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Résumé
Dans cette thèse, nous présentons des expériences réalisé avec des gaz d’atome de sodium ultrafroids, piégés à l’intersection de
deux faisceaux laser. A très basse température, discrétisation de l’énergie et indiscernabilité des particules conduisent à un nouvel
état de la matière, un condensat de Bose-Einstein. Ce phénomène remarquable à d’abords été décrit pour un gaz idéal, c’est à dire
sans interaction entre ses constituants. Ici, nous nous intéressons aux effets des interactions entre atomes. Plus précisément, nos
atomes possèdent un spin 1, et nous nous interessont à l’état spinoriel collectif, dans un régime ou les degrées de liberté spatiaux
sont gelés.

Deux résultats importants que nous présentons ont été obtenus en plongeant le condensat dans un champ magnétique quasi-
nul. Dans ce régime, les interactions dominent et favorisent l’émergence d’états fortement corrélés. Dans une première série
d’expériences, le champ est soudainement réduit, et le système se retrouve hors-équilibre. Il s’ensuit une dynamique de relaxation,
qui mène à un état stationnaire bien décrit par un ensemble de Gibbs. Dans une seconde expérience, le champ est progressivement
réduit, de façon à suivre l’état fondamental du système. Nous réalisons ainsi un condensat fragmenté, dont une remarquable
propriété est l’invariance sous rotations des spins. La restauration de cette symétrie, toujours brisée par les condensat “simple”
(i.e. non-fragmenté), se fait grâce à l’appariement des atomes en état singulet.

Abstract
In this thesis, we present some experiments realized with ultracold gases of sodium atoms, trapped at the intersect between two
laser beams. At very low temperature, the discretization of energy and the indistinguishability of particles, lead to a new state of
matter, a Bose-Einstein condensate. This remarkable phenomenon was initially introduced to describe an ideal gas, that is to say
with no interactions between its constituents. Here, we are interested in the effects of the interactions between the atoms. More
precisely, our atoms carry a spin 1, and we focus on the collective spin state, in a regime where the spatial degrees of freedom are
frozen.

Two important results that we present were obtained by embedding the condensate in a nearly vanishing magnetic field. In
that regime, interactions dominate and favor the emergence of strongly correlated states. In a first series of experiment, the mag-
netic field is suddenly decreased to bring the system out-of-equilibrium. The ensuing relaxation dynamics leads to a stationnary
state that can be well described by a Gibbs ensemble. In a second experiment, the field is slowly reduced, in order to follow the
ground state of the system. We thereby produce a fragmented condensate, which possesses the remarkable feature of being invari-
ant upon spin rotations. The restoration of this symmetry, always broken by single (i.e. non-fragmented) condensates, is driven
by the pairing of atoms in singlet states.
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questions et remarques qui suivirent la soutenance. Je remercie en particulier les rapporteurs pour avoir accepté de rédiger un
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à refroidir des atomes.

Pendant ces années, j’ai aussi pu compter en permanence sur mes encadrants Jean Dalibard et Fabrice Gerbier, toujours
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Chapter 1

Introduction

Quantum mechanics is often thought as a description of nature at the microscopic scale, typically the size of a molecule or smaller.
From the early days and the Bohr model of the atom, to modern quantum electrodynamics, the theory has indeed been extremely
successful at this scale, and remained up to this day in perfect agreement with ever more accurate measurements. On the experi-
mental side, novel methods, to a large extent enabled by the invention of the laser, have allowed for an exquisite control over the
internal and external states of individual particles [1]. These progresses have contributed to revolutionize the field of fundamental
metrology. Indeed, single particles have “god given” properties which can serve as universal references, for instance of time [2].
Atomic clocks have technological and fundamental applications, and as an exciting prospective, we can mention the possibility
to track an hypothetical time dependence of the fundamental constants by comparing the beat of two clocks made of different
atoms.

The exploration of quantum phenomena at a larger scale has also been very fruitful, both theoretically and experimentally. Im-
portant experimental milestones are the discovery of superconductivity, superfluidity and more recently the realization of gazeous
Bose-Einstein condensates. Common to all these systems, is the behavior of a macroscopic number of particles in phase. Let us
focus on the Bose-Einstein condensation of ultracold gases [3, 4]. A direct manifestation of the phase coherence is the interfer-
ence pattern formed at the overlap of two condensates [5]. We can also mention the tunneling in phase of thousands of atoms
through a potential barrier, observed in reference [6]. This experiment reproduces with atoms the celebrated Josephson effect, in
which a macroscopic current flows through a thin insulating layer separating two superconductors. In these set-ups, a quantum
effect usually occurring at a microscopic scale, here tunneling, is amplified and manifests itself on a much larger scale, thanks to
the synchronized motion of a macroscopic number of atoms or Cooper pairs. Addressing simultaneously and coherently large
ensembles of independent particles is clearly favorable for metrology, as a larger signal can be obtained. This approach is pursued
in state-of-the-art, optical lattice clocks [2].

The key features of quantum theory which underlie the phenomenon of macroscopic coherence are the quantization of en-
ergy and the particles indistinguishability. Despite the spectacular consequences mentioned above, mere macroscopic coherence
remains far from revealing the full potential of a strict application at the macroscopic scale of the laws of quantum mechanics [7].
For instance, the superposition principle allows a priori for the existence of “Schrödinger cat” states, that is to say, superposition
of distinguishable many-body states. “Cat states” are characterized by the existence of non-classical correlations between the parti-
cles. They belong to the vast category of entangled states. Beyond their fundamental interest (whether the superposition principle
holds at a macroscopic scale remains to be proven [8]), entangled states can be used as a new resource in various domains, and as
an illustration we can turn again to the field of metrology. A fundamental limit of interferometers, the shot-noise, arises from the
granular nature of matter or light. ForN independent particles, the relative error scales as 1/

√
N . With appropriate correlations,

one can reach the so-called Heisenberg scaling 1/N , hence a gain in sensitivity by a potentially very large factor
√
N [9]. However,

we now reach the limit of current technology. On the one hand, the realization of highly correlated states usually requires strong
interactions between particles, and on the other hand, entangled states are known to be fragile against “measurements” performed
by the environment (iedecoherence). The difficulty thus resides in combining substantial interactions within the system, together
with a good isolation from the environment. In that respect, ultracold atoms constitute a promising platform. Proof-of-principle
experiments have already demonstrated the generation of highly correlated states of atomic ensembles with potential metrological
application [10–16].

Highly correlated states of large ensembles of electrons can be found in condensed matter systems such as unconventional
supraconductors or spin-liquids [17]. The description of such materials is frequently out of the reach of current theoretical meth-
ods, either analytical or numerical. A telling example is given in reference [17]: it takes the most powerful computers we currently
have to compute the ground state wavefunction of the Beryllium dimer’s eight electrons. As an alternative to classical computers,
one could use analog quantum simulators. In that respect, ultracold atom experiments may help to tackle the “many-body prob-
lem” [18, 19]. Indeed, idealized Hamiltonian can be implemented, where atoms mimic electrons in solids or complex molecules.
Optical standing waves can be used to create periodic potentials, of various geometries, which reproduce a crystal potential [20].
The transition from the Mott insulator to the superfluid phase in such an optical lattice was observed in [21]. Various experimen-
tal techniques have been developed to simulate condensed matter systems with neutral atoms, for instance synthetic magnetic

8
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fields [22] and spin-orbit coupling [23] can be realized using tailored light-matter interactions [24]. Another great asset of cold
atom experiments is the possibility to tune the interaction strength using Feshbach resonances [25]. Finally, compared to solid-
state systems, ultracold atomic ensembles benefit from alternative and powerful diagnostic possibilities, for instance the momen-
tum distribution can be accessed from a so-called time-of-flight measurement [26], while the real-space density distribution can
be measured on in-situ images. In particular, for atoms in a two dimensional lattice, single site resolution has been achieved in
several experiments [27].

Ultracold gases also offer the opportunity to synthesize and study new quantum fluids, which do not necessarily have an
analogous in condensed matter systems. A particularly fruitful field of research looks at so-called spinor Bose-Einstein condensates
(BEC), where atoms can be in different internal states [28, 29]. The latter can for instance be the three Zeeman sublevels of the
F = 1 hyperfine manifold of alkali atoms (BECs with two to seventeen components have also been realized). This additional
degree of freedom opens the door to the exploration of interesting phenomena at the interface of superfluidity and magnetism.
Formally, spinor BECs are described by a vector order parameter, breaking both gauge and spin rotational symmetries. This rich
structure can host a large variety of topological excitations, for instance spin vortices, observed in [30] or Skyrmions, observed
in [31]. Spinor BECs are also ideal candidates regarding the generation of correlated states. For instance, out of equilibrium
spin-mixing dynamics have been used to produce spin squeezing, relevant for quantum-enhanced interferometry [10–15]. The
microscopic mechanism is analogous to parametric down-conversion in optics. For a spin-1, spin-changing collisions of the type

2× |m = 0〉 → |m = +1〉+ |m = −1〉 , (1.1)

correlates the m = ±1 modes. Starting with all atoms in m = 0, this process produces coherent superposition of states having
each modem = ±1 equally populated. More precisely, at short-time, the dynamics creates a so-called two-mode squeezed vacuum
state [32, 33]. The equilibrium state of spinor BEC has been less studied experimentally than the dynamics, partly because of the
long time (sometime comparable to the condensate lifetime) required to reach equilibrium [34]. Yet, this situation is certainly
worth exploring, especially in a regime where spin-dependent interactions prevail. As in condensed matter systems, different
ordering can be realized depending on the nature, ferromagnetic or antiferromagnetic, of the interactions [29, 35–38]. A generic
Hamiltonian for the interaction of two spin-1 atoms is

Ĥint =
Us
2

ŝ1ŝ2 , (1.2)

=
Us
4

(ŝ1 + ŝ2)2 + constant . (1.3)

Ferromagnetic interactions (Us < 0) favor the “quintet” manifold, ie the states of total spinS = 2, whereas for antiferromagnetic
interactions (Us > 0) the ground state is the singlet expressed as (in the basis |m1,m2〉)

|S = 0〉 =
1√
3

(|0, 0〉 − |+ 1,−1〉 − | − 1,+1〉) . (1.4)

In our experiments, the condensed atoms occupy the same spatial wave function, independently on the spin state, and thus are
interacting “all-to-all” via the Hamiltonian

Ĥint =
Us
N

N∑
i,j=1

ŝiŝj , (1.5)

=
Us
2N

Ŝ2 + constant , (1.6)

where Ŝ is the total spin. In the antiferromagnetic case, the ground state is a “macroscopic singlet”, which can be seen as a conden-
sate of singlet pairs [39–41]. Note that the state (1.4) is entangled, which fundamentally distinguishes a condensate of such pairs
from the mere accumulation of atoms in a unique single particle state occurring for the ideal (non-interacting) gas. Instead, the
BEC is fragmented [42–44].

The observation of condensate fragmentation was one of the long term goals of our group, and a motivation for using Sodium
atoms, with an hyperfine spin F = 1 and antiferromagnetic interactions. In this thesis, we present experiments where the atoms
are tightly confined, so that to a good approximation, the motional degree of freedom is frozen, and we explore physical phenom-
ena that only involve the spin. This is a considerable simplification of the system. For instance, within this approximation, the
effective Hamiltonian can be numerically diagonalized, and even analytically in various regimes. Yet, we will show that this simple
configuration is sufficient to explore new and interesting many-body quantum phenomena.

In Chapter 2, we present some important aspects of the physics of spin-1 BECs. We review the relevant contributions to the
Hamiltonian, in particular the Zeeman effect and the antiferromagnetic interactions. We then focus on the spin degree of freedom,
study the ground state in various regimes, and pay particular attention to the emergence of entanglement.
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In Chapter 3 we present the experimental apparatus. The latter was already built when I arrived, so the preparation of the
BEC is only described briefly, for completeness. I have contributed to the implementation of a new imaging method, which is
presented in detail.

In Chapter 4, we revisit the so-called internal Josephson effect, in which spin-changing coherent collisions lead to oscillation
of the Zeeman populations. We explore the effect of a parametric excitation, and observe resonances reminiscent of the “Shapiro
steps” in a Josephson junction. We study the relaxation dynamics and find non-trivial steady states, bistability and hysteresis in
this system. For this Chapter, we reproduce the article published in [45].

Although the results of Chapter 4 can be understood using a mean-field picture, spin-changing collisions naturally generate
correlations between the atoms. In the remaining Chapters, we present various experiments where we created entangled states
starting from a so-called nematic state, where all the atoms are in them = 0 Zeeman sublevel.

In Chapter 5, we build on the work of Chapter 4 and use a parametric excitation to destabilized the initial nematic state and
trigger the generation of correlated pairs of atoms in the m = ±1 Zeeman states. We measure “spin-squeezing”, and discuss its
relation to entanglement and metrology. We then turn to the study of the dynamics in a stable regime, realized in a static magnetic
field, and where the evolution is reversible. This gives further insight on the nature of the state produced by the spin-changing
collisions, demonstrating the coherence between the spin modes. Finally, we investigate the effect of a seed on the dynamics to
emphasize on the role played by quantum fluctuations in initiating the dynamics.

In Chapter 6 we carry on with similar experiments, ie quenches of the magnetic field, but down to even lower fields, such that
the Zeeman effect becomes negligible. Despite the system being to a good approximation isolated and under unitary evolution,
we observe the relaxation to a steady state. We discuss the mechanism underlying this behavior and show how the steady state can
be described by a generalized Gibbs ensemble.

In Chapter 7, we report on our observation of a condensate of singlet pairs. We use a slow ramp of the magnetic field to
populate the lowest energy states. At the end of the ramp, we measure a very small (microscopic) collective spin, indicating that
most atoms are involved in singlet pairs. This constitutes the first observation of a condensate of this kind. From a complete
reconstruction of the many-body spin state we find a significant overlap with the macroscopic singlet, for which the total spin
exactly vanishes.



Chapter 2

Spin-1 Bose-Einstein condensates

We review in this Chapter the theoretical elements required for the understanding of the experiments presented in the rest of this
manuscript. We try to make the experimental Chapters self consistent, and recall when needed the relevant theoretical background.
The reader can find here a general discussion, and more complete reviews in [28, 29].

The experiments realized in this thesis were all performed on spinor Bose-Einstein condensates (BEC) of Sodium atoms con-
fined in an optical dipole trap. In a spinor BEC, Zeeman effect and spin-dependent interactions compete to determine the dynam-
ics and equilibrium state. They can yield magnetic ordering, much like what can be observed in metals, for instance. However,
while strong electron exchange interactions can lead e.g. to ferromagnetism in Iron at room temperature, in dilute gases, the en-
ergy scale for the spin-dependent interactions is on the order of a few nano Kelvin, quite smaller than the typical temperatures
achieved in ultracold gases (∼ 100 nK). Yet, when a BEC is produced, a macroscopic number of atoms occupy the single-particle
ground state, which has a magnetic structure, even though the thermal cloud remains essentially disordered. This is often refereed
to as Bose-enhanced magnetism [28]. For this reason, we can focus our study on the ground state.

In our system, the spins carried by the atoms are delocalized and interact collectively. This situation is analogous to that of
electronic spins in transition metals, such as Iron, and is called itinerant magnetism. The interplay between spatial and spin degrees
of freedom is in general very complex. However, we realized our experiments in a regime where the orbital and spin modes are
weakly coupled and can be treated independently. Within this approximation, we will first determine the spatial wave function
before deriving an effective spin-only Hamiltonian. The latter is used to described all experiments presented in Chapter 4 to 7
and is studied in the second half of the present Chapter. Starting with a mean-field treatment, we identify two magnetic phases
accessible to our system. In the vicinity of the phase transition, quantum fluctuations play an important role, and deplete the
BEC. The regime of small depletion can be captured by Bogoliubov theory. Closer to the phase transition, the depletion becomes
macroscopic, and the many-body state can no longer be seen as a condensate of atoms in a single-particle state. We pay particular
attention to the onset of entanglement, and its characterization in the critical regime, near the phase transition.

2.1 Hamiltonian of a spin-1 Bose-Einstein condensates

2.1.1 Internal degree of freedom
Sodium is an alkali metal with a unique valence electron. The electronic ground state has a spin s = 1

2 and vanishing angular
momentum l = 0. The nuclear spin is i = 3

2 , and hence the hyperfine spin is F = 1 or F = 2 [46]. The hyperfine splitting is
much larger than the typical energies so that the atoms remain in the F = 1 manifold. In all of our experiments, we apply a bias
magnetic field B. To a very good approximation this field is uniform over the size of the clouds. We set the z axis as the direction
of B. It serves as a quantization axis to define the three Zeeman statesm = 0,±1.

Bloch-Rabi representation of a spin-1 We introduce here a geometrical representation that helps visualizing the symmetries of
spin-1 states. A spin 1/2 can be conveniently represented by a unit vector n with spherical coordinates (θ, ϕ) as |ψ 1

2
(n)〉 = α| ↑

〉 + β| ↓〉, with α = cos
(
θ
2

)
eiϕ/2 and β = sin

(
θ
2

)
e−iϕ/2. The Bloch sphere representation for a spin 1/2 is generalized by

thinking of a spin-1 as a symmetric composition of two spin-1/2

|+ 1〉 = | ↑〉| ↑〉 , |0〉 =
1√
2

(| ↑〉| ↓〉+ | ↓〉| ↑〉) , | − 1〉 = | ↓〉| ↓〉 , (2.1)

We introduce two unit vectors n1 and n2. With the same definition of θ1,2 , ϕ1,2 and α1,2 , β1,2 as above, the state of a spin-1 is
parametrized as

|ψ(n1, n2)〉 =
1

2
(α1| ↑〉1 + β1| ↓〉1)⊗ (α2| ↑〉2 + β2| ↓〉2) + 1↔ 2 , (2.2)
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12 CHAPTER 2. SPIN-1 BOSE-EINSTEIN CONDENSATES

where 1↔ 2 indicates permutation of the indexes 1 and 2, in order to satisfy the exchange symmetry. Using Eq. (2.1) we obtain

|ψ(n1, n2)〉 =
1√
N

(
α1α2|+ 1〉+

α1β2 + α2β1√
2

|0〉+ β1β2| − 1〉
)
. (2.3)

withN = 3+n1·n2

4 . With this parametrization, rotation in spin space maps onto simultaneous rotation of n1 and n2. Moreover,
the mean spin takes a simple form 〈̂s〉 = n1+n2

2 . The states with n1 = n2 have a net spin and are called oriented. The unpolarized
state, with n1 = −n2 are sometimes called nematic state, in analogy with liquid crystals where molecules are aligned but have no
particular orientation. The Zeeman states |m = ±1〉 are oriented (along±ez). On the other hand, |m = 0〉 is the nematic state
align along z. Those three states are represented in figure 1.

mf = + 1 mf = − 1mf = 0

Figure 1: Bloch rabi represention of the spin states |F = 1,m = +1〉 (a), |F = 1,m = 0〉 (b) and |F = 1,m = −1〉 (c).

Zeeman Effect Sodium atoms have a nuclear and an electronic spin that both couple to a magnetic field, but with different
magnetic moments (the nuclear contribution is much smaller due to the larger nucleus mass). For low enough magnetic fields,
the effect of the nuclear spin can be treated as a perturbation. In this approximation, F remains a good quantum number. After
an expansion up to the second order in B one obtains the following Hamiltonian [46]

ĥZ = pŝz + qŝ2
z , (2.4)

ŝx,y,z are the spin-1 matrices

sx =
1√
2

0 1 0
1 0 1
0 1 0

 , sy =
i√
2

0 −1 0
1 0 −1
0 1 0

 , sz =

1 0 0
0 0 0
0 0 1

 . (2.5)

The first term of Eq. (2.4) is the linear Zeeman shift, p = gµB‖B‖ with g ' 1
2 the Landé hyperfine g-factor and µB =

e~/(2me) the Bohr magneton. The second term is the quadratic Zeeman shift (QZE), q = αB2, with α = (gµB)2/∆Ehf

where ∆Ehf is the hyperfine energy splitting.
The expansion leading to Eq. (2.4) is legitimate only for q � p. In practice, gµB/h ' 700 kHz/G and α/h ' 277 Hz/G2.

We typically use field below a fewG, so that q/p < 10−3. Although the QZE may seem negligible, it is in fact in many situations
the relevant term. Indeed, we will see in Sec. 2.1.2 that owing to the isotropy of the interaction in spin space, the magnetization
Ŝz , defined as the component of the collective spin along the magnetic field axis, is conserved in a static field. The linear Zeeman
shift is then simply a constant in the Hamiltonian and plays no role in the dynamics or the equilibrium state.

We often apply time-dependent, or spatially dependent magnetic fields to perform spin rotation or apply spin-dependent
forces. These are used as experimental tools and will be described in Chapter 3.

2.1.2 Interactions
Scattering potential Neutral atoms interact strongly at short distances and weakly at larger distances via van der Waals interac-
tions. Several simplifications arise in ultra-cold dilute gases because of the very low temperature and density. First, because the
interaction range is much smaller than the inter-atomic distance, it is sufficient to consider only two-body interactions, described
in the framework of quantum scattering theory. Second, the interaction range is also much smaller than the de Broglie wavelength.
This restricts the possible collisions to those with vanishing total orbital angular momentum (s-wave collisions). It also allows us
to conveniently replace the complex interaction potential by a contact interaction (for scalar atoms)

Ûext(r) = gδ(r) , (2.6)

depending on a unique parameter g, related to the s-wave scattering length a by g = 4π~2

M a. In our situation, the atoms have a
spin F = 1, and can occupy the three Zeeman states. A similar pseudo-potential can be used irregardless of the internal state of
the colliding atoms, such that the scattering potential becomes

Ûscat = Ûspin ⊗ δ(r) . (2.7)
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q

p

p

q

mf = + 1

mf = − 1

mf = 0

Figure 2: Left: linear and quadratic Zeeman shifts. Right: owing to the conservation of the magnetization, the linear Zeeman shift
is a constant and only the quadratic Zeeman shift matters.

This delta potential is rotationally invariant in real space. Isotropy of the interaction1 then requires Ûspin to be rotationally invari-
ant in spin space. Let F̂ be the total angular momentum of the colliding pair and P̂F =

∑
|M |≤F |F ,M〉〈F ,M | the projectors

on the subspace of total spinF . The commutation relations [Ûspin, F̂x,y,z] = 0 impose (Shur’s lemma)

Ûspin =

2∑
F=0

gF P̂F , (2.8)

where gF = 4π~2

M aF and aF is the scattering length in the channel F . Because of the exchange symmetry, the total spin of the
colliding pair cannot be equal to 1. Furthermore, using (ŝ1 + ŝ2)2 = 2(1 + ŝ1 · ŝ2) = 6P̂2 and

∑
P̂F = I , one can rewrite

Ûspin as a familiar spin exchange interaction [29]

Ûspin = gI + gs ŝ1 · ŝ2 . (2.9)

Here we introduced g = 4π~2

M a, a = a0+2a2
3 and gs = 4π~2

M as, as = a2−a0
3 . In practice, the scattering lengths are determined

experimentally. In [47] the values a2 ' 2.80 nm and a0 ' 2.51 nm were measured (a = 2.7 nm, as ' 0.097 nm). We point
out that a > 0 indicates repulsive interactions and that as > 0 favors anti-alignment of the spins and indicates antiferromagnetic
interaction (AFI). Finally, we have as � a, so that the scattering potential is in fact mostly spin-independent. However, thanks
to Bose-Einstein condensation, we are able to probe very low energy scales, where the spin dependent interaction plays a crucial
role.

A popular atom in spinor BEC experiments is Rubidium. The interactions in the F = 1 manifold are ferromagnetic (and
significantly weaker) than for Sodium. At low magnetic fields, this yields BECs with very different magnetic order. This was one
of the original motivations for the choice of Sodium in our experiment.

2.1.3 Many-body Hamiltonian
Interaction The many-body Hamiltonian is most conveniently written in second quantization. We introduce the atomic field
operators Ψ̂†m(r) that create an atom at position r in the Zeeman statem = 0,±1. The interaction Hamiltonian is

Ĥint =
g

2

N∑
i,j=1

∫
d3rΨ†i (r)Ψ†j(r)Ψi(r)Ψj(r) +

gs
2

N∑
i,j,k,l=1

∫
d3rΨ†i (r)Ψ†j(r)sik · sjlΨk(r)Ψl(r) , (2.10)

where sik are the spin-1 matrix elements. Introducing the density operator ρ̂ =
∑
i Ψ̂†i (r)Ψ̂i(r) and the spin density operator

Ŝ(r) =
∑
i,j Ψ̂†i (r)sijΨ̂i(r), the Hamiltonian Eq. (2.12) can be conveniently rewritten as

Ĥint =
1

2

∫
d3r
(
gρ̂2(r) + gsŜ2(r)

)
. (2.11)

1neglecting the very small effect of an applied magnetic field on the electronic cloud, and other symmetry breaking fields.
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We have omitted constant terms∝
∫
d3rρ(r) = N . Using the expression of the spin-1 (2.5), we can develop the Hamiltonian and

obtain (omitting the r dependence of the field and density operators)

Ĥint =
1

2

∫
d3r(g + gs)(: ρ̂+1ρ̂+1 : + : ρ̂−1ρ̂−1 :) + g : ρ̂0ρ̂0 :

+ 2(g + gs)(ρ̂+1ρ̂0 + ρ̂−1ρ̂0) + 2(g − gs)ρ̂+1ρ̂−1

+ 2gs(Ψ̂
†
+1Ψ̂†−1Ψ̂0Ψ̂0 + Ψ̂†0Ψ̂†0Ψ̂+1Ψ̂−1) . (2.12)

We use the symbol “: :” to indicate normal ordering of the field operators. The first line corresponds to spin-conserving collisions
between atoms in the same Zeeman state, the second line to spin-conserving collisions between atoms in different Zeeman state,
and the last line to the only spin-changing collision allowed by spin rotational symmetry.

+ +

Figure 3: Spin changing collision.

Full Hamiltonian Let us conclude by writing the full Hamiltonian, including the Zeeman and interaction terms described above,
plus the kinetic energy term, and the trapping potential Vtrap. The latter is modeled as a harmonic trap, with frequencies ωx,y,z .
The Hamiltonian is then

Ĥ =

∫
d3r
[
Ψ̂†(r)

(
−~∇2

2M
+ Vtrap(r)

)
Ψ̂(r) +

g

2
ρ2(r) +

gs
2
Ŝ2(r)

]
+ pŜz − qN̂0 , (2.13)

where we used the integrated quantities

N̂i =

∫
d3rΨ̂†mΨ̂m , (2.14)

Ŝz =

∫
d3rŜz = N̂+1 − N̂−1 . (2.15)

As mentioned earlier, owing to the revolution symmetry around thez-axis, the magnetization Ŝz commutes with the Hamiltonian
and is a conserved quantity.

2.2 Single Mode Approximation
We present in this Section an approach that considerably simplifies the study of the Hamiltonian Eq. (2.13), namely the single
mode approximation (SMA) [48–50]. It assumes that all atoms occupy the same spatial mode, irregardless of their spin state.
This is motivated by the following observations. Let us rewrite the Hamiltonian as Ĥ = Ĥ1 + Ĥ2, with

Ĥ1 =

∫
d3r
[
Ψ̂†(r)

(
−~∇2

2M
+ Vtrap(r)

)
Ψ̂(r) +

g

2
ρ2(r)

]
, (2.16)

Ĥ2 =

∫
d3r
[gs

2
Ŝ2(r)

]
+ pŜz − qN̂0 . (2.17)

The contribution Ĥ1 depends only on the spatial degree of freedom, and its energy scale (∼ 1 kHz) is typically much larger than
that of Ĥ2 (∼ 10 Hz), which can thus be treated as a perturbation. More precisely, we first find the ground state of Ĥ1 and then
derive an effective Hamiltonian for the spin degree of freedom. Finally we verify the self consistency of the procedure.

2.2.1 Spatial degree of freedom
Gross-Pitaevskii equation Given the previous discussion, we take the following ansatz:

Ψ̂(r) = ψSMA(r)ζ̂ , (2.18)

where ζ̂ = (â+1, â0, â−1)T . We first focus on the spatial mode, purposely written as a classical fieldψSMA(r) (normalized to 1).
This is known as the Hartree-Fock (or mean field) approximation, and it is widely used to describe ultra-cold Bose gases, where a
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large number of particles occupy the same single particle state [26]. Minimization of the energy under the constraint of conserved
atom number (taken into account by introducing a Lagrange multiplier µ, the chemical potential) yields the Gross-Pitaevskii
equation

(
−~2∇2

2M
+ Vtrap(r) + gN |ψSMA|2

)
)ψSMA = µψSMA . (2.19)

Kinetic energy and repulsive interactions compete against the trapping potential.

Solutions We can distinguish two limiting cases

• For non-interacting particles, the solution is the ground state of the trapping potential (µ = ~
2 (ωx + ωy + ωz)) [51]

ψid(r) =
∏

ν=x,y,z

(
Mων
π~

) 1
4

exp

(
−Mων

2~
ν2

)
. (2.20)

• In the other limit, known as Thomas-Fermi, the quantum pressure can be neglected and the density is an inverted parabola
[26]

ψTF(r) =

√
1

g
(µTF − Vtrap(r)) , (2.21)

where Vtrap(r) < µTF, and zero elsewhere. The chemical potential is computed to ensure proper normalization, µTF =

~ωho

2

(
15Na
aho

) 2
5

, with ωho = (ωxωyωz)
1
3 and aho =

√
~/(mωho).

The relative effect of the kinetic energy and the interactions can be quantified using the healing length

ξ =

√
h2

2Mgn
, (2.22)

where n is the mean density. For a system of typical size L, the ratio between kinetic and interaction energy is ∼ ξ
2
/L2. In

practice, we perform experiments with a wide range of parameters. Two typical situations are

• N ∼ 100 andωho ∼ 2π×2 kHz. This situation is closer to the ideal-gas regime, withL ∼ aho ∼ 0.5µm and ξ ∼ 1µm.

• N ∼ 104 and ωho ∼ 2π × 300 Hz. This situation is closer to the Thomas-Fermi regime, with L ∼ RTF ∼ 2µm and
ξ ∼ 0.8µm.

In general, we have to solve Eq. (2.19) numerically to get accurate predictions for the density profile. However, this is often of little
importance to us, since we mostly focus on spatially averaged quantities, depending only on the spin degree of freedom.

2.2.2 Spin Hamiltonian
We now turn to the spin degree of freedom. Injecting the SMA ansatz in the Hamiltonian Eq. (2.17) we obtain an effective Hamil-
tonian for the spin degree of freedom

Ĥspin =
Us
2N

Ŝ2 + pŜz − qN̂0 . (2.23)

Here Us = Ngs
∫
d3r|ψSMA(r)|4. In practice, Us/~ ∼ 20 Hz is calibrated experimentally (see chapter 4 and 5). We also

introduced the total spin operator Ŝ = Ŝzez + Ŝ⊥ with Ŝ⊥ = Ŝxex + Ŝyey the transverse spin operator. Using the expression
of the spin-1 matrices (2.5), we find

Ŝ2
⊥ = N + N̂0 + 2N̂0(N − N̂0) + 2(â†+1â

†
−1â

2
0 + â†20 â+1â−1) . (2.24)

Let us remark once again that [Ĥspin, Ŝz] = 0. A unitary transform Û = exp(ipt~ Ŝz) allows us to get rid of the linear Zeeman
term. We then obtain (we use the same notation for Ĥspin with a slight abuse of notation):

Ĥspin =
Us
2N

Ŝ2 − qN̂0 . (2.25)

As mentioned in Sec. 2.1.2, for Sodium, the spin-dependent interaction energy Us is positive, corresponding to AFI and q ∝
B2 > 0. This Hamiltonian governs most of the physics behind the experiments presented in this manuscript. We will discuss the
ground state in the next Section.
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2.2.3 Validity of the single-mode approximation

Let us consider a cloud withSz > 0 (we use the notationO = 〈Ô〉). The QZE is minimized by having as many atoms as possible
in them = 0 state. On the other hand, a quick estimate using Eq. (2.24) shows that a cloud withm = +1 andm = 0 atoms has
a transverse spin∼ N2, while a cloud withm = ±1 atoms has a transverse spin∼ N . Their is thus a competition between the
QZE that favors am = 0,m = +1 mixture and the AFI that prefers am = ±1 mixture. However, if we relax the single-mode
constraint, the transverse spin density 〈Sperp(r)〉 could be kept equal to zero everywhere, providing the wave functions for the
m = 0 and m = +1 states do not overlap. Hence, one may expect the AFI to lead to the formation of spin-domains, which
obviously violates the SMA. However, the creation of such spin domains comes with an increase of the kinetic energy as each spin
component is confined in a smaller volume. In sufficiently tight traps, this effect enforces the SMA.

In a same way that a healing length was defined to quantify the effect of the spin-independent interactions, we can define a
spin healing length associated to the AFI

ξs =

√
h2

2Mgsn
, (2.26)

such that Ekin/Esp.int. ∼ ξ2
s/L

2. The spin healing length gives an order of magnitude of the smallest size of a possible spin
domain. We compute ξs for different experimental configurations, characterized by the atom numberN and the trap frequencies,
and we report the values in table 2.1.

Geometry N Trap. freq. L ξs
CDT 100 ∼ 2 kHz ∼ 0.5µm ∼ 5µm
CDT 104 ∼ 300 Hz ∼ 2µm ∼ 4.5µm
SBT 104 ∼ 300 Hz and 3 Hz ∼ 60µm ∼ 10µm

Table 2.1: The first two situations correspond to a roughly isotropic, tight crossed dipole trap (CDT). In the first case, the cloud is
deep in the SMA, the AFI are two orders of magnitude below the kinetic energy. From this simple estimate, we can expect small
deviations to the SMA in the second case. This is one of the reasons why we tend to work with small BECs. The last situation
corresponds to an elongated, single-beam trap (SBT), with a very weak confinement along one axis, and where we observe the
appearance of spin domains.

To be more quantitative, it is possible to find numerically the ground state of Eq. (2.13) in the mean-field approximation. One
has to solve three coupled Gross-Pitaevksii equations to obtain the wave function of each Zeeman state. Results for our typical
experimental conditions are reported in [52]. The fidelity with the SMA solution is larger than 0.99 for N < 104 in a crossed
dipole trap, with ωho = 2π × 600 Hz.

Spin domain formation in an elongated trap We show in figure 4a a typical picture, of a BEC with magnetization 〈Ŝz〉 ' N/2,
in an elongated trap and in a large bias field. This picture is taken after having separated the Zeeman state using a Stern-Gerlach set-
up, described in Chapter 3. We see a domain withm = 0 atoms, surrounded bym = +1 atoms. This configuration maximizes
the quadratic Zeeman energy under the constraint 〈Ŝz〉 ' N/2. Moreover, thanks to the spatial separation of the m = 0
and m = ±1 states, the transverse spin vanishes almost everywhere (up to quantum corrections discussed later on). Finally, the
domainm = +1, which has non-zero magnetization density, and therefore larger interaction energy is located on the edge of the
trap, where the particle density is smaller. Neglecting the kinetic energy, a spatially separated configuration with sharp domain
walls minimizes the energy. As the confinement increases, so does the kinetic energy, and the domain starts to overlap. For strong
enough confinement, the three Zeeman states are forced to overlap. We show in figure 4b an image of a BEC in such conditions,
realized in practice in a tight cross dipole trap.

Experiments in the 1D regime were carried on during the first year of my PhD and are presented in details in [53], and in
Andrea Invernizzi’s thesis [54]. I will not discuss them further, and I will rather focus on experiments accomplished during the
rest of my PhD. Those were realized using tight cross dipole traps, and are all well described within the SMA.

2.3 Mean field approximation

We carry on with the investigation of the ground state property of the Hamiltonian (2.25). We first use a mean-field treatment,
similar to the one used for the spatial mode. It is a variational method, and we start by introducing trial states, the so-called
coherent spin states.
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a. b.

Figure 4: Clouds after Stern-Gerlach separation of the Zeeman states confined in (a) a single beam elongated trap and (b) a cross-
dipole trap. In latter case, the SMA appears to be well verified. In the former, the spontaneous formation of spin domains consti-
tutes a dramatic deviation.

2.3.1 Coherent spin states
General case Let us consider a general spin-1 state defined in the standard basis as |ζ〉 =

∑
m ζm|m〉, with ζ a complex unit

vector define by three real variable n0, sz and ϕ±1 as

ζ =


√

1−n0+sz
2 eiϕ+1

√
n0√

1−n0−sz
2 eiϕ−1

 . (2.27)

We have chosen the phase ϕ0 to be equal to 0. We will often use the relative phases

η =
ϕ+1 − ϕ−1

2
and ϑ = ϕ+1 + ϕ−1 − 2ϕ0 . (2.28)

A coherent state where all atoms occupy the same single particle state describes a perfect BEC and can be written as

|N : ζ〉 =
1√
N !

(ζ · â†)N |vac〉 , (2.29)

with â† = (â†+1, â
†
0, â
†
−1)T . Here, n0 = 〈N̂0〉/N is the reduced population in the state m = 0 and sz = 〈Ŝz〉/N is the

reduced magnetization.

Nematic state We now introduce the family of nematic, or polar coherent states, which plays an important role in the description
of antiferromagnetic spinor BECs. The nematic coherent state aligned along z, is the state with all atoms in m = 0. By spin
rotation of this state, one obtains the family of nematic coherent state aligned along Ω = (sin θ cosφ, sin θ sinφ, cos θ). They
can be expressed as

|N : Ω〉 =
1√
N !

(
− 1√

2
sin θe−iφâ†+1 + cos θâ†0 +

1√
2

sin θeiφâ†−1

)N
|vac〉 . (2.30)

By comparison with Eq. (2.27), we identify n0 = cos2 θ, sz = 0, ϑ = π and η = −φ+ π
2 .

2.3.2 Mean-field ground state

Mean-field energy The mean field energy per atom εspin = 〈Ĥspin〉/N , where Ĥspin is given by Eq. (2.25) and the expectation
value is taken for a general spin coherent state given by Eq. (2.29), is

εspin =
Us
2

(s2
⊥ + s2

z)− qn0 . (2.31)

Here s⊥ is the (reduced) transverse spin of a coherent state

s⊥ = ‖s⊥‖ (cos ηex + sin ηey) , (2.32)
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with

‖s⊥‖2 = 2n0

(
1− n0 +

√
(1− n0)2 − s2

z cosϑ
)

+O
(

1

N

)
. (2.33)

Because the mean magnetization sz is a conserved quantity, it should be thought of as an experimental parameter. More precisely,
the relation [Ŝz, Ĥspin] = 0 implies the conservation of the whole distribution of magnetization, not only the mean value.
Consistency with the mean field ansatz imposes a Poissonian distribution, fully characterized by the mean value sz . In the next
Section, when we derive the ground state with no assumption on the nature of the many-body state, we will have to specify the
whole magnetization distribution.
For now, we investigate the mean-field ground state as a function of sz and q (of any sign). It is studied theoretically in [28, 29, 55]
and experimentally in [37, 56, 57].

Phase diagram The minimization of εspin for a given q and sz leads to different phases characterized by the order parameter
‖s⊥‖. We use the same notation as in [29].

AF . The antiferromagnetic phase, with vanishing transverse spin, exists for q < qc = Us(1 −
√

1− sz). When sz 6= 0,
s⊥ = 0 when the m = 0 state is not populated. For 0 < q < qx, this is driven by the AFI, which competes against the
QZE.

BA. The broken-axisymmetry phase exists for q > qc. It is characterized by a non-vanishing transverse spin s⊥ > 0 (except
along the lines sz = 0 and sz = ±1), which breaks the rotational symmetry around the z-axis. The phase ϑ is locked to π
in order to minimize the AFI (this has been observed in [37]).
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Figure 5: Relative population in the state m = 0 (left plot) and order parameter s⊥ (right plot) in the ground state, versus the
reduced magnetization sz and q/Us. The white line delimits the phase transition determined from a mean field treatment.

The mean-field approximation has been successful in describing numerous experiments, either looking at the equilibrium
state [37,56,57], or the dynamics of a spinor BEC [58–61]. Yet, recent experiments [10,62–67] (mostly focusing on the dynamics)
cannot be understood within this simple picture. A hint of the failure of the mean field treatment to precisely describe the ground
state comes from the symmetry breaking. Indeed, because [Ĥspin, Ŝz] = 0, the eigenstates of Ĥspin are eigenstates of Ŝz , which
are invariant under rotation around the z-axis. The mean field states do not belong to that family (except when there is only one
Zeeman state populated).

2.4 Beyond the mean-field approximation
We now look for the ground state beyond the mean-field ansatz. This opens the possibility of entangled states as will be discussed
in Section 2.5. Before we proceed, we need to specify the constraint on the magnetization. For mean field states, which have
a Poissonian distribution of Sz , we only need to constrain the mean value. For more general states we have to constrain the
whole distribution. We will first focus on the simple case, where the magnetization is exactly zero (i.e. we take a centered delta
distribution). This corresponds to the experimental situation explored in Chapter 5 to 7. We will see that for antiferromagnetic
interactions, it includes the unconstrained ground state.
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2.4.1 Bogoliubov approximation
Bogoliubov Hamiltonian When q → ∞, one can neglect the AFI and the exact ground state is the nematic state |N : ez〉,
with all atoms in m = 0. For large and positive q (the range of validity will be determined to ensure self-consistency) we thus
expect N0 ' N � N±1. In that situation, the system should be fairly insensitive to small fluctuations of N0. This motivates a
Bogoliubov ansatz,

â = (â+1, (N − N̂+1 − N̂−1)
1
2 , â−1)T , (2.34)

where the mode m = 0 is taken as a classical field, but the m = ±1 modes are treated quantum mechanically. The SMA
Hamiltonian Eq. (2.25) is approximated by the quadratic Hamiltonian

ĤB = (q + Us)
(
N̂+1 + N̂−1

)
+ Us

(
â+1â−1 + â†+1â

†
−1

)
, (2.35)

up to a constant and neglecting terms of order 1� N . Using the Bogoliubov transformation [68],

α̂ = cosh(θ)â+1 − sinh(θ)â†−1 ,

β̂ = sinh(θ)â†+1 − cosh(θ)â−1 , (2.36)

with tanh(2θ) = − Us
q+Us

, the Hamiltonian is diagonalized

ĤB = ~ωB(α̂†α̂+ β̂†β̂) , (2.37)

up to constant terms, and with the Bogoliubov energy

~ωB =
√
q(q + 2Us) . (2.38)

The longitudinal spin is Ŝz = N̂+1 − N̂−1 = α̂†α̂− β̂†β̂.

Ground state The ground state is the vacuum of Bogoliubov excitations. It satisfies the constraint of exactly vanishing magne-
tization. Let N̂p = N̂+1+N̂−1

2 be the operator “number ofm = ±1 pairs”. We can compute the mean value and variance of N̂p
in the ground state of the Hamiltonian ĤB (for q � Us):

〈N̂p〉B '
√
Us
8q

, (2.39)

∆N̂2
p,B = 〈N̂p〉B(1 + 〈N̂p〉B) . (2.40)

Eq. (2.40) is characteristic of a thermal Bose-Einstein distribution [26]. We show in the appendix C that this is an exact result. In
the number basis |N+1, N−1〉 the many-body state is

|TMSV〉 =
1√
N

∞∑
n=0

ζn|n, n〉 , (2.41)

withN = 1+ 〈N̂p〉 and ζ2 = 〈N̂p〉/(1+ 〈N̂p〉). This state is sometimes called a two-mode squeezed vacuum state (TMSV). Its
most distinctive feature is the wide distribution of the atoms number in modem = ±1, in contrast with the perfect correlation
with the atoms number in the other mode m = ∓1. This remarkable property cannot be realized with a mean-field state, nor
with any separable states, as will be shown in Section 2.5. The TMSV can be used for instance, to perform metrology beyond
the standard quantum limit (see App. D). We will come back to this in Chapter 5 when discussing the dynamical production and
characterization of a TMSV.

The depletion of the m = 0 mode results in an increase of the QZE, compensated by a reduction of the AFI energy. This
effect can be identified computing the total spin

〈Ŝ2〉B =
2Nq − Us

~ωB
. (2.42)

When q � Us, 〈Ŝ2〉B = 2N , the shot noise value in the nematic state. Indeed, in first quantization, the total spin can be written
as

Ŝ2 =

N∑
i=1

ŝ2
i + 2

N∑
i=1,j>i

ŝiŝj , (2.43)
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where ŝi is the spin of the atom i. For spin 1, 〈ŝ2
i 〉 = 2. Furthermore, for a separable state, if i 6= j, 〈ŝiŝj〉 = 〈ŝi〉〈ŝj〉, and for

indistinguishable atoms 〈ŝi〉 = 〈ŝ1〉. These considerations yields for separable states

〈Ŝ2〉 = 2N +N(N − 1)〈ŝ1〉2 . (2.44)

Hence, for separable states the minimal value of the spin fluctuations is obtain for nematic states, which verifies 〈ŝ1〉 = 0, and
〈Ŝ2〉 = 2N .

Bosonic amplification Let us consider the evolution of the ground state in the range Us
N � q � Us. According to Eq. (2.39),

we have 1� 〈N̂p〉 � N . The ratio between the total spin and its shot noise value is

〈Ŝ2〉B
2N

' 1

4〈N̂p〉
� 1 . (2.45)

In words, the fluctuation of the spins are reduced well below the shot noise level. This is quite a surprising result: a microscopic
(independent onN ) depletion of the condensate, still leads to a significant decrease of the spin fluctuations. This counterintuitive
phenomenon can be understood as an effect of bosonic amplification [41].
The microscopic mechanism that leads to reduction of the collective spin below the shot noise value is the association of two spins
to form a singlet state, with zero total spin:

|sing〉 =
1√
3

(|0, 0〉 − |+ 1,−1〉 − | − 1,+1〉) . (2.46)

Naively (and wrongly), one could reason as follows. We assume that the cloud can be divided into two independent groups,
Nsinglet atoms forming singlet pairs, and N − Nsinglet atoms remaining in the m = 0 Zeeman state. We then compute the
mean values of observables by summing the contribution of the two groups independently (this is the faulty step). It yields
〈Ŝ2〉naive = 2(N −Nsinglet), andNsinglet = 4

3 〈N̂p〉. The reduction of the total spin is proportional to the depletion, which is
arguably more intuitive than the Bogoliubov results Eq. (2.45). However, in this wrong calculation, we forget interference terms
between the two fictitious groups, arising from the symmetrization of the state. The importance of this term can already be seen
in the simple case of a state composed of one singlet state and one atom in the statem = 0. If the spins were distinguishable, the
state in first quantized form would be

|ψ〉 =
1√
3

(|0, 0, 0〉 − |0,+1,−1〉 − |0,−1,+1〉) . (2.47)

For indistinguishable spins, the proper symmetrized state is

|ψS〉 =
1√
15

(3|0, 0, 0〉 − |0,+,−〉 − |0,−,+〉 − |+, 0,−〉 − |−, 0,+〉 − |+,−, 0〉 − |−,+, 0〉) .

We can easily compute 〈ψ|N̂0|ψ〉 = 5
3 whereas 〈ψS |N̂0|ψS〉 = 11

5 > 5
3 . We see that the m = 0 mode is already amplified by

the presence of one atom in addition to the singlet. Of course, this effect is dramatically enhanced when there is a condensate in
m = 0.

Validity of the Bogoliubov approximation The most stringent condition for the validity of the Bogoliubov approximation
comes from the spin given by Eq. (2.42). The treatment clearly fails for q < Us

2N , where it predicts 〈Ŝ2〉 < 0. On the other
hand, for the populations, self-consistency requires 〈N̂p〉 � N , that is to say q � Us

N2 [Eq. (2.39)]. To be more quantitative,
in Section 2.4.3, figure 6, we compare these results with an exact diagonalization. We see that the Bogoliubov approximation is
indeed more accurate for the population than for the spin (at low q).

2.4.2 Exact treatment at q = 0

Total spin eigenstate For q = 0, the Hamiltonian Eq. (2.25) can be written as

ĤSMA =
Us
2N

Ŝ2 . (2.48)

This Hamiltonian can be diagonalized analytically (see [41,48,50] and also appendix B). Its eigenstates are the angular momentum
states |N,S,Mz〉, where S ∈ [0, N ] is an integer that has the same parity asN in order to satisfy to the exchange symmetry. Mz

is an integer in [−S, S]. The eigenvalues are

E(N,S) =
Us
2N

S(S + 1) . (2.49)
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Ground state For simplicity, let us focus on the situation N even. The macroscopic singlet state with vanishing spin S = 0 is
the ground state at q = 0 (clearly satisfying the zero magnetization constraint). It is perfectly invariant upon spin rotation, as a
consequence of the rotational symmetry of the Hamiltonian Eq. (2.48). ForN = 2, the singlet pair state |2, 0, 0〉 is given in the
Zeeman basis by Eq. (2.46). For largerN , the “macroscopic singlet state” is obtained by symmetrization (under particle exchange)
of the state |2, 0, 0〉⊗N2 . This state is very different from a mean-field state given by Eq. (2.29), since |2, 0, 0〉 cannot be factorized
in a product of single particle states (it is a two-particle entangled state). We introduce the singlet-pair creation operator,

Â† =
1√
3

(
â†20 − 2â†+1â

†
−1

)
. (2.50)

In the number basis, the singlet state can be written as [40, 41, 43]

|N, 0, 0〉 = Â†⊗
N
2 |vac〉nb.basis . (2.51)

(2.52)

In the appendix B, we show that for large N , the probability distribution of N0 in the singlet state is P(N0) '
√
N/N0/2.

From this, we compute the mean value and variance of N̂0. We obtain

〈N̂0〉 =
N

3
, (2.53)

∆N̂2
0 '

4N2

45
' 0.3N2 . (2.54)

We remark that the mean is consistent with the isotropy of the singlet state, and the variance characterizes a distribution with
super-Poissonian fluctuations. We will study this remarkable state in detail in Chapter 7.

2.4.3 Numerical results and summary
We diagonalized numerically the SMA Hamiltonian Eq. (2.25) for N = 100 atoms, under the constraint of exactly vanishing
magnetization. We show the results for q > 0 in figure 6. We summarize the results of Sec. 2.4.1 and Sec. 2.4.2 as follows:

• q > Us: The interactions play a negligible role and the mean field treatment works fine. The cloud is condensed in the
nematic state |N : ez〉 = |m = 0〉⊗N .

• Us
N < q < Us: The condensate is slightly depleted and well described by a Bogoliubov approximation. The distribution

of atoms in them = ±1 mode obeys a thermal Bose-Einstein distribution. While the total spin steadily decreases between
q ∼ Us and q ∼ Us/N , the depletion remains small. This can be understood as a bosonic amplification of the condensed
modem = 0.

• q < Us
N : The Bogoliubov approximation breaks down, the condensate has extensive occupation of the three modes, with

macroscopic fluctuations (of order∼ N ). On the other hand, the total spin has microscopic fluctuations (of order∼ 1).

• q < Us
N2 : The ground state is close to the macroscopic singlet state (exact at q = 0). The latter shares the rotational

symmetry of the Hamiltonian, and thus has equal population in the three modes and a vanishing total spin.

2.5 Entanglement in a spinor BEC
In experiments presented in Chapters 5 to 7, we will pay particular attention to the presence of entanglement in our system. We
quantify the entanglement relatively to two partitionings of the system, in terms of group of atoms (or block) or in terms of degree
of freedom (modes). In the present section, we introduce the measure of entanglement and the two partitionings. These notions
will find a more concrete meaning in the discussion of the experiments, and we will always recall the definition.

Entangled states Deviations from the mean field prediction occur when the ground state cannot be described by the ansatz
|N : ζ〉 = |ζ〉⊗N . Product states of this form are the only symmetric separable states, and thus, the failure of the mean field
description indicates entanglement between the atoms. The two-mode squeezed vacuum state defined in Eq. (2.41) and the singlet
state defined in Eq. (2.51) are entangled states.

For completeness, let us briefly introduce a third remarkable entangled state, the so-called “twin-Fock state” (TFS), which has
exactly half of the atoms inm = +1 and half inm = −1. It can be written in the number basis as

|N : TFS〉 = |N
2
, 0,

N

2
〉nb.basis . (2.55)



22 CHAPTER 2. SPIN-1 BOSE-EINSTEIN CONDENSATES

10-6 10-4 10-2 100 102

q/Us

0

50

100
N

0

 a

10-6 10-4 10-2 100 102

q/Us

0

10

20

30

40

50

"
 N

0

 b

10-6 10-4 10-2 100 102

q/Us

0

50

100

150

200

 S
2

 c

Figure 6: Ground state of an antiferromagnetic spin-1 BEC ofN = 100 atoms, versus the QZE q. The solid line is the result of a
numerical diagonalization. The red dashed lines are the predictions of the Bogoliubov theory. The black dashed line is the singlet
state asymptote for q = 0. We show the mean populationN0 (a), standard deviation ∆N0 (b) and total spin S2 (c).

The TFS is the ground state for large negative QZE (−q � Us), under the constraint sz = 0. In that case the mean field ground
state is highly degenerate and corresponds to the whole family of nematic states |N : Ω〉, where Ω lies in the (xy)-plane. This
resembles the situation q = 0, although the degeneracy is lesser here, because of the QZE that breaksSO(3) rotational symmetry.
Even though the TFS has a very simple form in the number basis, it is a non-classical state that can be used to perform metrology
beyond the standard quantum limit [69].

Having identified these interesting states, a natural question that arises is how to classify them. An exhaustive answer goes
far beyond the scope of this manuscript [70]. We only introduce a few entanglement criteria and figures-of-merit well suited to
the states we have produced. In particular in Chapter 5, we will define squeezing parameters, that can reveal entanglement and
sometimes metrological enhancement. In this chapter, we turn to another, more general quantity, the entanglement entropy, to
quantify the amount of entanglement in a given state.

Entanglement entropy Let us divide the full system in two complementary partitions, A and B with Hilbert spaces HA and
HB . We first consider a pure state |ψ〉 ∈ HA ⊗ HB . We write ρ = |ψ〉〈ψ| the total density matrix, and ρA = TrB(ρ) the
reduced density matrix, where TrB stands for the partial trace over a basis ofHB . The value of any local (acting separately onA
andB) observable is fully determined by ρA and ρB . The entanglement entropy is the Von-Neuman entropy of state ρA,

S(ρA) = −TrA(ρA ln ρA) . (2.56)

If the state is separable, i.e. |ψ〉 = |ψA〉 ⊗ |ψB〉, ρA is a pure state with zero entropy. Otherwise S(ρA) > 0 measures the
amount of information shared betweenA andB. The Von-Neumann entropy is conserved under unitary operations. If they are
local, the entanglement entropy is also conserved.

For mixed states, the Von-Neumann entropy is larger than zero for the total state, and a non-zero entropy of the reduced state
does not necessarily indicate entanglement. Instead, one should measure the mutual information,

I(A,B) = S(ρA) + S(ρB)− S(ρ) . (2.57)

I(A,B) > 0 indicates entanglement. In the rest of this Section, we only consider pure states.
Let us point out, that despite its theoretical interest (e.g. [71]), the Von-Neumann entropy is in general difficult to access

experimentally [72]. Indeed, it is a non-linear function of the density matrix that requires in general the knowledge of the entire
quantum state in order to be calculated. We have been able to measure the entanglement entropy of non-classical states using
two distinct methods. In Chapter 7, we use a full reconstruction of the state produced in the experiment. In Chapter 5, we create
entanglement using reversible dynamics. S(ρA) can be measured on the entangled state and S(ρ) after further evolution, on a
“disentangled” state (relying on the conservation of the entropy under unitary evolution).

Partitioning To go further, we should explicitA andB for our system. In the SMA, the only degree of freedom is the spin. We
can think of two simple ways to divide the system (we use the same names as in [70]):

• A is composed of a fixed number of atoms n. B is composed of the remaining N − n atoms. We call such a division
block partitioning. The term “block” comes from an analogy with spins localized on a lattice. In our case, the spins are
“itinerant” and indistinguishable, so this name should not be taken too literally. Yet, the reduced density matrix of A is
perfectly well defined, providing one takes the indistinguishably into account [70, 73].
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• A is composed of the atoms in a given spin state, e.g. m = +1. B is composed of the atoms in the remaining states,
m = 0,−1. In that case, we talk aboutmode partitioning.

Basically a pure state has block (mode) entropy if it is not separable in first (second) quantization. When dealing with a fixed
number of distinguishable particles, the first definition is more natural. When dealing with a fluctuating number of particles,
blocks with a fixed number of atoms cannot be define, and the mode partitioning has to be used. In our situation, the two
partitionings are well defined and both are often used in the literature for models comparable to ours (e.g. itinerant spin 1/2, see
for instance [70] and the references therein).

Block entropy Single particle operations, such as spin rotations are local. On the other hand, a collision between an atom from
blockA and an atom from blockB is a non-local operation and can thus modify the entanglement. For now, we will focus on the
situation where A is composed of a single atom, so that ρA = ρ(1) is the single particle density matrix. It can be written in the
standard state basis as

ρ
(1)
i,j =

1

N
〈â†i âj〉 . (2.58)

The state we considered are SO(2) symmetric, such that [ρ(1), Ŝz] = 0 and ρ(1) is diagonal in the standard basis. Using also
sz = 0, we can express the entropy as

S(ρ
(1)
Sz=0) = −(1− 2np) ln(1− 2np)− 2np ln(np) , (2.59)

withnp = 〈N̂p〉/N the reduced number of pair. The entropy is maximal for a uniform distribution,np = 1
3 andS(1)

max = ln(3).
Let us now examine how ρ(1) and its entropy evolve in the ground sate of the SMA Hamiltonian:

• q � Us: Nematic state, np = 0, and S(ρ(1)) = 0.

• Us
N < q: Two-mode squeezed vacuum. np '

√
Us

8qN2 , and S(ρ(1)) is given by Eq. (2.59).

• q = 0: Singlet state, np = 1
3 and S(ρ(1)) = ln(3).

• −q � Us: Twin-Fock state, np = 1
2 and S(ρ(1)) = ln(2).

AtT = 0, an ensemble of non-interacting bosons forms a perfect BEC andρ(1) has one non-zero eigenvalue (and no entropy).
Whenρ(1) has several macroscopic eigenvalues of order∼ 12, the condensate is said to be fragmented [74]. This will be the subject
of Chapter 7.

Mode entropy When A is defined as the ensemble of atoms in a single mode m, e.g. m = +1, mode entropy simply results
from having an undetermined number of atoms in m. A mere spin-rotation (that are no longer local operations, since they
mix the modes) may thus create mode entanglement. For instance, the nematic state |N : ez〉 has no atom in m = +1 and
S(ρA) = 0. After a π/2 rotation, |N : ex〉 has a binomial distribution of N+1. Hence S(ρA) > 0 and the state has mode
entanglement. Note that mode entanglement depends on the modes that are chosen. For instance if we choosex as a quantization
axis, |N : ez〉 is entangled and |N : ex〉 is not3. The standard basis seems to be a very natural choice. A motivation could
come from the facts, that a spin-dependent force, easy to realize in practice, could be used to transform spin-entanglement in
the standard basis into spatial entanglement. However, as was pointed out in [75], a superselection rule should be taken into
account: it is impossible to couple states with different numbers of atoms. For instance let us consider one atom brought into the
superposition (|m = +1〉 + |m = −1〉)/

√
2. In the number basis, this state is expressed as (|1, 0, 0〉 + |0, 0, 1〉)/

√
2 and is

mode-entangled. Let us assume that using a magnetic force, we map the spin modes m = ±1 onto two spatial modes A and B
(we let aside the m = 0 mode). The state then looks like a Bell-state, useful to perform non-classical protocols, e.g. quantum
teleportation. However, such protocols would require to couple the state |1〉A to |0〉A (idem for B), which is impossible because
of atom number conservation. More generally, to estimate the mode-entanglement useful for quantum information protocols,
the superselection rules can be taken into account by projecting the quantum state onto states with fixed local atom number [75].
If we consider a single mode, the only degree of freedom is the number of atoms in the mode, and the projection results in a mixed
state, with no entanglement4.

2The single-particle density matrix is often normalized to N in the literature. We take it normalized to one, because the entropy−Trρ log ρ is defined for
Trρ = 1.

3Similarly but in another context, a Mott insulator has no spatialmode entanglement whereas a superfluid has [72]. The situation is reversed in momentum
space.

4More generally, the superselection rules also render useless the entanglement created via two-modes mixing only, such as spin rotation or any single-particle
operation.
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The direct mapping of the three spin modes available in a spin-1 BEC onto three spatial modes is thus not a good strategy to
observe non-local quantum phenomena. Yet, recent experiments have shown that mode entanglement created in a spinor BEC in
the single-mode regime could still be spatially distributed [76–78], and used to perform quantum information protocols. In these
experiments, entanglement is created through spin-mixing collisions in a tight trap. The confinement is then removed and the
cloud expands. The spin entanglement results in quantum correlations between different regions of the clouds. More precisely,
for two entangled regionsA andB, and a set of non-commuting local observables X̂A and P̂A acting inA. For an observer inA,
the simultaneous knowledge of 〈X̂A〉 and 〈P̂A〉 is limited by Heinsenberg uncertainty relation. However, for an entangled state,
additional knowledge can come from a measurement performed inB [76,77]. This phenomenon is known as Einstein-Podolsky-
Rosen steering.

Interest in mode entanglement can also come from analogies with phenomena involving virtual particles. For instance, in the
Unruh effect, virtual particles appear to an accelerating observer as if it were a thermal radiation. In that case, the mode entropy
takes the same form as thermal entropy, with the temperature determined by the acceleration. An analogous effect has been
observed in a driven BEC [79]. More precisely, modulating the interacting strength using a Feshbach resonance, the production
of a pair of atoms with opposite momenta is stimulated. Individual momentum modes have a large entropy. However, by reversing
the dynamics, the authors of [79] were able to show that (some) coherence still exists between the opposite modes, and that (part
of) the entropy corresponds to entanglement entropy. A similar mechanism occurs in our system, as shown above in Sec. 2.4.1.
The TMSV has a thermal occupation of the modes m = ±1, although it is a pure state. The effective temperature is related to
the QZE q and the spin-dependent interaction strengthUs (see App. C).

These considerations motivate the measurement of the mode entropy in Chapter 5. We considerA to be them = +1 mode.
Below is the entropy in the ground sate of the SMA Hamiltonian, keeping the constraint Sz = 0.

• q � Us: Nematic state, S(ρ+1) = 0.

• Us
N < q: Two-mode squeezed vacuum. np '

√
Us

8qN2 , and S(ρ+1) = −2np ln(np)− (1− 2np) ln(1− 2np).

• q = 0: Singlet state, S(ρ+1) ' ln(N)− 1.

• −q � Us: Twin-Fock state, S(ρ+1) = 0.

The maximal value of the entropy is S+1,max = ln(N). For largeN the entanglement entropy of the singlet states tends to this
value. On the other hand, while the TFS has significant block entropy, it has no mode entropy.

Phase diagram For completeness we show in figure 7 the entanglement entropies in the same phase diagram (sz , qUs ) as in the
Sec. 2.3.2. It is important here to specify the magnetization constraint. We take a Dirac distribution centered on 〈Sz〉 = szN .
In other words, we compute the ground state in the eigenspace of Ŝz with eigenvalue szN . This results in a significant block
entropy, because Fock states are entangled under such partitioning. For instance, for sz = 1

2 and large q, the ground state is the
twin-Fock state |N2 , N2 , 0〉.

The main message of the diagram is the large increase of the entanglement (either block, or mode) near the transition. It is
overall larger in the ordered (BA) phase, for q > qc and peaked on the singlet state, for sz = 0 and q = 0.

2.6 Summary
In this Chapter, we reviewed some key features of trapped ultra-cold gases of spin-1 Sodium atoms. We discussed the many-body
Hamiltonian. Single particle contributions include the kinetic energy, trapping potential and Zeeman effect. For the latter we
took care to include the second order (in magnetic field) term, arising from the different couplings of the nuclear and electronic
spins that compose the hyperfine spin. This so-called quadratic Zeeman shift is relevant due to the rotational symmetry of the
Hamiltonian around the magnetic field axis, and the consequent conservation of the longitudinal spin. We then turned to the
derivation of the scattering potential and expressed it as a spin-exchange interaction.

Having derived the full Hamiltonian, we introduced the single mode approximation to decouple the spatial and spin degrees
of freedom. We treated the spatial degrees of freedom using a mean-field ansatz, and obtain an effective Hamiltonian for the spin
only. This Hamiltonian is at the core of all the physics discussed in the rest of this manuscript. We discussed the validity of the
SMA, underlying the effective spin Hamiltonian. We explained how the antiferromagnetic interaction acts to spatially separate
the spin satem = 0 fromm = ±1. We briefly presented experiments where this phenomenon occurs. However, in tight traps,
the quantum pressure prevents the creation of spin domains. This situation is achieved in all experiments discussed from now on.

We computed the energy and discussed the equilibrium state within a mean-field approximation. Under the conservation
of magnetization, we showed the phase diagram in the (sz, q) plane. It exhibits a second order transition. We then provided a
quantum treatment, focusing on the situation of a cloud with exactly zero magnetization. At large enough q the cloud forms a
perfect BEC, well described by the mean-field states with all atoms in m = 0. For lower q, the condensate gets depleted. Small
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Figure 7: Single-particle entropy (a) and mode entropy (b) in the ground state of a spinor BEC of N = 100 atoms, with fixed
magnetization sz , and versus the QZE q. The lower panels c and d are cuts along the sz = 0 line of the diagram a and b,
respectively. The red dashed line is the result of the Bogoliubov approximation.

depletions can be studied with a Bogoliubov approach. The ground state is then a two-mode squeezed vacuum. The empty modes
m = ±1 are populated according to a thermal distribution, but are perfectly correlated. At q = 0, the Hamiltonian reduces to the
interaction term. It is rotationally symmetric (in spin space) and can be diagonalized exactly. For antiferromagnetic interaction,
the ground state is the singlet state, characterized by a vanishing collective spin.

Deviations from the mean-field results indicate entanglement between the atoms. This is a property of a quantum state given
a partitioning of the system. Two partitionings are often used in the literature, the “block” and “mode” partitionings. Once the
system is divided into subsystems, entanglement can be measured as the amount of entropy in a given subsystem. We computed
the block and mode entropies of the ground state. The two partitionings give different results, but both show a peak at the phase
transition, and both ae maximal at q = 0 and sz = 0, for the singlet state.



Chapter 3

Experimental set-up and techniques

Bose-Einstein condensation (BEC) occurs when the thermal de Broglie wavelength λT , becomes comparable to the distance be-
tween the atoms. The usual figure of merit is the phase space density

D = nλ3
T , (3.1)

where n is the density. By cooling down the atoms λT is increased (λT ∝ T−1/2) but, D ∼ 1 requires extremely low temper-
atures, on the order of a milliKelvin at usual densities, and much below (∼ 100 nK) in dilute gases. Such temperatures are not
within the reach of cryogenic methods. Instead, the atoms are confined in wall-free optical or magnetic traps and suspended in
ultra-high vacuum. The usual experimental procedure combines direct laser cooling followed by evaporative cooling. It led to the
first observation of BEC in 1995 [3, 4], nearly 70 years after Einstein’s theoretical prediction. In these early experiments, the BEC
was held in a magnetic trap. It has the disadvantage of only trapping a few Zeeman states, the low-field seekers. On the contrary,
an optical trap confines almost identically all Zeeman states and a spinor BEC can be produced [80].

In the present chapter, we introduce the set-up and methods we use to produce, manipulate and probe a spinor BEC of 23Na
atoms. The chapter is divided into two parts.

First, we focus on the preparation steps. We quickly summarize how light-matter interactions can be used to produce dis-
sipative and conservative forces for cooling and trapping purposes. We then turn to our implementation of these techniques.
The set-up has been described thoroughly in previous theses [81, 82], and its most distinctive features are discussed in the pub-
lications [83–85]. Moreover, we did not participate in the construction. For these reasons, we only give a brief description, for
completeness.

In a second part, we report on our effort to count the Zeeman populations with a resolution close to a single atom. This
was an important prerequisite for the experiments described in chapters 5 to 7. We first motivate our choice of using fluorescence
instead of absorption imaging. We then describe the experimental set-up, time sequence and image processing. We conclude with
an evaluation of the performance of this new method. This work is also described in [86] (mostly in the supplementary material).

3.1 Production and manipulation of spin-1 Bose-Einstein condensates of Sodium atoms
3.1.1 Optical cooling and trapping
We use light to cool the atoms, trap them and image them. In a crude approximation, the microscopic mechanism can be reduced
to an exchange of excitation from the light wave to the atoms and from the atoms to the vacuum (spontaneous emission) or back
into the wave (stimulated emission). Spontaneous emission is most relevant near resonance, when the atoms are excited with
a significant probability. The action of the light can then be expressed as a dissipative force acting on the atoms, the radiation
pressure. Off-resonance, stimulated emission dominates and produces a conservative force, the dipolar force. These phenomena
are described in many references, for instance [87]. Here, we briefly recall some important results relevant for the remaining of
the chapter.

The radiation pressure force We consider here an idealized two-level atom, illuminated by a monochromatic plane wave of
frequency ω and intensity I . Let ω0 be the energy splitting and Γ the lifetime of the excited state. We consider first the near-
resonant case where δ = ω − ω0 � ω0. The flux of spontaneously emitted photons is

Γsp =
Γ

2

I
Isat

1 + 4 δ
2

Γ2 + I
Isat

. (3.2)

The saturation intensity Isat depends on the transition and on the polarization of the light. In our case, it can be expressed as
Isat = (~ω3Γ)/(12πc2) [88]. Let k be the wave vector of the incoming photons. The average momentum of the spontaneously
emitted photons vanishes, so that the mean force, called the radiation pressure, is Γsp~k.

26
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For a moving atom, the Doppler effect makes the detuning velocity-dependent. In particular, if the atoms move against a
red-detuned wave, the frequency is shifted closer to resonance and the radiation pressure increases. Using three pairs of counter
propagating red-detuned beams an effective friction force F = −αv (for low enough v) is achieved. This set-up is called an
optical molasses.

With an additional magnetic field gradient and carefully chosen circularly-polarized light, the detuning is made position-
dependent and a spring force is produced on top of the friction force. This is called a magneto-optical trap (MOT). It constitutes
a very powerful tool to bring a hot gas down to very low temperatures. However the coldest temperature that can be achieved is
ultimately limited by the stochastic nature of spontaneous emission. To overcome this difficulty, the gas is first laser-cooled in a
MOT and then transferred to a conservative trap, where it can be further evaporatively cooled.

The dipolar force We now consider the case of large detunings, where stimulated emission prevails. In that case no energy is
taken on average from the light and the force derives from the potential (for large enough detuning)

Vtrap =
3π2c2

2~ω3
0

Γ

δ
I(r) . (3.3)

The different scaling of the dipolar (∝ 1/δ) and radiation pressure (∝ 1/δ2) forces with the detuning makes it possible to have a
dipolar trap with negligible heating coming from spontaneous emission. In such a trap, a gas can be further cooled evaporatively.
Briefly, the trap depth is lowered to let the most energetic atoms spill away. This is done at a slow enough rate to let the ensemble
thermalize (it thus requires sensible interactions between the atoms). To the price of loosing atoms, the phase space density can
be increased by several orders of magnitude.

In practice, we use Gaussian beams. If z is the direction of propagation,

I(r) = I0
w2

0

w(z)2
exp

(
−2

x2 + y2

w(z)2

)
, (3.4)

where w0 is the waist of the beam, w(z) = w0

√
1 + z2

z2R
and zR =

πw2
0

λ with λ the wavelength of the light. We are interested
in the low energy states, localized at the bottom of the trap. This justifies to expand expression (3.4) for x, y, z � w0. Up to a
constant, it gives a harmonic potential

Vtrap(r) =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (3.5)

where M is the atomic mass. The trap frequencies are ωx = ωy =
√

4V0

mw2
0

and ωz =
√

2V0

mz2R
, and V0 ∝ I0 is the potential

depth. Note that the longitudinal confinement along the z axis is only due to the divergence of the beam, and is much weaker
than the transverse confinement (typically, ωx,yωz

' 100).
We use such single-beam trap to produce highly elongated (“cigar-shape”) clouds [53]. For all experiments discussed in this

manuscript, we use a trap formed at the intersection of two orthogonal laser beams. Let the second beam be along the x axis.
We typically set the power of the two lasers so that the single-beam potential depths are equal. The trap frequencies are then
ωx = ωz =

√
4V0

mw2
0

and ωy =
√

2ωx,z (neglecting the longitudinal confinement). Thus, a cross dipole trap provides strong
confinement in the three directions of space, although it is not perfectly isotropic.

The case of sodium atoms The cooling transition we use is the D2 line, 32S1/2, F = 2 → 32P3/2, F
′ = 3 (see figure 8).

The associated wavelength is ' 589 nm, which corresponds to yellow light. Of course, an atom is not a two-level system. In
particular, an excited atom can relax via spontaneous emission down to 32S1/2, F = 2, but also 32S1/2, F = 1. In that later
case, the atoms are brought back in the cooling cycle thanks to another beam, the “repumper”, resonant with the 32S1/2, F =
1→ 32P3/2, F

′ = 2 transition.

3.1.2 Production of a spinor BEC
For the sake of completeness, we briefly describe how we produce a spinor BEC. However, I did not contribute to the building of
the experiment, nor to the optimization of the protocols described in this section.

Magneto-optical trap Our experiment starts with the loading of the magneto-optical trap (MOT). The near-resonant light used
for cooling, repumping and imaging is produced by frequency sum of two infrared lasers at 1064 nm and 1319 nm in a non-linear
crystal. To achieve high efficiency, the crystal is placed inside a cavity, resonant with both infrared lasers. The frequency is locked
on a transition line of iodine molecules, near the cooling transition. The power at the output of the cavity is ' 550 mW. The
set-up is described in details in [83] and in the thesis of Emmanuel Mimoun [81].



28 CHAPTER 3. EXPERIMENTAL SET-UP AND TECHNIQUES

32P3/ 2

32S1/ 2

F = 1

F = 2

F = 2

F = 1

F = 3

F = 0
589nm

58 Mhz

34 Mhz

16 Mhz

1.7 Ghz

R
ep

um
pe

r

M
O

T

Figure 8: Energy structure of a sodium atom relevant for our experiment.

The other ingredient for the realization of a MOT is of course the atomic source. A typical solution is a beam of atoms
leaving an oven and slowed down in a so-called Zeeman slower [89]. In our experiment we use a custom option described in [84].
Sodium dispensers are located inside the chamber. When heated up (in practice, we drive them with a current of 3.5 A) they release
Sodium atoms. From this ambient vapor the MOT can be loaded. The downside is the pressure increase inside the chamber.
Indeed, collisions between the trapped atoms and the residual gas limit the lifetime of our samples. To circumvent this issue, the
dispensers are only fired once a week, overnight. It produces a very thin coating of sodium atoms inside the chamber. At the
beginning of each sequence, we shine UV LEDs to release these atoms by a mechanism called light-induced desorption. This
increases momentarily the sodium pressure inside the chamber. Roughly a hundred milliseconds after the UV light is switched
off, the pressure is almost back to its background level, of ∼ 10−11 mbar, as low as we can measure. However, a dim residual
background persists on a much longer timescale. We observed this effect when we implemented fluorescence imaging. It will be
discussed in Sec. 3.2.

After∼ 6 s of loading, the number of atoms in the MOT reaches a value of∼ 107. The phase space density is about D =
10−6.

Evaporation in the conservative dipole traps The next step is the transfer of the atoms to the conservative trap. It is a red detuned
optical crossed dipole trap (CDT), folded onto itself at an angle of 45◦ in the horizontal plane (see figure 9). Its waist is' 40µm,
much smaller than the MOT size (' 1 mm). The loading of a CDT from a MOT is a non-trivial process involving many physical
effects. It has been studied in [90] and the optimization of our experiment is discussed in [85].

The intensity of the CDT is then ramped down in 2 s. As the trap depth decreases, so does the stiffness of the trap (ω ∝
√
P
w ).

The collision rate thus decreases and evaporation becomes less and less efficient. For this reason, we use exponential ramp, to
extend the duration let for thermalization. Yet, this is not enough, and eventually evaporation stops, before reaching the BEC
threshold. To circumvent this issue, the atoms are loaded into a tight “dimple” trap. It is composed of two independent beams,
one in the horizontal plane and one along the vertical axis (see figure 9). They have smaller waists (' 20µm) and hence larger
stiffness than the CDT at identical potential depth. As evaporation proceeds in the CDT, the coldest atoms start accumulating in
the dimple trap. This results in a significant increase of the density, and when the CDT is switched off the phase space density is
close to 1. The evaporation can be carried on further (for 5 s) in the dimple trap where we reach Bose-Einstein condensation.

Characterization of the dipole trap It is important to know accurately the trapping frequencies and waists of the dipole trap.
These frequencies could be deduced from a measurement on the beams outside the chamber. But it is much more accurate to
measure them directly with the atoms (among other sources of uncertainty, absorption on the view port limits our knowledge of
the intensity on the atoms). The procedure is the following. We produce a cloud polarized in theF = 1,m = +1 state and apply
a magnetic force in order to displace the center of the trap. We then remove the force and monitor the subsequent oscillations of
the cloud. The frequency is the trap frequency ω ∝

√
P
w . We can perform this for all three axis (although only two are generally
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Figure 9: a. Science chamber illuminated by the UV LEDs and the cooling beams during the MOT loading. b. Horizontal cut
showing the optical dipole traps.

necessary for revolution-symmetric beams).

3.1.3 Manipulation of the internal state
In the dipole trap, the temperature is much smaller than the hyperfine energy splitting, so that all atoms are in the manifoldF = 1.
The three Zeeman componentm = 0,±1 are trapped identically. We present in this section how we can use an oscillating field
to perform spin rotation, and a gradient to create a spin dependent force. All these procedures were already implemented when I
arrived.

Spin rotation We often need to rotate the spin of the atoms in order to trigger dynamics, or to diagnostic the state of the atoms.
We do this by applying radio-frequency (RF) magnetic field BRF = BRF sin(ωt)ey . The Hamiltonian is1

ĥZ = pŝz + ~Ω sin(ωt)ŝy , (3.6)

where Ω = gµB‖BRF‖/~ is the Rabi frequency. In the frame rotating at the frequency ω around z, the Hamiltonian becomes

hrot
Z = (p− ~ω)ŝz + ~Ω

(
cos2(ωt)ŝy + cos(ωt) sin(ωt)ŝx

)
. (3.7)

Forω � Ω, we can neglect the time dependent terms (this is known as the rotating wave approximation). On resonance, p = ~ω
and the Hamiltonian reduces to hrot

Z = ~Ωŝy/2. It achieves spin-space rotation, as shown by the equation of evolution of the
spin operator

dŝ

dt
=

Ω

2
ey × ŝ . (3.8)

The vectors n1,2 that parametrize the state in the Bloch-Rabi picture verify the same equation. For instance, the nematic state
aligned along the z-axis evolves as

|ψ(t)〉 = cos(Ωt)|z〉+ sin(Ωt)|x〉 , (3.9)

where |x〉 = (| − 1〉 − |+ 1〉) /
√

2 is the nematic state aligned along the x-axis.
1In this paragraph, we neglect the quadratic Zeeman energy (QZE) and the interaction. Indeed, the duration of the pulse used to perform Rabi-oscillation is

on the order of tens of microseconds. On this timescale, the QZE and interaction have essentially no effect.
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Magnetic force For imaging and purification purposes, we apply a spin selective force. This is achieved in a magnetic field gra-
dient

Bg = b′

−x2−y2
z

 , (3.10)

on top of the bias field B0 = B0ez . For |Bg|� |B0| the energy in statem = ±1 is to the first order in b′ (here again we neglect
the quadratic Zeeman energy)

〈ĥZ〉m = pm+ 2gµBb
′zm . (3.11)

In a semi-classical picture, atoms in the spin statem feel the force Fg = −2gµBb
′mez . In practice, we can achieve an acceleration

on the order of the gravitational acceleration g ' 10 m/s2 for b′ ' 15 G/cm.

3.1.4 Magnetic field control
Production of magnetic fields We produce the bias magnetic fields using three pairs of coils located around the chamber. They
can provide fields up to∼ 3 G (0.3 mT) in any direction. We also have a large 1 m×1 m coil around the chamber, in the horizontal
plane containing the atoms, for noise compensation (see paragraph below). An additional set of two water-cooled coils produce
the magnetic field gradient required for the MOT and in order to apply a spin-selective force. When supplied with 120 A, the
gradient at the center of the science chamber amounts to' 15 G/cm (0.15 T/m). Finally, a single smaller coil located on top of
the chamber is used for producing an RF oscillating field.

Calibration of the magnetic field The amplitude of the field on the atoms is determined using RF-spectroscopy. We produced
a polarized BEC (that is to say, with all atoms in the same Zeeman state m), for instance in m = 0. We apply a RF field for tp,
with a small amplitude to initiate a Rabi oscillation. In the limit of a weak pulse, the fraction of atoms measured in them = ±1

states is n± ' Ω4t2p
Ω2+δ2 , where Ω is set by the amplitude of the RF field and δ the detuning between the driving frequency and the

Larmor frequency (propotional to the magnetic field). This defines a Lorentzian line of width Ω, from which the detuning can
be deduced. This formula is valid for Ωt < 1. In order to achieve good accuracy on the measurement of δ, we want to have small
Ω. A typical spectroscopy line is presented on figure 10.

In practice, to fully calibrate the field produced by the three pairs of coils, we performed several spectroscopy experiments, for
various currents. We also estimated the bandwidth characterizing the dynamical response of the coils (this is important for the
experiments described in chapter 4). We fed the coils with a current oscillating at 277 Hz, and then performed a spectroscopy at
different times of the oscillation. The amplitude we measured is 20% smaller than for the static calibration. Assuming a first order
filter, this corresponds to a bandwidth of∼ 500 Hz. We believe it is not limited by the intrinsic bandwidth of the electric circuit,
but most likely by eddy currents induced in the chamber.

Noise compensation We continuously measure the fluctuations of the magnetic field using a probe located outside the chamber.
The dominant contribution, on the order of 3.4 mG root-mean-square (rms) and with a time scale of∼ 10 Hz are presumably
due to the nearby metro line2. Such fluctuations are not acceptable for the experiments described in the Chapter 6 and 7 and we
thus implemented a compensation system. Fortunately, the fluctuation of the field are very homogeneous in space and almost
perfectly aligned along the vertical axis. For this reason we can use a simple feed-forward set-up to cancel this noise. The “metro”
field is measured outside the lab (in order not to be influenced by the sequence running). The signal (after removal of the offset
and multiplication by a tunable gain) is then used to control the current in a single 1 m×1 m square coil located in the plane of
the atoms. By using a large coil we minimize the error between the field measured by the probe and seen by the atoms (The probe
is∼10 cm away from the center of the vacuum chamber).

After tuning the gain, the probe records fluctuations of 0.4 mG rms (figure 10 b), very similar to what we measure along
the other axes. We estimate the magnetic field noise on the atoms by measuring the minimal linewidth we can achieve in RF-
spectroscopy. We use this for a fine tuning of the compensation. We measured a minimal linewidth of' 0.4 kHz, corresponding
to fluctuations of 0.6 mG (figure 10 a), compatible with the direct estimation. The minimal field used in the experiments presented
in chapter 6 and 7 is 4 mG. At this level, the residual fluctuations are not a limitation for the physics we want to explore.

3.1.5 Absorption imaging
Let us briefly describe here the procedure we follow to image the cloud. It can be decomposed into two steps: time-of-flight
(TOF) and imaging. For imaging, we have used two different schemes, namely absorption and fluorescence. The former was
implemented before I arrived, and we briefly describe it here. We have contributed to the realization of fluorescence imaging, and
this scheme will be described in detail in section 3.2.

2A strong evidence is the correlation between the noise amplitude and the metro schedule
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Figure 10: a RF-spectroscopy with (blue empty circle) and without (red full squares) magnetic field compensation. The error bar
represents one standard deviation. b Fluctuations of the magnetic field along the z-axis with (blue line) and without compensation
(red line).

Time-of-flight and Stern-Gerlach In this step, the trap is turned off. The cloud falls freely and expands due to the quantum
pressure and the repulsive interactions. During that time, we apply a magnetic force to spatially separate the three Zeeman states,
using the same principle as in the famous Stern-Gerlach experiment. For long enough TOF (in practice, for absorption imaging,
we use 3 ms) the three spin states are completely separated as can be seen on figure 11.

Absorption imaging Absorption imaging is a common technique in ultra-cold gas experiments [89]. The procedure we use has
been described in detail in previous theses (e.g. [91]). Here we briefly recall the principle. We shine a probe beam resonant with
the D2 line (the same as for cooling) on the atoms, together with the repumper beam. The pulse typically lasts 10µs. The probe
beam propagates along the vertical axis, and is projected onto a CCD camera after going through the chamber (see figure 13). The
atoms absorb part of the incoming light and reemit it in all directions. For dilute clouds, the variation of intensity I is related to
the density n through the Beer-Lambert law ∂I

∂z = −nΓsp(I)~ω, where Γsp(I) is given by eq. (3.2) for a two-level system. After
integration, the column density ncol(x, y) =

∫
rn(r) is related to the intensity before (I2) and after (I1) the atoms via [92]

ncol(x, y) =
1

σ0
ln

(
I2(x, y)

I1(x, y)

)
+
I2(x, y)− I1(x, y)

σ0Isat
, (3.12)

where σ0 = 3λ2
0/(2π) is the resonant scattering cross section.

In practice, the image of the background I2 is constructed from a set of empty images and an algorithm known as “Best
Reference Picture”. The same analysis is used to remove the background of fluorescence images, and we postpone the description
to the next section. We have given the expression ofσ0 and Isat for a two-level system (and circularly polarized light). However, as
we have seen, the electronic structure of Na is more complex and these parameters are in fact calibrated experimentally. The same
type of calibration is required for fluorescence imaging, and will also be discussed in the next section (see also [52, 91]).

Absorption imaging provides information on the spatial density of the clouds. The integrated signal gives the population
in each Zeeman state. However, it comes with significant noise due to the fact that the probe beam is directly impinging on the
CCD. Part of the noise is composed of classical intensity fluctuations of the laser. In theory this noise can be removed through
image analysis. On the other hand, the shot noise of the incident light constitutes a fundamental limitation on the performance
of absorption imaging, which cannot be removed through image analysis. This is a serious issue for experiments that requires a
precise counting of the Zeeman population.

a. b.

Figure 11: Absorption image of the three clouds after Stern-Gerlach separation.
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Figure 12: Histogram of the population inm = ±1 after spin filtering.

3.1.6 Status at the end of the evaporation
Internal state We showed in Chapter 2 that the magnetizationmz = (N+1 −N−1)/N is a conserved quantity, which consti-
tutes a very important constraint on the state of the BEC at the end of the evaporation.

The “natural” magnetization of the cloud after loading of the CDT is mz ' −0.7. This value can be tuned between−0.7
and 0 using a radio-frequency pulse before the evaporation starts. The pulse brings the atoms into a coherent superposition of
the three spin states, but the coherence is rapidly lost due to collisions and magnetic field inhomogeneity. We end up with a
statistical mixture, with the desired magnetization. The latter is almost conserved over the evaporation, unless we use a distillation
procedure.

Spin distillation is used to produced polarized cloud with mz ' −1. It relies on a magnetic field gradient applied on top of
a bias field along the vertical axis to produce a spin-dependent force. We choose it to compensate the gravity form = −1. It has
no effect onm = 0 and it adds up to the gravity form = +1. The evaporation rate is then faster form = +1 andm = 0, and
the clouds is almost fully magnetized at the end of the ramp.

In most experiment we performed, we actually want to start with a BEC with all atoms in m = 0. To prepare such a BEC,
we set initially mz = 0, and evaporate in a large bias field of∼ 3 G. The quadratic Zeeman shift q/~ ' 2.5 kHz is much larger
than the spin-dependent interaction energy and at zero magnetization, all condensed atoms are in them = 0 Zeeman state. On
the other hand, the lowest temperature we can measure are on the same order as q/kB . The thermal atoms are expected to be
distributed between the three spin states. In practice, for the most shallow trap, we measured about 0.98% of the atoms in the
m = 0 state. This indicates a very small thermal fraction.

Yet, the population of m = ±1 is not strictly zero. To reduce it further, we use the same configuration as for the spin-
distillation procedure discussed above. The difference is that we do this in a very shallow trap, just strong enough to hold the
atoms against gravity. With an additional magnetic force pulling them down, atoms in m = +1 spill away without relying on
evaporation. By changing the direction of the bias field, we also remove them = −1 atoms. We call this procedure “spin-filtering”.

On a single shot, using fluorescence imaging (see section 3.2), we can count the Zeeman population with an accuracy of ∼
1.6 atoms, which does not allow us to insure that there are no atoms inm = ±1. On a set of∼ 1000 shots of a spin-filtered BEC
of∼ 4000 atoms, we measured Np = −0.05 ± 0.04. We show the histogram of the atom numberN±1 in them = ±1 states
after spin filtering in figure 12 and compare them to the distribution on empty images. We see no significant differences between
the two distributions.

Atom number We reach after evaporation an atom number on the order of N ∼ 103 to 104. For the experiments described
in chapters 6 and 7 this number is too large and we aim to work with N ∼ 100. One way to reduce the atom number is by
lowering the trap depth in order to let some atoms spill away. However, below a certain trap depth we lose all the atoms. Close
to this threshold, the atom number is very sensitive to minute changes in the trap depth (due to fluctuation of intensity or trap
alignment), and thus fluctuates a lot. It makes it difficult to realize small samples reliably by simply lowering the trap depth.
Instead, after a first spin-filtering, we use a radio frequency pulse to bring the atoms in the superposition

√
ε|m = 0〉+

√
1− ε

2
(|m = −1〉 − |m = +1〉) . (3.13)

After another “spin-filtering”, we are left with εN atoms in the state |m = 0〉 inside the trap. We can achieve ε � 1 with
reasonable fidelity so that the atom number fluctuations are not dramatically increased (on the order of 10%).

Temperature The temperature and condensed fraction of the gas can in principle be deduced from the densities measured using
absorption imaging. We describe the procedure very briefly since it is quite standard (see e.g. [89]). Moreover, it only provides us
with an upper bound to the temperature in the experiments discussed in this manuscript.
For a thermal cloud, one can neglect interactions in first approximation. In that case, the TOF expansion after released from a har-
monic trap can be solved analytically [26]. For time tTOF long compared to the trapping period, the spatial density n(r, tTOF) is
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proportional to the initial distribution in momentum spacen(p, t = 0). The latter is given by a Bose distribution, and more sim-
ply, in the large p limit (i.e. the wings of the distribution), it approaches a Boltzman distributionn(p) ∝ exp(−p2/(2MkbT )).
For a BEC in the Thomas-Fermi regime [26], one can neglect the quantum pressure, and the expansion in TOF is then given by
scaling laws [93]. The spatial density keeps the shape of inverted parabola.
Combining these two results, the density profile of a condensed gas at finite temperature is composed of a central peak corre-
sponding to the BEC on a larger pedestal formed by the thermal cloud. From a fit of the wings of the distribution the temperature
can be extracted (e.g. using a bimodal fit of the whole profile, or a Gaussian fit of the wings only [89, 91]). This procedure works
well for thermal fraction larger than ∼ 20 %. For colder clouds, the signal-to-noise ratio in the wings of the distribution is too
small to be fitted reliably. All experiment described in the following are performed in that regime and we can only give an upper
bound to the temperature T . 100 nK, and the condensed fraction fc & 0.8. Thermometry of our system has been performed
extensively in the thesis of Camille Frapolli [91].

3.2 Fluorescence Imaging

3.2.1 Why fluorescence imaging?

Motivation In experiments described in Chapters 5 to 7 of this manuscript, we aim at observing reduced quantum fluctuations
of the collective spin of mesoscopic ensembles of atoms (from a few to a few hundred atoms). More precisely, it always boils down
to a measurement of the spin component along the quantization axis (the direction of the bias magnetic field), Ŝz = N̂+1−N̂−1.
The other spin components can be mapped onto that one thanks to a spin-rotation. These experiments are performed in the single-
mode regime, and the spatial distribution of the atoms is fixed. We are mostly interested in counting the Zeeman population as
accurately as possible. In this section, we report on our implementation of “Stern-Gerlach fluorescence imaging” that leads to a
resolution near the single atom limit. The experimental set-up and protocols described in Sec. 3.1 were all (with the exception of the
magnetic field compensation) implemented before I arrived. The fluorescence imaging methods constitutes my main contribution
to the experimental set-up, and is discussed here in detail (see also [86]). The experiments described in Chapter 4 were performed
before this work, using the absorption imaging set-up described in Sec. 3.1.5.

Let us start with a brief overview of our fluorescence scheme. Three counter propagating red-detuned beams are used to form
a molasses. The light scattered from the atoms is collected on a camera (see figure 13). Thanks to the friction force at play in a
molasses, the expansion of the clouds is relatively slow, and a long exposure time is possible. The signal is the integral over the
molasses duration of the fluorescence intensity impinging on the camera. In this scheme, because of the diffusion of the atoms
in the molasses, we loose all information on the spatial distribution of the atoms in the trap. For this reason, we kept in the
experimental set-up a parallel optical path to perform absorption imaging when spatial resolution is needed (e.g. for alignment
of the dipole trap).

Brief overview of the state of the art Single atom resolution is achieved most easily for trapped individual particles, such as
ions, or neutral atoms in optical tweezers. Typically the atoms are illuminated with near-resonant light, and fluorescence photons
are collected through a large numerical-aperture microscope objective. Using deep traps, it is possible to expose the atoms for
hundreds of milliseconds up to a few seconds before they are lost (even longer for trapped ions). The method can be generalized to
atoms in 2D optical lattices (this is called a “quantum gas microscope”). Imaging individual sites requires an excellent small spatial
resolution (typically below 1µm). Most importantly for our topic, this technique works only for sites with single occupancy.
Indeed, light assisted collisions lead to severe losses in tightly confined ensembles. Another possibility demonstrated in [94], is
to hold the atom in a MOT. Because the density is typically much smaller than in a dipole trap, single atom sensitivity has been
demonstrated for up to∼ 103 atoms [94].

The issue when imaging trapped particles is that it is difficult to resolve the internal state. This is why in spinor condensates the
atoms are usually imaged after having spatially separated the Zeeman states, using a Stern-Gerlach set-up. To our knowledge, the
lowest noise level using absorption imaging is reported in [95], and amounts to 3.7 atoms3. On the other hand, using fluorescence
imaging, a noise level of 13 atoms was reported in [11]. The combination of Stern-Gerlach separation and optical molasses comes
with technical difficulties that will be developed below. This is probably why most spinor BEC uses absorption imaging. However,
this technique comes with a strong limitation on the sensitivity that can ultimately be achieved.

The limit of absorption imaging Let us start by pointing out that there are a-priori no fundamental limits that forbid the
detection of a single atom using absorption imaging. It was experimentally demonstrated for a single ion [96]. Yet, for the vast
majority of experiments achieving single atom resolution, fluorescence is being used. Even in [96], after careful optimization of
the absorption imaging, fluorescence gives better counting resolution. This can be understood after a simple estimation of the
signal-to-noise ratio (SNR) of absorption imaging.

3The noise reported in this paragraph is the standard deviation of the atom number on empty images. It is typically larger on atomic images, due e.g. to losses.
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Figure 13: Imaging sequence. The Zeeman states are separated in a magnetic field gradient in time-of-flight. The atoms are then
illuminated with a probe beam for absorption imaging (a) or with the molasses beams for fluorescence imaging (b).

We use the 2-level atom picture presented in 3.1.1. We recall the absorption rate on resonance [Eq. (3.2)]

Γsp =
Γ

2

s

1 + s
, (3.14)

where s = I
Isat

. The rate of incoming photons on the surface A occupied by the atom(s) is φin = IA
~ω . The ratio of the two

defines the contrast

R =
Γsp

φin
=

σ0

A(1 + s)
, (3.15)

where σ0 = 3λ2
0/(2π) is the resonant scattering cross-section, and using Isat = (~ω3Γ)/(12πc2). For a duration of exposure

texp, the signal of a single atom is

S = Γsptexp . (3.16)

In the best case scenario, the probe beam fluctuations are given by the shot noise fluctuations, and the noise is

N =
√
φintexp . (3.17)

Thus, the SNR of a single atom is

SNR =
√
RS . (3.18)

In [96], the detection of a single ion is achieved withR = 0.03. In this experiment, A is limited by diffraction to ∼ 0.5µm,
and the ion is strongly confined, so that it can scatter hundreds of photons and still remaining trapped. The situation is much less
favorable for an atomic ensemble in free space. First,A is limited by the size of a cloud, for typical experimental conditions, we have
A ∼ π×(20µm)2 andR ∼ 10−4. In addition, the exposure duration is limited by the effect of the radiation pressure. After a few
hundreds of photon are scattered (in practice we use texp = 10µs), because of the Doppler shift, the atoms are out of resonance
with the probe light. These constraints yield in our case to SNR' 0.1, quite far from the single-atom resolution. On the one
hand, after optimization, texp may be increased andA decreased. On the other hand, we know the two-level picture overestimates
the scattering rate (by a factor∼ 2, see [52, 91]). Last but not least, we neglected important experimental realities. For instance,
additional noise e.g. due to classical fluctuations of the probe intensity (these are actually on the same order as the shot-noise
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Figure 14: Sketch of the fluorescence imaging set-up. The light is collected in a microscope objective. A spatial filter hides stray
light scattered on the chamber view-ports. A first achromatic lens Ac.1 is used to reduced the divergence of the beam. A second
achromatic lens project creates an image of the atoms on a CCD camera.

for us [52]). Initially, using absorption imaging we had an accuracy on the total atom number on the order of∼ 60 atoms [52].
Overall, it appears very challenging to reach single atom resolution with absorption imaging in our situation. We thought better
results could be obtained thanks to fluorescence imaging. The rest of the chapter is dedicated to our implementation of this
method.

3.2.2 Experimental set-up
Molasses beam We use the same beams as for the cooling light and the repumper. The intensity is about 3.1 mW/cm2/beam at
the center of the beams. The saturation intensity is Isat = 6.2 mW/cm2 (assuming perfectly circular polarizations). This set-up
is straightforward to implement in the experiment. The drawback is that fluorescence imaging cannot be fully optimized without
degrading the MOT performances and vice versa. On the one hand, the size of the beam has to be quite large for proper loading
of the MOT. On the other hand, the amount of stray light scattered from various surfaces in the beam path (viewport and chamber
walls) and collected by the imaging system is larger for larger beam sizes. As a compromise, we found that reducing the sizes of the
four oblique beams (see fig.13) from 11 mm to∼ 7 mm suppresses the amount of stray-light by 75 %, while reducing the atom
number in the MOT by only∼ 30%.

Optics The first requirement of the optical system is to collect as much fluorescence photons as possible. For this purpose, we
use a microscope objective4 located at the bottom of the science chamber, characterized by a numerical aperture NA= 0.3 and
a focal length f = 40 mm. The atoms are near the object plane of the objective. The light coming out from the objective is
slightly diverging. We use a f = 500 mm achromatic lens located right after the objective to contain the divergence of the beam,
and a f = 75 mm (NA= 0.32) achromatic lens to form an image on the camera (see figure 14). The measured magnification of
the whole system is ' 1.5. A small magnification is favorable since it reduces the size of the image on the CCD, and therefore
the amount of electronic noise in the integration area. As mentioned before, the spatial resolution is not a concern, we are only
interested in the population. However, a small magnification requires a small focal length (given the focal length of the objective),
which is not easily combined with a large numerical aperture without important optical aberrations. The set-up described here
is a satisfying compromise. Its NA is mostly limited by the microscope objective (a spatial filter described in the next paragraph
slightly reduces it), the electronic noise contributes for a negligible amount of the total noise and we observe no optical aberrations.

Spatial filtering Important sources of stray light are the upper viewports of the chamber through which the molasses beams go.
They scatter light, some of which is collected by the microscope objective. Fortunately, most of it can be filtered out, at a reasonable
cost on the fluorescence signal. The viewports constitute well located sources, far from the microscope objective (compared to the
focal lens). We observe that their image is formed close to the focal point of the objective contrary to the image of the atoms (“near
infinity”). The image of the viewports can thus be blocked by a carefully-designed spatial filter placed near the image plane of the
objective, as shown in figure 12. The noise is reduced by' 40% while the signal is reduced by only 6%.

Camera We use a high efficiency, scientific grade CCD camera to record the fluorescence signal. The quantum efficiency η is
defined as the number of photons needed (on average) to produced one digital count at the output of the camera read-out reg-
ister. We measured η using a source of light with Poissonian statistics. In that case, for Nϕ incident photons, the mean number
of counts is ηNϕ, with a variance η2Nϕ. The ratio of the two gives η. In practice, we use a laser as a source. By scanning Nϕ

4Custom made by Melles Griot to be diffraction limited at 589 nm and 1064 nm. It is also used to focus the vertical dimple trap on the atoms.
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a. b. c.

Figure 15: a Picture (taken with a photo camera) of the inside of the chamber view from the bottom (through the microscope
objective), with the imaging light on. b,c Same picture taken with the CCD camera with (b) and without (c) the spatial filter.
We clearly see four bright spots coming from the viewport (the imaging system is focused on the viewport). They are completely
blocked by the spatial filter. The walls of the chamber still scatter some residual light that cannot be filtered out. The darker square
in the middle corresponds to the upper vertical viewport.

we verified that it is indeed shot-noise limited for Nϕ < 3000 (for higher Nφ, intensity fluctuations dominates). We measured
η = 0.73. Relying on this calibration, we will report the signal and noise of our imaging system in photon units.
The electronic noise of the camera read-out signal comes from two mechanisms. Instead of a photon, thermal excitations can pro-
mote an electron from the valence band to the conduction band. This is usually known as dark current. It is importantly reduced
by cooling the sensor (to −70◦C in our case), and by electronically “cleaning it” over the sequence (the pixels are continuously
read before the exposition starts). As a result, the dark current is completely negligible. More important is the read-out noise
∆NR coming from the conversion of the charge of a pixel into a voltage and then to a digital count. ∆NR can be significantly
decreased by merging the charge of several pixels into one larger unit, called macro-pixel, before reading. This technique is known
as “hardware binning”. There are two downsides to hardware binning: the loss of spatial resolution and the possible “blooming”,
coming from the overflow of charge in the macro-pixel. We decided to bin the pixels by 64 (one macro-pixel is a square of 8× 8
pixels). The loss of spatial resolution is of no importance to us, and blooming occurs only for large fluorescence signal (when
N ∼ 104), which is not the regime we are interested in.

We measured the electronic noise by taking images with the CCD hidden from any light. The noise (standard deviation of the
number of counts) of a square macro-pixel of sizeB ×B pixels, is

∆NR = 3.60 + 0.36×B photons . (3.19)

The offset of 3.60 + 0.36 = 3.96 photons is the read-out noise of a single pixel. If the hardware binning was working perfectly,
it would also be the noise of a macro-pixel. On the other hand, if we don’t use hardware binning, the noise is 3.96× B (theB2

individual pixels are uncorrelated). ForB = 8, ∆NR ' 6.5 instead of ∆NR ' 32 without hardware binning. Thanks to that
correction, the electronic noise only contributes marginally (∼ 10%) to the total noise, which is dominated by stray light (see
section 3.2.5)

3.2.3 Loading and diffusion in the optical molasses
Time-of-flight and Stern-Gerlach The Zeeman states are spatially separated during time-of-flight (TOF) in a magnetic field
gradient. The separation dSG that is achieved essentially sets the maximal duration of molasses we can afford (and thus the flu-
orescence signal), before the three clouds start to overlap. We thus want dSG to be maximal, which requires a long TOF and a
strong gradient. However, the latter is detrimental to the molasses. Indeed, if the gradient is significant when we shine the light,
we have by definition a MOT (instead of a molasses), and the ±1 atoms are brought back to the center. In fact, at equivalent
gradients, the magneto-optic force produced in a MOT is orders of magnitude larger than the magnetic Stern-Gerlach force. It is
therefore a great concern to avoid this situation and to reduce the gradient before the end of the TOF. Extinction of the magnetic
field can take significant time (several milliseconds) due to eddy currents in the science chamber. The best compromise between
large separation and small residual gradient is found experimentally, with the time spent in the molasses before overlap of the three
clouds taken as a figure of merit. There are several parameters to optimize, the duration of the TOF tTOF, and the magnetic field
sequence, including the gradient for the Stern-Gerlach separation and the bias field.

First, we found that the longest TOF we can afford is tTOF = 18 ms, limited by the fall of the atoms outside the molasses
beams (past this time, the signal decreases). Then, we optimize the duration during which the magnetic field gradient is present.
The time sequence is the following. The gradient first increases for∼ 3 ms before being ramped down for 10 ms. The separation
is dSG ' 1.3 mm.
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Optimization of the molasses The physics of optical molasses has been the subject of many theoretical and experimental inves-
tigations [97–99]. The simple case of a single particle can be described as a Brownian motion, with the absorption of laser photon
followed by spontaneous emission leading to a random walk in momentum space. For low enough density, this result can be
generalized to an ensemble of atoms, and the size of the cloudR evolves according to a diffusive lawR ∝

√
t.

After 18 ms of TOF, and for the mesoscopic clouds that we work with, the distance between atoms in the molasses is∼ 10µm,
much larger than the wavelength, and collective effects such as multiple scattering are not expected to play an important role. How-
ever, the random walk in the ideal case is significantly biased if residual magnetic fields on the order of ∼ 100 mG are present,
leading to a net force acting on the atoms. We optimize the current feed into the coils during the molasses in order to compensate
the ambient field and minimize the clouds size. We found that the optimum is not exactly the same for the three spatially separated
clouds, and that it depends on tmol. This is due to spatial and time dependence of the magnetic field, caused by the slow extinction
of the gradient applied for the separation. The optimization is done for a given duration tmol, and a compromise between the size
of the three clouds is made (see figure 16).

1ms

5ms

10ms

20ms

Figure 16: The upper panel is the fluorescence signal after tmol = 5 ms. The lower panel shows the profile along the separation
axis for various molasses duration.

We optimize the detuning of the molasses for the “best” magnetic field configuration. The optimum is given by a compromise
between larger photon flux (close to resonance) and slower expansion (far from resonance). We found experimentally that the total
signal is maximized for δ/(2π) ' −9.9 MHz (' −Γ).

Diffusion in the molasses The CCD camera is exposed during the whole molasses phase, and the image we record represents the
time integrated fluorescence signal. Letφm be the mean photon flux, andncol,m(r, t) be the column density of the clouds initially
corresponding to the statem = 0,±1 at time t of the molasses and position r = (x, y). The fluorescence intensity is

Im(r, tmol) =

∫ tmol

0

dtφmncol,m(r, t) . (3.20)

For simplicity, we use the same continuous coordinate r for Im and ncol,m, although in practice there is a magnification factor
and a discretization into pixels. A simple estimate of the size of the cloud is given by the variance of Im

R2(tmol) =
1

Nmφmtmol

∫
d3r
∫ tmol

0

dt(r− rm)2φmncol,m(r, t) . (3.21)

where rm is the mean position of the cloudm. This can be reexpressed as a function of the variance σ(t)2 of the density ncol,m:

R2(tmol) =
1

tmol

∫ tmol

0

dtσ2(t) . (3.22)

In the ideal molasses picture, ncol,m is a Gaussian of variance σ2 = σ2
0 + 2Dt. In order to take into account the experimental

imperfections mentioned above, we use a heuristic formula σ(t)2 = σ2
0 + 2Dt+ Ct2, so that,

R2(tmol) = σ2
0 +Dt+

C

3
t2 . (3.23)

We show in figure 17 the results of a measurement ofR2(tmol) versus tmol for the three Zeeman states. From a fit we extract the
parameters D and C . The behavior is slightly different for the three clouds. For m = −1 it is consistent with a purely diffusive
expansion, while form = 0,+1, we measure a slight curvature. In any case, the expansion is much faster than the pure Brownian
motion prediction. Residual magnetic fields are probably playing a major role.
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Figure 17: Spatial varianceR2(tmol) for the three Zeeman components. The solid lines are quadratic fitsR2(tmol) = σ2
0 +Dt+

C
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2.

Atom losses in the molasses Let us mention that light-assisted collisions can play a non-negligible role in the molasses, even for
small clouds [94]. This is an additional source of uncertainty on atom counting, which increases with tmol. In theory, these losses
could be observed as a reduction of the total photon flux over time, for a cloud with fixed initial atom numberN . From this we
could compute the optimal tmol. However, fluctuations ofN in the preparation of our samples make it difficult to evaluate this
small effect in this simple way. We use another method based on the use of squeezed state, that will be detailed in 3.2.5.

3.2.4 Image analysis
Removing hot pixels Some images are polluted by “hot” pixels. These are very localized regions (usually one pixel, sometimes a
few) of high intensity, often saturated, e.g. due to cosmic rays impinging on the detector. They are relatively frequent events (few
percent of the shots). They are easily detected by computing the numerical Laplacian of the image. When a hot pixel is detected,
it is replaced by the mean over the adjacent pixels.

Removing the background We already mentioned in sec. 3.2.2 the presence of stray-light photons scattered on the walls and
viewports of the science chamber. We discuss here another source of stray light. We attribute it to the fluorescence of the residual
background gas of Sodium present in the chamber. We recall that the density of Sodium atoms is momentarily increased for the
loading of the MOT using UV light (see 3.1.2). Then, the ambient pressure decreases rapidly (∼ 100 ms) to a very low value
(∼ 10−11 mbar). Yet, the remaining sparse vapor can still fluoresce. We show the profile and total signal recorded without
trapped atoms on figure 18, for a various duration after the UV LEDs are turned off. The parasitic signal decreases on a much
longer timescale of∼ 50 s. The offset corresponds to the light scattered on the science chamber.
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Figure 18: a Profile of the fluorescence signal emitted by the background gas, for various delays after shinning the UV LEDs. b
Integrated signal. The solid line is an exponential fit, with a characteristic decay time τ ' 50 s. The asymptote corresponds to the
stray light scattered off the walls and viewports of the science chamber.

The total number of stray light photons (scattered and background fluorescence) amounts for the signal of roughly a thousand
atoms. Fortunately, the contribution to the mean signal can be removed very efficiently with an algorithm know as “Best Reference
Picture” (BRP, also called “eigenface method”) [100]. From a set of empty reference images, the algorithm computes the linear
combination closest to the atomic image in a region of comparison (ROC, see fig. 19). The distance between the two images is taken
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mean std. dev. Shot-noise
No BRP BRP No BRP BRP -

m = +1 4.4× 105 26 2.4× 103 772 663
m = 0 4.8× 105 -36 3.7× 103 785 681
m = −1 3.8× 105 2 2.0× 103 687 628

Table 3.1: Mean and standard devation of the number of photons on empty images, after tmol = 5 ms of molasses, with and
without noise removal analysis (BRP). The last column gives the straight light shot noise (it is the square root of the signal given
in the first column). We see the BRP reduces the noise almost to that level.

as the sum over all the ROC pixels of the intensity difference square (using this distance the BRP can be computed very efficiently).
The working principle of the algorithm assumes that the background signal in the region of interest (ROI) where the atomic signal
is located, is correlated to the background signal in the ROC. This is true for instance in the case of intensity fluctuation of the
MOT/repumper light. For the best use of the BRP it is therefore important to make sure that the set of reference and atomic
images have the same background. In particular, the reference images have to be taken with the same delay after extinction of the
UV light, to have the same amount of background gas fluorescence. The shot noise of the stray light has no spatial correlations.
This noise cannot be reduced through image processing, which only reduces the offset and the classical intensity fluctuation. We
report on the performance of the BRP algorithm in Table 3.1. It brings the offset to a negligible value and the standard deviation
almost at the shot noise level.
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Figure 19: (a) Typical fluorescence image, with optimize ROI (dashed-white line). The hashed region is the ROC used to compute
the BRP. (b) Profile before noise removal using the BRP algorithm (green dashed line) and after removal (solid red line). The
dotted gray line shows the profile of the BRP.

Choice of the region of interest The final step of the imaging processing is the integration of the signal over some regions of
interest (ROI) from which the atom number can be deduced. A ROI for a given Zeeman component m needs to fulfill three
conditions:

a) It contains almost all the signal coming from the atoms initially in the statem.

b) It contains a negligible signal coming from atoms initially inm′ 6= m.

c) It is as small as possible given a) in order to minimize the noise (stray light and electronic).

We start by taking a large square as the initial ROI Am. We verify that the choice of Am satisfies a) by making sure that the
integrated signal increases linearly over time. To check that b) holds, we produce a cloud polarized inm′ and measure the evolution
of the signal in Am. At some point it starts increasing, indicating the “leak” of some m′ atoms from Am′ into Am. This sets
the maximal duration for the molasses given the ROIs Am. To fulfill c), we construct optimized ROIs, A′m in the following
way. We repeat several times a typical experiment, and compute the average image. In each raw ROI Am, we sort the pixels by
decreasing signal (see figure 20). A′m is the reunion of the brightest pixels that contain 99% of the signal. In figure 21 we verify
the requirements listed above with a cloud polarized inm = 0. We mentioned that we have used optimal ROIs of different sizes
(170 and 200 pixels) described in Chapter 7, resulting into slightly different imaging noise.
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Figure 20: (a) Integrated signal versus the size of the optimized ROI A′m=0 (red line) for tmol = 5 ms. The horizontal dashed
line is the signal in the raw ROI Am=0. The vertical line indicates the cutoff size. The optimized ROI is delimited by the white
dashed line in (b).
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Figure 21: Integrated signal in the raw ROI Am=0 (red squares) and optimized A′m=0 (blue circles), for a cloud with all atoms
in m = 0. A′m=0 is optimized for tmol = 5 ms, we clearly see that it is too small for tmol above∼ 10 ms. The inset shows the
integrated signal inA′m=+1. For tmol > 10 ms, we start to see a “leakage” of them = 0 atoms inA′m=+1.

3.2.5 Performance of the atom counting
Fluorescence Signal Let us consider a cloud withNm atoms in the Zeeman componentm. Let φm be the average photon flux
received per atom, and φm,bg the average flux of stray light photons received inA′m. The mean signal is then

Sm = Nmφmtmol + φm,bgtmol . (3.24)

The BRP algorithm described in the previous Section 3.2.4 allows us to subtract the background contribution almost perfectly.
Let SBRP

m be the number of counts in A′m on a given shot after processing. On average, SBRP

m = Nmφmtmol. For a given φm,
we obtain an unbiased estimate of the atom number

Nm =
SBRP
m

φmtmol

. (3.25)

Calibration of the absorption imaging system relied on the measurement of the size of the BEC. Indeed, because of the repulsive
interaction, the latter is related to the atom number. This method is detailed in previous theses [52, 54, 101]. However, we obtain
in this thesis more accurate results using a method that does not rely on absorption imaging. The idea is to look at the statistics
of a coherent spin state, known to be Poissonian. It is analogous to the method briefly described in sec. 3.2.2 for the calibration of
the camera quantum efficiency. We start from a cloud in the state |N : ez〉 = |0〉⊗N , i.e. with all atoms in m = 0. We use a
resonant RF field to rotate this state by a variable angle θ around the y-axis, thus preparing the state

|N : Ω〉 =

(
cos θ|0〉+ sin θ

1√
2

(| − 1〉 − |+ 1〉)
)⊗N

. (3.26)

For a cloud in this state, the Zeeman populations are

N0(θ) = cos2 θN , N±1 =
1

2
sin2 θN , (3.27)
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and the variance of Sz = N+1 −N−1 is

∆S2
z (θ) = N+1 +N−1 . (3.28)

Those four equations are independent and sufficient to determine the three fluxes φm, m = 0,±1 and total atom number N .
The results of the calibration are presented in figure 22. The simple two-level atom picture (sec. 3.1.1) predicts a fluorescence flux
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Figure 22: (a) Evolution of the populationN0 (blue circles),N+1 (red dots) andN−1 (red circles) when rotatingm = 0. The green
stars are the total atom number and the solid lines are a fit. Together with the evolution of the fluctuations ∆S2

z = N+1 +N−1

(b) the photon fluxes are fully determined. The results are shown in the table.

φ
th

= η
NA2

4

Γ

2

I
Isat

1 + 4 δ
2

Γ2 + I
Isat

. (3.29)

Using our experimental parameters, η ' 0.73, NA' 0.33, Γ ' −δ ' 2π × 10 MHz, I ' 3.1 mW/cm2 and Isat =
6.2 mW/cm2, we find

φ
th ' 195 photon/ms . (3.30)

This figure is roughly twice as large as the measured flux. This difference could be expected. Indeed, the multi-level structure
of the atoms tend to reduce the scattering cross-section of the atoms. The same effect is observed in absorption imaging (see
e.g. [52, 101]), by a comparable amount. A more accurate treatment would require a precise knowledge of the polarization of the
light at the location of the atoms. The reduction of the NA by the optical filter, the divergence of the beam, and losses over the
optical path also contribute to the reduction.

Total Noise We show in Figure 23 the mean signal and variance on empty images. It can be expressed as

∆S2
empty,m = φm,bgtmol + αt2mol + ∆N 2

R . (3.31)

The first term is the stray light shot noise contribution. The second term is due to shot-to-shot intensity fluctuations. The last
term is the read out noise, measured on “dark images” and given by Eq. (3.19). The shot-noise term scales linearly with t because
it has no time correlation. Similarly, it scales linearly with the size of the ROI because it has no spatial correlations either. For this
reason, it cannot be canceled by image analysis. The shot-to-shot intensity fluctuations are almost perfectly correlated in space
and time (on the time scale of the molasses) leading to a quadratic scaling. Fortunately, they are strongly suppressed by the BRP
algorithm. We report on Figure 23 the parameters φm,bg, α and ∆NR of Eq (3.31) extracted from a fit of the ∆S2

empty,m(tmol).
The contribution of the intensity fluctuations dominates over the shot-noise for tmol > 15 ms. For tmol = 5 ms, the shot noise
amounts for∼ 85 % of the total noise on empty images. From now on, we will neglect the other contributions.

For an image with atoms, there are two additional sources of noise, atom losses in the molasses (see 3.2.3) and fluorescence shot
noise. The later is equal to the stray light shot noise whenNmφm = φm,bg, that is forNm ∼ 103. In the experiments where the
atom number resolution was crucial, we typically worked with Nm ranging from a few tens to a few hundreds of atoms so that
we can neglect the fluorescence shot noise. The error on the atom number estimate is

∆Nm =

√√√√ φm,bg

φ
2

mtmol

+ ∆Nm,loss . (3.32)
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Figure 23: Fluctuations of the number of counts (in photon unit) on an empty image, in the ROI A′0, before BRP subtraction
(green pentagons) and after (red square). The lines are quadratic fits, the parameters are given in the table below for the processed
images. The blue circles show the mean signal S0, in photon units (i.e. the shot noise level).

The contribution of the first term is minimized for tmol = 10 ms (the longest we can afford to keep the clouds well separated)
and amounts in that case to' 1.2 atoms. However, a time dependence is hidden in ∆Nm,loss, which increases with time. This
yields an optimal molasses duration tmol < 10 ms. As mentioned before (sec. 3.2.3), the amount of losses is typically very small and
blurred out by atom number fluctuations of the initial state in a direct measurement. At the end of the day, we set-up fluorescence
imaging in order to measure sub-shot noise fluctuations of the spin components of a squeezed state. Such a state, namely a two-
mode squeezed vacuum (TMSV) is used for the final optimization and calibration of the experimental parameters (tmol and a fine
tuning of the flux φm).

Fine tuning of the photon flux using squeezed states We will detail in Chapter 5 how we produced and characterized a TMSV
state. For the present purpose of imaging calibration, we are only interested in one of its properties: the numbers of atoms in the
m = +1 andm = −1 state are equal. Therefore 〈Ŝz〉 = 0 and ∆Ŝz = 0. In fact, to reveal the physics discussed in the Chapter
5 to 7 a measurement of Sz (possibly after a spin rotation) with accuracy close to one atom is required, while the knowledge of
the absolute population is not as necessary. We assume a small error on the photon flux φmeas

m calibrated following the method
described above. Let the real photon flux be φreal

m = (1 + εm)φ
meas

m , where εm � 1. To first order in εm, an estimator of the
magnetization is

Sz =
S+1

φ
meas

+1

− S−1

φ
meas

−1

, (3.33)

Sz =

(
S+1

φ
real

+1

− S+1

φ
real

−1

)(
1 +

ε+1 + ε−1

2

)
+

(
S+1

φ
real

+1

+
S+1

φ
real

−1

)
ε+1 − ε−1

2
. (3.34)

For a perfect TMSV state, the mean and variance of the magnetization estimators are

Sz = 〈N̂+1 + N̂−1〉
ε+1 − ε−1

2
, (3.35)

∆S2
z = ∆(N̂+1 + N̂−1)2

(
ε+1 − ε−1

2

)2

+ ∆S2
z,imag. , (3.36)

When ε+1 = ε−1, the mean vanishes and variance is minimal (bounded by the imaging noise). This enables a fine tuning of the
relative flux between±1, but not of the fluxes absolute value (we would need to determine ε+1 + ε−1 as well). However, this is
enough for the physics explored in the following.
In practice, we set ε−1 = 0 and scan ε+1. The results are reported on figure 24. The minimum of ∆Sz and the zero of Sz almost
coincide, which is a strong indication for a small miscalibration. It is corrected by setting ε+1 ' 0.02. We can expect the same
level of error on the total atom number. This has no impact on the results presented in the next chapters.
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Figure 24: ∆Sz (dash-dotted red line) and Sz (blue line) as a function of the correction factor ε+1 (ε−1 = 0). The minimum of
∆Sz and the zero of Sz coincide almost perfectly.

m Signal [photon] Total noise [photon] Total noise [atom]
+1 447 772 1.7
0 465 785 1.7
−1 428 687 1.6

Table 3.2: Signal and noise of the fluorescence imaging scheme.

Optimization of the molasses duration Finally, we optimize the duration of the molasses using a TMSV. We simply measure
∆Sz for different molasses duration. The results are reported in figure 25. The noise is minimal at tmol = 5 ms. We attribute the
increase past this time to atom losses in the molasses, as discussed in Sec. 3.2.3.
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Figure 25: Standard deviation ∆Sz measured for a TMSV state of∼ 200 atoms versus the duration of the molasses (red circles).
The black line is the shot noise level. The deviation for tmol > 5 ms is interpreted as atom losses.

Summary We report in Table 3.2 the experimental values of the signal and noise for tmol = 5 ms. For the experiment discussed
in the last Chapter, we were able to reduce the noise to slightly lower values, partly due to smaller ROIs and better alignment of
the molasses beams.

3.2.6 Possible improvements
Our implementation of Stern-Gerlach fluorescence imaging has, to our knowledge, the best counting resolution for mesoscopic
spinor BECs (let aside gases in optical lattices). We will see in the next chapters that it allows us to observe and characterize non-
classical state of a few hundred atoms. For many experiments, the noise level of 1.6 atoms remains a limiting factor. We discuss
here possible improvements on the setup that could allow one to further improve the counting resolution.

First, one could try to increase the signal. It seems difficult to extend the duration of the molasses, because of the losses.
The photon flux could be increased using a microscope objective with larger NA, but in our experiment it would have required
significant changes of the setup, and it would have come with an increase of stray light. In fact, the most significant and easiest
improvement could be obtained by reducing the amount of stray light. It could bring the single atom signal-to-noise ratio above
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one. Indeed, with the current signal, the electronic noise amounts to' 0.2 atoms and the fluorescence shot noise of a hundred
atoms amounts to' 0.4 atoms.

A simple way to reduce the noise, consists in reducing the integration region (the ROI). In our case, the distortion of the
residual magnetic field gradient is responsible for expansion in the molasses faster than what one could hope. One way to cancel
this effect would be to use linearly polarized light. The difficulty for that, comes from the fact that in our scheme, we use the same
light as for the MOT. One could use liquid crystal retarders to change the polarization of each beam after the MOT and before the
imaging molasses. Stray light could also be decreased by using smaller beams, centered on the atoms after the TOF. In order not
to compromise the MOT, one could use motorized irises, that would be partially closed after the MOT and before the imaging.
Alternatively, we could also use another set of beams, independent from the MOT ones.



Chapter 4

Spin-mixing dynamics and relaxation of a driven spinor Bose-Einstein
condensate

The present and following two chapters are dedicated to the physics of spinor Bose-Einstein condensates brought out-of-equilibrium.
We present a series of experiments performed in a strongly confining trap, such that to a good approximation, a single spatial mode
is common to the three Zeeman sublevels and the dynamics occur within the spin degree of freedom only. The spin state of an
atom can change through collisions, leading to a so-called spin-mixing dynamics. Collisions between atoms in a thermal gas usu-
ally result in a rapid thermalization of an out-of-equilibrium system. On the contrary, in ultra-cold gases, collisions are a coherent
process, very different behaviors are expected and have been observed [12, 58–63, 65, 102, 103].

In the experiments presented in this Chapter we realize an out-of-equilibrium BEC by preparing the spin-1 atoms in a super-
position of the three spin states. Coherent collisions result in oscillations of the spin populations. This dynamic can be seen as an
internal version of the Josephson effect. In our work, we build on this analogy and use a parametric excitation to reproduce the
“inverse AC-Josephson effect”, where an oscillating voltage applied on a Josephson junction leads to a steady current. We observed
resonances when the driving frequency is near the single-particle energy splitting, given by the quadratic Zeeman shift. Finite size
and non-linearities arising from the interactions distinguish our system from real Josephson junctions.

After a longer evolution time, we observe the relaxation of the system, presumably due to the coupling between the BEC and
the thermal cloud. Interestingly, near resonance, we observe the existence of high energy stationary states, stabilized by the drive.
Moreover, we found a frequency window where on the contrary, the low-energy states are destabilized. The combination of these
two effects results in a hysteretic behavior. A microscopic modeling of the relaxation process is very challenging, and a common,
simpler approach to the problem relies on the introduction of phenomenological dissipative terms in the equations of evolution.
Following this approach, the exploration of the driven dynamics allows us to discriminate between different dissipative terms.

This work has been published in [45] and this article constitutes the rest of the present chapter, except for the outlook 4.7.

45
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CHAPTER 4. SPIN-MIXING DYNAMICS AND RELAXATION OF A DRIVEN SPINOR BOSE-EINSTEIN

CONDENSATE

Beginning of the article [45]

4.1 Introduction
The Josephson effect is the hallmark of macroscopic quantum phenomena in quantum fluids, from superconductors [104–107]
to superfluid Helium [108–111], polariton systems [112–114] and ultracold atoms in double-well potentials [6, 115–119]. In all
variants, the phase of a macroscopic wave function is controlled by an external bias parameter. In Superconducting Josephson
Junctions (SCJJs), a voltage bias determines the relative phase between the two superconducting order parameters on each side of
the junction and the supercurrent is proportional to the sine of this phase [104–106]. This leads to some remarkable phenomena,
such as the AC Josephson effect where a static voltage generates an oscillating current at the characteristic Josephson frequency
ω0. Conversely, in the “inverse AC Josephson effect” schematized in Fig. 26a [105–107], an oscillating voltageV (t) quasi-resonant
with ω0 can carry a DC current across the junction.

In SCJJs, resonances occur when the drive frequency ω fulfills kω = ω0 for integer k [105]. These resonances appear in the
form of Shapiro spikes in the voltage-current characteristics of the driven junction at constant bias voltage, or steps at constant
bias current [107]. Shapiro steps are at the core of Josephson voltage standards, which are essentially perfect frequency-voltage
converters enabled by macroscopic quantum effects [107]. Energy dissipation plays a crucial role in such devices [107]. Indeed
without dissipation, the system would not relax towards the exact resonance where the macroscopic phase locks to the drive.
Ultracold atoms exhibit two variants of the Josephson effect. In the first variant (“external Josephson effect”), two superfluids are
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Figure 26: Analogy between two physical systems exhibiting macroscopic quantum coherence: a superconducting Josephson
junction (SCJJ–a) and a spin-1 atomic Bose-Einstein condensate (BEC–b). For SCJJs (respectively, BECs), tunneling through the
barrier (resp., spin-mixing interactions) generates an electric current (resp., a spin current) controlled by the relative phase across
the barrier (resp., between the Zeeman components of the spin-1 wave function). An external energy bias E(t) controls the rate
of change of the relative phase: the electrostatic energy E(t) = 2eV (t) for SCJJs, with V the voltage and 2e the charge of a
Cooper pair, and the quadratic Zeeman energy E(t) = 2q(t) of a pair of m = ±1 atoms for spin-1 BECs. If the energy bias is
modulated around a static valueE0, a Shapiro resonance occurs when the modulation frequencyω fulfills the resonance condition
k0~ω = E0, with k0 a positive integer. c: Observation of several (k0 = 1− 8) Shapiro resonances in a spin-1 atomic condensate
after a relaxation time of 30 s. Here, n0 is the reduced population of the m = 0 Zeeman state, and q0 is the static QZE. The
experiment was performed with a sodium Bose-Einstein condensate containing N ≈ 2 · 104 atoms, with a magnetization per
atomm|| = 0. We varied q0 for a fixed drive frequency ω/2π = 100 Hz.

coupled through a weak link [6, 115–119], in direct analogy with the SCJJs. In the second variant (“internal Josephson effect”),
coherent dynamics can occur between internal degrees of freedom [35, 44]. Here we focus on the specific case of spin F = 1
atoms, withm = 0,±1 the magnetic quantum number labeling the Zeeman components, as illustrated in Fig. 26b. An applied
magnetic field plays the role of the external bias. The Josephson-like internal dynamics is generated by coherent, spin-changing
collisions of the form 2 × (m = 0) ↔ (m = +1) + (m = −1) instead of single-particle tunneling [48, 102]. Compared
to the original SCJJ, cold atom implementations of the Josephson effect have an important asset when one tries to elucidate the
microscopic mechanisms at play in the device: the typical time scales are on the order of milliseconds or longer, enabling a time-
resolved study of the dynamics which is difficult to access in superconducting systems, where the microscopic time scales are in
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the picosecond range.
So far most experimental studies on atomic spinor gases were performed with only a static bias and no modulation [58–

67, 102, 103]. The driven case was explored only recently, with experiments demonstrating either the freezing of the evolution
by frequent “kicks” in spin space [120], or spin-nematic squeezing near a parametric resonance [121]. In this article, we extend
the analogy between SCJJs and atomic spinor gases to the driven regime, where Shapiro resonances occur. Using a spin-1 Bose–
Einstein condensate (BEC) of sodium atoms, we observe such resonances (see Fig. 26c) and characterize them in the non-linear
regime, where the phase dynamics is not solely controlled by the external static bias. We study the coherent dynamics at short
times and the relaxation at long times (tens of seconds, corresponding to tens of thousands of the drive oscillation period). Near
resonance, in the strongly driven regime, we find that the driven BEC relaxes to asymptotic states that are not stable without drive
(Fig. 26c). In this sense, our system constitutes a many-body version of the celebrated Kapitza pendulum [122,123]. The stationary
states correspond to phase-locked solutions of the Josephson equation, generalized to include dissipation and analogous to the
stationary states of driven SCJJs [107].

In our experiments, dissipation presumably results from interactions between condensed and noncondensed atoms that lead
to damping of coherent macroscopic phenomena and thermalization. Thermalization of driven quantum systems has been stud-
ied intensely in the past few years [124–126]. The general expectation is that energy is absorbed from the drive, eventually heating
to infinite temperatures [127–129]. However, the heating time scale τh can become extremely long. Rigorous proofs are only
available for high-frequency modulation and systems with a bounded spectrum: Refs. [130–132] have shown that τh = eO(ω/∆),
with ∆−1 the faster intrinsic timescale of the non-driven system and ω � ∆ the modulation frequency. For times t � τh, the
system may attain a pre-thermalized “Floquet-Gibbs” state corresponding to the equilibrium state of an effective, secular Hamil-
tonian. In this work we use near-resonant modulation and probe a system with an a priori unbounded spectrum 1. We observe a
long-time steady state that differs from both the infinite temperature state and a Floquet-Gibbs state associated with the secular
Hamiltonian.

We introduce in this article a phenomenological model obtained by adding a suitable dissipative term to the coherent, Josephson-
like equations describing the spinor dynamics. We compare its predictions with those of a former model used in the literature to
describe relaxation in atomic Josephson-like settings. These two models can be roughly classified as amplitude or phase damping,
respectively. Their predictions are barely distinguishable from each other without driving but differ spectacularly in the strongly
driven case. More precisely, the “phase-damping model” proposed in [61], is clearly incompatible with the experimental obser-
vations, whereas our “amplitude-damping model” agrees quantitatively with them. This suggests that our experimental results
can be used as a benchmark for ab initio theories of a driven many-body system, as they constrain strongly the form of damping
prevailing in experiments.

The paper is organized as follows. In Section 4.2, we review the main features of our experiment and of the theoretical de-
scription of spinor condensates. We highlight the analogies and differences with Josephson physics in superconducting junctions.
We also discuss for later reference spin-mixing oscillations without driving, highlighting both the coherent features [58–63, 103]
and the dissipative aspects [61]. In Section 4.3, we turn to the driven system and characterize experimentally and theoretically the
non-linear secular dynamics in the vicinity of the resonance. Measuring both the Zeeman population and the relative phase of
the atoms, we identify two regimes, an “oscillating regime” where the atomic phase is locked to the drive, and a “rotating regime”
where the atomic phase runs independently from the drive. In Section 4.4, we study the relaxation of the driven spin-1 BEC for
long evolution times. In a narrow frequency window around each Shapiro resonance, we observe relaxation to a non-equilibrium
steady state that has no analog in the non-driven system. We also show that the system displays hysteresis when the drive frequency
is scanned accross a Shapiro resonance. Finally, we conclude and draw some perspectives of this work in Section 4.5.

4.2 Spin-mixing oscillations

This section is devoted to the theoretical modelling of a spinor Bose–Einstein condensate, as well as its experimental implemen-
tation and characterization. We first focus on the coherent dynamics of the system in the mean-field and single mode approx-
imations, and we show that it can be viewed as a classical one-dimensional Hamiltonian system. Here the relevant canonically
conjugate variables are n0 and θ, where n0 is the population of the m = 0 Zeeman state, and θ a particular combination of the
phase of the three Zeeman states. We emphasize the deep analogies that exist between the equations of motion of the spinor gas
and those of a driven SCJJ, with n0 playing the role of the supercurrent and θ the role of the phase difference across the junction.
We then present our experimental setup and explain how we access these two relevant variables n0 and θ. Finally, we describe two
simple models for the relaxation of the dynamics of the spinor BEC. In particular, we show experimental results that indicate that
in the non-driven case, it is not possible to discriminate between these two relaxation models.

1The single-mode spin Hamiltonian has a bounded spectrum, but only describes the low-energy sector of the full Hilbert space.
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4.2.1 Coherent dynamic of spinor condensates
Relevant contributions to the energy

We consider spin F = 1 atoms immersed in a spatially uniform magnetic field B = Bu, where the orientation u is taken as
quantization axis. The atoms can occupy all three Zeeman states |F,m〉u, wherem = 0,±1 refers to the eigenvalue of f̂ ·u and
where f̂x,y,z are the spin-1 matrices.

As for most magnetic materials, the dynamics and equilibrium properties of spinor condensates are governed by (i) the Zeeman
energy∼ µBB in the applied magnetic field, where µB is the Bohr magneton, and (ii) the spin-dependent interactions. In this
work, the direction of the applied magnetic field varies in time, but only on a time scale much longer than the Larmor period
h/µBB. The single-particle spin states then follow adiabatically the changes of the direction of B(t) (see Appendix 4.6.1 for
more details). For relatively low values ofB, the Zeeman energy of a single atom is thus given by

ĥZ = p(t)f̂z + q(t)
[
f̂2
z − 1

]
+O(B3). (4.1)

In this expression, the linear Zeeman term proportional to p(t) = gFµBB(t) (gF = −1/2 the Landé factor) is essentially the
contribution of the spin of the valence electron, and the quadratic Zeeman energy (QZE) proportional to q(t) = αqB

2 (with
αq ≈ h× 277 Hz/G2 for sodium atoms) gives the first correction due to the nuclear spin [35].

Interactions between alkali atoms are mainly due to short-range van der Waals interactions. Magnetic dipole-dipole interac-
tions are usually much weaker [133]. Neglecting the latter, the interaction potential between two atoms is invariant under spin
rotations. On the other hand, the Zeeman term is invariant only by rotations around the quantization axis u, which thus con-
stitutes the symmetry axis of the problem. For a many-atom system, this symmetry implies that the longitudinal magnetization
per atom,m|| = 〈F̂ · u〉/N , with F̂ the total spin operator andN the total atom number, is a conserved quantity [35, 48, 58].
The linear Zeeman energy, proportional to m||, can then be eliminated without loss of generality by transforming to a frame
rotating around the quantization axis u at the Larmor frequency (see Sec. 4.2.1). The Zeeman energy then reduces to the QZE
alone, ĥZ = q(t)

[
f̂2
z − 1

]
+O(B3).

Single-mode regime

We focus in this work on the so-called single-mode regime of spinor condensates [48,134,135]. This regime is realized for a conden-
sate confined in a tight trap, such that spin excitations correspond to energies much lower than the confinement energy associated
with the spatial variations of the wave function. In this situation, the lowest energy states correspond to various spin states, but
to the same single-mode spatial orbital φ(r). It is convenient to use a second-quantized notation and to introduce the operator
âm annihilating a boson in the single-particle state |F,m〉u ⊗ |φ〉. The spin physics is then described by an effective low-energy
spin Hamiltonian [35, 136],

Ĥs =
Us

2N
F̂ 2 − qN̂0. (4.2)

HereN is the total atom number,Us is a spin-dependent interaction energy determined by the single-mode orbital,

Us =
4π~2Nas
mNa

×
∫
|φ(r)|4 d3r , (4.3)

with as ≈ 0.13 nm the spin-dependent scattering length [137] and mNa the mass of a sodium atom. The QZE is proportional
to q and to the operator N̂0 = â†0â0 counting the population in the Zeeman state m = 0. The procedure for calibrating Us is
described in Appendix 4.6.2. Note that by construction the Hamiltonian in Eq. (4.2) is valid only at low energies. In particular, it
cannot describe the noncondensed modes involving orbital degrees of freedom other than φ(r).

In the single-mode regime, almost all atoms condense at low temperature into the same single-particle state Ψ = ζ ⊗ φ̄(r),
with ζ a complex vector independent of space. The components ζm =

√
nme

iφm , where nm is the fractional (normalized to
the total atom number) population of the Zeeman statem, are not independent. Accounting for (i) an overall normalization, (ii)
an irrelevant global phase, and (iii) the conservation of magnetization leaves only three independent real variables. A convenient
choice for these variables are the relative population n0 of them = 0 state and the two relative phases

θ = φ+1 + φ−1 − 2φ0, η = φ+1 − φ−1. (4.4)

The rate of change ~θ̇ can be interpreted as a chemical potential difference driving the “reaction” (m = +1) + (m = −1) ↔
2×(m = 0), with a “chemical equilibrium” reached for θ = 0 orπ (see Eq. (4.10) below). The phaseηwould describe the Larmor
precession due to the linear Zeeman term in the original Zeeman Hamiltonian. The transformation ζm → ζme

−impt~ to a frame
rotating at the Larmor frequency around the quantization axis u removes the contribution ∝ p to the Zeeman Hamiltonian,
without loss of generality.
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In this work, we focus on the casem|| = 0, so that n+1 = n−1. The spin energy for a condensate in the state Ψ is then

Es(n0, θ, t) = Usn0(1− n0)(1 + cos θ)− q(t)n0. (4.5)

Note that this energy does not depend on the phase η. For a static QZE q > 0 and antiferromagnetic interactions Us > 0, it is
minimal for the so-called polar state [138] with n0 = 1 that minimizes separately the Zeeman and interaction terms in Eq. (4.5).

Spin-mixing and Josephson physics

The equations of motion for a spin-1 BEC in the single mode approximation can be derived from the Gross-Pitaevskii energy
functional (see [35] and references therein). We start with the dynamical part of the Lagrangian for the Schrödinger equation
i~
∫

Ψ∗ · Ψ̇ and expresses it in terms of the spin variables. Subtracting the Zeeman and interaction energies (4.5), we obtain the
Lagrangian form|| = 0,

L(n0, θ, θ̇, t) =
~
2
n0θ̇ − Es(n0, θ, t). (4.6)

The two Euler–Lagrange equations for n0 and θ

d

dt

∂L
∂θ̇

=
∂L
∂θ
,

d

dt

∂L
∂ṅ0

=
∂L
∂n0

, (4.7)

read in this particular case
~
2
ṅ0 = −∂Es

∂θ
,

~
2
θ̇ =

∂Es

∂n0
. (4.8)

The explicit form of these equations of motion is thus [102]

~ṅ0 = 2Us n0(1− n0) sin θ , (4.9)

~θ̇ = −2q(t) + 2Us (1− 2n0) (1 + cos θ). (4.10)

For this choice of the Lagrange function, the conjugate momentum of the phase θ is

pθ ≡
∂L
∂θ̇

=
~
2
n0, (4.11)

The Hamilton formulation of the dynamics corresponds therefore to a one-dimensional system, with the classical Hamiltonian
H = pθ θ̇ − L defined as

H(pθ, θ, t) ≡ Es(n0 = 2pθ/~, θ, t). (4.12)

The corresponding Hamilton–Jacobi equations are identical to Eq. (4.8). Note that in this formulation, Es represents the total
energy (kinetic plus potential) of the one-dimensional system.

Eqs. (4.9,4.10) contain the two main ingredients for Josephson physics [44]. Consider first Eq. (4.9): the “spin current” ṅ0 is
generated by coherent spin-mixing interaction processes controlled by the phase θ. This is analogous to the celebrated Josephson
relation Is ∝ sinφ linking the supercurrent Is in a SCJJ to the relative phase φ between the two superconductors on each side
of the junction. The additional factor n0(1 − n0) enforces that the population n0 stays in the interval [0, 1] and thus simply
corresponds to a slowing down of the dynamics when the BEC reaches one of the extreme points n0 = 0 or n0 = 1.

Consider now the second equation of motion Eq. (4.10): the external bias q(t) –analogous to the voltage dropV (t) across the
junction– controls the rate of change θ̇ of the relative phase. This is analogous to the second Josephson relation ~φ̇ = 2eV with
2e the charge of a Cooper pair. Here, we also find an additional term [the last term of Eq. (4.10)], which describes how interactions
can alter the resonance and the dynamics of the phase.

To summarize, the equations of motion describing the coherent dynamics of a driven spinor condensate present a deep analogy
with those of a driven SCJJ, with identical dominant contributions. There exist however differences between Eqs. (4.9,4.10) and
the “standard” Josephson relations, which essentially reflect the fact that these gases can be viewed as closed interacting systems;
therefore Josephson-like phenomena typically lead, in the present case, to population oscillations of large amplitude (comparable
to the total atom number), and not to a steady current as for superconducting circuits connected to charge reservoirs.

4.2.2 Experimental setup and protocol
In this paper, we focus on the situation where the static bias q0/h ∼ 300 Hz is much larger than Us/h ∼ 30 Hz. We present in
this subsection the experimental protocol from which we infer the relevant variables n0 and θ, and we illustrate it on the static
case, i.e., when q = q0 is constant in time. In the regime q0 � Us (called Zeeman regime in [103]), the QZE determines the phase
evolution up to small corrections, θ(t) ≈ θ(0) − 2q0t/~. Eq. (4.9) then predicts harmonic oscillations of n0 at the frequency
≈ 2q0/~, with a small amplitude∝ Us/q0 [58–60, 102, 103]. These oscillations constitute the analogue for spinor gases of the
AC-Josephson effect: a constant DC bias induces a periodic AC current.
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Condensate preparation

In order to observe experimentally the AC spin oscillations induced by a static bias q0, we prepare a quasi-pure condensate of
spin-1 sodium atoms in a crossed optical dipole trap. The condensate contains N ≈ 104 atoms, with a condensed fraction
& 0.9. The condensate is initially polarized in them = +1 state (except in Section 4.4.4). Our main observables are the relative
populations nm of the Zeeman sublevels m = 0,±1. We measure these populations using absorption imaging2 after a time-
of-flight in a magnetic field gradient separating the different Zeeman components (“Stern-Gerlach imaging”). The experimental
setup, preparation steps and Stern-Gerlach imaging were described in detail in our previous publications [37, 56].

In the experiments described in the following, we initiate spin-mixing dynamics by rotating the internal state of the spin-
polarized BEC. This spin rotation is the only exception to the adiabaticity condition indicated above. Experimentally, we apply
a radiofrequency field resonant at the Larmor frequency for a time tπ/2 ≈ 40µs, resulting in a rotation by an angle of π/2
around an axis orthogonal to the quantization axisu. With the Zeeman state |m = +1〉 as starting point, the internal state after
rotation is 1

2 (|m = +1〉+ |m = −1〉) + 1√
2
|m = 0〉. Hence the initial m = 0 population and longitudinal magnetization

are respectively n0,i = 1/2 and am|| = 0.
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Figure 27: a-b: Spin-mixing oscillations without driving in the Zeeman regime q0 � Us. The time evolution of the population
n0 in (a) and the relative phase θ in (b.). c: Relaxation ofn0 at long times. The red points correspond to the experimental data and
the lines show the fit results for the two dissipative models DM 1 (dotted green line) and DM 2 (dashed purple line) introduced in
Sec. 4.2.3. The values of the fit parameters are given in Sec.4.2.3.

Measurement of the phase θ

The spin-mixing dynamics is characterized by oscillations of both the populationn0 and the phase θ. The Stern–Gerlach imaging
procedure mentioned above readily provides the value ofn0. An example is given in Fig. 27a, which shows the expected sinusoidal
evolution of n0(t) in the non-driven case. We use the method introduced in [37] to measure the phase θ. This method relies on
the fact that the orientation of the transverse magnetization per atom m⊥ (controlled by the phase η, see Section 4.2.1) varies
randomly for each realization of the experiment. Indeed, the spin energyEs depends only on the magnitude ofm⊥ but not on
its orientation. After averaging over many realizations, the distribution ofm⊥ has a zero mean but a non-zero variance,

〈m2
⊥〉 = 2n0(1− n0)(1 + cos θ), (4.13)

that depends explicitely on cos θ. Here 〈·〉 denotes a statistical average over the realizations.
In practice, we apply a radio-frequency pulse to induce a spin rotation ofπ/2 around they axis and measure the magnetization

m′|| after rotation. We repeat the experiment typicallyNmes = 10−20 times and calculate the variance 〈m′2|| 〉 of the experimental
results. Using 〈m′2|| 〉 = 〈m2

⊥〉/2 + O(1/Nmes), we infer the value of cos θ. In order to determine unambiguously the phase θ
itself, we assume that θ wraps monotonically around the unit circle to obtain the illustrative result shown in Fig. 27b.

4.2.3 Relaxation of spin-mixing oscillations
Experimental observation of a dissipative behavior

In the non-driven case, we observe experimentally that for long evolution times, the spin-mixing oscillations are damped and the
populationn0(t) eventually relaxes to the expected equilibrium valuen0 ≈ 1. An exemple of this dissipative behavior is shown in
Fig. 27c. The characteristic time scale is a few seconds, to be contrasted with the millisecond time scale of the coherent oscillations
shown in Fig. 27a.

2This work was done before the implementation of fluorescence imaging described in Chapter 3.
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This relaxation, first observed in [61], corresponds to a loss of ener� of the spinor BEC. Eqs. (4.9,4.10) describe a Hamilto-
nian dynamics where the energy Es(n0, θ) is a constant of motion [102]. As a result, a point or an orbit of the classical phase
space (n0, θ) cannot be attractive, and relaxation cannot occur within this framework. However, experimental systems are never
perfectly isolated, and their coupling to (many) other degrees of freedom playing the role of an energy reservoir enables energy
dissipation and thermalization. In experiments with ultracold atoms, noncondensed particles forming a bath of collective exci-
tations are inevitably present at non-zero temperature and constitute a primary candidate to explain relaxation. We expect that
the interaction of the BEC with this bath acts to restore thermodynamic equilibrium, i.e. a BEC with all atoms in m = 0 for
q0 > 0, with a small decrease of the condensed fraction fc. This is indeed what we observe in Fig. 27c, with a typical relaxation
time (∼ 1 s) that depends on q0 [61].

Phenomenological modelling of the dissipation

An ab initio theoretical description of the thermalization dynamics in a spinor BEC would require to go beyond the Bogoliubov
[136, 139, 140] or classical field [125] descriptions that are only applicable at short times. In this work, we study relaxation over
several seconds, i.e. several hundred/thousand times the intrinsic time scalesh/Us ∼ 30 ms andh/2q0 ∼ 1 ms set by interactions
and QZE, respectively. To the best of our knowledge, no general framework is available to describe strongly out-of-equilibrium
dynamics for single-component gases, let alone spin-1 systems.

Therefore, in order to describe the experimental observations and gain some insight on the dynamics, we take in this work a
phenomenological approach. Following [61,115,119,141], we add “by hand” a dissipative term to the coherent spin-mixing equations
of motions Eqs. (4.9,4.10):

ṅ0 = ṅ0|coh + ṅ0|diss , (4.14)

θ̇ = θ̇
∣∣∣
coh

+ θ̇
∣∣∣
diss

. (4.15)

The first dissipative model (DM 1) that we consider was originally proposed in Ref. [61],

DM 1 : ṅ0|diss = 0, θ̇0

∣∣∣
diss

= β1ṅ0. (4.16)

Liu et al. argue that the dissipative term in Eq. (4.16) is the only term linear in n0, θ, ṅ0 or θ̇ that can explain their measurements
[61]. Anticipating on the results in the driven case that will be presented later, we have found that the dissipative model 1 can
reproduce our experimental results without driving, but fails to predict the observed steady state in the strongly driven case. This
motivated us to explore other dissipative models, not necessarily linear in n0, θ or their derivatives. We propose in this article the
alternative

DM 2 : ṅ0|diss = −β2n0(1− n0)θ̇, θ̇0

∣∣∣
diss

= 0. (4.17)

In the context of cold atoms, similar dissipative terms have been proposed [115,119,141], mainly in analogy with those describing
Ohmic dissipation in SCJJs. The DM 1 corresponds to a resistor connected in series with the junction, and the DM 2 to a resistor
in parallel with the junction (“resistively shunted junction model”). The dimensionless phenomenological constants β1, β2 are
real numbers, which are chosen positive to ensure that the energy Es always decreases. Indeed, the dissipated power reads for a
time-independent QZE

Pdiss =
dEs

dt
= ṅ0|diss

∂Es

∂n0
+ θ̇

∣∣∣
diss

∂Es

∂θ
(4.18)

which simplifies into P(1)
diss = −~

2β1ṅ
2
0 for DM 1 and P(2)

diss = −~
2β2n0(1 − n0)θ̇2 for DM 2. In both cases we find energy

dissipation provided that the phenomenological damping coefficients β1/2 ≥ 0.

Relaxation in the non-driven case

For long times, the population n0 displays oscillations on top of a slowly varying envelope n0, where the double bar denotes a
coarse-grained average over a time long compared to the period of the spin-mixing oscillationh/(2q0), but short compared to the
relaxation time τ1/2. In Appendix 4.6.3), we show that the solution of the DM 1 is well approximated at long time by

DM 1 : n0 ≈ 1− τ1
t
, (4.19)

with τ1 = ~q0/(β1U
2
s ). The DM 2 predicts

DM 2 : n0 =
n0,i

n0,i + (1− n0,i )e−t/τ2
, (4.20)
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with τ2 = 2~/(β2q0). Here n0,i is the initial value of n0.
We have compared the predictions of the two models to the experimental results shown in Fig. 27c. For this comparison, we

account for a small but non-zero thermal fraction. The measured population inm = 0 can be written

n0 = fcn0,c + n′0, (4.21)

with n0,c = N0,c/Nc (resp. n′0) the fraction of condensed (resp. noncondensed) atoms in m = 0. Here Nm,c denotes the
population of condensed atoms in the m state, Nc =

∑
mNm,c the number of condensed atoms, fc = Nc/N the condensed

fraction and N the total atom number. We assume for simplicity that thermal atoms are distributed equally among all Zeeman
sublevels, so that n′0 = (1− fc)/3.

We use Eq. (4.21) in combination with the dissipative models 1 or 2 for n0,c to fit the experimental data in Fig. 27c, using
fc and the relaxation times τ1/2 as free parameters. We find comparable best-fit parameters for both models : fc ≈ 0.85(2),
τ1 ≈ 0.18(2) s for DM 1, fc ≈ 0.80(2), τ2 ≈ 0.86(10) s for DM 2. The corresponding phenomenological damping parameters
are β1 ≈ 0.20(2) and β2 ≈ 1.30(15) × 10−3. The two dissipative models fit well our measurements in Fig. 27c, with a small
difference that appears at long times, but which is not statistically significant. We conclude that discriminating between the two
models is difficult in the non-driven case. We will see later in the article that this is no longer the case in the driven case, where the
differences are spectacular at long times.

4.3 Shapiro Resonances
We now turn to the main topic of this paper, where a sinusoidal modulation of the QZE with frequency ω drives the spinor
dynamics. We are interested in the case where~ω and q0 are comparable, allowing for a resonant behavior of the system (Sec. 4.3.1).
We focus in this section on the short-time dynamics, where the effect of dissipation is negligible. In Sec. 4.3.2, we model the
evolution close to a resonance by secular equations of motion, which depend on two time-averaged variables n0 and φ. The
quantityn0 is the average of the populationn0 over the time period 2π/ω. The definition of the secular phaseφ is more involved
and will be made explicit in Sec. 4.3.2. We then explain how to access experimentally the value of φ (Sec. 4.3.3). We finally show
that our experimental results in this short-time regime are in excellent agreement with the prediction of the secular equations
(Sec. 4.3.4).

4.3.1 Observation of Shapiro resonances
In all what follows we use a sinusoidal modulation of the QZE around a bias value q0 according to

q(t) = q0 + ∆q sin(ωt+ ϕmod) Θ(t), (4.22)

with Θ(t) the Heaviside step function. Experimentally, the x componentBx of the magnetic field is static, and the y component
By = ∆B cos[(ωt + ϕmod)/2 + π/4] Θ(t) is modulated in a sinusoidal fashion. The QZE is given by Eq. (4.22) with q0 =
αq(B

2
x + ∆B2/2) and ∆q = αq∆B

2/2.
In a perturbative picture, spin-mixing resonances occur when a pair of atoms inm = 0 can be resonantly transferred to a pair

m = ±1 by absorbing an integer number k of modulation quanta, i.e. when k~ω = 2q0. We define the detuning by

~δ = 2q0 − k0~ω, (4.23)

with k0 the closest integer to 2q0/(~ω).
The left column of Fig. 28 shows how the population n0 evolves in time for several values of the modulation frequency ω

close to the first resonance with k0 = 1, such that δ � q0. The dynamics of n0 can be described as the combination of (i) a fast
(frequency ω ' 2q0/~) micromotion with a small amplitude, visible in the inset of Fig. 28a1, and (ii) a slow oscillation with a
large amplitude. The period of the slow oscillation is a hundred milliseconds or more, much longer than the intrinsic timescales
set by the drive period, the QZE or the spin-dependent interactions. This slow dynamics is the result of the coherent build-up
over hundreds of periods of the micromotion. The slow “Shapiro oscillations” observed near resonance can be viewed as the
counterpart for our closed system of the DC current observed near Shapiro resonances in modulated SCJJs.

Fig. 29 shows the generic behavior observed for longer times, where we observe (i) a damping of the contrast of the oscillations
on a time scale of several hundred milliseconds, and (ii) a drift of the baseline value of n0 towards the equilibrium value without
driving, n0 = 1. We attribute the damping (i) mainly to fluctuations of the experimental parameters, leading to shot-to-shot
fluctuations of the period and amplitude of the oscillations and therefore to their dephasing after averaging over several realizations
of the experiment. We believe that the main contribution comes from small (∆N/N ∼ 8 %) fluctuations of the atom number.
These fluctuations induce fluctuations ∆Us/Us ∼ 6 % of theN−dependent interaction strengthUs [see Appendix 4.6.2 for the
calibration of the dependenceUs(N)].

We show in Fig. 28 and Fig. 29 the theoretical results obtained by solving numerically Eqs.(4.9,4.10) with the dissipative term
(4.17) for different interaction strengths Us, and averaging over a Gaussian distribution of Us with mean and variance deduced
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Figure 28: Observation of secular oscillations near the first Shapiro resonance k0 = 1. We show the relative population n0 (a-c1)
and phase φ (a-c2) versus time. The parameters in a1-2,b1-2 correspond to the oscillating regime of the pendulum model, while
c1-2 correspond to the clockwise-rotating regime. The lines show the numerical solutions of the dissipative model 2 [Eq. (4.17)]
with β2 = 1.3 · 10−3. The calculated curves are further averaged to account for experimental fluctuations of Us (see text). The
last panel d shows a phase-space portrait of the trajectories in the (φ, φ̇) plane, with φ̇ calculated from Eq.(4.25). The dashed blue,
solid purple and dashed-dotted green line correspond to a1-2, b1-2 and c1-2, respectively. The shaded area covers the phase-space
region explored in the oscillating regime of the pendulum model. In the main panels, the observation times are integer multiple
of the modulation periodT = 2π/ω. The data are thus a stroboscopic observation of the secular dynamics, free of the additional
micromotion. The two insets in a1 (with a smaller time sampling) show the micromotion around the main secular oscillation.
The static bias is q0/h = 276 Hz, the modulation amplitude ∆q/h = 43.6 Hz (κ ' 0.08), andUs/h ≈ 30 Hz. The detuning
is δ/2π = −5.7 Hz (a1-2,b1-2) and 18 Hz (c1-2). For curves b1-2, we varied the initial phase (see text) to be in the harmonic regime:
θ(0) = −0.5(2) rad for a1-2,c1-2 and 1.45(2) rad for b1-2.
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Figure 29: a: Damping of Shapiro oscillations. The solid blue curve is calculated from the dissipative model 2 (DM 2) and averaged
over the fluctuations ofUs caused by atom number fluctuations (see text). The shaded area corresponds to the standard deviation
of the distribution of n0 induced by these initial fluctuations. The static bias is q0/h = 276 Hz, the detuning δ/2π = −18 Hz,
and the modulation amplitude ∆q/h = 218 Hz (κ ' 0.36). The interaction strength is Us/h ≈ 32 Hz for t = 0 and decays
to ≈ 20 Hz for t = 40 s due to atom losses during the hold time in the optical trap. b: Long-time relaxation of the secular
population n0 to a steady state. We attribute the small drift of the steady state population to the decay ofUs.

from the measured atom number statistics. We checked that for relatively short times (say, < 200 ms), the dissipation plays a
negligible role and the observed damping of the oscillations is essentially due to the fluctuations ofUs.

In the rest of this Section, we focus on the initial oscillations shown in Fig. 28, neglecting the role of dissipation, and postpone
the discussion of relaxation at long times to Sec. 4.4.

4.3.2 Secular equations for near-resonant driving
For our experimental situation with q0 � Us and for a modulation frequency close to the k0 Shapiro resonance (|δ| � q0), we
derive in Appendix 4.6.4 effective equations of motion for the slowly evolving components by averaging over the fast micromo-
tion. These secular equations of motion read

~ṅ0 = 2κUsn0(1− n0) sinφ, (4.24)

~φ̇ = −~δ + 2Us(1− 2n0)(1 + κ cosφ). (4.25)

Here, n0 is the time average of n0 over one modulation period T = 2π/ω, and the secular phase φ is related to the time-average
θ of the phase by

φ = θ + k0(ωt+ ϕmod + π/2). (4.26)

The interaction terms driving the spin dynamics are renormalized by a factor

κ = Jk0

(
2∆q

~ω

)
, (4.27)

with Jk the kth-order Bessel function of the first kind. Note that our modulation scheme is limited to ∆q < q0. Together with
the secular approximation, this implies that 0 < κ < 1.

The secular equations Eqs. (4.24,4.25) have a structure similar to the original spin-mixing equations Eqs. (4.9,4.10) with the
replacements q → −~δ/2 and eiθ → κeiφ. Accordingly, Eqs. (4.24,4.25) derive from the classical Hamiltonian of the secular
motion with the canonical momentum pφ = ~n0/2,

Hsec(pφ, φ) = Esec(n0 = 2pφ/~, φ) (4.28)

and

Esec(n0, φ) = −~δ
2
n0 + Usn0(1− n0)(1 + κ cosφ). (4.29)

The different dynamical regimes are best understood in the limit of small driving, κ � 1. We show in Appendix 4.6.4 that
the secular equations Eqs. (4.24,4.25) reduce for κ → 0 to the ones describing the motion of a one-dimensional rigid pendulum
of natural frequency Ω =

√
2κUs/~, with the secular phase φ representing the angle of the pendulum. The pendulum admits

two dynamical regimes, either oscillations around the stable equilibrium point φ = 0, or full-swing rotations with φ running
from 0 to 2π. The period of the oscillations diverges at the transition between the two regimes.

The same qualitative conclusions hold outside of the weak driving limit. A numerical solution of the equations of motion
shows that the positions of the resonance and of the separatrix shift to slightly higher frequencies with increasing driving strength.
From Eq. (4.26), we note that the regime of small oscillations (φ ≈ 0) corresponds to an atomic phaseθ ≈ −k0(ωt+ϕmod+π/2)
locked to the drive. Conversely, the regime of full-swing rotations (φ ≈ −δt) corresponds to a free-running atomic phase θ ≈
−2q0t/~, barely affected by the drive.
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4.3.3 Measurement of the secular phase φ
In order to observe the two dynamical regimes, we now concentrate on the evolution of the phase φ, since the population n0

oscillates in both cases.
We measure the secular phase using a variant of the method of Section 4.2.2 that allows us to lift the phase ambiguity. We

measure cos θ as before for stroboscopic times tp = pT and a quarter of period later tp + T/4, with p a positive integer and
T = 2π/ω the period of the modulation. Assuming φ(tp) ≈ φ(tp + T/4) (in accordance with the secular approximation),
we obtain, after converting θ to φ using the definition of the latter in Eq. (4.26), a simultaneous measurement of sinφ(tp) and
cosφ(tp) at stroboscopic times tp.

Obtaining confidence intervals on the measurement ofφ is far from obvious. The statistical spread of sinφ(tp) and cosφ(tp)
can be quantified using the quantity S = 〈cosφ〉2 + 〈sinφ〉2, equal to 1 if φ is perfectly determined and vanishing for φ com-
pletely random. We find that S decreases with a characteristic time scale∼ 200 ms. Physically, we attribute this decay essentially
to the fluctuations of Us coming from atom number fluctuations translating into a phase spread increasing with time. Mathe-
matically, the probability distribution P(φ) of φ that derives from our expected distribution of Us has a complicated shape due
to the non-linearities of the spin-mixing equations. We did not pursue a sophisticated statistical analysis accounting for the pecu-
liarities ofP(φ), and use instead the quantity S introduced above to estimate when the measurement of the phase is reliable. We
arbitrarily choose the criterion S ≥ 1/2 corresponding to measurements times t ≤ 200 ms.

In an ideal experiment strictly described by Eq. (4.22), the modulation would be turned on instantaneously at t = 0. The
initial phase θ(0) = 0 would then be determined by the preparation of the initial state. In practice, a small delay of ∆t = 100µs
is present between the preparation and the beginning of the modulation, and the modulation settles to the form in Eq. (4.22) after
1− 2 ms, due to the transient response of the coils used to generate the modulationBy . During this short transient (� ~/Us),
the populations barely evolve but the phase changes because of the QZE. Both effects can be incorporated as an initial phase shift

θ0 = −2

~
×
[
q0∆t+

∫ +∞

0

[q̃(t)− q(t)]dt
]
. (4.30)

Here q̃ denotes the instantaneous QZE actually experienced by the atoms and q(t) the ideal step-like profile. The extra phase shift
is θ0 ≈ −0.5 rad for the data in Fig. 28a1-2. We can also insert on purpose a variable delay between the preparation step and the
start of the modulation to tune the initial phase θ0. We used this technique to record the data in Fig. 28b1-2, which are otherwise
obtained for identical conditions as in Fig. 28a1-2.

We plot in Fig. 28 (right column) the results for φ for the first resonance k0 = 1. For small detuning, the phase oscillates
around φ = 0, i.e. the dynamics of the BEC phase is phase-locked with the drive (panels a1-2,b1-2.). The excursion of the phase
away from φ = 0 depends on the detuning and the initial phase, which we can tune (panels b1-2) to have φ(t = 0) ' 0. For
a given initial phase, when δ exceeds a critical value corresponding to the transition betweeen the two dynamical regimes, phase
locking no longer occurs and the BEC phase runs freely from 0 to 2π, corresponding to the “rotating pendulum”case (panels c1-2).

4.3.4 Period and amplitude of the secular oscillations
We extract the amplitude and period of the secular oscillations by fitting a periodic function

n0(t) =

3∑
j=0

aj cos(jt/Tsec + φ0) , (4.31)

to the data. We restrict the fit to the first two periods of the secular motion, with the amplitude aj ∈ R of the harmonics and the
initial phase φ0 as free parameters. Fig. 30 shows the period Tsec and amplitude for the first resonance k0 = 1 versus detuning.
The results agree well with a numerical solution of Eqs. (4.9,4.10) (i.e., without taking dissipation into account), and with the
pendulum model. Close to resonance, the measured amplitude is systematically lower than the theoretical prediction. This can
be qualitatively explained by the presence of noncondensed atoms that do not participate in the coherent secular dynamics.
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Figure 30: Period (a) and amplitude (b) of the secular oscillations versus detuning δ for the same parameters as in Fig. 28. The
solid blue lines show the numerical solutions of Eqs. (4.9,4.10), and the dotted black lines the analytical solution of the pendulum
model.
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Figure 31: a: Measured population n0 as a function of detuning δ after a relaxation time of 10 s. The experiment is performed
near the first resonance k0 = 1 (~ω ≈ 2q0) with n0,i = 0.5. The static bias is q0/h ≈ 277 Hz, the modulation amplitude is
∆q/h ≈ 227 Hz (κ ' 0.4), and the interaction strength is Us/h ≈ 26 Hz. b: Numerical solutions of the dissipative models 1
(Eq. 4.16, brown squares) and 2 (Eq. 4.17, black empty diamonds). In both panels, the horizontal blue (respectively oblique green)
line corresponds to the stationary stateS1 (resp., S+). The solid (resp. dotted) segments correspond to the stable (resp. unstable)
region according to DM 2 (see Section 4.4.2).

4.4 Long-Time Relaxation
In this Section, we focus on the state reached for long evolution times, after relaxation has taken place. We observe that after the
damping of the slow, large amplitude Shapiro oscillations, the population n̄0 reaches a steady state that persists for tens of sec-
onds 3. We characterize this steady state and show that it can differ from the equilibrium points of either the non-driven Hamil-
tonianH or the secular HamiltonianHsec. We then take explicitly into account the dissipation using the two models DM 1 and
DM 2 introduced in Sec. 4.2.3. We show that DM 2 leads to predictions in good agreement with our observations, whereas DM 1
is clearly excluded. Then, we study the new fixed points that can appear in the presence of this dissipation, and we discuss their sta-
bility. In particular there exist some regions of parameter space where two fixed points can be simultaneously stable or metastable.
This leads to the possibility of observing a hysteretic behavior, which we confirm experimentally.

4.4.1 Observation of a Non-Equilibrium Steady State

Fig. 31 shows a typical measurement for strong driving (κ = 0.38) near the first resonance k0 = 1. We monitor how the steady
state value changes as a function of detuning δ. We find that the system relaxes to n0 ≈ 1, except in a range of negative detunings
close to the resonance where the populationn0 takes values between≈ 0.5 and 1. The steady state reached in this strongly driven
situation does not correspond to the thermodynamic equilibrium point in the absence of modulation, i.e. the ground state of
H defined in Eq. (4.12) with q(t) = q0, obtained for n0 = 1. It does not correspond either to the minimum of the secular
HamiltonianHsec defined in Eq. (4.28), obtained for n0 = 1 for δ > 0 and n0 = 0 for δ < 0. This contrasts strongly with the
non-driven case where the thermodynamic equilibrium state n0 ≈ 1 is always observed at long times.

In the experimental results shown in Fig. 26c, we observe the same behaviour for higher resonances, up to k0 = 8 (limited by
the maximal magnetic field we can produce). In order to record this set of data, we set ω/2π = 100 Hz and scanned simultane-
ously the bias value q0 and driving strength ∆q, keeping ∆q/q0 and therefore the secular renormalization factor κ approximately
constant. After a wait time of 30 s, we observed that the system relaxes for all k0 to the same stationary state as for the first reso-
nance. In the following, we therefore concentrate on the case k0 = 1 as in the previous Section.

We use the same dissipative models introduced in Section 4.2.3 to explain the experimental observations. We show in Fig. 31 b
the result of a direct numerical solution (with no secular approximation) of Eqs. (4.14,4.15) for the dissipative models 1 and 2. We
observe that the DM 1 fails to reproduce the measured steady state populations, while the DM 2 predicts a long-time behaviour
consistent with the experimental results. This contrasts with the non-driven case, where both models lead to similar predictions.
In the following, we specialize to the DM 2 and explore its consequences for the long-time steady state.

3The steady state population slightly changes over time due to atom losses and/or evaporation of thermal atoms, that change the condensed atom number and
thereby Us (see Fig. 29). The time scale for these changes is very slow (around 10 s) and modifies significantly Us from its initial value only after very long times
(by about 17% in 10 s), much longer than the typical time-scales for the dynamics. We therefore discard these changes for the discussion in the main text.
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4.4.2 The fixed points and their stability

We now look for (possibly metastable) secular solutions of dissipative model 2 where the population n0 is stationary. We derive
generalized secular equations as in Section 4.3 starting from Eqs. (4.14,4.15,4.17) defining the DM 2. Observing from Eq. (4.26)
that θ̇ ≈ −ω + φ̇, we find

~ṅ0 = n0(1− n0)
(

2κUs sinφ+ β2~ω − β2~φ̇
)
. (4.32)

The phase dynamics is still determined by Eq. (4.25). From Eq. (4.32), we identify four possible states for which ṅ0 = 0.
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Figure 32: Fixed points of the dissipative spin-mixing model 2. a: Phase space portrait of the stationary solutions of Eqs. (4.24,4.25).
The two limit cycles are labeledS0 (n0 = 0, solid orange line) andS1 (n0 = 1, solid blue line) and the two fixed pointsS+ (green
dot) andS− (red diamond). The black lines show typical trajectories in the oscillating (dashed line) or rotating (dash-dotted lines)
regimes. The shaded area covers the oscillating regime. The plot is shown for δ/2π = −10 Hz, Us/h = 25 Hz, κ ' 0.38
(δ−/2π ' 32 Hz) and a damping coefficient β2 → 0+. b: Table summarizing for β2 → 0+ the ranges of detuning where each
stationary solution is stable (’s’) or unstable (’u’). The boundaries δ± are defined after Eq. (4.33).

The first two states correspond to n0 = 0, 1. In these two limiting cases, the relative phase θ (and thus φ) is physically
irrelevant and can take any value. These two solutions, labeledS0, S1 in the following, correspond to “limit cycles” in the language
of dynamical systems [142]. The other two stationary states, labeled S±, correspond to fixed points of the dissipative equations
of motion where ṅ0 = φ̇ = 0. They correspond to the secular phases φ+ = ε, φ− = π − ε, where the angle ε obeys sin ε =
−β2~ω/(2κUs). The populations at the fixed points are

n0,± =
1

2

(
1− δ

δ±

)
, (4.33)

with:

~δ± = 2Us(1± κ cos ε) . (4.34)

Fig. 32a shows the location of the stationary solutions in a secular phase-space portrait (n0, φ). For each sign of the detuning δ, one
of the two limit cycles S0,1 corresponds to the minimum of the secular energy Esec. The fixed point S+ is always the maximum
ofEsec and S− is a saddle point.

Dissipation must be present, but not too strong, in order to ensure the existence of an attractive fixed point of the dynamics.
Indeed, the fixed points S± disappear when β2 ≥ 2κUs/(~ω). If the dissipation stength β2 is too large or the driving strength
too small, the drive cannot provide enough energy to overcome the dissipation and create a metastable state. This is confirmed by
other experiments that we performed with a weaker driving strength κ ∼ 0.08, where we found that the relaxation to the fixed
point was less robust than the one shown in Fig. 31.

For the experiments shown in Fig. 31, we find φ+ ≈ 0.04 corresponding to the weak dissipation limit, ε ∝ β2 → 0+. In this
situation, the positions of the fixed points are well approximated by ~δ± ≈ 2Us(1± κ). They are therefore independent of the
precise value of β2 to first order in the small parameter ε.

We study the dynamical stability of the stationary solutions in App. 4.6.6 for a phenomenological damping coefficient β2 →
0+. We summarize the results in Fig. 32b. The drive destabilizes S1 in a small region of positive detunings around the resonance,
while S0 is always unstable because of the dissipation. The fixed point S+ is stable only for δ < 0, while S− is always unstable.

At first glance, one may expect that energy dissipation always induces relaxation to an energy minimum. In fact, at the fixed
point S±, the atomic phase locks to the drive with a small phase lag, such that the power absorbed from the drive exactly com-
pensates the power loss due to dissipation. This phase-locking enabled by dissipation stabilizes the system in a highly excited state
(App. 4.6.4), reminiscent of the dissipative phenomenon leading to Shapiro steps in SCJJs [107].
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Figure 33: Observation of hysteresis in the relative population n0 after a detuning ramp. We prepare a spinor BEC with n0,i ' 1,
and scan the detuning by changing q0 for fixed ω/2π = 277 Hz and ∆q/h = 227 Hz. In a (respectively, b), the ramp decreases
(resp., increases) from δi ≈ 2.0Us/~ (resp., δi ≈ −3.3Us/~). The horizontal blue (resp., oblique green) line correspond to
S1 (resp., S+). The solid (resp., dotted) segments corresponds to the stability (resp., instability) regions. The small dots show
individual measurements, the squares their average, and the error bars their standard deviation.

4.4.3 Interpretation of experimental results
We can now interpret the experimental findings of Fig. 31. The position of the stable fixed point S+ in the limit β2 → 0 is shown
in Fig. 31, and explains well the observed steady state populations for δ ∈ [−δ+, 0]. Outside this window, the system relaxes to
the equilibrium state S1 with n0 ≈ 1. We interpret the observed “trapping” in the state S+ as follows. A system prepared with
n0,i ≈ 0.5 tends to relax to the ground state S1 ofH, as observed for |δ| > δ+ where there is no fixed point. For δ ∈ [−δ+, 0],
the derivative of the phase φ̇ diminishes in absolute value as n0 increases because of the dissipation, and it progressively vanishes.
At this point, which corresponds to S+, ṅ0 also vanishes and the system remains trapped in this state. On the contrary, for
δ ∈ [0, δ+],S+ corresponds ton0,+ ≤ 1/2 and |φ̇| increases asn0 increases. The trajectory tends to move the system away from
S+. As a result, dissipation acts as in the non-driven case and the system eventually reaches S1.

The scenario described above explains all observations but one. In Fig. 26c, for very small but negative δ near the first reso-
nance, the system relaxes to n0 ' 0.16. This observation is consistent with thermalization in the secular Hamiltonian where the
lowest energy state is n0 = 0 when δ < 0. The residual deviation with respect to n0 = 0 observed experimentally may be due to
a non-zero thermal fraction or an incomplete thermalization.

4.4.4 Hysteretic Behavior
According to the stability diagram of Fig. 32b, there is no single stationary solution that would be stable for all detunings δ. Fur-
thermore, there are two stable solutions S+ and S1 in the interval [−δ−, 0]. In such a situation, one can expect some hysteretic
behaviour, which we searched for using a slightly different procedure than in the rest of the article.

We prepared a BEC in the state m = 0, such that n0,i ∼ 1 (up to thermal atoms in m = ±1). We apply the modulation
as before but slowly ramp the static bias q0 over a ramp time of 3 s, and then hold the driven system at the final q0 value for 7 s.
This amounts to a slow ramp of the detuning δ decreasing (respectively, increasing) from δi to δf in Fig. 33a (resp., Fig. 33b).
For decreasing ramps with δi > δ+, the system remains in S1 in the domain δ > −δ− where S1 is stable. Continuing the
ramp further, S1 becomes unstable and we find that the system relaxes to S+ as in the previous experiments. Conversely, for an
increasing ramp starting from δi < −δ+, the system follows S+ while it is stable, i.e. for δf ∈ [−δ+, 0] and S1 otherwise. We
therefore observe an hysteresis cycle spanning the interval δ ∈ [−δ−, 0] where both S1 and S+ are stable.

4.5 Conclusion
In conclusion, we have observed the analogue for a driven spin-1 BEC of the Shapiro resonances characteristic of the AC Josephson
effect in SCJJs. The population dynamics near each resonance corresponds to a slow and non-linear secular oscillation on top of
a rapid micromotion. We have found that the driven spin-1 BEC relaxes at long times to asymptotic states phase-locked to the
drive and that are not stable without it. We proposed a phenomenological model of dissipation that describes quantitatively the
relaxation process and its outcome. The dynamics in the driven case allows us to discriminate between different phenomenological
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models, in contrast to the situation without driving where these different models lead to similar predictions. The microscopic
origin of the dissipation remains to be investigated. While dissipation probably comes from interactions between condensed and
noncondensed atoms, a quantitative description of these interactions and of the resulting thermalization process is lacking. The
procedure we used in this paper led to a set of dissipative equations which are essentially generalized Gross-Pitaevskii equations.
While we have found excellent agreement between the experimental results and the predictions of these equations, our procedure
is purely phenomenological and whether these generalized Gross-Pitaevskii equations can be derived from first principles or not
remains an open question. A detailed microscopic study of dissipation in this setup would also be useful to understand other
types of driven quantum gases where an optical lattice potential [143] or the interaction strength [144] are modulated.

Another interesting question is related to the occurence of deterministic chaos in a spinor BEC [145]. Without driving, chaotic
behavior can be ruled out for a spin-1 BEC on the basis of the Poincaré-Bendixson theorem [142]: the dynamics is indeed ob-
tained from the one-dimensional HamiltonianH, with only two variables θ and pθ ∼ n0. To allow for a chaotic behavior, one
needs to consider higher spin BECs [146] or driven spin-1 BECs [145], with time playing the role of a third variable. However
when the secular approximation holds, we recover an effective time-independent one-dimensional problem with the Hamiltonian
Hsec(pφ ∼ n0, φ), which excludes again a chaotic behavior. One thus expects to find chaos only in situations where the secular
approximation breaks down. Using the non-dissipative spin-mixing equations and adapting the methods of [145] to our system,
we have found numerically that chaos can be present in the vicinity of Shapiro resonances for strong modulation and small bias,
∆q ∼ q0 ∼ Us. For almost all experiments reported in this paper, where q0 � Us, we did not find any evidence of chaotic
behaviour. The only exception is the situation investigated in Fig. 26c., where q0 ' h × 100 Hz is only three times larger than
Us. The deviation from the fixed point near δ = 0 for the first resonance could be connected to the onset of chaotic behavior,
which is an interesting direction to explore in future work4.

Finally, a promising application of driven spinor gases is the dynamical control of the strength of spin-mixing interactions,
viewed as a matter-wave equivalent of parametric amplifiers in quantum optics. Such parametric amplifiers are phase-sensitive,
and are also known to generate squeezing (see [65, 67, 147] for the spinor case). This enables interferometric measurements below
the standard quantum limit [64,66,148, 149]. A promising direction for the development of devices operating at the Heisenberg-
limit are the so-calledSU(1, 1) interferometers [66,149], which can be viewed as Mach-Zehnder interferometers where the beam
splitters are replaced by parametric amplifiers. As shown in Appendix 4.6.5, the quantum version of the secular single-mode
Hamiltonian [48] is renormalized by driving as in the mean-field Gross–Pitaevski framework. This implies that spin-mixing
collisions can be enabled by moving close to a Shapiro resonance for a controllable duration, and then disabled by detuning the
system away from resonance. Such dynamical control over the spin-mixing process could significantly improve the performances
of matter-wave SU(1, 1) interferometers [66].

4.6 Supplementary materials

4.6.1 Adiabatic following

We consider a gas of spin-1 atoms in a magnetic fieldB = B(t)u(t) with time-dependent amplitude B and orientation u. We
take the instantaneous direction u(t) of B as quantization axis. The label m = 0,±1 then corresponds to the instantaneous
Zeeman state |m〉u, i.e. the eigenstate of f̂ ·uwith eigenvaluem, with f̂x,y,z the spin-1 matrices. The atomic spins precess around
u at the characteristic Larmor frequency ωL = µBB/2. The atom internal state follows adiabatically changes ofB and u if the
adiabatic condition ω̇L � ω2

L holds at all times. Here the dot denotes a time derivative. In our experiment, this condition can
also be written ωBy � ωL|B|. In most of this work, the Larmor frequency is around ωL ∼ 2π × 0.7 MHz. SinceBy ≤ |B|,
the sufficient condition ω/ωL ∼ 10−3 � 1 is always fulfilled.

4.6.2 Calibration of Us

We calibrate the interaction strength Us using the well-established behavior of spin-mixing oscillations without driving [58–
60, 102, 103]. For a given total atom number N , we fit the observed population oscillations with the numerical solutions of
Eqs. (4.9,4.10) treating Us as a free parameter, all other parameters being kept constant. We show the fitted values of Us ver-
susN in Fig. 34. The dependence on atom number reflects the fact that our experiments are in the crossover between the ideal gas
(whereUs is independent ofN ) and the Thomas-Fermi regime (whereUs ∝ N2/5). We use the heuristic functionUs(N)/h =
a(1+(N/N0)b) to calibrate the dependence, with best fit parameters a ' 20 Hz, b ' 3.5 andN0 ' 19 000. Small fluctuations
of N induce fluctuations of Us according to δUs = ab(N/N0)bδN/〈N〉. In our experiment, we have typically 〈N〉 ' 13 000
and δN ' 1 000, which correspond to 〈Us〉/~ ' 25 Hz and δUs/~ ' 1.5 Hz.

4See the outlook 4.7
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Figure 34: Interaction strengthUs measured for different atom number. The black solid line is an heuristic fit (see main text). The
QZE is static and equal to q0/h ≈ 0.7 Hz� Us (Bx ≈ 50 mG).

4.6.3 Relaxation of spin oscillations without driving
The spin dynamics without driving consists of a “fast” evolution of the population and of the relative phase θ superimposed on a
slowly-varying envelope n0. In the limit q0 � Us, the envelope of n0 relaxes to n0 = 1 over times long compared to the period
∼ ~/(2q0) of spin-mixing oscillations. Averaging in a time window long compared to this period, we obtain effective equations
forn0 that can be solved analytically. For the dissipative model 1 with the initial conditionn0(0) = n0,i, we find thatn0 obeys the
implicit equation, f(n0) = f(n0,i ) + t/τ1, with f(x) = 2 ln[x/(1− x)] + (2x− 1)/[x(x− 1)] and τ1 = ~q0/(β1U

2
s ). For

t� τ1, the solution is well approximated by Eq. (4.19). For the dissipative model 2, we obtain Eq. (4.20) by direct integration.

4.6.4 Secular dynamics
Derivation of the secular equations

In this Section, we derive the secular equations Eqs. (4.24,4.25). Integrating formally Eq. (4.10), we rewrite θ = α− 2p, where

p(t) =
1

~

∫ t

0

q(t′)dt′ = p− η

2
cos(ωt+ ϕmod). (4.35)

Here p = q0t
~ + χ

2 and α verifies ~α̇ = 2Us(1− 2n0)(1 + cos θ). We introduced a modulation index η = 2∆q/(~ω) and an
initial phase χ = η cosϕmod.

We now assume that the driving frequency is close to a parametric resonance, i.e. ω ∼ 2q0/(~k0) for some integer k0, and
that q0 � Us. All physical variables feature in general a large-amplitude secular motion occurring on time scales much longer
than the modulation period, plus rapidly-varying terms oscillating at harmonics of 2q0/~ that describe the micromotion. In the
regime q0 � Us, the amplitude∼ Us/q0 of the micromotion of n0 and α is small. Taking the time average over one period of
the modulation, · = 1

T

∫ T
0
dt·, eliminates the micromotion in Eqs. (4.9,4.10),

~ṅ0 ≈ 2Usn0(1− n0)sin θ, (4.36)

~α̇ ≈ 2Us(1− 2n0)
(
1 + cos θ

)
. (4.37)

We compute the time average of trigonometric functions ofθ using the Jacobi-Anger expansion, eia sin(θ) =
∑+∞
k=−∞ Jk(a)eikθ ,

with Jk a Bessel function of the first kind. Neglecting the micromotion of α, we can write eiθ ≈ eiαe−2ip, with

e−2ip =

+∞∑
k=−∞

Jk(η)ei(−
2q0
~ +kω)t+ik(φmod+π/2)−iχ. (4.38)

The term k = k0 in the expansion gives rise to a slowly varying secular contribution, while all other terms average out over
one period of the modulation. Neglecting the non-resonant terms, we obtain e−2ip = κeiζ(t) , with ~δ = 2q0 − k0~ω,
ζ(t) = k0(φmod + π/2)− χ− δt and κ = Jk0(η). This finally leads to

eiθ ≈ κeiφ (4.39)

where the secular phase φ = ζ + α is defined as

φ = −δt+ α+ k0(ϕmod + π/2)− χ. (4.40)

Eqs. (4.24,4.25) follow from Eqs. (4.36 to 4.40).
From Eq.(4.40), we can relate φ to the atomic phase, θ = φ − k0(ωt + ϕmod + π/2) . This equality shows that when φ is

oscillating, θ also oscillates around the phase of the drive−k0(ωt+ ϕmod + π/2), up to a constant.
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Rigid Pendulum Model

In the weak driving regime, κ � 1, the κ cosφ term in Eq. (4.25) is negligible. Moreover, the amplitude of variation of n0 is
small. To prove the last point, we integrate Eqs. (4.24,4.25) and obtain the implicit equation

[
g(x)

]n0(t)

n0,i
= −κ

[
cosx

]φ(t)

φi
, with

g(x) =
(
1 − ~δ

2Us

)
ln
(

x
1−x

)
+ 2 ln(1 − x) . This implies that the amplitude of variation of n0 is indeed small when κ � 1.

This allows us to linearize Eq. (4.24).
With the initial conditionn0,i = 1/2, we obtain ~ṅ0 ' κUs

2 sinφ. Taking the time derivative of Eq. (4.25), we then find that the
phase obeys the pendulum equation

φ̈+ Ω2 sinφ = 0 , (4.41)

with natural frequency Ω =
√

2κUs/~. The angular velocity of the pendulum φ̇ is determined by φ̇ = −δ + 2Us(1− 2n0).

Energy balance

In this Section, we compute the power delivered by the drive in the framework of DM 2. In particular, we show that at the fixed
points S±, it compensates for the dissipated energy. For simplicity, we focus on the first resonance k0 = 1 and assume κ� 1.
The time derivative of the total energy is

dEspin

dt
= Pdrive + P(2)

diss , (4.42)

with Pdrive = −q̇n0 , and P(2)
diss = −~

2β2n0(1 − n0)θ̇2. We introduce ñ0, the component of n0 oscillating at ∼ ω. The
product q̇ñ0 does not vanish after taking the time-average in the expression forPdrive.

From Eq. (4.38), the k = 0 component of sin θ oscillating at∼ ω is s̃in θ = − cos(ωt+ ϕmod − φ). The amplitude of the
sidebands near-resonant with the drive [term k = 2 in Eq. (4.38)] are negligible in the limit κ� 1. Using ñ0 = O(Us/q0)� 1
to simplify Eq. (4.9), we find

ñ0 = −2Us

~ω
n0(1− n0) sin(ωt+ ϕmod − φ) . (4.43)

Using κ ' ∆q/(~ω) (true if κ� 1), the average power delivered by the drive is finally

Pdrive = −ωκUsn0(1− n0) sinφ . (4.44)

When there is no dissipation, this expression can be written asPdrive = −~ωṅ0/2. This result has a microscopic interpretation
if one treats the driving field as a quantized electromagnetic field. One photon is absorbed to promote a pair of atoms in the
m = 0 state to a pair with one atom in m = +1 and another in m = −1. The energy in the field is, up to a constant,
Efield = N~ωn0/2 , and Pdrive correspond to the energy per unit time transferred back and forth from the field to the atoms.
Eq. (4.42) can also be interpreted as a statement thatNEspin + Efield is constant.

With dissipation, the system relaxes to the fixed point S+ or to S0. The second case is trivial, since the drive and dissipated
power both vanish. Let us discuss the first case. At the fixed points S+, the atomic phase is locked to the drive, i.e. θ̇ ≈ −ω and
P(2)

diss ≈ −~ω2

2 β2n0(1− n0) .The energy balance can be rewritten as

dEspin

dt

∣∣∣∣
S+

≈ −ωn0(1− n0)

[
κUs sinφ+ +

β2~ω
2

]
, (4.45)

The term in brackets in the right hand side of Eq. (4.45) vanishes exactly, as the secular phase takes the value sinφ+ = −β2~ω/(2κUs)
at S+ (see Sec. 4.4.2). At the fixed point, the phase lag between the atomic phase and the drive is therefore such that the power
delivered by the drive exactly compensates for the energy dissipation.

4.6.5 Quantum treatment of the modulated SMA Hamiltonian
We start from the SMA Hamiltonian in Eq. (4.2), which we rewrite as

Ĥspin = −q(t)N̂0 +
Us

2N

(
V̂ + Ŵ + Ŵ †

)
.

We defined the operators V̂ = Ŝ2
z + 2N̂0(N − N̂0) and Ŵ = 2(â†0)2â+1â−1. Applying the unitary transformation

Û1 = e−i
∫ t
0
q(t′)dt′

~ N̂0 = e−ipN̂0 , (4.46)
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the transformed Hamiltonian is

Ĥ1 = Û1ĤÛ
†
1 + i~

dÛ1

dt
Û†1 , (4.47)

Ĥ1 =
Us

2N

[
V̂ + Û1

(
Ŵ + Ŵ †

)
Û†1

]
. (4.48)

We introduce the Fock basis |N0,Mz〉withN±1 = (N −N0±Mz)/2. The operators Ŵ (respectively Ŵ †) only couples states
withMz = M ′z andN0 = N ′0 + 2 (resp. N0 = N ′0 − 2). As a result, the matrix elements of Û1Ŵ Û†1 in the Fock basis are the
same as the ones of e−2ipŴ , implying the equality of both operators.

We now derive an effective Hamiltonian describing the slow secular dynamics. We proceed as in Section 4.6.4, using the
Jacobi-Anger expansion to rewrite the phase factors and taking the time average over one period of the modulation assuming
small detuning δ. We obtain an effective time-averaged Hamiltonian,

Ĥ1 =
Us

2N
V̂ +

κUs

2N

(
eiζ(t)Ŵ + e−iζ(t)Ŵ †

)
. (4.49)

We finish the calculation with a second unitary transformation Û2 = e−i
ζ(t)
2 N̂0 to obtain an effective time-independent

Hamiltonian

Ĥeff = −~δ
2
N̂0 +

Us

2N
V̂ +

κUs

2N

(
Ŵ + Ŵ †

)
. (4.50)

With a mean-field ansatz for the many-body spin state, we obtain from this effective Hamiltonian the same secular energy Esec

[Eq. (4.29)] as in the classical treatment, i.e. mean-field approximation and time averaging can be done in any order.

4.6.6 Stability of the stationary solutions of dissipative model 2.
Stability of the fixed points S±

To discuss the stability of the fixed points S±, we linearise Eqs. (4.32,4.25) using n0 = n0,± + δn0,± and φ = φ± + δφ±. We
find

~
(
δṅ0,±
δφ̇±

)
= M±

(
δn0,±
δφ±

)
, (4.51)

M± =

(
0 ±2κUsn0,±(1− n0,±) cos ε

−2~δ± −2κUs
δ
δ±

sin ε

)
.

The solutions are stable if the eigenvalues of the matrices M± have negative real parts. For simplicity, we consider the situation
| sin ε| = β2~ω/(2κUs) � 1. One can show that the results below hold as long as β2~ω/(2κUs) < 1, the same condition as
for the existence of the fixed points.

In the limit ε� 1, the eigenvalues ofM+ are approximately given byX+,1 ' β2~ω δ
2δ+

+ i
√

∆ , andX+,2 = X∗+,1 ,with
∆ = 8n0,+(1− n0,+)κ(1 + κ)U2

s . Therefore, S+ is stable for δ < 0, and unstable otherwise. Turning to S−, the eigenvalues
areX−,1 '

√
∆ andX−,2 ' −X−,1 to leading order in β2, and S− is therefore always unstable. Note that our conclusions are

established for the experimentally relevant case 0 ≤ κ < 1. The roles of S± would be reversed for κ < 0.

Stability of the limit cycles S0,1

We focus first on S1. We consider small deviations, i.e. n0 = 1− ε and linearize Eqs. (4.32,4.25) to the lowest order in ε,

−~ε̇ = 2κUs sinφε+ 2β2q0ε , (4.52)

~φ̇ = −~δ − 2Us(1 + κ cosφ) . (4.53)

We integrate Eq. (4.52),

[
ln ε
]ε(t)
ε(0)

= −2κUs

~

∫ t

0

sinφ(t′)dt′ − 2β2q0t

~
.

Making the change of variable t→ φ and using Eq. (4.53), we find

ε(t) = ε(0)e−4t/τ2
1 + a1 cosφ(0)

1 + a1 cosφ(t)
, (4.54)

~φ̇ = −(2Us + ~δ)(1 + a1 cosφ(t)) . (4.55)
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with a1 = 2κUs/[2Us + ~δ] and τ2 = 2~/(β2q0). If |a1| < 1, ε is bound to a vincinity of ε(0). If |a1| > 1, eq. (4.55) shows
that φmust vanish, which results in a divergency of ε. Therefore, ε(t) diverges iif |a1| > 1. This defines the instability region of
S1 as δ ∈ [−2Us(1 + κ),−2Us(1− κ)]. This result is independent of the precise value of β2 as long as it is strictly positive. A
similar calculation for S0 with ε = n0 yields

ε(t) = ε(0)e4t/τ2
1 + a0 cosφ(0)

1 + a0 cosφ(t)
, (4.56)

with a0 = 2κUs/[2Us − ~δ]. Due to the exponential divergency, we find that S0 is always unstable.

End of the article [45]
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4.7 Outlook: chaotic dynamics
In the mean-field approximation, our system is described by the two variables (n0,θ). In the static situation, energy is conserved
(here we ignore the dissipation), and spin-mixing trajectories correspond to equal-energy contours. Given that the energy is a
smooth function of (n0,θ), two trajectories that are arbitrarily close cannot diverge, and hence chaos cannot occur. To be more
general, the Poincaré-Bendixson theorem forbids chaos in two dimensions for an isolated system. When we drive the dynamics,
the energy is no longer conserved which opens the possibility for chaotic behaviors. In the secular approximation, we obtained
a new conserved quantity, the secular energy given by Eq. (4.29), such that chaos is again excluded. The conditions of validity of
the secular approximation reads 2q0 � Us. We show in figure 35 Poincaré maps consisting of the series of points [n0(tn), θ(tn)],
where tn = n2π/ω and n is an integer. We compute numerically several maps corresponding to different ratios q0/ω. When
the secular approximation holds, the map corresponds to smooth lines, whereas for a chaotic behavior one expects a diffuse cloud
of points. We have chosen ω = 5Us, and we have plotted the Poincaré maps for various q0, keeping q0 = ∆q. This is close to
the situation realized in the experiment of figure 26c. For the largest q0 we observe smooth maps but for 2q0/ω . 1 we observe
a chaotic behavior. In particular, for the first resonance 2q0/ω = 1, we observe closed trajectories in the middle of the map
(oscillating regime), open trajectories on the edges n0 ' 1 and n0 ' 0 (running phase), and a small chaotic region near the
separatrix. This region becomes smaller for higher resonances, as the secular approximation is better verified. The onset of chaos
in a very similar system, a driven two-component spinor BEC, has been observed in [150].

Figure 35: Poincaré maps, for various q0 ' ∆q (the first panel correspond to q0 = ∆q = 0). Here ω ' 5Us. A map is
obtained by numerically solving the dynamics for different initial conditions (here n0(0) variable and θ(0) = 0) and reporting
with different colors the series [n0(tn), θ(tn)] that we obtained. White areas in the map are simply regions that are not accessed
given the chosen set of initial conditions.

Phase space portraits are only meaningful for classical systems. Indeed, the Heisenberg uncertainty principle implies that a
quantum state cannot be represented by a point in phase space. Yet, it is possible to get a qualitative insight from a semi-classical
picture, where a “quantum trajectory” is obtained by averaging nearby classical trajectories represented in a phase portrait. In a
chaotic regime, two initially close trajectories can diverge, and one expects the generation of highly non-classical states, making this
situation particularly worthy of further studies. In a non-chaotic system, the semi-classical picture hints to instabilities as good
levers to produce non-classical states. This is the approach we pursue in the next chapter.



Chapter 5

Beyond the mean-field dynamics: spin-squeezing and quantum
fluctuations

In Chapter 2, we studied the phase diagram of a spinor Bose-Einstein condensate embedded in a magnetic field, in the single mode
regime [28, 29, 55]. For a cloud with vanishing magnetization, a quantum phase transition occurs when the quadratic Zeeman
energy (QZE) q goes through zero. For q > 0 the mean field ground state has all atoms in m = 0, ie it is the nematic state
|N : ez〉 aligned along the magnetic field axis z. For q < 0 all the nematic states lying in the (xy)-plane are degenerate and
minimize the mean-field energy. At the critical point q = 0, all nematic states are degenerate.

The vicinity of the phase transition, where the antiferromagnetic interaction energy Us is the dominant energy scale, con-
stitutes an ideal regime to observe deviations to the mean-field picture. Indeed, we have seen in Chapter 2 that the ground state
for q � Us is entangled. Qualitatively, the effect of interactions can be understood in terms of quantum fluctuations, which
mix the degenerate coherent states. For instance at q = 0 the ground state corresponds to a coherent superposition with equal
weight of all the degenerate nematic states |N : Ω〉. Quantum fluctuations can also seed spin-mixing dynamics in situations
where a mean-field treatment predicts no evolution. For instance, the nematic state |N : ez〉 is a fixed point of the mean-field
spin-mixing equations (used in Chapter 4) for all q, and yet, we observe significant dynamics after a quench through (q < 0), or
near (0 < q � Us) the phase transition. These two situations, represented schematically in Fig. 36, and the resulting beyond
mean-field spin mixing are the subjects of the present chapter.

q

mf = + 1 mf = − 1

mf = 0

a b c

Figure 36: Sketch of the quadratic Zeeman energies. The initial situations correspond to a BEC with all atoms in m = 0, in a
large magnetic field, so that q � Us and the system is very close to the ground state (a). Modulating near a Shapiro resonance, an
effective negative QZE is created and the BEC becomes unstable (b). Correlated pairs are produced in the initially emptym = ±1
modes. Alternatively, reversible pair production can be realized in the stable regime, when q � Us (c).

We will first study quenches through the phase transition. We make use of the driving technique described in Chapter 4 to
realize an effective negative QZE. In that case the nematic state |N : ez〉 becomes unstable. Within a Bogoliubov approxima-
tion, our system is analogous to the optical parametric amplifier [32]. More precisely, we realize a situation close to spontaneous
parametric down-conversion. In that set-up, a nonlinear crystal is used to generate pairs of correlated photons, in two different,
initially empty modes, from photons in a so called pump-mode. This process creates the two-mode squeezed vacuum (TMSV)
state, an entangled state that can out-performed classical states in interferometric experiments [69]. Owing to this remarkable
property, squeezed states of light [32], such as the TMSV, are the subject of many investigations and an exciting potential appli-
cation is the improvement on the sensitivity of gravitational wave interferometers [151, 152]. Similarly, there has been recently a
lot of efforts to produce squeezed states of atomic ensembles [9–11], which could be used, e.g. for clocks or inertial sensors. On
that line of thoughts, we will put in the first part the emphasis on squeezing, and on its relation to entanglement. We will also
comment on the similarities and differences between the optical and atomic parametric amplifiers.

The study of quenches to the critical region, just above the phase transition (0 < q � Us) provides new insights on the
nature of the state produced by via spin-mixing. Indeed, in this regime, the dynamics is reversible, which allows us to demonstrate

65
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coherence and entanglement between the modes. We also study the effect of a coherent seed on the dynamics. These last experi-
ments show the role of the quantum fluctuation for seeds that are small enough, and allow for the observation of the cross-over
from the Bogoliubov to the mean-field regimes as the size of the seed increases.

Some results presented in this chapter have been published in [86, 153].

5.1 Spin squeezed state
Squeezed states are a class of entangled states that have been extensively studied theoretically and experimentally. They can be
produced in several platforms ranging from optics [32] to atomic gases [9], and can outperform classical states in interferometric
experiments. In this section, we briefly review different definitions of squeezed states. We start with the case of a single bosonic
mode, describing e.g. a mode of the electromagnetic field. The case of several modes, which correspond to our system, is more
complex, and various definitions of squeezing are encountered in the literature (see e.g. [9] for a review).

5.1.1 Squeezing of a single bosonic mode
We consider a bosonic mode â, and the two conjugated observables

X̂ =
1√
2

(â† + â) , and P̂ =
i√
2

(â† − â) . (5.1)

The Heisenberg relation reads

∆X∆P ≥ 1

2
. (5.2)

A coherent state, defined as an eigenstate of â, is considered as a semi-classical state of a harmonic oscillator. Indeed, in a coherent
state, the expectation values of the position and momentum observables obey to classical equations of motion [51]. Moreover,
their variances are equal, and saturate the Heisenberg uncertainty relation, ∆X = ∆P = 1/

√
2. This value is refereed to as the

shot noise. A state that has ∆X or ∆P below the shot noise is called a squeezed state. The uncertainty relation implies that when
an observable is squeezed, its conjugate is “anti-squeezed” and displays fluctuations above the shot noise.

5.1.2 Spin squeezing of two bosonic modes

We now consider two bosonic modes â+1 and â−1. We define the collective pseudo-spin operator Ĵ

Ĵx =
1

2
(â†+1â−1 + â†−1â+1) , Ĵy =

1

2i
(â†+1â−1 − â†−1â+1) , Ĵz =

1

2
(N̂+1 − N̂−1) . (5.3)

These operators fulfill the angular momentum commutation relations and Ĵ can be viewed as the total angular momentum of an
ensemble of identical bosons carrying a (pseudo) spin-1/2. We have Ĵ2 = N̂p(N̂p + 1) where N̂p = (N̂+1 + N̂−1)/2. One
Heisenberg relation reads

∆Jx∆Jy ≥
|〈Ĵz〉|

2
. (5.4)

Two other relations are obtained by permutation of the indices. A spin coherent state of N particles is a pure state with no
correlation between the particles. For an ensemble of pseudo-spin 1/2 bosons, a coherent state can be seen as a state with all
pseudo-spins pointing in the same direction, for instance z. In that case we have

|Jz| =
N

2
and ∆J2

x = ∆J2
y =

N

4
. (5.5)

This is analogous to the one-mode case: the Heisenberg bound Eq. (5.4) is saturated and the uncertainty is equally distributed
between Ĵx and Ĵy . However, this analogy holds only for our arbitrary choice of axis, the other two Heisenberg relations are
trivially verified since 〈Ĵx〉 = 〈Ĵy〉 = 0.

Kitagawa and Ueda proposed in [154] the following definition of spin squeezing: a state is squeezed if and only if the variance
of one spin component orthogonal to the mean spin, is below N

4 . Let z be the direction of the spin, andx the orthogonal direction
with minimal spin fluctuations. A squeezing parameter can be defined as

ξKU =
2∆Jx√
N

. (5.6)

For coherent states, ξKU = 1, and thus spin-squeezing in the sense of [154] indicates correlations between the spins (or entangle-
ment).
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5.1.3 Metrological spin squeezing
Alternatively, the question of the squeezing of two or more modes can be addressed from the point of view of quantum metrology.
It is a broad field, and we only sum up here some results important for our topic and refer the reader to [9] for a review. The two
following results constitute the corner stone of quantum metrology. First, there exists a fundamental bound on the accuracy at
which a measurement can be made. Second, this bound is not the same for separable and entangled states. To be more explicit,
let us consider a measurement described by a (pseudo) spin rotation of angle θ, corresponding for instance to the phase shift
inside a Mach-Zehnder interferrometer. We want to determine θ from the measurement of the observable Ô. In Heisenberg
representation, Ô evolves over a rotation around the y-axis as |d〈Ô〉dθ | = |[Ĵy, Ô]|. The Heisenberg inequality sets an upper
bound on the signal

|d〈Ô〉
dθ
| ≤ 2∆Jy∆O . (5.7)

Furthermore, using error propagation, the sensitivity is

∆θ =
∆Ô
|d〈Ô〉dθ |

, (5.8)

∆θ ≥ 1

2∆Jy
. (5.9)

For a coherent state, the sensitivity is maximal, when the spin points in the (xz)-plane, in which case, (∆Jy)2 is maximal and
equal to N

4 . This sets the “standard quantum limit” (SQL) for separable states. The SQL is not fundamental, an upper bound
on (∆Jy)2 is 〈Ĵ2〉 ' N2/4, which defines the fundamental Heisenberg limit (HL). It can be reached using the “Schrödinger cat
state” defined as the coherent superposition of all spins up and all spins down, with respect to the y axis. In the spin state basis
|j,my〉y with y as the quantization axis

|ψcat〉 =
1√
2

(|N,N〉y + |N,−N〉y) . (5.10)

We emphasize that Eq. (5.9) only provides a lower bound to the sensitivity, and states with large ∆Jy (e.g. statistical mixtures),
do not necessarily saturate the bound. However, the Schrödinger cat state does reach the lower limit given by Eq. (5.9), using a
parity measurement [9]. The sensitivities at the SQL and HL are given by

∆θSQL =
1√
N
, ∆θHL =

1

N
. (5.11)

These two limits can be derived with greater generality [9]. For a given interferometric set-up (including an initial quantum state,
a phase imprinting and a measurement), with sensitivity ∆θ, we can define a metrological squeezing parameter as

ξm =
∆θ

∆θSQL
. (5.12)

It quantifies the improvement relatively to the SQL. As such, ξm < 1 indicates entanglement. The Heisenberg limit reads
ξm ≥ 1√

N
. Note that ξm not only depends on the state, but also on the experimental context, and for a given context, there may

be states that are not squeezed although they could beat the SQL in another context (e.g., measuring another observable). One
paradigmatic set-up is the Ramsey interferometer, used for instance in atomic clocks. It is studied in detail in [155]. In that setting,
the squeezing parameter is

(ξm)Ramsey =

√
N∆J⊥
Ju

, (5.13)

where u indicates the direction of the mean spin and ∆J⊥ is the minimum of the variance of the spin in an orthogonal direction
(and the rotation axis is orthogonal to both).

5.1.4 Entanglement and spin squeezing
Metrological spin squeezing indicates entanglement, but the converse is not true. For instance, the squeezing criterion ξKU (see
Eq. [5.6]) introduced by Kitagawa and Ueda to detect correlations between particles (i.e. entanglement) is not directly linked to
metrological improvements [9]. Following this work, various spin squeezing parameters have been introduced to detect entan-
glement [156, 157], and used in spinor BECs experiments [10, 158, 159]. They are appealing from the point of view of experiments,
since they only rely on the measurement of the mean and variance of spin observables. This contrasts with the entanglement
entropy defined in chapter 2 which a-priori requires the knowledge of the full quantum state. On the other hand, spin squeezing
parameters only detect some entangled states and do not constitute a general measure of entanglement, while the entanglement
entropy does [71].
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Squeezing of an unpolarized state Let us consider the twin-Fock state (TFS), defined as an N particle states, with exactly N/2
particles in two orthogonal modes (in our casem = ±1). In the number basis |N+1, N−1〉nb, it is defined as

|TFS〉 = |N
2
,
N

2
〉nb . (5.14)

As seen in Chapter 2, this state is entangled and can be used to perform interferometry below the SQL (and with an Heisenberg
scaling, see [69] and App. D). However, the TFS is an unpolarized state, that is to say 〈Ĵ〉TFS = 0, and thus, the squeezing
parameters ξKU and (ξm)Ramsey are ill-defined. The same problem occurs for the two-mode squeezed vacuum state (TMSV),
defined in the number basis as

|TMSV〉 =
1√
N

∞∑
n=0

ηn|n, n〉nb , (5.15)

withN = 1 + 〈N̂p〉 and |η|2 = 〈N̂p〉/(1 + 〈N̂p〉).
A generalized squeezing parameter appropriate to detect the entanglement of unpolarized states, such as the TFS and the

TMSV was introduced in [157],

ζ2
s =

2〈N̂p〉∆Ĵ2
z

〈Ĵ2
x + Ĵ2

y 〉 − 〈N̂p〉
. (5.16)

ζs < 1 indicates entanglement. For a coherent state ζs = 1, while for the TFS or TMSV states, ζs = 0. We recall that a
metrological squeezing parameter is bounded from below by the Heisenberg limit ξ2

m > 1/N and thus ζ−1
s cannot be seen as

a metrological gain. However, we show in the appendix D how ζs is related to the sensitivity of an interferometric experiment
using a TMSV state.

The criterion (5.16) applies to any collective spin. In our situation, the collective spin corresponds to the total pseudo spin
of an ensemble of indistinguishable spin-1 atoms in the same spatial mode, and is defined in Eq. (5.3). In that case 〈Ĵ2〉 =

〈N̂p(N̂p + 1)〉 ' 〈N̂2
p 〉. Furthermore, for the squeezed states we produced experimentally, that are close to a TMSV state,

we have 〈N̂2
p 〉 ' 2〈N̂p〉2, and 〈Ĵ2

z 〉 � 〈Ĵ2
x + J2

y 〉, so that

〈Ĵ2
x + Ĵ2

y 〉 = 〈N̂2
p 〉+ 〈N̂p〉 =' 2〈N̂p〉2 + 〈N̂p〉 , (5.17)

and the squeezing parameter takes the simple form

ζ2
s '

∆Ĵ2
z

〈N̂p〉
. (5.18)

We emphasize that Eq. (5.18) is derived for a state with 〈N̂2
p 〉 ' 2〈N̂p〉2, and does not hold for a coherent state with 〈N̂2

p 〉 '
〈N̂p〉2.

5.2 Bogoliubov treatment of the dynamics
5.2.1 Undepleted pump approximation
In this section, we theoretically study the spin-mixing dynamics of a spinor BEC in the single mode regime. We focus first on the
situation where the initial state is the nematic coherent state |N : ez〉 with all atoms in the Zeeman sublevel m = 0. This state
is a fixed point of the mean-field equations of motion (see Chapter 4). However, a more refined treatment based on Bogoliubov
theory, shows that quantum fluctuations triggers a significant dynamics when the mean-field energy of the statesm = ±1 is close
to the energy of the m = 0 state, either slightly above or slightly below. The former situation can be achieved at low magnetic
field, such that q � Us. The latter requires a negative effective QZE, which can be achieved using an oscillating magnetic field, as
demonstrated in Chapter 4. We have realized both situations experimentally, and we consider the generic Hamiltonian

ĤSMA = −q′N̂0 +
Us
N
N̂0(N − N̂0) +

W

N
(â2

0â
†
+1â
†
−1 + â†20 â+1â−1) . (5.19)

In the static situation q′ = q is the QZE andW = Us. In the driven case, q′ = ~δ/2 andW = κUs where

~δ = 2q0 − k0~ω and κ = Jk0

(
2∆q

~ω

)
, (5.20)
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with q0 the mean QZE, ω and ∆q the frequency and amplitude of the modulation, k0 the index of the Shapiro resonance and
Jk0 the Bessel function (see Chapter 4, Sec. 4.3.1)

The exchange term â†+1â
†
−1â

2
0 reminds one of optical four wave mixing, where it accounts for the conversion in a non-linear

crystal, of a pair of photons here in the same “pump” mode, into two photons in different “output” modes. In analogy, we will
call the m = 0 mode the pump and the m = ±1 modes the output modes. In this context, the Bogoliubov approximation is
often referred to as the “undepleted pump approximation” (UPA). It amounts to take the pump mode as a classical source, using
the substitutions (with no loss of generality, we take the phase of the pump to be zero)

â0 →
√
N − N̂+1 − N̂−1 , (5.21)

and conserving only the quadratic terms in â±1. It yields

Ĥ = V
(
N̂+1 + N̂−1

)
+W

(
â+1â−1 + â†+1â

†
−1

)
. (5.22)

with V = q′ + Us.

5.2.2 Equation of evolution
The calculation of the mean value of few-body operator can be simply done in the Heisenberg picture. The equation of evolution
for the operators â+1 and â†−1 form a closed system

i~
d

dt

(
â+1

â†−1

)
=

(
V W
−W −V

)(
â+1

â†−1

)
(5.23)

This system has two opposite eigenvalues±~ωB , with

~ωB =
√
V 2 −W 2 . (5.24)

When ~ωB is real, it corresponds to the energy of Bogoliubov excitation (see Chapter 2). However, we emphasize that the calcu-
lation holds for all V andW , and in particular, in the window

−|W | < V < |W | , (5.25)

where ωB is an imaginary number. This corresponds to an unstable regime as will be shown by the calculation of the evolution
of 〈N̂±1〉. Integration of Eq. (5.23) yields

â±(t) = A∗â±,i +B∗â†∓,i , (5.26)

where

A∗(t) = cos(ωBt) + i
V

~ωB
sin(ωBt) , (5.27)

B∗(t) = i
W

~ωB
sin(ωBt), . (5.28)

Note that when ωB is imaginary, the sine becomes hyperbolic sine with arguments |ωB |t.

5.2.3 Evolution of the vacuum
General results From Eq.(5.26), we can compute the mean value and variance of the number of pairs N̂+1, starting from the
nematic state |N : ez〉, ie from the vacuum ofmF = ±1 atoms. We obtain

〈N̂+1〉vac =
W 2

~2ω2
B

sin2(ωBt) , (5.29)

(∆N̂+1)2
vac = 〈N̂+1〉vac(1 + 〈N̂+1〉vac) , (5.30)

We recall that the magnetization Ŝz = N̂+1 − N̂−1 is conserved and remains exactly zero, so does Ĵz = Ŝz/2, and the pseudo-
spin Ĵ is thus perfectly squeezed according to the criterion (5.18). More precisely, the state evolves into a TMSV [33], defined in
Eq. (5.15), and which features a thermal distribution of the number of atoms in the output modesm = ±1.



70CHAPTER 5. BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS

Unstable regime Let us focus on the driven situation. We have V = ~δ/2 + Us andW = κUs. The Bogoliubov energy is

~ωB =

√[
~δ
2

+ (1− κ)Us

] [
~δ
2

+ (1 + κ)Us

]
. (5.31)

The instability window corresponds to

−2(1 + κ)Us < ~δ < −2(1− κ)Us . (5.32)

Note that this result was already derived in Chapter 4 using a mean field approximation. The Bogoliubov theory allows us to go
one step further. In this unstable regime, ωB is imaginary and Eq. (5.29) can be rewritten as

〈N̂p〉vac =
κ2U2

s

~2|ωB |2
sinh2(|ωB |t) . (5.33)

Hence, the number of pairs produced increases exponentially until it is no longer negligible compared toN , leading to the break-
down of the UPA. In Chapter 6, we will explore the regime beyond the UPA. For now, we can make the following qualitative
prediction. One expects a peak of the production of pairs when the imaginary part of ωB is maximal. It occurs on resonance,
when the pump and output modes are degenerate. Furthermore, as the pump is consumed, it is reasonable to anticipate a pro-
gressive slow down of the dynamics until it eventually stops (or reverse).

This behavior is typically seen in an optical parametric amplifier. However, in our atomic system a difference arises from the
spin-conserving collisions, described by the term N̂0(N − N̂0) in Eq. (5.19). In the UPA, it boils down to a mean-field shift to the
energy, that changes the positions of the resonance from q′ = 0 to q′ = −Us. In Sec. 5.3.3, we will show that beyond the UPA,
interesting differences due to interactions occur between the optical and atomic parametric amplifiers.

5.3 Production of a two-mode squeezed vacuum state
We report here on the observation of a two-mode squeezed vacuum state. This work has been published in [86].

5.3.1 Experimental protocol
We produce a BEC of aboutN ' 2700 atoms in a magnetic field of' 3 G. In this condition, the ground state is very close to the
perfect nematic state with all atoms inm = 0. We remove thermal atoms in them = ±1 states using the spin-filtering technique
described in chapter 3. The bias field is then ramped down to 0.46 G, and an oscillating field of amplitude 1.2 G is added on an
orthogonal axis. The frequency is chosen near a Shapiro resonance studied in Chapter 4. In practice, we scan the frequency to
maximize the number of m = ±1 atoms. For these experiments we have κ = 0.34 and Us/h = 18 Hz (the calibration of Us
is discussed in the section 5.4). The spin populations are measured with an accuracy of ' 1.6 atoms using the “Stern-Gerlach
fluorescence imaging” set-up described in Chapter 3.

5.3.2 Experimental results
We found that more pairs are produced near the upper edge of the unstable regime, for δ = −24 Hz' −2(1 − κ)Us/~. This
observation constitutes a first deviation from the UPA prediction, which will be discussed in Sec. 5.3.3. We show in figure 37 the
evolution over time of the mean and standard deviation for the observables N̂p and Ĵz . At t = 0 the driving starts, andm = ±1
pairs are produced. However, as the pump gets slightly depleted, the pair production is boosted and quickly deviates from the UPA
prediction. Numerical resolution of the Schrödinger equation using the secular Hamiltonian Eq. (5.19) shows a better agreement,
up to∼ 200 ms. At that time we observe a saturation of 〈N̂p〉 to a value of∼ 200 pairs, while the simulation shows a reduction of
〈N̂p〉. Possible effects not included in the simulation are atom losses and interactions with the thermal cloud. As for the measured
pseudo magnetization 〈Ĵz〉, it remains very close to the imaging noise for the whole time. The small increase could be due to atom

losses, in the BEC or in the molasses during the detection. In any case, it is much smaller than the shot noise value
√
〈N̂p〉/2.

At t = 150 ms we measure 〈N̂p〉 ' 105, ∆N̂p ' 115, ∆Jz ' 1.55 and the spin squeezing parameter ζs defined by
Eq. (5.16) is ζ2

s ' 0.021 = −16.8 dB. We show the distribution ofNp and Jz at that time on figure 38. The distribution ofNp
is in very good agreement with the prediction of a thermal distribution and verifies ∆Np ' 〈N̂p〉. The distribution of Jz is very
narrow, close to that of the imaging noise. For comparison, we show the distribution of Jz for a coherent state with similar mean
〈N̂p〉. Our measurement is consistent with the expected normal distribution of variance 〈N̂p〉/2, much broader than that of the
squeezed state.
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Figure 37: Evolution of the mean number of pairs Np (upper panel, blue circles) and its standard deviation (middle panel, red
squares) versus the duration of the modulation. The dashed black line corresponds to the Bogoliubov approximation, where the
mean and standard deviation are almost equal. The numerical solutions of the Schrödinger equation using the secular Hamilto-
nian Eq. (5.19) are shown as solid lines. The lower panel shows the evolution of the longitudinal pseudo spin Jz , its mean (blue
circles) and standard deviation (red squares). The shaded area corresponds to the detection noise.

5.3.3 Interacting parametric amplifier
Here we discuss in more detail the observed discrepancies from the UPA. First, we find that more pairs are produced on the upper
edge of the instability region, where the energy of the output modem = ±1 is initially larger than that of the pumpm = 0. In
the UPA, the maximum occurs in the middle of the instability region. Second, the dynamics is at intermediate times faster than
what the UPA predicts. This contradicts the general expectation that the depletion of the pump should slow down the dynamic.
These two deviations from the UPA do not occur in an optical parametric amplifier, and arise here because of the interaction
between the pump m = 0 and output modes m = ±1. Qualitatively, it can be understood as follows. In the UPA, the pump-
output interaction results in a positive mean-field shift of the output energy. As the pump is depleted, the shift decreases, bringing
the system closer to resonance.

As a simple extension to the UPA, we proceed to the following substitution: N̂2
p/N → npN̂p and â0 →

√
N(1− 2np) in

the exchange term, where np = 〈N̂p〉/N is a real number quantifying the normalized number of pairs. With this substitution,
the Hamiltonian remains quadratic in the operator â± and can be written as in Eq. (5.22), with V = δ/2 + Us(1 − 2np) and
W = κUs(1− 2np). Thus, the Bogoliubov energy given by Eq. (5.24) reads

~ωB =

√(
~δ
2

+ Us(1 + κ)(1− 2np)

)(
~δ
2

+ Us(1− κ)(1− 2np)

)
. (5.34)

We introduce the variableδ′ = δ+2Us/~, andU ′ = κUs. U ′ corresponds to the spin-changing collisions rate [term â†+1â
†
−1â

2
0+h.c.

in Eq. (5.19) ], andUs to the rate of spin conserving collisions [term N̂p(N − 2N̂p)]. The instability window becomes

−U ′(1− 2np) ≤ ~δ′ − 2Usnp ≤ U ′(1− 2np) . (5.35)

As np increases, the instability window shrinks because of the depletion of the pump, and moves because of the increase of the
pump-output interaction. More precisely, the width decreases as±2U ′np, and the center moves by 2Usnp. We can distinguish
three situations depending on the relative values ofU ′ andUs.
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Figure 38: (a) Jz versus Np for a squeezed state (red dots) and a coherent state (blue dots). The dashed blue line corresponds to
the atomic shot-noise level (one standard deviation). The squeezed state is much below that value, almost limited by the detection
noise (solid black line). (c) Distribution of the number of pairsNp. The red line corresponds to the thermal distribution expected
for a TMSV. In (b) we show the distribution of Jz for the squeezed state and the coherent state. The latter is much broader due
to the shot noise (blue line).

• In the case of the optical parametric amplifier (figure 39 a), U ′ = 0. The instability region does not move. The instability
rate is maximal for δ′ = 0, and decreases as the pump gets depleted.

• For undriven spin mixing dynamics (figure 39 b), U ′ = Us. The motions of the center and of the upper edge of the
instability window compensate exactly. This leaves the point δ′ = 2Us always within the instability region. Hence we
expect a particularly good agreement with the UPA at that point.

• For driven spin-mixing dynamics (figure 39 c),U ′ < Us and the instability window shifts faster than it shrinks. Therefore,
starting in the vicinity of the upper bound δ′ = 2U ′, we expect the evolution to bring the system deeper in the instability
region. Here, the effect of the interaction counter-acts the effect of the depletion, and we expect the dynamic to be faster
than in the UPA1.

In figure 40 we present the result of a numerical resolution of the dynamics under the secular Hamiltonian Eq. (5.19) for different
κ, keeping U ′ fixed so that the UPA prediction is fixed. We plot the maximal number of pairs produced over a time t = 5~/U ′
versus δ′ and the time evolution ofNp for~δ′ = 2U ′. The competition between the depletion of the pump and the pump-output
interactions explains qualitatively all the features we see.

5.4 Reversible dynamics: coherence and entanglement
We gave the expression of the TMSV in the number basis in Eq. (5.15). The TMSV can be seen as a broad and coherent super-
position of TFS with equal numbers of atoms in m = ±1. The significant squeezing that we have measured reflects the high
correlation between the modes m = ±1 and is a signature of entanglement between the particles. An interesting question is
whether the states we produced experimentally are also entangled in the sense of the modes. We observed a broad distribution of
the number of pairs, but so far our measurements are not sufficient to prove the coherence between all the states with well-defined
numbers of pairs. Indeed, our findings are a priori compatible with a statistical mixture of TFS, such as

ρ =
1√
N

∞∑
n=0

η2n|n, n〉〈n, n| . (5.36)

1The system may even “fall” in the unstable regime if δ′ & 2U ′. It is visible in figure 40 a, where we see the spread of the instability region to slightly larger
detuning in the driven situation. However this is a finite size effect. Indeed, according to the UPA, the amplitude of the oscillation in the stable regime (studied in
the next section) does not depend on the total number of atoms, and hence in that regime, np → 0 asN →∞.
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Figure 39: Instability rate versus δ′ for various depletions: np = 0 (solid line), np = 0.2 (dashed line) and np = 0.4 (dotted
line). We plot it for κ→∞ (a), κ = 1 (b) and κ = 0.5 (c), keepingU ′ = κUs fixed. The depletion results in an overall decrease
of the rate. For the atomic case (b and c), it can be compensated (b) and even overcompensated (c) near ~δ′ ' 2U ′ due to the
displacement of the instability region.
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Figure 40: a Maximal number of pairs produced over an evolution time t = 5/~U ′, versus ~δ′/U ′. b Evolution of Np for
~δ′ = 2U ′. The solid black line represents the result of the UPA. The blue dashed line corresponds to κ → ∞ (U ′ = κUs
fixed). It is always below the UPA. The yellow dotted line corresponds to static spin-mixing (κ = 1). Because of the pump-
output interactions the resonance is shifted to the right. On the boundary ~δ′ = 2U ′, pump-output interactions counteract the
depletion and the agreement with the UPA is particularly good. The dashed-dotted line corresponds to driven spin-mixing, for
which we observe a boost of the dynamics compared to the UPA prediction near ~δ′ = 2U ′. We usedN = 300 for the numerical
calculation.

Part of the “non-classicality” is lost in that mixed state compared to the TMSV given by Eq. (5.15). This is of no consequence
for the interferometric experiment we present in Appendix D following [69], but is damageable for other schemes, such as the
SU(1, 1) interferometer [160].

In this section, we prove the persistence of the coherence, and thus mode entanglement thanks to a study of the dynamics in
the stable regime.

5.4.1 Experimental protocol
The preparation of the initial state is the same as in the previous experiment. We produce a BEC of ∼ 3000 atoms in a large
magnetic field. After spin-filtering, all the atoms are in m = 0. The dynamics is however triggered differently. The unstable
regime occurs for negative QZE q, which is not possible in the static situation, hence the use of a Shapiro resonance in the previous
section. In the stable regime, q > 0 and driving the system is not necessary. Instead, we quench the magnetic field to a low value
such that q � Us. This brings the system close to the phase transition identified in chapter 2, where quantum fluctuations play
a major role.

5.4.2 Results
Theoretical expectation For q > 0, the system undergoes many-body oscillations. More precisely, it evolves back and forth
into a TMSV, with an oscillating number of pairs given by Eq. (5.29). In the limit q � Us, the frequency of the oscillations is
ωB '

√
2qUs/~ and the amplitude is' Us/(2q). Self consistency of the UPA requires q � Us/N . In this Chapter we focus

on that situation. We will explore the regime q < Us/N in Chapter 6.

Experimental results We show in figure 41 the evolution of the number of pairs after a quench to q/h ' 0.3 Hz. The mean
and standard deviation superimpose almost perfectly according to Eq. (5.30). They are well fitted by the UPA prediction, with



74CHAPTER 5. BEYOND THE MEAN-FIELD DYNAMICS: SPIN-SQUEEZING AND QUANTUM FLUCTUATIONS

Us as the only free parameter which determines both the amplitude and frequency of the oscillations according to Eq. (5.29). We
findUs/h = 18 Hz, which is consistent with previous calibrations. The pseudo spin Ĵz = (N̂+1 − N̂−1)/2 is almost perfectly
conserved with fluctuations mainly limited by detection noise. For long evolution times we observe a progressive damping of the
oscillation of the number of pairs. It could be due to shot-to-shot fluctuations ofUs induced by atom number fluctuations. The
small increase of ∆Ĵz indicates atom losses, which may also alter the dynamics. In any case, we found overall a good agreement
with the theoretical expectations.
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Figure 41: Evolution of the mean number of pairs (a), its standard deviation (b) and the (pseudo) magnetization standard deviation
(c). The solid lines are the results of a numerical simulation. Here q/h ' 0.3 Hz andUs/h ' 18 Hz. The error bars correspond
to one standard error.

We repeated this experiment at various magnetic fields (i.e. various q). We fit the oscillations and extract a period and ampli-
tude that we report on figure 42. Keeping the same valueUs/h = 18 Hz, we found an excellent agreement with the theory, over
almost two orders of magnitude for q.
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Figure 42: (a) Period and (b) amplitude of the oscillations ofNp versus the QZE q. The solid blue lines are the results of numerical
simulation and the black dotted lines are the predictions of the UPA.

Mode entanglement In the UPA, the state produced by the dynamic is the TMSV, and is squeezed in the sense of Eq. (5.16).
Here, we focus on the entanglement of the modes. We gave the expression of the TMSV in Eq. (5.15). The reduced density matrix
for the modem = +1 (it is clearly the same form = −1) is

ρ+1 =
1

1 + 〈N̂+1〉

∞∑
n=0

(
〈N̂+1〉

1 + 〈N̂+1〉

)n
|n〉〈n| . (5.37)
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This is a thermal Bose-Einstein distribution [32], with entropy

S(ρ+1) = −2n+1 ln(n+1)− (1− 2n+1) ln(1− 2n+1) . (5.38)

where n+1 = 〈N̂+1〉/N is, using Eq. (5.29),

n+1 =
Us

2qN
sin2(ωBt) . (5.39)

We can also define an effective temperature Teff in analogy with the distribution of an ideal thermal gas (see appendix C)

kBTeff ' 〈N̂+1〉q '
Us
2

sin2(ωBt) . (5.40)

This definition of Teff is somewhat arbitrary. The important point is not the precise value of the temperature, but rather its
variations, in particular the fact that it is non-monotonic, as the entropy. We emphasize, that in this calculation the total quantum
state is pure. The entropy of ρ+1 corresponds to entanglement entropy (see Chapter 2, [71]).

We show in figure 43 the evolutions of the entropy and the temperature, for the data set of figure 41. The Von-Neumann
entropy S(ρ+1) is simply the Shanon entropy associated with the measurement of N+1 [we measure S(ρ−1) ' S(ρ+1)].
For Nmeas measurements of N+1, finite sampling leads to a systematic error (an underestimation) of order N+1/Nmeas on the
Shannon entropy (see e.g. [161]). We do not try to correct for this bias. Instead, we only show the points for which we have
Nmeas > 10N+1, to insure the systematic errors are below ten percent. The error bars correspond to mean(N+1)/Nmeas. The
temperature is obtained after an exponential fit of the distribution ofN+1.

At short times, the creation of pairs results in an increase of entropy and temperature. The entropy is initially non-zero because
of the detection noise. After a full period, we measure Np ' 0 and the entropy and temperature are almost back to their initial
values. This observation tells us that the total entropy is conserved as far as detection noise allows us to tell, as expected for a
unitary evolution. Therefore, the initial increase of S(ρ+1) is due to entanglement between the m = +1 mode and the other
two modes.
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Figure 43: Evolution of the effective temperature (a) and entropy (b) over time, for ρ+1 (same data set as for figure 41). The four
lower panels show the distributions of the number of atoms in +1, from which the entropy and temperature can be calculated.
The solid lines are the results of the numerical resolution of the Schrödinger equation.

An analogy can be drawn between the (apparently) thermal distribution of particles generated by a parametric amplifier in
initially empty modes, and the radiation seen by an accelerating observer, according to the Unruh effect [162]. In both cases, the
Hamiltonian of the system features a non-linear term of the form∝ â†i â†j+h.c. (coming from the change of frame in the Unruh
effect), which can create pairs of particles in modes i and j from the vacuum state. This analogy is developed further in [79],
where the interaction strength of condensed atoms was modulated using a Feshbach resonance. In that case, the drive effectively
produces the conversion term â2

0â
†
kâ
†
−k+h.c., where â0 annihilates an atom of the condensate (the pump mode) and is replaced

by
√
N in the UPA. This exchange term creates pairs of atoms in opposite momentum states±k. In that experiment, coherence

and entanglement between the external modes has also been demonstrated, using an “entangling-disentangling” scheme as well.
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However, the BEC was unstable, and the evolution was reversed by applying a phase shift of π to the pump mode. In the UPA,
â2

0 becomes−N , and if the Hamiltonian reduces to the exchange term, the evolution is perfectly reversed.
In fact, the phase shift that needs to be applied to reverse the parametric amplification dynamics can be measured with a

sensitivity below the standard quantum limit. This is the working principle of the so-called SU(1,1) interferometer [160]. It has
been demonstrated experimentally with spinor BECs in [13, 14].

5.5 Seeded dynamics
To highlight the role of quantum fluctuations, we also studied the effect of a controlled seed on the dynamics. This allows for the
observation of the Bogoliubov to mean-field regime crossover.

5.5.1 Experimental protocol
Up to now, the dynamics started from the vacuum of the m = ±1 mode. Although our detection noise does not allow us to
distinguish reliably the vacuum from a state with one or two atoms on a single shot, averaging over one thousand repetitions, we
measureNp = −0.050± 0.040 (see chapter 3) and can safely say that at least for most of the shots, we prepare the vacuum state.
We now investigate the effect of a seed on the dynamics. The preparation of the initial state is the same as previously, including
spin filtering. At that point there is no seed. We then apply a weak radio frequency pulse to slightly rotate the initial state. The
population in the m = ±1 modes after rotation is nseedN . Before the quench of magnetic field, we also add a tunable delay.
During that time, q � Us and spin-changing collisions are completely inhibited by energy conservation. However, a phase
ϑ ' −2qt is accumulated between them = 0 andm = ±1 mode2. The initial state can be written as

|seed〉 = (
√
nseede

iϑ2 â†+1 +
√

1− 2nseedâ0 +
√
nseede

iϑ2 â†−1)N |vac〉 . (5.41)

We then quench the magnetic field to achieve q � Us, and let the system evolve.

5.5.2 Results
Theoretical expectation Using Eqs. (5.26,5.41), we find (for q � Us)

〈N̂±1〉seed =
U2
s

~2ω2
B

sin2(ωBt)

[
1 + 4Nseed cos2(

ϑ

2
)

]
+Nseed . (5.42)

Even a microscopic seed of a few atoms can have a dramatic effect on the population growth. Only a very “pure” system is mostly
driven by vacuum fluctuations. The effect of the seed depends importantly on the phase ϑ. In particular, for ϑ = π, the seed has
no effect.
For a large seed, the number of pairs produced may become significant compared to the total number of atoms, leading to the
break-down of the UPA. However, when Nseed � 1 we expect the mean-field approximation to take over the UPA and give
accurate results.

Experimental results We show in figure 44 the number of pairs produced after 80 ms of evolution. We scanned both the phase
and the size of the initial seed. For Nseed ≤ 1, the value of Nseed is not measured (it is below our detection noise), but inferred
from the power of the RF pulse. The value ofUs is extracted from a fit to the oscillations observed without a seed. Except for the
largest seed, our results are in excellent agreement with the UPA. We see a linear amplification of the production ofm = ±1 pairs
when we add a seed, and a dependence on the phase. Importantly, when Nseed → 0, we observe a saturation of Np to a finite
value, contrary to the mean-field prediction. This is a clear signature of the role of the vacuum fluctuations. For a large enough
seed, the mean-field approximation becomes accurate. It takes over the UPA, which fails when the seed is too large. For q < Us,
the mean-field equations of motion are highly non-linear and the frequency of the oscillation depends on the size of the seed. The
number of pairs at a given time t = 80 ms is therefore a complicated, non-monotonic function ofNseed. We show the results of
numerical simulation of the mean field dynamics in figure 44. For the largest seed, in phase with the pump, we observe this effect.

5.6 Outlook
In the first part of this chapter, we have reported on the generation of a spin squeezed state. A direct application of such non-
classical states is interferometry. In particular, in appendix D we show how the TMSV can be used to measure the rotation of
the pseudo-spin with a sensitivity below the standard quantum limit. Pseudo-spin rotations can be achieved using micro-wave
coupling to theF = 2 hyperfine manifold and interferometric experiments with squeezed states of spinor BEC have been reported

2The Larmor precession results in a phase η = pt betweenm = ±1 of no importance in the following.
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Figure 44: Number of pairs produced after 80 ms of evolution versus the phase of the seed ϑ forNseed ' 6 atoms (a), and versus
Nseed for ϑ ' 0 rad (blue diamonds), ϑ = 2.2 rad (green circles) and ϑ ' 3.2 rad (red squares) (b). The solid and dashed lines
are the results of the Bogoliubov and mean-field approximations, respectively. The gray area corresponds to the detection noise
level.

in [11,12]. In these experiments, the detection noise was limiting the performance of the interferometer. Fluorescence imaging may
help to make one more step away from the SQL and closer to the Heisenberg limit.

These experiments are relying on measurements of the first or second moment of a collective (pseudo) spin component. How-
ever, enhanced sensitivity can sometimes be obtained thanks to the measurement of a microscopic observable. For a TMSV state
fed in a Mach-Zehnder interferometer (which effectively achieves a pseudo-spin rotation), greater sensitivity is achieved by mea-
suring the parity of the number of pairs at the output, rather than the collective spin [163].

In a recent experiment [164], parity detection of the spin state of a Dysprosium atom was implemented to perform measure-
ments near the Heisenberg limit. In that experiment, it is the internal state of a single atom that is squeezed, not the collective
spin of an atomic ensemble. The large spin J = 8 of the Dysprosium atoms can be viewed as the collective spin of a mesoscopic
ensemble of sixteen fictitious spin 1/2, but this number is not scalable. One great challenge in implementing such an experi-
ment in atomic ensembles comes from the fact that a parity measurement requires in general single atom resolution. We are now
close to this limit and with further improvement we believe that “Stern-Gerlach fluoresence imaging” could be used to reveal
the microscopic details of the distribution of the number of pairs, in particular the parity, thereby enabling new interferometric
schemes.



Chapter 6

Relaxation of an isolated quantum system

In Chapter 5, we studied spin-mixing dynamic after a quench of the (effective) quadratic Zeeman energy (QZE) q. For positive and
large enough q, the low energy states are weakly perturbed, and the system remains at all time close to its initial state, allowing for
the linearization of the Hamiltonian. Up to a Bogoliubov transformation, the system is then analog to a set of two independent
harmonic oscillators, and the evolution is fully reversible. We now turn to the study of larger quenches, bringing the system in
the critical region, q � Us

N identified in Chapter 2. In that case, the energy eigenstates post-quench are very different from those
prior to the quench, and the evolution appears to be irreversible.
We can draw a comparison with a classical system, a gas in an isolated container. Small density fluctuations, induced e.g. by the
gentle motion of a speaker, result in sound waves. Ideally this is an isentropic process, described by a wave equation, symmetric
upon time reversal. On the other hand, the sudden removal of the piston creates a Joule-Gay-Lussac expansion of the gas, an irre-
versible process characterized by the creation of entropy. In that case, the irreversibility results from the exponential increase of the
phase space accessible to the system. Among all the possible configurations, constituting the microcanonical ensemble, the initial
one, where all particles occupy a fraction of the container, is extremely atypical. The vast majority of configurations are typical,
i.e. essentially identical with respect to the physical observables such as the coarse grained density. For macroscopic systems, the
likelihood of atypical configurations is strongly suppressed, and as time evolves physical observables relax to an equilibrium value.
The latter can be computed using an appropriate statistical ensemble, which does not depend on the details of the initial state.
Far from equilibrium isolated quantum systems may also exhibit “irreversible” evolution (irreversible for all practical purposes).
This has been the subject of intense theoretical and more recently, experimental investigations. Once again, we are not going to
cover this whole field of research, but focus on some important results relevant for the understanding of our experiments (see
e.g. [165] for a review).
We start by introducing important definitions and general results regarding the relaxation of isolated quantum systems. We briefly
review some experimental work related to this subject. We then focus on the theoretical study of our system, and in particular on
the relaxation of a nematic state in a vanishing magnetic field. Finally, we present experimental results, and connect the findings
of the present Chapter with those of Chapter 5. The work discussed in this Chapter is also presented in the article [166].

6.1 Relaxation and thermalization of isolated quantum systems
6.1.1 Definitions
We consider the evolution of a pure state |ψ〉 =

∑
cn|n〉 under the Hamiltonian Ĥ =

∑
n ~ωn|n〉〈n|. In practice, the diago-

nalization of a many-body Hamiltonian is often too challenging for any analytical or numerical approach. Much like in classical
statistical mechanics, great simplifications occur if one focuses on physical observables instead of the whole quantum state. We
consider one such observable, Ô. Without loss of generality, we take Ô dimensionless and of order one (e.g. N̂0/N ). Its mean
evolves as

〈Ô(t)〉 =
∑
n

|cn|2Onn +
∑
n6=m

c∗mcne
−i(ωn−ωm)tOnm . (6.1)

Let us write the first term 〈Ô〉∞ and the secondC(t). We use overlines for time averages. We start by specifying the meaning of
relaxation and thermalization of an observable [165].

1. Relaxation: The observable Ô is said to relax if

C(t)→ 0 and

√
C2(t)� 1 . (6.2)

In that case, 〈Ô(t)〉 reaches the steady value 〈Ô〉∞, and remains close to it at most time. The steady value of any observable
that has relaxed is given by 〈Ô〉∞ = Tr(ρ̂DEÔ), where ρ̂DE is the so-called diagonal ensemble, defined by the density
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matrix

ρ̂DE =
∑
n

|cn|2|n〉〈n| . (6.3)

Note that contrary to statistical ensembles, the diagonal ensemble depends on the details of the initial state (the |cn|2),
often unknown. It is a convenient theoretical object, but with little practical use.

2. Thermalization: The observable thermalizes if its steady value corresponds to the microcanonical prediction

〈Ô〉∞ = Tr
(
ρ̂ME(E)Ô

)
, (6.4)

where ρ̂ME is the microcanonical density matrix defined by

ρ̂ME =
1

ZMC

∑
n∈Ω

|n〉〈n| (6.5)

whereZMC = Tr(ρ̂ME) and Ω is the set of energy eigenstates with energyEm ∈ [E− δE,E+ δE], withE = 〈Ĥ〉 and
δE a small energy, whose precise value is unimportant (providing it is sufficiently small). The microcanonical ensemble
thus only depends on a macroscopic quantity, the energy of the initial state.

6.1.2 Relaxation
We first examine the conditions under which an observable relaxes. The first requirement C(t) → 0 occurs naturally thanks
to dephasing. More precisely, for a generic interacting Hamiltonian with incommensurate frequencies ωn, such that after some
time tR long compared to the inverse of the mean gap, it is reasonable to treat the factors ei(ωn−ωm)t as independent random
variables1. They do not depend on the state nor on the observable. Moreover, for most far-from-equilibrium states, unless some
fine tuning of the initial state has been made, many cn have comparable values, so that the sumC(t) samples the distribution of
ei(ωn−ωm)t (withm 6= n), and thus takes negligible values after a short evolution time.

The second condition for relaxation is the absence of large temporal fluctuations of the expectation value 〈Ô〉. The occurrence
of dephasing is not sufficient to insure that this is the case and further assumptions on the matrix elements Onm are required.
Indeed, after dephasing, the fluctuations are

√
C(t)2 ∼

∑
n 6=m
|cncmOmn|2

 1
2

. (6.6)

If the off-diagonal elementsOmn are of order one, this double sum is of order one as well. Relaxation thus requires the off-diagonal
elements to be on average much smaller than the diagonal ones.

6.1.3 Thermalization
Eigenstate Thermalization Hypothesis The occurrence of thermalization, expressed as Tr(ρ̂DEÔ) ' Tr(ρ̂MEÔ), is arguably
more surprising, and demands stronger assumptions. Several scenarios can a-priori lead to thermalization (see e.g. [167]). A first
scenario seems to have a wide range of applicability (we will discuss exceptions later), the eigenstate thermalization hypothesis
(ETH) [168, 169]. The ETH states

Onn ' Tr(ρ̂ME(En)Ô) . (6.7)

The ETH is a very strong statement, it means that thermalization occurs at the level of individual eigenstates |n〉, and does not
require any averaging over n. Thus, different distributions of cn have similar expectation values of physical observables, and the
thermalized state is relatively insensitive to the initial one. From Eq. (6.7), Eq.(6.4) follows immediately for any state narrow in
energy2 (cm significant in a small energy windowEm ∈ [E − δE,E + δE]). The ETH has only been demonstrated to hold for
specific models ( [165, 167, 168] and references therein) for few-body observables.
Let us consider the thermalization of an initially pure state. As far as the measurements of physical observables are concerned,
it becomes indistinguishable from the mixed state ρ̂ME, leading to a loss of information. This is of course just apparent, since
the entropy is conserved over a unitary evolution. It follows from the fact that physical observables (the ones most accessible to
experiments) are all blind to certain correlations (for instance, correlations between spatially separated particles). Therefore their
measurement may not give the entire information on the state.

1For commensurate or for a finite number of frequencies one expects “rephasings” at some particular times yielding to revival of the dynamics. Those appear
in short time windows separated by long periods with no evolution, and do not forbid relaxation as defined above, provided the time averages are taken over a
sufficiently long window.

2The ETH alone is not sufficient to guarantee thermalization, but the narrowness of the initial state in energy is a weaker assumption, common in statistical
mechanics (required for the equivalence of the statistical ensembles). For instance, it is demonstrated in [167], for quenches of a local Hamiltonian.



80 CHAPTER 6. RELAXATION OF AN ISOLATED QUANTUM SYSTEM

Integrable systems An apparent loss of information on the initial is inherent to thermalization. However, some memory of
the initial state may be preserved if the Hamiltonian possesses symmetries and thereby if there are conserved quantities. More
precisely, a model with an extensive number of conserved quantities is said to be integrable. Such systems do not verify the ETH,
and in fact observables do not thermalize in the sense defined above. Yet, the dynamics is a-priori not frozen, and may still be
very complicated. Indeed, the state contains in general a number of parameters exponential in system size, and hence much larger
than the number of constraints3. For the same reasons as above, relaxation can occur, at least partially.
The ETH can be extended to integrable systems by replacing the microcanonical ensemble with a generalized Gibbs ensemble
(GGE) [165]. The associated density matrix is obtained by maximizing the Von-Neumann entropy under the constraints imposed
by the conservation laws. Let Îk be the conserved quantities. The GGE can then be written as4

ρ̂GGE =
1

Z
exp

(
−βĤ +

∑
k

λk Îk

)
, (6.8)

whereZ = Tr exp
(
−βĤ +

∑
k λk Îk

)
is the partition function and theλk are Lagrange multipliers introduced to enforce the

constraints. They are determined by solving the equations 〈Îk〉 = Tr(Îkρ̂GGE). These Lagrange multiplier keep some memory
of the initial state.

6.1.4 Brief overview of experimental studies with atomic gases

Spinor Bose-Einstein condensates There have been numerous experimental studies of the out-of-equilibrium dynamics of quan-
tum atomic gases. Let us first mention a few works, that explored the evolution of a spinor BEC after a quench of the QZE q.
These experiments used Rubidium atoms which has ferromagnetic properties. In [30], the formation of ferromagnetic domains
in an elongated geometry was studied. Locally, the spin has a well-defined direction, breaking the SO(2) symmetry. However,
the direction is not homogeneous over the whole cloud, and instead forms a complex, apparently random spin pattern. With a
similar set-up, the dynamic of the spin-spin correlation function was studied in [170]. In particular, the authors demonstrated
the universality of the dynamics in an intermediate regime, between an initial state-specific dynamics and the relaxed state, called
“non-thermal fixed point”. During that time, the evolution of the spin structure factor is self-similar, i.e. after proper rescaling,
it can be written as a function of a single variable instead of two (momentum and time). Closer to our experiment, in the single
mode regime, the creation of the excitations by a ramp through the nematic to ferromagnetic phase transition was studied in [171].
In all these works, the focus is put on the transient dynamics, rather than on the state after relaxation.
The relaxation of spin-mixing dynamics was studied in chapter 4 and in [172], but in those experiments, the long-time relaxation
resulted from a coupling to the thermal cloud, which played the role of a heat bath. In that sense the system (the condensate) was
not isolated.

Thermalization of a microscopic Bose-Hubbard system The thermalization of an isolated system consisting of six bosonic atoms
on a six site lattice, realizing the Bose-Hubbard model, was demonstrated in [173]. The system is initiated in the Mott insulating
regime, with one atom per site and essentially no tunneling. The latter is suddenly switched on to trigger the dynamics. The
authors show the thermalization of a local observable, the number of atoms per site (despite the small system size, all statistical
ensembles give similar results). Moreover, by measuring the so-called Rényi entropy (similar to the Von-Neumann entropy) locally
and globally, they demonstrate the role of entanglement in thermalization: while the state of less than six sites is mixed, the state
of the whole six sites system remained almost pure.

Lack of thermalization in 1D gases The absence of thermalization for an almost integrable system was observed in [174]. In that
experiment, ultra-cold bosonic atoms in a 1D trap are prepared in a superposition of opposite momentum states using an optical
Bragg pulse. At early times, two “blobs” of atoms are bouncing off each other due to the motion in a harmonic trap. After some
dephasing time, the spatial distribution settles to a particular stationary shape, incompatible with a thermal distribution. This
experiment can be captured by the Lieb-Liniger model, describing a uniform system of bosons in one dimension, with contact
interactions. It is an integrable model, with an extensive number of conserved quantities. The Lieb-Liniger model was further
studied experimentally in [175]. The authors of this latter work measured higher order correlation functions. They also observed
the absence of thermalization and demonstrated relaxation to a GGE. More precisely, they measured correlation functions up to
the tenth order and found that about ten “effective temperatures” (i.e. Lagrange multipliers) are necessary to account for their
observations.

3For indistinguishable particles with α > 1 degrees of freedom, the restriction to symmetric states yields a scaling of the Hilbert space as Nα, and the
conclusion still holds

4To simplify the notations, we use a generalized canonical ensemble, instead of generalized microcanonical ensemble. In the thermodynamic limit the two
ensembles are equivalent.
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6.2 Relaxation of a spinor BEC in the SMA: theoretical results
The relaxation in models involving a few bosonic modes has recently been the subject of theoretical investigations. The case of two
modes (effective spin 1/2) is explored in [176, 177], the case of three spatial modes in [178] and finally the case of three spin modes
(spin-1) in [179]. However, the latter mostly focuses on the ferromagnetic case, in the regime q ∼ Us and therefore is not directly
relevant for our experiments. Here, we present our theoretical investigation of the relaxation for q = 0 in the antiferromagnetic
case.

Hamiltonian at q = 0 We recall that the Hamiltonian in the absence of applied magnetic field reduces to

ĤSMA =
Us
2N

Ŝ2 . (6.9)

The eigenstates are the angular momentum states |S,Mz〉, where S ∈ {0, 1, .., N} is an integer that has the same parity asN in
order to satisfy to the exchange symmetry. Mz is an integer in {−S,−S + 1, ..S}. The eigenvalues are

E(S,Mz) =
Us
2N

S(S + 1) . (6.10)

Spinor BECs are integrable systems due to the SO(2) (SO(3) at q = 0) symmetry which results in the conservation of all
projectors onto the manifolds of fixed magnetization (alternatively, all moments Ŝkz are conserved).

6.2.1 Relaxation of the nematic state at q=0

Let us consider first the evolution of the nematic state |N : ez〉 under the SMA Hamiltonian Eq. (6.9). We solved it numerically
and show the results in figure 45. The short time dynamics can be captured by a Bogoliubov approximation as in Chapter 5,
but eventually the depletion becomes too important and the approximation fails. The subsequent dynamics appears to be quite
complicated. In the spirit of the previous discussion, we focus on the evolution of simple physical observables instead of the whole
state, for instance the mean populationNp of the number ofm = ±1 pairs. We can computeNp(t) analytically forN � 1. We
find (see the appendix E)

Np(t) '
N

2
τF (τ) , (6.11)

where τ =
√

2
N
Ust
~ and F (τ) =

∫ +∞
0

dxe−x
2

sin (2xτ) is the so-called Dawson function. At early times, F (τ) ∼ τ and we
recover the prediction of the result of the Bogoliubov approximation (Chapter 5),

Np(t) ∼
U2
s t

2

~
. (6.12)

At long times, F (τ) ∼ 1/(2τ) + 1/(4τ3) andNp relaxes toN/4 with the asymptotic behavior

Np(t) ∼
N

4

(
1 +

N~2

4U2
s t

2

)
. (6.13)

We now recover the same result by looking at the structure of the eigenstates |N,S,Mz〉 and using the general arguments
introduced in the preceding section.

6.2.2 Relaxation to a Generalized Gibbs Ensemble

Relaxation of physical observables The spectrum Eq.(6.10) is non-linear, allowing for dephasing, and for sufficiently long time,
O(t)→ cte. However, this does not guarantee the relaxation of an observable, since large temporal fluctuations are not excluded,
as a result of Eq. (6.6). We can show that relaxation occurs if we restrict Ô to few-body observables, such as the Zeeman popu-
lations, the spin components, their first few moments... Indeed, the operator âm only couples states with S and Mz varying by
at most one unit. Therefore, in the collective spin state basis |S,Mz〉, most off-diagonal matrix elements of few-body observ-
ables vanish. The double sum in Eq. (6.6) is thus of order∼ N−

1
2 , so that time fluctuations after dephasing can be neglected in

comparison to the equilibrium value.
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Figure 45: Numerical resolution of the relaxation of the nematic state |0〉⊗N , with N = 100 atoms, at q = 0. We plot the
distribution of the reduced number of pairs versus the dimensionless time τ in the upper panel. For τ � 1 the distribution is
smooth and corresponds to the thermal distribution calculated in the Bogoliubov approximation. At longer times the distribution
becomes rather complex. Remarkably, the mean number of pairs (lower panel, solid black line) relaxes to a steady value and shows
essentially no evolution when τ � 1. It is almost (up to finite size effect) perfectly described by Eq. (6.11) (red dashed line).

Generalized ETH for single-mode spinor BECs The projectors on a manifold of fixedMz constitute an extensive set of conserved
quantities in our integrable system. This prevents the thermalization of physical observables such as Ŝz , and less trivially N̂0.
Indeed we have (for S � 1)

〈S,Mz|N̂0|S,Mz〉 '
N

2

S2 −M2
z

S2
. (6.14)

The microcanonical ensemble is composed by all |S,Mz〉 state such that

Us
2N

S(S + 1) ' Ei (6.15)

where Ei is the initial state energy. Let Si be the closest integer to
√

2NEi/Us � 1. The expectation value of N̂0 in the
microcanonical ensemble is

〈N̂0〉MC '
Si∑

Mz=−Si

N

2

S2
i −M2

z

S2
i

, (6.16)

〈N̂0〉MC '
N

3
. (6.17)

This result is a consequence of theSO(3) symmetry, the three Zeeman state are equally populated. Let us now consider an initial
nematic state with all atoms in them = 0 state. This state can be expressed as a superposition of |S,Mz〉 states whereMz = 0.
By virtue of Eq. (6.14) we have

〈N̂0〉GGE =
N

2
. (6.18)

We also remark that provided S � 1, Eq. (6.14) implies that the expectation value of N̂0 in a spin state |S, 0〉 is independent on
S. This ensures the equivalence between the diagonal ensemble (for the nematic state) and the GGE, according to the generalized
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ETH5. We can even make a stronger statement, the eigenstates |S, 0〉 that intervene significantly in the initial state (i.e. in the
diagonal ensemble) are essentially identical not only for the average 〈N̂0〉, but also regarding the full coarse-grained distribution
of n0 (derived in the appendix B)

P̃GGE(n0) ' 1

π
√
n0(1− n0)

. (6.19)

The tilde indicates coarse-graining over an interval ∆n0 � 1/S. This formula holds for 1 � S � N , which is the case for
the eigenstates we are interested in (the nematic state is peaked on S =

√
N ). We compare in figure 46 P̃GGE(n0) with the

distributions of a few |S, 0〉 states in the number basis. The latter show fast oscillations around P̃GGE(n0), that average out
after coarse-graining. The coarse-grained distribution of n0 can also be calculated without the magnetization constraint (in the
microcanonical ensemble). One then finds P̃MC(n0) = 1/(2

√
n0), significantly different from the GGE prediction.
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Figure 46: Distribution of the reduced population n0 in the |N,S,Mz〉 states, forN = 1000, S = 50, 100, 150 andMz = 0.
The upper panels show the exact distributions and the lower panels the coarse-grained distributions. The black line corresponds
to the analytical result given by Eq. (6.19).

The distribution given by Eq. (6.19) can also be obtained after an average over a couple of S states, instead of coarse graining
(see App. B). Since the initial state has significant weight onto several spin states (the spin shot noise is

√
2N ), we expect the

distribution of n0 to be close to Eq. (6.19), even without coarse graining. As a direct consequence the mode entropy [i.e. the
Shannon entropy of the distribution ofP(n0)] is also expected to relax toward the GGE predictions.

Comparison with numerical simulation We now compare the predictions of the microcanonical and GGE with the results of
numerical simulations. We report our findings in the table 6.1. They clearly show relaxation to the GGE.

Revivals The analytical formula given in Eq. (6.11) is derived by taking a continuum approximation for the spin, which is only
valid in the thermodynamic limit N → ∞. At q = 0, the frequencies are multiples of Us/(hN), and the evolution is periodic
for N finite. More generally, for a finite size system, the Poincaré recurrence theorem states that for sufficiently long times, the
system comes back arbitrary close to its initial state. However, revivals of the dynamics are very rare forN � 1, and thus we may
still talk about relaxation, understood as the absence of evolution at most times.

5The equivalence of ρ̂DE and ρ̂ME also holds for other coherent states, that have narrow distribution (determined by the shot noise) in the spin state basis.
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np ∆np S(ρ+1)

MC 1
3

√
1
45 ' 0.15 ln(N)− 1

GGE 1
4

√
1
32 ' 0.18 ln(π8N) ' ln(N)− 0.93

Simu. 0.249(6) 0.177(5) 0.96(1) ln(N)− 1.0(1)

Table 6.1: Comparison between numerical simulations and the prediction of the microcanonical (MC) and generalized Gibbs
ensemble (GGE). The initial state is the nematic state |0〉⊗N , and we let it evolve until τ = 10, at which point we consider that it
has relaxed and we calculate the observable of interest. We scanN from 100 to 4000 and report the values of a fit ofO(N) versus
N . The mean value of the number of pairs clearly excludes the MC and is in very good agreement with the GGE predictions. The
standard deviation also pleads in favor of a relaxation in the GGE. The prediction for the entropy is very close for both ensembles,
and in good agreement with the numerical simulation.

6.3 Observation of the relaxation of a spinor BEC

6.3.1 Experimental protocols
The procedure is essentially the same as the one described in Sec. 5.4 of the previous chapter. We prepare a BEC with all atoms in
m = 0 in a large magnetic field. In order to observe relaxation on a short time scale, we use smaller BECs of N ' 100 atoms
(the relaxation time scales as

√
Nh/Us). To keep a substantial interaction strength Us with such small samples, we recompress

the trapping potential after evaporation in 500 ms. The density increases and leads to Us of the same order as in the previous
experiments,Us/h ' 20 Hz. After recompression, we quench the magnetic field to a final value as low as 5 mG6. In that case, we
have q/h ' 7 mHz, and the condition q � Us/N is well fulfilled. We can thus neglect the QZE term in the Hamiltonian, and
we achieve the situation described in the previous section.

6.3.2 Experimental results
Observation of the relaxation to a generalized Gibbs ensemble Our measurements are summarized on figure 47. We observe the
relaxation of the number of pair to a steady value. We also show in figure 47 standard deviation and entropy. All observables reach
a steady value. In fact the whole (coarse grained) distribution relaxes. However, the magnetization stays almost constant, and due
to the conservation of this quantity, the microcanonical ensemble fails to describe the steady state and thermalization does not
occur. The generalized Gibbs ensemble predictions are on the other hand in very good agreement with our measurements.

Universal dynamics In principle, at q = 0, np(t) depends on two dimensionless parameters, N and Ust/~. One remarkable
aspect of the evolution predicted by Eq. (6.11), is the dependence ofnp on only one parameter, τ =

√
2
N
Ust
~ . In order to verify this

prediction, we prepare clouds with different atom numbersN and differentUs. For eachN , we determineUs by measuring the
frequencies of oscillations for q > Us/N (in the UPA regime), as explained in Chapter 5. After this calibration, all measurements
collapse on a universal curve np(τ), shown in figure 48.

Effect of a seed In Chapter 5, Sec. 5.5, we have seen that a coherent seed strongly modifies the dynamics. In the Bogoliubov
approximation, the amplitude of the oscillations is essentially multiplied by the amplitude of the seeds. We now study how a
seed impacts the relaxation. The situation is more difficult to simulate numerically, because we can no longer restrict the Hilbert
space to the kernel of Ŝz , and hence the dimension of the Hilbert space is ∝ N2. However, for seeds that are small enough,
the magnetization and energy of the initial states are barely changed, so that we may expect the predictions of the GGE to still
approximately hold. Our measurements are plotted in figure 49. The initial relaxation dynamic is much faster than without a
seed, but the steady state value is independent on the seed size (here, for seeds< 5% of the total atom number). Relaxation erases
the nature of the fluctuation (classical or quantum) that initiated the dynamics.

6.3.3 Steady state versus q
We have presented in Chapter 5, Sec. 5.4 the evolution of the state in the reversible regime, where the Bogoliubov approximation
holds. This regime corresponds to q > Us/N . In the present chapter, we studied the relaxation when q < Us/N (we show
more data sets on figure 53). We can sum up all results on a single universal curve np versus Nq/Us shown in figure 50. For
q > Us/N (oscillating regime) we compute the mean value np from a fit to np(t). This is motivated from the fact that in the
Bogoliubov approximation, the GGE expectation for the mean number of pair equals the amplitude of the oscillation. Numerical
simulations show that in this regime, after a very long dephasing time, the system relaxes to the GGE. For q < Us/N we directly

6This required compensation of the subway field, as explained in chapter 3.
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Figure 47: Observation of the relaxation of a nematic state of N ' 100 atoms in a negligible magnetic field. We show in (a) the
evolution of the mean (blue dots) and standard deviation (red squares) of the number of pairs. The solid lines are the results of a
numerical simulation and the dashed lines are the predictions of the GGE. In (b) we plot the entropy of the modem = +1. The
inset (c) shows the standard deviation of the magnetization, which remains essentially limited by the detection noise (gray area).
Despite the large entropy in the mode m = +1, it is almost perfectly correlated to the mode m = −1. The second row shows
the distribution of the number of pairs at different times. At short times (d, 30 ms), it resembles a thermal distribution. As the
depletion increases, np goes through a maximum, at which point (e, 100 ms) the distribution is peaked on np = 1. The number
of pairs and its coarse grained distribution then settles to a stationary “U” shape (f and g, 200 ms and 500 ms). The solid blue lines
are the results of a numerical simulation. In (g) the dashed red and dotted green lines are the predictions of the GGE and MC,
respectively. In (h) we plot the histogram of Sz at 500 ms. In that case the dashed red line corresponds to the detection noise (the
GGE prediction is a Dirac distribution). Here again, the absence of thermalization is clear.

extract the stationary value ofnp(t) from our data. We compare the results to the diagonal and GGE. Both ensembles have almost
identical predictions, except near q ' Us/N where they slightly differ. The steady state obtained after a numerical resolution of
the dynamics is not plotted, but indistinguishable from the diagonal ensemble predictions.

Equivalence of the Gibbs ensembles In figure 50, we plot with a red dashed line the expectation of the generalized canonical
ensemble (GCE), where the energy is fixed on average, and the magnetization is exactly vanishing. The corresponding density
matrix is

ρGCE =
1

Z
P̂0 exp(−βĤ)P̂0 , (6.20)

where P̂0 is the projector onto the kernel of Ŝz . Alternatively, we could have used the generalized microcanonical ensemble (GME)
defined as

ρGME =
1

Z

∑
n

P̂0|n〉〈n|P̂0 , (6.21)

where the sum runs over the energy eigenstates such thatEn ∈ [Ei − δE,Ei + δE].
In figure 51, we compare the GME, GCE and diagonal ensembles. When q ∼ Us and np ∼ 1/N , the GME prediction

becomes sensitive to the precise value of δE (we take the standard deviation of the initial state energy as δE). For sufficiently large
N , the three ensembles essentially overlap. Small differences, which seem to persist asN increases, can be observed near the point
q ∼ Us/N . Interestingly, at that point, the GCE is also slightly deviating from the diagonal ensemble (although it is closer to it
than the GME is). This deviation can be understood by looking at the curvenp(En) shown in figure 52. For q = Us/N ,np(En)
is extremely sensitive on the precise value ofEn near the energy of the initial state. However, the region of discrepancy, given by
q ∼ Us/N , shrinks asN increases and disappears in the thermodynamic limit.
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Figure 48: Universality of the relaxation dynamics. We plot the reduced number of pairs, versus the dimensionless time τ =√
2
N
Ust
~ . We vary the mean atom number from∼ 107 to 835. Us is calibrated independently each time. The solid black line is

the universal function defined in Eq. (6.11). The dotted red line is the GGE prediction.
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Figure 49: a Relaxation of the observables N̂p (open circles) and ∆N̂p (filled squares). HereN ' 2800 atoms. A small nematic
state with Nseed ' 110 atoms in the m = ±1 states is produced on purpose, prior to the quench, to seed the dynamics. The
solid blue line (resp. dotted red) is the GGE expectation 〈N̂p〉 = N/4 (resp. ∆N̂p = N/(4

√
2)). In b we show the mean value

〈N̂p〉 (open circles) and ∆N̂p after 500ms of evolution versus the size of the initial seed. The data are in very good agreement with
the GGE prediction for allNseed.

6.4 Outlooks
Dynamics of mesoscopic ensembles In this chapter, we investigated the evolution of an initial nematic state in the critical regime
q � Us/N . We observed the relaxation of the state to a steady value. However, we pointed out that relaxation only occurs
for physical observables, not for the quantum state itself. It would be interesting to observe the evolution of the state after these
observables have relaxed. Dynamics can be observed in the detailed (not coarse grained) distribution of pairs as shown in figure 45.
Alternatively, revivals of the dynamics would also attest of the continuing evolution of the state. Both experiments are technically
challenging, but may be successful with small sample of few tens of atoms or so.

Thermalization in a chaotic regime For q � Us/N , we observed the relaxation of the state to a generalized Gibbs ensemble,
and the absence of thermalization. The underlying reason is the integrability of the effective spin Hamiltonian due to its SO(2)
symmetry. In [178], a chaotic regime was shown to exist in a three-mode model. The author of [178] also shows the occurrence
of thermalization by the ETH mechanism. In that study, the three modes are supposed to correspond to the three first energy
levels of a trap, and the Hamiltonian is quite different from ours and in particular is not integrable. Yet, in our case, magnetic
field gradient or microwave dressing to the F = 2 level, could be used to break the symmetry of the Hamiltonian. It would be
interesting to see if chaotic behavior could arise from the applied perturbation, and observe the cross-over from the integrable to
the chaotic regime.
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Figure 50: Relaxed (or time averaged) number of pair versus Nq/Us. The solid black (red dashed) line is the diagonal ensemble
(GGE) predictions.
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Figure 51: Comparison between the GME (solid red line), the GCE (dashed blue line) and the diagonal ensemble (dotted black
line) for increasing atom numberN . For np . 1/N , the GME contain few (∼ 1) states within the energy window δE = ∆H ,
and its prediction are not accurate. For q ∼ Us/N , a deviation occurs for the GME (and to a lesser extent to the GCE), which
does not seem to disappear asN increases (see main text and figure 52).
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Figure 52: Mean reduced number of pairs 〈n|N̂p|n〉/N in the eigenstate n, versus its energy En, for increasing q. The blue
shaded area corresponds to the interval of width δE, used to compute the GME average. For q = 0, the curve is very smooth and
essentially constant, in accordance with the generalized ETH. For q = Us/N , the curve is, on the contrary, very peaked, and the
predictions of the GME are sensitive to δE. For q = Us/20, the curve is smooth again, but there are few eigenstates within the
interval δE. Hence, the MCE is constituted of few states, and becomes very dependent on the precise value of δE, leading to an
“unstability” of the MCE predictions in that interval. This issue disappears in the thermodynamic limit.
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solid lines are numerical resolutions of the dynamics under the SMA Hamiltonian. For all plots, the error bars correspond to the
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Chapter 7

Fragmentation of a spinor Bose-Einstein condensate

Bose-Einstein condensation (BEC) was originally introduced as a phenomenon occurring in an ideal gas, that is to say, for non-
interacting particles. As such, it is merely a statistical effect, fragile and easily jeopardized when several one-body states are near
degenerate and compete for condensation. In practice, interactions play a decisive role, and when repulsive, they typically con-
fer to spinless condensates a great robustness [44, 180]. On the other hand, attractive interactions often lead to instability and
collapse [44]. It has long been noted that spinor condensates can host an alternative remarkable scenario, called condensate frag-
mentation, characterized by the absence of a unique one-body state macroscopically occupied [39, 42, 180]. For spin-1 atoms with
antiferromagnetic interactions, the underlying microscopic mechanism is the associations of the atoms in singlet pairs.

In a classical system, one qualitatively expects interactions to favor an ordered phase, with low entropy. For instance in a ferro-
magnet, a stronger coupling between the spins facilitates their spontaneous alignment in a given direction and the appearance of a
macroscopic magnetization. Interactions have precisely the opposite effect when they drive the fragmentation of a condensate. In-
deed, in that latter case the order parameter (the number of atoms in the condensate) reduces, and may even become microscopic.
Furthermore, in many instances, interactions act to restore a symmetry spontaneously broken by the condensate [42, 43]. For
instance, we will see that in the case of an antiferromagentic spin-1 BEC, interaction favors a SO(3) symmetric singlet state. The
role of the interactions in the fragmentation of a condensate thus resemble that of thermal fluctuations in a classical system, and is
often thought in terms of quantum fluctuations. In our context, the similarity between quantum and thermal fluctuations holds
quantitatively to a large extent. Indeed, we will see how a fragmented spinor BEC (at zero temperature), can be well described
with respect to few-body observables by a thermal state, with a temperature proportional to the interaction strength. However,
thermal fluctuations results in a statistical mixture of coherent states, a separable state, while quantum fluctuations produce a
coherent superposition of coherent states, with a high degree of entanglement.

An extreme form of fragmentation can occur when the number of degeneracies becomes macroscopic. This is achieved for
instance for a charged particle moving in a magnetic field. For each eigenvalue of the Hamiltonian, there exists a macroscopic
number of degenerate states forming so-called Landau levels. For neutral atoms the same structure can be obtained by rotating
a BEC in a harmonic trap [181]. Classically, in the rotating frame, the atoms experience a centrifugal force, which counter-acts
the harmonic confinement, and a Coriolis force, analogous to the Lorentz force produced by a magnetic field. The analogy holds
also in the quantum treatment [182]. The large degeneracy occurs when the rotation is fast enough to compensate the trapping
potential. In that case, interactions lead to the fragmentation of the condensate and the formation of highly correlated many body
states. A macroscopic number of single particle states are occupied, and all signs of condensation are gone. The case of repulsive
interaction is particularly interesting, as the system is expected to be in a fractional quantum Hall state [42, 183]. However, such
states yet remain to be seen experimentally with ultracold atoms. Let us mention that similarly, the transition from superfluid to
Mott insulator observed in [21] can also be seen as an extreme form of fragmentation.

In this Chapter, we report on our realization of a fragmented condensate of singlet pairs. We will start in Sec. 7.1 with a brief
discussion of the role of interactions in Bose-Einstein condensation, before focusing in Sec. 7.2 on the case of the fragmentation
of an antiferromagnetic spin-1 BEC. We will discuss in more detail the similarities and differences between thermal and quan-
tum fragmentation, and the role played by entanglement in the latter case. This study highlights the peculiar nature, but also
the fragility of quantum fragmentation. We will detail in Sec. 7.3 the methods that we have used to produce a fragmented state
and report our observation in Sec. 7.4. We performed the full tomography of the state of the system, presented in Sec. 7.5. The
reconstruction provides new insight on the nature of the many-body state and demonstrates the role played by entanglement in
the condensate fragmentation.

This work has been published in [184].
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7.1 Fragmentation and the role of the interactions
Definitions A first extension of the definition of BEC to the case of interacting particles was proposed in [74], based on the
eigenvalues of the single-particle density matrix ρ(1). We will use the following definitions1 [185]

• The ensemble forms a condensate if ρ(1) has at least one eigenvalue of order one.

• The ensemble forms a single condensate if ρ(1) has a single eigenvalue of order one.

• The ensemble forms a fragmented condensate if ρ(1) has several eigenvalues of order one.

7.1.1 Protection of a scalar BEC
Ideal gas Let us first consider an ensemble of non-interacting bosons in a box-potential. The single-particle eigenstates are the
plane waves with momentum k and energies εk = (~k)2/(2M). The many-body Hamiltonian is

Ĥ0 =
∑
k

εkâ
†
kâk , (7.1)

where â†k creates an atom in state |k〉. The equilibrium state is most conveniently described within the grand canonical ensemble.
Let T be the temperature (β = 1/kBT ) and µ the chemical potential. The mean occupation of state |k〉 is [26]

nk =
1

eβ(εk−µ) − 1
, (7.2)

where µ is obtained from N =
∑

k nk. As µ → 0, n0 diverges, and this term is let aside from the sum. The rest of the sum is
then replaced by an integral. In three dimensions it saturates at a critical temperature Tc such that∫

dερ(ε)
1

eβcε − 1
= N , (7.3)

where ρ(ε) is the density of state at energy ε (in three dimension, ρ(ε) ∝ √ε). Below Tc, the chemical potential µ equals the
ground state energy, atoms accumulate in the ground state and the ensemble forms a single condensate [26].

This scenario of condensation is particularly simple, because the ground state is non-degenerate. However, in the thermody-
namic limit, the gap between the ground state and the first excited state vanishes. In such situations, interactions play an important
role in determining the structure of the many body state.

Interacting scalar BEC in a box We first briefly study the situation of atoms with contact interactions in a box potential. The
Hamiltonian is Ĥ = Ĥ0 + Ĥint, with

Ĥint =
U

2

∑
k,k′,q

â†k−qâ
†
k′+qâkâk′ . (7.4)

We focus on repulsive interactions, ie U > 0. Let us consider a trial state of the form∝ ∏k â
†nk

k |vac〉. In the expression of the
energy, we have two types of terms, the “Hartree” terms for q = 0 and if k 6= k′ the “Fock” or exchange terms q = k−k′. This
yields

〈Ĥint〉 =
U

2

∑
k,k′

nknk′(2− δk,k′) . (7.5)

Thus, the interaction energy is twice as larger for atoms in different momentum states. For repulsive interactions the energy is
minimized by having all atoms in the same momentum state (within our ansatz), i.e. for a single BEC. The energy cost for taking
n1 atoms out of the BEC is at leastn1U (neglecting the kinetic energy). It thus costs a macroscopic amount of energy to fragment
the condensate, and here, repulsive interactions strongly favor single condensation [180, 185].

In the above calculation, we have used trial states which are not eigenstates of the interaction Hamiltonian Eq.(7.4). For weak
interactions, a more refine treatment would rely on Bogoliubov theory [26]. This is standard and close to what we have presented
in Chapter 2. The result is a small depletion of the condensate, function of the adimensionate parameter

√
na3

s , where n is the
density of the gas and as the scattering length characterizing the interaction strength. The depletion is a function of the density,
which is an intensive quantity, and hence the condensate is not fragmented as long as the Bogoliubov treatment is valid. This is
usually the case in dilute gases, where na3

s � 1, and the quantum depletion is typically very small.
With this brief discussion, we wanted to emphasize that condensate fragmentation is not a typical phenomena occurring as

soon as there are interactions. We will now explore situation where fragmentation does occur.
1Often in the literature, ρ(1) is normalized to N . We take it normalized to 1, because we will investigate higher order reduced density matrix and it is more

convenient to have them all normalized to one.
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7.1.2 Fragmentation of a two-modes BEC
Given the previous discussion, one expects attractive interactions to favor fragmentation. It is indeed the case, but the theoretical
treatment is more involved (see e.g. [43]). From an experimental point of view, attractive BECs suffer from three body recom-
binations (resulting in losses), which strongly reduces the lifetime, and make it challenging to observe the equilibrium state. For
simplicity we turn to the situation where two degenerate modes are competing for Bose-Einstein condensation. A generic Hamil-
tonian for the interaction is

Ĥint =
U

N
n̂1n̂2 , (7.6)

where n̂i is the number operator for the mode i = 1, 2. This model may be used for instance to describe an ensemble of atoms
carrying a pseudo-spin 1/2 [180], or “scalar” interacting atoms, confined in the double well trap [42].
ForU > 0, we recover the situation described above: a single condensate where all atoms are in one mode is strongly favored. On
the other hand, forU < 0 the ground state is the “twin-Fock state” (TFS) withN/2 atoms in each mode (we assumeN even for
simplicity). The single particle density ρ(1)

i,j = 〈â†i âj〉/N is

ρ(1) =
1

2

(
1 0
0 1

)
, (7.7)

and the condensate is fragmented. The energy of the TFS is ETFS = UN/4. The non-fragmented BEC which minimizes the
energy Eq. (7.6) corresponds to the coherent state

|φ〉 =
1√
N !2N

(
â†1 + â†2

)⊗N
|vac〉 . (7.8)

It has an energyEφ = U(N − 1)/4. Thus the energy difference with the actual fragmented ground state is only of order∼ U .
This contrasts with the case U > 0, where the cost for fragmentation is of order ∼ NU . The origin of this difference is easily
understood by looking at the spectrum of the Hamiltonian (7.6) plotted in figure 54.
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Figure 54: Spectrum of the Hamiltonian (7.6) for N = 20. For U > 0 (a), the ground state corresponds to a single condensate
with n1 = 0 or n1 = N . A large gap separates it from the first excited state. ForU < 0 (b), the ground state corresponds to the
twin-Fock state with n1 = N/2. The condensate is fragmented but this state is fragile, it is separated from the first exited states
by a very small gap.

This model is discussed further in [42], where the effect of a small coupling between the two modes is investigated. As our
calculation of the energy scales suggests, fragmentation is found to be very fragile against such perturbation. We will now focus
on the fragmentation of a spin-1 BEC which shows a very similar behavior.

7.2 Fragmentation of a spin-1 BEC
7.2.1 Hamiltonian and ground state
We recall here some important results of chapter 2. In the single-mode approximation (SMA), all atoms occupy the same spa-
tial mode. The Hamiltonian for the spin, is the sum of the quadratic Zeeman energy (QZE) energy and the antiferromagnetic
interaction energy

ĤSMA = −qN̂0 +
Us
2N

Ŝ2 . (7.9)

• For q/Us → +∞, the ground state is the nematic state |N : ez〉 = |m = 0〉⊗N , which constitutes a single condensate.

• For Us/N2 � q, the condensate is slightly depleted and well described by a Bogoliubov approximation, which yields
Np '

√
Us/(8q). The depletion is thus independent onN and we still have a single condensate.
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• For q . Us/N
2, the Bogoliubov approximation breaks down and the condensate is fragmented.

Let us focus for simplicity on the situation q = 0. The family of coherent nematic states |N : Ω〉, obtained by rotation of
|N : ez〉, is degenerate and minimizes the mean-field energy. This large degeneracy arises from the fact that the single particle states
break the SO(3) symmetry of the Hamiltonian. This symmetry drives the fragmentation of the BEC. Indeed, the requirement
that ρ(1) commutes with all rotation matrices implies that ρ(1) is proportional to the identity (Schur’s lemma)

ρ(1) =
1

3

1 0 0
0 1 0
0 0 1

 , (7.10)

and the condensate is fragmented [40–42].
More generally, the eigenstates of the Hamiltonian Eq.(7.9) at q = 0 are the angular momentum states |N,S,Mz〉, where S ∈
[0, N ] is an integer that has the same parity asN in order to satisfy the exchange symmetry andMz is an integer in [−S, S]. The
spectrum is

E(N,S) =
Us
2N

S(S + 1) . (7.11)

For simplicity, let us focus on the situationN even. The so-called singlet state with vanishing spin S = 0 is the ground state.
We point out that fragmentation occurs for very small QZE, q . Us/N

2. As the previous section, we observe that fragmen-
tation is a very fragile effect, which does not exist in the thermodynamic limit. We will see in the following Sections how the atom
losses and thermal fluctuations may also spontaneously break the SO(3) symmetry and modify the nature of the fragmented
state.

7.2.2 Symmetry breaking description
The singlet state can be conveniently written as a superposition of nematic coherent states. We first review some important prop-
erties of the latter. The nematic state aligned along the quantization axis z is the state with all atoms inm = 0, |N : ez〉 = |0〉⊗.
By rotation in spin space, we obtain the state aligned along Ω = (sin θ cosφ, sin θ sinφ, cos θ), expressed as

|N : Ω〉 =
1√
N !

(
− 1√

2
sin θe−iφâ†+1 + cos θâ†0 +

1√
2

sin θeiφâ†−1

)N
|vac〉 . (7.12)

Let us write Ω±1 = ∓ 1√
2

sin θe∓iφ and Ω0 = cos θ. The action of the annihilation operators on the nematic coherent state
takes a simple form:

âm|N : Ω〉 =
√
NΩm|N − 1 : Ω〉 . (7.13)

The nematic states form an overcomplete basis of the Hilbert space of symmetric states ofN spin-1 particles [50,186]. The overlap
between two nematic states is (see appendix B)

〈N : Ω′|N : Ω〉 = (Ω′ ·Ω)N . (7.14)

In the largeN limit, it is sharply peaked on Ω′ = Ω. This quasi-orthogonality of the nematic states makes them very convenient
to compute the expectation value of few-body operators. Let us consider a k-body operator in normal order

Ô(k) = â
†k′+
+1 â

†k′−
−1 â

†k′0
0 â

k+
+1â

k−
−1â

k0
0 , (7.15)

with
∑
k′m =

∑
km = k and k � N . Using Eq. (7.13) the matrix elements of Ô(k) in the nematic state basis are

〈N : Ω′|Ô(k)|N : Ω〉 = O(k) (Ω′,Ω) (Ω′ ·Ω)N−k . (7.16)

with

O(k) (Ω′,Ω) =
N !

(N − k − 1)!
Ω
′∗k′+
+1 Ω

′∗k′0
0 Ω

′∗k′−
−1 Ω

k+
+1Ωk00 Ω

k−
−1 . (7.17)

We now come back to the singlet state |N, 0, 0〉. Due to its rotational invariance, it has the same overlap with all nematic states
and can be written as [186]

|N, 0, 0〉 =

√
N

4π

∫
d2Ω|N : Ω〉 . (7.18)
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The expectation value of Ô(k) in the singlet state is

〈Ô(k)〉sing =
N

(4π)2

∫∫
d2Ωd2Ω′O(k) (Ω′,Ω) (Ω′ ·Ω)N−k . (7.19)

The termO(k) (Ω′,Ω) varies significantly when θ orφ run through∼ π/k. On the other hand, the scalar product (Ω′ ·Ω)N−k

varies on a scale of∼ π/(N − k). For k � N , we can use the stationary phase approximation, and replace (Ω′ ·Ω)N−k by a
Dirac distribution centered on its maxima Ω′ = ±Ω [186]

(Ω′ ·Ω)N−k ' 2π

(N − k) sin θ
(δ(θ − θ′, φ− φ′) + δ(θ + θ′ − π, φ− φ′ ± π)) (7.20)

This approximation entails an error of order 1/N . It yields

〈Ô(k)〉sing '
1

4π

∫
d2ΩO(k) (Ω,Ω) , (7.21)

up to terms of orderNk−1 or smaller. This expression can be rewritten as

〈Ô(k)〉sing ' Tr(ρsbÔ(k)) (7.22)

where

ρsb =
1

4π

∫
d2Ω|N : Ω〉〈N : Ω| , (7.23)

corresponds to a (approximate) symmetry breaking description [43]. Indeed, although ρsb is clearly invariant upon rotations, a
possible interpretation is that in each realization of the experiment, the system is in a symmetry-breaking state |N : Ω〉, but with a
direction Ω picked randomly. Note that such an interpretation would apply to any (overcomplete) basis in which ρsb is diagonal
(for instance the |N,S,Mz〉 basis) but with a very different meaning, and thus it should not be taken literally.

Deviation to the symmetry breaking description In table 7.1, we compare the expectation values of a few observables, in the
singlet state given by Eq. (7.18) and the approximate symmetry breaking description (SBD) given by Eq. (7.23).

• For the mean population and spin, the SBD gives the exact value.

• For the second moment of the population (or for the variance), the SBD gives the correct leading term of order N2, but
misses a term orderN .

• For the mean spin square, the SBD gives the leading term of order N2, which is vanishing. The next term, of order N is
non-vanishing for the SBD and corresponds to the shot-noise of the nematic state, equals to 2N (see Chapter 2).

• We also look at the mean value of the projector Π̂0 = |N : ez〉〈N : ez| onto the state with all atoms in 0. The SBD is
wrong by a factor of two. This is due to the fact that Π̂0 = â†N0 âN0 /N ! is a N -body observable, and thus, in the integral
of Eq. (7.19), the term (Ω′ ·Ω)N−k = 1 can certainly not be replaced by a Dirac distribution2.

N̂0 Ŝ ∆N̂2
0 Ŝ2 Π̂0

Singlet N
3 0 4N2

45 + 12N
45 0 ' 1

N

SBD N
3 0 4N2

45 2N ' 1
2N

Table 7.1: Comparison between the expectation values of a few observables in the singlet state and in the approximate symmetry-
breaking description. For the projector onto the nematic state |N : ez〉, we only give the leading term in the limitN � 1, since
this is enough to distinguish the two states.

We want to be experimentally able to clearly distinguish the singlet state from the SBD. By the definition of the latter, this
cannot be achieved through a “rough” measurement of our typical observables (i.e. population or spin). A precise measurement
of the spin appears as clear-cut, but requires a high counting resolution, below the shot-noise to exclude the SBD, and at the single
atom level to identify unambiguously the singlet state.

2The factor of two difference comes from the well defined parity of the singlet state, which only has overlap with states with even atom number in m = 0
populated because of the vanishing magnetization. See the appendix B for the expression of the singlet in the number basis.
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Measurement of the singlet state The value of 〈Π0〉 ' 1/N may appear odd at first sight. Indeed, given the single particle
density matrix Eq. (7.10), an atom has a-priori a probability 1/3 to be in the state m = 0 (cf first column of table 7.1), and thus,
one could expect the probability to measure all the atoms in that state to be 1/3N , much smaller than 1/N . The discrepancy comes
from the indistinguishability of the particles, which considerably reduces the number of configuration for typical situation, such
asN0 = N/3, and thus favors “extreme” situations, such asN0 = N .

Further insight comes from the study of the evolution of the singlet state over a measurement discussed in [186]. This problem
is closely related to the measurement of the relative phase of two independent BECs [187]. The authors of [186] conceived a
thought experiment, where the spin state of k individual atoms (k � 1) leaking from a BEC, is measured along different axes.
First, they consider a single BEC in the nematic state |N : Ω〉, they show that this protocol allows to determine the alignment Ω

of the state, with an accuracy∝ 1/
√
k. As for a singlet state, the measurement effectively projects the singlet onto a nematic state

with a well defined alignment, picked at random. If the measurement is not read (e.g.due to losses), a singlet state is thus projected
onto the SBD (withN −k atoms). At the beginning of the present section, we have emphasized the fragility of the singlet state to
very small (q > Us/N

2) QZE. Atom losses appear as another symmetry-breaking mechanism, but here the preferred direction is
chosen by the measurement process, completely randomly. The overlap with the SBD increases with the number k of lost atoms,
independently on the total number of atoms N 3. On the other hand, the loss rate is typically ∝ N (or larger) and thus, the
“bigger” the singlet, the more fragile it is.

7.2.3 Thermal fragmentation
Symmetry breaking description and thermal fluctuations Let us express the SBD in the spin state basis. Because of its SO(3)
symmetry, it is proportional to the identity within each S subspace. Thus we only need to compute the matrix elements (that
must be independent onMz)

〈N,S,Mz|ρsb|N,S,Mz〉 =
1

4π

∫
d2Ω|〈N,S,Mz|N : Ω〉|2 . (7.24)

In the appendix B we show (see also [188])

〈N : Ω|N,S,Mz〉 '
√

4π

N
e−

S2

4N YS,Mz (Ω) , (7.25)

where YS,Mz
are the spherical harmonic. This expression is valid forN � 1 and S � 1. Using it in Eq. (7.24), we obtain

〈N,S,Mz|ρsb|N,S,Mz〉 =
1

N
e−

S2

2N . (7.26)

at q = 0, the Hamiltonian (7.9) can be written as

ĤSMA =
U2
s

2N

∑
S,M

S(S + 1)|N,S,Mz〉〈N,S,Mz| . (7.27)

Up to the approximation S � 1 (validated a-posteriori), the SBD can be seen as a thermal state

ρsb '
1

N
exp

(
−ĤSMA

kBTsb

)
, (7.28)

with an effective temperature Tsb = Us/kB ∼ 1 nK. This results shows the apparent similarity between quantum and thermal
fluctuations.

Canonical ensemble Let us consider a general thermal state, within the SMA, so that the spatial degree of freedom is effectively at
zero temperature, while the spin is at an effective temperature Tspin. Such a situation is an idealized picture, but is not completely
unrealistic. It describes a cloud out of equilibrium, for which the spin and spatial degrees of freedom have different effective
temperatures, and are weakly coupled so that equilibration takes a very long time. The state of the system, given the Hamiltonian
(7.9) is (in the canonical ensemble)

ρCE =
1

ZCE
exp

(
− ĤSMA

kBTspin

)
, (7.29)

3This is another way to understand how “extreme configuration” such asN0 = N are more frequent than expected: once k � 1 atoms have been measured
in saym = 0, the state is almost perfectly projected onto |0〉⊗N and theN − k � k remaining atoms are inm = 0.
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Using a continuum approximation (valid for kBTspin � Us/N ), the partition function can be calculated

ZCE '
1

2β′
(1− e−β′N2

) , (7.30)

where β′ = Us/(2NkBTspin). From this we can compute the total spin

〈Ŝ2〉 ' 1

β′
− N2

eβ′N2 − 1
. (7.31)

The condition for having mostly the singlet populated reads Tspin � Us/(NkB) ∼ 10 pK, while below shot noise fluctuations
of the spin require Tspin < Tsb ∼ 1nK. This is much colder than the (global) temperatures typically achieve in ultra-cold gases
(∼ 100 nK). However, using a protocol detailed in Sec. 7.4, we are able to prepare a sample with very low Tspin. We do not know
a-priori the precise value of Tspin at the end of the experiment, and cannot use Eq. (7.29) to make a quantitative prediction (we
will extract Tspin ' 30.7± 4.6 pK from a fit to our data in Sec. 7.5).

7.2.4 Singlet state and entanglement
An essential difference between thermal and quantum fragmentation comes from the fact, that in the latter case, the BEC is in a
highly correlated state. In this section we present how to reveal the entanglement.

Squeezing parameter As we have seen is Chapter 2, Sec. 2.4.1, for a separable state ofN indistinguishable spins 1, 〈Ŝ2〉 ≥ 2N .
Thus, we can introduce the following squeezing parameter4

ξ2
s =
〈Ŝ2〉
2N

, (7.32)

which reveals entanglement when ξs < 1. For the singlet state ξs = 0.

Block entanglement The squeezing parameter Eq.(7.32) has the advantage of being straightforward to extract from our measure-
ments. It is well suited to detect entanglement of low spin states, but it does not constitute a general measure of entanglement (for
instance it does not detect entanglement for the twin-Fock state or TMSV). We have introduced in Chapter 2 a generic measure
of entanglement, based on the partitioning of the ensemble into two “blocks” containing n andN −n atoms. The term “block”
comes from models with localized spins [70] (e.g a block can be n adjacent spins) but the situation is less intuitive in the case of
itinerant spins. Yet, the reduced density matrix is perfectly well defined, see e.g. [73]. In the appendix F, we propose a derivation
of ρ(n) which gives a simple physical picture. We imagine that the atoms are initially confined in a single spatial modeA, are subse-
quently allowed to tunnel into another spatial modeB. For instance,A andB can be the two wells of a trap. They constitute the
two blocks, and the partial trace is taken over the modeB. After selecting a given partition n, we obtain the following normalized
reduced density matrix (expressed in the number basis)

ρ
(n)j+,j−
i+,i− =

(
N

n

)−1

〈P̂ (n)†
i+,i− P̂

(n)
j+,j−〉 , (7.33)

where

P̂
(n)
i+,i− =

â
i+
+1â

i−
−1â

n−i+−i−
0√

i+!i−!(n− i+ − i−)!
. (7.34)

The reduced density matrix has a clear physical meaning, it fully determines the probability distribution of any measurement
performed within a block. For a pure state, a measure of entanglement is given by the Von-Neumann entropy of the reduced
density matrix

Sn = −Trn(ρ(n) ln ρ(n)) . (7.35)

A single BEC is not entangled. Let us consider n = 1. A “quantum fragmented” BEC (ie at T = 0) is by definition entangled,
and for this partitioning, the singlet state has maximal entanglement.

4This belongs to the family of squeezing parameters used to detect correlations between the spins (see [154] and Chapter 5). It is not directly linked to the
metrological gain of an interferometric experiment.
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In practice, we reconstruct the full state ρ (see Sec. 7.5) and compute ρ(n) numerically from Eq. (7.33). For a perfect singlet
state, ρ(n) can be computed analytically. We start from an expression of the full density matrix in the nematic state overcomplete
basis

ρ =
N

(4π)2

∫
d2Ωd2Ω′|N : Ω〉〈N : Ω′| (7.36)

We then assume that the atoms are distributed between two modesA andB so that the state becomes5

ρ =
N

(4π)2

∫
d2Ωd2Ω′|n : Ω〉A|N − n : Ω〉BA〈n : Ω′|B〈N − n : Ω′| (7.37)

We obtain the reduced density matrix by tracing over the modeB. It is convenient to use the spin state basis, the overlap between
these states and the nematic states is given in Eq.(7.25) (see App.B and [50]). We obtain

ρ(n) =
N

(4π)2

∑
S,M

fN−nS

∫
d2Ωd2Ω′Y ∗S,M (Ω)YS,M (Ω′)|n : Ω〉〈n : Ω′| (7.38)

where fkS ' [4π/k exp(−S2/(2k)). Furthermore, using

|nSM〉 =
1√
fnS

∫
dΩYSM (Ω)|n : Ω〉 , (7.39)

we arrive to

ρ(n)
s ' N

(4π)2

∑
SM

fnS f
N−n
S |nSM〉〈nSM | , (7.40)

' N

n(N − n)
exp

(
− N

n(N − n)

S2

2

)
(7.41)

We recognize the expression of a thermal state

ρ(n) ' 1

Zn
exp

(
−ĤSMA

kBTn

)
, (7.42)

where ĤSMA is given by Eq. (7.9) with q = 0 and

Tn =
Us
kB

n

N

(
1− n

N

)
. (7.43)

The partition function isZn = NkBTn/Us. Then entanglement entropy is

Sn = −Tr(ρ(n) ln ρ(n)) , (7.44)

' lnZn +
1

kbTn
〈ĤSMA〉 , (7.45)

' lnZn −
1

ZnTn

dZn
d(1/Tn)

, (7.46)

' ln
(
n
(

1− n

N

))
+ 1 . (7.47)

The function Sn is non monotonic (see figure 55). This result strongly contrasts with the extensivity of the entropy of classical
systems (i.e. at large temperature). Note that an isotropic state is fully represented by the spin distribution,

Pn(S) =
1

Zn
S(S + 1) exp

(
−UsS(S + 1)

2NkBTn

)
. (7.48)

We compare these analytical results with a numerical calculation using Eq. (7.33) on figure 55 and we observe an almost perfect
agreement.

5A linear coupling betweenA andB would result in a binomial distribution of the atom number in these two modes which does not correspond to the state
written in Eq.(7.37). The state obtained from Eq.(7.37) after partial tracing overB corresponds to the thermal state of Eq. (7.42) described within the canonical
ensemble. The state obtained by coupling linearlyA andB without selecting a well defined atom number corresponds to the grand canonical description of the
same (in the thermodynamic limit) state.
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Figure 55: The main panel shows the entanglement entropy (open blue squares) and fitted temperature (filled red circles) of the
reduced density matrix ρ(n) of a singlet state with N = 100 atoms, computed numerically using Eq. (7.33). The solid lines are
the analytical results, corresponding to the thermal distribution Eq. (7.42). The panels on the right show the exact distribution
Pn(S) (dots), and the thermal distribution (solid line) for various n.

7.3 Experimental protocol

Fragmented BECs have been the subject of many theoretical investigations (see e.g. [42] for a brief review). In terms of experi-
ments, we should distinguish two types of approaches. A BEC can be fragmented dynamically, for instance after a quench into
a regime of instability. This includes the type of experiments discussed in Chapters 5 and 6. Here we focus on situations where
quantum fragmentation is observed at equilibrium. This is arguably more challenging and there are few experimental demonstra-
tions reported in the literature. For spinor BECs, we are only aware of the work published in [159]. In this experiment, using an
adiabatic following of the ground state of a spinor BEC from q ∼ 2Us (the GS is near the nematic state) to q ∼ −2Us (the GS
is near the TFS6) a fragmented BEC with a high degree of entanglement is produced. More precisely, they measure a squeezing
parameter ζ2

s = −11 dB and an entanglement depth of 910+9900
−450 atoms (one standard deviation) out of 12000 atoms. However,

the adiabaticity is not perfectly fulfilled, and they estimate that the first∼ 500 energy eigenstates have comparable overlaps with
the final state.
When one tries to produce a fragmented state such as the TFS or the singlet state, an inherent difficulty comes from the near
degeneracy of the low-lying eigenstates, the consequent extreme sensitivity of the system to technical fluctuations, and the long
preparation time required to insure adiabaticity. More precisely, in the case of our experiment, after the discussion of Sec. 7.2, we
arrive at the following specifications (forN ∼ 100 andUs/h ∼ 20 Hz)

• A small QZE q . Us/N
2 requires a magnetic field at the milliGauss level.

• The spin temperature Tspin . Us/(NkB) has to be on the order of a few tens of picoKelvin or below.

• The number of atoms lost between the preparation and observation of the state has to be kept of order one or below. For
a loss rate τ (assuming one-body losses), the duration of the experiment must be t . τ/N , on the order of a second.

• Finally, in order to distinguish the low spin states, the spin has to be measured with an accuracy near the single atom level.

The atom number is a strong limiting factor, which can be understood from the fact that fragmentation takes place near a phase
transition, in a critical region that shrinks and disappears at the thermodynamic limit. Compared to the work reported in [159], we
decided to work with much smaller condensates, withN ∼ 100 atoms, in order to prevent the production of energy excitations7.
In the rest of this section, we detail the methods we use to produce and observe a fragmented state.

6The atom used in [159] is Rubidium, which has ferromagnetic interactions. Thus the TFS is the ground state only because the constraint of vanishing
magnetization. The absolute ground state is doubly degenerate and corresponds to the polarized states with all atoms inm = ±1 [28].

7We are also aided by the fact that sodium atoms have spin-dependent interactions significantly larger than Rubidium.
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7.3.1 State preparation
Direct evaporative cooling at q ∼ Us/N

2 would not lead to the target state, since it relies on atom losses (which are a source of
decoherence) and saturates at low densities at temperature orders of magnitude too large for our purposes. Instead, we prepare a
single BEC in a large magnetic field, with all atoms in m = 0. We are able to create this state with very low spin entropy, and it
thus constitutes a good starting point for an adiabatic ramp towards the phase transition, as sketched in figure 56. More precisely,
the sequence we use is the following:

1. After evaporative cooling in a large bias magnetic field of Bi = 1 G (q/~ ' 300 Hz), we have a BEC with about 2000
atoms in the statem = 0. Residual thermal atoms in them = ±1 states are removed using spin-filtering.

2. To reduce the atom number, we perform an almost π/2 rotation which transfers most of the atoms inm = ±1, and then
we “spin-filter” again. We are left with about 104± 15 (one standard deviation) atoms inm = 0.

3. In order to increase the density and thereforeUs, we recompress the trap. The trap frequencies at the end of the compression
are about (2, 2.8, 2) kHz andUs/~ ' 20 Hz.

4. Finally, we ramp the magnetic field down toBf ' 4 mG (q ' 4 mHz) in tf = 1 s.

time t

q
u
.
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= |0〉
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Figure 56: The experiment reported in this chapter consists in an adiabatic following of the ground state of a spinor BEC. The
ramp starts with qi � Us, so that the ground state is essentially the nematic state with all atoms inm = 0, and stops at qf � Us
where the ground state constitutes a fragmented BEC. The latter is a highly entangled state, which can be viewed as a condensate
of singlet pairs.

Adiabatic ramp The magnetic field ramp is designed to fulfill the best the adiabaticity criterion, which is achieved when the
energy gap ∆E between the ground state and the first excited state verifies∣∣∣∣d∆E

dt

∣∣∣∣ = ε
∆E2

~
, (7.49)

where ε is a number that characterizes the deviation to adiabaticity, and in that respect should be as small as possible. For almost
the whole ramp we have Us/N2 � q � Us, such that the Bogoliubov approximation applies and gives ∆E ' 2~ωB ∝ B.
The factor 2 comes from the conservation of Ŝz , which imposes to create excitations by pairs (one in each Bogoliubov mode, see
App. C). Integration of Eq.(7.49) yields (forBi � Bf )

1

B(t)
− 1

Bi
∝ εt (7.50)

and thus

B(t) =
Bi

1 + Bit
Bf tf

, (7.51)

and ε ' 1/(2ωf tf ). In practice, we use Bi ' 1 G (q/h ' 277 Hz) so that q � Us and the initial state (all atoms in m = 0)
is very close to the ground state. The ramp duration tf is given by a compromise between the adiabaticity requirement and
decoherence (e.g. due to atom losses). For a given tf there is an optimal Bf , which results from a compromise between the
adiabaticity requirement and the distance to q = 0. Experimentally we find thatBf = 4 mG and tf = 1 s are optimal (in order
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to minimize the total spin). With these parameters, ωf = 2π × 0.4 Hz and ε = 0.2. We simulated numerically the evolution
of the state over the ramp. We show the results in figure 57 and compare them to the ground state expectation. We see little
deviations, indicating that the adiabaticity criterion is well verified. The simulation shows that the state of the system at the end
of the ramp is close to the singlet state (the fidelity is > 80 %). However, we expect deviations due to atom losses and to heat
coming from the spatial degrees of freedom. The lifetime of the cloud is limited by one-body losses with a time scale of τ ' 100 s,
thus, approximately one atom is lost on average during the ramp. The coupling to the spatial mode is more difficult to estimate
a-priori. In Sec. 7.4.2 we will comment on an observation of the decoherence in our sample.
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Figure 57: a Energy gap between the ground state and the first excited state of the SMA Hamiltonian Eq. (7.9) versus the QZE q.
The solid line is the result of a numerical diagonalization, the dashed line corresponds to the Bogoliubov approximation. b Sim-
ulated evolution of n0 (blue line) and ∆n0 (red line) over the ramp, versus q(t). The dotted line corresponds to the expectation
for the instantaneous ground state. c Evolution of the total spin over the ramp (solid line) and in the ground state (dotted line).

7.3.2 Diagnostic of the final state

We use fluorescence imaging (see Chapter 3) to count the population in each Zeeman state. After optimization of the integration
region and of the MOT beam alignement, we measure a noise given in table 7.2. The imaging sequence requires a large magnetic

∆N+ ∆N0 ∆N−
1.2 1.4 1.1

Table 7.2: Detection noise on empty images in number of atoms.

field for the Stern-Gerlach separation. At the end of the adiabatic ramp, we quench the magnetic field to a value of ∼ 2.5 G.
The QZE q ∼ 1.7 kHz is much larger than Us so that spin-mixing dynamics is frozen, and the populations are conserved. We
have verified this experimentally by scanning the duration of the ramp of the magnetic field. For short enough ramp, we did not
observe any evolution of the populations.

The measurement of the populationN0,±1 gives us access to the value of the spin along the quantization axis, Sz = N+1 −
N−1. In order to measure the other spin components, we use a resonant radio-frequency oscillating field to couple the Zeeman
sublevels. However, at the final field of 4 mG, for which fL = 2.8 kHz, we are not able to realize Rabi oscillations with a good
contrast. This is due to fluctuations of the ambient magnetic field on the order of∼ 1 mG (see Chapter 3) which are not negligible
compared to the bias field. To overcome this issue, we quickly (in 6 ms) ramp the magnetic field up to 50 mG. Then fL = 35 kHz
and q/~ = 0.7 Hz. Keeping a small QZE is important in order to conserve the spin until the rotation is performed (i~Ŝν =

−q[Ŝν , N̂0]). We verified numerically and experimentally (scanning the intermediate field and the duration of the ramp) that it
is indeed the case. Once the rotation is performed, we proceed as described above with Stern-Gerlach imaging.
The axis of rotation is determined by the phase of the RF-field. Let it be the y axis. A π/2 rotation maps the component Ŝx
onto Ŝz . In order to measure the Ŝy , we insert a rotation around the z-axis before the rotation around the y-axis. This is achieved
by simply adding a delay before the RF pulse. Indeed, the bias field is along z by definition, and therefore, the spin is naturally
precessing around that axis.
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7.4 Observation of a fragmented BEC

7.4.1 Evolution over the ramp
We report in figure 58 a our measurement of the mean value and standard deviation of the reduced populationn0 = N0/N over
the ramp. As we decrease the QZE q, the condensate gets depleted, n0 decreases and displays super-poissonian fluctuations. At
the end of the ramp, the population in the three spin states are comparable, n0 ' 0.4, n+1 ' n−1 ' 0.3. Concerning the spin
observables (Fig.58 b), the measured mean value is compatible with zero all over the ramp and we focus on the standard deviation
∆Sz . It is initially limited by the imaging noise and barely increases over the ramp. On the other hand, ∆Sx steadily decreases
and eventually reaches a value of 2.6 atoms, significantly below the initial shot noise level. We observe good qualitative agreement
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Figure 58: a Evolution of the mean reduced population n0 (blue dots) and its standard deviation (red squares) showing super-
Poissonian fluctuations. This contrasts with b the standard deviation of the transverse spin Sx (blue dots) that decreases below
the shot noise while the longitudinal spin Sz (red squares) remains close to the imaging noise level (gray area). The solid lines are
the value of the observable in the ground state of the Hamilitonian Eq. (7.9). Error bars represent two standard errors.

with the theory, but we notice a systematic deviation for n0 and ∆Sx, especially towards the end of the ramp. Two effects could
explain for this discrepancy: atom losses and heating. We now estimate the role of these effects by looking at the evolution after a
hold time.

7.4.2 Lifetime and decoherence
We present in figure 59 the long-time evolution of the fragmented state, while the magnetic field is held at its final value of 4 mG.
On a timescale of∼ 20 s, the super-Poissonian fluctuations of the population shrink, and saturate at a value compatible with shot-
noise 1/

√
N ' 0.1. Simultaneously, the standard deviations of both spin-components increase and reaches the shot-noise level at

∼ 20 s. Our lifetime τ ∼ 100 s is mostly limited by one-body losses due to collisions with atoms of the ambient vapor inside the
science chamber. Such losses are isotropic, and for 1� Nloss � N , we expect the total spin to evolve as ∆Ŝ2 ' 2Nloss (the shot-
noise) and each spin component as ∆S2

ν ' 2Nloss/3. As shown in figure 59, this simple model of decoherence underestimates the
growth of the spin. Moreover, it cannot account for the decrease of ∆n0. Indeed, as explained in Sec. 7.2 (see also [186]), as long
as the spatial degree of freedom remains condensed, atom losses are expected to lead to a statistical mixture of spin coherent states,
which exhibits super-Poissonian fluctuations. The decrease of ∆n0 may be due to heating and a melting of the BEC (possibly
driven by intensity fluctuations of the dipole trap).

7.4.3 Characterization of the state at the end of the ramp
Sensitivity to rotations We now focus on the state of the cloud at the end of the ramp. We show in figure 60 the evolution of
n0(φ) and ∆Sz(φ) over a rotation of the spin by an angle φ around the y-axis. We compare the fragmented state obtained after
the ramp to a nematic state. The latter shows large amplitude oscillations for both observables. In contrast, the fragmented state
is fairly insensitive to rotations. This can be understood as a consequence of theSO(3) symmetry of the Hamiltonian Eq. (7.9) at
q = 0. Yet, due to imperfection in the state preparation, we see small residual oscillations. In particular, ∆Sz(π/2) = ∆Sx(0) is
maximal as expected. Indeed, before the ramp, ∆Sx is shot noise limited, while ∆Sz is vanishing. We have checked the isotropy
of the spin in the (xy)-plane by performing a rotation around the quantization axis z prior to a π/2 rotation around the y-axis.

Using the parameter defined by Eq. (7.32), we measure at the end of the ramp S2
z ' 3.55 ± 0.36, S2

x ' 6.36 ± 0.70, thus
(assuming S2

y = S2
x), 〈Ŝ2〉 ' 16.27 ± 1.05 and ξ2 ' 0.078 ' −11.1 dB, with no removal of the imaging noise. From a

reconstruction of the state (described in Sec. 7.5), which includes the detection noise, we extract 〈Ŝ2〉 ' 9.91 ± 0.88, yielding
ξ2 ' 0.048 ' −13.2 dB.
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Figure 59: Long time evolution of the fragmented condensate. (a,b) Evolution of the mean reduced population n0 (blue circles)
and its standard deviation (red squares) before (a) and after (b) rotation. (c,d) Evolution of the standard deviation of the spin
component Sz (c) and Sx (d). The solid black lines are the predicted evolutions given our atom losses and assuming isotropic
losses. (e) Evolution of the atom number. The solid black line is an exponential fit. (f ) Evolution of the squeezing parameter
given by Eq. (7.32).

Population and spin distributions We present in figure 61, the distribution of the observables n0 and Sz , for the state before
rotation (n0,z ,Sz) and after a π/2 rotation (n0,x,Sx). For comparison we show the same distributions for the nematic state
|N : ez〉. The latter has before rotation n0 ' 1 and ∆Sz limited by imaging noise. After a π/2 rotation, each atom is in the
(|+1〉+|−1〉)/

√
2 state (up to experimental fluctuations). The distribution ofSz is Poissonian, with a width equal to

√
N . Our

measurements are in excellent agreement with this prediction. For the fragmented state, the distribution of n0 is very broad and
overall similar before and after rotation. The distribution of Sz is almost identical to that of the imaging noise. The distribution
of Sx is only slightly larger and much narrower than for the nematic state.

Single particle-density matrix The single particle density matrix can be fully determined from the evolution of the state under
a composition of two rotations. We first rotate the state around the z-axis by a variable angle φ. We then rotate the state around
the y-axis by an angle π/4. We measureNR

0 (φ) and SRz (φ). Neglecting the effects of the interaction and the QZE (the duration
of the rotation is∼ 10µs, much faster than ~/q and ~/Us), we obtain

NR
0 (φ) =

N +N0

4
+

1√
2

(
cosφ(J+1,0

x − J−1,0
x )− sinφ(J+1,0

y + J−1,0
y )

)
− 1

2

(
cos 2φJ+1,−1

x − sin 2φJ+1,−1
y

)
, (7.52)

SRz (φ) =
1√
2
Sz − cosφ

(
J+1,0
x + J−1,0

x

)
+ sinφ

(
J+1,0
y − J−1,0

y

)
, (7.53)

where Jm,m
′

x = (a†mam′ + ama
†
m′)/2 and Jm,m

′
y = (a†mam′ − ama†m′)/(2i) are pseudo-spin operators. They are linked to

the single-particle density matrix elements via

ρ
(1)
m,m′ =

1

N
〈â†mâm′〉 =

1

N
〈Ĵm,m′x + iĴm,m

′
y 〉 . (7.54)

From a fit to the reduced population nR0 (φ) and reduced spin sRz (φ) (fig. 62) we fully reconstruct ρ(1) (fig. 63).
As a control experiment, we reconstructed ρ(1) for a nematic state having comparable populations in the three Zeeman states.

We found that ρ(1) has three similar diagonal elements and significant off-diagonal elements (coherences). The spectrum has one
dominant eigenvalue = 0.94± 0.04, characterizing a single condensate.

For the state produced at the end of the adiabatic ramp, within the measurement accuracy, ρ(1) is diagonal in the number basis,
it has three comparable eigenvalues and the state is close to being maximally fragmented. However the measurement of ρ(1) alone
does not reveal whether the fragmentation is driven by quantum or classical (e.g. thermal) fluctuations. Two-body observables
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Figure 60: a Evolution of the reduced population n0 over a rotation of the spin for a polar state (blue dots) and a fragmented
state (red squares). b Evolution of the standard deviation of the longitudinal spin ∆Sz . For both observables, the fragmented
state shows a weak sensitivity to rotation compared to the polar state. The solid lines are sinusoidal fits.
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Figure 61: Upper panels: fragmented state, lower panel: polar state. a,b Distribution of n0 before rotation (n0,z ,a) and after
(n0,x,b). For the fragmented state, both distributions are broad and fairly similar, in sharp contrast with the narrow distributions
of n0 in the nematic states. The dashed lines are the results of numerical simulation for N = 100. c Distribution of Sz . It is
limited by the detection noise (dashed line) for the nematic state, and only slightly larger for the fragmented state. d Distribution
of Sx. It limited by the projection noise for the nematic state, and much below that level for the fragmented state.

provide more information, in particular the squeezing of the spin Ŝ2 hints towards entanglement as the main mechanism behind
the fragmentation. This hypothesis finds a decisive support with a reconstruction of the many-body state.

7.5 Many-body state reconstruction

7.5.1 Introduction
A quantum state fully determines the probability distribution of any observable, and conversely, the probability distributions of a
sufficient set of observables, constituting a so-called quorum, fully determine a quantum state. The procedure used to deduce the
quantum state from a set of measurements is called a tomography. It can be a formidable task, even for mesoscopic samples. To a
large extent, this is due to the exponential increase of the Hilbert space dimension with the number of particles, and thereby of the
number of measurements a-priori required to fully characterize the state. In the case of indistinguishable particles distributed in
a few modes, the restriction to the symmetric subspace alleviates significantly the problem, and various reconstruction techniques
have been developed, initially in the context of quantum optics (see e.g. [189, 190] for reviews).

One can distinguish two types of approach, those relying on an inverse transformation and those based on statistical infer-
ences. The former have been initially used to reconstruct the state of the electromagnetic field in a single mode, which can be
viewed as a harmonic oscillator. Contrary to the classical case, measuring the “position” and “momentum” is not enough to fully
determine a generic quantum state. However, the continuous set of “quadratures” obtained by linear combinations of position
and momentum, forms a quorum, and can be measured using homodyne detection. The resulting probability distributions are
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Figure 62: Evolution of the reduced population n0 (blue dots) and spin sz (red squares) under the rotationsRy(π4 )Rz(φ), for
a polar (a) and fragmented state (b). The solid lines are the fits from which we extract ρ(1).
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Figure 63: Reconstructed single particle density matrixρ(1) (we only show the modulus of the matrix elements) for a coherent state
(A) and for a fragmented state (B). The former has one eigenvalue of order one, while the latter has three comparable eigenvalues.

linked to the Wigner distribution (characterizing the whole quantum state) via the Radon transform. Using the inverse transform,
the quantum state can be deduced from the measurement of the quadratures amplitude. This technique has been used, e.g. in
the early experiment [191], to reconstruct a squeezed-vacuum state with on average three photons. Tomography based on an in-
verse transformation has the advantage of being mathematically transparent and easy to implement, but it suffers from important
practical draw backs. First, the inverse transformation complexity increases rapidly with the number of modes [190]. Second, it is
difficult to take into account experimental imperfections, for instance noisy measurements and finite data sets, which can lead to
unphysical reconstructed states (e.g. not positive).

Methods based on statistical inferences have been developed, which allow for a better consideration of the experimental re-
alities [189, 190]. Two popular ones are the maximum-likelihood (MaxLik) and maximum-entropy (MaxEnt) methods. In the
MaxLik approach, one looks for the state which maximizes the probability to obtain a given data set. The MaxEnt method re-
constructs the state that has maximal entropy under some constraints, carefully chosen to reflect the measurements (typically one
imposes the mean value of some measured observables). In these approaches, tomography is no longer an inversion problem, but
a maximization problem. The solution can be found analytically (MaxEnt) or using an iterative algorithm (MaxLik).

The MaxLik method has been used in two recent spinor BEC (with two internal components and in the SMA) experiments,
for the reconstruction of the many-body spin state of a few [192] and a few hundred atoms [15]. The knowledge of the full quan-
tum state allows to extract quantities such as the negativity or the quantum Fisher information [192], which are not observables
(they are non-linear functionals of the quantum state) and usually hard to estimate. Similarly, the results of the present section
will be used in Sec. 7.5.5 to extract the entanglement entropy. Let us mention that techniques have been developed to extract Fisher
information and Rényi entropy without requiring a full tomography [15, 72].

In this section, we report on our implementation of these two techniques to reconstruct the density matrix of the collective
state of the atoms at the end of the ramp. Our analysis makes use of about 500 shots of the state at the end of the ramp without
rotation and with a π/2 rotation around y, and about 600 shots for intermediate rotations around the y−axis and around the
z−axis.

Basis for the reconstructed state In the SMA, the state of the system can be written asρ =
⊕

N ρ
(N), whereρ(N), the restriction

to the subspace with N atoms, can be decomposed in the basis of the collective spin state |N,S,Mz〉, where S ≤ N has the
same parity as N due to the exchange symmetry. Let us first consider that N is fixed. The size of the Hilbert space is about
N2/2 ∼ 5000, larger than the number of measurements that we have performed... Fortunately, we know that in the |N,S,Mz〉
basis, the state is very localized allowing to truncate the Hilbert space to the states with S < Smax. Indeed, we have measured
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〈Ŝ2〉 ' 16 and therefore, the total weight of the states with a spin larger than Smax is less than 16/[Smax(Smax + 1)]. This
is a very rough bound, saturated for a very unlikely state which has non-zero weights only in the S = 0 and S = Smax + 1
subspaces. In practice, we reconstructed the state of the system with Smax = 20 (we have increased Smax to 40 and verified that
the reconstructed state was essentially identical).
We now address the issue of the atom number fluctuations. After projection on the S ≤ Smax subspace, the state of the system
can be written as ρ =

⊕
N ρ

(N,S≤Smax). To progress, we make the assumption that all of the matrices ρ(N,S<Smax) whereS has
a given parity are identical. As we have mentioned in Sec. 7.3, lowerN are more favorable to reach the very low S state, and thus
the approximation is valid only for small fluctuations of N . In practice, N fluctuates by 15 % (one standard deviation), and we
found no clear correlations betweenN and S in the data, which justifies the approximation. Therefore, we write the state of the
spin as:

ρ = ρNeven ⊕ ρN+1
odd , (7.55)

whereN = 104. We also perform the reconstructions forN between 89 and 119 to evaluate the uncertainty on the reconstructed
states (see Sec. 7.5.2).

Imaging noise It is important to carefully take into account the imaging noise that can add systematic errors in the reconstruction
of the state. We will see how we take it into account in the two reconstructions protocols. The imaging noise is dominated by
stray light shot noise and is thus normally distributed (see Chapter 3)

Pnoise(x) =
1√

2πσ2
noise

e−x
2/2σ2

noise , (7.56)

with a standard deviation slightly dependent on the Zeeman state and given in the table 7.2.

7.5.2 Maximum likelihood reconstruction
Principle Let P (ρ|{xj}) be the probability for our system to be in the state ρ given our set of measurement outcomes {xj}.
The only a-priori information that we assume on the state of the system is that it can be written as in Eq. (7.55). Bayes theorem
yields

P (ρ|{xj}) =
P ({xj}|ρ)P(ρ)∑
ρ′ P ({xj}|ρ′)P(ρ′)

, (7.57)

where P(ρ) contains the a-priori information that we have on the state. In our case, we only assume that ρ can be written as in
Eq. (7.55). If so,P(ρ) ∝ 1, otherwiseP(ρ) = 0. Thus, Eq. (7.57) can be rewritten as

P (ρ|{xj}) =
P ({xj}|ρ)∑
ρ P ({xj}|ρ)

, (7.58)

where the sum is taken over all states of the form given by Eq. (7.55). The MaxLik stateρML is defined as the argument maximum of
the functionalP (ρ|{xj}). We will present the algorithm that we use to compute ρML, but before, let us explicit the probability
in the right hand side of Eq. (7.58). On a given shot j, we extract three quantities, Nj , nR0,j and SRz,j where the superscript R
indicates a possible rotation of the state. For the total atom number, according to the Eq.(7.55), only the parity matter, not the
absolute value. However, our imaging noise forbids a reliable estimation of the parity of N . For this reason, we reduce {xj} to
the measurement ofnR0,j andSRz,j . In the case of the spin measurement, we take into account the imaging noise. It is uncorrelated
with the state of the system so that

P
(
SRz,j |ρ

)
=

∑
|M |≤Smax

Pnoise(SRz,j −M)Tr(P̂MR̂†jρR̂j) , (7.59)

where P̂M =
∑
S≥|M | |S,Mz〉〈S,Mz| and R̂j the operator describing the rotation applied for the shot j.

Algorithm The algorithm is described in [193]. We present it briefly, using identical notations. The measurement of each ob-
servable is binned. We write fk the frequency of occurrence of a measurement in the bin k. We define prk = Tr(Π̂kρ) the
probability for the outcome to fall in the bin k given the state ρ. Finally, we introduce the operators:

R̂(ρ) =
∑
k

fk
prk

Π̂k . (7.60)
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If ρ describes correctly our data, prk ' fk and R̂(ρ) ' Id. The idea is to compute iteratively the elements of the sequence defined
by the recurrence relation

ρn+1 = NnR̂(ρn)ρnR̂(ρn) , (7.61)

whereNn is a normalization factor. In the limit of infinitly small bins, this sequence converge to ρML [193]. The population and
spin observables do not couple state of different parity, neither do the operator R̂, and thus the separability of the parity sectors
required by Eq. (7.55) is conserved by the algorithm. Similarly, the matrix ρn remains Hermitian, positive and of trace one at every
step of the algorithm. We make a few practical remarks:

• We initiate the recurrence with the maximally mixed state ρ0 = Id/(Smax + 1)2.

• We stop the iteration when the fidelity between ρn+1 and ρn is larger than 99.9%. It occurs after∼ 15 iterations.

• We use our whole set of measurements, including all rotations of the state. For each observable that we have measured, the
width of the bin is chosen inversely proportional to the number of shots. When we have less shots, the bins are wider and
therefore the operators Π̂k are projectors onto larger subspace. This effectively reduces the impact of the measurements
that have less shots. If the bins we use are too small for the data set, the algorithm becomes unstable.

Uncertainty To evaluate the uncertainty on the reconstructed density matrix ρML, we follow the protocol described in [193].
From ρML, we generate random sets of possible outcomes for our measurements (in practice, we simulate our experiment 100
times). For each simulated set of measurements, we perform the reconstruction algorithm and get the maximum likelihood density
matrix of the simulated sets ρML,sim. The average fidelity between ρML,sim and ρML is 96%, indicating a faithful reconstruction.
From the reconstructed density matrix, we compute the confidence intervals for the matrix elements of ρML, and for the other
quantities (temperature, entropy) extracted in Sec.7.5.5. The latter also include the dispersion due to atom number fluctuations,
taken into account by performing the reconstruction with different atom numbersN .

7.5.3 Maximum entropy reconstruction
Principle We report here on an alternative reconstruction scheme. Following the Jaynes principle of maximal entropy, the Max-
Ent state ρME, is defined as the state of maximal entropy, given a set of constraints imposed to represent our measurements [194].
This prescription can be interpreted in two equivalent ways: (i) The MaxEnt state does not carry any information except that
brought by the constraint, i.e. by the measurement. (ii) In analogy with statistical mechanics, one can also imagine a statistical
ensemble which contains all the states that satisfy to the imposed constraints. We are sure to find the actual state within this
ensemble 8. The associated density matrix is ρME.

The constraints are of the form Tr(ÔiρME) = Oi, where the Ôi are some observables that we have measured, and Oi the
mean values of the outcomes. The MaxEnt state ρME is the argument maximum of the functional

L(ρ) = −Tr(ρ log ρ)−
∑

i

λiTr
(

Ôiρ
)
, (7.62)

restricted to the exchange-symmetric states. The solution is

ρME =
1

Z
exp

(
−
∑
i

λiÔi

)
. (7.63)

whereZ = Tr
(

exp
(
−∑i λiÔi

))
, and the Lagrange multipliers λi are given by

Oi = Tr
(

ÔiρME

)
. (7.64)

In practice:

• We have chosen the set of observables {S2
z , S

2
⊥, N0z, N0x}.

• We assume Sx = Sy = S⊥/2, which was well verified by performing rotations of the states.

• We do not use the data at intermediate rotations, because we do not have enough measurements for each angle to reliably
extract a constraint.

8This interpretation assumes that the constraints are indeed verified by the state. In practice this is never exactly the case and an error in the estimation of the
constraints results in an error on the MaxEnt state.
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• We solve the equations (7.64) numerically.

• The constraint on the measurement ofN0 is much weaker than the ones on the spins, since the distribution ofN0 is close
to have maximal entropy.

• We do not impose any constraint on the mean value of Sz,⊥. Indeed the maximum of entropy is reached for isotropic
mixture, for which the mean spin vanishes, which corresponds to our measurement.

• We found that constraining higher moments was not changing significantly the results. Moreover it is important to have a
small uncertainty on the constraint we are applying.

Detection noise The detection noise adds a systematic error on the constraint 〈S2
ν〉 if it is not taken into account. From Eq. (7.59),

we extractP(Mν) = Tr(P̂Mνρ), where ν = {z,⊥}, using a fit with 2Smax+1 parameters. This operation is a discrete deconvo-
lution; the continuous analog, assuming two normal distributions, can be performed analytically, and yields a normal distribution
with 〈S2

ν〉real = 〈S2
ν〉meas − σ2

noise (here σ2
noise ' 2.3). The results of the fit are reported in Table 7.3 and are consistent with

this prediction.

〈Ŝ2
z 〉 〈Ŝ2

x〉
Measured 3.55± 0.36 6.36± 0.70
Inferred 1.17± 0.36 4.37± 0.64

Table 7.3: Results of the noise removal on the spin distribution before and after rotation.

Uncertainty We use the same methods as for the MaxLik reconstruction. Once we have determined ρME, we simulate our
measurements a hundred times (including the addition of imaging noise). For each simulated outcome we construct ρME,sim,
using the same procedure as for the real data sets (starting from the noise removal). The mean fidelity with ρME is 99%.

7.5.4 Results
Comparison of the two reconstructed states Given a data set that allows for an unambiguous characterization of the quantum
state, both methods should work and yield essentially the same result. They differ however in the case of an incomplete data set.
To illustrate this, we consider two extreme situations:

• The data set consists in many measurements of a few observables. For instance, let us assume that we have only measured
Ŝz , and find it to be exactly vanishing. All the |S,Mz = 0〉 state can explain that result. The MaxEnt state is the statistical
mixture of all those states with equal weights. The MaxLik state is on the other hand ill defined, since all |S,Mz = 0〉
states (plus linear combinations and statistical mixtures) maximize the functional Eq. (7.58).

• The data set consists of a few measurements of many observables. In that case, it can be difficult to recast all measurements
in a few constraints (with little uncertainty), needed to construct ρME. The MaxLik avoids this issue and may work.

In our situation we have many measurements of the observables Ŝν and N̂0,ν for ν = z, x. We have used those to build ρME.
We have additional measurements at intermediate rotations, but with less data and thus we only used them for the MaxLik recon-
struction.

The two reconstruction methods give a similar outcome. The fidelity between the two reconstructed states is Tr
(√√

ρMEρML
√
ρME

)2 '
0.94. We compare both reconstructions on figure 64. They are almost diagonal in the |S,Mz〉 basis and we thus only show the
diagonal elements. The MaxEnt state has a larger entropy, which is by construction expected, but part of the difference may also
be due to the smaller data set used for this reconstruction. The MaxLik state has slightly larger error bars, due to the fact that in
the MaxLik reconstruction, the lack of information (i.e. lack of measurement) on the state results in uncertainty on ρML. For the
MaxEnt reconstruction, the lack of information simply results in a larger entropy and the uncertainty on ρME only comes from
the uncertainty on the constraint (i.e. on the measurement of Oi). In the following, we will focus on the MaxLik state, which
makes use of the whole data set.

7.5.5 Entanglement Entropy
From the reconstructed state, we can compute the successive reduced density matrices ρ(n) given by Eq. (7.33). For this analysis
we focus on the MaxLik reconstructed state, projected on theS even subspace. We show the total spin distributions of the density
matrix for n = 53, 93 and n = N = 104 in figure 65. For n < N , they are very well fitted by a thermal distribution, as
expected from the results of Sec. 7.2.4. Forn = N , we observe a small deviation from the thermal distribution due to the residual
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Figure 64: Reconstructed MaxLik (red) and MaxEnt (blue) states in the |S,Mz〉 basis. We only show the diagonal elements. The
solid lines delimits the S subspace, and within a subspace the states are ordered by increasingMz from−S to +S (the labels refers
to the value of S). The error bars (pink area for the MaxLik state) correspond to the 66% confidence interval.

anisotropy of the state; indeed the spin is smaller along the z axis than along the other two axes. We plot the fitted temperatures
Tn and entropy Sn of the state ρ(n)

ML as a function of n/N . The shaded area corresponds to the 66% confidence intervals, which
include the uncertainty on the reconstruction (determined from the reconstruction based on simulated data sets), and the atom
number fluctuations (performing the reconstruction for different atom numbers).

We observe qualitatively the same behavior as for an ideal singlet state. However, the reconstructed state has a non-zero thermal
entropy. As n increases, for n < N/2, both the entanglement and thermal entropy increases. For n > N/2, the thermal entropy
keeps increasing while the entanglement entropy decreases. This competition results in a less pronounced bending of the entropy
forn > N/2 compared to the theory. Yet, we see a clear reduction of the entropy that cannot be realized with classical states. This
effect appears clearly if one looks at the temperature, or the spin distributions.
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Figure 65: The main panel shows the entropy (blue line) and temperature (red line) of the reduced density matrix ρ(n)
ML for the

reconstructed MaxLik state in theN even subspace (solid lines) and the singlet state (dashed lines). The small panel on the right
show the spin distribution in the state ρ(n)

ML, for n = 53, 93, 104 (N = 104). The solid lines are thermal fit from which we
extract the spin temperature.

Simulated reconstruction of the singlet state The overlap between the MaxLik state and the singlet state is ' 0.28+0.03
−0.09 (re-

stricting to the state to the even parity sector). In theory, it should be∼ 80% (from a simulation of the evolution over the ramp).
Part of the discrepancy is due to imperfection in the state preparation, as discussed in Sec. 7.4.2, but the state reconstruction is also
expected to reduce the overlap with the singlet state. Indeed, our counting resolution does not allow us to distinguish two states
with consecutive S. In order to estimate the effect of the imperfection in the diagnostic and the reconstruction, we simulated the
outcome of the measurement, given a pure singlet state. We then apply the MaxLik reconstruction to this simulated data set. We
found that the resulting state has a' 73% overlap with the singlet state.
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7.6 Outlooks: shortcut to adiabaticity
The strategy that we have used to prepare an entangled many-body state consists in an adiabatic ramp, from a product state which
can be produced with high fidelity, to the target state. This is a common method, used for instance in [159]. It is straightforward to
implement, and robust against small fluctuations of the experimental parameters, such asN andUs, but the adiabaticity criterion
limits the speed, especially near a phase transition where the energy gap becomes very small. In our implementation, the ramp lasts
for 1 s, during which we expect the loss of∼ 1 atom. For atom numbers larger than a hundred, satisfying the adiabaticity criterion
requires longer duration. It is thus of great interest to be able to design faster, non-adiabatic ramps. This problem belongs to
the large field of optimal control. One type of approach, known in the literature as shortcut-to-adiabaticity (although this name
could apply to other optimal control approaches) relies on the reverse engineering of a desired evolution [195]. More precisely, one
designs the time evolution of one or several relevant observables; for instance let us assume that we want the total spin expectation
value 〈Ŝ2〉 to decrease linearly9. Provided a closed set of equation(s) of evolution of the system, one can compute the evolution
of the control parameter(s) (here q) leading to the desired dynamic (here the linear decrease of 〈Ŝ2〉). The requirement of a closed
set of equations of evolution is a strong limitation to the use of shortcut to adiabaticity, in particular to produce entangled states.
For spin-mixing dynamics, a mean-field approximation (see Chapter 4) leads to a system of two equations of evolution, but this
approach is not adapted to our case, where the target state is not a mean field state. A more refined treatment could rely on the
Bogoliubov theory, or on a continuum approximation (the spin is taken as a continuous variable), introduced in [196]. The latter
is used in [197] to investigate theoretically the production of a fragmented spinor condensate. ForN = 100 atoms, a numerical
simulation demonstrates the production of a squeezed state with a spin S ' 4, in a duration t ' h/Us (corresponding to
' 50 ms in our case), using a shortcut to adiabaticity. This would constitute a significant improvement (in term of duration)
compared to our implementation of adiabatic following. However, in practice we expect the dynamical production to be more
sensitive to experimental fluctuations; in our case, fluctuations of Us would probably constitute a limit to the use of very fast
ramps.

9In practice, higher degree polynomials are used, in order to have a smooth beginning and end of the ramp.



Chapter 8

Conclusion

8.1 Summary

Chapter 1 We started with a brief presentation of some important aspects of the physics of spinor BECs. We introduced the
single-mode approximation, which assumes that the spatial and spin degrees of freedom are decoupled, and which is well verified
in all experiments presented in this manuscript. The state of the system is then described by a single spatial wave function, and
a many-body spin state. We derived an effective Hamiltonian for the spin and studied its ground state versus the magnetic field.
A quantum phase transition occurs at small fields, when antiferromagnetic interactions start to play an important role. In this
region the ground state can no longer be described as single (ie non-fragmented) condensate as entanglement emerges.

Chapter 2 We continued with a presentation of the experimental set-up. We focused on our contribution, the implementation
of a novel technique to achieve high-counting resolution, which combines a Stern-Gerlach separation followed by fluorescence
imaging in an optical molasses. The requirement of a spatial separation of the Zeeman states prevented us from performing
fluorescence in a trap, which puts a stringent upper bound on the exposure time. Furthermore, a diffusive behavior in the molasses
requires a vanishing magnetic field, which is not easily combined with the Stern-Gerlach separation. In the end, we managed to
collect about 450 photons per atom. For a cloud of a few hundred atoms or less, the dominant source of noise comes from stray
light shot noise, and amounts to the signal of∼ 1.5 atoms.

Chapter 3 The first experiments we described consist in the parametric excitation of a spinor BEC. Spin-mixing dynamics can be
seen as an “internal” analog of the Josephson effect. The Zeeman statesm = 0 on the one hand andm = ±1 on the other hand
replace the superconductors, and spin-changing collisions insure the coherent coupling in place of the weak-link in a Josephson
junction. The quadratic Zeeman energy q plays the role of the voltage, and we modulate q to reproduce the so-called “inverse AC-
Josephson effect”. In real Josephson junctions, energy dissipation plays a major role and is responsible for the so-called “Shapiro
steps” appearing in the intensity-tension curve. Energy is also dissipated in our system, presumably via a coupling between the
BEC and the thermal cloud. In the driven situation, a locking of the atomic phase to the modulation enables a transfer of energy
to the atoms, which can counter-act the dissipation and lead to new stationary states and hysteresis.

The spin-mixing dynamics discussed in Chapter 4 was triggered by preparing the atoms in a coherent superposition of the three
Zeeman-states. The subsequent evolution is well captured by a mean-field approximation. To explore the role of quantum effects,
such as quantum fluctuations and entanglement, we preferred to start with all atoms in m = 0, which can be realized thanks to
magnetic forces pulling m = ±1 atoms out of the trap. This state is the ground state when the interaction energy is negligible
compared to the quadratic Zeeman energy q. From this starting point, entanglement can be generated by ramping down the
magnetic field, to reach the vicinity of the phase transition occurring at q = 0. We performed two types of experiments, quenches
near (or through) the phase transition to study the dynamics, and an adiabatic following to probe the ground state.

Chapter 4 We first reported on our generation of a so-called two-mode squeezed vacuum state. By driving the magnetic field
near the Shapiro resonance identified in Chapter 4, the BEC is destabilized, and quantum fluctuations trigger the creation of
pairs of atoms in the m = ±1 states. Thanks to our fluorescence imaging method, we were able to observe a large degree of
squeezing, potentially useful for metrology. We then presented another set of experiments, where we perform quenches to a
magnetic field above the phase transition and observed periodic dynamics. The reversibility indicates the conservation of phase
coherence between the spin modes. We also studied the effect of a small coherent seed on the dynamics, to provide further evidence
of the role of quantum fluctuations in initiating the dynamics, and we observed a cross-over from the Bogoliubov to the mean-field
regime.
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Chapter 5 We carried on with similar experiments, but with lower magnetic fields and smaller atom numbers in order to bring the
system deeper in the critical region. Under this condition the Zeeman effect plays a negligible role and the dynamics is fully dictated
by the interactions. We observe the relaxation of the system to a steady state. This somehow counter-intuitive behavior results from
the structure of the eigenstates of the interaction Hamiltonian. Indeed, we found that the mean value of few-body observables
is fairly independent on the eigenstate with vanishing magnetization, in a broad energy window. The magnetization constraint
is crucial, and prevents the thermalization of the system defined as the relaxation to the usual statistical ensembles. Instead, we
found that a generalized Gibbs ensemble, which includes the magnetization constraint in addition to the usual conservation of
energy and total atom number well described our results.

Chapter 6 In the experiment presented in this last Chapter, we slowly bring the system to the critical region, in order to only
populate the lowest energy states. We reach a magnetic field such that antiferromagnetic interactions favor a ground state very
close to a singlet state with vanishing spin. The macroscopic singlet state is rotationally invariant, and can be seen as the coherent
superposition of all nematic states with equal weight. However, the coherence is very fragile, and atom losses or thermal fluctu-
ations can easily lead to the spontaneous breaking of the symmetry. To circumvent this problem we used mesoscopic clouds of
typically one hundred atoms. At the end of the adiabatic ramp, we observe the fragmentation of the condensate. Furthermore, we
measured a strong squeezing of the spin in all directions, indicating that most atoms have formed singlet pairs. We reconstructed
the many-body state and observe a significant occupation of the few lowest energy states only. We extracted the reduced entropy,
defined as the entropy of a subsystem ofn atoms, ignoring theN−n remaining atoms. In doing so, singlet pairs are virtually bro-
ken and the entropy increases. The latter is a non-monotonic function ofn and has a maximum nearn ∼ N/2. This non-classical
feature indicates entanglement between the two virtual subsystems.

8.2 Main results and outlooks
High sensitivity imaging The implementation of fluorescence imaging was a technical but crucial development made during
this thesis. Reaching a detection noise near the single atom level was paramount for the experiments presented in Chapters 5 to
7. In particular, this improvement enabled us to set a new record of spin squeezing for spinor BECs [86]. Yet, imaging noise
remained an important limitation for our experiments. Further improvements are possible (see the outlooks of Chapter 3), which
may help to reach the Heisenberg limit in an interferometric experiment (Chapter 5) [9, 163].

Spin-1 BEC out of equilibrium The principal novelties in our work on spin-mixing dynamics are the studies related to relaxation.
In Chapter 4, we identified energy dissipation to be responsible for the relaxation. We find a phenomenological model which
explains non-trivial phenomena (such as bistability and hysteresis), but a microscopic theory is still lacking. In Chapter 6 we
observed the condensate reaching a steady state under its own dynamics. This phenomenon can be well understood using general
arguments coming from the theory of the relaxation of isolated quantum systems [165]. In this field, a long-standing question
regards the range of validity of the eigenstate thermalization hypothesis (ETH). Remarkably, we found that a generalized ETH
applies to our relatively simple system. In the situation we have studied, the integrability due to the SO(2) symmetry of the
Hamiltonian prevents thermalization. In the continuity of this work it would be very interesting to study the relaxation (and
thermalization?) in a chaotic regime. We have seen in the outlook of Chapter 4 that chaos can emerge even in the single-mode
regime, under a parametric excitation. It would be interesting to explore theoretically other means to break the integrability.

Spin-1 BEC at equilibrium The realization of a fragmented BEC, fairly close to the singlet state, can be seen as the most signif-
icant achievement of this thesis. Pair condensation driven by antiferromagnetic interaction was predicted more than thirty years
ago [39], and since then has been the subject of many theoretical studies. The observation of this phenomenon was one of the
long term goals of our group, and earlier experiments paved the way to the one presented in this manuscript [52]. This work
together with previous studies on the phase diagram [36] and on nematic ordering [37], provides a comprehensive experimental
investigation of antiferromagnetic spin-1 BECs in the single mode regime at equilibrium. We now present a long-term project, in
the continuity of these works.

Long-term prospective: singlet dimers on an optical lattice The study of correlated states beyond the single-mode regime con-
stitutes a promising direction for future investigations. A particularly interesting set-up, relevant to the simulation of condensed
matter system, would make use of an optical lattice to trap the atoms in a periodic potential. In this configuration, the interplay
between spatial and spin degrees of freedom yields a very rich phase diagram, studied theoretically using variational approaches
in [19, 198–200]. Let us consider the interesting situation where the quadratic Zeeman energy is negligible. The relevant energy
scales are the tunneling energy t, the spin-independent interaction strength U , the spin-dependent one Us and the chemical po-
tential µ. In practice, U � Us, and the spatial ordering is dictated by U/t. Let us consider U/t � 1, and µ such that the
system forms a Mott insulator. The magnetic ordering then depends on the ratio Us/t and the filling (the number of atoms per
site). The case of an even filling is the simplest, the atoms on a given site form a singlet state. This is not possible however for odd
fillings due to the exchange symmetry, and one needs to consider interactions between atoms of different sites, which can be done
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perturbatively in the limit t � U . For two sites, and a filling of one, the energy is minimized when the two atoms form a spin
singlet dimer. Given this result, the following ansatz was proposed for a one dimensional lattice (similar dimerized state are also
expected in larger dimension) [199, 200]

Ψdimer = ..ψ1,2ψ3,4.. (8.1)

where ψi,i+1 designate a spin-singlet between the atoms of sites i and i + 1 (this ansatz breaks the translational invariance of
the lattice). The wave function (8.1) describes a so-called “dimerized valence bound state” [19]. Such states can also be found in
frustrated magnets, and are believed to be at the origin of the high-temperature superconductivity of cuprates [17].

ba
Singlet pair

Figure 66: Sketch of singlet insulators. For a filling of two (a), the singlet pairs are localized within one site, while for unity filling
(b) they form dimers.

This experiment represents a great technical challenge. The simplest geometry would probably be a one dimensional chain,
realized for instance by combining a standing wave for the lattice and a Laguerre-Gauss blue-detuned beam for the radial confine-
ment. The chemical potential can be tuned by changing the atom number. Alternatively, if on top of the lattice potential, there
is a harmonic confinement, the chemical potential increases from the center to the edge of the trap.
For the detection, one would ideally combine an excellent spatial resolution to distinguish the lattice sites, with a spin state sensi-
tivity. This has been achieved for spin-1/2 fermionic atoms in two dimensional lattices [201,202]. The techniques used in these two
papers could be applied to bosonic atoms when the site occupation is at most two atoms. For larger fillings, further developments
would be required.
Regarding state preparation, we can build on the experience we have acquired with our realization of a condensate of singlet pairs
to evaluate the feasibility of an adiabatic ramp to a singlet insulator. We pointed out in Chapter 7 a series of difficulties that appear
given the very low energy scale that we want to probe (adiabaticity versus decoherence, magnetic field noise, thermal fluctuations).
For two atoms on the same lattice site, the spin interaction energy per atom Us/N (N = 2) could be significantly larger than in
the harmonic trap used in our experiment. This phase thus appears within reach of an adiabatic ramp similar to the one we imple-
mented. For the dimerized phase, atoms on different lattice sites interact weakly, the relevant energy scale is (t/U)2Us [200] with
t/U � 1 for an insulator. A more precise estimation of the parameters is needed to compare this situation with our experiment.
In particular, the role of thermal fluctuations should be considered with care. In our experiment, we relied on (i) spin-filtering to
achieve very small “spin temperature” and (ii) a weak coupling to the spatial mode to avoid thermalization. It is not guaranteed
that the same method would work in the experiment envisioned here, where spatial and spin degrees of freedom are intertwined.



Appendix A

Spin and pseudo-spin operators

In this appendix, we recall the definition of the spin-1 spin operator and collective spin operator. We also recall the definition of
the collective pseudo-spin, which is the spin that is squeezed in the experiment reported in Chapter 5. Finally, we compute the
evolution of the spin and population over a rotation, which are performed via a radio-frequency coupling of the spin states.

A.0.1 Definition

We recall some useful formula.

Spin-1 Matrices

sx =
1√
2

0 1 0
1 0 1
0 1 0

 , sy =
i√
2

0 −1 0
1 0 −1
0 1 0

 , sz =

1 0 0
0 0 0
0 0 1

 . (A.1)

Collective spin It is define (in the SMA for simplicity) as Ŝ = â†sâ. Explicitly:

Ŝx =
1√
2

(
â†+1â0 + â†0(â+1 + â−1) + â†−1â0

)
, (A.2)

Ŝy =
i√
2

(
−â†+1â0 + â†0(â+1 − â−1) + â†−1â0

)
, (A.3)

Ŝz = N̂+1 − N̂−1 , (A.4)

Ŝ2 = N + N̂0 + 2N̂0(N − N̂0) + 2(â†+1â
†
−1â

2
0 + â†20 â+1â−1) + Ŝ2

z . (A.5)

Pseudo-spin We focus on the ensemble of mF = ±1 atoms. In analogy with an ensemble of spin-1/2 particle, we define a
pseudo-spin Ĵ as:

Ĵx =
1

2
(â†+1â−1 + â†−1â+1) , (A.6)

Ĵy =
1

2i
(â†+1â−1 − â†−1â+1) , (A.7)

Ĵz =
1

2
(N̂+1 − N̂−1) , (A.8)

Ĵ2 =
N̂+1 + N̂−1

2

(
N̂+1 + N̂−1

2
+ 1

)
. (A.9)

This is the spin that is squeezed in the quench experiments of chapter 5.
In the next paragraph, we also introduce a pseudo spin for the pair of modes (0,+1), (0,−1). We write the pseudo spin

constructed from the modem andm′ as Ĵm,m
′
. In the main text we don’t precisem andm′ since we only use the pairm = +1,

m′ = −1.
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A.0.2 Spin rotation
Rotation around y We consider the rotation of a spin-1 by and angle θ around the y-axis. The evolution operator is

e−iθsy =


cos θ+1

2 − sin θ√
2

1−cos θ
2

sin θ√
2

cos θ − sin θ√
2

1−cos θ
2 − sin θ√

2
1+cos θ

2

 . (A.10)

The spin observable transform like vector, for the number observable, N̂0 is given by

N̂R
0 (θ) =

1− cos 2θ

4
N +

1 + 3 cos 2θ

4
N̂0 −

sin 2θ√
2

(Ĵ+1,0
x − Ĵ−1,0

x )− 1− cos 2θ

2
Ĵ+1,−1
x . (A.11)

Rotation around z The evolution operator for a rotation around the quantization axis z is

e−iθsz =

e−iθ 0 0
0 0 0
0 0 eiθ

 . (A.12)

The single particle state only acquire a phase, and the population do not evolve.

Combine rotation around z and y The phase shift aquired during a rotation around z is revealed by a adding a rotation around
y. We consider a first rotation around the z-axis by a variable angle φ followed by a rotation around the y-axis by an angle π/4.
Combining the results given above, after some straight forward algebra one finds that the population evolve as

NR
0 (φ) =

N +N0

4
+

1√
2

(
cosφ(J+1,0

x − J−1,0
x )− sinφ(J+1,0

y + J−1,0
y )

)
− 1

2

(
cos 2φJ+1,−1

x − sin 2φJ+1,−1
y

)
. (A.13)

The spin evolves as a vector

SRz (φ) =
1√
2
Sz − cosφ

(
J+1,0
x + J−1,0

x

)
+ sinφ

(
J+1,0
y − J−1,0

y

)
. (A.14)

Note that all the pseudo-spin operator intervene in these two equations, thus enabling the full reconstruction of the single particle
density matrix as shown in Chapter 7.



Appendix B

Collective spin states

We can write the many-body state of the spin of the condensate spin in many basis. The number basis |N+1, N0, N−1〉nb is
composed of the Fock states with a given number of atoms Nm in the spin-1 state m = 0,±1. This basis is the most natural
one since our diagnostic consist in measuring the various populationNm. TheSO(3) symmetry of the interaction Hamiltonian,
makes the collective spin state basis |N,S,Mz〉 composed of the states with a well define spin S and a magnetization Mz more
relevant at low make field. Finally we also used the overcomplete basis |N : Ω〉 composed of the coherent nematic state align on
the axis Ω = (θ, φ), which can be convenient in many calculation thanks to the simple action of the annihilation operator on the
coherent state. These states are obtain by rotation of the nematic state |N : ez〉 = |m = 0〉⊗N .
We provide in this appendix various formula which allow to “navigate” between the different basis. We first explore the relation
between spin state and number basis, then coherent state and number basis, then spin state and coherente state basis.

B.1 Spin eigenstate and the number basis
B.1.1 General spin eigenstate in the number basis
The |N,S,Mz〉 states can be expressed in the number basis [41, 48, 50, 196] as

|N,S,Mz〉 =
1√
N

(Ŝ−)P (Â†)Q(â†+1)S |vac〉nb , (B.1)

where P = S −Mz and 2Q = N − S. Ŝ− =
√

2(â†−1â0 + â†0â+1) is the spin lowering operator and Â† = â†20 − 2â†−1â
†
+1

is the singlet creation operator. Finally,

N =
S!(N − S)!!(N + S + 1)!!(S −Mz)!(2S)!

(2S + 1)!!(S +Mz)!
, (B.2)

where !! indicates a double factorial.

B.1.2 Population in a general spin eigenstate
The action of â0 on the |N,S,Mz〉 states is [196]

â0|N,S,Mz〉 =
√
A−(N,S,Mz)|N − 1, S − 1,Mz〉+

√
A+(N,S,Mz)|N − 1, S + 1,Mz〉 (B.3)

where the coefficientsA± are given by

A−(N,S,Mz) =
(S2 −M2)(N + S + 1)

(2S + 1)(2S − 1)
, (B.4)

A+(N,S,Mz) =
((S + 1)2 −M2)(N − S)

(2S + 1)(2S + 3)
. (B.5)

The non-vanishing matrix elements of N̂0 are

〈N,S,Mz|N̂0|N,S,Mz〉 = (A+(N,S,Mz) +A−(N,S,Mz) , (B.6)

〈N,S + 2,Mz|N̂0|N,S,Mz〉 =
√
A+(N,S + 2,Mz)A−(N,S,Mz) , (B.7)

〈N,S − 2,Mz|N̂0|N,S,Mz〉 =
√
A+(N,S − 2,Mz)A−(N,S,Mz) . (B.8)
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In particular, for the singlet state, we can compute

〈N̂0〉 =
N

3
, (B.9)

∆N̂2
0 =

4N2 + 12N

45
. (B.10)

B.1.3 Singlet state in the number basis
The singlet state is given by (N is necessary even for the singlet)

|N, 0, 0〉 = Â†
N
2 |vac〉nb , (B.11)

|N, 0, 0〉 =

N
2∑

k=0

N
2 !
√

(N − 2k)!(
N
2 − k

)
!
√
N !

(−2)k|k,N − 2k, k〉nb . (B.12)

We replace the factorials by their equivalent in the limit of large arguments. This will result in a small error for the coefficient
k ∼ 1 and k ∼ N . However, because of the isotropy of the singlet, we know that these states do not contribute significantly (we
must have 〈N̂0〉 = 1/3). The Stirling formula yield to the simple expression

|N, 0, 0〉 ' 1√
N

N
2∑

k=0

(−1)k
(

N

N + 1− 2k

) 1
4

|k,N − 2k, k〉nb . (B.13)

The distribution is indeed fairly broad. This motivates a continuum approximation for the relative population n0. It verifies the
statistics

P(n0) ' 1

2
√
n0

. (B.14)

From this we can compute the mean and variance of n0.

B.1.4 Nematic state |0〉⊗N in the spin basis
We compute the elements of the nematic state align along z, |N : ez〉 = |m = 0〉⊗N in the spin state basis. Clearly, it has
non-vanishing elements only on theMz = 0 states. Using eq. (B.1), we compute

〈N : ez|N,S, 0〉 =
1√
N

2
S
2

√
N !S! . (B.15)

After some rearrangements, and using 2p! = 2pp!, (2p+ 1)!! = (2p+ 1)!/(2p!!), we get

〈N : ez|N,S, 0〉 =

[
2S(2S + 1)

N !

(N + S + 1)!

N+S
2 !

N−S
2 !

] 1
2

, (B.16)

=

√
2S + 1

4π
fNS . (B.17)

where we have introduced [50]

fNS = 4π2S
N !

(N + S + 1)!

N+S
2 !

N−S
2 !

, (B.18)

which will play an important role in the following.
We know that the mean value of the total spin of a nematic state is 2N . Therefore, we expect the spin states with S ∼

√
2N to

contribute the most. This motivates an expansion with 1� S � N . It leads to the simple formula

fNS '
4π

N
exp

(
− S

2

2N

)
, (B.19)

〈N : ez|N,S, 0〉 '
√

2S

N
exp

(
− S

2

4N

)
. (B.20)
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Figure 67: Left panel: singlet state in the number basis (characterized by n0 only, Sz = 0). Right panel: nematic state in the spin
state basis (characterized byS only,Sz = 0). The red circles are the exact results, the blue line are the approximate formula derive
in this appendix. HereN = 100, and the approximation are well verified.

B.2 Nematic coherent state in the number basis
The nematic state align along Ω = (sin θ cosφ, sin θ sinφ, cos θ) can be expressed as

|N : Ω〉 =
1√
N !

(
− 1√

2
sin θe−iφâ†+1 + cos θâ†0 +

1√
2

sin θeiφâ†−1

)N
|vac〉 . (B.21)

The are obtain by rotation of |N : ez〉 = |m = 0〉⊗N

|N : Ω〉 = e−iφŜze−iθŜy |N : ez〉 . (B.22)

Let us write Ω±1 = ∓ 1√
2

sin θe∓iφ and Ω0 = cos θ,

|N : Ω〉 =
∑
j,k

√
N !

j!k!(N − j − k)!
Ωj+1ΩN−j−k0 Ωk−1|j,N − j − k, k〉nb , (B.23)

and the action of the annihilation operators on the nematic coherent state takes a simple form:

âm|N : Ω〉 =
√
NΩm|N − 1 : Ω〉 . (B.24)

The nematic states form an over-complete basis [186], which we will proved by expressing the spin state |N,S,Mz〉 as a function
of the nematic state.

ForN � 1, the following approximation can be useful

|N : Ω〉 ' 1√
2π

∑
jk

(
N

jk(N − j − k)

) 1
4

e−
(j−k)2
2(j+k) e−N(θ−θjk)2eiφ(k−j)|j,N − j − k, k〉nb , (B.25)

where tan θjk =
√

j+k
N−j−k .

B.3 Spin eigenstate and the coherent state overcomplete basis
B.3.1 Spin state in the nematic state basis
Let us consider the (unnormalized)e state

|ψ〉 =

∫
d3ΩYS,Mz (Ω)|N : Ω〉 , (B.26)

where YS,Mz is a spherical Harmonic. Using Eqs.[B.17,B.22] we can rewrite |ψ〉 as

|ψ〉 =

∫
d3ΩYS,Mz

(Ω)e−iφŜze−iθŜy
∑
T

√
2T + 1

4π
fNT |N,T, 0〉 . (B.27)
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Furthermore, using

〈S′,M ′|e−iφŜze−iθŜy |T, 0〉 = δS′,TD
S′
M ′,0(φ, θ) , (B.28)

〈S′,M ′|e−iφŜze−iθŜy |T, 0〉 = δS′,T

√
4π

2S′ + 1
Y ∗S′,M ′(Ω) , (B.29)

whereD is the Wigner D-matrix, we obtain [50]

〈N,S′,M ′|ψ〉 =

∫
d3ΩYS,Mz

(Ω)

√
2S′ + 1

4π
fNS′

√
4π

2S′ + 1
Y ∗S′,M ′(Ω) , (B.30)

〈N,S′,M ′|ψ〉 =
√
fNS δS,S′δMz,M ′ . (B.31)

Thus, |ψ〉 =
√
fNS |N,S,Mz〉, and the spin state can be expressed in the nematic state basis as

|N,S,Mz〉 =
1√
fNS

∫
d3ΩYS,Mz

(Ω)|N : Ω〉 , (B.32)

and for S � 1, we have

fNS '
4π

N
e−

S2

2N . (B.33)

Similarly, we can show that

〈N : Ω|N,S,Mz〉 =
√
fNS YS,Mz

(Ω) . (B.34)

B.3.2 Coarse grained distribution of pairs of the spin state

In chapter 6, we are interested in the coarse-grained distribution ofNp for spin state with zeros magnetization and 1� S �
√
N .

We derive it here. For shortness, we write |k,N − 2k, k〉nb = |k〉nb, and |N,S, 0〉 = |S〉. Using Eqs.(B.32,B.25), we obtain

nb〈k|S〉 =
1

ZNS
√

2π

(
N

k2(N − 2k)

) 1
4
∫
d2ΩYS,0(Ω)e−N(θ−θkk)2 . (B.35)

For S � 1,

YS,0(Ω) ' (−1)S

π

sin(Sθ − π
4 )√

sin θ
. (B.36)

Thus, for S �
√
N , in the integral above, the term sin θYS,0(θ) does not vary much in the region where the exponential is

significant (they are two θk), and can thus be taken to be constant. We obtain

nb〈k|S〉 =
1

fNS
√

2π

(
N

k2(N − 2k)

) 1
4

4 sin(Sθk −
π

4
)
√

sin θk

√
π

N
, (B.37)

with sin θk =
√
k/N . Further more, using fNS '

√
4π/N we obtain

|nb〈k|S〉|2 '
2

π

1√
k(N − 2k)

sin2(Sθk −
π

4
) (B.38)

After coarse graining, sin2(Sθk − π
4 ) ' 1/2 and we obtain the result announced in the main text.



Appendix C

Bogoliubov approximation

We study here the ground state of the SMA Hamiltonian in the Bogoliubov regime (see chapter 2), that is to say for small depletion
of the BEC, as well as the dynamics.

C.1 Ground state
Bogoliubov Hamiltonian We recall the Bogoliubov Hamiltonian

ĤB = (q + Us)
(
N̂+1 + N̂−1

)
+ Us

(
â+1â−1 + â†+1â

†
−1

)
. (C.1)

It can be diagonalized by using the following transformation [68]

α̂ = cosh(θ)â+1 − sinh(θ)â†−1 ,

β̂ = sinh(θ)â†+1 − cosh(θ)â−1 , (C.2)

with tanh(2θ) = − Us
q+Us

. We obtain

ĤB = ~ωB(α̂†α̂+ β̂†β̂ + 1)− (q + Us) , (C.3)

with the Bogoliubov energy ~ωB =
√
q(q + 2Us). The longitudinal spin is Ŝz = N̂+1 − N̂−1 = α̂†α̂− β̂†β̂.

Ground state The ground state is the vacuum of Bogoliubov excitation. Clearly, it has vanishing magnetization. We write it in
the number basis |N+1, N−1〉nb

|vac〉B =

∞∑
n=0

cn|n, n〉nb . (C.4)

The action of α yield

0 =

∞∑
n=0

cn cosh θ
√
n|n− 1, n〉 − cn sinh θ

√
n+ 1|n, n+ 1〉 , (C.5)

from which we get the recurrence relation cn = tanh θcn−1. Hence, cn = (tanh θ)nc0. Without loss of generality, c0 can be
chosen real and positive. Using the normalization condition we obtain

cn = (tanh θ)n
√

1− tanh2 θ . (C.6)

Moreover, the mean value of the number ofm = ±1 pair in the ground state is 〈N̂p〉 = sinh2 θ. With this we finally recover the
expression of the ground state announce in the main text:

|vac〉B = |TSVM〉 =
1√

1 + 〈N̂p〉

∞∑
n=0

(
〈N̂p〉

1 + 〈N̂p〉

)n
2

|n, n〉 . (C.7)
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Thermal statistic The reduced density matrix for the mode +1 (it is clearly the same form = −1) is

ρ+1 =
1

1 + 〈N̂+1〉

∞∑
n=0

(
〈N̂+1〉

1 + 〈N̂+1〉

)n
|n〉〈n| , (C.8)

which can be rewritten as

ρ+1 =
1

Z
e−KN̂+1 , (C.9)

where Z = Tr
(
e−KN̂+1

)
and K = log(1 + 1/〈N̂+1〉) ' 1/〈N̂+1〉. In analogy with the distribution of a thermal gas of

non-interacting Bosons, we can define an effective temperature Teff such thatK = q
kBTeff

. It yields to (for substantial depletion)

kBTeff ' 〈N̂+1〉q '
√
qUs
8
. (C.10)

C.2 Dynamical production of the TMSV

C.2.1 Operators evolutions
The TSVM is also naturally produced over the evolution of the nematic state |0〉⊗N after a quench. Since we have some experi-
ments using a drive to engineer negative QZE, we will use the more general Hamiltonian:

Ĥ = α
(
N̂+1 + N̂−1

)
+ U

(
â+1â−1 + â†+1â

†
−1

)
. (C.11)

with α = q + Us andU = Us in the static case, α = δ
2 + Us andU = κUs in the driven case.

The calculation of the mean value of few-body operator can be simply done in the Einsenberg picture (we don’t use the
Bogoliubov Hamiltonian, in order to treat the stable and unstable cases simultaneously). The equation of evolution for the
operators â+1,â†−1 are:

i~
d

dt

(
â+1

â†−1

)
=

(
α U
−U −α

)(
â+1

â†−1

)
(C.12)

The Bogolibuov energy is with this Hamiltonian ~ωB =
√
α2 − U2. We emphasize that the calculation holds for α < 0. In

particular, for−Us < α < 0, in which case, the Bogoliubov energy is actually complex. This corresponds to an unstable regime
as will be shown by the calculation.

P =

√
2α

2ωB

(
−√α+ ωB −√α− ωB√
α− ωB

√
α+ ωB

)
, (C.13)

P−1 =
1√
2α

(
−√α+ ωB −√α− ωB
Us/
√
α+ ωB Us/

√
α− ωB

)
. (C.14)

Then:

i
d

dt
P

(
â+1

â†−1

)
=

(
ωB 0
0 −ωB

)
P

(
â+1

â†−1

)
, (C.15)

which we can integrate to find:

â±(t) = A∗â±,i +B∗â†∓,i , (C.16)

where:

A = cos(ωBt) + i
α

~ωB
sin(ωBt) , (C.17)

B = i
U

~ωB
sin(ωBt) (C.18)
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We can compute of some observables of interest:

N̂±(t) = |B|2 + (|A|2 + |B|2)N̂± +AB∗â†+1â
†
−1 +A∗Bâ+1â−1 , (C.19)

Ĵx(t) = (|A|2 + |B|2)Ĵx +AB∗
â†2+1 + â†2−1

2
+A∗B

â2
+1 + â2

−1

2
, (C.20)

Ĵy(t) = (|A|2 + |B|2)Ĵy +AB∗
â†2+1 − â†2−1

2i
+A∗B

â2
+1 − â2

−1

2i
, (C.21)

Ĵz(t) = Ĵz . (C.22)
(C.23)

C.2.2 Full distribution
The calculation of the full state is more involved. It is on the other hand, well known and derive in many references, given the
importance of the Bogoliubov Hamiltonian eq.,(C.1) in many fields. We will admit that the vacuum ofm = ±1 pairs evolve into
the TSVM define above and refer the reader to [33] for the derivation.



Appendix D

Interferometric sensitivity

We consider here only the two modes m = ±1, and the associated pseudo-spin define in appendix A. We derive the sensitivity
of the twin-fock state (TFS) and two-mode squeezed vacuum (TMSV) to a (pseudo) spin rotation of angle θ around the Y -axis.
This is a generic set-up that can describe the Mach-Zehnder or Ramsey interferometer, very common in atomic physics or optics.
In such set-ups the mean value of Ĵz is typically measured. For coherent states, this leads to Rabi-oscillation. For the unpolarized
state under consideration, 〈J〉 = 0, and this strategy does not apply. An alternative consists in measuring 〈Ĵ2

z 〉. The sensitivity is
then given by

∆θ =

√
〈J4
z 〉 − 〈J2

z 〉2
d〈J2

z 〉/dθ
. (D.1)

We first derive ∆θ for the TFS, before turning to the TMSV.

D.1 Interferometry with a twin-Fock state

The case of the TFS is studied in [69, 203, 204]. At the output of the interferometer we have Ĵ ′z = cos θĴz + sin θĴx. The TFS,
is written in the number basis as

|TFS〉 = |Np, Np〉nb . (D.2)

and in the pseudo spin basis

|TFS〉 = |Np, 0〉 . (D.3)

It is in the kernel of Ĵz , which greatly simplifies the calculation. The signal is

〈Ĵ ′2z 〉 = sin2 θ〈J2
x〉 (D.4)

and the quantum noise is

(∆J ′2z )2 = 〈Ĵ ′4z 〉 − 〈Ĵ ′2z 〉2 , (D.5)

(∆J ′2z )2 = sin4 θ
(
〈Ĵ4
x〉 − 〈Ĵ2

x〉2
)

+ sin2 θ cos2 θ〈ĴxĴ2
z Ĵx〉 . (D.6)

Using Ĵx = Ĵ++Ĵ−
2 and Ĵ±|Np,m〉 =

√
Np(Np + 1)−m(m± 1)|Np,m± 1〉, we get

〈Ĵ2
x〉 =

Np(Np + 1)

2
, (D.7)

〈Ĵ4
x〉 =

3N2
p (Np + 1)2

8
− Np(Np + 1)

4
, (D.8)

〈ĴxĴ2
zJx〉 =

Np(Np + 1)

2
. (D.9)

Gathering all pieces, the signal is (forNp � 1)

〈Ĵ ′z〉 =
N2
p

2
sin2 θ , (D.10)
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and the noise is

(∆J ′2z )2 = sin4 θ
N4
p

8
+ sin2 θ cos2 θ

N2
p

2
. (D.11)

The sensitivity is thus

∆θ2 =

N2
p

4 tan2 θ + 1

2N2
p

. (D.12)

It is minimal when θ∗ = 0, and it then reaches the Heinsenberg scaling ∆θ∗ =
√

2
N , and is a factor

√
2 above the Heinsenberg

limit.

D.2 Interferometry with a two-mode squeezed vacuum
The TMSV can be written as a coherent superposition of TFS with different numbers of atoms

|TMSV〉 =

∞∑
Np=0

cNp |Np, Np〉 . (D.13)

We just need to replace in the expression of the signal and noise, the term inNk
p by the moment 〈Nk

p 〉TMSV. In the limit 〈Np〉 �
1, these are (we recall that the statistic is thermal, and use a continuous approximation)

〈N̂k
p 〉TMSV ' k!Np

k
, (D.14)

withNp = 〈N̂p〉. This leads to

〈Ĵ2
x〉 = Np

2
, (D.15)

〈Ĵ4
x〉 = 9Np

4
, (D.16)

〈ĴxĴ2
zJx〉 = Np

2
. (D.17)

And finally

〈Ĵ ′z〉 = Np
2

sin2 θ , (D.18)

(∆J ′2z )2 = 8 sin4 θNp
4

+ sin2 θ cos2 θNp
2
. (D.19)

The sensitivity is thus

∆θ2 =
8 tan2 θNp

2
+ 1

4Np
2 . (D.20)

It is minimal when θ∗ = 0, and is slightly better than a TFS with the same mean number of atom.

D.3 Interferometry with detection noise
We assume that the main limitation comes from the detection noise . We consider that we have produced a perfect TMSV. The
result of a measurement is now given by

J ′′z = Ĵ ′z +N . (D.21)

We takeN to be a centered and normally distributed. The signal and noise are

〈Ĵ ′′z 〉 = Np
2

sin2 θ + ∆N 2 , (D.22)

(∆J ′′2z )2 = 8 sin4 θNp
4

+ sin2 θ cos2 θNp
2

+ 4Np
2
∆N 2 + (∆N )4 . (D.23)
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where (∆N )4 = 〈N 4〉 − 〈N 2〉2. The sensivity is finally given by

∆θ2 '2 tan2 θ +
1

4Np
2 +

∆N 2

Np
2

cos2 θ
+

(∆N )4

4Np
4

sin2 θ cos2 θ
. (D.24)

In our situation, we have ∆N 2, (∆N )4 order one, much smaller than Np ∼ 100. In that limit, the optimal working point is
slightly shifted from θ = 0 to θ∗4 ' (∆N )4

8N̄4
p

. The best sensitivity is then

∆θ∗ '

√
1 + 4(1 +

√
6)∆N 2

2Np
, (D.25)

where we have used 〈N 4〉 = 3(∆N 2)2. The sensitivity is related to the squeezing factor defined in the main text,

∆θ∗ '
√

1

(2Np)2
+ (1 +

√
6)
ζ2

Np
. (D.26)



Appendix E

Thermalization of the Nematic state |N : ez〉

In this appendix, we compute the evolution of the nematic state |N : ez〉 at q = 0. We derived in the appendix B in the expression
of this state in the spin state basis. To alleviate the notation, since we are only dealing with state ofN atoms and zero magnetization,
we write |N,S, 0〉 = |S〉. We have,

|N : ez〉 '
∑

S=0:2:N

√
2S

N
e−

S2

4N |S〉. (E.1)

This is an approximation valid forN � 1. In that case, the most relevant term of the sum above verify 1 � S � N . This will
greatly simplify the calculation.
At q = 0, the Hamiltonian is Us

2N Ŝ2, so that the state evolves as

|ψ(t)〉 '
∑

S=0:2:N

√
2S

N
exp

(
S2

4N
− iUstS

2~N

)
|S〉. (E.2)

We have used S(S + 1) ' S2, which is valid for most of the term of the sum. We want to compute the mean value of N̂0 in that
state. For S � N , We have

〈S′|N̂0|S〉 =
N

2
δS′,S +

N

4
(δS′,S+2 + δS′,S−2) . (E.3)

From this we compute

N0(t) =
N

2
+N

∑
S=0:2:N

S

N
exp

(
− S

2

2N

)
cos

(
2SUst

N~

)
(E.4)

We introduce the variables τ =
√

2
N
Ust
~ and x = S√

2N
. x varies from 0 to

√
N � 1 by increment of dx =

√
2
N . The sum can

be replaced by an integral for 0 to +∞

N0(t) ' N

2
+N

∫ +∞

0

dxxe−x
2

cos (2xτ) , (E.5)

N0(t) ' N −Nτ
∫ +∞

0

dxe−x
2

sin (2xτ) , (E.6)

where we have used an integration by part. Let us right the integral F (τ). It verifies F ′(τ) + 2τF (τ) = 1, which defines the
Dawson function.

When τ → 0,F (τ) ∼ τ , so that at short time, we recover the results of the Bogoliubov approximation (in the limitω → 0),

N0(t) ∼ N − 2U2
s t

2

~
(E.7)

When τ →∞, F (τ) ∼ 1
2τ + 1

4τ3 , and

N0(t) ∼ N

2
− N2~

8U2
s t

2
. (E.8)
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Figure 68: Numerical resolution of the thermalization dynamic of a nematic state at q = 0. a np vs τ (defined above) for various
atom numbers. For smallN = 10 we see an early revival of the dynamic. For largerN , we observe thermalization, and we verify
the universality of the curve np(τ). b The blue line is the exact result for N = 1000 atoms, the red dots are the approximate
formula derived in this appendix. The error of order 1/N is not visible.



Appendix F

Reduced density matrix

F.0.1 Expression of the reduced density matrix
Let us consider a general state ofN spin-1, in a single spatial mode, written in the number basis |N+1〉|N0〉|N−1〉 as

ρ(N) =
∑
i±,j±

ρ
i+,j−
i+,i−

⊗
m=0,±1

|im〉〈jm| . (F.1)

Where the sums goes over i+ = 0 : N , i− = 0 : (N − i+) and idem for j±. Now, let us assume a new spatial mode is accessible
to the atoms. We label the two spatial modesA andB, and we use the basis

⊗
m |NAm, NBm〉, where each ket corresponds to a

spin statem, and the two numbers within the kets indicate the number of atoms of spinm in the spatial modeA andB. We now
imagine to add a linear coupling between the two spatial modes (e.g. tunneling). If all atoms are initially in A, after some time,
the state evolves as

ρ(N) ∝
∑
i±,j±

ρ
j+,j−
i+,i−

⊗
m=0,±1

∑
km,lm

[(
im
km

)(
jm
lm

)] 1
2

κkm+lm |km, im − km〉〈lm, jm − lm| . (F.2)

where κ is a number characterizing the strength and duration of the coupling (it won’t play any role in the following). We then
project ρ(N) onto states with n atoms inA andN −n atoms inB, and trace over the spatial modeB to obtain ρ(n)1. In the sum
of Eq. (F.2), we have

∑
km =

∑
lm = n, and im − km = jm − lm. The factor κ is then taken to the power n, and is simply a

constant. Furthermore, noticing that (we are back to the spin basis, |N+, N−〉 = |N+, N0 = N −N+ −N−, N−〉)

ρ
j+,j−
i+,i− = 〈i+, i−|ρ(N)

[ ∏
m=0,±1

(
(jm − lm)!

jm!

(im − km)!

im!

) 1
2

â†lmm âkmm

]
|i+, i−〉, (F.3)

we can rewrite the sum as

ρ(n) =
1

N
∑
k±,l±

Tr
(
ρ(N)P̂

(n)†
l+,l−

P̂
(n)
k+,k−

)
|k+, n− k+ − k−, k−〉〈l+, n− l+ − l−, l−| . (F.4)

where

P̂
(n)
k+,k−

=
â
k+
+1â

k−
−1â

n−k+−k−
0√

k+!k−!(n− k+ − k−)!
, (F.5)

andN is a normalization constant. We take ρ(n) to be normalized to one, thus

N =
∑

i,j,k+,k−

ρi,ji,j

(
i

k+

)(
j

k−

)(
N − i− j
n− k+ − k−

)
, (F.6)

using twice the identity
∑
q

(
p
q

)(
r
s−q
)

=
(
p+r
s

)
we obtain

N =

(
N

n

)
. (F.7)

1For instance, one could imagine that the atoms inB are lost, or equivalently that an observer has only access to the modeA. The projection is necessary to
have blocks with well-defined atom numbers, otherwise, the state of modeA, will be a mixture of the ρ(n), with nwithin∼ n±

√
n (shot-noise), and n given

by κ.
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F.0.2 Iterative calculation in the spin-state basis
It is cumbersome to use the above formula to compute the state we are interested in which has non-zero weights only on a few
states in the spin state basis. Here we show the formula we use for an efficient calculation of ρ(n). We use an iterative method and
hence we only need to know Tr1, which we apply on ρ(n) to get ρ(n−1). We start with

ρ(n) =
∑

cTPSM |nSM〉〈nTP | , (F.8)

We then use the expression of the spin state in the coherent nematic state basis [50]

|nSM〉 =
1√
fnS

∫
dΩYSM (Ω)|n : Ω〉 , (F.9)

where

fnS =
4πn!2S(n+S

2 )!

(n−S2 )!(n+ S + 1)!
. (F.10)

We arrive at

ρ(n) =
∑

cTPSM
1√
fnS f

n
T

∫ ∫
dΩdΩ′YSM (Ω)Y ∗TP (Ω′)|n : Ω〉〈n : Ω′| . (F.11)

This form is convenient to trace over the state of k particles, it simply amounts to splitting the coherent state |n : Ω〉 = |k :
Ω〉|n− k : Ω〉. We take k = 1, and we use [50]

〈n : Ω|nSM〉
√
fnSYSM (Ω) , (F.12)

to obtain

ρ(n−1) =
∑

cTPSM
f1

1√
fnS f

n
T

∫ ∫
dΩdΩ′YSM (Ω)Y ∗TP (Ω′)Y ∗1m(Ω)Y1m(Ω′)|n− 1 : Ω〉〈n− 1 : Ω′| .

where the sum is now taken over S,M, T, P andm = ±0, 1. The matrix element in the spin state basis are

dT1P1

S1M1
= 〈n− 1S1M1|ρ(n−1)|n− 1T1P1〉 ,

dT1P1

S1M1
=
∑

cTPSM
f1

1

√
fn−1
S1

fn−1
T1√

fnS f
n
T

∫ ∫
dΩdΩ′YSM (Ω)Y ∗TP (Ω′)Y ∗1m(Ω)Y1m(Ω′)Y ∗S1M1

(Ω)YT1P1(Ω′) ,

We then express the integral in function of Clebsch-Gordan coefficient

∫
dΩY ∗S1M1

(Ω)Y ∗S2M2
(Ω)YSM (Ω′) =

√
(2S1 + 1)(2S2 + 1)

4π(2S + 1)
〈S10S20|S0〉〈S1M1S2M2|SM〉 ,

and using also f1
1 = 4π/3 to obtain

dT1P1

S1M1
=
∑

cTPSM

√
fn−1
S1

fn−1
T1

(2S1 + 1)(2T1 + 1)

fnS f
n
T (2S + 1)(2T + 1)

〈S1010|S0〉〈T1010|T0〉〈S1M11m|SM〉〈T1P11m|TP 〉 .

The sum is taken over S,M, T, P andm = 0,±1, but the selection rules of the Clebsh-Gordan coefficient implies that only the
term withT = S±1 andM = M1 +m are non-zero. This makes the above expression useful for the calculation of the reduced
density matrix.
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Sept. 2010.

[82] D. Jacob, Spin-1 Bose-Einstein condensates : experimental study with Sodium atoms in an optical dipole trap. Theses,
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RÉSUMÉ

Dans cette thèse, nous présentons des expériences réalisé avec des gaz d'atome de 
sodium ultrafroids, piégés à l'intersection de deux faisceaux laser. A très basse 
température, discrétisation de l’énergie et indiscernabilité des particules conduisent à un 
nouvel état de la matière, un condensat de Bose-Einstein. Ce phénomène remarquable à 
d'abords été décrit pour un gaz idéal, c'est à dire sans interaction entre ses constituants. 
Ici, nous nous intéressons aux effets des interactions entre atomes. Plus précisément, 
nos atomes possèdent un spin 1, et nous nous interessont à l'état spinoriel collectif, dans 
un régime ou les degrées de liberté spatiaux sont gelés. 
Deux résultats importants que nous présentons ont été obtenus en plongeant le 
condensat dans un champ magnétique quasi-nul. Dans ce régime, les interactions 
dominent et favorisent l'émergence d'états fortement corrélés. Dans une première série 
d'expériences, le champ est soudainement réduit, et le système se retrouve hors-
équilibre. Il s'ensuit une dynamique de relaxation, qui mène à un état stationnaire bien 
décrit par un ensemble de Gibbs. Dans une seconde expérience, le champ est 
progressivement réduit, de façon à suivre l'état fondamental du système. Nous réalisons 
ainsi un condensat fragmenté, dont une remarquable propriété est l'invariance sous 
rotations des spins. La restauration de cette symétrie, toujours brisée par les condensat 
“simple" (i.e. non-fragmenté), se fait grâce à l'appariement des atomes en état singulet.

MOTS CLÉS

Atomes ultrafroids, condensat de Bose-Einstein spinoriel, fragmentation

ABSTRACT

In this thesis, we present some experiments realized with ultracold gases of sodium 
atoms, trapped at the intersect between two laser beams. At very low temperature, the 
discretization of energy and the indistinguishability of particles, lead to a new state of  
matter, a Bose-Einstein condensate. This remarkable phenomenon was initially introduced
to describe an ideal gas, that is to say with no interactions between its constituents. Here, 
we are interested in the effects of the interactions between the atoms. More precisely, our 
atoms carry a spin 1, and we focus on the collective spin state, in a regime where the 
spatial degrees of freedom are frozen. Two important results that we present were 
obtained by embedding the condensate in a nearly vanishing magnetic field. In that 
regime, interactions dominate and favor the emergence of strongly correlated states. In a 
first series of experiment, the magnetic field is suddenly decreased to bring the system 
out-of-equilibrium. The ensuing relaxation dynamics leads to a stationnary state that can 
be well described by a Gibbs ensemble. In a second experiment, the field is slowly 
reduced, in order to follow the ground state of the system. We thereby produce a 
fragmented condensate, which possesses the remarkable feature of being invariant upon 
spin rotations. The restoration of this symmetry, always broken by single (i.e. non-
fragmented) condensates, is driven by the pairing of atoms in singlet states.

KEY WORDS

Ultracold Atoms, Spinor Bose-Einstein condensates, Fragmentation
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