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Foreword

We are fortunate that during the last two decades, many talented scientists have built the
mathematical infrastructure we need – the theory and implementation of logical frame-
works and automated theorem provers, type theory and type systems, compilation and
memory management, and programming language design. The time is ripe to apply all
of these advances as engineering tools in the construction of safe systems.

Andrew W. Appel in “Foundational Proof-Carrying Code” [App01].

From a proof point of view, the main lesson learned from the CompCert experiment is the
following. When formally verifying a complex piece of software [...], it is not realistic to
write the whole software using exclusively the specification language of the proof assis-
tant. A more pragmatic approach [...] consists in reusing an existing implementation in
order to separately verify its results.

Sandrine Blazy et al. in “Formal Verification of a C Value Analysis [...]” [Bla+13].

Abstract types are an invaluable tool to software designers. They aid programmers in
reasoning about interfaces between different pieces of code. Despite this utility, it is
very hard to prove that the informal reasoning about abstract types [...] is correct. One
approach is to [...] appeal to results on parametricity [Rey83].

Dan Grossman, Greg Morrisett et al. in “Syntactic Type Abstraction” [GMZ00].

This document is my habilitation thesis (“Habilitation à Diriger des Recherches” or HDR, in
French). It rewrites most of my published and unpublished papers since [#FB14], in order to make
them appear as the parts of a single topic abstracted below.

How to Read this Document?

This document is best viewed in color, A4 paper, but a black and white print is also readable. The
online PDF contains hyperlinks in red. Chapters, ended by a “†” (dagger) symbol in their title, are
(totally or partially) extracted from my peer-reviewed publications that are indicated in a footnote in
the first page of the corresponding chapter. These self citations start with character “#” like [#FB14].
They are not listed in Bibliography, but in Chapter 8. I also contributed to the formally verified
software with names appearing inside braces, like {VPL}. These software are also summarized in
Chapter 8.
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Abstract

I present a lightweight approach – combining Coq and OCaml typecheckers – in order to formally
verify higher-order imperative programs for partial correctness. In this approach, called FVDP (For-
mally Verified Defensive Programming), external OCaml functions are abstractly embedded in Coq
as nondeterministic untrusted oracles: the formal proofs only consider their ML type, but never their
side-effects nor other functional properties.

Formal guarantees are obtained by combining parametric reasoning over polymorphic oracles
(i.e. “theorems for free” à la Wadler) with verified defensive programming in Coq. In particular, this
combination is exploited within a design pattern—for certificate producing oracles—called Polymor-
phic LCF Style (or Polymorphic Factory Style). Large Coq proofs on these higher-order impure defen-
sive computations are decomposed thanks to data-refinement techniques in order to cleanly separate
reasoning on pure data-structures and algorithms from reasonings on sequences of impure computa-
tions. Then, the latter are (semi)automated thanks to computations of weakest liberal preconditions.

FVDP is detailed on several “realistic” applications: in optimizing compilation (instruction schedul-
ing with {CompCert-KVX}), in static analysis (abstract domain of convex polyhedra with {VPL})
and in automated deduction (Boolean SAT-solving with {SatAnsCert} and linear rational arithmetic
with {VplTactic}). The document explains how FVDP both alleviates development times and running
times of such formally verified applications.
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Description en français

Traduction du titre

Programmation défensive formellement vérifiée :
calculs efficaces et vérifiés en Coq,

à partir d’oracles OCaml potentiellement non fiables

Résumé détaillé

Ce mémoire de HDR présente une approche légère – combinant Coq et OCaml – afin de vérifier
formellement des programmes impératifs d’ordre supérieur en correction partielle. Dans cette ap-
proche, que j’appelle FVDP pour “Formally Verified Defensive Programming” (la programmation
défensive formellement vérifiée), le logiciel, formellement prouvé en Coq, comporte aussi des fonc-
tions directement programmées en OCaml, considérées comme des oracles potentiellement non fi-
ables, c’est-à-dire dont l’implémentation est ignorée par la preuve formelle, mais dont les résultats
sont éventuellement vérifiés à l’exécution, de façon à garantir les propriétés formelles désirées.

Ainsi, pour obtenir un programme formellement vérifié résolvant un problème compliqué, le plus
simple consiste souvent à déléguer à un oracle OCaml la recherche d’une “bonne” solution, en le
combinant en Coq avec un test défensif (formellement vérifié) capable de garantir que cette solution
satisfait la propriété de correction désirée. L’intérêt est double : d’une part, bénéficier d’un langage de
programmation plus riche que celui de Coq pour la recherche de solution (avec toute la puissance de la
programmation impérative en OCaml); d’autre part, éviter d’avoir à formaliser les raisonnements sur
les procédés de calculs de la solution, souvent beaucoup plus complexes que ceux juste nécessaires à
la vérification défensive de cette solution. Ainsi, la preuve formelle en Coq ne considère les oracles
qu’au travers de leur type OCaml (via son plongement en Coq). En particulier, elle ne raisonne jamais
sur leurs effets de bord.

Le mémoire retrace brièvement l’histoire de cette idée, apparue bien antérieurement à mes travaux
et dans un contexte plus large que le couplage Coq/OCaml. Il rappelle en particulier comment elle a
contribué au succès de CompCert [Ler09a], un compilateur C formellement vérifié en Coq.

Puis, il propose de systématiser le couplage Coq/OCaml précédemment utilisé par CompCert,
basé sur l’extraction de Coq vers OCaml. Il part du constat, qu’en général, pour éviter un risque
d’incorrection, il faut plonger les oracles OCaml en Coq comme des fonctions “non-déterministes”.
J’introduis pour cela une monade dédiée, appelée “may-return monad”. Cette structure permet de
combiner ces fonctions non-déterministes et de raisonner sur leurs résultats potentiels. Elle est à
la base du prototype d’interface Coq/OCaml fournie par ma bibliothèque appelée {Impure}. Cette
dernière propose en outre un plongement de l’égalité de pointeurs d’OCaml en Coq via une telle
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fonction non-déterministe. Le mémoire explique comment cette simple égalité de pointeurs permet
la vérification défensive légère d’oracles pratiquant de la mémoïsation dans des tables de hachage
(“hash-consing” de termes, récursion avec mémoïsation).

Le mémoire détaille aussi comment le type OCaml suffit à garantir statiquement des invariants
expressifs sur le résultat des oracles polymorphes. Techniquement, cela correspond à relâcher la
technique des “theorems for free” de Wadler [Wad89] (basée sur le polymorphisme paramétrique de
Reynolds [Rey83]) dans un contexte impératif et non-déterministe. Cette technique est notamment à la
base d’un patron de conception destiné aux oracles devant fournir une trace vérifiable de leurs calculs
(cette trace devant par exemple permettre au vérificateur de démontrer la non-existence d’une solution
à un problème donné). Ce patron de conception, que j’appelle “Polymorphic Factory” (la fabrique
polymorphe) ou encore “Polymorphic LCF Style” (en référence à l’ancien prouveur LCF [Mil79] à
l’origine des langages de programmation ML), combine donc le typage statique de OCaml et de Coq
pour allèger à la fois le développement de ces oracles et leur vérification défensive.

Enfin, je propose de décomposer certains imposantes preuves Coq sur ces programmes formelle-
ment non-déterministes, avec des techniques de raffinement de données. Cela permet d’isoler propre-
ment les raisonnements sur les structures de données et les algorithmes “purs”, des raisonnements sur
les séquences d’appel de fonctions non-déterministes. Ces derniers peuvent être alors (semi)automatisé
grâce à un calcul de plus faible précondition (fourni par {Impure}).

Le mémoire illustre ces idées sur plusieurs applications “réalistes” : en compilation optimisante
(ordonnancement d’instructions avec {CompCert-KVX}), en analyse statique (domaine abstrait de
polyèdres convexes avec la {VPL}) et en déduction automatisée (en SAT booléen avec {SatAnsCert}
et en arithmétique rationnelle linéaire avec {VplTactic}). Il détaille comment la FVDP, déclinée dans
des conceptions logicielles adaptées, allège à la fois les temps de développement et d’exécution de
ces applications formellement vérifiées.
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Chapter 1

Introduction to Formally Verified
Defensive Programming (FVDP)

By June 1949 people had begun to realize that it was not so easy to get programs right as
at one time appeared. I well remember when [...] the realization came over me with full
force that a good part of the remainder of my life was going to be spent in finding errors
in my own programs.

Maurice Wilkes, Turing Award1 1967, in “Memoirs of a Computer Pioneer”, 1985.

We shall do a much better programming job, provided that we approach the task with a
full appreciation of its tremendous difficulty, provided that we stick to modest and elegant
programming languages, provided that we respect the intrinsic limitations of the human
mind and approach the task as Very Humble Programmers.

Edsger W. Dijkstra, in conclusion of his Turing Award2 lecture [Dij72].

Contents
1.1 How to Protect Programs Against Programming Errors? . . . . . . . . . . . . 8

1.1.1 Without Protection Against Non-Termination and Crashes . . . . . . . . . 10
1.1.2 Without Protection Against Malicious Bugs . . . . . . . . . . . . . . . . . 11
1.1.3 With Formal Protection Against Unintended Correctness Bugs . . . . . . . 12

1.2 Analyzing the Trusted Computing Base (TCB) for FVDP . . . . . . . . . . . . 12
1.2.1 TCB of Coq Proof Checking . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 TCB of Coq Verified Autarkic Programs . . . . . . . . . . . . . . . . . . . 13
1.2.3 TCB of FVDP with Coq and OCaml through Extraction . . . . . . . . . . 14
1.2.4 Toward Removing Extraction and OCaml from the TCB . . . . . . . . . . 14
1.2.5 TCB of Large and Complex Software like CompCert . . . . . . . . . . . . 15

1.3 Design Principles for FVDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Communicating (or not) with Untrusted Oracles from Coq-Verified Code . 16
1.3.2 Decomposing Large Formal Developments thanks to Data Refinement . . . 17

1For having designed the first computer with an internally stored program : the EDSAC, in 1949.
2For its seminal contributions to the science and art of programming.
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1.4 Contributions of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Collection of FVDP Designs . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Summary of the Methodological Contributions . . . . . . . . . . . . . . . 20
1.4.3 FVDP by Polymorphic LCF Style and Theorems for Free . . . . . . . . . . 20
1.4.4 FVDP of {Impure} Data Structures with Data Refinement . . . . . . . . . . 21

1.5 Quick Overview of Other Chapters . . . . . . . . . . . . . . . . . . . . . . . . 21

This preliminary chapter intends to introduce—for a wide audience of computer scientists (with-
out any prior knowledge about formal verification in Coq)—both the scientific context and the contri-
butions of my work.

1.1 How to Protect Programs Against Programming Errors?

The issue faced by 1949 programmers is still open today: it is still hard to get programs right. Of
course, software engineers are much more equipped today than a few decade ago (e.g. with myriads
of testing methodologies [Mat08]). But software and computers are also much more complex. And
mainstream methods, while very effective in many contexts, cannot ensure the quasi-absence of bugs
that is required for safety-critical embedded systems (e.g. automated transport, power plants, etc).
Quoting Dijkstra [Dij72]: program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.

This document studies a method—that I call Formally Verified Defensive Programming or FVDP
in short—for efficiently programming “software-handling software” (e.g. compilers or verifiers),
while formally proving their functional correctness. FVDP consists in monitoring at runtime the
results of some untrusted but efficient computations (this is defensive programming), and in for-
mally proving that this runtime monitoring ensures the expected correctness property. Hence, FVDP
strengthens defensive programming in order to formally ensure the correctness of computation results.
More precisely, FVDP aims to ensure the partial correctness of programs: if the programs succeeds
to return a result, then this result is correct. For example, if the compiler succeeds in producing an
executable, then the executable behaves as expected (and can be safely embedded in the safety-critical
system). Quoting Leroy [Ler11]:

Not all parts of a compiler or verifier need to be proved: only those parts that affect
soundness, but not those parts that only affect termination, precision of the analysis, or
efficiency of the generated code. Leveraging this effect, complex algorithms can often be
decomposed into an untrusted implementation followed by a formally verified validator
that checks the computed results for soundness and fails otherwise. (Failure is not an
option in flight, but is an option at compile-time and verification-time.)

Indeed, FVDP has been successfully applied in the CompCert verified compiler [Ler09b; Ler09a].
This compiler is the first C compiler used in industry [Bed+12; Käs+18] that provides a formal proof
of correctness. It is a major success of software verification, because CompCert does not have the bugs
which can usually be found in optimizing compilers [Yan+11]. Its success partly comes from its smart
design, focusing the formal proof in Coq [Tea20] on the partial correctness of compilation passes,
while reasonings on their performance and termination remain informal.3 In particular, CompCert

3Other key ingredients of CompCert success story include for example its nice memory model [LB08; Ler+14] allowing
for stepwise refinement of the memory layout through the compiler passes.

8



invokes oracles, i.e. untrusted functions programmed in OCaml [Ler+20], from the certified code.
Formal guarantees are proved from runtime checks on untrusted intermediate results. For example,
register allocation in compilers is an NP-complete problem: efficiently finding a fitting allocation is
difficult, while checking the validity of a given one is easy. CompCert thus delegates complex parts
to an untrusted oracle, the result of which is then validated by a checker programmed and certified
correct in Coq [RL10].4

As advocated by Leroy, such a decomposition—into an untrusted oracle and a formally verified
checker—may greatly alleviate formal verification of many complex implementations, by sparing
painful proofs, about their termination, about their memoization techniques of redundant computa-
tions, about their strategies to select solution candidates, etc. Generally, untrusted oracles have sev-
eral benefits: (1) they avoid the implementation and proof of cumbersome algorithms in Coq; (2) they
offer the opportunity to use (or even reuse) efficient imperative implementations; (3) above all, they
make the software more modular since the checker is actually certified for any oracle with the same
type. In particular, the oracle can still be improved or tuned for some specific cases, without requiring
any update in the checker.

FVDP does not try to prevent all bugs. On the contrary, FVDP can be viewed as a systematic ap-
proach to convert “correctness bugs” into “abnormal termination”, such that correctness bugs cannot
remain unnoticed. This feature could be viewed as a weakness. But this weakness seems a lesser evil
for software that produces safety-critical software: while the safety-critical software is not produced,
it cannot cause harmful damage. The benefit of this modest protection is a great simplification of the
formal verification task, which in turn helps to tackle more complex applications, as demonstrated by
CompCert register allocation.

Because FVDP does not prevent “performance bugs” (which include here abnormal termination
and non-termination), FVDP still require the use of standard testing techniques in order to check that
the software is reasonably usable. Moreover, the main benefit of FVDP is precisely to mitigate the
previously mentioned claim of Dijkstra about program testing: program testing, in conjunction with
FVDP, is a very effective way to show the absence of bugs in the results returned on the tested inputs,
particularly if there is no other easy way to check that these results are correct. However, studying in
details how testing may benefit from FVDP (and conversely) is out of the scope of this document: in
a first approach, we may simply use FVDP as a replacement of unverified defensive programming.

This document presents applications of FVDP by combining the Coq proof assistant [Tea20] and
the OCaml programming language [Ler+20]. Actually, FVDP has already been applied in many pre-
existing works, under distinct names: “skeptical approach” [HT98], “translation validation” [Nec00],
“result certification” [Bes+07] or “validation a posteriori” [Ler11]. I introduce instead the name
“formally verified defensive programming”, in order to suggest that a systematic application of this
approach could increase the productivity of formally verified programming. FVDP may indeed avoid
many tedious proofs, by replacing them with simple defensive checks, provided that these defensive
checks are cheap enough at runtime. The following paragraphs aim to clarify and motivate FVDP’s
intrinsic limitations.

4Remark that a purely functional implementation of the algorithm behind the untrusted oracle has also been verified in
Coq [BRA10]. But it is not as fast as an imperative one. And, it might also not be as easily tunable.
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Fixpoint iterp2 {A} (f:A → A) (n:nat) (x:A): A B
match n with
| O ⇒ f x
| S n ⇒ iterp2 f n (iterp2 f n x)
end.

Definition power2 n B iterp2 S n O.
Definition bigtower2 n B iterp2 power2 n O.
Definition loop n B iterp2 (fun x ⇒ x) n n.

Figure 1.1: Example of the Counterintuitive Meaning of “Total Correctness”.

1.1.1 Without Protection Against Non-Termination and Crashes

While autarkic programming5 in Coq ensures total correctness, FVDP only ensures partial correct-
ness, due to its use of external untrusted code which may fail or loop forever. Actually, we now
illustrate that, for the final user, the usual notion of “total correctness” in computer science does not
provide much more tangible guarantees than “partial correctness”.

Indeed, while Coq ensures that all typechecked programs terminate (without error), this happens
for the usual mathematical notion of termination in computer science which does not match the usual
expectation of final users: a Coq program, that is proved to terminate (without error), may, in practice,
not finish before the end of universe, or may crash because of a lack of memory. Indeed, the math-
ematical notion of termination assumes unbounded time and memory.6 Let us illustrate this on the
simple examples of Fig. 1.1. First, let me explain its definitions, based on the inductive definition of a
Peano’s natural number n from zero O and successor S. The structurally recursive ( iterp2 f n x )
computes (f2n x). Hence, mathematically,
• ( power2 n ) computes 2n;
• ( bigtower2 n ) computes a 2n-height tower of powers of the form 2

2...
20
}

2n times
;

• at last, loop is a very inefficient implementation of the identity function over naturals: ( loop n )
returns n.

The Coq logic ensures that all these computations terminate. But, on my laptop:7

• ( power2 ( bigtower2 ( S ( S O ) ) ) ) which is expected to compute 216 = 65536, actually
crashes almost instantaneously on a stack overflow;
• ( bigtower2 ( S ( S ( S O ) ) ) ) which is expected to compute 22265536

actually crashes after
almost 3 minutes on a memory overflow;
• ( loop ( power2 ( S ( S ( S ( S ( S ( S ( S ( S ( S ( S O ) ) ) ) ) ) ) ) ) ) ) ) cannot be obser-

vationally distinguished from an infinite loop: indeed, it applies 21024 times the identity, while
the age of observable universe is estimated to be lower than 290 nanoseconds.

These bad behaviors are not due to a bug in the implementation of Coq, but result from the mismatch
between the mathematical notion of termination and the human one. From the final user point’s of

5Following [BB02], we say that a program developed in Coq is autarkic, iff it is only programmed within the Coq
programming language, without any external code. We also say—as a synonym—that such a program is pure, because it
can only correspond to a mathematical function, without any implicit side-effect (such as an I/O event or the modification
of a variable).

6The motivation for this abstract notion of termination lies in the design of Coq logic: in short, ensuring such a termina-
tion of computations is necessary to unify the representation of proofs and computations by the Curry-Howard isomorphism.
Actually, this design of Coq improves the trustworthiness of Coq developments. See Section 1.2.1.

7The computations here have been run within the coqc compiler. Similar bad behavior could be also observed after
extraction/compilation to native code.
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view, the Coq proof assistant can only ensure a partial correctness property. It is technically hard to
ensure stronger properties. For example, safety-critical systems require strong termination properties
on computations: they are expected to fit in the finite memory of the processor and to finish before any
significant change of the environment. In particular, some static analyzers (like aiT8, see [Sch+18])
are able to bound the worst-case execution time (WCET) of embedded binaries, by using a fine model
of the processor micro-architecture [Fer+01; Mai+19].9 But, such analyzes are very specific to the
target processor and to embedded software. They seem almost impossible to generalize to general
purpose computations in Coq. As a consequence, dropping a quite confusing “total correctness” in
favor of an uninhibited “partial correctness” does not seem a big loss.

1.1.2 Without Protection Against Malicious Bugs

The FVDP method studied here will provide no absolute guarantee: even against the “correctness
bugs” that it aims to prevent. The method only aims to make unintended correctness bugs very un-
likely. Indeed, no method can provide absolute guarantees. This is related to Gödel’s second incom-
pleteness theorem [Göd31]: even if we aim to carefully check our mathematical theories, this check
will remain incomplete—because it cannot completely bootstrap itself—and may obfuscate an error.
Fundamentally, we can only have an incomplete knowledge of our surrounding reality which forbids
to us to fully check the correctness of our mathematical models: our ignorance may maintain us in
wrong beliefs.

The intuition of this issue becomes clearer when we imagine that the incompleteness of our knowl-
edge is maliciously exploited at our expense, like in popular movies such as “The Matrix” or “The
Truman Show”. In 1983, Ken Thompson and Dennis Ritchie jointly received the Turing Award for
their implementation of the UNIX operating system. Thompson’s acceptance speech [Tho84] was
precisely on such a subject: how to introduce Trojan horses (e.g. secret thieves) in UNIX systems,
such that these backdoors remain invisible in the source of programs, but are only present in their
binaries. Indeed, initially, users are somehow obliged to install the OS on their computer from some
binaries. Thompson’s trick is that, even if users later recompile programs from the sources, this will
be achieved with the binary of a C compiler, which contains itself a malicious bug producing Trojan
horses. Recompiling the C compiler itself without changing the sources does not make disappear
the backdoor. This backdoor being hidden in a given sequence of characters of the compiler sources
which seems harmless for the C semantics, there is no reason for the user to change it. Hence, Thomp-
son’s malicious C compiler does deliberately fail to respect the C semantics: it maliciously interprets
this special sequence of characters. And Thompson concludes:

No amount of source-level verification or scrutiny will protect you from using untrusted
code. In demonstrating the possibility of this kind of attack, I picked on the C compiler. I
could have picked on any program-handling program such as an assembler, a loader, or
even hardware microcode. As the level of program gets lower, these bugs will be harder
and harder to detect. A well-installed microcode bug will be almost impossible to detect.

Indeed, since Thompson’s seminal talk, malicious hardware has been designed (e.g. see [Kin+08]).
Protections against such a malicious hardware have been proposed by [Zha+13] and [WSS13]. But
then, counterattacks against these protections have been designed [ZYX14], etc.

8https://www.absint.com/ait/
9See also [Oli+14] for the FVDP of a WCET analysis within CompCert.
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Hence, Thompson’s malicious bugs really exist. Actually, in the usual metatheories of program
verification, nothing distinguish a malicious bug from an unintended bug: a malicious bug simply cor-
responds to a bug that seems so unlikely, that it should not happen by accident. Moreover, to Thomp-
son’s list of “program-handling programs” given above, we may also add programs to build correct
programs, like the Coq proof assistant (which, in a sense, simply extend the static-typechecking pro-
cess of the compiler). Thompson has thus sketched the proof of another incompleteness theorem: a
program verifier cannot provide absolute guarantees on its own implementation.

For instance, Barras [Bar99] and Sozeau et al. [Soz+20] have shown how to mitigate Gödel’s
incompleteness theorem: by only admitting as an axiom the strong normalization of Coq rewriting
rules (which entails the consistency of its logic), they succeed to prove the correctness of an imple-
mentation of the Coq kernel with Coq. But, as sketched by Thompson, their proofs only prevent from
unintended bugs by Coq developers. Some developer may still imagine an incorrect implementation
that is enough malicious to prove itself with a correct proof – such that the incorrectness can only be
detected by scrutinizing its binary representation. This negative remark does not discredit the great
value of such correctness proofs. Because, when applied with a correct prover, the vicious circle dis-
appears: exactly like when compiling Thompson’s C compiler with a correct C compiler. Thompson’s
bug is not in the source, it is in the binary.

1.1.3 With Formal Protection Against Unintended Correctness Bugs

FVDP protects against unintended bugs in untrusted computations. For example, in some cases, an
untrusted computation could silently corrupt the memory of verified monitors in order to make them
accept wrong results. But, it seems very unlikely that such a memory corruption results from an
unintended bug. It is much more probable that an unintended memory corruption leads the software
to crash, which is not considered in FVDP as a correctness bug. In other words, even if FVDP assumes
untrusted oracles to be memory safe10, in practice, FVDP still provide strong protections even in case
of unintended memory corruptions. Such unintended memory corruption may typically occur when
embedding C code within OCaml oracles, through the OCaml/C Foreign Function Interface (FFI).

1.2 Analyzing the Trusted Computing Base (TCB) for FVDP

In short, Thompson [Tho84] simply illustrates that the safety/security of every computing system
relies on some of its subsystem which needs to be trusted. An important concern is thus to identify
this Trusted Computing Base (TCB), defined by Lampson et al. [Lam+91] as:

[the] small amount of software and hardware that security depends on and that we dis-
tinguish from a much larger amount that can misbehave without affecting security.

When applied to automated verification, we simply replace “security” by “correctness” in the above
definition of TCB. Having a “small” TCB is one criterion among others to appreciate a verification
method (e.g. see [App+03]). Another one is its ability to improve the safety of large, complex and
useful software. This section gradually introduces what possible TCBs are required for FVDP based
on Coq and OCaml, depending on the way to connect the Coq and OCaml codes.

10In particular, untrusted oracles, that are implemented by type safe OCaml code, are memory safe: this is guaranteed by
OCaml type-checker.
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1.2.1 TCB of Coq Proof Checking

Let us consider the TCB of the Coq proof assistant. The Coq engine is based on a small kernel:
the typechecker of proof terms in an extension of the Calculus of Inductive Constructions [CP88;
Tea20]. Within an interactive proof, the user may invoke untrusted tactics, but these tactics must
produce proof terms; at the end of the proof, a whole proof term is produced and finally checked by
this independent kernel. This defensive design of the prover, separating a small well-delimited trusted
kernel from convoluted untrusted tactics, is known as the de Bruijn criterion, in reference to the design
of Automath, one of the first proof assistants [dBru68].

Within the coqc compiler (or coqtop/coqide interpreters), this defensive design offers a good
protection against unintended bugs in tactics. But it does not prevent “malicious” bugs in plugins,
which are tactics implemented in OCaml (the implementation language of Coq tools themselves),
often programmed by third-party users, and dynamically loaded at runtime. By this way, such a third-
party malicious programmer may introduce some unsafe OCaml code, able to silently corrupt the
kernel state, in order to make it accept wrong theorems.

However, at the end, coqc compiles the user proof terms into a binary format (“.vo” libraries).
These compiled proof terms can themselves be independently checked with a small checker, called
coqchk, almost reduced to the Coq kernel, without any invocation of potentially malicious tactics.11

Finally, the TCB of the Coq proof assistant thus reduces to the one of coqchk executable (within
the underlying operating system and hardware). As illustrated by [Bar99; Soz+20], this program is
sufficiently small to be itself formally verified.

In practice, the TCB of a formally verified development is not reduced to the TCB of its formal
verification: it also includes a part of the development itself, called here the “specification”, that con-
sists in the formal description of the (external) objects on which this development claims to prove
properties. Section 1.2.5 details this part of CompCert TCB. Here, let us simply explain how the Coq
design helps to design trustworthy specifications. First, the expressiveness of the logic helps users
to design Coq theories by using definitions instead of axioms. Indeed, a user theory defined without
axioms is sure to be consistent (i.e. without contradiction): more precisely, its consistency is a con-
sequence of the strong normalization of the Coq rewriting system (i.e. termination of computations).
In practice, users may also safely invoke standard axioms (like functional extensionality) which are
known to be consistent with the Coq logic. Second, users may also design executable specifications.
This helps to validate their accuracy with respect to what they are modeling. For example, [KW15]
defines several formal models of the C programming language in Coq and prove their equivalence.
One of them is executable and is validated on actual C programs, while others help to reason on C
programs in Coq.

For a more detailed presentation, see [AI20]: it provides guidelines on the use of Coq for computer
security certification by Common Criteria.

1.2.2 TCB of Coq Verified Autarkic Programs

Let us now consider the minimal TCB required by verified autarkic5 programming within the Coq
proof assistant. Actually, the TCB depends on whether the verified programs are run inside a given
Coq proof, or whether they are natively run, after having being extracted toward OCaml (or Haskell)
and then compiled into native code. In the first case, the TCB is similar to the TCB analyzed in
Section 1.2.1 (i.e. the TCB of coqchk and the specification of the considered development). In the

11Moreover, the user can load these binary files with coqtop or coqide, in order to “manually” check that the statements,
which are here proved, correspond to those expected.
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second case, the minimal TCB is a bit larger: it also includes the Coq extraction process itself, and
also the OCaml (or Haskell) compiler.12 This second execution mode is however much more efficient
to run large software, in particular, because all the subterms that are only relevant for proofs but not
for computations have been pruned. Actually, Coq extraction is a quite complex compiler [Let04;
Soz+20].

1.2.3 TCB of FVDP with Coq and OCaml through Extraction

Another interest of extraction is that it can be easily instrumented, in order to combine impure compu-
tations with pure ones as demonstrated by CompCert. Hence, CompCert uses a standard FFI (Foreign
Function Interface) of the Coq programming language, in order to invoke external OCaml code from
Coq code. However, currently, there is no formal justification regarding the soundness of this FFI.

Chapter 2, extending the work started in [#FB14], investigates the unsoundness that can arise
from such a use of OCaml oracles through Coq extraction and propose solutions to avoid them. It
aims to keep the TCB of FVDP almost as small as the TCB of autarkic Coq programs through Coq
extraction, except that the OCaml typechecking of oracles is critical for correctness. In contrast,
Coq extraction is authorized to completely bypass OCaml typechecking (e.g. through “Obj.magic”),
because the correctness of extracted code is ensured by Coq typechecking. Thus, it seems relevant to
state that FVDP software like CompCert are verified with the Coq+OCaml proof assistant. However,
fully formalizing the foundations of this cooperation between Coq and OCaml typechecking is left for
future works.13

1.2.4 Toward Removing Extraction and OCaml from the TCB

Letan and Régis-Gianas [LR20] propose to combine impure OCaml computations and Coq com-
putations by using the plugin mechanism instead of extraction, in their FreeSpec14 plugin. Their
approach provides mechanisms: (1) to specify in Coq formal contracts on external imperative com-
ponents; (2) to combine in Coq these components and prove properties from the contracts about these
combinations; (3) to run these impure computations inside the Coq engine. For example, Letan and
Régis-Gianas [LR20] program, verify and run a mini HTTP server within Coq.

Their approach is the opposite of FVDP: they use external imperative components as trusted com-
ponents instead of untrusted ones. But, some of their techniques could be probably reused in order to
build Coq proofs reflecting a given run of programs like CompCert that interleaves external untrusted
impure computations and verified pure ones. In other words, we could probably alleviate the TCB
of FVDP by (1) basing the FFI of Coq on a plugin instead of extraction; (2) encapsulating runs of
these programs within proofs; (3) removing the need of trusting this Coq plugin by checking these
proofs with coqchk.15 Actually, the first goal of this document is to study the power of FVDP in for-
mal proofs of “realistic applications”. It is thus focused on making FVDP as lightweight as possible.
Replacing extraction by a plugin mechanism makes the framework both much more complicated and
much more heavyweight at runtime. Thus, this document only marginally explores this possibility
(see Chapter 6).

12We may consider that the TCB of Coq already includes OCaml, since the Coq checker is written in OCaml. But, other
implementations of the Coq checker could also exist.

13The subject seems too ambitious for me on my own: if you are interested in, please contact me.
14https://github.com/ANSSI-FR/FreeSpec
15Such a system would look like an extension of Cybele (https://github.com/clarus/cybele) able to deal with arbitrary

external OCaml oracles. See [Cla+13] and Section 2.6.
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1.2.5 TCB of Large and Complex Software like CompCert

The TCB of a software like CompCert which is expected to interact with a complex computing envi-
ronment is much larger than the one of its verification method. And actually, the most critical parts of
CompCert TCB do not derive from its verification method, but from its formal model of this complex
environment and a few trusted (and not formally verified) components. In particular, an unintended
bug in Coq extraction or in the OCaml compiler is probably not critical for CompCert; it is likely to
only break down its compilation or at worst to lead it to crash at runtime (whereas crashes in soft-
ware produced by CompCert are critical, crashes in CompCert itself are not). Here are the parts of
CompCert TCB which do not directly derive from its verification method in Coq/OCaml:
• the formal semantics of the first formal language, called CompCert C (in Coq);
• the formal semantics of a formal assembly language (in Coq);
• option parsing and filename handling (in OCaml);
• the preprocessor (partly external, partly in OCaml), which turns regular C into CompCert C and

optionally deals with some constructs (bitfields, passing and returning structures to functions,
variable length arguments. . . );
• the “assembly expansion” pass (in OCaml) that expands certain pseudo-instructions into actual

assembly code, including: stack allocation, stack deallocation, memory copy;
• the formal axiomatization (in Coq) of these pseudo-instructions (e.g., the registers they may

clobber);
• the assembly language printer (in OCaml);
• the compatibility of the application binary interface used by CompCertwith that of the compiler

used to compile other libraries on the system, including the standard C library;
• the external assembler and linker.

Since the beginning of CompCert, the trustworthiness of the frontend has strongly increased, with a
formal validation of the parser [JPL12], and with a very careful comparison of the formal CompCert
C semantics to the C standard (partly mechanized with the help of the CompCert C reference inter-
preter) [KLW14; KW15]. However, reducing the above TCB, especially on the backend, still remains
a challenge for CompCert developers. See for example this recent line of works, refining the semantic
models of CompCert toward more realistic ones, but not yet integrated into the “official” releases:
[BBW19b; BBW19a; WWS19; Wan+20].

Since CompCert’s origin almost 15 years ago, some critical bugs have been discovered in it
(mostly discovered by CompCert developers themselves, with standard testing techniques). To my
knowledge, all of them were either located in its Coq formal specifications or in its trusted (but not
formally verified) OCaml components. None of them is related to the few critical bugs discovered in
the meantime within the Coq and OCaml implementations. None of them is related to the foundation-
lacking usage of untrusted OCaml oracles (which is detailed by Section 2.1). In other words, the
formal verification of CompCert with Coq and OCaml is a great success, since no bug has been found
in the verified components of CompCert, even though these verification tools may not be themselves
perfectly correct. CompCert demonstrates that FVDP is relevant for producing safer useful software.

1.3 Design Principles for FVDP

We now present some important concepts at the basis of our FVDP designs. Section 1.3.1 intro-
duces various strategies for embedding (or not) oracles within Coq. Section 1.3.2 introduces a well-
established technique to decompose large formally verified developments.
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1.3.1 Communicating (or not) with Untrusted Oracles from Coq-Verified Code

The idea to reduce the TCB of rich logical frameworks to a small proof checker—called the kernel—
was pioneered in the design of two interactive provers, Automath [dBru68] and LCF (which stands for
Logic for Computable Functions) [GMW79]. But, their style is very different. Automath introduces a
notion of “proof object” and implements the kernel itself as a typechecker, thanks to the Curry-Howard
isomorphism. In contrast, LCF is written as a library in a functional programming language—called
ML for “Meta-Language”—which provides the type of theorems as an abstract datatype [Gor+78].
Its safety relies on the fact that objects of this type can only be defined from a few primitives (i.e. the
kernel). Each of them corresponds to an inference rule of Higher-Order Logic in natural deduction.
LCF style is much more lightweight – both for the development and the execution of proof tactics –
whereas the proof object style allows for a richer logic, embedding quite arbitrary computations within
the type system (e.g. using dependent types). Nowadays, the kernel of skeptical interactive provers
is still designed according to one of these styles: Coq has proof objects whereas HOL provers are
in LCF style. Moreover, some descendants of ML—like OCaml—have integrated powerful impure
programming features without damaging ML type safety.

With Maréchal [Mar17], we have proposed to classify Coq-verified computations in three styles
of design. Figure 1.2(a) illustrates the simplest approach for “simple” computations: the computation
is directly implemented and proved correct in Coq following the autarkic style advocated by Baren-
dregt and Barendsen [BB02]. However, quoting Harrison and Théry [HT98], when the computation
becomes “sufficiently” complex (e.g. when using dynamic programming techniques is desirable, or
when solving NP/co-NP hard problems, etc)

the separation of proof search and proof checking offers an easy way of incorporat-
ing sophisticated algorithms, computationally intensive search techniques and elaborate
heuristics, without compromising either the efficiency of search or the security of proofs
eventually found.

This is the motivation for introducing a defensive design. Roughly speaking, such a design simply
replicates the one of proof assistants within applications.

Hence, we distinguish two defensive styles for Coq. The first one consists in defining an inter-
mediate format of witness, while delegating to an external OCaml oracle the search for a witness that
will drive a Coq-verified computation to the expected result. When this witness format becomes itself
quite complex: we rather call it a certificate language, as illustrated in Figure 1.2(b). This style is
mandatory in order to invoke FVDP computations for simplifying Coq interactive proofs (i.e. within
Coq tactic by computational reflection). Hence, Coq plugins provide many instances of this style: see
the famous Micromega tactics [Bes06; Tea20], SMTCoq [Kel13], or Cybele [Cla+13]. An example is
also here provided in Chap. 6.

The second one—illustrated in Figure 1.2(c)—relies on Coq extraction to apply LCF style within
the OCaml oracle. Instead of introducing an abstract syntax in order to represent certificates which
themselves drive certified computations, this style makes the OCaml oracle directly build correct-
by-construction results through a Coq-certified factory. In other words, Figure 1.2(b) corresponds to
use a deep embedding of the certificate language (both in Coq and OCaml), whereas Figure 1.2(c)
corresponds to use a shallow embedding of this language. This document will explain why shallow
embeddings are often more lightweight than deep ones (both in development and running times).16

But in our context, LCF style requires Coq extraction and relies on the correctness of OCaml type
system, which may not be an option, depending on the application and the TCB.

16See also [GW14] for details on the links between these two style of embeddings.
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(a) (b) (c)

Figure 1.2: Three styles of Coq-verified computations: autarkic, certificate-producing and LCF.

Actually, to our knowledge, with [Mar17; #Bou+18], we related the first experiment of LCF style
designs within a Coq+OCaml development. This is one of our contributions which Section 1.4.3
further details.

1.3.2 Decomposing Large Formal Developments thanks to Data Refinement

In order to decompose the complexity of formally verified programming, the pioneers Dijkstra [Dij68],
Milner [Mil71], Wirth [Wir71] and Hoare [Hoa72] told us that it is often interesting to provide two
representations of data structures:
• an “abstract model”, which is simpler for proofs, e.g. for the clients of the data structure;
• a “concrete implementation”, which is often more complex, but helps to provide an efficient

implementation of the elementary operations on the data structure.
In this view, two representations of each elementary operation on the data structure should also be
provided: the abstract one, which is the specification—simplifying reasoning about effective compo-
sitions of these elementary operations—and the concrete one which is the implementation. The prin-
ciple is then to prove, once for all, that any property observable on an abstract program—composing
the abstract operations—could also be observed on the corresponding concrete program—accordingly
composing the concrete operations. When this property is established, we say the concrete operations
“refine” (or “simulate”) the abstract operations. Hoare [Hoa72] summarized the interest of this ap-
proach as:

If the data representation [also called “the data refinement”] is proved correct, the cor-
rectness of the final concrete program depends only on the correctness of the original
abstract program. Since abstract programs are usually very much shorter and easier to
prove correct, the total task of proof has been considerably lightened by factorizing it in
this way.

In practice, given a particular semantics of “abstract programs” and “concrete programs” and their
related notion of “operation compositions”, given a notion of “observable property” (and a related no-
tion of “correctness”), data-refinement methods attempt to reduce “refinement proofs” to simple proof
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obligations. For example, Gardiner and Morgan [GM93] propose a method where data refinement
helps to establish the total correctness of modular imperative programs; de Roever and Engelhardt
[dRE98] compare various data-refinements methods of such programs for partial or total correctness.
Because, in complex cases, it is interesting to decompose such a refinement proofs to several steps,
methods like the B-method [Abr96] define an expressive specification language where a “concrete
program” can itself be given as the “abstract specification” of another one. Such a composition of
data refinements is called stepwise refinement, as coined by Wirth [Wir71].

Actually, the idea of data refinement is so fundamental that it is ubiquitous in large formal de-
velopments. But, because it needs to be specialized for some given semantics of programs and for
some class of correctness properties, it is not always named “data refinement”. For example, the
formal correctness of a compiler can be viewed as a form of refinement: the program generated by
the compiler is expected to satisfy all properties observable on the input program. In this view, the
generated program is a “concrete program” and the input program is a “abstract program”. Hence, the
design of CompCert corresponds to stepwise data refinement: each compiler pass between two IRs
(Intermediate Representations) is a data-refinement step, where “data” correspond to IR states, and
where “elementary operations” are IR instructions. Indeed, Leroy [Ler09a, Def. 3, Sect 2.1] defines
safe backward simulations, a specialized notion of data refinement, which formalizes the correctness
of CompCert passes. Leroy also proposes several simulation diagrams which each corresponds to a
particular kind of data-refinement proof [Ler09a, Sect. 3.7]. Representing data-refinement proofs by
commutative diagrams dates back to Milner [Mil71]. See also [dRE98] for a comparative study of
various kinds of commutative diagrams for data refinement.

Another very common instance of data refinement is abstract datatype. Indeed, it consists in
abstracting a data-structure satisfying a given representation invariant over a given interface of oper-
ations. The implementations of operations are expected to preserve the representation invariant. And,
the type abstraction discipline within clients is expected to forbid them to violate the representation
invariant. For example, the “factory” of Figure 1.2(c) provides such an abstract datatype, which is in-
voked by the “oracle”—i.e. the OCaml client—in order to build objects of this datatype. This design
provides a lightweight approach to ensure that the objects built by the oracle satisfy the representa-
tion invariant of the factory. Hence, it may not be a pure coincidence that an inventor of LCF style
proofs [Mil79] and a pioneer of data refinement [Mil71]—a few years earlier—are the same Robin
Milner (Turing Award 1991).

This document provides two other examples of design by data refinement in order to simplify
large FVDP developments. This contribution is detailed in Section 1.4.4.

1.4 Contributions of this Document

Studying how to use untrusted code for producing trustworthy results dates back to de Bruijn [dBru68]
and Gordon, Milner, and Wadsworth [GMW79]. It revitalized at the end of the 90’s, on one side
with the idea to invoke external untrusted software for helping skeptical provers [HT98], and on the
other side, by “Proof-Carrying Code” (PCC) [NL96; Nec97; App01; App+03]: an approach where
an OS kernel checks untrusted applications with the help of a formal proof that accompanies the
application’s executable code. Hence, PCC introduces the idea of “certifying compilers” [NL98],
where the compiler is itself an untrusted oracle which produces both an executable and a proof of
correctness. Then, Tristan and Leroy [TL08] experimented with the use of untrusted oracles for
developing the CompCert certified compiler.17 Since these seminal works, many other research papers

17There is a strong connection between “certified” and “certifying” compilers as discussed in [Ler09a, Sect. 2.2.3].

18



integrate untrusted computations within formal proofs. However, despite all these efforts, there are
still only a few industrial-strength softwares that use formal proofs. Actually, formal verification
remains a very difficult and time-consuming task.

“Standing on the shoulders of these giants”, I propose to further integrate untrusted (but typesafe)
OCaml code within Coq-verified code through FVDP designs. This integration is here realized by
introducing a Coq library prototype, called {Impure}, and detailed in Chapter 2. The use of this li-
brary is evaluated on several “realistic” applications: Boolean SAT-solving, instruction scheduling for
CompCert and linear arithmetic for static analyzers. They all involve some untrusted solver that imple-
ments advanced algorithms (i.e. CDCL for SAT-solving problems, Simplex for linear-programming
problems, etc). Their FDVP design often results from a trade-off between simplicity and efficiency
both in the verified component and in the untrusted solver. Choosing a “good” design may become
particularly delicate when the solver needs to be instrumented in other to produce witnesses that drive
the formally verified component for computing the results. For example, as we discuss below, a
verbose certificate format may make the verified component simple and efficient, but might require
cumbersome instrumentations of the solver and might hinder the whole computation because of a too
large memory footprint.

1.4.1 Collection of FVDP Designs

Hence, this document provides an interesting bestiary of FVDP designs:
• Certifying the model found by a Boolean SAT-solvers is very simple, without any additional

help from the SAT-solver (See Chap. 5).
• Certifying instruction schedulings does not require any additional witness from the untrusted

solver, but require implementing nontrivial techniques in the formally verified checker, like
hash-consing. Fortunately, in this case, the core of the hash-consing mechanism can be dele-
gated to an untrusted oracle and dynamically verified thanks to a trusted pointer equality. This
is an example of iterated FVDP design (see Chap. 3).
• For certifying “UNSAT” answers, the SAT-solver needs to produce a witness that helps the veri-

fied checker (otherwise, the untrusted solver is useless). Here, a too-naive certificate format, like
the one sketched at Section 2.4.2, induces too-intrusive instrumentation on the solver [HJW14].
Fortunately, the SAT-solving community solved this issue by adopting two certificate formats:
the first one—called DRAT—is easily generated by state-of-the-art SAT-solvers; the other—
called LRAT—is quite easy to validate. The conversion from DRAT to LRAT is heavyweight,
but delegated to an independent untrusted tool. Thus, the effort of generating an optimized
LRAT certificate is factored within a single program. Our contribution here is to show how to
implement an efficient Coq-verified LRAT checker, with a modest development effort. A pre-
vious attempt using Coq by Cruz-Filipe et al. [Cru+] did not scale on very large LRAT proofs.
Chapter 5 details these ideas.
• Often, our formally verified code invokes some “theorems for free” deduced from the poly-

morphic OCaml type of the untrusted oracle. My simplest example of this technique occurs
on a fast inclusion test between two lists (Section 2.4.1). The membership test to the “big”
list is delegated to an untrusted oracle, which efficiently implements it thanks to a hash-table.
Here, OCaml typing is powerful enough to statically ensure that this oracle only stores elements
of the “big” list. Such an invariant deduced from OCaml typing is useful to alleviate the de-
velopment effort while enabling efficient implementations, e.g. in a (polymorphic) LCF style.
Actually, polymorphic LCF style helped us to implement our efficient LRAT checker with a
modest development effort.
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• The core of our certified computations in linear arithmetic are also driven by OCaml oracles
computing over convex polyhedra. Here again, in a (polymorphic) LCF style, we exploit the
fact these oracles satisfy a “theorem for free” expressing that they compute polyhedra which
are—by construction—geometrically-included in their input polyhedra. See Chap. 4.
• Our certified linear overapproximation of polynomial tests invokes an untrusted oracle which

drives the overapproximation according to various correct-by-construction strategies. Here the
oracle provides its hints to the certified code in the form of polynomial terms enriched with
ad-hoc annotations. This is also another example of iterated FVDP design (based on the FVDP
of polyhedral computations, described above). See Section 7.3.2.

For soundness, our imperative OCaml oracles cannot be modeled as pure Coq functions. We pro-
pose here to abstract them as nondeterministic computations (within a dedicated monad). This model
only induces a little burden in proofs, because we simplify proof obligations thanks to a weakest-
precondition calculus. Still, when composing complex Coq computations that embed external oracles
(like for our iterated FVDP designs of Chap. 3 and of Chap. 7), it is interesting to cleanly separate rea-
sonings on pure data structures and algorithms from reasonings on sequences of impure computations.
We achieve this using data refinement.

1.4.2 Summary of the Methodological Contributions

In summary, the main contributions of this thesis are the following:
1. the {Impure} library for modeling in Coq external untrusted OCaml oracles as nondeterministic

computations;
2. a bestiary of “realistic” FVDP case studies, based on {Impure};
3. a “theorems-for-free” technique which makes FDVP even more lightweight: in particular, it

leads to a design pattern for certificate-producing oracles, called “Polymorphic LCF Style” (con-
tribution further detailed in Section 1.4.3);

4. data-refinement techniques helping for large FVDP developments (contribution further detailed
in Section 1.4.4);

5. a technique to reuse polymorphic LCF style oracles within Coq tactics, independently of their
embedding through {Impure}: this both reduces the TCB and may help in interactive Coq proofs.
See Chap. 6.

1.4.3 FVDP by Polymorphic LCF Style and Theorems for Free

In [#Bou+18], we have introduced a design pattern, called polymorphic LCF style or polymorphic
factory style (abbreviated in PFS), which generalizes LCF style and makes it even more lightweight.
This style reduces the development effort in Coq by delegating part of the verification to the OCaml
typechecker: it relies on ML polymorphism in order to ensure that invariants proved on the Coq
side are preserved by imperative features of the OCaml code. This technique can be viewed as an
adaptation to imperative ML of the “Theorems for Free” technique, promoted by Wadler [Wad89]
relying on the parametricity of polymorphism [Rey83].

Moreover, by using polymorphism to abstract types of “theorems” instead of standard abstract
datatypes, PFS is more powerful than standard LCF style: PFS oracles are simpler to design, easier to
debug, more efficient and more versatile. Chapters 4, 5 and 6 argue for these claims. Actually, Chap-
ter 6 illustrates that PFS is even useful for implementing certificate-producing style oracles pictured
in Figure 1.2(b).
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1.4.4 FVDP of {Impure} Data Structures with Data Refinement

As introduced above, iterated FVDP designs—like those of Chap. 3 and 7—require to combine within
a Coq-verified computation, many “elementary” Coq-verified computations themselves embedding
untrusted oracles. For the formal proofs, it is convenient to introduce a model of these “elementary”
computations which is computationally pure. The bureaucracy induced by the handling of {Impure}
computations is then isolated and may be quasi-automatically discharged with the help of a dedicated
tactic (see Section 2.2.1).

Such a model-based decomposition of the development actually corresponds to a data-refinement
design, as introduced in Section 1.3.2. We propose two data-refinement designs. The first one, detailed
in Chap. 3, consists in introducing a pure model of a hash-consed data structure. Here, while the
data-refinement relation (i.e. “smem_models” of Fig. 3.9 page 65) and the elementary operations
of the data-structure (given at Fig. 3.10 of page 67) are formally defined, this example applies data
refinement at an intuitive level: the example itself is not presented as an instance of a formal data-
refinement framework.

On the contrary, the second one proposes a refinement framework dedicated to the FVDP of
(some) abstract interpretations. The principle of abstract interpretation [CC77] is to approximate the
data (or the states) of programs in order to automate the proof of some properties (e.g. absence of
memory overflows) about these programs. In practice, “elementary operations” of the input pro-
gram on “concrete data” are interpreted using an abstract domain approximating these operations
by operations on “abstract data” (which enable the implementation of the targeted static analysis).
Actually, such an abstract domain that relates an abstract and a concrete data representation—for a
given interface of elementary operations—exactly corresponds to a data refinement. However, in ab-
stract interpretation, the data-refinement relation is rather usually called the concretization relation.18

Founded on this simple remark, our framework adapts the stepwise refinement calculus developed
by Back and von Wright [BvW98] and Morgan [Mor94], and others (after [Wir71]), in order to help
the formal-verification of abstract interpretations. Our refinement calculus hides the implementation
details of the abstract domain, and in particular the fact that “elementary operations” of the abstract
domain are impure (i.e. they may themselves invoke untrusted oracles). The use of this framework is
both illustrated on a toy analyzer and a “realistic” procedure approximating polynomial computations
within the {VPL} abstract domain—a certified abstract domain of convex polyhedra. See Chap. 7 for
details.

Let us remark that, since [Dij68] and [Wir71], stepwise refinement is often presented in a top-down
style where programs are derived from specifications. Such a top-down approach has the pedagogical
interest to illustrate how an implementation and its proof are codesigned. However, in my experience,
large software is developed with an agile combination of top-down and bottom-up style, guided by
intuition and practice. As a consequence, I do not consider the debate “top-down vs bottom-up” as an
important issue.

1.5 Quick Overview of Other Chapters

Chapter 2 introduces the {Impure} library and its “theorems-for-free”. It also gives basic applications
of the library with a first basic example of PFS design (a naive refutation prover on Boolean

18The concretization is very often defined as the upper adjoint of some monotone Galois connection. In this case, the
corresponding lower adjoint is called the abstraction. On other abstract domains, like the one of convex polyhedra [CH78],
there is no such Galois connection, but only a concretization relation, which, in this example, simply corresponds to interpret
a polyhedron as a set of states.
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formulas).
Chapter 3 presents a first “realistic” application of FVDP with {Impure}: instruction scheduling

in {CompCert-KVX}, with an interesting use of OCaml pointer equality.
Chapter 4 is an extended tutorial to PFS designs with {Impure}, illustrated on two “realistic” opera-

tors of the {VPL} abstract domain.
Chapter 5 demonstrates with {SatAnsCert} that such PFS designs provide a lightweight but efficient

technique for Coq-verified SAT-solving.
Chapter 6 details how the {VplTactic} Coq-plugin invokes a PFS oracle of the {VPL}, and why this

is useful.
Chapter 7 describes our refinement calculus for FVDP of abstract computations with the {VPL}.
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Chapter 2

Toward Lightweight FVDP by
Combining Coq and ML Typechecking†

From the type of a polymorphic function we can derive a theorem that it satisfies. Every
function of the same type satisfies the same theorem. This provides a free source of
useful theorems, courtesy of Reynolds’ abstraction theorem for the polymorphic lambda
calculus [Rey83].

Philip Wadler in “Theorems for Free!” [Wad89].

Eventually I came to regard nondeterminacy as the normal situation, determinacy being
reduced to a [...] special case.

Edsger W. Dijkstra in “A Discipline of Programming” [Dij76].
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Section 2.1 illustrates why the standard embedding of OCaml oracles into Coq-verified compu-
tations through extraction—as used in CompCert—is unsound. Section 2.2 presents an alternative
embedding—called the {Impure} FFI (Foreign Function Interface)—and discusses its soundness. It
relies on a parametricity property of the underlying “Coq+OCaml” type system, which provides pow-
erful “theorems for free” about OCaml polymorphic oracles. These “theorems for free” can be viewed
as a relaxation of Wadler’s ones in presence of Dijkstra’s nondeterminacy1. Section 2.3 applies this
parametricity property to extend the Coq programming language with some polymorphic impure op-
erators: exception-handling and fixpoints. This parametricity property is also the basis of a design
pattern called “Polymorphic Factory Style”, alleviating FVDP of certificate-producing oracles, and in-
troduced by Section 2.4. At last, Section 2.5 presents caveats and future works about the {Impure} FFI.

2.1 Unsoundness of the Standard FFI w.r.t OCaml

The register allocation of CompCert is declared in Coq by2

Parameter regalloc: RTL.function → res LTL.function.

Here, “Parameter” is synonymous with “Axiom” and “res” is quite similar to the “option”
type transformer. A Coq directive in CompCert instructs Coq extraction [Let08] to replace axiom
“regalloc” by a function of the same name from the Regalloc OCaml module. While very com-
mon, this approach is potentially unsound.

Let us consider the Coq example on the right-
hand side. It first defines a constant one as the
Peano’s natural number representing 1. Then, it
declares an axiom test replaced at extraction
by a function oracle. Finally, a lemma cong is
proved, using the fact that test is a function.

Definition one: nat B (S O).
Axiom test: nat → bool.
Extract Constant test ⇒ "oracle".

Lemma cong: test one = test (S O).
auto.

Qed.

However, implementing oracle by “let oracle x = (x == one)” in OCaml makes the lemma
cong false at runtime. Indeed, (oracle one) returns true whereas (oracle (S O)) returns false,
because “==” tests equality between pointers. Hence, the Coq axiom is unsound w.r.t this implementa-
tion. A similar unsoundness is obtained with another implementation of oracle, that returns the value
of a global reference, containing true at the first call, and false at the second call:

let oracle = let h=ref false in (fun x -> h:=not !h; !h)

This unsoundness comes from the fact that a Coq function f is pure: it satisfies “∀x, ( f x) = ( f x)”,
whereas an OCaml function may not satisfy this property.

In CompCert, the implementation of regalloc uses mutable data structures3: it is thus not obvi-
ous whether regalloc is observationally pure or not – in the Coq sense. But, the implicit assumption

1The remainder of this document uses “nondeterminism” instead of “nondeterminacy” (because it seems more
widespread)

2See https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v
3See https://github.com/AbsInt/CompCert/blob/master/backend/IRC.ml
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about regalloc purity, derivable from its declaration in Coq, should not hide a critical issue, even
in case of unexpected bug in regalloc. Indeed, the remainder of the compiler never compares exe-
cutions of regalloc: it does not depend on whether regalloc is pure or not. In other words, this
implicit assumption only results from a shortcut in the formalization and is expected to be useless,
without any bad consequence if it is wrong.4 Nevertheless, avoiding such a useless assumption would
help to promote a more systematic use of oracles.

2.2 {Impure}: a Coq Library to Import ML Foreign Functions

Fouilhé and Boulmé [#FB14] have proposed to avoid this unsoundness by modeling external OCaml
functions using a notion of nondeterministic computations. With respect to the previous example, if
the result of test is declared to be nondeterministic, then the property cong is no longer provable.
For a given type A, type ??A represents the type of nondeterministic computations returning values
of type A: it can be interpreted as P(A), the type A → Prop of predicates over A. Formally, the
type transformer “ ?? . ” is axiomatized as a monad that provides a may-return relation ⇝A of type
??A → A → Prop. Intuitively, when “ ??A” is seen as “P(A)”, then “⇝” simply corresponds to
the identity function. At extraction, ??A is extracted like A, and its binding operator is efficiently
extracted as an OCaml let-in.

For example, replacing the test axiom by “Axiom test : nat → ?? bool” avoids the above
unsoundness w.r.t the OCaml oracle. The cong property can still be expressed as below, but it is no
longer provable – because it is not satisfied when interpreting ??A as P(A) and interpreting test as
the function returning the trivially true predicate (in this interpretation, the goal below reduces to the
false property that all Booleans are equals).

cong: ∀ b b’, (test one)⇝b →(test (S O))⇝b’ →b=b’.

In other words, the A → ??B represents the type of impure functions from type A into type B.
Informally, we interpret the type ??B asP(B) the type of predicates characterizing the possible results.
Thus, this interpretation represents each impure function as a function of A → P(B), or equivalently,
as a relation of P(A × B), because of the bijection between these two types.

The {Impure} library turns Coq+OCaml into a kind of dependently type imperative programming
language. In contrast to previous works [CSW14], its metatheory is not yet well established (as
detailed in Sections and 2.5). Its interest is to provide a powerful (but very simple) implementation,
able to combine Coq with arbitrary polymorphic imperative OCaml code. For example, [CSW14]
lacks support for polymorphism, whereas this is the key feature enabling “theorems-for-free”, applied
in all case studies of this document.

Section 2.2.1 defines type ??B using axioms in order to provide an efficient extraction into OCaml,
where “ ??” are simply removed. Based on this notion of impure computations, Section 2.2.2 presents
the core of the {Impure} FFI. Section 2.2.3 explains how this FFI is related to a parametricity prop-
erty of the underlying Coq+OCaml type system. Finally, Section 2.2.4 extends the FFI with pointer
equality.

4In practice, this implicit assumption does not seem the main weakness of CompCert, as discussed in Section 1.2.5.
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2.2.1 Definition of the May-Return Monad in the {Impure} library

This section introduces in an informal syntax the theory of the may-return monads and presents the
informal interpretation of these axioms. See the sources online5 for the full Coq syntax with the
proofs. The definition of may-return monads in this document – given below – is inspired by the
original definition of [#FB14], itself inspired by the structure of monads in functional programming
languages [Wad95]. There are however two differences between the definition below and the original
one. First, in this document, the congruence “≡” over computations has been omitted. Indeed, in the
{VPL}, the Verified Polyhedra Library of [#FB14], this congruence is only needed in order to prove a
property on a higher-order operator that is absent in the case studies of this document. Moreover, as
discussed in Section 2.5.3, the meaning of such an equality with respect to the extracted code is coun-
terintuitive: an issue that we keep out of the scope of this document. Second, this document introduces
the “mk_annotA” operator, necessary to derive “theorems for free” on higher-order operators.

Definition 2.1 (May-return monad). For any type A, type ??A represents impure computations re-
turning values of type A, and provides a may-return relation

⇝A: ??A→ A→ Prop

where “k⇝ a” means that “k may return a”. It also provides the three following operators

• Operator �=A,B: ??A → (A → ??B) → ??B encodes an impure OCaml “let x = k1 in k2” into
“k1 �= λx, k2”. This operator must satisfy

k1 �= k2 ⇝ b → ∃a, k1⇝a ∧ k2 a⇝b

• Operator εA : A→ ??A lifts a pure value as an impure computation. It must satisfy

ε a1⇝a2 → a1=a2

• Operator mk_annotA : ∀(k : ??A), ??{ a | k⇝ a} annotates the result of a computation k with an
assertion expressing that it has been returned by k. This operator is extracted as identity (it has
no computational contents). Its only purpose is to embed ⇝ into Coq dependent types.6 For
example, given k1 : ??A and k2 : ( ??{ a | k1 ⇝ a} → ??B), then mk_annotk1 �= k2 : ??B. In
practice, such an operator is needed for proving properties of higher-order operators by para-
metricity: an example will be detailed in Figure 2.7.

In the Coq code, “k1 �= λx, k2” is written with a Haskell-like notation “DO x f k1 ; ; k2” (or
“k1 ; ; k2” if x does not appear in k2). And ε is written “RET”.

Interpretations of May-Return Monads

Here is the interpretation of “ ??A” as the type of predicates “P(A)”: function⇝A is identity on P(A);
εA is the identity relation of A → P(A); �=A,B returns the image of a predicate on A by a binary
relation of A→ P(B); mk_annot returns the trivially true predicate. Theses definitions are formalized
in Figure 2.1. They satisfy axioms of may-return monads.

Actually, it is worth noticing that usual monads are naturally embedded as a may-return monad.
For example, Figure 2.2 corresponds to the embedding of the identity monad. And, Figure 2.3 corre-
sponds to the embedding of the state-monad on a given global state of type S .

5http://github.com/boulme/Impure/blob/master/ImpMonads.v
6As noted by [CSW14, Section 3.1], monad programming is not directly compatible with dependent type programming,

because the bind operator (�=) corresponds to a non-dependent application of function. In this context, “mk_annotA” is a
workaround for embedding dependent types involving monadic computations within monadic types.
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??A ≜ A→ Prop k⇝a ≜ (k a)

ε a ≜ λx, a = x k1 �= k2 ≜ λx,∃a, (k1 a) ∧ (k2 a x) mk_annot k ≜ λx,True

Figure 2.1: Power-set instance of may-return monads

??A ≜ A k⇝a ≜ k=a

ε a ≜ a k1 �= k2 ≜ (k2 k1) mk_annot k ≜ exist⇝ k eq_reflk

where • exist⇝ is the constructor of the dependent pair { a | k⇝ a}
• eq_reflk is a proof of k = k

Figure 2.2: Identity instance of may-return monads

??A ≜ S → A × S k⇝a ≜ ∃s, fst(k s) = a

ε a ≜ λs, (a, s) k1 �= k2 ≜ λs, let (a, s′) := (k1 s) in (k2 a s′)

mk_annot k ≜ λs, let (a, s′) := (k s) in (exist⇝ a pk,s, s′)

where pk,s is a proof of ∃s0, fst(k s0) = fst(k s)

Figure 2.3: State-transformer instance on a global state of type S
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In order to handle impure computations in Coq, the {Impure} library declares an abstract may-
return monad (i.e. its implementation remains hidden).7 It is extracted like the identity may-return
monad of Figure 2.2 except that, in order to enforce the expected evaluation order, operator �= is
extracted to the reverse application operator of the OCaml standard library, written (|>) (and defined
by “let (|>) x f = f x”).

Reasoning on Impure Computations with Weakest-Liberal-Preconditions

Having introduced axioms for impure computations in Definition 2.1, we automate Coq reasoning
about such computations, by reusing a weakest-precondition calculus introduced by [#FB14]—itself
inspired by [Dij75]— and programmed as a very simple Ltac tactic, called wlp_simplify.

This calculus relies on a transformation of {Impure} computations into computations over predi-
cates, defined in Coq by:

wlpA : ??A→ (A→ Prop)→ Prop such that wlp k P ≜ ∀a, k⇝a→ (P a).
In other words, (wlp k P) expresses the weakest (liberal) precondition ensuring that any result re-
turned by computation k satisfies postcondition P. When ??A is interpreted as P(A), wlp corresponds
to inclusion of predicates. Now, we define the notion of WLP-theorems.

Definition 2.2 (WLP-theorems). A WLP-theorem is a Coq theorem with a conclusion of the form
“(wlp k P)”. Such a theorem means that (under the parameters of the theorem),

For all r, if the extraction of k returns the extraction of r, then r satisfies P.

In particular, when the extraction of k does not terminate or raises an uncaught exception, WLP-
theorems do not give any useful information (as usual in partial correctness). In our Coq code, we
write (wlp f λr, P) with the notation “WHEN f ⇝ r THEN P”. For example, let us consider the
following Coq code:

Variable f: nat → ?? nat.
Definition g (x:nat): ?? nat B DO r f f x;; RET (r+1).
Lemma triv: ∀ x, WHEN g x ⇝ r THEN r > 0.

The wlp_simplify tactic simplifies this goal into the trivial property “∀n : N, n+1>0”.
This tactic proceeds backward on wlp-goals, by applying repeatedly lemmas which are repre-

sented below as rules. It first tries to apply backward a decomposition rule: one for unit or bind below,
or one for pattern-matching over some usual types (Booleans, option types, product types, etc.). When
no decomposition applies, the tactic tries to apply Call and then tries to discharge the left premise
using an existing lemma—chosen in a user-given hint basis by tactic eauto; if this succeeds, the goal
is replaced using the right premise; otherwise, the Call rule is considered as having failed, and the
definition of wlp is simply unfolded (this typically suffices for dealing with mk_annot).

Decomp-unit
P a

wlp (ε a) P
Decomp-bind

wlp k1 λa.(wlp (k2 a) P)

wlp (k1 �= k2) P

Call
wlp k P1 ∀a, k⇝a→ (P1 a→ P2 a)

wlp k P2

Hence, the wlp_simplify tactic automates the decomposition of impure computations, while inject-
ing existing lemmas about impure functions through the Call rule. Indeed, the Call rule is typically

7See http://github.com/boulme/Impure/blob/master/ImpConfig.v
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applied when k is of the form “ f t1 . . . tn”—where f an impure function—and the “wlp k P1” premise
is discharged by applying a WLP-theorem about f . In this case, the original goal “wlp k P2” is re-
duced to a proof of “P1 ⇒ P2” (hypothesis “k⇝ a” being only here for helping the user to recover
the origin of the proof obligation). But, the Call rule requires a strict discipline in order to be useful:

1. it often requires f to be an opaque constant (otherwise, some decomposition rule depending on
the implementation of f applies instead of the Call rule);

2. there must be only one WLP-theorem about f in the hint basis;
3. the parameters of the WLP-theorem should only bind the parameters of f : extra parameters or

extra hypotheses (e.g. on the parameters of f ) should be bound in the postcondition P.
For example, the exp_hterm_correct theorem about exp_hterm in Figure 3.10 (page 67) has
exactly the same parameters e, hd and hod as exp_hterm. The “hypotheses” about these parame-
ters and the extra-parameters ge, od, d and m invoked in these hypotheses are actually bound in the
postcondition of the WLP-theorem that appears after the “THEN” keyword. Nested WLP-formulas are
supported and useful for higher-order operators, such as theorem hCons_correct of page 61, that
specifies a higher-order memoizing factory called hCons.

The constraint of using at most one WLP-theorem (typically called f_correct) for each impure
function f does not seem too restrictive in practice. It is naturally satisfied in developments of impure
functions by data refinement, where each impure function is modeled with a pure function or a pure
relation. For example, the exp_hterm_correct theorem in Figure 3.10 expresses that if hd is
modeled by d and hod is modeled by od then, the result ht of ( exp_hterm e hd hod ) is modeled
by the pure ( exp_term e d od ) . In the rare cases where it is not convenient to specify some impure
function with a single theorem, we may still introduce several hint bases in order to control how to
solve the left-premises of Call rules.

In our Coq development, wlp_simplify automates many bureaucratic reasonings on the monad
operators. This very simple tactic could probably be improved to manage pattern-matching more
systematically, and to provide user control of the naming of intermediate hypotheses (for example, by
interacting with the “LibHyps” library of Pierre Courtieu8).

2.2.2 The Core of the Foreign-Function Interface (FFI) Provided by {Impure}

As shown in introduction, declaring external OCaml oracles in Coq may be unsound, by authorizing
Coq theorems that can be false at runtime. The may-return monad was introduced in order to avoid
the pitfall of embedding impure computations as pure functions. But this is not sufficient to ensure
soundness. To this end, we need to define a class “permissive” of Coq types and a class “safe” of
OCaml values satisfying Hypothesis 1 below, with “being permissive” and “being safe” automatically
checkable, and as expressive as possible. In this document, we consider the following definition for
“safe”. The definition of “permissive” will be gradually introduced up to Definition 2.4.

Definition 2.3 (Safe OCaml value). An OCaml value is “safe” iff it is well-typed and is not a
closure invoking external polymorphic functions such as Obj.magic, and without using cyclic values
of a type extracted from Coq, such as “let rec v = S v”.9

NB: The last restriction does not forbid safe OCaml values to contain recursive functions nor
cyclic mutable data structures.

Hypothesis 1 (Soundess of permissive Coq types). Every “permissive” Coq type T according to
Definition 2.4 satisfies the following property:

8https://github.com/Matafou/LibHyps
9Section 2.5.1 details issues of cyclic values on Coq extracted types.
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Every safe OCaml value compatible with the extraction of T is “soundly” axiomatized
in Coq with type T – in the sense that WLP-theorems deduced from the axiom cannot be
falsified when running the extracted code, in which the axiom has been replaced by the
OCaml value.

Ideally, we aim to extend Coq with a “Import Constant” construct of the form:

Import Constant ident: permissive_type B "safe_ocaml_value".

and acting like “Axiom ident : permissive_type”, but with additional checks during Coq and
OCaml typechecking in order to ensure soundness of extraction. However, defining precisely such
typechecking algorithms is left for future work.

Definition of Permissivity

This section gradually introduces our definition of permissivity in order to explain Hypothesis 1. We
first give examples of unsound types, and examples that are conjectured to be sound. Section 2.1
have illustrated that type nat→bool is unsound: thus, it cannot be permissive. On the contrary, type
nat→?? bool is conjectured to be sound. We also conjecture that nat→?? nat is sound. But, type
nat→??{n : nat | n ≤ 10} – extracted to “nat->nat” – is not. Indeed, such a Coq type corre-
sponds to assume a postcondition on the oracle that the OCaml typechecker cannot ensure.

Similarly, type nat→? ? ( nat→nat ) – extracted to “nat->(nat->nat)” – is unsound because
the Coq side expresses that the result of type nat→nat is pure, whereas this (implicit) postcon-
dition cannot be ensured by OCaml typechecker. Actually, the same phenomenon happens with
nat→( nat→?? nat ) (extracted on the same OCaml type): the partial application on the first argu-
ment is declared pure in Coq, whereas this cannot be ensured by OCaml typechecker.

In contrast, types nat→? ? ( nat→?? nat ) and ( nat→?? nat )→?? nat are conjectured to be sound.
And also {n | n ≤ 10}→?? nat. On this last example, the Coq axiom requires a precondition that
OCaml typechecker can safely ignore. A similar phenomenon happens with ( nat→nat )→?? nat: the
purity of the parameter is an implicit precondition that OCaml typechecker can safely ignore. Note
that currying—like in nat→? ? ( nat→?? nat ) —allows for more imperative OCaml implementations
(at the price of more bureaucracy on the Coq side) than uncurrying—like in nat*nat→?? nat.

In the general case, permissivity can be viewed as a given supertyping relation between Coq types
and OCaml types: a Coq type is permissive only if it is a supertype of its extraction. In this view,
permissivity of arrow types requires to distinguish “inputs” (negative occurrences) from “outputs”
(positive occurrences): outputs are covariant and inputs are contravariant. We thus also need to intro-
duce “permissible Coq types”, i.e. Coq types that are a subtype of their extraction.

Definition 2.4 (Permissive & Permissible Coq types). Permissive and permissible Coq types are de-
fined by mutual induction:

permissible types (i.e. Coq types allowed in inputs of oracles)

• an inductive type is permissible whenever its sort is Prop, or whenever the type of each
input of each constructor is permissible (or the inductive type under definition). For ex-
ample, nat and {n : nat | n ≤ 10} are permissible.

• a forall type, or an arrow type, or a type of the form “_ → ?? _”, is permissible whenever
its input type is permissive and its output type is permissible.

permissive types (i.e. Coq types allowed in outputs of oracles)
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• an inductive type is permissive whenever its sort is not Prop and whenever the type of
each input of each constructor is permissive. See example below.

• an arrow type is permissive whenever the arrow is followed by a “??”, and its input type
is permissible, and its output type is permissive.

• ML polymorphism – i.e. prenex universal polymorphism – preserves permissivity.

For example, given type foo below, type nat→?? foo is permissive. But this would not be the
case if constructor Bar has no “??” in the type of its argument.

Inductive foo B Bar: (nat → ??nat) → foo

Remark that some types such as “ ( nat → nat ) → nat” are neither permissive nor permissive: they
cannot be output types nor input types of oracles.

A more advanced example of permissive type is given by the polymorphic type of make_cref in
Figure 2.4. Section 2.2.3 illustrates that Hypothesis 1 implies a powerful parametricity property on
such a polymorphic oracle.

Record cref {A} B { set: A → ?? unit; get: unit → ?? A }.
Axiom make_cref: ∀ {A}, A → ?? cref A.

Figure 2.4: A Coq FFI of mutable references

let make_cref x =
let r = ref x in { set = (fun y -> r:=y); get = (fun () -> !r) }

Figure 2.5: Standard OCaml implementation of make_cref

let make_cref x =
let h = ref [x] in {
set = (fun y -> h:=y::!h);
get = (fun () -> List.nth !h (Random.int (List.length !h))) }

Figure 2.6: Iconic variant of make_cref

Application to Imperative Programming in Coq

Let us start exploring basic imperative programming in Coq, by using mutable data structures and
I/O. Let us first consider the embedding of mutable references with the Coq code of Figure 2.4: it
defines the record type cref that represents references in a kind of object-oriented style (as the pair of
a mutator set and a selector get), and declares an oracle make_cref building values of this type. On
the OCaml side, type cref is extracted to

type ’a cref = { set: ’a -> unit; get: unit -> ’a }

Then, we define make_cref: ’a -> ’a cref such that it allocates a fresh reference r and returns the
pair of set/get function to update/access the content of r (see the code in Figure 2.5). Hypothesis 1
states that it is sound to implement make_cref by any safe OCaml function of type ’a -> ’a cref
like in Figure 2.5. Having implemented make_cref according to Figure 2.5, the user can thus program
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with mutable references in Coq. However, most properties of this implementation cannot be formally
proven in Coq.

Indeed, from the formal point-of-view, any safe OCaml function of type ’a -> ’a cref is ad-
mitted as a sound implementation of make_cref, including the iconic implementation of Figure 2.6.
I qualify it with “iconic”, because this implementation typifies what any OCaml implementation of
make_cref can do: store inputs of make_cref and set such that get outputs one of the previously
stored inputs. For example, every execution using the implementation of Figure 2.5 can be emulated
by an execution using the implementation of Figure 2.6 where each call to Random.int returns 0: in
this way, get outputs the last received input.

Hence, all formal properties provable from the interface of Figure 2.4 should be satisfied by the
oracle of Figure 2.6. Thus, they can only express that if all the inputs of a given reference satisfy
some given invariant, then the value returned by get will also satisfy this invariant. Such a property
can be partly expressed in Coq by instantiating the parameter A of cref in Figure 2.4 on a Σ-type
that constrains this reference to preserve the given invariant. Whereas this technique seems a bit
weak on this example, Section 2.3.3, Section 2.4.1 and Chapter 5 present interesting applications of
this lightweight technique for constraining polymorphic mutable data structures (such as hash-tables).
Finally, let us note that our embedding of ML references does not forbid aliases as long as they are
compatible with Coq typing: see details in Section 2.5.2.

However, extending extracted code with an OCaml main could in theory break some properties
proved on the Coq side (see also Section 2.5.2). It is thus safer to define the main function of exe-
cutables on the Coq side. This motivates embedding some I/O functions in Coq. Such an embedding
is very easy. Currently, the {Impure} library provides a few wrappers of some functions of the OCaml
standard library, such as these two (where pstring is a Coq type to represent strings).

Axiom read_line: unit → ?? pstring. (* reads a line from stdin *)
Axiom println: pstring → ?? unit. (* prints a line on stdout *)

However, the {Impure} library does not provide any formal reasoning support on these I/O func-
tions. Hence, in this approach, reasoning with I/O on Coq code remains informal – more or less like
on OCaml code. The programmer is only much more protected against stupid mistakes when com-
bining formally proved code and trusted (but informally verified) code, because the Coq type system
is more accurate.10

2.2.3 Parametricity by Invariants (i.e. “Theorems for Free” about Oracles)

According to Definition 2.4, a polymorphic type such as “∀ A , A→??A” is permissive. Together with
Hypothesis 1, this implies a “theorem for free” on safe OCaml values of the corresponding extracted
type. For example, we now prove that any pid, defined as a safe OCaml value of type ’a -> ’a,
satisfies “when (pid x) returns normally some y then y = x”.

In the following, we say that a function pid satisfying the above property is a pseudo-identity
(indeed, it may not be the identity because it may not terminate normally or produce side-effects).

In order to prove that any safe “pid:’a -> ’a” is a pseudo-identity, we first declare pid as an
external function in Coq. Then, we build a Coq function cpid, which is proved to be a pseudo-identity,
and which is extracted to OCaml like “let cpid x = (let z = pid x in z)”. In the Coq source,
for a type B and a value x : B, ( cpid x ) invokes pid on the type {y : B | y=x}, which constrains it to
produce a value that is equal to x. Below, ‘z returns the first component of the dependent pair z of

10This contrasts with FreeSpec [LR20] or InteractionTrees [Xia+20], which allow for reasoning on side-effects within
Coq, but do not seem to enable the use of polymorphic oracles.
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type {y : B | y=x}; the Program environment allows for terms with “holes” (like here in the implicit
coercion of x : B into a value of {y : B | y=x}) and generates static proof obligations to fill the holes.11

Axiom pid: ∀ A, A→??A.
Program Definition cpid{B}(x:B):??B B DO z f pid {y|y=x} x;; RET ‘z.
Lemma cpid_correct A (x y:A): WHEN (cpid x) ⇝ y THEN y=x.

Let us point out that we cannot prove in Coq that pid – declared as the axiom given above –
is a pseudo-identity. Indeed, we provide a model of this axiom where pid detects – through some
dynamic typing operators – if its parameter x has a given type Integer and in this case returns a
constant value, or otherwise returns x. Such a counterexample already appears in [VW07]. This
function is now provided in Java syntax.

static <A> A pid(A x) {
if (x instanceof Integer) / / A== I n t e g e r , because I n t e g e r i s f i n a l
return (A)(new Integer(0));

return x;
}

The soundness of cpid extraction is thus related to a nice feature of ML: type erasure in ML semantics
ensures that type-safe functions handle polymorphic values in a uniform way.

Actually, a similar counterexample is now given by the following unsafe OCaml function, which
exploits the low-level representation of integers, and shortcuts the type checker with Obj.magic.

let pid (x:’a) : ’a =
if Obj.is_int (Obj.repr x) then Obj.magic 0 else x

This explains why such a counterexample must be rejected by Definition 2.3.
In summary, our Coq proof is not about pid, but about cpid which instantiates pid on a dependent

type. Actually, cpid and pid coincide, but only in the extracted code. This proof can be viewed as
a “theorem for free” in the sense of Wadler [Wad89]: it is a parametricity proof for a unary relation,
i.e. a predicate that we call here an invariant. Bernardy and Moulin [BM12; BM13] have previously
demonstrated that parametricity reasoning can be constructively internalized in the logic from an
erasure mechanism. Here, in our “Coq+OCaml” logic of programs, it is associated to the fact that the
invariant instantiating the polymorphic type variable in the Coq proof is syntactically removed by Coq
extraction.

But, whereas parametricity of pure system F has been established a long time ago by Reynolds
[Rey83], its adaptation to imperative languages with higher-order references à la ML is much more
recent [ADR09; DAB09; Bir+11]. Indeed, because higher-order references allows building recur-
sive functions without explicit recursion (see Figure 2.9 page 37), it is even hard to define what is a
predicate over such a higher-order reference. See [AAV02; App+07; HDA10] and [App14, Part V].
This document leaves the proof of Hypothesis 1 for future works, and focuses on demonstrating its
powerful applications.

In another line of work, Keller and Lasson [KL12] followed by Anand and Morrisett [AM17]
have proposed an internalization of parametricity within Coq, but in a very different way and for
a very different purpose than {Impure}. Their parametricity reasoning applies over binary relations
on pure Coq terms. Their goal is to transfer “for free” properties which are proved with one data
representation into another one. This suggests that we may view parametricity as “data-refinement
proofs for free”.

11This small example also illustrates how our approach benefits from powerful features of Coq such as Program.
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2.2.4 Axioms of the Trusted Equality of Pointers

We now extend the FFI described at Section 2.2.2, by embedding the physical equality (i.e. pointer
equality) of OCaml into Coq. In contrast to all other oracles in this document, we impose the phys_eq
oracle to satisfy an axiom – called phys_eq_true – in addition to its declaration. Thus, the imple-
mentation of this oracle must be trusted.

Axiom phys_eq: ∀ {A}, A → A → ?? bool.
Extract Constant phys_eq ⇒ "(==)".
Axiom phys_eq_true: ∀ A (x y: A), phys_eq x y ⇝ true →x=y.

As illustrated on the example of Section 2.1, because “(==)” distinguishes pointers: it can distin-
guish values that the Coq logic cannot. Because Coq propositions are implicitly considered modulo
structural equality of terms, they cannot speak about the underlying pointers that represent terms.

Hence, “phys_eq x y ⇝ b” means something like “if b=true then it has existed an allocated
object o such that x=o=y (for structural equalities)”. For example, the following property is trivially
provable in our model:

Lemma trivial: ∀ x y, x = y → phys_eq x x ⇝ true → phys_eq x y ⇝ true.

We may also simply interpret “phys_eq x y ⇝ b” as the proposition “b=true → x=y”. Hence, I
claim that we cannot prove properties such as the one below, that are falsifiable by (==) at runtime,
because those properties are also false for that simple interpretation:

∀ (x y:nat), x=y → phys_eq x x ⇝ true → phys_eq x y ⇝ false → False.

In conclusion, our “phys_eq” model of OCaml (==) does not speak about pointers: it simply
expresses that (==) is able to establish some structural equalities (in a nondeterministic way from
Coq eyes).12 And, I will use the phys_eq_true axiom in order to replace some tests about structural
equality by faster tests using physical equality instead. Section 2.3.3 gives an example. It also been
used to implement a verified hash-consing mechanism in the CompCert backend. See Section 3.3.2.

2.3 Extending Coq “for free” with Higher-Order Impure Operators

This section applies the {Impure} FFI in order to extend the Coq programming language with some
polymorphic impure operators13: exception-handling at Section 2.3.1, loops at Section 2.3.2 and
(memoized) fixpoints at Section 2.3.3. Our goal is to formally prove the usual rules of Hoare logic for
these operators for partial correctness. This is achieved by applying the technique of “parametricity
by invariants” (introduced at Section 2.2.3): we derive these correctness rules by instantiating the
polymorphic type of well-chosen oracles on a well-chosen sigma-type. In other words, we illustrate
that “parametricity by invariants” interprets ML polymorphic types as “higher-order invariants”, i.e.
invariant properties (of ML values) depending on type variables which themselves names some in-
variant. Hence, with this interpretation, ML typecheckers are powerful engines to infer higher-order
invariants for partial correctness.

Note that extending Coq with nonterminating loops is well-known (e.g. [Chl13, Chap. 7]). The
novelty of my approach is to derive such loops from arbitrary oracles implementing a given ML type.

12Our model of OCaml pointer equality thus differs from the one of Breitner et al. [Bre+18] which represents the pointer
equality of Haskell as a pure Coq function. Indeed, modeling physical equality as a pure function allows proving falsifiable
theorems, as shown in Section 2.1.

13The full Coq/OCaml code of these examples is online at https://github.com/boulme/ImpureDemo
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In particular, this is applied to a formally verified memoized fixpoint operator in Section 2.3.3. Again,
such a formally verified memoized fixpoint is not new: for example, it could be done in separation
logics encoded in Coq (e.g. Ynot [Nan+08; Chl+09]). The novelty of our approach is that there is
no more proof effort for the memoized fixpoint than for the naive fixpoint. The only overhead is a
small defensive check at runtime (i.e. physical equality test for the naive fixpoint, or the replay of the
equality test involved in the memoization for the memoized fixpoint).

2.3.1 Exception-Handling Operators

First, we declare an external function fail which is (informally) expected to raise an error parametrized
by a string.

Axiom fail: ∀ {A}, pstring → ?? A.

This axiom is safely implemented by the following OCaml function fail: pstring -> ’a.

exception ImpureFail of pstring
let fail msg = raise (ImpureFail msg)

But, this axiom is also safely implemented by the following OCaml function fail: ’a -> ’b.

let rec fail msg = fail msg

Actually, while our formal Coq reasonings (on the partial correctness) will be valid for any of these
implementations, our informal reasonings (on the performance) will only consider the first implemen-
tation.

For its formal correctness, fail never returns a value, or equivalently it returns only values satis-
fying any predicate. In order, to get this property “for free”, we wrap fail into a function FAILWITH
of the same type, but which internally calls fail on the empty type False. For any value r:False
returned by fail, we are thus able to build any value of any type (by destructing r).

Definition FAILWITH {A:Type} msg: ?? A B
DO r f fail (ABFalse) msg;; RET (match r with end).

Lemma FAILWITH_correct A msg (P: A → Prop):
WHEN FAILWITH msg ⇝ r THEN P r.

Now, we use FAILWITH to define dynamic assertion checking. Below, “assert_b” ensures that
a (pure) Boolean expression is true or aborts the computation otherwise.

Program Definition assert_b (b: bool) (msg: pstring): ?? b=true B
match b with
| true ⇒ RET _
| false ⇒ FAILWITH msg end.

Lemma assert_correct msg b: WHEN assert_b b msg ⇝ _ THEN b=true.

This approach is extended to exception-handling with the following oracles, which are used in
Figure 5.2 (page 5.2).

Axiom exn: Type. Extract Inlined Constant exn ⇒ "exn".
Axiom raise: ∀ {A}, exn → ?? A. Extract Constant raise ⇒ "raise".
Axiom try_with_any: ∀ {A}, (unit → ?? A) * (exn → ??A) → ??A.
Notation "’TRY’ k1 ’WITH_ANY ’ e ’⇒ ’ k2" B
(try_with_any (fun _ ⇒ k1, fun e ⇒ k2)) . . .
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Here try_with_any is implemented in OCaml by

let try_with_any (k1, k2) = try k1() with e -> k2 e

By parametricity, we can also prove post-conditions on such an exception-handler, provided that these
post-conditions are satisfied in all branches of the exception-handler. In other words, {Impure} embeds
formal reasoning on exception-handling operators by abstracting these operators as nondeterministic
choices. We do not detail this mechanism here, because no example in this document uses such a
verified exception-handling operator.

2.3.2 Generic Loops in Coq

This section defines a verified WHILE-loop for partial correctness. Let us first introduce our untrusted
oracle for generic loops. We use type A as the type of “(potential) reachable states” in the loop (i.e.
A is the loop invariant). We also use type B as the type of “(potential) final states” (i.e. B is the post-
condition of the loop). Our loop oracle is parametrized by an initial state of type A and by a function
“step:A -> ??(A+B)” computing the next state from a non-final state (see the declaration of loop
in Fig. 2.7). Typically, the Coq type “ ( A+B ) ” being extracted on OCaml type “ ( ’ a , ’b ) sum”
defined in Fig. 2.8, we implement this loop oracle by the tail-recursive function of Fig. 2.8. Any safe
OCaml implementation of a compatible type is also admitted, like the alternative implementation of
Fig. 2.9. In this alternative implementation, recursion is not explicit in the code, but is emulated by a
reference fix containing a function accessing fix. Here, the OCaml typechecker is able to verify that
this obfuscated piece of code has the expected type.

After defining the wli predicate (acronym for “while-loop-invariant”), Fig. 2.7 defines our verified
while function. It is parametrized by a pure test cond, by an impure state-transformer body, by a
predicate I preserved by one iteration of the loop (wli condition) and by an initial state s0. Parameter
A (resp. B) of loop is instantiated on the loop invariant (resp. the postcondition). On this code, the
Program plugin generates 3 trivial proof obligations:

1. “I s0 → I s0”.
2. “ ( I s0 → I s ) → cond s = true → body s⇝s ’ →( I s0 →I s ’ ) ”

(trivial from wli hypothesis).
3. “ ( I s0 → I s ) → cond s = false → ( I s0 → I s ) ∧ cond s = false”.

Let us remark that mk_annot is necessary to get the appropriate hypothesis on s ’ in the second
proof obligations. Fig. 2.10 (page 38) illustrates how to apply this while-loop operator to an iterative
computation of Fibonacci numbers.

This technique could be applied to other kind of generic loops. For example, Fig. 5.6 on page 94
defines a generic loop dedicated to refutation of unreachability properties. This generic loop is applied
in Fig. 5.7 to check an UNSAT property, as detailed in Section 5.4.3.

2.3.3 Generic (Memoized) Fixpoints in Coq

This section now extends the previous approach to generic fixpoints of functions. The simplest
version of such a fixpoint in OCaml is given by fixp function in Fig. 2.12. The fixp function
computes the fixpoint of step a function performing one unfolding step of a recursive computa-
tion. For example, it is instantiated for the naive recursive computation of Fibonacci numbers as
“fixp (fun fib p -> if p <= 2 then 1 else fib(p-1)+fib(p-2))”.

Of course, with the implementation in Fig. 2.12, this naive computation of Fibonacci numbers
performs an exponential number of additions. By using the memoized implementation on Fig. 2.13,
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Axiom loop: ∀ {A B}, A * (A → ?? (A+B)) → ?? B.

Definition wli{S} (cond: S → bool) (body: S → ??S) (I: S → Prop) B
∀ s, I s → cond s = true → WHEN body s ⇝ s’ THEN I s’.

Program Definition
while {S} cond body (I: S → Prop | wli cond body I) s0
: ?? {s | (I s0 → I s) ∧ cond s = false}

B loop (AB{s | I s0 → I s})
(s0,

fun s ⇒
match (cond s) with
| true ⇒
DO s’ f mk_annot (body s) ;;
RET (inl (AB{s | I s0 → I s }) s’)

| false ⇒
RET (inr (BB{s | (I s0 → I s) ∧ cond s = false}) s)

end).

Figure 2.7: Implementation of a WHILE-loop in Coq

type (’a, ’b) sum = Coq_inl of ’a | Coq_inr of ’b

let rec loop (a, step) =
match step a with
| Coq_inl a’ -> loop (a’, step)
| Coq_inr b -> b

Figure 2.8: Standard OCaml implementation of oracle loop by a tail-recursive loop

let loop (a0, step) =
let fix = ref (fun _ -> failwith "init") in
(fix := fun a -> match step a with

| Coq_inl a’ -> (!fix) a’
| Coq_inr b -> b);

(!fix) a0

Figure 2.9: Emulating recursion in OCaml with a cyclic higher-order reference
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(* Specification of Fibonacci numbers by a relation *)
Inductive isfib: Z → Z → Prop B
| isfib_base p: p ≤ 2 → isfib p 1
| isfib_rec p n1 n2:

isfib p n1 → isfib (p+1) n2 → isfib (p+2) (n1+n2).

(* Internal state of the iterative computation *)
Record iterfib_state B { index: Z; current: Z; old: Z }.

Program Definition iterfib (p:Z): ?? Z B
if p ≤? 2
then RET 1
else
DO s f
while (fun s ⇒ s.(index) <? p)

(fun s ⇒ RET {| index B s.(index)+1;
current B s.(old) + s.(current);
oldB s.(current) |})

(fun s ⇒ s.(index) ≤ p
∧ isfib s.(index) s.(current)
∧ isfib (s.(index)-1) s.(old))

{| index B 3; current B 2; old B 1 |};;
RET (s.(current)).

(* Correctness of the iterative computation *)
Lemma iterfib_correct p: WHEN iterfib p ⇝ r THEN isfib p r.

Figure 2.10: Iterative computation of Fibonacci numbers with the WHILE-loop

Parameter beqZ: Z → Z → ?? bool.
Parameter beqZ_correct: ∀ x y, WHEN beq x y ⇝ b THEN b=true → x=y.

Program Definition fib (z: Z): ?? Z B
DO f f rec beqZ isfib (fun (fib: Z → ?? Z) p ⇒
if p ≤? 2
then RET 1
else
let prev B p-1 in
DO r1 f fib prev ;;
DO r2 f fib (prev-1) ;;
RET (r2+r1)) _;;

(f z).

Lemma fib_correct (x: Z): WHEN fib x ⇝ y THEN isfib x y.

Figure 2.11: Computation of Fibonacci numbers with the generic fixpoint
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the number of additions remains linear. However, a bug in the implementation of fixp like in Fig. 2.14
leads to incorrect results. Here, the implementation in Fig. 2.14 represents an erroneous version of
the memoized version of Fig. 2.13 where all recursive results are crashed into a single memory cell
(instead of associating each recursive result to its corresponding input into a dedicated memory cell).

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let rec f x = step f x in f

Figure 2.12: Standard fixpoint in OCaml

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = Hashtbl.create 10 in
let rec f x =
try Hashtbl.find memo x
with Not_found -> let r = step f x in (Hashtbl.replace memo x r); r

in f

Figure 2.13: Memoized fixpoint in OCaml

let fixp (step: (’a -> ’b ) -> ’a -> ’b): ’a -> ’b =
let memo = ref None in
let rec f x =
match !memo with
| Some y -> y
| None -> let r = step f x in (memo:=Some r); r

in f

Figure 2.14: An erroneous memoized fixpoint in OCaml

Hence, Fig. 2.14 gives a safe implementation of type ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b
that does not compute a correct fixpoint, even for partial correctness. This illustrates that the property
“be a correct fixpoint” cannot be derived by pure parametric reasoning (in contrast to the WHILE-
loop of Section 2.3.2). However, we build a verified fixpoint operator from any fixpoint oracle of type
((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b, by combining parametricity-by-invariants and (inexpen-
sive) defensive checks. In the case of implementation in Fig. 2.14, the incorrect fixpoint computations
will abort (because of the defensive checks). Hence, we declare the following oracle in Coq. And, we
build a formally correct fixpoint operator by wrapping this oracle.

Axiom fixp: ∀ {A B}, ((A → ?? B) → A → ?? B) → ?? (A → ?? B).

Usually, proving the correctness of a (non-tail)recursive functions requires to prove that a given
relation between inputs and outputs is preserved by the unfolding step of recursion. Here, we need
to encode this binary relation – called R below – into the unary invariant B. The trick is thus to store
both the input (of type A) and the output (of type B) in this invariant, through the answ type below. In
the following, A B : Type and R : A → B → Type are implicit parameters of the formally proved
fixpoint operator.

Record answ B { input:A; output:B; correct:R input output }.

Then, we add a defensive check on each recursive result r – returned through the oracle – that
( input r ) “equals to” the actual input of the call.
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Thus, our fixpoint operator is also parametrized by an equality test beq : A → A → ?? bool
that is expected to satisfy the following formal property.

∀ x y, WHEN beq x y ⇝ b THEN b=true → x=y.

For example, beq could be instantiated by the pointer equality phys_eq or a more structural equality
test (as detailed later).

Then, we introduce a wrapper wapply of the application, such that each recursive call k returning
a value of type answ is converted into a function ( wapply k ) returning a value of type B, but with a
defensive check that the input field equals the x parameter.

Definition wapply (k: A → ?? answ) (x:A): ?? B B
DO a f k x;;
DO b f beq x (input a);;
assert_b b msg;;
RET (output a).

Lemma wapply_correct k x: WHEN wapply k x ⇝ y THEN R x y.

The parameter “step : ( A → ?? B ) → A → ?? B”, that unfolds one step of recursion, is ex-
pected to preserve relation R, as formalized by step_preserv predicate.

Definition step_preserv (step: (A → ?? B) → A → ?? B) B ∀ f x,
WHEN step f x ⇝ z THEN (∀ x’, WHEN f x’ ⇝ y THEN R x’ y) → R x z.

Our proved rec operator is thus defined by:

Program Definition rec step (H:step_preserv step R): ?? (A → ?? B) B
DO f f fixp (BBansw R)

(fun k x ⇒
DO y f mk_annot (step (wapply k) x);;
RET {| input B x; output B ‘y |}

);;
RET (wapply f).

Lemma rec_correct step (H:step_preserv step R):
WHEN rec step H ⇝ f THEN ∀ x, WHEN f x ⇝ y THEN R x y.

Fig. 2.11 (page 38) instantiates this rec operator on the naive recursive computation of Fibonacci
numbers: given any correct beqZ : Z → Z → ?? bool, it derives a correct Fibonacci implemen-
tation fib. Actually, to achieve reasonable performance, beq must be chosen at instantiation of
operator rec according to fixp implementation. If beq is too much discriminating, then it may re-
ject valid computations. On the contrary, if beq inspects too much the structure of its inputs, then it
may slow down computations. For example, phys_eq is well-suited for the fixpoint implementation
in Fig. 2.12. But it is too much discriminating for the fixpoint implementation of Fig. 2.13. Actually,
for the latter, beq must correspond to the equality test involved in the hash-table implementation:
here structural equality. Hence, our approach could be improved by passing beq as a parameter of the
oracle, which then could use it as the equality test of the hash-table instead of structural equality.

2.4 Make your Oracles as Polymorphic as Possible

Section 2.3 illustrates that we get “free theorems” from higher-order polymorphic oracles. It suggests
the following paradigm for designing oracles: “make your oracles as polymorphic as possible”. This
section applies this paradigm on two “toy” examples which introduce the techniques at the heart of
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our “realistic” case studies, detailed in next chapters. The example of Section 2.4.1 is reminiscent
of the previous example on references (at Fig. 2.4). It illustrates how introducing such an imperative
oracle helps in a “concrete” problem like testing list inclusion. The example of Section 2.4.2 has a
much deeper scope: it shows that our technique of “free theorems” is really helpful on typical co-NP
hard problems. Indeed, this second example introduces our Polymorphic Factory Style for proving
unsatisfiability of Boolean Conjunctive Normal Forms.

2.4.1 Testing List Inclusion at Linear Running Time

Let us consider here the following problem. Given a type A with an “equality” test, and two lists l1
and l2 of type ( list A ) , we would like to check that all elements of l1 are elements of l2. In order
to have an efficient implementation, we store all elements of l2 in a dictionary, and then check that all
elements of l1 are in the dictionary. Given n the maximum size of l1 and l2, we get a running time in
Θ(n) for the amortized average case, if the dictionary is an imperative hash-table – but in Θ(n. log(n))
if the dictionary is a purely functional binary-search-tree.

Actually, the memoized fixpoint of Section 2.3.3 suggests that – in some cases – we can efficiently
embed “for free” an untrusted hash-table into certified code. This is also the case on this example.14

Hence, on the Coq side, Figure 2.15 declares an oracle for creating a dictionary (by mimicking the
style of references at Figure 2.4). Here, hashcode is an abstract Coq type, extracted on OCaml int.15

On the OCaml side, we simply wrap the hash-tables provided by the standard library, see Figure 2.16.

Then, we turn this dictionary structure into a “set” structure. Given a type A and an “invariant”
inv : A → Prop, the type ( Sets . t inv ) represents the type of “subsets” of A, with elements sat-
isfying inv. This type is implemented by dictionaries mapping each element (of type A) to a proof
that this element satisfies inv (see Figure 2.17). Given a list l2, function create of Figure 2.18 now
builds a set which contains only elements in l2 (by invoking Sets . empty and Sets . add defined at
Figure 2.17). Conversely, function assert_incl checks that all elements of l1 belong to a given set
d (using Sets . is_in of Figure 2.17). At last, function assert_list_incl of Figure 2.18 glues
these two steps together and provides the expected inclusion test on lists.

In summary, we have embedded a polymorphic untrusted hash-tables of OCaml, in order to get
“for free” a kind of certified dictionary. From this certified dictionary, we have derived an efficient
and certified inclusion test between lists. Here, note that the formal correctness proof of this effi-
cient imperative dictionary is very lightweight: for example, it is much more lightweight than proofs
about binary-search-trees in the Coq standard library. Indeed, it is reduced by parametricity to the
polymorphic type of the hash-table.

More generally, in the case studies of this document, we delegate as much computations as possi-
ble to external oracles, while reducing invariant preservation proofs to ML polymorphic typechecking.
This both reduces the development times and the running times.

2.4.2 A Naive UNSAT Prover on Boolean CNFs

The satisfiability of Boolean CNFs (Propositional Conjunctive Normal Forms) is the archetype of
NP-hard problems. Hence, programming and verification techniques adapted for this problem should
apply to a large class of problems. Efficiently verifying the “SAT” answer of SAT-solvers is easy: it
reduces to evaluate the input CNF within the assignment of Boolean variables found by the SAT-solver

14Its full Coq/OCaml code is online at https://github.com/boulme/ImpureDemo
15We also embed in Coq the polymorphic hash function of OCaml to create hash-codes on the Coq side.
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Record IDict.hparams (A:Type) B {
test_eq: A → A → ??bool;
test_eq_correct: ∀ x y, WHEN test_eq x y ⇝ r THEN r=true → x=y
hashing: A → ??hashcode;

}.

Record IDict.t (A B:Type) B {
set: A * B → ?? unit;
get: A → ?? option B

}.

Axiom IDict.make: ∀ {A B}, IDict.hparams A → ?? IDict.t A B.

Figure 2.15: Declaration of Imperative Dictionaries in Coq

(* v a l I D i c t . make : ’ a I D i c t . hparams −> ( ’ a , ’ b ) I D i c t . t * )
let IDict.make (type key) (hp: key IDict.hparams) =
let module MyHashedType = struct
type t = key
let equal = hp.IDict.test_eq
let hash = hp.IDict.hashing

end in
let module MyHashtbl = Hashtbl.Make(MyHashedType) in
let dict = MyHashtbl.create 10 in
{
IDict.set = (fun (k,d) -> MyHashtbl.replace dict k d);
IDict.get = (fun k -> MyHashtbl.find_opt dict k)

}

Figure 2.16: Implementation of Dictionaries by Hash-Tables in OCaml

(such a verifier is presented in Chapter 5). In contrast, the efficient verification of “UNSAT” answers
is challenging: we may still not have a definitive solution to this problem.

This section presents a very lightweight verification of the UNSAT answers of Boolean SAT-
solvers. This example is deliberately kept naive: this is our introductory example for the Polymorphic
Factory (PFS) design pattern which is developed in further sections. Here, only folklore knowledge
on Boolean resolution is required. Chapter 5 presents a more state-of-the-art verifier.

The idea of formally verifying the UNSAT answers of efficient SAT-solvers emerged with the
Chaff SAT-solver [ZM03]. Following their idea, we build a verified UNSAT prover with a two-
tier architecture: first, an untrusted oracle (i.e. the SAT-solver) that produces a resolution proof or
aborts; second, a certified verifier that checks this resolution proof. This is theoretically justified by
Theorem 2.1 ensuring that this approach is correct and complete.

Formal specification of the prover in Coq

First, let us recall the definition of CNF (Conjunctive Normal Form).

Definition 2.5 (Conjunctive Normal Form). A Boolean variable x is a name and is encoded as a
positive integer. A literal ℓ is either a variable x or its negation ¬x. A clause c is a finite disjunction
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(* Type of "sets" with elements satisfying [inv] *)
Definition Sets.t {A} (inv:A → Prop) B IDict.t A {x | inv x}.

(* building the empty set *)
Definition Sets.empty {A} (hp:IDict.hparams A) {inv:A → Prop}
: ?? Sets.t inv B IDict.make hp.

(* adding a list of elements [l] -- satisfying [inv] -- to a set [d] *)
Program Fixpoint Sets.add {A} (l:list A) {inv} (d:Sets.t inv)
: ∀ {H:∀ x, List.In x l → inv x}, ?? unit B
match l with
| nil ⇒ fun H ⇒ RET ()
| x::l’ ⇒ fun H ⇒ d.(IDict.set)(x,x);; Sets.add l’ d
end.

(* testing whether [x] is in a set [d] *)
Definition Sets.is_in{A}(hp:IDict.hparams A)(x:A){inv}(d:Sets.t inv)
: ?? bool B
DO oy f (d.(IDict.get)) x;;
match oy with
| Some y ⇒ hp.(test_eq) x (‘y)
| None ⇒ RET false
end.

Lemma Sets.is_in_correct A hp (x:A) inv (d:Sets.t inv):
WHEN Sets.is_in hp x d ⇝ b THEN b=true → inv x.

Figure 2.17: Certified “hash-set” operators in Coq

of literals and is encoded as a set of literals. A CNF f is a finite conjunction of clauses and is encoded
as a list of clauses. A model m of CNF f is a mapping that assigns each variable to a Boolean such
that “

�
f

�
m” is true – where “

�
f

�
m” is the Boolean value obtained by replacing in f each variable x

by its value “m x”. A CNF is said “SAT”, if it has a model, and “UNSAT” otherwise.

Our Coq definitions of CNF abstract syntax are given in Figure 2.19. These definitions involve ex-
ternal clause identifiers of type clause_id without formal semantics. These identifiers are intended
to relate clauses to their name in the untrusted oracle. Here, type clause_id is opaque for the Coq
proof: it remains uninterpreted. In the following, we use the bracket notations ~.� for both predicates
“sat” and “sats”.

Our goal is to define a unsatProver of the following type: given a CNF f, if (unsatProver f)
terminates normally then f is UNSAT (otherwise unsatProver is expected to raise an exception).16

unsatProver (f: cnf): ?? (∀ m, ¬~f� m)

A Shallow-Embedded Resolution Checker in Coq

Before introducing our formalization of resolution in Coq, let us recall the following theorem. Ac-
tually, in order to certify our prover, we only need to formalize in Coq the correctness proof. The

16Alternatively, unsatProver could return a Boolean representing “UNSAT” or “FAILED”. Here, as we use an external
oracle, the monad is required, and in this case, exceptions simplify programs and proofs and make runtime more efficient.
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(* returns the set of elements in [l2] *)
Program Definition create {A} (hp: IDict.hparams A) (l2:list A)
: ?? Sets.t (fun x ⇒ List.In x l2) B
DO d f Sets.empty hp (invBfun x ⇒ List.In x l2);;
Sets.add l2 (invBfun x ⇒ List.In x l2) d (HB_);;
RET d.

(* test inclusion of [l1] into set [d] *)
Fixpoint assert_incl{A}(hp:IDict.hparams A)(l1:list A){inv}(d:Sets.t inv)
:?? unit B
match l1 with
| nil ⇒ RET ()
| x::l1’ ⇒ DO x_in f Sets.is_in hp x d;;

assert_b x_in "inclusion fails";;
assert_incl hp l1’ d

end.
Lemma assert_incl_correct A (hp: IDict.hparams A) l1 inv d:
WHEN assert_incl hp l1 d ⇝ _ THEN ∀ x, List.In x l1 → inv x.

(* test inclusion of [l1] into set [l2] *)
Definition assert_list_incl {A} (hp: IDict.hparams A) (l1 l2: list A)
: ?? unit B
DO d f create hp l2;;
assert_incl hp l1 d.

Lemma assert_list_incl_correct A (hp: IDict.hparams A) l1 l2:
WHEN assert_list_incl hp l1 l2 ⇝ _ THEN List.incl l1 l2.

Figure 2.18: Certified and efficient test for list inclusion in Coq

completeness proof only justifies that the design of our prover is expressive enough.

Theorem 2.1 (Refutation correctness & completeness of Forward Resolution). A CNF f is UNSAT
iff the clause ∅ is derivable by the following derivation rules:

Axiom
c

c ∈ f FwdRsl
c1 c2

(c1\{ℓ}) ∪ (c2\{¬ℓ})

First, we introduce our shallow embedding of resolution proofs in Coq. In our implementation,
besides the type iclause of the abstract syntax, we have a more computational representation of
clauses, called cclause, where a clause is represented as two finite sets of positive integers: one for
the positive literals, and one for the negative literals. Such finite sets are efficiently defined in the
standard library of Coq using radix trees. For the sake of simplicity, the Coq definitions we present
here omit this type cclause and use iclause instead.

Given f : cnf, we define the type “consc
�

f
�
” of clauses that are “logical consequences” of f .

Actually, type consc is parametrized by a set of models s and constrains its field rep to satisfy all
models of s (through rep_sat property).

Record consc(s: model → Prop): Type B
{ rep: iclause; rep_sat: ∀ m, s m →~snd rep� m }.
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Definition var B positive.
Record literal B { is_pos: bool ; ident: var }.
Definition model B var → bool. (* Boolean mapping *)
Definition clause B list literal. (* syntactic clause *)
Fixpoint sat (c: clause) (m: model): Prop B
match c with
| nil ⇒ False
| l::c’ ⇒ m(ident l)=(is_pos l) ∨ sat c’ m
end.

Definition iclause B clause_id * clause. (* clause with an id *)
Definition cnf B list iclause. (* syntactic cnf *)
Fixpoint sats (f: cnf) (m: model): Prop B
match f with
| nil ⇒ True
| c::f’ ⇒ sat (snd c) m ∧ sats f’ m
end.

Figure 2.19: Coq definitions of the abstract syntax of a CNF

Then, we define an emptiness test of the following type. Actually, assertEmpty c terminates
iff ( rep c ) is the empty clause. Otherwise, it raises an exception.

assertEmpty {s}: consc s → ??(∀ m, ¬(s m)).

Then, we define the forward resolution operator as the following function, called resol.

resol: ∀{s}, (consc s) → (consc s) → ??(consc s)

In its implementation, ( resol c1 c2 ) first checks that there exists a unique literal l such that l
belongs to c1 and its negation belongs to c2. If this is the case, it applies rule FwdRsl with ℓ :=l,
c1 :=c1 and c2 :=c2. Otherwise it raises an exception, because this is considered as a performance
bug of the oracle: any resolvent of c1 and c2 by FwdRsl is useless for generating ∅.

An untrusted solver in Polymorphic LCF Style (PFS)

The unsatProver function calls a solver and checks that it has found a valid resolution proof of the
input CNF. Actually, it exploits the cooperation mechanism of Coq and OCaml typecheckers in order
to make this untrusted solver compute directly a logical consequence of the input, through a certified
API. This API is called a Logical Consequence Factory (LCF) and builds correct-by-construction
proofs, without an explicit “proof object” – in the style of the old LCF prover (as discussed in
Sect. 1.3.1). The solver is declared in Coq by the solver axiom (see below). This function is
parametrized by:
• an abstract type of clause: this type – called C – is abstract for the untrusted parser but instanti-

ated by “consc
�

f
�
” in the Coq proof;

• a logical consequence factory of type “ ( resolLCF C ) ”: this factory allows the oracle to build
logical consequences (i.e. new abstract clauses) thanks to abs_resol (instantiated by the
previous resol in the Coq proof).17

17Note that, type resolLCF only appears in input of our oracle: it is permissible as expected. Here, abs_learn
is declared impure because it may raise exceptions: alternatively, we also could have use an option monad. However, this
would probably produce a slightly less efficient extracted code.
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• the input CNF f given as a list of “axioms”, ie abstract clauses of type C.

Record resolLCF C B { abs_resol: C → C → ?? C; get_id: C → clause_id }.
Axiom solver: ∀ {C}, (resolLCF C)*list(C) → ?? C.

By using the get_id function, the solver first builds a map from clause identifiers in the input to their
corresponding abstract clause (ie axiom). Then, it maintains this map while creating auxiliary clauses.
It is expected to either abort or return an abstract clause witnessing a proof of the empty clause.

Thus, unsatProver is simply defined by the code below. It first calls the mkInput function that
builds the parameters expected by the parser (we omit the details here). Afterwards, unsatProver
simply invokes the parser and checks that its result is the empty clause. Here, the polymorphism over
“abstract clauses” in the OCaml solver ensures that this untrusted code can only forge abstract clauses
which are logical consequences of the input.

Definition mkInput (f: cnf): resolLCF(consc~f�) * list(consc~f�) B. . .
Definition unsatProver f: ?? (∀ m, ¬~f� m) B
DO c f solver (mkInput f);; assertEmpty c.

This example illustrates that PFS provides a simple, lightweight and efficient API for building
a correct-by-construction consequence of the input CNF with an untrusted SAT-solver. However,
recent works [Cru+] have surpassed forward resolution with a more efficient proof format. Chapter 5
presents PFS for this more complex proof format.

2.5 Limitations of {Impure} and Future Works

As illustrated by the remainder of this document, the {Impure} library provides an experimental frame-
work to develop case studies combining OCaml untrusted oracles and Coq verified code. However,
a tighter integration of OCaml and Coq would be preferable in the future, in order to increase the
trustworthiness of such developments. In particular, Definitions 2.3 and 2.4 informally describe two
additional typechecking verifications that are required for the soundness of Coq+OCaml verified code.

Below, we detail some issues with the current implementation of {Impure}, and how they could
disappear with a more ambitious framework. Section 2.5.1 illustrates that cyclic values of Coq ex-
tracted inductive types are not compatible with the pointer equality axiomatized in Coq. Section 2.5.2
explains why it is unsafe to extend Coq+OCaml code in OCaml (instead of programming this ex-
tension into Coq thanks to {Impure}). For example, some uncontrolled alias in the OCaml extension
may break invariants proved on the Coq side. In particular, the main function of executables should
be programmed in Coq instead of OCaml. Last, Section 2.5.3 explains that the current extraction
of {Impure} computations still needs to be improved, in order to ensure safe equational reasoning on
{Impure} computations, as sometimes used in the {VPL} [#FB14].

2.5.1 The Issues of Cyclic Values

Consider the following Coq code. It defines a type empty which is provably empty: the proposition
empty → False is provable by induction. Thus, any function of unit→?? empty is proved to never
return (normally).

Inductive empty: TypeB Absurd: empty → empty.
Lemma never_return_empty (f:unit→??empty): WHEN f() ⇝ _ THEN False.
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Thus, because unit→?? empty is permissive, OCaml cyclic values like the loop value defined below
(with type empty) are unsafe (see Definition 2.3).

let rec loop = Absurd loop
let f: unit -> empty = fun () -> loop

Besides this pathological case, forbidding cyclic values on Coq extracted types is also necessary
for the soundness of the physical equality inside Coq introduced at Section 2.2.4. Indeed, otherwise
there is an unsoundness issue with axiom phys_eq_true.

For example, let us consider the phys_eq_pred lemma about type nat of Peano’s natural num-
ber, defined in the standard library. This lemma derives from the fact that O is the only n : nat such
that pred n = n.

Definition is_zero (n:nat): bool B
match n with
| O ⇒ true
| (S _) ⇒ false
end.

Lemma phys_eq_pred n:
WHEN phys_eq (pred n) n ⇝ b THEN b=true → (is_zero n)=true.

Let us now consider the following cyclic value – called fuel – because some Coq users import such
an “infinite fuel” from OCaml in order to circumvent the structural recursion imposed by Coq.

let rec fuel: nat = S fuel

At runtime, the OCaml test “pred fuel == fuel” returns true, but “is_zero fuel” returns false.
This contradicts the phys_eq_pred lemma. Hence, in order to formally reason about physical equal-
ity in Coq, it is necessary to forbid – in OCaml oracles – cyclic values on types extracted from Coq.

In conclusion, Definition 2.3 forbids oracles to define cyclic values on Coq extracted types. A
way to check this property of oracles would consist in adding to the OCaml language an (optional)
“inductive” tag on OCaml variant types that forbids cyclic values of these types. Then, Coq induc-
tive types would be extracted into OCaml variant types tagged with “inductive”.

2.5.2 The Issues of Ensuring that Aliases Cannot Break Coq Invariants

This section illustrates interactions between aliases and Coq typing with examples using type cref
defined in Figure 2.4 page 31 (for the implementation of the oracle given in Figure 2.5). First, we
introduce the following Coq code:

Definition may_alias{A} (x:cref A) (y:cref nat):?? AB
y.(set) 0;; x.(get) ().

Now, let us consider x : cref mydata where mydata is constrained by invariant bounded. We
are able to prove that ( may_alias x y ) returns a value satisfying this invariant as expressed by
mydata_preserved lemma below:

Record mydata B { value: nat; bounded: value > 10 }.
Lemma mydata_preserved (x: cref mydata) (y: cref nat):
WHEN may_alias x y ⇝ v THEN v.(value) > 10.

Let us remark that mydata_preserved property could be broken by extending the extracted code
with arbitrary OCaml code (even for safe OCaml code). Indeed, in the extracted code, type mydata is
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extracted to nat (because mydata is a record type with a single field that is not a proposition). And,
given any OCaml “x:nat cref”, (may_alias x x) returns 0 (while changing the contents of x for
this value).

Actually, Hypothesis 1 states that if safe external OCaml code is “imported” into Coq through
a permissive Coq type, such an alias cannot break WLP-theorems proven in Coq. Informally, this
hypothesis relies on the typing discipline of Coq itself to forbid any alias that breaks Coq typing: in the
Coq code, aliasing references of ( cref mydata ) with references of ( cref nat ) is forbidden. Let
me remark here that this does not forbid the presence of all aliases in the Coq code itself. For example,
the code below defines a reference r2 containing a reference r1, and runs ( may_alias r2 r1 )
which thus changes the contents of the contents of r2.

Program Definition alias_example (r1: cref nat) : ?? { r | r=r1 } B
DO r2 f make_cref (exist (fun r ⇒ r = r1) r1 _);; may_alias r2 r1.

Here, through Coq typing, we also formally prove that the result of ( may_alias r2 r1 ) is reference
r1. But, the fact that r1 contains 0 at the end cannot be formally proven (it depends on make_cref
implementation).

The preceding example suggests that extending extracted code with an OCaml main function
could in theory break some properties proved on the Coq side. More generally (beyond introducing
unsafe aliases), writing the main function in OCaml may lead to misusing some functions with de-
pendent types in Coq, because their type after extraction to OCaml cannot prevent such a misuse. It
seems thus important to define the main function of executables on the Coq side.

Moreover, the cref example illustrates that permissivity checking is a bit more complex than the
sketch of Section 2.2.2. In particular, the parameter A of type cref is both used in input (on set)
and on output (on get). Thus, ( cref nat ) is both permissive and permissible, because type nat of
Coq coincides with its OCaml extraction (in particular, because of the restriction on cyclic-values, see
Section 2.5.1). But ( cref mydata ) are neither permissive nor permissible, because type mydata of
Coq does not coincide with its extraction.

2.5.3 The Issue of Equality on Impure Computations

When interpreting formal proofs based on the {Impure} library, the user must be aware that only WLP-
theorems (defined in Section 2.2.1) have a meaning on the extracted code. In particular, the meaning
of Coq equality on impure computations is currently very counterintuitive as explained now.

In the Coq logic, all reduction strategies are equivalent. In particular, for any term foo, the Coq
logic cannot distinguish between the two following β-convertible terms

( ( fun x ( _ : unit ) ⇒ x ) foo ) versus ( fun ( _ : unit ) ⇒ foo )
But in OCaml, the two following expressions are very different

((fun x (_:unit) -> x) (print_string "hello"))
versus (fun (_:unit) -> print_string "hello")

The first expression prints “hello” whereas the second one is silent. This corresponds to the call-by-
value semantics of OCaml.

Let us use this idea to build a counterintuitive Coq theorem. Consider the code in Figure 2.20, that
defines the repeat operator, a higher-order iterator repeating n times a computation k. It is applied
in print3 to print a string three times. A careless user could instead provide the wrong wprint3
implementation, which prints the string only once. Actually, the careful user will have in mind that
the parameter k : ? ? unit of wrepeat is extracted to k:unit in OCaml. Thus, at extraction, k is () –
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Fixpoint repeat (n:nat) (k: unit → ?? unit): ?? unit B
match n with
| 0 ⇒ RET()
| S p ⇒ k();; repeat p k
end.

Definition print3 (s:pstring):?? unitB repeat 3 (fun _ ⇒ println s).

Fixpoint wrepeat (n:nat) (k: ?? unit): ?? unit B
match n with
| 0 ⇒ RET()
| S p ⇒ k;; wrepeat p k
end.

Definition wprint3 (s:pstring): ?? unit B wrepeat 3 (println s).

Lemma wrong_IO_reasoning s: (print3 s)=(wprint3 s).

Figure 2.20: Counterintuitive Equality on Impure Computations

the single value of type unit. Unfortunately, for the Coq logic, print3 and wprint3 are the same as
attested by lemma wrong_IO_reasoning.

In order to avoid this counterintuitive meaning of equality, we could use an alternative extraction,
based on the deferred monad below, instead of the identity monad:

??A ≜ unit→ A k⇝a ≜ k()=a ε a ≜ λ(), a k1 �= k2 ≜ λ(), k2 (k1()) ()

The extraction on the deferred monad is consistent with Coq equality, and more generally with equa-
tional reasoning on {Impure} computations, as sometimes used in the {VPL} [#FB14]. But, this extrac-
tion induces significant overhead at runtime (and makes the type of OCaml oracles more heavyweight
for programming).

A better solution consists in keeping the extraction on the identity monad as much as possible,
by building a type system to detect Coq terms that are wrongly extracted in the identity monad (like
wrepeat above) and extract them with the deferred monad instead. This feature requires a nontrivial
type system and a nontrivial modification of the extraction: it is left for future work. Providing
equational reasoning over {Impure} computations could be a step toward general-purpose reasoning
about side-effects, in the style of InteractionTrees [Xia+20] (see also discussion in Section 2.6).

We conjecture that this counterintuitive equality cannot lead to wrong WLP-theorems, even for
the extraction on the identity monad without restriction. In other words, we conjecture that while the
results observed at runtime in the deferred monad or in the identity monad can differ, WLP-theorems
can only state properties which are satisfied in both extractions.

2.6 Comparison with other Imperative FFIs for Coq

Some alternative FFIs for imperative OCaml code have been mentioned in the previous pages. We
now recall these alternative FFIs and point out their differences with {Impure}.

Cybelle18 is a Coq library, like {Impure}, providing a lightweight extension of the Coq program-
ming language with effects, by combining a monad with extraction to OCaml [Cla+13]. See [Reg19,

18https://github.com/clarus/cybele
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Chap. 1] for a brief overview. With Cybelle, impure oracles are programmed directly in Coq: they
automatically generate certificates (called prophecies) allowing to emulate them with pure computa-
tions in Coq. This provides a quite generic mechanism to run imperative oracles within Coq tactics,
without designing some ad-hoc type of certificates. Note that Coq extraction and OCaml are not in
its TCB thanks to the prophecy mechanism. However, Cybelle only embeds a very limited subset of
OCaml imperative features: for example, it is not obvious how Cybelle could be extended with phys-
ical equality. Moreover, the prophecy mechanism may induce an overhead w.r.t. an ad-hoc certificate
format optimized for a particular problem. And, it does not provide any theorem for free on OCaml
external code.

FreeSpec19 is a Coq plugin, based on a variant of free monads [Swi08]—to modularly run and
reason about impure computations (like external OCaml functions) inside Coq. In FreeSpec, external
OCaml code is trusted: it should respect some contract defined in Coq. FreeSpec allows to fully
reason about side-effects and I/O, on the contrary to {Impure}. However, reasoning on impure code
seems much more heavyweight than with {Impure}. In particular, currently, it does not provide any
theorem for free on OCaml external code.

Similar remarks apply to InteractionTrees20, a library based on another variant of free monads,
which provides co-inductive reasoning about impure computations using simulation relations [Xia+20].

Ideally, an Imperative FFI for Coq would be able to support two kinds of “foreign functions”:
(1) untrusted external oracles à la {Impure}; (2) trusted external code that corresponds to “primitive
observational events”, on which we may reason with co-inductive simulations, like within Interac-
tionTrees. However, it seems very difficult to soundly mix both kinds of foreign functions. An
hypothetical solution would provide some isolation mechanism able to ensure that untrusted oracles
cannot “emit” observational events modeled on the Coq side in an uncontrolled way.

19https://github.com/ANSSI-FR/FreeSpec
20https://github.com/DeepSpec/InteractionTrees
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Chapter 3

FVDP of Instruction Schedulers, by
Symbolic Execution with Hash-Consing†

While often effective to reduce the overall proof effort, validation a posteriori is not a
silver bullet either: many compiler passes are no easier to validate than to prove correct
once and for all. Between full compiler verification and full translation validation lies a
continuum of combined approaches that remain to be systematically explored.

Xavier Leroy in “Verified squared: does critical software deserve verified tools?” [Ler11].
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This chapter presents how the ultra-lightweight FVDP of a hash-consing mechanism, with the
{Impure} library, is powerful enough to help the FVDP of an instruction scheduler in CompCert back-
end. In other words, we study here a two-stages FVDP design. In the first stage, the results of an
untrusted instruction scheduler are dynamically verified by symbolic execution. In order to make this
dynamic verification efficient, two other untrusted oracles are introduced: this is the second stage of
FVDP. One of these oracles is the dictionary factory for list-inclusion, previously detailed in Sec-
tion 2.4.1. The other one is a generic factory of memoization for hash-consing. This chapter details
how this second stage of FVDP is implemented on the top of the {Impure} library (within CompCert).
The first stage—implemented using the unsafe FFI of CompCert—is also sketched.

Below, Section 3.1 presents instruction scheduling in CompCert (i.e. the first FVDP stage). Sec-
tion 3.2 introduces AbstractBasicBlock, the intermediate language in which the core of our scheduling

†The technical core of this chapter has been published in [#SBM20].
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verifier is defined. At last, Section 3.3 formalizes this scheduling verifier as a simulation test in Ab-
stractBasicBlock, with its hash-consing mechanism (i.e. the second FVDP stage).

3.1 Verified Instruction Scheduling in CompCert

Let me introduce instruction scheduling on a simplified single-issue pipeline with 3 stages, pictured
in Figure 3.1: one fetch/decode unit (called DECODE), and two execution units (called EXEC1 and
EXEC2). Simple arithmetic instructions such as ADD and SUB only require one cycle in EXEC1,
whereas LOAD needs two cycles: one in EXEC1 and one in EXEC2.

Input (pseudo)assembly

I1 R2:=ADD R1,R2;
I2 R3:=LOAD 8(R1);
I3 R2:=SUB R2,R3;

bad scheduling I1;I2;I3

−−−−−−−−−−−−−→
running

tim
e

DECODE EXEC1 EXEC2

I1
I2 I1
I3 I2
I3 stall I2

I3

good scheduling I2;I1;I3
DECODE EXEC1 EXEC2

I2
I1 I2
I3 I1 I2

I3
One cycle is won!

Figure 3.1: Single-Issue Instruction Pipelining with 3 Stages and a LOAD of Latency 2.

Figure 3.1 illustrates the execution of a given input assembly program on this pipeline. With the
initial order “I1;I2;I3”, a stall is introduced by the processor in the pipeline after the decoding of I3,
because its execution in EXEC1 requires register R3 to be loaded (by instruction I2). And this will
only be the case after having I2 in EXEC2. Swapping instructions I1 and I2 makes this stall disappear
(without changing the semantics of the program), because I1 is executed in EXEC1 while I2 is in
EXEC2. When I3 enters in EXEC1, R3 and R2 are ready. Thus, this second scheduling, by avoiding
one stall, makes the program run faster.

Out-of-order processors, such as x86 processors, optimize pipeline usage at runtime with dynamic
program scheduling. However, they require a complex control logic, using large CPU die space and
energy. In addition, their behavior with respect to execution time may be hard to predict, which is an
issue in safety-critical applications where a worst-case execution time (WCET) must be estimated or
even justified by a sound analysis [Fra+11]. Last, the complexity of such processors is a source of
bugs. 1

Thus, in-order processors that only implement limited forms of dynamic scheduling (such as paral-
lelizing successive instructions on multiple-issue pipelines) are interesting in the context of embedded
systems. And such processors greatly benefit from static scheduling within compilers.

On the previous example, the scheduler [Mic94, Ch. 5] aims to compute t : {I1, I2, I3, $} → N
assigning a time slot to each instruction, with t($) representing the running time (in number of cycles)
of the whole sequence. More precisely, the scheduler looks for a t with a minimal t($) that satisfies
the following constraints, generated from the input program and the target architecture:

Resource Constraints ∀i ∈ N, |{ x/t(x) = i }| ≤ 1 (single-issue pipeline)

Latency Constraints t(I3) − t(I1) ≥ 1 t(I3) − t(I2) ≥ 2 t($) − t(I3) ≥ 1.
1For instance, Intel’s Skylake processor had a bug that crashed programs, under complex conditions [Ler17].
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For the above constraints, the optimal assignment (I1 7→ 1, I2 7→ 0, I3 7→ 2, $ 7→ 3) gives the sequence
“I2;I1;I3”.

Tristan and Leroy [TL08] have proposed to implement such a scheduler in CompCert by an un-
trusted oracle, and to dynamically verify the correctness of its answer by symbolic execution [Kin76].
For example, it reduces to syntactically check that “I1;I2;I3” (input code) and “I2;I1;I3” (scheduled
code) match the same parallel assignment—computed by certified symbolic execution:

R2:=SUB(ADD R1,R2),(LOAD 8(R1)) ‖ R3:=LOAD 8(R1)

Indeed, this syntactical check ensures that the scheduled sequence preserves the “local” semantics
of the input sequence. However, this does not necessarly ensure that the “global” semantics of the
ambiant program is also preserved, if, for example, this ambiant program can enter in the middle
of the input sequence through an indirect jump such as “JMP R2” (where “R2” contains some code
address). Hence, such scheduling should only occur inside a notion of block with a single (semantic)
entry point at its top. Schedules that move instructions across conditional exit points are semantically
acceptable, under some various conditions, leading to various scheduling strategies. For example,
super-block scheduling [Hwu+93] moves some instructions above some previous conditional exit
points in the block, on the condition that these instructions cannot fail, and they do not modify a
register read after having taken those exit points. Basic-block scheduling is simpler, by forbidding to
move instructions across exit points: scheduling simply occurs inside basic-blocks, which are defined
as instruction sequences with a single entry point and a single exit point (e.g. a control-flow instruction
at the end of the sequence).

Another concern about scheduling is whether it should happen before or after register allocation.
After register allocation (i.e. postpass scheduling), the scheduling may be limited by some unfortunate
register reuse. Before register allocation (i.e. prepass scheduling), the instructions to schedule are not
yet completely known: in particular, register allocation may induce register spills, requiring new load
& store instructions. Moreover, the prepass scheduler should take care to not create too many large
live ranges, which would increase register pressure, and finally induce more spills. There is also
active research in integrating register allocation and instruction scheduling during the same pass, but
it does not seem yet clear whether solving these two problems simultaneously can really scale to
large generated code [Car+17]. Thus, a standard approach is to implement both kinds of schedulers: a
“coarse” prepass scheduler which approximately positions instructions with big latencies; and a “fine”
postpass scheduler which precisely optimizes the final program. That is the approach we currently
investigate in CompCert.

In their seminal work, Tristan and Leroy [TL08] proposed to extend CompCert with a certified
postpass basic-block scheduler, split into (i) an untrusted oracle written in OCaml that computes a
scheduling for each basic block; (ii) a checker—certified in Coq—that verifies the oracle results by
symbolic execution. Unfortunately, their checker has exponential complexity w.r.t. the size of basic
blocks, making it slow or even impractical as the number of instructions within a basic block grows.
Actually, their approach was neither integrated into CompCert, nor, to my best knowledge, seriously
evaluated experimentally, probably due to prohibitive compile times.

In [#SBM20], with Cyril Six and David Monniaux, we have improved Tristan & Leroy’s approach
on the following points:
• our symbolic execution uses a certified hash-consing of terms: this makes the running times of

our scheduling verifier linear w.r.t. the size of basic blocks;
• we certify a scheduler for a VLIW processor: a multiple-issue processor with explicit paral-

lelism in the semantics of the assembly language;
• our scheduler transforms the assembly program, whereas the one of Tristan and Leroy [TL08]
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Figure 3.2: Architecture of our Postpass Scheduling on Aarch64

was working at a slightly higher level, not enough precise to produce correct VLIW assembly
programs;
• our scheduling checker is able to validate some simple peephole optimizations performed by

the scheduler, such as replacing two 64-bit loads by a single 128-bit load;
• the backend of our scheduling checker is defined on a new dedicated intermediate language of

CompCert, called AbstractBasicBlock, that is independent of the target processor.
Since this work, Léo Gourdin has ported our postpass scheduling with peepholes to a non-VLIW
target: Aarch64 (more precisely, his scheduler targets ARM Cortex-A53, an in-order dual issue
pipeline) [Gou21]. Léo’s proof directly reuses the AbstractBasicBlock checker (see Figure 3.2). With
Cyril Six and David Monniaux, we have also implemented a generic prepass superblock scheduler.
Because this scheduler works on superblocks instead of basic blocks, and because it works at a higher
level representation than assembly code (called RTL), we have not reused the AbstractBasicBlock
checker. This prepass checker still directly reuses the hash-consing factory developed for the Ab-
stractBasicBlock checker [Six21].

Our experimental evaluations shows that adding our scheduling passes does not significantly in-
crease compiling times (the bottleneck of CompCert remains register allocation), and there is a sig-
nificant speed-up at runtime of the generated code. See [#SBM20].

Previously to our work, symbolic execution with hash-consing has been successfully applied
to the uncertified translation validation of a wide range of compiler optimizations. For example,
see [TGM11]. The FVDP of symbolic execution presented below aims to be a first step toward the
FVDP of such powerful translation validators.

3.2 The AbstractBasicBlock IR and its Sequential Semantics

The remainder of this chapter details AbstractBasicBlock and its scheduling checker. AbstractBa-
sicBlock is an IR (Intermediate Representation) dedicated to verification of the results of scheduling
oracles operating on basic blocks. It also helps to check bundling oracles (for VLIW targets), but we
skip this part here: see [#SBM20] for details. This IR is only used for verification: there are only
translation from assembly to AbstractBasicBlock (see Figure 3.2), but no translation from Abstract-
BasicBlock to another IR of CompCert. AbstractBasicBlock is independent of the target processor
and from the remainder of CompCert. Because of this good feature, the following description of
AbstractBasicBlock intends to be self-contained, and does not require understanding other parts of
CompCert. (Presenting in details the simulation proof of the whole input program by the whole sched-
uled program from the correctness of AbstractBasicBlock scheduling checker, is beyond the scope of
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this chapter: see [#SBM20].)
Section 3.2.1 illustrates how assembly instructions are compiled into AbstractBasicBlock: this

introduces the syntax of AbstractBasicBlock instructions. Section 3.2.2 formally defines this syntax
and its associated semantics. Section 3.3 presents the simulation test, which checks that the sequential
semantics of basic blocks is preserved by scheduling.

3.2.1 Introduction through the Translation from Assembly

AbstractBasicBlock defines a (deeply embedded) language for representing the semantics of sin-
gle assembly instructions as the assignment of one or more pseudoregisters. For example, an in-
struction “add r1, r2, r3” is represented as an assignment “r1 B add[r2, r3]”. Hence, AbstractBa-
sicBlock distinguishes syntactically which pseudoregisters are in input or output of each instruction.
Moreover, it gives to all operations (including load/store and control-flow ones) a single signature
“list exp → exp”. A binary operation such as add will just dynamically fail, if applied to an
unexpected list of arguments. This makes the syntax of AbstractBasicBlock very simple.

Let us consider less straightforward examples. Our translation to AbstractBasicBlock represents
the whole memory as a single pseudoregister called here m. Hence, instruction “load r1, r2, i” (where
i is an integer constant representing offset) is encoded an assignment “r1 B (load i)[m, r2]” where
the underlying operation is “(load i)”. In other words, the syntax of AbstractBasicBlock provides an
infinite number of operations “(load i)” (one for each i). Similarly, a “store r1, r2, i” is encoded an
assignment “m B (store i)[m, r1, r2]” reflecting that the whole memory is potentially modified.

We also encode control-flow instructions in AbstractBasicBlock: a control-flow instruction mod-
ifies the special register PC (the program counter). Actually, in CompCert assembly languages, we
consider that each basic block ends with a control-flow instruction: when the latter is implicit in the
assembly code, it corresponds to the increment of PC by the size of the basic block. Hence, in the
translation of instructions to AbstractBasicBlock, each control-flow instruction performs at least the
assignment “PC B (incr i)[PC]” where i is an integer representing the size of the basic block. Typ-
ically, a conditional branch such as “lt r, l” (where l is the label and r a register) is translated as the
sequence of two assignments in AbstractBasicBlock:

PC B (incr i)[PC] ; PC B (lt l)[PC, r]

It could equivalently be coded as the assignment “PC B (lt l)[(incr i)[PC], r]”. However, it could
seem more convenient to insert the incrementation of PC before the assignments specific to each
control-flow instruction. A more complex control-flow instruction such as “call f ” (where f is a
function symbol) modifies two registers: PC and RA (the return address). Hence “call f ” is translated
as the sequence of 3 assignments in AbstractBasicBlock:

PC B (incr i)[PC] ; RA B PC ; PC B (cte address f )[]

Finally, CompCert assembly languages contain instructions modifying several pseudoregisters in
parallel. One of them is an atomic parallel load from a 128-bit memory word into two contiguous
(and adequately aligned) destination registers d0 and d1. These two destination registers are distinct
from each other by construction—but not necessarily from the base address register a. These parallel
assignments are expressed in the sequential semantics of AbstractBasicBlock instructions with the
special Old operator of AbstractBasicBlock expressions: an expression “(Old e)” evaluates “e” in the
initial state of the surrounding AbstractBasicBlock instruction.2 Hence, the parallel load of 128-bit

2Such an operator Old is quite standard in Hoare logic assertions. For example, see the ACSL annotation language of
Frama-C [Kir+15].
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words is given in terms of two loads of 64-bit words:3

d0 B (load i)[m, a] ; d1 B (load (i + 8))[m, (Old a)]

Similarly, CompCert assembly languages provide a pseudoinstruction freeframemodifying both
the memory and some registers. It is used in the epilogue of functions. In the semantics, freeframe
modifies the memory m by deallocating the current stack frame in the memory model of CompCert. It
also updates register SP (the stack pointer) accordingly and destroys the contents of a scratch register
called here tmp. The modifications to SP and m are performed in “parallel”, since SP indicates the
current stack frame in m, and the new value of SP is read from this stack frame. For the pseudoin-
struction “freeframe i1 i2” (where i1 and i2 are two integers), our translation to AbstractBasicBlock
introduces two intermediate operations: first, “(freeframe_m i1 i2)” for the effect on memory, and
second, “(freeframe_SP i1 i2)” for the effect on the stack pointer. Then, the pseudoinstruction
“freeframe i1 i2” is translated as the sequence of 3 assignments in AbstractBasicBlock:

m B (freeframe_m i1 i2)[SP,m] ;

SP B (freeframe_SP i1 i2)[SP, (Old m)] ;

tmp B Vundef[]

In conclusion, each instruction of CompCert assembly languages is translated into a sequence of
assignments, where some of these assignments modify several pseudoregisters in “parallel” thanks to
the special Old operator. We speak about atomic sequences of assignments (ASA): these sequences
represent atomic instructions which can themselves be combined either sequentially or in parallel (for
verification of VLIW bundles). An abstract basic block is a sequence of ASA.

The compilation of assembly basic blocks toward AbstractBasicBlock must produce a bisimulable
basic block: namely, the compilation must both preserve well-defined and undefined behaviors. This
is necessary for the proof of the scheduling correctness. Indeed, this proof consists in building the
commutative diagram at the right-hand side of Figure 3.3, in order to deduce the simulation at the
assembly level from the one at the AbstractBasicBlock level, because on the top rectangle of the
diagram: the downward way of the bisimulation gives the path from B1, whereas the upward way
gives the path to B2. The remainder of this chapter details how is built the bottom rectangle of the
diagram. See [#SBM20] for more details on the top rectangle.

assembly basic blocks B1 B2

AbstractBasicBlock · ·

Symbolic memories · ·

simulated by

bisimulation

bisimulation

compilations

symbolic executions
with hash-consing

smem_simu

bblock_simu

Figure 3.3: Proving that the input block B1 is simulated by the scheduled block B2

3A benefit of this translation is that our scheduling oracle may replace two loads of 64-bit words into one load of a
128-bit words, and our verifier is able to check “for free” whether the replacement is semantically correct.
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3.2.2 Syntax and Sequential Semantics

(* Syntax parametrized by type R.t of registers and op of operators *)
Inductive exp B PReg(x:R.t) | Op (o:op) (le:list_exp) | Old (e:exp)

with list_exp B . . .
Definition inst B list (R.t * exp). (* inst = ASA *)
Definition bblock B list inst.

(* Semantic parameters and auxiliary definitions *)
Parameter value genv: Type.
Parameter op_eval: genv → op → list value → option value.
Definition mem B R.t → value. (* concrete memories *)
Definition assign (m:mem) (x:R.t) (v:value): mem B
fun y ⇒ if R.eq_dec x y then v else m y.

(* Sequential Semantics *)
Fixpoint exp_eval (ge: genv) (e: exp) (m old: mem): option value B
match e with
| PReg x ⇒ Some (m x)
| Old e ⇒ exp_eval ge e old old
| Op o le ⇒ SOME lv ← list_exp_eval ge le m old IN op_eval ge o lv
end
with list_exp_eval ge (le: list_exp) (m old: mem): option (list value) B
. . .
Fixpoint inst_run (ge: genv) (i: inst) (m old: mem): option mem B
match i with
| nil ⇒ Some m
| (x,e)::i’ ⇒ SOME v’ ← exp_eval ge e m old IN

inst_run ge i’ (assign m x v’) old
end.
Fixpoint run (ge: genv) (p: bblock) (m: mem): option mem B
match p with
| nil ⇒ Some m
| i::p’ ⇒ SOME m’ ← inst_run ge i m m IN run ge p’ m’
end.

Figure 3.4: Syntax and Sequential Semantics of AbstractBasicBlock

We explain below the formal definition of AbstractBasicBlock syntax and its sequential seman-
tics, formalized in Figure 3.4.4 Its syntax is parametrized by a type R . t of pseudoregisters (positive
integers in practice) and a type op of operators. Its semantics is parametrized by a type value of
values, a type genv for global environments, and a function op_eval evaluating operators to an
“option value”.

Let us introduce the semantics from function run, its entry point. Function run defines the
semantics of a bblock by sequentially iterating over the execution of instructions, called inst_run.
The inst_run function takes two memory states as input: m as the current memory, and old as the
initial state of the instruction run (the duplication is carried out in run). It invokes the evaluation of an
expression, called exp_eval. Similarly, the exp_eval function takes two memory states as input:

4From here, “SOME v← e1 IN e2” means “match e1 with Some v⇒ e2 | _ ⇒ None end”
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the current memory is replaced by old when entering under the Old operator.

3.3 A Generic Simulation Test for FVDP of Instruction Schedulers

The sequential simulation of a block p1 by a block p2 is defined by the bblock_simu pre-order,
pictured in Figure 3.3. This pre-order is formally defined by:

Definition bblock_simu (p1 p2: bblock): Prop B
∀ ge m, (run ge p1 m) <> None → (run ge p1 m) = (run ge p2 m).

We have implemented the following simulation test: it takes two blocks p1 and p2, and returns
a Boolean, such that if this latter is true then ( bblock_simu p1 p2 ) . This test is largely inspired
by the list-scheduling verifier of Tristan and Leroy [TL08], but with two major differences. First,
they define their verifier for the Mach IR, while ours defined for AbstractBasicBlock is slightly more
generic. Second, we use hash-consing in order to avoid a combinatorial explosion of the test.

As in [TL08], the simulation test symbolically executes each AbstractBasicBlock code and com-
pares the resulting symbolic memories (Fig. 3.3). A symbolic memory roughly corresponds to a paral-
lel assignment equivalent to the input block. More precisely, this symbolic execution computes a term
for each pseudoregister assigned by the block: this term represents the final value of the pseudoregis-
ter as a function of its initial value. As in Tristan and Leroy [TL08], our simulation test symbolically
executes each block, and then simply compares the resulting symbolic memories.

Example 3.1 (Equivalence of symbolic memories). Let us consider the two blocks B1 and B2 below:
(B1) r1 B r1 + r2; r3 B load[m, r2]; r1 B r1 + r3
(B2) r3 B load[m, r2]; r1 B r1 + r2; r1 B r1 + r3
They are both equivalent to this parallel assignment r1 B (r1 + r2) + load[m, r2] ‖ r3 B load[m, r2].
Indeed, B1 and B2 bisimulate (they simulate each other).

Collecting only the final term associated with each pseudoregister is actually incorrect: an incor-
rect scheduling oracle could insert additional failures. The symbolic memory must thus also collect
a list of all intermediate terms on which the sequential execution may fail and that have disappeared
from the final parallel assignment. See Example 3.2 below. Formally, the symbolic memory and the
input block must be bisimulable as pictured on Figure 3.3.

Example 3.2 (Simulation on symbolic memories). Consider:
(B1) r1 B r1 + r2; r3 B load[m, r2]; r3 B r1; r1 B r1 + r3
(B2) r3 B r1 + r2; r1 B r3 + r3
Both B1 and B2 lead to the same parallel assignment r1 B (r1 + r2) + (r1 + r2) ‖ r3 B r1 + r2.

However, B1 is simulated by B2 whereas the converse is not true. This is because the memory
access in B1 may cause its execution to fail, whereas this failure cannot occur in B2. Thus, the
symbolic memory of B1 should contain the term “load[m, r2]” as a potential failure. We say that a
symbolic memory d1 is simulated by a symbolic memory d2 if and only if their parallel assignment are
equivalent, and the list of potential failures of d2 is included in the list of potential failures of d1.

Our formal development is decomposed into two parts using a data-refinement style. In a first
part, presented in Section 3.3.1, we define a model of the symbolic execution and the simulation test.
In a second part, sketched by Section 3.3.3, we refine this model with efficient data-structures and
algorithms, involving hash-consing of terms. Indeed, as illustrated by the previous examples, without
a mechanism dealing efficiently with duplication of terms, symbolic execution produces terms that
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may be exponentially big w.r.t to the size of the source block. Our technique for hash-consing terms
is explained in Section 3.3.2.

3.3.1 A Model of our Simulation Test

The principle of symbolic execution was first introduced by King [Kin76]. “Symbolic execution”
refers to how to compute “symbolic memories” (and not to what they are) : mimicking the concrete
execution while replacing operations on “concrete memories” by operations on “symbolic memories”.

In this analogy, “values” are replaced by “symbolic values”, which are actually terms evaluated in
the initial memory. Hence, our type term of terms—defined below—is similar to type exp without the
Old operator: in a term, a pseudoregister represents its value in the initial memory of block execution.

Inductive term B Input (x:R.t) | App (o: op) (l: list_term)
with list_term B . . .

Fixpoint term_eval (ge: genv) (t: term) (m: mem): option value B . . .

In our model, the symbolic execution of a block is a function bblock_smem : bblock → smem,
where a symbolic memory of type smem is the pair of a predicate pre expressing at which condition
the intermediate computations of the block do not fail, and of a parallel assignment post on the
pseudoregisters.

Record smemB {pre: genv → mem → Prop; post: R.t → term}.

Then, the bisimulation property between the symbolic memory and sequential execution is ex-
pressed by the bblock_smem_correct lemma below. It uses the smem_correct predicate, relating
the symbolic memory d with an initial memory m and a final optional memory om.

Definition smem_correct ge (d: smem) (m: mem) (om: option mem): Prop B
∀ m’, om=Some m’

↔ (d.(pre) ge m ∧ ∀ x, term_eval ge (d.(post) x) m = Some (m’ x)).
Lemma bblock_smem_correct ge p m:
smem_correct ge (bblock_smem p) m (run ge p m).

By using this lemma, we transfer the notion of simulation of block executions into the simula-
tion of symbolic memories, through the predicate smem_simu defined in Figure 3.6. In particular,
proposition ( smem_valid ge d m ) holds iff the underlying execution does not return a None result
from the initial memory m. Theorem bblock_smem_simu in Figure 3.6 thus formalizes the bottom
rectangle of Figure 3.3 diagram in the abstract model of symbolic execution.

Internally, as coined in the name of “symbolic execution”, bblock_smem mimics run, by replac-
ing operations on memories of type mem by operations of type smem: these operations on the symbolic
memory are given in Fig. 3.5. The initial symbolic memory is defined by smem_empty. The evalua-
tion of expressions on symbolic memories is defined by exp_term: it outputs a term (i.e. a symbolic
value). Also, the assignment on symbolic memories is defined by smem_set. To conclude, start-
ing from smem_empty, the symbolic execution preserves the smem_correct relation w.r.t the initial
memory and the current (optional) memory, on each assignment.

3.3.2 Formally Verified Hash-Consed Terms in Coq

Hash-consing is a standard technique of imperative programming, which in our case has two benefits:
it avoids duplication of structurally equal terms in memory, and importantly, it reduces (expansive)
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(* initial symbolic memory *)
Definition smem_empty B
{| preB(fun _ _ ⇒ True); postB(fun x ⇒ Input x) |}.

(* symbolic evaluation of the right-hand side of an assignment *)
Fixpoint exp_term (e: exp) (d old: smem) : term B
match e with
| PReg x ⇒ d.(post) x
| Op o le ⇒ App o (list_exp_term le d old)
| Old e ⇒ exp_term e old old
end

with list_exp_term (le: list_exp) (d old: smem) : list_term B . . .

(* effect of an assignment on the symbolic memory *)
Definition smem_set (d:smem) x (t:term) B
{| preB(fun ge m ⇒ term_eval ge (d.(post) x) m <> None

∧ (d.(pre) ge m));
postB(fun y ⇒ if R.eq_dec x y then t else d.(post) y) |}.

Figure 3.5: Basic Operations of the Symbolic Execution in the Abstract Model

Definition smem_valid ge (d: smem) (m:mem): Prop B
d.(pre) ge m ∧ ∀ x, term_eval ge (d.(post) x) m <> None.

Definition smem_simu (d1 d2: smem): Prop B
(∀ ge m, smem_valid ge d1 m → smem_valid ge d2 m)

∧ (∀ ge m x, smem_valid ge d1 m →
term_eval ge (d1.(post) x) m = term_eval ge (d2.(post) x) m).

Theorem bblock_smem_simu p1 p2:
smem_simu (bblock_smem p1) (bblock_smem p2) → bblock_simu p1 p2.

Figure 3.6: Proving the Bottom Rectangle of Figure 3.3 Diagram (in the Abstract Model).

structural equality tests over terms, to (very cheap) pointer equality tests. In our verified backend, we
thus import pointer equality from OCaml from the {Impure} library, as axiomatized in Section 2.2.4.

A Generic and Verified Factory of Memoizing Functions for Hash-Consing Hash-consing is a
fundamentally impure construction, and it is not easy to retrofit it into a pure language. Braibant,
Jourdan, and Monniaux [BJM14] propose several approaches for hash-consing in Coq and in code
extracted from Coq to OCaml. However, we need weaker properties than what they aim for. They wish
to use physical equality (or equality on an “identifier” type) as equivalent to semantic equality; they
use this to provide a fast equality test for Binary Decision Diagrams (BDD)—two Boolean functions
represented by reduced ordered binary decision diagrams are equal if and only if the roots of the
diagrams are physically the same. In contrast, we just need physical equality to imply semantic
equality. This allows for a lighter approach.

Hash-consing consists in memoizing the constructors of some inductive data-type —such as the
terms described above—in order to ensure that two structurally equal terms are allocated to the same
object in memory. In practice, this technique simply replaces the usual constructors of the data-type
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(* Parameters for hash-consed types *)
Record hashP (A:Type) B {
hash_eq: A → A → ?? bool;
hashing: A → ?? hashcode;
set_hid: A → hashcode → A

}.

(* Interface of the untrusted OCaml oracle *)
Axiom xhCons: ∀ {A}, hashP A → ??(A → ??A).

(* Defensive wrapper of the untrusted oracle *)
Definition hCons {A} (hp: hashP A): ??(A → ??A) B
DO hC f xhCons hp;;
RET (fun x ⇒

DO y f hC x;;
DO b f hp.(hash_eq) x y;;
(* Below: exception raised if Boolean [b] is [false] *)
assert_b b "xhCons: hash-eq differs";;
RET y).

(* Correctness property of our verified hash-consing *)
Lemma hCons_correct A (hp: hashP A):
WHEN hCons hp ⇝ hC THEN ∀ (R: A → A → Prop),
(∀ x y, WHEN hp.(hash_eq) x y ⇝ b THEN b=true → R x y)
→ ∀ x, WHEN hC x ⇝ y THEN R x y.

Figure 3.7: Formally Verified Hash-Consing Factory

by smart constructors that perform memoization. Memoization is usually delegated to a dedicated
function in turn generated from a generic factory.

On the top of the {Impure} library, we have defined in Coq a generic and verified memoization
factory. This factory is inspired by that of Filliâtre and Conchon [FC06] in OCaml. However, whereas
their factory was not formally verified, ours satisfies a simple correctness property that is formally
verified in Coq (and shown sufficient for the formal correctness of our simulation test). Actually, we
use an external untrusted OCaml oracle that creates memoizing functions and we only dynamically
check that these untrusted functions behave observationally like an identity. Let us insist on this point:
the formal correctness of our memoization factory does not assume nor prove that our oracle is correct;
it only assumes that the embedding of OCaml trusted pointer equality is correct (see Section 2.2.4).
We now detail a slightly simplified version of this factory.5 Its Coq code is provided in Figure 3.7.

Our generic memoization factory is parametrized by a record of type ( hashP A ) , where A is the
type of objects to memoize. In Fig. 3.7, hashcode is an abstract data type on the Coq side, extracted
as an OCaml int. Function hash_eq is typically a fast equality test, for comparing a new object
to already memoized ones in smart constructors. This test typically compares the children of the
root node w.r.t pointer equality (the example for terms is given below by term_hash_eq function).
Function hashing is expected to provide a unique hashcode for data that are equal modulo hash_eq.
Finally, set_hid is invoked by memoizing functions to allocate a fresh and unique hash-tag to new

5Our actual factory also provides some debugging features, which are useful for printing a trace when the whole simu-
lation test fails. We omit these implementation details in this presentation.
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objects (this hash-tag is used by efficient implementations of hashing).
The details on hashing and set_hid are only relevant for efficiency: these functions are simply

ignored in our formal proofs. Hence, given such ( hashP A ) structure, our OCaml oracle xhCons
returns a (fresh) memoizing function of type ( A → ??A ) .

Such a memoizing function of type ( A → ??A ) is expected to behave as an identity w.r.t hash_eq.
Actually, as we do not trust xhCons, we dynamically check this property.6 Hence, our verified generic
memoization factory in Coq –called hCons—simply wraps each function returned by xhCons with
this defensive check: it raises an exception if the memoizing function does not return a result equal
to its input (w.r.t hash_eq). We recall that the notation “DO x fe1 ; ; e2” in hCons stands for a
bind operation of the may-return monad of the {Impure} library. Moreover, “RET e” is the unit of this
monad. Function “assert_b” is also provided by {Impure}.

Finally, we are able to formally prove the (trivial) correctness property hCons_correct, which
is sufficient in our development to reason about hash-consing. Here, the relation R is typically an
equivalence under which we want to observe hash-consed objects.

Smart Constructors for Hash-Consed Terms In our development, we need hash-consing on two
types of objects: term and list_term, because they are mutually inductive. First, we redefine type
term and list_term into hterm and list_hterm by inserting a hash-tag—called below hid—at
each node.

Inductive hterm B | Input (x:R.t) (hid:hashcode)
| App (o: op) (l: list_hterm) (hid:hashcode)

with list_hterm B | LTnil (hid:hashcode)
| LTcons (t:hterm) (l:list_hterm) (hid:hashcode).

Thus, we also have to redefine term_eval and list_term_eval for their “hterm” versions.
Note that these functions simply ignore hash-tags.

Fixpoint hterm_eval (ge: genv) (t: hterm) (m: mem): option value B
match t with
| Input x _ ⇒ Some (m x)
| App o l _ ⇒ SOME v ← list_hterm_eval ge l m IN op_eval ge o v
end

with list_hterm_eval ge (l: list_hterm) (m: mem): option (list value) B . . .

Then, we define two records of type ( hashP hterm ) and ( hashP list_hterm ) . Below, we
only detail the case of ( hashP hterm ) , as the ( hashP list_hterm ) case is similar. First, the
hash_eq field of ( hashP hterm ) is defined as function term_hash_eq below. On the Input
case, we use structural equality over pseudoregisters. On the App case, we use an equality op_eq on
type op in parameters of the simulation test, and we use pointer equality over the list of terms.

Definition term_hash_eq (ta tb: hterm): ?? bool B
match ta, tb with
| Input xa _, Input xb _ ⇒ RET (if R.eq_dec xa xb then true else false)
| App oa lta _, App ob ltb _ ⇒
DO b f op_eq oa ob ;;
if b then phys_eq lta ltb else RET false

| _,_ ⇒ RET false
end.

6As hash_eq is expected to be constant-time, this dynamic check only induces a small overhead.
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Second, the hashing field of ( hashP hterm ) is defined as function term_hashing below.
This function uses an untrusted oracle “hash : ∀{A } , A → ?? hashcode” extracted as the poly-
morphic Hashtbl . hash of the OCaml standard library. It also uses list_term_get_hid defined
below—that returns the hash-tag at the root node. To ensure memoization efficiency, two terms that
are distinct w.r.t term_hash_eq are expected to have distinct term_hashing with a high proba-
bility.7 This property relies here on the fact that when term_hashing is invoked on a node of the
form “ ( App o l _ ) ”, the list of terms l is already memoized, and thus l is the unique list_hterm
associated with the hash-tag ( list_term_get_hid l ) .

Definition list_term_get_hid (l: list_hterm): hashcode B
match l with
| LTnil hid ⇒ hid
| LTcons _ _ hid ⇒ hid
end.

Definition term_hashing (t:hterm): ?? hashcode B
match t with
| Input x _ ⇒ DO hc f hash 1;; DO hv f hash x;;

hash [hc;hv]
| App o l _ ⇒ DO hc f hash 2;; DO hv f hash o;;

hash [hc;hv;list_term_get_hid l].
end.

Finally, the set_hid field of ( hashP hterm ) updates the hash-tag at the root node. It is de-
fined by:

Definition term_set_hid (t: hterm) (hid: hashcode): hterm B
match t with
| Input x _ ⇒ Input x hid
| App op l _ ⇒ App op l hid
end.

Having defined two records of type ( hashP hterm ) and ( hashP list_hterm ) as sketched
above, we can now instantiate hCons on each of these records. We get two memoizing functions
hC_term and hC_list_term (Fig. 3.8). The correctness property associated with each of these
functions is derived from hCons_correct with an appropriate relation R: the semantic equivalence
of terms (or list of terms). These memoizing functions and their correctness properties are parameters
of the code building hterm and list_hterm described below.

Variable hC_term: hterm → ?? hterm.
Hypothesis hC_term_correct: ∀ t, WHEN hC_term t ⇝ t’ THEN
∀ ge m, hterm_eval ge t m = hterm_eval ge t’ m.

Variable hC_list_term: list_hterm → ?? list_hterm.
Hypothesis hC_list_term_correct: ∀ lt, WHEN hC_list_term lt ⇝ lt’ THEN
∀ ge m, list_hterm_eval ge lt m = list_hterm_eval ge lt’ m.

Figure 3.8: Memoizing Functions for Hash-Consing of Terms (and List of Terms)

Indeed, these functions are involved in the smart constructors of hterm and list_hterm. Below,
7Two terms equal w.r.t term_hash_eq must also have the same term_hashing.
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we give the smart constructor—called hApp—for the App case with its correctness property. It uses a
special hash-tag called unknown_hid (never allocated by our xhCons oracle). The three other smart
constructors are similar.

Definition hApp (o:op) (l: list_hterm) : ?? hterm B
hC_term (App o l unknown_hid).

Lemma hApp_correct o l: WHEN hApp o l ⇝ t THEN ∀ ge m,
hterm_eval ge t m = (SOME v ← list_hterm_eval ge l m IN op_eval ge o v).

In the next section, we only build hterm and list_hterm by using the smart constructors defined
above. This ensures that we can replace the structural equality over type hterm by the physical
equality. However, this property does not need to be formally proved (and we have no such formal
proof, since this property relies on the correctness of our untrusted memoization factory).

3.3.3 Implementing the Simulation Test

Our implementation can be decomposed in two parts. First, we implement the symbolic execution
function as a data-refinement of the bblock_smem function of Section 3.3.1. Then, we exploit the
bblock_smem_simu theorem to derive the simulation test. In other words, the bottom rectangle of
Figure 3.3 diagram is transferred from the abstract model to the implementation of symbolic execution
by data-refinement: this leads to theorem bblock_simu_test_correct in Fig. 3.11.

Refining Symbolic Execution with Hash-Consed Terms Our symbolic execution builds hash-
consed terms. It invokes the smart constructors of Section 3.3.2, and is thus itself parametrized by
the memoizing functions hC_term and hC_list_term defined in Figure 3.8. Note that our simu-
lation test will ultimately perform two symbolic executions, one for each block. Furthermore, these
two symbolic executions share the same memoizing functions, leading to an efficient comparison of
the symbolic memories through pointer equality. In the following paragraph, functions hC_term and
hC_list_term remain implicit parameters as authorized by the section mechanism of Coq.

Figure 3.9 refines the type smem of symbolic memories into a type hsmem. The latter involves a
dictionary with pseudoregisters of type R . t as keys, and terms of hterm as associated data. These
dictionaries of type ( PDict . t hterm ) are implemented as prefix-trees, through the PositiveMap
module of the Coq standard library.

Figure 3.9 also relates type hsmem to type smem (in a given environment ge), by a relation called
smem_model. The hpre field of the symbolic memory is expected to contain a list of all the potential
failing terms in the underlying execution. Hence, predicate hsmem_valid gives a precondition on the
initial memory m ensuring that the underlying execution will not fail. This predicate is thus expected
to be equivalent to the smem_valid predicate of the abstract model. Function hsmem_post_eval
gives the final (optional) value associated with pseudoregister x from the initial memory m: if x is not
in the hpost dictionary, then its associated value is that of the initial memory (it is expected to be
unassigned by the underlying execution). This function is thus expected to simulate the evaluation of
the symbolic memory of the abstract model.

Hence, smem_model is the (data-refinement) relation for which our implementation of the sym-
bolic execution simulates the abstract model of Section 3.3.1. Figure 3.10 provides an implementa-
tion of the operations of Figure 3.5 that preserves the data-refinement relation. The smart constructors
building hash-consed terms are invoked by the exp_hterm (i.e., the evaluation of expressions on sym-
bolic memories). The hsmem_set implementation (Fig. 3.10) is an intermediate refinement toward
the actual implementation, improving on two points. First, in some specific cases—i.e., when ht is
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(* The type of our symbolic memories with hash-consing *)
Record hsmemB {hpre: list hterm; hpost: PDict.t hterm}.

(* implementation of the [smem_valid] predicate *)
Definition hsmem_valid ge (hd: hsmem) (m:mem): Prop B
∀ ht, List.In ht hd.(hpre) → hterm_eval ge ht m <> None

(* implementation of the symbolic memory evaluation *)
Definition hsmem_post_eval ge (hd: hsmem) x (m:mem): option value B
match PDict.get hd.(hpost) x with
| None ⇒ Some (m x)
| Some ht ⇒ hterm_eval ge ht m
end.

(* The data-refinement relation *)
Definition smem_model ge (d: smem) (hd:hsmem): Prop B
(∀ m, hsmem_valid ge hd m ↔ smem_valid ge d m)
∧ ∀ m x, smem_valid ge d m →

hsmem_post_eval ge hd x m = term_eval ge (d.(post) x) m.

Figure 3.9: Data-Refinement of Symbolic Memories with Hash-Consed Terms

an input or a constant, we know that ht cannot fail. In these cases, we avoid adding it to hd . ( hpre ) .
Second, when ht is structurally equal to ( Input x ) , the implementation removes x from the dictio-
nary: in other words, an assignment such as “x := y”—where y 7→ (Input x) in the current symbolic
memory—resets x as unassigned. There is much room for future work on improving the hsmem_set
operation by, e.g., applying rewriting rules on terms.8

Finally, we define the symbolic execution that invokes these operations on each assignment of the
block. It is straightforward to prove that ( bblock_hsmem p ) refines ( bblock_smem p ) from the
correctness properties of Figure 3.10.

Definition bblock_hsmem: bblock → ?? hsmem B . . .

Lemma bblock_hsmem_correct p:
WHEN bblock_hsmem p ⇝ hd THEN ∀ ge, smem_model ge (bblock_smem p) hd.

The Main Function of the Simulation Test Let us now present the main function of the simulation
test, called bblock_simu_test, and sketched9 in Fig. 3.11. First, it creates two memoizing func-
tions hC_term and hC_list_term (Fig. 3.8) from the generic factory hCons (see Section 3.3.2 for
details). Then, it invokes the symbolic execution bblock_hsmem on each block. Notice that these
two symbolic executions share the memoizing functions hC_term and hC_list_term, meaning that
each term produced by one of the symbolic executions is represented by a unique pointer. The sym-
bolic executions produce two symbolic memories d1 and d2. We compare them using two auxiliary
functions. Hence, ( assert_eq_PDict d1 . ( hpost ) d2 . ( hpost ) ) checks whether each pseu-

8Our implementation of hsmem_set is actually able to apply some rewriting rules. But, this feature is still not used
by our verified scheduler.

9The code of bblock_simu_test has been largely simplified, by omitting the complex machinery which is nec-
essary to produce an understandable trace for CompCert developers in the event of a negative answer.

65



doregister is assigned to the same term w.r.t pointer equality in both symbolic memories. Finally,
( assert_list_incl d2 . ( hpre ) d1 . ( hpre ) ) checks whether each term of d2 . ( hpre ) is also
present in d1 . ( hpre ) : i.e. whether all potential failures of d2 are potential failures of d1. This last
auxiliary function is implemented by FVDP and a “theorems-for-free” technique in Figure 2.18.

3.4 Conclusion of this Chapter

This chapter shows the ultra-lightweight FVDP of a hash-consing mechanism with the {Impure} li-
brary. This hash-consing mechanism is itself used for the FVDP of realistic applications: instruction
schedulers in CompCert. Its correctness proof relies only on the correctness of {Impure} wrt Coq ex-
traction, and the model of OCaml pointer equality in Coq. It does not depend on other properties that
our OCaml code provides: in particular, the correctness proof of our verifier does not assume that two
isomorphic hash-consed data structures in existence at the same time are always allocated to the same
place in memory (but, this property is of course important for the “performance” of the scheduling
checker).

In order not to have to convert CompCert’s code generation flow to the full monadic style of
{Impure}, at some point, we unsafely cast our verified scheduler from the {Impure} monad into a pure
function. We do not think that this weakness hides a real issue: even if an unexpected bug in some
of our OCaml oracles makes them nondeterministic, we do not call the scheduler twice on the same
code, so there is no absurd case where we could go to if two different calls gave different results. This
is in line with similar implicit assumptions elsewhere in CompCert that oracles are deterministic: see
Section 2.1.
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(* initial symbolic memory *)
Definition hsmem_empty: hsmem B {| hpreB nil ; hpost B PDict.empty |}.

Lemma hsmem_empty_correct ge: smem_model ge smem_empty hsmem_empty.

(* symbolic evaluation of the right-hand side of an assignment *)
Fixpoint exp_hterm (e: exp) (hd hod: hsmem): ?? hterm B
match e with
| PReg x ⇒
match PDict.get hd.(post) x with
| None ⇒ hInput x (* smart constructor for Input *)
| Some ht ⇒ RET ht
end

| Op o le ⇒
DO lt f list_exp_hterm le hd hod;;
hApp o lt (* smart constructor for App *)

| Old e ⇒ exp_hterm e hod hod
end

with list_exp_hterm (le: list_exp) (d od: hsmem): ?? list_term B
. . .
Lemma exp_hterm_correct e hd hod:
WHEN exp_hterm e hd hod ⇝ ht THEN ∀ ge od d m,
smem_model ge d hd → smem_valid ge d m →
smem_model ge od hod → smem_valid ge od m →
hterm_eval ge ht m = term_eval ge (exp_term e d od) m.

(* effect of an assignment on the symbolic memory *)
Definition hsmem_set (hd:hsmem) x (ht:hterm): ?? hsmem B
(* a weak version w.r.t the actual implementation *)
RET {| hpreB ht::hd.(hpre); hpostBPDict.set hd x ht |}.

Lemma hsmem_set_correct hd x ht:
WHEN hsmem_set hd x ht ⇝ hd’ THEN ∀ ge d t,
smem_model ge d hd →
(∀ m, smem_valid ge d m → hterm_eval ge ht m = term_eval ge t m) →
smem_model ge (smem_set d x t) hd’.

Figure 3.10: Refinement of the Operations of Figure 3.5 for Symbolic Memories with Hash-Consing
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Definition assert_eq_PDict: ∀ {A}, PDict.t A → PDict.t A → ?? unit.
Lemma assert_eq_PDict_correct A (d1 d2 : PDict.t A):
WHEN PDict.eq_test d1 d2 ⇝ _ THEN ∀ x, PDict.get d1 x = PDict.get d2 x.

Definition bblock_simu_test (p1 p2: bblock): ?? unit B
DO hC_term f hCons {|hash_eqBterm_hash_eq; hashingBterm_hashing;

set_hidBterm_set_hid|};;
DO hC_list_term f hCons . . . (* a record of type [(hashP list_hterm)] *)
DO d1 f bblock_hsmem hC_term hC_list_term p1;;
DO d2 f bblock_hsmem hC_term hC_list_term p2;;
assert_eq_PDict d1.(hpost) d2.(hpost);;
assert_list_incl d2.(hpre) d1.(hpre).

Theorem bblock_simu_test_correct (p1 p2 : bblock):
WHEN bblock_simu_test p1 p2 ⇝ _ THEN bblock_simu p1 p2.

Figure 3.11: Verified Implementation of the AbstractBasicBlock Simulation Checker
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Chapter 4

Polymorphic Factory Style for FVDP of
an Abstract Domain of Polyhedra†

[We] are not so concerned with checking or generating proofs as with performing proofs.
Thus, we don’t normally store [...] proofs but only the results of them - i.e. theorems.
These form an abstract type on which the only allowed operations are the inference rules
[...]; this ensures that a well-typed program cannot perform faulty proofs [...].

The principal aims then in designing ML were to make it impossible to prove non-
theorems yet to program strategies for performing proofs.

Mike Gordon et al. in “A Metalanguage for Interactive Proof in LCF” [Gor+78].

It is worth exhibiting one simple change among those which led [...] to the metalanguage
ML. [...] The simple change is not to index the proof by natural numbers, but instead to
bind theorems to ML variables.

Robin Milner in “LCF: A Way of Doing Proofs with a Machine” [Mil79].
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Polymorphic LCF style (also named “Polymorphic Factory Style”, abbreviated as PFS) may be
applied to various kind of computations, and not only to decision procedures as it could be suggested
by Section 2.4.2. Indeed, PFS was proposed during the PhD of Maréchal [Mar17] in order to simplify
the design of oracles of the {VPL} abstract domain—a formally verified abstract domain of convex
polyhedra.

This chapter provides a tutorial on PFS oracles, illustrated on some operators of the {VPL}. It
compares several FVDP designs and explains why PFS is the best one: it significantly simplifies
the development and debugging of untrusted and formally verified components, while also reducing
their running times. Section 4.1 is a very short introduction to the {VPL}, which defers to Chapter 7
the application of the {VPL} to formally verified static analysis. Section 4.2 uses the projection of
convex polyhedra as an introductory running example of PFS oracle. Built on the top of this example,
Section 4.3 provides an advanced example of PFS design for the convex hull of two convex polyhedra.

4.1 FVDP of an Abstract Domain of Polyhedra

We consider the formal verification of static analyzers—like Verasco [Jou+15]—, that aim at ensur-
ing absence of runtime errors such as division by zero or invalid memory access in an input source
program. The correctness of Verasco has been formally proved in Coq, i.e. if the analysis of a given
C program does not raise any alarm, then this program cannot have any undefined behavior.

In abstract interpretation [CC77], the analyzer attaches to each program point an invariant, which
is a property satisfied by all reachable states at this point. These invariants belong to classes of
predicates called abstract domains that must provide operators for computing the disjunction of two
invariants (join), their conjunction (meet), and the existential quantification of a variable in an in-
variant (proj). They must also provide tests for implication between invariants (is_included) and
unsatisfiability (is_empty). The formal correctness of the analysis boils down to ensuring that all
these operators compute overapproximations w.r.t. the concrete semantics (e.g. join computes an
overapproximation of the disjunction). In particular, we do not need to formally prove that operators
are precise (i.e. they compute tight results), even though they are in practice.

In the following, we focus on the abstract domain of convex polyhedra on Q [CH78], which is
able to handle linear relations between numerical variables x ≜ (x1, . . . , xn) ∈ Qn. For simplicity,
we do not consider integer or floating point variables in this document. A convex polyhedron is a
conjunction of linear constraints of the form

∑
i aixi ▷◁ b where ai, b are constants in Q and ▷◁ is ≥,

> or =. A polyhedron is represented as a list of Cstr.t, which is the type of linear constraints.1 A
lot of libraries feature polyhedral calculus, but only a few certify their results. The Coq-Polyhedra
library [AK17] follows the autarkic approach; according to its authors, the goal of this library is not to
perform efficient computations, but to formalize a large part of the convex polyhedra theory by using
reflexive proofs. Fouilhé, Monniaux, and Périn [FMP13] initiated the Verified Polyhedra Library
({VPL}), an abstract domain for Verasco, in a FVDP design. Unlike most polyhedra libraries, {VPL}
uses the constraints-only representation of polyhedra in order to ease its certification in Coq.2 {VPL}
certification also relies on witnesses that captures the information needed to prove the correctness of
the polyhedral operators. Fortunately, proving their correctness reduces to verifying implications3

1As we only deal with convex polyhedra, the adjective convex is often omitted in the rest of the document.
2Most polyhedra libraries maintain a double representation of polyhedra as constraints and as generators, i.e. vertices

and rays. Certifying them would require to prove the correctness of Chernikova’s conversion algorithm. Instead, Fouilhé
looked for efficient polyhedra operators in constraints-only representation.

3Note that a polyhedral implication P1 ⇒ P2 is geometrically an inclusion between polyhedra P1 ⊆ P2.
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between polyhedra, in conjunction with other simple verifications that depend on the operator. For
example, polyhedron P is empty iff P ⇒ P∅, where P∅ is a single contradictory constant constraint
such as 0 ≥ 1. The emptiness of P∅ is thus itself checkable by a simple rational comparison.

Farkas’s lemma gives a simple way to prove polyhedral implications [Far02]. It states that any
nonnegative linear combination of the constraints of a polyhedron P is an obvious logical consequence
of P. For instance, x ≥ 3∧ y ≥ 0 implies 2 · (x ≥ 3) + 1 · (y ≥ 0) = 2x + y ≥ 6, meaning that any point
satisfying x ≥ 3∧ y ≥ 0 also satisfies 2x+ y ≥ 6. Moreover, Farkas’s lemma states that any polyhedral
implication can be proved thanks to such simple computations on constraints and thus provides a
theoretical foundation for designing the witness format of polyhedral operators [Bes+07; Bes+10].
The formulation below is restricted to polyhedra with non strict inequalities only, and Section 4.3.1
will provide a generalization to polyhedra with equalities and strict inequalities.

Lemma 4.1 (Farkas 1902). Let P1 and P2 be two polyhedra containing only nonstrict inequalities.
Let us call Farkas combination of P1 any nonnegative linear combination of P1’s constraints and of
the trivial tautology 1 ≥ 0.
Any Farkas combination of P1 is a logical consequence of P1. Moreover, if P1 ⇒ P2 then

• either P1 is empty and there exists a Farkas combination of P1 producing the contradictory
constraint 0 ≥ 1,

• or each constraint of P2 is a Farkas combination of P1.

For instance, the polyhedron x ≥ 3∧ y ≥ 0∧−2x− y ≥ −5 is empty, as shown by the combination
2 · (x ≥ 3)+1 · (y ≥ 0)+1 · (−2x−y ≥ −5) = 0 ≥ 1. In general, efficiently finding the right combination
relies on a Linear Programming (LP) solver [Chv83].

4.2 A Tutorial on PFS through the Projection of Convex Polyhedra

This section provides a tutorial on PFS oracles, using operator proj of the abstract domain of poly-
hedra as a running example. Indeed, this operator is at the heart of the {VPL}, since many {VPL}
operators (join, is_empty, is_included, etc) can be derived from this one. See [Mar17].

The proj operator performs the elimination of existential quantifiers on polyhedra: given a poly-
hedron P and a variable x, (proj P x) computes a polyhedron P′ such that P′ ⇔ ∃x, P. Let us consider
the example of Figure 4.1. Predicate P0 expresses that q is the result of the Euclidean division of x by
3, with r as remainder. Predicate P1 “instantiates” P0 with x = 15. Then, predicate P′1 corresponds to
the computation of ∃r, P1 (as a polyhedron on Q).

P0 ≜


x = 3 · q + r

∧ r ≥ 0
∧ r < 3

[C1]
[C2]
[C3]

P1 ≜ P0 ∧ x = 15 [C4]

P′1 ≜


x − 15 = 0

∧ q − 4 > 0
∧ 5 − q ≥ 0

[C′1]
[C′2]
[C′3]

Figure 4.1: Computation of P′1 as “proj P1 r”

Geometrically, (proj P x) represents the orthogonal projection of a polyhedron P according to di-
rection x. The standard algorithm for computing this projection is Fourier-Motzkin elimination [Fou27].
Ongoing research is trying to improve efficiency with alternate algorithms [HK12; MMP17]. But in
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our two-tier approach, the correctness proof of proj does not need to consider these implementation
details.

We assume that for proving the correctness of our surrounding software (typically, a static ana-
lyzer), we do not need to prove P′ ⇔ ∃x, P but only (∃x, P)⇒ P′.4 Thus, we only want to prove the
correctness of proj as defined below.

Definition 4.1 (Correctness of proj). Function proj is correct iff any result P′ for a computation
(proj P x) satisfies (P ⇒ P′) ∧ x < V(P′) where V(P′) is the set of variables appearing in P′

with a non-null coefficient.

The condition x < V(P′) ensures that variable x is no longer bounded in P′. As dynamic checking
of this condition is fast and easy, we only look for a way to build P′ from P which ensures by con-
struction that P ⇒ P′. For this purpose, we exploit Farkas’s lemma as follows. Internally, we handle
constraints in the form “t ▷◁ 0” where t is a linear term and ▷◁ ∈ {=,≥, >}. Hence, each input constraint
“t1 ▷◁ t2” is first normalized as “t1 − t2 ▷◁ 0”. Then, we generate new constraints using only the two
operations of Definition 4.2. Obviously, such constraints are necessarily implied by P.

Definition 4.2 (Linear Combinations of Constraints). We define operations + and · on normalized
constraints by

• (t1 ▷◁1 0) + (t2 ▷◁2 0) ≜ (t1 + t2) ▷◁ 0
where ▷◁≜ max(▷◁1, ▷◁2) for the total increasing order induced by the sequence =, ≥, >.

• n · (t ▷◁ 0) ≜ (n · t) ▷◁ 0
under preconditions n ∈ Q and, if ▷◁ ∈ {≥, >} then n > 0.

For example, P′1 is generated from P1 by the script on the
right hand-side. Here tmp is an auxiliary constraint, where
variable x has been eliminated from C1 by rewriting using
equality C4.

tmp ← C4 + −1 ·C1
C′1 ← C4

C′2 ← 1
3 · (C3 + tmp)

C′3 ← 1
3 · (C2 + −1 · tmp)

In the following, we study how to design – in OCaml– a certified frontend Front.proj that
monitors Farkas combinations produced by an untrusted backend Back.proj. Section 4.2.5 will then
formalize Front.proj in Coq.

4.2.1 Naive but Unsound LCF Style

In a first step, we follow a naive LCF style. We thus consider two datatypes for constraints: modules
BackCstr and FrontCstr define respectively the representation of constraints for the backend and
the frontend.
Each module is accessed both in the backend and in the
frontend, but the frontend representation is abstract for the
backend. Hence, the visible interface of FrontCstr for
the backend is given on the right-hand side. Type Rat.t
represents set Q, and add and mul represent respectively
operators + and · on constraints.

module FrontCstr: sig
type t
val add: t -> t -> t
val mul: Rat.t -> t -> t

end

When preconditions of “·” are not satisfied, mul either raises an exception or returns a trivially satisfied
constraint like “0 = 0”.

4This may not be sufficient in other applications. See [CL21] for a counterexample.
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Going back to our example, P′1 is first computed from P1 using backend constraints. Indeed, with
its own representation, the backend finds the solution by efficient computations, combining complex
datastructures, GMP rationals and even floating-point values. On the contrary, the frontend repre-
sentation is based on certified code extracted from Coq. In particular, it uses internally the certified
rationals of the Coq standard library, where integers are represented as lists of bits. Once a solu-
tion is found, the backend thus rebuilds this solution in the frontend representation. The easiest way
is to make Back.proj compute the certified constraints (of type FrontCstr.t) in parallel with its
own computations. Hence, we propose a first version of Back.proj, called Back.proj0, with the
following type.

Back.proj0: (BackCstr.t * FrontCstr.t) list -> Var.t -> FrontCstr.t list

Let us define two functions:
1. a certified function occurs: Var.t -> FrontCstr.t -> bool such that occurs x c tests

whether x ∈ V(c);
2. an untrusted function export: FrontCstr.t -> BackCstr.t that converts a frontend con-

straint into a backend one.
Then, we implement Front.proj as follows:

let Front.proj (p: FrontCstr.t list) (x: Var.t): FrontCstr.t list =
let bp = List.map (fun c -> (export c, c)) p in
let p’ = List.map snd (Back.proj0 bp x) in
if List.exists (occurs x) p’
then failwith "oracle error"
else p’

Front.proj only dynamically checks that x < P′. In particular, it does not verify that P ⇒ P′

holds, because it should follow directly from the correctness of FrontCstr.add and FrontCstr.mul.
Ideally – mimicking a LCF style prover – function Back.proj0 uses type FrontCstr.t as a type of
theorems. It derives logical consequences of a list of constraints (of type FrontCstr.t) by combin-
ing them with FrontCstr.mul and FrontCstr.add. Like in a LCF style prover, there is no explicit
“proof object” as value of this theorem type.

Unfortunately, this approach is unsound. We now provide an example which only involves two
input polyhedra that are reduced to a single constant constraint. Let us imagine an oracle wrapping
function memofst given below. Assuming that it is first applied to the unsatisfiable constraint 0 ≥ 1,
this first call returns 0 ≥ 1, which is a correct answer. However, when it is then applied to the satisfi-
able constraint 2 ≥ 0, this second call still returns 0 ≥ 1, which is now incorrect! This unsoundness
is severe, because even a faithful programmer could, by mistake, implement such a behavior while
handling mutable data structures.

let memofst:FrontCstr.t -> FrontCstr.t =
let first = ref None in
fun c ->
match !first with
| None -> (first := Some c); c
| Some c’ -> c’

4.2.2 Generating an Intermediate Certificate

In order to avoid the unsoundness issue of the naive LCF style, we could instead introduce an inter-
mediate data structure representing a trace of the backend computation. Then, the frontend would use
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this trace to rebuild the certified result using its own certified data structures. Such a trace has the
form of an Abstract Syntax Tree (AST) and is called a certificate. This approach was used to design
the first version of the {VPL} [FMP13; #FB14]. In the following, we detail the process of certificate
generation and why we prefer avoiding it.

We define below a certificate type named pexp. It represents a type of polyhedral computations,
and depends on type fexp that corresponds to Farkas combinations. Constraints are identified by
an integer. Type pexp provides a Bind construct for computing auxiliary constraints like tmp in the
example of P′1.

type fexp =
| Ident of int
| Add of fexp * fexp
| Mul of Rat.t * fexp

type pexp =
| Bind of int * fexp * pexp
| Return of fexp list

Figure 4.2 gives an example of certificate for P′1, where each input constraint Ci is represented by
“Ident i”. The intermediate constraint tmp is bound to identifier 5.

Bind (5, Add (Ident 4, Mul (−1, Ident 1)),
Return [ Ident 4;

Mul (1/3, Add (Ident 3, Ident 5));
Mul (1/3, Add (Ident 2, Mul (−1, Ident 5))) ])

Figure 4.2: A certificate for P′1

Next, we easily implement in Coq a Front.run interpreter of pexp certificates—in the sense of
Figure 1.2(b)—and prove that it only outputs a logical consequence of its input polyhedron.

Front.run: pexp -> (FrontCstr.t list) -> (FrontCstr.t list)

Let us mention that when a pexp uses certificate identifiers that have no meaning w.r.t. Front.run,
this latter fails. For the following, we do not need to specify how identifiers are generated and attached
to constraints. We leave this implementation detail underspecified.

Now, we need to turn Back.proj0 into a function Back.proj1 where each BackCstr.t con-
straint in input is associated to a unique identifier.

Back.proj1: (BackCstr.t * int) list -> Var.t -> pexp

However, Back.proj1 is more complex to program and debug than Back.proj0. Indeed, in
LCF style, certified operations run in “parallel” with the oracle. On an oracle bug (for instance, if
the oracle multiplies an inequality by a negative scalar), the LCF style checker raises an error right
at the point where the bug appears in the oracle: this makes debugging of oracles much easier. In
contrast, in presence of an ill-formed certificate, the developer has to find out where does the ill-
formness comes from in its oracle. Moreover, an oracle like Back.proj1 needs to handle constraint
identifiers for Bind according to their semantics in Front.run. As detailed in Section 4.3, this is
particularly painful on Fouilhé’s implementation of the join operator, because it involves several
spaces of constraint names (one for each “implication proof”). In the following, we present two
solutions that fix the issue of naive LCF style.
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4.2.3 Standard LCF Style

Intuitively, the lying function memofst of Section 4.2.1 exploits the fact that constraints of the result
P′ are typed with a single type of “theorems”, whereas these “theorems” are relative to a given set
of axioms: the input constraints of P. The standard LCF style fixes this issue by memorizing in the
type of “theorems” the set of axioms in which these theorems have been derived. In other words, in
standard LCF style, a Farkas combination is encoded by a sequent “P ` C” where P is a polyhedron
and C a constraint: P is the polyhedron to which the Farkas combination is applied and C is the result
of the Farkas combination. This enables the front-end to dynamically check that oracles do not mix
these sequents in an unsound way.

Figure 4.3 sketches a standard LCF style implementation in OCaml. For the sake of simplicity,
this implementation uses BackCstr.t as an internal representation of constraints: a sequent “P ` C”
is a encoded as a pair (P,C) where P is a list of constraints and C a constraint. This implementation
thus wraps operations of BackCstr module, but with defensive verifications ensuring that such a pair
(P,C) always satisfies the invariant “P⇒ C”.

module FrontCstr: sig

(* r e s t r i c t e d i n t e r f a c e f o r Backend c o m p u t a t i o n s * )
type t
val add: t -> t -> t
val mul: Rat.t -> t -> t

(* e x t e n d e d i n t e r f a c e f o r Fron tend c o m p u t a t i o n s * )
val import: BackCstr.t list -> t list
val export: t list -> BackCstr.t list
...

module FrontCstr = struct

type t = BackCstr.t list * BackCstr.t
let add (p1,c1) (p2,c2) =

assert (p1 == p2); (p1, BackCstr.add c1 c2)
let mul r (p,c) =

assert ((BackCtr.is_eq c) || (Rat.is_positive r));
(p, BackCstr.mul r c)

let import p = List.map (fun c -> (p,c)) p
let export p = List.map snd p
...

Figure 4.3: Interface and (Sound) Implementation of FrontCstr in Standard LCF Style

In standard LCF style, an oracle can still use the memofst function. But this will be detected at
runtime and rejected by the frontend. As explained below, Polymorphic Factory Style (PFS) improves
this by preventing the cheating memofst at compile-time (with static typechecking). Moreover it
makes the implementation of the front-end even more lightweight, since some defensive checks are
removed.
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4.2.4 Polymorphic Factory Style

The principle of PFS is very simple: instead of abstracting the “type of theorems” (i.e. the type
FrontCstr.t) using an ML abstract datatype, we abstract it using ML polymorphism. As explained
above, the lying function memofst of Section 4.2.1 exploits the fact that we have a static type of
theorems, whereas when we interpret constraints of the result P′ as theorems, they are relative to the
input constraints of P. Hence, this issue would disappear by using instead a dynamic type, generated at
each call to the oracle. Using ML polymorphism, we actually express that our oracle is parameterized
by any of such dynamic type of theorems.

In practice, the type FrontCstr.t used in backend oracles – e.g. Back.proj – is replaced by
’c. In order to allow the backend to build new “theorems” – i.e. Farkas combinations – we introduce
a polymorphic record type fLCF (acronym of “farkas Logical Consequences Factory”).

type ’c fLCF = {
add: ’c -> ’c -> ’c;
mul: Rat.t -> ’c -> ’c

}

Then, the previous oracle Back.proj0 that we defined for the simple LCF style is generalized into

val Back.proj: ’c fLCF -> (BackCstr.t * ’c) list -> Var.t -> ’c list

Intuitively, function Back.proj0 could now be redefined as:
(Back.proj add=FrontCstr.add; mul=FrontCstr.mul)

Let us point out here that the type of Back.proj implementation must generalize this signature,
and not simply unify with it. This directly forbids the memofst bug: if we remove the type coercion
from the code of memofst, the type system infers memofst: ’_a -> ’_awhere ’_a is an existential
type variable introduced for a sound typing of references [Wri95; Gar02]. Hence, a cheating use of
memofst would prevent oracles (like Back.proj) from having an acceptable type.

In other words, the unsoundness of memofst is statically detected, at compile-time. This is a first
significant advantage over standard LCF style, where it was only detected at runtime. Moreover, in
PFS, Farkas combinations do not need to track the list of axioms P, because this is only necessary for
the defensive checks of standard LCF style. PFS is slightly simpler and more efficient than standard
LCF style. This is a second advantage over standard LCF style. Beyond these two advantages, Sec-
tion 4.3 and Chapter 6 illustrate that the polymorphic style provides interesting opportunities to reuse
oracles for free, whereas, in the style based on type abstraction, this would require a refactorization of
oracles with explicit functors.

4.2.5 Formalizing proj Frontend in Coq

Let us now sketch how the frontend is formalized in Coq: the technique generalizes the one of Sec-
tion 2.4.2. We define the type Var . t as positive – the Coq type for binary positive integers. We
build the module FrontCstr of constraints encoded as radix trees over positive with values in
Qc, which is the Coq type for Q. Besides operations add and mul, module FrontCstr provides two
predicates: ( sat c m ) expresses that a model m satisfies the constraint c ; and ( noccurs x c )
expresses that variable x does not occur in constraint c.

sat: t → (Var.t → Qc) → Prop.
noccurs: Var.t → t → Prop.
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We also prove that sat is preserved by functions add and mul. Then, these predicates are lifted to
polyhedra p of type ( list FrontCstr . t ) .

Definition sat p m B List.Forall (fun c ⇒ FrontCstr.sat c m) p.
Definition noccurs x p B List.Forall (FrontCstr.noccurs x) p.

Because front_proj invokes a nondeterministic computation (the external oracle as detailed below),
it is itself a nondeterministic computation. Here is its type and its specification:

front_proj: list FrontCstr.t → Var.t → ??(list FrontCstr.t).
Lemma front_proj_correctness: ∀ p x p’,
(front_proj p x) ⇝ p’ → (∀ m, sat p m → sat p’ m) ∧ noccurs x p’.

We implement front_proj in PFS, as explained in Section 4.2.4. First, we declare a fLCF record
type containing operations for frontend constraints. These operations do not need to be declared as
nondeterministic: in the Coq frontend, they will be only instantiated by pure Coq functions. Then,
back_proj is defined as a nondeterministic computation. The type of back_proj is given uncurried
in order to avoid nested “??” type transformers. At extraction, this axiom is replaced by a wrapper of
Back.proj from Section 4.2.4.

Record fLCF A B { add: A → A → A; mul: Qc → A → A }.
Axiom back_proj: ∀ {A},
((fLCF A) * (list (FrontCstr.t * A))) * Var.t → ??(list A).

Like in Section 4.2.4, back_proj receives each constraint in two representations: an opaque one
of polymorphic type A and a transparent one of another type. For simplicity, this document uses
FrontCstr . t as the transparent representation on the Coq side. 5

Now, let us sketch how we exploit our polymorphic back_proj to implement front_proj
and prove its correctness. For a given p : ( list FrontCstr . t ) , parameter A of back_proj is
instantiated with wcstr ( sat p ) where wcstr ( s ) is the type of constraints satisfied by any model
satisfying s. In other words, wcstr ( sat p ) is the type of logical consequences of p, i.e. the type
of its Farkas combinations. Hence, instantiating parameter A of back_proj by this dependent type
expresses that combinations from the input p and from the fLCF operations are satisfied by models
of p. Concretely, ( front_proj p x ) binds the result of ( back_proj ( ( mkInput p ) , x ) ) to a
polyhedron p ’ and checks that x does not occur in p ’ .

Record wcstr(s: (Var.t → Qc) → Prop) B
{ rep: FrontCstr.t; rep_sat: ∀ m, s m → FrontCstr.sat rep m }.

mkInput: ∀ p, fLCF(wcstr(sat p)) * list(FrontCstr.t * wcstr(sat p)).

Actually, rep_sat above can be seen as a data-invariant attached to a rep value. This invariant is
trivially satisfied on the input values, i.e. the constraints of p. And, it is preserved by fLCF operations.
These two properties are reflected in the type of mkInput. The polymorphism of back_proj is a
way to ensure that back_proj preserves any data-invariant like this one, on the output values (see
Section 2.2.3).

5In order to avoid unnecessary conversions from FrontCstr.t to BackCstr . t (that would be hidden in back_proj
wrapper), our actual implementation uses instead an axiomatized type which is replaced by “BackCstr.t” at extraction:
this is similar to the implementation of Fouilhé and Boulmé [#FB14].
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4.3 FVDP of Polyhedra Convex-Hull

This section illustrates an advanced usage of polymorphic factories through the convex hull of convex
polyhedra—i.e. the join operator for the abstract domain. It gives another nontrivial example of a
“correct by construction” oracle. It also illustrates the flexible power of PFS, by deriving join from
the projection oracle of Section 4.2.4. On this join oracle, PFS induces a drastic simplification w.r.t
to the first version of the {VPL} by removing many cumbersome rewritings on certificates. Indeed,
we simply derive the certification of the join operator by invoking the projection operator on a direct
product of factories. As we detail below, such a product computes two independent polyhedral inclu-
sions, in parallel.

In abstract interpretation, join approximates the disjunction of two
invariants. For the abstract domain of polyhedra, this disjunction
geometrically corresponds to the union of two polyhedra P′ ∪ P′′.
However, in general, such a union is not a convex polyhedron. Op-
erator join thus overapproximates this union by the convex hull
P′ tP′′ that we define as the smallest convex polyhedron containing
P′ ∪ P′′. For instance, given

P′ ≜ {x1 ≤ 0, x2 ≤ 0, x1 ≥ −1, x2 ≥ −1}

P′′ ≜ {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}

P′ tP′′ ≜ {x1 ≥ −1, x2 ≥ −1, x1+x2 ≤ 1, x2−x1 ≥ −1, x2−x1 ≤ 1}
as represented on the right hand side figure as the black outline.

The correctness of join, given in Definition 4.3, is reduced to two implications themselves proved
by Farkas’ lemma. More precisely, on a computation (join P′ P′′), the oracle produces internally two
lists of Farkas combinations that build a pair of polyhedra (P1, P2) satisfying P′ ⇒ P1 and P′′ ⇒ P2.
Then, the frontend checks that P1 and P2 are syntactically equal. If the check is successful, it returns
polyhedron P1.

Definition 4.3 (Correctness of join). Function join is correct iff any result P of a computation
(join P′ P′′) satisfies (P′ ⇒ P) ∧ (P′′ ⇒ P) .

4.3.1 Extended Farkas Factories

The factory operations of Definition 4.2 are sufficient to compute any result of a projection, but they
do not suffice for the convex hull and more generally for proving all kinds of polyhedra inclusions.
The definition 4.4 given here completes this set of operations. Lemma 4.2 ensures its completeness
for proving polyhedra inclusions. It extends Lemma 4.1 for polyhedra with equalities and strict in-
equalities.

Definition 4.4 (Extended Farkas Combination). An extended Farkas combination may invoke one of
the five operations:

• (t1 ▷◁1 0) + (t2 ▷◁2 0) ≜ (t1 + t2) ▷◁ 0
where ▷◁≜ max(▷◁1, ▷◁2) for the total increasing order induced by the sequence =, ≥, >.

•

n · (t ▷◁ 0) ≜ (n · t) ▷◁ 0 under preconditions n ∈ Q and, if ▷◁ ∈ {≥, >} then n > 0
0 · (t ▷◁ 0) ≜ (0 = 0)
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• weaken((t ▷◁ 0)) ≜ (t ≥ 0), for all linear terms t and ▷◁∈ {=,≥, >}.

• cte(n, ▷◁) ≜ (n ▷◁ 0) assuming n ∈ Q and n ▷◁ 0.

• merge((t ≥ 0), (−t ≥ 0)) ≜ (t = 0), for all linear terms t.

Besides the operations of Definition 4.4, we also define > as a shortcut for cte(0,=) that thus
corresponds to constraint 0 = 0. Hence, > is neutral for operations + and · on constraints. It is thus a
very convenient default value in our oracles.

Lemma 4.2 (Extended Farkas Lemma). Let P1 and P2 be two convex polyhedra on Q such that
P1 ⇒ P2. Then,

• either P1 is empty and a contradictory constant constraint (e.g. 0 > 0) is a Farkas combination
of P1,

• or each constraint of P2 is an extended Farkas combination of P1.

From now on, we only consider extended Farkas com-
binations and omit the adjective “extended”. Defini-
tion 4.4 leads to extend our factory type as given on the
right-hand side.
Field top corresponds to >. Type cmpT is our enumer-
ated type of comparisons representing {≥, >,=}.

type ’c fLCF =
{ top: ’c;
add: ’c -> ’c -> ’c;
mul: Rat.t -> ’c -> ’c;
weaken: ’c -> ’c;
cte: Rat.t -> cmpT -> ’c;
merge: ’c -> ’c -> ’c }

4.3.2 Encoding join as a Projection

Most polyhedra libraries use the double representation of polyhedra, as constraints and as generators.
Computing the convex hull P′ t P′′ using generators is easy. It consists in computing the union of
generators and in removing the redundant ones. In constraints-only, the convex hull is computed as
a projection problem, following the algorithm of Benoy, King, and Mesnard [BKM05]. The convex
hull is the set of convex combinations of points from P′ and P′′, i.e.{

x | x′ ∈ P′, x′′ ∈ P′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = α′ · x′ + α′′ · x′′} (4.1)

To express that a point belongs to a polyhedron in a more computational way, we introduce the
following matrix notation. We denote x′ ∈ P′ by A′x′ ≥ b′, where each line of this system represents
one constraint of P′. Similarly, x′′ ∈ P′′ is rewritten into A′′x′′ ≥ b′′. The previous set of points (4.1)
becomes {

x | A′x′ ≥ b′, A′′x′′ ≥ b′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = α′ · x′ + α′′ · x′′} (4.2)

Then, by eliminating variables α′, α′′, x′ and x′′, we obtain P′tP′′. Note that we cannot directly use
operator proj to compute this projection because the set of points (4.2) is defined with a nonlinear
constraint x = α′ · x′ + α′′ · x′′. We go back to linear constraints by applying the changes of variable
y′ := α′ · x′ and y′′ := α′′ · x′′. By multiplying matrix A′x′ ≥ b′ by α′ and A′′x′′ ≥ b′′ by α′′, we
obtain equivalent systems A′y′ ≥ α′ · b′ and A′′y′′ ≥ α′′ · b′′. The set of points (4.2) is now described
as {x | PH} where PH is the conjunction of linear constraints:

PH ≜
{
A′y′ ≥ α′ · b′, A′′y′′ ≥ α′′ · b′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = y′ + y′′

}
(4.3)
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For our previous example where x ≜ (x1, x2), the polyhedron PH is:
−y′1 ≥ 0, − y′2 ≥ 0, y′1 ≥ −α′, y′2 ≥ −α′ (A′y′ ≥ α′ · b′)
y′′1 ≥ 0, y′′2 ≥ 0, − y′′1 − y′′2 ≥ −α′′ (A′′y′′ ≥ α′′ · b′′)
α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1

(Encoding convex combinations)
x1 = y′1 + y′′1 , x2 = y′2 + y′′2

Operator join finally consists in eliminating variables α′, α′′, y′ and y′′ from PH . The presence
of equalities or strict inequalities requires an additional pass that follows the projection, involving
operators weaken and merge of the factory. We omit this step in the document in order to keep
our explanations simple. Moreover, in practice, encoding PH of Equation (4.3) could be done more
efficiently by considering fewer variables, exploiting the fact that α′′ = 1−α′ and y′′ = x− y′. But as
this complicates the understanding and does not affect much the certification, this document will not
consider this improvement.

We now compare certificate style to PFS for proving join from results of proj. For the sake of
simplicity, we consider here only the case where polyhedra do not contain strict inequalities.

4.3.3 Proving join with Certificates

As previously explained about Definition 4.3, the correctness of join is ensured by building the
convex hull P from two Farkas combinations, one of P′ and one of P′′. Fouilhé, Monniaux, and Périn
[FMP13] described how to extract such combinations from the result of the projection of PH . As in
the rest of the polyhedra library they developed, they use certificates-producing oracles. Thus, their
join has the following type:

Back.join1 : (BackCstr.t * int) list -> (BackCstr.t * int) list ->
pexp * pexp

It takes the two polyhedra P′ and P′′ as input, and each of their constraints is attached to a unique
identifier, as explained in Section 4.2.2. It returns two certificates of type pexp, one for each inclusion
P′ ⇒ P and P′′ ⇒ P of Definition 4.3.

Let us now detail how Fouilhé, Monniaux, and Périn [FMP13] retrieve such certificates from
the projection of PH . Consider operator Back.proj1_list that extends Back.proj1 from Sec-
tion 4.2 by eliminating several variables one after the other instead of a single one. Assume that
Back.proj1_list—when applied on polyhedron PH and variables α′, α′′, y′, y′′—returns (P, Λ)
where Λ is a certificate of type pexp showing that PH ⇒ P.

Recall that certificate Λ corresponds to a constructive proof that computes each constraint of P
by a Farkas combination of constraints PH . Thus, Λ remains a valid certificate of σ(PH) ⇒ σ(P)
for any substitution σ on the variable space of PH . Moreover, since variables α′, α′′, y′, y′′ have
been eliminated in P, then P is a fixpoint of any substitution σ with a domain included in this set of
variables: for such a σ, we have σ(P) = P. The key idea is thus to find well-chosen substitutions of
α′, α′′, y′, y′′ in order to retrieve certificates for P′ ⇒ P and P′′ ⇒ P out of Λ.

Indeed, recall that PH represents the set of convex combinations α′·x′+α′′·x′′ of points x′ ∈ P′ and
x′′ ∈ P′′. By setting α′ 7→ 1 and α′′ 7→ 0, PH becomes restricted to P′. More precisely, considering
substitution σ1 ≜ (α′ 7→ 1, α′′ 7→ 0, y′ 7→ x, y′′ 7→ 0) and after normalizing σ1(x = y′ + y′′) into
0 = 0, we get:

σ1(PH) =
{
A′x ≥ b′, 0 ≥ 0, 1 ≥ 0, 0 ≥ 0, 1 + 0 = 1, 0 = 0

}
(4.4)

Hence, σ1(PH) syntactically “extends” P′ (i.e. A′x ≥ b′) with trivial tautologies. We are thus able to
find a certificate of P′ ⇒ P by a kind of “partial application” of Λ to these trivial tautologies. In other

80



words, the certificate of P′ ⇒ P is a simple “inlining” in Λ of the constraints of σ1(PH) that are not
physically present in P′.

The same reasoning applied with substitution σ2 ≜ (α′ 7→ 0, α′′ 7→ 1, y′ 7→ 0, y′′ 7→ x) leads to
find a certificate for P′′ ⇒ P.

4.3.4 Proving join with a Direct Product of Polymorphic Farkas Factories

In PFS, we use the following type for join’s oracle:

Back.join : ’c1 fLCF -> (BackCstr.t * ’c1) list ->
’c2 fLCF -> (BackCstr.t * ’c2) list ->
(’c1 -> ’c2 -> ’c3) -> ’c3 list

In this polymorphic type, variable ’c1 (resp. ’c2) represents the type of logical consequences of P′

(resp. P′′), whereas variable ’c3 represents the type of logical consequences of P′ ∪ P′′, i.e. the type
of constraints that are both logical consequences of P′ and P′′ (see Definition 4.3). The Back . join
oracle is parametrized by a certified operator (given by the frontend) of type ’c1 -> ’c2 -> ’c3
and called unify. This unify operator simply tests whether the two input constraints are syntactically
equal: in this case, this constraint is trivially a logical consequence of P′ ∪ P′′. Otherwise, unify
fails: it returns a top constraint (or raises an error). Hence, Back.join builds a convex polyhedron
P which includes—by construction—the set P′ ∪ P′′.

Internally, this oracle first builds a pair of polyhedra (P1, P2) of type (’c1 list)*(’c2 list)
and then computes P by pairwise applying unify to these two lists. Hence, alternatively to a result of
type (’c1 -> ’c2 -> ’c3) -> ’c3 list, we could also design Back.join for a result of type
(’c1 list)*(’c2 list), and let the frontend build P from this result. These two alternatives are
more or less equivalent, because building P from the pair (P1, P2) is very easy to implement and prove
correct in Coq.6

We said that for computing the convex hull, join eliminates variables α′, α′′, y′ and y′′ from PH .
Recall that the projection operator that we defined for PFS in Section 4.2.4 has type

Back.proj: ’c fLCF -> (BackCstr.t * ’c) list -> Var.t -> ’c list

As we did for the certificate approach, let us define Back.proj_list that extends Back.proj by
eliminating a list of variables.

Back.proj_list: ’c fLCF -> (BackCstr.t * ’c) list -> Var.t list -> ’c list

The Back.join oracle is parametrized by two Farkas factories, but needs to call Back.proj_list
on a single one. To do so, Back.join will provide Back.proj_list with a combination of its own
two factories. Although the parameter ’c fLCF of Back.proj_list was originally designed to be
provided by the frontend, nothing forbids the backend from tuning it. This is where the flexibility
of PFS comes into play! More precisely, Back.join combines the two factories f1:’c1 fLCF and
f2: ’c2 fLCF into a new one of type (’c1 * ’c2) fLCF given in Figure 4.4. This factory com-
putes with frontend constraints from P′ and P′′ in parallel: it corresponds to the direct product of the
two initial Farkas factories.

Now, let us detail how Back.join builds polyhedron PH in input of Back.proj_list. Each
constraint of PH must be represented as a tuple (BackCstr.t * (’c1 * ’c2)). In particular, it
must be attached to a pair of frontend constraints of type ’c1 * ’c2. As explained in Section 4.3.3,

6Introducing unify is conceptually interesting when generalizing the approach for constraints with equalities or strict
inequalities. For example, unify may unify two constraints x = 3 and x > 3 into x ≥ 3.
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let factory_product (f1: ’c1 fLCF) (f2: ’c2 fLCF): (’c1 * ’c2) fLCF =
{
top = (f1.top, f2.top);
add = (fun (c1,c2) (c1’,c2’) -> (f1.add c1 c1’, f2.add c2 c2’));
mul = (fun r (c,c’) -> (f1.mul r c, f2.mul r c’));
weaken = (fun (c,c’) -> (f1.weaken c, f2.weaken c’));
cte = (fun r cmp -> (f1.cte r cmp, f2.cte r cmp));
merge = (fun (c1,c1’) (c2,c2’) -> (f1.merge c1 c1’, f2.merge c2 c2’));

}

Figure 4.4: Direct product of two Farkas Factories

our proof of P′ ⇒ P (resp. P′′ ⇒ P) corresponds to “instantiate” the proof of PH ⇒ P returned
by Back.proj_list into a proof of σ1(PH) ⇒ P (resp. σ2(PH) ⇒ P). Thus, we only need to
attach each constraint C of PH to a pair (σ1(C), σ2(C)) of type ’c1 * ’c2. Remark that constant
constraints—like “0 ≥ 0” and “1 ≥ 0” of Equation (4.4)—are easily built in type ’c1 (resp. ’c2)
thanks to operators f1.cte (resp. f2.cte).

In other words, we embed in PH constraints of P′—of type (BackCstr.t * ’c1)—from the
input of Back.join, by attaching them to constraint “0 ≥ 0” of type ’c2. Indeed, recalling that P′

informally written A′x ≥ α′ should be embedded in PH as A′y′ ≥ α′b′, we get:

BackCstr.t * ( ’c1 * ’c2 )

A′y′ ≥ α′b′


A′1 y′ ≥ α′b′1 , ( σ1

(
A′1 y′ ≥ α′b′1

)︸               ︷︷               ︸
A′1 x≥b′1

, σ2
(
A′1 y′ ≥ α′b′1

)︸               ︷︷               ︸
0≥0

)

...
A′p y′ ≥ α′b′p , ( σ1

(
A′p y′ ≥ α′b′p

)︸                ︷︷                ︸
A′p x≥b′p

, σ2

(
A′p y′ ≥ α′b′p

)︸                ︷︷                ︸
0≥0

)

Similarly, we embed constraints of P′′—of type (BackCstr.t * ’c2)—by attaching them to con-
straint “0 ≥ 0” of type ’c1:7

A′′y′′ ≥ α′′b′′


A′′1 y′′ ≥ α′′b′′1 , ( σ1

(
A′′1 y′′ ≥ α′′b′′1

)︸                  ︷︷                  ︸
0≥0

, σ2
(
A′′1 y′′ ≥ α′′b′′1

)︸                  ︷︷                  ︸
A′′1 x≥b′′1

)

...
A′′q y′′ ≥ α′′b′′q , ( σ1

(
A′′q y′′ ≥ α′′b′′q

)︸                  ︷︷                  ︸
0≥0

, σ2

(
A′′q y′′ ≥ α′′b′′q

)︸                  ︷︷                  ︸
A′′q x≥b′′q

)

Then, we embed constraints α′ ≥ 0 and α′′ ≥ 0 in type BackCstr.t * (’c1 * ’c2) with:

BackCstr.t * ( ’c1 * ’c2 )
α′ ≥ 0 , ( σ1

(
α′ ≥ 0

)︸       ︷︷       ︸
1≥0

, σ2
(
α′ ≥ 0

)︸       ︷︷       ︸
0≥0

)

α′′ ≥ 0 , ( σ1
(
α′′ ≥ 0

)︸        ︷︷        ︸
0≥0

, σ2
(
α′′ ≥ 0

)︸        ︷︷        ︸
1≥0

)

At last, constraints α′ + α′′ = 1 and of x = y′ + y′′ are all represented in type (’c1 * ’c2) by
(f1.top, f2.top).

7When generalizing the approach for constraints with equalities or strict inequalities, we replace σ2(A′y′ ▷◁ α′b′) and
σ1(A′′y′′ ▷◁ α′′b′′) by ⊤ instead of 0 ▷◁ 0 (which is UNSAT if ▷◁ is strict inequality). Indeed, informally, A′y′ ▷◁ α′b′
results from α′ · (A′x′ ▷◁ b′) with y′ = α′.x′. Thus, with this view, assigning α′ to 0 simplifies A′y′ ▷◁ α′b′ into ⊤.
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For our example of convex hull, let us focus on the proof that P′ and P′′ both imply −x1− x2 ≥ −1
(i.e. x1 + x2 ≤ 1), which is a constraint of P′ t P′′. We build PH as described above, and obtain from
its projection a pair of frontend constraints, that is

(−x1 ≥ 0, 0 ≥ 0) + (−x2 ≥ 0, 0 ≥ 0) + (1 ≥ 0, 0 ≥ 0) + (0 ≥ 0, − x1 − x2 ≥ −1)

= (−x1 − x2 ≥ −1, − x1 − x2 ≥ −1)

Above, the left-hand side of each pair of constraint is a frontend constraint of type ’c1, and the right
hand side is of type ’c2. From P′ point of view, we obtain −x1 − x2 ≥ −1 as the combination of
−x1 ≥ 0 (i.e. x1 ≤ 0), −x2 ≥ 0 (i.e. x2 ≤ 0) and the constant constraint 1 ≥ 0 that comes from α′ ≥ 0.
On the other hand, −x1− x2 ≥ −1 is a constraint of P′′ and is directly returned as a frontend constraint
of type ’c2. The projection returns such results for each constraint of the convex hull P′ t P′′.

In conclusion, with a well chosen factory, we define our PFS join as a simple call to proj_list.
This makes our implementation much simpler (and more efficient) than Fouilhé’s one, where the two
certificates of join are obtained from the one of Back.proj1_list by tedious rewritings involving
three name spaces of constraint identifiers (one for the projection, and two for the input polyhedra).

83



Chapter 5

Polymorphic Factory Style for Certifying
Answers of Boolean SAT-Solvers

[We] performed extensive experiments on benchmarks from the 2016 SAT competition
and the 2015 SAT race. [...] In total, there were 381,468,814 lines in the 225 proofs
totalling 250 GByte [...]

The Coq checker verified 161 out of these 225 instances within a maximum runtime of
24 hours. For the remaining 64 instances, it timed out (59), ran out of memory (1), or
determined that the proof was invalid (4). [...]

The ACL2 checker verified 212 out of the 225 instances within a maximum runtime of
6,708 seconds [slightly less than 2 hours], typically being at least an order of magnitude
faster than the Coq checker. For the remaining 13 instances, it ran out of memory (1),
crashed (1), or determined that the proofs were invalid (11).

Luís Cruz-Filipe et al. in “Efficient Certified RAT Verification” [Cru+].
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This chapter refines the toy example of Section 2.4.2 into to a realistic use-case: {SatAnsCert},
a verifier of SAT-solver answers, itself certified in Coq. Actually, for verifying UNSAT answers,
we were inspired by a previous Coq development, called “lrat checker”, documented in [Cru+] and
available online1. Our main contribution is to illustrate how our PFS helps to develop a code that

1https://imada.sdu.dk/~petersk/lrat/
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is much more scalable than this previous one—for a very modest development effort.2 Actually,
this case study is challenging for PFS: in contrast to examples of previous chapters, the intermedi-
ate RAT clauses [WHJ13] generated by recent SAT-solvers on UNSAT answers may not be logical
consequences of the input CNF. This makes the design of our UNSAT verifier more subtle.

5.1 Overview of {SatAnsCert} and its formal correctness

SAT Answer UNSAT Answer

Figure 5.1: Overview of {SatAnsCert}

{SatAnsCert} reads a proposition f in Conjunctive Normal Form and outputs whether f is “SAT”
or “UNSAT” (see Definition 2.5). This proposition f must be syntactically given in DIMACS file –
a standard format3 of SAT competitions. Internally, {SatAnsCert} invokes – according to options on
its command line – some state-of-the-art-in-2018 SAT-solver like Glucose4, Riss5, CryptoMinisat6

or CaDiCaL7. This SAT-solver is expected to produce a witness of its answer (such a witness is
mandatory for SAT competitions since 2016). {SatAnsCert} thus checks this witness before outputting
the answer or failing on an error. The execution of {SatAnsCert} is depicted in Figure 5.1. The
external SAT-solver is run in a separate process and communicates with {SatAnsCert} through the
file system. As later detailed, {SatAnsCert} also invokes some OCaml oracles through the FFI of the

2The full Coq/OCaml code of these examples is online at https://github.com/boulme/satans-cert.
3https://www.satcompetition.org/2009/format-benchmarks2009.html
4http://www.labri.fr/perso/lsimon/glucose
5http://tools.computational-logic.org/content/riss.php
6https://github.com/msoos/cryptominisat
7http://fmv.jku.at/cadical
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1 Program Definition main: ?? unit B
2 TRY
3 DO f f read_input();; (* Command-line + CNF parsing *)
4 DO a f sat_solver f;; (* solver(+drat-trim) wrapper *)
5 match a with
6 | SAT_Answer mc ⇒
7 assert_b (satProver f mc) "wrong SAT model";;
8 ASSERT (∃ m, ~f� m);;
9 println "SAT !"

10 | UNSAT_Answer ⇒
11 unsatProver f;;
12 ASSERT (∀ m, ¬~f� m);;
13 println "UNSAT !"
14 WITH_ANY e ⇒
15 DO s f exn2string e;;
16 println ("Certification failure: " +; s).

Figure 5.2: (simplified) Coq code of the main function of {SatAnsCert}

{Impure} library (presented in Chapter 2): these oracles are thus part of the {SatAnsCert} process. The
external SAT-solver is actually invoked through one of these OCaml oracles.

We now describe the formal property proved on {SatAnsCert} in Coq+Impure+OCaml. First, like
in CompCert, I/O (i.e. parsing and printing) are not formally proved and thus must be trusted. More
precisely, the formal correctness of {SatAnsCert} only deals with the abstract syntax (defined in Fig-
ure 2.19 page 45) of the input CNF. And it is directly expressed in the main function of {SatAnsCert}
through statically proved “ASSERT” (see Figure 5.2). Here, “ASSERT P” (where P : Prop) is simply
a macro for “RET ( ABP ) _”: it declares a proof of proposition P that must be (statically) provided
as a proof obligation generated by “Program Definition”. We consider that the ability to use
imperative code in Coq with statically verified assertions improves the approach of CompCert– where
formally proved components and unproved trusted components are linked together in OCaml only.

Hence, our code in Figure 5.2, thus combines static assertions (“ASSERT”) and dynamic asser-
tions, like “assert_b” defined on page 35. The static “ASSERT” proved at line 8 derives from the
defensive check of line 7: satProver simply evaluates CNF f in the model mc found by the SAT-
solver. Similarly, the static “ASSERT” proved at line 13 derives from a defensive check of line 12:
unsatProver checks that the UNSAT witness (here implicit) provided by the SAT-solver is valid, or
fails otherwise.

In summary, the actual TCB of {SatAnsCert} corresponds to around 20 Coq lines for the speci-
fication of CNF (Figure 2.19) + 40 Coq lines for the main of (Figure 5.2) + 80 lines of OcamlLex
(parsing of input Dimacs file) + 100 lines of OCaml (implem. of read_input) + {Impure} (and Coq,
OCaml, OcamlLex).

The next sections sketch how verification of UNSAT answers is achieved. Section 5.3 defines a
first simple version with type:

unsatProver (f: cnf): ?? (∀ m, ¬~f� m)

And Section 5.4 defines a second refined version with the equivalent type:

unsatProver (f: cnf): ?? ¬(∃ m, ~f� m)
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5.2 Certifying UNSAT answers of SAT-solvers: a brief overview

Since the pioneering works of [GN03] and [ZM03], the verification of UNSAT answers has been
well studied. Several proof formats have been proposed, and currently, the DRAT format [WHJ14;
Heu16] is the standard format in SAT competitions. Actually, most SAT-solvers generate only DRUP
proofs [Gel08; HJW13a] – a previous format that DRAT has later extended with RAT clauses [WHJ13].
In theory, using RAT clauses may lead to exponentially shorter proofs than using only pure (D)RUP
proofs. But, in practice, the SAT-solving community is still looking for efficient algorithms to find
such RAT proofs [HKB17; Kie+20].

5.2.1 Background on RUP proofs and CDCL (Conflict-Driven Clause Learning)

In a first step, we will focus on (D)RUP proofs: they are simpler to understand. Actually, we even
consider a subset of RUP proofs, introduced as “restricted RUP proofs” in [CMS17], that I rename
(for clarity) into “backward resolution proofs”. Indeed, I find clearer to present this proof system as a
variant of the resolution proof system where the resolution rule is specialized for backward reasoning
through the rule BckRsl of Definition 5.1 below.

Definition 5.1 (Backward Resolution Chain). Given these two clause derivation rules,

BckRsl
c1 {¬ℓ} ∪ c2

c2
c1\c2 = {ℓ} Triv

c1

c2
c1\c2 = ∅

for n ≥ 1, we write “c1, . . . , cn `BRC c” iff
there is a bottom-up derivation – like on the right
hand-side – that first iterates BckRsl from c on the
list c1, . . . , cn−1 and then concludes by Triv on cn.

BckRsl

c1

BckRsl

cn−1
Triv

cn

. . .

. . .

c
When “ f `BRC c”, we say that f is a Backward Resolution Chain (BRC) of c.

The usual resolution rule can be replaced by backward resolution chains: for all literal ℓ, all
clauses c1 and c2, we have {ℓ} ∪ c1, {¬ℓ} ∪ c2 `BRC c1 ∪ c2 or {ℓ} ∪ c1 `BRC c1 ∪ c2.
Indeed, if ℓ < c1 ∪ c2, then the left alternative holds because ({ℓ} ∪ c1)\(c1 ∪ c2) = {ℓ} (BckRsl) and
({¬ℓ} ∪ c2)\({¬ℓ} ∪ c1 ∪ c2) = ∅ (Triv).8 Otherwise, the second alternative holds by Triv rule.

As a consequence of the above remark, the correctness & completeness of the resolution proof
system (see Theorem 2.1 of page 44) is rephrased by Theorem 5.1.

Theorem 5.1 (Correctness & completeness of backward resolution proofs). A CNF f is UNSAT iff
there exists a sequence of clauses c1, . . . , cn (with n ≥ 1) such that

• forall i ∈ [1, n], there exists a list of clauses fi ⊆ f ∪ {c1, ..., ci−1} such that fi `BRC ci

• and, cn = ∅

Such a sequence c1, . . . , cn is called a RUP proof of the unsatisfiability of f .

8In other words, if ℓ < c1 ∪ c2, the usual resolution rule is derived by

BckRsl
{ℓ} ∪ c1

Triv
{¬ℓ} ∪ c2

{¬ℓ} ∪ c1 ∪ c2

c1 ∪ c2
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DIMACS file DRUP file LRAT file
p cnf 3 5
1 2 3 0
-1 2 0
-2 3 0
2 -3 0
-2 -3 0

-2 0
0

6 -2 0 3 5 0
7 0 6 4 2 1 0

Input CNF Learned (RUP) Clauses BRC for each RUP Clause

c1 : {1, 2, 3}
c2 : {−1, 2}
c3 : {−2, 3}
c4 : {2,−3}
c5 : {−2,−3}

{−2}

∅

BckRsl

c3
Triv

c5

. . .

c6 : {−2}

BckRsl

c6
BckRsl

c4
BckRsl

c2
Triv

c1

. . .

. . .

. . .

c7 : ∅

Figure 5.3: Example of DIMACS/DRUP/LRAT files associated to their meaning below. In these files,
each positive names either a Boolean variable or a clause (depending on the context); “0” marks the
end of a sequence. Note that there is a unique and easy way to fill the “. . .” in the backward resolution
chains: this is left to the formally verified checker of LRAT files.

For example, Figure 5.3 refutes the input CNF with a RUP proof reduced to a sequence of two
clauses: {−2} and then ∅. The corresponding BRCs appear on the right hand-side of the figure.

Now, we sketch how RUP proofs are naturally found by CDCL SAT-solvers, a refinement of DPLL
algorithms, at the heart of modern SAT-solvers (see [SLM09] for details). Rule Triv corresponds to
the fact that, under its side-condition, the proposition “c1 ∧ ¬c2” is UNSAT. Hence, Triv corresponds
exactly to a conflict on clause c1 where “¬c2” represents the current assignment of literals (i.e. as
a conjunction of literals). Similarly, the BckRsl rule corresponds to the fact that, under its side-
condition, the proposition “c1 ∧ ¬c2” implies the proposition “{ℓ} ∧ ¬c2”, the latter being equivalent
to “¬(¬{ℓ} ∨ c2)”. Actually, this corresponds exactly in DPLL SAT-solving to a unit-propagation on
clause c1 where “¬c2” represents the assignment of literals before the propagation and “¬({¬ℓ} ∪ c2)”
represents the assignment after the propagation (i.e. where ℓ has been assigned to “TRUE”). In other
words, a BRC exactly corresponds to a sequence of unit-propagations (BckRsl rule) leading to a
conflict (Triv rule). The paradigm of CDCL SAT-solvers is to learn lemmas (under assumption of the
input CNF) from conflicts: each of these lemmas is actually a clause provable from a BRC involving
the input clauses and previously learned clauses. The solver answers “UNSAT”, when it has learned
the empty clause: the sequence of its learned clauses is then exactly a RUP proof (RUP is the acronym
of “Reverse Unit Propagation”).

5.2.2 Checking DRUP proofs

Historically, some CDCL SAT-solvers have dumped full resolution proofs on UNSAT answers (see
[ZM03]). As illustrated by Section 2.4.2, certifying a resolution proof checker is not too difficult
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and, in Coq, a first checker has been certified by [Arm+10]. However, instrumenting SAT-solvers
to output full resolution proofs is very intrusive. Thus, RUP proofs have been proposed as a very
lightweight alternative for the design of SAT-solvers [Gel08]. In counterpart, checking RUP proofs
requires recovering all BRCs, typically by replaying unit-propagations. In practice, a RUP-checker
does not need all the heuristics of a CDCL SAT-solver, but the data-structures necessary for unit-
propagation (e.g. two-watched literals [Gen13]).

The DRUP proof format [HJW13a] is an ASCII file format to describe a RUP proof as a list of
clauses, one by line (see Figure 5.3). There are also lines to delete clauses which are no longer in-
volved in remaining resolution chains.9 The standard checker of DRUP proofs in SAT competitions is
currently DRAT-trim10 of [WHJ14]. Of course, it also checks DRAT proofs, a conservative extension
of DRUP with RAT clauses (detailed at Section 5.4).

Actually, checking DRUP/DRAT proofs is still a complex task (see [RC18]) and DRAT-trim is
an untrusted program written in C. Hence, DRAT-trim has been designed to output the full BRC of
learned clauses, in another proof format called LRAT (see Figure 5.3). As indicated by its name,
DRAT-trim first prunes from the proof (by processing it backward) many learned clauses that are not
necessary to derive the empty clause. This greatly reduces the size of LRAT proofs (and of DRAT-trim
running times).

Then, [Cru+] have developed two certified check-
ers of LRAT proofs: one certified in Coq and
extracted to OCaml; the other certified in ACL2
and extracted to C. As shown in Figure 5.4
– built from the benchmark table published by
Peter Schneider-Kamp on his webpage1 – their
Coq/OCaml version is terribly slow compared to
their ACL2/C version.
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Fig. 5.4. Benchmark of [Cru+]

Our work illustrates that, by using the {Impure} library, we can improve the efficiency of the
Coq/OCaml implementation, while substantially simplifying the Coq proof.

5.3 Verification of (D)RUP proofs in {SatAnsCert}

This section describes how unsatProver introduced at page 86 is implemented by checking the
LRAT file generated with DRAT-trim from a DRUP proof (itself generated by the SAT-solver, as
represented in Figure 5.1).

5.3.1 Polymorphic Factory Style of the untrusted LRAT Parser

We now introduce our shallow embedding of RUP proofs in Coq. This is slight variant of the embed-
ding of resolution proofs, introduced in Section 2.4.2.

9Deletions of clauses are not illustrated in our examples, because they have no influence on the correctness of UNSAT
proofs. However, considering them crucially improves performance in practice. In {SatAnsCert} approach, only untrused
OCaml oracles need to consider them. Hence, the formally verified Coq proof does not even model them.

10Available at https://www.cs.utexas.edu/~marijn/drat-trim
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Checking a Backward Resolution Chain is defined by the following function, called learn (it
builds a new consequence of the set of models).

learn: ∀{s}, list(consc s) → iclause → ??(consc s)

It is implemented (for “performance” only) such that if l `BRC c then ( learn l c ) returns c ’ where
( rep c ’ )= c. An exception is raised on an invalid BRC.

The unsatProver function needs to parse the LRAT file and to check that it corresponds to a
valid RUP proof of the input CNF. It delegates the parsing of the LRAT file to an external untrusted
OCaml oracle. This LRAT parser is declared in Coq by the rup_lratParse axiom (see below).
Following the style of Section 2.4.2, this function is parametrized by:

• an abstract type of clause: this type – called C – is abstract for the untrusted parser but instanti-
ated by “consc

�
f

�
” in the Coq proof;

• a logical consequence factory of type “ ( rupLCF C ) ”: this factory allows the oracle to build
logical consequences (i.e. new abstract clauses) with a BRC from existing ones thanks to func-
tion rup_learn (instantiated by the previous learn in the Coq proof).

• the input CNF f given as a list abstract clauses of type C.

Record rupLCF C B
{ rup_learn:(list C) → iclause → ?? C; get_id: C → clause_id }.

Axiom rup_lratParse: ∀ {C}, (rupLCF C)*list(C) → ?? C.

By using the get_id function, the parser first builds a map from clause identifiers in the DIMACS
input to their corresponding abstract clause (i.e. axiom). Then, it maintains this map while parsing
the LRAT file, i.e. when deleting clauses or adding new learned clauses. On a non-RUP clause or on
unexpected issues in the LRAT file, it raises an exception. Otherwise, it eventually returns an abstract
clause, and the checker verifies that this clause is empty. Like in Section 2.4.2, unsatProver is
simply defined by the code below.

Definition unsatProver f: ?? (∀ m, ¬~f� m) B
DO c f rup_lratParse (mkInput f);; assertEmpty c.

The Polymorphic LCF style design of our RUP checker has the following benefits w.r.t. the design
of the prover found in [CMS17] (a preliminary version of the Coq implementation of the LRAT
prover of [Cru+]): BRCs are verified “on-the-fly” in the oracle, and this is much easier to debug; the
dictionary mapping clause identifiers to clause values is only managed by the OCaml oracle (in an
efficient hash-table); hence, the deletion of clauses from memory is also only managed by the oracle;
the Coq code is thus very simple and very small.

5.4 Generalization to (D)RAT proofs

A RUP proof can be thought as a sequence of transformations on the input CNF: each learned clause
is added to the CNF. These transformations preserves logical equivalence. The motivation of RAT
clauses – introduced in [HJW13b; WHJ13] – is to allow transformations which may break logical
equivalence but preserve satisfiability. This could dramatically reduce the size of the CNF, and thus
the size of its potential UNSAT proof.
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Example 5.1. Let us define two CNFs f1 and f2 over arbitrary literals (li)i∈[1,n] and (l′j) j∈[1,p] and over
a distinct variable x:

f1 =
∧n

i=1
∧p

j=1(li ∨ l′j) f2 = (
∧n

i=1(¬x ∨ li)) ∧
∧p

j=1(x ∨ l′j)

Whereas f1 has n · p clauses (of two literals), f2 has only n + p clauses (of two literals). These two
CNF are equisatisfiable, which is easy to check by rewriting each of them into an equivalent DNF:

f1 ⇔ (
∧n

i=1 li) ∨ (
∧p

j=1 l′j) f2 ⇔ (x ∧∧n
i=1 li) ∨ (¬x ∧∧p

j=1 l′j)

But, f1 and f2 are generally not equivalent, because f2 constrains x whereas f1 does not.

While a RUP proof corresponds to the skeleton of a resolution proof, a RAT proof corresponds
to the skeleton of a kind of extended resolution proof. Like in extended resolution, fresh Boolean
variables may be introduced during the proof, which helps reduce the size of formulas.

5.4.1 Introduction to RAT bunches

In this section, following [Lam17a], we slightly generalize the definition of RAT clauses of [Cru+] by
considering the learning at once of a “bunch” of several RAT clauses on the same pivot. We first need
to reintroduce the notion of RUP clause originally defined by [Gel08].

Definition 5.2 (RUP clause). Given a CNF f and a clause c, we say that “c is RUP w.r.t f ” – and we
write f `RUP c – iff one of the two following conditions is verified:

1. there exists l such that {l,¬l} `BRC c (i.e. c is a trivial tautology)

2. or, there exists f ′ with f ′ ⊆ f such that f ′ `BRC c.

It is obvious that “ f `RUP c” implies “ f ⇒ c”.

Definition 5.3 (RAT bunch). Given two CNFs f1 and f2 and a literal l, we say that f2 is a bunch of
RAT clauses w.r.t. f1 for pivot l – and we write f1 `RAT

l f2 – iff for each clause c2 ∈ f2 the two
following conditions are satisfied:

(1) l ∈ c2 ; (2) f1 `RUP (c1\{¬l}) ∪ c2 for each clause c1 of f1.

Lemma 5.1 (SAT preservation of RAT). Let us assume f1 `RAT
l f2 and

�
f1

�
m. Then, there exists m′

such that
�

f1 ∧ f2
�
m′.

Proof. If
�

f2
�
m then the property is trivially satisfied for m′ = m. Otherwise, let m′ be the model

defined from m by assigning l to true. By condition (1), we have
�

f2
�
m′. Let c2 ∈ f2 such that

¬~c2�m. For all c1 ∈ f1, from
�

f1
�
m and condition (2) we deduce that ~(c1\{¬l}) ∪ c2�m, and thus

~c1\{¬l}�m, and thus ~c1�m′. Hence, we have also
�

f1
�
m′. □

Let us remark that if c1 = c1\{¬l} (i.e. ¬l < c1) then condition (2) of Definition 5.3 is trivially
satisfied. This leads to introduce the notion of “basis” by Definition 5.4 below. Indeed, it suffices to
only check condition (2) on clauses c1 that are in the basis of f1 w.r.t. pivot l.

Definition 5.4 (Basis). Given a CNF f1 and a literal l, the basis of f1 w.r.t. pivot l is defined as the set
of clauses in f1 containing ¬l.

Example 5.2 (RAT bunches of Example 5.1). Clauses of f2 are checked w.r.t f1 in two RAT bunches:
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1. f1 `RAT
¬x
∧n

i=1(¬x ∨ li): checking this RAT bunch is trivial because the basis is empty.

2. f1 ∧
∧n

i=1(¬x ∨ li) `RAT
x
∧p

j=1(x ∨ l′j): here the basis is
∧n

i=1(¬x ∨ li). We simply check that for
all (i, j) ∈ [1, n] × [1, p], we have (li ∨ l′j) `BRC (li ∨ x ∨ l′j) with (li ∨ l′j) ∈ f1.

From Theorem 5.1, we deduce that if f1 is SAT then f1 ∧ f2 is also SAT, and finally that f2 is SAT
(deleting clauses also trivially preserves satisfiability).

The reasoning of Example 5.2 is instantiated in Figure 5.5 which also provides an example of
LRAT file with RAT clauses. Figure 5.5 instantiates Example 5.2 with x = 8, and for i ∈ {1, 2, 3},
li = i and l′i = i + 3. In the input CNF, subformula c1 ∧ . . . ∧ c9 corresponds to f1 while subformula
c10∧c11 is the negative normal form of the DNF of f1 (given at Example 5.1). Hence, the LRAT proof
starts by learning f2 as c12 ∧ . . . ∧ c17, and then finds a contradiction by learning {−8} and {8} from
f2 ∧ c10 ∧ c11.

Input CNF LRAT file Interpretation

c1 : {1, 4}
c2 : {1, 5}
c3 : {1, 6}
c4 : {2, 4}
c5 : {2, 5}
c6 : {2, 6}
c7 : {3, 4}
c8 : {3, 5}
c9 : {3, 6}
c10 : {−1,−2,−3}
c11 : {−4,−5,−6}

12 -8 1 0 0
13 -8 2 0 0
14 -8 3 0 0
15 8 4 0 -12 1 -13 4 -14 7 0
16 8 5 0 -12 2 -13 5 -14 8 0
17 8 6 0 -12 3 -13 6 -14 9 0
18 -8 0 12 13 14 10 0
19 0 18 15 16 17 11 0

Bunch of pivot −8


c12 : {−8, 1}
c13 : {−8, 2}
c14 : {−8, 3}

learned from empty basis.

Bunch of pivot 8


c15 : {8, 4}
c16 : {8, 5}
c17 : {8, 6}

learned from basis c12, c13, c14.

Conclude by learning RUP clauses
c18 : {−8} and then c19 : ∅.

Figure 5.5: Example of LRAT file combining RAT and RUP clauses. Each line starts with the def-
inition of a learned clause ended by a first “0”. Then, either we have a non-empty list of positive
integers ended by “0” and this list is expected to provide the BRC proving the clause as RUP, or we
are learning a RAT clause with a pivot given by its first literal. In this second case, the line continues
with a (possibly empty) list of non-null integer sequences ended by “0”: each of these sequences starts
with a negative number—providing the name of a clause in the basis of the RAT—followed by a list
of positive integers (e.g. a BRC proving condition (2) of Definition 5.3).

Example 5.3 (Contradictory RAT bunches). Given x and y two distinct variables. We check the two
following RAT bunches: x `RAT

¬y ¬y and x `RAT
y y. This check is trivial because the basis is empty in

both cases.

This last example shows that two contradictory RAT clauses can be learned from the same satis-
fiable CNF. Hence, “learning” a RAT clause is not like “learning” a new lemma: “learning” a RAT
clause is like adding an axiom which preserves consistency.

5.4.2 Formalization of RAT bunches

In the syntax of LRAT files, each RAT clause comes with a list of BRC, one for each clause of the
basis (see Figure 5.5 for an example and [Cru+] for full details). Note that a valid BRC is at least
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of length 1. Here, by convention, a BRC of length 0 simply encodes the case (1) of Definition 5.2
(trivial tautology). Moreover, when these lists of BRC share a common prefix, this prefix can be
given separately. We reflect these syntactic informations of LRAT files in the following Coq struc-
ture: field clause_to_learn is the clause to learn, propag is the common prefix of the BRC, and
rup_proofs is the list of suffix of the BRC (one by clause of the basis). Here type C represents the
type of clauses that are logical consequences of the current CNF (like in Section 5.3.1).

Record RatSingle C: Type B
{ clause_to_learn:iclause; propag:list C; rup_proofs:list(list C) }.

Learning a RAT bunch is defined in Coq by the function learnRat below. In this function,
parameter s is the set of models of the current CNF. The bunch is given in field bunch of parameter R
where pivot is the pivot and basis (resp. rem – for remainder) is a list of clauses containing (resp.
not containing) the negation of the pivot. If f2 is the list of clauses to learn in bunch, then learnRat
either returns the CNF “basis ∧ rem ∧ f2” or fails if it cannot prove that the bunch is a correct RAT
bunch.

Record RatInput C: Type B
{ pivot:literal; rem:list C; basis:list C; bunch:list(RatSingle C) }.
Definition learnRat {s:model → Prop} (R:RatInput (consc s)):??cnf B . . .
Lemma learnRat_correct (s: model → Prop) (R: RatInput (consc s)):
WHEN learnRat R ⇝ f THEN ∀ m, s m → ∃ m’, ~f� m’.

Example 5.4 (Learning RAT bunches of Example 5.2). The running example can be turned into two
successive formal invocations of learnRat:

1. On the first time, we learn CNF “ f1 ∧
∧n

i=1(¬x ∨ li)” with the empty basis, with
∧n

i=1(¬x ∨ li)
as the bunch, and with f1 as remainder;

2. On the second time, we learn CNF “ f2” with
∧n

i=1(¬x∨ li) as the basis, with
∧p

j=1(x∨ l′j) as the
bunch, and with the empty remainder.

In the second case, it is formally not necessary to give f1 as the remainder: f1 already appears in the
rup_proofs field of the bunch. Hence, it is useless to put f1 in the remainder if we aim to delete it
from the current CNF just after.

5.4.3 Formalization of the RAT checker

In order to define and prove the main loop of unsatProver with RAT checking, it is convenient to
introduce a generic loop, called loop_until_None, dedicated to refutation of unreachability prop-
erties. This loop – defined in Figure 5.6 – iterates a body of type S → ? ? ( option S ) until it reaches
a None value. This body is assumed to preserve an invariant and to never reach None under the as-
sumption of this invariant. Hence, if None is finally reached, then the invariant was false in the initial
state. The loop_until_None loop reuses the loop oracle of Figure 2.7 and is very similar to the
generic WHILE-loop.

At last, we extend our untrusted LRAT parser of Section 5.3.1. As discussed on Example 5.3,
“learning” a RAT clause replaces the whole CNF by a new one. Thus, our parser learns RUP clauses
until it finds a bunch of RAT clauses. Then, it stops, requiring the CNF to be updated. Afterwards, if
the RAT bunch is correct, the certified checker restarts the untrusted parser for the updated CNF. This
loop runs until the parser finds an empty RUP clause w.r.t. the current CNF. The untrusted parser,
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called next_RAT in Figure 5.7, behaves as an iterator over RAT bunches. This iterator is expected
to return either the empty clause (left case) or a new RAT bunch to learn (right case). The looping
process in unsatProver is a simple instance of loop_until_None.

Note that—like for our RUP checker—the dictionary of RAT clauses is still only handled by the
untrusted LRAT parser. For example, the deletion of clauses is only managed in the untrusted parser.
The verified prover simply maintains a list of clauses, globally updated at each learning of a new RAT
bunch.

Let luni {S} (body: S → ??(option S)) (I: S → Prop) B
∀ s, I s → WHEN (body s) ⇝ s’

THEN match s’ with Some s1 ⇒ I s1 | None ⇒ False end.
Program Definition loop_until_None{S} body (I:S→Prop|luni body I) s0
: ?? ¬(I s0)
B loop (AB{s | I s0 → I s})

(s0, fun s ⇒
DO s’ f mk_annot (body s) ;;
match s’ with
| Some s1 ⇒ RET (inl (AB{s | I s0 → I s }) s1)
| None ⇒ RET (inr (BB¬(I s0)) _)
end).

Figure 5.6: A Generic Loop to Refute Unreachability Properties

Axiom next_RAT: ∀ {C}, (rupLCF C) * (list C) → ??(C + RatInput C).
Program Definition unsatProver: ∀ (f:cnf), ?? ¬(∃ m, ~f�m) B
loop_until_None
(fun f ⇒ (* loop body *)
DO step f next_RAT (mkInput f) ;;
match step with
| inl c ⇒
assertEmpty (rep c);;
RET None

| inr ri ⇒ (* build a new CNF from the RAT bunch *)
DO f’ f learnRat ri;;
RET (Some f’)

end)
(fun f ⇒ ∃ m, ~f�m). (* loop invariant *)

Figure 5.7: The RAT prover of {SatAnsCert}

5.5 Performances & Comparison with other works

Our evaluation of {SatAnsCert} is split according to SAT and UNSAT answers. Our SAT benchmark
– illustrated in Figure 5.8 – has been established with the CaDiCaL SAT-solver over 120 instances of
the SAT competition 2018. Considering the logarithmic scales, the running times of the SAT checker
of {SatAnsCert} in Figure 5.8 are negligible w.r.t. those of the solver. And, as expected, the running
times of our SAT checker are linear w.r.t the size of the input CNF (being given either in number of
clauses or in number of literals).
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Figure 5.8: Our SAT benchmark based on the CaDiCaL (sc18) SAT-solver
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Figure 5.9: Our UNSAT benchmarks

The UNSAT benchmark has been established by using two different solvers: CaDiCaL (sc18)
which generates only RUP clauses and CryptoMiniSat (v4.5.3) which produces both RUP and RAT
clauses. It is based on more than 170 instances from the SAT competition 2015, 2016 and 2018.
Figure 5.9 represents – for each tested instance – the contribution of each tool in the running time, by
cumulating their runtimes on upward ordinates. Along the abscissa axis, the instances are ordered by
running times of the SAT-solver. By comparing the overhead of the Coq checkers w.r.t DRAT-trim
in Figure 5.4 and in Figure 5.9, we see that our LRAT checker is much faster than the Coq/OCaml
checker of [Cru+] which has inspired it. We believe that our lightweight design, based on parametric
reasoning, has a significant impact on performances here (and it makes the formal proof much more
simpler). As also shown in Figure 5.9, our LRAT checker is most often slower than the ACL2/C
checker of [Cru+]. We could probably significantly improve the performance of {SatAnsCert}, by en-
coding literals with native integers instead of Coq positives (aka lists of bits), and by encoding clauses
with native persistent arrays instead of radix-trees. These native data-structures were experimentally
introduced in Coq by [Arm+10] and had a positive impact on their resolution checker. At the summer
2018, the development time of {SatAnsCert}, they had however still an experimental status in Coq.
We did not compare the efficiency of {SatAnsCert} with SMTCoq11 because its UNSAT prover of
Boolean CNF[Kel13] was based on the zChaff SAT-solver12 which is too old to emit DRUP/DRAT

11https://smtcoq.github.io/
12http://www.princeton.edu/~chaff/zchaff.html: its last release dates back of 2007. It is now out-performed by more
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proofs.
The GRAT toolchain [Lam17b] is an alternative for certified checking of DRAT files. As the

DRAT-trim toolchain, it takes a CNF in DIMACS format and a DRAT file in input, generates some
intermediate files through an untrusted C++ tool, and gives a certified answer from this intermediate
files thanks to an Isabelle/MLton checker. According to [Lam17a], the GRAT toolchain is faster
than the DRAT-trim one. Because {SatAnsCert} is itself based on DRAT-trim, we did not find very
significant to compare it experimentally to the GRAT toolchain.

In conclusion, {SatAnsCert} is not the most optimized DRAT checker. But the bottleneck of
running times in our UNSAT checking is DRAT-trim (the standard checker in SAT competitions).
Indeed, on average of the UNSAT benchmark depicted in Figure 5.9, the solver takes 30% of the
running time, DRAT-trim takes 50%, and our certified LRAT checker takes the 20% remaining. This
demonstrates that {SatAnsCert} reasonably scales up on state-of-the-art SAT-solvers. One of our most
noticeable achievement is that {SatAnsCert} results from only a modest effort: we evaluate the whole
development at 2 person·months for 1Kloc of Coq (including all proof scripts) and 1Kloc of OCaml
files (including .mll files). These figures exclude the development of the {Impure} library itself.

recent solvers.
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Chapter 6

Toward FVDP without Extraction:
Turning a PFS Oracle into a Coq Tactic†

If extra security [...] is desired, full proofs are easily generated – only minor changes in
the implementation of the abstract type [of theorems] would be required.

Mike Gordon et al. in “A Metalanguage for Interactive Proof in LCF” [Gor+78].

A domain-specific language can be implemented by embedding within a general-purpose
host language. This embedding may be deep or shallow, depending on whether terms
in the language construct syntactic or semantic representations. The deep and shallow
styles are closely related, and intimately connected to folds.

Jeremy Gibbons and Nicolas Wu in “Folding domain-specific languages” [GW14].
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As detailed in Section 4.2, we designed PFS in order to alleviate our oracles from certificate
generation in FVDP through Coq extraction. Yet, certificates are still useful for other applications.
For example, certificates could provide a way to reduce the TCB w.r.t. our current approach. We
could imagine certifying each run of our OCaml oracles by generating a Coq term representing this
run. This term would be dumped in a Coq source file (in Gallina syntax) and checked by the Coq
compiler. Coq extraction would no longer be part of the TCB. See also Section 1.2.4.

As another example, Section 6.1 recalls how a Coq tactic—called {VplTactic}—was derived from
a {VPL} oracle. This tactic requires an OCaml oracle that produces a Coq AST—i.e. a kind of
certificate—typechecked by the Coq kernel. This AST represents a polyhedral computation, itself
encoded as a value of a Coq inductive type – similar to the pexp type of Section 4.2.2. The tactic then
applies a Coq version of the Front.run interpreter of Section 4.2.2 to this certificate of type pexp.

†This chapter summarizes [#BM18] and extends it with an unpublished appendix.
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Below, Section 6.2 explains why PFS is also relevant in this case and how certificate are efficiently
generated from {VPL} oracles.

6.1 {VplTactic} for Equality Learning in Linear Arithmetic

{VplTactic} is an experimental Coq tactic which simplifies rational inequalities in Coq proofs by doing
polyhedral computations [#BM18]. In short, this tactic first reifies the goal into a set of linear inequal-
ities, then either it proves the goal, or it injects as hypotheses a complete set of linear equalities that are
deduced from the (nonstrict) linear inequalities. Then, many Coq tactics —like congruence, field
or even auto—may exploit these new equalities, even if they cannot deduce them from the initial
context by themselves. Actually, the idea to use decision procedures which either return “UNSAT” or
return a list of learned equalities, is well known in SMT-solving (e.g. Nelson-Oppen approach with
Shostak theories [MZ02]). {VplTactic} simply experiments this idea in the context of an interactive
theorem prover.

Let us illustrate this feature on the following – almost trivial – Coq goal, where Qc is the type of
rationals on which our tactic applies.

Lemma ex1 (x:Qc) (f:Qc → Qc): x≤1 → (f x)<(f 1) → x<1.

This goal is valid on Qc and Z, but both omega and lia fail on the Z instance without providing any
help to the user. Indeed, since this goal contains an uninterpreted function f, it does not fit into the
pure linear arithmetic fragment. On the contrary, this goal is proved by two successive calls to the
vpl tactic.1 Indeed, the first vpl call starts by internally turning the conclusion “x<1” of the goal into
“x ≥ 1 → False” and then rewriting the whole goal into a formula, here pretty-printed as:

P[v1 7→ x, v2 7→ (f x), v3 7→ (f 1)]→ False

where P is the polyhedron {C1 : v1 ≤ 1, C2 : v2 < v3, C3 : v1 ≥ 1} with variables v1, v2, v3 in Q.

Then, a {VPL} oracle—detailed below— deduces equality v1 = 1 from P by merge(C3,C1) (see
Def. 4.4). At last, in the Coq goal, this equality is instantiated as x=1, which is then rewritten in
(f x) (a rewriting that does not fit into linear arithmetic). In summary, the first vpl call transforms
the initial goal into:

x=1
(f 1) < (f 1)
============
False

The second call to vpl then proves the goal, thanks to the unsatisfiable inequality.
Our oracle learns such equalities from conflicts between strict inequalities. It uses an efficient

and simple algorithm which can be viewed as a very specialized optimization for linear arithmetic of
Conflict-Driven Clause-Learning (CDCL)—where nonstrict inequalities “t ≥ 0” are seen as clauses
“t > 0 ∨ t = 0”.

1Of course, such a goal is also provable in Z by SMT-solving tactics: the verit tactic of SMTCoq [Arm+11; Eki+17]
or the one of Besson et al [BCP11]. However, such SMT-tactics are also “prove-or-fail”: they do not simplify the goal when
they cannot prove it. On the contrary, our tactic may help users in their interactive proofs, by simplifying goals that do not
fully fit into the scope of existing SMT-solving procedures.
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Polyhedron P1 Polyhedron P>1
C1 : −2x + z − 3 ≥ 0
C2 : x − y + z ≥ 0
C3 : −x + 5y − 7z + 6 ≥ 0
C4 : z > 0


C1 : −2x + z − 3 > 0
C2 : x − y + z > 0
C3 : −x + 5y − 7z + 6 > 0
C4 : z > 0

Combination 2.C1 + 5.C2 +C3 gives a proof of 0 > 0 (UNSAT) when evaluated on P>1 .

This leads to learning two equalities on P1

−4x + 2z − 6 = 0 from merge(2.C1, (5.C2 +C3))
x − 5y + 7z − 6 = 0 from merge((2.C1 + 5.C2),C3)

Figure 6.1: Learning Equalities from Conflict on Strict Inequalities

Let us introduce its basic idea2 on the small example of Figure 6.1. Polyhedron P1 being given,
we first introduce P>1 by turning each non-strict inequality of P1 into a strict equality. In Figure 6.1,
polyhedron P>1 is UNSAT as demonstrated by Λ = 2.C1 + 5.C2 +C3 which is a proof of 0 > 0. When
interpreted in P1, combination Λ is a proof of 0 ≥ 0. The key idea is that any decomposition of Λ
into Λ1 + Λ2 splits the proof of 0 ≥ 0 into t1 + t2 ≥ 0 with Λ1 a proof of t1 ≥ 0 (because Λ1 is
a nonnegative combination of P1 inequalities), Λ2 a proof of t2 ≥ 0 (idem), and with the syntactical
equality t2 = −t1. Hence, for any such a decomposition, we find a proof merge(Λ1,Λ2) in P1 of t1 = 0
(see examples of Figure 6.1).

In the general case, we learn equalities in this way, as soon as P1 is SAT and P>1 is UNSAT. Indeed,
the Farkas combination Λ proving the emptiness of P>1 (see Lemma 4.2) is a contradictory constraint
of the form −q > 0 with q a nonnegative rational constant. When interpreted on P1, combination Λ
either proves −q > 0 or proves −q ≥ 0. However, because P1 is SAT, we know that the inequality
proved by Λ on P1 must also be SAT. Thus, Λ is a proof of 0 ≥ 0 on P1.

In summary, given a polyhedron P—abstracting the hypotheses of the Coq goal—the oracle pro-
ceeds in this way:

1. If P is unsatisfiable, then the goal is proved.
2. Otherwise, let us consider a polyhedron P> derived from P by turning each nonstrict inequality

into a strict equality (geometrically, P> is the interior of P). If P> is unsatisfiable, then there
exists a nontrivial Farkas combination Λ proving 0 > 0 in P> and 0 ≥ 0 in P (because P is
satisfiable). Assuming that Λ is given by a sum of n + 1 inequalities, we deduce n equalities
from Λ. Then, we replace in P these n+ 1 inequalities by these n equalities (and also simplifies
P according to these equalities). At last, we iterate this step until P> becomes satisfiable, and
apply case 3 below.

3. When P> is satisfiable, there is no new equality to learn. The oracle still simplifies P by remov-
ing all redundant inequalities.

As explained above, in this algorithm, the Farkas combinations proving the new equalities are obtained
by very simple rewritings of the Farkas combination Λ proving 0 > 0 on P>. Considering that Λ is
a linear combination of n + 1 inequalities, then each of the learned equalities is proved by replacing
in Λ one of the n additions (operator “+”) by a conjunction (operator merge). In other words, the
proofs of the discovered equalities are learned from the proof of a conflict. Certificate generation and
clause-learning are closely related, as already noted in Section 5.2.1. See [#BM18, Sect. 5] for a more
rigorous presentation of this algorithm.

2This simple presentation assumes that constraints of polyhedra are given in the form of “t ▷◁ 0” with ▷◁∈ {≥, >}. In the
actual algorithm, we work on a echelon system where explicit equalities are aside. See [#BM18] for details.
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In summary, the {VPL} oracle involved in the {VplTactic} performs the simplification of a poly-
hedron P into a polyhedron P′ such that P ⇒ P′ and P′ is reduced [#BM18]. This simplification
is itself implemented as a PFS oracle, using the extended Farkas factory of Section 4.3.1. However,
Coq expects that tactics produce proof terms. To this purpose, {VplTactic} internally defines an AST
type of certificates, extending type pexp of Section 4.2.2. In other words, {VplTactic} introduces a
deep embedding of this language of certificates. Section 6.2 now explains why PFS is still relevant
for programming oracles embedded by such a Coq tactic and how certificates are efficiently generated
from PFS oracles.

6.2 Generating Compact Certificates from PFS Oracles

Polymorphic factories provide an abstract layer that simplifies the implementation of certificate gen-
erating oracles. Indeed, if we consider a given language of certificates as a DSL (Domain Specific
Language), then the polymorphic factory corresponds to a generic shallow embedding of this lan-
guage in oracles.3 Such a shallow embedding alleviates the development of oracles, because some
construct and transformations on the DSL can be directly emulated with ML constructs. For exam-
ple, Section 4.2 illustrates the interest of emulating a Bind operator (Sect. 4.2.2) by a ML “let in”;
Section 4.3 illustrates how explicit variable substitutions over DSL terms are just avoided, because
variables of the DSL are directly ML variables (hence substitutions of variables are simply emulated
by applying ML functions). Moreover, the ability to instantiate the factory helps in debugging ora-
cles. Finally, the code that generates certificates (i.e. the AST of the corresponding deep embedding)
is easily factorized for a family of oracles, as illustrated in Section 6.2.1.

Below, by defining a well chosen factory, we produce a compact AST without slowing too much
its generation. This factory actually produces a DAG, from which the final AST is extracted after a
dependency analysis. For example, intermediate results that are actually not needed for the AST are
discarded. Similarly, when an intermediate computation is used at least twice, we define a binder that
stores this result into an intermediate variable. These two optimizations, explained in Section 6.2.3,
avoid useless or redundant computations in the AST interpreter. Another optimization is performed
on the DAG: top nodes are eliminated, and multiplications by constants are factorized. Section 6.2.2
gives the factory that produces the DAG, and how this last optimization is applied on the fly.

6.2.1 Factorizing the AST Generation from PFS Oracles

The DAG data structure provides the interface below, which helps to wrap PFS oracles of the {VPL}.
Type dsctr is the type of nodes in the DAG. Constant dag_factory provides a factory instance for our
PFS oracles. Function import converts an input polyhedron into an input suitable for oracles. Finally,
function export converts the output of oracles into an AST of type pexp.

type dcstr
val dag_factory: dcstr Back.fLCF
val import: BackCstr.t list -> (BackCstr.t * dcstr) list
val export: (’a * dcstr) list -> pexp

From this interface, wrapping a given PFS oracle into an AST producing oracle is straightforward.
For example, we define below ast_proj which wraps the Back.proj PFS oracle of Section 4.2.4.

3Actually, extending Gibbons and Wu’s explanations [GW14], the polymorphic factory could be viewed as the parameter
of a given polymorphic recursion operator—also usually called a “fold” operator—over the AST of the corresponding deep
embedding.
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let ast_proj (p: BackCstr.t list) (x: Var.t): pexp =
export (Back.proj dag_factory (import p) x)

Below, Section 6.2.2 defines dag_factory and import that makes the PFS oracle builds the DAG.
Section 6.2.3 describes the analysis of this DAG in export to produce a compact AST.

6.2.2 A Factory Producing a DAG

For the sake of simplicity, we illustrate the generation of the DAG on the following sub-factory of the
one of Section 4.3.1.

type ’c fLCF = { top: ’c; add: ’c -> ’c -> ’c; mul: Rat.t -> ’c -> ’c }

During the DAG generation, we eliminate the neutral element top that introduces useless nodes. We
also factorize multiplications by rational constants. These propagations are directly achieved by the
operations of dag_factory.

type dcstr = {
def: op;
mutable id: int;
mutable nbusers: int;
(* o t h e r o m i t t e d f i e l d s * )

} and op =
| Ident_
| Top
| Add_ of dcstr * dcstr
| Mul_ of Rat.t * dcstr

The type dcstr of nodes in the DAG is implemented as
shown on the right. This is a record type with a field def
containing the “operation” at this node. An operation of
type op corresponds either to an input constraint (constructor
_Ident) or to an operation on constraints. Operations _Add
and _Mul refer to nodes of type dcstr, and such a node can be
shared between several operations by pointer sharing. Muta-
ble fields of dcstr, like id and nbusers, are only used during
function export. They represent auxiliary data on the node,
which are computed by the dependency analysis and useful
to generate the final AST.

We call a node dc1 a direct ancestor of a node dc2 iff dc2
appears in dc1.def (i.e. as arguments of Add_ or Mul_). It corresponds to the fact that the computation
represented by dc1 depends on the result of the computation represented by dc2. Here, dc2 is a
reference that may have several direct ancestors but, by construction, it can not be a direct or indirect
ancestor of itself.

Most new nodes of the DAG are generated through a call to (make_dcstr d) where d is a value
of type op. This call initializes field def with value d and other fields with default values (these latter
being only used in export). The only exception is on Ident_ nodes that are created with a positive
field id giving their name in the final AST.

let make_dcstr ?id:(i=0) d : dcstr = { def=d; id=i; nbusers=0; (* . . . * ) }

Let us now detail the implementation of import and dag_factory. On a given polyhedron p,
function import associates a new Ident_ node to each constraint c of p. The name of each of these
nodes – given by its field id – corresponds to the position of c in the list p.

let import p = List.mapi (fun i c -> (c, make_dcstr ~id:(i+1) Ident_)) p

In dag_factory, functions smart_mul and smart_add are smart constructors of nodes which eliminate
Top nodes and factorize Mul_ nodes as much as possible.

let dag_factory = {top = make_dcstr Top; add = smart_add; mul = smart_mul}
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n · > → > 1 · c→ c n1 · (n2 · c)→ (n1 × n2) · c

> + c→ c c + > → c (n1 · c1) + (n2 · c2)→
n1 ·

(
c1 +

n2
n1
· c2
)

if n1 > 0

n2 ·
(

n1
n2
· c1 + c2

)
if n1 < 0

Figure 6.2: Elimination of Top Nodes and Factorization of Mul_ Nodes in the DAG

This process corresponds to applying the rewriting rules of Figure 6.2, where >, + and · represent a
node where the field def is respectively Top, Add_ and Mul_ and where c, c1 and c2 are some other
existing nodes. Since these smart constructors assume that their node in inputs are already rewritten,
they only perform O(1) rewriting steps at each call. Moreover, (smart_mul n c) assumes that scalar
n is not zero and that if n is negative then c is an equality. These two last assumptions are of course
valid on our PFS oracles, and they are preserved by the rewriting rules of Figure 6.2.

For instance, on a witness “n1 · c1+n2 ·
(
> + n1

n2
· c2
)
” generated from a PFS oracle (where n1 > 0),

the factory builds a node corresponding to “n1 · (c1 + c2)”. Let us remark that some useless nodes,
such as “ n1

n2
· c2”, are generated in the DAG during this process. But they do not pollute the final AST,

thanks to the dependency analysis of the next section.

6.2.3 Producing the AST

We aim here to produce certificates like examples given in Figure 4.2 at page 74, where derived
constraints used in at least two Farkas combinations (of type fexp) are named by a Bind instead of
having their combination duplicated. In the DAG, each node leading to the introduction of a Bind in
the final AST is marked by the dependency analysis with a unique positive integer i in their field id.
Hence, it is converted as “Ident i” in Farkas combinations of the final AST.

Let us detail the implementation of export, that builds the AST from the oracle result res. The
function extracts dsctr nodes and discards Top nodes, which are ignored without loss of information.
This gives a value roots:(dsctr list) corresponding to the set of roots in input of the dependency
analysis – named compute_defs. This function analyzes descendants of the roots in the DAG, and
returns the list defs of the non-_Ident nodes that have at least two direct ancestors (among descen-
dants of the roots). In list defs, nodes are sorted following a topological sort with ancestors first and
are named with unique positive integers (in field id) above the maximum name of reachable _Ident
nodes. At last, given lists defs and roots, function mk_pexp produces the final AST.

let export res =
let roots = List.fold_left
(fun acc (_,dc) -> if dc.def<>Top then (dc::acc) else acc) [] res in

(* c o m p u t e _ d e f s : d c s t r l i s t −> d c s t r l i s t * )
let defs = compute_defs roots in
(* mk_pexp : d c s t r l i s t −> d c s t r l i s t −> pexp *)
mk_pexp defs roots

The code of mk_pexp is given below. Each node of roots leads to a Farkas combination – built by
function mk_fexp – under the Return node (i.e. it represents a constraint in the final polyhedron).
Here, nodes with a null id field are used exactly once in the AST. Each node dc of defs induces a
Bind node where its Farkas combination – built by function mk_def – is associated to the positive
name dc.id.
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(* v a l mk_fexp : d c s t r −> f e x p * )
let rec mk_fexp dc =
if dc.id > 0 then (Ident dc.id) else (mk_def dc)

and mk_def dc =
match dc.def with
| Add_ (dc1, dc2) -> Add (mk_fexp dc1, mk_fexp dc2)
| Mul_ (n, dc) -> Mul (n, mk_fexp dc)
| _ -> assert false

let mk_pexp defs roots =
let lr = Return (List.map mk_fexp roots) in
List.fold_left (fun rem dc -> Bind (dc.id, mk_def dc, rem)) lr defs

In summary, our export function builds an compact AST using a named representation in binders,
and where unbound names represent input constraints. If necessary, it is easy to convert this repre-
sentation for a de Bruijn representation of binders and where input constraints are introduced by a
dedicated binder.
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Chapter 7

FVDP of Impure Abstract
Interpretations by Stepwise Refinement†

We have shown that the classical semantics of programs [...] can be derived from one an-
other [...]. Our presentation uses abstraction which proceeds by omitting some aspects of
program execution but the inverse operation of semantic refinement (traditionally called
concretization) is equally important. This suggests considering hierarchies of semantics
which can describe program properties, that is program executions, at various levels of
abstraction or refinement in a uniform framework.

Patrick Cousot, in “Constructive Design of a Hierarchy of Semantics ...” [Cou02].

Stepwise refinement was originally proposed by Dijkstra [Dij68] as a constructive ap-
proach to program proving. According to this view, if each refinement step is very care-
fully carried out, so it can be seen to preserve the correctness of the previous version of
the program, then the final program must be correct by construction.

Ralph-Johan Back, in “Correctness Preserving Program Refinements” [Bac80].
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This chapter deals with the modular development of formally verified static analyzers in the Coq
proof assistant. We focus on the implementation in the {VPL} of a linearization procedure to handle
polynomial guards. Based on ring rewriting strategies and interval arithmetic, this procedure partitions
the variable space to infer precise affine terms which over-approximate polynomials.

In order to help formal development, we propose a proof framework, embedded in Coq, that im-
plements a refinement calculus. It is dedicated to certifying the components of the analyzer – like
our linearization procedure – for which the correctness does not depend on the implementation of the
underlying certified abstract domain. Like standard refinement calculi, it introduces data-refinement
diagrams. These diagrams relate “abstract states” computed by the analyzer to “concrete states”
of the input program. However, our notions of “specification” and “implementation” are exchanged
w.r.t. standard uses: the “specification” (computing on “concrete states”) refines the “implementation”
(computing on “abstract states”), because here, we want to prove the correctness of some computa-
tions in the abstract domain w.r.t the concrete semantics.1

Our stepwise refinements hide several low-level aspects of the computations on abstract domains.
In particular, they ignore that the latter may use hints from external untrusted imperative oracles (e.g. a
linear programming solver). Moreover, refinement proofs are naturally simplified thanks to computa-
tions of weakest preconditions. Using our refinement calculus, we simply implement the partitioning
strategies of our linearization procedure with a continuation-passing style, thus avoiding an explicit
datatype of partitions. This illustrates that our framework is convenient to prove the correctness of
such higher-order imperative computations on abstract domains.

7.1 Introduction

We now introduce these two contributions: first, a certified linearization procedure for the {VPL};
second, a refinement calculus to help in mechanizing this proof in Coq. We detail below the context
and features of these two contributions.

7.1.1 A Certified Linearization for the Abstract Domain of Polyhedra

As introduced in Section 4.1, the {VPL} provides a formally verified abstract domain of convex poly-
hedra, where invariants are conjunctions of affine constraints written

∑
i aixi ≤ b where ai, b ∈ Q are

scalar values and xi are integer program variables. This domain is able to capture relations between
program variables (e.g. x+2 ≤ y+ x−2z). However, it cannot deal directly with non-linear invariants,
such as x2 − y2 ≤ x × y. This is why linearization techniques are necessary to analyze programs with
non-linear arithmetic.

1Indeed, we consider that in a static analyzer, like in a compiler, the “source program” is (a part of) the specification
against which we prove the transformations. Moreover, w.r.t. the terminology of abstract interpretation, we find clearer to
keep the notion of “abstract” and “concrete” unchanged and to keep saying that “the concrete refines the abstract”. This
leads us to say that, in abstract interpretation, “the specification refines the implementation”.
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Our certified linearization procedure is based on intervalization [Min06]. It consists in replacing
some variables of nonlinear products by intervals of constants. For instance, Example 7.1 replaces
variable x by interval [0, 10] in product “x.(y − z)”. The interval is then eliminated by analyzing the
sign of y − z, leading to affine constraints usable by the polyhedra domain.

Example 7.1 (Intervalization using a sign-analysis). In any state where x ∈ [0, 10], concrete assign-
ment “r := x.(y − z) + 10.z” is approximated by the affine program below. Here operator :∈ performs
a nondeterministic assignment.

if y − z ≥ 0 then r :∈ [10.z, 10.y] else r :∈ [10.y, 10.z]

In other words, r is updated to any value of [min(10.y, 10.z),max(10.y, 10.z)].

Let us clearly delimit the scope of our work. Our linearization procedure is part of the {VPL},
which provides a certified polyhedra domain to Verasco [Jou+15; Lap15; Jou16], a certified abstract
interpreter for CompCert C [Ler09b]. Verasco is a static analyzer that checks that C programs have
no undefined behavior. Hence, our refinement calculus focuses on abstract interpretations that overap-
proximate sets of reachable states and that reject reachable error states. For example, our refinement
calculus is not sufficient to prove (alone) the correctness of an abstract interpretation bounding execu-
tion times of programs.2 Second, the {VPL} abstract domain in Verasco is limited to integer variables
and rational constants. It could also support rational variables. But supporting floating-point operators
would be a non-trivial extension.

As detailed in Chapter 4, the {VPL} relies on {Impure} untrusted oracles. Built on a similar de-
sign, our linearization procedure invokes an untrusted oracle3 that selects strategies for linearizing an
arithmetic expression and produces a certificate that is checked by the certified part of the procedure.
It leads to a correct-by-construction over-approximation of the expression. It is convenient to see
such strategies as program transformations, because their correctness is independent from the imple-
mentation of the underlying abstract domain and is naturally expressed using concrete semantics of
programs. Indeed, a linearization is correct if, in the current context of the analysis, any postcondition
satisfied by the output program is also satisfied by the input one (see Example 7.1). In such a case, we
say that the input program refines the output one. This chapter aims to explain how refinement helps
develop certified procedures on abstract domains, such as our linearization algorithm.

7.1.2 Refinement to Certify Computations on Abstract Domains

Program refinement [BvW98; Mor94] consists in decomposing proofs of complex programs by step-
wise applications of correctness-preserving transformations. We provide a framework in Coq to apply
this methodology for certifying the correctness of computations combining operators of an existing
abstract domain: our goal is to compositionally build correct-by-construction abstract computations,
by reasoning only on the concrete semantics of programs.

Typically, an affine program – like in Example 7.1 – is both interpreted in our abstract and concrete
semantics. We thus reduce the proof that the abstract interpretation of this affine program computes

2Of course, our refinement calculus may help in statically verifying that a program enriched with assertions enforcing a
bounded execution will satisfy these assertions. But, it will not help to prove that these assertions are sufficient for enforcing
the execution to be bounded.

3There are several kinds of oracles in the {VPL}: those based on Farkas polymorphic factory for basic polyhedra compu-
tations of Section 4.3.1; the linearization strategy in the linearization procedure; etc. In the Coq code, each of these oracles
is declared as a “nondeterministic” function in parameter of the code with an ancester of the {Impure} library presented in
Chapter 2.
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a correct overapproximation of the input program to the proof that its concrete interpretation refines
the input program. This proof may be itself composed of several stepwise refinements in the concrete
semantics. Indeed, the development of our linearization procedure extends concrete semantics with
affine interval arithmetic [Min06] (i.e. affine arithmetic where constants are replaced by intervals of
constants). In this approach, refinement of Example 7.1 is decomposed into two refinement steps
given in Example 7.2. Here, assumption x ∈ [0, 10] is reflected in the input program syntax thanks to
an assume command (formally defined in Section 7.2.1).

Example 7.2 (Refinement steps). The affine program

if y − z ≥ 0 then r :∈ [0 + 10.z, 10.(y − z) + 10.z] else r :∈ [10.(y − z) + 10.z, 0 + 10.z]

is refined by

r :∈ [0, 10].(y − z) + 10.z

itself refined by

assume x ∈ [0, 10];
r := x.(y − z) + 10.z

On Example 7.2, the first refinement step reduces to two properties of interval multiplication

y − z ≥ 0 ⇒ [0, 10].(y − z) = [0, 10.(y − z)]
y − z < 0 ⇒ [0, 10].(y − z) = [10.(y − z), 0]

The program in the middle just aims at simplifying proofs. Indeed, the second refinement step re-
duces to

x ∈ [0, 10] ⇒ x.(y − z) + 10.z ∈ [0, 10].(y − z) + 10.z

This property trivially results from composition properties of interval arithmetic operators. Thus, this
whole proof completely ignores that our abstract interpretation of the first program involves imperative
computations using a given representation of polyhedra.

7.1.3 Overview of our Refinement Calculus

Our framework defines a Guarded Command Language (GCL) called †K that contains the basic oper-
ators of the abstract domain. A computation †K in †K comes with two types of semantics: an abstract
and a concrete one. Concrete semantics of †K is a transformation on memory states. Abstract se-
mantics of †K is a transformation on abstract states, i.e. on values of the abstract domain. A †K
computation also embeds a proof that abstract semantics is correct w.r.t. concrete one: each †K oper-
ator thus preserves correctness by definition. Moreover, an OCaml function is extracted from abstract
semantics, which is certified to be correct w.r.t. concrete semantics. Hence, concrete semantics of †K
acts as a specification which is implemented by its abstract semantics. In the following, a transforma-
tion on abstract (resp. memory) states is called an abstract (resp. concrete) computation.

Taking a piece of code as input, our linearization procedure outputs a †K computation. Its cor-
rectness is ensured by proving that concrete semantics of its input refines concrete semantics of its
output. This means that the output does not forget any behavior of the input. Our procedure being
developed in a modular way from small intermediate functions, its proof reduces itself to small refine-
ment steps.4 Each of these refinement steps is only proved by reasoning on the concrete semantics.

4Thus, we do not use our refinement calculus in a decompositional (i.e. “top-down”) approach, that builds an implemen-
tation by stepwise derivation from a specification. On the contrary, we use our refinement calculus in a compositional (i.e.
“bottom-up”) approach, that builds larger “bricks” from smaller “bricks”.

107



Our framework provides a tactic simplifying such refinement proofs by computational reflection of
weakest-preconditions in the concrete semantics5. The correctness of abstract semantics w.r.t. con-
crete semantics is ensured by construction of †K operators.

Our framework supports impure abstract computations, i.e. abstract computations that invoke
imperative oracles giving them hints to build their certified results. It also allows to reason conve-
niently about higher-order abstract computations. In particular, our linearization procedure uses a
Continuation-Passing Style (CPS) [Rey93] in order to partition its analyzes according to the sign of
affine sub-expressions. For instance in Example 7.2, the approximation of the non-linear assignment
depends on the sign of y − z. In our procedure, CPS is a higher-order programming style that avoids
introducing an explicit datatype handling partitions: this simplifies both the implementation and its
proof. This also illustrates the expressive power of our framework, since a simple Hoare logic does
not suffice to reason about such higher-order imperative programs.

Our refinement calculus could have applications beyond the correctness of linearization strategies:
it could be applied for any part of the analyzer that combines computations of existing abstract do-
mains. In particular, the top-level interpreter of the analyzer could also be proved correct in this way.
Indeed, the interpreter invokes operations on abstract domains in order to over-approximate any exe-
cution of the program, but its correctness does not depend on abstract domains implementations (as
soon as these implementations are themselves correct). We illustrate this claim on a toy analyzer, also
implemented in Coq. Let us explain this contribution w.r.t. the certification of the top-level interpreter
of Verasco developed by Jacques-Henri Jourdan [Jou16].

The interpreter of Verasco analyzes C♯minor [Ler09b] – an intermediate structured language
of CompCert frontend – w.r.t. its small-step semantics. Actually, this small-step semantics (from
CompCert) introduces many low-level details that are tedious to deal with in the proof of the analyzer.6

Thus, Jourdan has introduced a higher-level semantics of C♯minor in order to simplify his proof. This
semantics is a Hoare logic because such a logic is better suited to structured languages than usual
collecting semantics which are dedicated to Control Flow Graph representations [Jou16]. Hence,
Jourdan’s proof is realized in a framework combining a Hoare logic as concrete semantics, with a
theory of abstract domains. But Jourdan’s framework assumes that operators of abstract domains are
pure functions. Actually, this is not the case of {VPL} operators.7

Our refinement calculus sketches an alternative to Jourdan’s framework in order to support im-
pure operators in abstract domains. Our toy analyzer illustrates how the refinement calculus helps
mechanize the correctness proof of the interpreter. Moreover, it also illustrates that alarm handling of
Verasco is very easy to support in our framework. However, our interpreter does not support many
other features of Verasco interpreter: control-flow statements such as “break” and “continue”, the
inference mechanism of loop invariants8, communication between several abstract domains, etc.

5These weakest-preconditions on the concrete semantics are defined in Sect. 7.4.2. They should not be confused with
the wlp_simplify tactic of Sect. 2.2.1. As discussed in Sect. 7.4.3, in the context of this chapter, wlp_simplify is only
used to prove the correctness of the basic operators provided by †K.

6Typically, C♯minor small-step semantics distinguishes infinite loops depending on whether they produce observational
events or not. But, by definition, an infinite loop cannot have runtime errors. Hence, all infinite loops are equivalent
for Verasco analyzer. Even better, the analyzer can safely prune any control-flow branch where they appear, exactly like
unreachable code.

7Thus, the embedding of {VPL} in Verasco coerces its imperative operators into pure ones. Logically, this coercion
remains to assume that {VPL} oracles are observationally pure. This is potentially wrong, because of potential bugs in these
untrusted oracles. See Section 2.1.

8Our toy analyzer does not infer loop invariants but requires them from the user. It does not seem too hard to extend
our analyzer with inference of loop invariants since the {VPL} provides a standard (untrusted) widening operator. But, this
feature is quite orthogonal to the certification of the analyzer itself. For example, Laporte [Lap15] shows how to program
such an untrusted oracle, in order to produce invariants checked by the certified analyzer.
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7.1.4 Comparison with Related Works

The mathematics involved in our refinement calculus, relating operational semantics to the lattice
structure of monotone predicate transformers, are well-known in abstract interpretation theory [Cou02].
In parallel to our work, the idea to use a refinement calculus in formal proofs of abstract interpreters
was also proposed in [Spi13]. Therefore, our contribution is more practical than theoretical. On the
theoretical side, we propose a refinement calculus dedicated to the certification of impure abstract
computations (w.r.t. big-step operational semantics). On the practical side, we show how to get a
concise implementation of such a refinement in Coq and how it helps on a realistic case study: a
linearization technique inspired from [Min06] within the abstract interpreter Verasco.

There are alternatives to our approach for computing polyhedral approximations of semi-algebraic
sets. Let us briefly compare them with intervalization. A linearization procedure based on Handelman
representation of polynomials [Han88] has also been implemented in the {VPL} [Mar+16]. It is more
precise than intervalization, but at a high cost: it requires solving costly parametric linear problems.
Albeit powerful, Handelman’s linearization does not scale properly to large polynomials and poly-
hedra, this is why we need a cheaper algorithm such as intervalization. Another precise approach
consists in converting the polynomial into Bernstein’s basis and extract the generators of the resulting
polyhedron from the polynomial’s coefficients [Far12]. Like Handelman’s linearization, it offers a
tunable precision: either by partitioning the variable space or by elevating the degree of the Bern-
stein’s basis considered. However, in order to ease the certification, the {VPL} uses a constraint-only
representation of polyhedra. Using Bernstein’s linearization would thus involves costly conversions
from constraints into generators, and backwards [Mar17, Chap 4].

There are also linearizations dedicated to other target domains. For instance, a decision procedure
for arithmetic that uses affine forms instead of polyhedra has been proven in PVS [MMS15]. In their
approach, affine approximations of polynomials are combined with partitioning through a branch-and-
bound algorithm. The expressiveness of affine forms is strictly between intervals and polyhedra, but
our linearization procedure would probably be greatly improved by incorporating their techniques.
Another technique dynamically tunes the trade-off between efficiency and precision thanks to an
abstraction-refinement loop within a SMT-solver [Cim+18].

7.1.5 Overview of the Chapter

Our refinement calculus is implemented in only 350 lines of Coq (proof scripts included), by a
shallow-embedding of our GCL †K which combines computational reflection of weakest-precondi-
tions [Dij75] with monads [Wad95]. However, it can be understood in a much simpler setting using
binary relations instead of monads and weakest-preconditions, and classical set theory instead of Coq.

Section 7.2 introduces our refinement calculus in this simplified setting, where computations are
represented as binary relations. Section 7.3 presents our certified linearization procedure and how its
proof benefits from our refinement calculus. Section 7.4 explains how we mechanize this refinement
calculus in Coq by using smart encodings of binary relations introduced in Section 7.2.

This chapter is intended to be self-contained. Assuming that the reader is familiar with higher-
order logic, big-step semantics and Hoare logic, it attempts to introduce as simply as possible all other
notions: refinement, abstract interpretation, convex polyhedra, monads and weakest-preconditions.
Our Coq sources are available as a standalone library:

• either at http://www-verimag.imag.fr/~boulme/vpl201503 (first release)

• or at http://github.com/VERIMAG-Polyhedra/VPL (current release)
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The version integrated with Verasco 1.3 is available at
http://compcert.inria.fr/verasco/release/verasco-1.3.tgz

7.2 A Refinement Calculus for Abstract Interpretation

We consider an analyzer correct if and only if it rejects all programs that may lead to an error state.
Due to lack of precision, it may also reject safe programs. Section 7.2.1 defines the notion of error
state and semantics of concrete computations, which combines big-steps operational semantics with
Hoare Logic. After introducing the notion of abstract computation and its correctness w.r.t. a con-
crete computation, Section 7.2.2 presents our refinement calculus. Section 7.2.3 shows how to apply
refinement to the certification of higher-order abstract computations.

Notations on Relations. Although our formalization is in the intuitionistic type theory of Coq with-
out axioms, the chapter abusively uses more common notations of classical set theory. In particular,
we identify the type A → Prop of predicates on A with the set P(A). Hence, we define the set of
binary relations on A × B by R(A, B) ≜ P(A × B). Given R of R(A, B), we note x R−→ y instead of
(x, y) ∈ R. We use operators on R(A, A) inspired from regular expressions: ε is the identity relation on
A, relation R1 ·R2 is “R2 composed with R1” (i.e. x

R1 · R2−−−−−−→ z ≜ ∃y, x
R1−−→ y∧y

R2−−→ z) and R∗ is the reflexive
and transitive closure of R. Through all the chapter, A→ B is a type of total functions.

7.2.1 Stepwise Refinement of Concrete Computations

Given a domain D representing the type of memory states, we add a distinguished element  to D in
order to represent the error state: we define D ≜ D ] { }.
Concrete Computations With Runtime Errors. We define the set of computations on memory
states, called here concrete computations, as K ≜ R(D,D ). Hence, an element K of K corresponds
to a (possibly) nondeterministic or non-terminating computation from an input state of type D to an
output state of type D . Typically, the empty relation represents a computation that loops infinitely
for any input. It also represents unreachable code i.e. dead code (as explained in Footnote 6).

In the following, an input d ∈ D is said to be erroneous for a concrete computation K if and only
if d K−→  . Informally speaking, we consider that an abstract computation is correct w.r.t. a concrete
computation K at two conditions: first, it overapproximates the set of erroneous inputs of K as a
set E; second, for each input of D\E, it overapproximates the set of its related outputs through K.
Section 7.2.2 formalizes this notion of abstract computation. Before that, we introduce structures on
concrete computations in order to use them as specifications of abstract computations.

Refinement Pre-order. Given K1 and K2 in K, we say that “K1 refines K2” (written K1 v K2) if,
informally, each abstract computation correct for K2 is also correct for K1. Let us now formalize this
refinement relation.

First, we introduce ↓K the normalization of K that returns any output for erroneous inputs. It

is defined by d
↓K
−−→ d′ ≜ (d K−→ d′ ∨ d K−→  ). Informally speaking, “adding” some outputs to K on its

erroneous inputs does not change the set of abstract computations that are correct w.r.t. K. In other
words, an abstract computation is correct for K if and only if it is correct w.r.t. ↓K. Moreover, ↓K is
the maximal relation which is equivalent to K w.r.t. (correct) abstract interpretation.
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Then, normalization enables us to define refinement from inclusion. Formally, we define K1 v K2
as K1 ⊆↓K2 (or equivalently, ↓K1 ⊆↓K2). Relation v is called refinement and is a pre-order on K. The
equivalence relation ≡ associated with this pre-order is given by K1 ≡ K2 iff ↓K1 =↓K2.

Hoare Specifications. Hoare logic is a standard and convenient framework to reason about impera-
tive programs. Let us explain how computations in K are equivalent to specifications of Hoare logic.
A computation K corresponds to a Hoare specification (pK , qK) of P(D) × R(D,D), where pK is a pre-
condition ensuring the absence of error, and qK a postcondition relating the input state to a non-error
output state9. They are defined by pK ≜ D \ {d | d K−→  } and qK ≜ K ∩ (D×D). Conversely, any Hoare
specification (P,Q) corresponds to a computation ` P; Q – defined below – such that K ≡ ` pK ; qK .
Moreover, the refinement pre-order K1 v K2 is equivalent to the usual refinement of specifications in
Hoare logic, which is pK2 ⊆ pK1 ∧ qK1∩ (pK2×D) ⊆ qK2 .

Algebra of Guarded Commands. Initially proposed by [Dij75], guarded commands are also equiv-
alent to Hoare specifications, but with an algebraic style, more suited for the methodology of stepwise
refinement [BvW98]. Inspired by this methodology, we equip K with an algebra of guarded com-
mands.10 It combines a complete lattice structure with operators inspired from regular expressions.
Here, we present this algebra in our simplified setting, where K is defined as R(D,D ). Our Coq
implementation, described in Section 7.4.2, has a different representation of K in order to mechanize
refinement proofs.

First, the complete lattice structure of K (for pre-order v) is given by operator u defined as “∩ after
normalization” (i.e.

�
i Ki ≜

⋂
i ↓Ki) and by operator t defined as ∪. In our context, t represents

alternatives that may non-deterministically happen at runtime: the analyzer must consider that each of
them may happen. Assuming that the concrete execution may run K1 or may run K2, the analyzer must
find an approximation of K1tK2 (which satisfies K1 v K1tK2 and K2 v K1tK2). Symmetrically, u
represents some choice left to the analyzer. Given a concrete computation K, we may find two distincts
approximations K1 and K2 such that K v K1 and K v K2. In an intermediate stepwise refinement, we
may specify this opportunity for the analyzer as K1 u K2 (which satisfies K v K1 u K2): this means
that the analyzer has the choice to approximate K as K1 or to approximate it as K2, or even as the
intersection of these approximations (which could give a more precise result).

The empty relation ∅ is the bottom element and is written ⊥. The relation D×{ } is the top element.
Given d ∈ D , we implicitly coerce it as the constant relation D×{d}. Hence, the top element of the K
lattice is simply written  . The notation ↑ f explicitly lifts function f from D→ D to K.

Given a relation K ∈ R(D,D ), we define its lifting ↿K in R(D ,D ) by ↿K ≜ K ∪ {( , )}. This
allows us to define the sequence of computations by K1 ; K2 ≜ K1· ↿K2, and the unbounded iteration
of this sequence (i.e. a loop with a runtime-chosen number of iterations) by

K∗ ≜ (↿K)∗ ∩ (D × D )

Given a predicate P ∈ P(D), we define the notion of assumption (or guard) as a P ≜ (P×D) u ε.
Informally, if P is satisfied on the current state then a P skips: it behaves like ε. Otherwise, a P
produces no output: it behaves like ⊥.

9A postcondition is thus in P(D×D) instead of the original P(D): this standard generalization avoids introducing
“auxiliary variables” to represent the input state.

10However, in our algebra, v corresponds to “refines”, whereas in standard refinement calculus it dually corresponds to
“is refined by”. Actually, our convention follows lattice notations of abstract interpretation.
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We also define the dual notion of assertion as ` P ≜ (a ¬P ; ) t ε. If P is not satisfied on the
current state, then `P produces an error. Otherwise, it skips.

With these operators, K provides a convenient language to express specifications: any Hoare
specification (P,Q) of P(D) × R(D,D) is expressed as the computation `P; Q. Moreover, refinement
allows to express usual Verification Conditions (VC) of Hoare Logic, for partial and total correctness.
For our toy analyzer (described later), we only need VC for partial correctness. Typically, we use the
usual partial correctness VC of unbounded iteration: K∗ is equivalent to produce an output satisfying
every inductive invariant I of K.

K∗ ≡
�

I∈{I∈P(D) |K v Ì;D×I}
` I; D×I

In this equivalence, the v-way corresponds to the soundness of the VC, whereas the w-way corre-
sponds to its completeness. In our context, such a soundness proof typically ensures that the specifi-
cation of an abstract computation is refined by concrete semantics of the analyzed code. It guarantees
that the analysis is correct w.r.t. semantics of the analyzed code.

Let us here make clear that if computation ⊥ is naturally interpreted as “non-termination”, it is
also usual to see  as non-termination in total correctness. More formally, given any computation
K, we express (weak)termination of K as the predicate trm(K) ≜ {d | ∃d′ ∈ D, d K−→ d′}. Then, we
can change non-termination of K into an error by using computation “` trm(K) ; K” instead of K.
This reduction of total correctness to partial correctness is standard in Hoare logic (e.g. verification
conditions of loop variants).

Example on a Toy Language. Let t stands for an arithmetic term and c be a condition over numeri-
cal variables, whose syntax is c ::= t1 ▷◁ t2 | ¬c | c1 ∧ c2 | c1 ∨ c2 with ▷◁ ∈ {=,,,≤,≥, <, >}. Semantics
~t� of t and ~c� of c work with a domain of integer memories D ≜ V → Z where V is the type of
variables. Hence, ~t� ∈ D→ Z and ~c� ∈ P(D). We omit their definition here.

Let us now introduce a small imperative programming language named S for which we will de-
scribe a toy analyzer in Section 7.2.2. The syntax of a S program s is described on Figure 7.1 together
with its big-steps semantics ~s� in K. This semantics is defined recursively on the syntax of s using
guarded commands derived from K. First, we define ac ≜a~c� and `c ≜`~c�. We also use command
“x := t” defined as ↑λd.d[x := ~t� (d)], where the memory assignment written “d[x := n]” – for d ∈ D,
x ∈ V and n ∈ Z – is defined as the function λx′ :V, if x′ = x then n else d(x′).

s assert(c) x← t s1 ; s2 if(c){s1}else{s2} while(c){s}

~s� `c x := t ~s1� ; ~s2�
ac ; ~s1�

t a¬c ; ~s2�
(ac ; ~s� )∗ ; a¬c

Figure 7.1: Syntax and concrete semantics of S

At this point, we have defined an algebra K of concrete computations: a language that we use to
express specifications – for instance, in the form of Hoare specifications – on abstract computations.
This algebra also provides denotations for defining big-steps semantics (like in Figure 7.1). Hence, K
is aimed at providing an intermediate level between operational semantics of programs and their ab-
stract interpretations (with the same purpose than the intermediate Hoare Logic in Verasco [Jou16]).
The next section defines how we certify correctness of abstract computations w.r.t. K computations.
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7.2.2 Composing Diagrams to Certify Abstract Computations

Rice’s theorem states that the property d K−→ d′ is undecidable. In the theory of abstract interpreta-
tion [CC77], we approximate K by a computable (terminating) function ♯K working on an approxi-
mation ♯D of P(D). Set ♯D is called an abstract domain and it is related to P(D) by a concretization
function γ : ♯D→ P(D). Function ♯K is called an abstract interpretation (or abstract computation) of
K. This chapter considers two abstract domains, intervals and convex polyhedra, associated with the
concrete domain D ≜ V→ Z involved in Figure 7.1.

1. Given Z∞ ≜ Z ] {−∞,+∞}, an abstract memory ♯d of the interval domain is a finite map
associating each variable x with an interval [ax, bx] of Z∞ × Z∞. Its concretization is the set of
concrete memory states satisfying the constraints of ♯d, i.e.

γ(♯d) ≜ {d ∈ D | ∀x, ax ≤ d(x) ≤ bx}

2. The concretization of a convex polyhedron ♯d =
∧

i
∑

j ai j.x j ≤ bi, where ai j’s and bi’s are
rational constants and x j’s are integer program variables, is

γ(♯d) ≜ {d ∈ D |
∧

i

∑
j

ai j.d(x j)≤bi}

Correctness Diagrams of Impure Abstract Computations. Our framework only deals with partial
correctness: we do not prove that abstract computations terminate, but only that they are a sound
over-approximation of their corresponding concrete computation. Moreover, abstract computations
may invoke untrusted oracles, whose results are verified by a certified checker. A bug in those oracles
may make the whole computation nondeterministic or divergent. Thus, it is potentially unsound to
consider abstract computations as pure functions. In this simplified presentation of our framework, we
define abstract computations as relations in ♯K ≜ R(♯D, ♯D). A more elaborate representation – based
on monads – is defined in Section 7.4.1, in order to extract abstract computations from Coq to OCaml
functions. We express correctness of abstract computations through commutative diagrams defined as
follows.

Definition 7.1 (Correctness of abstract computations). An abstract computation ♯K of ♯K is correct
w.r.t. a concrete computation K of K iff

∀♯d, ♯d′ ∈ ♯D, ∀d ∈ D,∀d′ ∈ D ,

♯d
♯K−−→ ♯d′ ∧ d K−→ d′ ∧ d ∈ γ(♯d) ⇒ d′ ∈ γ(♯d′)

Note that d′ ∈ γ(♯d′) implies itself that d′ ,  because  is not in
the image of γ.

♯d ♯d′
♯K

d

γ

d′
K

γ

Such a diagram thus corresponds to a pair of an abstract and a concrete computation, with a
proof that the abstract one is correct w.r.t. the concrete one. As illustrated on the example below,
these diagrams allow to build compositional proofs that an abstract computation, composed of several
simpler parts, is correct w.r.t. a concrete computation. Diagrams are indeed preserved by several
composition operators, and also by refinement of concrete computations.
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As an example, consider two abstract computations ♯K1 and ♯K2
that are correct w.r.t. concrete K1 and K2. In order to show that
the sequential composition ♯K1 · ♯K2 is correct w.r.t. concrete K, it
suffices to prove that K v K1 ; K2, as illustrated on the right hand
side scheme.

♯K1
♯K2

γ
K1

γ
K2

γ

= K v K1 ; K2

K

=

In the following, we introduce a datatype written †K to represent these diagrams: a diagram
†K ∈ †K represents an abstract computation ♯K which is correct w.r.t. its associated concrete com-
putation K. The core of our approach is to lift guarded-commands on K involved in Figure 7.1 to
guarded-commands on †K. For instance, our toy analyzer ♯~s� for s in S is defined similarly to ~s�
of Figure 7.1, but from †K operators instead of K ones. For a given diagram †K, we can prove the
correctness of an abstract computation ♯K w.r.t. a concrete computation K′ simply by proving that
K′ v K. In practice, such refinement proofs are simplified using a weakest-liberal-precondition cal-
culus (see Section 7.4.2).

Our Interface of Abstract Domains. The (simplified) theory of our abstract domains is defined in
Figure 7.2. This theory is not included in Verasco’s one because it allows impure operators (operators
are relations, and not pure functions). Besides its concretization function γ, an abstract domain ♯D pro-
vides constants ♯> and ♯⊥, representing respectively predicate true and false. It also provides abstract
computations ♯ac and x♯:=t of R(♯D, ♯D), which are respectively correct w.r.t. concrete computations
a c and x := t. It provides operator ♯t of R(♯D×♯D, ♯D), which over-approximates the binary union on
P(D). At last, it provides inclusion test ♯v of R(♯D×♯D, bool).

D ⊆ γ(♯>) γ(♯⊥) ⊆ ∅ ♯d
♯ac−−→ ♯d′ ⇒ γ(♯d) ∩ ~c� ⊆ γ(♯d′)

♯d x♯:=t−−−−→ ♯d′ ∧ d ∈ γ(♯d)⇒ d[x := ~t� (d)] ∈ γ(♯d′)

(♯d1,
♯d2)

♯t−→ ♯d′ ⇒ γ(♯d1) ∪ γ(♯d2) ⊆ γ(♯d′) (♯d1,
♯d2)

♯v−→ true⇒ γ(♯d1) ⊆ γ(♯d2)

Figure 7.2: Correctness specifications of our abstract domains

Abstract Computations of Guarded-commands. We derive our guarded-commands on †K in a
generic way from any abstract domain satisfying the interface of Figure 7.2. As explained above, we
lift each K guarded-command appearing in Figure 7.1 into a †K guarded-command. This lifting is
detailed in Figure 7.3: a †K operator has the same notation as its corresponding K operator and maps
it to an abstract computation of ♯K. The diagrammatic proof relating them is straightforward from
correctness specifications given in Figure 7.2. We now detail the ideas behind this mapping.

Concrete commands a c and x := t are trivially associated with ♯ac and x♯:=t. Concrete command
K1 ; K2 is associated with ♯K1 · ♯K2 – where ♯K2 returns ♯⊥ if the current abstract state is included in ♯⊥,
or runs ♯K2 otherwise. Concrete K1 t K2 is lifted by applying operator ♯t to the results of ♯K1 and ♯K2.

Concrete assertion ` c is associated with checking that the result of ♯a¬c is included in ♯⊥: oth-
erwise, the abstract computation fails. In our refinement proofs of abstract computations, “to fail”
means “to give no result”. Hence, concrete  is associated with abstract computation ∅ (and concrete
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⊥ is associated with ♯⊥). However, for our implementation of abstract computations in Section 7.4.1,
“to fail” means “to raise an alarm for the user”. In other words, our notion of correctness on abstract
computations only gives some guarantee when no alarm is raised. In our formal proofs, we do not
make distinction between an abstract computation that raises an alarm and an one that diverges.

At last, concrete K∗ is associated with an abstract computation that invokes an untrusted oracle
proposing an inductive invariant ♯di of ♯K for the current abstract state. Thus, using inclusion tests,
♯(K∗) checks that ♯di is actually an inductive invariant (otherwise, it fails), before returning it as the
output abstract state.

†K Spec. in K Impl. in ♯K
ac ac ♯ac
x := t x := t x♯:=t
†K1 ; †K2 K1 ; K2

♯K1.{(♯d1,
♯d2) | ∃b, (♯d1,

♯⊥)
♯v−→ b ∧ if b then ♯d2 =

♯⊥ else ♯d1

♯K2−−−→ ♯d2}
†K1 t †K2 K1 t K2 {(♯d, ♯d′) | ∃♯d1,∃♯d2,

♯d
♯K1−−−→ ♯d1 ∧ ♯d

♯K2−−−→ ♯d2 ∧ (♯d1,
♯d2)

♯t−→ ♯d′}
`c `c {(♯d, ♯d) | ∃♯d′, ♯d

♯a¬c−−−−→ ♯d′ ∧ (♯d′, ♯⊥)
♯v−→ true}

†K∗ K∗ {(♯d, ♯di) | (♯d, ♯di)
♯v−→ true ∧ ∃♯d′, ♯d

♯K−−→ ♯d′ ∧ (♯d′, ♯di)
♯v−→ true}

Figure 7.3: Guarded-commands of †K involved in S analysis

7.2.3 Higher-order Programming with Correctness Diagrams

Our linearization procedure detailed in Section 7.3.2 illustrates how we use GCL †K as a program-
ming language for abstract computations. GCL K is our specification language. Each program †K
of †K is associated with a specification K of K syntactically derived from its code through mapping
of Figure 7.3 and Figure 7.4. Indeed, Figure 7.4 details two other operators of †K invoked by our
linearization procedure. First, operator (cast †K K′) casts a diagram †K to a given specification K′: it
requires K′ v K in order to produce a new valid †K diagram. This cast operator thus leads to a mod-
ular design of the certified development since it allows stepwise refinement of †K diagrams. Second,
operator (π†�=Q

†g) – where, for a given type A, π is of type R(♯D, A) and †g of type A → †K – binds
the results of π to †g. This operator requires a concrete postcondition Q of A→ P(D) on the results of
π (see Figure 7.4).

†K Spec. in K Impl. in ♯K Under precondition
cast †K K′ K′ ♯K K′ v K

π†�=Q
†g

�
x `Q x ; g x {(♯d1,

♯d2) | ∃x, ♯d1
π−→ x ∧ ♯d1

♯g x
−−−→ ♯d2} ∀♯d,∀x ∈ A,

♯d π−→ x⇒ γ(♯d) ⊆ Q x

Figure 7.4: †K operators that generate proof obligations

More specifically, Section 7.3.2 applies our refinement calculus to certify higher-order abstract
computations. Indeed, our linearization procedure partitions abstract states in order to increase preci-
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sion. Continuation-Passing-Style (CPS) [Rey93] is a higher-order pattern that provides a lightweight
and modular style to program and certify simple partitioning strategies. Let us now detail this idea.

Given an abstract state ♯d, our linearization procedure invokes a sub-procedure ♯f that splits ♯d into
a partition (♯di)i∈I and computes a value ri (of a given type A) for each cell ♯di. Then, the linearization
procedure continues the computation from each cell (ri,

♯di) to finally return the join of all cells. In
other words, from ♯d, ♯f computes (ri,

♯di)i∈I . The main procedure finally computes ♯
⊔

i∈I(♯g ri
♯di) –

where ♯g is a given function of A → ♯K. In order to avoid explicit handling of partitions, we make
♯g a parameter of ♯f to perform the join inside ♯f . In this style, ♯f is of type (A → ♯K) → ♯K and the
parameter ♯g of ♯f is called their continuation.

However, specifying directly the correctness of computations that use CPS is not obvious because
of the higher-order parameter. Actually, we define †f of type (A → †K) → †K and work with a
continuation †g of type A → †K. This allows us to specify CPS abstract computations w.r.t. CPS
concrete computations. An example of such a specification is detailed later in Figure 7.8. Therefore,
we keep implicit the notion of partition, both in specification and in implementation.

Similarly, CPS enables to implement some dynamic strategies of trace partitioning[MR05]. In
abstract interpretation, “trace partitioning” corresponds to partition the set of all possible execution
traces of the analyzed program in order to improve accuracy. Controlling the partitioning process is
motivated by the fact that (♯K1 · ♯K3)♯t(♯K2 · ♯K3) ♯v (♯K1

♯t♯K2) · ♯K3, but the opposite inclusion does not
hold. Hence, the left side is more precise whereas the right one is faster, as computation ♯K3 is factor-
ized. In practice, dynamic trace partitioning strategies select one of these two alternatives according to
information of the current abstract state. The trace partitioning domain of [MR05] provides a functor
able to extend a given abstract domain with dynamic partitioning management. More modestly, CPS
allows for selecting some trace partitioning strategy at each function call, through the choice of its
continuation. For instance, we define †f ≜ λ†g, (†g †K1)t (†g †K2). Then, the precise alternative derives
from †f λ†K, (†K ; †K3) whereas the fast one derives from (†f λ†K, †K) ; †K3. The CPS approach has the
advantage to be very lightweight: there is no need to define and certify a data-structure to manage
partitions. But it is less expressive than a trace partitioning domain. Indeed, a trace partitioning do-
main provides two kinds of partitioning operations: one to split partitions and one to merge partitions.
Thus, the decision of merging partitions is quite independent of the decision to split partitions. On
the contrary, with CPS, there is a single decision for each split/merge pair. Hence, a trace partitioning
domain enables more dynamic merging strategies.

7.3 Interval-based Linearization Strategies for Polyhedra

Initially in [#FB14], the {VPL} worked with affine terms given by the abstract syntax below where x
is a variable and n a constant of Z

t ::= n | x | t1 + t2 | n.t

We now explain how we have extended {VPL} operators of Figure 7.2 to support polynomial terms,
where the product “n.t” is generalized into “t1 × t2”.

The {VPL} derives assignment operator ♯:= from guard ♯aand two low-level operators: projection
(as defined in Section 4.2) and renaming (see [#FB14]). It also derives the guard operator from a
restricted one where conditions have the form 0 ▷◁ t with ▷◁ ∈ {≤,=,,}. Hence, we only need to
linearize the restricted guard ♯a0 ▷◁ p, where p is a polynomial. Below, we use letter p for polynomials
and only keep letter t for affine terms.

Roughly speaking, we approximate a guard ♯a0 ▷◁ p by guards ♯a0 ▷◁ [t1, t2] – where t1 and t2 are
affine or infinite bounds – such that, in the current abstract state, p ∈ [t1, t2]. Approximated guards
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♯a0 ▷◁ [t1, t2] are defined by cases on ▷◁:
▷◁ ≤ = ,

♯a 0▷◁ [t1, t2] ♯a 0≤ t2 ♯a 0≤ t2∧ t1≤0 ♯a 0< t2∨ t1<0
Remark that ♯a t1 ▷◁ t2 simply performs the polyhedral reduction described in Section 6.1: it turns a
polyhedron (P∧ t1 ▷◁ t2) into a reduced polyhedron P′ such that (P∧ t1 ▷◁ t2)⇒ P′. This also applies to
conjunctions of linear inequalities like in ♯a 0≤ t2∧ t1≤0. Operation ♯a 0≤ t2∧ t1≤0 itself corresponds
to a convex-hull (Section 4.3) after two such polyhedral reductions.

We compute affine intervals “[t1, t2]” using heuristics inspired from [Min06], except that in order
to increase precision, we dynamically partition the abstract state according to the sign of some affine
subterms. This process will be detailed further.

Our certified linearization is built on a FVDP architecture: an untrusted oracle uses heuristics to
select linearization strategies and a certified procedure applies them to build a correct-by-construction
result. These strategies, which are listed in Section 7.3.1, allow to finely tune the precision-versus-
efficiency trade-off of the linearization. Section 7.3.2 details the design of our oracle and illustrates
our lightweight handling of partitions using CPS in our certified procedure.

7.3.1 Our List of Interval-Based Strategies

Constant Intervalization. Our fastest strategy applies a constant intervalization operator of the
abstract domain. Given a polynomial p, this operator, written ♯π(p), over-approximates p by an interval
where affine terms are reduced to constants. More formally, ♯π(p) is a computation of R(♯D,Z2

∞) such

that if ♯d
♯π(p)
−−−−→ [n1, n2], then γ(♯d) ⊆ {d | n1 ≤

�
p

�
d ≤ n2}. It uses a naive interval domain, where

arithmetic operations + and × are approximated by their correspondence on intervals:
[n1, n2] + [n3, n4] ≜ [n1 + n3, n2 + n4], and
[n1, n2] × [n3, n4] ≜ [min(E),max(E)] where E = {n1.n3, n1.n4, n2.n3, n2.n4}.

Example 7.3 (Constant intervalization). On x ∈ [3, 10], constant intervalization of (3.x−15)×(4.x−3)
gives (3.[3, 10]−15)× (4.[3, 10]−3) = ([9, 30]−15])× ([12, 40]−3) = [−6, 15]× [9, 37] = [−54, 555],
as shown on Figure 7.5(a).

Ring Rewriting. A weakness of operator ♯π is its sensitivity to ring rewriting. For instance, consider
a polynomial p1 such that ♯π(p1) returns [0, n], n ∈ N+. Then ♯π(p1 − p1) returns [−n, n] instead of the
precise result 0. Such imprecision occurs in barycentric computations such as p2 ≜ p1×t1+(n−p1)×t2
where affine terms t1, t2 are bounded by [n1, n2]. Indeed ♯π(p2) returns 2n.[n1, n2] instead of n.[n1, n2].
Moreover, if we rewrite p2 into an equivalent polynomial p′2 ≜ p1 × (t1 − t2)+ n.t2, then ♯π(p′2) returns
n.[2.n1−n2, 2.n2−n1]. If n1 > 0 or n2 < 0, then ♯π(p′2) is strictly more precise than ♯π(p2). The situation
is reversed otherwise. Consequently, our oracle begins by simplifying the polynomial before trying
to factorize it conveniently. But as illustrated above, it is difficult to find a factorization minimizing ♯π
results. We give more details on the ring rewriting heuristics of our oracle in the following.

Sign Partitioning. In order to find more precise bounds of polynomial p than those given by ♯π(p),
we look for an interval of two affine terms [t1, t2] bounding p. Assume p is of the form p′ × t, with
t an affine term and p′ a polynomial. Let [n′1, n

′
2] be the constant intervalization of p′ obtained from

♯π(p′). Depending on the sign of t, we deduce affine bounds of p in the following way:

• if 0 ≤ t, then p′ × t ∈ [n′1.t, n
′
2.t]
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(a) Constant intervalization (b) Focusing & affine intervalization

Figure 7.5: Two intervalizations of p = (3.x−15)× (4.x−3) with x ∈ [3, 10]. Constant intervalization
leads to p ∈ [−54, 555], whereas focusing gives p ∈ [3.x − 63, 87.x − 315].

Figure 7.6: A wrong affine intervalization of p = (3.x − 15) × (4.x − 3) with x ∈ [3, 10].

• if t < 0, then p′ × t ∈ [n′2.t, n
′
1.t]

When the sign of t is known, we discard one of these two cases and thus have a fast affine approx-
imation of p′ × t. This is the case in Figure 7.5(b) (the underlying computations are detailed in
Example 7.6). When the sign of t is unknown, we split the analysis for each sign of t.

More generally, we split the current abstract state ♯d into a partition (♯di)i∈I according to the sign of
some affine subterms of polynomial p, such that each cell ♯di leads to its own affine interval [ti,1, ti,2].
Finally, ♯a0 ▷◁ p is over-approximated by computing the join of all ♯a0 ▷◁ [ti,1, ti,2]. The main drawback
of sign partitioning is a worst-case exponential blow-up if applied systematically.

Example 7.4 (Sign partitioning). Consider p = (4.x−3)×(3.x−15) with x ∈ [3, 10], as in Example 7.3.
First, we compute the constant intervalization of the left term (4.x − 3), which gives p = (4.[3, 10] −
3) × (3.x − 15) = ([12, 40] − 3) × (3.x − 15) = [9, 37] × (3.x − 15) = [9.(3.x − 15), 37.(3.x − 15)]. We
obtain the two affine terms 9.(3.x− 15) and 37.(3.x− 15). But as shown on Figure 7.6, for x ∈ [3, 10],
these two terms are not comparable. Indeed, 9.(3.x − 15) is not always lower than 37.(3.x − 15) on
x ∈ [3, 10]. Thus, [9.(3.x − 15), 37.(3.x − 15)] is not a well-defined interval of affine forms. In order
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(a) Static partitioning (b) Dynamic partitioning

Figure 7.7: Sign partitioning of p = (3.x − 15) × (4.x − 3) with x ∈ [3, 10]. Static partitioning gives
p ∈ [51.x − 375, 87.x − 315], whereas dynamic one gives p ∈ [51.x − 255, 87.x − 315].

to get an affine interval bounding p, we need to partition the space at the point where these two terms
are equal, i.e. at the point where 3.x − 15 = 0 which is x = 5. Then, by intervalizing in both cells
3.x − 15 < 0 and 3.x − 15 ≥ 0, we get:

p =


[

37.(3.x − 15) , 9.(3.x − 15)
]

if 3.x − 15 < 0[
9.(3.x − 15) , 37.(3.x − 15)

]
if 3.x − 15 ≥ 0

The result is shown on Figure 7.7(a). To obtain the final result of the linearization, it is necessary to
compute the convex hull of both sides. Here, the result is p ∈ [51.x − 375, 87.x − 315], and it appears
as the blue dotted polyhedron on the figure.

Let us also illustrate sign partitioning for the previous barycentric-like computation of p′2. By
convention, our certified procedure partitions the sign of right affine subterms (here, the sign of t1−t2).
Hence, it founds p′2 ∈ [n.t2, n.t1] in cell 0 ≤ t1 − t2, and p′2 ∈ [n.t1, n.t2] in cell t1 − t2 < 0. When it
joins the two cells, ♯a0 ▷◁ p′2 is computed as ♯a0 ▷◁ n.[n1, n2] as we expect for such a barycentre. Note
that sign partitioning is also sensitive to ring rewriting. In particular, the oracle may rewrite a product
of affine terms t1 × t2 into t2 × t1, in order to discard t1 instead of t2 by sign partitioning.

Static vs Dynamic Intervalization During Partitioning. Computing the constant bounds of an
affine term inside a given polyhedron invokes a costly linear programming procedure. Hence, for a
given polynomial p to approximate, we start by computing an environment σ that associates each
variable of p with a constant interval: as detailed later, this environment is indeed used by heuristics
of our oracle. By default, operator ♯π is called in dynamic mode, meaning that each bound is computed
dynamically in the current cell – generated from sign partitioning – using linear programming. If one
wants a faster use of operator ♯π, he may invoke it in static mode, where bounds are computed using σ.

For instance, let us consider the sign partitioning of p ≜ t1 × t2 in the context 0 < n1, n2 and
−n1 ≤ t2 ≤ t1 ≤ n2. In cell 0 ≤ t2, static mode bounds p by [−n1.t2, n2.t2], whereas dynamic mode
bounds p by [0, n2.t2]. In cell t2 < 0, both modes bound p by [n2.t2,−n1.t2]. On the join of these cells,
both modes give the same upper bound. But the lower bound is −n1.n2 for static mode, whereas it is
n1.n2
n1+n2

(t2 + n1) − n1.n2 for dynamic mode, which is strictly more precise.
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Example 7.5 (Static vs Dynamic Intervalization). In Example 7.4, we saw that partitioning on the
sign of (3.x − 15) gave

p = (4.x − 3) × (3.x − 15)
= [9, 37] × (3.x − 15)

=


[

37.(3.x − 15) , 9.(3.x − 15)
]

if 3.x − 15 < 0[
9.(3.x − 15) , 37.(3.x − 15)

]
if 3.x − 15 ≥ 0

This intervalization is in fact a static one because (4.x − 3) was intervalized in the same way in
both cells, using x ∈ [3, 10]. Instead, using dynamic intervalization during partitioning will improve
the precision by finding better bounds of (4.x − 3). Indeed, building on the fact that x ∈ [3, 5] on
cell (3 ≤ x ∧ 3.x − 15 < 0), intervalizing (4.x − 3) gives (4.[3, 5] − 3) = ([12, 20] − 3) = [9, 17].
Similarly, on cell (x ≤ 10 ∧ 3.x − 15 ≥ 0), x ∈ [5, 10] hence an intervalization of (4.x − 3) by
(4.[5, 10] − 3) = ([20, 40] − 3) = [17, 37]. Thus,

p =

 [9, 17] × (3.x − 15) if 3.x − 15 < 0

[17, 37] × (3.x − 15) if 3.x − 15 ≥ 0

=


[

17.(3.x − 15) , 9.(3.x − 15)
]

if 3.x − 15 < 0[
17.(3.x − 15) , 37.(3.x − 15)

]
if 3.x − 15 ≥ 0

As explained before, the final result is obtained by computing the convex hull of both cells. Here, we
get p ∈ [51.x − 255, 87.x − 315]. The difference between static and dynamic partitioning is shown
on Figure 7.7. We can see that the lower bound of p has been significantly improved by the dynamic
partition. The upper bound resulting from static partitioning was already optimal.

Focusing. Focusing is a ring rewriting heuristic that may increase the precision of sign partitioning.
Given a product p ≜ t1 × t2, we define the focusing of t2 in center n as the rewriting of p into
p′ ≜ n.t1 + t1 × (t2 − n). Thanks to this focusing, the affine term n.t1 appears whereas t1 would
otherwise be discarded by sign partitioning. Let us simply illustrate the effect of this rewriting when
0 ≤ n ≤ n′1 with t1 (resp. t2) bounded by [n1, n2] (resp. [n′1, n

′
2]). Sign partitioning bounds p in affine

interval [n1.t2, n2.t2] whereas p′ is bounded by interval [n1.t2 + n.(t1 − n1), n2.t2 − n.(n2 − t1)]. The
former contains the latter since t1 − n1 and n2 − t1 are nonnegative. Under these assumptions, the
precision is maximal when n = n′1.

Applied carelessly, focusing may also decrease the precision. Consequently, on products p′′ × t2,
our oracle uses the following heuristic, which cannot decrease the precision: if 0 ≤ n′1, then focus t2
in center n′1; if n′2 ≤ 0, then focus t2 in center n′2; otherwise, do not change the focus of t2.

Example 7.6 (Focusing). Consider p = (3.x−15)× (4.x−3) with x ∈ [3, 10], as in previous examples.
The focusing of term (4.x − 3) on 4.3 − 3 = 9 is p′ = 9.(3.x − 15) + (3x − 15) × (4.x − 12). Affine
intervalization of p′ is done by sign partitioning of (4.x−12), where cell 4.x−12 < 0 is empty. Finally,
by intervalization,

p = 9.(3.x − 15) + (3x − 15) × (4.x − 12)
= (27.x − 135) + (3.[3, 10] − 15) × (4.x − 12)
= (27.x − 135) + [−6, 15] × (4.x − 12)
= (27.x − 135) + [−24.x + 72, 60.x − 180]
= [3.x − 63, 87.x − 315]
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Figure 7.5(b) shows its result. Intervalizations of Figure 7.5(a) and of Figure 7.5(b) have similar
running times, but this latter gives strictly more precise results. Intervalizations of Figures 7.7(b)
and 7.5(b) are not comparable: Figure 7.7(b) is more precise on a significant part of the domain
x ∈ [3, 10], but Figure 7.5(b) is better around the lower-left corner. The precision of Figure 7.7(b)
comes at a cost: it requires two constant intervalizations and a convex-hull instead of one single
constant intervalization.

Conjunction of strategies. As we saw by comparing Figures 7.5(b) and 7.7(b), two distinct lin-
earization strategies may lead to incomparable polyhedra. Here, we can improve precision by com-
puting the intersection of these polyhedra. In our stepwise refinement approach, this corresponds
indeed to remark that a c v (a c ; a c), and to implement each of these guards a c with a distinct
linearization strategy. Let us remark here that a sequence of two strategies gives more precise results
than intersecting independent runs of these strategies: the second one may benefit from informations
discovered by the first one. This is illustrated in Example 7.7 below. We use this trick in order to en-
sure that our linearization necessarily improves and benefits from results of a naive but quick constant
intervalization.

7.3.2 Design of our Implementation

We now describe our procedure in detail. For a guard ♯a0 ▷◁ p, our certified procedure first rewrites
p into p′ + t where t is an affine term and p′ a polynomial. This may keep the non-affine part p′

small compared to the affine one t. Typically, if p′ is syntactically equal to zero, we simply apply
the standard affine guard ♯a0 ▷◁ t. Otherwise, we compute environment σ for p′ variables. Then, we
compute ♯a0 ▷◁ [n1 + t, n2 + t] where [n1, n2] is the result of ♯π(p′) for static environment σ. As men-
tioned earlier, this ensures that the resulting linearization necessarily improves and benefits from this
first constant intervalization. In particular, if this guard is unsatisfiable at this point, the rest of the
procedure is skipped. Otherwise, we invoke our external oracle on p′ and σ. This oracle returns a
polynomial p′′ enriched with tags on subexpressions. We handle three tags to direct the intervaliza-
tion: AFFINE expresses that the subexpression is affine; STATIC expresses that the subexpression has
to be intervalized in static mode; INTERV expresses that intervalization is done using only ♯π (instead
of sign partitioning). At last, a special tag SKIP_ORACLE inserted at the root of p′′ indicates that it
is not worth attempting to improve naive constant intervalization (e.g. because p′ is a too big poly-
nomial, any attempt would be too costly). After that, when this special tag is absent, our certified
procedure checks that p′ = p′′ using a normalization procedure defined in the standard distribution of
Coq [GM05]. If p′ , p′′, our procedure simply raises an error corresponding to a bug in the oracle.
If p′ = p′′, it invokes a CPS affine intervalization of p′′ for continuation λ[t1, t2], a0 ▷◁ [t1 + t, t2 + t].
The next paragraphs detail this certified CPS intervalization and then, our external oracle.

Certified CPS Affine Intervalization. We implement and prove our affine intervalization using the
CPS technique described in Section 7.2.3. On polynomial p′′ and continuation †g, the specification of
our CPS intervalization is

ε u
�

[t1,t2]
`{d | t1 ≤

�
p′′

�
d ≤ t2]} ; g[t1, t2]

The ε case corresponds to a failure of our procedure: typically, a subexpression is not affine as claimed
by the external oracle. In case of success, the procedure selects nondeterministically some affine
intervals [t1, t2] bounding p′′ before merging continuations on them. The procedure is implemented
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Given (†π p) of (Z∞×Z∞→ †K)→ †K defined by (†π p)(†g0) ≜ ♯π(p) †�=λ[n1,n2],{d | n1≤~p�d≤n2}
†g0

the †K program on the right-hand side satisfies
the specification below:�

[t1,t2]
`{d | t1 ≤

�
p×t

�
d ≤ t2} ; g[t1, t2]

if static then
(†π p)(λ[n1, n2], (a0 ≤ t ; †g[n1.t, n2.t])

t (a t < 0 ; †g[n2.t, n1.t]))
else

(a0 ≤ t ; (†π p)(λ[n1, n2], †g[n1.t, n2.t]))
t (a t < 0 ; (†π p)(λ[n1, n2], †g[n2.t, n1.t]))

Figure 7.8: Sign partitioning for p×t with continuation †g

recursively over the syntax of p′′. Figure 7.8 sketches the implementation and the specification of
the sign partitioning subprocedure. The figure deals with a particular case where p′′ is a polynomial
written p × t with t affine. In the implementation part, Boolean static indicates the mode of ♯π. In
static mode, we indeed factorize the computation of ♯π on both cells of the partition.

Our linearization procedure is written in around 2000 Coq lines, proofs included. Among them,
the CPS procedure and its subprocedures take only 200 lines. The bigger part – around 1000 lines –
is thus taken by arithmetic operators on interval domains (constant and affine intervals).

Design of Our External Oracle. Our external oracle ranks variables according to their priority to
be discarded by sign partitioning. Then, it factorizes variables with the highest priority. The priority
rank is mainly computed from the size of intervals in the precomputed environment σ: unbounded
variables must not be discarded whereas variables bounded by a singleton are always discarded by
static intervalization. Our oracle also tries to minimize the number of distinct variables that are dis-
carded: variables appearing in many monomials have a higher priority. The oracle also interleaves
factorization with focusing. Our oracle is written in 1300 lines of OCaml code.

Example 7.7 (A full run of the certified procedure). Let us consider the effect of our linearization
procedure on guard a x× (y− 2) ≤ z in a context where (0 ≤ x)∧ (x+ 1 ≤ y ≤ 1000)∧ (z ≤ −2). First,
note that a constant intervalization of z− x× (y− 2) would bound it in ]−∞, 997], and thus would not
deduce anything useful from this guard.

Instead, our procedure rewrites the guard into a0 ≤ p′+ t with p′ ≜ −x×y and t ≜ z+2x. Then, it
computes environment σ ≜ {x 7→ [0, 999], y 7→ [1, 1000]} and applies constant intervalization on p′,
leading to p′ ∈] − ∞, 0]. As you may notice, approximating this guard requires only an upper-bound
on p′, and our procedure does not compute the useless lower bound. From this first approximation of
a0 ≤ p′ + t, it deduces 0 ≤ t.

Then, our oracle, invoked on p′ and σ, decides to focus y in center 1 and thus rewrites p′ as
p′′ ≜ x× (1− y)− x. Here, our CPS subprocedure only intervalizes the nonlinear part x× (1− y) using
sign partitioning on 1 − y. Because we know 1 ≤ x from 2 ≤ −z ≤ 2x, we deduce 1 − y ≤ −x ≤ −1.
Therefore, because 1 − y < 0 and 1 ≤ x, sign partitioning on 1 − y bounds x × (1 − y) by ] −∞, 1 − y].
At last, CPS intervalization now approximates a0 ≤ p′ + t in a0 ≤ 1 − y − x + t. In fact, this implies
0 ≤ z which contradicts z ≤ −2. Hence, our polyhedral approximation of a x × (y − 2) ≤ z detects that
this guard is unsatisfiable in the given context.

As a conclusion, let us remark that the first approximation leading to 0 ≤ t is necessary to the full
success of the second one.
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7.4 A Lightweight Refinement Calculus in Coq

Our implementation in Coq reformulates Section 7.2 with more computational representations of bi-
nary relations. Section 7.4.1 presents the representation change of impure abstract computations.
Section 7.4.2 presents that of concrete ones. Finally, Section 7.4.3 presents our datatypes for correct-
ness diagrams of abstract computations. Sections 7.4.1 and 7.4.3 also detail how the framework is
adapted in order to handle alarms during the analysis.

7.4.1 Efficient Representations of Impure Abstract Computations

In the {VPL}, all computations involving oracles (including abstract computations) are “impure” – in
the sense defined in Section 2.2 This section links this representation to relations from Section 7.2.

A relation R of R(A, B) can be equivalently seen as the function λx, {y | x R−→ y} of A → P(B). This
curryfied representation is the basis of {VPL} representation for impure computations, where type
“P(B)” is axiomatized in Coq as type “ ??B” as presented in Section 2.2.1. Indeed, this technique
provides a Coq representation of relations that can be turned into an OCaml function at extraction.

Hence, all impure computations of R(A, B) in Figure 7.2 are actually expressed in our Coq devel-
opment as functions of A → ??B in a given may-return monad. Indeed, the interface of may-return
monads also allows to hide data-structure details – such as handling of alarms – for the correctness
proof of abstract computations. The next paragraphs detail these ideas.

Correspondence with Set Theory Notations of Section 7.2. We recall that the abstraction of set
“P(A)” as type “ ??A” is given by the following definitions:

??A≜P(A) k⇝a ≜ a∈k ε a ≜ {a} k1 �= k2 ≜
⋃
a∈k1

(k2 a)

Conversely, for any may-return monad, a computation k of A → ??B represents a relation of R(A, B)
defined by d k−→ d′ ≜ k d ⇝ d′. Given two abstract computations k1 and k2 in ♯D → ?? ♯D, then
“λx, (k1 x) �= k2” corresponds to a subrelation of “k1 · k2”.

Impure Computations of the Core May-return Monad. The {VPL} is parametrized by a core
may-return monad that axiomatizes external computations (i.e. an ancester of the {Impure} library).
This monad avoids a potential cause of unsoundness by expressing that external oracles are not pure
functions, but encode relations. It is instantiated at extraction by providing the identity implementation
given in Figure 2.2.

Of course, this implementation of the core monad remains hidden for our Coq proofs: they are
thus valid for any instance of a may-return monad.

Alarm Handling in the Analyzer. Our toy analyzer, specified in Figure 7.1, handles alarms in the
style of Verasco [Jou16]. On a potential error, it does not stop its analysis, but writes an alarm –
represented here as a value of type alarm – and continues the analysis. Technically, this corresponds
to lifting the core monad through a writer monad transformer [LH96]. Actually, we assume that
the core monad has already an operation to write alarms cwrite : alarm → c?? unit, which is
efficiently extracted as OCaml external code. On the Coq side, our alarm writer monad thus only
encodes the underlying list of alarms as a Boolean: true corresponds to an empty list of alarms. It is
defined in Figure 7.9 where alarm writer (resp. core) constructs are prefixed by a “ w” (resp. “ c”). The
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w??A≜ c?? (A×bool) k w⇝a ≜ k c⇝(a, true) wε a ≜ cε (a, true)

k1
w�= k2 ≜ k1

c�= λ(a1, l1), (k2 a1)c�=λ(a2, l2), cε (a2, l1∧ l2)

lift k ≜ k c�= λa, cε (a, true) wwritem a ≜ cwritem c�= λ_, cε (a, false)

Figure 7.9: Alarm writer monad and its specific operators

implementation of w⇝ means that the formal correctness of abstract computations with at least one
alarm holds trivially. Hence, on a †K diagram, an abstract computation fails (i.e. produces no result)
as soon as it produces an alarm. On the contrary, in the actual implementation, it produces a result
that may be used to find more alarms (without formal guarantee on their meaning).

Figure 7.9 also defines operator liftA : c??A → w??A. Using lift, it is straightforward to lift
{VPL} abstract domains with computations in the core monad to abstract domains with computations
in the alarm writer monad. At last, operator wwriteA : alarm→ A→ w??A encodes that wwritem a
writes alarm m and returns value a. It is invoked in the implementation of †K commands that may fail:
assert (operator “` .”) and loop (operator “.∗”).

For example, let us assume here that function ♯a¬c : ♯D → c?? ♯D and function ♯v : ♯D →
♯D → c?? bool are {VPL} operators from the core monad corresponding to those of Figure 7.2.
Operator ♯`c, described in Figure 7.3, is implemented in the alarm writer monad by the function of
type ♯D→ w?? ♯D given below:

λ♯d, (lift (♯a¬c ♯d)) w�= λ♯d′,
(lift (♯v ♯d′ ♯⊥)) w�= λb,
if b then wε ♯d else ( wwrite "assert failure" ♯d)

In order to prove that operator ♯`c is correct w.r.t. its specification `c, it suffices to prove the property
“♯`c ♯d ⇝ ♯d′ ⇒ γ(♯d) ⊆ ~c� ∧ ♯d = ♯d′”. The proof that this property implies a correct abstraction of
`c is independent of the underlying monad.

In summary, the alarm writer monad instantiates our notion of analyzer correctness into “if the
analyzer terminates without raising any alarm11, then the analyzed program has no runtime error”.
Thanks to our compositional design through monads, reasonings on alarm handling appear only in the
implementation of the alarm writer monad. Indeed, “raising an alarm” is logically equivalent to a com-
putation that never returns. Actually, Verasco also manages alarms through a writer monad [Jou16].
We have just shown that this feature is very easy to deal with in our framework.

7.4.2 Representation of Concrete Computations

We consider the issue of mechanizing refinement proofs of K computations. Definition of K in Sec-
tion 7.2.1 uses operators inspired from regular expressions. Formally, K embeds the Kleene algebra12

of R(D,D): if K1 and K2 are in R(D,D), then K1 ; K2 = K1 · K2. However, K does not satisfy itself all
properties of a Kleene algebra. In particular, “ ;” has two distinct left-zeros ⊥ and  . Thus, it has no
right-zero. This forbids applying directly existing Coq tactics for Kleene algebras[BP12].

11Formally, the status “no alarm is raised” is given by the Boolean of our alarm writer monad
12A Kleene algebra is an idempotent (and thus partially ordered) semiring endowed with a closure operator. It generalizes

the operations known from regular expressions: the set of regular expressions over an alphabet is a free Kleene algebra.
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Like in standard refinement calculus [BvW98], we simplify refinement proofs by computations of
weakest-preconditions [Dij75]. More exactly, we use weakest-liberal-preconditions (WLP) because
they appear naturally in correctness diagrams of abstract computations (illustrated by Figure 7.12
below). 13 Fundamentally, this comes from the fact that weakest-liberal-preconditions do not aim to
ensure termination of programs – like our static analyzes – contrary to original weakest-preconditions
of Dijkstra.

Definition 7.2 (Weakest-liberal-preconditions). Given K ∈ R(D,D ), the WLP of K, written here
[K], is a function of P(D)→ P(D) defined by

[K]P ≜ {d ∈ D | ∀d′ ∈ D , d K−→ d′ ⇒ d′ ∈ P}

To Simplify Refinement Goals by WLP. The main benefit of WLP is to propagate function com-
putations through sequences of relations. Indeed, WLP transforms a sequence into a function compo-
sition: [K1 ; K2]P = [K1]([K2]P). And, given f a function of type D → D,

[ ↑ f
]
P = {d | f (d) ∈ P}.

This allows for instance to compute
[↑ f1 ; ↑ f2

]
P as {d | f2( f1(d)) ∈ P}. To understand the benefit of

WLP, let us compare this to the direct definition of “x
K1 ; K2−−−−−−→ z”. It induces a formula with an existen-

tial quantifier “∃y, x
K1−−→ y ∧ y

↿K2−−−→ z”, which, when K1 is ↑ f1, can be simplified into a formula without
existential quantifier “ f1(x)

K2−−→ z”. In a sense, WLP computations achieve such a simplification for
free. Another benefit of WLP is to perform an implicit normalization of computations, in the sense
that [K]P = [↓K]P holds.

We embed WLP computations in refinement proofs using the equivalence between K1 v K2 and
∀P, [K2]P ⊆ [K1]P. We list below WLP of main guarded-commands:

[⊥]P = D [ ]P = ∅ [ε]P = P[`P′
]
P = P′ ∩ P

[aP′
]
P = (D \ P′) ∪ P⊔

a∈A

Ka

P =⋂
a∈A

[Ka]P

�
a∈A

Ka

P =⋃
a∈A

[Ka]P

The methodology of stepwise refinement relies on the fact that K1 v K2 implies K1 ; K v K2 ; K
and K ; K1 v K ; K2. While trying to prove these two properties only from WLP properties above,
we observe that the first one derives from ∀P, [K2]([K]P) ⊆ [K1]([K]P), itself implied by K1 v K2.
However, in order to prove the second one, we need to establish an additional property on [K]: it is a
monotone predicate transformer. This means that if P1 ⊆ P2 then [K]P1 ⊆ [K]P2.

A Shallow Embedding of WLP Computations. In the style of [#Bou07], we use a shallow em-
bedding of WLP computations, meaning that we avoid the introduction of abstract syntax trees for K
computations, which would induce many difficulties because of binders in

⊔
and

�
operators. In-

stead, we represent K computations directly as monotone predicate transformers. In other words, our
syntax for K guarded commands is directly provided by a given set of Coq operators on monotone
predicate transformers (corresponding to some WLP computations).

Actually, by exploiting type isomorphism P(D) → P(D) ' D → P(P(D)), we encode monotone
predicate transformers as functions D → P(D) where P is the monad of monotone predicates of

13These WLP-computations on K (the concrete semantics) must not be confused with those performed by the
wlp_simplify tactic, presented in Section 2.2.1. The latter will only be used in Section 7.4.3 to simplify some proofs
on the abstract semantics ♯K.
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Record P(A:Type) B{
app:> (A → Prop) → Prop;
app_monot(P Q:A → Prop): app P → (∀ d, P d → Q d) → app Q}.

k1
Pvk2 ≜ ∀P, (k2 P)→ (k1 P)

Pε a ≜ {app := λP, (P a)} k1
P�= k2 ≜ {app := λP, (k1 λa, (k2 a P))}

P`P′ ≜ {app := λP, P′ ∧ (P tt)} PaP′ ≜ {app := λP, P′ → (P tt)}

A
t≜ {app := λP,∀a : A, (P a)}

A
u≜ {app := λP,∃a : A, (P a)}

Figure 7.10: Coq definitions for main operators of monad P

K ≜ D→ P D K1 v K2 ≜ ∀d, (K1 d) Pv (K2 d)

↑ f ≜ λd, Pε ( f d) K1 ; K2 ≜ λd, (K1 d) P�= K2

`P′ ≜ λd, P` (P′ d) P�= λ_, ( Pε d) aP′ ≜ λd, Pa (P′ d) P�= λ_, ( Pε d)⊔
a:A

Ka ≜ λd,
A
t P�= λa : A, (Ka d)

�
a:A

Ka ≜ λd,
A
u P�= λa : A, (Ka d)

Figure 7.11: Coq definitions for main K operators

predicate (that we define below). Indeed, they are simpler and more general than monotone predicate
transformers: all composition operators of predicate transformers can be derived by combining only
atomic operators with the�= operator of monad P. For instance, in Figure 7.11, the A-indexed meet

operator of K is derived from the atomic operator
A
u of P.

Figure 7.10 sketches the Coq definitions of monad P. An element of type (P A) is a record with
two fields: a field app representing a predicate of P(P(A)), and a field app_monot that is a proof that
app is monotone. Here, elements of (P A) are implicitly coerced into functions through field app.
In Figure 7.10, each record definition generates a proof obligation for the missing field app_monot.
Assert (resp. assume) operator of P monad is written P`P′ (resp. PaP′) where P′ is of type Prop.
These operators are of type “P unit” where unit is a singleton type which inhabitant is tt. Operators
A
u and

A
t are of type P A.

A Lightweight Formalization of K in Coq. Figure 7.11 illustrates how we derive guarded-commands
of K from operators of P monad. With this representation change, a relation Q in R(D,D) is now em-
bedded in K as

Q ≜
⊔

d′∈D
a{d | d Q

−→ d′} ; d′

We can thus still express Hoare specifications (P,Q) of P(D)×R(D,D) by `P; Q. Hence, we express
unbounded iteration by a meet over inductive invariants as explained in Section 7.2.1.

In contrast to [#Bou07], we have not proved in Coq the properties of K algebra. On refinement
goals, we let Coq compute weakest-preconditions and simply solve the remaining goal with standard
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Record †K: Type B{
impl:♯D →?? ♯D; spec:K;
impl_correct: ∀♯d, WHEN (impl ♯d)⇝ ♯d′ THEN ∀d, d ∈ γ(♯d)→ (spec d γ(♯d′)) }.

Figure 7.12: Sketch of the Coq definition for †K datatype

Coq tactics. This gives us well-automated proof scripts in practice. Thus, Coq code for K operators
(with P included) remains very small (around 150 lines, proofs and comments included).

7.4.3 Representations of Correctness Diagrams

The Coq definition of †K datatype, sketched in Figure 7.12, is actually parametrized by a structure
of may-return monad: abstract computations are functions of ♯D → ?? ♯D. Here, ♯D equipped with its
operators (satisfying the interface given at Figure 7.2) is also a parameter of the definition. Thus, our
modular design allows to have abstract computations that do handle alarms, like in our toy analyzer,
or that do not, like in our linearization procedure. Indeed, in abstract interpreters, detection of runtime
errors (and handling of alarm) is generally done at the top-level interpreter of the analyzer, but not in
the internal levels. Our notion of diagram can handle both cases in a generic way.

Therefore, Figure 7.12 defines values of †K as triples with a field impl being an abstract com-
putation, a field spec being a concrete computation and a field impl_correct being a proof that
impl is correct w.r.t spec. Such proofs are simplified by applying together the WLP embedded in
spec and the wlp_simplify tactic of Section 2.2.1. The latter indeed simplifies reasonings with⇝
relation. At last, impl being the only informative14 field of †K record, type †K is extracted as OCaml
type ♯D → ♯D. Similarly, a †K command is extracted exactly as its underlying abstract computation.
Here again, the Coq code for †K operators (diagrammatic proofs included) is small (around 200 lines,
without the implementation of the alarm writer monad).

7.5 Conclusion & Perspectives

We extended the {VPL} with certified handling of non-linear multiplications by a modular and novel
design. Our computations are performed by an untrusted oracle delivering a certificate to a certified
front-end. Our proofs use diagrammatic constructs based on stepwise refinement calculus. Refinement
proofs are finally made clear and concise by the computations of Weakest-Liberal-Preconditions.

Our linearization procedure is able to give a fast over-approximation of integer polynomials thanks
to variable intervalization. The precision is increased by domain partitioning (implicitly done with a
Continuation-Passing-Style design) and the dynamic computation of bounding affine terms, enabling
to finely tune the precision-versus-efficiency trade-off in the oracle.

Because floating-point arithmetic requires to explicitly handle error terms at each operation, {VPL}
does not currently support floating-points variables, and our linearization neither. Most non-linear
arithmetic used in real-life programs involve floating-points. Therefore, it is hard to evaluate our
method on real-life programs. Hence, our experiments are limited to small handmade examples in-
spired by polynomials often encountered in real-life code, such as parabola or barycentres. On these
cases, our oracle is able to give much more precise approximations than the Verasco interval domain.

14In Coq jargon, something is “informative” if it is “not a piece of proof” (thus, it remains at extraction).
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Our linearization procedure needs also to be extended with others arithmetic operators such as
integer division and integer modulo. A simple approach in this direction would: 1) replace each
call to these operators by a fresh temporary variable; 2) express the meaning of these operations as
nondeterministic assignments of their corresponding variables, using only polynomials, i.e. if t1 and
t2 are positive then q := t1/t2 is replaced by q :∈ {x | t1 − t2 < x × t2 ≤ t1}; 3) eliminate temporary
variables out of approximated guards. The {VPL} already provides the bricks for such an approach.

At last, we certified a toy analyzer from big-steps semantics of Figure 7.1, by interpreting the
operators of concrete semantics in abstract semantics, according to the correspondence of Figure 7.3.
We detailed how this toy analyzer handles alarms in the style of Verasco. This could give some hints
to adapt Jourdan’s framework for Verasco [Jou16] with impure operators on abstract domains and
some dynamic strategies of trace partitioning.
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Chapter 8

Scientific Production
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8.1 Formally Verified Software

{CompCert-KVX} The Kalray-Verimag CompCert compiler

Status Open-Source prototype, an extension of the official CompCert1, developed in 2018-2021.
Distribution https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
Authors Cyril Six, Sylvain Boulmé, David Monniaux and Léo Gourdin.
Features Optimizes Instruction-Level Parallelism and provides a backend for the Kalray VLIW KVX

processor, with Scheduling Optimizations for Aarch64 and Risc-V.
Contribution The first (scaling) formally verified compiler that optimizes pipeline usage. Also the

first verified compiler for a VLIW architecture.
Source Code official CompCert + 50Kloc of Coq + 20Kloc of OCaml + a few hundred lines of C

and assembly.
Papers [#SBM20] (with badge “Artifacts Evaluated Reusable”2) and [Six21; MS21; Gou21].

{Impure} FVDP in Coq+OCaml

Status Open-Source prototype, developed in 2018.
Distribution https://github.com/boulme/ImpureDemo
Author Sylvain Boulmé
Features A library to embed impure OCaml oracles within Coq-verified code (FFI of Coq toward

OCaml through extraction).
Contribution A preliminary version of this library is included in the {VPL}. This version makes it a

standalone library: it is used in {CompCert-KVX} and {SatAnsCert}.
Source Code 700 lines of Coq et 200 lines of OCaml.

1https://compcert.org/
2https://dl.acm.org/doi/10.1145/3428197
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{VPL} The Verified Polyhedron Library

Status Open-Source prototype, developed in 2012-2018.
Distribution https://github.com/VERIMAG-Polyhedra/VPL
Authors Sylvain Boulmé, Alexis Fouihlé, Alexandre Maréchal, David Monniaux, Michaël Périn et

Hang Yu
Features Standard operations on an abstract domain of convex polyhera in unbounded dimensions

(similar but not formally verified libraries: PPL3, Apron4, Polylib5. . . ).
Contribution The first formally verified library of convex polyhedra (and a new algorithmic—found

by Maréchal and Périn [MP17]—for convex polyhedra libraries: parametric linear program-
ming).

Source Code 45Kloc of OCaml, 2Kloc of C++ and 15Kloc of Coq.
Papers [#FB14; #Bou+18; #BM19] and [FMP13; Fou15; Mar+16; Mar17; MP17; MMP17].
External Users the Verasco6 static analyzer (see [Jou+15; Jou16]) and a verified polyhedral com-

piler [CL21].

{VplTactic} Simplifying Rational Inequalities in Coq proofs

Status Open-Source prototype, developed in 2016-2017.
Distribution https://github.com/VERIMAG-Polyhedra/VplTactic
Authors Sylvain Boulmé and Alexandre Maréchal
Features A Coq tactic (plugin) to simplify rational inequalities in Coq proofs.
Contribution With respect to omega or lia tactics, this tactic never fails, but discovers instead the

equalities deducible from the inequalities (and remove redundant inequalities); this may help
other Coq tactics to benefit from these discovered equalities. Returning “UNSAT” or a list
of learned equalities is standard in arithmetic procedures of many SMT-solvers (e.g. using a
Nelson-Oppen approach with Shostak theories [MZ02]). This feature is here provided in Coq
interactive proofs.

Source Code 800 lines of OCaml and 800 lines of Coq (on the top of the {VPL}).
Papers [#BM18] and [Mar17]

{SatAnsCert} Certification of Boolean SAT-solver Answers

Status Open-Source prototype, developed in 2018.
Distribution https://github.com/boulme/satans-cert
Authors Sylvain Boulmé and Thomas Vandendorpe
Features A verified verifier of Boolean SAT-solvers answers (for SAT-solvers at the state-of-the-art

in 2018). SAT anwsers are verified from a model retourned by the SAT-solver. UNSAT answers
are verified from the DRAT proof retourned by the SAT-solver (with the help of drat-trim7).

Contribution UNSAT answers are verified according principles of [Cru+], but {SatAnsCert} pro-
vides a much more efficient Coq-verified verifier thanks to an untrusted Polymorphic LCF style
parser of LRAT proofs programmed in OCaml.

Source Code 1Kloc of Coq et 1Kloc of OCaml (on the top of {Impure}).

3http://bugseng.com/products/ppl/
4http://apron.cri.ensmp.fr/
5https://www.irisa.fr/polylib/
6http://compcert.inria.fr/verasco
7https://github.com/marijnheule/drat-trim
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