La Nature est un temple o ù de vivants piliers Laissent parfois sortir de confuses paroles; L'homme y passe à travers des forêts de symboles Qui l'observent avec des regards familiers.

Baudelaire Correspondances

Résumé

Dans cette thèse, nous présentons des expériences réalisé avec des gaz d'atome de sodium ultrafroids, piégés à l'intersection de deux faisceaux laser. A très basse température, discrétisation de l'énergie et indiscernabilité des particules conduisent à un nouvel état de la matière, un condensat de Bose-Einstein. Ce phénomène remarquable à d'abords été décrit pour un gaz idéal, c'est à dire sans interaction entre ses constituants. Ici, nous nous intéressons aux e fets des interactions entre atomes. Plus précisément, nos atomes possèdent un spin 1, et nous nous interessont à l'état spinoriel collectif, dans un régime ou les degrées de liberté spatiaux sont gelés.

Deux résultats importants que nous présentons ont été obtenus en plongeant le condensat dans un champ magnétique quasinul. Dans ce régime, les interactions dominent et favorisent l'émergence d'états fortement corrélés. Dans une première série d'expériences, le champ est soudainement réduit, et le système se retrouve hors-équilibre. Il s'ensuit une dynamique de relaxation, qui mène à un état stationnaire bien décrit par un ensemble de Gibbs. Dans une seconde expérience, le champ est progressivement réduit, de fac ¸on à suivre l'état fondamental du système. Nous réalisons ainsi un condensat fragmenté, dont une remarquable propriété est l'invariance sous rotations des spins. La restauration de cette symétrie, toujours brisée par les condensat "simple" (i.e. non-fragmenté), se fait grâce à l'appariement des atomes en état singulet.

Introduction

Quantum mechanics is of en thought as a description of nature at the microscopic scale, typically the size of a molecule or smaller. From the early days and the Bohr model of the atom, to modern quantum electrodynamics, the theory has indeed been extremely successful at this scale, and remained up to this day in perfect agreement with ever more accurate measurements. On the experimental side, novel methods, to a large extent enabled by the invention of the laser, have allowed for an exquisite control over the internal and external states of individual particles [START_REF] Cohen-Tannoudji | Nobel lecture: Manipulating atoms with photons[END_REF]. These progresses have contributed to revolutionize the eld of fundamental metrology. Indeed, single particles have "god given" properties which can serve as universal references, for instance of time [START_REF] Ludlow | Optical atomic clocks[END_REF]. Atomic clocks have technological and fundamental applications, and as an exciting prospective, we can mention the possibility to track an hypothetical time dependence of the fundamental constants by comparing the beat of two clocks made of di ferent atoms.

The exploration of quantum phenomena at a larger scale has also been very fruitful, both theoretically and experimentally. Important experimental milestones are the discovery of superconductivity, super uidity and more recently the realization of gazeous Bose-Einstein condensates. Common to all these systems, is the behavior of a macroscopic number of particles in phase. Let us focus on the Bose-Einstein condensation of ultracold gases [START_REF] Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Davis | Bose-Einstein condensation in a gas of Sodium atoms[END_REF]. A direct manifestation of the phase coherence is the interference pattern formed at the overlap of two condensates [START_REF] Andrews | Observation of interference between two Bose condensates[END_REF]. We can also mention the tunneling in phase of thousands of atoms through a potential barrier, observed in reference [START_REF] Albiez | Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction[END_REF]. This experiment reproduces with atoms the celebrated Josephson e fect, in which a macroscopic current ows through a thin insulating layer separating two superconductors. In these set-ups, a quantum e fect usually occurring at a microscopic scale, here tunneling, is ampli ed and manifests itself on a much larger scale, thanks to the synchronized motion of a macroscopic number of atoms or Cooper pairs. Addressing simultaneously and coherently large ensembles of independent particles is clearly favorable for metrology, as a larger signal can be obtained. This approach is pursued in state-of-the-art, optical lattice clocks [START_REF] Ludlow | Optical atomic clocks[END_REF].

The key features of quantum theory which underlie the phenomenon of macroscopic coherence are the quantization of energy and the particles indistinguishability. Despite the spectacular consequences mentioned above, mere macroscopic coherence remains far from revealing the full potential of a strict application at the macroscopic scale of the laws of quantum mechanics [START_REF] Leggett | Macroscopic quantum systems and the quantum theory of measurement[END_REF]. For instance, the superposition principle allows a priori for the existence of "Schrödinger cat" states, that is to say, superposition of distinguishable many-body states. "Cat states" are characterized by the existence of non-classical correlations between the particles. They belong to the vast category of entangled states. Beyond their fundamental interest (whether the superposition principle holds at a macroscopic scale remains to be proven [START_REF] Arndt | Testing the limits of quantum mechanical superpositions[END_REF]), entangled states can be used as a new resource in various domains, and as an illustration we can turn again to the eld of metrology. A fundamental limit of interferometers, the shot-noise, arises from the granular nature of matter or light. For N independent particles, the relative error scales as 1/ √ N . With appropriate correlations, one can reach the so-called Heisenberg scaling 1/N , hence a gain in sensitivity by a potentially very large factor √ N [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF]. However, we now reach the limit of current technology. On the one hand, the realization of highly correlated states usually requires strong interactions between particles, and on the other hand, entangled states are known to be fragile against "measurements" performed by the environment (ie decoherence). The di culty thus resides in combining substantial interactions within the system, together with a good isolation from the environment. In that respect, ultracold atoms constitute a promising platform. Proof-of-principle experiments have already demonstrated the generation of highly correlated states of atomic ensembles with potential metrological application [START_REF] Gross | Nonlinear atom interferometer surpasses classical precision limit[END_REF][START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF][START_REF] Lucke | Twin matter waves for interferometry beyond the classical limit[END_REF][START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF][START_REF] Linnemann | Active SU(1,1) atom interferometry[END_REF][START_REF] Strobel | Fisher information and entanglement of non-gaussian spin states[END_REF][START_REF] Omran | Generation and manipulation of Schrödinger cat states in Rydberg atom arrays[END_REF].

Highly correlated states of large ensembles of electrons can be found in condensed matter systems such as unconventional supraconductors or spin-liquids [START_REF] Keimer | The physics of quantum materials[END_REF]. The description of such materials is frequently out of the reach of current theoretical methods, either analytical or numerical. A telling example is given in reference [START_REF] Keimer | The physics of quantum materials[END_REF]: it takes the most powerful computers we currently have to compute the ground state wavefunction of the Beryllium dimer's eight electrons. As an alternative to classical computers, one could use analog quantum simulators. In that respect, ultracold atom experiments may help to tackle the "many-body problem" [START_REF] Bloch | Quantum simulations with ultracold quantum gases[END_REF][START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]. Indeed, idealized Hamiltonian can be implemented, where atoms mimic electrons in solids or complex molecules. Optical standing waves can be used to create periodic potentials, of various geometries, which reproduce a crystal potential [START_REF] Bloch | Ultracold quantum gases in optical lattices[END_REF]. The transition from the Mott insulator to the super uid phase in such an optical lattice was observed in [START_REF] Greiner | Quantum phase transition from a super uid to a Mott insulator in a gas of ultracold atoms[END_REF]. Various experimental techniques have been developed to simulate condensed matter systems with neutral atoms, for instance synthetic magnetic 9 elds [START_REF] Lin | Synthetic magnetic elds for ultracold neutral atoms[END_REF] and spin-orbit coupling [START_REF] Lin | Spin-orbit-coupled Bose-Einstein condensates[END_REF] can be realized using tailored light-matter interactions [START_REF] Dalibard | Colloquium: Arti cial gauge potentials for neutral atoms[END_REF]. Another great asset of cold atom experiments is the possibility to tune the interaction strength using Feshbach resonances [START_REF] Chin | Feshbach resonances in ultracold gases[END_REF]. Finally, compared to solidstate systems, ultracold atomic ensembles bene t from alternative and powerful diagnostic possibilities, for instance the momentum distribution can be accessed from a so-called time-of-ight measurement [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF], while the real-space density distribution can be measured on in-situ images. In particular, for atoms in a two dimensional lattice, single site resolution has been achieved in several experiments [START_REF] Bakr | A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice[END_REF].

Ultracold gases also o fer the opportunity to synthesize and study new quantum uids, which do not necessarily have an analogous in condensed matter systems. A particularly fruitful eld of research looks at so-called spinor Bose-Einstein condensates (BEC), where atoms can be in di ferent internal states [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF]. The latter can for instance be the three Zeeman sublevels of the F = 1 hyper ne manifold of alkali atoms (BECs with two to seventeen components have also been realized). This additional degree of freedom opens the door to the exploration of interesting phenomena at the interface of super uidity and magnetism. Formally, spinor BECs are described by a vector order parameter, breaking both gauge and spin rotational symmetries. This rich structure can host a large variety of topological excitations, for instance spin vortices, observed in [START_REF] Sadler | Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate[END_REF] or Skyrmions, observed in [START_REF] Choi | Observation of topologically stable 2d skyrmions in an antiferromagnetic spinor bose-einstein condensate[END_REF]. Spinor BECs are also ideal candidates regarding the generation of correlated states. For instance, out of equilibrium spin-mixing dynamics have been used to produce spin squeezing, relevant for quantum-enhanced interferometry [START_REF] Gross | Nonlinear atom interferometer surpasses classical precision limit[END_REF][START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF][START_REF] Lucke | Twin matter waves for interferometry beyond the classical limit[END_REF][START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF][START_REF] Linnemann | Active SU(1,1) atom interferometry[END_REF][START_REF] Strobel | Fisher information and entanglement of non-gaussian spin states[END_REF]. The microscopic mechanism is analogous to parametric down-conversion in optics. For a spin-1, spin-changing collisions of the type

2 × |m = 0 → |m = +1 + |m = -1 , (1.1) 
correlates the m = ±1 modes. Starting with all atoms in m = 0, this process produces coherent superposition of states having each mode m = ±1 equally populated. More precisely, at short-time, the dynamics creates a so-called two-mode squeezed vacuum state [START_REF] Loudon | The quantum theory of light[END_REF][START_REF] Mias | Quantum noise, scaling, and domain formation in a spinor Bose-Einstein condensate[END_REF]. The equilibrium state of spinor BEC has been less studied experimentally than the dynamics, partly because of the long time (sometime comparable to the condensate lifetime) required to reach equilibrium [START_REF] Guzman | Long-time-scale dynamics of spin textures in a degenerate f = 1 87 Rb spinor Bose gas[END_REF]. Yet, this situation is certainly worth exploring, especially in a regime where spin-dependent interactions prevail. As in condensed matter systems, di ferent ordering can be realized depending on the nature, ferromagnetic or antiferromagnetic, of the interactions [START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF][START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Jacob | Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates[END_REF][START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF][START_REF] Bookjans | Quantum phase transition in an antiferromagnetic spinor Bose-Einstein condensate[END_REF]. A generic Hamiltonian for the interaction of two spin-1 atoms is

Ĥint = U s 2 ŝ1 ŝ2 , (1.2) 
= U s 4 (ŝ 1 + ŝ2 ) 2 + constant . (1.3) 
Ferromagnetic interactions (U s < 0) favor the "quintet" manifold, ie the states of total spin S = 2, whereas for antiferromagnetic interactions (U s > 0) the ground state is the singlet expressed as (in the basis |m 1 , m 2 )

|S = 0 = 1 √ 3 (|0, 0 -| + 1, -1 -| -1, +1 ) .
(1.4)

In our experiments, the condensed atoms occupy the same spatial wave function, independently on the spin state, and thus are interacting "all-to-all" via the Hamiltonian

Ĥint = U s N N i,j=1 ŝi ŝj , (1.5) 
= U s 2N Ŝ2 + constant , (1.6) 
where Ŝ is the total spin. In the antiferromagnetic case, the ground state is a "macroscopic singlet", which can be seen as a condensate of singlet pairs [START_REF] Nozieres | Particle vs. pair condensation in attractive bose liquids[END_REF][START_REF] Ho | Fragmented and single condensate ground states of spin-1 Bose gas[END_REF][START_REF] Koashi | Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates[END_REF]. Note that the state (1.4) is entangled, which fundamentally distinguishes a condensate of such pairs from the mere accumulation of atoms in a unique single particle state occurring for the ideal (non-interacting) gas. Instead, the BEC is fragmented [START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF][START_REF] Castin | Bose-Einstein condensates in symmetry breaking states[END_REF][START_REF] Leggett | Bose-Einstein condensation in atomic gases: some fundamental concepts[END_REF].

The observation of condensate fragmentation was one of the long term goals of our group, and a motivation for using Sodium atoms, with an hyper ne spin F = 1 and antiferromagnetic interactions. In this thesis, we present experiments where the atoms are tightly con ned, so that to a good approximation, the motional degree of freedom is frozen, and we explore physical phenomena that only involve the spin. This is a considerable simpli cation of the system. For instance, within this approximation, the e fective Hamiltonian can be numerically diagonalized, and even analytically in various regimes. Yet, we will show that this simple con guration is su cient to explore new and interesting many-body quantum phenomena.

In Chapter 2, we present some important aspects of the physics of spin-1 BECs. We review the relevant contributions to the Hamiltonian, in particular the Zeeman e fect and the antiferromagnetic interactions. We then focus on the spin degree of freedom, study the ground state in various regimes, and pay particular attention to the emergence of entanglement.

CHAPTER 1. INTRODUCTION

In Chapter 3 we present the experimental apparatus. The latter was already built when I arrived, so the preparation of the BEC is only described brie y, for completeness. I have contributed to the implementation of a new imaging method, which is presented in detail.

In Chapter 4, we revisit the so-called internal Josephson e fect, in which spin-changing coherent collisions lead to oscillation of the Zeeman populations. We explore the e fect of a parametric excitation, and observe resonances reminiscent of the "Shapiro steps" in a Josephson junction. We study the relaxation dynamics and nd non-trivial steady states, bistability and hysteresis in this system. For this Chapter, we reproduce the article published in [START_REF] Evrard | Relaxation and hysteresis near Shapiro resonances in a driven spinor condensate[END_REF].

Although the results of Chapter 4 can be understood using a mean-eld picture, spin-changing collisions naturally generate correlations between the atoms. In the remaining Chapters, we present various experiments where we created entangled states starting from a so-called nematic state, where all the atoms are in the m = 0 Zeeman sublevel.

In Chapter 5, we build on the work of Chapter 4 and use a parametric excitation to destabilized the initial nematic state and trigger the generation of correlated pairs of atoms in the m = ±1 Zeeman states. We measure "spin-squeezing", and discuss its relation to entanglement and metrology. We then turn to the study of the dynamics in a stable regime, realized in a static magnetic eld, and where the evolution is reversible. This gives further insight on the nature of the state produced by the spin-changing collisions, demonstrating the coherence between the spin modes. Finally, we investigate the e fect of a seed on the dynamics to emphasize on the role played by quantum uctuations in initiating the dynamics.

In Chapter 6 we carry on with similar experiments, ie quenches of the magnetic eld, but down to even lower elds, such that the Zeeman e fect becomes negligible. Despite the system being to a good approximation isolated and under unitary evolution, we observe the relaxation to a steady state. We discuss the mechanism underlying this behavior and show how the steady state can be described by a generalized Gibbs ensemble.

In Chapter 7, we report on our observation of a condensate of singlet pairs. We use a slow ramp of the magnetic eld to populate the lowest energy states. At the end of the ramp, we measure a very small (microscopic) collective spin, indicating that most atoms are involved in singlet pairs. This constitutes the rst observation of a condensate of this kind. From a complete reconstruction of the many-body spin state we nd a signi cant overlap with the macroscopic singlet, for which the total spin exactly vanishes.

Chapter 2

Spin-1 Bose-Einstein condensates

We review in this Chapter the theoretical elements required for the understanding of the experiments presented in the rest of this manuscript. We try to make the experimental Chapters self consistent, and recall when needed the relevant theoretical background. The reader can nd here a general discussion, and more complete reviews in [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF].

The experiments realized in this thesis were all performed on spinor Bose-Einstein condensates (BEC) of Sodium atoms conned in an optical dipole trap. In a spinor BEC, Zeeman e fect and spin-dependent interactions compete to determine the dynamics and equilibrium state. They can yield magnetic ordering, much like what can be observed in metals, for instance. However, while strong electron exchange interactions can lead e.g. to ferromagnetism in Iron at room temperature, in dilute gases, the energy scale for the spin-dependent interactions is on the order of a few nano Kelvin, quite smaller than the typical temperatures achieved in ultracold gases (∼ 100 nK). Yet, when a BEC is produced, a macroscopic number of atoms occupy the single-particle ground state, which has a magnetic structure, even though the thermal cloud remains essentially disordered. This is of en refereed to as Bose-enhanced magnetism [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF]. For this reason, we can focus our study on the ground state.

In our system, the spins carried by the atoms are delocalized and interact collectively. This situation is analogous to that of electronic spins in transition metals, such as Iron, and is called itinerant magnetism. The interplay between spatial and spin degrees of freedom is in general very complex. However, we realized our experiments in a regime where the orbital and spin modes are weakly coupled and can be treated independently. Within this approximation, we will rst determine the spatial wave function before deriving an e fective spin-only Hamiltonian. The latter is used to described all experiments presented in Chapter 4 to 7 and is studied in the second half of the present Chapter. Starting with a mean-eld treatment, we identify two magnetic phases accessible to our system. In the vicinity of the phase transition, quantum uctuations play an important role, and deplete the BEC. The regime of small depletion can be captured by Bogoliubov theory. Closer to the phase transition, the depletion becomes macroscopic, and the many-body state can no longer be seen as a condensate of atoms in a single-particle state. We pay particular attention to the onset of entanglement, and its characterization in the critical regime, near the phase transition.

Hamiltonian of a spin-1 Bose-Einstein condensates 2.1.1 Internal degree of freedom

Sodium is an alkali metal with a unique valence electron. The electronic ground state has a spin s = 1 2 and vanishing angular momentum l = 0. The nuclear spin is i = 3 2 , and hence the hyper ne spin is F = 1 or F = 2 [46]. The hyper ne splitting is much larger than the typical energies so that the atoms remain in the F = 1 manifold. In all of our experiments, we apply a bias magnetic eld B. To a very good approximation this eld is uniform over the size of the clouds. We set the z axis as the direction of B. It serves as a quantization axis to de ne the three Zeeman states m = 0, ±1.

Bloch-Rabi representation of a spin-1 We introduce here a geometrical representation that helps visualizing the symmetries of spin-1 states. A spin 1/2 can be conveniently represented by a unit vector n with spherical coordinates (θ, ϕ) as |ψ 1 2 (n) = α| ↑ + β| ↓ , with α = cos θ 2 e iϕ/2 and β = sin θ 2 e -iϕ/2 . The Bloch sphere representation for a spin 1/2 is generalized by thinking of a spin-1 as a symmetric composition of two spin-1/2

| + 1 = | ↑ | ↑ , |0 = 1 √ 2 (| ↑ | ↓ + | ↓ | ↑ ) , | -1 = | ↓ | ↓ , (2.1) 
We introduce two unit vectors n 1 and n 2 . With the same de nition of θ 1,2 , ϕ 1,2 and α 1,2 , β 1,2 as above, the state of a spin-1 is parametrized as

|ψ(n 1 , n 2 ) = 1 2 (α 1 | ↑ 1 + β 1 | ↓ 1 ) ⊗ (α 2 | ↑ 2 + β 2 | ↓ 2 ) + 1 ↔ 2 , (2.2) 
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|ψ(n 1 , n 2 ) = 1 √ N α 1 α 2 | + 1 + α 1 β 2 + α 2 β 1 √ 2 |0 + β 1 β 2 | -1 . (2.3) with N = 3+n1•n2 4
. With this parametrization, rotation in spin space maps onto simultaneous rotation of n 1 and n 2 . Moreover, the mean spin takes a simple form ŝ = n1+n2

2 . The states with n 1 = n 2 have a net spin and are called oriented. The unpolarized state, with n 1 = -n 2 are sometimes called nematic state, in analogy with liquid crystals where molecules are aligned but have no particular orientation. The Zeeman states |m = ±1 are oriented (along ±e z ). On the other hand, |m = 0 is the nematic state align along z. Those three states are represented in gure 1. Zeeman E fect Sodium atoms have a nuclear and an electronic spin that both couple to a magnetic eld, but with di ferent magnetic moments (the nuclear contribution is much smaller due to the larger nucleus mass). For low enough magnetic elds, the e fect of the nuclear spin can be treated as a perturbation. In this approximation, F remains a good quantum number. Af er an expansion up to the second order in B one obtains the following Hamiltonian [46] 

m f = + 1 m f = -1 m f = 0
ĥZ = pŝ z + qŝ 2 z , (2.4) 
ŝx,y,z are the spin-1 matrices

s x = 1 √ 2   0 1 0 1 0 1 0 1 0   , s y = i √ 2   0 -1 0 1 0 -1 0 1 0   , s z =   1 0 0 0 0 0 0 0 1   .
(2.5)

The rst term of Eq. (2.4) is the linear Zeeman shif , p = gµ B B with g 1 2 the Landé hyper ne g-factor and µ B = e /(2m e ) the Bohr magneton. The second term is the quadratic Zeeman shif (QZE), q = αB 2 , with α = (gµ B ) 2 /∆E hf where ∆E hf is the hyper ne energy splitting.

The expansion leading to Eq. (2.4) is legitimate only for q p. In practice, gµ B /h 700 kHz/G and α/h 277 Hz/G 2 . We typically use eld below a few G, so that q/p < 10 -3 . Although the QZE may seem negligible, it is in fact in many situations the relevant term. Indeed, we will see in Sec. 2.1.2 that owing to the isotropy of the interaction in spin space, the magnetization Ŝz , de ned as the component of the collective spin along the magnetic eld axis, is conserved in a static eld. The linear Zeeman shif is then simply a constant in the Hamiltonian and plays no role in the dynamics or the equilibrium state.

We of en apply time-dependent, or spatially dependent magnetic elds to perform spin rotation or apply spin-dependent forces. These are used as experimental tools and will be described in Chapter 3.

Interactions

Scattering potential Neutral atoms interact strongly at short distances and weakly at larger distances via van der Waals interactions. Several simpli cations arise in ultra-cold dilute gases because of the very low temperature and density. First, because the interaction range is much smaller than the inter-atomic distance, it is su cient to consider only two-body interactions, described in the framework of quantum scattering theory. Second, the interaction range is also much smaller than the de Broglie wavelength. This restricts the possible collisions to those with vanishing total orbital angular momentum (s-wave collisions). It also allows us to conveniently replace the complex interaction potential by a contact interaction (for scalar atoms)

Ûext (r) = gδ(r) , (2.6) 
depending on a unique parameter g, related to the s-wave scattering length a by g = 4π 2 M a. In our situation, the atoms have a spin F = 1, and can occupy the three Zeeman states. A similar pseudo-potential can be used irregardless of the internal state of the colliding atoms, such that the scattering potential becomes Ûscat = Ûspin ⊗ δ(r) .

(2.7) This delta potential is rotationally invariant in real space. Isotropy of the interaction1 then requires Ûspin to be rotationally invariant in spin space. Let F be the total angular momentum of the colliding pair and PF = |M |≤F |F, M F, M | the projectors on the subspace of total spin F. The commutation relations [ Ûspin , Fx,y,z ] = 0 impose (Shur's lemma)

Ûspin = 2 F =0 g F PF , (2.8) 
where g F = 4π 2 M a F and a F is the scattering length in the channel F. Because of the exchange symmetry, the total spin of the colliding pair cannot be equal to 1. Furthermore, using (ŝ 1 + ŝ2 ) 2 = 2(1 + ŝ1 • ŝ2 ) = 6 P2 and PF = I, one can rewrite Ûspin as a familiar spin exchange interaction [START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF] Ûspin = gI + g s ŝ1 • ŝ2 .

(2.9)

Here we introduced g = 4π 2 M a, a = a0+2a2 3 and g s = 4π 2 M a s , a s = a2-a0
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. In practice, the scattering lengths are determined experimentally. In [START_REF] Samuelis | Cold atomic collisions studied by molecular spectroscopy[END_REF] the values a 2 2.80 nm and a 0 2.51 nm were measured (a = 2.7 nm, a s 0.097 nm). We point out that a > 0 indicates repulsive interactions and that a s > 0 favors anti-alignment of the spins and indicates antiferromagnetic interaction (AFI). Finally, we have a s a, so that the scattering potential is in fact mostly spin-independent. However, thanks to Bose-Einstein condensation, we are able to probe very low energy scales, where the spin dependent interaction plays a crucial role.

A popular atom in spinor BEC experiments is Rubidium. The interactions in the F = 1 manifold are ferromagnetic (and signi cantly weaker) than for Sodium. At low magnetic elds, this yields BECs with very di ferent magnetic order. This was one of the original motivations for the choice of Sodium in our experiment.

Many-body Hamiltonian

Interaction The many-body Hamiltonian is most conveniently written in second quantization. We introduce the atomic eld operators Ψ † m (r) that create an atom at position r in the Zeeman state m = 0, ±1. The interaction Hamiltonian is

Ĥint = g 2 N i,j=1 d 3 rΨ † i (r)Ψ † j (r)Ψ i (r)Ψ j (r) + g s 2 N i,j,k,l=1 d 3 rΨ † i (r)Ψ † j (r)s ik • s jl Ψ k (r)Ψ l (r) , (2.10) 
where s ik are the spin-1 matrix elements. Introducing the density operator ρ = i Ψ † i (r) Ψi (r) and the spin density operator Ŝ(r) = i,j Ψ † i (r)s ij Ψi (r), the Hamiltonian Eq. (2.12) can be conveniently rewritten as Ĥint = 1 2 d 3 r g ρ2 (r) + g s Ŝ2 (r) .
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We have omitted constant terms ∝ d 3 rρ(r) = N . Using the expression of the spin-1 (2.5), we can develop the Hamiltonian and obtain (omitting the r dependence of the eld and density operators) Ĥint = 1 2 d 3 r(g + g s )(: ρ+1 ρ+1 : + : ρ-1 ρ-1 :) + g : ρ0 ρ0 :

+ 2(g + g s )(ρ +1 ρ0 + ρ-1 ρ0 ) + 2(gg s )ρ +1 ρ-1

+ 2g s ( Ψ † +1 Ψ † -1 Ψ0 Ψ0 + Ψ † 0 Ψ † 0 Ψ+1 Ψ-1 ) .
(2.12)

We use the symbol ": :" to indicate normal ordering of the eld operators. The rst line corresponds to spin-conserving collisions between atoms in the same Zeeman state, the second line to spin-conserving collisions between atoms in di ferent Zeeman state, and the last line to the only spin-changing collision allowed by spin rotational symmetry.

+ +

Figure 3: Spin changing collision.

Full Hamiltonian Let us conclude by writing the full Hamiltonian, including the Zeeman and interaction terms described above, plus the kinetic energy term, and the trapping potential V trap . The latter is modeled as a harmonic trap, with frequencies ω x,y,z . The Hamiltonian is then

Ĥ = d 3 r Ψ † (r) - ∇ 2 2M + V trap (r) Ψ(r) + g 2 ρ 2 (r) + g s 2 Ŝ2 (r) + p Ŝz -q N0 , (2.13) 
where we used the integrated quantities

Ni = d 3 r Ψ † m Ψm , (2.14) 
Ŝz = d 3 r Ŝz = N+1 -N-1 .

(2.15)

As mentioned earlier, owing to the revolution symmetry around the z-axis, the magnetization Ŝz commutes with the Hamiltonian and is a conserved quantity.

Single Mode Approximation

We present in this Section an approach that considerably simpli es the study of the Hamiltonian Eq. (2.13), namely the single mode approximation (SMA) [START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF][START_REF] Yi | Single-mode approximation in a spinor-1 atomic condensate[END_REF][START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF]. It assumes that all atoms occupy the same spatial mode, irregardless of their spin state. This is motivated by the following observations. Let us rewrite the Hamiltonian as Ĥ = Ĥ1 + Ĥ2 , with

Ĥ1 = d 3 r Ψ † (r) - ∇ 2 2M + V trap (r) Ψ(r) + g 2 ρ 2 (r) , (2.16 
)

Ĥ2 = d 3 r g s 2 Ŝ2 (r) + p Ŝz -q N0 .
(2.17)

The contribution Ĥ1 depends only on the spatial degree of freedom, and its energy scale (∼ 1 kHz) is typically much larger than that of Ĥ2 (∼ 10 Hz), which can thus be treated as a perturbation. More precisely, we rst nd the ground state of Ĥ1 and then derive an e fective Hamiltonian for the spin degree of freedom. Finally we verify the self consistency of the procedure.

Spatial degree of freedom

Gross-Pitaevskii equation Given the previous discussion, we take the following ansatz:

Ψ(r) = ψ SMA (r) ζ , (2.18) 
where ζ = (â +1 , â0 , â-1 ) T . We rst focus on the spatial mode, purposely written as a classical eld ψ SMA (r) (normalized to 1). This is known as the Hartree-Fock (or mean eld) approximation, and it is widely used to describe ultra-cold Bose gases, where a 2.2. SINGLE MODE APPROXIMATION large number of particles occupy the same single particle state [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. Minimization of the energy under the constraint of conserved atom number (taken into account by introducing a Lagrange multiplier µ, the chemical potential) yields the Gross-Pitaevskii equation

- 2 ∇ 2 2M + V trap (r) + gN |ψ SMA | 2 )ψ SMA = µψ SMA . (2.19)
Kinetic energy and repulsive interactions compete against the trapping potential.

Solutions We can distinguish two limiting cases

• For non-interacting particles, the solution is the ground state of the trapping potential (µ = 2 (ω x + ω y + ω z )) [51] ψ id (r) = ν=x,y,z

M ω ν π 1 4 exp - M ω ν 2 ν 2 .
(2.20)

• In the other limit, known as Thomas-Fermi, the quantum pressure can be neglected and the density is an inverted parabola [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF] ψ

TF (r) = 1 g (µ TF -V trap (r)) , (2.21) 
where V trap (r) < µ TF , and zero elsewhere. The chemical potential is computed to ensure proper normalization, µ TF = ω ho 2 15N a a ho 2 5 , with ω ho = (ω x ω y ω z )

1 3 and a ho = /(mω ho ).

The relative e fect of the kinetic energy and the interactions can be quanti ed using the healing length

ξ = h 2 2M gn , (2.22) 
where n is the mean density. For a system of typical size L, the ratio between kinetic and interaction energy is ∼ ξ 2 /L 2 . In practice, we perform experiments with a wide range of parameters. Two typical situations are

• N ∼ 100 and ω ho ∼ 2π × 2 kHz. This situation is closer to the ideal-gas regime, with L ∼ a ho ∼ 0.5 µm and ξ ∼ 1 µm.

• N ∼ 10 4 and ω ho ∼ 2π × 300 Hz. This situation is closer to the Thomas-Fermi regime, with L ∼ R T F ∼ 2 µm and ξ ∼ 0.8 µm.

In general, we have to solve Eq. (2.19) numerically to get accurate predictions for the density pro le. However, this is of en of little importance to us, since we mostly focus on spatially averaged quantities, depending only on the spin degree of freedom.

Spin Hamiltonian

We now turn to the spin degree of freedom. Injecting the SMA ansatz in the Hamiltonian Eq. (2.17) we obtain an e fective Hamiltonian for the spin degree of freedom

Ĥspin = U s 2N Ŝ2 + p Ŝz -q N0 . (2.23) 
Here U s = N g s d 3 r|ψ SMA (r)| 4 . In practice, U s / ∼ 20 Hz is calibrated experimentally (see chapter 4 and 5). We also introduced the total spin operator Ŝ = Ŝz e z + Ŝ⊥ with Ŝ⊥ = Ŝx e x + Ŝy e y the transverse spin operator. Using the expression of the spin-1 matrices (2.5), we nd

Ŝ2 ⊥ = N + N0 + 2 N0 (N -N0 ) + 2(â † +1 â † -1 â2 0 + â †2 0 â+1 â-1 ) . ( 2 

.24)

Let us remark once again that [ Ĥspin , Ŝz ] = 0. A unitary transform Û = exp(i pt Ŝz ) allows us to get rid of the linear Zeeman term. We then obtain (we use the same notation for Ĥspin with a slight abuse of notation):

Ĥspin = U s 2N Ŝ2 -q N0 . (2.25)
As mentioned in Sec. 2.1.2, for Sodium, the spin-dependent interaction energy U s is positive, corresponding to AFI and q ∝ B 2 > 0. This Hamiltonian governs most of the physics behind the experiments presented in this manuscript. We will discuss the ground state in the next Section.

CHAPTER 2. SPIN-1 BOSE-EINSTEIN CONDENSATES

Validity of the single-mode approximation

Let us consider a cloud with S z > 0 (we use the notation O = Ô ). The QZE is minimized by having as many atoms as possible in the m = 0 state. On the other hand, a quick estimate using Eq. (2.24) shows that a cloud with m = +1 and m = 0 atoms has a transverse spin ∼ N 2 , while a cloud with m = ±1 atoms has a transverse spin ∼ N . Their is thus a competition between the QZE that favors a m = 0, m = +1 mixture and the AFI that prefers a m = ±1 mixture. However, if we relax the single-mode constraint, the transverse spin density S perp (r) could be kept equal to zero everywhere, providing the wave functions for the m = 0 and m = +1 states do not overlap. Hence, one may expect the AFI to lead to the formation of spin-domains, which obviously violates the SMA. However, the creation of such spin domains comes with an increase of the kinetic energy as each spin component is con ned in a smaller volume. In su ciently tight traps, this e fect enforces the SMA.

In a same way that a healing length was de ned to quantify the e fect of the spin-independent interactions, we can de ne a spin healing length associated to the AFI

ξ s = h 2 2M g s n , (2.26) 
such that E kin /E sp.int. ∼ ξ 2 s /L 2 . The spin healing length gives an order of magnitude of the smallest size of a possible spin domain. We compute ξ s for di ferent experimental con gurations, characterized by the atom number N and the trap frequencies, and we report the values in table 2 The rst two situations correspond to a roughly isotropic, tight crossed dipole trap (CDT). In the rst case, the cloud is deep in the SMA, the AFI are two orders of magnitude below the kinetic energy. From this simple estimate, we can expect small deviations to the SMA in the second case. This is one of the reasons why we tend to work with small BECs. The last situation corresponds to an elongated, single-beam trap (SBT), with a very weak con nement along one axis, and where we observe the appearance of spin domains.

To be more quantitative, it is possible to nd numerically the ground state of Eq. (2.13) in the mean-eld approximation. One has to solve three coupled Gross-Pitaevksii equations to obtain the wave function of each Zeeman state. Results for our typical experimental conditions are reported in [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF]. The delity with the SMA solution is larger than 0.99 for N < 10 4 in a crossed dipole trap, with ω ho = 2π × 600 Hz. Spin domain formation in an elongated trap We show in gure 4a a typical picture, of a BEC with magnetization Ŝz N/2, in an elongated trap and in a large bias eld. This picture is taken af er having separated the Zeeman state using a Stern-Gerlach setup, described in Chapter 3. We see a domain with m = 0 atoms, surrounded by m = +1 atoms. This con guration maximizes the quadratic Zeeman energy under the constraint Ŝz N/2. Moreover, thanks to the spatial separation of the m = 0 and m = ±1 states, the transverse spin vanishes almost everywhere (up to quantum corrections discussed later on). Finally, the domain m = +1, which has non-zero magnetization density, and therefore larger interaction energy is located on the edge of the trap, where the particle density is smaller. Neglecting the kinetic energy, a spatially separated con guration with sharp domain walls minimizes the energy. As the con nement increases, so does the kinetic energy, and the domain starts to overlap. For strong enough con nement, the three Zeeman states are forced to overlap. We show in gure 4b an image of a BEC in such conditions, realized in practice in a tight cross dipole trap.

Experiments in the 1D regime were carried on during the rst year of my PhD and are presented in details in [START_REF] Jiménez-García | Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 condensates[END_REF], and in Andrea Invernizzi's thesis [START_REF] Invernizzi | Phase separation and spin domains in quasi-1D spinor condensates[END_REF]. I will not discuss them further, and I will rather focus on experiments accomplished during the rest of my PhD. Those were realized using tight cross dipole traps, and are all well described within the SMA.

Mean eld approximation

We carry on with the investigation of the ground state property of the Hamiltonian (2.25). We rst use a mean-eld treatment, similar to the one used for the spatial mode. It is a variational method, and we start by introducing trial states, the so-called coherent spin states. In latter case, the SMA appears to be well veri ed. In the former, the spontaneous formation of spin domains constitutes a dramatic deviation.

Coherent spin states

General case Let us consider a general spin-1 state de ned in the standard basis as |ζ = m ζ m |m , with ζ a complex unit vector de ne by three real variable n 0 , s z and ϕ ±1 as

ζ =     1-n0+sz 2 e iϕ+1 √ n 0 1-n0-sz 2 e iϕ-1     .
(2.27)

We have chosen the phase ϕ 0 to be equal to 0. We will of en use the relative phases

η = ϕ +1 -ϕ -1 2 and ϑ = ϕ +1 + ϕ -1 -2ϕ 0 .
(2.28)

A coherent state where all atoms occupy the same single particle state describes a perfect BEC and can be written as

|N : ζ = 1 √ N ! (ζ • â † ) N |vac , (2.29) 
with â † = (â † +1 , â † 0 , â † -1 ) T . Here, n 0 = N0 /N is the reduced population in the state m = 0 and s z = Ŝz /N is the reduced magnetization.

Nematic state We now introduce the family of nematic, or polar coherent states, which plays an important role in the description of antiferromagnetic spinor BECs. The nematic coherent state aligned along z, is the state with all atoms in m = 0. By spin rotation of this state, one obtains the family of nematic coherent state aligned along Ω = (sin θ cos φ, sin θ sin φ, cos θ). They can be expressed as

|N : Ω = 1 √ N ! - 1 √ 2 sin θe -iφ â † +1 + cos θâ † 0 + 1 √ 2 sin θe iφ â † -1 N |vac . (2.30)
By comparison with Eq. (2.27), we identify n 0 = cos 2 θ, s z = 0, ϑ = π and η = -φ + π 2 .

Mean-eld ground state

Mean-eld energy The mean eld energy per atom ε spin = Ĥspin /N , where Ĥspin is given by Eq. (2.25) and the expectation value is taken for a general spin coherent state given by Eq. (2.29), is

ε spin = U s 2 (s 2 ⊥ + s 2 z ) -qn 0 . (2.31)
Here s ⊥ is the (reduced) transverse spin of a coherent state

s ⊥ = s ⊥ (cos ηe x + sin ηe y ) , (2.32) CHAPTER 2. SPIN-1 BOSE-EINSTEIN CONDENSATES with s ⊥ 2 = 2n 0 1 -n 0 + (1 -n 0 ) 2 -s 2 z cos ϑ + O 1 N . (2.33)
Because the mean magnetization s z is a conserved quantity, it should be thought of as an experimental parameter. More precisely, the relation [ Ŝz , Ĥspin ] = 0 implies the conservation of the whole distribution of magnetization, not only the mean value. Consistency with the mean eld ansatz imposes a Poissonian distribution, fully characterized by the mean value s z . In the next Section, when we derive the ground state with no assumption on the nature of the many-body state, we will have to specify the whole magnetization distribution.

For now, we investigate the mean-eld ground state as a function of s z and q (of any sign). It is studied theoretically in [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF][START_REF] Zhang | Mean eld ground state of a spin-1 condensate in a magnetic eld[END_REF] and experimentally in [START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF][START_REF] Jacob | Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates[END_REF][START_REF] Bookjans | Quantum phase transition in an antiferromagnetic spinor Bose-Einstein condensate[END_REF].

Phase diagram The minimization of ε spin for a given q and s z leads to di ferent phases characterized by the order parameter s ⊥ . We use the same notation as in [START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF].

AF . The antiferromagnetic phase, with vanishing transverse spin, exists for q < q c = U s (1 -√ 1s z ). When s z = 0, s ⊥ = 0 when the m = 0 state is not populated. For 0 < q < q x , this is driven by the AFI, which competes against the QZE.

BA. The broken-axisymmetry phase exists for q > q c . It is characterized by a non-vanishing transverse spin s ⊥ > 0 (except along the lines s z = 0 and s z = ±1), which breaks the rotational symmetry around the z-axis. The phase ϑ is locked to π in order to minimize the AFI (this has been observed in [START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF]). The mean-eld approximation has been successful in describing numerous experiments, either looking at the equilibrium state [START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF][START_REF] Jacob | Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates[END_REF][START_REF] Bookjans | Quantum phase transition in an antiferromagnetic spinor Bose-Einstein condensate[END_REF], or the dynamics of a spinor BEC [START_REF] Chang | Coherent spinor dynamics in a spin-1 Bose condensate[END_REF][START_REF] Kronjäger | Magnetically tuned spin dynamics resonance[END_REF][START_REF] Black | Spinor dynamics in an antiferromagnetic spin-1 condensate[END_REF][START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF]. Yet, recent experiments [START_REF] Gross | Nonlinear atom interferometer surpasses classical precision limit[END_REF][START_REF] Klempt | Multiresonant spinor dynamics in a Bose-Einstein condensate[END_REF][START_REF] Klempt | Parametric ampli cation of vacuum uctuations in a spinor condensate[END_REF][START_REF] Scherer | Twin matter waves for interferometry beyond the classical limit[END_REF][START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF][START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF][START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF] (mostly focusing on the dynamics) cannot be understood within this simple picture. A hint of the failure of the mean eld treatment to precisely describe the ground state comes from the symmetry breaking. Indeed, because [ Ĥspin , Ŝz ] = 0, the eigenstates of Ĥspin are eigenstates of Ŝz , which are invariant under rotation around the z-axis. The mean eld states do not belong to that family (except when there is only one Zeeman state populated).

Beyond the mean-eld approximation

We now look for the ground state beyond the mean-eld ansatz. This opens the possibility of entangled states as will be discussed in Section 2.5. Before we proceed, we need to specify the constraint on the magnetization. For mean eld states, which have a Poissonian distribution of S z , we only need to constrain the mean value. For more general states we have to constrain the whole distribution. We will rst focus on the simple case, where the magnetization is exactly zero (i.e. we take a centered delta distribution). This corresponds to the experimental situation explored in Chapter 5 to 7. We will see that for antiferromagnetic interactions, it includes the unconstrained ground state. 

Bogoliubov approximation

Bogoliubov Hamiltonian When q → ∞, one can neglect the AFI and the exact ground state is the nematic state |N : e z , with all atoms in m = 0. For large and positive q (the range of validity will be determined to ensure self-consistency) we thus expect N 0 N N ±1 . In that situation, the system should be fairly insensitive to small uctuations of N 0 . This motivates a Bogoliubov ansatz,

â = (â +1 , (N -N+1 -N-1 ) 1 2 , â-1 ) T , (2.34) 
where the mode m = 0 is taken as a classical eld, but the m = ±1 modes are treated quantum mechanically. The SMA Hamiltonian Eq. (2.25) is approximated by the quadratic Hamiltonian

ĤB = (q + U s ) N+1 + N-1 + U s â+1 â-1 + â † +1 â † -1 , (2.35) 
up to a constant and neglecting terms of order 1 N . Using the Bogoliubov transformation [START_REF] Ohmi | Bose-Einstein condensation with internal degrees of freedom in alkali atom gases[END_REF],

α = cosh(θ)â +1 -sinh(θ)â † -1 , β = sinh(θ)â † +1 -cosh(θ)â -1 , (2.36) 
with tanh(2θ) = -Us q+Us , the Hamiltonian is diagonalized

ĤB = ω B (α † α + β † β) , (2.37) 
up to constant terms, and with the Bogoliubov energy

ω B = q(q + 2U s ) . (2.38) 
The longitudinal spin is

Ŝz = N+1 -N-1 = α † α -β † β.
Ground state The ground state is the vacuum of Bogoliubov excitations. It satis es the constraint of exactly vanishing magnetization. Let Np = N+1+ N-1 2 be the operator "number of m = ±1 pairs". We can compute the mean value and variance of Np in the ground state of the Hamiltonian ĤB (for q U s ):

Np B U s 8q , (2.39) 
∆ N 2 p,B = Np B (1 + Np B ) . (2.40)
Eq. (2.40) is characteristic of a thermal Bose-Einstein distribution [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. We show in the appendix C that this is an exact result. In the number basis |N +1 , N -1 the many-body state is

|TMSV = 1 √ N ∞ n=0 ζ n |n, n , (2.41) 
with N = 1 + Np and ζ 2 = Np /(1 + Np ). This state is sometimes called a two-mode squeezed vacuum state (TMSV). Its most distinctive feature is the wide distribution of the atoms number in mode m = ±1, in contrast with the perfect correlation with the atoms number in the other mode m = ∓1. This remarkable property cannot be realized with a mean-eld state, nor with any separable states, as will be shown in Section 2.5. The TMSV can be used for instance, to perform metrology beyond the standard quantum limit (see App. D). We will come back to this in Chapter 5 when discussing the dynamical production and characterization of a TMSV. The depletion of the m = 0 mode results in an increase of the QZE, compensated by a reduction of the AFI energy. This e fect can be identi ed computing the total spin

Ŝ2 B = 2N q -U s ω B .
(2.42) When q U s , Ŝ2 B = 2N , the shot noise value in the nematic state. Indeed, in rst quantization, the total spin can be written as

Ŝ2 = N i=1 ŝ2 i + 2 N i=1,j>i ŝi ŝj , (2.43) 
where ŝi is the spin of the atom i. For spin 1, ŝ2 i = 2. Furthermore, for a separable state, if i = j, ŝi ŝj = ŝi ŝj , and for indistinguishable atoms ŝi = ŝ1 . These considerations yields for separable states

Ŝ2 = 2N + N (N -1) ŝ1 2 .
(2.44)

Hence, for separable states the minimal value of the spin uctuations is obtain for nematic states, which veri es ŝ1 = 0, and Ŝ2 = 2N .

Bosonic ampli cation Let us consider the evolution of the ground state in the range Us N q U s . According to Eq. (2.39), we have 1 Np N . The ratio between the total spin and its shot noise value is

Ŝ2 B 2N 1 4 Np 1 .
(2.45)

In words, the uctuation of the spins are reduced well below the shot noise level. This is quite a surprising result: a microscopic (independent on N ) depletion of the condensate, still leads to a signi cant decrease of the spin uctuations. This counterintuitive phenomenon can be understood as an e fect of bosonic ampli cation [START_REF] Koashi | Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates[END_REF].

The microscopic mechanism that leads to reduction of the collective spin below the shot noise value is the association of two spins to form a singlet state, with zero total spin:

|sing = 1 √ 3 (|0, 0 -| + 1, -1 -| -1, +1 ) . (2.46)
Naively (and wrongly), one could reason as follows. We assume that the cloud can be divided into two independent groups, N singlet atoms forming singlet pairs, and N -N singlet atoms remaining in the m = 0 Zeeman state. We then compute the mean values of observables by summing the contribution of the two groups independently (this is the faulty step). It yields Ŝ2 naive = 2(N -N singlet ), and N singlet = 4 3 Np . The reduction of the total spin is proportional to the depletion, which is arguably more intuitive than the Bogoliubov results Eq. (2.45). However, in this wrong calculation, we forget interference terms between the two ctitious groups, arising from the symmetrization of the state. The importance of this term can already be seen in the simple case of a state composed of one singlet state and one atom in the state m = 0. If the spins were distinguishable, the state in rst quantized form would be

|ψ = 1 √ 3 (|0, 0, 0 -|0, +1, -1 -|0, -1, +1 ) . (2.47)
For indistinguishable spins, the proper symmetrized state is

|ψ S = 1 √ 15 (3|0, 0, 0 -|0, +, --|0, -, + -|+, 0, --|-, 0, + -|+, -, 0 -|-, +, 0 ) .
We can easily compute ψ| N0 |ψ = 5 3 whereas ψ S | N0 |ψ S = 11 5 > 5 3 . We see that the m = 0 mode is already ampli ed by the presence of one atom in addition to the singlet. Of course, this e fect is dramatically enhanced when there is a condensate in m = 0.

Validity of the Bogoliubov approximation The most stringent condition for the validity of the Bogoliubov approximation comes from the spin given by Eq. (2.42). The treatment clearly fails for q < Us 2N , where it predicts Ŝ2 < 0. On the other hand, for the populations, self-consistency requires Np N , that is to say q Us N 2 [Eq. (2.39)]. To be more quantitative, in Section 2.4.3, gure 6, we compare these results with an exact diagonalization. We see that the Bogoliubov approximation is indeed more accurate for the population than for the spin (at low q).

Exact treatment at q = 0

Total spin eigenstate For q = 0, the Hamiltonian Eq. (2.25) can be written as

ĤSMA = U s 2N Ŝ2 . (2.48)
This Hamiltonian can be diagonalized analytically (see [START_REF] Koashi | Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates[END_REF][START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF][START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF] and also appendix B). Its eigenstates are the angular momentum states |N, S, M z , where S ∈ [0, N ] is an integer that has the same parity as N in order to satisfy to the exchange symmetry. M z is an integer in [-S, S]. The eigenvalues are

E(N, S) = U s 2N S(S + 1) . (2.49)
Ground state For simplicity, let us focus on the situation N even. The macroscopic singlet state with vanishing spin S = 0 is the ground state at q = 0 (clearly satisfying the zero magnetization constraint). It is perfectly invariant upon spin rotation, as a consequence of the rotational symmetry of the Hamiltonian Eq. (2.48). For N = 2, the singlet pair state |2, 0, 0 is given in the Zeeman basis by Eq. (2.46). For larger N , the "macroscopic singlet state" is obtained by symmetrization (under particle exchange) of the state |2, 0, 0 ⊗ N 2 . This state is very di ferent from a mean-eld state given by Eq. (2.29), since |2, 0, 0 cannot be factorized in a product of single particle states (it is a two-particle entangled state). We introduce the singlet-pair creation operator,

 † = 1 √ 3 â †2 0 -2â † +1 â † -1 .
(2.50)

In the number basis, the singlet state can be written as [START_REF] Ho | Fragmented and single condensate ground states of spin-1 Bose gas[END_REF][START_REF] Koashi | Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates[END_REF][START_REF] Castin | Bose-Einstein condensates in symmetry breaking states[END_REF] |N, 0, 0 = Â †⊗ N 2 |vac nb.basis .

(2.51)

(2.52)

In the appendix B, we show that for large N , the probability distribution of N 0 in the singlet state is P(N 0 ) N/N 0 /2. From this, we compute the mean value and variance of N0 . We obtain

N0 = N 3 , (2.53) 
∆ N 2 0 4N 2 45 0.3N 2 .
(2.54)

We remark that the mean is consistent with the isotropy of the singlet state, and the variance characterizes a distribution with super-Poissonian uctuations. We will study this remarkable state in detail in Chapter 7.

Numerical results and summary

We diagonalized numerically the SMA Hamiltonian Eq. (2.25) for N = 100 atoms, under the constraint of exactly vanishing magnetization. We show the results for q > 0 in gure 6. We summarize the results of Sec. 2.4.1 and Sec. 2.4.2 as follows:

• q > U s : The interactions play a negligible role and the mean eld treatment works ne. The cloud is condensed in the nematic state |N : e z = |m = 0 ⊗N .

• Us N < q < U s : The condensate is slightly depleted and well described by a Bogoliubov approximation. The distribution of atoms in the m = ±1 mode obeys a thermal Bose-Einstein distribution. While the total spin steadily decreases between q ∼ U s and q ∼ U s /N , the depletion remains small. This can be understood as a bosonic ampli cation of the condensed mode m = 0.

• q < Us N : The Bogoliubov approximation breaks down, the condensate has extensive occupation of the three modes, with macroscopic uctuations (of order ∼ N ). On the other hand, the total spin has microscopic uctuations (of order ∼ 1).

• q < Us N 2 : The ground state is close to the macroscopic singlet state (exact at q = 0). The latter shares the rotational symmetry of the Hamiltonian, and thus has equal population in the three modes and a vanishing total spin.

Entanglement in a spinor BEC

In experiments presented in Chapters 5 to 7, we will pay particular attention to the presence of entanglement in our system. We quantify the entanglement relatively to two partitionings of the system, in terms of group of atoms (or block) or in terms of degree of freedom (modes). In the present section, we introduce the measure of entanglement and the two partitionings. These notions will nd a more concrete meaning in the discussion of the experiments, and we will always recall the de nition.

Entangled states Deviations from the mean eld prediction occur when the ground state cannot be described by the ansatz |N : ζ = |ζ ⊗N . Product states of this form are the only symmetric separable states, and thus, the failure of the mean eld description indicates entanglement between the atoms. The two-mode squeezed vacuum state de ned in Eq. (2.41) and the singlet state de ned in Eq. (2.51) are entangled states.

For completeness, let us brie y introduce a third remarkable entangled state, the so-called "twin-Fock state" (TFS), which has exactly half of the atoms in m = +1 and half in m = -1. It can be written in the number basis as The TFS is the ground state for large negative QZE (-q U s ), under the constraint s z = 0. In that case the mean eld ground state is highly degenerate and corresponds to the whole family of nematic states |N : Ω , where Ω lies in the (xy)-plane. This resembles the situation q = 0, although the degeneracy is lesser here, because of the QZE that breaks SO(3) rotational symmetry. Even though the TFS has a very simple form in the number basis, it is a non-classical state that can be used to perform metrology beyond the standard quantum limit [START_REF] Kim | In uence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[END_REF].

|N : TFS = | N 2 , 0, N 2 nb.basis . ( 2 
Having identi ed these interesting states, a natural question that arises is how to classify them. An exhaustive answer goes far beyond the scope of this manuscript [START_REF] Amico | Entanglement in many-body systems[END_REF]. We only introduce a few entanglement criteria and gures-of-merit well suited to the states we have produced. In particular in Chapter 5, we will de ne squeezing parameters, that can reveal entanglement and sometimes metrological enhancement. In this chapter, we turn to another, more general quantity, the entanglement entropy, to quantify the amount of entanglement in a given state. (2.56) 

Entanglement entropy

If
I(A, B) = S(ρ A ) + S(ρ B ) -S(ρ) .
(2.57)

I(A, B) > 0 indicates entanglement.
In the rest of this Section, we only consider pure states. Let us point out, that despite its theoretical interest (e.g. [START_REF] Vedral | The role of relative entropy in quantum information theory[END_REF]), the Von-Neumann entropy is in general di cult to access experimentally [START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF]. Indeed, it is a non-linear function of the density matrix that requires in general the knowledge of the entire quantum state in order to be calculated. We have been able to measure the entanglement entropy of non-classical states using two distinct methods. In Chapter 7, we use a full reconstruction of the state produced in the experiment. In Chapter 5, we create entanglement using reversible dynamics. S(ρ A ) can be measured on the entangled state and S(ρ) af er further evolution, on a "disentangled" state (relying on the conservation of the entropy under unitary evolution).

Partitioning To go further, we should explicit A and B for our system. In the SMA, the only degree of freedom is the spin. We can think of two simple ways to divide the system (we use the same names as in [START_REF] Amico | Entanglement in many-body systems[END_REF]):

• A is composed of a xed number of atoms n. B is composed of the remaining Nn atoms. We call such a division block partitioning. The term "block" comes from an analogy with spins localized on a lattice. In our case, the spins are "itinerant" and indistinguishable, so this name should not be taken too literally. Yet, the reduced density matrix of A is perfectly well de ned, providing one takes the indistinguishably into account [START_REF] Amico | Entanglement in many-body systems[END_REF][START_REF] Gessner | On the reduced dynamics of a subset of interacting bosonic particles[END_REF].

• A is composed of the atoms in a given spin state, e.g. m = +1. B is composed of the atoms in the remaining states, m = 0, -1. In that case, we talk about mode partitioning.

Basically a pure state has block (mode) entropy if it is not separable in rst (second) quantization. When dealing with a xed number of distinguishable particles, the rst de nition is more natural. When dealing with a uctuating number of particles, blocks with a xed number of atoms cannot be de ne, and the mode partitioning has to be used. In our situation, the two partitionings are well de ned and both are of en used in the literature for models comparable to ours (e.g. itinerant spin 1/2, see for instance [START_REF] Amico | Entanglement in many-body systems[END_REF] and the references therein).

Block entropy Single particle operations, such as spin rotations are local. On the other hand, a collision between an atom from block A and an atom from block B is a non-local operation and can thus modify the entanglement. For now, we will focus on the situation where A is composed of a single atom, so that ρ A = ρ (1) is the single particle density matrix. It can be written in the standard state basis as

ρ (1) i,j = 1 N â † i âj . (2.58)
The state we considered are SO(2) symmetric, such that [ρ (1) , Ŝz ] = 0 and ρ (1) is diagonal in the standard basis. Using also s z = 0, we can express the entropy as

S(ρ (1) 
Sz=0 ) = -(1 -2n p ) ln(1 -2n p ) -2n p ln(n p ) , (2.59) 
with n p = Np /N the reduced number of pair. The entropy is maximal for a uniform distribution, n p = 1 3 and S

(1) max = ln(3). Let us now examine how ρ (1) and its entropy evolve in the ground sate of the SMA Hamiltonian:

• q U s : Nematic state, n p = 0, and S(ρ (1) ) = 0.

• Us N < q: Two-mode squeezed vacuum. n p Us 8qN 2 , and S(ρ (1) ) is given by Eq. (2.59).

• q = 0: Singlet state, n p = 1 3 and S(ρ (1) ) = ln(3).

• -q U s : Twin-Fock state, n p = 1 2 and S(ρ (1) ) = ln(2).

At T = 0, an ensemble of non-interacting bosons forms a perfect BEC and ρ (1) has one non-zero eigenvalue (and no entropy). When ρ (1) has several macroscopic eigenvalues of order ∼ 12 , the condensate is said to be fragmented [START_REF] Penrose | Bose-Einstein condensation and liquid helium[END_REF]. This will be the subject of Chapter 7.

Mode entropy When A is de ned as the ensemble of atoms in a single mode m, e.g. m = +1, mode entropy simply results from having an undetermined number of atoms in m. A mere spin-rotation (that are no longer local operations, since they mix the modes) may thus create mode entanglement. For instance, the nematic state |N : e z has no atom in m = +1 and S(ρ A ) = 0. Af er a π/2 rotation, |N : e x has a binomial distribution of N +1 . Hence S(ρ A ) > 0 and the state has mode entanglement. Note that mode entanglement depends on the modes that are chosen. For instance if we choose x as a quantization axis, |N : e z is entangled and |N : e x is not 3 . The standard basis seems to be a very natural choice. A motivation could come from the facts, that a spin-dependent force, easy to realize in practice, could be used to transform spin-entanglement in the standard basis into spatial entanglement. However, as was pointed out in [START_REF] Wiseman | Entanglement of indistinguishable particles shared between two parties[END_REF], a superselection rule should be taken into account: it is impossible to couple states with di ferent numbers of atoms. For instance let us consider one atom brought into the superposition

(|m = +1 + |m = -1 )/ √ 2.
In the number basis, this state is expressed as (|1, 0, 0 + |0, 0, 1 )/ √ 2 and is mode-entangled. Let us assume that using a magnetic force, we map the spin modes m = ±1 onto two spatial modes A and B (we let aside the m = 0 mode). The state then looks like a Bell-state, useful to perform non-classical protocols, e.g. quantum teleportation. However, such protocols would require to couple the state |1 A to |0 A (idem for B), which is impossible because of atom number conservation. More generally, to estimate the mode-entanglement useful for quantum information protocols, the superselection rules can be taken into account by projecting the quantum state onto states with xed local atom number [START_REF] Wiseman | Entanglement of indistinguishable particles shared between two parties[END_REF]. If we consider a single mode, the only degree of freedom is the number of atoms in the mode, and the projection results in a mixed state, with no entanglement4 .

CHAPTER 2. SPIN-1 BOSE-EINSTEIN CONDENSATES

The direct mapping of the three spin modes available in a spin-1 BEC onto three spatial modes is thus not a good strategy to observe non-local quantum phenomena. Yet, recent experiments have shown that mode entanglement created in a spinor BEC in the single-mode regime could still be spatially distributed [START_REF] Kunkel | Spatially distributed multipartite entanglement enables EPR steering of atomic clouds[END_REF][START_REF] Fadel | Spatial entanglement patterns and Einstein-podolsky-rosen steering in Bose-Einstein condensates[END_REF][START_REF] Lange | Entanglement between two spatially separated atomic modes[END_REF], and used to perform quantum information protocols. In these experiments, entanglement is created through spin-mixing collisions in a tight trap. The con nement is then removed and the cloud expands. The spin entanglement results in quantum correlations between di ferent regions of the clouds. More precisely, for two entangled regions A and B, and a set of non-commuting local observables XA and PA acting in A. For an observer in A, the simultaneous knowledge of XA and PA is limited by Heinsenberg uncertainty relation. However, for an entangled state, additional knowledge can come from a measurement performed in B [START_REF] Kunkel | Spatially distributed multipartite entanglement enables EPR steering of atomic clouds[END_REF][START_REF] Fadel | Spatial entanglement patterns and Einstein-podolsky-rosen steering in Bose-Einstein condensates[END_REF]. This phenomenon is known as Einstein-Podolsky-Rosen steering.

Interest in mode entanglement can also come from analogies with phenomena involving virtual particles. For instance, in the Unruh e fect, virtual particles appear to an accelerating observer as if it were a thermal radiation. In that case, the mode entropy takes the same form as thermal entropy, with the temperature determined by the acceleration. An analogous e fect has been observed in a driven BEC [START_REF] Hu | Quantum simulation of unruh radiation[END_REF]. More precisely, modulating the interacting strength using a Feshbach resonance, the production of a pair of atoms with opposite momenta is stimulated. Individual momentum modes have a large entropy. However, by reversing the dynamics, the authors of [START_REF] Hu | Quantum simulation of unruh radiation[END_REF] were able to show that (some) coherence still exists between the opposite modes, and that (part of) the entropy corresponds to entanglement entropy. A similar mechanism occurs in our system, as shown above in Sec. 2.4.1. The TMSV has a thermal occupation of the modes m = ±1, although it is a pure state. The e fective temperature is related to the QZE q and the spin-dependent interaction strength U s (see App. C).

These considerations motivate the measurement of the mode entropy in Chapter 5. We consider A to be the m = +1 mode. Below is the entropy in the ground sate of the SMA Hamiltonian, keeping the constraint S z = 0.

• q

U s : Nematic state, S(ρ +1 ) = 0.

• Us N < q: Two-mode squeezed vacuum. n p Us 8qN 2 , and S(ρ +1 ) = -2n p ln(n p ) -(1 -2n p ) ln(1 -2n p ).

• q = 0: Singlet state, S(ρ +1 ) ln(N ) -1.

• -q U s : Twin-Fock state, S(ρ +1 ) = 0.

The maximal value of the entropy is S +1,max = ln(N ). For large N the entanglement entropy of the singlet states tends to this value. On the other hand, while the TFS has signi cant block entropy, it has no mode entropy.

Phase diagram For completeness we show in gure 7 the entanglement entropies in the same phase diagram (s z , q Us ) as in the Sec. 2.3.2. It is important here to specify the magnetization constraint. We take a Dirac distribution centered on S z = s z N . In other words, we compute the ground state in the eigenspace of Ŝz with eigenvalue s z N . This results in a signi cant block entropy, because Fock states are entangled under such partitioning. For instance, for s z = 1 2 and large q, the ground state is the twin-Fock state | N 2 , N 2 , 0 .

The main message of the diagram is the large increase of the entanglement (either block, or mode) near the transition. It is overall larger in the ordered (BA) phase, for q > q c and peaked on the singlet state, for s z = 0 and q = 0.

Summary

In this Chapter, we reviewed some key features of trapped ultra-cold gases of spin-1 Sodium atoms. We discussed the many-body Hamiltonian. Single particle contributions include the kinetic energy, trapping potential and Zeeman e fect. For the latter we took care to include the second order (in magnetic eld) term, arising from the di ferent couplings of the nuclear and electronic spins that compose the hyper ne spin. This so-called quadratic Zeeman shif is relevant due to the rotational symmetry of the Hamiltonian around the magnetic eld axis, and the consequent conservation of the longitudinal spin. We then turned to the derivation of the scattering potential and expressed it as a spin-exchange interaction.

Having derived the full Hamiltonian, we introduced the single mode approximation to decouple the spatial and spin degrees of freedom. We treated the spatial degrees of freedom using a mean-eld ansatz, and obtain an e fective Hamiltonian for the spin only. This Hamiltonian is at the core of all the physics discussed in the rest of this manuscript. We discussed the validity of the SMA, underlying the e fective spin Hamiltonian. We explained how the antiferromagnetic interaction acts to spatially separate the spin sate m = 0 from m = ±1. We brie y presented experiments where this phenomenon occurs. However, in tight traps, the quantum pressure prevents the creation of spin domains. This situation is achieved in all experiments discussed from now on.

We computed the energy and discussed the equilibrium state within a mean-eld approximation. Under the conservation of magnetization, we showed the phase diagram in the (s z , q) plane. It exhibits a second order transition. We then provided a quantum treatment, focusing on the situation of a cloud with exactly zero magnetization. At large enough q the cloud forms a perfect BEC, well described by the mean-eld states with all atoms in m = 0. For lower q, the condensate gets depleted. Small depletions can be studied with a Bogoliubov approach. The ground state is then a two-mode squeezed vacuum. The empty modes m = ±1 are populated according to a thermal distribution, but are perfectly correlated. At q = 0, the Hamiltonian reduces to the interaction term. It is rotationally symmetric (in spin space) and can be diagonalized exactly. For antiferromagnetic interaction, the ground state is the singlet state, characterized by a vanishing collective spin.

Deviations from the mean-eld results indicate entanglement between the atoms. This is a property of a quantum state given a partitioning of the system. Two partitionings are of en used in the literature, the "block" and "mode" partitionings. Once the system is divided into subsystems, entanglement can be measured as the amount of entropy in a given subsystem. We computed the block and mode entropies of the ground state. The two partitionings give di ferent results, but both show a peak at the phase transition, and both ae maximal at q = 0 and s z = 0, for the singlet state. Chapter 3

Experimental set-up and techniques

Bose-Einstein condensation (BEC) occurs when the thermal de Broglie wavelength λ T , becomes comparable to the distance between the atoms. The usual gure of merit is the phase space density

D = nλ 3 T , (3.1) 
where n is the density. By cooling down the atoms λ T is increased (λ T ∝ T -1/2 ) but, D ∼ 1 requires extremely low temperatures, on the order of a milliKelvin at usual densities, and much below (∼ 100 nK) in dilute gases. Such temperatures are not within the reach of cryogenic methods. Instead, the atoms are con ned in wall-free optical or magnetic traps and suspended in ultra-high vacuum. The usual experimental procedure combines direct laser cooling followed by evaporative cooling. It led to the rst observation of BEC in 1995 [START_REF] Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Davis | Bose-Einstein condensation in a gas of Sodium atoms[END_REF], nearly 70 years af er Einstein's theoretical prediction. In these early experiments, the BEC was held in a magnetic trap. It has the disadvantage of only trapping a few Zeeman states, the low-eld seekers. On the contrary, an optical trap con nes almost identically all Zeeman states and a spinor BEC can be produced [START_REF] Barrett | All-optical formation of an atomic Bose-Einstein condensate[END_REF].

In the present chapter, we introduce the set-up and methods we use to produce, manipulate and probe a spinor BEC of 23 Na atoms. The chapter is divided into two parts.

First, we focus on the preparation steps. We quickly summarize how light-matter interactions can be used to produce dissipative and conservative forces for cooling and trapping purposes. We then turn to our implementation of these techniques. The set-up has been described thoroughly in previous theses [START_REF] Mimoun | Bose-Einstein condensate of Sodium in a mesoscopic trap[END_REF][START_REF] Jacob | Spin-1 Bose-Einstein condensates : experimental study with Sodium atoms in an optical dipole trap[END_REF], and its most distinctive features are discussed in the publications [START_REF] Mimoun | Sum-frequency generation of 589 nm light with near-unit e ciency[END_REF][START_REF] Mimoun | Fast production of ultracold Sodium gases using lightinduced desorption and optical trapping[END_REF][START_REF] Jacob | Production of Sodium Bose-Einstein condensates in an optical dimple trap[END_REF]. Moreover, we did not participate in the construction. For these reasons, we only give a brief description, for completeness.

In a second part, we report on our e fort to count the Zeeman populations with a resolution close to a single atom. This was an important prerequisite for the experiments described in chapters 5 to 7. We rst motivate our choice of using uorescence instead of absorption imaging. We then describe the experimental set-up, time sequence and image processing. We conclude with an evaluation of the performance of this new method. This work is also described in [START_REF] Qu | Probing entanglement in a spinor condensate near the single atom level[END_REF] (mostly in the supplementary material).

3.1 Production and manipulation of spin-1 Bose-Einstein condensates of Sodium atoms

Optical cooling and trapping

We use light to cool the atoms, trap them and image them. In a crude approximation, the microscopic mechanism can be reduced to an exchange of excitation from the light wave to the atoms and from the atoms to the vacuum (spontaneous emission) or back into the wave (stimulated emission). Spontaneous emission is most relevant near resonance, when the atoms are excited with a signi cant probability. The action of the light can then be expressed as a dissipative force acting on the atoms, the radiation pressure. O f-resonance, stimulated emission dominates and produces a conservative force, the dipolar force. These phenomena are described in many references, for instance [START_REF] Dalibard | Atomes ultra-froids[END_REF]. Here, we brie y recall some important results relevant for the remaining of the chapter.

The radiation pressure force We consider here an idealized two-level atom, illuminated by a monochromatic plane wave of frequency ω and intensity I. Let ω 0 be the energy splitting and Γ the lifetime of the excited state. We consider rst the nearresonant case where δ = ωω 0 ω 0 . The ux of spontaneously emitted photons is

Γ sp = Γ 2 I Isat 1 + 4 δ 2 Γ 2 + I Isat . (3.2) 
The saturation intensity I sat depends on the transition and on the polarization of the light. In our case, it can be expressed as [START_REF] Steck | Alkali D line Data[END_REF]. Let k be the wave vector of the incoming photons. The average momentum of the spontaneously emitted photons vanishes, so that the mean force, called the radiation pressure, is Γ sp k.

I sat = ( ω 3 Γ)/(12πc 2 )

PRODUCTION AND MANIPULATION OF SPIN-1 BOSE-EINSTEIN CONDENSATES OF SODIUM ATOMS 27

For a moving atom, the Doppler e fect makes the detuning velocity-dependent. In particular, if the atoms move against a red-detuned wave, the frequency is shif ed closer to resonance and the radiation pressure increases. Using three pairs of counter propagating red-detuned beams an e fective friction force F = -αv (for low enough v) is achieved. This set-up is called an optical molasses.

With an additional magnetic eld gradient and carefully chosen circularly-polarized light, the detuning is made positiondependent and a spring force is produced on top of the friction force. This is called a magneto-optical trap (MOT). It constitutes a very powerful tool to bring a hot gas down to very low temperatures. However the coldest temperature that can be achieved is ultimately limited by the stochastic nature of spontaneous emission. To overcome this di culty, the gas is rst laser-cooled in a MOT and then transferred to a conservative trap, where it can be further evaporatively cooled.

The dipolar force We now consider the case of large detunings, where stimulated emission prevails. In that case no energy is taken on average from the light and the force derives from the potential (for large enough detuning)

V trap = 3π 2 c 2 2 ω 3 0 Γ δ I(r) . (3.3) 
The di ferent scaling of the dipolar (∝ 1/δ) and radiation pressure (∝ 1/δ 2 ) forces with the detuning makes it possible to have a dipolar trap with negligible heating coming from spontaneous emission. In such a trap, a gas can be further cooled evaporatively. Brie y, the trap depth is lowered to let the most energetic atoms spill away. This is done at a slow enough rate to let the ensemble thermalize (it thus requires sensible interactions between the atoms). To the price of loosing atoms, the phase space density can be increased by several orders of magnitude.

In practice, we use Gaussian beams. If z is the direction of propagation,

I(r) = I 0 w 2 0 w(z) 2 exp -2 x 2 + y 2 w(z) 2 , (3.4) 
where w 0 is the waist of the beam, w(z

) = w 0 1 + z 2 z 2 R and z R = πw 2 0
λ with λ the wavelength of the light. We are interested in the low energy states, localized at the bottom of the trap. This justi es to expand expression (3.4) for x, y, z w 0 . Up to a constant, it gives a harmonic potential

V trap (r) = 1 2 M (ω 2 x x 2 + ω 2 y y 2 + ω 2 z z 2 ) , (3.5) 
where M is the atomic mass. The trap frequencies are

ω x = ω y = 4V0 mw 2 0 and ω z = 2V0 mz 2 R
, and V 0 ∝ I 0 is the potential depth. Note that the longitudinal con nement along the z axis is only due to the divergence of the beam, and is much weaker than the transverse con nement (typically, ωx,y ωz 100). We use such single-beam trap to produce highly elongated ("cigar-shape") clouds [START_REF] Jiménez-García | Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 condensates[END_REF]. For all experiments discussed in this manuscript, we use a trap formed at the intersection of two orthogonal laser beams. Let the second beam be along the x axis. We typically set the power of the two lasers so that the single-beam potential depths are equal. The trap frequencies are then

ω x = ω z = 4V0 mw 2 0
and ω y = √ 2ω x,z (neglecting the longitudinal con nement). Thus, a cross dipole trap provides strong con nement in the three directions of space, although it is not perfectly isotropic.

The case of sodium atoms The cooling transition we use is the

D 2 line, 3 2 S 1/2 , F = 2 → 3 2 P 3/2 , F = 3 (see gure 8).
The associated wavelength is 589 nm, which corresponds to yellow light. Of course, an atom is not a two-level system. In particular, an excited atom can relax via spontaneous emission down to 3 2 S 1/2 , F = 2, but also 3 2 S 1/2 , F = 1. In that later case, the atoms are brought back in the cooling cycle thanks to another beam, the "repumper", resonant with the 3 2 S 1/2 , F = 1 → 3 2 P 3/2 , F = 2 transition.

Production of a spinor BEC

For the sake of completeness, we brie y describe how we produce a spinor BEC. However, I did not contribute to the building of the experiment, nor to the optimization of the protocols described in this section.

Magneto-optical trap Our experiment starts with the loading of the magneto-optical trap (MOT). The near-resonant light used for cooling, repumping and imaging is produced by frequency sum of two infrared lasers at 1064 nm and 1319 nm in a non-linear crystal. To achieve high e ciency, the crystal is placed inside a cavity, resonant with both infrared lasers. The frequency is locked on a transition line of iodine molecules, near the cooling transition. The power at the output of the cavity is 550 mW. The set-up is described in details in [START_REF] Mimoun | Sum-frequency generation of 589 nm light with near-unit e ciency[END_REF] and in the thesis of Emmanuel Mimoun [START_REF] Mimoun | Bose-Einstein condensate of Sodium in a mesoscopic trap[END_REF]. CHAPTER 3. EXPERIMENTAL SET-UP AND TECHNIQUES The other ingredient for the realization of a MOT is of course the atomic source. A typical solution is a beam of atoms leaving an oven and slowed down in a so-called Zeeman slower [START_REF]Making, probing and understanding Bose-Einstein condensates[END_REF]. In our experiment we use a custom option described in [START_REF] Mimoun | Fast production of ultracold Sodium gases using lightinduced desorption and optical trapping[END_REF]. Sodium dispensers are located inside the chamber. When heated up (in practice, we drive them with a current of 3.5 A) they release Sodium atoms. From this ambient vapor the MOT can be loaded. The downside is the pressure increase inside the chamber. Indeed, collisions between the trapped atoms and the residual gas limit the lifetime of our samples. To circumvent this issue, the dispensers are only red once a week, overnight. It produces a very thin coating of sodium atoms inside the chamber. At the beginning of each sequence, we shine UV LEDs to release these atoms by a mechanism called light-induced desorption. This increases momentarily the sodium pressure inside the chamber. Roughly a hundred milliseconds af er the UV light is switched o f, the pressure is almost back to its background level, of ∼ 10 -11 mbar, as low as we can measure. However, a dim residual background persists on a much longer timescale. We observed this e fect when we implemented uorescence imaging. It will be discussed in Sec. 3.2.

3 2 P 3/ 2 3 2 S 1/ 2 F = 1 F = 2 F = 2 F = 1 F = 3 F = 0
Af er ∼ 6 s of loading, the number of atoms in the MOT reaches a value of ∼ 10 7 . The phase space density is about D = 10 -6 . Evaporation in the conservative dipole traps The next step is the transfer of the atoms to the conservative trap. It is a red detuned optical crossed dipole trap (CDT), folded onto itself at an angle of 45 • in the horizontal plane (see gure 9). Its waist is 40 µm, much smaller than the MOT size ( 1 mm). The loading of a CDT from a MOT is a non-trivial process involving many physical e fects. It has been studied in [START_REF] Kuppens | Loading an optical dipole trap[END_REF] and the optimization of our experiment is discussed in [START_REF] Jacob | Production of Sodium Bose-Einstein condensates in an optical dimple trap[END_REF].

The intensity of the CDT is then ramped down in 2 s. As the trap depth decreases, so does the sti fness of the trap (ω ∝ √ P w ). The collision rate thus decreases and evaporation becomes less and less e cient. For this reason, we use exponential ramp, to extend the duration let for thermalization. Yet, this is not enough, and eventually evaporation stops, before reaching the BEC threshold. To circumvent this issue, the atoms are loaded into a tight "dimple" trap. It is composed of two independent beams, one in the horizontal plane and one along the vertical axis (see gure 9). They have smaller waists ( 20 µm) and hence larger sti fness than the CDT at identical potential depth. As evaporation proceeds in the CDT, the coldest atoms start accumulating in the dimple trap. This results in a signi cant increase of the density, and when the CDT is switched o f the phase space density is close to 1. The evaporation can be carried on further (for 5 s) in the dimple trap where we reach Bose-Einstein condensation.

Characterization of the dipole trap It is important to know accurately the trapping frequencies and waists of the dipole trap. These frequencies could be deduced from a measurement on the beams outside the chamber. But it is much more accurate to measure them directly with the atoms (among other sources of uncertainty, absorption on the view port limits our knowledge of the intensity on the atoms). The procedure is the following. We produce a cloud polarized in the F = 1, m = +1 state and apply a magnetic force in order to displace the center of the trap. We then remove the force and monitor the subsequent oscillations of the cloud. The frequency is the trap frequency ω ∝ √ P w . We can perform this for all three axis (although only two are generally necessary for revolution-symmetric beams).

Manipulation of the internal state

In the dipole trap, the temperature is much smaller than the hyper ne energy splitting, so that all atoms are in the manifold F = 1.

The three Zeeman component m = 0, ±1 are trapped identically. We present in this section how we can use an oscillating eld to perform spin rotation, and a gradient to create a spin dependent force. All these procedures were already implemented when I arrived.

Spin rotation We of en need to rotate the spin of the atoms in order to trigger dynamics, or to diagnostic the state of the atoms. We do this by applying radio-frequency (RF) magnetic eld B RF = B RF sin(ωt)e y . The Hamiltonian is1 

ĥZ = pŝ z + Ω sin(ωt)ŝ y , (3.6) 
where Ω = gµ B B RF / is the Rabi frequency. In the frame rotating at the frequency ω around z, the Hamiltonian becomes

h rot Z = (p -ω)ŝ z + Ω cos 2 (ωt)ŝ y + cos(ωt) sin(ωt)ŝ x . (3.7) 
For ω Ω, we can neglect the time dependent terms (this is known as the rotating wave approximation). On resonance, p = ω and the Hamiltonian reduces to h rot Z = Ωŝ y /2. It achieves spin-space rotation, as shown by the equation of evolution of the spin operator

dŝ dt = Ω 2 e y × ŝ . (3.8)
The vectors n 1,2 that parametrize the state in the Bloch-Rabi picture verify the same equation. For instance, the nematic state aligned along the z-axis evolves as

|ψ(t) = cos(Ωt)|z + sin(Ωt)|x , (3.9) 
where |x = (| -1 -| + 1 ) / √ 2 is the nematic state aligned along the x-axis.

CHAPTER 3. EXPERIMENTAL SET-UP AND TECHNIQUES

Magnetic force For imaging and puri cation purposes, we apply a spin selective force. This is achieved in a magnetic eld gradient In a semi-classical picture, atoms in the spin state m feel the force F g = -2gµ B b me z . In practice, we can achieve an acceleration on the order of the gravitational acceleration g 10 m/s 2 for b 15 G/cm.

B g = b   -x 2 -y 2 z   , (3.10 

Magnetic eld control

Production of magnetic elds We produce the bias magnetic elds using three pairs of coils located around the chamber. They can provide elds up to ∼ 3 G (0.3 mT) in any direction. We also have a large 1 m×1 m coil around the chamber, in the horizontal plane containing the atoms, for noise compensation (see paragraph below). An additional set of two water-cooled coils produce the magnetic eld gradient required for the MOT and in order to apply a spin-selective force. When supplied with 120 A, the gradient at the center of the science chamber amounts to 15 G/cm (0.15 T/m). Finally, a single smaller coil located on top of the chamber is used for producing an RF oscillating eld.

Calibration of the magnetic eld The amplitude of the eld on the atoms is determined using RF-spectroscopy. We produced a polarized BEC (that is to say, with all atoms in the same Zeeman state m), for instance in m = 0. We apply a RF eld for t p , with a small amplitude to initiate a Rabi oscillation. In the limit of a weak pulse, the fraction of atoms measured in the m = ±1

states is n ±

Ω 4 t 2 p Ω 2 +δ 2 ,
where Ω is set by the amplitude of the RF eld and δ the detuning between the driving frequency and the Larmor frequency (propotional to the magnetic eld). This de nes a Lorentzian line of width Ω, from which the detuning can be deduced. This formula is valid for Ωt < 1. In order to achieve good accuracy on the measurement of δ, we want to have small Ω. A typical spectroscopy line is presented on gure 10.

In practice, to fully calibrate the eld produced by the three pairs of coils, we performed several spectroscopy experiments, for various currents. We also estimated the bandwidth characterizing the dynamical response of the coils (this is important for the experiments described in chapter 4). We fed the coils with a current oscillating at 277 Hz, and then performed a spectroscopy at di ferent times of the oscillation. The amplitude we measured is 20% smaller than for the static calibration. Assuming a rst order lter, this corresponds to a bandwidth of ∼ 500 Hz. We believe it is not limited by the intrinsic bandwidth of the electric circuit, but most likely by eddy currents induced in the chamber.

Noise compensation We continuously measure the uctuations of the magnetic eld using a probe located outside the chamber. The dominant contribution, on the order of 3.4 mG root-mean-square (rms) and with a time scale of ∼ 10 Hz are presumably due to the nearby metro line 2 . Such uctuations are not acceptable for the experiments described in the Chapter 6 and 7 and we thus implemented a compensation system. Fortunately, the uctuation of the eld are very homogeneous in space and almost perfectly aligned along the vertical axis. For this reason we can use a simple feed-forward set-up to cancel this noise. The "metro" eld is measured outside the lab (in order not to be in uenced by the sequence running). The signal (af er removal of the o fset and multiplication by a tunable gain) is then used to control the current in a single 1 m×1 m square coil located in the plane of the atoms. By using a large coil we minimize the error between the eld measured by the probe and seen by the atoms (The probe is ∼10 cm away from the center of the vacuum chamber).

Af er tuning the gain, the probe records uctuations of 0.4 mG rms ( gure 10 b), very similar to what we measure along the other axes. We estimate the magnetic eld noise on the atoms by measuring the minimal linewidth we can achieve in RFspectroscopy. We use this for a ne tuning of the compensation. We measured a minimal linewidth of 0.4 kHz, corresponding to uctuations of 0.6 mG ( gure 10 a), compatible with the direct estimation. The minimal eld used in the experiments presented in chapter 6 and 7 is 4 mG. At this level, the residual uctuations are not a limitation for the physics we want to explore.

Absorption imaging

Let us brie y describe here the procedure we follow to image the cloud. It can be decomposed into two steps: time-of-ight (TOF) and imaging. For imaging, we have used two di ferent schemes, namely absorption and uorescence. The former was implemented before I arrived, and we brie y describe it here. We have contributed to the realization of uorescence imaging, and this scheme will be described in detail in section 3.2. Time-of-ight and Stern-Gerlach In this step, the trap is turned o f. The cloud falls freely and expands due to the quantum pressure and the repulsive interactions. During that time, we apply a magnetic force to spatially separate the three Zeeman states, using the same principle as in the famous Stern-Gerlach experiment. For long enough TOF (in practice, for absorption imaging, we use 3 ms) the three spin states are completely separated as can be seen on gure 11.

Absorption imaging Absorption imaging is a common technique in ultra-cold gas experiments [START_REF]Making, probing and understanding Bose-Einstein condensates[END_REF]. The procedure we use has been described in detail in previous theses (e.g. [START_REF] Frapolli | Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates[END_REF]). Here we brie y recall the principle. We shine a probe beam resonant with the D2 line (the same as for cooling) on the atoms, together with the repumper beam. The pulse typically lasts 10 µs. The probe beam propagates along the vertical axis, and is projected onto a CCD camera af er going through the chamber (see gure 13). The atoms absorb part of the incoming light and reemit it in all directions. For dilute clouds, the variation of intensity I is related to the density n through the Beer-Lambert law ∂I ∂z = -nΓ sp (I) ω, where Γ sp (I) is given by eq. (3.2) for a two-level system. Af er integration, the column density n col (x, y) = rn(r) is related to the intensity before (I 2 ) and af er (I 1 ) the atoms via [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF] 

n col (x, y) = 1 σ 0 ln I 2 (x, y) I 1 (x, y) + I 2 (x, y) -I 1 (x, y) σ 0 I sat , (3.12) 
where σ 0 = 3λ 2 0 /(2π) is the resonant scattering cross section. In practice, the image of the background I 2 is constructed from a set of empty images and an algorithm known as "Best Reference Picture". The same analysis is used to remove the background of uorescence images, and we postpone the description to the next section. We have given the expression of σ 0 and I sat for a two-level system (and circularly polarized light). However, as we have seen, the electronic structure of Na is more complex and these parameters are in fact calibrated experimentally. The same type of calibration is required for uorescence imaging, and will also be discussed in the next section (see also [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF][START_REF] Frapolli | Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates[END_REF]).

Absorption imaging provides information on the spatial density of the clouds. The integrated signal gives the population in each Zeeman state. However, it comes with signi cant noise due to the fact that the probe beam is directly impinging on the CCD. Part of the noise is composed of classical intensity uctuations of the laser. In theory this noise can be removed through image analysis. On the other hand, the shot noise of the incident light constitutes a fundamental limitation on the performance of absorption imaging, which cannot be removed through image analysis. This is a serious issue for experiments that requires a precise counting of the Zeeman population. 

Status at the end of the evaporation

Internal state We showed in Chapter 2 that the magnetization m z = (N +1 -N -1 )/N is a conserved quantity, which constitutes a very important constraint on the state of the BEC at the end of the evaporation.

The "natural" magnetization of the cloud af er loading of the CDT is m z -0.7. This value can be tuned between -0.7 and 0 using a radio-frequency pulse before the evaporation starts. The pulse brings the atoms into a coherent superposition of the three spin states, but the coherence is rapidly lost due to collisions and magnetic eld inhomogeneity. We end up with a statistical mixture, with the desired magnetization. The latter is almost conserved over the evaporation, unless we use a distillation procedure.

Spin distillation is used to produced polarized cloud with m z -1. It relies on a magnetic eld gradient applied on top of a bias eld along the vertical axis to produce a spin-dependent force. We choose it to compensate the gravity for m = -1. It has no e fect on m = 0 and it adds up to the gravity for m = +1. The evaporation rate is then faster for m = +1 and m = 0, and the clouds is almost fully magnetized at the end of the ramp.

In most experiment we performed, we actually want to start with a BEC with all atoms in m = 0. To prepare such a BEC, we set initially m z = 0, and evaporate in a large bias eld of ∼ 3 G. The quadratic Zeeman shif q/ 2.5 kHz is much larger than the spin-dependent interaction energy and at zero magnetization, all condensed atoms are in the m = 0 Zeeman state. On the other hand, the lowest temperature we can measure are on the same order as q/k B . The thermal atoms are expected to be distributed between the three spin states. In practice, for the most shallow trap, we measured about 0.98% of the atoms in the m = 0 state. This indicates a very small thermal fraction.

Yet, the population of m = ±1 is not strictly zero. To reduce it further, we use the same con guration as for the spindistillation procedure discussed above. The di ference is that we do this in a very shallow trap, just strong enough to hold the atoms against gravity. With an additional magnetic force pulling them down, atoms in m = +1 spill away without relying on evaporation. By changing the direction of the bias eld, we also remove the m = -1 atoms. We call this procedure "spin-ltering".

On a single shot, using uorescence imaging (see section 3.2), we can count the Zeeman population with an accuracy of ∼ 1.6 atoms, which does not allow us to insure that there are no atoms in m = ±1. On a set of ∼ 1000 shots of a spin-ltered BEC of ∼ 4000 atoms, we measured N p = -0.05 ± 0.04. We show the histogram of the atom number N ±1 in the m = ±1 states af er spin ltering in gure 12 and compare them to the distribution on empty images. We see no signi cant di ferences between the two distributions.

Atom number We reach af er evaporation an atom number on the order of N ∼ 10 3 to 10 4 . For the experiments described in chapters 6 and 7 this number is too large and we aim to work with N ∼ 100. One way to reduce the atom number is by lowering the trap depth in order to let some atoms spill away. However, below a certain trap depth we lose all the atoms. Close to this threshold, the atom number is very sensitive to minute changes in the trap depth (due to uctuation of intensity or trap alignment), and thus uctuates a lot. It makes it di cult to realize small samples reliably by simply lowering the trap depth. Instead, af er a rst spin-ltering, we use a radio frequency pulse to bring the atoms in the superposition

√ |m = 0 + 1 - 2 (|m = -1 -|m = +1 ) . (3.13)
Af er another "spin-ltering", we are lef with N atoms in the state |m = 0 inside the trap. We can achieve 1 with reasonable delity so that the atom number uctuations are not dramatically increased (on the order of 10%).

Temperature The temperature and condensed fraction of the gas can in principle be deduced from the densities measured using absorption imaging. We describe the procedure very brie y since it is quite standard (see e.g. [START_REF]Making, probing and understanding Bose-Einstein condensates[END_REF]). Moreover, it only provides us with an upper bound to the temperature in the experiments discussed in this manuscript. For a thermal cloud, one can neglect interactions in rst approximation. In that case, the TOF expansion af er released from a harmonic trap can be solved analytically [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. For time t TOF long compared to the trapping period, the spatial density n(r, t TOF ) is proportional to the initial distribution in momentum space n(p, t = 0). The latter is given by a Bose distribution, and more simply, in the large p limit (i.e. the wings of the distribution), it approaches a Boltzman distribution n(p) ∝ exp(-p 2 /(2M k b T )). For a BEC in the Thomas-Fermi regime [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF], one can neglect the quantum pressure, and the expansion in TOF is then given by scaling laws [START_REF] Castin | Bose-Einstein condensates in time dependent traps[END_REF]. The spatial density keeps the shape of inverted parabola. Combining these two results, the density pro le of a condensed gas at nite temperature is composed of a central peak corresponding to the BEC on a larger pedestal formed by the thermal cloud. From a t of the wings of the distribution the temperature can be extracted (e.g. using a bimodal t of the whole pro le, or a Gaussian t of the wings only [START_REF]Making, probing and understanding Bose-Einstein condensates[END_REF][START_REF] Frapolli | Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates[END_REF]). This procedure works well for thermal fraction larger than ∼ 20 %. For colder clouds, the signal-to-noise ratio in the wings of the distribution is too small to be tted reliably. All experiment described in the following are performed in that regime and we can only give an upper bound to the temperature T 100 nK, and the condensed fraction f c 0.8. Thermometry of our system has been performed extensively in the thesis of Camille Frapolli [START_REF] Frapolli | Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates[END_REF].

Fluorescence Imaging

Why uorescence imaging?

Motivation In experiments described in Chapters 5 to 7 of this manuscript, we aim at observing reduced quantum uctuations of the collective spin of mesoscopic ensembles of atoms (from a few to a few hundred atoms). More precisely, it always boils down to a measurement of the spin component along the quantization axis (the direction of the bias magnetic eld), Ŝz = N+1 -N-1 . The other spin components can be mapped onto that one thanks to a spin-rotation. These experiments are performed in the singlemode regime, and the spatial distribution of the atoms is xed. We are mostly interested in counting the Zeeman population as accurately as possible. In this section, we report on our implementation of "Stern-Gerlach uorescence imaging" that leads to a resolution near the single atom limit. The experimental set-up and protocols described in Sec. 3.1 were all (with the exception of the magnetic eld compensation) implemented before I arrived. The uorescence imaging methods constitutes my main contribution to the experimental set-up, and is discussed here in detail (see also [START_REF] Qu | Probing entanglement in a spinor condensate near the single atom level[END_REF]). The experiments described in Chapter 4 were performed before this work, using the absorption imaging set-up described in Sec. 3.1.5.

Let us start with a brief overview of our uorescence scheme. Three counter propagating red-detuned beams are used to form a molasses. The light scattered from the atoms is collected on a camera (see gure 13). Thanks to the friction force at play in a molasses, the expansion of the clouds is relatively slow, and a long exposure time is possible. The signal is the integral over the molasses duration of the uorescence intensity impinging on the camera. In this scheme, because of the di fusion of the atoms in the molasses, we loose all information on the spatial distribution of the atoms in the trap. For this reason, we kept in the experimental set-up a parallel optical path to perform absorption imaging when spatial resolution is needed (e.g. for alignment of the dipole trap).

Brief overview of the state of the art Single atom resolution is achieved most easily for trapped individual particles, such as ions, or neutral atoms in optical tweezers. Typically the atoms are illuminated with near-resonant light, and uorescence photons are collected through a large numerical-aperture microscope objective. Using deep traps, it is possible to expose the atoms for hundreds of milliseconds up to a few seconds before they are lost (even longer for trapped ions). The method can be generalized to atoms in 2D optical lattices (this is called a "quantum gas microscope"). Imaging individual sites requires an excellent small spatial resolution (typically below 1 µm). Most importantly for our topic, this technique works only for sites with single occupancy. Indeed, light assisted collisions lead to severe losses in tightly con ned ensembles. Another possibility demonstrated in [START_REF] Hume | Accurate atom counting in mesoscopic ensembles[END_REF], is to hold the atom in a MOT. Because the density is typically much smaller than in a dipole trap, single atom sensitivity has been demonstrated for up to ∼ 103 atoms [START_REF] Hume | Accurate atom counting in mesoscopic ensembles[END_REF].

The issue when imaging trapped particles is that it is di cult to resolve the internal state. This is why in spinor condensates the atoms are usually imaged af er having spatially separated the Zeeman states, using a Stern-Gerlach set-up. To our knowledge, the lowest noise level using absorption imaging is reported in [START_REF] Muessel | Optimized absorption imaging of mesoscopic atomic clouds[END_REF], and amounts to 3.7 atoms 3 . On the other hand, using uorescence imaging, a noise level of 13 atoms was reported in [START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF]. The combination of Stern-Gerlach separation and optical molasses comes with technical di culties that will be developed below. This is probably why most spinor BEC uses absorption imaging. However, this technique comes with a strong limitation on the sensitivity that can ultimately be achieved.

The limit of absorption imaging Let us start by pointing out that there are a-priori no fundamental limits that forbid the detection of a single atom using absorption imaging. It was experimentally demonstrated for a single ion [START_REF] Streed | Absorption imaging of a single atom[END_REF]. Yet, for the vast majority of experiments achieving single atom resolution, uorescence is being used. Even in [START_REF] Streed | Absorption imaging of a single atom[END_REF], af er careful optimization of the absorption imaging, uorescence gives better counting resolution. This can be understood af er a simple estimation of the signal-to-noise ratio (SNR) of absorption imaging. We use the 2-level atom picture presented in 3.1.1. We recall the absorption rate on resonance [Eq. (3.

2)]

Γ sp = Γ 2 s 1 + s , (3.14) 
where s = I Isat . The rate of incoming photons on the surface A occupied by the atom(s) is φ in = IA ω . The ratio of the two de nes the contrast

R = Γ sp φ in = σ 0 A(1 + s) , (3.15) 
where σ 0 = 3λ 2 0 /(2π) is the resonant scattering cross-section, and using I sat = ( ω 3 Γ)/(12πc 2 ). For a duration of exposure t exp , the signal of a single atom is S = Γ sp t exp .

(3.16)

In the best case scenario, the probe beam uctuations are given by the shot noise uctuations, and the noise is

N = φ in t exp . (3.17)
Thus, the SNR of a single atom is

SNR = √ RS . (3.18)
In [START_REF] Streed | Absorption imaging of a single atom[END_REF], the detection of a single ion is achieved with R = 0.03. In this experiment, A is limited by di fraction to ∼ 0.5 µm, and the ion is strongly con ned, so that it can scatter hundreds of photons and still remaining trapped. The situation is much less favorable for an atomic ensemble in free space. First, A is limited by the size of a cloud, for typical experimental conditions, we have A ∼ π×(20 µm) 2 and R ∼ 10 -4 . In addition, the exposure duration is limited by the e fect of the radiation pressure. Af er a few hundreds of photon are scattered (in practice we use t exp = 10 µs), because of the Doppler shif , the atoms are out of resonance with the probe light. These constraints yield in our case to SNR 0.1, quite far from the single-atom resolution. On the one hand, af er optimization, t exp may be increased and A decreased. On the other hand, we know the two-level picture overestimates the scattering rate (by a factor ∼ 2, see [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF][START_REF] Frapolli | Thermodynamics and magnetism of antiferromagnetic spinor Bose-Einstein condensates[END_REF]). Last but not least, we neglected important experimental realities. For instance, additional noise e.g. due to classical uctuations of the probe intensity (these are actually on the same order as the shot-noise for us [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF]). Initially, using absorption imaging we had an accuracy on the total atom number on the order of ∼ 60 atoms [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF].

Overall, it appears very challenging to reach single atom resolution with absorption imaging in our situation. We thought better results could be obtained thanks to uorescence imaging. The rest of the chapter is dedicated to our implementation of this method.

Experimental set-up

Molasses beam We use the same beams as for the cooling light and the repumper. The intensity is about 3.1 mW/cm 2 /beam at the center of the beams. The saturation intensity is I sat = 6.2 mW/cm 2 (assuming perfectly circular polarizations). This set-up is straightforward to implement in the experiment. The drawback is that uorescence imaging cannot be fully optimized without degrading the MOT performances and vice versa. On the one hand, the size of the beam has to be quite large for proper loading of the MOT. On the other hand, the amount of stray light scattered from various surfaces in the beam path (viewport and chamber walls) and collected by the imaging system is larger for larger beam sizes. As a compromise, we found that reducing the sizes of the four oblique beams (see g.13) from 11 mm to ∼ 7 mm suppresses the amount of stray-light by 75 %, while reducing the atom number in the MOT by only ∼ 30%.

Optics The rst requirement of the optical system is to collect as much uorescence photons as possible. For this purpose, we use a microscope objective4 located at the bottom of the science chamber, characterized by a numerical aperture NA= 0.3 and a focal length f = 40 mm. The atoms are near the object plane of the objective. The light coming out from the objective is slightly diverging. We use a f = 500 mm achromatic lens located right af er the objective to contain the divergence of the beam, and a f = 75 mm (NA= 0.32) achromatic lens to form an image on the camera (see gure 14). The measured magni cation of the whole system is 1.5. A small magni cation is favorable since it reduces the size of the image on the CCD, and therefore the amount of electronic noise in the integration area. As mentioned before, the spatial resolution is not a concern, we are only interested in the population. However, a small magni cation requires a small focal length (given the focal length of the objective), which is not easily combined with a large numerical aperture without important optical aberrations. The set-up described here is a satisfying compromise. Its NA is mostly limited by the microscope objective (a spatial lter described in the next paragraph slightly reduces it), the electronic noise contributes for a negligible amount of the total noise and we observe no optical aberrations.

Spatial ltering Important sources of stray light are the upper viewports of the chamber through which the molasses beams go. They scatter light, some of which is collected by the microscope objective. Fortunately, most of it can be ltered out, at a reasonable cost on the uorescence signal. The viewports constitute well located sources, far from the microscope objective (compared to the focal lens). We observe that their image is formed close to the focal point of the objective contrary to the image of the atoms ("near in nity"). The image of the viewports can thus be blocked by a carefully-designed spatial lter placed near the image plane of the objective, as shown in gure 12. The noise is reduced by 40% while the signal is reduced by only 6%.

Camera We use a high e ciency, scienti c grade CCD camera to record the uorescence signal. The quantum e ciency η is de ned as the number of photons needed (on average) to produced one digital count at the output of the camera read-out register. We measured η using a source of light with Poissonian statistics. In that case, for N ϕ incident photons, the mean number of counts is ηN ϕ , with a variance η 2 N ϕ . The ratio of the two gives η. In practice, we use a laser as a source. By scanning N ϕ We clearly see four bright spots coming from the viewport (the imaging system is focused on the viewport). They are completely blocked by the spatial lter. The walls of the chamber still scatter some residual light that cannot be ltered out. The darker square in the middle corresponds to the upper vertical viewport.

we veri ed that it is indeed shot-noise limited for N ϕ < 3000 (for higher N φ , intensity uctuations dominates). We measured η = 0.73. Relying on this calibration, we will report the signal and noise of our imaging system in photon units.

The electronic noise of the camera read-out signal comes from two mechanisms. Instead of a photon, thermal excitations can promote an electron from the valence band to the conduction band. This is usually known as dark current. It is importantly reduced by cooling the sensor (to -70 • C in our case), and by electronically "cleaning it" over the sequence (the pixels are continuously read before the exposition starts). As a result, the dark current is completely negligible. More important is the read-out noise ∆N R coming from the conversion of the charge of a pixel into a voltage and then to a digital count. ∆N R can be signi cantly decreased by merging the charge of several pixels into one larger unit, called macro-pixel, before reading. This technique is known as "hardware binning". There are two downsides to hardware binning: the loss of spatial resolution and the possible "blooming", coming from the over ow of charge in the macro-pixel. We decided to bin the pixels by 64 (one macro-pixel is a square of 8 × 8 pixels). The loss of spatial resolution is of no importance to us, and blooming occurs only for large uorescence signal (when N ∼ 10 4 ), which is not the regime we are interested in.

We measured the electronic noise by taking images with the CCD hidden from any light. The noise (standard deviation of the number of counts) of a square macro-pixel of size B × B pixels, is

∆N R = 3.60 + 0.36 × B photons . (3.19)
The o fset of 3.60 + 0.36 = 3.96 photons is the read-out noise of a single pixel. If the hardware binning was working perfectly, it would also be the noise of a macro-pixel. On the other hand, if we don't use hardware binning, the noise is 3.96 × B (the B 2 individual pixels are uncorrelated). For B = 8, ∆N R 6.5 instead of ∆N R 32 without hardware binning. Thanks to that correction, the electronic noise only contributes marginally (∼ 10%) to the total noise, which is dominated by stray light (see section 3.2.5)

Loading and di fusion in the optical molasses

Time-of-ight and Stern-Gerlach The Zeeman states are spatially separated during time-of-ight (TOF) in a magnetic eld gradient. The separation d SG that is achieved essentially sets the maximal duration of molasses we can a ford (and thus the uorescence signal), before the three clouds start to overlap. We thus want d SG to be maximal, which requires a long TOF and a strong gradient. However, the latter is detrimental to the molasses. Indeed, if the gradient is signi cant when we shine the light, we have by de nition a MOT (instead of a molasses), and the ±1 atoms are brought back to the center. In fact, at equivalent gradients, the magneto-optic force produced in a MOT is orders of magnitude larger than the magnetic Stern-Gerlach force. It is therefore a great concern to avoid this situation and to reduce the gradient before the end of the TOF. Extinction of the magnetic eld can take signi cant time (several milliseconds) due to eddy currents in the science chamber. The best compromise between large separation and small residual gradient is found experimentally, with the time spent in the molasses before overlap of the three clouds taken as a gure of merit. There are several parameters to optimize, the duration of the TOF t TOF , and the magnetic eld sequence, including the gradient for the Stern-Gerlach separation and the bias eld.

First, we found that the longest TOF we can a ford is t TOF = 18 ms, limited by the fall of the atoms outside the molasses beams (past this time, the signal decreases). Then, we optimize the duration during which the magnetic eld gradient is present. The time sequence is the following. The gradient rst increases for ∼ 3 ms before being ramped down for 10 ms. The separation is d SG 1.3 mm. Optimization of the molasses The physics of optical molasses has been the subject of many theoretical and experimental investigations [START_REF] Chu | Three-dimensional viscous con nement and cooling of atoms by resonance radiation pressure[END_REF][START_REF] Phillips | Laser cooling and electromagnetic trapping of neutral atoms[END_REF][START_REF] Hodapp | Three-dimensional spatial di fusion in optical molasses[END_REF]. The simple case of a single particle can be described as a Brownian motion, with the absorption of laser photon followed by spontaneous emission leading to a random walk in momentum space. For low enough density, this result can be generalized to an ensemble of atoms, and the size of the cloud R evolves according to a di fusive law R ∝ √ t. Af er 18 ms of TOF, and for the mesoscopic clouds that we work with, the distance between atoms in the molasses is ∼ 10 µm, much larger than the wavelength, and collective e fects such as multiple scattering are not expected to play an important role. However, the random walk in the ideal case is signi cantly biased if residual magnetic elds on the order of ∼ 100 mG are present, leading to a net force acting on the atoms. We optimize the current feed into the coils during the molasses in order to compensate the ambient eld and minimize the clouds size. We found that the optimum is not exactly the same for the three spatially separated clouds, and that it depends on t mol . This is due to spatial and time dependence of the magnetic eld, caused by the slow extinction of the gradient applied for the separation. The optimization is done for a given duration t mol , and a compromise between the size of the three clouds is made (see gure 16). We optimize the detuning of the molasses for the "best" magnetic eld con guration. The optimum is given by a compromise between larger photon ux (close to resonance) and slower expansion (far from resonance). We found experimentally that the total signal is maximized for δ/(2π) -9.9 MHz ( -Γ).

Di fusion in the molasses

The CCD camera is exposed during the whole molasses phase, and the image we record represents the time integrated uorescence signal. Let φ m be the mean photon ux, and n col,m (r, t) be the column density of the clouds initially corresponding to the state m = 0, ±1 at time t of the molasses and position r = (x, y). The uorescence intensity is

I m (r, t mol ) = t mol 0 dtφ m n col,m (r, t) . (3.20) 
For simplicity, we use the same continuous coordinate r for I m and n col,m , although in practice there is a magni cation factor and a discretization into pixels. A simple estimate of the size of the cloud is given by the variance of

I m R 2 (t mol ) = 1 N m φ m t mol d 3 r t mol 0 dt(r -r m ) 2 φ m n col,m (r, t) . (3.21)
where r m is the mean position of the cloud m. This can be reexpressed as a function of the variance σ(t) 2 of the density n col,m :

R 2 (t mol ) = 1 t mol t mol 0 dtσ 2 (t) . (3.22)
In the ideal molasses picture, n col,m is a Gaussian of variance σ 2 = σ 2 0 + 2Dt. In order to take into account the experimental imperfections mentioned above, we use a heuristic formula σ(t

) 2 = σ 2 0 + 2Dt + Ct 2 , so that, R 2 (t mol ) = σ 2 0 + Dt + C 3 t 2 . (3.23)
We show in gure 17 the results of a measurement of R 2 (t mol ) versus t mol for the three Zeeman states. From a t we extract the parameters D and C. The behavior is slightly di ferent for the three clouds. For m = -1 it is consistent with a purely di fusive expansion, while for m = 0, +1, we measure a slight curvature. In any case, the expansion is much faster than the pure Brownian motion prediction. Residual magnetic elds are probably playing a major role. 

(t mol ) = σ 2 0 + Dt + C 3 t 2 .
Atom losses in the molasses Let us mention that light-assisted collisions can play a non-negligible role in the molasses, even for small clouds [START_REF] Hume | Accurate atom counting in mesoscopic ensembles[END_REF]. This is an additional source of uncertainty on atom counting, which increases with t mol . In theory, these losses could be observed as a reduction of the total photon ux over time, for a cloud with xed initial atom number N . From this we could compute the optimal t mol . However, uctuations of N in the preparation of our samples make it di cult to evaluate this small e fect in this simple way. We use another method based on the use of squeezed state, that will be detailed in 3.2.5.

Image analysis

Removing hot pixels Some images are polluted by "hot" pixels. These are very localized regions (usually one pixel, sometimes a few) of high intensity, of en saturated, e.g. due to cosmic rays impinging on the detector. They are relatively frequent events (few percent of the shots). They are easily detected by computing the numerical Laplacian of the image. When a hot pixel is detected, it is replaced by the mean over the adjacent pixels.

Removing the background We already mentioned in sec. 3.2.2 the presence of stray-light photons scattered on the walls and viewports of the science chamber. We discuss here another source of stray light. We attribute it to the uorescence of the residual background gas of Sodium present in the chamber. We recall that the density of Sodium atoms is momentarily increased for the loading of the MOT using UV light (see 3.1.2). Then, the ambient pressure decreases rapidly (∼ 100 ms) to a very low value (∼ 10 -11 mbar). Yet, the remaining sparse vapor can still uoresce. We show the pro le and total signal recorded without trapped atoms on gure 18, for a various duration af er the UV LEDs are turned o f. The parasitic signal decreases on a much longer timescale of ∼ 50 s. The o fset corresponds to the light scattered on the science chamber. The total number of stray light photons (scattered and background uorescence) amounts for the signal of roughly a thousand atoms. Fortunately, the contribution to the mean signal can be removed very e ciently with an algorithm know as "Best Reference Picture" (BRP, also called "eigenface method") [START_REF] Ockeloen | Detection of small atom numbers through image processing[END_REF]. From a set of empty reference images, the algorithm computes the linear combination closest to the atomic image in a region of comparison (ROC, see g. [START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]. The distance between the two images is taken Table 3.1: Mean and standard devation of the number of photons on empty images, af er t mol = 5 ms of molasses, with and without noise removal analysis (BRP). The last column gives the straight light shot noise (it is the square root of the signal given in the rst column). We see the BRP reduces the noise almost to that level.

as the sum over all the ROC pixels of the intensity di ference square (using this distance the BRP can be computed very e ciently).

The working principle of the algorithm assumes that the background signal in the region of interest (ROI) where the atomic signal is located, is correlated to the background signal in the ROC. This is true for instance in the case of intensity uctuation of the MOT/repumper light. For the best use of the BRP it is therefore important to make sure that the set of reference and atomic images have the same background. In particular, the reference images have to be taken with the same delay af er extinction of the UV light, to have the same amount of background gas uorescence. The shot noise of the stray light has no spatial correlations. This noise cannot be reduced through image processing, which only reduces the o fset and the classical intensity uctuation. We report on the performance of the BRP algorithm in Table 3. c) It is as small as possible given a) in order to minimize the noise (stray light and electronic).

We start by taking a large square as the initial ROI A m . We verify that the choice of A m satis es a) by making sure that the integrated signal increases linearly over time. To check that b) holds, we produce a cloud polarized in m and measure the evolution of the signal in A m . At some point it starts increasing, indicating the "leak" of some m atoms from A m into A m . This sets the maximal duration for the molasses given the ROIs A m . To ful ll c), we construct optimized ROIs, A m in the following way. We repeat several times a typical experiment, and compute the average image. In each raw ROI A m , we sort the pixels by decreasing signal (see gure 20). A m is the reunion of the brightest pixels that contain 99% of the signal. In gure 21 we verify the requirements listed above with a cloud polarized in m = 0. We mentioned that we have used optimal ROIs of di ferent sizes (170 and 200 pixels) described in Chapter 7, resulting into slightly di ferent imaging noise. A m=0 is optimized for t mol = 5 ms, we clearly see that it is too small for t mol above ∼ 10 ms. The inset shows the integrated signal in A m=+1 . For t mol 10 ms, we start to see a "leakage" of the m = 0 atoms in A m=+1 .

Performance of the atom counting

Fluorescence Signal Let us consider a cloud with N m atoms in the Zeeman component m. Let φ m be the average photon ux received per atom, and φ m,bg the average ux of stray light photons received in A m . The mean signal is then

S m = N m φ m t mol + φ m,bg t mol . (3.24) 
The BRP algorithm described in the previous Section 3.2.4 allows us to subtract the background contribution almost perfectly.

Let S BRP m be the number of counts in A m on a given shot af er processing. On average, S BRP m

= N m φ m t mol . For a given φ m , we obtain an unbiased estimate of the atom number

N m = S BRP m φ m t mol . (3.25)
Calibration of the absorption imaging system relied on the measurement of the size of the BEC. Indeed, because of the repulsive interaction, the latter is related to the atom number. This method is detailed in previous theses [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF][START_REF] Invernizzi | Phase separation and spin domains in quasi-1D spinor condensates[END_REF][START_REF] Frapolli | Stepwise Bose-Einstein condensation in a spinor gas[END_REF]. However, we obtain in this thesis more accurate results using a method that does not rely on absorption imaging. The idea is to look at the statistics of a coherent spin state, known to be Poissonian. It is analogous to the method brie y described in sec. 3.2.2 for the calibration of the camera quantum e ciency. We start from a cloud in the state |N : e z = |0 ⊗N , i.e. with all atoms in m = 0. We use a resonant RF eld to rotate this state by a variable angle θ around the y-axis, thus preparing the state

|N : Ω = cos θ|0 + sin θ 1 √ 2 (| -1 -| + 1 ) ⊗N . (3.26) 
For a cloud in this state, the Zeeman populations are

N 0 (θ) = cos 2 θN , N ±1 = 1 2 sin 2 θN , (3.27) 
and the variance of This gure is roughly twice as large as the measured ux. This di ference could be expected. Indeed, the multi-level structure of the atoms tend to reduce the scattering cross-section of the atoms. The same e fect is observed in absorption imaging (see e.g. [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF][START_REF] Frapolli | Stepwise Bose-Einstein condensation in a spinor gas[END_REF]), by a comparable amount. A more accurate treatment would require a precise knowledge of the polarization of the light at the location of the atoms. The reduction of the NA by the optical lter, the divergence of the beam, and losses over the optical path also contribute to the reduction.

S z = N +1 -N -1 is ∆S 2 z (θ) = N +1 + N -1 . ( 3 
φ th = η NA 2 4 Γ 2 I Isat 1 + 4 δ 2 Γ 2 + I Isat . ( 3 
Total Noise We show in Figure 23 the mean signal and variance on empty images. It can be expressed as

∆S 2 empty,m = φ m,bg t mol + αt 2 mol + ∆N 2 R . (3.31)
The rst term is the stray light shot noise contribution. The second term is due to shot-to-shot intensity uctuations. The last term is the read out noise, measured on "dark images" and given by Eq. (3.19). The shot-noise term scales linearly with t because it has no time correlation. Similarly, it scales linearly with the size of the ROI because it has no spatial correlations either. For this reason, it cannot be canceled by image analysis. The shot-to-shot intensity uctuations are almost perfectly correlated in space and time (on the time scale of the molasses) leading to a quadratic scaling. Fortunately, they are strongly suppressed by the BRP algorithm. We report on Figure 23 the parameters φ m,bg , α and ∆N R of Eq (3.31) extracted from a t of the ∆S 2 empty,m (t mol ). The contribution of the intensity uctuations dominates over the shot-noise for t mol > 15 ms. For t mol = 5 ms, the shot noise amounts for ∼ 85 % of the total noise on empty images. From now on, we will neglect the other contributions.

For an image with atoms, there are two additional sources of noise, atom losses in the molasses (see 3.2.3) and uorescence shot noise. The later is equal to the stray light shot noise when N m φ m = φ m,bg , that is for N m ∼ 10 3 . In the experiments where the atom number resolution was crucial, we typically worked with N m ranging from a few tens to a few hundreds of atoms so that we can neglect the uorescence shot noise. The error on the atom number estimate is

∆N m = φ m,bg φ 2 m t mol + ∆N m,loss . (3.32) 0 5 10 15 20 t mol [ms] 0 2 4 6 ∆S 2 0 [photon] ×10 6 m ∆N 2 R [photon] φ m,bg [photon/ms] α[photon/ms 2 ] 0 7.5 × 10 3 9.3 × 10 4 5.8 × 10 3 +1
5.9 × 10 3 8.8 × 10 4 6.1 × 10 3 -1

6.2 × 10 3 7.9 × 10 4 5.4 × 10 3

Figure 23: Fluctuations of the number of counts (in photon unit) on an empty image, in the ROI A 0 , before BRP subtraction (green pentagons) and af er (red square). The lines are quadratic ts, the parameters are given in the table below for the processed images. The blue circles show the mean signal S 0 , in photon units (i.e. the shot noise level).

The contribution of the rst term is minimized for t mol = 10 ms (the longest we can a ford to keep the clouds well separated) and amounts in that case to 1.2 atoms. However, a time dependence is hidden in ∆N m,loss , which increases with time. This yields an optimal molasses duration t mol < 10 ms. As mentioned before (sec. 3.2.3), the amount of losses is typically very small and blurred out by atom number uctuations of the initial state in a direct measurement. At the end of the day, we set-up uorescence imaging in order to measure sub-shot noise uctuations of the spin components of a squeezed state. Such a state, namely a twomode squeezed vacuum (TMSV) is used for the nal optimization and calibration of the experimental parameters (t mol and a ne tuning of the ux φ m ).

Fine tuning of the photon ux using squeezed states We will detail in Chapter 5 how we produced and characterized a TMSV state. For the present purpose of imaging calibration, we are only interested in one of its properties: the numbers of atoms in the m = +1 and m = -1 state are equal. Therefore Ŝz = 0 and ∆ Ŝz = 0. In fact, to reveal the physics discussed in the Chapter 5 to 7 a measurement of S z (possibly af er a spin rotation) with accuracy close to one atom is required, while the knowledge of the absolute population is not as necessary. We assume a small error on the photon ux φ meas m calibrated following the method described above. Let the real photon ux be φ

real m = (1 + m )φ meas m
, where m 1. To rst order in m , an estimator of the magnetization is

S z = S +1 φ meas +1 - S -1 φ meas -1 , (3.33) 
S z = S +1 φ real +1 - S +1 φ real -1 1 + +1 + -1 2 + S +1 φ real +1 + S +1 φ real -1 +1 --1 2 . (3.34)
For a perfect TMSV state, the mean and variance of the magnetization estimators are

S z = N+1 + N-1 +1 --1 2 , (3.35) ∆S 2 z = ∆( N+1 + N-1 ) 2 +1 --1 2 2 + ∆S 2 z,imag. , (3.36) 
When +1 = -1 , the mean vanishes and variance is minimal (bounded by the imaging noise). This enables a ne tuning of the relative ux between ±1, but not of the uxes absolute value (we would need to determine +1 + -1 as well). However, this is enough for the physics explored in the following.

In practice, we set -1 = 0 and scan +1 . The results are reported on gure 24. The minimum of ∆S z and the zero of S z almost coincide, which is a strong indication for a small miscalibration. It is corrected by setting +1 0.02. We can expect the same level of error on the total atom number. This has no impact on the results presented in the next chapters. 3.2: Signal and noise of the uorescence imaging scheme.

Optimization of the molasses duration Finally, we optimize the duration of the molasses using a TMSV. We simply measure ∆S z for di ferent molasses duration. The results are reported in gure 25. The noise is minimal at t mol = 5 ms. We attribute the increase past this time to atom losses in the molasses, as discussed in Sec. 3.2.3. The black line is the shot noise level. The deviation for t mol > 5 ms is interpreted as atom losses.

Summary We report in Table 3.2 the experimental values of the signal and noise for t mol = 5 ms. For the experiment discussed in the last Chapter, we were able to reduce the noise to slightly lower values, partly due to smaller ROIs and better alignment of the molasses beams.

Possible improvements

Our implementation of Stern-Gerlach uorescence imaging has, to our knowledge, the best counting resolution for mesoscopic spinor BECs (let aside gases in optical lattices). We will see in the next chapters that it allows us to observe and characterize nonclassical state of a few hundred atoms. For many experiments, the noise level of 1.6 atoms remains a limiting factor. We discuss here possible improvements on the setup that could allow one to further improve the counting resolution.

First, one could try to increase the signal. It seems di cult to extend the duration of the molasses, because of the losses. The photon ux could be increased using a microscope objective with larger NA, but in our experiment it would have required signi cant changes of the setup, and it would have come with an increase of stray light. In fact, the most signi cant and easiest improvement could be obtained by reducing the amount of stray light. It could bring the single atom signal-to-noise ratio above one. Indeed, with the current signal, the electronic noise amounts to 0.2 atoms and the uorescence shot noise of a hundred atoms amounts to 0.4 atoms.

A simple way to reduce the noise, consists in reducing the integration region (the ROI). In our case, the distortion of the residual magnetic eld gradient is responsible for expansion in the molasses faster than what one could hope. One way to cancel this e fect would be to use linearly polarized light. The di culty for that, comes from the fact that in our scheme, we use the same light as for the MOT. One could use liquid crystal retarders to change the polarization of each beam af er the MOT and before the imaging molasses. Stray light could also be decreased by using smaller beams, centered on the atoms af er the TOF. In order not to compromise the MOT, one could use motorized irises, that would be partially closed af er the MOT and before the imaging. Alternatively, we could also use another set of beams, independent from the MOT ones. Chapter 4 Spin-mixing dynamics and relaxation of a driven spinor Bose-Einstein condensate

The present and following two chapters are dedicated to the physics of spinor Bose-Einstein condensates brought out-of-equilibrium. We present a series of experiments performed in a strongly con ning trap, such that to a good approximation, a single spatial mode is common to the three Zeeman sublevels and the dynamics occur within the spin degree of freedom only. The spin state of an atom can change through collisions, leading to a so-called spin-mixing dynamics. Collisions between atoms in a thermal gas usually result in a rapid thermalization of an out-of-equilibrium system. On the contrary, in ultra-cold gases, collisions are a coherent process, very di ferent behaviors are expected and have been observed [12, 58-63, 65, 102, 103].

In the experiments presented in this Chapter we realize an out-of-equilibrium BEC by preparing the spin-1 atoms in a superposition of the three spin states. Coherent collisions result in oscillations of the spin populations. This dynamic can be seen as an internal version of the Josephson e fect. In our work, we build on this analogy and use a parametric excitation to reproduce the "inverse AC-Josephson e fect", where an oscillating voltage applied on a Josephson junction leads to a steady current. We observed resonances when the driving frequency is near the single-particle energy splitting, given by the quadratic Zeeman shif . Finite size and non-linearities arising from the interactions distinguish our system from real Josephson junctions.

Af er a longer evolution time, we observe the relaxation of the system, presumably due to the coupling between the BEC and the thermal cloud. Interestingly, near resonance, we observe the existence of high energy stationary states, stabilized by the drive. Moreover, we found a frequency window where on the contrary, the low-energy states are destabilized. The combination of these two e fects results in a hysteretic behavior. A microscopic modeling of the relaxation process is very challenging, and a common, simpler approach to the problem relies on the introduction of phenomenological dissipative terms in the equations of evolution. Following this approach, the exploration of the driven dynamics allows us to discriminate between di ferent dissipative terms.

This work has been published in [START_REF] Evrard | Relaxation and hysteresis near Shapiro resonances in a driven spinor condensate[END_REF] and this article constitutes the rest of the present chapter, except for the outlook 4.7.

Beginning of the article [START_REF] Evrard | Relaxation and hysteresis near Shapiro resonances in a driven spinor condensate[END_REF] 4

.1 Introduction

The Josephson e fect is the hallmark of macroscopic quantum phenomena in quantum uids, from superconductors [START_REF] Josephson | Possible new e fects in superconductive tunnelling[END_REF][START_REF] Shapiro | Josephson currents in superconducting tunneling: The e fect of microwaves and other observations[END_REF][START_REF] Barone | Physics and Applications of the Josephson E ect[END_REF][START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF] to super uid Helium [START_REF] Pereverzev | Quantum oscillations between two weakly coupled reservoirs of super uid 3He[END_REF][START_REF] Avenel | Josephson e fect and a π-state in super uid 3He[END_REF][START_REF] Simmonds | Observation of the super uid Shapiro e fect in a 3 He weak link[END_REF][START_REF] Sukhatme | Observation of the ideal Josephson e fect in super uid 4 He[END_REF], polariton systems [START_REF] Sarchi | Coherent dynamics and parametric instabilities of microcavity polaritons in double-well systems[END_REF][START_REF] Shelykh | Josephson e fects in condensates of excitons and exciton polaritons[END_REF][START_REF] Abbarchi | Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons[END_REF] and ultracold atoms in double-well potentials [START_REF] Albiez | Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction[END_REF][START_REF] Levy | The a.c. and d.c. Josephson e fects in a Bose-Einstein condensate[END_REF][START_REF] Leblanc | Dynamics of a tunable super uid junction[END_REF][START_REF] Ryu | Experimental realization of Josephson junctions for an atom SQUID[END_REF][START_REF] Valtolina | Josephson e fect in Fermionic super uids across the BEC-BCS crossover[END_REF][START_REF] Pigneur | Relaxation to a phase-locked equilibrium state in a one-dimensional Bosonic Josephson junction[END_REF]. In all variants, the phase of a macroscopic wave function is controlled by an external bias parameter. In Superconducting Josephson Junctions (SCJJs), a voltage bias determines the relative phase between the two superconducting order parameters on each side of the junction and the supercurrent is proportional to the sine of this phase [START_REF] Josephson | Possible new e fects in superconductive tunnelling[END_REF][START_REF] Shapiro | Josephson currents in superconducting tunneling: The e fect of microwaves and other observations[END_REF][START_REF] Barone | Physics and Applications of the Josephson E ect[END_REF]. This leads to some remarkable phenomena, such as the AC Josephson e fect where a static voltage generates an oscillating current at the characteristic Josephson frequency ω 0 . Conversely, in the "inverse AC Josephson e fect" schematized in Fig. 26a [ [START_REF] Shapiro | Josephson currents in superconducting tunneling: The e fect of microwaves and other observations[END_REF][START_REF] Barone | Physics and Applications of the Josephson E ect[END_REF][START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF], an oscillating voltage V (t) quasi-resonant with ω 0 can carry a DC current across the junction.

In SCJJs, resonances occur when the drive frequency ω ful lls kω = ω 0 for integer k [START_REF] Shapiro | Josephson currents in superconducting tunneling: The e fect of microwaves and other observations[END_REF]. These resonances appear in the form of Shapiro spikes in the voltage-current characteristics of the driven junction at constant bias voltage, or steps at constant bias current [START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF]. Shapiro steps are at the core of Josephson voltage standards, which are essentially perfect frequency-voltage converters enabled by macroscopic quantum e fects [START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF]. Energy dissipation plays a crucial role in such devices [START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF]. Indeed without dissipation, the system would not relax towards the exact resonance where the macroscopic phase locks to the drive. Ultracold atoms exhibit two variants of the Josephson e fect. In the rst variant ("external Josephson e fect"), two super uids are For SCJJs (respectively, BECs), tunneling through the barrier (resp., spin-mixing interactions) generates an electric current (resp., a spin current) controlled by the relative phase across the barrier (resp., between the Zeeman components of the spin-1 wave function). An external energy bias E(t) controls the rate of change of the relative phase: the electrostatic energy E(t) = 2eV (t) for SCJJs, with V the voltage and 2e the charge of a Cooper pair, and the quadratic Zeeman energy E(t) = 2q(t) of a pair of m = ±1 atoms for spin-1 BECs. If the energy bias is modulated around a static value E 0 , a Shapiro resonance occurs when the modulation frequency ω ful lls the resonance condition k 0 ω = E 0 , with k 0 a positive integer. c: Observation of several (k 0 = 1 -8) Shapiro resonances in a spin-1 atomic condensate af er a relaxation time of 30 s. Here, n 0 is the reduced population of the m = 0 Zeeman state, and q 0 is the static QZE. The experiment was performed with a sodium Bose-Einstein condensate containing N ≈ 2 • 10 4 atoms, with a magnetization per atom m || = 0. We varied q 0 for a xed drive frequency ω/2π = 100 Hz. coupled through a weak link [START_REF] Albiez | Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction[END_REF][START_REF] Levy | The a.c. and d.c. Josephson e fects in a Bose-Einstein condensate[END_REF][START_REF] Leblanc | Dynamics of a tunable super uid junction[END_REF][START_REF] Ryu | Experimental realization of Josephson junctions for an atom SQUID[END_REF][START_REF] Valtolina | Josephson e fect in Fermionic super uids across the BEC-BCS crossover[END_REF][START_REF] Pigneur | Relaxation to a phase-locked equilibrium state in a one-dimensional Bosonic Josephson junction[END_REF], in direct analogy with the SCJJs. In the second variant ("internal Josephson e fect"), coherent dynamics can occur between internal degrees of freedom [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Leggett | Bose-Einstein condensation in atomic gases: some fundamental concepts[END_REF]. Here we focus on the speci c case of spin F = 1 atoms, with m = 0, ±1 the magnetic quantum number labeling the Zeeman components, as illustrated in Fig. 26b. An applied magnetic eld plays the role of the external bias. The Josephson-like internal dynamics is generated by coherent, spin-changing collisions of the form 2 × (m = 0) ↔ (m = +1) + (m = -1) instead of single-particle tunneling [START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF][START_REF] Zhang | Coherent spin mixing dynamics in a spin-1 atomic condensate[END_REF]. Compared to the original SCJJ, cold atom implementations of the Josephson e fect have an important asset when one tries to elucidate the microscopic mechanisms at play in the device: the typical time scales are on the order of milliseconds or longer, enabling a timeresolved study of the dynamics which is di cult to access in superconducting systems, where the microscopic time scales are in the picosecond range.

a S S I V tunneling x E 2eV (t) b collision m F = 0 m F = ±1 E 2q(t)
So far most experimental studies on atomic spinor gases were performed with only a static bias and no modulation [58-67, 102, 103]. The driven case was explored only recently, with experiments demonstrating either the freezing of the evolution by frequent "kicks" in spin space [START_REF] Hoang | Dynamic stabilization of a quantum many-body spin system[END_REF], or spin-nematic squeezing near a parametric resonance [START_REF] Hoang | Parametric excitation and squeezing in a many-body spinor condensate[END_REF]. In this article, we extend the analogy between SCJJs and atomic spinor gases to the driven regime, where Shapiro resonances occur. Using a spin-1 Bose-Einstein condensate (BEC) of sodium atoms, we observe such resonances (see Fig. 26c) and characterize them in the non-linear regime, where the phase dynamics is not solely controlled by the external static bias. We study the coherent dynamics at short times and the relaxation at long times (tens of seconds, corresponding to tens of thousands of the drive oscillation period). Near resonance, in the strongly driven regime, we nd that the driven BEC relaxes to asymptotic states that are not stable without drive (Fig. 26c). In this sense, our system constitutes a many-body version of the celebrated Kapitza pendulum [122,[START_REF] Citro | Dynamical stability of a manybody Kapitza pendulum[END_REF]. The stationary states correspond to phase-locked solutions of the Josephson equation, generalized to include dissipation and analogous to the stationary states of driven SCJJs [START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF].

In our experiments, dissipation presumably results from interactions between condensed and noncondensed atoms that lead to damping of coherent macroscopic phenomena and thermalization. Thermalization of driven quantum systems has been studied intensely in the past few years [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF][START_REF] Polkovnikov | Colloquium : Nonequilibrium dynamics of closed interacting quantum systems[END_REF][START_REF] Eisert | Quantum many-body systems out of equilibrium[END_REF]. The general expectation is that energy is absorbed from the drive, eventually heating to in nite temperatures [START_REF] Lazarides | Equilibrium states of generic quantum systems subject to periodic driving[END_REF][START_REF] Rigol | Long-time behavior of isolated periodically driven interacting lattice systems[END_REF][START_REF] Peronaci | Resonant thermalization of periodically driven strongly correlated electrons[END_REF]. However, the heating time scale τ h can become extremely long. Rigorous proofs are only available for high-frequency modulation and systems with a bounded spectrum: Refs. [START_REF] Mori | Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems[END_REF][START_REF] Abanin | E fective hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems[END_REF][START_REF] Mori | Floquet prethermalization in periodically driven classical spin systems[END_REF] have shown that τ h = e O(ω/∆) , with ∆ -1 the faster intrinsic timescale of the non-driven system and ω ∆ the modulation frequency. For times t τ h , the system may attain a pre-thermalized "Floquet-Gibbs" state corresponding to the equilibrium state of an e fective, secular Hamiltonian. In this work we use near-resonant modulation and probe a system with an a priori unbounded spectrum 1 . We observe a long-time steady state that di fers from both the in nite temperature state and a Floquet-Gibbs state associated with the secular Hamiltonian.

We introduce in this article a phenomenological model obtained by adding a suitable dissipative term to the coherent, Josephsonlike equations describing the spinor dynamics. We compare its predictions with those of a former model used in the literature to describe relaxation in atomic Josephson-like settings. These two models can be roughly classi ed as amplitude or phase damping, respectively. Their predictions are barely distinguishable from each other without driving but di fer spectacularly in the strongly driven case. More precisely, the "phase-damping model" proposed in [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF], is clearly incompatible with the experimental observations, whereas our "amplitude-damping model" agrees quantitatively with them. This suggests that our experimental results can be used as a benchmark for ab initio theories of a driven many-body system, as they constrain strongly the form of damping prevailing in experiments.

The paper is organized as follows. In Section 4.2, we review the main features of our experiment and of the theoretical description of spinor condensates. We highlight the analogies and di ferences with Josephson physics in superconducting junctions. We also discuss for later reference spin-mixing oscillations without driving, highlighting both the coherent features [START_REF] Chang | Coherent spinor dynamics in a spin-1 Bose condensate[END_REF][START_REF] Kronjäger | Magnetically tuned spin dynamics resonance[END_REF][START_REF] Black | Spinor dynamics in an antiferromagnetic spin-1 condensate[END_REF][START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF][START_REF] Klempt | Multiresonant spinor dynamics in a Bose-Einstein condensate[END_REF][START_REF] Klempt | Parametric ampli cation of vacuum uctuations in a spinor condensate[END_REF][START_REF] Kronjäger | Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals[END_REF] and the dissipative aspects [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF]. In Section 4.3, we turn to the driven system and characterize experimentally and theoretically the non-linear secular dynamics in the vicinity of the resonance. Measuring both the Zeeman population and the relative phase of the atoms, we identify two regimes, an "oscillating regime" where the atomic phase is locked to the drive, and a "rotating regime" where the atomic phase runs independently from the drive. In Section 4.4, we study the relaxation of the driven spin-1 BEC for long evolution times. In a narrow frequency window around each Shapiro resonance, we observe relaxation to a non-equilibrium steady state that has no analog in the non-driven system. We also show that the system displays hysteresis when the drive frequency is scanned accross a Shapiro resonance. Finally, we conclude and draw some perspectives of this work in Section 4.5.

Spin-mixing oscillations

This section is devoted to the theoretical modelling of a spinor Bose-Einstein condensate, as well as its experimental implementation and characterization. We rst focus on the coherent dynamics of the system in the mean-eld and single mode approximations, and we show that it can be viewed as a classical one-dimensional Hamiltonian system. Here the relevant canonically conjugate variables are n 0 and θ, where n 0 is the population of the m = 0 Zeeman state, and θ a particular combination of the phase of the three Zeeman states. We emphasize the deep analogies that exist between the equations of motion of the spinor gas and those of a driven SCJJ, with n 0 playing the role of the supercurrent and θ the role of the phase di ference across the junction. We then present our experimental setup and explain how we access these two relevant variables n 0 and θ. Finally, we describe two simple models for the relaxation of the dynamics of the spinor BEC. In particular, we show experimental results that indicate that in the non-driven case, it is not possible to discriminate between these two relaxation models.

Coherent dynamic of spinor condensates

Relevant contributions to the energy We consider spin F = 1 atoms immersed in a spatially uniform magnetic eld B = Bu, where the orientation u is taken as quantization axis. The atoms can occupy all three Zeeman states |F, m u , where m = 0, ±1 refers to the eigenvalue of f • u and where fx,y,z are the spin-1 matrices.

As for most magnetic materials, the dynamics and equilibrium properties of spinor condensates are governed by (i) the Zeeman energy ∼ µ B B in the applied magnetic eld, where µ B is the Bohr magneton, and (ii) the spin-dependent interactions. In this work, the direction of the applied magnetic eld varies in time, but only on a time scale much longer than the Larmor period h/µ B B. The single-particle spin states then follow adiabatically the changes of the direction of B(t) (see Appendix 4.6.1 for more details). For relatively low values of B, the Zeeman energy of a single atom is thus given by ĥZ = p(t) fz + q(t)

f 2 z -1 + O(B 3 ). (4.1)
In this expression, the linear Zeeman term proportional to p(t) = g F µ B B(t) (g F = -1/2 the Landé factor) is essentially the contribution of the spin of the valence electron, and the quadratic Zeeman energy (QZE) proportional to q(t) = α q B 2 (with α q ≈ h × 277 Hz/G 2 for sodium atoms) gives the rst correction due to the nuclear spin [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF].

Interactions between alkali atoms are mainly due to short-range van der Waals interactions. Magnetic dipole-dipole interactions are usually much weaker [START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF]. Neglecting the latter, the interaction potential between two atoms is invariant under spin rotations. On the other hand, the Zeeman term is invariant only by rotations around the quantization axis u, which thus constitutes the symmetry axis of the problem. For a many-atom system, this symmetry implies that the longitudinal magnetization per atom, m || = F • u /N , with F the total spin operator and N the total atom number, is a conserved quantity [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF][START_REF] Chang | Coherent spinor dynamics in a spin-1 Bose condensate[END_REF]. The linear Zeeman energy, proportional to m || , can then be eliminated without loss of generality by transforming to a frame rotating around the quantization axis u at the Larmor frequency (see Sec. 4.2.1). The Zeeman energy then reduces to the QZE alone, ĥZ = q(t)

f 2 z -1 + O(B 3 ).

Single-mode regime

We focus in this work on the so-called single-mode regime of spinor condensates [START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF][START_REF] Yi | Single-mode approximation in a spinor-1 atomic condensate[END_REF][START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF]. This regime is realized for a condensate con ned in a tight trap, such that spin excitations correspond to energies much lower than the con nement energy associated with the spatial variations of the wave function. In this situation, the lowest energy states correspond to various spin states, but to the same single-mode spatial orbital φ(r). It is convenient to use a second-quantized notation and to introduce the operator âm annihilating a boson in the single-particle state |F, m u ⊗ |φ . The spin physics is then described by an e fective low-energy spin Hamiltonian [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF],

Ĥs = U s 2N F 2 -q N0 . (4.2)
Here N is the total atom number, U s is a spin-dependent interaction energy determined by the single-mode orbital,

U s = 4π 2 N a s m Na × |φ(r)| 4 d 3 r , (4.3) 
with a s ≈ 0.13 nm the spin-dependent scattering length [START_REF] Knoop | Feshbach spectroscopy and analysis of the interaction potentials of ultracold Sodium[END_REF] and m Na the mass of a sodium atom. The QZE is proportional to q and to the operator N0 = â † 0 â0 counting the population in the Zeeman state m = 0. The procedure for calibrating U s is described in Appendix 4.6.2. Note that by construction the Hamiltonian in Eq. (4.2) is valid only at low energies. In particular, it cannot describe the noncondensed modes involving orbital degrees of freedom other than φ(r).

In the single-mode regime, almost all atoms condense at low temperature into the same single-particle state Ψ = ζ ⊗ φ(r), with ζ a complex vector independent of space. The components ζ m = √ n m e iφm , where n m is the fractional (normalized to the total atom number) population of the Zeeman state m, are not independent. Accounting for (i) an overall normalization, (ii) an irrelevant global phase, and (iii) the conservation of magnetization leaves only three independent real variables. A convenient choice for these variables are the relative population n 0 of the m = 0 state and the two relative phases

θ = φ +1 + φ -1 -2φ 0 , η = φ +1 -φ -1 . (4.4)
The rate of change θ can be interpreted as a chemical potential di ference driving the "reaction" (m = +1) + (m = -1) ↔ 2×(m = 0), with a "chemical equilibrium" reached for θ = 0 or π (see Eq. In this work, we focus on the case m || = 0, so that n +1 = n -1 . The spin energy for a condensate in the state Ψ is then

E s (n 0 , θ, t) = U s n 0 (1 -n 0 )(1 + cos θ) -q(t)n 0 . (4.5)
Note that this energy does not depend on the phase η. For a static QZE q > 0 and antiferromagnetic interactions U s > 0, it is minimal for the so-called polar state [START_REF] Ho | Spinor Bose condensates in optical traps[END_REF] with n 0 = 1 that minimizes separately the Zeeman and interaction terms in Eq. (4.5).

Spin-mixing and Josephson physics

The equations of motion for a spin-1 BEC in the single mode approximation can be derived from the Gross-Pitaevskii energy functional (see [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF] and references therein). We start with the dynamical part of the Lagrangian for the Schrödinger equation i Ψ * • Ψ and expresses it in terms of the spin variables. Subtracting the Zeeman and interaction energies (4.5), we obtain the Lagrangian for m || = 0,

L(n 0 , θ, θ, t) = 2 n 0 θ -E s (n 0 , θ, t). (4.6)
The two Euler-Lagrange equations for n 0 and θ d dt

∂L ∂ θ = ∂L ∂θ , d dt ∂L ∂ ṅ0 = ∂L ∂n 0 , (4.7) 
read in this particular case

2 ṅ0 = - ∂E s ∂θ , 2 θ = ∂E s ∂n 0 . (4.8)
The explicit form of these equations of motion is thus [START_REF] Zhang | Coherent spin mixing dynamics in a spin-1 atomic condensate[END_REF] 

ṅ0 = 2U s n 0 (1 -n 0 ) sin θ , (4.9) θ = -2q(t) + 2U s (1 -2n 0 ) (1 + cos θ). (4.10) 
For this choice of the Lagrange function, the conjugate momentum of the phase θ is

p θ ≡ ∂L ∂ θ = 2 n 0 , (4.11) 
The Hamilton formulation of the dynamics corresponds therefore to a one-dimensional system, with the classical Hamiltonian H = p θ θ -L de ned as H(p θ , θ, t) ≡ E s (n 0 = 2p θ / , θ, t). (4.12)

The corresponding Hamilton-Jacobi equations are identical to Eq. (4.8). Note that in this formulation, E s represents the total energy (kinetic plus potential) of the one-dimensional system. Eqs. (4.9,4.10) contain the two main ingredients for Josephson physics [START_REF] Leggett | Bose-Einstein condensation in atomic gases: some fundamental concepts[END_REF]. Consider rst Eq. (4.9): the "spin current" ṅ0 is generated by coherent spin-mixing interaction processes controlled by the phase θ. This is analogous to the celebrated Josephson relation I s ∝ sin φ linking the supercurrent I s in a SCJJ to the relative phase φ between the two superconductors on each side of the junction. The additional factor n 0 (1n 0 ) enforces that the population n 0 stays in the interval [0, 1] and thus simply corresponds to a slowing down of the dynamics when the BEC reaches one of the extreme points n 0 = 0 or n 0 = 1.

Consider now the second equation of motion Eq. (4.10): the external bias q(t) -analogous to the voltage drop V (t) across the junction-controls the rate of change θ of the relative phase. This is analogous to the second Josephson relation φ = 2eV with 2e the charge of a Cooper pair. Here, we also nd an additional term [the last term of Eq. (4.10)], which describes how interactions can alter the resonance and the dynamics of the phase.

To summarize, the equations of motion describing the coherent dynamics of a driven spinor condensate present a deep analogy with those of a driven SCJJ, with identical dominant contributions. There exist however di ferences between Eqs. (4.9,4.10) and the "standard" Josephson relations, which essentially re ect the fact that these gases can be viewed as closed interacting systems; therefore Josephson-like phenomena typically lead, in the present case, to population oscillations of large amplitude (comparable to the total atom number), and not to a steady current as for superconducting circuits connected to charge reservoirs.

Experimental setup and protocol

In this paper, we focus on the situation where the static bias q 0 /h ∼ 300 Hz is much larger than U s /h ∼ 30 Hz. We present in this subsection the experimental protocol from which we infer the relevant variables n 0 and θ, and we illustrate it on the static case, i.e., when q = q 0 is constant in time. In the regime q 0 U s (called Zeeman regime in [START_REF] Kronjäger | Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals[END_REF]), the QZE determines the phase evolution up to small corrections, θ(t) ≈ θ(0) -2q 0 t/ . Eq. (4.9) then predicts harmonic oscillations of n 0 at the frequency ≈ 2q 0 / , with a small amplitude ∝ U s /q 0 [58-60, 102, 103]. These oscillations constitute the analogue for spinor gases of the AC-Josephson e fect: a constant DC bias induces a periodic AC current.

CHAPTER 4. SPIN-MIXING DYNAMICS AND RELAXATION OF A DRIVEN SPINOR BOSE-EINSTEIN CONDENSATE

Condensate preparation

In order to observe experimentally the AC spin oscillations induced by a static bias q 0 , we prepare a quasi-pure condensate of spin-1 sodium atoms in a crossed optical dipole trap. The condensate contains N ≈ 10 4 atoms, with a condensed fraction 0.9. The condensate is initially polarized in the m = +1 state (except in Section 4.4.4). Our main observables are the relative populations n m of the Zeeman sublevels m = 0, ±1. We measure these populations using absorption imaging2 af er a timeof-ight in a magnetic eld gradient separating the di ferent Zeeman components ("Stern-Gerlach imaging"). The experimental setup, preparation steps and Stern-Gerlach imaging were described in detail in our previous publications [START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF][START_REF] Jacob | Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates[END_REF].

In the experiments described in the following, we initiate spin-mixing dynamics by rotating the internal state of the spinpolarized BEC. This spin rotation is the only exception to the adiabaticity condition indicated above. Experimentally, we apply a radiofrequency eld resonant at the Larmor frequency for a time t π/2 ≈ 40 µs, resulting in a rotation by an angle of π/2 around an axis orthogonal to the quantization axis u. With the Zeeman state |m = +1 as starting point, the internal state af er rotation is 1 2

(|m = +1 + |m = -1 ) + 1 √ 2 |m = 0 .
Hence the initial m = 0 population and longitudinal magnetization are respectively n 0,i = 1/2 and a m || = 0. 

Measurement of the phase θ

The spin-mixing dynamics is characterized by oscillations of both the population n 0 and the phase θ. The Stern-Gerlach imaging procedure mentioned above readily provides the value of n 0 . An example is given in Fig. 27a, which shows the expected sinusoidal evolution of n 0 (t) in the non-driven case. We use the method introduced in [START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF] to measure the phase θ. This method relies on the fact that the orientation of the transverse magnetization per atom m ⊥ (controlled by the phase η, see Section 4.2.1) varies randomly for each realization of the experiment. Indeed, the spin energy E s depends only on the magnitude of m ⊥ but not on its orientation. Af er averaging over many realizations, the distribution of m ⊥ has a zero mean but a non-zero variance,

m 2 ⊥ = 2n 0 (1 -n 0 )(1 + cos θ), (4.13) 
that depends explicitely on cos θ. Here • denotes a statistical average over the realizations.

In practice, we apply a radio-frequency pulse to induce a spin rotation of π/2 around the y axis and measure the magnetization m || af er rotation. We repeat the experiment typically N mes = 10 -20 times and calculate the variance m 2 || of the experimental results. Using m 2 || = m 2 ⊥ /2 + O(1/N mes ), we infer the value of cos θ. In order to determine unambiguously the phase θ itself, we assume that θ wraps monotonically around the unit circle to obtain the illustrative result shown in Fig. 27b.

Relaxation of spin-mixing oscillations Experimental observation of a dissipative behavior

In the non-driven case, we observe experimentally that for long evolution times, the spin-mixing oscillations are damped and the population n 0 (t) eventually relaxes to the expected equilibrium value n 0 ≈ 1. An exemple of this dissipative behavior is shown in Fig. 27c. The characteristic time scale is a few seconds, to be contrasted with the millisecond time scale of the coherent oscillations shown in Fig. 27a. This relaxation, rst observed in [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF], corresponds to a loss of ener of the spinor BEC. Eqs. (4.9,4.10) describe a Hamiltonian dynamics where the energy E s (n 0 , θ) is a constant of motion [START_REF] Zhang | Coherent spin mixing dynamics in a spin-1 atomic condensate[END_REF]. As a result, a point or an orbit of the classical phase space (n 0 , θ) cannot be attractive, and relaxation cannot occur within this framework. However, experimental systems are never perfectly isolated, and their coupling to (many) other degrees of freedom playing the role of an energy reservoir enables energy dissipation and thermalization. In experiments with ultracold atoms, noncondensed particles forming a bath of collective excitations are inevitably present at non-zero temperature and constitute a primary candidate to explain relaxation. We expect that the interaction of the BEC with this bath acts to restore thermodynamic equilibrium, i.e. a BEC with all atoms in m = 0 for q 0 > 0, with a small decrease of the condensed fraction f c . This is indeed what we observe in Fig. 27c, with a typical relaxation time (∼ 1 s) that depends on q 0 [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF].

Phenomenological modelling of the dissipation

An ab initio theoretical description of the thermalization dynamics in a spinor BEC would require to go beyond the Bogoliubov [START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF][START_REF] Ueda | Many-body theory of dilute Bose-Einstein condensates with internal degrees of freedom[END_REF][START_REF] Uchino | Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic zeeman e fect[END_REF] or classical eld [START_REF] Polkovnikov | Colloquium : Nonequilibrium dynamics of closed interacting quantum systems[END_REF] descriptions that are only applicable at short times. In this work, we study relaxation over several seconds, i.e. several hundred/thousand times the intrinsic time scales h/U s ∼ 30 ms and h/2q 0 ∼ 1 ms set by interactions and QZE, respectively. To the best of our knowledge, no general framework is available to describe strongly out-of-equilibrium dynamics for single-component gases, let alone spin-1 systems.

Therefore, in order to describe the experimental observations and gain some insight on the dynamics, we take in this work a phenomenological approach. Following [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF][START_REF] Levy | The a.c. and d.c. Josephson e fects in a Bose-Einstein condensate[END_REF][START_REF] Pigneur | Relaxation to a phase-locked equilibrium state in a one-dimensional Bosonic Josephson junction[END_REF][START_REF] Kohler | Chemical potential standard for atomic Bose-Einstein condensates[END_REF], we add "by hand" a dissipative term to the coherent spin-mixing equations of motions Eqs. (4.9,4.10):

ṅ0 = ṅ0 | coh + ṅ0 | diss , (4.14) 
θ = θ coh + θ diss . (4.15)
The rst dissipative model (DM 1) that we consider was originally proposed in Ref. [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF],

DM 1 : ṅ0 | diss = 0, θ0 diss = β 1 ṅ0 . (4.16) 
Liu et al. argue that the dissipative term in Eq. (4.16) is the only term linear in n 0 , θ, ṅ0 or θ that can explain their measurements [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF]. Anticipating on the results in the driven case that will be presented later, we have found that the dissipative model 1 can reproduce our experimental results without driving, but fails to predict the observed steady state in the strongly driven case. This motivated us to explore other dissipative models, not necessarily linear in n 0 , θ or their derivatives. We propose in this article the alternative

DM 2 : ṅ0 | diss = -β 2 n 0 (1 -n 0 ) θ, θ0 diss = 0. (4.17)
In the context of cold atoms, similar dissipative terms have been proposed [START_REF] Levy | The a.c. and d.c. Josephson e fects in a Bose-Einstein condensate[END_REF][START_REF] Pigneur | Relaxation to a phase-locked equilibrium state in a one-dimensional Bosonic Josephson junction[END_REF][START_REF] Kohler | Chemical potential standard for atomic Bose-Einstein condensates[END_REF], mainly in analogy with those describing Ohmic dissipation in SCJJs. The DM 1 corresponds to a resistor connected in series with the junction, and the DM 2 to a resistor in parallel with the junction ("resistively shunted junction model"). The dimensionless phenomenological constants β 1 , β 2 are real numbers, which are chosen positive to ensure that the energy E s always decreases. Indeed, the dissipated power reads for a time-independent QZE

P diss = dE s dt = ṅ0 | diss ∂E s ∂n 0 + θ diss ∂E s ∂θ (4.18)
which simpli es into P

diss = -2 β 1 ṅ2 0 for DM 1 and P

(2

) diss = -2 β 2 n 0 (1 -n 0 ) θ2 for DM 2.
In both cases we nd energy dissipation provided that the phenomenological damping coe cients β 1/2 ≥ 0.

Relaxation in the non-driven case

For long times, the population n 0 displays oscillations on top of a slowly varying envelope n 0 , where the double bar denotes a coarse-grained average over a time long compared to the period of the spin-mixing oscillation h/(2q 0 ), but short compared to the relaxation time τ 1/2 . In Appendix 4.6.3), we show that the solution of the DM 1 is well approximated at long time by

DM 1 : n 0 ≈ 1 - τ 1 t , (4.19) 
with

τ 1 = q 0 /(β 1 U 2 s ). The DM 2 predicts DM 2 : n 0 = n 0,i n 0,i + (1 -n 0,i )e -t/τ2 , (4.20) 
CHAPTER 4. SPIN-MIXING DYNAMICS AND RELAXATION OF A DRIVEN SPINOR BOSE-EINSTEIN CONDENSATE with τ 2 = 2 /(β 2 q 0 ). Here n 0,i is the initial value of n 0 .

We have compared the predictions of the two models to the experimental results shown in Fig. 27c. For this comparison, we account for a small but non-zero thermal fraction. The measured population in m = 0 can be written

n 0 = f c n 0,c + n 0 , (4.21) 
with n 0,c = N 0,c /N c (resp. n 0 ) the fraction of condensed (resp. noncondensed) atoms in m = 0. Here N m,c denotes the population of condensed atoms in the m state, N c = m N m,c the number of condensed atoms, f c = N c /N the condensed fraction and N the total atom number. We assume for simplicity that thermal atoms are distributed equally among all Zeeman sublevels, so that n 0 = (1f c )/3. We use Eq. (4.21) in combination with the dissipative models 1 or 2 for n 0,c to t the experimental data in Fig. 27c, using f c and the relaxation times τ 1/2 as free parameters. We nd comparable best-t parameters for both models : f c ≈ 0.85(2), τ 1 ≈ 0.18(2) s for DM 1, f c ≈ 0.80(2), τ 2 ≈ 0.86 [START_REF] Gross | Nonlinear atom interferometer surpasses classical precision limit[END_REF] s for DM 2. The corresponding phenomenological damping parameters are β 1 ≈ 0.20(2) and β 2 ≈ 1.30(15) × 10 -3 . The two dissipative models t well our measurements in Fig. 27c, with a small di ference that appears at long times, but which is not statistically signi cant. We conclude that discriminating between the two models is di cult in the non-driven case. We will see later in the article that this is no longer the case in the driven case, where the di ferences are spectacular at long times.

Shapiro Resonances

We now turn to the main topic of this paper, where a sinusoidal modulation of the QZE with frequency ω drives the spinor dynamics. We are interested in the case where ω and q 0 are comparable, allowing for a resonant behavior of the system (Sec. 4.3.1). We focus in this section on the short-time dynamics, where the e fect of dissipation is negligible. In Sec. 4.3.2, we model the evolution close to a resonance by secular equations of motion, which depend on two time-averaged variables n 0 and φ. The quantity n 0 is the average of the population n 0 over the time period 2π/ω. The de nition of the secular phase φ is more involved and will be made explicit in Sec. 4.3.2. We then explain how to access experimentally the value of φ (Sec. 4.3.3). We nally show that our experimental results in this short-time regime are in excellent agreement with the prediction of the secular equations (Sec. 4.3.4).

Observation of Shapiro resonances

In all what follows we use a sinusoidal modulation of the QZE around a bias value q 0 according to q(t) = q 0 + ∆q sin(ωt + ϕ mod ) Θ(t),

with Θ(t) the Heaviside step function. Experimentally, the x component B x of the magnetic eld is static, and the y component

B y = ∆B cos[(ωt + ϕ mod )/2 + π/4] Θ(t)
is modulated in a sinusoidal fashion. The QZE is given by Eq. (4.22) with q 0 = α q (B 2 x + ∆B 2 /2) and ∆q = α q ∆B 2 /2. In a perturbative picture, spin-mixing resonances occur when a pair of atoms in m = 0 can be resonantly transferred to a pair m = ±1 by absorbing an integer number k of modulation quanta, i.e. when k ω = 2q 0 . We de ne the detuning by

δ = 2q 0 -k 0 ω, (4.23) 
with k 0 the closest integer to 2q 0 /( ω).

The lef column of Fig. 28 shows how the population n 0 evolves in time for several values of the modulation frequency ω close to the rst resonance with k 0 = 1, such that δ q 0 . The dynamics of n 0 can be described as the combination of (i) a fast (frequency ω 2q 0 / ) micromotion with a small amplitude, visible in the inset of Fig. 28a1, and (ii) a slow oscillation with a large amplitude. The period of the slow oscillation is a hundred milliseconds or more, much longer than the intrinsic timescales set by the drive period, the QZE or the spin-dependent interactions. This slow dynamics is the result of the coherent build-up over hundreds of periods of the micromotion. The slow "Shapiro oscillations" observed near resonance can be viewed as the counterpart for our closed system of the DC current observed near Shapiro resonances in modulated SCJJs.

Fig. 29 shows the generic behavior observed for longer times, where we observe (i) a damping of the contrast of the oscillations on a time scale of several hundred milliseconds, and (ii) a drif of the baseline value of n 0 towards the equilibrium value without driving, n 0 = 1. We attribute the damping (i) mainly to uctuations of the experimental parameters, leading to shot-to-shot uctuations of the period and amplitude of the oscillations and therefore to their dephasing af er averaging over several realizations of the experiment. We believe that the main contribution comes from small (∆N/N ∼ 8 ) uctuations of the atom number. These uctuations induce uctuations ∆U s /U s ∼ 6 of the N -dependent interaction strength U s [see Appendix 4.6.2 for the calibration of the dependence U s (N )].

We show in Fig. 28 and Fig. 29 the theoretical results obtained by solving numerically Eqs.(4.9,4.10) with the dissipative term (4.17) for di ferent interaction strengths U s , and averaging over a Gaussian distribution of U s with mean and variance deduced and phase φ (a-c2) versus time. The parameters in a1-2,b1-2 correspond to the oscillating regime of the pendulum model, while c1-2 correspond to the clockwise-rotating regime. The lines show the numerical solutions of the dissipative model 2 [Eq. (4.17)] with β 2 = 1.3 • 10 -3 . The calculated curves are further averaged to account for experimental uctuations of U s (see text). The last panel d shows a phase-space portrait of the trajectories in the (φ, φ) plane, with φ calculated from Eq.(4.25). The dashed blue, solid purple and dashed-dotted green line correspond to a1-2, b1-2 and c1-2, respectively. The shaded area covers the phase-space region explored in the oscillating regime of the pendulum model. In the main panels, the observation times are integer multiple of the modulation period T = 2π/ω. The data are thus a stroboscopic observation of the secular dynamics, free of the additional micromotion. The two insets in a1 (with a smaller time sampling) show the micromotion around the main secular oscillation. The static bias is q 0 /h = 276 Hz, the modulation amplitude ∆q/h = 43.6 Hz (κ 0.08), and U s /h ≈ 30 Hz. The detuning is δ/2π = -5.7 Hz (a1-2,b1-2) and 18 Hz (c1-2). For curves b1-2, we varied the initial phase (see text) to be in the harmonic regime: θ(0) = -0.5(2) rad for a1-2,c1-2 and 1.45(2) rad for b1-2. from the measured atom number statistics. We checked that for relatively short times (say, < 200 ms), the dissipation plays a negligible role and the observed damping of the oscillations is essentially due to the uctuations of U s .

In the rest of this Section, we focus on the initial oscillations shown in Fig. 28, neglecting the role of dissipation, and postpone the discussion of relaxation at long times to Sec. 4.4.

Secular equations for near-resonant driving

For our experimental situation with q 0 U s and for a modulation frequency close to the k 0 Shapiro resonance (|δ| q 0 ), we derive in Appendix 4.6.4 e fective equations of motion for the slowly evolving components by averaging over the fast micromotion. These secular equations of motion read

ṅ0 = 2κU s n 0 (1 -n 0 ) sin φ, (4.24) 
φ = -δ + 2U s (1 -2n 0 )(1 + κ cos φ). (4.25) 
Here, n 0 is the time average of n 0 over one modulation period T = 2π/ω, and the secular phase φ is related to the time-average θ of the phase by

φ = θ + k 0 (ωt + ϕ mod + π/2). (4.26) 
The interaction terms driving the spin dynamics are renormalized by a factor

κ = J k0 2∆q ω , (4.27) 
with J k the kth-order Bessel function of the rst kind. Note that our modulation scheme is limited to ∆q < q 0 . Together with the secular approximation, this implies that 0 < κ < 1.

The secular equations Eqs. (4.24,4.25) have a structure similar to the original spin-mixing equations Eqs. (4.9,4.10) with the replacements q →δ/2 and e iθ → κe iφ . Accordingly, Eqs. (4.24,4.25) derive from the classical Hamiltonian of the secular motion with the canonical momentum p φ = n 0 /2,

H sec (p φ , φ) = E sec (n 0 = 2p φ / , φ) (4.28) 
and

E sec (n 0 , φ) = - δ 2 n 0 + U s n 0 (1 -n 0 )(1 + κ cos φ). (4.29)
The di ferent dynamical regimes are best understood in the limit of small driving, κ 1. We show in Appendix 4.6.4 that the secular equations Eqs. (4.24,4.25) reduce for κ → 0 to the ones describing the motion of a one-dimensional rigid pendulum of natural frequency Ω = √ 2κU s / , with the secular phase φ representing the angle of the pendulum. The pendulum admits two dynamical regimes, either oscillations around the stable equilibrium point φ = 0, or full-swing rotations with φ running from 0 to 2π. The period of the oscillations diverges at the transition between the two regimes.

The same qualitative conclusions hold outside of the weak driving limit. A numerical solution of the equations of motion shows that the positions of the resonance and of the separatrix shif to slightly higher frequencies with increasing driving strength. From Eq. (4.26), we note that the regime of small oscillations (φ ≈ 0) corresponds to an atomic phase θ ≈ -k 0 (ωt+ϕ mod +π/2) locked to the drive. Conversely, the regime of full-swing rotations (φ ≈ -δt) corresponds to a free-running atomic phase θ ≈ -2q 0 t/ , barely a fected by the drive.

Measurement of the secular phase φ

In order to observe the two dynamical regimes, we now concentrate on the evolution of the phase φ, since the population n 0 oscillates in both cases.

We measure the secular phase using a variant of the method of Section 4.2.2 that allows us to lif the phase ambiguity. We measure cos θ as before for stroboscopic times t p = pT and a quarter of period later t p + T /4, with p a positive integer and T = 2π/ω the period of the modulation. Assuming φ(t p ) ≈ φ(t p + T /4) (in accordance with the secular approximation), we obtain, af er converting θ to φ using the de nition of the latter in Eq. (4.26), a simultaneous measurement of sin φ(t p ) and cos φ(t p ) at stroboscopic times t p .

Obtaining con dence intervals on the measurement of φ is far from obvious. The statistical spread of sin φ(t p ) and cos φ(t p ) can be quanti ed using the quantity S = cos φ 2 + sin φ 2 , equal to 1 if φ is perfectly determined and vanishing for φ completely random. We nd that S decreases with a characteristic time scale ∼ 200 ms. Physically, we attribute this decay essentially to the uctuations of U s coming from atom number uctuations translating into a phase spread increasing with time. Mathematically, the probability distribution P(φ) of φ that derives from our expected distribution of U s has a complicated shape due to the non-linearities of the spin-mixing equations. We did not pursue a sophisticated statistical analysis accounting for the peculiarities of P(φ), and use instead the quantity S introduced above to estimate when the measurement of the phase is reliable. We arbitrarily choose the criterion S ≥ 1/2 corresponding to measurements times t ≤ 200 ms.

In an ideal experiment strictly described by Eq. (4.22), the modulation would be turned on instantaneously at t = 0. The initial phase θ(0) = 0 would then be determined by the preparation of the initial state. In practice, a small delay of ∆t = 100 µs is present between the preparation and the beginning of the modulation, and the modulation settles to the form in Eq. (4.22) af er 1 -2 ms, due to the transient response of the coils used to generate the modulation B y . During this short transient ( /U s ), the populations barely evolve but the phase changes because of the QZE. Both e fects can be incorporated as an initial phase shif

θ 0 = - 2 × q 0 ∆t + +∞ 0 [q(t) -q(t)]dt . (4.30)
Here q denotes the instantaneous QZE actually experienced by the atoms and q(t) the ideal step-like pro le. The extra phase shif is θ 0 ≈ -0.5 rad for the data in Fig. 28a1-2. We can also insert on purpose a variable delay between the preparation step and the start of the modulation to tune the initial phase θ 0 . We used this technique to record the data in Fig. 28b1-2, which are otherwise obtained for identical conditions as in Fig. 28a1-2.

We plot in Fig. 28 (right column) the results for φ for the rst resonance k 0 = 1. For small detuning, the phase oscillates around φ = 0, i.e. the dynamics of the BEC phase is phase-locked with the drive (panels a1-2,b1-2.). The excursion of the phase away from φ = 0 depends on the detuning and the initial phase, which we can tune (panels b1-2) to have φ(t = 0) 0. For a given initial phase, when δ exceeds a critical value corresponding to the transition betweeen the two dynamical regimes, phase locking no longer occurs and the BEC phase runs freely from 0 to 2π, corresponding to the "rotating pendulum"case (panels c1-2).

Period and amplitude of the secular oscillations

We extract the amplitude and period of the secular oscillations by tting a periodic function

n 0 (t) = 3 j=0 a j cos(jt/T sec + φ 0 ) , (4.31) 
to the data. We restrict the t to the rst two periods of the secular motion, with the amplitude a j ∈ R of the harmonics and the initial phase φ 0 as free parameters. Fig. 30 shows the period T sec and amplitude for the rst resonance k 0 = 1 versus detuning.

The results agree well with a numerical solution of Eqs. (4.9,4.10) (i.e., without taking dissipation into account), and with the pendulum model. Close to resonance, the measured amplitude is systematically lower than the theoretical prediction. This can be qualitatively explained by the presence of noncondensed atoms that do not participate in the coherent secular dynamics. The experiment is performed near the rst resonance k 0 = 1 ( ω ≈ 2q 0 ) with n 0,i = 0.5. The static bias is q 0 /h ≈ 277 Hz, the modulation amplitude is ∆q/h ≈ 227 Hz (κ 0.4), and the interaction strength is U s /h ≈ 26 Hz. b: Numerical solutions of the dissipative models 1 (Eq. 4.16, brown squares) and 2 (Eq. 4.17, black empty diamonds). In both panels, the horizontal blue (respectively oblique green) line corresponds to the stationary state S 1 (resp., S + ). The solid (resp. dotted) segments correspond to the stable (resp. unstable) region according to DM 2 (see Section 4.4.2).

Long-Time Relaxation

In this Section, we focus on the state reached for long evolution times, af er relaxation has taken place. We observe that af er the damping of the slow, large amplitude Shapiro oscillations, the population n0 reaches a steady state that persists for tens of seconds 3 . We characterize this steady state and show that it can di fer from the equilibrium points of either the non-driven Hamiltonian H or the secular Hamiltonian H sec . We then take explicitly into account the dissipation using the two models DM 1 and DM 2 introduced in Sec. 4.2.3. We show that DM 2 leads to predictions in good agreement with our observations, whereas DM 1 is clearly excluded. Then, we study the new xed points that can appear in the presence of this dissipation, and we discuss their stability. In particular there exist some regions of parameter space where two xed points can be simultaneously stable or metastable. This leads to the possibility of observing a hysteretic behavior, which we con rm experimentally.

Observation of a Non-Equilibrium Steady State

Fig. 31 shows a typical measurement for strong driving (κ = 0.38) near the rst resonance k 0 = 1. We monitor how the steady state value changes as a function of detuning δ. We nd that the system relaxes to n 0 ≈ 1, except in a range of negative detunings close to the resonance where the population n 0 takes values between ≈ 0.5 and 1. The steady state reached in this strongly driven situation does not correspond to the thermodynamic equilibrium point in the absence of modulation, i.e. the ground state of H de ned in Eq. (4.12) with q(t) = q 0 , obtained for n 0 = 1. It does not correspond either to the minimum of the secular Hamiltonian H sec de ned in Eq. (4.28), obtained for n 0 = 1 for δ > 0 and n 0 = 0 for δ < 0. This contrasts strongly with the non-driven case where the thermodynamic equilibrium state n 0 ≈ 1 is always observed at long times.

In the experimental results shown in Fig. 26c, we observe the same behaviour for higher resonances, up to k 0 = 8 (limited by the maximal magnetic eld we can produce). In order to record this set of data, we set ω/2π = 100 Hz and scanned simultaneously the bias value q 0 and driving strength ∆q, keeping ∆q/q 0 and therefore the secular renormalization factor κ approximately constant. Af er a wait time of 30 s, we observed that the system relaxes for all k 0 to the same stationary state as for the rst resonance. In the following, we therefore concentrate on the case k 0 = 1 as in the previous Section.

We use the same dissipative models introduced in Section 4.2.3 to explain the experimental observations. We show in Fig. 31 b the result of a direct numerical solution (with no secular approximation) of Eqs. (4.14,4.15) for the dissipative models 1 and 2. We observe that the DM 1 fails to reproduce the measured steady state populations, while the DM 2 predicts a long-time behaviour consistent with the experimental results. This contrasts with the non-driven case, where both models lead to similar predictions. In the following, we specialize to the DM 2 and explore its consequences for the long-time steady state. We now look for (possibly metastable) secular solutions of dissipative model 2 where the population n 0 is stationary. We derive generalized secular equations as in Section 4.3 starting from Eqs. (4.14,4.15,4.17) de ning the DM 2. Observing from Eq. (4.26) that θ ≈ -ω + φ, we nd

ṅ0 = n 0 (1 -n 0 ) 2κU s sin φ + β 2 ω -β 2 φ . (4.32)
The phase dynamics is still determined by Eq. (4.25). From Eq. (4.32), we identify four possible states for which ṅ0 = 0.

a The rst two states correspond to n 0 = 0, 1. In these two limiting cases, the relative phase θ (and thus φ) is physically irrelevant and can take any value. These two solutions, labeled S 0 , S 1 in the following, correspond to "limit cycles" in the language of dynamical systems [142]. The other two stationary states, labeled S ± , correspond to xed points of the dissipative equations of motion where ṅ0 = φ = 0. They correspond to the secular phases φ + = , φ -= π -, where the angle obeys sin = -β 2 ω/(2κU s ). The populations at the xed points are

-π π φ[rad] 0 1 n 0 S + S - S 1 S 0 b δ -δ + -δ -0 δ -δ + S 1 s s u S 0 u S + s u S - u
n 0,± = 1 2 1 - δ δ ± , (4.33) 
with:

δ ± = 2U s (1 ± κ cos ) . (4.34) 
Fig. 32a shows the location of the stationary solutions in a secular phase-space portrait (n 0 , φ). For each sign of the detuning δ, one of the two limit cycles S 0,1 corresponds to the minimum of the secular energy E sec . The xed point S + is always the maximum of E sec and S -is a saddle point. Dissipation must be present, but not too strong, in order to ensure the existence of an attractive xed point of the dynamics. Indeed, the xed points S ± disappear when β 2 ≥ 2κU s /( ω). If the dissipation stength β 2 is too large or the driving strength too small, the drive cannot provide enough energy to overcome the dissipation and create a metastable state. This is con rmed by other experiments that we performed with a weaker driving strength κ ∼ 0.08, where we found that the relaxation to the xed point was less robust than the one shown in Fig. 31.

For the experiments shown in Fig. 31, we nd φ + ≈ 0.04 corresponding to the weak dissipation limit, ∝ β 2 → 0 + . In this situation, the positions of the xed points are well approximated by δ ± ≈ 2U s (1 ± κ). They are therefore independent of the precise value of β 2 to rst order in the small parameter .

We study the dynamical stability of the stationary solutions in App. 4.6.6 for a phenomenological damping coe cient β 2 → 0 + . We summarize the results in Fig. 32b. The drive destabilizes S 1 in a small region of positive detunings around the resonance, while S 0 is always unstable because of the dissipation. The xed point S + is stable only for δ < 0, while S -is always unstable.

At rst glance, one may expect that energy dissipation always induces relaxation to an energy minimum. In fact, at the xed point S ± , the atomic phase locks to the drive with a small phase lag, such that the power absorbed from the drive exactly compensates the power loss due to dissipation. This phase-locking enabled by dissipation stabilizes the system in a highly excited state (App. 4.6.4), reminiscent of the dissipative phenomenon leading to Shapiro steps in SCJJs [START_REF] Kautz | Noise, chaos, and the Josephson voltage standard[END_REF]. Figure 33: Observation of hysteresis in the relative population n 0 af er a detuning ramp. We prepare a spinor BEC with n 0,i 1, and scan the detuning by changing q 0 for xed ω/2π = 277 Hz and ∆q/h = 227 Hz. In a (respectively, b), the ramp decreases (resp., increases) from δ i ≈ 2.0 U s / (resp., δ i ≈ -3.3 U s / ). The horizontal blue (resp., oblique green) line correspond to S 1 (resp., S + ). The solid (resp., dotted) segments corresponds to the stability (resp., instability) regions. The small dots show individual measurements, the squares their average, and the error bars their standard deviation.

Interpretation of experimental results

We can now interpret the experimental ndings of Fig. 31. The position of the stable xed point S + in the limit β 2 → 0 is shown in Fig. 31, and explains well the observed steady state populations for δ ∈ [-δ + , 0]. Outside this window, the system relaxes to the equilibrium state S 1 with n 0 ≈ 1. We interpret the observed "trapping" in the state S + as follows. A system prepared with n 0,i ≈ 0.5 tends to relax to the ground state S 1 of H, as observed for |δ| > δ + where there is no xed point. For δ ∈ [-δ + , 0], the derivative of the phase φ diminishes in absolute value as n 0 increases because of the dissipation, and it progressively vanishes. At this point, which corresponds to S + , ṅ0 also vanishes and the system remains trapped in this state. On the contrary, for δ ∈ [0, δ + ], S + corresponds to n 0,+ ≤ 1/2 and | φ| increases as n 0 increases. The trajectory tends to move the system away from S + . As a result, dissipation acts as in the non-driven case and the system eventually reaches S 1 . The scenario described above explains all observations but one. In Fig. 26c, for very small but negative δ near the rst resonance, the system relaxes to n 0 0.16. This observation is consistent with thermalization in the secular Hamiltonian where the lowest energy state is n 0 = 0 when δ < 0. The residual deviation with respect to n 0 = 0 observed experimentally may be due to a non-zero thermal fraction or an incomplete thermalization.

Hysteretic Behavior

According to the stability diagram of Fig. 32b, there is no single stationary solution that would be stable for all detunings δ. Furthermore, there are two stable solutions S + and S 1 in the interval [-δ -, 0]. In such a situation, one can expect some hysteretic behaviour, which we searched for using a slightly di ferent procedure than in the rest of the article.

We prepared a BEC in the state m = 0, such that n 0,i ∼ 1 (up to thermal atoms in m = ±1). We apply the modulation as before but slowly ramp the static bias q 0 over a ramp time of 3 s, and then hold the driven system at the nal q 0 value for 7 s. This amounts to a slow ramp of the detuning δ decreasing (respectively, increasing) from δ i to δ f in Fig. 33a (resp., Fig. 33b). For decreasing ramps with δ i > δ + , the system remains in S 1 in the domain δ > -δ -where S 1 is stable. Continuing the ramp further, S 1 becomes unstable and we nd that the system relaxes to S + as in the previous experiments. Conversely, for an increasing ramp starting from δ i < -δ + , the system follows S + while it is stable, i.e. for δ f ∈ [-δ + , 0] and S 1 otherwise. We therefore observe an hysteresis cycle spanning the interval δ ∈ [-δ -, 0] where both S 1 and S + are stable.

Conclusion

In conclusion, we have observed the analogue for a driven spin-1 BEC of the Shapiro resonances characteristic of the AC Josephson e fect in SCJJs. The population dynamics near each resonance corresponds to a slow and non-linear secular oscillation on top of a rapid micromotion. We have found that the driven spin-1 BEC relaxes at long times to asymptotic states phase-locked to the drive and that are not stable without it. We proposed a phenomenological model of dissipation that describes quantitatively the relaxation process and its outcome. The dynamics in the driven case allows us to discriminate between di ferent phenomenological models, in contrast to the situation without driving where these di ferent models lead to similar predictions. The microscopic origin of the dissipation remains to be investigated. While dissipation probably comes from interactions between condensed and noncondensed atoms, a quantitative description of these interactions and of the resulting thermalization process is lacking. The procedure we used in this paper led to a set of dissipative equations which are essentially generalized Gross-Pitaevskii equations. While we have found excellent agreement between the experimental results and the predictions of these equations, our procedure is purely phenomenological and whether these generalized Gross-Pitaevskii equations can be derived from rst principles or not remains an open question. A detailed microscopic study of dissipation in this setup would also be useful to understand other types of driven quantum gases where an optical lattice potential [START_REF] Eckardt | Colloquium: Atomic quantum gases in periodically driven optical lattices[END_REF] or the interaction strength [START_REF] Clark | Collective emission of matter-wave jets from driven Bose-Einstein condensates[END_REF] are modulated.

Another interesting question is related to the occurence of deterministic chaos in a spinor BEC [START_REF] Cheng | Chaotic dynamics in a periodically driven spin-1 condensate[END_REF]. Without driving, chaotic behavior can be ruled out for a spin-1 BEC on the basis of the Poincaré-Bendixson theorem [142]: the dynamics is indeed obtained from the one-dimensional Hamiltonian H, with only two variables θ and p θ ∼ n 0 . To allow for a chaotic behavior, one needs to consider higher spin BECs [START_REF] Kronjäger | Chaotic dynamics in spinor Bose-Einstein condensates[END_REF] or driven spin-1 BECs [START_REF] Cheng | Chaotic dynamics in a periodically driven spin-1 condensate[END_REF], with time playing the role of a third variable. However when the secular approximation holds, we recover an e fective time-independent one-dimensional problem with the Hamiltonian H sec (p φ ∼ n 0 , φ), which excludes again a chaotic behavior. One thus expects to nd chaos only in situations where the secular approximation breaks down. Using the non-dissipative spin-mixing equations and adapting the methods of [START_REF] Cheng | Chaotic dynamics in a periodically driven spin-1 condensate[END_REF] to our system, we have found numerically that chaos can be present in the vicinity of Shapiro resonances for strong modulation and small bias, ∆q ∼ q 0 ∼ U s . For almost all experiments reported in this paper, where q 0 U s , we did not nd any evidence of chaotic behaviour. The only exception is the situation investigated in Fig. 26c., where q 0 h × 100 Hz is only three times larger than U s . The deviation from the xed point near δ = 0 for the rst resonance could be connected to the onset of chaotic behavior, which is an interesting direction to explore in future work 4 .

Finally, a promising application of driven spinor gases is the dynamical control of the strength of spin-mixing interactions, viewed as a matter-wave equivalent of parametric ampli ers in quantum optics. Such parametric ampli ers are phase-sensitive, and are also known to generate squeezing (see [START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF][START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF][START_REF] Gross | Atomic homodyne detection of continuous-variable entangled twin-atom states[END_REF] for the spinor case). This enables interferometric measurements below the standard quantum limit [START_REF] Scherer | Twin matter waves for interferometry beyond the classical limit[END_REF][START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF][START_REF] Zou | Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms[END_REF][START_REF] Wrubel | Spinor Bose-Einstein-condensate phase-sensitive ampli er for SU(1,1) interferometry[END_REF]. A promising direction for the development of devices operating at the Heisenberglimit are the so-called SU (1, 1) interferometers [START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF][START_REF] Wrubel | Spinor Bose-Einstein-condensate phase-sensitive ampli er for SU(1,1) interferometry[END_REF], which can be viewed as Mach-Zehnder interferometers where the beam splitters are replaced by parametric ampli ers. As shown in Appendix 4.6.5, the quantum version of the secular single-mode Hamiltonian [START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF] is renormalized by driving as in the mean-eld Gross-Pitaevski framework. This implies that spin-mixing collisions can be enabled by moving close to a Shapiro resonance for a controllable duration, and then disabled by detuning the system away from resonance. Such dynamical control over the spin-mixing process could signi cantly improve the performances of matter-wave SU (1, 1) interferometers [START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF].

Supplementary materials 4.6.1 Adiabatic following

We consider a gas of spin-1 atoms in a magnetic eld B = B(t)u(t) with time-dependent amplitude B and orientation u. We take the instantaneous direction u(t) of B as quantization axis. The label m = 0, ±1 then corresponds to the instantaneous Zeeman state |m u , i.e. the eigenstate of f •u with eigenvalue m, with fx,y,z the spin-1 matrices. The atomic spins precess around u at the characteristic Larmor frequency ω L = µ B B/2. The atom internal state follows adiabatically changes of B and u if the adiabatic condition ωL ω 2 L holds at all times. Here the dot denotes a time derivative. In our experiment, this condition can also be written ωB y ω L |B|. In most of this work, the Larmor frequency is around ω L ∼ 2π × 0.7 MHz. Since B y ≤ |B|, the su cient condition ω/ω L ∼ 10 -3

1 is always ful lled.

Calibration of U s

We calibrate the interaction strength U s using the well-established behavior of spin-mixing oscillations without driving [58-60, 102, 103]. For a given total atom number N , we t the observed population oscillations with the numerical solutions of Eqs. (4.9,4.10) treating U s as a free parameter, all other parameters being kept constant. We show the tted values of U s versus N in Fig. 34. The dependence on atom number re ects the fact that our experiments are in the crossover between the ideal gas (where U s is independent of N ) and the Thomas-Fermi regime (where U s ∝ N 2/5 ). We use the heuristic function U s (N )/h = a(1 + (N/N 0 ) b ) to calibrate the dependence, with best t parameters a 20 Hz, b 3.5 and N 0 19 000. Small uctuations of N induce uctuations of U s according to δU s = ab(N/N 0 ) b δN/ N . In our experiment, we have typically N 13 000 and δN 1 000, which correspond to U s / 25 Hz and δU s / 1.5 Hz. Figure 34: Interaction strength U s measured for di ferent atom number. The black solid line is an heuristic t (see main text). The QZE is static and equal to q 0 /h ≈ 0.7 Hz U s (B x ≈ 50 mG).

Relaxation of spin oscillations without driving

The spin dynamics without driving consists of a "fast" evolution of the population and of the relative phase θ superimposed on a slowly-varying envelope n 0 . In the limit q 0 U s , the envelope of n 0 relaxes to n 0 = 1 over times long compared to the period ∼ /(2q 0 ) of spin-mixing oscillations. Averaging in a time window long compared to this period, we obtain e fective equations for n 0 that can be solved analytically. For the dissipative model 1 with the initial condition n 0 (0) = n 0,i , we nd that n 0 obeys the implicit equation, f 

(n 0 ) = f (n 0,i ) + t/τ 1 , with f (x) = 2 ln[x/(1 -x)] + (2x -1)/[x(x -1)] and τ 1 = q 0 /(β 1 U 2 s ). For t τ 1 ,

Secular dynamics Derivation of the secular equations

In this Section, we derive the secular equations Eqs. (4.24,4.25). Integrating formally Eq. (4.10), we rewrite θ = α -2p, where

p(t) = 1 t 0 q(t )dt = p - η 2 cos(ωt + ϕ mod ). (4.35) 
Here p = q0t + χ 2 and α veri es α = 2U s (1 -2n 0 )(1 + cos θ). We introduced a modulation index η = 2∆q/( ω) and an initial phase χ = η cos ϕ mod .

We now assume that the driving frequency is close to a parametric resonance, i.e. ω ∼ 2q 0 /( k 0 ) for some integer k 0 , and that q 0 U s . All physical variables feature in general a large-amplitude secular motion occurring on time scales much longer than the modulation period, plus rapidly-varying terms oscillating at harmonics of 2q 0 / that describe the micromotion. In the regime q 0 U s , the amplitude ∼ U s /q 0 of the micromotion of n 0 and α is small. Taking the time average over one period of the modulation, • = 1 T T 0 dt•, eliminates the micromotion in Eqs. (4.9,4.10), ṅ0 ≈ 2U s n 0 (1n 0 )sin θ, (4.36) α ≈ 2U s (1 -2n 0 ) 1 + cos θ .

(4.37)

We compute the time average of trigonometric functions of θ using the Jacobi-Anger expansion, e ia sin(θ) = +∞ k=-∞ J k (a)e ikθ , with J k a Bessel function of the rst kind. Neglecting the micromotion of α, we can write e iθ ≈ e iα e -2ip , with

e -2ip = +∞ k=-∞ J k (η)e i(-2q 0 +kω)t+ik(φ mod +π/2)-iχ . ( 4 

.38)

The term k = k 0 in the expansion gives rise to a slowly varying secular contribution, while all other terms average out over one period of the modulation. Neglecting the non-resonant terms, we obtain e -2ip = κe iζ(t) , with δ = 2q 0k 0 ω, ζ(t) = k 0 (φ mod + π/2)χδt and κ = J k0 (η). This nally leads to

e iθ ≈ κe iφ (4.39)
where the secular phase φ = ζ + α is de ned as From Eq.(4.40), we can relate φ to the atomic phase, θ = φk 0 (ωt + ϕ mod + π/2) . This equality shows that when φ is oscillating, θ also oscillates around the phase of the drive -k 0 (ωt + ϕ mod + π/2), up to a constant.

φ = -δt + α + k 0 (ϕ mod + π/2) -χ. ( 4 

Rigid Pendulum Model

In the weak driving regime, κ 1, the κ cos φ term in Eq. (4.25) is negligible. Moreover, the amplitude of variation of n 0 is small. To prove the last point, we integrate Eqs. (4.24,4.25) and obtain the implicit equation g(x)

n0(t) n0,i = -κ cos x φ(t)
φi , with g(x) = 1 -δ 2Us ln x 1-x + 2 ln(1x) . This implies that the amplitude of variation of n 0 is indeed small when κ 1. This allows us to linearize Eq. (4.24). With the initial condition n 0,i = 1/2, we obtain ṅ0 κUs 2 sin φ. Taking the time derivative of Eq. (4.25), we then nd that the phase obeys the pendulum equation

φ + Ω 2 sin φ = 0 , (4.41) 
with natural frequency Ω = √ 2κU s / . The angular velocity of the pendulum φ is determined by φ = -δ + 2U s (1 -2n 0 ).

Energy balance

In this Section, we compute the power delivered by the drive in the framework of DM 2. In particular, we show that at the xed points S ± , it compensates for the dissipated energy. For simplicity, we focus on the rst resonance k 0 = 1 and assume κ 1. The time derivative of the total energy is

dE spin dt = P drive + P (2) diss , (4.42) 
with P drive =qn 0 , and P

diss = -2 β 2 n 0 (1n 0 ) θ2 . We introduce ñ0 , the component of n 0 oscillating at ∼ ω. The product qñ 0 does not vanish af er taking the time-average in the expression for P drive .

From Eq. (4.38), the k = 0 component of sin θ oscillating at ∼ ω is sin θ =cos(ωt + ϕ modφ). The amplitude of the sidebands near-resonant with the drive [term k = 2 in Eq. (4.38)] are negligible in the limit κ 1. Using ñ0 = O(U s /q 0 ) 1 to simplify Eq. (4.9), we nd

ñ0 = - 2U s ω n 0 (1 -n 0 ) sin(ωt + ϕ mod -φ) . (4.43) 
Using κ ∆q/( ω) (true if κ 1), the average power delivered by the drive is nally

P drive = -ωκU s n 0 (1 -n 0 ) sin φ . (4.44)
When there is no dissipation, this expression can be written as P drive =ω ṅ0 /2. This result has a microscopic interpretation if one treats the driving eld as a quantized electromagnetic eld. One photon is absorbed to promote a pair of atoms in the m = 0 state to a pair with one atom in m = +1 and another in m = -1. The energy in the eld is, up to a constant, E field = N ωn 0 /2 , and P drive correspond to the energy per unit time transferred back and forth from the eld to the atoms. Eq. (4.42) can also be interpreted as a statement that N E spin + E field is constant. With dissipation, the system relaxes to the xed point S + or to S 0 . The second case is trivial, since the drive and dissipated power both vanish. Let us discuss the rst case. At the xed points S + , the atomic phase is locked to the drive, i.e. θ ≈ -ω and

P (2) diss ≈ -ω 2 2 β 2 n 0 (1 -n 0 )
. The energy balance can be rewritten as

dE spin dt S+ ≈ -ωn 0 (1 -n 0 ) κU s sin φ + + β 2 ω 2 , (4.45) 
The term in brackets in the right hand side of Eq. (4.45) vanishes exactly, as the secular phase takes the value sin φ + = -β 2 ω/(2κU s ) at S + (see Sec. 4.4.2). At the xed point, the phase lag between the atomic phase and the drive is therefore such that the power delivered by the drive exactly compensates for the energy dissipation.

Quantum treatment of the modulated SMA Hamiltonian

We start from the SMA Hamiltonian in Eq. (4.2), which we rewrite as

Ĥspin = -q(t) N0 + U s 2N V + Ŵ + Ŵ † .
We de ned the operators V = Ŝ2 z + 2 N0 (N -N0 ) and Ŵ = 2(â † 0 ) 2 â+1 â-1 . Applying the unitary transformation Û1 = e -i t 0 q(t )dt N0 = e -ip N0 , (4.46) CONDENSATE the transformed Hamiltonian is

Ĥ1 = Û1 Ĥ Û † 1 + i d Û1 dt Û † 1 , (4.47) 
Ĥ1 = U s 2N V + Û1 Ŵ + Ŵ † Û † 1 . (4.48)
We introduce the Fock basis |N 0 , M z with N ±1 = (N -N 0 ± M z )/2. The operators Ŵ (respectively Ŵ † ) only couples states with M z = M z and N 0 = N 0 + 2 (resp. N 0 = N 0 -2). As a result, the matrix elements of Û1 Ŵ Û † 1 in the Fock basis are the same as the ones of e -2ip Ŵ , implying the equality of both operators.

We now derive an e fective Hamiltonian describing the slow secular dynamics. We proceed as in Section 4.6.4, using the Jacobi-Anger expansion to rewrite the phase factors and taking the time average over one period of the modulation assuming small detuning δ. We obtain an e fective time-averaged Hamiltonian,

Ĥ1 = U s 2N V + κU s 2N e iζ(t) Ŵ + e -iζ(t) Ŵ † . (4.49)
We nish the calculation with a second unitary transformation Û2 = e -i ζ(t)

2

N0 to obtain an e fective time-independent

Hamiltonian 

Ĥe f = - δ 2 N0 + U s 2N V + κU s 2N Ŵ + Ŵ † . ( 4 

Stability of the xed points S ±

To discuss the stability of the xed points S ± , we linearise Eqs. (4.32,4.25) using n 0 = n 0,± + δn 0,± and φ = φ ± + δφ ± . We nd

δ ṅ0,± δ φ± = M ± δn 0,± δφ ± , (4.51) 
M ± = 0 ±2κU s n 0,± (1 -n 0,± ) cos -2 δ ± -2κU s δ δ± sin
.

The solutions are stable if the eigenvalues of the matrices M ± have negative real parts. For simplicity, we consider the situation

| sin | = β 2 ω/(2κU s ) 1.
One can show that the results below hold as long as β 2 ω/(2κU s ) < 1, the same condition as for the existence of the xed points.

In the limit 1, the eigenvalues of M + are approximately given by X +,1 β 2 ω δ 2δ+ + i √ ∆ , and X +,2 = X * +,1 , with ∆ = 8n 0,+ (1n 0,+ )κ(1 + κ)U 2 s . Therefore, S + is stable for δ < 0, and unstable otherwise. Turning to S -, the eigenvalues are X -,1 √ ∆ and X -,2 -X -,1 to leading order in β 2 , and S -is therefore always unstable. Note that our conclusions are established for the experimentally relevant case 0 ≤ κ < 1. The roles of S ± would be reversed for κ < 0.

Stability of the limit cycles S 0,1

We focus rst on S 1 . We consider small deviations, i.e. n 0 = 1and linearize Eqs. (4.32,4.25) to the lowest order in ,

-˙ = 2κU s sin φ + 2β 2 q 0 , (4.52) φ = -δ -2U s (1 + κ cos φ) . (4.53)
We integrate Eq. (4.52),

ln (t) (0) = - 2κU s t 0 sin φ(t )dt - 2β 2 q 0 t .
Making the change of variable t → φ and using Eq. (4.53), we nd

(t) = (0)e -4t/τ2 1 + a 1 cos φ(0) 1 + a 1 cos φ(t) , (4.54) 
φ = -(2U s + δ)(1 + a 1 cos φ(t)) . (4.55) 
with a 1 = 2κU s /[2U s + δ] and τ 2 = 2 /(β 2 q 0 ). If |a 1 | < 1, is bound to a vincinity of (0). If |a 1 | > 1, eq. (4.55) shows that φ must vanish, which results in a divergency of . Therefore, (t) diverges iif |a 1 | > 1. This de nes the instability region of

S 1 as δ ∈ [-2U s (1 + κ), -2U s (1 -κ)]
. This result is independent of the precise value of β 2 as long as it is strictly positive. A similar calculation for S 0 with = n 0 yields (t) = (0)e 4t/τ2 1 + a 0 cos φ(0)

1 + a 0 cos φ(t) , (4.56) 
with a 0 = 2κU s /[2U sδ]. Due to the exponential divergency, we nd that S 0 is always unstable.

End of the article [START_REF] Evrard | Relaxation and hysteresis near Shapiro resonances in a driven spinor condensate[END_REF] 4.7 Outlook: chaotic dynamics

In the mean-eld approximation, our system is described by the two variables (n 0 ,θ). In the static situation, energy is conserved (here we ignore the dissipation), and spin-mixing trajectories correspond to equal-energy contours. Given that the energy is a smooth function of (n 0 ,θ), two trajectories that are arbitrarily close cannot diverge, and hence chaos cannot occur. To be more general, the Poincaré-Bendixson theorem forbids chaos in two dimensions for an isolated system. When we drive the dynamics, the energy is no longer conserved which opens the possibility for chaotic behaviors. In the secular approximation, we obtained a new conserved quantity, the secular energy given by Eq. (4.29), such that chaos is again excluded. The conditions of validity of the secular approximation reads 2q 0 U s . We show in gure 35 Poincaré maps consisting of the series of points [n 0 (t n ), θ(t n )], where t n = n2π/ω and n is an integer. We compute numerically several maps corresponding to di ferent ratios q 0 /ω. When the secular approximation holds, the map corresponds to smooth lines, whereas for a chaotic behavior one expects a di fuse cloud of points. We have chosen ω = 5U s , and we have plotted the Poincaré maps for various q 0 , keeping q 0 = ∆q. This is close to the situation realized in the experiment of gure 26c. For the largest q 0 we observe smooth maps but for 2q 0 /ω 1 we observe a chaotic behavior. In particular, for the rst resonance 2q 0 /ω = 1, we observe closed trajectories in the middle of the map (oscillating regime), open trajectories on the edges n 0 1 and n 0 0 (running phase), and a small chaotic region near the separatrix. This region becomes smaller for higher resonances, as the secular approximation is better veri ed. The onset of chaos in a very similar system, a driven two-component spinor BEC, has been observed in [START_REF] Tomkovič | Experimental observation of the poincaré-birkho f scenario in a driven many-body quantum system[END_REF].

Figure 35: Poincaré maps, for various q 0 ∆q (the rst panel correspond to q 0 = ∆q = 0). Here ω 5U s . A map is obtained by numerically solving the dynamics for di ferent initial conditions (here n 0 (0) variable and θ(0) = 0) and reporting with di ferent colors the series [n 0 (t n ), θ(t n )] that we obtained. White areas in the map are simply regions that are not accessed given the chosen set of initial conditions.

Phase space portraits are only meaningful for classical systems. Indeed, the Heisenberg uncertainty principle implies that a quantum state cannot be represented by a point in phase space. Yet, it is possible to get a qualitative insight from a semi-classical picture, where a "quantum trajectory" is obtained by averaging nearby classical trajectories represented in a phase portrait. In a chaotic regime, two initially close trajectories can diverge, and one expects the generation of highly non-classical states, making this situation particularly worthy of further studies. In a non-chaotic system, the semi-classical picture hints to instabilities as good levers to produce non-classical states. This is the approach we pursue in the next chapter. Chapter 5 Beyond the mean-eld dynamics: spin-squeezing and quantum uctuations

In Chapter 2, we studied the phase diagram of a spinor Bose-Einstein condensate embedded in a magnetic eld, in the single mode regime [START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF][START_REF] Zhang | Mean eld ground state of a spin-1 condensate in a magnetic eld[END_REF]. For a cloud with vanishing magnetization, a quantum phase transition occurs when the quadratic Zeeman energy (QZE) q goes through zero. For q > 0 the mean eld ground state has all atoms in m = 0, ie it is the nematic state |N : e z aligned along the magnetic eld axis z. For q < 0 all the nematic states lying in the (xy)-plane are degenerate and minimize the mean-eld energy. At the critical point q = 0, all nematic states are degenerate. The vicinity of the phase transition, where the antiferromagnetic interaction energy U s is the dominant energy scale, constitutes an ideal regime to observe deviations to the mean-eld picture. Indeed, we have seen in Chapter 2 that the ground state for q U s is entangled. Qualitatively, the e fect of interactions can be understood in terms of quantum uctuations, which mix the degenerate coherent states. For instance at q = 0 the ground state corresponds to a coherent superposition with equal weight of all the degenerate nematic states |N : Ω . Quantum uctuations can also seed spin-mixing dynamics in situations where a mean-eld treatment predicts no evolution. For instance, the nematic state |N : e z is a xed point of the mean-eld spin-mixing equations (used in Chapter 4) for all q, and yet, we observe signi cant dynamics af er a quench through (q < 0), or near (0 < q U s ) the phase transition. These two situations, represented schematically in Fig. 36, and the resulting beyond mean-eld spin mixing are the subjects of the present chapter.

q m f = + 1 m f = -1 m f = 0 a b c
Figure 36: Sketch of the quadratic Zeeman energies. The initial situations correspond to a BEC with all atoms in m = 0, in a large magnetic eld, so that q U s and the system is very close to the ground state (a). Modulating near a Shapiro resonance, an e fective negative QZE is created and the BEC becomes unstable (b). Correlated pairs are produced in the initially empty m = ±1 modes. Alternatively, reversible pair production can be realized in the stable regime, when q U s (c).

We will rst study quenches through the phase transition. We make use of the driving technique described in Chapter 4 to realize an e fective negative QZE. In that case the nematic state |N : e z becomes unstable. Within a Bogoliubov approximation, our system is analogous to the optical parametric ampli er [START_REF] Loudon | The quantum theory of light[END_REF]. More precisely, we realize a situation close to spontaneous parametric down-conversion. In that set-up, a nonlinear crystal is used to generate pairs of correlated photons, in two di ferent, initially empty modes, from photons in a so called pump-mode. This process creates the two-mode squeezed vacuum (TMSV) state, an entangled state that can out-performed classical states in interferometric experiments [START_REF] Kim | In uence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[END_REF]. Owing to this remarkable property, squeezed states of light [START_REF] Loudon | The quantum theory of light[END_REF], such as the TMSV, are the subject of many investigations and an exciting potential application is the improvement on the sensitivity of gravitational wave interferometers [START_REF]A gravitational wave observatory operating beyond the quantum shot-noise limit[END_REF][START_REF] Grote | First long-term application of squeezed states of light in a gravitational-wave observatory[END_REF]. Similarly, there has been recently a lot of e forts to produce squeezed states of atomic ensembles [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF][START_REF] Gross | Nonlinear atom interferometer surpasses classical precision limit[END_REF][START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF], which could be used, e.g. for clocks or inertial sensors. On that line of thoughts, we will put in the rst part the emphasis on squeezing, and on its relation to entanglement. We will also comment on the similarities and di ferences between the optical and atomic parametric ampli ers.

The study of quenches to the critical region, just above the phase transition (0 < q U s ) provides new insights on the nature of the state produced by via spin-mixing. Indeed, in this regime, the dynamics is reversible, which allows us to demonstrate 66CHAPTER 5. BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS coherence and entanglement between the modes. We also study the e fect of a coherent seed on the dynamics. These last experiments show the role of the quantum uctuation for seeds that are small enough, and allow for the observation of the cross-over from the Bogoliubov to the mean-eld regimes as the size of the seed increases.

Spin squeezed state

Squeezed states are a class of entangled states that have been extensively studied theoretically and experimentally. They can be produced in several platforms ranging from optics [START_REF] Loudon | The quantum theory of light[END_REF] to atomic gases [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF], and can outperform classical states in interferometric experiments. In this section, we brie y review di ferent de nitions of squeezed states. We start with the case of a single bosonic mode, describing e.g. a mode of the electromagnetic eld. The case of several modes, which correspond to our system, is more complex, and various de nitions of squeezing are encountered in the literature (see e.g. [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF] for a review).

Squeezing of a single bosonic mode

We consider a bosonic mode â, and the two conjugated observables

X = 1 √ 2 (â † + â) , and P = i √ 2 (â † -â) . (5.1)
The Heisenberg relation reads

∆X∆P ≥ 1 2 . ( 5.2) 
A coherent state, de ned as an eigenstate of â, is considered as a semi-classical state of a harmonic oscillator. Indeed, in a coherent state, the expectation values of the position and momentum observables obey to classical equations of motion [51]. Moreover, their variances are equal, and saturate the Heisenberg uncertainty relation, ∆X = ∆P = 1/ √ 2. This value is refereed to as the shot noise. A state that has ∆X or ∆P below the shot noise is called a squeezed state. The uncertainty relation implies that when an observable is squeezed, its conjugate is "anti-squeezed" and displays uctuations above the shot noise.

Spin squeezing of two bosonic modes

We now consider two bosonic modes â+1 and â-1 . We de ne the collective pseudo-spin operator

Ĵ Ĵx = 1 2 (â † +1 â-1 + â † -1 â+1 ) , Ĵy = 1 2i (â † +1 â-1 -â † -1 â+1 ) , Ĵz = 1 2 ( N+1 -N-1 ) . (5.3) 
These operators ful ll the angular momentum commutation relations and Ĵ can be viewed as the total angular momentum of an ensemble of identical bosons carrying a (pseudo) spin-1/2. We have Ĵ2 = Np ( Np + 1) where Np = ( N+1 + N-1 )/2. One Heisenberg relation reads

∆J x ∆J y ≥ | Ĵz | 2 . ( 5.4) 
Two other relations are obtained by permutation of the indices. A spin coherent state of N particles is a pure state with no correlation between the particles. For an ensemble of pseudo-spin 1/2 bosons, a coherent state can be seen as a state with all pseudo-spins pointing in the same direction, for instance z. In that case we have

|J z | = N 2 and ∆J 2 x = ∆J 2 y = N 4 . (5.5)
This is analogous to the one-mode case: the Heisenberg bound Eq. (5.4) is saturated and the uncertainty is equally distributed between Ĵx and Ĵy . However, this analogy holds only for our arbitrary choice of axis, the other two Heisenberg relations are trivially veri ed since Ĵx = Ĵy = 0. Kitagawa and Ueda proposed in [START_REF] Kitagawa | Squeezed spin states[END_REF] the following de nition of spin squeezing: a state is squeezed if and only if the variance of one spin component orthogonal to the mean spin, is below N 4 . Let z be the direction of the spin, and x the orthogonal direction with minimal spin uctuations. A squeezing parameter can be de ned as

ξ KU = 2∆J x √ N . (5.6) 
For coherent states, ξ KU = 1, and thus spin-squeezing in the sense of [START_REF] Kitagawa | Squeezed spin states[END_REF] indicates correlations between the spins (or entanglement).
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Metrological spin squeezing

Alternatively, the question of the squeezing of two or more modes can be addressed from the point of view of quantum metrology. It is a broad eld, and we only sum up here some results important for our topic and refer the reader to [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF] for a review. The two following results constitute the corner stone of quantum metrology. First, there exists a fundamental bound on the accuracy at which a measurement can be made. Second, this bound is not the same for separable and entangled states. To be more explicit, let us consider a measurement described by a (pseudo) spin rotation of angle θ, corresponding for instance to the phase shif inside a Mach-Zehnder interferrometer. We want to determine θ from the measurement of the observable Ô. In Heisenberg (5.7)

Furthermore, using error propagation, the sensitivity is

∆θ = ∆ Ô | d Ô dθ | , (5.8) 
∆θ ≥ 1 2∆J y .

(5.9)

For a coherent state, the sensitivity is maximal, when the spin points in the (xz)-plane, in which case, (∆J y ) 2 is maximal and equal to N 4 . This sets the "standard quantum limit" (SQL) for separable states. The SQL is not fundamental, an upper bound on (∆J y ) 2 is Ĵ2 N 2 /4, which de nes the fundamental Heisenberg limit (HL). It can be reached using the "Schrödinger cat state" de ned as the coherent superposition of all spins up and all spins down, with respect to the y axis. In the spin state basis |j, m y y with y as the quantization axis

|ψ cat = 1 √ 2 (|N, N y + |N, -N y ) . (5.10) 
We emphasize that Eq. (5.9) only provides a lower bound to the sensitivity, and states with large ∆J y (e.g. statistical mixtures), do not necessarily saturate the bound. However, the Schrödinger cat state does reach the lower limit given by Eq. (5.9), using a parity measurement [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF]. The sensitivities at the SQL and HL are given by

∆θ SQL = 1 √ N , ∆θ HL = 1 N .
(5.11)

These two limits can be derived with greater generality [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF]. For a given interferometric set-up (including an initial quantum state, a phase imprinting and a measurement), with sensitivity ∆θ, we can de ne a metrological squeezing parameter as

ξ m = ∆θ ∆θ SQL .
(5.12)

It quanti es the improvement relatively to the SQL. As such, ξ m < 1 indicates entanglement. The Heisenberg limit reads ξ m ≥ 1 √ N . Note that ξ m not only depends on the state, but also on the experimental context, and for a given context, there may be states that are not squeezed although they could beat the SQL in another context (e.g., measuring another observable). One paradigmatic set-up is the Ramsey interferometer, used for instance in atomic clocks. It is studied in detail in [START_REF] Wineland | Squeezed atomic states and projection noise in spectroscopy[END_REF]. In that setting, the squeezing parameter is

(ξ m ) Ramsey = √ N ∆J ⊥ J u , (5.13) 
where u indicates the direction of the mean spin and ∆J ⊥ is the minimum of the variance of the spin in an orthogonal direction (and the rotation axis is orthogonal to both).

Entanglement and spin squeezing

Metrological spin squeezing indicates entanglement, but the converse is not true. For instance, the squeezing criterion ξ KU (see Eq. [5.6]) introduced by Kitagawa and Ueda to detect correlations between particles (i.e. entanglement) is not directly linked to metrological improvements [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF]. Following this work, various spin squeezing parameters have been introduced to detect entanglement [START_REF] Sørensen | Entanglement and extreme spin squeezing[END_REF][START_REF] Vitagliano | Entanglement and extreme spin squeezing of unpolarized states[END_REF], and used in spinor BECs experiments [START_REF] Gross | Nonlinear atom interferometer surpasses classical precision limit[END_REF][START_REF] Peise | Detecting multiparticle entanglement of Dicke states[END_REF][START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF]. They are appealing from the point of view of experiments, since they only rely on the measurement of the mean and variance of spin observables. This contrasts with the entanglement entropy de ned in chapter 2 which a-priori requires the knowledge of the full quantum state. On the other hand, spin squeezing parameters only detect some entangled states and do not constitute a general measure of entanglement, while the entanglement entropy does [START_REF] Vedral | The role of relative entropy in quantum information theory[END_REF].

68CHAPTER 5. BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS Squeezing of an unpolarized state Let us consider the twin-Fock state (TFS), de ned as an N particle states, with exactly N/2 particles in two orthogonal modes (in our case m = ±1). In the number basis |N +1 , N -1 nb , it is de ned as

|TFS = | N 2 , N 2 nb . (5.14)
As seen in Chapter 2, this state is entangled and can be used to perform interferometry below the SQL (and with an Heisenberg scaling, see [START_REF] Kim | In uence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[END_REF] and App. D). However, the TFS is an unpolarized state, that is to say Ĵ TFS = 0, and thus, the squeezing parameters ξ KU and (ξ m ) Ramsey are ill-de ned. The same problem occurs for the two-mode squeezed vacuum state (TMSV), de ned in the number basis as

|TMSV = 1 √ N ∞ n=0 η n |n, n nb , (5.15) 
with N = 1 + Np and |η| 2 = Np /(1 + Np ).

A generalized squeezing parameter appropriate to detect the entanglement of unpolarized states, such as the TFS and the TMSV was introduced in [156],

ζ 2 s = 2 Np ∆ Ĵ2 z Ĵ2 x + Ĵ2 y -Np . ( 5.16) 
ζ s < 1 indicates entanglement. For a coherent state ζ s = 1, while for the TFS or TMSV states, ζ s = 0. We recall that a metrological squeezing parameter is bounded from below by the Heisenberg limit ξ 2 m > 1/N and thus ζ -1 s cannot be seen as a metrological gain. However, we show in the appendix D how ζ s is related to the sensitivity of an interferometric experiment using a TMSV state.

The criterion (5.16) applies to any collective spin. In our situation, the collective spin corresponds to the total pseudo spin of an ensemble of indistinguishable spin-1 atoms in the same spatial mode, and is de ned in Eq. (5.3) 

Bogoliubov treatment of the dynamics

Undepleted pump approximation

In this section, we theoretically study the spin-mixing dynamics of a spinor BEC in the single mode regime. We focus rst on the situation where the initial state is the nematic coherent state |N : e z with all atoms in the Zeeman sublevel m = 0. This state is a xed point of the mean-eld equations of motion (see Chapter 4). However, a more re ned treatment based on Bogoliubov theory, shows that quantum uctuations triggers a signi cant dynamics when the mean-eld energy of the states m = ±1 is close to the energy of the m = 0 state, either slightly above or slightly below. The former situation can be achieved at low magnetic eld, such that q U s . The latter requires a negative e fective QZE, which can be achieved using an oscillating magnetic eld, as demonstrated in Chapter 4. We have realized both situations experimentally, and we consider the generic Hamiltonian

ĤSMA = -q N0 + U s N N0 (N -N0 ) + W N (â 2 0 â † +1 â † -1 + â †2 0 â+1 â-1 ) . (5.19)
In the static situation q = q is the QZE and W = U s . In the driven case, q = δ/2 and W = κU s where â2 0 reminds one of optical four wave mixing, where it accounts for the conversion in a non-linear crystal, of a pair of photons here in the same "pump" mode, into two photons in di ferent "output" modes. In analogy, we will call the m = 0 mode the pump and the m = ±1 modes the output modes. In this context, the Bogoliubov approximation is of en referred to as the "undepleted pump approximation" (UPA). It amounts to take the pump mode as a classical source, using the substitutions (with no loss of generality, we take the phase of the pump to be zero)

δ = 2q 0 -k 0 ω and κ = J k0 2∆q ω , (5.20 
â0 → N -N+1 -N-1 , (5.21) 
and conserving only the quadratic terms in â±1 . It yields

Ĥ = V N+1 + N-1 + W â+1 â-1 + â † +1 â † -1 .
(5.22)

with V = q + U s .

Equation of evolution

The calculation of the mean value of few-body operator can be simply done in the Heisenberg picture. The equation of evolution for the operators â+1 and â † -1 form a closed system

i d dt â+1 â † -1 = V W -W -V â+1 â † -1 (5.23)
This system has two opposite eigenvalues ± ω B , with

ω B = V 2 -W 2 .
(5.24)

When ω B is real, it corresponds to the energy of Bogoliubov excitation (see Chapter 2). However, we emphasize that the calculation holds for all V and W , and in particular, in the window

-|W | < V < |W | , (5.25) 
where ω B is an imaginary number. This corresponds to an unstable regime as will be shown by the calculation of the evolution of N±1 . Integration of Eq. (5.23) yields

â± (t) = A * â±,i + B * â † ∓,i , (5.26) 
where

A * (t) = cos(ω B t) + i V ω B sin(ω B t) , (5.27) 
B * (t) = i W ω B sin(ω B t), . (5.28) 
Note that when ω B is imaginary, the sine becomes hyperbolic sine with arguments |ω B |t.

Evolution of the vacuum

General results From Eq.(5.26), we can compute the mean value and variance of the number of pairs N+1 , starting from the nematic state |N : e z , ie from the vacuum of m F = ±1 atoms. We obtain

N+1 vac = W 2 2 ω 2 B sin 2 (ω B t) , (5.29) 
(∆ N+1 ) 2 vac = N+1 vac (1 + N+1 vac ) , (5.30) 
We recall that the magnetization Ŝz = N+1 -N-1 is conserved and remains exactly zero, so does Ĵz = Ŝz /2, and the pseudospin Ĵ is thus perfectly squeezed according to the criterion (5.18). More precisely, the state evolves into a TMSV [START_REF] Mias | Quantum noise, scaling, and domain formation in a spinor Bose-Einstein condensate[END_REF], de ned in Eq. (5.15), and which features a thermal distribution of the number of atoms in the output modes m = ±1. Unstable regime Let us focus on the driven situation. We have V = δ/2 + U s and W = κU s . The Bogoliubov energy is

ω B = δ 2 + (1 -κ)U s δ 2 + (1 + κ)U s .
(5.31)

The instability window corresponds to

-2(1 + κ)U s < δ < -2(1 -κ)U s .
(5.32)

Note that this result was already derived in Chapter 4 using a mean eld approximation. The Bogoliubov theory allows us to go one step further. In this unstable regime, ω B is imaginary and Eq. ( 5.29) can be rewritten as

Np vac = κ 2 U 2 s 2 |ω B | 2 sinh 2 (|ω B |t) . (5.33)
Hence, the number of pairs produced increases exponentially until it is no longer negligible compared to N , leading to the breakdown of the UPA. In Chapter 6, we will explore the regime beyond the UPA. For now, we can make the following qualitative prediction. One expects a peak of the production of pairs when the imaginary part of ω B is maximal. It occurs on resonance, when the pump and output modes are degenerate. Furthermore, as the pump is consumed, it is reasonable to anticipate a progressive slow down of the dynamics until it eventually stops (or reverse). This behavior is typically seen in an optical parametric ampli er. However, in our atomic system a di ference arises from the spin-conserving collisions, described by the term N0 (N -N0 ) in Eq. (5.19). In the UPA, it boils down to a mean-eld shif to the energy, that changes the positions of the resonance from q = 0 to q = -U s . In Sec. 5.3.3, we will show that beyond the UPA, interesting di ferences due to interactions occur between the optical and atomic parametric ampli ers.

Production of a two-mode squeezed vacuum state

We report here on the observation of a two-mode squeezed vacuum state. This work has been published in [START_REF] Qu | Probing entanglement in a spinor condensate near the single atom level[END_REF].

Experimental protocol

We produce a BEC of about N 2700 atoms in a magnetic eld of 3 G. In this condition, the ground state is very close to the perfect nematic state with all atoms in m = 0. We remove thermal atoms in the m = ±1 states using the spin-ltering technique described in chapter 3. The bias eld is then ramped down to 0.46 G, and an oscillating eld of amplitude 1.2 G is added on an orthogonal axis. The frequency is chosen near a Shapiro resonance studied in Chapter 4. In practice, we scan the frequency to maximize the number of m = ±1 atoms. For these experiments we have κ = 0.34 and U s /h = 18 Hz (the calibration of U s is discussed in the section 5.4). The spin populations are measured with an accuracy of 1.6 atoms using the "Stern-Gerlach uorescence imaging" set-up described in Chapter 3.

Experimental results

We found that more pairs are produced near the upper edge of the unstable regime, for δ = -24 Hz -2(1κ)U s / . This observation constitutes a rst deviation from the UPA prediction, which will be discussed in Sec. 5.3.3. We show in gure 37 the evolution over time of the mean and standard deviation for the observables Np and Ĵz . At t = 0 the driving starts, and m = ±1 pairs are produced. However, as the pump gets slightly depleted, the pair production is boosted and quickly deviates from the UPA prediction. Numerical resolution of the Schrödinger equation using the secular Hamiltonian Eq. ( 5 Np . The distribution of J z is very narrow, close to that of the imaging noise. For comparison, we show the distribution of J z for a coherent state with similar mean Np . Our measurement is consistent with the expected normal distribution of variance Np /2, much broader than that of the squeezed state. 

Interacting parametric ampli er

Here we discuss in more detail the observed discrepancies from the UPA. First, we nd that more pairs are produced on the upper edge of the instability region, where the energy of the output mode m = ±1 is initially larger than that of the pump m = 0. In the UPA, the maximum occurs in the middle of the instability region. Second, the dynamics is at intermediate times faster than what the UPA predicts. This contradicts the general expectation that the depletion of the pump should slow down the dynamic. These two deviations from the UPA do not occur in an optical parametric ampli er, and arise here because of the interaction between the pump m = 0 and output modes m = ±1. Qualitatively, it can be understood as follows. In the UPA, the pumpoutput interaction results in a positive mean-eld shif of the output energy. As the pump is depleted, the shif decreases, bringing the system closer to resonance.

As a simple extension to the UPA, we proceed to the following substitution: N 2 p /N → n p Np and â0 → N (1 -2n p ) in the exchange term, where n p = Np /N is a real number quantifying the normalized number of pairs. With this substitution, the Hamiltonian remains quadratic in the operator â± and can be written as in Eq. (5.22), with V = δ/2 + U s (1 -2n p ) and W = κU s (1 -2n p ). Thus, the Bogoliubov energy given by Eq. (5.24) reads 

ω B = δ 2 + U s (1 + κ)(1 -2n p ) δ 2 + U s (1 -κ)(1 -2n p ) . ( 5 
-U (1 -2n p ) ≤ δ -2U s n p ≤ U (1 -2n p ) .
(5.35)

As n p increases, the instability window shrinks because of the depletion of the pump, and moves because of the increase of the pump-output interaction. More precisely, the width decreases as ±2U n p , and the center moves by 2U s n p . We can distinguish three situations depending on the relative values of U and U s . • In the case of the optical parametric ampli er ( gure 39 a), U = 0. The instability region does not move. The instability rate is maximal for δ = 0, and decreases as the pump gets depleted.

• For undriven spin mixing dynamics ( gure 39 b), U = U s . The motions of the center and of the upper edge of the instability window compensate exactly. This leaves the point δ = 2U s always within the instability region. Hence we expect a particularly good agreement with the UPA at that point.

• For driven spin-mixing dynamics ( gure 39 c), U < U s and the instability window shif s faster than it shrinks. Therefore, starting in the vicinity of the upper bound δ = 2U , we expect the evolution to bring the system deeper in the instability region. Here, the e fect of the interaction counter-acts the e fect of the depletion, and we expect the dynamic to be faster than in the UPA 1 .

In gure 40 we present the result of a numerical resolution of the dynamics under the secular Hamiltonian Eq. (5.19) for di ferent κ, keeping U xed so that the UPA prediction is xed. We plot the maximal number of pairs produced over a time t = 5 /U versus δ and the time evolution of N p for δ = 2U . The competition between the depletion of the pump and the pump-output interactions explains qualitatively all the features we see.

Reversible dynamics: coherence and entanglement

We gave the expression of the TMSV in the number basis in Eq. (5.15). The TMSV can be seen as a broad and coherent superposition of TFS with equal numbers of atoms in m = ±1. The signi cant squeezing that we have measured re ects the high correlation between the modes m = ±1 and is a signature of entanglement between the particles. An interesting question is whether the states we produced experimentally are also entangled in the sense of the modes. We observed a broad distribution of the number of pairs, but so far our measurements are not su cient to prove the coherence between all the states with well-de ned numbers of pairs. Indeed, our ndings are a priori compatible with a statistical mixture of TFS, such as

ρ = 1 √ N ∞ n=0 η 2n |n, n n, n| .
(5.36) Because of the pumpoutput interactions the resonance is shif ed to the right. On the boundary δ = 2U , pump-output interactions counteract the depletion and the agreement with the UPA is particularly good. The dashed-dotted line corresponds to driven spin-mixing, for which we observe a boost of the dynamics compared to the UPA prediction near δ = 2U . We used N = 300 for the numerical calculation.

Part of the "non-classicality" is lost in that mixed state compared to the TMSV given by Eq. (5.15). This is of no consequence for the interferometric experiment we present in Appendix D following [START_REF] Kim | In uence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[END_REF], but is damageable for other schemes, such as the SU (1, 1) interferometer [START_REF] Gabbrielli | Spin-mixing interferometry with Bose-Einstein condensates[END_REF].

In this section, we prove the persistence of the coherence, and thus mode entanglement thanks to a study of the dynamics in the stable regime.

Experimental protocol

The preparation of the initial state is the same as in the previous experiment. We produce a BEC of ∼ 3000 atoms in a large magnetic eld. Af er spin-ltering, all the atoms are in m = 0. The dynamics is however triggered di ferently. The unstable regime occurs for negative QZE q, which is not possible in the static situation, hence the use of a Shapiro resonance in the previous section. In the stable regime, q > 0 and driving the system is not necessary. Instead, we quench the magnetic eld to a low value such that q U s . This brings the system close to the phase transition identi ed in chapter 2, where quantum uctuations play a major role.

Results

Theoretical expectation For q > 0, the system undergoes many-body oscillations. More precisely, it evolves back and forth into a TMSV, with an oscillating number of pairs given by Eq. (5.29). In the limit q U s , the frequency of the oscillations is ω B √ 2qU s / and the amplitude is U s /(2q). Self consistency of the UPA requires q U s /N . In this Chapter we focus on that situation. We will explore the regime q < U s /N in Chapter 6.

Experimental results

We show in gure 41 the evolution of the number of pairs af er a quench to q/h 0.3 Hz. The mean and standard deviation superimpose almost perfectly according to Eq. (5.30). They are well tted by the UPA prediction, with 74CHAPTER 5. BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS U s as the only free parameter which determines both the amplitude and frequency of the oscillations according to Eq. (5.29). We nd U s /h = 18 Hz, which is consistent with previous calibrations. The pseudo spin Ĵz = ( N+1 -N-1 )/2 is almost perfectly conserved with uctuations mainly limited by detection noise. For long evolution times we observe a progressive damping of the oscillation of the number of pairs. It could be due to shot-to-shot uctuations of U s induced by atom number uctuations. The small increase of ∆ Ĵz indicates atom losses, which may also alter the dynamics. In any case, we found overall a good agreement with the theoretical expectations. We repeated this experiment at various magnetic elds (i.e. various q). We t the oscillations and extract a period and amplitude that we report on gure 42. Keeping the same value U s /h = 18 Hz, we found an excellent agreement with the theory, over almost two orders of magnitude for q.

10 -2 10 -1 10 0 10 1 q/h[Hz] Mode entanglement In the UPA, the state produced by the dynamic is the TMSV, and is squeezed in the sense of Eq. (5.16).
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Here, we focus on the entanglement of the modes. We gave the expression of the TMSV in Eq. (5.15). The reduced density matrix for the mode m = +1 (it is clearly the same for m = -1) is

ρ +1 = 1 1 + N+1 ∞ n=0 N+1 1 + N+1 n |n n| . (5.37)
This is a thermal Bose-Einstein distribution [START_REF] Loudon | The quantum theory of light[END_REF], with entropy

S(ρ +1 ) = -2n +1 ln(n +1 ) -(1 -2n +1 ) ln(1 -2n +1 ) . (5.38)
where n +1 = N+1 /N is, using Eq. (5.29),

n +1 = U s 2qN sin 2 (ω B t) .
(5.39)

We can also de ne an e fective temperature T eff in analogy with the distribution of an ideal thermal gas (see appendix C)

k B T eff N+1 q U s 2 sin 2 (ω B t) .
(5.40)

This de nition of T eff is somewhat arbitrary. The important point is not the precise value of the temperature, but rather its variations, in particular the fact that it is non-monotonic, as the entropy. We emphasize, that in this calculation the total quantum state is pure. The entropy of ρ +1 corresponds to entanglement entropy (see Chapter 2, [START_REF] Vedral | The role of relative entropy in quantum information theory[END_REF]).

We show in gure 43 the evolutions of the entropy and the temperature, for the data set of gure 41. The Von-Neumann entropy S(ρ +1 ) is simply the Shanon entropy associated with the measurement of N +1 [we measure S(ρ -1 ) S(ρ +1 )]. For N meas measurements of N +1 , nite sampling leads to a systematic error (an underestimation) of order N +1 /N meas on the Shannon entropy (see e.g. [START_REF] Grassberger | Entropy estimates from insu cient samplings[END_REF]). We do not try to correct for this bias. Instead, we only show the points for which we have N meas > 10N +1 , to insure the systematic errors are below ten percent. The error bars correspond to mean(N +1 )/N meas . The temperature is obtained af er an exponential t of the distribution of N +1 .

At short times, the creation of pairs results in an increase of entropy and temperature. The entropy is initially non-zero because of the detection noise. Af er a full period, we measure N p 0 and the entropy and temperature are almost back to their initial values. This observation tells us that the total entropy is conserved as far as detection noise allows us to tell, as expected for a unitary evolution. Therefore, the initial increase of S(ρ +1 ) is due to entanglement between the m = +1 mode and the other two modes. An analogy can be drawn between the (apparently) thermal distribution of particles generated by a parametric ampli er in initially empty modes, and the radiation seen by an accelerating observer, according to the Unruh e fect [START_REF] Nation | Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits[END_REF]. In both cases, the Hamiltonian of the system features a non-linear term of the form ∝ â † i â † j +h.c. (coming from the change of frame in the Unruh e fect), which can create pairs of particles in modes i and j from the vacuum state. This analogy is developed further in [START_REF] Hu | Quantum simulation of unruh radiation[END_REF], where the interaction strength of condensed atoms was modulated using a Feshbach resonance. In that case, the drive e fectively produces the conversion term â2

0 â † k â † -k +h.c.
, where â0 annihilates an atom of the condensate (the pump mode) and is replaced by √ N in the UPA. This exchange term creates pairs of atoms in opposite momentum states ±k. In that experiment, coherence and entanglement between the external modes has also been demonstrated, using an "entangling-disentangling" scheme as well. 76CHAPTER 5. BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS However, the BEC was unstable, and the evolution was reversed by applying a phase shif of π to the pump mode. In the UPA, â2 0 becomes -N , and if the Hamiltonian reduces to the exchange term, the evolution is perfectly reversed. In fact, the phase shif that needs to be applied to reverse the parametric ampli cation dynamics can be measured with a sensitivity below the standard quantum limit. This is the working principle of the so-called SU(1,1) interferometer [START_REF] Gabbrielli | Spin-mixing interferometry with Bose-Einstein condensates[END_REF]. It has been demonstrated experimentally with spinor BECs in [START_REF] Linnemann | Quantumenhanced sensing based on time reversal of nonlinear dynamics[END_REF][START_REF] Linnemann | Active SU(1,1) atom interferometry[END_REF].

Seeded dynamics

To highlight the role of quantum uctuations, we also studied the e fect of a controlled seed on the dynamics. This allows for the observation of the Bogoliubov to mean-eld regime crossover.

Experimental protocol

Up to now, the dynamics started from the vacuum of the m = ±1 mode. Although our detection noise does not allow us to distinguish reliably the vacuum from a state with one or two atoms on a single shot, averaging over one thousand repetitions, we measure N p = -0.050 ± 0.040 (see chapter 3) and can safely say that at least for most of the shots, we prepare the vacuum state. We now investigate the e fect of a seed on the dynamics. The preparation of the initial state is the same as previously, including spin ltering. At that point there is no seed. We then apply a weak radio frequency pulse to slightly rotate the initial state. The population in the m = ±1 modes af er rotation is n seed N . Before the quench of magnetic eld, we also add a tunable delay. During that time, q U s and spin-changing collisions are completely inhibited by energy conservation. However, a phase ϑ -2qt is accumulated between the m = 0 and m = ±1 mode2 . The initial state can be written as

|seed = ( √ n seed e i ϑ 2 â † +1 + √ 1 -2n seed â0 + √ n seed e i ϑ 2 â † -1 ) N |vac . (5.41)
We then quench the magnetic eld to achieve q U s , and let the system evolve.

Results

Theoretical expectation Using Eqs. (5.26,5.41), we nd (for q U s )

N±1 seed = U 2 s 2 ω 2 B sin 2 (ω B t) 1 + 4N seed cos 2 ( ϑ 2 ) + N seed . (5.42)
Even a microscopic seed of a few atoms can have a dramatic e fect on the population growth. Only a very "pure" system is mostly driven by vacuum uctuations. The e fect of the seed depends importantly on the phase ϑ. In particular, for ϑ = π, the seed has no e fect. For a large seed, the number of pairs produced may become signi cant compared to the total number of atoms, leading to the break-down of the UPA. However, when N seed 1 we expect the mean-eld approximation to take over the UPA and give accurate results.

Experimental results

We show in gure 44 the number of pairs produced af er 80 ms of evolution. We scanned both the phase and the size of the initial seed. For N seed ≤ 1, the value of N seed is not measured (it is below our detection noise), but inferred from the power of the RF pulse. The value of U s is extracted from a t to the oscillations observed without a seed. Except for the largest seed, our results are in excellent agreement with the UPA. We see a linear ampli cation of the production of m = ±1 pairs when we add a seed, and a dependence on the phase. Importantly, when N seed → 0, we observe a saturation of N p to a nite value, contrary to the mean-eld prediction. This is a clear signature of the role of the vacuum uctuations. For a large enough seed, the mean-eld approximation becomes accurate. It takes over the UPA, which fails when the seed is too large. For q < U s , the mean-eld equations of motion are highly non-linear and the frequency of the oscillation depends on the size of the seed. The number of pairs at a given time t = 80 ms is therefore a complicated, non-monotonic function of N seed . We show the results of numerical simulation of the mean eld dynamics in gure 44. For the largest seed, in phase with the pump, we observe this e fect.

Outlook

In the rst part of this chapter, we have reported on the generation of a spin squeezed state. A direct application of such nonclassical states is interferometry. In particular, in appendix D we show how the TMSV can be used to measure the rotation of the pseudo-spin with a sensitivity below the standard quantum limit. Pseudo-spin rotations can be achieved using micro-wave coupling to the F = 2 hyper ne manifold and interferometric experiments with squeezed states of spinor BEC have been reported 5.6. OUTLOOK in [START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF][START_REF] Lucke | Twin matter waves for interferometry beyond the classical limit[END_REF]. In these experiments, the detection noise was limiting the performance of the interferometer. Fluorescence imaging may help to make one more step away from the SQL and closer to the Heisenberg limit. These experiments are relying on measurements of the rst or second moment of a collective (pseudo) spin component. However, enhanced sensitivity can sometimes be obtained thanks to the measurement of a microscopic observable. For a TMSV state fed in a Mach-Zehnder interferometer (which e fectively achieves a pseudo-spin rotation), greater sensitivity is achieved by measuring the parity of the number of pairs at the output, rather than the collective spin [START_REF] Anisimov | Quantum metrology with two-mode squeezed vacuum: Parity detection beats the Heisenberg limit[END_REF].

In a recent experiment [START_REF] Evrard | Enhanced magnetic sensitivity with non-gaussian quantum uctuations[END_REF], parity detection of the spin state of a Dysprosium atom was implemented to perform measurements near the Heisenberg limit. In that experiment, it is the internal state of a single atom that is squeezed, not the collective spin of an atomic ensemble. The large spin J = 8 of the Dysprosium atoms can be viewed as the collective spin of a mesoscopic ensemble of sixteen ctitious spin 1/2, but this number is not scalable. One great challenge in implementing such an experiment in atomic ensembles comes from the fact that a parity measurement requires in general single atom resolution. We are now close to this limit and with further improvement we believe that "Stern-Gerlach uoresence imaging" could be used to reveal the microscopic details of the distribution of the number of pairs, in particular the parity, thereby enabling new interferometric schemes.

Chapter 6

Relaxation of an isolated quantum system

In Chapter 5, we studied spin-mixing dynamic af er a quench of the (e fective) quadratic Zeeman energy (QZE) q. For positive and large enough q, the low energy states are weakly perturbed, and the system remains at all time close to its initial state, allowing for the linearization of the Hamiltonian. Up to a Bogoliubov transformation, the system is then analog to a set of two independent harmonic oscillators, and the evolution is fully reversible. We now turn to the study of larger quenches, bringing the system in the critical region, q Us N identi ed in Chapter 2. In that case, the energy eigenstates post-quench are very di ferent from those prior to the quench, and the evolution appears to be irreversible. We can draw a comparison with a classical system, a gas in an isolated container. Small density uctuations, induced e.g. by the gentle motion of a speaker, result in sound waves. Ideally this is an isentropic process, described by a wave equation, symmetric upon time reversal. On the other hand, the sudden removal of the piston creates a Joule-Gay-Lussac expansion of the gas, an irreversible process characterized by the creation of entropy. In that case, the irreversibility results from the exponential increase of the phase space accessible to the system. Among all the possible con gurations, constituting the microcanonical ensemble, the initial one, where all particles occupy a fraction of the container, is extremely atypical. The vast majority of con gurations are typical, i.e. essentially identical with respect to the physical observables such as the coarse grained density. For macroscopic systems, the likelihood of atypical con gurations is strongly suppressed, and as time evolves physical observables relax to an equilibrium value. The latter can be computed using an appropriate statistical ensemble, which does not depend on the details of the initial state. Far from equilibrium isolated quantum systems may also exhibit "irreversible" evolution (irreversible for all practical purposes). This has been the subject of intense theoretical and more recently, experimental investigations. Once again, we are not going to cover this whole eld of research, but focus on some important results relevant for the understanding of our experiments (see e.g. [START_REF] D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF] for a review). We start by introducing important de nitions and general results regarding the relaxation of isolated quantum systems. We brie y review some experimental work related to this subject. We then focus on the theoretical study of our system, and in particular on the relaxation of a nematic state in a vanishing magnetic eld. Finally, we present experimental results, and connect the ndings of the present Chapter with those of Chapter 5.

Relaxation and thermalization of isolated quantum systems 6.1.1 De nitions

We consider the evolution of a pure state |ψ = c n |n under the Hamiltonian Ĥ = n ω n |n n|. In practice, the diagonalization of a many-body Hamiltonian is of en too challenging for any analytical or numerical approach. Much like in classical statistical mechanics, great simpli cations occur if one focuses on physical observables instead of the whole quantum state. We consider one such observable, Ô. Without loss of generality, we take Ô dimensionless and of order one (e.g. N0 /N ). Its mean evolves as

Ô(t) = n |c n | 2 O nn + n =m c * m c n e -i(ωn-ωm)t O nm . (6.1)
Let us write the rst term Ô ∞ and the second C(t). We use overlines for time averages. We start by specifying the meaning of relaxation and thermalization of an observable [START_REF] D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF].

1. Relaxation: The observable Ô is said to relax if

C(t) → 0 and C 2 (t) 1 . (6.2)
In that case, Ô(t) reaches the steady value Ô ∞ , and remains close to it at most time. The steady value of any observable that has relaxed is given by Ô ∞ = Tr(ρ DE Ô), where ρDE is the so-called diagonal ensemble, de ned by the density Note that contrary to statistical ensembles, the diagonal ensemble depends on the details of the initial state (the |c n |2 ), of en unknown. It is a convenient theoretical object, but with little practical use.

Thermalization:

The observable thermalizes if its steady value corresponds to the microcanonical prediction

Ô ∞ = Tr ρME (E) Ô , (6.4)
where ρME is the microcanonical density matrix de ned by

ρME = 1 Z MC n∈Ω |n n| (6.5)
where Z MC = Tr(ρ ME ) and Ω is the set of energy eigenstates with energy

E m ∈ [E -δE, E + δE]
, with E = Ĥ and δE a small energy, whose precise value is unimportant (providing it is su ciently small). The microcanonical ensemble thus only depends on a macroscopic quantity, the energy of the initial state.

Relaxation

We rst examine the conditions under which an observable relaxes. The rst requirement C(t) → 0 occurs naturally thanks to dephasing. More precisely, for a generic interacting Hamiltonian with incommensurate frequencies ω n , such that af er some time t R long compared to the inverse of the mean gap, it is reasonable to treat the factors e i(ωn-ωm)t as independent random variables1 . They do not depend on the state nor on the observable. Moreover, for most far-from-equilibrium states, unless some ne tuning of the initial state has been made, many c n have comparable values, so that the sum C(t) samples the distribution of e i(ωn-ωm)t (with m = n), and thus takes negligible values af er a short evolution time.

The second condition for relaxation is the absence of large temporal uctuations of the expectation value Ô . The occurrence of dephasing is not su cient to insure that this is the case and further assumptions on the matrix elements O nm are required. Indeed, af er dephasing, the uctuations are

C(t) 2 ∼   n =m |c n c m O mn | 2   1 2 . ( 6.6) 
If the o f-diagonal elements O mn are of order one, this double sum is of order one as well. Relaxation thus requires the o f-diagonal elements to be on average much smaller than the diagonal ones.

Thermalization

Eigenstate Thermalization Hypothesis The occurrence of thermalization, expressed as Tr(ρ DE Ô) Tr(ρ ME Ô), is arguably more surprising, and demands stronger assumptions. Several scenarios can a-priori lead to thermalization (see e.g. [START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF]). A rst scenario seems to have a wide range of applicability (we will discuss exceptions later), the eigenstate thermalization hypothesis (ETH) [START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF][START_REF] Srednicki | Chaos and quantum thermalization[END_REF]. The ETH states

O nn Tr(ρ ME (E n ) Ô) . (6.7) 
The ETH is a very strong statement, it means that thermalization occurs at the level of individual eigenstates |n , and does not require any averaging over n. Thus, di ferent distributions of c n have similar expectation values of physical observables, and the thermalized state is relatively insensitive to the initial one. From Eq. (6.7), Eq.(6.4) follows immediately for any state narrow in energy 2 (c m signi cant in a small energy window E m ∈ [E -δE, E + δE]). The ETH has only been demonstrated to hold for speci c models ( [START_REF] D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF][START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF][START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF] and references therein) for few-body observables.

Let us consider the thermalization of an initially pure state. As far as the measurements of physical observables are concerned, it becomes indistinguishable from the mixed state ρME , leading to a loss of information. This is of course just apparent, since the entropy is conserved over a unitary evolution. It follows from the fact that physical observables (the ones most accessible to experiments) are all blind to certain correlations (for instance, correlations between spatially separated particles). Therefore their measurement may not give the entire information on the state.

Integrable systems An apparent loss of information on the initial is inherent to thermalization. However, some memory of the initial state may be preserved if the Hamiltonian possesses symmetries and thereby if there are conserved quantities. More precisely, a model with an extensive number of conserved quantities is said to be integrable. Such systems do not verify the ETH, and in fact observables do not thermalize in the sense de ned above. Yet, the dynamics is a-priori not frozen, and may still be very complicated. Indeed, the state contains in general a number of parameters exponential in system size, and hence much larger than the number of constraints 3 . For the same reasons as above, relaxation can occur, at least partially.

The ETH can be extended to integrable systems by replacing the microcanonical ensemble with a generalized Gibbs ensemble (GGE) [START_REF] D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF]. The associated density matrix is obtained by maximizing the Von-Neumann entropy under the constraints imposed by the conservation laws. Let Îk be the conserved quantities. The GGE can then be written as4 

ρGGE = 1 Z exp -β Ĥ + k λ k Îk , (6.8) 
where Z = Tr exp -β Ĥ + k λ k Îk is the partition function and the λ k are Lagrange multipliers introduced to enforce the constraints. They are determined by solving the equations Îk = Tr( Îk ρGGE ). These Lagrange multiplier keep some memory of the initial state.

Brief overview of experimental studies with atomic gases

Spinor Bose-Einstein condensates There have been numerous experimental studies of the out-of-equilibrium dynamics of quantum atomic gases. Let us rst mention a few works, that explored the evolution of a spinor BEC af er a quench of the QZE q. These experiments used Rubidium atoms which has ferromagnetic properties. In [START_REF] Sadler | Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate[END_REF], the formation of ferromagnetic domains in an elongated geometry was studied. Locally, the spin has a well-de ned direction, breaking the SO(2) symmetry. However, the direction is not homogeneous over the whole cloud, and instead forms a complex, apparently random spin pattern. With a similar set-up, the dynamic of the spin-spin correlation function was studied in [START_REF] Pr Üfer | Observation of universal dynamics in a spinor Bose gas far from equilibrium[END_REF]. In particular, the authors demonstrated the universality of the dynamics in an intermediate regime, between an initial state-speci c dynamics and the relaxed state, called "non-thermal xed point". During that time, the evolution of the spin structure factor is self-similar, i.e. af er proper rescaling, it can be written as a function of a single variable instead of two (momentum and time). Closer to our experiment, in the single mode regime, the creation of the excitations by a ramp through the nematic to ferromagnetic phase transition was studied in [START_REF] Anquez | Quantum kibble-zurek mechanism in a spin-1 Bose-Einstein condensate[END_REF]. In all these works, the focus is put on the transient dynamics, rather than on the state af er relaxation. The relaxation of spin-mixing dynamics was studied in chapter 4 and in [START_REF] Liu | Number uctuations and energy dissipation in Sodium spinor condensates[END_REF], but in those experiments, the long-time relaxation resulted from a coupling to the thermal cloud, which played the role of a heat bath. In that sense the system (the condensate) was not isolated.

Thermalization of a microscopic Bose-Hubbard system The thermalization of an isolated system consisting of six bosonic atoms on a six site lattice, realizing the Bose-Hubbard model, was demonstrated in [START_REF] Kaufman | Quantum thermalization through entanglement in an isolated many-body system[END_REF]. The system is initiated in the Mott insulating regime, with one atom per site and essentially no tunneling. The latter is suddenly switched on to trigger the dynamics. The authors show the thermalization of a local observable, the number of atoms per site (despite the small system size, all statistical ensembles give similar results). Moreover, by measuring the so-called Rényi entropy (similar to the Von-Neumann entropy) locally and globally, they demonstrate the role of entanglement in thermalization: while the state of less than six sites is mixed, the state of the whole six sites system remained almost pure.

Lack of thermalization in 1D gases The absence of thermalization for an almost integrable system was observed in [START_REF] Kinoshita | A quantum newtons cradle[END_REF]. In that experiment, ultra-cold bosonic atoms in a 1D trap are prepared in a superposition of opposite momentum states using an optical Bragg pulse. At early times, two "blobs" of atoms are bouncing o f each other due to the motion in a harmonic trap. Af er some dephasing time, the spatial distribution settles to a particular stationary shape, incompatible with a thermal distribution. This experiment can be captured by the Lieb-Liniger model, describing a uniform system of bosons in one dimension, with contact interactions. It is an integrable model, with an extensive number of conserved quantities. The Lieb-Liniger model was further studied experimentally in [START_REF] Langen | Experimental observation of a generalized gibbs ensemble[END_REF]. The authors of this latter work measured higher order correlation functions. They also observed the absence of thermalization and demonstrated relaxation to a GGE. More precisely, they measured correlation functions up to the tenth order and found that about ten "e fective temperatures" (i.e. Lagrange multipliers) are necessary to account for their observations.

6.2 Relaxation of a spinor BEC in the SMA: theoretical results

The relaxation in models involving a few bosonic modes has recently been the subject of theoretical investigations. The case of two modes (e fective spin 1/2) is explored in [START_REF] Kelly | Thermalization and its breakdown for a large nonlinear spin[END_REF]175], the case of three spatial modes in [START_REF] Garcia-March | Relaxation, chaos, and thermalization in a three-mode model of a Bose-Einstein condensate[END_REF] and nally the case of three spin modes (spin-1) in [START_REF] Dag | Classi cation of quench-dynamical behaviors in spinor condensates[END_REF]. However, the latter mostly focuses on the ferromagnetic case, in the regime q ∼ U s and therefore is not directly relevant for our experiments. Here, we present our theoretical investigation of the relaxation for q = 0 in the antiferromagnetic case.

Hamiltonian at q = 0 We recall that the Hamiltonian in the absence of applied magnetic eld reduces to

ĤSMA = U s 2N Ŝ2 . (6.9) 
The eigenstates are the angular momentum states |S, M z , where S ∈ {0, 1, .., N } is an integer that has the same parity as N in order to satisfy to the exchange symmetry. M z is an integer in {-S, -S + 1, ..S}. The eigenvalues are

E(S, M z ) = U s 2N S(S + 1) . (6.10) 
Spinor BECs are integrable systems due to the SO(2) (SO(3) at q = 0) symmetry which results in the conservation of all projectors onto the manifolds of xed magnetization (alternatively, all moments Ŝk z are conserved).

Relaxation of the nematic state at q=0

Let us consider rst the evolution of the nematic state |N : e z under the SMA Hamiltonian Eq. (6.9). We solved it numerically and show the results in gure 45. The short time dynamics can be captured by a Bogoliubov approximation as in Chapter 5, but eventually the depletion becomes too important and the approximation fails. The subsequent dynamics appears to be quite complicated. In the spirit of the previous discussion, we focus on the evolution of simple physical observables instead of the whole state, for instance the mean population N p of the number of m = ±1 pairs. We can compute N p (t) analytically for N 1. We nd (see the appendix E)

N p (t) N 2 τ F (τ ) , (6.11) 
where τ = 2 N Ust and F (τ ) = +∞ 0 dxe -x 2 sin (2xτ ) is the so-called Dawson function. At early times, F (τ ) ∼ τ and we recover the prediction of the result of the Bogoliubov approximation (Chapter 5),

N p (t) ∼ U 2 s t 2 . ( 6.12) 
At long times, F (τ ) ∼ 1/(2τ ) + 1/(4τ 3 ) and N p relaxes to N/4 with the asymptotic behavior

N p (t) ∼ N 4 1 + N 2 4U 2 s t 2 . (6.13) 
We now recover the same result by looking at the structure of the eigenstates |N, S, M z and using the general arguments introduced in the preceding section.

Relaxation to a Generalized Gibbs Ensemble

Relaxation of physical observables The spectrum Eq.(6.10) is non-linear, allowing for dephasing, and for su ciently long time, O(t) → cte. However, this does not guarantee the relaxation of an observable, since large temporal uctuations are not excluded, as a result of Eq. (6.6). We can show that relaxation occurs if we restrict Ô to few-body observables, such as the Zeeman populations, the spin components, their rst few moments... Indeed, the operator âm only couples states with S and M z varying by at most one unit. Therefore, in the collective spin state basis |S, M z , most o f-diagonal matrix elements of few-body observables vanish. The double sum in Eq. (6.6) is thus of order ∼ N -1 2 , so that time uctuations af er dephasing can be neglected in comparison to the equilibrium value. , with N = 100 atoms, at q = 0. We plot the distribution of the reduced number of pairs versus the dimensionless time τ in the upper panel. For τ 1 the distribution is smooth and corresponds to the thermal distribution calculated in the Bogoliubov approximation. At longer times the distribution becomes rather complex. Remarkably, the mean number of pairs (lower panel, solid black line) relaxes to a steady value and shows essentially no evolution when τ 1. It is almost (up to nite size e fect) perfectly described by Eq. (6.11) (red dashed line).

Generalized ETH for single-mode spinor BECs The projectors on a manifold of xed M z constitute an extensive set of conserved quantities in our integrable system. This prevents the thermalization of physical observables such as Ŝz , and less trivially N0 . Indeed we have (for S 1)

S, M z | N0 |S, M z N 2 S 2 -M 2 z S 2 . ( 6.14) 
The microcanonical ensemble is composed by all |S, M z state such that

U s 2N S(S + 1) E i (6.15)
where E i is the initial state energy. Let S i be the closest integer to 2N E i /U s 1. The expectation value of N0 in the microcanonical ensemble is

N0 MC Si Mz=-Si N 2 S 2 i -M 2 z S 2 i , (6.16 
)

N0 MC N 3 . (6.17) 
This result is a consequence of the SO(3) symmetry, the three Zeeman state are equally populated. Let us now consider an initial nematic state with all atoms in the m = 0 state. This state can be expressed as a superposition of |S, M z states where M z = 0. By virtue of Eq. (6.14) we have

N0 GGE = N 2 . (6.18) 
We also remark that provided S 1, Eq. (6.14) implies that the expectation value of N0 in a spin state |S, 0 is independent on S. This ensures the equivalence between the diagonal ensemble (for the nematic state) and the GGE, according to the generalized ETH 5 . We can even make a stronger statement, the eigenstates |S, 0 that intervene signi cantly in the initial state (i.e. in the diagonal ensemble) are essentially identical not only for the average N0 , but also regarding the full coarse-grained distribution of n 0 (derived in the appendix B)

PGGE (n 0 ) 1 π n 0 (1 -n 0 ) . (6.19) 
The tilde indicates coarse-graining over an interval ∆n 0 1/S. This formula holds for 1 S N , which is the case for the eigenstates we are interested in (the nematic state is peaked on S = √ N ). We compare in gure 46 PGGE (n 0 ) with the distributions of a few |S, 0 states in the number basis. The latter show fast oscillations around PGGE (n 0 ), that average out af er coarse-graining. The coarse-grained distribution of n 0 can also be calculated without the magnetization constraint (in the microcanonical ensemble). One then nds PMC (n 0 ) = 1/(2 √ n 0 ), signi cantly di ferent from the GGE prediction. The upper panels show the exact distributions and the lower panels the coarse-grained distributions. The black line corresponds to the analytical result given by Eq. (6.19).

The distribution given by Eq. (6.19) can also be obtained af er an average over a couple of S states, instead of coarse graining (see App. B). Since the initial state has signi cant weight onto several spin states (the spin shot noise is √ 2N ), we expect the distribution of n 0 to be close to Eq. (6.19), even without coarse graining. As a direct consequence the mode entropy [i.e. the Shannon entropy of the distribution of P(n 0 )] is also expected to relax toward the GGE predictions.

Comparison with numerical simulation We now compare the predictions of the microcanonical and GGE with the results of numerical simulations. We report our ndings in the table 6.1. They clearly show relaxation to the GGE.

Revivals The analytical formula given in Eq. (6.11) is derived by taking a continuum approximation for the spin, which is only valid in the thermodynamic limit N → ∞. At q = 0, the frequencies are multiples of U s /(hN ), and the evolution is periodic for N nite. More generally, for a nite size system, the Poincaré recurrence theorem states that for su ciently long times, the system comes back arbitrary close to its initial state. However, revivals of the dynamics are very rare for N 1, and thus we may still talk about relaxation, understood as the absence of evolution at most times. 0.18 ln( π 8 N ) ln(N ) -0.93 Simu. 0.249 [START_REF] Albiez | Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction[END_REF] 0.177(5) 0.96(1) ln(N ) -1.0(1) Table 6.1: Comparison between numerical simulations and the prediction of the microcanonical (MC) and generalized Gibbs ensemble (GGE). The initial state is the nematic state |0 ⊗N , and we let it evolve until τ = 10, at which point we consider that it has relaxed and we calculate the observable of interest. We scan N from 100 to 4000 and report the values of a t of O(N ) versus N . The mean value of the number of pairs clearly excludes the MC and is in very good agreement with the GGE predictions. The standard deviation also pleads in favor of a relaxation in the GGE. The prediction for the entropy is very close for both ensembles, and in good agreement with the numerical simulation.

6.3 Observation of the relaxation of a spinor BEC

Experimental protocols

The procedure is essentially the same as the one described in Sec. 5.4 of the previous chapter. We prepare a BEC with all atoms in m = 0 in a large magnetic eld. In order to observe relaxation on a short time scale, we use smaller BECs of N 100 atoms (the relaxation time scales as √ N h/U s ). To keep a substantial interaction strength U s with such small samples, we recompress the trapping potential af er evaporation in 500 ms. The density increases and leads to U s of the same order as in the previous experiments, U s /h 20 Hz. Af er recompression, we quench the magnetic eld to a nal value as low as 5 mG 6 . In that case, we have q/h 7 mHz, and the condition q U s /N is well ful lled. We can thus neglect the QZE term in the Hamiltonian, and we achieve the situation described in the previous section.

Experimental results

Observation of the relaxation to a generalized Gibbs ensemble Our measurements are summarized on gure 47. We observe the relaxation of the number of pair to a steady value. We also show in gure 47 standard deviation and entropy. All observables reach a steady value. In fact the whole (coarse grained) distribution relaxes. However, the magnetization stays almost constant, and due to the conservation of this quantity, the microcanonical ensemble fails to describe the steady state and thermalization does not occur. The generalized Gibbs ensemble predictions are on the other hand in very good agreement with our measurements.

Universal dynamics In principle, at q = 0, n p (t) depends on two dimensionless parameters, N and U s t/ . One remarkable aspect of the evolution predicted by Eq. (6.11), is the dependence of n p on only one parameter, τ = 2 N Ust . In order to verify this prediction, we prepare clouds with di ferent atom numbers N and di ferent U s . For each N , we determine U s by measuring the frequencies of oscillations for q > U s /N (in the UPA regime), as explained in Chapter 5. Af er this calibration, all measurements collapse on a universal curve n p (τ ), shown in gure 48.

E fect of a seed In Chapter 5, Sec. 5.5, we have seen that a coherent seed strongly modi es the dynamics. In the Bogoliubov approximation, the amplitude of the oscillations is essentially multiplied by the amplitude of the seeds. We now study how a seed impacts the relaxation. The situation is more di cult to simulate numerically, because we can no longer restrict the Hilbert space to the kernel of Ŝz , and hence the dimension of the Hilbert space is ∝ N 2 . However, for seeds that are small enough, the magnetization and energy of the initial states are barely changed, so that we may expect the predictions of the GGE to still approximately hold. Our measurements are plotted in gure 49. The initial relaxation dynamic is much faster than without a seed, but the steady state value is independent on the seed size (here, for seeds < 5% of the total atom number). Relaxation erases the nature of the uctuation (classical or quantum) that initiated the dynamics.

Steady state versus q

We have presented in Chapter 5, Sec. 5.4 the evolution of the state in the reversible regime, where the Bogoliubov approximation holds. This regime corresponds to q > U s /N . In the present chapter, we studied the relaxation when q < U s /N (we show more data sets on gure 53). We can sum up all results on a single universal curve n p versus N q/U s shown in gure 50. For q > U s /N (oscillating regime) we compute the mean value n p from a t to n p (t). This is motivated from the fact that in the Bogoliubov approximation, the GGE expectation for the mean number of pair equals the amplitude of the oscillation. Numerical simulations show that in this regime, af er a very long dephasing time, the system relaxes to the GGE. For q < U s /N we directly 
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Figure 47: Observation of the relaxation of a nematic state of N 100 atoms in a negligible magnetic eld. We show in (a) the evolution of the mean (blue dots) and standard deviation (red squares) of the number of pairs. The solid lines are the results of a numerical simulation and the dashed lines are the predictions of the GGE. In (b) we plot the entropy of the mode m = +1. The inset (c) shows the standard deviation of the magnetization, which remains essentially limited by the detection noise (gray area). Despite the large entropy in the mode m = +1, it is almost perfectly correlated to the mode m = -1. The second row shows the distribution of the number of pairs at di ferent times. At short times (d, 30 ms), it resembles a thermal distribution. As the depletion increases, n p goes through a maximum, at which point (e, 100 ms) the distribution is peaked on n p = 1. The number of pairs and its coarse grained distribution then settles to a stationary "U" shape (f and g, 200 ms and 500 ms). The solid blue lines are the results of a numerical simulation. In (g) the dashed red and dotted green lines are the predictions of the GGE and MC, respectively. In (h) we plot the histogram of S z at 500 ms. In that case the dashed red line corresponds to the detection noise (the GGE prediction is a Dirac distribution). Here again, the absence of thermalization is clear. extract the stationary value of n p (t) from our data. We compare the results to the diagonal and GGE. Both ensembles have almost identical predictions, except near q U s /N where they slightly di fer. The steady state obtained af er a numerical resolution of the dynamics is not plotted, but indistinguishable from the diagonal ensemble predictions.

Equivalence of the Gibbs ensembles In gure 50, we plot with a red dashed line the expectation of the generalized canonical ensemble (GCE), where the energy is xed on average, and the magnetization is exactly vanishing. The corresponding density matrix is

ρ GCE = 1 Z P0 exp(-β Ĥ) P0 , (6.20) 
where P0 is the projector onto the kernel of Ŝz . Alternatively, we could have used the generalized microcanonical ensemble (GME) de ned as

ρ GME = 1 Z n P0 |n n| P0 , (6.21) 
where the sum runs over the energy eigenstates such that

E n ∈ [E i -δE, E i + δE].
In gure 51, we compare the GME, GCE and diagonal ensembles. When q ∼ U s and n p ∼ 1/N , the GME prediction becomes sensitive to the precise value of δE (we take the standard deviation of the initial state energy as δE). For su ciently large N , the three ensembles essentially overlap. Small di ferences, which seem to persist as N increases, can be observed near the point q ∼ U s /N . Interestingly, at that point, the GCE is also slightly deviating from the diagonal ensemble (although it is closer to it than the GME is). This deviation can be understood by looking at the curve n p (E n ) shown in gure 52. For q = U s /N , n p (E n ) is extremely sensitive on the precise value of E n near the energy of the initial state. However, the region of discrepancy, given by q ∼ U s /N , shrinks as N increases and disappears in the thermodynamic limit. Ust . We vary the mean atom number from ∼ 107 to 835. U s is calibrated independently each time. The solid black line is the universal function de ned in Eq. (6.11). The dotted red line is the GGE prediction. 

Outlooks

Dynamics of mesoscopic ensembles In this chapter, we investigated the evolution of an initial nematic state in the critical regime q U s /N . We observed the relaxation of the state to a steady value. However, we pointed out that relaxation only occurs for physical observables, not for the quantum state itself. It would be interesting to observe the evolution of the state af er these observables have relaxed. Dynamics can be observed in the detailed (not coarse grained) distribution of pairs as shown in gure 45. Alternatively, revivals of the dynamics would also attest of the continuing evolution of the state. Both experiments are technically challenging, but may be successful with small sample of few tens of atoms or so.

Thermalization in a chaotic regime For q U s /N , we observed the relaxation of the state to a generalized Gibbs ensemble, and the absence of thermalization. The underlying reason is the integrability of the e fective spin Hamiltonian due to its SO(2) symmetry. In [START_REF] Garcia-March | Relaxation, chaos, and thermalization in a three-mode model of a Bose-Einstein condensate[END_REF], a chaotic regime was shown to exist in a three-mode model. The author of [START_REF] Garcia-March | Relaxation, chaos, and thermalization in a three-mode model of a Bose-Einstein condensate[END_REF] also shows the occurrence of thermalization by the ETH mechanism. In that study, the three modes are supposed to correspond to the three rst energy levels of a trap, and the Hamiltonian is quite di ferent from ours and in particular is not integrable. Yet, in our case, magnetic eld gradient or microwave dressing to the F = 2 level, could be used to break the symmetry of the Hamiltonian. It would be interesting to see if chaotic behavior could arise from the applied perturbation, and observe the cross-over from the integrable to the chaotic regime. Comparison between the GME (solid red line), the GCE (dashed blue line) and the diagonal ensemble (dotted black line) for increasing atom number N . For n p 1/N , the GME contain few (∼ 1) states within the energy window δE = ∆H, and its prediction are not accurate. For q ∼ U s /N , a deviation occurs for the GME (and to a lesser extent to the GCE), which does not seem to disappear as N increases (see main text and gure 52). The blue shaded area corresponds to the interval of width δE, used to compute the GME average. For q = 0, the curve is very smooth and essentially constant, in accordance with the generalized ETH. For q = U s /N , the curve is, on the contrary, very peaked, and the predictions of the GME are sensitive to δE. For q = U s /20, the curve is smooth again, but there are few eigenstates within the interval δE. Hence, the MCE is constituted of few states, and becomes very dependent on the precise value of δE, leading to an "unstability" of the MCE predictions in that interval. This issue disappears in the thermodynamic limit. Fragmentation of a spinor Bose-Einstein condensate Bose-Einstein condensation (BEC) was originally introduced as a phenomenon occurring in an ideal gas, that is to say, for noninteracting particles. As such, it is merely a statistical e fect, fragile and easily jeopardized when several one-body states are near degenerate and compete for condensation. In practice, interactions play a decisive role, and when repulsive, they typically confer to spinless condensates a great robustness [START_REF] Leggett | Bose-Einstein condensation in atomic gases: some fundamental concepts[END_REF][START_REF] Nozières | Some comments on Bose-Einstein condensation[END_REF]. On the other hand, attractive interactions of en lead to instability and collapse [START_REF] Leggett | Bose-Einstein condensation in atomic gases: some fundamental concepts[END_REF]. It has long been noted that spinor condensates can host an alternative remarkable scenario, called condensate fragmentation, characterized by the absence of a unique one-body state macroscopically occupied [START_REF] Nozieres | Particle vs. pair condensation in attractive bose liquids[END_REF][START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF][START_REF] Nozières | Some comments on Bose-Einstein condensation[END_REF]. For spin-1 atoms with antiferromagnetic interactions, the underlying microscopic mechanism is the associations of the atoms in singlet pairs. In a classical system, one qualitatively expects interactions to favor an ordered phase, with low entropy. For instance in a ferromagnet, a stronger coupling between the spins facilitates their spontaneous alignment in a given direction and the appearance of a macroscopic magnetization. Interactions have precisely the opposite e fect when they drive the fragmentation of a condensate. Indeed, in that latter case the order parameter (the number of atoms in the condensate) reduces, and may even become microscopic. Furthermore, in many instances, interactions act to restore a symmetry spontaneously broken by the condensate [START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF][START_REF] Castin | Bose-Einstein condensates in symmetry breaking states[END_REF]. For instance, we will see that in the case of an antiferromagentic spin-1 BEC, interaction favors a SO(3) symmetric singlet state. The role of the interactions in the fragmentation of a condensate thus resemble that of thermal uctuations in a classical system, and is of en thought in terms of quantum uctuations. In our context, the similarity between quantum and thermal uctuations holds quantitatively to a large extent. Indeed, we will see how a fragmented spinor BEC (at zero temperature), can be well described with respect to few-body observables by a thermal state, with a temperature proportional to the interaction strength. However, thermal uctuations results in a statistical mixture of coherent states, a separable state, while quantum uctuations produce a coherent superposition of coherent states, with a high degree of entanglement.

An extreme form of fragmentation can occur when the number of degeneracies becomes macroscopic. This is achieved for instance for a charged particle moving in a magnetic eld. For each eigenvalue of the Hamiltonian, there exists a macroscopic number of degenerate states forming so-called Landau levels. For neutral atoms the same structure can be obtained by rotating a BEC in a harmonic trap [START_REF] Madison | Vortex formation in a stirred Bose-Einstein condensate[END_REF]. Classically, in the rotating frame, the atoms experience a centrifugal force, which counter-acts the harmonic con nement, and a Coriolis force, analogous to the Lorentz force produced by a magnetic eld. The analogy holds also in the quantum treatment [START_REF] Cooper | Rapidly rotating atomic gases[END_REF]. The large degeneracy occurs when the rotation is fast enough to compensate the trapping potential. In that case, interactions lead to the fragmentation of the condensate and the formation of highly correlated many body states. A macroscopic number of single particle states are occupied, and all signs of condensation are gone. The case of repulsive interaction is particularly interesting, as the system is expected to be in a fractional quantum Hall state [START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF][START_REF] Cooper | Quantum phases of vortices in rotating Bose-Einstein condensates[END_REF]. However, such states yet remain to be seen experimentally with ultracold atoms. Let us mention that similarly, the transition from super uid to Mott insulator observed in [START_REF] Greiner | Quantum phase transition from a super uid to a Mott insulator in a gas of ultracold atoms[END_REF] can also be seen as an extreme form of fragmentation.

In this Chapter, we report on our realization of a fragmented condensate of singlet pairs. We will start in Sec. 7.1 with a brief discussion of the role of interactions in Bose-Einstein condensation, before focusing in Sec. 7.2 on the case of the fragmentation of an antiferromagnetic spin-1 BEC. We will discuss in more detail the similarities and di ferences between thermal and quantum fragmentation, and the role played by entanglement in the latter case. This study highlights the peculiar nature, but also the fragility of quantum fragmentation. We will detail in Sec. 7.3 the methods that we have used to produce a fragmented state and report our observation in Sec. 7.4. We performed the full tomography of the state of the system, presented in Sec. 7.5. The reconstruction provides new insight on the nature of the many-body state and demonstrates the role played by entanglement in the condensate fragmentation. De nitions A rst extension of the de nition of BEC to the case of interacting particles was proposed in [START_REF] Penrose | Bose-Einstein condensation and liquid helium[END_REF], based on the eigenvalues of the single-particle density matrix ρ (1) . We will use the following de nitions1 [START_REF] Leggett | Bose-Einstein condensation in the alkali gases: Some fundamental concepts[END_REF] • The ensemble forms a condensate if ρ (1) has at least one eigenvalue of order one.

• The ensemble forms a single condensate if ρ (1) has a single eigenvalue of order one.

• The ensemble forms a fragmented condensate if ρ (1) has several eigenvalues of order one. 

Ĥ0 = k k â † k âk , (7.1) 
where â † k creates an atom in state |k . The equilibrium state is most conveniently described within the grand canonical ensemble. Let T be the temperature (β = 1/k B T ) and µ the chemical potential. The mean occupation of state |k is [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF] 

n k = 1 e β( k -µ) -1 , (7.2) 
where µ is obtained from N = k n k . As µ → 0, n 0 diverges, and this term is let aside from the sum. The rest of the sum is then replaced by an integral. In three dimensions it saturates at a critical temperature T c such that

d ρ( ) 1 e βc -1 = N , (7.3) 
where ρ( ) is the density of state at energy (in three dimension, ρ( ) ∝ √ ). Below T c , the chemical potential µ equals the ground state energy, atoms accumulate in the ground state and the ensemble forms a single condensate [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. This scenario of condensation is particularly simple, because the ground state is non-degenerate. However, in the thermodynamic limit, the gap between the ground state and the rst excited state vanishes. In such situations, interactions play an important role in determining the structure of the many body state.

Interacting scalar BEC in a box We rst brie y study the situation of atoms with contact interactions in a box potential. The Hamiltonian is Ĥ = Ĥ0 + Ĥint , with

Ĥint = U 2 k,k ,q â † k-q â † k +q âk âk . (7.4) 
We focus on repulsive interactions, ie U > 0. Let us consider a trial state of the form ∝ k â †n k k |vac . In the expression of the energy, we have two types of terms, the "Hartree" terms for q = 0 and if k = k the "Fock" or exchange terms q = kk . This yields

Ĥint = U 2 k,k n k n k (2 -δ k,k ) . (7.5)
Thus, the interaction energy is twice as larger for atoms in di ferent momentum states. For repulsive interactions the energy is minimized by having all atoms in the same momentum state (within our ansatz), i.e. for a single BEC. The energy cost for taking n 1 atoms out of the BEC is at least n 1 U (neglecting the kinetic energy). It thus costs a macroscopic amount of energy to fragment the condensate, and here, repulsive interactions strongly favor single condensation [START_REF] Nozières | Some comments on Bose-Einstein condensation[END_REF][START_REF] Leggett | Bose-Einstein condensation in the alkali gases: Some fundamental concepts[END_REF].

In the above calculation, we have used trial states which are not eigenstates of the interaction Hamiltonian Eq.(7.4). For weak interactions, a more re ne treatment would rely on Bogoliubov theory [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. This is standard and close to what we have presented in Chapter 2. The result is a small depletion of the condensate, function of the adimensionate parameter na 3 s , where n is the density of the gas and a s the scattering length characterizing the interaction strength. The depletion is a function of the density, which is an intensive quantity, and hence the condensate is not fragmented as long as the Bogoliubov treatment is valid. This is usually the case in dilute gases, where na 3 s 1, and the quantum depletion is typically very small. With this brief discussion, we wanted to emphasize that condensate fragmentation is not a typical phenomena occurring as soon as there are interactions. We will now explore situation where fragmentation does occur.

Fragmentation of a two-modes BEC

Given the previous discussion, one expects attractive interactions to favor fragmentation. It is indeed the case, but the theoretical treatment is more involved (see e.g. [START_REF] Castin | Bose-Einstein condensates in symmetry breaking states[END_REF]). From an experimental point of view, attractive BECs su fer from three body recombinations (resulting in losses), which strongly reduces the lifetime, and make it challenging to observe the equilibrium state. For simplicity we turn to the situation where two degenerate modes are competing for Bose-Einstein condensation. A generic Hamiltonian for the interaction is

Ĥint = U N n1 n2 , (7.6) 
where ni is the number operator for the mode i = 1, 2. This model may be used for instance to describe an ensemble of atoms carrying a pseudo-spin 1/2 [START_REF] Nozières | Some comments on Bose-Einstein condensation[END_REF], or "scalar" interacting atoms, con ned in the double well trap [START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF].

For U > 0, we recover the situation described above: a single condensate where all atoms are in one mode is strongly favored. On the other hand, for U < 0 the ground state is the "twin-Fock state" (TFS) with N/2 atoms in each mode (we assume N even for simplicity). The single particle density ρ

(1)

i,j = â † i âj /N is ρ (1) = 1 2 1 0 0 1 , (7.7) 
and the condensate is fragmented. The energy of the TFS is E TFS = U N/4. The non-fragmented BEC which minimizes the energy Eq. (7.6) corresponds to the coherent state

|φ = 1 √ N !2 N â † 1 + â † 2 ⊗N |vac . (7.8) 
It has an energy E φ = U (N -1)/4. Thus the energy di ference with the actual fragmented ground state is only of order ∼ U . This contrasts with the case U > 0, where the cost for fragmentation is of order ∼ N U . The origin of this di ference is easily understood by looking at the spectrum of the Hamiltonian (7.6) plotted in gure 54. For U > 0 (a), the ground state corresponds to a single condensate with n 1 = 0 or n 1 = N . A large gap separates it from the rst excited state. For U < 0 (b), the ground state corresponds to the twin-Fock state with n 1 = N/2. The condensate is fragmented but this state is fragile, it is separated from the rst exited states by a very small gap.

This model is discussed further in [START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF], where the e fect of a small coupling between the two modes is investigated. As our calculation of the energy scales suggests, fragmentation is found to be very fragile against such perturbation. We will now focus on the fragmentation of a spin-1 BEC which shows a very similar behavior.

Fragmentation of a spin-1 BEC

Hamiltonian and ground state

We recall here some important results of chapter 2. In the single-mode approximation (SMA), all atoms occupy the same spatial mode. The Hamiltonian for the spin, is the sum of the quadratic Zeeman energy (QZE) energy and the antiferromagnetic interaction energy ĤSMA = -q N0 + U s 2N Ŝ2 . (7.9)

• For q/U s → +∞, the ground state is the nematic state |N : e z = |m = 0 ⊗N , which constitutes a single condensate.

• For U s /N 2 q, the condensate is slightly depleted and well described by a Bogoliubov approximation, which yields N p U s /(8q). The depletion is thus independent on N and we still have a single condensate.

• For q U s /N 2 , the Bogoliubov approximation breaks down and the condensate is fragmented.

Let us focus for simplicity on the situation q = 0. The family of coherent nematic states |N : Ω , obtained by rotation of |N : e z , is degenerate and minimizes the mean-eld energy. This large degeneracy arises from the fact that the single particle states break the SO(3) symmetry of the Hamiltonian. This symmetry drives the fragmentation of the BEC. Indeed, the requirement that ρ (1) commutes with all rotation matrices implies that ρ (1) is proportional to the identity (Schur's lemma)

ρ (1) = 1 3   1 0 0 0 1 0 0 0 1   , (7.10) 
and the condensate is fragmented [START_REF] Ho | Fragmented and single condensate ground states of spin-1 Bose gas[END_REF][START_REF] Koashi | Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates[END_REF][START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF]. More generally, the eigenstates of the Hamiltonian Eq.(7.9) at q = 0 are the angular momentum states |N, S, M z , where S ∈ [0, N ] is an integer that has the same parity as N in order to satisfy the exchange symmetry and M z is an integer in [-S, S]. The spectrum is

E(N, S) = U s 2N S(S + 1) . (7.11)
For simplicity, let us focus on the situation N even. The so-called singlet state with vanishing spin S = 0 is the ground state. We point out that fragmentation occurs for very small QZE, q U s /N 2 . As the previous section, we observe that fragmentation is a very fragile e fect, which does not exist in the thermodynamic limit. We will see in the following Sections how the atom losses and thermal uctuations may also spontaneously break the SO(3) symmetry and modify the nature of the fragmented state.

Symmetry breaking description

The singlet state can be conveniently written as a superposition of nematic coherent states. We rst review some important properties of the latter. The nematic state aligned along the quantization axis z is the state with all atoms in m = 0, |N : e z = |0 ⊗ . By rotation in spin space, we obtain the state aligned along Ω = (sin θ cos φ, sin θ sin φ, cos θ), expressed as The nematic states form an overcomplete basis of the Hilbert space of symmetric states of N spin-1 particles [START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF][START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF]. The overlap between two nematic states is (see appendix B)

|N : Ω = 1 √ N ! - 1 √ 2 sin θe -iφ â † +1 + cos θâ † 0 + 1 √ 2 sin θe iφ â † -1 N |vac . ( 7 
N : Ω |N : Ω = (Ω • Ω) N . (7.14) 
In the large N limit, it is sharply peaked on Ω = Ω. This quasi-orthogonality of the nematic states makes them very convenient to compute the expectation value of few-body operators. Let us consider a k-body operator in normal order

Ô(k) = â †k + +1 â †k - -1 â †k 0 0 âk+ +1 âk- -1 âk0 0 , (7.15) 
with k m = k m = k and k N . Using Eq. (7.13) the matrix elements of Ô(k) in the nematic state basis are .16) with

N : Ω | Ô(k) |N : Ω = O (k) (Ω , Ω) (Ω • Ω) N -k . ( 7 
O (k) (Ω , Ω) = N ! (N -k -1)! Ω * k + +1 Ω * k 0 0 Ω * k - -1 Ω k+ +1 Ω k0 0 Ω k- -1 . (7.17) 
We now come back to the singlet state |N, 0, 0 . Due to its rotational invariance, it has the same overlap with all nematic states and can be written as [START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF] |N, 0, 0 = √ N 4π d 2 Ω|N : Ω . (7.18)

The expectation value of Ô(k) in the singlet state is

Ô(k) sing = N (4π) 2 d 2 Ωd 2 Ω O (k) (Ω , Ω) (Ω • Ω) N -k . (7.19)
The term O (k) (Ω , Ω) varies signi cantly when θ or φ run through ∼ π/k. On the other hand, the scalar product (Ω • Ω) N -k varies on a scale of ∼ π/(Nk). For k N , we can use the stationary phase approximation, and replace (Ω • Ω) N -k by a Dirac distribution centered on its maxima Ω = ±Ω [START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF] (

Ω • Ω) N -k 2π (N -k) sin θ (δ(θ -θ , φ -φ ) + δ(θ + θ -π, φ -φ ± π)) (7.20) 
This approximation entails an error of order 1/N . It yields

Ô(k) sing 1 4π d 2 ΩO (k) (Ω, Ω) , (7.21) 
up to terms of order N k-1 or smaller. This expression can be rewritten as

Ô(k) sing Tr(ρ sb Ô(k) ) (7.22) 
where

ρ sb = 1 4π d 2 Ω|N : Ω N : Ω| , (7.23) 
corresponds to a (approximate) symmetry breaking description [START_REF] Castin | Bose-Einstein condensates in symmetry breaking states[END_REF]. Indeed, although ρ sb is clearly invariant upon rotations, a possible interpretation is that in each realization of the experiment, the system is in a symmetry-breaking state |N : Ω , but with a direction Ω picked randomly. Note that such an interpretation would apply to any (overcomplete) basis in which ρ sb is diagonal (for instance the |N, S, M z basis) but with a very di ferent meaning, and thus it should not be taken literally.

Deviation to the symmetry breaking description In table 7.1, we compare the expectation values of a few observables, in the singlet state given by Eq. (7.18) and the approximate symmetry breaking description (SBD) given by Eq. (7.23).

• For the mean population and spin, the SBD gives the exact value.

• For the second moment of the population (or for the variance), the SBD gives the correct leading term of order N2 , but misses a term order N .

• For the mean spin square, the SBD gives the leading term of order N 2 , which is vanishing. The next term, of order N is non-vanishing for the SBD and corresponds to the shot-noise of the nematic state, equals to 2N (see Chapter 2).

• We also look at the mean value of the projector Π0 = |N : e z N : e z | onto the state with all atoms in 0. The SBD is wrong by a factor of two. This is due to the fact that Π0 = â †N 0 âN 0 /N ! is a N -body observable, and thus, in the integral of Eq. (7.19), the term (Ω • Ω) N -k = 1 can certainly not be replaced by a Dirac distribution 2 .

N0 Ŝ ∆ N 2 0 Ŝ2 Π0 Singlet N 3 0 4N 2 45 + 12N 45 0 1 N SBD N 3 0 4N 2 45 2N 1 2N
Table 7.1: Comparison between the expectation values of a few observables in the singlet state and in the approximate symmetrybreaking description. For the projector onto the nematic state |N : e z , we only give the leading term in the limit N 1, since this is enough to distinguish the two states.

We want to be experimentally able to clearly distinguish the singlet state from the SBD. By the de nition of the latter, this cannot be achieved through a "rough" measurement of our typical observables (i.e. population or spin). A precise measurement of the spin appears as clear-cut, but requires a high counting resolution, below the shot-noise to exclude the SBD, and at the single atom level to identify unambiguously the singlet state.

Measurement of the singlet state The value of Π 0 1/N may appear odd at rst sight. Indeed, given the single particle density matrix Eq. (7.10), an atom has a-priori a probability 1/3 to be in the state m = 0 (cf rst column of table 7.1), and thus, one could expect the probability to measure all the atoms in that state to be 1/3 N , much smaller than 1/N . The discrepancy comes from the indistinguishability of the particles, which considerably reduces the number of con guration for typical situation, such as N 0 = N/3, and thus favors "extreme" situations, such as N 0 = N .

Further insight comes from the study of the evolution of the singlet state over a measurement discussed in [START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF]. This problem is closely related to the measurement of the relative phase of two independent BECs [START_REF] Castin | Relative phase of two Bose-Einstein condensates[END_REF]. The authors of [START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF] conceived a thought experiment, where the spin state of k individual atoms (k 1) leaking from a BEC, is measured along di ferent axes. First, they consider a single BEC in the nematic state |N : Ω , they show that this protocol allows to determine the alignment Ω of the state, with an accuracy ∝ 1/ √ k. As for a singlet state, the measurement e fectively projects the singlet onto a nematic state with a well de ned alignment, picked at random. If the measurement is not read (e.g. due to losses), a singlet state is thus projected onto the SBD (with Nk atoms). At the beginning of the present section, we have emphasized the fragility of the singlet state to very small (q > U s /N 2 ) QZE. Atom losses appear as another symmetry-breaking mechanism, but here the preferred direction is chosen by the measurement process, completely randomly. The overlap with the SBD increases with the number k of lost atoms, independently on the total number of atoms N3 . On the other hand, the loss rate is typically ∝ N (or larger) and thus, the "bigger" the singlet, the more fragile it is.

Thermal fragmentation

Symmetry breaking description and thermal uctuations Let us express the SBD in the spin state basis. Because of its SO(3) symmetry, it is proportional to the identity within each S subspace. Thus we only need to compute the matrix elements (that must be independent on M z )

N, S, M z |ρ sb |N, S, M z = 1 4π d 2 Ω| N, S, M z |N : Ω | 2 . (7.24) 
In the appendix B we show (see also [START_REF] Barnett | Quantum rotor theory of spinor condensates in tight traps[END_REF])

N : Ω|N, S, M z 4π N e -S 2 4N Y S,Mz (Ω) , (7.25) 
where Y S,Mz are the spherical harmonic. This expression is valid for N Up to the approximation S 1 (validated a-posteriori), the SBD can be seen as a thermal state

ρ sb 1 N exp - ĤSMA k B T sb , (7.28) 
with an e fective temperature T sb = U s /k B ∼ 1 nK. This results shows the apparent similarity between quantum and thermal uctuations.

Canonical ensemble Let us consider a general thermal state, within the SMA, so that the spatial degree of freedom is e fectively at zero temperature, while the spin is at an e fective temperature T spin . Such a situation is an idealized picture, but is not completely unrealistic. It describes a cloud out of equilibrium, for which the spin and spatial degrees of freedom have di ferent e fective temperatures, and are weakly coupled so that equilibration takes a very long time. The state of the system, given the Hamiltonian (7.9) is (in the canonical ensemble)

ρ CE = 1 Z CE exp - ĤSMA k B T spin , (7.29) 
Using a continuum approximation (valid for k B T spin U s /N ), the partition function can be calculated

Z CE 1 2β (1 -e -β N 2 ) , (7.30) 
where β = U s /(2N k B T spin ). From this we can compute the total spin

Ŝ2 1 β - N 2 e β N 2 -1 . (7.31)
The condition for having mostly the singlet populated reads T spin U s /(N k B ) ∼ 10 pK, while below shot noise uctuations of the spin require T spin < T sb ∼ 1nK. This is much colder than the (global) temperatures typically achieve in ultra-cold gases (∼ 100 nK). However, using a protocol detailed in Sec. 7.4, we are able to prepare a sample with very low T spin . We do not know a-priori the precise value of T spin at the end of the experiment, and cannot use Eq. (7.29) to make a quantitative prediction (we will extract T spin 30.7 ± 4.6 pK from a t to our data in Sec. 7.5).

Singlet state and entanglement

An essential di ference between thermal and quantum fragmentation comes from the fact, that in the latter case, the BEC is in a highly correlated state. In this section we present how to reveal the entanglement.

Squeezing parameter As we have seen is Chapter 2, Sec. 2.4.1, for a separable state of N indistinguishable spins 1, Ŝ2 ≥ 2N . Thus, we can introduce the following squeezing parameter4 

ξ 2 s = Ŝ2 2N , (7.32) 
which reveals entanglement when ξ s < 1. For the singlet state ξ s = 0.

Block entanglement The squeezing parameter Eq.(7.32) has the advantage of being straightforward to extract from our measurements. It is well suited to detect entanglement of low spin states, but it does not constitute a general measure of entanglement (for instance it does not detect entanglement for the twin-Fock state or TMSV). We have introduced in Chapter 2 a generic measure of entanglement, based on the partitioning of the ensemble into two "blocks" containing n and Nn atoms. The term "block" comes from models with localized spins [START_REF] Amico | Entanglement in many-body systems[END_REF] (e.g a block can be n adjacent spins) but the situation is less intuitive in the case of itinerant spins. Yet, the reduced density matrix is perfectly well de ned, see e.g. [START_REF] Gessner | On the reduced dynamics of a subset of interacting bosonic particles[END_REF]. In the appendix F, we propose a derivation of ρ (n) which gives a simple physical picture. We imagine that the atoms are initially con ned in a single spatial mode A, are subsequently allowed to tunnel into another spatial mode B. For instance, A and B can be the two wells of a trap. They constitute the two blocks, and the partial trace is taken over the mode B. Af er selecting a given partition n, we obtain the following normalized reduced density matrix (expressed in the number basis)

ρ (n)j+,j- i+,i- = N n -1 P (n) † i+,i- P (n) j+,j-, (7.33) 
where

P (n) i+,i-= âi+ +1 âi- -1
ân-i+-i-

0 i + !i -!(n -i + -i -)! . ( 7.34) 
The reduced density matrix has a clear physical meaning, it fully determines the probability distribution of any measurement performed within a block. For a pure state, a measure of entanglement is given by the Von-Neumann entropy of the reduced density matrix

S n = -Tr n (ρ (n) ln ρ (n) ) . (7.35) 
A single BEC is not entangled. Let us consider n = 1. A "quantum fragmented" BEC (ie at T = 0) is by de nition entangled, and for this partitioning, the singlet state has maximal entanglement.

CHAPTER 7. FRAGMENTATION OF A SPINOR BOSE-EINSTEIN CONDENSATE

In practice, we reconstruct the full state ρ (see Sec. 7.5) and compute ρ (n) numerically from Eq. (7.33). For a perfect singlet state, ρ (n) can be computed analytically. We start from an expression of the full density matrix in the nematic state overcomplete basis

ρ = N (4π) 2 d 2 Ωd 2 Ω |N : Ω N : Ω | (7.36)
We then assume that the atoms are distributed between two modes A and B so that the state becomes5 

ρ = N (4π) 2 d 2 Ωd 2 Ω |n : Ω A |N -n : Ω BA n : Ω | B N -n : Ω | (7.37)
We obtain the reduced density matrix by tracing over the mode B. It is convenient to use the spin state basis, the overlap between these states and the nematic states is given in Eq.(7.25) (see App.B and [START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF]). We obtain

ρ (n) = N (4π) 2 S,M f N -n S d 2 Ωd 2 Ω Y * S,M (Ω)Y S,M (Ω )|n : Ω n : Ω | (7.38)
where f k S [4π/k exp(-S 2 /(2k)). Furthermore, using

|nSM = 1 f n S dΩY SM (Ω)|n : Ω , (7.39) 
we arrive to

ρ (n) s N (4π) 2 SM f n S f N -n S |nSM nSM | , (7.40) N n(N -n) exp - N n(N -n) S 2 2 (7.41)
We recognize the expression of a thermal state

ρ (n) 1 Z n exp - ĤSMA k B T n , (7.42) 
where ĤSMA is given by Eq. (7.9) with q = 0 and

T n = U s k B n N 1 - n N . (7.43) 
The partition function is Z n = N k B T n /U s . Then entanglement entropy is

S n = -Tr(ρ (n) ln ρ (n) ) , (7.44 
)

ln Z n + 1 k b T n ĤSMA , (7.45 
)

ln Z n - 1 Z n T n dZ n d(1/T n ) , (7.46 
)

ln n 1 - n N + 1 . (7.47)
The function S n is non monotonic (see gure [START_REF] Zhang | Mean eld ground state of a spin-1 condensate in a magnetic eld[END_REF]. This result strongly contrasts with the extensivity of the entropy of classical systems (i.e. at large temperature). Note that an isotropic state is fully represented by the spin distribution,

P n (S) = 1 Z n S(S + 1) exp - U s S(S + 1) 2N k B T n . (7.48) 
We compare these analytical results with a numerical calculation using Eq. (7.33) on gure 55 and we observe an almost perfect agreement. n) of a singlet state with N = 100 atoms, computed numerically using Eq. (7.33). The solid lines are the analytical results, corresponding to the thermal distribution Eq. (7.42). The panels on the right show the exact distribution P n (S) (dots), and the thermal distribution (solid line) for various n.

Experimental protocol

Fragmented BECs have been the subject of many theoretical investigations (see e.g. [START_REF] Mueller | Fragmentation of Bose-Einstein condensates[END_REF] for a brief review). In terms of experiments, we should distinguish two types of approaches. A BEC can be fragmented dynamically, for instance af er a quench into a regime of instability. This includes the type of experiments discussed in Chapters 5 and 6. Here we focus on situations where quantum fragmentation is observed at equilibrium. This is arguably more challenging and there are few experimental demonstrations reported in the literature. For spinor BECs, we are only aware of the work published in [START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF]. In this experiment, using an adiabatic following of the ground state of a spinor BEC from q ∼ 2U s (the GS is near the nematic state) to q ∼ -2U s (the GS is near the TFS 6 ) a fragmented BEC with a high degree of entanglement is produced. More precisely, they measure a squeezing parameter ζ 2 s = -11 dB and an entanglement depth of 910 +9900 -450 atoms (one standard deviation) out of 12000 atoms. However, the adiabaticity is not perfectly ful lled, and they estimate that the rst ∼ 500 energy eigenstates have comparable overlaps with the nal state. When one tries to produce a fragmented state such as the TFS or the singlet state, an inherent di culty comes from the near degeneracy of the low-lying eigenstates, the consequent extreme sensitivity of the system to technical uctuations, and the long preparation time required to insure adiabaticity. More precisely, in the case of our experiment, af er the discussion of Sec. 7.2, we arrive at the following speci cations (for N ∼ 100 and U s /h ∼ 20 Hz)

• A small QZE q U s /N 2 requires a magnetic eld at the milliGauss level.

• The spin temperature T spin U s /(N k B ) has to be on the order of a few tens of picoKelvin or below.

• The number of atoms lost between the preparation and observation of the state has to be kept of order one or below. For a loss rate τ (assuming one-body losses), the duration of the experiment must be t τ /N , on the order of a second.

• Finally, in order to distinguish the low spin states, the spin has to be measured with an accuracy near the single atom level.

The atom number is a strong limiting factor, which can be understood from the fact that fragmentation takes place near a phase transition, in a critical region that shrinks and disappears at the thermodynamic limit. Compared to the work reported in [START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF], we decided to work with much smaller condensates, with N ∼ 100 atoms, in order to prevent the production of energy excitations 7 .

In the rest of this section, we detail the methods we use to produce and observe a fragmented state. Direct evaporative cooling at q ∼ U s /N 2 would not lead to the target state, since it relies on atom losses (which are a source of decoherence) and saturates at low densities at temperature orders of magnitude too large for our purposes. Instead, we prepare a single BEC in a large magnetic eld, with all atoms in m = 0. We are able to create this state with very low spin entropy, and it thus constitutes a good starting point for an adiabatic ramp towards the phase transition, as sketched in gure 56. More precisely, the sequence we use is the following:

1. Af er evaporative cooling in a large bias magnetic eld of B i = 1 G (q/ 300 Hz), we have a BEC with about 2000 atoms in the state m = 0. Residual thermal atoms in the m = ±1 states are removed using spin-ltering.

2. To reduce the atom number, we perform an almost π/2 rotation which transfers most of the atoms in m = ±1, and then we "spin-lter" again. We are lef with about 104 ± 15 (one standard deviation) atoms in m = 0.

3. In order to increase the density and therefore U s , we recompress the trap. The trap frequencies at the end of the compression are about (2, 2.8, 2) kHz and U s / 20 Hz.

4. Finally, we ramp the magnetic eld down to B f 4 mG (q 4 mHz) in t f = 1 s.

time t qu. Zeeman energy q(t)

q i U s q f U s = |0 = |0,0 -|+,--|,+ √ 2
Figure 56: The experiment reported in this chapter consists in an adiabatic following of the ground state of a spinor BEC. The ramp starts with q i U s , so that the ground state is essentially the nematic state with all atoms in m = 0, and stops at q f U s where the ground state constitutes a fragmented BEC. The latter is a highly entangled state, which can be viewed as a condensate of singlet pairs. Adiabatic ramp The magnetic eld ramp is designed to ful ll the best the adiabaticity criterion, which is achieved when the energy gap ∆E between the ground state and the rst excited state veri es

d∆E dt = ∆E 2 , (7.49) 
where is a number that characterizes the deviation to adiabaticity, and in that respect should be as small as possible. For almost the whole ramp we have U s /N 2 q U s , such that the Bogoliubov approximation applies and gives ∆E 2 ω B ∝ B. The factor 2 comes from the conservation of Ŝz , which imposes to create excitations by pairs (one in each Bogoliubov mode, see App. C). Integration of Eq.(7.49) yields (for

B i B f ) 1 B(t) - 1 B i ∝ t (7.50)
and thus

B(t) = B i 1 + Bit B f t f , (7.51) 
and 1/(2ω f t f ). In practice, we use B i 1 G (q/h 277 Hz) so that q U s and the initial state (all atoms in m = 0) is very close to the ground state. The ramp duration t f is given by a compromise between the adiabaticity requirement and decoherence (e.g. due to atom losses). For a given t f there is an optimal B f , which results from a compromise between the adiabaticity requirement and the distance to q = 0. Experimentally we nd that B f = 4 mG and t f = 1 s are optimal (in order to minimize the total spin). With these parameters, ω f = 2π × 0.4 Hz and = 0.2. We simulated numerically the evolution of the state over the ramp. We show the results in gure 57 and compare them to the ground state expectation. We see little deviations, indicating that the adiabaticity criterion is well veri ed. The simulation shows that the state of the system at the end of the ramp is close to the singlet state (the delity is > 80 %). However, we expect deviations due to atom losses and to heat coming from the spatial degrees of freedom. The lifetime of the cloud is limited by one-body losses with a time scale of τ 100 s, thus, approximately one atom is lost on average during the ramp. The coupling to the spatial mode is more di cult to estimate a-priori. In Sec. 7.4.2 we will comment on an observation of the decoherence in our sample. The solid line is the result of a numerical diagonalization, the dashed line corresponds to the Bogoliubov approximation. b Simulated evolution of n 0 (blue line) and ∆n 0 (red line) over the ramp, versus q(t). The dotted line corresponds to the expectation for the instantaneous ground state. c Evolution of the total spin over the ramp (solid line) and in the ground state (dotted line).

Diagnostic of the nal state

We use uorescence imaging (see Chapter 3) to count the population in each Zeeman state. Af er optimization of the integration region and of the MOT beam alignement, we measure a noise given in table 7.2. The imaging sequence requires a large magnetic

∆N + ∆N 0 ∆N - 1.2 1.4 1.1
Table 7.2: Detection noise on empty images in number of atoms.

eld for the Stern-Gerlach separation. At the end of the adiabatic ramp, we quench the magnetic eld to a value of ∼ 2.5 G.

The QZE q ∼ 1.7 kHz is much larger than U s so that spin-mixing dynamics is frozen, and the populations are conserved. We have veri ed this experimentally by scanning the duration of the ramp of the magnetic eld. For short enough ramp, we did not observe any evolution of the populations.

The measurement of the population N 0,±1 gives us access to the value of the spin along the quantization axis, S z = N +1 -N -1 . In order to measure the other spin components, we use a resonant radio-frequency oscillating eld to couple the Zeeman sublevels. However, at the nal eld of 4 mG, for which f L = 2.8 kHz, we are not able to realize Rabi oscillations with a good contrast. This is due to uctuations of the ambient magnetic eld on the order of ∼ 1 mG (see Chapter 3) which are not negligible compared to the bias eld. To overcome this issue, we quickly (in 6 ms) ramp the magnetic eld up to 50 mG. Then f L = 35 kHz and q/ = 0.7 Hz. Keeping a small QZE is important in order to conserve the spin until the rotation is performed (i Ŝν = -q[ Ŝν , N0 ]). We veri ed numerically and experimentally (scanning the intermediate eld and the duration of the ramp) that it is indeed the case. Once the rotation is performed, we proceed as described above with Stern-Gerlach imaging. The axis of rotation is determined by the phase of the RF-eld. Let it be the y axis. A π/2 rotation maps the component Ŝx onto Ŝz . In order to measure the Ŝy , we insert a rotation around the z-axis before the rotation around the y-axis. This is achieved by simply adding a delay before the RF pulse. Indeed, the bias eld is along z by de nition, and therefore, the spin is naturally precessing around that axis. We report in gure 58 a our measurement of the mean value and standard deviation of the reduced population n 0 = N 0 /N over the ramp. As we decrease the QZE q, the condensate gets depleted, n 0 decreases and displays super-poissonian uctuations. At the end of the ramp, the population in the three spin states are comparable, n 0 0.4, n +1 n -1 0.3. Concerning the spin observables (Fig. 58 b), the measured mean value is compatible with zero all over the ramp and we focus on the standard deviation ∆S z . It is initially limited by the imaging noise and barely increases over the ramp. On the other hand, ∆S x steadily decreases and eventually reaches a value of 2.6 atoms, signi cantly below the initial shot noise level. We observe good qualitative agreement with the theory, but we notice a systematic deviation for n 0 and ∆S x , especially towards the end of the ramp. Two e fects could explain for this discrepancy: atom losses and heating. We now estimate the role of these e fects by looking at the evolution af er a hold time.

Lifetime and decoherence

We present in gure 59 the long-time evolution of the fragmented state, while the magnetic eld is held at its nal value of 4 mG. On a timescale of ∼ 20 s, the super-Poissonian uctuations of the population shrink, and saturate at a value compatible with shotnoise 1/ √ N 0.1. Simultaneously, the standard deviations of both spin-components increase and reaches the shot-noise level at ∼ 20 s. Our lifetime τ ∼ 100 s is mostly limited by one-body losses due to collisions with atoms of the ambient vapor inside the science chamber. Such losses are isotropic, and for 1 N loss N , we expect the total spin to evolve as ∆ Ŝ2 2N loss (the shotnoise) and each spin component as ∆S 2 ν 2N loss /3. As shown in gure 59, this simple model of decoherence underestimates the growth of the spin. Moreover, it cannot account for the decrease of ∆n 0 . Indeed, as explained in Sec. 7.2 (see also [START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF]), as long as the spatial degree of freedom remains condensed, atom losses are expected to lead to a statistical mixture of spin coherent states, which exhibits super-Poissonian uctuations. The decrease of ∆n 0 may be due to heating and a melting of the BEC (possibly driven by intensity uctuations of the dipole trap).

Characterization of the state at the end of the ramp

Sensitivity to rotations We now focus on the state of the cloud at the end of the ramp. We show in gure 60 the evolution of n 0 (φ) and ∆S z (φ) over a rotation of the spin by an angle φ around the y-axis. We compare the fragmented state obtained af er the ramp to a nematic state. The latter shows large amplitude oscillations for both observables. In contrast, the fragmented state is fairly insensitive to rotations. This can be understood as a consequence of the SO(3) symmetry of the Hamiltonian Eq. (7.9) at q = 0. Yet, due to imperfection in the state preparation, we see small residual oscillations. In particular, ∆S z (π/2) = ∆S x (0) is maximal as expected. Indeed, before the ramp, ∆S x is shot noise limited, while ∆S z is vanishing. We have checked the isotropy of the spin in the (xy)-plane by performing a rotation around the quantization axis z prior to a π/2 rotation around the y-axis.

Using the parameter de ned by Eq. (7.32), we measure at the end of the ramp S Population and spin distributions We present in gure 61, the distribution of the observables n 0 and S z , for the state before rotation (n 0,z ,S z ) and af er a π/2 rotation (n 0,x ,S x ). For comparison we show the same distributions for the nematic state |N : e z . The latter has before rotation n 0 1 and ∆S z limited by imaging noise. Af er a π/2 rotation, each atom is in the (|+1 +|-1 )/ √ 2 state (up to experimental uctuations). The distribution of S z is Poissonian, with a width equal to √ N . Our measurements are in excellent agreement with this prediction. For the fragmented state, the distribution of n 0 is very broad and overall similar before and af er rotation. The distribution of S z is almost identical to that of the imaging noise. The distribution of S x is only slightly larger and much narrower than for the nematic state.

Single particle-density matrix The single particle density matrix can be fully determined from the evolution of the state under a composition of two rotations. We rst rotate the state around the z-axis by a variable angle φ. We then rotate the state around the y-axis by an angle π/4. We measure N R 0 (φ) and S R z (φ). Neglecting the e fects of the interaction and the QZE (the duration of the rotation is ∼ 10 µs, much faster than /q and /U s ), we obtain

N R 0 (φ) = N + N 0 4 + 1 √ 2 cos φ(J +1,0 x -J -1,0 x ) -sin φ(J +1,0 y + J -1,0 y ) - 1 2 cos 2φJ +1,-1 x -sin 2φJ +1,-1 y , (7.52) S R z (φ) = 1 √ 2 S z -cos φ J +1,0 x + J -1,0 x + sin φ J +1,0 y -J -1,0 y , (7.53) 
where From a t to the reduced population n R 0 (φ) and reduced spin s R z (φ) ( g. 62) we fully reconstruct ρ (1) ( g. 63). As a control experiment, we reconstructed ρ (1) for a nematic state having comparable populations in the three Zeeman states. We found that ρ (1) has three similar diagonal elements and signi cant o f-diagonal elements (coherences). The spectrum has one dominant eigenvalue = 0.94 ± 0.04, characterizing a single condensate.

J m,m x = (a † m a m + a m a † m )/2 and J m,m y = (a † m a m -a m a † m )/ ( 
For the state produced at the end of the adiabatic ramp, within the measurement accuracy, ρ (1) is diagonal in the number basis, it has three comparable eigenvalues and the state is close to being maximally fragmented. However the measurement of ρ (1) alone does not reveal whether the fragmentation is driven by quantum or classical (e.g. thermal) uctuations. Two-body observables provide more information, in particular the squeezing of the spin Ŝ2 hints towards entanglement as the main mechanism behind the fragmentation. This hypothesis nds a decisive support with a reconstruction of the many-body state.

7.5 Many-body state reconstruction

Introduction

A quantum state fully determines the probability distribution of any observable, and conversely, the probability distributions of a su cient set of observables, constituting a so-called quorum, fully determine a quantum state. The procedure used to deduce the quantum state from a set of measurements is called a tomography. It can be a formidable task, even for mesoscopic samples. To a large extent, this is due to the exponential increase of the Hilbert space dimension with the number of particles, and thereby of the number of measurements a-priori required to fully characterize the state. In the case of indistinguishable particles distributed in a few modes, the restriction to the symmetric subspace alleviates signi cantly the problem, and various reconstruction techniques have been developed, initially in the context of quantum optics (see e.g. [START_REF] Lvovsky | Continuous-variable optical quantum-state tomography[END_REF][START_REF] D'ariano | Quantum tomography[END_REF] for reviews). One can distinguish two types of approach, those relying on an inverse transformation and those based on statistical inferences. The former have been initially used to reconstruct the state of the electromagnetic eld in a single mode, which can be viewed as a harmonic oscillator. Contrary to the classical case, measuring the "position" and "momentum" is not enough to fully determine a generic quantum state. However, the continuous set of "quadratures" obtained by linear combinations of position and momentum, forms a quorum, and can be measured using homodyne detection. The resulting probability distributions are linked to the Wigner distribution (characterizing the whole quantum state) via the Radon transform. Using the inverse transform, the quantum state can be deduced from the measurement of the quadratures amplitude. This technique has been used, e.g. in the early experiment [START_REF] Breitenbach | Measurement of the quantum states of squeezed light[END_REF], to reconstruct a squeezed-vacuum state with on average three photons. Tomography based on an inverse transformation has the advantage of being mathematically transparent and easy to implement, but it su fers from important practical draw backs. First, the inverse transformation complexity increases rapidly with the number of modes [START_REF] D'ariano | Quantum tomography[END_REF]. Second, it is di cult to take into account experimental imperfections, for instance noisy measurements and nite data sets, which can lead to unphysical reconstructed states (e.g. not positive). Methods based on statistical inferences have been developed, which allow for a better consideration of the experimental realities [START_REF] Lvovsky | Continuous-variable optical quantum-state tomography[END_REF][START_REF] D'ariano | Quantum tomography[END_REF]. Two popular ones are the maximum-likelihood (MaxLik) and maximum-entropy (MaxEnt) methods. In the MaxLik approach, one looks for the state which maximizes the probability to obtain a given data set. The MaxEnt method reconstructs the state that has maximal entropy under some constraints, carefully chosen to re ect the measurements (typically one imposes the mean value of some measured observables). In these approaches, tomography is no longer an inversion problem, but a maximization problem. The solution can be found analytically (MaxEnt) or using an iterative algorithm (MaxLik).

The MaxLik method has been used in two recent spinor BEC (with two internal components and in the SMA) experiments, for the reconstruction of the many-body spin state of a few [START_REF] Peise | Satisfying the Einstein-podolsky-rosen criterion with massive particles[END_REF] and a few hundred atoms [START_REF] Strobel | Fisher information and entanglement of non-gaussian spin states[END_REF]. The knowledge of the full quantum state allows to extract quantities such as the negativity or the quantum Fisher information [START_REF] Peise | Satisfying the Einstein-podolsky-rosen criterion with massive particles[END_REF], which are not observables (they are non-linear functionals of the quantum state) and usually hard to estimate. Similarly, the results of the present section will be used in Sec. 7.5.5 to extract the entanglement entropy. Let us mention that techniques have been developed to extract Fisher information and Rényi entropy without requiring a full tomography [START_REF] Strobel | Fisher information and entanglement of non-gaussian spin states[END_REF][START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF].

In this section, we report on our implementation of these two techniques to reconstruct the density matrix of the collective state of the atoms at the end of the ramp. Our analysis makes use of about 500 shots of the state at the end of the ramp without rotation and with a π/2 rotation around y, and about 600 shots for intermediate rotations around the y-axis and around the z-axis.

Basis for the reconstructed state In the SMA, the state of the system can be written as ρ = N ρ (N ) , where ρ (N ) , the restriction to the subspace with N atoms, can be decomposed in the basis of the collective spin state |N, S, M z , where S ≤ N has the same parity as N due to the exchange symmetry. Let us rst consider that N is xed. The size of the Hilbert space is about N 2 /2 ∼ 5000, larger than the number of measurements that we have performed... Fortunately, we know that in the |N, S, M z basis, the state is very localized allowing to truncate the Hilbert space to the states with S < S max . Indeed, we have measured

Ŝ2

16 and therefore, the total weight of the states with a spin larger than S max is less than 16/[S max (S max + 1)]. This is a very rough bound, saturated for a very unlikely state which has non-zero weights only in the S = 0 and S = S max + 1 subspaces. In practice, we reconstructed the state of the system with S max = 20 (we have increased S max to 40 and veri ed that the reconstructed state was essentially identical). We now address the issue of the atom number uctuations. Af er projection on the S ≤ S max subspace, the state of the system can be written as ρ = N ρ (N,S≤Smax) . To progress, we make the assumption that all of the matrices ρ (N,S<Smax) where S has a given parity are identical. As we have mentioned in Sec. 7.3, lower N are more favorable to reach the very low S state, and thus the approximation is valid only for small uctuations of N . In practice, N uctuates by 15 % (one standard deviation), and we found no clear correlations between N and S in the data, which justi es the approximation. Therefore, we write the state of the spin as:

ρ = ρ N even ⊕ ρ N +1 odd , (7.55) 
where N = 104. We also perform the reconstructions for N between 89 and 119 to evaluate the uncertainty on the reconstructed states (see Sec. 7.5.2).

Imaging noise It is important to carefully take into account the imaging noise that can add systematic errors in the reconstruction of the state. We will see how we take it into account in the two reconstructions protocols. The imaging noise is dominated by stray light shot noise and is thus normally distributed (see Chapter 3)

P noise (x) = 1 2πσ 2 noise e -x 2 /2σ 2 noise , (7.56) 
with a standard deviation slightly dependent on the Zeeman state and given in the table 7.2.

Maximum likelihood reconstruction

Principle Let P (ρ|{x j }) be the probability for our system to be in the state ρ given our set of measurement outcomes {x j }.

The only a-priori information that we assume on the state of the system is that it can be written as in Eq. (7.55). Bayes theorem yields P (ρ|{x j }) = P ({x j }|ρ) P(ρ)

ρ P ({x j }|ρ ) P(ρ ) ,

where P(ρ) contains the a-priori information that we have on the state. In our case, we only assume that ρ can be written as in Eq. (7.55). If so, P(ρ) ∝ 1, otherwise P(ρ) = 0. Thus, Eq. (7.57) can be rewritten as

P (ρ|{x j }) = P ({x j }|ρ) ρ P ({x j }|ρ) , (7.58) 
where the sum is taken over all states of the form given by Eq. (7.55). The MaxLik state ρ ML is de ned as the argument maximum of the functional P (ρ|{x j }). We will present the algorithm that we use to compute ρ ML , but before, let us explicit the probability in the right hand side of Eq. (7.58). On a given shot j, we extract three quantities, N j , n R 0,j and S R z,j where the superscript R indicates a possible rotation of the state. For the total atom number, according to the Eq.(7.55), only the parity matter, not the absolute value. However, our imaging noise forbids a reliable estimation of the parity of N . For this reason, we reduce {x j } to the measurement of n R 0,j and S R z,j . In the case of the spin measurement, we take into account the imaging noise. It is uncorrelated with the state of the system so that

P S R z,j |ρ = |M |≤Smax P noise (S R z,j -M )Tr( PM R † j ρ Rj ) , (7.59) 
where PM = S≥|M | |S, M z S, M z | and Rj the operator describing the rotation applied for the shot j.

Algorithm The algorithm is described in [START_REF] Lvovsky | Iterative maximum-likelihood reconstruction in quantum homodyne tomography[END_REF]. We present it brie y, using identical notations. The measurement of each observable is binned. We write f k the frequency of occurrence of a measurement in the bin k. We de ne pr k = Tr( Πk ρ) the probability for the outcome to fall in the bin k given the state ρ. Finally, we introduce the operators: 

R(ρ) = k f k pr k Πk . ( 7 
ρ n+1 = N n R(ρ n )ρ n R(ρ n ) , (7.61) 
where N n is a normalization factor. In the limit of in nitly small bins, this sequence converge to ρ ML [START_REF] Lvovsky | Iterative maximum-likelihood reconstruction in quantum homodyne tomography[END_REF]. The population and spin observables do not couple state of di ferent parity, neither do the operator R, and thus the separability of the parity sectors required by Eq. (7.55) is conserved by the algorithm. Similarly, the matrix ρ n remains Hermitian, positive and of trace one at every step of the algorithm. We make a few practical remarks:

• We initiate the recurrence with the maximally mixed state ρ 0 = Id/(S max + 1) 2 .

• We stop the iteration when the delity between ρ n+1 and ρ n is larger than 99.9%. It occurs af er ∼ 15 iterations.

• We use our whole set of measurements, including all rotations of the state. For each observable that we have measured, the width of the bin is chosen inversely proportional to the number of shots. When we have less shots, the bins are wider and therefore the operators Πk are projectors onto larger subspace. This e fectively reduces the impact of the measurements that have less shots. If the bins we use are too small for the data set, the algorithm becomes unstable.

Uncertainty To evaluate the uncertainty on the reconstructed density matrix ρ ML , we follow the protocol described in [START_REF] Lvovsky | Iterative maximum-likelihood reconstruction in quantum homodyne tomography[END_REF].

From ρ ML , we generate random sets of possible outcomes for our measurements (in practice, we simulate our experiment 100 times). For each simulated set of measurements, we perform the reconstruction algorithm and get the maximum likelihood density matrix of the simulated sets ρ ML,sim . The average delity between ρ ML,sim and ρ ML is 96%, indicating a faithful reconstruction.

From the reconstructed density matrix, we compute the con dence intervals for the matrix elements of ρ ML , and for the other quantities (temperature, entropy) extracted in Sec.7.5.5. The latter also include the dispersion due to atom number uctuations, taken into account by performing the reconstruction with di ferent atom numbers N .

Maximum entropy reconstruction

Principle We report here on an alternative reconstruction scheme. Following the Jaynes principle of maximal entropy, the Max-Ent state ρ ME , is de ned as the state of maximal entropy, given a set of constraints imposed to represent our measurements [START_REF] Bužek | Reconstruction of quantum states of spin systems via the jaynes principle of maximum entropy[END_REF]. This prescription can be interpreted in two equivalent ways: (i) The MaxEnt state does not carry any information except that brought by the constraint, i.e. by the measurement. (ii) In analogy with statistical mechanics, one can also imagine a statistical ensemble which contains all the states that satisfy to the imposed constraints. We are sure to nd the actual state within this ensemble 8 . The associated density matrix is ρ ME . The constraints are of the form Tr( Ôi ρ ME ) = O i , where the Ôi are some observables that we have measured, and O i the mean values of the outcomes. The MaxEnt state ρ ME is the argument maximum of the functional

L(ρ) = -Tr(ρ log ρ) - i λ i Tr Ôi ρ , (7.62) 
restricted to the exchange-symmetric states. The solution is

ρ ME = 1 Z exp - i λ i Ôi . (7.63) 
where Z = Tr expi λ i Ôi , and the Lagrange multipliers λ i are given by

O i = Tr Ôi ρ ME . (7.64) 
In practice:

• We have chosen the set of observables {S 2 z , S 2 ⊥ , N 0z , N 0x }.

• We assume S x = S y = S ⊥ /2, which was well veri ed by performing rotations of the states. • The constraint on the measurement of N 0 is much weaker than the ones on the spins, since the distribution of N 0 is close to have maximal entropy.

• We do not impose any constraint on the mean value of S z,⊥ . Indeed the maximum of entropy is reached for isotropic mixture, for which the mean spin vanishes, which corresponds to our measurement.

• We found that constraining higher moments was not changing signi cantly the results. Moreover it is important to have a small uncertainty on the constraint we are applying.

Detection noise The detection noise adds a systematic error on the constraint S 2 ν if it is not taken into account. From Eq. (7.59), we extract P(M ν ) = Tr( PMν ρ), where ν = {z, ⊥}, using a t with 2S max +1 parameters. This operation is a discrete deconvolution; the continuous analog, assuming two normal distributions, can be performed analytically, and yields a normal distribution with S 2 ν real = S Uncertainty We use the same methods as for the MaxLik reconstruction. Once we have determined ρ ME , we simulate our measurements a hundred times (including the addition of imaging noise). For each simulated outcome we construct ρ ME,sim , using the same procedure as for the real data sets (starting from the noise removal). The mean delity with ρ ME is 99%.

Results

Comparison of the two reconstructed states Given a data set that allows for an unambiguous characterization of the quantum state, both methods should work and yield essentially the same result. They di fer however in the case of an incomplete data set.

To illustrate this, we consider two extreme situations:

• The data set consists in many measurements of a few observables. For instance, let us assume that we have only measured Ŝz , and nd it to be exactly vanishing. All the |S, M z = 0 state can explain that result. The MaxEnt state is the statistical mixture of all those states with equal weights. The MaxLik state is on the other hand ill de ned, since all |S, M z = 0 states (plus linear combinations and statistical mixtures) maximize the functional Eq. (7.58).

• The data set consists of a few measurements of many observables. In that case, it can be di cult to recast all measurements in a few constraints (with little uncertainty), needed to construct ρ ME . The MaxLik avoids this issue and may work.

In our situation we have many measurements of the observables Ŝν and N0,ν for ν = z, x. We have used those to build ρ ME .

We have additional measurements at intermediate rotations, but with less data and thus we only used them for the MaxLik reconstruction.

The two reconstruction methods give a similar outcome. The delity between the two reconstructed states is Tr √ ρ ME ρ ML √ ρ ME 2 0.94. We compare both reconstructions on gure 64. They are almost diagonal in the |S, M z basis and we thus only show the diagonal elements. The MaxEnt state has a larger entropy, which is by construction expected, but part of the di ference may also be due to the smaller data set used for this reconstruction. The MaxLik state has slightly larger error bars, due to the fact that in the MaxLik reconstruction, the lack of information (i.e. lack of measurement) on the state results in uncertainty on ρ ML . For the MaxEnt reconstruction, the lack of information simply results in a larger entropy and the uncertainty on ρ ME only comes from the uncertainty on the constraint (i.e. on the measurement of O i ). In the following, we will focus on the MaxLik state, which makes use of the whole data set.

Entanglement Entropy

From the reconstructed state, we can compute the successive reduced density matrices ρ (n) given by Eq. (7.33). For this analysis we focus on the MaxLik reconstructed state, projected on the S even subspace. We show the total spin distributions of the density matrix for n = 53, 93 and n = N = 104 in gure 65. For n < N , they are very well tted by a thermal distribution, as expected from the results of Sec. 7.2.4. For n = N , we observe a small deviation from the thermal distribution due to the residual Figure 64: Reconstructed MaxLik (red) and MaxEnt (blue) states in the |S, M z basis. We only show the diagonal elements. The solid lines delimits the S subspace, and within a subspace the states are ordered by increasing M z from -S to +S (the labels refers to the value of S). The error bars (pink area for the MaxLik state) correspond to the 66% con dence interval.

anisotropy of the state; indeed the spin is smaller along the z axis than along the other two axes. We plot the tted temperatures T n and entropy S n of the state ρ

ML as a function of n/N . The shaded area corresponds to the 66% con dence intervals, which include the uncertainty on the reconstruction (determined from the reconstruction based on simulated data sets), and the atom number uctuations (performing the reconstruction for di ferent atom numbers).

We observe qualitatively the same behavior as for an ideal singlet state. However, the reconstructed state has a non-zero thermal entropy. As n increases, for n < N/2, both the entanglement and thermal entropy increases. For n > N/2, the thermal entropy keeps increasing while the entanglement entropy decreases. This competition results in a less pronounced bending of the entropy for n > N/2 compared to the theory. Yet, we see a clear reduction of the entropy that cannot be realized with classical states. This e fect appears clearly if one looks at the temperature, or the spin distributions. Simulated reconstruction of the singlet state The overlap between the MaxLik state and the singlet state is 0.28 +0.03 -0.09 (restricting to the state to the even parity sector). In theory, it should be ∼ 80% (from a simulation of the evolution over the ramp). Part of the discrepancy is due to imperfection in the state preparation, as discussed in Sec. 7.4.2, but the state reconstruction is also expected to reduce the overlap with the singlet state. Indeed, our counting resolution does not allow us to distinguish two states with consecutive S. In order to estimate the e fect of the imperfection in the diagnostic and the reconstruction, we simulated the outcome of the measurement, given a pure singlet state. We then apply the MaxLik reconstruction to this simulated data set. We found that the resulting state has a 73% overlap with the singlet state.

Outlooks: shortcut to adiabaticity

The strategy that we have used to prepare an entangled many-body state consists in an adiabatic ramp, from a product state which can be produced with high delity, to the target state. This is a common method, used for instance in [START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF]. It is straightforward to implement, and robust against small uctuations of the experimental parameters, such as N and U s , but the adiabaticity criterion limits the speed, especially near a phase transition where the energy gap becomes very small. In our implementation, the ramp lasts for 1 s, during which we expect the loss of ∼ 1 atom. For atom numbers larger than a hundred, satisfying the adiabaticity criterion requires longer duration. It is thus of great interest to be able to design faster, non-adiabatic ramps. This problem belongs to the large eld of optimal control. One type of approach, known in the literature as shortcut-to-adiabaticity (although this name could apply to other optimal control approaches) relies on the reverse engineering of a desired evolution [START_REF] Guéry-Odelin | Shortcuts to adiabaticity: Concepts, methods, and applications[END_REF]. More precisely, one designs the time evolution of one or several relevant observables; for instance let us assume that we want the total spin expectation value Ŝ2 to decrease linearly 9 . Provided a closed set of equation(s) of evolution of the system, one can compute the evolution of the control parameter(s) (here q) leading to the desired dynamic (here the linear decrease of Ŝ2 ). The requirement of a closed set of equations of evolution is a strong limitation to the use of shortcut to adiabaticity, in particular to produce entangled states. For spin-mixing dynamics, a mean-eld approximation (see Chapter 4) leads to a system of two equations of evolution, but this approach is not adapted to our case, where the target state is not a mean eld state. A more re ned treatment could rely on the Bogoliubov theory, or on a continuum approximation (the spin is taken as a continuous variable), introduced in [START_REF] Sarlo | Spin fragmentation of Bose-Einstein condensates with antiferromagnetic interactions[END_REF]. The latter is used in [START_REF] Sala | Shortcut to adiabaticity in spinor condensates[END_REF] to investigate theoretically the production of a fragmented spinor condensate. For N = 100 atoms, a numerical simulation demonstrates the production of a squeezed state with a spin S 4, in a duration t h/U s (corresponding to 50 ms in our case), using a shortcut to adiabaticity. This would constitute a signi cant improvement (in term of duration) compared to our implementation of adiabatic following. However, in practice we expect the dynamical production to be more sensitive to experimental uctuations; in our case, uctuations of U s would probably constitute a limit to the use of very fast ramps.

Chapter 8

Conclusion

Summary

Chapter 1 We started with a brief presentation of some important aspects of the physics of spinor BECs. We introduced the single-mode approximation, which assumes that the spatial and spin degrees of freedom are decoupled, and which is well veri ed in all experiments presented in this manuscript. The state of the system is then described by a single spatial wave function, and a many-body spin state. We derived an e fective Hamiltonian for the spin and studied its ground state versus the magnetic eld. A quantum phase transition occurs at small elds, when antiferromagnetic interactions start to play an important role. In this region the ground state can no longer be described as single (ie non-fragmented) condensate as entanglement emerges.

Chapter 2 We continued with a presentation of the experimental set-up. We focused on our contribution, the implementation of a novel technique to achieve high-counting resolution, which combines a Stern-Gerlach separation followed by uorescence imaging in an optical molasses. The requirement of a spatial separation of the Zeeman states prevented us from performing uorescence in a trap, which puts a stringent upper bound on the exposure time. Furthermore, a di fusive behavior in the molasses requires a vanishing magnetic eld, which is not easily combined with the Stern-Gerlach separation. In the end, we managed to collect about 450 photons per atom. For a cloud of a few hundred atoms or less, the dominant source of noise comes from stray light shot noise, and amounts to the signal of ∼ 1.5 atoms.

Chapter 3 The rst experiments we described consist in the parametric excitation of a spinor BEC. Spin-mixing dynamics can be seen as an "internal" analog of the Josephson e fect. The Zeeman states m = 0 on the one hand and m = ±1 on the other hand replace the superconductors, and spin-changing collisions insure the coherent coupling in place of the weak-link in a Josephson junction. The quadratic Zeeman energy q plays the role of the voltage, and we modulate q to reproduce the so-called "inverse AC-Josephson e fect". In real Josephson junctions, energy dissipation plays a major role and is responsible for the so-called "Shapiro steps" appearing in the intensity-tension curve. Energy is also dissipated in our system, presumably via a coupling between the BEC and the thermal cloud. In the driven situation, a locking of the atomic phase to the modulation enables a transfer of energy to the atoms, which can counter-act the dissipation and lead to new stationary states and hysteresis.

The spin-mixing dynamics discussed in Chapter 4 was triggered by preparing the atoms in a coherent superposition of the three Zeeman-states. The subsequent evolution is well captured by a mean-eld approximation. To explore the role of quantum e fects, such as quantum uctuations and entanglement, we preferred to start with all atoms in m = 0, which can be realized thanks to magnetic forces pulling m = ±1 atoms out of the trap. This state is the ground state when the interaction energy is negligible compared to the quadratic Zeeman energy q. From this starting point, entanglement can be generated by ramping down the magnetic eld, to reach the vicinity of the phase transition occurring at q = 0. We performed two types of experiments, quenches near (or through) the phase transition to study the dynamics, and an adiabatic following to probe the ground state.

Chapter 4 We rst reported on our generation of a so-called two-mode squeezed vacuum state. By driving the magnetic eld near the Shapiro resonance identi ed in Chapter 4, the BEC is destabilized, and quantum uctuations trigger the creation of pairs of atoms in the m = ±1 states. Thanks to our uorescence imaging method, we were able to observe a large degree of squeezing, potentially useful for metrology. We then presented another set of experiments, where we perform quenches to a magnetic eld above the phase transition and observed periodic dynamics. The reversibility indicates the conservation of phase coherence between the spin modes. We also studied the e fect of a small coherent seed on the dynamics, to provide further evidence of the role of quantum uctuations in initiating the dynamics, and we observed a cross-over from the Bogoliubov to the mean-eld regime. 110 CHAPTER 8. CONCLUSION Chapter 5 We carried on with similar experiments, but with lower magnetic elds and smaller atom numbers in order to bring the system deeper in the critical region. Under this condition the Zeeman e fect plays a negligible role and the dynamics is fully dictated by the interactions. We observe the relaxation of the system to a steady state. This somehow counter-intuitive behavior results from the structure of the eigenstates of the interaction Hamiltonian. Indeed, we found that the mean value of few-body observables is fairly independent on the eigenstate with vanishing magnetization, in a broad energy window. The magnetization constraint is crucial, and prevents the thermalization of the system de ned as the relaxation to the usual statistical ensembles. Instead, we found that a generalized Gibbs ensemble, which includes the magnetization constraint in addition to the usual conservation of energy and total atom number well described our results.

Chapter 6 In the experiment presented in this last Chapter, we slowly bring the system to the critical region, in order to only populate the lowest energy states. We reach a magnetic eld such that antiferromagnetic interactions favor a ground state very close to a singlet state with vanishing spin. The macroscopic singlet state is rotationally invariant, and can be seen as the coherent superposition of all nematic states with equal weight. However, the coherence is very fragile, and atom losses or thermal uctuations can easily lead to the spontaneous breaking of the symmetry. To circumvent this problem we used mesoscopic clouds of typically one hundred atoms. At the end of the adiabatic ramp, we observe the fragmentation of the condensate. Furthermore, we measured a strong squeezing of the spin in all directions, indicating that most atoms have formed singlet pairs. We reconstructed the many-body state and observe a signi cant occupation of the few lowest energy states only. We extracted the reduced entropy, de ned as the entropy of a subsystem of n atoms, ignoring the Nn remaining atoms. In doing so, singlet pairs are virtually broken and the entropy increases. The latter is a non-monotonic function of n and has a maximum near n ∼ N/2. This non-classical feature indicates entanglement between the two virtual subsystems.

Main results and outlooks

High sensitivity imaging The implementation of uorescence imaging was a technical but crucial development made during this thesis. Reaching a detection noise near the single atom level was paramount for the experiments presented in Chapters 5 to 7. In particular, this improvement enabled us to set a new record of spin squeezing for spinor BECs [START_REF] Qu | Probing entanglement in a spinor condensate near the single atom level[END_REF]. Yet, imaging noise remained an important limitation for our experiments. Further improvements are possible (see the outlooks of Chapter 3), which may help to reach the Heisenberg limit in an interferometric experiment (Chapter 5) [START_REF] Pezzè | Quantum metrology with nonclassical states of atomic ensembles[END_REF][START_REF] Anisimov | Quantum metrology with two-mode squeezed vacuum: Parity detection beats the Heisenberg limit[END_REF].

Spin-1 BEC out of equilibrium The principal novelties in our work on spin-mixing dynamics are the studies related to relaxation. In Chapter 4, we identi ed energy dissipation to be responsible for the relaxation. We nd a phenomenological model which explains non-trivial phenomena (such as bistability and hysteresis), but a microscopic theory is still lacking. In Chapter 6 we observed the condensate reaching a steady state under its own dynamics. This phenomenon can be well understood using general arguments coming from the theory of the relaxation of isolated quantum systems [START_REF] D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF]. In this eld, a long-standing question regards the range of validity of the eigenstate thermalization hypothesis (ETH). Remarkably, we found that a generalized ETH applies to our relatively simple system. In the situation we have studied, the integrability due to the SO(2) symmetry of the Hamiltonian prevents thermalization. In the continuity of this work it would be very interesting to study the relaxation (and thermalization?) in a chaotic regime. We have seen in the outlook of Chapter 4 that chaos can emerge even in the single-mode regime, under a parametric excitation. It would be interesting to explore theoretically other means to break the integrability.

Spin-1 BEC at equilibrium The realization of a fragmented BEC, fairly close to the singlet state, can be seen as the most significant achievement of this thesis. Pair condensation driven by antiferromagnetic interaction was predicted more than thirty years ago [START_REF] Nozieres | Particle vs. pair condensation in attractive bose liquids[END_REF], and since then has been the subject of many theoretical studies. The observation of this phenomenon was one of the long term goals of our group, and earlier experiments paved the way to the one presented in this manuscript [START_REF] Corre | Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions[END_REF]. This work together with previous studies on the phase diagram [START_REF] Jacob | Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates[END_REF] and on nematic ordering [START_REF] Zibold | Spin-nematic order in antiferromagnetic spinor condensates[END_REF], provides a comprehensive experimental investigation of antiferromagnetic spin-1 BECs in the single mode regime at equilibrium. We now present a long-term project, in the continuity of these works.

Long-term prospective: singlet dimers on an optical lattice The study of correlated states beyond the single-mode regime constitutes a promising direction for future investigations. A particularly interesting set-up, relevant to the simulation of condensed matter system, would make use of an optical lattice to trap the atoms in a periodic potential. In this con guration, the interplay between spatial and spin degrees of freedom yields a very rich phase diagram, studied theoretically using variational approaches in [START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF][START_REF] Demler | Spinor bosonic atoms in optical lattices: Symmetry breaking and fractionalization[END_REF][START_REF] Yip | Dimer state of spin-1 bosons in an optical lattice[END_REF][START_REF] Imambekov | Spin-exchange interactions of spin-one bosons in optical lattices: Singlet, nematic, and dimerized phases[END_REF]. Let us consider the interesting situation where the quadratic Zeeman energy is negligible. The relevant energy scales are the tunneling energy t, the spin-independent interaction strength U , the spin-dependent one U s and the chemical potential µ. In practice, U U s , and the spatial ordering is dictated by U /t. Let us consider U /t 1, and µ such that the system forms a Mott insulator. The magnetic ordering then depends on the ratio U s /t and the lling (the number of atoms per site). The case of an even lling is the simplest, the atoms on a given site form a singlet state. This is not possible however for odd llings due to the exchange symmetry, and one needs to consider interactions between atoms of di ferent sites, which can be done 8.2. MAIN RESULTS AND OUTLOOKS 111 perturbatively in the limit t U . For two sites, and a lling of one, the energy is minimized when the two atoms form a spin singlet dimer. Given this result, the following ansatz was proposed for a one dimensional lattice (similar dimerized state are also expected in larger dimension) [START_REF] Yip | Dimer state of spin-1 bosons in an optical lattice[END_REF][START_REF] Imambekov | Spin-exchange interactions of spin-one bosons in optical lattices: Singlet, nematic, and dimerized phases[END_REF] Ψ dimer = ..ψ 1,2 ψ 3,4 .. (8.1) where ψ i,i+1 designate a spin-singlet between the atoms of sites i and i + 1 (this ansatz breaks the translational invariance of the lattice). The wave function (8.1) describes a so-called "dimerized valence bound state" [START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]. Such states can also be found in frustrated magnets, and are believed to be at the origin of the high-temperature superconductivity of cuprates [START_REF] Keimer | The physics of quantum materials[END_REF]. This experiment represents a great technical challenge. The simplest geometry would probably be a one dimensional chain, realized for instance by combining a standing wave for the lattice and a Laguerre-Gauss blue-detuned beam for the radial con nement. The chemical potential can be tuned by changing the atom number. Alternatively, if on top of the lattice potential, there is a harmonic con nement, the chemical potential increases from the center to the edge of the trap. For the detection, one would ideally combine an excellent spatial resolution to distinguish the lattice sites, with a spin state sensitivity. This has been achieved for spin-1/2 fermionic atoms in two dimensional lattices [START_REF] Boll | Spin-and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains[END_REF][START_REF] Parsons | Site-resolved measurement of the spincorrelation function in the Fermi-Hubbard model[END_REF]. The techniques used in these two papers could be applied to bosonic atoms when the site occupation is at most two atoms. For larger llings, further developments would be required. Regarding state preparation, we can build on the experience we have acquired with our realization of a condensate of singlet pairs to evaluate the feasibility of an adiabatic ramp to a singlet insulator. We pointed out in Chapter 7 a series of di culties that appear given the very low energy scale that we want to probe (adiabaticity versus decoherence, magnetic eld noise, thermal uctuations). For two atoms on the same lattice site, the spin interaction energy per atom U s /N (N = 2) could be signi cantly larger than in the harmonic trap used in our experiment. This phase thus appears within reach of an adiabatic ramp similar to the one we implemented. For the dimerized phase, atoms on di ferent lattice sites interact weakly, the relevant energy scale is (t/U ) 2 U s [START_REF] Imambekov | Spin-exchange interactions of spin-one bosons in optical lattices: Singlet, nematic, and dimerized phases[END_REF] with t/U 1 for an insulator. A more precise estimation of the parameters is needed to compare this situation with our experiment. In particular, the role of thermal uctuations should be considered with care. In our experiment, we relied on (i) spin-ltering to achieve very small "spin temperature" and (ii) a weak coupling to the spatial mode to avoid thermalization. It is not guaranteed that the same method would work in the experiment envisioned here, where spatial and spin degrees of freedom are intertwined. We replace the factorials by their equivalent in the limit of large arguments. This will result in a small error for the coe cient k ∼ 1 and k ∼ N . However, because of the isotropy of the singlet, we know that these states do not contribute signi cantly (we must have N0 = 1/3). The Stirling formula yield to the simple expression

|N, 0, 0 1 √ N N 2 k=0 (-1) k N N + 1 -2k 1 4
|k, N -2k, k nb .

(B.13

)
The distribution is indeed fairly broad. This motivates a continuum approximation for the relative population n 0 . It veri es the statistics The nematic states form an over-complete basis [START_REF] Ashhab | Measurement theory and interference of spinor Bose-Einstein condensates[END_REF], which we will proved by expressing the spin state |N, S, M z as a function of the nematic state.

P(n 0 ) 1 2 √ n 0 . (B.
For N 1, the following approximation can be useful Thus, for S √ N , in the integral above, the term sin θY S,0 (θ) does not vary much in the region where the exponential is signi cant (they are two θ k ), and can thus be taken to be constant. We obtain 

|N : Ω 1 √ 2π jk N jk(N -j -k)
nb k|S = 1 f N S √ 2π N k 2 (N -2k)

Operators evolutions

The TSVM is also naturally produced over the evolution of the nematic state |0 ⊗N af er a quench. Since we have some experiments using a drive to engineer negative QZE, we will use the more general Hamiltonian: [START_REF] Hamley | Spin-nematic squeezed vacuum in a quantum gas[END_REF] with α = q + U s and U = U s in the static case, α = δ 2 + U s and U = κU s in the driven case. The calculation of the mean value of few-body operator can be simply done in the Einsenberg picture (we don't use the Bogoliubov Hamiltonian, in order to treat the stable and unstable cases simultaneously). The equation of evolution for the operators â+1 ,â † -1 are:

Ĥ = α N+1 + N-1 + U â+1 â-1 + â † +1 â † -1 . (C.
i d dt â+1 â † -1 = α U -U -α â+1 â † -1 (C.12)
The Bogolibuov energy is with this Hamiltonian ω B = √ α 2 -U 2 . We emphasize that the calculation holds for α < 0. In particular, for -U s < α < 0, in which case, the Bogoliubov energy is actually complex. This corresponds to an unstable regime as will be shown by the calculation. The sensitivity is thus We just need to replace in the expression of the signal and noise, the term in N k p by the moment N k p TMSV . In the limit N p 1, these are (we recall that the statistic is thermal, and use a continuous approximation) It is minimal when θ * = 0, and is slightly better than a TFS with the same mean number of atom.

P = √ 2α 2ω B - √ α + ω B - √ α -ω B √ α -ω B √ α + ω B , (C.13) P -1 = 1 √ 2α - √ α + ω B - √ α -ω B U s / √ α + ω B U s / √ α -
∆θ 2 = N 2
N k p TMSV k!N p k , (D.

D.3 Interferometry with detection noise

We assume that the main limitation comes from the detection noise . We consider that we have produced a perfect TMSV. The result of a measurement is now given by

J z = Ĵ z + N . (D.21)
We take N to be a centered and normally distributed. The signal and noise are In our situation, we have ∆N 2 , (∆N ) 4 order one, much smaller than N p ∼ 100. In that limit, the optimal working point is slightly shif ed from θ = 0 to θ * 4 Where the sums goes over i + = 0 : N , i -= 0 : (Ni + ) and idem for j ± . Now, let us assume a new spatial mode is accessible to the atoms. We label the two spatial modes A and B, and we use the basis m |N Am , N Bm , where each ket corresponds to a spin state m, and the two numbers within the kets indicate the number of atoms of spin m in the spatial mode A and B. We now imagine to add a linear coupling between the two spatial modes (e.g. tunneling). If all atoms are initially in A, af er some time, the state evolves as

Ĵ z = N p 2 sin 2 θ + ∆N
ρ (N ) ∝ i±,j± ρ j+,j- i+,i- m=0,±1 km,lm i m k m j m l m 1 2 κ km+lm |k m , i m -k m l m , j m -l m | . (F.2)
where κ is a number characterizing the strength and duration of the coupling (it won't play any role in the following). We then project ρ (N ) onto states with n atoms in A and Nn atoms in B, and trace over the spatial mode B to obtain ρ (n)1 . In the sum of Eq. (F. ân-k+-k-

0 k + !k -!(n -k + -k -)! , (F.5)
and N is a normalization constant. We take ρ (n) to be normalized to one, thus It is cumbersome to use the above formula to compute the state we are interested in which has non-zero weights only on a few states in the spin state basis. Here we show the formula we use for an e cient calculation of ρ (n) . We use an iterative method and hence we only need to know Tr 1 , which we apply on ρ (n) to get ρ (n-1) . We start with 

N = i,j,k+,k- ρ i,j i,j i k + j k - N -i -j n -k + -k - , ( 
S 1 010|S0 T 1 010|T 0 S 1 M 1 1m|SM T 1 P 1 1m|T P .
The sum is taken over S, M, T, P and m = 0, ±1, but the selection rules of the Clebsh-Gordan coe cient implies that only the term with T = S ± 1 and M = M 1 + m are non-zero. This makes the above expression useful for the calculation of the reduced density matrix.

Figure 1 :

 1 Figure 1: Bloch rabi represention of the spin states |F = 1, m = +1 (a), |F = 1, m = 0 (b) and |F = 1, m = -1 (c).

2. 1 .Figure 2 :

 12 Figure 2: Lef : linear and quadratic Zeeman shif s. Right: owing to the conservation of the magnetization, the linear Zeeman shif is a constant and only the quadratic Zeeman shif matters.

Figure 4 :

 4 Figure 4: Clouds af er Stern-Gerlach separation of the Zeeman states con ned in (a) a single beam elongated trap and (b) a crossdipole trap. In latter case, the SMA appears to be well veri ed. In the former, the spontaneous formation of spin domains constitutes a dramatic deviation.

Figure 5 :

 5 Figure 5: Relative population in the state m = 0 (lef plot) and order parameter s ⊥ (right plot) in the ground state, versus the reduced magnetization s z and q/U s . The white line delimits the phase transition determined from a mean eld treatment.
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 4 BEYOND THE MEAN-FIELD APPROXIMATION 19

2 cFigure 6 :

 26 Figure6: Ground state of an antiferromagnetic spin-1 BEC of N = 100 atoms, versus the QZE q. The solid line is the result of a numerical diagonalization. The red dashed lines are the predictions of the Bogoliubov theory. The black dashed line is the singlet state asymptote for q = 0. We show the mean population N 0 (a), standard deviation ∆N 0 (b) and total spin S 2 (c).

  Let us divide the full system in two complementary partitions, A and B with Hilbert spaces H A and H B . We rst consider a pure state |ψ ∈ H A ⊗ H B . We write ρ = |ψ ψ| the total density matrix, and ρ A = Tr B (ρ) the reduced density matrix, where Tr B stands for the partial trace over a basis of H B . The value of any local (acting separately on A and B) observable is fully determined by ρ A and ρ B . The entanglement entropy is the Von-Neuman entropy of state ρ A , S(ρ A ) = -Tr A (ρ A ln ρ A ) .

Figure 7 :

 7 Figure 7: Single-particle entropy (a) and mode entropy (b) in the ground state of a spinor BEC of N = 100 atoms, with xed magnetization s z , and versus the QZE q. The lower panels c and d are cuts along the s z = 0 line of the diagram a and b, respectively. The red dashed line is the result of the Bogoliubov approximation.

Figure 8 :

 8 Figure 8: Energy structure of a sodium atom relevant for our experiment.

3. 1 .Figure 9 :

 19 Figure 9: a. Science chamber illuminated by the UV LEDs and the cooling beams during the MOT loading. b. Horizontal cut showing the optical dipole traps.

  ) on top of the bias eld B 0 = B 0 e z . For |B g | |B 0 | the energy in state m = ±1 is to the rst order in b (here again we neglect the quadratic Zeeman energy) ĥZ m = pm + 2gµ B b zm .(3.11)

Figure 10 :

 10 Figure 10: a RF-spectroscopy with (blue empty circle) and without (red full squares) magnetic eld compensation. The error bar represents one standard deviation. b Fluctuations of the magnetic eld along the z-axis with (blue line) and without compensation (red line).

Figure 11 :Figure 12 :

 1112 Figure 11: Absorption image of the three clouds af er Stern-Gerlach separation.

Figure 13 :

 13 Figure 13: Imaging sequence. The Zeeman states are separated in a magnetic eld gradient in time-of-ight. The atoms are then illuminated with a probe beam for absorption imaging (a) or with the molasses beams for uorescence imaging (b).

Figure 14 :

 14 Figure 14: Sketch of the uorescence imaging set-up. The light is collected in a microscope objective. A spatial lter hides stray light scattered on the chamber view-ports. A rst achromatic lens Ac.1 is used to reduced the divergence of the beam. A second achromatic lens project creates an image of the atoms on a CCD camera.

Figure 15 :

 15 Figure15: a Picture (taken with a photo camera) of the inside of the chamber view from the bottom (through the microscope objective), with the imaging light on. b,c Same picture taken with the CCD camera with (b) and without (c) the spatial lter. We clearly see four bright spots coming from the viewport (the imaging system is focused on the viewport). They are completely blocked by the spatial lter. The walls of the chamber still scatter some residual light that cannot be ltered out. The darker square in the middle corresponds to the upper vertical viewport.

Figure 16 :

 16 Figure 16: The upper panel is the uorescence signal af er t mol = 5 ms. The lower panel shows the pro le along the separation axis for various molasses duration.
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Figure 17 :

 17 Figure 17: Spatial variance R 2 (t mol ) for the three Zeeman components. The solid lines are quadratic ts R 2 (t mol ) = σ 2 0 + Dt +

Figure 18 :

 18 Figure 18: a Pro le of the uorescence signal emitted by the background gas, for various delays af er shinning the UV LEDs. b Integrated signal. The solid line is an exponential t, with a characteristic decay time τ 50 s. The asymptote corresponds to the stray light scattered o f the walls and viewports of the science chamber.

1 .Figure 19 :

 119 Figure 19: (a) Typical uorescence image, with optimize ROI (dashed-white line). The hashed region is the ROC used to compute the BRP. (b) Pro le before noise removal using the BRP algorithm (green dashed line) and af er removal (solid red line). The dotted gray line shows the pro le of the BRP.

Figure 20 :

 20 Figure 20: (a) Integrated signal versus the size of the optimized ROI A m=0 (red line) for t mol = 5 ms. The horizontal dashed line is the signal in the raw ROI A m=0 . The vertical line indicates the cuto f size. The optimized ROI is delimited by the white dashed line in (b).

Figure 21 :

 21 Figure21: Integrated signal in the raw ROI A m=0 (red squares) and optimized A m=0 (blue circles), for a cloud with all atoms in m = 0. A m=0 is optimized for t mol = 5 ms, we clearly see that it is too small for t mol above ∼ 10 ms. The inset shows the integrated signal in A m=+1 . For t mol 10 ms, we start to see a "leakage" of the m = 0 atoms in A m=+1 .

. 28 ) 3 Figure 22 :

 28322 Figure 22: (a) Evolution of the population N 0 (blue circles), N +1 (red dots) and N -1 (red circles) when rotating m = 0. The green stars are the total atom number and the solid lines are a t. Together with the evolution of the uctuations ∆S 2 z = N +1 + N -1 (b) the photon uxes are fully determined. The results are shown in the table.

. 29 )

 29 Using our experimental parameters, η 0.73, NA 0.33, Γ -δ 2π × 10 MHz, I 3.1 mW/cm 2 and I sat = 6.2 mW/cm 2 , we nd φ th 195 photon/ms . (3.30)

Figure 24 :

 24 Figure 24: ∆S z (dash-dotted red line) and S z (blue line) as a function of the correction factor +1 ( -1 = 0). The minimum of ∆S z and the zero of S z coincide almost perfectly. m Signal [photon] Total noise [photon] Total noise [atom] +1 447 772 1.7 0 465 785 1.7 -1 428 687 1.6

Figure 25 :

 25 Figure 25: Standard deviation ∆S z measured for a TMSV state of ∼ 200 atoms versus the duration of the molasses (red circles).The black line is the shot noise level. The deviation for t mol > 5 ms is interpreted as atom losses.

Figure 26 :

 26 Figure 26: Analogy between two physical systems exhibiting macroscopic quantum coherence: a superconducting Josephson junction (SCJJ-a) and a spin-1 atomic Bose-Einstein condensate (BEC-b). For SCJJs (respectively, BECs), tunneling through the barrier (resp., spin-mixing interactions) generates an electric current (resp., a spin current) controlled by the relative phase across the barrier (resp., between the Zeeman components of the spin-1 wave function). An external energy bias E(t) controls the rate of change of the relative phase: the electrostatic energy E(t) = 2eV (t) for SCJJs, with V the voltage and 2e the charge of a Cooper pair, and the quadratic Zeeman energy E(t) = 2q(t) of a pair of m = ±1 atoms for spin-1 BECs. If the energy bias is modulated around a static value E 0 , a Shapiro resonance occurs when the modulation frequency ω ful lls the resonance condition k 0 ω = E 0 , with k 0 a positive integer. c: Observation of several (k 0 = 1 -8) Shapiro resonances in a spin-1 atomic condensate af er a relaxation time of 30 s. Here, n 0 is the reduced population of the m = 0 Zeeman state, and q 0 is the static QZE. The experiment was performed with a sodium Bose-Einstein condensate containing N ≈ 2 • 10 4 atoms, with a magnetization per atom m || = 0. We varied q 0 for a xed drive frequency ω/2π = 100 Hz.

  (4.10) below). The phase η would describe the Larmor precession due to the linear Zeeman term in the original Zeeman Hamiltonian. The transformation ζ m → ζ m e -i mpt to a frame rotating at the Larmor frequency around the quantization axis u removes the contribution ∝ p to the Zeeman Hamiltonian, without loss of generality.

Figure 27

 27 Figure 27: a-b: Spin-mixing oscillations without driving in the Zeeman regime q 0 U s . The time evolution of the population n 0 in (a) and the relative phase θ in (b.). c: Relaxation of n 0 at long times. The red points correspond to the experimental data and the lines show the t results for the two dissipative models DM 1 (dotted green line) and DM 2 (dashed purple line) introduced in Sec. 4.2.3. The values of the t parameters are given in Sec.4.2.3.

Figure 28 :

 28 Figure28: Observation of secular oscillations near the rst Shapiro resonance k 0 = 1. We show the relative population n 0 (a-c1) and phase φ (a-c2) versus time. The parameters in a1-2,b1-2 correspond to the oscillating regime of the pendulum model, while c1-2 correspond to the clockwise-rotating regime. The lines show the numerical solutions of the dissipative model 2 [Eq. (4.17)] with β 2 = 1.3 • 10 -3 . The calculated curves are further averaged to account for experimental uctuations of U s (see text). The last panel d shows a phase-space portrait of the trajectories in the (φ, φ) plane, with φ calculated from Eq.(4.25). The dashed blue, solid purple and dashed-dotted green line correspond to a1-2, b1-2 and c1-2, respectively. The shaded area covers the phase-space region explored in the oscillating regime of the pendulum model. In the main panels, the observation times are integer multiple of the modulation period T = 2π/ω. The data are thus a stroboscopic observation of the secular dynamics, free of the additional micromotion. The two insets in a1 (with a smaller time sampling) show the micromotion around the main secular oscillation. The static bias is q 0 /h = 276 Hz, the modulation amplitude ∆q/h = 43.6 Hz (κ 0.08), and U s /h ≈ 30 Hz. The detuning is δ/2π = -5.7 Hz (a1-2,b1-2) and 18 Hz (c1-2). For curves b1-2, we varied the initial phase (see text) to be in the harmonic regime: θ(0) = -0.5(2) rad for a1-2,c1-2 and 1.45(2) rad for b1-2.

Figure 29 :

 29 Figure 29: a: Damping of Shapiro oscillations. The solid blue curve is calculated from the dissipative model 2 (DM 2) and averaged over the uctuations of U s caused by atom number uctuations (see text). The shaded area corresponds to the standard deviation of the distribution of n 0 induced by these initial uctuations. The static bias is q 0 /h = 276 Hz, the detuning δ/2π = -18 Hz, and the modulation amplitude ∆q/h = 218 Hz (κ 0.36). The interaction strength is U s /h ≈ 32 Hz for t = 0 and decays to ≈ 20 Hz for t = 40 s due to atom losses during the hold time in the optical trap. b: Long-time relaxation of the secular population n 0 to a steady state. We attribute the small drif of the steady state population to the decay of U s .

Figure 30 :Figure 31 :

 3031 Figure 30: Period (a) and amplitude (b) of the secular oscillations versus detuning δ for the same parameters as in Fig. 28. The solid blue lines show the numerical solutions of Eqs. (4.9,4.10), and the dotted black lines the analytical solution of the pendulum model.
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 4 LONG-TIME RELAXATION 57 4.4.2 The xed points and their stability

Figure 32 :

 32 Figure 32: Fixed points of the dissipative spin-mixing model 2. a: Phase space portrait of the stationary solutions of Eqs. (4.24,4.25).The two limit cycles are labeled S 0 (n 0 = 0, solid orange line) and S 1 (n 0 = 1, solid blue line) and the two xed points S + (green dot) and S -(red diamond). The black lines show typical trajectories in the oscillating (dashed line) or rotating (dash-dotted lines) regimes. The shaded area covers the oscillating regime. The plot is shown for δ/2π = -10 Hz, U s /h = 25 Hz, κ 0.38 (δ -/2π 32 Hz) and a damping coe cient β 2 → 0 + . b: Table summarizing for β 2 → 0 + the ranges of detuning where each stationary solution is stable ('s') or unstable ('u'). The boundaries δ ± are de ned af er Eq. (4.33).
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 604 SPIN-MIXING DYNAMICS AND RELAXATION OF A DRIVEN SPINOR BOSE-EINSTEIN CONDENSATE

. 40 )

 40 Eqs. (4.24,4.25) follow from Eqs. (4.36 to 4.40).

  representation, Ô evolves over a rotation around the y-axis as | d Ô dθ | = |[ Ĵy , Ô]|. The Heisenberg inequality sets an upper bound on the signal | d Ô dθ | ≤ 2∆J y ∆O .
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 52 BOGOLIUBOV TREATMENT OF THE DYNAMICS 69 with q 0 the mean QZE, ω and ∆q the frequency and amplitude of the modulation, k 0 the index of the Shapiro resonance and J k0 the Bessel function (see Chapter 4, Sec. 4.3.1)The exchange term â †
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 5 BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS

5. 3 .Figure 37 :

 337 Figure 37: Evolution of the mean number of pairs N p (upper panel, blue circles) and its standard deviation (middle panel, red squares) versus the duration of the modulation. The dashed black line corresponds to the Bogoliubov approximation, where the mean and standard deviation are almost equal. The numerical solutions of the Schrödinger equation using the secular Hamiltonian Eq. (5.19) are shown as solid lines. The lower panel shows the evolution of the longitudinal pseudo spin J z , its mean (blue circles) and standard deviation (red squares). The shaded area corresponds to the detection noise.

. 34 )

 34 We introduce the variable δ = δ+2U s / , and U = κU s . U corresponds to the spin-changing collisions rate [term â † in Eq. (5.[START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]) ], and U s to the rate of spin conserving collisions [term Np (N -2 Np )]. The instability window becomes

72CHAPTER 5 .Figure 38 :

 538 Figure38:(a) J z versus N p for a squeezed state (red dots) and a coherent state (blue dots). The dashed blue line corresponds to the atomic shot-noise level (one standard deviation). The squeezed state is much below that value, almost limited by the detection noise (solid black line). (c) Distribution of the number of pairs N p . The red line corresponds to the thermal distribution expected for a TMSV. In (b) we show the distribution of J z for the squeezed state and the coherent state. The latter is much broader due to the shot noise (blue line).

Figure 39 :

 39 Figure 39: Instability rate versus δ for various depletions: n p = 0 (solid line), n p = 0.2 (dashed line) and n p = 0.4 (dotted line). We plot it for κ → ∞ (a), κ = 1 (b) and κ = 0.5 (c), keeping U = κU s xed. The depletion results in an overall decrease of the rate. For the atomic case (b and c), it can be compensated (b) and even overcompensated (c) near δ 2U due to the displacement of the instability region.

Figure 40 :

 40 Figure 40: a Maximal number of pairs produced over an evolution time t = 5/ U , versus δ /U . b Evolution of N p for δ = 2U . The solid black line represents the result of the UPA. The blue dashed line corresponds to κ → ∞ (U = κU s xed). It is always below the UPA. The yellow dotted line corresponds to static spin-mixing (κ = 1).Because of the pumpoutput interactions the resonance is shif ed to the right. On the boundary δ = 2U , pump-output interactions counteract the depletion and the agreement with the UPA is particularly good. The dashed-dotted line corresponds to driven spin-mixing, for which we observe a boost of the dynamics compared to the UPA prediction near δ = 2U . We used N = 300 for the numerical calculation.

Figure 41 :

 41 Figure 41: Evolution of the mean number of pairs (a), its standard deviation (b) and the (pseudo) magnetization standard deviation (c). The solid lines are the results of a numerical simulation. Here q/h 0.3 Hz and U s /h 18 Hz. The error bars correspond to one standard error.

Figure 42 :

 42 Figure 42: (a) Period and (b) amplitude of the oscillations of N p versus the QZE q. The solid blue lines are the results of numerical simulation and the black dotted lines are the predictions of the UPA.

Figure 43 :

 43 Figure 43: Evolution of the e fective temperature (a) and entropy (b) over time, for ρ +1 (same data set as for gure 41). The four lower panels show the distributions of the number of atoms in +1, from which the entropy and temperature can be calculated. The solid lines are the results of the numerical resolution of the Schrödinger equation.

Figure 44 :

 44 Figure 44: Number of pairs produced af er 80 ms of evolution versus the phase of the seed ϑ for N seed 6 atoms (a), and versus N seed for ϑ 0 rad (blue diamonds), ϑ = 2.2 rad (green circles) and ϑ 3.2 rad (red squares) (b). The solid and dashed lines are the results of the Bogoliubov and mean-eld approximations, respectively. The gray area corresponds to the detection noise level.
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 1 RELAXATION AND THERMALIZATION OF ISOLATED QUANTUM SYSTEMS 79 matrix ρDE = n |c n | 2 |n n| . (6.3)

Figure 45 :

 45 Figure45: Numerical resolution of the relaxation of the nematic state |0 ⊗N , with N = 100 atoms, at q = 0. We plot the distribution of the reduced number of pairs versus the dimensionless time τ in the upper panel. For τ 1 the distribution is smooth and corresponds to the thermal distribution calculated in the Bogoliubov approximation. At longer times the distribution becomes rather complex. Remarkably, the mean number of pairs (lower panel, solid black line) relaxes to a steady value and shows essentially no evolution when τ 1. It is almost (up to nite size e fect) perfectly described by Eq. (6.11) (red dashed line).

Figure 46 :

 46 Figure 46: Distribution of the reduced population n 0 in the |N, S, M z states, for N = 1000, S = 50, 100, 150 and M z = 0.The upper panels show the exact distributions and the lower panels the coarse-grained distributions. The black line corresponds to the analytical result given by Eq.(6.19).
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 3 OBSERVATION OF THE RELAXATION OF A SPINOR BEC 85

Figure 48 :

 48 Figure 48: Universality of the relaxation dynamics. We plot the reduced number of pairs, versus the dimensionless time τ = 2 N

Figure 49 :

 49 Figure 49: a Relaxation of the observables Np (open circles) and ∆ Np ( lled squares). Here N 2800 atoms. A small nematic state with N seed 110 atoms in the m = ±1 states is produced on purpose, prior to the quench, to seed the dynamics. The solid blue line (resp. dotted red) is the GGE expectation Np = N/4 (resp. ∆ Np = N/(4 √ 2)). In b we show the mean value Np (open circles) and ∆ Np af er 500ms of evolution versus the size of the initial seed. The data are in very good agreement with the GGE prediction for all N seed .

Figure 50 :Figure 51 :

 5051 Figure 50: Relaxed (or time averaged) number of pair versus N q/U s . The solid black (red dashed) line is the diagonal ensemble (GGE) predictions.

Figure 52 :

 52 Figure52: Mean reduced number of pairs n| Np |n /N in the eigenstate n, versus its energy E n , for increasing q. The blue shaded area corresponds to the interval of width δE, used to compute the GME average. For q = 0, the curve is very smooth and essentially constant, in accordance with the generalized ETH. For q = U s /N , the curve is, on the contrary, very peaked, and the predictions of the GME are sensitive to δE. For q = U s /20, the curve is smooth again, but there are few eigenstates within the interval δE. Hence, the MCE is constituted of few states, and becomes very dependent on the precise value of δE, leading to an "unstability" of the MCE predictions in that interval. This issue disappears in the thermodynamic limit.

Figure 53 :

 53 Figure 53: Crossover from reversible oscillations to relaxation of the number of pairs af er a quench of the magnetic eld. The solid lines are numerical resolutions of the dynamics under the SMA Hamiltonian. For all plots, the error bars correspond to the standard error.

90 CHAPTER 7 .

 907 FRAGMENTATION OF A SPINOR BOSE-EINSTEIN CONDENSATE 7.1 Fragmentation and the role of the interactions

7. 1 . 1

 11 Protection of a scalar BEC Ideal gas Let us rst consider an ensemble of non-interacting bosons in a box-potential. The single-particle eigenstates are the plane waves with momentum k and energies k = ( k) 2 /(2M ). The many-body Hamiltonian is

Figure 54 :

 54 Figure54: Spectrum of the Hamiltonian(7.6) for N = 20. For U > 0 (a), the ground state corresponds to a single condensate with n 1 = 0 or n 1 = N . A large gap separates it from the rst excited state. For U < 0 (b), the ground state corresponds to the twin-Fock state with n 1 = N/2. The condensate is fragmented but this state is fragile, it is separated from the rst exited states by a very small gap.

. 12 ) 1 √ 2

 1212 Let us write Ω ±1 = ∓ sin θe ∓iφ and Ω 0 = cos θ. The action of the annihilation operators on the nematic coherent state takes a simple form:âm |N : Ω = √ N Ω m |N -1 : Ω . (7.13) 

1 and S 1 .U 2 s

 12 Using it in Eq. (7.24), we obtain N, S, M z |ρ sb |N, S, M z = 1 N e -S 2 2N . (7.26) at q = 0, the Hamiltonian (7.9) can be written as ĤSMA = 2N S,M S(S + 1)|N, S, M z N, S, M z | . (7.27)

Figure 55 :

 55 Figure55:The main panel shows the entanglement entropy (open blue squares) and tted temperature ( lled red circles) of the reduced density matrix ρ (n) of a singlet state with N = 100 atoms, computed numerically using Eq.(7.33). The solid lines are the analytical results, corresponding to the thermal distribution Eq.(7.42). The panels on the right show the exact distribution P n (S) (dots), and the thermal distribution (solid line) for various n.
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 987 FRAGMENTATION OF A SPINOR BOSE-EINSTEIN CONDENSATE 7.3.1 State preparation

Figure 57 :

 57 Figure57: a Energy gap between the ground state and the rst excited state of the SMA Hamiltonian Eq. (7.9) versus the QZE q. The solid line is the result of a numerical diagonalization, the dashed line corresponds to the Bogoliubov approximation. b Simulated evolution of n 0 (blue line) and ∆n 0 (red line) over the ramp, versus q(t). The dotted line corresponds to the expectation for the instantaneous ground state. c Evolution of the total spin over the ramp (solid line) and in the ground state (dotted line).
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 1007 FRAGMENTATION OF A SPINOR BOSE-EINSTEIN CONDENSATE 7.4 Observation of a fragmented BEC 7.4.1 Evolution over the ramp

Figure 58 :

 58 Figure58: a Evolution of the mean reduced population n 0 (blue dots) and its standard deviation (red squares) showing super-Poissonian uctuations. This contrasts with b the standard deviation of the transverse spin S x (blue dots) that decreases below the shot noise while the longitudinal spin S z (red squares) remains close to the imaging noise level (gray area). The solid lines are the value of the observable in the ground state of the Hamilitonian Eq. (7.9). Error bars represent two standard errors.

2 fFigure 59 :

 259 Figure 59: Long time evolution of the fragmented condensate. (a,b) Evolution of the mean reduced population n 0 (blue circles) and its standard deviation (red squares) before (a) and af er (b) rotation. (c,d) Evolution of the standard deviation of the spin component S z (c) and S x (d). The solid black lines are the predicted evolutions given our atom losses and assuming isotropic losses. (e) Evolution of the atom number. The solid black line is an exponential t. (f ) Evolution of the squeezing parameter given by Eq. (7.32).

  2i) are pseudo-spin operators. They are linked to the single-particle density matrix elements via ρ

Figure 60 :

 60 Figure60: a Evolution of the reduced population n 0 over a rotation of the spin for a polar state (blue dots) and a fragmented state (red squares). b Evolution of the standard deviation of the longitudinal spin ∆S z . For both observables, the fragmented state shows a weak sensitivity to rotation compared to the polar state. The solid lines are sinusoidal ts.

Figure 61 :

 61 Figure 61: Upper panels: fragmented state, lower panel: polar state. a,b Distribution of n 0 before rotation (n 0,z ,a) and af er (n 0,x ,b). For the fragmented state, both distributions are broad and fairly similar, in sharp contrast with the narrow distributions of n 0 in the nematic states. The dashed lines are the results of numerical simulation for N = 100. c Distribution of S z . It is limited by the detection noise (dashed line) for the nematic state, and only slightly larger for the fragmented state. d Distribution of S x . It limited by the projection noise for the nematic state, and much below that level for the fragmented state.

Figure 62 :

 62 Figure 62: Evolution of the reduced population n 0 (blue dots) and spin s z (red squares) under the rotations R y ( π 4)R z (φ), for a polar (a) and fragmented state (b). The solid lines are the ts from which we extract ρ(1) .

Figure 63 :

 63 Figure63: Reconstructed single particle density matrix ρ(1) (we only show the modulus of the matrix elements) for a coherent state (A) and for a fragmented state (B). The former has one eigenvalue of order one, while the latter has three comparable eigenvalues.

1 Figure 65 :

 165 Figure 65: The main panel shows the entropy (blue line) and temperature (red line) of the reduced density matrix ρ (n) ML for the reconstructed MaxLik state in the N even subspace (solid lines) and the singlet state (dashed lines). The small panel on the right show the spin distribution in the state ρ (n) ML , for n = 53, 93, 104 (N = 104). The solid lines are thermal t from which we extract the spin temperature.

Figure 66 :

 66 Figure 66: Sketch of singlet insulators. For a lling of two (a), the singlet pairs are localized within one site, while for unity lling (b) they form dimers.

B. 1 . 3 2 )

 132 SPIN EIGENSTATE AND THE NUMBER BASIS 115In particular, for the singlet state, we can compute Singlet state in the number basisThe singlet state is given by (N is necessary even for the singlet)|N, 0, 0 = Â † N 2 |vac nb , k |k, N -2k, k nb . (B.12)

14 )N 2 S 2 √Figure 67 : 1 √ 2

 14226712 Figure 67: Lef panel: singlet state in the number basis (characterized by n 0 only, S z = 0). Right panel: nematic state in the spin state basis (characterized by S only, S z = 0). The red circles are the exact results, the blue line are the approximate formula derive in this appendix. Here N = 100, and the approximation are well veri ed.
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 14132 -(j-k) 2 2(j+k) e -N (θ-θ jk ) 2 e iφ(k-j) |j, Njk, k nb , (B.[START_REF] Chin | Feshbach resonances in ultracold gases[END_REF] where tan θ jk = j+k N -j-k . B.3 Spin eigenstate and the coherent state overcomplete basis B.3.1 Spin state in the nematic state basis Let us consider the (unnormalized)e state |ψ = d 3 ΩY S,Mz (Ω)|N : Ω , (B.26) where Y S,Mz is a spherical Harmonic. Using Eqs.[B.17,B.22] we can rewrite |ψ as |ψ = d 3 ΩY S,Mz (Ω)e -iφ Ŝz e -iθ Ŝy T 2T + 1 4π f N T |N, T, 0 . (B.27) B.3. SPIN EIGENSTATE AND THE COHERENT STATE OVERCOMPLETE BASIS 117 Furthermore, using S , M |e -iφ Ŝz e -iθ Ŝy |T, 0 = δ S ,T D S M ,0 (φ, θ) , (B.28) S , M |e -iφ Ŝz e -iθ Ŝy |T, 0 = δ S ,T 4π 2S + 1 Y * S ,M (Ω) , (B.29) where D is the Wigner D-matrix, we obtain [50] N, S , M |ψ = d 3 ΩY S,Mz (, M |ψ = f N S δ S,S δ Mz,M . (B.31) Thus, |ψ = f N S |N, S, M z , and the spin state can be expressed in the nematic state basis as |N, S, M z = ΩY S,Mz (Ω)|N : Ω , can show that N : Ω|N, S, M z = f N S Y S,Mz (Ω) . (B.34) B.3.2 Coarse grained distribution of pairs of the spin state In chapter 6, we are interested in the coarse-grained distribution of N p for spin state with zeros magnetization and 1 S √ N . We derive it here. For shortness, we write |k, N -2k, k nb = |k nb , and |N, S, 0 = |S . Using Eqs.(B.32,B.25), we obtain ΩY S,0 (Ω)e -N (θ-θ kk ) 2 .

π 1 k 2

 12 sin θ k = k/N . Further more, using f N S 4π/N we obtain| nb k|S | 22 graining, sin 2 (Sθ k -π 4 ) 1/2 and we obtain the result announced in the main text.C.2. DYNAMICAL PRODUCTION OF THE TMSV 119Thermal statistic The reduced density matrix for the mode +1 (it is clearly the same for m = -1) is Z = Tr e -K N+1 and K = log(1 + 1/ N+1 ) 1/ N+1 . In analogy with the distribution of a thermal gas of non-interacting Bosons, we can de ne an e fective temperature T eff such that K = q k B T eff . It yields to (for substantial depletion) Dynamical production of the TMSV C.2.

2 N

 2 when θ * = 0, and it then reaches the Heinsenberg scaling ∆θ * = √ , and is a factor √ 2 above the Heinsenberg limit.D.2 Interferometry with a two-mode squeezed vacuumThe TMSV can be written as a coherent superposition of TFS with di ferent numbers of atoms|TMSV = ∞ Np=0 c Np |N p , N p .(D.13)

Figure 68 : 1

 681 Figure 68: Numerical resolution of the thermalization dynamic of a nematic state at q = 0. a n p vs τ (de ned above) for various atom numbers. For small N = 10 we see an early revival of the dynamic. For larger N , we observe thermalization, and we verify the universality of the curve n p (τ ). b The blue line is the exact result for N = 1000 atoms, the red dots are the approximate formula derived in this appendix. The error of order 1/N is not visible.

  2), we have k m = l m = n, and i mk m = j ml m . The factor κ is then taken to the power n, and is simply a constant. Furthermore, noticing that (we are back to the spin basis,|N + , N -= |N + , N 0 = N -N + -N -, N -) ρ j+,j-i+,i-= i + , i -|ρ (N ) m=0,±1 (j ml m )! j m ! (i mk m )! i m ! the sum as ρ (n) = 1 N k±,l± Tr ρ (N ) P (n) † l+,l-P (n) k+,k-|k + , nk +k -, k -l + , nl +l -, l -| .
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 61272 Iterative calculation in the spin-state basis

ρ

  (n) = c T P SM |nSM nT P | , (F.8)We then use the expression of the spin state in the coherent nematic state basis[START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF] SM (Ω)Y * T P (Ω )|n :Ω n : Ω | . (F.11)This form is convenient to trace over the state of k particles, it simply amounts to splitting the coherent state |n : Ω = |k : Ω |nk : Ω . We take k = 1, and we use[START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF] n: Ω|nSM f n S Y SM (Ω) , (Ω)Y * T P (Ω )Y * 1m (Ω)Y 1m (Ω )|n -1 : Ω n -1 : Ω | .where the sum is now taken over S, M, T, P and m = ±0, 1. The matrix element in the spin state basis ared T1P1 S1M1 = n -1S 1 M 1 |ρ (n-1) |n -1T 1 P 1 , (Ω)Y * T P (Ω )Y * 1m (Ω)Y 1m (Ω )Y * S1M1 (Ω)Y T1P1 (Ω ) ,We then express the integral in function of Clebsch-Gordan coe cientdΩY * S1M1 (Ω)Y * S2M2 (Ω)Y SM (Ω ) = (2S 1 + 1)(2S 2 + 1) 4π(2S + 1) S 1 0S 2 0|S0 S 1 M 1 S 2 M 2 |SM ,

  

  

  .1.

	Geometry	N	Trap. freq.	L	ξ s
	CDT CDT SBT	100 10 4 10	∼ 2 kHz ∼ 300 Hz	∼ 0.5 µm ∼ 2 µm	∼ 5 µm ∼ 4.5 µm

4 

∼ 300 Hz and 3 Hz ∼ 60 µm ∼ 10 µm Table

2

.1:

  .[START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]) shows a better agreement, up to ∼ 200 ms. At that time we observe a saturation of Np to a value of ∼ 200 pairs, while the simulation shows a reduction of Np . Possible e fects not included in the simulation are atom losses and interactions with the thermal cloud. As for the measured pseudo magnetization Ĵz , it remains very close to the imaging noise for the whole time. The small increase could be due to atom losses, in the BEC or in the molasses during the detection. In any case, it is much smaller than the shot noise value Np /2. -16.8 dB. We show the distribution of N p and J z at that time on gure 38. The distribution of N p is in very good agreement with the prediction of a thermal distribution and veri es ∆N p

	At t = 150 ms we measure Np Eq. (5.16) is ζ 2 s 0.021 =	105, ∆ Np	115, ∆J z	1.55 and the spin squeezing parameter ζ s de ned by

  dB, with no removal of the imaging noise. From a reconstruction of the state (described in Sec. 7.5), which includes the detection noise, we extract Ŝ2 9.91 ± 0.88, yielding ξ 2 0.048 -13.2 dB.

	(assuming S 2 y = S 2 x ), Ŝ2	16.27 ± 1.05 and ξ 2	0.078	-11.1	2 z	3.55 ± 0.36, S 2 x	6.36 ± 0.70, thus

  If ρ describes correctly our data, pr k f k and R(ρ) Id. The idea is to compute iteratively the elements of the sequence de ned by the recurrence relation

	7.5. MANY-BODY STATE RECONSTRUCTION	105
		.60)

Table 7 .

 7 The results of the t are reported in Table7.3 and are consistent with this prediction. 3: Results of the noise removal on the spin distribution before and af er rotation.

	2 ν meas -σ 2 noise (here σ 2 noise	2.3). Ŝ2 z	Ŝ2 x
	Measured 3.55 ± 0.36 6.36 ± 0.70 Inferred 1.17 ± 0.36 4.37 ± 0.64

  [START_REF] Linnemann | Active SU(1,1) atom interferometry[END_REF] with N p = Np . This leads to

			Ĵ2 x = N p	2 ,	(D.15)
			Ĵ4 x = 9N p	4 ,	(D.16)
	Ĵx	Ĵ2 z J x = N p	2 .	(D.17)
	And nally				
	Ĵ z = N p	2 sin 2 θ ,		(D.18)
	(∆J 2 z ) 2 = 8 sin 4 θN p	4 + sin 2 θ cos 2 θN p	2 .	(D.19)
	The sensitivity is thus				
	∆θ 2 =	8 tan 2 θN p 4N p 2	2 + 1	.	(D.20)

  (∆J 2 z ) 2 = 8 sin 4 θN p 4 + sin 2 θ cos 2 θN p 2 + 4N p 2 ∆N 2 + (∆N ) 4 . (D.23) D.3. INTERFEROMETRY WITH DETECTION NOISE 123 where (∆N ) 4 = N 4 -N 2 2 . The sensivity is nally given by ∆θ 2 2 tan 2 θ + 1

	4N p	2 +	∆N 2 N p 2 cos 2 θ	+	4N p	(∆N ) 4 4 sin 2 θ cos 2 θ	.	(D.24)

2 , (D.22)

neglecting the very small e fect of an applied magnetic eld on the electronic cloud, and other symmetry breaking elds.

The single-particle density matrix is of en normalized to N in the literature. We take it normalized to one, because the entropy -Trρ log ρ is de ned for Trρ = 1.

Similarly but in another context, a Mott insulator has no spatial mode entanglement whereas a super uid has[START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF]. The situation is reversed in momentum space.

More generally, the superselection rules also render useless the entanglement created via two-modes mixing only, such as spin rotation or any single-particle operation.

In this paragraph, we neglect the quadratic Zeeman energy (QZE) and the interaction. Indeed, the duration of the pulse used to perform Rabi-oscillation is on the order of tens of microseconds. On this timescale, the QZE and interaction have essentially no e fect.

The noise reported in this paragraph is the standard deviation of the atom number on empty images. It is typically larger on atomic images, due e.g. to losses.

Custom made by Melles Griot to be di fraction limited at

nm and 1064 nm. It is also used to focus the vertical dimple trap on the atoms.

The single-mode spin Hamiltonian has a bounded spectrum, but only describes the low-energy sector of the full Hilbert space.

This work was done before the implementation of uorescence imaging described in Chapter

The steady state population slightly changes over time due to atom losses and/or evaporation of thermal atoms, that change the condensed atom number and thereby Us (see Fig.29). The time scale for these changes is very slow (around 10 s) and modi es signi cantly Us from its initial value only af er very long times (by about 17 in 10 s), much longer than the typical time-scales for the dynamics. We therefore discard these changes for the discussion in the main text.

See the outlook 4.7

The system may even "fall" in the unstable regime if δ

2U . It is visible in gure 40 a, where we see the spread of the instability region to slightly larger detuning in the driven situation. However this is a nite size e fect. Indeed, according to the UPA, the amplitude of the oscillation in the stable regime (studied in the next section) does not depend on the total number of atoms, and hence in that regime, np → 0 as N → ∞.

The Larmor precession results in a phase η = pt between m = ±1 of no importance in the following.

For commensurate or for a nite number of frequencies one expects "rephasings" at some particular times yielding to revival of the dynamics. Those appear in short time windows separated by long periods with no evolution, and do not forbid relaxation as de ned above, provided the time averages are taken over a su ciently long window.

The ETH alone is not su cient to guarantee thermalization, but the narrowness of the initial state in energy is a weaker assumption, common in statistical mechanics (required for the equivalence of the statistical ensembles). For instance, it is demonstrated in[START_REF] Rigol | Thermalization and its mechanism for generic isolated quantum systems[END_REF], for quenches of a local Hamiltonian.

For indistinguishable particles with α > 1 degrees of freedom, the restriction to symmetric states yields a scaling of the Hilbert space as N α , and the conclusion still holds

To simplify the notations, we use a generalized canonical ensemble, instead of generalized microcanonical ensemble. In the thermodynamic limit the two ensembles are equivalent.

The equivalence of ρDE and ρME also holds for other coherent states, that have narrow distribution (determined by the shot noise) in the spin state basis.

This required compensation of the subway eld, as explained in chapter 3.

Of en in the literature, ρ[START_REF] Cohen-Tannoudji | Nobel lecture: Manipulating atoms with photons[END_REF] is normalized to N . We take it normalized to 1, because we will investigate higher order reduced density matrix and it is more convenient to have them all normalized to one.

The factor of two di ference comes from the well de ned parity of the singlet state, which only has overlap with states with even atom number in m = 0 populated because of the vanishing magnetization. See the appendix B for the expression of the singlet in the number basis.

This is another way to understand how "extreme con guration" such as N 0 = N are more frequent than expected: once k 1 atoms have been measured in say m = 0, the state is almost perfectly projected onto |0 ⊗N and the Nk k remaining atoms are in m = 0.

This belongs to the family of squeezing parameters used to detect correlations between the spins (see[START_REF] Kitagawa | Squeezed spin states[END_REF] and Chapter

[START_REF] Andrews | Observation of interference between two Bose condensates[END_REF]. It is not directly linked to the metrological gain of an interferometric experiment.

A linear coupling between A and B would result in a binomial distribution of the atom number in these two modes which does not correspond to the state written in Eq.(7.37). The state obtained from Eq.(7.37) af er partial tracing over B corresponds to the thermal state of Eq. (7.42) described within the canonical ensemble. The state obtained by coupling linearly A and B without selecting a well de ned atom number corresponds to the grand canonical description of the same (in the thermodynamic limit) state.

The atom used in[START_REF] Luo | Deterministic entanglement generation from driving through quantum phase transitions[END_REF] is Rubidium, which has ferromagnetic interactions. Thus the TFS is the ground state only because the constraint of vanishing magnetization. The absolute ground state is doubly degenerate and corresponds to the polarized states with all atoms in m = ±1[START_REF] Stamper-Kurn | Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[END_REF].

We are also aided by the fact that sodium atoms have spin-dependent interactions signi cantly larger than Rubidium.

This interpretation assumes that the constraints are indeed veri ed by the state. In practice this is never exactly the case and an error in the estimation of the constraints results in an error on the MaxEnt state.

In practice, higher degree polynomials are used, in order to have a smooth beginning and end of the ramp.

For instance, one could imagine that the atoms in B are lost, or equivalently that an observer has only access to the mode A. The projection is necessary to have blocks with well-de ned atom numbers, otherwise, the state of mode A, will be a mixture of the ρ (n) , with n within ∼ n ± √ n (shot-noise), and n given by κ.

Spin and pseudo-spin operators

In this appendix, we recall the de nition of the spin-1 spin operator and collective spin operator. We also recall the de nition of the collective pseudo-spin, which is the spin that is squeezed in the experiment reported in Chapter 5. Finally, we compute the evolution of the spin and population over a rotation, which are performed via a radio-frequency coupling of the spin states.

A.0.1 De nition

We recall some useful formula.

Spin-1 Matrices

Collective spin It is de ne (in the SMA for simplicity) as Ŝ = â † sâ. Explicitly:

Pseudo-spin We focus on the ensemble of m F = ±1 atoms. In analogy with an ensemble of spin-1/2 particle, we de ne a pseudo-spin Ĵ as:

This is the spin that is squeezed in the quench experiments of chapter 5.

In the next paragraph, we also introduce a pseudo spin for the pair of modes (0, +1), (0, -1). We write the pseudo spin constructed from the mode m and m as Ĵm,m . In the main text we don't precise m and m since we only use the pair m = +1, m = -1. 2    .

(A.10)

The spin observable transform like vector, for the number observable, N0 is given by

Rotation around z The evolution operator for a rotation around the quantization axis z is

12)

The single particle state only acquire a phase, and the population do not evolve.

Combine rotation around z and y The phase shif aquired during a rotation around z is revealed by a adding a rotation around y. We consider a rst rotation around the z-axis by a variable angle φ followed by a rotation around the y-axis by an angle π/4.

Combining the results given above, af er some straight forward algebra one nds that the population evolve as

The spin evolves as a vector

Note that all the pseudo-spin operator intervene in these two equations, thus enabling the full reconstruction of the single particle density matrix as shown in Chapter 7.

Appendix B

Collective spin states

We can write the many-body state of the spin of the condensate spin in many basis. The number basis |N +1 , N 0 , N -1 nb is composed of the Fock states with a given number of atoms N m in the spin-1 state m = 0, ±1. This basis is the most natural one since our diagnostic consist in measuring the various population N m . The SO(3) symmetry of the interaction Hamiltonian, makes the collective spin state basis |N, S, M z composed of the states with a well de ne spin S and a magnetization M z more relevant at low make eld. Finally we also used the overcomplete basis |N : Ω composed of the coherent nematic state align on the axis Ω = (θ, φ), which can be convenient in many calculation thanks to the simple action of the annihilation operator on the coherent state. These states are obtain by rotation of the nematic state |N : e z = |m = 0 ⊗N . We provide in this appendix various formula which allow to "navigate" between the di ferent basis. We rst explore the relation between spin state and number basis, then coherent state and number basis, then spin state and coherente state basis.

B.1 Spin eigenstate and the number basis B.1.1 General spin eigenstate in the number basis

The |N, S, M z states can be expressed in the number basis [START_REF] Koashi | Exact eigenstates and magnetic response of spin-1 and spin-2 Bose-Einstein condensates[END_REF][START_REF] Law | Quantum spin mixing in spinor Bose-Einstein condensates[END_REF][START_REF] Barnett | Antiferromagnetic spinor condensates are quantum rotors[END_REF][START_REF] Sarlo | Spin fragmentation of Bose-Einstein condensates with antiferromagnetic interactions[END_REF] as

where

) is the spin lowering operator and

is the singlet creation operator. Finally,

where !! indicates a double factorial.

B.1.2 Population in a general spin eigenstate

The action of â0 on the |N, S, M z states is [START_REF] Sarlo | Spin fragmentation of Bose-Einstein condensates with antiferromagnetic interactions[END_REF] â0

where the coe cients A ± are given by

The non-vanishing matrix elements of N0 are

Appendix C

Bogoliubov approximation

We study here the ground state of the SMA Hamiltonian in the Bogoliubov regime (see chapter 2), that is to say for small depletion of the BEC, as well as the dynamics.

C.1 Ground state

Bogoliubov Hamiltonian We recall the Bogoliubov Hamiltonian

It can be diagonalized by using the following transformation [START_REF] Ohmi | Bose-Einstein condensation with internal degrees of freedom in alkali atom gases[END_REF] 

with tanh(2θ) = -Us q+Us . We obtain

with the Bogoliubov energy ω B = q(q + 2U s ). The longitudinal spin is Ŝz = N+1 -N-1 = α † α -β † β.

Ground state The ground state is the vacuum of Bogoliubov excitation. Clearly, it has vanishing magnetization. We write it in the number basis

The action of α yield

from which we get the recurrence relation c n = tanh θc n-1 . Hence, c n = (tanh θ) n c 0 . Without loss of generality, c 0 can be chosen real and positive. Using the normalization condition we obtain

Moreover, the mean value of the number of m = ±1 pair in the ground state is Np = sinh 2 θ. With this we nally recover the expression of the ground state announce in the main text:

We can compute of some observables of interest:

C.2.2 Full distribution

The calculation of the full state is more involved. It is on the other hand, well known and derive in many references, given the importance of the Bogoliubov Hamiltonian eq.,(C.1) in many elds. We will admit that the vacuum of m = ±1 pairs evolve into the TSVM de ne above and refer the reader to [START_REF] Mias | Quantum noise, scaling, and domain formation in a spinor Bose-Einstein condensate[END_REF] for the derivation.

Appendix D

Interferometric sensitivity

We consider here only the two modes m = ±1, and the associated pseudo-spin de ne in appendix A. We derive the sensitivity of the twin-fock state (TFS) and two-mode squeezed vacuum (TMSV) to a (pseudo) spin rotation of angle θ around the Y -axis. This is a generic set-up that can describe the Mach-Zehnder or Ramsey interferometer, very common in atomic physics or optics.

In such set-ups the mean value of Ĵz is typically measured. For coherent states, this leads to Rabi-oscillation. For the unpolarized state under consideration, J = 0, and this strategy does not apply. An alternative consists in measuring Ĵ2 z . The sensitivity is then given by

We rst derive ∆θ for the TFS, before turning to the TMSV.

D.1 Interferometry with a twin-Fock state

The case of the TFS is studied in [START_REF] Kim | In uence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[END_REF][START_REF] Holland | Interferometric detection of optical phase shif s at the Heisenberg limit[END_REF][START_REF] Bouyer | Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases[END_REF]. At the output of the interferometer we have Ĵ z = cos θ Ĵz + sin θ Ĵx . The TFS, is written in the number basis as

and in the pseudo spin basis

It is in the kernel of Ĵz , which greatly simpli es the calculation. The signal is

and the quantum noise is

Gathering all pieces, the signal is (for N p 1)

Thermalization of the Nematic state |N : e z

In this appendix, we compute the evolution of the nematic state |N : e z at q = 0. We derived in the appendix B in the expression of this state in the spin state basis. To alleviate the notation, since we are only dealing with state of N atoms and zero magnetization, we write |N, S, 0 = |S . We have,

This is an approximation valid for N 1. In that case, the most relevant term of the sum above verify 1 S N . This will greatly simplify the calculation. At q = 0, the Hamiltonian is Us 2N Ŝ2 , so that the state evolves as

We have used S(S + 1) S 2 , which is valid for most of the term of the sum. We want to compute the mean value of N0 in that state. For S N , We have

From this we compute

We introduce the variables τ = 

where we have used an integration by part. Let us right the integral F (τ ). It veri es F (τ ) + 2τ F (τ ) = 1, which de nes the Dawson function. When τ → 0, F (τ ) ∼ τ , so that at short time, we recover the results of the Bogoliubov approximation (in the limit ω → 0),

When τ → ∞, F (τ ) ∼ 
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Atomes ultrafroids, condensat de Bose-Einstein spinoriel, fragmentation

ABSTRACT

In this thesis, we present some experiments realized with ultracold gases of sodium atoms, trapped at the intersect between two laser beams. At very low temperature, the discretization of energy and the indistinguishability of particles, lead to a new state of matter, a Bose-Einstein condensate. This remarkable phenomenon was initially introduced to describe an ideal gas, that is to say with no interactions between its constituents. Here, we are interested in the effects of the interactions between the atoms. More precisely, our atoms carry a spin 1, and we focus on the collective spin state, in a regime where the spatial degrees of freedom are frozen. Two important results that we present were obtained by embedding the condensate in a nearly vanishing magnetic field. In that regime, interactions dominate and favor the emergence of strongly correlated states. In a first series of experiment, the magnetic field is suddenly decreased to bring the system out-of-equilibrium. The ensuing relaxation dynamics leads to a stationnary state that can be well described by a Gibbs ensemble. In a second experiment, the field is slowly reduced, in order to follow the ground state of the system. We thereby produce a fragmented condensate, which possesses the remarkable feature of being invariant upon spin rotations. The restoration of this symmetry, always broken by single (i.e. nonfragmented) condensates, is driven by the pairing of atoms in singlet states.
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