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1
Introduction

1.1 General introduction

1.1.1 Partial differential equations

In the past decades, partial differential equations have been intensively studied. PDEs
play an important role in scientific fields, especially in physics and engineering. They arise
from many physical considerations, like fluid dynamics, quantum mechanics, statistical
mechanics, heat diffusion, N-body problem. These different physical phenomena give rise
to various mathematical models and establishes a strong connection between Mathematics
and Physics.

Without being exhausted, we mention here some interesting examples. One of the most
well-known PDEs is the Schrödinger equation, which describes the probability density of
the presence of a non-relativistic massive particle and named after Erwin Schrödinger,
who first introduced the equation in 1926 to study electrons in the atom. The discovery of
the Schrödinger equation was a significant landmark in the study of quantum mechanics.
To describe relativistic massive particles, we have the Dirac equation, which was derived
by British physicist Paul Dirac in 1928. In the same context, we have the Klein-Gordon
equation (1926).A year after the publication of the Schrödinger equation, Hartree publi-
shed his research, what is now known as the Hartree equation, considering the electron
systems in a spherical potential. Considering fluid dynamics, we have the Korteweg–De
Vries (KdV) equation (1895), Boussinesq equation (1872), Navier Stokes equation (1845),
and also the equation of Burgers (1948), which is a mathematical model of waves on
shallow water surfaces. The KdV equation was first introduced by Boussinesq in 1877
and rediscovered by Diederik Korteweg and Gustav de Vries (1895). Another example
for fluid dynamics is the Boussinesq equation, which is named after Joseph Boussinesq
(1872), who first derived it to study solitary waves. The Navier-Stokes equations describe
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Introduction

the motion of fluid relating pressure, temperature, and density. The Burgers’ equations
appear in various areas of applied mathematics, such as gas dynamics, traffic low and
nonlinear acoustics. Considering the heat diffusion phenomenon, Joseph Fourier introdu-
ced the theory of the heat equation in 1807. The heat equation, along with its variants,
also appears in many fields of applied mathematics, like probability theory and financial
mathematics.

All of these equations indicate the importance of PDEs. Solving these equations helps
us understand physical phenomena. Studying these equations, we deal with many ques-
tions, like questions about the existence of solutions, the uniqueness of solutions, the
behavior of solutions, how long the solutions exist and how we can approach the solu-
tions,... Unfortunately, there are many different types of PDEs and there is no general
method or general theory for PDEs. Different methods have been developed to deal with
many of the individual equations. Fortunately, PDEs considering conservative physical
phenomena are Hamiltonian, which corresponds to the total energy of the system, both
kinetic and potential energy.

In this thesis, we focus on study Schrödinger equations, which describe the wave func-
tion of a quantum mechanical system, and Boussinesq system, which was derived to study
the water way in a shallow water regime. Both systems can be written in Hamiltonian
form.

1.1.2 Hamiltonian

In 1833, starting from Lagrangian mechanics, William Rowan Hamilton developed
a reformulation of Newtonian mechanics, known as Hamiltonian mechanics, which then
historically played an important role in the development of quantum physics.

In classical mechanics, the time evolution of a physical system is obtained by Hamil-
tonian equations

dpi
dt

= −∂H
∂qi

,
dqi
dt

= ∂H

∂pi
for 1 ≤ i ≤ N.

Here the coordinate (qi, pi) is indexed to the frame of reference of the system, pi is genera-
lized momentum associated with the generalized coordinate qi. In Newtonian mechanics,
the time evolution of both position and velocity are computed by applying Newton’s se-
cond law to the total force being exerted on each particle in the system. In contrast, the
time evolution state in Hamiltonian mechanics is obtained by computing the Hamilto-
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Introduction

nian of the system. The system with many degrees of freedom allows the exchange of
energy between different modes, which makes its time evolution complicated and may
cause chaotic behavior.

Hamiltonian mechanics is equivalent to Lagrangian mechanics under Legendre trans-
form when holding q and t fixed and defining p as the dual variable. However, Hamiltonian
mechanics along with its symplectic structure has demonstrated its strength in studying
physical systems. In classical mechanics, the Hamiltonian induces a symplectic structure
on smooth functions and forms a symplectic manifold, which is called the phase space.
The Hamiltonian then can be generalized to quantum mechanics.

The Hamiltonian of a closed mechanical system is commonly expressed as the sum of
functions corresponding to the kinetic and potential energies of a system in the form

H = H0 + P

where H0 is the kinetic energy and corresponds to the linear part of the dynamic system
while P is the potential energy and normally corresponds to nonlinear part. Generally,
the Hamiltonian generates the time evolution of solutions

iut = XH(u) = Au+ f(u)

where XH is the Hamiltonian vector field, A is a linear operator (Laplace operator in
Schrödinger equation) diagonalized on an orthonormal basis of the phase space (φj)j∈J ,
f(u) is a nonlinear term, and u(x, t) is a complex function. The linear equation gives us
solutions in an explicit form

u(t, x) =
∑
j∈J

cje
iωjtφj(x)

where frequency ωj denotes the eigenvalue of A associated with the eigenfunction φj. We
see that different linear modes form different trajectories without interacting each others.
These linear trajectories define finite or infinite invariant tori in the phase space.

We define the Sobolev norm and Sobolev space Hs

Hs := {u(x) =
∑
j

cjφj(x) | ‖u‖2
s :=

∑
j∈J

c2
j〈j〉2s <∞}.

Here 〈j〉 =
√

1 + j2. The questions now become : once the well posedness (local or global)
is proved, assume that the initial data is sufficiently small, we want to know

— Do invariant tori persist or the perturbation kill these tori ?

9
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— Whether the solutions remain bounded for all time or if there exist initial conditions
that give unbounded solutions ?

— Even when we do not know for all time, can we answer for a very long but finite
time ?

Much effort has been done to answer these questions, leading to the birth of many me-
thods. KAM theory and Birkhoff normal form theory are two of the most well-known
methods.

1.1.3 Poisson bracket

The Poisson bracket, which is named in honor of French mathematician, engineer, and
physicist Siméon Denis Poisson (1782-1840), plays a central role in Hamiltonian dynamical
equations. In canonical coordinates (qi, pi)(qi, pi), given two functions f(pi, qi, t), g(pi, qi, t)
the Poisson bracket is defined in the form

{f, g} :=
N∑
i=1

( ∂f
∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
).

The Poisson brackets of the canonical coordinates, which are called the fundamental
Poisson brackets, are

{qi, qi} = 0

{pi, pi} = 0

{qi, pj} = −{pj, qi} = δi,j

here δij is the Kronecker symbol.
Generally, let M be a smooth manifold and ω be a closed non degenerate differential

2-form on M, then the pair (M,ω) is a symplectic manifold and ω is a symplectic form.
Let f and g be two differentiable functions depending on the phase space and time, their
Poisson bracket {f, g} is given as

{f, g} = ω(Xf , Xg) = Xgf

where Xf denotes the vector field generated by f and Xgf denotes the vector field Xg

applied to the function f as a directional derivative. The Poisson bracket of two diffe-
rentiable functions is a differentiable function in the phase space. The algebra of smooth
functions in the phase space together with the Poisson bracket form a Poisson algebra,
which is a Lie algebra under the Poisson bracket. Every symplectic manifold is Poisson
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manifold.

Given three functions f, g, h in the phase space and time, one has properties of the
Poisson bracket

— Anticommutativity

{f, g} = −{g, f},

— Bilinearity

{af + bg, h} = a{f, h}+ b{g, h} a, b ∈ R,

— Leibniz’s rule

{fg, h} = {f, h}g + f{g, h},

— Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Moreover, we have an equivalent expression of the Poisson bracket of functions to the
Lie bracket of the associated Hamiltonian vector fields

X{f,g} = −[Xf , Xg].

A Hamiltonian equation can be written in term of the Poisson bracket

u̇ = {u,H} (1.1.1)

where H is the Hamiltonian and u is a complex function. The Poisson bracket in (1.1.1)
is defined as

{f, g} = −i(∂uf∂ug − ∂ug∂uf)

A Hamiltonian dynamical system typically has constants of motion besides the energy,
these constants of motion commute with the Hamiltonian under the Poisson bracket. If
f, g are two constants of the motion, then their Poisson bracket {f, g} is also a constant
of the motion. A Hamiltonian system that contains a maximal set of conserved quantities,
i.e., there exists a maximal set of constants of motion, is completely integrable.

The Poisson bracket is preserved under symplectic transformations ( canonical trans-
formations preserve the bi-linear form ω). To be more specific, given two functions f, g
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and a symplectic transformation ΦS = Φt
S |t=1, one has

{f, g} ◦ ΦS = {f ◦ ΦS, g ◦ ΦS}.

This property is especially useful in studying Hamiltonian mechanics. Let ΦS be a sym-
plectic transformation and H be a Hamiltonian, then

H ◦ ΦS = H + {S,H}+
∑
n≥2

1
n!ad

n
S(H)

where

ad1
S(H) := {S,H}, adnS(H) = {S, adn−1

S (H)} ∀n ≥ 2.

This fact is a powerful tool in studying Hamiltonian equations. Indeed, KAM theory and
Birkhoff normal form theory are based on the search for symplectic transformations in
order to conjugate the original Hamiltonian to a normal form. These symplectic transfor-
mations are founded by solving homological equations.

1.1.4 KAM theory

Over the past half century, the KAM theory has played an important role in studying
long time behavior of solutions of non integrable Hamiltonian system. The integrable
Hamiltonian system admits many invariant tori in phase space. Different initial conditions
form different invariant tori. The KAM theorem states that most of such tori persist under
small Hamiltonian perturbations. This result is valid under certain conditions of suitable
regularity and sufficiently irrational frequencies. The persistence of such invariant tori
implies that the motion continues to be quasiperiodic. The name KAM theory comes
from Kolmogorov, Arnol’d and Moser who initiated the theory.

We talk about the history of the KAM theory. In 17 century, Kepler announced his
study describing the orbit of a planet around its Sun as an ellipse. However, with New-
ton’law of gravitation, physicians and mathematicians then realized that the disturbance
due to interaction between planets makes their orbits more complicated than their in
Kepler’law. Scientists want to know how much disturbance affects the trajectories of the
planets. Started by Poincaré, mathematicians believed that a small disturbance in a long
time could push the planets far away from Kepler’s orbits and the stable trajectories are
exceptional. Indeed, considering general Hamiltonian tori, it was a common belief that
an integrable system can be turned into an ergodic one on each energy surface under
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an arbitrarily small perturbation. This means that for a long time the system forgets its
initial state and the trajectories eventually visit almost all points in any subset of the
phase space.

However, in 1954, Kolmogorov [Kol54] in his talk at the International Congress of
Mathematicians in Amsterdam, announced that the majority of tori survive and instability
is possible but very rare. Arnold [Arn63] and Moser [Mos62] then completed his proof.
The general result is known as the KAM theorem.

Mathematicians have made significant advances in the KAM theory since then. The
theory was originally applied to perturbed Hamiltonian PDEs in one dimension. In [Kuk87 ;
Kuk93], Kuksin used KAM methods to prove the existence of quasi periodic solutions of
nearly integrable Hamiltonian equation in infinite dimension. In [Way90], Wayne pro-
ved the existence of periodic and quasi periodic solutions for nonlinear wave equations
in dimension one with Dirichlet boundary condition. The theory was then applied to
the nonlinear wave equation with periodic boundary conditions [CY00], Klein-Gordon
equation [BK95] and nonlinear Schrödinger equation [KP96]. While others need external
parameters to verify the non resonant condition, the result in [KP96] is remarkable since
it is the first result for a Hamiltonian without an external parameter. All of these results
are for Hamiltonian equations in one dimensional context.

The study of KAM theory in multidimensional space has just started recently (see
[Bou98 ; Bou03 ; EK09 ; EK10]). In these just mentioned papers, the authors considered
Hamiltonian PDEs with external parameters in the linear part, by which a non-resonant
condition is achieved. Usually, the parameter enters the equation through the potential
term V (x)u(t, x) or V (x) ∗ u(x), where the potential V depends on the parameter. The
techniques developed in [EK09 ; EK10] then has been extended in [EGK16] to a KAM
result without external parameters (see also [Procesi15]). The approach in [EK09 ; EK10]
allows to analyse the linear stability of the KAM tori. We remind that a solution of a non-
linear equation is called linear stable if the linearization of the equation at this solution has
linear operator whose spectrum contains only pure imaginary eigenvalues. In [Procesi15]
(see also [Procesi15 ; PPV13 ; Wang16]), applying a KAM algorithm, the authors proved
the existence of large families of stable and unstable quasi periodic solutions for the NLS
in any number of independent frequencies. The considered quasi periodic solutions base
on non-degenerate sets A of linear modes.

Proving the KAM theory involves verifying the nonresonant condition of the frequen-
cies. The nonresonant condition becomes increasingly difficult to verify for systems with
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more degrees of freedom. In many cases, the frequencies by themselves are resonant and
we must use external parameters to achieve the nonresonant condition.

We are then interested in the stability and instability of the KAM tori. Although, using
KAM theory, the stability is frequently observed, the instability also occurs. Such invariant
tori exhibit hyperbolic directions which induce instability of the tori (see [EGK16]).

We consider the Hamiltonian perturbation H = h0 + f, with the small perturbation
f. Let us denote (r, θ) ∈ Rn × Tn the action-angle variables associated with invariant
tori, and z = (ζ, η), η = ζ the external modes. For any perturbation f , we define its jet
function fT , the effective part of f, as a quadratic truncation of Taylor expansion of f
around the origin r = 0, z = 0 :

fT = f(0, θ, 0) + ∂rf(0, θ, 0) · r + ∂zf(0, θ, 0) · z + 1
2〈∂

2
zf(0, θ, 0)z, z〉.

In KAM theory, we are looking for an an analytic, near-identity, symplectic transformation
Ψ, which puts the original Hamiltonian H = h0 + f to a desirable form

(h0 + f) ◦Ψ = h̃+ g

where h̃ is a Hamiltonian on normal form and the perturbation g has its effective part g̃T

vanishing.
The idea of KAM theory is to do an iterative procedure. More precisely, considering

the original Hamiltonian H = h0 + f, we search for an analytic, near-identity, symplectic
transformation ΦS = Φt

S |t=1 that puts H into a new form

H+ := H ◦ ΦS = h+ + f+

where
— h+ is a Hamiltonian, close to h0, i.e, |h+ − h0| ∼ O(ε). In addition, h+ commutes

with the linear Hamiltonian h0, i.e.,

{h0, h+} = 0.

— f+ is a new perturbation, whose jet function fT+ smaller than fT . Indeed, assuming
that the initial data is sufficiently small, we are finding S such that fT+ ∼ (fT )α

with α > 1 (α = 3
2 for example).

We say that the Hamiltonian h+ is in normal form. Since it commutes with h0, the normal
Hamiltonian does not affect the trajectory of the linear Hamiltonian equation. Once S
is achieved, we iterate this procedure to obtain a sequence of symplectic transformations
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ΦSj such that

Hj+1 := Hj ◦ ΦSj = hj + fj

Of course, we want this procedure to converge. The convergence problem relates to the
appearance of small divisors. Indeed, in each step of the KAM procedure, we have to solve
homological equations

fTj + {hj, Sj} = h+ +O(εα).

The Hamiltonian h+ is in normal form. Putting this equation in Fourier formula leads us
to estimate divisors ω ·k, ω ·k±Λs, ω ·k±Λs±Λt, with 0 6= k ∈ Zn, where the eigenvalue
Λs corresponds to external modes. Our procedure would be false if these divisors are too
small. In the KAM procedure, one usually wants to find a control of these small divisors,
likely the Diophantine inequality

| 〈ω · k〉 | ≥ α

|k|τ
,

| 〈ω · k ± Λs〉 | ≥
α

|k|τ
,

| 〈ω · k ± Λs ± Λt〉 | ≥
α

|k|τ
,

for all 0 6= k ∈ Zn and some fixed constants α and τ. The major difficulty is that
the frequency ω moves during the KAM iteration. The nonlinearity fTj decreases super
exponentially of size εjα(α > 1) allow to the convergence of symplectic transformations
ΦS1 ◦ΦS2 ◦ · · · → Φ∞ and the normal form hj → h∞. Since Φ∞ is close to identity, one can
talk about the existence of periodic or quasi periodic solutions of the original equation.

1.1.5 Birkhoff normal form

KAM theory is no doubt a very useful tool in studying Hamiltonian PDEs. However,
in order to prove a KAM result, we usually need to assume some undesirable hypotheses,
which are not always satisfied. Mathematicians want to know more about the behavior
of the solutions lying outside KAM tori. The idea of Birkhoff normal form theory came
up and soon played a crucial role in studying Hamiltonian system. Unlike the KAM
procedure just works for a set of finite, nondegenerate invariant tori for every time, the
Birkhoff normal form works for not any special tori but for all tori in a finite but sufficiently
long time. Birkhoff normal form was first derived by Birkhoff and Lewis [BL34] in 1934
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(see also [Lew34 ; Mos77]) where they consider the neighborhood of elliptic, non-constant,
periodic orbits of Hamiltonian systems. In their paper, they put the Hamiltonian systems
in fourth order normal form, namely

H = H0 +G4 +R5

where G4 is a homogeneous polynomial of degree 4 depending only on the actions and R5

is a remainder term having a zero of at least fifth order at the origin.

The idea of Birkhoff normal form theory was then intensively studied in [Bam03 ;
BG06 ; BDGS07 ; GIP09 ; Del12 ; FGL13 ; FI20 ; BG20]. Birkhoff normal form theory des-
cribes the behavior of solutions in neighborhoods of elliptic equilibrium points. Typically,
it ensures some properties of stability for a finite but very long time.

In the finite dimensional context, we consider the Hamiltonian

H = H0 + P

where P is a smooth function having a zero of order at least 3 at the origin, H0 is the
linear Hamiltonian

H0 =
∑
j∈J

ωj|uj|2.

Provided nonresonant hypothesis, the Birkhoff normal form theory states that, for each
r ≥ 1, one can conjugate H into a normal form

H ◦ Tr = H0 + Z +Rr (1.1.2)

where

— Tr is a real analytic symplectic transformation,
— the polynomial Z is of order r + 2 depending only on the actions Ij := |uj|2,
— the remainder term Rr has a zero of order r + 3.

Assuming the initial data is of size ε� 1, as a consequence of Birkhoff normal form, the
solution remains bounded in the ball of radius 2ε with center at the origin for times of order
ε−r. Moreover, the solutions remain close to a torus of maximal dimension at a distance
of size εr1 up to times of order εr2 , with r1 + r2 = r + 1. In [Bam03 ; BG06], the authors
generalized Birkhoff normal form theory to infinite dimensional Hamiltonian systems. In
these papers, the authors applied to nonlinear wave equations and nonlinear Schrödinger
equations to obtain long time existence and bounds of solutions. The point here is that
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instead of considering the whole extension of PDEs, we split the phase variables in two
groups : low modes and high modes. Precisely, we fix a positive integer number N then
write u = u + û with u = ∑

|j|≤N uje
ijx and û = ∑

|j|>N uje
ijx. Then one observes that

monomials with more than two high mode variables in their expression are not relevant,
since their vector field is already small. This was proved in [BG06] using tame inequality,
namely

‖uv‖Hs ≤ Cs(‖u‖Hs‖v‖H1 + ‖u‖H1‖v‖Hs).

Note that

‖û‖Hs ≤ ‖u‖H
s

N s−1

for s ≥ 1. This term is negligible when N is sufficiently large. So that if the nonlinearity
satisfies a tame modulus condition, it is always possible to put H in the form (1.1.2),
where the remainder term Rr is of order r + 5/2 and Z is a polynomial of degree r + 2
containing only monomials which are "almost resonant". Assuming also the nonresonant
condition, then H can be put in integrable Birkhoff normal form, i.e., Z depends only on
the actions.

As in the KAM procedure, the proof of Birkhoff normal form theory relates to solve
homological equations, likely to solve

P + {H0, S} = Z+ +O(εα)

where P is a homogeneous polynomial of order at least three, Z+ depends only on the
actions. Expanding this equation leads us to prove a nonresonant condition for small
divisors ω · k with 0 6= k ∈ Z∞. However, unlike the KAM procedure, the frequency ω
does not change during the Birkhoff procedure.

Since we only consider small divisors related to the actions of low modes and maxi-
mum two high modes, the nonresonant conditions (at least in one dimension) are usually
satisfied. Let’s see an example, the nonlinear wave equation (NLW)

utt −∆u+ V (x)u = g(x, u) x ∈ T

where V is a C∞, 2π periodic potential, having average m, and g ∈ C∞(T×U), U being
a neighbourhood of the origin in R. It is proved in [Bam03 ; BG06] that for a large set
of m, the frequencies ωj =

√
|j2|+m of the linear wave operator satisfy a nonresonant
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condition. Precisely, fix r ≥ 3, there exist γ > 0 and α = α(r) such that

|ωk1 + · · ·+ ωkp − ω`1 − · · · − ω`q | ≥
γ

µ3(k, `) (*)

where k = (k1, · · · , kp) ∈ (Zd)p, ` = (`1, · · · , `q) ∈ (Zd)q with p+q ≤ r, and {|k1|, · · · , |kp|} 6=
{|`1|, · · · , |`q|} ; µ3(k, `) denotes the third largest number among the collection (|ki|, |`j|)i,j.
The condition (*) appears not only in the case of one dimensional wave equations but also
in many different contexts, such as the one dimensional nonlinear Schrödinger equation
with external potential [Bam03 ; Bam08 ; BG06] or even in multidimensional space for
nonlinear Schrödinger equations [BG06 ; FGL13], and wave equations on Zoll manifolds
[BDGS07].

1.1.6 Reducibility

Another topic of discussion among mathematicians is the existence of quasiperiodic
solutions for time-forced PDEs. Typically, a time forced nonlinear PDE can be formulated
as a fixed point problem, which can be solved via the Newton algorithm. We linearize the
equation around an approximate quasi periodic solution u0, then solve this linear equation
to obtain u1. We continue to linearize the equation around u1 to get u2 and then iterate this
procedure. Solving the linear equations leads us to considering a time dependent linear
operator and its inverse. The idea of reducibility is to conjugate such time dependent
linear operator to a time independent diagonal operator.

We first see how this idea works in the context of ordinary differential equations. One
considers a linear system of differential equations with periodic coefficients

ẋ = A(t)x t ∈ R; x ∈ Rn

where A(t) is an n× n periodic with period T , piecewise continuous matrix. Let Ψ(t) be
a fundamental matrix solution of this differential equation. Then

Ψ(t+ T ) = Φ(t)Ψ(0)−1Ψ(T ) ∀t ∈ R.

Moreover, Gaston Floquet(1833) said that there exists a periodic matrix function P (t)
and a constant coefficient matrix B such that

Ψ(t) = P (t)etB ∀t ∈ R.

This mapping gives rise to a transformation, which puts the original equation into an
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autonomous form

y = P (t)−1x, ẏ = By.

Then, the reducibility problem for forced PDEs, which is more difficult, has been
intensively studied. The KAM theory plays a crucial role in proving reducibility results.
In one dimensional context, we quote [Kuk93 ; BG01 ; LY10 ; GT11]. In these papers, the
authors adapted a KAM procedure to prove the reducibility of Schrödinger equation with
time dependent perturbation. All these results are for equations with bounded potential.

To consider Hamiltonian with unbounded perturbation, a breakthrough strategy has
been developed in [BBM14 ; BBM16]. The idea is to apply pseudo-differential calculus to
reduce the order of the perturbation. Pseudo-differential calculus allows us to reduce the
perturbation to an arbitrary smoothing operator. More precisely, let f and g two pseudo-
differential operators of order a and b, respectively, then their commutator [f, g] := fg−gf
is again a pseudo-differential operator but of order a + b − 1, while considering fg and
gf separately is of order a + b. Apply this to a Hamiltonian with pseudo-differential
perturbation H = h+ P, we regularize it by an analytic, symplectic transformation

H ◦ ΦS = h+ P + [h, S] + [P, S] + 1
2[[h, S], S] + 1

2[[P, S], S] + · · ·

Thanks to the properties of pseudo-differential calculus, we can gain one regularity in
each step of regularization after we solve the homological equation

P + [h, S] + [P, S] = OP a+b−1.

The remainder of the new perturbation’s terms are even more regular. Iterating this
procedure, we can put H in a form with an arbitrary smoothing perturbation. Then
a reducibility scheme is obtained by applying KAM theory. The idea of using pseudo-
differential calculus has been demonstrated to be extremely useful in one dimensional
context (see [BBM16 ; FP14 ; BM20 ; Mon19 ; Bam17 ; FGP18].

In a higher-dimensional context, on the other hand, we know very little. In [BGMR17],
the authors proved a reducibility result for the quantum harmonic oscillator with time
dependent polynomial perturbation on Rn. In [BLM19], a reducibility result is obtained for
transport equation on the d-dimensional torus Td with a time quasi periodic unbounded
perturbation. (See also [Mon19 ; FGMP19]). In all these results, the integrability of the
unperturbed linear system plays a crucial role in controlling the perturbed spectrum.

In high dimensional cases, there is still a serious problem of perturbations. Typically,
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we associated the perturbation with a matrix operator which leads to, in KAM procedure,
the homological equation be solved blockwise. However, the increasing size of the blocks
may cause loss of regularity. This obstacle was overcome differently in [EK09], using
geometric arguments, and in [GP19 ; FG19], where the authors used another argument.

1.1.7 The Schrödinger equation

The Schrödinger equation, which was named after Erwin Schrödinger in 1925, is a
partial differential equation which is essential in quantum mechanics. The Schrödinger
equation describes probability waves of a quantum mechanical system. It gives the evo-
lution over time of the wave functions. The wave functions contain physical information
of the system, such as position, momentum, energy, velocity or other physical properties.
The equation is used extensively in atomic, nuclear, solid-state, and many other physical
problems.

The Schrödinger equation in quantum mechanics is a counterpart of Newton’s second
law in classical mechanics. Considering a particle of mass me, its total energy E is sum
of the potential energy V (x) at position x and the kinetic energy p2

2me

p2

2me

+ V (x) = E.

Since energy is conserved, the particle is assumed to be confined to a certain region in
space. By replacing p in the above energy equation with a differential operator and using
de Broglie relation, Schrödinger showed that the wave function follows a time-independent
partial differential equation

EΨ(x) =
[
− ~2

2m∆ + V (x)
]

Ψ(x) .

Here ∆ is Laplace operator. Eigenvalues associated with eigenfunctions of the linear ope-
rator − ~2

2m∆ +V (x) forms quantum states with discrete state energy. The state energy E
is proportional to angular frequency ω. Schrödinger applied his equation to the hydrogen
atom. The square of the wave function Ψ2 gives the probability of finding the electron at
position x and time t.

By replacing the energy E in Schrödinger’s equation with a time-derivative operator,
Schrödinger then generalized his wave equation to describe how a system changes from
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one state to another

i~
∂

∂t
Ψ(x, t) =

[
− ~2

2m∆ + V (x, t)
]

Ψ(x, t) .

Here, the constant i is the imaginary unit, and ~ is the reduced Planck constant. The
time dependent Schrödinger equation allows us to calculate the probability of a transition
between one atomic stationary state and some other state.

Nonlinear Schrödinger equation
The nonlinear Schrödinger (NLS) equation is a nonlinear variation of the linear Schrö-

dinger equation, applicable to both classical mechanics and quantum mechanics. The
equation appears in many areas of physics and are analyzed mathematically by mathema-
ticians. It was derived in the studies of the propagation of light in nonlinear optical fibers
and planar waveguides, the Langmuir waves in hot plasma, the small-amplitude gravity
waves on the surface of deep inviscid water, magnetic spin waves, and many others. Typi-
cally, most weakly nonlinear, dispersive, energy-preserving systems appropriately give rise
to the NLS equation. Historically, the NLS equations were first derived by Ginzburg and
Landau [GL55] in their study of the macroscopic theory of superconductivity and became
well-known, especially in connection with the phenomenon of self focusing, after the work
about optical beams of Chiao et al [CGT64]. From then until now, the NLS equation has
been intensively studied in many areas of physics and mathematics. In the optical context,
Hasegawa and Tappert [HT73] first derived the NLS equation taking into account both
group velocity dispersion and fiber nonlinearity due to the so-called Kerr effect. Eisenberg
et al [ESMBA98] drew a discrete NLS model for a coupled optical waveguides. The NLS
equations on a lattice background were first studied by Efremidis et al [EHCFCS03]. The
experimental realization of Bose-Einstein condensates generates an NLS equation with
external potentials. The NLS equation for small-amplitude water waves was derived by
Zakharov [Z68] for the case of infinite depth, then Benney and Roskes [BR69] for the case
of finite depth.

In one dimensional context, the cubic NLS equation is integrable, which was solved by
Zakharov and Shabat [ZS72] via the Inverse Scattering Transform - which is a nonlinear
Fourier Transform. It admits an infinite number of conserved quantities and multisoliton
solutions. For the equation with nonlinearity of higher order or in higher dimensional
context, it is not integrable, the phenomenon of wave collapse and turbulence can take
place.

Different nonlinear terms form different nonlinear Schrödinger equations, among them
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the cubic NLS and the quintic NLS are most studied. The cubic NLS takes the form

i∂tψ = −∆ψ + κ|ψ|2ψ

here ∂tψ is a complex vector field. The equation associates with the Hamiltonian

H =
∫

dx
[
|∂xψ|2 + κ

2 |ψ|
4
]
.

The equation is called focusing NLS when κ is negative. The focusing NLS has bright
soliton solutions (localized in space, and having spatial attenuation towards infinity).
This case was solved by use of the inverse scattering transform, see [ZS72]. The equation
is called defocusing when κ is positive. The defocusing NLS has dark soliton solutions
(having constant amplitude at infinity, and a local spatial dip in amplitude) . See also
[GK14 ; GK02 ; KL12 ; Bou99]. In optics, the NLS equation describes the propagation of
the wave in fiber optics through a nonlinear medium while for water waves, the solution
ψ is related to the amplitude and phase of the water waves. The value of the nonlinearity
parameter κ depends on the relative water depth. The NLS equation is focusing on shallow
water, with the water depth small compared to the wave length of the water waves, and
defocusing on deep water .

Considering purely self-focusing cubic nonlinearity in 2 spatial dimension, it was pro-
ved by Vlasov et al [VPT70] , the phenomenon of wave collapse takes place and the
light beam blows up in a finite time. This is based on the fact that the Hamiltonian
H =

∫
dx
[
|∂xψ|2 − 1

2 |ψ|
4
]
is negative for suitable initial data, then there exists a finite

time T such that the quantity
∫

dx|∂xψ|2 blows up.
In d spatial dimensions, one consider the generic power nonlinearity equation

i∂tψ = −∆ψ − ψ|ψ|p−2, x ∈ Rd.

It is well known that there is locally wellposedness for any data in Hs withs ≥ 0 if p ≤ 2 + 4
d

s ≥ s∗, s∗ defined by p = 2 + 4
d−2s∗ if p > 2 + 4

d

.

Moreover, in H1, one has the following cases
— Critical (p = 2 + 4

d−2) : blowup can occur or global solution can exist.
— Subcritical (p < 2 + 4

d−2) : global solutions exist.
There are many works concerning the theory of existence, uniqueness and long-time dyna-
mical behaviors as well as the regularity problems of the NLS equations. In Rd, we quote
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[BGT80 ; GV92 ; G00 ; K87 ; Y87 ; KT98] for the energy subcritical problems, and [Bou99 ;
CKSTT08 ; KM06 ; KM10 ; TVZ07 ; TVZ08] for the energy critical cases. For the NLS
equations in Rd, the Morawetz’s inequalities and Strichartz estimates play a crucial role.
The Cauchy problem for the nonlinear Schrödinger equation on torus Td was studied by
Bourgain [Bou93bb], where he extended the classical Strichartz’s inequalities to Td in all
dimensions. These inequalities are called moment estimate for trigonometric polynomials.
In this paper, Bourgain proved that

— (d = 1). The NLS equation is locally well-posed for ψ ∈ Hs(T), provided p <

2 + 2
1−2s ;

— (d = 2). The NLS equation is globally well-posed for p = 4 with initial data in
H1(T2) and sufficiently small L2-norm. The same result holds for all α ≥ 2 for
sufficiently small H1-data ;

— (d = 3). The NLS equation is globally well-posed for 4 ≤ p < 6 with sufficiently
small initial data in H1(T3);

— (d ≥ 4). The NLS equation is locally well-posed for 4 ≤ p < 2 + 4
d−2s and s > 3d

d+4 .

See also [Bou93aa ; Bou93bb ; Bou13]. In general compact manifolds, the approach to
the Strichartz estimates is much different from Bourgain. The Cauchy problem of NLS
on general compact manifolds was initiated by Burq et al [BGT02 ; BGT04 ; BGT05 ;
BGT09].

As long as the well-posedness (local or global) is proved, one want to study the long
time behavior of solutions. The initial datum are assumed to be in a Sobolev space Hs.
These initial datum form different invariant tori. Will these tori survive or be destroyed
after a long time ? Can we control the exchange of energy between different modes of
these tori ? These questions have been studied extensively recently through the use of
KAM theory and Birkhoff normal form theory.

1.1.8 The abcd Boussinesq system

In 1757, Euler introduced a set of quasi-linear hyperbolic equations to describe the
irrotational waves on the surface of an inviscid fluid under the gravity force. These equa-
tions take into account the conservation of mass, momentum and energy while dissipative
and surface tension effects are safely ignored. However, in many theoretical, numerical and
practical situations, the full Euler equations seem to be more complicated than necessary
and further approximated models have been introduced to restricted physical regimes.

In 1872, Joseph Boussinesq, in response to an observation by John Scott Russell of the
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solitary wave, derived approximations valid for weakly non-linear, small amplitude and
fairly long waves in a channel of approximately constant depth h. The approximations are
counterparts to the Stokes expansion, which is appropriate for short waves. The Boussinesq
systems take into account the vertical structure of horizontal and vertical flow velocity.
Denote A the wave amplitude and ` the wavelength, the considered situation is that

α := A

h
� 1, β := h2

`2 � 1, S := α

β
= A`2

h3 ≈ 1.

Boussinesq derived the one-dimensional wave model

wtt = wxx + (w2)xx + wxxxx

or its regularized version

wtt = wxx + (w2)xx + wxxtt

and system of two coupled equations

ηt + wx + (wη)x = 0

wt + ηx + wwx + 1
3ηxtt = 0

or its regularized version

ηt + wx + (wη)x = 0

wt + ηx + wwx −
1
3wxxt = 0.

These equations were derived directly from the Eulerian equation of the water wave pro-
blem. These equations are formally comparable to KDV equations and Kadomtsev–Petviashvili
equations. Indeed, there are an overwhelming number of different but formally Boussinesq-
type system. These systems may have different mathematical properties.

In [BCS02 ; BCS04], Bona, Chen and Saut derived a family of Boussinesq-type systems,
which depend on four parameters a, b, c, d and are called the abcd−Boussinesq systems(1− b∂xx)∂tη + ∂x(a∂xxu+ u+ uη) = 0

(1− d∂xx)∂tu+ ∂x(c∂xxη + η + 1
2u

2) = 0
. (1.1.3)

Here the independent variable x corresponds to distance along the channel and t is pro-
portional to elapsed time. The quantity η = η(x, t) corresponds to the depth of the water
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at the point x and time t. The variable u(x, t) is proportional to the horizontal velocity
at the height θh, where θ is a fixed constant in the interval [0, 1] and h is the undisturbed
water depth. The four parameters a, b, c, d obey the relations

a+ b = 1
2(θ2 − 1

3)

c+ d = 1
2(1− θ2) ≥ 0

a+ b+ c+ d = 1
3

(1.1.4)

When (a = b = c = 0, d = 1
3), (1.1.3) is the classical Boussinesq system. Higher order

nonlinearity system were also derived in [BCS02 ; BCS04]. In fact, different possible values
of a, b, c, d form different Boussinesq systems with different properties, such systems are
specialized as subclasses : classical Boussinesq system (a = b = c = 0, d = 1

3), Kaup
system (a = 1

3 , b = c = d = 0), coupled BBM system (a = c = 0, b = d = 1
6), coupled

KdV system (a = c = 1
3 , b = d = 0), etc. All these models are derived from the full

Euler equations for two-dimensional water waves under the force of gravity by truncating
a Taylor expansion of the velocity potential. As any PDEs for physical regimes, there
arise questions, both theoretical and practical : Well-posedness of initial-value problems,
existence of solitary-wave solutions, energy exchange in different Fourier modes, etc.

1.2 Results of the thesis

1.2.1 An unstable three dimensional KAM torus for the quintic
NLS on the circle

In chapter 2, we prove a KAM result for the quintic NLS in the circle [N19]. The work
presented here is the center of an article published in "Dynamics of Partial Differential
Equations (DPDE)". We consider the quintic nonlinear Schrödinger equation on the torus

i∂tu+ ∂xxu = |u4|u, (t, x) ∈ R× T. (1.2.1)

associated with the Hamiltonian

h =
∫
T
|ux|2 + 1

3 |u|
6dx
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and the symplectic form −idu∧du. The solution u(t) preserves the mass and the momen-
tum

L =
∫
T
|u|2dx, M =

∫
T
Im(u · ∇u)dx.

Let us expand u and u in Fourier variables :

u(t, x) =
∑
j∈Z

aj(t)eijx, u(t, x) =
∑
j∈Z

bj(t)e−ijx.

The Hamiltonian h of the system reads :

h =
∑
j∈Z

j2ajbj + 1
3

∑
j,`∈Z3;M(j,l)=0

aj1aj2aj3b`1b`2b`3 = N + P,

with the symplectic structure −i∑j∈Z daj ∧ dbj, here M(j, l) = j1 + j2 + j3 − `1 − `2 −
`3 denotes the momentum of the monomial aj1aj2aj3b`1b`2b`3 . We are interested in the
dynamic behavior near to 0 of solution of (2.1.1) in two specific forms :

u(t, x) = ap(t)eipxe−ip
2t + aq(t)eiqxe−iq

2t +O(ε), (1.2.2)

and

u(t, x) = ap(t)eipxe−ip
2t + aq(t)eiqxe−iq

2t + am(t)eimxe−im2t +O(ε), (1.2.3)

or more precisely, the persistence of two and three dimensional linear invariant tori :

T2
c(p, q) = {|ap|2 = c1, |aq|2 = c2}, (1.2.4)

T3
c(p, q,m) = {|ap|2 = c1, |aq|2 = c2, |am|2 = c3}, (1.2.5)

with 0 < c1, c2, c3 � 1.
We begin by demonstrating that all two dimensional tori are linearly stable.

Theorem 1.2.1. Fix p, q ∈ Z, and s > 1
2 . There exists ν0 > 0, and for 0 < ν < ν0,

there exists Dν ⊂ [1, 2]2 asymptotically of full measure (i.e., meas([1, 2]2 \ Dν)→ 0 when
ν → 0) such that for ρ ∈ Dν , equation (1.2.1) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx

where {aj}j is analytic function from T2 to `2
s satisfying uniformly in θ ∈ T2

||ap| −
√
νρ1|2 + ||aq| −

√
νρ2|2 +

∑
j 6=p,q

(1 + j2)s|aj|2 = O(ν2).
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Here ω is a nonresonant vector in R2 that satisfies

ω = (p2, q2) +O(ν2).

Furthermore, this solution is linearly stable.

Here we say a solution u is linearly stable if the linearization of the equation at this
solution has linear operator whose spectrum contains only pure imaginary eigenvalues.

In the case of three dimensional tori, we will give an example of (p, q,m) and ρ such
that for ν small enough the torus T3

νρ(p, q,m) = {|ap|2 = νρ1, |aq|2 = νρ2, |am|2 = νρ3}
is linearly unstable. Let ε = 10−2, denote

D = D2 = [2− ε, 2 + ε]× [1− ε, 1 + ε]× [9− ε, 9 + ε].

Then we have the following theorem

Theorem 1.2.2. Fix p = −3, q = 10, m = −6, and s > 1
2 . There exists ν0 > 0, and for

0 < ν < ν0, there exists Dν ⊂ D asymptotically of full measure (i.e., meas(D \ Dν) → 0
when ν → 0) such that for ρ ∈ Dν , equation (1.2.1) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx (1.2.6)

where {aj}j is analytic function from T3 to `2
s satisfying uniformly in θ ∈ T3

||ap| −
√
νρ1|2 + ||aq| −

√
νρ2|2 + ||am| −

√
νρ3|2 +

∑
j 6=p,q,m

(1 + j2)s|aj|2 = O(ν2). (1.2.7)

Here ω is a non resonant vector in R3 that satisfies

ω = (32, 102, 62) +O(ν2).

Furthermore, this solution is linearly unstable.

Avoiding the case (2.1.7), we can generalize the theorem for all sets of three Fourier
modes (p, q,m) which satisfy the system2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2.
(1.2.8)

for some integer numbers s, t.
Scheme of the proof
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Our results base on a Birkhoff normal form procedure and a KAM theorem. In Bir-
khoff normal form step, one kills the nonresonances of the quintic nonlinearity P. More
precise, the original Hamiltonian is transformed into the following form using a canonical
transformation

h = h ◦ τ = N + Z6 +R10,

where

— N is the term N(I) = ∑
j∈Z j

2|aj|2;
— Z6 is a homogeneous polynomial of degree 6 containing only the resonant part

Z6 =
∑
R
aj1aj2aj3b`1b`2b`3

where
R = {(j, `) ∈ Z3 × Z3 s.t j1 + j2 + j3 = `1 + `2 + `3, j2

1 + j2
2 + j2

3 = `2
1 + `2

2 + `2
3};

— R10 is the remainder of order 10.

In the KAM procedure, let us write the Hamiltonian as following

h = h0 + f

h0 = Ω(ρ) · r +
∑
a∈Z

Λa(ρ)|ζa|2.

Here

— ρ is a parameter in D, which is compact in the space Rn;
— r ∈ Rn and θ ∈ Tn are the action and angle associated with the internal modes

(r, θ) ∈ (Rn × Tn, dr ∧ dθ) ;
— ζ = (ζa)a∈Z ∈ CZ are the external modes endowed with the standard complex

symplectic structure −idζ ∧ dη, with η = ζ. Denote also ω = (ζ, η)
— the mappings

Ω : D → Rn, (1.2.9)

Λa : D → C, a ∈ Z, (1.2.10)

are smooth ;
— f = f(r, θ, ζ; ρ) is a perturbation, small compare to the integrable part h0.

For the perturbation f, we define its jet function fT (x) as the following Taylor polynomial
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of f at r = 0 and ω = 0

fT (x) = f(0, θ, 0) + drf(0, θ, 0) · r + dωf(0, θ, 0)[ω] + 1/2d2
ωf(0, θ, 0)[ω, ω].

By applying iteratively a KAM scheme, we put the Hamiltonian into a normal form

(h0 + f) ◦ Φ = h̃+ g

with h̃ = Ω(ρ) · r + 〈ζL, Q(ρ)ηL〉 + 1/2〈ωF , K(ρ)ωF〉 on normal form, and the jet part of
g is vanishing, i.e., gT ≡ 0. The set L corresponds to elliptic directions, while the set F
corresponds to hyperbolic directions. The considered torus is linearly stable if and only
if F = ∅. The KAM procedure requires hypotheses on small divisors, the conservation
of the mass and the momentum give us a good tool to estimate them. This is verified
precisely in the appendix.

1.2.2 Reducibility of Schrödinger equation on a Zoll manifold
with unbounded potential

In chapter 3, we are interested in the reducibility of Schrödinger equation on a Zoll
manifold [FGN20]. Precisely, we prove a reducibility result for the linear Schrödinger
equation on a Zoll manifold with quasi-periodic in time pseudo-differential perturbation
of order less or equal than 1

2 . The work presented here has been published in the "Journal
of Mathematical Physics".

In fact, we are considering the following linear Schrödinger equation

i∂tu = ∆gu+ εW (ωt)u, (t, x) ∈ R×Mn (1.2.11)

where ε > 0 is a small parameter, ω ∈ Rd, d ≥ 1, is a frequency vector, Mn is a
Zoll manifold and ∆g is the positive Laplace-Beltrami operator defined on Mn. We recall
that a Zoll manifold of dimension n ∈ N is a compact Riemannian manifold such that
all the geodesic curves have the same period T, assuming T = 2π. A typical example of
Zoll manifold is the sphere Sn. The linear operator W is a pseudo-differential operator of
order δ ≤ 1

2 .We denote Am the class of pseudo-differential operators of order m ∈ R, then
W ∈ C∞(Td,Aδ). We consider the solutions in the Sobolev space defined as Hs(Mn) :=
dom(

√
1 + ∆g)s.

The purpose of this chapter is to find a transformation that puts the non-autonomous
equation (1.2.11) into an autonomous form .
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Our main result is the following.

Theorem 1.2.3. Let 0 < α < 1 and δ ∈ R, δ ≤ 1/2. Assume that the map ϕ 7→ W (ϕ, ·) ∈
Aδ is C∞ in ϕ ∈ Td. Then for any s ∈ R, s > n/2 there exists ε0 > 0 and C > 0 such
that, for any 0 < ε ≤ ε0 there is a set Oε ⊂ [1/2, 3/2]d ⊂ Rd with

meas([1/2, 3/2]d \ Oε) ≤ Cεα (1.2.12)

such that the following holds. For any ω ∈ Oε there exists a family of linear isomorphism
Ψ(ϕ) ∈ L(Hs(Mn)) and a Hermitian operator Z ∈ Aδ commuting with the Laplacian 1 and
satisfying

‖Z‖L(Hs(Mn),Hs−δ(Mn)) ≤ Cε . (1.2.13)

Furthermore
• Ψ(ϕ) is unitary on L2(Mn) ;
• for any n

2 < s′ ≤ s and any ω ∈ Oε

‖Ψ(ϕ)− Id‖L(Hs′ (Mn),Hs′−δ(Mn))

+ ‖Ψ(ϕ)−1 − Id‖L(Hs′ (Mn),Hs′−δ(Mn)) ≤ Cε1−α ,

‖Ψ(ϕ)‖L(Hs′ (Mn)) + ‖Ψ(ϕ)−1‖L(Hs′ (Mn)) ≤ 1 + Cε1−α ,

(1.2.14)

• for any n
2 < s′ ≤ s and any ω ∈ Oε the map t 7→ u(t, ·) ∈ Hs′(Mn) solves (3.1.1) if

and only if the map t 7→ v(t, ·) := Ψ(ωt)u(t, ·) solves the autonomous equation

i∂tv = ∆gv + εZ(v) . (1.2.15)

As a consequence of reducibility, one proves the existence of almost-periodic solution.
Precisely, one has the following corollary.

Corollary 1.2.4. Let W ∈ C∞(Td;Aδ) with δ ≤ 1/2. Then, for any s ∈ R, s > n/2 there
exists ε0 > 0 and C > 0 such that, for any 0 < ε ≤ ε0 there is a set Oε ⊂ [1/2, 3/2]d ⊂ Rd

satisfying (1.2.12) such that for any ω ∈ Oε the flow generated by the (1.2.11) equation is
bounded in Hs(Mn).
More precisely, if u0 ∈ Hs(Mn) then there exists a unique solution u ∈ C1

(
R ; Hs(Mn)

)
of

(1.2.11) such that u(0) = u0. Moreover, u is almost-periodic in time and satisfies

(1− εC)‖u0‖Hs ≤ ‖u(t)‖Hs ≤ (1 + εC)‖u0‖Hs , ∀ t ∈ R , (1.2.16)

1. actually [∆g, Z] = 0 on sphere while on Zoll manifold we have Z and ∆g can be diagonalized in the
same basis of L2(Mn).
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for some C = C(s) > 0.

We also mention the reducibility result on the torus Tn in [BLM19], where the authors
study the transport equations on the torus, which is an integrable system, and the recent
reducibility result for the Schrödinger equation on the Sphere [FG19], where the authors
consider quasi-periodic in time odd perturbations of order < 1/2 and, in particular, do
not require pseudo-differential calculus.

Our result gives an idea to approach the nonlinear Schrödinger equation. Consider the
non linear Schrödinger equation

i∂tu = ∆gu+mu+ ε|u|2u , u = u(t, x) , t ∈ R , x ∈ Mn ,

we would like to solve this equation using Newton’s method. Starting with an approxi-
mate solution u0, we linearize the NLS equation around u0 and solve the linear equation
to obtain u1, do this again to obtain u2 and iterate this procedure to obtain a convergent
sequence of solutions. However, this approach has to face some obstacles, which we men-
tion in chapter 3. First, linearizing the cubic nonlinearity at the point u in the direction
h, one obtains 2|u|2h + u2h. As first step of the regularization procedure, one need to
eliminate h. The major problems regard the minimal regularity of the potential W (ωt),
which is now |u0(t)|2, and the study of the small divisors relating in KAM procedure.
In the linear Schrödinger equation, we need some requirements for the regularity of the
potential and small divisors, which do not persist in Newton scheme.

Scheme of the proof
The result is proven in two steps : regularization step and KAM step. In regularization

step, the pseudo-differential calculus is used to transform time-dependent, unbounded
potential system in a system with a time-dependent, smoothing perturbation. Then we use
a KAM procedure on infinite dimensional matrices to put the equation into an autonomous
form.

In the regularization step, we prove that we can transform (by using a symplectic
map : u = Φ(v)) the original Schrödinger equation into a new one

i∂tv = ∆gv + ε(Z +R(ωt))v , (1.2.17)

where Z is a pseudo-differential operator of order δ independent on time and commuting
with ∆g and R is a ρ-regularizing operator in L(Hs(Mn), Hs+ρ(Mn)) with ρ arbitrary large.
In fact, the regularization step consists of two parts : averaging the pseudo-differential ope-
rators, the averaged operators correspond to diagonalized block matrices, and eliminating
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the time in averaged operators.
The idea of averaging pseudo-differential operators is based on the fact that we can

write
√

∆g = K0 − Q where Q is a pseudo-differential operator of order −1 chosen (fol-
lowing [Colin]) in such a way that the spectrum of K0 is included in N + λ for some
constant λ ∈ R+(λ > 0).

This property makes the K0 flow periodic and leads us to the fact that if A is a pseudo-
differential operator, then its average with respect to the flow of K0 is given by
〈A〉 = 1

2π
∫ 2π

0 e−iτK0AeiτK0dτ . This idea was already used in a pioneering work of Weinstein
[Wein77]. Let us see how this works for the original Schrödinger equation. Let us write
H = H0 + V (t) where H0 = ∆g, and V (t) = εW (ωt) is a pseudo-differential operator of
order δ. Denote Y = 1

2π
∫ 2π

0 τ(V − 〈V 〉)(τ)dτ ∈ Aδ, and S = 1
4(Y K−1

0 +K−1
0 Y ) a pseudo-

differential operator of order δ − 1, then S solves the following homological equation

V + i[S,K2
0 ] = 〈V 〉+ order δ − 2.

Then the flow generated by S ΨS = eiS(t) conjugates the original Hamiltonian H to a new
one H+(t) with

H+ = H0 + 〈V (t)〉+ order δ − ν

where ν = min(1, 2−δ). Thus if δ < 2, we have a better equation. In the time eliminating
step, we find a Lie transformation ΨT = eiT that kills the time in Z = 〈V 〉. This time
eliminating step requires a non resonance hypothesis on the frequency vector ω of form

| ω · k |≥ γ

|k|α
k ∈ Zn.

We then alternate the averaging procedure with the time elimination procedure.
After the regularizing procedure, we do a KAM procedure to kill the remainder term

R in (1.2.17) which still depends on time but is now a arbitrary smoothing operator. We
coincide the operator Z, and the remainder term R with their matrix representation. The
matrix Z is block-diagonal, and thus, the spectrum of ∆g +Z preserves the cluster struc-
ture inherited from ∆g on the Zoll manifold. We also have a link between ρ−smoothing
operators, and β−regularizing matrices. The KAM procedure consists in solving homolo-
gical equations, which are solved blockwise. The increasing size of the blocks may generate
loss of regularity, but this loss is acceptable since R is a regularizing operator. We also
notice that the new remainder term R+ after a KAM step is estimated by a tame inequa-
lity with two different norms, a low s−decay norm and a high s + b−decay norm. This

32



Introduction

tame estimation allows to obtain a convergent scheme for the sequence of remainders Rk.

1.2.3 Birkhoff normal form for abcd Boussinesq system on the
circle

In chapter 4, we investigate the long time behavior of abcd Boussinesq system on the
circle [N21]. Precisely, we consider the system(1− b∂xx)∂tη + ∂x(a∂xxu+ u+ uη) = 0

(1− d∂xx)∂tu+ ∂x(c∂xxη + η + 1
2u

2) = 0
(t, x) ∈ R× T. (1.2.18)

Where η, u are real functions with zero average∫
T
η(t, x) dx =

∫
T
u(t, x) dx = 0.

The system was derived by Bona, Chen and Saut [BCS02 ; BCS04], in the vein of the ori-
ginal Boussinesq system, to describe the two dimensional, incompressible and irrotational
water wave in the shallow water regime. The two functions η(x, t) and u(x, t) describe
the behavior of water in the vertical direction and horizontal direction at the position
x and at time t. Four parameters a, b, c, d satisfy the consistency conditions (1.1.4). In
fact, the system (1.2.18) has different properties when the four parameters a, b, c, d vary.
In this chapter, we study the system in the "generic Hamiltonian" case, namely the case
b = d > 0, a, c < 0.

Expand the solution in Fourier variables, one has

u(x) =
∑
k∈Z∗

uke
2iπkx, η(x) =

∑
k∈Z∗

ηke
2iπkx (1.2.19)

note that uk = u−k, ηk = η−k since u and η are real, then (1.2.18) reads 2

∂tηk = − i2πk
1+4π2bk2 ((1− 4π2ak2)uk +∑

j+l=k ujηl)

∂tuk = − i2πk
1+4π2bk2 ((1− 4π2ck2)ηk + 1

2
∑
j+l=k ujul)

k ∈ Z∗. (1.2.20)

The couple solutions (η, u) can be identified with their Fourier expansions (η, u) =
(ηk, uk)k∈Z∗. We study these solutions on the Sobolev space (s ≥ 0)

2. Here Z∗ = Z \ {0}
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Hs := {z = (u, v) = (uk, vk)k∈Z∗ ∈ `2(T)× `2(T) | ‖z‖2
s =

∑
k∈Z∗
|k|2s(|uk|2 + |vk|2) <∞}.

(1.2.21)

One prove that for a long time, the energy exchanges mainly in same Fourier modes ηk
of horizontal velocity and Fourier modes uk of the depth. Precisely, one has the following
informal theorem

Theorem 1.2.5. Let fix r ≥ 1, fix b = d > 0, for any sufficiently large s and for almost
all values of a, c, assume that the initial data ‖(u, v)(x, 0)‖s = µ is small, i.e., µ � 1,
then there exists a constant C = C(r, s, b) such that

∂t(α2
k|uk|2 + α−2

k |ηk|2) ≤ µr+
5
2 for t ≤ Cµ−r+

3
2

Here αk = (1−4π2ak2

1−4π2ck2 ) 1
4 . And thus,

∑
k∈Z∗

(α2
k|uk|2 + α−2

k |ηk|2) ≤ 2µ for t ≤ Cµ−r+
3
2 .

This result is in fact a corollary of a Birkhoff normal form result stated in chapter 4.
The appearance of the scalar αk is unusual. In fact, before stating the Birkhoff normal
form theorem, we need to conjugate the original solutions to a new form, which follows a
more convenient Hamiltonian equation. One has

ψk = 1√
2

(αkuk + α−1
k ηk), φk = 1√

2
(αkuk − α−1

k ηk)

Then the system can be written as
∂tψk = −iDk∇ψ−kH

∂tφk = iDk∇φ−kH
k ∈ Z∗, (1.2.22)

where H is the Hamiltonian

H = H0 + P
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with 3

H0 =
∑
k∈N∗

ωk(|ψk|2 + |φk|2)

P = 1
4
√

2
∑

j+l+h=0
αhα

−1
j α−1

l (ψj + φj)(ψl + φl)(φh − ψh)

where

Dk = 2πk
1 + 4bπ2k2 , ωk =

√
(1− 4aπ2k2)(1− 4cπ2k2).

Each couple Fourier modes (ψk, φk) is associated with a frequency

Ωk = Dkωk = 2πk
1 + 4bπ2k2

√
pk4 + ek2 + 1

where p = 16π4ac, e = −4π2(a+ c). Since b = d is fixed and a+ b+ c+d = 1
3 , one has that

e = 4π2(2b − 1
3) is fixed and p is bounded in a segment Ib := (0, 16π4(b − 1

6)2). Denote
Bs(µ) a ball of radius µ in Hs norm, center at origin and Nk := |ψk|2 + |φk|2 the action
at mode k. One has the following Birkhoff normal form result

Theorem 1.2.6. Let r ≥ 1, s ∈ R sufficiently large and 0 < µ � 1, then there exists
a subset Iµ ⊂ Ib asymptotically of full measure, and a constant C = C(r, s, b) such that
for any p ∈ Iµ, for |t| ≤ µ−r+3/2, there exists a transformation T : Bs(µ/3) → Bs(µ)
satisfying

H ◦ T = H0 + Z +R. (1.2.23)

here Z is a polynomial of degree at most r + 2 that commutes with the actions Nk, i.e.,

{Z,Nk} = 0, ∀k ∈ Z∗ (1.2.24)

and R ∈ C∞(Bs(µ)) fulfills the estimate

sup
‖(ψ,φ)‖s≤µ/3

‖XR‖s ≤ Cµr+
3
2 . (1.2.25)

3. N∗ = N \ {0}
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The canonical transformation and its inverse are close to identity

sup
‖(φ,ψ)‖s≤µ/3

‖(φ, ψ)− T (φ, ψ)‖s ≤ Csµ
2 (1.2.26)

sup
‖(φ,ψ)‖s≤µ/3

‖(φ, ψ)− T −1(φ, ψ)‖s ≤ Csµ
2. (1.2.27)

Scheme of the proof
The idea to prove Birkhoff normal form result is to search for iterative changes of

variables Tn = Φt
χn |t=1, 1 ≤ n ≤ r that put the original Hamiltonian into better and

better forms. That is

H ◦ Tn = H0 + Zn +Rn+1. (1.2.28)

Where Zn is a normal form, which does not affect to the behavior of the solutions, and
Rn+1 is a perturbation term which is of the size µn+ 3

2 . At each step of Birkhoff normal
form procedure, one need to solve a homological equation

{H0, χ}+ Z = f (1.2.29)

with Z is in a normal form and f is a polynomial remainder term. We expand f in Taylor
series

f(φ, ψ) =
∑
j,l

fj,lΠk,hψ
jk
k φ

lh
h

and similarly for χ, Z. The homological equation becomes

(Ω(j − l))χj,l + Zj,l =
∑
k∈N∗

(Ωk(jk − j−k − lk + l−k))χj,l + Zj,l = fj,l. (1.2.30)

Here we use

{H0, ψ
jk
k φ

lh
h } = (Ωkjk − Ωhlh)ψjkk φ

lh
h , Ωk = −Ω−k.

The result is based on a so-called tame inequality

‖uv‖s ≤ C(‖u‖s‖v‖1 + ‖u‖1‖v‖s)

for some constant C > 0 and s. This inequality was introduced in [BG06],see also [GA91 ;
H76], where the authors proved Birkhoff normal form for many partial differential equa-
tions. This inequality allows us to ignore all monomials with more than two high modes.
Indeed, consider a function u depending on only high modes, i.e., u = ∑

k≥N uke
ikx with
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a large number N , one has

‖u‖1 ≤
‖u‖s
N s−1 .

In our procedure, the polynomial f satisfies the tame inequality. Indeed, according to
[BG06], it is enough to prove the tame property of the original nonlinearity f = P.

For monomials containing at most two high modes, one proves a nonresonant condition
for frequencies, that is

|Ω(j − l)| ≥ κ

Nα

for some constants κ, α and N. Consider r frequencies Ωj1 , . . . ,Ωjr with j1 < j2 < . . . <

jr ≤ N, as functions of p, then the corresponding determinant is bounded from below
by 1

Nα with a constant α = α(r). Combine this with a theorem introduced in [XYQ97],
which says that if |g(r)(p)| ≥ d then |g(p)| ≥ h except for a small set of p, one has an
estimate for small divisor Ω(j − l) for most value of p.

This nonresonant condition allows us to estimate the solution χ and Z of the homo-
logical equation and continue the Birkhoff procedure. Precisely, one has

〈|Xχ|〉s,R ≤ C
Nα

κ
〈|Xf |〉s,R, 〈|XZ |〉s,R ≤ C〈|Xf |〉s,R. (1.2.31)

for some constant C. Here Xχ denotes the vector field generated by χ and 〈| · |〉s,R denotes
a norm in Sobolev space of the vector field with variables bounded in the ball with center
in the origin and radius R.
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2
An unstable three dimensional KAM
torus for the quintic NLS

2.1 Introduction

We consider the nonlinear Schrödinger equation on the torus

i∂tu+ ∂xxu = |u|4u, (t, x) ∈ R× T (2.1.1)

where T = R/Z. This is an infinite dimensional dynamic system on the phase space
(u, u) ∈ L2(T) endowed with the symplectic form −idu ∧ du. The flow u(t) preserves the
Hamiltonian

h =
∫
T
|ux|2 + 1

3 |u|
6dx,

and also, the mass and the momentum

L =
∫
T
|u|2dx, M =

∫
T
Im(u · ∇u)dx.

Let us expand u and u in Fourier basis :

u(t, x) =
∑
j∈Z

aj(t)eijx, u(t, x) =
∑
j∈Z

bj(t)e−ijx.

In this variables, the symplectic structure becomes −i∑j∈Z daj ∧ dbj. The Hamiltonian h
of the system reads

h =
∑
j∈Z

j2ajbj + 1
3

∑
j,`∈Z3;M(j,l)=0

aj1aj2aj3b`1b`2b`3 = N + P,

and the mass and the momentum

L =
∑
j∈Z

ajbj, M =
∑
j∈Z

jajbj,
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Chapitre 2 – An unstable three dimensional KAM torus for the quintic NLS

here M(j, l) = j1 + j2 + j3 − `1 − `2 − `3 denotes the momentum of the monomial
aj1aj2aj3b`1b`2b`3 . We can rewrite equation (2.1.1) into a system of infinite number of
equations iȧj = j2aj + ∂P

∂bj
j ∈ Z,

−iḃj = j2bj + ∂P
∂aj

j ∈ Z.
(2.1.2)

In this article, we are interested in the dynamic behavior near to 0 of solution of (2.1.1)
in two specific forms :

u(t, x) = ap(t)eipxe−ip
2t + aq(t)eiqxe−iq

2t +O(ε), (2.1.3)

and

u(t, x) = ap(t)eipxe−ip
2t + aq(t)eiqxe−iq

2t + am(t)eimxe−im2t +O(ε), (2.1.4)

or more precisely the persistence of two and three dimensional linear invariant tori :

T2
c(p, q) = {|ap|2 = c1, |aq|2 = c2}, (2.1.5)

T3
c(p, q,m) = {|ap|2 = c1, |aq|2 = c2, |am|2 = c3}, (2.1.6)

with 0 < c1, c2, c3 � 1.
The first result of this paper is stated for two dimensional tori.

Theorem 2.1.1. Fix p, q ∈ Z, and s > 1
2 . There exists ν0 > 0, and for 0 < ν < ν0, there

exists Dν ⊂ [1, 2]2 asymptotically of full measure (i.e. meas([1, 2]2 \Dν)→ 0 when ν → 0)
such that for ρ ∈ Dν , equation (2.1.1) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx

where {aj}j are analytic functions from T2 to `2
s satisfying uniformly in θ ∈ T2

||ap| −
√
νρ1|2 + ||aq| −

√
νρ2|2 +

∑
j 6=p,q

(1 + j2)s|aj|2 = O(ν2).

Here ω is a nonresonant vector in R2 that satisfies

ω = (p2, q2) +O(ν2).

Furthermore, this solution is linearly stable.

Remark 2.1.2. — Here, the notation nonresonant means that there is no {0, 0} 6= ` ∈
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Zš such that ω · ` = 0.
— u is linearly stable if the linear equation system obtained by linearizing the system

(2.1.2) on this solution has the form
ȧ
ḃ

 = A

a
b

 , where A is a linear operator

whose all the eigenvalues have negative real part. By contrast, it is linearly unstable
if the spectrum of A contains eigenvalues with positive real part.

For three dimensional tori, it is too complicated 1 to consider the general case. In order
to apply KAM theorem 2.2.2, we avoid the case where there is ` ∈ Z solving equation 22j1 + j2 = 2j3 + `

2j2
1 + j2

2 = 2j2
3 + `2.

(2.1.7)

In this paper, we will give here an example of (p, q,m) and ρ such that for ν small enough
the torus T3

νρ(p, q,m) = {|ap|2 = νρ1, |aq|2 = νρ2, |am|2 = νρ3} is linearly unstable. For
ε = 10−2, denote

D = D2 = [2− ε, 2 + ε]× [1− ε, 1 + ε]× [9− ε, 9 + ε].

Theorem 2.1.3. Fix p = −3, q = 10, m = −6, and s > 1
2 . There exists ν0 > 0, and for

0 < ν < ν0, there exists Dν ⊂ D asymptotically of full measure (i.e. meas(D \ Dν) → 0
when ν → 0) such that for ρ ∈ Dν , equation (2.1.1) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx (2.1.8)

where {aj}j are analytic functions from T3 to `2
s satisfying uniformly in θ ∈ T3

||ap| −
√
νρ1|2 + ||aq| −

√
νρ2|2 + ||am| −

√
νρ3|2 +

∑
j 6=p,q,m

(1 + j2)s|aj|2 = O(ν2). (2.1.9)

Here ω is a non resonant vector in R3 that satisfies

ω = (32, 102, 62) +O(ν2).

Furthermore, this solution is linearly unstable.

In order to prove Theorems 2.1.1, 2.1.3, we follow a general strategy developed in
[GD18] for a system of coupled nonlinear Schrödinger equations on the torus. Firstly,

1. the difficulty is to verify KAM hypotheses
2. in this case, the linear part a2

j1
aj2b

2
j3
b` + b2

j1
bj2a

2
j3
a` of the mode ` would create the instability,

and the energy would soon transfer mainly between four modes p, q,m, `, which was studied carefully in
[GT12].
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we apply a Birkhoff normal form procedure (Proposition 2.3.1) to kill the nonresonance
of P . Then we use sympletic changes of variables to diagonalize the effective part into
the form of h0. The main difference between Theorem 2.1.1 and Theorem 2.1.3 is for the
linear stability of the solution, which is explained by the presence of hyperbolic directions
on the torus T3

νρ(−3, 10,−6). In section 3, we will see that in this case the energy will
drain out of these three modes into two exterior modes {9, 1}. Since the proof bases on
KAM theorem in [GD18], readers are suggested to take a look at the original statement
for further understanding.

The study of finite dimensional tori in an infinite dimensional phase space was pio-
neered by J. Bourgain [Bou98] in 1988. However, the existence of unstable KAM tori in
one dimensional context was first proved by B. Grébert and V. Vilaça da Rocha [GD18]
in 2017, where they studied the system of coupled nonlinear Schrödinger equations on
the torus. For the equation (2.1.1), in case of u(0, x) supported mainly in four modes
(p, q,m, s), which satisfy such a relation in (2.1.7), the study of solution was studied care-
fully in [GT12] and [HP17]. In particular, in [HP17] they proved the recurrent exchange
of energy between those modes.

Acknowledgement : I would like to thank Professor Benoît Grébert for motivating me
to publish this paper with numerous suggestions and discussions. I also would like to thank
my friends Le Quoc Tuan and Nguyen Thi Lan Anh for computations in the appendix A.

2.2 KAM theorem

In order to proof Theorems 2.1.1 and 2.1.3, we recall a KAM theorem stated in [GD18].
We consider a Hamiltonian h = h0 + f, where h0 is a quadratic Hamiltonian in normal
form

h0 = Ω(ρ) · r +
∑
a∈Z

Λa(ρ)|ζa|2. (2.2.1)

Here
— ρ is a parameter in D, which is a compact in the space Rn;
— r ∈ Rn are the actions corresponding to the internal modes (r, θ) ∈ (Rn × Tn, dr ∧ dθ) ;
— L and F are respectively infinite and finite sets, Z is the disjoint union L ∪ F ;
— ζ = (ζa)a∈Z ∈ CZ are the external modes endowed with the standard complex

symplectic structure −idζ ∧ dη. The external modes decomposes in a infinite part
ζL = (ζa)a∈L , corresponding to elliptic directions, which means Λa ∈ R for a ∈ L,
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2.2. KAM theorem

and a finite part ζF = (ζa)a∈F , corresponding to hyperbolic directions, which means
Im Λa 6= 0 for a ∈ F ;

— L has a clustering structure L = ∪j∈NLj, where Lj are finite sets of cardinality
dj ≤ d <∞. If a ∈ Lj, we denote [a] = Lj and wa = j, for a ∈ F we set wa = 1;

— the mappings

Ω : D → Rn, (2.2.2)

Λa : D → C, a ∈ Z, (2.2.3)

are smooth ;
— f = f(r, θ, ζ; ρ) is a perturbation, small compared to the integrable part h0.

Linear space Let s ≥ 0, we consider the complex weighted `2− space

Zs = {ζ = (ζa ∈ C, a ∈ Z) | ‖ζ‖s <∞},

where

‖ζ‖s =
∑
a∈Z
|ζa|2w2s

a .

Similarly we define

Ys = {ζL = (ζa ∈ C, a ∈ L) | ‖ζL‖s <∞},

with the same norm. We endow Zs×Zs and Ys×Ys with the symplectic structure−idζ∧dη,
with η = ζ.

A class of Hamiltonian functions. Denote ω = (ζ, η). On the space

Cn × Cn × (Zs × Zs)

we define the norm

‖(r, θ, ω)‖s = max (|r|, |θ|, ‖ζ‖s) .

For σ > 0 we denote

Tnσ = {θ ∈ Cn : |Im θ| < σ}/2πZn.

For σ, µ ∈ (0, 1] and s ≥ 0 we set

Os(σ, µ) = {r ∈ Cn : |r| < µ2} × Tns × {ω ∈ Zs × Zs : ‖ζ‖s < µ}.
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We will denote points in Os(σ, µ) as x = (r, θ, ω). Let f : O0(σ, µ) × D → C be a
C1˘function 3, real holomorphic in the first variable x, such that for all ρ ∈ D, x ∈
Os(σ, µ) :

∇ωf(x, ρ) ∈ Zs × Zs

and

∇2
ωLωL

f(x, ρ) ∈ L(Ys, Ys)

are real holomorphic functions. We denote by T s(σ, µ,D) this set of functions. For f ∈
T s(σ, µ,D), we define

|∂jρf |σ,µ,D = sup
x∈Os(σ,µ); ρ∈D

max(|∂jρf |, µ
∥∥∥∂jρ∇ωf(x, ρ)

∥∥∥
s
, µ2

∥∥∥∇2
ωLωL

∂jρf(x, ρ)
∥∥∥),

and

[f ]sσ,µ,D = max
j=0,1

(|∂jρf |σ,µ,D).

Jet functions For any f ∈ T s(σ, µ,D), we define its jet fT (x) as the following Taylor
polynomial of f at r = 0 and ω = 0

fT (x) = f(0, θ, 0) + drf(0, θ, 0) · r + dωf(0, θ, 0)[ω] + 1/2d2
ωf(0, θ, 0)[ω, ω].

Infinite matrices For the elliptic variables, we denote by Ms the set of infinite
matrices A : L × L → C such that A maps linearly Ys into Ys. We provideMs with the
operator norm

|A|s = ‖A‖L(Ys,Ys) .

We say that a matrix A ∈ Ms is on normal form if it is block diagonal and Hermitian,
i.e.

Aβα = 0 for [α] 6= [β] and Aβα = Aαβ for α, β ∈ L.

In particular, if A ∈Ms is on normal form, its eigenvalues are real.
Normal form A quadratic Hamiltonian function is on normal form if it reads

h = Ω(ρ) · r + 〈ζL, Q(ρ)ηL〉+ 1/2〈ωF , K(ρ)ωF〉

3. C1 regularity with respect to ρ in the Whitney sense
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2.2. KAM theorem

for some vector function Ω(ρ) ∈ Rn, some matrix functions Q(ρ) ∈ Ms on normal form
and K(ρ) is a matrix F × F → C symmetric in the following sense :Kβ

α = tKα
β .

Poisson brackets The Poisson brackets of two Hamiltonian functions is defined by

{f, g} = ∇θf · ∇rg −∇rf · ∇θg − i〈∇ωf, J∇ωg〉.

Remark 2.2.1. A function f is preserved under the flow u(t) if and only if it commutes
with h i.e. {f, h} = 0. By this, we have

{L, h} = {M, h} = 0.

Hypothesis A0 There exists a constant C > 0 such that

|Λa − |wa|2| ≤ C, ∀a ∈ L.

Hypothesis A1 There exists δ > 0 such that

|Λa| ≥ δ, ∀a ∈ L;

|Im Λa| ≥ δ, ∀a ∈ F ;

|Λa − Λb| ≥ δ, ∀a, b ∈ Z, [a] 6= [b];

|Λa + Λb| ≥ δ, ∀a, b ∈ L.

Hypothesis A2 There exists δ > 0 such that for all Ω δ˘close to Ω0 in C1 norm and
for all k ∈ Zn\{0} :

1. either

|Ω(ρ) · k| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k) ≥ δ ∀ρ ∈ D;

2. for all a ∈ L either

|Ω(ρ) · k + Λa| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k + Λa) ≥ δ ∀ρ ∈ D;
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3. for all α, β ∈ L and a ∈ [α], b ∈ [β] either

|Ω(ρ) · k + Λa ± Λb| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k + Λa ± Λb) ≥ δ ∀ρ ∈ D;

4. for all a, b ∈ F

|Ω(ρ) · k + Λa ± Λb| ≥ δ.

Theorem 2.2.2 (KAM theorem). Assume that hypothesis A0, A1, A2 are satisfied,
f ∈ T s(σ, µ,D), f commutes with L,M and s > 1/2. Let γ > 0, there exists a constant
C0 such that if

[f ]sσ,µ,D ≤ C0δ, ε := [fT ]sσ,µ,D ≤ C0δ
1+γ, (2.2.4)

then there exists a Cantor setD′ ⊂ D asymptotically of full measure (i.e.meas(D\D′)→ 0
when ε → 0) and there exists a symplectic change of variables Φ : Os(σ/2, µ/2) →
Os(σ, µ) such that for all ρ ∈ D′

(h0 + f) ◦ Φ = h̃+ g

with h̃ = Ω(ρ)·r+〈ζL, Q(ρ)ηL〉+1/2〈ωF , K(ρ)ωF〉 on normal form, and g ∈ T s(σ/2, µ/2,D′)
with gT ≡ 0. Furthermore there exists C > 0 such that for all ρ ∈ D′

|Ω− Ω0| ≤ Cε, |Q− diag (Λa, a ∈ L) | ≤ Cε, |JK − diag (Λa, a ∈ F) | ≤ Cε.

As a dynamic consequence Φ ({0} × Tn × {0}) is an invariant torus for h0 + fand this
torus is linearly stable if and only if F = ∅ (see [GD18] ).

Here, the matrix J is of the form, 0 −I
I 0


where I is identity matrix of size #F .

Remark 2.2.3. In [GD18], they constrained f in a restricted class instead of using com-
mutation of f with L,M since they considered a system of coupled NLS equation with
more complicated nonlinearities.
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2.3 Applications

The Birkhoff normal form procedure. We recall a result proved in [GT12].

Proposition 2.3.1. There exist a canonical change of variable τ from Os(σ, µ) into
Os(2σ, 2µ) such that

h = h ◦ τ = N + Z6 +R10,

where
— N is the term N(I) = ∑

j∈Z j
2|aj|2;

— Z6 is the homogeneous polynomial of degree 6

Z6 =
∑
R
aj1aj2aj3b`1b`2b`3

where
R = {(j, `) ∈ Z3 × Z3 s.t j1 + j2 + j3 = `1 + `2 + `3, j2

1 + j2
2 + j2

3 = `2
1 + `2

2 + `2
3};

— R10 is the remainder of order 10, i.e a Hamiltonian satisfying

‖XR10(x)‖s ≤ C ‖x‖9
s

for all x ∈ Os(σ, µ);
— τ is close to the identity : there exists a constant C such that

‖τ(x)− x‖ ≤ C ‖x‖2

for all x ∈ Os(σ, µ).

Henceforth, since we do not care about constant, we shall write a . b in order to say
a 6 Cb.

Persistence of 2 dimensional tori.
Firstly, we want to study the persistence of the two dimensional invariant torus

T2
νρ(p, q) for equation (2.1.1) for ν small. Choose

ap = (νρ1 + r1(t))
1
2 eiθ1(t) =:

√
Ipe

iθ1(t)

aq = (νρ2 + r2(t))
1
2 eiθ2(t) =:

√
Iqe

iθ2(t)

aj = ζj j 6= p, q,

where {ρ1, ρ2} ∈ [1, 2]2 = D and ν is a small parameter.The canonical symplectic structure
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now becomes

−idζ ∧ dη − dI ∧ dθ

with I = (I1, I2), θ = (θ1, θ2), ζ = (ζj)j and η = (ηj)j = (ζj)j.
Let

Tlin
ρ := {(I, θ, ζ)||I − νρ| = 0, |Im θ| < σ, ‖ζ‖s = 0}

and its neighborhood

Tρ(ν, σ, µ, s) := {(I, θ, ζ)||I − νρ| < νµ2, |Im θ| < σ, ‖ζ‖s < ν1/2µ}.

We want to study the persistence of torus Tρ(ν, σ, µ, s). Indeed we have

Tρ(ν, σ, µ, s) ≈ Os(σ, ν1/2µ) = {(r, θ, ζ)||r| < νµ2, |Im θ| < σ, ‖ζ‖s < ν1/2µ}.

By Theorem 2.3.1 we have

h ◦ τ = N + Z6 +R10.

We see that the term N contributes to the effective part and the term R10 contributes to
the remainder term f. So we just need to focus on the term Z6. Let us split it :

Z6 = Z0,6 + Z1,6 + Z2,6 + Z3,6.

Here Z0,6, Z1,6, Z2,6 are homogeneous polynomial of degree 6 which contain respectively
external modes of order 0, 1, 2. Z3,6 is a homogeneous polynomial of degree 6 contains
external modes of at least order 3, this term contributes the remainder term.
Thank to Lemma 2.2 in [GT12], the term Z1,6 = 0. We have

Z0,6 = |ap|6 + |aq|6 + 9
(
|ap|4|aq|2 + |ap|2|aq|4

)
= (νρ1 + r1)3 + (νρ2 + r2)3 + 9 (νρ1 + r1) (νρ2 + r2) (νρ1 + r1 + νρ2 + r2)

= ν3(ρ3
1 + ρ3

2 + 9ρ2
1ρ2 + 9ρ2

2ρ1) + 3ν2
(
r1(ρ2

1 + 6ρ1ρ2 + 3ρ2
2) + r2(ρ2

2 + 6ρ1ρ2 + 3ρ2
1)
)

+ jet free

where the notation “jet free” means that the remaining Hamiltonian has a vanishing jet.
For the term Z2,6, there are two cases that can happen.
First case
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We assume that there is no solution 4 {s, t} 6= {p, q} for2p+ s = 2q + t

2p2 + s2 = 2q2 + t2.
(2.3.1)

Hence

Z2,6 = Z1
2,6 = 9

(
|ap|4 + |aq|4 + 4|ap|2|aq|2

) ∑
j 6=p,q
|aj|2 = 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

) ∑
j 6=p,q
|ζj|2+jet free.

Hence

h ◦ τ = he +R

where the effective Hamiltonian he reads

he =
(
p2 + 3ν2

(
ρ2

1 + 3ρ2
2 + 6ρ1ρ2

))
r1 +

(
q2 + 3ν2

(
ρ2

2 + 3ρ2
1 + 6ρ1ρ2

))
r2

+
∑
j

(
j2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζj|2

= Ω(ρ) · r +
∑
j 6=p,q

Λj|ζj|2

where

Ω(ρ) =
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)


and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
.

The remainder term R reads

R = R10 + Z3,6 + 3νρ1r
2
1 + r3

1 + 3νρ2r
2
2 + r3

2 + 9r1r2(r1 + r2)

+
(
r2

1 + r2
2 + 2ν(ρ1 + 2ρ2)r1 + 2ν(ρ2 + 2ρ1)r2

) ∑
j 6=p,q
|ζj|2.

In order to work on Os(σ, µ) we use the rescaling

Ψ : r 7→ νr, ζ 7→ ν1/2ζ. (2.3.2)

4. it happens when q − p is odd
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The symplectic structure now becomes

−νdr ∧ dθ − iνdζ ∧ dη.

By definition, this change of variables maps Os(σ, µ) to a neighborhood of Tρ(ν, σ, µ, s).
Since τ is close to identity, the change of variables Φρ = τ◦Ψ mapsOs(σ, µ) to Tρ(ν, 2σ, 2µ, s).
By this change of variables, we have

h ◦ Φρ − C = (he +R) ◦Ψ = νh0 + νf

where C is a constant, h0 and f are defined by

h0 = 1
ν
he ◦Ψ f = 1

ν
R ◦Ψ.

By Theorem 2.3.1, R10 ∈ T s(σ, ν1/2µ,D). We check that the remaining part of f is in
T s(σ, µ,D). By construction, f commutes 5 with L and M. To estimate the norm of f,
notice that R contains only term of order at least 3 in ν and RT = RT

10 is of order 9/2 in
ν, so that

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

So we have proved :

Theorem 2.3.2. Assume that for p, q ∈ Z there do not exist s, t solving the equation
(2.3.1). Then, the change of variables Φρ = τ ◦ Ψ is real holomorphic, symplectic and
analytically depending on ρ satisfying

— Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 2ν, s);
— Φρ puts the Hamiltonian h in normal form in the following sense :

1
ν

(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑
j 6=p,q

Λj|ζj|2

5. since h commutes with L, M and all the changes of variables are symplectic
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with

Ω(ρ) =
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)


and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
;

— The remainder term f belongs to T s(σ, µ,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Second case
Assume that there are 6 s, t 6= p, q solving (2.3.1), hence

Z2,6 = Z1
2,6 + 9(a2

pasb
2
qbt + b2

pbsa
2
qat) = Z1

2,6 + Zs,t

For the second term, let us rewrite it

9(νρ1 + r1)(νρ2 + r2)
(
e2i(θ1−θ2)ζsηt + e−2i(θ1−θ2)ηsζt

)
The effective part of this term is just given by

9ν2ρ1ρ2
(
e2i(θ1−θ2)ζsηt + e−2i(θ1−θ2)ηsζt

)
.

Notice that

{Is, ζsηt + ηsζt} = {It, ζsηt + ηsζt} = 0.

This gives us a clue that the above term does not effect to the stability of the solution.
In order to kill the angles, we introduce the symplectic change of variables Ψangles :

6. in this case, {p, q, s, t} is of the form {p, p+ 2n, p+ 3n, p− n}
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Os(σ, µ)→ Os(σ, µ), (r1, r2, θ, ζ) 7→ (r′1, r′2, θ, ζ ′) defined by

ζ ′s = e2i(θ1−θ2)ζs

ζ ′t = ζt

ζ ′j = ζj, j 6= s, t, p, q

r′1 = r1 − 2|ζs|2

r′2 = r2 + 2|ζs|2.

By this change of variables

h̃ = h ◦Ψangles = C + he +R.

Here C is a constant given by

C = ν3(ρ3
1 + ρ3

2 + 9ρ2
1ρ2 + 9ρ2

2ρ1) + 9(νp2ρ1 + νq2ρ2).

The effective Hamiltonian he reads

he =
(
p2 + 3ν2

(
ρ2

1 + 3ρ2
2 + 6ρ1ρ2

))
r′1 +

(
q2 + 3ν2

(
ρ2

2 + 3ρ2
1 + 6ρ1ρ2

))
r′2

+
∑

j 6=p,q,s,t

(
j2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζ ′j|2 +

(
t2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζ ′t|2

+
(
s2 + 2p2 − 2q2 + ν2

(
21ρ2

2 − 3ρ2
1 + 36ρ1ρ2

))
|ζ ′s|2 + 9ν2ρ1ρ2(ζ ′sη′t + η′sζ

′
t).

It is on normal form

Ω(ρ) · r +
∑

j 6=p,q,s,t
Λj|ζ ′j|2 + Λs|ζ ′s|2 + Λt|ζ ′t|2 + 9ν2ρ1ρ2(ζ ′sη′t + η′sζ

′
t)

where Ω(ρ) and Λj are defined as in the first case except

Λs = t2 + ν2
(
21ρ2

2 − 3ρ2
1 + 36ρ1ρ2

)
.

In order to diagonalize he, we use a symplectic change of variables of the formζt
+ = 1√

1+α2 (ζ ′t + αζ ′s)

ζt− = 1√
1+α2 (ζ ′s − αζ ′t)

with α = −2ρ2
1+2ρ2

2+
√

4ρ4
1+2ρ2

1ρ
2
2+4ρ4

2
3ρ1ρ2

. Then he can be diagonalized as

Ω(ρ) · r +
∑

j 6=p,q,s,t
Λj|ζj|2 + Λt+ |ζt+ |2 + Λt−|ζt−|2
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where Λt+ = Λt − 9ν2ρ1ρ2α

Λt− = Λs + 9ν2ρ1ρ2α.

The remainder term R reads

R = R10 ◦Ψangles + Z3,6 ◦Ψangles + 3νρ1r
2
1 + r3

1 + 3νρ2r
2
2 + r3

2

+ 9r1r2(r1 + r2) +
(
r2

1 + r2
2 + 2ν(ρ1 + 2ρ2)r1 + 2ν(ρ2 + 2ρ1)r2

) ∑
j 6=p,q
|ζj|2

with r1 = r′1 + 2|ζs|2, r2 = r′2 − 2|ζs|2.
Using the rescaling Ψ introduced in (2.3.2), we get

(he +R) ◦Ψ = νh0 + νf.

Since Ψangles : Os(σ, µ) → Os(σ, 3µ) and τ is closed to identity, we have τ ◦ Ψangles ◦ Ψ :
Os(σ, µ)→ Tρ(ν, 2σ, 4µ, s). The study of f is the same as in the previous case. Then we
get :

Theorem 2.3.3. Assume that p, q, s, t satisfy the equation 2.3.1. The change of variables
Φρ = τ ◦ Ψangles ◦ Ψ is a real holomorphic transformations, analytically depending on ρ
satisfying

— Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 4µ, s);
— Φρ puts the Hamiltonian h in normal form in the following sense :

1
ν

(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑

j 6=p,q,s,t
Λj|ζj|2 + Λt+|ζt+|2 + Λt− |ζt− |2

with

Ω(ρ) =
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)


and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
,
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— The remainder term f belongs to T s(1, 1,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Now we can finish the proof of Theorem 2.1.1.
Proof of Theorem 2.1.1. By Theorem 2.3.2 and 2.3.3, there exists a symplectic change

of variables Φρ, on a asymtotical setDν ⊂ D = [1, 2]2 that puts the Hamiltonian h = N+P
in normal form h0 + f. In appendix A we verify that h0 + f satisfies the hypotheses of
KAM theorem 2.2.2 for δ = ν2, ε = ν7/2 = δ7/4 and Ω0 = ω = (p2, q2) + O(ν2). Since the
hyperbolic set F is empty, Φ−1

ρ ◦Tlin
ρ is an invariant KAM torus that is linearly stable.

�

Persistence of 3 dimensional tori. Assume that



ap = (νρ1 + r1(t))
1
2 eiθ1(t) =:

√
Ipe

iθ1(t)

aq = (νρ2 + r2(t))
1
2 eiθ2(t) =:

√
Iqe

iθ2(t)

am = (νρ3 + r3(t))
1
2 eiθ3(t) =:

√
Ime

iθ3(t)

aj = ζj j ∈ Z \ {p, q,m}

where ρ = (ρ1, ρ2, ρ3) ∈ D ⊂ R3 and ν is a small parameter. The canonical symplectic
structure now becomes

−idζ ∧ dη − dI ∧ dθ

with I = (Ip, Iq, Im), θ = (θ1, θ2, θ3), ζ = (ζj)j∈Z\{p,q,m} and η = (ηj)j∈Z\{p,q,m} = (ζj)j∈Z\{p,q,m}.
The same as in two-modes case, we have

h := h ◦ τ = N + Z6 +R10.

We see that as in the previous case, the term N contributes to the effective Hamiltonian
h0 and the term R10 contributes to the remainder term f. So we just need to focus on the
term Z6. Let us split it :

Z6 = Z0,6 + Z1,6 + Z2,6 + Z3,6.
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Here, Z0,6 is a homogeneous polynomial of degree 6 which just contains inner modes
(p, q,m) ; Z1,6, Z2,6 are homogeneous polynomials of degree 6 which contain outer modes
of order 1 and 2. Z3,6 is a homogeneous polynomial of degree 6 contains outer modes of
at least order 3, this term contributes the remainder term. We have :

Z0,6 = |ap|6 + |aq|6 + |am|6 + 9
∑

j,`∈{p,q,m}
|aj|4|a`|2 + 36|ap|2|aq|2|am|2

Even if it looks a bit more complicated, we deal with Z0,6 as in the previous case. We
assume that there is no solution to (2.1.7), so that Z1,6 = 0. For Z2,6, we have

Z2,6 =
∑
j1,j2,`

|aj1 |2|aj2 |2|a`|2 +
∑

s1,t1∈A

(
a2
j3as1b

2
j4bt1 + b2

j3bs1a
2
j4at1

)
+

∑
s2,t2∈B

(
a2
j5aj6bj7bs2bt2 + b2

j5bj6aj7as2at2
)

+
∑

s3,t3∈C

(
a2
j9as3bj8bj10bt3 + b2

j9bs3aj8aj10at3
)

+
∑
s4∈E

(
a2
j11aj12bj13b

2
s4 + b2

j11bj12aj13a
2
s4

)
with ji ∈ {p, q,m}, si, ti /∈ {p, q,m} and si 6= ti. The sets A, B, C, E are given by

A ↔

2j3 + s1 = 2j4 + t1

2j2
3 + s2

1 = 2j2
4 + t21

B ↔

2j5 + j6 = j7 + s2 + t2

2j2
5 + j2

6 = j2
7 + s2

2 + t22

C ↔

2j9 + s3 = j8 + j10 + t3

2j2
9 + s2

3 = j2
8 + j2

10 + t23

E ↔

2j11 + j12 = j13 + 2s4

2j2
11 + j2

12 = j2
13 + 2s2

4.

Assume that A,B, C, E are disjoint 7 i.e. there is no s or t appearing in two of these sets.
We shall deal with each term one by one (in case it’s not empty).

The first term just depends on the actions, and we have

|aj1|2|aj2|2|a`|2 = ν2ρj1ρj2|ζ`|2 + jet free.

The second and the fourth term are similar, since their effective parts are all of the
form

9eiαζsηt + 9e−iαηsζt.

7. this is the case for the example considered in Theorem 2.1.3
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The idea to deal with these two terms is the same as that in the two-modes case. Since

{Is + It, ζsηt} = {Is + It, ζtηs} = 0,

these terms do not affect the stability of the flow. Since A,B, C, E are disjoint, and as in
the two-modes case, a change of variables that used to deal with a pair s, t only affects
that modes, i.e the changes of variables commute. We denote Φ1 as the composition of all
changes of variables used to deal with the sets A and C.

For the third term, its effective parts are of the form

18ν2ρj5
√
ρj6ρj7(eiαζsζt + e−iαηsηt)

where α = θj7−θj6−2θj5 . For explicitness, we will consider the case j5 = p, j6 = q, j7 = m,

and s, t solve the following equation2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2,
(2.3.3)

then α = θ3−θ2−2θ1. An example for this could be (p, q,m, s, t) = (−3, 10,−6, 1, 9). In or-
der to kill the angles, we introduce the symplectic change of variables Ψang,1 : Os(σ, µ)→
Os(σ, 3µ); (r, θ, ζ) 7→ (r′, θ, ζ ′) defined by



ζ ′s = ie−iαηs η′s = ieiαζs

ζ ′t = ζt η′t = ηt

ζ ′j = ζj, η′j = ηj j 6= s, t, p, q

r′1 = r1 + 2|ζs|2

r′2 = r2 + |ζs|2,

r′3 = r3 − |ζs|2.

The effective part related to s, t is of the form

Λs|ζ ′s|2 + Λt|ζ ′t|2 − 18iν2ρ1
√
ρ2ρ3(ζ ′sη′t + η′sζ

′
t) (2.3.4)

where

Λt = t2 + 9ν2(ρ2
1 + ρ2

2 + ρ2
3 + 4ρ1ρ2 + 4ρ2ρ3 + 4ρ3ρ1)
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and

Λs = t2 + 3ν2(−ρ2
1 + ρ2

2 + 5ρ2
3 − 6ρ1ρ2 + 12ρ2ρ3 + 6ρ3ρ1).

Denoting a = Λt−Λs
2 and b = Λt+Λs

2 , we diagonalize (2.3.4) by the symplectic change of
variables 8 ζt

− = 1√
1−α2 (ζ ′s − iαζ ′t) ηt− = 1√

1−α2 (η′s − iαη′t)

ζt+ = 1√
1−α2 (ζ ′t + iαζ ′s) ηt+ = 1√

1−α2 (η′t + iαη′s)

where

α = −
a−

√
a2 − 182ν4ρ2

1ρ2ρ3

ν2ρ1
√
ρ2ρ3

.

Then (2.3.4) becomes

Λt+ |ζt+ |2 + Λt−|ζt−|2

where Λt± = b±
√
a2 − 182ν4ρ2

1ρ2ρ3. We see that two modes t+, t− correspond to hyper-
bolic direction if and only if a2 − 182ν4ρ2

1ρ2ρ3 < 0, a condition related to the choice of ρ.
Precisely, for ρ ∈ D1 = [1, 2]3, we have Λt± ∈ R while for ρ = (2, 1, 9) we have a = 0 and
a2 − 182ν4ρ2

1ρ2ρ3 = −182ν4ρ2
1ρ2ρ3 < 0. Hence, there exist ε > 0(choose ε = 10−2) such

that for ρ ∈ D2 = Dε = [2− ε, 2 + ε]× [1− ε, 1 + ε]× [9− ε, 9 + ε] we have |Im Λt±| > ν2.

We call Φ2 the composition of changes of variables related to B.

For the set E , without loss of generality, assume that2p+ q = m+ 2s

2p2 + q2 = m2 + 2s2.
(2.3.5)

Then, using the symplectic change of variables Ψang,2 : Os(σ, µ) → Os(σ, 2µ); (r, θ, ζ) 7→
(r′, θ, ζ ′) defined by

8.
√
−1 = i
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ζ ′s = eiα/2ζs η′s = e−iα/2ηs

ζ ′j = ζj, η′j = ηj j 6= s, p, q

r′1 = r1 + |ζs|2

r′2 = r2 + 1
2 |ζs|

2

r′3 = r3 − 1
2 |ζs|

2.

The effective part related to s becomes

Λs|ζ ′s|2 + ν2ρ1
√
ρ2ρ3(ζ ′2s + η′2s ) (2.3.6)

where

Λs = 3ν2(2ρ2
1 + ρ2

2 − ρ2
3 + 9ρ1ρ2 + 3ρ3ρ1).

If Λs 6= 0, we can diagonalize (2.3.6) into 1−β2

1+β2 Λs| ζ
′
s+βη′s√

1−β2
|2 with β satisfying Λsβ = (1 −

β2)ν2ρ1
√
ρ2ρ3, otherwise we rewrite it into iν2ρ1

√
ρ2ρ3( ζ

′
s+iη′s√

2
η′s+iζ′s√

2 ), however meas{ρ ∈
R3 : Λs = 0} = 0. We call Φ3 the composition of all changes of variables related to E .

By construction of Φi and definition of Os(σ, ν), the composition Φ3 ◦ Φ2 ◦ Φ1 maps
Os(σ, ν) into Os(σ, 3ν). Using the rescaling Ψ introduced in (2.3.2), as the previous case
we get

Theorem 2.3.4. Assume that the equation (2.1.7) with j1, j2, j3 ∈ {p, q,m} has no
solution in Z andA, B, C, E are disjoint. The change of variables Φρ := Ψ◦Φ3◦Φ2◦Φ1◦τ is
a holomorphic, symplectic transformation, and analytically depending on ρ ∈ D, satisfying

— Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 4µ, s);
— Φρ puts the Hamiltonian h in normal form in the following sense :

1
ν

(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑
a∈Z

Λa|ζa|2

58



2.4. Appendix A

where

Ω(ρ) =


p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 3ρ2

3 + 6ρ1ρ2 + 6ρ1ρ3 + 12ρ2ρ3)
q2 + 3ν2 (ρ2

2 + 3ρ2
1 + 3ρ2

3 + 6ρ1ρ2 + 6ρ2ρ3 + 12ρ1ρ3)
m2 + 3ν2 (ρ2

3 + 3ρ2
1 + 3ρ2

2 + 6ρ1ρ3 + 6ρ3ρ2 + 12ρ2ρ1)


— Z is the disjoint union L∪F ; F is consistent with B and corresponds to hyperbolic

part ; L is consistent with other exterior modes and corresponds to elliptic part ;
— the remainder term f belongs to T s(σ, µ,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Proof of Theorem 2.1.3. By Theorem 2.3.4, for (p, q,m) = (−3, 10,−6) and ρ ∈ Dν ⊂
D2, there exists a symplectic change of variables Φρ on Dν that puts the Hamiltonian
h = N+P in normal form h0+f. In appendix A we verify that h0+f satisfies assumptions
of KAM theorem 2.2.2 for δ = ν2, ε = ν7/2 = δ7/4 and Ω0 = ω = (32, 102, 62) + O(ν2).
Since the hyperbolic set F is not empty, Φ−1

ρ ◦ Tlin
ρ is an invariant KAM torus that is

linearly unstable. �

2.4 Appendix A

In this appendix, we will verify the hypothesis A0, A1, A2 of Theorem 2.2.2 for the
Hamiltonian in our applications. The hypothesis A0, A1 is trivial, so we focus on A2.

2.4.1 Two-modes case

The first case In this case, we have F = ∅ and the other estimates are trivial. For
the hypothesis A2, we recall that

Ω(ρ) =
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)


and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
.
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Let k = (k1, k2) ∈ Z2/{0} and z = z(k) = (k2,k1)
|k| , then we have

(∇ρ · z)(Ω(ρ) · k) = 6ν2
(
3(ρ1 + ρ2)k2

2 + 3(ρ2 + 3ρ1)k2
1 + 4(ρ1 + ρ2)k1k2

)
|k|−1

≥ 6√
2
ν2|k|

and

(∇ρ · z)Λj = 18ν2((ρ1 + 2ρ2)k2 + (ρ2 + 2ρ1)k1)|k|−1.

Choosing δ = 4ν2, we get the hypothesis A2 (1). Since (∇ρ · z)(Λj−Λ`) = 0, the estimate
of small divisor Ω · k + Λj − Λ` follows. To estimate the small divisors Ω · k + Λj and
Ω · k+ Λj + Λ` we use the fact that f commutes with both the mass L and momentum M.

We just need to control small divisors Ω · k+ Λj and Ω · k+ Λj + Λ` whenever eik·θηj ∈ f
and eik·θηjη` ∈ f , respectively. We have for the mass and momentum :

L = ν(ρ1 + ρ2) + r1 + r2 +
∑
j

|ζj|2

and

M = ν(pρ1 + qρ2) + pr1 + qr2 +
∑
j

j|ζj|2.

By conservation of L, we have

{eik·θηj,L} = ieik·θηj(k1 + k2 + 1) = 0.

Therefore, for A2 (2) we just have to study the case k1 + k2 = −1. In this situation

(∇ρ · z)(Ω(ρ) · k + Λj) = 6ν2|k|−1
(
3(ρ1 + ρ2)k2

2 + 3(ρ2 + ρ1)k2
1 + 4(ρ1 + ρ2)k1k2

)
+ 6ν2|k|−1 (3(ρ1 + 2ρ2)k2 + 3(ρ2 + 2ρ1)k1)

= 6ν2|k|−1
(
(ρ1 + ρ2)k2

2 + (ρ2 + ρ1)k2
1 + 2(ρ1 + ρ2)

)
+ 6ν2|k|−1 (3ρ2k2 + 3ρ1k1 − 3(ρ1 + ρ2))

= 6ν2|k|−1
(
2(ρ1 + ρ2)k2

1 + (5ρ1 − ρ2)k1 − 3ρ2
)
.

This term is greater than δ except in the cases k = (−1, 0) and (0,−1). The conservation
of M gives us

{eik·θηj,M} = ieik·θηj(pk1 + qk2 + j) = 0.
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For k ∈ {(−1, 0), (0,−1)}, this implies j ∈ {p, q}, which is excluded.
We consider the small divisor Ω · k + Λj + Λ` in the same way. The conservation of the
mass L gives us k1 + k2 = −2 and then by computation we get

k ∈ {(0,−2), (−2, 0), (−1,−1), (−3, 1), (1,−3)}.

The conservation of the momentum gives us pk1 + qk2 + j + ` = 0. We have

Ω · k + Λj + Λ` = N(p, q, j, `) + µ(ρ, k)

where N(p, q, j, `) = p2k1 + q2k2 + j2 + `2 and µ(ρ, k) very small for |k| ≤ 4. We see that
N(p, q, j, `) ∈ Z, so N(p, q, j, `) ≤ δ if and only if p2k1 + q2k2 + j2 + `2 = 0. Combined
with conservation of the momentum, this gives
for the case k = (−1,−1)

p+ q = j + ` and p2 + q2 = j2 + `2

for the case k = (−2, 0)

2p = j + ` and 2p2 = j2 + `2

for the case k = (0,−2)

2q = j + ` and 2q2 = j2 + `2

for the case k = (−3, 1)

3p = q + j + ` and 3p2 = q2 + j2 + `2

for the case k = (1,−3)

3q = p+ j + ` and 3q2 = p2 + j2 + `2.

In all these cases, we get j, ` ∈ {p, q} which is excluded.

The second case We see that Ω and {Λj}j 6=p,q,s,t are all the same as the previous
case except Λt+ and Λt− .We recall that2p+ s = 2q + t

2p2 + s2 = 2q2 + t2.

Thank to Lemma 2.2 in [GT12], {p, q, s, t} is in form of {p, p+2n, p+3n, p−n}.Without

61



Chapitre 2 – An unstable three dimensional KAM torus for the quintic NLS

loss of generality, we can assume that 9 p = 0, so we have q = −2t. For Ω · k + Λt+ and
Ω · k + Λt− , by conservation the momentum, we just need to consider the case when k

satisfies pk1 + qk2 + t = 0 i.e. k2 = 1/2, which is not an integer. For Ω ·k+ Λt±±Λj, again
by conservation of the momentum, we havepk1 + qk2 + t± j = 0

p2k1 + q2k2 + t2 ± j2 = 0

i.e. j = ∓(2k2 − 1)n

j2 = ∓(4k2 + 1)n2.

This system has two solutions for j, either j = 0 = p or j = 3m = s, which are both
excluded.

2.4.2 Three modes case.

It is too complicated to verify all the possibility, in this appendix we just consider
the example (p, q,m) = (−3, 10,−6), which we are interesting in Theorem 2.1.3. In this
situation, we have that C, E are empty, A = {−14, 2} and B = {9, 1}. Recall that

Ω(ρ) =


p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 3ρ2

3 + 6ρ1ρ2 + 6ρ1ρ3 + 12ρ2ρ3)
q2 + 3ν2 (ρ2

2 + 3ρ2
1 + 3ρ2

3 + 6ρ1ρ2 + 6ρ2ρ3 + 12ρ1ρ3)
m2 + 3ν2 (ρ2

3 + 3ρ2
1 + 3ρ2

2 + 6ρ1ρ3 + 6ρ3ρ2 + 12ρ2ρ1)


and

Λj = j2 + 9ν2(ρ2
1 + ρ2

2 + ρ2
3 + 4ρ1ρ2 + 4ρ2ρ3 + 4ρ3ρ1) j 6= −14,−6,−3, 2, 1, 9, 10.

The hypothesis A0 and A1 are trivial. For hypothesis A2 (1), let k = (k1, k2, k3) ∈ Z3/{0},
k′ = (k2 + k3, k1 + k3, k2 + k1) and z = z(k) = k′

|k′| , then we have

(∇ρ · z)(Ω(ρ) · k) =6ν2|k′|−1[ρ1(3k2
2 + 3k2

3 + k1k2 + k1k3 + 6(k1 + k2 + k3)2)

+ ρ2(3k2
1 + 3k2

3 + k1k2 + k2k3 + 6(k1 + k2 + k3)2)

+ ρ3(3k2
2 + 3k2

1 + k3k2 + k1k3 + 6(k1 + k2 + k3)2)].

9. using the change of variables j = j − p
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This term is greater than δ = ν2. Since (∇ρ ·z)(Λj−Λ`) = 0, the estimate of small divisor
Ω · k + Λj − Λ` follows.
For hypothesis A2 (2), (3), choose z = z(k) = − k

|k| , then we have

(∇ρ · z)(Ω(ρ) · k) =− 6ν2|k|−1[ρ1(k2
1 + 3k2

2 + 3k2
3 + 6k1k2 + 6k1k3 + 12k2k3)

+ ρ2(k2
2 + 3k2

1 + 3k2
3 + 6k1k2 + 6k2k3 + 12k1k3)

+ ρ3(k2
3 + 3k2

2 + 3k2
1 + 6k3k2 + 6k1k3 + 12k2k1)]

and

(∇ρ · z)Λj = −18ν2|k|−1[ρ1(k1 + 2k2 + 2k3) + ρ2(k2 + 2k1 + 2k3) + ρ3(k3 + 2k2 + 2k1)].

For Ω · k + Λj, by conservation of the mass, we just need to estimate this divisor in the
case k1 + k2 + k3 = −1, then by computation we have

|(∇ρ · z)(Ω(ρ) · k + Λj) = 6ν2|k|−1[ρ1(2k2
1 − 6k2k3 + 3k1 + 3) + ρ2(2k2

2 − 6k1k3 + 3k2 + 3)

+ ρ3(2k2
3 − 6k2k1 + 3k3 + 3)]

≥ 6ν2|k|−1[ρ1(2k2
1 −

3
2(k1 + 1)2 + 3k1 + 3) + ρ2(2k2

2

− 3
2(k2 + 1)2 + 3k2 + 3) + ρ3(2k2

3 −
3
2(k3 + 1)2 + 3k3 + 3)]

= 3ν2|k|−1[ρ1(k2
1 + 3) + ρ2(k2

2 + 3) + ρ3(k2
3 + 3)]

≥ ν2.

For Ω · k + Λj + Λ`, again we have k1 + k2 + k3 = −2 by conservation of the mass, hence

|(∇ρ · z)(Ω(ρ) · k + Λj) =6ν2|k|−1[ρ1(2k2
1 − 6k2k3 + 6k1 + 12) + ρ2(2k2

2 − 6k1k3 + 6k2 + 12)

+ ρ3(2k2
3 − 6k2k1 + 6k3 + 12)]

≥ 6ν2|k|−1[ρ1(2k2
1 −

3
2(k1 + 1)2 + 6k1 + 12) + ρ2(2k2

2

− 3
2(k2 + 2)2 + 6k2 + 12) + ρ3(2k2

3 −
3
2(k3 + 2)2 + 6k3 + 12)]

= 3ν2|k|−1[ρ1(k2
1 + 12) + ρ2(k2

2 + 12) + ρ3(k2
3 + 12)]

≥ ν2.

The set B For ρ ∈ D2 : we have

|Im Λ1±| > ν2 = δ
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so that

|Ω · k + Λ1+ − Λ1−| ≥ 2ν2 > δ.

For Ω · k + Λ1+ + Λ1− , by conservation of the mass and the momentum, we just need to
estimate this small divisor if 

k1 + k2 + k3 + 2 = 0

−3k1 + 10k2 − 6k3 + 2 = 0

9k1 + 100k2 + 36k3 + 2 = 0

k1, k2, k3 ∈ Z

This equation system has no solution 10.

The set A For Ω · k + Λ2± and Ω · k + Λ2± + Λj again the conservation of the mass
and the momentum give

(∗)


k1 + k2 + k3 + 1 = 0

−3k1 + 10k2 − 6k3 + 2 = 0

9k1 + 100k2 + 36k3 + 4 = 0

(∗∗)


k1 + k2 + k3 + 2 = 0

−3k1 + 10k2 − 6k3 + 2 + j = 0

9k1 + 100k2 + 36k3 + 4 + j2 = 0.

It is easy to see that (∗) has no solution in Z3. For (∗∗) we have j ≡ −k2−2 (mod 3) and
j2 ≡ −k2 − 4 (mod 9). If j ≡ ±1 (mod 3) then we have k2 ≡ 0, 2 (mod 4) and k2 = 4
(mod 9), which can not both happen. If j ≡ 0 (mod 3) then we have k2 ≡ 1 (mod 4) and
k2 = 5 (mod 9), which again can not happen. For Ω · k+ Λ2± −Λj, because of changes of
variables, we have

Λ2+ = Λ2 − g(ρ1, ρ2, ρ3)

Λ2− = Λ2 − g(ρ1, ρ2, ρ3) + 12(ρ2
3 − ρ2

2 + 3ρ1ρ3 − 3ρ2ρ1)

with

g(x, y, z) = µ2
√

81y2z2 + (−18xy + 18xz − 6y2 + 6z2)2 − µ2(−18xy + 18xz − 6y2 + 6z2).

10. with the implicit form of {p, q,m, s, t} in appendix B, we can solve for general p, q,m
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By conservation of the mass we just need to consider the case k1 + k2 + k3 = 0, then

(∇ρ · z)(Ω · k + Λ2± − Λj) =12µ2|k|−1[ρ1(k2
2 + k2

3 − k2k3 − 2k2 + k3)

+ ρ2(k2
1 + k2

3 − k1k3 + 2k1 − k3)

+ ρ3(k2
2 + k2

1 − k2k1 + 3k1 − 3k2)]± (∇ρ · z)g

≈ 12|k|µ2ρ± |(∇ρ · z)g|.

The conservation of the momentum implies−3k1 + 10k2 − 6k3 + 2− j = 0

9k1 + 100k2 + 36k3 + 4− j2 = 0.

The solution k of this equation system that closet to the origin is k = (−975, 195, 780)
and with such a big k, (∇ρ · z)(Ω · k + Λ2± − Λj) is far greater than δ.

2.5 Appendix B

In this appendix, we solve the set B in general2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2.

Let q1 = q − p, m1 = m− p, s1 = s− p, t1 = t− p, it becomesq1 = m1 + s1 + t1

q2
1 = m2

1 + s2
1 + t21.

This give us m1s1 + t1s1 + t1m1 = 0, hence s1 = − m1t1
m1+t1 . Assume more that s1, t1,m1

have no common divisor except ±1. Let k is a prime common divisor of t1 and m1, i.e.
t1 = t2k, m1 = m2k, then s1 = − km2t2

m2+t2 . Since k - s1, we have k | t2 +m2, i.e. t2 = kh−m2,

hence s1 = −m2(kh−m2)
h

= −km2 + m22

h
∈ Z. Let h = (−1)sgn(h)Πpkii , x = Πp[ ki2 ]

i and

y = (−1)sgn(h)Πpki−2[ ki2 ]
i , with pi is prime divisor of h. Then, h = x2y and we need

xy | mťť, i.e. mťť = ryx. By this, s1 = −kxyr + r2y, m1 = kryx, t1 = k2x2y − ryx. Since
s1, t1,m1 have no common divisor except ±1, we have y = ±1. Assume that y = 1, and
kx = n, then s1 = r2 − nr, m1 = nr, t1 = n2 − nr and q1 = n2 − nr + r2. In general, we
have {p, q,m, s, t} = {p, p+ k(n2 − nr + r2), p+ knr, p+ k(r2 − nr), p+ k(n2 − nr)}.
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3
Reducibility of Schrödinger equation on a
Zoll Manifold with unbounded potential

3.1 Introduction

The reducibility problem for Schrödinger equations with quasi-periodic in time pertur-
bation has been intensively studied in recent years. The first results adapting the KAM
technics were due to Kuksin [Kuk93] followed by many results in one dimensional context
(see in particular [BG01 ; LY10 ; GT11]). More recently the techniques were adapted to the
higher dimensional case [EK09 ; EGK16 ; GP19]. To consider unbounded perturbations,
a new strategy has been developed in [BBM14 ; BBM16] using the pseudo-differential
calculus. Without trying to be exhaustive we quote also [FGP ; FP14 ; BM20 ; BBHM18]
regarding KAM theory for quasi-linear PDEs in one space dimension. This technics were
successfully applied for reducibility problems in various cases. For one dimensional li-
near equations with unbounded potential we quote [Bam17 ; BM18 ; FGP18]. In higher
space dimensions with unbounded perturbations only few results exist, one concerning
the quantum harmonic oscillator on Rn with polynomial time dependent perturbation
[BGMR17] and some special examples on the torus Tn [Mon19 ; FGMP19 ; BLM19]. In
all these multi-dimensional examples the unperturbed linear system were integrable in
the classical sense (for instance on the torus Tn, the Laplacian operator commutes with
∂j, j = 1, · · · , n), a fact that will be crucial in the control of the perturbed spectrum
(see (3.1.11) below). In this article we consider a Schrödinger equation on a Zoll manifold
on which the Laplace Beltrami operator ∆g has, in general, no other first integral than
energy (in particular ∆g doesn’t commute with ∂j) .

We first recall that a Zoll manifold of dimension n ∈ N is a compact Riemannian
manifold (Mn, g) such that all the geodesic curves have all the same period T . In this
paper we assume T := 2π. For example the n-dimensional sphere Sn is a Zoll mani-
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fold. We denote by ∆g the positive Laplace-Beltrami operator on (Mn, g) and we define
Hs(Mn) := dom(

√
1 + ∆g)s with s ∈ R the usual scale of Sobolev spaces.

We denote by Smcl (Mn) the space of classical real valued symbols of order m ∈ R on the
cotangent bundle T ∗(Mn) and we define Am the associated class of pseudo-differential ope-
rators (see for instance Hörmander [Hor85] for a definition of pseudo-differential operators
on a manifold see also [BGMR2] in the case of a Zoll manifold).

We consider the following linear Schrödinger equation

i∂tu = ∆gu+ εW (ωt)u , u = u(t, x) , t ∈ R , x ∈ Mn , (3.1.1)

where ε > 0 is a small parameter andW (ωt) is a time dependent unbounded operator from
Hs(Mn) → Hs−δ(Mn) for some δ ≤ 1/2. More precisely we assume that W ∈ C∞(Td;Aδ)
with δ ≤ 1/2, d ≥ 1 and where Td := (R/2πZ)d. So the potential t 7→ W (ωt) depends
on time quasi-periodically with frequency vector ω ∈ Rd and for any ϕ ∈ Td the linear
operator W (ϕ) is a pseudo-differential operator of order δ, i.e. belongs to Aδ.

The purpose of this article is to construct a change of variables that transforms the
non-autonomous equation (3.1.1) into an autonomous equation.

Our main result is the following.

Theorem 3.1.1. Let 0 < α < 1 and δ ∈ R, δ ≤ 1/2. Assume that the map ϕ 7→ W (ϕ, ·) ∈
Aδ is C∞ in ϕ ∈ Td. Then for any s ∈ R, s > n/2 there exists ε0 > 0 and C > 0 such
that, for any 0 < ε ≤ ε0 there is a set Oε ⊂ [1/2, 3/2]d ⊂ Rd with

meas([1/2, 3/2]d \ Oε) ≤ Cεα (3.1.2)

such that the following holds. For any ω ∈ Oε there exists a family of linear isomorphisms
Ψ(ϕ) ∈ L(Hs(Mn)) and a Hermitian operator Z ∈ Aδ commuting with the Laplacian 1 and
satisfying

‖Z‖L(Hs(Mn),Hs−δ(Mn)) ≤ Cε . (3.1.3)

Furthermore

• Ψ(ϕ) is unitary on L2(Mn) ;

1. actually [∆g, Z] = 0 on sphere while on Zoll manifold Z and ∆g can be diagonalized in the same
basis of L2(Mn).
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• for any n
2 < s′ ≤ s and any ω ∈ Oε

‖Ψ(ϕ)− Id‖L(Hs′ (Mn),Hs′−δ(Mn))

+ ‖Ψ(ϕ)−1 − Id‖L(Hs′ (Mn),Hs′−δ(Mn)) ≤ Cε1−α ,

‖Ψ(ϕ)‖L(Hs′ (Mn)) + ‖Ψ(ϕ)−1‖L(Hs′ (Mn)) ≤ 1 + Cε1−α ,

(3.1.4)

• for any n
2 < s′ ≤ s and any ω ∈ Oε the map t 7→ u(t, ·) ∈ Hs′(Mn) solves (3.1.1) if

and only if the map t 7→ v(t, ·) := Ψ(ωt)u(t, ·) solves the autonomous equation

i∂tv = ∆gv + εZ(v) . (3.1.5)

As a consequence of our reducibility result, we get a control of the flow generated by
the (3.1.1) equation in the scale of Sobolev spaces :

Corollary 3.1.2. Let W ∈ C∞(Td;Aδ) with δ ≤ 1/2. Then for any s ∈ R, s > n/2 there
exists ε0 > 0 and C > 0 such that, for any 0 < ε ≤ ε0 there is a set Oε ⊂ [1/2, 3/2]d ⊂ Rd

satisfying (3.1.2) such that for any ω ∈ Oε the flow generated by the (3.1.1) equation is
bounded in Hs(Mn).
More precisely if u0 ∈ Hs(Mn) then there exists a unique solution u ∈ C1

(
R ; Hs(Mn)

)
of

(3.1.1) such that u(0) = u0. Moreover, u is almost-periodic in time and satisfies

(1− εC)‖u0‖Hs ≤ ‖u(t)‖Hs ≤ (1 + εC)‖u0‖Hs , ∀ t ∈ R , (3.1.6)

for some C = C(s) > 0.

Following the pioneering work [BBM14] we prove Theorem 3.1.1 in two steps :
— The regularization step where we use the pseudo-differential calculus (and in parti-

cular the technics developed in [BGMR2]) to transform equation (3.1.1) in a system
with a smoothing perturbation, still depending on time ;

— The KAM step where we use a KAM procedure (going back to [Kuk93] but using
recent development in [BBHM18]) on infinite dimensional matrices to eliminate
the time in the new system.

The same strategy was recently successfully applied in [BLM19] to prove the reducibility
of non-resonant transport equation on the torus Tn. Our main contribution consists in
merging these two recent technics in the context of linear Schrödinger equation on Zoll
manifold which, in contrast to the transport equation on the torus, is not an integrable
system.
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Our result has to be compared with the recent work of two of us [FG19] where we
consider a Schrödinger equation on the sphere Sn with a quasi-periodic in time odd per-
turbations of order < 1/2. In that case a more standard approach following [GP16] was
possible, in particular our analysis did not require the pseudo-differential calculus. Of
course this new paper is a generalization in the sense that we replaced the sphere by a
Zoll manifold and we are able to treat perturbations of order 1/2. But we want to stress
that the elimination of the potential symmetry hypothesis may be even more important
if we look at generalization to the non-linear case. Actually a natural strategy to solve
the non linear Schrödinger eqation

i∂tu = ∆gu+mu+ ε|u|2u , u = u(t, x) , t ∈ R , x ∈ Mn , (3.1.7)

consists in a Newton scheme : we linearize the equation (3.1.7) around an approximate
solution u0, we solve this linear equation to obtain u1 and we linearize (3.1.7) around u1

and we iterate. Doing so we have to solve linear Schrödinger equation of the kind 2 (3.1.1)
where W (ωt) = |u0(t)|2 which is clearly not an odd function.
As a matter of fact the existence of quasi-periodic solutions of the forced non linear
Schrödinger equation

i∂tu = ∆gu+mu = εf(ωt, x, u) , u = u(t, x) , t ∈ R , x ∈ Sn (3.1.8)

were already addressed by Berti-Corsi-Procesi in [BCP15]. They proved that for ω in a
large Cantor’s set and for a Hamiltonian and smooth forced nonlinear perturbation f

and ε small enough, there is a smooth quasi-periodic solution of (3.1.8). See also [BP11]
by Berti-Bolle-Procesi in which the authors prove existence of periodic solutions on Zoll
manifolds, we also mention [CHP15] where a KAM approach was considered in the context
of Lie groups with symmetries. An adaptation of our work to the context of systems of
linear Schrödinger equations (see previous footnote) could prove that this solution is
linearly stable. We shall remark that such an adaptation is not trivial at all, and some
new ideas are required.

We list here the main issues :
• as already said the linearization of (3.1.8) give rise to a linear operators acting on the
couple

[
u
u

]
, i.e. and equation of the form

i∂tu = ∆gu+ εW1(ωt)u+ εW2(ωt)u , (3.1.9)

2. In fact the linearization of (3.1.7) gives rise to a system of linear equations for u and u.
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with Wi, i = 1, 2 operators similar to W in (3.1.1). As first step of the regularization
procedure, one needs to block diagonalize, up to smoothing remainders, the operator in
the r.h.s. of (3.1.9) in the spirit of [FI18], [FI19], i.e. one needs to “eliminate” W2. This is
just a technical point which can be addressed by extending the arguments of section 3.3.

• A second difficulty concerns the pseudo-differential calculus on Zoll manifold which
is more difficult and more implicit than the pseudo-differential calculus on the torus.
In particular the estimates on the semi-norms of the symbols (see the estimates under
Definition 3.2.1) are not sharp in terms of the regularity required on symbols. Actually
on tori one can define, explicitly a semi-norm satisfying “tame” estimates. We refer, for
instance, to section 2 in [FGP18].

• A major difficulty (which is linked to the item above) regards the minimal regularity
one needs on the potential W (ωt) in (3.1.1) (or W1,W2 in (3.1.9)). Theorem 3.3.1 shows
that, in order to prove reducibility in Hs(Mn), s > n/2, the potential W (ωt) must be in
Hp, both in time and space, for some p� 1 depending on s. This is a consequence of the
use of pseudo-differential calculus for the regularization. In the proof of Theorem 3.1.1
in section 3.5 it turns out that p � 2s. In the case of this paper this is not a problem
since the potential is C∞. In the non linear case, the regularity of the potential depends
on the approximate solution of the previous step and hence have only finite regularity.
Moreover the requirement p � 2s is not compatible with the convergence of the Nash-
Moser scheme. We notice that in 1d this problem can be overcome (see for instance
[BBHM18] or [FGP18]) since we need only few regularization steps and furthermore we
can use the so called Poschel’s Lemma (see Lemma A.1 in [Posc96]). It is not clear at the
moment how to overcome this problem in a multi-dimensionnal context.

• Another serious problem is about the small divisors. It is know that a KAM reducibility
scheme requires some non resonance condition on the eigenvalues of the linear operator.
We prove such non resonance conditions, for many frequency vector ω, in section 3.4.1. It
turns out that the eigenvalues of the operator in the right hand side of (3.1.1) have the
expansion

µk,j = Λk,j + µ
(1)
k,j + µ

(2)
k,j , k ∈ N , j = 1, . . . , dk ,

where Λk,j are the eigenvalues of ∆g (see (3.2.5)), dk the dimension of the corresponding
eigenspace, and

µ
(1)
k,j ∼ ε|k|δ , µ

(2)
k,j ∼ ε ,
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with δ the order of the pseudo-differential operator W (ωt). In the measure estimate
Lemma 3.4.3 it is fundamental that the unbounded corrections µ(1)

k,j do not depend on
the parameters ω ; as a consequence the Lipschitz norm of the eigenvalues µk,j is bounded
in k. In our case this fact is true since the corrections µ(1)

k,j are obtained form an averaging
procedure on the potential W , which, at the beginning, does not depend explicitly on ω.
More precisely it depends on ω only through the variable ϕ = ωt. In the non linear case
this is no more true, since W would depend on ω also through the function on which
we linearized the equation (3.1.8). This problem could be overcome by considering non
linear equation like (3.1.8) with bounded non linearity, in order to obtain a linear bounded
operator when linearizing (i.e. δ ≤ 0).

In view of the issues discussed above the KAM result for a non linear Schrödinger
equation with unbounded non linearities on Zoll manifold is out of reach for the moment.
Nevertheless we believe that this paper represent an important milestone in that direction.

Scheme of the proof.
As said above the proof consists in a regularization step (section 3.3) and a KAM step
(section 3.4). In section 3.5 we merge the two procedures to prove Theorem 3.1.1.

In the regularization step we prove that we can transform (by using a symplectic map :
u = Φ(v)) the original Schrödinger equation (3.1.1) in a new one

i∂tv = ∆gv + ε(Z +R(ωt))v , (3.1.10)

where Z is a pseudo-differential operator of order δ independent on time and commuting
with ∆g and R is a ρ-regularizing operator in L(Hs(Mn), Hs+ρ(Mn)) with ρ arbitrary large.
It is based on a normal form procedure developed in [BGMR2]. The crucial fact is that
we can write

√
∆g = K0−Q where Q is a pseudo-differential operator of order −1 chosen

(following [Col79]) in such a way the spectrum of K0 is included in N+λ for some constant
λ ∈ R+. This property makes the K0 flow periodic and motivates us to use it to average
the original Schrödinger operator : if A is a pseudo-differential operator then its average
with respect to the flow of K0 is given by 〈A〉 =

∫ 2π
0 e−iτK0AeiτK0dτ . This idea was already

used in a pioneering work of Weinstein [Wein77].
Let us sketch the procedure. Let us write H = H0 + V (t) where H0 = ∆g and V (t) =

εW (ωt) is a pseudo-differential operator of order δ (for this averaging procedure we do
not need to assume that V depends quasi-periodically on time neither than V is small).
We conjugate the flow of H by a Lie transform eiX(t) where X(t) is a pseudo-differential
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operator of order δ− 1 : if iu̇ = H(t)u, in the new variable v = eiX(t)u we get iv̇ = H+(t)v
with (see subsection 3.2.4)

H+ = H0 + i[X,H0] + V + i[X, V ]− 1
2[X, [X,H0]] +R .

Using the pseudo-differential calculus we get that i[X, V ]− 1
2 [X, [X,H0]] is of order 2δ−2

and that the remainder term R is still of higher order. So if we are able to solve the
following homological equation (and we show in Lemma 3.3.2 how to do it)

i[X,H0] + V = 〈V 〉+ order δ − 1 ,

we conclude that H+ = H0 + 〈V (t)〉+ order δ − ν with ν = min(1, 2− δ). Thus if δ < 2
we have a better equation.
In [BGMR2] such a procedure was iterated to obtain an equivalent equation like (3.1.10)
but with Z still depending on time and this was used to prove that we can control the
Sobolev norms of the solutions of (3.1.1) as follows 3

∀s > n/2 , ∀ν > 0 , ∃Cs,ν such that ‖u(t)‖Hs ≤ Cs,ν(1 + t)ν .

In this paper, we want more : we want to eliminate totally the time in order to obtain
(3.1.6). So we alternate the averaging procedure with a time elimination procedure based
on the use of the operator (3.3.27) which solves the homological equation (3.3.28) and
thus the Lie transform ΦT = eiT will kill the dependence on time in Z = 〈V 〉 (see
Lemma 3.3.4). This time elimination procedure requires a non resonance hypothesis on
the frequency vector ω (see (3.3.2)) and requires δ < 1.

Throughout section 3.3 we work at the pseudo-differential level and the main difficulty
is to precisely control the flow generated by pseudo-differential operator of positive order
(see Appendix 3.6.3 and in particular hypothesis (3.6.13)). We notice that all this section
holds true upon the hypothesis δ < 1.

In the KAM step we kill the remainder term R in (3.1.10) which still depends on time
but is now a regularizing operator. As in [BBHM18] (see also [Mon19] and [BLM19]) we
use a reducibility scheme where the regularizing property of the perturbation compensates
the bad non resonance estimates satisfied by the eigenvalues of ∆g+εZ (see (3.4.13)). The
condition δ ≤ 1/2 is used to ensure that condition (3.4.13) is preserved during the KAM
iteration as long as a small part of the parameters ω are excised (see Lemma (3.4.3) where

3. Notice that this result holds true for any pseudo-differential perturbation of order δ < 2 depending
smoothly on time.
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κ = 1− 2δ). This constraint in the KAM procedure was not necessary in [BLM19] (they
obtain the reducibility for perturbation of order 1 − e for any e > 0 when the transport
operator is of order 1) essentially because the unperturbed system is integrable : in the
context of the transport equation on Tn, H0 = ν · ∇ with ν ∈ Rn and thus H0 commutes
with ∂m, m = 1, · · · , n and the same is true for H0 + εZ obtained after the regularization
procedure. So Z is not depending on x and H0 + εZ is still diagonal in Fourier variables.
Thus the perturbed eigenvalues have the form,

λj = λ
(0)
j + z(j) + remainder , (3.1.11)

where z is the symbol of Z (see formula (4.13) in [BLM19]). In our case we just know that
Z commutes with ∆g and thus we can just prove that the spectrum of ∆g + V preserves
the cluster structure inherited from ∆g on a Zoll manifold. That means that, once written
in the laplacian diagonalization basis, the matrix of Z is block-diagonal but not diagonal
as in [BLM19]. By the way throughout section 3.4 we work at the matrix level.
As usual the homological equation (3.4.16) is solved blockwise and it is well known that
the increasing size of the blocks may generate loss of regularity. In [EK10] Eliasson-Kuksin
used geometrical arguments (related to a Bourgain’s Lemma, see Lemma 8.1 in [Bou99])
to control the size of the blocks, in [GP16] or [FG19] authors used a different argument
introduced by Delort-Szeftel in [DS04] (see Lemma 4.3 in [GP16]). In this paper, as a
consequence of the regularization step, we can solve the homological equation with loss
of regularity and thus this step is simplified.
On the other hand the KAM procedure of [BBHM18] requires a tame property to deal
with product of matrices. This motivates the definition of the space Ms of matrices
with s-decay norm (see Definition 3.2.8) which was first introduced in [BCP15] (see also
[BP11]). The tame property for the s-decay norm is stated in Lemma 3.2.11. It is crucial
to obtain (3.4.38) and (3.4.39) which express the control of the new remainder R+ after
one KAM step in two different norms, a low s-decay norm and a high s+ b-decay norm.
The parameter N measures the troncature in the Fourier variable associate to the angle
ϕ = ωt and in the off-diagonal distance in the matrix (see (3.4.20)). When iterating the
procedure, this special form of estimates (3.4.38)-(3.4.39) allows to obtain a convergent
scheme for the sequence of remainders Rk when choosing conveniently the sequence of
troncature parameter Nk.

Section 3.3 and section 3.4 are independent and in fact are at different levels : while all
section 3.3 takes place in the context of pseudo-differential operators, all section 3.4 takes
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place at matrix level. In section 3.5 we merge the two sections and for that we need the
Lemma 3.2.14 which makes the link between ρ-smoothing operators and β- regularizing
matrices.

3.2 Functional setting

In this section we introduce the space of functions, sequences, linear operators and
pseudo differential operators we shall use along the paper.

3.2.1 Spectral decomposition

Following Theorem 1 of Colin de Verdière [Col79], we introduceQ the pseudo-differential
operator of order −1, commuting with ∆g such that, setting

K0 :=
√

∆g +Q , (3.2.1)

we have spec(K0) ⊂ N + λ for some constant λ ∈ R+. We notice that our original
Schrödinger operator H(t) := ∆g + εW (ωt) reads

H(t) = ∆g + εW (ωt) = K2
0 +Q0 + εW (ωt) (3.2.2)

where Q0 = −2Q
√

∆g −Q2 is a pseudo differential operators of order 0.

Let us denote by λk the eigenvalue of K0 and by Ek be the eigenspace associated to λk.
We have

λk ∼ k , dimEk := dk ≤ kn−1 . (3.2.3)

We denote by

Φ[k](x) := {Φk,m(x) ,m = 1, . . . , dk} (3.2.4)

an orthonormal basis of Ek. By formula (3.2.1) we also deduce that ∆g := K2
0 +Q0 where

Q0 is a pseudo differential operator commuting both with the Laplacian ∆g and K0. For
this reason K0 and ∆g diagonalize simultaneously, hence

∆gΦk,j = Λk,jΦk,j , k ∈ N , j = 1, . . . , dk , (3.2.5)
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with

Λk,j = λ2
k + ηk,j , |ηk,j| . 1 .

In particular there exists c0 > 0 such that

Λk,j ≥ c0k
2 , |Λk,j − Λk′,j′| ≥ c0(k + k′) , ∀ k 6= k′ , (3.2.6)

and for any j = 1, . . . , dk, j′ = 1, . . . , dk′ .

3.2.2 Space of functions and sequences

Using the spectral decomposition of the space L2(Mn) = ⊕k∈NEk, any function u ∈
L2(Mn) can be written as

u(x) =
∑
k∈N

dk∑
m=1

zk,mΦk,m(x) =
∑
k∈N

z[k] · Φ[k](x) ,

z[k] = (zk,1, · · · , zk,dk) ∈ Cdk ,

(3.2.7)

where ′′·′′ denotes the usual scalar product in Rdk . We denote by ΠEk the L2-projector on
the eigenspace Ek, i.e., for any k ∈ N,

(ΠEku)(x) = z[k] · Φ[k](x) ⇒ (
√
−∆ +Q)ΠEku = λkΠEku . (3.2.8)

For s ≥ 0, we define the (Sobolev) scale of Hilbert sequence spaces

hs :=
{
z ={z[k]}k∈N , z[k] ∈ Cdk : ‖z‖2

hs :=
∑
k∈N
〈k〉2s‖z[k]‖2 < +∞

}
, (3.2.9)

where 〈k〉 :=
√

1 + |k|2 and ‖ · ‖ denotes the L2(Cdk)-norm. By a slight abuse of notation
we define the operator ΠEk on sequences as ΠEkz = z[k] for any z ∈ hs and k ∈ N.
We notice that the weight 〈k〉 we use in the norm in (3.2.9) is related to the eigenvalues
of K0, indeed

c|k| ≤ λk ≤ C|k| (3.2.10)

for some suitable constants 0 < c ≤ C.
As a consequence the space

Hs = Hs(Mn) := {u(x) =
∑
k∈N

z[k] · Φ[k](x) | z ∈ hs} , (3.2.11)
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is the usual Sobolev space Hs = dom((K0)s) = dom(
√

1 + ∆g)s and ‖u‖Hs := ‖z‖hs is
equivalent to the standard Sobolev norm ‖u‖Hs ∼ ‖Ks

0u‖L2(Mn). Along the paper we shall
write ‖ · ‖Hs instead of ‖ · ‖hs . Given s, s′ ∈ R we denote by L(Hs, Hs′) the space of linear
bounded operators form Hs to Hs′ endowed with the standard operator norm ‖·‖L(Hs,Hs′ ).

In the paper we shall also deal with quasi periodic in time functions R×Mn 3 (t, x) 7→
u(ωt, x) where ω ∈ Rd is a frequency vector and u is periodic in its first variable. To this
end we introduce the space Hr(Td;Hs(Mn)) defined as the set of functions u : Td 3 ϕ 7→
Hs(Mn) which are Sobolev in ϕ ∈ Td with values in Hs(Mn).

Functions in Hr(Td;Hs(Mn)) can be expanded, using the standard Fourier theory, as

u(ϕ, x) =
∑

`∈Zd,k∈N
z[k](l) · Φ[k](x)eil·ϕ , z[k](l) ∈ Cdk , (3.2.12)

where eil·ϕΦk,m(x), l ∈ Zd, k ∈ N, m = 1, . . . , dk, is an orthogonal basis of L2(Td× Mn;C).
We define space of sequence (recall (3.2.9))

hs,r :=
{
z = {z[k](l)}l∈Zd,k∈N , z[k] ∈ Cdk : ‖z‖2

hs,r :=
∑
l∈Zd
〈l〉2r‖z(l)‖2

hs < +∞
}
. (3.2.13)

Along the paper we shall also consider the space, for p ∈ N with p > (d+ n)/2,

`p :=
⋂

r>d/2,s>n/2
s+r=p

hs,r . (3.2.14)

We endow the space `p with the norm

‖z‖2
`p :=

∑
l∈Zd,k∈N

〈l, k〉2p‖z[k](l)‖2 . (3.2.15)

Lipschitz norm. Consider a compact subset O of Rd, d ≥ 1. For functions f : O → E,
with (E, ‖ · ‖E) some Banach space, we define the sup norm and the lipschitz semi-norm
as

‖f‖supE := ‖f‖sup,OE := sup
ω∈O
‖f(ω)‖E ,

‖f‖lipE := ‖f‖lip,OE := sup
ω1,ω2∈O
ω1 6=ω2

‖f(ω1)− f(ω2)‖E
|ω1 − ω2|

.
(3.2.16)

For any γ > 0 we introduce the weighted Lipschitz norms

‖f‖γ,OE := ‖f‖sup,OE + γ‖f‖lip,OE . (3.2.17)
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We finally define the space of sequences

hγ,Os,r :=
{
O 3 ω 7→ z(ω) ∈ hs,r : ‖z‖γ,Ohs,r < +∞

}
, (3.2.18)

and consequently the space (recall (3.2.14))

`γ,Op :=
⋂

s+r=p
hγ,Os,r , (3.2.19)

endowed with the norm

‖z‖γ,O`p := ‖z‖sup,O`p
+ γ‖z‖lip,O`p

. (3.2.20)

Notation. We shall use the notation A . B to denote A ≤ CB where C is a positive
constant depending on parameters fixed once for all : d, n, δ. We shall use the notation
A ≤s B to denote A ≤ C(s)B where C(s) > 0 is a constant depending also on s.

3.2.3 Pseudo-differential operators

In this paper we consider operators which are pseudo-differential. Here we recall some
fundamental properties of operators in Am which are collected in [BGMR2]. First Am is
a Fréchet space for a family of filtering semi-norms {Nm,p}p≥1 such that the embedding
(recall (3.2.11)) Am ↪→ ⋂

s∈R L(Hs, Hs−m) is continuous. We can also choose the semi-
norms in an increasing way, i.e. Nm,p(A) ≤ Nm,p+1(A) for p ≥ 1 and A ∈ Am. To state
the other properties we need to introduce the following definition.

Definition 3.2.1. Let S ∈ L(H0). We say that S is ρ-smoothing, and we will write
S ∈ Rρ, if S can be extended to an operator in L(Hs, Hs+ρ) for any s ∈ R. When this is
true for every ρ ≥ 0, we say that S is a smoothing operator.

Then we have the following properties concerning the class Am equipped with the semi-
norms {Nm,p}p≥1 :

(i) let A ∈ Am, for any s ∈ R there exist constants C = C(m, s) > 0, p = p(m, s) ≥ 1
which are increasing functions 4 of s such that

‖A‖L(Hs,Hs−m) ≤ CNm,p(A) . (3.2.21)

4. This fact is quite evident in the case of pseudo-differential operators on Rn and thus extends to
pseudo-differential operators on Mn by passing to local charts.
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(ii) Let A ∈ Am, B ∈ An then AB ∈ Am+n. Furthermore for any ρ ≥ 0 there exists S
a ρ-smoothing operator such that for any p ≥ 1 for any s ∈ R there are constants
C = C(m,n, p, s, ρ) > 0, q = q(m,n, p, s, ρ) ≥ p such that

Nm+n,p(AB − S) ≤ CNm,q(A)Nn,q(B) , (3.2.22)

‖S‖L(Hs,Hs+ρ) ≤ CNm,q(A)Nn,q(B) . (3.2.23)

(iii) Let A ∈ Am, B ∈ An then [A,B] ∈ Am+n−1. Furthermore for any ρ ≥ 0 there
exists S a ρ-smoothing operator such that for any p ≥ 1 for any s ∈ R there are
constants C = C(m,n, p, s, ρ) > 0, q = q(m,n, p, s, ρ) ≥ p such that

Nm+n−1,p([A,B]− S) ≤ CNm,q(A)Nn,q(B) , (3.2.24)

‖S‖L(Hs,Hs+ρ) ≤ CNm,q(A)Nn,q(B) . (3.2.25)

(iv) The map τ → A(τ) := e−iτK0AeiτK0 ∈ C0
b (R,Am). Furthermore for any ρ ≥ 0

there exists S a ρ-smoothing operator such that for any p ≥ 1 for any s ∈ R there
are constants C = C(m,n, p, s, ρ) > 0, q = q(m,n, p, s, ρ) ≥ p such that

Nm+n−1,p(e−iτK0AeiτK0 − S) ≤ CNm,q(A) , (3.2.26)

‖S‖L(Hs,Hs+ρ) ≤ CNm,q(A) . (3.2.27)

Remark 3.2.2. In (ii), (iii) and (iv) the smoothing correction does not play an important
role since it can be chosen as regularizing as one want. In the KAM scheme the level of
regularization will be fix once for all. Thus, by a slight abuse of notation, we will often
omit in the following the smoothing correction and will just write

Nm+n,p(AB) ≤ CNm,q(A)Nn,q(B) , (3.2.28)

Nm+n−1,p([A,B]) ≤ CNm,q(A)Nn,q(B) . (3.2.29)

We shall also consider Hr-mappings Td 3 ϕ 7→ A(ϕ) with A(ϕ) a symmetric pseudo-
differential operators of order m in Am. We can then decompose A in Fourier writing

A(ϕ) =
∑
l∈Zd

A(l)eil·ϕ (3.2.30)
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with A(l) a pseudo-differential operators of order m in Am. We give the following defini-
tion.

Definition 3.2.3. Let m ∈ R, r > d/2. We denote by Am,s the Fréchet space of mapping
Td 3 ϕ 7→ A = A(ϕ) ∈ Am that are Hr on Td. We endow Am,r with the family of
semi-norms (

Nm,r,p(A)
)2

:=
∑
l∈Zd
〈l〉2rN 2

m,p(A(l)) , p ≥ 1 . (3.2.31)

Consider a Lipschitz family O 3 ω 7→ A(ω) ∈ Am,r where O is a compact subset of Rd,
d ≥ 1. For γ > 0 we define the Lipschitz semi-norms (recall (3.2.16)) as

N γ,O
m,r,p(A) := N sup,O

m,r,p (A) + γN lip,O
m,r,p(A) (3.2.32)

We denote by Aγ,Om,r the Fréchet space of families of pseudo differential operators A(ω) ∈
Am,r endowed with with the family of semi-norms {N γ,O

m,r,p}p≥1.

Similarly we define the corresponding class of ρ-smoothing operators R(ω, ϕ), Hr in ϕ

and Lipschitz in ω.

Definition 3.2.4. Let ρ ∈ R and r > d/2. We denote by Rρ,r the Fréchet space of ρ-
smoothing Hr-mapping Td 3 ϕ 7→ R(ϕ) ∈ L(Hs, Hs+ρ) for all s ∈ R endowed with the
family of semi-norms

|R|2ρ,r,s :=
∑
l∈Zd
〈l〉2r‖R(l)‖2

L(Hs,Hs+ρ) , s ∈ R . (3.2.33)

Consider a family O 3 ω 7→ R(ω) ∈ Rρ,r where O is a compact subset of Rd, d ≥ 1. For
γ > 0 we denote by Rγ,O

ρ,r the Fréchet space of families of pseudo differential operators
R(ω) ∈ Rρ,r endowed with with the family of semi-norms {N γ,O

ρ,r,p}p∈N defined by (recall
(3.2.16))

|R|γ,Oρ,r,p := |R|sup,Oρ,r,p + γ|R|lip,Oρ,r,p . (3.2.34)

We notice that by (3.2.21) we have Am,r ⊂ R−m,r.

Lemma 3.2.5. Let r > d/2, m, ρ ∈ R and consider R ∈ Rγ,O
ρ,r and A ∈ Aγ,Om,r. Then, for

any s ∈ R, there are C = C(s, r) > 0, p(s,m) > 0 such that

‖Ah‖hγ,Os−m,r ≤ CN γ,O
m,r,p(A)‖h‖hγ,Os,r , (3.2.35)

‖Rh‖hγ,Os+ρ,r
≤ C|R|γ,Oρ,r,s‖h‖hγ,Os,r , (3.2.36)
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for any h ∈ hγ,Os,r .

Proof. We start by proving the (3.2.36) for the norm ‖ · ‖hs+ρ,r . Recalling (3.2.13) we have

‖Rh‖hs+ρ,r ≤
∑
l∈Zd
〈l〉2r

( ∑
l′∈Zd
‖R(l − l′)h(l′)‖Hs+ρ

)2

≤
∑
l∈Zd
〈l〉2r

( ∑
l′∈Zd
‖R(l − l′)‖L(Hs;Hs+ρ)‖h(l′)‖Hs

)2

≤
∑
l∈Zd

( ∑
|l′|> 1

2 |l|

〈l − l′〉r‖R(l − l′)‖L(Hs;Hs+ρ)〈l′〉r‖h(l′)‖Hs

〈l〉r

〈l′〉r
)2

+
∑
l∈Zd

( ∑
|l′|≤ 1

2 |l|

〈l − l′〉r‖R(l − l′)‖L(Hs;Hs+ρ)〈l′〉r‖h(l′)‖Hs

〈l〉r

〈l − l′〉r
)2
.

Hence, by using the Cauchy-Schwartz inequality, we get

‖Rh‖hs+ρ,r ≤ C
∑

l,l′∈Zd
〈l − l′〉2r‖R(l − l′)‖2

L(Hs;Hs+ρ)〈l′〉2r‖h(l′)‖2
Hs ≤ C‖h‖2

hs,r |R|
2
ρ,r,s ,

which implies the (3.2.36) for the norm ‖ · ‖hs+ρ,r . The Lipschitz bound on the norm
‖ · ‖γ,Ohs+ρ,r and the (3.2.35) follows similarly.

In the following Lemma we state some properties and estimates 5 that will be proved
in Appendix 3.6.1.

Lemma 3.2.6. Let A, B are pseudo-differential operators in Aγ,Om,r and Aγ,On,r . For any
p ≥ 1 there exist constants C = C(r,m, n, p) and q = q(r,m, n, p) which are increasing in
p such that
(i) AB,BA ∈ Aγ,Om+n,r and

N γ,O
m+n,r,p(AB) , N γ,O

m+n,r,p(BA) ≤ CN γ,O
m,r,q(A)N γ,O

n,r,q(B) . (3.2.37)

(ii) [A,B] ∈ Aγ,Om+n−1,r and

N γ,O
m+n−1,r,p([A,B]) ≤ CN γ,O

m,r,q(A)N γ,O
n,r,q(B) . (3.2.38)

5. Estimates (3.2.37), (3.2.38) and (3.2.42) are written taking into account Remark 3.2.2. For instance
(3.2.38) should be interpreted as : for any ρ ≥ 0 there exists S a ρ-smoothing operator such that for any
p ≥ 1 for any s ∈ R there are constants C = C(m,n, p, r, ρ) > 0, q = q(m,n, p, r, ρ) ≥ 1 such that

N γ,O
m+n−1,r,p([A,B]− S) ≤ CN γ,O

m,r,q(A)N γ,O
n,r,q(B) , |S|γ,Oρ,s,p ≤ CN γ,O

m,r,q(A)N γ,O
n,r,q(B) .
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(iii) Let ω ∈ Rd, then ω · ∂ϕA ∈ Am,r−1 and

N γ,O
m,r−1,p(ω · ∂ϕA) ≤ CN γ,O

m,r,p(A) . (3.2.39)

If furthermore ω satisfies, for some α > d− 1,

|ω · l| > γ|l|−α , ∀ l ∈ Zd \ {0} , (3.2.40)

and r − 2α− 1 > d/2 then (ω · ∂ϕ)−1A ∈ Am,r−(2α+1) and

N γ,O
m,r−(2α+1),p((ω · ∂ϕ)−1A) ≤ Cγ−1N γ,O

m,r,p(A) . (3.2.41)

(iv) For any τ ∈ [0, 2π] we have e−iτK0AeiτK0 ∈ Aγ,Om,r and

N γ,O
m,r,p(e−iτK0AeiτK0) ≤ CN γ,O

m,r,q(A) . (3.2.42)

3.2.4 Conjugation rules

Let ω · ∂ϕ be the diagonal operator acting on sequences z ∈ `s,r (see (3.2.13)) defined
by

ω · ∂ϕz := diagl∈Zd,k∈N(iω · l)z = (iω · lz[k](l))l∈Zd,k∈N . (3.2.43)

Consider an operator of the form

L := L(ϕ, ω) := ω · ∂ϕ + iM(ϕ) , (3.2.44)

where M(ϕ) is some map Td 3 ϕ 7→ M = M(ϕ) ∈ L(Hs;Hs+m), for some m ∈ R. We
shall study how the operator L in (3.2.44) conjugates under the map ΦS defined as

ΦS := (Φτ
S)|τ=1 , Φτ

S := eiτS =
∞∑
p=0

1
p! (iτS)p , (3.2.45)

where S(ϕ) is some map Td 3 ϕ 7→ S = S(ϕ) ∈ L(Hs;Hs+m′), for some m′ ∈ R. For the
well-posedness of a map of the form (3.2.45) we refer to Lemma 3.6.6 in Appendix 3.6.3.

By using the Lie series expansions we have

L+ = L+(ϕ) := ΦS ◦ L ◦ Φ−1
S = ω · ∂ϕ + iM+(ϕ) , (3.2.46)
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where M+(ϕ) = M+
1 (ϕ) +M+

2 (ϕ) with, for any q ∈ N,

iM+
1 (ϕ) := ΦS ◦ iM ◦ Φ−1

S = iM +
q∑
p=1

1
p!adpiS(iM) + 1

q!

∫ 1

0
(1− τ)qΦτ

Sadq+1
iS (iM)Φ−τS dτ ,

(3.2.47)
and

iM+
2 (ϕ) := ΦS ◦ ω · ∂ϕ ◦ Φ−1

S − ω · ∂ϕ

= −iω · ∂ϕS −
q∑
p=2

1
p!adp−1

iS (iω · ∂ϕS) + 1
q!

∫ 1

0
(1− τ)qΦτ

SadqiS(iω · ∂ϕS)Φ−τS dτ ,

(3.2.48)
where we defined ad0

S(M) = M and

adpS(M) = adp−1
S ([S,M ]) , [S,M ] = SM −MS . (3.2.49)

Remark 3.2.7. (Hamiltonian structure) We remark that, if the operator S in and
M are Hermitian, then by Lemma 2.9 in [FG19], we have that also the operator M+ in
(3.2.46) is Hermitian.

3.2.5 Linear operators and matrices.

According to the orthogonal splitting

L2(Mn) =
⊕
k∈N

Ek,

we identify a linear operator acting on L2(Mn) with its matrix representation A :=(
A

[k′]
[k]

)
k,k′∈N

in L(h0) (recall (3.2.9)) with blocks A[k′]
[k] ∈ L(Ek′ ;Ek). Notice that each

block A[k′]
[k] is a dk × dk′ :

A
[k′]
[k] :=

(
Ak
′,j′

k,j

)
j=1,...,dk,
j′=1,...,dk′

. (3.2.50)

The action of the operator A on functions u(x) as in (3.2.7) of the space variable in L2(Mn)
is given by

(Au)(x) =
∑
k∈N

(Az)[k] · Φ[k](x) , z[k] ∈ Cdk , (Az)[k] =
∑
j∈N

A
[j]
[k]z[j] . (3.2.51)
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In this paper we also consider regular ϕ-dependent families of linear operators

Td 3 ϕ 7→ A = A(ϕ) =
∑
l∈Zd

A(l)eil·ϕ (3.2.52)

where A(l) are linear operators in L(Hs, Hs′), for any l ∈ Zd . We also regard A as an
operator acting on functions u(ϕ, x) of space-time as (Au)(ϕ, x) = (A(ϕ)u(ϕ, ·))(x). More
precisely, expanding u as in (3.2.12), we have

(Au)(ϕ, x) =
∑

l∈Zd,k∈N
(Az)[k](l)eil·ϕΦ[k](x) ,

(Az)[k](l) =
∑

p∈Zd,k′∈N
A

[k′]
[k] (l − p)z[k′](p) .

(3.2.53)

Relation (3.2.51) shows that, in order to define operators that conserve the Hs regularity
in space we need to assume some decay of ‖A[k′]

[k] ‖2
L(L2) with respect to |k − k′|. That the

reason for the following definition first introduced in [BP11] for (i) and in [BCP15] for
(ii).

Definition 3.2.8. (s-decay norm).
(i) We define the s-decay norm of a matrix A ∈ L(Hs;Hs) as

|A|2s :=
∑
h∈N
〈h〉2s sup

|k−k′|=h
‖A[k′]

[k] ‖
2
L(L2) (3.2.54)

where ‖ · ‖L(L2) is the L2-operator norm in L(Ek′ , Ek).
(ii) Consider a map Td 3 ϕ 7→ A = A(ϕ) ∈ L(Hs;Hs). We define its decay norm as

[[A]]2s :=
∑

l∈Zd,h∈N
〈l, h〉2s sup

|k−k′|=h
‖A[k′]

[k] (l)‖2
L(L2) . (3.2.55)

We denote byMs the space matrices with finite s-decay norm [[·]]s.
(iii) Consider a Lipschitz family O 3 ω 7→ A(ω) ∈ Ms where O is a compact subset of
Rd, d ≥ 1. For γ > 0 we define the Lipschitz decay norm as

[[A]]γ,Os := [[A]]sup,Os + γ[[A]]lip,Os

= sup
ω∈O

[[A(ω)]]s + γ sup
ω1,ω2∈O
ω1 6=ω2

[[A(ω1)− A(ω2)]]s
|ω1 − ω2|

.
(3.2.56)

We denote by Mγ,O
s the space of families of Lipschitz mapping ω 7→ A(ω) ∈ Ms with

finite | · |γ,Os -norm.

Remark 3.2.9. The s-decay norm (3.2.55) link the regularity in space and the regularity
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in ϕ (i.e. in time). In fact for s integer we have

Ms = ∩p+q≤sHp(Td,Ldec(Hq, Hq)) ,

where Ldec(Hq, Hq) are bounded operator from Hq to Hq with finite | · |s-norm (see
(3.2.54)).

Remark 3.2.10. Notice that, if the s-decay norm of a matrix A is finite, then

‖A[k′]
[k] ‖L(L2) ≤ C(s)[[A]]s〈k − k′〉−s .

We have the following fundamental lemma stating in particular that the s-decay norm
is tame (see (3.2.58)). This tame property will be crucial in the KAM procedure.

Lemma 3.2.11. For any s > (d+ n)/2 the following holds :
(i) there is C = C(s) > 0 such that (recall (3.2.14),(3.2.15))

‖Az‖`s ≤ C[[A]]s‖z‖`s0
+ C[[A]]s0‖z‖`s , (3.2.57)

for any h ∈ `s ;
(ii) there is C = C(s) > 0 such that

[[AB]]s ≤ C[[A]]s[[B]]s0 + C[[A]]s0 [[B]]s ; (3.2.58)

(iii) for N > 0 we define (recall (3.2.52)) the matrix ΠNA as

(ΠNA)[k′]
[k] (l) :=


A

[k′]
[k] (l) , l ∈ Zd , k, k′ ∈ N ,

|l| ≤ N ,

|k − k′| ≤ N ,

0 , otherwise

(3.2.59)

One has

[[(Id− ΠN)A]]s ≤ CN−β[[A]]s+β , β ≥ 0 , (3.2.60)

for some C = C(s) > 0.
Similar bounds holds also replacing ‖·‖`s, [[·]]s with the norms ‖·‖γ,Os , [[·]]γ,Os respectively

(see (3.2.20), (3.2.56)).

Proof. Items (i) and (ii) follow by lemmata 2.6, 2.7 in [BCP15]. Item (iii) follows by the
definition of the norm in (3.2.55).
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We will also need a class of matrices that take into account a notion of regularization.

Definition 3.2.12. Define the diagonal ϕ-independent operator D, acting on z ∈ `s (see
(3.2.14)), as

Dz := diagl∈Zd,k∈N
(
λk
)
z =

(
λkz[k](l)

)
l∈Zd,k∈N

. (3.2.61)

For β ∈ R we define the norm [[·]]β,s of a matrix A in (3.2.52) as

[[A]]β,s := [[DβA]]s + [[ADβ]]s . (3.2.62)

We denote by Mβ,s the space of maps Td 3 ϕ 7→ A = A(ϕ) ∈ L(L2) with finite [[·]]β,s-
norm.
Consider a family O 3 ω 7→ A(ω) ∈Mβ,s where O is a compact subset of Rd, d ≥ 1. For
γ > 0 we define the Lipschitz norm as

[[A]]γ,Oβ,s := [[A]]sup,Oβ,s + γ[[A]]lip,Oβ,s

= sup
ω∈O

[[A(ω)]]β,s + γ sup
ω1,ω2∈O
ω1 6=ω2

[[A(ω1)− A(ω2)]]β,s
|ω1 − ω2|

.
(3.2.63)

We denote byMγ,O
β,s the space of families of matrices A(ω) with finite [[·]]γ,Oβ,s -norm.

For properties of matrices inMγ,O
β,s we refer to Appendix 3.6.2 and in particular Lemma

3.6.4 stating a tame property for the norm given by (3.2.63).
We end this section with the following definition :

Definition 3.2.13. (Block-diagonal matrices). We say that A(ϕ) is block-diagonal if
and only if A[k′]

[k] (ϕ) = 0 for any k 6= k′ and any ϕ ∈ Td.

We notice that operators commuting with K0 have matrices that are block-diagonal : let
Z be such that

[K0, Z] = 0 . (3.2.64)

Since

[H0, Z][k
′]

[k] = (λk′ − λk)Z [k′]
[k] ∀k, k′ ,

condition (3.2.64) implies that the matrix (Z [k′]
[k] ))k,k′∈N representing the operator Z is

block-diagonal according to Definition 3.2.13.
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3.2.6 Link between pseudo-differential operators and matrices

To a linear operator R we associate its matrix representation still denoted R through
the formula

R
[k′]
[k] =

∫
Mn
RΦ[k]Φ[k′]dx. (3.2.65)

In the following we show that the decay norm [[·]]β,s (see Definitions 3.2.8 and 3.2.12) is
well designed to capture the smoothing property.

Lemma 3.2.14. Fix s > (d+n)/2 and β ≥ 0. Assume that R ∈ Rρ,s with ρ ≥ s+β+1/2
and that R is symmetric then R ∈Mβ,s. Moreover, there exists a constant C = C(s, ρ, β)
such that

[[R]]β,s ≤ C|R|ρ,s,s (3.2.66)

If R ∈ Rγ,O
ρ,s then the bound (3.2.66) holds with the norms [[·]]β,s,, | · |ρ,s,s replaced by the

norms [[·]]γ,Oβ,s , | · |γ,Oρ,s,s.

Proof. We have for l ∈ Zd

||R[k′]
[k] (l)||L(L2) = |〈Dρ+sR(l)Φ[k], D

−ρ−sΦ[k′]〉|

≤ ||Dρ+sR(l)Φ[k]||L2||Φ[k′]||L2〈k′〉−ρ−s

≤ ‖R(l)‖L(Hs,Hs+ρ)‖Φ[k]‖Hs〈k′〉−ρ−s

≤ ‖R(l)‖L(Hs,Hs+ρ)〈k〉s〈k′〉−ρ−s ,

where we used that, for s ∈ R (recall (3.2.10)),

‖Φk,j‖Hs ∼ ‖Ks
0Φk,j‖L2 = λsk ∼ 〈k〉s .

Similarly, since R is symmetric,

||R[k′]
[k] (l)||L(L2) ≤ ‖R(l)‖L(Hs,Hs+ρ)〈k′〉s〈k〉−ρ−s ,

therefore we get

||R[k′]
[k] (l)||L(L2) ≤ min

(
〈k′〉s〈k〉−ρ−s, 〈k〉s〈k′〉−ρ−s

)
‖R(l)‖L(Hs,Hs+ρ) .
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So, by definition, we get using that 〈h, l〉 ≤ 〈l〉〈h〉,

[[DβR]]2s =
∑

h∈N,l∈Zd
〈h, l〉2s sup

|k−k′|=h
‖(DβR)[k′]

[k] (l)‖2
L(L2)

≤
∑
l∈Zd
〈l〉2s‖R(l)‖L(Hs,Hs+ρ)

∑
h∈N
〈h〉2s sup

|k−k′|=h
〈k〉2β min

(
〈k′〉s〈k〉−ρ−s, 〈k〉s〈k′〉−ρ−s

)
≤ 22ρ−2β|R|2ρ,s,s

∑
h∈N
〈h〉2s+2β−2ρ

where we used that if |k − k′| = h then max(|k|, |k′|) ≥ h/2. A similar estimates holds
true for [[RDβ]]s and thus for [[R]]β,s = [[DβR]]s + [[RDβ]]s. Following a similar reasoning
one gets the Lipschitz bounds.

3.3 Regularization procedure

Let us consider 0 < δ < 1, r > d/2 and the operator

F = F(ω) := ω · ∂ϕ + i(∆g + V (ϕ)) , V ∈ Aδ,r . (3.3.1)

We also assume that the operator V is self-adjoint. Let us define the diophantine set
O0 ⊆ [1/2, 3/2]d by

O0 :=
{
ω ∈ [1/2, 3/2]d : |ω · l| ≥ 4γ|l|−τ , ∀ l ∈ Zd

}
, τ := d+ 1 . (3.3.2)

The aim of this section is to prove the following result.

Theorem 3.3.1. (Regularization). Let ρ0 ≥ 0, 0 < δ < 1 and r0 > d/2. There is
r∗ = r∗(δ, ρ0, r0) such that, for r > r∗ and S ≥ s0 > n/2, there exist p = p(S, ρ0) ≥ 1 and
0 < ε∗ = ε∗(S, ρ0) such that the following holds. If

γ−1Nδ,r,p(V ) ≤ ε∗ . (3.3.3)

then there is, for any ϕ ∈ Td, for any ω ∈ O0, a bounded and invertible map Φ ∈
L(Hs, Hs) for any s ∈ [s0, S] such that

F+ := Φ ◦ F ◦ Φ−1 := ω · ∂ϕ + i(∆g + Z +R) , (3.3.4)

where Z ∈ Aγ,O0
δ is independent of ϕ, Z is Hermitian and

[Z,K0] = 0 , (3.3.5)
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R(ϕ) is a Hermitian ρ0-smoothing operator in Rγ,O0
ρ0,r0.

Furthermore Z = Z1 + Z2 with Z1 ∈ Aδ is independent of ω ∈ O0, and Z2 ∈ Aγ,O0
2δ−1.

Moreover the following estimates holds : for any s ∈ [s0, S] there exit constants q =
q(s, ρ0) ≥ p and C = C(s, ρ0) > 0 such that

Nδ,s(Z1) +N γ,O0
2δ−1,s(Z2) ≤ CNδ,r,q(V ) , (3.3.6)

|R|γ,O0
ρ0,r0,s ≤ CNδ,r,q(V ) , (3.3.7)

sup
ϕ∈Td
‖Φ±1(ϕ)− Id‖L(Hs,Hs−δ) ≤ CNδ,r,q(V ) , (3.3.8)

sup
ϕ∈Td
‖Φ±1(ϕ)‖L(Hs,Hs) ≤ 1 + CNδ,r,q(V ) . (3.3.9)

As explained in the introduction this Theorem will be demonstrated by an iterative
procedure alternating an averaging step according to the periodic flow of K0 (section
3.3.1) and a step of eliminating the time dependence of the averaged term (section 3.3.2).
The iteration is detailed in section 3.3.3.

3.3.1 Averaging procedure

For A ∈ Am, m ∈ R, we denote for τ ∈ [0, 2π]

A(τ) := e−iτK0AeiτK0 (3.3.10)

and

〈A〉 :=
∫ 2π

0
A(τ)dτ , (3.3.11)

the average of A along the flow of K0.
We notice that 〈A〉 belongs to Am, commutes with K0 and that if A is Hermitian then
〈A〉 is Hermitian. Let O ⊂ O0 (see (3.3.2)) and consider the operator

G = ω · ∂ϕ + iM(ϕ) M(ϕ) := ∆g +W + A(ϕ) +R(ϕ) (3.3.12)

where W ∈ Aγ,Oδ , 0 < δ < 1, is independent of time and commutes with K0, A ∈ Aγ,Oδ′,r for
some δ′ ≤ δ and R(ϕ) ∈ Rγ,O

ρ,r (see Def. 3.2.4). We also assume that M(ϕ) is Hermitian
∀ϕ ∈ Td.

Lemma 3.3.2. Let r > d/2, 0 < δ < 1, δ′ ≤ δ there exists S ∈ Aγ,Oδ′−1,r such that for
any s > n/2 and ρ ≥ 0 there exists p = p(s, ρ) ≥ 1, an increasing function of s, and
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0 < ε0 = ε0(s, ρ) such that if

γ−1N γ,O
δ′,r,p(A) ≤ ε0 , N γ,O

δ,r,p(W ) ≤ 1 (3.3.13)

the symplectic change of variable ΦS = eiS(ϕ) belongs to L(Hs, Hs) and we have

G+ := ΦS ◦G ◦ Φ−1
S = ω · ∂ϕ + iM+(ϕ) (3.3.14)

M+(ϕ) := ∆g +W + 〈A(ϕ)〉+ A+(ϕ) +R+(ϕ) (3.3.15)

where 〈A(ϕ)〉 is defined as in (3.3.11), A+ ∈ Aγ,Oδ′−1,r−1 and R+ ∈ Rγ,O
ρ,r−1. The operator

M+(ϕ) is Hermitian ∀ϕ ∈ Td.
Moreover there exists C = C(s, ρ) such that

N γ,O
δ′−1,r,s(S) ≤ CN γ,O

δ′,r,p(A) (3.3.16)

sup
ϕ∈Td
‖Φτ

S(ϕ)‖γ,OL(Hs,Hs) ≤ 1 + CN γ,O
δ′,r,p(A) (3.3.17)

sup
ϕ∈Td
‖Φτ

S(ϕ)− Id‖γ,OL(Hs,Hs) ≤ CN γ,O
δ′,r,p(A) ∀τ ∈ [0, 1] , (3.3.18)

N γ,O
δ′−1,r−1,s(A+) ≤ CN γ,O

δ′,r,p(A) (3.3.19)

|R+|γ,Oρ,r−1,s ≤ C|R|γ,Oρ,r,s + CN γ,O
σ,δ′,p(A) . (3.3.20)

Proof. The idea comes from [Wein77], [Col79] and was extensively used in [BGMR2]. It
consists to average with respect to the flow of K0 (see (3.3.11)) which is periodic since its
spectrum is included in N + λ (see (3.2.1)).
Let us define Y = 1

2π
∫ 2π

0 τ(A − 〈A〉)(τ)dτ . Then Y ∈ Aγ,Oδ′,r and by integration by parts
we verify that Y solves the homological equation

i[K0, Y ] = A− 〈A〉 .

Then we define

S = 1
4(Y K−1

0 +K−1
0 Y ) (3.3.21)

and we note that S ∈ Aγ,Oδ′−1,r is a pseudo-differential operator of order δ′−1 ≤ 0. Moreover,
by using Lemma 3.2.6, we deduce the estimate (3.3.16). By applying Lemma 3.6.6 we
obtain estimates (3.3.17) and (3.3.18) (see (3.6.16), (3.6.17)). By an explicit computation
we also get

i[K2
0 , S] = A− 〈A〉 − 1

4
[
[A,K0], K−1

0

]
. (3.3.22)
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To study the conjugate of G in (3.3.12) under the map ΦS defined as in (3.2.45) with
S in (3.3.21) we use the Lie expansions (3.2.47) and (3.2.48) for some q ∈ N large to be
chosen later. Recalling the splitting (3.2.1)-(3.2.2) we have by (3.2.47)

ΦS ◦ iM ◦ Φ−1
S

(3.3.22)= iK2
0 + iQ0 + iW + i〈A〉+ i

4
[
[A,K0], K−1

0

]
− i[Q0 +W + A, iS] +

q∑
j=2

1
j!adjiS(i∆g + iW + iA)

+ 1
q!

∫ 1

0
(1− τ)qeiτSadq+1

iS (i∆g + iW + iA)e−iτSdτ

+ iΦS ◦R ◦ Φ−1
S .

Taking into account the time contribution given by (3.2.48) we obtain that the conjugate
ΦS ◦G ◦ Φ−1

S has the form (3.3.14)-(3.3.15) where

iA+ = i
4
[
[A,K0], K−1

0

]
− i[Q0 +W + A, iS]

+
q∑
j=2

1
j!adjiS(i∆g + iW + iA)−

q∑
p=1

1
p!adp−1

iS (iω · ∂ϕS)
(3.3.23)

and

iR+ = 1
q!

∫ 1

0
(1− τ)qeiτSadq+1

iS (i∆g + iW + iA)e−iτSdτ

+ 1
q!

∫ 1

0
(1− τ)qΦτ

SadqiS(iω · ∂ϕS)Φ−τS dτ ,

+ iΦS ◦R ◦ Φ−1
S

(3.3.24)

We need to prove the bounds (3.3.19)-(3.3.20). We start by studying the remainder R+ in
(3.3.24). To simplify the notation we shall write a . b to denote a ≤ Cb for some constant
C = C(s, ρ).

Using the smallness condition (3.3.13), we have that the third summand in (3.3.24) is
a ρ-smoothing operator satisfying (3.3.20) by Lemma 3.6.8.

By items (ii), (iii) of Lemma 3.2.6 we have (up to smoothing remainder and for some
p depending on s and ρ)

N γ,O
δ′,r,s

(
adiS(i∆g + iW + iA)

)
+N γ,O

δ′−1,r−1,s(ω · ∂ϕS)
(3.3.13),(3.3.16)

. N γ,O
δ′,r,p(A) . (3.3.25)

By iterating the estimate above and using the smallness condition (3.3.13) we deduce, for
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1 ≤ j ≤ q and for some p depending on s, ρ, q,

N γ,O
jδ′−2(j−1),r,s

(
adjiS(i∆g + iW + iA)

)
+N γ,O

(j+1)δ′−1−2j,r−1,s(adjiS(ω · ∂ϕS))

. N γ,O
δ′,r,p(A) . (3.3.26)

The sequences jδ′ − 2(j − 1) and (j + 1)δ′ − 1 − 2j are decreasing since δ′ ≤ 1. Hence,
by choosing q large enough, the integrands in (3.3.24) are ρ-smoothing operator (with
arbitrary ρ) conjugated by the flow eiτS. Therefore by Lemma 3.6.8 all the expressions in
(3.3.24) are smoothing remainders satisfying (3.3.20) for some p depending on s and ρ.

Let us now consider the terms in (3.3.23). First of all we have

N γ,O
δ′−2,r,s(

[
[A,K0], K−1

0

]
) . N γ,O

δ′,r,N1
([A,K0])N γ,O

−1,N1(K−1
0 )

. N γ,O0
δ′,r,N(A)N γ,O

1,N (K0)N γ,O
−1,N(K−1

0 )

. N γ,O0
δ′,r,N(A) ,

for some constant N1 ≤ N ≤ p depending only on s, ρ. In the same way (recalling also
(3.3.13)) we have

N γ,O
δ+δ′−2,r,s([Q0 +W + A, iS]) . N γ,O

δ′−1,r,p(S)
(
N0,p(Q0) +N γ,O

δ,p (W )
)

+N γ,O
δ′−1,r,p(S)N γ,O

δ′,r,p(A)
(3.3.13),(3.3.16)

. N γ,O
δ′,r,p(A) .

The other summands in (3.3.23) can be estimated by using (3.3.25) and (3.3.26). This
proves the (3.3.19).

3.3.2 Time elimination

Let us consider the operator G+ in (3.3.14)-(3.3.15) obtained after an average step
(see Lemma 3.3.2). The aim of this section is to eliminate the time dependence (i.e. the
dependence with respect to ϕ) in the term 〈A(ϕ)〉 in (3.3.15). First we introduce the
pseudo-differential operator T = T (ϕ) defined as

T (ϕ) =
∑

06=l∈Zd

eil·ϕ

iω · l 〈A(l)〉 . (3.3.27)

We have the following Lemma.
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Lemma 3.3.3. Let r ≥ 5d/2 + 9/2 and ω ∈ O0 (see (3.3.2)). Then the operator T in
(3.3.27) belongs to Aγ,O0

δ′,r−(2τ+1) is Hermitian, commutes with the operator K0. Moreover it
solves the equation

〈A(ϕ)〉 − ω · ∂ϕT = 〈A(0)〉 , (3.3.28)

and satisfies

N γ,O0
δ′,r−(2τ+1),s(T ) ≤ CN γ,O0

δ′,r,p(A) . (3.3.29)

Furthermore, setting Φτ
T := eiτT (ϕ), we have that for any s > d/2 there are constants C, p

(depending only on s and ρ ) such that if (3.3.13) holds then

sup
ϕ∈Td
‖Φτ

T‖L(Hs,Hs) ≤ 1 + CN γ,O0
δ′,r,p(A) (3.3.30)

sup
ϕ∈Td
‖Φτ

T − Id‖L(Hs,Hs−δ′ ) ≤ CN γ,O0
δ′,r,p(A) ∀τ ∈ [0, 1] . (3.3.31)

Proof. The operator T is Hermitian and commutes with K0 thanks to the properties of
〈A〉. The fact that T solves (3.3.28) is obtained by an explicit computation. The bound
(3.3.29) follows by item (iii) of Lemma 3.2.6. Finally applying Lemma 3.6.6 we obtain
the estimates (3.3.30)-(3.3.31) (see (3.6.18) and (3.6.19)).

In the following lemma we study how the operator G+ in (3.3.14)-(3.3.15) changes
under the map Φτ

T defined by Lemma 3.3.3. We have to distinguish the cases δ′ strictly
positive or δ′ less or equal zero.

Lemma 3.3.4. Let δ′ ≤ 0 and r > 2τ + 2 + d/2. Let us define δ1 := δ + δ′ − 1 and
ΦT := Φ1

T . Then the conjugated operator G1 := ΦT ◦G+ ◦ Φ−1
T has the form

G1 = ω · ∂ϕ + iM1(ϕ) (3.3.32)

M1(ϕ) := ∆g +W1 + A1(ϕ) +R1(ϕ) (3.3.33)

where

W1 = W +
∫
Td
〈A(ϕ)〉dϕ , (3.3.34)

is independent of ϕ ∈ Td, A1 ∈ Aγ,Oδ1,r−2τ−2 and R1 ∈ Rγ,O
ρ,r−2τ−2. The operator M1(ϕ) is

Hermitian ∀ϕ ∈ Td.
Moreover for any s > d/2 there exist p = p(s, ρ) and C = C(s, ρ) such that if (3.3.13)
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holds then

N γ,O
δ1,r−2τ−2,s(A1) ≤ CN γ,O

δ′,r,p(A) (3.3.35)

|R1|γ,Oρ,r−2τ−2,s ≤ C|R|γ,Oρ,r,s +N γ,O
δ′,r,p(A) . (3.3.36)

Proof. Notice that, since T in (3.3.27) commutes with K0, then ΦT ◦ K2
0 ◦ Φ−1

T = K2
0 .

By using the expansions (3.2.47)-(3.2.48) and since T solves (3.3.28) we have that the
conjugate L1 has the form (3.3.32)-(3.3.33) with W1 as in (3.3.34) and

iA1 := iA+ +
q∑
j=1

1
j!adjiT

(
iQ0 + iW + i〈A(ϕ)〉+ iA+

)
−

q∑
j=2

1
j!adj−1

iT (iω · ∂ϕT ) , (3.3.37)

iR1 := iΦT ◦R+ ◦ Φ−1
T

+ 1
q!

∫ 1

0
(1− τ)qΦτ

Tadq+1
iT

(
iQ0 + iW + i〈A(ϕ)〉+ iA+

)
Φ−τT dτ

+ 1
q!

∫ 1

0
(1− τ)qΦτ

TadqiT (iω · ∂ϕT )Φ−τT dτ ,

(3.3.38)

and where q ∈ N is a large constant to be chosen later. We now estimate the different
terms in (3.3.37), (3.3.38).

By (3.2.38) we have, for some p′ = p′(s, ρ),

N γ,O0
2δ′−1,r−2τ−2,s(adiT (iω · ∂ϕT )) . N γ,O0

δ′,r−2τ−2,p′(T )N γ,O0
δ′,r−2τ−2,p′(ω · ∂ϕT ) .

On the other hand we have by (3.2.39)

N γ,O0
δ′,r−2τ−2,p′(ω · ∂ϕT ).N γ,O0

δ′,r−2τ−1,p′(T ) ,

thus using (3.3.29) we deduce

N γ,O0
2δ′−1,r−2τ−2,s(adiT (iω · ∂ϕT )).

(
N γ,O0
δ′,r,p′(A)

)2 (3.3.13)
. N γ,O0

δ′,r,p′(A) . (3.3.39)

Similarly we prove

N γ,O0
δ′−1,r−2τ−2,s(adiT (Q0)) +N γ,O0

δ+δ′,r−2τ−2,s(adiT (W + 〈A(ϕ)〉))

+N γ,O0
2δ′−2,r−2τ−2,s(adiT (A+)) . N γ,O0

δ′,r,p′(A) .
(3.3.40)

Notice that, since 0 < δ < 1, the highest order pseudo-differential operator among the
ones estimated in (3.3.39), (3.3.40) is the one of order δ + δ′ − 1 < δ′. By the estimates
above, by choosing the constant q ∈ N large enough with respect to ρ and by reasoning
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as in the proof of Lemma 3.3.2 one gets the estimates (3.3.35), (3.3.36). In particular,
since δ′ ≤ 0 we shall use Lemma 3.6.8 in order to estimate the conjugates of smoothing
operator under the flow Φτ

T .

In the next Lemma we study the case in which the generator T of Lemma 3.3.3 has
order δ′ > 0.

Lemma 3.3.5. Let 0 < δ′ ≤ δ. Let us define δ1 := δ+ δ′−1 and ΦT := Φ1
T . Fix moreover

r1 > d/2 and ρ1 ≥ 0 and assume r > max(r1+d/2, 2τ+2+d/2) and ρ ≥ ρ1+δ′r1+1. Then
the conjugated operator G1 := ΦT ◦G+ ◦Φ−1

T (see (3.3.14)) has the form (3.3.32), (3.3.33),
(3.3.34), is independent of ϕ ∈ Td, A1 ∈ Aγ,Oδ1,r−2τ−2 and R1 ∈ Rγ,O

ρ1,r1. The operator M1(ϕ)
is Hermitian ∀ϕ ∈ Td.
Moreover for any s ∈ R there exist p = p(s, ρ) and if (3.3.13) holds then C = C(s, ρ)
such that

N γ,O
δ1,r−2τ−2,s(A1) ≤ CN γ,O

δ′,r,p(A) (3.3.41)

|R1|γ,Oρ1,r1,s ≤ C|R|γ,Oρ,r,s +N γ,O
δ′,r,p(A) . (3.3.42)

Proof. One reasons as in the proof of Lemma 3.3.4. The difference is in estimating the
remainder R1 in (3.3.38). Since the generator T is of order δ′ > 0 one has to apply
Lemma 3.6.7 (instead of Lemma 3.6.8) which provides estimates (3.3.42) instead of the
(3.3.36).

3.3.3 Proof of Theorem 3.3.1

In this section we give the proof of Theorem 3.3.1 which is based on an iterative
application of Lemmata of the previous section. Recalling (3.3.1) we set

G0 := F = ω · ∂ϕ + i∆g + iV .

The operator G0 above has the form (3.3.12) with

O = O0, W ≡ 0 , R ≡ 0 , A(ϕ) = V (ϕ) , δ′ = δ . (3.3.43)

Since V is C∞, r > d/2 can be chosen arbitrary large. We will chose it later in function
of the order δ, of the final regularity r0 and the smoothness ρ0 prescribed by (3.3.7).
Lemma 3.3.2 provides p1(S) such that if p ≥ p1(S) in (3.3.3) then (3.3.13) holds for any
s ∈ [s0, S]. By applying Lemma 3.3.2 to G0 we obtain a symplectic map ΦS0 such that
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(see (3.3.14))

G̃0 := ΦS0 ◦G0 ◦ Φ−1
S0 = ω · ∂ϕ + i∆g + i〈V (ϕ)〉+ iÃ0 + iR̃0 ,

Ã0 ∈ Aγ,Oδ−1,r−1 , R̃0 ∈ Rγ,O
ρ,r−1 ,

(3.3.44)

with ρ > 0 arbitrary to be chosen later and where 〈V (ϕ)〉 is defined as in (3.3.11). We
apply Lemma 3.3.5 to the operator given by (3.3.44) with ρ1  ρ0 of Theorem 3.3.1 and
r1 > d/2 (to be chosen later) provided that ρ and r are sufficiently large (ρ > ρ0 + δr1 + 1
and r > max(r1 + d/2, 2τ + 2 + d/2)). Hence we obtain a symplectic map ΦT0 such that

G1 := ΦT0 ◦ G̃0 ◦ Φ−1
T0 = ΦT0 ◦ ΦS0 ◦G0 ◦ Φ−1

S0 ◦ Φ−1
T0

= ω · ∂ϕ + i∆g + iW1 + iA1 + iR1

with W1 :=
∫
Td〈V (ϕ)〉dϕ, A1 ∈ Aγ,O0

2δ−1,r1 , R1 ∈ Rγ,O0
ρ0,r1 and estimates (3.3.41) (3.3.42)

are satisfied for all s ∈ [s0, S] provided p ≥ p2(p1, S) depending on p1 and S (and still
increasing in S).
We notice that W1 is independent of ϕ and of the parameters ω ∈ O0.

Now we want to iterate this procedure.

Let us first consider the case 6 0 < δ ≤ 1/2. Then 2δ− 1 ≤ 0 and hence, form now on,
we will apply iteratively Lemmata 3.3.2 and 3.3.4 (instead of Lemma 3.3.5).

We introduce the following parameters : for n ≥ 1 we set

δn = (n+ 1)δ − n , rn = r1 − n(2τ + 2) , qn = q0 ◦ qn−1 (3.3.45)

where q0(·) = q1(·, S) is the composition of the two function s 7→ p(s) given by Lemmata
3.3.2 and 3.3.4 and q1 = p2 ◦ p1. We notice that qn is an increasing function of S.
Then applying Lemmata 3.3.2 and 3.3.4 iteratively, there exist symplectic changes of
variables {ΦSn}n and {ΦTn}n such that, setting Φn := ΦTn ◦ ΦSn , we have

Gn+1 := Φn ◦Gn ◦ Φ−1
n = ω · ∂ϕ + i∆g + iWn+1 + An+1 +Rn+1 (3.3.46)

where Wn is pseudo-differential operator independent of ϕ of order δ commuting with K0;
An is pseudo-differential operator of order δn; Rn is ρ0−smoothing operator. Moreover,
by estimates (3.3.19), (3.3.20) and (3.3.35), (3.3.36) we get

N γ,O0
δ,s (Wn) +N γ,O0

δn,rn,s
(An) + |Rn|γ,O0

ρ0,rn,s ≤ CNδ,r,qn(V ) for all s ∈ [s0, S] . (3.3.47)

6. Actually Theorem 3.3.1 will be applied only in this case.
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We perform N = N(ρ0, δ) steps of this procedure in order to get δN = δ−N(1−δ) ≤ −ρ0.
This require to choose r1 (and hence r) sufficiently large. More precisely, we want rN ≥ r0,
the prescribed regularity, and thus in view of (3.3.45) r1 ≥ N(2τ + 2) + r0. Then recalling
that we need r > max(r1 + d/2, 2τ + 2 + d/2) we have to chose

r > max(N(2τ + 2) + r0 + d/2, 2τ + 2 + d/2) := r∗(δ, ρ0, r0) .

Moreover the constant ρ appearing in (3.3.44) should be chosen in such a way

ρ ≥ ρ0 + δr1 + 1 ≥ ρ0 + 2N(τ + 1) + r0 .

Therefore the operator GN , defined as in (3.3.46), has the form (3.3.4) with Z := WN . We
notice that W1 :=

∫
Td〈V (ϕ)〉dϕ ∈ Aδ is independent of ω and that WN −W1 ∈ AO0

2δ−1,r1

which leads to the desired splitting Z = Z1 + Z2. The bounds (3.3.6), (3.3.7) follows by
(3.3.47) with q = qN . The estimates (3.3.8), (3.3.9) follows by composition and estimates
(3.3.17), (3.3.18), (3.3.30) and (3.3.31).

The case 1/2 ≤ δ < 1 requires to apply Lemmata 3.3.2 and 3.3.5 iteratively to
construct Ãn ∈ Aδ̃n,r̃n with δn = 2δn−1− 1 and δ0 = δ, until δ̃n became negative. Then we
can apply the second procedure using Lemmata 3.3.2 and 3.3.4 as in the previous case.

3.4 KAM reducibility

In this section we will prove an abstract KAM Theorem for a matrix operator of the
form

L0 = L0(ω;ϕ) := ω · ∂ϕ + i(∆g + Z0 +R0(ϕ)) . (3.4.1)

To precise our hypothesis on L0 we define the following constants

b := 6d+ 15n+ 23 , τ = d+ 1 , ρ = 5n+ 3 ,

γ ∈ (0, 1) , 0 ≤ κ ≤ 1 , s0 >
d+ n

2 , S ≥ s0 + b .
(3.4.2)

In this section we assume :
(A1) the matrix Z0 is Hermitian, block diagonal, independent of ϕ and Lipschitz in

ω ∈ O ⊆ O0 ≡ O0(γ, τ) (see (3.3.2)). Furthermore, denoting (µ(0)
k,j)j=1,··· ,dk the

eigenvalues of the block (Z0)[k]
[k], we assume that there exists κ ≥ 0 such that (recall
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that c0 is defined in (3.2.6))

|µ(0)
k,j(ω)| ≤ c0

2 |k| , ω ∈ O, k ∈ N, j = 1, · · · , dk , (3.4.3)

‖(Z0)[k]
[k]‖

lip,O
L(L2) ≤

1
4〈k〉

−κ , k ∈ N . (3.4.4)

(A2) the operator R0 is inMγ,O
ρ,S (see Def. 3.2.12) and is Hermitian.

Let us define

ε := γ−1[[R0]]γ,O0
ρ,s0+b . (3.4.5)

We shall prove the following.

Theorem 3.4.1. (Reducibility). Let s ∈ [s0, S − b]. There exist positive constants
ε0 = ε0(s), C = C(s) such that, if

ε ≤ ε0 , (3.4.6)

then there is a set Oε ⊆ O with

meas(O \ Oε) ≤ Cγ (3.4.7)

such that the following holds. For any ω ∈ Oε there are

(i) (Normal form) a matrix Z∞ = Z0+Z̃∞ with Z̃∞ ∈Mγ,Oε
ρ,s which is ϕ-independent,

Hermitian and block-diagonal ;
(ii) (Conjugacy) a bounded and invertible map Φ∞ = Φ∞(ω, ϕ) : Hs → Hs such

that for all ϕ ∈ Td, for all ω ∈ Oε,

L∞ := Φ∞ ◦ L0 ◦ Φ−1
∞ := ω · ∂ϕ + i(∆g + Z∞) . (3.4.8)

Moreover we have

[[Φ±1
∞ (ϕ)− Id]]γ,O∞ρ,s ≤ Cγ−1[[R0]]γ,Oρ,s+b , ∀ω ∈ Oε , (3.4.9)

[[Z̃∞]]γ,Oερ,s ≤ C[[R0]]γ,Oρ,s+b . (3.4.10)
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3.4.1 The KAM step

The proof of Theorem 3.4.1 is based on an iterative scheme. In this section we show
how to perform one step of the iteration. We consider an operator

L := ω · ∂ϕ + i(∆g + Z +R) , (3.4.11)

where Z = Z0 +Z2 is Hermitian with Z0 satisfying (A1) and Z2 ∈Mγ,O
ρ,s for all s ∈ [s0, S]

and for some O ⊆ O0 (see (3.3.2)). The remainder R satisfies (A2), i.e. belongs toMγ,O
ρ,s

for all s ∈ [s0, S] and is Hermitian.

Control of the small divisors

Let us denote by µk,j, k ∈ N and j = 1, . . . , dk (see (3.2.3)), the eigenvalues of the
block (∆g + Z)[k]

[k]. First of all we prove the following.

Lemma 3.4.2. One has

sup
k∈N
〈k〉κ|µ[k]|lip,O ≤

1
4 + [[Z2]]lip,Oκ,s0 . (3.4.12)

Proof. By Corollary A.7 in [FG19] the Lipschitz variation of the eigenvalues of an Her-
mitian matrix is controlled by the Lipschitz variation of the matrix. Then, in view of
hypothesis (A1), we get

|µ[k]|lip,O0 ≤ ‖(Z0)[k]
[k]‖

lip,O
L(L2) + ‖(Z2)[k]

[k]‖
lip,O0
L(L2) ≤ 〈k〉

−κ(1
4 + [[Z2]]lip,O0

κ,s0 )

and the (3.4.12) follows.

We define the set O+ ⊆ O of parameters ω for which we have a good control of the
small divisors. We set, for N ≥ 1,

O+ ≡ O+(γ,N) :=
{
ω ∈ O : |ω · l + µk,j − µk′,j′| ≥

2γ
N τ 〈k, k′〉2n+2 ,

|l| ≤ N, k, k′ ∈ N , j = 1, . . . , dk ,

j′ = 1, . . . , d′k , (l, k, k′) 6= (0, k, k)
}
.

(3.4.13)

We have the following.

Lemma 3.4.3. Assume that

[[Z2]]γ,Oκ,s0+b ≤ γ/8 (3.4.14)
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for some 0 < γ ≤ c0
5 (see (3.2.6)) then we have

meas
(
O \ O+(γ,N)

)
≤ CγN−1 (3.4.15)

for some constant C > 0 depending only on d.

Proof. We write

O \ O+ =
⋃

l∈Zd,|l|≤N
k,k′∈N

(`,k,k′)6=(0,k,k)

⋃
j=1,...,dk
j′=1,...,dk′

Rj,j′

l,k,k′

where

Rj,j′

l,k,k′ :=
{
ω ∈ O : |ω · l + µk,j − µk′,j′| ≤

2γ
N τ 〈k, k′〉2n+2

}
.

Notice that when l = 0 and k 6= k′ then Rj,j′

l,k,k′ = ∅ for all j, j′. Indeed in such case we
get using (3.4.3), (3.2.6) and (3.4.14)

|µk,j − µk′,j′| ≥
c0

2 (k + k′)− 2[[Z2]]∞,Oκ,s0+b ≥
c0

2 −
γ

4 ≥ 2γ.

Let us now consider the case l 6= 0. We give the estimate of the measure of a single bad
set Rj,j′

l,k,k′ . Let us consider the Lipschitz function

f(ω) = ω · l + µk,j(ω)− µk′,j′(ω) = ω · l + g(ω) .

Using condition (3.4.14) we have that Lemma 3.4.2 implies that (recall that l 6= 0)

|g|lip,O ≤ 1
2 .

Then Lemma 5.2 in [FG19] implies that meas(Rj,j′

l,k,k′) ≤ Cγ
Nτ 〈k,k′〉2n+2 for some constant

C > 0 depending only on d. Finally by (3.2.3) we have that

dkdk′ ≤ 〈k, k′〉2(n−1) .

Hence

meas
(
O \ O+

)
≤ C

∑
l∈Zd,0<|l|≤N

k,k′∈N

∑
j=1,...,dk
j′=1,...,dk′

Rj,j′

l,k,k′

≤ C
∑

l∈Zd,0<|l|≤N
k,k′∈N

2 γ

N τ 〈k, k′〉4
≤ CN−1γ
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since τ = d+ 1.

Resolution of the Homological equation

In this section we solve the following homological equation

−iω · ∂ϕS +
[
iS,∆g + Z

]
+R = DiagR +Q (3.4.16)

where Q is some remainder to be determined and

DiagR =
(
(DiagR)[k′]

[k] (l)
)
l∈Zd,k,k′∈N

,

(DiagR)[k′]
[k] (l) := 0 for l 6= 0 , k, k′ ∈ N or l = 0 , k 6= k′ ,

(DiagR)[k]
[k](0) := A

[k]
[k](0) , otherwise .

(3.4.17)

Lemma 3.4.4. (Homological equation). Let R ∈ Mγ,O
ρ,s for s ∈ [s0, S], ρ in (3.4.2).

For any ω ∈ O+ ≡ O+(γ,N) (defined in (3.4.13)) there exist Hermitian matrices S,Q
solving equation (3.4.16) and satisfying

[[S]]γ,O+
s ≤s

N2τ+1

γ
[[R]]γ,Oρ,s ,

[[D±ρSD∓ρ]]γ,O+
s ≤s

N2τ+ρ+1

γ
[[R]]γ,Oρ,s ,

s ∈ [s0, S] , (3.4.18)

[[Q]]γ,O+
ρ,s ≤s [[R]]γ,Oρ,s+bN

−b ,

[[Q]]γ,O+
ρ,s+b ≤s [[R]]γ,Oρ,s+b ,

s ∈ [s0, S − b] . (3.4.19)

Proof. For N > 0 we define (recall (3.2.52)) the matrix ΠNR as

(ΠNR)[k′]
[k] (l) :=


R

[k′]
[k] (l) , l ∈ Zd , k, k′ ∈ N ,

|l| ≤ N ,

|k − k′| ≤ N ,

0 , otherwise

(3.4.20)

Then we set

Q = (1− ΠN)R (3.4.21)

By Lemma 3.6.4, and since the regularity in ϕ has been fixed at r = b, one deduces
the estimates (3.4.19). Moreover, recalling (3.4.17), we have that equation (3.4.16) is
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equivalent to

G(l, k, k′, ω)S[k′]
[k] (l) + (ΠNR)[k′]

[k] (l) = 0 (3.4.22)

for any l ∈ Zd, k, k′ ∈ N with (l, k, k′) 6= (0, k, k) where the operator G(l, k, k′, ω) is the
linear operator acting on complex dk × dk′-matrices as

G(l, k, k′, ω)A := −i
[
ω · l +

(
∆g + Z

)[k]

[k]

]
A+ iA

(
∆g + Z

)[k′]

[k′]
. (3.4.23)

Now, since
(
∆ + Z

)[k]

[k]
is Hermitian, there is a orthogonal dk × dk-matrix U[k] such that

UT
[k]

(
∆g + Z

)[k]

[k]
U[k] = D[k] := diagj=1,...,dk

(
µk,j

)
,

where µk,j are the eigenvalues of the k-th block. By setting

Ŝ
[k′]
[k] (l) := UT

[k]S
[k′]
[k] (l)U[k′] , R̂

[k′]
[k] (l) := UT

[k]R
[k′]
[k] (l)U[k′]

equation (3.4.22) reads

−i
(
ω · l +D[k]

)
Ŝ

[k′]
[k] (l) + iŜ[k′]

[k] (l)D[k′] + (ΠN R̂)[k′]
[k] (l) = 0 . (3.4.24)

For ω ∈ O+ (see (3.4.13)) the solution of (3.4.24) is given by (recalling the notation
(3.2.50))

Ŝk
′,j′

k,j (l) :=


−iR̂k′,j′

k,j (l)
ω · l + µk,j − µk′,j,

,
|l| ≤ N ,

|k − k′| ≤ N ,
(l, k, k′) 6= (0, k, k) ,

0 , otherwise .

(3.4.25)

Since R is Hermitian it is easy to check that also S is Hermitian. Using the bound on the
small divisors in (3.4.13) we have that

|Ŝk
′,j′

k,j (l)| ≤ γ−1|R̂k′,j′

k,j (l)|N τ 〈k, k′〉2n+2 . (3.4.26)

Then, by denoting by ‖ · ‖∞ the sup-norm of a dk × dk′-matrix, we deduce

‖S[k′]
[k] (l)‖L(L2) = ‖Ŝ[k′]

[k] (l)‖L(L2) ≤
√
dkdk′‖Ŝ[k′]

[k] (l)‖∞
(3.4.26),(3.2.3)
≤ γ−1‖R[k′]

[k] (l)‖N τ 〈k, k′〉3n+1 .
(3.4.27)
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We now estimates the decay norm of the matrix S. We have

[[S]]2s
(3.4.27)
≤ γ−2N2τ ∑

l,h

〈l, h〉2s sup
|k−k′|=h

‖R[k′]
[k] (l)‖2〈k, k′〉6n+2

≤ γ−2N2τ ∑
l,h

〈l, h〉2s sup
|k−k′|=h
k≥k′

‖(DρR)[k′]
[k] (l)‖2〈k〉(6n+2−2ρ)

+ γ−2N2τ ∑
l,h

〈l, h〉2s sup
|k−k′|=h
k<k′

‖(RDρ)[k′]
[k] (l)‖2〈k′〉(6n+2−2ρ)

≤s γ−2N2τ [[R]]2ρ,s ,

(3.4.28)

provided that ρ ≥ 3n+ 1 which is true thanks to the choices in (3.4.2). Hence the bound
(3.6.5) in Lemma 3.6.1 implies

[[D±ρSD∓ρ]]s ≤s γ−1N τ+ρ[[R]]ρ,s . (3.4.29)

To obtain (3.4.18), it remains to estimate the Lipschitz variation of the matrix S. We
reason as in the proof of item (iii) of Lemma 3.2.6. To simplify the notation, for any
l ∈ Zd, k, k′ ∈ N, j = 1, . . . , dk and j′ = 1, . . . , dk′ , we set

d(ω) := i(ω · l + µk,j(ω)− µk′,j′(ω)) , ∀ω ∈ O+ . (3.4.30)

By (3.4.25) we have that, for any ω1, ω2 ∈ O+

Ŝk
′,j′

k,j (ω1; l)− Ŝk
′,j′

k,j (ω2; l) =
R̂k′j′

k,j (ω1; l)− R̂k′j′

k,j (ω2; l)
d(ω1)

+ d(ω1)− d(ω2)
d(ω1)d(ω2) R̂k′,j′

k,j (ω2; l) .

Using the (3.4.12), (3.4.4) we deduce

|d(ω1)− d(ω2)|
|ω1 − ω2|

. |l| , ∀ω1, ω2 ∈ O+ , ω1 6= ω2 .

Therefore, recalling (3.4.13), (3.2.16) and reasoning as in (3.4.26), (3.4.27), we get

‖S[k′]
[k] (l)‖lip,O+

L(L2) . γ−1N τ 〈k, k′〉3n+1‖R[k′]
[k] (l)‖lip,O

+ γ−2N2τ+1〈k, k′〉5n+3‖R[k′]
[k] (l)‖sup,O .

Finally, reasoning as in (3.4.28) and using (3.2.55), we deduce

[[S]]lip,O+
s ≤s γ−1N τ [[R]]lip,Oρ,s + γ−2N2τ+1[[R]]sup,Oρ,s , (3.4.31)
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provided that ρ ≥ 5n+3, which is true by (3.4.2). Combining (3.4.28) and (3.4.31) (recall
(3.2.56)) we get the first bound in (3.4.18). The second one follows by (3.6.5) in Lemma
3.6.1.

Lemma 3.4.5. There is C(s) > 0 (depending only on s ≥ s0) such that, if

γ−1C(s)N2τ+1[[R]]γ,Oρ,s0 ≤
1
2 , (3.4.32)

then the map Φ = eiS = Id + Ψ, with S given by Lemma 3.4.4, satisfies

[[Ψ]]γ,O+
s ≤s γ−1N2τ+1[[R]]γ,Oρ,s . (3.4.33)

Proof. By (3.4.18) and (3.4.32) we have that

C(s)[[S]]γ,O+
s0 ≤ 1/2 , (3.4.34)

which implies the (3.6.6). Hence the (3.4.33) follows by Lemma 3.6.3.

The new remainder

In this subsection we study the conjugate of the operator L under the map Φ given
by Lemma 3.4.5. We first define the new normal form Z+ as

Z+ := Z + DiagR . (3.4.35)

We have the following.

Lemma 3.4.6. (New normal form). We have that Z+ in (3.4.35) is ϕ-independent,
Hermitian and block-diagonal, and satisfies

[[Z+ − Z]]γ,Oρ,s ≤s [[R]]γ,Oρ,s . (3.4.36)

Proof. It follows by construction.

Lemma 3.4.7. (The new remainder). Assume that the smallness condition (3.4.32)
holds true. Then one has

L+ := Φ ◦ L ◦ Φ−1 := ω · ∂ϕ + i(∆g + Z+ +R+) (3.4.37)

where Z+ is the normal form given by (3.4.35) and the new remainder R+ is Hermitian
and satisfies for all s ∈ [s0, S − b]

[[R+]]γ,O+
ρ,s ≤s N−b[[R]]γ,Oρ,s+b + γ−1N2τ+ρ+1[[R]]γ,Oρ,s0 [[R]]γ,Oρ,s , (3.4.38)
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[[R+]]γ,O+
ρ,s+b ≤s [[R]]γ,Oρ,s+b + γ−1N2τ+ρ+1[[R]]γ,Oρ,s0 [[R]]γ,Oρ,s+b . (3.4.39)

Proof. Using the Lie expansions (3.2.47) and (3.2.48) we get

L+ := Φ ◦ L ◦ Φ−1 = ω · ∂ϕ + i(∆g + Z) + iR + i[iS,∆g + Z]− iω · ∂ϕS

+ i
∑
p≥1

ip
p!adpS(R) + i

∑
p≥2

ip−1

p! adS
(
[iS,∆g + Z]− ω · ∂ϕS

)
.

Hence, equations (3.4.16), (3.4.35) lead to the following formula :

R+ = Q+ R̃+

with Q := (1− ΠN)R satisfying (3.4.19) and

R̃+ :=
∑
p≥2

ip−1

p! adp−1
S

(
DiagR +Q−R

)
+
∑
p≥1

1
p!adpS

(
R
)
. (3.4.40)

Thus, in order to prove (3.4.38) we need to estimate R̃+. Consider (for instance) the
composition operator SR. In order to control the [[·]]γ,O+

ρ,s -norm we shall bound the decay
norm of DρSR. The estimates for for SRDρ is the same. We have that

[[DρSR]]γ,O+
s = [[DρSD−ρDρR]]γ,O+

s

(3.2.58)
≤s [[DρSD−ρ]]γ,O+

s [[DρR]]γ,Os0

+ [[DρSD−ρ]]γ,O+
s0 [[DρR]]γ,Os

(3.4.18)
≤s γ−1N2τ+ρ+1[[R]]γ,Oρ,s [[R]]γ,Oρ,s0 .

(3.4.41)

The commutator [S,R] satisfies the same bound as (3.4.41). Therefore, by (3.4.41), (3.4.19),
formula (3.4.40), the smallness assumption (3.4.32), and reasoning as in the proof of
Lemma 3.6.3 we get the (3.4.38) and (3.4.39).

3.4.2 Iteration and Convergence

In this section we introduce a new constant

a := b− 2 = 6d+ 15n+ 18 . (3.4.42)

For N0 ≥ 1 we define the sequence (Nν)ν≥0 by

Nν := Nχν

0 , ν ≥ 0
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with χ := 3/2 and we set N−1 = 1. The proof of Theorem 3.4.1 is based on the following
iterative lemma.

Proposition 3.4.8. (Iteration). Let s ∈ [s0, S − b]. There exist C(s) > 0 and N0 ≡
N0(s) ≥ 1 such that, if (recall (3.4.5))

C(s)N2τ+1+ρ+a
0 ε ≤ 1

2 , (3.4.43)

then we may construct recursively sets Oν ⊂ O0 and operators, defined for ω ∈ Oν,

Lν := Lν(ω) := ω · ∂ϕ + i(∆g + Zν +Rν) , (3.4.44)

so that the following properties are satisfied for all ν ∈ N :

(S1)ν There is a Lipschitz family of symplectic maps Φν(ϕ) = Φν(ϕ, ω) := Id + Ψν(ϕ) ∈
L(Hs, Hs) defined on Oν such that, for ν ≥ 1,

Lν := ΦνLν−1Φ−1
ν , (3.4.45)

and, for s ∈ [s0, S − b],

[[Ψν ]]γ,Oνs ≤ γ−1[[R0]]γ,O0
ρ,s+bN

2τ+2
ν−1 N−a

ν−2 . (3.4.46)

(S2)ν The operator Zν = Z0 + Zν,2 where Zν,2 is ϕ-independent, block-diagonal and Her-
mitian. Moreover it satisfies

[[Zν − Zν−1]]γ,Oνρ,s ≤ [[R0]]γ,O0
ρ,s+bN

−a
ν−2 . (3.4.47)

Moreover there is a sequence of Lipschitz function

µ
(ν)
[k] : O0 → Rdk , k ∈ N

such that, for ω ∈ Oν, the functions µ(ν)
k,j , for j = 1, . . . , dk, are the eigenvalues of the

block

(∆ + Zν)[k]
[k] ,

satisfying

sup
k∈N
〈k〉κ|µ(ν)

[k] |
lip,O0 ≤ 1

4 + ε
ν−1∑
j=1

2−ν , (3.4.48)

where ε is defined in (3.4.5).
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(S3)ν The remainder Rν is Hermitian and satisfies, for any s ∈ [s0, S − b],

[[Rν ]]γ,Oνρ,s ≤ [[R0]]γ,O0
ρ,s+bN

−a
ν−1 , [[Rν ]]γ,Oνρ,s+b ≤ [[R0]]γ,O0

ρ,s+bNν−1 . (3.4.49)

(S4)ν One has Oν ⊂ Oν−1 ⊂ O0 (see (3.3.2)) and

meas
(
Oν+1 \ Oν

)
≤ γN−1

ν and meas
(
O0 \ Oν+1

)
≤ 2γ . (3.4.50)

Proof. We proceed by induction. We first verify the inductive step. So we assume that
conditions (Si)j, i = 1, 2, 3, 4, hold for 1 ≤ j ≤ ν. We shall prove that they holds for
ν  ν + 1.

We define the set Oν+1 as in (3.4.13) with O  Oν , N  Nν , µk,j  µ
(ν)
k,j . Using the

(3.4.47) for s s0, we have that

[[Z(ν)
ν,2 ]]γ,Oνρ,s0 ≤ [[Z0,2]]γ,O0

ρ,s0+b +
ν∑
j=1

[[Zj,2 − Zj−1,2]]γ,Ojρ,s0+b

(3.4.47),(3.4.5)
≤ γε

ν−1∑
j=0

2−j
(3.4.51)

for N0 ≥ 1 large enough. Hence condition (3.4.14) is satisfied for ε small enough, i.e.again
N0 large enough (recall (3.4.43)). Therefore Lemma 3.4.3 implies that (3.4.50) holds for
the set Oν+1 which is the (S4)ν+1.

We define the new normal form Zν+1 as (recall (3.4.35))

Zν+1 := Zν + Diag(Rν) .

Lemma 3.4.6, applied with R  Rν , together with the estimates (3.4.49), implies the
estimate (3.4.47). Let µ̃(ν+1)

[k] be the eigenvalues of the block (∆+Zν+1)[k]
[k] which are defined

on the set Oν+1. The bound (3.4.48) follows by Lemma 3.4.2 and (3.4.51). Moreover, by
Kirtzbraun Theorem, there is an extension µ(ν+1)

[k] of µ̃(ν+1)
[k] to the whole set O0 with the

same Lipschitz norm. This prove the (S2)ν+1.
Then we want to construct a map Φν+1 = Id+Ψν+1. First by the inductive hypothesis

(3.4.49) we deduce that (with C(s) given in Lemma 3.4.5)

C(s)γ−1N2τ+1
ν [[Rν ]]γ,Oνρ,s0 ≤ C(s)γ−1N2τ+1

ν N−a
ν−1[[R0]]γ,O0

ρ,s0+b

(3.4.5),(3.4.42)
≤ C(s)εN2τ+1− 2

3 a
ν ≤ 1

2
(3.4.52)

for ε small enough and since 2τ + 1 − 2
3a ≤ 0. Hence the smallness condition (3.4.32)

holds true. We then apply Lemmata 3.4.4 and 3.4.5 with R  Rν and O+  Oν+1 and
construct a map Φν+1 = Id + Ψν+1.
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Furthermore using (3.4.33), (3.4.49) at rank ν, Nν−1 = N2/3
ν and 2τ + 1− 2

3a ≤ −1, we
obtain the estimate (3.4.46) at rank ν + 1. This proves the (S1)ν+1.

We finally set

Lν+1 := Φν+1 ◦ Lν ◦ Φ−1
ν+1 = ω · ∂ϕ + i(∆g + Zν+1 +Rν+1) (3.4.53)

where the remainder Rν+1 is given by Lemma 3.4.7. We have

[[Rν+1]]γ,Oν+1
ρ,s

(3.4.38)
≤s N−b

ν [[Rν ]]γ,Oνρ,s+b + γ−1N2τ+ρ+1
ν [[Rν ]]γ,Oνρ,s0 [[Rν ]]γ,Oνρ,s

(3.4.49)
≤s [[R0]]γ,O0

ρ,s+b

(
N−b+1
ν + γ−1[[R0]]γ,O0

ρ,s0 N
2τ+ρ+1− 4

3 a
ν

)
≤ N−a

ν [[R0]]γ,O0
ρ,s+b

(3.4.54)

for N0 large enough where we used that γ−1[[R0]]γ,O0
ρ,s0 ≤ 1 (thanks to (3.4.6)) and

b ≥ a + 2 , 2τ + ρ+ 1− 1
3a ≤ −1.

The latter condition is implied by the choice of a in (3.4.42) recalling the (3.4.2). The
(3.4.54) is the first estimate in (3.4.49) at step ν + 1. We now give the estimate in “high”
norm. We have

[[Rν+1]]γ,Oν+1
ρ,s+b

(3.4.39)
≤s [[Rν ]]γ,Oνρ,s+b + γ−1N2τ+ρ+1

ν [[Rν ]]γ,Oνρ,s0 [[Rν ]]γ,Oνρ,s+b

(3.4.49)
≤s [[R0]]γ,O0

ρ,s+bNν−1

(
1 + γ−1[[R0]]γ,O0

ρ,s0+bN
2τ+ρ+1
ν N−a−1

ν−1

)
≤s Nν [[R0]]γ,O0

ρ,s+b

(3.4.55)

for N0 large enough depending on s and thanks to fact that 3τ + 3
2ρ+ 1

2 − a ≤ 0. This is
the (S3)ν+1.

Now we have to verify the initial step : ν = 1. (S2)1 and (S4)1 are proved exactly
in the way as in the inductive step. Now to proceed we have to construct Φ1 but now
(3.4.52) becomes

C(s)γ−1N2τ+1
0 [[R0]]γ,O0

ρ,s0

(3.4.5)
≤ C(s)εN2τ+1

0 ≤ 1
2

(3.4.56)

which is less than 1
2 for ε and N0 satisfying (3.4.43).

Furthermore using (3.4.33) we obtain

[[Ψ1]]γ,O1
s ≤ C(s)γ−1N2τ+1

0 [[R0]]γ,Oρ,s ≤ γ−1N2τ+2
0 [[R0]]γ,Oρ,s
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for N0 large enough. This proves the (S1)ν+1.

Then we set

L1 := Φ1 ◦ L0 ◦ Φ−1
1 = ω · ∂ϕ + i(∆g + Z1 +R1) (3.4.57)

where the remainder R1 is given by Lemma 3.4.7. We have

[[R1]]γ,O1
ρ,s

(3.4.38)
≤s N−b

0 [[R0]]γ,O0
ρ,s+b + γ−1N2τ+ρ+1

0 [[R0]]γ,O0
ρ,s0 [[R0]]γ,O0

ρ,s

(3.4.49)
≤s [[R0]]γ,O0

ρ,s+b

(
N−b+1

0 + εN2τ+ρ+1
0

)
≤ N−a

0 [[R0]]γ,O0
ρ,s+b

(3.4.58)

for N0 large enough where we used (3.4.43) and b ≥ a+2 . The (3.4.58) is the first estimate
in (3.4.49) at step 1, the other is proved similarly.

Proof of Theorem 3.4.1. Consider the operator L0 in (3.4.1). The smallness condition
(3.4.6) implies the (3.4.43), hence Proposition 3.4.8 applies. We define the set

Oε ≡ O∞ := ∩ν≥0Oν . (3.4.59)

By the measure estimate (3.4.50) we deduce (3.4.7). For any ω ∈ O∞, ν ≥ 0, we define
(see (3.4.45), (3.4.46)) the map

Φ̃ν+1 := Φ1 ◦ Φ2 ◦ · · ·Φν+1 = Φ̃νΦν+1 = Φ̃ν(Id + Ψν+1) . (3.4.60)

We want to prove that (Φ̃ν)ν≥1 converges inMγ,O∞
s . Let us define

δ(ν)
s := [[Φ̃ν ]]γ,O∞s . (3.4.61)

We have

δ(ν+1)
s0

(3.2.58)
≤ δ(ν)

s0 (1 + C[[Ψν+1]]γ,O∞s0 )
(3.4.46),(3.4.5)
≤ δ(ν)

s0 (1 + CεN−1
ν ) . (3.4.62)

By iterating the (3.4.62) we get, for any ν,

[[Φ̃ν ]]γ,O∞s0 ≤ (1 + [[Ψ1]]γ,O∞s0 )Πj≥1(1 + CεN−1
ν ) ≤ 2 (3.4.63)

where we used the (3.4.46) to estimate [[Ψ1]]γ,O∞s0 and we take N0 large enough.
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The high norm of Φ̃ν+1 is estimated by

δ(ν+1)
s

(3.2.58)
≤ δ(ν)

s (1 + C(s)[[Ψν+1]]γ,O∞s0 ) + C(s)[[Ψν+1]]γ,O∞s [[Φ̃ν ]]γ,O∞s0

(3.4.46),(3.4.63)
≤ δ(ν)

s (1 + C(s)εN−1
ν ) + εν

(3.4.64)

where

εν := C(s)γ−1[[R0]]γ,O0
ρ,s+bN

−1
ν .

By iterating (3.4.64), using Πj≥0(1 + C(s)εN−1
ν ) ≤ 2 for N0 large enough, we obtain

[[Φ̃ν ]]γ,O∞s ≤ [[Φ̃1]]γ,O∞s + 2
∑
j≥1

εj ≤ 1 + C(s)γ−1[[R0]]γ,O0
ρ,s+b . (3.4.65)

Then we have

[[Φ̃ν+1−Φ̃ν ]]γ,O∞s = [[Φ̃νΨν+1]]γ,O∞s

(3.2.58)
≤s [[Φ̃ν ]]γ,O∞s [[Ψν+1]]γ,O∞s0 + [[Φ̃ν ]]γ,O∞s0 [[Ψν+1]]γ,O∞s

(3.4.63),(3.4.65),(3.4.46)
≤s (1 + γ−1[[R0]]γ,O0

ρ,s+b)εN−1
ν + γ−1[[R0]]γ,O0

ρ,s+bN
−1
ν

≤s γ−1[[R0]]γ,O0
ρ,s+bN

−1
ν .

(3.4.66)
Now fix s ∈ [s0, S − b], since by hypothesis (A2), R0 ∈ Mγ,O

ρ,s+b, we deduce from
the last estimate that (Ψ̃ν)ν≥0 is a Cauchy sequence inMγ,O∞

s . Hence Φ̃ν→Φ∞ ∈Mγ,O∞
s .

Furthermore by (3.4.66) one deduces the (3.4.9). The estimate on Φ−1
∞ −Id follows by using

Neumann series and reasoning as in the proof of Lemma 3.6.3. By (3.4.47) we deduce that
Zν,2 is a Cauchy sequence inMγ,O∞

ρ,s . Hence we set

Z∞ = Z0 + Z∞,2 := Z0 + lim
ν→∞

Zν,2 , (3.4.67)

The (3.4.10) follows again by (3.4.47). We also notice that (3.4.49) implies that Rν → 0
in Mγ,O∞

ρ,s . Now by applying iteratively the (3.4.45) we have that Lν = Φ̃ν ◦ L0 ◦ Φ̃−1
ν .

Hence, passing to the limit, we get Lν →ν→∞ L∞ of the form (3.4.8) with Z∞ given by
(3.4.67).

3.5 Proof of Theorem 3.1.1

In this short section we merge the two previous sections to prove the reducibility of
the Schrödinger equation (3.1.1) : Theorem 3.1.1.
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We recall that equation (3.1.1) has the form

∂tu = −i(∆g + εW (ωt))u

where ϕ 7→ W (ϕ) is a C∞ map from Td toAδ, δ ≤ 1/2, and thusW ∈ Aδ,r for any r > d/2.
Its reducibility rely on the reducibility of the operator F in (3.3.1) with V (ϕ) = εW (ϕ).
Rouglhy speaking we want to apply Theorem 3.3.1 to regularize F in such a way operator
F is transformed into the operator F+ in (3.3.4). Then we apply Lemma 3.2.14 to control
the remainder R in (3.3.4) in s-decay norm. This allows, for ε small enough, to apply the
reducibility Theorem 3.4.1 and to conclude.
To justify all these steps we have to carefully follow the parameters and the smallness
conditions. First we fix α ∈ (0, 1) and γ = εα, δ ≤ 1

2 , s > n/2 and W belonging to all the
Aδ,r with r > d/2 . Then we fix ρ, b, τ as in (3.4.2), we set κ = 2δ−1 and we fix s0 > n/2
and S such that s and s+ b belong to [s0, S] and S ≥ p(δ, 0) (see (3.2.21)). Finally we set

ρ0 = S + ρ+ 1
2 , r0 = S.

With these values of ρ0, r0, Theorem 3.3.1 provide us with ε∗ = ε∗(S, n, d, δ), r∗ =
r∗(S, n, d, δ) and p = p(S, n, d, δ) such that if r > r∗ and

γ−1Nδ,r,p(εW ) < ε∗(n, d, δ) (3.5.1)

then we can apply Theorem 3.3.1 to F with V = εW . Since W belongs to Aδ,r for any
r > d/2 , (3.5.1) is satisfied for ε small enough. So there exists Φ(ϕ) ∈ L(Hs, Hs) such
that (see (3.3.4))

ΦFΦ−1 = F+ = ω · ∂ϕ + i(∆g + Z +R) .

Further we knows that R ∈ Rγ,O0
ρ0,r0 and

|R|γ,O0
ρ0,r0,s ≤ CNδ,r,p(εW ) . (3.5.2)

Now we apply Lemma 3.2.14 to conclude that R ∈Mγ,O0
ρ,S and

[[R]]γ,O0
ρ,S ≤ CNδ,r,p(εW ) . (3.5.3)

We notice that the operator F+ has the same form of the operator L0 in (3.4.1) with
Z0 = Z, R0 = R and O = O0 (see (3.3.2)). The remainder R0 satisfies the assumption
(A2) by the discussion above. Notice also that, in view of (3.5.3), the constant ε given
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by (3.4.5) satisfies

ε ≤ Nδ,r,p(W )ε1−α (3.5.4)

and thus the smallness condition (3.4.6) is satisfied provided that ε is small enough. We
now prove that Z0 satisfies assumption (A1) with κ := 2δ − 1. First we note that, since
δ ≤ 1/2 then κ ≤ 0. Moreover, by Theorem 3.3.1, we have that Z0 := Z = Z1 + Z2 with
Z1 ∈ Aδ independent of ω ∈ O0, and Z2 ∈ Aγ,O0

2δ−1. Estimate (3.3.6) implies that for all
s ∈ [s0, S]

Nδ,s(Z) ≤ CNδ,r,p(εW ) ≤ CNδ,r,p(W )ε1−α.

Since S ≥ p(δ, 0) we deduce by (3.2.21) that

‖Z‖L(L2,H−δ) ≤ CNδ,r,p(W )ε1−α ≤ c0

2
for ε small enough which in turn implies that

|µ(0)
k,j(ω)| ≤ c0

2 |k|
δ

and thus (3.4.3) holds true. Furthermore since Z1 does not depend on ω, we have

‖(Z0)[k]
[k]‖

lip,O
L(L2) = ‖(Z2)[k]

[k]‖
lip,O
L(L2)

and thus (3.3.6) implies also (3.4.4) for ε small enough.
Hence all the hypothesis of Theorem 3.4.1 are satisfied for L0 = F+ and this theorem
provides a set of frequencies Oε such that, for ω ∈ Oε, there is a map Φ∞ satisfying, (see
estimates (3.4.9), (3.5.4))

[[Φ±1
∞ (ϕ)− Id]]γ,O∞ρ,s̃ .S Nδ,r,p(W )ε1−α ∀ω ∈ Oε , (3.5.5)

for any (d + n)/2 < s̃ < S − b, such that L0 ≡ F+ transforms into L∞ in (3.4.8). By
(3.4.7) we have

meas(O0 \ Oε) ≤ Cγ ,

for some constant C > 0 depending on s. It is also know that (recall (3.3.2)) meas([1/2, 3/2]d\
O0) ≤ Cγ. Therefore, recalling that we set γ = εα we have that the (3.1.2) holds. Moreo-
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ver, by Lemma 3.6.2 and (3.5.5) we have

sup
ϕ∈Td
‖Φ±1
∞ (ϕ)− Id‖L(Hs;Hs) .S Nδ,r,p(W )ε1−α . (3.5.6)

For ω ∈ Oε we set

Ψ(ωt) := Φ∞(ωt) ◦ Φ(ωt) .

By construction the function v := Ψ(ωt)u satisfies the equation (3.1.5) with εZ  Z∞ in
(3.4.8). Moreover, by (3.3.8), (3.3.9), (3.5.6) and (3.5.2), we have

sup
ϕ∈Td
‖Ψ±1(ϕ)− Id‖L(Hs,Hs−δ) ≤ γ−1Csε ,

sup
ϕ∈Td
‖Ψ±1(ϕ)‖L(Hs,Hs) ≤ 1 + γ−1Csε ,

(3.5.7)

for some Cs > 0. This concludes the proof.
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3.6 Appendix : Technical lemmata

3.6.1 Proof of Lemma 3.2.6

Proof of Lemma 3.2.6. The bounds (3.2.37), (3.2.38) and (3.2.42) can be deduced by
using the properties of the semi-norm in (3.2.21)-(3.2.24) and the definition in (3.2.31).
We give the proof the bound (3.2.41) of item (iii). The bound (3.2.39) is similar. We have
that

B(ω) := (ω · ∂ϕ)−1A(ω) =
∑

06=l∈Zd

1
iω · l e

il·ϕA(ω; l). (3.6.1)
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Thus (
Nm,r−α,p((ω · ∂ϕ)−1A)

)2 (3.2.31)
≤

∑
06=l∈Zd

1
|ω · l|2

〈l〉2(r−α)N 2
m,p(A(l))

(3.2.40)
≤ 1

γ2

∑
l∈Zd\{0}

〈l〉2(r−α)|l|2αN 2
m,p(A(l))

≤ C

γ2

∑
06=l∈Zd

〈l〉2rN 2
m,p(A(l)) = C

γ2

(
Nm,r,p(A)

)2
.

(3.6.2)

To estimate N lip,O
m,r−(2α+1),p(B) (see (3.2.16)) we reason as follow. We first note that

B(ω1)−B(ω2) =
∑

06=l∈Zd

1
iω1 · l

eil·ϕ
(
A(ω1; l)− A(ω2; l)

)

+
∑

0 6=l∈Zd

(ω1 − ω2) · l
i(ω1 · l)(ω2 · l)

eil·ϕA(ω2; l).

Moreover, by using (3.2.40) and that O is compact, we have∣∣∣∣∣ (ω1 − ω2) · l
i(ω1 · l)(ω2 · l)

∣∣∣∣∣ ≤ C
1
γ2 |l|

2α+1|ω1 − ω2| .

Therefore reasoning as in (3.6.2) we get

Nm,r−(2α+1),p(B(ω1)−B(ω2))
|ω1 − ω2|

.
1
γ
N lip,O
m,r,p(A) + 1

γ2N
sup,O
m,r,p (A) . (3.6.3)

Combining (3.6.2), (3.6.3) and recalling (3.2.17), (3.6.1) we obtained

N γ,O
m,r−(2α+1),p(B) . 1

γ
N sup,O
m,r,p (A) + γ

(
N lip,O
m,r,p(A) + 1

γ2N
sup,O
m,r,p (A)

)

.
1
γ

(
N sup,O
m,r,p (A) + γN lip,O

m,r,p(A)
)

which is bound (3.2.41).

3.6.2 Properties of the s-decay norm

In this appendix s0 is some fixed number satisfying s0 > (d+ n)/2.

Lemma 3.6.1. Let α > 0. Then (recall (3.2.61), (3.2.55))

[[D±αAD∓α]]γ,Os ≤s [[A]]γ,Os+α , (3.6.4)
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[[D±α(ΠNA)D∓α]]γ,Os ≤s Nα[[A]]γ,Os . (3.6.5)

Proof. The bounds (3.6.4), (3.6.5) follow by reasoning as in the proof of Lemma A.1 in
[FG19] and using the (3.2.59).

Lemma 3.6.2. Let A be a matrix as in (3.2.52) with finite [[·]]s-norm (see (3.2.55)). Then
(recall (3.2.54)) one has

‖A(ϕ)‖L(Hs,Hs) ≤s |A(ϕ)|s ≤s [[A]]s+s0 , ∀ϕ ∈ Td .

Proof. See Lemma 2.4 in [BBM14].

Lemma 3.6.3. Assume that

C(s)[[A]]γ,Os0 ≤ 1/2 (3.6.6)

for some large C(s) > 0 depending on s ≥ s0. Then the map Φ := Id + Ψ defined as

Φ := eiA :=
∑
p≥0

1
p! (iA)p , (3.6.7)

satisfies

[[Ψ]]γ,Os ≤s [[A]]γ,Os . (3.6.8)

Proof. For any n ≥ 1, using (3.2.58), we have, for some C(s) > 0,

[[An]]s0 ≤ [C(s0)]n−1[[A]]ns0 ,

[[An]]s ≤ n[C(s)[[A]]s0 ]n−1C(s)[[A]]s , ∀ s ≥ s0 .

The same holds also for the norm [[·]]γ,Os . Hence

[[Ψ]]γ,Os ≤ [[A]]γ,Os
∑
p≥1

C(s)p
p! ([[A]]γ,Os0 )p−1 ,

for some (large) C(s) > 0. By the smallness condition (3.6.6) one deduces the bounds
(3.6.8).

Lemma 3.6.4. Let α, β ∈ R. Then

[[AM ]]γ,Oα+β,s ≤s [[A]]γ,Oα,s+|β|[[M ]]γ,Oβ,s0+|α| + [[A]]γ,Oα,s0+|β|[[M ]]γ,Oβ,s+|α| , (3.6.9)

[[(Id− ΠN)M ]]γ,Oβ,s ≤s N−s[[M ]]γ,Oβ,s+s , s ≥ 0 . (3.6.10)
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Moreover, if α ≤ β < 0 then

[[AM ]]γ,Oβ,s ≤s [[A]]γ,Oα,s [[M ]]γ,Oβ,s0 + [[A]]γ,Oα,s0 [[M ]]γ,Oβ,s . (3.6.11)

Proof. To prove (3.6.9) one reasons as in Lemma A.3 in [FG19]. The (3.6.11) and (3.6.10)
follow by Lemma 3.6.1.

Lemma 3.6.5. One has

‖DβAh‖`s ≤s [[A]]β,s‖h‖`s0
+ [[A]]β,s0‖h‖`s , (3.6.12)

for any h ∈ `s (see (3.2.15)) and β ∈ R.

Proof. One reasons as in Lemma A.4 in [FG19].

3.6.3 Flows of pseudo differential operators

Lemma 3.6.6. Fix m ≤ 0, 0 ≤ δ ≤ 1, r > d/2 and ρ ≥ 0 and consider S1 ∈ Aγ,Om,r and
S2 ∈ Aγ,Oδ,r (see Definition 3.2.3). Assume also that

[S2, K0] = 0 , 〈S2h, v〉 = 〈h, S2v〉 (3.6.13)

where 〈·, ·〉 is the standard L2 scalar product. Let us define

Φτ
1 := Φτ

1(ϕ) := eτ iS1 , Φτ
2 := Φτ

2(ϕ) := eτ iS2 . (3.6.14)

For any s ≥ 0 there are ε0, C, p > 0 such that, for any 0 < ε ≤ ε0, if

N γ,O
m,r,p(S1) +N γ,O

δ,r,p(S2) ≤ ε, (3.6.15)

then the following holds true :
(i) the map Φτ

1 satisfies

sup
ϕ∈Td
‖Φτ

1(ϕ)− Id‖γ,OL(Hs;Hs−m) ≤ CN γ,O
m,r,p(S1) , (3.6.16)

sup
ϕ∈Td
‖(∂kϕΦτ

1)(ϕ)‖γ,OL(Hs,Hs) ≤ CN γ,O
δ,r,p(S1) , 0 ≤ k ≤ r , (3.6.17)

for any τ ∈ [0, 1] ;
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(ii) the map Φτ
2 satisfies

sup
ϕ∈Td
‖Φτ

2(ϕ)‖L(Hs,Hs) ≤ (1 + CN γ,O
δ,r,p(S2)) , (3.6.18)

sup
ϕ∈Td
‖(Φτ

2(ϕ)− Id)‖L(Hs,Hs−δ) ≤ CN γ,O
δ,r,p(S2) , (3.6.19)

sup
ϕ∈Td
‖(∂kϕΦτ

2)(ϕ)‖L(Hs,Hs−kδ) ≤ CN γ,O
δ,r,p(S2) , 1 ≤ k ≤ r , (3.6.20)

for any τ ∈ [0, 1] and any ω ∈ O. Moreover the following bounds on the Lipschitz norm
hold true :

sup
ϕ∈Td
‖Φτ

2(ϕ)‖γ,OL(Hs,Hs−1) ≤ (1 + CN γ,O
δ,r,p(S2)) , (3.6.21)

sup
ϕ∈Td
‖(Φτ

2(ϕ)− Id)‖γ,OL(Hs,Hs−δ−1) ≤ CN γ,O
δ,r,p(S2) , (3.6.22)

sup
ϕ∈Td
‖(∂kϕΦτ

2)(ϕ)‖γ,OL(Hs,Hs−kδ−1) ≤ CN γ,O
δ,r,p(S2) , 1 ≤ k ≤ r , (3.6.23)

for any τ ∈ [0, 1].

Proof. We shall prove the result for the map Φτ
2. The estimates on Φτ

1 can be obtained in
the same way. Notice that the operator Φτ

2 solves the problem∂τΦ
τ
2(ϕ) = iS2(ϕ)Φτ

2(ϕ)

Φ0
2(ϕ) = Id .

(3.6.24)

The existence of the flow Φτ
2 in L(Hs, Hs) can be obtained following the line of chapter 5

in [Tay91]. Then using (3.6.24) and the assumption (3.6.13) one can check that

∂τ‖Φτ
2h‖2

Hs = 0 ⇒ ‖Φτ
2h‖Hs ≤ ‖h‖Hs ,

for any τ ∈ [0, 1], h ∈ Hs and ϕ ∈ Td. This is the (3.6.18). Let us now define

Γτ (ϕ) := Φτ
2(ϕ)− Id .

It solve the problem

∂τΓτ (ϕ) = iS2(ϕ)Γτ (ϕ) + iS2(ϕ) , Γ0(ϕ) = 0 .

By Duhamel formula have

Γτ (ϕ)h =
∫ τ

0
Φτ

2Φ−σ2 (ϕ)iS2(ϕ)hdσ .
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Therefore the bound (3.6.19) follows by (3.6.18) and the estimates on S2. Similarly the
operator (∂ϕΦτ

2)(ϕ) satisfies∂τ (∂ϕΦτ
2)(ϕ) = iS2(ϕ)(∂ϕΦτ

2)(ϕ) + i(∂ϕS2)(ϕ)Φτ
2(ϕ) ,

(∂ϕΦ0
2)(ϕ) = 0 .

(3.6.25)

We have that

sup
ϕ∈Td
‖(∂ϕS2)(ϕ)Φτ

2(ϕ)h‖Hs−δ . ‖h‖HsN γ,O
δ,r,p(S2)

by (3.6.18) and the fact that r > d/2. Hence, using Duhamel formula and the (3.6.18),
we deduce the (3.6.20) for k = 1. The (3.6.20) for k > 1 can be obtained in the same
way by differentiating (3.6.25). The Lipschitz bounds (3.6.21)-(3.6.23) follows reasoning
as in the estimates of ∂ϕΦτ

2(ϕ). The bounds (3.6.16), (3.6.17) can be deduced reasoning as
done above and using the fact that the generator iS1(ϕ) is a bounded pseudodifferential
operator.

Lemma 3.6.7. Let r1 ≥ 0 and r > r1 +d/2, δ > 0, ρ1 > 0, ρ := ρ1 + δr1 +1 and consider
R ∈ Rγ,O

ρ,r (see Definition 3.2.4). Consider also the map Φ2(ϕ) := Φτ
2(ϕ)|τ=1, where Φτ

2(ϕ)
is given in Lemma 3.6.6. Then G2(ϕ) := Φ2(ϕ)R(ϕ)Φ−1

2 (ϕ) belongs to Rγ,O
ρ1,r1. Moreover

for any s ≥ 0 there exist p and C such that

|G2|γ,Oρ1,r1,s ≤ |R|
γ,O
ρ,r,s(1 + CN γ,O

δ,r,p(S2)) . (3.6.26)

Proof. We need to prove that the map ϕ 7→ Γ(ϕ) is in Hr1(Td;L(Hs;Hs+ρ1)). We note
that

|G2|ρ1,r1,s .
r1∑
k=0

sup
ϕ∈Td
‖(∂kϕG2)(ϕ)‖L(Hs;Hs+ρ1 ) (3.6.27)

.
r1∑
k=0

∑
k1+k2+k3=k

ki≥0

sup
ϕ∈Td
‖(∂k1

ϕ Φ2)(ϕ)(∂k2
ϕ R)(ϕ)(∂k3

ϕ Φ−1
2 )(ϕ)‖L(Hs;Hs+ρ1 ) .

We estimate separately each summand in (3.6.27). First of all notice that, by the definition
of the norm in (3.2.33) and the fact that r > r1 + d/2, one has

sup
ϕ∈Td
‖∂k2

ϕ (R(ϕ))‖L(Hs;Hs+ρ) . |R|ρ,r,s . (3.6.28)

Hence the summand in (3.6.27) with k1 = k3 = 0 is trivially bounded by the right hand
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side in (3.6.26). If at least one between k1, k2 is different from zero we have, for any h ∈ Hs,

‖(∂k1
ϕ Φ2)(ϕ)(∂k2

ϕ R)(ϕ)(∂k3
ϕ Φ−1

2 )(ϕ)h‖Hs+ρ1

(3.6.20)
. N γ,O

δ,r,p(S2)‖(∂k2
ϕ R)(ϕ)(∂k3

ϕ Φ−1
2 )(ϕ)h‖Hs+ρ1+k1δ

(3.6.28)
. N γ,O

δ,r,p(S2)|R|ρ,r,s‖(∂k3
ϕ Φ−1

2 )(ϕ)h‖Hs+ρ1+k1δ−ρ

(3.6.15)
. N γ,O

δ,r,p(S2)|R|ρ,r,s‖h‖Hs+ρ1+(k1+k3)δ−ρ .

Notice that +ρ1 + (k1 + k3)δ − ρ ≤ 0 since k1 + k3 ≤ r1 and that the estimate above is
uniform in ϕ ∈ Td. Hence, together with the (3.6.27), it implies the (3.6.26) for the norm
| · |ρ1,r1,s. The Lipschitz bounds are obtained similarly taking into account the extra loss
of derivatives appearing in the estimates (3.6.21)-(3.6.23).

Similarly we prove in the bounded case :

Lemma 3.6.8. Let r1 ≥ 0 and r > r1 + d/2, ρ > 0 and consider R ∈ Rγ,O
ρ,r . Consider

also the map Φ1(ϕ) := Φτ
1(ϕ)|τ=1, where Φτ

1(ϕ) is given in Lemma 3.6.6. Then G1(ϕ) :=
Φ1(ϕ)R(ϕ)Φ−1

1 (ϕ) belongs to Rγ,O
ρ,r . Moreover for any s ≥ 0 there exist p and C such that

|G1|γ,Oρ,r1,s ≤ C|R|γ,Oρ,r,s(1 +N γ,O
m,r,p(S)) . (3.6.29)

Data Availability. The data that supports the findings of this study are available within
the article.
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4
Birkhoff normal form for abcd Boussinesq
system on the circle

4.1 Introduction

We consider the abcd-Boussinesq system (1− b∂xx)∂tη + ∂x(a∂xxu+ u+ uη) = 0 (t, x) ∈ R× T
(1− d∂xx)∂tu+ ∂x(c∂xxη + η + 1

2u
2) = 0

(4.1.1)

Where η, u are real functions with zero momentum∫
T
η(t, x) dx =

∫
T
u(t, x) dx = 0.

Here the independent variable x corresponds to distance along the channel and t is pro-
portional to elapsed time. The quantity η = η(x, t) corresponds to the depth of the water
at the point x and time t. The variable u(x, t) is proportional to the horizontal velocity
at the height θh, where θ is a fixed constant in the interval [0, 1] and h is the undisturbed
water depth.

We are interested in the long time behavior of small amplitude solution of (4.1.1). In
this paper, we would like to prove a Birkhoff normal form result for (4.1.1). The idea comes
from Theorem 2.13 of [BG06] (see also [Bam03], [BDGS07],[Gre07], [Bam08], [Del12]),
where the authors prove a Birkhoff normal form result for Hamiltonian with nonlinearity
satisfying a tame modulus condition and nonresonant frequencies. In [BG06], the authors
applied that result to many partial differential equations : NLW equations, NLS equations
in one dimension and higher dimension, coupled NLS in one dimension. In this paper, we
state a similar result for Boussinesq systerm.

As in general, the proof of a Birkhoff normal form result is obtained by constructing a
sequence of canonical transformations to eliminate the non-normalized part of the nonli-
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nearity step by step. This procedure relates to solving homological equations in each step.
The idea in [BG06] is to use a so-called tame inequality

‖uv‖s ≤ C(‖u‖s‖v‖1 + ‖v‖s‖u‖1) (4.1.2)

and that if u ∈ Hs depends only on high modes u = ∑
|k|≥N uke

i2πkx then

‖u‖1 ≤
‖u‖s
N s−1 . (4.1.3)

This term is small when N large enough. Then in the Birkhoff procedure, the nonlinearity,
which satisfies the tame properties and has many high modes in expansion, is small and
controllable. The study of frequency plays an important role in order to eliminate the
remainder part of non-integrable resonant terms. However, contrary [BG06], where exter-
nal potentials were used to verify the nonresonant condition, we obtain the nonresonant
condition by studying frequencies as functions of parameters a, b, c, d.

Our main contribution in this work is to verify that the nonlinearity in Boussinesq
system satisfies a tame property and that the frequencies satisfy a nonresonant condi-
tion(section 4) then we prove our Birkhoff normal form result(section 5). In section 2,
we state our main theorem and explain the scheme of our proof. In section 3, we recall
notations of tame property and nonresonant condition, which was introduced in [BG06].
We give the proof of local well-posedness in Appendix B.

The system (4.1.1) was originally derived by Bona, Chen and Saut [BCS02],[BCS04]
in the vein of the Boussinesq original derivation [Bou72]. The equation is derived to study
the two dimensional, incompressible and irrotational water wave in the shallow water
regime. The abcd Boussinesq equation and its extensions have been studied extensively in
the literature (see [SL08], [BCL05], [BLS08], [LPS12], [SX12], [SX17], [LY97]). Here, the
parameters a, b, c, d satisfy the consistency conditions (see [BCS02], [BCS04])

a+ b+ c+ d = 1
3 . (4.1.4)

To consider all possible value of the parameters (a, b, c, d) present in the equation is too
complicated, here we concentrate our study to the "Hamiltonian generic" case namely the
case where

b = d > 0, a, c < 0.

In a next paper, we would like to study the Boussinesq equation in the KdV-KdV regime
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(b = d = 0). It is worth saying that to prove a Birkhoff normal form result for this case
is much more complicated since in this case the nonlinearity is unbounded and its tame
property is failed. However, a recent paper [BG20] gives tools to deal with this problem.

Acknowledgement : I wish to thank Professor Benoît Grébert for motivating me to
publish this paper with numerous suggestions and discussions. The author is partially sup-
ported by the grant BeKAM ANR-15-CE40-0001-02, and by the Centre Henri Lebesgue,
ANR-11-LABX-0020-01.

4.2 Statement of the main theorem

We expand the solution in Fourier variables

u(x) =
∑
k∈Z∗

uke
2iπkx, η(x) =

∑
k∈Z∗

ηke
2iπkx (4.2.1)

note that uk = u−k, ηk = η−k since u and η are real, then (4.1.1) reads ∂tηk = − i2πk
1+4π2bk2 ((1− 4π2ak2)uk +∑

j+l=k ujηl)
∂tuk = − i2πk

1+4π2bk2 ((1− 4π2ck2)ηk + 1
2
∑
j+l=k ujul)

k ∈ Z∗. (4.2.2)

Simplify, we denote

Dk = 2πk
1 + 4bπ2k2 , ωk =

√
(1− 4aπ2k2)(1− 4cπ2k2)

Ωk = Dkωk.

Before we state our result, we need to put the system (4.2.2) into a more convenient
form by using a linear symplectic change of variables

ψk = 1√
2

(αkuk + α−1
k ηk), φk = 1√

2
(αkuk − α−1

k ηk)

where αk =
(

1−4aπ2k2

1−4cπ2k2

) 1
4 = α−k. Then the system can be written as

∂tψk = −iDk∇ψ−kH

∂tφk = iDk∇φ−kH
k ∈ Z∗, (4.2.3)

where H is the Hamiltonian

H = H0 + P
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with

H0 =
∑
k∈N∗

ωk(ψkψ−k + φkφ−k)

P = 1
4
√

2
∑

j+l+h=0
αhα

−1
j α−1

l (ψj + φj)(ψl + φl)(φh − ψh)

Through all the paper, we identify the couple function (ψ, φ) with its series of Fourier
coefficients (ψ, φ) = (ψk, φk)k∈Z∗ . We also define the Sobolev space (s ≥ 0)

Hs := {z = (ψ, φ) = (ψk, φk)k∈Z∗ ∈ `2(T)× `2(T) | ‖z‖2
s =

∑
k∈Z∗
|k|2s(|φk|2 + |ψk|2) <∞}.

(4.2.4)

Denote by Nk = |(ψk, φk)|2 = |φk|2 + |ψk|2 the actions of the flow (ψ, φ)(t).We also denote
Ik = |φk|2, Jk = |ψk|2 then Nk = Ik + Jk = α2|uk|2 + α−2|ηk|2. Denote by Bs(R) the open
ball centered at the origin of radius R in Ps.

Poisson bracket In the phase space Hs, we define the Poisson bracket

{P,Q} =
∑
k∈Z∗

Dk∂ψkP∂ψ−kQ−
∑
k∈Z∗

Dk∂φkP∂φ−kQ

=
∑
k∈N∗

Dk(∂ψkP∂ψ−kQ− ∂ψ−kP∂ψkQ)−
∑
k∈N∗

Dk(∂φkP∂φ−kQ− ∂φ−kP∂φkQ).

so that the equation (4.2.3) reads
i∂tψk = {ψk, H}

i∂tφk = {φk, H}
k ∈ Z∗. (4.2.5)

Frequencies Let us write Ωk = 2πk
1+4bπ2k2

√
pk4 + ek2 + 1 where p = 16π4ac, e =

−4π2(a + c). Here we assume that b = d ≥ 0, and we consider two different cases :
the "generic" case b = d > 0, a, c < 0 and the Kdv-Kdv case b = d = 0, a, c > 0.

In the generic case, since a+ c+ 2b = 1
3 , we have b = 1

6 − (a+ c)/2 > 1
6 and

0 < p = 16π4ac ≤ 16π4(b− 1
6)2 e = −4π2(a+ c) = 4π2(2b− 1

3) ≥ 0.

We denote Ib := (0, p0 = 16π4(b− 1
6)2). In the Kdv-Kdv case, in order for frequencies to

be real, we assume a, c > 1
4π2 . Since a+ c = 1

3 , we have

4
3π

2 − 1 < p ≤ 4
9π

4.
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Denote I0 = (4
3π

2 − 1, 4
9π

4].
For any r ≥ 3, we define

α∗ := (7
2r

3 + r2 + 7r)2; N∗(r, α, µ) := [µ− 1
2rα ]; s∗(r, α) = 2αr2 + 2.

Then our main result is stated as follow

Theorem 4.2.1. Let r ≥ 1, 0 < µ� 1. Then for any s ≥ s∗, α > α∗ there exists a subset
Iµ ⊂ Ib and a constant C = C(r, s, b) such that

|Iµ − Ib| ≤ C|Ib|µ
α+1
r+2 (4.2.6)

and for any p ∈ Iµ, for |t| ≤ µ−r+3/2, there exists a transformation T : Bs(µ/3)→ Bs(µ)
satisfying

H ◦ T = H0 + Z +R. (4.2.7)

here Z is a polynomial of degree at most r + 2 that commutes with the actions Nk, i.e.,

{Z,Nk} = 0 ∀k ∈ Z∗ (4.2.8)

and R ∈ C∞(Bs(µ)) fulfills the estimate

sup
‖(ψ,φ)‖s≤µ/3

‖XR‖s ≤ Cµr+
3
2 . (4.2.9)

The canonical transformations and its inverse are close to identity

sup
‖(φ,ψ)‖s≤µ/3

‖(φ, ψ)− T (φ, ψ)‖s ≤ Csµ
2 sup

‖(φ,ψ)‖s≤µ/3
‖(φ, ψ)− T −1(φ, ψ)‖s ≤ Csµ

2.

(4.2.10)

Corollary 4.2.2. Fix r ≥ 1, assume Ω is nonresonant, then for any s sufficiently large,
there exist µ0 and c such that if the initial data is in Bs(µ), µ ≤ µ0 then

— ‖(u, η)(t)‖s ≤ 2µ for t ≤ cµ−r+3/2

— α2
k(|uk|2(t)− |uk|2(0)) + α−2

k (|ηk(t)|2 − |ηk(0)|2) ≤ µ3

k2s for t ≤ cµ−r+3/2; k ∈ Z∗.

The difference between the "generic" system and the Kdv-Kdv system comes from Dk.

In the generic case b > 1
6 , we have |Dk| ≤ 1, which makes it easy to prove tame property,

while in the Kdv-Kdv case Dk = 2πk is unbounded so that the nonlinear term P does not
satisfies tame property. In the fullness of time, we would like to study this case, which is
much more complicated.
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4.2.1 Scheme of the proof

In order to prove the Theorem 4.2.1, we search iterative changes of variables Tn, 1 ≤
n ≤ r, such that

H ◦ Tn = H0 + Z4(I, J) + Z6(I, J, Y ) + · · ·+ Zn(I, J, Y ) +Rn+1. (4.2.11)

Where Rn+1 is a perturbation term which is of the size µn+ 3
2 and

I = (Ik)k∈Z∗ , J = (Jk)k∈Z∗ , Y = (
∏∑
kj

=0
Ykj), Yk = ψkφk.

Here we call Yk the pseudo actions, which satisfy {Yk, H0} = 0, k ∈ Z∗. Moreover

{Ik + Jk,
∏∑
kj

=0
Ykj} = 0 ∀k, kj ∈ Z∗. (4.2.12)

The condition ∑
kj = 0 appear naturally since H comes from an integration of a real

function on the circle. As a consequence of the appearance of Y, the exchange of energy
mainly occurs between Ik and Jk for a long time |t| ≤ µ−r+

3
2 , ∀k ∈ Z∗.

4.3 Normal form and tame modulus

In this section, we recall some notations and lemmas used in [BG06].

4.3.1 Nonresonant condition

Definition 4.3.1. Fix two positive parameters κ and α, and a positive integer N. A
function Z is said to be in (κ, α,N)−normal form with respect to Ω if Zkl 6= 0 implies

|Ω(k − l)| < κ

Nα
and

∑
|j|≥N+1

|kj|+ |lj| ≤ 2.

Definition 4.3.2 (Nonresonant condition). Let r be a positive integer, we say that the
frequency Ω is nonresonant if there exist κ > 0, and α ∈ R such that for any N large
enough one has

|
∑
j∈N∗

Ωjkj| ≥
κ

Nα
(4.3.1)

for any k ∈ Z∞, fulfilling 0 6= |k| := ∑
j |kj| ≤ r + 2, ∑|j|>N |kj| ≤ 2.
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Remark 4.3.3. If the frequency Ω is nonresonant then any polynomial which is in
(κ, α,N)−normal form depends only on I, J and Y.

Example 4.3.4. If the frequency Ω is nonresonant then a polynomial of order 6, which
is in (κ, α,N)−normal form with respect to Ω would be

Z6 =
∑
k,l∈Z∗

ak,lYkYlY−k−l +
∑

k,l,h∈Z∗
bk,l,hIkIlIh + ck,l,hIkIlJh + dk,l,hIkJlJh + ek,l,hJkJlJh

where ak,l, bk,l,h, ck,l,h, dk,l,h, ek,l,h are real constants.

4.3.2 Tame modulus

Let us consider a homogeneous polynomial of degree r + 1 f : Ps → R, which can be
written as

f(z) :=
∑
|j|=r+1

fjz
j, j = (. . . , j−l1, j−l2, . . . , j−11, j−12, j11, j12, . . . , jl1, jl2, . . . )

zj := (ψ, φ)j = . . . ψ
j−l1
−l φ

j−l2
−l . . . ψjl1l φjl2l . . . , |j| :=

∑
l

(|jl1|+ |jl2|),

We can associate f to a symmetric r + 1−linear form f̃ as

f(z) = f̃(z(1), . . . , z(r+1)) =
∑
|j|=r+1

fj1,...,jr+1z
(1)
j1 . . . z

(r+1)
jr+1 , jl = (jl1, jl2).

We say that f is bounded if there exists a constant C such that

|f(z)| ≤ C‖z‖r+1
s , ∀z ∈ Ps,

or equivalently

|f̃(z(1), . . . , z(r+1))| ≤ C‖z(1)‖s . . . ‖z(r+1)‖s.

Now consider Xf := ( 2πk
1+4π2bk2∂ψkf,− 2πk

1+4π2bk2∂φkf) the vector field of f. We write it as

Xf (z) =
∑
l

Xl(z)el

where el is l-th standard basis of Ps and Xl(z) is a real valued homogeneous polynomial
of degree r. We also consider the r−linear form X̃f so that Xf (z) = X̃f (z, z, . . . , z).

Definition 4.3.5. Let f is a homogeneous polynomial of degree r, we define its modulus
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bfe by

bfe :=
∑
|j|=r
|fj|zj.

We also define the modulus of its vector field Xf as

bXfe :=
∑

l∈Z\{0}
bXleel.

Definition 4.3.6. Let s ≥ 1, a homogeneous polynomial vector field X of degree r is
said to be an s−tame map if there exists a constant Cs such that

‖X̃(z(1), . . . , z(r))‖s ≤ Cs
1
r

r∑
l=1
‖z(1)‖1 . . . ‖z(l−1)‖1‖z(l)‖s‖z(l+1)‖1 . . . ‖z(r)‖1. (4.3.2)

If a map is s-tame for any s ≥ 1 then it is said to be tame. Moreover if X is the vector
field of a homogeneous polynomial f and bXfe is an s−tame map also, then we define

|f |s := sup
‖X̃bfe(z(1), . . . , z(r))‖s

1
r

∑r
l=1 ‖z(1)‖1 . . . ‖z(l−1)‖1‖z(l)‖s‖z(l+1)‖1 . . . ‖z(r)‖1

the s tame norm of f . We denote by T sM the set of function has finite s tame norm.

Remark 4.3.7. If f ∈ T sM is a homogeneous polynomial of degree r + 1 then one has

‖Xf (z)‖s ≤ ‖Xbfe‖s ≤ |f |s‖z‖r−1
1 ‖z‖s. (4.3.3)

The important property of s tame norm is that the Poisson bracket of two homogeneous
polynomials in T sM is also in T sM (see lemma 4.12 in [BG06]).

Lemma 4.3.8. Assume that f, g ∈ T sM are two homogeneous polynomials of degrees n+ 1
and m + 1 respectively, then {f, g} is a homogeneous polynomial of order n + m in T sM

with

|{f, g}|s ≤ 2(n+m)|f |s|g|s. (4.3.4)

For a non homogeneous polynomial, we consider its Taylor expansion

f =
∑

fr

where fr is homogeneous function of degree r. Then we define

Ts,R := {f =
∑

fr | fr ∈ T sM ; 〈|f |〉s,R :=
∑
r≥2
|fr|sRr−1 <∞}. (4.3.5)

Following lemma 4.13 in [BG06] we have
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Lemma 4.3.9. Let f, g ∈ Ts,R, then for any d < R we have {f ; g} ∈ Ts,R−d and

〈|{f ; g}|〉s,R−d ≤
2
d
〈|f |〉s,R〈|g|〉s,R.

Proof. Write f = ∑
j fj and g = ∑

k gk with fj homogeneous of degree j and similarly for
g. One has

{f, g} =
∑
j,k

{fj, gk}.

We have estimate for each term of the series

〈|{fj; gk}|〉s,R−d = |{fj, gk}|s(R− d)j+k−3

≤ 2|fj|s|gk|s(j + k − 2)(R− d)j+k−3

≤ 2|fj|s|gk|s
1
d
Rj+k−2

= 2
d
〈|fj|〉s,R〈|gk|〉s,R

here we use the estimate

k(R− d)k−1 <
Rk

d
, ∀0 < d < R.

Then as in lemma 4.14 in [BG06], we deduce

Lemma 4.3.10. Let g, χ ∈ Ts,R be two analytic functions. Denote gl = {gl−1, χ} for all
l > 0 with g0 = g. Then for any 0 < d < R, one has gn ∈ Ts,R−d and

〈|gn|〉s,R−d ≤ 〈|g|〉s,R(2e
d
〈|χ|〉s,R)n. (4.3.6)

Proof. Denote δ = d
n
. Apply iteratively Lemma 4.3.9, one has

〈|gl|〉s,R−δl ≤
2
δ
〈|gl−1|〉s,R−δl−1〈|χ|〉s,R ≤ · · · ≤

2n
n! (n

d
〈|χ|〉s,R)n〈|g|〉s,R. (4.3.7)

Using the inequality nn < N !en, one has the thesis.

Lemma 4.3.11. Let χ, g be two analytic functions with Hamiltonian vector fields analytic
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in Bs(R). Fix 0 < d < R assume ‖Xχ‖s,R < d
3 , then for |t| ≤ 1, one has

sup
‖z‖s≤R−d

‖ϕtχ(z)− z‖s ≤ ‖Xχ‖s,R (4.3.8)

‖Xg◦ϕtχ‖s,R−d ≤ (1 + 3
d
‖Xχ‖s,R)‖Xg‖s,R. (4.3.9)

For the proof see [Bam99] proof of lemma 8.2

Remark 4.3.12. For any positive integer number N, we write z = z + ẑ with z =
(φj, ψj)|j|≤N and ẑ = (φj, ψj)|j|≥N . Then if homogeneous polynomial f ∈ T sM of order r+1
has a zero of order three in ẑ, one has

‖Xf‖s,R ≤ |f |s(
1
r

r∑
l=1
‖z(1)‖1 . . . ‖z(l−1)‖1‖z(l)‖s‖z(l+1)‖1 . . . ‖z(r)‖1)

≤ |f |s‖ẑ‖1‖z‖r−3
1 ‖z‖s ≤

|f |sRr

N s−1 = 〈|f |〉s,R
N s−1 .

(4.3.10)

Here we use estimates

‖ẑ‖1 ≤
‖z‖s
N s−1

‖z‖s ≤ ‖z‖s, ‖ẑ‖s ≤ ‖z‖s
‖z‖1 ≤ ‖z‖s.

For a non homogeneous polynomial f ∈ Ts,R of order less or equal r + 2

f =
∑
j≤r+2

fj

then

‖Xf‖s,R ≤
∑
j≤r+2

‖Xfj‖s,R ≤
∑
j≤r+2 |fj|sRj−1

N s−1 = r
〈|f |〉s,R
N s−1 . (4.3.11)

4.3.3 Homological equation

In each step of Birkhoff normal form procedure, we need to solve a homological equa-
tion

−i{H0, χ}+ Z = f (4.3.12)

with Z is in (κ, α,N)−normal form. Then after each step, we have the new nonlinearity
term of size {Z4, χ}+{f, χ}. Then we need to estimate the nonlinearity χ and the normal
form Z.
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Lemma 4.3.13. Let f be a polynomial in T sM which is at most quadratic in the variables
ẑ. Assume nonresonant condition, then there exist χ, Z ∈ Ts,R with Z in (κ, α,N)−normal
form solving

{H0, χ}+ Z = f. (4.3.13)

Moreover Z and χ satisfy the estimates

〈|χ|〉s,R ≤
Nα

κ
〈|f |〉s,R, 〈|Z|〉s,R ≤ 〈|f |〉s,R. (4.3.14)

For the proof see [BG06] proof of lemma 4.7.

4.3.4 Remind the idea of [BG06]

Here we recall the idea of the proof of the Theorem 2.13 in [BG06]. The proof consists
in using iterative Lie transformations. Consider an Hamiltonian function χ with the cor-
responding Hamiltonian equation

(ψ̇, φ̇) = Xχ((ψ, φ)).

Denote by ϕtχ the corresponding flow and call ϕχ = ϕ1
χ the Lie transform generated by χ.

Then for any polynomial g, we have an important property

d

dt
(g ◦ ϕtχ) = {g, χ} ◦ ϕtχ.

To prove the theorem we find Hamiltonian functions χn and Hamiltonians Hn such that

Hn = H0 + Zn + fn +Rn

Hn+1 = Hn ◦ ϕχn τ = ϕχ0 ◦ · · · ◦ ϕχr
Hn+1 = Hn − {Hn, χn}+∑

n≥2
(−1)n
n! adχn(Hn)

Zn+1 = Zn + fn +−{H0, χn}

fn+1 = −{fn, χn}+∑r
l≥2

−1l
l! ad

l
χn(H0 + Zn + fn)

Rn+1 = Rn ◦ ϕχn + (−1)r+1

(r+1)!
∫ 1

0 ad
r+1
χn (H0 + Zn + fn) ◦ ϕτχndτ.

(4.3.15)

Here fn is a polynomial of order r, Rn is a small term. This leads us to solve the homo-
logical equation

{H0, χ}+ Z = f (4.3.16)
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with Z is in (κ, α,N)−normal form with respect to Ω. Then by [BG06] if f0 = P has the
tame modulus property and frequencies Ωk satisfy a nonresonant condition, there exists
χ solving (4.3.16) and

〈|Xχ|〉s,R ≤ C
Nα

κ
〈|Xf |〉s,R, 〈|XZ |〉s,R ≤ C〈|Xf |〉s,R. (4.3.17)

In our case, we formally expand f in Taylor series

f(φ, ψ) =
∑
j,l

fj,lΠk,hψ
jk
k φ

lh
h

and similarly for χ, Z. The equation (4.3.16) becomes

(Ω(j − l))χj,l + Zj,l =
∑
k∈N∗

(Ωk(jk − j−k − lk + l−k))χj,l + Zj,l = fj,l. (4.3.18)

Here we use

{H0, ψ
jk
k φ

lh
h } = (Ωkjk − Ωhlh)ψjkk φ

lh
h , Ωk = −Ω−k.

Then when Ω satisfies the nonresonant condition, we define the solution for the homolo-
gical equation as following

χjl := fjl
(Ω(j − l)) with |Ω(j − l)| ≥ κ

Nα

Zjl := fjl with |Ω(j − l)| < κ

Nα
.

4.4 Boussinesq equation’s properties

4.4.1 Nonlinearity

Now consider

P =
∑

k1+k2+k3=0
α−1
k1 α

−1
k2 αk3(ψk1 + φk1)(ψk2 + φk2)(ψk3 − φk3).

We prove that P has tame modulus.

Lemma 4.4.1. The nonlinearity P has tame modulus.

Proof. One has that its modulus is

bP e =
∑

k1+k2+k3=0
|α−1
k1 α

−1
k2 αk3|(ψk1 + φk1)(ψk2 + φk2)(ψk3 + φk3)
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and

bX̃P e = (|Dk|∂φ−kbP e, |Dk|∂φ−kbP e)k∈Z∗

with

|Dk|∂φkbP e = |Dk|∂ψkbP e = 1
2
√

2
|Dk|

 ∑
j+l+k=0

1
2 |αkα

−1
j α−1

l |(ψj + φj)(ψl + φl)


+ 1
2
√

2
|Dk|

 ∑
j+l+k=0

|α−1
k α−1

j αl|(ψj + φj)(ψl + φl)


= 1
2
√

2
|Dk|

∑
j+l+k=0

(1
2 |αkα

−1
j α−1

l |+ |α−1
k α−1

j αl|)(ψj + φj)(ψl + φl).

In the case b 6= 0, we have that |Dk| = |2πk|
1+4π2bk2 ≤ 1

2π|b| . Since |αk| ≤ 1, we verify s−tame
map property of bXP e as

‖bXP e‖2
s = 1

4
∑
k∈Z∗
〈k〉2s|Dk|2(

∑
j+l+k=0

(1
2 |αkα

−1
j α−1

l |+ |α−1
k α−1

j αl|)(ψj + φj)(ψl + φl))2

≤ 9
64π2b2

∑
k∈Z∗
〈k〉2s(

∑
j+l+k=0

(ψj + φj)(ψl + φl))2

≤ 9
16π2b2

(
‖z(1)‖2

s‖z(2)‖2
1 + ‖z(1)‖2

1‖z(2)‖2
s

)
i.e.

‖bXP e‖s ≤
3

4π|b|
(
‖z(1)‖s‖z(2)‖1 + ‖z(1)‖1‖z(2)‖s

)
(4.4.1)

So that P has tame modulus.

4.4.2 Frequencies

We now consider the frequencies

Ωk = 2π k

2 + 4π2bk2

√
(1− 4aπ2k2)(1− 4cπ2k2) = 2π k

1 + 4π2bk2

√
pk4 + ek2 + 1

where

e = −4π2(a+ c) > 0, p = 16π4ac ∈ (0, p0 = 16π4(1
6 − b)

2) = Ib.
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The parameter s and p are well-defined, positive and independent. In this subsection,
we study frequencies Ωk as functions of p. More precisely, the goal of this part is to
prove the following theorem, which has been demonstrated in slightly different contexts
in [Bam03],[BG06] and [EGK16].

Theorem 4.4.2. There exists a set J ∈ I of full measure such that for any p ∈ J , fixed
r ≥ 1, there exist κ = κ(r, p) > 0, α = α(r, p) > 0 such that for any N large enough then

|
∑
j≥1

Ωjkj| ≥
κ

Nα
, (4.4.2)

for any k ∈ Z∞, fulfilling 0 6= |k| = ∑
j |kj| ≤ r + 2, ∑|j|>N |kj| ≤ 2.

In order to prove Theorem 4.4.2, we need to construct some lemmas.

Lemma 4.4.3. For any r ≤ N, consider r indexes j1 < j2 < j3 < ...jr ≤ N ; consider the
determinant

D =:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ωj1 Ωj2 . . . Ωjr
dΩj1
dp

dΩj2
dp

. . . dΩjr
dp

. . . . . .

. . . . . .
dr−1Ωj1
dpr−1

dr−1Ωj2
dpr−1 . . . dr−1Ωjr

dpr−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Then

D = ±
r−1∏
j=1

(2j − 3)!
2j−2(j − 2)!2j

( r∏
`=1

Ωj`

) ∏
1≤`<k≤r

(xj` − xjk)


≥ C(r, b) 1
N

1
2 (5r2−3r)

.

Here xj = j4

pj4+ej2+1 .

Proof. We compute the iterative derivatives of Ωk with respect to p in the spirit of section
3 in [EGK16]

djΩk

dpj
= 2π k

1 + 4π2bk2
(2j − 1)!

2j−1(j − 1)!2j
(−1)jk4j

(pk4 + ek2 + 1)j− 1
2

= (−1)j(2j − 1)!
2j−1(j − 1)!2j Ωkx

j
k.
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Substituting this into the determinant then

D = ±
 r∏
j=1

(2j − 3)!
2j−2(j − 2)!2j

( r∏
`=1

Ωj`

)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
xj1 xj2 xj3 . . . xjr

x2
j1 x2

j2 x2
j3 . . . x2

jr

. . . . . . .

. . . . . . .

xr−1
j1 xr−1

j2 xr−1
j3 . . . xr−1

jr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ±

 r∏
j=1

(2j − 3)!
2j−2(j − 2)!2j

( r∏
`=1

Ωj`

) ∏
1≤`<k≤r

(xj` − xjk)
 .

Since b ≥ 1
6 , we have estimate

|
r∏
`=1

Ωj`| =
r∏
`=1

2π |j`|
1 + 4π2bj2

`

√
pj4
` + ej2

` + 1 ≥ 1
(4πb)r

r∏
`=1

1
|j`|

and ∏
1≤`<k≤r

|(xj` − xjk)| =
∏

1≤`<k≤r

|j2
` + j2

k + ej2
` j

2
k||j2

` − j2
k|

(pj4
` + ej2

` + 1)(pj4
k + ej2

k + 1)

≥
∏

1≤`<k≤r

2(|j`|+ |jk|)
(p+ e+ 1)2j3

` j
3
k

≥
∏

1≤`<k≤r

2(|j`|+ |jk|)
(4π2(b− 1

6) + 1)4j3
` j

3
k

.

Then

D ≥ |
r∏
j=1

(2j − 3)!
2j−2(j − 2)!2j

1
(4πb)r

r∏
`=1

1
|j`|

∏
1≤`<k≤r

2(|j`|+ |jk|)
(4π2(b− 1

6) + 1)4j3
` j

3
k

≥ C(r, b) 1
N

1
2 (5r2−3r)

where

C(r, b, p) = |
r∏
j=1

(2j − 3)!
2j−2(j − 2)!2j |

1
(4πb)r

2r(r−1)/2

(4π2(b− 1
6) + 1)2r(r−1) .

Now we recall a result from [BGG85] appendix B

Lemma 4.4.4. Let u(1), · · · , u(r) be r independent vectors in Rr of norm at most one,
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and let w ∈ Rr be any non-zero vector. Then there exists i ∈ [1, · · · , r] such that

|〈u(i), w〉| ≥ |w||det(u
(1), · · · , u(r))|
r

3
2

.

By [E02] (see also [EGK16 ; XYQ97]), we have the lemma

Lemma 4.4.5. Suppose that g(p) be a Cr-smooth function on an interval J ⊂ R such
that |g′(p)|Cr−1 ≤ β. Let Jh := {p ∈ J : |g(p)| < h}, h > 0. If max1≤k≤r minp |g(k)(p)| ≥ d

then |Jh| ≤ Cr(βh + 1)(h
d
)1/r.

Now let us consider the function g(p) = |k|−1(∑N
|a|=1 kaΩa + c), with |k| ≤ r < N , c is

a fixed constant, then |g′(p)|Cn ≤ C(n, b). Define

Rkc(κ, α) := {p ∈ Ib | |g(p)| ≤ κ

|k|Nα
}

By lemma 4.4.4 one has max1≤k≤r minp |∂kg(p)| ≥ C(r, b)N− 1
2 (5r2−3r)−2 so that

|Rkc(κ, α)| ≤ 2
C(r, b)κ

1/rN τ

with τ = 1
2(5r − 3r) + 4− α

r
.

Lemma 4.4.6. Fix α > 5
2r

3 + r2 + 7r, and let Iκ = I \⋃kcRc,k(κ, α) then for any p ∈ Iκ
and for any c ∈ βZ, k ∈ ZN with 0 6= |k| ≤ r, β > 0, one has

|
N∑
|a|=1

kaΩa + c| ≥ κ

Nα

Moreover

|I − Iκ| ≤ Cκ
1
r

where C = 2
√
p+e+1

C(r,b)πb .

Proof. Since

|Ωk| = |
2πk

1 + 4π2bk2

√
pk4 + ek2 + 1| ≤

√
p+ e+ 1

2πb |k|
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We have that |∑N
|a|=1 kaΩa + c| ≥ 1 for all |c| ≥

√
p+e+1
2πb rN. hence

|
⋃
kc

Rc,k(κ, α)| ≤
∑

|k|≤r,|c|≤CrN
|Rc,k(κ, α)|

≤ 2
√
p+ e+ 1

2πb rN
2

C(r, b)r
2rN1+τκ1/r

≤ 2
√
p+ e+ 1

C(r, b)πb κ1/r.

Lemma 4.4.7. For any 0 < κ� 1, there exist α′ > 0 and a set Jκ satisfying

|I − Jκ| ≤ Cκ
α+1
r+2

Such that ∀p ∈ Jκ one has

|ΩN · k + e1Ωj + e2Ωl| ≥
κ

Nα′
(4.4.3)

for any k ∈ ZN , |ei| ≤ 1, |j| ≥ |l| > N, and |k|+ |e1|+ |e2| 6= 0, |k| ≤ r + 2.

Proof. One has an estimate for Ωj (and Ωl also)

Ωj = 2π
√
ac

b
j + aj with |aj| ≤

C

j
.

Hence

e1Ωj + e2Ωl = 2π
√
ac

b
(e1j + e2l) + e1aj + e2al.

If j, l > CNα/κ then e1aj + e2al is just an irrelevant terms, so that the estimate (4.4.3)
follows from Lemma 4.4.6 with β = 2π

√
ac
b
. For the case j, l ≤ CNα/κ, we reapplies

the lemma with N, r replaced by N ′ = CNα/κ and r′ = r + 2. Then the nonresonance
condition (4.4.3) holds provided α′ = α2 ≈ r6 and the complement set is measured by a
constant times κ

α+1
r+2 .

Proof for Theorem 4.4.2. Define J := ⋃
κ>0 Jκ then it satisfies the Theorem.
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4.5 Proof of the Theorem 4.2.1

Since P has tame modulus, there exists a positive number µ# such that

〈|P |〉s,µ ≤ Aµ2, ∀0 < µ ≤ µ# (4.5.1)

here A = 3
2π|b| . Fix r∗ > 1, N > 1, for any r ≤ r∗, we define µr and µ∗ by

µ∗ := κ

48er∗NαA
(4.5.2)

µr := µ(1− r

2r∗
) ∀µr ≤ µ#,

ur
µ∗
≤ 1

2 . (4.5.3)

Then by induction, we can construct sequences of Hamiltonian χr, Hr, Zr and continuous
functions fr for 0 < r ≤ r∗ as in (4.3.15). Precisely

Proposition 4.5.1. Fix r∗ > 1, N > 1, for any r ≤ r∗, there exists a canonical transfor-
mation ϕr = ϕχr which puts H in the form

Hr := H ◦ ϕr = H0 + Zr + fr +RN
r +RT

r (4.5.4)

here Zr is a polynomial of degree at most r+ 2 having a zero of order 3 at the origin and
is in (κ, α,N)−normal form ; fr is a polynomial having a zero of order r+3 at the origin.
Moreover

〈|Zr|〉s,µr ≤

0 r = 0

Aµ2∑r−1
l=0 ( µ

µ∗
)l r ≥ 1

(4.5.5)

〈|fr|〉s,µr ≤ Aµ2( µ
µ∗

)r (4.5.6)

the remainder terms RN
r ,RT

r ∈ C∞(Bs(µr)) satisfy

‖XRTr ‖s,µr ≤ 2rµ2( µ
µ∗

)r (4.5.7)

‖XRNr ‖s,µr ≤
µ2

N s−1 (4.5.8)

for any s ≥ 1. The transformation ϕr satisfies

sup
(ψ,φ)∈Bs(µr)

‖(I − ϕr)(ψ, φ)‖s ≤ Aµ2( µ
µ∗

)r. (4.5.9)

Similarly, the inverse transformation fulfills the same estimate.
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Proof. We proceed by induction. It is trivial for the case r = 0. For r > 0 we write

fr = f 0
r + fNr (4.5.10)

where f 0
r contains at most terms quadratic in ẑ, and fNr is the remainder of the expansion.

Since both f 0
r and fNr are truncations of fr, then

〈|fNr |〉s,µr ≤ 〈|fr|〉s,µr , 〈|f 0
r |〉s,µr ≤ 〈|fr|〉s,µr .

By lemma 4.3.13, one has

{H0, χr}+ Zr+1 − Zr = f 0
r (4.5.11)

and

〈|χr|〉s,µr ≤
Nα

κ
〈|f 0

r |〉s,µr , 〈|Zr+1 − Zr|〉s,µr ≤ 〈|f 0
r |〉s,µr . (4.5.12)

Then by lemma 4.3.10, one has

〈|f 0
r+1|〉s,µr+1 = 〈|{Zr −H0, χr}+ {f 0

r , χr}+
lr∑
n≥2

(−1)n
n! adχr(Zr + f 0

r )|〉s,µr+1

≤ 4r∗
µ
〈|Zr −H0|〉s,µr〈|χr|〉s,µr + 4r∗

µ
〈|f 0

r |〉s,µr〈|χr|〉s,µr +
lr∑
n≥2
〈|Zr + f 0

r |〉s,µr(
4r∗e
R
〈|χr|〉s,µr)n

≤ 4r∗
µ
Aµ2

r

Nα

κ
〈|f 0

r |〉s,µr +
24r∗e

R
〈|χr|〉s,µr

1− 4r∗e
R
〈|χr|〉s,µr

〈|f 0
r |〉s,µr

≤ 〈|f
0
r |〉s,µrµ
µ∗

.

Here we use 4r∗e
µ
〈|χr|〉s,µr ≤ 1

8
µ
µ∗
≤ 1

8 , 〈|Zr − H0|〉s,µr ≤ Aµ2
r, which we get by induction

and 4r∗
µ∗
Aµ2

r
Nα

κ
≤ µ

4µ∗ , which is due to the definition of µ∗. Then

〈|f 0
r+1|〉s,µr+1 ≤

µ

µ∗
〈|f 0

r |〉s,µr ≤ ( µ
µ∗

)r+1Aµ2,

and thus

〈|χr+1|〉s,µr+1 ≤
Nα

κ
〈|f 0

r+1|〉s,µr+1 ≤
Nα

κ
( µ
µ∗

)r+1Aµ2. (4.5.13)
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Then

sup
(ψ,φ)∈Bs(µr)

‖(I − ϕr)(ψ, φ)‖s ≤ 〈|χr|〉s,µr ≤
Nα

κ
( µ
µ∗

)r+1Aµ2, (4.5.14)

sup
(ψ,φ)∈Bs(µr)

‖(I − ϕ−1
r )(ψ, φ)‖s ≤ 〈|χr|〉s,µr ≤

Nα

κ
( µ
µ∗

)r+1Aµ2. (4.5.15)

For the remainder terms, one has

RT
r+1 = RT

r ◦ φχr +
∫ 1

0

(−1)lr+1

(lr + 1)! ad
lr+1
χr (Zr + f 0

r ) ◦ ϕτχrdτ, (4.5.16)

RN
r+1 = fNr ◦ ϕχr . (4.5.17)

Here RN
r contains at least terms cubic in ẑ. The two remainder terms RT

r+1,RN
r+1 are in

C∞(Bs(µr+1)). For the first term, one has

‖XRTr+1
‖s ≤ ‖XRTr ◦ϕχr‖s + 1

(lr + 1)!‖
∫ 1

0
Xadlr+1

χr (Zr+f0
r )◦ϕτχr

dτ‖s

≤ (1 + 3
d
‖Xχr‖s)(‖XRTr ‖s + 1

(lr + 1)!‖X ilr+1
(lr+1)!ad

lr+1
χr (Zr+f0

r )‖s)

≤ 2r+1µ2( µ
µ∗

)r∗+1.

For the second term

‖XRNr
‖s ≤

1
N s−1 〈|R

N
r |〉s,µr+1 = 1

N s−1 〈|f
N
r ◦ ϕχr |〉s,µr+1

≤ 1
N s−1 (1 + 3

d
〈|χr|〉s,µr)〈|fNr |〉s,µr

≤ µ2

N s−1 .

Proof of theorem 4.2.1. We take T = ϕχ1 ◦ · · · ◦ ϕχr , then Z = H0 + Zr is in (κ, α,N)
normal form. We need to choose N in order to obtain R = RT

r +RN
r is small. We have

‖XR‖s,µ2 ≤ ‖XRTr ‖s,µ2 + ‖XRNr ‖s,µ2

≤ 2rµ2( µ
µ∗

)r + µ2

N s−1

≤ Cµ2(µNα)r + µ2

N s−1 .

Choose N = N∗ = [µ− 1
2rα ] and s > 2αr2 + 1 then the last term is smaller than µr+1. The
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transformation T and its inverse fulfill the estimate (4.2.10).

4.6 Appendix A

Proof of lemma 4.3.4. Denote X := Xf , Y := Xg. One has

X =
∑

k,l1,··· ,ln
DkX

l1,··· ,ln
k zl1 · · · zlnek (4.6.1)

Y =
∑

k,j1,··· ,jm
DkY

j1,··· ,jm
k zj1 · · · zjnek (4.6.2)

here we write zl to represent φl or ψl. Remind that Dk = 2πk
1+4π2bk2 . Then

bX{f,g}e(z) =
∑

k,l1,··· ,ln
j1,··· ,jm

|nDkDlnX
l1,··· ,ln
k Y j1,··· ,jm

ln
±mDkDlnX

l1,··· ,ln−1,jm
ln

Y
j1,··· ,jm−1,ln
k |

× ekzl1 · · · zln−1zj1 · · · zjn .

One has

‖bX{f,g}e(z)‖2
s ≤ 2

∑
k,l1,··· ,ln
j1,··· ,jm

(|nDkDlnX
l1,··· ,ln
k Y j1,··· ,jm

ln
|2 + |mDkDlnX

l1,··· ,ln−1,jm
ln

Y
j1,··· ,jm−1,ln
k |2)

〈k〉2s × (zl1 · · · zln−1zj1 · · · zjn)2

≤ 2n2 ∑
k,l1,··· ,ln

(|DkX
l1,··· ,ln
k |2〈k〉2s(zl1 · · · zln−1)2 ∑

ln,j1,··· ,jm
|DlnY

j1,··· ,jm
ln

|2(zj1 · · · zjn)2

+ 2m2 ∑
jm,l1,··· ,ln

(|DlnX
l1,··· ,ln−1,jm
ln

(zl1 · · · zln−1)2

×
∑

k,ln,j1,··· ,jm−1

|DkY
j1,··· ,jm−1,ln
k |2(zj1 · · · zjn)2|2〈k〉2s

≤ 2n2|f |2s|g|20( 1
n

∑
‖zl1‖2

1 · · · ‖zli‖2
1‖zli‖2

s‖zli+1‖2
1 · · · ‖zln‖2

1)‖zj1‖2
1 · · · ‖zjm‖2

1

+ 2m2|f |20|g|2s(
1
m

∑
‖zj1‖2

1 · · · ‖zji‖2
1‖zji‖2

s‖zji+1‖2
1 · · · ‖zln‖2

1)‖zj1‖2
1 · · · ‖zjm‖2

1

≤2(n+m)2|f |2s|g|2s(
1

n+m− 1
∑
‖zl1‖2

1 · · · ‖zli‖2
1‖zli‖2

s‖zli+1‖2
1 · · · ‖zln+m−1‖2

1).
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4.7 Appendix B

In this section, we prove the local well-posedness for the Boussinesq system (see chapter
16 [Tay3]).

4.7.1 The case b 6= 0

Existence
By the change of variables, the well-posedness of (4.2.3) implies the well-posedness of

(4.1.1). The idea here is to obtain a solution to (4.1.1) as a limit of solutions (ψε, φε) to
∂tψε,k = −iDk∇ψε,−kH(ψε, φε)

∂tφε,k = iDk∇φε,−kH(ψε, φε).
(4.7.1)

Here (ψε, φε) is defined by

ψε(t) =
∑
k∈Z∗

ϕ(εk)ψk(t)ei2πkx (4.7.2)

φε(t) =
∑
k∈Z∗

ϕ(εk)φk(t)ei2πkx. (4.7.3)

Where ϕ ∈ C∞0 (R) is an even, real valued satisfying ϕ(x) = 1 for any x ∈ [−1, 1]. Since
ϕ has support bounded in R, the sum (4.7.2) and (4.7.3) are finite. As a consequence,
the system (4.7.7) is of finite ODEs. By Cauchy-Lipschitz theorem, we know that there
is a unique solution to this system, for t close to 0. First, we will prove that the solution
(ψε, φε)(t) exists in an interval [−T, T ] independent of ε ∈ (0, 1].

Lemma 4.7.1. Let s ≥ 1, 0 < ‖(ψε, φε)(0)‖s = µ, then ‖(ψε, φε)(t)‖s ≤ 2µ ∀t ∈ [− bπ
3µ ,

bπ
3µ ]

independent of ε ∈ (0, 1].

Proof. Since P has tame modulus one has an estimate

∂t‖(ψε, φε)(t)‖2
s = |{‖(ψε, φε)(t)‖2

s, P}|

≤ ‖(ψε, φε)(t)‖s‖bXP e(ψε, φε)‖s

≤ 3
2πb‖(ψε, φε)(t)‖

2
s‖(ψε, φε)(t)‖1.

By Gronwall’s inequality, one has that ‖(ψε, φε)(t)‖s ≤ 2µ for all t ∈ [0, bπ3µ ], where we
assume ‖(ψ(x, 0), φ(x, 0))‖s = µ � 1. In the same way, we also have ‖(ψε, φε)(−t)‖s ≤
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2µ for all t ∈ [0, bπ3µ ]. Denote I = [− bπ
3µ ,

bπ
3µ ], then (ψε, φε)(t) is uniformly bounded in

C(I,Hs) ∩ C1(I,Hs−1).

Lemma 4.7.2. Let s ≥ 1, the sequence {(ψε, φε)(t)}ε∈(0,1] is Cauchy in Hs for all t ∈ I.

Proof. We consider (v, w)(t) = (ψε1 , φε1)(t) − (ψε2 , φε2)(t). Then for any N > 0, there
exists εN ∈ I such that for any ε1, ε2 ≤ εN , one has

‖(ψε1 , φε1)(0)− (ψε2 , φε2)(0)‖s ≤
1
N s

µ.

The key point here is (ψε1 , φε1)k(0) = (ψε2 , φε2)k(0) for all |k| ≤ N. Moreover (v, w)(t)
satisfies equation

∂tvk = −iDk(∇ψε1,−k
H(ψε1 , φε1)−∇ψε2,−k

H(ψε2 , φε2))

∂twk = iDk(∇φε1,−k
H(ψε1 , φε1)−∇φε2,−k

H(ψε2 , φε2)).
(4.7.4)

Then

∂t‖(v, w)(t)‖2
s =

∑
k∈N∗
〈k〉2s(|∂tvkvk|+ |∂twkwk|)

≤ ‖(v, w)(t)‖s(‖bXP e((v, w), (ψε1 , φε1))‖s + ‖bXP e((v, w), (ψε2 , φε2))‖s)

≤ 3
2πb‖(v, w)(t)‖2

s(‖(ψε1 , φε1)(t)‖1 + ‖(ψε2 , φε2)(t)‖1)

+ 3
2πb‖(v, w)(t)‖s‖(v, w)(t)‖1(‖(ψε1 , φε1)(t)‖s + ‖(ψε2 , φε2)(t)‖s)

By Gronwall’s inequality, one has that ‖(ψε, φε)(t)‖s ≤ 4 µ
Ns for all t ∈ I.

Lemma 4.7.3. Let s ≥ 1 and b 6= 0, then provided the initial datum (ψε(0), φε(0)) ∈
Hs, ε ∈ (0, 1], with ‖(ψε(0), φε(0))‖s = µ small enough, the system (4.2.3) admits a solu-
tion (ψ, φ)(t) for all t ∈ I = [−bπ3µ ,

bπ
3µ ] with

(ψ, φ) in L∞(I,Hs) ∩ Lip(I,Hs−1) ∀s ≥ 1. (4.7.5)

Proof. By lemma 4.7.2, the bounded function (ψε, φε) converges to (ψ, φ) in L∞(I,Hs)
when ε→ 0. Similarly

lim
ε→0

XH(ψε,φε) → XH(ψ,φ) in L∞(I,Hs−1),

while as a result ∂t(ψε, φε) → ∂t(ψ, φ) in L∞(I,Hs−1). Thus (ψ, φ) ∈ L∞(I,Hs) ∩
Lip(I,Hs−1) is a solution of (4.2.3).

Lemma 4.7.4. The solution (ψ, φ)(t) given in Lemma 4.7.3 is in C(I,Hs), ∀s ≥ 1.
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Proof. It is enough to prove ‖(ψ, φ)(t)‖s is continuous of t. Similar as lemma 4.7.1, one
has

∂t‖(ψ, φ)(t)‖2
s ≤

3
2πb‖(ψ, φ)(t)‖2

s‖(ψ, φ)(t)‖1

so that (ψ, φ) ∈ C(I,Hs) and ‖(ψ, φ)(t)‖s ≤ 2µ for all t ∈ I.

Uniqueness

Assume that (ψ(1), φ(1)), (ψ(2), φ(2)) are two solutions of (4.2.3) satisfying (ψ(1), φ(1))(x, 0) =
(ψ(2), φ(2))(x, 0). Denote (ν, υ) = (ψ(1), φ(1))− (ψ(2), φ(2)), then by computation one has (ν, υ)(x, 0) = 0

∂t‖(ν, υ)‖2
s ≤ C‖(ν, υ)‖s(|(ψ(1), φ(1))‖2

s + ‖(ψ(2), φ(2))‖2
s)

(4.7.6)

for some constant C. By Gronwall’s inequality it is proved that (ν, υ) ≡ 0. So that the
solution (ψ, φ) is unique.

Finally we have proved

Proposition 4.7.5. Let s ≥ 1, b > 0 the system (4.1.1) is locally well-posed for suffi-
ciently small initial datum in Hs.

4.7.2 The case b = 0

In this case, since Dk = 2πk is not bounded, we do not have tame property, so that
the proof for existence and uniqueness of (ψ, φ) solution has to be modified. As in the
case b 6= 0, we define

uε(t) =
∑
k∈Z

ϕ(εk)uε,k(t)ei2πkx uε,k(0) = uk(0)

ηε(t) =
∑
k∈Z

ϕ(εk)ηε,k(t)ei2πkx ηε,k(0) = ηk(0).

which are solutions to
∂tηε,k = −i2πk((1− 4π2ak2)uε,k +∑

j+l=k uε,jηε,l)

∂tuε,k = −i2πk((1− 4π2ck2)ηε,k + 1
2
∑
j+l=k uε,juε,l).

(4.7.7)
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Then one has

∂t
∑
k∈N∗
|k|2s(α2

k|ηε,k|2) + α−2
k |uε,k|2) = 2π1

2
∑

j+l+k=0
(α2

l l
2s+1 + α2

kk
2s+1)uε,jηε,lηε,k

+ 2π1
6

∑
j+l+k=0

(α−2
l l2s+1 + α−2

k k2s+1 + α−2
j j2s+1)uε,juε,luε,k.

Here α2
k = (1−4π2ak2

1−4π2ck2 )1/2. One has

α2
k =

√
a

c
+O(1

k
); α−2

k =
√
c

a
+O(1

k
).

So that

|α2
l l

2s+1 + α2
kk

2s+1| ≤
√
a

c
|l2s+1 + k2s+1|+ |α2

l −
√
a

c
||l2s+1|+ |α2

k −
√
a

c
||k2s+1| ≤ C|j|(|l|2s + |k|2s)

Since j+ l+k = 0, we could estimate the term |j|(|l|2s+ |k|2s) by µs1µs2µ3, where µ1, µ2, µ3

are the first, the second and the third large term among |j|, |l|, |k|. Similarly, one has

|α−2
l l2s+1 + α−2

k k2s+1 + α−2
j j2s+1| ≤ Cµs1µ

s
2µ3.

Then applying the Young inequality, we have

|∂t
∑
k∈N∗
|k|2s(α2

k|ηε,k|2) + α−2
k |uε,k|2)| ≤ C‖(uε, ηε)‖3

s

for some constant C. By Gronwall’s inequality, one has that ‖(ψε, φε)(t)‖s ≤ 2µ for all
t ∈ [0, 2

Cµ
]. Denote I = [− 2

Cµ
, 2
Cµ

], then (ψε, φε)(t) is uniformly bounded in C(I,Hs) ∩
C1(I,Hs−3).

Lemma 4.7.6. Let s ≥ 1, the sequence {(ψε, φε)(t)}ε∈(0,1] is Cauchy in Hs for all t ∈ I.

Proof. We consider (v, w)(t) = (ψε1 , φε1)(t) − (ψε2 , φε2)(t). Then for any N > 0, there
exists εN ∈ I such that for any ε1, ε2 ≤ εN , one has

‖(ψε1 , φε1)(0)− (ψε2 , φε2)(0)‖s ≤
1
N s

µ.
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Moreover (v, w)(t) satisfies

∂t‖(v, w)(t)‖2
s =

∑
k∈N∗
〈k〉2s(|∂tvkvk|+ |∂twkwk|)

≤ 2π1
2

∑
j+l+k=0

|α2
l l

2s+1 + α2
kk

2s+1||uε̃,j|(|ηε̃,lwk|+ |wl||ηε̃,k|)

+ 2π1
6

∑
j+l+k=0

|α−2
l l2s+1 + α−2

k k2s+1 + α−2
j j2s+1|

× (|uε̃,j|uε̃,lvk|+ |uε̃,j|uε̃,kvl|+ |uε̃,k|uε̃,lvj|)

≤ C‖(v, w)(t)‖s(‖(ψε1 , φε1)(t)‖2
s + ‖(ψε2 , φε2)(t)‖2

s).

Here uε̃,l = uε1,l + uε2,l and ηε̃,l = ηε1,l + ηε2,l, ∀l ∈ Z∗. By Gronwall’s inequality, one has
that ‖(v, w)(t)‖s ≤ 4 µ

Ns for all t ∈ I.

As in the case b 6= 0, one has limε→0(uε, ηε)→ (u, η) ∈ C(I,Hs) solution of Boussinesq
systems. Similarly, we have the uniqueness for (u, η).

Proposition 4.7.7. Let s ≥ 1, b = 0 the system (4.1.1) is locally well-posed for suffi-
ciently small initial datum in Hs.
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Titre : titre (en français) Trois résultats sous forme normale pour les équations de Schrödinger
et le système abcd de Boussinesq

Mot clés : Théorie KAM, forme normale de Birkhoff, réductibilité, l’équation de Hamilton ,l’équa-

tion de Schrödinger,le système abcd de type Boussinesq

Résumé : On montre des résultats de forme
normale pour des EDPs Hamiltoniennes :
l’équation de Schrödinger non linéaire quin-
tique sur le cercle, l’équation de Schrödinger
sur une variété Zoll et le système abcd de type
Boussinesq sur le cercle. Ces résultats sont

démontrés à l’aide de procédure KAM et de
procédure de forme normale de Birkhoff. On
déduit des résultats de forme normale le com-
portement en temps long des solutions au voi-
sinage de zéro.

Title: titre (en anglais) Three normal form results for Schrödinger equations and abcd Boussi-
nesq system

Keywords: KAM theory, Birkhoff normal form, Reducibility, Hamiltonian equations, Schrödinger

equation, abcd Boussinesq system

Abstract: We prove normal form results
for Hamiltonian PDEs: the quintic nonlin-
ear Schrödinger equation on the circle, the
Schrödinger equation on a Zoll manifold and
the abcd Boussinesq system on the circle.

These results are proved via KAM procedure
and Birkhoff normal form procedure. As corol-
laries of normal form results, one deduces the
long time behavior of solutions near to zero.
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