b) X H 2 E 111 E 000 E 001 E 100 E 1 110 E 2 110 σ * σ 6 S in ch
Remark 4.4. As explained in Remark 4.3, except for E 111 , the maintenance does not destabilize the steady states. Only their regions of existence and stability, with respect to the operating parameters, can be modified. For E 111 , it is more difficult to answer the question of whether or not it can be destabilized by including maintenance terms. The bifurcations diagrams depicted in Figures 4. [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF] 4.8 with those given in Table 3.6 shows only minor changes in the bifurcation values σ i , i = 1, . . . , 6. Therefore, even for E 111 , the maintenance does not destabilize the system: only the regions of stability, with respect to the operating parameters, are slightly modified. Note that the change of the bifurcation values σ i is
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Chapter 4. Stability of the three-tiered food-web model with decay predictable since their formulas in Table 4.7 involve the added decay terms. However, the saddle-node bifurcation at σ 2 arises after and not before the transcritical bifurcations at σ 3 and σ 4 as in the case without maintenance.

Numerical simulations

In this section, we confirm the main findings in the previous section. Using the rescaling of the variables (3.20) given in [64], and the dimensionless form (3.21) of (2.1), we perform numerical simulations which show the behavior of system according to initial conditions given in Table 4.10. We illustrate, in particular, the three-dimensional phase plot in three interesting cases where the steady states E 000 , E 001 , E The initial conditions of (3.21) are given by X i (0) = X * i + ε and S i (0) = S * i + ε, i = 0, 1, 2 where X * i and S * i are the components of E 111 and ε is given in the second column. When there is more than one trajectory in the figure, its color is indicated in the first column. 5.54 10 -4 , 1.20 10 -3 , 9.00 10 -5 , 1.42 10 -2 , 1.29 10 -2 , 6.12 10 -7 5.76 10 -4 , 1.46 10 -3 , 9.00 10 -5 , 1.53 10 -2 , 1.96 10 -2 , 1.16 10 -6 5.79 10 -4 , 1.50 10 -3 , 9.00 10 -5 , 1.55 10 -2 , 2.05 10 -2 , 1.24 10 -6 Figure 4.18 Blue Green 6 10 -2 7 10 -2 6.71 10 -4 , 1.95 10 -3 , 1.04 10 -4 , 1.68 10 -2 , 2.80 10 -2 , 1.86 10 -6 6.81 10 -4 , 2.07 10 -3 , 1.04 10 -4 , 1.74 10 -2 , 3.11 10 -2 , 2.11 10 -6 5.46 10 -4 , 1.10 10 -3 , 9.00 10 -5 , 1.37 10 -2 , 1.05 10 -2 , 4.12 10 -7 5.79 10 -4 , 1.50 10 -3 , 9.00 10 -5 , 1.55 10 -2 , 2.05 10 -2 , 1.24 10 -6 6.71 10 -4 , 1.95 10 -3 , 1.04 10 -4 , 1.68 10 -2 , 2.80 10 -2 , 1.86 10 -6 6.81 10 -4 , 2.07 10 -3 , 1.04 10 -4 , 1.74 10 -2 , 3.11 10 -2 , 2.11 10 -6

Figure Color ε (X ch (0), X ph (0), X H 2 (0), S ch (0), S ph (0), S H 2 (0))
• For S in ch ∈ (σ 5 , σ * ), the numerical simulations done for various positive initial conditions permit to conjecture the global asymptotic stability of E 100 . Figure 4.16 shows that the trajectorie in green converges toward the stable steady state E 100 2.19 10 -6 , 0, 0, 9.77 10 -2 , 3.65 10 -4 , 9.17 10 -8 .
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Page 95|142 Sarra Nouaoura • For S in ch ∈ (σ * , σ 6 ), the system exhibits bistability with two basins of attraction: one toward the stable limit cycle and the second toward E 100 . Figure 4.17 illustrates that the trajectories in pink and blue converge toward the stable limit cycle in red, while the green trajectory converges toward E 100 2.19 10 -6 , 0, 0, 9.92 10 -2 , 3.65 10 -4 , 9.12 10 -8 .

For the initial condition in Table 4.10, the time course in Figure 4.19 illustrates the positive, periodic solution representing the coexistence of the three species. The sustained oscillations prove the stability of the limit cycle. However, Figure 4.20 shows the time course of the green trajectory in Figure 4.17 

.5e-04 X H 2 X ch X ph E 111 E 2 110 E 1 110 E 100 Figure 4
.17: Case σ * < S in ch = 0.0995 < σ 6 : bistability with convergence either to the stable limit cycle (in red) or to E 100 .

• For S in ch > σ 6 , the system exhibits bistability between E 111 and E 100 . Figure 4.18 shows that the blue trajectory converges to the stable focus E 111 6.10 10 -4 , 1.22 10 -3 , 1.04 10 -4 , 1.36 10 -2 , 9.93 10 -3 , 3.62 10 -7 , while the green trajectory converges to E 100 2.19 10 -6 , 0, 0, 1.10 10 -1 , 3.65 10 -4 , 8.79 10 -8 .
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Page 96|142 Sarra Nouaoura Numerical simulations have shown that the stable limit cycle disappears at the critical value σ * ∈ (σ 5 , σ 6 ) as S in ch decreases. Similarly to the numerical study of the bifurcation diagram with respect to the parameter D in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] in the case without maintenance and s in 1 = s in 2 = 0, we conjecture that in our case also the stable limit cycle disappears through a saddle-node bifurcation with another unstable limit cycle when S in ch decreases. Using the same method as in the previous chapter. 

Conclusion

In this chapter, we gave a complete stability analysis of the dynamics of the model (2.1) when the maintenance is included. We have managed to characterize the stability in this six-dimensional system which cannot be reduced to a three-dimensional one as in the case neglecting maintenance, although it is generally accepted that the Routh-Hurwitz theorem is intractable beyond five dimensions. For this, we have used the Liénard-Chipart stability criterion to simplify the mathematical analysis by reducing considerably the number of the Routh-Hurwitz conditions to check. We have performed the bifurcation diagrams, first, with the dilution rate, and second with chlorophenol inflowing concentration as the bifurcating parameters, showing that one of the operating diagrams obtained numerically in [64] has omitted important transition phenomena between steady states. We highlighted several possible asymptotic behaviors in this six-dimensional system, including the bistability between the coexistence steady state and a boundary steady state, or the bistability between a positive limit cycle and a boundary steady state, so that the long term behavior depends on the initial condition. We proved that the positive steady state of coexistence of all species can be unstable and we give numerical evidence for the supercritical Hopf bifurcation, in the case including chlorophenol and hydrogen input concentrations.

We can also show that maintenance does not destabilize the steady states. Then, in chapter 5, we will use the theoretical results of the existence and stability of all steady
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Chapter 4. Stability of the three-tiered food-web model with decay states to construct analytically the operating diagrams in both cases with and without decay that give the regions of existence and stability of the steady states, in the space of the four operating parameters which were determined numerically in previous work in [64].

The results of this chapter have been published in [START_REF] Nouaoura | Mathematical analysis of a three-tiered model of anaerobic digestion[END_REF].
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Chapter 5. Operating diagrams for a three-tiered food-web model

Introduction

In this final chapter, we are interested to illustrate the mathematical study of the threetiered model by studying analytically the operating diagrams which show the dynamic behavior of the system according to the conventional chemostat operating parameters (the dilution rate and the input concentrations of the substrates) in both cases with and without maintenance, using the analytical findings of the existence and stability of all the steady states, provided in previous chapters.

The operating diagram is the bifurcation diagram for which the values of the biological parameters are fixed. It is very useful for biologists because it allows predicting qualitatively the different asymptotic behaviors of the process according to its control parameters. As it was claimed in [START_REF] Smith | The theory of the chemostat, dynamics of microbial competition[END_REF], the operating diagram probably remains the most useful answer for the analysis of the behavior of the model according to the parameters. This diagram shows how robust or how extensive is the parameter region where some asymptotic behavior emerges. The operating diagram is often performed numerically or theoretically both in the biological literature [START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF]64,[START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF] and the mathematical literature [1,3,[START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF][START_REF] Sari | The operating diagram for a two-step anaerobic digestion model[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]. In [64], several operating diagrams have been presented, they have been numerically constructed by varying the four control parameters. The authors did not use the analytical expressions of the curves which separate the regions of existence and stability conditions. They determined numerically the steady states for a realistic range of operational and kinetic parameters and used the numerical method which consists of determining the existence and the stability region point by point at all the steady state. By considering sets of operating parameters and repeating this method with numerous ones, the diagrams are drawn, showing the region of stability of each steady state. The operating diagrams presented in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] were obtained analytically in the case without maintenance and numerically in the case with maintenance where the authors were able to provide analytical expressions of the boundaries between the different stability regions allowing to give operating diagrams describing the exhaustive behavior of the system.

Operating diagrams

The operating diagrams show how behaves the system when the operating parameters D, S in ch , S in ph and S in H 2 are varying in (2.1). These diagrams are used to visualize in particular, for a different set of operating parameters, the existence and local stability of steady states. To plot the operating diagrams, we must fix the values of the biological parameters as in Table 3.3, and two of the four operating parameters D, S in ch , S in ph and S in H 2 in order to have a better vision and understanding because it is very difficult to visualize all the regions of the operating diagram in four-dimensional space. In what follows, we study the operating diagrams of system (2.1) in the cases with and without maintenance terms. In subsection 5.2.1, we fix S in ph and S in H 2 and we determine the operating diagrams in the plane
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Chapter 5. Operating diagrams for a three-tiered food-web model S in ch , D and in subsection 5.2.2, we give the operating diagrams in the S in H 2 , S in ph plane where S in ch and D being constant. Using the change of variables (2.7), we summarized the necessary and sufficient existence and stability conditions of steady states of (2.1) in the case with maintenance as stated in Table 5.1, which deduced easily from Tables 2.2 and 4.2 in the previous chapters.

Table 5.1: The necessary and sufficient existence and local stability conditions of steady states of (2.1) in the case of maintenance. All functions are given in Table 3.4, while µ i and r 5 are given by (2.9) and Table 4.1.

Existence conditions

Stability conditions

E 000 Always exists µ 0 S in ch Y, S in H 2 < D + a 0 , µ 1 S in ph Y 4 , S in H 2 < D + a 1 , µ 2 S in H 2 < D + a 2 E 001 µ 2 S in H 2 > D + a 2 S in ch Y < ϕ 0 (D) and S in ph Y 4 < ϕ 1 (D) E 100 µ 0 S in ch Y, S in H 2 > D + a 0 µ 1 S in ch Y + S in ph Y 4 -s 0 , S in H 2 -ω S in ch Y -s 0 < D + a 1 and S in H 2 -ωS in ch Y < M 2 (D + a 2 ) -ωϕ 0 (D) with s 0 solution of equation ψ 0 (s 0 ) = D + a 0 E 110 (1 -ω)S in ch Y + S in ph Y 4 + S in H 2 ≥ φ 1 (D), S in ch Y > M 0 (D + a 0 , s 2 ), S in ch Y + S in ph Y 4 > M 0 (D + a 0 , s 2 ) +M 1 (D + a 1 , s 2 ), with s 2 solution of equation Ψ(s 2 ) = (1 -ω)S in ch Y + S in ph Y 4 + S in H 2 (1 -ω)S in ch Y + S in ph Y 4 + S in H 2 < φ 2 (D), ∂Ψ ∂s 2 (s 2 , D) > 0 and φ 3 (D) > 0 E 101 S in ch Y > ϕ 0 (D), S in H 2 -ωS in ch Y > M 2 (D + a 2 ) -ωϕ 0 S in ch Y + S in ph Y 4 < ϕ 0 (D) + ϕ 1 (D) E 111 (1 -ω)S in ch Y + S in ph Y 4 + S in H 2 > φ 2 (D), S in ch Y > ϕ 0 (D), S in ch Y + S in ph Y 4 > ϕ 0 (D) + ϕ 1 (D) c 3 > 0, c 5 > 0, r 4 > 0, r 5 > 0 E 010 µ 1 S in ph Y 4 , S in H 2 > D + a 1 S in ph Y 4 + S in H 2 < M 1 D + a 1 , M 3 S in ch Y, D + a 0 +M 3 S in ch Y, D + a 0 , S in ph Y 4 + S in H 2 < ϕ 1 (D) + M 2 (D + a 2 ) E 011 S in ph Y 4 > ϕ 1 (D), S in ph Y 4 + S in H 2 > ϕ 1 (D) + M 2 (D + a 2 ) S in ch Y < ϕ 0 (D)
For the case without maintenance, the necessary and sufficient conditions of existence and local stability can be deduced from Table 5.1 by taking a i = 0, i = 0, 1, 2, except the stability of E 111 which is given by φ 3 (D) ≥ 0, or φ 3 (D) < 0 and φ 4 (D, S in ch , S Chapter 5. Operating diagrams for a three-tiered food-web model S in H 2 in the cases with and without maintenance on the behavior of the model. First, only chlorophenol input is added to the system (S in ph = S in H 2 = 0). Then, the hydrogen input is added to the system and the phenol input is excluded, (S in ph = 0 and S in H 2 > 0). Next, the phenol input is added and the hydrogen input is excluded, (S in ph > 0 and S in H 2 = 0). Finally, the hydrogen and phenol inputs are added to the system, (S in ph > 0 and S in H 2 > 0).

, D) = (1 -ω)Y S in ch + Y 4 S in ph + S in H 2 . Γ 1 = S in ch , S in ph , S in H 2 , D , S in ch Y (1 -ω) = φ 1 (D) -S in ph Y 4 -S in H 2 Γ 2 = S in ch , S in ph , S in H 2 , D , S in ch Y (1 -ω) = φ 2 (D) -S in ph Y 4 -S in H 2 Γ 3 = S in ch , S in ph , S in H 2 , D , φ 4 D, S in ch , S in ph , S in H 2 = 0 Γ 4 = S in ch , S in ph , S in H 2 , D , r 5 D, S in ch , S in ph , S in H 2 = 0 Γ 5 = S in ch , S in ph , S in H 2 , D , S in ch Y = M 0 D + a 0 , S in H 2 Γ 6 = S in ch , S in ph , S in H 2 , D , S in ch Y = ϕ 0 (D) Γ 7 = S in ch , S in ph , S in H 2 , D , S in ch Y ω = S in H 2 + ωϕ 0 (D) -M 2 (D + a 2 ) Γ 8 = S in ch , S in ph , S in H 2 , D , S in ch Y = M 0 D + a 0 , s * 1 2 Γ 9 = S in ch , S in ph , S in H 2 , D , S in ch Y = M 0 D + a 0 , s * 2 2 Γ 10 = S in ch , S in ph , S in H 2 , D , S in ch Y = ϕ 0 (D) + ϕ 1 (D) -S in ph Y 4 Γ 11 = S in ch , S in ph , S in H 2 , D , µ 1 S in ph Y 4 + S in ch Y -s 0 , S in H 2 -ω S in ch Y -s 0 = D + a 1 Γ 12 = S in ch , S in ph , S in H 2 , D , S in ch Y = M 0 D + a 0 , s * 1 2 + M 1 D + a 1 , s * 1 2 -S in ph Y 4 Γ 13 = S in ch , S in ph , S in H 2 , D , S in ch Y = M 0 D + a 0 , s * 2 2 + M 1 D + a 1 , s * 2 2 -S in ph Y 4 Γ 14 = S in ch , S in ph , S in H 2 , D , M 1 D + a 1 , M 3 S in ch Y, D + a 0 +M 3 S in ch Y, D + a 0 = S in ph Y 4 + S in H 2 Γ 15 = S in ch , S in ph , S in H 2 , D , D + a 1 = µ 1 S in ph Y 4 , S in H 2 Γ 16 = S in ch , S in ph , S in H 2 , D , S in ph Y 4 + S in H 2 = M 2 (D + a 2 ) + ϕ 1 (D) Γ 17 = S in ch , S in ph , S in H 2 , D , S in ph Y 4 = ϕ 1 (D) Γ 18 = S in ch , S in ph , S in H 2 , D , D + a 2 = µ 2 S in

Only chlorophenol is in the input

Assume that S in ch > 0, S in ph = S in H 2 = 0. In this case, system (2.1) has only the steady states E 000 , E 1 110 , E 2 110 and E 111 , see Table 5.1. The operating diagram in the plane S in ch , D is shown in Figure 5.1. Figure 5.1(a) looks very similar to Figure 5.1(b) except near of the origin, as it is shown in the magnifications at the right of Figure 5.1(a-b). In the case with maintenance, the value of S in ch , in which the positive steady state E 111 is destabilized is greater than in the case without maintenance. Note that, each region that has a different asymptotic behavior is colored by a distinct color as in [64]. The existence and the stability of the steady states of (2.1) in the five regions J i , i = 1, . . . , 5, of the operating diagrams of Figure 5.1 are determined in Table 5.3.

(a) J 1 J 2 J 3 Γ 1 Γ 2 Γ 3 © S in ch D J 1 J 3 J 4 J 5 Γ 1 c Γ 2 c Γ 3 ' S in ch D (b) J 1 J 2 J 3 J 5 © Γ 1 Γ 2 Γ 4 © S in ch D J 1 J 2 ' J 3 J 4 c J 5 Γ 1 Γ 2 Γ 4 S in
Remark 5.1. Each region is denoted by its steady states, indicating which are stable and which are unstable. That is, region J k = (ab, cd) means that when the operating parameters are taken in J k , then the steady states SSa and SSb are stable, the steady states SSc and SSd are unstable, and there is no other steady state.
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Sienna

We can deduce from Table 5.3 and Figure 5.1 when S in ch > 0 and S in ph = S in H 2 = 0 that there are no new regions that emerge under the influence of the maintenance terms. Moreover, Figure 5.1(b) corresponds to Figure 2 in [64] and highlights the existence of the region J 5 of instability of E 111 (SS6), a fact that was not reported in [64]. Actually, the behavior of the system when S in ph = S in H 2 = 0 was already clarified in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], where the instability of E 111 has studied analytically in the case without maintenance, but only numerically in the case including maintenance. In fact, Figure 5.1(a) is the same as Figure 4 in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]. Both figures are obtained analytically by plotting the curves separating the regions J k . However, although Figure 5.1(b) shows the same behavior as Figure 9 in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], our figure is obtained analytically by plotting the curves separating the regions, while Figure 9 in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] was obtained only numerically. Thus, our theoretical study confirms the numerical findings presented in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], in the case including maintenance.

These results are supported by numerical experimentation and are proven as in the following.

Construction of Figure 5.1. We illustrate the method used to plot the operating diagram presented in Figure 5.1. We assume that the biological parameter values of model (2.1) are provided in Table 3 

(1 -ω)S in ch Y ≥ φ 1 (D) and (1 -ω)S in ch Y > φ 2 (D). (5.2)
First, we consider the case with maintenance: E 000 always exists and it is stable, since all stability conditions in Table 5.1 hold, as

µ 0 S in ch Y, S in H 2 = µ 1 S in ph Y 4 , S in H 2 = µ 2 S in H 2 = 0 < D + a i , i = 0, 1, 2.
From the first condition of (5.2), E 110 exists in the region bounded by the curve Γ 1 defined in Table 5.2 and located at the right of this curve, see Figure 5.2. From Remark 3.1, when it exists, E 1 110 is unstable and the second stability condition of E 2 110 in Table 5.1 is
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Chapter 5. Operating diagrams for a three-tiered food-web model always satisfied. The third stability condition of E 2 110 holds for all D > D, where D is the unique solution of φ 3 (D) = 0 (see Figure 5.3). The first stability condition of E 2 110 holds for all S in ch , D in the region bounded by the curve Γ 2 defined in Table 5.2 and located at the left of this curve. Numerical computations show that the curves Γ 1 and Γ 2 are From the second condition of (5.2), E 111 exists in the region bounded by the curve Γ 2 and located at the right of this curve, see Figure 5.2. For the stability of E 111 , we must determine the signs of the various conditions of stability in Table 5. Therefore, E 111 is stable (resp. unstable) in the region J 3 (resp. J 5 ) bounded by the curve Γ 4 and located at the right (resp. left) of this curve (see Figure 5.6). Table 5.4 summarizes the various regions in the operating diagrams in the case with maintenance for the different conditions according to S in ch and D. Now, in the case without maintenance, we use the same method as in the case with maintenance, we obtain that E 000 is always exists and it is stable. E 110 exists in the region bounded by the curve Γ 1 and located at the right of this curve, see Figure 5 

(a) Γ 1 Γ 2 D J 1 J 2 J 3 S in ch D (b) Γ 1 Γ 2 D J 1 J 3 J 2 T J 4
(a) Γ 1 Γ 2 Γ 4 © J 1 J 2 J 3 J 5 © S in ch D (b) Γ 1 Γ 2 Γ 4 J 1 J 2 ' J 3 J 4 c J 5
D > 0 (1 -ω)S in ch Y < φ 1 (D) J 1 S D ≥ D φ 1 (D) < (1 -ω)S in ch Y < φ 2 (D) J 2 S U S φ 2 (D) < (1 -ω)S in ch Y J 3 S U U S D < D φ 2 (D) < (1 -ω)S in ch Y and r 5 > 0 J 3 S U U S φ 1 (D) < (1 -ω)S in ch Y < φ 2 (D) J 4 S U U φ 2 (D) < (1 -ω)S in ch Y and r 5 < 0 J 5 S U U U
Γ 2 and located at the left of this curve.

(a) Table 5.5 summarizes the various regions in the operating diagrams in the case without maintenance for the different conditions according to S in ch and D. 

Γ 1 Γ 2 D J 1 J 2 J 3 S in ch D (b) Γ 1 Γ 2 D J 1 J 3 J 2 T J 4 S in ch D Figure 
a) Γ 1 Γ 2 D J 1 J 2 J 3 S in ch D (b) Γ 1 Γ 2 Γ 3 ' D J 1 J 2 ' J 3 J 5
D > 0 (1 -ω)S in ch Y < φ 1 (D) J 1 S D ≥ D φ 1 (D) < (1 -ω)S in ch Y < φ 2 (D) J 2 S U S φ 2 (D) < (1 -ω)S in ch Y J 3 S U U S D < D φ 2 (D) < (1 -ω)S in ch Y and φ 4 > 0 J 3 S U U S φ 1 (D) < (1 -ω)S in ch Y < φ 2 (D) J 4 S U U φ 2 (D) < (1 -ω)S in ch Y and φ 4 < 0 J 5 S U U U Doctoral thesis Page 110|142 Sarra Nouaoura
Chapter 5. Operating diagrams for a three-tiered food-web model

Hydrogen is in the input

We assume that S in ch > 0, S in ph = 0 and S in H 2 > 0 and we illustrate the operating diagrams in S in ch , D -plane in both cases with and without maintenance. In this case, system (2.1) has further three steady states E 001 , E 100 and E 101 , see Proposition 2.2.

We consider the inflowing concentrations S in ph = 0 and S in H 2 = 2.67 × 10 -5 . These values are those of Figure 3 -c-d) put in evidence the regions J 8 , J 10 and J i , i = 12, . . . , 21. Figure 5.12(a) represents the operating diagram in S in ch , D -plane, in the case with maintenance. The magnifications presented in Figure 5.12(b-c-d) show the regions J 1 and J i , i = 6, . . . , 13 are similar to those in Figure 5.11. The addition of hydrogen input substrate leads to the occurrence of sixteen new regions besides the region J 1 which is identical to that of the operating diagram in Figure 5.1. Figures 5.11 and 5.12 are constructed using the same method as Figure 5.1, which consists in plotting the curves separating the regions. The existence and the stability of the steady states of (2.1) in the seventeen regions J 1 and J i , i = 6, . . . , 21, of the operating diagrams in Figures 5.11 and 5.12, are determined in Table 5.6.

(a) J 1 J 6 J 7 J 9 J 10 J 11 Γ 18 Γ 5 Γ 6 , Γ 7 Γ 1 Γ 2 S in ch D (b 
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Chapter 5. Operating diagrams for a three-tiered food-web model The Hopf bifurcation occurs at the boundary between regions J 11 and J 13 , see Figures 5.11 and 5.12, and in J 13 close to the boundary with J 11 a periodic orbit in E 111 emerges, as illustrated in Figure 3.9 and Figure 4.17 in the previous chapters. We see also that the regions J i , i = 14, . . . , 21 are empty in the case with maintenance. Thus, the maintenance has an effect on the disappearance of the regions. Moreover, in the case without maintenance and for small values of the dilution rate D, there cannot be any destabilization of E 111 . However, the coexistence of the three species around a limit cycle can occur, in the case with maintenance. On the other hand, our study of the operating diagrams in both cases with and without maintenance show the emergence of new regions which are not reported in Figure 3(a), namely the stability region of E 101 (SS5), the stability region of E 100 (SS3) with the instability region of E 111 (SS6), and the region J 21 when all the steady states exist and are unstable, except E 1 110 (SS4) which does not exist. For the positive initial conditions in a neighborhood of E 111 all these steady states converge to the stable limit cycle. These regions are very thin and in a biological point of view, such regions would likely not be attained.

(a) J 1 J 6 J 7 J 9 J 10 J 11 Γ 18 Γ 5 Γ 6 Γ 7 Γ 1 Γ 2 Γ 4 S in ch D (b) J 6 J 7 J 9 J 10 J 11 Γ 5 Γ 6 Γ 7 Γ 1 Γ 2 Γ 4 S in ch D (c) J 6 J 7 J 9 ' J 8 J 10 T J 12 c J 13 J 11 Γ 5 Γ 6 Γ 7 Γ 1 Γ 2 Γ 4 S in ch D (d) J 6 J 7 J 8 E J 9 Γ 5 Γ 6 Γ 7
Construction of Figure 5.11. We illustrate the method used to plot the operating diagram presented in Figure 5.11 in the case without maintenance. We assume that S in ph = 0 and S in H 2 = 2.67 × 10 -5 . E 010 and E 011 do not exist when S in ph = 0. Using Table 3 Green

J 11 = (36, 124 1 4 2 ) U U S U U S Pink J 12 = (3, 124 1 4 2 ) U U S U U Dimgray J 13 = (3, 124 1 4 2 6) U U S U U U Magenta J 14 = (2, 134 1 4 2 ) U S U U U White J 15 = (2, 134 2 ) U S U U White J 16 = (6, 1234 2 ) U U U U S Blue J 17 = (6, 1234 2 5) U U U U U S Blue J 18 = (5, 1234 2 ) U U U U S Blueviolet J 19 = (5, 1234 1 4 2 ) U U U U U S Blueviolet J 20 = (., 1234 2 6) U U U U U Brown J 21 = (., 1234 2 56) U U U U U
U Silver E 000 always exists. From Table 3.8, the first stability condition of E 000 holds in the region bounded by the line Γ 18 and located above this line. The second stability condition of E 000 holds in the region bounded by the curve Γ 5 and located at the left of this curve. Then, E 000 is stable in the region located above the line Γ 18 , see Figure 5.13. From Table 3.8, E 001 exists in the region bounded by the line Γ 18 and located below this line, and it is stable in the region bounded by the curve Γ 6 and located at the left of this curve, see Figure 5.14.

E 100 exists in the region bounded by the curve Γ 5 and located below this curve (see Figure 5.13). From Table 3.8, the first (resp. second) stability condition of E 100 holds for
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Chapter 5. Operating diagrams for a three-tiered food-web model all S in ch , D in the region bounded by the curve Γ 11 (resp. Γ 7 ) and located above (resp. below) this curve. Then, E 100 is stable in the region located between the two curves Γ 7 and Γ 11 , see Figure 5.15. From Table 3.8, the first existence condition of E 1 110 and E 2 110 holds in the region bounded by the curve Γ 1 and located at the right of this curve, see Figure 5.16. The second existence condition of E 1 110 (resp. E 2 110 ) holds for all S in ch , D in the region bounded by the curve Γ 12 (resp. Γ 13 ) and located at the left (resp. right) of this curve, see Figure 5.16.

Then, E 1 110 exists in the region located between the curves Γ 1 and Γ 12 , while E 1 110 exists in the region located at the right of the curves Γ 1 and Γ 13 , see Figure 5 when it exists, E 1 110 is unstable and the second stability condition of E 2 110 in Table 3.8 is always satisfied. The third stability condition of E 2 110 holds for all D > D (see Figure 5.3). The first stability condition of E 2 110 holds for all S in ch , D in the region bounded by the curve Γ 2 and located at the left of this curve. Then, E 2 110 is stable in the region located between the two curves Γ 1 and Γ 2 and above the line D = D (see Figure 5.17).

From Table 3.8, the first (resp. second) existence condition of E 101 holds for all S in ch , D in the region bounded by the curve Γ 6 (resp. Γ 7 ) and located at the right (resp. left) of
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Chapter 5. Operating diagrams for a three-tiered food-web model From Table 3.8, the first and the second existence conditions of E 111 hold for all S in ch , D in the region bounded by the curves Γ 2 and Γ 10 and located at the right of these curves, see Figure 5.20. From Table 3.8 and Figure 5. shows that the regions J i j = 1, . . . , 5 and J i , i = 22, . . . , 30 are similar to those in Figure 5.21. The addition of phenol input substrate leads to the emergence of twelve new regions J i , i = 22, . . . , 32, besides the regions J j , j = 1, . . . , 5 which are identical to those of the operating diagram in The existence and the stability of the steady states of (2.1) in the sixteen regions J i , i = 1, . . . , 5 and J j , j = 22, . . . , 32 of the operating diagrams of Figures 5. [START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF] close to the boundary with J 3 a limit cycle in E 111 occurs. We see also that there are new regions J 31 and J 32 that appear under the influence of the maintenance terms. Notice that, in the case with maintenance and for D fixed, the value of S in ch which E 111 loss its stability is larger than in the case without maintenance. Moreover, in the case without maintenance and for small values of D, there cannot be any destabilisation of E 111 , while the coexistence around a limit cycle can appears in the case with maintenance. On the other hand, our theoretical study of the operating diagrams in both cases with and without maintenance show that there are new behaviors, namely the existence of bistability region

Y < M 0 D, S in H 2 J 7 M 0 D, S in H 2 < S in ch Y < ϕ 0 (D), S in ch (1 -ω)Y < φ 1 (D) -S in H 2 , S in ch Y < M 0 (D, s * 2 2 ) + M 1 (D, s * 2 2 ) J 8 ϕ 0 (D) < S in ch Y < S in H 2 + ωϕ 0 (D) -M 2 (D) /ω and S in ch Y (1 -ω) < φ 1 (D) -S in H 2 J 9 S in H 2 + ωϕ 0 (D) -M 2 (D) /ω < S in ch Y < φ 1 (D) -S in H 2 /(1 -ω) J D < D and φ 1 (D) -S in H 2 ≤ S in ch Y (1 -ω) < φ 2 (D) -S in H 2 J φ 2 (D) -S in H 2 < S in ch Y (1 -ω), µ 1 S in ch Y -s 0 , S in H 2 -ω S in ch Y -s 0 < D and φ 4 D, S in ch , S in H 2 > 0, J D < D, φ 1 (D) -S in H 2 ≤ S in ch Y (1 -ω) < φ 2 (D) -S in H 2 and S in H 2 + ωϕ 0 (D) -M 2 (D) < S in ch ωY J D < D, φ 2 (D) -S in H 2 < S in ch Y (1 -ω), µ 1 S in ch Y -s 0 , S in H 2 -ω S in ch Y -s 0 < D, and φ 4 D, S in ch , S in H 2 < 0 J φ 1 (D) -S in H 2 /(1 -ω) ≤ S in ch Y < ϕ 0 (D) and M 0 D, s * 2 2 + M 1 D, s * 2 2 < S in ch Y J M 0 D, s * 2 2 + M 1 D, s * 2 2 < S in ch Y < M 0 D, s * 1 2 + M 1 D, s * 1 2 , S in ch Y < ϕ 0 (D) J S in H 2 + ωϕ 0 (D) -M 2 (D) /ω < S in ch Y < M 0 D, s * 1 2 + M 1 D, s * 1 2 and φ 4 D, S in ch , S in H 2 > 0 J ϕ 0 (D) + ϕ 1 (D) < S in ch Y < S in H 2 + ωϕ 0 (D) -M 2 (D) /ω and φ 4 D, S in ch , S in H 2 > 0 J ϕ 0 (D) < S in ch Y < ϕ 0 (D) + ϕ 1 (D) and S in ch Y < M 0 D, s * 1 2 + M 1 D, s * 1 2 J ϕ 0 (D) < S in ch Y < S in H 2 + ωϕ 0 (D) -M 2 (D) /ω, φ 1 (D) -S in H 2 < S in ch Y (1 -ω) and M 0 D, s * 1 2 + M 1 D, s * 1 2 < S in ch Y J S in H 2 + ωϕ 0 (D) -M 2 (D) /ω < S in ch Y < M 0 D, s * 1 2 + M 1 D, s * 1 2 , φ 4 D, S in ch , S in H 2 < 0 J ϕ 0 (D) + ϕ 1 (D) < S in ch Y < S in H 2 + ωϕ 0 (D) -M 2 (D) /ω
a) J 1 J 2 J 3 J 24 Γ 1 Γ 2 Γ 15 S in ch D (b) J 1 J 5 ' J 3 J 24 J 22 ¡ ¡ J 23 ¡ ¡ ! J 4 c J 28 c J 27 c J 25 J 26 E Γ 15 Γ 16 Γ 8 = Γ 14 ¡ ¡ Γ 6 Γ 9 Γ 1 Γ 2 Γ 3 ' S in ch D (c) J 1 J 4 J 5 J 3 J 24 J 23 J 22 J 28 J 27 J 26 J 25 J 29 T J 30 e e u Γ 1 Γ 2 Γ 3 Γ 15 Γ 16 Γ 6 Γ 8 = Γ 14
SS1 SS4 1 SS4 2 SS6 SS7 SS8 J 1 = (1) S Red J 2 = (14 2 , 4 1 ) S U S Teal J 3 = (16, 4 1 4 2 ) S U U S Yellow J 4 = (1, 4 1 4 2 ) S U U Red J 5 = (1, 4
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Chapter 5. Operating diagrams for a three-tiered food-web model J 22 of E 111 and E 010 (SS7), which occurs in a small area between J 3 and J 23 , the instability regions J 5 , J 30 , J 31 of E 111 , and the region J 32 when all the steady states exist and are unstable, except E 1 110 (SS4 1 ) which does not exist. For the positive initial conditions in a neighborhood of E 111 all these steady states converge to the stable limit cycle. These regions are not reported in the case including maintenance in Figure 5(a) of [64].

Phenol and hydrogen are in the input

To better understand the effect of both control parameters the phenol and the hydrogen input concentrations on system (2.1), we assume that S in ch > 0, S in ph > 0 and S in H 2 > 0 and we perform the operating diagram in both cases with and without maintenance terms.

(a) -c-d-e-f) put in evidence the regions J 16 , J 17 , J i , i = 33, . . . , 44. Figure 5.24(a) represents the operating diagram in the case with maintenance. The magnifications presented in Figure 5.24(bc) show that the regions J 1 and J i , i = 6, . . . , 13 are defined as those in Figure 5.23. We see also that the maintenance has an effect on the disappearance of regions J i , i = 39, . . . , 44. Moreover, the two input substrates hydrogen and phenol are added to the system contribute to the emergence of twelve new regions J i , i = 33, . . . , 44 beside the regions J 1 , J 16 , J 17 , J i , i = 6, . . . , 10 which are identical to that of the operating diagram in Figure 5. [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF] The existence and the stability of the steady states of (2.1) in the twenty regions J 1 , J 16 , J 17 , J i i = 6, . . . , 10 and J i , i = 33, . . . , 42, of the operating diagrams of Figures 5.23 and 5.24 are summarized in Table 5.9.

J 1 J 6 J 7 e e J 9 J 8 ¡ ¡ J 33 e e J 38 c J 16 J 34 J 36 Γ 18 Γ 5 Γ 2 Γ 6 , Γ 7 Γ 17 S in ch D (b) J 6 J 7 J 9 J 8 J 10 ¡ ¡ ! J 33 J 16 J 34 J 36 J 39 e e u J 38 d d Γ 5 Γ 6 c Γ 7 ¡ ¡ Γ 1 Γ 11 = Γ 12 Γ 13 Γ 2 Γ 17 S in ch D ( 
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Chapter 5. Operating diagrams for a three-tiered food-web model 25 and 5.26 for the values of the chlorophenol input concentration and the dilution rate in both cases without and with considering maintenance, respectively. The magnification shown in Figure 5. 25(b) put in evidence the regions J 2 , J 3 , J 40 , J i , i = 22, . . . , 24 and J j , j = 45, . . . , 49. The magnification presented in Figure 5. 26(b) shows the regions J 1 , J 2 , J 3 , J 40 , J i , i = 22, . . . , 24 and J j , j = 45, . . . , 51. We see from the operating diagram
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Chapter 5. Operating diagrams for a three-tiered food-web model provided in Figure 5.26 that there are new regions J 1 , J 9 , J 33 , J 50 and J 51 that appear under the influence of the maintenance terms. Figures 5.25 and 5.26 are constructed using the same method as Figure 5.11, which consists in plotting the curves separating the regions.

(a) showing the regions J 1 , J 2 , J 3 , J 40 , J i , i = 22, . . . , 24 and J j , j = 45, . . . , 51.

J
The existence and the stability of the steady states of (2.1) in the twenty-four regions J i of the operating diagrams of Figures 5. [START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF] We can deduce from Table 5.10 and the operating diagram shown in Figures 5.25 and 5.26 plotting for varying concentrations of hydrogen and phenol addition, that there are new regions that occur under the influence of the maintenance terms. Notice that the stability regions of the steady states E 000 , E 100 and E 2 110 , and the bistability region of E 2 110 and E 010 do not exist in the case without maintenance. Moreover, the bistability region J 50 of E 2 110 and E 010 (SS7) occurs between J 3 and J 23 which is very thin and is not reported in the case including maintenance in Figure 6(a) of [64].
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Chapter 5. Operating diagrams for a three-tiered food-web model 

Bifurcations

In this section, we determines the nature of bifurcations of system (2.1) that might happen by crossing the various regions of the operating parameters space-D, S in ch , S in ph , S in H 2 through the surfaces of Γ i where the steady states coalesce and can change their stability.

Proposition 5.1. The bifurcations of the steady states of (2.1) arising on the boundaries of regions J i for i = 1, . . . , 51, according to the operating parameters S in ch , S in ph , S in H 2 and D, are listed in Table 5.11.
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Chapter 5. Operating diagrams for a three-tiered food-web model ) > 0, we have a transition from J 3 to J 5 where the positive steady state E 111 loss its stability via Hopf bifurcation on the surface Γ 3 .

All other cases are left to the reader since they can be treated similarly.

Remark 5.2. We have studied the types of bifurcations of the various transitions by surfaces but not by the intersections of curves and lines which are generically points and represent special cases which are not possible from the biological point of view. However, their studies of bifurcations can be studied in the same way.

Conclusion

In this chapter, we gave an analytical study of the operating diagram of model (2.1). Our study incorporated the effect of the maintenance as well as the effect of the three input substrate concentrations on the process behavior. We compare with the results in [64], obtained by numerical methods. Our main aim was to present the mathematical analysis of the operating diagrams of the model. Using the characterization of existence and stability conditions of the steady states, we have presented the operating diagram of system (2.1) in order to analytically determine the dynamical behavior of the model according to the control parameters S in ch , S in ph , S in H 2 and D. In the operating diagrams shown in Figure 5.1 obtained for S in ph = S in H 2 = 0 in the cases with and without maintenance, we have found the same regions in both cases, with variations only in their shape and extend, and we have confirmed the numerical results of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] in the case with maintenance. Moreover, we have discovered interesting regions, which are unreported by the numerical study of the operating diagram in Figure 2 Our results give a better understanding of the operating diagrams performed by the numerical method in [64] and allow us to answer the delicate question where the maintenance does not destabilize the steady states but modify the boundary between the region of stability and the region of instability, and has an effect on the appearance and the disappearance of some regions.

The results of this chapter are the subject of a submitted publication in [START_REF] Nouaoura | Operating diagrams for a three-tiered microbial food-web model[END_REF].
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General conclusion

In this thesis, we have investigated the dynamics of three interacting microbial species describing the anaerobic mineralization of chlorophenol, in a three-step food-web, introduced by Wade et al. [64]. More precisely, we have focused on the mathematical analysis of the model, extending the previous works. We have generalized the approach presented in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] by including multiple substrate inflow into the model and characterizing the stability of steady state in the case including maintenance. We have extended [64] by allowing a larger class of growth functions and [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF][START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] by including maintenance. Our main aim was to give a complete analysis of the model by a combination of theoretical results and numerical techniques to obtain information on the qualitative behaviors of this six-dimensional system and to fully clarify the findings of the previous numerical analysis. We have highlighted several complex dynamics of the process. In chapter 2, by considering a large class of growth kinetics, the phenol and hydrogen input concentrations together with maintenance terms, which were neglected in the previous analytical analysis, we have proven that our system can have up to eight steady states: the washout steady state which always exists, a positive steady state where all degrader microbial populations coexist, and six other steady states corresponding to the extinction of one or two degrader populations. When they exist, all steady states are unique, except the steady state where chlorophenol and phenol degraders are maintained and the hydrogen degrader is eliminated (E 110 ). We have developed the existence conditions of all steady states with respect to the operating parameters. The results on the existence of some steady states were obtained previously only numerically without knowing their exact number. In chapter 3, when decay terms are ignored, we could reduce the original six-dimensional system to an equivalent threedimensional one. This made it possible to obtain explicitly the expressions of conditions of the local stability of all identified steady states according to the four operating parameters D, s in 0 , s in 1 and s in 2 which correspond to the dilution rate, the chlorophenol, phenol and hydrogen input substrate concentrations, respectively. We have analyzed the bifurcation diagrams by varying the chlorophenol input concentration when the hydrogen input is added to the model and the phenol input is excluded. We have proven that, except for the positive steady state, all the steady states can only appear or disappear through transcritical or saddle-node bifurcations. Then, we could show that the system exhibits a bi-stability and the coexistence steady state can destabilize undergoing a supercritical
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Hopf bifurcation with the occurrence of a stable periodic solution. The destabilization of the positive steady state was not detected by the previous numerical analysis of the operating diagram in [64]. In order to gain more insight into the behavior of the system, from the bifurcation diagrams with S in ch as the bifurcating parameter (see Figures 3.5 to 3.7), we have proven that, if the concentration of the chlorophenol input S in ch is low, both the chlorophenol and phenol degraders are eliminated from the reactor and only the hydrogen degrader is maintained (E 001 is the only stable steady state). Rising a little more the concentration of S in ch , only the chlorophenol and hydrogen degraders are maintained (E 101 is the only stable steady state). Adding more S in ch , only the chlorophenol degrader is maintained (E 100 is the only stable steady state). For higher concentration of S in ch , the system exhibits a bistability behavior where either only the chlorophenol degrader is maintained (E 100 is stable) or the coexistence of three microbial species may occur around periodic oscillations (E 111 is unstable and a stable limit cycle exists). In chapter 4, when the maintenance terms are present in the model, we have managed to characterize the stability of the steady states of the six-dimensional system. The stability analysis is much more delicate since the differential system cannot be reduced to a three-dimensional one as in the case without maintenance. We have used the Liénard-Chipart stability criterion to simplify the mathematical analysis by reducing considerably the number of the Routh-Hurwitz conditions to check. Then, we gave the necessary and sufficient conditions of the local stability of the steady states, with respect to the operating parameters of the process. On the other hand, we highlighted several possible asymptotic behaviors in this six-dimensional system, using two bifurcation diagrams with the dilution rate and then, with the chlorophenol input concentration as the bifurcating parameters (see Figure 4.8 and Figures 4.13 to 4.15). We have shown that one of the operating diagrams obtained numerically in [64] has omitted important transition phenomena between steady states. If the dilution rate is too low, only the chlorophenol degrader is maintained (E 100 is the only stable steady state). Increasing slightly the dilution rate D, the system exhibits a bistability behavior where either only the chlorophenol degrader is maintained (E 100 is stable) or the coexistence of three microbial species may occur around periodic oscillations (E 111 is unstable and a stable limit cycle exists). Increasing a little more D, the system exhibits a bistability behavior where either only the chlorophenol degrader is maintained or the coexistence of three microbial species occurs at the positive steady state (E 100 and E 111 are both stable). Increasing further D, the system exhibits a bistability between only the chlorophenol degrader and both the chlorophenol and phenol degraders (E 100 and E 2 110 are both stable). Rising a little more the value of D, only the chlorophenol degrader is maintained. Then, only the chlorophenol and hydrogen degraders are maintained (E 101 is the only stable steady state). Adding a little more, both the chlorophenol and phenol degraders are eliminated from the reactor and only the hydrogen degrader is maintained (E 001 is the only stable steady state). For higher dilution rate, there is washout of all three microbial populations (E 000 is the only stable steady state). We proved that the positive steady state of coexistence of all species can be unstable and we give numerical evidence
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for the supercritical Hopf bifurcation, in the case including chlorophenol and hydrogen input concentrations. The possibility of the Hopf bifurcation of the positive steady state was previously observed in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] in the case without phenol and hydrogen input concentrations. In chapter 5, by using the operating diagrams we could show the behaviors of the system by varying the microbial operating parameters. To plot these operating diagrams, we must fix the values of the biological parameters and we must fix two of the four parameters while varying the others. These diagrams can be useful for interpreting experimental results. For S in ph = S in H 2 = 0, the operating diagrams in the S in ch , D plane of Figure 5.1 show the same number of regions in both cases with and without maintenance, with variations only in their shape and extension. In the case of maintenance, our analytical study of the operating diagrams confirms the numerical results of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] where a stable limit cycle bifurcates from the positive steady state via a Hopf bifurcation. This behavior is unreported in the numerical operating diagram of Figure 2 in [64]. Considering the inflowing concentrations S in ph = 0 and S in H 2 = 2.67×10 -5 of Figure 3(a) in [64], Figure 5.11 shows the destabilization of the positive steady state in the case without maintenance. In the regions J 20 and J 21 , all the steady states are unstable so that there is coexistence around a limit cycle for any positive initial conditions. Adding the maintenance terms to the system, the regions J i , i = 14, . . . , 21 disappear. In addition, Figure 5.12 shows that the regions J 8 (stability of E 101 (SS5)) and J 13 (stability of E 100 (SS3) with instability of E 111 (SS6)) have been omitted in [64]. Crossing J 11 to J 13 , there is bistability of E 100 and a limit cycle. In the regions J 8 and J 13 , the outcome of the process is different than that found in the numerical operating diagram in [64]. Similarly, for the input concentrations S in ph = 10 -2 and S in H 2 = 0 as in Figure 5(a) of [64], Figures 5.21 and 5.22 prove that the region J 22 (bistability of E 111 (SS6) and E 010 (SS7)), and the regions J 5 , J 30 , J 31 and J 32 (instability of E 111 ) were not been detected. However, when the input concentrations S in ph = 1 and S in H 2 = 2.67 × 10 -2 are large enough as in Figure 5(d) of [64], our analytical operating diagrams in Figures 5. 23 and 5.24 show that all asymptotic behaviors were detected. Finally, when S in ch = 0.5 and D = 0.25 are fixed as in Figure 6(a) of [64], our operating diagrams in S in H 2 , S in ph plane of Figures 5.25 and 5.26 prove that the regions J i , i = 1, 3, 9, 11, 22, 48, 50, 51 are unreported. In fact, there can be stability of only E 000 (J 1 ) or E 100 (J 9 and J 51 ), or bistability of E 000 and E 111 (J 3 ) or of E 100 and E 111 (J 11 and J 48 ) or of E 111 and E 010 (J 22 ) or of E 110 and E 010 (J 50 ). The findings of our mathematical study permit a better understanding of the operating region of the coexistence of all species and its dependence on the biological parameters and show the omission of several important asymptotic behaviors in the numerical study of [64]. Especially validated models with realistic parametrization from experimental data, more attention should be paid to numerical resolution. However, the theoretical study of the operating diagram remains the only way to ensure the accuracy of the results. Moreover, our results allow us to answer the difficult question about the effect of maintenance on the destabilization of the steady states. We proved that it does not destabilize them but modifies the boundary between the region of stability and the region of instability and has an effect on the appearance
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General conclusion

and the disappearance of some regions.

Several questions remain open and will be subject of future work, such as the study of the global behavior of the system. Indeed, using the Thieme's theory, we can deduce the global properties of the 6-dimensional system from the 3-dimensional reduced one, in the case without maintenance. A sensitivity study with relation to the biological parameters can be carryed out, in view to get an idea on the robustness and the genericity of the phenomena. We aim too to perform a theoretical and numerical study of the operating diagrams for different parameter values of the maintenance, in order to examine their effects on the stability regions and the attraction basins in the case of bistability.
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  2.67×10 -5 and D = 0.01, corresponding to Figure 3(a) in [64] when k dec,i = 0, i = {ch, ph, H 2 } and plot the oneparameter bifurcation diagram in S in ch .
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 33131 Figure 3.1: Curve of the function y = F S in ch showing that F S in ch < 0.0013, for all S in ch > σ 1 .

Figure 3 . 2 :

 32 Figure 3.2: The green line of equation y = Y S in ch is above the red and blue curves of the functions M 0 (D, s * i 2 ) + M 1 (D, s * i 2 ), i = 1, 2.

6 Figure 3 . 3 :

 633 Figure 3.3: (a) Curve of the function φ 4 , for S in ch > σ 5 and the solution σ 6 of equation φ 4 S in ch = 0. (b) Magnification for S in ch ∈ (σ 5 , 0.034).
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 334 Figure 3.4: Three eigenvalues of the matrix J 1 evaluated at E 111 as functions of S in ch . (b) Real part of the pair of eigenvalues λ 2,3 , for S in ch ∈ (σ , 0.05] where σ = 0.018.
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 353 Figure 3.5: (a) Projections of the ω-limit set in variable X ch as a function of S in ch ∈ [0, 0.05]. (b) Magnification of the transcritical bifurcations occurring at σ 1 , σ 3 and σ 4 when S in ch ∈ [0, 0.015].
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 37 Figure 3.7: (a) Magnification of saddle-node bifurcation at S in ch = σ 2 and the transcritical bifurcation at S in ch = σ 5 when S in ch ∈ [0.006, 0.02]. (b) Magnification of the appearance and disappearance of stable limit cycles when S in ch ∈ [0.0294, 0.0302].

Figure 3 . 8 :

 38 Figure 3.8: Case S in ch = 0.02955 < σ * : the solution of (2.1) converges to E 100 .
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 339 Figure 3.9: Case S in ch = 0.029639 ∈ (σ * , σ 6 ): bistability of the limit cycle (in red) and E 100 .
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 3310 Figure 3.11 illustrates the time course of system (2.1) in the case of exclusion of the second and the third species and the convergence to the steady state E 100 . Figure3.12 illustrates a positive, periodic, solution representing the coexistence of the three species. The sustained oscillations prove the stability of the limit cycle. However, Figure3.13 shows the time course of the green trajectory in Figure3.9. Finally, Figure3.14 illustrates the convergence of the positive steady state which becomes a stable focus. Figure3.15 shows the time course of the green trajectory in Figure3.10.Remark 3.2. The plots of Figures 3.1 to 3.4 were performed with Maple[35], which is used, in particular, for the computations the eigenvalues of the Jacobian matrix evaluated at E 111 . The plots of Figures 3.5 to 3.7 were performed with Scilab[54] by using the formulas of the steady state components given in Table3.4. The plots of Figures 3.8 to 3.15 were performed with Scilab[54], which the trajectories in these figures presented according to
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 41 Figure 4.1: Stability of E 001 , for all D ∈ (δ 5 , δ 7 ): change of sign of the function F 1 .

where δ 4 Chapter 4 .F 2 4 Figure 4 . 2 :

 442442 Figure 4.2: Stability of E 100 , for all D < δ 4 : signs of the functions F 2 and F 3 .
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 21222343 Figure 4.3: Existence of E 110 , for all D ≤ δ 3 : (a) change of sign of the function F 4 . (b) the green line of equation y = Y S in ch is above the red and blue curves of the functionsM 0 (D + a 0 , s * i 2 ) + M 1 (D + a 1 , s * i 2 ), i = 1, 2, respectively.
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 2444545 Figure 4.4: Stability of E 110 , for all D ∈ (δ 2 , δ 3 ): (a) Curve of the function F 5 . (b) Magnification of F 5 , for D ∈ [0.0685, 0.0688]. (c) Curve of the function φ 3 .(a)
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 4 7(a-b) shows that two eigenvalues denoted by λ 1 (D) and λ 2 (D) are real and remain negative for all D ∈ [0, δ 2 ).

Figure 4 .Chapter 4 .

 44 7(c) shows that the two other eigenvalues λ 3 (D) and λ 4 (D) form a complex-conjugate pair denoted byλ 3,4 (D) = α 3,4 (D) ± iβ 3,4 (D), for all D ∈ [0, δ ),where the real part α 3,4 remains negative and δ 0.068504. Then, they become real, negative and distinct for all D ∈ (δ , δ 2 ). Similarly,Figure 4.7(d) shows that the two last eigenvalues λ 5 (D) and λ 6 (D) form a complex-conjugate pair denoted by λ 5,6 (D) = α 5,6 (D) ± iβ 5,6 (D), for all D ∈ [0, δ ), Stability of the three-tiered food-web model with decay

Figure 4 . 6 :

 46 Figure 4.6: (a-b-c-d) Curves of c 3 , c 5 , r 4 and r 5 as functions of D, for 0 < D < δ 2 . (e) Magnification of the curves of r 4 and r 5 , for D ∈ [0, 0.012].
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 656474 Figure 4.7: The eigenvalues of the Jacobian matrix at E 111 as functions of D, when S in ch = 0.1, S in ph = 0 and S in H 2 = 2.67×10 -5 . (c-d) The real parts α 3,4 and α 5,6 for D ∈ [0, δ ).

  ure 4.8(b

5 DFigure 4 . 8 :

 548 Figure 4.8: (a) Bifurcation diagram of X ch versus D ∈ [0, 1.2] in model (2.1). (b) Magnification on the appearance and disappearance of stable limit cycles for D ∈ [0.0095, 0.0108]. (c) Magnification on the transcritical bifurcation at D = δ 2 and the saddle-node bifurcation at D = δ 3 for D ∈ [0.0685, 0.069]. (d) Magnification on the transcritical bifurcations for D ∈ [0.2665, 0.2685].
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 4 Stability of the three-tiered food-web model with decay of view the diagram shown in [64] is incorrectly labeled, in biological terms, such a small region of E 101 (SS5) would likely not be attained. 4.4.2 Bifurcation diagram with respect to S in ch Now, we constructe the bifurcation diagram according to the chlorophenol input concentration as the bifurcating parameter S in ch . We consider S in ph = 0 and S in H 2 = 2.67 × 10 -5 , corresponding to Figure 3(a) in [64] and we fix D = 0.01. Using Table 4.6, we have the following result. Proposition 4.2. Let S in ph = 0, S in H 2 = 2.67 × 10 -5 and D = 0.01. Using the biological parameter values in Table
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 4149 Figure 4.9: Curve of the function y = F S in ch defined by (4.38).
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 410 Figure 4.10: The green line of equation y = Y S in ch is above the red and blue curves of the functions M 0 (D + a 0 , s * i2 ) + M 1 (D + a 1 , s * i 2 ), for i = 1, 2, which correspond to E 1 110 and E 2 110 , respectively.
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 4 12(a-b) shows that two eigenvalues denoted by λ 1 S in ch and λ 2 S in ch are real and remain negative for all S in ch ∈ (σ 5 , 0.11].
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 412454 Figure 4.11: (a-b-d) Curves of c 3 , c 5 , r 4 and r 5 as functions of S in ch , for S in ch > σ 5 . (c-e-f) Magnifications of the curves c 5 and r 4 , for S in ch ∈ [σ 5 , 0.04] and of r 5 , for S in ch ∈ [σ 5 , 0.035].

Figure 4 . 12 :

 412 Figure 4.12: The eigenvalues of the Jacobian matrix at E 111 as functions of S in ch , when D = 0.01, S in ph = 0 and S in H 2 = 2.67×10 -5 . (c-d) The real parts α 3,4 and α 5,6 , for S in ch ∈ (σ , 0.11].
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 4 Figure 4.12(d) shows that the two last eigenvalues λ 5 S in ch and λ 6 S in ch are real, positive and distinct for all S in ch ∈ (σ 5 , σ ]. Then, they become a complex-conjugate pair denoted by λ 5,6 S in ch = α 5,6 S in ch ± iβ 5,6 S in ch , for all S in ch ∈ (σ , 0.11],

  and 4.17
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Figures 4. 13

 13 Figures 4.13and 4.14 show the one-parameter bifurcation diagrams of X ch and X H 2 versus S in ch in system (2.1), respectively. The magnifications of the bifurcation diagrams are illustrated in Figure4.13(b), Figure4.14(b) and Figure4.15 showing the transcritical bifurcations at σ 1 , σ 3 , σ 4 and σ 5 , the saddle-node bifurcation at σ 2 , the Hopf bifurcation at σ 6 and the disappearance of the cycle at σ * . In Figure4.13(b), E 000 and E 001 cannot be distinguished since they have both a zero X ch -component. As E 001 is stable and E 000 is unstable for S in ch < σ 3 , the X ch = 0 axis is plotted in blue as the color of E 001 in Table3.9. In Figure4.14(b), E 000 and E 001 are distinguished but it is not the case for E 000 and E 100 , since they have both a zero X H 2 -component. As E 100 is stable and E 000 is unstable for S in ch > σ 4 , the X H 2 = 0 axis is plotted in purple as the color of E 100 in Table3.9.

  Figures 4.13and 4.14 show the one-parameter bifurcation diagrams of X ch and X H 2 versus S in ch in system (2.1), respectively. The magnifications of the bifurcation diagrams are illustrated in Figure4.13(b), Figure4.14(b) and Figure4.15 showing the transcritical bifurcations at σ 1 , σ 3 , σ 4 and σ 5 , the saddle-node bifurcation at σ 2 , the Hopf bifurcation at σ 6 and the disappearance of the cycle at σ * . In Figure4.13(b), E 000 and E 001 cannot be distinguished since they have both a zero X ch -component. As E 001 is stable and E 000 is unstable for S in ch < σ 3 , the X ch = 0 axis is plotted in blue as the color of E 001 in Table3.9. In Figure4.14(b), E 000 and E 001 are distinguished but it is not the case for E 000 and E 100 , since they have both a zero X H 2 -component. As E 100 is stable and E 000 is unstable for S in ch > σ 4 , the X H 2 = 0 axis is plotted in purple as the color of E 100 in Table3.9.

Figure 4 .Chapter 4 .

 44 Figure 4.13: (a) Bifurcation diagram of X ch versus S in ch ∈ [0, 0.11] in model (2.1) showing the appearance and disappearance of stable limit cycles. (b) Magnification on the transcritical bifurcations for S in ch ∈ [0, 0.018]. Remark 4.3. As explained in Remark 4.2, the operating diagram of Figure 3(a) in [64] for D = 0.01 does not accurately describe the transition from the region labeled E 001

Figure 4 .

 4 Figure 4.14: (a) Bifurcation diagram of X H 2 versus S in ch ∈ [0, 0.11] in model (2.1). (b) Magnification on the transcritical bifurcations for S in ch ∈ [0, 0.018].
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 4 Figure 4.15: (a) Magnification on the saddle-node bifurcation at S in ch = σ 2 and the transcritical bifurcation at S in ch = σ 5 for S in ch ∈ [0.028, 0.035]. (b) Magnification on the limit cycles for S in ch ∈ [0.098, 0.105].

  , 4.14 and 4.15, and the results given in Proposition 4.2, permit to answer this question at least for the following values of the operating parameters S in ph = 0, S in H 2 = 2.67 × 10 -5 , D = 0.01 and S in ch ≥ 0. The comparison of the results obtained in Table
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 474 Figure 4.16 9.7 10 -3 5.44 10 -4 , 1.17 10 -3 , 8.80 10 -5 , 1.42 10 -2 , 1.29 10 -2 , 6.05 10 -7 Figure 4.17 Pink Blue Green 10 -2 3.2 10 -2 3.5 10 -2
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 416 Figure 4.16: Case S in ch = 0.098 < σ * : the solution of (2.1) converges to E 100 .
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Figures 4 .

 4 Figures 4.21 and 4.22 illustrate the time courses corresponding to the blue and the green trajectories in Figure 4.18, respectively.
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 418 Figure 4.18: Case σ 6 < S in ch = 0.11 : bistability with convergence either to E 111 or to E 100 .
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 45 The plots of Figures 4.1 to 4.7 and 4.9 to 4.12 were performed with Maple[35]. The plots of Figure4.8 and Figures 4.13 to 4.18 were performed with Scilab[54].
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 422 Figure 4.22: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.11 (in kgCOD/m 3 ): Convergence to the stable steady state E 100 . (b) Magnification of (a) showing that the solution of (2.1) converges to the nonzero X ch -component of E 100 .
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 51 Figure 5.1: Operating diagram in the plane S in ch , D , when S in ph = S in H 2 = 0. (a) case without maintenance and on the right a magnification for D ∈ [0, 0.078] showing the regions J 4 and J 5 . (b) case with maintenance and on the right a magnification for D ∈ [0, 0.1] showing the regions J 4 and J 5 .
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 52 Figure 5.2: The curves Γ 1 and Γ 2 and the line D = D, in the case with maintenance.

Figure 5 . 3 :

 53 Figure 5.3: The curve of the function φ 3 in the case with maintenance.

  1 in the plane S in ch , D , for all D > 0 and S in ch > σ(D), where σ(D) is the existence condition of E 111 given by σ(D) := φ 2 (D)/(1 -ω)Y . To this end, we show in Figure 5.4 the signs of the functions S in ch → c 3 (D, S in ch ), S in ch → c 5 (D, S in ch ), S in ch → r 4 (D, S in ch ) and S in ch → r 5 (D, S in ch ) for several values of D ∈ D and S in ch > σ(D).

Figure 5 .

 5 4(a) illustrates the function c 3 (D, S in ch ) is positive.
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 5554 Figure 5.4: The curves of the functions c 3 , c 5 , r 4 and r 5 , for S in ch > σ(D) (in red) and for several fixed values of D, showing the solutions in green of c 5 (D, S in ch ) = 0, r 4 (D, S in ch ) = 0 and r 5 (D, S in ch ) = 0.
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 55 Figure 5.5: Various signs of conditions c 5 > 0, r 4 > 0 and r 5 > 0.
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 56 Figure 5.6: The curves Γ 1 , Γ 2 and Γ 4 in the case with maintenance.
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 57535859 Figure 5.7: The curves Γ 1 and Γ 2 and the line D = D, in the case without maintenance.
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 510 Figure 5.10: The curves Γ 1 , Γ 2 and Γ 3 , and the line D = D in the case without maintenance.

  (a) in [64].

Figure 5 .

 5 11(a) represents the operating diagram in the plane S in ch , D , in the case without maintenance. The three magnifications shown in Figure 5.11(b

Figure 5 .

 5 Figure 5.11: (a) Operating diagram in the plane S in ch , D , when S in ph = 0, S in H 2 = 2.67×10 -5 and k dec,i = 0. (b) Magnification for D ∈ [0, 0.13] showing the regions J i , i = 12, . . . , 16. (c) Magnification for D ∈ [0, 0.013] showing the regions J 8 and J i , i = 17, . . . , 20. (d) Magnification for D ∈ [0, 0.002] showing the region J 21 .

Figure 5 .

 5 Figure 5.12: (a) Operating diagram in the plane S in ch , D , when S in ph = 0 and S in H 2 = 2.67 × 10 -5 with maintenance. (b) Magnification for D ∈ [0, 0.6]. (c) Magnification for D ∈ [0, 0.12] showing the regions J 12 and J 13 . (d) Magnification for D ∈ [0, 0.03] showing the region J 8 .
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 513 Figure 5.13: The line Γ 18 and the curve Γ 5 .

Figure 5 . 14 :

 514 Figure 5.14: The line Γ 18 and the curve Γ 6 .
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 515 Figure 5.15: The curves Γ 5 , Γ 7 and Γ 11 .

Figure 5 . 16 :

 516 Figure 5.16: The curves Γ 1 , Γ 12 and Γ 13 .

Figure 5 . 17 :

 517 Figure 5.17: The curves Γ 1 , Γ 2 and Γ 12 , and the line D = D.

Figure 5 . 18 :

 518 Figure 5.18: The curves Γ 6 , Γ 7 and Γ 10 .

  3(a), E 111 is stable for all D ≥ D. Inversely, when D < D, using similar arguments, we determine the sign of the function φ 4 (D, S in ch ). To this end, we show in Figure 5.19 the signs of the function S in ch → φ 4 (D, S in ch ) for several values of D ∈ [0, D[, illustrate the uniqueness of the solution S in,c ch (D) of equation φ 4 (D, S in ch ) = 0. Then, we have φ 4 (D, S in ch ) < 0 in the region bounded by the curve Γ 3 and located at the left of this curve (see Figure 5.20). Inversely, φ 4 (D, S in ch ) > 0 in the region bounded by the curve Γ 3 and located at the right of this curve (see Figure 5.20).
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 519 Figure 5.19: The curves of the function φ 4 , for S in ch > σ(D) (in red) and for several fixed values of D, showing the solution in green of φ 4 (D, S in ch ) = 0.
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 520 Figure 5.20: The curves Γ 2 , Γ 3 and Γ 10 , and the line D = D.
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 5 21(a) represents the operating diagram in the plane S in ch , D , in the case without maintenance. The magnifications shown in Figure 5.21(b-c) put in evidence the regions J i , i = 22, . . . , 30.
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 5 22(a) represents the operating diagram in the case with maintenance. The magnification presented in Figure5.22(b) 

Figure 5 . 1 .

 51 Figures 5.21 and 5.22 are constructed using the same method as Figure5.11, which consists in plotting the curves separating the regions.
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 521 Figure 5.21: Operating diagram in the plane S in ch , D , when S in ph = 10 -2 , S in H 2 = 0 and k dec,i = 0. (b) Magnification for D ∈ [0, 0.078] showing the regions J i , for i = 22, . . . , 28. (c) Magnification for D ∈ [0.02, 0.04] showing the regions J 29 and J 30 .

Figure 5 . 22 :

 522 Figure 5.22: Operating diagram in the plane S in ch , D , when S in ph = 10 -2 , S in H 2 = 0 and k dec,i > 0. (b) Magnification for D ∈ [0, 0.058] showing the regions J i , for i = 22, . . . , 32.
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 5235 Figure 5.23: Operating diagram in the plane S in ch , D , when S in ph = 1, S in H 2 = 2.67 × 10 -2 and k dec,i = 0. (b) Magnification for D ∈ [0, 0.6] showing the regions J 10 and J 39 . (c) Magnification for D ∈ [0, 0.37] showing the regions J 17 , J 35 and J 37 . (d) Magnification for D ∈ [0, 0.002] showing the regions J 40 , J 41 and J 42 . (e) Magnification for D ∈ [0, 0.00012] showing the region J 44 . (f) Magnification for S in ch ∈ [0, 0.00005] showing the region J 43 .

Figure 5 .

 5 23(a) represents the operating diagram in S in ch , D -plane, in the case without maintenance. The magnifications show in Figure 5.23(b

Figure 5 . 24 :

 524 Figure 5.24: Operating diagram in the plane S in ch , D , when S in ph = 1, S in H 2 = 2.67 × 10 -2 and k dec,i > 0. (b) Magnification for D ∈ [0, 0.55] showing the regions J 10 and J 39 . (c) Magnification for D ∈ [0.2, 0.4] showing the regions J 17 , J 35 and J 37 .

  Now, let D and S in ch be fixed, then, the intersections of the surfaces Γ i for i = 3, 4, 8, 9, 11, 12, 13, 15 with the S in H 2 , S in ph -plane are curves as functions of S in ch and D. However, the intersections of the surfaces Γ j , j = 1, 2, 5, 7, 10, 14, 16, 17, 18 with this plane are straight lines.We consider the input concentrations S in ch = 0.5 and D = 0.25. These values are those of Figure6(a) in [64]. The operating diagram in the plane S in H 2 , S in ph is shwon in Figures 5.

Figure 5 .

 5 Figure 5.25: (a) Operating diagram in the plane S in H 2 , S in ph , when D = 0.25, S in ch = 0.5 and k dec,i = 0. (b) Magnification of (a) for S in H 2 ∈ [0, 10 -5 ]showing the regions J 2 , J 3 , J 40 , J i , i = 22, . . . , 24 and J j , j = 45, . . . , 49.
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Figure 5 .

 5 Figure 5.26: (a) Operating diagram in the plane S in H 2 , S in ph , when D = 0.25, S in ch = 0.5 and k dec,i > 0. (b) Magnification of (a) for S in H 2 ∈ [0, 10 -5 ]showing the regions J 1 , J 2 , J 3 , J 40 , J i , i = 22, . . . , 24 and J j , j = 45, . . . , 51.

  and 5.26 are summarized in Table5.10.

  in [64]. In the operating diagrams shown in Figures 5.11

and 5 .Chapter 5 .

 55 [START_REF] Coppel | Stability and Asymptotic Behavior of Differential Equations[END_REF] obtained for S in ph = 0, in Figures 5.[START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF] and 5.22 obtained for S in H 2 = 0 and in Figures 5.25 and 5.26 obtained for D = 0.25 and S in ch = 0.5, we have proven that there are regions appear and disappear under the influence of the maintenance terms, and the emergence of new important regions, which previously undetectable by the numerical analysis in [64]. For comparison, we have detected a stability region of the steady state E 101 (SS5), the existence of the bistability regions between the steady states E 111 (SS6) and E 010 (SS7), Operating diagrams for a three-tiered food-web model and between E 2 110 (SS4) and E 010 (SS7), where are not reported in Figure 3(a), Figure 5(a) and Figure 6(a), respectively, of [64]. More interestingly, we have also discovered instability regions of the positive steady state E 111 (SS6) in the operating diagrams shown in Figures 5.11 to 5.22, which are unreported in [64] in the case when maintenance is included in the system.
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Table 1 .

 1 2: Existence and stability of steady states of (1.1) for the growth rate µ of Haldanetype.

ph and S H 2 are the chlorophenol, phenol and hydrogen sub- strates concentrations; S in ch , S in ph and S in H 2 are the substrate concentrations in the feed bottle; k dec,ch , k dec,ph and k dec,H 2 represent the decay rates; D is the dilution rate of the chemostat; Y ch , Y ph and Y H 2 are the yield coefficients. 224/208 (1 -Y ch ) is the fraction of chlorophe- nol converted to phenol; 32/224 (1 -Y ph

  1) where X ch , X ph and X H 2 denote, respectively, the chlorophenol, phenol and hydrogen degrader concentrations; S ch , S

Table 2 .

 2 1: The steady states of(2.8). The functions M 0 , M 1 and M 2 are given in Definition 2.1, ϕ 0 and ϕ 1 are given in Definition 2.2 and Ψ is defined by(2.23).s

  Proposition 2.2. If s in 1 = 0 then, E 010 and E 011 do not exist. If s in 2 = 0, E 001 , E 100 and E 101 do not exist. If s in 1 = s in 2 = 0, we have: • The steady states E 001 , E 100 , E 101 , E 010 and E 011 do not exist. • If ω 1, E 110 and E 111 do not exist. If ω < 1, E 110 and E 111 exist, respectively, if

	and only if		
	(1 -ω)s in 0	φ 1 (D) and (1 -ω)s in 0 > φ 2 (D).	(2.53)
	Proof. If s in 1 = 0, then µ 1 s in 1 , s in 2	= 0, so that the conditions	
	µ 1 s in 1 , s in		

2 > D + a 1 and s in 1 > ϕ 1 (D) of existence of E 010 and E 011 , respectively, cannot be satisfied. Therefore, E 010 and E 011 do not exist. If s in 2 = 0, then µ 2 s in 2 = 0 and µ 0 s in 0 , s in 2 = 0, so that the existence conditions µ 2 s in 2 > D + a 2 and µ 0 s in 0 , s in 2 > D + a 0 of E 001 and E 100 cannot be satisfied, respectively. Moreover, the second existence condition of E 101 implies that

  , which are the second and the third existence conditions of E 111 in Table2.2. Thus, (2.54) is the only existence condition of E 111 .

	Remark 2.3. From Tables 2.1 and 2.2, we can see that:

  .13) Stability of the three-tiered food-web model without decay In addition, s 2 < M 2 (D) implies that φ 3 (D) > 0 for all D ∈ I 2 . Now, when ω < 1, from Lemma 2.3 and using H8, equation (2.44) has at most two solutions s * 1

	Chapter 3. 2 < s * 2 2 , such that ∂Ψ ∂s 2 (s * 1 2 , D) < 0 and ∂Ψ (s * 2 2 , D) > 0 (see Figure 2.3(a)). Thus, the steady state ∂s 2 E 1 110 corresponding to s * 1 2 is unstable. For the steady state E 2 110 corresponding to s * 2 2 ,
	the condition s * 2		
	Doctoral thesis	Page 45|142	Sarra Nouaoura

  .2.

	Remark 3.1. From Remark 2.1, when it exists, E 1 110 is unstable. When E 2 110 exists, the third stability condition ∂Ψ ∂s 2 (s * 2

2 , D) > 0 in Table

Table 3 .

 3 .3. 3: Nominal parameter values, where i = {ch, ph, H 2 }. Units are expressed in Chemical Oxygen Demand (COD).

	Parameter	Wade et al. [64]	Unit
	k m,ch	29	
	k m,ph	26	
	k m,H 2	35	

Table 3

 3 Let σ i , i = 1, . . . , 6 be the bifurcation values defined in Table3.5. The existence and stability of steady states of (2.1), with respect to the input concentration S in ch is given in Table3.6. The nature of the bifurcations when S in ch crosses the values σ Stability of the three-tiered food-web model without decay
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.3. Assume that S in ph = 0, S in H 2 = 2.67×10 -5 , D = 0.01 and k dec,ch = k dec,ph = k dec,H 2 = 0. i , i = 1, . . . , 6 is given in

Table 3 . 7 .

 37 Table3.5: Definitions of the critical values of σ i , i = 1, . . . , 6. All functions are given in Table3.4, while φ 4 is given by (3.2).

Table 3 .

 3 6: Existence and stability of steady states, with respect to S in ch . In the following, the letter S (resp. U) means that the corresponding steady state is stable (resp. unstable). No letter means that the steady state does not exist.

	Interval of S in ch

Table 3 .

 3 7: Nature of the bifurcations corresponding to the critical values of σ i , i = 1, . . . , 6, defined in Table3.5. There exists also a critical value σ * 0.029638 corresponding to the value of S in ch where the stable limit cycle disappears when S in ch is decreasing. Type of the bifurcation σ 1 Transcritical bifurcation of E 000 and E 100 σ 2 Saddle-node bifurcation of E 1 110 and E 2 110 σ 3 Transcritical bifurcation of E 001 and E 101 σ 4 Transcritical bifurcation of E 100 and E 101 σ 5 Transcritical bifurcation of E 1 110 and E 111 σ * Disappearance of the stable limit cycle σ 6 Supercritical Hopf bifurcation Stability of the three-tiered food-web model without decay Proof. Using the change of variables (2.7) and from Tables 3.1 and 3.2, the necessary and sufficient conditions of existence and stability of steady states of (2.1) are summarized in Table 3.8 when S in ph = 0 and k dec,i = 0. Since s in 1 = Y 4 S in ph = 0, E 010 and E 011 do not exist, as shown in Proposition 2.2. Using Table 3.8, we see that:
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  • E 001 exists, since the existence condition in Table3.8 holds from (3.18). It is stable if and only if S in ch < ϕ 0 (D)/Y =: σ 3 . • E 100 exists if and only if µ 0 Y S in ch , S in H 2 > D, which is equivalent to

			.8
	does not hold, as		
	µ 2 S in H 2	1.0845 > D = 0.01.	(3.18)

Table 3

 3 .3. Therefore, equation Ψ(s 2 , D) = (1 -ω)Y S in ch + S in H 2 admits two solutions s * 1 2 and s * 2 2 which correspond to two steady states E 1 110 and E 2 110 , respectively. When it exists, E 1 110 is unstable, as stated in Remark 3.1. From Table 3.8, the first existence condition of these steady states holds if and only if Figure 3.2 shows that the second existence condition of E 1 110 and E 2 110 in Table 3.8 holds, for all S in ch ∈ [σ 2 , 0.05], since the straight line of equation y = Y S in ch is above the curves of the functions y = M 0 (D, s * i 2 ) + M 1 (D, s * i 2 ), for i = 1, 2, respectively. E 2 110 is unstable since the third stability condition does not hold as φ 3 (D) -6513 < 0. Therefore, E 1 110 and E 2 110 exist and are unstable for all S in ch ≥ σ 2 . They disappear for S in ch < σ 2 . For S in ch = σ 2 there is a saddle-node bifurcation. For S in ch = σ 5 there is a transcritical bifurcation of E 1 110 and E 111 . • From Table 3.8, E 101 exists if and only if

	S in ch ≥	φ 1 (D) -S in H 2 (1 -ω)Y	=: σ 2 .

  Projections of the ω-limit set in variable X H 2 as functions of S in ch ∈ [0, 0.11], reveal the occurrence and disappearance of stable limit cycles. (b) Magnification of the transcritical bifurcations when S in ch ∈ [0, 0.018].

			(a)								(b)
	1.3e-04	X H 2			1.6e-06		X H 2	E 001			
	1.1e-04				1.4e-06							
					1.2e-06								E 101
					1e-06							
					8e-07							
			E 111		6e-07							
					4e-07							
		E 000 E 001 E 100 σ 1 ¡ ¡ ! σ 2 σ 3 ¡ ¡ ! σ 4 e e u e e u σ 5	E 1 110 E 2 110 ¡ ¡ ! σ * e e u σ 6	S in ch	0e00 2e-07	0	0.002 E 000 σ 1	0.004 E 100	0.006	0.008	0.01	0.012 σ 3 σ 4	0.014 S in ch
	0.01 Figure 3.6: (a) 0.02 0.006 0.008 0.012 0.014 0.016 0.018 0e00 2e-04 1e-04 3e-04 5e-05 1.5e-04 2.5e-04 3.5e-04		0.0294 0e00 2e-04 4e-04 6e-04 1e-04 3e-04 5e-04 5e-05 1.5e-04 2.5e-04 3.5e-04 4.5e-04 5.5e-04	0.0295		0.0296	0.0297	0.0298	0.0299	0.03	0.0301	0.0302

Table 3 .

 3 9: Colors used in Figures 3.5 and 3.7. The solid (resp. dashed) lines are used for stable (resp. unstable) steady states.

	E 000 E 001 E 100	E 1 110	E 2 110	E 101	E 111
	Red Blue Purple Dark Green Magenta Green Cyan

  Figure 3.11: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.02955 (in kgCOD/m 3 ): Convergence to the stable steady state E 100 .Figure 3.12: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.029639 (in kgCOD/m 3 ): Convergence to the stable limit cycle.Figure 3.14: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.035 (in kgCOD/m 3 ): Convergence to the positive steady state E 111 .
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Figure 3.13: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.029639 (in kgCOD/m 3 ): Convergence to the stable steady state E 100 .

  Figure 3.15: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.035 (in kgCOD/m 3 ): Convergence to the steady state E 100 .
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Table 4 .

 4 1: The Liénard-Chipart coefficients for E 111 . The functions E, F , G, H, I, J, K and L, defined by (3.3) and (4.1), are evaluated at the components of E 111 given in Table2.1. Notice that they are depending on the operating parameter D.

  .15) Stability of the three-tiered food-web model with decay It exists if and only if s in 2 > s 2 , where s 2 is given by (4.15). It is stable if and only if µ 0 s in 0 , s 2 < D + a 0 and µ 1 s in 1 , s 2 < D + a 1 .
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  100 (SS3) nor the signs of other eigenvalues of the Jacobian matrix were explicitly established in [64], section C3, where the existence and stability of E 100 (SS3) were checked only numerically by considering the roots of polynomials of degrees 2 and 3, respectively, see formulas (C.3) and (C.7) in [64].E 110 = (x 0 , x 1 , 0, s 0 , s 1 , s 2 ) is given by:

). Formulas (4.16) together with equation (4.17) giving s 0 and the stability condition (4.19) were established in [64], section C3, using variables (3.20) and growth functions (3.22). However, neither condition (4.18) of existence of E

  .21) Stability of the three-tiered food-web model with decay Notice that (4.21) reduces to a cubic equation in s 2 . Only its solutions in the interval (s 0 2 , s 1 2 ) are to be considered. The steady states E 1 110 and E 2 110 exist if and only if the following conditions hold
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  Here φ 2 and φ 3 are defined in Table3.4. Formulas (4.20) together with equation (4.21) giving s 2 were established in [64], section C4, using variables (3.20) and growth functions (3.22). However, neither condition (4.22) of existence of E 110 (SS4) nor its condition of stability (4.23) have been established explicitly in [64], section C4, where the existence and stability of E 110 (SS4) were checked only numerically by considering the roots of a polynomial of degree 5, see formula (C.20) in [64].E 101 = (x 0 , 0, x 2 , s 0 , s 1 , s 2 ) is given by:

	1 110 is unstable whenever it exists and E 2 110 is stable
	if and only if	
	(1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D), and φ 3 (D) > 0.	(4.23)

  , x 1 , x 2 , s 0 , s 1 , s 2 ) is given by:

	.26)
	Formulas (4.24) together with conditions (4.25) of existence and (4.26) of stability of E 101
	(SS5) were established in [64], section C5, using variables (3.20) and growth functions
	(3.22). However, the signs of other eigenvalues of the Jacobian matrix have been checked
	only numerically by considering the roots of a polynomial of degree 4, see formula (C.31)
	in [64].
	E 111 = (x 0

  .27) Stability of the three-tiered food-web model with decayIt exists if and only if the following conditions hold

	Chapter 4.		
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  .34) Stability of the three-tiered food-web model with decayIt exists if and only if the following conditions hold

	Chapter 4. s in 1 > s 1 , s in 1 + s in 2 > s 1 + s 2 ,	(4.35)
	where s 1 and s 2 are given by (4.34). E 011 is stable if and only if	
		s in 0 < M 0 (D + a 0 , M 2 (D + a 2 )) .	(4.36)
	Formulas (4.34) together with conditions (4.35) of existence and (4.36) of stability of E 011
	(SS8) were established in [64], section C8, using variables (3.20) and growth functions
	(3.22). However, the signs of other eigenvalues of the Jacobian matrix have been checked
	only numerically by considering the roots of a polynomial of degree 4, see formula (C.62)
	in [64].		
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  Proposition 4.1. Let S in ph = 0, S in H 2 = 2.67 × 10 -5 and S in ch = 0.1. Using the biological parameter values in Table 3.3, while k dec,i = 0.02, the bifurcation values δ i , i = 1, . . . , 7 are provided in Table 4.3. The bifurcation analysis of (2.1) according to D is given in Table 4.4. The bifurcation types at the critical values δ i are defined in Table 4.5. Proof. Using the change of variables (2.7) and Tables 2.2 and 4.2. The necessary and sufficient existence and stability conditions of steady states of (2.1) are summarized in Table 4.6 when S in ph = 0, S in H 2 = 2.67×10 -5 and S in ch = 0.1. Using Table 4.6, we see that: E 000 always exists and it is stable if and only if Stability of the three-tiered food-web model with decay Table 4.3: Critical parameter values δ i , for i = 1, . . . , 7. All functions are given in Table 3.4, while µ i and r 5 are given in (2.9) and Table 4.1. Definition Value δ 1 is the largest root of equation r 5

	Chapter 4.		
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D > µ 0 Y S in ch , S in H 2 -a 0 := δ 6 and D > µ 2 S in H 2 -a 2 := δ 7 .

Table 4 .

 4 4: Existence and stability of steady states, with respect to D. The bifurcation values δ i , i = 1, . . . , 7 are given in Table 4.3. Interval E 000 E 001 E 100 E 1

	110	E 2 110

  Transcritical bifurcation of E 100 and E 101 δ 5 Transcritical bifurcation of E 001 and E 101 δ 6 Transcritical bifurcation of E 000 and E 100 δ 7 Transcritical bifurcation of E 000 and E 001 Stability of the three-tiered food-web model with decay Table 4.6: Existence and local stability conditions of steady states of (2.1), when S in ph = 0.

	Chapter 4. Existence conditions	Stability conditions	
	E 000 Always exists	µ	
		2 110 and E 111	
	δ 3 Saddle-node bifurcation of E 1 110 and E 2 110	
	δ 4 Doctoral thesis	Page 83|142	Sarra Nouaoura

  .9.
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	0.0008																			
														5e-04						
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Table 4 .

 4 8: Existence and stability of steady states, with respect to S in ch . The bifurcation values σ i , i = 1, . . . , 6 are given in Table 4.7.

	Interval	E 000 E 001 E 100 E 1 110	E 2 110

Table 4 .

 4 9: Bifurcation types corresponding to the critical values of σ i , i = 1, . . . , 6, defined in Table 4.7. There exists also a critical value σ * 0.099295 ∈ (σ 5 , σ 6 ) corresponding to the value of S in ch where the stable limit cycle disappears when S in ch is decreasing. Bifurcation types σ 1 Transcritical bifurcation of E 000 and E 100 σ 2 Saddle-node bifurcation of E 1 110 and E 2 110 σ 3 Transcritical bifurcation of E 001 and E 101 σ 4 Transcritical bifurcation of E 100 and E 101 σ 5 Transcritical bifurcation of E 1 110 and E 111 σ 6 Supercritical Hopf bifurcation σ * Disappearance of the stable limit cycle Proof. From Table 4.6, we have: Since the second stability condition of E 000 in Table 4.6 does not hold

  .9.
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Table 4 .

 4 10: The initial conditions of solutions of model (2.1) in Figures 4.16 -4.22.

	1 110 and E 2 110 are unstable:

  Figure 4.19: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.0995 (in kgCOD/m 3 ): Convergence to the stable limit cycle.Figure 4.20: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.0995 (in kgCOD/m 3 ): Convergence to the stable steady state E 100 . (b) Magnification of (a) showing that the solution of (2.1) converges to the nonzero X ch -component of E 100 .Figure 4.21: Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S in ch = 0.11 (in kgCOD/m 3 ): Convergence to the positive steady state E 111 .
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			5e-04 0.0004																			0.001																										
																																										8e-05					
			4e-04 0.0002																		0.0008 0.0005																				5e-05					
			3e-04																		0.0006																				6e-05					
			0																			0																				0e00					
			2e-04	0		1 000	2 000		3 000	4 000		5 000		6 000	0.0004	0				1 000		2 000		3 000	4 000		5 000	6 000		4e-05	0			1 000	2 000	3 000	4 000	5 000	6 000
			1e-04							t (days)							0.0002										t (days)									2e-05						t (days)
			0e00																			0																				0e00					
				0		2 000	4 000	6 000		8 000	10 000	12 000	14 000				0			2 000			4 000	6 000	8 000	10 000	12 000	14 000					0			2 000	4 000	6 000	8 000	10 000	12 000	14 000
										t (days)																		t (days)																t (days)
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Table 5 .

 5 Operating diagrams for a three-tiered food-web model where φ 3 and φ 4 are given in Definition 2.2 and (3.2).First, from Table5.1, we define in Table5.2 the surfaces Γ i , i = 1, . . . , 18 which delimited the different regions of the S in ch , S in ph , S in H 2 , D -space. 2: Definitions of the equations of the surfaces Γ i , i = 1, . . . , 18. All functions are given in Table3.4, while µ i and φ 4 are given by (2.9) and (3.2), r 5 is given in Table4.1.

	in ph , S in H 2 ) > 0,	(5.1)

  Giving a fixed value for S in ph and S in H 2 , then, the intersections of the surfaces Γ i , i = 1, . . . , 14 with the S in ch , D -plane are curves as functions of S in ph and S in H 2 . However, the intersections of surfaces Γ i i = 15, . . . , 18 with this plane are straight lines. Following [64], we consider several cases to examine the effect of the operating parameters S in ph and

		H 2	
	5.2.1 Operating diagrams with respect to S in ch , D , S in ph and S in H 2
	fixed		
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Table 5 .

 5 3: Existence and stability of steady states in the regions of the operating diagram of Figure 5.1 when S in ch > 0 and S in ph = S in H 2 = 0.

	Region	E 000 E 1 110	E 2 110	E 111 Color
		SS1 SS4 1 SS4 2 SS6	
	J 1 = (1)	S				Red
	J 2 = (14 2 , 4 1 )	S	U	S		Teal
	J 3 = (16, 4 1 4 2 )	S	U	U	S	Yellow
	J 4 = (1, 4 1 4 2 )	S	U	U		Red
	J 5 = (1, 4 1 4 2 6)	S	U	U	U	

  .3 and S in ph = S in H 2 = 0. In this case, only the three steady states E 000 , E 110 and E 111 exist (see Proposition 2.2). Using Table 5.1 and from Proposition 2.2, the steady states E 110 and E 111 exist, respectively, if and only if

  .7. E 1 110 is unstable, while E 2 110 is stable in the region bounded by the curve

	Chapter 5. Operating diagrams for a three-tiered food-web model
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Table 5 .

 5 4: Existence and stability of steady states of (2.1) according to the five regions J i of the operating diagrams of Figure5.1(b) in the case with maintenance.

	Condition 1 Condition 2	Region E 000 E 1 110 E 2 110 E 111

Table 5 .

 5 5: Existence and stability of steady states of (2.1) according to the five regions J i of the operating diagrams of Figure5.1(a) in the case without maintenance.

	Condition 1 Condition 2	Region E 000 E 1 110 E 2 110 E 111

)

  J 6 J 7 J 8

									D	Γ 5 Γ 6 Γ 7	Γ 1 Γ 2
										'	J 9	J 10 T
										Γ 3	J 11
										J 12
									c J 13 c J 14 J 15 e e u	J 16 e e	Γ 11 S in ch
					(c)					(d)
	D	Γ 5			Γ 6 Γ 7	Γ 2		Γ 6 Γ 7	Γ 2
	J 6 J 7		J 8 E	e e u	J 9			J 14	J 12 J 19	J 13
				c Γ 1	J 19 E	J 12	J 13		J 18	J 20	Γ 11
		Γ 13 c	J 15 Γ 12 c	e e u J 17 e e J 18 Γ 10 E J 14	J 20	e e J 16 J 11	Γ 11 ch S in Γ 3	J 15	J 17 e u J 21 e	J 16

Table 5 .

 5 .8, we see that: 6: Existence and stability of steady states in the regions of the operating diagrams ofFigures 5.11 and 5.12. 
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Table 5 .

 5 [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF] defines the various regions in the operating diagrams in the case without maintenance according to S in ch and D.
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Table 5 .

 5 7: Definitions of the regions corresponding to the operating diagrams of Figure 5.11 when S in ph = 0 in the case without maintenance. Region Definition J 1 µ 2 S in ch < D and for all S in ch ≥ 0 J 6 µ 2 S in ch < D and S in ch

  and φ 4 D, S in ch , S in H 2 < 0Assume that S in ch > 0, S in ph > 0 and S in H 2 = 0, we construct the operating diagrams in S in ch , D -plane in both cases with and without maintenance terms. In this case, system (2.1) has further two steady states E 010 and E 011 . However, the steady states E 001 , E 100 and E 101 do not exist since S in H 2 = 0, see Proposition 2.2. We consider the input concentrations S in ph = 10 -2 and S in H 2 = 0. These values are those of Figure5(a) in[64].
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	Phenol is in the input		
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  and 5.22 are summarized in Table 5.8. The positive steady state E 111 loss its stability via a Hopf bifurcation by crossing the boundary from the region J 3 to J 5 , see Table 5.8 and Figures 5.21 and 5.22, and in J 5

	Chapter 5. Operating diagrams for a three-tiered food-web model
	(a)						(b)	
	D							
	J 1					J 1			Γ 4
							Γ 1	
						Γ 2	c		J 3
	J 2	J 3	J 24 e e	Γ 1 Γ 2 Γ 15 ch S in	J 4 J 28 J 29 e e J 26 J 25 J 27 e e Γ 6 Γ 9	c J 5 J 32 J 30	J 22 J 31 ¡ ¡ ! ¡ ¡	J 23 c J 24 ¡ ¡ ! Γ 15 Γ 8 = Γ 14 Γ 16
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Table 5 .

 5 8: Existence and stability of steady states in the regions of the operating diagrams of Figures 5.21 and 5.22.

	Region	E 000 E 1 110 E 2 110 E 111 E 010 E 011 Color

  . Since the concentrations of S in ph and S in H 2 are large enough comparing with the case of Figure 5.22 where S in ph = 10 -2 and S in H 2 = 0, all asymptotic behaviors were detected in Figure 5(d) of [64]. Figures 5.23 and 5.24 are constructed using the same method as Figure 5.11, which consists in plotting the curves separating the regions.

	D	(a) J 1		Γ 18	D	Γ 6		¡ Γ 7	(b) J 6 J 7	Γ 5
		J 6			d d J 38	J 8 c	¡ Γ 13	J 9 J 33	J 16	J 10 ¡ ¡ !	Γ 17 Γ 1 Γ 11 = Γ 12 Γ 2
						e u		
	J 8 ¡ ¡ J 38 c J 36	J 7 J 34 J 9 e e	J 33 e e J 16	Γ 5 Γ 6 , Γ 7 Γ 2 Γ 17 S in ch	J 36	e	J 39	J 34	S in ch
					(c)				
				Γ 5				Γ 6
			J 6 J 38 J 37	J 7		Γ 10	J 8 J 39	Γ 7 Γ 17 J 33 J 9 J 16 J 17 e e u Γ 11 , Γ 13
				J 36			J 35
										J 34

Table 5 .

 5 9: Existence and local stability of steady states in the regions of the operating diagrams of Figures 5.23 and 5.24. E 000 E 001 E 100 E 1 110 E 2 110 E 101 E 111 E 010 E 011 Color SS1 SS2 SS3 SS4 1 SS4 2 SS5 SS6 SS7 SS8

	Region	
	J 1 = (1)	S

  a)

	S in ph		Γ 7	Γ 13	S in ph	Γ 5	(b) Γ 15 Γ 18
			J 34	J 35	J 36	Γ 17	J 24	J 45	Γ 17
									J 46
								J 23
	Γ 2 Γ 11 = Γ 12	J 11 ©	J 16	J 17 J 39	Γ 14	J 2 J 50 J 22	e e u J 3	J 47 J 48
	Γ 1	J 9 J 10	J 33				S in H 2	J 1	J 49 J 51	J 9	S in H 2

Table 5 .

 5 10: Existence and local stability of steady states in the regions of the operating diagrams of Figures 5.25 and 5.26. E 000 E 001 E 100 E 1 110 E 2 110 E 101 E 111 E 010 E 011 Color SS1 SS2 SS3 SS4 1 SS4 2 SS5 SS6 SS7 SS8

	Region	
	J 1 = (1)	S

Table 5 .

 5 11: The bifurcations according to subsets of surfaces Γ i . A saddle-node bifurcation is indicated by SNB, a transcritical bifurcation by TB and a Hopf bifurcation by HB. to J 4 J 7 to J 14 J 8 to J 19 J 9 to J 10 J 9 to J 12 J 26 to J 29 J 27 to J 28 J 51 to J 49Γ (1 -ω)S in ch Y > φ 2 (D) -S in ph Y 4 -S in H2 J 2 to J 3TB: E 2 110 =E 111 J 4 to J 5 J 10 to J 11 J 12 to J 13 J 33 to J 16 J 28 to J 30 J 49 to J 48 J 50 to J 22 Γ φ 4 (D, S in ch , S in ph , S in H2 ) < 0 J 3 to J 5 HB of E 111 J 11 to J 13 J 16 to J 20 J 17 to J 21 J 22 to J 30 Γ r 5 (D, S in ch , S in ph , S in H2 ) < 0 J 3 to J 5 HB of E 111 J 11 to J 13 J 22 to J 30 J 23 to J 31 J 24 to J 32 Γ S in ch Y > M 0 (D + a 0 , S in H2 ) J 1 to J 51 TB: E 000 =E 100 J 2 to J 49 J 3 to J 48 J 6 to J 7 J 23 to J 46 J 24 to J 45 J 37 to J 38 J 43 to J 42 Γ S in ch Y > ϕ 0 (D) J 7 to J 8 TB: E 001 =E 101 J 14 to J 19 TB: E 001 =E 101 J 15 to J 18 TB: E 001 =E 101 J 25 to J 24 TB: E 111 =E 011 J 25 to J 32 TB: E 111 =E 011 J 37 to J 36 TB: E 111 =E 011 J 42 to J 41 TB: E 101 =E 111 Operating diagrams for a three-tiered food-web modelJ 44 to J TB: E 101 =E 111 Γ 7 S in ch Y ω > S in H2 -M 2 (D + a 2 ) + ωϕ 0 (D) J 8 to J 9 TB: E 100 =E 101 J 17 to J J 19 to J J 21 to J J 35 to J J 41 to J Γ 8 = Γ 14 S in ch Y > M 0 (D + a 0 , s * 1 2 ) or M 1 (D + a 1 , M 3 (S in ch Y, D + a 0 ) J 22 to J TB: E 1 110 =E 010 +M 3 (S in ch Y, D + a 0 ) > S in ph Y 4 + S in H2 J 30 to J Γ 10 S in ch Y > ϕ 0 (D) + ϕ 1 (D) -S in ph Y 4 J 8 to J 39 TB: E 101 =E 111 J 18 to J J 18 to J Γ 11 = Γ 12 µ 1 (S in ph Y 4 + S in ch Y -s 0 , S in H2 -ω(S in ch Y -s 0 )) > D + a 1 J 10 to J TB: E 100 =E 1 110 J 11 to J or J 13 to J S in ch Y > M 0 (D + a 0 , s * 1 2 ) + M 1 (D + a 1 , s * 1 2 ) -S in ph Y 4 J 22 to J J 48 to J Γ 13 S in ch Y > M 0 (D + a 0 , s * 2 2 ) + M 1 (D + a 1 , s * 2 2 ) -S in ph Y 4 J 9 to J 33 TB: E 100 =E 2 110 Γ 15 µ 1 (S in ph Y 4 , S in H2 ) > D + a 1 J 1 to J 27TB: E 000 =E 010 J 2 to J 50 J 3 to J 22 J 4 to J 28 J 5 to J 30 J 34 to J J 35 to J J 38 to J J 44 to J J 47 to JΓ 16 ϕ 1 (D) + M 2 (D + a 2 ) < S in ph Y 4 + S in H2 J 23 to J TB: E 010 =E 011 J 27 to J J 28 to J J 31 to J Γ 17 S in ph Y 4 > ϕ 1 (D)J 6 to J 38TB: E 010 =E 011 J 7 to J 37 J 16 to J J 17 to J J 23 to J J 39 to J J 46 to J TB: E 010 =E 011 J 9 to J 51 J 10 to J J 11 to J J 16 to J J 40 to J Proof. From Table5.2, the surface Γ 1 is defined byS in ch Y (1 -ω) = φ 1 (D) -S in ph Y 4 -S in H 2 .Operating diagrams for a three-tiered food-web model Using Tables2.1 and 5.1, we can see that E 1 110 and E 2 110 coalesce and are non hyperbolic steady states on the surface Γ 1 . Using Table 5.1, if S in ch Y (1 -ω) ≥ φ 1 (D) -S in ph Y 4 -S in H 2 , we have a transition from J 1 to J 2 where E 1 110 and E 2 110 emerge unstable and stable, respectively, in the positive octant R 4 + , which correspond of the saddle node bifurcation. From Table 5.2, the surface Γ 2 is defined by S in ch Y (1 -ω) = φ 2 (D) -S in ph Y 4 -S in H 2 . Using Tables 2.1 and 5.1, we can see that E 2 110 and E 111 coalesce and are non hyperbolic steady states on the surface Γ 2 . Using Table 5.1, if S in ch Y (1 -ω) > φ 2 (D) -S in ph Y 4 -S in H 2 , we have a transition from J 2 to J 3 where E 2 110 becomes unstable and E 111 appears stable, which correspond of the transcritical bifurcation. From Table 5.2, the surface Γ 3 is defined by φ 4 (D, S in ch , S in ph , S in H 2 ) = 0. Using Table 5.1, if φ 4 (D, S in ch , S in ph , S in H 2

	Γ i Conditions	Transition Bifurcation
		J 1 to J 2
		J 1
	Γ (1 -ω)S in ch Y ≥ φ 1 (D) -S in ph Y 4 -S in H2	SNB: E 1 110 = E 2 110

J 10 J 11 J 16 J 34 J 40 Γ 1 Γ 11 = Γ 12 Γ 2
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