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Abstract

Fabrício SAGGIN

Robust Control for MEMS Gyroscopes

Micro-electro-mechanical systems (MEMS) gyroscopes are micromachined devices used to
measure the angular rate of objects. They are ubiquitous in many applications thanks to their
low cost, low power consumption, and ease of integration into electronic devices. However,
when compared to traditional gyroscopes, MEMS gyroscopes have degraded performance.
To improve their performance, feedback control loops are widely used.

MEMS gyroscopes are composed of two perpendicular vibrating modes: the drive mode
and the sense mode. The working principle is based on the transfer of energy between
these modes caused by the Coriolis force, which is proportional to the angular rate. Then,
by controlling the drive mode oscillations with an excitation frequency and by estimating
the Coriolis force, the angular rate can be recovered. Moreover, the better the drive mode
oscillations are controlled and the Coriolis force is estimated, the better is the measure.

The control architectures are usually optimized in terms of cost and simple implementation.
Most of them are based on the complex envelope (amplitude and phase) of the signals, such
that simple PI controllers can be used to independently regulate the amplitude and phase of
the oscillations along each axis. To extract the complex envelope of the oscillating signals,
nonlinear elements are introduced in the control loops. Moreover, the couplings between the
drive and sense modes, as well as the dependence on environmental conditions, are not taken
into account. The associated methods do not provide guarantees of stability or performance
for the closed-loop system.

An alternative approach is to consider the classical feedback control architecture, referred to
as the direct control architecture, based on the signals themselves instead of their complex
envelope. For this architecture, advanced control techniques have been developed for
vibration control of mechanical systems. The potential interest is to explicitly take into
account the different couplings and the dependence on the environmental condition, with
formal guarantees of stability and performance. Nevertheless, their applicability to MEMS
gyroscopes, including implementability, is still an open question. A possible reason is the
inherent complexity of the controllers.

In this thesis, we aim to propose design methods for both control architectures, guaranteeing
stability and a certain performance level for the MEMS gyroscope, and to experimentally
validate the obtained controllers.

In the first part, we review the literature on MEMS gyroscopes and define the key performance
indicators of the sensor, which are not usually connected to the closed-loop performance
specifications. Then, by using an input-output approach, we establish the relationships
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between the performance indicators and the closed-loop behavior. These relationships are a
valuable tool for the control design and constitute the first contribution of this thesis. Based on
these relationships, we then propose design methods for the direct control architecture. First,
we consider the case where the MEMS gyroscope works with a fixed operating condition and
the excitation frequency, which is set to the drive-mode resonance one. In this context, the
control objectives include the tracking of a sinusoidal signal and standardH∞ synthesis is
applied for the controller design. The excitation frequency, however, may vary over time. A
control objective is then to track a “time-varying-frequency sinusoidal” signal. We reveal
that this particular problem can be formulated as a weighted L2 criterion with a new class of
weighting functions modeling “time-varying-frequency sinusoidal” signals.

We then revisit the theory of complex envelopes, which allows us to define a formal frame-
work for the analysis of the envelope-based control architectures. If the complex envelope
is ideally measured in real time, we establish links between the direct control approach
and the envelope-based ones. These links reveal that the performances achieved with both
strategies are equivalent. When the signal envelope cannot be ideally measured, the same
framework allows us to precisely model the nonidealities and to design controllers with
formal guarantees of stability. These results are also an important contribution of this thesis.

The last part is dedicated to the controller design for their digital implementation on two
platforms: a flexible one, which can implement complex control architectures; and a plat-
form designed for the so-called electro-mechanical Σ∆, which is a very particular control
architecture. For both platforms, the practical results validate the proposed methods.
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Résumé

Fabrício SAGGIN

Robust Control for MEMS Gyroscopes

Les gyromètres MEMS (de l’anglais, micro-electro-mechanical system) sont des dispositifs micro-
usinés utilisés pour mesurer la vitesse de rotation des objets. Ils sont omniprésents dans
de nombreuses applications grâce à leur faible coût, leur faible consommation d’énergie
et leur facilité d’intégration dans les dispositifs électroniques. Cependant, par rapport
aux gyromètres traditionnels, les gyromètres MEMS ont une performance dégradée. Pour
l’améliorer, des boucles de commande sont largement utilisées.

Les gyromètres MEMS sont composés de deux modes de vibration perpendiculaires : le
mode drive et le mode sense. Le principe de fonctionnement est basé sur le transfert d’énergie
entre ces modes causé par la force de Coriolis, qui est proportionnelle à la vitesse angulaire.
Ainsi, en asservissant les oscillations du mode drive avec une fréquence d’excitation et en
estimant la force de Coriolis, la vitesse angulaire peut être récupérée. De plus, mieux les
oscillations du mode drive sont asservies et mieux la force de Coriolis est estimée, meilleure
est la mesure.

Les architectures de commande sont généralement optimisées en termes de coût et de
simplicité d’implémentation. La plupart d’entre elles sont basées sur l’enveloppe complexe
(amplitude et phase) des signaux, de sorte que de simples correcteurs PI peuvent être utilisés
pour réguler indépendamment l’amplitude et la phase des oscillations le long de chaque axe.
Pour extraire l’enveloppe complexe des signaux oscillants, des éléments non linéaires sont
introduits dans les boucles de commande. De plus, les couplages entre les modes drive et
sense, ainsi que la dépendance aux conditions environnementales, ne sont pas pris en compte.
Les méthodes associées ne fournissent pas de garanties de stabilité ou de performance pour
le système en boucle fermée.

Une autre approche consiste à considérer l’architecture classique de rétroaction, appelée
architecture de commande directe, basée sur les signaux eux-mêmes plutôt que sur leur
enveloppe complexe. Pour cette architecture, des techniques d’automatique avancée ont été
développées pour le contrôle des vibrations des systèmes mécaniques. L’intérêt potentiel est
de prendre en compte explicitement les différents couplages et la dépendance aux conditions
environnementales, avec des garanties formelles de stabilité et de performance. Néanmoins,
leur applicabilité aux gyromètres MEMS, y compris leur implémentation, reste une question
ouverte. Une raison possible est la complexité inhérente des correcteurs.

Dans cette thèse, nous avons pour objectif de proposer des méthodes de conception pour les
deux architectures de commande, garantissant la stabilité et un certain niveau de performance
pour le gyromètre MEMS, et de valider expérimentalement les correcteurs obtenus.
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Dans la première partie, nous révisons la littérature sur les gyromètres MEMS et définissons
les indicateurs clés de performance du capteur, qui ne sont généralement pas liés aux spécifi-
cations de performance en boucle fermée. Ensuite, en utilisant une approche entrée-sortie,
nous établissons les relations entre les indicateurs de performance et le comportement en
boucle fermée. Ces relations sont un outil précieux pour la conception de la commande et
constituent la première contribution de cette thèse. Sur la base de ces relations, nous pro-
posons ensuite des méthodes de conception pour l’architecture de commande directe. Tout
d’abord, nous considérons le cas où le gyromètre MEMS fonctionne avec une condition de
fonctionnement fixe et une fréquence d’excitation qui est fixée à la fréquence de résonance du
mode drive. Dans ce contexte, les objectifs de contrôle incluent la poursuite d’un signal sinu-
soïdal et la synthèseH∞ standard est appliquée pour la conception du correcteur. Cependant,
la fréquence d’excitation peut varier dans le temps. L’objectif de la commande est alors de
suivre un signal “sinusoïdal à fréquence variable”. Nous révélons que ce problème particulier
peut être formulé comme un critère L2 pondéré avec une nouvelle classe de fonctions de
pondération modélisant les signaux “sinusoïdaux à fréquence variable”.

Nous revisitons ensuite la théorie des enveloppes complexes, ce qui nous permet de définir
un cadre formel pour l’analyse des architectures de commande basées sur l’enveloppe. Si
l’enveloppe complexe est idéalement mesurée en temps réel, nous établissons des liens entre
l’approche de commande directe et celle basée sur l’enveloppe. Ces liens révèlent que les
performances obtenues avec les deux stratégies sont équivalentes. Lorsque l’enveloppe
du signal ne peut pas être idéalement mesurée, le même cadre nous permet de modéliser
précisément les non-idéalités et de concevoir des correcteurs avec des garanties formelles de
stabilité. Ces résultats constituent également une contribution importante de cette thèse.

La dernière partie est consacrée à la conception des correcteurs en vue de leur implémentation
numérique sur deux plateformes : une plateforme flexible, qui permet d’implémenter des ar-
chitectures de commande complexes, et une plateforme conçue pour le Σ∆ électromécanique,
qui est une architecture de commande particulière. Pour les deux plateformes, les résultats
pratiques valident les méthodes proposées.
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Resumo

Fabrício SAGGIN

Robust Control for MEMS Gyroscopes

Os giroscópios MEMS (do inglês, micro-electro-mechanical system) são dispositivos micro-
maquinados usados para medir a velocidade angular de objetos. Eles são onipresentes
em muitas aplicações graças a seu baixo custo, baixo consumo de energia e facilidade de
integração em dispositivos eletrônicos. Entretanto, quando comparados aos giroscópios tradi-
cionais, os giroscópios MEMS têm desempenho degradado. Para melhorar seu desempenho,
malhas de controle são amplamente utilizados.

Os giroscópios MEMS são compostos de dois modos de vibração perpendiculares: o modo
de atuação e o modo de detecção. O princípio de funcionamento é baseado na transferência
de energia entre esses modos causada pela força de Coriolis, que é proporcional à velocidade
angular. Então, controlando as oscilações do modo de atuação com uma frequência de
excitação e estimando a força de Coriolis, a velocidade angular pode ser calculada. Além
disso, quanto melhor forem controladas as oscilações do modo de atuação e estimada a força
de Coriolis, melhor será a medida.

As arquiteturas de controle são normalmente otimizadas em termos de custo e simples im-
plementação. A maioria delas é baseada no envelope complexo (amplitude e fase) dos sinais,
de modo que simples controladores PI podem ser usados para regular independentemente a
amplitude e fase das oscilações em cada eixo. Para extrair o envelope complexo dos sinais
oscilantes, são introduzidos elementos não lineares nas malhas de controle. Além disso,
não são levados em conta os acoplamentos entre os modos de atuação e de detecção, nem a
dependência nas condições do ambiente. Os métodos associados não oferecem garantias de
estabilidade ou desempenho para o sistema em malha fechada.

Uma abordagem alternativa é considerar a arquitetura clássica de controle, chamada de
arquitetura de controle direto, baseada nos próprios sinais em vez de seu envelope complexo.
Para esta arquitetura, foram desenvolvidas técnicas avançadas de controle para o controle
de vibração de sistemas mecânicos. O interesse potencial é levar em conta explicitamente
os diferentes acoplamentos e a dependência nas condições do ambiente, com garantias
formais de estabilidade e desempenho. No entanto, sua aplicabilidade aos giroscópios
MEMS, incluindo a implementabilidade, ainda é uma questão em aberto. Uma razão possível
é a complexidade inerente dos controladores.

Nesta tese, propomos métodos de sintonia de controladores para ambas arquiteturas, garan-
tindo estabilidade e um certo nível de desempenho para o giroscópio MEMS, e validamos
experimentalmente os controladores obtidos.

Na primeira parte, revisamos a literatura sobre os giroscópios MEMS e definimos os prin-
cipais indicadores de desempenho do sensor, que normalmente não estão associados às
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especificações de desempenho em malha fechada. Depois, usando uma abordagem entrada-
saída, estabelecemos as relações entre os indicadores de desempenho e o comportamento
do sistema em malha fechada. Estas relações são uma ferramenta valiosa para o projeto de
controle e constituem a primeira contribuição desta tese. Com base nestas relações, propomos
métodos de projeto para a arquitetura de controle direto. Primeiro, consideramos o caso em
que o giroscópio MEMS trabalha com uma condição de operação fixa e uma freqüência de
excitação definida pela frequência de ressonância do modo de atuação. Neste contexto, os
objetivos de controle incluem o seguimento de um sinal sinusoidal e a sínteseH∞ é aplicada
para o projeto do controlador. A frequência de excitação, entretanto, pode variar ao longo do
tempo. Um objetivo de controle é então rastrear um sinal “sinusoidal de frequência variável”.
Revelamos que este problema particular pode ser formulado como um critério L2 ponderado
com uma nova classe de funções de ponderação modelando sinais “sinusoidais de freqüência
variável”.

Revisitamos então a teoria dos envelopes complexos, o que nos permite definir uma base
formal para a análise das arquiteturas de controle baseadas em envelopes. Se o envelope
complexo for medido idealmente em tempo real, estabelecemos ligações entre a abordagem
de controle direto e a abordagem baseada em envelopes. Estas ligações revelam que os
desempenhos alcançados com ambas as estratégias são equivalentes. Quando o envelope
de sinal não pode ser medido idealmente, a mesma base nos permite modelar com precisão
as não idealidades e projetar controladores com garantias formais de estabilidade. Estes
resultados também são uma contribuição importante desta tese.

A última parte é dedicada ao projeto do controlador para sua implementação digital em duas
plataformas: uma flexível, que pode implementar arquiteturas de controle complexas; e uma
plataforma projetada para o chamado Σ∆ eletromecânico, que é uma arquitetura de controle
bastante particular. Para ambas as plataformas, os resultados práticos validam os métodos
propostos.



ix

Contents

Contents ix

List of Abbreviations xiii

Notation xv

List of Symbols xvii

1 General Introduction 1
1.1 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Project Next4MEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 List of Publications and Collaborations . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Organization of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 MEMS Gyroscopes and the Control Challenges 11
2.1 A Background on MEMS Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Working Principle: a Foucault Pendulum in a Chip . . . . . . . . . . . 12
2.1.2 Ideal MEMS Gyroscope and Closed-Loop Operation . . . . . . . . . . 14
2.1.3 Actuation and Instrumentation . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Ideal Synchronous Demodulation and Angular Rate Estimation . . . . 23
2.1.5 Real (Nonideal) MEMS Gyroscopes . . . . . . . . . . . . . . . . . . . . 27
2.1.6 Global Performance Indicators of MEMS Gyroscopes . . . . . . . . . . 36

2.2 Control Architectures in the Literature . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Drive-Mode Control Architectures . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Sense-Mode Control Architectures . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Multivariable Control Architectures . . . . . . . . . . . . . . . . . . . . 47
2.2.4 Summary of the Control Architectures . . . . . . . . . . . . . . . . . . . 48

2.3 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 AS3125-SDK: a Flexible Sensor Development Kit . . . . . . . . . . . . . 51
2.3.2 Tronics’ Platform with Dedicated ASIC . . . . . . . . . . . . . . . . . . 52

2.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 From Global Performance Specifications to Closed-Loop Specifications 55
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 System Description and Control Objectives . . . . . . . . . . . . . . . . 56
3.1.2 Analysis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.3 Analysis Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Analysis of the Angular Rate Estimate Ω̂z . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Noiseless Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Analysis with Respect to the Noise . . . . . . . . . . . . . . . . . . . . . 64



x

3.3 Closed-loop Specifications for Nominal Performance . . . . . . . . . . . . . . 64
3.3.1 Closed-Loop Specifications for Conventional Closed-loop Operation . 65
3.3.2 Closed-Loop Specifications for SFNL . . . . . . . . . . . . . . . . . . . 68
3.3.3 Closed-Loop Specifications for Bandwidth . . . . . . . . . . . . . . . . 69
3.3.4 Closed-Loop Specifications Related to Noise . . . . . . . . . . . . . . . 70

3.4 Closed-loop Specifications for Robust Stability . . . . . . . . . . . . . . . . . . 71
3.4.1 Weighted Small Gain Theorem . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Robust Stability Against Additive Uncertainties . . . . . . . . . . . . . 72

3.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Direct Control I: A Robust Approach 75
4.1 H∞ Synthesis: Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 StandardH∞ Control Problem . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Defining anH∞ Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Solving the StandardH∞ Control Problem . . . . . . . . . . . . . . . . 81
4.1.4 H∞ Synthesis: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 SISO Control Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Drive-Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Sense-Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 MIMO Control Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 MIMO 2DoF Control Architecture . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 MIMO 2DoF Control Architecture with Joint Estimation . . . . . . . . 103

4.4 Validation of the Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.1 Assessing the Stability of the Closed-Loop System . . . . . . . . . . . . 110
4.4.2 Validation Through Simulation . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Direct Control II: Toward a Time-Varying Solution 117
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Main Result: L2 Criterion and LTV Weighting Functions . . . . . . . . . . . . 122

5.2.1 The L2 Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.2 A New Class of LTV Weighting Functions . . . . . . . . . . . . . . . . . 124
5.2.3 LPV Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Solving the LPV Control Problem: a Polytopic Approach . . . . . . . . . . . . 129
5.3.1 Some Definitions in the LPV Framework . . . . . . . . . . . . . . . . . 130
5.3.2 The Standard LPV Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.3 Solution to Problem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Numerical Results and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5 Summary and Conclusions of the Chapter . . . . . . . . . . . . . . . . . . . . . 139

6 Envelope-Based Control: Bringing the Dynamics to Low Frequency 141
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 System Modeling Through Dynamic Phasors . . . . . . . . . . . . . . . . . . . 145

6.2.1 Dynamic Phasor Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.2 Properties of the Dynamic Phasor Model . . . . . . . . . . . . . . . . . 149

6.3 Dynamic Phasor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.1 Connections Between Direct Control and Dynamic Phasor Control . . 157

6.4 Implementation of the Operators s2c and s2p . . . . . . . . . . . . . . . . . . . 159
6.4.1 Uniqueness Between a Modulated Signal and its Dynamic Phasor . . . 160
6.4.2 Computing the Analytic Signal Associated to y . . . . . . . . . . . . . . 161



xi

6.4.3 Equivalence Between Synchronous Demodulation and Hilbert Transform162
6.4.4 Modeling the Nonideal Synchronous Demodulation . . . . . . . . . . 165
6.4.5 On the Synchronous Demodulation with Time-Varying Frequency . . 166

6.5 Dynamic Phasor Control with Nonideal Operator s2c . . . . . . . . . . . . . . 167
6.6 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Digital Implementation of the Direct Control Architecture 175
7.1 System Description and Problem Statement . . . . . . . . . . . . . . . . . . . . 176
7.2 Modeling the System and Dealing with its Nonidealities . . . . . . . . . . . . 178

7.2.1 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2.2 Electrical Coupling Compensation . . . . . . . . . . . . . . . . . . . . . 178
7.2.3 Dealing with the Input Nonlinearity . . . . . . . . . . . . . . . . . . . . 179

7.3 Continuous-Time Design of a Discrete-Time Controller . . . . . . . . . . . . . 181
7.4 Design of a Parameter-DependentH∞ Controller . . . . . . . . . . . . . . . . . 183

7.4.1 Parameter-Dependent Control Design Problem . . . . . . . . . . . . . 184
7.4.2 Solution in Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . 185
7.4.3 Solution for Discrete-Time Implementation . . . . . . . . . . . . . . . . 186

7.5 Implementation Results on the Asygn’s Platform . . . . . . . . . . . . . . . . . 189
7.5.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.5.2 Validation of the Closed-Loop Performance Specifications . . . . . . . 190
7.5.3 Tests on a Rotating Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.6 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8 EM-Σ∆ Architecture: A Case Study 197
8.1 EM-Σ∆ Architecture and Control Problem . . . . . . . . . . . . . . . . . . . . . 199
8.2 H∞ Synthesis for the EM-Σ∆ Architecture . . . . . . . . . . . . . . . . . . . . . 201

8.2.1 AnH∞ Criterion for the EM-Σ∆ Architecture . . . . . . . . . . . . . . . 201
8.2.2 A Solution to the Unconstrained Case . . . . . . . . . . . . . . . . . . . 204
8.2.3 A Solution to the Constrained Case . . . . . . . . . . . . . . . . . . . . 205

8.3 H∞ Synthesis for a Constrained EM-Σ∆ Controller . . . . . . . . . . . . . . . . 206
8.3.1 Rewriting the EM-Σ∆ Architecture in the General Form . . . . . . . . . 206
8.3.2 Defining the Generalized Plant P̃ and the Subset K . . . . . . . . . . . 207
8.3.3 Weighting Functions and Controller Design . . . . . . . . . . . . . . . 208

8.4 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.4.1 Measures at Rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.4.2 Global Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . 211

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9 Conclusions and Perspectives 213
9.1 Summary of Results and Contributions . . . . . . . . . . . . . . . . . . . . . . 213
9.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.2.1 Immediate or Short-Term Perspectives . . . . . . . . . . . . . . . . . . . 215
9.2.2 Medium to Long-Term Perspectives . . . . . . . . . . . . . . . . . . . . 216

References 217

A Appendix of Chapter 2 227
A.1 Frequency-Domain Analysis of the Synchronous Demodulations . . . . . . . 227
A.2 On the Mechanical Model of the MEMS Gyroscope with Endogenous Forces . 228

B Appendix of Chapter 3 231



xii

B.1 Noiseless Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
B.1.1 Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
B.1.2 Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
B.1.3 Applying the Synchronous Demodulation . . . . . . . . . . . . . . . . 233
B.1.4 Compensating for the Scale Factor and Bias . . . . . . . . . . . . . . . . 235
B.1.5 Analysis of the SFNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
B.1.6 Analysis of the Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 237

B.2 Analysis with Respect to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

C Appendix of Chapter 4 239
C.1 Families of Weighting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 239

C.1.1 Amplification Weighting Function . . . . . . . . . . . . . . . . . . . . . 239
C.1.2 Attenuation Weighting Function . . . . . . . . . . . . . . . . . . . . . . 239

C.2 Numerical Values of Example 4.2 – 1DoF Control of the Drive Mode . . . . . 240
C.3 Numerical Values of Example 4.3 – 2DoF Control of the Drive Mode . . . . . 241
C.4 Numerical Values of Example 4.4 – 1DoF Control of the Sense Mode . . . . . 241
C.5 Numerical Values of Example 4.5 – Multivariable Control (with ûCor,y = −uy) 242
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Chapter 1

General Introduction

1.1 Context and Motivations

For the last years, micro-electro-mechanical (MEMS) inertial sensors have become ubiquitous
(but usually unnoticed) in our daily life. Indeed, most of the smart phones are equipped
with accelerometers and gyroscopes, which are very useful for image stabilization, health
monitoring (e.g., pedometers), navigation, gaming, etc. Actually, the field of application
of MEMS inertial sensors is much wider. They are also found in drones and autonomous
vehicles, in automotive safety systems (e.g., airbags, electronic stability control, roll-over
detection and prevention), in consumer electronics (e.g., gaming systems, wearables, white
goods), in guidance and navigation systems, in numerous industrial applications, in medical
devices, and so on [AS09, Kem11, Sha13]. To illustrate their relevance in the modern society,
in 2019, MEMS inertial sensors1 represented a US$ 3.19 billion market; and despite the
COVID-19 pandemics and the economic crisis, this market is still expected to grow about
10% by 2025 [Yol20].

Inertial sensors make use of the effects of inertial forces to determine the dynamic com-
portment of objects. They can be classified as accelerometers if they are sensitive to linear
inertial forces or as gyroscopes if they are sensitive to rotational inertial forces [Kem11].
Accelerometers measure the linear acceleration2 of objects. On the other hand, gyroscopes
measure the angular rate and/or orientation of objects. In this thesis, we focus our attention
on the gyroscopes.

We can classify the gyroscopes into three main categories, depending on their working prin-
ciple: rotary, optical and vibratory. Rotary gyroscopes represent the conventional mechanical
gyroscopes, whose working principle relies on the gyroscopic effect of a spinning mass.
Although this type of gyroscope presents an impressive accuracy, they are cumbersome
and expensive. Nowadays, rotary gyroscopes are mainly represented by the dynamically
tuned gyroscopes (DTG) [Apo16]. The optical gyroscopes take profit of the Sagnac effect to
measure the angular rate (see, e.g., [PCV+17] for further details on this technology). The main
examples of this category are the fiber-optic gyroscope (FOG) and the ring-laser gyroscope
(RLG). Optical gyroscopes are also very accurate and have the advantage to have no moving
parts. However, they are also cumbersome and expensive.

Finally, we have the vibratory gyroscopes, which are also mechanical. Nevertheless, in con-
trast to the rotary ones, they do not have any rotating element. Indeed, vibratory gyroscopes
rely on the oscillations/vibrations of a proof mass and on the so-called Coriolis force. For

1Gyroscopes, accelerometers and inertial combos.
2As consequence, we can also determine the velocity and displacement, vibration, shocks or tilt (inclination).
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FIGURE 1.1: Picture of a commercial GYPRO® MEMS gyroscope exposing its
internal components: the micro-electro-mechanical part of the sensor at left,
and the electronic part (ASIC) at right. Source: www.electronics-lab.com/

gypro-high-performance-mems-gyroscopes.

FIGURE 1.2: Price versus accuracy of different gyroscope technologies.
Adapted from [LM14].

this reason, they are also known as Coriolis vibrating gyroscopes (CVG). Since the CVGs
do not have rotating parts, they can be easily miniaturized through MEMS manufacturing
techniques [AS09, Kem11, PCV+17]. Other types of CVG exist (see, e.g., [Apo16]), however,
in this thesis, we focus on the MEMS (Coriolis vibrating) gyroscopes.

MEMS gyroscopes have numerous advantages over other types of gyroscopes. They are
much smaller (see Figure 1.1), cheaper, they consume much less energy and can be easily
integrated into electronic devices. Nevertheless, because of their reduced size, MEMS devices
are highly sensitive to fabrication imperfections, to environmental changes (e.g., temperature,
pressure) and to different sources of noise, what can quickly degrade their performance.
For instance, in Figure 1.2, we present a comparison of price versus accuracy of different
technologies, based on [LM14]. Thus, motivated by their low cost, a lot of effort has been put
into enhancing the performance of MEMS gyroscopes, making them competitive with other
technologies.

In this context, the project Next4MEMS was created with the main objective of developing
a new generation of high-performance MEMS inertial sensor, enhancing the competitive-
ness of the French industry in the sector. This 20 Me project was launched in 2016 and
is supported by BPI France (the French bank for public investment) within the Projets de
Recherche et Développement Structurants pour la Compétitivité (PSCS) funding scheme [Lab17].

www.electronics-lab.com/gypro-high-performance-mems-gyroscopes
www.electronics-lab.com/gypro-high-performance-mems-gyroscopes
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The consortium is composed by the French leaders of the inertial sensor industry and two
French research laboratories. This thesis is part of the project Next4MEMS and has a close
collaboration with some of the industrial partners. Further details on this project will be
given in Section 1.3.

As mentioned earlier, MEMS gyroscopes rely on Coriolis forces to measure the angular
rate. The Coriolis forces are inertial forces that act on moving objects within a rotating
reference frame. The gyroscope itself defines this reference frame. It is composed of a proof
mass that is attached to the sensor by springs, which allow the mass to move along two
perpendicular directions: the primary or drive direction, and the secondary or sense one.
Micro actuators apply a force Fx on the proof mass, putting it into movement along the
primary direction. Then, if the reference frame (gyroscope) is subjected to an angular rate Ωz,
which is orthogonal to the primary and secondary directions, a Coriolis force appears and
produces oscillations along the secondary direction. This Coriolis force is given by

FCor,y(t) = −2mΩz(t)ẋ(t), (1.1)

where m is the mass of the moving object and x corresponds to its position along the primary
axis. Now, if the proof mass describes a simple harmonic oscillation along the drive direction,
x can be described by

x(t) = Ax sin (ωexct) (1.2)

with amplitude Ax and a given frequency ωexc, which is referred to as excitation frequency.
This frequency has to be as close as possible to the resonance frequency of the spring-mass
system along the primary direction, minimizing the required effort to put the proof mass
into oscillation. Moreover, if Ax is equal to a given reference amplitude Are f

x , (1.1) can be
rewritten as

FCor,y(t) = −2mAre f
x ωexcΩz(t) · cos (ωexct) . (1.3)

In this case, FCor,y is an amplitude-modulated signal with carrier frequency ωexc and ampli-
tude proportional to Ωz. Therefore, Ωz can be obtained by estimating and demodulating
FCor,y. One way to estimate FCor,y is by applying a force Fy that counteracts the effects of FCor,y,
compensating for the oscillations in the secondary direction. In this case, the estimation of
FCor,y becomes a disturbance rejection problem.

The performance of MEMS gyroscopes depends on how well controlled the primary oscilla-
tions are (ideally, Ax = Are f

x ) and how well the Coriolis force FCor,y is estimated. Obviously, if
there are no disturbances and the dynamic model of the MEMS gyroscope is perfectly know,
the first goal can be achieved by inverting the model and applying the force Fx such that x
tracks a reference signal

xre f (t) = Are f
x sin (ωexct) ; (1.4)

and the second goal is achieved by measuring the secondary oscillations and computing FCor,y
that produces these oscillations. However, MEMS devices are highly sensitive to fabrication
imperfections and to environmental changes. Therefore, to produce high-performance
gyroscopes, the use of control loops is crucial [GBKN91, OAL+05, Zur15]. The main objective
of these control loops is hence to ensure that the primary oscillations have a controlled
amplitude and that the Coriolis force is precisely estimated. After obtaining the Coriolis force
estimate, a post-processing stage is needed to recover the angular rate.

The entire MEMS gyroscope has two parts: the micro-electro-mechanical part and the elec-
tronic one. The former one corresponds to the MEMS itself, which constitutes the sensitive
element of the sensor. For the sake of simplicity, we will refer to this part simply as mechanical
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part. The electronic part is usually implemented in an application-specific integrated circuit
(ASIC), which is usually mounted together with the MEMS in the same package, as shown in
Figure 1.1. The ASIC has two main purposes: control the oscillations of the proof mass and
estimate FCor,y; and process the estimate of FCor,y, providing the angular rate measure.

The mechanical part of the MEMS gyroscope can be modeled as two high quality-factor (very
underdamped) resonators: one corresponding to the spring-mass system in the primary
direction, and another corresponding to the spring-mass system in the secondary direction.
These systems are respectively referred to as primary or drive mode and secondary or
sense mode. In the ideal case, these two modes are only coupled by the Coriolis forces.
Nevertheless, it is important to stress that a minor misalignment between the primary and
secondary axes is enough to produce a mechanical coupling between drive and sense modes.

In the MEMS literature, the control architectures are usually based on the complex envelope
(i.e., amplitude and phase or direct and quadrature terms) of the oscillating signals. Since
these envelopes are constant signal in steady state (while the oscillating signals are sinusoidal),
simple PI or PID controllers can be employed to regulate, for instance, the amplitude and the
phase of the oscillating signals [EMK12]. This solution has been widely used since the first
MEMS gyroscope, presented in 1991 [GBKN91]. Indeed, the control architecture adopted
nowadays in the commercial products of Zurich Instruments, see [Zur15], is basically the
same as the one proposed by Lynch in 1998 [IEE04, Annex B], which is quite similar to the
one presented in [GBKN91]. This fact points to the strength and acceptability of this control
architecture in the MEMS industry. The drawback of the envelope-based architectures is that,
in general, to measure the signal envelope, nonlinear elements have to be introduced in the
control loop. Moreover, the dynamical couplings between amplitude and phase (or direct and
quadrature terms), the couplings between the drive and sense modes, and the dependence on
environmental conditions can be very hard to model and to take into account. Therefore, it is
hard to provide, a priori, guarantees of stability and performance for the closed-loop system.

An alternative approach is to consider the classical feedback control architecture, which we
refer to as direct control architecture, where the controller works directly with the harmonic
signals instead of their complex envelope. For this architecture, advanced control techniques
have been developed for vibration control of mechanical systems, see e.g., [Wan19]. The
potential interest is to explicitly take into account the different couplings and the dependence
on the environmental condition, with formal guarantees of stability and performance. Never-
theless, their applicability to MEMS gyroscopes, including implementability, is still an open
question. A possible reason is the inherent complexity of the controllers. Furthermore, in
contrast to the design of PID controllers, which MEMS engineers are familiar to, the design
of advanced controllers usually require an expertise in advanced control theory. This aspect
might constitute an obstacle to the introduction of novel control strategies in the industry.
Thus, an additional effort of making advanced control techniques more accessible is required.

1.2 Scope and Contributions

In this thesis, we aim to propose design methods for direct and envelope-based control archi-
tectures, and to experimentally validate the obtained controllers with real MEMS gyroscopes.
The methods are expected to provide guarantees of stability and a certain performance level
for the sensor. To achieve this purpose, we have to tackle four main problems, as follows.

The performance indicators of MEMS gyroscopes are related to the quality of the measure,
they are not directly linked to the closed-loop behavior. Indeed, there is a post-processing
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stage that uses the Coriolis force estimate to deduce the angular rate. Then, the first problem
is: how to relate the global performance specifications to specifications for the closed-loop system? To
answer this questions, we review the literature on MEMS gyroscopes and define the key
performance indicators of the sensor. Then, by using an input-output approach, we establish
the relationships between the performance indicators and the closed-loop behavior. These
relationships are a valuable tool for the control design and constitute the first contribution of
this thesis.

Based on these relationships, the problem is now: how to design a controller for the direct
control architecture? First, we consider the case where the MEMS gyroscope works with a
fixed operating condition and the excitation frequency ωexc corresponds to the drive-mode
resonance one. In this context, the control objectives include the tracking and rejection of
sinusoidal signals, and the standardH∞ synthesis is applied for the controller design. The
excitation frequency, however, may vary over time. Therefore, the control objectives of
tracking/rejecting sinusoidal signals become the tracking/rejection of frequency-modulated
signals, that is, the reference signal of (1.4) becomes a “time-varying-frequency sinusoidal”
signal of the type

xre f
m (t) = Are f

x,m sin (φexc(t)) with φexc(t) =
∫ t

0
ωexc(τ)dτ + φ0

exc, (1.5)

where ωexc(t) ranges arbitrarily in the interval [ωexc,1, ωexc,2] and φ0
exc ∈ R. We reveal that

this particular problem can be formulated as a weighted L2 criterion with a new class of
weighting functions modeling the frequency-modulated signals. This result constitutes a
second important contribution of the thesis.

In a third part, we consider the question: how to design a controller for an envelope-based control
architecture such that guarantees of stability and performance can be given? To cope with this
problem, we revisit the theory of complex envelopes, which allows us to define a formal
framework for the analysis of the envelope-based control architectures. If the complex
envelope is ideally measured in real time, we establish links between the direct control
approach and the envelope-based ones. These links reveal that the performances achieved
with both strategies are equivalent. When the signal envelope cannot be ideally measured,
the same framework allows us to precisely model the nonidealities and to design controllers
formally guaranteeing, at least, the stability of the closed-loop system. These results are also
an important contribution of this thesis.

In the last part, the problem is: how to properly design a controller for digital implementation? Two
cases are treated here. First, we consider a flexible platform developed by Asygn, which can
implement complex control architectures, allowing to validate in practice different control
strategies. The seconds case consists of a dedicated platform designed with the so-called
electro-mechanical Σ∆ (EM-Σ∆), which is a particular control architecture that can be easily
implemented in ASICs for MEMS gyroscopes. For both platforms, the practical results
validate the proposed methods.

What is not treated in this thesis

Other aspects are also relevant, but are beyond the scope of this thesis.

Although the understanding of the working principles of the MEMS gyroscope is necessary
for the controller design, the technological details concerning the design and fabrication of
MEMS gyroscopes are not discussed in this document. Similarly, the design of the electronic
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circuits and hardware needed for the implementation of the control loops, are also beyond
the scope of this thesis.

In general, when designing a control system, three main stages are considered: (i) the mod-
eling/identification of the to-be-controlled system, (ii) the controller design, and (iii) the
analysis and performance validation of the closed-loop system. Along this document, we
touch some basic aspects related to the modeling/identification, and analysis and perfor-
mance validation in the MEMS gyroscope context. However, these subjects are treated with
more details in other thesis within the scope of the same project, see [Col20, AC21].

Further than the closed-loop ensuring the proper operation of a MEMS gyroscope, external
control loops or additional algorithms can also be used to estimate the drive-mode resonance
frequency, as in [Mor21]; to compensate for mechanical couplings (see, e.g., [Zur15]); or to
change the behavior of the MEMS device (see, e.g., [AOPB09]). For some results of this thesis,
we consider that the drive-mode resonance frequency is known via the strategies of [Mor21],
without presenting any fundamental details. Other external control loops are not considered
in this work.

1.3 Project Next4MEMS

This thesis is within the scope of the project Next4MEMS, whose main objective is to develop
a new generation of high-performance MEMS gyroscopes. Due to the complexity of the
domain, the consortium is composed by French leaders of the inertial sensors industry –
Tronics Microsystems, iXblue, Asygn –, and two French laboratories – Ampère and ONERA.
ONERA and iXblue contribute with their expertise in the use of MEMS gyroscopes in
high-performance applications. Tronics Microsystems and Asygn develop, respectively, the
electro-mechanical part and the electronic circuits that compose the MEMS gyroscope. Finally,
the laboratory Ampère collaborate with an expertise in Control Theory and its applications.

Within the scope of the same project, four theses were concomitantly developed at the labo-
ratory Ampère, approaching the different facets of Control Theory in the MEMS gyroscope
context. Further than the present thesis, the other three thesis are briefly described below.

• “Data informativity for the prediction error identification of MIMO systems: identifica-
tion of a MEMS gyroscope” by Kévin Colin [Col20], who proposes a systematic method
for modeling and identifying the MEMS gyroscope. This method is based on the Pre-
diction Error identification framework [Lju98], which, based on input and output data
obtained through experiments, provides a model of the system. The main advantage
of this framework is that, further than providing the system model, it also provides
validation tools and uncertainty bounds, such that, with a certain (high) probability, we
are sure that the obtained model is close enough to the real one. The model obtained
through this method is used in the present thesis.

• “Performance validation of MEMS sensors using nonlinear uncertain models” by
Jorge Ivan Ayala Cuevas [AC21], who proposes a computationally efficient method
for the performance validation and stability analysis of the closed-loop system. This
method adopts the µ-analysis [ZDG96] and integral quadratic constraints (IQC) [MR97]
frameworks. Then, based on the model and uncertainties estimated by the method
of [Col20] and on the controller design proposed in the present thesis, the method of
[AC21] provide a worst-case estimation of the sensor performance. Moreover, it also
indicates how the model accuracy and/or the controller design have to be improved to
achieve a desired performance level.
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• “Optimal identification experiment design: contributions to its robustification and to its
use for dynamic network identification. Resonance Frequency Tracking” by Federico
Morelli [Mor21]. The variation of the drive-mode resonance frequency is one of the ma-
jor problems for MEMS gyroscopes. Therefore, [Mor21] proposes different techniques
to track the variations of the drive-mode resonance frequency in real time. They are
based on the Extremum-Seeking approach [ZO12] and Recursive identification [Lju98].
In some approaches proposed in the present thesis, the estimated resonance frequency
is used to adapt the reference signal as well as the controller parameters.

Other works were also developed within the scope of the project Next4MEMS. A first
bibliographic study on MEMS gyroscopes and traditional control architectures was realized
by Roman Bohoslavets and Thomas Dehaeze within the scope of their undergraduate thesis
at the beginning of the project, in 2017.

Later, and with the supervision of the author, other undergraduate thesis were also realized. A
detailed study on the EM-Σ∆ architecture of the Tronics’ dedicated platform (see Section 2.3.2)
was realized by Eva Markiewicz and allowed the development of a suited control design
method (see Chapter 8). Thibault Vergez implemented, in a real MEMS gyroscope, a phasor-
based controller, confirming some results of Chapter 6. Cécile Pernin set up a rotating table,
proposed a test protocol and performed batteries of tests with the (flexible) Asygn’s platform
(see 2.3.1), refining the identification and control design methods, and contributing to the
practical results presented in Chapter 7.

Moreovoer, two research assistants/engineers also participated in the project and had the
supervision/collaboration of the author. Anthony El Hajj realized practical tests with the
EM-Σ∆ design method proposed in Chapter 8 and applied the same method to the design
of the EM-Σ∆ architecture of MEMS accelerometers. At the time of writing, Cécile Pernin
works on the implementation of traditional control architectures in the Asygn’s platform.

Finally, at the time of writing, Sarah Schimidt and Florian Coissac start their internship
also with the supervision of the author. Sarah works toward the validation of the proposed
EM-Σ∆ design method for MEMS accelerometers. Florian also works on the implementation
of the traditional control architectures in the Asygn’s platform.

1.4 List of Publications and Collaborations

Conference Papers:

(i) K. Colin, F. Saggin, C. Le Blanc, X. Bombois, A. Korniienko, G. Scorletti. “Identification-
Based Approach for Electrical Coupling Compensation in a MEMS Gyroscope”, IEEE
International Symposium on Inertial Sensors and Systems Proceedings, 2019 (Ref.
[CSL+19]).

(ii) J. Ayala-Cuevas, F. Saggin, G. Scorletti, A. Korniienko. “Stability Analysis of Time-
Varying Systems with Harmonic Oscillations Using IQC Frequency Domain Multipli-
ers”, IEEE Conference on Decision and Control (CDC), 2019 (Ref. [ACSKS19]).

(iii) F. Saggin, G. Scorletti, A. Korniienko. “A Novel Phasor Control Design Method: Appli-
cation to MEMS Gyroscopes”, American Control Conference (ACC), 2020 (Ref. [SSK20]).

(iv) F. Saggin, J. Ayala-Cuevas, A. Korniienko, G. Scorletti. “Parameter-Dependent H∞
Control for MEMS Gyroscopes: Synthesis and Analysis”, IFAC World Conference, 2020
(Ref. [SACKS20]).
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(v) F. Saggin, A. Korniienko, G. Papin, E. Markiewicz, Y. David, A. El Hajj, G. Scorletti.
“H-infinity Design of an EM-Σ∆ Feedback for MEMS Gyroscopes”, DGON Inertial
Sensors and Systems (ISS), 2020 (Ref. [SKP+20]).

(vi) F. Saggin, C. Pernin, A. Korniienko, G. Scorletti, C. Le Blanc. “Digital Control of MEMS
Gyroscopes: a Robust Approach”, IEEE International Symposium on Inertial Sensors
and Systems Proceedings, 2021 (Ref. [SPK+21]).

Project Reports and Softwares:

(i) F. Saggin, K. Colin, J. Ayala-Cuevas, F. Morelli, A. Korniienko, G. Scorletti, X. Bombois.
“Livrable 2.4 : Développement de Méthodes pour la Conception”, 2018 (Confidential).

(ii) F. Saggin, K. Colin, J. Ayala-Cuevas, F. Morelli, E. Markiewicz, A. Korniienko, G.
Scorletti, X. Bombois, A. El Hajj. “Livrable 2.6 Résultats Expérimentaux d’Application
des Algorithmes de Conception sur la Plate-forme Considérée (Tronics/TDK)”, 2020
(Confidential).

(iii) F. Saggin, A. Korniienko, A. El Hajj, G. Scorletti. “Software Hinf_EMSD”, 2020. Software
for the design of the EM-Σ∆ parameters for a MEMS gyroscope.

Journal Papers (in preparation):

(i) F. Saggin, G. Scorletti, A. Korniienko. “Tracking and Rejection of Signals with Time-
Varying Frequency: a Suited Weighted L2 Criterion”.

(ii) F. Saggin, J. Ayala-Cuevas, A. Korniienko, G. Scorletti. “Phasor Control in a Variable-
Frequency Framework”.

(iii) F. Saggin, A. Korniienko, A. El Hajj, G. Scorletti. “H-infinity Design of EM-Σ∆ Feed-
backs: a Unified Approach for MEMS Accelerometers and Gyroscopes”.

(iv) J. Ayala-Cuevas, G. Scorletti, A. Korniienko, A. Perodou, F. Saggin. “A Frequency Do-
main Integral Quadratic Constraints Approach for Robustness Analysis of Continuous
Harmonically Time-Varying Systems”.

1.5 Organization of this Document

The remaining of this thesis is organized as follows.

Chapter 2 First, we give a background on MEMS gyroscopes. We start by presenting the
working principles and the operation of an ideal MEMS gyroscope. Then, step-by-step,
we introduce the nonidealities that are present in a real gyroscope and analyze how these
nonidealities affect the measure of the angular rate. This analysis allows us to present the main
performance indicators. Following this, we review the main control architectures reported
in the literature, pointing to the strengths and limitations of each one. Then, we present
the experimental setups in which the proposed solutions are to be implemented. All these
ingredients are then used to formulate the research questions that guide the development of
this thesis.

Chapter 3 Having presented all the blocks constituting a MEMS gyroscope as well as the
main performance indicators in Chapter 2, we can now analyze how the behavior of the
closed-loop system impacts the global performance indicators. This analysis is realized in
a linear time-invariant (LTI) framework, which allows establishing frequency constraints
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on the closed-loop transfer functions. Further than the performance specifications, the
frequency constraints are also used to enforce the robust stability of the closed-loop system
against different types of uncertainties. These frequency constraints define the closed-loop
specifications considered for the controller design.

Chapter 4 In chapter 3, we show that the desired performances indicators can be translated
into frequency constraints on the closed-loop transfer functions. In chapter 4, we present a
design method that allows obtaining controllers satisfying these frequency constraints. The
design method is based on theH∞ synthesis. Thus, we start the chapter by reviewing theH∞
synthesis, and, progressively, we propose different control strategies. Each proposed solution
is followed by a numerical example. At the end of the chapter, the most interesting solutions
are validated and illustrated through numerical simulation.

Chapter 5 In this chapter, we present one of the main theoretical contributions of this work:
the definition of time-varying weighting functions that describe frequency-modulated signals.
After presenting this interesting result, we apply it to design a MEMS gyroscope controller.
The controller design is based on the standard linear parameter-varying (LPV) synthesis, in a
polytopic approach. Numerical simulations demonstrate the effectiveness of the proposed
approach.

Chapter 6 In this chapter, we revisit the theory of the complex envelopes, and we show that,
although nonlinear elements are introduced in the control loops, the complex envelopes of the
to-be-controlled system can be modeled as the signals of a linear system. This is true under
the assumption that the complex envelopes could be perfectly measured in real time (ideality
assumption). In this case, we establish links between the direct and the envelope-based
control approaches, revealing that both approaches achieve exactly the same performance
level. In reality, however, this ideality assumption is not satisfied and nonidealities are
introduced in the control loop. Then, we proposed a control design method that takes
these nonidealities into account, providing guarantees of stability. Part of these results were
published in [SSK20].

Chapter 7 One of the messages of Chapter 6 is that, if possible to implement, the direct
control architecture would be a better (linear) choice for the closed-loop operation of MEMS
gyroscopes. Therefore, in Chapter 7, we detail the steps required for a digital implementation
of the controller, still providing guarantees of stability and performance. The implementations
results validate the proposed method and prove the implementability of the direct control
architecture. Some results presented were published in [SACKS20] and [SPK+21].

Chapter 8 Here, we present a study case where theH∞ synthesis is applied to design the
controller of a EM-Σ∆ architecture. Although the EM-Σ∆ can be almost considered as a direct
control architecture, the particularity here is that, due to implementation constraints, only
some parameters of the controller can be tuned. The controller is then said to be constrained.
Therefore, we adapt the control method of Chapter 4. This method was implemented in
the dedicated platform and allowed to enhance the performance of the sensor up to 40%,
compared to the current solution adopted by the partner. The results of this chapter were
presented in the conference paper [SKP+20] and are the core of the software Hinf_EMSD.

Chapter 9 Finally, in the last chapter, we draw the main conclusions of this thesis and
indicate interesting directions for future works.





11

Chapter 2

MEMS Gyroscopes and the
Control Challenges

MEMS gyroscopes are micromachined inertial sensors used to measure the angular rate
of an object. They are composed of a tiny proof mass, which is able to move along two
perpendicular axes. The proof mass is then driven to oscillate with a controlled amplitude
along one axis. When subjected to an angular rate Ωz, part of the energy of these oscillations
is transmitted to the other axis through the Coriolis force, provoking oscillations along the
second axis. The amplitude of the Coriolis force is proportional to the angular rate. Therefore,
based on the secondary oscillations of the proof mass, one can estimate the Coriolis force and
the angular rate.

It is important to note that to provide an accurate estimation of the angular rate, the pri-
mary oscillations has to be precisely controlled and the Coriolis force have to be accurately
estimated. In general, these objectives are achieved through the use of control loops. Never-
theless, due to the reduced size of the MEMS devices and their sensitivity to environmental
changes, the design and implementation of the control loops is very challenging. The main
objective of this work is then to propose a systematic method to design controllers for MEMS
gyroscopes, achieving high performance.

In this chapter, we aim at stating the research questions that guide the development of this
thesis. We start the chapter by presenting the MEMS gyroscopes, its main performance
indicators and the importance on operating these devices in closed loop. Then, in Section 2.2,
we review the most relevant control architectures that are found in literature and in industry,
evaluating their strengths and the potentials for improvement. These control architectures
allow us to introduce, in Section 2.3, our experimental setups, which are used to validate
the proposed methods. Finally, in Section 2.4, we state the research questions, fulfilling the
objectives of this chapter.

2.1 A Background on MEMS Gyroscopes

In this section, we aim at providing some background on the multidisciplinary field of
MEMS gyroscopes. Indeed, this fascinating subject borders the domains of Mechanics,
Microelectronics, Signal Processing, Control Theory and Measurement, to cite a few [Kem11].
This thesis is mainly focused on the aspects related to the control of MEMS gyroscopes.
However, before tackling the control problems, it is essential to provide a global view of
the system to understand its capacities, limitations, and the role of the controller(s) in this
complex framework.
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In Section 2.1.1, we show that micro gyroscopes behave like a Foucault pendulum in micro-
scopic scale, where, instead of measuring the rotation of Earth, MEMS gyroscopes measure
their own angular rate. Moreover, instead of having a massive weight suspended by a string,
micro gyroscopes have a tiny proof mass attached to their structure by springs, allowing the
proof mass to oscillate.

In Section 2.1.2, the mechanical model of an ideal MEMS gyroscope is established. Based
on this model, we discuss the closed-loop operation of the sensor. Obviously, to implement
control loops, actuators and instrumentation are required. Thus, in Section 2.1.3, we describe
the principles of actuation and instrumentation in micro scale. We also model their behavior
and introduce the gyroscope model. Finally, we introduce the model of a MEMS gyroscope
that will be used along with this thesis to illustrate our examples.

Most of the signals transiting in a MEMS gyroscope are quasi-sinusoidal. Indeed, these
signals are related to the proof mass oscillations. However, the useful part of the information
is contained in the amplitude and phase of these signals. For instance, “the amplitude of
the Coriolis force is proportional to the angular rate”. Then, synchronous demodulation is
employed to extract the amplitude (and phase) from this signal and to estimate the angular
rate. Details on this important element are given in Section 2.1.4.

In Section 2.1.5, we introduce the main nonidealities that may appear in a real MEMS
gyroscope. We also discuss how these nonidealities affect the operation of the device and its
accuracy. Finally, in Section 2.1.6, the main performance specifications are presented. They
are essential indicators of a real-sensor accuracy.

A wide literature on these topics is available. We base our review mainly on some textbooks,
such as [AS09, AL10, Kem11, Apo16], the thesis [Sau08] and the rich literature review of
[YAN98]. The aspects linked to the performance specifications are mainly based on the current
IEEE (Institute of Electrical and Electronics Engineers) standards [IEE04, IEE06, IEE09, IEE19].

2.1.1 Working Principle: a Foucault Pendulum in a Chip

Let us introduce a bit of history to present the working principle of MEMS gyroscopes.
For further details on this fascinating history, the curious reader is referred to the recent
paper [Som17]. Since ancient times, philosophers and astronomers had suggested that Earth
rotates on its own axis once every 24 hours. This suggestion was reinforced by Nicolaus
Copernicus in his celebrated heliocentric theory. One century later, by the time of Galileo,
even with no direct evidences, the academy was already convinced that Earth rotates on its
axis. However, that was only in 1851 that Léon Foucault could demonstrate the rotation of
Earth through the oscillations of a pendulum in his seminal work [Fou51]. This experiment
is known today as Foucault pendulum.

To illustrate this interesting experiment, let us consider an oscillating pendulum on the North
Pole, as shown in Figure 2.1. Note that the oscillations describe an oscillation plane, which
is static in the space. Therefore, when the earth rotates on its axis from left to right, for an
observer placed on the earth, the oscillation plane seems to rotate from right to left, as if there
was an invisible force rotating that plane. This inertial – or virtual, or apparent – force is
known as the Coriolis force. After 24 hours, the observer can note that the oscillation plane
completes one rotation around the axis of the pendulum. Now, if the pendulum is placed in
an intermediate latitude, the oscillation plane takes more time to complete a rotation (from
the observer point of view). This period is proportional to the cosecant of the latitude in
which the pendulum is placed. Indeed, if the pendulum is placed over the Equator Line (the
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FIGURE 2.1: The Foucault pendulum on the North Pole, in an intermediate
latitude and on the Equator Line. The (blue) arrow on the pendulum indicates

the rotation of the oscillating plane from the observer point of view.

axis is perpendicular to the axis of Earth), there is no rotation of the pendulum around its
own axis (always from the observer point of view).

That dependence on the cosecant of the latitude made hard for the public to understand
the experiment. However, obsessed to demonstrate the rotation of Earth in a clearer way,
Foucault used a device composed of a spinning wheel inside gimbals, which he named
gyroscope [Fou52a], from the Greek roots “gyros” (rotation) and “scope” (to observe). Since
the rotation axis of a rotating wheel is also static in space, it should rotate with respect to an
observer on Earth. This fact was confirmed and published in Comptes rendus hebdomadaires
des séances de l’Académie des Sciences in 1852 [Fou52b, Fou52a]. This description underlies the
working principle of the mechanical high-precision gyroscopes discussed in Section 1.1.

Now, if we want to miniaturize high-precision gyroscopes, an important technological
difficulty arises: the creation of rotating motion in MEMS devices [Kem11]. However,
oscillating/vibrating motion can be easily produced in microdevices. Therefore, MEMS
gyroscopes are built as mass-spring systems such that the mass can oscillate along two
perpendicular axes: the primary (or ~x-) axis, and the secondary (or ~y-) axis. Figure 2.2
illustrates this description. Other designs can be considered, but different MEMS gyroscopes
rely on the same principle: the Coriolis force. Thus, these gyroscopes are also classified as
Coriolis vibrating gyroscopes (CVG). For further details, we refer the curious reader to one of
the several textbooks on MEMS design [AS09, Kem11, Apo16] or microfabrication [AL10].

Coriolis vibrating gyroscopes can be classified into angle (Type I) or rate (Type II) gyroscopes.
Type I CVGs are used to measure the angular position while Type II CVGs measure the
angular rate of an object. Both types rely on the same principle – the Coriolis force – and can
be built similarly. The main difference resides on the gyroscope operation. For Type I CVGs,
the proof mass oscillates freely, just like a Foucault pendulum; thus, when the gyroscope
rotates, the proof mass trajectory rotates in the opposite direction (always from the “structure”
point of view). For Type II CVGs, the oscillations are always driven on the same direction. We
describe this operation in the sequel. For a richer discussion on Types I and II CVGs, please
refer to [Shk06, PZTS11]. The gyroscopes considered in this work are of Type II (angular
rate).

Let us open a parenthesis and consider again the Foucault pendulum on the North Pole.
Imagine now that the observer pushes the pendulum, such that the weight leaves and comes
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FIGURE 2.2: Mechanical representation of a MEMS gyroscope.

back to its hands. If we suppose that Earth does not rotate, he has to apply a minimum
force in the forward direction, just enough to keep the oscillations with the same amplitude,
compensating for energy losses (friction with the air, for instance). Now, if Earth starts
rotating, the observer has to apply a perpendicular force to compensate for the Coriolis force.
The Coriolis force is proportional to the angular rate Ωz. Thus, based on this compensating
force, the observer can estimate Ωz.

MEMS gyroscopes work in the same way. Actuators apply a force Fx, driving primary
oscillations of the proof mass along the ~x-axis. Thus, when the device is subjected to an
angular rate Ωz (perpendicular to the~x~y-plane), an oscillating Coriolis force appears along the
secondary axis. The amplitude of the Coriolis force is proportional to the angular rate Ωz, the
amplitude and frequency of the primary oscillations, respectively Ax and ωexc. Therefore, if
we can apply a force Fy that compensates for the Coriolis force – i.e., avoids oscillations along
the~y-axis –, we can estimate the angular rate through the synchronous demodulation [Sau08].
Because of its role, the oscillation mode along the ~x-axis is commonly called drive mode.
Similarly, the oscillation mode along with the ~y-axis, which is rather used to detect or sense
the Coriolis force, is referred to as sense mode.

Note that for an accurate estimation of Ωz, it is required to keep controlled oscillations on the
drive mode, i.e., the amplitude Ax and frequency of the primary oscillations ωexc have to be
regulated. Moreover, the Coriolis force has to be precisely compensated/estimated in the
sense mode. Hence, the use of control loops is essential to design high-performance MEMS
gyroscopes. In the sequel, we describe the model of an ideal MEMS gyroscope and introduce
the closed-loop operation.

2.1.2 Ideal MEMS Gyroscope and Closed-Loop Operation

As discussed above, MEMS gyroscopes are conceived as mass-spring systems. Then, based
on the second law of Newton, the dynamic behavior of an ideal gyroscope is described by
the differential equation [Sau08]

mq̈(t) + dq̇(t) + kq(t) = F(t), (2.1)

where q =

[
x
y

]
, F =

[
Fx
Fy

]
, m =

[
m 0
0 m

]
, d =

[
dxx 0
0 dyy

]
and k =

[
kxx 0
0 kyy

]
. The variables

x and y are respectively the positions of the proof mass in the ~x- (drive mode) and ~y-axes
(sense mode) (see Figure 2.2), m represents the mass, F is the vector of applied forces, d is the



2.1. A Background on MEMS Gyroscopes 15

mechanical damping matrix, and k is the stiffness matrix. The indices x and y are associated
with the drive and the sense modes, respectively.

Usually, MEMS resonators are characterized by their resonance frequency ω0 and their quality
factor Q. These parameters are related to the mechanical damping and stiffness coefficients,
as follows1:

ω0,i =

√
kii

m
and Qi =

√
kiim
dii

.

with i = {x, y}. Therefore, by applying the Laplace transform to (2.1), the mechanical model
of the MEMS gyroscope can be given by the transfer matrix

Gmech(s) =
[

Gmech
x (s) 0

0 Gmech
y (s)

]

with

Gmech
x (s) =

x(s)
Fx(s)

=
kmech

0,x ω2
0,x

s2 + ω0,x/Qx · s + ω2
0,x

, (2.2)

Gmech
y (s) =

y(s)
Fy(s)

=
kmech

0,y ω2
0,y

s2 + ω0,y/Qy · s + ω2
0,y

, (2.3)

kmech
0,x =

1
mω2

0,x
and kmech

0,y =
1

mω2
0,y

.

MEMS resonators are conceived to present a very high quality factor, usually ranging from the
order of hundreds (e.g., [CCD+09]) to some millions (e.g., [PTS13]). This fact allows obtaining
high gain around the resonance frequency, improving the performance of the device (signal
to noise ratio, sensitivity, resolution, etc.) [YAN98]. On the other hand, the value of the
resonance frequency ranges from some hundreds of hertz (e.g., [MV99]) to some hundreds of
kilohertz (e.g., [WSNS+16]). Furthermore, typical MEMS gyroscopes are conceived such that
the resonance frequencies of the drive and sense modes are very close [Sau08].

It is worth emphasizing that, despite the existence of different mechanical designs, the second-
order behavior presented in equations (2.2) and (2.3) generalizes the dynamics of most of the
(ideal) CVGs [Apo16, Chap. 2].

Let us go back to the mechanical model. When the MEMS gyroscope is subjected to an
angular rate Ωz (in rad s−1) perpendicular to the ~x~y-plane, the Coriolis forces appear. They
are given by

FCor(t) =
[

FCor,x(t)
FCor,y(t)

]
= Ωz(t)

[
0 2m
−2m 0

] [
ẋ(t)
ẏ(t)

]
. (2.4)

Thus, by including FCor into (2.1), the following expression is obtained [Sau08, Apo16]:

mq̈(t) + dq̇(t) + kq(t) = F(t) + FCor(t) (2.5)

1Calling ω0 the resonance frequency is an abuse of language. Indeed, if we denote the resonance frequency by
ωr, the natural frequency by ωn and the damped natural frequency by ωd, we have

ωd = ωn

√
1− 1

2Q
and ωr = ωn

√
1− 1

Q
.

However, because the quality factor of MEMS resonators is very high (i.e., Q ≫ 1), we can consider ω0 = ωn =
ωr = ωd (similar to an undamped oscillator).
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Since the Coriolis force appears as an additional force over the proof mass (see (2.5)), this
force is commonly interpreted as a disturbance at the input of the mechanical system. Even
if it is not the case, this disturbance is typically considered to be exogenous, such that the
drive and sense modes can be considered as independent systems. For the moment, let us
also make this assumption. In Section 2.2.3, we discuss the consequences of this hypothesis.

After having modeled an ideal MEMS gyroscope, let us discuss its operation. Note that the
matrices m, d and k in (2.5), as well as the transfer matrix Gmech, are diagonal. Then, the only
coupling between the drive and sense modes is through the Coriolis forces.

Drive-Mode Operation As discussed earlier, the main objective of the drive mode is to
allow the creation of a Coriolis force by keeping oscillations of the proof mass along the
~x-axis. To this end, we apply a force Fx, producing steady-state oscillations of amplitude Ax
and with excitation frequency ωexc, i.e., the signal x is of the form

x(t) = Ax sin (ωexct) .

Obviously, the drive mode could operate in open loop. However, due to the disturbing
Coriolis force FCor,x and modeling errors, to regulate the amplitude Ax, a feedback loop
and a controller, which we denote KDM, are required. Based on the measures of x and on a
given reference amplitude Are f

x , such controller computes the force Fx to be applied so that
Ax = Are f

x , despite the presence of FCor,x. This feedback loop is depicted in Figure 2.3. Then,
under ideal operation of the drive mode, we consider

x(t) = Are f
x sin (ωexct) . (2.6)

Moreover, to minimize the applied force, it is also desired to use ωexc ≈ ω0,x, taking advantage
of the high gain of Gmech

x at its resonance frequency. The excitation frequency can be automat-
ically set by an external loop, by the user or even implicitly by KDM itself (see Section 2.2.1
for further details).

KDM Gmech
x

Are f
x

(ωexc)
+Fx

+

FCor,x

x = Ax sin (ωexct)

FIGURE 2.3: Closed-loop operation of the drive mode.

Sense-Mode Operation In its turn, the main objective of the sense mode is to estimate the
Coriolis force acting on the sense mode, FCor,y, allowing for the computation of Ωz (see (2.4)).
The sense mode can be operated in two different modes: in open loop or in closed loop.

When operating in open loop, Fy(t) ≡ 0 and, for an ideal MEMS gyroscope, only the Coriolis
force (FCor,y) produces oscillations on the sense mode. Then, based on the measures of y and

on the model Gmech
y , FCor,y can be estimated as F̂Cor,y(s) = Gmech

y (s)−1y(s), where F̂Cor,y is the
estimate of FCor,y. This approach is the simplest one to implement, since it is based only on
the measurements of the position y and on posterior processing. However, the dynamics of
the sense mode exclusively depends on its mechanical characteristics, which are often very
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slow due to its high quality factor. Therefore, this operating mode is better suited for low-cost
and low-performance applications.

On the other hand, the main idea behind the closed-loop operation is to implement a con-
troller, KSM, that computes the force Fy that, by keeping y(t) u 0, compensates for FCor,y. In
this case, Fy(t) ≈ −FCor,y(t) and we define the estimate of the Coriolis force on the sense
mode, F̂Cor,y, as F̂Cor,y(t) = −Fy(t). Figure 2.4 illustrates this description with two equivalent
schemes: one with the controller before the plant, as in a classical closed-loop system; and
one with the controller after the plant, as commonly used for the closed-loop operation with
the architecture known as electro-mechanical Σ∆ (EM-Σ∆), see Section 2.2.2.

KSM
Gmech

y
+Fy +

FCor,y

y

F̂Cor,y

(A) Controller before plant.

KSMGmech
y

+FCor,y y
F̂Cor,y

Fy
+

(B) Plant before controller.

FIGURE 2.4: Closed-loop operation of the sense mode.

This closed-loop control strategy is also known as force-to-rebalance control and has two
huge advantages over the open-loop operation.

(i) The dynamics of the closed-loop system are determined by the sense mode and the
controller, which can be designed to increase the bandwidth of the sensor [YAN98].

(ii) Minimizing y implies the minimization of FCor,x, reducing disturbances on the drive
mode. In addition, minimizing y also allows avoiding saturation on the sense-mode
instrumentation circuits and reduce nonlinearities [RCRW09, CGZ+11].

Consequently, it is clear that, to design a high-performance gyroscope, the sense mode
also has to operate in closed loop. Hence, in the remaining of this work, we focus on the
closed-loop operation of the sense mode.

Finally, under ideal closed-loop operation, we consider that the controller KSM produces

F̂Cor,y(t) = FCor,y(t) = −2mΩz(t)ẋ(t). (2.7)

Then, by plugging (2.6) into (2.7), we obtain

F̂Cor,y(t) = −Ωz(t) · 2mAre f
x ωexc cos (ωexct) . (2.8)

Please note that, because the sense-mode closed-loop operation also keeps y(t) u 0, we can
neglect the Coriolis force acting on the drive mode, FCor,x. Then, even under a nonnull angular
rate, we can still consider that (for ideal MEMS gyroscopes) the only coupling between the
drive and sense modes is the Coriolis force acting on the sense one, i.e., FCor,x(t) ≡ 0 and
FCor,y(t) = −2mΩz(t)ẋ(t).

From the Coriolis Force to the Estimation of Ωz Having estimated the Coriolis force,
the last step consists in obtaining an estimate of Ωz, which is denoted Ω̂z. Note that F̂Cor,y
(see (2.8)) is a harmonic signal whose amplitude is modulated by Ωz(t). Therefore, to compute
the angular rate, it suffices to demodulate the signal F̂Cor,y. In general, the synchronous
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demodulation (SD) is used to this purpose [Sau08]. This important element is presented
in Section 2.1.4. This operation needs to know the phase of the signal to correctly determine
the sign of Ωz

2. The phase ωexct can be obtained through x (or ẋ) or directly from ωexc.
Figure 2.5 synthesizes the general scheme used for the closed-loop operation of ideal MEMS
gyroscopes.

FIGURE 2.5: Closed-loop operation of an ideal MEMS gyroscope.

2.1.3 Actuation and Instrumentation

In the previous section, we described the mechanical part of the MEMS gyroscopes and its
closed-loop operation. However, to operate in closed-loop, we need to use actuators and
sensors. The present section aims at briefly describing the principles of actuators and sensors
of MEMS devices, and how they impact the model and operation of the gyroscope.

Actuators are devices that convert an electrical signal (typically, a voltage) into a force.
In MEMS devices, several technologies can be used for this purpose, such as electrostatic
(capacitive), piezoelectric or electromagnetic mechanisms [Sau08, Kem11]. Similarly, sensors
are elements that convert the position of the proof mass into an electrical signal. Here,
the most common methods used for MEMS gyroscopes are capacitive, piezoelectric and
piezoresistive detection [Sau08, Kem11].

In this work, we focus on the electrostatic actuation and capacitive detection, and on their
simple modeling, which is sufficient for the control purposes. A deeper discussion on
actuation and detection technologies can be found in [Kem11], for instance.

Electrostatic or Capacitive Actuation

Electrostatic or capacitive actuators rely on the attractive force created by an electric field
between two electrodes. These electrodes form a capacitor of capacitance Cel , which depends
on the geometry of the electrodes. These two electrodes can be conceived as a simple parallel-
plate capacitor, as shown in Figure 2.6a, or as two comb structures that slide between each
other, forming a comb-drive capacitor. This later structure is illustrated in Figure 2.6b. In
both cases, one of the electrodes is built on the (fixed) base of the sensor, while the second
one is built on the (moving) proof mass.

The electrostatic attractive force, denoted Fes, is given by

Fes = −
1
2

∂Cel(del)

∂del
v2

in,

2This reason explains the adjective “synchronous” in the name of this particular demodulator.
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vin del

Base

Fes

Proof mass

Cel ∝
1

del
Fes ∝

v2
in

d2
el

(A) Parallel-plate capacitor.

vin

Base

Fes

Proof mass

del

Cel ∝ del Fes ∝ v2
in

(B) Comb-drive capacitor.

FIGURE 2.6: Capacitive transducers.

where vin is the voltage between the electrodes and del is the gap between them in the case of
parallel-plate capacitors or the variable dimension of the overlapping surface in the case of
comb drives3 (see Figure 2.6).

As mentioned earlier, the capacitance Cel depends on the geometry of the electrodes, the
electrical properties of the dielectric and on del . Let us then consider a constant kact, which
encapsulates all these contributions, except for del . In the case of parallel-plate actuator, the
capacitance is given by 2kact/del . Therefore, the electrostatic force Fes is given by kactv2

in/d2
el

and has a clear nonlinear dependence on del . If the displacements are small, this dependence
can be linearized, providing a good approximation. Nevertheless, if the displacements are
important, this approximation introduces nonnegligible errors, which can deteriorate the
performance of the sensor.

The nonlinear dependence on del is eliminated by using comb-drive capacitors. In this case,
the capacitance is given by 2kactdel and the electrostatic force is given by

Fes(t) = kactvin(t)2. (2.9)

Note that the force Fes of (2.9) is always positive (attractive). Then, to produce an “oscillating”
force, two solutions can be considered [Sau08, AS09].

(i) An offset voltage VDC is added to a time-varying voltage u, i.e., vin(t) = VDC + u(t). In
this case, the electrostatic force is given by

Fes(t) = kact (VDC + u(t))2 = kact
(
V2

DC + 2VDCu(t) + u(t)2) . (2.10)

(ii) Electrodes are built on the two sides (left and right, for instance) of the proof mass and
a voltage VDC + u(t) is applied in one side, while a voltage VDC − u(t) is applied to the
other side, as presented by the scheme of Figure 2.7, which is known as balanced or
differential actuation scheme. In this case, the resulting electrostatic force is given by

Fes(t) = kact

(
(VDC + u(t))2 − (VDC − u(t))2

)
= 4kactVDCu(t). (2.11)

3In the case of the comb drive, the sign of Fes changes due to the modification on the sense (of the direction) of
del . The electrostatic force is always attractive.
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u

VDC

−1

1

FIGURE 2.7: Balanced-actuation scheme [AS09].

Note that the electrostatic actuation introduces a square nonlinearity in the model: Fes =
kactv2

in (see (2.9)). Different methods can be considered to linearize this nonlinearity. The use
of differential actuation (see Figure 2.7 and (2.11)) is one of the common methods to tackle
this problem during the design of the MEMS device. However, when this solution is not
implemented, which is the case in our work, other techniques can be used to linearize (2.10).
We present one of these techniques in Section 7.2.3 (page 179). Regardless of the adopted
method, we can therefore establish a linear relation between u and the electrostatic force:

Fes(t) = kinu(t) with kin = kactklin (2.12)

where klin is the linearization gain. Obviously, in the case of a balanced actuation (see (2.11)),
klin = 4VDC. For other linearization techniques, this constant can take other values, see
Section 7.2.3 (page 179).

Capacitive Detection and Charge Amplifiers

Similar to the electrostatic actuation, by building electrodes on the fixed structure of the
sensor and on the moving mass, we can measure the distance between them through the
capacitance formed by them.

Let us consider a constant kdet, whose value depends on the shape of the electrodes and
on the electrical properties of the dielectric separating them. Then, if the electrodes form a
parallel-plate capacitor, the capacitance is given kdet/del , which is nonlinear with respect to
del . Again, if the displacement amplitude is small with respect to the initial position, this
nonlinear relation can be linearized with small error. Nevertheless, as the displacement
amplitude becomes larger, the approximation error also gets larger. Now, if the electrodes
form a comb drive, the capacitance is given by kdetdel , which is linear with respect to del . In
general, the parallel-plate configuration is used for the sense mode (small displacement),
while the comb-drive structure is used for the drive mode (large displacement) [AS09].

Finally, to convert a capacitance into voltage, electronic circuits known as charge amplifiers
are employed [Sau08]. These circuits are also usually modeled as constant gains, which
we denote kCA. Therefore, the relation between del and the output voltage is given by
vout = koutdel , where kout = kCAkdet.

Mechanical Model with Actuation and Instrumentation

Based on the above discussion, each mode of the MEMS gyroscope can be modeled by its
respective mechanical model with the gains kin and kout at the input and output, modeling
the actuation and instrumentation. Figure 2.8 illustrates the overall model of the drive
mode. We also include the signal nx, which represents the process and measurement noises,
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(see Section 2.1.5, page 32, for a deeper discussion on the noise), defining the signals

xm(t) = kout,xx(t) and xn(t) = xm(t) + nx(t). (2.13)

klin,x kact,x Gmech
x kdet,x kCA,x

ux Fx +

FCor,x

+ x +xm

nx

+ xn

kin,x kout,x

FIGURE 2.8: Overall model of the drive mode with actuation and instrumenta-
tion. For the sense mode, replace x by y.

The overall model can also be represented in the compact form of Figure 2.9, where

uCor,x(t) =
FCor,x(t)

kin,x
(2.14)

is the image of FCor,x in volts. Therefore, the model of the drive mode of a MEMS gyroscope
can be given by the transfer function

Gx(s) =
xm(s)
ux(s)

=
k0,xω2

0,x

s2 + ω0,x/Qx · s + ω2
0,x

, (2.15)

where k0,x = kout,xkmech
0,x kin,x.

Gx
ux +

uCor,x

+ +xm

nx

+ xn

FIGURE 2.9: Compact linear model of the drive mode with actuation and
instrumentation. For the sense mode, replace x by y.

When considering the ideal closed-loop operation, the output voltage xm is given by

xm(t) = Are f
x,m sin (ωexct) , (2.16)

where Are f
x,m = kout,x Are f

x (see (2.6)).

Similarly, for the sense mode (see Figure 2.8 and Figure 2.9 replacing x by y), we define the
measurement noise ny and the signals

ym(t) = kout,yy(t) and yn(t) = ym(t) + ny(t). (2.17)

Hence, the model of the sense mode can be given by

Gy(s) =
ym(s)
uy(s)

=
k0,yω2

0,y

s2 + ω0,y/Qy · s + ω2
0,y

. (2.18)
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Through this process, we also define

uCor,y(t) =
FCor,y(t)

kin,y
, (2.19)

which is an image of the actual Coriolis force FCor,y. For the closed-loop operation of a MEMS
gyroscope, the controller does not apply directly Fy to compensate for FCor,y. It applies the
signal uy that compensates for uCor,y. Then, rather than working with F̂Cor,y, we use the signal
ûCor,y for the estimation of the angular rate Ωz. In the ideal case, ûCor,y is given by (see (2.8)
and (2.16))

ûCor,y(t) =
F̂Cor,y(t)

kin,y
=
−Ωz(t) · 2mAre f

x,mωexc cos (ωexct)
kout,xkin,y

. (2.20)

In the sequel, we introduce the models of the drive and sense modes which are used to
illustrated the examples along this thesis.

Example 2.1 (Drive-mode model). The behavior of the drive mode, including actuation and
instrumentation, can be described by the transfer function Gx, presented in (2.15), with ω0,x =
2π · 11 500 rad s−1, Qx = 100 000 and k0,x = 2 · 10−5. These values correspond to the typical values
presented in Section 2.1.2. In particular, they correspond to the nominal characteristics of the MEMS
gyroscopes of the family GYRO I (see Table 2.1).
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FIGURE 2.10: Bode diagram of the drive mode.

The Bode diagram of this model is presented in Figure 2.10. Observe that the magnitude presents
a very narrow resonance peak at 11.5 kHz. That is, if we consider a frequency ω = ω0,x = 2π ·
11 500 rad s−1, we have |Gx (jω)| = 2 ≈ 6 dB; however, a slight change of ω drastically modifies
|Gx (jω)|. For instance, with ω = 2π · 11 499 rad s−1, |Gx (jω)| ≈ 0.15 ≈ −19 dB.

Note that, for frequencies around the resonance frequency, the phase passes very quickly from close
zero to around -180°, passing by -90° right at its resonance frequency. It is worth mentioning that
some control strategies take advantage of this property to identify or track the resonance frequency
(see Section 2.2.1 for further details).

Finally, the ratio between the gain at the resonance frequency and the static gain corresponds to the
quality factor. Indeed,

|Gx (jω0,x)|
|Gx (0)|

=
2

2 · 10−5 = 100 000.
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Example 2.2 (Sense-mode model). For the sense mode, we consider the plant given by

Gy(s) =
k0,yω2

0,y

s2 + Qyω0,ys + ω2
0,y

(2.21)

with ω0,y = 2π · 11 550 rad s−1, Qy = 10 000 and k0,y = 4 · 10−3.

The Bode diagram of this model is presented in Figure 2.11. Similar to the previous example, Gy has
important gains around the resonance frequency, ω0,y. However, due to a smaller quality factor, the
resonance peak is wider for the sense mode. For instance, for ω = ω0,y = 2π · 11 550 rad s−1, we
have

∣∣Gy (jω)
∣∣ = 40 ≈ 32 dB; and for ω = ω0,x = 2π · 11 500 rad s−1, the magnitude of Gy is

close to 0.5 (or −6 dB). For bigger mismatches, the loss of gain becomes more important. That is why
MEMS gyroscopes are typically designed to have ω0,y close to ω0,x.
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FIGURE 2.11: Bode diagram of the sense mode.

2.1.4 Ideal Synchronous Demodulation and Angular Rate Estimation

After estimating the Coriolis force, the angular rate is determined through the synchronous
demodulation (SD), which is presented in this subsection. It is worth mentioning that
the synchronous demodulation (also known as quadrature demodulation or synchronous
detector) is an essential element in the operation of MEMS gyroscopes. Further than its use
to compute the angular rate from the Coriolis force estimate, the synchronous demodulation
can also be used to compute the amplitude and phase of a modulated signal. These features
are very useful for some control architectures, see Section 2.2.

In this subsection, we introduce the synchronous demodulation in a general manner. Then,
we apply this operation for the estimation of the angular rate of a MEMS gyroscope. Finally,
we discuss how to use the synchronous demodulation to compute the amplitude and phase
of a modulated signal.

Ideal Synchronous Demodulation: a General Case

Let us start by considering a quadrature amplitude-modulated signal sm(t) ∈ R of the form

sm(t) = sI(t) cos(ωexct)− sQ(t) sin(ωexct), (2.22)
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×

×

FLP

FLP

2 cos (ωexct)

−2 sin (ωexct)

sm

s1 sI f

s2 sQ f

FIGURE 2.12: Block diagram of the synchronous demodulator.

where the signals sI(t) ∈ R and sQ(t) ∈ R define respectively the amplitude of the terms in
phase and in quadrature (90° of phase shift) with cos(ωexct). The signal sm is also assumed to
be a band-pass signal of bandwidth 2ωexc centered at ωexc. This means that its power spectral
density (PSD), Ssm , is such that,

∀ |ω| ≥ 2ωexc, Ssm(ω) = 0 and Ssm(0) = 0. (2.23)

It is important to mention that any signal sm that verifies (2.23) can be decomposed into
in-phase and in-quadrature terms, as in (2.22). This decomposition is unique if sI and sQ are
low-pass signals, i.e., if their DSPs are such that

∀ |ω| ≥ ωexc, SsI (ω) = 0 and SsQ(ω) = 0. (2.24)

See, for instance, [Lat98, Sec. 11.5] for further details.

The synchronous demodulation of a modulated signal sm corresponds to the extraction of
the in-phase and in-quadrature terms, respectively sI and sQ [Sau08]. This operation can be
performed by using the block diagram presented in Figure 2.12, where FLP represents ideal
low-pass filters, i.e., filters whose frequency response is given by

FLP(ω) =

{
1, ∀|ω| ≤ ωexc
0, otherwise

. (2.25)

By plugging the signal sm of (2.22) at the input of the synchronous demodulator, we have

s1(t) = 2sI(t) cos(ωexct)2 − 2sQ(t) sin(ωexct) cos(ωexct)

s1(t) = sI(t) (1 + cos(2ωexct))− sQ(t) sin(2ωexct)

and
s2(t) = −2sI(t) cos(ωexct) sin(ωexct) + 2sQ(t) sin(ωexct)2

s2(t) = −sI(t) sin(2ωexct) + sQ(t) (1− cos(2ωexct)) .

Hence, after filtering out the high-frequency terms with FLP, we obtain

sI f (t) = sI(t) and sQ f (t) = sQ(t),

fulfilling the objective of extracting the in-phase and in-quadrature terms. This is only
possible because the low-frequency condition for the signals sI and sQ avoids the overlap
between the spectra of the high-frequency terms (those with cos(2ωexct) and sin(2ωexct))
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and the low-frequency terms. A detailed analysis of the synchronous demodulation in the
frequency domain is provided in Appendix A.1.

Remark 2.1 (On the linearity of the synchronous demodulation). The synchronous demodula-
tor is a linear time-varying (LTV) system, where the products by 2 cos(ωexct) and−2 sin(ωexct)
can be interpreted as time-varying gains. In general, the time-varying nature of the system
could make the analysis in the frequency domain untractable or laborious. However, for the
particular case where ωexc is constant over time, an interesting property arises: multiplying
a signal by cos(ωexct) or sin(ωexct) corresponds to the replication of its spectrum with a
frequency shift of +ωexc and −ωexc. For instance, if we consider the signal

s1(t) = 2 cos(ωexct) · sm(t)

and the Fourier transform of sm given by F [sm], the Fourier transform of s1, F [s1], is given by

F [s1](jω) = F [sm](jω + jωexc) +F [sm](jω− jωexc).

Therefore, despite its time-varying nature, the frequency-domain analysis of the synchronous
demodulation (and systems with synchronous demodulation) is still possible.

Estimating the Angular Rate Through the Synchronous Demodulation

Let us consider again the ideal operation of a MEMS gyroscope. When subjected to an angular
rate Ωz, the Coriolis force acting on the sense mode can be determined through (2.20), which
is recalled below:

ûCor,y(t) = −
Ωz(t) · 2mAre f

x,mωexc

kout,xkin,y
cos (ωexct)

We assume that Ωz is a low-pass signal, i.e.,

∀ |ω| ≥ ωexc, SΩz(ω) = 0.

Therefore, by connecting ûCor,y, which is a pass-band signal (consequence of the assumption
above), at the input of the synchronous demodulator (sm = ûCor,y), we obtain

sI f (t) = kSF ·Ωz(t) and sQ f (t) = 0 (2.26)

kSF = −2mAre f
x,mωexc

kout,xkin,y
, (2.27)

where kSF is referred to as the scale factor (SF) of the sensor.

It is worth mentioning that, in practice, the constant kSF is not perfectly known, i.e., cannot be
accurately computed analytically because of the fabrication dispersion and modeling errors,
and can vary as function of Ωz. Hence, to obtain an accurate estimate for the scale factor,
k̂SF, a calibration step is needed: the gyroscope is placed on a rotating table and different
angular rates are applied; for each Ωz, the value of sI f is read; then, k̂SF can be determined
as the slope of the best line fitting the measured data (see Section 2.1.6 for further details).
Therefore, k̂SF allows computing Ω̂z from sI f as follows:

Ω̂z(t) =
sI f (t)

k̂SF
≈ Ωz(t).
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Using the Synchronous Demodulation to Compute the Amplitude and Phase of a Signal

Let us come back to the general case of the synchronous demodulation. Please note that the
signal sm (2.22) can be rewritten in the form

sm(t) = Sm(t) cos (ωexct + φs(t)) , (2.28)

where Sm(t) ∈ R+ is the instantaneous amplitude or envelope of sm, and φs(t) ∈ (−π, π] is
the instantaneous phase shift with respect to the phase ωexct. Then, the correspondence of Sm
and φs with sI and sQ can be established through trigonometric identities, as follows.

sI(t) = Sm(t) cos(φs(t)) (2.29)

sQ(t) = Sm(t) sin(φs(t)) (2.30)

In the other direction, we have

Sm(t) =
√

sI(t)2 + sQ(t)2 (2.31)

and
φs(t) = arctan2 (sQ(t), sI(t)) , (2.32)

where arctan2 corresponds to the 2-argument arctangent function and returns a value in the
interval (−π, π]. This function is defined, for two real scalars sI and sQ, as

arctan2 (sQ, sI) , 2 · arctan


 sQ√

s2
I + s2

Q + sI


 . (2.33)

Hence, we can use the synchronous demodulator to extract the amplitude and phase shift of
sm (see (2.28)) as presented in Figure 2.13. That is, given a modulated signal sm in the form of
(2.28), or equivalently in the form of (2.22), the synchronous demodulator allows computing
sI and sQ (sI f and sQ f , respectively). These signals are then used to compute the amplitude,
Sm f , and phase shift, φs f , of the signal, as follows:

Sm f (t) =
√

sI f (t)2 + sQ f (t)2 and φs f (t) = arctan2
(
sQ f (t), sI f (t)

)
. (2.34)

Please note that, while spectral conditions on sI and sQ of (2.22) can be easily established to
ensure sI f = sI and sQ f = sQ, simple conditions for Sm and φs of (2.28) cannot be established
to ensure Sm f = Sm and φs f = φs.
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+

Sm f
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FIGURE 2.13: Block diagram of the synchronous demodulation for the compu-
tation of amplitude and phase of sm.

2.1.5 Real (Nonideal) MEMS Gyroscopes

Up to this point, we have considered the gyroscope as ideal. In this section, we aim to
present the main nonidealities found in real MEMS gyroscopes and discuss their effects on
the angular rate estimation. These nonidealities can be splitted into some groups: mechanical
coupling, error on the synchronous demodulation phase, noises, environmental sensitivity,
parasitic electrical coupling, and nonlinearities.

To evaluate the impact of each group of nonidealities on the angular rate estimation, we
consider a closed-loop operation in which:

(i) KDM enforces x(t) = Are f
x,m/kout,x · sin (ωexct) or, equivalently, xm(t) = Are f

x,m sin (ωexct);

(ii) KSM enforces y(t) ≡ 0 by applying a control signal uy(t);

(iii) the synchronous demodulator, based on ûCor,y(t) = −uy(t) and the phase ωexct, com-
putes sI f (t), which is used afterward to determine Ω̂z.

It is important to highlight that the controllers and synchronous demodulation are assumed
to perfectly ensure the above requirements. Hence, we can isolate the effects of the gyroscope
nonidealities from the effects of the operation nonidealities. The effects of the operation
nonidealities are detailed in Chapter 3.

Mechanical Coupling: Anisoelasticity and Nonproportional Damping

During the fabrication process, a misalignment between the ~x- and ~y-axes (drive and sense
modes) may occur. This imperfection gives origin to anisoelasticity and nonproportional
damping effects. These effects appear in the model as nondiagonal terms in the matrices K
and D, respectively (see [PSP+06, Sau08, Kem11] and references therein for further details).
Thus, the dynamic behavior of the MEMS gyroscope is now described by the equation below:

[
m 0
0 m

] [
ẍ
ÿ

]
+

[
dxx dxy
dyx dyy

] [
ẋ
ẏ

]
+

[
kxx kxy
kyx kyy

] [
x
y

]
=

[
Fx
Fy

]
+ Ωz

[
0 2m
−2m 0

] [
ẋ
ẏ

]
(2.35)

Note that we can define a coupling force vector Fcoup

Fcoup(t) =
[

Fcoup,x(t)
Fcoup,y(t)

]
= −

[
0 dxy

dyx 0

] [
ẋ(t)
ẏ(t)

]
−
[

0 kxy
kyx 0

] [
x(t)
y(t)

]
(2.36)
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and rearrange (2.35) as
[

m 0
0 m

] [
ẍ
ÿ

]
+

[
dxx 0
0 dyy

] [
ẋ
ẏ

]
+

[
kxx 0
0 kyy

] [
x
y

]
=

[
Fx
Fy

]
+

[
FCor,x
FCor,y

]
+

[
Fcoup,x
Fcoup,y

]
, (2.37)

which corresponds to (2.5), adding Fcoup on right-hand side of the equation.

Therefore, the anisoelasticity and the nonproportional damping effects can be interpreted as
the inclusion of a new force at the input of the drive and sense modes, mechanically coupling
them. It is important to mention that, similar to the Coriolis forces, the coupling forces are
sometimes interpreted as exogenous disturbances [Sau08, EMK12], despite their dependence
on the internal signals (states). Let us now discuss the effects of the mechanical coupling on
the operation of the sensor. In this nonideal framework, if the drive-mode controller works
properly, it ensures the oscillation of x with the desired amplitude. In its turn, if the controller
of the sense mode ensures y(t) ≡ 0, we have Fcoup,x(t) ≡ 0 (see (2.36)) and

Fy(t) = −FCor,y − Fcoup,y =
(
2mΩz(t) + dyx

)
ẋ(t) + kyxx(t) (2.38)

(see (2.37)). Now, by considering the actuation and instrumentation gains, we replace x(t) =
Are f

x,m sin (ωexct) /kout,x into (2.38) and with uy(t) = Fy(t)/kin,y, we obtain

uy(t) =
(
2mΩz(t) + dyx

)
Are f

x,mωexc

kout,xkin,y
cos (ωexct) +

kyx Are f
x,m

kout,xkin,y
sin (ωexct) . (2.39)

Then, with ûCor,y(t) = −uy(t) (ideal closed-loop operation), we have

ûCor,y(t) = −
(
2mΩz(t) + dyx

)
Are f

x,mωexc

kout,xkin,y
cos (ωexct)− kyx Are f

x,m

kout,xkin,y
sin (ωexct) . (2.40)

Therefore, after demodulating ûCor,y through the synchronous demodulation, we obtain

sI f (t) = −
(
2mΩz(t) + dyx

)
Are f

x,mωexc

kout,xkin,y
(2.41)

and

sQ f (t) =
kyx Are f

x,m

kout,xkin,y
. (2.42)

We can then rewrite sI f as
sI f (t) = sL

I f (t) + s0
I f (t), (2.43)

where sL
I f is proportional to Ωz and s0

I f is a constant value, that is,

sL
I f (t) = kSF ·Ωz(t) and s0

I f (t) = kZRO (2.44)

with kSF given in (2.27) and kZRO = −dyx Are f
x,mωexc

kout,xkin,y
.

Note that, although the synchronous demodulation allows distinguishing part of the coupling
force contributions present in ûCor,y, the estimate sI f is still perturbed by the nonproportional
damping dyx (term s0

I f (t) = kZRO). This nonideality is one of the main contributors of what
is called a zero-rate output (ZRO) or bias. With the force-to-rebalance control, even under
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ideal operation, this term is always present. The good news is that, even if kZRO may be
not perfectly known, if its value is constant during the sensor operation, an estimation
k̂ZRO ≈ kZRO can be obtained in a calibration step and compensated afterward. Therefore,
we can define a compensation function fcomp as

fcomp(sI f (t)) ,
sI f (t)− k̂ZRO

k̂SF
, (2.45)

such that Ω̂z(t) = fcomp(sI f (t)), and assuming k̂SF = kSF and k̂ZRO = kZRO, we obtain
Ω̂z(t) = Ωz(t).

Finally, it is worth mentioning that (2.42) can be useful to estimate the anisoelasticity term
kyx. In general, sQ f can also be divided by k̂SF, producing the so-called quadrature error ΩQ,
also given in °/s, as in [RCRW09], for instance.

Synchronous Demodulation with a Phase Error

In Section 2.1.4, we considered that the synchronous demodulation uses the same phase ωexct
to demodulate the signal sm. However, it is possible that there exists a difference δφ between
the phase used by the synchronous demodulation and that of sm [SAH07], i.e., for sm given in
(2.22), the synchronous demodulation uses 2 cos

(
ωexct + δφ

)
and−2 sin

(
ωexct + δφ

)
(instead

of 2 cos (ωexct) and −2 sin (ωexct)) to obtain sI and sQ. Let us evaluate the consequence of
this error on the angular rate estimation.

In this case, we have

s1(t) = 2sI(t) cos(ωexct) cos(ωexct + δφ)− 2sQ(t) sin(ωexct) cos(ωexct + δφ)

s1(t) = sI(t)
(
cos(2ωexct + δφ) + cos(δφ)

)
− sQ(t)

(
sin
(
2ωexct + δφ

)
− sin(δφ)

)

and

s2(t) = −2sI(t) cos(ωexct) sin(ωexct + δφ) + 2sQ(t) sin(ωexct) sin(ωexct + δφ)

s2(t) = −sI(t)
(
sin(2ωexct + δφ) + sin(δφ)

)
− sQ(t)

(
cos(2ωexct + δφ)− cos(δφ)

)
.

Thus, after filtering out the high-frequency terms, we obtain
[

sI f (t)
sQ f (t)

]
= R(δφ)

[
sI(t)
sQ(t)

]
,

where R(δφ) is a rotating matrix given by

R(δφ) =

[
cos(δφ) sin(δφ)
− sin(δφ) cos(δφ)

]
.

Now, by considering δφ 6= 0 for the computation of sI f and Ω̂z from ûCor,y (see (2.40)), we end
up with

sI f (t) = −
(
2mΩz(t) + dyx

)
Are f

x,mωexc

kout,xkin,y
cos(δφ) +

kyx Are f
x,m

kout,xkin,y
sin(δφ). (2.46)
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Again, sI f can be rewritten as in (2.43) and (2.44). However, the phase error modifies the
values of kSF and kZRO, as follows:

kSF = −2mAre f
x,mωexc

kout,xkin,y
cos(δφ) (2.47)

kZRO = −dyx Are f
x,mωexc

kout,xkin,y
cos(δφ) +

kyx Are f
x,m

kout,xkin,y
sin(δφ). (2.48)

Finally, we can conclude that, if there exists a phase error on the synchronous demodulation,
this error will produce a loss on the scale factor and an amplification on the bias. For this
reason, it is always desired to have δφ = 0. Nevertheless, if this error is constant during the
gyroscope operation, the actual values of kSF and kZRO can be determined through calibration
and compensated afterward with fcomp.

Environmental Sensitivity

In general, MEMS devices are very sensitive to environmental variations, such as variations
of temperature, pressure or mechanical stress.

Temperature plays an important role on the mechanical properties of the MEMS gyroscope,
modifying the resonance frequency and the quality factor of the resonators [XCWL09]. In
practice, the sensitivity of the resonance frequency to the temperature is so clear that this
property can be used to precisely measure the temperature of the chip [PTS13]. Similarly,
ambient pressure and external mechanical stress may also modify the mechanical properties
of MEMS resonators [XCWL09, TMF17].

Even if the variations of resonance frequency are not huge, because of the high quality factor,
small drifts of the resonance frequency may cause enormous loss of gain, as illustrated
in Example 2.1. This fact reinforces the need to maintain ωexc as close as possible to ω0,x,
which, in practice, varies during the operation of the sensor. On the other hand, variations on
the quality factor are not so critical.

Please note that these nonidealities alter the mechanical properties of the MEMS gyroscope,
hence the model of the to-be-controlled system. If the controllers are robust against these
model variations, we shall not have problems related to the operation of the gyroscope itself.
Nevertheless, even under ideal operation, the estimate Ω̂z is biased by the parameter dyx,
and this parameter may vary with temperature, pressure and/or mechanical stress. Then, it
may turn out that the bias compensation can be less effective under environmental variations,
degrading the quality of the measurement. Similarly, the scale factor compensation can also be
degraded by those variations. Therefore, it is important to adapt the compensation function
fcomp with respect to the environmental changes. In general, one of the major contributors for
the variations of bias and scale factor is the temperature. Then, if the behavior of the bias and
scale factor as function of the temperature is known, by measuring the temperature, fcomp
can be adapted accordingly, see, e.g., [TWY17].

Parasitic Electrical Coupling

The wires linking the controller(s) to the MEMS gyroscope form distributed parasitic ca-
pacitances, creating alternative circuits for the electrical current. Then, part of the control
signal may be fed through the detection circuits. These parasitic capacitances also appear
between the drive and the sense modes, electrically coupling them. This effect is known
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as parasitic electrical coupling, capacitive feed-through or crosstalk and can be modeled by
a linear system Ecoup, connecting the input voltage to the input of the charge amplifier, as
presented in Figure 2.14 (in solid lines) [AS05, CSL+19].

( · )2 kact Gmech kdet kCA

Ecoup

Êcoup

vin F q + + qn

n

++

−

FIGURE 2.14: Model of the parasitic electrical coupling and compensation.

Concerning the presence of an electrical coupling in a MEMS gyroscope, two main problems
can be listed.

(i) This disturbing signal may saturate the charge amplifiers [CSL+19].

(ii) The electrical coupling modifies the transfer between the input voltage and the measured
signal. Thus, the closed-loop system may have its performance quickly deteriorated or
even become unstable.

Therefore, it is essential to capture the behavior of Ecoup and compensate for its effects [LS09,
KAG+17]. In general, this compensation is made through the use of compensation capacitors,
which mimic the parasitic capacitances and provide an alternative path for the current,
minimizing the effect of this nonideality. For a better compensation, a digital filter can also
be used, as discussed in our paper [CSL+19].

Nonlinearities: Spring Hardening and Spring Softening

In a real MEMS gyroscope, there exist several sources of nonlinearities, affecting the dynamic
behavior of the system. However, most of them have in common the fact that, as consequence
of the nonlinearity, the resonance frequency will depend on the amplitude of the input or
output signal.

For some nonlinearities, the resonance frequency will increase when the signal amplitude
increases, as if the stiffness coefficient (kii) had also increased. This is the case when the
amplitude of oscillations is such that the nonlinear hardening of the silicon springs starts to
appear. Hence, augmentation of the resonance frequency caused by a nonlinearity is usually
called the spring hardening [You11]. On the other hand, nonlinearities provoking a reduction
of the resonance frequency are said to soften the structure, the so-called spring-softening
effect. This is typically the case of the nonlinearities linked to the electrostatic actuation and
detection [AOPB09]. In general, when considering these nonlinear effects, the behavior of
MEMS resonators (the drive and sense modes) can be described by the so-called Duffing
equation [You11].

The spring-softening/hardening effects may be beneficial or not. In some specific cases,
this feature is used to modify the resonance frequency of the device, compensating for
changes due to temperature variations, for instance [AOPB09]. Nevertheless, in general, the
spring-softening/hardening effects are avoided.
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Concerning the estimation of the angular rate, the spring-softening/hardening effects can be
considered as modifications on the model, similar to what happens with the environmental
sensitivity.

For further details on the nonlinearities of MEMS devices, we refer the curious reader to the
works [ABLN16, EKT+11, BRLS07, You11], for instance.

Noises

As any physical device, MEMS gyroscopes are also contaminated by noises from different
origins or natures. We can cast as the principal sources of noise in MEMS gyroscopes the
mechanical-thermal and electronic noises.

Due to their tiny dimensions, the moving parts of MEMS devices are susceptible to colli-
sions with agitated molecules of a fluid (gas), provoking a random motion of these moving
parts [Gab93]. This behavior is modeled by a random force, the mechanical-thermal noise,
which appears at the input of the drive and sense modes. The power spectral density of
this force (in N2/Hz) is proportional to Tint/Qi [Gab93, Sau08], where Tint is the absolute
temperature (in K) and Qi is the quality factor (Qx and Qy for the drive and sense modes,
respectively). This relation justifies the necessity to conceive MEMS resonators with high
quality factor to achieve a low-noise measure.

Similarly, electrical-thermal noises are generated in the components of the electronic circuits.
Moreover, in the case of digital control implementation, analog-to-digital and digital-to-
analog converters insert quantization errors, which are usually modeled as additive noise,
disturbing the signal of interest [KM13].

From a system point of view, all these noises can be modeled as a single noise on the
measures of the drive and sense modes. We call this noise the process noise and denote
it n = [nx, ny]. This definition coincides with the one presented in Section 2.1.3 (see (2.13)
and (2.17)). Moreover, we can define two linear systems, Nx and Ny, such that the PSD of nx
and ny, respectively Snx and Sny , are given by

Snx(ω) = |Nx(jω)|2 Sex(ω) and Sny(ω) =
∣∣Ny(jω)

∣∣2 Sey(ω), (2.49)

where Sex and Sey correspond to the PSD of unit-variance zero-mean white-noise signals ex
and ey.

As consequence of the presence of noise in the closed-loop system, the output of the syn-
chronous demodulator is also disturbed by an additive noise [KM13]. Therefore, by taking
into consideration the effects of the noise and of the others nonidealities, we can write the
output of the synchronous demodulator as

sI f (t) = sL
I f (t) + s0

I f (t) + sn
I f (t), (2.50)

where the term sn
I f encapsulates the contribution of the different sources of noise.

Overall Model of a Nonideal MEMS Gyroscope

Having discussed the effects of the main nonidealities, we can now establish the overall
model of a nonideal MEMS gyroscope.

The anisoelasticity and nonproportional damping produce a mechanical coupling between
drive and sense modes. Then, the mechanical part of the MEMS gyroscope is a multivariable
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system with two inputs and two outputs. In addition, the mechanical parameters of the gyro-
scope depend on the operating conditions, such as its temperature, pressure and mechanical
stress. Therefore, the mechanical part of the gyroscope with actuation and instrumentation
can be modeled by a linear parameter-varying (LPV) system Gθ,ρ, whose parameters depend
on θ and ρ. The vector θ ∈ Rnθ represents the known variables, while the vector ρ ∈ Rnρ

represents the unknown ones. That is, θ encapsulates the variables that can be measured in
real time, as the internal temperature Tint, for instance; and ρ englobes the variable that are
not measured in real time, e.g., the mechanical stress and pressure. In general, those variables
vary slowly, such that we can consider that, for each operating condition (θ, ρ), Gθ,ρ is a linear
time-invariant (LTI) or a frozen LPV system.

Similarly, the Coriolis force, which depends on the angular rate, also couples the drive and
sense modes (see (2.35)). The dependence on Ωz can be represented by a feedback loop (more
details on this derivation are given in Appendix A.2), as illustrated in Figure 2.15a (see the
mechanical part in the figure), where the matrix CCor (Ωz) is given by

CCor (Ωz) = 2mΩz

[
0 1

kin,xkout,y
−1

kin,ykout,x
0

]
. (2.51)

We denote Gθ,ρ,Ωz the whole mechanical model (with actuation and instrumetation), indicat-
ing the dependence on the parameters θ and ρ as well as on the angular rate Ωz.

Besides the mechanical part of the gyroscope, the parasitic electrical coupling also has
to be considered. In general, the electrical coupling is compensated. However, the com-
pensation is not perfect and a residual coupling ∆Ecoup may exist. Therefore, the overall
multivariable model of a nonideal MEMS gyroscope can be represented by the scheme of Fig-
ure 2.15a, where we recall that u = col

(
ux, uy

)
, uCor = col

(
uCor,x, uCor,y

)
, qm = col (xm, ym),

qn = col (xn, yn), n = col
(
nx, ny

)
and e = col

(
ex, ey

)
. The measurement noise model is

represented by N = diag
(

Nx, Ny
)
.

In general, the Coriolis force is considered to be exogenous and the dependence of the me-
chanical model on Ωz is neglected. This simplification if often required to analyze the whole
system in a tractable way. Moreover, the uncertainties related to the unknown parameters ρ
and possible modeling errors of the mechanical part and electrical coupling can be encapsu-
lated with ∆Ecoup, defining an uncertain system ∆E. The overall model of the system is then
simplified into the system presented in Figure 2.15b.

Gθ,ρ

N

∆Ecoup

+

u
qm +

d
dt (·)CCor (Ωz)

q̇m

uCor
+ qn

e

n
+

+

Mechanical part: Gθ,ρ,Ωz

(A) Coriolis force as endogenous signal.

Gθ

N

∆E

+

u

uCor

+ qm

+

qn

e

n
+

+

(B) Coriolis force as exogenous signal.

FIGURE 2.15: Overall model of a nonideal MEMS gyroscope.

The uncertain system ∆E can be defined through System Identification techniques [Lju98,
BSG+04, Col20]. Qualitatively, since the signal-to-noise ratio (SNR) is better around the
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resonance frequencies, the uncertainties are small in this frequency range and very important
for low and high frequencies [Col20, AC21].

In the sequel, we present a multivariable model of a MEMS gyroscope, coupling the drive
and sense modes of the examples 2.1 and 2.2.

Example 2.3 (Multiple-input multiple-output (MIMO) model). In this example, we consider the
drive and sense modes of the examples 2.1 and 2.2, adding anisoelasticity terms (kxy = kyx) such that
the quadrature error is of ΩQ = 30 ° s−1. The nonproportional damping terms (dxy and dyx), usually
negligible, are set to 0.

Two cases are studied here. First, we consider Ωz ≡ 0. Then, we consider different values of
Ωz ∈ [−300, 300]°/s, evaluating the changes on the system behavior for different angular rates. In
both cases, we consider the nominal system (with no uncertainties).

The magnitude frequency response of this model is presented in Figure 2.16 and Figure 2.17 (zoom).
First, we note that the diagonal transfers correspond to the drive and sense modes of the previous
examples. However, the mechanical coupling introduces off-diagonal transfers, which present two
resonant peaks: at ω0,x and at ω0,y. It is important to note that these cross-coupling transfers globally
present magnitude smaller that the diagonal ones.

Concerning the variations of Ωz on the system, increasing |Ωz| mainly changes the gains of the
cross-coupling terms around the resonance frequencies and in high frequencies. For this example,
variations on the diagonal terms are negligible.
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FIGURE 2.16: Bode diagram of the MEMS gyroscope for different values of Ωz.
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FIGURE 2.17: Bode diagram of the MEMS gyroscope for different values of Ωz.
Zoom around ω0,x.

Model of the Angular Rate Estimate for a Nonideal MEMS Gyroscope

Recall that the scale factor and the bias depend on the parameters of the MEMS gyroscope.
Now, if these parameters depend on θ and ρ, the scale factor and bias will also depend on θ

and ρ. We denote them respectively kθ,ρ
SF and kθ,ρ

ZRO. Therefore, the estimate Ω̂z is computed
through the θ-dependent compensation function f θ

comp, which is defined as

f θ
comp(sI f (t)) ,

sI f (t)− k̂θ
ZRO

k̂θ
SF

(2.52)

with k̂θ
SF and k̂θ

ZRO being respectively the estimates of kθ,ρ
SF and kθ,ρ

ZRO. It is important to
highlight the k̂θ

SF and k̂θ
ZRO can depend only on the known parameters θ (ρ represents the

unknown parameters).

Let us now rewrite (2.50) as

sI f (t) = kθ,ρ
SF Ωz(t) + kθ,ρ

ZRO + sn
I f (t). (2.53)

Therefore, we can compute Ω̂z through the compensation function f θ
comp of (2.52), obtaining

Ω̂z(t) =
kθ,ρ

SF Ωz(t) + kθ,ρ
ZRO + sn

I f (t)− k̂θ
ZRO

k̂θ
SF

(2.54)

Ω̂z(t) =
(

1 + ε
θ,ρ
SF

)
Ωz(t) + ε

θ,ρ
ZRO +

sn
I f (t)

k̂θ
SF

, (2.55)
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where ε
θ,ρ
SF defines the relative error on the scale factor

ε
θ,ρ
SF =

kθ,ρ
SF − k̂θ

SF

k̂θ
SF

, (2.56)

and ε
θ,ρ
ZRO defines the residual bias, which is given by

ε
θ,ρ
ZRO =

kθ,ρ
ZRO − k̂θ

ZRO

k̂θ
SF

. (2.57)

Hence, the whole MEMS gyroscope can be represented by an operator with input Ωz and
output Ω̂z, as depicted in the scheme of Figure 2.18. Here, H̃θ,ρ

gyro = 1 + ε
θ,ρ
SF and Ωn

z (t) =

ε
θ,ρ
ZRO + sn

I f (t)/k̂θ
SF (see (2.55)).

H̃θ,ρ
gyro

Ωz +

Ωn
z

+ Ω̂z

FIGURE 2.18: Model of the angular rate estimate Ω̂z.

2.1.6 Global Performance Indicators of MEMS Gyroscopes

In the previous section, the main nonidealities of MEMS gyroscopes are introduced and
their effects on the final estimation of the angular rate are discussed. We show that, due
to the presence of these nonidealities, the output of the synchronous demodulator is given
by (2.53) or, after applying f θ

comp, the angular rate estimate can be given by (2.55). Obviously,

if ε
θ,ρ
SF = ε

θ,ρ
ZRO = 0, (2.55) can be rewritten as

Ω̂z(t) = Ωz(t) +
sn

I f (t)

k̂θ
SF

. (2.58)

In this case, the only difference between Ω̂z and Ωz is due to the noise (sn
I f ). Nevertheless,

there might exist nonnull error on the scale factor and on the bias (i.e., ε
θ,ρ
SF 6= 0 and ε

θ,ρ
ZRO 6= 0).

Indeed, because of the uncertainties on the parameters defining kθ,ρ
SF and kθ,ρ

ZRO, the values of
k̂θ

SF and k̂θ
ZRO are often determined through calibration and can only depend on θ. Therefore,

the behavior of ε
θ,ρ
SF and ε

θ,ρ
ZRO through all the operating conditions determines how accurate

the MEMS gyroscope is and define its global performance indicators, which we discuss in
the sequel.

Scale Factor Performance Indicators

The scale factor is defined by standard as

“The ratio of a change in output to a change in the input intended to be measured.
Scale factor is generally evaluated as the slope of the straight line that can be fitted
by the method of least squares to input-output data.” [IEE19]
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In general, the output of the synchronous demodulator is considered to be the gyroscope
output, that is, the signal sI f . Then, considering sI f (t) = kθ,ρ

SF Ωz(t) (see (2.53) with sn
I f (t) ≡ 0

and kθ,ρ
ZRO = 0) as the output signal for a given input Ωz, the constant kθ,ρ

SF determines that
slope, defining the scale factor.

The main scale factor error specifications include.

• Scale Factor Nonlinearity (SFNL): the systematic deviation from the straight line that
defines the nominal input-output relationship [IEE19]. It is usually given in ppm of
the full scale (FS). The SFNL indicates how far from Ωz the estimate Ω̂z can be. This
indicator is often evaluated at a given operating condition and for Ωz ∈

[
−ΩFS

z , ΩFS
z
]
,

where ΩFS
z is the full scale or dynamic range of the sensor. Therefore, we adopt the

definition

SFNL , max
Ωz∈[−ΩFS

z , ΩFS
z ]




∣∣∣Ω̂z −Ωz

∣∣∣
ΩFS

z


 . (2.59)

• Scale Factor Over Temperature (SFOT): indicates the scale-factor temperature sensitivity,
that is, the change in the scale factor resulting from a temperature change [IEE19]. The
SFOT represents the variation of the scale factor kTint

SF over the whole temperature range
of operation Tint ∈ [Tint,min, Tint,max], with respect to the scale factor at the nominal
room temperature, Tint,0. Thus, we adopt the definition

SFOT , max
Tint∈[Tint,min, Tint,max ]




∣∣∣kTint
SF − kTint,0

SF

∣∣∣

kTint,0
SF


 . (2.60)

Bias Error

If the gyroscope is at rest, i.e., Ωz = 0, its output should remain null. However, due to the
process noises, fabrication imperfections, numerical errors, aging and environmental changes
(mainly linked to the temperature), the sensor produces a non-null output. The average of
this measure over time is the bias or zero-rate output (ZRO). For further details, refer to
[SASH06, SAH07], for instance.

The bias or ZRO is often compensated after calibration [TMF17]. Nevertheless, the problem
is its sensitivity with respect to environmental variations and its stability over time. We
consider the indicators below.

• Bias Instability (BI): in this context, the stability is defined as “a measure of the ability of
a specific mechanism or performance coefficient to remain invariant when continuously
exposed to a fixed operating condition” [IEE19]. Obviously, if the sources of this
instability can be measured and the relationship with the ZRO is known, compensation
can be considered. However, if the sources are unknown or cannot be measured, they
cannot be compensated and define the bias instability (BI). Due to its random (rather
unknown) nature, this important performance parameter is related to the noise term
(Ωn

z ), being presented with the noise indicators in the sequel.

• Bias Over Temperature (BOT): indicates the bias temperature sensitivity, i.e., the change
in the bias resulting from a temperature change [IEE19]. Similar to the SFOT, the BOT
represents the variation of the residual bias εTint

ZRO over the whole temperature range
of operation Tint ∈ [Tint,min, Tint,max], with respect to the bias at the nominal room
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temperature, Tint,0. Hence, we adopt the definition

BOT , max
Tint∈[Tint,min, Tint,max ]

(∣∣∣εTint
ZRO − ε

Tint,0
ZRO

∣∣∣
)

. (2.61)

Noise Performance Indicators: RMS Noise and Allan Variance

Giving sequence to the previous discussion, even when no angular rate is applied and the
ZRO is compensated, the gyroscope produces a random signal at its output. This erratic
output, after integration, may produce significant positioning/navigation error. Then, to
characterize the performance of a MEMS gyroscope with respect to the different noises, some
performance indicators are usually evaluated [IEE19], as follows.

• RMS noise: the power of the noise measured in the frequency range of interest.

• Angle random walk (ARW): the angular error buildup with time that is due to white noise
in angular rate and is typically expressed4 in °/

√
h.

• Bias instability (BI): the random variation in bias as computed over specified finite
sample time and averaging time intervals. This nonstationary (evolutionary) process is
characterized by a 1/ f power spectral density. Typically expressed in ° h−1.

While the interpretation of the RMS noise is straightforward, the interpretation of the other
specifications is not. These last two parameters result from the Allan variance of the measured
noise, which is a popular tool used to characterize the noise of inertial sensors [Fre15]. The
Allan variance of the MEMS gyroscope is computed through the following steps [IEE06,
Fre15].

(i) The signal Ω̂z (see (2.55)) is measured with the gyroscope at rest (i.e., Ωz(t) ≡ 0) and
sampled with a sampling period τ0.

(ii) A moving average filter of order m ∈N is applied to the sampled signal. The order of
the moving average filter defines the number of samples or the time τA = mτ0 of the
sample window.

(iii) The variance of the averaged signal for a given τA is the Allan variance of Ω̂z for an
average of length τA, denoted σ2

A(τA).

(iv) Steps (ii) and (iii) are repeated for different τA (or m).

(v) The Allan deviation σA(τA) is then computed and plotted, producing a curve similar to
the one presented in Figure 2.19.

This plot is interpreted as the standard deviation (of variance) of the noise after applying a
moving average of length τA on Ω̂z. The minimum value of σA(τA) defines the BI, which
gives an idea on the minimal noise contribution on the measure. For the example of the figure,
the standard deviation of the averaged noise samples can be as low as 0.8 ° h−1. To achieve
this value, a moving average of length of about 200 h has to be used. The ARW is defined as
the value of a straight line for τA = 1 h. This line corresponds to the line that best fits σA(τA)

with slope equal to −0.5 in a log-log scale [Fre15]. In this example, ARW ≈ 9 °/
√

h.

4In general, the measures of a MEMS gyroscopes are expressed in ° s−1, but they can also be expressed in
° h−1, being 1 ° s−1 = 3600 ° h−1.
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FIGURE 2.19: Example of Allan deviation plot (adapted from [Tro19]).

Dynamic Performance Indicator: the Bandwidth

The previous indicators determine how accurate are the measures of a gyroscope for a con-
stant Ωz. However, it is also important to characterize the behavior of the sensor to measure
time-varying angular rates. The MEMS gyroscope can be seen as a dynamic operator whose
input is the angular rate Ωz and that produces the measure Ω̂z at its output (see Section 3.2.1
for further details). The frequency range in which the attenuation is smaller than 3 dB is
defined as its bandwidth [IEE04].

2.2 Control Architectures in the Literature

In the previous section, a background on the MEMS gyroscopes was presented. At that
point, it was shown how essential are the control loops for the operation of high-performace
MEMS gyroscopes. However, no details on the control strategies were discussed. This section
aims at reviewing the control architectures most used in the literature, theirs strengths and
weaknesses.

In general, the drive and sense modes are considered to be independent single-input single-
output (SISO) systems, and most of the control architectures have been developed under
this assumption. Therefore, we start by reviewing the classical control architectures adopted
to operate the drive and sense modes in closed loop in Section 2.2.1 and in Section 2.2.2,
respectively. Then, in Section 2.2.3, we discuss the limitations of the “independence assump-
tion” and present some recent works that consider a multiple-input multiple-output (MIMO)
framework, integrating in a single controller the operation of the drive and sense modes.

2.2.1 Drive-Mode Control Architectures

The drive mode principal objective is to keep the proof mass oscillating so that in the presence
of an angular rate, part of the oscillating energy is transferred to the sense mode through the
Coriolis force. Because of the strong relationship between the Coriolis force and x (or ẋ), it is
essential to control the amplitude of x, Ax, or of its velocity. Furthermore, if one can provoke
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oscillations exactly at the resonance frequency, the power needed to keep the proof mass
oscillating with a reasonable amplitude is minimal, and, most importantly, the signal-to-noise
ratio (SNR) of the measure is maximized.

Note, however, that the resonance frequency of the drive mode can shift (due to temperature
changes, for instance). Besides the issues related to the fluctuations of temperature, the
performance of the gyroscope can be immensely degraded due to coupling effects, environ-
mental variations, or aging. Therefore, the problem of the drive-mode control can be stated
as follows.

Problem 2.1 (Drive-mode control problem). To design a control system capable of producing and
sustaining the proof mass oscillations with controlled amplitude and a frequency close to the resonance
one, despite the disturbances and model changes.

Thus, two main control objectives are pursued: regulate the amplitude of the oscillations,
and track the resonance frequency. In the literature, different strategies are proposed to cope
with this problem. We present the most common approaches in the sequel; their advantages
and drawbacks are also discussed.

Automatic Gain Control (AGC) with Phase-Locked Loop (PLL)

Historically, to achieve the two control objectives above, two independent control loops are
employed. One loop is conceived to control the oscillations amplitude: the automatic gain
control (AGC) loop. The second one is based on the celebrated phase-locked loop (PLL)
circuits, which allows to track the drive-mode resonance frequency by controlling the phase
shift between the input and output signals. This strategy is motivated by the frequency
response of a second-order resonator, as follows.

Let us consider the model of the drive mode, Gx. If we apply at the input a sinusoidal signal
of amplitude Ux, i.e.,

ux(t) = Ux sin (ωexct) ;

in steady-state, the output of the system is given by

xm(t) = Ax,m sin (ωexct + φx,m) ,

where Ax,m is the amplitude or envelope of xm, and φx,m is its phase shift with respect to the
phase ωexct (phase of the input signal). They are respectively given by

Ax,m = |Gx (jωexc)|Ux and φx,m = arg (Gx (jωexc)) .

Note that the amplitude of the input signal (Ux) has influence only on the amplitude of the
output signal (Ax,m), while the excitation frequency ωexc alters both Ax,m and φx,m. Even so,
the excitation frequency is used to regulate φx,m and the input amplitude regulates the output
one. Then, two (independent) control loops are designed to regulate the amplitude and phase
shift of xm.

For the amplitude control loop, the idea is to design a controller Kamp that, based on Ax,m and
a given reference amplitude Are f

x,m, computes the amplitude Ux such that Ax,m = Are f
x,m, see, for

instance, [AH10, Sau08]. Note that the amplitudes (Are f
x,m, Ax,m and Ux) are constant signals

when Gx is in (sinusoidal) steady-state. Hence, PI controllers are typically employed for this
task.
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For the phase loop, remember that the phase shift of Gx is equal to −90° or −π/2 rad when
it operates at its resonance frequency, that is, arg (Gx (jωexc)) = −π/2 rad (see Example 2.1).
Moreover, this is the only case where a phase shift of −π/2 rad can be obtained. Thus,
the idea here is to design a controller Kph that, based on the measures of φx,m, computes
δω and ωexc = δω + ω0

exc such that φx,m = −π/2 rad [KCV08, Sau08, RCRW09]. Note that,
similar to the amplitude loop, when Gx is in steady-state, the input and output signals of the
controller (respectively, −π/2− φx,m and ωexc) are also constant signals, justifying the use of
a PI controller to close the phase loop.

Finally, the ideal synchronous demodulation (SD) can be employed to feedback the ampli-
tude and phase shift of xm, as presented in Section 2.1.4. The whole scheme of the control
architecture with AGC and PLL is then presented in Figure 2.20.

Kamp × Gx SD
+

Are f
x,m Ux ux xm

Ax,m
−

Kph
∫

sin( · )+−π/2 δω

+

ω0
exc

+ ωexc φexc

φx,m

−

FIGURE 2.20: AGC+PLL architecture for the drive-mode operation.

This control strategy is very popular among the commercialized MEMS gyroscopes [Zur15],
and even used as reference in the IEEE standard [IEE04]. Its success can be due to the
simplicity behind its working principles and to the simplicity of the controllers (PI-like
controller), providing an interesting solution for the drive-mode control problem. Moreover,
as mentioned earlier, although the drive mode operates around its resonance frequency, the
controller works with low-frequency signals (constant in steady-state). This fact may be very
useful in the case of digital implementation of the controllers, for instance. In a certain extent,
the modulation (product at the input of Gx) and the synchronous demodulation bring the
dynamics of the plant from high-frequency range (ω ≈ ω0,x) to low-frequency range (ω ≈ 0).
Then, if the modulation and demodulation processes (high-frequency) are implemented in
hardware, the controllers can be implemented in a processor and operate with a sampling
frequency that can be less than ω0,x. A deeper discussion on this topic is drawn in Chapter 6.

In addition to these interesting features, the architecture AGC+PLL presents several nonlin-
earities in the loops, making the to-be-controlled plants nonlinear. To design the controllers,
the models are usually linearized around a particular operating point [EMK12]. The lineariza-
tion does not allow to model the couplings between amplitude and phase. Hence, no formal
guarantees of performance or stability are given a priori.

Nonlinear Automatic Gain Control (AGC) Architecture

A popular alternative to the AGC+PLL control architecture is the nonlinear AGC loop,
which is presented in [MVG01]. Similar to the AGC+PLL architecture, the nonlinear AGC
architecture presents two loops: one for regulating the amplitude of the oscillations and
another for tracking the resonance frequency through the phase shift introduced by the drive
mode. We call this strategy nonlinear AGC because the oscillations are not induced by a
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PLL (as in the previous case), but by using a nonlinear control law (ux(t) = Ux(t) · ẋm(t)), as
depicted in Figure 2.21, simplifying the phase loop. A synchronous demodulation (SD) is
used to compute the amplitude of ẋm, Av,m, and the amplitude controller Kamp computes the
signal Ux such that Av,m tracks the reference Are f

v,m.

Kamp × Gx
d
dt

SD

+Are f
v,m Ux ux xm ẋm

Av,m

−

FIGURE 2.21: Nonlinear AGC architecture for the drive-mode operation.

The understanding of its principles is rather intuitive. Let us consider the differential equa-
tions of Gx (from (2.15))

ẍm(t) +
ω0,x

Qx
ẋm(t) + ω2

0,xxm(t) = k0,xω2
0,xux(t). (2.62)

Then, with the nonlinear control law ux(t) = Ux(t) · ẋm(t), we obtain

ẍm(t) +
(

1
Qx
− k0,xω0,xUx(t)

)

︸ ︷︷ ︸
2ξe f

ω0,x ẋm(t) + ω2
0,xxm(t) = 0. (2.63)

At this point, we can define the effective damping factor ξe f as

ξe f =
1

2Qx
− k0,xω0,xUx(t)

2
.

The central idea of this architecture is to manipulate the effective damping factor ξe f such
that the oscillations resulting from a nonnull initial condition converge to a sinusoidal
signal with a desired amplitude [MVG01]. The amplitude controller Kamp computes the
signal Ux so that ξe f > 0 when Av,m > Are f

v,m, dampening the system and reducing the

amplitude of the oscillations. On the other hand, when Av,m < Are f
v,m, the controller computes

a signal Ux such that ξe f < 0, what makes the system (transitorily) unstable, increasing the
amplitude of the oscillations. To sustain oscillations with constant amplitude, the effective
damping must by set to 0 by Ux. This conditions is known in the literature as Barkhausen’s
condition [OAL+05]. In this case, the frequency of the oscillations, ωexc, tracks the resonance
frequency ω0,x.

The above description justifies the use of ẋm rather than xm to control the system. Moreover,
recall that the Coriolis force is proportional to Ωz only if the product ωexc Ax is constant
(see Section 2.1.2). This product corresponds to the amplitude of the signal ẋ. Therefore,
controlling ẋm rather than xm allows maintaining the Coriolis force always proportional to Ωz,
despite the variations of ωexc. Nevertheless, an important issue arises. In general, there are
some noises on xm, which are amplified by the time-derivative, specially in high frequencies,
and injected in the loop. Therefore, instead of using ẋm, a phase shifter (all-pass filter) is used
to introduce the required phase shift, as in [AH10, CYC+14], and illustrated in Figure 2.22.
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Kamp × Gx

Phase
shifter

SD

+Are f
x,m Ux ux xm

Ax,m

−

FIGURE 2.22: Nonlinear AGC architecture with a phase shifter.

The nonlinear AGC architecture is considered by numerous authors, such as in [MVG01,
CMTB05, OAL+05, SSL+08, CCD+09, PSL+12]. In addition to provide a relatively simple
structure, this approach ensures at the same time the amplitude control and the resonance
frequency tracking. However, the nonlinearities present in the loop make it difficult to
rigorously analyze the performance of the closed-loop system. The general approach consists
in using averaging methods and linearization to analyze the equilibrium points and their
stability (see [MVG01] and [CCD+09], for instance). Moreover, the resonance-frequency
tracking is demonstrated only through experiments or simulations.

Direct Control Architecture

It has to be stressed that in the previous approaches, the controller does not work directly
with xm (nor ẋm). The controllers from the previous strategies operate based on the amplitude
and phase of xm. Moreover, these controllers do not compute the signal that is applied
to the drive mode; they compute its amplitude and phase (or frequency). As discussed
above, these approaches present interesting features for the operation of the drive mode;
however, from the Control Theory perspective, it is not usual to introduce nonlinear functions
(such as the synchronous demodulation) in the control loop. The major issue is that the
inclusion of these nonlinearities makes harder to formally ensure stability or performance of
the closed-loop system, even if the to-be-controlled plant Gx is linear. Thus, some authors
have been proposing the use of classical control architecture for the drive-mode operation,
e.g., [SHS+99, DA09, PHHN07, PK14]. We call this approach direct control since there are
no modulation elements between the controller and the plant. Figure 2.23 illustrates this
control architecture, in which the controller Kx, based on xm and xre f

m , computes ux such that
xm tracks xre f

m . The signal xre f
m is of the form

xre f
m (t) = Are f

x,m sin (ωexct) . (2.64)

Kx Gx
xre f

m ux xm

FIGURE 2.23: Direct control architecture for the drive-mode operation.

Since this architecture corresponds to the classical feedback loop, different control design
methods can be considered, providing some formal guarantees, under the assumption that
there are no interactions between the drive and sense modes. For instance, adaptive control
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is applied in [SHS+99, PHHN07], model predictive control is used by [PK14], sliding mode
control is employed in [BSK06] and active disturbance rejection control (ADRC) is the choice
of [DA09].

The drawback of this approach is that the controller works with signals with a frequency
content at least equal to ωexc. Hence, in the case of digital implementation, the sampling
frequency has to be sufficiently high to ensure a proper operation. Moreover, except for the
ADRC solution, the effectiveness of the different control strategies is demonstrated only by
simulation. This fact may indicate some difficulties for the implementation in a real MEMS
gyroscope. The main drawback of the ADRC solution is that the controller is based on an
observer that must have a bandwidth much higher than the resonance frequency of the drive
mode. Hence, this solution may be suitable only for gyroscopes whose resonance frequencies
are small.

Finally, we also have to mention that the operating frequency ωexc is set by the reference
signal (see (2.64)), which is supposed to be close to the resonance frequency of Gx, ω0,x.
Nevertheless, if ω0,x changes during the sensor operation, an external loop would be required
to make ωexc track ω0,x automatically.

2.2.2 Sense-Mode Control Architectures

The sense mode can be considered as the main element of a MEMS gyroscope; it is where the
Coriolis force will mainly act on. To operate the sense mode in closed loop, we can state the
control problem as follows.

Problem 2.2 (Sense-mode control problem). To design a control system capable of estimating the
Coriolis force acting on the sense mode, despite the parasitic coupling forces, the variations of the
environment or the device parameters.

To tackle this problem in a closed-loop operation, the force-to-rebalance control strategy
is considered, and the following control objective is defined: keep y(t) ≡ 0 by applying a
force Fy that counteracts FCor,y. As discussed in Section 2.1.2, Fy (or, equivalently, uy) can
then be used as the estimate of the Coriolis force in an ideal gyroscope. This estimate is
demodulated and allows computing the angular rate. From the Control Theory point of
view, this problem can be interpreted as a classical disturbance rejection problem. For the
case of a nonideal gyroscope, the same strategy is considered. However, we have to keep in
mind that, in this case, the estimate of the Coriolis force is perturbed by the coupling forces,
Fcoup,y (or, equivalently, ucoup,y(t) =

Fcoup,y(t)
kin,y

, see (2.19)). The synchronous demodulation and
calibration/compensation are therefore needed to distinguish between those components
(see Section 2.1.5) and to fully solve the problem.

Similar to the drive-mode control, different architectures are found in the literature for the
force-to-rebalance control of the sense mode. In the sequel, we present the most important
ones.

Envelope-Based Control Architecture (I/Q)

The first approach we consider is the envelope-based control architecture. Similar to the
AGC+PLL architecture, two independent control loops are employed to achieve the control
objective. In this case, to keep y(t) = ym(t) ≡ 0, the idea is to null the in-phase and
quadrature terms of the sense-mode displacement y, i.e., its complex envelope. This concept
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became popular with the work presented by Lynch in 1998, which is reproduced in [IEE04,
Annex B].

To understand the idea behind the use of these two loops, let us consider that the drive and
sense modes have the same resonance frequency, i.e., ω0,x = ω0,y, and that the gyroscope
operates at sinusoidal steady state with frequency ωexc = ω0,x. In this case, all the signals
of the system are harmonic and can be decomposed into in-phase and quadrature terms
(see Section 2.1.4). Then, the input uy and the output ym can be respectively written as

uy(t) = uy,I cos (ωexct)− uy,Q sin (ωexct) (2.65)

ym(t) = ym,I cos (ωexct)− ym,Q sin (ωexct) . (2.66)

Recall that at ω = ω0,x = ω0,y, the phase shift added by the sense mode is equal to−90°. Thus,
the in-phase term of uy, uy,I , produces oscillations at the output, which are in quadrature
with cos (ωexct). Similarly, the in-quadrature term of uy, uy,Q, produces oscillations in phase
with cos (ωexct). This means that the term ym,Q only depends on uy,I , as well as ym,I only
depends on uy,Q. Therefore, to achieve the original purpose (maintain ym(t) ≡ 0), a controller
Ky,Q is designed to compensate for the quadrature forces by keeping ym,I(t) ≡ 0, and a
controller Ky,I is designed to compensate for the in-phase forces by ensuring ym,Q(t) ≡
0 [LR02, Zur15]. The whole scheme of this control architecture is presented in Figure 2.24. In
the case where ω0,x 6= ω0,y, the phase shift added by the sense mode at ω = ω0,x is equal to
−90° + δφy with δφy 6= 0. The additional phase shift δφy is introduced on the synchronous
demodulator such that the same reasoning holds when ω0,x 6= ω0,y [Zur15].

Ky,I × Gy SD
+

0 uy,I

cos (ω0,xt)

+ +uy

uCor,y + ucoup,y

+ ym

ym,Q
−

Ky,Q ×+0 uy,Q

− sin (ω0,xt)

ω0,xt + δφy

+
ym,I

−

FIGURE 2.24: Envelope-based architecture for the sense-mode operation.

In this control architecture, if ym(t) ≡ 0 and xm(t) = Are f
x,m sin (ωexct), we also obtain (2.39),

which is recalled below:

uy(t) =
(
2mΩz(t) + dyx

)
Are f

x,mωexc

kout,xkin,y
cos (ωexct) +

kyx Are f
x,m

kout,xkin,y
sin (ωexct) .

Then, comparing this expression to that of (2.65), we obtain

uy,I(t) =
(
2mΩz(t) + dyx

)
Are f

x,mωexc

kout,xkin,y
and uy,Q(t) = −

kyx Are f
x,m

kout,xkin,y
.

Therefore, uy,I corresponds to −sI f in (2.41) and can be directly used to compute Ω̂z as
Ω̂z(t) = fcomp

(
−uy,I(t)

)
. Similarly, uy,Q corresponds to −sQ f in (2.42).
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This control strategy is also popular [LR02, CGZ+11, EMK12, HZH+15, Zur15]. Similar to
the AGC+PLL architecture, the simplicity of the controllers (PI-like controller) is an attractive
feature provided by this control architecture, offering a simple solution for the sense-mode
control problem. Moreover, the controllers also work with low-frequency signals.

On the other side, this architecture also presents several nonlinearities in the loops, making
the to-be-controlled plant nonlinear. Then, to design the controllers, the models are often
linearized around a particular operating point, and no formal guarantees of performance can
be given. Moreover, the in-phase and quadrature loops are considered to be uncoupled. This
case is found only under certain specific conditions, such as when the system is in steady
state and ω0,x = ω0,y.

Direct Control Architecture

An alternative architecture to operate the sense mode is the classical feedback loop, which we
also call direct control architecture and present in Figure 2.25. In this case, based on ym, the
controller Ky computes the signal uy that compensates for the disturbances uCor,y and ucoup,y
such that ym(t) u 0.

−Ky Gy
+

uy

+

uCor,y + ucoup,y

ym

−ûCor,y

FIGURE 2.25: Direct control architecture for the sense-mode operation.

With this architecture, different control design methods can be considered. For instance,
classical design methods are used in [PPK+04, SKL08] to obtain lead-lag compensator and
PID-like controllers. More advanced design methods are also found in literature. We can cite
some examples, such as the adaptive control used in [PH03] or theH∞ synthesis employed
in [SLSK04, HLZ+15], obtaining controllers such that guarantees on the closed-loop system
stability and performance can be given, under the assumption that there are no interactions
between drive and sense modes.

EM-Σ∆ Architecture

Last but not least, we present the electro-mechanical Σ∆ (EM-Σ∆) architecture. This archi-
tecture is inspired by the classical Σ∆ modulators [PB05, RRW08], which are widely used in
analog-to-digital converters (ADC) and whose block diagram is illustrated in Figure 2.26.
This circuit converts an analog signal at the input, IN, into a digital signal at the output,
OUT. The output signal is coded into a single bit through the 1-bit quantizer, and the filter
FΣ∆ has three purposes:

(i) minimize the effects of the quantization error on OUT, at least in the frequency range of
the signal IN;

(ii) ensure that OUT ≈ IN, at least in the frequency range of interest;

(iii) ensure the stability of the closed-loop system.

In the EM-Σ∆ architecture, which is presented in Figure 2.27, the filter FΣ∆ is replaced by a
mechanical element – the sense mode – and an electronic filter or controller Ky. Therefore, the
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FΣ∆
+IN OUT
−

FIGURE 2.26: Classical Σ∆ modulator.

input signal is replaced by uCor,y + ucoup,y. Then, if the controller works properly, the output
signal uy corresponds to the input one, at least in the frequency range of interest. For the case
of a MEMS gyroscope, this interval comprises the frequencies around ω0,x.

Gy Ky
+

uCor,y + ucoup,y ym uy

−

FIGURE 2.27: EM-Σ∆ architecture for the sense-mode control.

Note that this control architecture is very similar to the direct control one. The only difference
between these two approaches is that, in the EM-Σ∆ architecture, there exists a relay between
the controller and the sense mode. This architecture is widely employed, see e.g., [PB05,
ESAES09, RCRW09, EEE+11, CYC+14, CLK16]. The use of a relay (1-bit quantizer) in the
loop brings some interesting advantages over the other architectures, as follows.

(i) The use of a bi-level actuation eliminates the problem with the nonlinear relationship
between voltage and force, which is inherent to the electrostatic actuators.

(ii) In the case of digital implementation of the controller, there is no need to use high-
resolution digital-to-analog converter (DAC), reducing the costs of the system.

(iii) The digital signal at the output is easily used by the signal processing stages (demodu-
lation and compensation).

One of the main drawbacks of the EM-Σ∆ architecture is the presence of the relay in the loop.
This relay is a strong nonlinearity. Hence, performance guarantees cannot be given [RRW08].

Another important drawback concerns the availability of design methods. In general, the
control design methods of the EM-Σ∆ architecture are adapted from the electronic filter
design of the classical Σ∆ modulators [PB05, RRW08]. The issue is that they are not fully
suited for the particular problems of the EM-Σ∆ architecture.

2.2.3 Multivariable Control Architectures

So far, we have supposed that the operation of the drive and sense modes are independent,
that is, the behavior of the drive-mode closed loop does not interfere on the behavior of the
sense mode and vice-versa. Assuming that the drive and sense modes are two uncoupled
SISO systems and that the Coriolis and coupling force are exogenous disturbance is con-
venient to understand the operation of MEMS gyroscope and to design simple controllers.
However, this assumption does not hold in reality. Indeed, these forces couple the oscillating
modes and, instead of a two-independent-SISO system, MEMS gyroscopes are MIMO sys-
tems. Therefore, to properly take into account the different interactions between the drive
and sense modes, multivariable control techniques have to be used for the control design.
Thus, we can define the following problem.
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Problem 2.3 (Multivariable control problem). To design a multivariable control system the solves,
at the same time, Problem 2.1 and Problem 2.2.

In the literature, works on the multivariable control of MEMS gyroscopes are rare. We
can mention the works [PH04, YF13], tackling the problem through adaptive control; the
work [PK14], where model predictive control is employed; and [DZG08], which proposes a
solution based on the ADRC. These approaches have a common point: all of them use a direct
control architecture. That is, based on the measures xm and ym, and on the reference signals
xre f

m and yre f
m , the (single) controller K computes the signals ux and uy such that xm = xre f

m and
ym = yre f

m . This description is depicted in Figure 2.28.

K GΩz

xre f
m

yre f
m

ux

uy

xm

ym

FIGURE 2.28: Multivariable direct control architecture for the gyroscope opera-
tion.

The works [PK14] and [DZG08] adopt a conventional closed-loop operation of the gyroscope,
that is, xre f

m is a sinusoidal signal and yre f
m is set to 0; the signal uy is then used to compute Ω̂z.

On the other hand, [PH04] proposes a mode of operation, in which yre f
m is also a sinusoidal

signal with a frequency different of that of xre f
m . This strategy allows directly estimating the

parameter Ωz.

The biggest advantage of the MIMO approach is that the multivariable nature of the MEMS
gyroscope is properly taken into account and strong nonlinear components are not present
in the loop. Therefore, advanced multivariable control design methods can be applied, and
formal guarantees of stability and performance can be given.

Some drawbacks of the MIMO approach also have to be mentioned. An important drawback
is that these advanced methods require a certain expertise on Control Theory to design the
controller and to implement the solution. Therefore, besides the efforts to demonstrate the
interest on the use of MIMO approaches, further efforts have to be dispensed to make the
solution accessible to the MEMS designers. Finally, as well as for the drive-mode direct
control architectures, only works based on the ADRC solution present practical results.

2.2.4 Summary of the Control Architectures

Let us now summarize the main information on the control architectures presented in
this section and compare their advantages and drawbacks. Note that the different control
architectures can be regrouped into envelope-based, direct, and nonlinear architectures.

The control architectures based on the envelope of the signals comprise the AGC+PLL and
the I/Q approaches. The main advantage of these strategies is that instead of operating with
harmonic signals with frequency around ω0,x, the controllers can operate with low-frequency
signals. The problem of tracking or rejecting sinusoidal signals becomes a problem of tracking
or rejecting constant (or low-frequency) signals. Hence, simple PI controllers can be used to
regulate amplitude and phase or the quadrature terms of the harmonic signals.
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One issue of the envelope-based approaches is that, even if the gyroscope model is (mainly)
linear, nonlinearities (modulation and demodulation) are included in the control loop, making
the overall system nonlinear. Moreover, the coupling between amplitude and phase, or
between the in-phase and the in-quadrature terms is neglected. Thus, no formal guarantees
of stability or performance can be given a priori.

Alternatively, the direct control architectures can provide those guarantees. Furthermore, this
is the only architecture used in the MIMO framework. Despite the rarity of implementation
results in the literature, the few practical results indicate that the direct control architecture
can be successful implemented in a real MEMS gyroscope.

We have to mention, however, that controllers for the direct approach are, in general, more
complex (higher order) than those used with envelope-based approaches, requiring more
resources for their implementation. Another drawback of this approach is that the resonance
frequency is not tracked. An external loop is needed to achieve this purpose. Finally, the
design of a direct controller usually requires the system designer to have a good expertise on
advanced control theory.

Finally, we have the nonlinear architectures AGC and EM-Σ∆. The strengths and weakness
of these architectures are similar to those of the envelope-based ones. Globally, they are
well-suited for the implementation on integrated circuits with low resources, thanks to their
simplicity. Nevertheless, no formal guarantees of performance can be given due to the
presence of strong nonlinearities in the loop (product Ux(t)× ẋm(t) in the AGC and relay in
the EM-Σ∆ architecture).

2.3 Experimental Setups

For the proper operation of a MEMS gyroscope, some auxiliary systems are needed. Indeed,
further than the MEMS itself, electronic circuits are used for actuation and detection, for the
implementation of the controller(s), and for signal processing to compute the angular rate.
In general, all these functionalities are implemented in an application-specific integrated
circuit (ASIC), interfacing the MEMS gyroscope with the outside world. A typical system
architecture, integrating MEMS and ASIC, is presented in Figure 2.29, where the variable
capacitors represent the capacitive actuation and detection elements of the MEMS. In this
example, the control loops of drive (DM) and sense (SM) modes are independents. Both loops
are composed of: a charge amplifier (CA), which converts the varying detection capacitance
into voltage; an analog-to-digital converter (ADC); a configurable digital controller; and a
digital-to-analog converter (DAC). Then, based on the signals of the drive and sense modes,
the angular rate can be estimated and compensated in function of the temperature. The
estimation of the angular rate is then output through some communication protocol.

It is worth mentioning that ASICs are integrated circuits conceived to execute some specific
task. Thus, the control loops implemented in an ASIC are often only configurable, that is, the
control architecture is fixed and only some parameters can be changed in order to optimize
the controllers to the different MEMS.

In some cases, the ASIC implements only the actuation and detection circuits. The controllers
and the angular rate estimation are deported to an external field-programmable gate array
(FPGA) or processor, where those elements are programmed in software, providing flexibility
for the implementation of different control loops and estimation algorithms. This architecture
is presented in Figure 2.30.
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FIGURE 2.29: Integration of MEMS and ASIC. Adapted from [EEE+11].

FIGURE 2.30: Integration of MEMS, ASIC and a processor.
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In this work, we consider both cases: the flexible architecture of Figure 2.30 and the dedicated
one of Figure 2.29.

2.3.1 AS3125-SDK: a Flexible Sensor Development Kit

Part of the experimental tests are realized on the AS3125-SDK (Sensor Development Kit),
which is conceived by ASYGN and whose picture is presented in Figure 2.31a. This devel-
opment kit presents a system architecture similar to the one of Figure 2.30 and is mainly
composed of:

(i) an FPGA (Xilinx Zynq), which includes a micro processor, for the digital implementation
of the control loop and estimation algorithms;

(ii) a front-end ASIC (AS3125 “Idyle”) and ADCs to interface MEMS sensors with the
FPGA;

(iii) Universal serial bus (USB) ports for communication with external devices, e.g., a com-
puter.

The FPGA and the USB ports are on the bottom part of the development kit, being hidden in
the picture.

(A) Development kit with a MEMS gyroscope.

(B) A MEMS gyroscope.

FIGURE 2.31: Pictures of the development kit and MEMS gyroscope.

The ASIC AS3125 “Idyle” is dedicated to interface the MEMS gyroscope to the FPGA and, in
summary, integrates:

(i) charge amplifiers with configurable gains (instrumentation circuits),

(ii) 10-bits DACs,

(iii) drivers or amplification circuits for actuation.

Moreover, the development kit also includes 18-bits ADCs operating at 1 MHz and second-
order anti-aliasing filters Fadc with 100 kHz cutoff frequency,

The FPGA implements a micro processor in which the control loops and the estimation algo-
rithms are coded in C++ language. The implemented processor allows the implementation
of digital control loops with sampling frequency Fs = 62.5 kHz. To reduce the sampling
frequency of the ADCs from 1 MHz to 62.5 kHz, a digital filter Fds and a downsampling (or
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decimation) by a factor 16 are implemented in hardware (FPGA). The FPGA also configures
the ASIC and communicates with a computer through the USB ports.

The diagram of Figure 2.32 represents the overall control loop implemented in this develop-
ment kit, illustrating the above description.

DEVELOPMENT KIT

ASICASIC

FPGA
µ-Processor

MEMS Gyroscope

K

DAC ( · )2 kact Gmech kdet kCA

Ecoup

FadcADCFds↓ 16

Are f
x,m

ωexc

vin + +

vout

ûCor,y

FIGURE 2.32: Overall control loop implemented in AS3125-SDK for the MEMS
gyroscope operation.

On this development board, we use the MEMS gyroscopes of the family GYRO I, whose
nominal main characteristics are listed in Table 2.1.

TABLE 2.1: Nominal characteristics of the MEMS gyroscopes of the family
GYRO I.

Parameter Drive mode (i = x) Sense mode (i = y)
Resonance frequency (ω0,i) 11 500 Hz 11 550 Hz

Quality factor (Qi) 100 · 103 10 · 103

2.3.2 Tronics’ Platform with Dedicated ASIC

Another part of the experiments is realized on the platform of Tronics, which is a generic
development board used to interface the MEMS gyroscopes and dedicated ASIC with a
computer. The dedicated ASIC contains all the control loops and estimation process, and is
implemented in the same chip of the MEMS with the system architecture of Figure 2.29.

The drive mode operates in closed loop in a nonlinear AGC architecture with phase shifter
and a PI controller. An interesting feature of this platform is that the sampling frequency
is locked with the resonance frequency of the drive mode, such that Fs = 36 · ω0,x/(2π).
Then, when ω0,x changes during the gyroscope operation, the sampling frequency changes
accordingly, adapting the behavior of the digital elements.

The sense mode can operate in open or closed loop. As discussed in Section 2.1.2, we consider
only the closed-loop operation. In this platform, the EM-Σ∆ architecture of Figure 2.33 is
employed. We present, in the same figure, the elements of the actuation and instrumentation
(see Section 2.1.3), indicating the key signals of the loop, as the Coriolis force (FCor,y, which is
perturbed by the coupling force Fcoup,y), the input voltage (vin,y) and the output voltage (ym).
Some actuation and instrumentation gains, as well as the coefficients of the electronic filter,
are programmable. They are identified in gray. The ADC has a resolution of 13 bits, while the
DAC has a 1-bit resolution.
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Please note that, in opposition to the previous platform, the parasitic electrical coupling
(Ecoup) is not represented here. Two facts justify its omission. First, because the MEMS and
the ASIC are encapsulated in the same chip, the paths between them are short, reducing the
parasitic electrical coupling.

Gmech
y kdet,y kCA,y ADC 1

z−1
z

z−1 a4

a3

a2

g2

a f b

DAC( · )2kact,y

+FCor,y +

Fcoup,y

yn + ++

+

+

−
OUT

vin,y

−

+

Controller (electronic filter)

FIGURE 2.33: EM-Σ∆ architecture implemented in the dedicated ASIC. Config-
urable elements are represented in gray.

Finally, the angular rate estimation is implemented through the synchronous demodulation.
The output bias (or ZRO) and the scale factor are compensated in function of the temperature.

A picture of the Tronics’ platform with a MEMS gyroscope is presented in Figure 2.34. On this
development board, we use the MEMS gyroscopes of the family GYRO II, whose sense-mode
main nominal characteristics5 are ω0,y = 1.004 ·ω0,x and Qy = 25 · 103.

FIGURE 2.34: Picture of the Tronics’ platform with a MEMS gyroscope.

2.4 Research Questions

In this chapter, the MEMS gyroscopes are presented and the most significant control architec-
tures are discussed. Now, taking into account the nonidealities, implementation constraints
and the different solutions considered in the literature, the main problem we want to address
is: how to choose a control architecture and design, in a systematic manner, a controller such that
stability and performance guarantees can be given?

Answering to that question is not an easy task. Indeed, in Section 2.2.4, we can note that,
regarding the actual solutions, those which are typically implemented do not provide formal

5For confidentiality reasons, the frequencies are normalized to the drive-mode resonance frequency ω0,x.
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guarantees of performance. Indeed, the control architectures are usually optimized in terms
of cost and simple implementation. Nevertheless, the couplings between the drive and sense
modes, the couplings between amplitude and phase (or in-phase and in-quadrature terms),
as well as the dependence on environmental conditions, are not taken into account. On the
other side, solutions based on the direct control architecture, for which formal performance
guarantees can be given, are very rare in the literature. For this architecture, advanced control
techniques have been developed for vibration control of mechanical systems, as in [Wan19],
for instance. The main interest of this approach is to explicitly take into account the different
couplings and the dependence on the environmental condition, with formal guarantees of
stability and performance. Nevertheless, their applicability to MEMS gyroscopes, including
implementability, is still an open question. A possible reason is the inherent complexity of
the controllers.

Note that the performance indicators of MEMS gyroscopes are related to the quality of the
measure and not (directly) to the closed-loop behavior. Indeed, the closed loop is a part of
the whole gyroscope, and has an final objective to provide an estimate of the Coriolis force,
which is treated afterward in a post-processing stage. Then, the first research question is:

(Q1) how to relate the global performance specifications to specifications for the closed-loop system?

Having defined the closed-loop specifications, the problem is: how to design a controller for
the direct control architecture that ensures the given closed-loop specifications? As discussed in
this chapter, the control objectives can be cast as to track of reject sinusoidal signals with
the excitation frequency ωexc. However, this frequency may vary over time. Therefore, two
scenarios are considered, giving rise to the two research questions below.

(Q2) Assuming that ωexc is constant over time, how to design a direct controller with guarantees of
stability and performance?

(Q3) Assuming that ωexc varies over time, how to design a direct controller with guarantees of
stability and performance?

Although the traditional control architectures do not provide formal guarantees for the
closed-loop system, they present interesting features from the implementation point of view.
Then, we also want to find an answer to the question:

(Q4) how to design a controller for an envelope-based control architecture such that guarantees of
stability and performance can be given?

Finally, we want to implement the proposed solution(s) in the platforms presented in Sec-
tion 2.3: the flexible (see Section 2.3.1) and the dedicated one (see Section 2.3.2). In both cases,
the controller is implemented in the discrete-time domain. Therefore, the two following
questions arise.

(Q5) How to properly design a controller for digital implementation in a flexible platform?

(Q6) How to properly design the EM-Σ∆ controller of a dedicated platform?

The next chapters aim to answer each one of these research questions.
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Chapter 3

From Global Performance
Specifications to Closed-Loop
Specifications

In Section 2.1.5, we investigated how the gyroscope nonidealities impact the estimate of Ωz
under the assumption of ideal operation, that is, when the system operates with a controller
that ensures the perfect tracking of the reference signal and perfect estimation of the Coriolis
force acting on the sense mode. Obviously, this ideal controller cannot be implemented in
practice. However, that analysis gives important insights on how the quality of the measure
is impacted by the nonidealities of the MEMS gyroscope. In this chapter, we go a little deeper
in that direction. We consider that the gyroscope operates with a real (nonideal) controller.
Then, we aim to define the conditions that a real controller has to fulfill in order to ensure a
certain quality of the measure (e.g., a given SFNL and/or bandwidth).

At this point, it is important to recall that the gyroscope global performance specifications
pertain to the estimation of the angular rate, whereas the performance criterion of the control
loops pertain to the behavior of the closed-loop system, before the synchronous demodulation.
Therefore, it is crucial to translate the gyroscope global performance requirements into
specifications for the closed-loop system. These specifications will be used in the next
chapters to design the controller.

It is also worth recalling that the MEMS gyroscope is very sensitive to environmental changes
and to fabrication imperfections, hence its model is not completely known. Then, in addition
to pursue the performance specifications, we have to ensure that the closed-loop system is
stable despite the modeling errors or changes on the model due to environmental changes,
for instance. Based on this discussion, we can talk about four characteristics of a closed-loop
system, as follows [SP01].

(i) We talk about nominal stability when the nominal closed-loop system is stable. In this
case, the model uncertainties are not taken into account.

(ii) If the nominal system (with no uncertainties) achieves the performance specifications,
we talk about nominal performance.

(iii) Robust stability is the characteristic of the systems that are stable for all possible models
around the nominal one.

(iv) Finally, we talk about robust performance when the closed-loop system achieves the
performance specifications for all possible models around the nominal one.



56 Chapter 3. From Global Performance Specifications to Closed-Loop Specifications

The main goal of this chapter is to define the closed-loop performance specifications such that
the MEMS gyroscope global performance indicators are achieved. Here, the focus is given to
the controller design. In general, we want this controller to ensure the robust performance of
the system. However, the design of a controller that ensures robust performance is a problem
reputed to be hard to solve [BYDM94]. On the other hand, the design of a controller that
ensures nominal performance and robust stability is a problem that can be efficiently solved.
We focus therefore on solving the latter problem. Once the controller is designed, the robust
performance can be assessed by an a posteriori analysis, see, e.g., [AC21].

Hereafter, when talking about performance, we are referring to the nominal performance
property; when talking about robustness, we are actually referring to the robust stability.

We start the chapter by presenting the main problem which we aim to solve here: determine
the closed-loop specifications that ensure the desired (nominal) performance specification and
robust stability. To tackle this problem, we first analyze the sensor output Ω̂z under nonideal
operation. This analysis allows establishing the main links between the global and the closed-
loop specifications. Then, we quantify, when possible, the closed-loop specifications for
performance and robust stability. When it is not possible to quantify those specifications, we
qualitatively indicate where and how to act for enhancing the global specification in question.

3.1 Problem Statement

In this section, we define the main problem to be tackled in this chapter. To this purpose, we
start by recalling the closed-loop operation of the MEMS gyroscopes and the main control
objectives. Then, we make some assumptions to tackle the problem in a tractable manner.
Finally, the problem under investigation is stated.

3.1.1 System Description and Control Objectives

As intensively discussed in the previous chapter, to design a gyroscope that provides a
good quality of measure, the use of control loops is required. Then, we consider the general
multivariable direct control architecture of Figure 3.1. The plant Gθ,ρ,Ωz represents the me-
chanical part of the MEMS gyroscope and all circuitry needed for actuation and detection. As
discussed in Section 2.1.5 (page 32), the mechanical part of the gyroscope can be modeled by
Gθ,ρ with a feedback loop, which represents the dependence on Ωz. The controller is denoted
by Kθ . The superscripts θ and ρ indicate that the system parameters may depend on θ and ρ.
The variable θ corresponds to the known parameters, which can be measured and used by
the controller. In its turn, ρ represents the unknown parameters. The block ∆Ecoup models
the residual electrical coupling.

In the considered control architecture, xre f
m and yre f

m denote the reference signal for the posi-
tions xm and ym of the proof mass along the ~x- and the ~y-axes, respectively; nx (respectively
ny) corresponds to the noise on the measure of xm (resp. ym); uCor,x (resp. uCor,y) denotes the
Coriolis force acting on the drive (resp. sense) mode; and finally, ûCor,y is the estimate of
uCor,y.

As discussed in Section 2.1, the demodulation of ûCor,y followed by the compensation function
( f θ

comp, defined in (2.52), page 35) leads to an exact estimate Ω̂z of the angular rate Ωz if the
conditions below are verified.

(C1) Synchronous demodulation ideality condition: the synchronous demodulation (SD)
is ideal (i.e., the low-pass filters FLP are ideal and have cutoff frequency ωc = ωexc).
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FIGURE 3.1: Control architecture for the MEMS gyroscope closed-loop opera-
tion.

(C2) Band-pass condition of ûCor,y: the signal ûCor,y is band-pass with bandwidth 2ωexc
centered at ωexc, that is,

∀ |ω| ≥ 2ωexc, SûCor,y(ω) = 0 and SûCor,y(0) = 0. (3.1)

(C3) Coriolis force estimation condition: the estimate of the Coriolis force acting on the
sense mode is given by

ûCor,y(t) = kSFΩz(t) cos (ωexct) (3.2)

with

kSF =
−2mAre f

x,mωexc

kout,ykin,y
. (3.3)

In this chapter, we focus on the behavior of the closed-loop system. Then, since the syn-
chronous demodulation is outside the control loops, we make the following assumptions,
regarding the conditions (C1) and (C2).

Assumption 3.1. The synchronous demodulation is ideal with filters whose cutoff frequency is
ωc = ωexc.

Assumption 3.2. The bandwidth of the signal Ωz, which is defined as ωΩ such that

∀ |ω| ≥ ωΩ, SΩz(ω) = 0, (3.4)

is smaller than ωexc, that is, ωΩ < ωexc.

The second assumption ensures that, if the condition (C3) is satisfied, the condition (C2) also
holds (see Section 2.1.4, page 23).
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The condition (C3) is ensured in steady state if there is a controller that achieves the following
control objectives.

(O1) Drive-mode reference tracking: the signal xm tracks the reference signal

xre f
m (t) = Are f

x,m sin (ωexct) , (3.5)

where Are f
x,m and ωexc are constant values.

(O2) Estimation of the Coriolis force: the signal ûCor,y is an accurate estimate of uCor,y, that
is, ûCor,y(t) = uCor,y(t).

(O3) Sense-mode disturbance rejection: the signal ym tracks the reference signal yre f
m (t) ≡ 0,

rejecting the disturbances created by the Coriolis and coupling forces.

These control objectives are justified by the fact that the Coriolis force uCor,y is defined as

uCor,y(t) =
−2mΩz(t)ẋm(t)

kout,xkin,y
. (3.6)

Hence, if the objectives (O1) and (O2) are fulfilled, the condition (C3) is promptly satisfied.

In order to improve the tracking of xre f
m by xm – control objective (O1) –, it is also interesting

to have, in steady-state, uCor,x(t) = 0. Since

uCor,x(t) =
2mΩz(t)ẏm(t)

kout,ykin,x
, (3.7)

this goal can be achieved if ym tracks yre f
m (t) ≡ 0, which corresponds to the third control

objective (O3).

In practice, however, its is not possible to implement a controller that perfectly achieves
the above objectives. Thus, we can define the tracking errors εx(t) , xre f

m (t)− xm(t) and
εy(t) , −ym(t) as well as the estimation error εest(t) , uCor,y(t)− ûCor,y(t) to quantify the
closed-loop performance.

Remark 3.1 (On the amplitude of ym). It is important to highlight that although we consider
the model of the gyroscope as a linear system, the real gyroscope is actually nonlinear.
Therefore, enforcing ym(t) = 0 plays two important roles. The first one, as discussed above,
is to eliminate (or at least attenuate) the disturbances on the drive mode provoked by uCor,x.
The second one is to keep the gyroscope operating in a region where its behavior is rather
linear.

It is also important to highlight that, in practice, the process noises also disturb the estimate
ûCor,y. As discussed in Section 2.1.5, these noises are modeled by Nx, Ny and the signals ex
and ey, which are assumed to be as follows.

Assumption 3.3. The signals ex and ey are assumed to be uncorrelated white noises with zero mean
and unit variance, such that their PSD can be respectively given by

Sex(ω) = 1 and Sey(ω) = 1. (3.8)
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3.1.2 Analysis Model

In general, even if Gθ,ρ, Kθ , FLP, Nx and Ny are linear systems, it can be hard to evaluate the
behavior of the whole system of Figure 3.1. This difficulty comes from:

(i) the dependence of Gθ,ρ and Kθ on the parameters θ and ρ,

(ii) the time-varying nature of the synchronous demodulation and of the to-be-controlled
plant (due to the dependence on Ωz),

(iii) the presence of the uncertain system ∆E.

As discussed in Section 2.1.5, the variations of the parameters θ and ρ are very slow with
respect to the system dynamics. We can then make the following assumption.

Assumption 3.4. The operating condition does not vary over time.

This assumption implies that the parameters θ and ρ are fixed and the LPV systems Gθ,ρ and
Kθ are frozen. In this case, Gθ,ρ and Kθ become LTI systems. Moreover, the uncertainties
represented by ρ can be encapsulated with those represented by ∆Ecoup into the uncertain
system ∆E. Thus, we drop hereafter the dependence on θ and ρ to alleviate the notation.

In Section 2.1.4, we saw that even if the synchronous demodulation is based on multiplications
by sinus and cosinus functions (modulation), in the special case where ωexc is constant,
frequency-domain analysis tools can be used (see Remark 2.1, page 25).

On the other hand, regarding the time-varying nature of the to-be-controlled plant (due to
Ωz), we consider that the Coriolis forces uCor,x and uCor,y are exogenous signals, which we
hereafter denote dCor,x and dCor,y to distinguish from the endogenous signals uCor,x and uCor,y.
Neglecting the presence of noise, they are of the type

dCor,x(t) =
2mΩz(t)ωexc Ay,m

kout,ykin,x
cos (ωexct) , (3.9)

dCor,y(t) =
−2mΩz(t)ωexc Ax,m

kout,xkin,y
cos (ωexct) , (3.10)

where Ay,m ∈
[
0, ε̌y Are f

x,m

]
and Ax,m ∈

[
(1− ε̌x) Are f

x,m, (1 + ε̌x) Are f
x,m

]
. The tracking error

signals εx and εy are sinusoidal signals with frequency ωexc. The variables ε̌x ∈ R+ and
ε̌y ∈ R+ bound the amplitude of εx and εy with respect to Are f

x,m, that is,

∀t ∈ R, |εx(t)| ≤ ε̌x Are f
x,m and

∣∣εy(t)
∣∣ ≤ ε̌y Are f

x,m.

The equations (3.9) and (3.10) follow from the definitions of uCor,y and uCor,x (see (3.6) and
(3.7)) when

xm(t) = Are f
x,m sin (ωexct)− εx(t) and ym(t) = −εy(t).

Therefore, the scheme of Figure 3.1 can be simplified into the scheme of Figure 3.2, where the
closed-loop system is LTI. An additional assumption is made.

Assumption 3.5. If the LTI closed-loop system of Figure 3.2 is stable and achieves some performance
specifications (reference tracking and Coriolis force estimation), the system of Figure 3.1 is also stable
and achieves the same performance specifications.
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FIGURE 3.2: Simplified scheme of the closed-loop system under analysis.

With the assumption above, instead of analyzing the LTV system of Figure 3.1, we can
extrapolate the results of the LTI system of Figure 3.2 to the former one. The attentive reader
may be asking himself if we are not too optimistic. Indeed, this assumption carries a certain
degree of optimism. However, we will show that, at least for the gyroscopes considered
within the scope of this thesis, the level of optimism is very low.

Finally, remember that, in this chapter, we want to separately define the closed-loop specifi-
cations for nominal performance and for robust stability. Therefore, to evaluate the nominal
performance and establish the closed-loop specifications, we consider the case where there
are no uncertainties, i.e., ∆E = 0. The uncertainties (∆E 6= 0) are taken into consideration in a
second time, establishing specifications for robust stability.

3.1.3 Analysis Problems

In Section 2.1.6, we claimed that a MEMS gyroscope can be modeled as a dynamic system
that produces a measure Ω̂z of the angular rate Ωz under which it is subject. Obviously, the
measure is not perfect. Measurement errors can be introduced by the gyroscope itself. These
errors can be related to the different sources of noise, to some inaccuracy or dysfunctioning
of the sensor or to its dynamic response. Then, global performance indicators are used to
characterize the quality of the measure of a given sensor. Here, we focus in some of the key
indicators, as follows.

Accuracy: the accuracy of the sensor for a constant Ωz can be given by the scale factor
nonlinearity (SFNL). It indicates the maximum systematic error with respect to the full
scale (or dynamic range) ΩFS

z that can be committed by the sensor. These systematic
errors can be originated from the nonlinearities of the system as well as by systematic
errors committed by the controller, for instance. Here, in an LTI framework, we are only
able to evaluate the second type of errors. We recall the SFNL definition below

SFNL , max
Ωz∈[−ΩFS

z , ΩFS
z ]




∣∣∣Ω̂z −Ωz

∣∣∣
ΩFS

z


 . (3.11)
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Bandwidth: the bandwidth of a MEMS gyroscope, denoted ωB, is the frequency range in
which its attenuation is smaller than 3 dB (equivalent to a gain of

√
2/2) [IEE04]. If

the sensor has frequency response given by Hgyro(jω), we define its bandwidth as the
frequency ωB such that

∀|ω| < ωB,
∣∣∣∣1−

Hgyro(jω)

Hgyro(0)

∣∣∣∣ < 1−
√

2
2

. (3.12)

Noise sensitivity: the noise sensitivity of the sensor is related to the precision (repeatabil-
ity) of the measures. In general, different sources of noise are present in the system,
producing different consequences on the quality of the measure. To characterize them,
the Allan variation is usually used, defining different performance parameters. Here,
we focus on the angle random walk (ARW). This choice is justified in Section 3.3.4.

Based on the above global performance parameters, we can finally state the main problem
that we aim to solve in this chapter.

Problem 3.1. Let us consider the system of Figure 3.2 with input signals xre f
m , dCor,x and dCor,y given

in (3.5), (3.9) and (3.10), respectively; with yre f
m (t) ≡ 0; and with ex and ey satisfying Assumption 3.3.

Then, which closed-loop specifications allow one to ensure the global performance specifications below?

(i) The sensor SFNL is smaller than a given kSFNL > 0.

(ii) The sensor bandwidth ωB is larger than a given ωdes
B > 0, in rad s−1.

(iii) The sensor ARW is smaller than than a given kARW > 0, in °/
√

h.

Obviously, prior to achieve a desired performance, the controller has to ensure the proper
closed-loop operation of a real MEMS gyroscope. This means that the controller must fulfill,
at best, the conditions and control objectives of Section 3.1.1 (reference tracking, estimation of
the Coriolis force, disturbance rejection and band-pass condition). For a real controller, they
can then be rewritten as the specifications below.

(S1) Drive-mode reference tracking: the signal xm tracks the reference signal xre f
m , defined

in (3.5), with a tracking error εx such that, in steady state, |εx(t)| ≤ ε̌x Are f
x,m with 0 <

ε̌x � 1.

(S2) Estimation of the Coriolis force: the signal ûCor,y estimates dCor,y of the form of (3.9)

with an estimation error εest such that, in steady state, |εest(t)| ≤ ε̌est Are f
x,m with 0 <

ε̌est � 1.

(S3) Sense-mode disturbance rejection: the signal ym tracks the reference signal yre f
m (t) ≡ 0

with an error εy such that, in steady state, |εy(t)| ≤ ε̌y Are f
x,m with 0 < ε̌y � 1.

(S4) Band-pass condition: the signal ûCor,y is a band-pass signal centered at ωexc with band-
width smaller than 2ωexc.

(S5) Robust stability: the closed-loop system is stable against the uncertainties represented
by ∆E.

Therefore, solving Problem 3.1 also requires the definition of closed-loop specification fulfill-
ing the specifications (S1)–(S5). To solve this problem, we first need to compute the expression
of the signals ûCor,y, xm and ym as functions of the input signals xre f

m , dCor,x, dCor,y, ex and ey
– specifications (S1) to (S4). To determine the accuracy and the bandwidth of the sensor –
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specifications (i) and (ii), respectively –, we have to demodulate ûCor,y and compute Ω̂z as
function of the input angular rate Ωz, neglecting the contributions of the different sources of
noise. For the noise sensitivity – specification (iii) –, we have to compute the PSD of Ω̂z, SΩ̂z
with the sensor at rest (i.e., Ωz ≡ 0). In this case, we consider the nominal system, i.e., with
∆E = 0. The uncertainties are taken into account for the robust stability specification (S5),
being treated separately in an LTI framework in the end of the chapter.

3.2 Analysis of the Angular Rate Estimate Ω̂z

Before proceeding with the solution of Problem 3.1, we have to analyze how the estimate
of the angular rate, Ω̂z, behaves under nonideal operation of the MEMS gyroscope. The
analysis here presented is used in the next sections to determine the closed-loop specifications
required to achieve the desired performance specifications.

Let us begin the analysis by defining xre f
m , dCor,x, dCor,y, ex and ey as the inputs of interest of

the closed-loop system of Figure 3.2, and xm, ym and ûCor,y as its outputs of interest. Then,
the frequency response of the closed-loop system can be given by (for the sake of clarity, the
dependence on ω is omitted)




xm
ym

ûCor,y


 =




T
xre f

m →xm
TdCor,x→xm TdCor,y→xm Tex→xm Tey→xm

T
xre f

m →ym
TdCor,x→ym TdCor,y→ym Tex→ym Tey→ym

T
xre f

m →ûCor,y
TdCor,x→ûCor,y TdCor,y→ûCor,y Tex→ûCor,y Tey→ûCor,y







xre f
m

dCor,x
dCor,y

ex
ey




, (3.13)

where we adopt the notation Ta→b to indicate the transfer from a signal a to a signal b. Note
that the input signals xre f

m , dCor,x and dCor,y are of deterministic nature, while the white-noise

signals ex and ey are of stochastic nature. Indeed, xre f
m , dCor,x and dCor,y are respectively given

by (3.5), (3.9) and (3.10). On the other hand, ex and ey are uncorrelated stochastic processes
with PSD given in (3.8) (see Assumption 3.3). Hence, we split this analysis into two parts,
according to the nature of the input signals: a noiseless analysis and an analysis with respect
to the noise.

3.2.1 Noiseless Analysis

Here, we present the main results regarding the noiseless analysis of the system. For the sake
of clarity, the (cumbersome) calculation details are given in Appendix B.1.

Without the contributions of the different sources of noise, the estimated angular rate, Ω̂z,
can be given, in the frequency domain, by

Ω̂z(jω) =
kSF

k̂SF
Hgyro(jω)Ωz(jω) + εZRO · δ(jω) (3.14)

with δ being the Dirac delta function (impulse at ω = 0) and

εZRO =
Are f

x,m=
(

T
xre f

m →ûCor,y
(jωexc)

)
− k̂ZRO

k̂SF
, (3.15)
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where = (·) is the imaginary part of (·). We recall that kSF corresponds to the scale factor of
the sensor (see (3.3)), and k̂SF and k̂ZRO are respectively the estimates of the scale factor and
of the bias. The transfer Hgyro reads as

Hgyro(jω) =
kux Ay,m

2kSF

(
TdCor,x→ûCor,y(jω− jωexc) + TdCor,x→ûCor,y

(jω + jωexc)
)

+
Ax,m

2Are f
x,m

(
TdCor,y→ûCor,y(jω− jωexc) + TdCor,y→ûCor,y

(jω + jωexc)
) (3.16)

with kux =
2mωexc

kout,ykin,x
.

The equations (3.14) and (3.16) confirm the claim that, from the input-output perspective and
under the assumptions of Section 3.1, the MEMS gyroscope behaves as an LTI system. Its
frequency response is given by kSF

k̂SF
Hgyro(jω) added by a residual bias εZRO, as depicted in

Figure 3.3. This frequency response determines the bandwidth and the accuracy (related to
the SFNL) of the sensor. Thus, we want to have εZRO ≈ 0 and kSF

k̂SF
Hgyro(jω) ≈ 1, at least in

the sensor bandwidth, i.e., for |ω| ≤ ωB.

kSF
k̂SF

· Hgyro
Ωz

εZRO

++ Ω̂z

FIGURE 3.3: Block diagram representing the whole gyroscope without noise.

Now, if we consider the particular case of a constant angular rate input Ωz(t) ≡ Ω∞
z , its

estimate is given by Ω̂z(t) = Ω̂∞
z with

Ω̂∞
z =

kSF

k̂SF
Hgyro(0)Ω∞

z + εZRO, (3.17)

where

Hgyro(0) =
kux Ay,m

kSF
<
(

TdCor,x→ûCor,y(jωexc)
)
+

Ax,m

Are f
x,m
<
(

TdCor,y→ûCor,y(jωexc)
)

, (3.18)

where <(·) denotes the real part of (·). In this case, the scale factor error εSF is defined as

εSF =
kSF

k̂SF
· Hgyro(0)− 1. (3.19)

It is important to note that the expression of Hgyro depends on the closed-loop transfer
functions TdCor,x→ûCor,y and TdCor,y→ûCor,y , and on the tracking error upper bounds ε̌x and ε̌y.

Indeed, we recall that Ay,m ∈
[
0, ε̌y Are f

x,m

]
and Ax,m ∈

[
(1− ε̌x) Are f

x,m, (1 + ε̌x) Are f
x,m

]
.

In general, we want k̂SF to be as close as possible to the real kSF (ideally, k̂SF = kSF). Thus,
the controller has to be designed such that ε̌x � 1, ε̌y � 1 and TdCor,y→ûCor,y(jωexc) ≈ 1.
These conditions correspond to the drive-mode reference tracking, sense-mode disturbance
rejection and Coriolis force estimation objectives. In this context, (3.16) also shows that the
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sensor bandwidth mainly depends on the bandwidth of TdCor,y→ûCor,y . In this case, the larger is
the bandwidth of TdCor,y→ûCor,y around ω = ωexc, the larger is the bandwidth of Hgyro around
ω = 0.

It is worth mentioning that the measure is disturbed by εZRO, given in (3.15). Although the
contribution of T

xre f
m →ûCor,y

(jωexc) can be compensated by k̂ZRO, in practice, this compensation

is not perfect and a residual appears. However, if the controller ensures T
xre f

m →ûCor,y
(jωexc) ≈ 0,

this residual tends to be smaller, producing a more accurate measure.

3.2.2 Analysis with Respect to the Noise

Here, in contrast to the previous section, we consider only the contributions of the stochastic
signals ex and ey on the output signals of interest. The other input signals are set to zero.
This point is justified by the fact that the noise effects on the gyroscope output are usually
evaluated with the device at rest, i.e., Ωz(t) ≡ 0. Under this condition, the only contributors
for the noise on ûCor,y are the signals ex and ey.

Recall that ex and ey are assumed to be uncorrelated white-noise signals with PSD equal to 1
(see Assumption 3.3). Hence, we can write the PSD of ûCor,y as

SûCor,y(ω) =
∣∣∣Tex→ûCor,y(jω)

∣∣∣
2
+
∣∣∣Tey→ûCor,y(jω)

∣∣∣
2

. (3.20)

If the controller is such that the specification (S4) (page 61) is verified, the estimate ûCor,y is
a band-pass signal centered at ωexc and of bandwidth smaller than 2ωexc. Hence, after the
synchronous demodulation and the compensation function fcomp, the PSD of Ω̂z reads as

SΩ̂z
(ω) =





SûCor,y
(ω+ωexc)+SûCor,y

(ω−ωexc)

k̂2
SF

, ∀|ω| < ωexc

0, otherwise.
. (3.21)

The calculation details are presented in Appendix B.2.

This result shows that the PSD of the noise that is present on the final measure depends on
the closed-loop transfer functions Tex→ûCor,y and Tey→ûCor,y , which depend on the process noise
models and also on the controller. Thus, if possible, the controller shall be designed to shape
these transfers, optimizing the noise sensitivity of the sensor, at least in the frequency range
of interest.

We recall that for the synchronous demodulation to work properly, its input signal (ûCor,y)
must be a band-pass signal (condition (C2) and specification (S4)). Then, in addition to
the previous requirements, the controller also has to ensure this condition, eliminating (or
attenuating) the components of frequency higher than 2ωexc and at ω = 0. If, for any reason,
the controller is not able to filter out these frequency components, a band-pass filter can be
introduced between the controller and the synchronous demodulation (outside the closed-
loop). This filter, however, may introduce a phase error on the synchronous demodulation
(see discussion in Section 2.1.5, specially in page 29).

3.3 Closed-loop Specifications for Nominal Performance

In light of the results of the previous section, we can finally establish the links between the
global performance specifications and the closed-loop ones. The specifications discussed in
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this section are only related to the (nominal) performance of the gyroscope – specifications
(S1)–(S4) and (i)–(iii) of Problem 3.1. Those related to the robustness (robust stability) of the
system – specification (S5) – are discussed in the next section.

3.3.1 Closed-Loop Specifications for Conventional Closed-loop Operation

To ensure the conventional closed-loop operation, the controller has to fulfill the specifications
(S1)–(S4). Globally, these specifications are expressed as the “size” of the estimation or
tracking errors for the input signals xre f

m of (3.5), dCor,x of (3.9) and dCor,y of (3.10). Then, we
compute εx, εy and εest as function of the input signals in the frequency domain, as follows.




εx(jω)
εy(jω)
εest(jω)


 =




T
xre f

m →εx
(jω) TdCor,x→εx(jω) TdCor,y→εx(jω)

T
xre f

m →εy
(jω) TdCor,x→εy(jω) TdCor,y→εy(jω)

T
xre f

m →εest
(jω) TdCor,x→εest(jω) TdCor,y→εest(jω)







xre f
m (jω)

dCor,x(jω)
dCor,y(jω)


 , (3.22)

where



T
xre f

m →εx
TdCor,x→εx TdCor,y→εx

T
xre f

m →εy
TdCor,x→εy TdCor,y→εy

T
xre f

m →εest
TdCor,x→εest TdCor,y→εest


 =




1− T
xre f

m →xm
−TdCor,x→xm −TdCor,y→xm

−T
xre f

m →ym
−TdCor,x→ym −TdCor,y→ym

−T
xre f

m →ûCor,y
−TdCor,x→ûCor,y 1− TdCor,y→ûCor,y


 .

(3.23)

Drive-Mode Reference Tracking (S1)

In Section 3.2.1, we show that for the drive mode to operate properly, we have to ensure an
accurate sinusoidal reference tracking of the drive mode, i.e., ε̌x � 1.

From (3.22), the tracking error signal εx is given by

εx(jω) = T
xre f

m →εx
(jω)xre f

m (jω) + TdCor,x→εx(jω)dCor,x(jω) + TdCor,y→εx(jω)dCor,y(jω). (3.24)

In general, at ω = ωexc, the most important contribution comes from the product T
xre f

m →εx
xre f

m .
Then, we can consider ∣∣∣Txre f

m →εx
(jωexc)

∣∣∣ < ε̌x, (3.25)
∣∣TdCor,x→εx(jωexc)

∣∣ ≈ 0, (3.26)
∣∣∣TdCor,y→εx(jωexc)

∣∣∣ ≈ 0. (3.27)

If there exists a controller that ensures the above conditions, it ensures a sinusoidal reference
tracking with error bounded by ε̌x Are f

x,m and three closed-loop specifications are therefore
defined for specification (S1).

It is worth emphasizing that these specifications define constraints on the transfer functions
only at ω = ωexc, what is enough to ensure a good performance in steady state and with
a constant angular rate, since all the input signals are sinusoidal with the same frequency.
Now, if we want to extend this result to the case where Ωz is time-varying, the disturbance
signals dCor,x and dCor,y have a non-null PSD for |ω| ∈ [ωexc −ωΩ, ωexc + ωΩ]. Then, rather
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than considering (3.26) and (3.27), we consider

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣TdCor,x→εx(jω)

∣∣ ≈ 0, (3.28)

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣∣TdCor,y→εx(jω)

∣∣∣ ≈ 0. (3.29)

Estimation of dCor,y (S2)

One of the requirements for the MEMS gyroscope to operate properly in closed-loop is
that the controller is able to produce an accurate estimate of dCor,y, i.e., ûCor,y ≈ dCor,y or,
equivalently, ε̌est � 1.

From (3.22), the estimation error signal εest is given by

εest(jω) = T
xre f

m →εest
(jω)xre f

m (jω) + TdCor,x→εest(jω)dCor,x(jω) + TdCor,y→εest(jω)dCor,y(jω).
(3.30)

In general, at ω = ωexc, the most important contributions for εest come from the terms
T

xre f
m →εest

xre f
m and TdCor,y→εest dCor,y. Then, we consider

∣∣∣Txre f
m →εest

(jωexc)
∣∣∣ < λest · ε̌est, (3.31)

∣∣TdCor,x→εest(jωexc)
∣∣ ≈ 0, (3.32)

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ < (1− λest)ε̌est Are f

x,m

|kSFΩz|
(3.33)

with λest ∈ [0, 1].

Thus, if there is a controller ensuring the above conditions, we achieve the specification (S2),
defining three closed-loop specifications in steady state and with a constant angular rate.

Now, if we want to extend this result to the case where Ωz is time-varying, rather than
considering (3.32) and (3.33), we consider

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣TdCor,x→εest(jω)

∣∣ ≈ 0, (3.34)

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣∣TdCor,y→εest(jω)

∣∣∣ < (1− λest)ε̌est Are f
x,m

|kSFΩz|
. (3.35)

Sense-Mode Disturbance Rejection (S3)

As discussed in Section 3.1.1, to enhance the reference tracking on the drive mode and to
reduce the effects of nonlinearities of the real gyroscope (see Remark 3.1), we have to ensure
a good disturbance rejection on the sense mode, i.e., ε̌y � 1.

From (3.22), the error signal εy is given by

εy(jω) = T
xre f

m →εy
(jω)xre f

m (jω) + TdCor,x→εy(jω)dCor,x(jω) + TdCor,y→εy(jω)dCor,y(jω). (3.36)
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In general, at ω = ωexc, the most important contributions for εy come from the products
T

xre f
m →εy

· xre f
m and TdCor,y→εy · dCor,y. Then, we consider

∣∣∣Txre f
m →εy

(jωexc)
∣∣∣ < λy · ε̌y, (3.37)

∣∣∣TdCor,x→εy(jωexc)
∣∣∣ ≈ 0, (3.38)

∣∣∣TdCor,y→εy(jωexc)
∣∣∣ <

(1− λy)ε̌y Are f
x,m

|kSFΩz|
(3.39)

with λy ∈ [0, 1].

If there exists a controller that ensures the above conditions, then the sinusoidal disturbance
rejection has error bounded by ε̌y Are f

x,m and the specification (S3) is achieved, establishing
three more closed-loop specifications.

Similar to the reference tracking case, these specifications are defined for ω = ωexc, what is
enough to ensure a good performance with a constant Ωz. If we want to extend this result to
the case where the angular rate is time-varying, instead of considering (3.38) and (3.39), we
consider

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣∣TdCor,x→εy(jωexc)

∣∣∣ ≈ 0, (3.40)

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣∣TdCor,y→εy(jωexc)

∣∣∣ <
(1− λy)ε̌y Are f

x,m

|kSFΩz|
. (3.41)

Band-pass condition of ûCor,y (S4)

For the synchronous demodulation to operate properly, its input signal, ûCor,y, has to be a
band-pass signal centered at ωexc and with bandwidth smaller than 2ωexc, i.e., it satisfies (3.1).
Since the input signals xre f

m , dCor,x and dCor,y are also band-pass signals with the required
characteristic and the closed-loop system is LTI, only the noise signals ex and ey can produce
frequency terms outside the allowed frequency range. Then, in this case, we evaluate the
contributions of these signals on the DSP of ûCor,y, SûCor,y .

From (3.20), SûCor,y is given by

SûCor,y(ω) =
∣∣∣Tex→ûCor,y(jω)

∣∣∣
2
+
∣∣∣Tey→ûCor,y(jω)

∣∣∣
2

. (3.42)

Thus, if there is a controller ensuring

∀ |ω| ≥ 2ωexc,
∣∣∣Tex→ûCor,y(jω)

∣∣∣ = 0 and
∣∣∣Tex→ûCor,y(0)

∣∣∣ = 0 (3.43)

and

∀ |ω| ≥ 2ωexc,
∣∣∣Tey→ûCor,y(jω)

∣∣∣ = 0 and
∣∣∣Tey→ûCor,y(0)

∣∣∣ = 0, (3.44)

the specification (S4) is fulfilled, defining two additional closed-loop specifications.
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3.3.2 Closed-Loop Specifications for SFNL

The nominal scale factor of a MEMS gyroscope can be given by kSF (see (3.3)). However,
systematic errors may appear, degrading the accuracy of the sensor. The scale factor non-
linearity (SFNL) indicates how far from Ωz the estimate Ω̂z can be, giving a measure of
the sensor accuracy. This indicator is evaluated for a given operating condition and for
Ωz ∈

[
−ΩFS

z , ΩFS
z
]
, where ΩFS

z is the full scale or dynamic range of the sensor. The definition
of the SFNL is given in (3.11).

The analytic computation of the SFNL can be very complicated or even impossible, since the
modeling of all the contributing phenomena may be complex. Its exact modeling is beyond
the scope of this thesis. Nevertheless, we discuss here how to analyze this performance
indicator in a simplified LTI framework.

First, we recall the definition of the estimation error εest:

εest , dCor,y − ûCor,y, (3.45)

which can be computed, in the frequency domain, as

εest(jω) =
[

T
xre f

m →εest
(jω) TdCor,x→εest(jω) TdCor,y→εest(jω)

]



xre f
m (jω)

dCor,x(jω)
dCor,y(jω)


 (3.46)

with
[

T
xre f

m →εest
TdCor,x→εest TdCor,y→εest

]
=
[
−T

xre f
m →ûCor,y

−TdCor,x→ûCor,y 1− TdCor,y→ûCor,y

]
.

Then, we rewrite the definition of the SFNL (see (3.11)), replacing Ω̂z by kSF Hgyro(0)Ωz/k̂SF
(the bias is supposed to be constant and known, such that εZRO = 0):

SFNL = max
Ωz∈[−ΩFS

z , ΩFS
z ]

(
|Ωz|
ΩFS

z
·
∣∣∣∣∣
kSF Hgyro(0)− k̂SF

k̂SF

∣∣∣∣∣

)
. (3.47)

Since the scale factor error εSF is defined as kSF Hgyro(0)−k̂SF

k̂SF
(see (3.19)) and |Ωz|/ΩFS

z ≤ 1, we
can compute an upper bound of the SFNL, as follows:

SFNL ≤ max
Ωz∈[−ΩFS

z , ΩFS
z ]

(|εSF|) = |εSF|. (3.48)

Now, considering k̂SF = kSF and a proper operation of the MEMS gyroscope (i.e., ε̌x � 1,
ε̌y � 1 and

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ � 1), we can approximate the absolute value of the scale

factor relative error, εSF, as

|εSF| ≈
∣∣∣∣∣<
(

TdCor,y→εest(jωexc)
)
+ 1− Ax,m

Are f
x,m

∣∣∣∣∣ (3.49)

and define the upper bound

|εSF| ≤
∣∣∣TdCor,y→εest(jωexc)

∣∣∣+ ε̌x. (3.50)

See the calculation details in Appendix B.1.5.
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Note that, in (3.48), |εSF| itself defines an upper bound on the SFNL. Therefore, by making
∣∣∣TdCor,y→εest(jωexc)

∣∣∣ ≤ kSFNL − ε̌x (3.51)

with a constant kSFNL > 0, we can determine how accurate the estimation of dCor,y and
the reference tracking have to be such that the MEMS gyroscope achieves a given SFNL.
Indirectly, this constraint also imposes a condition on ε̌x, which has to be smaller than kSFNL.
We can then respectively rewrite (3.25) and (3.51) as

∣∣∣Txre f
m →εx

(jωexc)
∣∣∣ < λSFNLkSFNL (3.52)

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ ≤ (1− λSFNL) kSFNL, (3.53)

where λSFNL ∈ [0, 1]. Therefore, if there is a controller that verifies (3.52) and (3.53), the
specification (i) of Problem 3.1 is satisfied.

We recall that in this analysis, we adopt an LTI framework and the nonlinearities of a real
gyroscope are not considered. Thus, the results in practice may differ from this theoretical
analysis. One of the ways to reduce the nonlinear effects is by reducing oscillations of the
sense mode.

Without a complete nonlinear model, it is impossible to establish precise constraints to ensure
a given SFNL. It is important to stress, however, that this analysis gives important insights
on how the constraints can be modified to improve the SFNL, as follows.

(i) The better is the reference tracking (i.e., ε̌x → 0), the smaller is the SFNL upper bound.
The tolerated tracking error ε̌x has to be at most of the same order of magnitude as
kSFNL.

(ii) The better is the estimation of dCor,y (i.e., ε̌est → 0 or
∣∣∣TdCor,y→εest(jωexc)

∣∣∣→ 0), the smaller
is the SFNL upper bound. The magnitude of TdCor,y→εest(jωexc) has to be at most of the
same order of magnitude as the kSFNL.

(iii) The better is the sense-mode disturbance rejection (i.e., ε̌y → 0), the smaller is the SFNL
upper bound. Moreover, a good disturbance rejection also avoids nonlinear effects in a
real gyroscope.

3.3.3 Closed-Loop Specifications for Bandwidth

The bandwidth ωB of the sensor corresponds to the bandwidth of the transfer Hgyro (see (3.16)),
which is defined as the frequency range in which the attenuation is smaller than 3 dB [IEE04].
This means that the bandwidth ωB is such that,

∀|ω| < ωB,
∣∣∣∣1−

Hgyro(jω)

Hgyro(0)

∣∣∣∣ < 1−
√

2
2

. (3.54)

Similar to the SFNL, it can be very difficult to compute analytically the bandwidth of the
whole MEMS gyroscope. The main difficulty here comes from the term on the left-hand side
of (3.54). However, a good approximation of this term can be obtained when we have a good
disturbance rejection (ε̌y � 1) and an accurate estimation of dCor,y (i.e.,

∣∣∣TdCor,y→εest(jωexc)
∣∣∣�



70 Chapter 3. From Global Performance Specifications to Closed-Loop Specifications

1), as follows (see calculation details in Appendix B.1.6):
∣∣∣∣∣1−

Hgyro(jω)

Hgyro(0)

∣∣∣∣∣ ≈
∣∣∣∣
1
2

(
TdCor,y→εest(jω− jωexc) + TdCor,y→εest(jω + jωexc)

)∣∣∣∣ .

Then, we can consider an upper bound on this term:
∣∣∣∣∣1−

Hgyro(jω)

Hgyro(0)

∣∣∣∣∣ ≤
∣∣∣∣∣
TdCor,y→εest(jω− jωexc)

2

∣∣∣∣∣+
∣∣∣∣∣
TdCor,y→εest(jω + jωexc)

2

∣∣∣∣∣ ,

such that, given ωdes
B ∈ R+, if

∀|ω| < ωdes
B ,

∣∣∣∣∣
TdCor,y→εest(jω− jωexc)

2

∣∣∣∣∣+
∣∣∣∣∣
TdCor,y→εest(jω + jωexc)

2

∣∣∣∣∣ < 1−
√

2
2

, (3.55)

the condition (3.54) holds with ωB ≥ ωdes
B . Finally, by considering equal contributions of the

two terms of the left-hand side, (3.55) is implied by

∀|ω| ∈ [ωexc −ωdes
B , ωexc + ωdes

B ],
∣∣∣TdCor,y→εest(jω)

∣∣∣ < 2−
√

2
2

≈ 0.2929, , (3.56)

defining a bandwidth ωB larger than a given ωdes
B . This inequality defines a frequency

constraint on TdCor,y→εest . Therefore, if there is a controller that ensures a good disturbance
rejection and (3.56), the specification (ii) of Problem 3.1 is fulfilled.

3.3.4 Closed-Loop Specifications Related to Noise

In general, the specification indicators related to the noise are evaluated through the Allan
variance σ2

A (or Allan deviation σA) of Ω̂z for Ωz(t) ≡ 0. The interpretation of the Allan
variance or Allan deviation plot is recalled in Section 2.1.6. From the piecewise representation
of a typical Allan deviation, as the one presented in Figure 3.4a, some performance indicators
are deduced. For the sake of clarity, we also present its equivalence with the PSD of Ω̂z,
presented in Figure 3.4b [IEE06]. The most important noise-related performance indicators
are listed below.

(i) Angle Random Walk (ARW) or rate white noise: corresponds to the value, at the
averaging time τA = 1, of the straight line fitting the section of the Allan deviation with
gradient −0.5. It gives the minimum level of noise in the PSD of Ω̂z.

(ii) Bias Instability (BI): corresponds to the flat region around the minimum value of the
Allan deviation plot and measures how the bias changes over a given period of time τA.
In general, these changes happen in the long-term (high τA). When looking to the PSD,
it has the behavior of a flicker noise (1/ f ) and appears in the very-low frequency range.

(iii) Rate Random Walk (RRW): is a long-term (even slower than BI) phenomenon of un-
known origin [IEE06] and appears on the Allan deviation plot as a slope with gradient
+0.5.

(iv) Quantization noise (Q): is a short-term (or high-frequency) phenomenon that results
from the limited resolution of the sensor. It appears in the Allan deviation plot as a
slope of gradient −1 and is preponderant for for small values of τA. On the other hand,
the quantization noise effects appears on the PSD in the high-frequency range.
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FIGURE 3.4: Piecewise representation (adapted from [IEE06]).

It is important to note that, among the above indicators, the controller plays an important
role mainly for the ARW. Indeed, the quantization error depends on the choice of the sensor
resolution and sampling period Ts and the BI and RRW are rather related to the residual bias
error. Therefore, focusing on the controller design, we consider only the specification related
to the ARW.

Note that, by bounding the PSD of Ω̂z, an upper bound of the ARW can be obtained, that is,
the inequality

∀ω ∈ R, SΩ̂z
(ω) ≤ kARW

2 (3.57)

ensures ARW ≤ kARW. This inequality (see (3.21)) is equivalent to

∀|ω| < ωexc, SûCor,y(ω + ωexc) + SûCor,y(ω−ωexc) ≤
(

k̂SF · kARW

)2
.

Then, if

∀|ω| ∈ (0, 2ωexc], SûCor,y(ω) ≤ 1
2

(
k̂SF · kARW

)2
. (3.58)

the inequality of (3.57) also holds. Finally, since Sex(ω) = Sey(ω) = 1 and through (3.20),
(3.58) can be recast as frequency constraints on the transfers Tex→ûCor,y

and Tey→ûCor,y
, as follows:

∀|ω| ∈ (0, 2ωexc],
∣∣∣Tex→ûCor,y

(jω)
∣∣∣
2
≤ λARW

2

(
k̂SF · kARW

)2
(3.59)

∀|ω| ∈ (0, 2ωexc],
∣∣∣Tey→ûCor,y

(jω)
∣∣∣
2
≤ (1− λARW)

2

(
k̂SF · kARW

)2
(3.60)

with λARW ∈ [0, 1].

Therefore, if there is a controller that ensures (3.59) and (3.60), the ARW of the sensor is
bounded by kARW, and the specification (iii) of Problem 3.1 is fulfilled.

3.4 Closed-loop Specifications for Robust Stability

Further than the closed-loop specifications related to the performance, the controller must
ensure the stability of the system, despite its inherent uncertainties. Here, we focus on dealing
with unstructured or dynamic uncertainties, represented by ∆E.

Similar to the closed-loop specifications related to the performance, the specifications for
robust stability are also expressed in terms of upper bounds on the frequency response
magnitude of some transfer functions.
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Tp→q

∆̃W1 W2

qp

∆

FIGURE 3.5: Interconnection for the weighted small gain theorem.

3.4.1 Weighted Small Gain Theorem

Here, we describe the weighted small gain theorem, which is a fundamental tool for eval-
uating the stability of a multivariable closed-loop system against unstructured or dynamic
uncertainties. Further details on this important tool can be found in [ZDG96], for instance.

Let us first define an uncertainty set ∆:

∆ =
{

∆(s)
∣∣∣∆(s) = W1(s)∆̃(s)W2(s) with

∥∥∥∆̃
∥∥∥

∞
≤ 1

}
, (3.61)

where W1 and W2 are stable transfer matrices. These matrices are used to determine the size of
the unstructured uncertainties ∆. The weighted small gain theorem [ZDG96] claims therefore
that, for a given stable transfer matrix Tp→q, the system of Figure 3.5 is stable ∀∆ ∈ ∆ if and
only if ∥∥W2Tp→qW1

∥∥
∞ < 1. (3.62)

3.4.2 Robust Stability Against Additive Uncertainties

Now, if we come back to the closed-loop system of Figure 3.2, we can note that the whole
to-be-controlled system is G + ∆E, which is naturally different from the nominal model G.
In this context, the uncertain block ∆E represents thus an additive uncertainty. Here, we
focus our analysis on this type of uncertainty. However, other types of uncertainties could be
considered by following the same methodology.

Following the weighted small gain theorem, if we want the closed-loop system to be stable
against additive uncertainties ∆E ∈ ∆add, where, given stable transfer matrices Wadd,1 and
Wadd,2,

∆add =
{

∆E(s)
∣∣∣∆E(s) = Wadd,1(s)∆̃(s)Wadd,2(s) with

∥∥∥∆̃
∥∥∥

∞
≤ 1

}
, (3.63)

the transfer Tn→u must be such that

‖Wadd,2Tn→uWadd,1‖∞ < 1. (3.64)

Note that in the configuration of Figure 3.2, ∆E is in parallel with G (neglecting uCor), having
the same input signals u = col

(
ux, uy

)
and summing up with col (xm, ym), at the same point

as n = col
(
nx, ny

)
.

Therefore, if there is a controller that ensures (3.64), the closed-loop system is stable against
uncertainties ∆E ∈ ∆add, finally fulfilling the specification (S5).
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Note that for (3.64) to hold, qualitatively, the σ (Tn→u(jω)) (reduces to |Tn→u(jω)| in the SISO
case) has to be small in the frequency range where the uncertainties are important. Therefore,
even if, a priori, we do not have constraints on the control signal(s), improving the robust
stability against additive uncertainties implies the limitation of the noise effects on the control
signal(s).

3.5 Summary of the Chapter

In this chapter, we first provide an analysis on the angular rate estimation of a MEMS
gyroscope when it is operated by a nonideal controller. This analysis allows us to establish
frequency constraints on the closed-loop transfer functions such that global performance
specifications are achieved. Furthermore, by means of the small gain theorem, we can also
determine frequency constraints on the closed-loop transfer functions that ensure the robust
stability of the system against unstructured uncertainties.

In the next chapter, based on these frequency constraints, we design some controllers for the
MEMS gyroscope. The most relevant frequency constraints are summarized in the sequel.

Global performance specifications (from Problem 3.1):

(i) For SFNL ≤ kSFNL, see Section 3.3.2 (page 68), equations (3.52) and (3.53):
∣∣∣Txre f

m →εx
(jωexc)

∣∣∣ < λSFNLkSFNL,

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ ≤ (1− λSFNL) kSFNL.

Moreover, reducing ε̌y also improves the SFNL.

(ii) For a bandwidth ωB larger than ωdes
B , see Section 3.3.3 (page 69) and equation (3.56):

∀|ω| ∈ [ωexc −ωdes
B , ωexc + ωdes

B ],
∣∣∣TdCor,y→εest(jω)

∣∣∣ < 2−
√

2
2

≈ 0.2929.

(iii) For ARW < kARW, see Section 3.3.4 (page 70) and equations (3.59) and (3.60):

∀|ω| ∈ (0, 2ωexc],
∣∣∣Tex→ûCor,y

(jω)
∣∣∣
2
≤ λARW

2

(
k̂SF · kARW

)2

∀|ω| ∈ (0, 2ωexc],
∣∣∣Tey→ûCor,y

(jω)
∣∣∣
2
≤ (1− λARW)

2

(
k̂SF · kARW

)2

Specifications for conventional closed-loop operation:

(S1) Drive-mode reference tracking: the reference tracking of xre f
m by xm, see Section 3.3.1

(page 65), is mainly ensured by the constraints related to the SFNL. To improve the
reference tracking, the equations (3.25), (3.28) and (3.29) can be considered.

(S2) Estimation of the Coriolis force: similarly, the estimation of dCor,y by ûCor,y, see Sec-
tion 3.3.1 (page 66), is mainly ensured by the constraints related to the SFNL. To enhance
the estimation, the equations (3.31), (3.34) and (3.35) can also be considered.

(S3) Sense-mode disturbance rejection: the tracking of yre f
m by ym, see Section 3.3.1 (page 66),

is not a crucial specification in the LTI framework. However, it can be very useful to keep
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the real gyroscope operating in a linear region. To improve the disturbance rejection,
the equations equations (3.37), (3.40) and (3.41) can be taken into account.

(S4) Band-pass condition of ûCor,y: this condition, see Section 3.3.1 (page 67), is required to
ensure that the synchronous demodulation works properly. The related constraints are
given by equations (3.43) and (3.44):

∀ |ω| ≥ 2ωexc,
∣∣∣Tex→ûCor,y(jω)

∣∣∣ = 0 and
∣∣∣Tex→ûCor,y(0)

∣∣∣ = 0

∀ |ω| ≥ 2ωexc,
∣∣∣Tey→ûCor,y(jω)

∣∣∣ = 0 and
∣∣∣Tey→ûCor,y(0)

∣∣∣ = 0,

Closed-loop specifications for robust stability:

(S5) For additive uncertainties ∆E defined by Wadd,1 and Wadd,2 according to (3.63), see
Section 3.4 (page 71), equation (3.64):

‖Wadd,2Tn→uWadd,1‖∞ < 1.
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Chapter 4

Direct Control I: A Robust Approach

The main objective of this chapter is to propose a systematic method for designing a controller
for the closed-loop operation of MEMS gyroscopes.

As discussed in Chapter 3, for the gyroscope to achieve the desired performance specification,
the controller has to ensure that some key closed-loop transfer functions behave in a certain
way. This behavior is given by the closed-loop specifications, which are naturally expressed
as upper bounds on the frequency response magnitude of those key transfer functions.

In this context, the most suitable method for the controller design is theH∞ synthesis [SP01,
SF09]. Indeed, the H∞ synthesis is a flexible and powerful design method that allows for-
mulating the controller design problem as an optimization problem subject to mathematical
constraints. These constraints express upper bounds on the magnitude of the frequency
response of the closed-loop transfer functions, providing guarantees of stability and perfor-
mance for the system.

Here, we consider the direct control architecture under different configurations. For the sake
of pedagogy, we first consider the design of a SISO controller for the drive mode. Then,
we design a SISO controller for the sense mode. In a first time, they are assumed to be
uncoupled. In a second time, the mechanical coupling between these modes is also taken
into consideration. Then, a multivariable (MIMO) approach is proposed.

For the SISO approach, two important assumptions are made: the mechanical coupling forces
and the Coriolis forces are considered as exogenous input signals. When considering the
MIMO approach, the mechanical coupling is properly taken into account for the controller
design. However, the Coriolis force is still assumed to be exogenous. To validate the proposed
solutions, numerical simulations are then performed.

In this chapter, we also consider that the to-be-controlled system is frozen, that is, the
operating condition, represented by θ and ρ (see Section 2.1.5), is fixed. Therefore, the to-be-
controlled system is LTI. For the sake of clarity, the superscripts θ and ρ are hence omitted
along this chapter.

We start the chapter by presenting the principles of the H∞ synthesis in Section 4.1. Then,
we apply this technique to design some controller(s) for MEMS gyroscopes under different
configurations. Numerical examples are presented along the chapter and the most relevant
solutions are validated through simulations.
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4.1 H∞ Synthesis: Principles

In this section, we present the principles of the celebrated H∞ synthesis. The discussions
drawn in this section are mainly based on the textbooks [ZDG96, SP01, SF09].

The beginning of theH∞ synthesis is often credited to the seminal paper [Zam81], in which
G. Zames shows that, for LTI systems, the control design problem can be tackled as the
optimization of a weighted H∞-norm criterion. The main strength of the H∞ synthesis
resides on the definition of the so-called H∞ criterion, which enforces upper bounds on
the frequency response magnitude of the closed-loop system. In a certain extent, it allows
shaping the closed-loop transfer functions. Therefore, in contrast to other modern control
design methods (e.g., LQG, H2), through the choice of an adequate H∞ criterion, the H∞
synthesis allows to ensure the robustness of the closed-loop system against some classes of
uncertainties.

In the remaining of this section, we define the standard H∞ control problem, which is the
core of the method. To solve this optimization problem, an adequateH∞ criterion has to be
defined and an efficient optimization algorithm has to be used. These two key points are also
presented in the sequel.

4.1.1 StandardH∞ Control Problem

Before introducing theH∞ control problem, let us first recall the definition of theH∞ norm.

Definition 4.1 (H∞ norm [SP01]). TheH∞ norm of a proper stable system H is defined as

‖H‖∞ = sup
<(s)>0

σ (H(s)) = sup
ω∈R

σ (H(jω)) , (4.1)

where the notation σ (H(s)) indicates the largest singular value of H(s).

The H∞ norm correponds to the maximum gain of the system for all frequencies. For the
particular case of SISO transfer functions, we have the property: σ (H(s)) = σ (H(s)) =
|H(s)| with σ (H(s)) indicating the smallest singular value of H(s). Thus, for a proper stable
SISO system H, (4.1) can be rewritten as

‖H‖∞ = sup
<(s)>0

σ (H(s)) = sup
ω∈R

|H(jω)| . (4.2)

Similar to modern control design methods (e.g., LQG,H2), the general control configuration
of Figure 4.1 is considered for theH∞ synthesis [SP01]. In this configuration, P is the so-called
generalized or augmented plant, which admits the minimal state-space realization

P :





ẋP(t) = APxP(t) + Bww(t) + BuuP(t)
z(t) = CzxP(t) + Dzww(t) + DzuuP(t)

yP(t) = CyxP(t) + Dyww(t) + DyuuP(t)
(4.3)

with xP(t) ∈ RnP , uP(t) ∈ RnuP , yP(t) ∈ RnyP , w(t) ∈ Rnw , z(t) ∈ Rnz and matrices of
adequate dimensions. The vector w represents the exogenous inputs, z is the vector of
controlled outputs, and uP and yP are respectively the control signals and measured outputs.
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The controller K is given by

K :
{

ẋK(t) = AKxK(t) + BKyP(t)
uP(t) = CKxK(t) + DKyP(t)

, (4.4)

where xK(t) ∈ RnK with nK = nP and the matrices have adequate dimensions. We can
therefore state the standardH∞ control problem.

P

K

w z

yPuP

FIGURE 4.1: General control configuration.

Problem 4.1 (StandardH∞ control problem). Given a plant P in the form of (4.3) and a perfor-
mance level γ > 0, compute a controller K in the form of (4.4), if there exists any, such that the
closed-loop system P ? K is stable and

‖P ? K‖∞ < γ, (4.5)

where P ? K denotes the Redheffer product of P and K, that is, the closed-loop system defined by (4.3)
and (4.4).

The equation (4.5) introduces the so-called H∞ criterion. It is important to emphasize that
this criterion is defined through the choice of the augmented plant P, which is composed of
the to-be-controlled system itself and weighting filters attributing different weights to the
signals of interest, w and z.

The choice of the H∞ criterion is one of the crucial points of the H∞ synthesis. Indeed, the
proper choice of the input and output signals and the design of the weighting functions
can enforce the desired specifications and provide formal guarantees of robust stability and
performance. Another crucial point is how to solve Problem 4.1, i.e., how to compute a
controller that ensures the stability of the closed-loop system and verifies (4.5). These two
aspects are discussed in the sequel.

4.1.2 Defining anH∞ Criterion

As discussed earlier, the choice of theH∞ criterion, directly linked to the augmented plant P,
is one of the most important steps of the H∞ synthesis. Indeed, properly defining the H∞
criterion allows to enforce constraints on the frequency response of the closed-loop transfer
functions. This aspect is one of the biggest strengths of theH∞ synthesis. In this section, we
present then how to properly define anH∞ criterion.

In general, weights are attributed to the different signals of interest through the so-called
weighting filters (or weighting functions) Win and Wout, as illustrated in Figure 4.2 [SP01].
These weighting filters are often diagonal, i.e.,

Win = diag (Win,1, . . . , Win,k, . . . , Win,nw)
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Wout = diag (Wout,1, . . . , Wout,l , . . . , Win,nz) ,

and define w̃ = Winw and z̃ = W−1
outz. In this case, the vector w represents the weighted or

normalized exogenous inputs and w̃ corresponds to the input signals of the system, such
as the reference signal, disturbances and noises. Similarly, z represents the weighted or
normalized controlled outputs and z̃ consists of the controlled outputs, e.g., the tracking and
the estimation errors. It is worth mentioning that the signals of interest w̃ and z̃ do not have
to be physical. They can, for instance, represent a non-measurable signal or a combination of
signals.

P̃
Win Wout

K

w w̃ z̃ z

yPuP

P

FIGURE 4.2: General control configuration with weighting filters.

Considering the weighting functions, the closed-loop system Tw→z = P ? K can be rewritten,
in the Laplace domain, as

Tw→z(s) = Wout(s)Tw̃→z̃(s)Win(s). (4.6)

Then, if there exists a controller that ensures the stability of Tw→z and ‖Tw→z‖∞ < γ, the
stability of Tw̃→z̃ and the condition

‖WoutTw̃→z̃Win‖∞ < γ (4.7)

are also ensured. We highlight that the controller cannot stabilize the weighting functions in
(4.6). Hence, the chosen weighting functions are required to be stable.

At this point, it is important to recall that the H∞ norm of a matrix upper bounds the H∞
norm of each of its elements [SP01]. Hence, (4.7) implies that

∀l ∈ {1, . . . , nz}, ∀k ∈ {1, . . . , nw},
∥∥Wout,lTw̃k→z̃l

Win,k
∥∥

∞ < γ, (4.8)

which is equivalent to

∀l ∈ {1, . . . , nz}, ∀k ∈ {1, . . . , nw}, ∀ω ∈ R,
∣∣Tw̃k→z̃l

(jω)
∣∣ < γ

|Wout,l(jω)Win,k(jω)| . (4.9)

Furthermore, if γ ≤ 1, (4.7) implies that the frequency response magnitude of each transfer
Tw̃k→z̃l

is upper bounded by the inverse of the product Wout,lWin,k, see (4.9). The adequate
choice of the weighting functions enforces therefore frequency constraints on Tw̃k→z̃l

and
expresses the desired closed-loop specifications.

Please note that these frequency constraints only act on the gain or magnitude of the frequency
responses. The H∞ criterion does not carry information on the phase of the frequency
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responses. Furthermore, only upper bounds on the magnitude of the frequency response can
be defined.

In this context, we always look for γ ≈ 1. Indeed, if the terms |Wout,lWin,k|−1 define upper
bounds on

∣∣Tw̃k→z̃l

∣∣, having γ < 1 implies that all
∣∣Tw̃k→z̃l

∣∣ are way below (by a factor γ) the
given upper bounds and the desired closed-loop specifications are easily achieved by the
controller. In this case, the designer can optimize the closed-loop specifications (for instance,
constraining the control signal even further or enhancing the stability margins). On the other
hand, if γ > 1, (4.7) does not imply that there is a transfer Tw̃k→z̃l

that exceeds its upper
bound. It rather indicates that one of the transfers may exceed its upper bound by a factor
γ. Then, even with γ slightly larger than 1, the individual constraints may be satisfied1.
The individual transfers have then to be checked a posteriori by the designer. Finally, γ� 1
indicates that the enforced frequency constraints cannot be achieved. TheH∞ criterion (or
the closed-loop specifications) has to be reviewed in this case.

The choice of anH∞ criterion is nonunique. For instance, since the constraints on
∣∣Tw̃k→z̃l

∣∣ are
expressed through the product Wout,lWin,k, to obtain the same product, different combinations
of Wout,l and Win,k can be considered. Moreover, note that Wout,l (resp. Win,k) appears on all
the upper bounds of the transfers to the outputs z̃l (resp. from the inputs w̃k). Then, each
weighting function acts not only on a given transfer function, but on all the transfers related
to the given output (resp. input) signal.

Although very flexible, the choice of the H∞ criterion is nontrivial. Recall that, in general,
all the closed-loop transfer function are interlinked. Then, when constraining one of them,
we can be indirectly imposing some constraint on other transfers. We illustrate this point
through the following example.

Example 4.1 (H∞ criterion and structural constraints). Let us consider the control scheme of
Figure 4.3, where the controller is represented by K and the to-be-controlled plant by G. The main
objective here is to qualitatively define anH∞ criterion enforcing:

(i) reference tracking of low-frequency signals, i.e., for |ω| < ωb, Tr→y(jω) ≈ 1;

(ii) minimization of the control signal u.

K G
+r

ε u
y

−

FIGURE 4.3: Control scheme for Example 4.1.

First, we have to define the signals of interest as well as the control signal and measured output. Clearly,
the control signal is u and the measured output is ε; then, under the general control configuration of
the figures 4.1 and 4.2, uP = u and yP = ε. In a first time, let us consider as signals of interest w̃ = r
and z̃ = col (ε, u, y). Then, we compute the transfer Tw̃→z̃:

Tw̃→z̃(s) =




Tr→ε(s)
Tr→u(s)
Tr→y(s)


 =




S(s)
K(s)S(s)

T(s)


 , (4.10)

1To illustrate this statement, let us consider Wout = 1, Win = I2 and Tw̃→z̃ =
[
0.8 j0.9

]
. In this case,

‖WoutTw̃→z̃Win‖∞ = 1.2042 =⇒ γ > 1.2042,
∥∥Tw̃1→z̃

∥∥
∞ = 0.8 and

∥∥Tw̃2→z̃
∥∥

∞ = 0.9. Note that even if γ > 1,
the individual transfers Tw̃1→z̃ and Tw̃2→z̃ are still smaller than their upper bounds (equal to one).
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where S(s) = (1 + K(s)G(s))−1 and T(s) = K(s)G(s)S(s) = 1− S(s).

One of the objectives is to make T(jω) ≈ 1 in a given frequency range (reference tracking). As
discussed above, this constraint cannot be directly enforced through the H∞ criterion, since lower
bounds cannot be directly imposed. Nevertheless, structurally, T = 1− S. Then, enforcing |S(jω)| �
1 for |ω| < ωb implies that T(jω) ≈ 1 in the same frequency range, as desired. The second objective
is to minimize Tr→u wherever it is possible.

Let us now evaluate where and how these transfers can be minimized. Please note that the only
way to have |S(jω)| � 1 is with |K(jω)G(jω)| � 1. However, |K(jω)G(jω)| � 1 implies that
|K(jω)S(jω)| ≈ |G(jω)|−1. If |K(jω)G(jω)| � 1, we have that S(jω) ≈ 1 and |K(jω)S(jω)| ≈
|K(jω)|. This means that, in the frequency range in which the reference tracking is required (|ω| <
ωb), the control signal cannot be minimized. In contrast, for |ω| ≥ ωb, the control signal can be as
small as the controller gain. In the sequel, we see how these structural constraints can be taken into
account when defining theH∞ criterion.

Note that only the transfers Tr→u = KS and Tr→ε = S have to be upper bounded to achieve the
control objectives. Therefore, to define the H∞ criterion, we recast the output signals of interest as
z̃ = col (ε, u) and include the weighting functions Wr, Wε and Wu, as presented in Figure 4.4.

K G
+r

ε u
y

−Wr

Wu

Wε

w1

z1

z2

−

FIGURE 4.4: H∞ criterion for Example 4.1.

TheH∞ control problem is thus to compute a controller K such that, for a given γ > 0,

‖Tw→z‖∞ =

∥∥∥∥
[

WεTr→εWr
WuTr→uWr

]∥∥∥∥
∞
< γ. (4.11)

If there is a solution for this problem with γ ≤ 1, (4.11) implies that, ∀ω ∈ R,

|Tr→ε(jω)| < 1
|Wε(jω)Wr(jω)| and |Tr→u(jω)| < 1

|Wu(jω)Wr(jω)| .

Therefore, |Wε(jω)Wr(jω)| must be as large as possible for |ω| < ωb. Similarly, |Wu(jω)Wr(jω)|
should be as large as possible across all the frequency range. However, because of the structural
constraint presented above, |Wu(jω)Wr(jω)| can be large only for |ω| > ωb. For |ω| < ωb,
|Wu(jω)Wr(jω)| has to be smaller than |G(jω)|.
Finally, each weighting function has to be defined, recalling that this choice is nonunique. In this case,
a possible choice would be Wr(jω) ≡ 1, and Wε with high gain for |ω| < ωb (similar to a low-pass
filter) and Wu with high gain for |ω| > ωb (similar to a high-pass filter).

Finally, it is important to highlight that the order of the controller is equal to the order of the
to-be-controlled system added by the order of all the weighting functions. If the resulting
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controller has a high order, model reduction can be performed [SP01, SF09]. The issue is that
the stability and performance guarantees can be lost. Then, an a posteriori analysis is required
to check for those properties. So, to avoid unnecessary model order reduction, the weighting
functions should be as simple (low order) as possible.

4.1.3 Solving the StandardH∞ Control Problem

In general, the solution for the H∞ control problem can be obtained through two different
approaches: (i) one based on the solution of algebraic Ricatti equations (ARE) [DGKF89], and
(ii) another one, based on linear matrix inequalities (LMIs) [GA94, IS94]. The H∞ control
problem has an analytical solution that can be computed through two coupled ARE. This
is the simplest and most reliable approach from the numerical computation point of view.
Nevertheless, the augmented plant has to present some specific properties, which are not so
restrictive, but limit the applicability of this approach [DGKF89, GA94]. On the other hand,
LMI-based approaches are based on the optimization of a convex problem with constraints,
being numerically more complex than ARE-based ones. However, no particular properties
are required for the augmented plant and efficient convex optimization algorithms are widely
available. Therefore, LMI-based approaches provide a general framework for the solution of
Problem 4.1. For this reason, in this thesis, we privilege the LMI-based approaches.

The LMI-based approaches compute the H∞ controller in two steps. First, the existence of
a solution for the problem is assessed. Then, if there exists a solution, a controller K that
stabilizes P ? K and ensures ‖P ? K‖∞ < γ is computed.

In practice, the Robust Control Toolbox of Matlab® [BCPS20] can be employed to solve Prob-
lem 4.1 through the function hinfsyn.

We recall that in our application, the to-be-controlled plant (the drive and sense modes of
a MEMS gyroscope) is a resonant systems with very-high quality factor. Then, to reduce
numerical problems, the control synthesis is based on the frequency-normalized model of the
to-be-controlled plant, where ωexc is taken as the normalization frequency. In this normalized-
frequency space, the operating frequency is then equal to the unity. Further details on the
frequency normalization will be given in Chapter 7.

4.1.4 H∞ Synthesis: Summary

Having presented theH∞ synthesis, we can now summarize the method in some steps.

(i) Given a control scheme and a to-be-controlled plant, define the signals of interest w̃
and z̃ as well as the controller input and output vectors (respectively yP and uP in the
general control configuration).

(ii) Compute, analytically, the closed-loop transfer functions, i.e., Tw̃→z̃, and check for
equivalent transfers and structural constraints.

(iii) Express the closed-loop specifications as upper bounds on the frequency response
magnitude of the transfer functions of interest.

(iv) Define theH∞ criterion, according to the specifications and structural constraints.

(v) Solve the standardH∞ problem.

(vi) Check the solution. If it is OK, continue; otherwise, go back to steps (i), (iii) or (iv).

(vii) Implement the solution.
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The steps (i)–(iv) are illustrated in Example 4.1 and the solution for the standardH∞ problem,
step (v), is discussed in Section 4.1.3. When talking about checking the solution in step (vi),
we mean that the closed-loop specifications are OK either with γ < 1 or with γ ≈ 1 and an a
posteriori analysis of the individual transfers is needed. A deeper analysis can be performed in
this step, see [AC21] for further details on the performance validation for MEMS gyroscopes.
Obviously, in step (vi), numerical simulations can also be considered.

4.2 SISO Control Architectures

In this section, we apply theH∞ synthesis to design a controller for the closed-loop operation
of MEMS gyroscopes. For the controller design, we assume that there is no mechanical
coupling between the drive and sense modes. Therefore, the two control loops are indepen-
dent. We consider the direct control approach for the drive and sense modes. Thanks to
the flexibility of the H∞ synthesis, the procedure adopted in this section is extended to a
multivariable (MIMO) approach in Section 4.3.

We recall that the main objective of the drive-mode control is to ensure that the MEMS
gyroscope proof mass oscillates along the ~x-axis, describing a sinusoidal trajectory imposed
by the reference signal xre f

m (sinusoidal reference tracking). When the device is submitted to an
angular rate Ωz, a Coriolis force, whose amplitude is proportional to Ωz, appears on the sense
mode. Then, the main objective of the sense-mode control is to provide an accurate estimate
of the Coriolis force (estimation of a sinusoidal signal), which is afterwards demodulated to
obtain an estimate of Ω̂z (see Section 2.1).

For the drive mode, we consider two control configurations: with 1 degree of freedom (1DoF)
and with 2 degrees of freedom (2DoF). We will see that the 1DoF control configuration
presents some structural constraints linking the reference tracking and the noise rejection
properties of the closed-loop system. One of the main interests on using a 2DoF control
configuration is that this structural constraint can be avoided. For the sense mode, where the
reference signal to be tracked is null, we consider only the 1DoF control architecture.

4.2.1 Drive-Mode Control

Besides the reference tracking objective, the drive-mode controller has to fulfill secondary
control objectives so that the whole gyroscope achieves the desired global performance level.
In the SISO approach, the drive-mode controller must be such that the following performance-
and the robustness-related constraints are verified.

Drive-mode nominal performance constraints:

(i) SFNL and reference tracking: for the SFNL (see (3.52), page 69), which implies the
reference tracking, we consider

∣∣∣Txre f
m →εx

(jωexc)
∣∣∣ ≤ λSFNLkSFNL. (4.12)

(ii) Disturbance rejection: in the SISO approach, to improve the reference tracking, we
also reject the disturbance signal dCor,x. Then, from (3.28) (page 66), we consider,

∀ |ω| ∈ (ωexc −ωΩ, ωexc + ωΩ) ,
∣∣TdCor,x→εx(jω)

∣∣ ≤ kx1, (4.13)
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where kx1 ∈ R+ is to be minimized.

Drive-mode robust stability constraint:

(i) Unmodeled dynamics: to enforce the robustness against additive uncertainties ∆Exx ∈
∆add, which is defined by Wadd,1 and Wadd,2 = 1 (see (3.63), page 72), we shall minimize
at best |Tnx→ux(jω)|, mainly in the frequency range where |Wadd,1| is important. Indeed,
the weighted small gain theorem ensures stability against this kind of uncertainty if

∀ω ∈ R, |Tnx→ux(jω)| < 1
|Wadd,1(jω)| . (4.14)

In general, |Wadd,1| is considered to be high in low and high frequencies, and small
around ω0,x. Indeed, because of the low gain of the drive mode in low and high
frequencies, the measurement noises hide the behavior of the system in these frequency
ranges.

1DoF control configuration

Let us consider the classical 1 degree-of-freedom (1DoF) control configuration of Figure 4.5,
where Kx represents the controller and Gx is the drive-mode model. The main objective
here is to ensure an accurate tracking of the sinusoidal reference signal, i.e., xm(t) ≈ xre f

m (t).
To quantify the tracking error, we define εx , xre f

m − xm. We also define the signals of
interest w̃ = col

(
xre f

m , dCor,x, nx

)
and z̃ = col (εx, ux, vx). The transfer function matrix of

this closed-loop system can then be given by (dropping the dependence on s)



T
xre f

m →εx
TdCor,x→εx Tnx→εx

T
xre f

m →ux
TdCor,x→ux Tnx→ux

T
xre f

m →vx
TdCor,x→vx Tnx→vx


 =




Sx −GxSx Tx
KxSx −Tx −KxSx
KxSx Sx −KxSx


 , (4.15)

where Sx = (1 + KxGx)
−1 is the sensitivity function, and Tx = 1 − Sx = KxGxSx is the

complementary sensitivity function.

Kx Gx
+xre f

m +ux vx xm

dCor,x

+

nx

+

+
−

FIGURE 4.5: 1DoF control configuration for the drive-mode operation.

Please note that some of the transfers of (4.15) are equivalent. Indeed,
∣∣∣Txre f

m →εx

∣∣∣ =
∣∣TdCor,x→vx

∣∣,
∣∣TdCor,x→ux

∣∣ = |Tnx→εx | and
∣∣∣Txre f

m →ux

∣∣∣ = |Tnx→ux | =
∣∣∣Txre f

m →vx

∣∣∣ = |Tnx→vx |. Let us focus on

the equivalence |Tnx→ux | =
∣∣∣Txre f

m →ux

∣∣∣. To ensure a certain robustness level against additive
uncertainties, Tnx→ux has to be upper bounded, see (4.14). On the other hand, the upper
bound on the magnitude of the transfer T

xre f
m →ux

implies limiting the control signal energy

that is available for tracking the reference signal. In general, the higher the
∣∣∣Txre f

m →ux

∣∣∣ is, the
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quicker the to-be-controlled system tracks the reference signal and higher the control signal
amplitudes can be (mainly during the transient state). With a 1DoF controller, the robustness
against additive uncertainties and the “available control signal energy” are expressed through
the same transfer: KxSx. This structural constraint can be more or less restrictive depending
on the to-be-controlled system and on the closed-loop specifications. Later, we will see that
the 2DoF control configuration allows avoiding this structural constraint.

Also note that only three of the transfers of (4.15) have to be constrained to achieve the desired
performance: T

xre f
m →εx

, TdCor,x→εx and Tnx→ux . Moreover, most of them are equivalent. Thus, to
express the performance- and robustness-related frequency constraints, we consider the block
diagram of Figure 4.6, where, because of the equivalence between the transfers, the signals
nx and vx are suppressed. Furthermore, without these signals, the tracking error coincides
with the signal at the controller input. This scheme can be represented in the general control
configuration of Figure 4.1 or Figure 4.2 with w̃ = col

(
xre f

m , dCor,x

)
and z̃ = col (εx, ux),

Win = diag (Wr, Wd), Wout = diag (Wε, Wu), uP = ux, and yP = εx.

Wr Kx Gx

Wd Wu

Wε

w1 +xre f
m

εx

+

ux

xm

−

w2

dCor,x
+

z1

z2

FIGURE 4.6: Block diagram for the 1DoF drive-mode control design.

TheH∞ problem is therefore recast as to compute the controller Kx, if there is any, such that

‖Tw→z‖∞ =

∥∥∥∥∥

[
WεTxre f

m →εx
Wr WεTdCor,x→εxWd

WuT
xre f

m →ux
Wr WuTdCor,x→uxWd

]∥∥∥∥∥
∞

< γ. (4.16)

Furthermore, if there is a solution for this problem with γ ≤ 1, then (4.16) implies that,
∀ω ∈ R,

∣∣∣Txre f
m →εx

(jω)
∣∣∣ < 1
|Wε(jω)Wr(jω)| ,

∣∣TdCor,x→εx(jω)
∣∣ < 1
|Wε(jω)Wd(jω)| ,

∣∣∣Txre f
m →ux

(jω)
∣∣∣ < 1
|Wu(jω)Wr(jω)| ,

∣∣TdCor,x→ux(jω)
∣∣ < 1
|Wu(jω)Wd(jω)| .

The reference-tracking specification (see (4.12)) is achieved by constraining
∣∣∣Txre f

m →εx
(jω)

∣∣∣
to be small around ω = ωexc. This restriction is enforced via the product WεWr, which has
to present a gain larger than (λSFNLkSFNL)

−1 at ω = ωexc. Similarly, for the specification of
disturbance rejection (see (4.13)), the product WεWd must present a gain larger than 1/kx1
around ωexc. Finally, for the specification of robust stability against additive uncertainties
(see (4.14)), |WuWr| must be larger than 1/ |Wadd,1| across all the frequencies. It is also

important to note that, since
∣∣TdCor,x→ux

∣∣ =
∣∣∣1− T

xre f
m →εx

∣∣∣ (|−Tx| = |1− Sx|), when we enforce
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∣∣∣Txre f
m →εx

(jω)
∣∣∣� 1 for ω ≈ ωexc, we also have

∣∣TdCor,x→ux(jω)
∣∣ ≈ 1. This structural constraint

has to be taken into consideration for the design of Wu and Wd.

In general, the condition (4.14) is enough to ensure the robust stability of the system against
additive uncertainties. However, the designer may want to adopt more traditional stability
margins, as the gain and phase margins. In this case, the requirement of a minimum modulus
margin, which is closely related to the traditional stability margins [SP01], can be introduced
on the original specifications, enhancing the overall system robustness. A minimal modulus
margin ∆M can be enforced by constraining

‖Sx‖∞ =
∥∥∥T

xre f
m →εx

∥∥∥
∞
<

1
∆M

. (4.17)

This constraint is also enforced through the choice of Wε and Wr.

As discussed in Section 4.1.2, the choice of the weighting functions is nonunique. In the
sequel, we present a numerical example to illustrate the H∞ synthesis for the closed-loop
operation of the drive mode of a MEMS gyroscope.

Example 4.2 (1DoF direct control of the drive mode). Let us consider the drive-mode plant of
Example 2.1 and the following specifications.

(i) SFNL and reference tracking: SFNL smaller than 500 ppm, i.e., reference tracking of a
sinusoidal signal with relative error ε̌x < 0.5kSFNL = 250 · 10−6 (λSFNL = 0.5) for ωexc = ω0,x.

(ii) Disturbance rejection: minimize the disturbance effects, i.e., minimize kx1.

(iii) Robustness against additive uncertainties: minimize
∣∣∣Txre f

m →ux

∣∣∣where |Wadd,1| is important
(low and high frequencies).

(iv) Modulus margin (optional): additionally, ensure a modulus margin ∆M > 0.5.

Based on theH∞ synthesis, we want to design a 1DoF controller to operate the drive mode ensuring
the above specifications. For this purpose, we consider the H∞ criterion defined by the scheme of
Figure 4.6 and weighting functions that enforce the upper bounds presented in the figures 4.7 and 4.8.
The weighting functions are first chosen to ensure the “hard” specifications – reference tracking and
modulus margin (see transfer from xre f

m to εx). The other weighting functions are iteratively chosen
to minimize kx1 and

∣∣∣Txre f
m →ux

∣∣∣, respectively enhancing the disturbance rejection and the robustness
against additive uncertainties. Their expressions and numerical values are given in Appendix C.2.

Then, by solving the standardH∞ problem with γ = 0.9745, we obtain the 6th-order controller whose
Bode diagram is presented in Figure 4.9. Its numerical values are also given in Appendix C.2. Since
γ < 1, all the specifications are satisfied. Indeed, all the closed-loop transfer functions satisfy the
upper bounds in Figure 4.7 and Figure 4.8.

Globally, the controller has high gains around ωexc and small gains in low and high frequencies
(see Figure 4.9). These properties are indeed necessary to respectively ensure (i) that the transfer
T

xre f
m →εx

= Sx has small gain around ωexc (see Example 4.1), and (ii) that the transfer T
xre f

m →ux
=

KxSx has low gains in low and high frequencies. Indeed,

• if |Kx(jω)Gx(jω)| � 1, |Sx(jω)| ≈ 1/ |Kx(jω)Gx(jω)|;
• if |Kx(jω)Gx(jω)| � 1, |Kx(jω)Sx(jω)| ≈ |Kx(jω)|.
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FIGURE 4.7: Upper bounds and closed-loop frequency responses for Exam-
ple 4.2.
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FIGURE 4.9: Bode diagrams of the controller obtained in Example 4.2.

Now, if we zoom the Bode diagram around ωexc (see Figure 4.9b), we can note that the controller has a
salient resonance peak at ωexc, ensuring an accurate reference tracking. Moreover, the controller adds
at least 20° of phase lead for 0.98ωexc < ω < 1.02ωexc, ensuring that, even with the 180° phase lag
of the plant, the closed-loop system has a sufficient phase to ensure good stability margins.

2DoF Control Configuration

We have just seen that the 1DoF control configuration imposes a particular structural con-
straint:

∣∣∣Txre f
m →ux

∣∣∣ = |Tnx→ux |. Now, we present the 2DoF control configuration, which allows
avoiding this constraint. The 2DoF control configuration is presented in Figure 4.10, where
the controller Kx = [Kx1, Kx2] has two inputs (xre f

m and xn) and one output (ux). That is,
the 2DoF controller is composed of a feedforward controller Kx1 and a positive-feedback
controller Kx2. The tracking error is still defined as εx = xre f

m − xm and the signals of interest
are w̃ = col

(
xre f

m , dCor,x, nx

)
and z̃ = col (εx, ux, vx). Now, the transfer function matrix of

this closed-loop system is given by



T
xre f

m →εx
TdCor,x→εx Tnx→εx

T
xre f

m →ux
TdCor,x→ux Tnx→ux

T
xre f

m →vx
TdCor,x→vx Tnx→vx


 =




1− Kx1GxSx −GxSx Tx
Kx1Sx −Tx Kx2Sx
Kx1Sx Sx Kx2Sx


 , (4.18)

where Sx = (1− Kx2Gx)
−1 is the sensitivity function, and Tx = 1− Sx = −Kx2GxSx is the

complementary sensitivity function. Please note that, as claimed, there is no more equivalence
between the transfers T

xre f
m →ux

and Tnx→ux . Then,
∣∣∣Txre f

m →ux

∣∣∣ can be different of |Tnx→ux |.

Kx Gx
xre f

m +ux vx xm

dCor,x

+

nx

+

+xn

FIGURE 4.10: 2DoF control configuration for the drive-mode operation.
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To express the desired performance- and robustness-related frequency constraints, we con-
sider the block diagram of Figure 4.11, which can be represented in the general control
configuration of Figure 4.1 or Figure 4.2 with w̃ = col

(
xre f

m , dCor,x, nx

)
and z̃ = col (εx, ux),

Win = diag (Wr, Wd, Wn), Wout = diag (Wε, Wu), uP = ux, and yP = col
(

xre f
m , xn

)
.

Kx Gx
+ux vx xm

+

xn

Wr

Wd

Wn

w1

xre f
m

w2 dCor,x

+

w3 nx
+

Wε

Wu

+

−
εx z1

z2

FIGURE 4.11: Block diagram for the 2DoF drive-mode control design.

The H∞ problem is then recast as to compute the controller Kx = [Kx1, Kx2], if there is any,
such that

‖Tw→z‖∞ =

∥∥∥∥∥

[
WεTxre f

m →εx
Wr WεTdCor,x→εxWd WεTnx→εxWn

WuT
xre f

m →ux
Wr WuTdCor,x→uxWd WuTnx→uxWn

]∥∥∥∥∥
∞

< γ. (4.19)

If there exists a solution for this problem with γ ≤ 1, then, ∀ω ∈ R,

∣∣∣Txre f
m →εx

∣∣∣ < 1
|WεWr|

,
∣∣TdCor,x→εx

∣∣ < 1
|WεWd|

, |Tnx→εx | <
1

|WεWn|
,

∣∣∣Txre f
m →ux

∣∣∣ < 1
|WuWr|

,
∣∣TdCor,x→ux

∣∣ < 1
|WuWd|

, |Tnx→ux | <
1

|WuWn|
.

As well as for the previous case (1DoF), the specification of reference tracking (see (4.12))
can be achieved by constraining

∣∣∣Txre f
m →εx

∣∣∣ to be small around ω = ωexc. This restriction is

enforced via the product WεWr, which has to present a gain larger than (λSFNLkSFNL)
−1 at

ω = ωexc. For the specification of disturbance rejection (see (4.13)), the product WεWd must
present a gain larger than 1/kx1 around ωexc. Finally, for the specification of robust stability
against additive uncertainties (see (4.14)), |WuWn|must be larger than |Wadd,1|.
It is important to mention that we could opt to consider vx instead of ux as signal of interest.
This would allow us, if required, to upper bound the transfer TdCor,x→vx = Sx, enforcing a
minimal modulus margin.

Example 4.3 (2DoF direct control of the drive mode). Let us consider again the drive-mode plant
of Example 2.1 and the following specifications.

(i) SFNL and reference tracking: SFNL smaller than 500 ppm, i.e., reference tracking of a
sinusoidal signal with relative error ε̌x < 0.5kSFNL = 250 · 10−6 (λSFNL = 0.5) for ωexc = ω0,x.

(ii) Disturbance rejection: minimize the disturbance effects, i.e., minimize kx1.
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(iii) Robustness against additive uncertainties: minimize |Tnx→ux | where |Wadd,1| is important
(low and high frequencies).

Based on theH∞ synthesis, we want to design a 2DoF controller to operate the drive mode ensuring
the above specifications. To this end, we consider theH∞ criterion defined by the scheme of Figure 4.11
and weighting functions that enforce the upper bounds of the figures 4.12 and 4.13. Similar to
Example 4.2, we start by choosing the weighting functions defining the “hard constraints” – in this
case, the reference tracking (see transfer from xre f

m to εx). The other weighting functions are iteratively
chosen to minimize kx1 and the magnitude of Tnx→ux (mainly in low and high frequencies). Their
numerical values are given in Appendix C.3.

Please note that, in contrast to the 1DoF case, here, the transfers T
xre f

m →ux
and Tnx→ux have different

magnitude. Then, the upper bound on T
xre f

m →ux
can be relaxed, allowing to have a quicker reference

tracking (if needed). The transfer Tnx→ux is still used for the robust stability specification.

Then, by solving the standardH∞ problem with γ = 1.1634, we obtain the 8th-order controller whose
Bode diagram is presented in Figure 4.14 and numerical values are given in Appendix C.3. First, note
that in this case, γ > 1. By observing the obtained closed-loop transfer functions in Figure 4.13, we
can realize that |Tnx→εx | is slightly higher than its upper bound. Similarly, |Tnx→ux | is also slightly
higher than its upper bound. Even though, the main closed-loop specifications (reference tracking and
disturbance rejection) are fulfilled.

The modulus margin is verified a posteriori. We obtain ‖Sx‖∞ = 1.0347 ≈ 0.2963 dB, which gives
∆M = 0.9665 > 0.5.

Globally, Kx1 has high gains across all the frequency range. Since its input signal is xre f
m , which is

a sinusoidal signal (spectrum concentrated around ωexc), the high gains in low and high frequency
ranges is not an issue. On the other hand, Kx2 is similar to the 1DoF controller of Example 4.2,
that is, it has important gains around ωexc and lower gains in low and high frequencies, ensuring
low gain for Tnx→ux in these frequencies. Two main differences can be observed. Due to the positive
feedback, the phase of Kx2 presents an additional 180° phase lead, but it still ensures a sufficient phase
for stability. The second difference consists on the absense of the “salient” resonance peak. In the 1DoF
case, this resonance peak was needed to ensure an accurate reference tracking. Here, the feedforward
controller Kx1 also helps to achieve an accurate reference tracking, such that this resonance peak
becomes unnecessary.
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FIGURE 4.12: Upper bounds and closed-loop frequency responses for Exam-
ple 4.3.
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FIGURE 4.14: Bode diagrams of the controller obtained in Example 4.3.

4.2.2 Sense-Mode Control

Besides the main objective of estimating the Coriolis force, the sense-mode controller also has
to fulfill secondary control objectives so that the whole gyroscope achieves the desired global
performance level. In the SISO approach, the sense-mode controller has to be such that the
frequency constraints below are satisfied.

Sense-mode nominal performance constraints:

(i) SFNL and estimation of the Coriolis force: for the SFNL (see (3.53), page 69), which
also implies an accurate estimation of dCor,y, we consider

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ ≤ (1− λSFNL) kSFNL. (4.20)

(ii) Disturbance rejection: in the SISO approach, for the minimization of ym (or equiva-
lently, εy), we consider (3.41) (page 67):

∀|ω| ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣∣TdCor,y→ym(jω)

∣∣∣ =
∣∣∣TdCor,y→εy(jω)

∣∣∣ < ky2, (4.21)

where ky2 ∈ R+ is to be minimized.

(iii) Bandwidth: to ensure a bandwidth ωB larger than ωdes
B (see (3.56), page 70),

∀|ω| ∈ [ωexc −ωdes
B , ωexc + ωdes

B ],
∣∣∣TdCor,y→εest(jω)

∣∣∣ < 2−
√

2
2

≈ 0.2929. (4.22)

(iv) Angle random walk (ARW): in the SISO approach, Tex→ûCor,y = 0 (no coupling between
the drive and sense modes); then, we rewrite (3.60) (page 71) with λARW = 0 as

∀|ω| ∈ (0, 2ωexc],
∣∣∣Tey→ûCor,y(jω)

∣∣∣ =
∣∣∣Ny(jω)Tny→ûCor,y(jω)

∣∣∣ ≤
√

2
2

k̂SFkARW (4.23)

and consider
∀|ω| ∈ (0, 2ωexc],

∣∣∣Tny→ûCor,y(jω)
∣∣∣ ≤ kn∣∣Ny(jω)

∣∣ , (4.24)
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where kn =

√
2 · k̂SFkARW

2
is to be minimized and Ny defines the power spectral density

of the noise (see (2.49), page 32).

(v) Band-pass condition of ûCor,y: in the SISO approach, to ensure the band-pass condition
of ûCor,y, the controller has to ensure (see (3.44), page 67)

∀ |ω| ≥ 2ωexc,
∣∣∣Tey→ûCor,y(jω)

∣∣∣� 1 and
∣∣∣Tey→ûCor,y(0)

∣∣∣� 1. (4.25)

Sense-mode robust stability constraint:

(i) Unmodeled dynamics: to enforce the robustness against additive uncertainties ∆Eyy ∈
∆add, which is defined by Wadd,1 and Wadd,2 = 1 (see (3.63), page 72), we shall minimize
at best

∣∣Tny→uy(jω)
∣∣, mainly in the frequency range where |Wadd,1| is important. Indeed,

the weighted small gain theorem ensures stability against this kind of uncertainty if

∀ω ∈ R,
∣∣∣Tny→ûCor,y(jω)

∣∣∣ =
∣∣Tny→uy(jω)

∣∣ < 1
|∆Wadd,1(jω)| . (4.26)

Similar to the drive mode, |Wadd,1| is assumed to be important in low and high frequen-
cies, and small around ω0,x and ω0,y.

For the sense mode, we consider only the 1DoF control configuration. Since the sense-
mode control objective is rather a regulation (or disturbance rejection) problem, there are no
significant advantages on using the 2DoF control configuration. Here, we consider the control
scheme of Figure 4.15, where Ky represents the controller and Gy is the sense-mode model.
The main objective is to provide an accurate estimate of the signal dCor,y. This estimate is given
by ûCor,y = −uy. In addition, we define the estimation error εest = dCor,y− ûCor,y = dCor,y + uy.
We also define the signals of interest w̃ = col

(
dCor,y, ny

)
and z̃ = col

(
εest, ûCor,y, ym

)
. This

closed-loop system can then be given by the following transfer functions:



TdCor,y→εest Tny→εest

TdCor,y→ûCor,y Tny→ûCor,y

TdCor,y→ym Tny→ym


 =




Sy KySy
Ty −KySy

GySy −Ty


 , (4.27)

where Sy =
(
1− KyGy

)−1 is the sensitivity function, and Ty = 1− Sy = −KyGySy is the
complementary sensitivity function.

Gy Ky −1
+dCor,y εest +ym yn uy ûCor,y

ny

+

+

FIGURE 4.15: 1DoF control configuration for the sense-mode operation.

Please note that the magnitudes of some transfer functions of (4.27) are equal:
∣∣∣Tny→ûCor,y

∣∣∣ =
∣∣Tny→εest

∣∣ =
∣∣KySy

∣∣ and
∣∣Tny→ym

∣∣ =
∣∣∣TdCor,y→ûCor,y

∣∣∣ =
∣∣Ty
∣∣ .

Then, to express the performance- and robustness-related frequency constraints, we consider
the block diagram of Figure 4.16, where, because of the equivalence between the transfer
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functions mentioned above, the signal ûCor,y is not considered as a signal of interest. In this
case, w̃ = col

(
dCor,y, ny

)
and z̃ = col (εest, ym), Win = diag (Wd, Wn), Wout = diag

(
Wε, Wy

)
,

uP = uy, and yP = yn.

Gy Ky
εest

+

ym

yn
uy

+
Wd

Wn

w1 +dCor,y

w2

+

ny
Wy

Wε

z1

z2

FIGURE 4.16: Block diagram for the 1DoF sense-mode control design.

TheH∞ problem is then recast as to compute the controller Ky, if there is any, such that

‖Tw→z‖∞ =

∥∥∥∥∥

[
WεTdCor,y→εestWd WεTny→εestWn

WyTdCor,y→ymWd WyTny→ymWn

]∥∥∥∥∥
∞

< γ. (4.28)

If the problem above has a solution with γ ≤ 1, then (4.28) implies that, ∀ω ∈ R,

∣∣∣TdCor,y→εest

∣∣∣ < 1
|WεWd|

,
∣∣Tny→εest

∣∣ < 1
|WεWn|

,

∣∣∣TdCor,y→ym

∣∣∣ < 1∣∣WyWd
∣∣ ,

∣∣Tny→ym

∣∣ < 1∣∣WyWn
∣∣ .

The specification for SFNL (accurate estimation) and bandwidth (respectively, (4.20) and
(4.22)) can be achieved by constraining

∣∣∣TdCor,y→εest

∣∣∣. These constraints are enforced through

the product WεWd, which has to present a gain larger than ((1− λSFNL)kSFNL)
−1 at ω = ωexc

and higher than 1/0.2929 for |ω| ∈ (ωexc −ωB, ωexc + ωB).

Similarly, for the disturbance rejection (or minimization of ym – see (4.21)), the product
WyWd must present a gain larger than 1/ky2 around ωexc. Finally, the specifications for ARW,
band-pass condition of ûCor,y and robust stability against additive uncertainties (respectively
(4.24), (4.25) and (4.26)) are enforced through |WεWn|, which must be larger than

∣∣Ny(jω)
∣∣ /kn

(ARW) and larger than |Wadd,1| (robustness) across all the frequencies. Moreover, to fulfill the
band-pass condition, |WεWn|must present a very high gain at ω = 0 and for |ω| ≥ 2ωexc.

It is also important to note that, since Ty = 1 − Sy, when enforcing
∣∣∣TdCor,y→εest(jω)

∣∣∣ <

(1− λSFNL) kSFNL � 1, we have
∣∣Tny→ym(jω)

∣∣ ≈ 1 (recalling that
∣∣∣TdCor,y→εest

∣∣∣ =
∣∣Sy
∣∣ and∣∣Tny→ym

∣∣ =
∣∣Ty
∣∣). This structural constraint has also to be taken into consideration for the

design of Wy and Wn.

If needed, a minimal modulus margin ∆M can also be enforced by constraining TdCor,y→εest ,
through WεWd, to present magnitude smaller than 1/∆M across all the frequencies, similar
to the drive mode.

Let us now present an example to illustrate theH∞ synthesis for the design of a controller for
the sense-mode closed-loop operation.
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Example 4.4 (Direct control of the sense mode). Let us consider the sense-mode plant of Exam-
ple 2.2 and the following specifications.

(i) SFNL and Coriolis force estimation: SFNL smaller than 500 ppm, i.e., estimation of a
sinusoidal signal with relative error ε̌est < 0.5kSFNL = 250 · 10−6 (λSFNL = 0.5) for ωexc =
ω0,x.

(ii) Disturbance rejection: minimize the displacement of the proof mass along the ~y-axis, i.e.,
minimize ky2.

(iii) Bandwidth: ωB ≥ ωdes
B = 2π200rad s−1.

(iv) ARW: minimize the ARW, i.e., minimize kn.

(v) Band-pass condition: ensure the band-pass condition of ûCor,y.

(vi) Robustness against additive uncertainties: minimize
∣∣Tny→εest

∣∣ where |Wadd,1| is important
(low and high frequencies).

(vii) Modulus margin (optional): additionally, ensure a modulus margin ∆M > 0.5.

Based on theH∞ synthesis, we aim to design a controller for the sense mode that ensures the above
specifications. To achieve this objective, we consider the H∞ criterion defined by the scheme of
Figure 4.16 and weighting functions that enforce the upper bounds of the figures 4.17 and 4.18.

dCor,y → ym ny → ym

dCor,y → εest ny → εest
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ple 4.4.
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dCor,y → ym ny → ym

dCor,y → εest ny → εest
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As well as for the previous examples, the weighting functions are chosen first to enforce the “hard
constraints” – the accurate estimation (SFNL), the bandwidth and the modulus margin (all of them
related to the transfer from dCor,y to εest). In particular, we chose to place the dynamic weighting
function enforcing low gain for ω = ωexc rather on the input signal (dCor,y) than on the output signal
(εest). Putting this weighting function on εest would impose an upper bound with low gain at ω = ωexc

on the transfer Tny→εest . This constraint cannot be enforced because
∣∣∣TdCor,y→εest(jωexc)

∣∣∣� 1 implies∣∣Ky(jωexc)
∣∣ � 1, which, in its turn, implies that

∣∣Tny→εest(jωexc)
∣∣ =

∣∣Ky(jωexc)Sy(jωexc)
∣∣ ≈∣∣Gy(jωexc)

∣∣−1. The same argument is used to justify a trade-off between the bandwidth and the
ARW: the larger (better) is the bandwidth, the higher (worse) is the ARW. Indeed, the transfer Tny→εest

cannot be minimized by the controller in the frequency range where
∣∣Ky(jω)Gy(jω)

∣∣ � 1, which

is the case when
∣∣∣TdCor,y→εest(jω)

∣∣∣ =
∣∣Sy(jω)

∣∣ � 1 (e.g., in the bandwidth). The other weighting
functions are iteratively chosen to enforce the rest of the specifications. Their numerical values are
given in Appendix C.4.

By solving the standardH∞ problem with γ = 1.1422, we obtain the 6th-order controller whose Bode
diagram is presented in Figure 4.19 and numerical values are also given in Appendix C.4. Similar
to Example 4.3, we also have γ slightly larger than 1. Note that, in Figure 4.17 and Figure 4.18,
the upper bound violations arise mainly on the transfer TdCor,y→εest and correspond to the bandwidth
specification, which may be somewhat conservative. Thus, even with a small violation of the upper
bounds, the required bandwidth shall be observed2.
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FIGURE 4.19: Bode diagrams of the controller obtained in Example 4.4.

Globally, the controller has high gains around ωexc to ensure an accurate estimation of dCor,y with
a given bandwidth, and low gain in low and high frequencies, ensuring the robust stability against
unmodeled dynamics in these frequency ranges (see Figure 4.19a).

When we zoom its Bode diagram around ωexc (see Figure 4.19b), we can note the presence of an
important resonance peak at ωexc, which is followed by an antiresonance. The main role of this
antiresonance is to add a phase lead before the sense mode adds a 180° phase lag, ensuring a sufficient
phase for the closed-loop system stability. We recall that the sense-mode resonance frequency is equal
to 11.55 kHz ≈ 1.004ωexc.

2As well as for the other specifications, a deeper performance analysis must be performed to validate the
proposed controller.
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4.3 MIMO Control Architectures

Up to this point, we have considered independent SISO controllers to operate the MEMS
gyroscope in closed loop. However, besides the coupling produced by the Coriolis force,
the drive and sense modes might be mechanically coupled through anisoelasticity and
nonproportional damping. Moreover, the design of SISO controllers for a multivariable
system does not provide any guarantee of stability nor performance. Therefore, in this
section, we aim to propose a multivariable approach for the closed-loop operation of MEMS
gyroscopes, properly taking into consideration the mechanical coupling between the drive
and sense modes. As well as for the SISO approach, we consider the H∞ synthesis for the
controller design.

Two different strategies are considered here. We start by considering a control configuration
that is inspired by the SISO approach presented in the previous section. In that configuration,
the estimate ûCor,y is directly linked to the control signal uy, i.e., ûCor,y = −uy. Then, thanks
to the fact that the controller acts on the drive and sense modes, we can introduce a novel
control configuration, where the controller is designed with a third output signal, which is
directly used as ûCor,y, avoiding the direct links between the signals ûCor,y and uy.

4.3.1 MIMO 2DoF Control Architecture (with ûCor,y = −uy)

Let us first consider the 2DoF control configuration of Figure 4.20, in which we recall that u =
col
(
ux, uy

)
, v = col

(
vx, vy

)
, qm = col (xm, ym), qn = col (xn, yn), dCor = col

(
dCor,x, dCor,y

)

and n = col
(
nx, ny

)
. Moreover, for the sake of symmetry, we define a reference vector

r = col
(

xre f
m , yre f

m

)
. Then, the tracking error vector is given by ε = col

(
εx, εy

)
= r − qm.

The estimate of dCor,y is obtained through ûCor,y = −uy, such that the estimation error can
be given by εest = dCor,y + uy, which is equal to vy. Similar to the SISO approach, the 2DoF
controller is given by K = [K1, K2], where K1 is a feedforward controller with r as input
signal, and K2 is a positive-feedback controller with qn = qm + n as input signal.

K G
r +u v qm

dCor

+

n
+

+qn

FIGURE 4.20: Multivariable 2DoF control configuration.

By defining the signals of interest w̃ = col (r, dCor, n) and z̃ = col (ε, u, v), the above closed-
loop system defines the following transfer matrix:




Tr→ε TdCor→ε Tn→ε

Tr→u TdCor→u Tn→u
Tr→v TdCor→v Tn→v


 =




I − SGK1 −SG T
SIK1 −TI K2S
SIK1 SI K2S


 , (4.29)

where S = (I − GK2)
−1 is the output sensitivity function, T = I − S = −SGK2 = −GK2S

is the output complementary sensitivity function, SI = (I − K2G)−1 is the input sensitivity
function and TI = I − SI is the input complementary sensitivity function.
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To express the desired performance- and robustness-related frequency constraints of Chap-
ter 3, we consider the block diagram of Figure 4.21, which can be represented in the gen-
eral control configuration of Figure 4.1 or Figure 4.2 with w̃ = col

(
xre f

m , dCor, n
)

and z̃ =

col
(
ε, u, vy

)
, Win = diag (Wr1, Wd, Wn) with Wd = diag (Wd1, Wd2) and Wn = diag (Wn1, Wn2),

and Wout = diag (Wε, Wu, West) with Wε = diag (Wε1, Wε2) and Wu = diag (Wu1, Wu2),
uP = col

(
ux, uy

)
, and yP = col

(
xre f

m , 0, xn, yn

)
.

[
Wr1

0

]
K

[
Wn1 0

0 Wn2

]

G

[
Wd1 0

0 Wd2

]
[

Wu1 0
0 Wu2

]

[
Wε1 0

0 Wε2

]

[
0 West

]

w1

r

+

u

v qm

+w3 +n

w2

dCor
+

+

−
ε z1

z3

z2

FIGURE 4.21: Block diagram for the 2DoF MIMO control design.

TheH∞ problem is then to compute the controller K = [K1, K2], if there is any, such that

‖Tw→z‖∞ =

∥∥∥∥∥∥∥




WεTxre f
m →ε

Wr1 WεTdCor→εWd WεTn→εWn

WuT
xre f

m →u
Wr1 WuTdCor→uWd WuTn→uWn

WestTxre f
m →εest

Wr1 WestTdCor→εestWd WestTn→εestWn




∥∥∥∥∥∥∥
∞

< γ. (4.30)

In contrast to the SISO approach, where all frequency constraints are defined on SISO transfer
functions, in a MIMO approach, the frequency constraints can be defined on SISO or on
MIMO transfer functions. In our case, all the performance-related constraints are based on
SISO transfer functions, while the robustness-related frequency constraints are defined on
MIMO transfer functions.

Let us first consider the performance-related constraints. If there exists a solution for the
problem above with γ ≤ 1, then (4.30) implies that theH∞ norm of each individual element
of the matrix is also upper bounded by 1. Thus, ∀ω ∈ R,

∣∣∣Txre f
m →εx

∣∣∣ < 1
|Wε1Wr1|

,
∣∣TdCor,x→εx

∣∣ < 1
|Wε1Wd1|

,
∣∣∣TdCor,y→εx

∣∣∣ < 1
|Wε1Wd2|

,

∣∣∣Txre f
m →εy

∣∣∣ < 1
|Wε2Wr1|

,
∣∣∣TdCor,x→εy

∣∣∣ < 1
|Wε2Wd1|

,
∣∣∣TdCor,y→εy

∣∣∣ < 1
|Wε2Wd2|

,

∣∣∣Txre f
m →εest

∣∣∣ < 1
|WestWr1|

,
∣∣TdCor,x→εest

∣∣ < 1
|WestWd1|

,
∣∣∣TdCor,y→εest

∣∣∣ < 1
|WestWd2|

,

|Tnx→εest | <
1

|WestWn1|
,

∣∣Tny→εest

∣∣ < 1
|WestWn2|

.

Similar to the SISO approach, the performance-related specifications are enforced through
the choice of the corresponding weighting functions.
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Let us now consider the robustness-related constraints, which are based on the frequency
response of MIMO transfer functions. For instance, for additive uncertainties ∆E ∈ ∆add,
defined by the matrices Wadd,1 and Wadd,2, the closed-loop system has to present the following
property (see (3.64)):

‖Wadd,2Tn→uWadd,1‖∞ = sup
ω∈R

σ (Wadd,2(jω)Tn→u(jω)Wadd,1(jω)) < 1. (4.31)

Note that, if γ ≤ 1, (4.30) implies that ‖WuTn→uWn‖∞ < 1. Therefore, if Wu and Wn are
such that ‖Wadd,2Tn→uWadd,1‖∞ ≤ ‖WuTn→uWn‖∞, (4.31) holds and the stability against all
∆E ∈ ∆add is ensured.

Before to proceed with a numerical example, it is important to mention a limitation of this
control architecture. Demanding an accurate estimation of dCor,y is contradictory to the
minimization of the displacements along the ~y axis. To justify this claim, let us partition

G =

[
Gxx Gxy
Gyx Gyy

]
. In the frequency domain, its output vector can be given by

[
xm(jω)
ym(jω)

]
=

[
Gxx(jω) Gxy(jω)
Gyx(jω) Gyy(jω)

] [
vx(jω)
vy(jω)

]
.

Hence, if all the closed-loop transfers to εest = vy have small gains around ω = ωexc

(requirement for an accurate estimation) and xm ≈ xre f
m (accurate reference tracking), in

this frequency range, we have vy(jωexc) ≈ 0 and vx(jωexc) ≈ xre f
m (jωexc)/Gxx(jωexc), which

leads to

ym(jωexc) ≈
Gyx(jωexc)

Gxx(jωexc)
xre f

m (jωexc).

Since T
xre f

m →ym
(jωexc) = ym(jωexc)/xre f

m (jωexc), the accurate estimation and reference tracking
requirements impose

∣∣∣Txre f
m →εy

(jωexc)
∣∣∣ =

∣∣∣Txre f
m →ym

(jωexc)
∣∣∣ ≈

∣∣∣∣
Gyx(jωexc)

Gxx(jωexc)

∣∣∣∣ , (4.32)

showing that, under these conditions and for ω ≈ ωexc, the controller cannot minimize∣∣∣Txre f
m →ym

∣∣∣ further than
∣∣Gyx/Gxx

∣∣. Obviously, by relaxing the requirements for reference

tracking and accurate estimation,
∣∣∣Txre f

m →ym

∣∣∣ can be reduced and a trade-off can be made. In
the next subsection, however, we show how to avoid this structural constraint.

Example 4.5 (2DoF multivariable control design for a MEMS gyroscope). Let us consider the
plant of Example 2.3 and the following specifications.

(i) SFNL (drive-mode reference tracking and estimation of the Coriolis force): SFNL smaller
than 500 ppm, i.e., reference tracking of a sinusoidal signal with relative error smaller than
ε̌x < 0.5kSFNL = 250 · 10−6 and estimation of a sinusoidal signal with relative error ε̌est <
0.5kSFNL = 250 · 10−6 (λSFNL = 0.5) for ωexc = ω0,x.

(ii) Sense-mode disturbance rejection: minimize the displacement of the proof mass along the
~y-axis, i.e., minimize ky2.

(iii) Bandwidth: ωB ≥ ωdes
B = 2π200rad s−1.

(iv) ARW: minimize the ARW, i.e., minimize kn.
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FIGURE 4.22: Upper bounds and closed-loop frequency responses for Exam-
ple 4.5.

(v) Band-pass condition: ensure the band-pass condition of ûCor,y.

(vi) Robustness against additive uncertainties: minimize σ
(
Tny→εest

)
where σ (Wadd,1) is im-

portant (low and high frequencies).

Based on theH∞ synthesis, we aim to design a multivariable controller for a MEMS gyroscopes that
ensures the above specifications. To this purpose, we consider theH∞ criterion defined by the scheme
of Figure 4.21 and weighting functions that enforce the upper bounds of the figures 4.22 and 4.23.

As well as for the previous examples, the weighting functions are chosen first to enforce the “hard
constraints” – reference tracking, accurate estimation and bandwidth. The other weighting functions
are iteratively chosen to enforce the rest of the specifications. Their expression and numerical values
are given in Appendix C.5.

By solving the standardH∞ problem with γ = 1.7245, we obtain the 16th-order controller whose Bode
diagram is presented in Figure 4.25 and numerical values are also given in Appendix C.5. Concerning
the closed-loop frequency responses given in Figure 4.22 and Figure 4.23, let us focus on the transfer
from xre f

m to εy (see the second row of the first column in Figure 4.23). Even if the weighting functions
enforce this transfer to have a gain smaller than 1/60 ≈ −36 dB for ω ≈ ωexc (we would like to
minimize even further), due to the structural constraint of (4.32), this value cannot be achieved.
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FIGURE 4.23: Upper bounds and closed-loop frequency responses for Exam-
ple 4.5. Zoom around ωexc.
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FIGURE 4.24: Largest singular value of Tn→u for Example 4.5.

Indeed, in this example,
∣∣Gyx(jωexc)/Gxx(jωexc)

∣∣ = 0.02184 ≈ −31 dB, which also corresponds to

the value of
∣∣∣Txre f

m →εy
(jωexc)

∣∣∣, confirming the discussion related to this structural constraint.

The robustness of the closed-loop system against additive uncertainties is optimized by reducing at best

the magnitude of the individual transfers of Tn→u =

[
Tnx→ux Tny→ux

Tnx→uy Tny→uy

]
in low and high frequencies

through the choice of Wn. A measure of the robustness can be given by σ (Tn→u), which is represented
in Figure 4.24 (see discussion in Section 3.4.2). Therefore, this controller ensures the stability of the
system even if the model uncertainties are important in low and high frequencies. However, the model
is required to be precise around the resonance frequency.

Finally, the Bode diagram of the controller is presented in Figure 4.25a and Figure 4.25b. Since
the second input of the controller is set to zero, we can eliminate this input. The controller is then

partitioned as K =

[
K11 K12 K13
K21 K22 K23

]
with the input vector col

(
xre f

m , xn, yn

)
and output vector

col
(
ux, uy

)
. We can note that K11 and K12 are similar to the drive-mode controller of Example 4.3

and K23 is similar to the sense-mode controller of Example 4.4. The other terms correspond to the
cross-coupling and allow the controller to properly take the gyroscope mechanical coupling into
account.
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(A) Wide frequency range.

(B) Zoom around ωexc.

FIGURE 4.25: Bode diagrams of the controller obtained in Example 4.5.

4.3.2 MIMO 2DoF Control Architecture with Joint Estimation

We have just discussed that in the MIMO approach of Section 4.3.1, we cannot have a
controller that ensures at the same time an accurate reference tracking, a precise estimation
of dCor,y and the minimization of

∣∣∣Txre f
m →ym

∣∣∣ beyond a certain value. In this subsection, we
present a novel control architecture that allows avoiding this constraint.

We consider the control configuration of Figure 4.26, which is similar to the control config-
uration of Figure 4.20. The difference is that now the controller has a third output: ûCor,y.

The controller is now given by K =

[
K1 K2
K3 K4

]
, where K1 and K2 are still feedforward and

positive-feedback controllers, respectively; and Kest = [K3, K4] behaves like a filter that, based
on the signals xre f

m , yre f
m , xn and yn and on the plant model G, directly estimates dCor,y.

K G
r

ûCor,y

+u v qm

dCor

+

n
+

+qn

FIGURE 4.26: Multivariable 2DoF control configuration with joint estimation.

By defining the signals of interest w̃ = col (r, dCor, n) and z̃ = col (ε, u, v, εest) with ε =
r− qm and εest = dCor,y − ûCor,y, the above closed-loop system defines the following transfer
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matrix:



Tr→ε TdCor→ε Tn→ε

Tr→u TdCor→u Tn→u
Tr→v TdCor→v Tn→v

Tr→εest TdCor→εest Tn→εest


 =




I − SGK1 −SG T
SIK1 −TI K2S
SIK1 SI K2S

(K4SG + K3)K1 I − K4SG −K4S


 , (4.33)

where the sensitivity functions are the same of (4.29). Moreover, we note that the difference
between (4.29) and (4.33), as claimed at the beginning of this section, is that in the latter
equation, the transfers to εest (last line) are, in a certain extent, independent from those to v
(third line).

To express the desired performance- and robustness-related frequency constraints of Chap-
ter 3, we consider the block diagram of Figure 4.27, which can be represented in the gen-
eral control configuration of Figure 4.1 or Figure 4.2 with w̃ = col

(
xre f

m , dCor, n
)

and z̃ =

col (ε, u, εest), Win = diag (Wr1, Wd, Wn) with Wd = diag (Wd1, Wd2) and Wn = diag (Wn1, Wn2),
Wout = diag (Wε, Wu, West) with Wε = diag (Wε1, Wε2) and Wu = diag (Wu1, Wu2), uP =

col
(
ux, uy, ûCor,y

)
, and yP = col

(
xre f

m , 0, xn, yn

)
.

[
Wr1

0

]
K

[
Wn1 0

0 Wn2

]

G

[
Wd1 0

0 Wd2

] [
0 1

]

West

[
Wu1 0

0 Wu2

]

[
Wε1 0

0 Wε2

]

w1

r

+u v qm

+w3 +n

w2 dCor

+

+

−
ε z1

−ûCor,y +

dCor,y

εest z3

z2

FIGURE 4.27: Block diagram for the 2DoF MIMO control design with joint
estimation.

TheH∞ problem is then to compute the controller K, if there is any, such that

‖Tw→z‖∞ =

∥∥∥∥∥∥∥




WεTxre f
m →ε

Wr1 WεTdCor→εWd WεTn→εWn

WuT
xre f

m →u
Wr1 WuTdCor→uWd WuTn→uWn

WestTxre f
m →εest

Wr1 WestTdCor→εestWd WestTn→εestWn




∥∥∥∥∥∥∥
∞

< γ, (4.34)

Example 4.6 (2DoF multivariable control design for a MEMS gyroscope with joint estimation).
Let us consider the plant, noise models and the specifications of Example 4.5. Then, based on theH∞
synthesis, we want to design a multivariable controller with joint estimation for a MEMS gyroscopes,
ensuring the given specifications.

We consider the H∞ criterion defined by the scheme of Figure 4.27 and weighting functions that
enforce the upper bounds of the figures Figure 4.28 and Figure 4.29. The weighting functions are first
chosen to enforce the “hard constraints” – reference tracking, accurate estimation and bandwidth. The
other weighting functions are iteratively chosen to enforce the other specifications. Their expression
and numerical values are given in Appendix C.6.

By solving the standard H∞ problem with γ = 1.1037, we obtain a 14th-order controller whose
Bode diagram is presented in Figure 4.31 and Figure 4.32. Its numerical values are also given
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FIGURE 4.28: Upper bounds and closed-loop frequency responses for Exam-
ple 4.6.
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FIGURE 4.29: Upper bounds and closed-loop frequency responses for Exam-
ple 4.6. Zoom around ωexc(= 1).
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in Appendix C.6. Concerning the closed-loop frequency responses given in Figure 4.28 and Figure 4.29,
the results obtained in this example are globally similar to those of Example 4.5. The main difference
appears on the transfer from xre f

m to εy, whose magnitude at ωexc is smaller than −120 dB, whereas in
the previous example, it cannot be made smaller than −31 dB.

The robustness of the closed-loop system against additive uncertainties can be verified through the
largest singular values of Tn→u, presented in Figure 4.30. The results here are, again, very similar to
those of Example 4.5.

FIGURE 4.30: Largest singular value of Tn→u for Example 4.6.

Finally, the Bode diagram of the controller is presented in Figure 4.31 and Figure 4.32. The main
difference of this controller, compared to that of Example 4.5, is that it presents a third output, which
directly produces the estimate of the Coriolis force ûCor,y. Otherwise, the other elements of the controller
are similar to the previous example. We recall that the second input of the controller is eliminated
since it is set to zero. Therefore, the input vector of the controller is col

(
xre f

m , xn, yn

)
and its output

vector is col
(
ux, uy, ûCor,y

)
.
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FIGURE 4.31: Bode diagram of the controller of Example 4.6.
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FIGURE 4.32: Bode diagram of the controller of Example 4.6. Zoom around
ωexc(= 1).
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4.4 Validation of the Proposed Solutions

Since Chapter 3, and in the present chapter, we have made the important assumption that the
Coriolis forces are exogenous to the MEMS gyroscope. This assumption is crucial to consider
LTI design methods for the controller design (as theH∞ synthesis). Nevertheless, it is known
that these forces are internal to the system and change its dynamics. In this section, we aim
to show that, even if the effects of the Coriolis forces are not fully taken into account for the
controller design, for the system under study, the designed controllers behave well when
the Coriolis forces are properly considered. This means that the stability and performance
obtained with the complete LTV model are the same as those obtained with the simplified
LTI model, verifying Assumption 3.5 (page 59).

In this section, we want then to validate and compare two of the approaches proposed in this
chapter.

SISO approach: the drive mode is in closed loop with the 2DoF controller of Example 4.3
and the sense mode with the 1DoF controller of Example 4.4. In this case, the overall
controller K is given by

K =

[
Kx1 Kx2 0
0 0 Ky

]
(4.35)

and the estimate ûCor,y is defined as ûCor,y = −uy.

MIMO approach: the drive and sense modes are in closed loop with the MIMO controller
with joint estimation of Example 4.6. In this case, the estimate ûCor,y is directly computed
by the controller (third output).

For both approaches, the controller design is based on the nominal model of the gyroscope
(see the model of Example 2.1 and of Example 2.2 for the SISO approach, and that of Exam-
ple 2.3 for the MIMO approach).

The validation for each approach is realized in two steps. First, we assess the stability of
the closed-loop system. This analysis consists in solving a feasibility problem under LMI
constraints. Then, a numerical simulation is performed to confirm and illustrate the results.
Finally, we compare the simulation results of the considered approaches.

4.4.1 Assessing the Stability of the Closed-Loop System

Here, we want to assess the stability of the closed-loop system composed of an LTI controller
(SISO or MIMO controller) and the full nominal model of the MEMS gyroscope, which
depends on Ωz. For this purpose, we adopt a standard polytopic approach, as follows.

First, we compute the state-space representation of the closed-loop system. As discussed in
Section 2.1.5 (page 27), the MEMS gyroscope can be modeled (neglecting the dependence on
θ and ρ) by GΩz , which admits the representation below

GΩz :
{

ẋG(t) = AG(Ωz(t))xG(t) + BGu(t)
qm(t) = CGxG(t)

, Ωz(t) ∈ [Ωz,1, Ωz,2] , (4.36)

where Ωz,1 = −ΩFS
z , Ωz,2 = ΩFS

z and the dependence of AG on Ωz(t) is affine. The state-space
matrices are detailed in Appendix C.7. In their turn, the LTI controllers (SISO or MIMO)
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admit the following state-space representation

K :
{

ẋK(t) = AKxK(t) + BK [r(t) qm(t)]
u(t) = CKxK(t) + DK [r(t) qm(t)]

. (4.37)

Therefore, the closed-loop system can be written in the form

HΩz :
{

ẋH(t) = AH (Ωz(t)) xH(t) + BHr(t)
qm(t) = CHxH(t)

, Ωz(t) ∈ [Ωz,1, Ωz,2] , (4.38)

with xH = col (xG, xK),

AH (Ωz(t)) =
[

AG (Ωz(t)) + BGDKCG BGCK
BKCG AK

]
, BH =

[
BGDK

BK

]
and CH =

[
CG 0

]
.

The stability of this closed-loop system can be assessed through the following feasibility
problem: let a system HΩz be given by (4.38) with Ωz(t) ∈ [Ωz,1, Ωz,2]; if there exists a single
symmetric matrix X � 0 such that

AH (Ωz,1)
> X + XAH (Ωz,1) ≺ 0 and AH (Ωz,2)

> X + XAH (Ωz,2) ≺ 0,

then HΩz is asymptotically stable for all Ωz(t) ∈ [Ωz,1, Ωz,2]. This result follows immediately
from the definition of quadratic stability for polytopic systems [AGB95]. Further details on
the quadratic stability will be given in Section 5.3.1.

For the SISO and the MIMO approaches considered in this section, the above problem
has a solution, proving the quadratic stability of the closed-loop system for all Ωz(t) ∈[
−ΩFS

z , ΩFS
z
]
. In the case of the SISO approach, this result also proves the stability of the

system with respect to the mechanical couplings (neglected for the controller desing).

4.4.2 Validation Through Simulation

In this section, we simulate the control scheme of Figure 4.33, where the to-be-controlled
system GΩz is the same of Example 2.3 and the controllers are defined according to the chosen
(SISO or MIMO) approach.

For both approaches, the reference signal is given by xre f
m (t) = Are f

x,m · sin (ωexct) with Are f
x,m =

0.5 and ωexc = ω0,x. The filters of the synchronous demodulation (SD) are implemented with
a 4th-order low-pass filter with cutoff frequency3 ωc = 2π · 3000 rad s−1.

We start the system at rest (i.e., Ωz(t) = 0). Then, we check if the drive mode operates
properly. We apply the sinusoidal reference signal and observe the output xm. This result is
presented in Figure 4.34, where we can observe an accurate tracking of the reference signal
for the SISO and MIMO approaches. Indeed, all the signals are superposed.

At 0.5 s, we apply an angular rate Ωz(t) = 300 ° s−1 (which is also the full scale angular
rate) and observe the other signals of the system. These signals are presented in Figure 4.35
and in Figure 4.36 for the SISO and MIMO approaches, respectively. First, it is important
to note that, even when Ωz varies, the closed-loop system is still stable in both cases. The
first line of the figures presents the signals of the drive mode, where we can note that the

3Recall that, in contrast to an ideal filter (e.g., see (2.25), page 24), a real filter has a transition band. Then, to
properly attenuate the high-frequency terms of the synchronous demodulation, its cutoff frequency has to be
quite smaller than ωexc.
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FIGURE 4.33: Control scheme considered for the simulations.

FIGURE 4.34: Simulation results for reference tracking (drive mode).
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control signal ux is practically not disturbed by the variation of Ωz. The tracking error εx
suffers a small disturbance, which quickly vanishes. Even if the tracking error of the MIMO
approach is bigger than that of the SISO one, both of them achieve the desired performance
(for Are f

x,m = 0.5, |εx| < 1.25 · 10−4 = ε̌x · Are f
x,m). Moreover, it is interesting to note that the

amplitude of the control signal is slightly smaller for the MIMO approach. This is justified by
the fact that with a multivariable approach, the controller uses at the same time the signals
ux and uy to make xm ≈ xre f

m and to keep ym ≈ 0.

FIGURE 4.35: Signals of the closed-loop system for a variation of Ωz for the
SISO approach.

FIGURE 4.36: Signals of the closed-loop system for a variation of Ωz for the
MIMO approach.

Now, when we observe the sense-mode signals (second line of the figures), we observe that
oscillations appear on ym when there is a variation of the angular rate. However, these
oscillations are quickly attenuated by the controller with a steady-state amplitude which is
always smaller than 1 · 10−4. However, the multivariable controller is able to reject them
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much quicker. Finally, for the SISO approach, the amplitude of ûCor,y rapidly passes from
0.03 to around 0.3 at 0.5 s. The amplitude of 0.03 corresponds to the compensation of the
mechanical coupling forces, which disturb the sense mode. The 0.3 amplitude represents
the contributions of the Coriolis force and the mechanical coupling ones. On the other
hand, the MIMO controller estimates only the Coriolis force. Based on the MIMO model
of the MEMS gyroscope, the controller is able to distinguish between the Coriolis and the
mechanical coupling forces. Moreover, the estimate of the MIMO controller achieves the
steady-state much quicker than the SISO controller. This analysis is confirmed when we look
the synchronous demodulation output signals in Figure 4.37. The in-phase term sI f mainly
represents the contributions of the Coriolis force, while the quadrature term sQ f represents
the contributions of the mechanical coupling forces4.

FIGURE 4.37: Synchronous demodulation output signals for a variation of Ωz.

We repeat the same test with different values of Ωz and evaluate how the steady-state value
of sI f is related to Ωz. We obtain the behavior of Figure 4.38 and Figure 4.39 for the SISO and
MIMO approaches, respectively. Moreover, from the simulation data, we fit the best straight
line, determining the scale factor and the zero-rate output (ZRO or bias) of the simulated
system. For the SISO approach, we obtain

kSF = −1.0234 · 10−3units/(°/s) and kZRO = −7.5912 · 10−7units.

Moreover, based on the residue, i.e., the difference between the simulated data and the linear
fit, we can compute the SFNL, which in this case gives SFNL = 0.03 ppm. For the MIMO
approach, we obtain

kSF = −1.0234 · 10−3units/(°/s), kZRO = 8.0131 · 10−5units and SFNL = 0.04 ppm.

Please note that both approaches present similar performance and largely achieve the desired
specification of SFNL (smaller than 500 ppm, value considered in the examples). These
excellent results can be justified by some facts, as follows.

• The closed-loop specifications related to the SFNL, such as presented in Chapter 3,
present a certain conservatism. Indeed, in Chapter 3, we consider that k̂SF = kSF.

4The ramp at the beginning is linked to the ramp amplitude of xm.
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However, in these simulations, we estimate kSF through the best straight line fitting the
measures.

• In simulation, the presence of nonlinearities of actuation and instrumentation are not
taken into account.

We highlight that these results are reassuring, since the real system may present some
unmodeled behavior, which tend to degrade the SFNL.
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FIGURE 4.38: Evolution of sI f with respect to Ωz for SISO approach and
residual.

FIGURE 4.39: Evolution of sI f with respect to Ωz for MIMO approach and
residual.

4.5 Summary of the Chapter

In this chapter, we presented a control design method that allows to compute, in a flexible
and systematic manner, controllers for the closed-loop operation of MEMS gyroscopes. This
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method is based on theH∞ synthesis, which provides a powerful framework for the design
of controllers ensuring a certain level of performance and robustness for LTI systems. The
strength of theH∞ synthesis relies on the so-calledH∞ criterion. Indeed, the proper choice
of the H∞ criterion allows expressing closed-loop frequency constraints through weighting
functions. As discussed in Chapter 3, the main global performance indicators of a MEMS
gyroscope can be translated into frequency constraints on some of the closed-loop transfer
functions, making theH∞ synthesis the natural choice for the control design.

Adopting the direct control approach, different control architectures are progressively pre-
sented. First, we consider a SISO approach, in which the drive- and sense-mode controllers
are designed independently, considering the coupling forces as exogenous signals. For the
drive mode, two architectures are presented: with a 1DoF and with a 2DoF controller. The
main advantage of the 2DoF control configuration is that it allows distinguishing the refer-
ence tracking performance from those related to the robustness against additive uncertainties
(
∣∣∣Txre f

m →ux

∣∣∣ 6= |Tnx→ux |). For the sense-mode control, only the 1DoF control configuration is
considered.

In a second time, a MIMO approach is considered. The main strenght of this approach
is that the multivariable nature of the MEMS gyroscope (mechanical coupling between
modes) is properly taken into account for the controller design, providing some guarantees
of performance and robust stability. This is not possible with the SISO approach5. Moreover,
the MIMO approach with joint estimation allows to directly compute dCor,y, allowing the
signal uy to be used for the minimization of ym.

Regardless of the approach (SISO or MIMO), two important assumptions are considered
along this chapter: (i) the Coriolis force is considered as an exogenous signal; and (ii) the
ambient conditions (e.g., temperature, pressure) are steady. Under these assumptions, the
MEMS gyroscope can be considered as an LTI system. Through some simulation results, we
have shown that the proposed controllers behave well even when the angular rate slightly
alters the dynamics of the system.

5Indeed, for the gyroscope considered in this chapter, by increasing the mechanical coupling, we can make the
closed-loop system with SISO approach unstable.
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Chapter 5

Direct Control II: Toward a
Time-Varying Solution

In the previous chapter, we present a systematic method that allows us to design a controller
for MEMS gyroscopes, fulfilling the specifications of Chapter 3. In both chapters, we consider
that the operating conditions (such as the temperature and pressure) are fixed. Then, the main
control specifications are cast as the tracking, rejection or estimation of sinusoidal signals
with a constant excitation frequency1, ωexc.

In the direct control approach considered in Chapter 4, the excitation frequency is imposed
by the reference signal and is assumed to be equal (or very close) to the resonance frequency
of the drive mode ω0,x, taking advantage of its high gain at this frequency and requiring
the minimal control effort. However, as discussed in Chapter 2, the operating conditions
may change during the operation of the device, modifying ω0,x. Then, to keep the excitation
frequency always close to ω0,x, an external loop is required. This external loop estimates
ω0,x and adapts ωexc accordingly. In the scope of our project, two strategies are considered:
Extremum Seeking and Recursive Identification. In both strategies, ωexc is a signal which
can be decomposed into two parts: a slow- and a fast-varying (or low- and high-frequency)
term. The slow-varying term corresponds to the actual value of ω0,x, which varies slowly2.
On the other hand, the fast-varying term corresponds to the disturbances introduced by
these algorithms. More details on these strategies and the first results can be found in the
thesis [Mor21].

Obviously, when ωexc changes, the reference signal is also modified. Moreover, since the
performance specifications are parameterized by ωexc, we also want to design a controller
whose gains depend on this parameter, ensuring the best performance level in all operating
conditions. Therefore, the main problem is to track/reject signals of the type

r(t) = Ar sin
(∫ t

0
ωexc(τ)dτ + φ0

r

)
, (5.1)

where the frequency ωexc is known and can arbitrarily vary in a given range.

Here, we focus on the control of the drive mode in which we want to ensure the track-
ing/rejection of signals in the form of (5.1). Moreover, in this chapter, we consider only the
case of fast variations of ωexc. Under this condition, the model of the MEMS gyroscope does

1Actually, to be precise, the Coriolis force is an amplitude-modulated signal with a constant-frequency carrier.
2The main factor contributing to variations of ω0,x is usually the internal temperature, which, indeed, varies

slowly.
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not change and can be considered as an LTI system. The case of slow variations will be
treated in Section 7.4 (page 183).

Although we focus on the MEMS gyroscope application, we highlight that the problem of
tracking/rejecting signals of the type of (5.1) is also found in other applications, such as in
the control of power converters or in electric machinery, see, e.g., [ZH03, PSSF17, RSPC17,
CSF+17]. In general, these solutions consist in employing the internal model principle (IMP)
and computing a controller that optimizes a generic performance criterion.

In this chapter, we propose a design method based on the standard LPV synthesis and on
a novel performance criterion, which is specific for signals of the type of (5.1). Similar to
the H∞ synthesis, weighting functions are used to express the control specifications. The
main difficulty is, due to the time-varying nature of ωexc, how to design weighting functions
defining signals in the form of (5.1). An important contribution of this work is a new class of
weighting functions that properly describe this type of signal.

The remaining of this chapter is organized as follows. Section 5.1 states the problem under
investigation. In Section 5.2, we present our main result, allowing to recast the original
problem as an LPV control problem. In this control problem, a new class of weighting
functions is used to properly describe signals in the form of (5.1). In Section 5.3, we then
present a solution to the LPV control problem. A numerical example and simulation results
demonstrate the effectiveness of the proposed approach.

Before proceeding with the problem statement, let us recall some important definitions.

Some Useful Definitions

First, we introduce the definition of the L2 norm of a signal, which also defines an L2 space.

Definition 5.1 (L2 norm of a signal and L2 space [Hil13]). The L2 norm of a signal v from
R+ to Cnv is defined as

‖v‖2
2 =

∫ ∞

0
v(t)∗v(t)dt.

The set of signals for which the L2 norm is bounded is denoted L2 and defines the L2 space.

Please note that important classes of signals, such as a constant (nonnull) or periodic ones,
are not included in the L2 space. Indeed, the L2 space includes only energy signals (or finite-
energy signals). Then, to consider power signals (or finite-power signals), as a sinusoidal
one, the extended L2 norm and space, denoted Le

2, are defined. Their definition rely on the
truncation operator, defined as follows.

Definition 5.2 (Truncation operator [Hil13]). The time (causal) truncation of a signal v from
R+ to Cnv at a given time T > 0 is defined as

PT (v (t)) = vT(t) =
{

v(t), ∀t ≤ T
0, otherwise.

Definition 5.3 (Le
2 space [Hil13]). The extended L2 space, denoted Le

2 space, is the set of
signals v from R+ to Cnv such that ∀T > 0, ‖PT (v)‖2 < ∞.

Finally, based on the definitions of L2 and Le
2, we can define the induced norms or gains of

operators.
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Definition 5.4 (L2 gain of an operator [Hil13]). The L2 gain or L2-induced norm, of an
operator Σ is defined as

‖Σ‖i2 = sup
v∈L2, v 6=0

‖Σ(v)‖2
‖v‖2

.

Definition 5.5 (Le
2 gain of an operator [Wil71]). The Le

2 gain or Le
2-induced norm, of an

operator Σ is defined as

‖Σ‖i2,e = sup
v∈Le

2, v 6=0, T>0

‖Σ(v)‖2,T

‖v‖2,T
.

5.1 Problem Statement

Let us consider the 2DoF control configuration of Figure 5.1, where the to-be-controlled plant
G is an LTI system and admits the state-space representation

G :
{

ẋ(t) = Ax(t) + Bv(t)
y(t) = Cx(t) + Dv(t) (5.2)

with x(t) ∈ RnG , v(t) ∈ R, y(t) ∈ R, and A ∈ RnG×nG , B ∈ RnG×1, C ∈ R1×nG and D ∈ R.
The signals d and n respectively represent a disturbance at the input of the plant and the
measurement noise, defining

v(t) , u(t) + d(t) and yn(t) , y(t) + n(t). (5.3)

Kωr ,ωd G
r +u v y

d
+

n
+

+yn

FIGURE 5.1: 2DoF control configuration.

The original control objective is to compute a control signal u such that, based on the
reference signal r and the measure yn, the following goals are achieved.

(i) Reference tracking: the output signal y tracks the reference signals r ∈ R [ωr,1, ωr,2],
which is defined as follows. Given ωr,2 ≥ ωr,1 > 0 and the set

Ωr [ωr,1, ωr,2] = {ωr | ∀t ∈ R+, ωr(t) ∈ [ωr,1, ωr,2]} , (5.4)

the setRωr is defined for ωr ∈ Ωr [ωr,1, ωr,2] as

Rωr =

{
r
∣∣∣∣∃Ar ∈ R+, ∃φ0

r ∈ R, ∀t ∈ R+, r(t) = Ar sin
(∫ t

0
ωr(τ)dτ + φ0

r

)}
(5.5)

where the variable Ar is the amplitude, φ0
r is the phase at the origin, and the measur-

able function ωr(t) is referred to as the instantaneous (angular) frequency of r. The
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instantaneous frequency defines the instantaneous phase of r, φr, which reads

φr(t) =
∫ t

0
ωr(τ)dτ + φ0

r . (5.6)

The reference signal set is then defined as

R [ωr,1, ωr,2] =
⋃

ωr∈Ωr [ωr,1, ωr,2]

Rωr .

(ii) Disturbance rejection: the disturbance signals d ∈ D [ωd,1, ωd,2], which is defined as
follows. Given ωd,2 ≥ ωd,1 > 0 and the set

Ωd [ωd,1, ωd,2] = {ωd | ∀t ∈ R+, ωd(t) ∈ [ωd,1, ωd,2]} , (5.7)

the set Dωd is defined for ωd ∈ Ωd [ωd,1, ωd,2] as

Dωd =

{
d
∣∣∣∣ ∃Ad ∈ R+, ∃φ0

d ∈ R, ∀t ∈ R+, d(t) = Ad sin
(∫ t

0
ωd(τ)dτ + φ0

d

) }
,

(5.8)
where the variable Ad is the amplitude, φ0

d is the phase at the origin, and the measurable
function ωd(t) is the instantaneous frequency of d and defines the instantaneous phase
of d, φd, as

φd(t) =
∫ t

0
ωd(τ)dτ + φ0

d. (5.9)

The disturbance signal set is then defined as

D [ωd,1, ωd,2] =
⋃

ωd∈Ωd[ωd,1, ωd,2]

Dωd .

(iii) Robust stability against LTI additive uncertainties: the closed-loop system is robustly stable
against additive uncertainties ∆E ∈ ∆add, where the set of uncertainties ∆add is defined
as, given stable transfer functions Wadd,1 and Wadd,2,

∆add =
{

∆E
∣∣∣∃∆̃,

∥∥∥∆̃
∥∥∥

i2
≤ 1, ∆E = Wadd,1∆̃Wadd,2

}
. (5.10)

The transfers Wadd,1 and Wadd,2 define the size of the uncertainty ∆E.

Regarding the reference tracking and the disturbance rejection goals, we adopt the following
definitions, based on [DW80, Zam81, Hil13].

Definition 5.6 (γp-tracking). For a given performance level γp ∈ (0, 1), the closed-loop
system is said to γp-track the set of signalsR [ωr,1, ωr,2] if3:

∀ωr ∈ Ωr [ωr,1, ωr,2] , ∀r ∈ Rωr , ∀T > 0, ‖r− y‖2,T ≤ γp ‖r‖2,T . (5.11)

3Since ∀ωr ∈ Ωr [ωr,1, ωr,2],Rωr ∈ Le
2, ‖r‖2,T is well-defined.
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Definition 5.7 (γp-rejection). For a given performance level γp ∈ (0, 1), the closed-loop
system is said to γp-reject the set of signals D [ωd,1, ωd,2] if4:

∀d ∈ D [ωd,1, ωd,2] , ∀r ∈ R [ωr,1, ωr,2] , ∀T > 0, ‖yr,d − yr,0‖2,T ≤ γp ‖d‖2,T . (5.12)

where yr,d denotes the output of the closed-loop system with the reference signal r and the
disturbance signal d.

Note that the reference and disturbance signals depend on their instantaneous frequency,
respectively ωr(t) and ωd(t). Since these parameters are assumed to be measured in real
time, we consider, for all ωr ∈ Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2], a controller of
the form

Kωr ,ωd :
{

ẋK(t) = AK(ωr(t), ωd(t))xK(t) + BK(ωr(t), ωd(t))yP(t)
u(t) = CK(ωr(t), ωd(t))xK(t) + DK(ωr(t), ωd(t))yP(t)

, (5.13)

where xK ∈ RnK , yP = col (r, yn), and the matrices have appropriate dimensions and depend
on the instantaneous frequencies ωr and ωd.

Now, we can state the main objective of this chapter as follows.

Problem 5.1. Given the to-be-controlled plant G (see (5.2) and (5.3)), compute for all ωr ∈
Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2], a controller Kωr ,ωd in the form of (5.13) such
that the closed-loop system defined by (5.2), (5.3) and (5.13):

(i) γp-tracks reference signals r belonging to R [ωr,1, ωr,2] and γp-rejects disturbance signals d
that belong to D [ωd,1, ωd,2];

(ii) is stable for any function ωr ∈ Ωr [ωr,1, ωr,2] and for any function ωd ∈ Ωd [ωd,1, ωd,2];

(iii) is stable against LTI additive uncertainties ∆E ∈ ∆add (see (5.10)).

To solve this problem, we adopt an approach similar to theH∞ synthesis, where we define a
criterion and the desired behavior of the closed-loop system is expressed through weighting
functions. Usually, for the H∞ synthesis, the design of the weighting functions is realized
in the frequency domain and can follow two different methodologies: the transfer function
shaping approach and the signal-based one [SP01]. In Chapter 4, we rather adopt the former
approach, in which the weighting functions are chosen to shape the frequency response
magnitude of the transfer functions of interest. The second approach consists in using the
weighting functions to describe the signals of interest5. Since we cannot define (LTI) transfer
functions because of the time-varying nature of the controller, we adopt the second approach
in this chapter.

The main challenge here is how to define weighting functions that finely describe signals
r ∈ Rωr for all ωr ∈ Ωr [ωr,1, ωr,2] and d ∈ Dωd for all ωd ∈ Ωd [ωd,1, ωd,2]. In the next
section, we tackle this particular problem, what allows us to formulate a criterion adapted to
this kind of signals. Then, we discuss how to compute the desired controller.

4Since D
[
ωd,1, ωd,2

]
∈ Le

2, ‖d‖2,T is well-defined.
5In an LTI framework, the weighting functions describe the frequency content of the signals.
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5.2 Main Result: L2 Criterion and LTV Weighting Functions

In this section, we show that the computation of a controller solving Problem 5.1 can be recast
as the solution of an LPV control problem. In this new problem, the control specifications are
expressed through an L2 criterion with LPV weighting functions.

5.2.1 The L2 Criterion

Based on the control configuration of Figure 5.1 and on the control objectives announced
in Section 5.1, we define the input signals of interest w̃ = col (r, d, n) as well as the output
signals of interest z̃ = col (ε, u), where ε , r − y. Then, to describe these signals, we
include weighting functions Wωr ,ωd

in = diag
(
Wωr

r , Wωd
d , Wn

)
on the input signals and Wout =

diag (Wε, Wu) on the output signals, as depicted in Figure 5.2. These weighting functions
define w = Wωr ,ωd

in
−1w̃ and z = Woutz̃. Here, we denote Ta→b the operator mapping the input

signals a to the output signals b. In particular, the operator Tw̃→z̃ can be given by P̃ ? Kωr ,ωd ,
where the augmented plant P̃ reads as

P̃ =




1 0 0 0
0 0 0 1
1 0 0 0
0 0 1 0


+




−1
0
0
1


G

[
0 1 0 1

]
. (5.14)

Similarly, the operator Tw→z can be given by Pωr ,ωd ? Kωr ,ωd = Wout

(
P̃ ? Kωr ,ωd

)
Wωr ,ωd

in . In

this case, the weighted augmented plant Pωr ,ωd is given by Pωr ,ωd =

[
Wout 0

0 I2

]
P̃
[

Wωr ,ωd
in 0
0 1

]
.

Now, we present part of the solution for Problem 5.1. The following theorem establishes a
mathematical criterion that allows us to determine whether an LTV controller (see (5.13))
achieves the desired performance specifications.

Kωr ,ωd G
+u y

+

yn

Wωr
r

Wωd
d

Wn

w1

r

w2 d

+

w3 n +

Wε

Wu

+

−
ε z1

z2

FIGURE 5.2: L2 criterion for the considered control problem.

Theorem 5.1. Let us consider ωr,2 ≥ ωr,1 > 0 and ωd,2 ≥ ωd,1 > 0, stable transfer functions
Wadd,1 and Wadd,2 and the augmented plant P̃ (see (5.14)). If a given controller Kωr ,ωd (see (5.13)) is
such that, for all ωr ∈ Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2],

∥∥∥Wout

(
P̃ ? Kωr ,ωd

)
Wωr ,ωd

in

∥∥∥
i2
≤ 1, (5.15)

where Wωr ,ωd
in = diag

(
Wωr

r , Wωd
d , Wn

)
and Wout = diag (Wε, Wu) with
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(i) for all ωr ∈ Ωr [ωr,1, ωr,2], Wωr
r being stable, inversely stable and such that

Rωr ⊂
{

r ∈ Le
2 | ∀T > 0,

∥∥∥Wωr
r
−1(r)

∥∥∥
2,T
≤ ‖r‖2,T

}
; (5.16)

(ii) for all ωd ∈ Ωd [ωd,1, ωd,2], Wωd
d being stable, inversely stable and such that

Dωd ⊂
{

d ∈ Le
2 | ∀T > 0,

∥∥∥Wωd
d
−1
(d)
∥∥∥

2,T
≤ ‖d‖2,T

}
; (5.17)

(iii) Wn being a stable LTI system defined such as

∀ω ∈ R, |Wn(jω)| ≥ |Wadd,1(jω)| ; (5.18)

(iv) Wε = γ−1
p ;

(v) Wu being a stable LTI system defined such as

∀ω ∈ R, |Wu(jω)| ≥ |Wadd,2(jω)| ; (5.19)

then, the closed-loop system P̃ ? Kωr ,ωd has the γp-tracking and γp-rejection properties, is stable for
any functions ωr ∈ Ωr [ωr,1, ωr,2] and ωd ∈ Ωd [ωd,1, ωd,2], and is stable against LTI additive
uncertainties ∆E ∈ ∆add (defined by Wadd,1 and Wadd,2, see (5.10)).

Note that this theorem defines an L2 criterion, see (5.15), in which the weighting functions
describe the signals of interest and the uncertainty ∆E. Indeed, the input weights Wωr

r and
Wωd

d must define the sets of signals in whichR [ωr,1, ωr,2] and D [ωd,1, ωd,2] are respectively
included. In this case, Wε defines the tracking and rejection performance level γp. On the
other hand, the weighting functions Wn and Wu are used to express the size of the additive
uncertainty ∆E ∈ ∆add. In our case, ∆E is considered to be important in low and high
frequencies, and small around ω0,x. Please note that, as discussed in Chapter 4, enhancing the
robustness against additive uncertainties also corresponds to improving the noise attenuation
and reducing the control energy.

Proof. γp-tracking: for all ωr ∈ Ωr [ωr,1, ωr,2], equation (5.15) is equivalent [Wil71, Theo-
rem 2.1, page 15] to ∥∥WoutTw̃→z̃Wωr ,ωd

in

∥∥
i2,e ≤ 1. (5.20)

In its turn, as Tw̃1→z̃1 = Tr→ε, (5.20) implies that

‖WεTr→εWωr
r ‖i2,e ≤ 1. (5.21)

Now, since Wε = γ−1
p and γp > 0, for all w1 ∈ Le

2,

∀T > 0, ‖Tr→ε (Wωr
r (w1))‖2,T ≤ γp ‖w1‖2,T . (5.22)

With w1 = Wωr
r
−1
(r), we have

∀T > 0, ‖Tr→ε(r)‖2,T ≤ γp

∥∥∥Wωr
r
−1(r)

∥∥∥
2,T

. (5.23)
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Since

Rωr ⊂
{

r ∈ Le
2 | ∀T > 0,

∥∥∥Wωr
r
−1(r)

∥∥∥
2,T
≤ ‖r‖2,T

}
,

we have for all ωr ∈ Ωr [ωr,1, ωr,2],

∀r ∈ Rωr , ∀T > 0, ‖Tr→ε(r)‖2,T ≤ γp ‖r‖2,T , (5.24)

which corresponds to the γp-tracking definition (see Definition 5.6 and (5.11)).

γp-rejection: by following the same procedure of the γp-tracking proof, we obtain for all
ωd ∈ Ωd [ωd,1, ωd,2],

∀d ∈ Dωd , ∀T > 0, ‖Td→ε(d)‖2,T ≤ γp ‖d‖2,T . (5.25)

Since the closed-loop system is linear and y0,d = Td→ε(d), we have y0,d = yr,d − yr,0, that is,
(5.25) is equivalent to (5.12) and the γp-rejection property is assessed (see Definition 5.7).

Stability for all ωr ∈ Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2]: the system stability is di-
rectly implied by the existence of an induced-L2 norm for the closed-loop system (see (5.15)).

Stability against ∆E ∈ ∆add: similar to the γp-tracking case, (5.15) also implies that

‖WuTn→uWn‖i2,e ≤ 1. (5.26)

Moreover, with (5.18) and (5.19), (5.26) implies that

‖Wadd,1Tn→uWadd,2‖i2,e ≤ 1, (5.27)

which, through the (nonlinear) weighted small gain theorem [Vid02], ensures the system
stability for all ∆E ∈ ∆add.

The problem now is how to define the weighting functions Wr and Wd satisfying (5.16) and
(5.17). We tackle this problem in the sequel.

5.2.2 A New Class of LTV Weighting Functions

Theorem 5.1 establishes an L2 criterion that allows to solve Problem 5.1. However, for
this result to be used, it is necessary to define a class of LTV weighting functions that,
for ωr ∈ Ωr [ωr,1, ωr,2] and for ωd ∈ Ωd [ωd,1, ωd,2], describes the sets of reference and
disturbance signals associated to ωr and ωd, respectively Rωr and Dωd (see (5.5) and (5.8)).
This important class of weighting functions is defined in the following lemma.

Lemma 5.1 (LTV weighting functions). Let us consider:

• ωη,2 ≥ ωη,1 > 0,

• a set Ωη

[
ωη,1, ωη,2

]
of measurable functions ωη defined as

Ωη

[
ωη,1, ωη,2

]
=
{

ωη

∣∣ ∀t ∈ R+, ωη(t) ∈ [ωη,1, ωη,2]
}

, (5.28)
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• for ωη ∈ Ωη

[
ωη,1, ωη,2

]
, the setWωη of signals η defined as

Wωη =

{
η

∣∣∣∣∃ Aη ∈ R+, ∃ φ0
η ∈ R, ∀t ∈ R+, η(t) = Aη sin

(∫ t

0
ωη(τ)dτ + φ0

η

)}
.

(5.29)

Then, the LTV system Wωη , defined as

Wωη :
{

ẋW(t) = ωη(t)AW xW(t) + ωη(t)BWν(t)
η(t) = CW xW(t) + DWν(t) , (5.30)

with AW =

[
0 1
−1 −2ξ0

]
, BW =

[
2 (ξ1 − ξ0)
−4ξ0 (ξ1 − ξ0)

]
, CW =

[
ξ0

ξ1
0
]

, DW =
ξ0

ξ1
and ξ1 � ξ0 > 0,

has the following properties:

(i) Wωη and Wωη−1 are stable;

(ii) Wωη ⊂
{

η ∈ Le
2 | ∀T > 0,

∥∥∥Wωη−1(η)
∥∥∥

2,T
≤ ‖η‖2,T

}
;

(iii)
∥∥∥Wωη−1

∥∥∥
i2
≥ ξ1

ξ0
� 1;

(iv)
{

η ∈ Le
2 | ∀T > 0,

∥∥∥Wωη−1(η)
∥∥∥

2,T
≤ ‖η‖2,T

}
6= Le

2.

The property (i) is essential for the use of the LTV system Wωη as a weighting function since
it ensures the stability of Wωη as well as the stability of its inverse, Wωη−1. The property
(ii) claims that the set of signals Wωη is a subset of the whole class of signals that can be
described by Wωη .

Although the properties (i) and (ii) are crucial for a weighting function, they are not sufficient
to accurately describe the set of signals of interest. Indeed, any constant gain larger than 1
would satisfy these two properties. The properties (iii) and (iv) indicate then the selectiveness
of the weighting function. The property (iii) reveals that there exists a class of signals that is
attenuated by Wωη or, equivalently, a class of signals that is highly amplificated by Wωη−1.
Therefore, the set of signals defined by Wωη cannot be equal to the entire space Le

2. This last
description corresponds to the property (iv).

Let us now introduce a useful lemma.

Lemma 5.2 (Time-normalization lemma). Let be a system H given by the state-space representation

H :
{

ẋH(t) = φ̇H(t)AHxH(t) + φ̇H(t)BHuH(t)
yH(t) = CHxH(t) + DHuH(t)

, (5.31)

where xH(t) ∈ RnH , uH(t) ∈ RnuH , yH(t) ∈ RnyH and φH is differentiable sctrictly increasing
function from R to R, that is, ∀t ∈ R, φ̇H(t) > 0. Then, the normalized version of H, denoted Hn,
reads as

Hn :
{

ẋHn(tn) = AHxHn(tn) + BHuHn(tn)
yHn(tn) = CHxHn(tn) + DHuHn(tn)

, (5.32)

where xHn, uHn and yHn respectively denote the signals xH, uH and yH with the new time variable,
that is, xHn = xH ◦ φ−1

H and similarly for the other signals. In this normalized-time space, the time
variable is defined as tn , φH(t).
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Proof of Lemma 5.2. This proof is based on the chain rule. First, we define a new “time”
variable tn , φH and the normalized-time signal xHn such that xH(t) = (xHn ◦ φH)(t) =
xHn(φH(t)) = xHn(tn). By applying the chain rule to ẋH, we have ẋH = (ẋHn ◦ φH) · φ̇H.
Then, by replacing this expression in (5.31) and with yH(t) = (yHn ◦ φH)(t) and uH(t) =
(uHn ◦ φH)(t), we promptly obtain (5.32).

At this point, we can prove Lemma 5.1, as follows.

Proof of Lemma 5.1. Property (i): to prove this property, we have to assess the stability of Wωη ,
compute Wωη−1 and assess its stability.

Since ξ0 > 0, the matrix AW is Hurwitz. Then, there exists a symmetric matrix X � 0 such
that

A>W X + XAW ≺ 0. (5.33)

Moreover, since ωη is strictly positive for all ωη ∈ Ωη [ωη,1, ωη,2], we have

∀ωη ∈ Ωη [ωη,1, ωη,2], ωη(t)
(

A>W X + XAW

)
≺ 0,

which is equivalent to (5.33) and ensures the quadratic stability of Wωη for all ωη ∈ Ωη [ωη,1, ωη,2]
(see Definition 5.8 and Remark 5.1 in page 130).

The state-space representation of Wωη−1 is given by:

Wωη−1 :
{

ẋWi(t) = ωη(t)AWixWi(t) + ωη(t)BWiη(t)
ν(t) = CWixWi(t) + DWiη(t)

, (5.34)

with AWi =

[
0 1
−1 −2ξ1

]
, BWi =

[
2 (ξ0 − ξ1)
−4ξ1 (ξ0 − ξ1)

]
, CWi =

[
ξ1

ξ0
0
]

, DWi =
ξ1

ξ0
, which

corresponds to the state-space representation of Wωη with the parameters ξ0 and ξ1 being
exchanged. Since ξ1 > 0, Wωη−1 is also quadratically stable.

Property (ii): here, we have to prove that the signals ofWωη are included in the set

{
η ∈ Le

2 | ∀T > 0,
∥∥∥Wωη−1(η)

∥∥∥
2,T
≤ ‖η‖2,T

}
, (5.35)

which represents the set of signals that can be described by Wωη . To this purpose, let us
consider η ∈ Wωη , that is,

∃ Aη ∈ R+, ∃ φ0
η ∈ R, ∀t ∈ R+, η(t) = Aη sin

(
φη(t)

)
with φη(t) =

∫ t

0
ωη(τ)dτ + φ0

η .

Now, we apply Lemma 5.2 with tn , φη , such that the state-space representation of Wωη in
this new time domain is given by

Wωη
n :

{
ẋWn(tn) = AW xWn(tn) + BWνn(tn)
ηn(tn) = CW xWn(tn) + DWνn(tn)

, (5.36)
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where xWn, ηn and νn respectively denote the signals xW , η and ν with the new time variable,
that is, xWn = xW ◦ φ−1

η and similarly for the other signals. Please note that in this normalized-
time domain, the system Wωη

n is LTI and has as transfer function

Wωη
n (sn) =

ξ0

ξ1

s2
n + 2ξ1sn + 1

s2
n + 2ξ0sn + 1

, (5.37)

where sn denotes the Laplace variable associated to tn. Similarly, its inverse, Wωη
n
−1

, has the
following transfer function

Wωη
n
−1
(sn) =

ξ1

ξ0

s2
n + 2ξ0sn + 1

s2
n + 2ξ1sn + 1

. (5.38)

Then, for the input η(t) = Aη sin
(
φη(t)

)
, the output of Wωη−1 is ν(t) = Aν sin

(
φη(t)

)
.

Indeed, in the normalized-time domain, the input signal η(t) = Aη sin
(
φη(t)

)
corresponds

to ηn(tn) = Aη sin(tn) and the output signal corresponds to νn(tn) = Aν sin(tn), where

Aν = Aη

∣∣∣Wωη
n
−1
(j1)

∣∣∣ = Aη . Moreover, the amplification of Wωη
n
−1

(resp. Wωη
n ) is minimal

(resp. maximal) and equal to one6 when sn = j1. Thus, in this particular case (ν(t) = η(t) =
Aη sin

(
φη(t)

)
), we have

∀T > 0,
∥∥∥Wωη−1(η)

∥∥∥
2,T
≤ ‖η‖2,T (5.39)

that is condition (ii). For the most of other signals belonging to Le
2, this condition does not

hold.

The magnitude plot of Wωη
n and a discussion on the inclusion ofWωη in (5.35) are presented

after this proof.

Property (iii): now, in order to prove that
∥∥∥Wωη−1

∥∥∥
i2
≥ ξ1

ξ0
, let us recall that

∥∥∥Wωη−1
∥∥∥

i2
=
∥∥∥Wωη−1

∥∥∥
i2,e

= sup
η 6=0,T>0

∥∥∥Wωη−1(η)
∥∥∥

2,T

‖η‖2,T
.

Now, let us consider η(t) = η0, which corresponds to ηn(tn) = η0 in the normalized-time

domain. Then, it is easy to prove that Wωη−1(η) = η0
ξ1
ξ0

where ξ1
ξ0

is the static gain of Wωη
n
−1

(see (5.38)). Hence,
∥∥∥Wωη−1

∥∥∥
i2,e
≥ ξ1

ξ0
.

The last part of this property ( ξ1
ξ0
� 1) follows immediately from ξ1 � ξ0.

Property (iv): is a direct consequence of property (iii).

Based on the proof of the property (ii), a frequency-domain-like analysis of Wωη
n , associated

to Wωη , can be realized (see Lemma 5.2 and (5.37)). This analysis is of fundamental interest
for the choice of the parameters ξ0 and ξ1. In Figure 5.3 we present the magnitude plot of
Wωη

n for different values of ξ0 and ξ1. First, let us focus on the interpretation of the x-axis. The
normalized time tn, which is associated to the Laplace variable sn, is defined as a function of

6The phase shift induced by Wωη
n
−1

or Wωη
n is null for sn = j1.
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FIGURE 5.3: Magnitude plot of W
ωη
n for different values of ξ0 and ξ1. On the

left, the ratio ξ1/ξ0 is constant and equal to 1000. On the right, ξ0 is constant
and equal to 0.1.

a given trajectory ωη ∈ Ωη

[
ωη,1, ωη,2

]
. Then, a signal of the type

η′(t) = Aη′ sin
(
k′φη(t)

)

with Aη′ ∈ R+ and k′ ∈ R+, in normalized time, is rewritten as

η′n(tn) = Aη′ sin
(
k′tn
)

. (5.40)

Note, in (5.40), that k′ corresponds to a frequency-like variable and corresponds to the x-axes
of Figure 5.3. We can say that Wωη

n acts as a band-pass filter for signals in the form of η′. The
bandwidth of this filter is determined by ξ0, and the attenuation in the rejection band is given
by the ratio ξ0/ξ1. We can also note that for very selective filters, only signals with k′ ≈ 1 can
pass through, reducing the set of signals that can be described by the system. Therefore, we
can infer that the more selective Wωη

n is, the tighter is the inclusion ofWωη in the whole set of
signals described by Wωη .

Finally, some remarks related to this class of LTV weighting functions are important to be
made. First, in the case of usual sinusoidal signal with frequency ωη in

[
ωη,1, ωη,2

]
, the

weighting functions Wωη boils down to the usualH∞ weighting function. Another important
remark is that we here focus on signals ofWωη . Nevertheless, the same approach can be
extended to a wider set of signals, such as, for a given NH ∈N, for all ωη ∈ Ωη

[
ωη,1, ωη,2

]
:

Wωη

NH
=





ηH

∣∣∣∣∣∣∣

∃ Aη,i ∈ R
NH
+ , ∃ φ0

η,i ∈ RNH , ∀t ∈ R+,

ηH(t) =
NH

∑
i=1

Aη,i sin
(∫ t

0
iωη(τ)dτ + φ0

η,i

)




, (5.41)

which describes “periodic” signals whose fundamental frequency can vary over time.

5.2.3 LPV Control Problem

Now, based on Lemma 5.1, we can define LPV weighting functions WΩr
r and WΩd

d (whose
parameters depend on the measurable functions ωr and ωd) that fulfill the conditions of The-
orem 5.1 for all ωr ∈ Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2], as follows.
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• Being the set of reference signals r given by (5.5), the weighting function Wωr
r is then

defined as

Wωr
r :

{
ẋWr(t) = ωr(t)AWrxWr(t) + ωr(t)BWrw1(t)

r(t) = CWrxWr(t) + DWrw1(t)
, (5.42)

with AWr =

[
0 1
−1 −2ξ0r

]
, BWr =

[
2 (ξ1r − ξ0r)
−4ξ0r (ξ1r − ξ0r)

]
, CWr =

[
ξ0r

ξ1r
0
]

, DWr =
ξ0r

ξ1r
,

ξ1r � ξ0r > 0.

• Being the set of disturbance signals d given by (5.8), the weighting function Wωd
d is

hence given by

Wωd
d :

{
ẋWd(t) = ωd(t)AWdxWd(t) + ωd(t)BWdw2(t)

d(t) = CWdxWd(t) + DWdw2(t)
, (5.43)

with AWd =

[
0 1
−1 −2ξ0d

]
, BWd =

[
2 (ξ1d − ξ0d)

−4ξ0d (ξ1d − ξ0d)

]
, CWd =

[
ξ0d

ξ1d
0
]

, DWd =
ξ0d

ξ1d
,

ξ1d � ξ0d > 0.

Finally, Problem 5.1 can be recast as the following control problem.

Problem 5.2. For the to-be-controlled plant G given by (5.2) and the configuration of Figure 5.2,
compute for all ωr ∈ Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2] a controller Kωr ,ωd in the form
of (5.13), if there exists any, such that for all ωr ∈ Ωr [ωr,1, ωr,2] and for all ωd ∈ Ωd [ωd,1, ωd,2],
the closed-loop system is stable and

∥∥∥Wout

(
P̃ ? Kωr ,ωd

)
Wωr ,ωd

in

∥∥∥
i2
≤ 1, (5.44)

where Wωr ,ωd
in = diag

(
Wωr

r , Wωd
d , Wn

)
, Wout = diag (Wε, Wu), Wωr

r is given in (5.42), Wωd
d

in (5.43), Wn in (5.18), Wε = γ−1
p and Wu is defined in (5.19).

This problem is actually an LPV control problem since it is equavalent to compute a controller
such that

(
P̃ ? KΩr ,Ωd

)
is stable and

∥∥∥Wout

(
P̃ ? KΩr ,Ωd

)
WΩr ,Ωd

in

∥∥∥
i2
≤ 1,

where Wout

(
P̃ ? KΩr ,Ωd

)
WΩr ,Ωd

in is defined as

{
Wout

(
P̃ ? Kωr ,ωd

)
Wωr ,ωd

in , ωr ∈ Ωr [ωr,1, ωr,2] , ωd ∈ Ωd [ωd,1, ωd,2]
}

.

A solution is presented in the sequel.

5.3 Solving the LPV Control Problem: a Polytopic Approach

To solve Problem 5.2 and compute a controller KΩr ,Ωd that fulfills the desired specifications,
we adopt a polytopic approach. This solution is presented in Section 5.3.2. However, before
presenting it, we recall some important definitions in the polytopic LPV framework.
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5.3.1 Some Definitions in the LPV Framework

Let us consider the polytopic LPV system below

HΘ :
{

ẋH(t) = AH(θ(t))xH(t) + BH(θ(t))uH(t)
yH(t) = CH(θ(t))xH(t) + DH(θ(t))uH(t)

, θ(·) ∈ Θ (5.45)

where θ(t) ∈ Rnθ ranges over a fixed polytope Θ and the dependence of the state-space
matrices is affine on θ. The polytope Θ is defined by its Nθ = 2nθ vertices θi, where i ∈
{1, . . . , Nθ}. In this case, the state-space matrices of HΘ are of the form

[
AH(θ(t)) BH(θ(t))
CH(θ(t)) DH(θ(t))

]
=

Nθ

∑
i=1

αi(θ(t))
[

AH,i BH,i
CH,i DH,i

]

with
[

AH,i BH,i
CH,i DH,i

]
=

[
AH(θi) BH(θi)
CH(θi) DH(θi)

]
, ∑Nθ

i=1 αi(θ(t)) = 1 and αi(θ(t)) ≥ 0.

Now, we can define the important properties of quadratic stability and quadratic L2 gain for
this class of system, as follows.

Definition 5.8 (Quadratic stability [AGB95]). The LPV system HΘ given in (5.45) is quadrati-
cally stable if and only if, for all trajectories of θ ∈ Θ, there exists a single symmetric matrix
X � 0 such that

∀θ ∈ Θ, AH(θ(t))>X + XAH(θ(t)) ≺ 0. (5.46)

Definition 5.9 (Quadratic L2 gain [AGB95]). The LPV system HΘ (5.45) is stable and has
quadratic L2 gain smaller than γ > 0 if and only if there exists a single symmetric matrix
X � 0 such that

∀θ ∈ Θ,




AH(θ(t))>X + XAH(θ(t)) XBH(θ(t)) CH(θ(t))>

BH(θ(t))>X −γI DH(θ(t))>

CH(θ(t)) DH(θ(t)) −γI


 ≺ 0. (5.47)

The quadratic L2 gain of a system HΘ is denoted
∥∥HΘ

∥∥q
i2.

In the special case where (5.45) is polytopic, which is indeed our case, the infinite constraints
on (5.46) and (5.47) can be simplified to a finite number of LMIs. Thanks to the vertex
property of polytopic systems [AGB95], the inequalities (5.46) and (5.47) hold for all θ ∈ Θ if
and only if they hold at the vertices θi. Therefore, to assess the quadratic stability of (5.45), it
suffices to solve a feasibility problem: find X � 0 such that

∀i ∈ {1, . . . , Nθ}, A>H,iX + XAH,i ≺ 0. (5.48)

Remark 5.1. If a symmetric matrix X is solution of (5.48), all matrices of the form X̃ = k̃X with
k̃ ∈ R+ are also solution of (5.48).

Similarly, the condition (5.47) is equivalent to

∀i ∈ {1, . . . , Nθ},



A>H,iX + XAH,i XBH,i C>H,i
B>H,iX −γI D>H,i
CH,i DH,i −γI


 ≺ 0. (5.49)
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It is worth highlighting that the quadratic L2 gain of a system implies its quadratic stability.
The solution of (5.47) for a given γ > 0 also defines an upper bound on the L2 gain of a
system, that is,

∥∥HΘ
∥∥

i2 ≤
∥∥HΘ

∥∥q
i2 < γ. As we will see in the sequel, this property plays

a crucial role in the proposed solution to Problem 5.2. Indeed, a controller that ensures∥∥∥Wout

(
P̃ ? KΩr ,Ωd

)
WΩr ,Ωd

in

∥∥∥
q

i2
≤ 1 also ensures

∥∥∥Wout

(
P̃ ? KΩr ,Ωd

)
WΩr ,Ωd

in

∥∥∥
i2
≤ 1, which

corresponds to the condition (5.44).

We also have to mention that in the particular case where Θ = {θ0} with θ0 constant, the LPV
system HΘ becomes an LTI system. Then,

∥∥HΘ
∥∥

∞ =
∥∥HΘ

∥∥
i2 =

∥∥HΘ
∥∥q

i2.

5.3.2 The Standard LPV Synthesis

Similar to the H∞ synthesis, in the LPV framework, the controller design is also formulated
as an optimization problem, as follows.

Problem 5.3 (Standard LPV control problem). Let an augmented polytopic plant PΘ be given by

PΘ :





ẋP(t) = AP(θ(t))xP(t) + Bw(θ(t))w(t) + BuuP(t)
z(t) = Cz(θ(t))xP(t) + Dzw(θ(t))w(t) + DzuuP(t)

yP(t) = CyxP(t) + Dyww(t)
, θ(·) ∈ Θ (5.50)

with xP(t) ∈ RnP , uP(t) ∈ RnuP , w(t) ∈ Rnw , yP(t) ∈ RnyP , z(t) ∈ Rnz . The parameter
θ(t) ∈ Rnθ is measured in real time and ranges over a fixed polytope Θ. Therefore, for a given γ > 0,
we want to compute a polytopic LPV controller

KΘ :
{

ẋK(t) = AK(θ(t))xK(t) + BK(θ(t))yP(t)
uP(t) = CK(θ(t))xK(t) + DK(θ(t))yP(t)

, θ(·) ∈ Θ (5.51)

with xK(t) ∈ RnP , if there exists any, such that,
∥∥∥PΘ ? KΘ

∥∥∥
q

i2
< γ. (5.52)

Similar to theH∞ synthesis, the desired control specifications can also be expressed through
the choice of the augmented plant PΘ, which includes the weighting functions and defines
the closed-loop transfers of interest. It is important to highlight that only the matrices AP,
Bw, Cz and Dzw can be dependent on θ. This condition is required so that this problem can
be formulated as a convex optimization problem. Although it may seem restrictive, this
condition can be easily fulfilled by introducing stable LTI filter(s) between the controller and
the to-be-controlled plant. This technique slightly modifies the augmented plant such that
the input matrices Bu and Dzu as well as the output matrices Cy and Dyw have no dependence
on θ. For further details, see, e.g., [AGB95].

The existence of a controller that solves the problem above is assessed by the theorem below.

Theorem 5.2 ([AGB95]). Given the augmented LPV system of (5.50), there exists an LPV controller
in the form of (5.51), such that

∥∥PΘ ? KΘ
∥∥q

i2 < γ for all trajectories of θ(t) in the polytope Θ, defined
by the Nθ vertices θi, if and only if there are symmetric matrices R, S ∈ RnP×nP such that for all
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i ∈ {1, . . . , Nθ},

[
�
]>
⊥




SAP,i
> + AP,iS Bw,i SC>z,i
B>w,i −γI D>zw,i
Cz,iS Dzw,i −γI


 [B>u 0 D>zu

]
⊥ ≺ 0, (5.53)

[
�
]>
⊥




A>P,iR + RAP,i RBw,i C>z,i
B>w,iR −γI D>zw,i
Cz,i Dzw,i −γI


 [Cy Dyw 0

]
⊥ ≺ 0 (5.54)

and
[

R I
I S

]
� 0 (5.55)

with
[

AP,i Bw,i
Cz,i Dzw,i

]
=

[
AP(θi) Bw(θi)
Cz(θi) Dzw(θi)

]
.

Based on the solution of (5.53), (5.54) and (5.55), the state-space matrices of the controller at
the vertices θi are computed. The state-space matrices of KΘ at a given θ ∈ Θ are obtained
through the convex combination of KΘ evaluated at each of the vertices θi. For further details
on the controller computation, see [AGB95] and references therein.

In practice, as well as for the H∞ problem, the Robust Control Toolbox of Matlab® [BCPS20]
can be employed to solve the LPV control problem through the function hinfgs.

5.3.3 Solution to Problem 5.1

Now, we have all the elements needed to solve Problem 5.1, as summarized below.

(i) Theorem 5.1 establishes an L2 criterion that allows us to assess if a given controller
solves Problem 5.1.

(ii) The L2 criterion is defined through LTI weighting functions and the LTV weighting
functions presented in Lemma 5.1.

(iii) These two points allow us to recast Problem 5.1 as an LPV control problem, see Prob-
lem 5.2.

(iv) Finally, Theorem 5.2 with γ ≤ 1 allows us to assess the existence of a controller solving
Problem 5.2 and, as consequence, Problem 5.1. Based on the solution of the LMIs
(see (5.53), (5.54) and (5.55)), the LPV controller is then computed.

In our case, the augmented plant P̃ is given by (5.14) and the weighted augmented plant

PΩr ,Ωd is given by PΩr ,Ωd =

[
Wout 0

0 I2

]
P̃
[

WΩr ,Ωd
in 0
0 1

]
, which can be written as PΘ of (5.50)

with θ = col (ωr, ωd), defining a polytope Θ whose vertices are given by θ1 = col (ωr,1, ωd,1),
θ2 = col (ωr,1, ωd,2), θ3 = col (ωr,2, ωd,1) and θ4 = col (ωr,2, ωd,2); the independence of the
matrices Bu, Dzu, Cy and Dyw on ωr and ωd follows immediately from the fact that only the
input weights are dependent on these parameters. Similarly, the controller Kωr ,ωd of (5.13)
corresponds to the one of (5.51) also with θ = col (ωr, ωd) and θ(t) ∈ Θ.

5.4 Numerical Results and Simulation

In this section, we apply the results of this chapter to design a controller for the drive mode of
a MEMS gyroscope, whose model is given in Example 2.1 (page 22). We recall that this model
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corresponds to a second-order resonator with a quality factor Qx = 100 000 and resonance
frequency ω0,x = 2π · 11 500 rad s−1. The main control objectives are then:

(i) to ensure that its output xm, here denoted y, γp-tracks the reference signal

r(t) = Ar sin
(∫ t

0
ωr(τ)dτ

)
(5.56)

with ωr(t) ∈ [2π · 11 498, 2π · 11 502] (in rad s−1);

(ii) to ensure that disturbances of the type

∀Ad ∈ R+, ∀φ0
d ∈ R, d(t) = Ad sin

(∫ t

0
ωd(τ)dτ + φ0

d

)
,

where ωd = ωr, are γp-rejected by the closed-loop system;

(iii) to ensure the robust stability of the closed-loop system against additive uncertainties in
low and high frequencies.

In particular, we consider as specification γp = 250 · 10−6. If we were in the particular case
where ωr(t) ≡ ω0,x, this specification would be equivalent to ensuring a relative tracking
error smaller than 250 · 10−6, as in Example 4.3 (page 88), for instance.

To achieve the above objectives, we consider the control configuration of Figure 5.1 and the
L2 criterion of Figure 5.2, where

(i) Wr is given in (5.42) with ξ1r = 7.2 · 10−3 and ξ0r = 9 · 10−7;

(ii) Wd is given in (5.43) with ξ1d = 7.2 · 10−3 and ξ0d = 9 · 10−7;

(iii) Wn is given by

Wn(s) = Mn
(s/ωn)

2 + (s/ωn) αn An/Mn + 1

(s/ωn)
2 + (s/ωn) αn + 1

(5.57)

with An = 1.25 · 10−4, Mn = 125, αn = 5.565 · 104 and ωn = ω0,x;

(iv) Wε = γ−1
p = 4000;

(v) Wu is given by

Wu(s) = Mu
(s/ωu)

2 + (s/ωu) αu Au/Mu + 1

(s/ωu)
2 + (s/ωu) αu + 1

(5.58)

with Au = 1.6 · 10−3, Mu = 400, αu = 4.687 · 104 and ωu = ω0,x.

The controller is computed with γ = 0.9954. For the sake of illustration7, the weighting
functions can be interpreted as upper bounds on the closed-loop transfers functions frozen at
the vertices ωr,1 = 2π · 11 498 rad s−1 and ωr,2 = 2π · 11 502 rad s−1, as shown in Figure 5.4
and Figure 5.5. These figures also present the magnitude of the closed-loop transfers frozen at
the same vertices. Note that the weighting functions enforce low gains for the transfers Tn→u
in low and high frequencies, ensuring good stability margins against additive uncertainties
in these frequency ranges. The upper bounds also enforce the transfers Tr→ε and Td→ε to
have low gains at ωr. Indeed, at the vertice ωr,1, Tr→ε and Td→ε have very small gains at the
frequency ωr,1. The same happens at the vertice ωr,2.

7Actually, this analysis in the frequency domain is valid only for LTI systems or frozen LPV ones, which is the
case when ωr is constant. This interpretation cannot be considered when ωr varies over time.
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FIGURE 5.4: Closed-loop transfers (CL) at the vertices ωr,1 and ωr,2 (superposed
in the figure) and upper bounds (superposed).

FIGURE 5.5: Closed-loop transfers (CL) at the vertices ωr,1 and ωr,2 and upper
bounds. Zoom around ω0,x.
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The Bode diagrams of the controller frozen at the vertices are presented in Figure 5.6 and
Figure 5.7 (zoom). The expression and numerical values of the controller are given in
Appendix D.1. Here, it is important to note that the controller presents resonance peaks at ωr
to ensure the reference tracking and disturbance rejection at this frequency, and low gains in
low and high frequencies to enhance the robustness against uncertainties in these frequency
ranges.

FIGURE 5.6: Controller at the vertices ωr,1 and ωr,2 (superposed in the figure).

FIGURE 5.7: Controller at the vertices ωr,1 and ωr,2. Zoom around ω0,x.

The whole closed-loop system is then simulated with the reference signal of (5.56), where
the function ωr(t) is presented in Figure 5.8. Different types of signal are considered here,
as presented in Table 5.1. The system starts from its (sinusoidal) steady state with ωr(t) =
ω0,x. The tracking error and the control signal are presented, respectively, in Figure 5.9
and Figure 5.10. We recall that the reference amplitude Ar is equal to 1.
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FIGURE 5.8: Excitation frequency ωr(t). Details are provided in Table 5.1.

TABLE 5.1: Types of signal defining ωr(t).

Time t (in ms) Signal type Range/Value Fundamental frequency
[0, 5) Constant ω0,x —
[5, 10) Square [ωr,1, ωr,2] 0.05 ·ω0,x
[10, 15) Sawtooth [ωr,1, ωr,2] 0.05 ·ω0,x
[15, 20) Sinusoidal [ωr,1, ωr,2] 0.10 ·ω0,x
[20, 25) Sinusoidal [ωr,1, ωr,2] 0.25 ·ω0,x
[25, 30) Sinusoidal [ωr,1, ωr,2] 0.50 ·ω0,x
[30, 35) Sinusoidal [ωr,1, ωr,2] 0.75 ·ω0,x
[35, 40) Sinusoidal [ωr,1, ωr,2] 1.00 ·ω0,x
[40, 45) Sinusoidal [ωr,1, ωr,2] 1.50 ·ω0,x
[45, 50) Random [ωr,1, ωr,2] —

FIGURE 5.9: Tracking error ε(t) for reference amplitude Ar = 1.
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FIGURE 5.10: Control signal u(t) for reference amplitude Ar = 1.

It is important to highlight that, despite the arbitrary variations of ωr, the tracking error
is always bounded by a value close to 2.5 · 10−4 (for reference amplitude Ar = 1). This is
possible because the controller is able to adapt itself according to ωr. See, for instance, the
control signal at t = 5 ms. At this instant, ωr passes from ω0,x (frequency where the gain
of G is maximum) to ωr,1 (frequency where the gain of G is much smaller). The controller
immediately compensates for the loss of gain (of G) by increasing the amplitude of the control
signal, keeping y(t) ≈ r(t) and ε ≈ 0.

Finally, to evaluate the γp-tracking property, we compute two performance indicators, de-
noted γ̂p,T0 and γ̂p, which are respectively defined as

γ̂p,T0(t) ,

√√√√
∫ t

t−T0
ε(τ)2dτ

∫ t
t−T0

r(τ)2dτ
and γ̂p(t) ,

√√√√
∫ t

0 ε(τ)2dτ
∫ t

0 r(τ)2dτ
. (5.59)

Note that γ̂p,T0 is related to the power of the signals ε and r in a moving time horizon of a
fixed width T0. This indicator allows detecting fast variations of the system performance.
On the other hand, γ̂p corresponds to the definition of γp (see (5.11)) with T = t. With
T0 = 1.5 · 2π/ω0,x, the evolution of γ̂p,T0 and γ̂p over time is plotted in Figure 5.11 and
compared to the specified value of γp = 2.5 · 10−4. In this figure, we can confirm that,
as expected, γ̂p,T0 and γ̂p are always smaller than the required value of γp = 2.5 · 10−4,
validating the proposed solution.

For the sake of comparison, in Figure 5.12, we also present the performance indicators
γ̂p,T0 and γ̂p obtained with an alternative approach. In this alternative approach, the LTV
controller Kωr

0 is split into two parts, as depicted in Figure 5.13: a resonant controller Kωr
res and

a stabilizing controller Kst. The part Kωr
res is a second-order resonator known as a Proportional-

Resonant controller of the form

Kωr
res :





ẋres(t) = ωr(t)
[−ξres −1

1 −ξres

]
xres(t) + ωr(t)

[
1
−1

]√
kr
2 ures(t)

u(t) =
[
1 −1

]√ kr
2 xres(t) +

[
kp
]

ures(t)
, (5.60)
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FIGURE 5.11: Performance indicator γ̂p and γ̂p,T0 with T0 = 1.5 · 2π/ω0,x
(see (5.59)). Proposed LPV controller.

where kp > 0 corresponds to the proportional gain, kr > 0 is the resonant gain and 0 < ξres �
1 is the damping factor (ideally, ξres = 0). The resonance frequency of Kωr

res is given by ωr, such
that, if the closed-loop system is stable, it asymptotically ensures the tracking and rejection of
sinusoidal signals with frequency ωr. The LTI controller Kst ensures the quadratic stability of
the system for all ωr ∈ Ωr [ωr,1, ωr,2]. What is important to note here is that, although this
approach provides guarantees of quadratic stability, the tracking of signals inR [ωr,1, ωr,2] is
ensured only when ωr tends to a constant value (or varies slowly). Indeed, in this example,
we obtain performance indicators γ̂p,T0 and γ̂p that are at least 50 and 10 times higher than
the desired specification, respectively. This is mainly due to the fast variations of ωr.

FIGURE 5.12: Performance indicator γ̂p and γ̂p,T0 with T0 = 1.5 · 2π/ω0,x
(see (5.59)). Alternative approach.
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Kst Kωr
res G

+r ε +u v y
d

+

n
+

+
−

yn

Kωr
0

FIGURE 5.13: Alternative control configuration.

5.5 Summary and Conclusions of the Chapter

In this chapter, we propose a new approach for the design of controllers whose objective
is to ensure, with a guaranteed performance level, the tracking or rejection of frequency-
modulated signals. This control problem can be found in MEMS gyroscopes when an external
loop is used to adapt/disturb the instantaneous excitation frequency ωexc for identification
purposes, for instance. We highlight however that this problem is also of main interest in
other domains, such as in the control of wind turbines or power converters.

In particular, we demonstrate that the original problem of tracking or rejecting frequency-
modulated signals can be formulated as a mathematical L2 criterion in which weighting
functions are used to describe the signals of interest. Nevertheless, different from periodic
signals, the time-varying nature of the frequency-modulated signals make it difficult the
design of weighting functions in the frequency domain, as is the case in theH∞ synthesis, for
instance. We thus propose a new class of LTV weighting functions, which formally describes
this type of signals.

Based on the LTV weighting functions, the original control problem can then be formulated
as a standard polytopic LPV problem. The solution of this problem provides a polytopic
controller whose parameters depend on the (measured) instantaneous frequency of the
signals of interest. Moreover, this controller formally ensures the tracking/rejection with a
certain performance level. This performance level is defined as function of the power of the
reference/disturbance and the tracking error signals.

Simulation results confirm the main results of this chapter and illustrate the benefits of our
approach against a standard design methods: the guaranteed performance, even under
arbitrary variations of ωr over time.
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Chapter 6

Envelope-Based Control:
Bringing the Dynamics to Low
Frequency

As discussed in Section 2.2, for the closed-loop operation of MEMS gyroscopes, most of
the works focus on the envelope-based control architectures, mainly represented by the
architectures AGC with PLL for the drive mode (see page 40) and envelope-based (I/Q) for
the sense mode (see page 44). The main interest in the use of these approaches comes from
the fact that the amplitude and phase or the in-phase and in-quadrature terms are constant or
low-frequency signals in steady-state. Hence, we can use PID controllers to track the (constant
or low-frequency) reference amplitude and phase shift of the drive mode oscillations, and to
compensate for the (constant or low-frequency) in-phase and in-quadrature terms related to
the (oscillating) Coriolis and coupling forces, see [IEE04, EMK12, Zur15]. Moreover, the use
of PID controllers comes together with accessible design methods and easy implementation
(in analog as well as in digital domain), providing an attractive solution for the industry.

Despite all the interesting features of the envelope-based control architectures, we also have
to mention some downsides of this approach. Even if the original system (MEMS gyroscope)
is mainly linear, nonlinearities (modulators and demodulators) are included in the loop to
compute the amplitude and phase shift or in-phase and in-quadrature terms of the modulated
signals, making the overall to-be-controlled system nonlinear. The conventional approach
is then to establish an envelope model of the system, linearize it around operating points
and design independent controllers for the regulation of amplitude and phase or rejection
of in-phase and in-quadrature terms [Sau08, EMK12], leading to controllers that are not
guaranteed to ensure the performance nor stability of the closed-loop system a priori.

In this chapter, we propose a control architecture and a design method that allow us to
combine the main advantage of the envelope-based architectures (work with low-frequency
signals) with the main strengths of the direct control architecture (guarantees of stability and
performance).

The remaining of the chapter is organized as follows. In Section 6.1, we state the problem
under investigation. In Section 6.2, we model the nonlinear to-be-controlled system through
dynamic phasors (presented in the sequel). Then, we reveal that the to-be-controlled system
is actually linear if an adequate representation of the dynamic phasors is considered. In
Section 6.3, this fact allows us to apply anH∞/LPV approach to synthesize a controller with
stability and performance guarantees. Moreover, with this formalism, we reveal that the best
achievable performance of an envelope-based controller is equivalent to the best achievable
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performance of a direct controller, under the assumption that the amplitude and phase (or
in-phase and in-quadrature terms) of a signal can be perfectly measured in real time. In
Section 6.4, we show that this assumption cannot be met in a real application. Nevertheless,
we also demonstrate that, in practice, the best way to obtain the amplitude and phase (or
in-phase and in-quadrature terms) of a signal is through synchronous demodulators. The
drawback is that they introduce filters and nonlinearities in the loop. Then, a novel control
design method, which takes these nonidealities into account, is proposed in Section 6.5.

Dynamic Phasor Definitions

Before proceeding with the problem statement, let us introduce some key concepts for the
development of this chapter. Let us consider a sinusoidal signal in the form of

v(t) = V cos(ωPht + φv),

where V defines the amplitude and φv is the phase shift with respect to a reference phase
ωPht. By using the Euler formula, we can rewrite v as

v(t) = <
(

vejωPht
)

,

where the amplitude and phase are represented by a single complex quantity v = Vejφv , called
phasor. Thus, the sinusoidal signal v can be interpreted as the projection, over the real-axis,
of the phasor v rotating on the complex plane with an angular frequency ωPh. The same
phasor can be equivalently represented by its real and imaginary parts, i.e., v = v< + jv=.
This form is called Cartesian or rectangular representation, while the form v = Vejφv is called
exponential or polar representation.

The main interest on their use relies on the fact that the phasor v of a sinusoidal signal v is
directly related to its Fourier transform1. Then, they can be used to simply describe sinusoidal
signals. Phasors are widely used in different fields. In Control Theory, they are particularly
used to compute the (steady-state) output of a linear system to sinusoidal inputs.

Now, if the amplitude, the phase shift and the reference frequency ωPh are allowed to vary
over time, that is,

v(t) = V(t) cos (φPh(t) + φv(t)) with φPh(t) =
∫ t

0
ωPh(τ)dτ,

we can rewrite v as v(t) = <
(

v(t)ejφPh(t)
)

. Then, similar to the phasor definition, the

complex signal v(t) = V(t)ejφv(t) should be referred to as the complex envelope associated
with v [Rub09], which are directly related to the in-phase and in-quadrature terms of a
modulated signal (see Section 2.1.4, page 23). Indeed, the in-phase and in-quadrature terms
respectively correspond to vR and vI (with ωPh = ωexc). We have to mention, however,
that the term complex envelope (or in-phase and in-quadrature terms) presupposes that the

1Indeed,

F [v] (jω) =
v · δ (jω− jωPh) + v · δ (jω + jωPh)

2
.

If we consider only the positive frequencies (recalling that real-valued signals have a symmetric spectrum, and
considering only the positive frequencies is sufficient to represent the whole signal), we have F [v] (jω) =
v · δ (jω− jωPh) /2
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variations of v are slow and that ωPh is constant over time2 (see Section 2.1.4, page 23). Then,
to get rid of these inherent assumptions, in this document, we rather use the appellation
dynamic phasors to describe the complex signal v, which can be interpreted as a time-varying
phasor and represents the instantaneous amplitude V (or envelope) and the instantaneous
phase shift of the signal v with respect to a given reference phase φPh.

6.1 Problem Statement

In this section, we state the problem under investigation.

The main strength of the envelope-based architectures, such as the AGC+PLL and I/Q
architectures (see Figure 2.20, page 41, and Figure 2.24, page 45), relies on the use of amplitude
and phase or in-phase and in-quadrature terms of an amplitude-modulated signal. Here, we
consider the control architecture presented in Figure 6.1, which is based on the amplitude and
phase of the signals. The plant is represented by G, and Kap corresponds to the amplitude-
and-phase controller. The operator s2p allows extracting the amplitude and phase shift from
a modulated signal, while p2s generates a modulated signal from a given amplitude and
phase shift. The phase shifts are defined with respect to a given reference phase φPh, which is
defined as

φPh(t) =
∫ t

0
ωPh(τ)dτ + φ0

Ph (6.1)

with φ0
Ph ∈ R and the instantaneous reference frequency ωPh belonging to a set of measurable

functions ΩPh [ωPh,1, ωPh,2], which is defined as, given ωPh,2 ≥ ωPh,1 > 0,

ΩPh [ωPh,1, ωPh,2] = {ωPh |∀t ∈ R, ωPh(t) ∈ [ωPh,1, ωPh,2]} . (6.2)

Since ωPh is known, it can be used by the controller.

Kap p2s G s2p

φPh(t)

(Yr, φr) (U, φu) u y (Y, φy)

To-be-controlled system

FIGURE 6.1: Amplitude-and-phase control architecture.

In this context, the control problem consists in computing the amplitude U and phase shift
φu of the control signal u such that the amplitude Y and phase shift φy of the output signal y
track the amplitude Yr and phase shift φr related to a sinusoidal reference signal yr. All the
phase shifts are defined with respect to a given reference phase3 φPh. The reference signal is,
for a given reference phase φPh, defined as

yr(t) = Yr(t) cos(φPh(t) + φr(t)). (6.3)

2In Section 6.4, we will see that these assumptions are related to the practical realization of an operator that
allows extracting the complex envelope of a signal.

3Not to be confused with the phase of the reference signal, which would be given by φPh(t) + φr(t) (see (6.3)).
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Although this architecture can be used in other applications, in the MEMS gyroscope context,
G would represent the drive mode and/or the sense mode. For the sake of simplicity, we
focus on the use of this architecture for the drive mode. Thus, G represents the drive-mode
model. In the same context, as discussed in the previous chapters, the reference signal is
usually given by

yr(t) = Ar sin(φexc(t)) (6.4)

with φexc(t) =
∫ t

0 ωexc(τ)dτ + φ0
r (see, e.g., (5.1), page 117) and defines the operating fre-

quency of the gyroscope, ωexc (we recall that this frequency is supposed to be as close as
possible to the actual drive-mode resonance frequency, ω0,x). The reference phase φPh is not
necessarily linked to φexc. Nevertheless, if we consider the special case where

φPh(t) =
∫ t

0
ωexc(τ)dτ, φr(t) = φ0

r + π/2 and Yr(t) = Ar, (6.5)

(6.3) and (6.4) are equivalent, and the signals to be tracked (Yr and φr) are constant over time.
Therefore, we consider that these conditions hold hereafter.

Note that, with respect to a direct control architecture, the operators p2s and s2p are intro-
duced in the control loop. The operator p2s is a modulator that computes u from a given
amplitude U and phase shift φu with respect to a given phase φPh, that is,

u(t) = U(t) cos (φPh(t) + φu(t)) . (6.6)

In its turn, the operator s2p, based on the same phase φPh, allows extracting the couple (Y, φy)
from the modulated signal

y(t) = Y(t) cos
(
φPh(t) + φy(t)

)
. (6.7)

Please note that, while it is clear how to build u from a given couple (U, φu) (see (6.6)),
the same cannot be said on how to build a couple (Y, φy) from a given signal y (see (6.7)).
By the moment, let us assume that there exists an operator s2p that, somehow, does that.
In Section 6.4, we show that an approximation of this operator can be implemented in practice
through the synchronous demodulation.

Finally, the main problem of this chapter can be formulated as follows.

Problem 6.1 (Amplitude-and-phase control problem). Let us consider an LTI system G and
the control architecture of Figure 6.1. Given ωPh,2 ≥ ωPh,1 > 0, let the reference phase φPh be
given by (6.1) with ωPh ∈ ΩPh [ωPh,1, ωPh,2]. Then, we want to design a controller Kap, based on
a given couple of reference amplitude and phase shift (Yr, φr) and on the couple (Y, φy), computes
the amplitude and phase shift of the control signal (U, φu) such that (Y, φy) tracks constant signals
(Yr, φr), for all Yr ∈ R+ and for all φy ∈ R. The phase shifts are defined with respect to φPh(t).

We split this problem into four parts, as follows.

(i) Let us assume that the operators s2p and p2s exist and can be implemented in practice,
i.e., Y, φy can be instantaneously measured from y. Then, how to model the to-be-
controlled system (composed of the plant G, and the operators s2p and p2s)?

(ii) How to design a controller solving Problem 6.1 under the assumptions above?

(iii) How can we implement in practice the operator s2p?

(iv) How to solve Problem 6.1 considering an implementable operator s2p?
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Each of these questions is answered in each of the following sections.

6.2 System Modeling Through Dynamic Phasors

In this section, we aim to model the to-be-controlled system, which is composed of the plant
G and the operators p2s and s2p. The plant is defined by the linear system below

G :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (6.8)

with state vector x(t) ∈ Rn, input vector u(t) ∈ Rnu , output vector y(t) ∈ Rny , and the
real matrices A, B, C and D of appropriate dimensions. Remember that the operator p2s
constrains each element of the input vector to be in the form of (6.6), and the output signals
are assumed to be in the form of (6.7), such that the operator s2p can extract its instantaneous
amplitude and phase shift. Thus, given a function φPh with ωPh ∈ ΩPh [ωPh,1, ωPh,2], the
to-be-controlled system can be defined by

Gap :





ẋ(t) = Ax(t) + BU(t) cos (φPh(t) + φu(t))[
Y(t)
φy(t)

]
= s2p

(
Cx(t) + DU(t) cos (φPh(t) + φu(t))

) . (6.9)

Note that the operator s2p is nonlinear and the input signal is a nonlinear function of U and
φu. Then, its is clear that replacing the input and output signals of G by their amplitude and
phase (dynamic phasors in the polar representation) makes the to-be-controlled system Gap
nonlinear. However, in the sequel, we show that if the signals of G are instead replaced by
theirdynamic phasors in the rectangular form, the to-be-controlled plant is actually an LTV
system whose state-space matrices are affine functions of ωPh(t).

Although we rather consider the original plant as an LTI system (6.8), we show that the same
results are easily extended to any LPV system of the form

GΘ :
{

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t)
y(t) = C(θ(t))x(t) + D(θ(t))u(t) , θ(·) ∈ Θ (6.10)

with x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny , θ(t) ∈ Rnθ ranges over a fixed polytope Θ and the
dependence of the state-space matrices is affine on θ (as in (5.45), page 130). This extension
will be of main interest in Section 6.3 for the design of the controller.

6.2.1 Dynamic Phasor Modeling

The following theorem introduces a linear model of the nonlinear plant Gap. This modeling
is based on the dynamic phasors associated with the signals of the original plant G.

Theorem 6.1 (Dynamic phasor model). Let a reference phase φPh(t) be given by (6.1) with
ωPh ∈ ΩPh [ωPh,1, ωPh,2], and consider a couple (U(t), φu(t)) and the system G, see (6.8). Then, for
the input signal of the form u(t) = U(t) cos (φPh(t) + φu(t)), the output of G is given by

y(t) = Y(t) cos
(
φPh(t) + φy(t)

)
,



146 Chapter 6. Envelope-Based Control: Bringing the Dynamics to Low Frequency

where Y(t) = |y(t)|, φy(t) = arg(y(t)), and y is the output of the system GωPh , defined by

GωPh :
{

ẋ(t) = (A− jωPh(t)I) x(t) + Bu(t)
y(t) = Cx(t) + Du(t) (6.11)

for the input u(t) = U(t)ejφu(t).

Proof. Let y(t) and x(t) be the solution of (6.11) for the input u(t) = U(t)ejφu(t). Then, we
multiply (6.11) by ejφPh(t). By recalling that φ̇Ph(t) = ωPh(t) (see (6.1)) and since

d
dt

(
x(t)ejφPh(t)

)
=

(
dx(t)

dt
+ jωPh(t)x(t)

)
ejφPh(t),

we obtain, with ωPh ∈ ΩPh [ωPh,1, ωPh,2],

{
d
dt

(
x(t)ejφPh(t)

)
= Ax(t)ejφPh(t) + Bu(t)ejφPh(t)

y(t)ejφPh(t) = Cx(t)ejφPh(t) + Du(t)ejφPh(t)
. (6.12)

By taking the real part of the equations above, we obtain, with ωPh ∈ ΩPh [ωPh,1, ωPh,2],




d
dt

(
<
(

x(t)ejφPh(t)
))

= A<
(

x(t)ejφPh(t)
)
+ B<

(
u(t)ejφPh(t)

)

<
(

y(t)ejφPh(t)
)

= C<
(

x(t)ejφPh(t)
)
+ D<

(
u(t)ejφPh(t)

) , (6.13)

which corresponds to (6.8) with u(t) = U(t) cos (φPh(t) + φu(t)), x(t) = <
(

x(t)ejφPh(t)
)

and

y(t) = <
(

y(t)ejφPh(t)
)

.

The system GωPh , see (6.11), computes, for a given reference phase φPh defined by ωPh ∈
ΩPh [ωPh,1, ωPh,2], the dynamic phasors associated with x and y (respectively x and y) from
the dynamic phasor associated with the input u (u). In other words, from the instantaneous
amplitude and phase shift of the input signal u (respectively U and φu), (6.11) governs the
behavior of the instantaneous amplitude and phase shift of y (respectively Y and φy). Thus,
we refer to GωPh as the Dynamic Phasor Model (DPM) of G with respect to the reference
phase φPh. The DPM GωPh is a system whose state matrices and signals are complex-valued.
Nevertheless, by splitting the signals into real and imaginary parts, this system can be
equivalently represented by the following real-valued one:

GωPh
dp :

{
ẋdp(t) = Adp (ωPh(t)) xdp(t) + Bdpudp(t)
ydp(t) = Cdpxdp(t) + Ddpudp(t)

(6.14)

with xdp = col (x<, x=), udp = col (u<, u=), ydp = col
(

y<, y=

)
,

Adp (ωPh(t)) =
[

A ωPh(t)I
−ωPh(t)I A

]
,

Bdp = diag (B, B), Cdp = diag (C, C) and Ddp = diag (D, D). In general, when simply refer-
ring to DPM, we refer to its real representation, GωPh

dp . Otherwise, if we want to distinguish
between the real and complex representations, we shall refer to GωPh as the Complex DPM of
G. In contrast, GωPh

dp is referred to as the Real DPM of G.
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Technically, there are no issues in dealing with complex-valued systems. For instance, classical
Control Theory tools, such as Bode diagram, Nyquist criterion, and root locus, can be easily
adapted and applied to this class of system. The main difference is that, in contrast to
real-valued systems, complex-valued ones do not have the symmetric frequency response
property. Moreover, complex poles or zeros may not present a conjugated pair. Then, these
classical tools would have to be adapted for the use with complex-valued system. On the
other hand, the real representation of a complex-valued system doubles the order and size of
the input and output vectors. Thus, multivariable tools shall be considered for the analysis
even if the original system is SISO. An interesting discussion on the use of complex-valued
systems in control can be found in the recent work [TBR17].

All complex-valued systems can be represented by a real-valued one. However, the opposite
is not valid. The opposite is valid only for a particular class of real-valued systems, called
rotational-invariant systems (also referred to as symmetric or isotropic systems) [Bod14,
TBR17]. This point is further discussed in Section 6.2.2.

We also highlight that the DPM (real or complex representation) is an LTV system whose
state matrix linearly depends on the (time-varying) reference frequency ωPh. In the literature,
ωPh is often considered as constant. Nevertheless, with Theorem 6.1, we demonstrate that the
DPM is valid for any function ωPh ∈ ΩPh [ωPh,1, ωPh,2]. In the sequel, we present, through an
example, the accuracy of our approach to describe the envelope of the signals.

Example 6.1. Here, we want to illustrate the application of Theorem 6.1 for modeling the envelope
of a signal generated by an LTI system. To this end, we consider the plant Gx of Example 2.1, which
admits a state-space representation with the matrices

A =

[
0 1
−ω2

0,x −ω0,x/Qx

]
, B =

[
0

k0,xω0,x

]
, C =

[
1 0

]
and D = 0,

recalling that ω0,x = 2π11500 rad s−1, Qx = 100 000 and k0,x = 2 · 10−5. We also consider the
input signal u given in (6.6) with U(t) = 0 for t < 1s, U(t) = 1 otherwise, and φu(t) ≡ 0.
The reference phase φPh, which also corresponds to the excitation one φexc, is given by φPh(t) =∫ t

0 ωPh(τ)dτ for the function ωPh presented in Figure 6.2 (top).

The signal u is then applied to G, obtaining the output y, which is presented in Figure 6.2 (middle).
To compute its envelope, we apply the phasor u(t) = U(t)eφu(t) = u<(t) + ju=(t) to the DPM of
Gx, which we denote GωPh

x,dp (computed through (6.14) with udp = col (u<, u=)). Also in Figure 6.2

(middle), we can observe that the signal Y(t) =
∣∣∣y(t)

∣∣∣ =
√

y<(t)
2 + y=(t)

2, computed through the
DPM, precisely corresponds to the envelope of the signal y, as expected. This fact reveals the accuracy
of this model to describe the signal envelope during transient state (t ≥ 1 s) as well as for time-varying
excitation frequencies (2 < t < 22s).

For the sake of completeness, we also present in Figure 6.2 the phase shift φy(t) = arg
(

y(t)
)
=

arctan2
(

y=(t), y<(t)
)

(middle) and the real and imaginary parts of y (bottom). All these signals are
computed through the DPM.

Note that, since

u(t) = U(t) cos (φPh(t) + φu(t)) = u<(t) cos(φPh(t))− u=(t) sin(φPh(t)), (6.15)
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FIGURE 6.2: Simulation of the original system and its DPM with time-varying
excitation frequency.



6.2. System Modeling Through Dynamic Phasors 149

the Real DPM, GωPh
dp , can be rewritten as

{
ẋ(t) = Ax(t) + B

[
cos (φPh(t)) − sin (φPh(t))

]
udp(t)

ydp(t) = s2c
(
Cx(t) + D

[
cos (φPh(t)) − sin (φPh(t))

]
udp(t)

) , (6.16)

where x is the state vector of Gap (see (6.9)), and s2c is an operator that associates ydp with y.
The only difference between Gap (see (6.9)) and GωPh

dp (equivalently in (6.14) and (6.16)) is the
representation of the dynamic phasors: while Gap uses a polar representation, the latter one
takes into consideration the Cartesian representation of the same phasor. Thus, as claimed
at the beginning of the section, if we consider the rectangular representation instead of the
polar one, for a given φPh(t), the to-be-controlled system (6.9) is modeled by an LTV system:
GωPh

dp , defined in (6.14).

Extension of the Dynamic Phasor Modeling for an LPV System Note that the only as-
sumption made on the original plant (6.8) is that it must be linear, that is, the original model
can be either an LTI or an LPV system. In the LPV case, in which the system matrices depend
on a parameter vector θ belonging to a set Θ, the DPM matrices will depend on θ and also on
ωPh(t). That is, for the LPV system (6.10), its DPM is given by, for ωPh ∈ ΩPh [ωPh,1, ωPh,2],

GΘ,ωPh :
{

ẋ(t) = (A(θ(t))− jωPh(t)I) x(t) + B(θ(t))u(t)
y(t) = C(θ(t))x(t) + D(θ(t))u(t) , θ(·) ∈ Θ, (6.17)

or

GΘ,ωPh
dp :

{
ẋdp(t) = Adp (θ(t), ωPh(t)) xdp(t) + Bdp(θ(t))udp(t)
ydp(t) = Cdp(θ(t))xdp(t) + Ddp(θ(t))udp(t)

, θ(·) ∈ Θ (6.18)

with

Adp (θ(t), ωPh(t)) =
[

A(θ(t)) ωPh(t)I
−ωPh(t)I A(θ(t))

]
,

Bdp(θ(t)) = diag (B(θ(t)), B(θ(t))), Cdp(θ(t)) = diag (C(θ(t)), C(θ(t))) and Ddp(θ(t)) =
diag (D(θ(t)), D(θ(t))).

Remark 6.1. Up to this point, there are no particular assumptions on the signals of interest.
The only assumptions for this modeling to hold are summarized below.

(i) The plant G is linear.

(ii) The operators s2c or s2p are ideal, that is, it is possible to instantly obtain a couple
(Y(t), φy(t)) or (y<(t), y=(t)) from the measurement of y(t) and a given φPh(t).

In the sequel, we present some essential properties of the Dynamic Phasor Model.

6.2.2 Properties of the Dynamic Phasor Model

For a better understanding of the dynamic phasor model, we evaluate some of its properties.
We consider two different cases. First, we consider a particular case where the reference
frequency is constant, i.e., ωPh,1 = ωPh,2 = ω∞

Ph. This special case arises, for instance, when
we want to track a sinusoidal signal yr of frequency ω∞

Ph = ωexc. In this context, we can
discuss the stability, the dynamics, the frequency response and the H∞ norm of the DPM
in an LTI framework. In the second case, the reference frequency is time-varying, that is,
ωPh,2 > ωPh,1 and ωPh ∈ ΩPh [ωPh,1, ωPh,2]. This general case arises when we consider the
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problem of tracking “variable-frequency sinusoidal” reference signals, as in (6.3). We assess
the quadratic L2-gain stability of the DPM in this second case.

Particular Case: Constant Reference Frequency and LTI System

Let us start by considering an LTI system G, whose Complex DPM is given by Gω∞
Ph and

Real DPM is given by Gω∞
Ph

dp , respectively from (6.11) and (6.14) with ωPh(t) ≡ ω∞
Ph. The first

property to which we bring our attention is the stability equivalence, stated as follows.

Theorem 6.2 (Stability equivalence). Let G be an LTI system. Gω∞
Ph and Gω∞

Ph
dp are respectively the

Complex DPM and Real DPM of G with ωPh(t) ≡ ω∞
Ph. Then, the DPMs (Gω∞

Ph and Gω∞
Ph

dp ) are stable
if and only if G is stable.

Proof. To prove the equivalence between the stability of the G, Gω∞
Ph and Gω∞

Ph
dp , we evaluate

the eigenvalues λ of their state matrices: A, A− jω∞
Ph I and Adp. Being, for all i ∈ {1, . . . , n},

λi(A − jω∞
Ph I) = λi(A) − jω∞

Ph, λi(Adp) = λi(A) + jω∞
Ph and λi+n(Adp) = λi(A) − jω∞

Ph,
we have < (λi(A)) = <

(
λi(A− jω∞

Ph I)
)
= <

(
λi(Adp)

)
= <

(
λi+n(Adp)

)
, concluding the

proof.

It is clear that the dynamics of the DPM is different from the dynamics of the original system.
Indeed, the former one depends on the reference frequency ω∞

Ph, while the latter one does not.
However, Theorem 6.2 reveals that, even if the DPM dynamics depends on ω∞

Ph, it conserves
the stability of the original system. This is illustrated in the next example.

Example 6.2. Let us consider again the plant Gx, its DPM Gω∞
Ph

x,dp, φu(t) ≡ 0, and U(t) = 0 for
t < 1s and U(t) = 1 otherwise, as in Example 6.1. Here, we consider two different constant
excitation/reference frequencies to show how ω∞

Ph can impact the dynamics of the DPM.

First, we consider the particular case ω∞
Ph = ω0,x, representing, in the case of a MEMS gyroscope, the

operation of the drive mode with a (perfect) resonance-frequency tracking (ensured by a PLL, Extremum
Seeking or closed-loop identification, for instance). We also consider a general case ω∞

Ph 6= ω0,x, which
represents, in the case of a MEMS gyroscope, an operation with a mismatch between the excitation
and the resonance frequencies. We choose ω∞

Ph = 2π11498rad s−1, representing a slight mismatch of
less than 0.02%.

The simulation results are depicted in Figure 6.3 and Figure 6.4, where we show the real and imaginary
parts of the output dynamic phasor as well as the instantaneous amplitude Y(t) =

∣∣∣y(t)
∣∣∣ and phase

φy(t) = arg
(

y(t)
)

with y computed through the DPM. The envelope Y is compared to the signal
y, which is obtained at the output of Gx. In the first case (Figure 6.3), with ω∞

Ph = ω0,x, we can
observe that the DPM mainly behaves like a typical first-order system with time constant τc ≈ 3 s.
Moreover, when observing the real and imaginary parts of the phasor y, only y= is modified by the
chosen input, indicating that, since u<(t) = U(t) and u=(t) = 0 (see (6.15) with φu(t) ≡ 0), there
is no coupling between u< and y< in this particular case. However, a slight modification of ω∞

Ph
produces an important change on the DPM behavior, see Figure 6.4. Indeed, we could say that the
envelope Y behaves like the output of a lightly damped second-order system. In contrast to the first
case, the impact of u< is more important on y< than on y=, which also indicates modifications on the
transfers coupling u< to y< and y=.
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Let us now discuss the frequency responses of G, Gω∞
Ph and Gω∞

Ph
dp . To this purpose, we consider

their transfer functions (matrices), which are respectively given by

G(s) = C(sI − A)−1B + D, (6.19)

Gω∞
Ph(s) = C(sI − A + jω∞

Ph I)−1B + D (6.20)

and
Gω∞

Ph
dp (s) = Cdp(sI − Adp)

−1Bdp + Ddp. (6.21)

From (6.19) and (6.20), we have that Gω∞
Ph (s) = G(s + jω∞

Ph), and consequently,

Gω∞
Ph (jω) = G(jω + jω∞

Ph). (6.22)

Thus, the frequency response of the Complex DPM corresponds to a frequency shift of the
frequency response of G by ω∞

Ph. Note that evaluating the response of Gω∞
Ph to a constant

signal, i.e., Gω∞
Ph (0), is equivalent to evaluate the sinusoidal steady-state response of G to a

sinusoidal signal of frequency ω∞
Ph, i.e., G(jω∞

Ph). Moreover, also note that, since G has real
parameters, its frequency response is symmetric with respect to the frequencies. Then, after
shifting, Gω∞

Ph presents an asymmetric frequency response.

Let us now evaluate the frequency response of Gω∞
Ph

dp . To this purpose, we develop (6.21) as

Gω∞
Ph

dp (s) =
[

GR
(
s, ω∞

Ph

)
−GI

(
s, ω∞

Ph

)

GI
(
s, ω∞

Ph

)
GR
(
s, ω∞

Ph

)
]

, (6.23)

where the terms GR
(
s, ω∞

Ph

)
and GI

(
s, ω∞

Ph

)
are given by

GR (s, ω∞
Ph) = C(sI − A) (((s− jω∞

Ph)I − A) ((s + jω∞
Ph)I − A))−1 B + D (6.24)

and
GI (s, ω∞

Ph) = −ω∞
PhC (((s− jω∞

Ph)I − A) ((s + jω∞
Ph)I − A))−1 B. (6.25)

Note that, as any real representation of a complex-valued system, there is a redundance
in Gω∞

Ph
dp : the diagonal blocks are equal (GR), and the off-diagonal blocks are also equal but

with opposite sign (±GI). Systems with this structure are known as isotropic or rotational-
invariant systems [Bod14, TBR17]. Further than this property, the DPM also presents the
identities below, which are directly derived from (6.24) and (6.25),

GR (s, −ω∞
Ph) = GR (s, ω∞

Ph) (6.26)

and
GI (s, −ω∞

Ph) = −GI (s, ω∞
Ph) . (6.27)

Now, we consider a factorization of Gω∞
Ph

dp with unitary matrices4, yielding to

Gω∞
Ph

dp = Iy

[
GR
(
s, ω∞

Ph

)
− jGI

(
s, ω∞

Ph

)
0

0 GR
(
s, ω∞

Ph

)
+ jGI

(
s, ω∞

Ph

)
]
Iu, (6.28)

4A complex square matrix I is said to be unitary if and only if I∗I = II∗ = I. They have the important
property: σ (I) = σ (I) = 1.
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where

Iy =
1√
2

[−jI jI
I I

]
and Iu =

1√
2

[
jI I
−jI I

]
.

Hence, from (6.22), (6.26) and (6.27), the frequency response of Gω∞
Ph

dp can be given by

Gω∞
Ph

dp = Iy

[
G
(

jω− jω∞
Ph

)
0

0 G
(

jω + jω∞
Ph

)
]
Iu. (6.29)

Thus, the frequency response of each element of Gω∞
Ph

dp is a combination of the original system
frequency response shifted by +jω∞

Ph and −jω∞
Ph. Moreover, if we evaluate the extremum

singular values of Gω∞
Ph

dp , because σ
(
Iy
)
= σ (Iu) = 1, we obtain

σ
(

Gω∞
Ph

dp

)
= min (σ (G(jω− jω∞

Ph)) , σ (G(jω + jω∞
Ph)))

σ
(

Gω∞
Ph

dp

)
= max (σ (G(jω− jω∞

Ph)) , σ (G(jω + jω∞
Ph))) . (6.30)

These singular values define the bounds of the Gω∞
Ph

dp frequency response. An illustration will
be presented in Example 6.3.

In Chapter 3, we express the performance specifications of a MEMS gyroscope though anH∞
criterion. Then, for considering the use of the dynamic phasor framework for this application,
assessing theH∞ norm of the DPM is also of central concern.

Theorem 6.3 (H∞-norm equivalence). Let G be a given LTI system. Gω∞
Ph and Gω∞

Ph
dp are respectively

the Complex DPM and Real DPM of G with ωPh(t) ≡ ω∞
Ph. Then, theH∞ norm of the DPMs (Gω∞

Ph

and Gω∞
Ph

dp ) is equal to theH∞ norm the G, that is,

‖G‖∞ =
∥∥∥Gω∞

Ph

∥∥∥
∞
=
∥∥∥Gω∞

Ph
dp

∥∥∥
∞

. (6.31)

This result shows that the DPMs conserve theH∞ norm of the original LTI system, regardless
of the representation (real or complex) and the constant reference frequency ω∞

Ph.

Proof of Theorem 6.3. From theH∞-norm definition (Definition 4.1, page 76) and the frequency
response of Gω∞

Ph (see (6.22)), it follows immediately that
∥∥∥Gω∞

Ph

∥∥∥
∞
= ‖G‖∞. From (6.30), it

follows that
∥∥∥Gω∞

Ph
dp

∥∥∥
∞
= ‖G‖∞, completing the proof.

Example 6.3 (Continuation and end). In Figure 6.5, we plot the Bode diagrams of each transfer of
the DPM for the two reference frequencies considered in Example 6.2. At a first glance, we note that
the diagonal terms are equal and that the off-diagonal elements are equal in magnitude and have a
difference of 180° in phase, as expected (see (6.23)).

As presented in Example 2.1, the Bode diagram of Gx presents a strong resonance peak at ω0,x,
see Figure 2.10 (page 22). Then, when considering its DPM with ω∞

Ph = ω0,x, this resonance peak is
shifted to ω = 0 and to ω = 2ω0,x. Now, if we neglect the high-frequency resonance peaks and focus
on the transfers from u<, we note that the transfer from u< to y< has very small gains (in general,
smaller than −100 dB), while the transfer from u< to y= is similar to a first-order low-pass filter with
a cutoff frequency close to 0.05 Hz and a gain close to 2 in low-frequencies.
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When considering the DPM with ω∞
Ph 6= ω0,x, the resonance peak of the system is shifted to ω =

ω0,x −ω∞
Ph and to ω = ω0,x + ω∞

Ph. If we proceed with a similar interpretation, we note that in this
case the transfer from u< to y< behaves as a low-pass filter with a gain close to 0.06 in low-frequencies
and with a resonance peak close to 2 Hz, justifying the oscillations found in Example 6.2. In its turn,
the transfer from u< to y= behaves like a band-pass filter, attenuating low and high frequencies. Both
analyses are coherent with the results of Example 6.2.

In Figure 6.6, we present the singular values of the DPM for the two reference frequencies. Further
than the behavior described above, note that in both cases, the maximum value of the maximum
singular values is equal to 6 dB, which corresponds to ‖Gx‖∞ = 2, as expected.
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FIGURE 6.6: Singular values of G
ω∞

Ph
x,dp for ω∞

Ph = 2π11500 = ω0,x and for
ω∞

Ph = 2π11498 6= ω0,x.

Remark 6.2 (On the DPM high-frequency modes). In general, we may be interested only on
the (dominant) low-frequency dynamics of the DPM. Indeed, in Example 6.2, the effects of
the high-frequency resonance peaks cannot be noticed. Then, these high-frequency resonance
peaks are often neglected for pratical reasons, see, e.g., [EK10]. Nevertheless, for the sake of
formalism, in this work, we keep these modes in the DPM.

General Case: Time-Varying Reference Frequency and LPV System

We now consider a more general case: with the original system G, we investigate the link
between the properties of G and of its DPMs GωPh and GωPh

dp (see (6.8), (6.11) and (6.14),
respectively) for all ωPh ∈ ΩPh [ωPh,1, ωPh,2]. In particular, we consider the quadratic L2-gain
stability of these systems.

Please note that evaluating the quadratic L2-gain stability of the LTV systems GωPh and GωPh
dp

for all ωPh ∈ ΩPh [ωPh,1, ωPh,2] is equivalent to evaluating the quadratic L2-gain stability of
the LPV systems GΩPh and GΩPh

dp , which are defined as follows:

GΩPh = {GωPh , ωPh ∈ ΩPh [ωPh,1, ωPh,2]}

GΩPh
dp =

{
GωPh

dp , ωPh ∈ ΩPh [ωPh,1, ωPh,2]
}

.

Since we enter in the LPV framework, we also generalize the original system to the LPV plant
GΘ. Therefore, we want to investigate the link between the quadratic L2-gain stability of GΘ
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(see (6.10)) and that of GΘ,ΩPh and GΘ,ΩPh
dp , where

GΘ,ΩPh =
{

GΘ,ωPh , ωPh ∈ ΩPh [ωPh,1, ωPh,2]
}

GΘ,ΩPh
dp =

{
GΘ,ωPh

dp , ωPh ∈ ΩPh [ωPh,1, ωPh,2]
}

with GΘ,ωPh and GΘ,ωPh
dp respectively given in (6.17) and (6.18).

The following result allows then to generalize the results of the particular case, where
ωPh(t) ≡ ω∞

Ph and G is LTI, to the general LPV case, where GΘ is LPV and we consider all
ωPh ∈ ΩPh [ωPh,1, ωPh,2].

Theorem 6.4 (Quadratic L2-gain stability equivalence). Let us consider the LPV system GΘ, its
Complex DPM GΘ,ΩPh and Real DPM GΘ,ΩPh

dp . Then,

∥∥∥GΘ
∥∥∥

q

i2
=
∥∥∥GΘ,ΩPh

∥∥∥
q

i2
=
∥∥∥GΘ,ΩPh

dp

∥∥∥
q

i2
. (6.32)

Sketch of proof. This proof is based on the definition of the quadratic L2-gain stability (Defini-
tion 5.9). First, we prove that the solution to the LMI (5.47) applied to GΘ generates a solution
for the same problem when applied to GΘ,ΩPh

dp . The same procedure is applied in the other
direction. The complete proof is given in Appendix E.1.

Since the H∞ norm of an LTI system is equal to its L2 gain, if G is an LTI system, (6.32)
reduces to

‖G‖∞ =
∥∥∥GΩPh

∥∥∥
q

i2
=
∥∥∥GΩPh

dp

∥∥∥
q

i2
. (6.33)

In addition to considering an LTI system G, if ΩPh = {ω∞
Ph}, (6.32) simplifies to (6.31).

Moreover, since the quadratic L2-gain stability property of an LTI system implies internal
stability, this theorem unifies and generalizes Theorems 6.2 and 6.3.

6.3 Dynamic Phasor Control

In the previous section, we have revealed that the a priori nonlinear to-be-controlled system
Gap (see (6.9)) is actually linear if, instead of using the polar representation of the dynamic
phasors (amplitude and phase), the signals are represented by their corresponding dynamic
phasor in the rectangular representation (see (6.14)). Therefore, with a change on the dynamic
phasor representation, the control scheme of Figure 6.1 can be equivalently replaced by the
one presented in Figure 6.7, which we denote dynamic phasor control architecture. Having
said that, the (nonlinear) amplitude-and-phase control problem (Problem 6.1) can be recast
as follows.

Problem 6.2 (Dynamic phasor control problem). Given the DPM of G (GωPh
dp ), design a controller

K
˜

ωPh with state-space matrices A
˜
(ωPh), B

˜
(ωPh), C

˜
(ωPh), D

˜
(ωPh), which, based on ydp and on a

reference phasor yr,dp, computes udp such that ydp tracks yr,dp for all ωPh ∈ ΩPh [ωPh,1, ωPh,2].

Similar to Chapter 5), solving this LTV control problem for all ωPh ∈ ΩPh [ωPh,1, ωPh,2] is
equivalent to solving a standard LPV problem. Obviously, if ΩPh reduces to a singleton (i.e.,
ΩPh = {ω∞

Ph}), this control problem can be solved in an LTI framework through the H∞
synthesis.
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K
˜

ωPh c2s G s2c

φPh(t)

(
yr<, yr=

)
(u<, u=) u y

(
y<, y=

)

To-be-controlled system (GωPh
dp )

FIGURE 6.7: Dynamic phasor control architecture.

In this section, we aim to answer two main questions.

(i) Considering the direct control architecture presented in Chapter 5 and the dynamic
phasor control approach, does any of them ensure a better performance level?

In this context, we consider an LPV augmented plant PΘ in the form of (5.50) (page 131)
with nuP control signals, nw exogenous input signals, nyP measured outputs and nz
controlled outputs. This augmented plant is composed of the original to-be-controlled
system G and weighting functions, which are used to enforce the desired closed-loop
specification and depend on the excitation frequency ωexc. The controller KΘ is of the
form of (5.51) (page 131) and also depends on ωexc. The performance level γ represents
an upper bound on

∥∥PΘ ? KΘ
∥∥q

i2, that is,
∥∥PΘ ? KΘ

∥∥q
i2 < γ.

Note that PΘ expresses the desired control specifications in the direct control approach.
To express the same specifications in the dynamic phasor framework, we use the DPM
of PΘ for all ωPh ∈ ΩPh [ωPh,1, ωPh,2], denoted PΘ,ΩPh

dp . Furthermore, we consider that
the reference frequency, ωPh, is equal to the excitation frequency, that is, ωPh = ωexc.

(ii) In Chapters 4 and 5, we see how to design a direct controller fulfilling specifications that
are related to the global performance of the MEMS gyroscope. However, for practical
implementation reasons, it can be preferred to use an envelope-based architecture. In
this context, is it possible to transform a direct controller into a dynamic phasor one? If
so, how?

6.3.1 Connections Between Direct Control and Dynamic Phasor Control

We now investigate the links between the direct control problem and the complex phasor one.
These links will allow us to evaluate the performance levels obtained with each approach.
However, before proceeding, let us define the permutation matrices Pin and Pout, given by

Pin =




Inw 0 0 0
0 0 InuP

0
0 Inw 0 0
0 0 0 InuP


 and Pout =




Inz 0 0 0
0 0 Inz 0
0 InyP

0 0
0 0 0 InyP


 .

These matrices are used to permute the inputs and outputs of the DPM of the augmented
system PΘ, such that the Redheffer (star) product can be correctly applied. Now, we are
ready to state one of the main results of the chapter.
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Theorem 6.5. Let PΘ be the augmented plant defined by (5.50) and KΘ the controller defined
by (5.51). Moreover, let PΘ,ΩPh

dp , KΘ,ΩPh
dp and (PΘ ? KΘ)ΩPh

dp be respectively the DPM of PΘ, KΘ and

PΘ ? KΘ for all ωPh ∈ ΩPh[ωPh,1, ωPh,2], and define PΘ,ΩPh
dp , PoutP

Θ,ΩPh
dp Pin. Then, given γ > 0,

(i) (PΘ ? KΘ)ΩPh
dp = PΘ,ΩPh

dp ? KΘ,ΩPh
dp ;

(ii) if KΘ is such that
∥∥PΘ ? KΘ

∥∥q
i2 < γ then

∥∥∥PΘ,ΩPh
dp ? KΘ,ΩPh

dp

∥∥∥
q

i2
< γ;

(iii) there exists an LPV controller K
˜

Θ,ΩPh such that
∥∥∥PΘ,ΩPh

dp ? K
˜

Θ,ΩPh

∥∥∥
q

i2
< γ if and only if there

exists KΘ such that
∥∥PΘ ? KΘ

∥∥q
i2 < γ.

The first property states that the DPM of the interconnection PΘ ? KΘ is equal to the intercon-
nection of their DPMs.

The second property claims that if a direct controller KΘ achieves a given performance level
γ, then the DPM KΘ,ΩPh

dp of KΘ is a solution of the dynamic phasor control problem, ensuring
the same performance level γ. Put differently, if a direct controller KΘ achieves a given
performance level, a phasor controller can be directly computed through Theorem 6.1, i.e.,
KΘ,ΩPh

dp , and this controller ensures the same performance level γ.

The third property is the most interesting result. It reveals that if K
˜

Θ,ΩPh (solution to the
dynamic phasor control problem) achieves a given performance level then, necessarily,
the same level of performance can be obtained by a direct control law and vice-versa. In
other words, even with an augmented degree of freedom (number of variables), the phasor
controller cannot achieve a better performance level than that of a direct controller.

Sketch of proof. (Details are provided in Appendix E.2)

Property (i): By writing the state-space representation of (PΘ ? KΘ)ΩPh
dp and PΘ,ΩPh

dp ? KΘ,ΩPh
dp

from those of PΘ and KΘ, and by observing that they are equal, one proves Property (i).

Property (ii): Follows from Property (i) and Theorem 6.4.

Property (iii): The proof consists in applying the LPV problem associated to the direct control
problem. The existence of KΘ such that

∥∥PΘ ? KΘ
∥∥q

i2 < γ is equivalent to the existence of a
solution to the feasibility problem defined by Theorem 5.2 (page 131). Then, the solution
of this problem is used to construct the solution of the feasibility problem defined by Theo-
rem 5.2 when it is applied to the dynamic phasor control problem, implying the existence of

K
˜

Θ,ΩPh such that
∥∥∥PΘ,ΩPh

dp ? K
˜

Θ,ΩPh

∥∥∥
q

i2
< γ. The same procedure is applied in the other sense,

changing the direct problem by the dynamic phasor problem and vice-versa.

The following example illustrates how a direct controller can be implemented in a phasor
control architecture, obtaining the same results that it would have in the direct control
architecture.

Example 6.4. In this example, we consider the model and the direct controller of Section 5.4 (page 132).
The controller is transformed into a phasor controller KΘ,ΩPh

dp through (6.18) and implemented accord-
ing to the phasor-based architecture of Figure 6.7. Since the operator s2c cannot be ideally implemented
in practice (this point is detailed in the next section), we use the DPM of G, GΩPh

dp , to model the
to-be-controlled system.
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To evaluate the tracking performance of the system (γp-tracking), we apply a reference signal with
the same amplitude Ar = 1 and the same time-varying frequency as in Section 5.4 (see Figure 5.8,
page 136). The performance indicators are computed as

γ̂p,T0(t) ,

√√√√
∫ t

t−T0
εdp(τ)>εdp(τ)dτ

∫ t
t−T0

yr,dp(τ)>yr,dp(τ)dτ
and γ̂p(t) ,

√√√√
∫ t

0 εdp(τ)>εdp(τ)dτ
∫ t

0 yr,dp(τ)>yr,dp(τ)dτ
.

(6.34)
The evolution of these indicators over time is illustrated in Figure 6.8 and corresponds to the same
indicators obtained in the previous chapter for the direct approach (see Figure 5.11, page 138). This
fact confirms the property (ii) of Theorem 6.5.

FIGURE 6.8: Performance indicator γ̂p and γ̂p,T0 with T0 = 1.5 · 2π/ω0,x
(see (6.34)). LPV phasor controller.

In Figure 6.9, we present the tracking error of both strategies. For the sake of clarity, we illustrate only
the time interval t ∈ [5, 20]ms, but the conclusions hold for the whole simulation. We observe that,
as expected, the tracking error in the phasor control approach corresponds exactly to the envelope of
the tracking error obtained in the direct approach.

The above results are based on the fact that Gap (see (6.9)) is exactly described by GΩPh
dp (with

different representation of the dynamic phasors). Nonetheless, we will discuss in the next
section that the ideal operators s2c and s2p cannot be implemented in practice. To extract
amplitude and phase of a signal (or equivalently the real and imaginary parts of the phasor),
nonlinear operators and filters are introduced in the loop. These additional elements, that
were not taken into consideration in this section, may drastically degrade the performance
of the closed-loop system or even make it unstable. Thus, in the next section, we present
how to implement the operator s2c and how to model its nonidealities. Then, we propose an
approach to take into account these nonidealities during the control design.

6.4 Implementation of the Operators s2c and s2p

Up to this point, we have considered the blocks s2p and s2c as operators that allow extracting
from a sinusoidal signal y the couples (Y, φy) and (y<, y=), respectively (i.e., the components
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FIGURE 6.9: Tracking error of direct control and phasor control architectures.

of the associated dynamic phasor y). In this section, we show that these operators cannot
be ideally implemented in practice due to an ambiguity problem. However, if spectral
constraints are imposed on the signals of interest, a real s2c can be implemented by the
synchronous demodulation. The study is realized in a constant-frequency framework, i.e.,
ωPh(t) ≡ ω∞

Ph. At the end of the section, a discussion on the time-varying frequency case is
drawn.

6.4.1 Uniqueness Between a Modulated Signal and its Dynamic Phasor

The main problem concerning the implementation of the operators s2c and the s2p is related
to the so-called ambiguity problem, which we describe as follows. Let us consider a signal y
of the form

y(t) = <
(

y(t)ejω∞
Pht
)

with y(t) = Y(t)ejφy(t). (6.35)

The question is: given y(t) and ω∞
Ph, is it possible to compute a unique dynamic phasor y

associated with y? Unfortunately, the answer is no. If we consider, for example,

y(t) = 10 cos (ω∞
Pht + π/4) , (6.36)

one could promptly define Y(t) ≡ 10 and φy(t) ≡ π/4. However, Y(t) = 10 cos
(
ω∞

Pht + π/4
)

and φy(t) = −ω∞
Pht is also a valid couple5. In fact, an infinite number of dynamic phasors y

(or couples
(
Y(t), φy(t)

)
) define the same signal y.

The ambiguity problem is recurrent in the literature and comes from the fact that only the real
part of y(t)ejω∞

Pht defines y. Note that the actual problem is then how to properly define the
imaginary part of y(t)ejω∞

Pht. In general, the solution is based on the classical notion of analytic
signal (or pre-envelope) [Gab46, VV77, Ven94, Pic97], whose definition is given below.

5Recall that (6.35) can be written as y(t) = Y(t) cos
(
ω∞

Pht + φy(t)
)
.
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Definition 6.1 (Analytic signal). A signal ṽ(t) ∈ C is said to be an analytic signal if its
spectrum is null for nonpositive frequencies6, that is,

∀ ω ≤ 0, F [ṽ](ω) = 0. (6.37)

Moreover, ṽ(t) is said to be associated to a signal v(t) ∈ R if < (ṽ(t)) = v(t).

Based on the above definition, if we define y(t)ejω∞
Pht as the analytic signal ỹ associated to y, y

can be unambiguously computed as

y(t) = ỹ(t)e−jω∞
Pht, (6.38)

solving the ambiguity problem.

Let us apply this result to our example. First, we rewrite (6.36) as

y(t) =
10
2

(
ejω∞

Pht+jπ/4 + e−jω∞
Pht−jπ/4

)
.

In this particular case, we can obtain ỹ by eliminating the term e−jω∞
Pht−jπ/4 (nonpositive

frequency) and by multiplying the remaining term by 2 (so that < (ỹ(t)) = y(t)):

ỹ(t) = 10ejω∞
Pht+jπ/4 = 10ejπ/4ejω∞

Pht.

Then, through (6.38), we obtain y(t) ≡ 10ejπ/4, which unambiguously corresponds to Y(t) ≡
10 and φy(t) ≡ π/4.

Remark 6.3. Other solutions could be considered. However, it has been shown that only
methods based on the analytic signals satisfy physical conditions on the dynamic phasor (or
complex envelope) of the signals, such as continuity and differentiability, phase independence
and harmonic correspondence. See, e.g., [VV77, Vak96] for further details on these physical
conditions.

6.4.2 Computing the Analytic Signal Associated to y

The problem now is how to compute the analytic signal ỹ associated to y. The solution is
based on the Hilbert transform and is presented as follows. Further (interesting) details can
be found in [Gab46, VV77], for instance.

By Definition 6.1, ỹ is such that F [ỹ](ω) = 0 for ω ≤ 0 and < (ỹ(t)) = y(t). Thus, we
can write the analytic signal associated to y as ỹ(t) = ỹ<(t) + jỹ=(t) with ỹ<(t) = y(t) and
ỹ=(t) ∈ R. In the frequency domain, it gives

F [ỹ](ω) = F [y](ω) + jF [ỹ=](ω).

Now, recall that the spectrum F [y] of a real-valued signal y is symmetric, that is,

F [y](ω) = F [y](−ω).

Then, to obtain F [ỹ](ω) = 0, the signal ỹ= must be such that

F [ỹ=](ω) = −j sgn (ω)F [y](ω), (6.39)

6In general, the analytic signal has null spectrum for negative frequencies. However, to avoid indefinitions at
ω = 0, we also consider F [ṽ](0) = 0.
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×+y(t)

jH[ · ]
+

ỹ(t)

e−jω∞
Pht

y(t)

FIGURE 6.10: Computing ỹ and y through the Hilbert transform.

where sgn denotes the sign function.

Note, in (6.39), that ỹ= can be obtained by passing y through a filter FH whose frequency
response is given by

FH(ω) = −j sgn (ω) . (6.40)

We can then define, in the time domain, ỹ=(t) = fH ∗ y(t), where fH is the impulse response
of FH and is given by fH(t) = 1/(πt). This special convolution product is called the Hilbert
transform and is defined, for a real signal y, as

H[y](t) , fH ∗ y(t) =
1
π

∫ ∞

−∞

y(τ)
t− τ

dτ. (6.41)

Therefore, based on the Hilbert transform, the analytic signal ỹ is computed from y as

ỹ(t) = y(t) + jH[y](t) (6.42)

and the dynamic phasor y can be obtained through (6.38), as depicted in Figure 6.10.

The definition of the Hilbert transform may not provide, at a first glance, a clear understand-
ing of this operation. However, by evaluating (6.40), we can note that the Hilbert transform
does not modify the spectrum magnitude of the signal y. It only shifts the spectrum of the
signal by −π/2rad (or +π/2rad for negative frequencies), creating a signal in quadrature
with the input signal (y). It behaves like an ideal phase shifter, shifting the phase of the input
signal by ±π/2rad. Indeed, some basic and useful Hilbert transforms are [VV77]

H [cos (ω∞
Ph•)] (t) = sin (ω∞

Pht) and H [sin (ω∞
Ph•)] (t) = − cos (ω∞

Pht) . (6.43)

Let us come back to our example of Section 6.4.1. First, we compute ỹ associated with y of
(6.36) (see (6.42) and (6.43)), yielding to

ỹ(t) = 10 cos (ω∞
Pht + π/4) + j10 sin (ω∞

Pht + π/4) = 10ejω∞
Pht+jπ/4 = 10ejπ/4ejω∞

Pht.

Then, by applying (6.38), we obtain y(t) ≡ 10ejπ/4, which corresponds to Y(t) ≡ 10 and
φy(t) ≡ π/4.

6.4.3 Equivalence Between Synchronous Demodulation and Hilbert Transform

The main issue of the method described above is that the Hilbert transform (or the filter
FH, see (6.40)) cannot be implemented in real time. Indeed, by definition (see (6.41)), the
computation of H[y] at time t depends on the whole signal y, i.e., for t ∈ (−∞, ∞). In this
section, we show that the ideal synchronous demodulation can be used to compute the
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dynamic phasor associated with a modulated signal, keeping the same properties of the
Hilbert transform. To this purpose, we consider the signal

y(t) = ya(t) cos (ω∞
Pht)− yb(t) sin (ω∞

Pht) , (6.44)

which is such that

∀ |ω| ≥ 2ω∞
Ph, F [y] (ω) = 0 and F [y] (0) = 0. (6.45)

As discussed in Section 2.1.4 (page 23), any band-pass signal that satisfies (6.45) can be written
in the form of (6.44). Moreover, the signals ya and yb are low-pass signals, that is,

∀ |ω| ≥ ω∞
Ph, F [ya] (ω) = 0 and F [yb] (ω) = 0. (6.46)

Then, we use the Hilbert transform to extract a dynamic phasor y from y (as summarized
in Figure 6.10), we apply y to an ideal synchronous demodulation, and we compare the
results obtained with both approaches, showing that they are equivalent.

Method Based on the Hilbert Transform

The first step consists in computing the analytic signal ỹ. Recall that, ỹ<(t) = y(t) and
ỹ=(t) = H [y(t)]. The latter one is developed as

ỹ=(t) = H [ya(•) cos (ω∞
Ph•)− yb(•) sin (ω∞

Ph•)] (t)

ỹ=(t) = H [ya(•) cos (ω∞
Ph•)] (t)−H [yb(•) sin (ω∞

Ph•)] (t).

At this point, let us open a parenthesis and introduce an important result concerning the
Hilbert transform of a product.

Theorem 6.6 (Bedrosian’s theorem [Bed63]). Let vl(t) and vh(t) be real functions of time, such
that F [vl ](ω) = 0 for |ω| ≥ ωb and F [vh](ω) = 0 for |ω| < ωb. Then,

H[vl · vh](t) = vl(t) · H[vh](t). (6.47)

This theorem claims that the Hilbert transform of the product between a low-frequency (vl)
and a high-frequency signal (vh), whose spectra do not overlap, is given by the product of
the low-frequency signal with the Hilbert transform of the high-frequency one.

Let us close the parenthesis and come back to the computation of ỹ=. Since ya and yb are
low-pass signals (see (6.46)) and do not overlap the spectra of cos

(
ω∞

Ph•
)

and sin
(
ω∞

Ph•
)
, we

can apply the Bedrosian’s theorem, yielding to

ỹ=(t) = ya(t)H [cos (ω∞
Ph•)] (t)− yb(t)H [sin (ω∞

Ph•)] (t).

Hence, with the Hilbert transforms of the sine and cosine functions (see (6.43)), we have

ỹ=(t) = ya(t) sin (ω∞
Pht) + yb(t) cos (ω∞

Pht) .

Finally, with ỹ(t) = y(t) + jỹ=(t), we obtain

ỹ(t) = (ya(t) + jyb(t)) ejω∞
Pht,
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yielding to the dynamic phasor

y(t) = ỹ(t)e−jω∞
Pht = ya(t) + jyb(t).

Note that ya = y< and yb = y=.

Remark 6.4 (The dynamic phasors and the complex envelopes). As claimed in the beginning
of the chapter, if the conditions (6.45) and (6.46) are verified, the dynamic phasors correspond
to the classical definition of complex envelopes, see, e.g., [Rub09].

Ideal Synchronous Demodulation

The ideal synchronous demodulation is presented in Section 2.1.4, but we recall the main
principles here. Its structure is depicted in Figure 6.11, where FLP are ideal low-pass filters
with cutoff frequency ωc = ω∞

Ph. At the input of the synchronous demodulation, we plug the
signal y of (6.44).

×

×

FLP

FLP

2 cos(ω∞
Ph)

−2 sin(ω∞
Ph)

y

y1 yI f

y2 yQ f

FIGURE 6.11: Block diagram of the synchronous demodulation.

The signals y1(t) = 2y(t) cos (φPh(t)) and y2(t) = −2y(t) sin (φPh(t)) are rewritten as

y1(t) = ya(t) +

δyI(t)︷ ︸︸ ︷
(ya(t) cos (2φPh(t))− yb(t) sin (2φPh(t))) (6.48)

y2(t) = yb(t)− (ya(t) sin (2φPh(t)) + yb(t) cos (2φPh(t)))︸ ︷︷ ︸
δyQ(t)

. (6.49)

Note that, y1 and y2 are composed of low-frequency terms ya and yb and of high-frequency
terms δyI and δyQ. Because of (6.46), the spectra of δyI(t) and δyQ(t) are nonnull for |ω| ∈
(ω∞

Ph, 3ω∞
Ph). As consequence, since FLP is an ideal low-pass filter with cutoff frequency

ωc = ω∞
Ph, the high-frequency terms δyI and δyQ are eliminated, and we obtain yI f (t) = ya(t)

and yQ f (t) = yb(t).

Finally, under the assumptions that y is a band-pass signal and that the low-pass filter of
the synchronous demodulation are ideal, the in-phase and the in-quadrature terms yI f and
yQ f correspond to the terms ya and yb of y, just like in the method based on the Hilbert
transform. Under the same conditions, yI f and yQ f respectively correspond to the real and
imaginary parts of the phasor y, that is, yI f = y< and yQ f = y=. Therefore, as claimed earlier,
the ideal synchronous demodulation implements the ideal operator s2c. Similarly, the ideal
operator s2p can be implemented by computing amplitude and phase from the in-phase and
in-quadrature terms, as depicted in Figure 2.13 (page 27).
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6.4.4 Modeling the Nonideal Synchronous Demodulation

In practice, the low-pass filters of the synchronous demodulation are not ideal. Indeed, they
have a transition band between the passband and the stopband. Then, to better attenuate
the high-frequency components (δyI and δyQ), the cutoff frequency must be lower than
ω∞

Ph. Moreover, ideal filters have a real-valued frequency response, which is unitary within
the bandwidth and null outside. In contrast, real filters have a complex-valued frequency
response, whose magnitude is close to the unity within the passband and close to zero
otherwise, and whose phase is non-null.

If the synchronous demodulation is used in a control loop, as is the case in the dynamic
phasor control architecture with a real s2c (a real/nonideal synchronous demodulation),
the differences between ideal and real filters can dramatically change the behavior of the
closed-loop system, which can even became unstable. This point is illustrated in the next
example.

Example 6.5. In this example, we take the controller designed in Example 6.4 and implement it
in the phasor control architecture of Figure 6.7. However, at this time, the operator s2p is imple-
mented through a synchronous demodulation with (nonideal) Butterworth low-pass filters with cutoff
frequency ωc < ω0,x and order NF. Three cases are considered:

Case I: ωc = 0.1ω0,x and NF = 5,

Case II: ωc = 0.01ω0,x and NF = 5,

Case III: ωc = 0.1ω0,x and NF = 2.

In Case I, we obtain a stable closed-loop system providing performance indicators that are similar
to the ones obtained in Example 6.4 (see Figure 6.8). The signal ydp does not exist in this control
architecture. Then, we use the signals yI f ≈ y< and yQ f ≈ y= (at the output of the operator s2c)
and redefine the tracking error as εdp = yr,dp − ŷdp with ŷdp = col

(
yI f , yQ f

)
. The performance

indicators are defined as in (6.34) and presented in Figure 6.12. In this figure, we can observe that γ̂p,T0

slightly exceeds the value of γp, indicating a slight performance degradation. For the fast variations of
ωPh = ωexc (t > 20 ms), the synchronous demodulation low-pass filters end up by attenuating the
fast variations of the error, producing performance indicators that tend to the value in steady state
(t < 5 ms).

In Case II and Case III, the closed-loop system is unstable.

Because of the multivariable and nonlinear nature of the to-be-controlled system (Gdp with
nonideal s2c), it is hard to determine a priori if the controller designed from the direct
controller will ensure the stability and performance of the closed-loop system. Therefore,
when using the dynamic phasor control architecture with a real synchronous demodulation,
one of the two actions have to be considered.

(i) Evaluate the effect of the nonideal s2c after designing the controller through the method
of Section 6.3, which assumes that the operator s2c is ideal. This a posteriori analysis is
investigated in our paper [ACSKS19] and detailed in [AC21].

(ii) Take the nonidealities of the real synchronous demodulation into account for the con-
troller design. This second point is developed in Section 6.5 and requires an accurate
model of the s2c nonidealities. This model is presented in the sequel.

The question here is how to model the nonideal s2c, i.e., the synchronous demodulation with
nonideal FLP. From (6.48) and (6.49) and with ya = y< and y

b
= y=, the signals y1 and y2 can
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FIGURE 6.12: Case I - Performance indicators with Kdp of Example 6.4 and
nonideal (real) s2c.

be rewritten in matrix form as
[

y1(t)
y2(t)

]
= (I + ∆ (φPh(t)))

[
y<(t)
y=(t)

]
(6.50)

with

∆ (φPh(t)) =
[

cos (2φPh(t)) − sin (2φPh(t))
− sin (2φPh(t)) − cos (2φPh(t))

]
. (6.51)

Hence, the nonideal s2c (real synchronous demodulation) can be modeled as the interconnec-
tion of an ideal s2c, the block (I + ∆ (φPh(t))) and the nonideal filters FLP. In the case of the
phasor control architecture, the strong interest of this modeling is that the to-be-controlled
system is represented as an interconnection of the DPM and the nonidealities (FLP and
∆ (φPh(t))) of the operator s2c, as illustrated in Figure 6.13. In this case, the outputs of the
synchronous demodulation correspond to approximations (or estimates) of the actual phasor
y. We denote this approximation ŷ.

6.4.5 On the Synchronous Demodulation with Time-Varying Frequency

So far, we have considered the excitation frequency as a constant parameter. However,
this frequency might change during the system operation. Indeed, in the case of MEMS
gyroscopes, ωPh is often equal to ωexc, which is usually linked to the drive-mode resonance
frequency. Thus, it is essential to evaluate the impact of these variations on the synchronous
demodulation. In this section, two points are discussed.

(i) What can be ensured in the case where ωPh varies arbitrarily?

(ii) What are the implications on the synchronous demodulation when considering a slow
time-varying ωPh?

Synchronous demodulation and arbitrarily time-varying ωPh: it is important to note that
the equations (6.48) and (6.49) are always valid, even in the case of time-varying ωPh. The
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K
˜ c2s G s2c

φPh(t)

yr<
yr=

u<
u=

u y
y<
y=

∆ (φPh(t))

+

+

+

+

FLP

FLP

y1

y2

ŷ<

ŷ=

DPM

Nonideal s2c

FIGURE 6.13: Block diagram of the dynamic phasor control architecture with
nonideal s2c.

main issue here is that, since ωPh is now time-varying, the power spectrum support of the
high-frequency terms (δyI and δyQ) is, in general, not bounded, overlapping the power
spectrum support of y< and y= (equivalently ya and yb), even if the low-pass filters are ideal.
Hence, the estimates ŷ< and ŷ= do not correspond anymore to y< and y=. Nevertheless, even
if ŷ< and ŷ= may be corrupted, the whole model of the to-be-controlled plant (DPM and
nonideal s2c) is still valid.

Synchronous demodulation and slow time-varying ωPh: there is a particular case in which
the results of the synchronous demodulation can be extended to a time-varying framework.
This is possible when ωPh is assumed to vary slowly, see, for instance, [Fel06]. In this case,
the results converge to the results of the constant-frequency framework, as follows. For
ω∞

Ph ∈ [ωPh,1, ωPh,2], if the power spectrum support of y< and y= is in the range
(

0, ω∞
Ph,1

)
,

and the ideal low-pass filter has cutoff frequency ωc = ω∞
Ph,1, then ŷ<(t) = y<(t) and

ŷ=(t) = y=(t), as required.

6.5 Dynamic Phasor Control with Nonideal Operator s2c

In this section, we propose another solution to the dynamic phasor control problem. In
contrast to the previous approach, where we transform a direct controller into a phasor one,
now we design the controller directly the “dynamic phasor domain”. At this time, we take
into account the nonideal operator s2c. Two similar approaches can be considered here. If
the reference frequency ωPh is constant (i.e., ωPh(t) = ω∞

Ph) and the original to-be-controlled
system is LTI, we consider theH∞ synthesis. On the other hand, if ωPh varies over time in
a given interval [ωPh,1, ωPh,2] or the original to-be-controlled plant is LPV, we consider the
LPV synthesis. Remember that the H∞ synthesis is a particular case of the LPV synthesis.
Consequently, this section is rather presented in an LPV framework.

The closed-loop system has to achieve the performance specifications below.

(i) Reference tracking: ensure the tracking of constant reference signals (yr<, yr=).
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K
˜

ΩPh GΩPh
dp

yr,dp
+

udp

ddp
+ ydp

diag(FLP, FLP)
ndp++

ŷdp

+

−
εdp

∆(φPh)

TΩPh
ndp→ydp

FIGURE 6.14: Simplified block diagram of the dynamic phasor control architec-
ture with nonideal s2c.

(ii) Low-pass condition of the control signal: minimize the PSD of the control signal for
ω > ωPh,1, ensuring that the conditions for uniqueness are satisfied.

(iii) Robust stability: ensure the stability of the closed-loop system against the nonidealities
of the s2c.

To solve this problem, we consider the control architecture presented in Figure 6.14, which
is a simplified version of Figure 6.13. The vector yr,dp = col

(
yr<, yr=

)
represents the

reference signal to be tracked, εdp = col (ε<, ε=) is the tracking error vector, ddp = col (d<, d=)
corresponds to input disturbances and ndp = col (n<, n=) represents the signals at the output
of the time-varying matrix ∆(φexc(t)). The two elements of the nonideal operator s2c are
taken into account as follows.

Nonideal filters FLP: although these filters represent nonidealities of the s2c, they can be
easily considered for the controller synthesis. In general, the low-pass filters FLP are LTI
systems. Therefore, if we consider theH∞ or the LPV synthesis (see Chapter 4 or Chapter 5,
respectively), it suffices to included these filter in the augmented plant and normally proceed
with the controller synthesis.

Time-varying matrix ∆(φPh(t)): note that the nonideal closed-loop system presented in
Figure 6.14 can be rewritten as the interconnection of TΩPh

ndp→ydp and ∆(φPh(t)). Thus, the small
gain theorem can be applied to assess the stability of this interconnection [Vid02], that is, the
system is stable if, ∥∥∥TΩPh

ndp→ydp

∥∥∥
i2
‖∆(φPh(t))‖i2 < 1,

recalling that ωPh(t) = φ̇Ph(t). Since

∀t ∈ R+, ∀φPh(t) ∈ R, σ (∆(φPh(t))) ≤ 1,

we have that
‖∆(φPh(t))‖i2 ≤ 1.

Therefore, if ∥∥∥TΩPh
ndp→ydp

∥∥∥
i2
< 1, (6.52)
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the stability of the overall interconnected system is ensured.

Based on the above discussion, we define the signals of interest w̃ = col
(
yr,dp, ddp, ndp

)

and z̃ = col
(
εdp, udp, ydp

)
. Then, the closed-loop system under study defines the following

operators (omitting the dependence on ΩPh):



Tyr,dp→εdp Tddp→εdp Tndp→εdp

Tyr,dp→udp Tddp→udp Tndp→udp

Tyr,dp→ydp Tddp→ydp Tndp→ydp


 =




I − SGK1 −SG T
SIK1 −TI K2S
SGK1 SG −T


 , (6.53)

where S = (I − GK2FLP)
−1, T = I − S = −SGK2FLP = −GK2FLPS, SI = (I − K2FLPG)−1

and TI = I − SI .

Note that
∥∥∥Tndp→εdp

∥∥∥
i2

=
∥∥∥Tndp→ydp

∥∥∥
i2

. Hence, to express the desired specifications, we
consider the block diagram of Figure 6.15.

K
˜

ΩPh
diag(Wr, Wr)

GΩPh
dp

diag(Wd, Wd)

w1

yr,dp
+

udp

ydp

diag(Wn, Wn)diag(FLP, FLP)

diag(Wu, Wu)

diag(Wε, Wε)

w3ndp

+

+

ŷdp

w2

ddp

+

+

−
εdp

z2

z1

FIGURE 6.15: Considered criterion for the LPV synthesis.

The problem is then to compute the controller K
˜

ΩPh =
[
K
˜

ΩPh
1 , K

˜
ΩPh
2

]
, if there is any, such that

(for the sake of clarity, the dependence of the closed-loop transfers on ΩPh is omitted),
∥∥∥∥∥

[
WεTyr,dp→εdpWr WεTddp→εdpWd WεTndp→εdpWn

WuTyr,dp→udpWr WuTddp→udpWd WuTndp→udpWn

]∥∥∥∥∥
i2

< γ. (6.54)

It is important to mention that if Wε and Wn are constant and such that WεWn = 1, if γ < 1,
(6.54) implies that

∥∥∥Tndp→εdp

∥∥∥
i2
< 1 and, as consequence, (6.52) holds and the stability against

the time-varying block ∆ (φPh(t)) is ensured.

It is also worth remarking that, in contrast to the LPV synthesis considered in Chapter 5, the
weighting functions are now LTI. Thus, their design can be made to express the frequency
content of the signals that they describe, similar to theH∞ synthesis. For instance, we here
consider constant (or low-frequency) signals. In this case, the reference weighting function
Wr can be defined as a low-pass filter with high gains in low frequency and small gains in
high frequencies. The main particularity here (compared to a standardH∞ synthesis) is that
since the closed-loop system is time-varying, the input weights cannot be commuted with
the output ones.

Finally, we also have to point out that in this approach, the constraints are on the real and
imaginary parts of the phasors, what may introduce some conservatism. For instance, if we
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want to constrain the amplitude of the tracking error signal ε to have an amplitude smaller
than a given ε̌ > 0 at ωPh, we have to constrain the corresponding phasor ε to be such that

|ε| =
√

ε2
< + ε2

= ≤ ε̌. To achieve this condition, we consider the worst case, in which ε< can
be equal to ε=, yielding to

ε< ≤
√

2ε̌

2
and ε= ≤

√
2ε̌

2
,

which implies that
√

ε2
< + ε2

= ≤ ε̌.

The choice of weighting functions and the effectiveness of this approach are illustrated in the
next example.

Example 6.6. In this example, we aim to design a phasor controller that is robust against the
nonidealities of the nonideal operators s2c. For the sake of clarity, we consider a simple case, where
ωPh(t) ≡ ω∞

Ph = ω0,x and the to-be-controlled plant is the drive mode of a MEMS gyroscope
(see Example 2.1, page 22) at a given operating condition. Then, the H∞ synthesis can be used to
design the phasor controller. We highlight however that the same procedure can be applied to an LPV
synthesis in the case where ωPh varies over time or the to-be-controlled plant is LPV.

Here, we consider the phasor control architecture of Figure 6.7 with a nonideal s2c. This operator is
implemented through a synchronous demodulator with a second-order Butterworth low-pass filter
with cutoff frequency ωc = 0.1ω0,x. This case corresponds to Case III of Example 6.5, in which the
closed-loop system happens to be unstable.

The main control specifications are as follows.

(i) Reference tracking: to track constant reference signals with relative errors ε< and ε= smaller
than λSFNLkSFNL/

√
2 ≈ 176.8 · 10−6 ≈ −75 dB (λSFNL = 0.5 and kSFNL = 500 · 10−6).

(ii) Low-pass condition of the control signal: minimize the PSD of udp for ω ≥ ω∞
Ph.

(iii) Robust stability: ensure the stability of the closed-loop system against the s2c nonidealities.

To this end, we consider theH∞ criterion defined by the scheme of Figure 6.15 and weighting functions
that enforce the upper bounds presented in Figure 6.16. Similar to the examples of Chapter 4, we
start by choosing the weighting functions defining the “hard constraints” – in this case, the reference
tracking and stability against the block ∆(φPh(t)) (see transfers from yr,dp to εdp and from ndp to εdp,
respectively). The other weighting functions are iteratively chosen to minimize udp. Their numerical
values are given in Appendix E.3.

Then, by solving the standard H∞ problem with γ = 0.9851, we obtain the 12th-order controller
whose magnitude Bode diagram is presented in Figure 6.17. First, note that in this case, γ < 1.
Then, since we consider Wn = We = 1, the stability against the time-varying block ∆(φPh(t)) is
ensured. Moreover, the magnitude of all the transfers from yr,dp to εdp are smaller than −75 dB in
low frequencies. This fact shall ensure the tracking of constant signals, as required. Finally, note that
the transfers to udp also have small magnitude for ω > ω∞

Ph = ω0,x ≈ 7.2 · 104rad s−1.

Finally, the whole system is simulated according to the phasor control architecture of Figure 6.7. This
system is composed of real c2s and s2c operators (modulator and nonideal synchronous demodulation),
the original to-be-controlled system G and the phasor controller K

˜
. The tracking errors for yr< = 1

and yr= = 0, in steady state, are given in Figure 6.18. In this figure, we present the real and imaginary
parts of the tracking error phasor, respectively ε< and ε=, as well as their mean value. For the sake of
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FIGURE 6.16: Upper bounds and closed-loop frequency responses for Exam-
ple 6.6.

FIGURE 6.17: Magnitude Bode diagram of the phasor controller of Example 6.6.
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comparison, we also present the results, denoted “Only filter”, for a fictitious system composed of K
˜

,
Gdp and the nonideal filters FLP. In this case, the time-varying block ∆(φPh(t)) does not exist.

Note that when we consider the complete nonideal system, ε< and ε= oscillate with a fundamental
frequency equal to 2ω∞

Ph. Moreover, their mean value (which can be related to the performance at
ω = 0) is higher than the desired value (0.5 · 10−4 > 0.18 · 10−4). However, if we look to the results
of the fictitious system, the required specifications are fulfilled. This fact indicates that, even if the
controller ensures the stability of the system, the presence of the time-varying block ∆(φPh(t)) can
produce a performance degradation. Indeed, only the robust stability is guaranteed and not the robust
performance.

FIGURE 6.18: Simulation results for the tracking error of Example 6.6 for
yr< = 1 and yr= = 0.

6.6 Summary of the Chapter

The use of an envelope-based architecture may be attractive for the control of MEMS gy-
roscopes. The main interest comes from the fact that the envelope of the signals evolves
much slower than the signals themselves. Moreover, in steady-state, the envelopes are often
constant signals. Then, classical (PID-like) controllers can be employed, for instance, to
regulate the amplitude of oscillations. Nevertheless, to implement this approach, modulators
and demodulators have to be included in the control loop. Hence, linearization is performed
and, in contrast with the direct approach, performance and stability guarantees cannot be
provided.

In this chapter, we demonstrate that it is possible to merge the main features of the envelope-
based architecture with those of the direct architectures, i.e., “low-frequency” controllers
with formal performance and stability guarantees. The dynamic phasor model, presented
in Section 6.2, shows that the nonlinear nature of the to-be-controlled plant comes from
the representation of the so-called dynamic phasor. Then, if considering the rectangular
representation instead of the polar one, the to-be-controlled plant becomes linear. Thus, the
original nonlinear control problem can be recast as a linear one, and theH∞/LPV synthesis
can be employed to design a controller, ensuring stability and some performance level.
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We also demonstrate in Section 6.3 that if ideal operators s2c exist, in addition to the equiva-
lence between direct and phasor-based controllers, the achievable performance levels are the
same. Then, choosing a phasor-based or a direct control architecture does not allow obtaining
a better performance of the device.

Even if it is possible to design a direct controller and then to convert it into a phasor controller,
an essential message of this chapter is that, due to the nonidealities of the s2c, presented in
Section 6.4, the phasor controller shall be designed in the phasor space, taking into account
the nonidealities of a real operator s2c (synchronous demodulation). In Section 6.5, we
present a design method where the nonidealities of the s2c are taken into account.

The final message of this chapter is that implementation constraints shall guide the choice of
the control architecture. That is, the use of direct control architecture is recommended when
the controller can operate at frequencies higher than the resonance frequency of the drive
mode. On the other hand, the use of phasor control architecture is to be considered when
the resonance frequency of the device is higher than the maximum frequency at which the
controller can operate. In this case, modulators and demodulators (c2s and s2c) allow shifting
the dynamics of the system to lower frequencies, where the controller can therefore operate.
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Chapter 7

Digital Implementation of the
Direct Control Architecture

In Chapter 2, we pointed to the lack of implementation results in the literature concerning the
use of direct control architectures for the operation of MEMS gyroscopes. In this chapter, our
main objective is then to demonstrate the implementability of a digital (direct) controller to
operate a real MEMS gyroscope. To this purpose, we consider theH∞ synthesis, as presented
in Chapter 4. Further than the lack of implementation results, the points highlighted in the
sequel also motivate the choice of the direct control architecture to be implemented.

Up to this point, we have proposed two linear approaches for the operation of MEMS
gyroscopes. First, the direct control architecture, in which the controller works with high-
frequency modulated signals. The foremost advantage of this approach relies on the fact
that the to-be-controlled system, the MEMS gyroscope, is (mainly) linear. Therefore, linear
controllers can ensure the tracking and rejection of modulated signals with formal stability
and performance guarantees. An inherent drawback of this approach is that, if we consider a
digital implementation, the controller has to work with a sampling frequency higher than
the operating frequency, which is usually equal to the drive-mode resonance frequency. This
drawback can quickly become an obstacle if the resonance frequencies are high. Indeed, the
digital controller may not have enough time to compute and update the control signal within
a sampling period.

A solution for the cases where the direct control architecture cannot be employed (due to
high resonance frequency) is to use an envelope-based (low-frequency) control architecture.
In Chapter 6, we have shown that, under the assumption that the envelopes can be perfectly
measured, linear control architectures implemented in high (direct control architectures) or
in low frequency (envelope-based architectures) present the same performance level. In
practice, however, this assumption does not hold1 and the performance can be worse for
low-frequency approaches. Thus, if the digital controller can operate with a high sampling
frequency (with respect to the resonance frequencies), the direct control architecture would
be a better (linear) solution.

In order to implement the proposed solution in a real prototype, several practical aspects,
which were not considered in the previous chapters, have to be taken into consideration.
These aspects are mainly related to the nonidealities of the MEMS gyroscope and to the digital
nature of the controller. Then, in this chapter, we present the solutions to these practical
issues.

1Indeed, we recall that the low-pass filters of the synchronous demodulation (operators s2c) are not ideal, and
the high-frequency terms (generated by the demodulation process and represented by the time-varying block
∆(φPh(t))) degenerate the system performance.
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Up to this point, we considered the gyroscope as a linear system. However, it is known
that the relation between the voltage applied on the actuation circuits and the effective force
applied to the proof mass is nonlinear (see Section 2.1.3, page 18). Moreover, the MEMS
gyroscopes are also disturbed by parasitic electrical coupling (see Section 2.1.3, page 18). In
this chapter, we reveal that these nonidealities can be compensated, such that the resulting
system is indeed linear and the previous results apply.

To implement the direct control architecture, we use the development kit presented in
Section 2.3.1 (page 51), in which the controller is programmed in C++ language. The controller
is hence implemented in discrete time (DT). In Chapter 4, we presented the H∞ synthesis
in a continuous-time (CT) framework. Indeed, the CT domain is more suited for frequency-
domain design methods, as the H∞ synthesis. Then, in this chapter, we also present the
procedure adopted to properly design a DT controller based on a CT design method, having
the same guarantees in both domains.

Another important characteristic of MEMS gyroscopes is the sensitivity to the temperature,
which changes the resonance frequencies and can quickly degrade the performance of the
sensor. In this chapter, we reveal that, if the resonance frequency variations are (very)
slow and can be measured, we can take advantage of the model structure and design a
simple parameter-dependent controller, which can be updated in real time, ensuring high
performance even under temperature variations.

Finally, the complete design solution is implemented in the development kit, and tests are
realized at rest (with Ωz = 0) and on a rotating table, allowing to validate the design method
and to demonstrate the implementability of our solution.

This chapter is organized as follows. In Section 7.1, we describe the development kit and
formalize the problem under investigation. In Section 7.2, we present the modeling approach
and how to deal with the system nonidealities (input nonlinearity and parasitic electrical
coupling). Then, in Section 7.3, the design method for a digital controller is discussed. In
Section 7.4, we extend theH∞ synthesis for the design of gyroscope controllers whose param-
eters vary as function of the drive-mode resonance frequency. Finally, the implementation
results are presented in Section 7.5 and conclusions are drawn in Section 7.6.

7.1 System Description and Problem Statement

In this chapter, we consider the Asygn’s platform, presented in Section 2.3.1. Its block
diagram is recalled in Figure 7.1. The system is basically composed of a MEMS gyroscope, an
FPGA and a front-end ASIC. The MEMS gyroscope is composed of its mechanical part (Gmech)
and the actuation and detection circuitry (for further details, see Section 2.1.5, page 27). The
expected (nominal) resonance frequencies and quality factors of the drive and sense modes
are given in Table 7.1. Moreover, the nonideal MEMS gyroscope also presents a parasitic
electrical coupling, which can be modeled by Ecoup.

TABLE 7.1: Nominal characteristics of the MEMS gyroscopes of the family
GYRO I.

Parameter Drive mode (i = x) Sense mode (i = y)
Resonance frequency (ω0,i) 11 500 Hz 11 550 Hz

Quality factor (Qi) 100 · 103 10 · 103
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DEVELOPMENT KIT

ASICASIC

FPGA
µ-Processor

MEMS Gyroscope

K

DAC ( · )2 kact Gmech kdet kCA

Ecoup

FadcADCFds↓ 16

Are f
x,m

ωexc

vin + +

vout

ûCor,y

FIGURE 7.1: Block diagram of the development kit used in this chapter.

The front-end ASIC makes the interface between the MEMS gyroscope and the FPGA. It
is composed of 10-bit digital-to-analog converters (DAC) and charge amplifiers (kCA). The
DACs convert the digital signals received from the FPGA into voltages that are applied
to the sensor. Due to implementation constraints, these voltages have to be in the range
[0, 2]V. The charge amplifiers convert the capacitance (proportional to the positions x and
y) into voltage. Moreover, external anti-aliasing filters Fadc and analog-to-digital converters
(ADC) convert the signals obtained from the charge amplifiers into digital signals that are
communicated to the FPGA. These ADCs operate with a 1 MHz sampling frequency and
have a 18-bit resolution.

Finally, the FPGA implements a microprocessor, which is programmed in C++ language.
The processor uses double-precision floating-point format to perform the mathematical
operations. We denote vin = col

(
vin,x, vin,y

)
the signals that the processor sends to the DACs,

and vout = col
(
vout,x, vout,y

)
the signals after decimation. Hence, the system “seen” by the

processor corresponds to the system between the signals vin and vout. The control-related
routines are executed every 16 µs, what is equivalent to a sampling frequency Fs = 62.5 kHz.
To downsample the signal issued from the ADCs at 1 MHz, a digital low-pass filter Fds and a
decimator with downsampling factor equal to 16 are implemented in hardware in the same
FPGA.

Note that the sampling frequency is 5 to 6 times higher than the expected resonance fre-
quencies. This ratio is enough to implement a direct control architecture in discrete time,
providing that the sampling and holding operations of the converters are taken into account
in the control design. Our main objective is then to implement a digital direct controller,
operating with Fs = 62.5 kHz, that fulfills the same specifications of Example 4.5. The most
important specifications are recalled below.

(i) Drive-mode reference tracking: reference tracking of a sinusoidal signal with relative
error smaller than ε̌x < 0.5kSFNL = 250 · 10−6 for ωexc = ω0,x.

(ii) Estimation of the Coriolis force: estimation of a sinusoidal signal with relative error
ε̌est < 0.5kSFNL = 250 · 10−6 (λSFNL = 0.5) for ωexc = ω0,x.

Problem 7.1. Given the model of the MEMS gyroscope and the closed-loop performance specifications,
design and implement a digital controller that ensures the desired closed-loop performance.

Before proceeding with this problem, we have to obtain a model of the MEMS gyroscope.
This point is treated in the sequel.
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7.2 Modeling the System and Dealing with its Nonidealities

In this section, we show how to model the overall system and how to deal with the main non-
idealities of the MEMS gyroscope: the parasitic electrical coupling and the input nonlinearity.

7.2.1 System Modeling

The first step for the controller design consists in defining the model of the to-be-controlled
system. In general, three approaches can be considered here: the so-called white-box, black-
box and gray-box modeling. In the white-box modeling, the model is determined through
first principles (e.g., fundamental equations of motion). In contrast to the white-box modeling,
the black-box modeling only uses experimental data collected from the system. Finally, in the
gray-box modeling, experimental data is used to determine the parameters of first-principle
models. In the scope of the Next4MEMS project, we consider the latter approach. For more
details on modeling and identification techniques for MEMS gyroscopes, we refer the reader
to the thesis [Col20].

In [Col20, Chapter 7], it is shown that the overall system seen by the controller can be modeled
by three discrete-time subsystems – Gd

ID, Ed
ID and Nd

ID –, as presented in Figure 7.2. The
mechanical part of the MEMS gyroscope and all the circuitry are encapsulated in Gd

ID with
a square nonlinearity at the input (due to the nonlinear relationship between voltage and
electrostatic force, see Section 2.1.3, page 18). The parasitic electrical coupling is modeled by
Ed

ID. Finally, all the noise sources (e.g., thermal noise, electrical noise and quantization error)
are modeled as white-noise signals e = col

(
ex, ey

)
filtered by Nd

ID.

( · )2 Gd
ID

Ed
ID Nd

ID

vin qm+ +

e

+
n

vout

vcoup

+

FIGURE 7.2: Block diagram of the identified model seen by the controller.

7.2.2 Electrical Coupling Compensation

As discussed in Section 2.1.5 (page 27), the parasitic electrical coupling is one of the sources of
error in MEMS gyroscopes. Nevertheless, its disturbing effects can be digitally compensated,
as follows.

Note that the output signal vout has several contributions. Indeed, as illustrated in Figure 7.2,

vout(t) = vcoup(t) + qm(t) + n(t),

where qm = col (xm, ym) is proportional to the positions x and y of the gyroscope proof
mass, n = col

(
nx, ny

)
is the contribution of the different sources of noise and vcoup =

col
(
vcoup,x, vcoup,y

)
corresponds to a disturbance generated by the electrical coupling. Since

vin is generated by the processor and Ed
ID is known, we can then compute vcoup and define

qn(t) , vout(t)− vcoup(t),
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such that we obtain
qn(t) = qm(t) + n(t),

compensating for the parasitic electrical coupling contributions. This procedure is depicted
in Figure 7.3, where the dashed elements represent the operations digitally realized by the
processor. Further details on the electrical coupling modeling and compensation can be
found in our paper [CSL+19] and in the thesis [Col20].

( · )2 Gd
ID

Ed
ID

Ed
ID

Nd
ID

vin qm + +

e

+
n

vout + qn

vcoup

+

vcoup

−

FIGURE 7.3: Block diagram of the identified model with electrical coupling
compensation. Elements in dashed line are digitally implemented in the micro-

processor.

7.2.3 Dealing with the Input Nonlinearity

Depending on the actuation technique used for the MEMS gyroscope, a square nonlinearity
can appear at its input, see Section 2.1.3 (page 18). For the gyroscope considered here, this
nonlinearity is in fact present. To deal with this nonlinearity, we extend a technique that is
widely used for MEMS gyroscopes, see, e.g., [Sau08, Section 4.1]. We will see that, as claimed
in Section 2.1.3, the square nonlinearity can be replaced by a constant gain klin ∈ R2×2 and
the to-be-controlled system is modeled by the linear system Gd = Gd

IDklin.

Let us assume that the input voltages, vin = col
(
vin,x, vin,y

)
, are of the form

vin(t) = VDC + u(t) (7.1)

with VDC = col
(
VDC,x, VDC,y

)
, VDC,x ∈ R and VDC,y ∈ R. By developing (7.1), the signal at

the input of Gd
ID reads as

[
vin,x(t)2

vin,y(t)2

]
=

[
V2

DC,x
V2

DC,y

]
+

[
2VDC,xux(t)
2VDC,yuy(t)

]
+

[
u2

x(t)
u2

y(t)

]
. (7.2)

Let us also assume that ux and uy are band-pass signals centered at ωu with bandwidth 2ωbu,
that is, with i ∈ {x, y}

∀|ω| ≤ ωu −ωbu and ∀|ω| ≥ ωu + ωbu, F [ui](ω) = 0. (7.3)

In this case, the spectrum of u2
i can be given by F [u2

i ](ω) = F [ui] ∗ F [ui](ω), which is null
for 2ωbu ≤ |ω| ≤ 2ωu − 2ωbu and for |ω| ≥ 2ωu + 2ωbu. Finally, since the spectrum of
v2

in,i is a combination of the spectra of ui, u2
i and V2

DC,i (Dirac delta function at ω = 0), we
can represent its spectrum as illustrated in Figure 7.4. Please note that if ωbu < ωu/3 the
spectrum of ui does not overlap the one of u2

i .
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F [ui](ω)

ω

−ωu −ωbu

ω

F [u2
i ](ω)

F [v2
in,i](ω)

ω

ωu −ωbu−ωu + ωbu ωu + ωbu
−ωu ωu

2ωu
2ωu − 2ωbu

2ωbu−2ωbu
2ωu + 2ωbu

(
V2

DC,i

)

FIGURE 7.4: Illustrative example of the spectrum of the signals ui, u2
i and v2

in,i
with i ∈ {x, y}.

Recall that the MEMS gyroscope behaves as a very selective band-pass filter around the
drive-mode2 resonance frequency ω0,x. This means that only the effects of the components
around these frequencies will be seen at the gyroscope (compensated) output qn. Therefore, if
ωu = ωexc ≈ ω0,x and ωbu < ωu/3 (to avoid overlapping the spectrum contributions related
to ui and to u2

i ), only the contribution of 2VDC,iui appears on qn, as depicted in Figure 7.5. In
this case, we can approximate

Gd
ID(z)v

2
in(t) ≈ Gd

ID(z)klin︸ ︷︷ ︸
,Gd(z)

u(t)

with klin = diag
(
klin,x, klin,y

)
, klin,i = 2VDC,i and two abuses of notation: v2

in = col
(

v2
in,x, v2

in,y

)
,

and z representing, at the same time, the shift operator and the complex variable of the z-
transform.

(·)2 Gd
ID

Nd
ID

u
+

VDC
+ vin v2

in qm + qn

e

+
n

≈F [u] F [v2
in] F [qm]

klin Gd
ID

Nd
ID

u qm+ qn

e

+
n

F [u] F [qm]

Gd

FIGURE 7.5: Full compensated model (left) and linear compensated model
(right) with an illustrative example of the spectrum of the main signals.

2The sense-mode resonance frequency is often very close to ω0,x so that we can consider ω0,y = ω0,x in this
reasoning.
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In [Sau08, Section 4.1], ui is considered to be of the form ui(t) = VAC,i cos (ωexct) with
VAC,i ∈ R+. This form would rather correspond to the actuation signal in steady state. Our
approach extends this result for the transient state.

7.3 Continuous-Time Design of a Discrete-Time Controller

In the previous section, we obtained a linear model of the MEMS gyroscope, and the control
design methods proposed in this thesis could then be applied. However, this model and the
to-be-implemented controller are in discrete time (DT), whereas we have rather considered
the controller and to-be-controlled plant as continuous-time (CT) systems. In this section, we
present a traditional (but sometimes forgotten) procedure to design a DT controller based on
a CT method.

The common procedure to design a DT controller through frequency-domain methods (as
theH∞ synthesis) is illustrated in Figure 7.6 and described in the sequel [JLN55, ÅW97].

Gc(s) (CT)

Gd(z) (DT)

(i)Discretization with ZOH

Gp(sp) (PCT)

(ii)Bilinear transform

Kp(sp)
Controller synthesis

(iii)

Kd(z)

(iv)

FIGURE 7.6: Procedure for the synthesis of a DT controller based on a CT
design method.

(i) Discretization of the CT system: let us consider a CT system Gc with state-space
matrices (A, B, C, D). The ADC is modeled by a sampler with sampling period Ts and
the DAC is modeled by a zero-order hold (ZOH) with the same sampling period. The
corresponding DT system Gd is computed by the step-invariant method, which gives

Gd(z) =
(

1− z−1
)
Z
[
L−1

[
Gc(s)

s

]]
. (7.4)

Recall that, by definition, z = esTs . Then, since Gd is a rational function of z, Gd is a
nonrational function of s. As consequence, the frequency response of Gd, which is given
by Gd (ejωTs

)
, is also a nonrational function of ω.
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If the DT state-space representation is considered, Gd is defined by the state-space
matrices

(
Ad, Bd, Cd, Dd), which read as

Ad = eATs

Bd = A−1 (eATs − I
)

B
Cd = C
Dd = D.

(7.5)

We highlight that when using DT identification, Gd is directly obtained and includes the
ZOH. In this case, the matrices

(
Ad, Bd, Cd, Dd) are given and this step can be skipped.

(ii) Defining a CT-like system: to use frequency-domain control design methods, we have
to define an equivalent CT system that also takes into account the ZOH. To this purpose,
we should replace z by esTs . The problem here is that, as discussed earlier, the obtained
transfer would not be a rational function of s and the current CT design methods could
not be used. Instead, we define a new variable sp, such that,

z = esTs =
1 + spTs/2
1− spTs/2

. (7.6)

Hence, the CT-like plant that represents Gc with the ZOH is given by

Gp(sp) = Gd(z)
∣∣∣
z=

2/Ts+sp
2/Ts−sp

. (7.7)

In state-space representation, if −1 is not an eigenvalue of Ad, Gp is defined by the
state-space matrices (Ap, Bp, Cp, Dp), which read as

Ap = 2
Ts

(
Ad − I

) (
Ad + I

)−1

Bp = 4
Ts

(
Ad + I

)−1 Bd

Cp = Cd (Ad + I
)−1

Dp = Dd − Cd (Ad + I
)−1 Bd.

(7.8)

Note that when sTs � 1, sp ≈ s. Indeed, esTs = esTs/2

e−sTs/2 ≈ 1+sTs/2
1−sTs/2 . This approximation

is known as trapezoidal or Tustin’s approximation or bilinear transform. The complex
variable sp represents a “pseudo Laplace variable” that is related to s through

sp =
2
Ts

esTs − 1
esTs + 1

=
2
Ts

tanh
(

sTs

2

)
. (7.9)

In the literature, the variable sp is usually denoted w and defines the so-called w-plane
(see, e.g., [ÅW97, Section 8.4]). It is important to highlight that when s = jω, we obtain
sp = jv with

v = g (ω) ,
2
Ts

tan
(

ωTs

2

)
, (7.10)

where v defines what we call the pseudo-continuous frequency. Its reciprocal would
be the “pseudo-time” variable. For this reason, we call Gp the pseudo continuous-time
(PCT) model. Equation (7.10) means that the frequency response (in ω) of a linear
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system is distorted in the pseudo-continuous frequency space (in v). Moreover, note
that this distortion is a nonlinear function of ω.

Finally, it is important to highlight that a PCT model obtained through the bilinear
transform, as presented here, will always have unstable zeros at sp = 2/Ts, bounding
the bandwidth of the closed-loop system, see, e.g., [FL85] and [SP01, Chapter 5]. Further
details on the unstable zeros of PCT models are discussed in Appendix F.1.

(iii) Controller synthesis in PCT: a PCT controller Kp is computed through a CT design
method, such as the H∞ synthesis. The resulting controller is then assumed to be
defined by the state-space matrices

(
Ap

K, Bp
K, Cp

K, Dp
K
)
.

(iv) Controller discretization: the last step consists in discretizing the controller with the
sampling period Ts. To this purpose, we apply the bilinear transform in the other sense,
that is,

Kd(z) = Kp(sp)
∣∣∣
sp=

2
Ts

z−1
z+1

.

In state-space representation, Kd is therefore defined by the matrices
(

Ad
K, Bd

K, Cd
K, Dd

K
)
,

which are finally given by

Ad
K =

(
2I
Ts
+ Ap

K

) (
2I
Ts
− Ap

K

)−1

Bd
K = 2 2

Ts

(
2I
Ts
− Ap

K

)−1
Bp

K

Cd
K = Cp

K

(
2I
Ts
− Ap

K

)−1

Dd
K = Dp

K + Cp
K

(
2I
Ts
− Ap

K

)−1
Bp

K.

(7.11)

The main strength of this procedure relies on the stability equivalence property ensured by
the bilinear transform. This means that the DT closed-loop system (composed of Gd and
Kd) is stable if and only if the PCT closed-loop system (composed of Gp and Kp) is also
stable. Moreover, the bilinear transform also conserves theH∞ norm of the systems3, that is,
‖Gp‖∞ =

∥∥Gd
∥∥

∞.

7.4 Design of a Parameter-DependentH∞ Controller

The design of a parameter-dependent controller for a parameter-dependent plant can be
addressed by the so-called linear parameter-varying (LPV) approaches (such as the polytopic
method presented in Section 5.3.2, page 131). In the particular case treated in this chapter,
these approaches lead to conservative solutions or to a parameterization which can be too
complex to be implemented in real time. The conservatism of the LPV approaches comes from
the fact that the parameter of interest is assumed to vary arbitrarily [Pac94, SE98], whereas
ω0 is assumed to be constant (or slow varying). On the other hand, [DSFM05] proposes a
nonconservative design method for constant parameter-dependent controller. However, the
proposed controller parametrization is, in general, too complicated to be implemented in a
limited-cost embedded processor.

3This claim can be easily proven through (7.6), (7.7) and theH∞-norm definitions

‖Gp‖∞ , sup
sp>0

σ
(
Gp(sp)

)
and

∥∥∥Gd
∥∥∥

∞
, sup
|z|>1

σ
(

Gd(z)
)

.
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In this section, we present, for the particular problem of MEMS gyroscopes (and similar ones),
a parameter-dependentH∞ controller design method. Our approach provides performance
guarantees, reduced conservatism, and simple parameterization in the case where ωexc is
measured and constant. We propose two design methods: for a CT controller, and for a DT
controller. The former one is suitable for analog implementations or for digital implementa-
tion where the sampling period Ts is so small that the discretization effects (sampling and
holding) can be neglected. The main interest on considering the design of a CT controller
is that this approach also gives important insights on the controller parametrization. The
second method is suitable for digital implementations where the discretization effects have
to be taken into consideration, which is often the case for MEMS gyroscopes.

It is important to highlight that the assumption of ωexc constant is used for the controller
design. However, in practice, this condition can be relaxed to slow variations of ωexc, see, e.g.,
our paper [SACKS20].

7.4.1 Parameter-Dependent Control Design Problem

Let us assume that the MEMS gyroscope model can be written as a particular type of LPV
systems of the form

Gω0 :
{

ẋ(t) = ω0Ax(t) + ω0Bu(t)
y(t) = Cx(t) + Du(t) (7.12)

with x(t) ∈ RnG , u(t) ∈ RnuG , y(t) ∈ RnyG and matrices of adequate dimensions. The
parameter ω0 ∈ [ω0,1, ω0,2] is supposed to be known in real time. We also consider the
control objectives of Section 7.1, which consist in tracking or rejecting sinusoidal signals of
frequency ωexc = ω0,x = ω0 with ω0 ∈ [ω0,1, ω0,2] Our objective is then to design a controller
that fulfills the control objectives and whose gains are dependent on ω0.

With the standard H∞ synthesis (see Section 4.1, page 76), for each ω0, the design of the
controller is formulated as an optimization problem. Based on the control objectives, we
define signals of interest w̃ ∈ Rnw and z̃ ∈ Rnz . These signals, together with the to-be-
controlled system Gω0 , define an augmented plant P̃ω0 . Weighting functions Wω0

in and Wω0
out,

which also depend on ω0, are introduced on the signals of interest, defining the weighted
augmented plant Pω0 , as shown in Figure 7.7. The H∞ problem is then to find, for each
ω0 ∈ [ω0,1, ω0,2], a controller Kω0 , if there is any, such that the weighted closed-loop transfer
functions are stable and meet a given performance level γ, that is, ‖Pω0 ? Kω0‖∞ < γ.

P̃ω0

Wω0
in Wω0

out

Kω0

w w̃ z̃ z

yPuP

Pω0

FIGURE 7.7: General control configuration with ω0-dependent weighting fil-
ters.
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Note that computing all the controllers Kω0 through the standard H∞ synthesis implies
solving an infinite number of optimization problems. However, based on theH∞ synthesis,
we can formulate the following control design problem.

Problem 7.2 (Parameter-dependent control design problem). Assume that ω0 is constant and
measured in real time. Given the ω0-dependent augmented plant Pω0 and a performance level γ > 0,
find a single (and simple-to-implement) controller Kω0 whose gains depend on ω0, if there is any, such
that, ∀ ω0 ∈ [ω0,1, ω0,2], ‖Pω0 ? Kω0‖∞ < γ.

A similar problem is treated in [DSFM05]. However, as mentioned before, the proposed
controller parametrization is in general too complicated to be implemented in a limited-
cost embedded processor. In the sequel, we reveal that, in the case of MEMS gyroscope
(and similar applications) a simple parametrization, suited for real-time implementation, is
obtained.

7.4.2 Solution in Continuous Time

Here, we present a solution in continuous-time (CT) domain, which provides the central
elements for the solution in DT.

Let us also assume that the weighting functions can also be written in the form of (7.12).
Thus, the augmented plant Pω0 admits the state-space representation:

Pω0 :





ẋP(t) = ω0APxP(t) + ω0Bww(t) + ω0Buu(t)
z(t) = CzxP(t) + Dzww(t) + Dzuu(t)

yP(t) = CyxP(t) + Dyww(t)
, (7.13)

where xP(t) ∈ RnP , yP(t) ∈ Rny , w(t) ∈ Rnw , z(t) ∈ Rnz and whose matrices do not depend
on ω0.

At this point, we can then define a normalized Laplace variable sn = s/ω0 and a normalized
time tn = ω0t, such that the normalized version of Pω0 , denoted Pn, is cast as

Pn :





ẋP,n(tn) = APxP,n(tn) + Bwwn(tn) + Buun(tn)
zn(tn) = CzxP,n(tn) + Dzwwn(tn) + Dzuun(tn)

yP,n(tn) = CyxP,n(tn) + Dywwn(tn)
(7.14)

with xP,n(tn) = xP(tn/ω0) and similarly for the other signals. Note that the state-space
matrices of Pn do not depend on ω0. Moreover, since Pω0(s) = Pn(sn), ‖Pω0‖∞ = ‖Pn‖∞.
Thus, the solution of Problem 7.2 is the solution of the standard H∞ problem: given a
normalized augmented plant Pn (7.14) and a performance level γ > 0, compute a normalized
controller Kn, if there exists any, in the form of

Kn :
{

ẋK,n(tn) = AKxK,n(tn) + BKyP,n(tn)
un(tn) = CKxK,n(tn) + DKyP,n(tn)

, (7.15)

where xK,n(tn) ∈ RnK , such that ‖Pn ? Kn‖∞ < γ. Hence, the CT ω0-dependent controller Kω0

is given by

Kω0 :
{

ẋK(t) = ω0AKxK(t) + ω0BKyP(t)
uP(t) = CKxK(t) + DKyP(t)

. (7.16)

Please note that the new (denormalized) controller Kω0 ensures the stability of the closed-loop
system and ‖Pω0 ? Kω0‖∞ < γ for all ω0 ∈ [ω0,1, ω0,2], i.e., solves Problem 7.2.
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Remark 7.1 (On the realism of the model and weighting functions “normalizability” assump-
tion). Note that the to-be-controlled plant Gω0 and the weighting functions are assumed
to be an LPV system in the form of (7.12), that is, the state and input matrices are linear
functions of ω0. As consequence, the augmented plant Pω0 has the same structure. These
assumptions allow us to use the frequency normalization and model the LPV system Pω0 for
all ω0 ∈ [ω0,1, ω0,2] as a single LTI system Pn, whose parameters (in the “normalized-time”
space with tn = ω0t) do not depend on ω0.

At this point, the reader may be asking himself: “how realistic are these assumptions?”. If we
consider theH∞ design examples considered in Chapter 4, note that controller synthesis is
already made in a normalized-frequency space. Thus, if we consider the same normalized
weighting functions for all ω0 ∈ [ω0,1, ω0,2], in the original (denormalized) frequency space,
the weighting functions are indeed in the form of (7.12).

Regarding the MEMS gyroscope model, for the sake of simplicity, we only consider the
drive mode (for further discussion on this assumption for the whole gyroscope model,
see Appendix F.2). Note that the drive-mode transfer function (see (2.15), page 21) can be
rewritten as

Gω0,x(s) =
xm(s)
ux(s)

=
k0,x

(s/ω0,x)
2 + (s/ω0,x) /Qx + 1

, (7.17)

and admits the state-space representation of (7.12) with ω0 = ω0,x and

A =

[
0 1
−1 −1/Qx

]
, B =

[
0
1

]
, C =

[
k0,x 0

]
and D = 0.

Then, if the variations of ω0,x do not change the values of Qx and k0,x, the referred assumption
holds.

7.4.3 Solution for Discrete-Time Implementation

We now discuss the design of a discrete-time (DT) controller whose gains depend on ω0 and
for which the discretization effects (sampling and holding) cannot be neglected. Obviously,
the first idea would be to adopt the procedure of Section 7.3 with the parameter-dependent
design proposed in Section 7.4.2. However, observe that the controller is designed in the PCT
space, based on a PCT model of Gω0 . Then, before applying the approach of Section 7.4.2, we
need to check if the PCT model of Gω0 can be expressed as in (7.12).

By following the procedure illustrated in Figure 7.6, for a CT system Gc = Gω0 given by the
state-space matrices (ω0A, ω0B, C, D), its PCT model Gp is given by the state-space matrices
(Ap, Bp, Cp, Dp), which, for the sampling period Ts, read as (see (7.5) and (7.8))

Ap = 2
Ts

(
eω0 ATs − I

) (
eω0 ATs + I

)−1

Bp = 4
Ts

(
eω0 ATs + I

)−1 A−1 (eω0 ATs − I
)

B

Cp = C
(
eω0 ATs + I

)−1

Dp = D− C
(
eω0 ATs + I

)−1 A−1 (eω0 ATs − I
)

B.

(7.18)

Please note that, this time, the dependence of the state matrices on ω0 is nonlinear and
the approach of Section 7.4.2 cannot be directly applied to Gp. However, for some partic-
ular cases (such as for high quality factor resonators, which is indeed the case of MEMS
gyroscopes), the PCT model can be approximated by a fictitious system Hp,v0 with state



7.4. Design of a Parameter-DependentH∞ Controller 187

matrices (v0AH, v0BH, CH, DH), where v0 = g(ω0) (see (7.10)). This point is illustrated in
the following example.

Example 7.1 (On the fictitious model of Gv0,x ). The main objective of this example is to show that
a 2nd-order resonator whose model parameters depend on ω0,x ∈ [ω0x,1, ω0x,2] in CT (or DT) will
have a PCT model whose parameters depend linearly on v0,x = g (ω0,x).

For the system Gω0,x given in (7.17), its model in PCT, with Qx � 1, can be given by (further details
are given in Appendix F.3):

Gp,v0,x(sp) =
k0,x

(
1−

(
sp/v0,x

)
v0,xTs/2

) (
1 +

(
sp/v0,x

)
/ (2Qx)

)
(
sp/v0,x

)2
+
(
sp/v0,x

)
/ (Qx sinc (ω0,xTs)) + 1

, (7.19)

which can be approximated by the fictitious system

Hp,v0,x(sp) =
k0,x

(
1−

(
sp/v0,x

)
/zu
)

(
sp/v0,x

)2
+
(
sp/v0,x

)
/ (Qx sinc (ω0x,2Ts)) + 1

(7.20)

with zu = tan (ω0x,2Ts/2)−1, which admits the state-space matrices (v0,x AH, v0,xBH, CH, DH),
where

AH =

[
0 1
−1 −1/ (Qx sinc (ω0x,2Ts))

]
, BH =

[
0
1

]
, CH =

[
k0,x

−k0,x

zu

]
and DH = 0.

Details on the choice of this specific fictitious model are also provided in Appendix F.4. It is important
to highlight however that the choice of a fictitious model is not unique. The main objective is to define
a model that approximates Gp,v0,x and such that in the normalized space, it is represented by a single
LTI system.

Now, since the fictitious system can be normalized with respect to v0 = g(ω0), we can design
a controller for Hp,v0 with the approach of Section 7.4.2. The DT controller is then obtained
through the bilinear transform.

To summarize this method, we present Figure 7.8, which completes the scheme of Figure 7.6.
The new steps are described as follows.

(i) Instead of designing the controller in PCT, we define a fictitious model, Hp,v0 , from the
set of Gp,v0 for v0 ∈ [g (ω0,1) , g (ω0,2)].

(ii) Hp,v0 is normalized by v0, giving origin to a normalized pseudo-continuous time
(nPCT) model Hp

n .

(iii) Then, a normalized PCT controller Kp
n is designed by solving a standardH∞ problem,

where Pn is defined by normalized weighting functions and Hp
n .

(iv) This controller is thus denormalized by v0, generating Kp,v0 .

(v) Finally, the DT controller Kd,ω0 is obtained by the bilinear transform of Kp,v0 .

For an nPCT controller Kp
n given by the state-space matrices (AK, BK, CK, DK), the PCT

controller Kp,v0 has the state-space matrices (v0AK, v0BK, CK, DK). Then, recalling that v0 =
g(ω0), the DT controller Kd,ω0 is defined by the matrices

(
Ad

K(v0), Bd
K(v0), Cd

K(v0), Dd
K(v0)

)
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Gω0(s) (CT)

Gd,ω0(z) (DT)

Discretization with ZOH

Gp,v0(sp) (PCT)

Bilinear transform

Hp,v0(sp)

Hp
n (sp/v0) (nPCT)

(i)

(ii)

Fictitious model

Kp
n(sp/v0)

Controller synthesis

v0-(de)normalization

(iii)

Kp,v0(sn)

(iv)

Kd,ω0(z)

(v)

FIGURE 7.8: Procedure for the design of a parameter-dependent DT controller.

with
Ad

K (v0) = (2I/Ts + v0AK) (2I/Ts −v0AK)
−1

Bd
K (v0) = 4/Ts (2I/Ts −v0AK)

−1 v0BK

Cd
K (v0) = CK (2I/Ts −v0AK)

−1

Dd
K (v0) = DK + CK (2I/Ts −v0AK)

−1 v0BK.

(7.21)

Remark 7.2 (On the digital controller with ω0-dependent sampling period). The solution
presented in this section provides a controller whose state-space matrices depend on given
matrices AK, BK, CK, DK, the sampling period Ts and v0 = g (ω0) (see (7.21)). Then, if the
sampling period Ts is fixed and the parameter ω0 changes, the controller matrices have to
be updated. However, the same result can be obtained if, instead of updating the controller
matrices, we link the sampling period Ts with the parameter ω0 in a proper way, as we reveal
in the sequel.

The matrices of (7.21) can be rewritten as

Ad
K (v0) = (2I + v0Ts AK) (2I −v0Ts AK)

−1

Bd
K (v0) = 4v0Ts (2I −v0Ts AK)

−1 BK

Cd
K (v0) = CK (2I −v0Ts AK)

−1

Dd
K (v0) = DK + CK (2I −v0Ts AK)

−1 BK.

(7.22)
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Then, by defining a constant αTs , v0Ts, the same controller can be implemented by the
constant matrices

Ad
K = (2I + αTs AK) (2I − αTs AK)

−1

Bd
K = 4αTs (2I − αTs AK)

−1 BK

Cd
K = CK (2I − αTs AK)

−1

Dd
K = DK + CK (2I − αTs AK)

−1 BK

(7.23)

and the ω0-dependent sampling period Ts(ω0) = αTs/g(ω0), such that its frequency response
varies according to ω0, solving the Problem 7.2 as well. Finally, it is worth noting that, if
Ts � 1/ω0, we can approximate v0 = g(ω0) ≈ ω0 (see (7.10)) and αTs ≈ ω0Ts.

In the MEMS gyroscope context, this strategy is used to link the drive-mode resonance
frequency ω0,x to the sampling frequency, ensuring good performance of the sensor under
variations of ω0,x (due to temperature changes, for instance), see [EEE+11, CXZ+21]. Al-
though this approach has been used in the literature and in the industry, no theoretical results
endorsing this approach could be found. The framework that we propose here validates the
approach.

Given that the controller design is based on the the fictitious system Hp,v0 , which is an
approximation of Gp,v0 , the stability and performance of the actual closed-loop system has to
be evaluated a posteriori. For further details on this analysis procedure, please refer to our
paper [SACKS20] or to the thesis [AC21].

7.5 Implementation Results on the Asygn’s Platform

In this section, we illustrate the whole procedure for the design and implementation of
a digital direct controller on the (flexible) Asygn’s platform, presented in Section 2.3.1.
Moreover, tests are made to evaluate the implementation of the control loops and their
efficiency. In particular, we verify the reference tracking and the Coriolis force estimation
specifications of Section 7.1.

The tests are realized at room temperature, keeping the operating conditions as steady as
possible, such that in the controller is not frequency-dependent in this section.

7.5.1 Controller Design

Identified model: the first step consists in identifying the to-be-controlled system. Here,
we follow the approach of [Col20]. The Bode diagram representing the MEMS gyroscope at
rest (Ωz = 0), Gd

ID is given in Figure 7.9 and in Figure 7.10. For a clearer explanation, let us
partition Gd

ID as

Gd
ID =

[
Gd

ID,xx Gd
ID,xy

Gd
ID,yx Gd

ID,yy

]
.

As expected (see Example 2.3, page 34), the diagonal transfers Gd
ID,xx and Gd

ID,yy, which
represent respectively the drive and sense modes, behave as resonators. Their resonance
frequencies and quality factors are given below

ω0,x = 2π11.5864 · 103rad/ sec, ω0,y = 2π11.6785 · 103rad/ sec,
Qx = 88.116 · 103 ≈ 99 dB and Qy = 7.992 · 103 ≈ 78 dB.
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The off-diagonal terms Gd
ID,yx and Gd

ID,yx model the mechanical coupling between the drive
and sense modes. Note that Gd

ID,yx has low gains compared to the diagonal terms, indicating
a weak coupling between those modes. Possibly because of the weak coupling, the transfer
Gd

ID,xy could not be accurately identified. Then, it is considered to be null. Still on Gd
ID,yx, we

can note two resonance peaks, at ω0,x and ω0,y, as expected.

Now, if we look to the phases of the same transfers, at the resonance peaks, they are not close
to −90° or −270°. Indeed, they are rather close to 0° or −180°. This shift in phase is due to
the presence of the additional filters and of the ZOH in the loop.

In Figure 7.11, we present the Bode diagram of the identified Ed
ID, which represents the

parasitic electrical coupling and is expected to behave as a high-pass filter. This is the
behavior observed in Figure 7.11.

Electrical coupling compensation: having identified the to-be-controlled system, we imple-
ment Ed

ID in the processor to compensate for the parasitic electrical coupling, see Figure 7.3.

Dealing with the input nonlinearity: here, we consider the method presented in Sec-
tion 7.2.3 with VDC,x = VDC,y = 1 V. Therefore, we define Gd = 2Gd

ID. This model will be
used in the sequel for the controller synthesis.

Controller synthesis: based on Gd and on the desired performance specifications, we apply
the procedure presented in Section 7.4.3 with Hp,v0 = Gp,v0 (since the operating conditions
are steady). Two different strategies are considered: the SISO and the MIMO approaches
of Chapter 4, as in the examples 4.3 and 4.4 for the SISO approach, and Example 4.6 for
the MIMO approach. The details on the controller synthesis are given in Appendix F.5 and
Appendix F.6.

7.5.2 Validation of the Closed-Loop Performance Specifications

Here, we aim to validate the main closed-loop performance specifications: the reference
tracking and the Coriolis force estimation.

Test Protocol: the first test is performed on the experimental platform with the gyroscope
at rest (Ωz) and the results are presented in Figure 7.12. In this figure, we present the main
signals of the closed-loop: xn, the measured output of the drive mode; yn, the measured
output of the sense mode; ux, the control signal of the drive mode; and ûCor,y, the Coriolis
force estimate, which, in the SISO approach, is given by ûCor,y = −uy and, in the MIMO
approach, corresponds directly to the third output of the controller. We apply a reference
signal of the form of

xre f
m (t) = Are f

x,m(t) sin (ωexct)

with amplitude Are f
x,m and frequency ωexc = ω0,x. We also add an artificial disturbance of the

form
ũCor,y(t) = ACor,y(t) sin (ωexct) (7.24)

on the sense-mode control signal. The whole test presents five different stages, as follows.

(i) For 0 ≤ t < 0.5 s: the system is open loop, i.e., ux(t) = uy(t) = 0. In this interval, xn
and yn mainly correspond to the measurement noises nx and ny (since xm = ym = 0).
Here, we obtain σ2

x ≈ 2 · 10−5 and σ2
y ≈ 1 · 10−5.
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FIGURE 7.9: Bode diagram of the identified model Gd
ID.

FIGURE 7.10: Bode diagram of the identified model Gd
ID. Zoom around the

resonance frequencies.

FIGURE 7.11: Bode diagram of the identified model Ed
ID.
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(ii) For 0.5 s ≤ t < 1 s: the loops are closed, Are f
x,m(t) = ACor,y(t) = 0. Then, the measures

within this interval correspond to the contribution of the noises on the signals.

(iii) For 1 s ≤ t < 4 s: the amplitude Are f
x,m increases linearly, achieving the maximum value

of 0.5 V at t = 4 s. The slope of Are f
x,m allows avoiding saturation of the actuators at the

start. The artificial disturbance is null.

(iv) For 4 s ≤ t < 30 s: in this interval, Are f
x,m(t) = 0.5 V and ACor,y(t) = 0. Here, we can

evaluate the reference tracking performance. We can already note that the measured
oscillations (xn) have an amplitude close to 0.5 V for both approaches (SISO and MIMO
are almost superposed in the figure), what indicates that, qualitatively, the specification
is fulfilled. Details on the reference tracking performance evaluation will be given in
the sequel.

(v) For 30 s ≤ t < 35 s: in this last interval, we apply a step on ACor,y, such that ACor,y(t) =
0.1 V, emulating a Coriolis force acting on the sense mode. Thus, we can evaluate the
estimation performance. Are f

x,m is still equal to 0.5 V. We can observe that the Coriolis
force estimate ûCor,y suffers an important impact of about 0.1 V, qualitatively indicating
the achievement of the estimation performance specification. It is also interesting to
note that at t = 30 s, the variation of ACor,y also disturbs the other signals, even the
drive mode ones (slightly). This fact may indicate a non-modeled coupling from the
sense mode into the drive mode.

Validation of the Reference Tracking: to evaluate the reference tracking specification, we
compute εx = xre f

m − xn, which, for the interval 25 < t < 27 is presented in Figure 7.13. The
main contributions of the tracking error come from the measurement noises. To evaluate
the performance at ω = ω0,x, we estimate the power spectral densities of εx and xre f

m , Sεx

and S
xre f

m
, respectively. The ratio Sεx /S

xre f
m

gives an estimate of
∣∣∣Txre f

m →εx

∣∣∣
2

and allows to better
evaluate the reference tracking specification. At the frequency ω = ω0,x, Figure 7.13 reveals
that this gain is around −96 dB (which corresponds to 16 ppm, for the specification 250 ppm)
and −76 dB (which corresponds to 160 ppm, for the specification 250 ppm) for the SISO and
MIMO approaches, respectively, largely fulfilling the required specification in both cases.

Validation of the Coriolis Force Estimation: to evaluate this specification, we have to
compute the error between a given/known Coriolis force, ũCor,y (see (7.24)) and its estimate.
However, recall that other disturbances exist in the system and produce a nonnull estimate
ûCor,y (in general, due to the couplings between the drive and the sense modes and to different
noises). Therefore, to take into account only the contributions of ũCor,y, we define û0

Cor,y as
sinusoidal signal of frequency ωexc that fits ûCor,y in the interval 5 s < t < 30 s (where
ũCor,y(t) = 0). Thus, we redefine the estimation error as

εest(t) = ũCor,y(t)−
(

ûCor,y(t)− û0
Cor,y(t)

)
.

The obtained results are also presented in Figure 7.13, where we can observe a good estimation
of this artificial disturbance. We can also note that the MIMO approach, thanks to the
additional output, produces an estimate much quicker (less than 1 ms) than the SISO one
(more than 2 ms). Similar to the reference tracking evaluation, we estimate the PSD of εest and

uCor,y, Sεest and SũCor,y , respectively; and estimate
∣∣∣TuCor,y→εest

∣∣∣
2

as the ratio Sεest /SũCor,y , which is
presented in Figure 7.13 as well. This ratio reveals a gain close to −62 dB (which corresponds
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FIGURE 7.12: Main signals measured at rest (Ωz = 0).
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FIGURE 7.13: Performance evaluation.

to 790 ppm, for the specification 250 ppm) and −66 dB (which corresponds to 500 ppm, for
the specification 250 ppm) at ωexc for the SISO and MIMO approaches, respectively. Therefore,
in practice this tight estimation specification was not fulfilled in both cases.

Some factors may justify this results, but the main candidate would be the resonance-
frequency variations associated to neglected nonlinearities. As discussed throughout this
thesis, variations of the drive-mode resonance frequency are a crucial factor on the MEMS
gyroscope performance. At the time of writing, experimental tests are being made on the
same experimental setup. Preliminary, they show that, even under a “steady” operating
condition, variations of the drive-mode resonance frequency occur. Then, due to the enor-
mous quality factor, minimal differences between ωexc and ω0,x cause an important loss of
gain of the resonator, which requires stronger control signals to achieve the same reference
signal. In a linear system, this would not be an important problem. Nevertheless, neglected
nonlinear effects linked to the input voltage amplitude (as the spring-hardening/softening
effects) alter the dynamics and couplings of the system. This fact reinforces the need to use
resonance-frequency tracking mechanism.
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FIGURE 7.14: Measures on rotating table.

7.5.3 Tests on a Rotating Table

Here, we aim to validate the main closed-loop performance specifications when the gyroscope
is submitted to nonnull angular rates. The main objectives are to verify if the relevant
Assumption 3.5 (page 59), which assumes that the performance and stability of the closed-
loop system is the same at rest and under different Ωz.

Test Protocol: we consider the same protocol of Section 7.5.2. The only difference is that
the gyroscope is now placed on a rotating table, and we realize different tests with Ωz ∈
{−300, −200, −100, 100, 200, 300} °/s.

Performance Validation: further than the stability, which is conserved, regarding the ref-
erence tracking and the estimation specifications for different angular rates, the results are
similar to those with Ωz = 0, that is, for all the considered angular rates, we have a reference
tracking with relative error smaller than −72 dB at ωexc and estimation with relative error
smaller then −60 dB.

Measures of Ωz finally, the Coriolis force estimate ûCor,y is demodulated and filtered, ob-
taining sI f , which is compared to the actual Ωz in Figure 7.14. Although the estimation lacks
of linearity (SFNL ≈ 3%), these experiments prove the implementability of the direct control
architecture and the validity of the proposed design approach. The nonlinear behavior of the
measure may have some origins: the variations of the drive-mode resonance frequency, a
nonlinear behavior of the MEMS gyroscope (modeled as a linear system), modeling errors
(such as a coupling from sense to drive mode). The good news is that the designed controllers
operate as expected, even if the actual MEMS gyroscopes might present differences with
respect to the obtained model.
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7.6 Summary of the Chapter

In this chapter, we propose a complete design method for digital direct controllers of MEMS
gyroscopes. The proposed approach is based on the H∞ synthesis. Further than the H∞
design method already presented in Chapter 4, we consider the main aspects related to
the practical implementation: the nonlinear input of the MEMS gyroscope, the presence of
parasitic electrical coupling, the digital implementation of the controller and the dependence
of the gyroscope model on the temperature.

In this chapter, we reveal that the square input nonlinearity can be treated as a simple gain
if the input signal is a bandpass signal centered at ω0,x and with bandwidth smaller than
ω0,x/3. This result allows us then to consider the gyroscope as a linear system. Moreover,
we also indicate how to proceed with the digital compensation of the parasitic electrical
coupling.

The discrete-time nature of the controller is also considered. In order to design the digital
controller, additional steps are introduced in the control design method and the controller
synthesis is performed in the so-called normalized PCT (nPCT) space. The use of this space
provides some benefits, as follows.

(i) The design of a DT controller is realized in a CT-like space (nPCT), which is better suited
for the use of frequency-domain design methods (such as theH∞ synthesis) and takes
into account the presence of the ZOH.

(ii) Since the design is realized in a normalized-frequency space and since this space is
defined by ω0,x, the design of ω0-dependent controllers is straightforward.

The implementation results validate the proposed method and prove the implementability
of the direct control architecture. Further investigation is needed to justify the nonlinear
behavior of the angular rate measures.
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Chapter 8

EM-Σ∆ Architecture:
A Case Study

In this chapter, we present a study case consisting of a MEMS gyroscope in which the sense
mode operates in closed-loop with an electro-mechanical Σ∆ (EM-Σ∆) architecture. The
main purpose here is to present a control design method based on the H∞ synthesis and
the direct control architecture (see Chapter 4, page 75). This approach is applied to the EM-
Σ∆ architecture implemented in the Tronics’ dedicated platform, presented in Section 2.3.2,
whose block diagram is recalled in Figure 8.1. Practical results are also presented in this
chapter and demonstrate the effectiveness of our approach.

In this experimental setup, the drive mode operates in closed loop with a nonlinear self-
oscillating AGC control architecture (see Figure 2.22, page 43), producing oscillations with
controlled amplitude and at the drive-mode resonance frequency, that is, ωexc = ω0,x. We
can then assume that the drive mode operates adequately, and we focus on the sense-
mode operation. Moreover, in this platform, the sampling frequency Fs is given by Fs =
36ω0,x/(2π).

As introduced in Section 2.2.2 (page 46), the EM-Σ∆ architecture has been widely employed,
such as in [PB05, ESAES09, RCRW09, EEE+11, CYC+14, CLK16], thanks to its interesting
benefits. First, like other closed-loop strategies, the bandwidth, linearity, dynamic range,
and robustness of the sensor are improved. Second, the use of a relay (1-bit quantizer) for
the actuation avoids problems linked to the nonlinear relationship between voltage and
force of electrostatic actuators, improving the linear behavior of the device. Finally, being
the output signal coded into a single bit, the interface with the digital processing circuits

Gmech
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Controller (electronic filter)

FIGURE 8.1: EM-Σ∆ architecture under study. Configurable elements are
represented in gray.
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is straightforward. Nevertheless, despite these interesting features, the relay introduces a
strong nonlinearity in the loop, prohibiting the (direct) use of linear design tools.

The EM-Σ∆ architecture is inspired by the classical Σ∆ modulators, which are widely used
in ADCs, especially when high resolution is required [RRW08]. The strength of the classical
Σ∆ modulators comes from the use of oversampling and feedback loops. The oversampling
allows achieving an interesting signal-to-noise ratio (SNR), even when coding the signal with
a single bit. On the other hand, the feedback loops are composed of filters that are designed
to achieve three primary goals.

(i) Shape the power spectral density (PSD) of the quantization error (difference between
the input and output signals of the relay), minimizing its influence on the output signal,
at least in the frequency range of interest.

(ii) Ensure that the output signal tracks the input one, at least in the frequency range of
interest.

(iii) Ensure the stability of the closed-loop system.

In the classical Σ∆ modulators, these noise-shaping filters are fully configurable by the
designer. There exist well-established methods and numerical tools, allowing for an efficient
modulator design (see [ST04] and references therein for further details). Nevertheless, the
noise-shaping filter of the EM-Σ∆ is composed of an electronic filter and an electro-mechanical
element – the sense mode –, which is not configurable, implying strong structural constraints.
Then, while the design of classical Σ∆ modulators is well established, the design of the
EM-Σ∆ modulator may be a difficult task [RRW08].

In addition to the structural constraints (imposed by the non-configurable sense mode), other
issues arise in an EM-Σ∆ architecture.

Model uncertainties: the model of the sense mode is often uncertain due to fabrication
dispersion, environmental variation as well as imperfect modeling. Moreover, the
electrostatic comb fingers can create high-frequency resonant modes, adding an extra
phase lag to the system, compromising its stability [CLK16].

Additional sources of noise: the sense mode also introduces noise (mechanical-thermal and
electronic noise) in the loop [PB06].

Thus, further than the standard Σ∆ specifications (minimization of the quantization error
and tracking of the input signal by the output one), the design of the EM-Σ∆ electronic filter,
which we will rather call controller, has three more objectives to pursue, as follows.

(i) Ensure the stability of the closed-loop system, despite the uncertainties related to the
mechanical transfer, i.e., robust stability.

(ii) Minimize the effects of the different noises (in addition to the quantization error) on the
output signal.

(iii) Minimization of the proof mass displacement along the ~y-axis [WK11]. As discussed in
Chapter 3, minimizing these displacements is useful to improve the linear behavior of
the sensor.

Some design methods for the EM-Σ∆ controller are proposed in the literature. They are
mainly inspired by the design of classical Σ∆ modulators. In [PB05], the authors choose a
controller composed of a second-order resonator associated with a lead-phase compensator.
The resonator allows attenuating the quantization error in a certain frequency range, whereas
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the compensator provides the required phase to ensure the stability of the closed-loop system.
The effects of the electronic noises are evaluated afterward in [PB06]. In [RRW08], the authors
show that with an additional feedback, the same design flow of the classical Σ∆ modulators
can be applied for the EM-Σ∆ feedback, providing a systematic design methodology and
ensuring a certain robustness against the relay. Nevertheless, the effects of all the noise
sources are not considered for the controller design, and the robust stability is only partially
ensured.

More recently, the use of genetic algorithms was also proposed [WK11, CYC+14]. The
main advantage of this approach is that it allows choosing a multi-objective criterion to be
optimized. In these works, the criterion consists of (i) minimizing the effect of the noises
and the quantization error on the output signal; and (ii) minimizing the displacement of the
proof mass. The main issue of this approach, however, is that the solutions do not provide
guarantees of performance or robust stability. Usually, these properties are assessed through
extensive simulations [WK11], which can be computationally expensive.

From the Control Theory point of view, one of the main challenges comes from the presence
of the relay (1-bit quantizer), which is a strong nonlinearity, in the control loop. Another
challenge arises from the fact that the configurable parameters of the EM-Σ∆ under study are
bounded and have limited precision, conferring a constrained nature to the controller.

As usually considered for the design of Σ∆ modulators, the relay is modeled as an uncertain
gain (similar to the describing-function method [GV68]) followed by a quantization noise,
representing the quantization error [AP87], obtaining a linearized model of the system, see,
e.g., [PB05, RRW08]. Then, we propose a systematic method to design the EM-Σ∆ controller,
guaranteeing both performance and robust stability for the linearized model. This method
is based on theH∞ synthesis and direct control architecture. The constrained nature of the
controller is also taken into account.

The remaining of this chapter is organized as follows. In Section 8.1, we formalize the control
objectives related to the EM-Σ∆ architecture and formulate the problem under investigation.
In Section 8.2, we propose a design method based on theH∞ synthesis. The proposed method
is then applied to the EM-Σ∆ architecture under study in Section 8.3. The solution is applied
to the prototype and the practical results are presented in Section 8.4.

8.1 EM-Σ∆ Architecture and Control Problem

In this section, first we aim to describe the EM-Σ∆ architecture. Then, in a second time,
we discuss the expected behavior of the closed-loop system, highlighting the main control
objectives and defining the control problem we want to solve in this chapter.

Gy Ky kq
+dCor,y εest

+

ym+

ny

yn uy

+

+

Qerror

OUT
−

Relay

FIGURE 8.2: General block diagram of an EM-Σ∆ architecture.
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Let us consider the general EM-Σ∆ architecture of Figure 8.2, which is basically composed of
the sense mode Gy (mechanical part, actuation and instrumentation circuitry), a controller
(or electronic filter) Ky, and a relay (or 1-bit quantizer). The signal dCor,y is an image of the
Coriolis and coupling forces acting on the sense mode. This signal is to be rebalanced by OUT.
Hence, OUT is expected to be as close as possible to dCor,y so that OUT is a good estimate of
dCor,y and, as consequence, of the Coriolis force (the coupling force is separated a posteriori
thanks to the synchronous demodulation and post processing). To quantify the performance
of the system, we then define the error between these signals, which corresponds to the
estimation error: εest , dCor,y −OUT. At the output of Gy, ym is an image of the proof mass
displacement along the ~y-axis. The signal ny models process noises as well as any bias added
by the instrumentation circuits. The measured signal is then given by yn = ym + ny.

The relay is modeled as an uncertain gain kq (similar to how relays are modeled in the
describing function method, see [AP87]) followed by a quantization error, which is denoted
Qerror and is usually modeled as a white-noise signal. This modeling is usually adopted
for the design of classical Σ∆ modulators and for the EM-Σ∆ design [AP87, PB05, RRW08].
Finally, the relay produces the signal OUT, which can only assume the values +1 and −1.

The EM-Σ∆ controller, Ky, is given by

Ky :
{

σxK(t) = AKxK(t) + BKyP(t)
uy(t) = CKxK(t) + DKyP(t)

(8.1)

with xK(t) ∈ RnK , yP(t) ∈ RnyP and uy(t) ∈ R. We use σ to represent the time-derivative
operator s for continuous-time (CT) systems and the time-shift operator z for discrete-time
(DT) systems. Similarly, t stands for the time variable t in the CT case, and for the time
samples k in the DT case. The controller may have one (nyP = 1) or two (nyP = 2) input
signals. In the first case, it is said to be a one-degree-of-freedom (1DoF) controller, and we
have yP = yn. With two inputs, we have a two-degrees-of-freedom (2DoF) controller and
yP = col (yn, OUT).

We also classify the controllers as unconstrained or constrained. Note that Ky can be rewritten
as

Ky :
{[

σxK(t)
uy(t)

]
= K

[
xK(t)
yP(t)

]
with K ,

[
AK BK
CK DK

]
. (8.2)

Then, a controller is said to be nK-unconstrained if K ∈ R(nK+1)×(nK+nyP). On the other
hand, a controller is said to be nK-constrained if K ∈ K, where K ⊂ R(nK+1)×(nK+nyP).
The constrained nature of a controller may be originated from the limited resolution of its
coefficients or by a predetermined choice of poles and zeros, for instance. More details on the
unconstrained/constrained nature of the controller are given in Section 8.2.2 and Section 8.2.3.

Regardless of its structure (1DoF or 2DoF, constrained or unconstrained), we can enumerate
the qualitative control objectives for the controller design:

(O1) ensure the tracking of the input signal by the output one, i.e., OUT = dCor,y or εest = 0;

(O2) minimize the displacement (ym) of the proof mass;

(O3) minimize the effects of Qerror on OUT;

(O4) minimize the effects of the different noises and bias (ny) on OUT;

(O5) ensure the stability of the closed-loop system against the relay (nonlinearity);
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(O6) ensure the stability of the closed-loop system against the mechanical transfer uncertain-
ties (e.g., unmodeled dynamics or environmental sensitivity).

Note that it may be impossible to completely achieve all these specifications. For instance,
if we consider the first objective (OUT = dCor,y), it is clear that this equality holds only if
dCor,y(t) ∈ {−1, 1}, which is clearly not the case for a MEMS gyroscope. However, it is
possible to make them (approximately) equal, at least, in the frequency range around ω0,x.
Therefore, like in the previous chapters, we want to fulfill the above objectives, at best, in the
frequency range of interest. This point leads us, again, to translating the control objectives
into closed-loop specifications in the frequency domain. Assuming it is done, we can thus
state the general EM-Σ∆ design problem as follows.

Problem 8.1 (General EM-Σ∆ design problem). Given Gy and kq, compute the controller Ky (ma-
trix K) such that the closed-loop system of Figure 8.2 achieves the required closed-loop specifications.

Since the closed-loop system of Figure 8.2 is LTI, this problem is solved through the H∞
synthesis and the controller design is formulated as an optimization problem (similar to the
procedure of Chapter 4). In this context, two aspects are of crucial importance: the choice of
anH∞ criterion and the resolution of the optimization problem. The proper choice of theH∞
criterion allows enforcing the desired behavior of the closed-loop system. TheH∞ criterion
is defined by the so-called augmented plant P, which includes the to-be-controlled plant and
the weighting functions (see Section 4.1, page 76). In the case of the standardH∞ synthesis,
where the controller is unconstrained, the optimization problem is convex. However, if the
controller is constrained, the optimization problem becomes non-convex and different tools
have to be used. In the next section, we define anH∞ criterion for the EM-Σ∆ architecture.
Then, depending on the controller nature (constrained/unconstrained), we discuss how to
solve the related optimization problems.

8.2 H∞ Synthesis for the EM-Σ∆ Architecture

In this section, we use theH∞ framework to design the EM-Σ∆ controller, solving Problem 8.1.
First, we define an H∞ criterion, which express, through weighting functions, the desired
control objectives. Then, we discuss how to solve the optimization problem for unconstrained
and for constrained controllers.

8.2.1 AnH∞ Criterion for the EM-Σ∆ Architecture

The first step to define theH∞ criterion related to the EM-Σ∆ architecture (see Figure 8.2) is
to choose the signals of interest and compute the closed-loop transfer functions, defining the
augmented plant P̃, just like in the standardH∞ synthesis, see Section 4.1 (page 76). Then,
the control specifications are formulated as closed-loop frequency constraints that express
the desired closed-loop behavior. Finally, weighting functions are designed to enforce these
frequency constraints, defining the weighted augmented plant P. Here, we consider the
general case where the controller is defined as Ky =

[
Ky,1, Ky,2

]
(2DoF). In the case of a 1DoF

controller, we consider the same results but with Ky,2 = 0.

We start by selecting as input signals of interest the inputs dCor,y, ny and Qerror, and the
outputs εest, ym and uy. They define the input vector w̃ = col

(
dCor,y, ny, Qerror

)
and the
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output vector z̃ = col
(
εest, ym, uy

)
. Thus, the closed-loop transfer matrix Tw̃→z̃ is given by




TdCor,y→εest Tny→εest TQerror→εest

TdCor,y→ym Tny→ym TQerror→ym

TdCor,y→uy Tny→uy TQerror→uy


 =



(
1− kqKy,2

)
S1 −kqKy,1S1 −S1

Gy
(
1− kqKy,2

)
S1 −GykqKy,1S1 −GyS1

GyKy,1S1 Ky,1S1 −T1/kq


 , (8.3)

where
S1 =

1
1 + kq

(
GyKy,1 − Ky,2

) and T1 = 1− S1.

Let us now translate the control objectives of page 200 into mathematical constraints on the
closed-loop frequency responses, as follows. Most of them yield to frequency constraints
very similar to those considered in Section 4.2.2 (page 91).

Tracking of the input signal dCor,y by OUT – (O1): this control objective pertains to the
transfer TdCor,y→εest , which is directly related to the SFNL (estimation of the Coriolis force) and
to the bandwidth of the sensor. Then, we consider

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ ≤ kSFNL (8.4)

and

∀ω ∈ [ωexc −ωdes
B , ωexc + ωdes

B ],
∣∣∣TdCor,y→εest(jω)

∣∣∣ < 2−
√

2
2

≈ 0.2929, (8.5)

ensuring OUT ≈ dCor,y, at least for the frequency range around ωexc.

Displacement minimization – (O2): this objective corresponds to the disturbance rejec-
tion specification of Section 4.2.2, in which the minimization of

∣∣∣TdCor,y→ym(jω)
∣∣∣ for ω ∈

[ωexc −ωΩ, ωexc + ωΩ] is required, that is,

∀ω ∈ [ωexc −ωΩ, ωexc + ωΩ] ,
∣∣∣TdCor,y→ym(jω)

∣∣∣� 1. (8.6)

As discussed in Chapter 3, we recall that reducing ym tends to improve the linearity of the
sensor.

Minimization of the effects of Qerror and ny on OUT – (O3) and (O4): minimizing the
effects of the quantization error Qerror and of the different noises ny on OUT is equivalent to
enforce,

∀ω ∈ (0, 2ωexc] , |TQerror→εest(jω)| � 1 and
∣∣Tny→εest(jω)

∣∣� 1. (8.7)

These constraints are directly related to the performance of the sensor with respect to the
noise (ARW, RMS noise, etc.).

Robustness against the relay – (O5): for the controller design, the quasi-linear model of
the relay is adopted, i.e., the relay is modeled as an uncertain gain with additive noise, as
in [AP87, PB05, RRW08]. Then, to make the closed-loop system robust against this uncertain
gain, the condition

‖TQerror→εest‖∞ < 2 (8.8)
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is generally considered for stability [RRW08]. Because TQerror→εest = S1, which represents a
sensitivity function, this condition corresponds to a modulus margin ∆M1 > 0.5, implying
sufficient phase and gain margins (against the uncertain gain kq). Strictly speaking, this
condition is valid only for the quasi-linear model; it does not mathematically apply for the
nonlinear system with the real relay. However, in the absence of a simple formal stability
measure, this condition has been widely used in practice [RRW08]. In light of this discussion,
it is also essential to keep the relay operating as close as possible to a “linear” behavior,
avoiding saturation of the quantizer (see the upper part of Figure 8.7 for an illustration of this
saturation). To this purpose, the bias (low-frequency components) at the relay input (signal
uy) has to be minimized, as well as its high-frequency components, that is,

∀ω � ωexc,
∣∣∣TdCor,y→uy(jω)

∣∣∣� 1,
∣∣Tny→uy(jω)

∣∣� 1, and
∣∣∣TQerror→uy(jω)

∣∣∣� 1,
(8.9)

∀ω � ωexc,
∣∣∣TdCor,y→uy(jω)

∣∣∣� 1,
∣∣Tny→uy(jω)

∣∣� 1, and
∣∣∣TQerror→uy(jω)

∣∣∣� 1.
(8.10)

Robustness against the model uncertainties – (O6): a typical choice to enforce good stabil-
ity margins against model uncertainties is to choose a convenient modulus margin at the
input or output of the gyroscope model Gy [SP01]. In this case, the sensitivity function is
given by S2 = TdCor,y→εest . Then, the modulus margin is given by ∆M2 = 1/ ‖S2‖∞. So, by
restricting the maximum value of |S2(jω)|, a minimum modulus margin can be enforced.
Further than the modulus margin ∆M2, additive and multiplicative uncertainties can be con-
sidered to take into account the high-frequency resonant modes of the comb fingers. Based
on the small gain theorem (similar to Section 3.4, page 71), by bounding

∣∣Tny→εest(jω)
∣∣ and∣∣Tny→ym(jω)

∣∣ in the frequency range where the high-frequency resonant modes are located,
the robust stability of the closed-loop system against these high-frequency modes can be
ensured.

As claimed earlier, the above closed-loop specifications are frequency dependent. To take
into account this dependence, we add weighting filters on the signals of interest, as in
Chapter 4. The closed-loop system with the weighting functions Win = diag (Wd, Wn, WQ)
and Wout = diag

(
Wε, Wy, Wu

)
is then presented in Figure 8.3, defining the weighted signals

of interest as w = W−1
in w̃ and z = Woutz̃.

Gy Ky kqWd

Wn

WQ

Wu

Wy

Wε

+

dCor,y

εest +ym

+
ny

yn

uy +

+
Qerror

OUT
−

w1

w2

w3

z1

z2

z3

FIGURE 8.3: H∞ criterion for the EM-Σ∆ architecture.
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In this context, if there exists a controller Ky such that, for a given γ > 0, satisfies the following
H∞ criterion:

‖WoutTw̃→z̃Win‖∞ =

∥∥∥∥∥∥∥




WεTdCor,y→εestWd WεTny→εestWn WεTQerror→εestWQ

WyTdCor,y→ymWd WyTny→ymWn WyTQerror→ymWQ

WuTdCor,y→uyWd WuTny→uyWn WuTQerror→uyWQ




∥∥∥∥∥∥∥
∞

< γ, (8.11)

we also have that (omitting the frequency dependence), ∀ω ∈ R,
∣∣∣TdCor,y→εest

∣∣∣ < γ
|WεWd| ,

∣∣Tny→εest

∣∣ < γ
|WεWn| , |TQerror→εest | < γ

|WεWQ| ,∣∣∣TdCor,y→ym

∣∣∣ < γ

|WyWd| ,
∣∣Tny→ym

∣∣ < γ

|WyWn| ,
∣∣TQerror→ym

∣∣ < γ

|WyWQ| ,∣∣∣TdCor,y→uy

∣∣∣ < γ
|WuWd| ,

∣∣Tny→uy

∣∣ < γ
|WuWn| ,

∣∣∣TQerror→uy

∣∣∣ < γ

|WuWQ| .
(8.12)

Then, the proper choice of the weighting functions allows one to enforce the closed-loop
constraints and, hence, the desired control specifications.

We emphasize that this H∞ criterion can be employed to any EM-Σ∆ architecture in the
form of Figure 8.2, regardless of the controller structure (1DoF or 2DoF, constrained or
unconstrained). The structure of the controller determines the optimization method that is
used to solve theH∞ problem above. This point is discussed in the sequel.

Before proceeding, we recall that theH∞ criterion defines the weighted augmented plant P
(see Section 4.1, page 76), which admits the state-space representation below:

P :





σxP(t) = APxP(t) + Bww(t) + Buuy(t)
z(t) = CzxP(t) + Dzww(t) + Dzuuy(t)

yP(t) = CyxP(t) + Dyww(t) + Dyuuy(t)
(8.13)

with xP(t) ∈ RnP and nP being the sum of the orders of Gy and of the weighting functions.

8.2.2 A Solution to the Unconstrained Case

An EM-Σ∆ controller is said to be nK-unconstrained if it admits a state-space representation
in the form of (8.2) with K ∈ R(nK+1)×(nK+nyP). In particular, when simply referring to
unconstrained controller, we mean the full-order controller, i.e., nK = nP. In this case,
computing the matrix K (or controller Ky of (8.2)) is equivalent to the standardH∞ control
problem. Indeed, the closed-loop system formed by (8.13) and (8.1) can be written as

P ? Ky :
{

σxP(t) = AclxP(t) + Bclw(t)
z(t) = CclxP(t) + Dclw(t)

(8.14)

with xP = col (xP, xK),

Acl =

[
AP 0
0 0

]

︸ ︷︷ ︸
A

+

[
0 Bu
I 0

]

︸ ︷︷ ︸
Bu

[
AK BK
CK DK

]

︸ ︷︷ ︸
K

[
0 I

Cy 0

]

︸ ︷︷ ︸
Cy

, Bcl =

[
Bw
0

]

︸ ︷︷ ︸
Bw

+

[
0 Bu
I 0

]

︸ ︷︷ ︸
Bu

[
AK BK
CK DK

]

︸ ︷︷ ︸
K

[
0

Dyw

]

︸ ︷︷ ︸
Dyw

,

Ccl =
[
Cz 0

]
︸ ︷︷ ︸

Cz

+
[
0 Dzu

]
︸ ︷︷ ︸

Dzu

[
AK BK
CK DK

]

︸ ︷︷ ︸
K

[
0 I

Cy 0

]

︸ ︷︷ ︸
Cy

, Dcl =
[
Dwz

]
︸ ︷︷ ︸

Dwz

+
[
0 Dzu

]
︸ ︷︷ ︸

Dzu

[
AK BK
CK DK

]

︸ ︷︷ ︸
K

[
0

Dyw

]

︸ ︷︷ ︸
Dyw

.
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The closed-loop system can be interpreted as the static output feedback of P (plant P aug-
mented with the nK states of Ky)

P :





σxP(t) = AxP(t) + Bww(t) + Buu(t)
z(t) = CzxP(t) + Dzww(t) + Dzuu(t)
y(t) = CyxP(t) + Dyww(t) + Dyuu(t)

(8.15)

with u(t) = Ky(t), where y = col (xK, yP) and u = col
(
σxK, uy

)
, that is, P ? Ky = P ? K.

Therefore, for the case of an unconstrained controller, finding K that solves Problem 8.1 is
recast as theH∞ problem below.

Problem 8.2 (H∞-based unconstrained EM-Σ∆ design problem). Given the plant P (defined
by Gy, kq and weighting functions Win and Wout) and a performance level γ > 0, compute a matrix

K ∈ R(nP+1)×(nP+nyP), if there exists any, that stabilizes Tw→z = P ? K and ensures ‖Tw→z‖∞ < γ.

This H∞ problem is convex and can be efficiently solved [AGB95], in the same way as
presented in Section 4.1 (page 76).

8.2.3 A Solution to the Constrained Case

In most of the EM-Σ∆ architectures, the controller structure is constrained. Indeed, the
matrix K defining the controller in (8.2) belongs to a subset of R(nK+1)×(nK+nyP), denoted
K. Moreover, the order of the controller, nK, is commonly smaller than the order of the
augmented plant, nP. These limitations are mainly related to implementation constraints,
such as the limited resolution of the coefficients, and a predetermined (fixed) choice of the
controller order (nK) or of some poles and zeros.

The good news is that in this constrained framework, the closed-loop system can still be
written in the form of (8.14) and (8.15) with the control law u(t) = Ky(t). The only difference
is that K ∈ K and K ⊂ R(nK+1)×(nK+nyP). The exact definition of the augmented plant P and
the subset K depends on the controller structure and related implementation constraints. We
illustrate this point in Section 8.3.

In the case of a constrained controller, finding Ky that solves Problem 8.1 can then be recast
as the structuredH∞ problem below.

Problem 8.3 (H∞-based constrained EM-Σ∆ design problem). Given the plant P (defined by
Gy, kq and weighting functions Win and Wout), a subset K ⊂ R(nK+1)×(nK+nyP) and a performance
level γ > 0, compute a matrix K ∈ K, if there exists any, that stabilizes Tw→z = P ? K and ensures
‖Tw→z‖∞ < γ.

The Problem 8.3 corresponds to a structured H∞ synthesis problem. In this case, the opti-
mization problem is no longer convex [AN06]. Then, the solution may depend on the initial
point and, even if there exists a solution to the problem, there are no guarantees that this
solution will be found. However, with good initialization, this problem can be tackled by
available optimization methods [AN06].

In practice, Problem 8.3 can also be solved via the Robust Control Toolbox of Matlab® [BCPS20]
with the function hinfstruct.
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8.3 H∞ Synthesis for a Constrained EM-Σ∆ Controller

In this section, we apply the proposed method to design the controller parameters of the
particular EM-Σ∆ architecture of Figure 8.1. We emphasize however that the procedure here
applied can be extended to other EM-Σ∆ architectures.

The objective here is then to compute the parameters a2, a3, a4, a f b and g2 such that the
closed-loop system is stable and verifies, at best, the control objectives (O1–O6) of page 200.
Thus, we apply the following steps:

(i) the first step is to rewrite the scheme of Figure 8.1 as the general EM-Σ∆ scheme of
Figure 8.2;

(ii) an augmented plant P̃ (the weighting functions are not included in the augmented plant
at this step) and the subset K are then defined;

(iii) the weighting functions are designed to enforce the desired specifications and intro-
duced in the augmented plant P̃, producing P = diag (Wout, 1) P̃ diag

(
Win, InyP

)
;

(iv) finally, the controller parameters are computed by solving Problem 8.3 with the plant P
and the subset K defined in the previous steps.

These steps are detailed in the sequel.

8.3.1 Rewriting the EM-Σ∆ Architecture in the General Form

The first step for the EM-Σ∆ controller design consists in rewritting the given EM-Σ∆ archi-
tecture (see Figure 8.1) in the general form of Figure 8.2. In other words, we have to identify
the three main blocks of the EM-Σ∆ architecture: the sense-mode model (Gy), the controller
(Ky) and the relay.

Obtaining the Sense-Mode Model

The mechanical part of the sense mode, including the actuation and instrumentation circuitry
(kact,y, Gmech

y , kdet,y, kCA,y) can be modeled by a continuous-time (CT) system Gc
y, whose

transfer function is given by

Gc
y(s) =

k0,yω2
0,y

s2 + s ·ω0,y/Qy + ω2
0,y

, (8.16)

where k0,y is the static gain, ω0,y is the resonance frequency and Qy is the quality factor of the
sense mode. We highlight that identification techniques can be used to define each one of
these parameters. In our case, k0,y = 0.0759, ω0,y = 1.004 ·ω0,x and Qy = 23.4 · 103, recalling
that ω0,x is the resonance frequency of the drive mode1.

We also consider the ADC and DAC as part of the sense-mode model. As discussed in
Chapter 7, taking the effects of these converters (sampling and holding effects) into account
is crucial to provide guarantees of performance and stability of the closed-loop system. To
this purpose, we apply the same procedure of Chapter 7 (see (7.4), page 181) to Gc

y, obtaining

1For confidentiality reasons, in this chapter, the frequencies are normalized to ωexc = ω0,x.
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the equivalent discrete-time model

Gd
y (z) =

(
1− z−1

)
Z
[
L−1

[
Gc

y(s)
s

]]
. (8.17)

In the architecture under study, all the digital elements work with the sampling period Ts,
which is synchronized with the excitation frequency (ωexc = ω0,x) thanks to an external PLL
so that Ts = 2π/(36ω0,x). This choice is justified by Remark 7.2 (page 188).

The Constrained Controller

The output signal uy of the controller of Figure 8.1 can be given in the z-domain as

uy(z) =

(
a2 +

(a3 + a4) z− a3

z2 + (g2 − 2) z+ 1

)
yn(z)− a f b

(a3 + a4) z− a3

z2 + (g2 − 2) z+ 1
OUT(z), (8.18)

defining, in discrete time (DT),

Kd
y (z) =

[
Kd

y,1(z) Kd
y,2(z)

]
=

[
a2 +

(a3 + a4) z− a3

z2 + (g2 − 2) z+ 1
−a f b

(a3 + a4) z− a3

z2 + (g2 − 2) z+ 1

]
. (8.19)

Note that this controller is constrained. Indeed, it is of order 2, i.e., nK = 2. If any of the
weighting functions of theH∞ criterion has an order larger than zero, since Gd

y is also of order
2, the order of the generalized plant is larger than 2. Moreover, due to the predefined structure
of the controller, its poles and zeros cannot be placed arbitrarily. Indeed, this structure fixes
the z-domain poles pz1 and pz2 such that pz1 · pz2 = 1, constraining the set of implementable
controllers.

This controller can also be represented in the state space as in (8.2) with

K =

[
AK BK
CK DK

]
=




1 1 0 0
−g2 1− g2 1 −a f b
a4 a3 + a4 a2 0


 . (8.20)

The Relay

As discussed in Section 8.1, we model the relay as an uncertain gain kq followed by the
quantization error Qerror. In particular, we consider kq = 1 for the controller design.

8.3.2 Defining the Generalized Plant P̃ and the Subset K
The next step is to define the generalized plant P̃ and the subset K. To this purpose, we
isolate the unit delay blocks (z−1), which define the controller states, defining a discrete-time
augmented plant P̃d, as illustrated in Figure 8.4. The signals entering the matrix K define
the vector y = col (xK,1, xK,2, yn, OUT) and the signals delivered by these parameters define
u = col

(
zxK,1, zxK,2, uy

)
.
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FIGURE 8.4: EM-Σ∆ architecture with constrained controller in the general
control configuration for static output feedback.

Note that u = Ky with K given in (8.20). Therefore, we define, for this particular EM-Σ∆
architecture, the subset K as
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a4 a3 + a4 a2 0








. (8.21)

The notations (·) and (·) indicate the lower and upper bounds of (·), respectively.

Finally, note that the generalized plant P̃d is in discrete-time. Although it is possible to make
the design in discrete-time, for frequency-domain design methods (as theH∞ synthesis), it
is more convenient to use equivalent (pseudo) continuous-time models, see discussion in
Section 7.3 (page 181). The main reason is that in continuous time, conventional frequency-
domain techniques can be used. The equivalent continuous-time model (or its PCT model) is
obtained through the bilinear (or Tustin) transform of P̃d, as follows

P̃(sp) = P̃d(z)
∣∣∣
z=

2/Ts+sp
2/Ts−sp

.

8.3.3 Weighting Functions and Controller Design

The weighting functions, thanks to (8.11) and (8.12), define upper bounds on Tw̃→z̃ and,
therefore, are used to enforce the control objectives of Section 8.1. The controller constraints
are also taken into account. Hence, we design the continuous-time weighting functions
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such that the frequency constraints correspond to the upper bounds presented in Figure 8.5
and Figure 8.6. The latter one presents a zoom around ω0,x (the resonance frequency of
the drive mode), which normalizes the frequency axis. The proposed method is applied,
obtaining closed-loop transfers whose frequency responses are identified as CL_new. For
the sake of comparison, we also present the frequency responses obtained with an set of
parameters currently used by the industrial partner, which are computed through a method
based on [EEE+11]. These transfers are identified as CL_old.

Please note that, globally, CL_old and CL_new have similar frequency responses around ω0,x
(normalized frequency equal to 1) and for higher frequencies. The main difference appears in
low frequencies. This behavior is justified by the choice of the weighting functions (upper
bounds), which, to ensure that the relay operates “linearly” (see constraint of (8.9)), enforce
the transfers to uy (the relay input) to have low gains in low frequencies, reducing the offset
at the relay input. Moreover, we obtain ‖TQerror→εest‖∞ < 1.3, ensuring good stability margins
against the uncertain gain kq. We also obtain ‖S2‖∞ < 4.4, providing an adequate stability
margin with respect to the model uncertainties. Because of the controller constraints, this
value cannot be further reduced.

Note that the upper bound on |TQerror→εest | shapes the referred transfer such that the quantifi-
cation error on the signal OUT is minimized around ω0,x. Also note that CL_new reduces
the effects of ny on OUT (equivalent to Tny→εest ), specially in low frequency. Due to the
controller constraints (chosen architecture), the gains of the transfers TdCor,y→εest , TdCor,y→ym ,
Tny→εest and Tny→ym cannot be minimized around ω0,x. Even though, the proposed approach
allows enhancing the global behavior of the closed-loop system (reducing the magnitude of
the closed-loop transfers, at least where the structural constraints allows so).

8.4 Implementation Results

In this section, we present the practical results obtained with the proposed approach in the
Tronics’ dedicated platform, always comparing with the performance obtained with the
parameters denoted CL_old. Two types of test are realized. First, we evaluate the behavior
of the MEMS gyroscope at rest with the parameters CL_new. The objective of this test is to
check if the system behaves as expected with the new parameters.

Having validated the design approach, the same procedure is used to compute a set of
parameters CL_new for other five gyroscopes. Then, a full battery of tests is realized on a
rotating table in a temperature-controlled chamber. These tests allow to characterize the
main performance indicators of these gyroscopes with the parameters CL_old and with
the parameters CL_new (applied to the same gyroscope). The performance indicators here
evaluated are the scale-factor nonlinearity (SFNL), the RMS noise, the angle random walk
(ARW), bias instability (BI), the scale factor over temperature (SFOT) and the bias over
temperature (BOT). The definition of these indicators is given in Section 2.1.6 (page 36).

8.4.1 Measures at Rest

First, we measure the signal OUT with the two different sets of parameters (CL_old and
CL_new) with the gyroscope at rest and with the drive mode normally operating. The results
are presented in Figure 8.7. Please note that with CL_old, the relay output seems to be
saturated. Then, the quasi-linear model of the relay cannot be considered for this set of
parameters. Indeed, when the output stays at 1, the closed-loop system behaves as if it was
in open-loop operation. On the other hand, with CL_new, the signal OUT is more balanced
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FIGURE 8.5: Closed-loop transfer functions.

FIGURE 8.6: Closed-loop transfer functions. Zoom around the resonance
frequency ω0,x.
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TABLE 8.1: Results for a set of six gyroscopes.

Parameter
SFNL RMS noise ARW BI SFOT BOT
(ppm) (°/s) (°/

√
h) (°/h) (%) (°/s)

CL_old 259 0.035 0.148 0.317 0.032 0.013
CL_new 150 0.020 0.097 0.302 0.029 0.010
Improvement 32% 43% 34% 5% 10% 22%

(with an average close to zero). This improvement is achieved through the attenuation of the
offset (or low-frequency) signals on uy.

When comparing the PSD of OUT for the two sets of parameters – see Figures 8.8 and 8.9 –, we
can note a substantial reduction of the low-frequency components (up to 70 dB attenuation).
The noise level is also reduced in almost all the frequency range, especially around ω0,x. The
peak that appears at ω = 1 corresponds to the coupling force, which transfers part of the
oscillations from the drive mode to the sense one (parasitic mechanical coupling).

8.4.2 Global Performance Indicators

The same design approach is applied to six different gyroscopes of the same family. These
gyroscopes are then placed on a rotating table in a temperature-controlled chamber to perform
some characterization tests. These tests consist in varying the temperature from −40 °C up to
85 °C. For each temperature, the scale factor and the bias are measured. Thus, SFOT and BOT
can be computed. The SFNL, the RMS noise and the Allan variance, which defines the ARW
and the BI, are measured at room temperature.

The average results are presented in Table 8.1, where we can observe a significant improve-
ment of more than 30% on the SFNL, the RMS noise, and the ARW. These parameters are
mainly linked to the linear behavior of the sensor (SFNL) and the noise on the signal OUT.
As discussed earlier, these aspects are greatly enhanced with CL_new. Moreover, although
the (more) modest performance improvement on the SFOT and BOT, our approach demon-
strates to be as robust as the established one for temperature changes. Regarding the BI, the
performance of both approaches are similar.

8.5 Summary

In this chapter, a new method for designing the electronic filter of an EM-Σ∆ feedback was
presented. This approach is based on the H∞ synthesis. The choice of an adequate H∞
criterion is one of the crucial points of theH∞ synthesis. Then, we propose anH∞ criterion
that is suited for any EM-Σ∆ architecture, regardless of the controller structure. The main
strength of this method is that the desired specifications are expressed through the weighting
functions, which can be adapted by the designer. Another crucial point is the computation of
the controller. Here, two cases arise: the unconstrained and the constrained cases. We focus
on the latter one, which represents most of the controllers in EM-Σ∆ feedbacks.

To illustrate the use of our method, we consider a given EM-Σ∆ architecture. A new electronic
filter is designed and compared to an established one for the same gyroscope. The flexibility
of our method allows us to better manage the nonlinearities of the relay, despite the controller
constraints, reflecting in a consistent improvement of the global performance of a set of
gyroscopes.
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FIGURE 8.7: Measures of the signal OUT for the two approaches.

FIGURE 8.8: PSD of the measures of the signal OUT for the two approaches.

FIGURE 8.9: PSD of the measures of the signal OUT for the two approaches.
Zoom around ω0,x.
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Chapter 9

Conclusions and Perspectives

In this document, we have developed systematic and flexible methods for the design of
controller(s) for MEMS gyroscopes under different (linear) architectures. The main obtained
results and contributions are summarized in the sequel, answering to most of the research
questions of Section 2.4 (page 53). All the questions could not find a complete answer, and
new interesting questions arised. Therefore, indications of future works are given in the
second part of this final chapter.

9.1 Summary of Results and Contributions

The first step to design a control system is to specify the desired closed-loop specifications.
For the case of the MEMS gyroscopes, defining these specifications is not trivial. Indeed, the
performance indicators of the device are based on the quality of the angular rate measure
and are not directly related to the behavior of the closed loop, which is only a constituting
part of the device. To cope with this issue, we proposed an LTI input-output framework
that allowed us to express the key performance indicators as frequency constraints on the
closed-loop transfers. This contribution is presented in Chapter 3, answers to the research
question (Q1) and is used to determine the closed-loop specifications for the design of MEMS
gyroscope controllers.

Two main families of control architectures were considered in this thesis: those based on the
complex envelope of the oscillating signals, called the envelope-based control architectures;
and those based on the oscillating signals themselves, called the direct control architectures.
The foremost advantage of the former one is that the complex envelope of oscillating signals
is constant in steady state, allowing the use of simple PI-like controllers to regulate the
amplitude and phase of the oscillating signals. Thanks to its simplicity, this solution has been
widely used in the industry. The main drawback is that nonlinear elements are introduced
in the closed-loop system, the different couplings (mechanical couplings between the drive
and sense modes, and coupling between the amplitude and phase loops or in-phase and
in-quadrature loops) and dependence on the environmental conditions are not considered.
Then, guarantees of stability and performance cannot be given a priori. On the other side,
with direct control architectures these aspects can be considered and formal guarantees of
stability and performance can be provided a priori. Here, the main challenges are: to provide
a systematic, flexible and accessible design method; and to demonstrate the implementability
of the solution.

The design of a direct controller was split into two parts. In Chapter 4, we considered the
case where the drive-mode resonance frequency ω0,x was constant over time and known,
corresponding to the research question (Q2). In this case, the standard H∞ synthesis was
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applied and different strategies with different complexities were considered (with one or
two degrees of freedom, SISO, MIMO and MIMO with explicit estimation of the Coriolis
force). The simulation results validated the proposed method. The systematicness, flexibility
and accessibility of the design method are provided by the H∞ synthesis and the use of
the weighting functions. Indeed, after an H∞ criterion is defined, engineers with basic
knowledge on classical control design methods can make adjustments on the weighting
functions, adapting theH∞ criterion to new specifications or (slightly) different models.

In practice, however, ω0,x varies (mainly due to temperature variations) and an external
mechanism (see [Mor21]) is required to keep track of ω0,x. The same mechanism generates
the excitation ωexc, which is equal to the estimate of ω0,x. In this case, instead of tracking a
sinusoidal reference signal, the control objective is to track a signal of the type

xre f
m (t) = Are f

x,m sin (φexc(t)) with φexc(t) =
∫ t

0
ωexc(τ)dτ + φ0

exc, (9.1)

where φ0
exc ∈ R and ωexc(t) ranges arbitrarily in the interval [ωexc,1, ωexc,2]. In Chapter 5, we

revealed that this new control objective can be expressed through a weighted L2 criterion
with a new class of LPV weighting functions, precisely describing xre f

m with a time-varying
excitation frequency. Therefore, standard LPV design methods were used to compute a
controller whose gains depend on ωexc, achieving the required control objective with guaran-
teed performance (e.g., γp-tracking), providing an answer to (Q3). Numerical simulations
confirmed these results.

In Chapter 6, we established a framework for the analysis of envelope-based control archi-
tectures and for the design of suited controllers, giving a response to the research question
(Q4). This framework relies on the so-called dynamic phasor modeling, which allows to
exactly describe the dynamic behavior of the complex envelopes of the oscillating signals.
Moreover, this framework allowed us to establish links between direct control architectures
and envelope-based one, revealing that the performance achieved with both approaches
are equivalent if the complex envelopes can be ideally measured. In practice, however, the
complex envelopes are measured through the synchronous demodulation. Then, the ideality
assumption does not hold and the performance of the direct control approaches happens to
be superior. Nevertheless, if the use of envelope-based architectures is required (because of
implementation constraints, for instance), we model the nonidealities of the synchronous
demodulation, such that we can design a controller that ensures, at least, the robust stability
of the closed-loop system.

The last part of the thesis was devoted to the digital implementation of the controllers. First,
we considered the implementation of a digital controller in a flexible platform. Because of
the better performance obtained with direct control architectures, we opted to implement
this architecture in the flexible platform. Then, in Chapter 7, we discussed how to adapt
the design method of Chapter 4 for the digital implementation of the controller, answering
to (Q5). We also proposed an extension of the H∞ synthesis for the particular case where
ω0,x and ωexc change very slowly in time. In this case, we took advantage of the particular
structure of the system, such that the design of a parameter-dependent controller can be
recast as a simple LTI control problem. This result, presented in Section 7.4, provides a simple
parametrization of the controller. The practical results with a real prototype demonstrated
the implementability of the direct control architectures. However, the high sensitivity of
the MEMS gyroscope to temperature variations points to the necessity of a (more accurate)
nonlinear modeling and the introduction of an external mechanism for the tracking of the
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drive-mode resonance frequency.

Finally, we also considered the particular EM-Σ∆ architecture of the Tronics’ platform, propos-
ing a new design method for the controller design. Also based on the H∞ synthesis, the
proposed method provides systematicness, flexibility and accessibility, giving an answer
to (Q6). Moreover, the practical results showed an improvement of up to 40% of some key
performance indicators. The proposed solution was embedded in a software and integrates
nowadays the production line of the industrial partner.

9.2 Future Works

During this thesis, several interesting questions arose and can lead to future works. Let us
classify them as immediate or short-term perspectives, and as medium to long-term ones.

9.2.1 Immediate or Short-Term Perspectives

Here, we can consider the immediate extensions of the presented results and implementation
of the other control strategies, as follows.

Integration of the direct control architecture with a resonance-frequency tracking mecha-
nism As widely discussed throughout this document, the direct control architecture re-
quires an additional mechanism to keep track of the drive-mode resonance frequency [Mor21],
providing then a complete solution for the control of MEMS gyroscopes. It is important to
keep in mind that the implementation of this mechanism and the update of the controller
in real time will require more computing power from the processor. Then, it is important
to optimize the implementation code (by code optimization and model reduction of the
dynamic systems) so that the controllers and the resonance-frequency tracking mechanism
can run in real time.

Implementation of the envelope-based control architectures We have chosen to imple-
ment the direct control architecture in Chapter 7. However, the same platform allows the
implementation of envelope-based control architectures. In this context, the controller can
operate with a much smaller sampling frequency, which demands much less computing
power. The integration with the resonance-frequency tracking mechanism may be easier
under this configuration.

Use of the new class of LPV weighting functions in other applications The solution
proposed in Chapter 5 is motivated by the MEMS gyroscope application, but can easily find
applications in other domains. For instance, the potential is very interesting in the control
of power converters connected to the grid, whose frequency varies around 50 Hz (or other
values).

H∞ synthesis for the EM-Σ∆ feedback of MEMS accelerometers The EM-Σ∆ feedback
architecture is also widely used for the control of MEMS accelerometers, where, instead
of compensating for sinusoidal signals, the control objective is to compensate for constant
(or low-frequency) signals: the linear acceleration of the device. Therefore, thanks to the
flexibility provided by the H∞ synthesis, the solution of Chapter 8 also applies to MEMS
accelerometers, constituting a unified approach for the design of EM-Σ∆ architectures.
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Dynamic-phasor modeling of the AGC+PLL control architecture In Chapter 2, we pre-
sented the AGC+PLL control architecture, which is widely used in the industry. One of the
issues of this architecture is that the couplings between the amplitude and phase/frequency
are not taken into account. The dynamic-phasor modeling proposed in Chapter 6 allows to
precisely model the nonlinear to-be-controlled plant under this configuration, including the
couplings between amplitude and phase/frequency. Since this model is supposed to be more
accurate, the performance of the closed-loop system can be improved.

9.2.2 Medium to Long-Term Perspectives

Other interesting perspectives can be envisaged for the medium to long term, opening the
doors for new challenges from the Control Theory as well as from the MEMS gyroscope point
of view.

Less conservative control design for phasor control with nonideal s2c In Section 6.5, we
propose a solution for the design of a phasor control that ensures a priori the stability of the
closed-loop system against the nonidealities of the s2c. In particular, to ensure the stability
against the time-varying matrix ∆ (φPh(t)), we considered the small gain theorem, which
is a very conservative solution. The same time-varying matrix could be more precisely
represented through weighting functions obtained by adequate multipliers, as the ones
proposed in [ACSKS19] or [AC21], providing a less conservative solution.

Extension of the dynamic phasor framework for nonlinear systems In Chapter 6, we
proposed a framework for the modeling and design of systems based on the so-called
dynamic phasor. We focused on the linear systems (LTI or LPV). However, we can imagine
to extend this results to a nonlinear framework.

LPV weighting functions for a wider class of signals At the end of Section 5.2.2, we
pointed to the possibility of extending the LPV weighting functions to a wider class of signals:
“periodic” signals that can be decomposed as a finite sum of “frequency-varying” sinusoidal
signals.

Use of nonlinear control architectures for MEMS gyroscopes In this work, we rather
focused on linear control techniques. However, the use of nonlinear elements can provide
some features that linear elements cannot. For instance, the self-oscillating AGC as well as the
AGC+PLL control architectures allow to track the drive-mode resonance frequency. This is not
possible with purely linear control architectures. The problem is that, in general, it is difficult
to provide guarantees of performance for a nonlinear closed-loop system. Nevertheless, some
recent works have been tackling this problem through the notion of incremental L2 gain, see,
for instance, [Hil13, SFH15, Wai18].

More accurate (nonlinear) model of the MEMS gyroscope Throughout this thesis, we
consider that the mechanical part of the MEMS gyroscope with actuation and instrumentation
circuits is modeled as a linear dynamic system. However, it is known that MEMS gyrosocopes
present plenty of nonlinear elements (nonlinear springs, nonlinear capacitances for actuation,
nonlinear capacitances for detection/instrumentation, etc.) [You11]. Even if these nonlinear
behaviors are rather weak, the specifications of high-performance may require these nonlinear
effects to be precisely modeled.
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Appendix of Chapter 2

A.1 Frequency-Domain Analysis of the Synchronous Demodula-
tions

Here, in complement to the description of the synchronous demodulation given in Sec-
tion 2.1.4, we make an analysis of the synchronous demodulation in the frequency domain.
We recall its block diagram in Figure A.1.

×

×

FLP

FLP

2 cos (ωexct)

−2 sin (ωexct)

sm

s1 sI f

s2 sQ f

FIGURE A.1: Block diagram of the synchronous demodulator.

We consider the signal sm(t) ∈ R of the form

sm(t) = sI(t) cos(ωexct)− sQ(t) sin(ωexct) (A.1)

with sI(t) ∈ R and sQ(t) ∈ R. With ωexc constant, we can analyze the spectrum of the signals
in each stage of the synchronous demodulator. Let the spectrum of sI and sQ be given by
F [sI ] and F [sQ]. For the sake of illustration, we consider the spectra presented in Figure A.2.
Moreover, sI and sQ are assumed to be bounded in frequency, that is, there exists a frequency
ωmax such that

∀|ω| ≥ ωmax, |F [sI ](jω)| = 0 and |F [sQ](jω)| = 0.

|F [sI ](jω)|

ω

ωmax−ωmax

ω

ωmax−ωmax

∣∣F [sQ](jω)
∣∣

FIGURE A.2: Spectrum of the signals sI and sQ.
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|F [sm](jω)|

ω

ωexc−ωexc ωexc + ωmaxωexc −ωmax−ωexc + ωmax−ωexc −ωmax

FIGURE A.3: Spectrum of the signals sI and sQ.

Based on (A.1), the spectrum of sm is given by

F [sm](jω) = F [sI(•) cos(ωexc•)− sQ(•) sin(ωexc•)](jω)

F [sm](jω) = F [sI(•) cos(ωexc•)](jω)−F [sQ(•) sin(ωexc•)](jω)

F [sm](jω) = 1
2 (F [sI ](jω− jωexc) +F [sI ](jω + jωexc)))

+ j
2 (F [sQ](jω− jωexc)−F [sQ](jω + jωexc)) ,

as illustrated in Figure A.3.

The spectra of signals s1 and s2 are then given by

F [s1](jω) = F [sI(•) (1 + cos(2ωexc•))− sQ(•) sin(2ωexc•)] (jω)

F [s1](jω) = F [sI ](jω) +F [sI ](jω + 2jωexc) +F [sI ](jω− 2jωexc)
+j (F [sQ](jω + 2jωexc)−F [sQ](jω− 2jωexc))

F [s2](jω) = F [−sI(•) sin(2ωexc•) + sQ(•) (1− cos(2ωexc•))] (jω)

F [s2](jω) = F [sQ](jω)−F [s2](jω + 2jωexc)−F [sQ](jω− 2jωexc)
−j (F [sI ](jω + 2jωexc)−F [sI ](jω− 2jωexc))

and illustrated in Figure A.4. Thus, it is clear that, if ωmax < ωexc, by filtering the high-
frequency components out through ideal low-pass filters FLP with cutoff frequency equal
to ωexc, F [sI f ] = F [sI ] and F [sQ f ] = F [sQ]. If the condition ωmax < ωexc does not hold,
then there is an overlap of the high and low-frequency terms, and F [sI f ] 6= F [sI ] and
F [sQ f ] 6= F [sQ].

|F [s1](jω)|

ω

2ωexcωmax 2ωexc + ωmax2ωexc −ωmax−2ωexc−2ωexc −ωmax
|F [s2](jω)|

ω

2ωexcωmax 2ωexc + ωmax2ωexc −ωmax−2ωexc−2ωexc −ωmax

FIGURE A.4: Spectrum of the signals s1 and s2.

A.2 On the Mechanical Model of the MEMS Gyroscope with En-
dogenous Forces

When the Coriolis and coupling forces are properly considered as endogenous signals, the
mechanical part of the MEMS gyroscope (see (2.35)) is modeled as the linear time-varying
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system (LTV) Gmech,Ωz , which reads as

Gmech,Ωz :





[
q̇(t)
q̈(t)

]
=

[
0 I

−m−1k −m−1
(

d− C̃Cor (Ωz(t))
)
] [

q(t)
q̇(t)

]
+

[
0
I

]
F(t)

q(t) =
[
I 0

] [q(t)
q̇(t)

] (A.2)

with q = col (x, y), F = col
(

Fx, Fy
)
, m = diag (m, m), d =

[
dxx dxy
dyx dyy

]
, k =

[
kxx kxy
kyx kyy

]
and

C̃Cor (Ωz(t)) = Ωz(t)
[

0 2m
−2m 0

]
.

If we want to include the actuation and instrumentation gains, we have

GΩz :





[
q̇(t)
q̈(t)

]
=

[
0 I

−m−1k −m−1
(

d− C̃Cor (Ωz(t))
)
] [

q(t)
q̇(t)

]
+

[
0

kin

]
u(t)

qm(t) =
[
kout 0

] [q(t)
q̇(t)

] (A.3)

with qm = col (xm, ym), u = col
(
ux, uy

)
, and the actuation and instrumentation gains,

respectively kin = diag
(
kin,x, kin,y

)
and kout = diag

(
kout,x, kout,y

)
.

Finally, GΩz can be rewritten as the interconnection of the LTI system G

G :





[
q̇(t)
q̈(t)

]
=

[
0 I

−m−1k −m−1d

] [
q(t)
q̇(t)

]
+

[
0

kin

]
(u(t) + uCor(t))

qm(t) =
[
kout 0

] [q(t)
q̇(t)

] (A.4)

with uCor(t) = CCor (Ωz(t)) qm(t) and CCor (Ωz(t)) = k−1
in C̃Cor (Ωz(t)) k−1

out, which reads as

CCor (Ωz(t)) = 2mΩz(t)

[
0 1

kin,xkout,y
−1

kin,ykout,x
0

]
. (A.5)
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Appendix of Chapter 3

B.1 Noiseless Analysis

Here, we consider only the contributions of xre f
m , dCor,x and dCor,y on the output signals of

interest xm, ym and ûCor,y:




xm(jω)
ym(jω)

ûCor,y(jω)


 =




T
xre f

m →xm
(jω) TdCor,x→xm

(jω) TdCor,y→xm
(jω)

T
xre f

m →ym
(jω) TdCor,x→ym

(jω) TdCor,y→ym
(jω)

T
xre f

m →ûCor,y
(jω) TdCor,x→ûCor,y

(jω) TdCor,y→ûCor,y
(jω)







xre f
m (jω)

dCor,x(jω)
dCor,y(jω)


 . (B.1)

B.1.1 Input Signals

The reference signal xre f
m is given by (see (3.5))

xre f
m (t) = Are f

x,m sin (ωexct) , (B.2)

or, in the frequency domain1,

xre f
m (jω) = jAre f

x,m
δ(jω + jωexc)− δ(jω− jωexc)

2
(B.3)

with δ being the Dirac delta function.

In its turn, the signal dCor,x, disturbing the drive mode, is given by (see (3.9))

dCor,x(t) = kux Ay,mΩz(t) cos (ωexct) , (B.4)

1We recall that 2 cos (ωexct) = ejωexct + e−jωexct and the Fourier transform of ejωexct is given by

F
[
ejωexc•

]
(jω) = 2πδ (jω− jωexc) .
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where Ay,m ∈
[
0, ε̌y Are f

x,m

]
and kux = 2mωexc

kout,ykin,x
. In the frequency domain, it can be rewritten as2

dCor,x(jω) = kux Ay,m ·Ωz(•) ∗
(

δ(• − jωexc) + δ(•+ jωexc)

2

)
(jω), (B.5)

where ∗ denotes the convolution product. Then, by developing the previous expression, we
obtain

dCor,x(jω) = kux Ay,m

(
Ωz(jω− jωexc) + Ωz(jω + jωexc)

2

)
. (B.6)

Finally, the signal dCor,y, acting on the sense mode, is given by (see (3.10))

dCor,y(t) =
kSF Ax,m

Are f
x,m

Ωz(t) cos (ωexct) , (B.7)

where Ax,m ∈
[
(1− ε̌x) Are f

x,m, (1 + ε̌x) Are f
x,m

]
and kSF =

−2mAre f
x,mωexc

kout,ykin,y
. In the frequency domain,

(B.7) is written as

dCor,y(jω) =
kSF Ax,m

Are f
x,m

·Ωz(•) ∗
(

δ(• − jωexc) + δ(•+ jωexc)

2

)
(jω). (B.8)

Hence, we obtain

dCor,y(jω) =
kSF Ax,m

Are f
x,m

(
Ωz(jω− jωexc) + Ωz(jω + jωexc)

2

)
. (B.9)

B.1.2 Output Signals

We can now determine the output signals of interest. From (B.1) and the expression of the
input signals,

xm(jω) = Are f
x,m · Txre f

m →xm
(jω)

(
δ(jω−jωexc)−δ(jω+jωexc)

j2

)

+kux Ay,m · TdCor,x→xm(jω)
(

Ωz(jω−jωexc)+Ωz(jω+jωexc)
2

)

+ kSF Ax,m

Are f
x,m
· TdCor,y→xm(jω)

(
Ωz(jω−jωexc)+Ωz(jω+jωexc)

2

) (B.10)

or, equivalently,

xm(jω) = −Are f
x,m=

(
T

xre f
m →xm

(jωexc)
)

+kux Ay,m · TdCor,x→xm(jω)
(

Ωz(jω−jωexc)+Ωz(jω+jωexc)
2

)

+ kSF Ax,m

Are f
x,m
· TdCor,y→xm(jω)

(
Ωz(jω−jωexc)+Ωz(jω+jωexc)

2

) (B.11)

2Recalling that for two given signals g1 and g2,

F [g1 · g2] (jω) =
1

2π
F [g1] ∗ F [g2] (jω).
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The signal ym is given, in the frequency domain, by

ym(jω) =

(
T

xre f
m →ym

(jω) · xre f
m (jω) + TdCor,x→ym

(jω) · dCor,x(jω) + TdCor,y→ym
(jω) · dCor,y(jω)

)
.

(B.12)
By replacing the input signal expressions into the above equation, we obtain

ym(jω) = jAre f
x,m · Txre f

m →ym
(jω)

(
δ(jω + jωexc)− δ(jω− jωexc)

2

)

+kux Ay,m · TdCor,x→ym(jω)

(
Ωz(jω− jωexc) + Ωz(jω + jωexc)

2

)

+
kSF Ax,m

Are f
x,m

· TdCor,y→ym(jω)

(
Ωz(jω− jωexc) + Ωz(jω + jωexc)

2

)
.

(B.13)

Similarly, the signal ûCor,y is given by

ûCor,y(jω) = jAre f
x,m · Txre f

m →ûCor,y
(jω)

(
δ(jω + jωexc)− δ(jω− jωexc)

2

)

+kux Ay,m · TdCor,x→ûCor,y(jω)

(
Ωz(jω− jωexc) + Ωz(jω + jωexc)

2

)

+
kSF Ax,m

Are f
x,m

· TdCor,y→ûCor,y(jω)

(
Ωz(jω− jωexc) + Ωz(jω + jωexc)

2

)
.

(B.14)

B.1.3 Applying the Synchronous Demodulation

To obtain sI f , the synchronous demodulation is applied to ûCor,y, i.e.,

sI f (jω) = FLP(jω) ·
(
ûCor,y(•) ∗ (δ(• − jωexc) + δ(•+ jωexc))

)
(jω) (B.15)

sI f (jω) = FLP(jω)
(
ûCor,y(jω− jωexc) + ûCor,y(jω + jωexc)

)
︸ ︷︷ ︸

F [s1](jω)

. (B.16)

Now, we replace the expression of ûCor,y (see (B.14)) into the above equation, obtaining

2sI f (jω) = FLP(jω)
(

jAre f
x,m · Txre f

m →ûCor,y
(jω− jωexc) (δ(jω)− δ(jω− 2jωexc))

+jAre f
x,m · Txre f

m →ûCor,y
(jω + jωexc) (δ(jω + 2jωexc)− δ(jω))

+kux Ay,m · TdCor,x→ûCor,y(jω− jωexc) (Ωz(jω− 2jωexc) + Ωz(jω))

+ kux Ax,m · TdCor,x→ûCor,y(jω + jωexc) (Ωz(jω) + Ωz(jω + 2jωexc))

+ kSF Ax,m

Are f
x,m
· TdCor,y→ûCor,y(jω− jωexc) (Ωz(jω− 2jωexc) + Ωz(jω))

+ kSF Ax,m

Are f
x,m
· TdCor,y→ûCor,y(jω + jωexc) (Ωz(jω) + Ωz(jω + 2jωexc))

)
.

(B.17)
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Since FLP eliminates the high-frequency terms of s1 (by Assumption 3.1, F [sI f ](jω) = 0 for
|ω| ≥ ωexc) and, by Assumption 3.2, the bandwidth of Ωz is smaller than ωexc, we obtain

2sI f (jω) = jAre f
x,m

(
T

xre f
m →ûCor,y

(jω− jωexc)− T
xre f

m →ûCor,y
(jω + jωexc)

)
δ(jω)

+kux Ay,m

(
TdCor,x→ûCor,y(jω− jωexc) + TdCor,x→ûCor,y

(jω + jωexc)
)

Ωz(jω)

+ kSF Ax,m

Are f
x,m

(
TdCor,y→ûCor,y

(jω− jωexc) + TdCor,y→ûCor,y
(jω + jωexc)

)
Ωz(jω).

(B.18)
Please note that the signal sI f can be slit into two terms:

sI f (jω) = sL
I f (jω) + s0

I f (jω), (B.19)

where

sL
I f (jω) =

(
kux Ay,m

2

(
TdCor,x→ûCor,y(jω− jωexc) + TdCor,x→ûCor,y

(jω + jωexc)
)

+ kSF Ax,m

2Are f
x,m

(
TdCor,y→ûCor,y(jω− jωexc) + TdCor,y→ûCor,y

(jω + jωexc)
))

Ωz(jω)

(B.20)
and

s0
I f (jω) =

jAre f
x,m

2

(
T

xre f
m →ûCor,y

(jω− jωexc)− T
xre f

m →ûCor,y
(jω + jωexc)

)
δ(jω) (B.21)

s0
I f (jω) =

Are f
x,m

j2

(
T

xre f
m →ûCor,y

(jωexc)− T
xre f

m →ûCor,y
(−jωexc)

)
δ(jω) (B.22)

s0
I f (jω) = Are f

x,m · =
(

T
xre f

m →ûCor,y
(jωexc)

)
δ(jω). (B.23)

Finally, we can rewrite (B.20) as

sL
I f (jω) = kSF · Hgyro(jω)Ωz(jω),

defining

Hgyro(jω) =
kux Ay,m

2kSF

(
TdCor,x→ûCor,y(jω− jωexc) + TdCor,x→ûCor,y

(jω + jωexc)
)

+ Ax,m

2Are f
x,m

(
TdCor,y→ûCor,y(jω− jωexc) + TdCor,y→ûCor,y

(jω + jωexc)
) (B.24)

For the sake of completion, we can also compute the quadrature term sQ f through the same
procedure. To obtain sQ f , the synchronous demodulation is applied to ûCor,y, i.e.,

sQ f (jω) = jFLP(jω) ·
(
ûCor,y(•) ∗ (δ(• − jωexc)− δ(•+ jωexc))

)
(jω) (B.25)

sQ f (jω) = jFLP(jω)
(
ûCor,y(jω− jωexc)− ûCor,y(jω + jωexc)

)
︸ ︷︷ ︸

F [s2](jω)

. (B.26)
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Then, we replace ûCor,y (see (B.14)) into the above equation, obtaining

2sQ f (jω) = FLP(jω)
(
−Are f

x,m · Txre f
m →ûCor,y

(jω− jωexc) (δ(jω)− δ(jω− 2jωexc))

+Are f
x,m · Txre f

m →ûCor,y
(jω + jωexc) (δ(jω + 2jωexc)− δ(jω))

+jkux Ay,m · TdCor,x→ûCor,y(jω− jωexc) (Ωz(jω− 2jωexc) + Ωz(jω))

−j kux Ax,m · TdCor,x→ûCor,y(jω + jωexc) (Ωz(jω) + Ωz(jω + 2jωexc))

+j kSF Ax,m

Are f
x,m
· TdCor,y→ûCor,y(jω− jωexc) (Ωz(jω− 2jωexc) + Ωz(jω))

−j kSF Ax,m

Are f
x,m
· TdCor,y→ûCor,y(jω + jωexc) (Ωz(jω) + Ωz(jω + 2jωexc))

)
.

(B.27)

Since FLP eliminates the high-frequency terms (|ω| ≥ ωexc) of s2, we obtain

2sQ f (jω) = −Are f
x,m ·

(
T

xre f
m →ûCor,y

(jωexc) + T
xre f

m →ûCor,y
(−jωexc)

)
δ(jω)

+jkux Ay,m ·
(

TdCor,x→ûCor,y(jω− jωexc)− TdCor,x→ûCor,y(jω + jωexc)
)

Ωz(jω)

+j kSF Ax,m

Are f
x,m
·
(

TdCor,y→ûCor,y(jω− jωexc)− TdCor,y→ûCor,y(jω + jωexc)
)

Ωz(jω).

(B.28)
sQ f (jω) = −Are f

x,m · <
(

T
xre f

m →ûCor,y
(jωexc)

)
δ(jω)

+j kux Ay,m
2 ·

(
TdCor,x→ûCor,y(jω− jωexc)− TdCor,x→ûCor,y(jω + jωexc)

)
Ωz(jω)

+j kSF Ax,m

2Are f
x,m
·
(

TdCor,y→ûCor,y(jω− jωexc)− TdCor,y→ûCor,y(jω + jωexc)
)

Ωz(jω).

(B.29)
For the particular case where Ωz(t) ≡ Ω∞

z , sQ f is a constant given by

sQ f = −Are f
x,m · <

(
T

xre f
m →ûCor,y

(jωexc)
)

+kux Ay,m · =
(

TdCor,x→ûCor,y(jωexc)
)

Ω∞
z

+ kSF Ax,m

Are f
x,m
· =
(

TdCor,y→ûCor,y(jωexc)
)

Ω∞
z .

(B.30)

B.1.4 Compensating for the Scale Factor and Bias

We now apply the compensation function fcomp of (2.45) to (B.19), obtaining

Ω̂z(jω) = ΩL
z (jω) + Ω0

z(jω) (B.31)

with ΩL
z (jω) = kSF/k̂SF · Hgyro(jω)Ωz(jω) and Ω0

z(jω) = εZROδ(jω). In this case, the error
on the scale factor, εSF, is given by

εSF =
kSF

k̂SF
· Hgyro(0)− 1 (B.32)

and the residual bias error, εZRO, is given by

εZRO =
Are f

x,m=
(

T
xre f

m →ûCor,y
(jωexc)

)
− k̂ZRO

k̂SF
. (B.33)
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With the particular case of ω = 0, we obtain the static gain of Hgyro (see (B.24)), which is
given by

Hgyro(0) =
kux Ay,m

2kSF

(
TdCor,x→ûCor,y(−jωexc) + TdCor,x→ûCor,y(jωexc)

)

+ Ax,m

2Are f
x,m

(
TdCor,y→ûCor,y(−jωexc) + TdCor,y→ûCor,y(jωexc)

) (B.34)

Hgyro(0) =
kux Ay,m

kSF
<
(

TdCor,x→ûCor,y(jωexc)
)
+

Ax,m

Are f
x,m
<
(

TdCor,y→ûCor,y(jωexc)
)

. (B.35)

B.1.5 Analysis of the SFNL

The SFNL is defined as

SFNL , max
Ωz∈[−ΩFS

z , ΩFS
z ]




∣∣∣Ω̂z −Ωz

∣∣∣
ΩFS

z


 . (B.36)

By replacing Ω̂z by kSF Hgyro(0)Ωz/k̂SF (see (B.31) with εZRO = 0), we obtain

SFNL = max
Ωz∈[−ΩFS

z , ΩFS
z ]

(
|Ωz|
ΩFS

z
·
∣∣∣∣∣
kSF Hgyro(0)− k̂SF

k̂SF

∣∣∣∣∣

)
. (B.37)

Since the scale factor error εSF is defined as kSF Hgyro(0)−k̂SF

k̂SF
(see (B.32)) and |Ωz|/ΩFS

z ≤ 1, we
can compute an upper bound on the SFNL, as follows:

SFNL ≤ max
Ωz∈[−ΩFS

z , ΩFS
z ]

(|εSF|) . (B.38)

To compute this upper bound, let us consider k̂SF = kSF and develop the expression of the
scale factor relative error εSF (see (B.32) and (B.35)). Then, we obtain

εSF =
kux Ay,m

kSF
<
(

TdCor,x→ûCor,y(jωexc)
)
+

Ax,m

Are f
x,m
<
(

TdCor,y→ûCor,y(jωexc)
)
− 1. (B.39)

We define εest , dCor,y − ûCor,y. Then, since TdCor,y→εest = 1− TdCor,y→ûCor,y and TdCor,x→εest =
−TdCor,x→ûCor,y , we can rewrite εSF as

εSF =
−kux Ay,m

kSF
<
(
TdCor,x→εest(jωexc)

)
− Ax,m

Are f
x,m
<
(

TdCor,y→εest(jωexc)
)
− 1 +

Ax,m

Are f
x,m

. (B.40)

Finally, if the objectives of reference tracking (ε̌x � 1 =⇒ Ax,m ≈ Are f
x,m), disturbance

rejection (ε̌y � 1 =⇒ Ay,m � 1) and
∣∣TdCor,x→εest(jωexc)

∣∣ � 1 are achieved, we can
approximate the absolute value of εSF as

|εSF| ≈
∣∣∣∣∣<
(

TdCor,y→εest(jωexc)
)
+ 1− Ax,m

Are f
x,m

∣∣∣∣∣ (B.41)
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and define the upper bound

|εSF| ≤
∣∣∣TdCor,y→εest(jωexc)

∣∣∣+ ε̌x. (B.42)

B.1.6 Analysis of the Bandwidth

The bandwidth is defined as the frequency ωB such that

∀|ω| < ωB,

∣∣∣∣∣1−
Hgyro(jω)

Hgyro(0)

∣∣∣∣∣ < 1−
√

2
2

(B.43)

with Hgyro given in (B.24). Then, we replace, in Hgyro, TdCor,x→ûCor,y by −TdCor,x→εest and
TdCor,y→ûCor,y by 1− TdCor,y→εest , obtaining

Hgyro(jω) =
−kux Ay,m

2kSF

(
TdCor,x→εest(jω− jωexc) + TdCor,x→εest(jω + jωexc)

)

+ Ax,m

2Are f
x,m

(
2− TdCor,y→εest(jω− jωexc)− TdCor,y→εest(jω + jωexc)

)
.

(B.44)

Now, if we have a good disturbance rejection (i.e., Ay,m → 0) and
∣∣TdCor,x→εest(jω)

∣∣ � 1, we
can approximate Hgyro as

Hgyro(jω) =
Ax,m

2Are f
x,m

(
2− TdCor,y→εest(jω− jωexc)− TdCor,y→εest(jω + jωexc)

)
. (B.45)

Hence, the term on the left-hand side of (B.43) can be given by

∣∣∣∣∣1−
Hgyro(jω)

Hgyro(0)

∣∣∣∣∣ =

∣∣∣∣∣∣
1−

2− TdCor,y→εest(jω− jωexc)− TdCor,y→εest(jω + jωexc)

2− 2<
(

TdCor,y→εest(jωexc)
)

∣∣∣∣∣∣
. (B.46)

Since <
(

TdCor,y→εest(jωexc)
)
≤
∣∣∣TdCor,y→εest(jωexc)

∣∣∣ < (1− λSFNL)kSFNL � 1, we can approxi-
mate

∣∣∣∣∣1−
Hgyro(jω)

Hgyro(0)

∣∣∣∣∣ ≈
∣∣∣∣∣1−

2− TdCor,y→εest(jω− jωexc)− TdCor,y→εest(jω + jωexc)

2

∣∣∣∣∣ (B.47)

and define an upper bound,

∀ω ∈ R,

∣∣∣∣∣1−
Hgyro(jω)

Hgyro(0)

∣∣∣∣∣ ≤
∣∣∣∣∣
TdCor,y→εest(jω− jωexc)

2

∣∣∣∣∣+
∣∣∣∣∣
TdCor,y→εest(jω + jωexc)

2

∣∣∣∣∣ .

Then, given ωdes
B ∈ R+, if

∀|ω| < ωdes
B ,

∣∣∣∣∣
TdCor,y→εest(jω− jωexc)

2

∣∣∣∣∣+
∣∣∣∣∣
TdCor,y→εest(jω + jωexc)

2

∣∣∣∣∣ < 1−
√

2
2

, (B.48)
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the condition (B.43) holds with ωB ≥ ωdes
B . Now, we consider the contributions of the two

terms of the left-hand side to be equal, such that the

∀|ω| < ωdes
B ,

∣∣∣TdCor,y→εest(jω− jωexc)
∣∣∣ < 1−

√
2

2
and

∣∣∣TdCor,y→εest(jω + jωexc)
∣∣∣ < 1−

√
2

2
(B.49)

implies (B.48) and also (B.43).

Finally, (B.49) can be rewritten as

∀|ω| ∈ [ωexc −ωdes
B , ωexc + ωdes

B ],
∣∣∣TdCor,y→εest(jω)

∣∣∣ < 2−
√

2
2

≈ 0.2929, , (B.50)

defining a condition that implies a bandwidth ωB larger than a given ωdes
B .

B.2 Analysis with Respect to Noise

Since ex and ey are assumed to be uncorrelated and with PSD equal to 1 (see Assumption 3.3,
page 58), we can write the power spectral density of ûCor,y as

SûCor,y(ω) =
∣∣∣Tex→ûCor,y

(jω)
∣∣∣
2
+
∣∣∣Tey→ûCor,y

(jω)
∣∣∣
2

. (B.51)

If the controller is such that the specification (S4) (page 61) is verified, the ûCor,y is a band-pass
signal centered at ωexc and of bandwidth smaller than 2ωexc. Hence, after the synchronous
demodulation, we obtain [Lat98, Sec. 11.5]

SsI f (ω) = |FLP(jω)|2
(
SûCor,y(ω + ωexc) + SûCor,y(ω−ωexc)

)
, (B.52)

which, considering FLP as an ideal low-pass filter with cutoff frequency ωc = ωexc, is equiva-
lent to

SsI f (ω) =

{ SûCor,y(ω + ωexc) + SûCor,y(ω−ωexc), ∀|ω| < ωexc

0, otherwise.
(B.53)

We can now apply the compensation function fcomp (with k̂ZRO = kZRO), which gives

Ω̂z(t) = sI f (t)/k̂SF. (B.54)

Finally, the PSD of Ω̂z is given by

SΩ̂z
(ω) =

SsI f (ω)
(

k̂SF

)2 (B.55)

with SsI f (ω) given in (B.53).



239

Appendix C

Appendix of Chapter 4

C.1 Families of Weighting Functions

C.1.1 Amplification Weighting Function

This type of weighting function amplifies the signal around the frequency ω0 and is defined
as

Wamp (Wmax, Wω, ωmin, ωmax, s) ,
s2 + αs + ωminωmax

s2 + α/Wmax · s + ωminωmax
(C.1)

with

α = (ωmax −ωmin)Wmax

√
W2

ω − 1
W2

max − 1
,

where the parameters are represented in Figure C.1 et ω0 =
√

ωminωmax [SF09]. Gains must
be given in absolute value, not in decibel.

Frequency (in rad/s)
ω0ωmin ωmax

0

M
ag

ni
tu

de
(i

n
dB

)

Wmax

Wω

FIGURE C.1: Magnitude frequency response of
Wamp (Wmax, Wω, ωmin, ωmax, s).

C.1.2 Attenuation Weighting Function

This type of weighting function attenuates the signal around the frequency ω0 and is defined
as

Watt (Wmin, Wω, ωmin, ωmax, s) ,
s2 + βWmins + ωminωmax

s2 + βs + ωminωmax
, (C.2)
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with

β =
ωmax −ωmin

Wω

√
1−W2

ω

1−W2
min

,

where the parameters are represented in Figure C.2 and ω0 =
√

ωminωmax [SF09]. Gains must
be given in absolute value, not in decibel.

Frequency (in rad/s)
ω0ωmin ωmax

0

M
ag

ni
tu

de
(i

n
dB

)

Wmin

Wω

FIGURE C.2: Magnitude frequency response of
Watt (Wmin, Wω, ωmin, ωmax, s).

C.2 Numerical Values of Example 4.2 – 1DoF Control of the Drive
Mode

Normalized to-be-controlled plant (with Ωz = 0)

Gx(s) =
2 · 10−5

s2 + 1 · 10−5s + 1

Weighting functions

Wr(s) = ∆M ·Wamp

(
(λSFNLkSFNL∆M)−1 , 0.25 (λSFNLkSFNL∆M)−1 , ωmε, ω−1

mε , s
)

Wd(s) = k−1
x1

Wε(s) = 1

Wu(s) = 2500 ·Watt

(
4 · 10−9, 2.8 · 10−4, 0.5, 2, s

)

with ∆M = 0.5, kSFNL = 500 · 10−6, λSFNL = 0.5, ωmε =
ωexc−0.13

ωexc
and kx1 = 0.01.

Controller

Kx(s) =
0.49575(s− 0.998)(s + 1.867 · 10−4)(s + 5357)(s2 + 8.739 · 10−6s + 1)
(s + 740.4)(s + 0.9991)(s2 + 0.01698s + 1)(s2 + 8.987 · 10−7s + 1)
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C.3 Numerical Values of Example 4.3 – 2DoF Control of the Drive
Mode

Normalized to-be-controlled plant (with Ωz = 0)

Gx(s) =
2 · 10−5

s2 + 1 · 10−5s + 1

Weighting functions

Wr(s) = 0.5 ·Wamp

(
2 (λSFNLkSFNL)

−1 , 0.5 (λSFNLkSFNL)
−1 , ωmε, ω−1

mε , s
)

Wd(s) = k−1
x1

Wn(s) = 1 · 104 ·Watt

(
1 · 10−4, 5 · 10−2, 0.5, 2, s

)

Wε(s) = 1

Wu(s) = 1200 ·Watt

(
5 · 10−8, 2 · 10−7, 0.9, 0.9−1, s

)

with kSFNL = 500 · 10−6, λSFNL = 0.5, ωmε =
ωexc−0.13

ωexc
and kx1 = 0.01.

Controller

Kx1(s) =
0.010325(s+1.056·106)(s−1.025)(s+9.474·10−7)(s2+0.006461s+1)(s2+0.003543s+1)

(s+12.45)(s+1.037)(s2+0.105s+0.9308)(s2+0.007197s+1)(s2+0.105s+1.077)

Kx2(s) =
−1.0934·10−6(s+1.056·106)(s+29.93)(s−1.024)(s+0.03341)(s+9.474·10−7)(s2+0.007197s+1)

(s+12.45)(s+1.037)(s2+0.105s+0.9308)(s2+0.007197s+1)(s2+0.105s+1.077)

C.4 Numerical Values of Example 4.4 – 1DoF Control of the Sense
Mode

Normalized to-be-controlled plant (with Ωz = 0)

Gy(s) =
4.035 · 10−3

s2 + 1.004 · 10−4s + 1.009

Weighting functions

Wd(s) = ∆M ·Wamp

(
(λSFNLkSFNL∆M)−1, (0.2929∆M)−1, ωmε, ω−1

mε , s
)

Wn(s) = 180 ·Watt

(
5 · 10−5, 1 · 10−4, 0.92, 0.92−1, s

)

Wε(s) = 1

Wy(s) = 0.5

with ∆M = 0.5, kSFNL = 500 · 10−6, λSFNL = 0.5 and ωmε =
ωexc−ωB

ωexc
.
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Controller

Ky(s) =
6.284(s + 1670)(s− 0.9288)(s + 5.99 · 10−4)(s2 + 1.974 · 10−3s + 1.009)
(s + 0.9007)(s + 1101)(s2 + 2.963 · 10−5s + 1)(s2 + 0.3668s + 1.04)

C.5 Numerical Values of Example 4.5 – Multivariable Control (with
ûCor,y = −uy)

Normalized to-be-controlled plant (with Ωz = 0)

G(s) =




2·10−5

s2+1·10−5s+1
5.3302·10−19(s−2.864·109)

(s2+1·10−5s+1)(s2+1.004·10−4s+1.009)
8.2892·10−20(s−5.581·1010)

(s2+1·10−5s+1)(s2+1.004·10−4s+1.009)
4.035·10−3

s2+1.004·10−4s+1.009




Weighting functions

Wr1(s) = 0.5 ·Wamp

(
2(λSFNLkSFNL)

−1, 0.5(λSFNLkSFNL)
−1, ωmr1, ω−1

mr1, s
)

Wd1(s) = k−1
x1

Wd2(s) = 0.5 ·Wamp

(
2((1− λSFNL)kSFNL)

−1, 2/0.2929, ωmd2, ω−1
md2, s

)

Wn1(s) = 1000 ·Watt

(
1 · 10−4, 5 · 10−2, 0.5, 2

)

Wn2(s) = 200 ·Watt

(
5 · 10−5, 1 · 10−4, 0.92, 0.92−1, s

)

Wε1(s) = 1

Wε2(s) = 0.015

Wu1(s) = 250 ·Watt

(
5 · 10−7, 5 · 10−6, 0.9, 0.9−1 s

)

Wu2(s) = 0.5 (Wd2(s))
−1

West(s) = 1

with kSFNL = 500 · 10−6, λSFNL = 0.5, ωmr1 = ωexc−0.13
ωexc

, kx1 = 0.01 and ωmd2 = ωexc−ωB
ωexc

.

C.6 Numerical Values of Example 4.6 – Multivariable Control with
Joint Estimation

Normalized to-be-controlled plant (with Ωz = 0)

G(s) =




2·10−5

s2+1·10−5s+1
5.3302·10−19(s−2.864·109)

(s2+1·10−5s+1)(s2+1.004·10−4s+1.009)
8.2892·10−20(s−5.581·1010)

(s2+1·10−5s+1)(s2+1.004·10−4s+1.009)
4.035·10−3

s2+1.004·10−4s+1.009




Weighting functions

Wr1(s) = 0.5 ·Wamp

(
2(λSFNLkSFNL)

−1, 0.5(λSFNLkSFNL)
−1, ωmr1, ω−1

mr1, s
)

Wd1(s) = k−1
x1
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Wd2(s) = 0.5 ·Wamp

(
2/((1− λSFNL)kSFNL), 2/0.2929, ωmd2, ω−1

md2, s
)

Wn1(s) = 0.5

Wn2(s) = 200 ·Watt

(
5 · 10−5, 1 · 10−4, 0.9, 0.9−1, s

)

Wε1(s) = 1

Wε2(s) = 0.5

Wu1(s) = 5 ·Watt

(
1 · 10−4, 5 · 10−2, 0.5, 0.5−1 s

)

Wu2(s) = 25 ·Watt

(
4 · 10−8, 2 · 10−2, 0.5, 0.5−1 s

)

West(s) = 1

with kSFNL = 500 · 10−6, λSFNL = 0.5, ωmr1 = ωexc−0.13
ωexc

, kx1 = 0.01 and ωmd2 = ωexc−ωB
ωexc

.

C.7 Details of Section 4.4.1 – Quadratic Stability

Polytopic Model of the MEMS Gyroscope

The mechanical part of the MEMS gyroscopes can be modeled by Gmech,Ωz , see (A.2), recalled
below

Gmech,Ωz :





[
q̇(t)
q̈(t)

]
=

[
0 I

−m−1k −m−1
(

d− C̃Cor (Ωz(t))
)
] [

q(t)
q̇(t)

]
+

[
0
I

]
F(t)

q(t) =
[
I 0

] [q(t)
q̇(t)

] , (C.3)

where q = col (x, y), u = col
(
ux, uy

)
, F = col

(
Fx, Fy

)
, m = diag (m, m), d =

[
dxx dxy
dyx dyy

]
,

k =

[
kxx kxy
kyx kyy

]
and C̃Cor (Ωz(t)) = Ωz(t)

[
0 2m
−2m 0

]
.

The actuation and instrumentation circuitry can be model through the constant gains kin =
diag

(
kin,x, kin,y

)
and kout = diag

(
kout,x, kout,y

)
, such that the whole gyroscope is modeled by

GΩz = koutGmech,Ωz kin, admitting the polytopic state-space representation below

GΩz :
{

ẋG(t) = AG(Ωz(t))xG(t) + BGu(t)
qm(t) = CGxG(t)

, Ωz(t) ∈ [Ωz,1, Ωz,2] , (C.4)

where Ωz,1 = −ΩFS
z and Ωz,2 = ΩFS

z , xG = col (q, q̇), u = col
(
ux, uy

)
, qm = col (xm, ym),

AG(Ωz(t)) =

[
0 I

−m−1k −m−1
(

d− C̃Cor (Ωz(t))
)
]

, BG =

[
0

kin

]
and CG =

[
kout 0

]
.
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D.1 Numerical Values of the LPV Controller of Section 5.4

The LPV controller obtained in Section 5.4 (page 132) is of the form (see (5.51), page 131)

KΩr :
{

ẋK(t) = AK(ωr(t))xK(t) + BK(ωr(t))yP(t)
uP(t) = CK(ωr(t))xK(t) + DK(ωr(t))yP(t)

, ωr(·) ∈ Ωr [ωr,1, ωr,2] (D.1)

with [
AK(ωr(t)) BK(ωr(t))
CK(ωr(t)) DK(ωr(t))

]
=

2

∑
i=1

αi(ωr(t))
[

AK,i BK,i
CK,i DK,i

]

with
[

AK,i BK,i
CK,i DK,i

]
=

[
AK(ωr,i) BK(ωr,i)
CK(ωr,i) DK(ωr,i)

]
, ∑2

i=1 αi(ωr(t)) = 1 and αi(ωr(t)) ≥ 0. The

matrices are given below:

AK(ωr,1) =




−0.03095 −0.969 −0.0002697 0.0005705 −0.0005218
1.031 −0.03106 0.0002546 −0.0005282 0.0005739

−6.641 · 10−6 8.025 · 10−6 −1.238 −0.001521 −0.000264
0.1161 −0.1161 5.017 · 10−5 −0.002144 −0.9977
−0.1166 0.1166 −0.001422 1.002 −0.002157

−9.316 · 10−5 9.945 · 10−5 0.4753 4.654 · 10−5 0.000114
−3.647 · 10−5 3.646 · 10−5 0.0002238 2.656 · 10−7 7.769 · 10−8

−0.0009594 0.0009593 −8.026 · 10−5 −9.143 · 10−6 −4.387 · 10−6

0.01268 −0.01268 −0.03173 −0.0002446 0.0002406
−0.5326 0.5326 0.1262 0.01051 −0.009988

. . .

. . .

0.001343 −0.0001544 −0.004868 −0.0007754 0.000948
−0.001398 0.0003438 0.01076 0.000874 2.672 · 10−5

−6.489 0.07888 0.1241 7.803 100.7
−0.005895 −0.001187 −0.03851 0.005812 0.06188
−0.0008584 0.001271 0.0386 0.002435 0.04475
−2.354 0.03897 0.05923 3.345 43.17

−0.0001858 −0.0005242 −1.013 −0.01063 −0.1366
0.0002721 0.9857 −0.4374 −0.01651 −0.1931

0.2057 −0.01592 −0.322 −0.6556 −8.555
0.3979 0.3498 11.3 1.124 −109.1
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BK(ωr,1) =




17.71 −11.58
−25.13 11.58
0.07529 −9.833 · 10−6

48.42 0.2135
−48.36 −0.2141
0.2424 −2.245 · 10−5

16.47 −1.228 · 10−6

550.7 −3.231 · 10−5

407.5 −3.5 · 10−6

−1.44 · 104 0.0002209




CK(ωr,1) =
[
−5.852 · 10−5 −4.19 · 10−5 −10.28 −0.006363 −0.00452 . . .

. . . −4.365 0.01021 0.01449 0.00382 0.0005427
]

DK(ωr,1) =
[
0 0

]

AK(ωr,2) =




−0.03095 −0.969 −0.0002696 0.0005702 −0.000528
1.031 −0.03106 0.0002546 −0.000522 0.0005741

−6.643 · 10−6 8.029 · 10−6 −1.238 −0.001521 −0.0002638
0.1161 −0.1161 5.031 · 10−5 −0.002144 −0.998
−0.1166 0.1166 −0.001422 1.002 −0.002157

−9.316 · 10−5 9.945 · 10−5 0.4753 4.649 · 10−5 0.0001141
−3.647 · 10−5 3.646 · 10−5 0.0002238 3.513 · 10−7 3.525 · 10−8

−0.0009594 0.0009593 −8.021 · 10−5 −9.163 · 10−6 −4.375 · 10−6

0.01268 −0.01268 −0.03173 −0.0002395 0.000238
−0.5326 0.5327 0.1262 0.01052 −0.009993

. . .

. . .

0.001339 −0.000288 −0.009038 −0.0007909 0.0009551
−0.001402 0.0002247 0.007039 0.0008602 3.31 · 10−5

−6.489 0.07889 0.1242 7.803 100.7
−0.005895 −0.001187 −0.03849 0.005812 0.06187
−0.0008588 0.001261 0.03828 0.002435 0.04474
−2.354 0.03897 0.05905 3.345 43.17

−0.0001847 −0.00048 −1.012 −0.01062 −0.1366
0.0002712 0.986 −0.4377 −0.01651 −0.1931

0.2058 −0.01308 −0.2395 −0.6553 −8.556
0.3981 0.3475 11.49 1.125 −109.1




BK(ωr,2) =




22.96 −11.58
−20.45 11.58
−0.06965 −9.833 · 10−6

48.39 0.2135
−47.96 −0.2141
0.4613 −2.245 · 10−5

14.73 −1.228 · 10−6

551.2 −3.231 · 10−5

304.6 −3.5 · 10−6

−1.463 · 104 0.0002209
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CK(ωr,2) =
[
−5.852 · 10−5 −4.19 · 10−5 −10.28 −0.006363 −0.00452 . . .

. . . −4.365 0.01021 0.01449 0.00382 0.0005427
]

DK(ωr,2) =
[
0 0

]
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E.1 Proof of Theorem 6.4

Proof. Please note that, by Definition 5.9 (page 130), for a given LPV system GΘ (see (6.10),
page 145) and γ > 0,

∥∥GΘ
∥∥q

i2 < γ if and only if, for all θ ∈ Θ, there exists a single symmetric
matrix X � 0 such that (dropping the time dependence)




A(θ)>X + XA(θ) XB(θ) C(θ)>

B(θ)>X −γI D(θ)>

C(θ) D(θ) −γI


 ≺ 0. (E.1)

In its turn, being GΘ,ΩPh
dp the DPM of GΘ for all ωPh ∈ ΩPh [ωPh,1, ωPh,2],

∥∥∥GΘ,ΩPh
dp

∥∥∥
q

i2
< γ if

and only if, for all θ ∈ Θ and for all ωPh ∈ ΩPh [ωPh,1, ωPh,2], there exists a single symmetric
matrix X

˜
� 0 such that




Adp(θ, ωPh)
>X˜ + X˜Adp(θ, ωPh) X˜Bdp(θ) Cdp(θ)

>

Bdp(θ)
>X˜ −γI Ddp(θ)

>

Cdp(θ) Ddp(θ) −γI


 ≺ 0. (E.2)

We recall that

[
Adp(θ, ωPh) Bdp(θ)

Cdp(θ) Ddp(θ)

]
=




A(θ) ωPh I B(θ) 0
−ωPh I A(θ) 0 B(θ)
C(θ) 0 D(θ) 0

0 C(θ) 0 D(θ)


 . (E.3)

(∃X ⇒ ∃X
˜

) Let us assume that the LMI (E.1) admits a solution X for a given γ, implying
that

∥∥GΘ
∥∥q

i2 < γ. Then, we take this solution and build the matrix X
˜
= diag (X, X), which is

solution of (E.2) since, after developing (E.2), the dependence on ωPh is canceled out, and we
end up with (E.1) repeated twice in a block diagonal structure.
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(∃X
˜
⇒ ∃X) Now, let us assume that (E.2) admits a solution X

˜
for a given γ, implying that

∥∥∥GΘ,ΩPh
dp

∥∥∥
q

i2
< γ. Then, by partitioning X

˜
=

[
X1 X2
X>2 X3

]
, the inequality (E.2) is rewritten as




ΠX1(θ, ωPh) ΠX2(θ, ωPh) X1B(θ) X2B(θ) C(θ)> 0
ΠX2(θ, ωPh)

> ΠX3(θ, ωPh) X>2 B(θ) X3B(θ) 0 C(θ)>

B(θ)>X1 B(θ)>X2 −γI 0 D(θ)> 0
B(θ)>X>2 B(θ)>X3 0 −γI 0 D(θ)>

C(θ) 0 D(θ) 0 −γI 0
0 C(θ) 0 D(θ) 0 −γI




≺ 0 (E.4)

with
ΠX1(θ, ωPh) = A(θ)>X1 + X1A(θ)−ωPh(X2 + X>2 )
ΠX2(θ, ωPh) = A(θ)>X2 + X2A(θ) + ωPh(X1 − X3)
ΠX3(θ, ωPh) = A(θ)>X3 + X3A(θ) + ωPh(X2 + X>2 )

.

By permuting the lines and columns of (E.4), we obtain
[

MX1(θ, ωPh) MX2(θ, ωPh)
MX2(θ, ωPh)

> MX3(θ, ωPh)

]
≺ 0 (E.5)

with

MX1(θ, ωPh) =




ΠX1(θ, ωPh) X1B(θ) C(θ)>

B(θ)>X1 −γI D(θ)>

C(θ) D(θ) −γI




MX2(θ, ωPh) =




ΠX2(θ, ωPh) X2B(θ) 0
B(θ)>X2 0 0

0 0 0




MX3(θ, ωPh) =




ΠX3(θ, ωPh) X3B(θ) C(θ)>

B(θ)>X3 −γI D(θ)>

C(θ) D(θ) −γI


 .

Since the matrix of (E.5) is negative definite, the sum of its main diagonal blocks is also
negative definite, i.e., MX1(θ, ωPh)+ MX3(θ, ωPh) ≺ 0. Note that when summing up MX1 and
MX3, ωPh is canceled out. Therefore, by defining M̃X = 1

2 (MX1 + MX3) and X̃ = 1
2 (X1 + X3),

we obtain

M̃X =




A(θ)>X̃ + X̃A(θ) X̃B(θ) C(θ)>

B(θ)>X̃ −γI D(θ)>

C(θ) D(θ) −γI


 ≺ 0.

This means that X̃ is solution of the inequalities (E.1) of Theorem 6.4, concluding the proof.

E.2 Proof of Theorem 6.5

E.2.1 Proof or Property (i)

Proof. We prove that (PΘ ? KΘ)ΩPh
dp = PΘ,ΩPh

dp ? KΘ,ΩPh
dp by writing the state-space representa-

tion of (PΘ ? KΘ)ΩPh
dp and PΘ,ΩPh

dp ? KΘ,ΩPh
dp from those of PΘ and KΘ, and by observing that
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they are equal.

For all θ ∈ Θ, let PΘ be given (see (5.50), page 131) by the matrices

[
AP(θ) BP(θ)
CP(θ) DP(θ)

]
=




AP(θ) Bw(θ) Bu
Cz(θ) Dzw(θ) Dzu

Cy Dyw 0


 (E.6)

and KΘ (see (5.51), page 131) by
[

AK(θ) BK(θ)
CK(θ) DK(θ)

]
. (E.7)

Then, the closed-loop system PΘ ? KΘ is given by the state-space matrices

[
AH(θ) BH(θ)
CH(θ) DH(θ)

]
=




AP(θ) + BuDK(θ)Cy BuCK(θ) Bw(θ) + BuDK(θ)Dyw
BK(θ)Cy AK(θ) BK(θ)Dyw

Cz(θ) + DzuDK(θ)Dyw DzuCK(θ) Dzw(θ) + DzuDK(θ)Dyw




(E.8)
and (PΘ ? KΘ)ΩPh

dp admits the following state-space matrices

[
AH,dp(θ, ωPh) BH,dp(θ)

CH,dp(θ) DH,dp(θ)

]
=




AH(θ) ωPh I BH(θ) 0
−ωPh I AH(θ) 0 BH(θ)
CH(θ) 0 DH(θ) 0

0 CH(θ) 0 DH(θ)


 . (E.9)

Let us now compute the state-space representation of PΘ,ΩPh
dp ? KΘ,ΩPh

dp . From (E.6), PΘ,ΩPh
dp is

given by

[
AP,dp(θ, ωPh) BP,dp(θ)

CP,dp(θ) DP,dp(θ)

]
=




AP(θ) ωPh I BP(θ) 0
−ωPh I AP(θ) 0 BP(θ)
CP(θ) 0 DP(θ) 0

0 CP(θ) 0 DP(θ)


 (E.10)

and PΘ,ΩPh
dp , defined as PΘ,ΩPh

dp , PoutP
Θ,ΩPh
dp Pin, admits the state-space matrices




AP ,dp(θ, ωPh) Bw,dp(θ) Bu,dp
Cz,dp(θ) Dzw,dp(θ) Dzu,dp

Cy,dp Dyw,dp 0


 =




AP(θ) ωPh I Bw(θ) 0 Bu 0
−ωPh I AP(θ) 0 Bw(θ) 0 Bu
Cz(θ) 0 Dzw(θ) 0 Dzu 0

0 Cz(θ) 0 Dzw(θ) 0 Dzu
Cy 0 Dyw 0 0 0
0 Cy 0 Dyw 0 0




.

(E.11)
From (E.7), KΘ,ΩPh

dp is given by the matrices

[
AK,dp(θ, ωPh) BK,dp(θ)

CK,dp(θ) DK,dp(θ)

]
=




AK(θ) ωPh I BK(θ) 0
−ωPh I AK(θ) 0 BK(θ)
CK(θ) 0 DK(θ) 0

0 CK(θ) 0 DK(θ)


 (E.12)
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and PΘ,ΩPh
dp ? KΘ,ΩPh

dp is given by the matrices

[
AH̃,dp(θ, ωPh) BH̃,dp(θ)

CH̃,dp(θ) DH̃,dp(θ)

]
with

AH̃,dp(θ, ωPh) =

[
AP ,dp(θ, ωPh) + Bu,dpDK,dp(θ)Cy,dp Bu,dpCK,dp(θ)

BK,dp(θ)Cy,dp AK,dp(θ, ωPh)

]

BH̃,dp(θ) =

[
Bw,dp(θ) + Bu,dpDK,dp(θ)Dyw,dp

BK,dp(θ)Dyw,dp

]

CH̃,dp(θ) =
[
Cz,dp(θ) + Dzu,dpDK,dp(θ)Dyw,dp Dzu,dpCK,dp(θ)

]

DH̃,dp(θ) =
[
Dzw,dp(θ) + Dzu,dpDK,dp(θ)Dyw,dp

]

. (E.13)

Finally, with a linear transformation, we have AH,dp(θ, ωPh) = TAH̃,dp(θ, ωPh)T−1, BH,dp(θ) =

TBH̃,dp(θ), CH,dp(θ) = CH̃,dp(θ)T
−1 and DH,dp(θ) = DH̃,dp(θ), where

T = T−1 =




In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In


 ,

completing the proof.

E.2.2 Proof or Property (ii)

Proof. This proof is simple and follows directly from Property (i), which states that

(PΘ ? KΘ)ΩPh
dp = PΘ,ΩPh

dp ? KΘ,ΩPh
dp ,

and from Theorem 6.4, which gives
∥∥PΘ ? KΘ

∥∥q
i2 =

∥∥∥(PΘ ? KΘ)ΩPh
dp

∥∥∥
q

i2
.

E.2.3 Proof or Property (iii)

Proof. Please note that, by Theorem 5.2 (page 131), the existence of a controller KΘ such that∥∥PΘ ? KΘ
∥∥q

i2 < γ for all trajectories of θ(t) in the polytope Θ of Nθ vertices θi is equivalent to
the existence of the matrices R = R> and S = S> such that, for all i ∈ {1, . . . , Nθ},

[
�
]>
⊥




SAP,i
> + AP,iS Bw,i SC>z,i
B>w,i −γI D>zw,i
Cz,iS Dzw,i −γI


 [B>u 0 D>zu

]
⊥ ≺ 0, (E.14)

[
�
]>
⊥




A>P,iR + RAP,i RBw,i C>z,i
B>w,iR −γI D>zw,i
Cz,i Dzw,i −γI


 [Cy Dyw 0

]
⊥ ≺ 0 (E.15)

and
[

R I
I S

]
� 0 (E.16)

with
[

AP,i Bw,i
Cz,i Dzw,i

]
=

[
AP(θi) Bw(θi)
Cz(θi) Dzw(θi)

]
.

In its turn, again by Theorem 5.2, the existence of K
˜

Θ such that
∥∥∥PΘ,ΩPh

dp ? K
˜

Θ,ΩPh

∥∥∥
q

i2
< γ

is equivalent to the existence of matrices R
˜

= R
˜
> and S

˜
= S
˜
> such that, for all ωPh ∈
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ΩPh[ωPh,1, ωPh,2] and for all i ∈ {1, . . . , Nθ},

[
�
]>
⊥




S˜AP,dp,i(ωPh)
> + AP,dp,i(ωPh)S˜ Bw,dp,i S˜C>z,dp,i

B>w,dp,i −γI D>zw,dp,i
Cz,dp,iS˜ Dzw,dp,i −γI



[

B>u,dp 0 D>zu,dp

]
⊥
≺ 0, (E.17)

[
�
]>
⊥




AP,dp,i(ωPh)
>R˜ + R˜AP,dp,i(ωPh) R˜Bw,dp,i C>z,dp,i
B>w,dp,iR˜ −γI D>zw,dp,i
Cz,dp,i Dzw,dp,i −γI



[
Cy,dp Dyw,dp 0

]
⊥ ≺ 0 (E.18)

and
[

R˜ I
I S˜

]
� 0. (E.19)

For completeness, we recall that




AP,dp,i(ωPh) Bw,dp,i Bu,dp
Cz,dp,i Dzw,dp,i Dzu,dp
Cy,dp Dyw,dp 0


 =




AP,i ωPh I Bw,i 0 Bu 0
−ωPh,i I AP,i 0 Bw,i 0 Bu

Cz,i 0 Dzw,i 0 Dzu 0
0 Cz,i 0 Dzw,i 0 Dzu

Cy 0 Dyw 0 0 0
0 Cy 0 Dyw 0 0




(E.20)

and AP,i = AP(θi), Bw,i = Bw(θi), Cz,i = Cz(θi), Dzw,i = Dzw(θi).

(∃KΘ ⇒ ∃K
˜

Θ,ΩPh ) Let us assume that there exists KΘ such that
∥∥PΘ ? KΘ

∥∥q
i2 < γ. Then,

we take the solutions of (E.14), (E.15) and (E.16), and build the matrices S
˜
= diag (S, S)

and R
˜

= diag (R, R). These matrices are solution of (E.17), (E.18) and (E.19) since, after
developing (E.17) and (E.18), the dependence on ωPh (off-diagonal terms of AP,dp,i) is canceled
out, and we end up with the equations (E.14)–(E.16) repeated in a block diagonal structure.

(∃K
˜

Θ,ΩPh ⇒ ∃KΘ) Now, assume that there exists K
˜

Θ,ΩPh such that
∥∥∥PΘ,ΩPh

dp ? K
˜

Θ,ΩPh

∥∥∥
q

i2
< γ.

By partitioning

S
˜
=

[
S1 S2
S>2 S3

]
,

the inequality (E.17) can be rewritten as

N>




ΠS1,i ΠS2,i Bw,i 0 S1C>z,i S2C>z,i
Π>S2,i ΠS3,i 0 Bw,i S>2 C>z,i S3C>z,i

B>w,i 0 −γI 0 D>zw,i 0
0 B>w,i 0 −γI 0 D>zw,i

Cz,iS1 Cz,iS2 Dzw,i 0 −γI 0
Cz,iS>2 Cz,iS3 0 Dzw,i 0 −γI




N ≺ 0 (E.21)

with
ΠS1,i = AP,iS1 + S1A>P,i + ωPh(S2 + S>2 )
ΠS2,i = AP,iS2 + S2A>P,i + ωPh(−S1 + S3)

ΠS3,i = AP,iS3 + S3A>P,i −ωPh(S2 + S>2 )

N =

[
B>u 0 0 0 D>zu 0
0 B>u 0 0 0 D>zu

]

⊥
.
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Then, by permuting the rows and columns of (E.21), it is rewritten as
[N>B MS1,iNB N>B MS2,iNB
N>B M>S2,iNB N>B MS3,iNB

]
≺ 0 (E.22)

with
NB =

[
B>u 0 D>zu

]
⊥

MS1,i =




ΠS1,i Bw,i S1C>z,i
B>w,i −γI D>zw,i

Cz,iS1 Dzw,i −γI




MS2,i =




ΠS2,i 0 S2C>z,i
0 0 0

Cz,iS2 0 0




MS3,i =




ΠS3,i Bw,i S3C>z,i
B>w,i −γI D>zw,i

Cz,iS3 Dzw,i −γI


 .

Since the matrix of (E.22) is negative definite, the sum of its main diagonal blocks is also
negative definite, i.e.,

N>B (MS1,i + MS3,i)NB ≺ 0.

Thus, we also have
N>B M̃S,iNB ≺ 0

with M̃S,i =
1
2 (MS1,i + MS3,i). If we apply the same procedure to (E.18) and (E.19), we finally

obtain
N>B M̃S,iNB ≺ 0

N>C M̃R,iNC ≺ 0
[

R̃ I
I S̃

]
� 0

with
NC =

[
Cy Dyw 0

]
⊥

R̃ = 1
2 (R1 + R3)

S̃ = 1
2 (S1 + S3)

M̃R,i =




A>P,iR̃ + R̃AP,i R̃Bw,i C>z,i
B>w,iR̃ −γI D>zw,i
Cz,i Dzw,i −γI




M̃S,i =




S̃A>P,i + AP,iS̃ Bw,i S̃C>z,i
B>w,i −γI D>zw,i
Cz,iS̃ Dzw,i −γI




This means that R̃ and S̃ are solution of the inequalities (5.53)–(5.55) of Theorem 5.2 (page 131).
Hence, this theorem ensures that there exists a controller KΘ for PΘ defined in (5.50), such
that ‖P ? K‖q

i2 < γ.
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E.3 Details of Example 6.6 – Nonideal Phasor Controller

To-be-controlled plant

The original to-be-controlled plant G admits the state-space representation with the matrices

A =

[
0 1
−ω2

0,x −ω0,x/Qx

]
, B =

[
0

k0,xω0,x

]
, C =

[
1 0

]
and D = 0

with ω0,x = 2π11500 rad s−1, Qx = 100 000 and k0,x = 2 · 10−5.

Its dynamic phasor model Gdp, which is considered for the controller design, admits the
state-space representation with the matrices

Adp (ωPh(t)) =
[

A ωPh(t)I
−ωPh(t)I A

]
,

Bdp = diag (B, B), Cdp = diag (C, C), Ddp = diag (D, D) and ωPh(t) = ω∞
Ph = ω0,x.

Weighting functions

Wr(s) =
1

Mr
s + ωr

s + ωr Ar

Wd(s) = 0.4

Wn(s) = 1

Wε(s) = 1

Wu(s) =
s + ωu Au

1
Mu

s + ωu

with Ar = kSFNLλSFNL/
√

2, ωr = 9.2rad s−1, Mr = 2, Au = 1.25 · 10−4, ωu = 290rad s−1,Mu =
750, kSFNL = 500 · 10−6 and λSFNL = 0.5.
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F.1 On the Unstable Zeros of a PCT Model

Let a DT system Gd be defined by the state-space matrices
(

Ad, Bd, Cd, Dd) and with sam-
pling period Ts. Its PCT equivalent system, Gp, can be given by the transfer function (matrix)

Gp(sp) = Cp (sp I − Ap)−1 Bp + Dp. (F.1)

Since the matrices (Ap, Bp, Cp, Dp) read as

Ap = 2
Ts

(
Ad − I

) (
Ad + I

)−1

Bp = 4
Ts

(
Ad + I

)−1 Bd

Cp = Cd (Ad + I
)−1

Dp = Dd − Cd (Ad + I
)−1 Bd,

(F.2)

(F.1) can be rewritten as

Gp(sp) =

(
2
Ts
− sp

)
Cd
(

sp

(
Ad + I

)
− 2

Ts

(
Ad − I

))−1

Bd + Dd. (F.3)

Thus, if we consider Dd = 0, Gp has unstable zeros at sp = 2
Ts

in each of its individual
transfers.

It is important to highlight that, among other limitations, unstable zeros constrain the band-
width of the closed-loop system (see, e.g., [FL85, SP01]). This means that it is impossible
to have stability and tight performance constraints (e.g., reference tracking or disturbance
rejection) in the pseudo-frequency range close to 2

Ts
, i.e., for v ≈ 2

Ts
.

Now, if we consider the relationship between the real frequency ω and v, i.e.,

v = g (ω) ,
2
Ts

tan
(

ωTs

2

)
, (F.4)

we have ω = (1/4 + k) 2π/Ts with k ∈ Z when v = 2
Ts

. If we take the case k = 0, we are
unable to enforce tight performance constraints around ωs/4, where ωs corresponds to the
sampling frequency in rad/s.
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F.2 On the “Normalizability” of the MEMS Gyroscope Model

In Section 7.4, one the main assumptions is the “normalizability” of the gyroscope model, that
is, the parameter-varying model of the gyroscope is such that, in a “normalized-time” space
(tn = ω0t), the same system can be represented by a single LTI system. This is true for the
2nd-order resonator of Remark 7.1 (page 185). Here, we show that for a real MEMS gyroscope,
we can also define a single LTI that (approximately) describes the real system under different
temperatures. For this purpose, we realize different identification experiments (see [Col20])
with the same MEMS gyroscope, but at different temperatures. The Bode diagrams of the
identified models are presented in Figure F.1. The models are in the PCT space, which is
the same used for the controller design. In this figure, we can note that as the temperature
increases, the resonance frequencies get lower. The modifications of the other parameters
(e.g., gain and quality factors) are much less perceptible.

FIGURE F.1: Identified model of a MEMS gyroscope under different tempera-
tures. Bode diagram in the pseudo frequency.

Now, if we normalize each model to its drive-mode resonance frequency ω0,x, we obtain the
Bode diagrams presented in Figure F.2, where they are very close to each other. In this case,
we could then consider that the model at 45 °C as a good approximation for the models at
all temperatures in the normalized-frequency space, defining the fictitious model Hp

n . Some
modeling errors are introduced (specially around the sense-mode resonance frequency – see
transfer from uy,n to ym,n), but this is the price to pay for the simple parametrization.

Therefore, with some approximations, the model of a real MEMS gyroscope is “normaliz-
able”.

F.3 Details on the PCT Model of a 2nd-Order Resonator

Here, we intend to provide further details on Gω0,x when analyzing its PCT model, Gp,v0,x .
For this purpose, we first compute, with the sampling period Ts, the DT model Gd,ω0,x of Gω0,x

(we highlight that the former one takes the presence of the zero-order holder into account).
Then, we apply the bilinear transform on Gd,ω0,x , obtaining the PCT model Gp,v0 . The CT
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FIGURE F.2: Identified model of a MEMS gyroscope under different tempera-
tures. Bode diagram in a normalized pseudo frequency.

model Gω0,x is given by

Gω0,x(s) =
xm(s)
ux(s)

=
k0,x

(s/ω0,x)
2 + (s/ω0,x) /Qx + 1

. (F.5)

For Qx > 1/2, the equivalent DT system Gd,ω0,x , with sampling period Ts, is given by
(see [ÅW97, p. 55])

Gd,ω0,x(z) = k0,x
b1z+ b2

z2 + a1z+ a2

with
a1 = −2e−ω0,xTs/(2Qx) cos (ωQTs)
a2 = e−ω0,xTs/Qx

b1 = 1− e−ω0,xTs/(2Qx) (ς sin (ωQTs) + cos (ωQTs))
b2 = e−ω0,xTs/Qx + e−ω0,xTs/(2Qx) (ς sin (ωQTs)− cos (ωQTs))

ωQ = ω0,x

√
4Q2

x−1
2Qx

ς =
(
4Q2

x − 1
)−1/2 .

(F.6)

Then, by applying the bilinear transform, i.e., replacing z by 1+spTs/2
1−spTs/2 (see (7.6), page 182), we

obtain

Gp,v0,x(sp) = k0,x

(
1− spTs/2

) (
1 + spz1

)
(
sp/ω̃0,x

)2
+
(
sp/ω̃0,x

)
/Qx + 1

(F.7)

with

ω̃2
0,x =

4
T2

s

1 + e−ω0,xTs/Qx − 2e−ω0,xTs/(2Qx) cos (ωQTs)

1 + e−ω0,xTs/Qx + 2e−ω0,xTs/(2Qx) cos (ωQTs)

ω̃0,xQx =
1
Ts

1 + e−ω0,xTs/Qx − 2e−ω0,xTs/(2Qx) cos (ωQTs)

1− e−ω0,xTs/Qx

z1 =
Ts

2
1− e−ω0,xTs/Qx − 2ςe−ω0,xTs/(2Qx) sin (ωQTs)

1 + e−ω0,xTs/Qx − 2e−ω0,xTs/(2Qx) cos (ωQTs)
.

(F.8)
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For Qx � 1, we can approximate e−ω0,xTs/(2Qx) ≈ 1, 1 + e−ω0,xTs/Qx ≈ 2, 1− e−ω0,xTs/Qx ≈
ω0,xTs/Qx, ωQ ≈ ω0,x and ς ≈ 1/ (2Qx). Thus,

ω̃2
0,x ≈ 4

T2
s

1− cos (ω0,xTs)

1 + cos (ω0,xTs)
=⇒ ω̃0,x ≈

2
Ts

tan
(

ω0,xTs

2

)
= v0,x,

ω̃0,xQx ≈ 2Qx

Ts

1− cos (ω0,xTs)

ω0,xTs
=⇒ Qx ≈ Qx sinc (ω0,xTs) ,

z1 ≈
Ts

2
− sin (ω0,xTs)

2Qx (1− cos (ω0,xTs))
=⇒ z1 ≈

1
2Qxv0,x

.

(F.9)

In this case, (F.7) can then be rewritten as

Gp,v0,x(sp) = k0,x

(
1−

(
sp/v0,x

)
v0,xTs/2

) (
1 +

(
sp/v0,x

)
v0,x/(2Qx)

)
(
sp/v0,x

)2
+
(
sp/v0,x

)
/ (Qx sinc (ω0,xTs)) + 1

. (F.10)

F.4 Choice of the Fictitious Model of Example 7.1

Note that the structure of Gp,v0,x (see (F.10)) is slightly different from that of Gω0,x (see (F.5)).
However, we can create a fictitious system Hp,v0,x that approximates Gp,v0,x for all ω0,x ∈
[ω0x,1, ω0x,2] and that can be normalized. To this end, we evaluate the structural differences
between Gω0 and Gp,v0 .

(i) The resonance frequency v0,x is different from ω0,x due to the distortion caused by the
bilinear transform, see (7.10). So, instead of normalizing Gp,v0,x with respect to ω0,x, it is
rather normalized with respect to v0,x.

(ii) The quality factor is reduced by a factor sinc (ω0,xTs) due to the filtering effect of the
ZOH. Then, from the performance point of view, we consider as worst case when the
reduction is maximum, i.e., for ω0,x = ω0x,2, giving the smallest quality factor.

(iii) The unstable zero that appears at sp = 2/Ts has the inconvenient properties to: (i)
reduce the phase of the system; and (ii) impose limitations on the closed-loop bandwidth
[FL85]. Then, we take as worst case the scenario where this zero is closer to the resonance
frequency, i.e., for ω0,x = ω0x,2.

(iv) The stable zero can be neglected since it is far from v0,x.

Therefore, we can approximate Gp,v0,x (see (F.10)) by

Hp,v0,x(sp) =
k0,x

(
1−

(
sp/v0,x

)
/zu
)

(
sp/v0,x

)2
+
(
sp/v0,x

)
/ (Qx sinc (ω0x,2Ts)) + 1

(F.11)

with zu = tan (ω0x,2Ts/2)−1.

F.5 Details on the SISO Controllers

F.5.1 2DoF Drive-Mode SISO Controller

The choice of the weighting functions follows the procedure illustrated in Example 4.3
(page 88). They are presented with the obtained closed-loop transfer functions in Figure F.3
and Figure F.4. The only difference compared to the example is that, here, we enforce a
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better disturbance rejection, obtaining
∣∣TdCor,x→εx(jωexc)

∣∣ < −100 dB and
∣∣∣Txre f

m →εx
(jωexc)

∣∣∣ <
−90 dB.

FIGURE F.3: Upper bounds and closed-loop transfer functions of the drive-
mode control loop.

FIGURE F.4: Upper bounds and closed-loop transfer functions of the drive-
mode control loop. Zoom around ωexc.

The (normalized) controller, obtained with γ = 0.9803, is given by Kp
x,n =

[
Kp

x1,n, Kp
x2,n

]
with

Kp
x1,n(sn) =

71.36 · sn(sn + 0.6952)(sn + 54.97)(s2
n + 3.108 · 10−3sn + 0.9973)

(sn + 0.6949)(s2
n + 0.0303sn + 0.9817)(s2

n + 0.02237sn + 1)

· (s2
n + 9.803 · 10−3sn + 1)(s2

n + 3.108 · 10−3sn + 1.003)
(s2

n + 3.465 · 10−7sn + 1)(s2
n + 0.03049sn + 1.019)(s2

n + 12.94sn + 83.59)
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Kp
x2,n(sn) =

−0.0261 · sn(sn + 57.79)(sn + 7.482)(sn + 0.6952)
(sn + 0.6949)(s2

n + 0.0303sn + 0.9817)(s2
n + 0.02237sn + 1)

· (sn + 0.1337)(s2
n + 0.02527sn + 1)(s2

n + 2.221 · 10−3sn + 1)
(s2

n + 3.465 · 10−7sn + 1)(s2
n + 0.03049sn + 1.019)(s2

n + 12.94sn + 83.59)

and sn = sp/v0,x. Its Bode diagram is presented in Figure F.5, which is similar to the one
of Example 4.3. However, since we ask for a better disturbance rejection at ω = ωexc, the
present controller has an important resonance at this frequency.

(A) Wide frequency range. (B) Zoom around ωexc.

FIGURE F.5: Bode diagrams of the drive-mode controller.

F.5.2 1DoF Sense-Mode SISO Controller

The choice of the weighting functions follows the procedure of Example 4.4 (page 94). They
are presented with the obtained closed-loop transfer functions in Figure F.6 and Figure F.7.
The results are very similar to those of the example. The (normalized) controller, obtained
with γ = 1.0068, is given by

Kp
y,n(sn) =

−8.433(sn − 18.2)(sn + 0.6229)(sn + 9.745 · 10−3)

(sn + 0.631)(s2
n + 0.3154sn + 0.7102)(s2

n + 1.039 · 10−5sn + 1)

· (sn + 9.744 · 10−4)(s2
n + 0.01012sn + 1.019)

(s2
n + 0.3365sn + 1.416)(s2

n + 17.85sn + 133.4)

with sn = sp/v0,x. Its Bode diagram is presented in Figure F.8, which is also very similar to
the one of Example 4.4. Small differences are mainly due to the differences on the sense-mode
models. Here, we highlight that the obtained relative error for the Coriolis force estimation is
close to −80 dB, i.e.,

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ ≈ −80 dB.
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FIGURE F.6: Upper bounds and closed-loop transfer functions of the sense-
mode control loop.

FIGURE F.7: Upper bounds and closed-loop transfer functions of the sense-
mode control loop. Zoom around ωexc.
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(A) Wide frequency range. (B) Zoom around ωexc.

FIGURE F.8: Bode diagrams of the sense-mode controller.

F.6 Details on the MIMO Controller with Joint Estimation

The choice of the weighting functions also follows the procedure illustrated in Example 4.6
(page 104). They are presented with the obtained closed-loop transfer functions in Figure F.9
and Figure F.10. The only difference compared to the example is that, here, we enforce a better
disturbance rejection, obtaining

∣∣TdCor,x→εx(jωexc)
∣∣ < −90 dB and

∣∣∣Txre f
m →εx

(jωexc)
∣∣∣ < −72 dB,

as required. For the Coriolis force, we also obtain a relative error for the estimation that is
close to −80 dB, i.e.,

∣∣∣TdCor,y→εest(jωexc)
∣∣∣ ≈ −80 dB.

The Bode diagram of the multivariable controller, obtained with γ = 0.9878, is presented
in Figure F.11 and Figure F.12, which is similar to the one of Example 4.6. However, similar
to the SISO case, since we ask for a better drive-mode disturbance rejection at ω = ωexc,
the present controller has an important resonance at this frequency on the first row, which
computes ux.
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FIGURE F.9: Upper bounds and closed-loop transfer functions of the MIMO
approach.
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FIGURE F.10: Upper bounds and closed-loop transfer functions of the MIMO
approach. Zoom around ωexc.
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FIGURE F.11: Bode diagram of the MIMO controller.
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FIGURE F.12: Bode diagram of the MIMO controller. Zoom around ωexc.
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