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List of Abbreviations 

APSIM: Agricultural Production Systems sIMulator 

ATL: ATLAS Transformation Language  

BioMA: Biophysical Model Applications 

Crop2ML: Crop Meta Modeling Language 

CyML: Cython-derived Modeling Language 

DEVS: Discrete Event System Specification  

DSSAT: Decision Support System for Agrotechnology Transfer 

DSL: Domain Specific Language  

DSML: Domain-Specific Modeling Language 

GUI: Graphical User Interface 

IDE: Integrated Development Environment 

MDA: Model Driven Architecture 

MDE: Model Driven Engineering 

PBM: Process-Based Model 

PMF: Plant Modeling Framework 

QVT: Query View Transformation 

RECORD : REnovation et COoRDination de la modélisation des cultures pour la gestion des agro-

écosystèmes 

SBML: System Biology Markup Language 

SIMPLACE: Scientific Impact assessment and Modelling Platform for Advanced Crop and Ecosystem 

management 

SysML: Systems Modeling Language 

UML: Unified Modeling Language 
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Glossary 

Abstract class: a set of operations which all objects that implement the protocol must support 

Algorithm: a set of coherent equations, mathematical expressions with or without logical rules to solve 

a specific problem 

Component: a part of a system; a piece of software representing plant and/or soil processes that is used 

to compose a crop model (e.g. crop, light interception, water uptake, soil water, or soil C and N 

components) 

Conceptual model: a concise and precise consolidation of all goal-relevant structural and behavioral 

features of the system presented in a predefined format. It provides foundation for the development of 

the simulation program. 

Design pattern: a general reusable solution to a commonly occurring problem in software design. 

Modularity: the property of a system to be made up of relatively independent, but interlocking 

components or parts. 

Reverse engineering: a process of analyzing a subject system in order to identify the system’s 

constituents and create representations in other forms or at higher levels of abstraction 

Strategy design pattern: a software design that defines a family of algorithms, encapsulates each one, 

and makes them interchangeable 

Wrapper: a class that serves to mediate access to another. 
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Résumé 

L’hétérogénéité des plateformes de modélisation de culture en matière de langage d'implémentation, 

de motif de conception et de contraintes d’architecture logicielle limite la réutilisation des composants 

de modèles en dehors de la plateforme dans laquelle ils ont été développés. Notre objectif est de proposer 

une approche de réutilisation basée sur une forte abstraction des composants de modèle. Pour ce faire, 

nous avons identifié des concepts qui ont permis de définir un métalangage de spécification des 

composants et un langage métier minimal de description des algorithmes indépendamment des 

plateformes. Un système de transformation basée sur ces concepts a permis de générer de façon 

transparente et automatique des composants compatibles à différentes plateformes de modélisation. 

Dans cette thèse, nous avons montré que la description unifiée des composants de modèle avec des 

concepts partagés permet de lever les contraintes des plateformes et favorise la réutilisabilité des 

composants de façon transparente.  

 

Abstract 

The heterogeneity of crop modeling platforms in terms of implementation language, design pattern, 

and software architecture constraints, limits the reuse of model components outside the platform in 

which they have been developed. Our objective is to propose a reuse approach based on a high level of 

abstraction of model components. To this end, we have identified some concepts that made it possible 

to define a component specification language and a minimal domain language for the description of 

algorithms regardless of platform specificities. A transformation system based on these concepts 

allowed us to generate seamlessly platform-compliant components. We have shown that a unified 

description of model components with shared concepts lift constraints of platforms and increases 

reusability of components. 
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Résumé étendu 

1. Contexte 

 

1.1.  Motivation 

Depuis plusieurs décennies, les modèles de culture font l’objet d’une attention particulière. Ils 

fournissent une représentation conceptuelle du continuum sol-plante-atmosphère et permettent de 

décrire la croissance et le développement des cultures en interaction avec leur milieu. Ils sont de plus en 

plus développés et étendus pour répondre à un large éventail d'applications. Les avancées en génie 

logiciel constituent l’un des facteurs significatifs du développement accru des modèles de culture en 

favorisant différentes approches d’implémentation. Elles ont permis aux modélisateurs de concevoir des 

modèles génériques basés sur des fonctions physiologiques communes impliquées dans la croissance et 

le développement d'une grande variété de cultures (par exemple, AquaCrop (Steduto et al., 2009), 

SPASS (Wang & Engel, 2000), STICS (Brisson et al., 1998)) ou d’élaborer des plateformes de 

modélisation facilitant le développement et la réutilisation des modèles. On peut citer, entre autres, les 

plateformes RECORD (J. E. Bergez et al., 2013), BioMA (Donatelli et al., 2012), OpenAlea (Pradal et 

al., 2015), SIMPLACE (Gaiser et al., 2013), APSIM (H. E. Brown et al., 2014; Holzworth et al., 2018), 

DSSAT (Hoogenboom et al., 2019), ou CROSPAL (Adam et al., 2010a). Cette diversité est aussi liée 

aux progrès de l’agriculture numérique qui offre une masse de données produites par des capteurs à 

courte portée ou à distance permettant d’alimenter les modèles dont les sorties peuvent soulever de 

nouvelles interrogations, amenant à remettre en cause le formalisme des modèles, notamment les 

mécanismes causaux des réponses de la plante à son environnement. 

La diversité des modèles a rapidement amené la communauté des modélisateurs de culture à comparer 

la performance des modèles en vue de les améliorer en agrégeant leurs connaissances ou en introduisant 

d’autres innovations fournies par divers groupes de recherche sous l'égide de différents projets de 

collaboration. Les projets de recherche menés dans le cadre d'inter-comparaisons de modèles (Palosuo 

et al. 2011; Rötter et al. 2011; Asseng et al. 2013; Aslam et al. 2017)  ont permis de mettre en évidence 

les différences entre les sorties des modèles sans pouvoir déterminer les sources d'incertitude ni analyser 

les processus qui y sont impliqués (Muller & Martre, 2019). Ces résultats d'inter-comparaison de 

modèles montrent le potentiel et les limites des modèles et mettent en évidence la nécessité de tester les 

modèles au niveau des processus, mais aussi d'échanger entre modélisateurs et plateformes de 

modélisation les composants des modèles. L'échange de composants de modèles s’est avéré nécessaire 

pour permettre d’analyser diverses hypothèses de modélisation et pour améliorer la robustesse des 

modèles. 
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1.2. Problématique 

Malgré leur intérêt et leurs avancées, la diversité des plateformes de modélisation en matière de 

langages de programmation, de motifs de conception, de contraintes d’architecture logicielle a eu un 

impact négatif sur le progrès de la modélisation des cultures. Elle a entraîné une perte de transparence 

pour les modélisateurs et un ralentissement du développement de nouveaux formalismes en raison d'un 

manque de standards évolutifs dans la mise en œuvre et la réutilisation des modèles. Les composants de 

modèles ne sont pas réutilisables en dehors de la plateforme dans laquelle ils ont été développés, et peu 

d'avantages sont tirés des composants de modèles existants développés par d'autres plateformes. Par 

ailleurs, bien que l’intérêt de modularité soit reconnu depuis longtemps (Donatelli et al., 2014; Timlin 

et al., 1996), la modularité est explicitement abordée qu’au niveau de la phase d’implémentation des 

composants. De même, les hypothèses et descriptions (méta-données) sont rarement accessibles dans le 

code source des composants (Athanasiadis & Villa, 2013). La réutilisation des composants nécessite la 

connaissance des objectifs de modélisation et un haut niveau d'abstraction. Actuellement, la majorité 

des plateformes ne représentent pas explicitement le modèle conceptuel des composants qui est un 

artefact réutilisable. La représentation conceptuelle reste souvent informelle ou dans l'esprit. En outre, 

la publication de composants de modèle dans les revues scientifiques ne fournit pas une description 

suffisante des processus modélisés (Keller & Dungan, 1999) pour permettre de reproduire et juger de la 

fiabilité des résultats scientifiques fortement liés à la plateforme dans laquelle le composant a été mis 

en œuvre et testé (Cohen-Boulakia et al., 2017; Hinsen, 2016).  

Etant donné que les modèles ou les composants de modèles sont souvent directement représentés 

sous forme de programmes informatiques, les approches de réutilisation consistent souvent à soit les 

utiliser comme une boîte noire (Rizzoli et al., 2008) ou à les traduire manuellement pour les adapter aux 

exigences de la plateforme cible. L'approche de boîte noire est intéressante pour gérer l’hétérogénéité 

des composants à travers l’encapsulation de composants dans une nouvelle plateforme mais elle 

nécessite la mise en œuvre d'algorithmes complexes, réduit la connaissance du comportement interne 

du composant et ne permet pas l'extension ou la rénovation des composants. D'un point de vue social, 

les composants sous la forme de boîtes noires sont considérés peu fiables (Janssen et al., 2017). Le 

recodage d'un composant nécessite des compétences en programmation dans le langage dans lequel le 

composant est implémenté. Ainsi, l'absence d'un système de transformation automatique peut augmenter 

le temps et le coût de développement. Un tel système est nécessaire pour garantir la cohérence entre les 

modèles de simulation (code source) et les modèles conceptuels. 
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1.3. Objectif et questions de recherche 

L'objectif principal de cette recherche est de définir une approche de réutilisation de composants de 

modèles de culture entre les plateformes de modélisation et de simulation. Elle sera centrée autour de la 

définition de concepts partagés permettant de représenter uniformément les composants de modèles 

(pour répondre à la question de la conceptualisation des composants) et sur laquelle vont s’appuyer des 

transformations automatiques entre les plateformes. Pour aborder cette problématique de réutilisation 

des composants de modèles et atteindre notre objectif de recherche, deux questions principales sont 

étudiées : 

- Existe-t-il une représentation commune des composants de modèles partagée entre les 

plateformes de modélisation et de simulation des cultures ?  

-  Comment pouvons-nous concevoir un système de transformation pour atteindre l'objectif de 

recherche ? 

 

2. Principaux résultats 

 

2.1. Proposer un ensemble de concepts pour une représentation partagée 

des composants des modèles entre les plateformes de modélisation  

 Nous abordons le manque de représentation conceptuelle ou de description explicite des 

composants de modèle et la prise en compte de la modularité dans les plateformes de modélisation. Nous 

supposons qu’une approche de réutilisation transparente passe par la définition d’un ensemble de 

concepts partagés.  Pour cela, nous avons proposé un ensemble de concepts (Fig. 1) qui permettent de 

représenter explicitement et uniformément les composants. Ainsi, notre approche de réutilisation est 

centrée sur ces concepts. Sur cette base, nous avons défini un métalangage déclaratif Crop2ML 

permettant de décrire la spécification des modèles unitaires et leur composition pour répondre à la 

question de la modularité. Un modèle unitaire est constitué d’un ensemble d'éléments tels que sa 

description, une liste d'entrées, une liste de sorties, l'initialisation des variables d'état, une liste de 

fonctions mathématiques et un lien où est décrit l’algorithme du modèle. Il inclut également une 

représentation unifiée des tests unitaires avec des jeux de paramètres. Ses éléments structurés et leurs 

attributs constituent la grammaire du métalangage et permettent de vérifier si un modèle est conforme à 

Crop2ML. Un modèle composite est un graphe de modèles connectant les sorties d’un modèle aux 

entrées d'un autre. Ces concepts permettent donc de représenter les composants indépendamment des 

spécificités des plateformes de modélisation. En proposant une définition de tests unitaires pour chaque 

modèle unitaire avant que le processus ne soit implémenté, le développeur de modèles est obligé d'écrire 
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des unités qui sont faiblement couplées à partir d'autres unités (Holzworth et al., 2011), facilitant ainsi 

la réutilisation. 

 

 

Figure 1 : Concepts Crop2ML pour la spécification de modèle model. (a) Model unitaire. (b) Model 

composite. “+” : 1 ou plusieurs ; “*” :  zéro ou plusieurs ; “?” : zéro ou un. 

 

2.2. Définir un langage commun de représentation de la dynamique des 

processus biophysiques dans les modèles de culture (CyML) 

Etant donné que les algorithmes des composants sont décrits non seulement par des équations aux 

différences finies mais aussi par un ensemble d’expressions mathématiques avec des structures de 

contrôle, nous avons fait une analyse des langages utilisés par les plateformes de modélisation. Cette 

analyse consiste à identifier les différentes constructions nécessaires et suffisantes pour la description 

des algorithmes sans la prise en compte des spécificités des plateformes. L’idée est d’aboutir à une 

description qui soit la plus proche de la représentation mathématique des composants. Nous avons donc 

défini un langage minimal de haut niveau à partir des constructions identifiées compatibles entre les 

langages des plateformes (Fig. 2). Ce langage CyML est une restriction de Cython et permet de 

représenter l’algorithme des composants.  
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2.3. Définir un système de transformation de Crop2ML vers les plateformes 

de modélisation 

La principale approche souvent utilisée pour aborder la réutilisation des composants de modèles est 

de traduire manuellement le modèle ou de l'encapsuler pour répondre aux exigences des plateformes 

cibles. Si la première approche est lourde et exige des compétences dans différents langages et la 

connaissance des spécificités des plateformes, la seconde entrave la connaissance derrière les 

composants et l'utilise comme une boîte noire. Nous abordons la question de la réutilisation avec une 

approche boîte blanche. Nous avons construit un système de transformation qui permet de traduire 

automatiquement un modèle Crop2ML dans de nombreux langages et plateformes de modélisation de 

culture. 

 

Figure 2 : Constructions du langage CyML 

Il consiste à transformer le modèle Crop2ML associé aux algorithmes en un arbre syntaxique abstrait 

puis en une représentation uniforme indépendante de tout langage nommée ASG. Un ASG est un arbre 

sémantique abstrait obtenu à partir de la réécriture d’un AST. Cet arbre permet d’associer les 

informations sur les variables du modèle de spécification aux variables de l’algorithme en vue d’analyser 

la cohérence entre l’algorithme et le modèle de spécification. Enfin un générateur de code permet de 

convertir l’ASG en codes source dans différents langages et en composants compatibles aux exigences 

des plateformes. Cette transformation permet également de générer la documentation des composants 

compatible et liée aux spécifications des composants. 
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2.4. Proposer une approche pour inférer le modèle conceptuel à partir des 

différentes implémentations dans les plateformes de modélisation 

Nous avons ensuite défini un ensemble de principes qui permet d’inférer le modèle Crop2ML à 

partir des composants de modèles de plateformes. Ces principes consistent en la formalisation de 

patterns permettant d’identifier les éléments de spécification des composants de modèles en vue de les 

traduire vers Crop2ML. Cette inférence associée à CyMLT permet d’aboutir à un système de 

transformation complet, voire d’interopérabilité entre les plateformes de modélisation.  

 

2.5. Tester l’applicabilité de notre approche de réutilisation  

Pour tester l’applicabilité de notre approche de réutilisation, nous avons implémenté un 

environnement multilangage d’échange et de réutilisation des composants de modèle de culture entre 

les plateformes de modélisation et de simulation. Cet environnement comporte plusieurs phases, dont la 

création, l’édition, la composition, la vérification, la validation, la transformation, la documentation et 

la visualisation des modèles. Un prototype de cet environnement a été implémenté à partir de 

JupyterLab, un environnement interactif de développement Web. 

 

3. Conclusion et Perspectives 

Dans cette thèse, nous avons abordé le problème de la réutilisation des composants des modèles 

entre les plateformes de modélisation et de simulation des cultures. Ainsi nous avons proposé une 

architecture de réutilisation de composants centrée sur la définition d’un ensemble de concepts 

permettant d’aboutir à une représentation unifiée et partagée de composants entre les plateformes de 

modélisation. Ces concepts ont permis de définir un langage de spécification des modèles Crop2ML 

puis un langage métier minimal pour la description des algorithmes des modèles CyML. Cela permet 

ainsi de séparer la conception des modèles de leur mise en œuvre, cachant ainsi les détails de 

l'implémentation. L'implémentation du modèle est dérivée de sa spécification à travers un système de 

transformation extensible capable de générer des composants compatibles avec les plateformes de 

modélisation, dont DSSAT, BioMA, SIMPLACE, Record, et OpenAlea. En vue de permettre aux 

plateformes de garder tous leurs avantages et d’aboutir à une interopérabilité entre les plateformes, nous 

avons aussi mis en place des stratégies pouvant permettre d’inférer le modèle conceptuel à partir des 

composants des plateformes. Une représentation de haut niveau est une base pour mieux comprendre 

les hypothèses sous-jacentes et faciliter la collaboration entre les groupes de modélisation. Un certain 

nombre d'orientations futures ont été identifiées au cours de nos travaux.  
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3.1. Améliorations de Crop2ML 

Premièrement, nous n'avons défini aucune notion de variables composites ou de structure complexe 

de données. Une variable composite est une variable composée de deux ou plusieurs variables ou 

mesures qui sont fortement liées entre elles (Ley, 1972). L'utilisation de variables composites est une 

pratique courante dans le développement des modèles. Les variables individuelles qui composent une 

variable composite peuvent être des variables catégorielles (par exemple, les stades de développement) 

ou des cohortes d'organes. Pour convertir en Crop2ML un composant existant ayant des variables 

composites, nous décomposons d’abord manuellement la variable composite en plusieurs variables 

individuelles selon les structures de données de Crop2ML. Cela réduit l'automatisation du système de 

transformation.  

Deuxièmement, nous n’avons pas une approche pouvant aider à sélectionner judicieusement les 

composants de modèle en fonction des connaissances biophysiques (Adam et al., 2010b). Actuellement, 

la spécification du modèle est la seule source fournissant le contexte de modélisation par la provenance 

du composant et sa description. Cependant, nous n'avons pas de concept qui permet d'assurer la 

composition de contextes (R. Lara et al., 2006) ou qui guide l'utilisateur pour une composition 

sémantique des composants de modèles. Il est donc utile d'intégrer dans Crop2ML une approche de 

sélection des composants basée sur des connaissances approfondies qui pourra aider à construire des 

composants compatibles avec les exigences scientifiques des modèles. 

 

3.1.1. Vers une plateforme multi-échelle ? 

Une plateforme pour la connexion des plateformes de modélisation PBM et FSPM  

Crop2ML vise à permettre l'échange et la réutilisation de composants entre les plateformes de 

modélisation, notamment entre les plateformes de croissance des cultures et de modélisation 

fonctionnelle et structurelle des plantes (FSPM). Alors que les modèles de croissance des cultures 

simulent la croissance et le développement des plantes à l'échelle du couvert végétal (m2) ou au niveau 

d’une plante moyenne, les FSPM sont des modèles basés sur la plante individuelle ou à l'échelle de 

l'organe. L'échange (partage) de composants de modèles entre des modèles de croissance des cultures et 

des FSPM permettrait un couplage efficace de ces deux approches de modélisation pour modéliser les 

mélanges de variétés ou d’espèces en capturant les hétérogénéités spatiales et en quantifiant les 

caractéristiques des plantes impliquées dans la performance de ces mélanges (Gaudio et al. 2019). Une 

autre application est l'utilisation des FSPM dans une approche de phénotypage piloté par modèle, où les 

traits structurels des plantes sont estimés par rétro-ingénierie d'un FSPM (Liu et al. 2019) et sont ensuite 

utilisés comme paramètres d'entrée des modèles de culture pour simuler le comportement des génotypes 

dans des scénarios agroclimatiques cibles. Actuellement, Crop2ML permet uniquement de représenter 
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les processus sous forme de fonctions et ne prend pas en compte la structure de la plante. Pour étendre 

Crop2ML à la communauté FSPM, il faudra supporter des structures de données complexes telles que 

la géométrie et la topologie 3D.   

Un lien entre Crop2ML et les plateformes de modélisation intégrative  

La convergence de notre approche de réutilisation et de reproductibilité des composants de modèles 

avec d'autres initiatives de réutilisation, comme Crops in silico (Marshall-Colon et al., 2017) accélérerait 

considérablement le développement de la prochaine génération de PBM. L'initiative Crops in Silico vise 

à intégrer des plateformes de modélisation pour construire une culture in silico complète du niveau des 

gènes au niveau de la parcelle ou de l'écosystème en utilisant un logiciel, Yggdrasil (Lang, 2019). 

Yggdrasil permet de connecter des modèles hétérogènes en les exécutant de façon asynchrone ou en 

parallèle. Cela nécessite l’encapsulation des modèles dans différents langages pour traiter les messages 

asynchrones afin de gérer les entrées et les sorties des modèles. Crop2ML peut interagir avec Yggdrasil 

(i) pour mettre à disposition des composants de modèle dans les langages supportés par Yggdrasil, (ii) 

pour produire du code source de composants efficaces dans différents langages afin d'améliorer les 

performances de Yggdrasil ; et (iii) en validant chaque composant avec des tests unitaires avant leur 

intégration. L'interaction entre CyML et Yggdrasil pourrait améliorer l'intégration des PBM dans 

différents langages et à différentes échelles. 

 

3.1.2. Plateforme d’inter-comparaison des solutions de modélisation 

Une perspective consiste à comparer les modèles de simulation fournis par les plateformes de 

modélisation et de simulation des cultures. Il faut pour cela proposer un modèle de calcul générique 

pour assurer l’ordonnancement des modèles Crop2ML. Malgré les différences entre les plateformes de 

modélisation et de simulation des cultures, certaines caractéristiques communes ont été identifiées. 

Celle-ci ont permis de représenter les processus biophysiques indépendamment de leurs spécificités. 

Nous avons développé Crop2ML en partant du principe que les différences entre les sorties des modèles 

sont dues aux approches de modélisation (algorithmes) dans les processus individuels. Cependant, les 

différences dans les modèles de calcul (modèle séquentiel [par exemple, BioMA, Simplace, DSSAT], 

flux de données [OpenAlea], événement discret [Record]) pourraient également avoir un fort impact sur 

les résultats de simulation, mais nous n'en tenons pas compte dans notre thèse. Crop2ML pourra ainsi 

être étendu pour prendre en charge différents modèles de calcul. Une approche complémentaire à notre 

système de transformation présenté a été démontrée pour la transformation automatisée des fichiers 

d'entrée de quatre modèles de culture (Samourkasidis et al., 2019) Cette approche permet de découvrir 

et réutiliser des données à travers des solutions de modélisation. La combinaison de cette approche avec 

Crop2ML pourrait conduire à une implémentation complète de modèles en lien avec les données 
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associées, ce qui permettrait de quantifier les processus des modèles de culture de manière robuste et 

répétable. 

 

3.1.3. Extension de Crop2ML avec l’annotation sémantique des modèles 

La transformation de Crop2ML vers les plateformes est bien réalisée puisque le système de 

transformation est conçu pour prendre en charge les spécificités des plateformes cibles. Cependant, la 

sémantique de modèles Crop2ML repose essentiellement sur les concepts communs définis pour décrire 

à un haut niveau d’abstraction les processus biophysiques. Il n'y a pas de sémantique supportant la 

description de chaque instance des concepts de Crop2ML. Par exemple, il n'y a pas de convention 

partagée pour nommer les variables du modèle. L'intégration d'un composant Crop2ML dans un autre 

composant ou une autre plateforme nous oblige donc à adapter le nom de ses variables. Ce problème 

nécessiterait l'annotation sémantique des modèles Crop2ML, c’est-à-dire associer à la spécification aux 

spécifications des composants une ou des ontologies. Cela favorisera une composition sémantique des 

modèles.  Notre perspective est de fournir une annotation de modèles Crop2ML basée sur une exigence 

minimale d'annotation de chaque concept des modèles Crop2ML avec des informations pertinentes pour 

éviter l'utilisation abusive des composants, et de permettre la distribution des modèles Crop2ML via un 

dépôt partagé, comme BioModels (Glont et al., 2018; Le Novere, 2006).   
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Chapter 1.  Introduction 

Modeling and Simulation (M&S) is a well-known research domain that supports the integration of 

knowledge of other disciplines needed in research and applications (Banks, 2010). It offers a 

methodology to guide modelers that includes four main steps to address a domain modelling: the 

definition of the modeling problem, its conceptualization, simulation, and experimentation. The first 

step consists to define clearly the purpose of the modeling with its requirements. The conceptualization 

provides the conceptual model. Then a simulation model is implemented from the conceptual model, 

and, finally, the simulation model is executed with different experiments to produce simulation results. 

For more than six decades, researchers in plant and crop science have increasingly used Process-Based 

crop Models (PBM) to primarily increase scientific knowledge underlying the dynamics of bio-physical 

processes involved in plant and crop growth. Currently, a plethora of PBM exists. They have been 

impacted by the progress in Software engineering. Different crop modeling groups have emerged and 

have provided different modeling and simulation frameworks. The difference between these frameworks 

prevent researchers from realizing the potential benefit of PBM reuse between them. For my thesis, I 

am interested in the reuse of the PBM components between different crop modeling groups. The outline 

of this chapter is as follows: The following section provides the motivation for research and the 

identified research issues. Section 1.2 details the research objective and questions. The research strategy 

is explained in Section 1.3. Section 1.4 presents the main contributions of this thesis. Finally, the outline 

of the thesis is given in Section 1.5. 

 

 Research context 

Several factors have motivated the exchange and the reuse of PBM components between 

crop modeling groups. 

 

1.1.1. Motivation for research 

The increasing number of PBM is interesting but raises great challenges on their reuse in different 

crop modeling groups. PBM are essentially computer tools used to codify the plant and crop growth and 

development theory. They have been increasingly developed and continuously expanded to meet a wide 

range of applications. Apart from their primary role, they are used, among others, to (1) analyze the 

interaction between the plants and their environment (2) optimize farmers' strategies (3) assess 

agroclimatic risks and make technical or political decisions (4) estimate and predict agricultural yields. 

They allow researchers to examine scientific hypotheses (K. Boote et al., 1996) or to analyze and predict 
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the response of agricultural systems to climatic (Porter et al., 2014), agronomic and more recently 

genotypic factors. They can also support the analysis of several plant physiological traits and 

experiments, which could not be realized in the field.  

Moreover, digital agriculture helps researchers improve knowledge of plant growth and 

development through the mass of data produced by the close range or remote sensors. It raises new 

issues that lead to question the formalism of the models, in particular, by modeling more precisely the 

causal mechanisms of the plant's responses to its environment. In parallel, the advance in Software 

engineering is also one of the significant factors of PBM increase by promoting different implementation 

approaches. It gives modelers the capability to define generic crop models based on common 

physiological functions involved in the growth and development of a wide variety of crops (e.g. 

AquaCrop (Steduto et al., 2009), SPASS (Wang & Engel, 2000), STICS (Brisson et al., 1998)). To 

overcome the model reuse issues and other problems related to model building, conceptual frameworks 

have been built and have highly facilitated the development of multiple models for the same crops. We 

can mention, among others, the frameworks RECORD (J. E. Bergez et al., 2013), BioMA (Donatelli et 

al., 2012), OpenAlea (Pradal et al., 2008, 2015), SIMPLACE (Gaiser et al., 2013), APSIM (H. E. Brown 

et al., 2014), DSSAT (Hoogenboom et al., 2019), CROSPAL (Adam, 2010a). The synergy between 

modeling frameworks has highly been desired for improving crop models by sharing, model components 

and concepts and continuing testing them (Stöckle & Kemanian, 2020). Despite their interest and 

advances, the differences in frameworks have negatively affected the advances in crop modeling. They 

cause a loss of transparency for modelers, which has resulted in slowing down the development of new 

formalisms due to a lack of scalable standards for model development and reuse. Model components are 

not reusable outside the specific framework in which they have been developed, and little advantage is 

taken from existing model components provided by other frameworks. However, the crop modeling 

community has a growing need for a common approach that will help to exchange and reuse efficiently 

and seamlessly their model components (Holzworth et al., 2014a; Martre et al., 2018). This common 

approach is crucial for accelerating research on crop modeling, to increase the degrees of explanatory 

mechanisms (Antle et al., 2017), and benefit from collaborative modeling. Additionally, it must provide 

the potential to test seamlessly alternative hypotheses provided from different modeling groups. It must 

be well defined to allow for the modularity, reproducibility, verification, validation, and reusability of 

crop model components. A centralized framework is a means to address all of these requirements. 

Modularity consists of breaking the process down into manageable and reusable small functions. 

Reproducibility is ensured regardless of crop simulation framework. Verification ensures that the 

modeled process is well designed. Validation allows testing the outputs against expected values for each 

modeled process independently of the crop simulation framework, and Reusability is the capability to 

integrate a component in a framework other than the one in which it was developed. We assume that 

these criteria are w 
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1.1.2. Problem statement 

The need for modularity has long been recognized by crop modelers  (Donatelli et al., 2014; Timlin 

et al., 1996). It allows comparing or using alternative model components with different levels of detail. 

It is one of the factors that permits to a third party to reuse a model component ensuring that its 

integration in a large component is coherent. It facilitates model maintenance at implementation level 

(Antle et al., 2017). These interests show the crucial importance of modularity in reuse, which needs to 

be carried out transparently. Modularity is addressed at implementation level in different programming 

languages, and the assumptions are seldom included into model components (Athanasiadis & Villa, 

2013). Component reuse requires the knowledge of the modeling project objectives and a level of 

abstraction higher than the implementation level. In M&S, the importance of conceptual modeling is 

well demonstrated. A conceptual model allows modelers involved in a simulation project to understand 

and discuss the structure of the model (processes hierarchy) without focusing on its implementation. Its 

development is relevant for expressing the requirements of the modeling project. Currently, a majority 

of crop modelers still represents crop models or components at implementation level only, and do not 

use conceptual model as a reusable artefact. Conceptual models often remain informal or in mind. 

Moreover, the publication of crop models or components in scientific journals does not provide 

sufficient description associated with the modeled process which are a fundamental criterion for their 

reuse (Keller & Dungan, 1999). This raises the problem of reproducibility and reliability of scientific 

results that are strongly linked to the platform in which a component has been implemented and tested 

(Cohen-Boulakia et al., 2017; Hinsen, 2016). There is an urgent need to represent explicitly conceptual 

models, and to verify and validate models at conceptual level. 

Issue 1. There is a lack of explicit representation of the conceptual models in the modeling of 

biophysical process. In other words, there is no separation between the domain space and the 

implementation. 

In the same way, given that modeling solutions or model components are often provided at 

implementation level, the reuse approaches are based on their use as black box (Rizzoli et al., 2008) or  

their re-encoding to be conform to the target platform requirements. The black box approach makes 

possible the coupling of components through a wrapping system (encapsulating the component in a new 

architecture). This technique requires the implementation of complex algorithms. It obstructs the 

internal behavior of the component and does not enable the extension or renovation of the component. 

From a social point of view, a black box component is less likely to be trusted (Janssen et al., 2017). 

Re-encoding a component requires programming skills for each language in which the component is 

implemented. The lack of an automatic transformation system can increase development time and cost. 
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A transformation system is needed to ensure that the simulation models (source code) and the conceptual 

models are consistent. 

Issue 2. Existing PBM frameworks do not provide a transformation system for model component 

reuse. 

 Research objectives and questions 

We formulate our research hypothesis based on the background and our analysis of existing PBM 

components, and the frameworks in which they have been implemented: 

The definition of shared modeling concepts to represent biophysical processes involved in the crop 

growth and development allow component reuse between modeling and simulation platforms. 

The main objective of this research is to design a multilanguage framework for PBM components 

exchange and reuse. The framework will provide a novel approach shared by PBM frameworks to 

describe conceptual models (to address issue 1), for performing model transformations to different 

languages and frameworks, and supporting consistency between a conceptual model and its 

implementations (to address issue 2). Consistency refers to maintaining the compatibility between a 

conceptual model and its implementations. That is, the framework should allow generating a conceptual 

model from model implementation. The research aims to contribute in the exchange and reuse between 

crop modeling frameworks. To address the above issues on reuse of PBM component and to achieve 

our research objective, two main research questions are investigated. 

Question 1. Is there a shared representation of PBM components between crop modeling and 

simulation frameworks?  

 Q.1.1. What is the optimal level of abstraction of PBM components? 

 Q.1.2. What are the main requirements for achieving the transformation between the 

specification modeling language and PBM frameworks? 

Question 2. How can we design a transformation system to achieve the research objective? 

 Q.2.1. What functionalities should the transformation system provide to generate model 

component that conform to PBM frameworks? 

 Q.2.2. How to maintain consistency between a conceptual crop model component and its 

implementation? 

Crop modeling and simulation frameworks use a simulation engine, a mechanism that links input 

data and the PBM to produce simulation results. Different simulation engines can be based on different 
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models of computation (MoC) such as dataflow, DEVS simulation (scheduling events), control flow, 

used to coordinate the execution of the model. The interactions between the physical and biological 

components of the biophysical system are also managed through the simulation engine that defines the 

execution logic of the components. Moreover, the biophysical system is often linked to a decisional 

system, modeled through different formalisms (agent-based, rules) that also affects the simulation 

results. The objective of this research is neither to provide a crop modeling platform nor to provide the 

execution logic of the set of PBM components of a modeling solution (that is, of a crop model). The aim 

is to define a centralized framework to describe PBM components, which can be sequentially composed 

and reused transparently and automatically in existing modeling and simulation frameworks. 

 

 Research strategy 

In order to follow an appropriate research strategy, it is important to define the philosophy of 

research. Three main interrelated components composed the research philosophy: ontology, 

epistemology and methodology (Tolk, 2016).   

Ontology relates to the study of what exists. The ontological paradigms are mainly realism, critical 

realism, and pragmatic realism. Realism considers that reality exists and is independent of the observer. 

In the critical realism, reality exists but the knowledge that one develops of reality is dependent on the 

observer (Guba & Lincoln, 1994). Pragmatic realism brings a moderate form of the realism assuming 

that reality exists but it derives from the usage made of it. Therefore, reality is function of actor’s belief 

and truth is a function of actor’s practices (McCarthy, 1996). In crop modeling, even if the real is known, 

the knowledge produced from crop modeling depends on the modeling hypothesis formulated by the 

modeler. Therefore, the critical realism is the ontology approach used in this interdisciplinary research. 

Epistemology refers to how we define and represent knowledge. The common epistemology 

paradigms are positivism, interpretivism and postpositivism (Bunniss & Kelly, 2010). Interpretivism is 

opposite to positivism and their differences are well illustrated in (Huang, 2013). Positivism states that 

all knowledge about reality is exclusively based on experiments and observations independently from 

observer’s perceptions (Clark, 1998). Interpretivism focuses on understanding of the observer’s 

interpretations and values subjectivity. Reality is relative and truth is constructed from observers’ 

perceptions. In postpositivism, the objectivity remains an ideal to achieve but the production of 

knowledge is influenced by actors’ perceptions. So, it is possible to have different conceptualizations of 

truth. That is adopted in this research. 

Methodology refers to how knowledge is applied to provide efficient methods which will be 

followed during the research. We distinguish different ways to characterize the type of research 

methods: inductive/deductive, qualitative/quantitative, applied/fundamental. The inductive method 
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starts with specification and produce generalization (e.g., all the PBM components we use are discrete-

time; therefore, all PBM components are discrete-time). The deductive method starts with generalization 

and produces a specification (e.g., all crop modeling frameworks depend on programming languages. 

BioMA is a crop modeling framework; therefore, BioMA depends on programming languages). The 

deductive method is used to test hypotheses while the inductive method generates hypotheses. The two 

mixed reasoning methods are in line with our research, from inductive (define hypotheses from our first 

knowledge) to deductive (test hypotheses). The qualitative method is primarily exploratory and helps to 

develop ideas or hypotheses based on qualitative data while quantitative method includes survey 

methods, numerical methods, etc. This research uses mixed methods (qualitative/quantitative) as it 

started by identifying the qualitative differences between existing modeling approaches and use 

numerical methods (difference equations), design patterns to reach the research objective. Moreover, it 

is an applied research. 

We assume that the reuse experience relies on a shared resource, which in our case is the common 

concepts to represent a crop biophysical process. Thus, having these shared concepts make it possible 

to represent a process regardless of modeling platforms to support the exchange and reuse of 

components. However, other factors are needed to achieve the reuse objective. Among these factors, the 

adoption of the modeling language by crop modelers and the reuse proof-of-concept. To achieve that, 

this research is conducted as part of an international consortium of large modeling and simulation 

platforms called AMEI (Agricultural Modeling Exchange Initiative). This consortium is a source of our 

knowledge on crop modeling frameworks (meetings, survey methods, tests) and allows us to apply our 

approach. 

Based on the research philosophy adopted and research questions, the adopted research strategy is 

classically described as follows:  

(1) identification of the issues, research objective and questions; 

(2) presentation of the background to produce the research hypotheses; 

(3) conceptualization of the approach and implementation; 

(4) proof of concept to test the hypotheses; 

(5) improving the approach by an iterative process (3) to (5); 

(6) results. 

Our approach primarily focuses on widely used crop modeling and simulation platforms (DSSAT, 

BioMA, SIMPLACE, Record, OpenAlea) and its extensibility has been proven subsequently. We used 

three PBM components as a case study to develop and evaluate our approach.  

 Contributions 

The main contributions of this thesis are to: 
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Propose of a shared crop modeling language (Crop2ML) for model specification: 

We address the lack of representation of conceptual models and the diverse interpretation of 

modularity in PBM frameworks.  For that, we propose a set of generic concepts that allow 

representing shared conceptual models between modeling frameworks. Based on these 

concepts, we design a declarative language with a modular approach to describe the 

specifications of model units and their composition. The concepts contain all information that 

ensure the provenance of the component and allow representing it regardless of the specificities 

of PBM frameworks. Our representation of model components increases their portability, model 

reasoning and follows FAIR principles for software (Lamprecht et al., 2019). Moreover, this 

modeling language contains unit tests concepts that will help modelers to integrate unit test into 

model development.  

 

Separate model specifications from their implementation: With our approach, we keep 

the essential information to represent a component and hide implementation details. Model 

implementation derived from model specifications. This improves understanding of the models, and 

improves collaborations between modeling groups during modeling activities due to the fact that our 

model component format offers a model structure independent of implementation frameworks with the 

capacity to provide information searching (parameters, state variables, etc.), and to integrate them into 

a structured model catalogs. 

Provide a transformation system between crop modeling frameworks: The main 

mechanism often used to address model component reuse was to re-encode model or wrap it 

with the requirements of the target platforms. If the first approach is cumbersome and requires 

high skills in different languages and framework specificities, the second obstructs the 

knowledge behind a component and uses it as a black-box. We address the reuse issue with a 

white-box approach. For that, we define a small language that provides a relatively simple 

structure with few specifications that can express the algorithm of a biophysical process 

involved in crop growth and development. The real interest of this language is to provide a 

common way to describe a process with the capacity to be integrated automatically in various 

platforms. A transformation system was built, and it provides export capabilities in many 

languages and platforms, enabling users to focus on the scientific aspect of their model rather 

than on the internal knowledge of platform specificities. A model component can be reused, 

improved, integrated and simulated in various platforms. This improves the diffusion of models, 

sharing them as a software and scientific artifacts, and thus, enhancing transparency and 

reproducibility of crop models. We have also extended this transformation system with the 

capabilities to infer Crop2ML from a framework model component under some constraints in 
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order to avoid building from scratch an existing PBM component. Thus, the extended 

transformation system led to an interoperability system between PBM frameworks. 

Design and implement a framework for model component exchange and reuse 

between crop modeling and simulation frameworks: We tested the applicability of the proposed 

approach by developing a framework. This framework bridges the gap between modeling and simulation 

frameworks in model component reuse and manages model lifecycle (creation, edition, composition, 

transformation, verification, validation). 

 

 Outline  

The remainder of this document is organized as follows:  

Chapter 2 presents the state of the art related to our work on PBM reuse. We begin with the 

description and diversity of the existing models. Then, we draw up a state of the categories of software 

reuse with a focus on some examples such as software components, design patterns, domain-specific 

languages, and transformation systems.  We extend with the particularities in model reuse and some 

initiatives related to model exchange and reuse. This chapter has been conducted to help position this 

research with regard to the related work in model reuse by identifying the limits of existing modeling 

frameworks and the recommendations to achieve our objective. 

Chapter 3 provides an outlook of the multilanguage modeling framework as a new approach for 

bridging the gap between crop modeling and simulation frameworks. It essentially focuses on the main 

concepts of the conceptual modeling language and describes the main components of this framework. It 

emphasizes the requirements of import and export between the conceptual language and PBM 

frameworks. 

Chapter 4 presents the use of an embedded domain specific language with the framework. It also 

describes the design and implementation of a transformation system that transforms from the conceptual 

models to various languages and frameworks. 

Chapter 5 aims to bring the consistency between the conceptual model and the simulation model 

(code source) to end up with an interoperable system. 

Finally, Chapter 6 presents the evaluation of the research study and the future works. 
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Chapter 2.  State of the art 

To address the objective of the research framed in Chapter 1, we need to define a system for 

biophysical process component exchange and reuse between crop modeling platforms. This system aims 

to allow a model builder to seamlessly integrate a component in its platform, improve it if needed, and 

combine it with other ones, and export it for further reuse. 

The reuse of a biophysical process component requires knowing the features of process-based crop 

models (PBM). The advances in software engineering offers the potential for various implementations 

of PBM. First, this chapter describes PBMs and their evolution with a focus on the reuse needs. Software 

reuse refers to the process of creating or extending software systems from existing ones in a “cost-

efficient way” (Kim, 2009) rather than building them from scratch (Krueger, 1992). Software reuse is a 

popular approach to lower the cost and time of software development while ensuring better software 

quality and reliability (Rico et al., 2008). Although software reuse has been addressed since the birth of 

software engineering field in 1968 (Krueger, 1992), this research domain is still evolving. The needs for 

reuse have been expanded from software requirements to source code.  Thus, software reuse includes 

the entire range of M&S activities, such as requirements, specifications, tests, documentation related to 

the modeled system, and the code describing its dynamic. It is interesting to follow M&S principles to 

tackle model reuse in order to make reusable the result of each step of the modeling process. Abstraction 

is a key element in model reuse (Athanasiadis & Villa, 2013; Robinson et al., 2004). Therefore, in the 

section 2.1, we analyzed the domain, crop growth biophysical processes, to define the good abstraction 

to represent a process regardless of the PBM platform. Combining M&S principles and Software reuse 

will help to formalize crop model development for process reuse. This research is based on terms, which 

may have various meanings in other literatures. It is therefore necessary throughout the manuscript to 

clarify our definitions. 

 

2.1. Process-based crop models 

2.1.1. Crop growth and development 

A crop is defined as a collection of individual plants of one or more species grown in a unit area. 

Crop growth refers to an irreversible increase in size (mass, length, area, volume etc.) whereas its 

development represents the continuous change in plant form due to the appearance of new organs. Crop 

development is a discrete phenomenon often characterized in terms of the duration of appearance of 

new organs. Different biophysical processes are involved in crop growth and development. They are 

mainly influenced by the crop environment and soil processes. Thus, to improve the knowledge of these 
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processes a system approach (Von Bertalanffy 1969) is used to define a set of interrelated parts 

(components) in the soil-plant-atmosphere continuum (system) that operate together for a common 

purpose. Each of these parts can represent another system (Klir, 2001), and  the soil-plant-atmosphere 

system can be represented hierarchically until a primitive part is reached. Change in one system’s 

component produces changes in other components because of the interactions. The soil-plant-

atmosphere continuum can be viewed as a system due to the interactions among the soil, the atmosphere, 

and the plants that live in it. The behavior of this continuum may also be changed by crop management 

practices. The complexity of these interactions does not facilitate a direct understanding of crop 

functioning, and requires the use of integrative simulation models. 

 

2.1.2. What is a model? 

Model is a polysemous term and should be defined in the context of our work. We have retained 

three definitions that fit with our problem: 

 a model is an “abstraction of a system intended to replicate some properties of that system” 

(Page, 1994) 

 a model is defined as “a mathematical representation of a system” (Jones & Luyten, 1998) 

 a model is a “description of (a part of) a system written in a well-defined language. A well-

defined language is a language with well-defined form (syntax), and meaning (semantics), 

which is suitable for automated interpretation by a computer” (Kleppe et al., 2003). 

The first definition tackles the notion of abstraction. It refers to simplifications that offer a 

comprehensive description of the system based on specific objectives. It reveals that, at the same time, 

different models can be derived from the same system. Due to the complexity of the system behavior 

influenced by crop management practices and environmental conditions, it is not a straightforward task 

to produce a comprehensible and operational representation of a crop (Murthy, 2004). We can retain 

that a crop model is based on a system, a selection of properties of the system, and that it can replace 

the system for a specific objective. The second definition adds the notion of representation and 

emphasizes that the model can be based on mathematical theory (differential equation, graph theory). 

The last definition treats model as a comprehensible object by a computer. It can be therefore a source 

code. These three definitions can be interpreted as different modeling levels where for each level a model 

can be defined (from requirements to source code). 
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2.1.3. Crop modeling evolution 

Crop modeling science has extensively been developed over the past 60 years in parallel with our 

knowledge in crop physiology and computer science. Existing crop models are based on a diversity of 

modeling approaches with different levels of details (Hammer et al., 2019). The pioneering work of de 

Wit (1965) attempted to model crop photosynthesis. The results obtained from this model led to a high 

diversity of advanced models (see Chapter 2 Fig. 1). Some of them more oriented toward the crop scale, 

such as CERES (Ritchie & Otter, 1985) CropSyst (Stöckle et al., 2003), SUCROS (Van Ittersum et al., 

2003) or APSIM (Keating et al., 2003; Holzworth et al., 2014b) and others more oriented toward 

landscape and regional scales such as EPIC (Sharpley & Williams, 1990), LPjML (Von Bloh et al., 

2018), or GLAM (Challinor et al., 2004).  The existing models are suitable for a wide range of 

applications under different environmental conditions where processes are co-regulated by 

environmental factors such as water and nitrogen (Muller & Martre, 2019). The high diversity PBM 

(structure, complexity) originates from the modeling purpose that allows their classification in different 

categories. (Jones et al., 2017; Muller & Martre, 2019)  

Figure 1: Illustration of the historical evolution of the main process-based crop models. Reproduced 

from Muller and Martre (2019). 
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2.1.4. Classification of models 

Models can be classified in many ways. The models that deal with crop growth and development 

can be distinguished into different categories according to the modeling purposes (analysis, description, 

prediction, exploration) (Singh, 1994; Van Ittersum et al., 2003) . Here are few of them: 

a. Statistical / Mechanistic models: Statistical models express the relationships (step down 

regressions, correlation, etc.) between model variables (Lobell & Asseng, 2017), whereas 

mechanistic models are based on the knowledge of the underlying processes of the system and try 

to explain the influence of the driven variables on the outputs of the model. 

b. Deterministic / Stochastic models: Deterministic models ignore random variation, and predict the 

same outcome from a given starting point whereas a probability is attached to model output in the 

case of stochastic models. The latter may predict output distribution.  

c. Descriptive / explanatory model: A descriptive or empirical model defines the behavior of a 

system in a simple way (Singh, 1994). The model reflects little or none of the mechanisms that are 

the causes of phenomena. An explanatory model provides a prediction and an explanation of 

integrated behavior from more detailed knowledge of the underlying physiological processes. 

Processes can be quantified separately and interconnected to analyze emerging properties of the 

system that can be deduced from the individual processes. 

d. Static / Dynamic models: static models involve no concept of time or describe a system at a given 

time point, unlike dynamic model where states variables change with respect to time. 

e. Discrete / Continuous model: In a discrete model, state variables take values at particular points in 

time whereas in a continuous model, state variables change continuously with respect to time.    

Each type of model has its interest according to the modeling purpose. Jones et al. (2017) present 

two examples showing the interest to choose a descriptive or a statistical model. A descriptive model is 

required to describe how agricultural systems respond to the external environmental drivers as well as 

decisions or policies under consideration. A statistical model can be used to predict crop yield at regional 

scale based on observed climate variables and crop regional yield statistics over multiple years. 

However, models that increase the scientific knowledge involved in plant and crop growth are the basis 

of decision modeling approach and we need to focus on them to increase the underlying science. They 

are called process-based models (PBM). Crop growth occurs over time within the growing season, 

consequently PBM are inherently dynamic. Due to the fact that PBM are often driven by discrete 

variables, the system is numerically analyzed with discrete time. A general form of dynamic system in 

discrete time described in Wallach et al., (2006)  is: 

𝑈𝑖 (𝑡 + ∆𝑡) =  𝑈𝑖 (𝑡) + 𝑓𝑖 [𝑈(𝑡), 𝑋(𝑡), 𝜃]           with 𝑖 = 1,… , 𝑛 
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where, 

-  𝑡 is time;  

- ∆𝑡 is the time step; 

- 𝑈(𝑡) is the vector of state variables at time t; 

- 𝑋(𝑡) is the vector of explanatory variables at time t; 

- 𝜃 is the vector of parameters; 

The time constant is not the same for all modelled processes in PBM. Even though PBM can be, in some 

instances, represented by finite difference equations formalism, it is common practice to use other state 

variables (sometimes categorical variables) or control structures to describe procedurally the PBM 

algorithms. 

Most of them have been developed in the frame of one-dimensional crop-soil-atmosphere system 

with an emphasis on vertical fluxes of energy, water, C, N and nutrients between the atmosphere, plant 

and soil root zone continuum (Jones et al. 2017). In this thesis, we also focus on mechanistic and 

deterministic models in the aim to increase the science beyond crop growth even if most crop models 

represent a compromise between these mechanistic and empirical modeling (Yin & Struik, 2015). 

 

2.1.5. Model complexity 

The level of complexity of PBM depends on the objective of the modeling exercise and the degree 

of biological details and realism they represent. An effective way to tackle this complexity is to design 

PBM based on a top-down approach (Hammer 1998). This approach consists in representing the overall 

vision of the studied system. Then the general processes are distinguished, eventually broken down into 

sub-processes, and so on until the simplest processes is obtained. Once the simplest processes are 

established, they are grouped together to form a whole. This approach requires prior knowledge of 

lower-level parts. An important point raised by modelers is that a model should be built, in such a way 

that its components links can be removed and changed by better relationships among processes 

(Dourado-Neto et al., 1998; Giller et al., 2011; Monteith, 1996). The majority of existing PBM share 

the common approach of decomposition based on the functional processes that govern crop growth and 

development, which means that there are roughly composed of potential interchangeable parts (Adam 

et al., 2010a). However, these key physiological processes (see Chapter 2 Fig. 2), e.g. phenology, 

biomass accumulation, yield formation, and water and nutrient uptake differ in their modeling approach 

(Asseng et al., 2013).  



15 
 

 

Figure 2: A simplified schema of crop model showing the key processes involved in crop growth and 

development and their interactions with the crop system. Reproduced from Chenu et al. (2017). 

 

2.1.6.  Crop model intercomparison and improvement 

Two levels of improvement are required:  

Enhance the science underlying crop growth and development 

Model improvement can be achieved by improving process algorithms and the interactions of these 

individual processes (Yin & van Laar, 2005) to align with the requirements of the development of next-

generation crop models (Rosenzweig et al., 2013). These requirements include the need to have better 

responses to stress, climate variability and climate change (Antle et al., 2017). PBM are continually 

being improved to bridge the gaps between genotypes and phenotypes (Masseroli et al., 2016; Muller & 

Martre, 2019; Wang et al., 2019; Yin & Struik, 2015) and with management practices (Stöckle & 

Kemanian, 2020). Several research projects promote international collaboration focusing on the 

comparison of model outputs from different modeling groups and against global experimental datasets. 

For instance, Palosuo et al. (2011) compared the performance of eight widely used crop growth 

simulation models (APES, CROPSYST, DAISY, DSSAT, FASSET, HERMES, STICS and WOFOST) 
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for winter wheat. This study revealed that none of the models perfectly reproduced recorded yields at 

all the sites in all the years. It stated that a good crop yield prediction for some models was at the expense 

of overestimating or underestimating the harvest index or total biomass. An intercomparison study of 

29 wheat models as part of Agricultural Model Intercomparison Improvement (AgMIP) project 

(Rosenzweig et al., 2013) also showed uncertainty in yield simulation mainly due to the temperature 

response functions in the models (Asseng et al., 2013; Rötter et al., 2011; Wang et al., 2017). However, 

it was recognized that these intercomparison activities did not really advance the understanding of 

different crop models across the agricultural modeling community. The improvement of both individual 

crop models and ensembles of multiple models for a particular crop (Asseng et al., 2013) remains a 

crucial challenge. 

 

Improve model development to align with FAIR principles 

To achieve the goal of models intercomparison research projects, in terms of model improvement, 

the specification and implementation of PBM need to follow FAIR principles in order to facilitate the 

integration of alternatives components provided by different modeling groups. The different 

recommendations for the next generation of PBM (Antle et al., 2017) to facilitate model integration and 

reuse can be summarized as:  

a. the different processes must be identified as well as their interactions; 

b. a need for investments in the design of modular model component; 

c. mathematical and logical formalisms must be identified to have a good knowledge of the 

modeling assumptions.  

Currently, PBM are referenced as computer codes at a low-level of abstraction, that hides the 

formalism behind the biophysical processes. There is currently little exchange and reuse of PBM 

components between different modeling groups despite theoretical and application interests (Holzworth 

et al. 2014). The main limitation comes from compatibility issues between different modeling 

approaches and implementations.  Model reusability remains a challenging task and it often forces 

modelers to rewrite manually the code from other models. This representation of PBM do not allow 

aligning FAIR principle in terms of having findable, accessible, interoperable and reusable components.  

Data harmonization is the current approach used in AgMIP to address multiple models use (Porter 

et al., 2014). A data exchange mechanism with model variables is defined in accordance with 

international standards through data interoperability tools. It supports a flexible data schema with 

methods to fill gaps in data (Janssen et al., 2017). Researchers and modelers are able to use these tools 

to run an ensemble of models on a single, harmonized dataset. This allows them to compare models 

directly, leading ultimately to model improvements. Data harmonization is crucial for model simulation 
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with data provided by other groups or for multi-model ensembles or intercomparison activities. 

However, even if uncertainties are observed, this approach does not allow finding the process, which 

essentially impacts the simulation results.  It does not therefore allow improving individual crop models. 

 

2.2. Software reuse 

Several approaches of software reuse exist (Krueger, 1992). Their differences are mainly related to 

the way they abstract, select, maintain and integrate (Biggerstaff, 1989) software artifacts in the reuse 

process. Abstraction is the main factor. Software artefact concerns any entity (source code, 

documentation, specifications, transformation, etc.) which can be used, modified or created during 

software development. All technologies to implement a software reuse approach provide an integration 

framework required to combine a collection of selected and specialized artifacts into a complete software 

system with the appropriate exports and imports (Krueger, 1992).  

In his survey of reuse, Krueger (1992) identified several categories of reuse approaches along the four 

aforementioned dimensions introduced in Biggerstaff (1989). This section reviews some of these 

categories and extends them with recent literature. 

 

2.2.1. Software reuse approaches 

High-level and very-high-level languages 

A language is based on a grammar which defines its syntax. The syntax defines the form of valid 

expressions used in the language, while its semantic defines the meaning of the expressions. We 

distinguish human languages, i.e. the ones used for human communication, from computer languages 

comprehensible by the machine. Here, we focus on the computer languages.  

Formally, a grammar consists of four parts (Slonneger & Kurtz, 1995): 

𝐺 = < T,𝑁, 𝑃, 𝑆 >   

where, 

- T is a finite set of terminal symbols representing the alphabet of the language that can be 

combined to form the expressions (terms, sentences) of the language; 

- 𝑁 is a finite set of non-terminal symbols called syntactic categories that are some parts of the 

expressions; 

- 𝑃 is a set of production rules which are pairs formed by a non-terminal symbol with a series of 

terminal symbols and non-terminal symbols. The choice of non-terminals defines the 

expressions to which a meaning is ascribed; 
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- S is an element which represents the start symbol (e.g., program) that imposes the order of 

production rules. 

There are different types of language syntaxes such as concrete and abstract syntaxes. A concrete 

syntax determines how to recognize the sentences in a program (Mosses, 2006). For that, a recognizer 

(software utility) is built to parse the program. It is usually composed of a scanner or lexical analyzer 

which reads and decomposes the program into a list of tokens, and a parser which produces a derivation 

tree, parse tree or concrete syntax tree (CST) from the generated list of tokens (see Chapter 2 Fig. 3). 

  

Figure 3: Process for language recognition. 

 

The CST contains all the information in the program. However, some information is not necessary 

to capture its basic structure. This is the role of an abstract syntax tree (AST). The CST is therefore 

transformed into an AST in a much simpler form through the construction of other nodes while 

maintaining the structure of the program. This transformation process is also called Parser. The form of 

the AST can be chosen freely, and allowing proceeding to the checking of the semantics.  

In high-level languages (HLLs), the language constructs (e.g. arithmetic expressions, iteration, and 

loop) are higher level than those of the earlier languages (assembly languages). However, HLLs can 

also produce low-level constructs depending on whether they are compiled or interpreted. Interpreted 

languages allow reusing code directly in any machine but they are commonly recognized to be slower. 

In contrary, compiled languages are generally faster but require recompilation. According to their 

implementation, some HLLs allow explicit datatype declaration and others support implicit datatypes. 

Some allow using different programming paradigms (object-oriented, procedural, functional) in 

software development. HLLs, such as C, C++, Java, or Python are treated as software reuse examples 

because they meet software reuse needs, namely speed and efficiency in software development. The 

main limitation of HLL comes from the fact that their abstraction is low level. That is, it is not 

straightforward to capture the requirements of a system through its implementation.  

Very high-level languages (VHLLs) have a higher level of abstraction than HLLs. They define 

specifications, definitions or descriptions. They can be more expressive than HLLs since they follow 

the domain abstractions and semantics as closely as possible. Domain-Specific Languages (DSLs) are a 

type VHLL of particular interest for our work. DSLs have several names related to their representation. 
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We can cite, among others, Little Languages, Micro Languages, Domain Modeling Languages (DMLs), 

Domain-Specific Modeling Languages (DSMLs), Domain-Specific Visual Languages (DSVLs; de Lara 

and Vangheluwe 2004), Domain-Specific Visual Modeling Languages (DSVMLs), or Domain-Specific 

Embedded Languages (DSELs) according to Mernik et al. (2005). DSLs allow solving a category of 

problems in a specific domain. They concern many domains (biology, computer science…). DSLs are 

not new and exist since the early programming languages; for example, Fortran specifically has been 

built for numerical computation and evolved into a general purpose language. HTML is a language 

specified for web page creation. Significant research efforts have been focused on DSL development 

(Degueule et al., 2015; Kurtev et al., 2006). Mernik et al. (2005) identified a set of patterns in the 

workflow of DSL development (decision, analysis, design, and implementation phases) extending thus 

the earlier work of Spinellis (2001).  

Different methods of DSL design have been explored, such as language specialization and language 

extension. These two methods allow avoiding building a DSL from scratch. Language specialization 

pattern consists in removing unnecessary features of an existing language (base language) to meet the 

given requirements and defines a DSEL (Hudak 1996). A language processor can check DSEL 

conformance to guarantee the removal. The language extension pattern consists in adding new features 

to an existing language. The new DSL inherits the syntax and semantics of the existing languages and 

can include other semantic or features such as new built-in functions or datatypes. XML-based DSL is 

another approach of DSL design where the grammar is described by a Document Type Definition (DTD) 

or XML schema (Parigot & Courbis, 2006). 

The main challenge for DSLs is to maintain their specificity to respond to the evolution of the 

domain. This requires defining the right level of abstraction that specifies the concepts in the domain, 

and that can be easily adapted to keep up with the changes in the domain. This is of course more difficult 

to do when it is a multidisciplinary domain. 

 

Software component 

A software component (SC) is basically a software unit with a well-defined interface and explicitly 

specified dependencies. A SC can be as small as a block of reusable code, or it can be as big as an entire 

application. It can be easily plugged together with other components to form or extent a software 

application. SCs or building blocks are autonomous (stand-alone) units. Their reusability is based on the 

principles of abstraction and encapsulation with a particular structure, and are designed for a specific 

purpose. They help to reduce the amount of time required to design and implement a new software 

system. The nature of a SC is diverse and depends on the scale and the language in which it is 

implemented. As different levels of composability, we can cite subroutine, abstract data types, modules, 

packages, subsystems, classes. The best abstraction for SC reusability is its interface which embeds the 
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domain-specific concepts. SC interface must describe its functionality and facilitate component 

selection, validation and specialization. The main drawback is that interfaces may not be sufficiently 

detailed to satisfy reuse requirements. Moreover, if the SC abstraction is not well defined, the description 

of the component can often be as difficult to understand as the source code, increasing thus the 

intellectual effort to capture the software requirements. The level of granularity of the component is also 

a factor for reuse effectiveness.  

Two types of components composability are distinguished and each raise different questions (Dhami 

2012). A syntactic composability that asks the question whether the components can be connected and 

a semantic composability that asks the question whether the components that represent the composite 

model can be meaningfully composed. The latter depends on expert domain knowledge. 

 

Software schema 

Détienne (1991) defined software schema as a “knowledge structure which represents in a more or 

less abstract way, programming objects, functions and global or local strategies used in algorithms”. 

Unlike software components, which focus on source code reuse, the reusable schema artifacts are 

abstract algorithms, data structures, and higher-level abstractions. A specification of a reusable schema 

must contain a formal semantics description of the schema, and the conditions of its validity, whereas a 

realization may be a source code. Examples of this category of software reuse are design patterns 

(Gamma et al., 1995), UML (Unified Modeling Language) diagrams, data-intensive workflows, 

generative programming (e.g. templates; Stepanov and Lee 1995).  

The American architect Christopher Alexander talked about patterns in buildings and towns, 

showing how an entity can arise from the relationships between a recurrent problem and its solution: 

“Each pattern describes a problem which occurs over and over again in our environment, and 

then describes the core of the solution to that problem, in such a way that you can use this 

solution a million times over, without ever doing it the same way twice.''  (Alexander et al., 

1977) 

By analogy, in the field of reusable object-oriented software design, Gamma et al., (1995) defined 

“design patterns” as the descriptions of communicating objects and classes that are customized to solve 

a general design problem in a particular context. They are therefore based on solutions implemented in 

object-oriented programming languages. They are characterized by their name, the problem, the solution 

and the consequences in terms of impact on the flexibility, extensibility, or portability of the system. 

Spinellis (2001) proposed three categories of design patterns for DSL: “structural”, which involves the 

creation of a DSL, “creational” if it describes the structure of a system involving a DSL, and 

“behavioural” if it describes DSL interactions. Thus, creational pattern includes language specialization 

and extension patterns presented above. 
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Data-intensive workflows or scientific workflow aims to capture a series of scientific methods, 

which describe the design process of computational experiments. Workflows are activities involving the 

coordinated execution of multiple tasks performed by different processing entities (Rusinkiewicz & 

Sheth, 1995). There is a growing interest in scientific workflows to manage and share scientific 

computations and methods to analyze data. Even if they are supported by an execution logic (dataflow), 

their visual representation as a graph can be useful to describe software components assembly. The main 

drawback of software schema occurs when its formal specification is large and complex, making their 

understanding and use difficult. 

 

Application generators 

Application generators are comparable to compilers. They automatically translate input 

specifications into an executable program.  In application generators, input specifications are very high-

level of abstractions, which allows separating the system specifications from its implementation. Thus, 

the developer focuses on the concepts of the domain rather than how to implement the system.  

Application generators reduce duplications in software systems development by generalizing and 

embedding the commonalities of software systems. The abstraction specifications of application 

generators come from the application domain, and they can be presented by templates, UML diagrams 

or DSL. Examples of this category of software reuse are parser generators. Parser generators take as 

input a specification language and generate a part of or a whole source of a compiler. An example is 

ANTLR (Parr, 2013), a widely used parser generator in academy or industry, used to build all sorts of 

languages, parsers and frameworks. It reduces the complexity to generate multiple parsers from a series 

of grammars into the same framework.  

The main advantage of application generators is their capability to map automatically the concepts 

of the application domain into executable software systems. However, if a particular application 

generator exists, it is not obvious to design a software system that responds perfectly to the expected 

needs. If it does not exist, it is not straightforward to build an application generator with appropriate 

functionality and performance.  

 

Transformation systems 

Transformation systems presented in Mens and Van Gorp (2006) are broader in scope than those 

described in Krueger (1992). Indeed, vertical transformations, a subset of model transformation, are 

mostly refinement transformations that map models based on a more abstract DSL to models based on 

a more concrete one, or to code based on a general-purpose programming language. With this 

transformation approach, software is developed in two phases: the semantic behavior of the system is 

described using a high level of specification language, then transformations are automatically applied 
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to the high-level specification to transform it into an intermediate representation with a lower level of 

abstraction in order to optimize its execution without changing its semantic behavior (Pradal, 2019). 

Mens and Van Gorp (2006) proposed a taxonomy of model transformation with a notion of model that 

encompasses all levels of abstraction, including the source code as a model at a low level. 

Transformation approaches depend on the level of abstraction of the model (source code or 

specification) in the source or target. Source-to-source transformation is a well-established solution used 

to address software reuse (Fernique & Pradal, 2018; Plaisted, 2013). It consists in transforming a source 

code from a high-level language to another. Currently, to the best of our knowledge, there is no solution 

targeting PBM component reuse using an automated source-to-source transformation system. However, 

different source-to-source transformation systems, both commercial (e.g. Baxter, Pidgeon, and Mehlich 

2004) and open source (Quinlan & Liao, 2011), are available for different purposes. Some lessons can 

be learned and taken into account from these approaches even though they suffer from some limitations 

related to the context. Terekhov and Verhoef (2000) shed light on the realities of language 

transformations and warned on large-scale language transformation projects, which have often been a 

failure and have led to business bankruptcies. Thus, a subset of language features has often been defined 

to approach source-to-source transformers. Many transformers take as input a subset of one language 

and transform it to a single target language with specific transformation purposes without showing their 

extensibility (Akeret et al., 2015; Bysiek et al., 2017; Misse-chanabier et al., 2019). Few one-to-many 

(Plaisted, 2003; Schaub & Malloy, 2016) and many-to-many (Baxter et al., 2004) transformers have 

been proposed. They are based on a common intermediate representation for the languages provided 

from their similarities. However, these approaches focus on the same programming paradigm in their 

transformation systems. For example, transforming from a procedural to an object-oriented program or 

a system of languages supporting different programming paradigms. Besides, to avoid losing 

assumptions or domain knowledge, in a particular domain context, it is useful to integrate domain 

knowledge in source-to-source transformer to generate a well-documented source code, embedding 

domain knowledge. 

 

Software architecture 

Li et al. (1992) defined software architecture as the organizational structure of a software system or 

a component. Software architectures describe how primitive entities such as functions, subroutines or 

objects compose a component or software system. Reuse software architectures capture the global 

structure of a component or software system and reapply this structure into the construction of similar 

ones in application domain. Examples of software architectures include database subsystems, software 

frameworks (e.g. a framework for a compiler or transpiler), and blackboard architecture. A framework 

for a transpiler provides the capacity to integrate different lexical, syntax and semantic analyses, 

transformation rules and source code generation. Software architectures are comparable to software 
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schema not for reuse of abstract algorithms or data structures but to focus on the structure of the 

subsystems beyond them. An example in this case is design pattern described above. Software 

architecture abstractions come from domain concepts that allow software developer to use them in order 

to instantiate and compose software architecture. The main challenge in software architecture is to make 

the representation explicit to support reuse. 

 

2.2.2. Recent advances in software reuse 

As can be seen, there is no clear distinction between the different categories of reuse approaches 

defined by Krueger (1992). That is, the abstraction specifications of one category can be defined by an 

example of another category. In addition, a category at a fine or large-scale may also be equivalent to 

another category. Many categories can also be addressed to end up with a software product or a diversity 

of software products in a software development approach. Some prominent examples in systems 

engineering are Model-Driven Engineering (MDE), Software Product Lines (SPL). MDE offers an 

efficient approach to represent domain concepts through models (primary artifacts) in the software 

development process. It combines domain-specific languages (DSL) that formalize the requirements, 

behavior and the structure of the system, and transformation systems used to automatically generate 

artifacts at different levels of abstraction (Schmidt, 2006). The Object Management Group (OMG) 

proposed Model-Driven Architecture (MDA) that implements Model-Driven Development principles. 

MDA is based on a set of standards, including the Unified Modeling Language (UML), the Meta-Object 

Facility (MOF), the Common Warehouse Metamodel (CWM). These standards enable the definition of 

modeling languages used to specify a system’s structure and behavior. In order to focus on the modeling 

of complex systems, OMG opened up the MDA approach by providing the standardization of a profile 

called SysML (OMG, 2007). SysML extends the object paradigm of UML with communications 

oriented dataflow in the structural representations of the system. It also provides diagrams used to 

express parametric requirements and constraints in order to analyze complex system performance 

(Hardebolle, 2008). SPL is a critical development approach used to develop a diversity of high quality 

software products (a product family) based on their commonality and variability at a low cost and in a 

short timeframe. Software reuse is addressed for the generation of all the assets involved in the process 

of generation of a product family (Pohl et al., 2005). 
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2.3.  Crop model reuse 

2.3.1. Crop modeling and simulation frameworks 

To avoid building models from scratch and to lean on good practices in software engineering, PBM 

modelers have developed crop modeling and simulation platforms (Argent et al., 2006). They help crop 

modelers to manage the system complexity and provide the possibility to reuse modules (sub-models) 

in different models and provide support for commonly needed services such as model calibration, 

sensitivity analysis and model visualization (Van Evert et al., 2005). PBM platforms are a set of software 

libraries, classes, and components, which can be assembled by a software developer to deliver a range 

of applications that use mathematical models to perform complex analysis and prognosis tasks (Rizzoli 

et al., 2008)  

The PBM platforms facilitate model development offering a rich library of models and components. 

Most of them depend on the language in which they have been implemented, fix a particular structure 

of the model. Most of them are based on a component-based approach. They implement a specific 

software design and require a particular code convention. The main sections that can be found in model 

structure are initialization, rate calculations, and integration. Models are modularized along scientific 

discipline lines. 

Jones et al. (2001) emphasized that despite the common modularity design of PBM platforms, there are 

many differences in how modularity was interpreted and implemented. These differences prevent 

modules from one group being reused by other groups without sometimes-considerable amounts of 

additional programming. The limitations to these modeling platforms as part of model exchange and 

reuse are their diversity of programming languages, the platform specificities and requirements that 

model developers have to understand, such as the structure of a model in each platform and the libraries 

of core modules or components. Model components can be reused in other models coded with the same 

platform. However, the reuse between platforms remains a great issue. The recurrent solution has been 

to use components as black box (Donatelli and Rizzoli, 2008) or to manually adapt components to the 

new platform. The first approach, black box mechanism, allows the implementation of complex 

algorithms in any language. However, it decreases model transparency hiding the understanding of the 

internal model behavior with a high framework invasiveness (i.e. “the amount of change required in 

model code to accommodate a framework” (Lloyd et al., 2011)). PBM platforms do not have a 

transformation system that generates components compatible with other modeling frameworks. 

Multilanguage and integrated modeling frameworks offer language bindings approach to allow third-

party developers with a choice of languages (Lang, 2019; Villa, 2001). This approach reduces the 

implementation of algorithm in several languages. It overcomes the difficulty of implementing some 



25 
 

algorithms efficiently in high-level languages. However, the integration frameworks do not provide 

solution for model exchange and reuse between PBM platforms. Besides, they require the compilers for 

the supported languages of the frameworks, that makes complex their extensibility. 

 

2.3.2. Model specification through declarative modeling 

Most efforts to enrich model components with interface descriptions in source code or using 

ontology-based tools (Athanasiadis et al., 2011; Holzworth et al., 2010) have been found. However, it 

is useful to specify components interfaces with a high level of abstraction (A. W. Brown, 2000). 

Donatelli and Rizzoli (2008) suggested that modeling components should be developed with a generic 

interface (i.e., not framework specific) to enhance reuse opportunities and make unit testing easier to 

accomplish. The concepts of these specifications can be shared by the modeling platforms to allow 

supplying semantic behavior, making components self-described and reusable by any platform. 

According to (Muetzelfeldt, 2004), the declarative specifications of a component can be used as 

documentation, improve component knowledge, facilitate component reasoning, and present the 

hierarchical structure of a component. The concept of declarative programming is inspired by 

mathematics where it is common to state or declare what must be accomplished in terms of the problem 

domain, rather than giving a detailed stepwise algorithm on how to achieve the desired goal as is required 

when using procedural languages. It differs from black-box approach by processing information about 

the component to the framework. Code can be generated that will run in specific PBM platforms. 

Athanasiadis and Villa (2013) introduced a roadmap to domain-specific programming languages for 

environmental modelling showing its advantage on cross-compilation for different environmental 

modelling platforms. Visual domain-specific language such as Simile (Muetzelfeldt & Massheder, 

2003), Stella (B. Richmond, 2001) describe dynamic systems by set of differential equations making 

them readable. They provide a specific equation language to enable users to express their own functions. 

L-systems (Lindenmayer, 1968) proved well suited to describe models of plant development and were 

adapted to other languages such as the Python language (L-Py: Boudon et al., 2012).  

Model Driven Architecture (MDA), one framework of MDE, supports also declarative modeling to 

define conceptual models often using the Unified Modeling Language (UML).  Papajorgji, Clark, and 

Jallas (2009) evaluated the application of MDA approach in crop modeling by using a type of action 

language to implement processes algorithms that cannot be expressed by single mathematical 

expression. Likewise, Barbier, Cucchi, and Hill (2015) defined a DSL for crop modeling and presented 

their need to propose in a future work a textual syntax to specify models' algorithms. 

The declarative modeling approach is used in the systems biology community where several 

domain-specific modeling standard languages including SBML, CellML, and NeuroML have been 

https://en.wikipedia.org/wiki/Algorithm
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designed to exchange and store models (Hucka et al., 2003; Cuellar et al., 2006; Gleeson et al., 2010). 

These XML-based languages provide specific elements to describe model structure and equations using 

Mathematical Markup Language (MathML; Ausbrooks et al., 2003) that describes mathematical 

notations and captures both its structure and content. However, these languages are limited to specific 

formalisms (e.g. chemical reactions, differential equations) and cannot be easily extended to represent 

crop models in their full complexity and diversity. System biology languages support model 

transformation from one standard to another (e.g. form CellML to SBML; Schilstra et al., (2006)) and 

from XML to executable code.  

 

2.3.3. Model selection 

Software reuse approach is not the sole necessary condition to support proper model or component 

reuse and integration in an existing model. Modelers need to ensure that an alternative modeling 

approach is compatible to the other components to which it will be linked. It raises the issue of semantic 

composability defined in section 3.3. However, this issue is not new and few studies have addressed it 

due to the difficulty to generalize an approach to represent expert domain knowledge. Ramírez et al., 

(2004) compared a set of models to select the model whose outputs are closest to real data. CROSPAL 

(Adam et al., 2010b) uses agronomic expert knowledge to assist module selection for crop growth 

simulation based on the modeling objective and a comprehensive system analysis. Kuijpers et al., (2019) 

proposed a common structure based on biological functionalities, which allows for a combination of 

components, yielding new models for tomato crop models. It defines a mathematical representation of 

the common structure and each realization of this representation is based on a specific objective. This 

approach increases the design space of models but it does not provide a common structure to design any 

kind of biological processes. Adam et al., (2012b) proposed a protocol to support model selection that 

requires a better model documentation and knowledge about the model structure. According to Van 

Delden et al., (2011) model selection depends on the availability of data and existing models that fit the 

purpose or can be adapted to fit the purpose, the choice of scale, the resolution and level of complexity 

required. All this information could also be found in model documentation. The main issue is the 

relationship between the documentation of the model and the model itself. The model selection goes 

through the conceptual model that facilitates the model assembly (Lamanda et al., 2012)and helps to 

define explicitly the structure of the model, improve the clarity of scientific understanding of the model 

(Janssen et al., 2017) and guide the choices to compose a model for a specific application (Adam et al., 

2012a). 

Thus, an explicit representation of conceptual model with sound description of model constructs 

could help to select the appropriate model. However, it is useful to have a consistency between the 

conceptual model and the source code of the models, that requires a transformation system. 

https://booksc.org/book/3595469/8544db
https://booksc.org/book/3595469/8544db
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2.4. Conclusion 

In this chapter, we present the state of the art in software and model reuse to address our issue 

concerning the exchange and reuse of Process-based model components between crop modeling 

platforms. It is crucial to make the distinction between software and model to focus on the modeling 

objectives or requirements, the model algorithms and the capacity to select the model based on its 

requirements. First, we have introduced the description of PBM: 

 they are discrete-time, dynamic, mechanistic, explanatory; 

 they are commonly decomposed along scientific discipline lines; 

 processes are based on different modeling approaches with different time scales; 

 the finite difference equations formalism is not sufficient to describe model algorithms, which 

lead to represent them by a set of statements with control structures; 

 they are implemented in various crop modeling and simulation frameworks that reduce their 

reuse between different modeling groups; 

Then we address different software reuse solutions and present the two prominent software 

development approaches MDE and SPL. Different categories of software reuse can be combined 

together to design an efficient approach of reuse. That is: 

 the use of DSL to define the specifications at a high level of abstraction; 

 the use of a component-based approach to build autonomous component that can be shared and 

described with the DSL; 

 a transformation system that can embed software design of target crop modeling platforms to 

generate platform compatible model components. 

This approach is close to the MDE approach since it is based on automatic model transformation. 

However, the difference can appear depending on whether the abstract syntax of the DSL is represented 

by a metamodel or a grammar. SPL are more concerned with productivity and is not really based on a 

platform-independent approach for describing the models. 

Finally, we describe five widely used platforms used for PBM modeling and simulation. The 

differences between these platforms are related to their programming languages, software design and 

architectural constraints that affect model component reuse. There is a lack of clear model 

documentation or component interface description able to help select an appropriate model and to reuse 

it. The approaches of model selection emphasize the need for documentation and conceptual model that 

contains the modeling requirements. The reuse approach based on domain specific languages is widely 

used in system biology and dynamic system modeling. The lack of mathematical formalism to represent 
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PBM algorithms does not allow their extension. Therefore, the approach we followed to address the 

issue or PBM model component reuse includes the following requirements: 

 find the right level of abstraction of model components to represent biophysical process 

regardless of the platform specificities; 

 design a modeling language based on the shared concepts found in the biophysical processes; 

 provide an automatic transformation that embed platforms specificities to generate source code, 

documentation and unit tests; 

 keep the consistency between model specifications and implementation by providing an 

automatic transformation from PBM platforms to Crop2ML. 

This approach will be designed and implemented in a multilanguage framework to support model 

components exchange between modeling frameworks.  



29 
 

Chapter 3.  Crop2ML: An open-source multi-language modeling 

framework for the exchange and reuse of crop model components 
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Abstract 

Process-based crop simulation models are popular tools to analyze and predict the response of 

agricultural systems to climatic, agronomic, or genetic factors. They are often developed in crop 

simulation platforms to ensure their future extension and to couple different crop models with a soil 

model and a crop management event scheduler. The intercomparison and improvement of crop models 

are difficult due to the lack of efficient methods for exchanging biophysical processes between 

platforms. To overcome this limitation, we developed Crop2ML, a modeling framework that enables 

the description and the assembly (composition) of crop model components independently of the 

formalism of simulation platforms and the exchange of components between them. Crop2ML is based 

on a declarative architecture of modular model representation with an intermediate modeling language 

to describe biophysical processes and their transformation to crop simulation platforms. Here, we 

present the main components of the Crop2ML framework. Then, we describe the mechanisms of import 

and export between Crop2ML and simulation platforms. Finally, we discuss our approach and present 

some perspectives. 
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1. Introduction 

The wide range of crop process-based models (PBM) reflects the evolution of our knowledge of the 

soil-plant-atmosphere system and their rich historical development for more than six decades (see 

reviewed of Jones et al. 2017; Muller and Martre 2019). The high diversity of PBM is due to their 

multiple applications and the complexity of the system influenced by several factors, e.g. weather, soil, 

crop management (Basso et al., 2013) and genotypic factors (Wang et al., 2019). Most of the PBM are 

continuous models, formalized using ordinary differential equations, but are implemented as discrete 

time simulation models using finite difference equations. They are commonly decomposed into simpler 

biophysical functions (e.g. phenology, morphogenesis, resource acquisition, pests and diseases impact) 

often implemented by recurrent equations with control flows Another common characteristic is that 

PBM simulate plant growth and development at the scale of the canopy (square meter of ground) or 

average plant level without spatial pattern with a daily or sub-daily time step.  

PBM are often implemented in modeling and simulation platforms at a higher level of abstraction 

to facilitate model development (Rizzoli et al., 2008). These platforms offer not only scalable, modular, 

and robust modelling solutions but also the ability to analyze, evaluate, reuse and combine models.  The 

diversity of PBM led the crop modeling community to compare their performance and to improve them 

by aggregating modelers’ knowledge or by introducing improvements provided from diverse research 

groups under the umbrella of large international collaborative projects such as the Agricultural Model 

Intercomparison and Improvement project (AgMIP; Rosenzweig et al., 2013). Studies conducted in the 

context of model inter-comparison and improvement exercises (e.g. Asseng et al. 2013; Wang et al., 

2017) pointed out the large uncertainty of PBM outputs and have analyzed the sources of uncertainty or 

the processes involved (Muller & Martre, 2019). These inter-comparison results show the potential and 

limits of PBM and highlight the need to analyze models at the process level, but also to exchange model 

components describing specific processes between simulation platforms (e.g. Wang et al., 2017). The 

uncertainty of a PBM component may be related to its validity domain, inputs, parameters, structure, 

and the underlying scientific hypotheses (Walker et al., 2003). Epistemic uncertainty may arise from 

incomplete or lack of knowledge of these sources. The uncertainty of PBM results from the aggregation 

of the uncertainty of each of its component (Refsgaard et al., 2007). A framework that would allow the 

exchange of model components between different platforms would give crop modelers the ability to test 

alternative hypotheses in the same model, thus helping to reduce epistemic uncertainty. 

Although most crop simulation platforms provide modular approaches and reuse techniques, there 

is little exchange of PBM components between them despite theoretical and application interests. PBM 

components often contain source code developed in different programming languages and are tightly 

coupled to the platforms. Therefore, model components are not seamlessly reusable outside the 
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modeling platforms in which they have been developed without recoding or wrapping them (Rizzoli et 

al., 2008; Holzworth et al., 2014a). Re-implementing a component in several platforms is a tedious and 

cumbersome task and requires a minimum knowledge of the different platforms. The wrapping solution 

treats components as black boxes taking little or no advantage of the framework (Rizzoli et al., 2008) 

or as white boxes but with a high-level of technicalities (Pradal et al., 2008). Other reuse approaches in 

environmental modeling have been explored. Declarative modeling can provide portability and facilitate 

integration between independent, uncoordinated models Athanasiadis and Villa (2013). However, model 

specifications often remain informal and it is not always possible to distinguish the specifications from 

the scientific content of a model (i.e. its algorithm) or the structure from the implementation. Moreover, 

the publication of PBM components in scientific journals does not provide sufficient description 

associated with the modeled processes, which is a fundamental criterion for reuse (Pradal et al., 2013). 

This raises the problem of reproducibility and reliability of scientific results that are strongly linked to 

the platforms in which the models have been implemented and tested (Cohen-Boulakia et al., 2017; 

Hinsen, 2016).  

Visual domain-specific languages such as Simile (Muetzelfeldt and Massheder 2003) or Stella (B. 

M. Richmond, 1985), provide a rich graphical interface to build models but become difficult to use for 

complex models and require many widgets to represent graphically nested control flows. Multiscale 

modelling and simulation frameworks (Pradal et al., 2015; Marshall-Colon et al., 2017) propose model 

interface designs, which enable communication of multi-language components as black boxes 

components. Other declarative modelling languages are also used in the Systems Biology community 

who have developed declarative open standard such as SBML (Hucka et al., 2010), CELLML(Cuellar 

et al., 2003), or NEUROML (Le Franc et al., 2012) to describe biological models. However, PBM cannot 

be described by equations formalized in System Biology (e.g. partial differential equations, reaction 

equations). 

An alternative to the problem of PBM components reuse between PBM platforms is the use of a 

centralized framework that enables the development of PBM components regardless of the modeling 

platforms (Fig. 1). We followed this approach and developed a modeling framework called Crop2ML 

(Crop Modelling Meta Language) that separates the specification and structure of a model component 

from its implementation. Given that the wrapping solution was excluded because of the lack of 

transparency and high maintenance cost and that Crop2ML does not aim at replacing existing modeling 

platforms or at simulating components, it was decided to create a solution that generates components, 

from a metalanguage, for specific PBM platforms. It provides a centralized PBM components repository 

to store model components in a standard format to facilitate their access and reuse. This reuse approach 

is supported by the Agricultural Modeling Exchange Initiative (AMEI), which brings together some of 

the most widely used crop modelling and simulation platforms, including APSIM (Holzworth et al., 
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2018), BioMA (Donatelli et al., 2010), DSSAT (Hoogenboom et al., 2019), OpenAlea (Pradal et al., 

2015), RECORD (Jacques Eric Bergez et al., 2016), Simplace (Enders et al., 2010) and other crop 

models such as STICS (Brisson et al., 2010) or SiriusQuality (Martre et al., 2006). Here, we first present 

the main components of Crop2ML framework. Then we describe the mechanisms of importing and 

exporting between Crop2ML and PBM platforms. Finally, we discuss our approach and present some 

perspectives. 

 

Figure 1: From a combinatorial to a centralized exchange framework. The schema illustrates the 

reduction of import export links between platforms in a centralized (right) versus combinatorial 

exchange framework. 

 

2. Crop2ML: a centralized framework for crop model components 

development and sharing 

Crop2ML is a framework for crop model components development, exchange and reuse between 

PBM platforms. It is designed following FAIR principles for research software (Lamprecht et al., 2019) 

to provide: 

 Simplicity:  Model specifications are defined using a declarative language (XML) with generic 

concepts shared between PBM platforms and model algorithms are encoded using a minimal 

language. 

 Transparency: Models are shared as documented components in Crop2ML format.  

 Flexibility:  Model units are composed with a shared abstract representation of model structure. 

 Findability: Model specifications include rich metadata and are assigned a globally unique and 

persistent identifier for each released version. 

 Reusability: Model components are transformed into PBM platform compliant code to support 

efficient interoperability. 

 Reproducibility: Model components can be executed and tested regardless of the PBM platforms. 
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 Modularity: Three levels of modularity of model are defined: ModelUnit, ModelComposite and 

package. 

 We used the principles of Lamprecht et al. (2019) for assessing the FAIRness of Crop2ML 

framework (Table 1).
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Table 1 
FAIRness assessment of the Crop2ML framework following the principles of Lamprecht et al. (2019). 

Principle Description Fulfilled Comment 

F1 Software and its associated metadata have a global, unique and 
persistent identifier for each released version 

Yes The Identifier of Crop2ML framework package is “Pycrop2ml” followed by its version 1.1.0. It can be found in 
Anaconda cloud. Version number uses the PEP-386 verlib conventions 

F2 Software is described with rich metadata Yes Metadata covers the description, usage and accessibility of the package. Metadata in an Anaconda repository is 
specified in the meta.yaml file with a shared vocabulary for Anaconda project. The GitHub repository also 
contains description files but they do not use any controlled vocabulary. 

F3 Metadata clearly and explicitly include identifiers for all the versions of 
the software it describes 

Yes All metadata include the version they apply to 

F4 Software and its associated metadata are included in a searchable 
software registry 

Yes Anaconda cloud 

A1 Software and its associated metadata are accessible by their identifier 
using a standardized communications protocol 

Yes Both software and metadata are accessible through HTTP/S: GitHub 

A1.1 The protocol is open, free, and universally implementable Yes The protocol is open, free, and universally implementable 

A1.2 The protocol allows for an authentication and authorization procedure, 
where necessary 

Yes Not necessary 

A2 Software metadata are accessible, even when the software is no longer 
available 

Yes The GitHub repository contains DESCRIPTION files since version 0.99.6 

I1 Software and its associated metadata use a formal, accessible, shared 
and broadly applicable language to facilitate machine readability and 
data exchange. 

yes The software is written in Python, a formal, machine readable and widely used language and Anaconda project 
metadata are available in an interoperable format (YAML) and GitHub DESCRIPTION files are written in machine 
readable reStructuredText 

I2S.1 Software and its associated metadata are formally described using 
controlled vocabularies that follow the FAIR principles 

Partially Software: All Anaconda repositories use shared vocabularies for their description. Metadata: GitHub 
description does not use controlled vocabularies 

I2S.2 Software use and produce data types and formats that are formally 
described using controlled vocabularies that follow the FAIR principles 

Yes Software uses model components in Crop2ML format and produces the source codes of the models in different 
languages and components conform to crop modeling frameworks. Crop2ML is also associated to a shared 
language used to describe model algorithm. This language can be translated to frameworks ‘languages. 

I4S Software dependencies are documented and mechanisms to access 
them exist 

Yes  As stated in GitHub DESCRIPTION, Software dependencies areautomatically downloadable and accessible 
through Python package manager 

R1 Software and its associated metadata are richly described with a 
plurality of accurate and relevant attributes 

Yes See comments for R1.1 and R1.2. 

R1.1 Software and its associated metadata have independent, clear and 
accessible usage licenses compatible with the software dependencies 

Yes Software: under CeCILL-C license, well suited to the distribution of libraries and software reuse. Compatible 
with GNU GPL and specified in meta.yaml file. Metadata provided in GitHub description have a MIT license:  

R1.2 Software metadata include detailed provenance, detail level should be 
community agreed 

Yes Commits on GitHub since version 0.99.  

R1.3 Software metadata and documentation meet domain-relevant 
community standards 

Partially Developers provide documentation of model components but without following any community-agreed 
standard for doing that. Metadata do not follow any community standards. 
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2.1. Design and concepts of Crop2ML model specification 

Software modularity is one of the main criteria of reuse. Jones et al., (2001) propose key elements for 

modular model structure, which is an essential first step to enhance collaborative modelling effort. Crop2ML 

follows and extend these principals. In most PBM, the system is decomposed into compartments such as 

plant parts or soil layers that interact. For each compartment, different processes are described and 

assembled in components to simulate the behavior of the compartment. These processes can be subdivided 

into discrete, explanatory, independent biophysical sub-processes, which could be individually modeled 

(ModelUnit) and composed (ModelComposite). Modular model structure requires making an objective 

decomposition of the system to avoid coarse granularity models, which limit reusability. A ModelUnit 

should not encapsulate alternative assumptions and formalisms, making it easier to test them. In addition, 

the management of input and output data, such as data access, logging, and file generation, must be managed 

separately from the implementation of model component. These design principles foster the reuse of 

components, which are intended to be integrated and simulated with a large variety of input data formats in 

different PBM platforms. Moreover, to emphasis modularity, the temporal loop must be removed from 

modeling activity. This makes it possible to reuse the same activity with different modeling formalisms or 

simulation frameworks that manage temporal dynamics of the simulation differently. 

Crop2ML provides a level of abstraction that enables a shared representation of model components 

between PBM platforms. A ModelUnit is defined with the following descriptive elements (Fig. 2a):  

 a model description; 

 a list of inputs; 

 a list of outputs; 

 an initialization of the state variables; 

 a link pointing to the source of the model algorithm; 

 a list of required mathematical functions (if required); 

 a set of unit tests with shared parameterization. 

A composite model includes the same elements as a ModelUnit, as well as the list ModelUnits that it 

contains and their links (Fig. 2b). However, in the case that the links between ModelUnits cannot be 

explicitly specified, an algorithm can be provided to specify how to evaluate outputs of this composite 

model. 

Crop2ML model specification is based on the eXtensible Markup Language (XML). XML is a widely 

used declarative metalanguage for describing or structuring data in a portable format with some descriptive 
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elements. XML format is used in several PBM platforms for template parametrization and model simulation 

configuration (e.g. APSIM, BioMA, RECORD, Simplace, SiriusQuality). This reinforces our choice on this 

format since the transformation between different XML documents or in any language is relatively 

straightforward, allows using XML as a bridge between heterogeneous structures, and facilitating 

collaborative developments. Moreover, the use of XML and a formal description of model specifications 

and their associated metadata facilitate machine readability and model exchange. In the following sections, 

we describe the concepts of Crop2ML model specifications.  

 

 

Figure 2: Crop2ML concepts for model specification. (a) ModelUnit. (b) ModelComposite. “+”, one or 

more elements; “*”, zero or more elements; “?”, zero or one element. 

 

2.1.1. Description 

The core description of a Crop2ML model contains the name of the model, an identifier that ensures the 

provenance of the model and a version number (Listing 1). The identifier of the model is specified to keep 

the property of the component. Since PBM are dynamic models, the time step is an important factor that is 

specified to allow a multi temporal-scale composition. In addition, other elements are described to provide 

rich metadata, including author names and affiliations, citable and findable references (e.g. doi) and a brief 

description of the model. The description also includes usage licenses compatible with the model 

dependencies. 
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Listing 1: Example of a Crop2ML ModelUnit description. 

 

2.1.2. Inputs – Outputs 

In Crop2ML, a component takes parameter and variable values as inputs and produces variable values 

as outputs. A variable is a quantity whose value may vary over time, while the value of a parameter does 

not change during model execution. Variables and parameters are distinguished with input type attribute and 

are categorized with variable category and parameter category attributes, respectively (Table 2). 

Table 2 
Category, definition, and example of variables and parameters in Crop2ML. 

Input Type Category Definition Example 

Variable State Characterizes the behavior of a component Leaf area index, weight of a plant part, 
canopy temperature 

Rate Defines the change of one state variable Transpiration rate, leaf growth rate 

Auxiliary Intermediate variable computed by an auxiliary 
function 

Dry matter partitioning, shoot number 

Exogenous Driven variables that do not depend on other 
variables of the system or component 

Mean air temperature, wind intensity 

Parameter Constant Absolute constant Boltzmann constant 

Soil Soil parameter N mineralization constant, maximum 
rootable soil depth 

Species Crop parameter with fixed value for a species Maximum respiration rate 

Genotypic Crop parameter that can take different values 
for different genotypes (cultivars) 

Phyllochron, grain filling duration 
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Crop2ML currently supports four basic types: integer, double, strings and logical. It also supports two 

collection types, lists and arrays, which contain a sequence of elements of basic types. They are explicitly 

specified in a datatype attribute. It also provides a common representation of date/time. The domain of 

validity of each variable is specified by min and max attributes. A measurement unit can also be associated 

to the variables and parameters. Listing 2 gives an example of inputs and outputs specifications. 

 

Listing 2: Example of inputs and outputs specifications of a Crop2ML model. 

 

2.1.3. Initialization 

State variables of a Crop2ML ModelUnit and ModelComposite are initialized at the start of a simulation 

and are specified with an Initialization element. This element is optional, and the default values of state 

variables are used if it is omitted. Initialization may also be a function that assigns initial values to state 

variables. In this case, the Initialization element contains the path to the source code of the initialization 

function. 

 

2.1.4. Algorithm 

Algorithm elements link the model specifications with the model algorithm. A model algorithm 

describes the behavior of a component in terms of a sequence of inputs, successive rules or actions, 

conditions and a flow of instructions from inputs to outputs including mathematical expressions. A model 

algorithm can be implemented in different programming languages. However, Crop2ML proposes to encode 

the model algorithm in a share language, CyML (Midingoyi et al. 2020b). The CyML source code is the 

common representation for model algorithm shared by the supported languages and platforms (see Section 

2.2.). 
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Listing 3: Example of link to an algorithm file. 

 

2.1.5. Function 

A function is a utility routine that can be called from the model algorithm or from other functions. It 

reduces the code length and improves the readability of the encoded algorithm. If a model needs an external 

function, this function must be declared in the model specification by referencing the path where the function 

is implemented. A function can also be used for model adaptations such as temporal aggregation or 

integration, unit conversion to link model components without changing their algorithms. Crop2ML 

provides a shared library of mathematical functions in different languages such as standard functions, 

interpolation, or upper and lower bound functions. Modelers can use these functions in their own algorithm, 

implemented in the CyML language. 

 

2.1.6. Parameter sets and test sets 

A Crop2ML model specification includes one or more sets of model parameterizations used for different 

unit tests (Listing 4). A parameterization is a set of values assigned to an input parameter of a model. It is 

described by a name and a description. A unit test in Crop2ML is described in the Testsets element and 

allows comparing estimated and expected outputs values. Several unit tests can be specified. They are 

described by their name, their description and the name of parameters set associated to them. Each test 

provides a list of values assigned to each variable and the expected values of the model outputs. A numerical 

precision could be associated with the output of the test to check its validity. 

 

Listing 4: Example of parameterization and unit tests in Crop2ML. 
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2.1.7. Model links 

Model links are specified in a ModelComposite and depict how ModelUnits or ModelComposites are 

interconnected. A ModelComposite is a port graph (Andrei & Kirchner, 2009) that defines a dataflow where 

nodes are ModelUnits, and ports are inputs and outputs of the ModelUnits. Edges are oriented links 

connecting output ports of a source ModelUnit to the input ports of a target ModelUnit (Fig. 3). Three types 

of links must be specified: InternalLink is the connection between an input of one sub-model and the output 

of another sub-model, InputLink is the connection between an input port of a sub-model and an input port 

of the composite model, and OutputLink is the connection between a ModelUnit or ModelComposite output 

port, that can be either a ModelUnit or ModelComposite, and a ModelComposite output port. These 

connections show the hierarchical structure of a ModelComposite. This modeling approach enhances 

reusability and has been used historically with success (Wyatt, 1990).  

 

Figure 3: Graph of a ModelComposite. Three ModelUnits (M1 to M3) are connected to form a first level of 

composition, which is linked to a fourth ModelUnit (M4). Link1 is an InputLink, Link2 is an InternalLink, 

and Link3 is OutputLink. 
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2.2. CyML: the common modelling language of biophysical processes in crop 

models 

We defined a set of common features resulting from the intersection of the programming languages 

supported by PBM platforms to propose a shared modelling language. A design choice was to define a 

subset of an existing language that can provide these common features. We needed a widely used high-level 

language with a low learning curve so that modelers with basic programming skills could efficiently use it. 

The transformation of a language with dynamic typing can make code transformation into programming 

languages with static typing ambiguous. Therefore, we choose Cython, a high-level language based on 

Python with explicit type declaration (Behnel et al., 2011). Cython is a language, which combines the 

expressive power of Python with the efficiency of C. It is compiled directly in efficient C code, which 

improves runtime speed and makes it possible to interact with C, C++ and Fortran source code. However, 

not all Cython syntax can be directly transformed in all target languages. For instance, the yield statement 

and anonymous functions are not supported by Fortran. Therefore, we defined CyML (Cython Meta 

Language), a sub-set of Cython to address the implementation of the model algorithm (Midingoyi et al., 

2020b). 

We use CyML as a pivot language between various platform languages, which can be mapped to their 

syntax and semantics. The structure and syntax of CyML, as well as its transformation system to various 

languages and platforms is detailed in Midingoyi et al., (2020b). In brief, CyML supports datatypes defined 

in the model specification and provides standard mathematical functions and operators. In addition to local 

variable declaration and assignment statements, control structures are used in the flow of instructions 

described by the encoded algorithms. These include conditional statements (if, elif and else) to check if a 

condition is satisfied before addressing part of an algorithm, sequential statement (for loop) with an 

incremental index on a data collection, and a repetitive statement (while) used to repeat part of an algorithm 

while a condition is satisfied. These structures can be nested. To support modular designs and the reuse of 

ModelUnits and functions, CyML provides import mechanisms, which assumes that imported ModelUnits 

or functions are referenced. 

Crop2ML framework provides a source-to-source transformation system (CyMLT) which converts 

CyML source code in procedural (Fortran, Python, C++), object-oriented (Java, C#, C++, Python) and 

scripting or functional (R, Python) languages (Midingoyi et al., 2020b). CyMLT implementation relies on 

the transformation of the abstract syntax tree (AST) generated from the syntax analysis of the CyML code. 

The AST is transformed to a self-contained representation of the source code called Abstract Semantic 

Graph, which is independent of the source language. CyMLT proposes a unique approach to transform the 
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Abstract Semantic Graph into readable source code in many different languages. The generated code is 

independent from the transformation system and can be run outside the Crop2ML framework. The 

transformation system integrates model documentation based on the model specification into generated 

code. 

 

2.3. Crop2ML model package 

In the context of large projects and collaborative work, it is useful to define some requirements or 

standards to have a common exchange way. Crop2ML provides a logical, standardized but flexible support 

to facilitate model sharing between modeling platforms through the definition of a directory structure 

(package template, Fig. 4). This template includes a folder that contains model description and associated 

algorithms, a repository of source code for each language and modeling platforms. It also includes a folder 

containing input data for a ModelComposite simulation, and a folder containing the unit tests. To save time 

and avoid forgetting mandatory files or folders during package creation, we created a cookiecutter (Roy, 

2017) template that automatically generates Crop2ML package templates 

(https://crop2ml.readthedocs.io/en/latest/user/package.html). It increases model reusability by 

automatically generating a project that follows shared guidelines. Any ModelUnit or ModelComposite can 

be extracted as a stand-alone model from an existing package, tested, reused, or integrated in other 

ModelComposite or package. This notion of package-dependency increases the modularity of Crop2ML and 

avoid model duplicity. 

 

2.4. Crop2ML model lifecycle management 

Crop2ML aims at collaborative model development that support the entire model lifecycle, including 

model creation, edition, verification, validation, transformation, composition and documentation. Therefore, 

we developed tools and services to support all the steps of a Crop2ML model lifecycle. 
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Figure 4: Tree view of the structure of a Crop2ML model component package. 

 

2.4.1. Model analysis 

Crop2ML models conform to a specific Document Type Definition (DTD) that describes Crop2ML 

concepts. Model analysis verifies if the model specifications are a well-formed XML document validated 

by Crop2ML DTD. The analysis of a ModelComposite consists of checking model composability through 

ports datatypes and units. Most XML editors can check the validity of an XML document against a DTD 

but the Crop2ML software environment (CropMStudio, see Section 3) ensures this. 

 

2.4.2. Model validation  

Crop2ML model components can be validated by executing unit tests. It consists of using the parameter 

and variable values from the model specification to produce unit tests in different languages. Unit tests are 

generated in Jupyter notebook format, a document format for publishing source codes and reproducible 

computational workflows that could be executed in the appropriate kernel in CropMStudio. This format is 

useful for code and documentation publishing and real-time collaboration when running on a remote server 

(Kluyver et al., 2016). Unit tests may also be associated with a model publication.  
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2.4.3. Model transformation  

The success of Crop2ML model reuse through a white box approach comes from its ability to generate 

model components that conform to platform requirements. The transformation of a model component from 

a platform to another one goes through Crop2ML model representation.  It relies on a system of 

transformation to and from Crop2ML and the platforms.  

For some PBM platforms, meta-information of model components are described inside their 

implementation as documentation. For other platforms meta-information are encoded in a textual or visual 

programming language. CyMLT generates from Crop2ML model either appropriate documentation or 

variables and parameters specifications based on the artifacts of the target platforms. In addition, CyMLT 

generates model component algorithms in various languages. Given a model component provided by a 

platform, meta-information are extracted by identifying Crop2ML concepts inside the component to 

generate Crop2ML model meta-information. Moreover, algorithms in CyML are produced to obtain a 

complete Crop2ML model. 

 

2.4.4. Model documentation 

Sharing model knowledge requires detailed information on the model. Crop2ML generates model 

documentation from the model specification. From the relationships between the ModelUnits of a 

ModelComposite, the diagram flow of the ModelComposite is generated. It may constitute a part of the 

model documentation and gives a first description on the model component. This allows groups of modelers 

to discuss the model structure and evaluate the component. 

 

3. Crop2ML software environment and tools 

3.1. PyCrop2ML: A Python library for Crop2ML 

Pycrop2ML is an open, modular, and extensible library developed in Python that implements all the 

steps of Crop2ML model lifecycle. It is designed to support the current Crop2ML model specifications but 

can easily be adapted to support future versions. Pycrop2ML can be integrated into other software projects 

as a plug-in. It allows: 

 Verifying a Crop2ML model. This is ensured through a model parser based on the Crop2ML DTD. 
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 Transforming a Crop2ML ModelUnit to source code: PyCrop2ML integrates CyMLT that generates 

model components that conform to PBM platforms requirements. 

 Transforming a CyML source code to various languages: Regardless of Crop2ML model 

specifications, any CyML source code can also be transformed into the target languages. This source 

code can be used as auxiliary functions for Crop2ML model development. 

 Transforming source code to Jupyter notebook format: Each ModelUnit source code generated can be 

translated as a cell of Jupyter notebook, as well as, each unit test, allowing its execution in Crop2ML 

JupyterLab environment. 

 Transforming a Crop2ML ModelComposite: A Crop2ML ModelComposite provided as a directed 

graph can be transformed to source code as a sequential order of the submodels. 

 Visualizing a ModelComposite: Pycrop2ML provides a function to visualize a ModelComposite with 

the links between ModelUnits (Fig. 5). 

PyCrop2ML is written in Python and can be executed via a command-line interface, inputting either a 

Crop2ML package or CyML source code, as well as, the target language or platform for transformation. 

Users with no knowledge of the Python language can easily run PyCrop2ML via the command line. The 

PyCrop2ML library incorporates three crop model components as model examples that can be used to test 

the different functionalities. 

3.2. CropMStudio: A JupyterLab environment for Crop2ML model life cycle 

management 

Crop2ML model specifications can be created or edited using any XML editor. However, to fulfil our 

objective of collaborative model development accessible to modelers with no specific programming skills, 

we developed a user-friendly interface based on the PyCrop2ML package to manage the lifecycle of 

Crop2ML model components (Fig. 6). Since Crop2ML models are transformed in different languages, it is 

useful to execute the unit tests in a single environment. Our solution, named CropMStudio, uses the 

JupyterLab environment (https://jupyterlab.readthedocs.io), an open source web application that allows 

working with code in different languages through different language backends kernels. We installed Python, 

Java, C#, C++, R and Fortran kernels to execute ModelUnit tests. The current version of CropMStudio can 

be accessed through a web browser and run locally like a desktop application. Another motivation to use 

JupyterLab is to make publication results reproducible in a shared environment based on the capacity to 

produce interactive and readable code documents (Kluyver et al., 2016). 
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Figure. 5. Visualization of energy balance ModelComposite provided from SiriusQuality wheat model 

developed with the BioMA platform. Ellipses are ModelUnits and arrows represent the link between two 

ModelUnits 

 

Figure 5: Schematic representation of the Crop2ML framework showing Crop2ML model lifecycle from 

the creation of a package to model transformation. 
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4. Interoperability between various simulation platforms 

The interoperability between simulation platforms is based on two transformation processes (import and 

export) via Crop2ML. The import process consists of transforming any platform model component to 

Crop2ML model. The export process consists of transforming Crop2ML models to any platforms. Here we 

illustrate the interoperability of model components between five widely used PBM platforms with different 

architectures: BioMA, DSSAT, OpenAlea, RECORD, and SIMPLACE. These examples demonstrate that 

the concept of model exchange using Crop2ML is feasible and efficient using the Crop2ML protocol (Table 

1). 

 

4.1. BioMA 

The Biophysical Models Applications (BioMA) as a follow up of the APES environment (Donatelli et 

al., 2010) is a software framework designed and developed by The Joint Research Center (JRC) of the 

European Commission (Donatelli and Rizzoli, 2008). It is used for running, calibrating, and improving 

modeling solutions based on biophysical models. Models supported by the BioMA framework are 

implemented in C# using the Object-Oriented paradigm. BioMA offers a modular and flexible architecture 

in three independent layers: (i) the model layer where fine-grained and composite models are implemented 

in components; (ii) the component layer where modeling solutions are developed from linked model 

components; and (iii) the configuration layer where the context (a purpose for what a modeling solution is 

defined) is set into the model to feed it with data and where adapters are provided to encapsulate legacy 

codes for reuse. The model layer is the one that is relevant as part of Crop2ML model exchange and can be 

well compared and mapped with the Crop2ML modeling approach. 

At the model layer level, BioMA uses the strategy design pattern (Gamma et al., 1995) to make available 

a set of models that represent basic biophysical processes in a component through the same call and interface 

(IStrategy). Such models are called simple strategies, and they correspond to Crop2ML ModelUnits. Each 

simple strategy encapsulates model specification (input, output variables, algorithms), parameters and pre- 

and post-conditions tests. The component that embeds these simple strategies is called a ‘composite 

strategy’. A composite strategy defines the model structure by invoking other strategies, and it is used to 

match the Crop2ML ModelComposite structure. The variables used as inputs and outputs of the strategies 

are stored as complex data types in specific classes, called ‘domain classes’. The simple strategies of a 

component share the same domain classes. Usually, developers organize the variables of a component in 
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different domain classes according to the typology of the variables (e.g., all the variables related to the flux 

into a ‘rates’ Domain class, all the variables related to the state in a ‘states’ domain class). As Crop2ML 

focuses on the exchange of autonomous components instead of a modeling solution, all ModelUnits of a 

ModelComposite share the same context, and consequently, the corresponding strategies in BioMA will 

share the same domain class. 

From Crop2ML to BioMA - The export to BioMA components is performed automatically by 

Pycrop2ML that allows generating simple strategy classes from Crop2ML ModelUnits, composite strategy 

class from Crop2ML ModelComposite and domain classes shared by strategies. After parsing all 

ModelUnits, different domain classes are generated according to the "variablecategory" attribute (state, rate, 

exogenous, auxiliary) of model inputs and outputs. They contain accessors methods of all variables of the 

proper category and constructors. A VarInfo class associated with domain classes is also generated and 

contains all properties of variables declared in the domain classes. The generated strategies implement all 

BioMa requirements, including the IStrategy interface, which contains the model algorithm, test pre- and 

post-conditions, and default values of the parameter set. The algorithms of the ModelUnits are translated 

into C# and incorporated in the Estimate method by using the CyML transpiler. Finally, the graph of models 

represented by the ModelComposite is converted to an ordered sequence of simple strategies calls. After the 

BioMA model components are generated, the domain classes and strategy classes are loaded into the BioMA 

Domain Class Coder and Strategy Class Coder, respectively. This step is used to prove that the generated 

files conform to BioMA requirements. 

From BioMA to Crop2ML - The import process to Crop2ML allows retrieving inputs, parameters, 

and outputs of each Strategy class to obtain XML files of ModelUnits through a module based on the BioMA 

Model Component Explorer. Inputs and parameters of a strategy correspond to inputs in Crop2ML 

distinguished by the input type attribute. The model algorithm is manually translated into CyML. In the case 

where a composite strategy is described as a sequence of simple strategies calls, the graph of models is 

composed automatically. If the estimate method of a composite strategy incorporates some logic rules in the 

combination of strategies the model algorithm of the composite model is explicitly provided. 

 

4.2. DSSAT 

The Decision Support System for Agrotechnology Transfer (DSSAT, Jones et al., 2003; Hoogenboom 

et al., 2019) is an integrated crop modeling platform that incorporates crop simulation models for over 42 

crops (as of Version 4.7) as well as tools to facilitate effective use of the models. At the core of DSSAT is 
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the Cropping System Model (CSM) designed in a modular format in which components are separated along 

scientific discipline lines and user interfaces to replace or add modules. Simulations are conducted at a daily 

time step or in some cases, at an hourly time step depending on the process and the crop model. State 

variables are updated at the end of each day of a simulation. The CSM is divided into modules including 

weather, management, soil, plant representing primary modules that contain secondary modules. The main 

program controls all the timing for the system, while a Land Unit module is used to control processing and 

data transfer between all primary modules. Each module is called to perform initialization of state variables 

at the beginning of a simulation, and at each iteration to calculate daily rates and perform daily integration 

of state variables.  

Most of the secondary modules (e.g. soil water balance) are further subdivided into sub-modules for 

individual processes (e.g. snow accumulation). DSSAT sub-modules can be matched with Crop2ML 

ModelUnits, and DSSAT primary and secondary modules can be matched with Crop2ML ModelComposite. 

In DSSAT, model inputs and outputs are described inside a module and are used to create Crop2ML 

ModelUnit specifications. DSSAT modules have been developed in Fortran for performance reasons. 

From Crop2ML to DSSAT – Export to DSSAT is performed through PyCrop2ML. It generates a 

submodule in Fortran 90 for each ModelUnit. It also generates a sequence of submodule calls for composite 

models. One issue is that Crop2ML does not manage the handling of input and output files. So, to integrate 

and execute the generated submodules in DSSAT, the modeler needs to manually add the input and output 

methods into the submodules. 

From DSSAT to Crop2ML - All the steps of the import process to generate Crop2ML models from 

DSSAT components have been manually done. The information describing subroutines variables is not 

sufficient to produce Crop2ML models automatically. For each DSSAT secondary module, a transformation 

from Fortran to CyML is done after variable decomposition. In CSM, composite variables are used. For 

example, a weather type variable is defined to contain multiple pieces of information related to a single day 

of weather including day length, precipitation, maximum and minimum air temperature, and wind speed. In 

this case, local variables are extracted manually from the composite variable prior to accomplish the 

transformation. DSSAT relies on the use of the CMake utility to generate platform-dependent make files 

for CSM. It would be very useful when generating DSSAT components to edit the configuration file for 

CMake (CMakeList file.txt) in an automated way. This would simplify the manual addition of the generated 

components. Further streamlining of the process could be done by adding the capability to call the CyML 

transpiler directly from CMake.  
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4.3. OpenAlea 

OpenAlea is a flexible and open-source component-based platform (Pradal et al., 2008, 2015). It allows 

the decomposition of a system or application into separate and independent unit components and the 

assembly of these with other legacy components. It is used to implement efficiently plant models at different 

scales (cell, organ, plant, canopy) with heterogeneous data (raw data, digitized data, tree databases, 3D 

images). It is also designed to facilitate the interoperability between heterogeneous models and data 

structures from different scientific disciplines. It provides a visual programming environment called 

VisuAlea for the edition and composition of scientific models in a graphical user interface and to facilitate 

the access of different components and functionalities of the system. More than 30 different packages 

implemented in various languages from co-developers are available: Biophysics models, image processing, 

statistical analysis, L-systems (Fournier et al., 2010; Lindenmayer, 1968). The system architecture is based 

on the use of the Python language. The composition of models is represented by scientific workflows as 

directed acyclic graph. Different models of computation can be used to execute modeling solutions with 

different semantics (dataflow, discrete events, higher-order lambda dataflow). Components share the same 

plant representation, named the multiscale tree graph (MTG; Godin and Caraglio 1998). This formalism 

allows coupling different models at different spatial scales, while the model of computation can manage 

different time scales. 

Although it is frequently used by the functional-structural plant modeling community, OpenAlea also 

offers development capabilities for crop models and presents a common modeling paradigm (component-

based modeling) with Crop2ML. The concepts of ModelUnit, ModelComposite, and package in Crop2ML 

are equivalent to the concepts of Node, CompositeNode and Package in OpenAlea, respectively. In 

OpenAlea, a Node is the unit component and defines the granularity of a model. It is a callable object with 

typed inputs and outputs, which can be connected to other nodes to form a CompositeNode. 

From Crop2ML to OpenAlea - OpenAlea allows the reuse of models implemented in different 

languages such as C, C++, Fortran, and Java but not in CyML. Therefore, to export a Crop2ML model to 

OpenAlea, PyCrop2ML is used to generate Python functions from each ModelUnit of a ModelComposite. 

We implemented a method to map Crop2ML data types to OpenAlea datatype interfaces so that each input 

and output has a well-defined interface that indicates their types and validity domain. This interface is also 

set to associate to each input, output, and model description a widget and automatically generate the GUI of 

each component based on an OpenAlea module integrated into PyCrop2ML package. These elements make 

it possible to construct a node (Fig. 6). 
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Thanks to the workflow structure of Crop2ML ModelComposites, OpenAlea CompositeNode are 

automatically generated and inputs/outputs compatibility is checked. This process includes the creation of 

Input and Output nodes from the InputLinks and OutputLinks of crop2ML ModelComposite, respectively. 

We developed specific functions to make the connection between Node input ports and CompositeNode 

inputs, Node output port and CompositeNode outputs, and to connect nodes within a CompositeNode. A 

CompositeNode is represented by a unique node reusable in another dataflow. During the import process, 

an OpenAlea package is generated that can then be opened in VisuAlea and managed by OpenAlea package 

manager. VisuAlea offers the possibility to access the models, their descriptions and the possibility to 

change their algorithms. This export process is performed with a loss of information because some attributes 

of Crop2ML model specification are not managed by OpenAlea, such as variable and parameter category 

and unit. To avoid this loss of information, all Crop2ML model attributes are included in the documentation 

of the Python functions associated to each node. In the future, the inputs/outputs interface of OpenAlea can 

be extended to take into account this information. 

 

Figure 6: Structure of a node in OpenAlea. 

From OpenAlea to Crop2ML - The transformation from OpenAlea to Crop2ML uses the OpenAlea 

package manager integrated in PyCrop2ML. An OpenAlea CompositeNode (workflow) is automatically 

converted to Crop2ML ModelComposite (xml file). All nodes and the specification of the inputs and outputs 

of each node, such as their name, description, datatype, default value and validity domain are retrieved 

through the types of the interface to generate Crop2ML ModelUnits specifications. The python code 

associated with each node is manually translated into CyML to provide the algorithms of the model’s 

specifications. The main limitation of the import process is that OpenAlea supports complex data structures 

that are not managed in Crop2ML and whose conversion is currently not supported. 
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4.4. RECORD 

The REnovation and COORDination of agroecosystems modelling platform (RECORD; Bergez et al. 

2013) aims at providing different services for building, simulating, and analyzing models in the context of 

agroecosystems. It uses the Virtual Laboratory Environment (VLE) simulation engine (Quesnel et al., 2009) 

, a generic modeling, simulation, and analysis environment based on the Discrete Event System 

Specification (DEVS) formalism (Zeigler et al., 2018). A graphical user interface (gvle) provides user-

friendly tools to write model specifications, generate source code in C++, or execute models and analyze 

their output. Legacy software code may also be used in RECORD. This requires the user to either wrap the 

original source code (e.g. calling Fortran subroutines of STICS model from C++ Record libraries) or to 

modify the original code by removing temporal loops and managing inputs and outputs to be compatible to 

RECORD platform. 

The concepts of ModelUnit, ModelComposite, and package in Crop2ML map to the concepts of atomic 

model, coupled model and package in RECORD, respectively. In RECORD, models (atomic or coupled) 

exchange information in the form of discrete events. As in Crop2ML, RECORD defines the package concept 

as an autonomous project facilitating model sharing and reuse. A C++ class is associated with the dynamic 

of each atomic model. However, the specification of an atomic model is embedded in the coupled model 

specification. Beside the difference equations formalism, RECORD provides other formalisms such as 

differential equations and decision rules commonly used in the agro-ecosystem context (J. E. Bergez et al., 

2013). 

From Crop2ML to RECORD - A RECORD coupled model relies on an XML file validated with a 

DTD. It specifies the atomic models that compose the coupled model and the way they are linked. This 

XML file called VPZ contains all the mandatory information for simulation. The export of a Crop2ML 

package to RECORD consists of generating the atomic model classes in C++ by using PyCrop2ML and a 

part of the vpz file showing the structure of the coupled model. Parameters are removed to obtain input ports 

of the RECORD coupled model defined in the Experiment section of the VPZ file. The Crop2ML 

ModelComposite links are mapped with those of RECORD to generate an acyclic models' graph. RECORD 

provides a tool to map the DTD of Crop2ML ModelUnit and RECORD atomic model to achieve the 

transformation. 

From RECORD to Crop2ML - The transformation of a RECORD package to a Crop2ML package 

consists of parsing the VPZ file to generate the Crop2ML models specifications. However, this file is not 

sufficient to produce a complete Crop2ML model specification. For example, it does not provide the 

category of variables. The state variables are manually extracted from the model atomic classes. The 
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parameters are also extracted from the experimental conditions section of the VPZ file to build Crop2ML 

model specification. The main challenge of the import process is to generate an acyclic graph without 

retroaction loops from RECORD graph. The retroaction loop can be represented by the InputLink and 

OutputLink as the previous and current states are two distinct variables in Crop2ML. Thus, the InputLink 

comes from the composite input representing the previous state and the OutputLink connects with the 

composite output representing the current state. Finally, the ModelUnit algorithm results from the encoding 

of the compute method in CyML. A difference between Crop2ML and RECORD is that all the state 

variables are outputs in Crop2ML, while this is rarely the case in RECORD. 

 

4.5. SIMPLACE 

SIMPLACE (Scientific Impact assessment and Modelling Platform for Advanced Crop and Ecosystem 

management; Gaiser et al., 2013) has been developed as a flexible modeling platform that attempts to meet 

the various demands of three user groups, scientists, engineers and decision makers, within one system only. 

This enables the different user groups to interact and bridge gaps. The platform operates with 

SimComponents as the smallest building blocks, which in most cases describe biophysical processes in the 

soil-plant-atmosphere system, which is described by combining several SimComponents through links 

established by input-output definitions. SimComponent maps to Crop2ML ModelUnit. GroupComponents 

combine SimComponents into logical structures of components that belong together, they map to Crop2ML 

ModelComposite. 

With the graphical user interface view, non-experienced platform users like stakeholders, decision 

takers and students are able to run pre-defined model solutions and to analyze simulation results without 

further knowledge about the details of the underlying SimComponents or the model solutions. The XML 

based view is attached to the integrated development environment Eclipse. SimComponents algorithms are 

coded using object-oriented techniques in the programming language Java.  

The Model Engine of the SIMPLACE platform is initialized using a model solution. It consists of 

constants, input data declaration, a model structure linking the SimComponents and an output description. 

It is defined by an XML DTD that also supports users in implementing and checking the semantic 

correctness of the modelling solution. 

Model developers can implement their own modeling solutions with maximum flexibility using existing 

or their own SimComponents. The class structure of the Model Engine provides possibilities for model 

developers to extend the abstract SimComponent for implementing their own model descriptions or 
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SimComponent. It also contains an abstraction layer to support calibration, sensitivity analysis and regional 

application by extending generators, iterators and selectors according to the user requirements. Besides the 

flexibility and transparency of the open source implementation, SIMPLACE focuses on interaction between 

different modelling systems and widely enables the user to deep couple simulation runs using the various 

interfaces such as R, Matlab, Python, Octave. SIMPLACE additionally uses interfaces to import ModelUnits 

from APES, different FORTRAN based model implementations Lintul (Van Ittersum et al., 2003), 

HERMES (Kersebaum et al., 2019) and EPIC (Sharpley & Williams, 1990). 

This implementation enables SIMPLACE to interact with the Crop2ML approach to import and export 

model components using the Crop2ML structures. SimComponents are exported to or imported from 

Crop2ML packages and GroupComponents are interfaced with Crop2ML ModelComposite structure. To 

further interact with the Crop2ML structure, the SIMPLACE XML-interface has been extended to include 

transfer maps to translate from SIMPLACE terms such as data types (e.g. DOUBLE or INTEGER), variable 

types (e.g. state, rate, or constant) to Crop2ML concepts.  

In general, the interfacing with abstract languages like Crop2ML with their internal use of a (foreign) 

programming language consists in two steps that are mainly the same for import and export but have 

different order: (1) the transfer of algorithms and scripts from one programming language to another 

(from/to Java to/from Cython) and (2) the adaptation to the framework specific structures that are not 

language specific. An example for step (1) is the adaptation of a for loop. In the step (2) SIMPLACE 

explicitly sets values like Var.setValue(object) where CyML uses the simple definition like Var = object. 

The experience in importing and exporting structures via Crop2ML with SIMPLACE shows that huge parts 

of the process can be automatized. For ModelUnits that meet the following preconditions, import and export 

work without further adaption steps:  

 Algorithms in the ModelUnit (in the SIMPLACE process() method) contain no language specifics. 

 All class variables used in the ModelUnit are stateless within the component.  

 No additional external code is used in the ModelUnit. 

Many modelling units have been modified to meet these preconditions. However, there are still some 

complex SimComponents like SoilCNPK (Corbeels et al., 2005), SlimWater (Addiscott & Whitmore, 1991) 

that will require deeper changes in their structure to be transferred to the Crop2ML structure. In the future, 

it is planned to make entire modeling solutions transferable into a Crop2ML package. This would enable 

users to import complete simulation experiments seamlessly into other platforms. Some information 

specified in the SIMPLACE solution will then have to find its way into the Crop2ML structures like. 

 Resource data structure including unique keys 
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 Transformers to adopt resource data structure to the model needs 

Not readily included in the conversion process is the import and export of the existing unit tests to crosscheck 

implementations after import in other platforms. 

Table 3 

Import and Export process between Crop2ML and PBM platforms. A, automatic; P, partially automatic; M, 

manual. 

PBM 

Platforms 

From Crop2ML to PBM platforms  From PBM platforms to Crop2ML 

A P M To complete  A P M To automatize 

BioMA           Source transformation from C# to CyML 

DSSAT     Integration of I/O      Source transformation from Fortran to 

CyML 

Remove I/O 

More variable description 

Record     Complete VPZ file       Source transformation from C++ to CyML 

More variable description 

OpenAlea           Source transformation from Python to 

CyML 

More variable description 

SIMPLACE     Correspondence 

between units 

(Crop2ML – 

SIMPLACE) 

     Source transformation from Java to 

CyML 

 

Table 3 summarizes the interoperability of model components between these platforms. Platforms are based 

on various programming languages, which requires the definition of transformation rules between CyML 

and various languages including C# (BioMA), Java (Simplace), C++ (Record), Python (OpenAlea) and 

Fortran (DSSAT) in both directions.  

In order to illustrate Crop2ML concepts and transformation results, a phenology and an energy balance 

models are used. Phenology, the timing of crop development is the heart of most crop growth models and 

is an essential component of most crop modeling platforms. The energy balance model involves 

interconnected components that allows estimating canopy temperature, evapotranspiration, and heat transfer 

between the canopy and the air. These processes are implemented as BioMA standalone components 

(Manceau & Martre, 2018) of the wheat PBM SiriusQuality (He et al., 2012; Martre et al., 2006). The two 
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components were converted into Crop2ML packages, and then automatically translated into different 

languages and model components that conform to different PBM platforms. These packages are presented 

in Supporting Information Appendixes A and B. In Table 4 we illustrate how to represent a parameter and 

an algorithm in a Crop2ML Model Unit and its translation with CyMLT in Record, BioMA, and DSSAT. 

The implementations of the model differ between the platforms. For instance, DSSAT defines a subroutine 

with all the variables as argument, Record defines a class method (compute) with the variables as attributes 

of the class and uses specific operator “()” to manage temporal variables, while BioMA defines a class 

method (CalculateModel) that takes as argument data structures implementing each category of variables 

(state, rate, auxiliary, exogenous). The aim of model transformation is to provide to the platforms alternative 

model components that could easily replace their corresponding components to analyze the effects of new 

hypotheses into their modeling solutions.  

The sequence of ModelUnits that compose a Crop2ML ModelComposite is formally modeled as a 

directed acyclic graph. This means that there is no feedback loop or retroaction at a given time step, instead 

they are usually represented by a cycle in the ModelComposite. Alternatively, a state variable can be defined 

explicitly as two variables with respect to the current and the previous time. Thus, a composite model may 

take as input a state variable at previous time and a state variable at current time as output, making implicitly 

a loop with respect to time advance. Another way to represent feedback inside a time step is to associate an 

explicit algorithm to the ModelComposite that defines how to run it. However, this feature is not supported 

by two simulation platforms (OpenAlea and RECORD)
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Table 3. Declaration of the inputs and algorithm of a Crop2ML ModelUnit of the Penman-Monteith evapotranspiration model and the equivalent source code 
generated by CyMLT for Record, BioMA, and DSSAT. The declaration of a single variable is given as an example. 

Framework or 
platform / language 

Variable declaration Algorithm 

Crop2ML / CyML 

 

 

Record / C++ 
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BioMA / C# 

 

 

DSSAT / Fortran 
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5. Discussion 

The Crop2ML framework enables the user to exchange and reuse biophysical components between 

various PBM platforms through shared declarative specifications. The use of a minimal language to describe 

the model algorithm once and the transformation system facilitates the model component reuse. ModelUnits 

and ModelComposite could be accessed and composed following a white box approach. Therefore, the 

Crop2ML approach greatly increases the ability of modelers to share their algorithms. The protocol will 

allow modelers to borrow components easily and will facilitate their intercomparison in different PBM 

platforms. 

 

5.1. How does Crop2ML address model reuse with respect to other initiatives? 

Some initiatives addressed model reuse by providing multi-scale and multi-language integrative 

frameworks such as Crops in silico (Marshall-Colon et al., 2017) or OpenMI (Buahin & Horsburgh, 2018). 

These frameworks can compose and simulate heterogeneous models provided by different frameworks 

through a communication interface. The model components are often wrapped and are represented as black-

box components. All state variables are not always exposed as model outputs, which may limit their 

integration in an existing modeling solution. Therefore, these frameworks enhance model reuse in their own 

environment but they do not address reusability with other PBM platforms. Many existing PBM platforms 

do not support the coupling of models written in multiple languages (e.g. BioMA, APSIM next generation).  

Donatelli and Rizzoli (2008) proposed a design pattern for platform-independent model components to 

enhance modularity and to facilitate model reuse in several PBM platforms via simple wrappers. However, 

this approach fixes the structure of the components. The lack of specification or meta-information makes 

the reuse of model components between platforms difficult. Even in component-based systems, explicit 

information about the component itself and its inputs and outputs (types, units and boundary conditions) are 

required to ensure a syntactic composability and to meet the specificities of the platforms. Moreover, the 

knowledge of the structure underlying the source code of a component is also required to systematically 

extract model information (variables and algorithms) for their transformation and integration in different 

platforms. We thus argue that model component reuse is improved if it is supported by model specification. 

Crop2ML defines an abstract representation of model design shared by PBM platforms through some shared 

concepts enriching or extending those proposed by Athanasiadis et al., (2011) with other attributes and a 



61 
 

 
 

formal and shared description of unit tests. We included unit tests in Crop2ML specifications to ensure 

model transformation validation and some imperative constructs for model dynamics. 

Several initiatives have used declarative modeling to describe model specifications and address model 

reuse issues. The approach proposed by Villa (2001) is similar to ours but it is limited to models where the 

dynamics of the modeled processes is represented by simple mathematical expressions without control 

structures, which does not match crop-modeling context. Hucka et al., (2003) used MathML (Ausbrooks et 

al., 2003) to express interactions between variables through mathematical formalisms well defined in the 

systems biology community. This approach is similar to that of Rizzoli et al. (2008) and is interesting when 

processes are governed by differential equations. However, in the PBM context, simulation platforms use 

algorithms to describe processes rather than mathematical formalisms with differential equations. Moreover, 

in PBM, variables that drive the system are temporal series that change the behavior of the system at discrete 

time. This does not require finding a general solution of recurrent equations used in crop models but rather 

estimating at each time step the state variables of the system. 

Automated model transformation is a core aspect of model-driven development (Cuadrado & Molina, 

2007). It uses Model-Driven Engineering (MDE) principles based on metamodeling concepts. Crop2ML is 

in line with MDE. It defines structured concepts representing its metamodel, with which all Crop2ML 

models are conform, and a model transformation to generate PBM platforms’ components. Model Driven 

Architecture (A. W. Brown, 2004) is a framework of MDE that provides several standards languages (e.g., 

ATL, QVT, ETL, Henshin, VIATRA, and Stratego) for model transformation (Jouault & Kurtev, 2006; 

Kurtev et al., 2006). Crop2ML is based on a transformation process through a set of refinement of models 

and code with some extensible rules defined as templates in Python. Most MDE approaches allow model to 

model or model to code transformation where a model represents the specification in our case. However, 

the use of transformation language standards was inappropriate in our context to unify transformation 

process towards many languages with different paradigms (Bucchiarone et al., 2020). Crop2ML produces 

code in a target language but also adapt the code to fit with PBM platform specificities. To our knowledge, 

model transformation languages in MDE do not support code generation in multiple languages with 

extended features in the same environment. 

 

5.2. Connecting Crop2ML to PBM platforms 

Given that Crop2ML datatypes do not handle complex structures other than arrays and lists, some 

compromises or transformation should be made to the import-export process on platform side with respect 
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to handling other data structures used in platforms. As an example, BioMA provides the Dictionary data 

type that is a mapping between keys and values to represent either input or output variables. This data type 

is not shared by PBM platforms and not handled in Crop2ML. As an alternative, Dictionaries can be 

expressed in Crop2ML as two list datatype variables that represent keys and values of the dictionary.  

The simulation algorithm defining the feedback loop is explicitly described as control flow in some 

platforms (e.g. BioMA) but this is not the case in other platforms (e.g. Record, where the VPZ file 

representing the simulation model file is handled by the simulation engine VLE). Different simulation 

engines are based on different models of computation used by the platforms such as dataflow (e.g. 

OpenAlea), DEVS simulation (e.g. Record), control flow (e.g. BioMA, DSSAT, and Simplace). These 

models of computation are used to coordinate the execution of the model. The current version of Crop2ML 

framework does not take into account the specificities of simulation engines and addresses components 

which can be sequentially composed. 

The Crop2ML transformation system is designed to support the specificities of the target PBM 

platforms. However, the semantic of a Crop2ML model is based on shared concepts to describe at a high 

level a biophysical process designed as a discrete-time model. There is no semantic reason to support the 

description of each instance of the concepts. For example, since we have not defined a convention to name 

process variables, the integration of a Crop2ML component into a PBM modeling solution requires adapting 

the name of its variables. In the future, we could annotate Crop2ML models to add semantic information to 

make semantic links between any Crop2ML model variables or parameters with those of model components 

of PBM platforms. This will also allow a semantic composability of Crop2ML models instead of a syntactic 

composability that analyzes whether the pair of variables to be linked are compatible. However, this would 

require the crop modeling community to agree on shared semantics and ontologies of crop model variable 

and parameter representations. In addition to facilitating the exchange and reuse of model components, 

semantic descriptions of model variables and parameters would facilitate the linking of crop models to plant 

phenomics data (Neveu et al., 2018). 

The import process into Crop2ML is more mixed regarding the overall difference between PBM 

platforms. It is much easier to start with concepts shared and reused by PBM platforms than to start from 

divergent views of model representations to achieve a particular result. Some PBM platforms need to extend 

their concepts for model specification or to provide a rich model documentation in order to produce 

complete Crop2ML model specifications. This reveals the need of a good level of abstraction to represent a 

model in various PBM platforms. The higher the level of abstraction, the further the description moves away 

from the platforms and the less easy it is to understand. If the level of abstraction is low, it is not always 

possible to represent all features of the models present in the platforms.  
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5.3. Future developments 

A common model repository infrastructure is essential for efficient model exchange (Le Novere, 2006). 

Currently, Crop2ML model components are stored in Github repositories. We need to provide a Crop2ML 

model repository to store models in a shared format to make them easily accessible and reusable by the 

PBM community. This repository should aim at hosting alternative biophysical processes. It will help 

modelers to operate on multiple model components, compare processes, or evaluate the impact of the 

integration of alternative models of biophysical processes in crop models. The success of the Crop2ML 

repository requires that the PBM community gives access to their models by feeding the repository which 

will be curated by AMEI consortium to avoid error propagation. 

Crop2ML has some limitations, which can be addressed in the next versions either by extending the 

model specifications with shared concepts or by adapting the target PBM platforms to Crop2ML 

specification and language. It is an ongoing, long-term work, to satisfy platform requirements and facilitate 

Crop2ML model life-cycle management to make Crop2ML a standard for the crop modeling community. 

The transformation of a model component of a PBM platform into a Crop2ML package requires to 

rewrite the model algorithms in the CyML language. This limit will be addressed by extending the CyML 

transpiler to a bidirectional transpiler. Thereby, PBM platforms could provide model algorithms in the 

language they use and the extended CyML transpiler will transform them in CyML and target languages 

used by other PBM platforms (Fig. 7). This is a two-step process. First, the model algorithms in the language 

of the source PBM platform will be parsed and an AST will be generated. Second, the rules for transforming 

this AST into the CyML AST will be applied. The second step will reuse the CyML transformation tool 

developed by Midingoyi et al., (2020b) to produce model algorithms compatible with other languages and 

PBM platforms. 
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Figure 7: Schema illustrating CyML transformation extensibility to support bidirectional source 

transformation. 

 

Other future developments of Crop2ML include: 

● enhance Crop2ML model repositories with model annotation to link publications to models for 

reproducibility; 

● add unit checks and conversions in Crop2ML to improve model validity; 

● define a methodology to link Crop2ML with plant structure representation for multiscale viewing and 

analysis; 

● Support for an ontology to allow better Crop2ML model interpretation and improve transformation 

between PBM platforms.  

● Extend Crop2MLab prototype: The current prototype allows managing Crop2ML models and 

transforming them into target languages and platforms. Future developments will include bidirectional 

transformation and the creation of a web interface on a remote server in order to give users the possibility 

to handle Crop2ML model lifecycle without local installation. 
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6. Conclusion 

At the boundary between modeling and software engineering, this paper addresses crop model 

component reuse by proposing Crop2ML. Despite all the differences between crop models development 

and simulation platforms, some common features were found that enabled model representation regardless 

of the PBM platform specificities. Crop2ML provides some structured concepts to support the definition of 

ModelUnit and ModelComposite and allows their transformation to make them compatible with PBM 

platforms at implementation level. Therefore, Crop2ML defines a new unified crop model representation 

that considers the abstraction of PBM component features in several PBM platforms. Moreover, Crop2ML 

uses a domain specific language to describe biophysical processes and auxiliary functions to represent model 

dynamics based on a subset of the Cython language, which can then be automatically transformed into 

different target languages. Crop2ML proposes an open framework to manage all the steps of model lifecycle. 

 

Supporting Information 

Appendix A. Crop2ML Energy balance component 

https://doi.org/10.5281/zenodo.4292231 

Appendix B. Crop2ML Phenology component 
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Abstract 

The diversity of plant and crop process-based modeling platforms in terms of implementation language, 

software design, and architectural constraints limits the reusability of the model components outside the 

platform in which they were originally developed, making model reuse a persistent issue. To facilitate the 

intercomparison and improvement of process-based models and the exchange of model components, several 

groups in the field joined to create the Agricultural Model Exchange Initiative (AMEI). AMEI proposes a 

centralized framework for exchanging and reusing model components. It provides a modular and declarative 

approach to describe the specification of unit models and their composition. A model algorithm is associated 

with each model specification, which implements its mathematical behavior. This paper focuses on the 

expression of the model algorithm independently of the platform specificities, and how the model algorithm 

can be seamlessly integrated into different platforms. We define CyML, a Cython-derived language with 

minimum specifications to implement model component algorithms. We also propose CyMLT, an 

extensible source-to-source transformation system that transforms CyML source code into different target 

languages such as Fortran, C#, C++, Java and Python, and into different programming paradigms. CyMLT 

is also able to generate model components to target modeling platforms such as DSSAT, BioMA, Record, 

SIMPLACE and OpenAlea. We demonstrate our reuse approach with a simple unit model and the capacity 

to extend CyMLT with other languages and platforms. The approach we present here will help to improve 

the reproducibility, exchange and reuse of process-based models. 
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1. Introduction 

Process-based crop models (PBM) are increasingly developed for a wide range of applications and 

research purposes. Even though there are key biophysical processes in PBM such as phenology, soil water 

balance, or biomass production, their modeling differs from one model to another according to the biological 

details, influenced by the availability of input data and final use of the model. The choice of modeling 

approaches to represent processes and combine them is also one of the main reasons, which led to the 

development of multiple PBM to simulate the same crops (Jones et al. 2017). They have often been written 

repeatedly in several different languages with different software architectures. For example, the WOFOST 

model is implemented in Fortran in the WOFOST Control Centre (WCC) package, in Python in the Python 

Crop Simulation Environment framework, in Java in the Wageningen Integrated Systems Simulator 

framework (WISS), in C# in the Biophysical Models Application (BioMA) framework, and in C++ in the 

Crop Growth Monitoring System (CGMS) (de Wit et al. 2019; van Kraalingen et al. 2020).  

The diversity of PBM has motived the development of different initiatives that intend to compare their 

performance and improve them by integrating new scientific knowledge to target the next generation of crop 

models (Rosenzweig et al. 2013; Bindi et al. 2015). PBM intercomparison studies (Palosuo et al. 2011; 

Rötter et al. 2011; Asseng et al. 2013; Aslam et al. 2017) have pointed out the variability in model outputs 

but often without quantifying the sources of uncertainty or analyzing the processes involved. These studies 

showed the potential and limits of PBM and highlighted the need to evaluate them at the process level, but 

also to exchange model parts (components) between models (Donatelli et al. 2014; Muller and Martre 2019). 

PBM are increasingly implemented as autonomous components describing each biophysical process. 

However, there is currently little exchange and reuse of PBM components between modeling groups despite 

theoretical and application interests (Holzworth et al. 2014b). The main limitation comes from compatibility 

issues between PBM platforms (frameworks) resulting from differences in programming languages that are 

used and their specificities.  

The modeling frameworks used in agricultural modelling depend on the programming language in 

which they have been implemented, the software design, and code conventions they use. For example, the 

crop modeling frameworks APSIM Next Generation (Holzworth et al. 2018) and BioMA (Donatelli et al. 

2010) are based on component-oriented techniques and require models to be developed in C#. DSSAT 

(Jones et al. 2003; Hoogenboom et al. 2019) and STICS (Brisson et al. 1998) provide generic crop modules 

in Fortran with a procedural approach that can be specialized for different species. Simplace (Enders et al. 

2010) uses the Java language, while Record (Bergez et al. 2016) uses C++; both require that their 

components share a built-in interface. Therefore, model components can be reused in a given platform but 
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their reuse in other platforms remains difficult. Existing solutions that couple models written in different 

languages are rather technical (generation of wrappers) or low level (reading and writing in files). We 

propose here an abstraction, a sharing language, and a transformation system, based on the scientific content 

of the model, i.e., its algorithms. Multilanguage and integrated modeling frameworks like OpenAlea (Pradal 

et al. 2008, 2015) and yggdrasil (Lang 2019) offer a language binding approach to provide third-party 

developers with a choice of languages (Villa 2001; Lang 2019). Therefore, they overcome the difficulty of 

implementing algorithms efficiently in high-level languages. However, they do not provide a solution to the 

reuse or exchange of models between frameworks. In these platforms, models are reused as black boxes and 

the integrated models, therefore, lack the required transparency. Moreover, this approach requires 

knowledge of the frameworks they integrate and the deployment of the core of each framework. Domain-

specific programming languages that are agnostic to a specific programming language have also been 

proposed as a solution to the problem (Athanasiadis and Villa 2013; Villa et al. 2017) aiming to support 

interoperability with rich semantics.  

To facilitate PBM component exchange, several groups in the field have joined forces to create the 

Agricultural Model Exchange Initiative (AMEI; Martre et al. 2018). AMEI brings together some of the most 

widely used crop modelling and simulation platforms, including APSIM, BioMA, DSSAT, OpenAlea, 

RECORD, Simplace and other crop models such as STICS and SiriusQuality (Martre et al. 2006) The vision 

of AMEI is to (i) increase capabilities and responsiveness to model developers’ needs; (ii) use modular 

modelling to share knowledge and rapidly develop operational tools; (iii) reuse model parts to leverage the 

expertise of third parties; (iv) renovate legacy code; and (v) realize the benefit of sharing and complementing 

different expertise.  

Based on a declarative modeling approach (Athanasiadis et al. 2011), AMEI proposes a centralized 

framework (Crop2ML; Midingoyi et al. 2020a) to exchange and reuse model components. Crop2ML 

provides a meta-language based on shared concepts between crop simulation platforms to describe 

specifications of model components and compositions. A model algorithm describes the behavior of the 

component in terms of the sequence of inputs, successive rules or actions, conditions or a flow of instructions 

from inputs to outputs including mathematical expressions. A model algorithm is associated with each 

model specification. After a modeler has represented the specifications of its model, two relevant questions 

remain to be answered: (1) How can a model algorithm be described independently of the platform 

specificities; and (2) How can it be seamlessly integrated into existing simulation platforms? 

Similar approaches have been used in the Systems Biology community where several domain-specific 

modeling standard languages including SBML, CellML, and NeuroML have been designed to exchange 

and store models (Cuellar et al., 2003; Gleeson et al., 2010; Hucka et al., 2003). These XML-based 
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languages provide specific elements to describe model structure and equations using Mathematical Markup 

Language (MathML; Ausbrooks et al. 2003) that describes mathematical notations and captures both its 

structure and content. However, these languages are limited to specific formalisms (e.g. chemical reactions, 

differential equations) and cannot be easily extended to represent crop models in their full complexity 

and diversity. System Biology languages support model transformation from one standard to another (e.g. 

form CellML to SBML; Schilstra et al. 2006) and from XML to executable code. In contrast, Crop2ML 

provides models as components that can be integrated into simulation platforms. Therefore, our design 

choice was to introduce a general programming language to represent complex control flow such as loops 

or conditions statements. 

In this paper, we present CyML, a Cython-derived language (Behnel et al., 2011) with minimum meta-

specifications to implement algorithms of Crop2ML models. This language allows encoding the model 

algorithm independently of any crop modeling platform and implementation language. We also propose 

CyMLT, a source-to-source transformation system. This one-to-many transpiler transforms CyML source 

code into different target languages such as Fortran, C#, C++, Java and Python. CyMLT is also able to 

directly generate components to target modeling platforms such as DSSAT, BioMA, Record, SIMPLACE 

and OpenAlea. Differences between platforms are not only due to the languages used to implement models 

but also to the software architectural design choices and modeling conventions. For instance, model 

components in PMF (APSIM next generation) and BioMA are written in C# in both platforms but the reuse 

of PMF components in BioMA (and vice versa) can only be done at the level of binaries, and, therefore, as 

black boxes. CyMLT takes into account platform requirements to generate model components that are 

compliant with existing platforms. Source to source transformation is a well-established solution used to 

address software reuse issues (Fernique & Pradal, 2018; Plaisted, 2013). It transforms source code from a 

high-level language to another one. However, to the best of our knowledge, no solution exists that targets 

PBM component reuse using automated source-to-source transformation. In this paper, we present this issue 

by focusing on code reuse and reproducibility to enhance collaboration between crop modelers and to 

facilitate model coding for non-programmers, while keeping the transparency of model constructs. 

Different source-to-source transformation systems are available for different purposes, both commercial 

(e.g. Baxter et al. 2004) and open source (Quinlan and Liao 2011). Some lessons can be learned from these 

approaches. Many source-to-source transformation systems take as input a subset of one language and 

transform it to a single target language with specific transformation purposes without showing their 

extensibility (Akeret et al. 2015; Bysiek et al. 2017; Misse-chanabier et al. 2019). Few one-to-many 

(Plaisted, 2013; Schaub & Malloy, 2016) and many-to-many (Baxter et al. 2004) solutions have been 

proposed. They usually define a subset of language features and are based on a common intermediate 
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representation of the languages provided from their similarities. However, they do not consider 

transformation between different programming paradigms. For instance, to our knowledge, there is no 

system that transpiles from a procedural algorithm to both a procedural and an object-oriented program. To 

avoid losing assumptions or domain knowledge such as code documentation or variable units, a PBM 

source-to source-transformation should also integrate domain specific knowledge to generate code that is 

easy to read, following developer guidelines specific to each language. 

First, we present the design and implementation of CyML language and the one-to-many transformation 

workflow. Then we demonstrate the use of CyML and for a simple model component, which simulates 

wheat shoot number and the extensibility of CyMLT to new languages or simulation platforms. Finally, we 

discuss our results and present some perspectives. This paper is not intended to provide a full description of 

the language and its transformation but uses them to demonstrate that a model algorithm can be implemented 

once and be used to generate reusable and reproducible model components in different target languages and 

platforms. 

 

2. Methods 

2.1. Brief overview of Crop2ML  

Crop2ML has been developed to offer to the crop modeling community a common framework for crop 

model component development, exchange, and reuse. It provides a model component specification language 

based on XML meta-language. It consists of unified concepts and elements allowing to describe a 

biophysical process regardless of the simulation platform. A Crop2ML model is an abstract model that may 

be either a unit model with fine granularity or a composite model represented as a graph of unit models 

connected by their inputs and outputs to manage model complexity. Crop2ML separates model specification 

from model algorithm. A model specification contains formal descriptions of the model, the inputs, outputs, 

state variable initializations, auxiliary functions and a set of parameters and unit tests. Thus, it allows for 

checking that a model reproduces the expected outputs values with a given precision. It supports multiple 

tests associated to one or multiple sets of parameter values. However, baseline parameter sweeps are not 

supported due to limited support in various languages and unit test frameworks. The specification also 

contains the algorithm written in CyML and any auxiliary functions called from the model algorithms or in 

other functions. They reduce code length and, therefore, improve readability of model algorithm by 
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promoting reuse and increasing abstraction. Auxiliary functions include mathematical functions such as 

interpolation, and lower and upper bound functions.  

All model units and composite models are then transformed into different languages or simulation 

platforms to be incorporated into modelling platforms.  

 The source code (https://github.com/AgriculturalModelExchangeInitiative/Crop2ML) and full 

documentation (https://crop2ml.readthedocs.io/en/latest/) of Crop2ML are available on Github. 

 

2.2 Requirements and CyML design choices 

We designed the CyML language to meet the following requirements. 

(i) Keep compatibility with programming languages of crop simulation platforms.  A model can be 

reused if it can be separated from its original platform and expressed using equivalent and explicit constructs 

available in all supported programming languages and platforms. Therefore, a sub-language needs to be 

identified that is minimal enough to express biophysical processes in all platforms but expressive enough to 

capture the complexity of most models. The resulting code must be removed from the technical subtleties 

of the platform but it will still depend on the platform language. In fact, most of these languages are direct 

descendants of the C language from which they inherit some constructs. Thus, they provide some similarities 

such as statements, the sequencing controlled by loop and conditional constructs, and functions that foster 

program modularization (Akin 2003). This leads to the ability to define a common language based on their 

common features. This language must be chosen in such a way that all its constructs are mapped to the 

constructs of the target languages, thus producing a fully automated source to source transformation. It must 

also provide some mathematical standard functions that have their equivalents in the language of the 

modeling platforms.  

 (ii) Link model specification and model algorithm to keep domain knowledge. As the model 

specification language is separated from the language of the algorithms in Crop2ML, it is necessary to 

provide and link domain knowledge information, including the context or decisions underlying the 

algorithm and its implementation in the language. It is also important to reduce the coding role of modelers 

in the implementation of model algorithms so that they can focus on the scientific knowledge (Brown et al. 

2018). Our hypothesis is that model reuse can be achieved if its algorithm is closely associated with its 

specification. Thereby model specification can be used to generate a function signature or domain class 

https://github.com/AgriculturalModelExchangeInitiative/Crop2ML
https://crop2ml.readthedocs.io/en/latest/
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from the description of inputs and outputs. The specification must also allow to pass through documentation 

within the translated source code, but also to validate model algorithms with the unit tests they incorporate.  

(iii) Cover the domain of interest. The abstract language must be sufficient to implement a biophysical 

process. This means that it must include all relevant and minimal features such as data types, modularity, 

and structures to encode any model algorithm. For example, in order to encode a model algorithm based on 

a set of mathematical expressions, a simple pseudo-code described as a sequence of assignment statements 

is suggested. Like the model specification, this language must be modular. Model algorithms must be self-

contained and reusable within a composite model. 

 (iv) Have a gentle learning curve. An important impact of the language is its learning curve, which 

must be shallow and allow modelers to focus on the science of the model rather than on its implementation. 

Thus, CyML must enable an optimal model developer experience with a learning curve that does not 

intimidate new users. The algorithm language must be expressive and enable users to write efficient source 

code that is easily understandable with minimal syntax. It must also produce readable source code within 

the target simulation platforms. The translated program must be a standalone program that is independent 

of the transformation system. 

(v) Validate correctness using unit tests. Given that CyML is built to serve as an intermediate 

representation of a set of languages, its validity is practically proved if all unit tests written in CyML succeed 

in all languages after transformation.  This involves testing the generated code either in a multilanguage 

runtime environment or in the runtime environment of each language to ensure that the language features 

are well defined and that their emulation in other languages is correct.   

To satisfy the above requirements, we identify common patterns often used in crop modeling simulation 

platforms to implement model components. They result from the intersection of a set of minimal features of 

different languages used by the platforms (Figure 1, left part). We used these features to propose a shared 

modelling language. An additional design choice is to use a subset of an existing language that can satisfy 

our requirements and provide the common selected features. Python was a good candidate language to fit 

our design considerations. It is an expressive and high-level programming language that allows writing short 

source code and has a gentler learning curve than C, C#, Java, or C++ (Linge and Langtangen 2016). 

However, its dynamic typing can make transformation into programming languages with static typing 

ambiguous.  Therefore, we proposed to add an explicit type declaration to the Python language, which led 

us to choose Cython (Behnel et al., 2011). Cython is a high-level programming language that combines the 

power of Python and C function calling and types on variables and class attributes. It is compiled directly 

in efficient C code that improves runtime speed and allows it to interact with C, C++ and Fortran source 
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code.  However, not all Cython syntax can be directly translated into all target languages. For instance, the 

yield statement and anonymous functions are not supported by Fortran. Therefore, we defined CyML as a 

sub-set of Cython to address the implementation of the model algorithm (Figure 1, right part). CyML does 

not cover some features such as  class definition, nested functions, exceptions handling, anonymous 

function, reading and writing files. These features are handled by the platforms in their programing 

language. 

 

Figure 1: From the intersection of a set of languages features to a definition of an abstract language CyML, 

defined as a subset of Cython. Langi corresponds to a minimal language supported by a crop simulation 

platform “i”. The number of circles (n) in the left corresponds to the number of platforms.  

 

Figure 2: Main concepts supported by the CyML language. Black diamonds indicate composition 

(“contains”) relationships and white diamonds indicate a specialization (“is-a”). 
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2.3  CyML language 

CyML is designed as a subset of the Cython language based on a language specialization approach. This 

involves removing undesirable syntactic or/and semantic features of Cython that may not be easily 

transformed into many different languages or are not required to implement PBM algorithms. The 

conformance to the subset of Cython features is guaranteed through a semantic analysis. The main 

concepts supported by CyML are represented in Figure 2. 

Declaration: Basic types and collection. Unlike CyML, Cython does not require explicit type 

declarations. This means that in CyML, all variables have to be declared before they are used and the 

declared type is immutable. A variable can be initialized during or after its declaration. In the case of model 

algorithm implementation, a variable can be either a model input, output or a local variable required for the 

implementation.  Explicit static typing is enforced by the semantic analysis step illustrated in Figure 2. 

CyML supports basic types (e.g. integer, real, logical and string) and two sequence types (list and array) 

with dynamic or fixed length. Each element of a sequence must have the same type. Moreover, since time 

is an important variable in the defintion of discrete-time process, CyML provides datetime types in terms of 

year, month, day, hour, minute and second.  CyML suppports commonly used binary (numerical and 

boolean), unary and comparison operators, as well as casting operators for basic types and sequence 

operators such as length or sum.  

Statements. Statements can be either an assignment, an expression or a control structure. An 

assignment assigns a variable to a mathematical expression, another variable or a value using an 

assignment operator (e.g. “=”). Therefore, an assignment statement can express the relationships 

between model inputs-outputs when those are described only by simple equations. An expression 

is commonly defined as a construct made up of variable, operator, or function call that can be 

evaluated to a value. In CyML, expression is distinguished from assignment by the fact that, in the 

case of assignment construct, the evaluation result of an expression is assigned to a variable. An 

expression can contain standard mathematical functions such as exponential, maximum, minimum, 

and power functions. Unlike assignment, expressions have no assignment operator. They are built-

in functions called to perform an operation (e.g. collection operations such as adding or removing 

an element in a sequence). CyML supports structured control flow statements that can be nested. 

Control flow statements include conditional branching (if, elseif, and else) and loops (for-in-range, 

for-each, iterating over several collections, and while) statement. 
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Function. CyML uses the definition of a Python function to code the model algorithm and to 

represent external functions with arguments with explicit data types. A function is composed of a 

set of statements in its body grouped under a def statement with a signature consisting of the name 

of the function, their inputs arguments and return values. A function may call other functions that can 

be provided by an import mechanism to ensure modularity. CyML also supports recursion which 

means that a function can call itself in its definition. 

Module and package. A module is a file containing a set of functions that can be reused in 

models and functions. A package contains a set of modules and models in a set of files. These 

concepts allow external dependencies to be managed. 

 

Figure 3: Design architecture of the one-to-many CyML transformer (CyMLT). It takes as input a model 

unit algorithm implemented in CyML with associated model specifications and applies a transformation 

workflow to produce crop model components or source code in different languages for different platforms. 
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2.4  CyMLT design 

The CyMLT architecture is composed of two main parts: the front-end and the back-end (Figure 3). 

The front-end consists of a Model Parser, a Cython Parser, and a Semantic Analysis component. 

The Model Parser checks the model specification based on the Crop2ML grammar and generates a 

logical object allowing access and manipulation of the model.  

The Cython parser provides a lexical and syntactic analysis of the source code. It detects syntactic errors 

and generates an Abstract Syntax Tree (AST). The AST is a data structure representing the syntactic 

structure of the source code as a tree where the nodes represent the syntactic components (e.g. 

FunctionDefinition, Assignment, If-Block…) of the grammar. Figure 4 shows an example of AST generated 

from a square function. The design choice of CyML relies on the legacy Cython parser. This parser uses all 

the syntactic components of Cython instead of a restricted grammar. To restrict Cython grammar, the 

generated Cython AST is processed to ensure that it incorporates only syntactic components defined in 

CyML.  

The AST Transformation transforms the generated AST to a self-contained representation of the source 

code called Abstract Semantic Graph (ASG), which is independent of the source language. 

The Semantic Analysis operates during the AST transformation to perform semantic checks from the 

AST. It consists of various checks such as type consistency, declaration of variables before their use, or 

consistency of elements in a list. This analysis checks that the input and output datatypes in model 

specifications are well defined in relation to the model algorithm.  The semantic analysis generates error 

messages if the verification fails. Note that, unlike the AST, each node of the ASG is labeled with at least 

its type and its pseudo-type (Figure 4c). The pseudo-type is the expected type of a node and strengthens 

code generation reducing the number of ASG traversals. For example, in Figure 4c a node of type “Function” 

follows “Module node” and has a pseudo-type [“Function”, “int”, “int”]. This pseudo-type corresponds to 

the function signature, meaning that this function takes as input one argument of type “int” and returns one 

value of type “int”. Note also that, unlike the AST, the type of internal nodes of the ASG may be different 

from non-terminal symbols of the grammar. Another type of node is built that preserves the intention in the 

source code instead of the code structure. For example, in Figure 4b the binary operator node “PowNode” 

is transformed in Figure 4c by a “standard call” node, which takes as arguments the operands of the binary 

operation.  
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The back-end of CyMLT is responsible for Code Generation (Figure 3). It is independent of the front-

end. It takes as input the ASG generated by the front-end and works in relation with the Doc and Interface 

Generation and Transformation Rules components. 

The Code Generation component transforms the annotated ASG into different readable source code or 

platform components. It consists of two integrated sub-components: a Language Generation and a Platform 

Generation. A Language Generation emits the source code in a specific language with a specific 

programming paradigm. This source code does not contain any simulation platform features.  A Platform 

Generation emits a model component based on the requirements of a platform such as its implementation 

language, software design and code conventions.  

A Transformation Rule is a function that takes as input a node of the ASG and generates a new node based 

on a specific structure of the target language. Transformation Rules are applied on the ASG for Code 

Generation. The code generation is generally described by straightforward transformations of the ASG.  

However, some nodes of the ASG require non-trivial transformations to produce new nodes. For example, 

the transformation of the declaration node in Figure 4c consists of replacing the basic type int by the Java 

basic type integer without the cdef statement to reproduce Java integer variable declaration, whereas 

the generation of the power call function requires applying a casting function (int) to preserve type 

compatibility. 

The Doc and Interface Generation component generates documentation in the target language from the 

model specification. It embeds all the semantics of model inputs and outputs, and then integrates the model 

knowledge in the code generated. 

Finally, the Notebook Generator transforms generated source code or model components into Jupyter 

notebook (Kluyver et al. 2016) to interactively test and validate the transformation. 
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Figure 4: Example of abstract syntax tree (AST) and abstract semantic graph (ASG). (a) definition of 

function "square" in CyML. (b) simplified view of AST of function “square” where the internal nodes in 

black represent Cython constructs and the final node in blue a variable or constant. (c) Simplified view of 

ASG with function “square” with the new annotated nodes. The leaf nodes in black are non-terminal 

symbols of the Cython grammar whereas the end blue nodes are terminal symbols, essentially variables and 

constants. A child node (c) can be accessed from its parent node (p) through an attribute (𝑝 𝑐). 
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2.5. CyMLT implementation  

CyMLT proposes a unique approach to transform an ASG into many programming languages. It is 

implemented around the main classes shown in Figure 5. A set of classes (suffixed by Generator) generates 

the code for each language and platform. It means that a sub-class of PlatformGenerator and of 

LanguageGenerator class have been implemented for each supported platform and language. A 

PlatformGenerator class inherits attributes and properties of the LanguageGenerator class related to the 

language used by the platform. For example, as BioMA uses the C# language, the BioMAGenerator class 

(i.e. the class that generates BioMA components) inherits the CsharpGenerator class that generates the 

source code in C#. Each class contains a visitor method for each ASG node type. Each visitor method name 

is composed of “visit_” followed by “the type of the node”. A visitor method emits code fragments. Each 

LanguageGenerator sub-classes provide the same visitor method names given that the same ASG is used. A 

LanguageGenerator class also inherits two classes: CodeGenerator and LanguageRule. The CodeGenerator class 

contains the factorized methods shared by all LanguageGenerator classes including the method used for 

code emitting and code formatting. This class inherits the super class of the transformation process called 

NodeVisitor. CyMLT implements the Visitor design pattern (Gamma et al. 1995) to avoid a procedural 

implementation approach. NodeVisitor contains a dispatch method that enables recursive traversal through 

the nodes. During traversal, the appropriate visitor method corresponding to the type of the current node is 

called in LanguageGenerator or PlatformGenerator and the associated code fragment is emitted. Before 

emitting the code fragment, some nodes undergo a transformation from the LanguageRule class. This class 

is implemented for each language as a mapping where keys corresponds to the different methods, datatypes, 

and operators of CyML, and values are their emulation in target languages provided from their standard 

libraries (Supporting Information Table S1 to S5). Given that the CyML language is similar to Python, it is 

straightforward to yield Python code through one ASG traversal. This is not the case for all target languages, 

which require more traversals to support specific features provided from the analysis of the ASG. For 

example, a first traversal could detect that it is necessary to declare other variables in the generated code. 

These additional operations have been implemented in the Adapter class containing some methods to traverse 

the ASG and, where the conditions have been defined, to retrieve the new features required in 

LanguageGenerator. Likewise, the Model object generated by the model parser is used in 

LanguageGenerator to generate the model interface with accessor and mutator methods for object-oriented 

languages, or to add additional semantics to variables based on platform conventions. This separation of 

model specification from model algorithm enhances CyMLT to transform a model algorithm from a 

procedural approach to an object-oriented approach with different software designs. Finally, 

LanguageGenerator and PlatformGenerator use DocGenerator to integrate model documentation into 
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generated model components. DocGenerator extracts all information based on model specification and 

presents it in different format according to the language and the platform. 

 

2.6 Case study 

Phenology, the timing of crop development and the simulation of phase durations and crop stages, is 

sometimes thought of as the core for most crop growth PBMs and an essential component of most crop 

modeling platforms. In order to illustrate how a model is written in CyML and the functionalities of the 

language, we transformed the BioMA phenology component (Manceau and Martre 2018) of the wheat PBM 

SiriusQuality (He et al. 2012) into a Crop2ML composite model and wrote the algorithms of the model in 

CyML. The shootnumber, a model unit of this component, is presented in Supporting Information Listing 

S1. 

 

 

Figure 5: Class diagram illustrating the implementation of the one-to-many CyML transformer (CyMLT). 
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3. Results  

3.1 Model algorithm implemented in CyML 

The shootnumber model is implemented in CyML as a function that includes all the meta information 

provided by the model specifications (Supporting Information Listing S2). The model documentation is 

generated from the model specification and is shown in red. It contains the name of the model, its version, 

its time step (in days) and other descriptions such as the authors’ names and the reference for the model. 

The algorithm shootnumber unit model requires an external function, Fibonacci, which is implemented 

outside of the model algorithm (Supporting Information Listing S2, Line 35) to make the code readable and 

shorter. This mathematical function allows to compute the shoot production from the number of emerged 

leaves on shoots (Supporting Information Listing S2, Line 22). We implement the code using conditional 

(if, line 26) and loop (for, line 29) control structures. Table 1 gives the meaning of CyML language built-in 

functions that are used to implement the shoot number model. 

Table 1 

Example of built-in functions within CyML language and their meaning. 

Function Description 

Max Largest item in a sequence 

Min Smallest item in a sequence 

Ceil Smallest integer greater than or equal to the parameter 

Append Add an element at the end of a dynamic array (list) 

Len Number of elements in a sequence (array or list) 

Range Generate a list of integers from a start value to a stop value with a step 

Integer Update the actual state variable from its previous value and the rate 

 

3.2 Transformation of CyML source code to different languages and platforms 

Currently, CyMLT supports Python, Java, C#, C++ and Fortran languages. It also has the capability of 

generating a model algorithm in conformance with crop simulation platforms requirements. Therefore, it 
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handles different programming paradigms such as procedural, functional, and object-oriented programming 

by associating model specifications to the transformation workflow.  

Structure of generated source code. Although CyML provides a procedural mechanism to implement 

model algorithm, the programming languages supported by CyMLT can be classified in procedural and 

object-oriented programming paradigms. Some languages are designed to support only the object-oriented 

paradigm (C# and Java). Fortran and C are procedural languages even though they can “mimic” some object-

oriented features to support object-oriented programming style (Cary et al. 1997).  Python and C++ support 

both object-oriented and procedural paradigms. CyMLT uses procedural paradigm for Python and object-

oriented for C++, as these are the most often used approaches in these languages. However, CyMLT can 

also be extended to generate models in Python with an object-oriented approach and in C++ with a 

procedural approach.  

For the C++, C# and Java languages, a model algorithm implemented in CyML is transformed into a 

class (Listing 1) that encapsulates both the algorithm and the scientific knowledge related to the model 

through the integrated documentation. A class, in software engineering terms, is a data structure defining a 

set of common properties and methods of an object. The generated source code contains methods to access 

and mutate model inputs and outputs, a constructor method to create and initialize an instance of the model 

(object) and a calculation method encapsulating the procedural logic of the model algorithm. First, variables 

are used to access model input (Listing 2) values before transforming the set of instructions of the model 

algorithm into the new language. Then, mutator methods are applied to update the model outputs (Listing 

3). Model inputs and outputs are used to build a class of objects passed in argument of the calculation 

method. External functions are transformed into static methods of the model class (Supporting Information 

Listing S2). 

The current version of CyMLT supports Fortran 90. This Fortran version presents low-level features 

(pointers, allocation), which makes some transformations difficult but ensures a higher portability. In 

Fortran, model algorithm corresponds to a subroutine, whereas external functions are subroutines, functions 

or recursive functions. CyMLT automatically operates this choice. In our case study, the Fibonacci function 

is transformed in a recursive function, which keeps the structure of the original code. In Python, the 

generated source code has the same structure as the CyML function. However, CyMLT can also generate 

Python code with an object-oriented approach. 
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Listing 1: Structure of generated source code in Java, C#, Fortran, and C++. 

 

 

Listing 2: Access input variables (in Java), s and s1 correspond to two instances of the class of state variables 

to manage previous and current state. CyMLT generates variables to access the fields of these instances and 

uses them in the procedural logic. 
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Listing 3: Update output variables in Java. s corresponds to an instance of current state variable. 

Data type and variable declaration.  In addition to the programming paradigms, languages supported 

by CyMLT can be classified by their type system, in particular their type expression (explicit or implicit). 

This can affect the quality of the generated code. Although some languages (e.g. C# and C++) allow both 

implicit and explicit type expression, we chose to provide explicit typing. Basic types (integer, logical, 

character, and real) are built-in data types in all languages. However, other more complex types like 

datetime or sequence are supported but require external or standard libraries. Moreover, various 

libraries exist to handle the same data structure. CyMLT’s datatypes map appropriately to target languages 

by using their standard library (Supporting Information Table S1). 

Some compromises have been made for the transformation of complex types. CyML arrays are modeled 

on a standard Python list. However, the size of list datatype variables is not fixed. We propose to use the 

Numpy array in the next version of CyMLT. In Fortran, CyMLT generates allocable arrays to map to CyML 

list data types and provides some functions to handle it. These functions are extracted from CyMLT library 

and integrated into the generated code to make it independent of the library of transformation. In C++, 

datetime type handling is not easy. It is converted into a string, which could be split for processing. 

CyML arrays without a specified size in the function parameter are mapped to C++ arrays using templates 

(Listing 6, line 1). In Java, there are many standard Time APIs. (e.g., Date, LocalDateTime) depending 

on the version of Java. We have chosen to use the Date Library in Java and the DateTime Library in 

C#. 

Type and intent preservation. Most of the target languages provide built-in methods matching with 

CyML built-in functions. However, there may be some differences between their name or return types. This 

is considered in the generated source code. As an example, consider the statement atErreur ! Source du 

renvoi introuvable. on Line 29, where the purpose is to find the smaller integer value that is larger than or 

equal to the leaf number. The method ceil in the C++ Math library corresponds to the CyML ceil function 

but returns a floating-point value. In this case, CyMLT preserves the original type (integer) by applying an 

explicit type conversion (Listing 4, Line 1). 
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Listing 4: Type preservation in CyML transformation to C++, int casting is applied to the result returned 

by ceil function. 

The generated code preserves the intent of the original code provided by the information on the ASG. 

Listing 5 illustrates this intent preservation in the transformation of CyML For-loop construct (Listing 

4, Line 1) where the consecutive iteration is expressed into an efficient way of representation in Fortran 

with the DO sequence (Listing 5, Line 1). However, the sequence indexing is different between CyML and 

Fortran. The last parameter of the CyML range function is not contained in the CyML sequence unlike the 

Fortran DO sequence. This is managed by subtracting this parameter by 1 in the generated code, thereby 

providing a same length of sequence. Likewise, arrays in Fortran are indexed from 1 by default and this is 

considered during the transformation of all array operations. 

 

  

Listing 5: From CyML for-loop to Fortran do-loop. The subroutine Add is generated to expand leaf tiller 

number array. 

Preservation of the scope of variables. CyMLT considers the scope of the variables in the different 

target languages. The scope of a variable refers to a region of the code where the variable is visible. Some 

languages like Java, C++ and C# manage variable scope differently and this variability is handled by CyML. 

Consider the transformation of a simple CyML function that calculates the sum of elements of an array 

x with undefined size (Listing 6). The generated code in Fortran requires the declaration of a new variable 

i_cyml to map the For-loop construct. However, the generation of a new variable in Java, C++ and C# 

preserves the scope of the variable i. The scope of the iteration index on an array variable in a For-loop 

construct is limited to the loop scope, whereas it is extended to all the functions in CyML and Python. 

Assuming that in the original code this iteration index is reused after the loop, it will generate a compilation 

error in the target languages if the transformation did not handle this scoping issue by declaring another 

variable. 
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Listing 6: CyML code of a function that computes the sum of the elements of a list transformed using 

CyMLT in Python, C++, C#, Java, and Fortran. 

 

Transformation to simulation platforms 

The transformation of a CyML code to target languages can generate a model component in different 

ways. These transformations have been designed to be close to the philosophy of each target language. 

CyML 

 

 

Python 

 

C++ 

 

 

C# 

 

Java 

 

Fortran 
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However, from the perspective of crop model component development, high-level programming languages 

are the lowest level of abstraction with respect to simulation platforms and frameworks. Additional 

constraints in crop modeling platforms include a specific programming paradigm, software design and code 

conventions. These different features give them capabilities to provide code introspection and reflection 

support, which allows them to dynamically extract and change information or knowledge about the code at 

run time. Thus, the code generation should extend language code generation by considering platform coding 

constraints, which are often implicit. The design of programming languages is formalized using grammars 

and is unambiguous. Platforms use design and architectural patterns without the use of an explicit formalism. 

This implies adapting the transformation to each platform taking into account their specificities. The current 

version of CyMLT generates model components compatible with BioMA, DSSAT, Record, OpenAlea and 

Simplace platforms, which support C#, Fortran, C++, Python and Java, respectively. 

Generation of object-oriented components. An object-oriented platform provides features such as 

inheritance, polymorphism and software design used to implement models. Polymorphism allows a model 

programmer to provide a generic interface to a number of related functions, and, thus, to propose different 

strategies to implement a model with different assumptions. For instance, this provides the possibility to 

include new physiological processes that are shared among different crop types. For this, object-oriented 

platforms define an abstract class that specifies the interface of all model components, which implements 

all the abstract methods of the abstract class. Two different approaches are used for model components to 

inherit an abstract class. Some platforms offer an abstract class and all model components implement and 

extend this class. This is the case for Simplace and Record, which provide the FWSimComponent (Listing 

7) and DiscreteTimeDyn interface, respectively. Another approach followed by platforms is component-

based programming. A model developer creates a component that inherits from an interface provided by the 

platform. Thus, model components inherit this component interface. For example, BioMA provides the 

IStrategy interface. The current version of CyMLT generates a component interface in addition to the 

generation of model components. The abstract methods depend on the platform and include a method that 

encapsulate the algorithm of the model.  

Generation of stateless and stateful unit models. A model algorithm is implemented in CyML as a function. 

However, the CyMLT generates both a stateless and a stateful component. A stateless component is an 

immutable object whose values of fields do not change if methods are invoked. CyMLT allows searching 

and extracting state variables from a model specification to perform code generation according to each 

platform.  
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Listing 7: Structure of ShootNumber component in Simplace. A model unit in Simplace implements and 

extends an abstract class called FWSimComponent. Then, a model component overrides its abstract 

methods including init (model initialization), clone (deep clone of the model) and process (model 

algorithm). The structure of the abstract class is used to define a model skeleton in CyMLT to generate a 

model conforming to platform requirement. 

 

In DSSAT and OpenAlea, a model algorithm is implemented as a stateless functional component 

(declarative paradigm). The Fortran code generated by CyMLT is compatible with DSSAT. In this platform, 

the calculation of rates of change and the integration of state processes are sometimes separated with the 

use of a control variable. In CyML, we introduce two variables that define the previous and current value 

of a state variable that avoids a misuse of the state variable. Although OpenAlea offers capabilities to benefit 

of oriented-object features of Python, OpenAlea components can be defined as pure Python functions, 

already generated by CyMLT. However, model specifications need to be transformed into an OpenAlea 

component specification for unit and composite node (Pradal et al. 2008).  

BioMA uses the strategy design pattern to create a library of simple strategies (equivalent to Crop2ML 

unit models) and composite strategies for model composition. The simple strategy leads to the 

implementation of a model unit as a stateless component. Thus, an instance of model unit class is a stateless 
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object since it contains only model parameters (if any) as attributes which do not change during the 

simulation. The method of computation is comparable to a function that takes an object as an argument (i.e. 

higher-order function). Concretely, these objects are instances of domain classes. Domain class contains the 

values and the attributes for all variables defined in model specifications. To handle the change of state 

variables, the method of computation of each class takes as arguments two instances of state variables 

domain class reproduced by CyMLT (Listing 8), one for the current value and the other one for the previous 

one. This is made possible by the fact that the previous state is emulated in the CyML function with variable 

suffixed with “_t1”.  

Finally, in Record and Simplace, unlike BioMA, a model unit class contains all state variables. In 

Simplace, there is no convention to distinguish previous and current state variables. Thus, CyMLT considers 

them as distinct fields in the generated Simplace component. The Record platform handles variable history 

(time series) by suffixing state variable with an operator () in the code. Thus, in this case, CyMLT generates 

current state variables with the suffix () and previous state variables with (-1).  

 

Listing 8: Fragments of code in C# with BioMA guidelines generated with CyMLT. S1 is an instance of 

state domain class used for previous time, s is an instance of state domain class used for current time. This 

shows that leaf number has been calculated by another model at the current time step, whereas the other 

variables are those calculated at the previous time step. 

 

Generation of platform specific types and data-structures. Some platforms define their own types 

by providing a generic class to handle model variables and parameters. A generic class is either a class or 

an interface that can be parameterized over the language data types. It contains a specific number of methods 

including methods to access or update variables. In this case, CyML data types map the framework generic 

types. 
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Unlike BioMA, where inputs and outputs are C# data types extended with the generation of accessors 

and mutators, Simplace and Record provide their own class or interface to declare model inputs and outputs.  

To generate a Simplace component, the process of transformation consists of declaring model variables with 

the specialized class FWSimVariable. Then, CyMLT generates other variables declared with Java data types, 

which are used to access values of the FWSimVariable instances (Listing 9). This allows expressing the 

model algorithm with a pure Java but requires the use of a mutator method of the generic class to update 

output (Listing 10). Likewise, the generated Record component implements the DiscreteTimeDyn class 

provided by the vle package of Record to encode discrete-time model algorithms. 

 

 

Listing 9: Generation of other variables to access Simplace component variables. These variables are 

prefixed by t. 

 

 

Listing 10: Update of the variables of the shootnumber unit model generated by CyMLT following 

Simplace specifications. 

 

3.3 Extensibility 

The number of languages and platforms that CyMLT supports can be extended due to its modular 

structure. The explicit separation between the production of the annotated ASG and its transformation into 

a readable source code of the target languages and platforms provides a great flexibility to add new target 

languages. The addition of a new language requires only a mapping of this intermediate representation into 

a set of compatible instructions based on the standard library of the language. The generated code must be 

independent of the transformer, clear, and easy to read while preserving the knowledge expressed in the 
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original code. We present the steps for the extension of CYMLT with R language (R Core Team 2017) and 

the Plant Modeling Framework (PMF). 

Supporting a new language: R. R is a popular language used for statistical analyses and data 

visualization. Many modelers use R to start the development of their model (Zhao et al. 2019). Thus, with 

this extension, modelers can in the same environment conduct the first steps for model development and the 

implementation in a simulation platform, and analyze model outputs. The extension of CyMLT for R relies 

on the implementation of RGenerator and RRules classes that emit fragments of code in R and define 

transformation rules between CyML and the desired R constructs, respectively. 

Implementation of transformation rules for R. Transformation rules define the mapping of CyML 

operators, built-in functions and methods to their equivalent in R. R is a dynamic typed language and, as 

with Python, the type of variables is ignored. 

Operators mapping. Listing 11 declares the mapping between CyML and R operators. Only the 

difference operators are shown between CyML and R. During the ASG traversal, the visit method 

considers these mappings to emit code fragments. 

 

 

Listing 11: Operators mapping. 

 

Adapting Standard Functions. CyML defines three standard libraries (i.e. math, system, and io) to 

provide mathematical, system, and file management functions in the different languages. A mapping is 

needed to link these functions to native R ones for each library. Some functions are identical between CyML 

and R, like min or max. Others require a transformation to another type of node. It is useful for model 

developers to observe the generated ASG of each CyML construct in order to define the equivalent of the 

construct. For example, the construct of a modulo binary operation in CyML is a standard_call node in 

the ASG whose namespace is system, the function is modulo and the arguments are the two operands. 
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This node is transformed into a binary_op node (binary operation) with the function “translateModulo” 

(Listing 12). The new node is visited to produce R fragment code. 

 

 

Listing 12: Standard functions mapping. 

 

Standard methods mapping. Standard methods are functions applied to a particular data type of CyML 

language (Listing 13). Thus, a set of methods is provided for each CyML datatype. Their equivalents in R 

language are defined using the same mapping mechanism used for standard functions. In Listing 13 at Line 

9 the append method applied to a list is transformed to an assignment node whose value is a function c 

that takes as arguments the name of the variable of type list (receiver) and the argument of the append 

method (args). The definition of these rules limits the use of conditional statements in the implementation 

of the visit methods and facilitates the extension of CyMLT. 
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Listing 13: Standard methods mapping. 

 

Implementation of a R code generator. The RGenerator class inherits the RRules class. It implements 

a family of visit methods like visit_assignment, visit_bool related to all types of nodes 

provided by the ASG. These methods emit fragments of code, which will be joined to produce a formatted 

source code in R. The properties that enable write and format functions for these fragments are implemented 

in a class named CodeGenerator inherited by RGenerator. Additionally, CodeGenerator abstracts the 

common behavior of these languages by providing other properties and visit methods common to all the 

target languages. Some methods are redefined in the language generator when it has particular features. The 

developer of the R code generator implemented the different visit methods without bothering with the 

dispatching mechanism provided by the NodeVisitor class. A visit() method is called for all composite 

child nodes while a write() method is invoked for the terminal or single node to emit the code fragment. For 

example, a boolean value is a terminal node. Thus, the visit_bool method allowing generation of the 

corresponding boolean value in R will only consist in uppercase CyML logical value (Listing 14).  

 

 

Listing 14: Implementation of logical value transformation. 
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The assignment node is a composite node that contains a target node and a value node. These two nodes 

could be a composite node. So, they will all be visited by the visit_assignment() method (Listing 

15).  

 

Listing 15: Implementation of assignment transformation. 

 

All target language generators share the principle of implementing a visitor method for standard 

functions or standard methods call nodes, and, it is, therefore, implemented in the CodeGenerator class. The 

properties of the node are used to access to the function equivalent in the dictionary of functions in the 

transformation rules class. Listing 16 shows the implementation of the standard function call node where its 

properties such as namespace and function are used to access the equivalent function.  

 

  

Listing 16: Implementation of standard function call. 

 

This implementation approach is followed for all types of nodes, and it could be gradually done 

according to the expected R constructs. Given that it has several possibilities to implement an algorithm, it 

is the responsibility of the extension developer to provide the corresponding semantic for each particular 

node of the ASG and to validate the transformation with unit tests.  

Supporting a new simulation platform: APSIM-PMF.  APSIM (Holzworth et al. 2014b) is one of 

the most widely used PBM platforms for simulating the performance of a wide range of cropping systems. 

It has undergone a major evolution by providing the Plant Modelling Framework (PMF; Brown et al. 2014). 

PMF is used to build models that represent plant components of a crop composed by identical plants. It is 

based on the structure of a generic plant and a wide range of processes involved in plant growth and 



96 
 

 
 

development. However, the composition and parametrization to build a particular crop model are not 

specified and is left to model developers. PMF, therefore, allows great flexibility in its approach for 

implementing biophysical processes by separating model set up and assembly. The PMF concepts and 

processes are implemented as generic classes at different organizational levels (Brown et al. 2014). 

 The extension of CyMLT to PMF consists in adding the capacity to generate a model component in C# that 

fulfills PMF requirements. The developer implements a PMF generator class that extends the C# generator 

class. This class contains some PMF requirements: (1) the generated model component is a C# class that 

inherits the Model class, and (2) it contains the getter and setter methods of all model variables and 

parameters with the algorithm implemented in C#.  

 

4. Discussion 

The CyML language provides a relatively simple structure with few specifications that can express the 

algorithm of a biophysical process involved in crop growth and development. The real interest of this 

language is to provide a common method to describe a process with the capacity to be integrated 

automatically in various platforms. CyMLT provides export capabilities in many languages and platforms, 

enabling users to focus on the scientific aspect of their model rather than on the internal knowledge of 

platform specificities. A model component can be reused, improved, integrated and simulated in various 

platforms. This improves the diffusion of models, sharing them as software and scientific artifacts, and thus, 

enhancing transparency and reproducibility of crop models. Moreover, with CyML, model development 

may become a collaborative task of different groups of model builders with the possibility to compose 

different model units provided by different platforms. 

For crop modelers, learning a new language with its own learning curve adds a level of complexity to 

an existing complex landscape of languages and tools. We designed CyML to minimize this added 

complexity by choosing a language that is very close to existing languages. The main source of complexity 

is in the model specification. The modeler has to specify the type of inputs and outputs, the documentation 

and unit tests. While this increases the complexity of the design of a new model, it provides an explicit and 

rigorous specification and enhances the transparency of the model and its reproducibility and reusability in 

different contexts. A transformation system embeds platform specificities to automatically generate model 

components conform to specific platforms. This makes the complexity of component integration in different 

platforms the same with a wide availability. 
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Several approaches and solutions exist to transform source code from one language to many higher-

level programming languages (Baxter et al. 2004; Plaisted 2013; Schaub and Malloy 2016). They 

demonstrate the usefulness of source-to-source transformation systems in the development of reusable 

software libraries. For instance,  Nunnari and Heloir (2018) allow for the implementation of motion 

controllers of virtual humans, which are re-used in multiple game engines. Their system is based on Haxe, 

a language that offers the capability to transform Haxe code into many programming languages. However, 

like most available code transformation systems, the generated code depends on the transformation system. 

Likewise, Cython generates code into the C and C++ languages that have a high performance but the 

generated code has a low readability, therefore, making it difficult to understand and to maintain.  To our 

knowledge, no solution exists to transform PBM algorithms in different languages considering the 

specificities of different modeling platforms. This transformation is useful in the sense that model 

components are not just code but embed scientific knowledge that should be preserved. In this work, we 

also propose a system that includes algorithm error checking with explicit error messages to guide 

developers. CyML addresses several issues encountered in current PBM frameworks, namely: 

- reproducibility: a crop model or algorithm can be written once and automatically made available in 

different languages and platforms; 

- reusability: a model can be reused and composed with other models of a specific platform; 

- transparency: model algorithms are implemented using a common approach regardless of the crop 

simulation platform, and maintain the biophysical process knowledge.  

Our approach and strategy should greatly reduce the implementation errors and improve model 

reproducibility. However, neither the definition of a language nor its transformation is approached without 

certain constraints, essentially due to the tradeoffs between generality and abstraction. 

 

4.1 CyML transformation challenges 

We provide a new language with a transformation system to produce code correctness. However, some 

inconsistencies or complexities could appear depending on the target language. First, the current version of 

CyML does not handle the type overflow. It means that errors related to overflow could not be detected at 

the CyML system level. For example, the generation of the Fibonacci recursive function in Python by just 

removing declaration types could lead to the crash of the system due to the Python recursion limit, whereas 
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the generated code will not produce any error in Java but the result will rapidly overflow. A method to detect 

overflow can be implemented to avoid this type of error at run-time level. Moreover, CyML can be extended 

to support 64-bit C double type. Second, CyML provides primitive types whose equivalence in some 

platforms are objects with some properties. This means that coding an existing model algorithm in CyML 

could require an additional CyML external function to emulate the properties of these objects. Third, CyML 

has some limitations with data type conversion. For example, Datetime type is not supported in Fortran or 

C++. In this case, CyML converts it into strings. However, the translator could be extended to depend on 

specific libraries used by simulation platforms to perform the transformation. Finally, some platforms are 

close to the philosophy of their underlying language (e.g. DSSAT, BioMA, OpenAlea) whereas others 

extend their language with a high-level specificity (Record, Simplace) that requires a complex 

transformation. 

 

4.2 Lower the barrier of crop simulation platforms  

The main barrier to exchange and reuse of model components between simulation platforms is the 

specificities embedded in the algorithm implementation. CyML intends to lower the barrier of platform 

specificities. Our analysis of several platforms showed that each platform adopts a standard to implement 

model algorithms that does not vary from one implementation to another. The knowledge of platform 

requirements offers the possibility to integrate them into CyMLT in order to make their components 

available to many modeling platforms. We did not conduct a performance analysis but the cost of 

implementation is reduced by an order of magnitude compared to the time used to manually re-encode the 

same model into each platform without considering the inherent errors added during the process. CyML 

supports not only the transformation of the algorithm of unit models, but it also provides the evaluation of 

composite models by calling in sequential order models that are encapsulated into it.  It also proposes a way 

to produce unit tests for each unit model algorithm in different languages based on the specifications of the 

inputs, outputs and parameter values. It checks the validity of the generated source code ensuring that all 

transformation results give the same results. It should be noted that CyML adds unit test functionality to 

platforms that do not use test-driven development. 
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4.3 CyML for model reuse and reproducibility 

CyML implements PBM components with a functional and procedural approach. A component 

describing a biophysical process (e.g. phenology, soil water balance, photosynthesis) can be decomposed 

into independent components, which can be implemented and composed in CyML. Components 

implemented at a high granularity embed more scientific knowledge, but the component becomes less 

reusable. The implementation of a component into small functions (unit models) enhances its readability, 

reduces the distance between its expression as equations or mathematical expressions and its 

implementation, and reduces its maintenance cost. CyML is designed to tackle the reproducibility of PBM 

components. Although PBM are described in scientific publications and their code are increasingly publicly 

accessible, the reproducibility of the results remains a fundamental issue. Their implementation requires a 

procedural or functional language that is shared between simulation platforms to ensure their 

reproducibility. It is, therefore, useful to propose code in the language and that follow the specifications of 

the target platforms. The automatic transformation of model algorithms into different languages and 

simulation platforms is essential for interoperability and code reuse. CyML users can implement a model in 

CyML and transform the algorithms into various targets by using CyMLT. Hence, CyML aims at promoting 

PBM re-usability and interoperability through a transformation system that parses model specifications and 

knowledge needed to transform algorithms. 

 

4.4 Scope of CyML language 

CyML is a subset of the Cython language. Thus, it does not include many features found in general-

purpose programming languages. This choice of language limitation has its strengths and weaknesses. The 

method presented herein differs from existing model interchange platforms in that it generates source code 

with different programming paradigms and it associates model specifications to algorithms to enhance code 

analysis.  It allows a common implementation of the dynamics of biophysical processes by removing the 

specificities of the languages and platforms. It improves the readability of the code since the structure of the 

code and the characteristics of languages are shared by modeling platforms. It ensures the mapping of the 

abstract representation to other languages or platforms. Indeed, this language limitation reduces ambiguity 

in the language transformation since the base language (Cython) has some features that cannot be 

transformed into some target languages. With CyML, different processes provided by different platforms 

can be represented and composed regardless of the platforms, which enables to define a new white-box 

component reusable by other platforms. CyMLT provides a reuse approach that is opposite to a black-box 
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approach where the composition of model components is bound to the execution platform targeted by its 

modules (Van Evert et al. 2005). 

CyML does not interact with the simulation paradigms of the platforms. Its sole concern is to represent 

and transform the process models. Its evaluation capabilities are only used to check the correctness of the 

transformation. Moreover, CyML does not provide a formalism to link model components with data to build 

a modeling solution. Thus, the processes to read inputs, parameter values and write output values in a file 

are separated from the algorithm implementation given that it reduces reusability. 

Although CyML focuses on the implementation and reuse of biophysical models, it could be used in 

general purpose. Thus, any code that can be implemented with CyML features can be transformed into 

different languages without associating specifications files. 

 

4.5 Toward a standard language 

The development of CyML and its transformation system addresses the need of the plant and crop 

modeling community to enhance research collaboration by improving the capacity to exchange and reuse 

PBM components. The theoretical interest to provide a common approach to implement model response has 

been demonstrated (Holzworth et al. 2014b). However, despite the success of simulation platforms around 

which different communities are built, and some proposal of declarative language implementation, the lack 

of a shared standard limits model reusability. This issue limits the performance of the activity of PBM 

intercomparison and improvement. The availability of CyMLT through AMEI will allow building a large 

community around this system and can make CyML a standard language providing a means to seamlessly 

compare independent biophysical processes or promote alternative approaches. 

 

4.6 Future developments 

Several modelers have expressed their interest to extend CyMLT with other languages used by the plant 

and crop modeling community. The use of a well-annotated ASG with model specifications provides an 

intuitive representation of the model algorithms. This abstraction sets up various analyses of the source code 

by generating different source code based on the target language features, software design and code 

conventions. With this flexibility offered by the ASG, future work can explore the extension of CyMLT 
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with other imperative programming languages such as Matlab, Julia, JavaScript or other modeling platforms 

that use imperative languages. 

Reuse of legacy PBM model components without the need to encode them into CyML could reduce the 

investment in model exchange and could increase the interest of the platforms. Therefore, the next step 

would be to provide a transpiler that transforms legacy model components from various languages and 

simulation platforms into CyML code automatically. Such a many-to-many transformer would provide a 

complete system of interoperability of languages and simulation platforms. 

CyMLT aims to enable the exchange and reuse of components between modeling platforms, notably 

between PBM and functional-structural plant modelling (FSPM) platforms. While crop growth models 

simulate plant growth and development at the scale of the canopy (m2) or average plant level, FSPMs are 

individual-based models at the scale of the organ. The exchange (sharing) of model components between 

PBM and FSPMs would allow an efficient coupling of these two modeling approaches to model crop species 

or variety mixtures by capturing spatial heterogeneities and quantifying plant traits involved in crop mixture 

performance (Gaudio et al. 2019). Another application is the use of FSPMs in a model-driven phenotyping 

approach, where plant structural traits are estimated by reverse engineering a FSPM (Liu et al. 2019) and 

are then used as crop model input parameters to simulate the behavior of genotypes in target agro-climatic 

scenarios. Currently, CyML only allows for the representation of processes as functions and does not 

consider the plant’s structure. To extend CyML to the FSPM community will require to extend CyML 

language and CyMLT to support complex data structures such as 3-dimensional geometry and topology. 

The convergence of our approach of model reuse and reproducibility approach with other collaborations, 

like the Crops in Silico collaboration (Marshall-Colon et al., 2017), would greatly accelerate the 

development of the next generation of PBMs. The Crops in Silico collaboration aims at integrating model 

frameworks to build a complete crop in silico from the level of the genes to the level of the field or ecosystem 

using a software package, Yggdrasil (Lang 2019). Yggdrasil connects PBMs across programming languages 

by running asynchronously models in parallel. It requires to write wrappers in the different languages to 

process the asynchronous messages to manage model inputs and outputs. CyMLT may interact with 

Yggdrasil (i) to make available model components into the languages supported by Yggdrasil with their 

wrappers, (ii) to produce efficient components source code in various languages in order to improve the 

performance of the simulation in Yggdrasil; and (iii) by validating each component with unit tests before 

their integration. The interaction between CyML and Yggdrasil could enhance the integration of PBMs 

across different languages and scales. A complementary approach to the one presented here was 

demonstrated for the automated transformation of input files of four agricultural models (Samourkasidis and 

Athanasiadis 2020) enabling the discovery and reuse of data across modelling solutions. Together with 
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AMEI they could ensure that a complete model implementation and accompanied data can be transformed 

between modelling solutions.  

5. Conclusions 

In this study, we defined a minimal language based on the Cython language to implement biophysical 

processes involved in plant and crop growth and development. We designed a system that transforms CyML 

source code to many target languages and simulation platforms. The association of model specifications in 

XML-based format with the description of model algorithm based on CyML specifications allows to 

annotate each variable used in the algorithm. With this approach we can produce code with different 

programming paradigms including object-oriented approach and with different software designs. We 

showed that this language is sufficient to express biophysical processes and to transform them in different 

target languages and simulation platforms. We argue that the abstract language offers some trade-off 

between generality due to the convergence of the platforms and the complexity hidden in each platform. 

Crop modelers should have some programming skill to implement a model in CyML but no other skills are 

needed to produce automatically a model component source code in various languages and platforms. This 

reuse approach will help modelers to improve the reproducibility of their models and their reuse and should 

enhance research collaborations and model improvement and use. 

Code 

The CyMLT source code is available publicly on Github at 

https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML. Full documentation for CyML and 

CYMLT can be found at https://pycrop2ml.readthedocs.io. 

  

https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML
https://pycrop2ml.readthedocs.io/


103 
 

 
 

Supporting Information 

The Following additional information are available on the online version of this article. 

Table S1. Mapping of basic data types between CyML and the languages supported by CyMLT. 

Table S2. Mapping of arithmetic operators between CyML and the languages supported by CyMLT. 

Table S3.  Precedence pecking order in CyML language and the languages currently supported by 

CyMLT. 

Table S4.  Mapping of built-in functions between CyML and the languages supported by CyMLT. 

Table S5. Mapping of flow control statements between CyML and the languages supported by CyMLT. 

Listing S1. A Crop2ML model specification for the shoot number model 

Listing S2.  CyML code of the shootnumber unit model of the WheatPhenology composite model. 
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Table S1 

Mapping of basic data types between CyML and the languages supported by CyMLT. 

Data type Language 

Languages CyML Python C# Java F90 R C++ 

integer int int integer integer Integer:: numeric int 

real float float double double Real:: numeric float 

character str str string string Character:: character string 

boolean bool bool boolean boolean Boolean:: logical bool 

 

 

Table S2 

Mapping of arithmetic operators between CyML and the languages supported by CyMLT. 

Operator 

Language 

CyML Python C# Java F90 R C++ 

addition + + + + + + + 

substraction - - - - - - - 

multiplication * * * * * * * 

division / / / / / / / 

exponentiation ** **  pow pow ** ^ pow 

increment ++ +=1 ++ ++  ++ ++ 

decrement -- -=1 -- --  -- -- 

argument     Parameter::   

Parenthesis (to group 

expressions) 

() () () () () () () 

Equal to == == == == .EQ. == == 

Not equal to != != != != .NE. != != 

Less than < < < < .LT. < < 

Less or equal <= <= <= <= .LE. <= <= 

Greater than > > > > .GT. > > 

Greater or equal >= >= >= >= .GE. >= >= 

Logical NOT not not ! ! .NOT. ! ! 

Logical AND and and && && .AND. && && 

Logical  OR or or || || .OR. || || 
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Table S3 

Precedence pecking order in CyML language and the languages currently supported by CyMLT. 

Precedence 

Language 

CyML Python C# Java F90 R C++ 

 () () () [] . () () () ()  []  ->  . 

 ** ** ++ 
-- 
+ (unary) 
- (unary) 
! 
~ 

++ 
-- 
+ (unary) 
- (unary) 
! 
~ 

** ^ 

+ - 

! ++ -- + - 

 * & 

(type) 

sizeof 

 += -= += -= * / % * / % *     / %%  *   /  % 

 *  / // % *  / // %'  + -  + - + - *  / + - 

 + -  + -  << >> << >> // + - << >> 

 <<  >> << >> < <= 
> >= 

< <= 
> >= 

== /= < 

<= > >= 

< > <= >= 

== != 
<  <=  >  

=> 

  in not_in 

is is_not < 

<= > >= 

!= == 

 

in not_in 

is is_not < 

<= > >= 

!= == 

 

==, != == 
!= 

.NOT. ! ==  != 

  and and && && .AND. && && 

  or or || || .OR. || || 

   =   +=   -= 
*=   /=   %= 
&=   ^=   |= 
<<=  >>= > 

 =   +=   -= 
*=   /=   %= 
&=   ^=   |= 
<<=  >>= 

.EQV. 

.NEQV.  

=  = +=  -= 

*=  /=  

%=  &=  

ˆ=  |=  

<<= >>= 
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Table S4 

Mapping of built-in-functions between CyML and the languages supported by CyMLT. 

Function 

Language 

CyML Python C# Java F90 R C++ 

Exponential exp(x) exp(x) Exp(x) exp(x) exp(x) exp(x) exp(x) 

Natural log log(x) log(x) Log(x) log(x) log(x) log(x) log(x) 

Square root sqrt(x) sqrt(x) Sqrt(x) sqrt(x) sqrt(x) sqrt(x) sqrt(x) 

Power pow(x,r) pow(x,r) Pow(x,r) pow(x,r) x**r x^r pow(x,r) 

Absolute 

value 

abs(x) abs(x) Abs(x) abs(x) abs(x) abs(x) fabs(x) 

Smallest 

integer (> x) 

ceil(x) ceil(x) Ceiling(x) ceil(x) ceiling(x) ceiling(x) ceil(x) 

Largest 

integer (< x) 

floor(x) floor(x) Floor(x) floor floor(x) floor(x) floor(x) 

Division 

remainder 

divmod() divmod() DivRem floorMod mod(x,y) %% fmod(x,y) 

Rounding round(x) round(x) Round(x) round(x) nint(x) round(x) round(x) 

Cosinus cos(x) cos(x) Cos(x) cos(x) cos(x) cos(x) Cos(x) 

Sine sin(x) sin(x) Sin(x) sin(x) sin(x) sin(x) sin(x) 

Tangent tan(x) tan(x) Tan(x) tan(x) tan(x) tan(x) tan(x) 

Arc sine asin(x) asin(x) Asin(x asin(x) asin(x) asin(x) asin(x) 

Arc cosinus acos(x) acos(x) Acos(x) acos(x) acos(x) acos(x) acos(x) 

Arc tangente atan(x) atan(x) Atan(x) atan(x) atan(x) atan(x) atan(x) 
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Table S5 

Mapping of flow control statements between CyML and the languages supported by CyMLT. 

Flow control 

statement 

Language 

CyML Python C# Java F90 R C++ 

Conditionally 

execute statements 

if if if  

{ } 

if  

{ } 

if  

end if 

if 

{ } 

if  

{ } 

Loop a specific 

number of times 

for k in 

range(n) 

 

for k in 

range(n) 

for(int 

k=0; k<n; 

k++) 

{ } 

for(int 

k=0; k<n; 

k++) 

{ } 

do k=0, n-

1 

end do 

for(k in 

seq(0,n-

1) { } 

for k=0: 

n-1  

{ } 

Loop an indefinite 

number of times 

while while while 

{ } 

while 

{ } 

do while 

end do 

while 

{ } 

while  

{ } 

Terminate and exit 

loop 

break break break break exit break break 

Skip a cycle in a 

loop 

continue continue continue continue continue next cycle 

Return to invoking 

function 

return return return return return return return 

Conditional 

alternate 

statements 

else 

elif 

else 

elif 

else 

else if 

else 

else if 

else 

elseif 

else 

else if 

else 

else if 

Conditional case 

selections 

if 

elif 

if 

elif 

if {} 

else if {} 

if {} 

else if {} 

if {} 

elseif {} 

if { 

}elseif 

{} 

if {} 

else if {} 
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Listing S1: A Crop2ML model specification for the shoot number model. 

 

Listing S1 illustrates the main elements and format of Crop2ML model specification. All model inputs and 

outputs are not specified. Missing elements are replaced by “...”. A parameter set called Pwheat1 is defined 

and is used in the unit test test_wheat1. Other parameter sets can be specified and new unit tests can also be 

written for different parameter sets or for the same parameter sets. This model specification is parsed and a 

CyML code is generated (Supporting Information Listing S2). The inputs are the arguments of the generated 

function and the outputs are declared in the body of the function and are return variables. Finally, the 

algorithm part of the specification is incorporated in the body of the function.  

Here, we present the shootnumber unit model, which is one model unit of the WheatPhenology Crop2ML 

composite model. The inputs of the model are as follows:  

 canopyShootNumber_t1: Shoot number per square meter at the previous time step  



109 
 

 
 

 leafNumber: Number of appeared leaves present per main stem  

 sowingDensity: Number of seeds per m²  

 targetFertileShoot: Maximum number of shoots per m²  

 NumberTillerCohort_t1: Number of tiller cohorts at the previous time step  

 tilleringProfile_t1: List of the number of tillers per m² in each tiller cohort at the previous 

time step  

 leafTillerNumberArray_t1: Array of the number of tillers in each leaf cohort.  

The algorithm then updates the related variables such as canopyShootNumber, tilleringProfile and 

leafTillerNumberArray and estimates the number of tillers (tillerNumber) and the current number of shoots 

per plant (averageShootNumberPerPlant). The number of shoots per plant (shoots) is first calculated as a 

function of number of appeared leaves (appeared Leaves) on the main stem based on a Fibonacci series:  

 𝑠ℎ𝑜𝑜𝑡𝑠𝑒𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑒𝑎𝑣𝑒𝑠 = 𝑠ℎ𝑜𝑜𝑡𝑠𝑒𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑒𝑎𝑣𝑒𝑠−1 + 𝑠ℎ𝑜𝑜𝑡𝑠𝑒𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑒𝑎𝑣𝑒𝑠−2   (1) 

 𝑒𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑒𝑎𝑣𝑒𝑠 ≥ 3, 𝑠ℎ𝑜𝑜𝑡𝑠1 = 1, 𝑠ℎ𝑜𝑜𝑡𝑠2 = 1 (2) 

Then, the maximum number of shoots is limited by a threshold value (targetFertileShoot) by assuming 

that canopies have a constant maximal number of fertile shoots. So, the current shoot number at canopy 

level at a given time is given by:  

 𝑐𝑎𝑛𝑜𝑝𝑦𝑆ℎ𝑜𝑜𝑡𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑚𝑖𝑛 (𝑠ℎ𝑜𝑜𝑡𝑠 ∗ 𝑠𝑜𝑤𝑖𝑛𝑔𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑒𝑟𝑡𝑖𝑙𝑒𝑆ℎ𝑜𝑜𝑡) (3) 

A new tiller appears when the rate of the canopy shoot number (the difference between the current and the 

previous canopy shoot number) is different from 0 (Supporting Information Listing S2, line 26). Then, the 

number of appeared tiller cohorts per square is stored in a list (tilleringProfile; Supporting Information 

Listing S2, line 27).   

The cohort of tillers for each leaf layer (leafTillerNumberArray) is then expanding with the one of previous 

time (Supporting Information Listing S2, line 31).  
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Listing S2: CyML code of the shootnumber unit model of the WheatPhenology composite model. 
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Chapter 5.  Crop modeling frameworks interoperability through 

bidirectional transformation 
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Abstract 

The crop modeling community has always been concerned with the diversity and proliferation of 

modeling and simulation platforms. Many efforts have been provided to enhance collaborative model 

development tasks and to address exchange and reuse issues. However, the diversity of platforms breaks 

down the collaboration between different groups of crop modeling researchers. To address reuse issues, we 

have identified some concepts that made it possible to define a component specification language Crop2ML 

and a minimal domain language CyML for the description of associated algorithms regardless of platform 

specificities. A transformation system CyMLT has been defined to transform Crop2ML models into 

different languages and components compatible to platforms requirements. However, this system requires 

to transform first manually legacy components into Crop2ML. Moreover, no approach exists to maintain 

the consistency between the source and the target models. In this context, the objective of this work is to 

provide an automatic transformation system that transforms model components from PBM platforms in 

Crop2ML components and packages at a high level of abstraction (specification and algorithms) under 

certain constraints.  
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1. Introduction 

The crop modeling community has always been concerned with the diversity and proliferation of 

modeling and simulation platforms (Holzworth et al., 2014a). Many efforts have been provided to enhance 

collaborative model development tasks (Janssen et al., 2017) and to address exchange and reuse issues. 

However, the diversity of platforms breaks down the collaboration between different groups of crop 

modeling researchers (Donatelli and Rizzoli, 2008). In Chapter 3 we provided a model development 

approach to address model reuse. It is based on the definition of a shared crop modeling metalanguage used 

to describe the specifications of model and their composition, with the CyML language (Chapter 4) used to 

describe their corresponding algorithms. This representation of models has been developed to generate 

automatically various model components that conform to crop modelling frameworks through a 

transformation system. However, it first involves the manual transformation of legacy components into the 

Crop2ML framework. Inconsistencies between source and target models may occur when the models evolve 

over time (Mens, Van Straeten, et al., 2006). In the case where Crop2ML models are updated, the 

transformation system can generate new model components for each PBM platform it supports. However, 

a model builder can choose to update a component in its platform without changing the Crop2ML models 

or create a new component from its platform. It requires synchronizing the Crop2ML model and all 

platform’s components. In this context, the objective of this work is to provide an automatic transformation 

system that transforms model components from PBM platforms in Crop2ML components and packages at 

a high level of abstraction (specification and algorithms) under certain constraints. This transformation 

system is the inverse of CyMLT (Chapter 5, Figure 1). This inverse transformation system goes beyond a 

source-to-source transformation since the target is not only a source code but also Crop2ML model 

specifications. Therefore, the output of CyMLTx is composed of the model specifications at a high level of 

abstraction, one or several associated algorithms (pseudo-code) in CyML which have fewer details 

compared to the model implementation (source code), and external functions. It, therefore, implies a reverse 

engineering step that transforms the low-level representation or concrete implementation to a high-level 

representation. 
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Figure 1: Crop2ML reengineering process. 

Several research works invested in model transformation (Boukelkoul & Maamri, 2015; Ehrig & Ehrig, 

2006; Kahani et al., 2019). Mens and Van Gorp (2006) proposed a taxonomy of model transformation with 

a notion of model that encompasses all levels of abstraction, including the source code as a model at a low 

level. Transformation approaches depend on the level of abstraction of the model (source code or 

specification) in the source or target. Reverse engineering (Mens, Van Gorp, et al., 2006) refers to 

transformations from a more concrete model to a more abstract model (e.g., from code to specification). 

Currently, there are no standard methods to achieve these transformations. Available methods are mainly 

based on compiler technology (such as parser generation), rather than modeling technology (Jiménez-

Navajas et al., 2020; Kahani et al., 2019). Oda et al., (2015) generated pseudo-code in English natural 

language from Python source code using Statistical Machine Translation (SMT) to improve program 

understanding. Although these approaches allow retrieving pseudo-code from the original code or 

generating its specification, they depend on the nature of the target model. 

A source-to-source transformation, also named transcompiler, transpiler, or source-to-source compiler, 

is a process that converts source codes from a high-level language to another one. Although the first 

development of a transcompiler occurs during the 1950s-1960s, the full potential of this domain has not 

been realized yet. Bidirectional transformation can be used to keep two models synchronized and consistent 

(Biehl, 2010). To define a transpiler from Ada to Pascal and from Pascal to Ada,  Albrecht et al., (1980) 

used a subset of each language and converted them to the same intermediate representation, and thus 

provided a transformation definition for each direction. Other approaches used the same transformation 

definition for both directions (Yokoyama et al., 2008; Martins et al., 2014). Martins et al. (2014) showed 

how inverted rewrite rules extended with additional rules and forward transformations could create, under 

certain circumstances, a total backward transformation. However, these approaches remain theoretical or 

applied for transformations between model specifications. More recently, AI-based approaches to address 

source-to-source transformation have been proposed. Lachaux et al. (2020)  applied unsupervised machine 
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translation source code to create a transcompiler. The survey of Plaisted (2013) shows the great benefits of 

source-to-source transformation. It reveals that the use of an abstract language with a simple syntax and 

semantics facilitating its translation into many languages makes more effective the source-to-source 

transformation. Inspired by this observation, we hypothesize that CyML language that represents the 

intersection of several high-level languages can be leverage to enable bidirectional transformation between 

several programming languages. 

In this work, we propose an approach based on reverse engineering (Chikofsky & Cross, 1990; Duffy 

& Malloy, 2005) and source-to-source transformation (Kulkarni, Chavan and Hardikar, 2015) that extend 

CyMLT. We called the extended part CyMLTx (CyMLT eXtended). It consists in transforming under some 

constraints a platform’s model component to Crop2ML knowing that there are different platforms with 

different languages and software designs. It therefore requires providing a well-designed transformation 

mechanism that should be general enough to integrate any platform that satisfy our constraints. The system 

uses the Crop2ML specifications to bridge the difference between platforms. Crop2ML is independent of 

any given platform and its programming language. It is extensible, allowing new languages and frameworks 

to be added to the system without affecting it. Here, we first present the requirements of our system, its 

architecture and the different components such as the parser generator, the algorithm to infer the 

specification and the many-to-one transformation system. Then, we illustrate the transformation system 

using the BioMA framework as an example. 

 

2. Methods 

This section presents the design architecture of the transformation system and the main components that 

constitute the workflow of transformation. First, we enumerated some requirements and the properties of 

the system. Box 1 provides some definition of technical terms used in this section. 

 

2.1. Requirements and properties 

 We designed CyMLTx to take into account the following properties: 

- Complete – We defined CyML as an intersection of framework languages. Thus, the constructs of 

these languages are strictly limited to the common area defined by CyML. That is, any construct of 

any language has to be mapped to CyML constructs to avoid missing some transformations.  
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Box 1. Terminology and formal definitions. 

A grammar is a set of rules or production rules that describes the syntax of a language. Syntax refers 

to a way a set of symbols may be combined to form a set of valid sentences (programs) in a language. 

Semantics reveals the meaning of the syntactical valid sentences.  

A formal grammar of a language consists of a set of terminal symbols which is the alphabet defining 

the language, a set of nonterminal symbols which is used to generate the words in the language, a set 

of production rules (also called rules, rewriting rules or production) that describes how each 

nonterminal is defined in terms of terminal symbols and nonterminal, and a specific nonterminal (start 

symbol) that specifies the order of productions rules. Chomsky (1965) differentiated grammars 

according to the structure of their production rules. Context-free grammars allow linking a single 

nonterminal to a list of terminals and nonterminals in a production rule. Context free grammars can 

be used to formalize most of the rules describing syntactic structure. 

Parsing or syntactic analysis refers to the process of finding the syntactic structure associated with an 

input sentence.  

A Parser implements parsing algorithm. There are different kinds of parsers. The type of a parser 

depends on the type of the context free grammar that may be either a LR(k) or a LL(k) grammar. LR(k) 

grammars are those for which the LR(k) parsers read from left to right and look k input symbols beyond 

its current input position, producing thus a rightmost derivation. LL(k) grammars are those for which 

the LL(k) parsers read from left to right and look k input symbols to the right of its current input 

position, producing thus a leftmost derivation. 

A parse tree or concrete syntax tree is the output of a parser.   

An abstract syntax tree (AST) is a refinement or simplification of a parse tree, with some non-

terminals, keywords, and punctuation removed while maintaining the meaning of the program.  

An abstract semantic graph (ASG) is a refinement of AST with semantic information, namely type 

information. 

A graph rewriting rule is a triple where the first two elements are graph patterns and the third element 

is a set of embedding descriptions which specifies how to substitute the second to the first when the 

rule is applied. 

A transformation system is the automatic generation of a target model (may be a source code) from 

a source model (may be a source code), according to a transformation definition. 

A transformation definition is a set of transformation rules that together describe how a model in the 

source language can be transformed into a model in the target language.  

A transformation rule is a description of how one or more constructs in the source language can be 

transformed into one or more constructs in the target language. It can also be interpreted as a 

rewriting rule. 

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, 

executing, or translating structured text or binary files. It's widely used to build languages, tools, and 

frameworks. From a grammar, ANTLR generates a parser that can build and walk parse trees. 



117 
 

 
 

- Moreover, the specification of model components must allow inferring all information defined in 

Crop2ML, such as input, output type information, and authors. 

- Extensible - The approach must be flexible to allow adding other languages or PBM platforms. 

- Efficient - The complexity of the transformation algorithm must be as minimal as possible.  

- Platform-independent - The implementation of the transformer can be deployed in various 

operating systems to be easily integrated as a plugin into other software projects. 

- Modular - It is composed of independent modules used for specific tasks. 

According to the model transformation taxonomy proposed by Mens and Van Gorp (2006), CyMLTx 

is: 

- based on a source code (PBM platform model components) and an abstract model (Crop2ML); 

- exogenous, that is transformations are between models expressed using different languages; 

- is based on the properties of the source model; 

- vertical, that is the source and target reside at different levels of abstraction. 

 

2.2.  Design architecture 

Figure 2 shows the global architecture of the transformation system. It is based on ANTLR parser 

generator  (Parr, 2013) that produces parsers for different grammars. Each parser of a specific language 

analyzes the model component written in this language and generates a concrete syntax tree (CST). The 

CST is transformed in abstract syntax trees (ASTs) that take into account the limited constructs of each 

language. All AST are then transformed into a unique representation of an abstract semantic graph (ASG). 

It means that a model implemented in different languages must have the same ASG. The architecture relies 

also on two other main components: Crop2ML extractor and source to source transformer. The Crop2ML 

extractor uses the ASTs to generate the Crop2ML model specifications under some constraints used to 

define patterns (Vasenin and Krivchikov, 2020), while the source-to-source transformer uses the ASG to 

generate the model algorithm (pseudo-code) based on a transformation workflow. 
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2.3.  ANTLR parser generator and AST generator 

A language parser is in charge of constructing the CST based on source components that it receives. For 

that, it is necessary to provide the grammar of each programming language that the system supports. It is 

cumbersome to implement a parser for each language for a scalable system in a context of multiple 

languages. Our approach uses the grammar of any language to generate its parser through an ANTLR Parser 

Generator. ANTLR is both a tool and a metalanguage allowing to express the LL(*) grammars of different 

languages (* means k is infinite). The ANTLR provides a collection of grammars for many popular 

programming languages including C, C++, Java, C#, Fortran, Python, and Ruby. It augments the grammars 

with tree operators, rewrite rules, and actions. The version 4 of the ANTLR generates a parser that produces 

the CST that contains all the information of the source code (Parr, 2013). 

 

 

Figure 2: CyMLTx transformation system architecture. CyMLTx is based on the ANTLR parser generator 

and contains two functional subsystems: (i) a Crop2ML extractor that generates the model specification and 

(ii) a source-to-source transformer that generates model algorithms in CyML. The grey arrows show the 

CyMLT transformation process. The whole system leads to an interoperable system. 
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The process of AST generation consists in removing the information that is not necessary to maintain 

the structure of the code while preserving its meaning. The abstract syntax tree is therefore an isomorphism 

of the CST. It is at the level of this process that our approach guarantees the exclusive use of limited 

constructs. The use of a language construct that is not contained in the restriction generates an error message 

that indicate to the user that this construct is not allowed. 

2.4.  Extraction of model specifications 

The Crop2ML extractor takes the ASTs generated from the component and builds Crop2ML model 

specifications based on the properties of the component. Our approach relies on the traversal of the AST 

nodes in order to detect recurring nodes that lead to the same structures and whose transformation allows 

retrieving the Crop2ML elements. To deal with the problem in a general way, we use an approach in three 

steps: 

 define the formal specifications of the general transformation rule;  

 identify the type of nodes whose transformation led to Crop2ML elements; 

 transform these nodes and extract the Crop2ML elements. 

 

2.4.1. Formal specifications of the general transformation rule 

Let us call primitives a specification element in the source component. The general transformation rule 

consists in defining an extractor function that takes as inputs an internal AST node, searches and extracts 

the primitives to produce the model specifications. Thus, we can formally express the rule as follows as:  

 𝒔𝒐𝒖𝒓𝒄𝒆 
𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒐𝒓
→        𝒕𝒂𝒓𝒈𝒆𝒕 

where, 

 source is the internal node containing the primitives; 

 target is the Crop2ML model specifications that corresponds to the source; 

 extractor is the function used based on the primitives’ constraints to generate the target. 

This transformation rule is general and can be used for any primitive. However, it needs to be more 

specific and for that we proceed to the second step. 
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2.4.2. Identification of different types of nodes whose transformations lead to retrieve 

Crop2ML elements 

Let us assume that there are recurring nodes that help to retrieve source primitives. We can therefore 

call patterns the relationships of these primitives with the corresponding Crop2ML elements. We define a 

formal rule of the pattern based on the primitives: 

𝒑𝒓𝒊𝒎𝒊𝒕𝒊𝒗𝒆 
𝒑𝒂𝒕𝒕𝒆𝒓𝒏
→      𝒆𝒍𝒆𝒎𝒆𝒏𝒕 

where, 

 primitive is a terminal node which is a specification element in the source; 

 element is an element of Crop2ML model specification that corresponds to the primitive; 

 pattern evaluates if the primitive contains sufficient information to produce a Crop2ML model 

element. 

A specific approach leads to identify the primitives in the AST. However, since our approach concerns 

various source components, we propose in Table 1 a list of generic names of primitives that will be identified 

in each source component after analyzing it.  

Table 1 

Identification of patterns used to produce Crop2ML elements. 

Symbol Pattern name Identification 

P1 Input sequence pattern Identify a list of inputs with their attributes 

and values 

P2 Output sequence pattern Identify a list of outputs with their attributes 

and values 

P3 Initialization pattern Identify the initialization function 

P4 Algorithm pattern Identify the algorithm function 

P5 External function sequence 

pattern 

Identify the external functions used to 

express the algorithm 

P6 Parameter sequence pattern Identify unit tests and parameter values 

P7 test sequence pattern Identify unit tests and input output values 
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2.4.3. Generation of Crop2ML model specification 

The identification of each pattern in the source component leads to apply a transformation on the 

primitives to produce a part of Crop2ML model. The concatenation of each result produces the entire model. 

However, the model specification provides the link where the initialization, external function and algorithm 

are expressed in CyML. The transformation of these primitives requires a source-to-source transformation 

system. 

2.5. Many-to-one transformation system 

CyMLT is the transformation system that exports a CyML code to other languages. Our intent is to 

design a system that automatically imports and exports model components from several crop modelling 

platforms. There are two possible ways to address this objective, either use the same transformation 

definition for both directions or define explicitly a transformation definition for each direction. We propose 

to analyze these propositions. 

Let us consider a unidirectional transformation 𝑀:𝐴 → 𝐵 (with 𝐴 and 𝐵 the domain and range of 𝑀, 

respectively) is a relation from 𝐴 to 𝐵 such that if 𝑚(𝑎) = 𝑏 and 𝑚(𝑎) = 𝑐 then 𝑏 = 𝑐.  

𝑀(𝑎) is defined if there exists 𝑏 in 𝐵 such that 𝑀(𝑎) = 𝑏 

If 𝑀(𝑎)is defined for all 𝑎 in 𝐴, 𝑀 is a total mapping. 𝑀 is a partial mapping from 𝐴 to 𝐵 if it is only 

defined for a subset of 𝐵. We have designed CyML as an intersection of the languages of platforms such 

that CyMLT is a total mapping. 

If 𝑀:𝐴 → 𝐵 and for each 𝑏 in 𝐵 there is at most one 𝑎 in 𝐴 such that 𝑀(𝑎) = 𝑏, then 𝑀 is an injection 

(one-to-one transformation) from 𝐴 into 𝐵. If 𝑀 is a total mapping such that for each 𝑏 in 𝐵 there is exactly 

one a in A such that 𝑀(𝑎) = 𝑏, then 𝑀 is a bijection (one-to-one correspondence) between A and B. Such 

approach is in most situations much too restrictive (Poskitt et al., 2014) since it requires a total mapping that 

needs to restrict A and B. 

If 𝑀:𝐴 → 𝐵 is an injection, then we can find the inverse mapping  𝑀∗: 𝐵 → 𝐴 such that 𝑀∗(𝑏) = 𝑎 if 

and only if 𝑀(𝑎) = 𝑏. If there exists b in B for which there is no 𝑎 in A such that 𝑀(𝑎) = 𝑏, then 𝑀∗ will 

be a partial function. Inconsistencies can arise between the target and source models since the inverse 

transformer omits some elements of the models. This asymmetry is observed when the target language is 

less restrictive and provides artifacts that cannot be mapped with the source language. It is therefore useful 

to restrict the target languages to the same domain as the one identified when defining CyML. 
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One flexible approach is the surjective mapping defined by: 

If 𝑀:𝐴 → 𝐵 and for each b in B there is at least one a in A such that 𝑀(𝑎) = 𝑏, then 𝑀 is surjective. 

Many constructs of the source language can be mapped with one construct of the target language. One 

example is the case where “while” and “for” statements could each be mapped with the “for” statement in 

the target language. In our case, the constructs of the source that satisfy this mapping are equivalent, hence 

the bijection mapping. However, in practice, only one construct in A is generated. We therefore propose a 

backward transformation distinct from the forward transformation. 

Thus, the approach of the backward transformation is slightly different from the CyMLT one. Here, 

there are many sources to one target that we call many to one transformation. This means that all algorithm 

components implemented in different languages will be transformed into a model algorithm in CyML. 

CyMLTx follows these steps: 

- Traverse the AST to identify the algorithm; 

- Translate the sub AST into the CyML abstract semantic graph ASG; 

- Generate CyML algorithm from the ASG. 

As mentioned above, it is required to restrict the language to minimize inconsistencies. This restriction 

can be managed in two ways: either by restricting the grammar or by using the whole grammar and provide 

a mechanism which ensures that the restriction of language constructs is met. To propose a scalable system, 

it is better to consider the whole grammar and to provide a mechanism that can be progressively extended 

with new language constructs that satisfy the target language.  

 

2.5.1. Identification of the Algorithm 

The implementation of model components hides model algorithms that abstract the biophysical process. 

For example, a simple algorithm whose mathematical expression can be written in two lines can be 

implemented in a code of more than 30 lines since it embeds many PBM platform artifacts. However, 

platforms offer a fixed design that makes it possible to know exactly where the algorithm can be extracted. 

The information that enables this extraction is defined as a pattern that can be used to infer model algorithms. 

The initialization and external functions should also be identified and retrieved. 
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2.5.2. Transformation from abstract syntax tree to abstract semantic graph 

Definition of the CyML Abstract Semantic Graph 

The CyML ASG is a directed graph where the nodes are labelled based on the common constructs 

provided from the intersection of the framework languages.  

Some constructs are assignment (e.g. for statement, if statement, while statement, or function statement). 

We propose a share and unique collections of statements (implemented as a node in the ASG) to have a 

unique ASG representation that will be a pivot for our system. 

Let us build the ASG for an assignment statement  𝑥 = 5  : 

ASG(f) = Node (type = “assignment”,  

   left = Node (type = “local”, name = “x”, pseudo_type = “int”, location = “1”),  

   right = Node (type = “int”, value = “5”, pseudo_type = “int”, location= “1”),  

   pseudo_type= “void” 

   location = “1”)  

where Node is a prototype allowing to create the nodes and their links. 

In this example, the graph contains three nodes (one parent node of type assignment and two children 

nodes) and two implicit edges (one from the root to the left node and another that links the root to the right 

node). The ASG guarantees some properties checked in the program. Each node of the ASG has a specific 

syntax based on the type of the node and a pseudo_type, which is a type provided by the type inference 

algorithm. This means that the approach is based on typing rules and consists in associating to each node 

the pseudo_type to allow the construction of types in a bottom-up way.  

 

Transformation from abstract syntax tree to ASG abstract semantic graph 

Here, we define a general formal approach that generates the ASG whatever the type of languages and 

PBM platforms. 

The transformation from AST to ASG is a function based partially on a rewriting graph approach that 

transforms the AST generated from the CST to another graph (ASG) whose nodes are well defined. It 

consists in a set of rules formally represented as follows: 

𝑀 → 𝑁 where 𝑀 and 𝑁 are graphs. 
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These rules are applied on the AST if 𝑀 is isomorph to a subgraph of the AST. M is isomorph to a 

subgraph of the AST if and only if this subgraph and M have the same type attribute. The AST is then 

rewritten recursively in a top-down way by replacing 𝑀’s instance with N’ s instance until 𝑀 is a terminal 

node (i.e. a node without children).  

The rewriting of the graph may be completed with another analysis on the symbol table (a data structure 

that stores information about source code identifiers) that depends on the philosophy of the source language 

like the scope of the variables. For example, in C#, a variable can be declared anywhere in the code but in 

the ASG all declarations are provided on the root. This requires to use the symbol table to add on each node 

of the ASG its declaration node, and if possible, the definition of new variables in order to preserve the 

semantics of the source code.  These particularities led us to redefine the formal rule of the transformation 

as 𝑀
𝑐
→𝑁, where 𝑐 is a constraint that must be satisfied to allow the transformation. 

Using the same example, although we formalized a relationship for variable declaration, the transformation 

of the declaration node is possible if and only if it is on the root node, else the symbol table will be used. 

Thus, the constraint determines the applicability of the transformation rule. 

 

2.5.3. From ASG to CyML Algorithm 

Based on a visitor pattern using the type of each node of the ASG to select the corresponding visitor 

function, the CyML code is easily generated. We associated a portion of code to each node. The whole code 

is constructed by concatenating the portions of code associated with the descendant nodes. Thus, this 

transformation proceeds bottom-up (i.e. from the children toward the parent node). 

 

3. Results: From BioMA to Crop2ML  

The principles of the CyMLTx transformation system described above are general and support CyMLT 

implementation. The modularity of the architecture leads to implement a transformation workflow for each 

PBM platform. This workflow provides the following main modules: 

- A parser module; 

- A module that converts CST to AST; 

- A module that rewrites AST to ASG; 

- A module that generates the algorithm in CyML; 

- A module that retrieves the model specification from the AST. 
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Here, we present some implementation elements with the Biophysical Models Applications (BioMA) 

platform, specifically on the SiriusQuality model development in BioMA. BioMA is a software framework 

designed and developed by the Joint Research Center (JRC) of the European Commission (Donatelli and 

Rizzoli, 2008). It is used for running, calibrating, and improving modeling solutions based on biophysical 

models. Models supported by the BioMA framework are implemented in C# using a component-based 

approach. BioMA is a flexible platform that allows model builders to add their artifacts in the model 

development. BioMA components development is based on strategy design pattern, which allows 

implementing alternative strategies for crop biophysical processes.  

SiriusQuality is a process-based model that simulates the phenology and canopy development of small 

grain cereals and the fluxes of water, nitrogen and carbon in the soil-plant-atmosphere continuum in 

response to weather and crop management (Martre et al., 2006) . SiriusQuality components are implemented 

using the BioMA framework. 

 

3.1.  Abstract syntax tree generation 

We implemented a module that transforms the CST from C# parser into an AST. First, the C# constructs 

that can be generated in CyML are listed and a visitor algorithm checks if the type of the CST node 

corresponds to one construct in the list. Otherwise, an error message is sent. For each node, a visitor function 

was implemented. It rewrites the node to be more readable and to ease the access to node elements. Listing 

1 is an example of the transformation rule of additive expression. With the CST the access to the left and 

right members of the addition node requires to traverse the nodes. Our implementation gives a readable 

structure and facilitates their access. 
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Listing 1: Transformation of Addition node from CST to AST. This function eliminates the parenthesis and 

other addition node elements. It uses TYPED_API for type inference and generate a node with type, left, 

right and pseudo_type elements. 

 

3.2. Abstract semantic graph and algorithm generation 

The AST is transformed into ASG based on rewriting rules described for each node type. Each node is 

visited and the rule is applied until the terminal node is obtained. Listing 2 shows an example of rule on a 

binary operation node. The function visit_binary_op is the rewriting rule of a node of type binary_op (binary 

operation). Other rules are applied to all the children nodes of the binary_op node through a generic rule 

visit that calls the specific rule according to the type of the node. 

 

 

Listing 2: Function that transform C# Assignment node to CyML ASG. A visit function is a generic 

rewriting rule that calls the specific visitor according to the type of node. 

 

The binary operation visitor node can be generalized for ASG generation for several languages and 

platforms. However, the main differences are in binary operators, built-in methods and some particularities 
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of the platforms. Let us consider in the integration part of an example of vernalization process containing 

704 lines of codes whereas the algorithm contains 47 (Listing 3). 

 

 

Listing 3: An example of integration function of vernalization strategy, s is an instance of states at current 

time step, s1 is an instance of state at current time. 

 

BioMA uses domain classes to describe the domain of interest providing information about each 

variable used, and its value, a set of attributes such as minimum, maximum, default value, units, description. 

It provides a domain class for each interface variables declared as types with names such as States, Rates, 

Auxiliary, Exogenous etc. State class is instantiated for the previous and current time (or current and next 

time). The parsing of this integrate function (Listing 3) allows distinguishing the appropriate variable to 

adapt with CyML artifacts. That is, a variable of previous time is suffixed with “_t1” and the one of current 

by “_t” (Listing 4).  

 

Listing 4: Transformation of listing 3 in CyML algorithm. 

 

3.3.  Generation of Crop2ML model specification 

The extraction of Crop2ML model specifications consists first in identifying the component files that 

contains specification elements. In SiriusQuality, each strategy class contains the descriptions of all 

parameters of the strategy, the algorithm identified with the method CalculateModel, and a list of inputs and 

outputs. The strategy class does not contain the description of the inputs and outputs. They are described in 

variable information domain classes files (StatesVarInfo, RatesVarInfo, …). In the design section, we 

identify some patterns that must be satisfied to allow specification retrieving. Let us analyze the inputs and 

outputs sequence patterns. These two patterns are built with both strategy classes files and variable 

information domain classes (VarInfo) files. Each pattern is a composition of two patterns. The first uses 

strategy class to identify the variables names. Locating in the constructor of the strategy class, a variable 
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name of a strategy is the value of the attribute “PropertyName” of one instance (prefixed by “pd”) of the 

“PropertyDescription” class (Listing 5). This variable is an input if an instance prefixed by “_inputs” is 

previously declared, and it is an output if an instance prefixed by “_outputs” is previously declared. The 

first pattern is evaluated as true if all these constraints are identified. After retrieving these variable names, 

we identify the second pattern with VarInfo files, and the name of the variable. VarInfo class contains 

“DescribeVariables” method where the attributes (name, min, max, default value, …) of the variable are 

identified (Listing 6). This pattern is evaluated as true if all the attributes are identified. This analysis is 

continued for the other patterns. 

 

 

Listing 5: Identification of the pattern to retrieve a variable name of a strategy 

 

Listing 6: Identification of the pattern to retrieve the attributes of the variable identified with the first pattern. 

 

 

Listing 17: A portion of Crop2ML model specification result from a Component source code through inputs 

sequence pattern. 

 

The validity of the generated model specification (a portion in Listing 7) and model algorithm is ensured 

with the Crop2ML DTD and the use of CyMLT to transform them and make unit tests.  
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4. Conclusion and perspectives 

The goal of this study is to contribute to the exchange and reuse of process-based model components 

between crop modeling and simulation platforms. This paper completes the previous works that have 

defined an abstraction (Crop2ML) to allow representing a component regardless of platforms and designed 

a transformation system converting from Crop2ML to platforms. Here, we focused on the transformation 

from platforms model components to Crop2ML models. To achieve this objective, we designed a 

transformation system.  This system is composed of the parser generator ANTLR4 and two subsystems. 

One subsystem retrieves the model specifications from the platforms under some constraints, and the second 

one generates model algorithms with limited constructs. The proposed approach has been partially 

developed for BioMA with minimum specifications to evaluate the architecture of the transformation 

system. However, this development can be extended to other platforms in order to build an interoperable 

system between platforms. The use of the ANTLR4 parser and the modularity of this system makes the 

system scalable.  

The system proceeds to static analysis of model components by handling non compiled components 

(source code). This capacity to represent components as a graph and to traverse it enables to annotate model 

components and facilitates model curation and model element extraction for further processing.  

In the area of reverse engineering, several metamodels are used to describe software for program 

comprehension, maintenance, and evolution. Washizaki et al., (2018) established a conceptual framework 

with definitions of different program metamodels and related concepts. In the future, it will be interesting 

to position our proposition of a platform of model components in relation to reverse engineering in this 

taxonomy. 

This work is a further step towards the interoperability of PBM platforms by helping to facilitate the 

exchange of crop model components while maintaining the performance of the platforms. The whole 

Crop2ML framework has the intent to be a benchmark platform for evaluating the performance of the 

components of process-based crop models between crop modeling and simulation of platforms. 
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Chapter 6. General Discussion 

6.1. Research findings 

The main objective of this research is to design a framework for PBM components exchange and reuse 

between modeling and simulation platforms. It provides a novel approach shared by PBM platforms to 

describe conceptual models (to address issue 1). It also enables model transformations to different 

languages and frameworks, and supports consistency between a conceptual model and its implementations 

(to address issue 2). Based on our objective, we developed a global approach to provide an architecture of 

PBM component exchange and reuse (Crop2ML). Our approach aims to be integrative in order to arrive at 

a consensual solution and to take into account the differences between PBM platforms in terms of reuse. 

 

6.1.1. A common modeling metalanguage for model specification 

We addressed the lack of representation of conceptual models and the diverse interpretation of 

modularity in the frameworks.  For that, we proposed a set of generic concepts that allow representing shared 

conceptual models between modeling frameworks. We assumed the white-box reuse approach goes through 

shared model concepts. These concepts should allow each modeler to derive the model implementation 

according to the specificities of its platform. This approach will change the habits of modelers that used 

model code as a knowledge base. The model concepts and algorithms should be understood by the whole 

modeling community to enhance crop modeling science. We proposed a metalanguage based on these shared 

concepts between crop simulation frameworks to describe specifications of model components and 

compositions. The composition relies on the graph-based modeling approach that facilitates model 

portability into any platform. Thus, we addressed model modularity at the conceptual level rather than at 

the implementation level. This declarative representation of model components increases its portability, 

allows model-based reasoning, and facilitates FAIR principles. The metalanguage contains unit tests 

concepts that will help modelers to integrate unit tests into model development. Our approach eases access 

to the scientific knowledge underlying the components.  It links modeling and model documentation to 

avoid inconsistencies, knowing that the model specification is a sound basis for model documentation. 

The systems biology community uses a similar approach to describe their models. This community 

provides several domain-specific modeling standard languages such as SBML, CellML, and NeuroML to 

exchange and store models (Cuellar et al., 2003; Gleeson et al., 2010; Hucka et al., 2003). These XML-
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based languages provide specific elements to describe the model structure and equations using Mathematical 

Markup Language (MathML; Ausbrooks et al., 2003). MathML language describes mathematical notations 

and captures both model structure and content. However, these languages are limited to specific formalisms 

(e.g., chemical reactions, differential equations). They cannot be easily extended to represent crop models 

in their full complexity and diversity.  

The meaning of model variables and parameters needs to be fully understood before the model is reused 

or integrated into a large model component. This understanding is addressed with information on variables 

and parameters such as their name, unit, range of validity, description. Model documentation is often cited 

as a cure for understanding the data requirements of a model (Holzworth et al., 2010). However, there is no 

common way to name model variables and parameters to facilitate composition with a model in other 

platforms. One approach is to provide a function that makes the correspondence of variables and parameters 

names between two models such that they coexist according to the data structure of the variable in the target 

platform. 

 

6.1.2. CyML - A language for model algorithm 

PBM components are usually described by finite difference equations and embed control structures such 

as loops or condition statements. Thus, there is not a clear mathematical formalism to describe them. 

Therefore, we have designed and implemented CyML to represent model component algorithms associated 

to model components specifications. The CyML language provides a relatively simple structure with few 

specifications that can express the algorithm of a biophysical process involved in crop growth and 

development. The main interest of this language is to provide a common way to describe a process with the 

capacity to be integrated automatically in various platforms. For crop modelers, learning a new language 

with its own learning curve adds a level of complexity to an existing complex landscape of languages and 

tools. We designed CyML to minimize this added complexity by choosing a language close to existing 

languages. The main source of complexity is in the model specifications. The modeler has to specify the 

type of inputs and outputs, the documentation and unit tests. While this increases the complexity of the 

design of a new model, it provides an explicit and rigorous specification and enhances the transparency of 

the model and its reproducibility and reusability in different contexts. CyML is a subset of Cython language. 

Its constructs come from the intersection of PBM platform’s languages. CyML addresses several issues 

encountered in current PBM platforms, namely reproducibility, reusability, and transparency. It lowers the 

barrier of crop modeling platforms in terms of component reuse.   
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This choice of language limitation has its strengths and weaknesses. it reduces ambiguity in the language 

transformation since the base language (Cython) has some features that cannot be transformed into some 

target languages. CyML does not provide a formalism to link model components with data to build a 

modeling solution. Thus, the processes to read inputs, parameter values and write output values in a file is 

separated from the algorithm implementation given that it reduces reusability. The limitation of CyML may 

require adapting some model components provided by PBM platforms to support CyML constructs. It also 

reduces the capacity of the transformation system to infer a Crop2ML model from a platform’s model 

component. Therefore, it poses the question of the completeness of the intersection of the platform’s 

languages. 

 

6.1.3. CYMLT: A transformation system between crop modeling platforms 

Crop2ML concepts are at the heart of our framework, in particular the transformation system. We have 

designed two transformation definitions: from Crop2ML to PBM platforms (one-to-many) and from PBM 

platforms to Crop2ML (many-to-one), all based on a shared representation of abstract semantic graph (ASG) 

and graph rewriting rules. These two definitions led to an interoperability system between platforms. This 

approach of transformation based on Crop2ML reduces the complexity of the transformation algorithms. 

Let us consider 𝑛 platforms. A direct side-by-side transformation system gives 𝐴𝑛
2 =  𝑛(𝑛 − 1) 

transformation definitions, while our transformation system provides 2𝑛 transformation definitions. As the 

number of platforms increases, the complexity of the direct transformation increases exponentially unlike 

in our approach. Moreover, our system has been designed to be extensible to other languages and platforms. 

The transformation from Crop2ML to PBM platforms forces modelers to provide documentations of their 

model components through a specification that will be used to produce model implementation. The 

transformation system from PBM platforms to Crop2ML forces platform developers to integrate into their 

structure of model components a pattern to identify model specifications. Automatic reuse is not possible 

without model specifications. It can be either specified in the code or as documentation. Model specification 

or documentation and source code must be more closely linked to infer the corresponding Crop2ML model. 

The transformation system enables users to focus on the scientific aspect of their model rather than on the 

internal knowledge of platform specificities. A model component can be reused, improved, integrated, and 

simulated in various platforms. It favors the diffusion of models, sharing them as software and scientific 

artifacts, and thus, enhancing transparency and reproducibility of crop models. The transformation system 

embeds platform specificities to generate automatically model components that conform to a specific 
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platform. It makes the complexity of component integration in different platforms identical with wide 

availability.  

Although the transformation system allows establishing transformation definition with several 

languages (C#, Java, Python, C++, R, and Fortran) and platforms (DSSAT, BioMA, RECORD, 

SIMPLACE, OpenAlea), several limitations (complex data structure) required to extend it. These limits are 

related to the CyML language limitation and Crop2ML concepts. Moreover, it is easier to generate model 

components from Crop2ML than to infer a Crop2ML model from a platform model component. The reason 

is that a few modeling platforms (BioMA, SIMPLACE) provide a model specification that describes clearly 

model variables. 

 

6.1.4. Facilitate model exchange and reuse through Crop2ML framework 

The Crop2ML framework enables the exchange and reuse of PBM components between various PBM 

platforms through shared conceptual models. It provides a white-box reuse approach that could considerably 

increase the ability of modelers to share their model components. The main parts of this framework are:  

● Crop2ML model package: a logical, standardized but flexible support to facilitate model sharing 

between modeling platforms through the definition of a directory structure; 

● model specifications: a description of model components based on shared concepts between 

frameworks; 

● model algorithm: a description of the behavior of model components in terms of sequence of inputs, 

successive rules or actions, conditions or a flow of instructions from inputs to outputs including 

mathematical expressions; 

● model transformation: a transformation system allowing the import and export between Crop2ML 

and PBM platforms (DSSAT, BioMA, RECORD, SIMPLACE, OpenAlea, APSIM, and STICS); 

● CropMStudio: A JupyterLab environment for Crop2ML to manage model life cycle such as 

creation, edition, transformation, composition, verification and validation (unit testing); 

● Crop2ML Python library: an open, modular, and extensible library developed in Python that 

implements all the steps of the Crop2ML model lifecycle. It supports the current Crop2ML model 

specifications with the flexibility to be adapted for future versions. Other software projects can 

integrate it as a plug-in for adding its functionalities. 

Some particularly novel features of Crop2ML framework include the parameterization of the grammar 

in each of the supported languages, modeling platform specific source code generation, the integration of 
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unit test into the model specification (allowing testing transformations), and platform/language specific 

documentation generation. Such features are likely to encourage verification, reproduction, and reuse among 

modelers and address the issue 1 framed in Chapter 1. 

Other initiatives addressed model reuse by providing multi-scale and multi-language integrative 

frameworks such as OpenAlea (Pradal et al., 2015), Crops in silico (Marshall-Colon et al., 2017) or OpenMI 

(Buahin & Horsburgh, 2018). These frameworks can compose and simulate heterogeneous models provided 

by different frameworks through a communication interface. The model components are often wrapped and 

represented as black-box components contrary to our approach. These frameworks enhance model reuse in 

their environment, but they do not address reusability between other simulation frameworks.  

A shared model repository infrastructure is essential for efficient model exchange (Le Novere, 2006). 

Currently, model components are stored in a Github repository. In the future we need to provide a Crop2ML 

model repository to save models in a shared format to make them easily accessible and reusable by the PBM 

community. This repository aims at hosting alternative biophysical processes and facilitating model 

selection and improvement. It will help modelers to operate on multiple model components, compare them, 

or evaluate the impact of the integration of each component in large model components and crop modeling 

solutions.  

 

6.1.5. Toward a standard in PBM component reuse 

The Crop2ML framework, that is the model specification metalanguage, the model algorithm language 

and the transformation system, addresses the need of the plant and crop modeling community to enhance 

research collaboration by improving the capacity to exchange and reuse PBM components. The theoretical 

interest to provide a common approach to implement model behavior has been demonstrated by Holzworth 

et al., (2014b). However, despite the success of crop simulation platforms around which different 

communities are built, and some proposals of declarative language implementation (Athanasiadis & Villa, 

2013; Rizzoli et al., 2008; Villa et al., 2006), the lack of a shared standard limits model reusability. This 

issue impedes the intercomparison and improvement of PBM. The availability of our framework through 

AMEI will allow building a large community around this system and can make Crop2ML a standard 

providing a means to compare independent biophysical processes or promote alternatives approaches. 

However, we need to develop a strategy to benchmark PBM components between crop simulation 

platforms using Crop2ML. This strategy involves improving Crop2ML (e.g., data structure, metadata 

annotation, model selection, semantic composability), integrating other crop modeling and simulation 
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frameworks, making available the source codes of model components, and overcoming the issue of the 

intellectual property of model components. 

 

6.2.  Future research directions  

This thesis presents some solutions to the problem of PBM component reuse between crop modeling 

and simulation platforms. A number of future directions for research were identified during the course of 

our work. 

 

6.2.1. Improvements of Crop2ML framework 

The limitations in our PBM exchange and reuse framework are twofold: 

First, we have not provided any notion of composite variables or data structure. A composite variable 

is a variable made up of two or more variables or measures that are highly related to one another 

conceptually or statistically (Ley, 1972). The use of composite variables is a common practice in PBM 

development. A composite variable could be categorical variables (e.g. development stages) or cohorts of 

organs. In our current framework, we decompose first manually composite variables into several individual 

variables according to Crop2ML data structures. It leads to a semi-automatic transformation system. Thus, 

we need to focus on composite variables to target towards a complete automatic transformation system. 

Second, we do not provide any recommendation to select model components based on expert knowledge 

(Adam et al., 2010b). Currently, model specification is the only source providing the modeling context 

through the provenance of the component and its description. We have no concept that allows ensuring the 

composition of contexts (R. Lara et al., 2006) or that guides the user to make a meaningful composition. 

Thus, it would useful to integrate into the Crop2ML framework a component selection approach based on 

expert knowledge to help building components compatible with the scientific requirements of crop 

modelling solutions.  

The position of our framework with regard to systems engineering would require more investigations 

of previous works in Model-based development approaches. The SysML approach can be one of the future 

implementation area for the Crop2ML framework. It could help to formalize the different steps to exchange 

complex biophysical models. 
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6.2.2. Towards a multiscale framework? 

A framework that combines PBM and FSPM 

Crop2ML framework aims to enable the exchange and reuse of components between modeling 

platforms, notably between crop growth and functional-structural plant modelling (FSPM) platforms. While 

crop growth models simulate plant growth and development at the scale of the canopy (m2) or average plant 

level, FSPMs are individual-based models at the scale of the organ (phytomer). The exchange (sharing) of 

model components between crop growth models and FSPMs would allow an efficient coupling of these two 

modeling approaches to model crop species or variety mixtures by capturing spatial heterogeneities and 

quantifying plant traits involved in crop mixture performance (Gaudio et al., 2019). Another application is 

the use of FSPMs in a model-driven phenotyping approach, where plant structural traits are estimated by 

reverse engineering an FSPM (Liu et al., 2019) and are then used as crop model input parameters to simulate 

the behavior of genotypes in target agro-climatic scenarios. Currently, Crop2ML only allows representing 

processes as functions and does not consider the plant’s structure. To extend Crop2ML to the FSPM 

community will require extending Crop2ML to support complex data structures such as 3D geometry and 

topology. The Multiscale Tree Graph (Godin & Caraglio, 1998) structure used in OpenAlea can be 

integrated in Crop2ML to represent the plant’s topological structure. This would also facilitate the coupling 

of components operating at different scales (e.g. leaf area expansion at the organ level vs. photosynthesis at 

the canopy level) through a white-box approach. 

 

A link between Crop2ML and integrative modeling platforms 

The convergence of our approach of model reuse and reproducibility with other initiative, like the Crops 

in Silico collaboration (Marshall-Colon et al., 2017) would greatly accelerate the development of the next 

generation of PBMs. The Crops in Silico initiative aims at integrating model frameworks to build a complete 

crop in silico from the level of the genes to the level of the field or ecosystem using a software package, 

Yggdrasil (Lang, 2019). Yggdrasil connects PBM components across programming languages by running 

asynchronous models in parallel. It requires to write wrappers in the different languages to process the 

asynchronous messages to manage model inputs and outputs. Crop2ML may interact with Yggdrasil (i) to 

make available model components into the languages supported by Yggdrasil with their wrappers, (ii) to 

produce efficient components source code in various languages in order to improve the performance of the 

simulation in Yggdrasil; and (iii) by validating each component with unit tests before their integration. The 
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interaction between CyML and Yggdrasil could enhance the integration of PBMs across different languages 

and scales. 

 

6.2.3. Use of Crop2ML framework to compare and improve modeling solutions 

The intercomparison and improvement of crop models requires proposing a generic model of 

computation for Crop2ML models. Despite the differences between crop modeling and simulation 

frameworks, we found some common features that enabled us to represent biophysical processes regardless 

of their specificities. We developed Crop2ML under the assumption that differences in the outputs of 

modeling solutions are due to the differences in the individual processes. However, the differences in models 

of computation (sequential model; [BioMA, SIMPLACE, DSSAT], data flow [OpenAlea], discrete event 

[Record]) could also have a strong impact on the simulation output of a model, but we did not consider it in 

this work. We need to support different models of computation into Crop2ML framework to achieve our 

objective. A complementary approach to our transformation system was demonstrated through the 

automated transformation of input files of four agricultural models (Samourkasidis et al., 2019) enabling 

the discovery and reuse of data across modelling solutions. Together with Crop2ML they could ensure that 

a complete model implementation and the associated data can be transformed between modelling solutions. 

They could also allow quantifying processes of crop models in a robust and repeatable manner. 

 

6.2.4. Extend Crop2ML with semantic annotation 

The capability to export from Crop2ML to PBM platforms is well performed since the transformation 

system is designed to support the specificities of the target platforms. However, the semantic of a Crop2ML 

model is about the shared concepts defined to describe at a high level a biophysical process designed as a 

discrete-time model. There is no semantic to support the description of each instance of Crop2ML concepts. 

For example, since there is no shared convention to name model variables or parameters, the integration of 

a component into a larger component of other platforms requires adapting the name of its variables. This 

would require annotating Crop2ML models to add semantic information in order to make a semantic link 

between any Crop2ML model variables or parameters, and those of components integrated in PBM 

platforms. This will also allow a semantic composability of Crop2ML models instead of a syntactic 

composability that analyzes if the pair of variables to be linked are isomorphic. Our perspective is to provide 

a metadata annotation based on a minimum requirement to annotate each element of Crop2ML models with 
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relevant information to avoid component misuse, and to allow the distribution of Crop2ML models via a 

shared repository, like BioModels (Glont et al., 2018; Le Novere, 2006). This annotation should use and 

extend existing ontologies such as the Crop Ontology (Matteis et al., 2013), or the Agronomy ontology 

(Jonquet et al., 2018). The annotation of model variables and parameters would also greatly facilitate the 

link between crop model components and modeling solutions and data.  

The annotated model components can then be interoperable at the semantic level offering the capability 

to automate their composition through Semantic Web technologies and web services. The semantic 

interoperability ensures that the composition is biologically meaningful and consistent with the modeling 

objective defined by the modelers. To address this issue, it would be interesting to explore Automatic web 

service composition research area (Bekkouche et al., 2017; Hatzi et al., 2012; Netedu et al., 2020). This area 

promotes the improvement of the composition of multiple Web services to create new ones with specific 

functionality. It requires efficient automated service discovery and selection approaches (Geem et al., 2001; 

Azmeh et al., 2011) from a web-based repository of Crop2ML model components followed by the validation 

of the semantic composability (Mahmood et al., 2012; Szabo & Teo, 2009) that involves information about 

the components’ behavior. 

 

 

Conclusion 

In this thesis we study the issue of the reuse of process-based model (PBM). PBM are increasingly used 

to analyze and predict the response of agricultural systems to climatic, agronomic and, more recently 

genetic, factors. They have often been developed in crop simulation platforms to ensure their future 

extension and to couple different crop models with a soil model and a crop management event scheduler. 

The emergence of crop modeling frameworks has considerably increased the use of crop models in research, 

as well as their applications for the management of production systems or scenario analysis. Despite their 

advances, these frameworks have negatively impacted models by causing a loss of transparency for 

modelers. As stated in Chapter 2 the main drawback of the wide range of frameworks is their difference in 

terms of programming languages, software designs, and architecture constraints. This led to a decrease in 

the development of new formalisms, particularly for new uses related to phenotyping. Indeed, the 

dependency on the frameworks limits model reuse between them.  It also adds the divergent consideration 

of modularity, the lack of the description of models, which do not promote their reuse. Even if model reuse 
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has already been studied, few improvements have been made (Holzworth et al., 2014a) with little 

collaborative effort. 

This research proposes a comprehensive framework for process-based model components exchange and 

reuse. It provides an approach that automatically generates model components with flexible structures using 

shared modeling concepts. By “flexible structures”, we mean that model components are not generated by 

a specified model structure, but the model component has a structure that is dynamically constructed 

according to the target framework. 

I proposed a shared representation of model components to address reuse. Using this shared 

representation has three advantages: (1) it provides a good understanding of the model component by 

different parties (2) it serves as a bridge between modeling frameworks (3) it facilitates the extension of the 

framework with other parties. Several frameworks have reused the same components implemented in 

Crop2ML using the CyMLT transformation system. A shared representation reduces the number of 

transformations between frameworks and avoids providing a specific transformation between each pair of 

frameworks. This could reduce the genericity of our approach and increases the complexity of the 

transformation. The case study has been illustrated with international platforms which are highly different: 

DSSAT, BioMA, SIMPLACE, RECORD, and OpenAlea. We have also shown the extensibility of our 

framework with a widely used platform APSIM. 

Our framework differs from the existing crop modeling frameworks. It highlights the strong need to go 

through a conceptual approach from which the implementation must derive, while keeping consistency 

between them. This entails that there is an information gap between a model component as such and how it 

is implemented in terms of language, structure, and software design. Our approach does not depend on any 

implementation language and satisfies the requirements of existing frameworks. Thus, the aim of our 

framework is not to replace existing crop modeling platforms but to exchange components between them 

while preserving the constraints of existing platforms (e.g. programming languages, programming 

paradigm). 

From the initial research questions and the final research results, we conclude that this research 

addresses the identified issues in crop model reuse. We tested the applicability of the proposed framework 

by developing a prototype. The proposed framework bridges the gap between modeling and simulation 

platforms in model component reuse. 

Potential users of these results are all the actors in software development and in the crop simulation 

model development, including modelers, model builders, crop modeling framework developers.  It aims at 

improving the conceptual modeling stage and increasing the reuse of crop model components. The focus on 
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the conceptual modeling stage in crop modeling and the definition of transformation systems that make 

consistent the conceptual model and its implementations grant the originality of this research, because this 

subject has not been adequately studied before in the crop modeling and simulation community for reuse 

purposes. 
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