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Abstract

Socio-semantic systems involve actors who create and process knowledge, exchange
information and create ties between ideas in a distributed and networked manner: we-
bloggers and micro-bloggers, communities of scientists, of software developers and of
wiki contributors are, among others, examples of such systems. The state of the art in
this regard focuses on two main issues which are increasingly addressed in an interdepen-
dent manner: the description of content dynamics and the study of interaction network
characteristics and evolution. The present document contextualizes and reviews my ef-
forts, over more than a decade, at merging both types of dynamics into co-evolutionary,
multi-level modeling frameworks, where social and semantic aspects are being jointly ap-
praised by using socio-semantic graphs, hypergraphs and lattices. It also evokes related
streams of research dealing with more specific topics, such as diffusion processes and
authority phenomena, and theoretical issues, such as the modeling of graph structure
and dynamics in a variety of empirical and formal contexts.
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Foreword

The core of my research program has focused on the question of social cog-
nition. This term should be understood as the socially distributed processing of
knowledge within a sizable system of interacting individuals. In this regard, it
is less connected to the traditional acceptation of the term in psychology which
focuses rather on the cognitive processes involved at the strict level of human
interactions. This question has principally been a social science concern for much
of the 20th century, especially in cultural anthropology and sociology. The last
two decades have witnessed an increasing use of formal methods borrowing to
computer science, applied mathematics, statistical physics, to the end of com-
plex system modeling and large dataset analysis. This convergence is currently
widely labeled as “computational social science” and quite often focuses on large
socio-technical systems where actors interact in a relatively decentralized and
autonomous manner and, to some extent, rely on information and communica-
tion technologies which eventually host, organize and facilitate large-scale social
cognition.

Science and its various subcommunities long provided the only sizable system
whose dynamics could be quantitatively appraised as such, and to which a whole
discipline has been almost exclusively devoted: scientometrics, as a precursor
of big (social) data. While this system has mainly relied on a seemingly sim-
ple socio-technical apparatus, revolving around cultural artifacts called “books”,
synchronized repositories called “libraries” and physical gatherings called “confer-
ences”, data and results have always been collected and processed in a mainly
asynchronous and distributed manner, by scientific teams operating locally, on
subproblems, with no central plan in mind. This monopoly as a perfect play-
ground for the empirical study of social cognition progressively ceased as a myriad
of online user-generated content platforms flourished — including blogs, wikis,
open-source development platforms, social networking sites, tagging platforms.
The advent of these socio-technical systems not only facilitated social cognition
processes per se, they made their systematic in vivo observation much easier as
well.

As a result, it comes to no surprise that most of my empirical interests revolved
around science and online communities. Notwithstanding and in all generality, two
elements of these systems, which I shall from now on denote as socio-semantic
systems, are essential to social cognition processes: on one side, agents interact-

ing in diverse manners and, on the other side, a mesh of informational “items”
or knowledge artifacts (texts, opinions, tags, and more broadly digital content).
By the turn of the 2000s, much of cultural sociology was already strongly aware
of this duality, yet most the quantitative literature on real-world social cognition
relied on formal frameworks that primarily focused on one realm (the social or
the semantic structure). Empirical scholarship that attempted to bind the two
realms was relatively limited and often restricted to bipartite relationships.
This manuscript principally aims at framing and reviewing my contributions,

over more than one decade, to the description and modeling of socio-semantic
systems. It concomitantly advocates the notion that the full appraisal of social
cognition phenomena requires modeling frameworks which jointly feature social
structure and semantic characteristics; that is, socio-semantic frameworks, and,
above all, socio-semantic hypergraphs. Furthermore, a specific focus of my re-
search relates to the co-evolution between the social and semantic dimensions,
as interaction and information dynamics often appear to obey similar time-scales,
especially in ICT-based socio-technical systems: virtually by design, content pro-
duction indeed involves interactions which contribute to shape future content
creation which, in turn, influences the evolution of the social fabric; and so on.
This memoir begins with a contextualization of the main relevant research

streams in Section 1, from social epistemology and cultural anthropology (1.1)
to cultural sociology (1.2), up to computational social science (1.3). I shall then
focus on areas where I have been particularly active and which variously con-
tribute to the operational study of social cognition. In Section 2, I address the
broader issue of network morphogenesis, looking for rules and constraints likely
to explain the structure and dynamics of a given interaction system, considering
either social networks (2.1) or relatively atypical social science networks (namely,
geographical networks and kinship networks, 2.2). Section 3 further deals with
socio-semantic modeling frameworks, principally structured around the introduc-
tion of the notion of socio-semantic networks of various types: socio-semantic
graphs, hypergraphs and lattices. Lastly, Section 4 discusses more specific phe-
nomena such as information propagation, socio-semantic authority and position
analysis, referencing and evaluation behavior, which occur within or on top of a
series of socio-technical systems, mostly in a digital or scientific context.
The diagram on the next page summarizes the temporal articulation of my

peer-reviewed contributions (see the bibliography for precise references).
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1 Articulating structure and culture

It would certainly be way beyond the scope of the present manuscript to re-
view all the possible scientific areas that relate in some way to social cognition
— a good part of social science and humanities has actually to deal, at least
implicitly, with social cognitive processes. I shall rather focus on the three main
fields that provide an acutely pertinent epistemological background to their formal
and quantitative understanding: social epistemology, cultural anthropology, and
cultural sociology. This section will then close on the empirical efforts observed
concurrently in fields related to natural and formal sciences, first and foremost
dealing with social complex system modeling and computational social science.

1.1 Social cognition

Two fields are directly concerned with the articulation of cognitive processes per
se and the distributed production of knowledge, bordering on analytical philosophy
and anthropology.
Social epistemology is perhaps the only area of research to explicitly and al-

most exclusively address the conditions of the collective foundation of knowledge.
Its most theoretical ramifications deal with the characterization of what may be
collectively accepted as knowledge, by defining for instance a given proposition p
as “community knowledge” iff agents know p and know that others know p and
trust them (Kitcher, 1995). It typically overlaps with epistemic logic which in-
volves, however, little empirical modeling – see nevertheless Shoham and Leyton-
Brown (2008), for instance, for a normative application to agent-based models.
The more sociological ramifications focus on the social factors behind the con-

struction and adoption of knowledge, regarding for example the origin of consen-
sual or authoritative statements (Lazega, 1992). These works basically question
the influence of the bias induced by actors, voluntarily or not, on the processing
of information and its evaluation by a given social group. Here, science appears
to be a natural prototype (Knorr-Cetina, 1999), with early sociological studies
dealing with the joint dynamics of knowledge and social organization (Latour and
Woolgar, 1979). This sociological stance leads in particular to the study of the
social procedures pertaining to the organization of cognitive labor. This is more
closely connected to socio-technical systems because of the specific emphasis on
the role of the technological environment: Hutchins (1995), for one, exemplified

the notion of “distributed cognition” by showing that the successful piloting of a
ship to seaport requires a distributed effort where all parties, humans and devices
alike, have to play a local role — science also represents a typical case, again, and
is interestingly illustrated in the so-called “actor-network theory” ontology (Callon
et al., 1986), where scientific agents and artifacts are indistinctly gathered into
a hybrid network.

Cultural anthropology addresses the conditions surrounding the propagation
and reproduction of knowledge and representations: it shares similar high-level
goals with social epistemology, yet with a specific focus on the emergence of
culture and cultural similarity: for instance, “explaining the capacity of some
representations to propagate until becoming precisely cultural, that is, revealing
the reasons of their contagiosity” (Lenclud, 1998). The articulation with social
cognition appears even more evidently when culture is defined as “acquired infor-
mation, such as knowledge, beliefs, and values, that is inherited through social
learning, and expressed in behaviors and artifacts” (Mesoudi et al., 2004). This
research stream crucially focuses on social learning and how knowledge and prac-
tices are transmitted until they become widespread (and thus, cultural). One of
the foundational puzzles relates to the tension between the observed poor quality
of inter-individual transmission (understanding and reformulating what is being
heard or seen is indeed typically a quite noisy process) and the remarkable macro-
level observation of coherence and cultural clusters i.e., wide arrays of actors
sharing the same beliefs or social behaviors.

This research program is related to several notable proposals likely to enable a
modeling approach. Memetics (Dawkins, 1976) in particular has long been seen
by modelers as an efficient and naturalistic framework for understanding cultural
convergence (see for instance Conte, 2000), even though it raised doubts from
the side of cultural anthropology itself, concerning in particular the assumption
that there exist atomic (cultural) representations and high-fidelity replication.
The theory of cultural epidemiology or cultural contagion proposed by Sperber
(1996) received a wider anthropological support, by clarifying the underlying cog-
nitive processes and, notably, emphasizing both the role of reformulation and the
existence of aggregates of cultural representations rather than cultural “atoms”
(thereby extending the Levi-Straussian notion that a myth is the set of all of its
versions). In any case, here again, modeling efforts, although convincing, have
generally remained less descriptive than normative (see e.g., Claidière and Sper-
ber, 2007). They are also, and perhaps more importantly, a specific formulation

5



of the issue of social cognition in two respects: by aiming principally at explain-
ing the emergence of culture as such, and by not giving much weight to the
(heterogeneous) structure of social interactions in the dynamics of content and
representations.

1.2 Cultural sociology

On the whole, while the two above fields provide conceptual guidance on cultural
dynamics in its most theoretical and qualitative aspects, they seem to have yielded
a relatively limited literature in terms of empirical models. Cultural sociology
appears to have gone farther in this direction. For several decades this field has
insisted on the duality of structure and culture, under the impulse of a number of
social scientists generally concerned with social network analysis (SNA). Already
in the 1990s, calls to jointly study both realms could build upon a wealth of
pioneering intuitions and works revolving around three main ideas: the critique
of a strict social structuralism, the dependence of networks on meaning, and the
need to introduce the cultural level directly into SNA.
Sewell (1992) recalls how sociology and, more precisely, a large part of SNA

typically diverge from anthropology (or more broadly “semiotically inclined” social
science) in the interpretation of what counts primarily as “structure”. For the
former, the “material” (or interactional) realm prevails over the “mental” (or cul-
tural) realm, which is thus secondary. The opposite holds for the latter. In effect,
SNA has a long history of uncovering and describing categories and social order
from the structure first, rather than using preexisting social or symbolic categories
(see also Section 3.3.2), even if typical node patterns such as structural equiva-
lence (Lorrain and White, 1971) have more to do with meaning than cohesion,
and even though early social network analyses could mobilize cultural features in
their depictions (Fuhse, 2009). Assuming the primacy of structure over culture
or, more concretely, of relations over “categories” (in the broad sense) may lead
to overlook or at least neglect the crucial contribution of the cultural and semi-
otic dimensions to the formation of stucture (Emirbayer and Goodwin, 1994).
Put differently, cultural sociology forcefully rejects a strong structural viewpoint
whereby networks alone would somehow reveal enough about the constraints that
apply to individuals, while the study of motives, beliefs and identities should be
left to other fields, be it anthropology or psychology (Vaisey and Lizardo, 2010).
Pachucki and Breiger (2010) further insist that “culture prods, evokes, and con-

stitutes social networks” and that the “structural presence –or absence– of ties
may have cultural explanations as well”: a social network depends on identities,
contexts, meanings. White (1992) even speaks of “networks of meanings” to the
point that each identity, each interaction context configures a different network:
“persons come into existence and are formed as overlaps among identities from
distinct network-populations”, which echoes the earlier notion of “multi-purpose
ties” introduced by Fine and Kleinman (1983) and the later conflict-based actor
networks of Tilly (1997). Godart and White (2010) provide a more specific expla-
nation for this interconnection in the form of “netdoms”, a term which stands for
“social networks” and “semiotic domains”. Netdoms crucially rely on the concept
of “stories”, construed as sets of semantic relationships which may precede ac-
tual interactions, as is for instance the case in kinship or organizational networks
(e.g., “grand-grand-uncle” or military ranks). Albeit principally programmatic,
their proposal provides an account of how meanings travel from netdoms to be-
coming institutions, and back; how stories, meaning structures, social positions,
and social structures are intertwined and may coevolve diachronically. This sys-
temic and potentially autopoietic perspective suggests that networks are not only
influenced by meaning but are also based on meaning (Fuhse, 2009), and more
provocatively that social networks and culture could even just be secondary and
joint manifestations of a “deeper set of forces” (Breiger, 2010).

The recent review by Ferguson et al. (2017) demonstrates that calls to si-
multaneously address meaning and interaction structures remain very much rel-
evant. Notwithstanding, operational endeavors to incorporate the cultural level
into SNA also have a long tradition. These efforts roughly appear to follow the
guidelines of the “strong program for cultural sociology” advocated by Alexander
and Smith (2001), who envision structuralism and hermeneutics as separate yet
cross-fertilizing approaches — in effect, an integrated dualism that acknowledges
the intertwinement of structure and culture while keeping them “empirically and
analytically distinct” (Vaisey and Lizardo, 2010). The seminal work of Breiger
(1974) inaugurated the appraisal of this duality in SNA by introducing so-called
“membership networks”, which connect individuals to groups they are member of,
whereby groups may indifferently represent concrete collectives (say, committees,
organizations) or more abstract entities (say, events, identities). These networks
rely therefore on a bipartite connection between purely social nodes (individuals)
and more semantic nodes (affiliations) which may further be projected as pure
social or semantic networks — where links figure co-membership, either of individ-
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uals or affiliations. At the meta-level, the bipartite connection between individuals
and affiliations makes it possible to define a broader notion of groups by dually
connecting the social and semantic levels in a hierarchical structure known as
Galois Lattices (Freeman and White, 1993; Mohr and Duquenne, 1997). These
lattices, which I will address in more detail in Section 3.4, jointly gather subsets
of actors sharing the same subsets of properties (affiliations, domains of interest,
participation in events). Not only do they constitute a formalization of structural
equivalence in a bipartite context (individuals belong to the same group if they are
connected in the same way to some properties, instead of the same actors), but
they also prefigure a way of appraising inter-actor relationships stemming from
similar patterns of symbolic affiliations, which is reminiscent of Bourdieu (1985)’s
duality between social (power) relationships and symbolic (power) relationships.

In these approaches, inter-actor relationships are derived from joint affiliations,
rather than directly observed from interactions. The social graph resulting from
the projection of the bipartite actor-property graph onto actors exemplifies the
fundamental dichotomy between interaction and affiliation, between monopartite
and eminently bipartite networks. In this regard, the pioneering work of Carley
(1986) introduces a framework that precisely comprises all the building blocks re-
quired to jointly appraise the social and the semantic structure: first by defining
them separately, then by connecting them. Her work is settled in the context
of collective decision-making: a social cognitive process where the analysis of
facts by individuals heavily depends on social structure, locally and collectively.
The social structure takes the typical form of a social network whose clusters are
block-modeled (using the classical CONCOR approach of Breiger et al., 1975)
and characterized in terms of intra- and inter-group density. The semantic struc-
ture is figured by concept maps i.e., semantic networks. These graphs are also
subjected to the computation of typical SNA measures such as centrality and
transitivity, albeit interpreted from a cognitive perspective. More importantly,
actor-centric concept maps may be studied, compared, and intersected for pairs
or groups of actors, which achieves the hybridation of connections of all types —
social, semantic, and socio-semantic. Another type of successful operationaliza-
tion consists in statistical modeling frameworks for the coevolution of structure
and behavior (Leenders, 1997; Snijders et al., 2007), where the contribution of
both behavioral and structural properties in the formation of new links is being
estimated within a single model. This paved the way for a class of exponen-
tional random graph models of multiplex and multilevel networks, which aim at

characterizing hybrid patterns made of different types of links that bear different
meanings. Multiplex networks rely on a single type of nodes (say, actors) but
accommodate a variety of semantically-labeled social links (Lazega and Pattison,
1999). Multilevel networks, by contrast, rely on two types of nodes (actors at
the micro level, and say, groups, organizations, or concepts, at the macro level):
patterns are hybrid in that they mix distinct types of monopartite (actor-actor,
group-group) or bipartite (actor-group) links. The non-actor realm may con-
sist of organizations (Lazega et al., 2008; Wang et al., 2013) or, more recently,
concepts (Basov and Brennecke, 2017).

1.3 Social complex systems and computational social science

A last relevant research strand construes socio-cognitive dynamics as a social
complex system (Holland, 1996; Sawyer, 2001), focusing notably on the articu-
lation between macro-level phenomena and micro-level processes. This literature
participates more broadly to the understanding of human dynamics from a nat-
ural science perspective which, over the last two decades, has been variously
affiliated with fields such as “social simulation” (Gilbert and Troitzsch, 1999),
“social computing” (Wang et al., 2007) and, increasingly, “computational social
science” (CSS, see Lazer et al., 2009; Conte et al., 2012).

It has now become commonplace to say that these approaches experienced
an unprecedented growth in a large part as a result of the ubiquitous availability
of sizable datasets (fashionably called “big data”) detailing the in vivo traces of
human behavior — especially thanks to digital devices which further affect social
science methods as a whole (Ruppert et al., 2013). Worth noting, nonetheless,
is that much of this literature generally consists of “data science” in the very
sense that data is, indeed, “data” (latine for “given”), rather than “fata” (made):
empirically, computational social scientists oftentimes have little control over the
production process of their data. It thus overlaps with issues related to “social
sensing”, by considering actors as a distributed network of sensors enabling the
knowledge (Ginsberg et al., 2009) or prediction (Asur and Huberman, 2010) of
the state of a given social system and, more broadly, by offering the opportunity
to reverse-engineer human behavior from its traces. These efforts relate to a
larger body of quantitative studies dealing on one hand with social interactions
at large, and on the other hand with content dynamics analysis.
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Characterizing human networks. As suggested in the previous section, the
analysis of social networks has already had a long history made of mathematical
sociology studies, starting essentially from the 1940s. The period until the late
1990s was nevertheless rather focused on “small” case-studies, with datasets de-
scribing social interactions of groups of less than a hundred people, more often a
few dozens. It offered the opportunity to introduce most of the key formal frame-
works and measures of today: centralities, comparisons with random networks,
behavioral inference, community detection — the classic book of Wasserman
and Faust (1994) reviews the already rich state of the art of this field as of
the mid-1990s. The more recent years have witnessed the emergence of large-
scale studies of human-related networks, in the broad sense, as part of a broader
effort for the study of so-called “complex networks”, stemming principally from
statistical physics and computer science. This dynamics had been initially fueled
by the recurrent observation that empirical networks were rather heterogeneous
(with keywords such as “scale-free”, “power-law”, etc.) and cohesive (with key-
words such as “small worlds”, “clustering” or “clusters”), and partly by the quest
for universal laws applying to all types of empirical interaction structures. In
passing, this offered the opportunity to revisit some of the earlier mathematical
sociology concepts on much larger as well as much more diverse datasets — see
e.g., the very early review by Albert and Barabási (2002), and more targeted
reviews on a variety of subsequent issues pertaining to, inter alia, communities
(Fortunato, 2010), spatial networks (Barthélemy, 2011), and more recently graph
embeddings (Goyal and Ferrara, 2018) or non-dyadic interaction structures such
as hypergraphs (Battiston et al., 2020). On the whole, it is reasonable to claim
that these overlapping and, now, merging streams of research —SNA, complex
system science and CSS— have achieved today a satisfying normal-science char-
acterization of empirical social networks, both statically and dynamically. After
the initial all-purpose, universal models targeting the reconstruction of ubiquitous
heterogeneous degree distributions observed in almost all systems, realistic mor-
phogenesis models have successfully been proposed in increasingly specific case
studies in order to explain increasingly specific patterns. Section 2.1 will offer a
detailed account of the state of the art on social network morphogenesis.

Characterizing semantic configurations. Studies on science and more specif-
ically scientometrics were among the first research areas to develop a massive
effort of quantitative mapping of the distribution of knowledge in social systems.

Using large bibliographic corpora, they proposed history reconstruction methods
based on clusters of terms or authors, principally by examing co-citation (Mc-
Cain, 1986), co-word/co-occurrence (Callon et al., 1991) or collaboration maps
(Börner et al., 2003) that ultimately aimed at describing the relative arrangement
of scientific subfields in terms of their main topics automatically extracted from
textual data.

In current CSS research, the quantitative analysis of natural language is referred
to by a variety of umbrella terms such as “text mining” (Srivastava and Sahami,
2009; Evans and Aceves, 2016), “automated text analysis” (Grimmer and Stew-
art, 2013) or “text-as-data methods” (Wilkerson and Casas, 2017), which exhibit
a wide range of sophistication, from simple numerical statistics to more elaborate
machine learning algorithms. Some methods essentially produce scalar numbers,
for instance to measure text similarity (e.g., the traditional cosine distance, see
Singhal, 2001) or valence, as in sentiment analysis (Pang et al., 2008) which eval-
uates the positive or negative emotional content of a text (e.g., public sentiment
towards political candidates in social media, Wang et al., 2012). Texts may also
be projected on a fixed number of categories, as in the case of ideological estima-
tion (e.g., political leaning in terms of left or right, see Sim et al., 2013). Other
approaches preserve the level of words and n-grams. Some aim at the extraction
of salient terms, using helper measures such as the famous “tf.idf” product (term
frequency times inverse document frequency, Salton and Buckley, 1988) or co-
occurrence centrality (TextRank, Mihalcea and Tarau, 2004). Others deal with
the recognition of so-called “Named Entities” (i.e., people, locations, organiza-
tions; see Nadeau and Sekine, 2007), for instance from news corpora (Diesner
and Carley, 2005) or Twitter streams (Ritter et al., 2011) or with the extraction
of chunks of text matching certain patterns, for example p-values from scientific
articles (Chavalarias et al., 2016). This level enables applications akin to signal
analysis, aiming for instance at the description of dynamical classes of word use,
in terms of spikes (Gruhl et al., 2004), heterogeneity (Cattuto et al., 2007) or
similar temporal (Lehmann et al., 2012) and competitive (Weng et al., 2012)
dynamics.

Another strand of techniques operates at the level of word sets, such as the
above-mentioned family of co-word maps (for longitudinal, multilevel examples,
see Cui et al., 2011; Shahaf et al., 2013), as well as so-called distributional topic
models. This includes the very popular Latent Dirichlet Allocation (LDA, Blei,
2012) which characterizes topics by their probability of generating each of the
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words found in a set of documents, which are thus seen as a random mixture
of topics. LDA uses a generative process to statistically infer these probabilities:
topics are ultimately described by a (weighted) set of words, for instance “EU,
Ursula von der Leyen, Boris Johnson, Barnier, Trade”, which human observers can
use to infer some higher-level topic label, such as “Brexit Negotiations”. A more
recent approach consists in applying stochastic blockmodeling, which originally
stems from pure SNA, in order to discover joint groups of documents which use
keywords in a similar fashion (Gerlach et al., 2018). The jury is still out as to
whether distributional approaches are more efficient than co-occurrence and co-
word maps (Leydesdorff and Nerghes, 2017). Recent advances in word embedding
techniques (Mikolov et al., 2013) have also made it possible to describe topics
extensionally as clusters of documents in some properly defined space (Le and
Mikolov, 2014; Angelov, 2020).
Finally, a rather recent literature focuses on the sentence level, beyond word

and n-gram distributions. Early on, Leskovec et al. (2009) described clusters of
relatively similar quotations of public figures reformulated by bloggers with some
amount of variation and reformulation. This enables the description of low-level
processes of sentence evolution (Simmons et al., 2011), which in passing fulfills
some of the preliminary objectives of cultural epidemiologists. There is currently
an increasing trend of dealing with the syntactic structure to abstract meaning
from sentences. This includes the field of relationship extraction from free text
(Van Atteveldt et al., 2008; Mausam et al., 2012; Angeli et al., 2015; Vossen
et al., 2016) and argumentation mining (Lippi and Torroni, 2016) which makes
extensive use of machine learning to extract claims, arguments and premises. For
instance, Ruiz et al. (2016) propose a system aimed at analyzing claims in the
context of climate negotiations. It leverages dependency parse trees and gen-
eral ontologies to extract tuples of the form 〈actor, predicate, negotiation point〉
where actors are stakeholders (e.g., countries), predicates express agreement or
opposition, and negotiation points are identified by chunks of text. Similarly,
Van Atteveldt et al. (2017) extract source-subject-predicate clauses from news
reports to show differences in framing patterns between distinct sources.

Intertwining both. As seen in the previous subsection, mathematical and cul-
tural sociology had already posed, at the end of 20th century, the issue of a
co-evolution, or at least a correlation, between social and semantic, or behavioral
aspects. On the complex system modeling side, attempts are more recent and

started with the characterization of what may be called “unidirectional” correla-
tions: more precisely, by showing how information distribution may explain or shed
light on the social structure, which is appraised as a dependent variable of the
semantic structure. This concerned especially two main questions: fragmenta-
tion and selection; and correspondingly yielded one main type of insights: coloring
either clusters or dyadic connectedness with the help of semantic features and
semantic similarity. This literature typically refers to the seminal sociological work
of McPherson et al. (2001) on homophilic behavior.
At the macro level, social network clusters have been shown to be generally

semantically homogeneous, in that they exhibit similar political leanings (Adamic
and Glance, 2005; Himelboim et al., 2013), geographical properties (Etling et al.,
2010) or both (Hoffmann, 2014); even though the strength of this observa-
tion may also heavily depend on link types (Conover et al., 2011), linguistic fea-
tures (Kim et al., 2014; Eleta and Golbeck, 2014), topics (Barberá et al., 2015;
Garimella et al., 2016; Himelboim et al., 2017), and time (Gaumont et al., 2018).
At the micro level of dyadic edges, the formation of citation (McGlohon et al.,

2007; Cointet and Roth, 2009), interaction (Schifanella et al., 2010; Kossinets
and Watts, 2009) or affiliation (Backstrom et al., 2006) links also depend on se-
mantic features, generally exhibiting homophily. Here again, there are differences
across distinct network types and topics (Lietz et al., 2014; Tyagi et al., 2020;
Cinelli et al., 2021), whereby interaction is generally less homophilic than affilia-
tion or citation. Similarly, in a variety of networks, semantic similarity depends on
the strength of structural connectedness, both statically (Mitzlaff et al., 2013)
and diachronically (Crandall et al., 2008).
Dynamic aspects have been increasingly addressed by this literature and di-

rectly appeal to the co-evolutionary nature of structure and culture. Of particular
interest are the questions of the dependence of information and content adoption
on structure, and of the generation and configuration of socio-semantic clusters,
both in a normative and in an empirical setting. I shall review these issues in
much more detail in Sections 3 and 4.

9



2 Graph morphogenesis

An overarching issue concerns the study of graph structure and dynamics in all
generality, as a precondition to the understanding of the role of networks in ap-
praising specific case studies. Before delving deeper into the topics evoked in the
previous chapter and addressing the socio-semantic case in the next chapter, this
chapter thus aims at reviewing the general issue of social graph morphogenesis,
both in the most typical situation, where networks are both sparse and heteroge-
neous (2.1), and in the rather non-conventional case of weighted, dense networks
occurring in peculiar contexts such as mobility and kinship networks (2.2).

2.1 Generic case: sparse and heterogeneous networks

The modeling of network morphogenesis has generated a particularly substantial
literature following a series of findings in the early 2000s where most real-world
networks appeared to exhibit universal topological features: high level of cluster-
ing, existence of modules or clusters, and heterogeneous connectivity distribution
(roughly following power or log-normal laws). The corresponding state of the art
may essentially be organized according to two key dichotomies: the first one re-
lates to the target of models, the second one to their foundations. More precisely,
models (i) aim at reconstructing either network evolution processes or morphol-
ogy; and, to that end, they (ii) rely on assumptions, or inputs, related again
to either processes or morphology. This yields the double dichotomy shown on
Table 1, which I will use as a guide for the remainder of this subsection.

2.1.1 Reconstructing processes

Let us first focus on generative processes at the lowest level i.e., the derivation of
micro-level network generation rules governing the appearance or disappearance
of nodes, and/or the formation or disruption of links (left side of Table 1).

Using micro-level processes. One of the most straightforward approaches con-
sists in using, precisely, data describing these very dynamics, at the node and
link level — abstracting low-level processes by observing low-level processes. In
this category, we find what may be described as simple counting methods aimed
at appraising the propensity of links to form preferentially more towards nodes

possessing certain properties: the archetypal notion of “preferential attachment”
(PA). In its most restrictive yet most widespread acceptation, PA relates to the
ubiquitous observation that links tend to attach to nodes proportionally to their
degree centrality (number of neighbors), or just degree. Following de Solla Price
(1976), this acceptation essentially stems from Barabási et al. (2002). Several
authors extended this notion beyond degrees to deal with a variety of both struc-
tural and non-structural features, including spatial distance (Yook et al., 2002),
common acquaintances or topological distance (Kossinets and Watts, 2006), sim-
ilarity (Menczer, 2004; Roth, 2005; Leskovec and Horvitz, 2008) or a combination
thereof (Cointet and Roth, 2010). This approach may be followed the other way
around: instead of descriptively measuring growth processes, normative processes
may be proposed and compared against empirical link formation. For one, Pa-
padopoulos et al. (2012) introduced a PA model based on a concept of geometric
optimization: nodes are placed in a plane and new nodes may connect to a subset
of existing nodes by minimizing a geometric quantity. The model thereby repro-
duces connection probabilities that match empirical observations in a selection of
real networks, rather than infers such probabilities from real data.

Another set of approaches relies on machine learning: they principally aim at
predicting the appearance of links by generalizing from past link creation. Scoring
methods are among the simplest ones: for instance, Liben-Nowell and Kleinberg
(2003) introduced a prediction function based on some dyadic feature (such as the
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processes structure
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Link prediction, Classifiers,
Scoring methods, ...

Preferential attachment-based
generative models, Rewiring, Cost
optimization, Social Simulation,
Agent-Based Models (ABMs), ...
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Exponential Random Graph Models
(ERGMs), p1, p∗, Markov Graphs,
Stochastic Actor-Oriented Models
(SAOMs), ...

Prescribed structure,
Subgraph-based constraints,
Kronecker graphs, Edge swaps, ...

Table 1: Double dichotomy of canonical network modeling approaches, which generally aim at
reconstructing either evolution processes or network structure, and do so by relying either on
evolution processes or network structure.
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number of common neighbors, Jaccard coefficients, Katz distance). This function
outputs a score on non-connected dyads for an empirical network observed over
a learning period [t0, t]. The prediction task then consists in going through the
dyad list in descending order and comparing it with the links formed during a test
period [t, t ′]. A large array of more sophisticated techniques have further been
proposed, involving, inter alia, SVM classifiers (e.g., Adar et al., 2004) or more
broadly supervised learning methods (Hasan et al., 2006), as well as matrix and
tensor factorization (Acar et al., 2009) — see Lü and Zhou (2011) and Hasan
and Zaki (2011) for introductory reviews of this type of endeavors.
On the whole, this strand of methods is rather geared towards prediction suc-

cess rather than behavior estimation i.e., efficiently guessing which links will ap-
pear rather than providing explicit and interpretable link formation rules (see Yang
et al., 2015, for a relatively recent discussion of their comparative performance).
Besides, an increasing attention has lately been paid to the time-related and
spatial variability of the prediction task by considering the local neighborhood of
nodes, both in a topological and temporal manner (Sarkar et al., 2014) and in
a semantic fashion e.g., by enriching the set of prediction features with content
(Rowe et al., 2012) or so-called sentiment analysis (Yuan et al., 2014). The
machine learning toolbox has finally been recently enriched with evolutionary al-
gorithms (for instance, Bliss et al., 2014, evolve a weight matrix describing the
relative contributions of various similarity measures in predicting new connections)
and, more significantly, a wide array of network embedding techniques (Grover
and Leskovec, 2016; Wang et al., 2016), which rely in part on the macro-level
structure to create a multi-dimensional node representation space where the ques-
tion of link prediction reduces to a geometric problem of efficient neighborhood
exploration.

Using macro-level structure. Link formation principles may also be infered
from the observed network topology. The most common approach here consists
of statistical techniques which are not unlike what is typically done in economet-
rics. They aim at fitting a network-level model whose parameters are associated
with specific link formation effects. In other words, such models rely on the
network as a whole, rather than link sets.
Blockmodels could count as one of the simplest such techniques. Introduced in

the 1970s in mathematical sociology, they typically apply to static network data.
They rely on the assumption that the presence of links depends on latent “blocks”

of actors who are loosely structurally equivalent (White et al., 1976) i.e., exhibit
the same connectivity patterns toward other actors. Stochastic blockmodeling
(SBM, Holland et al., 1983) proposes a probabilistic framework to statistically
appraise inter-block connectivities (actors may also belong to a mixture of blocks,
see Airoldi et al., 2008). In the same vein, some more recent works estimate the
likelihood of missing links by using network divisions based on either dendrograms
(Clauset et al., 2008) or blockmodels (Guimerà and Sales-Pardo, 2009).

Exponential Random Graph Models (ERGMs) famously belong to this class
of approaches as well. In all generality, they rely on the assumption that the
observed network has been randomly drawn from a distribution of graphs. The
probability of appearance of a given graph is construed as a parameterization
on a choice of typical network formation processes: be they structural (such
as transitivity, reciprocity, balance, etc.) or non-structural (such as gender dis-
similarity, homophily, etc.). The aim is generally to find parameters maximizing
the likelihood of the observed network. Each parameter then describes the likely
contribution of the corresponding category of link formation process (e.g., strong
transitivity, weak reciprocity). ERGMs have been introduced by Holland and Lein-
hardt (1981) through the so-called p1 model describing the probability of graph
G as p1(G) ∼ exp(

∑
i λivi(G)) = Πi exp(λivi(G)) where vi(G) denotes a value

related to the i-th process (e.g., transitivity). p1 assumes independence between
dyads, which limits the model to simple dyad-centric observables: principally, de-
gree and reciprocity. It can nonetheless be applied to a partition of the network
into subgroups (Fienberg et al., 1985) or stochastic blockmodels (Anderson et al.,
1992); parameters are thus a function of blocks. Frank and Strauss (1986) fur-
ther introduced “Markov graphs”, which take into account dependences between
edges and thus triads and simple star structures, and which was subsequently ex-
tended as the p∗ model (Wasserman and Pattison, 1996; Anderson et al., 1999;
Robins et al., 2007). Generalizations to more complex graph structures have
later been proposed e.g., for so-called “multi-level networks” (Wang et al., 2013;
Brennecke and Rank, 2016), which are essentially graphs with two types of nodes
and three types of links i.e., isomorphic to a socio-semantic network.

When longitudinal data is available, network evolution may also be construed
as a stochastic process in itself. Holland and Leinhardt (1977) then Wasserman
(1980) proposed to appraise network dynamics as a (continuous-time) Markov
chain. They assumed that the probability of link appearance or disappearance
depends on a limited set of (static) parameters representing the contribution of
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various structural effects, such as, again, reciprocity, degree; structure and be-
havior may be combined (Leenders, 1997). Networks observed at different points
in time are used to fit these parameters. Albeit not directly affiliated with this
framework, Powell et al. (2005) proceed in a similar fashion to determine the key
factors guiding attachment of firms in a biotech sector. Stochastic actor-oriented
models (SAOMs) further expand these ideas by introducing an actor-level view-
point whereby actors establish link to optimize some objective function (Snijders,
2001). Again, the parameters of this function denote effects deemed impor-
tant for link formation (or destruction). These models also accommodate some
form of dyadic dependence, and take into account non-structural features such
as gender. They may include behavioral observables (Snijders et al., 2007) or rely
further on machine learning techniques e.g., by extending SAOMs to a Bayesian
inference scheme (Koskinen and Snijders, 2007). In practice, SAOMs may be
used to study non-structural effects linked to gender, racial, socioeconomic or
geographical homophily, as demonstrated for instance in an online context on
Facebook friendship (Lewis et al., 2012). ERGMs and SAOMs assuredly share
several traits, and it is also possible to develop ERGMs in a longitudinal frame-
work as temporal ERGMs (or TERGMs), where the estimation for a graph at
time t depends on the graph at t−1 (Hanneke et al., 2010). For a more detailed
comparison between SAOMs and ERGMs, see Block et al. (2019).
On the whole, these approaches enable the joint and concurrent appraisal of

a variety of effects (each statistical model may consider an arbitrary number of
variables to explain the shape of the observed network), with the drawback of
reducing the description of the contribution of each effect to a scalar quantity.

2.1.2 Reconstructing structure

The second part of the double dichotomy (right side of Table 1) relates to the
morphogenesis of the whole structure. It may again be roughly divided into two
broad categories, depending on whether approaches are based on a given growth
process or on the entire network topology.

Using micro-level processes. A myriad of models have been proposed to re-
construct network structure from normative assumptions. This is perhaps the
most well-known and natural approach in statistical physics. At the core of these
approaches lies generally a master equation or a master process featuring a certain

number of key and oftentimes stylized ingredients. These ingredients correspond
to an ideally small subset of canonical growth processes, defining the essential
rules for adding –and, rarely removing– nodes, links, and most importantly spec-
ifying towards which types of nodes. The goal often consists in reproducing the
observed connectivity (such as degree distributions), cohesiveness (such as clus-
tering coefficients), or connectedness (such as component size distributions).

One of the earliest successful attempts at summarizing network morphogenesis
with utterly simple processes consisted again in analytically solving simple PA
based on node degree (Barabási and Albert, 1999). Models based on a general
notion of PA have been extended in various directions: taking into account the age
of nodes (Dorogovtsev and Mendes, 2000), their Euclidean distance (Yook et al.,
2002), their intrinsic fitness (Caldarelli et al., 2002), their rank (Fortunato et al.,
2006) or their activity (Perra et al., 2012), formalizing a notion of competition
between nodes to attract new links (Fabrikant et al., 2002; Berger et al., 2004;
D’Souza et al., 2007), copying links from “prototype” nodes (Kumar et al., 2000)
or using random walks (Vázquez, 2003), introducing preferences for transitive
closure (Holme and Kim, 2002) or for specific groups of nodes — based on an a
priori taxonomy (Leskovec et al., 2005) or an affiliation network (Zheleva et al.,
2009) — or mixing structural PA with semantic PA: for instance, Menczer (2004)
introduced the so-called “degree-similarity” model after observing that connected
web pages are rather more similar, while Roth (2006a) mixes group-based PA and
semantic PA. Group-based PA may also be found in models based on teams, such
as Guimerà et al. (2005) whose network evolves through the iterative addition
of network cliques between all team members, assuming a certain propensity to
introduce newcomers and repeat past interactions. Socio-semantic team-based
morphogenesis will be discussed in more detail in Section 3.3.

Another class of models is based on link rewiring. One of the simplest versions
was introduced by Watts and Strogatz (1998), who start with a ring lattice of
fixed degree and reconnect links with a given probability p. The resulting structure
may be discussed in terms of low path length and high clustering coefficient, or
“small-world”. Colizza et al. (2004) later reproduced these two statistical features
by adopting a distinct approach based on a rewiring process aimed at optimizing
a global cost function, in a way inspired by Fabrikant et al. (2002).

Finally, a broad class of network models, especially in the social realm, falls
into the category of agent-based models (ABM) as soon as they rely on a rel-
atively rich combination of actor-centric processes. They generally aim at a
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specific application field which, in turn, requires detailed assumptions: as such,
they typically offer a good combination of realism (they benefit from a stronger
sociological grounding) and tractability (their study generally requires to resort
to simulation). Examples of sophisticated models have been abundant in the
social simulation literature from early on and are now present in a wide array of
works at the interface between statistical physics and CSS. Let us nonetheless
casually mention Pujol et al. (2005) who build various social exchange network
shapes by combining various agent decision heuristics and cognitive constraints;
and Goetz et al. (2009) who reproduce blogger posting behavior and citation
networks by a combining random-walk-based generators and post selection rules.
In section 4.3, I provide an overview of network-based ABMs targeted at the
emergence of socio-semantic clusters, specifically polarization.

Using macro-level structure. Reconstructing graph structure directly from
graph structure essentially means to show that some structural constraints entail
other structural features — for instance by demonstrating that a certain number
of connected components or a strong proportion of some sort of triads follows
from a given degree or subgraph distribution. The earliest attempts precisely
focused on the effect of prescribing a power-law degree sequence (Aiello et al.,
2000) and, shortly thereafter, any degree sequence (Newman et al., 2001). Sev-
eral methods have later been proposed for more sophisticated constraints, such as
prescribed degree correlations (Mahadevan et al., 2006), subgraph distributions
(Karrer and Newman, 2010), or recursive stuctures (Leskovec et al., 2010a).
A typical challenge consists in being able to sample the space of graphs induced

by a given set of constraints. Some approaches manage to provide a closed-form
expression of several average statistical properties of the induced graph space,
as has been done for the typical path length or average clustering coefficient by
Newman et al. (2002). When this is not possible, an alternative consists in sam-
pling the graph space through iterative exploration: the initial empirical graph
is typically transformed by swapping pairs of edges while respecting the original
constraint (Rao et al., 1996; Gkantsidis et al., 2003). This corresponds to a
navigation in a meta-graph gathering all graphs of the target space. Beyond sim-
ple constraints, exhaustive navigation is usually impossible. In Tabourier et al.
(2011, 2017), I practically addressed this issue by introducing an empirical sam-
pling method denoted as “k-edge switching”, iteratively swapping groups of k links
in order to cover an increasingly large portion of the underlying graph space.

2.1.3 Combining both: evolutionary models

In all four positions of the double dichotomy, the challenge generally consists in
proposing some processes or constraints deemed to be key to explain network
formation — be it transitivity, centrality, homophily, etc. The role of such and
such mechanism may be either assumed a priori, then measuring how it contributes
to generate such and such network shape, or measured a posteriori, by assuming
its existence and appraising its magnitude during network evolution. In all cases,
intuition is crucial: creating these models requires insights on which mechanisms
may play a role. Yet, the role of some mechanisms and, more, their combination,
may sometimes be counter-intuitive.
To alleviate this dependence on intuition, evolutionary algorithms were recently

used to automatically infer candidate mechanisms from the observed structure.
It differs from the above methods in that it jointly uses the structure to recon-
struct processes and the processes to reconstruct the structure. More precisely,
network structure is used to devise link formation processes and, in turn and iter-
atively, these discovered processes are precisely used to reconstruct the structure.
Some of the earlier approaches introduced template models based on fixed sets of
possible specific actions (e.g., creating a link, rewiring an edge, connecting to a
random node, etc.). Actions may be organized in various manners: first as a fixed
chart, resembling the typical structure of agent-based models (Menezes, 2011),
as a sequential list of variable size (Bailey et al., 2012; Harrison et al., 2016) or,
very recently, as a matrix whose weights describe the relative contribution of each
action (Arora and Ventresca, 2017). In all these works, the evolutionary process
aims at automatically filling the template model with actions and fitting the cor-
responding parameters. As is typical in evolutionary programming, it involves a
fitness function to evaluate the resemblance between the empirical network and
networks produced by the evolved model. Fitness functions rely on classical struc-
tural features (degree distributions, motifs, distance profiles, etc.). Models are
iteratively evolved along increasing fitness values.
In parallel, we could contribute an original approach aimed at inferring arbitrar-

ily complex combinations of elementary processes, construed as laws, embedded
in a simple PA framework (Menezes and Roth, 2013, 2014). We first introduced
a generic vocabulary making it possible to describe network evolution in a unified
framework, as an iterative process based on the likelihood of appearance of a link
between two nodes, construed as a function on node properties in the currently
evolving network (i.e., a general form of PA). We used structural features such
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Figure 1: Empirical networks, automatically discovered rules, visual shapes of real networks and
their synthetic equivalent, and radar describing the statistical accuracy of the reconstructed
topologies. From Menezes and Roth (2014).

as distance, connectivity, as well as non-structural characteristics. Represent-
ing these functions as trees enabled us to apply genetic programming techniques
to evolve rules which are then used to generate network morphologies increas-
ingly similar to the target, empirical network. This technique may be denoted as
“symbolic regression”, for the goal is to genetically evolve free-form symbolic ex-
pressions rather than fitting parameters associated to fixed symbolic expressions:
we automatically evolve realistic morphogenetic rules from a given instance of
an empirical network, thereby symbolically regressing it. This strategy is inspired
by Schmidt and Lipson (2009) who extract free-form scientific laws from exper-
imental data. We first applied our method on kinship networks (Menezes and
Roth, 2013) which led to a much more general framework in Menezes and Roth
(2014). One remarkable result consists of the ability to systematically and ex-
actly discover the laws of an Erdos-Rényi or Barabasi-Albert generative process
from one of its stochastic realizations. Distinct, realistic and compact laws for a
variety of social, physical and biological networks could also be found (see Fig. 1).

Families of network phenotypes and genotypes. Our approach provided a sort
of artificial scientist proposing plausible network models, replacing the intuition of
the modeler. It also makes it possible to discuss networks in terms of their plau-
sibly genotype (i.e., generator equations), rather than phenotypes (i.e., a series
of topological traits). Phenotypical traits assuredly provide the basis for apprais-
ing the quality of structural reconstruction and, by extension, for defining fitness
functions attentive to such and such topological property (for an early yet already
comprehensive review, see da Fontoura Costa et al., 2007). They also provide
a good foundation for comparing networks with one another: a series of studies
have indeed been devoted to defining network families by relying on triadic profiles
(Milo et al., 2004), canonical analysis of various measures (da Fontoura Costa
et al., 2007, §19), adjacency matrix spectrum (Estrada, 2007), blockmodeling
(Guimerà et al., 2007a), community structure (Onnela et al., 2012), hierarchical
structure (Corominas-Murtra et al., 2013), communication efficiency (Goñi et al.,
2013), graphlets (Yaveroglu et al., 2014), and graph embeddings (Yanardag and
Vishwanathan, 2015). Phenotypical traits have also been the target of evolu-
tionary algorithms in Märtens et al. (2017), who symbolically regress formulas
describing the phenotype of the network e.g., expressing explicitly the diameter
of various network classes as a function of the number of nodes, links, or some
eigenvalues of the adjacency matrix.

14



By contrast, symbolic regression enables the comparison and categorization of
networks based on their plausible underlying morphogenesis rules — as such a
genotypic categorization. The research direction initiated in Menezes and Roth
(2014) has further been developed in Menezes and Roth (2019a) to discover
network families by categorizing their generators (genotypes) rather than their
morphologies (phenotypes). These families are defined both in terms of the simi-
larity of their function (i.e., how the generator works) and of their expression (i.e.,
its symbolic expression). To this end, we used 238 anonymized ego-centered net-
works of Facebook friends randomly sampled from about 10,000 such networks
stemming from a large-scale online survey (under the collaborative ANR project
“Algopol”, specifically one of its experiments where consenting participants ac-
cepted to give access to their publication and network history; see also Bastard
et al., 2017). For each network, we found a best generator expressed as a for-
mula. To identify families of generators and to visualize how similar they are in
relation to each other, we introduced a measure of dissimilarity between pairs of
generators. To visualize the landscape of generators, we model these dissimilari-
ties as distances in geometric space; their multi-dimensional scaling yields Fig. 2.
This provides an overview of various generative processes for ego-centered net-
works, ranging from classical Erdős-Rényi graphs (the generator function is a
constant c) or degree-based PA (generator function proportional to k), to gen-
erators which rely heavily on an affinity function (ψ) which corresponds to the
existence of distinct classes of nodes; in other words, distinct social circles.

2.2 Unusual network topologies

I will present in more detail my contributions to graph morphogenesis in the
context of socio-semantic networks in Section 3. Before that, I shall also evoke
an area which is relatively peripheral in this regard, the morphogenesis of non-
standard topologies of networks that are the object of some social science fields,
yet are not social networks per se. Not all empirical networks are indeed sparse
and heterogeneous. The opposite may be easily found in at least two specific
fields, spatial networks (Barthélemy, 2011) and kinship networks (Hamberger
et al., 2011), for which the understanding of morphogenetic dynamics warrants
the development of distinct methods, and where I could also propose several
contributions. Since this area is relatively further from socio-semantic issues, I
briefly focus here on my most direct contributions.

Figure 2: Network generators mapped on a two-dimensional layout according to their pairwise
distances. Colors and shapes indicate generator families manually identified as semantically
similar. ER means Erdos-Rényi (i.e., a uniformly random process reconstructs well the empirical
network), PA means preferential attachment, ID means a very simple process proportional to
node IDs. In particular, “SC” generators (for Social Circle) involve a notion of node class and are
over-represented in Facebook friendship networks. See Menezes and Roth (2019a) for details.

Spatial and human mobility networks. The first strand of research focuses on
the dynamics on transport networks i.e., human mobility. These networks often
exhibit non-heteregeneous degree centrality distributions. They may either be
close to complete networks: most nodes are connected to most other nodes, as
is the case in spatial movement networks at a relatively short scale e.g., in an
urban context where it is difficult to find two non-connected nodes). Or they
possess a very modal degree distribution: most nodes have the same degree, as
is the case in physical infrastructure networks. Of particular importance is the
analysis of link weights with respect to space and physical distances.
Roth et al. (2011a) relied on a dozen of millions of subway rides made by a

couple of millions of individuals within a large metropolis, London. Methodologi-
cally, the challenge consisted in describing patterns for an almost complete graph
(all subway stations were connected with each other by at least one ride), while
taking into account the geographical position of nodes. We could demonstrate
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that intra-urban movement is strongly heterogeneous in terms of volume, but
not in terms of travel distance, thus debating previous results by González et al.
(2008) and Brockmann et al. (2006). In both cases, we could show the exis-
tence of characteristic scales (contrarily to many real-world networks) and of a
polycentric structure composed of large flows organized around a limited number
of activity centers. For smaller flows, the pattern of connections becomes richer
and more complex and is not strictly hierarchical since it mixes different levels
consisting of different orders of magnitude. Furthermore, the spatial distribution
of edges revealed a strong geographical heterogeneity and anisotropy; see Fig. 3.
Another strand of research relates to the dynamics of transport networks.

In Roth et al. (2012a), I could show the existence of universal patterns of the
evolution of the largest world subway networks along several decades, such as
the existence of a very distinctive dichotomy between a dense two-dimensional
core and a sparse, wide-reaching and one-dimensional periphery. Both network
characteristics and geographical features could be described in simple ways in
each regime (core/periphery). More recently, I could contribute to link transport
network topology and to the underlying geographic-demographic characteristics
of the underlying region (area, population, wealth), comparing urban and train
networks (Louf et al., 2014).

A last strand of research relates to the description of mobility in open space,
without considering transport networks. I could focus on the quantitative de-
scription of territory boundaries and, again, the existence of characteristic spatial
scales. Human mobility is indeed known to be distributed across several orders
of magnitude of physical distance, which makes it generally difficult to endoge-
neously find or define typical and meaningful scales. Relevant analyses seem to be
relative to some ad-hoc scale, or free of any scale — be it for movement based on
the circulation of artifacts (Brockmann et al., 2006), cell phone data (González
et al., 2008) and calls (Sobolevsky et al., 2013), taxi rides (Liang et al., 2013),
social media “check-ins” (Cho et al., 2011) or postings (Beiró et al., 2016). Net-
work community detection algorithms used to find geographical partitions are
similarly often based on either a single scale or ad-hoc scales (Thiemann et al.,
2010; Sobolevsky et al., 2013).
In Menezes and Roth (2017), we demonstrated that mobility networks can

enclose several coexisting and natural scales at the partition level, despite the
scale-free nature of link distance distributions at the lower level. In other words,
we automatically uncovered a small number of meaningful description scale ranges

Figure 3: Polycenters and basins of attraction in the London subway system, representing the ten
most important polycenters, and showing the corresponding propensity to anisotropy comparing
actual flows with a null model only preserving total flows going to or from a given station
(randomizing origin-destinations for that station); 1 means no deviation in a given direction.
The anisotropy is essentially in opposite directions from the center, showing a strong bias towards
the suburbs for peripheral centers essentially, rather than for central centers. Moreover, most
stations control their own regions and seem to have their own distinctive basins of attraction.
From Roth et al. (2011a).

from apparently scale-free raw data. We relied on geotagged data collected for
a variety of geographical regions (from countries to metropolitan areas) from a
photo-sharing platform, Instagram, over a period of 16 months. By tracking the
places where a given user took photos we could infer the intensity of human move-
ment between any two given locations in a region. We then defined a series of
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Figure 4: Belgium borders at different scales. a) Heat map of scale similarities 1; b) Borders
for the long distance scale; c) Borders for the short distance scale; d) Borders for the middle
distance scale; e) Multiscale borders; f) Borders based on optimal two community partition of
the full graph; g) Language communities of Belgium. From Menezes and Roth (2017).

movement networks constrained by increasing percentiles of the distance distribu-
tion, to which we apply a relatively straightforward community detection process.
Using a simple parameter-free discontinuity detection algorithm, we discover clear
phase transitions in the community partition space. Fig. 4a focuses on the case
of Belgium, further illustrating how natural scales correspond to partitions in the
map, and how the several natural scales can be combined in a single multiscale
map, which provides richer information about the geographical patterns of the
region than is possible with more traditional methods. Further, the analysis of
scale-dependent user behavior hints at scale-related behaviors rather than scale-
related users: a core of users are active in all scales. Besides, we showed that the
ambition of finding natural phases in community partitions based on some notion
of resolution, which can be fulfilled in non-geographical scale-free networks (Traag
et al., 2013), could also be tackled in the case of spatial mobility networks. More
broadly, this allows the introduction of boundary conditions based on a scaffolding
of a small number of natural spatial and behavioral scales emerging endogenously
from the data, which provide a subset of relevant description levels.

Kinship networks. Kinship anthropology deals with graphs variously describing
genealogical relationships or alliance networks. The former are strongly con-
strained graphs, featuring two ascendants per node and temporal order. The
latter are weighted and, often, non-sparse directed graphs describing marriages
between well-defined kinship groups (see Fig. 5). In both cases, the challenge
is to exhibit regularities or anomalies in matrimonial strategies to quantitatively
falsify established anthropological theories, especially as regards relinking phe-
nomena (e.g. two brothers marrying two sisters of another family, thus creating
a cycle in the genealogical network, or a circuit in the alliance networks). While
coordinating the CNRS partner of the “SIMPA” ANR project (for an overview,
see Menezes et al., 2016), I could in particular tackle a variety of combinatorially
challenging issues for such networks, including the counting of cycles and devel-
opment of multinomial models for weighted dense networks (Roth et al., 2013),
the automatic discovery of matrimonial rules, successfully applying the above-
mentioned evolutionary models to kinship and genealogical newtorks (Menezes
and Roth, 2013; Menezes et al., 2016).

Figure 5: Some empirical alliance networks: node size is proportional to strength, while arrow
width is proportional to arc weight (graphs were rendered with GePhi using the ForceAtlas
visualization algorithm). From Roth et al. (2013).
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3 Socio-semantic formalisms

Social cognition may be studied at the junction of these disciplinary efforts.
Networks offer a practical and fertile perspective to appraise jointly the interac-
tional substrate and the cognitive landscape within a similar formalism. Albeit
obeying distinct processes, the morphogenesis of social and semantic networks
may be formulated in a unified framework.

In my work, the idea of binding the social and semantic realms first appeared
in a preprint (Roth and Bourgine, 2003) before introducing explicitly the label
“socio-semantic network” (Roth, 2005) and formalizing this further as “epistemic
networks” (Roth, 2006a), leading to a family of structures related to graphs
(social and semantic), bipartite graphs (socio-semantic), hypergraphs (with hybrid
social and semantic hyperedges) and lattices (hybrid taxonomies of actors and
concepts) (Roth, 2013). As stated before, a string of works emphasized the
importance of intertwining content and social structure — in SNA (Emirbayer
and Goodwin, 1994), lattice analysis (Mische and Pattison, 2000), visualization
(Sack, 2003) or the semantic web (Mika, 2005) — yet it is only towards the end
of the 2000s that this combination appeared in a significantly increasing number
of empirical studies (Adamic and Glance, 2005; Etling et al., 2010; Wang and
Groth, 2010; Conover et al., 2011; Lietz et al., 2014; Martin-Borregon et al.,
2014; Ciampaglia et al., 2014; Korff et al., 2015; Himelboim et al., 2017, to cite
a very few).

This binding is also behind several projects which I could supervise at the in-
terface between computer science and sociology, especially a series of grants
successively addressing the morphogenesis, diffusion patterns and informational
diversity of online communities and the digital public space (ANR Webfluence,
2009-10; ANR Algopol, 2012-15; ANR Algodiv, 2016-19; ERC Socsemics 2018-
23). In parallel, I developed developed some epistemological reflections on the
modeling of socio-technical or socio-semantic systems in a series of subsequent
articles (Roth, 2007a, 2009, 2010, 2013), while pursuing the empirical applica-
tions of such frameworks (including Tamine et al., 2016; Roth, 2017; Baltzer
et al., 2019; Roth and Basov, 2020; Medeuov et al., 2021). This section aims
at discussing how socio-semantic frameworks have been progressively introduced
to understand social cognition processes at the micro, meso and macro levels.
Formally, this respectively corresponds to the notions of socio-semantic graphs,
hypergraphs and lattices.

3.1 Socio-semantic ontology

Ontological difficulty and asymmetry. One of the first issues with socio-
semantic frameworks consists of a fundamental asymmetry in the burden of defin-
ing what counts as an entity in each realm. On the social side, it appears consid-
erably easier, if not straightforward in some contexts, than on the semantic side.
Social nodes typically represent individuals (such as authors, users), rarely collec-
tive entities (such as organizations, websites) whose boundaries are admittedly
less well-defined. Semantic nodes and, thus, semantic categories, pose signifi-
cantly more definitional questions, especially as they are often abstracted from
text corpuses (Evans and Aceves, 2016), be it interview transcripts or digital pub-
lications. Shall we focus on words, n-grams, or terms? This goes further than
the mere technical processing questions evoked earlier in Section 1.3, as word
meaning across different contexts and, more broadly, different pieces of text is
not obviously stable (Leydesdorff, 1997). Even if we dismiss this problem, shall
we use terms, or “topics” as term sets or distributions (Grimmer and Stewart,
2013)? “Statements” or “clauses” as syntactically articulated terms (Mausam
et al., 2012; Vossen et al., 2016; Van Atteveldt et al., 2017)? Whole “sentences”
as syntactically consistent units (Leskovec et al., 2009)? Vectors in some opin-
ion or epistemic space (Gilbert, 1997; Sim et al., 2013)? Vector models (Salton
et al., 1975) up to the most recent machine learning (ML) approaches aimed
at geometrically embeddinging words, sentences or documents, or both (respec-
tively Mikolov et al., 2013; Le and Mikolov, 2014; Angelov, 2020, which, to
some extent, take implicitly into account an underlying relational and contextual
structure)? Answers and decisions considerably vary across the state of the art.
The definition of links easily generates further debates. On the social side, they

are admittedly an abstraction of reality (Fuhse, 2009), all the more when the same
data induces various types of relationships (affiliation vs. interaction; retweets vs.
mentions, see Conover et al., 2011; Lietz et al., 2014) or layers (Kivelä et al.,
2014). Deciding how to attribute weights to edges, or arcs, and why, is not
easier. Such discussions nevertheless remain generally short: binarization is very
frequent and weights oftentimes correspond to interaction frequency, whatever
the interaction. On the semantic side, link meaning is relatively obvious when
nodes are terms (co-occurrence frequency is a consensual choice, while SNA
techniques may also indifferently be applied on semantic networks, as in e.g.,
Carley, 1986; Nerghes et al., 2015) — and much less otherwise: a myriad of
similarity metrics are available (Jaccard, cosine, edit distances in some space) to
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express the relatedness of words, sentences or documents. Last but not least,
there is no less freedom for defining connections between social and semantic
entities and most of these issues remain equally acute.

The formalism of socio-semantic hypergraphs remains generally agnostic of
these issues. It accommodates most of them by allowing a variety of assumptions
on the definition of nodes and relationships.
Most importantly, socio-semantic hypergraphs accommodate most of the op-

erational frameworks of the literature reviewed in the present manuscript.
This formalism distinguishes two sets of nodes respectively representing social

(S) and semantic entities (S). It configures a single type of n-adic relation X,
which is a (possibly valued) subset of the hybrid powerset P(S ∪ S). See Fig. 6
for a generic illustration.
Most digraphs used to empirically connect social and semantic structures may

be construed as some restriction of X over some set product defined over S and
S. Consider for instance the structure of Fig. 7 as a socio-semantic hypergraph.
The dyadic social relation s = X∩(S×S) defines a classical binary social network.
Similarly, s = X ∩ (S× S) induces a classical binary semantic network. Socio-
semantic relationships between social and semantic entities may be defined as
χ = X ∩ (S×S), and so on — the generalization to directed, weighted or times-
tamped relations X is straightforward (using directed, set-valued hypergraphs),
albeit normally beyond the scope of this section.
The so-called “socio-semantic networks” of Roth and Bourgine (2003), Roth

(2013), and Roth and Basov (2020), as well as what I initially called “epistemic
networks” in Roth (2006a, 2007b,c, 2008a) are precisely given by these s, s and
χ. By contrast, Roth (2005), Cointet and Roth (2009, 2010), Roth and Cointet
(2010), and Baltzer et al. (2019) only make use of s and χ (which are also both
implicitly present in Menezes et al., 2010a). Finally, Roth and Bourgine (2005,
2006), Roth et al. (2008a), and Roth (2008b, 2010, 2017) just use the more
classical bipartite relationship χ, which I may also sometimes have (confusingly)
denoted as a socio-semantic network even if it is actually restricted to dyadic links
between exactly a social and a semantic entity: to avoid any ambiguity, I shall
from now on denote this bipartite relationship as the “socsem network”. Likewise,
links between social and semantic entities are denoted as “socsem links”.
Socio-semantic hypergraphs cover many other usual uses. For instance, X may

describe hybrid n-adic affiliations (collaborations, co-attendance, co-membership
gathering any number of actors and concepts) and were introduced as such in
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Figure 6: Toy example of a socio-semantic hypergraph X. Nodes represent either agents from
S or concepts from S. The boundaries of three partially-overlapping socio-semantic hyperedges
are figured by thick dashes: the top-left hyperedge, for instance, gathers {a1, a2, c1, c4, c6}.

Taramasco et al. (2010). In this case, the classical projected social network may
also be written as S = {(a, a′) ∈ S2 | ∃x ∈ X, (a, a′) ⊆ x}. The classical co-
affiliation network may be defined dually as S= {(c, c ′) ∈ S2 | ∃x ∈ X, (c, c ′) ⊆
x}, just as the affiliation relation χ is defined analogously as the projection of
X on S × S. Considering s, s and χ as adjacency matrices isomorphic to the
relations they each represent, we can write s = χχT and s = χTχ, which reveals
the usual correlation between these three dyadic networks (Everett and Borgatti,
2013).

Semantic networks centered on actors, for instance on a given actor a ∈ S,
are induced by sa = X ∩ ({a} × S× S) if X is defined such that (a, c, c ′) ∈ X
indicates that the connection between concepts (c, c ′) ∈ S2 holds for a i.e., is in
the semantic network of a (used in Medeuov et al., 2021). This covers the issue of
distinct actors ascribing different semantic relationships between terms, and even
different meanings (Fuhse, 2009). It enables the definition of multi-actor-multi-
concept patterns, and the comparison between actors of their respective semantic
networks. For instance, socio-semantic diamonds of Roth (2006a) and Roth and
Cointet (2010) describe the joint use by a and a′ of c and c ′ and correspond to the
case where (a, a′, c, c ′) belongs to some hyperedge of X. These hybrid patterns
are currently at the root of a burgeoning literature building in part upon the above
socio-semantic formalisms (see e.g., Basov and Brennecke, 2017; Basov et al.,
2019, 2020; Fuhse et al., 2020).
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“Socio-semantic” et al. Cultural sociology in particular (Section 1.2) has de-
veloped formal frameworks that connect, to some extent, social and semantic
networks, or semantics with social networks, or semantic networks with actors
(most notably, to recall a few, Carley, 1986; Leenders, 1997; Mohr and Duquenne,
1997; Lazega and Pattison, 1999; Snijders et al., 2007; Vaisey and Lizardo, 2010;
Pachucki and Breiger, 2010; Godart and White, 2010; Wang et al., 2013). Few
works pushed the generalization of connection types much further than Krack-
hardt and Carley (1998) who introduced networks between several kinds of entities
(actors, resources, tasks, skills) and their various potential projections, denoted
as “meta network” in Carley (2002) and leading to a further operationalization
in Diesner and Carley (2005) where a myriad of, inter alia, actor-actor, actor-
concept, concept-concept relationships are extracted from text corpuses.

Notwithstanding, a few fields have explicitly coined new notions and expres-
sions that combine “social” and “semantic” term. Such is obviously the case of
the “socio-semantic web” or “social semantic web” (Zacklad et al., 2003; Wang
and Groth, 2010), aimed at integrating social aspects into the so-called “seman-
tic web” which, at the time, was an already-thriving engineering field focused
on ontologies, and precisely on the conception of specifications and protocols to
deal with relationships between various types of entities. The socio-semantic web
intended to augment semantic web ontologies with a social layer, and the social
web (i.e., essentially ontologies of people) with a semantic layer, in order to im-
prove the cooperative management of ontologies and to foster the emergence of
knowledge-oriented user groups. While the so-called “FOAF” (Friend Of A Friend)
ontology connects almost indifferently actors and concepts in all directions (Finin
et al., 2005), by contrast, “semantic-social networks” (Mika, 2007) extended
classical ontologies by adding the notion that meaning is agent-dependent i.e.,
specifying which actor is behind which ontological relationship. Such tripartite
actor-concept-instance graphs resemble very much both social tagging systems
and the precursor “cognitive social structures” proposed by Krackhardt (1987):
the resulting macro-level structure is essentially a knowledge map whose implicit
connectors are agents or, more precisely, their beliefs on concepts. On the whole,
these efforts nonetheless tend to bring to web services a social epistemology
perspective (1.1) rather than a cultural sociology one (1.2).

This notion of collaborative knowledge construction also applies particularly
well to science models (Payette, 2012). The seminal paper by Gilbert (1997)
features “kenes”, a two-dimensional knowledge vector analogous to genes, and

a simple dynamics where, is essence, the generation of new papers by (implicit)
scientific actors is influenced by the kene-based position of previous papers, which
remarkably reproduces realistic connectivity and cluster structures. This further
paved the way for “epistemic networks” whose actors pursue a goal of scientific
or epistemic exploration in some well-defined knowledge space. Typical questions
relate to the effect of the social structure on the efficiency of the semantic explo-
ration (Grim, 2009; Weisberg and Muldoon, 2009) and, dually, to the influence
of the shape of the semantic space on interaction processes (Sun et al., 2013).
Hybrid networks of actors and concepts, featuring in all generality hybrid inter-

actional and semantic relationships, were increasingly introduced around the turn
of the 2010s. They were variously denoted as “semantic social networks” (Gloor
et al., 2009), “attribute-augmented graphs” (Zhou et al., 2009), “bi-type informa-
tion networks” (Sun et al., 2009), “content-based social networks” (Cucchiarelli
et al., 2010), “social content networks” (Wang and Groth, 2010), “augmented
social networks” (Cruz et al., 2013), or “heterogeneous graphs” (Liu et al., 2017),
to cite a few. These works typically involve both social and semantic nodes, and
describe links and clusters of interest in a unified representation. This also relates
to a longer effort in the information visualization community to propose hybrid
social and semantic representations, starting with Sack (2003) who put side by
side semantic and networks (term relationships and user replies), responding to
the short yet much older call of Dourish and Chalmers (1994) to do so. Hybrid
visualizations have since become much more familiar, including “pivot graphs”
(Wattenberg, 2006), where node placement is influenced by attributes, “pivot
paths” (Dörk et al., 2012), which alternates between actor- and concept-centric
navigation. Various types of projections of social graphs on semantic maps (Korff
et al., 2015) or the other way around (Gaumont et al., 2018) are now rather
common.

3.2 Micro-level socio-semantics: nodes & edges

All these frameworks support the appraisal of socio-semantic morphogenesis. Let
us focus for now the micro level i.e., the correlations between intertwined struc-
tural and semantic measures at the level of actors and concepts, both in a static
and diachronic way. The formalism of choice, here, is the above-mentioned socio-
semantic network, as a graph featuring strictly dyadic connections and defined by
s, s and χ (Fig. 7).
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This first concerns static characterizations and, more precisely, a posteriori
observations of socio-semantic correlations. Most studies in this field compare
structural measures on s and on χ, thereby showing that social and socsem de-
gree centralities (akin to social and cultural capitals) are both heterogeneous
(many have little, few have a lot), strongly correlated, and that these features
are stable across time in spite of a strong low-level activity and thus vigorous net-
work evolution (as in Roth, 2006a; Roth and Cointet, 2010, see also Fig. 8a-top)
while they jointly plateau (Baltzer et al., 2019), suggesting correlated underly-
ing constraints. Similarly, there is socio-semantic assortativity in the sense that
connected nodes in the social network are also socsem-connected to similar se-
mantic entities (Aiello et al., 2010; Conover et al., 2011; Mitzlaff et al., 2013;
Lietz et al., 2014; Cinelli et al., 2021). More sophisticated socio-semantic corre-
lation patterns could also be exhibited: for one, the classical notion of “structural
holes” (Burt, 2004), denoting the brokerage position of certain nodes in a social
network which are connected to otherwise weakly connected portions, could be
translated in a socsem context as “cultural holes” (Vilhena et al., 2014). Such
holes describe divergences in the way actors use terms: the underlying idea is
that communications should be more difficult when socsem connections match
less i.e., are holes in the socsem network. This leads to double dichotomies con-
necting various levels of structural embeddedness with various levels of “cultural”
embeddedness, while demonstrating a non-monotonous relationship between the
two. Simply put, cultural brokers are not necessarily strongly connected socially,
and vice-versa (Goldberg et al., 2016; Garimella et al., 2018).

Socio-semantic evolution. Second, several studies examined low-level socio-
semantic processes in a diachronic or longitudinal manner, in order to show how
socio-semantic properties in the broad sense may a priori influence link formation.
Some analytical network formation models (Boguna and Pastor-Satorras, 2003;
Boguna et al., 2004) assume a joint influence of latent socsem connections in
χ on the appearance of social links in s. Empirically, this is at the root of Roth
(2006a), Cointet and Roth (2009), and Roth and Cointet (2010) which address
this question in a co-evolutionary framework in both scientific communities (au-
thors, concepts) and blog networks (bloggers, topics). An important finding is
that the relationship between social link formation likelihood and socsem distance
(denoted as δ) measured either as a Jaccard coefficient or as a cosine distance
on the concept sets that actor dyads are respectively using, appears to be non-
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Figure 7: Ontology of a typical socio-semantic network given by the triplet (s, s, χ) i.e., social,
semantic, and socsem networks: nodes a ∈ S denote actors, while nodes c ∈ Sdenote concepts;
links correspond diversely to interaction, co-occurrence, or usage; they may be directed or
undirected. This socio-semantic network is not derived from the example of Fig. 6 and illustrates
the situation where links of s, s or χ do not configure cliques.

monotonous in interaction networks (collaboration) while it is monotonous in
affiliation networks (citation), suggesting that the former is less homophilic than
the latter. Several of these findings could be replicated on Twitter by Šćepanović
et al. (2017) while additionally focusing on link deletion. Further, the socio-
semantic framework sheds a different light on classical reinforcement processes
(of the “rich-get-richer” type). As is traditionally the case, more connected agents
benefit proportionally from new connections, and agents who are topologically
closer in the social network are exponentially more likely to attract new connec-
tions (topological distance d considerably matters). In passing and interestingly,
social capital appears to matter more when social distance is higher: in the local
neighborhood of repeated or “friend-of-friend” interactions, capital (or, perhaps,
fame) matters less. The influence of social topology is further intertwined with
socsem similarity in a non-trivial manner: we observed in Cointet and Roth (2010)
that interaction propensity, which is smaller toward socially remote actors, also
increases with socsem similarity whenever agents have not interacted before (i.e.
for d > 1); whereas this is much less so for repeated interactions (d = 1) where
socsem homophily plays a weaker role. The bottom graph of Fig. 8b describes
the magnitude of the interaction propensity with respect to both social distance
d and semantic distance δ. On the whole, reinforcing processes may be charac-
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terized in all directions for all social, socsem and semantic networks: Wang and
Groth (2010) appraised the strength of the aggregated influence of each network
on each other, for several classical network properties, in a unified framework that
relies exactly on a socio-semantic network formalism; for instance, they show that
clustering in the social network has a “.55” positive influence on centrality degree
in the semantic network.

The above phenomena also point to the existence of two types of interac-
tion modes, local and distant, featuring distinct socio-semantic processes, which
makes it possible to speak of a “local” rather than “small” world, defined as a
small circle around ego where link formation happens in a distinct manner than for
long-distance links. This further hints at two other phenomena: socio-semantic
contraction and dependence on latent groups. Regarding the former, not only
social or socsem proximity induces a higher likelihood of connection (socsem se-
lection), not only does it increase after interaction (socsem influence), but it
does also appear to increase before interaction: both social and socsem proximity
obey a sigmoid function whose characteristic shape starts several periods of time
before actual first interaction, in contexts as varied as user-to-user interaction
on Wikipedia discussion pages (Crandall et al., 2008) or blog networks (Cointet
and Roth, 2010, see Fig. 8a-bottom). Regarding the latter, the presence of un-
derlying groups that may also further influence the morphogenesis: Zhou et al.
(2006b) study both the socsem adoption of concepts (how likely an actor a using
c is to use c ′) and the joint social & socsem adoption (how likely an actor a′

connected to a who uses c is to use c ′) and demonstrate the existence of a block
structure in concept adoption: put differently, some subsets of concepts are likely
to induce the socsem- or socially-mediated adoption of some other subsets of
concepts. This hints at the meso-level effects that will be the focus of the next
subsection.

Concept adoption may here be regarded as the formation of socsem links that
depend on the socsem and social structure as a whole. This process has been ex-
hibited in the case of the longitudinal adoption of values or world views dependent
on prior connections between actors (Vaisey and Lizardo, 2010), whereby the soc-
sem neighborhood of connected actors is becoming more similar across time; or
in the longitudinal convergence of discourse in an organizational setting (Saint-
Charles and Mongeau, 2018) whereby the same coevolutionary phenomenon is
observed, and socsem similarity is also correlated with social centrality, albeit in
a non-monotonous way (above a certain threshold, socsem similarity does not

[0;.1] ].1;.2]].2;.3]].3;.4]].4;.5]].5;.6]].6;.7]].7;.8]].8;.9] ].9;1]
10−4

10−3

10−2

10−1

100

semantic distance δ

p
ro

p
o
rt

io
n

o
f

d
y
a
d
s

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.7

0.72

0.74

0.76

0.78

0.8

0.82

weeks

!(
")

 

 

(a)

1 2 3 >3 0 50 100

10−2

10−1

100

101

102

degree ksocial distance d

!(
d,

k)

1 2 3 >3 [0;.2[  [.2;.4[ [.4;.6[ [.6;.8[ [.8;1]
10−2

10−1

100

101

102

semantic distance !social distance d

"(
d,
!)

(b)

Figure 8: (a) Semantic proximity of connected dyads: top, comparison between the semantic
dissimilarity of connected dyads (blue crosses) and pairs of nodes in the whole network (red
triangles); bottom, evolution of the average relative semantic dissimilarity ρ(δ) over all pairs
of nodes getting connected for the first time at week 0. (b) Joint socio-semantic interac-
tion propensity with respect to topological distance d and social capital k (top) or semantic
dissimilarity δ (bottom). From Cointet and Roth (2010).

induce reinforcement dynamics in terms of social centrality); or in the adoption
likelihood of cultural elements in the context of fashion (Godart and Galunic,
2019), which is higher when concepts are more strongly embedded in the se-
mantic network (relying here on S) and less popular in the socsem network (χ),
translating the fact that fashionable elements should both be well inserted in the
semantic structure and not too mainstream in the socsem structure.

Socio-semantic processes are also the relatively recent target of ERGM-based
studies which consider so-called “multi-level” (Wang et al., 2013) and “multi-

22



plex” patterns (Basov and Brennecke, 2017). These patterns are expressed in a
framework isomorphic to socio-semantic networks and serve as the basis for the
appraisal of, say, the contribution of (a, a′, c, c ′) motifs to socio-semantic mor-
phogenesis. The very recent work by Koskinen et al. (2020) interestingly considers
groupings of semantic links as nodes of a further semantic hypernetwork which,
for one, does not conform to the socio-semantic hypergraph formalism because
of its recursivity.1 Let us finally mention some ML techniques of link prediction
in socio-semantic networks, for instance by including socsem similarity into the
scoring of social links (Hours et al., 2016) or by using network embedding such
as semantic proximity search in “heteregeneous graphs” (Liu et al., 2017). Effi-
ciency is, again, the main target of ML methods, generally at the price of a lower
explanatory power.

3.3 Meso-level socio-semantics: collectives & hyperedges

3.3.1 Collectives at the micro-meso level: socio-semantic teams

Several socio-semantic systems, such as science or open-source software devel-
opment, feature horizontal, self-organized team work. Individuals more or less
freely decide to gather in teams to produce knowledge: social cognition occurs
not only at the macro level of the whole system, but also at the meso level of
teams, which ideally aspire to achieve the best possible mix of skills by optimizing
social and cognitive affinities of the group. We touch here the limits of dyadic
network frameworks: team processes are not a sum of individual rationalities and
some characteristics may not be expressed at the dyadic level. The seminal study
of Ruef (2002) showed how several factors including gender, status, or ethnic-
ity, influence the propensity to compose a team of company founders. Several
subsequent studies described the configuration and performance of knowledge
creation teams by focusing essentially on the social structure (Uzzi and Spiro,
2005; Jones et al., 2008) or on a few attributes (typically gender or ethnicity,
see Zhu et al., 2013; AlShebli et al., 2018) — denoting a broader and increas-
ing interest in what has meanwhile become “team science” (Stokols et al., 2008;
Ramos-Villagrasa et al., 2018).

1This hypergraphic recursivity is also present in what we introduced as “semantic hyper-
graphs” in Menezes and Roth (2019b) to deal with sophisticated semantic and linguistic con-
structs per se. As such, they have more to do with computational linguistics and are thus
beyond the scope of the present manuscript.

Hypergraphs are a natural modeling framework for teams. They appropriately
generalize graphs: hyperedges gather an arbitrary number of nodes and not just
two, by design (graphs are indeed hypergraphs whose hyperedges are of fixed
size two). They have been used relatively early in categorization tasks (Gibson
et al., 2000): for instance, Zhou et al. (2006a) showed their superior efficiency
in classifying terms, while Sharma et al. (2014) developed a prediction framework
for hypergraphic social collaborations. Hypergraphs nonetheless appeared spo-
radically over the last two decades, until they started generating very recently a
fast-growing literature in the network science community (Battiston et al., 2020).
However, most of this research strand principally relies, at least implicitly, on a
perfect isomorphism between bipartite graphs and social hypergraphs: one side
consists of actors, the other denotes teams or groups (as in, actually, Breiger,
1974) i.e., equivalently, social hyperedges. By contrast, socio-semantic hyper-
graphs are normally not isomorphic to some social hypergraph or bipartite graph.

Teamwork depends on cognitive properties: teams are formed according to
both social and semantic features; socio-semantic hypergraphs further appear as
a relevant description level. While the team-based nature of academic collab-
oration has long been underlined (deB. Beaver, 1986), quantitative and formal
frameworks have traditionally been based on graphs (Mullins, 1972; Newman,
2001) or multi-dimensional surveys (Cummings and Kiesler, 2007). Hypergraphs
appear sometimes explicitly in the scientometric literature, yet to characterize
actor-centric properties (Han et al., 2009; Lung et al., 2018). In Taramasco
et al. (2010), to my knowledge for the first time, we appraised academic teams
as a socio-semantic hypergraph X based on S ∪ S (see Fig. 6). Let us present
its key points. The empirical data stemmed from bibliographical records which
originally conform the hypergraphic ontology: papers gather authors (actors) and
concepts (e.g., lemmatized salient terms extracted from abstracts); in practice,
we selected some fields (focused on topics: rabies, the zebrafish model animal,
or on actors: FAO/WHO expert groups) gathering thousands of papers and tens
of thousands of articles over a couple of decades (1985–2007). This defines an
empirical dynamic hypergraph Xt that grows through the cumulative addition of
hyperedges x , each describing authors and scientific concepts which participated
in the same paper. Xt gathers all papers until year t (drawn as “history graphs” by
Datta et al., 2014). Simple hypergraphic measures may be defined, at any time,
depending on past team arrangement. For instance, the socio-semantic expertise
ratio of a hyperedge x in a given concept c at time t, noted ξc,t(x), denotes
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Figure 9: Hypergraphic propensity (team bias): (a) for the proportion of experts per article; (b)
for hypergraphic repetition ratios (social in solid line, semantic in dashed line). (Geometrically
averaged behavior based on all four datasets.)

the number of actors of x who already appeared in at least one past hyperedge
containing c before t (we call such actors “experts” in c). That is,

ξc,t(x) =
∣∣{a ∈ x ∩ S | ∃x ′ ∈ Xt−1, {a, c} ⊆ x ′}∣∣ / ∣∣{x ∩ S}∣∣

Going further, the degree of social originality of a hyperedge x at time t, or social
hypergraphic repetition ratio rSt (x), may be measured by counting the proportion
of subsets of actors of x which were already included in a past hyperedge at
t ′ < t: it goes from 1 when all actors were previously all together in at least one
collaboration, to 0 when the team does not even feature a single pair of previously
interacting scientists. In formal terms,

rSt (x) =
∣∣{x ′ ∈ P(x ∩ S) | ∃x ′′ ∈ Xt−1, x ′ ⊆ x ′′}

∣∣ / ∣∣P(x ∩ S)
∣∣

Conceptual originality may be dually measured by a semantic hypergraphic repeti-
tion ratio rSt based on concepts i.e., replacing S with S in the previous formula.
These indices make it possible to describe the a posteriori composition of

teams, in terms of the raw distribution of teams exhibiting a given expertise ratio
ξ or given social or semantic hypergraphic repetition ratios rS or rS. We first
observed that social originality is lower for extreme values of ξ i.e., for teams
made of experts only or made of non-experts only: hyperedges of a mixed level
of expertise correspond on average to a more original gathering of individuals.

However, there seems to be no correlation between the expertise ratio and se-
mantic originality. Additionally, and perhaps contrarily to intuition, new semantic
associations (lower rS) do not correspond more to original teams (lower rS) than
to repeated teams — in other words, conceptual originality does not seem to be
related to an original social composition of the underlying team.
Extending the notion of preferential attachment to socio-semantic hypergraphs

enables the description of team assembly processes. This relies on a random
baseline consisting of a null-model of evolving hypergraph. It features synthetic
hyperedges which conserve the same number of agents and concepts as empiri-
cally observed, but arranged in an arbitrary manner (for a very recent theoretical
overview, see Chodrow, 2020). In other words, randomly arranged socio-semantic
teams ∆̃Xt ∈ P(S ∪ S) are added at each period while respecting social and se-
mantic size distributions of the empirically observed increment ∆Xt . Then, the
discrepancy between empirical vs. simulated hyperedges for some property p yields
an estimate of preferential team formation or preferential hypergraphic attach-
ment: π̃t(p) =

∣∣x ∈ ∆Xt ∧ p(x)
∣∣ / ∣∣x ∈ ∆̃Xt ∧ p(x)

∣∣. For instance, p may be
chosen as some value of the expertise ratio. In this case, the results show a
strong socio-semantic preference for groups made of a high or low proportion of
experts (ξ close to 0 or 1 i.e., teams where none or almost all members just started
working on a given concept for the first time; see Fig. 9a). We further observe a
significant bias towards social and semantic repetition, consistent with similar re-
sults using flat measures on social graphs (Guimerà et al., 2005): as may be seen
on Fig. 9b, there is a high likelihood to repeat previous collaborations patterns
(high propensity for high rS), while the hypergraphic arrangement of concepts by
a given team depends largely on the repetition of previous associations (increasing
propensity with respect to rS).

3.3.2 Collectives at the meso-macro level: clusters

Going a little bit further up from the meso to the macro level brings us to the issue
of aggregates, variously denoted as “communities” or “clusters”, depending on the
main discipline and aim of the respective studies. Contrarily to hypergraphs,
there is here a long and now huge history of research, both in mathematical
sociology and SNA, and in complex network and computational social science
(established reviews in the respective fields may be found in Wasserman and
Faust, 1994; Fortunato, 2010). In all generality, the former has rather had a
tradition of using explicit algebraic patterns — starting with cliques (Luce, 1950)
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or structural equivalence (Lorrain and White, 1971) i.e., complete monopartite or
bipartite subgraphs — while the latter rather has usually relied on looser statistical
or algorithmic patterns, also as a result of dealing with larger graphs (Moody,
2001). In any event, the current notion of structural social aggregates, which
I will conventionally denote below as “clusters”, may find its root indistinctly in
the former or latter fields: be it a group of nodes such that “its members should
have many relations with each other and few with non-members” (Alba, 1973) or
“within which connections are dense, but between which connections are sparser”
(Newman, 2004).
As said before, social clusters are also deemed to correspond, at least im-

plicitly, to underlying semantic boundaries: a good clustering would for instance
successfully differentiate oncologists from embryologists in academic collabora-
tion networks; or workmates from schoolmates, in friendship networks. From a
broader viewpoint, determining the success of cluster detection from relational
data may generally be roughly assimilated to a socio-semantic mapping operation
— even within a strictly social framework, clusters supposedly represent social
circles with some underlying meaning, and this constitutes a frequent validation
criterion in the literature. Here again, studies focusing on scientific dynamics
have paved the way, by co-mapping individuals or journals and fields of knowledge
(see e.g., Small and Griffith, 1974, Kreuzman, 2001 or Rosvall and Bergstrom,
2010, among many others).
Beyond that, research issues explicitly related to socio-semantic clusters may

be categorized along two main domains. First, appraising the socio-semantic
cohesiveness of clusters: to what extent are social clusters semantically cohesive
or, vice versa, how semantic clusters are shared across groups of actors? Second,
detecting intrinsically socio-semantic clusters: to what extent the joint social and
semantic cohesiveness may be used to improve the characterization of clusters?

Socio-semantic cohesiveness. A sizable literature, already massive at the be-
ginning of the 2000s, aims at coloring social clusters using semantic attributes
(Brandes et al., 2001) or clusters (Börner et al., 2003). More precisely, topical
clusters extracted from the semantic or socsem network are in turn projected
on social networks. These clusters are either purely semantic or affiliation-based
clusters i.e., they are based on either s or χ. Science (Vilhena et al., 2014; Raim-
bault et al., 2016) and online communities (Etling et al., 2010; Gaumont et al.,
2018) are again typical playgrounds for this type of endeavors. The resulting

semantically-colored social maps are oftentimes commented qualitatively and vi-
sually, in that such and such region is deemed typical of such and such community.
Another stream of studies proceeds roughly the other way around by depicting
semantic networks with respect to actors (Carley, 1994; Tancoigne et al., 2014;
Basov et al., 2019): the goal is principally to exhibit common meaning structures
across actors by focusing on representations and concept associations that are
shared by pairs or groups of actors. Finally, joint socio-semantic regions may be
identified on hybrid actor-concept networks gathering both node types (S ∪ S),
either by using χ alone (Cambrosio et al., 2004; Callon, 2006; Hellsten and Ley-
desdorff, 2020) or, more recently, by relying on the full socio-semantic network
i.e., by using additionally s and s (Roth and Basov, 2020): by contrast with the
above-mentioned depiction of social clusters on semantic maps, or vice versa,
cohesive regions are this time directly hybrid.
Beyond visual inspection, a whole set of studies has aimed at developing mea-

sures of the semantic cohesiveness of social clusters, in a variety of contexts: using
links within (Davison, 2000) or between (Flake et al., 2002) web pages, blog net-
works (Adamic and Glance, 2005; Elgesem et al., 2015; Kaiser and Puschmann,
2017), micro-blogs (Java et al., 2007; Himelboim et al., 2013). This strand has
shown for instance how semantic cohesiveness changes as a function of link types
or topics (e.g., Conover et al., 2011; Barberá et al., 2015; Garimella et al., 2016,
see also Section 1.3 for more references), all of which reminesces about White
(1992)’s networks of meanings. Ding (2011) interestingly raises the broader is-
sue of a possible continuum in the alignment, or lack thereof, between social and
semantic communities. Social clusters may cover a variety of semantic clusters,
semantic clusters may spread over many social clusters. By challenging the as-
sumption of widespread homophily in socio-semantic networks, we may further
ask the question of the meta-structure of such systems in terms of more or less
aligned social & semantic clusters: how to describe to what extent both types of
clusters are aligned, under which conditions are they?

Socio-semantic clusters. Notwithstanding, another sizable portion of the lit-
erature directly assumes, rather than appraises, socio-semantic cohesiveness, and
aims at building upon this premise to discover socio-semantic clusters per se. This
goal may in turn be understood in two main different ways: either discovering bi-
partite clusters directly (principally using the socsem network χ), or combining
social structure and semantics to uncover better or more precise social clusters
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(principally using the social and socsem network, s and χ).

The notion of bipartite clusters, or co-clusters, as cohesive groups of nodes
of S ∪ S and links of χ may for instance be illustrated by Mohr (1994) and
Mohr and Duquenne (1997), which both focus on social assistance to define
categories of actors (soldiers, mothers, blind people, etc.) who are provided similar
categories of social relief. The former paper looks for co-clusters of actor types
and relief concepts using a correlation-based approach normally applied to one-
mode networks (Breiger et al., 1975), while the latter defines them more strictly
as bicliques. Bicliques are maximal joint groups of actors and concepts connected
in χ: this direct bipartite equivalent of cliques allows a lattice-based hierarchical
analysis that I will detail further in Section 3.4. Note also here the interesting
extension to tri-cliques by Jäschke et al. (2008) based on tri-partite relationships
connecting agents, concepts (attributes) and artifacts (digital items) in so-called
folksonomies.

One-mode cluster detection techniques have also been applied to two-mode
networks, notably by proposing two-mode blockmodels (Doreian et al., 2004),
or by formulating the monopartite measure of modularity (Newman, 2006) for
bipartite graphs (Barber, 2007; Guimerà et al., 2007b), or even by introducing
the notion of two-mode cores (Cerinšek and Batagelj, 2015). They have also
been applied to hybrid social and socsem networks: Zhou et al. (2009) discover
clusters using random walks that may indifferently involve social and socsem links,
while Yang et al. (2013) use a generative model of latent membership of nodes
to communities which influences social links while taking into account attribute
similarity i.e., socsem links. This brings us to the other class of methods that
relies in all generality on the notion of latent categorical variables, and which is
at the core of two very popular modeling techniques briefly evoked in Section 1.3:
LDA and SBM. Broadly, these are generative Bayesian probabilistic models in
the sense that they assume that latent variables, categories or blocks explain the
generation of the observed links (recalling that actor attributes may be seen as
links of χ).

The initial formulation of LDA (Blei et al., 2003) presupposes a latent, purely
semantic layer of “topics” defined as distributions on words which explains the
observed distribution of words in documents (see Blei, 2014, for an extensive
review). The output may thus be seen as a weighted relation between documents
and topics and, in turn, a weighted relation between topics and words. There is
no other notion of cluster yet. The extension of LDA by Rosen-Zvi et al. (2004)

called “Author-Topic” model soon introduced actors, more precisely authors be-
hind documents, in that topics are distributed over authors, who then generate
documents according to these distributions of topics, which in turn are still dis-
tributions on words. There is no social layer yet i.e., no social links. This appears
in the “Author-Recipient-Topic” model (McCallum et al., 2005), whereby topic
distributions depend on links between actors, or in the so-called “Topic Modeling
with Network structure” (Mei et al., 2008), where topic distributions are improved
using extra information from the social network. At this stage however, there is
still no notion of social cluster: this appeared in parallel in Zhou et al. (2006c)
who generate actor-concept clusters, either as sets of users who are associated
with a topic set, or as sets of topics which are distributed over users. The simul-
taneous detection of topics (made of words) and communities (made of actors)
happens in Chang and Blei (2009) and Liu et al. (2009), while the really symmet-
ric detection of actor-concept clusters is achieved by Pathak et al. (2008) with
the “Community-Author-Recipient-Topic” model adapted to sender-recipient (di-
rected) social links, and by Sachan et al. (2012) with the “Topic User Community
Model” for generic social networks. Both types of models jointly attribute, or dis-
cover, membership probabilities of users and topics to some latent communities
i.e., to intrinsically socio-semantic clusters.
SBM, on the other hand, encapsulates the notion that social blocks possess

some underlying semantic meaning: blocks are latent semantic parameters, even
when only applied on social network data (Peixoto, 2018). When applied to
affiliation data or socsem networks, SBM reveals a correspondance between actor
blocks and concept blocks (Larremore et al., 2014; Gerlach et al., 2018). The
aims of LDA and SBM appear to be merged in the “Stochastic Topic Block Model”
(STBM, Bouveyron et al., 2018) which jointly attributes actors to blocks (and
their inter-block connection probabilities) and to latent topics (and their word
distributions).

3.4 Macro-level socio-semantics: phylogenies & lattices

Irrespective of the approach adopted to define them, socio-semantic clusters
are actually socio-semantic hyperedges, though at a higher scale — they may
nonetheless be expressed as elements of X. This further raises the question of
their arrangement at a macro level, either as a collection of hyperedges parti-
tioning S ∪ S or as a partially overlapping cover of S ∪ S. The literature already
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extensively addressed this issue in the case of social network clusters (and more
broadly on networks featuring a single type of nodes), in terms of nested hierar-
chy (Moody and White, 2003), size distribution (Arenas et al., 2004) and general
configuration (Rosvall and Bergstrom, 2008; Ahn et al., 2010); as well as for
overlapping (Xie et al., 2013) or multilayer (Kivelä et al., 2014, §4.5) clusters.

Socio-semantic hierarchy. Beyond the above-mentioned question of a possi-
ble alignment between social and semantic clusters (Ding, 2011; Gerlach et al.,
2018), the macro-level arrangement of socio-semantic clusters has received more
attention only recently: in the CSS literature, it appears to be principally focused
on detection efficiency (Melamed, 2014; Larremore et al., 2014) more often than
the global structure and hierarchy per se. The configuration of bicliques in a
given socsem network constitutes a notable and relatively old exception (Boeck
and Rosenberg, 1988; Freeman and White, 1993), which is furthermore at the
root of a series of contributions of mine focused on the overall organization (Roth
and Bourgine, 2005), dynamics (Roth, 2006b; Roth and Bourgine, 2006; Roth,
2010) and also reducibility (Roth et al., 2006; Kuznetsov et al., 2007; Roth et al.,
2008a; Klimushkin et al., 2010) of such socio-semantic clusters (for a review, see
Roth, 2017). These studies built upon the notion of epistemic community (EC,
Haas, 1992), which refers a minima to groups of actors sharing the same concepts
and epistemic goals: solving a given socio-technical problem, advancing science
in a given field, etc. ECs may be formalized as a dual set of actors altogether
using the same concepts, or a biclique of χ — in set formulation, it is a maximal
set of nodes C ⊆ P(S ∪ S) such that ∀(a, c) ∈ (C ∩ S) × (C ∩ S), (a, c) ∈ χ
and there exists no superset of C where the same property holds.
As subsets, hyperedges induce a natural hierarchy based on set inclusion which

is best represented as a lattice. Socio-semantic hyperedges feature a natural dual
hierarchy: an EC C1 can be said to be more general than another EC C2 when
the actor set of C1 contains that of C2 and thus, dually, the concept set of C1
is included in that of C2. This dual relationship defines a partial order ≥ec on
bicliques such that for two ECs C1 and C2,

C1 ≥ec C2 ⇐⇒ (C1 ∩ S) ⊇ (C2 ∩ S) ⇐⇒ (C1 ∩ S) ⊆ (C2 ∩ S)

In turn, partially-ordered ECs may be arranged in a lattice, and more precisely
a particular instance of a Galois lattice (Barbut and Monjardet, 1970; Freeman
and White, 1993), which is also the core focus of the “Formal Concept Analysis”
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Figure 10: Illustration of the construction of a socio-semantic lattice L, from left to right: (i)
a bipartite graph features usage of concepts c1, c2, etc. by agents a1, a2, a3 (part of χ); (ii)
maximal groups of agents using the same concepts are then extracted (they are meso-level socio-
semantic hyperedges and thus form a type of socio-semantic hypergraph X) and finally arranged
into a hierarchical socio-technical lattice L (being a high-level socio-semantic hypergraph with
the partial order ≥ec). Note that S and S are by definition bicliques and respectively upper and
lower bounds of all ECs.

(FCA) community (Ganter and Wille, 1999) where bicliques are called “formal
concepts” and where, generally speaking, S is a set of objects while S is a set
of attributes. The socio-semantic lattice L is eventually based on S ∪ S, the
order relation ≥ec, and the set of all socio-semantic bicliques/ECs of X. See a
toy illustration on Fig. 10, vertically represented as a Hasse diagram (Davey and
Priestley, 2002). Navigating L from top to bottom is equivalent to exploring
socio-semantic communities from the most generic to the most specific ones.
Moreover, since ECs may have more than one parent and more than one descen-
dant, they are well-suited to the representation of non-Aristotelian taxonomies,
allowing for the membership of an item to several categories.
An empirical illustration from Roth (2010) is given on Fig. 11. It relies on

MEDLINE bibliographical records mentioning the word “zebrafish” between 1990
and 2003, in order to capture the emergence, consolidation and institutionaliza-
tion of the scientific community interested in this model animal. This yields a
socio-semantic network χ whose social boundaries are semantically defined i.e.,
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Figure 11: Evolution of the socio-semantic macro-structure of the zebrafish community from
the period 1990-95 to 1998-2003, using pruned socio-semantic lattices focused on the top
(most generic and populated) ECs. Each node is an EC labeled with its concept set, and its
actor set size as a percentage of the total population. Figures are in bold for 1998-2003 and in
italics and inside brackets for 1990-1995, showing the lattice evolution over the period. White
and black ECs experienced a marked population increase or decrease (more than 15%), dashed
ECs stagnated (less than 15%), stars denote new ECs in 1998-2003. From Roth (2010).

both extending to and limited to this field whose members mention “zebrafish”
almost systematically in the abstract. The data is divided into three slightly over-
lapping 5-year periods, focusing on a fixed number of concepts (70) among the
most significant across all periods, and on about 1,000-10,000 actors from the
first to the last period. These figures are way enough to generate an intractably
huge number of bicliques (Ganter and Wille, 1999) and, for comparison purposes,
require to concentrate on random samples of a fixed size of 250 actors for each
period. Even so, lattices are huge: the first period lattice contains a couple hun-
dred thousands of bicliques, which calls for further pruning heuristics (see below).
To start with, we selected the 20 top-ranking ECs for each lattice based on a
simple score combining population size (in terms of actors, to favor communities
gathering a sizable portion of the field) and distance to the lattice top (to fa-
vor more general communities). The longitudinal comparison of socio-semantic
lattices describes the high-level evolution of the social distribution of cognitive
tasks within the field. In particular, three main research areas may be identi-
fied, organized around three subsets of concepts and corresponding actors: (i)
the study of biochemical signaling mechanisms, involving pathways and receptors;
(ii) comparative studies focusing on similarities and differences between humans,
mice, zebrafish as vertebrates; (iii) the examination of the nervous system and

brain development. The first and, to a lesser extent, the second subfields grew
in importance within the community at the expense of the last field: research
on brain and spinal cord decreased and its relationship with ventral and dorsal
aspects became weaker. On the other hand, the community started to venture
into signaling issues; which is partly explained by the emergence of a more general
background trend in molecular biology.
The computational explosion linked to the representation of lattices and, more

broadly, socio-semantic hyperedges, even for small socio-semantic systems and
datasets, poses both a quantitative problem, in terms of calculation or visual
representation, and a qualitative problem, as regards the relevance of taxonomies
based on a tremendous number of categories. The above-mentioned selection
method focused on the top of the lattice, following the then current state-of-
the-art based on so-called “iceberg” lattices (Stumme et al., 2002) which came
with a significant price in terms of resolution: for instance, it typically disregards
mid-sized and niche ECs. In this regard, I could contribute to improve systematic
lattice reduction methods (Roth et al., 2006; Kuznetsov et al., 2007; Roth et al.,
2008a) by operationalizing the notion of stability (Kuznetsov, 1990), further
enriched in Klimushkin et al. (2010) with the notions of concept “probability”
and “selection”. More precisely, a formal concept, or socio-semantic hyperedge,
is “stable” if the absence of some of its items or properties does not prevent its
existence as a pattern. Instead of removing the bottom part of the lattice using
a relatively arbitrary size threshold, our combinatorial approach leverages the
tendency of the lattice to be self-similar and to contain many duplicate patterns.
It prunes slightly redundant bicliques everywhere, at any size, from top to bottom,
and has been widely used in the FCA community (Poelmans et al., 2013).

Socio-semantic phylogenies. This example illustrates two main issues of the
macroscopic description of intrinsically socio-semantic structures: pattern selec-
tion to build meaningful (static) taxonomies, and inter-temporal matching to build
meaningful (diachronic) phylogenies. They are both, to some extent, a selection
problem, which is already well-known in the case of social cluster detection, both
statically (as a resolution limit, see Fortunato and Barthelemy, 2007; Traag et al.,
2011) and diachronically (especially community instability, see Rossetti and Ca-
zabet, 2018, for a review). The diachronic case is particularly interesting with
respect to the above example as it also raises the issue of pattern redundancy and
stability, however in a temporal perspective: communities are partly redundant,
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partly stable across time.
Typically, inter-temporal correspondence may be assessed longitudinally, either

by using network snapshots (clusters at t are associated with clusters with similar
members at t ′, see Doreian, 1979; Hopcroft et al., 2004, for instance) or link
recurrence (the stability of links observed between t and t ′ defines the group,
as in Palla et al., 2007), thereby assuming that social entities only exist by way
of their temporal stability (Abbott, 1995). The identification of semantic clus-
ters is naturally isomorphic and its longitudinal formulation is also the object
of relatively recent research, especially the automatic construction of temporal
knowledge maps (Rosvall and Bergstrom, 2010; Shahaf et al., 2012) and phylo-
genies (Lancichinetti and Fortunato, 2012; Chavalarias and Cointet, 2013). In
these fields, I could contribute to longitudinal semantic cluster analysis using net-
work snapshots (representing the evolution of semantic clusters across time in a
unified multi-scale representation Chavalarias et al., 2011, see also Fig. 12).
Inter-temporal correspondence may also be assessed dynamically, based on what

may loosely be called temporal networks and which preserves the fact that the
primary empirical material is made of links that appear across time rather than
aggregate network snapshots; thus mainly looking for inter-temporal clusters of
links. An early dynamic social cluster analysis techniques consists in introducing
links connecting the same nodes across various periods of time (Ben Jdidia et al.,
2007; Mucha et al., 2010). Here, I could also propose a contribution focused on
edges rather than snapshots in (Mitra et al., 2012). It aimed at detecting clus-
ters in a meta-graph allowing inter-temporal connections between distinct nodes:
typically in citation networks (science or blog posts) where edge extremities con-
nect nodes at different times, by definition rather than by construction. A more
recent approach features so-called stream graphs and link streams (Viard et al.,
2016) where links are intrinsically inter-temporal: they have a temporal thickness,
which appears to pave the way to a truly dynamic viewpoint on network evolution
(Latapy et al., 2018).
By definition, the interactional analysis of social clusters steers clear of inten-

sional properties: in a dynamic perspective, this means that the old sociological
question of the perpetuation of social groups2 is appraised through the stability of

2“The most general case in which the persistence of the group presents itself as a problem
occurs in the fact that, in spite of the departure and the change of members, the group remains
identical. We say that it is the same state, the same association, the same army, which now
exists that existed so and so many decades or centuries ago. This, although no single member
of the original organization remains.” (Simmel, 1898, p. 667)

Figure 12: “Pulseweb” project: macro-level phylogeny of media frames around the question of
food security using a decade of news articles, based on slice-by-slice semantic clusters further
connected in an intertemporal and non-univocal manner. Application developed in the framework
of a partnership with the UN Agency “GlobalPulse”. From Chavalarias et al. (2011).

interactional structures across time rather than the persistence of their attributes.
In the case of knowledge community mapping, socio-semantic hypergraphs could
here again be part of the solution toward developing a unified formalism to de-
scribe the dynamics of both relational and topical clusters (expressed in S and S

based on s and s), and of joint socio-semantic clusters (expressed in X based on
χ or a mixture of s, s and χ). Beyond this, the characterization of phylogenies
of intrinsically socio-semantic structures remains a challenging and open field.
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4 Socio-semantic issues

Understanding morphogenetic dynamics is admittedly a preliminary to the study
of more sophisticated social cognition processes happening within socio-semantic
systems. Let us now review several contemporary issues which derive from, or
develop upon, the evolution of the socio-semantic structure: phenomena of con-
tent diffusion, the related question of influence and authority, the co-evolutionary
emergence of fragmentation and polarization, and the role of algorithmic devices
in socio-technical systems.

4.1 Diffusion processes

Knowledge diffusion, in the broad sense, is one of the most salient social cogni-
tion phenomena, whereby a socio-semantic system collectively interprets, adopts,
transmits some unit of information, in a both collective and self-organized man-
ner. Socio-semantic networks, especially s and χ, are naturally adapted to the
joint description of the potential social paths upon which information travels or
may travel, and of the attribution of some belief, opinion, interest, or knowledge
to actors as socsem links. This framework does not entail any decision as to
whether information propagates on a relatively fixed structure (χ depends on s),
or social connections themselves are influenced by the distribution of information
(s depends on χ) — let alone the possibility that some content propagates better
(χ depends on s, as in Godart and Galunic, 2019). This agnosticism is assuredly
compatible with the perennial chicken-and-egg debate regarding peer selection
and influence, and more precisely the difficulty of assuming whether social ties
postdate or predate cultural transmission (Vaisey and Lizardo, 2010). Despite
some skepticism about the possibility of appraising them empirically from obser-
vational data (Shalizi and Thomas, 2011), many studies have nonetheless tried
to appraise selection and influence jointly (Snijders et al., 2007; Crandall et al.,
2008; Aral et al., 2009; Lewis et al., 2012; Christakis and Fowler, 2013).
The literature oftentimes did make a decision, however, on the primacy of

one realm over the other. As discussed in Section 3.2, many studies focus on
the dynamics of s as a dependent variable on χ. There is, on the other hand,
a large body of research that is devoted to the dynamics of χ while assuming
a fixed social network structure s. This second perspective is also very much
compatible with an epidemiologic viewpoint. It thus attracted a lot of natural

science endeavors translating classical (biological) epidemiological models into
cultural epidemiological models (albeit not in the sense of Sperber, 1996).

From this viewpoint, knowledge diffusion is also a socio-semantic morphogen-
esis issue, even though the eventual focus lies on macroscopic patterns i.e., it
principally aims at articulating micro-level processes on χ, dependent on s, with
macro-level observables on χ, such as the extent or speed of propagation in the
whole system. This issue had been initially addressed by social scientists relying
on ethnographic studies. They exhibited determinants of knowledge transmis-
sion and adoption behaviors (Robertson, 1967; Rogers, 1976; Granovetter, 1978;
Burt, 1987; Valente, 1996) or proposed normative models based on stylized hy-
potheses derived from established theoretical frameworks (Ellison and Fudenberg,
1995; Abrahamson and Rosenkopf, 1997; Deroian, 2002). The importance of
correctly designing and understanding the underlying interaction structures grew
across time. For a while, this still happened on normative rather than descrip-
tive grounds i.e., with stylized networks (Morris, 2000; Cowan and Jonard, 2004;
Goyal, 2005). An early call by Rogers (1976) to use empirical networks long
remained a distant aim, especially in the absence of relevant data.

A stronger empirical approach was finally encouraged by the recurrent observa-
tion of the peculiar structure of large-scale interaction networks — notably their
heterogeneous connectivity structure, the existence of clusters and of a small
network diameter. In the wake of a key result by Pastor-Satorras and Vespig-
nani (2001) suggesting that such networks have radically distinct epidemiologic
properties from those of uniformly random networks, the literature on diffusion
models started to take network structure into account to specifically study the
contrasted effects of various topological assumptions. Authors started to in-
vestigate diffusion phenomena on networks by building upon the epidemiological
literature and its various SI-models (such as SI, SIS, SIR, SIRS, etc., where S
stands for Susceptible, I for infected, and R for recovered, and actors transition
between these states) with a key difference: the introduction of iterative pro-
cesses with networks at their core (Lloyd and May, 2001; Eguiluz and Klemm,
2002; Newman, 2002), thereby strongly diverging from macro-level approaches
based on differential equations (Hethcote, 2000).

A variety of diffusion models and processes have then been translated and tested
in an eminently networked framework (Amblard and Deffuant, 2004; Ganesh et al.,
2005; Crépey et al., 2006). Later studies progressively addressed communication
science topics, discussing roles such as “influencers” (Watts and Dodds, 2007;
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Kitsak et al., 2010) and involving more sophisticated contagion processes diverg-
ing from binary infections, accompanied by validation on real-world data. Over
the last two decades, the community has produced a wealth of empirical studies
connecting (micro- and macro-level) topology, (micro-level) behavior and (macro-
level) diffusion patterns, around questions including:

• Which empirical contexts? Looking concretely at the evolution of scientific
topics across collaboration links (Zhou et al., 2006b), the propagation of
simple digital artefacts such as favorite pictures in photo-sharing platforms
like Flickr (Cha et al., 2009a), URLs in blogspace (Cha et al., 2009b) or
hashtags in Twitter (Weng et al., 2012); or more complicated content such
as user-created gestures in virtual worlds (Bakshy et al., 2009) or rumors on
Facebook (Friggeri et al., 2014).

• Which topological features? Discussing the role of either (i) ego-centered
properties such as connectivity (e.g., influencers may, or may not, be hubs
Cha et al., 2010; Borge-Holthoefer et al., 2012), the importance of between-
ness centrality and so-called “weak links” (Grabowicz et al., 2012) or the joint
effect of both position and connectivity (Gonzalez-Bailon et al., 2011; Ma
et al., 2013), (ii) meso-level topology, by insisting rather on the importance
of clusters rather than individual properties (Watts and Dodds, 2007; Bak-
shy et al., 2011) and the uneven propagation across them (Weng et al.,
2013; Bruns and Sauter, 2015), or (iii) macro-level influence flows between
communities (Chikhaoui et al., 2017).

• Which adoption behavior? Refining the knowledge of micro-level contagion,
generalizing the classical threshold (Granovetter, 1978; Valente, 1996) and
(iterative) cascade models (Leskovec et al., 2007), or introducing so-called
“complex contagion” based on multiple exposures (Centola and Macy, 2007;
Romero et al., 2011).

• Which diffusion observables? Characterizing for instance the shape of prop-
agation trees, or cascades (McGlohon et al., 2007; Goel et al., 2016), the
extent of diffusion, its speed (see e.g., Iribarren and Moro, 2011, for a com-
bined study of both), or its prediction (Cheng et al., 2014).

• Which dependence on content? Describing more broadly the existence of
socio-semantic correlations in the diffusion process, focusing in particular on
the fact that some information may be more relevant to some actors than

others (Wu et al., 2004), spread differently depending on intrinsic properties
(Kuhn et al., 2014; Vosoughi et al., 2018) or may be more contagious in
similarly-minded clusters (Bakshy et al., 2015).

Influence of semantic properties on diffusion. Most of my work in this area
contributes diversely to each of these questions, with a marked attention to the
measurement of empirical processes, and the importance of taking into account
the joint role of network structure and content dynamics. Toward the second
half of the 2000s, many formal diffusion models still relied on (i) stylized net-
works — either uniformly random (Erdős and Rényi, 1959) or preserving em-
pirical connectivity distributions (using e.g., a configuration model, Molloy and
Reed, 1995), (ii) stylized inter-individual processes — often cascade or threshold
models (Kempe et al., 2003). It was unclear how likely these assumptions could
accurately render real-world phenomena. To check this, I first contributed to
develop a concise benchmarking framework based on simulated diffusion models,
while introducing a slight (though more realistic) variation with respect to classi-
cal assumptions (Cointet and Roth, 2007a,b). Using either real-world interaction
structures or empirically-measured adoption processes yielded significantly dis-
tinct outputs, calling for more precision in appraising empirical phenomena before
drawing conclusions on knowledge transmission.
I then endeavored at showing that empirical propagation dynamics were hetero-

geneous with respect to the semantic type and the structural position of nodes.
In a first study, we used hidden Markov chain models to exhibit systematic prece-
dence phenomena between groups of sources, using a dataset of websites includ-
ing online news media and politically-oriented blog sites (Cointet et al., 2007). We
could thus demonstrate, at a macro level, the existence of complex intertemporal
relationships between node affiliation/type and topic occurrence — significantly
more complex than could appear in the studies discussing precedence issues be-
tween news and blogs (Lloyd et al., 2006). This issue was further detailed by
integrating the topology in a subsequent work which still focused on political
blogs, yet articulated precedence relationships and network structure. More pre-
cisely, we studied in Cointet and Roth (2009) the propagation of hypertext links
as a function of local neighborhood properties. At a local level, we showed the
influence of past connectivity on influence (in a nutshell, bloggers who received
more attention in the past will have more influence), yet in a non-linear fashion:
the association is much milder for nodes having garnered a markedly weak or stong
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attention. At a meso level, we confirmed that weak links connecting “distant”
network areas were preferred diffusion pathways (as expected, see Onnela et al.,
2007), but only up to a certain point, after which influence sharply decreased: in
other words, the way weak links facilitate diffusion was bounded.

Finally, I recently started developing a research direction that takes into account
the semantic structure: on the one hand, at the very micro level of reformula-
tion processes; on the other hand, at the more macro level of the navigation of
actors on a content network. First, as exposed in section 1.1, Sperber (1996)’s
cultural epidemiology postulates cognitive attractors to explain cultural represen-
tation similarity and stability at the social level, despite extremely noisy individual
information reproduction mechanisms, even in controlled environments (Mous-
saïd et al., 2015). Elementary forms of cognitive bias could be exposed in vivo
in Lerique and Roth (2018), using data on mutations in quotations in a large
blog post corpus (Leskovec et al., 2009). We could identify the factors influenc-
ing man-made and likely involuntary substitutions in reproducing quotations, by
drawing on standard linguistic variables, such as the age of acquisition of a word,
its frequency, its length and the gap between the incidence of the original term
and that of the substitute term. Second, I examined how the structure of con-
tent networks affects information accessibility. This issue is more broadly related
to the articulation between topological and semantic confinement, which is at
the core of current studies on online echo chambers, whereby potential naviga-
tion paths likely affect the access to cross-cutting content (Bakshy et al., 2015;
Garimella et al., 2018; Cinelli et al., 2021; Morales et al., 2021). Focusing on
the topological navigation landscape defined by non-personalized YouTube rec-
ommendations, Roth et al. (2020) demonstrate that ego-centric content graphs
with higher entropies (in terms of visited nodes) counter-intuitively exhibit lower
diversity (in terms of the distinct number of accessible videos). Put differently,
in this case, while a user may appear to visit more locations, this however occurs
within an overall smaller space: some videos are at the root of an isotropic navi-
gation in a more limited space of videos. These videos are additionally amongst
the most viewed, which sheds light on how recommendation devices contribute
to concentrate user navigation (see below Section 4.4).

4.2 Authority: structural positions and temporal patterns

While diffusion processes occur at an admittedly short-scale, studying influence on
the longer term relates to a more crystallized and temporally aggregated notion
often denoted as “authority”. In other words, authority may be seen as influence
over a higher temporal scale. One of the simplest ways to appraise authority within
a network framework consists in looking at the configuration of accumulated
references (incoming links) over a certain period of time, and connecting it with
short-term phenomena.
The above example of Cointet and Roth (2009) where we framed influence

with respect to past attention could be considered as a preliminary attempt in
this regard. I pursued this path in two additional directions, attempting again
at connecting content and structure. First, by focusing specifically on temporal
phenomena, authority, and topics: in Menezes et al. (2010a,b), we linked the
precocity of actors in evoking some issue (appearance of a socsem link to the
issue) with their accumulated structural centrality in the social network as a
measure of authority. Using a corpus of political blogs, we detected nodes who
are “systematically” prompt (in probability) to address some topics i.e., who are
early relative to the rest of the system, at short time-scales. This relied on
a hybrid approach combining text mining, signal analysis and peak detection.
We could then compare this precocity to positions in the underlying network,
positions being properties defined on a longer time-scale, thereby connecting the
literature on attention peaks (e.g., Crane and Sornette, 2008; Lehmann et al.,
2012) and influence measures (e.g., Agarwal et al., 2008). This led to a typology
of actors under the form of a double-dichotomy based on structural authority
and temporal precedence, accurately distinguishing copycats (early birds with low
authority) from political figures (with higher authority: either emerging and early,
or established and late).
Second, by proposing a topological model of the configuration of topical blog

communities (Cardon et al., 2011, 2014), later extended to Twitter (Roth and
Hellsten, to appear) and which could be easily be adapted to other contexts such
as scientific communities. In the initial study of 2011, we distinguished endoge-
nous and exogenous authority, respectively from inside or outside of ego’s topical
community (topical tagging had been done manually by a team of librarians based
at one of our partners: e.g., sport, cooking, politics, etc.). We combined it with
endogenous and exogenous activity to provide a 4x4 matrix model describing a
variety of relevant structural positions occupied by nodes in their own semantic
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Figure 13: Socio-semantic, or structural-topical model introduced in Cardon et al. (2011, 2014).
Left: It relies on a double dichotomy between incoming or outgoing links, internal (white area)
or external (gray area) to a topical territory or a core. Middle: From there, 16 cells are defined,
depending on whether a node is most connected (e.g., top 20%), or not, in each of the 2x2
categories. Right: It has been applied on French and German blogspaces, for 6 (x2) topical
territories (cooking, IT, politics, etc.). Symbols correspond to over- or under-representation (+
or -), weak or strong (+++ vs. +), and are here averaged for all territories (full disks indicate
that all territories behave similarly). It exhibits remarkable structural positions which are always
over- or under-represented, while some slots, such as C3, exhibit a mixed pattern: they exist only
for self-centered topics (home cooking, worn fashion) which are thus truly community-centric
territories (as in Rheingold, 1993), not for public space topics (politics, IT progresses).

territory. This socio-semantic, or structural-topical model exhibited regularities
which are partly independent and partly dependent on underlying topics. It thus
contributed both to topically refine the notion of online authority (Hindman et al.,
2003) and to enrich blogspace typologies (Karpf, 2008). The model has been
statistically extended and doubled with a qual-quant approach in a wide com-
parative study accross the French and German web in Cardon et al. (2014); see
a succinct overview on Fig. 13. The very recent extension to Twitter (Roth
and Hellsten, to appear) aims at appraising the intertwinement of authority and
activity in the specific case of climate change discussions, where the conversa-
tion network features interactions which are not homophilic and occur between
skeptics and supporters of the scientific basis of climate change (Pearce et al.,
2014). The socio-semantic mixing of this cross-cutting social network blurs the
structural boundaries between the opposing poles of a debate. In this situation,
our model carries out a socio-semantic positional analysis of the active core of
the conversation network and demonstrates that minority alignments (skeptics)
occupy nonetheless the dominant authority and activity positions — see Fig. 14.
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Figure 14: Application of the model of Fig. 13 to a Twitter subspace focused on users discussing
the 5th Assessment Report (AR5) of the Inter-Governmental Panel on Climate Change (IPCC).
The core is now defined over the most active users, who were manually labeled as supportive,
critical, or neutral toward climate change science (Roth and Hellsten, to appear). The three
matrices on the left describe how each alignment is more or less present than expected if position
did not matter i.e., if it were uniformly represented in each slot. The matrix on the right shows
that critical discourse occupies the dominant positions, even if they are the minority.

A complementary field of investigation consists in detailing the process of ac-
cumulation of authority itself, more specifically its temporal features and its re-
lationships with quality (Roth et al., 2011b). In an online socio-technical system
such as Wikipedia, where quality is a product of collaborative dynamics (Wilkin-
son and Huberman, 2007), I worked on the processes of establishment of reliable
knowledge. I quantitatively described the various phases of addition of links to
external references and the characteristics of their contributors (Chen and Roth,
2011), a small portion of which gathers most of the qualified edits. A later paper
by other authors (Forte et al., 2018) furthered the exploration of this activity
by introducing the concept of “information fortification”, the addition of citation
links in the specific context of controversies. These processes are contrasted with
those arising in scientific communities. Roth et al. (2012b) also studied the dy-
namics of scientific citation networks by connecting future attention (measured
by their citational impact i.e., incoming links after publication) to past attention
(i.e. outgoing links at the time of publication). Put shortly, ego-centered past-
oriented citation links of a paper inform about its ego-centered future-oriented
citation links, thus its relevance for the community. Up to some rescaling, citation
dynamics exhibit a universal behavior consistent across disciplines. This suggests
that future citations may be predicted from the structure of references upon pub-
lication. Papers with above-average citation appear to focus extensively on their
own recent subfield — as such, citation counts essentially select what may plau-
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sibly be considered as the most disciplinary and normal science — whereas papers
which exhibit a peculiar dynamics, such as some resurgence after some time has
passed, are comparatively poorly cited, despite their plausible durable relevance.

4.3 Co-evolutionary models of polarization

Modeling polarization, fragmentation, and, more broadly, the emergence of homo-
geneous socio-semantic clusters, is a notoriously socio-semantic morphogenesis
issue, with a generative rather than descriptive viewpoint. It integrates a small
number of micro-level hypotheses, especially in terms of social and socsem PA
and adoption (Sections 2.1, 3.2, and 4.1), to reproduce a certain number of
macro-level structural observables, in terms of what has been discussed in Sec-
tions 3.3.2 and, to some extent, 3.4. The decade-old review by Gross and Blasius
(2008) dichotomized complex network research into two strands, focused either
on the dynamics of network (morphogenesis per se) or on the dynamics on net-
works (e.g., diffusion). Both may be combined in a co-evolutionary framework
where each interacts on the other: node states affect topological evolution which
determines topology, which in turn affects local dynamics and thus states. At the
time, most existing works were nonetheless principally focused on quite simple
cognitive states closely related to game theory or SI models — and more specif-
ically the adoption of a binary behavior in a population (i.e., A or not A), which
generally narrowed the scope to bi-polarization.
There were already some exceptions. Two pioneer works from the end of

the 1990s must first be mentioned here. They inaugurated a broad family of so-
called “cultural dynamics” models. On the one hand, Gilbert (1997, briefly evoked
in Section 3.1) introduced a co-evolutionary dynamics between some semantic
space and some actor-like space. The latter space is made of scientific papers
associated to some position in the former space, which is modeled as a two-
dimensional discrete vector (‘kenes’). The position of a new paper depends on
some averaging of the positions of a subset of the neighboring existing papers
that they cite: in other words, the generative process consists of the addition of
social links (from citing to cited papers) and some form of socsem links (from
papers to 2D vectors) when considering that each new paper induces the creation
of a new semantic node. The model eventually demonstrates that such a simple
dynamics suffices to produce socio-semantic clusters (groups of citing papers of
similar semantic positions) and connectivity heterogeneity (some papers receive

substantially more citations). On the other hand, Axelrod (1997) proposed an
agent-based model where each agent possesses m cultural dimensions taking m′

possible values. Note that this semantic space may be represented as m · m′
semantic nodes divided into m classes, each agent being socsem-connected to
exactly one node among each group. The social network is a regular rectangular
grid where virtually every agent is connected to exactly four nodes. Each model
step focuses on a random social link connecting two actors, who then interact
with a probability proportional to their socsem-similarity; in which case one of
the agents rewires one of their socsem link similarly to the other agent. The
model demonstrates the emergence of culturally homogeneous clusters i.e., that
micro-level convergence may lead to macro-level differentiation.
Several refinements have been proposed, such as the inclusion of some notion

of memory (or stickiness of socio-semantic links) to explain the emergence of dis-
tinct norms (Axtell et al., 2001), the introduction of heterophobia (i.e., repulsion
toward unalike agents, Macy et al., 2003) and of the possibility of removing social
links in case of dissimilarity (Centola et al., 2007; Holme and Newman, 2007),
or the existence of negative interactions (i.e., interactions that increase dyadic
dissimilarity Flache and Macy, 2011; Smaldino et al., 2017) — all of which further
illustrates the apparent paradox between local homophily and global differentia-
tion.3 These models are essentially based on dyadic interactions between agents,
while socio-semantic dynamics also rely on group-level interaction patterns, as
is the case in scientific teams (Section 3.3.1). In this regard, I could propose
meso-level co-evolutionary dynamics based on homophily and some preference
for repeated interactions (Roth, 2006a, 2008a). A similar modeling framework
may be found in (Sun et al., 2013). This leads to the emergence of hierarchi-
cal socio-semantic clusters and functional differentiation in scientific communities
which somewhat resonates with much earlier works such as Blau (1970).
These models also contrast in form, yet not in spirit, with so-called “opinion

dynamics” models (Castellano et al., 2009), which are based on a single yet con-
tinuous cultural dimension. As such, they would not directly fit a socio-semantic
network framework. However, they provide equally extremely stimulating explana-
tions to the co-evolutionary emergence of socio-semantically segregated clusters.
They originally feature interactions based on a similarity threshold (Deffuant et al.,
2000), possibly compounded by the topology of an underlying social network (Am-

3This reminds the paradox raised in the formulation of cultural contagion, whereby imperfect
micro-level idea transmission nonetheless leads to macro-level cultural homogeneity.
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blard and Deffuant, 2004), and typically examine the role of such or such effect
on the emergence of such or such number of clusters, in particular convergence or
emergence of extreme factions. For an extensive recent review, see Flache et al.
(2017). Worth remarking is that both cultural and opinion dynamics models have
also been extended to take into account the role of macro-level effects, especially
the contribution of a mean field to top-down agent synchronization (respectively
González-Avella et al., 2007 and Hegselmann and Krause, 2015).

On the whole, these synthetic models raise concrete and contemporary ques-
tions on the existence of fragmentation and of possibly reinforcing socio-semantic
clusters, often denoted as “echo chambers”, in online public spaces. The early
optimism (e.g., Rheingold, 1993) about the potential of online deliberative spaces
to stimulate the rational convergence of opinions and the emergence of the ideal
public sphere envisioned by Habermas had already suffered a variety of criticisms
at the turn of the 2000s (Dahlberg, 2001). Specialized social groups with similar
semantic interests have been increasingly seen as a threat to the exposure to
cross-cutting content and diverging viewpoints (Van Alstyne and Brynjolfsson,
1996; Sunstein, 2007; Lev-On and Manin, 2009). In short, feedback loops in-
duced by the “selection-influence” couple may have conflicting effects, especially
as homophily, heterophobia and confirmation bias may reinforce prior beliefs and
thus polarization. Social influence may reinforce similarity, yet social influence
may reinforce divergence, as the above-mentioned modeling state of the art also
shows: to use the trichotomy of Flache et al. (2017), these joint phenomena
may be observed regardless of assuming assimilative social influence (influence
increases similarity), similarity bias (the other way around: similarity influences
interaction), or repulsive influence (usually combining assimilation with repulsion).
Empirical studies exhibit the same tension (Barberá, 2020): some works indicate
socio-semantic segregation, especially in affilation networks (citation, retweet,
follower, subscription links), some works indicate the opposite, especially in inter-
action networks (conversation, mentions, quotes, etc.); sometimes a mix of both
(Cinelli et al., 2021). Similarly, many recently-proposed models aim at repro-
ducing the emergence of echo chambers under a variety of realistic assumptions,
including mean-field influence or heterophobia (e.g., Wang et al., 2020; Sasahara
et al., 2020), which is not unlike the massive effort over the 2000s to recon-
struct power laws and clustering in social networks with a myriad of generative
mechanisms — arbitrating between the various and sometimes discordant expla-
nations may be perplexing. Given the current under-determination of theories by

facts, it is nonetheless possible to hypothesize that various types of forces oc-
cur concurrently, albeit differently for distinct networks of meanings (interaction,
affiliation, etc.) and for distinct topics — which likely calls for richer, multilayer
socio-semantic models of online echo chambers.

4.4 Socio-technical systems and devices

The question of online polarization further emphasizes the intrication of socio-
semantic dynamics with the devices that host them: each online platform con-
figures a specific socio-technical setting with its own affordances and artificial
ways of mediating access to content and to others. Using Twitter means posting
short messages, following, mentioning, retweeting other users. Using Facebook
means creating so-called “friendship” ties, publishing content on one’s own per-
sonal page, commenting anywhere, tagging content with a variety of emotions
(like, awe, anger, etc.). Using Reddit means contributing generally longer mes-
sages in reply to other messages in a tree-like fashion within discussion “threads”
on some topic or subtopic, voting them up or down. Each of these systems
defines a distinct type of online society whose socio-semantic dynamics are not
necessarily easy to disentangle from the usage grammar induced by the platform
and its algorithmic environment.
Consider Wikipedia and even wikis in general. From a technical viewpoint, they

constitute a particularly simple example: users can essentially create and edit ar-
ticles, discuss them in dedicated meta-pages, and, sometimes, meta-discuss the
wiki rules. Put differently, there is “not much more” to study than the endogenous
user and content dynamics happening within the bounds and technical possibili-
ties of a rather straightforward wiki interface: typically, wikis do not feature any
sort of algorithmic recommendation, which I will address below. Yet, complex
artificial societies obviously have thriven: artificial, in the sense that interaction
is constrained by the artificial rules of the underlying software. Wikipedia, as a
lively and hierarchized community of hundreds of thousands of regular contribu-
tors, generated a wealth of qualitative and quantitative studies which may provide
further insights on general social science phenomena — such as apprenticeship
(Bryant et al., 2005), controversies (Brandes and Lerner, 2008) and democratic
deliberation (Leskovec et al., 2010b), collaboration (Keegan et al., 2012), au-
thority attribution (Chen and Roth, 2011; Forte et al., 2018) — yet are, above
all, Wikipedia social science: the science of a certain society where the interface

35



plays a certain role in disciplining both socialization and content creation.
Online communities have been an essential aspect of my research directions,

not least for the possible in vivo observation of social cognition processes. Beyond
the various explicitly socio-semantic studies evoked so far, I could also more anec-
dotally show how users evaluate content in ad hoc social networking platforms,
establishing for instance a link between conformism in book ratings on the aNobii
platform and the underlying network activity: users moderately diverging from
the norm were more likely to have more “friends” or “neighbors” (Chen and Roth,
2012). Focusing on two types of content-based online communities, wikis (Roth,
2007d; Roth et al., 2008b,c) and photo-sharing platforms (Chen and Roth, 2010;
Taraborelli and Roth, 2011), I could further show how their socio-semantic de-
velopment (in a basic acceptation: population and content size) correlates with
both governance and network features.

Algorithmic devices. The picture is further complicated by the potential in-
terference of algorithmic recommendation (Salganik et al., 2006; Epstein and
Robertson, 2015; Roth, 2019a). For one, the role of recommendation devices in
fostering serendipity is assuredly at the heart of a fast-growing literature. Con-
trarily to clear-cut popular assumptions about so-called “filter bubbles”, the jury is
still out as to whether algorithms increase consumption diversity (Bakshy et al.,
2015; Aiello and Barbieri, 2017; Möller et al., 2018; Puschmann, 2019) or not
(Nikolov et al., 2015; Anderson et al., 2020; Roth et al., 2020). At least, explicit
personalization or “self-selection” (whereby users voluntarily select or prioritize
some sources e.g., by “liking” or subscribing to them) consistently appears to
induce algorithmic reinforcement and confinement (Zuiderveen Borgesius et al.,
2016). Nonetheless, most of these results apply at the aggregate level, without
distinguishing subpopulations of users who may differently use or respond to al-
gorithmic guidance. A few studies expressly differentiate users who are eager for
recommendation (Nguyen et al., 2014) or diversity (Munson and Resnick, 2010)
and hint at the existence of a variety of attitudes (Karakayali et al., 2018). They
command further research on the expectations and literacy of users toward algo-
rithmic devices. Furthermore, robots or “bots” (Ferrara et al., 2016), constitute
a hybrid class of actors at the intersection of algorithms and users. They imitate
human agency and thus contribute to socio-semantic dynamics as non-human
actors on par with humans. While they may sometimes positively contribute to
social cognition processes (for example algorithmic governance in Wikipedia, see

Niederer and van Dijck, 2010; Müller-Birn et al., 2013), they are often studied
for their possible role in distorting the socio-semantic dynamics of digital spaces
(Shao et al., 2018), with sometimes concrete real-world effects e.g., tampering
with stock markets or elections (Thomas et al., 2012).

Digital studies. This research more broadly connects with the history and epis-
temology of so-called digital studies. On the social science side, there has been
a slow yet steady recognition of online communities as a legitimate investigation
field per se — “a sense of the Internet as simply another context where social life
is lived, where research methods are applied, and where contemporary social issues
are addressed”, as Hine (2004) nicely put it. This may be originally attributed to
two non-exclusive movements: first, the progressive use of electronic devices to
“digitize” the classical toolbox of conventional field research (Murthy, 2008; Rup-
pert et al., 2013) and, second and most importantly, the construal of computer
networks as something essentially social (Flichy, 2000; Wellman, 2001), following
the vision of Licklider and Taylor (1968) where computers should, more than any-
thing, be human communication devices facilitating distributed cognition within
groups of common interest. Social science scholarship has increasingly focused on
the integration of online communication in everyday life, and at the everyday life
in online communities, including seminal and general studies on virtual societies
(Rheingold, 1993; Turner, 2006) and the specificities of this research (Hine, 2000;
Wilson and Peterson, 2002). As a sizable share of my work has dealt with ICT
platforms, at the interface between formal and social sciences, I explored in Roth
(2019b) the epistemological settings and actors linked to three different accep-
tations of the term “digital humanities” (DH), distinguishing “humanities of the
digital” (on online communities) from “digitized humanities” (on digital corpuses)
and “numeric humanities” (dealing with mathematical models). I could show that
the “DH” and “CSS” labels correspond to two markedly distinct epistemic com-
munities: one linked to a certain tradition in human sciences paying a special
attention to corpuses and their conservation, the other focused on more socio-
logical issues. Online socio-technical systems offer a perfect playground at the
interface between “humanities of the digital” and “numerical humanities”, further
explaining the tremendous interest of CSS in uniting both research objects.
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Future perspectives

My research activity so far has essentially focused on (i) socio-semantic mod-
eling frameworks, including hypergraphs and lattices, (ii) socio-technical systems,
including science and online communities, and (iii) the underlying structure and
dynamics of graphs in all generality. These questions relate to the broad issue
of social morphogenesis: “how to develop an adequate theoretical account which
deals simultaneously with men constituting society and the social formation of
human agents” (Archer, 1982). Previous contributions may also now be mod-
estly framed as a preliminary for the empirical understanding of socio-semantic
systems at a meta-level — by meta-level I am referring to the meta-structure
i.e., the various shapes these systems may take. In effect, the present manuscript
shall have shown that the present state of the art already sheds light on many
of the key pieces of this ambitious puzzle: morphogenesis processes at the micro
and meso levels, epistemic community structure at the meso and macro levels,
co-evolution, diffusion, influence, authority at the micro and macro levels — first
and foremost in the context of online media and, to a distinct extent, scientific
communities; two socio-semantic systems which variously contribute to shape
our everyday epistemic landscape. Many of these phenomena have all been un-
derstood in a multitude of contexts and a variety of ways which sometimes yield
partly divergent results. In other words, a truly integrated picture might still be
missing: understanding the diversity of socio-semantic diversity might require the
unification of several of the above-mentioned research streams.

As we have seen, socio-semantic hypergraphs provide a meta-framework that
accommodates a vast majority of the existing hybrid formalisms of the social
and semantic structure. Just the same, we should endeavor at developing meta-
structural tools to accommodate for the variety of results showing that, under
such and such circumstances (depending on topics, on link types, on time), there
is socio-semantic cohesiveness, whereas there is none, or less, under other cir-
cumstances — some apparently conflicting observations from the state of the
art possibly call for new hyperparameters that explain this meta-diversity. To this
end, some of the most immediate research issues include the description of socio-
semantic diversity dynamics at the meso-macro level of communities, by studying
the presence, absence, emergence, stability, disappearance and more broadly the
relative dynamic configuration of socio-semantic clusters. Most existing works
focus on social phylogenies (i.e., dynamics and evolution of the social clusters),

possibly projecting concepts on social hyperedges, or on semantic phylogenies,
possibly projecting actors on semantic hyperedges, or they focus on a single case
study that might blur the identification of regularities and diversity at a meta-level.
Put differently, we might need a typology of the various socio-semantic configura-
tions in hypergraphic and dynamic terms, of the transitions between such and such
configuration, and, perhaps most importantly, of the drivers of these transitions
and of the evolution of these drivers across time and space. Further, this would
provide the background against which to study actor-centered dynamics and pat-
terns of serendipity or conformism. For instance, the identification of pockets of
nodes whose opinions are both strongly similar (relative increase of coherence, or
decrease of diversity) and markedly distinct from the “local” average (precisely in
the sense of a mean background landscape) could lead to a socio-cognitive theory
of socio-semantic systems able to distinguish core/periphery configurations from
polycentric ones and, again, transitions between them.

The meta-diversity should, again, be understood both in structural and seman-
tic terms. The former focuses on the social network: can we identify typical,
recurrent network shapes, are there particular interaction modes (e.g., distinct
homophilic behaviors in some parts or types of networks)? The latter deals with
the discursive content and partly rely on advances in natural language processing,
beyond distributional approaches (Menezes and Roth, 2019b): are there specific
terms or beliefs, rhetorical elements or narratives which are typical of certain
subclusters? Is it possible to identify hyperparameters for successful (or “fit”)
discourses or sets of interrelated discourses, which are further disconnected from
the rest of the system? Are there specific attitudes or discourses towards more
consensual claims (at least in terms of “mainstream” discourses with respect to a
given system)? What does such or such configuration entail in terms of further
interactions and discourses, receptivity to influences and topics external to some
cluster, reinforcement mechanisms jointly affecting influence and selection? This
enables a finer analysis of the micro level: what are the various ways in which the
immediate neighborhood of ego may change across time, is it possible to formally
define categories of joint breakpoints in discourses and interactions for categories
of individuals? Meta-diversity has a temporal aspect too: can we observe small
numbers of typical, even natural, timescales in socio-semantic systems? This
could for instance be characterized by different forms of blindness to the remote
or recent past: what disappears quickly, do actors focus on a number of elements
(neighbors, sources or topics) whose diversity and durability grows or decreases
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in a typical manner?
Of particular interest, finally, is the contribution of algorithms to the ordering

and filtering of individuals and ideas in socio-semantic systems. One should not
only think of online media, where ranking and recommendation algorithms have
become ubiquitous: science, too, is filled with algorithms whose principles are not
evidently transparent, for instance when accessing Google Scholar’s computation
results of h-indices for people or ranked query results for content. While there
is a relatively long-running debate on the impact of metrics in academia (Wein-
gart, 2005; Hirsch, 2007; Waltman and van Eck, 2012), the fate of scientific
communities operating under such or such filtering/evaluation rule remains to be
studied in an integral way (in the above sense), especially regarding the impact
on socio-semantic diversity.
To summarize, an integrated and ambitious research program for the coming

years should thus aim equally at studying the joint effect of human algorithms (i.e.
“behaviors”) and man-designed algorithms on the diversity of our socio-cognitive
landscapes, integrating the various strands of research which could crucially, yet
separately, as of today, contribute to this multi-dimensional and interdisciplinary
endeavor. These efforts aim more broadly at establishing the empirical bases
for upcoming cultural contagion models which would be able to both take into
account micro-level cognitive phenomena and interaction and diffusion dynamics
at higher levels.
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