
HAL Id: tel-03350940
https://hal.science/tel-03350940

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-integer linear programming approaches for
deterministic and stochastic lot-sizing problems

Céline Gicquel

To cite this version:
Céline Gicquel. Mixed-integer linear programming approaches for deterministic and stochastic lot-
sizing problems. Operations Research [math.OC]. Université Paris Saclay, 2021. �tel-03350940�

https://hal.science/tel-03350940
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES

Mixed-integer linear programming approaches for
deterministic and stochastic lot-sizing problems

soutenue le 1er juillet 2021 par

CÉLINE GICQUEL

Jury

Président: Pr Alain Denise Université Paris Saclay, France
Rapporteurs: Pr Stéphane Dauzères-Péres Ecole des Mines de Saint Etienne, France

Pr Raf Jans HEC Montreal, Canada
Pr André Rossi Université Paris Dauphine, France

Examinateurs Pr Dominique Quadri Université Paris Saclay, France
Pr Hande Yaman Patternote Université KU Leuven, Belgique

i

ii

Abstract

This thesis, presented in view of obtaining an accreditation to supervise research, describes
the research work I carried out as an assistant professor at the Université Paris Saclay dur-
ing the last ten years. This work deals with the development of mixed-integer linear pro-
gramming approaches for difficult deterministic and stochastic combinatorial optimization
problems, mainly coming from applications in manufacturing, supply chain management and
telecommunication.

Part I is devoted to the work carried out on lot-sizing problems. We first study an exten-
sion of the discrete lot-sizing and scheduling problem in which the setup costs are sequence-
dependent and propose a new family of multi-item multi-period valid inequalities to strengthen
the mathematical formulation of this problem. We then consider an important aspect of produc-
tion planning, namely the fact that it is based on input data which are relative to the near future
and, as a consequence, are not always perfectly known at the time when the production plan
has to be built. We thus study several stochastic programming approaches for lot-sizing. The
first proposed approach assumes a rather simplified setting for the decision process. It namely
considers a single-stage decision process in which the whole production plan is built before
any additional information on the stochastic demand realization becomes available and cannot
be updated afterward as the demand unfolds over time. We formulate this stochastic problem
as a joint chance-constrained program and propose a new approximate solution approach for
this problem called the partial sample approximation approach. Then, in order to further im-
prove the modeling of the actual decision process, we investigate a multi-stage stochastic pro-
gramming approach which explicitly takes into account the fact that production decisions are
usually not made once and for all but rather adjusted over time according to the actual realiza-
tions of the uncertain parameters. Our main contribution consists in the development of a new
algorithm capable of providing good-quality solutions for large-size instances of the stochastic
single-item uncapacitated lot-sizing problem. This algorithm combines a nested decomposi-
tion algorithm called the Stochastic Dual Dynamic integer Programming (SDDiP) algorithm
with a cutting-plane generation approach based on known valid inequalities. Finally, in or-
der to extend the previous work which focuses on single-item single-echelon single-resource
production systems, we consider a multi-item multi-echelon multi-resource production system
linked to the remanufacturing of used products and study a multi-stage stochastic program-
ming model for this problem. We thus present a customized branch-and-cut algorithm based
on a new family of valid inequalities for this problem.

In parallel to the above-mentioned work on lot-sizing, I studied among others two applied
facility location problems through industrial collaborations. The corresponding work is re-
ported in Part II of the manuscript. We first discuss a facility location problem linked to the
design of the outbound logistics network of Renault. The main contribution of this work is re-
lated to the development of a tractable heuristic solution approach for this complex large-size
location-routing problem. We also investigate the placement of virtual network functions in a
telecommunication network to secure it against a distributed denial-of-service attack. The main
novelty here consists in the development of a new robust optimization model and adversarial
algorithm for this problem.

iii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Research background . 2
1.3 Contributions . 4

1.3.1 Lot sizing . 4
1.3.2 Facility location . 5

1.4 Manuscript organization . 6

I Lot-sizing 8

2 Background 9
2.1 Introduction . 9
2.2 Deterministic lot-sizing . 9

2.2.1 Single-item lot-sizing . 10
2.2.2 Multi-item single-echelon lot-sizing . 11
2.2.3 Multi-item multi-echelon lot-sizing . 13

2.3 Stochastic lot-sizing . 14
2.3.1 Single-stage stochastic lot-sizing . 15
2.3.2 Two-stage stochastic lot-sizing . 16
2.3.3 Multi-stage stochastic lot-sizing . 17

2.4 Conclusion . 19

3 Discrete lot-sizing and scheduling with sequence-dependent setups 21
3.1 Introduction . 21
3.2 Mathematical formulation . 22

3.2.1 Initial mixed-integer linear programming formulation 23
3.2.2 Single-item valid inequalities . 24

3.3 Multi-item valid inequalities . 24
3.3.1 General expression . 24
3.3.2 Illustrative example . 26

3.4 Exact and heuristic algorithms for solving the separation problem 29
3.5 Computational experiments . 29

3.5.1 Instances . 29
3.5.2 Results . 30

3.6 Conclusion and perspectives . 31

4 Joint chance-constrained lot-sizing 33
4.1 Introduction . 33
4.2 Mathematical formulations . 34

4.2.1 Deterministic formulation . 34
4.2.2 Stochastic formulation . 35

4.3 Bonferroni conservative approximation . 37

iv

4.4 Sample approximation approach . 37
4.5 Partial sample approximation approach . 39

4.5.1 General case . 39
4.5.2 Special case of a normally distributed demand 41

4.6 Computational experiments . 42
4.6.1 Instances . 42
4.6.2 Results . 43

4.7 Conclusion and perspectives . 44

5 Multi-stage stochastic lot-sizing 47
5.1 Introduction . 47
5.2 Mathematical formulations . 49

5.2.1 Extensive MILP formulation . 50
5.2.2 Dynamic programming formulation . 51

5.3 Sub-tree-based SDDiP algorithm . 52
5.3.1 Sub-problem reformulation . 53
5.3.2 Sampling step . 54
5.3.3 Forward step . 54
5.3.4 Backward step . 55
5.3.5 Cut families . 55
5.3.6 Stopping criteria . 55
5.3.7 Summary . 56

5.4 Algorithmic Enhancements . 57
5.4.1 Approximate sub-tree-based SDDiP . 57
5.4.2 Generation of additional strengthened Benders’ cuts 58

5.5 Computational Experiments . 59
5.5.1 Instance Generation . 59
5.5.2 Experimental setup . 60
5.5.3 Results . 61

5.6 Conclusion and perspectives . 63

6 Multi-stage stochastic lot-sizing with returns 64
6.1 Introduction . 64
6.2 Problem description and mathematical formulation 65

6.2.1 System description . 65
6.2.2 Uncertainty . 66
6.2.3 MILP formulation . 67

6.3 Mathematical reformulation . 69
6.3.1 Echelon stock reformulation . 69
6.3.2 Single echelon subproblems . 70

6.4 Valid inequalities . 71
6.4.1 Path inequalities . 71
6.4.2 Tree inequalities . 72

6.5 Cutting-plane generation . 72
6.5.1 Path inequalities . 72
6.5.2 Tree inequalities . 73

6.6 Computational experiments . 74
6.6.1 Instances . 74
6.6.2 Results . 75

6.7 Conclusion and perspectives . 76

v

II Facility Location 78

7 Design of an outbound logistics network 79
7.1 Introduction . 79
7.2 Problem description . 80
7.3 Solution approach . 82

7.3.1 Clustering of demand points . 82
7.3.2 Location-allocation problem . 82

Mixed-integer linear programming formulation 82
Heuristic resolution of the mixed-integer linear program 83

7.4 Computational experiments . 84
7.5 Conclusion and perspectives . 84

8 Optimal placement of virtual network functions for cybersecurity 86
8.1 Introduction . 86
8.2 Problem description . 88

8.2.1 Problem definition . 88
8.2.2 Mathematical formulation . 88

8.3 Solution approach . 90
8.3.1 Decision maker sub-problem . 91
8.3.2 Adversarial sub-problem . 91

8.4 Computational experiments . 93
8.4.1 Instances . 93
8.4.2 Results . 93

8.5 Conclusion and perspectives . 94

9 Conclusion and perspectives 96
9.1 Conclusion . 96
9.2 Perspectives . 97

9.2.1 Risk aversion in multi-stage stochastic lot-sizing 97
9.2.2 Multi-stage stochastic lot-sizing with intermittent renewable energy . . . 98
9.2.3 Explainable lot-sizing . 100

A Curriculum vitae 102

1

Chapter 1

Introduction

1.1 Context

Mixed-integer linear programming (MILP) deals with mathematical optimization problems in
which part of the decision variables are restricted to be integers and the objective function and
the constraints are linear. The birth of this field can be traced back to the seminal work of Go-
mory (1958). Since then, it has achieved a great success in the academic and business worlds
(Jünger et al., 2008). As a consequence, mixed-integer linear programming is now a well es-
tablished tool to model and solve practical optimization problems arising from applications in
e.g. telecommunication, healthcare, energy, logistics or manufacturing. This success may be ex-
plained both by the wide range of optimization problems than can be tackled by mixed-integer
linear programming and by the availability of powerful software products such as XpressMP,
CPLEX or Gurobi which enable practitioners to solve large-size instances with a reasonable
computational effort.

The core of these MILP solvers consists in a branch-and-cut algorithm, i.e. a branch-and-
bound algorithm coupled with a cutting-plane generation approach.

Basically, a branch-and-bound algorithm looks for the best solution of an MILP by carrying
out an implicit enumeration of all candidate solutions. This exploration relies on a search tree,
each node of which represents a subset of feasible solutions. The set of all feasible solutions is
thus explored by recursively splitting the feasible space into smaller spaces, i.e. by branching in
the tree. Branching alone would amount to simply enumerating and evaluating all candidate
solutions. To avoid this, before enumerating the candidate solutions of a branch, the algorithm
estimates the quality of these solutions by computing an upper (or lower) bound on the objec-
tive value of the best solution in this branch. It then checks this bound against upper and lower
estimated bounds on the optimal solution, and the branch is discarded if it cannot produce a
better solution than the best one found so far by the algorithm.

The computational efficiency of a branch-and-bound algorithm heavily depends on the
quality of the bound computed at each node of the search tree. In a nutshell, the better this
bound, the sooner a branch can be discarded and the less nodes have to be explored before
the algorithm converges. In the context of mixed-integer linear programming, this bound is
most often obtained by solving the linear programming relaxation of the problem. The main
advantage of this is that linear programs can be very efficiently solved by the simplex algo-
rithm. However, in many cases, the linear programming bound is of poor quality, which nega-
tively impacts the performance of the branch-and-bound algorithm. In order to solve this issue,
branch-and-bound algorithms can be coupled with a cutting-plane generation approach, giv-
ing rise to a branch-and-cut algorithm. Basically, a cutting-plane generation approach aims at
improving the quality of the linear programming bound by adding a set of linear inequalities
to the problem formulation. These inequalities are chosen so as to cut away non-integer solu-
tions that would otherwise be solutions of the continuous relaxation and to improve the value
provided by the linear relaxation by restricting its feasible space. The problem of finding a cut
separating a non-integer solution from the feasible space of the linear relaxation of the MILP is

Chapter 1. Introduction 2

called the separation problem. The branch-and-cut algorithms embedded in MILP solvers use
generic cuts, i.e. cuts that may apply to any MILP or at least to a wide range of MILPs, such as
Gomory fractional cuts, clique cuts or mixed-integer rounding cuts.

MILP solvers have undergone tremendous progress over the last thirty years. For instance,
Bixby (2012) reported that the machine-independent computational performance of CPLEX
solver improved by a factor of 29000 between the 1.2 version of the software released in 1991
and the 11.0 version released in 2007. Yet, despite this progress, there still are many MILPs
whose direct resolution by a mathematical programming solver leads to prohibitive computa-
tion times. These difficulties come from two main reasons.

First, in some cases, the improvement in the quality of the linear programming bounds
obtained by using the generic cuts embedded in MILP solvers is not sufficient to enable the
algorithm to converge after exploring a computationally tractable number of nodes. In such
cases, there is a need to use problem-specific cuts, i.e. cuts exploiting the particular structure of
the optimization problem under study, and to develop an algorithm capable of efficiently solv-
ing the corresponding separation problem. Moreover, adding two many cuts to strengthen the
linear relaxation of a problem may also negatively impact the computation time of a branch-
and-cut algorithm by increasing the time spent at each node of the search tree to solve this
linear relaxation with the simplex algorithm. The cutting-plane generation procedure should
therefore be devised so as to reach the best possible trade-off between the desired formulation
strengthening and the increase in the number of constraints involved in the problem formula-
tion.

The second often encountered source of difficulty comes from the huge size of the MILP to
be solved by the solver. Some MILPs can namely involve millions (or even tens of millions) of
variables and constraints, leading to both memory issues and prohibitively long computation
times. Such situations are found in particular when many variables and constraints are needed
to obtain a modeling of the optimization problem sufficiently fine to be able to provide practi-
cally relevant solutions and/or when large instances of this problem are considered. Moreover,
problems related to the size of the MILP are particularly acute when considering MILPs linked
to scenario-based stochastic programming. Basically, stochastic programming is a framework
enabling to model and solve optimization problems involving uncertainty. Stochastic program-
ming relies on the fact that even if the exact value of the random problem parameters cannot be
perfectly known at the time the decision has to be made, some knowledge about their possible
value is available either in the form of a probability distribution or in the form of a discrete and
finite set of scenarios. In this second case, the obtained stochastic program often takes the form
of an MILP, the size of which is broadly proportional to the number of scenarios used to repre-
sent the possible outcomes of the random variables. The number of scenarios needed to obtain
an accurate (or at least an acceptable approximate) representation of the random parameters is
usually quite high and the size of the MILPs to be solved increases accordingly.

Research is thus needed to address these difficulties and further extend the scope of mixed-
integer linear programming. This thesis, presented with the aim of obtaining an accreditation
to supervise research, outlines my contributions to this field and focuses on two specific classes
of combinatorial optimization problems: lot-sizing and facility location.

1.2 Research background

My initial background is in industrial production and logistics management. After complet-
ing my engineering degree, I worked two years as a logistics process engineer in a Procter &
Gamble plant producing liquid laundry and household products. I then decided to go back to
study in order to get a PhD. As I wanted to build on my previous professional experience, I
applied for a doctoral research grant in industrial engineering at the Ecole Centrale Paris. This

Chapter 1. Introduction 3

is when I started working in the field of operations research and combinatorial optimization.
More precisely, my PhD work dealt with a combinatorial optimization problem encountered in
industrial production planning, namely lot-sizing.

Basically, a lot-sizing problem consists in determining when and how much to produce on a
resource (such as an assembly line, a chemical reactor...) so as to satisfy the customers’ demand
for a set of finished products while minimizing the total cost of the production plan. This cost
comprises linear production costs, fixed setup costs and inventory holding costs. Many lot-
sizing problems can be quite naturally formulated as mixed-integer linear programs. However,
this natural formulation usually involves a set of big-M type constraints, which translates in a
poor quality of the lower bounds provided by the linear relaxation. Since the seminal work
of Barany et al. (1984), there has been a lot of research to develop strong MILP formulations
of lot-sizing problems (Pochet and Wolsey, 2006). During my PhD, I worked on exact solution
approaches based on mixed-integer linear programming for a variant of lot-sizing problems
called the discrete lot-sizing and scheduling problem (DLSP). In particular, I developed cut-
and-branch algorithms based on strong reformulations and valid inequalities for an extension
of the DLSP involving sequence-dependent setups.

After my PhD, I was recruited as an assistant professor at the Laboratoire de Recherche en
Informatique (LRI) of the Université Paris Sud, which recently became the Laboratoire Inter-
disciplinaire des Sciences du Numériques and the Université Paris Saclay. At the LRI, I joined
the research team on combinatorial and stochastic optimization. At that time, the team worked
among others on the development of semi-definite relaxations for deterministic combinatorial
optimization problems and on joint chance-constraint programming approaches for stochastic
combinatorial optimization problems. This work was mostly focused on generic problems such
as the quadratic assignment problem or the knapsack problem. In order to get opportunities
to work and collaborate with my colleagues, I thus sought ways of applying and extending
their results obtained on generic problems to lot-sizing problems. This first translated in a
research project (funded by the Agence Nationale pour la Recherche through its program for
young researchers) on the development of strong semi-definite relaxations for the DSLP with
sequence-dependent setups.

I also started a collaboration with Jiangqian Cheng who was a post-doc in my team and we
worked on joint chance-constraint programming approaches for lot-sizing under demand un-
certainty. Namely, lot-sizing is about planning the activity of a resource or a set of resources for
the near future. As a consequence, in practice, when solving a lot-sizing problem, we often have
to rely on information (in particular on the future demand to be met) which is obtained through
imperfect forecasting procedures. Hence, in many applications, it is necessary to explicitly con-
sider the fact that the input data needed to compute the production plan are not all perfectly
known at the time the production plan has to be built. This leads to handling lot-sizing as an
optimization problem involving uncertainty. Since this collaboration with Jiangqian Cheng,
stochastic lot-sizing has been one of my main research subjects and I am still working on it
through the PhD work of Franco Quezada.

In parallel to this work on lot-sizing problems, I had the opportunity to broaden and
strengthen my skills in operations research through the participation to industrial and aca-
demic collaborative projects. Regarding industrial collaborations, I worked in particular on two
applied facility location problems arising in supply chain management (PhD work of Mouna
Kchaou-Boujelben at Renault) and telecommunication (collaboration with a research engineer
in cybersecurity at Orange). Moreover, I am currently involved in two other industrial collabo-
rative projects. The first one is linked to the co-supervision of Bingqian Liu, a PhD student at the
EDF R&D center in China working on the optimal design of local energy systems. The second
one is a joint work with the consulting company DecisionBrain and colleagues from Centrale-
Supelec dealing with explainability for a workforce routing problem (PhD thesis of Mathieu
Lerouge). As for academic collaborative projects, I initiated a collaboration with Oualid Jouini,

Chapter 1. Introduction 4

a former colleague at the Ecole Centrale Paris, through the PhD work of Mathilde Excoffier on
call center shift scheduling under uncertainty. I also took part in a project led by my former
PhD student, Mouna Kchaou-Boujelben, now an assistant professor at the United Arab Emi-
rate University. This project dealt with facility location problems for the optimal deployment
of electric vehicle charging stations. Note that a common point in all these works is the fact
that they all heavily rely on mixed-integer linear programming to model and solve the studied
optimization problems.

1.3 Contributions

This thesis reports the main research results corresponding to the work I carried out since I was
recruited as an assistant professor in 2010. There were obtained through collaborations with
colleagues and students, in particular 3 PhD students, one post-doctoral fellow and 10 master
students.

1.3.1 Lot sizing

In direct line with the work I carried out for my PhD thesis, a large part of the work presented
in this document is related to lot-sizing. More precisely, the presented contributions pertain
to the development of solution approaches based on mixed-integer linear programming for
deterministic and stochastic lot-sizing problems. They can be summarized as follows.

1. We propose a new set of valid inequalities for a deterministic multi-item lot-sizing prob-
lem called the discrete lot-sizing and scheduling problem with sequence-dependent se-
tups. The main novelty of these valid inequalities is that they seek to better represent
conflicts on multi-period time intervals between several items simultaneously requiring
production on the available resource. This is in contrast with most previously known
valid inequalities which focus on single-item sub-problems and do not take into account
the competition between items to access the resource. These valid inequalities form the
basis of a cut-and-branch algorithm, whose performance compares well with the one of
the generic branch-and-cut algorithm embedded in CPLEX solver.

2. We then study a single-item capacitated lot-sizing problem in which the demand to be
satisfied is subject to uncertainty. We consider a single-stage stochastic programming
approach for this problem in which we seek to build the production plan before any ad-
ditional information on the demand realization becomes available and do not consider
the possibility of updating this plan as the demand unfolds over time. The problem is
formulated as a joint chance-constrained program where the probability that an inven-
tory shortage occurs during the planning horizon is limited to a maximum acceptable
risk level. Our contribution here consists in the development of a new approximate so-
lution approach for this problem called the partial sample approximation approach. The
main advantage of the proposed method is that, unlike the previously published sam-
ple approximation approach, it only requires the introduction of additional continuous
variables in the formulation and thus leads to the formulation of a deterministic mixed-
integer linear program (MILP) having the same number of binary variables as the initial
stochastic problem.

3. Production planning is intrinsically a multi-stage decision process in which production
decisions are not made once and for all but rather adjusted over time according to the
actual realizations of the uncertain parameters. In order to better exploit this flexibility

Chapter 1. Introduction 5

when solving stochastic lot-sizing problems, we then investigate a multi-stage stochas-
tic programming approach for a single-item uncapacitated lot-sizing problem. We con-
sider that the underlying stochastic input process has a finite probability space and repre-
sent the information on the evolution of the uncertain parameters by a discrete scenario
tree. This leads to the formulation of a very large-size MILP. In order to solve it, we
propose a new algorithm which combines a recently published nested decomposition
algorithm called the Stochastic Dual Dynamic integer Programming (SDDiP) algorithm
with a cutting-plane generation approach based on known valid inequalities. The re-
ported computational results show that this new algorithm clearly outperforms both the
generic branch-and-cut algorithm embedded in CPLEX solver and the SDDiP algorithm
at solving instances of the problem involving large-size scenario trees.

4. The single-item uncapacitated lot-sizing problem mentioned above relies on rather strong
assumptions on the production system. Clearly, there is a need to study stochastic lot-
sizing models with a better practical relevancy to meet the industrial needs in terms of
production planning. As a first step towards closing this gap, we investigate an appli-
cation of multi-stage stochastic programming in a production planning field where un-
certainty is particularly present: the remanufacturing of used products. We thus study
here a remanufacturing system which involves three key processes: disassembly of used
products brought back by customers, refurbishing of the recovered parts and reassem-
bly into like-new finished products. Uncertainties related to the quantity and quality of
returned products, the customers’ demand, and the costs are taken into account and rep-
resented through a scenario tree. Our contribution here consists in the development of
a new set of valid inequalities for this problem. These valid inequalities are used within
a branch-and-cut algorithm, the performance of which compares well with the one of
CPLEX solver.

Note that all the contributions described here heavily rely on MILP solvers such as CPLEX.
However, in link with the discussion presented at the end of Subsection 1.1, we try to circum-
vent the numerical difficulties encountered when trying to directly solve the obtained MILPs
with a commercial solver. Thus, Contributions 1 and 4 aim at improving the quality of the
lower bounds used at each node of the search tree through the use of problem-specific cuts so
as to improve the numerical efficiency of the solver. Moreover, Contributions 2 and 3 seek to
facilitate the resolution of the problem by the solver basically by reducing the size of the MILP
to be solved. In Contribution 2, this is achieved by reducing the number of binary variables
introduced in the formulation. As for Contribution 3, it exploits a decomposition approach
to split the problem into a set of smaller sub-problems and uses the solver only to solve the
obtained sub-problems which are MILPs of much smaller and tractable size.

1.3.2 Facility location

In parallel to the research on lot-sizing problems described in Subsection 1.3.1, I had the oppor-
tunity to study other deterministic and stochastic combinatorial optimization problems, mainly
through the participation to academic and industrial collaborative projects. Part of this work
dealt with facility location problems.

Broadly speaking, facility location problems aim at finding the optimal placement of facil-
ities in a network so as to satisfy the demand of a set of demand points. Depending of the
context, facilities can be e.g. plants or warehouses in a supply chain network, 5G antennas
in a telecommunication network, hospitals or fire stations in a city road network or electricity
generators in an electric micro-grid. Many facility location problems can rather naturally be
formulated as mixed-integer linear programs, the size of which depends among others on the

Chapter 1. Introduction 6

size of the underlying network. Hence, numerical difficulties frequently arise when trying to
directly solve facility location problems involving large-size networks.

The contributions presented in this thesis thus pertain to the development of models and
solution approaches based on mixed-integer linear programming to solve two real-life facil-
ity location problems arising from applications in supply chain management (Renault) and
telecommunication (Orange). They can be summarized as follows.

1. The first work deals with a deterministic facility location problem aiming at optimally
designing the French distribution network of the car maker Renault. The objective is to
determine where to locate distribution centers to optimize the distribution of cars from
the assembly plants (or import ports) to the car dealers. The problem thus consists in
selecting a subset of previously identified candidate location sites where distribution cen-
ters should be opened, to assign car dealers to the open distribution centers and to route
the flows of cars in this transportation network such that the total distribution costs are
minimized. The numerical complexity of this problem mainly comes from the need to
incorporate two operational constraints into the modeling of this strategic problem. First,
the transportation from distribution centers to car dealers is carried out through distribu-
tion routes starting at a DC, successively visiting several car dealers and coming back to
the DC. Second, a large number of minimum volume constraints must be added to the
problem formulation to guarantee that the volume transported on each open link is large
enough to ensure transportation of cars by full truckload without deteriorating the cus-
tomer delivery time. To handle this problem, we propose a two-phase heuristic in which
car dealers are first grouped into clusters and the resulting location-allocation problem is
then solved by a LP-based rounding heuristic.

2. The second work deals with a robust set covering problem arising in the context of cyber-
security in telecommunication networks. The problem aims at optimally placing virtual
network functions in a 5G network in order to counter an on-going distributed denial-or-
service (DDoS) attack and prevent the hackers from causing damages to their target. We
take the perspective of an internet service provider such as the French company Orange
which aims at providing a DDoS mitigation service to its customers in a 5G network.
The main difficulty of this problem comes from the fact, due to a feature called network
slicing, the exact routing in the network of the attack flow between its ingress points and
its target is not known and that we would like to be able to stop all this flow whatever
its routing in the network. We thus present a new robust optimization model for this
problem and propose to solve it by using an adversarial approach.

Similar to the work related on lot-sizing, the solution approaches proposed for these two
facility location problems use MILP solvers. In both cases, the strategy basically consists in
reducing the size of the MILP to be solved to make it tractable by the solver. In the car dis-
tribution network case, this is achieved by decomposing the initial location-routing problem
into a set of three smaller sub-problems (one for clustering the car dealers, one for locating the
DCs, one for routing the product flows in the network) which are solved sequentially. In the
telecommunication network case, the MILP size reduction is also achieved through a decom-
position of the initial problem into a master problem and an adversarial sub-problem which
are iteratively solved.

1.4 Manuscript organization

This thesis is organized into two parts.
Part I presents the work carried out on lot-sizing problems and comprises 5 chapters.

Chapter 2 provides some background on lot-sizing problems to facilitate the reading of the

Chapter 1. Introduction 7

manuscript. Chapter 3 is devoted to the deterministic discrete lot-sizing and scheduling prob-
lem with sequence-dependent setups and introduces among others a new family of multi-item
multi-period valid inequalities for this problem. Chapters 4 to 6 consider stochastic lot-sizing
problems. More precisely, Chapter 4 focuses on the single-item capacitated lot-sizing problem
with stochastic demand, investigates a joint chance-constrained model for this problem and
describes the new partial sample approximation approach we propose to handle it. Chapter 5
focuses on a multi-stage stochastic programming approach for the stochastic single-item unca-
pacitated lot-sizing problem. It presents the extension of the Stochastic Dual Dynamic integer
Programming algorithm we developed for this problem. Finally, Chapter 6 deals with a multi-
stage stochastic lot-sizing problem arising in the context of remanufacturing of used products.
In particular, new valid inequalities for this problem are investigated.

Part II presents the work carried out on facility location problems and comprises 2 chapters.
Chapter 7 discusses the design of the French distribution network of Renault whereas Chap-
ter 8 focuses on the placement of virtual network functions in a telecommunication network to
secure it against a distributed denial-of-service attack.

Finally, Chapter 9 provides a general conclusion and discusses several possible directions
for further research.

8

Part I

Lot-sizing

9

Chapter 2

Background

2.1 Introduction

This chapter aims at providing some background on lot-sizing problems to facilitate the read-
ing of the manuscript. Note that our objective is not to provide a general overview nor an
exhaustive literature review on lot-sizing but rather to introduce the notions and definitions
which are necessary to understand the work presented in Chapters 3 to 6.

Lot-sizing is defined by Kuik et al. (1994) as "the clustering of items for transportation or
manufacturing at the same time". Lot-sizing arises in production whenever set-up operations
are required in order to prepare the production resource for the processing of a new type of
product. Set-up actions can involve many different operations such as cleaning, preheating,
tool change, machine calibration or test runs. Set-up costs account e.g. for the additional work-
force needed to prepare the resource, for the production loss during the resource downtime, for
the raw materials consumed during set-up operations, etc. In lot-sizing, we model these set-up
costs as fixed costs, the amount of which does not depend on the quantity of items produced
after the set-up operation. To minimize these set-up costs and obtain a more efficient use of pro-
duction resources, production should be run using large lot sizes. However, this production
policy generates inventory as the production cannot be synchronized with the actual demand
pattern. Namely, products must be held in inventory between the time they are produced and
the time they are actually used to satisfy customer demand. This generates inventory holding
costs mainly because of tied up capital. The objective of lot-sizing is thus to reach the best pos-
sible trade-off between set-up and inventory holding costs while taking into account both the
customer demand satisfaction and the technical limitations of the production system.

When all the input data needed to compute the optimal production plan are perfectly
known at the time the plan should be built, lot-sizing is a deterministic combinatorial opti-
mization problem. Section 2.2 introduces the deterministic lot-sizing models which are studied
as such or used as starting points in the works discussed later in this document. However,
lot-sizing is about planning the activity of a resource (or a set of resources) for the near future
and in practice, we often have to rely on information about the value of some input parame-
ters which is obtained through imperfect forecasting procedures. Hence, in many applications,
assuming that all the input data needed to compute the production plan are deterministically
known is not realistic. Section 2.3 thus discusses several stochastic lot-sizing models.

2.2 Deterministic lot-sizing

We introduce here the deterministic lot-sizing models investigated later in the document. We
first present single-item lot-sizing models before discussing some multi-item lot-sizing models.

Chapter 2. Background 10

2.2.1 Single-item lot-sizing

Single-item uncapacitated lot-sizing

The simplest available lot-sizing model is the single-item uncapacitated lot-sizing problem
(called ULS) introduced by Wagner and Whitin (1958). It considers a single type of item and
aims at planning the production of this item over a finite discrete-time planning horizon in-
volving a set T = {1...T} of periods. Producing a positive amount in period t ∈ T incurs a
fixed set-up cost ft together with a production cost gt per unit produced and an inventory hold-
ing cost ht per unit held in stock between two consecutive periods. The objective is to build a
production plan such that the customers’ demand dt is met in each time period t and the total
costs, i.e. the sum of setup, production, and inventory holding costs over the whole planning
horizon, are minimized.

This problem can be formulated as a mixed-integer linear program by introducing the fol-
lowing decision variables:

• xt: quantity produced in period t,

• yt: set-up state of the resource. yt = 1 if the resource is set-up to produce the item in t,
yt = 0 otherwise,

• st: inventory level at the end of period t.

With this notation, the ULS can be formulated as follows:

Z∗ = min
T

∑
t=1

(
ftyt + gtxt + htst

)
(2.1)

xt ≤ Mtyt ∀t ∈ T (2.2)
st = st−1 + xt − dt ∀t ∈ T (2.3)
xt ≥ 0 ∀t ∈ T . (2.4)
st ≥ 0 ∀t ∈ T . (2.5)
yt ∈ {0, 1} ∀t ∈ T . (2.6)

The objective function (2.1) minimizes the sum of the set-up, production and inventory
holding costs over the whole planning horizon. Constraints (2.2) ensure that, if production
takes place in period t, the corresponding setup costs are incurred. Note that the value of
constant Mt can be set to the value of the cumulative remaining demand to be satisfied till
the end of the horizon, i.e. to ∑T

τ=t dτ. Constraints (2.3) are the inventory balance constraints.
Together with Constraints (2.5), they ensure the timely satisfaction of the demand.

The ULS is known to be solvable in strongly polynomial time. A simple dynamic program-
ming algorithm was proposed by Wagner and Whitin (1958). It is based on the zero-inventory-
ordering property, i.e. production is undertaken in a period only if the entering inventory level
drops to zero, and runs in O(T2) time. This time complexity was later improved to O(T log T)
by Aggarwal and Park (1993) and Wagelmans et al. (1992). Moreover, Barany et al. (1984) pro-
posed a family of valid inequalities, known as the (`, S) inequalities. These inequalities, when
added to Constraints (2.2)-(2.5), provide a full description of the convex hull of the feasible
space of ULS.

Single-item capacitated lot-sizing

The ULS is an uncapacitated model which relies on the assumption that there is no limit
on the quantity that can be produced in a period. Yet, in most practical situations, the produc-
tion capacity cannot be assumed infinite. Hence, a first way to improve the practical relevancy

Chapter 2. Background 11

of problem ULS is to consider a limited production capacity ct in each time period and a ca-
pacity consumption vt per unit of item produced. The resulting problem, called LS_C, can be
formulated as followed:

Z∗ = min
T

∑
t=1

(ftyt + gtxt + htst
)

(2.7)

vtxt ≤ ctyt ∀t ∈ T (2.8)
st = st−1 + xt − dt ∀t ∈ T (2.9)
xt ≥ 0 ∀t ∈ T (2.10)
st ≥ 0 ∀t ∈ T (2.11)
yt ∈ {0, 1} ∀t ∈ T (2.12)

Note how the big-M constant Mt has been replaced by a finite production capacity ct in
Constraints (2.9).

The complexity status of Problem LS_C is investigated among others by Florian and Klein
(1971), Bitran and Yanasse (1982) and van Hoesel and Wagelmans (1996) and depends mainly
on the structure of the capacity parameter. Thus, LS_C is polynomially solvable in O(T3) when
the value of the production capacity ct is constant over time: see van Hoesel and Wagelmans
(1996). But Bitran and Yanasse (1982) show that most other variants of the problem in which ct
varies over time are NP-hard.

Many other extensions of the ULS have been proposed since the seminal work of Wagner
and Whitin (1958) in order to improve its applicability in real-life situations by taking into
account complicating features relative among others to the costs, the production resource or
the demand service policy. We refer the reader to Brahimi et al. (2006) and Brahimi et al. (2017)
for comprehensive surveys on the single-item dynamic lot-sizing problem.

2.2.2 Multi-item single-echelon lot-sizing

In many cases, the available resource is not dedicated to the production of a single type of item,
but rather shared between multiple items. In the problem modeling, this situation can be han-
dled either through large bucket or through small bucket models: see e.g. Drexl and Kimms
(1997). Large bucket models rely on a coarse discretization of the planning horizon into a small
number of long time periods (typically a week or a month) in which items of multiple types
may be produced. In contrast, small bucket models use a fine discretization of the planning
horizon into a large number of short time periods (typically an hour or a shift) and assume that
at most one type of item may be produced per period.

Capacitated Lot-Sizing Problem
One of the most widely known large bucket lot-sizing models is the Capacitated Lot-Sizing
Problem or CLSP. In the CLSP, we wish to determine the optimal production plan for a set I =
{1, ..., I} of items over an horizon involving T periods. The demand for item i ∈ I to be satisfied
at the end of period t ∈ T is denoted by dit. In each time period, there is a limited production
capacity ct to be allocated between the products. Let vit be the amount of production capacity
needed to produce one unit of item i at time period t. As for the costs, we consider fit, the fixed
set-up cost to be paid if production for item i occurs during t, git the unit production cost for i
in t and hit the inventory holding cost per unit of item i held in inventory at the end of t.

We introduce the following decision variables:

• xit: quantity of item i produced in period t,

Chapter 2. Background 12

• yit: resource set-up state variable. yit = 1 if the resource is set-up to produce i in t, yit = 0
otherwise,

• sit: inventory level of item i at the end of period t.

With this notation, the CLSP can be formulated as follows:

Z∗ = min
I

∑
i=1

T

∑
t=1

(
fityit + gitxit + hitsit

)
(2.13)

I

∑
i=1

vitxit ≤ ct ∀t ∈ T (2.14)

vitxit ≤ ctyit ∀t ∈ T , i ∈ I (2.15)
sit = si,t−1 + xit − dit ∀t ∈ T , i ∈ I (2.16)
xit ≥ 0 ∀t ∈ T , i ∈ I (2.17)
sit ≥ 0 ∀t ∈ T , i ∈ I (2.18)
yit ∈ {0, 1} ∀t ∈ T , i ∈ I (2.19)

The objective function (2.13) seeks to minimize the total set-up, production and inventory
holding costs. Constraints (2.14) ensure that the total amount of capacity consumed by all the
items produced on the resource during period t stays below the available production capac-
ity ct. Constraints (2.15)-(2.19) are similar to the constraints involved in the single-item LS-C
problem.

The CLSP is known to be an NP-hard problem: see e.g. Florian et al. (1980) and Bitran and
Yanasse (1982). As a consequence, a large variety of Operations Research techniques has been
investigated to solve it: see e.g. the literature reviews provided by Karimi et al. (2003), Jans and
Degraeve (2007) and Buschkühl et al. (2010).

Discrete Lot-sizing and Scheduling Problem

Among the small bucket lot-sizing models is the Discrete Lot-sizing and Scheduling Prob-
lem or DLSP. In the DLSP, a single type of product may be produced in each time period and a
discrete or all-or-nothing production policy is used, i.e. production is either carried out at full
capacity or does not occur. Moreover, as we use short time periods, a production lot can extend
over several periods. In this case, set-up costs should not occur in each production period but
only in the periods in which the production of a new lot begins. To model this situation, we
introduce, in addition to the xit, yit and sit variables defined above for the CLSP, binary start-up
variables zit, i ∈ I , t ∈ T . These new variables are defined by zit = 1 if there is a start-up, i.e. if
production of a new lot begins, in period t for item i, 0 otherwise.

With this notation, the DLSP can be formulated as follows:

Chapter 2. Background 13

Z∗ = min
I

∑
i=1

T

∑
t=1

(
fitzit + gitxit + hitsit

)
(2.20)

I

∑
i=1

yit ≤ 1 ∀t ∈ T (2.21)

vitxit = ctyit ∀t ∈ T , i ∈ I (2.22)
zit ≥ yit − yi,t−1 ∀t ∈ T , i ∈ I (2.23)
sit = si,t−1 + xit − dit ∀t ∈ T , i ∈ I (2.24)
xit, sit ≥ 0 ∀t ∈ T , i ∈ I (2.25)
yit ∈ {0, 1}, zit ∈ {0, 1} ∀t ∈ T , i ∈ I (2.26)

The objective function (2.20) seeks to minimize the total start-up, production and inventory
holding costs. Constraints (2.21) ensure that at most one item is produced in each production
period. Constraints (2.22) enforce the all-or-nothing production policy: if some production of
item i occurs during t, the amount produced uses all the available production capacity. Con-
straints (2.23) link the new start-up variables with the set-up variables and make sure that
start-up costs are incurred each time a production lot for a new item begins.

Salomon et al. (1991) showed that determining whether there is a feasible solution of the
DLSP can be done in polynomial time but that solving it to optimality is NP-hard.

Note that there are many other variants of large and small bucket multi-item lot-sizing
models. The reader is referred to e.g. the surveys provided by Drexl and Kimms (1997) and
Jans and Degraeve (2008) for a more general description of multi-item lot-sizing models.

2.2.3 Multi-item multi-echelon lot-sizing

Multi-echelon lot-sizing problems arise in production system whenever the finished product is
not obtained directly by transforming the raw materials through a single processing step but
rather through a sequence of processing steps, each one using either raw materials or partially
transformed intermediate products as input. The relationship between the finished product
and these intermediate products or components is described by the bill of materials and is re-
ferred to as the product structure in the lot-sizing literature. An introduction on multi-echelon
lot-sizing models involving various forms of product structure can be found e.g. in Pochet and
Wolsey (2006). We focus here on the simplest possible structure, namely a production in series
structure.

In a serial product structure, a linear sequence of I steps are needed to transform the raw
materials into a finished product, each one being carried out on a dedicated resource. The
intermediate product obtained after step i = 1...I is referred to as item i and is obtained by
processing one unit of item i− 1 on the resource in charge of step i of the transformation. Note
that, with this definition, product I corresponds to the finished product.

We denote by fit (resp. git) the fixed set-up cost (resp. the unit production cost) on resource
i and by hit the unit inventory holding cost for item i at time period t. dt corresponds to the
demand for the finished product to be satisfied at the end of period t.

We introduce the following decision variables:

• xit: quantity of item i produced in period t,

• yit: set-up state of resource i in t. yit = 1 if the resource i is set-up for production in t,
yt = 0 otherwise,

Chapter 2. Background 14

• sit: inventory level of item i at the end of period t.

With this notation, the production in series extension of the ULS can be formulated as fol-
lows:

Z∗ = min
I

∑
i=1

T

∑
t=1

(
fityi,t + gitxi,t + hitsi,t

)
(2.27)

xi,t ≤ Mtyi,t ∀t ∈ T , i ∈ I (2.28)
si,t = si,t−1 + xi,t − xi+1,t ∀t ∈ T , i ∈ I \ {I} (2.29)
sI,t = sI,t−1 + xI,t − dt ∀t ∈ T (2.30)
xi,t ≥ 0 ∀t ∈ T , i ∈ I (2.31)
si,t ≥ 0 ∀t ∈ T , i ∈ I (2.32)
yi,t ∈ {0, 1} ∀t ∈ T , i ∈ I (2.33)

The objective function (2.27) seeks to minimize the total set-up, production and inventory
holding costs. Constraints (2.28) ensure that, if production takes place on resource i in period
t, the corresponding setup costs are incurred. Note that, similar to what is done for the ULS,
the value of constant Mt can be set to ∑T

τ=t dτ. Constraints (2.29)-(2.30) are the inventory bal-
ance constraints. Constraints (2.30) are similar to the constraints found in the ULS formulation
as they involve a demand term dt which is an input parameter. However, Constraints (2.29)
involve a dependent demand term xi+1,t: the value of the demand to be satisfied at echelon i
namely depends on the production plan which will be built for production echelon i + 1.

Zangwill (1969) proposed a dynamic algorithm for Problem (2.27)- (2.33) which runs in
O(IT4). A recent review on complexity results for more general variants of multi-echelon lot-
sizing problems can be found in Brahimi et al. (2017).

2.3 Stochastic lot-sizing

As mentioned in Section 2.1, lot-sizing is about planning the activity of a resource or a set of
resources for the near future. As a consequence, in practice, when solving a lot-sizing problem,
we often have to rely on information (in particular on the future demand to be met) which is
obtained through imperfect forecasting procedures. Forecasting errors lead both to stockouts
occurring with unsatisfied demands and to inventory levels higher than planned. Hence, in
many applications, it is necessary to explicitly consider that the input data needed to compute
the production plan are not all deterministically known and to handle lot-sizing as an opti-
mization problem involving uncertainty.

A wide variety of approaches have been proposed to handle production planning and lot-
sizing under uncertainty: see Aloulou et al. (2014) for a general overview and Tempelmeier
(2013) and Brahimi et al. (2017) for literature reviews focusing on single-item dynamic lot-
sizing problems. In what follows, we assume that an accurate probabilistic description of the
random variables is available under the form of probability distributions and thus only discuss
stochastic programming approaches for lot-sizing under uncertainty. Moreover, for the sake
of simplicity, we will use as a starting point the single-item uncapacitated lot-sizing (ULS)
problem described in Subsection 2.2.1 and focus on the case in which only the demand is subject
to uncertainty.

Let d̃ denote the random vector representing the stochastic demand over the planning hori-
zon. Replacing dt by d̃t, for all t, in the formulation of the deterministic ULS leads to the
following stochastic formulation:

Chapter 2. Background 15

Z∗ = min
T

∑
t=1

(
ftyt + gtxt + ht s̃t

)
(2.34)

xt ≤ Mtyt ∀t ∈ T (2.35)
s̃t = s̃t−1 + xt − d̃t ∀t ∈ T (2.36)
xt ≥ 0 ∀t ∈ T (2.37)
s̃t ≥ 0 ∀t ∈ T (2.38)
yt ∈ {0, 1} ∀t ∈ T (2.39)

A direct consequence of the introduction of d̃ in the problem modeling is that the inventory
level at the end of each period t now also is a random variable denoted by s̃t in Problem (2.34)-
(2.39). Under a stochastic demand, it may be very difficult, and even impossible if the prob-
ability distribution of d̃t has an infinite support for some period t, to find a production plan
ensuring that, whatever the realization of the stochastic demand, the inventory on hand will be
sufficient to satisfy all the demand. In other words, it may not be possible to find a production
complying with Constraints (2.38) for any realization of d̃ and, even if the production capacity
is unlimited, stockouts may happen. An additional difficulty comes from the fact that the ob-
jective function now involves stochastic terms corresponding to stochastic inventory holding
costs.

Several stochastic programming approaches have been investigated to handle these diffi-
culties. They differ among others with respect to the number of stages involved in the deci-
sion process. In the context of stochastic programming, a stage in the decision process can
be basically defined as a future point in time at which new information on the stochastic pa-
rameters becomes available and decisions based on this newly available information have to
be made. Note that stages do not necessarily coincide with planning periods, in particular a
stage may comprise several periods. Namely, in lot-sizing, the time discretization used by the
decision-makers to plan the production activities is usually finer than the one used to update
the demand forecasts and possibly readjust the production plan. A planning period may thus
typically correspond to an 8-hours shift or a day whereas a stage may correspond to a week or
a month.

In what follows, we discuss single-stage, two-stage and multi-stage stochastic program-
ming models for lot-sizing under uncertain demand.

2.3.1 Single-stage stochastic lot-sizing

In single-stage stochastic lot-sizing models, the value of all production decision variables, i.e.
setup and production variables, is decided upon at the beginning of the planning horizon
prior to the realization of the uncertain demand. In this type of model, stockouts are managed
through the introduction of chance constraints imposing that the probability of a stockout stays
below an acceptable risk level defined by the production manager. Disjoint chance constraints
impose an upper bound on the probability of a stockout within each planning period: see e.g.
Bookbinder and Tan (1988) and Chen (2007). As mentioned by Tempelmeier (2007), they cor-
respond to defining a minimum value to the period α-service level or ready rate often used in
supply chain management. Joint chance constraints impose an upper bound on the probabil-
ity of a stockout within the whole planning horizon: see e.g. Beraldi and Ruszczyński (2002),
Küçükyavuz (2012) and Zhang et al. (2014). They can be understood as a way of defining a
minimum value to the horizon α-service level.

Modeling Problem (2.34)- (2.39) as a disjoint chance-constraint program leads to the follow-
ing formulation:

Chapter 2. Background 16

Z∗ = min
T

∑
t=1

(
ftyt + gtxt + htE[s̃t]

)
(2.40)

xt ≤ Mtyt ∀t ∈ T (2.41)
s̃t = s̃t−1 + xt − d̃t ∀t ∈ T (2.42)
xt ≥ 0 ∀t ∈ T (2.43)
Pr(s̃t ≥ 0) ≥ 1− ε ∀t ∈ T (2.44)
yt ∈ {0, 1} ∀t ∈ T (2.45)

Here, ε is an input parameter giving the maximum acceptable stockout risk level and 1− ε
can be understood as the target ready rate level defined by the production manager. In Prob-
lem (2.40)- (2.45), the potentially infeasible constraints (2.38) are thus replaced by a series of
disjoint chance-constraints, each one imposing that the probability that the demand in each pe-
riod is satisfied without any delay stays above the targeted ready rate. Moreover, note how in
the objective function, the terms corresponding to the stochastic inventory holding costs have
been replaced by terms minimizing the expected inventory holding costs.

Finally, when Problem (2.34)- (2.39) is modeled as a joint chance-constraint program, Con-
straints (2.44) are replaced by a single joint chance constraint Pr(s̃t ≥ 0, ∀t ∈ T) ≥ 1 − ε
enforcing a minimum value to the probability that all demand satisfaction constraints are si-
multaneously respected.

2.3.2 Two-stage stochastic lot-sizing

Similar to one-stage stochastic lot-sizing models, most two-stage stochastic lot-sizing models
assume that the value of all production decision variables, i.e. setup and production variables,
is decided upon at the beginning of the planning horizon prior to the realization of the un-
certain demand. They however differ in the way stockouts are handled in the model. Namely,
whereas one-stage stochastic lot-sizing models consider stockouts as undesirable events whose
probability of occurrence should be limited, two-stage stochastic lot-sizing models introduce
recourse actions, i.e. corrective actions that may be taken after the random demand has realized
in order to make the initial production plan feasible. One widely used recourse action consists
in backlogging the demand, i.e. in delaying the demand satisfaction for some customers for one
or several periods. Hence, two-stage stochastic lot-sizing models usually consider setup and
production variables as first-stage decision variables and inventory and backlogging variables
as second-stage decision variables. Note that these models implicitly assume that the informa-
tion on the actual demand realization is revealed in one go for the whole planning horizon and
that this knowledge can be exploited to optimize the recourse actions.

Modeling Problem (2.34)- (2.39) as a two-stage stochastic program with inventory holding
and backlogging as recourse actions leads to the following formulation:

Z∗ = min
T

∑
t=1

(
ftyt + gtxt + htE[s̃t] + etE[b̃t]

)
(2.46)

xt ≤ Mtyt ∀t ∈ T (2.47)
s̃t − b̃t = s̃t−1 − b̃t−1 + xt − d̃t ∀t ∈ T (2.48)
xt ≥ 0 ∀t ∈ T (2.49)
s̃t, b̃t ≥ 0 ∀t ∈ T (2.50)
yt ∈ {0, 1} ∀t ∈ T (2.51)

Chapter 2. Background 17

Here, b̃t represents the random amount of demand backlogged at the end of period t and et
the unit backlogging penalty cost. Problem (2.34)- (2.39) was studied among others by Vargas
(2009) and Piperagkas et al. (2012). As getting an accurate assessment of the unit backlogging
penalty cost et is not always possible, Tempelmeier and Herpers (2011) propose to replace the
penalty term in the objective function by a fill rate constraint imposing an upper bound on the
amount of expected backlog E[b̃t] in each period.

2.3.3 Multi-stage stochastic lot-sizing

In practice, lot-sizing is not a one or two-stage decision process in which all production deci-
sions are made once and for all at the beginning of the planning horizon. Instead, it is intrinsi-
cally a multi-stage decision process, i.e. a process involving a sequence of production decisions
that are made in reaction to outcomes of the random demand as they become known. In terms
of mathematical modeling, this means that there is another way of dealing with the feasibility
issue on Constraints (2.38) encountered in Problem (2.34)-(2.39). It consists in postponing the
setup and production decisions relative to period t up to the point in time at which the actual
value of the random demand d̃t will be accurately known.

For the sake of simplicity, let us assume here that each decision stage comprises a single
production planning period. In this case, the multi-stage decision dynamics discussed above
can be described as follows: realization of d̃1 → decision on (x1, y1) → realization of d̃2 →
decision on (x2, y2)→ ...→ realization of d̃T → decision on (xT, yT).

At the beginning of each stage, i.e. of each period t, we thus first observe the realization of
the random demand for this stage. We then make production decisions (xt, yt) for the current
stage t taking into account both the observation of d̃t and the entering inventory level st−1
resulting from the decisions made at stage t− 1. While making these decisions, the objective
is to minimize not only the production costs relative to stage t but also all the expected future
costs.

We denote by d̃[t,t′] the sequence of random demand variables corresponding to stages t to
t′ and by d[t,t′] a realization of this vector on the time interval [t, t′]. Ct(xt, yt, st, dt) = ftyt +
gtxt + htst represents the total setup, production and inventory holding costs at stage t as a
function of the production decisions (xt, yt, st) and of the realization dt of the demand whereas
Ft(st−1, dt) = {(xt, yt, st) ∈ R+ × {0, 1} ×R+|xt ≤ Mtyt, st = st−1 + xt − dt} represents the
feasible space at stage t as a function of the entering inventory level st−1 and of the realization
dt of the demand.

Using this notation, the multi-stage decision dynamics described above leads to the follow-
ing nested formulation.

Z∗ = min
F1

{
C1(x1, y1, s1)

+ Ed̃[2,T]|d[1,1]

[
min

F2(s1,d2)

{
C2(x2, y2, s2, d2)

+ ...

+ Ed̃[σ,T]|d[1,σ−1]

[
min

Fσ(sσ−1,dσ)

{
Cσ(xσ, yσ, sσ, dσ)

+ Ed̃[σ+1,T]|d[1,σ]

[
...

+ Ed̃[T,T]|d[1,T−1]

[
min

FT(sT−1,dT)
CT(xT, yT, sT, dT)

]]}]}]}
(2.52)

Here Ed̃[σ,T]|d[1,σ−1]

[
·
]

denotes the expectation of (·) computed using the conditional distri-

bution of the random vector d̃[σ,T] given the realization d[1,σ−1] of the demand over stages 1 to

Chapter 2. Background 18

σ− 1. Note how, in Formulation (2.52), the decisions relative to stage σ, (xσ, yσ, sσ), are made
based on the realization of demand up to stage σ, i.e. are made given an observation d[1,σ].
These decisions should lie within the feasible space described by Fσ(sσ−1, dσ) and seek to min-
imize both the ’immediate costs’, i.e. the costs Cσ(xσ, yσ, sσ, dσ) relative to stage σ, but also the
future expected costs computed using Ed̃[σ+1,T]|d[1,σ]

[
·
]
.

One way to develop computationally tractable solution approaches for this problem con-
sists in approximating the stochastic process (d̃1, ..., d̃T) by a process having finitely many re-
alizations in the form of a scenario tree. With a slight abuse of notation, we will refer to this
scenario tree by mentioning only its set of nodes V . Each node n ∈ V corresponds to a single
time period (and thus a single decision stage in the present case) denoted by tn. Let V t be the
set of nodes belonging to time period t. Each node n represents the state of the system that
can be distinguished by the information unfolded up to time period tn, i.e. each node corre-
sponds to a partial realization d[1,tn] of the demand vector d̃ up to period tn. Each node n has
a unique predecessor node denoted by an and belonging to time period tn − 1. As production
decisions for stage 1 are made after the realization of the demand for this stage, there is a single
node at stage 1, corresponding to the root node of the scenario tree. It is indexed by 1 and by
convention, a1 is set to 0.

At any non-leaf node of the tree, one or several branches indicate future possible outcomes
of the random variables from the current node. Let C(n) be the set of immediate children of
node n, V(n) the sub-tree of V rooted in n and L(n) the set of leaf nodes belonging to V(n). The
conditional probability of moving from node n to one of its children m ∈ C(n) is given by πnm

and the probability associated with the state represented by node n is denoted by ρn. ρn can be
computed by induction using ρ1 = 1 and ρn = πan,nρan

for n ∈ V \ {1}. The set of nodes on the
path from node n to node m is denoted by P(n, m). A scenario is defined as a path P(1, l) from
the root node to a leaf node l ∈ L(1) in the scenario tree and represents a possible outcome of
the stochastic input parameters over the whole planning horizon.

Figure 2.1 displays a small illustrative scenario tree corresponding to a situation in which
we plan production over an horizon spanning T = 3 periods using a decision process involv-
ing Σ = 3 decision stages. The tree involves |V| = 10 nodes and |VT| = 7 scenarios. The
predecessor of node 2 is a2 = 1 and its set of children is given by C(2) = {5, 6}.

1

2

3

4

5

6

7

8

9

10

t =

σ =

1 2 3

1 2 3

FIGURE 2.1: Scenario tree structure

Recall that, in the present setting, the decisions in a stage are made after observing the data
realization up to this stage. The value of (xt, yt, st) at stage t is thus decided upon depending

Chapter 2. Background 19

of a given realization of the d[1,t] up to stage t, which corresponds to a given node n ∈ V t. We
can therefore associate production decisions to nodes of the tree.

Let us introduce the following decision variables:

• xn: quantity produced at node n ∈ V ,

• yn = 1 if a setup for production is carried out at node n ∈ V , yn = 0 otherwise,

• sn: inventory level at node n ∈ V ,

By replacing in (2.52) each expectation term Ed̃[t+1,T]|d[1,t]
[·] by the expression ∑m∈C(n) πn,m(·),

with n the node in the scenario tree corresponding to the partial realization d[1,t], and by unnest-
ing the different terms, we obtain the following mixed-integer linear programming formula-
tion.

min ∑
n∈V

ρn(f nyn + hnsn + gnxn) (2.53)

xn ≤ Mnyn ∀n ∈ V (2.54)
sn + dn = xn + san ∀n ∈ V (2.55)
xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ V (2.56)

The objective function (2.53) aims at minimizing the expected total setup, inventory holding
and production costs over all nodes of the scenario tree. Constraints (2.54) link the production
quantity variables to the setup variables. Note that the value of constant Mn can be set by using
an upper bound on the quantity to be processed at node n, usually defined as the maximum
future demand as seen from node n, i.e. Mn = max`∈L(n) dn`, where dn` = ∑m∈P(n,`) dm. Con-
straints (2.55) are the inventory balance constraints. Constraints (2.56) provide the decision
variables domain.

Several works focus on the polyhedral study of Problem (2.53)-(2.56) in order to strengthen
its linear relaxation and improve the computational efficiency of the branch-and-cut algorithms
embedded in MILP solvers. Valid inequalities are discussed by Guan et al. (2006), di Summa
and Wolsey (2008) and Guan et al. (2009) and extended formulations are proposed by Ahmed
et al. (2003) and Zhao and Guan (2014). In particular, Guan et al. (2009) propose a general
method for generating cutting planes for multi-stage stochastic integer programs based on
combining valid inequalities previously known for the deterministic variant of the correspond-
ing problem and apply it on Problem (2.53)-(2.56). Their numerical results show that a branch-
and-cut algorithm based on these new inequalities is more effective at solving instances on
medium-size scenarios than a stand-alone mathematical programming solver.

2.4 Conclusion

We provided in this chapter an introduction to the lot-sizing models investigated in this docu-
ment. The remainder of Part I is organized as follows.

• Chapter 3 focuses on a deterministic multi-item single-echelon lot-sizing problem: the
Discrete Lot-sizing and Scheduling Problem or DLSP introduced in Subsection 2.2.2.

• Chapter 4 uses as a starting point the capacitated single-item lot-sizing problem (LS_C)
described in Subsection 2.2.1 and studies an extension of this problem in which the de-
mand is subject to uncertainty. A single-stage joint chance-constrained programming
approach similar to the one discussed in Subsection 2.3.1 is investigated for this problem.

Chapter 2. Background 20

• Chapter 5 focuses on an extension of the uncapacitated single-item lot-sizing problem
(ULS) described in Subsection 2.2.1 in which all input parameters (demand and cost) are
subject to uncertainty. It investigates a multi-stage stochastic programming approach
using scenario trees such as the one described in Subsection 2.3.3.

• Finally, Chapter 6 considers a multi-item multi-echelon remanufacturing system similar
to the one presented in Subsection 2.2.3. It deals with planning the production for this
system under demand, returns and cost uncertainty and is also based on a multi-stage
stochastic programming approach.

21

Chapter 3

Discrete lot-sizing and scheduling with
sequence-dependent setups

3.1 Introduction

This chapter presents the work carried out between 2011 and 2014 within the project LotRelax
funded by the ANR through its program for young researchers. This project dealt with one of
the lot-sizing problems I studied during my PhD, namely the multi-item DLSP with sequence-
dependent start-up costs or DLSPSD, and aimed at proposing exact solution approaches based
on strong relaxations for this problem.

The DLSPSD is an extension of the DLSP presented in Subsection 2.2.2. Similar to the DLSP,
the DLSPSD considers a set of items which must be produced on a single capacitated produc-
tion resource over a finite time horizon subdivided into discrete periods. It also assumes that
at most one item can be produced on the resource in each period and uses a discrete or all-
or-nothing production policy. However, the DLSPSD differs from the DLSP with respect to
the start-up cost modeling. Namely, the DLSP uses sequence-independent start-up costs, i.e.
start-up costs fi whose value depends only on the next item (i) to be produced. In contrast, the
DLSPSD considers sequence-dependent start-up costs, i.e. start-up costs sdij whose value de-
pends on the production sequence, i.e depends on both the item i processed before the start-up
and the item j processed after the start-up.

The objective of project LotRelax was to develop an exact solution approach for this NP-
hard combinatorial optimization problem. A large amount of existing solution techniques in
this area consists in formulating the problem as a mixed-integer linear program (MILP) and
in relying on a branch-and-bound type procedure to solve the obtained MILP. However, the
efficiency of such a procedure strongly depends on the quality of the lower bounds used to
evaluate the nodes of the search tree. Much research has been devoted to the polyhedral study
of lot-sizing problems in order to obtain tight linear relaxations and improve the corresponding
lower bounds: see e.g. (Pochet and Wolsey, 2006) for a general overview of the related literature
and (Belvaux and Wolsey, 2001; Eppen and Martin, 1987; van Eijl and van Hoesel, 1997) for
contributions focusing specifically on the single-resource DLSP. During my PhD, I proposed
to exploit the fact that items can often be described using a combination of physical attributes
to reduce the size of the MILP formulation and ease the resolution of the DLSPSD by a mixed-
integer linear programming solver. However, the corresponding numerical results provided by
Gicquel et al. (2009) showed that, even when strengthening the reduced MILP formulation with
the valid inequalities proposed by van Eijl and van Hoesel (1997), it was not possible to obtain
optimal solutions for large-size instances of the problem within a reasonable computation time.

This difficulty can be partly explained by the fact that the valid inequalities proposed by
van Eijl and van Hoesel (1997), as nearly all valid inequalities available for lot-sizing problems,
focus on strengthening the formulation of the single-item sub-problems embedded in the for-
mulation of the DLSPSD and thus fail at capturing the conflicts between multiple items sharing

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 22

the same resource capacity. During project LotRelax, we thus studied two ways which could
enable us to better take into account the multi-item aspect of the DLSPSD.

A first part of the work carried out during the project was devoted to the study of semi-
definite programing based relaxations for the DLSPSD. To achieve this, we reformulated the
DLSPSD as a quadratically constrained quadratic binary program. We then used techniques
developed for generic quadratic binary programs (Roupin, 2004) to efficiently reformulate
the problem as a semi-definite program and proposed a cutting-plane generation algorithm
to strengthen the initial convex relaxation of this semi-definite reformulation. Our numerical
results showed that the semi-definite relaxation consistently provides lower bounds of signif-
icantly improved quality as compared with the ones provided by the continuous relaxation
of the tightest MILP formulations known for the DLSPSD. In particular, the gap between the
semi-definite relaxation and the optimal integer solution value can be closed for a significant
proportion of the small-size instances, thus avoiding to resort to a tree search procedure. This
improvement in the quality of the lower bounds is mainly explained by the fact that refor-
mulating the DLSPSD as a semi-definite program amounts to lifting the problem into a much
higher dimensional, as would be done by an RLT-1 extended reformulation obtained through
the reformulation-linearization technique of Adams and Sherali (1990). This allows to capture
among others relationships between variables relative to different items and different periods.
However, solving a semi-definite program is much more computationally demanding than
solving a linear program. As a consequence, the computation time needed to compute these
very tight lower bounds was too high to consider using them in a branch-and-bound search
procedure. Thus, solving practical lot-sizing problems using semi-definite relaxations instead
of linear programming relaxations does not seem a possible option for the time being. This
work was published in a journal paper: see Gicquel et al. (2014).

A second part of the work carried out during the project thus focused on improving the lin-
ear programming relaxation of the DLSPSD through a new family of multi-item multi-period
inequalities. These inequalities seek to better represent conflicts on multi-period time inter-
vals between several items simultaneously requiring production on the available resource. To
the best of our knowledge, this was one of the first attempts at proposing multi-item valid
inequalities for discrete lot-sizing problems. The corresponding separation problem could be
formulated as a quadratic binary program and we proposed to solve it either exactly by relying
on a quadratic programming solver or approximately through a variable depth search heuris-
tic algorithm. The results of our computational results showed that the proposed inequalities
are efficient at strengthening the linear relaxation of the problem and at decreasing the overall
computation time needed to obtain guaranteed optimal solutions of the DLSPSD. This work
was published in a journal paper: see Gicquel and Minoux (2015).

In what follows, we thus present in more detail this work on multi-item valid inequalities
for the DSLPSD. The remainder of the chapter is organized as follows. In Section 3.2, we recall
the initial MILP formulation of the multi-item DSLPSD as well as the previously published
inequalities for the underlying single-item sub-problems. We then present in Section 3.3 the
proposed multi-item inequalities and briefly discuss in Section 3.4 the resolution of the corre-
sponding separation problem. A summary of our computational results is provided in Section
3.5.

3.2 Mathematical formulation

In this section, we first recall the initial MILP formulation of the DLSPSD. We use the network
flow representation of change-overs between items, which was discussed among others by
Belvaux and Wolsey (2001), as this leads to a tighter linear relaxation of the problem. We then

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 23

present the inequalities proposed by van Eijl and van Hoesel (1997) to strengthen the underly-
ing single-item sub-problems.

3.2.1 Initial mixed-integer linear programming formulation

We wish to plan production for a set I = {0, ..., I} of items to be processed on a single pro-
duction machine over a planning horizon involving a set T = {1, ...T} of periods. Item i = 0
represents the idle state of the machine and period t = 0 is used to describe the initial state of
the production system.

Production capacity is assumed to be constant throughout the planning horizon. We can
thus w.l.o.g. normalize the production capacity to one unit per period and apply a pretreatment
on the original demand matrix resulting in a demand matrix containing only binary numbers:
see e.g. (Belvaux and Wolsey, 2001). We denote dit the demand for item i in period t: dit = 1
in case there is a demand for item i in period t corresponding to producing i at full capacity in
a period, dit = 0 otherwise. Furthermore, we denote hi the inventory holding cost per unit per
period for item i and sdij the sequence-dependent start-up cost to be incurred whenever the
production state of the resource is changed from item i to item j.

Using this notation, the DLSPSD can be seen as the problem of assigning at most one item
to each period of the planning horizon while ensuring demand satisfaction and minimizing
both inventory holding and start-up costs. We thus introduce the following binary decision
variables:

• yit where yit = 1 if item i is assigned to period t, 0 otherwise.

• wijt where wijt = 1 if there is a change-over from item i to item j at the beginning of t, 0
otherwise.

This leads to the following MILP formulation denoted by DLSPSD0.

Z∗ = min
I

∑
i=1

T

∑
t=1

hi

t

∑
τ=1

(yiτ − diτ) +
I

∑
i,j=0

sdi,j

T−1

∑
t=1

wi,j,t (3.1)

t

∑
τ=1

yiτ ≥
t

∑
τ=1

diτ ∀i ∈ I , ∀t ∈ T (3.2)

I

∑
i=0

yit = 1 ∀t ∈ T (3.3)

yi,t =
I

∑
j=0

wj,i,t ∀i ∈ I , ∀t ∈ T (3.4)

yi,t =
I

∑
j=0

wi,j,t+1 ∀i ∈ I , ∀t ∈ T (3.5)

yit ∈ {0, 1} ∀i ∈ I , ∀t ∈ T (3.6)
wi,j,t ∈ {0, 1} ∀i ∈ I , ∀j ∈ I , ∀t ∈ T (3.7)

The objective function (3.1) corresponds to the minimization of the inventory holding and
start-up costs over the planning horizon. ∑t

τ=1(yiτ − diτ) is the inventory level sit of item i at
the end of period t. Constraints (3.2) impose that the cumulative demand over interval [1, t]
is satisfied by the cumulative production over the same time interval. Constraints (3.3) ensure
that, in each period, the resource is either producing a single item or idle. Constraints (3.4)-(3.5)
link setup variables yit with start-up variables wijt through equalities which can be seen as flow
conservation constraints in a network: see e.g. Belvaux and Wolsey (2001). They ensure that in

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 24

case item i is produced in period t, there is a change-over from another item j (possible j = i)
to item i at the beginning of period t and a change-over from item i to another item j (possible
i = j) at the end of period t.

3.2.2 Single-item valid inequalities

We now recall the expression of the inequalities proposed by van Eijl and van Hoesel (1997)
for the single-item DLSP. We denote dci,t,τ the cumulative demand for item i in the interval
{t, ..., τ} and δi,v the vth positive demand period for item i. δi,dci,1,t+v is thus the period in which
the vth positive unit demand for item i after period t occurs.

t

∑
τ=1

(yi,τ − di,τ) ≥ u−
u

∑
v=1

[
yi,t+v +

δi,dci,1,t+v

∑
τ=t+v+1

∑
j 6=i

wj,i,τ

]
∀i, ∀t, ∀u ∈ [1, dci,t+1,T] (3.8)

The idea underlying constraints (3.8) is to compute a lower bound on the inventory level
of a item i at the end of a period t, ∑t

τ=1(yi,τ − di,τ), by considering each future unit demand
u = 1, ..., dci,t+1,T and the future states of the production resource for this item in the periods
between t + 1 and δi,dci,1,t+u at which this future unit demand occurs. The reader is referred to
van Eijl and van Hoesel (1997) for a full proof of validity for these inequalities. In the compu-
tation experiments to be presented in Section 3.5, we use a standard cutting-plane generation
algorithm to strengthen the formulation DLSPSD0 by adding violated inequalities of family
(3.8). Since in practice the number of such inequalities is limited, the separation in this case
is efficiently performed by enumeration. The resulting improved formulation is denoted by
DLSPSD1.

Constraints (3.8) can be understood as a way to strengthen the demand satisfaction con-
straints (3.2) by expressing in a more detailed way the need for each individual item to access
the resource in order to satisfy its own demand on a given sub-interval of the planning hori-
zon. However, in the resulting DLSPSD1 formulation, the conflicts between different items
simultaneously requiring production on the resource will only be handled by the single-period
capacity constraints (3.3). In what follows, we propose to improve this representation of the
conflicts between items by considering multi-period multi-item inequalities.

3.3 Multi-item valid inequalities

We now present the multi-period multi-item valid inequalities proposed to strengthen the lin-
ear relaxation of the DLSPSD.

3.3.1 General expression

As stated above, the proposed inequalities aim at improving the representation of the inter-
actions between the items competing for the scarce capacity of the production resource. In
formulation DSLPSD1, these interactions are only managed on a period by period basis via the
capacity constraints (3.3). On the contrary, the proposed inequalities consider this competition
on a multi-period time interval denoted by [1, θ] in what follows. More precisely, the competi-
tion is expressed as an opposition between two disjoint subsets of items denoted by IP and ID.
The item set IP corresponds to items for which production in period t ∈ [1, θ] is considered
and that may consequently take up the resource capacity in this period. If this is to happen,
the items of the other set, ID, will not have access to the resource in period t and will loose
the corresponding production capacity. The purpose of inequalities (3.9) below is to manage

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 25

this opposition by stating that, if one of the items in IP is assigned for production in t, then we
should make sure that the cumulative demand over interval [1, θ] for the items in the other set
ID will fit in the remaining production capacity. The right hand side of inequalities (3.9) com-
putes a tight upper bound ∑θ

τ=1 cτ of this production capacity: cτ represents an upper bound
of cτ, the capacity available in period τ ∈ [1, θ] for the items in ID in case period t is devoted
to the production of one of the items in IP.

Proposition 1.
Let IP ⊂ I and ID ⊂ I be two disjoint subsets of items.
Let t ∈ [1, T] and consider [1, θ] ⊂ [1, T] a time interval including period t.
For each period τ ∈ [1, θ], we denote ID

τ = {j ∈ ID|δj,dcj,1,θ ≥ τ}.
The following inequality is valid for the multi-item DLSPSD.

[
∑

j∈ID

dcj,1,θ

][
∑

i∈IP

yit

]
≤

θ

∑
τ=1

cτ (3.9)

where cτ is defined by:

cτ =min
(

∑
j∈ID

τ

yj,τ, ∑
i∈IP

yi,t

)
if τ ∈ [1; t− 2] ∪ [t + 2, θ] (3.9a)

ct−1 = ∑
j∈ID

t−1,i∈IP

wj,i,t (3.9b)

ct = 0 (3.9c)

ct+1 = ∑
i∈IP,j∈ID

t+1

wi,j,t+1 (3.9d)

Proof. Let (y, w) be a feasible solution of the DLSPSD. We arbitrarily choose a period t, an inter-
val [1, θ] including t and two disjoint subsets of items IP and ID and show that the proposed
inequality (3.9) is valid for the considered feasible solution.

We distinguish two main cases:
- Case 1: ∑i∈IP yit = 0

In this case, the left hand side of the inequality is equal to 0 whereas the right hand side is
nonnegative. Inequality (3.9) is thus trivially valid.
- Case 2: ∑i∈IP yit = 1

In this case, the left hand side of inequality (3.9) is equal to the total cumulative demand
over interval [1, θ] for the items belonging to ID, i.e. to ∑j∈ID dcj,1,θ .

∑i∈IP yit = 1 means that period t is devoted to the production of one of the items in IP

and thus cannot be used to satisfy the cumulative demand for items in ID as these two item
subsets are disjoint. Hence (y, w) can be a feasible solution of the DLSPSD if and only if the total
cumulative production for items in ID over the remaining periods 1...t− 1, t + 1...θ is sufficient
to satisfy the cumulative demand ∑j∈ID dcj,1,θ .

We now seek to compute a tight upper bound cτ for the production capacity cτ available in
each period τ ∈ [1, t− 1] ∪ [t + 1, θ] for the items in ID:
- By capacity constraints (3.3), we have cτ ≤ 1, i.e. cτ ≤ ∑i∈IP yit.
- Moreover, the cumulative demand dcj,1,θ for a item j ∈ ID can only be satisfied by a produc-
tion for this item in period τ if τ is within the interval [1, δj,dcj,1,θ], i.e. if there is at least of unit
of demand belonging to dcj,1,θ occurring after period τ. Thus, τ can be used to satisfy part of
demand ∑j∈ID dcj,1,θ only if the resource is setup in τ for one of the items such that δj,dcj,1,θ ≥ τ.
This gives cτ ≤ ∑j∈ID

τ
yj,τ.

We thus obtain cτ ≤ min(∑j∈ID
τ

yj,τ, ∑i∈IP yit), ∀τ ∈ [1, t − 1] ∪ [t + 1, θ]. It leads to the
following inequality stating that, in a feasible solution (y, w) of the DSLSPSD, in case period

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 26

t is devoted to the production of one item belonging to IP, the cumulative capacity available
for items in ID over periods [1, t− 1] ∪ [t + 1, θ] should be large enough to produce the corre-
sponding cumulative demand:[

∑
j∈ID

dcj,1,θ

][
∑

i∈IP

yit

]
≤ ∑

τ=1...t−1
t+1...θ

[
min(∑

j∈ID
τ

yj,τ, ∑
i∈IP

yit)
]

(3.10)

Now, we can exploit our knowledge of the production state of the resource in period t to
further strengthen this inequality. Namely, we know that an item i belonging to IP is produced
in period t. A change-over to (resp. from) this item i thus has to take place at the beginning
(resp. at the end) of period t. This means that:
- If period t− 1 is to be used to satisfy the demand of one of the items belonging to ID

t−1, there
must be a change-over from this item j ∈ ID

t−1 to the item i ∈ IP at the beginning of period t.
The production capacity available in period τ = t− 1 for the items in ID

t−1 is thus limited by
ct−1 ≤ ∑i∈IP,j∈ID

t−1
wj,i,t.

- Similarly, if period t + 1 is to be used to satisfy the demand of one of the items belonging
to ID

t+1, there must be a change-over from the item i ∈ IP to this item at the end of period t.
The production capacity available in period τ = t + 1 for the items in ID

t+1 is thus limited by
ct+1 ≤ ∑i∈IP,j∈ID

t+1
wi,j,t+1.

We can thus strengthen the upper bound of ct−1 (resp ct+1) by replacing the term
min(∑j∈ID

τ
yj,τ, ∑i∈IP yit) by ∑i∈IP,j∈ID

t−1
wj,i,t (resp. ∑i∈IP,j∈ID

t+1
wi,j,t+1) and obtain the inequality

(3.9) discussed in Proposition 1.
This completes the proof.

We point out here that, for any integer feasible solution of the DLSPSD, in case ∑p∈IP ypt =
1, we have:

∑
j∈ID

τ

yj,τ ≤ ∑
i∈IP

yit, ∀τ ∈ [1, t− 1] ∪ [t + 1, θ] (3.11)

∑
i∈IP

j∈ID
t−1

wj,i,t = ∑
j∈ID

t−1

yj,t−1 if t 6= 1 (3.12)

∑
i∈IP

j∈ID
t+1

wi,j,t+1 = ∑
j∈ID

t+1

yj,t+1 if t 6= θ (3.13)

We will thus have cτ = ∑j∈ID
τ

yj,τ, ∀τ ∈ [1, t− 1] ∪ [t + 1, θ] in any integer feasible solution
of the problem. However, in a fractional solution obtained by solving the linear relaxation of
formulation DLSPSD1, we may encounter situations where 0 < ∑i∈IP yit < 1 so that we may
have ∑i∈IP yit ≤ ∑j∈ID yj,τ, ∑ i∈IP

j∈ID
wj,i,t ≤ ∑j∈ID yj,t−1 and ∑ i∈IP

j∈ID
wi,j,t+1 ≤ ∑j∈ID yj,t+1. In these

cases, it is interesting to have the flexibility to select for each period τ the smallest upper bound
for the available production capacity cτ as this will lead to tighter inequalities.

3.3.2 Illustrative example

We introduce a small instance of the DLSPSD in order to illustrate how the proposed multi-item
inequalities may help at strengthening the MILP formulation of the problem. This instance
involves I = 4 items and T = 10 periods. Table 3.1 gives the numerical data on the inventory
holding costs, on the start-up costs and on the demand for this instance. We note that the start-
up cost matrix displays a frequently encountered feature: the presence of two item families

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 27

(items {1, 2} and items {3, 4}). The start-up costs between items belonging to different families
are significantly higher than the ones between items belonging to the same family.

We provide in Table 3.2 the fractional solution obtained by solving the linear relaxation
of formulation DLSPSD1, i.e. the initial formulation of the problem strengthened only by the
single-item inequalities (3.8). In this solution, periods 1 and 2 are assigned to the production
of a single item, which complies with the problem constraints. However, in periods 3 to 10,
the resource capacity is shared between several items, which means that this solution is not
feasible for the integer optimization problem. The corresponding cost, Z = 563.25, is thus a
lower bound for the optimal integer solution value.

The fractional solution provided in Table 3.2 violates several inequalities belonging to the
family described in Proposition 1.

One of them corresponds to period t = 6, interval [1, θ] = [1, 7] and item sets IP = {2} and
ID = {3, 4}. Namely, we have:

• LHS = (dc3,1,7 + dc4,1,7)y2,6 = 2 ∗ 0.5 = 1

• RHS = ∑7
τ=1 cτ = 0.75 as:

−c1 = min(y3,1 + y4,1, y2,6) = y3,1 + y4,1 = 0 see (3.9a)
−c2 = min(y3,2 + y4,2, y2,6) = y3,2 + y4,2 = 0 see (3.9a)
−c3 = min(y3,3 + y4,3, y2,6) = y3,3 + y4,3 = 0.25 see (3.9a)
−c4 = min(y3,4 + y4,4, y2,6) = y2,6 = 0.5 see (3.9a)
−c5 = w3,2,6 + w4,2,6 = 0 see (3.9b)
−c6 = 0 see (3.9c)

−c7 = w2,3,7 = 0 (Note that ID
7 = {3}) see (3.9d)

We can thus improve the problem formulation by adding the following cut:

(dc3,1,7 + dc4,1,7)y2,6 ≤ y3,1 + y4,1 + y3,2 + y4,2 + y3,3 + y4,3 + y2,6 + w3,2,6 + w4,2,6 + w2,3,7

The idea underlying this inequality is the following. We choose the subset IP = {2}. If item
2 is not assigned for production in period 6 (i.e. y2,6 = 0), the inequality is trivially respected.
But if item 2 is assigned for production in period 6 (i.e. y2,6 = 1), then we have to make sure
that we are able to satisfy the total cumulative demand over the interval [1, 7] for the items in
subset ID = {3, 4} (i.e to satisfy dc3,1,7 + dc4,1,7) on the remaining periods 1, 2, .., 5, 7. In this
case, the right hand side of inequalities (3.9) computes a tight upper bound of the production
capacity available over these periods for items 3 and 4.

Three additional multi-item inequalities are violated by the fractional solution, namely
those corresponding to:

• t = 4, [1, θ] = [1, 5], IP = {1} and ID = {4}

• t = 7, [1, θ] = [1, 10], IP = {3} and ID = {2}

• t = 9, [1, θ] = [1, 10], IP = {2} and ID = {1, 3, 4}

We add these four multi-item inequalities to the formulation DLSPSD1 and solve the linear
relaxation of the resulting strengthened formulation. We obtain the integer feasible solution
described in Table 3.3, the cost of which is Z = 574 and corresponds to the optimal integer
solution value.

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 28

TABLE 3.1: Small illustrative example: numerical input data

sdij dit
j t

i hi 0 1 2 3 4 1 2 3 4 5 6 7 8 9 10
0 0 0 191 156 130 161 0 0 0 0 0 0 0 0 0 0
1 7 152 0 14 122 173 1 0 1 0 1 0 1 0 0 0
2 10 125 13 0 119 157 0 0 0 0 0 0 0 0 1 1
3 6 156 157 109 0 6 0 0 0 0 0 0 1 0 0 1
4 7 116 132 134 19 0 0 0 0 0 1 0 0 0 0 1

TABLE 3.2: Small illustrative example: solution obtained by computing the con-
tinuous relaxation of formulation DLSPSD1

Value of the setup variables yit

i
t

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0
1 1 1 0.75 0.25 0.5 0 0.5 0 0 0
2 0 0 0 0 0 0.5 0 0.5 0.75 0.25
3 0 0 0 0.5 0 0 0.5 0.25 0.25 0.5
4 0 0 0.25 0.25 0.5 0.5 0 0.25 0 0.25

TABLE 3.3: Small illustrative example: solution obtained by computing the con-
tinuous relaxation of formulation DLSPSD1 strengthened by 4 multi-item in-

equalities

Value of the setup variables yit

i
t

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 1 1 0 0
4 0 0 0 0 1 1 0 0 0 0

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 29

3.4 Exact and heuristic algorithms for solving the separation prob-
lem

The number of inequalities (3.9) grows very fast with the problem size so that it is not possible
to include all of them a priori in the MILP formulation. We thus investigate the resolution of
the corresponding separation problem. Given a fractional solution (y, w) of Problem DLSPSD1,
solving the separation problem for a pair of periods (t, θ) consists in finding an inequality (3.9),
amongst the ones corresponding to periods (t, θ), which is violated by the solution (y, w) if
such an inequality exists or proving that no such valid inequality exists.

To achieve this, we need to find the partition of the set of items I into 3 subsets (a subset
IP, a subset ID and a subset containing the rest of the items) providing the largest difference
between the left and the right hand sides of inequalities (3.9). This tripartition problem can be
formulated as a binary program involving a quadratic objective function and a series of lin-
ear constraints. Although this quadratic binary program can be solved to optimality using a
quadratic binary programming solver such as the one embedded in CPLEX, the corresponding
computation time is prohibitively long for a practical use. We thus develop a heuristic sepa-
ration algorithm which relies on a variable depth search heuristic of Kernighan-Lin type: see
(Kernighan and Lin, 1970). The reader is referred to (Gicquel and Minoux, 2015) for a detailed
description of this algorithm.

Regarding the cutting-plane generation strategy, our preliminary computational experi-
ments showed that when a violated inequality is found for a pair (t, θ), inequalities for pairs
(t, θ + 1), (t, θ + 2)... are most often also violated and the amount of the violation is identical
to the one found for (t, θ). It is thus not computationally efficient to solve all separation sub-
problems (t, θ) for period t. In our cutting-plane generation algorithm, for a given period t, we
thus stop the search for violated inequalities as soon as one has been found for a period θ ≥ t,
as it appeared to be a better strategy. Thus, at most T inequalities are added at each iteration
of the algorithm. In the computational experiments to be presented in Section 3.5, this cutting-
plane generation algorithm is used at the root node of the branch-and-bound search tree and
thus forms the basis of a cut-and-branch algorithm.

3.5 Computational experiments

We now discuss the results of the computational experiments carried out to evaluate the effec-
tiveness of the proposed multi-item inequalities at strengthening the formulation of the multi-
item DLSPSD and to assess their impact on the total computation time.

3.5.1 Instances

We randomly generated instances of the problem using a procedure similar to the one used
by Salomon et al. (1997) for the DLSP with sequence-dependent start-up costs and times. The
reader is referred to (Gicquel and Minoux, 2015) for a detailed description of this generation
procedure. In what follows, we only recall the values used for the characteristics which seemed
to have the strongest impact on the performance of the solution algorithms:

• Problem dimension. The problem dimension is represented by the number of items I and
the number of periods T: we solved medium-size instances involving 4 to 12 items and
25 to 75 periods.

• Start-up costs. We used two different types of structure for the sequence-dependent
start-up cost matrix sd. Instances of set A have a general cost structure: the cost of a
change-over from item i to item j, sdij, was randomly generated from a discrete uniform

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 30

DU(100, 200) distribution. Instances of set B correspond to the frequently encountered
case where items can be grouped into item families: there is a high change-over cost be-
tween items of different families and a smaller change-over cost between items belonging
to the same family. In this case, for items i and j belonging to different item families, sdij
was randomly generated from a discrete uniform DU(100, 200) distribution; for items i
and j belonging to the same item family, sdij was randomly generated from a discrete
uniform DU(0, 100) distribution.

For each considered problem dimension and each possible structure of the start-up cost
matrix, we generated 10 instances, leading to a total of 300 instances.

3.5.2 Results

All tests were run on an Intel Core i5 (2.7 GHz) with 4 Go of RAM, running under Windows 7.
We used a standard MILP software (CPLEX 12.5) with the solver default settings to solve the
problems with one of the following formulations:

• DLPSD1: initial MILP formulation DLSPSD0, i.e. formulation (3.1)-(3.7), strengthened by
single-item inequalities (3.8). We used a standard cutting-plane generation strategy based
on a complete enumeration of all possible inequalities to add them into the formulation.

• DLSPSD2e: formulation DLSPSD1 strengthened by multi-item inequalities (3.9). We used
the cutting-plane generation algorithm with the exact separation algorithm discussed in
Section 3.4.

• DLSPSD2h: formulation DLSPSD1 strengthened by multi-item inequalities (3.9). We used
the cutting-plane generation algorithm with the heuristic separation algorithm discussed
in Section 3.4.

For the sake of brevity, we only provide here a summary of the results obtained while using
formulation DLSPSD1 and DLSPSD2h. Results obtained on small instances involving 10 to 20
periods with formulation DSLSSD2e are reported in Gicquel and Minoux (2015). In a nutshell,
they show that inequalities (3.9) are efficient at strengthening the formulation of the DLSPSD
but that the exact separation algorithm leads to prohibitively long computation times. More-
over, these results also show that using the heuristic separation algorithm to generate these
inequalities provides a formulation strengthening of a similar quality that the one obtained
with the exact separation algorithm.

Table 3.4 displays a summary of the computational results obtained while using formula-
tions DLSPSD1 and DLSPSD2h. The instances are grouped according to the structure of the
start-up cost matrix and to their number of periods T. Each set of 50 instances thus comprises 5
subsets of 10 instances, each subset corresponding to a value of the number of items I belonging
to {4, 6, 8, 10, 12}. For each set of 50 instances, we provide:

• the structure of the start-up cost matrix: A corresponds to the general case, B to the case
where items can be grouped into families.

• T: the number of planning periods involved in the production planning problem.

• #IV_S: the average number of single-item violated inequalities (3.8) added in the formu-
lation.

• #IV_M: the average number of multi-item violated inequalities added in formulation
DLSPSD2h by the heuristic separation algorithm.

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 31

TABLE 3.4: Computational results

DLSPSD1 DLSPSD2h
Start-up costs T #IV_S Gap1 N1 T1 #IV_M Gap2h N2h T2h

A 25 314 2.60% 9 1.4s 32 0.26% 1 0.7s
50 1223 2.48% 96 17.3s 44 1.20% 35 14.2s
75 2787 2.68% 725 146.1s 22 2.50% 658 137.2s

B 25 314 11.48% 171 3.4s 51 4.70% 44 2.1s
50 1246 13.60% 8932 295.0s 76 9.94% 4724 191.7s
75 2707 13.00% 19912 1561.3s 43 11.84% 17461 1483s

• Gap1 (resp. Gap2h): the average percentage gap between the linear relaxation of formula-
tion DLSPSD1 (resp. DLSPSD2h) and the value of an optimal integer solution.

• N1 (resp. N2h): the average number of nodes explored by the branch-and-bound proce-
dure before a guaranteed optimal integer solution is found or the computation time limit
of 2700s is reached.

• T1 (resp. T2h): the average total computation time (cutting-plane generation and branch-
and-bound search) needed to find a guaranteed optimal integer solution (we used the
value of 2700s in case a guaranteed optimal integer solution could not be found within
the computation time limit).

Results from Tables 3.4 show that the proposed approach is efficient at strengthening the
problem formulation and at reducing the total computation time when the number of periods
involved in the planning problem stays below 50. Namely, for the instances involving less than
50 periods, the average integrality gap is reduced from 7.6% to 4.1% while using the multi-item
inequalities generated with the heuristic separation algorithm. This leads to a significant re-
duction of the average number of nodes explored by the branch-and-bound algorithm before
a proven optimal solution is found (from 2307 to 1201) and consequently to a decrease in the
overall average computation time (from 79.3s to 52.2s). We note in particular that the compu-
tation time is significantly decreased from 295.0s to 191.7s for the instances involving product
families and 50 periods.

However, when the number of periods increases and reaches 75, the efficiency of the pro-
posed approach at strengthening the MILP formulation and at reducing the computation time
seems to decrease. This can be seen by the fact that, for the corresponding instances, the average
number of violated inequalities generated by the cutting-plane generation algorithm decreases
as compared to the number of inequalities generated for the instances involving a smaller num-
ber of periods. Consequently, the average integrality gap is only reduced from 7.8% to 7.1% and
the average computation time is only decreased from 853.6s to 810.1s. This might indicate that
the strength of the proposed multi-item inequalities decreases when the number of planning
periods increases.

3.6 Conclusion and perspectives

This chapter was devoted to the work carried out on the multi-item discrete lot-sizing and
scheduling problem with sequence-dependent start-up costs. In particular, a new family of
multi-item valid inequalities for the problem has been exhibited and both an exact and a heuris-
tic separation algorithms have been devised and computationally tested. Our results show that

Chapter 3. Discrete lot-sizing and scheduling with sequence-dependent setups 32

the proposed inequalities, when used in a cut-and-branch algorithm, are efficient at strength-
ening the MILP formulation and at reducing the overall computation time needed to obtain
guaranteed optimal solutions, at least for instances featuring a number of periods up to 50.

Among the possible research directions suggested by the present work, it might be worth
exploring the development of a branch-and-cut algorithm in which the proposed valid inequal-
ities would be added to the formulation not only at the root node of the search tree but at any
nodes explored over the course of the algorithm. Furthermore, the extension of the proposed
inequalities to other variants of discrete lot-sizing problems, in particular those involving mul-
tiple parallel resources or positive start-up times, could also be interesting.

33

Chapter 4

Joint chance-constrained lot-sizing

4.1 Introduction

The work presented in Chapter 3 dealt with a deterministic lot-sizing problem: we assumed
that there is no uncertainty on the value of all the input parameters (demand and costs) needed
to build the production plan. However, in practice, lot-sizing is about planning the activity of a
resource for the near future and thus often relies on data which are obtained through forecast-
ing procedures. Thus, in many applications, assuming deterministically known input data is
not realistic. Examples of real-world lot-sizing problems with uncertain input parameters can
be found among others in Camargo et al. (2014) for the spinning industry, Hu and Hu (2016)
for a manufacturing company producing braking equipment, Ghamari and Sahebi (2017) for
a chemical-petrochemical case study, Kilic et al. (2018) for a remanufacturing system, Macedo
et al. (2016) for a hybrid manufacturing/remanufacturing system and Moreno et al. (2018) for
humanitarian logistics.

After completion of the LotRelax project, I thus decided to focus my work on the study of
stochastic variants of lot-sizing problems. This decision was partly influenced by the fact that,
at that time, several of my colleagues at the LRI worked in the field of stochastic programming.
In particular, I had the opportunity to work with Jiangqian Cheng who was a post-doc in my
research team studying linear programs with joint chance constraints. As a starting point for
our collaboration, we decided to investigate a joint chance-constrained lot-sizing problem. In
view of the theoretical and numerical difficulties posed by chance-constrained programming,
we chose to study a variant of lot-sizing problems simpler than the DLSPSD I used to study
since my PhD and focused on the single-item single-resource capacitated lot-sizing problem
with stochastic demand.

This chapter presents our joint work on this problem. As commonly done in stochastic pro-
gramming, we assume that, even if the demand cannot be deterministically known, a descrip-
tion of the demand uncertainty is available in terms of a probability distribution. We propose
to handle this problem through the use of a single-stage stochastic programming approach: we
seek to build the production plan before any additional information on the demand realization
becomes available and do not consider the possibility of updating it as the demand unfolds
over time. We consider the case where the production plan should be feasible for nearly all
possible outcomes of the demand. This leads to the formulation of a joint chance-constrained
program where the probability that an inventory shortage occurs during the planning horizon
is limited to a maximum acceptable risk level.

This problem was previously investigated by Beraldi and Ruszczyński (2002) and
Küçükyavuz (2012). Beraldi and Ruszczyński (2002) assume that the demand in each period
follows a discrete probability distribution and propose a solution method based on a partial
enumeration of the p-efficient points of the joint distribution of the random vector representing
the cumulative demand over the planning horizon. We recall that a point v ∈ Rn is a p-efficient
point of the probability distribution F if F(v) ≥ p and there is no point u ∈ Rn, u 6= v such that

Chapter 4. Joint chance-constrained lot-sizing 34

u ≤ v and F(u) ≥ p. Küçükyavuz (2012) assumes that the demand in each period follows a fi-
nite discrete probability distribution and reformulates the joint chance-constrained problem as
a mixed-integer linear program. She presents a new class of valid inequalities for this problem
and shows that these inequalities are numerically efficient in strengthening the mixed-integer
linear programming formulation and in reducing the computation time.

Both of the previously published approaches on this problem thus used as a starting point
a discrete probability distribution whereas in practice, the error terms in forecasting models
is often represented by a continuous probability distribution such as a normal distribution.
Luedtke and Ahmed (2008) proposed a sample approximation approach for generic chance-
constraint programs. This one relies on a Monte Carlo sampling of the continuous random
variables to generate a set of discrete scenarios and leads to the formulation of a mixed-integer
linear program in which a binary variable for each generated scenario must be introduced.

Our main contribution consists in the introduction of a new extension of this approach
which we called the "partial sample approximation approach". Similarly to the sample ap-
proximation approach, the proposed method relies on a Monte Carlo sampling of the random
variables d̃t, t ∈ T , representing the demand in periods 1 to T. However, this sampling is
carried out on only part of the random variables, more precisely on all random variables ex-
cept d̃1. Provided there is no dependence between d̃1 and the demand in the later periods,
this partial sampling results in the formulation of a chance-constrained program featuring a
series of joint chance constraints. Each of these constraints involves a single random variable
and defines a feasible set for which a conservative convex approximation can be quite easily
built. The main advantage of the proposed method is that, unlike the sample approximation
approach, it only requires the introduction of additional continuous variables and thus leads
to the formulation of a deterministic mixed-integer linear program (MILP) having the same
number of binary variables as the initial stochastic problem. As will be shown by our com-
putational experiments, the proposed method is more efficient at finding feasible solutions of
the original stochastic problem than the sample approximation method and these solutions are
less costly than the ones provided by the Bonferroni conservative approximation. Moreover,
the computation time is shorter than the one needed for the sample approximation method.

The remainder of the chapter is organized as follows. We describe in Section 4.2 the joint
chance-constrained programming formulation used to model the problem under study. We
discuss two previously published solution approaches for this problem: the Bonferroni con-
servative approximation in Section 4.3 and the sample approximation approach in Section 4.4.
Section 4.5 is devoted to the presentation of the proposed partial sample approximation ap-
proach. Computational results are provided in Section 4.6.

4.2 Mathematical formulations

We consider the single-item single-resource capacitated lot-sizing problem introduced in Sub-
section 2.2.1. We first briefly recall the MILP formulation of its deterministic variant. We then
consider a stochastic variant of this problem in which the customer demand to be satisfied is
subject to uncertainty and introduce the joint chance-constrained programming formulation
studied in the present chapter.

4.2.1 Deterministic formulation

We wish to plan production for a single product to be processed on a single capacitated resource
over a planning horizon involving a set T = {1, ..., T} of periods.

All problem parameters are assumed to be deterministically known at the time when the
production plan is built. ft denotes the fixed setup cost to be paid if production occurs on the

Chapter 4. Joint chance-constrained lot-sizing 35

resource in period t, ht the inventory holding cost per unit held in stock at the end of period t
and ct the production capacity available in period t. dt is the demand to be satisfied at the end
of each period t and dc1t = ∑t

τ=1 dτ is the cumulative demand over interval [1; t]. The initial
inventory level, s0, is set to 0 without loss of generality.

We introduce the following decision variables:

• xt: the quantity produced in period t.

• yt ∈ {0, 1}: the resource setup state in period t. yt = 1 if a setup occurs in period t, 0
otherwise.

With this notation, the deterministic single-item single-resource capacitated lot-sizing prob-
lem or LS_C can be formulated as follows:

Z∗DET = min
T

∑
t=1

ftyt +
T

∑
t=1

ht
(t

∑
τ=1

xτ − dc1t
)

(4.1)

xt ≤ ctyt ∀t ∈ T (4.2)
t

∑
τ=1

xτ ≥ dc1t ∀t ∈ T (4.3)

xt ≥ 0 ∀t ∈ T . (4.4)
yt ∈ {0, 1} ∀t ∈ T . (4.5)

The objective function (4.1) corresponds to the minimization of the setup and inventory
holding costs over the planning horizon. Note that ∑t

τ=1 xτ − dc1t computes the inventory
level st at the end of period t as the difference between the cumulative production up to t
and the cumulative demand up to t. Constraints (4.2) ensure that, if production takes place
in period t, the corresponding setup costs are incurred and the capacity limit ct is respected.
Constraints (4.3) are the demand satisfaction constraints: they guarantee that the cumulative
production over each interval [1; t] is large enough to satisfy the cumulative demand over the
same interval, and consequently that the inventory level at the end of period t, ∑t

τ=1 xτ − dc1t,
is non-negative.

4.2.2 Stochastic formulation

We now consider the case where the customer demand to be satisfied in period t is not perfectly
known at the time when the production plan is built. This might be due among others to the
fact that the only available information on the future demand is based on forecasts (rather than
on firm customer orders) and that forecast inaccuracies are unavoidable. We thus model the
demand in period t as a random variable d̃t, the probability distribution of which is assumed
to be known. The cumulative demand over periods 1...t, denoted by d̃c1t = ∑t

τ=1 d̃t, is also a
random variable. The deterministic parameter dc1t is thus replaced by a random variable, d̃c1t,
in the stochastic formulation of the problem.

This has several implications for the problem formulation. First, replacing dc1t by its stochas-
tic counterpart d̃c1t implies that the inventory level at the end of period t is a random variable
defined as s̃t = max(∑t

τ=1 xτ − d̃c1t, 0): see e.g. Beraldi and Ruszczyński (2002). Hence, the
value of the inventory holding cost appearing in the objective function, ∑T

t=1 ht s̃t, is also a
random variable. We therefore consider minimizing its expected value E

[
∑T

t=1 ht s̃t
]

in the
stochastic formulation. In the present work, we use the same approximation as the one used
by Bookbinder and Tan (1988) and Beraldi and Ruszczyński (2002) to compute E

[
∑T

t=1 ht s̃t
]
,

namely:

Chapter 4. Joint chance-constrained lot-sizing 36

E
[T

∑
t=1

ht s̃t

]
= E

[T

∑
t=1

htmax(
t

∑
τ=1

xτ − d̃c1t, 0)
]

(4.6)

≈ E
[T

∑
t=1

ht
(t

∑
τ=1

xτ − d̃c1t
)]

(4.7)

≈
T

∑
t=1

ht

(t

∑
τ=1

xτ −E[d̃c1t]
)

(4.8)

Note that, with this approximation, our model does not compute the inventory holding cost
exactly: it tends to underestimate it in the periods with a negative ending inventory.

Second, the fact that d̃c1t is stochastic implies that it might be very costly (and even im-
possible depending on the support of the probability distributions) to build a production plan
ensuring that the cumulative production is large enough to satisfy every possible realization of
the demand. We thus have to consider the eventuality that the demand satisfaction constraints
(4.3) will be violated for some demand realizations. As explained in Chapter 2, a possible way
of handling this situation in the optimization problem consists in limiting the probability of
these violations through the use of chance constraints. We thus define a maximum acceptable
risk level ε and impose 1− ε as a lower bound on the probability that there is no stockout over
all periods of the planning horizon.

This leads to the following joint chance-constrained program denoted by SLS in what fol-
lows.

Z∗SLS = min
T

∑
t=1

ftyt +
T

∑
t=1

ht

(t

∑
τ=1

xτ −E[d̃c1t]
)

(4.9)

xt ≤ ctyt ∀t ∈ T (4.10)

Pr
(t

∑
τ=1

xτ ≥ d̃c1t, ∀t ∈ T
)
≥ 1− ε (4.11)

xt ≥ 0 ∀t ∈ T . (4.12)
yt ∈ {0, 1} ∀t ∈ T . (4.13)

As explained e.g. by Luedtke and Ahmed (2008), mathematical programs involving a joint
chance constraint such as (4.11) are still largely intractable except for a few exceptions. This can
be explained by two main reasons. First, checking the feasibility of a given solution requires
computing the value of the joint probability through multidimensional integration, which can
be very time-consuming. Second, the feasible space defined by a joint chance-constraint is in
general not convex. Yet, as mentioned e.g. by Nemirovski and Shapiro (2005), we need both ef-
ficient computation of the probability and convexity of the solution space to efficiently process
chance-constraints. This is why a variety of tractable approximations have been proposed for
chance-constrained problems. They rely either on conservative convex approximations (Bon-
ferroni, 1936; Rockafellar and Uryasev, 2000; Nemirovski and Shapiro, 2006) or on a discretiza-
tion of the probability distribution through sampling (Calafiore and Campi, 2005; Luedtke and
Ahmed, 2008).

In Sections 4.3 to 4.5, we first describe the Bonferroni approximation which provides guar-
anteed feasible solutions of SLS and requires a limited computational effort but may lead to
overly conservative and expensive solutions. We then discuss the sample approximation ap-
proach developed by Luedtke and Ahmed (2008) before presenting the extension proposed in
this work, which we refer to as the "partial sample approximation" approach.

Chapter 4. Joint chance-constrained lot-sizing 37

4.3 Bonferroni conservative approximation

Let Et be the random event that there is no stockout at the end of period t, i.e. that ∑t
τ=1 xτ ≥

d̃c1t and Pr(Et) be the probability that this event occurs. The Bonferroni inequality states that:

Pr(∩T
t=1Et) ≥ 1−

T

∑
t=1

[1− Pr(Et)] (4.14)

By replacing in (4.11) the joint probability by its lower bound and adjusting the reliability
level appropriately, we can divide the joint chance constraint into T individual chance con-

straints: Pr
(

∑t
τ=1 xτ ≥ d̃c1t

)
≥ 1− ε

T . This leads to the following deterministic mixed-integer
linear program denoted by BON:

Z∗BON = min
T

∑
t=1

ftyt +
T

∑
t=1

ht

(t

∑
τ=1

xτ −E[d̃c1t]
)

(4.15)

xt ≤ ctyt ∀t ∈ T (4.16)
t

∑
τ=1

xτ ≥ F−1
1t

(
1− ε

T

)
∀t ∈ T (4.17)

xt ≥ 0 ∀t ∈ T . (4.18)
yt ∈ {0, 1} ∀t ∈ T . (4.19)

F1t is the cumulative probability distribution of the random variable d̃c1t. The value of

F−1
1t

(
1− ε

T

)
can be computed in a pre-optimization step either exactly or approximately de-

pending of the probability distribution of d̃t. In our numerical experiments, we consider
the case in which d̃1, ..., d̃T are independent random variables, each one following a normal
distribution N (dt, χt) and use the fact that in this case, d̃c1t follows a normal distribution

N (∑t
τ=1 dτ,

√
∑t

τ=1 χ2
τ).

Problem (4.15)-(4.19) is a deterministic problem similar to (4.1)-(4.5) which can be solved
with a limited computational effort. It provides guaranteed feasible solutions of SLS. How-
ever, as will be shown by the computational results provided in Section 4.6, most often, these
solutions are overly conservative and expensive.

4.4 Sample approximation approach

The sample approximation approach proposed by Luedtke and Ahmed (2008) aims at pro-
viding approximate solutions for joint chance-constrained programs. The main idea consists
in replacing the original continuous probability distribution of the random vector (the cumu-
lative demand vector d̃c in our case) by an empirical discrete finite probability distribution
obtained by Monte Carlo sampling. When randomness appears only on the right-hand side of
the constraints (which is the case in problem SLS), this leads to the formulation of a large-size
mixed-integer linear program, which can be handled by mixed-integer linear programming
techniques.

In this section, we present how applying the sample approximation approach to problem
SLS leads to the formulation of such a large-size MILP.

Let d1,.., dk,..., dK be a Monte Carlo sample of the random vector d̃ and dck
1t = ∑t

τ=1 dk
τ

be the cumulated demand over [1, t] in scenario k. The K sampled scenarios are independent

Chapter 4. Joint chance-constrained lot-sizing 38

and identically distributed observations of vector d̃ so that the probability of each scenario k is
considered to be equal to 1/K.

The sample approximation approach relies on the idea that, given a production plan x, the
value of the joint probability involved in constraint (4.11) can be approximately computed as
follows:

Pr
(t

∑
τ=1

xτ ≥ d̃c1t, ∀t ∈ T
)
≈ 1

K

K

∑
k=1

I
(t

∑
τ=1

xτ − dck
1t ≥ 0 ∀t

)
(4.20)

where I
(
.
)

denotes the indicator function taking the value 1 when . is true and 0 otherwise.
The idea underlying approximation (4.20) is the following. We check, for each scenario

k, whether all demand satisfaction constraints are respected by the production plan x. We
then count the total number Ksat of scenarios in which all demand satisfaction constraints are
respected and use the ratio Ksat/K as an estimation of the value of the joint probability. The
main advantage of this approximation is that it enables to reformulate problem SLS as a mixed-
integer linear program.

This is done by introducing a new set of binary variables: αk ∈ {0, 1}. αk is defined by
αk = 1 if at least one demand satisfaction constraint is violated in scenario k, αk = 0 otherwise.

This leads to the following mixed-integer linear program denoted by SA in the sequel of
this chapter.

Z∗SA = min
T

∑
t=1

ftyt +
T

∑
t=1

ht

(t

∑
τ=1

xτ −E[d̃c1t]
)

(4.21)

xt ≤ ctyt ∀t ∈ T (4.22)
t

∑
τ=1

xτ ≥ dck
1t(1− αk) ∀t ∈ T , ∀k = 1...K (4.23)

K

∑
k=1

αk ≤ bKεc (4.24)

xt ≥ 0 ∀t ∈ T (4.25)
yt ∈ {0, 1} ∀t ∈ T (4.26)
αk ∈ {0, 1} ∀k = 1...K (4.27)

Constraints (4.23) make sure that, if αk = 0, the T demand satisfaction constraints corre-
sponding to scenario k are satisfied by the production plan x. Constraint (4.24) is the joint
probability constraint: it limits the number of violated scenarios to bKεc, thus ensuring that the
ratio Ksat/K is above 1− ε.

Problem SA is based on an approximate representation of constraint (4.11) of problem SLS.
As a consequence, there is no definite guarantee that solving problem SA will provide a fea-
sible solution of problem SLS. However, Luedtke and Ahmed (2008) showed that, when the
uncertainty is located only on the right hand side of the constraints as it is the case here, the
probability that problem SA provides a feasible solution to problem SLS increases exponen-
tially fast with the sample size K and tends to 1 when K tends to infinity.

Hence the larger the sample size K, the higher the probability that problem SA provides
a feasible solution to problem SLS. However, using a large sample size K means introducing
a large number of binary variables αk and of big-M type constraints (4.23) in the formulation.
Thus, even if problem SA is a mixed-integer linear program, its resolution by a mathematical
programming solver poses some computational difficulty in practice.

Several mixed-integer linear programming techniques have been recently proposed to rem-
edy to this difficulty. Valid inequalities exploiting the fact that, for a given period t, constraints

Chapter 4. Joint chance-constrained lot-sizing 39

(4.23) define a mixing set subject to the additional cardinality constraint (4.24) are proposed by
Luedtke et al. (2010) and further improved by Küçükyavuz (2012). Luedtke et al. (2010) also
investigate the use of a strong extended formulation. As our preliminary numerical results in-
dicated that solving problem SA using this extended formulation was more efficient than solv-
ing it using the valid inequalities proposed by Luedtke et al. (2010) and Küçükyavuz (2012),
we used this extended formulation in our computational experiments. This reformulation of
Problem SA is denoted by SAExt in what follows.

4.5 Partial sample approximation approach

As will be shown by the computational results presented in Section 4.6, the sample approxi-
mation approach, even when using the extended formulation SAExt strengthened by lot-sizing
valid inequalities, fails at providing feasible solutions of problem SLS for small samples and
leads to a significant computation time when the sample size K increases. This is why we pro-
pose in what follows to use a new extension of this approach. This extension is based on the
assumption that the demand in the first period d̃1 is statistically independent of the demand in
the other periods. Note that d̃1 plays a special role in the joint chance constraint (4.11) as this
is the only random variable appearing in all the demand satisfaction constraints. Similarly to
the sample approximation approach, the proposed extension relies on a Monte Carlo sampling
method. However, the sampling is not carried out on all the random variables involved in the
stochastic problem (i.e. on d̃1, d̃2, ..., d̃T) but only on part of them (more precisely on d̃2, ..., d̃T
in our case). We thus refer to it as the partial sample approximation approach.

We first explain in Subsection 4.5.1 how the proposed method leads to the formulation of
a new chance-constrained program featuring a series of K joint chance constraints, each one
involving a single random variable d̃1. We then focus on the frequently encountered special
case where d̃1 follows a normal distribution (see Subsection 4.5.2). We show how, in this case,
the use of a conservative convex approximation of the feasible set defined by each of the K joint
chance constraints leads to the formulation of a deterministic MILP involving the same number
of binary variables as the original problem SLS.

4.5.1 General case

Let d̃c2t be the random variable representing the cumulative demand over periods 2 to t, for
each period t = 2...T. Let d1,.., dk,..., dK be a Monte Carlo sample of the random vector d̃ and
dck

2t = ∑t
τ=2 dk

τ be the cumulated demand over [2, t] in scenario k.
The partial sample approximation approach relies on the idea that, given a production plan

x, the value of the joint probability involved in constraint (4.11) can be approximately com-
puted as follows:

Chapter 4. Joint chance-constrained lot-sizing 40

Pr
(t

∑
τ=1

xτ ≥ d̃c1t, ∀t
)
= Pr

(t

∑
τ=1

xτ − d̃c2t ≥ d̃1, ∀t
)

(4.28)

= E
[
I
(t

∑
τ=1

xτ − d̃c2t ≥ d̃1, ∀t
)]

(4.29)

= Ed̃c2t,t=2...TEd̃1

[
I
(t

∑
τ=1

xτ − d̃c2t ≥ d̃1, ∀t
)]

(4.30)

= Ed̃c2t,t=2...T

[
Pr
(t

∑
τ=1

xτ − d̃c2t ≥ d̃1, ∀t
)]

(4.31)

≈ 1
K

K

∑
k=1

Pr
(t

∑
τ=1

xτ − dck
2t ≥ d̃1, ∀t

)
(4.32)

Equalities (4.29) and (4.31) rely on the fact that the probability of an event is equal to the
expected value of an indicator function that is one if the event has occurred and zero otherwise.
Equality (4.30) makes use of the assumption that d̃1 is statistically independent of d̃c2t, t =
2...T, to decompose the computation of the expected value in two parts. The expected value
appearing in (4.31) is then approximately computed via a sample average approximation in
(4.32). The idea underlying the proposed partial sample approximation approach can thus be

understood as follows. For each scenario k, the probability ψk = Pr
(

∑t
τ=1 xτ − dck

2t ≥ d̃1, ∀t ∈

T
)

that no stockout occurs during the whole planning horizon in case the realized demand

over periods 2 to T corresponds to the kth sampled demand vector is computed. The expected
value of ψk over all scenarios, i.e. ∑K

k=1 ψk/K, is then used as an estimation of the value of the
joint probability. We refer the reader to Cheng et al. (2019) for a more thorough mathematical
discussion on this approximation of the joint probability.

This approximation enables us to reformulate problem SLS as a new joint chance-constrained
program. This is done by introducing the decision variables ψk, k = 1...K. ψk ∈ [0, 1] represents
the probability that no stock-out occurs during the whole planning horizon in case the real-
ized demand over periods 2 to T corresponds to the kth sampled demand vector dk. Note that,
contrary to what is done in the sample approximation where a binary variable αk has to be in-
troduced for each scenario k, the variables ψk introduced in the partial sample approximation
approach are continuous variables.

This leads to the following chance-constrained program denoted by PSA in the sequel of
the paper.

Z∗PSA = min
T

∑
t=1

ftyt +
T

∑
t=1

ht

(t

∑
τ=1

xτ −E[d̃c1t]
)

(4.33)

xt ≤ ctyt ∀t ∈ T (4.34)

ψk = Pr
(t

∑
τ=1

xτ − dck
2t ≥ d̃1, ∀t ∈ T

)
∀k = 1...K (4.35)

1
K

K

∑
i=1

ψk ≥ 1− ε (4.36)

xt ≥ 0 ∀t ∈ T (4.37)
yt ∈ {0, 1} ∀t ∈ T (4.38)
ψk ∈ [0, 1] ∀k = 1...K (4.39)

Chapter 4. Joint chance-constrained lot-sizing 41

Constraints (4.35) compute the probability that all demand satisfaction constraints are sat-
isfied by the production plan x in scenario k. Constraint (4.36) is the joint probability constraint
ensuring that the expected value of ψk over all scenarios is above the minimum acceptable
value.

We note that, similarly to the sample approximation approach, problem PSA is based on
an approximate representation of constraint (4.11) of problem SLS. There is thus no definite
guarantee that it will provide feasible solutions of problem SLS. However, Cheng et al. (2019)
show that the partial sample approximation approach has the same convergence properties as
the sample approximation approach. For instance, under certain conditions, the optimal value
of problem PSA converges to the optimal value of problem SLS with probability one when K
tends to infinity.

Moreover, we would like to point out that formulation PSA involves a series of K joint
chance-constraints (4.35). However, these constraints involve a single random variable d̃1 and
will thus be somewhat easier to handle than the initial joint chance-constraint (4.11). We namely
have:

ψk = Pr
(

mint∈T {
t

∑
τ=1

xτ − dck
2t} ≥ d̃1

)
(4.40)

= F1(mint∈T {
t

∑
τ=1

xτ − dck
2t}) (4.41)

where F1 denotes the cumulative probability distribution of d̃1.
We refer the reader to Cheng et al. (2019) for a general discussion on how to handle the

probabilistic constraints (4.35) for a variety of probability distributions F1 and focus in what
follows on the special case of a normally distributed demand.

4.5.2 Special case of a normally distributed demand

We now consider the case where d̃1 follows a normal distribution with mean d1 and standard
deviation χ1. The normal distribution is widely used to represent the demand and the fore-
casting errors in standard inventory management and forecasting models although it has the
drawback of placing some probability on unrealistic negative demand values.

In this subsection, we discuss a conservative convex approximation of problem PSA in the
case where d̃1 follows a normal distribution. This approximation makes use of the fact that F1
is convex over]−∞; d1] and concave over the interval [d1,+∞[.

This conservative piecewise linear approximation of F1, denoted by F1, uses a set of B + 1
breakpoints φβ, β = 0...B, such that φ0 = d1 and φβ > φβ−1, ∀β = 1...B. We define:

F1(ϕ) ≈ F1(ϕ) =

sl0ϕ + cst0 if ϕ ≤ φ0 (4.42)
slβ ϕ + cstβ if ϕ ∈ [φβ−1; φβ], ∀β = 1...B (4.43)
slBφB + cstB if ϕ ≥ φB (4.44)

where the slope and intercept of each segment are computed as follows:

sl0 = F′1(φ0) and cst0 = F1(φ0)− sl0φ0 (4.45)

slβ =
F1(φβ)− F1(φβ−1)

φβ − φβ−1
and cstβ = F1(φβ)− slβφβ ∀β = 1...B (4.46)

Chapter 4. Joint chance-constrained lot-sizing 42

Note that we have F1(ϕ) ≥ F1(ϕ), ∀ϕ. Namely:

• [ϕ 7→ sl0ϕ + cst0] is the tangent line to the curve [ϕ 7→ F1(ϕ)] at point d1. As F1 is convex
over]−∞; d1], we have: FD1(ϕ) ≥ sl0ϕ + cst0, ∀ϕ ≤ φ0.

• [ϕ 7→ slβ ϕ + cstβ], β = 1...B are chords between two points φβ−1 and φβ belonging
[d1,+∞[. As F1 is concave over this interval, we have: F1(ϕ) ≥ slβ ϕ + cstβ, ∀ϕ ≥ φ0, ∀β =
1...B.

• F1 is strictly increasing over R. This implies F1(ϕ) ≥ F1(φB) = slBφB + cstB, ∀ϕ ≥ φB.

This allows us to reformulate problem PSA as the following mixed-integer linear program
denoted by PSACons_N.

Z∗PSACons_N = min
T

∑
t=1

ftyt

+
T

∑
t=1

ht

(t

∑
τ=1

xτ −E[DCt]
)

(4.47)

xt ≤ ctyt ∀t ∈ T (4.48)

ψk ≤ slβ

(t

∑
τ=1

xτ − dck
2t
)
+ cstb ∀k, ∀t ∈ T , ∀β = 0...B (4.49)

ψk ≤ slBφB + cstB ∀k (4.50)

1
K

K

∑
k=1

ψk ≥ 1− ε (4.51)

xt ≥ 0 ∀t ∈ T (4.52)
yt ∈ {0, 1} ∀t ∈ T (4.53)
ψk ∈ [0, 1] ∀k = 1...K (4.54)

Note how constraints (4.49)-(4.50) compute the value of the probabilities in the approxima-
tion, ψk, via a set of linear inequalities.

Even if PSACons_N is a mixed-integer linear program, the high number of constraints (4.49)
poses some numerical difficulties in practice. We thus investigate the determination of a non
trivial value for the minimum deterministic cumulative demand to be satisfied by any feasi-
ble solution of problem SLS. This information will be used to ease the resolution of problem
PSACons_N by a MILP solver through: (i) the reduction of the MILP size thanks to the early
detection of redundant constraints (4.49), (ii) the formulation strengthening through valid in-
equalities available for deterministic single-item capacitated lot-sizing. The reader is referred
to Gicquel and Cheng (2018) for more detail about it.

4.6 Computational experiments

We discuss in this section the results of some computational experiments carried out on small
to medium size instances of the problem. The main objective of these experiments is to assess
the effectiveness of the proposed partial sample approximation approach by comparing it with
the Bonferroni conservative approximation and the sample approximation approach.

4.6.1 Instances

We generated test problems by considering a planning horizon of T = 20 periods. In each
problem, the inventory holding and setup costs are assumed to be time-independent and are

Chapter 4. Joint chance-constrained lot-sizing 43

set to h = 1 and f = 50. Similarly, the production capacity is assumed to be time-independent
and is set to c = 100.

We consider the case in which d̃t, t ∈ T , are statistically independent of one another and
follow a normal distribution of mean d = 30 and standard deviation χ = 10.

The size of the sample obtained by the Monte Carlo method, K, is varied between 100 and
5000 scenarios: K ∈ {100, 500, 1000, 2000, 5000}. Note that, as the demand is generated from a
normal distribution, it may happen in a few cases that the sampled value dk

t takes a negative
value. When this happens, we set the value of dk

t to 0 to avoid introducing unrealistic negative
demands in the sampled scenarios.

Five possible values are considered for the maximum acceptable risk level: ε ∈
{0.15, 0.10, 0.05, 0.02, 0.01}.

We defined a reference set of 10 instances in which K = 1000 and ε = 0.05. We then created
8 additional sets of instances, each time changing either the value of K or the value of ε in order
to assess the impact of these parameters on the problem resolution. For each considered set,
10 samples of scenarios, i.e. 10 instances, were randomly generated, leading to a total of 90
instances.

All tests were run on an Intel Core i5 (2.6 GHz) with 4 Go of RAM, running under Windows
7. We used the mathematical programming solver CPLEX 12.6 with the default settings to
solve the problem using the MILP formulations discussed in Sections 4.3 to 4.5. The piecewise
linear approximation of F1 used in formulation PSACons_N was built with B = 4, φ0 = d1,
φ1 = d1 + 0.5χ1, φ2 = d1 + χ1, φ3 = d1 + 1.5χ1 and φ4 = d1 + 3χ1.

4.6.2 Results

Tables 4.1 to 4.2 display the corresponding results. Each line corresponds to the average value
over the corresponding 10 instances. We provide for each set of 10 instances:

• Bin: the average number of binary variables in the formulation.

• Cons: the average number of constraints in the formulation.

• Cost: the average value of the optimal solution of the corresponding MILP.

• Prob: the average value of the probability Pr
(

∑t
τ=1 x∗τ ≥ d̃c1t, ∀t ∈ T

)
where x∗ is the

optimal solution of the MILP formulation. Prob corresponds to a post-optimization esti-
mation of the joint probability. It is is obtained by using a sample of Kc = 100000 scenarios
different from the ones used in the optimization phase. For each instance, we count the
number Ks of scenarios for which all demand satisfaction constraints are satisfied by the
corresponding production plan x∗. Prob is then computed as the proportion Ks/Kc of
scenarios for which there is no violation. We consider that x∗ is a feasible solution of
problem SLS in case Prob is greater or equal to 1− ε and an infeasible solution otherwise.

• Feas: the number of instances (out of the 10 corresponding ones) for which the production
plan x∗ is a feasible solution of problem SLS (i.e. is such that Prob ≥ 1− ε).

• Time: the average computation time needed to solve to optimality the MILP formulation.

Results from Table 4.2 first show that formulation BON based on the Bonferroni approxima-
tion is capable of providing feasible solutions of problem SLS within very short computation
times (less than 1s in most cases). However, these solutions are rather conservative. The value
of Prob is namely significantly higher than the required value 1− ε in all cases. As a result,
these solutions are significantly more expensive than the solutions provided by the other for-
mulations: for instance, the solutions of formulation BON are on average 14.1% more expensive
than the ones of formulation PSACons_N.

Chapter 4. Joint chance-constrained lot-sizing 44

Results from Tables 4.1 and 4.2 also show that formulation SAExt fails at providing feasible
solutions of problem SLS for the sample sizes considered in this work. This can be seen by the
facts that only 1 of the 90 instances considered in Tables 4.1 to 4.2 has a solution satisfying the
joint probability constraint (4.11) when solved with SAExt and that the average value of Prob is
below the targeted value 1− ε in all cases. In contrast, using formulation PSACons_N, feasible
solutions of problem SLS are obtained for 71 out of the 90 instances and the average value of
Prob is above the targeted value 1− ε in most cases. This difference might be explained by the
fact that the partial approximation uses a conservative piecewise linear representation of the
cumulative probability distribution F1 whereas the sample approximation relies on a discrete
approximation of F1 obtained by sampling. Moreover, the average computation time is de-
creased from 171s when using formulation SAExt to 75s when using formulation PSACons_N.
This difference is mainly explained by the fact that formulation PSACons_N involves a number
of binary variables significantly smaller than formulation SAExt. Finally, we note that the so-
lutions provided by PSACons_N might be too conservative. Namely, in some cases, the value
of Prob is significantly larger than 1− ε. This might indicate the existence of less expensive
feasible solutions of problem SLS which none of the studied approaches is capable of finding.

Computational experiments carried out on a larger set of instances (including among others
the case where d̃t, t ∈ T , follow a uniform distribution) are reported in Gicquel and Cheng
(2018). In a nutshell, they show that:

• The computation time of the sample approximation and the partial sample approxima-
tion approaches significantly increases with the sample size K. However, a minimum
sample size is required to ensure a good approximation of the joint probability and to
obtain feasible solutions of problem SLS. For the partial sample approximation approach,
the value K = 1000 seems to be an acceptable trade-off. But for the sample approximation
approach, a sample size of at least K = 5000 scenarios seems to be necessary.

• When the value of the maximum acceptable risk level ε decreases, the size of the mixed-
integer linear programs obtained with the sample approximation and the partial sample
approximation approaches decreases, leading to an overall decrease in the computation
time. However, it appears that the smaller ε, the more difficult it is to find feasible solu-
tions of problem SLS.

• The horizon length T also has a direct impact of the size of the mixed-integer linear pro-
grams so that increasing T leads to longer computation times.

• The values of the ratio f
h , of the production capacity c and of the standard deviation χ1 of

d̃1 appear to have a limited impact on both the number of feasible solutions obtained and
the computation time.

4.7 Conclusion and perspectives

We studied the single-item single-resource capacitated lot-sizing problem with stochastic de-
mand and proposed to handle this problem using a single-stage stochastic programming ap-
proach. More precisely, we formulated this stochastic problem as a joint chance-constrained
program where the probability that an inventory shortage occurs during the planning horizon
is limited to a maximum acceptable risk level.

Chapter 4. Joint chance-constrained lot-sizing 45

TABLE 4.1: Impact of the sample size K
Instances with ε = 0.05

K Formulation Bin Cons Cost Prob Feas Time
100 SAExt 220 241 1933.0 0.856 0 1.3s

PSACons_N 20 1108 2162.1 0.932 1 1.8s
500 SAExt 1020 1041 2100.9 0.919 0 6.3s

PSACons_N 20 5102 2252.9 0.955 8 8.9s
1000 SAExt 2020 2041 2140.8 0.934 0 20.3s

PSACons_N 20 10362 2265.8 0.958 10 25.1s
2000 SAExt 4020 4041 2150.6 0.937 0 114.8s

PSACons_N 20 20706 2254.2 0.957 9 28.1s
5000 SAExt 10020 10041 2181.1 0.945 1 695.1s

PSACons_N 20 51443 2265.2 0.960 10 309.3s

TABLE 4.2: Impact of the maximum acceptable risk level ε
Instances with K = 1000

ε Formulation Bin Cons Cost Prob Feas Time
0.15 BON 20 40 2346.1 0.966 10 0.5s

SAExt 4020 6041 1817.9 0.832 0 555.2s
PSACons_N 20 47153 1931.3 0.880 10 233.0s

0.10 BON 20 40 2437.2 0.976 10 0.5s
SAExt 3020 4041 1951.4 0.882 0 137.9s

PSACons_N 20 17959 2068.8 0.920 10 53.6s
0.05 BON 20 40 2584.1 0.987 10 0.5s

SAExt 2020 2041 2140.8 0.934 0 20.3s
PSACons_N 20 10362 2265.8 0.958 10 25.1s

0.02 BON 20 40 2771.2 0.994 10 0.5s
SAExt 1420 841 2346.5 0.964 0 5.1s

PSACons_N 20 5420 2498.0 0.982 8 11.3s
0.01 BON 20 40 2897.6 0.997 10 0.5s

SAExt 1220 441 2492.8 0.979 0 3.3s
PSACons_N 20 3377 2658.2 0.990 5 6.3s

Chapter 4. Joint chance-constrained lot-sizing 46

As the resulting probabilistic mixed-integer program is computationally difficult to handle,
we investigated the development of an approximate solution method which can be seen as
an extension of the previously published sample approximation approach. This extension is
based on the assumption that the demand in the first period is statistically independent of the
demand in the other periods. Similarly to the the sample approximation approach presented by
Luedtke and Ahmed (2008), the proposed extension relies on a Monte Carlo sampling method.
However, this sampling is carried out on only part of the random variables, more precisely on
all random variables except d̃1. Provided there is no correlation between d̃1 and the demand
in the later periods, this partial sampling results in the formulation of a chance-constrained
program featuring a series of joint chance constraints. Each of these constraints involves a sin-
gle random variable and defines a feasible set for which a conservative convex approximation
can be quite easily built. The main advantage of the proposed partial sample approximation
approach lies in the fact that it leads to the formulation of a deterministic mixed-integer linear
problem having the same number of binary variables as the original problem. Our compu-
tational results show that the proposed solution method is more efficient at finding feasible
solutions of the original stochastic problem than the sample approximation method and that
these solutions are less costly than the ones provided by the Bonferroni conservative approx-
imation. Moreover, the computation time is significantly shorter than the one needed for the
sample approximation method. This work was published in a journal paper: see Gicquel and
Cheng (2018).

Among the possible directions for future research suggested by the present work, it would
be interesting to consider the multi-item capacitated lot-sizing problem with stochastic demand
as this would help close the gap between the industrial need and the academic state of the
art. This might be achieved e.g. by developing a Benders decomposition approach in which
the master problem would decide on the production plan for all the items and each single-
item sub-problem would focus on the feasibility of this production plan with respect to the
corresponding joint chance-constraint.

47

Chapter 5

Multi-stage stochastic lot-sizing

5.1 Introduction

The joint chance-constrained lot-sizing problem investigated in Chapter 4 enables us to take
into account in the problem modeling the uncertainty on the future demand and to control
the probability that an inventory shortage occurs during the planning horizon. However, it
is a single-stage stochastic model, requiring that all production decisions (production quan-
tities and setups) are made at the beginning of the planning horizon. It thus does not take
into account the possibility to adjust these decisions afterward when the value of the uncertain
parameters relative to the beginning of the horizon is known. Yet, in practice, production plan-
ning is often carried out within a rolling horizon framework: we thus compute a production
plan for an horizon spanning T periods but only implement the decisions relative to the first
T′ < T periods. After the end of period T′, we update the inventory level and the demand
forecasts and recompute a new production plan for periods T′ + 1...T′ + T in which the deci-
sions relative to periods T′ + 1...T can be modified. Hence, production planning is intrinsically
a multi-stage decision process in which production decisions are not made once and for all
but rather adjusted over time according to the actual realizations of the uncertain parameters.
Single-stage stochastic models such as the joint chance-constraint lot-sizing problem discussed
in Chapter 4 do not take this flexibility into account and as a consequence, they might lead to
overly conservative and expensive production plans.

Since 2016, I have thus been investigating stochastic programming models in which the
multi-stage aspect of the production planning process is explicitly taken into account. The
present chapter presents this work which was carried out as part of the work of Franco Quezada,
a PhD student which I have been co-supervising with Safia Kedad-Sidhoum since 2018. A pre-
liminary version was published as a conference paper (Quezada et al., 2019) and a full version
is currently under revision for publication in a journal (Quezada et al., 2020a).

In view of the numerical difficulties lying ahead, we chose to focus on the simplest available
lot-sizing problem, the uncapacitated single-item lot-sizing (ULS) problem, and investigated a
multi-stage stochastic extension of this problem denoted by SULS in what follows. In this
problem modeling, the value of the uncertain parameters (demand and costs) is assumed to
unfold little by little following a discrete-time stochastic process and the production decisions
can be made progressively as more and more information on the demand and cost realizations
are collected. In order to address this problem, we rely on a multi-stage stochastic integer
programming approach. We consider that the underlying stochastic input process has a finite
probability space and represents the information on the evolution of the uncertain parameters
by a discrete scenario tree. Moreover, we rely on the commonly used assumption that the
scenario tree is stage-wise independent, i.e. that the set of children nodes of any two nodes
belonging to the same stage are defined by identical data and conditional probabilities. Our
objective is to develop an efficient solution approach for this problem.

Using a scenario tree to represent the evolution of the uncertain parameters leads to the
MILP formulation introduced in Section 2.3.3. This mixed-integer linear program can be solved

Chapter 5. Multi-stage stochastic lot-sizing 48

using mathematical programming solvers, at least for small-size scenario trees. Several works
focus on the polyhedral study of this MILP in order to strengthen its linear relaxation and
improve the computational efficiency of the branch-and-cut algorithms embedded in MILP
solvers. Valid inequalities are discussed by Guan et al. (2006), di Summa and Wolsey (2008)
and Guan et al. (2009) and extended formulations are proposed by Ahmed et al. (2003) and
Zhao and Guan (2014). In particular, Guan et al. (2009) propose a general method for gen-
erating cutting planes for multi-stage stochastic integer programs based on combining valid
inequalities previously known for the deterministic variant of the corresponding problem and
apply it on the SULS. Their numerical results show that a branch-and-cut algorithm based on
these new inequalities is more effective at solving instances on medium-size scenarios than a
stand-alone mathematical programming solver.

In general, solution approaches based on strengthening MILP formulations do not scale up
well with the size of the scenario tree. They namely entail solving very large-scale (mixed-
integer) linear programs, with millions of variables and constraints, which leads to memory
issues and/or prohibitive computation times in practice. Decomposition methods, such as the
nested Benders’ decomposition algorithm, are thus an attractive alternative to tackle instances
with large-size scenario trees. In particular, the Stochastic Dual Dynamic Programming (SDDP)
approach is a sample-based nested Benders’ decomposition appraoch proposed by Pereira and
Pinto (1991) which has been widely used to solve large-size multi-stage stochastic linear pro-
grams. This approach relies on a dynamic programming formulation of the stochastic problem
and leads to a decomposition of the overall problem into a series of small deterministic sub-
problems. Each of these problems focuses on making decisions for a small subset of nodes
belonging to the same scenario and the same decision stage, taking into account not only the
current cost of these decisions but also their future cost which is represented by an expected
cost-to-go function. In a linear setting, the expected cost-to-go functions are convex and piece-
wise linear and can thus be under-approximated through a set of supporting hyperplanes. The
SDDP algorithm builds such an approximation by iteratively adding Benders’ cuts to each sub-
problem and converges to an optimal solution in a finite number of iterations.

Recently, Zou et al. (2019) proposed a new extension of the SDDP algorithm, called the
Stochastic Dual Dynamic integer Programming (SDDiP) algorithm, capable of solving multi-
stage stochastic integer programs in which the state variables, i.e. the variables linking the
nodes to one another, are restricted to be binary. One of their main contributions was to intro-
duce a new class of cutting planes, called Lagrangian cuts, which satisfies the validity, tightness
and finiteness conditions ensuring the convergence of the algorithm to optimality. For prob-
lems such as lot-sizing problems in which the state variables are not binary but continuous, the
authors propose to introduce auxiliary binary variables in order to make a binary approxima-
tion of the state variables. However, for large size scenario trees, this approximation might be
computationally inefficient and leads to large optimality gaps as shown e.g. by the numerical
results presented by Quezada et al. (2019).

In order to improve its numerical efficiency, we propose here a new extension of the SDDiP
algorithm which aims at combining this decomposition approach with a polyhedral approach
based on strong linear relaxations. We focus on one of the key components of the SDDiP al-
gorithm, the expected cost-to-go functions used at each stage, and seek to be more compu-
tationally efficient in their management. This is mainly achieved by reducing the number of
these expected cost-to-go functions and by exploiting the current knowledge on the polyhedral
structure of the SULS to more quickly build good piecewise linear approximations of these
functions.

The contributions of this work are threefold. First, we propose a new extension of the
SDDiP algorithm in which a partial decomposition of the scenario tree is used to generate sub-
problems. More precisely, whereas the SDDiP algorithm fully decomposes the original problem

Chapter 5. Multi-stage stochastic lot-sizing 49

into small deterministic sub-problems, we partially decompose the problem into a set of some-
what larger stochastic sub-problems, each one involving a subset of nodes forming a sub-tree
of the initial scenario tree. This results in a reduction of the number of the expected cost-to-go
functions for which an approximation has to be iteratively built and in an improvement of the
feasible production plan obtained at a given iteration of the algorithm thanks to a less myopic
decision making. To the best of our knowledge, this is the first time such an extension is studied
in the context of the SDDiP algorithm. Second, we propose to take advantage of the tree struc-
ture of the sub-problems and exploit results on the polyhedral structure of the SULS to generate
more cuts at each iteration. This enables us to more quickly build accurate approximations of
the expected cost-to-go functions. Third, we carry out extensive computational experiments
to assess the performance of the proposed algorithm at solving the SULS. We thus compare
its performance with the one of a stand-alone mathematical solver and the one of the SDDiP
algorithm proposed by Zou et al. (2019). The results show that this new algorithm outperforms
ILOG-CPLEX and the SDDiP algorithm at solving large-size instances of the SULS.

The remaining part of this chapter is organized as follows. Section 5.2 introduces a deter-
ministic equivalent mixed-integer linear programming formulation and a stochastic dynamic
programming formulation of the SULS. Section 5.3 presents the extension of the SDDiP algo-
rithm in which a partial decomposition of the scenario tree is used. Section 5.4 then describes
two further enhancements of the algorithm. Finally, the results of our computational experi-
ments are reported in Section 5.5. Conclusions and directions for further work are discussed in
Section 5.6.

5.2 Mathematical formulations

We aim at planning the production of a single type of item on a single resource over a planning
horizon T = {1, ..., T} of T periods under uncertain demand and costs. We consider a decision
process involving Σ decision stages and denote by S = {1, ..., Σ} the set of stages. A stage may
correspond to one or several consecutive planning periods. This is of particular interest in the
context of lot-sizing problems as the time discretization used by the decision-makers to plan
production activities is indeed usually finer than the one used to update the demand and cost
forecasts and readjust the production plan. A planning period may thus typically correspond
to an 8-hours shift or a day whereas a stage may correspond to a week or a month. Let T σ

be the set of time periods belonging to stage σ ∈ S . Note that the sets {T σ, σ ∈ S} form a
partition of T .

We assume a stochastic input process with finite probability space. The resulting informa-
tion structure can be represented by a scenario tree. With a slight abuse of notation, we will
refer to this scenario tree (and all other scenario sub-trees involved in the present work) by
mentioning only its set of nodes V . Each node n ∈ V corresponds to a single time period tn and
a single-stage σn. Let V t be the set of nodes belonging to time period t. Each node n represents
the state of the system that can be distinguished by the information unfolded up to time period
tn. Each node n has a unique predecessor node denoted an belonging to time period tn − 1. By
convention, the root node of the scenario tree is indexed by 1 and a1 is set to 0. At any non-
leaf node of the tree, one or several branches indicate future possible outcomes of the random
variables from the current node. Let C(n) be the set of immediate children of node n, V(n) the
sub-tree of V rooted in n and L(n) the set of leaf nodes belonging to V(n). The probability
associated with the state represented by node n is denoted by ρn. A scenario is defined as a
path from the root node to a leaf node in the scenario tree and represents a possible outcome
of the stochastic input parameters over the whole planning horizon. The set of nodes on the
path from node n to node m is denoted by P(n, m). The reader can refer to Figure 5.1 for an
illustration of this notation on a small scenario tree.

Chapter 5. Multi-stage stochastic lot-sizing 50

1 2 3

4

7

5

8

6

9

10

13

16

19

11

14

17

20

12

15

18

21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

1 2 3 4

t =

σ =

1 2 3 4 5 6 7 8 9 10 11 12

V = {1, ..., 45}
V(7) = {7, 8, 9, 16, ..., 21, 34, ..45}
C(9) = {16, 19}
P(4, 31) = {4, 5, 6, 13, 14, 15, 31}
L(7) = {36, 39, 42, 45}
V8 = {11, 14, 17, 20}
a31 = 15, σ31 = 4, t31 = 10
T = 12, Σ = 4

T 2 = {4, 5, 6}

FIGURE 5.1: Scenario tree structure

The stochastic input parameters are defined as follows:

• dn: demand at node n ∈ V ,

• f n: setup cost at node n ∈ V ,

• hn: unit inventory holding cost at node n ∈ V ,

• gn: unit production cost at node n ∈ V .

Moreover, we assume that at each stage, the realization of the random parameters happens
before we have to make a decision for this stage. This means that the values of dn, f n, hn and
gn, for all n ∈ T σ, are assumed to be known at the beginning of the first period belonging to
stage σ.

5.2.1 Extensive MILP formulation

Based on the uncertainty representation described above, the SULS can be reformulated as an
equivalent deterministic model in the form of an MILP. We introduce the following decision
variables:

• xn: quantity produced at node n ∈ V ,

• yn = 1 if a setup for production is carried out at node n ∈ V , yn = 0 otherwise,

• sn: inventory level at node n ∈ V ,

Chapter 5. Multi-stage stochastic lot-sizing 51

This leads to the following MILP formulation:

min ∑
n∈V

ρn(f nyn + hnsn + gnxn) (5.1)

xn ≤ Mnyn ∀n ∈ V (5.2)
sn + dn = xn + san ∀n ∈ V (5.3)
xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ V (5.4)

The objective function (5.1) aims at minimizing the expected total setup, inventory holding
and production costs over all nodes of the scenario tree. Constraints (5.2) link the production
quantity variables to the setup variables. Note that the value of constant Mn can be set by
using an upper bound on the quantity to be processed at node n, usually defined as the maxi-
mum future demand as seen from node n, i.e. Mn = max`∈L(n) dn`, where dn` = ∑m∈P(n,`) dm.
Constraints (5.3) are the inventory balance constraints. Constraints (5.4) provide the decision
variables domain.

Problem (5.1)-(5.4) can be solved using MILP solvers. Guan et al. (2009) propose to extend
the (l, S) inequalities developed by Barany et al. (1984) for the ULS to strengthen its linear re-
laxation. In this chapter, these inequalities will be referred to as path inequalities when applied
on a single scenario of V and as tree inequalities when applied on a subtree of V : see Guan et al.
(2009) for more detail about it. Nonetheless, the size of the formulation grows exponentially
fast with the number of nodes |V| in the scenario tree. This leads to prohibitive computation
times in practice even while using a strengthened formulation. We thus investigate in what fol-
lows a dynamic programming formulation which serves as a basis to develop a decomposition
algorithm to solve the problem.

5.2.2 Dynamic programming formulation

An alternative to the extensive formulation of the SULS discussed above is a dynamic program-
ming formulation involving nested expected cost-to-go functions. This approach decomposes
the original problem into a series of smaller sub-problems linked together by dynamic pro-
gramming equations. When applying the SDDiP algorithm proposed by Zou et al. (2019) on
the SULS, a full decomposition of the problem is carried out, resulting in a large number of
small sub-problems. Each of these sub-problems is a small deterministic lot-sizing problem
aiming at planning production on a subset of nodes corresponding to a single scenario and
a single decision stage. In what follows, we propose to consider a partial decomposition of
the problem resulting in a smaller number of larger sub-problems, each one being a stochastic
lot-sizing problem aiming at planning production on a sub-tree of the original scenario tree.

We introduce some additional notation in order to explain how this partial decomposition
is carried out. We first partition the set of decision stages S = {1, . . . , Σ} into a series of macro-
stages G = {1, . . . , Γ}, where each macro-stage γ ∈ G contains a number of consecutive stages
denoted S(γ). We let t(γ) (resp. t′(γ)) represent the first (resp. the last) time period belonging
to macro-stage γ.

Using the set of macro-stages G defined above, we can decompose the scenario tree V into a
series of smaller sub-trees as follows. For a given macro-stage γ, each node η belonging to the
first time period in γ, i.e. each node η ∈ V t(γ), is the root node of a sub-tree defined by the set
of nodesWη = ∪t=t(γ),...,t′(γ)V t ∩ V(η). We recall that V(η) is the sub-tree of V rooted in η,Wη

is thus the restriction of V(η) to the nodes belonging to macro-stage γ. Let L(η) =Wη ∩ V t′(γ)

be the set of leaf nodes of sub-treeWη . Finally, we denote as f = ∪γ∈GV t(γ) the set of sub-tree
root nodes induced by G.

To illustrate the notation related to the macro-stages, we use the scenario tree depicted in
Figure 5.1. The set of stages S is partitioned into Γ = 2 macro-stages with S(1) = {1, 2} and

Chapter 5. Multi-stage stochastic lot-sizing 52

S(2) = {3, 4}. The first time period of macro-stage γ = 1 is t(1) = 1, its last time period is
t′(1) = 6. Similarly, we have t(2) = 7 and t′(2) = 12. In this case, the set of sub-tree root
nodes is f = {1, 10, 13, 16, 19}. With this partition, node η = 1 is the root node of the subtree
W1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} involving the set of leaf nodes L(1) = {6, 9}. Node η = 10 is
the root node of sub-treeW10 = {10, 11, 12, 22, 23, 24, 25, 26, 27} involving the set of leaf nodes
L(10) = {24, 27}. Sub-treesW13,W16 andW19 are defined in the same way as sub-treeW10.

For each node η ∈ f, sub-problem Pη is formulated as:

Qη(saη
) = min ∑

n∈Wη

ρn(f nyn + hnsn + gnxn) + ∑
`∈L(η)

∑
m∈C(`)

Qm(s`) (5.5)

xn ≤ Mnyn ∀n ∈ Wη (5.6)
sn + dn = san

+ xn ∀n ∈ Wη (5.7)
xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ Wη (5.8)

Sub-problem Pη thus focuses on defining the production plan on sub-treeWη based on the
entering stock level saη

imposed by the parent node of η in the scenario tree. The objective
function comprises two terms: a term related to the expected setup, production and inventory
holding costs over sub-treeWη and a term which represents the expected future costs incurred
by the production decisions made in sub-treeWη .

In (5.5), Qη(saη
) denotes the optimal value of sub-problem Pη as a function of the entering

stock level saη
and Qm(s`) the optimal value of sub-problem Pm as a function of the entering

stock level s`. The expected cost-to-go function at node ` ∈ L(η) is defined as the expected
value of Qm(·) over all the children of ` in the initial scenario tree V , i.e. over all m ∈ C(`),
which givesQ`(·) = ∑m∈C(`) Qm(·). The expected future costs of the decisions made inWη are
thus computed as the sum, over all nodes ` ∈ L(η), of Q`(s`).

We note that in case of G ≡ S , i.e. in case each macro-stage corresponds to a single initial
decision stage, each sub-treeWη reduces to a set of nodes belonging to a single deterministic
scenario involving Tση

periods and we obtain a decomposition similar to the one used by Zou
et al. (2019).

5.3 Sub-tree-based SDDiP algorithm

We now present the proposed extension of the SDDiP algorithm applied to the SULS. This ex-
tension relies on the dynamic programming formulation (5.5)-(5.8) and corresponds to a partial
decomposition of the original problem into a set of smaller problems, each one expressed on
a sub-tree of the scenario tree. As described in the SDDiP proposed by Zou et al. (2019), the
main idea is to solve a sequence of sub-problems in which the expected cost-to-go functions
Q`(·), ` ∈ L(η), of each sub-problem Pη , η ∈ f, are iteratively approximated by a piece-wise
linear function. However, whereas the original SDDiP considers a large number of small deter-
ministic sub-problems, we use a smaller number of medium-size stochastic sub-problems.

Note that a key assumption for developing a sampling-based nested Benders’s decompo-
sition algorithm such as the SDDiP algorithm is that the scenario tree displays the stage-wise
independence property. When there are several time periods per decision stage, this property
can be defined as follows. For any two nodes m and m′ belonging to stage σ − 1 and such
that tm = tm′ = max{t, t ∈ T σ−1}, the set of nodes ∪t∈T σV t ∩ V(m) and ∪t∈T σV t ∩ V(m′) are
defined by identical data and conditional probabilities.

Straightforwardly, when the stage-wise independence property holds, for any two nodes
m and m′ belonging to the last period t′(γ− 1) of macro-stage γ− 1, the two sets ∪η∈C(m)Wη ,
and ∪η∈C(m′)Wη contain Rγ = |C(m)| = |C(m′)| sub-trees defined by identical data and con-
ditional probabilities. The stochastic process can thus be represented at macro-stage γ by a

Chapter 5. Multi-stage stochastic lot-sizing 53

set Rγ = {1, . . . , Rγ} of independent realizations. Each realization X γ,r corresponds to a
subtree describing one of the possible evolutions of the uncertain parameters over periods
t(γ), . . . , t′(γ). Let ξγ,r denote the root node of X γ,r and L(γ, r) denote the set of its leaf nodes.

The expected cost-to-go functions thus depend only on the macro-stage rather than on the
node, i.e. we have Q`(·) ≡ Qγ(·), for all ` ∈ V t′(γ). Hence, only one expected cost-to-go
function has to be approximated per macro-stage and the cuts generated at different nodes
` ∈ V t′(γ) are added to a single set of cuts defining the piece-wise linear approximation of
functionQγ(·). As a consequence, we can define a single sub-problem Pγ per macro-stage and
each sub-problem Pη , η ∈ f, will be described as Pγη

(saη
,X γη ,r) where X γη ,r is the realization

corresponding toWη .

5.3.1 Sub-problem reformulation

We first describe how each sub-problem Pγ(sm,X γ,r), for m ∈ V t′(γ−1) and r ∈ Rγ, can be
reformulated to introduce binary state variables.

Namely, in the SULS, the state variables are the continuous inventory variables sn. As the
SDDiP developed by Zou et al. (2019) requires the state variables to be binary, we first carry
out a binary approximation of the state variables before applying the algorithm to our problem.
This binary approximation is obtained by replacing the continuous variable sn by a set of binary
variables un,β such that sn = ∑β∈B 2βun,β, where B = {1, . . . , B}. We have un,β = 1 if coefficient
2β is used to compute the value of sn and un,β = 0 otherwise. We note however that this
binary approximation is not needed for all inventory variables, but only for those coupling
the sub-problems Pγ(·, ·), to one another. Thus, in sub-problem Pγ(sm,X γ,r), we use a binary
approximation for the entering stock sm at root node ξγ,r and for the leaving stock s` at each
leaf node ` ∈ L(γ, r).

Then, as indicated by Zou et al. (2019), we introduce local copies of the binary state variables
relative to root node ξγ,r. More precisely, ûξγ,r ,β is an auxiliary continuous decision variable
representing the value of the state variable um,β at the parent node m. It is thus a local copy
in problem Pγ(sm,X γ,r) of the state variable um,β, the value of which is considered as a given
input parameter for this problem.

This leads to the following reformulation of sub-problem Pγ(um,X γ,r) :

Qγ,r(um) = min ∑
n∈X γ,r

ρn(f nyn + hnsn + gnxn)

+ ∑
`∈L(γ,r)

Qγ(u`) (5.9)

xn ≤ Mnyn ∀n ∈ X γ,r (5.10)
sξγ,r

+ dξγ,r
= ∑

β∈B
2βûξγ,r ,β + xξγ,r

(5.11)

ûξγ,r ,β = um,β ∀β ∈ B (5.12)
sn + dn = san

+ xn ∀n ∈ X γ,r \ {ξγ,r} (5.13)
s` = ∑β∈B 2βu`,β ∀` ∈ L(γ, r) (5.14)

ûξγ,r ,β ∈ [0, 1] ∀β ∈ B (5.15)
u`,β ∈ {0, 1} ∀` ∈ L(γ, r), ∀β ∈ B (5.16)
xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ X γ,r (5.17)

where un denotes the vector of binary variables un = (un0, . . . , unβ, . . . , unB).
In this reformulation, Constraint (5.11) corresponds to the inventory balance at node ξγ,r

in which the entering stock level sm is computed using the auxiliary variables ûξγ,r β. Equalities

Chapter 5. Multi-stage stochastic lot-sizing 54

(5.12) are copy constraints ensuring that the value of each auxiliary variable ûξγ,r ,β is equal to the
value of the corresponding state variable um,β imposed by the parent node m. Constraints (5.13)
ensure the inventory balance at each node of sub-tree X γ,r except the root node ξγ,r. Con-
straints (5.14) define, for each leaf node ` ∈ L(γ, r), the value of the binary variables u`,β, which
will be used to compute the future expected costs as Qγ(u`) = ∑r′∈Rγ+1 Qγ+1,r′(u`). Note that,
although variables ûξγ,r ,β and constraints (5.12) are redundant for sub-problem Pγ(um,X γ,r),
they will play a key role in the generation of the Lagrangian and strengthened Benders’ cuts
used in the SDDiP algorithm to approximate the expected cost-to-functions.

The main components of the proposed sub-tree-based SDDiP algorithm applied to the SULS
are described in the following.

5.3.2 Sampling step

In the sampling step, a subset of K scenarios, i.e. a set of paths going from the root node to a leaf
node, are randomly selected. Let Ωi = {ω1

i , . . . , ωk
i , . . . , ωK

i } be the set of sampled scenarios, ωk
i

be the set of nodes belonging to scenario k at iteration i and rk,γ
i be the index of the realization

inRγ containing the values of the uncertain parameters in scenario ωk
i at macro-stage γ.

5.3.3 Forward step

At iteration i, the forward step proceeds stage-wise from γ = 1 to Γ. For each sampled scenario
ωk

i and each macro-stage γ, we solve problem Pγ
i (u

m
i ,X γ,rk,γ

i) where m = ωk
i ∩ V t′(γ−1) is the

node in the sampled scenario ωk
i belonging to the last period of γ. To solve this problem, the

expected future costs are computed using an approximate representation of the expected cost-
to-go functions Qγ(·).

Let ψ
γ
i (·) be the approximation of the expected cost-to-go function Qγ(·) available at iter-

ation i for macro-stage γ. It is defined by the set of supporting hyperplanes generated until
iteration i. We thus have:

ψ
γ
i (u

`) = min{θγ` : θγ` ≥ ∑
r∈Rγ+1

ν
γ+1,r
j + µ

γ+1,r
j u` ∀j ∈ {1, . . . , i− 1}} (5.18)

where ν
γ+1,r
j and µ

γ+1,r
j are the coefficients of the cut generated at iteration j < i by considering

realization r ∈ Rγ+1. This leads to the following sub-problem P̂γ
i (u

m
i , ψ

γ
i ,X γ,rk,γ

i):

Q̂γ,rk,γ
i

i (um
i) = min ∑

n∈X γ,rk,γ
i

ρn(f nyn + hnsn

+gnxn) + ∑
`∈L(γ,rk,γ

i)

θγ` (5.19)

θγ` ≥ ∑
r∈Rγ+1

ν
γ+1,r
j + µ

γ+1,r
j u` ∀j ∈ {1, . . . , i− 1}, ∀` ∈ L(γ, rk,γ

i)(5.20)

Constraints (5.10)− (5.17) for r = rk,γ
i

The forward step at iteration i ends when sub-problem P̂γ
i (u

m
i , ψ

γ
i ,X γ,rk,γ

i) has been solved for
all sampled scenarios and all macro-stages. Its output is a feasible production plan for all nodes
belonging to a sampled scenario. In particular, it provides a value um

i for all state variables um

such that m ∈ ωk
i ∩ V t′(γ), γ ∈ G, k = 1, . . . , K. These values will be used in the backward step

to generate additional cuts and improve the approximation of the expected cost-to-go functions
Qγ(·), γ ∈ G.

Chapter 5. Multi-stage stochastic lot-sizing 55

5.3.4 Backward step

The aim of the backward step is to update the current approximation ψ
γ
i (·) of the expected

cost-to-go function Qγ(·) for each macro-stage γ by generating new supporting hyperplanes
and obtain a better approximation which is denoted by ψ

γ
i+1(·).

This step starts from macro-stage Γ and goes back to macro-stage 1. Note that the sub-
problems relative to macro-stage Γ do not have any expected future costs, therefore ψΓ

i ≡ 0,
for all i. At each macro-stage γ = Γ − 1, . . . , 1, the updating of the approximation of Qγ(·)
is carried out as follows. For each scenario k = 1, . . . , K, each node m ∈ ωk

i ∩ V t′(γ) and each
realization r ∈ Rγ+1, we solve a suitable relaxation of P̂γ+1

i (um
i , ψ

γ+1
i+1 ,X γ+1,r) and collect the cut

coefficients {νγ+1,r
i , µ

γ+1,r
i }. These coefficients are then used to generate a new linear inequality

of type (5.18) to be added to the current approximation of Qγ(·). The backward step continues
iteratively until the approximation of the expected cost-to-go function at macro-stage γ = 1
is updated. Since ψ1

i+1 is an under-approximation of the expected cost-to-go function Q1(·),
the optimal value Q̂1,1

i+1(0) of problem P̂1
i (0, ψ1

i+1,X 1,1) provides a lower bound of the optimal
value of the stochastic problem.

5.3.5 Cut families

We now briefly recall the three types of cutting planes used in Zou et al. (2019) to improve the
approximation of the expected cost-to-go functions during the backward step. Let us consider
a macro-stage γ, a scenario index k and the node m = ωk

i ∩ V t′(γ). Let um
i be the value of the

state variables um in the solution of problem P̂γ
i (u

m
i , ψ

γ
i ,X γ,rk,γ

i) solved in the forward step of
iteration i. The three following cuts can be added to compute the approximation ψ

γ
i of Qγ(·).

Integer optimality cut: The algorithm solves problem P̂γ+1
i (um

i , ψ
γ+1
i+1 ,X γ+1,r), for each r ∈

Rγ+1, with an updated approximation ψ
γ+1
i+1 ofQγ+1(·). Let ν

γ+1,r
i+1 be its optimal objective value

and ν̄
γ+1
i+1 = ∑r∈Rγ+1 ν

γ+1,r
i+1 . The integer optimality cut takes the following form:

θγ,m ≥ ν̄
γ+1
i+1

(B

∑
β=0

(um,β
i − 1)um,β +

B

∑
β=0

(um,β − 1)um,β
i

)
+ ν̄

γ+1
i+1

Lagrangian cut: We consider, for each r ∈ Rγ+1, the Lagrangian relaxation of problem
P̂γ+1

i (um
i , ψ

γ+1
i+1 ,X γ+1,r) in which the copy constraints (5.12) are dualized. Each corresponding

Lagrangian dual problem is solved to optimality. The generated Lagrangian cut takes the form
of inequality (5.18), where ν

γ+1,r
i corresponds to the optimal value of the Lagrangian dual prob-

lem and coefficient µ
γ+1,r,β
i of variable um,β to the optimal value of the Lagrangian multiplier

relative to copy constraint ûξγ,r ,β = um,β
i .

Strengthened Benders’ cut: We solve, for each r ∈ Rγ+1, the linear relaxation of problem
P̂γ+1

i (um
i , ψ

γ+1
i+1 ,X γ+1,r). The value of each coefficient µ

γ+1,r,β
i is set to the dual value of the copy

constraint ûξγ,r ,β = um,β
i in this linear relaxation. The value of ν

γ+1,r
i is obtained by solving

the Lagrangian relaxation of problem P̂γ+1
i (um

i , ψ
γ+1
i+1 ,X γ+1,r) in which each copy constraint

ûξγ,r ,β = um,β
i is dualized and its Lagrangian multiplier set to µ

γ+1,r,β
i .

5.3.6 Stopping criteria

Two stopping criteria are commonly used for the SDDiP in the literature. The first one is based
on a maximum number of consecutive iterations without any improvement of the lower bound,
the second one on a maximum total number of iterations.

Chapter 5. Multi-stage stochastic lot-sizing 56

5.3.7 Summary

As a synthesis, the main steps of the proposed sub-tree-based SDDiP algorithm applied to the
stochastic ULS are summarized in Algorithm 1.

Algorithm 1: SDDiP algorithm
1 Initialize LB← −∞, UB← +∞, i← 1
2 while no stopping criterion is satisfied do
3 Sampling step
4 Randomly select K scenarios Ωi = {ω1

i , ..., ωK
i }

5 Forward step
6 for k = 1, ..., K do
7 for γ = 1, ..., Γ do

8 Solve P̂γ
i (u

m
i , ψ

γ
i ,X γ,rk,γ

i) for m = ωk
i ∩ V t′(γ−1)

9 Record u`
i for ` = ωk

i ∩ L(γ, rk,γ
i)

10 end
11 Ck ← ∑n∈ωk

i
(f nyn

i + hnsn
i + gnxn

i)

12 end
13 C ← ∑K

k=1 Ck and χ2 ← 1
K−1 ∑K

k=1(C
k − C)2

14 UB← C + zα/2
χ√
K

15 Backward step
16 for γ = Γ− 1, ..., 1 do
17 for k = 1, ..., K do
18 Let m = ωk

i ∩ V t′(γ)

19 for r ∈ Rγ+1 do
20 Solve the linear relaxation of P̂γ+1

i (um
i , ψ

γ+1
i+1 ,X γ+1,r) and collect the coefficients

of the strengthened Benders’ cut
21 Solve the Lagrangian relaxation of P̂γ+1

i (um
i , ψ

γ+1
i+1 ,X γ+1,r) and collect the

constant value of the strengthened Benders’ cut
22 Solve P̂γ+1

i (um
i , ψ

γ+1
i+1 ,X γ+1,r) and collect the coefficients of the Integer

optimality cut
23 Solve the Lagrangian dual problem and collect the coefficients of the Lagrangian

cut
24 end
25 end
26 Add the three generated cuts to ψ

γ
i to get ψ

γ
i+1

27 end
28 LB← Q̂1,1

i+1(0)
29 i← i + 1
30 end

Note that depending on the partition of S , the number of macro-stages Γ can take any value
between 1 and Σ. For Γ = 1, the forward step corresponds to solving the original problem (5.1)-
(5.4) defined on the whole scenario tree V and no backward step is needed: Algorithm 1 thus
directly solves the stochastic problem as a MILP, without any decomposition. For Γ = Σ, Al-
gorithm 1 corresponds to the SDDiP algorithm of Zou et al. (2019). In general, we will have
Γ < Σ, which means that the number of expected cost-to-go functions Qγ(·) to be approxi-
mated will be smaller in Algorithm 1 than the one to be handled in the SDDiP algorithm. This
may have a positive impact on the global convergence of the algorithm. Namely, with Γ < Σ,
each sub-problem P̂γ

i (·, ψ
γ
i ,X γ,r) covers a larger portion of the planning horizon and uses an

approximation of its expected future costs which will be globally better as it will rely on a

Chapter 5. Multi-stage stochastic lot-sizing 57

smaller number of approximate expected cost-to-go functions. As a consequence, the feasi-
ble solution obtained by solving P̂γ

i (·, ψ
γ
i ,X γ,r) at a given iteration of the algorithm will tend

to be less myopic and thus to provide lower and upper bounds LB and UB of better quality.
However, each sub-problem P̂γ

i (·, ψ
γ
i ,X γ,r) is now an MILP expressed on a small sub-tree. In

particular, the large number of binary variables u`,β needed to carry out the binary approxima-
tion of the leaving inventory at each leaf node ` ∈ L(γ, r) makes its resolution computationally
more expensive than the one of a sub-problem expressed on a deterministic scenario involving
a single leaf node. In what follows, we thus discuss two algorithmic enhancements aiming at
further improving the numerical efficiency of Algorithm 1.

5.4 Algorithmic Enhancements

In this section, we aim at enhancing the numerical efficiency of Algorithm 1, mostly through
a more efficient building of the approximation of the expected cost-to-go functions. In what
follows, we detail the two proposed algorithmic enhancements.

5.4.1 Approximate sub-tree-based SDDiP

Hjelmeland et al. (2018) and Quezada et al. (2019) both proposed to use an approximate variant
of the SDDiP algorithm in which the state variables may be continuous. In this case, the finite
convergence of the algorithm is not theoretically guaranteed but, as this approximation leads
to a significant reduction of the computational effort required at each iteration of the algorithm,
it may positively impact the solution quality in practice. We thus explain in what follows how
this approximate SDDiP algorithm can be adapted to the case where a partial sub-tree-based
decomposition of the scenario tree is used.

The algorithm is based on a reformulation of problem Pγ(sm,X γ,r) in which a single aux-
iliary variable s̃ξγ,r

is introduced. Variable s̆ξγ,r
can be seen as a local copy of the inventory

variable at the parent node sm in Pγ(sm,X γ,r). This results in the following reformulation of
Pγ(sm,X γ,r):

Qγ,r(sm) = min ∑
n∈X γ,r

ρn(f nyn + hnsn + gnxn)

+ ∑
`∈L(γ,r)

Qγ(s`) (5.21)

sξγ,r
+ dξγ,r

= s̆ξγ,r
+ xs̃ξγ,r

(5.22)
s̆ξγ,r

= sm (5.23)
sn + dn = san

+ xn ∀n ∈ X γ,r \ {ξγ,r} (5.24)
Constraints (5.10), (5.17) (5.25)

In this reformulation, the expected cost-to-go function Qγ(s`) = ∑r′∈Rγ+1 Qγ+1,r′(s`) is a
function of the continuous state variable s`. We thus build an under-approximation of Qγ(·)
through a set of linear cuts involving continuous variables s` instead of binary variables u`,β.
Let ψ̆

γ
i (·) be the approximation of the expected cost-to-go function Qγ(·) available at iteration

i for macro-stage γ in the approximate SDDiP algorithm. We have:

ψ̆
γ
i (s

`) = min{θγ` : θγ` ≥ ∑
r′∈Rγ+1

(ν̆γ+1,r′
j + µ̆

γ+1,r′
j s`) ∀j ∈ {1, ..., i− 1}} (5.26)

where ν̆
γ+1,r′
j and µ̆

γ+1,r′
j are the coefficients of the cut generated at iteration j < i by considering

realization r′ ∈ Rγ+1.

Chapter 5. Multi-stage stochastic lot-sizing 58

This leads to the following approximate sub-problem P̆γ
i (s

m
i , ψ̆

γ
i ,X γ,r):

Q̆γ,r
i (sm) = min ∑

n∈X γ,r

ρn(f nyn + hnsn

+gnxn) + ∑
`∈L(γ,r)

θγ` (5.27)

θγ` ≥ ∑
r′∈Rγ+1

(ν̆γ+1,r′
j + µ̆

γ+1,r′
j s`) ∀j ∈ {1, ..., i− 1}, ∀` ∈ L(γ, r) (5.28)

Constraints (5.22)− (5.25) (5.29)

In our numerical experiments, only strengthened Benders’ cuts are generated in the back-
ward step of the approximate SDDiP algorithm. Moreover, this algorithm is used in an initial
phase which is carried out before actually running Algorithm 1. The objective of this initial
phase is to build a first under-approximation of each expected cost-to-go functions Qγ(·) and
obtain a good initial lower bound for the problem with a reduced computational effort. This
initial lower bound will then be further improved during a second phase in which Algorithm 1
is run and all integer optimality, Lagrangian and strengthened Benders’ cuts are generated.

5.4.2 Generation of additional strengthened Benders’ cuts

The second enhancement of the algorithm seeks to exploit the alternative MILP formulations
currently known for SULS to generate additional strengthened Benders’ cuts and improve the
approximation of the expected cost-to-go functions at a relatively limited computational effort.

Recall that, to generate a strengthened Benders’ cut to be added at a given iteration i to
the approximation of Qγ−1(·), the algorithm first solves, for each r ∈ Rγ, the linear relaxation
of problem P̂γ

i (u
m
i , ψ

γ
i+1,X γ,r), where m is a node belonging to V t′(γ−1). This linear relaxation

can be computed using different formulations of P̂γ
i (u

m
i , ψ

γ
i+1,X γ,r). A first option is to use the

initial MILP formulation defined in Subsection 5.3.3. Other options consist in using the initial
MILP formulation only strengthened by the path inequalities proposed by Guan et al. (2009)
or the initial MILP formulation strengthened by the path and the tree inequalities proposed by
Guan et al. (2009). Then, the algorithm collects the dual value of the copy constraint ûξγ,r ,β =

um,β
i in the linear relaxation and set coefficient µ

γ,r,β
i to it. The Lagrangian relaxation of problem

P̂γ
i (u

m
i , ψ

γ
i+1,X γ,r) in which each copy constraint ûξγ,r ,β = um,β

i is dualized with a Lagrangian

multiplier set to µ
γ,r,β
i is then solved. Its optimal value provides coefficient ν

γ,r
i .

A key observation here is that the dual value of constraint ûξγ,r ,β = um,β
i in the linear re-

laxation will vary according to the MILP formulation used for P̂γ
i (u

m
i , ψ

γ
i+1,X γ,r). Hence, for a

given value of the entering stock described by the binary vector um
i , by considering the three

alternative MILP formulations available for P̂γ
i (u

m
i , ψ

γ
i+1,X γ,r), it is possible to generate three

different strengthened Benders’ cuts, i.e. three cuts corresponding to different values of coeffi-
cients {νγ,r

i , µ
γ,r
i },

We point out here that, in general, there does not seem to be a dominance relationship
between these three cuts. In other words, a cut generated using a stronger formulation of
P̂γ

i (u
m
i , ψ

γ
i+1,X γ,r) does not necessarily lead to a better approximation of Qγ−1(·). We thus

propose an extension of Algorithm 1 in which strengthened Benders’ cuts based on the three
MILP formulations available for P̂γ

i (u
m
i , ψ

γ
i+1,X γ,r) are sequentially generated.

Let φ
γ,r
i denote the set of path and tree inequalities related to sub-problem Pγ(·,X γ,r) gener-

ated until the beginning of iteration i. Let P̂γ
i (·, ψ

γ
i ,X γ,r, Form) denote problem P̂γ

i (·, ψ
γ
i ,X γ,r)

expressed using formulation Form where Form = IF(∅) denote the initial formulation with-
out any strengthening and Form = IF(φγ,r

i) the initial formulation strengthened by a set of
inequalities φ

γ,r
i .

Chapter 5. Multi-stage stochastic lot-sizing 59

We propose the following strategy to sequentially add strengthened Benders’ cuts to the
approximations of the expected cost-to-go functions. This strategy is based on three increasing
levels of formulation strengthening :

• Level λ = 0: Algorithm 1 is run as described in Section 5.3, i.e. we solve the linear relax-
ation of sub-problems P̂γ

i (·, ψ
γ
i ,X γ,r, IF(∅)) to obtain the cut coefficients. The algorithm

moves to the next level after a predefined number of consecutive iterations.

• Level λ = 1: Algorithm 1 is run using the linear relaxation of sub-problems
P̂γ

i (·, ψ
γ
i ,X γ,r, IF(φγ,r

i)) to obtain the cut coefficients. In this level, at each iteration, only
path inequalities are added to φ

γ,r
i using a single run of a cutting plane generation proce-

dure based on the separation algorithm presented by Barany et al. (1984). The algorithm
moves to the next level after no violated path inequalities have been found during a pre-
defined number of consecutive iterations.

• Level λ = 2: Algorithm 1 is run using the linear relaxation of sub-problems
P̂γ

i (·, ψ
γ
i ,X γ,r, IF(φγ,r

i)) to obtain the cut coefficients. In this level, at each iteration, tree
inequalities are added to φ

γ,r
i using a single run of the cutting plane generation procedure

presented in Guan et al. (2009).

Note that, tor the sake of clarity, in Subsection 5.4.2, we focused on explaining how this
second algorithmic enhancement is carried out in Algorithm 1. It can, however, be straightfor-
wardly adapted for the approximate version of Algorithm 1 described in Subsection 5.4.1.

In what follows, we will refer to the version of Algorithm 1 in which the two proposed
enhancements discussed in this section have been implemented as extSDDiP.

5.5 Computational Experiments

In this section, we focus on assessing the performance of the extSDDiP algorithm proposed
in Sections 5.3 and 5.4. This is done by comparing it with the performance of a stand-alone
mathematical programming solver ILOG-CPLEX using the extensive MILP formulation (5.1)-
(5.4) and the one of the SDDiP algorithm using the dynamic programming reformulation (5.5)-
(5.8) with G ≡ S .

In what follows, we first describe the scheme used to randomly generate instances of the
SULS and the experimental setup. We then discuss the results of our computational experi-
ments.

5.5.1 Instance Generation

We randomly generated instances following the same procedure and numerical values as the
ones used by Guan et al. (2009). We considered various scenario tree structures, several ratios
of the production cost to inventory holding cost and several ratios of the setup cost to the
inventory holding cost.

For the sake of brevity, we focus here on a set of 20 large-size instances in which there are
Σ = 12 decision stages, a constant stage length L = |T σ| = 1, for all σ ∈ S , and a constant
number R = Rσ = 3, for all σ ∈ S , of equiprobable realizations per stage. This leads to a sce-
nario tree involving |V| = 265720 nodes and L(1) = 177147 scenarios. Additional experiments
carried out on other sets of instances displaying other scenario tree structures are reported in
Quezada et al. (2020b).

Chapter 5. Multi-stage stochastic lot-sizing 60

5.5.2 Experimental setup

Each instance is first solved with the mathematical programming solver CPLEX 12.8 using the
initial MILP formulation (5.1)-(5.4). We use the standard branch-and-cut algorithm of solver
CPLEX 12.8 as our preliminary experiments showed that, for the large instances, this was more
efficient than using a customized branch-and-cut algorithm based on the path and tree inequal-
ities proposed by Guan et al. (2009). This solution method is denoted by CPX in what follows.

Each instance is then solved by the SDDiP algorithm proposed by Zou et al. (2019) and
by the extSDDiP algorithm. For both algorithms, the number of scenarios sampled at each
iteration is set to K = 1. Moreover, the binary approximation of the continuous state variables
sn is carried out as follows. For each instance, we compute an upper bound of the inventory
level at node n as smax = max`∈L(1)d0,`. The number B of binary variables un,β is set to B =
dlog2(smax)e. Note that for the instances considered in our numerical experiments, introducing
this binary approximation of the inventory variables will not lead to a sub-optimal solution.
Namely, the randomly generated demand vectors only comprise integer components and the
optimal leaving inventory at each node is known to take an integer value in this case: see Guan
and Miller (2008).

Regarding the partition of the set of decision stages S into macro-stages G, we consider only
decompositions in which the number of stages per macro-stage, denoted by G, is constant, i.e.
G = |S(γ)|, for all γ ∈ G. For each instance, we consider values of G = Σ/Γ in the set {2, 4, 6}.

Furthermore, in order to better assess the impact of the two enhancements presented in
Section 5.4, several variants of the extSDDiP algorithm are implemented.

First, to evaluate the usefulness of the approximate subtree-based SDDiP algorithm dis-
cussed in Subsection 5.4.1, we consider the following implementations of the extSDDiP algo-
rithm:

• extSDDiP-II corresponds to the case where only Algorithm 1 is run.

• extSDDiP-I/II corresponds to a 2-phase algorithm in which phase I first runs the approx-
imate subtree-based SDDiP algorithm to build an initial approximation of the expected
cost-to-go functions and phase II runs Algorithm 1 to further improve these approxima-
tions.

Second, we also seek to assess the impact on the algorithmic performance of exploiting
alternative MILP formulations of the SULS, as presented in Subsection 5.4.2. Each consid-
ered setting is described by the maximum level of formulation strengthening λmax used to
strengthen the sub-problem formulation. Thus, extSDDiP-I/II-λmax denotes for instance a 2-
phase implementation of the extSDDiP in which the sub-problem formulation strengthening
levels 0, . . . , λmax are sequentially used following the strategy described at the end of Subsec-
tion 5.4.2.

Regarding the stopping criteria, the maximum number of consecutive iterations without
any improvement of the lower bound LB is set to 30 and the maximum total number of iter-
ations to 1000. The algorithm stops as soon as one of these two conditions is reached. Note
that at this point, the upper bound UB is computed considering only K = 1 scenario and thus
might not be statistically representative. Thus, after the algorithm has stopped, we compute a
statistical upper bound based on a larger number of scenarios. We randomly sample K′ = 1000
scenarios and compute a feasible solution for each of them using the final approximation of
the expected cost-to-go functions to evaluate the objective function at each (macro)-stage. We
then construct a 95% confidence interval and report the right endpoint of this interval as the
statistical upper bound of the optimal value.

Each algorithm was implemented in C++ using the Concert Technology environment. All
(mixed-integer) linear programs were solved using CPLEX 12.8 with the default settings and
the Lagrangian dual problems were solved by a sub-gradient algorithm. All tests were run

Chapter 5. Multi-stage stochastic lot-sizing 61

on the computing infrastructure of the Laboratoire d’Informatique de Paris VI (LIP6), which
consists of a cluster of Intel Xeon Processors X5690. We set the cluster to use two 3.46GHz cores
and 12GB RAM to solve each instance. We impose a time limit of 1800 seconds to method CPX
to solve each instance. For the SDDiP and extSDDiP algorithms, we impose a time limit of 900
seconds to compute a lower bound and 900 seconds to compute the true or statistical upper
bound.

5.5.3 Results

Table 5.1 displays the numerical results. Column G indicates the number of stages per macro-
stage in the partial decomposition of the scenario tree and Column “Method" indicates the
algorithm used to solve each instance. Each line in the table thus provides the average results
of the indicated resolution method over the 20 considered instances. Column “Gap" displays
the gap between the lower bound (LB) and the upper bound (UB) found by each method, i.e.
Gap = |UB− LB|/UB. The average total computation time in seconds is reported in Column
“Time (s)", the average number of iterations in Column “# ite" and the total number of path
and tree valid inequalities generated are provided in Column “# VI".

TABLE 5.1: Performance of each method at solving instances with Σ = 12, L =
1, R = 3 of the SULS problem

G Method Gap Time (s) # ite # VI
1 SDDiP 29.12 1,716.06 100 0
2 extSDDiP-II-0 16.32 1,693.26 60 0

extSDDiP-II-1 8.11 1,618.20 73 138
extSDDiP-II-2 8.32 1,651.21 72 138
extSDDiP-I/II-0 16.61 1,742.85 72 0
extSDDiP-I/II-1 8.65 1,650.81 110 142
extSDDiP-I/II-2 6.12 1,526.16 175 144

4 extSDDiP-II-0 11.67 1,853.11 13 0
extSDDiP-II-1 7.76 1,726.47 27 741
extSDDiP-II-2 7.79 1,712.67 27 740
extSDDiP-I/II-0 10.46 1,853.51 28 0
extSDDiP-I/II-1 5.25 1,853.44 47 1,543
extSDDiP-I/II-2 6.20 1,821.16 72 3,017

6 extSDDiP-II-0 6.18 1,601.00 12 0
extSDDiP-II-1 6.28 1,760.09 10 7,264
extSDDiP-II-2 5.51 1,728.80 9 7,134
extSDDiP-I/II-0 5.28 1,625.98 17 0
extSDDiP-I/II-1 4.11 1,677.38 21 4,260
extSDDiP-I/II-2 3.90 1,557.63 29 6,601

12 CPX 53.78 1,803.29 - 0

Results from Table 5.1 first show that method CPX performs rather poorly on the 20 in-
stances considered here as it provides an average gap of 53.78%. We also observe that method
SDDiP significantly outperforms method CPX in terms of solution quality as it provides an
average gap of 29.12% for these instances.

Furthermore, these results show that algorithm extSDDiP significantly outperforms method
SDDiP on these instances. We namely first note that, whatever the partial decomposition
and the formulation strengthening setting used, i.e. whatever the value of G ∈ {2, 4, 6} and
λmax ∈ {0, 1, 2}, the gap provided by algorithm extSDDiP-I/II is significantly smaller than the

Chapter 5. Multi-stage stochastic lot-sizing 62

one provided by algorithm SDDiP. In particular, if we consider the results obtained with algo-
rithm extSDDiP-I/II-2 with a partial decomposition using G = 6 stages per macro-stage, we
obtain an average gap over the 20 instances of 3.90%. This clearly shows that jointly using the
partial decomposition of the scenario tree into sub-trees discussed in Section 5.3 and the two
algorithmic enhancements presented in Section 5.4 leads to a significant improvement of the
performance of the SDDiP algorithm proposed by Zou et al. (2019).

We now discuss the individual impact of each of these three elements on the performance
of algorithm extSDDiP.

The separate impact of the partial decomposition of the scenario tree into sub-trees on the
algorithmic performance can be evaluated by looking at the results obtained by algorithm
extSDDiP-II-0. We thus observe that the average gap can be reduced from 29.12% with algo-
rithm SDDiP to 11.16% with algorithm extSDDiP-II-0 using a partial decomposition involving
G = 2 stages per macro-stage and to 6.18% with algorithm extSDDiP-II-0 using a partial decom-
position involving G = 6 stages per macro-stage. This clearly shows the interest of decreasing
the number of expected cost-to-go functions to be approximated: even if the sub-problems to
be solved at each stage are larger and as a consequence the number of iterations carried out
by the extSDDiP-II-0 is smaller than the one carried out by method SDDiP, the fact that each
production plan is built using a less myopic vision of the future costs translates into a better
quality of the obtained feasible solution.

We now focus on the impact of the first considered enhancement: the introduction of an
initial phase based on an approximate sub-tree-based SDDiP algorithm. This impact can be
measured by comparing the results obtained with algorithm extSDDiP-II-0 with the ones ob-
tained with algorithm extSDDiP-I/II-0. We note that, over the three considered values of G,
the gap is decreased from 11.39% when using extSDDiP-II-0 to 10.78% when using extSDDiP-
I/II-0. The gap reduction obtained through the single use of the approximate version of the
algorithm in an initial phase thus seems to be rather limited.

As for the second enhancement, its impact can be evaluated by comparing the results ob-
tained with algorithms extSDDiP-II-1 (or extSDDiP-II-2) with the ones obtained with algorithm
extSDDiP-II-0. We observe that, over the three considered values of G, the gap is decreased
from 11.39% when using extSDDiP-II-0 to 7.38% when using extSDDiP-II-1 and 7.20% when
using extSDDiP-II-2. Thus, using an MILP formulation of the sub-problem strengthened by
(`, S) inequalities expressed on paths of the scenario tree to generate more strengthened Ben-
ders’ cuts has a positive impact on the solution quality. However, using more complex valid
inequalities expressed on subtrees does not seem to have a visible impact on this quality.

Finally, we would like to point out that the combined used of these two algorithmic en-
hancements, i.e. the use of alternative MILP formulations of the SULS to generate additional
strengthened Benders’ cuts within the approximate extSDDiP algorithm, seems to significantly
improve the algorithmic performance. The average gap, over the three considered values of G,
is namely decreased from 11.39% when using extSDDiP-II-0 to 5.41% when using extSDDiP-
I/II-2.

The results of additional experiments carried out on 120 additional instances are reported
in Quezada et al. (2020b). Their conclusion can be briefly summarized as follows:

• The direct resolution of the extensive formulation (method CPX) outperforms algorithms
SDDiP and extSDDiP on small instances involving a scenario tree of around 1000 nodes.
But for medium to large size instances involving more than 8000 nodes, method CPX is
outperformed by these two algorithms.

• On all considered instances, algorithm extSDDiP-I/II-1 significantly outperforms algo-
rithm SDDiP.

Chapter 5. Multi-stage stochastic lot-sizing 63

• Using a stand-alone partial decomposition (without the algorithmic enhancements dis-
cussed in 5.4) provides an improvement in the solution quality provided the obtained
sub-problems to be solved at each stage remain of tractable size. In particular, it may
not always be worth using a high value of G as it leads to large-size sub-problems and
a drastic reduction of the number of iterations carried out by algorithm extSDDiP, which
sometimes negatively impacts the solution quality.

• The impact of the two proposed algorithmic enhancements is best seen when they are
used in combination, i.e. when the available alternative MILP formulations of the SULS
are exploited to generate more strengthened Benders’ cuts during phase I of the extSDDiP
algorithm.

5.6 Conclusion and perspectives

We investigated a multi-stage stochastic integer programming approach for the SULS problem
and focused on the resolution of instances involving large-size scenario trees. We presented a
new extension of the SDDiP algorithm proposed by Zou et al. (2019). This new extension is
based on three main features: the partial decomposition of the stochastic problem into smaller
stochastic sub-problems (rather than into deterministic sub-problems), the introduction of an
initial phase in which the state variables are kept continuous and the exploitation of alternative
MILP formulations of the stochastic sub-problems to generate additional strengthened Ben-
ders’ cuts. Computational experiments carried out on randomly generated instances show that
the proposed extended algorithm significantly outperforms the original SDDiP algorithm.

An interesting direction for further research could be to extend this work to single-item
single-echelon stochastic lot-sizing problems involving complicating features such as the pos-
sibility of backlogging the demand, a limited production capacity or upper bounds on the in-
ventory level. These extensions of the SULS problem would comprise a limited number of con-
tinuous state variables at each node. Moreover, valid inequalities that could be used to obtain
alternative MILP formulations are known for most of them (see e.g. Pochet and Wolsey (2006)).
It should thus be possible to adapt the two-phase algorithm extSDDiP-I/II for these problems.
It might also be worth investigating whether the proposed extended algorithm could be used
to solve multi-item and/or multi-echelon stochastic lot-sizing problems. For such problems,
the number of continuous state variables for which a binary approximation would have to be
built will be much larger so that the use of a single-phase algorithm extSDDiP-I might be more
appropriate. Finally, in many practical settings, assuming a stage-wise independent stochas-
tic process may not be suitable and there may be temporal correlations, in particular in the
demand parameter. It would thus be interesting to study how the algorithmic enhancements
proposed in the present work for the SDDiP may be exploited to improve the computational
efficiency of extensions of the SDDiP dealing with stage-wise dependent stochastic processes
such as the one investigated by Philpott and de Matos (2012).

64

Chapter 6

Multi-stage stochastic lot-sizing with
returns

6.1 Introduction

Chapter 5 focused on a multi-stage stochastic programming extension of the simplest avail-
able lot-sizing model, i.e. the single-item uncapacitated lot-sizing model or ULS. Clearly, there
is a need to study stochastic lot-sizing models with a better practical relevancy to meet the
industrial needs in terms of production planning. The present chapter can be seen as a first
step towards closing this gap. It namely focuses on an application of multi-stage stochastic
programming in a production planning field where uncertainty is particularly present: the re-
manufacturing of used products. This work was carried out as part of the work of Franco
Quezada, a PhD student which I have been co-supervising with Safia Kedad-Sidhoum since
2018, and was recently published as a journal paper: see Quezada et al. (2020b).

More precisely, we study here a remanufacturing system which involves three key pro-
cesses: disassembly of used products brought back by customers, refurbishing of the recovered
parts and reassembly into like-new finished products. This system can be seen as an extension
of the multi-echelon system presented in Subsection 2.2.3 to the case where the product struc-
ture is not serial but rather comprises a disassembly and an assembly component. We aim at
optimizing the production planning for this three-echelon system over a multi-period horizon.
In this context, production planning includes making decisions on how much and when used
products should be disassembled, refurbished or reassembled in order to build new or like-new
products. The main objective is to meet customers’ demand for the remanufactured products
in the most cost-effective way.

As compared to classical manufacturing systems which produce end-products from virgin
raw materials and new components, remanufacturing systems involve several complicating
characteristics, among which is a high level of uncertainty in the input data needed to make
planning decisions. This is mainly due to a lack of control on the return flows of used prod-
ucts, both in terms of quantity and quality, and to the difficulty of forecasting the demand for
remanufactured products. The fact that production planning and control activities are more
complex for remanufacturing firms due to uncertainties is extensively discussed e.g. in Guide
et al. (1999) and Guide (2000).

We thus investigate a production planning model in which uncertainties related to the
quantity and quality of returned products, the customers’ demand, and the costs are simul-
taneously taken into account and seek to develop an approach explicitly considering the multi-
stage aspect of the decision making process in production planning.

The contributions of the present work are twofold. Firstly, we propose a multi-stage stochas-
tic integer programming approach for a stochastic lot-sizing problem arising in a multi-echelon
multi-item remanufacturing system. This is in contrast with most previously published works
which either consider two-stage stochastic programming approaches for complex remanufac-
turing systems or multi-stage stochastic programming approaches for single-echelon and/or

Chapter 6. Multi-stage stochastic lot-sizing with returns 65

single-item systems. Second, we propose a branch-and-cut framework to solve the resulting
large-size mixed integer linear program. The algorithm relies on a new set of valid inequali-
ties obtained by mixing previously known path inequalities Loparic et al. (2001). The number
of these valid inequalities increases exponentially fast with the size of the scenario tree. We
provide an efficient cutting-plane generation strategy to identify the useful subset of this class.
Our computational experiments show that the proposed method is capable of significantly de-
creasing the computation time needed to obtain guaranteed optimal solutions.

The remaining part of this chapter is organized as follows. Section 6.2 formally describes the
problem and proposes a mixed integer linear programming model. In Section 6.3, a reformula-
tion of the problem based on the echelon-stock concept is presented. This reformulation allows
us to identify a series of single-echelon subproblems embedded in the general multi-echelon
problem. Section 6.4 introduces a new class of valid inequalities to strengthen the linear relax-
ation of each single-echelon subproblem. Cutting-plane generation algorithms are developed
in Section 6.5. Section 6.6 reports the results of computational experiments and discusses the
performance of our branch-and-cut algorithm. Finally, Section 6.7 gives the conclusions with
possible directions for further research.

6.2 Problem description and mathematical formulation

6.2.1 System description

We consider a remanufacturing system comprising three main production echelons (see Figure
6.1): disassembly, refurbishing and reassembly, and seek to plan the production activities in
this system over a multi-period horizon. We assume that there is a single type of used product
which, in each period, is returned in limited quantity by customers. These used products are
first disassembled into parts. Due to the usage state of the used products, some of these parts
are not recoverable and have to be discarded during disassembly. In order to reflect the varia-
tions in the quality of the used products, the yield of the disassembly process, i.e. the propor-
tion of parts which will be recoverable, is assumed to be part-dependent and time-dependent.
The remaining recoverable parts are then refurbished on dedicated refurbishing processes. The
serviceable parts obtained after refurbishing are reassembled into remanufactured products
which have the same bill-of-material as the used products. These remanufactured products are
used to satisfy the dynamic demand of customers.

All the production processes are assumed to be uncapacitated. However, the system might
not be able to satisfy the customer demand on time due to part shortages if there are not enough
used products returned by customers or if their quality is low. In this situation, the correspond-
ing demand is lost incurring a high penalty cost to account for the loss of customer goodwill.
Moreover, note that some used products are allowed to be discarded before being disassem-
bled: this option might be useful in case more used products are returned that what is needed
to satisfy the demand for remanufactured products. Similarly, some of the recoverable parts
obtained from the disassembly process may be discarded. In case there is a strong unbalance
between the part-dependent disassembly yields, this option might be used in a production plan
to avoid an unnecessary accumulation in inventory of the easy-to-recover parts.

We aim at finding an optimal production plan, i.e. a production plan complying with all
the practical limitations of the system while minimizing the total production cost. This cost
comprises the production fixed setup costs to be incurred each time a production takes place
on a process, the inventory holding costs for all the items involved in the system, the lost-sales
costs penalizing the unsatisfied demand and the disposal costs for the discarded used products
and parts.

Ahn et al. (2011) studied a deterministic and particular case of the problem, in which the
quantity of returned products is unlimited and the lost sales and the discarding quantities are

Chapter 6. Multi-stage stochastic lot-sizing with returns 66

returns

used
products

0

DISASSEMBLY

discarded
products

1
...

i
...

I
recoverable

parts

REFURBISHING

discarded
parts

I + 1
...

I + i
...

2I
serviceable

parts

REASSEMBLY

2I + 1

remanufactured
products

demands

FIGURE 6.1: Illustration of studied remanufacturing system

assumed to be zero. The authors proved that, under these assumptions, the problem is NP-
hard. Therefore, our problem is NP-hard as well.

6.2.2 Uncertainty

As mentioned in the introduction of this chapter, one of the main challenges to be faced when
planning remanufacturing activities is the high level of uncertainty in the problem parameters.
In what follows, we propose a production planning model in which all problem parameters,
except the bill-of-material coefficients, are subject to uncertainty.

We consider a multi-stage decision process corresponding to the case where the value of
the uncertain parameters unfolds little by little following a discrete-time stochastic process and
the production decisions are adapted progressively as more and more information is collected.
This leads to the representation of the uncertainty via a scenario tree. With a slight abuse of
notation, we will refer to this scenario tree by mentioning only its set of nodes V . Each node
n ∈ V corresponds to a single planning period tn and belongs to a single decision stage σn ∈ S .
It represents the state of the system that can be distinguished by the information unfolded up
to that period tn.

Each node n has a unique predecessor node denoted an belonging to time period tn − 1. By
convention, the root node of the scenario tree is indexed by 1 and a1 is set to 0. At any non-
leaf node of the tree, one or several branches indicate future possible outcomes of the random
variables from the current node. Let C(n) be the set of immediate children of node n, V(n) the
sub-tree of V rooted in n and L(n) the set of leaf nodes belonging to V(n). The probability
associated with the state represented by node n is denoted by ρn. A scenario is defined as a
path from the root node to a leaf node in the scenario tree and represents a possible outcome of
the stochastic input parameters over the whole planning horizon. The set of nodes on the path
from node n to node m is denoted by P(n, m).

We use the following notations for the problem formulation:

• I: number of part types involved in a returned / remanufactured product,

• I = {0, ..., 2I + 1}: set of all items involved in the system where:

– i = 0 corresponds to the returned product,

– Ir = {1, ..., I} is the set of recoverable parts provided by the disassembly process,

– Is = {I + 1, ..., 2I} is the set of serviceable parts provided by the refurbishing pro-
cesses,

Chapter 6. Multi-stage stochastic lot-sizing with returns 67

– i = 2I + 1 corresponds to the remanufactured product.

• J = {0, ..., I + 1}: set of production processes, , where j = 0 corresponds to the disassem-
bly process, j = 1, ..., I correspond to the refurbishing processes and j = I + 1 corresponds
to the reassembly process.,

The number of parts i ∈ Ir ∪ Is embedded in a returned or remanufactured product, de-
noted by αi, is assumed to be deterministic. All other input parameters are considered as
stochastic and defined as follows:

• dn: customers’ demand at node n ∈ V ,

• rn: quantity of used products (returns) collected at node n ∈ V ,

• pn
i : proportion of recoverable parts i ∈ Ir obtained by disassembling one unit of returned

product at node n ∈ V ,

• λn: unit lost-sales penalty cost at node n ∈ V ,

• f n
j : setup cost for process j ∈ J at node n ∈ V ,

• hn
i : unit inventory cost for part i ∈ I at node n ∈ V ,

• δn
i : unit cost for discarding item i ∈ Ir ∪ {0} at node n ∈ V ,

• gn: cost for discarding the unrecoverable parts obtained while disassembling one unit of
returned product at node n ∈ V .

Moreover, we assume that at each stage, the realization of the random parameters happens
before we have to make a decision for this stage, i.e. we assume that the values of dn, rn, pn

i , λn,
f n
j , hn

i , δn
i and gn are known before we have to decide on the production plan at node n ∈ V .

We also assume that λn � gn for all n ∈ V .

6.2.3 MILP formulation

We propose a multi-stage stochastic integer programming model based on the uncertainty rep-
resentation described above. The decision variables involved in the model are:

• xn
j : quantity processed by process j ∈ J at node n ∈ V ,

• yn
j ∈ {0, 1}: setup variable for process j ∈ J at node n ∈ V ,

• sn
i : inventory level of part i ∈ I at node n ∈ V ,

• qn
i : quantity of part i ∈ Ir ∪ {0} discarded at node n ∈ V ,

• ln: lost sales of remanufactured products at node n ∈ V .

Chapter 6. Multi-stage stochastic lot-sizing with returns 68

The mixed integer linear programming model is given below.

Z∗ = min ∑
n∈V

ρn
(

∑
j∈J

f n
j yn

j + ∑
i∈I

hn
i sn

i + λnln

+ ∑
i∈Ir∪{0}

δn
i qn

i + gnxn
0

)
(6.1)

xn
j ≤ Mn

j yn
j ∀j ∈ J , ∀n ∈ V (6.2)

sn
0 = san

0 + rn − xn
0 − qn

0 ∀n ∈ V (6.3)
sn

i = san

i + pn
i αixn

0 − xn
i − qn

i ∀i ∈ Ir, ∀n ∈ V (6.4)
sn

i = san

i + xn
i−I − αixn

I+1 ∀i ∈ Is, ∀n ∈ V (6.5)

sn
2I+1 = san

2I+1 + xn
I+1 − dn + ln ∀n ∈ V (6.6)

s0
i = 0 ∀i ∈ I (6.7)

sn
i ≥ 0 ∀i ∈ I , ∀n ∈ V (6.8)

qn
i ≥ 0 ∀i ∈ I r ∪ {0}, ∀n ∈ V (6.9)

ln ≥ 0 ∀n ∈ V (6.10)
xn

j ≥ 0, yn
j ∈ {0, 1} ∀j ∈ J , ∀n ∈ V (6.11)

The objective function (6.1) aims at minimizing the expected total cost, over all nodes of the
scenario tree. This cost is the sum of the expected setup, inventory holding, lost sales and dis-
posal costs. Constraints (6.2) link the production quantity variables to the setup variables. Note
that the value of constant Mn

j can be set by using an upper bound on the quantity that can be
processed on process j at node n. This quantity is limited by two elements: the availability of
the used products already returned by customers and the future demand for remanufactured
products. The reader is refered to Quezada et al. (2020b) for more detail about how to deter-
mine the value of this constant. Constraints (6.3)-(6.6) are the inventory balance constraints.
Constraints (6.3) (resp. (6.4) and (6.5)) involve a term corresponding to a dependent demand
xn

0 (resp. xn
i and αixn

I+1) whereas Constraints (6.6) only involve an independent demand term
dn. Without loss of generality, we assume that the initial inventories are all set to 0: see Con-
straints (6.7). Finally, Constraints (6.8)-(6.11) provide the domain of the decision variables.

Even if the problem (6.1)-(6.11) is a mixed-integer linear program displaying a structure
similar to the one of its deterministic counterpart, its resolution by a mathematical program-
ming solver poses some computational difficulties in practice. This first comes from the prob-
lem size which, for a given planning horizon length, is much larger in the stochastic case than
in the deterministic case. Namely, in the stochastic case, the mixed-integer linear program-
ming formulation involves O(|V||J |) binary variables, O(|V||I|) continuous variables and
O(|V||I|) constraints. The size of the scenario tree |V| is in O(RS+1) where R is the number
of children per node and S the number of stages. The MILP formulation size thus grows expo-
nentially fast with the number of decision stages S. Moreover, the presence of the big-M type
constraints (6.2) leads to a poor quality of the lower bounds provided by the linear relaxation
of the problem.

In what follows, we propose a branch-and-cut algorithm in order to solve to optimality
medium-size instances of the problem. We first describe a reformulation of the problem that
provides a way to decompose the multi-echelon problem into a series of single-echelon sub-
problems. We then investigate two sets of valid inequalities (path inequalities and tree in-
equalities) that can be used to strengthen the formulation of each of these single-echelon sub-
problems. These valid inequalities are added to the problem formulation using a cutting-plane
strategy during the course of the branch-and-bound search.

Chapter 6. Multi-stage stochastic lot-sizing with returns 69

6.3 Mathematical reformulation

The concept of echelon stock has been widely used to develop solution approaches for multi-
echelon lot-sizing problems (the reader is referred to Pochet and Wolsey (2006) for further de-
tails). The main advantages of the reformulation is that it helps decomposing the multi-echelon
problem into a series of single-echelon lot-sizing problems for which formulation strengthen-
ing techniques such as valid inequalities or extended reformulations are available. As each sub-
problem is a relaxed version of the overall multi-echelon problem, valid inequalities strength-
ening the linear relaxation of each subproblem will strengthen the linear relaxation of the over-
all multi-echelon problem.

6.3.1 Echelon stock reformulation

The echelon demand edn
i for an intermediate product can be understood as the translation of

the external demand for the finished product into an independent demand for the intermediate
product. For each product i ∈ I r ∪ I s, we straightforwardly define the echelon demand as
edn

i = αidn. We note however that, in our case, it is not possible to properly define such an
echelon demand for the used product i = 0. Namely, this demand could be defined as edn

0 =
dn

mini∈Ir pn
i

by considering that the amount of used product to disassemble to satisfy the external
demand dn is determined by the disasssembly yield of the item i ∈ Ir which is the most difficult
to recover at node n. However, as the disassembly yields are time-varying and stochastic, the
actual amount of used product needed to satisfy the external demand dn depends on the period
in which it is disassembled and might be larger or smaller than dn

mini∈Ir pn
i
. Hence, using the

echelon demand edn
0 might lead to inconsistent disassembly production decisions. We thus

focus in what follows on defining echelon stock variables for products i ∈ I r ∪ I s.
The echelon stock of a product in a multi-echelon production system corresponds to the

total quantity of the product held in inventory, either as such or as a component within its
successors in the bill-of-material. For each product i ∈ {1, ..., 2I + 1}, we define the echelon
inventory variables as follows:

• esn
i = sn

i + esn
I+i = sn

i + sn
I+i + αisn

2I+1, for i ∈ Ir, for n ∈ V

• esn
i = sn

i + αiesn
2I+1 = sn

i + αisn
2I+1, for i ∈ Is, for n ∈ V

• esn
2I+1 = sn

2I+1, for n ∈ V

Moreover, we define the unit echelon inventory holding cost ehn
i as follows:

• ehn
i = hn

i , for i ∈ Is, for n ∈ V

• ehn
i = hn

i − hn
i−I , for i ∈ Ir, for n ∈ V

• ehn
2I+1 = hn

2I+1 −∑i∈Ir
αihn

i , for n ∈ V

Chapter 6. Multi-stage stochastic lot-sizing with returns 70

This leads to the following mixed-integer linear programming formulation:

Z∗ = min ∑
n∈V

ρn
(

∑
j∈J

f n
j Yn

j + hn
0 sn

0 + ∑
i∈I\{0}

ehn
i esn

i + λnln

+ ∑
i∈Ir∪{0}

δn
i qn

i + gnxn
0

)
(6.12)

xn
j ≤ Mn

j Yn
j ∀j ∈ J , ∀n ∈ V (6.13)

sn
0 = san

0 + rn − xn
0 − qn

0 ∀n ∈ V (6.14)
esn

i = esan

i + pn
i αixn

0 − αidn + αiln − qn
i ∀i ∈ Ir, ∀n ∈ V (6.15)

esn
i = esan

i + xn
i−I − αidn + αiln ∀i ∈ Is, ∀n ∈ V (6.16)

esn
2I+1 = esan

2I+1 + xn
I+1 − dn + ln ∀n ∈ V (6.17)

s0
0 = 0 (6.18)

es0
i = 0 ∀i ∈ I \ {0} (6.19)

sn
0 ≥ 0 ∀n ∈ V (6.20)

esn
i − esn

I+i ≥ 0 ∀i ∈ Ir, ∀n ∈ V (6.21)
esn

i − αiesn
2I+1 ≥ 0 ∀i ∈ Is, ∀n ∈ V (6.22)

esn
2I+1 ≥ 0 ∀n ∈ V (6.23)

sn
0 ≥ 0, ln ≥ 0 ∀n ∈ V (6.24)

xn
j ≥ 0, yn

j ∈ {0, 1} ∀p ∈ J , ∀n ∈ V (6.25)

As in the previous formulation, the objective function (6.12) aims at minimizing the ex-
pected cost, over all nodes of the scenario tree. Constraints (6.13) are defined as Constraints (6.2)
of the natural formulation. Constraints (6.14)-(6.17) are inventory balance constraints. Con-
straints (6.14) use the classical inventory variables, whereas Constraints (6.15)-(6.17) make use
of the echelon inventory variables. Contrary to Constraints (6.4)-(6.5) of the natural formula-
tion, Constraints (6.15)-(6.17) do not involve a dependent demand term but only an external
demand term. Constraints (6.21)-(6.23) ensure consistency between the echelon inventory at
the different levels of the bill-of-material and guarantee that the physical inventory of each
product remains non-negative. Finally, Constraints (6.24)-(6.25) define the domain of the deci-
sion variables.

6.3.2 Single echelon subproblems

The introduction of echelon inventory variables leads to the elimination of the dependent de-
mand term in the inventory balance equations of the (6.1)-(6.11) formulation. This induces that
the constraint matrix of (6.12)-(6.25) displays a specific structure: it can be decomposed in a se-
ries of single-echelon single-resource lot-sizing subproblems coupled by the linking constraints
(6.21)-(6.23).

For the sake of brevity, we will focus in what follows on the sub-problems relative to the
refurbishing and reassembly processes. The reader is referred to Quezada et al. (2020b) for a
detailed description of the sub-problems relative to the disassembly process.

Chapter 6. Multi-stage stochastic lot-sizing with returns 71

For each process j = 1...I + 1, we thus have the following single-echelon subproblem:

Z∗p = min ∑
n∈V

ρn
(

f n
j yn

j + ehn
j+Iesn

j+I + λnln
)

(6.26)

xn
j ≤ Mn

j yn
j ∀n ∈ V (6.27)

esn
j+I = esan

j+I + xn
j − αjdn + αjln ∀n ∈ V (6.28)

es0
j+I = 0 (6.29)

esn
j+I ≥ 0 ∀n ∈ V (6.30)

ln ≥ 0, xn
j ≥ 0, yn

j ∈ {0, 1} ∀n ∈ V (6.31)

Each subproblem (6.26)-(6.31) is an uncapacitated single-echelon single-item lot-sizing prob-
lem with lost sales. The deterministic variant of this problem was studied by Loparic et al.
(2001) who proposed a family of valid inequalities called (k,U) inequalities, to strengthen the
linear relaxation. We discuss in Section 6.4 how these inequalities known for the deterministic
variant of the problem can be used to solve the stochastic problem expressed on a scenario tree.

6.4 Valid inequalities

In this section, we provide (k,U) inequalities for each single-echelon subproblem described
in Section 6.3. We first exploit these (k,U) inequalities considering their application to each
individual scenario, i.e. to each individual path from a non-terminal node n to a leaf node ` ∈
L(n). Next, we extend them to a more general class of inequalities. This is done by exploiting
the scheme proposed by Guan et al. (2009) for generic multi-stage stochastic integer programs.
The idea is to mix valid inequalities corresponding to different individual scenarios to obtain
valid inequalities for the whole scenario tree (or for a subtree). Throughout this section we will
refer to a (k,U) inequality applied to an individual scenario as a path inequality and to a (k, U)
inequality applied to a subtree as a tree inequality.

6.4.1 Path inequalities

We first introduce some additional notation. Let n be a non-leaf node in V and ` ∈ L(n) a leaf
node reachable from n. succ`n ∈ C(n) denotes the immediate successor of node n belonging
to the path P(n, `), i.e. succ`n = C(n) ∩ P(n, `). Let Un,` ⊆ P(succ`n, `) be a subset of nodes
belonging to the path from succ`n to `, not necessarily consecutive.

For each process j ∈ {1...I + 1}, we have the following proposition:

Proposition 2. Let n ∈ V and ` ∈ L(n). Let Un,` ⊆ P(succ`n, `). The following inequality

esn
j+I ≥ αj ∑

m∈Un,`

[
dm
(

1− ∑
ν∈P(succ`n,`)

yν
j

)
− lm

]
(6.32)

is valid for the problem (6.12)-(6.25).

The proof is direct following the proof of Loparic et al. (2001).
The intuition underlying these path inequalities can be understood as follows. We con-

sider the inventory level of the product j + I at node n and look for the future demands for
this product in the path P(succ`n, `) linking node n to leaf node `. For a node m ∈ Un,`, if
∑ν∈P(succ`n,`) yν

j ≥ 1, the demand of node m, αjdm, can be satisfied by a production in one
of the nodes ν ∈ P(succ`n, `) and does not have to be in stock when leaving node n. But if
∑ν∈P(succ`n,`) yν

j = 0, the demand αjdm cannot be produced in any node ν ∈ P(succ`n, `) meaning

Chapter 6. Multi-stage stochastic lot-sizing with returns 72

that the portion of this demand which will be satisfied by a production, αj(dm − lm), should
already be in stock at node n.

6.4.2 Tree inequalities

We now investigate a new family of valid inequalities obtained by considering a subtree of
the scenario tree as proposed by Guan et al. (2006) and Guan et al. (2009). The authors pro-
posed a general scheme to obtain valid inequalities for multi-stage stochastic integer programs
by mixing several path inequalities. In what follows, we apply this scheme to derive a new
set of tree inequalities based on a mixing of the path inequalities discussed above. We first
introduce some additional notation to properly define this new set of valid inequalities. Let
U = ∪`∈L(n)Un,` be a set of nodes defining a tree inequality. This enables us to introduce the
following proposition for each process j ∈ {1, ..., I + 1}.

Proposition 3. Let n ∈ V and U ⊂ V(n). Let 	s = {	s1, ..., 	s|L(n)|} be a sequence of leaf nodes belonging
to L(n) in increasing order of cumulative demand ∑m∈Un,`

dm: ∑m∈Un,	s1
dm ≤ ... ≤ ∑m∈Un,	sω

dm ≤
... ≤ ∑m∈Un,	s|L(n)|

. We set ∑m∈Un,	s0
dm = 0. The following inequality

esn
j+I + αj ∑

m∈U
lm + αj ∑

ν∈V(n)\{n}
φνyν

j ≥ αj ∑
m∈Un,	s|L(n)|

dm (6.33)

is valid for problem (6.12)-(6.25), with

φν = min
{

max
`∈L(ν)

{ ∑
m∈Uaν ,`

dm}, ∑
ω=1...|L(n)| s.t 	sω∈L(ν)

(
∑

m∈Un,	sω

dm − ∑
m∈Un,	sω−1

dm
)}

The proof is based on Theorem 2 in Guan et al. (2009): see Quezada et al. (2020b) for more
detail about it.

6.5 Cutting-plane generation

The number of valid inequalities (6.32) and (6.33) is too large to allow adding all of them a
priori to the formulation. Hence, a cutting-plane generation strategy is needed to add only a
subset of these valid inequalities into the MILP formulation. Consequently, the corresponding
separation problems must be solved in order to identify the inequalities to be incorporated
in the formulation. In what follows, we discuss an exact separation algorithm for the path
inequalities and a heuristic one for the tree inequalities. These separation algorithms form the
basis of a cutting-plane generation procedure aiming at strengthening the linear relaxation of
the problem (6.12)-(6.25).

6.5.1 Path inequalities

Given a solution (x̂, ŷ, ês, l̂) of the linear relaxation of the single-echelon subproblem corre-
sponding to process j, solving the separation problem for path inequalities consists in finding
the most violated inequality (6.32) if it exists or proving that no such inequality exists.

For a given process j, node n ∈ V and leaf node ` ∈ L(n), finding the most violated inequal-
ity corresponds to identifying the set Un,` maximizing the right-hand side of the inequality. We
note that the value of the term corresponding to a node m ∈ Un,` in the right-hand side of (6.32)
does not depend on the other nodes belonging to Un,`. Hence, each node of P(succ`n, `) can
be considered individually: if it has a positive contribution in maximizing the right-hand side
value of the inequality, we add it to set Un,`, if not, it is discarded. The set Un,` is thus built by

Chapter 6. Multi-stage stochastic lot-sizing with returns 73

adding all the nodes m in P(succ`n, `) such that dm
(

1−∑ν∈P(succ`n,`) ŷν
j

)
− l̂m > 0. We underline

that the above strategy can be implemented in polynomial time: see Loparic et al. (2001). The
proposed separation algorithm namely runs in O(P2), where P corresponds to the number of
nodes in the set P(succ`n, `).

However, even if inequalities (6.32) can be separated in polynomial time, our preliminary
computational experiments showed that a simple cutting-plane generation strategy in which
all the violated inequalities found at each iteration are added to the formulation led to the
introduction of a too large number of additional constraints and a loss of computational effi-
ciency of the branch-and-bound search tree. Moreover, many of these inequalities involved the
same subsets of setup variables yn

j and had thus similar effects in terms of strengthening the
relaxation of the problem.

In order to limit the increase in the formulation size, we propose a cutting plane generation
strategy to add violated path inequalities to the formulation. This strategy relies on two main
ideas.

The first idea consists in adding, for a given process j and node n ∈ V , at most one valid in-
equality at each iteration of the cutting-plane generation, namely the inequality corresponding
to the leaf node ` ∈ L(n) providing the largest violation of the path inequality, i.e. to the leaf

node `min = argmin
{
` ∈ L(n), êsn

j+I − αj ∑m∈Un,`

[
dm
(

1−∑ν∈P(succ`n,`) ŷν
j

)
− l̂m

]
}.

The second idea aims at avoiding the addition of inequalities involving similar subsets
of setup variables yn

j during an iteration of the cutting-plane generation algorithm. This is
achieved by using the following strategy. During a given iteration of the algorithm, each
time a violated inequality is added to the formulation, we record νmin, the last node of
the path P(succ`min

n , `min) added to the set Un,`min . The inequality added to the formula-
tion involves a subset of setup variables yν

j corresponding to nodes ν belonging to the path

P(succ`min
n , νmin). As the valid inequalities generated when considering the leaf node `min at

nodes m ∈ P(succ`min
n , νmin) are likely to involve the same setup variables yν

j and have a re-
dundant effect on the formulation strengthening, we do not consider generating them during
the current iteration. Thus, if a cut involving leaf node `min is generated at node n at a given
iteration, for all m ∈ P(n, νmin), `min is removed temporarily, i.e. for the course of the current
iteration, from the leaf node set L(m) considered for the search of violated valid inequalities at
node m. It is then reintegrated into all leaf node sets at the beginning of the next iteration.

Note that this cutting-plane generation strategy implies that all valid inequalities are still
potentially considered for inclusion in the formulation and that the separation problem is
solved exactly.

6.5.2 Tree inequalities

Given a non-leaf node n, solving the separation problem for inequalities (6.33) requires to iden-
tify a subset of nodes U ⊆ V(n) minimizing the difference between the left-hand side and the
right-hand side of (6.33). This is challenging as contrary to the case of path inequalities, it is
not possible to consider each node of V(n) individually. Namely, selecting a node m of V(n)
in the set U not only changes the left-hand side of the inequality by a quantity lm + φmym

j , but
also potentially impacts the value of the coefficient φν for all other nodes ν ∈ V(n) \ {n}. In
addition, selecting a node m of V(n) potentially changes the order of the sequence 	s and hence
the value of the right-hand side of the inequality. These interactions significantly complicate
the resolution of the separation problem.

Therefore, we consider a heuristic separation approach based on a neighborhood search to
solve the separation problem for the tree inequalities. For each process j and each node n ∈ V ,
the heuristic algorithm first builds an initial set U containing all nodes in V(n) that would be

Chapter 6. Multi-stage stochastic lot-sizing with returns 74

selected in the sets Un,`, ` ∈ L(n), when looking for a violated path inequality. If this initial
set is empty, we stop. Otherwise, we try to find a tree inequality as violated as possible by
removing, one by one, some nodes from U . More precisely, we start by computing the amount
of violation obtained with the initial set U : this requires to determine the ordering 	s of the
leaf nodes in L(n) corresponding to set U and to compute coefficients φν for every ν ∈ V(n).
We then explore the neighborhood of set U which consists of all subsets of U obtained by
removing a single node. For each considered neighbor, we compute the amount of violation
of the corresponding tree inequality: this operation is particularly time-consuming due to the
fact that the ordering 	s of the leaf nodes and the coefficients φ need to be recomputed for each
neighbor. A first improvement strategy is used to explore the neighborhood of the current
set, i.e. we update the current set U as soon as a better neighbor set U ′ is found. Finally, the
algorithm stops when no neighbor set U ′ has a violation value lower than the one of the current
set U .

6.6 Computational experiments

We develop two branch-and-cut algorithms for solving problem (6.1)-(6.11). These algorithms
rely on the cutting-plane generation algorithms proposed in Section 6.5 to add valid inequal-
ities to the echelon stock reformulation (6.12)-(6.25) discussed in Section 6.3. We provide in
this section the results of computational experiments carried out on randomly generated in-
stances of the problem. The main objective of these experiments is to assess the effectiveness of
the branch-and-cut algorithms by comparing them with the one of a stand-alone mathematical
programming solver.

In what follows, we introduce the setting used to randomly generate instances based on the
data presented in Ahn et al. (2011) and Jayaraman (2006) before discussing the detailed results
of our computational experiments.

6.6.1 Instances

A detailed description of the instance generation is available in Quezada et al. (2020b). We thus
provide here the main information:

• The demands for finished products dn, the bill of material coefficient αi, the set-up and in-
ventory holding costs were randomly generated based on the instance generation scheme
provided in Ahn et al. (2011).

• The number of parts in a finished product is set to I = 10.

• The proportion of recoverable parts pn
i , i ∈ Ir, obtained by disassembling one unit of

used product at node n ∈ V , is randomly generated following a uniform distribution.
Three intervals, corresponding to three quality levels, are defined based on the values
presented in the case study reported by Jayaraman (2006).

• The volume of returns rn is also randomly generated following a uniform distribution for
which three different intervals are considered.

• The lost-sales unit penalty cost λn is set to 10000.

• The cost for discarding one unit of recoverable part, i ∈ Ir ∪ {0}, is set to δn
i = hn

i ∗
T
β ,

with β following a discrete uniform distribution over [2, T].

• The cost for discarding the unrecoverable parts generated during the disassembly process
is computed as gn = ∑I

i=1 δn
i (1− pn

i)αi.

Chapter 6. Multi-stage stochastic lot-sizing with returns 75

Regarding the scenario tree, we consider 18 alternative structures which differ with respect
to the number of stages, the number of periods per stage and the number of immediate suc-
cessors R of each last-period-of-stage node. This leads to scenario trees involving between 126
and 1365 nodes. For each scenario tree structure, used product quality level and used product
quantity level, we randomly generated 10 instances, resulting in a total of 1620 instances.

6.6.2 Results

Each instance was solved using the echelon stock formulation (6.12)-(6.25) discussed in Sec-
tion 6.3 by three alternative branch-and-cut methods:

1. The standard branch-and-cut algorithm embedded in the mathematical programming
solver CPLEX with the solver default settings.

2. BC1: a customized branch-and-cut algorithm using only path inequalities at the root node
of the branch-and-bound search tree.

3. BC2: a customized branch-and-cut algorithm in which path and tree inequalities are
added at the root node of the branch-and-bound search tree and UserConstraints call-
backs are used to add tree valid inequalities to the formulation during the course of the
branch-and-bound search tree.

All related linear programs and mixed-integer linear program were solved by CPLEX 12.8
with the solver default settings. Note that for a better understanding of the behavior of the
branch-and-cut methods, the automatic generation of cuts by default CPLEX was turned off
when running BC1 and BC2. The algorithms were implemented in C++ using the Concert
Technology environment. All tests were run on the computing infrastructure of the Laboratoire
d’Informatique de Paris VI (LIP6), which consists in a cluster of Intel Xeon Processors X5690.
We set the cluster to use two 3.46GHz cores and 12GB RAM to solve each instance. We imposed
a time limit of 900 seconds.

The corresponding results are displayed in Table 6.1 in which instances are grouped accord-
ing to the number of nodes in the scenario tree. For each set of 90 instances and each solution
method, we report five performance measures:

1. GapLP is the average percentage integrality gap. It is computed as the relative difference
between the lower bound provided by the linear relaxation of the formulation and the
value of the optimal integer solution. In case the instance could not be solved to optimal-
ity, the value of the best integer feasible solution found is used.

2. GapMIP is the average percentage residual gap reported by CPLEX. It is computed as the
relative difference between the best lower bound and the best integer feasible solution
found by the solver within the time limit.

3. Time is the average CPU time (in seconds) needed to find a guaranteed optimal integer
solution (we used the value of 900s in case a guaranteed optimal integer solution could
not be found within the computation time limit).

4. #Opt is the number of instances solved to optimality within the time limit.

5. Cuts reports the average number of cuts added to the formulation.

We first note from the results displayed in Table 6.1 that the proposed branch-and-cut meth-
ods BC1 and BC2 do not perform better than default CPLEX for the sets of small instances
involving less than 682 nodes: they namely lead to larger values of the residual gap GapMIP.
Nonetheless, for the large instances involving more than 728 nodes, the proposed methods

Chapter 6. Multi-stage stochastic lot-sizing with returns 76

significantly outperform default CPLEX by providing much smaller residual gaps. Thus, the
average residual gap over the corresponding 540 larger instances is decreased from 7.43% when
using default CPLEX to to 1.16% when using method BC1 and 0.98% when using method BC2.

6.7 Conclusion and perspectives

We studied an uncapacitated multi-item multi-echelon lot-sizing problem within a remanufac-
turing system involving three production echelons: disassembly, refurbishing and reassembly.
We considered a stochastic environment in which the input data of the optimization prob-
lem are subject to uncertainty and proposed a multi-stage stochastic integer programming ap-
proach relying on scenario trees to represent the uncertain information structure. This resulted
in the formulation of a large-size mixed-integer linear program involving a series of big-M
type constraints. We developed a branch-and-cut algorithm in order to solve the obtained
MILP to optimality. This algorithm relies on a new set of tree inequalities obtained by com-
bining valid inequalities previously known for each individual scenario of the scenario tree.
The tree inequalities are used within a cutting-plane generation procedure based on a heuristic
resolution of the corresponding separation problem. Computational experiments carried out
on randomly generated instances show that the proposed branch-and-cut algorithm performs
well on medium-size instances as compared to the use of a stand-alone mathematical solver.

However, neither CPLEX solver nor the proposed branch-and-cut algorithms seem to be
able to solve instances involving very large-size scenario trees. Hence, an interesting direction
for further research could be to study how a nested decomposition approach such as the one
investigated in Chapter 5 might be used to solve this problem. A first attempt relying on the
SDDiP, i.e. using a full decomposition of the problem into deterministic sub-problems, has been
published as a conference paper: see Quezada et al. (2019). The use of the extSDDiP exploiting
a partial decomposition of the problem into small stochastic sub-problems is currently under
investigation.

Chapter 6. Multi-stage stochastic lot-sizing with returns 77

TABLE 6.1: Comparison between default CPLEX configuration and the cus-
tomized branch-and-cut algorithms.

In
st

an
ce

s
C

PL
EX

de
fa

ul
t

BC
1

(P
at

h)
BC

2
(P

at
h

an
d

Tr
ee

)
N

od
es

G
ap

LP
G

ap
M

IP
Ti

m
e

#O
pt

G
ap

LP
G

ap
M

IP
Ti

m
e

#O
pt

C
ut

s
G

ap
LP

G
ap

M
IP

Ti
m

e
#O

pt
C

ut
s

12
6

7.
71

0.
14

87
1.

23
7

1.
40

0.
23

90
0.

63
0

20
42

1.
24

0.
15

86
6.

06
8

22
89

18
9

9.
56

0.
27

89
5.

13
1

1.
22

0.
32

90
0.

66
0

37
78

1.
09

0.
24

89
2.

70
2

40
30

24
2

6.
81

0.
26

90
0.

37
0

1.
48

0.
49

90
0.

54
0

30
57

1.
29

0.
36

90
0.

60
0

35
39

25
4

8.
04

0.
36

90
0.

18
0

1.
37

0.
52

90
0.

66
0

41
84

1.
21

0.
40

90
0.

68
0

46
53

25
5

6.
15

0.
24

89
7.

71
1

1.
66

0.
67

90
0.

68
0

27
61

1.
40

0.
44

90
0.

63
0

39
00

25
5

7.
45

0.
27

90
0.

13
0

1.
33

0.
46

90
0.

66
0

38
01

1.
19

0.
36

90
0.

56
0

41
19

36
3

8.
81

0.
46

90
6.

08
0

1.
45

0.
74

90
0.

67
0

59
84

1.
31

0.
62

90
0.

64
0

61
82

38
1

8.
86

0.
41

90
6.

39
0

1.
09

0.
60

90
0.

75
0

76
99

0.
97

0.
50

90
0.

75
0

79
85

46
8

7.
62

0.
51

90
0.

20
0

1.
51

0.
85

90
0.

78
0

65
28

1.
40

0.
71

90
0.

70
0

66
82

51
0

8.
34

0.
79

90
0.

24
0

1.
35

0.
88

90
0.

71
0

85
27

1.
21

0.
75

90
0.

62
0

90
82

51
1

6.
52

0.
44

90
0.

78
0

1.
69

0.
96

90
0.

77
0

55
45

1.
47

0.
78

90
0.

64
0

67
41

68
2

6.
74

0.
66

90
0.

25
0

1.
61

0.
94

90
0.

85
0

75
09

1.
50

0.
87

90
0.

75
0

79
04

72
8

10
.0

1
3.

20
90

3.
11

0
1.

63
0.

98
90

0.
87

0
92

53
1.

47
0.

86
90

0.
98

0
98

26
76

5
14

.0
1

5.
47

90
0.

65
0

1.
53

1.
19

90
1.

11
0

15
54

9
1.

08
0.

73
90

1.
13

0
16

12
1

77
7

9.
93

3.
51

90
5.

34
0

1.
47

0.
88

90
0.

86
0

10
36

9
1.

40
0.

83
90

0.
89

0
10

57
8

10
22

18
.1

3
10

.3
3

90
0.

42
0

2.
96

2.
61

90
0.

99
0

17
12

9
1.

55
1.

22
90

1.
53

0
18

27
9

10
93

13
.4

5
8.

45
90

0.
48

0
2.

46
1.

72
90

0.
98

0
79

50
1.

94
1.

24
90

0.
82

0
98

31
13

65
17

.9
0

13
.5

9
90

0.
51

0
2.

26
1.

52
90

0.
80

0
76

90
1.

74
0.

98
90

0.
89

0
94

79

78

Part II

Facility Location

79

Chapter 7

Design of an outbound logistics
network

In parallel to the research on lot-sizing problems described in the first part of this manuscript, I
had the opportunity to investigate other combinatorial optimization problems, mainly through
the participation in collaborative research projects and the co-supervision of PhD students. The
second part of this document is devoted to the presentation of two pieces of this work, which
deal with applied facility location problems. In both cases, one of the main challenges we had
to face consisted in reaching a good trade-off between the need to built a detailed mathematical
model of the real optimization problem in order to obtain practically relevant solutions and the
necessity of keeping the obtained mathematical program small enough to be solvable with a
reasonable numerical effort.

The present chapter presents a location-allocation problem to design the distribution net-
work of the car maker Renault. We seek to determine where to locate distribution centers to
optimize the distribution of cars in France from the assembly plants (or import ports) to the car
dealers while taking into account a series of operational constraints. This work was carried out
within the PhD thesis of Mouna Kchaou-Boujelben, which I co-supervized between 2010 and
2013 with Michel Minoux. This thesis was funded by an industrial research agreement (CIFRE)
between Renault and the French National Agency for Research and Technology (ANRT).

7.1 Introduction

Modern cars are complex technological products involving a large number of mechanical and
electronic sub–components. Accordingly, the automotive industry uses a large variety of pro-
duction units (forge, foundries, mechanics, assembly, etc) but the car manufacturer outsources
many of these activities to its suppliers. The resulting supply chain network is thus particularly
complex due to the introduction of many levels of suppliers (1st tier, 2nd tier, 3rd tier and even
more) in addition to assembly plants, logistical compounds and customers.

The work presented here focuses on the outbound logistics of Renault which consists of
the flows of finished cars from the assembly plants to the car dealers. The whole outbound
distribution process is mainly split into two sub–processes: primary transport from plants to
distribution centers (DCs) and secondary transport from distribution centers to car dealers.
One of the main advantages of using distribution centers is the consolidation of flows in order
to make the best possible use of transport capacities. The main volume routes are from plants to
distribution centers as these flows correspond to the aggregation of many customer demands
transiting through intermediate DCs. This is why high–capacity modes of transport such as
vessels and trains could be used, especially when manufacturing sites are scattered over sev-
eral countries. These modes are namely less expensive and polluting than transportation by
truck, making them an attractive option for long distance, high volume flows. Once arrived at
distribution centers, cars are not stored but only held for a short transit time (typically a few

Chapter 7. Design of an outbound logistics network 80

FIGURE 7.1: Overview of the outbound logistics of Renault

days) before being sent to car dealers. In this second step (secondary transport), only trucks are
used to deliver cars to car dealers as the corresponding transport routes are short and usually
in urban areas. See Figure 7.1 for an overview of the outbound distribution process.

In the present work, we limit our scope to the portion of the distribution network located
in France. Thus, in case the transport from an overseas assembly plant to a distribution center
involves maritime shipping and transshipments, we consider the import port in France as the
sourcing point instead of the assembly plant. Moreover, a preliminary analysis showed that
none of the potential transport links in France could meet the necessary minimum volume
requirements to allow using train as transport mode. We thus focus on transportation by truck.

A distinctive feature of car distribution comes from the fact that cars are expensive, fragile
and bulky products that have to be transported by dedicated trucks with limited capacities.
Typically, a truck can carry up to 8 Renault Clio or 10 Renault Twingo. Dealing with volumi-
nous products results in the fact that load efficiency is a key parameter in order to minimize
transportation costs in car distribution. Thus, making the best possible use of transport capac-
ities and in particular ensuring full truckload transport is one of the priorities of automotive
outbound logistics.

Ensuring transportation between two points of the distribution network via full truckload
would not be a major issue if it was possible to let the cars wait on a parking facility as long
as needed to full the trucks. However, as there is a maximum delivery time to comply with,
this policy is not feasible in practice. Thus, in order to ensure transportation by full truckloads
while complying with the maximum delivery time, it is important to consolidate enough vol-
ume on each opened transport link. For primary transport from plants to distribution centers,
this involves reducing the number of transport links starting at a given plant. However, for
secondary transport from distribution centers to car dealers, this is not always possible. The
demand of some car dealers could be indeed below the threshold corresponding to reaching a
full truckload within the maximum waiting time allowed at a distribution center. This is why
it is necessary to group deliveries: a given truck starting from a distribution center may have
to visit two or three customers before coming back to the distribution centre.

7.2 Problem description

We study a three-level multi-product distribution network. This network consists in a set S =
{1, ..., S} of sourcing points (assembly plants or import ports), a set D = {1, ..., D} of potential

Chapter 7. Design of an outbound logistics network 81

candidate sites to locate a distribution center (DC) and a set C = {1, ..., C} of car dealers. We
assume that the number and location of the sourcing points as well as the number and location
of car dealers are fixed.

Let P = {1, ..., P} denote the set of products (or car types) that should be distributed using
this logistics network. The annual demand of each car dealer for each car type is assumed
to be already assigned to a sourcing plant. This is indeed a strategic decision made by high
management and not at the distribution level. Demands are thus expressed as quantities qp,s,c
of a given car type p to be distributed from a given source s to a given destination c in the
network.

Our main concern is to locate DCs by selecting a subset of previously identified candidate
location sites, to assign car dealers to DCs and to route the flows of cars in this transportation
network such that the total distribution costs are minimized. This optimization problem can
thus be seen as a location-allocation problem. It however significantly differs from the basic
variant of this problem as multiple operational constraints have to be taken into account in the
problem modeling to ensure that the proposed transportation network will meet the real-life
requirements.

These operational constraints can be described as follows.

1. Minimum volume constraints on primary transport links. The total volume of cars to be trans-
ported on each opened transportation link between a sourcing point and a DC should be
above a minimum value ensuring that it will be possible to carry out the transportation
through full truckload without letting cars wait at the sourcing point more than the max-
imum allowed time (one week in practice). Let Vmin

s be the minimum annual volume of
cars to be transported on any primary link opened between sourcing point s and DC d
and PTCsd be the unit cost per car transported by full truckload between sourcing point
s and DC d.

2. Minimum volume constraints on each secondary transport route. In many cases, transport-
ing cars from DCs to car dealers through direct deliveries is not possible as the weekly
volume of cars requested by a car dealer is too low to allow delivery by full truckload
once a week. This is why the secondary transport is done through the use of distribution
routes starting at a DC, successively visiting several car dealers and coming back to the
DC. Each route should be built such that the total volume of cars to be distributed to the
car dealers it visits is above a minimum value ensuring that it will be possible to carry out
the transportation through full truckload at least once a week. Let Wmin be the minimum
annual volume of cars to be transported on any opened secondary route.

3. Maximum covering distance constraints. Deliveries from DCs to car dealers are carried out
by drivers that have to come back to the DC at the end of each working day and are not
allowed to drive longer than the legal daily driving time. This translates into the fact that
the distance traveled on a secondary transport route should not be above a given limit
denoted by Lmax.

4. Single sourcing restrictions: In order to facilitate day-do-day operations, it is requested that
each car dealer always receives all the car types coming from the same sourcing point
through the same DC.

5. Minimum and maximum volume constraints at each DC: In practice, the management of the
DCs is outsourced to logistics suppliers. In this context, locating a DC on a candidate
location site does not mean that we actually build a DC but only that we contract with a
logistics supplier to use its already existing DC. This is why there is no fixed opening costs
in this problem. Instead, there is a unit transit cost TCd to be paid for each car transiting

Chapter 7. Design of an outbound logistics network 82

through a DC: this unit cost applies as long as the total annual volume of cars transiting
through the DC stays within a predefined interval denoted by [Tmin

d , Tmax
d].

7.3 Solution approach

As such, the problem described in Subsection 7.2 is an integrated location-routing problem, i.e.
a problem in which we simultaneously determine the location of facilities and the route from
these facilities to serve the demand points. However, the size of the instances coming from our
case study exceeds by far the current numerical tractability of exact solution approaches for
location-routing problems. We thus propose a two-phase heuristic solution approach.

7.3.1 Clustering of demand points

The first phase consists in building clusters of car dealers in order to get a good approxima-
tion of the secondary routing costs while keeping a manageable size for the facility location
problem. These clusters should group together a small number of car dealers which are geo-
graphically close to one another and whose total demand is large enough to ensure delivery
by full truckload once or twice a week. While building the list of potential clusters, we thus
take into account three constraints: a maximum number of car dealers per cluster, a maximum
distance between car dealers belonging to the same cluster and a total annual demand (for all
products in P) of the car dealers in the cluster above a minimum value. We propose to solve
this clustering problem either exactly as a set partitioning problem or approximately using a
dedicated heuristic. Let K = {1, .., K} be the set of selected clusters and Ck ⊂ C be the set of car
dealers belonging to cluster k.

Once the set of clusters is determined, the best delivery route from each candidate location
site d to each cluster k is built by solving a small traveling salesman problem. If the length Ld,q
of this route is larger than the maximum covering distance Lmax, the corresponding DC-cluster
assignment is forbidden. Otherwise, we multiply this length by the transportation cost per
kilometer and use the result as an estimation of the unit cost STCd,k to transport a car by full
truckload from the DC d to cluster k.

Finally, recall that we have single sourcing restrictions for the car dealers. These restrictions
impose that, for a given car dealer c, the set of car types it will receive from the same sourcing
point s transits through the same DC d. This enables us to aggregate the demand of all car
dealers c ∈ Ck for all products they should receive from the same sourcing point into a single
demand denoted by γs,k = ∑c∈Ck ∑p∈P qp,s,c.

7.3.2 Location-allocation problem

Mixed-integer linear programming formulation

The second phase aims at solving the initial facility location in which the demand points are
not anymore the individual car dealers (served through routes) but the clusters of car dealers
(served through direct deliveries) built in the first phase.

In order to formulate the problem, we introduce the following binary variables:

• yd = 1 if DC d is selected in the solution, 0 otherwise;

• xs,d,k = 1 if cluster k receives the products coming from sourcing point s through DC d, 0
otherwise;

• as,d = 1 if transportation link between sourcing point s and DC d is used, 0 otherwise;

• bd,k = 1 if transportation route between DC d and cluster k is used, 0 otherwise.

Chapter 7. Design of an outbound logistics network 83

Using these variables, the location-allocation problem can be formulated as follows.

min ∑
s∈S

∑
d∈D

∑
k∈K

[PTCsd + TCd + STCd,k]γs,kxs,d,k (7.1)

∑
d∈D

xs,d,k = 1 ∀s ∈ S , ∀k ∈ K (7.2)

∑
k∈K

γs,kxs,d,k ≥ Vmin
s asd ∀s ∈ S , ∀d ∈ D (7.3)

∑
k∈K

xs,d,k ≤ Kasd ∀s ∈ S , ∀d ∈ D (7.4)

∑
s∈S

∑
k∈K

γs,kxs,d,k ≥ Tmin
d yd ∀d ∈ D (7.5)

∑
s∈S

∑
k∈K

γs,kxs,d,k ≤ Tmax
d yd ∀d ∈ D (7.6)

∑
s∈S

γs,kxs,d,k ≥Wminbd,k ∀d ∈ D, ∀k ∈ K (7.7)

∑
s∈S

xs,d,k ≤ Sbd,k ∀d ∈ D, ∀k ∈ K (7.8)

bd,k = 0 ∀(d, k) s.t. Ld,k > Lmax (7.9)
yd ∈ {0, 1}, xs,d,k ∈ {0, 1}, as,d ∈ {0, 1}, bd,k ∈ {0, 1} ∀s ∈ S , ∀d ∈ D, ∀k ∈ K (7.10)

The objective function (7.1) seeks to minimize the total distribution costs which consist in
the primary transportation costs, the transit costs and the secondary transportation costs. Con-
straints (7.2) ensure that the demand of each cluster k for the product types available at each
sourcing point s is satisfied and that all the corresponding cars transit through a single DC. Con-
straints (7.3)-(7.4) impose the minimum volume requirements on each opened primary trans-
poration link: if link (s, d) is opened, i.e. if asd is set to 1, the total amount of cars transported
on this link must be above Vmin

s . Similarly, Constraints (7.5)-(7.6) ensure that the total volume
transiting through each opened DC lies within the prescribed interval and Constraints (7.7)-
(7.8) impose the minimum volume requirements for each opened secondary route. Finally,
Constraints (7.9) guarantee that the selected secondary transportation routes do not exceed the
maximum covering distance of each DC.

Heuristic resolution of the mixed-integer linear program

Problem (7.1)-(7.10) is a binary program which can be solved directly by a mathematical pro-
gramming solver for small instances. However, the computational time needed to solve to
optimality the instances corresponding to our industrial case study was very long (more than
4 days of computation on a personal computer) in some cases. This is mainly explained by the
large number of binary variables involved in the model: this one was namely up to 62800 for
the largest instances considered in our numerical experiments.

We thus develop a MILP-based heuristic. The idea behind the proposed algorithm is to
exploit as much as possible the information provided by the optimal solution of the linear
relaxation of Problem (7.1)-(7.10). An argument supporting this approach is the tightness of
the lower bounds provided by this linear relaxation: the average integrality gap on the studied
instances was namely around 1.3%. The proposed heuristic comprises two main steps:

1. The algorithm first solves a relaxed version of Problem (7.1)-(7.10) in which only the lo-
cation variables y are kept binary and all the other variables are relaxed as continuous
variables in [0, 1]. The solution of this relaxed problem is used to decide which candidate
location sites should be selected.

Chapter 7. Design of an outbound logistics network 84

2. The location of the DCs being given, the second step aims at determining the best possi-
ble DC-cluster assignment while complying with the minimum volume constraints both
at the DCs and on each opened transportation link. A first possibility consists in solving
again Problem (7.1)-(7.10) in which the value of each location variables y is now fixed
to the value obtained during the previous step, variables a, b and x corresponding to
closed DCs are set to 0 and the integrality constraints on the remaining a, b and x are
reintroduced. The resulting binary program is easier to solve than the initial problem as
the number of binary variables is significantly reduced. In order to further reduce the
computation time, we also develop a ’fixing heuristic’ which, based on the solution ob-
tained during the first step of the algorithm, seeks to fix the value of as many assignment
variables x as possible before reintroducing the integrality constraints on a, b and x and
solving the obtained reduced-size MILP. We propose several ways of carrying out this
variable fixing without creating infeasibility with respect to the minimum volume con-
straints. The reader is referred to Kchaou Boujelben et al. (2014) for a detailed description
of this algorithm.

7.4 Computational experiments

We carried out numerical experiments based on the data coming from our case study. This one
involves S = 16 sourcing points, D = 51 candidate sites, C = 448 car dealers and P = 35 car
types.

We first run the clustering phase using a maximum of 3 car dealers per cluster, a maximum
distance of 80km between car dealers belonging to the same cluster and a minimum annual
demand allowing 2 full truckload deliveries per week. This resulted in the creation of around
60000 potential clusters, amongst which K = 302 were selected by the clustering algorithm.
We then solved Problem (7.1)-(7.10) either exactly with a mathematical programming solver
or heuristically with one of the algorithms described above. The reader is referred to Kchaou
Boujelben et al. (2014) for an in-depth discussion about the algorithmic performance of the
proposed heuristic solution approach. In a nutshell, our results showed that the implemented
heuristic methods are able to provide good quality solutions within short computation times
on instances for which a state-of-the-art MIP solver does not produce any feasible solution.

Regarding the case study, we noted that the network structure suggested by our solution
displayed a rather high number of opened DCs. It namely chose to open a DC in 28 out of the
51 available candidate sites. This means that secondary transport considerably influences the
network configuration. Namely, the maximum covering distance constraint imposes to open
many DCs in order to be close to car dealers. Furthermore, the cost per car per kilometer for
secondary transport is higher than the cost for primary transport, due to the difference of truck
speed (secondary transport usually concerns last-mile deliveries in urban areas where trucks
are slower). As customers are scattered all over the country, we try to get close to them by
opening many DCs. Nonetheless, it is not possible to open a DC at each potential location as
this may violate minimum throughput constraints for DCs. In our solution, the throughput of
many opened DCs is indeed close to the minimum required quantity. This shows the impact of
minimum throughput constraints on the network configuration. Finally, we observed that the
number of DCs assigned to each cluster is relatively small (between 1 and 5 DCs per cluster)
and that 34% of the clusters are served by a single DC from which they receive all their demand.

7.5 Conclusion and perspectives

We considered a multi-product distribution network design problem arising from a case-study
in the automotive industry. Based on realistic assumptions, we introduced minimum volume,

Chapter 7. Design of an outbound logistics network 85

maximum covering distance and single sourcing constraints, making the problem difficult to
solve for large-size instances. We thus developed several heuristic procedures using various
relaxations of the original MIP formulation of the problem. In our numerical experiments, we
analyzed the structure of the obtained network. This work was published as a journal paper:
see Kchaou Boujelben et al. (2014). A multi-period extension seeking to take into account the
annual seasonality of car demand was also published as a journal paper: see Kchaou-Boujelben
et al. (2016).

However, the model investigated here assume that all input parameters, in particular the
future demand for cars and the transportation costs, are deterministic. This is a rather strong
assumption in practice. The development of a stochastic programming approach taking into
account the uncertainty on these parameters may thus be an interesting direction for further
research.

86

Chapter 8

Optimal placement of virtual network
functions for cybersecurity

The present chapter investigates a set covering problem arising in the context of cybersecurity
in telecommunication networks. The problem aims at optimally placing virtual network func-
tions in a 5G network in order to counter an on-going distributed denial-or-service attack and
prevent the hackers from causing damages to their target.

The work presented in this section was carried out between 2017 and 2020 through a col-
laboration with Sonia Vanier, assistant professor at the University Paris I, and Kahina Lazri,
research engineer in cybersecurity at Orange R&D. This project also involved a master student,
Alexandros Papadimitriou, who did a 6-months internship at Orange R&D center in 2019.

8.1 Introduction

Distributed Denial of Service (DDoS) attacks are among the top threats to network operators
and internet service providers (ISPs). A distributed denial of service is a type of cyberattack in
which multiple compromised computer systems attack a target, such as a server or a website,
and cause a denial of service for its legitimate users. The flood of incoming messages, connec-
tion requests or malformed packets exhausts the resources of the target and forces it to slow
down or even shut down, thereby preventing it to provide service to its legitimate users.

DDoS attacks can be very damaging for the organization they target. For instance, a survey
carried out in 2017 by the cybersecurity company Kapersky Lab estimated the average cost of a
DDoS attack for large (1000+) businesses to be around $2.3 millions: see Berard (2018). This cost
mainly comprises the cost incurred in fighting the attack and restoring service, the investment
in an offline or back-up system while online services are unavailable, the loss of revenue or
business opportunities and the loss of trust from customers and partners.

Many DDoS mitigation solutions have been proposed to protect organizations’ networks,
servers and services. The traditional approach consists in deploying specialized hardware se-
curity appliances that are fixed in terms of strength, functionality and capacity. This means
in particular that the location and capacity (in terms of the volume of malicious traffic it can
process) of the defense appliances are determined in advance, before the DDoS attacks actually
take place. As explained e.g. by Fayaz et al. (2015), companies are thus forced to over provision
by deploying appliances capable of handling a high but predefined volume of attack at several
points in the network.

Network Function Virtualization (NFV) is a recent network architecture concept in which
network functions (e.g. network address translation, firewalling, domain name service, etc.)
are implemented as software and deployed as virtual machines running on general purpose

Chapter 8. Optimal placement of virtual network functions for cybersecurity 87

commodity hardware (Jakaria et al., 2016). NFV offers new possibilities to counter DDoS at-
tacks. In particular, its flexibility and reactivity allows to postpone the DDoS defense deploy-
ment after the attack is detected. The defense mechanisms can therefore be placed where they
are needed and their number can be adapted to the scale of the attack (Fayaz et al., 2015).

NFV is thus a promising technology to mitigate DDoS attacks. However, in order to fully
leverage its potential, some difficulties should be overcome. First, virtual network functions
(VNFs) are instantiated on virtual machines. These virtual machines consume the limited com-
puting resources (CPU, memory,...) of the servers on which they run. When designing an
NFV-based infrastructure to counter an on-going DDoS attack in a network, these limitations
in the available computing resources should be taken into account. The number of VNFs which
can be instantiated at each node of the network depends on the resources of the servers located
at this node. Second, each VNF has a limited filtering capacity and can thus remove only part
of the attack flow. The filtering capacity of a VNF corresponds to the maximum amount of
malicious flow an instance of this VNF can stop. If the malicious flow going through a VNF
is larger than its filtering capacity, the excess malicious flow is forwarded in the network and
may thus reach its target. This translates into the fact that, in order to stop all the malicious
traffic of an attack, several VNFs may have to be placed at different nodes on the paths used to
route the flow between its source and its target. A carefully optimized VNF placement strat-
egy taking into account both the limited computing resources in the network and the limited
filtering capacity of a VNF is thus needed.

In the present work, we focus on the deployment of an architecture based on the NFV
technology to secure a network against DDoS attacks. We assume that the on-going attack has
been detected and that its ingress points, its volume and its target have been identified. Based
on this information, we seek to determine the optimal number and location of VNFs in order to
remove all the illegitimate traffic while trying to minimize the total cost of the activated VNFs.

We take here the perspective of an internet service provider (ISP) aiming at providing a
DDoS mitigation service to its customers in a 5G network. Among the key features of 5G
networks is network slicing: see e.g. Vyakaranam and Krishna (2018). Network slicing is an
architecture in which the physical network infrastructure managed by an ISP is partitioned
into multiple virtual independent networks termed slices. Each slice is an isolated end-to-end
network which is lent by the ISP to a single customer. A slice is adapted to meet the spe-
cific requirements of its customer in terms of quality of service (bandwidth, reliability, latency,
etc.). Network slicing thus provides an opportunity to the ISP to flexibly configure its physical
network so as to simultaneously fulfill quality-of-service requirements that may strongly vary
from one customer to the next. However, on each slice of the network, the routing of the flow
will not be managed anymore by the ISP but by its customer which will rely on its own propri-
etary routing algorithms. This significantly enhances the difficulty for the ISP of providing a
DDoS mitigation service as it will not control the exact routing of the malicious flow that needs
to be stopped.

In what follows, we present a robust optimization (RO) model to optimally design an NFV-
based DDoS mitigation infrastructure in the context of 5G network slicing. This model explic-
itly takes into account the fact that the ISP is not aware of the exact routing of the attack flow.
This is done by considering the malicious flow routing as an input parameter of the optimiza-
tion problem which is subject to uncertainty. To the best of our knowledge, this is the first time
such a robust optimization model is investigated to design a DDoS mitigation infrastructure in
5G networks

Chapter 8. Optimal placement of virtual network functions for cybersecurity 88

8.2 Problem description

8.2.1 Problem definition

The network topology is modeled by a digraph G = (N ,L) in which N , the set of nodes,
represents specific equipment in the network and L, the set of arcs, corresponds to the links
that can be used to route the traffic. The routing of the traffic in the network is limited by the
bandwidth bl of each link l. In practice, part of this bandwidth is used to route the legitimate
traffic in the network. In the present work, for the sake of simplicity, we assume that the band-
width consumed by the legitimate traffic is negligible as compared to the one consumed by the
illegitimate traffic. We thus consider that the illegitimate traffic may use all the bandwidth of a
link if needed.

The illegitimate traffic corresponding to the on-going DDoS attack is represented as a set
A of attacks: attack a ∈ A corresponds to an illegitimate traffic of Fa Mbps between a source
sa ∈ N and the target t ∈ N of the DDoS attack. As explained in the introduction, in the present
work, we consider the case in which an ISP lends slices of its physical network infrastructure
to its customers and each of these customers uses its own flow routing algorithms to route
the flow on the slice assigned to it. This translates into the fact that the exact routing in the
network of the malicious flow to be stopped is not known by the ISP at the time when it has to
decide about the NFV-based DDoS mitigation infrastructure. Let P a be the set of all potential
paths between sa and t for attack a. N a

p (resp. La
p) denotes the set of nodes (resp. the set of

links) belonging to path p ∈ P a and P a(n) denotes the subset of paths of P a going through
node n. The amount of malicious flow of attack a ∈ A on path p ∈ P a, denoted by f̃ a

p , is
thus subject to uncertainty. However, even if the exact value of parameter f̃ a

p is unknown,
there are some restrictions on its potential value. Namely, we know that the total amount of
malicious flow routed on the paths belonging to P a may not be greater than Fa, the amount
of illegitimate traffic of attack a. Moreover, the malicious flow routing must comply with the
limited bandwidth of each link. These two pieces of information should be exploited as best as
possible to avoid using more network resources than necessary for the DDoS attack mitigation.

In the considered DDoS mitigation framework, VNFs are used to filter and stop the ille-
gitimate traffic before it reaches its target. Basically, filtering consists in selectively stopping
unwanted traffic by exploiting the information contained in the header of each data packet. A
VNF instantiated on a node n ∈ N of the network will thus analyze and filter the malicious
flow going through node n. However, each instantiated VNF has a limited filtering capacity
which corresponds to the maximum amount of malicious flow it can block: if the malicious
flow the VNF has to handle is larger than its filtering capacity, the excess flow is forwarded
in the network and may thus reach its target. The set of available VNF types is described by
V = {1, ..., V}. A VNF of type v is characterized by its filtering capacity φv, its cost Kv and
its computing resources consumption. The set of computing resources (CPU, memory, etc.) is
denoted by R = {1, ..., R}. Let krv be the amount of computing resource r required by the
instantiation of one VNF of type v and Capr

n the amount of computing resource r available at
node n.

The optimization problem consists in identifying the location and number of VNFs to be
placed in the network so as to stop all the malicious flow before it reaches its target, and this
whatever its routing through the network, while minimizing the cost of the instantiated VNFs
and complying with the limitations on the computing resources.

8.2.2 Mathematical formulation

We propose to handle this optimization problem using a robust optimization (RO) approach. A
robust optimization problem is an optimization problem in which some parameters are subject

Chapter 8. Optimal placement of virtual network functions for cybersecurity 89

to uncertainty. In a RO problem, the uncertainty on the input parameters is not described in
terms of probability distributions but rather by means of an uncertainty set containing all the
possible values that these parameters may take. Solving a RO problem consists in finding a
solution which is feasible for any realization of the uncertain parameters in the uncertainty set
and which provides the best possible value of the objective function. The reader is referred to
Gorissen et al. (2015) for a practical introduction on robust optimization.

In the present case, the routing of the malicious flow in the network is not known by the
ISP. The amount of malicious flow of attack a ∈ A on path p ∈ P a, f̃ a

p , can thus be seen as
an uncertain input parameter for the problem of optimally placing VNFs to counter the DDoS
attack. However, even if the exact value of parameter f̃ a

p is unknown, its value should comply
with two restrictions. First, for each attack a, the total flow routed in the network may not be
larger than the total attack traffic, i.e. we have ∑p∈P a f̃ a

p ≤ Fa for each attack a ∈ A. Second,
the flow routed on each link l of the network may not exceed the bandwidth bl of this link. We
thus have ∑a∈A ∑p∈P a s.t. l∈La

p
f̃ a
p ≤ bl for each link l.

This means that the uncertain malicious flow routing, f̃ , belongs to the uncertainty set U
defined by:

U = { f̃ ≥ 0| ∑
p∈P a

f̃ a
p ≤ Fa, ∀a ∈ A

∑
a∈A

∑
p∈P a s.t. l∈La

p

f̃ a
p ≤ bl , ∀l ∈ L}

Note that the first restriction on f̃ is expressed as a inequality rather than as an equality.
Namely, in some cases, it may not be possible to route all the malicious flow of the attack in
the network due to the limited bandwidth of the network links. In these cases, expressing the
restriction as an equality would lead to an empty uncertainty set. For the RO problem, this
would mean that there is no malicious flow routed in the network, i.e. no malicious flow to
be stopped by the VNF-based infrastructure, whereas in practice part (but not all) of the attack
flow will be routed in the network.

We introduce the integer decision variables xv
n which represent the number of VNFs of type

v placed at node n. Using these variables, the robust optimization problem can be formulated
as follows:

Z∗ = min ∑
v∈V

∑
n∈N

Kvxv
n (8.1)

∑
v∈V

krvxv
n ≤ Capr

n ∀n ∈ N , ∀r ∈ R (8.2)

∑
n∈N (f̃)

∑
v∈V

φvxv
n ≥ ∑

a∈A
∑

p∈P a

f̃ a
p ∀ f̃ ∈ U (8.3)

xv
t = 0 ∀v ∈ V (8.4)

xv
n integer ∀n ∈ N , ∀v ∈ V (8.5)

The objective (8.1) is to minimize the total costs of the deployed VNFs. Constraints (8.2)
ensure that the VNFs installed at each node n do not consume more than the available com-
puting capacity for each computing resource. Constraints (8.3) translate the fact that we seek
to avoid any damage to the target by stopping all the malicious flow before it reaches it. In
Constraints (8.3), N (f̃) = {n ∈ N \ {t}|∑a∈A ∑p∈P a(n) f̃ a

p > 0} represents the subset of nodes
n through which part of the malicious flow transits when considering the flow routing f̃ . Con-
straints (8.3) impose that, for each possible routing f̃ , the total filtering capacity installed on

Chapter 8. Optimal placement of virtual network functions for cybersecurity 90

the nodes traversed by a strictly positive amount of malicious flow in the routing f̃ , i.e on the
nodes belonging to N (f̃), is larger than the total malicious flow actually routed through the
network in f̃ . Constraints (8.4) forbid any filtering at the targeted node. Note that Constraints
(8.3) are robust constraints that should hold for any flow routing belonging to the uncertainty
set U .

Constraints (8.3) can be seen as aggregated attack filtering constraints ensuring that the total
filtering capacity installed on the set of nodes traversed by f̃ is larger than the total malicious
flow routed through the network. As such, they do not guarantee that the filtering capacity
installed on each potential path p ∈ P a of each attack a is enough to stop all the flow related
to attack a routed on this path, i.e. that the filtering capacity installed on each path p ∈ P a is
larger than f̃ a

p . However, we prove that, for any feasible solution x of Problem (8.1)-(8.5) and
any flow f belonging to U , we can find at least one allocation of the filtering capacity installed
at each node n to the flows going through n such that all the malicious traffic can be filtered.
See Gicquel et al. (2020) for a more detailed discussion on this point.

Finally, Problem (8.1)-(8.5) is NP-hard, even if the uncertainty set U contains a finite and
discrete set of potential routings. The proof is done by reduction from the minimum set cover
problem: see Gicquel et al. (2020) for more detail.

8.3 Solution approach

As explained e.g. by Gorissen et al. (2015), Problem (8.1)-(8.5) may seem intractable as such as
the number of constraints (8.3) is infinite. Two main ways have been proposed in the literature
to handle this difficulty.

The first one consists in applying reformulation techniques which result in the formulation
of a deterministic problem with a finite number of constraints: see e.g. Bertsimas and Sim
(2004). In our case, the use of these reformulation techniques is not possible. Namely, the worst
case reformation of Constraints (8.3) would lead to the following expression:

min
f̃∈U

∑
n∈N

I
(

∑
a∈A

∑
p∈P a(n)

f̃ a
p > 0

)
∑
v∈V

φvxv
n − ∑

a∈A
∑

p∈P a

f̃ a
p > 0 (8.6)

where I
(

∑a∈A ∑p∈P a(n) f̃ a
p > 0

)
is an indicator function that is equal to one if ∑a∈A ∑p∈P a(n) f̃ a

p >

0 and zero otherwise. The resulting inner minimization problem cannot be formulated as a lin-
ear program (but rather as a mixed-integer linear program) due to the presence of this indicator
function. It is thus not possible to use the duality theory to reformulate it and obtain a com-
putationally tractable robust counterpart as is commonly done in this type of reformulation
approach.

The second possible way of solving a RO problem such as Problem (8.1)-(8.5) consists in ap-
plying an adversarial approach. Such approaches are based on the decomposition of the initial
problem into a master problem and a sub-problem. The master problem, called the decision
maker problem in this context, can be seen as a restricted version of the original RO problem
in which only a finite number of extreme points UR ⊂ U of the uncertainty set (instead of the
whole uncertainty set U) are used to express the robust constraints. This problem is a deter-
ministic optimization problem with a finite number of constraints and is thus computationally
tractable. The sub-problem is called the adversarial problem. Given the solution provided by
the decision maker problem, the adversarial problem seeks to find an extreme point of U for
which this solution is infeasible. If no such extreme point can be found, the current solution
of the decision maker problem is optimal for the initial RO problem. If such an extreme point
is found, we add it to the restricted set UR and reiterate the process. The finite convergence of
this algorithm is ensured by the fact that the uncertainty set U has a finite number of extreme

Chapter 8. Optimal placement of virtual network functions for cybersecurity 91

points. Adversarial approaches have been successfully used to solve RO problems arising in a
variety of applications: see among others Bienstock and Özbay (2008), Attila et al. (2017), van
Hulst et al. (2017) and Agra et al. (2018).

The proposed adversarial approach thus iteratively solves the decision maker problem and
the adversarial sub-problem. At each iteration, the decision maker problem is solved using the
current restricted uncertainty set UR and provides a placement of the VNFs x which is optimal
for this restricted uncertainty set. x being given, the adversarial problem is solved to find the
worst-case routing of the malicious flow for the VNF placement described by x, i.e. to find an
extreme point of U wich maximises the infeasibility of x if it exists. In case such an extreme
point is found, we update the restricted uncertainty set UR by adding the newly found routing
f and go on to the next iteration. Otherwise, x is feasible for all extreme points of U , the current
VNF placement x is optimal and the algorithm stops.

8.3.1 Decision maker sub-problem

The decision maker problem, denoted by DMP(UR), can be formulated as follows:

Z∗DMP = min ∑
v∈V

∑
n∈N

Kvxv
n (8.7)

∑
v∈V

krvxv
n ≤ Capr

n ∀n ∈ N , ∀r ∈ R (8.8)

∑
n∈N (f)

∑
v∈V

φvxv
n ≥ ∑

a∈A
∑

p∈P a

f a
p ∀ f ∈ UR (8.9)

xv
t = 0 ∀v ∈ V (8.10)

xv
n integer ∀n ∈ N , ∀v ∈ V (8.11)

Problem DMP(UR) thus displays the same structure as the initial RO problem but the num-
ber of Constraints (8.9) is now finite. Moreover, as will be shown by the numerical experiments
provided in Section 8.4, in practice, the cardinality of UR, and as a consequence the number of
Constraints (8.9) involved in the formulation, remain rather limited when implementing the
adversarial approach. Problem DMP(UR) can thus be directly solved by a mixed-integer linear
programming solver with a reasonable computational effort.

8.3.2 Adversarial sub-problem

Let us now focus on the adversarial sub-problem. In order to formulate it, we introduce the
following decision variables:
- f a

p : amount of malicious flow of attack a routed on path p ∈ P a,
- zn ∈ {0, 1}: zn = 1 if there is a positive amount of malicious flow transiting through node n,
0 otherwise.

Given the current VNF placement x, the maximum amount of malicious flow which can
reach its target can be found by solving the following mixed-integer linear program, denoted
by AP(x).

Chapter 8. Optimal placement of virtual network functions for cybersecurity 92

Z∗AP(x) = max ∑
a∈A

∑
p∈P a

f a
p − ∑

n∈N\{t}
(∑

v∈V
φvxv

n)zn (8.12)

∑
p∈P a

f a
p ≤ Fa ∀a ∈ A (8.13)

∑
a∈A

∑
p∈P a s.t. l∈La

p

f a
p ≤ bl ∀l ∈ L (8.14)

∑
a∈A

∑
p∈P a(n)

f a
p ≤ (∑

a∈A
Fa)zn ∀n ∈ N \ {t} (8.15)

f a
p ≥ 0 ∀p ∈ P a (8.16)

zn ∈ {0, 1} ∀n ∈ N (8.17)

The linear variables f thus describe the worst-case routing of the malicious flow for the
VNF placement x. Constraints (8.13) ensure that, for each attack, the total amount of flow of
attack a routed through the network is smaller that the total amount of flow of the attack Fa.
Note that due to the limited bandwidth of the network links, it might not be possible to route all
the flow of attack a through the network: Constraints (8.13) are thus formulated as inequalities
rather than as equalities. Constraints (8.14) guarantee that the flow routed on each link does
not exceed its bandwidth. In other words, Constraints (8.13), (8.14) and (8.16) make sure that
the solution of problem AP(x) provides a flow f belonging to the uncertainty set U .

The objective function (8.12) seeks to maximize the amount of malicious flow which will
reach its target, i.e. which will not be filtered by a VNF between its source and its target.
Note that the filtering capacity ∑v∈V φvxv

n placed at node n can stop part of the malicious
flow only if there is a positive flow routed through node n, i.e. only if ∑a∈A ∑p∈P a(n) f a

p > 0.
∑a∈A ∑p∈P a f a

p −∑n∈N\{t}(∑v∈V φvxv
n)zn thus computes the total amount of unfiltered flow as

the difference between the total flow routed through the network, ∑a∈A ∑p∈P a f a
p , and the total

amount of ’active’ filtering capacity, ∑n∈N\{t}(∑v∈V φvxv
n)zn. This ’active’ filtering capacity is

given by the sum of the filtering capacities installed at the nodes n through which a positive
amount of malicious flow transits. Constraints (8.15) ensure that, for each node n, variable zn is
equal to 1 as soon as there is some positive amount of malicious flow which is routed through
node n.

Note that, similar to what is done in Constraint (8.3) of the initial RO problem, in the ob-
jective function (8.12) of the adversarial subproblem, the total amount of unfiltered flow is
computed in a aggregate manner, i.e. by looking at the total routed flow and at the total active
filtering capacity on all nodes of the network. In a feasible solution of problem AP(x), this
might lead to an underestimation of the malicious flow which will reach its target. However,
we show that any optimal solution of AP(x) provides the worst-case routing for the given VNF
placement x (Gicquel et al., 2020).

The adversarial sub-problem AP(x) is a mixed-integer linear program which could theoret-
ically be solved directly by a mathematical programming solver. However, the number of paths
that could possibly be used to route the malicious flow of a given attack a between its source
sa and the target t, and as a consequence the number of flow variables f a

p , grows exponentially
fast with the network size.

We thus developed a branch-and-price algorithm to solve it. This algorithm starts solving
a restricted version of the adversarial sub-problem in which only a subset of flow variables
f a
p is taken into account. At each node of the branch-and-bound search tree, we solve the

linear relaxation of this restricted sub-problem and seek for new flow variables to be added to
the formulation by solving the pricing problem, which in the present case amounts to solving
a shortest path problem in an oriented graph. When no new variable can be generated, i.e.
when the linear relaxation of the restricted master problem has been solved to optimality at

Chapter 8. Optimal placement of virtual network functions for cybersecurity 93

the current branch-and-bound node, we either get an integer feasible solution of the initial
problem AP(x) or we branch on a fractional variable zn to create new nodes in the search tree
and continue with the branch-and-bound algorithm. The algorithm stops when there are no
more open nodes in the search tree.

8.4 Computational experiments

8.4.1 Instances

We randomly generated a set of medium-size instances of the problem following the indica-
tions provided by public data released by different cloud and telecom providers.

Network. We used 4 internet network topologies. The first three ones correspond to three
internet networks described in the Internet Topology Zoo library, IntelliFiber (N = 73, L = 96),
Colt Telecom (N = 153, L = 179) and Cogentco (N = 197, L = 245): see Knight et al. (2011)
and Knight et al. (2013) for more detail. We also used a topology corresponding to the former
network of the French company Free (V = 120, L = 167): see Ferre (2010). The bandwidth
bl of each link was randomly generated using a discrete distribution with a support equal to
{4.8, 12, 20, 40, 100}Mbps.

Computing resources. R = 2 types of computing resources were taken into account at
each node: the number of CPUs and the memory. We considered three types of nodes: low
computing capacity with Cap = (8, 32), medium computing capacity with Cap = (40, 160)
and high computing capacity with Cap = (400, 1600). In each considered network topology,
we assign each node to a type according to its degree. Thus, nodes with a degree less than 2
were assigned a low computing capacity, nodes with a degree between 3 and 5 were assigned
a medium computing capacity and nodes with a degree larger than 6 were assigned a high
computing capacity.

VNFs. V = 1 type of VNFs was considered requiring γ1,1 = 4 CPUs and γ1,2 = 16 units of
memory, providing a filtering capacity of φn = 16 Mbps, with a unit cost of K1 = 130.

Attacks. The number of sources was set to A ∈ {5, 10, 15, 20, 30, 40}. In each instance, the
sources and target of the attack were randomly selected. The intensity Fa of each attack (in
Mbps) was randomly generated following the normal distribution N (50, 25).

For each considered network topology and value of A, we randomly generated 5 instances,
leading to a total of 140 instances.

8.4.2 Results

Each generated instance was solved using the adversarial algorithm described in Section 8.3.
The decision maker problem is solved as a mixed-integer linear program using the solver
CPLEX 12.8.9 with the default settings whereas the adversarial sub-problem is solved using
the branch-and-price algorithm embedded in the SCIP 7.0.0 solver. All tests were run on an
Intel Core i5 (1.9GHz) with 16 Gb of RAM, running under Windows 10.

For each network topology and each considered value of A, we report in Table 8.1 the
average value over the 5 corresponding instances of:

• Cost: the cost of the optimal VNF placement,

• #IT: the average number of iterations of the algorithm,

• #P: the total number of flow variables added to the adversarial subproblem by column
generation over the course of the algorithm,

• Time: the total computation time in seconds of the algorithm.

Chapter 8. Optimal placement of virtual network functions for cybersecurity 94

Topology A Cost #IT #P Time
IntelliFiber 5 936 9 25 3

10 1066 13 36 10
15 1248 11 45 4
20 988 9 35 11
30 1846 31 130 134
40 1950 17 130 31

Free 5 1092 12 27 10
10 1326 10 41 4
15 1378 5 60 3
20 650 5 28 1
30 1092 8 71 3
40 1352 7 63 4

Colt 5 1118 17 42 12
10 806 7 35 2
15 1170 20 63 38
20 1092 10 63 14
30 754 7 71 4
40 1118 9 66 9

Cogentco 5 546 13 58 9
10 754 14 70 24
15 1222 18 95 20
20 910 21 81 47
30 728 13 84 34
40 1066 20 101 107

TABLE 8.1: Numerical results

Results from Table 8.1 show that the proposed approach is able to provide optimal solutions
to the RO problem with a reasonable computational effort. Namely, the average computation
time, over the 140 considered instances, is 22s. This performance is mainly explained by the
fact that both the number of iterations #IT of the algorithm (and as a consequence the number
of Constraints (8.9) of DMP(UR)) and the number of flow variables in AP(x) generated by
column generation stay limited.

8.5 Conclusion and perspectives

This chapter described a new robust optimization approach for the defense against Distributed
Denial of Service (DDoS) attacks in the context of 5G network slicing. More precisely, we con-
sidered the problem of optimally deploying virtual network functions in order to stop an on-
going DDoS attack. We assumed that the target, sources and volume of the attack is identified
but that the exact routing of the illegitimate traffic on the network is not known. To take into
account these uncertainties, we proposed a robust optimization (RO) model and developed an
adversarial approach to solve it. This iterative approach is based on the decomposition of the
initial problem into a master problem and a sub-problem. The master problem is a restricted
version of the original RO problem in which only a finite number of possible malicious flow
routings are used to express the robust constraints. Considering the current VNF placement
provided by the solution of the master problem, the adversarial sub-problem seeks to find
a malicious flow routing that maximizes the amount of attack reaching its target. We tested

Chapter 8. Optimal placement of virtual network functions for cybersecurity 95

the efficiency of our algorithm on medium-sized randomly generated instances. The results
of computation experiments show that our approach is able of providing optimal solutions in
short computation times.

This work suggests several possible directions for future research. A first research direction
could consist in studying a disaggregated formulation of the robust filtering constraints. This
could ensure that the instantiated VNFs will be able to stop all the malicious flows regardless
of the allocation of filtering capacities. It would also be interesting to study how the legitimate
traffic, which will consume network resources and whose routing is also unknown, could be
taken into account in the model.

96

Chapter 9

Conclusion and perspectives

9.1 Conclusion

This thesis presented the main research results I obtained since I was recruited as an assistant
professor in 2010. Over the last ten years, I worked on difficult deterministic and stochas-
tic combinatorial optimization problems, mainly coming from applications in manufacturing,
supply chain management and telecommunication. A common point in the presented contri-
butions is the fact that they are all based on mixed-integer linear programming.

Part I was devoted to the work carried out on lot-sizing problems. Basically, all this work
aimed at decreasing the gap between lot-sizing models and real-life production planning prob-
lems by relaxing some of the rather strong assumptions used to formulate these models. Thus,
we studied in Chapter 3 an extension of the basic lot-sizing models in which the setup costs are
sequence-dependent and proposed a new family of multi-item multi-period valid inequalities
to strengthen the MILP formulation of this problem. Chapter 4 to 6 then considered another
aspect of production planning, namely the fact that it is based on input data which are relative
to the near future and, as a consequence, are not always perfectly known at the time when
the production plan has to be built. Neglecting this fact when solving the obtained lot-sizing
model may lead to a production plan which will perform poorer than expected in terms of
demand satisfaction and/or production costs when implemented in practice. We thus studied
several stochastic programming approaches for lot-sizing. The first proposed approach, pre-
sented in Chapter 4, assumed a rather simplified setting for the decision process. It namely
considered a single-stage decision process in which the whole production plan is built before
any additional information on the stochastic demand realization becomes available and cannot
be updated afterward as the demand unfolds over time. We formulated this stochastic prob-
lem as a joint chance-constrained program and proposed a new approximate solution approach
for this problem called the partial sample approximation approach. Then, in order to further
improve the modeling of the actual decision process, we investigated a multi-stage stochastic
programming approach which explicitly takes into account the fact that production decisions
are usually not made once and for all but rather adjusted over time according to the actual
realizations of the uncertain parameters. Our main contribution, reported in Chapter 5, con-
sisted in the development of a new algorithm capable of providing good-quality solutions for
large-size instances of the stochastic single-item uncapacitated lot-sizing problem. This algo-
rithm combines a nested decomposition algorithm called the Stochastic Dual Dynamic integer
Programming (SDDiP) algorithm with a cutting-plane generation approach based on known
valid inequalities. Finally, in order to extend the work of Chapters 4 and 5 which focused
on single-item single-echelon single-resource production systems, we considered a multi-item
multi-echelon multi-resource production system linked to the remanufacturing of used prod-
ucts and studied a multi-stage stochastic programming model for this problem. Chapter 6 thus
presented a customized branch-and-cut algorithm based on a new family of valid inequalities
for this problem.

Chapter 9. Conclusion and perspectives 97

In parallel to the above-mentioned work on lot-sizing, I had the opportunity to study two
applied facility location problems through industrial collaborations. The participation to these
two projects allowed me to gain experience and improve my skills in the field of modeling real-
life optimization problems with mathematical programming. The corresponding work was
reported in Part II of the manuscript. Chapter 7 discussed a facility location problem linked to
the design of the outbound logistics network of Renault. The main contribution of this work
was related to the development of a tractable solution approach for this complex large-size
location-routing problem. As for Chapter 8, it focused on the placement of virtual network
functions in a telecommunication network to secure it against a distributed denial-of-service
attack. The main novelty here consisted in the development of a new robust optimization
model and adversarial algorithm for this problem.

9.2 Perspectives

The work presented in this manuscript raises several issues and research perspectives. We
describe in what follows some research directions that we intend to pursue in the coming years.

9.2.1 Risk aversion in multi-stage stochastic lot-sizing

The multi-stage stochastic lot-sizing models investigated in Chapters 5 and 6 focus on minimiz-
ing the expected cost of the production plan and thus take a risk-neutral perspective. However,
such models may lead to production plans displaying a good performance on average, but pro-
viding very poor results, i.e. production costs much higher than the expected value, in some
unfavorable scenarios. Risk-neutral production planning models thus implicitly assume that
the production planner is willing to accept the risk that the realized total production cost may
be much larger than the expected value as long as these unfavorable scenarios are counter-
balanced with more favorable ones, overall leading to a low expected value of the production
costs. However, some production planners may be risk averse, i.e. may be more concerned
about potential large monetary losses than about the average performance of the production
plan.

In such cases, it is possible to include in the objective function terms that can measure expo-
sition to risk so as to mitigate the effects of undesirable realizations of the stochastic parameters.
There exists a large variety of singe-stage risk measures such as the conditional value-at-risk
(CVaR), the upper partial mean or the semi-deviation that can be used to measure this expo-
sition to risk. A first practical difficulty here comes from the fact that, as mentioned e.g. by
Alem et al. (2020), there does not seem to be an unrestrictedly recommendable risk measure for
production lot-sizing problems or for any other class of problems. The justification for adopt-
ing one risk measure over another one is usually given either regarding the preferences of the
decision maker, the tractability of the resulting optimization model or the theoretical properties
of the risk measure. Alem and Morabito (2013) and Alem et al. (2020) tried to provide some in-
sights about this question by numerically comparing several risk-averse approaches on real-life
lot-sizing instances. However, they focus on two-stage stochastic lot-sizing models, i.e. models
involving only two decision stages such as the one presented in Subsection 2.3.2. As explained
e.g. by de Mello and Pagnoncelli (2016), for two-stage stochastic programming models, the
extension of a risk-neutral to a risk-averse model does not pose major modeling difficulties.
Namely, the objective function comprises two terms: the deterministic first-stage costs and the
random second-stage/recourse costs. It is thus quite natural to replace the expectation of this
second-stage costs by a single-stage risk measure such as the CVaR.

Chapter 9. Conclusion and perspectives 98

Yet, the situation is different when dealing with multi-stage stochastic lot-sizing models.
Namely, in a sequential decision making process, there does not seem to be one natural and ob-
vious way of measuring risk (de Mello and Pagnoncelli, 2016). Risk may be measured e.g. stage
by stage, scenario by scenario or in a nested way. Furthermore, one important issue encoun-
tered when dealing with risk-averse multi-stage stochastic programs is that of time consistency.
Basically, a time consistent model will be such that if you solve the multi-stage stochastic pro-
gram today and find a solution for each node of the scenario tree, you should find the same
solution if you resolve the problem in the future knowing what has been observed and decided
in between (de Mello and Pagnoncelli, 2016). Although this property may seem to be natural
and desirable, it does not hold for all multi-stage risk measures. In particular, de Mello and
Pagnoncelli (2016) showed that risk measures considering the risk stage by stage or scenario
by scenario are most often time inconsistent.

Research on risk averse multi-stage stochastic lot-sizing is thus needed to compare the var-
ious existing multi-stage risk measures that may be used, to understand their potential advan-
tages and disadvantages and to highlight the benefit of using a risk-averse model as compared
to a more intuitive risk-neutral one. Subsequently, it may also be necessary to develop efficient
solution approaches for these models, possible by relying on nested decomposition approaches
such as the one presented in Chapter 5.

In order to contribute to this line of research, I am currently studying, together with Franco
Quezada and Safia Kedad-Sidhoum, a risk-averse model for the multi-stage stochastic single-
item uncapacitated lot-sizing problem. More precisely, we are investigating the use of a time-
consistent multi-stage risk measure proposed by de Mello and Pagnoncelli (2016) called the
expected conditional value-at-risk. Our on-going work consists in conducting simulation ex-
periments to gain a quantitative assessment of the practical usefulness of using this measure
in the objective function instead of a risk-neutral expectation term or a time-inconsistent risk
measures. We are also seeking to generalize the partial decomposition approach presented in
Chapter 5 to solve a risk-averse multi-stage stochastic ULS model in which risk is measured in
the objective function using the expected conditional value-at-risk.

9.2.2 Multi-stage stochastic lot-sizing with intermittent renewable energy

All production systems consume energy to run. In the production planning models investi-
gated in the present thesis, energy is taken as granted, i.e. considered as a utility which is
available as needed and whose cost is negligible as compared to the other production and in-
ventory costs. However, the rarefaction of natural resources, the hardening of environmental
public legislation and the growing customer awareness for green products increasingly make
a difference for industrial companies. The availability and affordability of energy is thus be-
coming a critical parameter affecting the whole life cycle of an industrial product, including
its production phase (unpu and Ball, 2013). This translates into a growing attention of both
researchers and practitioners on energy-efficient manufacturing.

Energy efficiency in manufacturing can be achieved among others through the on-site gen-
eration of renewable energy, such as solar and wind power, to supply power to a production
facility. Indeed, it enables the industrial manufacturer to simultaneously minimize its energy
cost, reduce its reliance on external utility companies and decrease its CO2 emissions. For in-
stance, the British luxury car maker Bentley installed in 2013 more than 20000 solar panels on
the rooftop of its factory located in Crewe, UK, and added in 2019 a solar car port comprising
10000 additional solar panels. The 7.7 MW energy system is expected to provide up to two
third of the factory energy requirement at peak generation times (Szymkowski, 2018; Bentley,
2019). Similarly, the Anheuser-Busch brewery in Fairfield (California) gets 30% of its electricity
from a wind turbine and 6500 solar panels located on the production site (Anheuser-Busch,
2021).

Chapter 9. Conclusion and perspectives 99

However, using renewable energy to power manufacturing processes poses a major chal-
lenge. Namely, the generation of renewable energy depends on the availability of its sources
(sun, wind...) so that the instantaneous power it can supply is highly variable. Hence, renew-
able energy is not expected to fully replace grid electricity but rather to be used in combination
with it. In order to fully exploit the renewable energy availability, a manufacturing company
will thus have to synchronize the time-varying on-site produced energy and the grid energy
supply with the energy demand in an efficient way. This means that on-site renewable energy
generation should be integrated into production planning and scheduling processes (Keller
et al., 2016; Pechmann and Zarte, 2017).

The incorporation of energy considerations in production planning and scheduling prob-
lems has attracted considerable attention over the last few years. As can be seen from the
recent literature reviews provided by Biel et al. (2018) and Gahm et al. (2016), the vast major-
ity of previously published studies on energy-aware production planning assume that there
is a single source of energy available to supply the production processes and focus mostly on
planning production so as to minimize the quantity of energy consumed or to reduce the to-
tal energy cost by taking advantage of time-varying energy prices. Among the works dealing
with energy-aware dynamic lot-sizing problems, two main streams can be distinguished. A
first stream assumes that the energy is available in an unlimited quantity and focus on explic-
itly integrating the energy costs in the objective function: see e.g. Özdamar and Birbil (1999),
Uzel (2004), Tang et al. (2012) and Wichmann et al. (2019b). A second one seeks to take into
account restrictions on the energy availability coming e.g. from demand-side management
programs initiated by utility providers: see Masmoudi et al. (2017), Rapine et al. (2018b) and
Rapine et al. (2018a).

Despite its increasing importance, the integration of on-site generated renewable energy
and its use in combination with other energy sources to supply production has received only
a limited attention. Mid-term production planning with intermittent renewable is considered
by Golari et al. (2017), Wichmann et al. (2019a) and Rodoplu et al. (2019). Golari et al. (2017)
study an aggregate production planning problem for a multi-plant manufacturing system pow-
ered with on-site and grid renewable energy. They propose a multi-stage stochastic program-
ming approach based on a scenario tree to model the unpredictability of solar and wind energy
generation. This leads to the formulation of a large-size linear program which is solved by
a Benders decomposition algorithm. Wichmann et al. (2019a) investigate an extension of the
deterministic General Lot Sizing and Scheduling Problem (GLSP) in which the production sys-
tem is coupled with a decentralized renewable energy generation and storage system. They
rely on three time scales to build the production and energy plan: macro-periods focusing
on the industrial product demand, micro-periods of variable length focusing on the machine
set-up and production states and micro-periods of fixed length for the energy management.
Their optimization problem is formulated as a mixed-integer linear program and solved by a
mathematical programming solver. Rodoplu et al. (2019) consider lot-sizing for a single-item
multi-echelon serial production system. This system is powered by electricity which is both
bought from the grid and generated on-site from renewable sources. The authors propose to
take into account the uncertainty on the renewable energy availability through a set of disjoint
chance constraints.

There is thus a significant gap between the state of the art and the industrial needs. In
the forthcoming years, I would like to contribute in partially closing this gap by studying
multi-stage stochastic programming approaches for production planning and lot-sizing with
intermittent renewable energy. An idea would be to consider a small-bucket lot-sizing prob-
lem (such as the multi-item DLSP discussed in Chapter 3) and to incorporate in the production
planning model the energy supply management. This energy might be either bought from the
grid or generated on site from a renewable energy source. The first issue will be to handle in the
problem modeling different time discretizations as the time slicing needed to manage demand

Chapter 9. Conclusion and perspectives 100

satisfaction, production planning and energy supply will be significantly different. Moreover,
the production and energy supply planning will be based among others on forecasts on the
future renewable energy generation. It is well-known that accurately predicting the energy
generated by a wind turbine or a set of solar panels is a very challenging task. We thus will
seek to take into account these uncertainties in the problem modeling through the develop-
ment of a multi-stage stochastic programming approach. An important issue will consist in the
generation of relevant scenario trees taking into account among others the temporal stochastic
dependencies between forecasting errors: see e.g. Pinson et al. (2009) on the generation of sce-
narios for wind power production. Finally, once the mathematical model will be built, research
work will be needed to develop an efficient solution algorithm. Namely, due to the existence
of the temporal dependencies between the random variables representing the forecasting er-
rors, the obtained scenario trees will not have the stage-wise independence property so that it
will not be possible to use a sampling-based nested decomposition approach such as the one
investigated in 5.

9.2.3 Explainable lot-sizing

As operations researchers working on lot-sizing problems, we are convinced that mathemati-
cal optimization can lead to more efficient decision making in production planning. We define
mathematical models to represent the optimization problem and solve them either by relying
on solvers based on well-defined algorithms or by developing our own solution algorithms.
This helps us being confident in the quality of the production plans we are generating. How-
ever, from the point of view of the end user, things are less obvious. Namely, the production
planners using a planning software and the factory workers in charge of implementing the
production plan usually do not have the mathematical and computer background necessary
to understand the content of the planning software and may consider it as an unexplainable
black-box. They may thus inquire about the optimality and fairness of the proposed plan. For
instance, a production planner may question the consistency of the computed production plan
and may want to understand why demand for a given item cannot be met on time or why the
same item is produced in two consecutive periods... Furthermore, a factory worker who will be
directly affected by production planning decisions may wish to understand his situation and
ask e.g. why he has to work overtime next week-end or why his team has been assigned com-
plex and/or dangerous setup operations twice this week. All these questions, if not answered
appropriately, may lead to a loss of trust in the planning software and may thus negatively
impact its adoption.

One way to address this problem could be to improve the explainability of production plan-
ning and lot-sizing decision-aid tools. Explainability is a recently emerged concept mostly
used in the context of artificial intelligence and machine learning. Explainability is basically
described by the French Commission Nationale Informatique & Libertes as the fact that it is
possible for the user to understand the global working logic of the software together with the
reasons why a specific result was obtained (CNIL, 2017). Barredo Arrieta et al. (2020) define
explainability as the details and reasons a software gives to make its functioning clear or easy
to understand for a given audience. Note that explainability differs from transparency which
refers to the fact that the source code of the software, together with its design documentation
and parameters, is available to the public. As noted e.g. by the CNIL (2017), even if trans-
parency may be desirable, it may be unsatisfying as releasing the source code of a software
leaves the vast majority of its users unable to understand its working logic. Explainability
thus requires the delivery of information that goes beyond describing the content of the soft-
ware(Castellucia and Le Métayer, 2019). One of the challenges here consists in understanding
what constitutes a good explanation. Barredo Arrieta et al. (2020) insist among others on the
importance of clearly defining the targeted audience. Namely, whether an explanation has left

Chapter 9. Conclusion and perspectives 101

the functioning of a decision-aid tool clear or easy to understand fully depends on the persona
of the explainee. Moreover, a good explanation should be simple and combine few causal re-
lationships in order to be cognitively tractable for the explainee. It should also be efficiently
attainable, i.e. quick to get in terms of computation time, as explanations are often provided
through real-time interactions with the end user: see Cyras et al. (2019). Finally, in addition
to this discussion about the required features of the content of a good explanation, there is a
need to define how this content will be communicated to the explainee through e.g. natural
language or graphical interfaces.

To the best of our knowledge, there is a single study seeking to provide explanations on the
solution of a combinatorial optimization problem. Cyras et al. (2019) thus consider the problem
of assigning medical tasks to hospital nurses so as to minimize the makespan. They develop an
intermediate explanation layer, based on abstract argumentation, between the user (the head
nurse in their case) and the optimization tool to enable her to interact with the optimization tool
and obtain explanations about the (un)feasibility and (non)optimality of alternatives schedules
she proposes. However, the presented explanation layer heavily relies on the specific structure
of the considered combinatorial optimization problem and can therefore not be straightfor-
wardly extended to provide explanations for any combinatorial optimization problem. I am
currently involved in a collaborative research project dealing with the development of expla-
nations schemes for a workforce routing problem. The project started in December 2020 and in-
volves a PhD student (Mathieu Lerouge), researchers from CentraleSupelec (Vincent Mousseau
and Ouassila Ouerdane) and engineers from the consulting company DecisionBrain (Daniel
Godard and Désirée Rigonat). The optimization problem consists in assigning maintenance
jobs to be carried out at geographically scattered facilities to technicians and in building, on
a daily basis, the schedule and routes for these technicians so as to minimize the total trans-
portation costs and lateness penalties. For the time being, we focus on providing local and
contrastive explanations, i.e. explanations pertaining to a small part of the overall schedule
and describing why the software proposes a given task-technician assignment and/or a given
route rather than an alternative one suggested by the user (the workforce planner in our case).
A typical example could be to answer the question: why does technician 1 carries out the se-
quence of tasks 1-3-2 rather than the sequence 1-2-3 ? A planner may ask such a question e.g.
when the sequence 1-2-3 enables to reduce the total driven distance as compared to sequence 1-
3-2 because tasks 1 and 2 are located at the same facility. In this case, possible explanations may
be linked to the infeasibility of the proposed alternative (sequence 1-2-3 is unfeasible because
it is not possible to carry out task 3 before its facility closes) or to the sub-optimality of the
proposed alternative (sequence 1-2-3 is sub-optimal because, even if transportation costs are
reduced, it results in a high lateness penalty on task 3 which strongly deteriorates the objective
function value). My plan is to increase my knowledge and skills on the subject of explainabil-
ity, which is totally new for me, thanks to the participation to this project and once I will have
a sufficient mastery, I will seek to develop explanation schemes for production planning and
lot-sizing problems.

102

Appendix A

Curriculum vitae

Céline Gicquel
Assistant professor in Operations Resarch and Computer Science

Université Paris Saclay
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
Campus d’Orsay - bâtiment 660
F-91405 Orsay Cedex
e-mail: celine.gicquel@universite-paris-saclay.fr

Professional background

2010-present Université Paris Saclay
Assistant professor in Computer Science
- Researcher at the Laboratoire Interdisciplinaire des Sciences du Numérique
(LISN)
- Teacher at the Institut Universitaire de Technologie d’Orsay (IUT Orsay)

2005-2010 Ecole Centrale Paris
2008-2010: Post-doctoral research fellow
2005-2008: Doctoral research fellow

2003-2004 Procter & Gamble
Logistics process engineer

Academic background

2008 Ecole Centrale Paris
PhD in Industrial Engineering
Dissertation: ’MIP models and valid inequalities for the discrete lot-sizing and
scheduling problem with sequence-dependent setups’
Advisors: Pr Michel Minoux and Pr Yves Dallery

2005 Ecole Centrale Paris
Research master degree in Industrial Engineering

2002 Ecole Nationale Supérieure des Techniques Avancées - Paris
Engineering master degree in Production and Logistics managament

Appendix A. Curriculum vitae 103

Student supervision

2020-present Mathieu Lerouge, PhD student
Explanation schemes for recommendations coming from optimization systems:
application to workforce scheduling
Funding: project AIDA in collaboration with IBM and DecisionBrain
Co-supervision with Vincent Mousseau and Ouassila Ouerdane

2019-present Bingqian Liu, PhD student
Optimal design of local multi-energy systems
Funding : EDF R&D - ANRT (CIFRE grant)
Co-supervision with Dominique Quadri

2018-present Franco Quezada, PhD student
Multi-stage stochastic lot-sizing
Funding: research grant from Sorbonne Universités
Co-supervision with Safia Kedad-Sidhoum

2017-2018 Ahmed Kadri, post-doctoral fellow
Location of electric vehicle charging stations under uncertain demand
Funding: United Arab Emirates University
Co-supervision with Mouna Kchaou-Boujelben

2012-2015 Mathilde Excoffier, PhD student
Call center shift scheduling under demand uncertainty
Funding: project SPACE funded by Digitéo
Co-supervision with Abdel Lisser, Oualid Jouini and Steven Martin

2010-2013 Mouna Kchaou-Boujelben
MILP models and heuristics for optimally designing Renault outbound logistics
network
Funding: Renault-ANRT (CIFRE grant)
Co-supervision with Michel Minoux

2007-2021 Supervision or co-supervision of 12 master students

Research grants

2020-2023 Project funded by EDF R&D
Optimal design of local energy systems

2017-2021 Project funded by the Université Paris Saclay (Labex Mathématiques Hadamard)
Energy-efficient production planning and lot-sizing

2018-2019 Project funded by the Ile de France region (DIM RFSI program)
Stochastic optimization of the daily scheduling of smart grids

2017-2019 Project funded by the United Arab Emirates University
Location of electric vehicle charging stations

Appendix A. Curriculum vitae 104

2015-2019 Project funded by the French Programme Gaspard Monge pour l’Optimisation
(PGMO)
Planning remanufacturing activities under uncertainty

2015-2016 Project funded by the Université de Lorraine
Lot-sizing under energy availability constraints

2012-2015 Project funded by the Digiteo program
Call-center shift scheduling under uncertain call arrival rates

2011-2014 Project funded by the French Agence Nationale pour la Recherche (program for
young researchers)
Strong linear and semi-definite relaxations for lot-sizing problems

Professional service

2018-present Vice-president in charge of the external relationships and communication of the
French Society for Operations Research and Decision Aid (ROADEF)

2021 Co-responsible for the transverse action on ’Robust decision and optimization"
of the French CNRS research group on Operations Research (GDR-RO)

2021 President of the jury of the 2020 ROADEF master thesis competition

2019-2020 President of the jury of the 2019 & 2020 best student paper awards at the an-
nual conference of the French Society for Operations Research and Decision Aid
(ROADEF)

2018 Member of the jury of the 2018 Doctoral Dissertation Award of the Gaspard
Monge program for Optimization (PGMO)

2017 Member of the jury of the 2017 best student paper award at the annual conference
of the French Society for Operations Research and Decision Aid (ROADEF)

2012-2021 Member of 10 recruitment committees for assistant professor positions

2014-2020 Member of the jury of 7 PhD thesis

2019 Member of the organizing committee of the 2019 International Workshop on Lot-
sizing (IWLS 2019)

2017-present Member of the program committee of the annual conference of the French Society
for Operations Research and Decision Aid (ROADEF)

Teaching

2010-present University Paris Saclay - IUT Orsay - Computer science department
2011-2017: Responsible for the course ’Introduction to databases’ (BSc)
2015-present: Local correspondent for the APOGEE education management soft-
ware

Appendix A. Curriculum vitae 105

2015-présent University Paris Saclay - Faculty of Science - Maths department
Co-responsible for the course ’Introduction to operations research’ (MSc)

2008-2018 Ecole Centrale Paris
Co-responsible for the course ’Network optimization’ (MSc)

Main publications

Refereed international journal papers

1. M. Kchaou-Boujelben, C. Gicquel. Locating electric vehicle charging stations under un-
certain battery energy status and power consumption. Computers & Industrial Engineering,
2020, vol. 149, 106752

2. A. Kadri, R. Perrouault, M. Kchaou Boujelben, C. Gicquel. A multi-stage stochastic inte-
ger programming approach for locating electric vehicle charging stations. Computers &
Operations Research, 2020, vol. 117, 104888.

3. F. Quezada, C. Gicquel, S. Kedad-Sidhoum, D.Q. Vu. A multi-stage stochastic integer
programming approach for a multi-echelon lot-sizing problem with returns and lost sales.
Computers & Operations Research, 2020, vol. 116.

4. M. Kchaou-Boujelben, C. Gicquel. Efficient solution approaches for locating electric ve-
hicle fast charging stations under driving range uncertainty. Computers & Operations Re-
search, 2019, vol. 109, pp 288-299.

5. J. Cheng, C. Gicquel, A. Lisser. Partial sample approximation method for chance-
constrained problems. Optimization Letters, 2019, vol. 13(4), pp 657–672.

6. C. Rapine, B. Penz, C. Gicquel, A. Akbalik. Capacity acquisition for the single-item lot-
sizing problem under energy constraints. Omega, 2018, vol. 81, pp 112-122.

7. C. Gicquel, J. Cheng. A joint chance-constrained programming approach for the single-
item capacitated lot-sizing problem with stochastic demand. Annals of Operations Re-
search, 2018, vol. 264(1), pp 123-155.

8. M. Kchaou-Boujelben, C. Gicquel, M. Minoux. A MILP model and heuristic approach for
facility location under multiple operational constraints. Computers & Industrial Engineer-
ing, 2016, vol. 98, pp 445-461.

9. M. Excoffier, C. Gicquel, O. Jouini. A joint chance-constraint programming approach
for call centre workforce scheduling under uncertain call arrival forecasts. Computers &
Industrial Engineering, 2016, vol. 96, pp 16-30.

10. C. Gicquel, M. Minoux. Multi-product valid inequalities for the discrete lot-sizing and
scheduling problem. Computers & Operations Research, 2015, vol. 54, pp 12-20.

11. M. Kchaou-Boujelben, C. Gicquel, M. Minoux. A distribution network design problem
in the automotive industry: MIP formulation and heuristics. Computers & Operations Re-
search, 2014, vol. 52, pp 16-28.

12. C. Gicquel, M. Minoux, A. Lisser. An evaluation of semidefinite programming based
approaches for discrete lot-sizing problems. European Journal of Operational Research, 2014,
vol. 137(2), pp 498–507.

Appendix A. Curriculum vitae 106

13. C. Gicquel, L. Wolsey, M. Minoux. On discrete lot-sizing and scheduling on identical
parallel machines. Optimization Letters, 2012, vol. 6 (3), 545-557.

14. C. Gicquel, L. Hege, M. Minoux, W. van Canneyt. A discrete time exact solution approach
for a complex hybrid flow-shop scheduling problem with limited-wait constraints. Com-
puters & Operations Research, 2012, vol. 39 (3), 629-636.

15. C. Gicquel, M. Minoux, Y. Dallery. Exact solution approaches for the discrete lot-sizing
and scheduling problem with identical parallel resources. International Journal of Produc-
tion Research, 2011, vol. 49 (9), pp 2587-2603.

16. C. Gicquel, N. Miègeville, M. Minoux, Y. Dallery. Optimizing glass coating lines: MIP
model and valid inequalities. European Journal of Operational Research, 2010, vol. 202 (3),
pp 747-755.

17. C. Gicquel, N. Miègeville, M. Minoux, Y. Dallery. Discrete lot-sizing and scheduling using
product decomposition into attributes. Computers & Operations Research, 2009, vol. 36, pp
2690-2698.

18. C. Gicquel, M. Minoux, Y. Dallery. On the discrete lot-sizing and scheduling problem
with sequence-dependent changeover times. Operations Research Letters, 2009, vol. 37(1),
pp 32-36.

Refereed international conference papers

1. B. Liu, C. Bissuel, F. Courtot, C. Gicquel, D. Quadri. A hierarchical decomposition ap-
proach for the optimal design of a district cooling system. 10th International Conference on
Operations Research and Enterprise Systems ICORES 2021, Februrary 2021, online.

2. F. Quezada, C. Gicquel, S. Kedad-Sidhoum. Stochastic dual dynamic integer program-
ming for the uncapacitated lot-sizing problem with uncertain demand and costs. 29th In-
ternational Conference on Automated Planning and Scheduling ICAPS2019, June 2019, Berke-
ley, USA.

3. W. Makhlouf, M. Kchaou-Boujelben, C. Gicquel. A bi-level programming approach to lo-
cate capacitated electric vehicle charging stations. IEEE International Conference on Control,
Decision and Information Technologies CODIT 2019, April 2019, Paris.

4. F. Quezada, C. Gicquel, S. Kedad-Sidhoum. Stochastic dual dynamic integer program-
ming for a multi-echelon lot-sizing problem with remanufacturing and lost sales. IEEE
International Conference on Control, Decision and Information Technologies CODIT 2019, April
2019, Paris.

5. S. Haddad-Vanier, C. Gicquel, L. Boukhatem, K. Lazri, P. Chaignon. Virtual network
functions placement for defense against distributed denial of service attacks. 8th Inter-
national Conference on Operations Research and Enterprise Systems ICORES 2019, Februrary
2019, Prague, Czech Republic.

6. M. Kchaou-Boujelben, C. Gicquel. Location of electric vehicle charging stations under
uncertainty on the driving range. 9th International Conference on Computational Logistics
ICCL2018, October 2018, Salerno, Italy.

7. C. Gicquel, S. Kedad-Sidhoum, D. Quadri. Remanufacturing planning under uncertainty:
a two-stage stochastic programming approach. International Conference on Information Sys-
tems, Logistics and Supply chain ILS2016, June 2016, Bordeaux, France.

Appendix A. Curriculum vitae 107

8. M. Excoffier, C. Gicquel, O. Jouini, A. Lisser. Scheduling problem in call centers with
uncertain arrival rates forecasts: a distributionally robust approach. 4th International Con-
ference on Operations Research and Enterprise Systems ICORES2015, January 2015, Lisbon,
Portugal.

9. M. Excoffier, C. Gicquel, O. Jouini, A. Lisser. Call center shift scheduling under uncer-
tainty: a chance-constraint programming approach. 10th International Conference on Mod-
elling, Optimization and Simulation MOSIM2014, November 2014, Nancy, France.

10. C. Gicquel, J. Cheng. Solving a stochastic lot-sizing problem with a modified sample
approximation approach. 44th International Conference on Computers and Industrial Engi-
neering, October 2014, Istanbul, Turkey.

11. C. Gicquel, M. Minoux. New multi-product valid inequalities for a discrete lot-
sizing problem. 3rd International Conference on Operations Research and Enterprise Systems
ICORES2014, March 2014, Angers, France.

12. M. Excoffier, C. Gicquel, O. Jouini, A. Lisser. A stochastic programming approach for
staffing and scheduling call centers with uncertain demand forecasts following continu-
ous distributions. 3rd International Conference on Operations Research and Enterprise Systems
ICORES2014, March 2014, Angers, France.

13. C. Gicquel, M. Minoux. A tight MILP formulation based on multi-product valid inequal-
ities for a lot-sizing problem. International Conference on Industrial Engineering and Systems
Management IESM2013, October 2013, Rabat, Morocco.

14. M. Kchaou-Boujelben, C. Gicquel, M. Minoux. A linear relaxation based heuristic for
a supply chain network design problem with minimum volume constraints. 2012 IEEE
International Conference on Industrial Engineering and Engineering Management IEEM2012,
December 2012, Hong Kong, China.

15. M. Kchaou-Boujelben, C. Gicquel, M. Minoux. Considering transport flows consolidation
in a network design problem. 9th International Conference of Modelling, Optimization and
Simulation MOSIM2012, June 2012, Bordeaux, France.

16. C. Gicquel, A. Lisser, M. Minoux. Tight lower bounds by semidefinite relaxations for the
discrete lot-sizing and scheduling problem with sequence-dependent changeover costs.
9th International Conference of Modelling, Optimization and Simulation MOSIM2012, June
2012, Bordeaux, France.

17. J. Cheng, C. Gicquel, A. Lisser. A second-order cone programming approximation to joint
chance-constrained linear programs. International Symposium of Combinatorial Optimisation
ISCO2012, April 2012, Athens, Greece. Published in Lecture Notes in Computer Science,
2012, vol. 7422, 71-80.

18. C. Gicquel, M. Minoux, Y. Dallery. A tight MIP formulation for the discrete lot sizing and
scheduling problem with parallel resources. 9th International Conference on Computers and
Industrial Engineering CIE39, July 2009, Troyes, France.

19. C. Gicquel, M. Minoux, Y. Dallery. A tight MIP formulation for the discrete lot sizing
and scheduling problem with sequence-dependent setup costs and times. International
Conference on Information Systems, Logistics and Supply Chain ILS2008, May 2008, Madison,
USA.

Appendix A. Curriculum vitae 108

20. C. Gicquel, N. Miègeville, M. Minoux, Y. Dallery. Discrete Lot Sizing and Scheduling
using product decomposition into attributes. 7th Conférence Francophone de Modélisation et
de Simulation, MOSIM2008, April 2008, Paris, France.

21. C. Gicquel, N. Miègeville, M. Minoux, Y. Dallery. Optimizing glass coating lines: MIP
model and valid inequalities. 4th IFAC conference on Management and Control of Production
and Logistics, September 2007, Sibiu, Rumania.

109

Bibliography

Adams, W. P. and Sherali, H. D. (1990). Linearization strategies for a class of zero-one mixed
integer programming problems. Operations Research, 38(2):217–226.

Aggarwal, A. and Park, J. K. (1993). Improved algorithms for economic lot size problems.
Operations Research, 41:549–571.

Agra, A., Christiansen, M., Hvattum, L. M., and Rodrigues, F. (2018). Robust optimization for
a maritime inventory routing problem. Transportation Science, 52(3):509–525.

Ahmed, S., King, A. J., and Parija, G. (2003). A multi-stage stochastic integer programming
approach for capacity expansion under uncertainty. Journal of Global Optimization, 26(1):3–24.

Ahn, H.-D., Lee, D.-H., and Kim, H.-J. (2011). Solution algorithms for dynamic lot-sizing in
remanufacturing systems. International Journal of Production Research, 49(22):6729–6748.

Alem, D. and Morabito, R. (2013). Risk-averse two-stage stochastic programs in furniture
plants. OR Spectrum, 35:773–806.

Alem, D., Oliveira, F., and Peinado, M. C. R. (2020). A practical assessment of risk-averse
approaches in production lot-sizing problems. International Journal of Production Research,
58(9):2581–2603.

Aloulou, M. A., Dolgui, A., and Kovalyov, M. Y. (2014). A bibliography of non-deterministic
lot-sizing models. International Journal of Production Research, 52(8):2293–2310.

Anheuser-Busch (2021). Fairfield brewery. https://www.anheuser-
busch.com/about/breweries-and-tours/fairfield-ca.html. Accessed 2021-03-26.

Attila, Ö. N., Agra, A., Akartunalı, K., and Arulselvan, A. (2017). A decomposition algorithm
for robust lot sizing problem with remanufacturing option. In Gervasi, O., Murgante, B.,
Misra, S., Borruso, G., Torre, C. M., Rocha, A. M. A., Taniar, D., Apduhan, B. O., Stankova,
E., and Cuzzocrea, A., editors, Computational Science and Its Applications – ICCSA 2017, pages
684–695. Springer International Publishing.

Barany, I., Van Roy, T. J., and Wolsey, L. A. (1984). Strong formulations for multi-item capaci-
tated lot sizing. Management Science, 30(10):1255–1261.

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia,
S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. (2020). Explainable
artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward re-
sponsible AI. Information Fusion, 58:82–115.

Belvaux, G. and Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer
programs. Management Science, 47(7):993–1007.

Bentley (2019). Largest UK solar car port installed at Bentley factory in Crewe.
https://www.bentleymotors.com/en/world-of-bentley/the-bentley-story/news/2019-
news/bentley-installs-uks-largest-solar-car-port.html. Accessed 2021-03-26.

BIBLIOGRAPHY 110

Beraldi, P. and Ruszczyński, A. (2002). A branch and bound method for stochastic integer
problems under probabilistic constraints. Optimization Methods and Software, 17(3):359–382.

Berard, D. (2018). DDoS breach costs rise to over $2M for enterprises finds Kaspersky
Lab report. https://usa.kaspersky.com/about/press-releases/2018_ddos-breach-costs-rise-
to-over-2m-for-enterprises-finds-kaspersky-lab-report. Accessed 2020-12-19.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1):35–53.

Biel, K., Zhao, F., Sutherland, J. W., and Glock, C. H. (2018). Flow shop scheduling with grid-
integrated onsite wind power using stochastic MILP. International Journal of Production Re-
search, 56(5):2076–2098.

Bienstock, D. and Özbay, N. (2008). Computing robust basestock levels. Discrete Optimization,
5(2):389 – 414.

Bitran, G. R. and Yanasse, H. H. (1982). Computational complexity of the capacitated lot size
problem. Management Science, 28(10):1174–1186.

Bixby, R. E. (2012). A brief history of linear and mixed-integer programming computation.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R
Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62.

Bookbinder, J. H. and Tan, J.-Y. (1988). Strategies for the probabilistic lot-sizing problem with
service-level constraints. Management Science, 34(9):1096–1108.

Brahimi, N., Absi, N., Dauzère-Pérès, S., and Nordli, A. (2017). Single-item dynamic lot-sizing
problems: An updated survey. European Journal of Operational Research, 263(3):838 – 863.

Brahimi, N., Dauzere-Peres, S., Najid, N. M., and Nordli, A. (2006). Single item lot sizing
problems. European Journal of Operational Research, 168(1):1 – 16.

Buschkühl, L., Sahling, F., Helber, S., and Tempelmeier, H. (2010). Dynamic capacitated lot-
sizing problems: a classification and review of solution approaches. OR Spectrum, 32:231–261.

Calafiore, G. and Campi, M. (2005). Uncertain convex programs: randomized solutions and
confidence levels. Mathematical Programming, 102:25–46.

Camargo, V. C., Toledo, F. M., and Almada-Lobo, B. (2014). HOPS–hamming-oriented parti-
tion search for production planning in the spinning industry. European Journal of Operational
Research, 234(1):266–277.

Castellucia, C. and Le Métayer, D. (2019). Understanding algorithmic decision-making: Op-
portunities and challenges. Technical report, European Parliamentary Research Service.

Chen, H. (2007). A lagrangian relaxation approach for production planning with demand un-
certainty. European Journal of Industrial Engineering, 1(4):370–390.

Cheng, J., Gicquel, C., and Lisser, A. (2019). Partial sample approximation method for chance-
constrained problems. Optimization Letters, 13(4):657–672.

CNIL (2017). Comment permettre à l’homme de garder la main ? les enjeux éthiques des
algorithmes et de l’intelligence artificielle. Synthèse du débat public animé par la CNIL dans
le cadre de la mission de réflexion éthique confiée par la loi pour une république numérique.

Cyras, K., Letsios, D., Misener, R., and Toni, F. (2019). Argumentation for explainable schedul-
ing. In The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19).

BIBLIOGRAPHY 111

de Mello, T. H. and Pagnoncelli, B. K. (2016). Risk aversion in multistage stochastic program-
ming: A modeling and algorithmic perspective. European Journal of Operational Research,
249(1):188–199.

di Summa, M. and Wolsey, L. A. (2008). Lot-sizing on a tree. Operations Research Letters, 36(1):7–
13.

Drexl, A. and Kimms, A. (1997). Lot sizing and scheduling — survey and extensions. European
Journal of Operational Research, 99(2):221 – 235.

Eppen, G. D. and Martin, R. K. (1987). Solving multi-item capacitated lot-sizing problems using
variable redefinition. Operations Research, 35(6):832–848.

Fayaz, S. K., Tobioka, Y., Sekar, V., and Bailey, M. (2015). Bohatei: Flexible and elastic DDoS
defense. In 24th USENIX Security Symposium (USENIX Security 15), pages 817–832.

Ferre, L. (2010). Free SAS domestic network. https://fr.wikipedia.org/wiki/Free_(entreprise).
Accessed 2020-12-19.

Florian, M. and Klein, M. (1971). Deterministic production planning with concave costs and
capacity constraints. Management Science, 18:12–20.

Florian, M., Lenstra, J. K., and Kan, A. H. G. R. (1980). Deterministic production planning:
Algorithms and complexity. Management Science, 26(7):669–679.

Gahm, C., Denz, F., Dirr, M., and Tuma, A. (2016). Energy-efficient scheduling in manufactur-
ing companies: A review and research framework. European Journal of Operational Research,
248(3):744–757.

Ghamari, A. and Sahebi, H. (2017). The stochastic lot-sizing problem with lost sales: A
chemical-petrochemical case study. Journal of Manufacturing Systems, 44:53–64.

Gicquel, C. and Cheng, J. (2018). A joint chance-constrained programming approach for the
single-item capacitated lot-sizing problem with stochastic demand. Annals of Operations Re-
search, 264:12 3–155.

Gicquel, C., Lisser, A., and Minoux, M. (2014). An evaluation of semidefinite programming
based approaches for discrete lot-sizing problems. European Journal of Operational Research,
237(2):498 – 507.

Gicquel, C., Miègeville, N., Minoux, M., and Dallery, Y. (2009). Discrete lot sizing and schedul-
ing using product decomposition into attributes. Computers & Operations Research, 36(9):2690
– 2698.

Gicquel, C. and Minoux, M. (2015). Multi-product valid inequalities for the discrete lot-sizing
and scheduling problem. Computers & Operations Research, 54:12 – 20.

Gicquel, C., Vanier, S., and Papadimitriou, A. (2020). Optimal deployment of virtual network
functions for securing telecommunication networks against distributed denial of service at-
tacks: a robust optimization approach.

Golari, M., Fan, N., and Jin, T. (2017). Multistage stochastic optimization for production-
inventory planning with intermittent renewable energy. Production and Operations Manage-
ment, 26(3):409–425.

Gomory, R. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64:275–278.

BIBLIOGRAPHY 112

Gorissen, B. L., Yanikoglu, I., and den Hertog, D. (2015). A practical guide to robust optimiza-
tion. Omega, 53:24 – 137.

Guan, Y., Ahmed, S., and Nemhauser, G. L. (2009). Cutting planes for multistage stochastic
integer programs. Operations Research, 57(2):287–298.

Guan, Y., Ahmed, S., Nemhauser, G. L., and Miller, A. J. (2006). A branch-and-cut algorithm
for the stochastic uncapacitated lot-sizing problem. Mathematical Programming, 105(1):55–84.

Guan, Y. and Miller, A. J. (2008). Polynomial-time algorithms for stochastic uncapacitated lot-
sizing problems. Operations Research, 56(5):1172–1183.

Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice
and research needs. Journal of Operations Management, 18(4):467–483.

Guide, V. D. R., Jayaraman, V., and Srivastava, R. (1999). Production planning and control for
remanufacturing: a state-of-the-art survey. Robotics and Computer-Integrated Manufacturing,
15(3):221–230.

Hjelmeland, M. N., Zou, J., Helseth, A., and Ahmed, S. (2018). Nonconvex medium-term hy-
dropower scheduling by stochastic dual dynamic integer programming. IEEE Transactions
on Sustainable Energy, 10(1):481–490.

Hu, Z. and Hu, G. (2016). A two-stage stochastic programming model for lot-sizing and
scheduling under uncertainty. International Journal of Production Economics, 180:198–207.

Jakaria, A. H. M., Yang, W., Rashidi, B., Fung, C., and Rahman, M. A. (2016). Vfence: A defense
against distributed denial of service attacks using network function virtualization. In 2016
IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), volume 2, pages
431–436.

Jans, R. and Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review and compar-
ison of solution approaches. European Journal of Operational Research, 177(3):1855 – 1875.

Jans, R. and Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International
Journal of Production Research, 46(6):1619–1643.

Jayaraman, V. (2006). Production planning for closed-loop supply chains with product recovery
and reuse: an analytical approach. International Journal of Production Research, 44(5):981–998.

Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., and Pulleyblank, W. R. (2008). 50
years of integer programming: 1958-2008. Springer.

Karimi, B., Fatemi Ghomi, S., and Wilson, J. (2003). The capacitated lot sizing problem: a review
of models and algorithms. Omega, 31(5):365 – 378.

Kchaou Boujelben, M., Gicquel, C., and Minoux, M. (2014). A distribution network design
problem in the automotive industry: MIP formulation and heuristics. Computers & Operations
Research, 52:16–28.

Kchaou-Boujelben, M., Gicquel, C., and Minoux, M. (2016). A MILP model and heuristic ap-
proach for facility location under multiple operational constraints. Computers & Industrial
Engineering, 98:446–461.

Keller, F., Braunreuther, S., and Reinhart, G. (2016). Integration of on-site energy generation
into production planning systems. Procedia CIRP, 48:254–258.

BIBLIOGRAPHY 113

Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307.

Kilic, O. A., Tunc, H., and Tarim, S. A. (2018). Heuristic policies for the stochastic economic
lot sizing problem with remanufacturing under service level constraints. European Journal of
Operational Research, 267(3):1102–1109.

Küçükyavuz, S. (2012). On mixing sets arising in chance-constrained programming. Mathemat-
ical Programming, 132:31–56.

Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., and Roughan, M. (2011). The internet
topology zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775.

Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., and Roughan, M. (2013). The internet
topology zoo. http://www.topology-zoo.org/index.html. Accessed 2020-12-19.

Kuik, R., Salomon, M., and van Wassenhove, L. N. (1994). Batching decisions: structure and
models. European Journal of Operational Research, 75(2):243 – 263. Lotsizing models for pro-
duction planning.

Loparic, M., Pochet, Y., and Wolsey, L. A. (2001). The uncapacitated lot-sizing problem with
sales and safety stocks. Mathematical Programming, 89(3):487–504.

Luedtke, J. and Ahmed, S. (2008). A sample approximation approach for optimization with
probabilistic constraints. SIAM Journal on Optimization, 19(2):674–699.

Luedtke, J., Ahmed, S., and Nemhauser, G. (2010). An integer programming approach for
linear programs with probabilistic constraints. Mathematical Programming, 122:247–272.

Macedo, P. B., Alem, D., Santos, M., Junior, M. L., and Moreno, A. (2016). Hybrid manufac-
turing and remanufacturing lot-sizing problem with stochastic demand, return, and setup
costs. The International Journal of Advanced Manufacturing Technology, 82(5-8):1241–1257.

Masmoudi, O., Yalaoui, A., Ouazene, Y., and Chehade, H. (2017). Lot-sizing in a multi-stage
flow line production system with energy consideration. International Journal of Production
Research, 55(6):1640–1663.

Moreno, A., Alem, D., Ferreira, D., and Clark, A. (2018). An effective two-stage stochastic multi-
trip location-transportation model with social concerns in relief supply chains. European
Journal of Operational Research, 269(3):1050–1071.

Nemirovski, A. and Shapiro, A. (2005). Scenario approximations of chance constraints. In
Probabilistic and Randomized Methods for Design Under Uncertainty, pages 3–48. Springer.

Nemirovski, A. and Shapiro, A. (2006). Convex approximations of chance constrained pro-
grams. SIAM Journal of Optimization, 17:969–996.

Özdamar, L. and Birbil, S. I. (1999). A hierarchical planning system for energy intensive pro-
duction environments. International Journal of Production Economics, 58(2):115–129.

Pechmann, A. and Zarte, M. (2017). Procedure for generating a basis for PPC systems to sched-
ule the production considering energy demand and available renewable energy. Procedia
CIRP, 64:393–398.

Pereira, M. V. and Pinto, L. M. (1991). Multi-stage stochastic optimization applied to energy
planning. Mathematical Programming, 52(1-3):359–375.

BIBLIOGRAPHY 114

Philpott, A. and de Matos, V. (2012). Dynamic sampling algorithms for multi-stage stochastic
programs with risk aversion. European Journal of Operational Research, 218(2):470–483.

Pinson, P., Madsen, H., Nielsen, H. A., Papaefthymiou, G., and Klöckl, B. (2009). From proba-
bilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy,
12(1):51–62.

Piperagkas, G., Konstantaras, I., Skouri, K., and Parsopoulos, K. (2012). Solving the stochas-
tic dynamic lot-sizing problem through nature-inspired heuristics. Computers & Operations
Research, 39(7):1555 – 1565.

Pochet, Y. and Wolsey, L. A. (2006). Production planning by mixed-integer programming. Springer.

Quezada, F., Gicquel, C., and Kedad-Sidhoum, S. (2019). Stochastic dual dynamic integer pro-
gramming for a multi-echelon lot-sizing problem with remanufacturing and lost sales. In
2019 6th International Conference on Control, Decision and Information Technologies (CoDIT 2019),
pages 1254–1259.

Quezada, F., Gicquel, C., and Kedad-Sidhoum, S. (2019). A stochastic dual dynamic integer
programming for the uncapacitated lot-sizing problem with uncertain demand and costs.
Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS 2020),
29(1):353–361.

Quezada, F., Gicquel, C., and Kedad-Sidhoum, S. (2020a). Combining polyhedral approaches
and stochastic dual dynamic integer programming for solving the uncapacitated lot-sizing
problem under uncertainty.

Quezada, F., Gicquel, C., Kedad-Sidhoum, S., and Vu, D. Q. (2020b). A multi-stage stochastic
integer programming approach for a multi-echelon lot-sizing problem with returns and lost
sales. Computers & Operations Research, 116:104865.

Rapine, C., Goisque, G., and Akbalik, A. (2018a). Energy-aware lot sizing problem: Complexity
analysis and exact algorithms. International Journal of Production Economics, 203:254–263.

Rapine, C., Penz, B., Gicquel, C., and Akbalik, A. (2018b). Capacity acquisition for the single-
item lot sizing problem under energy constraints. Omega, 81:112–122.

Rockafellar, R. T. and Uryasev, S. P. (2000). Optimization of conditional value-at-risk. Journal of
Risk, 2:21–41.

Rodoplu, M., Arbaoui, T., and Yalaoui, A. (2019). Single item lot sizing problem under renew-
able energy uncertainty. In 9th IFAC Conference on Manufacturing Modelling, Management and
Control MIM 2019.

Roupin, F. (2004). From linear to semidefinite programming: An algorithm to obtain semidefi-
nite relaxations for bivalent quadratic problems. Journal of Combinatorial Optimization, 8:469–
493.

Salomon, M., Kroon, L. G., Kuik, R., and Van Wassenhove, L. N. (1991). Some extensions of the
discrete lotsizing and scheduling problem. Management Science, 37(7):801–812.

Salomon, M., Solomon, M. M., Van Wassenhove, L. N., Dumas, Y., and Dauzère-Pérès, S. (1997).
Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs
and set-up times using the travelling salesman problem with time windows. European Journal
of Operational Research, 100(3):494 – 513.

BIBLIOGRAPHY 115

Szymkowski, S. (2018). Bentley will add 10000 more solar panels to its plant.
https://www.motorauthority.com/news/1116198_bentley-will-add-10000-more-solar-
panels-to-its-plant. Accessed 2021-03-26.

Tang, L., Che, P., and Liu, J. (2012). A stochastic production planning problem with nonlinear
cost. Computers & Operations Research, 39(9):1977–1987.

Tempelmeier, H. (2007). On the stochastic uncapacitated dynamic single-item lotsizing problem
with service level constraints. European Journal of Operational Research, 181(1):184 – 194.

Tempelmeier, H. (2013). Stochastic Lot Sizing Problems, pages 313–344. Springer New York, New
York, NY.

Tempelmeier, H. and Herpers, S. (2011). Dynamic uncapacitated lot sizing with random de-
mand under a fillrate constraint. European Journal of Operational Research, 212(3):497 – 507.

unpu, K. and Ball, P. (2013). Energy efficient manufacturing from machine tools to manufactur-
ing systems. Procedia CIRP, 7:634 – 639.

Uzel, E. (2004). A mathematical modeling approach to energy cost saving in a manufacturing
plant. Master’s thesis, Izmir Institute of Technology.

van Eijl, C. and van Hoesel, C. (1997). On the discrete lot-sizing and scheduling problem with
Wagner-Whitin costs. Operations Research Letters, 20(1):7 – 13.

van Hoesel, C. P. M. and Wagelmans, A. P. M. (1996). An O(T3) algorithm for the economic
lot-sizing problem with constant capacities. Management Science, 42(1):142–150.

van Hulst, D., den Hertog, D., and Nuijten, W. (2017). Robust shift generation in workforce
planning. Computational Management Science, 14:115–134.

Vargas, V. (2009). An optimal solution for the stochastic version of the Wagner–Whitin dynamic
lot-size model. European Journal of Operational Research, 198(2):447 – 451.

Vyakaranam, N. and Krishna, D. (2018). 5G: Network as a service - how 5G enables the telecom
operators to lease out their network. https://netmanias.com/en/post/blog/13311/5g/5g-
network-as-a-service-how-5g-enables-the-telecom-operators-to-lease-out-their-network.
Accessed 2020-12-19.

Wagelmans, A., Van Hoesel, S., and Kolen, A. (1992). Economic lot sizing: an O(n log n)
algorithm that runs in linear time in the Wagner-Whitin case. Operations Research, 40(1-
supplement-1):S145–S156.

Wagner, H. M. and Whitin, T. M. (1958). Dynamic version of the economic lot size model.
Management Science, 5(1):89–96.

Wichmann, M. G., Johannes, C., and Spengler, T. S. (2019a). Energy-oriented lot-sizing
and scheduling considering energy storages. International Journal of Production Economics,
216:204–214.

Wichmann, M. G., Johannes, C., and Spengler, T. S. (2019b). An extension of the general lot-
sizing and scheduling problem (GLSP) with time-dependent energy prices. Journal of Business
Economics, 89(5):481–514.

Zangwill, W. I. (1969). A backlogging model and a multi-echelon model of a dynamic economic
lot size production system-a network approach. Management Science, 15(9):506–527.

BIBLIOGRAPHY 116

Zhang, M., Küçükyavuz, S., and Goel, S. (2014). A branch-and-cut method for dynamic deci-
sion making under joint chance constraints. Management Science, 60(5):1317–1333.

Zhao, C. and Guan, Y. (2014). Extended formulations for stochastic lot-sizing problems. Oper-
ations Research Letters, 42(4):278–283.

Zou, J., Ahmed, S., and Sun, X. A. (2019). Stochastic dual dynamic integer programming.
Mathematical Programming, 175:461–502.

	Introduction
	Context
	Research background
	Contributions
	Lot sizing
	Facility location

	Manuscript organization

	I Lot-sizing
	Background
	Introduction
	Deterministic lot-sizing
	Single-item lot-sizing
	Multi-item single-echelon lot-sizing
	Multi-item multi-echelon lot-sizing

	Stochastic lot-sizing
	Single-stage stochastic lot-sizing
	Two-stage stochastic lot-sizing
	Multi-stage stochastic lot-sizing

	Conclusion

	Discrete lot-sizing and scheduling with sequence-dependent setups
	Introduction
	Mathematical formulation
	Initial mixed-integer linear programming formulation
	Single-item valid inequalities

	Multi-item valid inequalities
	General expression
	Illustrative example

	Exact and heuristic algorithms for solving the separation problem
	Computational experiments
	Instances
	Results

	Conclusion and perspectives

	Joint chance-constrained lot-sizing
	Introduction
	Mathematical formulations
	Deterministic formulation
	Stochastic formulation

	Bonferroni conservative approximation
	Sample approximation approach
	Partial sample approximation approach
	General case
	Special case of a normally distributed demand

	Computational experiments
	Instances
	Results

	Conclusion and perspectives

	Multi-stage stochastic lot-sizing
	Introduction
	Mathematical formulations
	Extensive MILP formulation
	Dynamic programming formulation

	Sub-tree-based SDDiP algorithm
	Sub-problem reformulation
	Sampling step
	Forward step
	Backward step
	Cut families
	Stopping criteria
	Summary

	Algorithmic Enhancements
	Approximate sub-tree-based SDDiP
	Generation of additional strengthened Benders' cuts

	Computational Experiments
	Instance Generation
	Experimental setup
	Results

	Conclusion and perspectives

	Multi-stage stochastic lot-sizing with returns
	Introduction
	Problem description and mathematical formulation
	System description
	Uncertainty
	MILP formulation

	Mathematical reformulation
	Echelon stock reformulation
	Single echelon subproblems

	Valid inequalities
	Path inequalities
	Tree inequalities

	Cutting-plane generation
	Path inequalities
	Tree inequalities

	Computational experiments
	Instances
	Results

	Conclusion and perspectives

	II Facility Location
	Design of an outbound logistics network
	Introduction
	Problem description
	Solution approach
	Clustering of demand points
	Location-allocation problem
	Mixed-integer linear programming formulation
	Heuristic resolution of the mixed-integer linear program

	Computational experiments
	Conclusion and perspectives

	Optimal placement of virtual network functions for cybersecurity
	Introduction
	Problem description
	Problem definition
	Mathematical formulation

	Solution approach
	Decision maker sub-problem
	Adversarial sub-problem

	Computational experiments
	Instances
	Results

	Conclusion and perspectives

	Conclusion and perspectives
	Conclusion
	Perspectives
	Risk aversion in multi-stage stochastic lot-sizing
	Multi-stage stochastic lot-sizing with intermittent renewable energy
	Explainable lot-sizing

	Curriculum vitae

