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1 Introduction
“It is not in numbers, but in unity, that our great strength lies”

– Thomas Paine, Common Sense

1.1 Motivation
One of the main feats of modern civilization is being able to make a large number of
people cooperate in the completion of a common goal. The most important aspect of
this takes the aspect of social organization, and especially governments. Their role is to
ensure that individuals cooperate despite natural incentives to do otherwise (essentially
solving the Prisoner’s Dilemma). Combining the contributions of many, and building
upon past knowledge has enabled technological and economical progress at an accelerat-
ing pace for the last few millennia. For instance, the last few centuries have seen changes
in governing that led to the competition of ideas and to more experimentation. Then,
in the last few decades, telecommunications have accelerated the process considerably.

But, at this scale, social institutions and legal frameworks are not sufficient to rein
the incentive of misbehaving. Here, technology can help in providing precise guarantees.
Notably, cryptography makes it possible for large-scale cooperation through computers
and telecommunication networks. This is achieved by ensuring the confidentiality and
the integrity of the information exchanged.

More recently, a new technology that claims to coordinate many people without a
government has surfaced, under the name of Blockchain. It is therefore legitimate to
ask whether this technology will be able to improve our ability to cooperate. Indeed,
it has attracted a lot of enthusiasm, and has often been compared to the information
revolution. Billions of dollars have been invested into technologies and companies related
to Blockchain. However, after a decade of investigation and this colossal funding, it
remains unclear whether Blockchain have interesting use cases. Its original one is that
of online currency, but it is also associated with a number of limitations and issues. It
must be stressed, however, that Blockchain did bring something new to the table, and
we should investigate whether it can help in large-scale cooperation.

In this thesis, we explore the problem of distributed trust, under practical constraints.
More specifically, we consider use cases that require large-scale cooperation and investi-
gate whether we can solve them with technology more than social institutions. In other
words, we would like to avoid depending on a single trusted institution, and instead use
technology to ensure that all parties behave. We look into details at potential solutions
using modern techniques. In particular, we look at what cryptography can do, and the
guarantees it provides, and consider what Blockchain can add.
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1 Introduction

1.2 The Rise of Modern Cryptography
1.2.1 The Information Age
Trust is easily achieved by humans on a small scale, such as that of a tribe or of a small
village. This is made possible by various instincts, which command behavior in favor
of cooperation. However, this mechanism does not work as well for larger settlements.
The development of civilizations required institutions to widen the scale of cooperation.
For example, the invention of fiat currencies to exchange goods and services between
strangers. This means that trust stopped relying mainly on individuals instincts and
shifted towards social mechanisms and techniques. The advances related to the industrial
revolution and the application of the scientific methods were applied to communications
and trust as well. Concretely, this refers to the combination of telecommunications,
computation, and cryptology to devise secure means of communications and transfers of
trust.

Moore's Law: Transistors per microprocessor
Number of transistors which fit into a microprocessor. This relationship was famously related to Moore's Law, which
was the observation that the number of transistors in a dense integrated circuit doubles approximately every two
years.

1971 1980 1990 2000 2010 2017

10,000

100,000

1 million

10 million

100 million

1 billion

10 billion

Source: Karl Rupp. 40 Years of Microprocessor Trend Data. CC BY-SA

Figure 1.1: Moore’s law: the number of transistors in an integrated circuit doubles every
two years (from https://ourworldindata.org/technological-progress)

To understand how cryptography has become as common as it is today, we must look
at the history of payment cards. A payment card (debit cards and credit cards) is a
device that lets the user identify themselves for a transaction. In practice, a payment
terminal, a device on the merchant’s side, interacts with the payment card, contacts
the bank through phone lines or the Internet, and completes the transaction. Initially,
all the required information was stored on magnetic stripes. However, this approach
provides little security, since the information can trivially be read by anyone and copied
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1.3 Modern Cryptography

Supercomputer Power (FLOPS)
The growth of supercomputer power, measured as the number of floating-point operations carried out per second
(FLOPS) by the largest supercomputer in any given year. (FLOPS) is a measure of calculations per second for
floating-point operations. Floating-point operations are needed for very large or very small real numbers, or
computations that require a large dynamic range. It is therefore a more accurate measured than simply instructions
per second.

1993 1995 2000 2005 2010 2015 2017

1 trillion

10 trillion

100 trillion

1,000 trillion

10,000 trillion

Source: TOP500 Supercomputer Database CC BY-SA

Figure 1.2: As a consequence of Moore’s law, the available computing power grows expo-
nentially (from https://ourworldindata.org/technological-progress)

to another card (cloning). During the 1970s, researchers developed smart cards, which
embed integrated circuits, and present a pluggable interface. This device can thus au-
thenticate the user by running an interactive cryptographic protocol with a server of
the originating company. The first mainstream smart cards were sold in 1983 by France
Telecom, then a division of the French Ministry of Posts and Telecommunications.

However, smart cards must be physically presented to a payment terminal on the
merchant’s side. This is incompatible with card not present transactions (i.e. mail or
telephone orders). For a long time, the only solution was to have the user provide the
information of the card over the phone or send it through the mail service. In paral-
lel, the combined explosion of computation power due to Moore’s law (see Figure 1.1
and Figure 1.2) and of communication capabilities related to Metcalfe’s law enabled the
World Wide Web. This commoditization of communication have led to the develop-
ment of online retail, where users can easily browse department stores from their home.
This both increased the demand for secure card not present transactions and enabled
a solution. Effectively, online retail has brought cryptology to the general public. It is
important to note that the democratization of cryptography was brought not by general
privacy concerns, but by a very concrete use case.

7
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1 Introduction

Figure 1.3: Encryption modifies a message such that it becomes unreadable to an
eavesdropper. Only the receiver knows how to decrypt the ciphertext to
obtain the original message. This enables secure communications even
if messages are intercepted. Alternatively, this can be used for storing
data securely, which is conceptually similar to sending a message to one-
self (from https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_
7.1.0/com.ibm.mq.doc/sy10500_.htm)

1.3 Modern Cryptography
Initially, cryptography (“crypto-” for “hidden” and “-graphy” for “message”) was only
concerned with confidentiality (see Figure 1.3). Historical ciphers include the scytale,
Caesar’s, Vigenere’s, Vernam’s and Alberti’s ciphers, as well as many others. With the
industrialization, more complex encryption methods were designed, such as the Enigma
machine [HF45], the Lorenz cipher [MT45], or Delilah [TB45]. Following the computer
revolution, even more elaborate schemes were introduced, and most notably DES [Nat77]
and Rijndael [DR99] / AES [AES01]. The new computing abilities also enabled a new
type of cryptographic scheme, where encryption and decryption are done by different
processes: asymmetric encryption (see Figure 1.4).

However, practical considerations in the ways modern communications are used have
quickly shown the importance of other properties.

• Integrity: ensuring that no attacker is able to alter the contents of the message
during its transfer, neither in a predictable way, or randomizing part of the value;

• Authentication: ensuring that a particular person actually authored the mes-
sage;

• Non-repudiation: ensuring that the author cannot pretend not to have origi-
nated the message after the fact.

Remark 1. Authentication and non-repudiation look very similar. However, non-
repudiation is actually a stronger guarantee than authentication: non-repudiation implies

8
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1.3 Modern Cryptography

(a) symmetric encryption:
the same process and
secret (blue) value are
used to encrypt or
decrypt

(b) asymmetric key
generation: from some
secret (blue) value, a
secret key and a
corresponding public
(orange) key are
generated

(c) asymmetric encryption:
using the public (orange)
key, anyone can encrypt a
message; however,
decryption requires the
secret (blue) key

Figure 1.4: Symmetric and asymmetric encryption. Figures by Wikipedia user Bana-
nenfalter https://commons.wikimedia.org/wiki/User:Bananenfalter

that the receiver can convince other people that the sender indeed authored the message.
With authenticity alone, the sender must still convince the receiver, but there is no guar-
antee that the receiver will be able to convince anyone else that the sender originated the
message.

This has led to the quick expansion of this field of research, and the elaboration of var-
ious standards. In turn, this research has started exploring new domains of application
for the techniques originally intended for communication.

For instance, it was observed early that one could modify an ElGamal or an RSA
ciphertext with no knowledge of the secret key in such ways as to cause predictable
changes to the plaintext. For classical applications, this malleability of the ciphertexts
compromises security by sapping the integrity, and countermeasures had to be put in
place. Yet, these homomorphic properties of the encryption method hinted at a cryp-
tosystem that could be used in computations. While cryptography used to only concern
itself with securing communications, new research have focused on providing security
guarantees even during calculations.

Firstly, Zero-Knowledge Proofs (ZKP) provide ways to prove that a computation was
performed correctly (e.g., decryption). Secondly, with homomorphic encryption, it be-
comes generally possible to design entire protocols that perform useful tasks without
revealing any of the inputs. The idea of performing a Secure MultiParty Computation
(MPC) between several actors that may not trust each other exploits the malleability
of the ciphertexts to combine them and enforces good behavior using ZKPs.

These different approaches in general are currently at the focus of cryptology research.
Initially, the results where mostly theoretical, as with Yao’s garbled circuits, which first

9
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1 Introduction

proved that it was possible to run arbitrary algorithms on encrypted data. Through-
out the years, the complexity costs have been greatly reduced. For instance, in 2012,
Gentry et al. showed that it was possible to run an AES encryption over FHE in 36
hours [GHS12a], but the revised version from 2015 now gives running times of only
4 minutes [GHS12b]. Garbled circuits complete a similar operation in a few millisec-
onds [NST17], but are usually restricted to the two-party setting, or to the three-party
setting [MRZ15]. However, recent advances in MPC have exploited more general vari-
ants of garbled circuits and scaled circuit evaluation to hundreds or even thousands of
parties [HOSS18]. Large amounts of efforts are dedicated to expand the capability of
secure computation by reducing this complexity further.

1.4 The New Vogue for Distributed System

1.4.1 Blockchain
Cryptography is a complex field of mathematics, so it might come as a surprise to
learn of the recent surge of interest for this term by non-specialists. However, this phe-
nomenon must be contextualized. Some users are indeed sensitive to the security of their
communications, and have deliberately embraced the new computer and smartphone ap-
plications that provide end-to-end encryption. However, most discussions involving the
topic are actually associated with a larger trend: Blockchain. We will use “Blockchain”
(upper-case “B”) to refer to the general concept, and “blockchain” (lower-case “b”) to
refer to specific implementations. A blockchain is a data structure conceived specially for
Bitcoin, a fully decentralized electronic currency [Nak08]. The technical and speculative
success of Bitcoin have brought in tremendous amount of interest in the academic and in-
dustrial world, but in the general public as well. Because Blockchain uses cryptographic
hashes and Bitcoin relies on cryptographic signatures, this process was associated with
the word “crypto”. But, in this context, “crypto” is often short for cryptocurrency, which
refers to Bitcoin and the other currencies based on a blockchain.

From a theoretical point of view, Bitcoin was an original, if expensive, solution to an
intriguing problem. As discussed above, the problem of exchanging money through a
digital medium has been long solved. However, until recently, all the solutions relied
on some classical institution that the individual users must trust. With the recent
development in science and engineering, it was only natural to wonder whether it was
possible to replace these institutions entirely by technology. Cryptographers reached
intermediate milestones, notably by allowing anonymous transactions in a digital setting
(notably the electronic currency e-cash introduced by David Chaum [Cha82]).

Distributing trust while still being able to reach a consensus requires some mechanism
to take mutual decisions, which usually takes the form of a voting system. However, in
the digital realm, identity is a more fuzzy concept, since information can be duplicated
without restriction. In practice, this corresponds to the problem of Sybil attacks, where
an attacker creates many accounts to bias the result of an election (for instance). In
general, online voting implies that some authority sources these identities by distributing

10
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Figure 1.5: Bitcoin. A blockchain maintains a ledger containing all pasts transactions.
Miners are the participants who ensure the integrity of the blockchain and
update it. Users (and exchanges) submit to the miners candidate trans-
actions, that only become valid once in the blockchain. The blockchain
incentivizes miners to play their part by automatically rewarding them with
new Bitcoin tokens. (from http://www.csg.uzh.ch/csg/en/research/
blockchain.html)

credentials to each individual. But this is incompatible with a fully decentralized system.
The solution offered by Blockchain is essentially to give up on controlled fairness (one
vote per individual), so that votes can instead depend on computation power. Although
some may find such a trade-off unacceptable from a point of view of the democratic
process, since some individuals will have a higher influence, it does base itself on an
objective metric. In other words, the influence of individuals is theoretically proportional
to their involvement in the system.

Blockchain fits a very narrow class of use cases. Understanding this requires a sound
technical knowledge of computer science, communication networks, cryptology and game
theory. For many, however, Blockchain looks like a new silver bullet, and potentially
a new technological revolution. This impression is influenced precisely because of the
incentives put on its participants. This means that Blockchain has become a hammer,
and enthusiasts are looking for anything that could look like a nail. Thus, many projects
attempt to use this technology blindly, disregarding other solutions and historic best
practices, and causing damage. On the other hand, the large amount of discussion did
bring to the surface several use cases that could be solved with technologies that do not
involve Blockchain. In some situations, it is simply that an industry has yet to take
advantage of the capabilities of computers to automate tasks and transfer information.
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$0

$12 000,00

$6 000,00

$18 000,00

$24 000,00

Price (USD)

Figure 1.6: Price of a single bitcoin (common unit of Bitcoin), ranging from 17 December
2016 to 17 December 2017. Although the technical aspects of Blockchain are
often discussed, most of its popularity can probably be traced back to the
speculative nature of Bitcoin and the other cryptocurrencies that followed.
(from https://coinmarketcap.com/currencies/bitcoin/)

In others, solutions exist in the field of modern cryptography, but many of its techniques
are still unknown in the broader community.

1.4.2 Proof-of-Work
Let us assume that Alice owns a token of some currency. If she sent the token to Bob,
then Bob now owns it. If she sent the token to Charlie, then Charlie now owns it. But
what if Alice somehow allows the token to be sent to both Bob and Charlie? It could be
argued that Bob owns it, or that it should be Charlie’s, and other interpretations are also
possible. This is known as the double-spend problem. In the physical realm, currencies
can assume that it is hard to copy tokens, and they can use various anti-counterfeiting
mechanisms to ensure this. In the digital realm, everything can be easily duplicated by
nature. There exist efforts to restrict this (DRMs), but their success is usually limited
in time, and they often rely on tying a digital asset to a physical one. Other approaches
focus on watermarking content to trace the individual who illegitimately redistributed
the piece of intellectual property, but this does not help in our situation.

In 2008, Satoshi Nakamoto proposed Bitcoin [Nak08], a fully decentralized electronic
currency. It solves the double-spend by considering that a transaction is confirmed only
once it appears in a blockchain. The blockchain plays the role of global consensus so that
the participants agree on which transactions are valid. More precisely, it waits about
one hour to ensure that everyone realizes that the transaction is part of the blockchain.
In the previous scenario, Bob would only accept the token as payment after seeing the
corresponding transaction fully confirmed. If Alice then tried to use the same token as
payment for Charlie, he would then notice that the token has already been spent by
Alice and is now Bob’s. By waiting one hour, Bob and Charlie ensure that no other
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Figure 1.7: Blockchain: blocks are added left-to-right, each pointing to the previous
one; the authorization to add a vote comes from the Proof-of-Work (from
http://www.csg.uzh.ch/csg/en/research/blockchain.html)

transaction is trying to use the token.
Deciding which transactions should be incorporated in the blockchain is done by

solving a puzzle. The participants who try to solve this puzzle are called miners. The first
miner to solve the puzzle gets to update the blockchain with a new block containing the
new transactions. Solving the puzzle is done by an exhaustive search, so it is trivially
parallelized. This means that the probability of being the first to solve the puzzle is
effectively proportional to the amount of computing effort one provides (and inversely
proportional to the total amount of power provided by all the miners). Presenting a
solution to the problem is thus thought of as a proof-of-work.

Effectively, this leverage the fact that the digital world is effectively limited by certain
physical resources. The most convenient are computing power and memory storage. By
using a proof-of-work, participants give a witness of their computing effort, which has
a practical limit. HashCash uses this to limit the amount of unwanted emails [Bac97].
In this proposal, users who wish to send an email must prove to the server that they
performed a small amount of computation. Although this would be transparent for
legitimate users, spammers would need to dedicate significant resources to send many
emails, having a deterring effect.

However, the amount of computation available to users varies greatly with the nature
of the device. Most people have access to CPUs, which are optimized at executing a
single task. Even within CPUs, there are several specializations, with desktop (good
single-thread performance), laptop (various trade-offs), server (good single-thread and
multi-thread performances) and smartphone CPUs (low power consumption). In the last
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decades, the growth of the video game industry has led to the development of GPUs,
which are optimized for massively parallel tasks. Finally, ASICs are integrated circuits
designed for a specific case. Although many users have some sort of GPU (e.g., chipsets
and, more recently, APUs), only a minority actually owns powerful ones (discrete GPUs
on dedicated extension cards). They are much more expensive, and only a handful
of people can acquire them. This gradation in computing power shows that a few
individuals are disproportionately privileged when it comes to proof-of-work.

Alternatively, it is possible to rely on the rareness of computer memory. The idea is
to require a proof-of-work whose computation occupies large amounts of memory. The
Password Hashing Competition has selected Argon2 [Wet16] as a new password hash
function, in particular for its memory-hardness. It succeeds scrypt, a memory-hard
password hash function proposed in 2009. Several cryptocurrencies use scrypt (most
notably Litecoin) or Argon2 to deter the use of ASICs by miners. Note that, with
memory-hard functions, computing power can always be substituted for memory (by
recalculating the value).

1.4.3 Smart Contracts
We now explain how transactions work in cryptocurrencies, and what a “smart contract”
refers to. First, note that there is no concept of account in Bitcoin, where tokens, or
the amount of currency would be stored. Instead, there are only used transactions and
unused transactions. Essentially, a transaction contains the public key of its owner. To
spend it, the owner signs a new transaction with the corresponding secret key. The new
transaction contains the public key of the new owner. This is illustrated in Figure 1.8.

Thus, in a cryptocurrency such as Bitcoin, transactions are simple instructions that
verify the signature of the sender and transfer a certain amount of currency from one
cryptographic keypair to another. In fact, Bitcoin uses a basic scripting language with
very limited functionality, named Script to give some flexibility to the transactions. It
does not support loops and is thus not Turing-complete. It does however manage a
stack, giving it some non-trivial capabilities. This restricted design is deliberate, as it
ensures that transactions can be executed in a predictable amount of time, and gives
less opportunity for bugs to crop up. Cryptocurrencies that use a Turing-complete
language face the problem of handling execution costs. Because of the Halting Problem,
such costs cannot be predicted for arbitrary programs. We show some examples of
Bitcoin transactions in Figure 1.9, Figure 1.10 and Figure 1.11. See the wiki article
at https://en.bitcoin.it/wiki/Script for a description of the possible instructions.
A practical use of this feature is to implement escrow payments with transactions that
require a threshold 2-out-of-3 signature.

In the continuation of this basic scripting language, Ethereum [But13] sought a design
where transactions would be programs of arbitrary complexity. This is done by intro-
ducing smart contracts. Smart contracts are simply complex transactions. In the case
of Ethereum, these transactions can be Turing-complete (they can use loops). Since it
is hard to determine the cost of running an arbitrary program, users pay for the time
needed to execute the smart contract. More specifically, running a smart contract con-
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Figure 1.8: Transactions in a cryptocurrency. Owner 2 receives a transaction from
Owner 1 which contains Owner 2’s public key. Owner 2 can then trans-
fer currency by signing a new transactions for Owner 3. (from https:
//fc.isima.fr/~mazenod/slides/privacy/bitcoin.html#/0/8)

sumes its “fuel”, which is a value associated with the smart contract and paid in ether
(the currency of Ethereum). Essentially, this transfers the problem of determining the
running time of the smart contract from the device where it is evaluated to its authors.
Since the authors write the smart contracts, they can design them in ways that ensure
that they do not consume all of its fuel before finishing. This avoids the Halting Problem
because the authors do not need to predict the running time of arbitrary programs.

As a generalization of escrow transactions, smart contracts were thought of as a way
to implement decentralized institutions. In fact, the term Decentralized Autonomous
Organization (DAO) refers to a system that uses smart contracts to take decisions. In
effect, a DAO can hold funds in the form of ether, and a board committee takes votes
to decide on how to use these funds. The most famous DAO, “The DAO”, worked as a
mutual fund made of Ethereum smart contracts, where investors could contribute some
capital, and then vote on investments.

However, smart contracts highlight another difficulty with complex transactions, sep-
arate from that of the running time. Indeed, writing bug-free software is hard. The
amount of issues present in a piece of software is often underestimated. For an extreme
example, NASA is famous for reducing the number of errors to fewer than 1 per 10,000
single lines of code. However, the cost of the associated methodology is much higher
than what would be acceptable for most software projects.

This fact proved itself again with smart contracts. In June 2016, a vulnerability of
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scriptPubKey: <pubKey> OP_CHECKSIG
scriptSig: <sig>

Figure 1.9: How Bitcoin transactions initially worked. The “public key” (scriptPubKey)
is actually a series of instructions indicating how to check a signature. The
“signature” (scriptSig) contains a cryptographic signature and the corre-
sponding cryptographic public key. The names between angle brackets are
replaced by actual values in each transaction. Here, scriptPubKey verifies
that <sig> is a valid signature under the cryptographic public key <pubKey>.

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG
scriptSig: <sig> <pubKey>

Figure 1.10: A modern standard Bitcoin transaction. This time, scriptPubKey first
compares the hash of <pubKey> to <pubKeyHash>. Finally, the last instruc-
tion verifies that <sig> is a valid signature under the cryptographic public
key <pubKey>.

the smart contract behind The DAO was exploited, allowing attackers to redirect the
equivalent of about $50M at the time. The flaw stemmed from the behavior of the smart
contract that allowed reentrant execution, but did not account for it. Since members of
the Ethereum project had a significant stake in The DAO, they pushed for cancelling
all the transactions corresponding to the attack. This reaction was considered hugely
controversial, since it effectively changed a result that was supposed to be immutable and
guaranteed by the blockchain. This event simultaneously illustrates the risks associated
with relying on a fully automated system with no safeguards, and questions whether
projects based on Blockchain actually decentralize trust as much as is expected.

scriptPubKey: OP_HASH256 6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a0\
89c68d6190000000000 OP_EQUAL
scriptSig: <data>

Figure 1.11: A puzzle Bitcoin transaction. Here, scriptPubKey only checks that <data>
hashes to the target value. This kind of transaction is intended as a playful
challenge with an automatic reward. There are many such puzzles in the
various cryptocurrencies.
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Figure 1.12: Price of a single ether (common unit of Etehrem), from the announce of
The DAO ot its demise. Because of the speculation in cryptocurrencies in
general, the price of the ether varies with that of bitcoin. To isolate the
effect of The DAO, we show the price of the ether (ETH) in bitcoins (BTC).
(from https://coinmarketcap.com/currencies/ethereum/)

1.4.4 Blockchain-Free Solutions
As explained above, Blockchain only fits very specific use cases. Its popularity makes
it tempting to use it to solve various problems, but it turns out that many proposed
applications have little to do with what Blockchain actually provides.

What Blockchain does. First, Blockchain pertains to the digital realm. This is sel-
dom useful because humans are still grounded in the physical, and so are most of our
activities. In practice, this means that any use of a blockchain to track physical assets
will rely on some mechanism to connect it to the physical world. For instance, in the
case of delivering physical articles, tying the payment to the delivery requires trusting
the delivery method itself. Similarly, Blockchain is often touted as a solution to track
products along their supply chains. But the actual issue of the supply chain is collecting
the correct information in the first place, which has little to do with Blockchain. How-
ever, this does not itself dismiss Blockchain as a way to track land tenures or property
liens. The existence of a central authority and the poor usability do.

Second, Blockchain reaches a global consensus. This is not always useful since local
consensus can be enough. For instance, the early World Wide Web used little consensus,
and anyone was able to start a personal website without interacting with any particular
institution. Granted, the Domain Name Service became quickly widespread. However,
domain names are not strictly required, and quite a few websites could actually only be
accessed directly by their IP addresses even in the 2000s. It could be argued that IP
address themselves constitute a global consensus, but they are the basics for the Internet,
and are almost a commodity. In fact, in decentralized systems based on Blockchain, such
as Bitcoin and the other cryptocurrencies, miners require IP addresses to communicate.
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But, since these addresses can be transient, there is not real need for a long-term global
consensus on IP addresses.

Third, Blockchain works in a fully decentralized setting. This is rarely useful because
it is possible to identify some form of central authority in most real-world coordination
problems. In any situation involving a classical government (voting, land, economic pol-
icy), the center is obvious1. Within any company, the company is the center. Between
several companies, the previously existing legal framework can often be used as a cen-
ter. This leaves a single case: individuals interacting independently of an intermediate
institution (international interplay, or ideal libertarianism).

For currencies, this is the original use case tackled by Bitcoin. In any case, it means
that Blockchain did solve an interesting theoretical problem, but that it seems to bring
little more in practice, bar a drastic shift in governance. There are practical reasons
why such a shift is unlikely (although not impossible). To illustrate this, consider what
happens when a mistake is done with a cryptocurrency: when users lose or leak their
secret keys (this is extremely common), when they transfer to the wrong address, when
an exchange fails (Mt. Gox, Coincheck, and many others), or when pump-and-dump
schemes exit (cryptocurrencies bypass many regulations and safeguards). In many cases,
users have no recourse; in some, they must fall back on classical institutions to initiate
litigation.

Cryptocurrencies have also brought a new way to exploit compromised systems. Bot-
nets are now used to mine cryptocurrencies for the profit of its administrators, and at the
expense of the legitimate owners. Scripts can also be maliciously embedded in webpages
to target a large number of computers [Mes17, ELMC18]. Several tools try to detect
and block the execution of these scripts, but they mostly rely on black lists [WFX+18].

Permissioned Blockchain. Facing such a limited range of application, Blockchain ex-
perimenters have put forward the idea of deploying permissioned blockchains. In this
variant, all the actors are clearly identified. This setting greatly reduces the cost of
maintaining a blockchain. Indeed, once each participant has a secret cryptographic key,
running votes and taking decisions becomes almost trivial. Theoretically, it would mean
that Blockchain could actually fit several use cases (see Figure 1.13). However, one
should keep in mind that permissioned Blockchain dismisses the innovative aspect of
Blockchain. In fact, what a permissioned Blockchain does is simply maintain a log of
activities between the participants secured by a traditional PKI (Public-Key Infrastruc-
ture).

With that said, the problem is actually not trivial. Although cryptography with
identified actors effectively stops an attacker from altering arbitrarily the contents of a
database, there still remain the problem of consistency. In fact, the CAP theorem states
that the following three properties cannot hold simultaneously for a distributed system.

• Consistency: every read request returns the most recent written value (or fails);
1note that weak governments are not solved by Blockchain: you still need a physical way to enforce

what could be called a “cryptolaw”
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Figure 1.13: Do You Need a Blockchain? This decision flowchart helps determining
whether Blockchain is pertinent for a given use case. It highlights multiple
questions that filter out most real-world problems. However, this advises
for the use of a permissioned blockchain in some situations (from [WG17])

• Availability: every request succeeds (a read request may not return the most
recent written value);

• Partition tolerance: messages between nodes are dropped by the network.

In other words, when a network partition occurs, a distributed system must choose
between either refusing requests, or serving obsolete results. This issue is well-known to
IRC users in the form of netsplits, where servers from a same network drop consistency
during partitions (see Figure 1.14).

Byzantine fault tolerance (BFT) is another description of the phenomenon. The
usual example is that of two generals who must coordinate a simultaneous attack (see
Figure 1.15). The general description considers the problem of keeping a distributed
system consistent while nodes and messages may fail silently. Solving the BFT problem
is of great importance for large scale databases and content delivery networks. Although
no perfect solution exists, protocols using various trade-offs are well known. For instance,
Paxos is a commonly used system to achieve consensus in such situations.

This shows that permissioned blockchain have little use. However, this brings us to
the topic of trust in distributed systems, and how it can be achieved using cryptography.

19



1 Introduction

Figure 1.14: Servers A and C have lost sight of each other; Bob and Sara can still chat
together, but Joe will not be able to communicate with them until the
servers reconnect

1.5 Cryptography in Distributed Networks
As we mentioned in Section 1.2, modern cryptography brings new tools for administrat-
ing trust.

1.5.1 Provable Cryptography
With the development of computers, modern cryptography have become tightly con-
nected with computer science and various mathematical fields. As a consequence, it
has become common practice in cryptographic research to provide mathematical proofs
of the security of proposed solutions. Ideally, this ensures that cryptographic schemes
cannot be broken within the model of computation under consideration. The model of
computation refers to the mathematical models [Fer09] used to idealize how computers
work, although this can be applied to calculators and even human computation. How-
ever, this is seldom attained. As a concession to practicality, security is often reduced
to a few assumptions instead. Although we do not know whether these assumptions are
true, or even whether they are decidable, they are easier to inspect. This is the most
pragmatic way to reduce the attack surface in the theoretical side. Finally, there are
many cases where an attack is theoretically possible, but would take too long in the real
world to be practical. Thus, many schemes assume that the computational abilities of
the attackers are bounded.

Nevertheless, within this approach, we must consider whether the model of computa-
tion we use is actually accurate. For this, we need to rely on empirical evidence. Indeed,
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Figure 1.15: Assume that Alice and Bob are two Martian generals, who want to attack
Earth simultaneously. If Alice sends a message to Bob and attacks, it
might fail to arrive, and Bob will not join Alice in the attack. Adding an
acknowledgement ensures that Alice does not attack alone, but if it does
not arrive to Alice, Bob will be the one to attack alone. The problem
switches back and forth as more acknowledgement messages are added.
No deterministic solution exists, but it is possible to solve the problem
probabilistically if a model for transmission failure is known.

it has been observed that this model is particularly good at predicting various behaviors
when performing calculations. However, some edges cases do exist, and can be exploited
to attack even theoretically secure cryptosystems that have been correctly implemented.
Such attacks are referred to as side-channel attacks. These include notably:

• timing attacks: the time needed to run the computation might depend on secret
information, and be measured by the adversary [Koc96, BB03];

• power analysis: the power drawn by the computation might depend on secret
information, and be measured by the adversary [KJJ99, KJJR11];

• electromagnetic analysis: the electromagnetic field emitted by the system
might depend on secret information, and be measured by the adversary [Age82,
HSK97];

• cold-boot attacks: an attacker might directly access the memory of a sys-
tem [HSH+09, RC11].

Finally, an attacker could use a different model of computation altogether. Specifically,
it has been discovered that it was theoretically possible to build a computer with a
fundamentally different set of basic operations using quantum mechanics [Ben80, Man80,
Fey82, Deu85].

Various ways to ensure security guarantees over sensitive information have been de-
signed within this context. However, it is possible to do more than simply secure the
transmission of information.
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1.5.2 Homomorphic Encryption (HE)
Homomorphic encryption (HE) is the general idea of performing computation over en-
crypted data, introduced in [RAD78]. More exactly, a HE scheme is a way to encrypt
data so that it is then possible to perform operations on it. The end goal of homo-
morphic encryption is the ability to run arbitrary programs over encrypted data (see
Figure 1.16).

Figure 1.16: Ideally, Alice would like to execute arbitrary circuits on encrypted data and
securely delegate computations to Bob. Traditionally, she would use normal
encryption to send her data to Bob and retrieve the results, but this reveals
information to Bob. Instead, she can use HE, and send encrypted data that
he cannot decrypt, but that he can use for computations. Alice can then
decrypt the result. From [Hay12].

Solutions for partially homomorphic encryption (PHE) schemes have been known for
decades, such as the RSA [RSA78], or ElGamal [ElG84] cryptosystems. However, PHE
only allows a single type of operation, such as either addition, or multiplication (but not
both). This has some uses, but is not sufficient for most applications.

Somewhat Homomorphic Encryption (SHE). An intermediate stepstone was reached
with somewhat homomorphic encryption (SHE). In a SHE scheme, both additions and
multiplications can be performed, but there is a restriction on the number of multipli-
cations that can be chained. For instance, the BGN cryptosystem [BGN05] allows an
arbitrary number of additions, but only one multiplication. The execution time of this
type of scheme rises quickly of the multiplicative depth of the evaluated expression. In
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practice, this limits what can be done in a reasonable amount of time. This type of
solution can cover some use cases, and provide partial solutions for others, but it is not
yet fully satisfying.

Fully Homomorphic Encryption (FHE). In 2009, Craig Gentry proposed a way to
first realize a fully homomorphic scheme (FHE) [Gen09]. The idea is to first take a
SWE scheme, where each multiplication adds noise to the ciphertext. If too many mul-
tiplications are chained, the noise grows too much, and it becomes impossible to decrypt
and recover the plaintext. The solution is to use a special operation, named bootstrap-
ping, that reduces this noise. This way, bootstrapping is run every few multiplications,
and arbitrary expressions can be evaluated.

However, bootstrapping is a costly operation, and it must be performed relatively
regularly. In practice, it is essentially a re-encryption of the ciphertexts, itself done
using the homomorphic properties of the encryption scheme. Re-encrypting removes the
noise from the ciphertexts, but the fact that this operation is performed in the ciphertext
domain adds back some noise. Because of this, FHE schemes are typically inefficient.
However, new milestones are reached each year, and the efficiency of FHE is improving
significantly.

1.5.3 Zero-Knowledge Proofs (ZKPs)
In the example of Figure 1.16, Alice might also want to ensure the correctness of the
result. By combining confidentiality of the data and integrity of the computation, Alice
can delegate heavy computations to any party. This relaxes the constraint of trusting the
host of the calculations, and opens the door to lending CPU time more systematically.

In many situations however, secret information from both the prover and the verifier
is combined. In this case, the prover has to convince the verifier that the computation
was done correctly without revealing private information. The solution takes the form
of Zero-Knowledge Proofs, or ZKPs. Here, “zero-knowledge” refers to the fact that the
protocol leaks no secret information.

This technique relies on the idea that there are problems that are hard to solve, but
for which it is easy to verify that a solution is valid (NP-complete problems). Such a
solution is essentially a witness that the problem was solved. With ZKPs, the goal for the
prover will be to demonstrate knowledge of this verifier without disclosing the solution
(which would take a long time for the prover to find). Thus, ZKPs are often Proofs
of Knowledge, or PoKs. Although there is yet to be a formal proof that NP-complete
problems actually are hard to solve, they are usually assumed to be (e.g., 3-SAT or the
travelling salesman problem). Indeed, after considerate effort, no efficient (polynomial-
time) algorithm have been found to solve any of these (but heuristics often exist and are
sometimes enough for real-world applications).

When the goal of the prover is only to convince the verifier that such a witness exists,
we might use the expression of “proof of existence”. The mere existence of a witness can
be sufficient to guarantee that some assertion holds (e.g. relation between values). In a
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ZKPoK, the verifier is convinced that the prover knows the witness, and therefore that
it exists. A basic illustration of the concept is given in Figure 1.17.

(a) Alice enters the cave
while Bob stays outside

(b) Bob chooses one of the
two exists

(c) Alice exits by the selected
path

Figure 1.17: Zero-Knowledge Proofs. The cave has two entrances, it is possible to get
from one to the other, but the way is barred by a locked door. Only
one knowing the secret codeword can pass. Alice can demonstrate to Bob
that she knows the secret codeword by using the protocol illustrated here.
Figures inspired by [QQQ+90], drawn by Wikipedia user Dake https://
fr.wikipedia.org/wiki/Utilisateur:Dake

The concept was introduced in 1985 by Goldwasser, Micali and Rackoff in [GMR85].
Many protocols have been proposed, most notably the Schnorr protocol [Sch90], which
can be generalized for various relations in the exponents [CS97]. A general approach
also allows simplifying the protocol to a single exchange between the prover and the
verifier [FS87]. Such protocols are said to be non-interactive.

1.5.4 Secure MultiParty Computation (MPC)
Once we know how to perform operations on secret data and how to convince that this
was done correctly, we can consider entrusting secure computation to several entities.
In effect, we will be exploring ways to split secret information among several parties.

Shamir’s Secret Sharing. A well-known result due to Shamir offers a simple approach
for distributing a secret value among several peers [Sha79]. For a given secret value s,
each party gets a secret share si. When at least k parties agree, they can reconstruct
s from their shares. This is already sufficient for some situations, but revealing the
secret implies that it is essentially single-use. A more satisfying approach is to exploit
the expression used to recover s. This means that it is possible to collectively compute
values that depend on s, without ever revealing the secret s itself.

More generally, protocols that share secret values allow the execution of complex
computations securely and relatively efficiently. This type of protocol is called Secure
MultiParty Computation (MPC). However, not everything can be done for an arbitrary
number of parties.
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Secure Two-Party Computation (2PC) and Garbled Circuits (GC). If we restrict
ourselves to two parties, more complete results exist. In fact, one of the main problems
of Secure Two-Party Computation (2PC) is Yao’s Millionaires’ problem. The problem
considers two wealthy parties, Alice and Bob, who want to determine which of them is
the wealthier, without revealing the amount of their wealth. In other words, Alice knows
some secret value a, Bob knows some secret value b, and they want to test whether a ≥ b
without leaking information about a or b. The first solution to the problem was provided
by Yao in 1982 [Yao82].

A logical circuit is a directed acyclic graph (DAG) where nodes are logical operators
and edges connect the output of a logical operator to inputs of other logical operators.
In this paper, he introduces garbled circuits (GC) which are a way to transform logical
circuits so that they can be executed in a 2PC setting without revealing the inputs or
the intermediate values. Such circuits can be used to represent arbitrary computations
that run in a predefined amount of time.

In practice, we can simplify the problem as follows: Alice knows some circuit, and Bob
some input. They would like to execute Alice’s circuit on Bob’s input without revealing
either. What would be Alice’s input can be incorporated in the circuit.

For each bit of the input of the circuit, Alice chooses an arbitrary representation for 0
and another for 1. She then garbles each gate of the circuit by providing a logical table
where the output are encrypted by the inputs. It means that the circuit can only be
executed for some specific inputs. When valid inputs are given, they allow decrypting
the corresponding results of the first logical gates, which in turn allow decrypting the
next level. This cascades all the way to the output of the circuit. Alice gives the resulting
garbled circuit to Bob.

All that remains is for Bob to obtain the representation of each bit of its input. For
this, Alice and Bob run an oblivious transfer protocol. In such a protocol, Alice offers two
values x0 and x1 (the representations of 0 and 1), and Bob chooses b ∈ {0, 1} (without
seeing x0 or x1). The important property of this protocol is that Alice does not learn b,
and Bob only learns xb, but not x1−b.

This result implies that there exist 2PC protocols for any computation. However,
circuits can be large, and garbled circuits are expensive in general due to the sheer
number of encryptions that Alice must do, and of decryptions for Bob. Thankfully, this
result was only a first step and more efficient constructions are being discovered.

1.6 Our Contribution
In this thesis, we explore two different practical problems where secure computation in
a distributed environment would prove pertinent. We show that, with proper consid-
eration, it is already possible to use cryptography for concrete situations and provide
working solutions.

First, we consider a situation that seems to directly contradict crucial conditions
for confidentiality in cryptography. Organizations dedicated to organ donation search
compatible donors and recipients among the medical records. Since we do want to find
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such compatible records, the entropy of the input space is necessarily low. On first
consideration, it seems to mean that any encryption of the medical records would imply
some form of central authority to insert new medical records or compare them. But this
is problematic in an international setting, where there might not be enough trust for
such an authority. Therefore, we propose a practical solution to this problem by relying
on a decentralized authority to provide strong confidentiality guarantees. Our solution
does this while staying reasonably efficient.

Second, we explore the domain of electronic voting, in which deployed solutions are
still unsatisfactory. Indeed, many solutions use cryptography only to secure the com-
munication with a trusted authority. This trusted authority could trivially observe the
choice of each voter. Although they are not yet widespread, solutions with stronger guar-
antees have been realized, such as Helios and Belenios [Adi08, CGGI14], Scytl [CHI+08],
or Prêt à Voter [CRS05, RBH+09, XSHT08]. However, all of the existing solutions ei-
ther cover only the simplest voting systems, or reveal aggregates and complete their
execution in the clear. Thus, we propose an implementation of a cryptographic protocol
for an advanced voting system which only reveals the winner and keep all intermediate
values secret. The proof-of-concept gives acceptable running times, and they could be
improved easily with larger resources.

Through these two examples, we show that the current knowledge of cryptography
already enables us to solve many more problems without having to wait for generic
schemes to become efficient.
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2 Preliminaries
Our contributions are built upon preexisting knowledge. In this chapter, we present
some cryptographic primitives and assumptions that we use to introduce our own con-
structions. For completeness, we also provide the definitions of the basic mathematical
objects that are commonly used in cryptography.

2.1 Modular Arithmetic
Group Theory. Groups are the basic tool for cryptology, and entires branches of math-
ematics in general.

Definition 1 (Group). Let G be a set and + be a binary operator. We say that (G,+)
is a group when the following properties are verified.

• Closure: ∀a, b ∈ G, a+ b ∈ G;

• Associativity: ∀a, b, c ∈ G, a+ (b+ c) = (a+ b) + c;

• Identity element: ∃0,∀a ∈ G, a+ 0 = 0 + a = a;

• Inverse element: ∀a ∈ G,∃b ∈ G, a+ b = b+ a = 0.

For the last property, b is the inverse of a, and noted −a. This is the additive notation.

Definition 2 (Abelian group). When the following additional property is also met, we
say that the group is abelian.

• Commutativity: ∀a, b ∈ G, a+ b = b+ a.

Definition 3 (Field). When we have two laws + and ×, we say that (G,+,×) is a field
when:

• (G,+) is a group;

• (G\{0},×) is a group;

• distributivity: ∀a, b, c ∈ G, a× (b+ c) = a× b+ a× c (× is distributive over +).

To avoid confusion we use the multiplicative notation for ×: the identity element is
written 1 (note that 1 ̸= 0), and the inverse of a is noted a−1 or 1

a
. Finally, the ×

operator might be omitted when doing so does not introduce ambiguity.

Definition 4 (Order). The order of a group (G,+) is the cardinality of the set G.
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Arithmetic. Cryptographic constructs are usually defined over generic groups associ-
ated with some properties or assumptions. However, we often need at least the natural
numbers to describe relations between the elements of these groups. The set of naturals
numbers is usually represented by the character N, and defined by the zero element 0,
the equality relation = and the successor function S. There are themselves defined by
the Peano axioms.

1. 0 ∈ N;

2. ∀x ∈ N, x = x (reflexivity of equality);

3. ∀x, y ∈ N, x = y ⇒ y = x (symmetry of equality);

4. ∀x, y, z ∈ N, x = y ∧ y = z ⇒ x = z (transitivity of equality);

5. ∀x, y, (x ∈ N ∧ x = y ⇒ y ∈ N) (closure of equality);

6. ∀x ∈ N, S(x) ∈ N (closure of successor function);

7. ∀x, y ∈ N, S(x) = S(y)⇒ x = y (injectivity of successor function);

8. ∀x ∈ N, S(x) ̸= 0.

In short, 0 is an element of N, = is an equivalence relation, and S : N → N is injective
such that S−1(0) = ∅. As an example, the fourth element of N is thus written as
S(S(S(0))). The explicit expression for the answer to the ultimate question of life, the
universe and everything is a bit unwieldy. Instead, we can use the decimal representation
for clarity (although sexagesimal has some nice properties). However, this requires the
principle of induction:

9. ∀P, P (0) ∧ (∀n ∈ N, P (n)⇒ P (S(n)))⇒ ∀n ∈ N, P (n).

The most natural model for the Peano axioms is perhaps given by set theory where
the zero element is defined as the empty set, and the successor adds to x a singleton
containing x:

• 0 = ∅;

• S(x) = x ∪ {x}.

From this, it becomes easy to define our usual operators +, −, ×, ÷, and then the
corresponding closures Z and Q.
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2.1 Modular Arithmetic

Prime Numbers. In particular, we say that b divides a when their quotient is integral:
∀a, b ∈ N, b|a⇔ ∃q ∈ N, a = b× q. This is where things start to get interesting. Indeed,
we know of no closed-form expression to determine how many divisors a given number
has. We define the slightly more general divisor function σx(n) =

∑
d|n d

x. Then, σ0(n)
is the number of divisors of n. At least, some properties are obvious:

• σ0(0) =∞;

• σ0(1) = 1;

• ∀n ≥ 2, σ0(n) ≥ 2 since 1|n and n|n;

• ∀n ≥ 2, σ0(n) ≤ n.

Numbers n such that σ0(n) = 2 are particularly interesting. Since they work as the
basic blocks for multiplication (we cannot split them in smaller numbers), we call them
prime numbers and note their set P. A very useful remark is that any natural number
may be written as the product of prime numbers.

Theorem 1 (Fundamental theorem of arithmetic). ∀n,∃!α : P→ N, n =
∏

p∈P p
α(p).

From this property, it comes that we can describe phenomena on prime numbers, and
deduce the results for all of the natural numbers. This is handy because prime numbers
verify many convenient properties.

Modular Arithmetic. The operation + implies a group over the set Z. But (Z,+) is
infinite and working in finite groups is often more convenient in practical applications.
To construct simple finite groups, we take the successors of 0, but warp back to zero at
some value n ∈ N∗. For instance, Z5 corresponds to the set of values {0, 1, 2, 3, 4}. In
(Z,+), 4 × 4 = 16. If we count from 0 to 16, we encounter 5 three times, and count
one more, so, in Z5, 4× 4 = 1. To be clearer, we will use x ≡ y mod n to indicate the
group in which we are working, thus writing 4× 4 ≡ 1 mod 5. Here, “mod” is short for
“modulo”.

How can we describe the map from Z to Zn more explicitly? For any number m ∈ Z,
we warp from n to 0 a certain number of times q, and count a few more values r. In
other words: m = q×n+ r with q, r ∈ Z and 0 ≤ r < n. This corresponds to Euclidean
division and the following property:

Theorem 2 (Euclidean division). ∀m,n ∈ Z,∃!(q, r) ∈ Z2,m = q × n+ r ∧ 0 ≤ r < n.

Furthermore, we also know how to compute q and r efficiently. Since we do not usually
care about q, we use the notation m mod n to refer to this r. With this, we can extend
our notation to Z: 16 ≡ 1 mod 5 because 16 mod 5 = 1.

We can check that this is consistent for the various operations on Z. Take a = qa×n+ra
and b = qb× n+ rb with qa, qb, ra, rb ∈ Z and 0 ≤ ra, rb < n. Clearly, a ≡ ra mod n and
b ≡ rb mod n. Further, we have:

a+ b = (qa + qb)× n+ (ra + rb)
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Thus, a+ b ≡ ra + rb mod n. More generally, all of the operations +, − and × work as
expected in Zn. For ÷, let us try to find the multiplicative inverse of a ∈ Zn. That is
to say, we want b such that a× b ≡ b× a ≡ 1 mod n. In other words, such that there
exists q, r ∈ Z for which a × b = q × n + 1. However, this is not always possible. For
instance, when a = 2 and n = 4, the left-hand side is always even, and the right-hand
side is always odd. To describe the existence of an inverse in the general case, we need
to introduce the notion of greatest common divisor.

Greatest Common Divisor. We define the greatest common divisor of two natural
numbers.

Definition 5 (Greatest common Divisor). gcd(a, b) = max{q : q|a ∧ q|b}.

This notion is sometimes extended to a set of natural numbers: gcd(S) = max{q :
∀n ∈ S, q|n}. However, it is mostly used for pairs of natural numbers. We can notice
that gcd(ma,mb) = m gcd(a, b). This raises the question of “basic pairs”, which cannot
be divided into smaller elements. Similarly as for primes, we say that a and b are coprime
when gcd(a, b) = 1. Although we again know no closed-form expression, we count them
with Euler’s Totient Function:

Definition 6 (Euler’s Totient). φ(n) = #{k : 0 ≤ k ≤ n⇒ gcd(k, n) = 1}.

Obviously, for any prime number p, we have gcd(k, p) = 1 for all 0 ≤ k < p so
φ(p) = p− 1. In parallel, we can also define the least common multiple:

Definition 7 (Least Common Multiple). lcm(a, b) = min{q : a|q ∧ b|q}.

It is easy to switch back and forth between gcd and lcm with the following property.

Theorem 3. gcd(a, b)× lcm(a, b) = a× b

Returning to the problem of finding an inverse for a modulo n, let us note d =
gcd(a, n). Then, if d ̸= 1, the left-hand side of the equation a× b = q × n+ 1 is clearly
divided by d while the right-hand side is not, so it has no solution. When d = 1 however,
a does admit an inverse.

Theorem 4 (Bezout’s Identity.). ∀a, b ∈ Z,∃x, y, ax+ by = gcd(a, b)

For the particular case where gcd(a, b) = 1, this gives us the assertion we need for
inverses modulo n. Indeed, if gcd(a, n) = 1, then Bezout’s identity tells us that there
exists b and q such that a× b+ q× n = 1. This means that b is the inverse of a modulo
n. Since, for a prime number p, gcd(k, p) = 1 for 0 ≤ k < p, it means that all the
elements of Zp have inverses, so (Zp,×) is a group. Because × is still distributive over
+, (Zp,+,×) is a field. In other cases, we can restrict ourselves to the invertible elements
of Zn, noted Z×

n , which is also a group for ×. Note that Z×
n is the set of the integers

that are coprime with n.
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Cyclic Groups. We say that a group G is cyclic when it is generated by a single
element. That is, there exists an element g such that G = {gk : k ∈ N}. It means
that any element a ∈ G can be written as a = gk for some natural number k. This is
convenient because this allows describing relations between elements of G directly with
arithmetic equations.

If p is prime, then (Zp,×) is a cyclic group of order p− 1. We can construct a cyclic
group of prime order by finding p = qr + 1 with p and q prime and finding h such
that hr ̸≡ 1 mod p. Then, the subgroup of (Zp,×) generated by g = hr mod p is of
prime order q. It is common to set r = 2; in that case, the subgroup is the squares
of Zp. Working with a cyclic group of prime order let us manipulate the element with
exponents that lie in the arithmetic field (Zp,+,×).

Carmichael Function. A less frequently used function is the Carmichael function,
which gives the least common order of Z×

n :

Definition 8 (Carmichael). λ(n) = min{m ∈ N∗ : ∀a, gcd(a, n) = 1⇒ am ≡ 1 mod n}

Equivalently, it is the least common multiple of the orders of the elements of the group
(Z×

n ,×):
λ(n) = lcm{ordn(k) : 0 ≤ k < n ∧ gcd(k, n) = 1}

where
ordn(k) = min{m ∈ N∗ : km ≡ 1 mod n}

2.2 Assumptions

2.2.1 Axiomatic Frameworks
Few cryptographic properties (e.g., IND–CPA or IND–CCA presented in Subsection 2.5.1)
are proven from the common axioms, without additional assumptions. The most notable
cryptographic primitives that gives such a guarantee is Shannon’s one-time pad, which
ensures perfect secrecy, but is trivially malleable. Such strong proofs are generally
referred to as information-theoretic security.

Unconditional security adds the pragmatic assumption that an adversary has limited
time and computation abilities. In practice, it means that unconditional security is
achieved when no adversary can break the scheme in a polynomial time. That is to say,
the running time is polynomial in a security parameter. Then, it is assumed than an
attack would take a disproportionate amount of time, making it practically unfeasible.

This assumption might have to be updated to account for quantum cryptanalysis.
Quantum computers are devices that operate on qubits. A single qubit holds a complex
probability distribution over F2. Combining qubits is much more interesting: n qubits
store a complex probability distribution over Fn

2 . In effect, quantum computers can
be thought of as Turing machine with special oracles for some operations on complex
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probability distributions1. These oracles give them an edge for some problems, which
can be solved using quantum algorithms.

Regarding cryptanalysis, if quantum computers ever scale to a few thousands qubits,
Shor’s algorithm might break existing schemes efficiently. On the other hand, quan-
tum properties can be used for cryptography as well, for instance with quantum key
distribution (QKD). Although quantum entanglement does not bring faster-than-light
communications, it does provide a synchronous source of randomness that cannot be
tampered with. This is sufficient to enable parties to create cryptographic keys and
communicate securely. In 2016, QUESS demonstrated QKD through an artificial satel-
lite, and enabled the first intercontinental video call secured by quantum cryptography.

However, most of the main cryptographic primitives actually use much more specific
assumptions. Although we know some constructions that reduce to a more general
problem or are information-theoretic secure, they are also much less efficient.

2.2.2 Common Assumptions
Provable cryptography attempts to reduce the security properties of cryptosystems to
as few security assumptions as possible. In practice however, few reductions of these
assumptions are known, and many hypotheses must be studied separately. For instance,
RSA uses a very specific assumption, which essentially states that RSA is secure. It is
however well-known that it is easier than the factorization problem.

Factorization Problem (FP). Many cryptographic schemes rely on the hardness of
factorizing composite numbers. The problem is stated below.

Definition 9 (FP). Given n ∈ N∗ determine the unique k, (pi)i ∈ Pk, (αi)i ∈ N∗k such
that n =

∏
i p

αi
i .

The existence and unicity of the solution are proven, but no efficient algorithm to
find it is known. More specifically, no classical polynomial-time algorithm is known
to solve the problem. Concretely, the largest semi-prime (product of two primes) ever
factored consists of 768 bits [KAF+10], and the factorization required 2,000 CPU-years
(see Figure 2.1).

To increase the difficulty of factoring n = pq, some conditions are usually put on p
and q. First, cryptographic primes are “large”: RSA requires primes of thousands of bits
(NIST and ANSSI recommend n to be 2,048 bit long). Safe primes are prime numbers
of the form p = ap′ + 1 with p′ itself a cryptographic prime. Such numbers are more
resistant to factoring algorithms, and embed cyclic groups of prime order p′.

RSA Problem. However, the RSA encryption scheme does not rely just on factoriza-
tion. As a reminder, the RSA encryption scheme is defined as follows:

1the catch is that the output is eventually a single draw from the final distribution, so quantum
algorithms usually involve repeating the main procedure a set amount of times
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12301866845301177551304949583849627207728535695953347921973224521517264005

07263657518745202199786469389956474942774063845925192557326303453731548268

50791702612214291346167042921431160222124047927473779408066535141959745985

6902143413

= 33478071698956898786044169848212690817704794983713768568912431388982883793

878002287614711652531743087737814467999489

× 36746043666799590428244633799627952632279158164343087642676032283815739666

511279233373417143396810270092798736308917

Figure 2.1: RSA-768, the largest semi-prime ever factored [KAF+10]

• KeyGen(): draw p and q two safe prime numbers, set n = p × q, e = 65,537 (or
some other convenient value), find d such that ed ≡ 1 mod n and set pk = (n, e)
and sk = d;

• Encrypt(pk,M): return M e mod n;

• Decrypt(sk, C): return Cd mod n.

Instead, we must use a specific problem:

Definition 10 (RSA). Given a public RSA key (n, e) and a ciphertext c, compute m
such that c ≡ me mod n.

This problem is not harder than the factorization problem, but the most efficient
methods we know of solving the RSA problem require to first compute the factorization
of n.

Discrete Logarithm Problem (DLP). Many cryptographic assumptions stem from
the fact that there are groups in which it is easy to compute an exponentiation, but
hard to compute a logarithm. In its most basic form, this fact gives us the discrete
logarithm problem:

Definition 11 (DLP). Let G be a group. Given g, h ∈ G, compute, if it exists, x such
that h = gx.

Such groups include most notably the multiplicative groups of integer modulo some
prime number p, and the elliptic curves. As for FP, constraints are put on the prime
numbers used, with a length of the order of 200 bits.
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Diffie-Hellman Problem (DH). However, few cryptographic schemes actually rely on
the DLP assumption directly. For instance, consider the Diffie-Hellman key exchange
between Alice and Bob, where G is a cyclic group of prime order p:

• Alice draws x $← Zp and sends X ← gx mod p to Bob;

• Bob draws y $← Zp, sets k ← Xy mod p and sends Y ← gy mod p to Alice;

• Alice sets k ← Y x mod p.

This gives Alice and Bob a common cryptographic key k assuming only a communication
channel that guarantees integrity (but not confidentiality). This scheme is the basis for
the ElGamal encryption scheme. A similar technique is used in the Digital Signature
Algorithm (DSA). We do not know a reduction of its security of to the DLP. Instead, we
usually derive its security, either from the hardness assumption of the Computational
Diffie-Hellman (CDH) problem:

Definition 12 (CDH). Let G be a group. Given g ∈ G, ga and gb, compute gab.

Or that of the Decisional Diffie-Hellman (DDH) problem (which gives indistinguisha-
bility):

Definition 13 (DDH). Let G be a group. Given g ∈ G, ga, gb and h, determine whether
h = gab.

The decisional variant is easier than the computational one which, in turn, is easier
than the Discrete Logarithm Problem (DLP).

Decisional Composite Residuosity Assumption (DCRA). In fact many cryptographic
schemes use specific assumptions in general. For Paillier’s cryptosystem, we must intro-
duce the concept of residues.

We say that x is a k-residue modulo n when there exists y such that x ≡ yk mod n.
The most common form of residue is the quadratic residue, which in particular yields
the quadratic residuosity problem (QR):

Definition 14 (QR). Given an RSA modulus n = p × q for p and q safe primes and
x ∈ Zn, decide whether x is a quadratic residue modulo n.

This is essentially equivalent to computing the Jacobi symbol
(
x
n

)
. Since Paillier’s

cryptosystem works modulo n2, we use a different definition for the DCRA:

Definition 15 (DCRA). Given an RSA modulus n = p× q for p and q safe primes and
x ∈ Zn, decide whether x is a n-residue modulo n2.

In other words, we must decide whether there exists y such that x ≡ yn mod n2.
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2.2.3 Pairings
The groups defined on elliptic curves brought an intermediate model where the DDH is
easy but the CDH is hard. Such groups are referred to as Gap Diffie-Hellman (GDH)
groups. In practice, this takes the form of a new operation, described as a bilinear map:
the pairing.

Let us define pairings formally. For this, let G, G̃ and GT be multiplicative groups,
let g be a generator of G and g̃ be a generator of G̃ and let e : G × G̃ → GT . We say
that e is a pairing when the following conditions are met:

• bilinearity: ∀a, b ∈ Z, e(ga, g̃b) = e(g, g̃)ab

• non-degeneracy: e(g, g̃) ̸= 1GT

• computability: e is efficiently computable

Pairings are classified in three types.

1. Type 1 pairings correspond to the case where there are efficiently computable
morphisms G → G̃ and G̃ → G. In this case, G and G̃ can be seen as the same
group. Although they are simpler to describe and more flexible, they are insecure
over fields of small characteristic, and they are too costly to be practical in fields
of large characteristic.

2. Type 2 pairings correspond to the case where there are efficiently computable
morphisms only from G̃ to G. This asymmetry means that there is still some
relation between G and G̃ aside the pairing itself, but it only goes one way. These
pairings can be transformed into type 3 pairings [CM09].

3. Type 3 pairings correspond to the case when there is not efficiently computable
morphism either from G to G̃ or from G̃ to G, making the two groups effectively
separate.

Because type 1 pairings are either insecure or inefficient, and type 2 pairings can be
reduced to type 3 pairings, we only use type 3 pairings in this document. The most
common form of pairing is the Weil pairing, but the Tate pairing also exists.

The existence of pairings enables some cryptographic schemes. Although the value
returned by the pairing is rarely used by itself, comparing the results of several evalua-
tions of e can be useful. In particular, pairings allow testing relations in the exponents,
without having to compute the exponents themselves (which would require solving the
DLP).

Strong Diffie-Hellman (q-SDH). The Strong Diffie-Hellman assumption was intro-
duced by Boneh and Boyen in [BB04] as the basis for the security of a signature scheme.
The Strong Diffie-Hellman assumption is noted q-SDH, where q refers to the number of
elements provided, not to be confused with the Static Diffie-Hellman assumption, noted
SDH.
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Definition 16 (q-SDH). Let (p,G,GT , e) define a bilinear group setting of type 1, with g
a generator of G. Given (gx

i
)0≤i≤q no adversary can output a pair (w, g

1
x+w ) for w ∈ Z∗

p.

For completeness, we also provide the definition of the Static Diffie-Hellman assump-
tion (SDH).

Definition 17 (SDH). Let G be a group, g, h ∈ G and a ∈ Z. Given g, ga and h, no
adversary can output ha.

In [PS18], Pointcheval and Sanders introduced a modified version of this assumption
for their signature scheme (see Subsection 2.3.3). We reproduce the first variant of the
Modified Strong Diffie-Hellman, which we use in our own construction, here:

Definition 18 (q-MSDH-1). Let (p,G, G̃,GT , e) define a bilinear group setting of type
3, with g (respectively g̃) a generator of G (respectively G̃). Given (gx

i
, g̃x

i
)0≤i≤q along

with (ga, g̃a, g̃a·x) for a, x $← Z∗
p, no adversary can output a tuple (w,P, h

1
x+w , h

a
P (x) ) for

some h ∈ G∗ where P is a polynomial of degree at most q and w is a scalar such that
(X + w) and P (X) are relatively prime.

2.3 Signatures
2.3.1 Definition
A cryptographic signature scheme with signatures S for messages M over secret keys
SK and public keys PK is made of:

• KeyGen(): draw and return pk $← PK and sk $← SK;

• Sign(sk,M): for sk ∈ SK and M ∈ M, return a signature σ ∈ S of M under key
sk;

• Verify(pk,M, σ): for pk ∈ MK, M ∈ M and σ ∈ S, return 1 is σ is a valid
signature of M under key pk, otherwise 1.

It is valid if, for any keypair (pk, sk) created by KeyGen(), and for any message M ,
Verify(pk,M, Sign(sk,M)) = 1.

Intuitively, a signature scheme is secure when one cannot forge new signatures without
the secret key. Levels of security are described by attack models, where an adversary
must play a game: For instance, we might ask the adversary:

• to sign a specific message (giving universal unforgeability, or UUF);

• to choose a message before being knowing the public key, and then forging a
signature (giving selective unforgeability, or SUF);

• to output any forged signature (giving existential unforgeability, or EUF).
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We formally define the strongest of these guarantees, EUF–CMA.
Definition 19 (EUF–CMA). Let Π = (KeyGen, Sign,Verify) be a signature scheme for
messages M. For an adversary A (a probabilistic Turing Machine), we define

AdvEUF–CMA
Π (A) = Pr

(
(pk, sk) $← KeyGen(), (M⋆, σ⋆)← AS(pk) : Verify(pk,M⋆, σ⋆) = 1

)
where S is an oracle that, on query M ∈M returns S(M)← Sign(sk,M). We insist that
M⋆ is never queried. We say that Π is (t, ε)-EUF–CMA-secure (or secure in the sense of
EUF–CMA) when, for any such adversary A running in time t, AdvEUF–CMA

Π (A) ≤ ε.
Remark 2. This definition is compatible with randomizable signature schemes because
the adversary cannot query the oracle with M⋆. For other schemes, the definition might
be relaxed to only requiring that σ⋆ not be an answer of the oracle to query M⋆.

A slightly weaker version requires the adversary to query all the messages before the
setup (the adversary is non-adaptative):
Definition 20 (EUF–wCMA). Let Π = (KeyGen, Sign,Verify) be a signature scheme for
messages M. For an adversary A = (A1,A2) (a pair of probabilistic Turing Machines),
we define

AdvEUF–wCMA
Π (A) = Pr

(
(Mi)i ← A1(), (pk, sk) $← KeyGen(), σi ← Sign(sk,Mi),

(M⋆, σ⋆)← A2(pk, (σi)i) : Verify(pk,M⋆, σ⋆) = 1

)
We say that Π is (t, ε)-EUF–wCMA-secure (or secure in the sense of EUF–wCMA) when,
for any such adversary A running in time t, AdvEUF–wCMA

Π (A) ≤ ε.

2.3.2 Boneh-Lynn-Shacham
One of the signature schemes with the simplest signing procedures was proposed by
Boneh, Lynn and Shacham in [BLS01]. Let G a group of prime order p, g a generator of
G, e : G×G→ GT a bilinear pairing, and H a random oracle with image in G. Then,
the BLS signature scheme is defined by:

• KeyGen(): draw sk $← Z∗
p, and set pk← gsk;

• Sign(sk,M): return H(M)sk;

• Verify(pk,M, σ): return 1 if e(σ, g) = e(H(M), gx), else 0.
Unforgeability can be reduced to the difficulty of the CDH problem in G. This scheme
has been revised for asymmetric pairings in [CHKM09]. The security in the multi-user
setting has been studied in [Lac18].

It has the advantage of having both a very simple key generation and signing process.
Like with RSA, Sign, involves a single exponentiation. However, key generation for RSA
is rather involved, and is hard to do in a distributed manner. Additionally, BLS has
much shorter keys, and is thus more efficient (CPU and memory-wise). With BLS, it
suffices to select a random element from Z∗

p. On the other hand, BLS requires stronger
assumptions because of its use of pairings, and the Verify procedure is more expensive.
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2.3.3 Pointcheval-Sanders
The Pointcheval-Sanders signature scheme [PS16, PS18] has various interesting proper-
ties. We reproduce here the definition for the single-message version. Let e : G×G̃→ GT

be a type-3 pairing with G, G̃,GT of prime order p, and G∗ = G\{1G}. Then, the fol-
lowing procedures define the PS signature scheme.

• KeyGen(): draw (g, g̃, x, y)
$← G× G̃×Z2

p, return sk = (x, y) and pk = (g, g̃, X̃, Ỹ )

where X̃ = g̃x and Ỹ = g̃y;

• Sign(sk,M): draw h
$← G∗ and return σ = (h, hx+yM);

• Verify(pk,M, σ): return 1 if σ1 ̸= 1G and e(σ1, X̃Ỹ
M) = e(σ2, g̃), else 0.

It is unforgeable in the sense of EUF–CMA under the interactive PS assumption [PS16],
and in the sense of EUF–wCMA (non-adaptative) under the q-MSDH-1 assumption (see
Subsection 2.2.2) [PS18]. The same levels of security are achieved when elements g ∈ G
and Y = gy are included in the public key pk, as long as X = gx is kept private.

2.4 Distributed Protocols
We now present techniques that are used to design distributed protocols. Such protocols
involve several parties, who can hold different roles, but who do not trust a single
entity. In a centralized protocol, the trusted authority is able to single-handedly execute
operations that depend on secret values. In a distributed protocol, such operations
require the coordination of several parties, who share secret information. We first present
a simple way that information can be shared among several parties, before describing how
one party can verify the behavior of another. These two basic building blocks enable
us to construct more elaborate protocols with strong correctness and confidentiality
guarantees.

2.4.1 Shamir’s Secret Sharing
In some settings, each party might know a secret value, and operations can allow us to
combine these values to compute useful information (for instance, their sum). However,
it is often useful to have a single secret value, generally the secret key of a cryptographic
primitive, shared among several parties. But no single party must be able to actually
know the secret value, since it would allow that party to decrypt arbitrary ciphertexts,
for instance. Instead, each party should hold a share of the secret, and several parties
should need to cooperate to reconstruct the secret. This ensure that no party knows
the secret, but that, together, they can perform useful operations. Finally, explicitly
reconstructing the secret exposes it again. We would generally prefer that the secret is
never assembled, and that cooperating parties only reveal specific information (such as
the decryption of a single ciphertext).
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A common solution is Shamir’s Secret Sharing [Sha79]. It splits a secret s among k
parties and s can only be reconstructed when at least t parties cooperate, for t ≤ k.
Since only t shares out of k are needed, we say that this is a threshold scheme.

Let f by a random polynomial over a finite field of degree t − 1 so that f(0) = s
and let us define the i-th share as si = f(i) for i = 1 . . . k. Given t − 1 shares (si)i, no
information about s is revealed. Indeed, for each possible s0 value of s, there exists a
unique polynomial g such that g(i) = si for i = 0 . . . k. However, given t shares, we can
recover f(0) by using Lagrangian interpolation (see Figure 2.2):

s =
∑

λisi where λi =
∏
j ̸=i

j

j − i

We can use this idea to conduct cryptographic operations without revealing s at any
point. If each party i knows a share si of sk, then they can cooperate to sign a mes-
sage. For instance, the BLS signature scheme from Subsection 2.3.2 uses Sign(sk,M) =

H(M)sk where M is an element of G, a group of prime order p, and sk $← Z∗
p. To do

this, each party i computes σi = H(M)si and publishes the result. Once all the par-
ties have computed and published their shares of the signature, anyone can reconstruct
σ =

∏
σi

λi = H(M)s.
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f(x) = − 0.575 x⁵ + 10.5 x⁴ − 61.958333 x³ + 140.5 x² − 113.46667 x + 42

Figure 2.2: Shamir Secret’s Sharing: f(0) = 42, t = 6 so six points are enough to
reconstruct f , but we can pick any of them

Shamir’s secret sharing is particularly useful because it is simple to understand and
efficient to deploy. In general, sharing schemes are convenient in that they allow us to
design protocols that require a cryptographic secret value without giving it to any one
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authority. Threshold schemes are also more resilient, because they can accommodate
for the case where one or several of the parties are corrupted, fail or are simply not
available.

2.4.2 Zero-Knowledge Proofs (ZKPs)
Definition. A Zero-Knowledge Proof (ZKP) is a protocol between two parties, the
prover P and the verifier V . The parties are modelized as interactive probabilistic
Turing machines running in polynomial time. The goal of the prover is to convince the
verifier that some statement x belongs to some language L ∈ NP. A witness w is an
efficiently verifiable proof that x ∈ L. A ZKP verifies:

• correctness: if P knows such a w, the protocol succeeds;

• soundness: if x /∈ L, then no prover will succeed;

• zero-knowledge: the protocol leaks no information about w.

Simulation and Rewinding. A simulator is an algorithm that replaces one or several
parties in a protocol and uses the Turing machines of the other parties to test their
behaviors. In particular, a simulator has an advantage compared to the participants of
the protocol: the simulator can rewind parties, that is to say reset them to a previous
state. However, a simulator cannot directly inspect the internal state of a participant.

Extractability. A ZKP is further said to be extractable when there exists an extractor
for the witness. An extractor is a simulator that runs P and obtains w. Extractability
implies soundness, because it requires that P actually knows w, and thus that x ∈ L.
Intuitively, from the point of view of P , the protocol executes normally, but the simulator
verified that P knows w.

Proving Zero-Knowledge. If a simulator is able to convince V without knowing w,
then the protocol is zero-knowledge. Intuitively, from the point of view of V , the protocol
executes normally, but V learned nothing about w.

Example with Graph Coloring. Let us consider a graph G = (V , E) where V is some
set of vertices and E ⊆ V2 is the set of the edges. The problem of graph-coloring is to
find a k-coloring for G, that is a map c : V → Zk such that ∀(a, b) ∈ E , c(a) ̸= c(b). See
Figure 2.3 for an example.

Determining whether a graph (an instance x of the above problem) admits a k-coloring
(x ∈ L) is an NP-complete problem. Actually, even the problem of finding the smallest
k for which G admits a k-coloring (its chromatic number) is also NP-complete. Let
us see how we can design a ZKP around graph coloring. For this, let us assume that
Alice knows some 3-coloring of G (a witness w that G admits a 3-coloring) and wants
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Figure 2.3: This graph admits a 3-coloring, shown on the right. We can check that,
if we take any edge, its vertices of different colors. Alternatively, pairs of
vertices of the same color are not in the edge set E . The problem of 3-
coloring arbitrary graphs is NP-complete. Since it is in NP, we can run a
ZKP of knowledge of the coloring. Since it is NP-hard, finding the coloring
is generally non-trivial.

to prove so to Bob, without revealing said 3-coloring w. Figure 2.4 rephrases the very
clear description of the protocol given by Matthew Green2.

In practice, putting hats on the colors corresponds to publishing cryptographic com-
mitments. When Bob requests an edge to be revealed, Alice opens the two corresponding
commitments. Alice repeats the protocol by combining her 3-coloring by a random per-
mutation of the colors. For the security proofs, we can think of rewinding as traveling
through time, since it corresponds to resetting the state of the other party.

• Correctness. If Alice indeed knows w, then she will succeed every time.

• Soundness. If Bob can travel through time (rewind Alice), then he can query
every vertex of the graph and extract the coloring. This gives us a rewinding
extractor for the witness, so the protocol is sound.

• Zero-knowledge. If Alice can travel through time (rewind Bob), then she can
convince Bob without knowing the coloring (she chooses a random invalid coloring,
and resets the protocol every time Bob asks for an edge whose vertices have the
same color). This gives us a rewinding simulator that convinces the verifier, so the
protocol is zero-knowledge.

Proof-of-Existence and Proof-of-Knowledge We can actually interpret a ZKP in two
different ways:

1. P wants to convince V that x ∈ L

2. P wants to convince V that P knows a witness w
2see https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs/
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2, 8 !

Alice Bob
Figure 2.4: ZKP of knowledge of a graph coloring. Alice knows a 3-coloring of the

graph G shown in Figure 2.3. She hides the color of each vertex under a hat
and presents the result to Bob. He then selects an edge (see Figure 2.3 for
numbering) and Alice reveals the corresponding vertices. Bob then checks
that the colors of the two vertices are actually different. By repeating the
protocol many times (Alice shuffles the colors at every round), Bob can be
convinced that Alice indeed knows a 3-coloring. Because every time Alice
only proves that the two neighboring vertices have different colors, Bob learns
nothing more.

In the first case, P might have chosen some secret values and given commitments to V ,
but V will only accept them if they verify some conditions, which P can ensure using
a ZKP. If we assume the hardness of the DLP, then ZKPs can help prove relations
between values. For instance, we might want to prove that y1 and y2 have the same
discrete logarithms, that is to say that y1 = gx1 and y2 = gx2 for some integer x, without
revealing x. Here, it might not even be important that P knows x, as long as it exists.
Thus, such proofs are sometimes referred to as Zero-Knowledge Proofs-of-Existence, or
ZKPoEs.

In the second case, V might already know that x ∈ L (i.e., V knows a witness w′), but
checks that P also knows this (i.e., P knows a witness w) by running a ZKP (without
using w′). An ingenious way that this is used is to ensure that P generates random values
correctly. Again using the DLP, assume that P is supposed to draw a random x

$← Zp,
and to output y ← gx. A priori, it is hard to distinguish between an honest P , and a
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prover who directly draws y $← G. However, we can test that P knows x by running a
ZKP. Here, x is the witness of the ZKP. Because computing the discrete logarithm of y
is hard, P will need to have first computed x, thus giving a solid guarantee on the way
y was generated. In this type of situation, we will talk about Zero-Knowledge Proof of
Knowledge, or ZKPoK.

In cryptographic protocols, the most common properties that must be proven involve
discrete logarithms. For instance, it can be useful to prove knowledge of the discrete
logarithm of a public value (yielding a signature scheme). Even more often, we need to
prove relations between two discrete logarithms. Below, we present several protocols for
this class of problem.

Schnorr Protocol [Sch90]. Let us consider the first case, where a prover P wants to
prove to some verifier V knowledge of x such that y = gx for some g ∈ G of prime order
p. The Schnorr protocol works as follows.

1. P picks r $← Zp and sends the commitment t = gr to V ;

2. V picks a challenge c $← Zp and sends it to P ;

3. P computes the proof s← r + cx mod p and sends it to V ;

4. V verifies that gs = t× yc.

If P does not know such a x, the Schnorr protocol above can only be completed with
negligible probability. As it is, the Schnorr protocol only provides the following guaran-
tees:

• correctness: as long as P knows x, the protocol succeeds;

• soundness: by rewinding P , the simulator can obtain s1 = r+c1x and s2 = r+c2x
for two different challenges c1 and c2, then x = s2−s1

c2−c1
mod p;

• zero-knowledge: if we assume that V is honest, we can expect that c is actually
chosen uniformly at random, that is, it depends only on random bits provided by
the simulator; with this, the simulator can obtain c, rewind V to set t = gsy−c for
some arbitrary value s and convince V .

The assumption done for proving zero-knowledgeness is crucial: the Schnorr Protocol
is only known to be Honest Verifier Zero-Knowledge (HVZK). Fortunately, the values
provided by the verifier in the protocol are only random values. This means that we can
actually force the verifier to be honest by simulating it with a random oracle.
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Fiat-Shamir Heuristic [FS87, PS96]. The Fiat-Shamir heuristic proposes the idea
of removing some interactions in cryptographic protocols by having random values be
generated by random oracles. Such variants are said to be non-interactive, and we use
the prefix “NI-” for short. There are NI-ZKPs, NI-ZKPoKs and NI-ZKPoEs. To ensure
that the value is not derived from previous values (essentially what the simulator did
to convince P when we proved the HVZK of the Schnorr protocol), the random oracle
should be given the previous transcript as parameter. Let us make the Schnorr protocol
presented above non-interactive by using the Fiat-Shamir heuristic with a random oracle
H:

1. P picks r $← Zp and sets t = gr;

2. P computes c← H(g|y|t);

3. P computes the proof s← r + cx mod p and publishes (y, t, s);

4. V verifies sets c← H(g|y|t) and checks that gs = t× yc.

What guarantees do we have this time?

• correctness: again, as long as P knows x, the protocol succeeds;

• soundness: the simulator controls H; it rewinds P , which thus queries H twice,
and the simulator returns two different challenges c1 and c2, making P publish
again s1 = r + c1x and s2 = r + c2x, then x = s2−s1

c2−c1
mod p;

• zero-knowledge: again, the simulator controls H and can trivially choose an
arbitrary value s and then set c conveniently to convince V .

Remark 3. As an optimization, P can send the scalar value c instead of the group
element t. The former can often be more compact than the later. Then, V recovers t as
gsy−c and checks that c = H(g|y|t).

Chaum-Pedersen Protocol [CP93]. Now, let us consider the second case, where a
prover P wants to prove to some verifier V that logg1

y1 = logg2
y2. In fact, we simply

need to adapt the Schnorr protocol to prove knowledge of x such that both y1 = gx1 and
y2 = gx2 . This protocol works in a cyclic group G of known prime order q. Thus, x ∈ Zq

and g1, g2, y1, y2 ∈ G. The definition is very similar to that of the Schnorr protocol:

• P picks u $← Zq and sends commitments t1 ← gu1 and t2 ← gu2 ;

• V sends a challenge h $← Zq;

• P returns w ← u− hx mod q;

• V checks that gw1 = t1y
−h
1 and that gw2 = t2y

−h
2 .
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As for the Schnorr protocol, this protocol is correct and sound, but is only HVZK. Again,
we can fortunately replace the interactions with the verifier by a random oracle. Here,
h should be computed as H(g1|g2|y1|y2|t1|t2). When we use the Fiat-Shamir heuristic,
the protocol becomes zero-knowledge.

Remark 4. Again, as an optimization, P can send c instead of t1 and t2.

Girault-Poupard-Stern Protocol [GPS06]. Until here, we assumed that the order of
the group was known. This works well for many settings, such as working modulo a
prime number. However, in this work, we make use of the Paillier cryptosystem, which
works modulo a composite number with a secret factorization. This means that the
order of the group is actually not know by the participants, unless they know the secret
key.

Following Girault’s [Gir91] work, Poupard and Stern [PS98, PS99] considered the
problem of working in groups of unknown order. This resulted in the Girault-Poupard-
Stern protocol that we present below. The general idea is to use larger groups. The
difference in size should be enough to drown any information in a cryptographic amount
of noise. Let us assume that a prover P wants to prove to some verifier V that logg1

y1 =
logg2

y2. We work in G of unknown order q, and P actually proves knowledge of x ∈ Zq

such that y1 = gx1 and y2 = gx2 for g1, g2, y1, y2 ∈ G. Additionally, we assume that there
is a security parameter κ and a publicly known upper bound Q of q. That is: Q > q.
Then, the Chaum-Pedersen protocol can be adapted as follows.

• P picks u $← Z22κQ and sends commitments t1 ← gu1 and t2 ← gu2 ;

• V sends a challenge h $← Z2κ ;

• P returns w ← u− hx;

• V checks that 0 < w < 22κQ, and both gw1 = t1y
−h
1 and gw2 = t2y

−h
2 .

Since w falls outside of the correct set with negligible probability, the prover simply re-
starts the proof when w is wrong. As usual, this protocol is correct, sound and HVZK,
and the protocol can be made non-interactive with the Fiat-Shamir heuristic. Here,
h = H(g1|g2|y1|y2|t1|t2).

Remark 5. Still, as an optimization, P can send c instead of t1 and t2.

2.5 Encryption
2.5.1 Asymmetric Encryption
A symmetric encryption scheme from messagesM to ciphertexts C over secret keys SK
is made of:

• KeyGen(): draw and return sk $← SK;

45



2 Preliminaries

• Encrypt(sk,M): for sk ∈ SK and M ∈M, encrypt M into ciphertext C;

• Decrypt(sk, C): for sk ∈ SK and C ∈ C, decrypt C into message M .

It is valid if, for any secret key sk created by KeyGen(), and for any message M ,
Decrypt(sk,Encrypt(sk,M)) =M .

An asymmetric encryption scheme from messagesM to ciphertexts C over public keys
PK and secret keys SK is made of:

• KeyGen(): draw and return pk $← PK and sk $← SK;

• Encrypt(pk,M): for pk ∈ PK and M ∈M, encrypt M into ciphertext C;

• Decrypt(sk, C): for sk ∈ SK and C ∈ C, decrypt C into message M .

Implicitly, sk includes pk. It is valid if, for any keypair (pk, sk) created by KeyGen(), and
for any message M , Decrypt(sk,Encrypt(pk,M)) =M .

Intuitively, an encryption scheme is secure when C gives no information about M .
Levels of security are described by attack models, where an adversary must play a game:
the adversary interacts with a simulator in a probabilistic protocol and aims to fulfill a
particular condition. If no adversary can succeed in the given time (usually, polynomial)
with non-negligible probability, then the scheme is considered secure for this particular
security level.

In its most basic form, the adversary must guess M given C. However, partial in-
formation might leak even though no adversary can recover the complete message. To
address this, we aim for the security guarantee of indistinguishability. This is usu-
ally described by letting the adversary A choose some messages M0 and M1, giving A
C ← Encrypt(pk,Mb) for b $← {0, 1}, and asking A to guess b. If no adversary can guess
b with non-negligible probability, then the scheme is said to be indistinguishable (IND).

Ciphertext-Only Attacks bring the notion of IND–COA. In this attack model, the
adversary must guess b given only C. This attack model already puts some constraints
on the encryption scheme. If ciphertexts can be tested for plaintext-equality (this is the
case for deterministic encryption schemes), an attacker can always attempt an exhaus-
tive search. More specifically, the adversary can try to compute C ′ ← Decrypt(sk,M)
for every M ∈ M, and compare C ′ to C. This can be done efficiently when M is
small. Thus, encryption schemes must be probabilistic and counter comparisons be-
tween ciphertexts, or have a large message-space (more specifically, the min-entropy of
the message-space must be high).

However, encryptions of other messages can reveal partial information about the secret
key sk, which in turn can leak information about M . Thus, in Known-Plaintext Attacks
(IND–KPA), the adversary is given a list of ciphertexts and their underlying messages.
However, an attacker is sometimes able to actually choose, or at least influence, which
message-ciphertext pairs are leaked. This is trivially the case for asymmetric encryption
schemes (the adversary can encrypt arbitrary messages). This brings us to chosen attack
models.
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In such attacks, the adversary is given access to an oracle, a function that gives specific
abilities. When the adversary can encrypt messages (through an oracle for symmetric
encryption), we obtain the notion of Chosen-Plaintext Attacks (IND–CPA). For an even
stronger security level, Chosen-Ciphertext Attacks (IND–CCA) give an oracle to decrypt
arbitrary ciphertexts (except the target). Finally, letting the adversary query the oracles
after being given Mb or not corresponds to IND–CCA1 and IND–CCA2 respectively. We
define IND–CPA and IND–CPA formally below.

Definition 21 (IND–CPA). Let Π = (KeyGen,Encrypt,Decrypt) be an asymmetric en-
cryption scheme from M to C. For an adversary A = (A1,A2) (a pair of probabilistic
Turing Machines), we define

AdvIND–CPA
Π (A) =

∣∣∣∣∣Pr
(
(pk, sk) $← KeyGen(), (m0,m1)← A1(pk),
b

$← {0, 1}, Cb ← Encrypt(pk,mb), b
′ ← A2(pk, Cb) : b

′ = b

)
− 1

2

∣∣∣∣∣
We say that Π is (t, ε)-IND–CPA-secure (or secure in the sense of IND–CPA) when, for
any such adversary A running in time t, AdvIND–CPA

Π (A) ≤ ε.

Definition 22 (IND–CCA1). Let Π = (KeyGen,Encrypt,Decrypt) be an asymmetric en-
cryption scheme from M to C. For an adversary A = (A1,A2), we define

AdvIND–CCA1
Π (A) =

∣∣∣∣∣Pr
(
(pk, sk) $← KeyGen(), (m0,m1)← AD

1 (pk),
b

$← {0, 1}, Cb ← Encrypt(pk,mb), b
′ ← A2(pk, Cb) : b

′ = b

)
− 1

2

∣∣∣∣∣
where D is an oracle that, on query C ∈ C returns D(C)← Decrypt(sk, C). We say that
Π is (t, ε)-IND–CCA1-secure (or secure in the sense of IND–CCA1) when, for any such
adversary A running in time t, AdvIND–CCA1

Π (A) ≤ ε.

Definition 23 (IND–CCA2). Let Π = (KeyGen,Encrypt,Decrypt) be an asymmetric en-
cryption scheme from M to C. For an adversary A = (A1,A2), we define

AdvIND–CCA2
Π (A) =

∣∣∣∣∣Pr
(
(pk, sk) $← KeyGen(), (m0,m1)← AD

1 (pk),
b

$← {0, 1}, Cb ← Encrypt(pk,mb), b
′ ← AD

2 (pk, Cb) : b
′ = b

)
− 1

2

∣∣∣∣∣
where D is an oracle that, on query C ∈ C returns D(C) ← Decrypt(sk, C). We insist
that Cb is never queried (note that Adv has access to D even after getting the challenge
Cb). We say that Π is (t, ε)-IND–CCA2-secure (or secure in the sense of IND–CCA2)
when, for any such adversary A running in time t, AdvIND–CCA2

Π (A) ≤ ε.

These attack models give relatively strong security guarantees, but practical attacks
have been found that bypass them by violating the model. For example, these models
assume completely unrelated keys, so that information about one keypair gives no in-
formation about another. However, there are situations where encryption schemes are
used with several related keys. In these cases, attackers were able to attack on prac-
tical implementations of these schemes due to theoretical security flaws. Infamously,
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Input: x ∈ G and e ∈ N
Output: xe
y ← 1;
while n > 0 do

/* multiply */
if n mod 2 = 1 then

y ← x× y;
end
/* square */
x← x× x;
n← ⌊n

2
⌋;

end
return y

Algorithm 1: Square-and-Multiple

this has brought the complete compromise of the security algorithm WEP for Wi-Fi
communications, which can now be broken easily.

Alternatively, side-channel attacks break the Turing machine abstraction and observe
the behavior of the devices that run the cryptographic schemes. In their simplest ver-
sions, such attacks measure the amount of time required to run the computations (timing
attack). Because the various operations and different data patterns can lead to slightly
different execution times, attackers are able to deduce information about the internal
state. When this information is correlated with the secret key, they are able to derive
the secret key. More sophisticated attacks will measure the power consumption of the
device throughout its operation (power-monitoring attack). Even more advanced tech-
niques will observe other physical properties, such as the radiated electromagnetic field
(electromagnetic attack), or even sound variations (acoustic attack). Timing attacks can
be countered by using algorithms whose running times do not depend on secret values.
For instance, for exponentiation the square-and-multiply algorithm has a running time
that depends on the exponent (see Algorithm 1); Montgomery offers a solution whose
running time is independent from the exponent (see Algorithm 2).

2.5.2 Homomorphic Encryption
A homomorphic encryption scheme is an encryption scheme such that Encrypt is a group
homomorphism: Encrypt(m1)⊕ Encrypt(m2) = Encrypt(m1 +m2) for some binary oper-
ations + over M and ⊕ over C. We will focus on asymmetric homomorphic encryption
schemes. As common examples, RSA encryption is endomorphic over (ZN ,×) and the
Paillier cryptosystem is homomorphic from (Zn,+) to (Zn2 ,×).

In a fully homomorphic encryption (FHE) scheme, Encrypt is a ring homomorphism
(in addition to being a group homomorphism). In other words, we again have the
property Encrypt(m1)⊕ Encrypt(m2) = Encrypt(m1 +m2) but we additionally have that
Encrypt(m1) ⊗ Encrypt(m2) = Encrypt(m1 × m2). Here, +, ×, ⊕ and ⊗ are binary
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Input: x ∈ G and e ∈ N
Output: xe
x1 ← x;
x2 ← x× x;
while n > 0 do

if n mod 2 = 1 then
x1 ← x1 × x2 // multiply
x2 ← x2 × x2 // square

else
x2 ← x1 × x2 // multiply
x1 ← x2 × x2 // square

end
n← ⌊n

2
⌋;

end
return x1

Algorithm 2: Montgomery’s Ladder [Mon87], or Square-and-Multiply-Always: in
both conditional branches, the operations are the same; only the variable used to
store the result changes

operations such that × is distributive with respect to + and ⊗ is distributive with
respect to ⊕. With FHE, we can implement the NAND gate, and thus execute arbitrary
circuits.

In existing FHE schemes, ciphertexts are associated with some level of noise. This
noise increases significantly at each execution of the ⊗ operation (⊕ introduces little
noise). If too much noise is added, the message cannot be recovered. Fortunately, a
method was found to remove this noise: bootstrapping. However, this is an extremely
costly operation, which must be used regularly in FHE schemes. Thus, currently known
solutions are still particularly slow. Although an overhead is expected when switching
from the plaintext domain to the ciphertext domain, such a significant slowdown can
discourage people considering using of cryptography to secure information.

2.5.3 ElGamal Encryption
The ElGamal encryption scheme was published in 1984 [ElG84] and remains convenient
for its relative efficiency and interesting properties. Let us consider a group G of order
p generated by some element g, and let x ∈ Zp. Then, the ElGamal encryption scheme
is defined by the following algorithms.

• KeyGen() : draw x
$← Zp, set pk = gx, sk = x;

• Encrypt(pk,M): draw r
$← Zp, return C ← (gr, pkr ·M);

• Decrypt(sk, C): return M ← C2 · C−sk
1 .
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One can check that this is valid encryption scheme. Its security relies on the Diffie-
Hellman assumptions. More specifically, under the CDH assumption, Encrypt is a one-
way function. Also, under the DDH assumption, the ElGamal encryption scheme is
secure in the sense of IND–CPA. However, the very fact that it is homomorphic makes
it malleable, and thus, it is not secure under IND–CCA.

Multiplicatively Homomorphic ElGamal. To see that this scheme is homomorphic,
let us consider two ciphertexts C = Encrypt(pk,M) and C ′ = Encrypt(pk,M ′). Then,
we define the following operation over C: C ′′ = C · C ′ = (C1 · C ′

1, C2 · C ′
2). Under these

assumptions, we can verify that C ′′ = (gr+r′ , gx(r+r′) · (M ·M ′)) is a valid encryption
for M ′′ = M ·M ′. So, the ElGamal encryption scheme is homomorphic from (G, ·) to
(G2, ·).

Additively Homomorphic ElGamal. This multiplicative homomorphic property is in-
teresting, but computations rely on addition more often than on multiplication. A
common variant of the ElGamal encryption scheme is thus the following.

• KeyGen() : draw x
$← Zp, set pk = gx, sk = x;

• Encrypt(pk,M): draw r
$← Zp, return C ← (gr, pkr · gM);

• Decrypt(sk, C): search M such that gM = C2 · C−sk
1 and return M .

The Decrypt operation needs to perform an exhaustive search overM to break the DLP.
Thus, this only works when we can make the assumption that the message space is small.
This can work in various situations, but usually prohibits decrypting masked values. In
any case, we can easily verify that this scheme is homomorphic from (G,+) to (G2, ·)
using the definition of · in G2 used above.

2.5.4 Paillier’s Encryption
Although the ElGamal encryption scheme is efficient, it is unsatisfying in certain situ-
ations that require a complete additively homomorphic property. Paillier’s encryption,
introduced in 1999 [Pai99], offers a “natively” additively homomorphic scheme. We need
this scheme in our implementation of an online voting system to be able to mask values
and decrypt the results in our Secure Multiparty Computation protocols.

Encryption Scheme. For clearer notation, we identify λ = λ(n) and φ = φ(n). Pail-
lier’s encryption scheme is defined by:

• KeyGen() : p, q $← safe primes, n← pq, g ∈ Z∗
n2 , set pk = (n, g), sk = λ;

• Encrypt(pk,M): draw r
$← Z∗

n, return C ← gMrn mod n2;

• Decrypt(sk, C): return M ← L(Cλ mod n2)
L(gλ mod n2)

mod n where L(x) = x−1
n

.
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Seeing that this is a valid encryption scheme is less obvious than for the ElGamal en-
cryption scheme, so we refer to the original paper [Pai99] for the complete description.
The general idea is that knowing the secret value λ gives the ability to compute discrete
logarithms in Zn2 . Again, this scheme cannot be secure in the sense IND–CCA because
of its homomorphic properties, but it is secure in the sense of IND–CPA under DCRA
(see Subsection 2.2.2).

Homomorphic Properties. Working in Zn2 is much more expensive than working in
Zp, but Pailler’s cryptosystem is homomorphic from (Zn,+) to (Zn2 ,×) without re-
striction on M. Indeed, for ciphertexts C1 ← Encrypt(pk,M1) ← gM1rn1 mod n2 and
C2 ← Encrypt(pk,M2)← gM2rn2 mod n2, then:

C1 × C2 ≡ gM1+M2(r1 × r2)n mod n2

Thus, C1×C2 is a valid Paillier encryption for M1+M2 under key pk. The result might
need to be re-randomized before publication by drawing r3 $← Z∗

n and using C1×C2×rn3
mod n2. Otherwise, information might leak with the ciphertext. For a simple example,
if C1 ← Encrypt(pk, a) and we publish C1 and C2 = Ca

1 , then it is possible to conduct
an exhaustive search to find a.

Threshold Decryption. We might want to share the secret value λ among several par-
ties so that no one entity knows sk. However, with the traditional scheme, it means
that the parties must compute and publish both Cλ and gλ, which reveals more infor-
mation than needed. Instead, we consider the particular case for g = 1 + n. In this
situation, Encrypt(pk,M) returns C ← rn mod n for some random value r. So we can
set sk← s← n−1 mod φ and instead define Decrypt as:

• Decrypt(sk, C): set R← Cs mod n← r mod n, and return M ← (CR−n mod n2)−1
n

.
With this definition, s is drawn from [0, φ), which is statistically indistinguishable from
[0, n) [Sho00].

Since the secret value is only used in a single exponentiation, it makes it much easier
to use it in a distributed way. So s can be distributed over k authorities by Shamir
Secret Sharing method. However, we do require another trick, since the parties do not
individually know φ, and thus cannot efficiently compute inverses in the exponents. The
idea is simply to multiply exponents by ∆ = k! to always work with integers. Let P of
degree t− 1 in Zφ so that P (0) = s, and set si = P (i) for the authority i. With a set S
of t authorities, we recover the secret by computing ∆ · s =

∑
i∈S λ

S
i · si where:

λSi =

 ∏
j∈S\{i}

j

×( ∆∏
j∈S\{i}(j − i)

)
an integer

Given C, each authority computesRi ← Csi mod n. Together, they combine these shares
into R′ ←

∏
i∈S R

λS
i

i = C∆s mod n. Because Paillier’s encryption scheme is additively
homomorphic, if we set C ′ ← C∆ mod n2 and M ′ ← (C ′R′−n mod n2 − 1)/n, we have
that M ′ =M∆ mod n. From this, any subset of t authorities can compute M .
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Threshold Verifiability. To ensure correctness, it is necessary that each authority
proves that Ri ≡ Csi mod n. For this, we choose v in the setup, a generator of Qn,
the cyclic group of the quadratic residues in Z∗

n. Each authority initially publishes
vi ← vsi mod n. When decrypting, they provide a NIZK proof of knowledge of si such
that Ri ≡ Csi mod n and vi ≡ vsi mod n using the Girault-Poupard-Stern Protocol
(see Subsection 2.4.2).
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3 A New Primitive for Pairwise
Matching

As a practical starting point, let us consider the problem of matching organ donors with
recipients. This use case seems challenging to solve using classical cryptographic tools
due to its constraints. In this chapter, we present a new type of cryptographic primitive
tailored for this type of application. These results were presented in [CPST18b].

3.1 Organ Donation
3.1.1 Compatibility for Organ Transplant
Senescence, injury or illness can deteriorate tissues to the point of causing organ failure.
This can lead to discomfort, pain, and a dramatically reduced lifespan. Sometimes,
people die in such ways that their organs, or some of their organs, are preserved. Then,
an organ can be removed from the body, and transplanted to a patient who needs it.
This can be the case for cardiac arrests, on the condition that the removal be done within
a few hours after circulatory death. Alternatively, the circulatory system of brain dead
individuals is still perfectly functioning. It makes it easier to collect the organs since the
allowed time frame is large in this case.

However, the body of the recipient might reject the graft. To avoid this, organ trans-
plants are only done under some conditions, such as between donors and recipients of
the same blood type.

To treat as many people as possible, people in need for a new organ are registered
on recipient lists along with their medical records. Whenever someone dies in a way
that enables some organs to be transplanted (good medical condition, and consent), the
medical record of the deceased is compared against these lists. If there exists a recipient
with a compatible medical record, then a transplant can be organized.

Moreover, the human body contains two kidneys, but can live with one. There is also
the possibility of only collecting part of an organ (pancreas, lungs, intestines). For these
situations, live transplants are possible. They are simpler regarding the time frame,
but they also let the donor join the recipient to simplify long-distance transplants. Most
people would oppose giving an organ while they are alive, unless if it were for the benefit
of a close relative. This greatly restricts the pool for potential matches (see Figure 3.1).

To relax these constraints, the common approach is to pair a recipient with a donor on
the sole criterion of consent, disregarding medical incompatibility. Then, the problem
consists in finding two donor/recipient pairs that are mutually compatible (the donor of
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Donor

Recipient

✓Blood type

✓Age group

✓HLA

Figure 3.1: Single Matching: the donor is willing to give one kidney to the recipient and
they are medically compatible

a pair is compatible with the recipient of the other pair). This cross-matching makes it
so that each donor accepts to give an organ to the other recipient (see Figure 3.2). This
construction aligns the interests of both donors and considerably enlarges the pool of
potential matches.

Donor

Recipient

✓Blood type

✕Age group

Donor

Recipient

✓Blood type

✓Age group

✕HLA
✓✓✓✓✓✓

Figure 3.2: Pair Matching. The donor from the left pair is willing to give a kidney to the
recipient from the left pair. The donor from the right pair is willing to give a
kidney to the recipient from the right pair. However they are not medically
compatible. Instead, the donor from the left pair can give to the recipient
of the right pair and the donor from the right to the recipient from the left.
By doing so, each recipient receives a kidney from the other’s donor thanks
to their own donors.

We can improve upon this idea by considering the directed graph over donor-recipient
pairs, where we draw an edge from a donor to a compatible recipient (see Figure 3.3).
Then, when we finding simple cycles in this graph, we can align the incentives of all the
corresponding donors.

Such solutions are currently deployed, but require access to medical records. This
sensitive information is usually managed by non-profit entities (e.g., Organ Procure-
ment Organizations). To maximize the number of matches, we should aim to aggregate
information from as many sources as possible. However, this poses a threat to the con-
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Donor

Recipient

✓Blood type

✕Age group

Donor

Recipient

✓Blood type

✓Age group

✕HLA

✓
✓
✓

✓✓✓

Donor

Recipient

✕Blood type

✓✓✓

Figure 3.3: Graph Matching. More generally, we can draw directed edges from a donor
to a compatible recipient and look for a simple cycle in the corresponding
graph. This can enable even more live organ transplants.

fidentiality of the participants. Our goal is thus to encrypt records such as these to
guarantee confidentiality but be able to test for compatibility.

3.1.2 Compatibility Matching by Equality Check
In this chapter, we will provide a solution that can help find compatible donor and recip-
ient for organ donation. We mainly focus on the case of live donor and recipients (e.g.,
kidney donation), since they are the most interesting case. Additionally, geographical
constraints are the weakest in these situation, since the donor can easily travel to meet
the recipient for the transplant.

First, we show that we can reduce this problem to equality testing with a viable
overhead. This means that we can avoid relying on fully homomorphic encryption and
such expensive constructs.

Blood Type. Donor and recipient can each be O, A, B or AB. The compatibilities are
shown on Figure 3.4. The (simple) trick is to generate a recipient record for each of the
compatible blood types. For instance, consider a recipient of blood type A, who can
accept a donor with blood type A or O. We generate two records for the recipient: one
whose field Blood Type is set to O, and another where it is set to A.

Remark 6. Records should not be linkable one to another; however, if they are, the
number of compatible blood types can be hidden by padding with filler values. This can
be done by constant values that always make donors and receivers incompatible.

Age Group. Individuals of similar ages should match. This criterion is soft: we do
not want to discriminate them into separate age groups. Instead, we let the age groups
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Donor
O A B AB

Recipient

O ✓
A ✓ ✓
B ✓ ✓
AB ✓ ✓ ✓ ✓

Figure 3.4: Blood Compatibility

overlap by letting the recipient list acceptable age groups for the donor (see Figure 3.5).
In practice, the age groups would be of varying sizes and provide more precision where
needed.

9 18 27 36 45 54 63

15 24 33 42 51 60 69
26

0

6

3

66

Figure 3.5: Age Groups: here, each age group spans 9 years and they are offset by 3
years; a 26 year old would list three age groups

Antigens. As a simplification, each individual is associated with six variables: HLA-A,
HLA-B, HLA-C, HLA-DR, HLA-DQ and HLA-DP. Two individuals are considered to be
HLA-wise compatible when at least three of these variables match. Again, we generate
several records for the recipient, one for each of the 20 combinations of three antigens
(binomial of 3 out of 6).

All Together. By combining these brute-force-inspired solutions, we expect to generate
about a hundred records per recipient, on average. The overhead is non-trivial but is
compensated by the fact of using a simpler matching procedure. It remains to show how
we can implement such a procedure while keeping confidentiality.

3.2 Searchable and Comparable Encryption
3.2.1 Related Work
Comparing ciphertexts that were deterministically encrypted under the same key is
equivalent to plaintext equality [BBO06]. A pair containing a digest and a probabilistic
encryption of the message also allows testing against a plaintext. Public Key Encryption
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A=HLA-A*02:12
B=HLA-B*7
C=HLA-C*04
R=HLA-DR12
Q=HLA-DQ7
P=HLA-DPA1*01:06

Patient A

A=HLA-A*02:02
B=HLA-B*42
C=HLA-C*04
R=HLA-DR12
Q=HLA-DQ7
P=HLA-DPA1*01:06

Patient B

A, B, C
A, B, R
A, B, Q
A, B, P
A, C, R
A, C, Q
A, C, P
A, R, Q
A, R, P
A, Q, P

B, C, R
B, C, Q
B, C, P
B, R, Q
B, R, P
B, Q, P
C, R, Q
C, R, P
C, Q, P
R, Q, P

Records

Figure 3.6: Human Leukocyte Antigens: patients A and B have the same HLA-C, HLA-
DR, HLA-DQ and HLA-DP so, several of the records match (shown in red)

with Equality Test (PKEET) allows comparing ciphertexts against both ciphertexts and
plaintexts [YTHW10]. So do deterministic public key encryption schemes.

In searchable encryption [SWP00, BDOP04], each word w from the input m is en-
crypted as s. Anyone with some trapdoor value Tw can search for a w in m by testing
each s. A variant works without a trapdoor [CFGL12]. Interactive protocols compute
private matching and set intersection [FNP04].

3.2.2 Our Contribution

Fingerprinting and testing keys. When anyone can freely test ciphertexts against
plaintexts, the cost of an exhaustive search depends on the min-entropy of the message
distribution [LZL13]. Since we have low entropy, we exclude PKEETs. We introduce
fingerprints: a cryptographic scheme with controlled encryption (fingerprinting key)
and controlled testing between ciphertexts (testing key). Our model covers the four
combinations of public or private fingerprinting and testing. Private testing is generally
worse than private fingerprinting, since users test more often than they encrypt. We
give an instantiation with private encryption but public non-interactive testing.

Blind and threshold fingerprinting. The fingerprinter, who holds the fingerprinting
key, controls the number of queries to avoid exhaustive search. We present blind fin-
gerprinting, which hides the queries from the fingerprinter. This concept is similar to
blind signing [Cha82], but we do not require unlinkability. Finally, we fully decentralize
the system by having several parties hold shares of the fingerprinting key (threshold
scheme), as first presented in [CPST18b].
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3.2.3 Organization
Section 3.3 presents the generic model for fingerprinting. Section 3.4 introduces a new
assumption used by our construction, which we prove in the generic bilinear group model.
We propose an instantiation in Section 3.5, with the blind and threshold variants, and
show its security. Finally, we discuss the relevance of our results, and their relation to
distributed technologies in Section 3.6.

3.3 Fingerprinting Scheme
We now introduce the general model for fingerprinting. In this generic definition, both
fingerprint generation and equality testing may require keys. Later, we will present our
instantiation, where fingerprint generation is private but equality testing is public.

3.3.1 Description
We consider three categories of players (see Figure 3.7):

• the fingerprinter generates the fingerprints of messages using the fingerprinting
key;

• the tester checks whether two fingerprints correspond to the same message or not,
using the testing key;

• the users have access to fingerprints and send queries to the fingerprinter or to
the tester.

We stress however that the fingerprinting and testing keys may each be public or private.
When a key is secret, the users have to interact with the owner of the key to benefit
from the corresponding functionality; when it is public, the users can act on behalf of
the fingerprinter or the tester. The choice of publishing a key or keeping it private will
depend on the scenario under consideration.

Our model is built upon the honest-but-curious framework, assuming good behavior
of the players. In our instantiation, we eventually split the fingerprinter into several
parties, allowing us to police their actions.

Finally, we take advantage of the asymmetric nature of our use case: we never test
the equality between two donors or two recipients. So, we will manipulate two kinds of
fingerprints: “left” and “right” fingerprints in this generic specification.

We thus define four protocols:

• KeyGen() creates the global parameters and the left and right fingerprinting keys
lk and rk as well as the testing key tk, for security parameter k;

• LFingerprint(lk,m), given a left-fingerprinting key lk and a message m, outputs a
left-fingerprint fL;
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Fingerprinter User Tester

Public database of fingerprints

Figure 3.7: Fingerprinting Actors: the public database contains fingerprints and anony-
mous information to contact the relevant people; the fingerprinter and the
tester hold the fingerprinting and testing keys respectively; the user has a
message m to insert, or want to test two fingerprints

• RFingerprint(rk,m), given a right-fingerprinting key rk and a message m, outputs
a right-fingerprint fR;

• Test(tk, fL, fR), given a testing key tk, a left-fingerprint fL and a right-fingerprint
fR, reveals whether the fingerprints correspond to the same message or not.

As already noted above, these procedures can be either private or public, and they can be
either offline algorithms, or interactive protocols. Various situations can be envisioned
according to the secrecy of the fingerprinting and testing keys:

• Testing and fingerprinting keys public: security solely rely on the high entropy of
the inputs (message-locked encryption, as in PKEETs);

• Fingerprinting keys private only: our use case, where we want to limit the gener-
ation of fingerprints, but allow anyone to test freely for compatibility;

• Testing key private only: this can be relevant if the message space is very con-
strained, when even a few tests could leak too much information;

• Testing and fingerprinting keys private: this has the highest security guarantee,
but is usually impractical unless performing very few queries is enough.

Remark 7. We can choose to have one of the fingerprinting keys private, and the other
public. This setup can give some flexibility for specific use cases.

59



3 A New Primitive for Pairwise Matching

3.3.2 Security Model
Let us now detail the security notions we want to achieve. Secret information can include
the fingerprinting keys lk and rk, the testing key tk, and the users’ input messages. We
consider the following security properties.

1. unforgeability of fingerprinting (even against the tester1);

2. one-more indistinguishability of testing (even against the fingerprinter2);

3. privacy of the user w.r.t. the tester;

4. privacy of the user w.r.t. the fingerprinter.

Authentication of the Fingerprinter. The raison d’être of the fingerprinter is to gener-
ate fingerprints, so unforgeability guarantees that no one else can do so: not even a collu-
sion between the tester (access to the testing key) and users (queries to the fingerprinter)
can generate a fresh valid fingerprint. In particular, this implies that the fingerprint-
ing key is not leaked during this game. We formally define Fingerprint-Unforgeability
(FP–UF).

Definition 24 (FP–UF). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be the scheme
presented above, and let A be a polynomial-time adversary. Let

AdvFP–UF
Π,L (A) = Pr

(
(lk, rk, tk) $← KeyGen(), (m⋆, f ⋆

L)← AL(rk, tk),
fR ← RFingerprint(rk,m⋆) : Test(tk, f ⋆

L, fR) = 1

)

where L refers to the left-fingerprinting oracle, which answers to queries on message mi

with fL,i = LFingerprint(lk,mi). We insist that m⋆ is fresh (distinct from any queried
mi).

We similarly define AdvFP–UF
Π,R , with the left-fingerprinting key but access to the right-

fingerprinting oracle. We say that Π is (t, ε)-FP–UF-secure when both AdvFP–UF
Π,L (A) ≤ ε

and AdvFP–UF
Π,R (A) ≤ ε for any A running within time t.

Authentication of the Tester. The purpose of the tester is to help the user test
plaintext equality between fingerprints: not even a collision between the fingerprinter
(access to the fingerprinting key) and users (queries to the tester), can guess the result
of a fresh test. In particular, this implies that the testing key is not leaked. We formally
define Testing-Indistinguishability (T–IND).

1the testing key should give no advantage in generating fingerprints
2the fingerprinting key should give no advantage in equality testing
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Definition 25 (T–IND). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be the scheme
presented above, and A = (A1,A2) a polynomial-time adversary. Let

AdvT–IND
Π,L (A) =

∣∣∣∣∣∣∣∣∣∣
Pr


(lk, rk, tk) $← KeyGen(),
(m0,m1, s)← AT

1 (lk, rk), fL ← LFingerprint(lk,m0),

b
$← {0, 1}, fR ← RFingerprint(rk,mb),

b′ ← AT
2 (s, fL, fR) : b

′ = b

− 1

2

∣∣∣∣∣∣∣∣∣∣
where T refers to the testing oracle, who answers to queries on fingerprints fL, fR with
T (fL, fR) = Test(tk, fL, fR). We require that the attacker does not submit the challenge
fingerprint fR to the testing-oracle.

We define AdvT–IND
Π,R (A) in a similar fashion. We say that Π is (t, ε)-T–IND-secure if

both AdvT–IND
Π,L (A) ≤ ε and AdvT–IND

Π,R (A) ≤ ε for any adversary A running within time t.

One can note that for such a strong notion of indistinguishability, which only excludes
the challenge fingerprints from being queried to the testing-oracle, the fingerprints must
be non-malleable.

Privacy of the User. This security notion adapts semantic security to our scheme:
not even a collusion between the tester (access to the testing key) and users (queries to
the fingerprinter) can distinguish a fingerprint of a message m0 from a fingerprint of a
message m1 (unless they know a fingerprint of m0 or of m1). Furthermore, the collusion
could include one of the two fingerprinting keys (but not both): we give attacker the
left-fingerprinting key when proving the semantic security of left-fingerprinting, and the
right-fingerprinting key when proving the semantic security of right-fingerprinting. We
formally define Fingerprint-Indistinguishability (FP–IND).

Definition 26 (FP–IND). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be the scheme
presented above, and let A = (A1,A2) be a polynomial-time adversary. Let

AdvFP–IND
Π,L (A) =

∣∣∣∣∣∣∣Pr

(lk, rk, tk) $← KeyGen(), (m0,m1, s)← AR
1 (lk, tk),

b
$← {0, 1}, fL ← LFingerprint(lk,mb),

b′ ← AR
2 (s, fL) : b

′ = b

− 1

2

∣∣∣∣∣∣∣
where R refers to the right-fingerprinting oracle, which answers to queries on message
m′

i with R(m′
i) = RFingerprint(rk,m′

i). We insist that m′
i /∈ {m0,m1} for any queries to

R.
We define AdvFP–IND

Π,R (A) similarly. We say that Π is (t, ε)-FP–IND-secure if both
AdvFP–IND

Π,L (A) ≤ ε and AdvFP–IND
Π,R (A) ≤ ε for any adversary A running within time t.

Note that fingerprinting generation itself reveals nothing: the view of the fingerprinter
does not depend on the message. Like in blind signatures [Cha82], no adversary playing
the role of fingerprinter can distinguish a fingerprinting of m0 from a fingerprinting of
m1. However, if the fingerprinter sees the resulting fingerprint and locally generates
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another fingerprint for m0, it becomes trivial to distinguish between the two cases. This
can be avoided by splitting the fingerprinter into several parties who need to cooperate
to create a new fingerprint. This last security notion thus suggest the use of a blind
protocol and a threshold scheme.

Remark 8. Contrary to blind signatures, we do not require user anonymity. In our
use-case, plain contact information (e.g., referent doctor) is attached to the fingerprint.

3.4 Assumptions
Our construction adapts the randomizable signature presented in Subsection 2.3.3, which
relies on q-MSDH-1 presented in Subsection 2.2.2. Our scheme additionally requires in-
distinguishability, which implies another assumption; for this, we introduce q-DMSDH-1,
which is decisional variant of q-MSDH-1, and prove it to hold in the generic bilinear group
model. For comparison, we reproduce the definition of q-MSDH-1 below.

Definition 27 (q-MSDH-1). Let (p,G, G̃,GT , e) define a bilinear group setting of type
3, with g (respectively g̃) a generator of G (respectively G̃). Given (gx

i
, g̃x

i
)0≤i≤q along

with (ga, g̃a, g̃a·x) for a, x $← Z∗
p, no adversary can output a tuple (w,P, h

1
x+w , h

a
P (x) ) for

some h ∈ G∗ where P is a polynomial of degree at most q and w is a scalar such that
(X + w) and P (X) are relatively prime.

Now, our decisional variant q-DMSDH-1 only changes the goal of the adversary.

Definition 28 (q-DMSDH-1). Let (p,G, G̃,GT , e) define a bilinear group setting of type
3, with g (respectively g̃) a generator of G (respectively G̃). Given (gx

i
, g̃x

i
)0≤i<q along

with (ga, ga·x, g̃a) for a, x $← Z∗
p, and for any (w,P ) where P is a polynomial of degree at

most q and w is a scalar such that (X+w) and P (X) are relatively prime, no adversary
can distinguish (h

1
x+w , h

a
P (x) ) for some h ∈ G∗ from a random pair of elements of G.

Theorem 5. q-DMSDH-1 holds in the generic bilinear group model.

Proof. The computational assumption q-MSDH-1 from [PS18] gives g̃a·x ∈ G̃ and expects
the forged pair in G, whereas the decisional version q-DMSDH-1 gives ga·x ∈ G and the
challenge pair in G. So, the security guarantee we obtain (unforgeability from q-MSDH-1
or indistinguishability from q-DMSDH-1) depends on whether the oracle gives elements
from G or from G̃. Thus, the reasoning for q-DMSDH-1 is very similar to that for
q-MSDH-1.

We prove that the q-DMSDH-1 assumption holds in the generic bilinear group model.
The generic group model (not bilinear) was used by Victor Shoup in [Sho97] to assess
more tightly the difficulty of computing the discrete logarithm and related problems.
A vastly clarified introduction to this technique can be found in [Jag12]. The case
for the bilinear setting (the generic bilinear group model) is presented in appendix A
of [BBG05]. It is essentially a formal way to enumerate all the values that an adversary
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can potentially compute from a restricted number of inputs, using only the group laws,
as black boxes.

We use the classical approach of simulating group operations by an oracle G, which
operates on arbitrary representations (ξ1,i)i, (ξ2,i)i, (ξT,i)i of the elements of G, G̃ and
GT (respectively). The oracle is built such that all interactions are done without relation
to the secret values, hence reducing the attack to a guess.

For instance, G(×, ξ1,i, ξ1,j) is the result of querying the oracle G for the × operation
with operands ξ1,i and ξ1,j. It is a representation of the product of the underlying values
in G. The oracle G similarly allows the adversary A to compute products in G̃ and GT ,
evaluate the pairing e, and test two representations for the equality of the underlying
values.

To simulate the operations, the oracle G stores the values known to the adversary
A (at beginning, and following a request) into lists L1, L2 and LT (for each group).
To track how the adversary A obtained these values, we save with each representation
ξ□,i a polynomial p□,i corresponding to the operations used to compute the value The
representations used are not important, and the reader must simply remember that a
new random representation is generated for each new computed value; testing whether
the value is fresh or not is done by searching the polynomial in the relevant list L1, L2

or LT .
The values initially provided to the adversary A are:

• in G: (gx
i
)0≤i≤q, ga, ga·x, h

1
x+w , h

a
P (x)

• in G̃: (g̃x
i
)0≤i≤q, g̃a

To simulate operations over these elements, we set r such that h = gr and introduce
the indeterminate values x̄, ā, r̄. Then, we initialize L1 = {x̄i}i ∪ {ā, āx̄,

r̄
x̄+w

, ā·r̄
P (x̄)
},

L2 = {x̄i}i ∪ {ā} and LT = ∅ (along with arbitrary representations), and set:

• G(×, ξ□,i, ξ□,j): append p□,i + p□,j to L□

• G(=, ξ□,i, ξ□,j): return whether p□,i = p□,j

• G(e, ξ1,i, ξ2,j): append p1,i × p2,j to LT

Remark 9. Comparing the representations directly is equivalent to calling the group
oracle for testing, because the representations are generated so as to be equal when the
corresponding polynomials are equal

We now have to show two things: the simulation does not allow the adversary to
distinguish between (h

1
x+w , h

a
P (x) ) and a pair of random elements from G the simulation

is indistinguishable from the initial game.

Indistinguishability in simulation Since representations are opaque, the adversary can
only obtain information from testing two values for equality (either of representations
or through the group oracle G).
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Comparing elements of G. Consider a comparison of ξ1,i to ξ1,j; the difference of their
polynomials, p1,i − p1,j, is of the form:∑

i

(
C(i)

x x̄i + Caā+ Caxāx̄+ C1
r̄

x̄+ w
+ C2

ā · r̄
P (x̄)

)
as a polynomial in r̄, the linear term implies that, if this polynomial were equal to zero,
then:

C1P (x̄) + C2ā(x̄+ w) = 0

as a polynomial in ā, this implies C1 = C2 = 0. Thus, the polynomial does not depend
on the challenge pair.

Comparing elements of G̃. Elements in G̃ do not depend on the challenge pair.

Comparing elements of GT . Since LT starts out empty, a comparison of ξT,i to ξT, j
will correspond to polynomials whose difference pT,i− pT,j is the sum of products of one
element from G and one element from G2, thus of the form:∑

i

(
Q(x̄) + Ci,aā+ Ci,axāx̄+ Ci,1

r̄

x̄+ w
+ Ci,2

ā · r̄
P (x̄)

)
×
(
R(x̄) + C̃i,aā

)
where Q and R are polynomials of degrees at most q. As a polynomial in r̄, if this were
the zero polynomial, then the linear term would imply that:∑

i

(
Ci,1P (x̄) + Ci,2ā(x̄+ w)

)
×
(
R(x̄) + C̃i,aā

)
= 0

as a polynomial in ā, then the linear term would imply that:∑
i

(
Ci,1P (x̄)C̃i,a + Ci,2(x̄+ w)R(x̄)

)
= 0

that is, CP (x̄) + S(x̄)(x̄ + w) = 0 for C a constant and S a polynomial. Since P (x̄)
and (x̄ + w) are relatively prime, this means that C = 0 and S = 0 and thus that the
original equation does not depend on the challenge pair.

Undistinguishability of simulation Let qG be the number of queries to the group oracle
G. The simulation is undistinguishable from the original game unless the adversary
assembles two distinct polynomials (p, q) with (p− q)(x, a, r) = 0.

The adversary can adaptively test whether (x, a, r) is a root of one of the at most
q′ = (5 + 2q + qG)

2/2 differences of polynomials of degrees at most d = 2q. Per the
Schwartz-Zippel lemma, which states that a multivariate polynomial of degree d has at
most d roots, this is equivalent to testing whether (x, a, r) pertains to one of q′ subsets
of Z3

p of sizes at most d. Finally, the probability of adaptively finding such subsets is
bounded above by q′·d

p3
, which is negligible.
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3.5 Fingerprinting from Pointcheval-Sanders Signatures
In the following, we focus on our initial scenario with secret fingerprinting and public test-
ing of plaintext-equality, for low-entropy messages. Our approach is heavily influenced
by the assumption that it is possible to efficiently enumerate all the valid messages.
Our construction derives from the Pointcheval-Sanders signature scheme presented in
Subsection 2.3.3.

3.5.1 Fingerprinting Scheme with Public Plaintext-Equality Testing
We propose a fingerprinting scheme with private fingerprinting keys lk or rk, while the
testing key tk = ε is public. Let H be a random oracle:

• KeyGen(): randomly draw (g, g̃, x, y)
$← G×G̃×Z2

p, set (X, X̃, Y, Ỹ )← (gx, g̃x, gy, g̃y),
return lk = X, rk = X̃, and pk = (g, Y, g̃, Ỹ );

• LFingerprint(lk,m): draw u
$← Z∗

p, return fL = (gu, (XY H(m))
u
);

• RFingerprint(rk,m): draw u
$← Z∗

p, return fR = (g̃u, (X̃Ỹ H(m))
u
);

• Test(fL, fR): return 1 if fL,1, fR,1 ̸= 1G and e(fL,1, fR,2) = e(fL,2, fR,1), else 0.

We show below that this scheme is secure in the honest-but-curious model defined in
Subsection 3.3.2. Then, we propose improvements to maintain the guarantees when the
actors are dishonest.

3.5.2 Security of the Basic Scheme
Theorem 6. Our fingerprinting scheme is FP–UF under q-MSDH-1 in the random oracle
model, where q corresponds to the number of queries to the random oracle or to the
fingerprinting oracles.

Proof. We define the extended Pointcheval-Sanders signature scheme (EPS) as a variant
of the PS signature scheme where pk includes Y , i.e. pk = (Y, g̃, X̃, Ỹ ). Lemma 1 holds
that EPS is EUF–wCMA secure under q-MSDH-1, and Lemma 2 reduces the FP–UF
security of our fingerprinting scheme to the EUF–wCMA security of EPS.

Lemma 1. If q-MSDH-1 holds, then EPS is EUF–wCMA where q is the number of queries
to the signing oracle.

Proof. We adapt the proof of from [PS18, Section 5.1], by setting Y1 ← ga.
Let A be an EUF–wCMA adversary against EPS. That is to say that A submits the

list of queries (mi)i before the challenger generates the key. Given signatures (σi)i for
these messages, A then returns a valid signature σ∗ on a fresh m∗ (∀i,m∗ ̸= mi) with
non-negligible probability.

For our reduction, we solve q-MSDH-1 with non-negligible probability given such an
A. So, for γ ∈ G, γ̃ ∈ G̃ and some scalars x and a, we are given a q-MSDH-1 instance
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(γx
i
)i≤q, (γ̃x

i
)i≤q, γa, γ̃a and γ̃ax. Our goal is to assemble (w,P, h

1
x+w , h

a
P (x) ) for some w,

h and P such that P (X) and X + w are relatively prime.
First, let us set P (X) =

∏
i(X + mi), g ← γP (x) and g̃ ← γ̃P (x). We can compute

g by expanding P (x) and using (γx
i
)i, and similarly for g̃. With this, we can now set

pk = (g, Y, g̃, X̃, Ỹ ) with Y ← γa, X̃ ← γ̃ax and Ỹ ← γ̃a. This implies that sk = (x′, y′)
where x′ = ax

P (x)
and y′ = a

P (x)
.

These choices allow us to generate valid EPS signatures under pk for each mi as
σi ← ((γ

∏
i ̸=j(x+mi))tj , γatj), using the same trick as for g. Finally, A returns m∗ and σ∗

such that e(σ∗
1, X̃Ỹ

m∗
) = e(σ∗

2, g̃). This implies that e(σ∗
1, γ

a(x+m∗)) = e(σ∗
2, γ

P (x)), so σ∗

is of the form (h
1

x+m∗ , h
a

P (x) ), for some h. Note that P (X) and X + m∗ are relatively
prime, since ∀i,m∗ ̸= mi. Thus, (m∗, P, σ∗

1, σ
∗
2) is a valid answer to the q-DMSDH-1

challenge.

Lemma 2. If EPS is EUF–wCMA, then our fingerprinting scheme is FP–UF. The number
of queries to the signing oracle in EPS maps to the number of queries to the random
oracle or to the fingerprinting oracles in our scheme.

Proof. Let A be an adversary that breaks the FP–UF security of our scheme. Then, we
create an adversary B that breaks the EUF–wCMA security of EPS. By symmetry of
the left and right games, we assume that AdvFP–IND

Π,L (A) is non-negligible without loss of
generality.

We will use H to “redirect” the queries from A towards predetermined values: B first
draws (mi)i

$← Zq
p, submits the list of messages (mi)i to the signing challenger, and will

answer to the i-th original query to H (for some message Mi) with mi.
In return, our adversary B is given pk = (Y, g̃, X̃, Ỹ ) as well as signatures (σi)i for

(mi)i, i.e. values such that e(σi,1, X̃Ỹ mi) = e(σi,2, g̃) We need to output (m⋆, σ⋆) such
that e(σ⋆

1, X̃Ỹ
m⋆

) = e(σ⋆
2, g̃) where m⋆ is distinct from any queried mi.

For this, we simulate the FP–UF game for A with pk′ ← (g, Y, g̃, Ỹ ), rk ← X̃ as well
as access to an oracle L which answer to queries Mi with σi. Then, A should output
(M⋆, f ⋆

L) where M⋆ is distinct from any queried Mi. We also require that Test(tk, f ⋆
L, fR)

for some fR ← RFingerprint(rk,m⋆) = 1, i.e. such that fL,1 ̸= 1G and:

e
(
fL,1,

(
X̃Ỹ H(M⋆)

)u)
= e (fL,2, g̃

u)

for some u. Thus, σ⋆ = f ⋆
L is a valid PS signature for m⋆ = H(M⋆) with m⋆ distinct

from any queried mi.

Theorem 7. Our fingerprinting scheme is FP–IND under q-DMSDH-1 in the random
oracle model, where q corresponds to the number of queries to the random oracle or to
the fingerprinting oracles.

Proof. Let A be an adversary against FP–IND, then we provide an adversary B against
q-DMSDH-1. By symmetry, we assume that AdvFP–IND

Π,L (A) is non-negligible.
First, B is given (gx

i
)0≤i≤q, (ga, ga·x, g̃a). Then, it draws (mi)i

$← Zq
p, m

$← Zp, sets
P =

∏
i(X + mi), and submits (m,P ) to the challenger, who answers with a pair σ
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which is either random or of the form (h
1

x+m , h
a

P (x) ) for some h ∈ G. B will run A
while simulating the game for FP–IND by setting g′ ← g

∏
i(x+mi) and g̃′ ← g̃

∏
i(x+mi),

using (gx
i
)i and (g̃x

i
)i, as well as X ← ga·x, Y ← ga, and Ỹ ← g̃a to define the

public key pk = (g′, Y, g̃′, Ỹ ) and the left-fingerprinting key lk = X. This implicitly sets
x′ = a·x∏

i(x+mi)
and y′ = a∏

i(x+mi)
.

To generate fingerprints for the q queried fingerprints, B sets the random oracle H to
map the j-th original query Mj to mj, and the right-fingerprinting oracle R to return
((g̃′

∏
i ̸=j(x+mi)

)
uj

, (g̃′
a
)
uj
). One may verify that this is a valid right-fingerprint for Mj.

Finally, A outputs (M ′
0,M

′
1), and B draws b← {0, 1}. We would now like to setH(M ′

b)
to m, but A may have queried the random oracle on this value before. Thus, on any
query Mj, H will additionally guess with probability 1

q
that Mj = M ′

b and accordingly
set H(Mj) to m instead of mj. B can then check its guess when A outputs (M ′

0,M
′
1),

and abort if it was incorrect; this implies a penalty of a factor q to the probability that
B wins the q-DMSDH-1 game.

Now, since H(M ′
b) = m, if σ is of the form (h

1
x+m , h

a
P (x) ), then it is a valid left-

fingerprint for Mb. Otherwise, it provides no information about b to the adversary.
Thus, B answers the final request of A with σ, and, if A guesses b correctly, then B
guesses that σ is of the form (h

1
x+m , h

a
P (x) ); otherwise, that it is a random pair.

3.5.3 Improving the Privacy of the User
Although we have proven the security of our scheme in the model introduced earlier,
the guarantees are unsatisfactory. Indeed, if the fingerprinter were to act dishonest, we
would lose any semblance of security. To actually provide credible security, we make
the protocol interactive and introduce several changes. By symmetry, we only show the
protocols for left fingerprinting.

Against the Fingerprinter without the Final Fingerprint. In the naive fingerprinting
protocol from Subsection 3.5.1, the user sends the message in the clear. We propose a
blinded version similar to that of [PS16] to extend privacy and protect the user against
the fingerprinter:

1. the user draws r $← Zp and sends C ← Y mgr;

2. the user runs a ZKPoK of m, r such that C = Y mgr;

3. the fingerprinter draws u $← Zp and sends back α← (gu, (XC)u);

4. the user sets f1 ← α1 and f2 ← α2 · α−r
1 .

This protocols leaks no information, since the fingerprinter only sees a perfectly hiding
Pedersen commitment [Ped92] and a ZKP. The security of this blinded version can be
proved by extracting the values from the ZKPoK, as done in [PS16].
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Against the Fingerprinter with the Final Fingerprint. The protocol above still do not
protect the user if the fingerprinter gains access to the final fingerprint f . In such a situ-
ation, the fingerprinter could search exhaustively by creating fingerprints for arbitrarily
many messages. We amend the protocol to prevent this by splitting the fingerprinter
into n parties (Fi)i, of which k must cooperate to create a fingerprint. Even k − 1
fingerprinters can do no more than a common user.

This threshold version uses Shamir’s secret sharing (see Subsection 2.4.1) to split the
secret fingerprinting key lk = x into n shares lki = xi, and we note Xi = gxi . This way,
for any k fingerprinters (Fi)i, there exists publicly known coefficients (λi)i such that
x =

∑
λixi, and thus

∏
Xλi

i = X. They interact with the user as follows:

1. the user draws r $← Zp and broadcasts C ← Y mgr;

2. the user sends a NI-ZKPoK of m, r such that C = Y mgr;

3. each Fi draws ui $← Zp and broadcasts αi,1 ← gui ;

4. each Fi computes G←
∏
α
λj

j,1, and sends back αi,2 ← GxiCui ;

5. the user sets

f1 ← G = gu f2 ← G−r
∏

αλi
i,2 = (XY m)u

which implicitly defines u =
∑
λiui.

As with the previous version, this protocol leaks no information. However, we add the
property that no subset of fewer than k fingerprinters can conduct an exhaustive search.

Theorem 8. The above protocol leaks no private information of honest fingerprinters
to corrupted ones.

Proof. For this, we show that the view of any (static) subset of corrupted fingerprint-
ers can be simulated from the output α = (α1, α2) of the single fingerprinter in the
centralized protocol.

Let us assume that the corrupted fingerprinters are F1, . . . , Fc, and the honest ones
are Fc+1, . . . , Fk (where c < k), and the simulator has drawn vi $← Zp for i = c+1, . . . , k:
the adversary sends αi,1 for i = 1, . . . , c, and the simulator draws ui $← Zp and generates
αi,1 ← gui for i = c+1, . . . , k−1, while αk,1 ← (α1/

∏k−1
i=1 α

λi
i,1)

1/λk . Finally, the simulator
sets G← α1, and αi,2 ← GviCui for i = c+1, . . . , k−1, while αk,2 ← (α2/

∏k−1
i=1 α

λi
i,2)

1/λk .
Since no information is known about the actual secret values xi, and the values vi are

indistinguishable from the real secret, all the simulated elements are perfectly indistin-
guishable from a real execution, under the condition that the corrupted fingerprinters
are honest-but-curious (and the subset of honest players remains the same: static cor-
ruptions).

Again, this last property requires that the fingerprinters behave correctly, even if they
try to learn more information.
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3.5.4 Verifiability
We need to verify the correctness of the protocol to protect against malicious finger-
printers. We call this private verifiability since it is only available to the participants of
a given execution of the protocol. We also consider public verifiability, to avoid random
data or copies of fingerprints posted by malicious users in the database In both cases,
fingerprinters publish a commitment Ci = gxiY ti of their secret shares xi during the
initial key generation. This is a perfectly hiding commitment, and the binding property
relies on secrecy of the discrete logarithm of Y in basis g.

Private Verifiability. We simply have each Fi provide a NI-ZKPoE of (xi, ui, ti) such
that Ci = gxiY ti and αi,1 = gui and αi,2 = GxiCui . The proofs can be efficiently realized
with Schnorr-like proofs.

Public Verifiability. Similarly, the user publishes a NI-ZKPoK of m and r such that
α2/f2 = αr

1 and C = Y mgr. To guarantee non-malleability and avoid replay attacks, the
user includes his own identity in the challenge computation (signature of knowledge).

3.5.5 Full Protocol
To sum up, we now give a description of the resulting protocol.

Setup. The following is executed once:

1. (Fi)i<n jointly share a random secret x so that each Fi knows only xi;

2. each Fi publishes a commitment Ci = gxiY ti for a random scalar ti.

Fingerprinting protocol. Now, when a user Id wants a fingerprint for a message m, the
user contacts a subset of k fingerprinters (Fi)i<k and executes the following protocol:

1. the user draws r $← Zp and broadcasts C ← Y mgr;

2. the user sends an NI-ZKPoK of m, r such that C = Y mgr;

3. each Fi draws ui $← Zp and sends back αi,1 ← gui ;

4. each Fi computes G←
∏
α
λj

j,1, and sends back αi,2 ← GxiCui ;

5. each Fi starts a NI-ZKP for ui, xi and ti such that

Ci = gxiY ti αi,1 = gui αi,2 = GxiCui .

More precisely, Fi draws u′i, x′i, t′i
$← Zp, broadcasts α′

i,1 ← gu
′
i , assembles G′ ←∏

α′
i,1

λi as above and sends

C ′
i = gx

′
iY t′i α′

i,1 = gu
′
i α′

i,2 = Gx′
iCu′

i ;
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6. the user assembles

Γ←
∏

Ci
λi = XY t α1 ← G =

∏
αλi
i,1 = gu α2 ←

∏
αλi
i,2 = (XC)u

where u =
∑
λiui and t =

∑
λiti, and deduces the fingerprint

f1 ← α1 f2 ← G−rα2.

Additionally, the user aggregates the elements from the NI-ZKPs:

Γ′ ←
∏

C ′
i
λi = X ′Y t′ α′

1 ←
∏

α′
i,1

λi = gu
′

α′
2 ←

∏
α′
i,2

λi = (X ′C)
u′
,

where u′ =
∑
λiu

′
i, x′ =

∑
λix

′
i, X ′ = gx

′ and t′ =
∑
λit

′
i. Before generating the

challenge, the user starts another NI-ZKP for m and r such that α2/f2 = αr
1 and

C = Y mgr, by drawing r′ and m′, setting:

β1 ← αr′

1 β2 ← Y m′
gr

′

and the common challenge as e = H(Id, C,Γ, f1, f2,Γ′, α′
1, α

′
2, β1, β2);

7. each Fi completes the corresponding NI-ZKP by publishing

t′′i ← t′i − eti u′′i ← u′i − eui x′′i ← x′i − exi;

8. the user again aggregates the NI-ZKs

u′′ ←
∑

λiu
′′
i x′′ ←

∑
λix

′′
i t′′ ←

∑
λit

′′
i

which satisfy

gx
′′
Y t′′ = Γ′Γ−e gu

′′
= α′

1α
−e
1 Gx′′

Cu′′
= α′

2α
−e
2

and completes the corresponding NI-ZKP with

m′′ ← m′ − em r′′ ← r′ − er

which satisfy

αr′′

1 = β1(α2/f2)
−e Y m′′

gr
′′
= β2C

−e.

The final fingerprint f = (f1, f2) is published along with the intermediate values
(Γ′, α2, C), the challenge e and the exponents (u′′, x′′, t′′,m′′, r′′). One verifies this proof
by checking that e = H(Id, C,Γ, f1, f2,Γ′, α′

1, α
′
2, β1, β2), where Γ is publicly computable,

and the missing elements can be recomputed as

α′
1 ← gu

′′
f e
1 α′

2 ← fx′′

1 Cu′′
αe
2

β1 ← f r′′

1 (α2/f2)
e β2 ← Y m′′

gr
′′
Ce.

This is an optimization of the Fiat-Shamir heuristic for Schnorr-like proofs.
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3.6 Discussion

3.6.1 Security Level
On the one hand, we require the ability to insert new records, and to compare the records
against each other. On the other hand, we want to keep the contents of these records
secret and to protect the confidentiality of the patients. This means that confidentiality
must rely on the entropy of the records themselves.

As we highlighted when presenting our use case, the situation presents a contradictory
objective. The nature of the problem implies that we actually want a low entropy!
Indeed, the usefulness of our system is related to its ability to find compatible matches.
Additionally, we prefer false positives to false negatives. False positives can be detected
in the next step of the process, while false negatives remain hidden. Thus, our system
should be used as a coarse filter to reduce the work required to find compatibles matches.
However, this reduces the available entropy further.

The solution we propose involves an authority to limit the number of requests that
can be performed. Yet, we ensure that this authority can be distributed into several
parties, in a resilient manner. We also provide a solution that still gives as much control
to the users as possible, since compatibility tests can be run by anyone. Finally, we
make sure that the confidentiality of the records is fully preserved.

These considerations are of particular importance when implementing this solution. In
particular, the policies of the fingerprinters to accept a request or not must be designed
with great care. In normal function, they should simply accept all requests. However,
they should keep track of how many fingerprints were created. At a certain threshold,
they should either reduce the rate of fingerprinting, or refuse new queries altogether.

To avoid such blocking situations, it is possible to reset the database. In effect, after
a set period of time has passed, new keys should be generated, and active records should
be fingerprinted anew. This refresh would prune stale and obsolete records from the
database, and stop any ongoing exhaustive search attack. It is important to note that
the new fingerprint of a record should not be linkable with its old fingerprint. Otherwise,
the previous exhaustive searches can be resumed on the new fingerprints. In particular,
it means that the public information associated to the fingerprint used to identify the
record should change as well (new record number for instance).

3.6.2 Decentralized Setting
This problem was initially considered as a potential use-case for Blockchain. Indeed,
several of the constraints match:

• we are considering a decentralized solution because the international setting makes
it hard to completely rely on a central authority;

• all of the objects can be considered to be digital assets, since we are only looking
for information, not taking binding decisions.
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Also, one might think that Blockchain is good at storing information, but it is not ac-
tually the case. Nevertheless, the practical constraints led us to design a cryptographic
protocol that relies on the existence of various entities. Since these entities are identi-
fied, the corresponding PKI gives us the center we need to coordinate the system. So,
combining our cryptographic primitive with a blockchain adds no value to the solution.
On the other hand, we might imagine using Blockchain to limit the number of queries
performed (i.e., the global consensus consists in which fingerprints were done). How-
ever, it remains unclear how this can be used effectively to protect confidentiality (once
a fingerprint is validated, who encrypts it?).

We want to stress that Blockchain does not actually address the core issue of our
use case, that is confidentiality. By running scripts, or smart contracts, it is trivial to
compare plaintext records for compatibility. Still, the difficulty lies in actually encrypting
them. There exists settings where users can encrypt the information themselves (for
instance, publishing a cryptographic hash for timestamping). However, in this situation,
the cryptographic keys must be accessible to all but known to none.

Regarding the required PKI to determine who plays the roles of fingerprinters, we as-
sume that an international organization such as the World Health Organization (WHO)
can help in setting up the system. Yet, relying on a central authority to collect all the
medical records and search compatible matches would be a much stronger assumption.
Instead, we think that a solution that runs independently from a central authority after
the key setup is more realistic, and more resilient.

3.6.3 Other Applications
Finally, it should be noted that our use case provides a motivation for the scheme
we presented in this chapter, but that this scheme can be used in other cases as well.
Essentially, what we present is a distributed and scalable system to find matches between
individuals while always keeping the information used for the matches private. For
instance, it seems like this approach would adapt well for matching system for dating,
especially with the bipartite aspect that we exploit in our solution.

Still, the cost of protecting the confidentiality might be non-trivial. Indeed, remember
that we simplified the matching process to simple equality testing by generating several
records for each individual. This cost matters for highly dimensional problems. In other
words, using fine-grained parameters might not increase the number of records too much,
but using many parameters might.

3.7 Conclusion
We considered a concrete use case raised by the problem of organ donation and the
conflict between confidentiality and functionality. We then provided a solution by in-
troducing a new type of cryptographic primitive tailored for this class of problem. This
shows that specific constructions can be used to solve practical problems more efficiently
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then generic approaches. We hope that this type of design can help spread cryptography
further and provide solutions for new use cases.
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4 Secure Strategy-Resistant Voting
We consider another practical situation, in the form of electronic and online voting.
Although some solutions exist, they are generally limited in functionality or in the level
of confidentiality provided. In this chapter, we present a cryptographic protocol with
advanced functionality (strategy-resistance), and strong confidentiality (only the result
is revealed), while remaining efficient. These results were first published in [CPST18a].

4.1 Electronic Voting Systems
4.1.1 Voting Systems
As discussed in Section 1.2 and Section 1.4, voting systems are among the most basic
elements for managing trust.

Referendums are the simplest voting system. Each voter Vk casts a ballot containing
a choice, either “Yes” or “No” regarding a specific proposal. Several referendums can be
run at once, with a ballot containing a vote for each, but the principle remains the same.
They are relatively simple, both for voters, who express their preferences intuitively, and
for talliers, who count the “Yes” and “No” votes.

37

41

22

Figure 4.1: Plurality Voting. The voter casts a ballot corresponding to one of the options
(cross, circle or triangle) by secretly putting it in the urn. When the election
is finished, all the ballots are extracted of the urn. The votes are counted and
the option with the most votes wins (here, circle). Because all the ballots are
mixed together, only the voters themselves know what options they chose.
Referendums are a particular case with only two options: “Yes” or “No”.

Plurality voting generalizes this to more than two options. Each voter casts a ballot
containing a single choice. For single-seat elections, the option with the most votes
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wins (first-past-the-post); for multi-seat elections, the options with the most votes win
(plurality-at-large) (see Figure 4.1). They are simple to tally but encourage voters to
vote for candidates with better chances to maximize the influence of their ballots. If
the favorite candidate of a given voter has little chance of winning the election in the
first place, then the voter might feel that voting for this candidate is of little use. As a
consequence, this voter might prefer voting for one of the main parties. This behavior
reinforces itself, since it lowers the chances of the small candidate even further. This
results in few parties getting most of the votes (2 in the US).

This issue is partly addressed in runoff voting, where voters cast ballots on several
occasions: if they vote for a lesser-known candidate in the first round, they can still
choose between the remaining candidates in the second round (see Figure 4.2). How-
ever, voting for smaller parties is still disincentivised. For multi-seat elections, a more
representative result can be achieved with party-list proportional representation: each
party gets a number of seats proportional to the number of votes obtained.

BP

1 71214 3531

BP

4852

First round

Second round
Figure 4.2: Runoff Voting. The election consists in two rounds. In the first round, voters

may vote for any candidate; the ballots are counted and the two candidates
with the most votes are selected. During the second round, voters cast new
ballots, but only for one of these two options. This way, a voter may vote for
Santa Claus in the first round even though he has little chance of winning
the election, and still choose between the two main candidates during the
second round.

Alternative voting systems have been explored. In ranked voting, the voters cast an
ordering of the candidates (see Figure 4.4); in cardinal voting, they rate each candidate
(see Figure 4.3). Single Transferable Vote (STV) is a ranked voting system proposed in
1819. It is essentially a runoff system which eliminates a single candidate at each round so
that voters’ preferences are always taken into account (see Figure 4.6 and Figure 4.7). In
single-seat elections, it is called Instant-Runoff Voting. Majority Judgment is a cardinal
voting system from 2007 which considers the median of the ratings (see Figure 4.5).
While STV requires processing each ballot individually several times, Majority Judgment
aggregates the ballots during the tally.
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Majority Judgment is more efficient than STV (linear complexity instead of quadratic),
but it also offers stronger strategy resistance. Notably, it verifies the following properties,
while STV does not:

• independence of irrelevant alternatives: the global preference between choices
A and B depends only on the individual preferences between A and B;

• monotonicity criterion: ranking a candidate lower on some of the ballots cannot
help in making them elected;

• no favorite betrayal: voters do not need to rank a candidate above their favorite
to obtain a preferable result.

BP

545 0 33
Figure 4.3: Cardinal Voting. A voter grades each candidates from 0 to 5. There are

various ways to tally the ballots. The simplest way would simply average all
the grades, but this encourages the voters to always put 0 or 5 to increase
their influence. Instead, Majority Judgment considers the median grade of
each candidate. From the point of view of the voter, cardinal voting is very
similar to ranked voting, since grades are usually appreciated relatively one
to another.

4.1.2 Electronic Voting
Electronic voting runs elections on computers. This makes it easer to use STV or
Majority Judgment, which improves the legitimacy of political elections by giving each
voter the feeling of being heard. Additionally, the lower effort required for online voting
might increase the turnout. However, privacy of voters and integrity of the election are
a central issue.

Indeed, with electronic urns, the voters must trust that the manufacturer of the votes:

• does not read their ballot;

• actually takes their ballot into account;

• functions appropriately;
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BP

132
Figure 4.4: STV Ballot. A voter ranks candidates in order of preference. Here, the

voter prefers Santa; otherwise, Bob and otherwise, Alice. The voter is not
interested in the other candidates. This type of ballot will make sure that the
voter’s preference are taken into account as long as at least one of Santa, Bob
or Alice remains. Note that the voters do not need to rank all the candidates.
This can be an important feature when there are many candidates and voters
may not care about most of them.

• does not induce the user in error.

In the real world, each guarantee was violated in various cases. From an economic
point of view, this is particularly problematic: implementing voting urns is a niche
market, making it harder to impose strong guarantees on the product without incurring
proportionally large costs.

In contrast, general computers are widespread, so that intentional and unintentional
malfunctions are relatively unlikely, and are usually highly visible and easily detectable.
Additionally, the idea of polling the population on a regular basis for various topics (not
just for presidential elections) have been considered multiple times. This leads to the
idea of online voting, where voters cast their ballots from their own devices, through the
Internet.

This is easily achieved with a central authority to collect the ballots. However, in
these cases, we still need to trust the urn not to look at the ballots, and to run the tally
properly. In consequence, the idea of creating a trust-less urn is being investigated.

Referendums are easily realized with additively homomorphic encryption: if voters
encrypt 1 for “Yes” and 0 for “No”, the tally corresponds in simply combining the
ciphertexts and decrypting the result. For integrity, the voters provide cryptographic
proofs that their ballots contains either 0 or 1 (without revealing which). First-past-
the-post voting can be implemented in a similar fashion (but in less efficient way, since
cryptographic proofs become more complicated).

4.1.3 Related Work
Secure implementations of referendum and first-past-the-post voting have been regularly
studied in cryptographic literature. In particular, [DK05] proposes a solution for running
referendums without revealing the exact count (only whether “Yes” or “No” won) that
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MedianGrades

CCB DB DAC A D AE

DC EB D E CE B EB E

BDDC BB ADB B EB
BP DE C BE EDD AE DD

CC DC B CCE C CDE

BD B E AD C B AD AA

tie!

Figure 4.5: Cardinal Voting Tally. The grades of a candidate are listed horizontally. A
column can represent a single ballot from Figure 4.3, but it is not necessary
(grades are independent). The median grade of each candidate is computed,
as shown on the right. The candidate who has the best median grade wins.
However, several candidates may have the same median grade. If several
candidates have the best median grade, then a tiebreak is required. Each
ballot is represented vertically, with the candidates ranked by the voter.

does not rely on MixNets or on any trusted server. Helios [Adi08] and Belenios [CGGI14]
offer solutions for plurality voting.

Majority Judgment and STV are more complex, especially for the tallying phase. One
possibility is to aggregate all the encrypted ballots, decrypt them, and perform the final
steps in the clear. Although this approach ensures ballot secrecy, it reveals the scores of
all the candidates. This might not be desirable.

For strategy-resistant voting systems, [TRN08, BMN+09] explore the case of privacy-
preserving STV using a mixing protocol. As far as we know, no such study nor im-
plementation, where intermediate values are kept secret, has been done for Majority
Judgment.

4.1.4 Our Contributions
In this chapter, we propose a protocol for Majority Judgment using a restricted number
of logical gates. This protocol can then be extended to reveal the ordered winners for
multi-seat elections. Our solution uses Paillier cryptosystem to distribute trust while
keeping performance manageable. We then benchmark this protocol with a Python
implementation. This protocol was initially presented in [CPST18a].

We stress that our approach provides strong cryptographic guarantees regarding con-
fidentiality and integrity. Additionally, we support multi-seat elections, where several
winners can be determined. All of this is done while revealing no intermediate value
and with practical results: for 5 candidates and 1000 voters, the tallying phase gives the
winner in less than 10 minutes.

We think that our work also serves to demonstrate that cryptography can provide
strong guarantees even in complex settings while remaining practical. We hope it can
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Figure 4.6: STV Tally, first round. Each ballot is represented vertically, with the can-
didates ranked by the voter. The first ballot (left) correspond to the one
from Figure 4.4. During this first round, only the first choice of each ballot
is considered. We count the number of votes for each candidate as usual. As
for runoff-voting, we eliminate some candidates. Here, only the one with the
least votes (Santa Claus) is eliminated.

help bridge the gap that continues to exist between theoretical cryptography (strong
guarantees) and industrial practices (high efficiency) and encourage a more widespread
use of cryptography to improve users’ privacy in many applications.

4.1.5 Organization

Section 4.2 presents how Majority Judgement works, and how we can adapt the tallying
to be encryption-friendly. This tells us what properties are needed for the encryption
scheme. Section 4.3 explain what cryptographic tools will be used to solve the problem.
Most cryptographic primitives have been introduced in Section 2.4 and Section 2.5. We
then go through the different MPC gates used by the protocol in Section 4.4. Section 4.5
coalesces the building blocks from the previous sections into a full protocol, and offers
benchmarks for a proof-of-concept implementation. Finally, we discuss the relevance of
our results, and their relation to distributed technologies in Section 4.6.
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Figure 4.7: STV Tally, second round. After the first round, one candidate has been
eliminated, voters must again cast their opinions. Instead of calling the
voters back to the polls, we take advantage of the ranking on the ballots.
Ballots whose top choice is not eliminated are kept as is. However, ballots
which listed an eliminated candidate (Santa Claus here) as their first choices
are shifted, and their second choices are counted. Here, one ranked Cowboy
in second place and another Businessman. Again, the candidate with the
least votes (Satan) is eliminated. This process repeats until there is only one
candidate left.

4.2 Majority Judgment
4.2.1 Definition
Principle. Majority Judgment is a cardinal voting mechanism presented by Michel
Balinski and Rida Laraki in [BL07, BL10] that claims to improve the legitimacy of the
elected candidates.

In Majority Judgment, each voter Vk attributes a grade to each candidate Ci. These
grades have to be ordered values but are not necessarily numbers (e.g., A > B > C >
D > E). The ballot Bk is structured as a matrix where each row represents a candidate
and each column represents a grade. The voter writes a 1 in the chosen grade for each
candidate and 0 in other cells. For instance, if voter k gives C to candidate Alice, B to
candidate Bob and D to candidate Charlie, k casts the following ballot:

+ ← Grades→ −
A B C D E

Candidates


Alice
Bob
Charlie

 0 0 1 0 0
0 1 0 0 0
0 0 0 1 0

 = Bk.

After combining all the ballots into an Aggregate Matrix A =
∑

k Bk, the median
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grade (or “majority-grade”) of each candidate is computed: it is to the grade for which
there are as many votes for worse grades as for better grades. Then, the candidate
with the best median grade is elected. Continuing on our example, we may obtain the
following Aggregate Matrix:

+ ← Grades→ −
A B C D E

Candidates


Alice
Bob
Charlie

 31 151 529 254 35
312 90 76 107 305
101 7 2 86 804

 = A.

Each cell represents the number of voters who gave this grade to that candidate. In bold
are the candidates’ median grades. Here, Alice and Bob have the same median grade,
C, while Charlie has the median grade E. We can already eliminate Charlie, but cannot
decide the winner yet.

Solving Ties. As in our example, several candidates will probably obtain the best
median grade. In that case, we consider the grades lower than the median grade and the
grades greater than the median grade to make a decision. We construct the Tiebreak
Matrix T by aggregating grades to the left and to the right of the median grade:

Candidates
{

Alice
Bob

(
31 + 151 254 + 35
312 + 90 107 + 305

)
=

(
182 289
402 412

)
= T.

To make a decision, the largest of these values is considered. If it is in right column
(many low grades), then the corresponding candidate is eliminated; if it is in left column
(many high grades), then the corresponding candidate wins. In the Tiebreak Matrix of
the example, the largest value, in bold, rejects Bob, so Alice is elected.

Formal definition of ordering. The result of each candidate is summed up as (p, α, q)
where α is the median grade, p is the number of votes above α, and q, of those below.
For two candidates CA and CB with results (pA, αA, pB) and (pB, αB, qB) respectively, CA
wins against CB when either:

1. αA > αB (better median grade);

2. αA = αB ∧ pA > qA ∧ pB < qB (“stronger” median grade);

3. αA = αB ∧ pA > qA ∧ pB > qB ∧ pA > pB (more secure median grade);

4. αA = αB ∧ pA < qA ∧ pB < qB ∧ qA < qB (less insecure median grade).
This defines a total ordering on the candidates with high probability.

Goal statement. Our aim is to implement Majority Judgment in the encrypted do-
main: output the above ordering while leaking no additional information. We select a
suitable encryption scheme and adapt the algorithm above to obtain the best possible
efficiency/security trade-off.
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4.2.2 Removing Branching
At first sight, it seems like Majority Judgment requires branching instructions (condi-
tions and variable loops). This would be costly when implemented in the encrypted
domain. However, it is possible to avoid branches and most of this overhead.

Early Elimination of Candidates. The first remark is that we can avoid explicitly
checking condition 1 (comparing median grades): we build the Tiebreak Matrix with all
candidates. In the previous use-case, C is the best median grade (for Alice and Bob),
which leads to the following Tiebreak Matrix

T =

 31 + 151 254 + 35
312 + 90 107 + 305
101 + 7 86 + 804

 =

 182 289
402 412
108 892


Charlie still gets eliminated, during tie-breaking, since he holds the highest count, in the
right column.

More generally, let CW and CL be candidates with results (pW , αW , qW ) and (pL, αL, qL)
respectively, and such that αW < αL. Let us define p′L (resp. q′L) the number of votes
for L that are better (resp. worse) than the best median grade, αW (instead of the
candidate’s, αL). Because αL < αW , q′L > 1

2
, but we also have qW < 1

2
, and thus

qW < q′L. As a consequence, we only need to compute the p′ and q′ values, defined
around the best median grade (rather than each candidate’s). We are left with the
following conditions to determine whether candidate CA wins against candidate CB:

2’. p′A > q′A ∧ p′B < q′B;

3’. p′A > q′A ∧ p′B > q′B ∧ p′A > p′B;

4’. p′A < q′A ∧ p′B < q′B ∧ q′A < q′B.

Building the Tiebreak Matrix T . We need to detect which columns of the Aggregate
Matrix A = (ai,j) are to the left (resp. right) of the best median grade. For this, we
introduce the Candidate Matrix C = (ci,j), such that ci,j = 1 when the j-th grade is
better than the candidate’s median grade:

ci,j =

{
1 if 2×

∑
k<j ai,k <

∑
k ai,k

0 otherwise.

In our example, C is as follows, where the zeroes in bold correspond to the median grade
for each candidate:

C =

 1 1 0 0 0
1 1 0 0 0
1 1 1 1 0

 .

Then, we can compute the Grade Vector G = (gj), such that gj = 1 when the j-th grade
is better than the best median grade: gj =

∏
ci,j. In the example:

G =
(
1 1 0 0 0

)
.
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The zero in bold corresponds to the best median grade.
Once we have this Grade Vector G, we can build the two columns of the Tiebreak

Matrix T = (ti,k), from the Aggregate Matrix A = (ai,j), as:

ti,1 =
∑
j

gj=1

ai,j and ti,2 =
∑
j

gj−1=0

ai,j.

Note that the votes for the best median grade are discarded. This can be written as
ti,1 =

∑
j gj × ai,j and ti,2 =

∑
j(1− gj−1)× ai,j.

Identifying the Winner. From T , we can define the Winning Vector W = (wi) such
that wi = 1 when candidate i wins the election:

wi =
∧
j

j ̸=i

 (ti,1 > ti,2 ∧ tj,1 < tj,2)

∨(ti,1 > ti,2 ∧ tj,1 > tj,2 ∧ ti,1 > tj,1)

∨(ti,1 < ti,2 ∧ tj,1 < tj,2 ∧ ti,2 < tj,2)


This is a translation of conditions 2’, 3’ and 4’ between each pair of candidates (i, j).
The elected candidate corresponds to the unique wi equal to 1.

For multi-seat elections, we remove from A and C the line corresponding to the winner
and compute G, T and W again.

4.2.3 Expected Features for Encrypted Implementation
To run the algorithm above with encrypted ballots, the encryption scheme must allow
the following operations:

• addition of two plaintexts, to compute the Aggregate Matrix A and the Tiebreak
Matrix T ;

• comparison of two plaintexts, to compute the Candidate Matrix C and the Winning
Vector W ;

• multiplication of two plaintexts, to compute the Grade Vector G and the Tiebreak
Matrix T ;

• AND/OR between two plaintexts, to compute the Winning Vector W .

In the end, a decryption of the Winning Vector W reveals the result.
Notice that all the multiplications have at least one operand restricted to {0, 1}.

This relaxes the requirement from a full multiplication gate to a “Conditional Gate”:
CondGate(x, y) = x× y for y ∈ {0, 1}.

When (False,True) maps to (0, 1), the Conditional Gate also gives us Boolean AND.
With an additively homomorphic encryption scheme, we have the logical NOT gate for
free, since ¬x = 1−x. Eventually, the AND and NOT gates let us construct the missing
gates.
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To sum up, we want an additively homomorphic encryption scheme, together with effi-
cient Multi-Party Computation (MPC) protocols for distributed decryption, distributed
evaluation of the Conditional Gate, and distributed comparison. Multi-party compu-
tation requires zero-knowledge proofs to ensure correctness. In the next section, we
implement these building blocks.

4.3 Cryptographic Tools
The secret key of the election is needed to decrypt the ballots at the end of the tally
and for the gates that help obtain the intermediate values. Because no one entity should
hold the power to decrypt the ballots, we use several authorities that need to cooperate
to use the secret key. Our MPC protocols are run the talliers (Ti)i who share a secret
using Shamir’s method (see Subsection 2.4.1).

4.3.1 Batching Zero-Knowledge Proofs
We use many ZKPs, introduced in Subsection 2.4.2. Because of their high cost, they
represent a large part of the total running time of the protocol. To reduce their cost, we
can run batch them together. That is, we combine the values of several ZKPs so that a
single computation can be used to verify all of the proofs simultaneously.

We aggregate the proofs of valid decryption when several ciphertexts are decrypted
by the same tallier, as done in [APB+04, Appendix C]. For instance, let us consider
that Ti is participating in the decryption of ciphertexts (Cj)j. Then, Ti publishes Rj ←
Csi

j mod n, for each j. The verifier wants to run a protocol with Ti for each Rj to
verify that they were computed correctly. Instead, the verifier generates random scalars
αj

$← Z2κ and share these values with Ti. The proof proceeds on the aggregate ciphertext
C∗ ←

∏
j C

αj

j mod n and plaintext R∗ ←
∏

j R
αj

j mod n. With this approach, Ti only
need to prove that R∗ is a valid partial decryption of C∗, and this convinces the verifier
that all of the Rj are correctly computed.

Remark 10. It is important to ensure that Ti publishes (Rj)j before the verifier gives
(αj)j. However, it is possible to make this part non-interactive by using a random oracle
and including (Rj)j in the request. Then, the tallier can also provide a non-interactive
zero-knowledge proof of the equality of the discrete logarithms. This way, the whole proof
can be made non-interactive.

4.3.2 Proof of Private Multiplication
P privately multiplies JzK ← JxKy. For correctness, P proves that JxK, JyK, JzK are
encryptions of some x, y, and z such that z ≡ x× y mod n:

• P draws u
$← Zn, ru, ryu $← Z∗

n and sends JuK ← gurnu mod n2 and JyuK ←JyKurnyu mod n2 to V ;
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• V draws a challenge e $← Z2κ and sends it to P ;

• P sends w ← u− xe mod n, rw ← rur
−e
x mod n and ryw ← ryur

−e
z mod n to V ;

• V checks that JuK ≡ gwrnwJxKe mod n2 and JyuK ≡ JyKwrnywJzKe mod n2.

The Fiat-Shamir heuristic (see Section 2.4.2) makes it non-interactive.
The proofs for several private multiplications of the same x with different yi’s can be

batched: x × (
∑

i αiyi) ≡
∑

i αi(x × yi) mod n. This does not work for independent
pairs (xi, yi).

4.4 Gate Evaluation with Multi-Party Computation
We now present MPC protocols that implement the operations listed at the end of
Subsection 4.2.3:

• Decryption: our peculiar use of the Paillier cryptosystem simplifies this tasks, since
each tallier only needs to compute a simple exponentiation; this gate is also used
by the other two protocols below;

• Conditional Gate: this is realized by randomizing the Boolean operand, decrypting
it, and doing a private multiplication;

• Comparison: requires individually encrypted bits, which we obtain by decrypting
the masked the operands, encrypting their bits individually, and removing the
mask by adding bitwise.

These protocols are secure in the malicious setting thanks to proofs of correct execu-
tion. We modularize our implementation into several gates, which can be visualized in
Figure 4.8.

4.4.1 Decryption Gate
As seen in Subsection 2.5.4, we can configure our setup so that the Decrypt algorithm
for the Paillier cryptosystem is essentially a single exponentiation. We must compute
R ≡ Cs ≡ r mod n, then a simple operation with only public values gives us back the
plaintext message M . Since the secret value is only used in the exponent, this operation
can easily be distributed by using Shamir’s secret sharing (see Subsection 2.4.1). To
be more specific, each tallier Ti provides the share Ri ← Csi mod n of the decryption
and a non-interactive zero-knowledge proof. Once all the decryption shares have been
computed, they can be combined into:∏

Rλi
i ≡ Cλisi ≡ Cs ≡ R mod n

where λi are the Lagrange coefficients for the selected talliers normally used to recon-
struct the secret in Shamir’s secret sharing.
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DecryptGate

BitExtractGate

GTGate

CondGate

MajorityJudgment

RandomBitGate

PrivateAddGate

MaskGenerateGate

Figure 4.8: Call Graph: an edge indicates that the originating gate calls the target gate;
note the three main gates, directly used by MajorityJudgment

4.4.2 Conditional Gate

Schoenmakers and Tuyls introduced the Conditional Gate in [ST04]. Given x ∈ Zn and
y ∈ {−1, 1}, it computes x × y ∈ {x,−x mod n}. Adapting this into a gate taking
y ∈ {0, 1} is trivial.

Conditional Gate. First, each tallier masks y in turn, by multiplying it by −1 or 1.
They do the same transformation on x to keep x×y unchanged. Then, they decrypt the
final y and do a private multiplication. In Algorithm 3, decryption of JyK is performed
in a distributed way as shown before.

For the malicious setting, the talliers give proofs of equality of discrete logarithm
between JxK and JyK (i.e., both values were raised to the same o). As explained in [ST04],
no proof that o ∈ {−1, 1} is needed, as long as the decrypted y is in {−1, 1}.

Mapping to {0, 1}. The additive property let us adapt the Conditional Gate to accept
its second operand from {0, 1}: y ∈ {0, 1} ⇒ 2y − 1 ∈ {−1, 1}. With input (x, 2y − 1),
Algorithm 3 outputs z = 2xy − x. We get the desired result by outputting (z + x) ×
2−1 mod n
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Input: JxK and JyK, encryptions of x ∈ Zn and y ∈ {−1, 1} respectively
Output: JzK, the encryption of z = x× y
foreach tallier do

o
$← {−1, 1};JxK← JxKo; /* private multiplication x← x× o */JyK← JyKo; /* private multiplication y ← y × o */

pass JxK, JyK to the next tallier;
end
y ← Decrypt(JyK);
assert y ∈ {−1, 1};
return JzK = JxKy; /* private multiplication z ← x× y */

Algorithm 3: CondGate: Conditional Gate

4.4.3 Greater-Than Gate
We use a comparison circuit on the bitwise encryptions (each of their bits encrypted
separately) of the operand. The hard part is converting an encrypted integer into the
encryptions of its bits. This is done by the Bit-Extraction Gate.

In short, this gate masks the input integer, decrypts the result, encrypts the individual
bits of this value, and removes the mask on the bitwise encryption by using a binary
addition circuit (see Figure 4.9). The binary addition circuits, or Private Addition Gate,
takes two operands: the masked bitwise encryption of the input, and the unencrypted
mask. The fact the one operand is not encrypted saves several executions of the Condi-
tional Gate. To prevent any part from knowing the mask, it is generated using another
Multiparty Computation gate, GenerateMaskGate.

MaskGenerateGate

Decrypt EncryptSplit

Input Output

Figure 4.9: Bit-Extraction Gate: the input is combined with a random value, decrypted,
split, encrypted bitwise, and the random value is removed

Private Addition Gate. In the Algorithm 4, xi is known as an encrypted value JxiK,
while yi is a plaintext value.

Remark 11. [DFK+06, Section 6] offers a constant round circuit for addition but the
constant is a 37. Since y is given in the clear, we avoid the round of line 1 of CARRIES.
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Input: (JxiK) the bitwise encryption of x ∈ Zn, (yi) the bits of y ∈ Zn

Output: (JziK) the bitwise encryption of z = x+ yJcK← Encrypt(0); /* carry */
foreach index i, from 0 — the least significant bit— doJxi ⊕ yiK← JxiK× JyiK÷ JxiK2yi ; /* xi ⊕ yi = xi + yi − 2xiyi */JziK← Jxi ⊕ yiK× JcK÷ CondGate(Jxi ⊕ yiK, JcK)2; /* (xi ⊕ yi)⊕ c */JcK← (JxiK× JyiK× JcK÷ JziK) 1

2 ; /* (xi + yi + c− zi)/2 */
end
return (JziK);

Algorithm 4: PrivateAddGate: Private Addition Gate

Input: JxK, the encryption of x ∈ Zn

Output: (JxiK), the bitwise encryption of xJyK, (JyiK)← GenerateMaskGate(ℓ, κ);JzK← JxK÷ JyK; /* mask z = x− y */
z ← DecryptGate(JzK); /* decrypt as number in [−n/2, n/2] */
(JxiK)← PrivateAddGate((JyiK), (zi)); /* unmask (xi) = (yi) + (zi) */
return (JxiK);

Algorithm 5: BitExtractGate: Bit-Extraction Gate

In contrast, our straight-forward Private Addition Gate implies ℓ rounds for up to 2ℓ− 1
votes, so less than 36 for practical cases.

Bit-Extraction Gate. Schoenmakers and Tuyls present the Bit-Extraction Gate (Al-
gorithm 5) in [ST06, LSBs gate]. GenerateMaskGate(ℓ, κ) returns the scalar and bitwise
encryptions of a random secret mask for ℓ bits with security κ. We apply this mask to
the scalar input, and then remove it bitwise after decryption.

Remark 12. Drawing the mask from ZN could cause wrapping when adding with x.
Instead, we draw from [0, 2ℓ+κ) for security parameter κ. See Subsection 4.4.4 for
implementation.

Greater-Than Gate. Finally, we compare two integers by applying the comparison
circuit from [ST04] on their bitwise encryptions. The circuit updates ti+1 ← (1− (xi −
yi)

2)ti + xi(1− yi), starting from t0 = 0. See Algorithm 6.

Remark 13. [DFK+06] also has a 19-round circuit for comparison.

4.4.4 Mask Generation Gate
The Mask Generation Gate returns a random encrypted value known by no one. We
need a bitwise encryption to remove the mask using the Private Addition Gate. Drawing
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Input: (JxiK), (JyiK) the bitwise encryptions of x, y ∈ Zn

Output: Jx > yK, encryption of 1 if x > y, and 0 otherwiseJtK← Encrypt(0); /* temporary result */
foreach index i, from 0 — the least significant bit— doJxi ∧ yiK← CondGate(JxiK, JyiK);JaK← J1K÷ JxiK÷ JyiK× Jxi ∧ yiK2; /* 1− (xi − yi)2 */JbK← CondGate(JaK, JtK); /* (1− (xi − yi)2)ti */JtK← JbK× JxiK÷ Jxi ∧ yiK; /* (1− (xi − yi)2)ti + xi(1− yi) */
end
return JtK;

Algorithm 6: GTGate: Greater-Than Gate

Input: -
Output: JbK the encryption of secret b $← {0, 1}JbK← Encrypt(0);
foreach tallier Ti do

bi
$← {0, 1};JbiK← Encrypt(bi);JbK← JbK× JbiK÷ JbKbi ; /* b← b⊕ bi = b+ bi − b× bi */

Ti sends JbK to Ti+1 and a ZKP of bi ∈ {0, 1} verifying the relation;
end
return JbK;

Algorithm 7: RandomBitGate: Random Bit Gate

the mask from ZN could cause wrapping so we draw from [0, 2ℓ+κ) for security parameter
κ.

The Random Bit Gate of Algorithm 7 returns the encryption of a random bit known
by no one. Each tallier Ti XORs the current encrypted bit b with a locally drawn bit
bi. For correctness, Ti provides a ZKPoK of bi such that bi ∈ {0, 1} and that b′ = b⊕ bi
where b′ is the new value of b.

The Basic Random Mask Gate of Algorithm 8 combines generated bits into a scalar
encryption of the mask.

Optimized Random Mask Gate of Algorithm 9 avoids generating the last κ bits since

Input: ℓ the size of the mask, κ the security parameter
Output: JrK/(JriK), scalar/bitwise encryptions of secret r $← [0, 2ℓ+κ)

∀0 ≤ i < ℓ+ κ, JriK $← RandomBitGate();JrK←∏
i JriK2i ; /* r ←

∑
ri2

i */
return JrK, (JriK);

Algorithm 8: GenerateMaskGate: Basic Random Mask Gate
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Input: ℓ the size of the mask, κ the security parameter
Output: JrK/(JriK), scalar/bitwise encryptions of secret r $← [0, 2ℓ+κ)

∀0 ≤ i < ℓ, JriK $← RandomBitGate();
foreach tallier Ti do

Ti draws r∗,i $← [0, 2ℓ+κ);Jr∗,iK← Encrypt(r∗,i);
Ti broadcasts Jr∗,iK with range proof;

endJr∗K←∏
iJr∗,iK; /* r∗ ←

∑
r∗,i */

return JrK, (JriK);
Algorithm 9: GenerateMaskGate: Optimized Random Mask Gate

their bitwise encryptions are not needed. Instead, it uses a random value in [0, 2κ). For
correctness, each tallier provides a ZKPoK of r∗,i∗ ∈ [0, 2l+κ) (range-proof).

Remark 14. In the optimized version, r can actually be larger than 2ℓ+κ. This does not
affect the correctness since ℓ+ κJ|N |.

Party 1

Party 2

Mask

Figure 4.10: Mask Generation Gate: the parties choose random bits and a random scalar;
they combine the scalars and the bits individually; then they add the bits
(which make the least significant part), and the scalar (which makes the
most significant part)

4.5 Implementation
Using the various building blocks presented in the sections above, we implemented a
cryptographic protocol for Majority Judgment. We realized a proof-of-concept and mea-
sured the running time of its execution to provide realistic benchmarks. We now explain
how the encryption of the ballots works, present the optimizations that were used to
improve the running time, and list the results of our measurements.

4.5.1 Ballot Encryption
Each voter Vk encrypts ballot Bk element-wise and proves that each element is either 0
or 1 (OR-proof), and that there is one 1 per row (sum decrypts to 1). Then A =

∑
k Bk
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using homomorphic addition. At this point, we could decrypt A and finish tallying in
the clear, while keeping ballot confidentiality. Instead, we stay in the encrypted domain
and implement the approach described in Subsection 4.2.2.

4.5.2 Optimizations
Avoiding Final Logical Gates. Boolean OR cannot be implemented exactly with ho-
momorphic addition. However, for the final value, it only matters whether the result is
0 or not. This saves a few Conditional Gates in the final part of the protocol:

¬wi =
∨
j ̸=i

 ¬(ti,1 > ti,2 ∧ tj,1 < tj,2)

∧¬(ti,1 > ti,2 ∧ tj,1 > tj,2 ∧ ti,1 > tj,1)

∧¬(ti,1 < ti,2 ∧ tj,1 < tj,2 ∧ ti,2 < tj,2)


becomes

ℓi =
∑
j ̸=i

 ¬(ti,1 > ti,2 ∧ tj,1 < tj,2)

∧¬(ti,1 > ti,2 ∧ tj,1 > tj,2 ∧ ti,1 > tj,1)

∧¬(ti,1 < ti,2 ∧ tj,1 < tj,2 ∧ ti,2 < tj,2)

 .

Candidate i wins if and only if ℓi ̸= 0. To avoid leaking information, each tallier
multiplies li by a secret non-zero value before decryption.

Batching. Our software implementation batches operations as much as possible to
reduce the number of modular exponentiations. More specifically, each gate receives a
list of inputs to process and callers try to regroup inputs before calling gates. When
possible, the gates then batch the proofs of valid decryption or of private multiplication
over their inputs. Unfortunately, we can only batch the proofs of multiplication in some
specific cases.

Pipelining. The most critical part of the protocol is the Conditional Gate. A straight-
forward implementation would have only one tallier active at any given time. Instead,
for α tallier, we split the input batch in α sub-batches, give one sub-batch to each tallier,
and rotate them. This way, each tallier can still negate any of the inputs, but most of
the idle CPU time vanishes.

Remark 15. After candidate CW is elected, it is possible to reveal the next candidate
by removing the line W of A and repeating the algorithm. This allows for multi-seat
elections, but does reveal the order of the elected candidates.

4.5.3 Summary
Find the full protocol for Majority Judgment in Algorithm 10. To improve readability,
CondGate(JxiK) is the encryption of

∏
xi for two values or more. We defend against

malicious adversary by using ZKPs when randomizing ℓi and in the basic gates (see
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Input: encrypted Aggregate Matrix (Jai,jK)
Output: index of elected candidate
/* Candidate matrix ci,j =

∑
k<j ai,k <

1
2
×
∑

k ai,k */Jci,jK← GTGate(
∏

kJai,kK, (∏1≤k≤jJai,kK)2);
/* Grade vector gj = ∧ici,j */JgjK← CondGate(Jci,jK);
/* Tiebreak matrix left column ti,1 =

∑
j gj × ai,j */Jti,1K ←∏

j CondGate(Jai,jK, JgjK);
/* Tiebreak matrix right column ti,2 =

∑
j(1− gj−1)× ai,j */Jti,2K←∏

j CondGate(Jai,jK, (J1K÷ Jgj−1K));
/* Each assignment maps to an inner parenthesis of ℓi */Jp1i,jK← CondGate(GTGate(Jti,1K, Jti,2K),GTGate(Jtj,2K, Jtj,1K));Jp2i,jK← CondGate(GTGate(Jti,1K, Jti,2K),GTGate(Jtj,1K, Jtj,2K),GTGate(Jti,1K, Jtj,1K));
Jp3i,jK← CondGate(GTGate(Jti,2K, Jti,1K),GTGate(Jtj,2K, Jtj,1K),GTGate(Jtj,2K, Jti,2K));
/* Losing Vector ℓi =

∑
j ̸=i ¬p1i,j ∧ ¬p2i,j ∧ ¬p3i,j */JℓiK←∏

j ̸=i CondGate(J1K÷ Jp1i,jK, J1K÷ Jp2i,jK, J1K÷ Jp3i,jK);
foreach tallier do

o
$← Zn;JℓiK← JℓiKo;

end
ℓi ← DecryptGate(JℓiK);
return unique i such that ℓi = 0;

Algorithm 10: Full Protocol

Section 4.4). The talliers ensure the consistency of the computation by all running the
same protocol, and verifying that the others behave correctly in each gate. They can
verify the proofs asynchronously, but must complete the checks before decrypting (ℓi).

4.5.4 Benchmarks
Our Python implementation uses gmpy2 (GMP’s powmod is faster than CPython’s pow).
For simplification, we use a central point of coordination (security does not rely on it),
and basic secret sharing. We use standard RSA keys of 2,048 bits (keys are 1,024 bits
and Paillier ciphertexts are 4,096 bits). Run times are shown in Figure 4.11, but exclude
ballot encryption (on voters’ devices), verification, and aggregation (on-the-fly). Most
of it is for private multiplication proofs. We could do better with many CPU cores, but
we are below 20 minutes for a 5-candidate election and a million voters on a single CPU!

Regarding ballot encryption and the associated proofs, note that this can be almost
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3 candidates 5 candidates
Up to 210 − 1 voters 4’ 26” 09’ 53”
Up to 220 − 1 voters 8’ 53” 19’ 05”

Figure 4.11: Tallying for 3 talliers/5 grades, run on 2 CPU cores (i5-4300U)

entirely pre-computed on the voters’ devices: only the order of ciphertexts in each row
depends on the choice of the voter. In total, ballot generation takes about one second
without parallelization.

Our results shows that our protocol can truly be used in a real-world election.

4.6 Discussion
In cryptographic research, large efforts are currently focused on improving generic con-
structs for secure computation. Some frameworks do show interesting promises and
might some day give us a silver bullet to protect most computations. However, we want
to emphasize that the current state of cryptography and of computing already allows us
to envision complex systems protected by cryptography.

There have been numerous initiatives aiming to implement electronic voting using
Blockchain ([Aye17], [MSH17], [Lai18], Votem1, Follow My Vote2, TIVI3, Voatz4). In-
deed, elections are a critical component of democratic systems, and should not be en-
trusted to anyone. Thus, it seems logical to use a blockchain to implement a fully
decentralized voting system. However, such initiatives often fail to take several aspects
into consideration.

Firstly, blockchains themselves do not use a fair voting system, but instead usually
rely on proof-of-work. This is because the notion of digital identity in a fully distributed
setting is unreliable. In fact, this is a well-known problem for online communities, where
it is generally easy to conduct a Sybil attack and bias the results. Such systems rely on
the low stakes of the vote, and the non-null amount of effort required to conduct the
attack. However, this is not acceptable for more important polls and for elections. In
such situations, it is necessary to authenticate the voters (potentially anonymously) to
ensure that no one can vote twice. As of now, we rely on institutions to validate the
identity of a person. In consequence, any system that would source identity information
from these institutions would already have a centralized consensus. This consideration
alone challenges the relevance of Blockchain for this use case.

Secondly, we have observed that it is commonly believed that Blockchain itself pro-
vides “security”. However, this vague concept is rarely scrutinized, and some projects
expect private information stored on a blockchain to be confidential. Other projects do
understand that sensitive information should be encrypted, but think that Blockchain

1https://votem.com/
2https://followmyvote.com/
3https://tivi.io/
4https://voatz.com/

94

https://votem.com/
https://followmyvote.com/
https://tivi.io/
https://voatz.com/


4.7 Conclusion

can efficiently decide which ciphertexts can be decrypted. But the difficult part is not to
identify the ciphertexts that should be decrypted, but rather decrypting them without
revealing the decryption key. In a fully distributed setting, we cannot clearly identify
several parties among which a secret key can be shared. Thus, we cannot strictly avoid
the situation where a party collects several secret shares. Instead, we would again need
to rely on proof-of-work to use the stronger assumption that no party can provide 51 %
of the effort.

Thirdly, there are often other layers of protection than cryptography for particularly
sensitive data. For instance, electronic voting systems in France must be hosted on the
French territory5. Using a “public” blockchain would necessarily imply surrendering the
control of the data. As we discussed, permissioned blockchains seem to bring little com-
pared to normal, or “public”, blockchains. Furthermore, Blockchain relies on economic
incentives for the miners in the form of a cryptocurrency. This kind of setup might
become problematic in the context of elections. In contrast, our solution can let the
users inspect all of the encrypted ballots to verify the integrity of the election, but it
can also restrict this function to identified parties.

We conclude that using Blockchain is not a sound approach for this use case, given
the current implementation of identity, and the requirements on privacy.

4.7 Conclusion
In this chapter, we have explored the problematic of online voting both from a security
viewpoint and with a practical aim. The voting system we have considered includes
a relatively more involved tallying phase than in the traditional ones. However, we
were able to design a problem-specific solution which seems to run in reasonable time.
Again, this shows that specific constructions can be used to solve practical problems
more efficiently then generic approaches. As for Chapter 3, we hope that this type of
design can help spread cryptography further and provide solutions for new use cases.

5https://www.legifrance.gouv.fr/affichCnil.do?id=CNILTEXT000023174487
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5 Conclusion
In this document, we explored two problems with the aim of providing strong security
guarantees with a practical solution.

For our first use case, presented in Chapter 3, we have considered the concrete prob-
lem of organ donation and taken into account the associated practical constraints. In
particular, the requisites bring a paradox, where the confidentiality of private medical
records must rely on the entropy of the inputs, but we actually hope for low entropy
(finding matches). We have shown that it was possible to sidestep this issue by estab-
lishing a stricter control of the encrypted data, in the form of fingerprinting. Then,
we have searched for a type of cryptographic primitive that would let us achieve this
goal. For this, we have introduced a formal model describing how such a primitive would
work various settings, which can map to different use cases. Then, we have provided a
construction connected to the state-of-the-art and relying on reasonable cryptographic
assumptions. This approaches enables us to provide a balance between security and
practicality in this use case.

For our second use case, presented in Chapter 4, we have looked at the existing liter-
ature for voting systems, electronic voting and cryptographic voting, and have extended
what was possible. Concretely, we have decided to implement Majority Judgment,
the voting system which provides the most interesting properties regarding strategy-
resistance and the legitimacy of the result. For this, we combined various techniques
from MPC, notably multiparty gates designed for ElGamal’s encryption scheme that we
adapted for Pailler’s encryption scheme. Once we attained a complete theoretical design
with strong guarantees for both confidentiality of the ballots and integrity of the elec-
tion, we realized a software implementation. This software implementation confirmed
the correctness of the protocol and provided us with rough estimations of the running
times required to use this approach in a real election. Although we are convinced that
these benchmarks could be improved significantly, notably by being run on many CPUs
in parallel, the results already show that this solution is viable.

In both of these use cases, we have considered the relevance of Blockchain and similar
technologies inspired by Bitcoin. We have found that, like in many purported use cases,
using a blockchain would not help in solving the problem. Instead, we support that it
is more sensible to design a cryptographic protocol adapted to the problem, so as to
balance functionality, security, and efficiency.

The progress in generic cryptographic computation such as FHE, GCs and MPC are
promising. However, our results demonstrate that cryptography can already be used
to distribute trust among several actors while meeting pragmatic constraints. Thus, it
could contribute to many more areas today while combining security with efficiency. We
hope that this can help spread cryptography further and improve the guarantees given
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to users in many applications.
Finally, we underline that there remain many open questions, both in general, and for

the use cases we considered. First, the potential improvements to come for generic cryp-
tographic computations, might continue to extend what is possible. Second, Blockchain
currently have little use cases besides cryptocurrencies, and cryptocurrencies themselves
have limited functionality, but organizational changes that could happen in the future
might help distribute some features, such as authentication, and make Blockchain rel-
evant for other use cases. Thirdly, the model we introduced in Subsection 3.3.2 might
be pertinent for other use cases than the one we considered; then, the construction we
proposed in Section 3.5 might be adapted, or others may be designed to better fit the
constraints. Fourthly, our proof-of-concept implementation from Section 4.5 gave us
interesting results, but it is far from a deployable solution; further refinement in the
design might improve its efficiency, its security, or even its properties regarding voting.
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Résumé

Au cours cette thèse, nous explorons
des méthodes cryptographiques pour
résoudre des problèmes concrets.
D'abord, nous étudions la technolo-
gie « Blockchain », introduite récem-
ment par la cryptomonnaie « Bit-
coin ». En particulier, nous deman-
dons si cette technologie peut aider
à la résolution de nouveaux prob-
lèmes, où à la mise en place de so-
lutions plus efficaces. Nous clarifions
quelles propriétés sont apportées par
la cryptographie, et lesquelles sont
particulières à Blockchain. Nous
prenons en considération le cas
d'usage du don d'organe et les condi-
tions que les donneurs et receveurs
doivent remplir. Nous offrons en-
suite une solution qui trouve un équili-
bre entre rapidité et sécurité. Elle
prend la forme d'une nouvelle prim-
itive cryptographique adaptée aux
particularités du problème. Addition-
nellement, nous considérons le cas
d'usage du vote électronique ou en
ligne, et les possibilités offertes par
les systèmes de vote plus avancés.
Nous concevons ensuite un proto-
cole cryptographique qui garantit la
confidentialité et l'intégrité pour im-
plémenter le Jugement Majoritaire.
En parallèle avec la construction
théorique, nous implémentons une
preuve de concept et fournissons des
valeurs chiffrées qui démontrent des
temps d'exécution raisonnables. Fi-
nalement, il semble que Blockchain
ne soit pas adéquat pour ces cas
d'usage, mais que les techniques
cryptographiques actuelles sont ca-
pables de faire davantage que ce qui
est attendu par les non-spécialistes.

Mots Clés

cryptographie blockchain distribué
voting vie privée intégrité

Abstract

In this thesis, we explore crypto-
graphic methods to solve concrete
problems. First, we study the tech-
nology “Blockchain”, recently intro-
duced by the cryptocurrency “Bit-
coin”. In particular, we ponder
whether this technology can help in
solving new problems or in provid-
ing more efficient solutions. We clar-
ify which properties are brought by
cryptography, and which are partic-
ular to Blockchain. We consider the
use case of organ donation and the
conditions that donors and recipients
must meet. We then offer a solu-
tion that makes a reasonable trade-
off between speed and security. This
takes the form of a new cryptographic
primitive tailored to the specificities of
the problem. Furthermore, we con-
sider the use case of online and elec-
tronic voting and the possibilities of-
fered by the more advanced voting
systems. We then design a cryp-
tographic protocol that guarantees
confidentiality and integrity to imple-
ment Majority Judgment. Along with
the theoretical construction, we im-
plement a proof of concept and pro-
vide benchmarks that show reason-
able running times. In the end, it ap-
pears that Blockchain does not adapt
well to these use cases, but that cur-
rency cryptographic techniques can
do more that usually assumed by
non-specialists.

Keywords

cryptography blockchain distributed
vote privacy integrity


	Introduction
	Motivation
	The Rise of Modern Cryptography
	The Information Age

	Modern Cryptography
	The New Vogue for Distributed System
	Blockchain
	Proof-of-Work
	Smart Contracts
	Blockchain-Free Solutions

	Cryptography in Distributed Networks
	Provable Cryptography
	Homomorphic Encryption (HE)
	Zero-Knowledge Proofs (ZKPs)
	Secure MultiParty Computation (MPC)

	Our Contribution

	Preliminaries
	Modular Arithmetic
	Assumptions
	Axiomatic Frameworks
	Common Assumptions
	Pairings

	Signatures
	Definition
	Boneh-Lynn-Shacham
	Pointcheval-Sanders

	Distributed Protocols
	Shamir's Secret Sharing
	Zero-Knowledge Proofs (ZKPs)

	Encryption
	Asymmetric Encryption
	Homomorphic Encryption
	ElGamal Encryption
	Paillier's Encryption


	A New Primitive for Pairwise Matching
	Organ Donation
	Compatibility for Organ Transplant
	Compatibility Matching by Equality Check

	Searchable and Comparable Encryption
	Related Work
	Our Contribution
	Organization

	Fingerprinting Scheme
	Description
	Security Model

	Assumptions
	Fingerprinting from Pointcheval-Sanders Signatures
	Fingerprinting Scheme with Public Plaintext-Equality Testing
	Security of the Basic Scheme
	Improving the Privacy of the User
	Verifiability
	Full Protocol

	Discussion
	Security Level
	Decentralized Setting
	Other Applications

	Conclusion

	Secure Strategy-Resistant Voting
	Electronic Voting Systems
	Voting Systems
	Electronic Voting
	Related Work
	Our Contributions
	Organization

	Majority Judgment
	Definition
	Removing Branching
	Expected Features for Encrypted Implementation

	Cryptographic Tools
	Batching Zero-Knowledge Proofs
	Proof of Private Multiplication

	Gate Evaluation with Multi-Party Computation
	Decryption Gate
	Conditional Gate
	Greater-Than Gate
	Mask Generation Gate

	Implementation
	Ballot Encryption
	Optimizations
	Summary
	Benchmarks

	Discussion
	Conclusion

	Conclusion

