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Problems of"Reverse Engineering'' type are recurrent in Computer Aided (Geometrie) Design (CA(G)D) and in computer graphies, in general. They consist in the reconstruction of abjects from point clouds. In computer graphies, for visualisation purposes, for example, the existing solutions consist in triangulating the point data and then fitting them with planar triangles. The abject is thus approximated by a piecewise linear surface, which is only C 0 continuous. ln arder to obtain a smooth aspect a huge amount of triangles is necessary. Triangular meshes are widely used because they are sufficiently general to represent surfaces of arbitrary genus.

The goal of this thesis, after having acquired an overview of the existing literature, was to present a scattered data interpolation method by means of polynomial and rational parametric surfaces in Bézier form of the lowest possible degree.

Every method that tries to solve a data fitting problem encounters the same main difficulty: dealing with the smoothness of the surface. To be useful for surface design, a data fitting scheme must produce a smooth surface. After a brief introduction, in chapter 2 we analyse the existing continuous interpolant curved shape surface schemes. They recently emerged to address specifie requirements of the resource-limited hardware environments and to provide smooth surfaces by visually enhancing the resulting C 0 surface by using as little information as possible.

The bibliographie study allowed us also to analyse what is called vertex consistency problem. This problem is about the limitations involved when constructing G 1 -continuous surfaces by means of triangular Bézier patches. The G 1 methods proposed until now in the literature either bypass the problem or find the way to construct the surface in such a way that it is solvable. In chapter 3, we briefly describe the interesting recently published solutions and we focus our attention on quadratic patches by analysing sorne particular G 1 -conditions and describing our first attempts to solve them.

Then, in chapter 4 we treat G 1 rational blend interpolatory schemes, i.e., those methods that use rational blends to construct the surface avoiding the vertex consistency problem. The study of the existing schemes allowed us to develop a new cubic polynomial Gregory patch. Its generalisation to a rational patch is currently a work in progress. The first results to improve the surface shape of our schemes on arbitrary meshes, preserving its good approximation behaviour and, possibly, keeping its computational cast as law as possible, are shawn in chapter 5.

Finally, in chapter 6 we conclude summarising and commenting the work presented in this thesis.

Introduction

One of the easiest ways of modelling free-form surfaces is to use tensor-product Bézier, B-Spline or NURBS patches. In fact, a huge work in computer graphies research has been devoted to these types of patches and now they are a "de facto" standard in the CAD/CAM industry. However, since their birth, tensor-product patches have an important drawback. They are able to model only a restricted type of surfaces, those which are topologically equivalent to a square.

2-manifold surfaces of arbitrary topological type are very common in everyday life and this drawback imposes huge limitations on the designers. Two different research directions to develop mathematical models that can deal with control meshes of arbitrary topological type have been pursued. One is based on subdivision surfaces that recursively subdivide the control mesh. The other direction consists of building a patchwork of smoothly joined parametric patches, with the same topology as the control mesh. While subdivision surfaces allow to model surfaces with complex geometry and to easily develop animation tools, they have two important disadvantages: it can be very difficult to determine the smoothness of the surface and, since they have not an underlying parameterisation, their integration in CAD/CAM systems is quite difficult. Since the origins of CAGD, smoothly joined patches are therefore a subject of ongoing research because they fit the requirements of the modelling systems. The parameterisation allows, for example, easy point evaluation and normal computation.

To this aim, triangular meshes, i.e., meshes in which the faces are triangular and any number of faces may join at a vertex, are sufficiently general to represent surfaces of arbitrary genus.

Surface fitting schemes may interpolate or approximate the given data (i.e. the vertices of the mesh). Interpolation is a useful and intuitive feature in geometrie modelling and in many other areas of application, e.g., medical imaging, geological modelling and scientific visualisation. Besides, another important distinction is between functional surfaces and parametric surfaces. If the surface lies above the plane it can be described as S(x,y) = (x,y,J(x,y)).

The data set is then referred to as scalar data, the surface can be thought as a scalar-valued function over the plane. A parametric scheme, on the other hand, constructs a vector-valued surface, S(u,v) = (x (u,v),y(u,v),z(u,v)) and, unlike a functional method, is able to represent arbitrary topological shapes.

Finally, surface fitting schemes can be classified by the locality of data used in constructing a part of the surface. A global scheme uses arbitrarily many of the data points in the construction process. Thus, in a global method, when a single vertex is moved, the entire surface changes. These methods have the potential to create surfaces with more uniform curvature distribution, but they are computationally slower than local methods. On the contrary, a local scheme only considers those points near the portion of the surface it is creating, thus if a single input vertex is moved, the interpolating surface changes only in the neighbourhood of the vertex. This feature is particularly attracting in most computer graphies applications.

In this thesis we treat local parametric Bézier interpolants for triangular meshes.

The simplest approach is to construct the triangular mesh by connecting the input points in triangular planar faces . With coarse meshes this leads to only continuous surfaces with poor shape. Acceptable visually smooth shapes can be obtained only by deeply refining the triangular meshes, but with two important drawbacks. Firstly, to get an acceptable surface a huge number of triangles is needed ( e.g. , Figure 1.1 ), secondly the silhouettes suffer from the underlying polygonal representation, as shawn in Figure 1.2. In both cases the constructed surface will be always polygonal, and thus only continuous. An answer to this problem is the use of parametric triangular Bézier patches. They are a simple geometrie primitive that can be used to interpolate completely arbitrary data organised in triangular meshes. They permit to locally control the surface directly by manipulating the control points. The key idea behind the use of these patches is that each original flat triangle of the input mesh is replaced by a Bézier triangle, i.e., a curved shape surface.

During the years, the research on these patches took two different directions. Firstly, in chapter 2, we present a comparison of [Vlachos et al. 2001], [Boubekeur and Alexa 2008], [Nagata 2005] and [Barrera et al. 2002], the existing continuous interpolant curved shape surface schemes. These schemes, which construct Bézier patches using only the information related to the underlying triangle, emerged as attractive solutions responding to the requirements of resource-limited hardware environments. Video games and other interactive applications, in fact, are not really interested in the high quality smooth surfaces generated by NURBS and subdivision surfaces as long as a large part of the ''visual smoothness" is already generated using Phong Shading and normal mapping. Therefore, these schemes aim at improving the geometry on contours and silhouettes, where visual smoothness cannot be generated based on shading.

Nonetheless, the smoothness of the surface remains an important issue when considering geometrie modelling applications. To be useful for surface design, a parametric data fitting scheme must produce a smooth surface. In chapter 3 we first recall the notion of tangent plane continuity and the vertex consistency problem, a complex problem that arises when constructing a network of G 1 joined patches. In [START_REF] Mann | A survey of parametric scattered data jitting using triangular interpolants[END_REF]] a survey of the main solutions and methods proposed up to the beginning of the nineties is provided. The authors classify severa! of the most famous methods, like Shirman-Séquin [Shirman and Séquin 1987], [Jensen 1987], [START_REF] Piper | [END_REF]], Nielson [Nielson 1987], triangular Gregory Patches [Gregory 197 4] and [Herron 1985] and offer a detailed comparison between them. These are the first and most important works on local parametric interpolatory surfaces based on triangular meshes. Starting from the results of this article, we analyse, in section 3.3, the proposed solutions after that survey, and their associated schemes.

The G 1 methods proposed in the literature until now can be divided in two classes. The first class of methods bypasses the vertex consistency problem since they do not need the twists in the construction of the surface. Therefore, they do not need to deal with the solution of the linear system associated to the vertex consistency problem. The second class finds a way to construct twists such that the system is always solvable. Ali the methods described in chapter 3, [START_REF] Loop | A G 1 triangular spline surface of arbitrary topological type[END_REF]], [START_REF] Hahmann | [END_REF], [Hahmann and Bonneau 2003] and [Neamtu and Pftuger 1994], belong to the second class. They aim at attaining G 1 continuous surfaces suitable for modelling completely arbitrary topological shapes.

The remainder of the thesis treats G 1 rational blend interpolatory schemes, the only schemes of the first class above being published after [START_REF] Mann | A survey of parametric scattered data jitting using triangular interpolants[END_REF]]. This approach bypasses the vertex consistency problem using a technique called rational blends. We firstly describe, in chapter 4, three existing rational blend schemes, [Mann and Davidchuk 1998], [START_REF] Fünfzig | [END_REF]] and [Walton and Meek 1996], and we compare them. In particular, the scheme presented in [START_REF] Fünfzig | [END_REF] had been proposed as a solution to improve the visual smoothness of triangular meshes, i.e., with the same spirit of the continuous schemes described in chapter 2. Our interest in this technique, therefore, concerns the two different domains of application of local parametric interpolants for triangular meshes: on the one hand, those applications in which the main scope is to improve the visual smoothness of the surface, that is in particular the geometry on contours and silhouettes, on the other hand, their possible use in geometrie modelling.

The study of the quartic Gregory patch of Walton and Meek ([Walton and Meek 1996]), allowed us to develop a cubic version of that patch. It is described and compared with its original version and the other schemes in the last two sections of chapter 4. The tests in chapter 4 encouraged us to find a way to improve it. In particular, we were interested in the use of rational Bézier triangles where the weights can act as free shape parameters controlling the shape of the surface.

In chapter 5 we present our RationalCubicWM patch where three weights are free parameters to be chosen. We show our first attempts to define these three weights to improve the surface shape on arbitrary triangle meshes, and we briefly describe the problems we found and our work in progress to solve them.

Finally, in chapter 6 we conclude summarising and commenting our work.

All the schemes described in this thesis use only the vertex positions and normals taken in input. As a consequence, they do not control the patch normals. In appendix A, we describe an efficient technique used in applications to improve the visual smoothness of the entire surface. An independent normal patch (usually linear or quadratic), in fact, can be proposed together with the surface to improve the surface visualisation as a sort of normal smoothing.

We implemented all the schemes compared in chapter 2, 4 and the scheme proposed in chapter 5 as an Autodesk Maya@ plug-in (MPxHwShaderNode), based on the plug-in from [START_REF] Fünfzig | [END_REF]. Technical details on the CPU and GPU implementations can be found in appendix B.

Notation

We assume that all the scattered data points given in input to the methods have already properly been triangulated. Moreover, we do not deal with the thorny problem of normal estimation. We assume, therefore, to work with vertex points organised in a triangular mesh, where a normal vector is associated with every vertex point.

In the remainder of the thesis we will use the following notation, except where explicitly indicated otherwise.

Let us consider a subset of 4 triangles as illustrated in Figure 1.3, the central one with vertices Po, Pl, P2, and respective unit normal vectors no, n1, n2, as well as edge vectors e1 =Pl-po, e2 = P2-Pl, e3 =Po-P2• Considering the neighbouring triangle adjacent to the edge e1, let us use the notation POl for its remaining vertex and nm for its associated normal, and analogously we define P12, n12 with respect to the edge e2 and P2o, n2o with respect to the edge e3. Additionally, we refer to the tangent plane in Pi, which is defined by lli, by Ti, i = Ü, 1, 2, 01, 12, 20.

The hat will be used for normalised vectors, i.e., v = fvrr.

Let us proceed by recalling the definition of a degree n Bézier curve in terms of Bernstein polynomials where bt are the control points defining the shape of the curve. Among the useful properties of Bézier curves we point out the endpoint interpolation and the convex hull property.

Triangular Bézier patches can be seen as natural extensions of Bézier curves to two dimensions. Using a triangular network of control points bi 3 k: i+j+k=n, i,j,k~O, and degree-n bivariate Bernstein polynomials n _ n! i j k Bijk (u,v,w)-Tikluvw, u+v+w=1, Z.J . . a degree n triangular Bézier patch is defined by S (u,v,w) = L bijkBijk (u,v,w).

i+j+k=n (1.1) It maps a triangular domain D E JR 2 to an affine space, typically JR 3 , where u, v and w are the barycentric coordinates of a domain point relative to D. It has sorne interesting properties for surface modelling like corner point interpolation, convex hull property and Bézier boundary curves, i.e., the images of the three edges of the domain triangle are Bézier curves defined by the boundary control points of the patch. See, e.g., [Farin 2002] for details on Bézier curves and Bézier triangles.

According to definition (1.1), in Figure 1.4 the triangular control nets for quadratic, cubic, quartic and quintic Bézier triangles are shown. 

Continuous schemes

Computer graphies used for gaming and realtime rendering is about shading and animating with triangle meshes. A large body of work has been devoted to creating an increasing realism of the rendered surfaces. Shading techniques like phong shading, normal mapping and reflection mapping are commonly used to present cineastically looking surfaces. For animation [Collins 2005], models are applied with a suitable skeleton structure during rigging [Bar an and Popovié 2007], and then all triangle vertices can be moved according to this structure. Especially in computer games usually stored neighbourhood information is not available. Several techniques have been leveraged for processing on programmable graphies hardware recently [Kautz 2004, Szirmay-Kalos et al. 2009].

Continuo us ( C 0 ) interpolant curved shape surface schemes emerged to address specifie requirements of the resource-limited hardware environments and to provide smooth surfaces by visually enhancing the resulting C 0 surface by using as little information as possible. More precisely, the smallest amount of information about neighbouring triangles has to be used in constructing the patch, thus these schemes use only the positions and normals at the three vertices of the triangle.

The interest in continuous surface patches cornes primarily from saving bus bandwidth for transfers to the graphies hardware. In most situations, if the surface appears to be smooth as a result of the shading technique, we do not need analytic smoothness and continuity.

Aim of this chapter is to present our analysis of these schemes. First, in section 2.1 we provide a unifying comparison of the existing local parametric triangular curved shape C 0 schemes we are aware of. This work has been published in [START_REF] Boschiroli | A comparison of local parametric C 0 Bézier interpolants for triangular meshes[END_REF]]. This analysis gave us sorne ideas to improve the use of quadratic schemes. We are still working on them, thus only sorne sketches are presented in section 2.2.

Together with all the schemes presented here, we would also like to cite [START_REF] Volino | [END_REF]Magnenat-Thalmann 1998, Van Overveld andWyvill 1997a] as interesting schemes related to the interpolation problem we are considering. However, we are not going to include them in our discussion because they do not fit into the class of analytically representable curved patches. The main idea of the SPHERIGON approach [START_REF] Volino | [END_REF]] is to use Phong normals as a basis for constructing a curved surface. From every vertex of the mesh is derived a curved surface that is orthogonal to the Phong normals, then all these curved patches are blended to provide a globally smooth surface. The final surface is thus rational. In [ Van Overveld and Wyvill1997a], instead, the information about the vertex normals provides an algorithm to successively refine the triangular mesh merging the use of Bézier triangles and subdivision surfaces.

A companson of local parametric C 0 Bézier interpolants for triangular meshes

In this section we present four existing continuous surface schemes briefl.y describing their original construction and presenting a reformulation of every scheme in triangular Bézier patch form. This allows us to discuss their geometrie interpretations and compare them in full detail. We also analyse their computational costs and we compare the schemes by looking at the reproduction of analytic surfaces like the sphere and the torus. Finally, we look at their response to surface interrogation methods on arbitrary triangle meshes with a low triangle count, which actually occur in real-world use of these schemes, and we report the conclusions of our study.

PN Triangles

Curved PN triangles by Vlachos et al. [Vlachos et al. 2001], in a certain sense, are the pioneers in the study of parametric curved patches for C 0 interpolation of triangle meshes. The geometry of a PN triangle is defined by a cubic triangular Bézier patch and the construction of its control points is based on projections on the tangent planes at the vertices.

The scheme initially places the intermediate control points btjk in the positions ( ipo + JPl + kpz)/3, leaving the three corner points unchanged. Then, each btjk on the border is constructed by projecting the respective intermediate control point btjk into the plane defined by the nearest corner point and the normal in that corner. For example, Figure 2.1 shows the construction of b21o.

Finally, the central control point bn1 is constructed moving the corresponding bn1 halfway in the direction rn-bn1, where rn is the average of the six control points just computed on the border.

In formulas:

b3oo =Po, bo3o =PI, boo3 =pz,

Wij = (Pj-Pt)• ni, i,j E {0, 1, 2}, i #-j, 1 1 bzw = 3(2po +Pl-wmno), b1zo = 3(2Pl +Po-wwn1), 1 1 boz1 = 3(2Pl +Pz-w1zn1), bo1z = 3(2pz +Pl-wz1nz), 1 1 bwz = 3(2pz +Po-wzonz), bzm = 3(2po +pz-wozno),
(2.1)

1 rn = 6 (b21o + b1zo + boz1 + bo1z + bwz + bzm), - 1 bn1 = 3(Po +Pl+ pz), 1 - bn1 = m + 2 (rn-bn1).
As shown in [Vlachos et al. 2001], each boundary curve stays close to its edge, because it is demonstrated that the control points near a vertex, constructed as above, lie within into the tangent plane at PO• a radius of l/6, where l is the length of the longest triangle edge, centred in the vertex. Further, the particular choice for the central control point bu1 is, among other things, based on symmetry, see [Farin 1983]. In this way, the curved patch provably remains close to the fiat triangle, preserving the shape and avoiding interference with other curved triangles.

In [START_REF] Mao | [END_REF]] a reformulation of PN Triangles as a modified Nielson's side-vertex triangular mesh interpolation scheme [Nielson 1987] can be found. Furthermore, the two recent works [Boubekeur et al. 2005, Dyken et al. 2008] propose, respectively, a new application of PN triangles and add sorne improvements to the original construction. In particular, in the former, the key idea is to assign to each mesh vertex a set of three scalar tags that act as shape controllers, improving the surface geometry and shading. The latter proposes the use of PN triangles on silhouettes.

Phong Tessellation

Phong tessellation [Boubekeur and Alexa 2008] is a recent work based on the idea that a real-time mesh refinement operator should be as efficient and simple as Phong normal interpolation. The main concept behind the scheme is that around each vertex the tangent plane defined by the vertex normal provides the appropriate local geometry.

The quadratic patch is constructed by direct evaluation of the point of barycentric coordinates ( u, v, w) in three simple steps. First, the barycentric combination between the three triangle vertices is computed. Then, this point is projected on the three tangent planes defined by the vertices and normals in input. Finally, the final evaluation point s* ( u, v, w) is obtained by the barycentric combination of these three projections. Additionally, a shape factor ais proposed to interpolate between linear (fiat) and Phong tessellation, controlling the distance from the flat triangle. Hence, the final surface can be written as: (u,v,w) +as*(u,v,w), where p( u, v, w) = upo + vp1 + wp2 is sim ply the linear tessellation of the triangle and s*(u, v, w) is detailed below. Phong tessellation is the only scheme, among those analysed, with a parameter to regulate the surface fl.atness. Unfortunately, this is a global parameter while sometimes only sorne local parts of the surface need to be changed. It is also true that Phong tessellation introduces such a parameter because usually the obtained surface is too infl.ated, while the other schemes do not have an issue with fl.atness and thus do not need a parameter. In [Boubekeur and Alexa 2008], a= 3/4 is proposed because this value experimentally provides convincing results in most of the situations. In Figure 2.2 the surfaces constructed from a simple mesh for different values of the parameter a show how this parameter controls the shape of the final Phong surface.

sa(u,v,w) = (1-a)p
Writing out the definition of Phong tessellation, we ob tain that s* ( u, v, w) is a quadratic patch with Bézier control points

- 1 bno = 2[7ro(Pl) + 7rl(Po)J, bo2o =Pl, - 1 bon= z[7rl(P2) +1r2(P1)J, boo2 = P2, - 1 b101 = 2[7r2(Po) + 7ro(P2)],
where 7ri(p 1 ) is the projection of Pi on the tangent plane Ti defined by ni and p% (see Figure 2.3).

Figure 2.3: Projection of p 1 onto the tangent plane at Po defined by no.

This allows us to compute a reformulation of the Phong tessellation patch sa (u,v,w) in quadratic Bézier triangle form with control points: b2oo =Po, bo2o =PI, boo2 = P2,

1 [- 1 ] buo = 2(Po +PI)+ a bno-2(Po +PI) , 1 [- 1 ] bou = 2(PI + P2) +a bou-2(PI + P2) , (2.2) 1 [- 1 ] b101 = 2(Po + P2) +a b101-2(Po + P2) .
In this form Phong tessellation has a simple geometrie interpretation: the three control points buo, bou and b101 are obtained by moving the middle-edge point in the direction given by the average of the projections of the edge corners, scaled by a. ln 

+ 7ri(Po))-~(Po+ PI)] = = ~(Po+ PI)+~ [-~((PI -Po)• no)no-~((Po-PI)• n1)n1] 1 1 1 = 2(Po +PI)+ 6(Po •no-Pl• no)no-6(Po • n1-PI• n1)n1 = 1 (bPN bPN) = 2 210 + 120 .
The control point for the quadratic Bézier triangle of Phong Tessellation with a= 1/3 is the average of the two control points of PN triangles relative to the same edge.

Nagata Triangles

The central idea in the scheme proposed by T. Nagata in [Nagata 2005] is quadratic interpolation of a curved segment from the position and normal vectors at the end-points, with the aid of generalized inverses (or pseudo-inverses).

More precisely, this scheme first replaces each edge of the planar triangle with a curve orthogonal to the normals given at the end-points, then fills the interior of the patch with a parametric quadratic surface reproducing the modified boundaries. Central in the patch construction is a coefficient c1 (respectively c2, c3) that defines the boundary curve in the monomial form x1(t) =Po+ (el-c1)t + c1t 2 as concerns the edge given by e1 (respectively e 2 , e3). The analytical formula used for the generalized inverse A+ is

A+= lim (A*A+kE)-1 A*, k--+O+
where A and A* are an arbitrary matrix and its transposed conjugate, respectively, and E is the identity matrix of consistent dimension. This allows to solve the system of equations with unknown c1.

The solution for the coefficient c1 related to the edge e1 results in Cl=

L.J.C L.J.C { 1 ~~ v+ 1 jj.v, c =J ±1 0, c = ±1 (2.3)
where v = no!n 1 and jj.v = no2n 1 are the average and the deviation of the unit normals,

d = e1 • v and jj.d = e1
• jj.v their inner products with e1 and

jj.c = no • jj.v, c = no• n1 = 1 -2jj.c.
The coefficient c1 is set to zero when no • n1 = ±1 because obviously the two denominators should not become zero.

Although the monomial form allows an easy and fast coefficient computation (see computational costs in subsection 2.1.5), a triangular Bézier formulation of the patch, which can be obtained by means of a change of parameterisation, provides a better geometrical insight. The three control points huo, h 101 and hou are defined by moving the average of the vertices on an edge halfway the direction given by the curvature coefficient related to that edge:

h2oo =Po, 1 1 huo = 2(Po +Pl)-2c1, ho2o =Pl, 1 1 hou= 2(Pl + P2)-2c2, hoo2 = P2, 1 1 hw1 = 2(Po + P2)-2c3.
In this formulation sorne easy calculations allow to show that the central control point on one edge, for instance huo, is on the intersection line L between the two tangent planes To and r1, i.e. L =Ton T1. Moreover, the control point huo is the point on that line L that minimizes the distance between the middle-edge point ! (Po + p 1 ) and the line ( see Figures

and 2.6).

Equation (2.3) defining the curvature coefficient c1 in Nagata's scheme has a stability problem that might strongly affect the surface.

As pointed out before, in eq. ( 2.3) defining the curvature coefficient c1 there are two denominators that obviously should not become zero. This happens when c =no• n1 = ±1 or equivalently when Âc = 0 or Âc = 1, and in these cases the curvature coefficient is set to be zero. This means that when the angle between the two normals in the vertices of one edge is 0° or 180°, the curvature coefficient cannot be calculated and it is set to zero, leading the surface to be linear on that edge. Looking at the geometrie interpretation of Nagata's patch, this stability problem is even clearer. If the two tangent planes are parallel or nearly parallel, their intersection line L goes to infinity and as a consequence the middle-edge control point goes to infinity too, making the patch very inftated on that edge because this minimum distance point can be spatially very far away from the model edge.

One way to correct this problem is to use a threshold ê in the coefficient definition (2.3), setting c1 to 0 if Âc :::; ê or 1 -Âc :::; ê (or equivalent conditions on c). For instance, in Figure 2.7 we give an example of how the final surface changes depending on the choice of ê.

In most of our experiments in section 2.1.5, the threshold ê must be set quite high to have an acceptable result. This means that, depending on the configuration of the normals, the intersection line L can be far away from the plane of the triangle. But, with very regular meshes, as for instance the torus and the sphere (see subsection 2.1.5), surfaces with no artifacts can be obtained with small ê thanks to symmetry and well-conditioned configurations. 

NLSA Triangles

The last scheme we consider in this section presents the construction of a curvilinear mesh using quadratic curves with near least square acceleration (NLSA). This scheme was proposed by Barrera et al. in [Barrera et al. 2002]. It constructs a quadratic surface using quadratic curves which are derived using vertex normals and vertex points only, as Nagata's scheme above, but with different minimizations.

Consider the edge with direction e1. The au thors' approach, after computation of tangent vectors to E To and t1 E T1 from the normals no and n1 , first computes a curve q 1 (t) such that its derivative in Po is equal to the tangent to and the derivative in p 1 is as close to the tangent t1 as the least square minimization allows. Then, they compute a curve q2(t) with the derivative equal to the tangent in Pl and optimized at PO • Finally, by taking the average of Ql ( t) and Q2 ( t), they get the ne ar least square acceleration second degree curve x1 ( t) which is close to optimal in both ends.

The curve Ql (t) is computed by solving a system of two equations in the unknowns a1 and (31 whose solution is a 1 = to • t1 and (3 1

= e1 • to to • to to • t1 ' (2.4)
and analogously the curve Q2(t) is computed by solving a system whose solution is

(2.5)

The same procedure can be repeated for the edges e2 and e 3 to obtain the curves x 2 (t) and x3(t) defined respectively by the parameters a2, (32, OE2, 73 2 and a3, (33, OE3, 73 3 .

Having the three border curves in monomial form, it is easy to compute their Bézier formulation. The three central control points, together with the vertices, are then used as control net for a quadratic Bézier triangle. In formulas:

Note that a1f31to is just the projection of the edge vector e1 on to. Similarly, OE1f3 1 t 1 is the projection of e1 on t1 (see Figure 2.8).

Figure 2.8: a1f31to is the projection of e 1 on to.

It means that NLSA triangles in Bézier formulation have a simple geometrie interpretation: the central control point on one edge is defined moving the average of the two edge vertices in the direction given by the subtraction of the projections of the edge on the tangents at the two vertices.

This subtraction results in the same direction as the one used in Phong tessellation control points definition (see equation (2.2)). More precisely, by using Gram-Schmidt process, the tangents to = n1 -(no• nt)no and t1 = (no• n1)n1 -no can be defined and substituted in equations (2.4) and (2.5). This results in: The triangular patch obtained by the NLSA method is thus nothing else than the Phong tessellation patch with a = ~.

( et•to) (a-lb-c+ld)

Comparison

We implemented ali the schemes as an Autodesk Maya@ plug-in (MPxHwShaderNode), based on the plug-in from [START_REF] Fünfzig | [END_REF]]. The Polygons part of Autodesk Maya@ is a classic polygonal modeller, and lots of low-level and high-level functions are available for surface creation. More about technical details on CPU and GPU implementations can be found in appendix B.

Computational costs

Before comparing the surface quality of the four schemes, we compare their computational costs. We computed manually the number of scalar additions and scalar multiplications required for evaluation of a point on the cubic or quadratic Bézier triangle. Then, for the difference in practice, we measured the time required for the tessellation on the CPU by using a 1000 triangles Bunny mesh, tessellating every triangle patch into 210 points (tessellation factor f = 20). In the vertex shader on the GPU, we tessellated the patch into 210 points (tessellation factor f = 20) and 1830 points (tessellation factor f = 60), which are handled as OpenGL vertex buffer objects. As the shading is completely vertex shader-bound, we measured the time for vertex shading and fragment shading together. These measurements were performed in Maya 2008 on a MS Windows 7 (64bit) system with Intel P8700 (2.5 GHz) processor and NVidia Geforce 9600GT (512 MB) mobile graphies with driver version 258.96. Table 2.1 gives the required operations for the evaluation of a point on the surface in the Bézier form, split into control points (cp) computation and patch evaluation according to definition (1.1). We computed the same values for the original construction given by the respective articles of Nagata triangles and Phong tessellation ( Table 2.2: Scalar additions and multiplications required by all the schemes to evaluate the patch using the original construction proposed by their authors. Note that PN triangles and NLSA triangles are originally defined in the Bézier form; we just repeat the numbers from Table 2.1 for them.

tessellation in their original construction makes use of a direct per-point computation; there is no separate per-patch computation anymore.

In general, the evaluation of a surface point on the cubic patch is more expensive than on a quadratic patch, which makes a difference for the scalar CPU implementation (not using SIMD extensions). The tessellation time for the cu bic PN patch is larger than for any of the quadratic patches. On the other hand, when looking at the difference between the Bézier formulation and the original formulation on the CPU, Nagata triangles formulation is the most efficient (19 fps) since it uses the canonical basis in u and v. In contrast, the combination of construction and point evaluation into one step for Phong tessellation is slower on the CPU as it needs to be done per surface point and requires more operations than the evaluation of a quadratic Bézier triangle (15 adds, 27 mults). This combination into one step is especially beneficiai for the evaluation in the vertex shader of the GPU.

For the GPU evaluation, we compare the time differences for tessellation factor f = 60.

Interpolation in the vertex shader requires patch construction and evaluation per surface point, so that the schemes with small total costs (Phong tessellation and Nagata triangles) are advantageous. PN triangles and NLSA triangles are the slowest due to the largest total costs among all the schemes. Nagata triangles and Phong tessellation require less additions/multiplications in their original construction compared to the Bézier form (Table 2.2), as argued in [Boubekeur and Alexa 2008] and [Nagata 2005]. This results also in better timings and framerates: 22 fps for Nagata triangles and 27 fps for Phong tessellation, which become even more significant for larger tessellation factors.

Sphere and Torus Interpolation

In this section, we compare the behaviour of the four schemes with respect to a known surface. We compare the signed distance between the analytic surface (a sphere and a torus) and the piecewise parametric interpolants computed by the schemes on a sampling of points and normals from that surface. We are especially interested in the schemes behaviour when refining the base mesh of the piecewise parametric surface.

The base mesh for the sphere is an icosahedron sampled from a sphere of radius r. At any refinement step i it is refined by means of a 4-split division of the triangles, which results in triangle meshes with 20 • 4i triangles, i.e., 20 for i = 0, 80 for i = 1, 320 for i = 2, and 1280 triangles for i = 3.

The base mesh for the torus is generated by a subdivision of the bivariate parameter domain [0, 27r) x [0, 21r) into j 2 quadrangular regions. After the refinement, the quadrangular mesh is triangulated adding the diagonals. This results in 2 • j 2 triangles at any refinement stepj (j = 1,2,3, ... ).

We measure the signed distance between the analytic surface and the piecewise parametric interpolant along the patch normal for the refinement steps i = 0, 1, 2, 3, in case of the sphere, and for j = 0, ... , 19, in case of the torus. Iterations i = 3 and j = 19, respectively, yield average distance values very close to zero.

Figure 2.9 shows the approximation behaviour of the average signed distance to the sphere with radius r = 1. For this radius, the Phong triangles bend to the exterior, whereas the NLSA triangles and PN triangles are al ways interior to the sphere. The Nagata triangles (ê = 0) result in the best average distances, which is a consequence of reproducing the tangent planes at the vertices for this degree-2 scheme. PN triangles also reproduce the given tangent planes in the sphere points but, due to the general choice of the control point bn1, are less curved than the sphere.

Figure 2.10 shows the approximation behaviour of the average signed distance to a torus with radii r1 = 1 and r2 = 0.5. The behaviour of the different schemes is qualitatively the same for the torus as for the sphere above. Again Nagata triangles (ê = 0) result in the best average distance. Due to the general choice of the control point b 111 , the PN triangles are less curved than the original torus and consequently are always in the interior. The same is true for NLSA triangles, while the contrary occurs for Phong tessellation. Data in Table 2.3 confirm the following classification of the methods with respect to their approximation behaviours: Nagata triangles perform best, followed by PN triangles and NLSA triangles, whereas Phong tessellation exhibits the worst approximation behaviour.

Arbitrary Triangle Meshes

In this section, we want to compare the surfaces constructed by the four schemes on arbitrary triangle meshes with a low triangle count (1000-3000 triangles) because similar meshes will Sphere 0.015737 ,.., _ .,., __ .,., , .,., _ ~~-----....... : ----------. -----------..... , ---------------------------- ----------------------------------~ "' "'"" """" •••"' :.;: • • • = •• ;;:.: ••;;:.: -• "" -"" "'"' --'"' - ------------------========. ": 1
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Table 2.4 gives detailed information about the meshes in our experiments. As the vertex normals have strong influence on the constructed surfaces, the table gives statistics on the angle eosine between the vertex normals and the triangle normals. This is a rough measure for the curvedness of the triangular patches. Additionally, the border curves are classified into convex, concave, and inflection, by the directions of the two vertex normals relative to a plane orthogonal to the edge (details in [Vlachos et al. 2001, Van Overveld andWyvill1997b]).

We analyse the surfaces from four meshes, Bunny, Monsterfrog, Vase and RoundedCube, by using highlight lines and Gaussian curvature plots [Hahmann et al. 2008]. Bunny and Monsterfrog represent two arbitrary fine triangle meshes. The remaining two meshes, Vase and RoundedCube, were chosen because they exhibit certain special effects for sorne of the 8 "(uv)x 8 "(uv) schemes. We use the exact surface normals n(u,v) = //~( ') t_( 'li/ for computing the

au u,v x av u,v Gaussian curvature.
The visual appearance of an object is not only determined by its geometrical shape but also, for example, by the surface shading. When dealing with surfaces it may happen that the analytical continuity constraints are not enough for providing the desired smooth appearance. For comparison purposes we decided to show in the examples in the following the real analytical shape of the constructed surfaces. How an independent normal patch can be proposed together with the surface to improve the surface visualisation as a sort of normal smoothing is described in appendix A.

Table 2.5 contains the minimum, maximum and mean values, with standard deviation defined as J n~l Lk=l (xk -x) 2 , of the Gaussian curvature computed on a dense sampling grid of 210 points per patch.

Analysing these statistics we found that the mean and maximum values of curvature for NLSA triangles are always smaller in absolute value than the respective mean and maximum values for Phong Tessellation, meaning that the shape parameter, in a certain sense, controls also the curvature of the constructed surface. Further, NLSA triangles have the lowest standard deviation values of all the methods, meaning that the curvature is in general nearby the average value and few points have strongly deviating curvatures. Finally, in all the models there is a remarkable difference between the minimum and maximum value of the curvature for Nagata triangles, confirming that the stability problem deeply affects the resulting overall surface shape.

Additionally, in Table 2.6 we computed the angle eosine of the two normals in the same point of the edge between two adjacent patches. Although the C 0 patch construction does not guarantee G 1 continuity, this can be approximately the case, when the mean value of the two angle eosines is close to 1. It can be seen in a certain sense as a measure of "how far the patches are from having G 1 continuity". The average eosine angle is computed by sampling 20 points along each edge.

In general, for all our examples, PN triangles give the best continuity, in the sense that the mean angle eosine between the normals is the nearest to 1 with the least standard deviations (except for the sphere). For the Bunny, Monsterfrog, Vase and RoundedCube models, in terms of G 1 continuity performance, PN triangles perform best, followed by Phong tessellation (rank 2), and NLSA triangles (rank 3). For these models Nagata triangles turn out to be the worst, due to the use of the threshold ê to control the stability problem which produces linear edges reducing considerably the mean values of the eosine. But Nagata triangles are nearly optimal in the sphere and toms, confirming the results obtained in section 2.1.5. Looking at minimum and maximum values for these angles, we note that almost in ali situations there exist points in which adjacent patches have the same normals (cos= 1), but also that there are unwanted situations, especially in Bunny, Monsterfrog and RoudedCube, where there are points in which the angles between the normals are 1r (cos= -1 or nearby), meaning that there are points in which the two normals are parallel but painting in opposite directions.

In the foliowing we analyse each madel in detail. The Bunny mesh is of moderate size (1000 triangles) with no degenerate normals, i.e., ali normals point into the positive halfspace defined by the triangle. It has a large fraction of infiection edges (58%), which results in patches of high curvature magnitude for the PN patches. For Nagata triangles a fairly large value ê = 0.03 has to be used, but still the resulting patches are exaggerately curved. Looking at the shaded images in the first row in Figure 2.11, no significative differences can be noticed between the four methods, but the highlight line plots in the second row confirm that PN triangles have less discontinuous normals. The Gaussian curvature plots in the third row, instead, show that, due to infiections introduced by the cubic patches on the infiection edges, the PN triangles curvature changes sign much more often than that of the three quadratic schemes, which therefore, have bigger regions of positive and negative curvature.

The Monsterfrog mesh is of larger size (2584 triangles) with a fraction of 52% infiection edges. Unlike the Bunny mesh, there are sorne degenerate normals at the frog's teeth and in the tail. It is actually in these locations that the tangent-plane continuity is violated the most, see Table 2.6.

On this fine base mesh, the difference between ali the schemes gets smalier with the exception of Nagata triangles, which need to cope with the stability problems elucidated above in section 2.1.3.

The Vase madel in Figure 2.13 is a modified cylinder, where the circle is deformed into a star shape in the lower part. The original quadrangle mesh was triangulated by introducing one of the diagonals. For this special configuration, ali of the degree-2 schemes generate fairly planar patches. Nagata triangles require the largest threshold ê = 0.06 among all the considered models. PN triangles generate typical curvature patterns for the two triangles adjacent to the diagonal edge: one has positive and the other one has negative Gaussian curvature in vicinity of the edge. In Figure 2.14, we have reproduced the different behaviours in the vicinity of a diagonal curve depending on the normals configuration. A characterization of the qualitative shape of a planar cubic Bézier curve is described in [START_REF] Albrecht | [END_REF], Fünfzig et al. 2010]. Foliowing this characterization, only the cases 1. (no infiection point) and 3. (one infiection point) can occur for PN triangles due to the way the edge control points are constructed by the projection of interior points b210 = (2po + Pl)/3 and b120 = (Po+2pl)/3 onto the tangent planes. When PN triangles have to deal with configurations like in Figure 2.14left or center, they can produce artifacts or ondulations due to these infiections. For these configurations a solution could be the use of PN-quads [Peters 2008], although switching of triangles to quads is computationally not very convenient and advantageous. Finally, the RoundedCube mesh has 56 triangles of large size, which also results in patches of large size. The cube corners are eut and the remaining faces are triangulated into a fan with respect to an added center vertex. For this highly symmetric base mesh the differences between the surfaces constructed by the four schemes are clearly visible in Figure 2.15. The PN triangles reproduce the tangent planes and also give good approximate tangent-plane continuity along the triangle edges. NLSA and Phong triangles are not enough curved and do not reproduce the tangent planes, which is evident on this mesh. Nagata triangles, on the contrary, reproduce exactly all the tangent planes in the corners but connect patches with curvature of different sign. The corner caps have positive Gaussian curvature, the others have negative Gaussian curvature, which results in a bad approximate tangent-plane continuity along edges.
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Looking at the silhouette close ups of the above four models we observe the following behaviour: Nagata triangles yields the bumpiest silhouette, Phong and NLSA triangles exhibit small artifacts (where NLSA seems to be slightly smoother) and PN triangles have the smoothest silhouette.

Concluding remarks

The main results of our comparison can be summarised as follows:

Geometrie interpretation. Our reformulation in terms of triangular Bézier patches provides a geometrie interpretation of the control points defining the patches. In particular, for Nagata triangles our geometrie interpretation gives a very clear explanation of the stability problem illustrated in section 2.1.3. Moreover, we found that a NLSA triangles patch is equal to a Phong tessellation patch with a = ~ and this result leads to two important observations. The first is that the Phong tessellation patch with a= ~ minimizes the near least square acceleration. This non-obvious result is readily seen from the NLSA triangles construction. The second observation is related to computational costs. The cost of the construction of NLSA triangles can be highly reduced by computing it using the Phong tessellation method. Computational costs. Phong tessellation is the least expensive in terms of computational costs, and PN triangles are the most expensive in the time required for the tessellation bath on the CPU and GPU due to their higher degree. In particular, for instanced tessellation on the GPU, the schemes with small total costs (Phong tessellation and Nagata triangles) are advantageous. PN triangles and NLSA triangles are the slowest on the GPU.

Analytic surfaces analysis.

From the geometrie analysis we made, it also follows that PN triangles and Nagata triangles are the only two schemes that exactly reproduce the tangent planes given by the normals in input. This is an advantage in the approximation behaviour of these two schemes with respect to a known surface, like the sphere and the torus treated in section 2.1.5. Nagata has in general the best approximation behaviour, followed by PN triangles and NLSA triangles methods which behave similarly, whereas Phong tessellation has the worst approximation behaviour.

Arbitrary meshes.

We have performed a wide range of experiments and statistics involving meshes with a law triangle count. Analysis on the Gaussian curvature values helped to investigate regularity of the surfaces in detail. By comparing curvature values for NLSA triangles and Phong tessellation we found that the shape parameter, in a certain sense, contrais the curvature of the constructed surface. Moreover, we had a confirmation that the stability problem in Nagata triangles deeply affects the resulting overall surface shape.

For real-world models the differences in terms of approximate G 1 continuity between ali the schemes are quite small, but our results permit the following classification: PN triangles have the smallest angles of adjacent tangent-planes along edges to neighbours, followed by Phong tessellation and NLSA triangles methods. Nagata's method suffers from stability problems and performs worst for these real ward examples. But for known analytic surfaces, such as the sphere and the toms, Nagata outperforms the other methods confirming its best approximation behaviour.

Regarding the silhouette we observed that PN triangles yield the smoothest one followed by NLSA and Phong triangles (in this arder) which exhibit small artifacts, and Nagata triangles perform worst.

Based on the above comparison results a user thus has the means of deciding which method best suites his/her specifie application, in terms of criteria such as computational cast, analytic surface reproduction, Gaussian curvature behaviour and approximate G 1 continuity.

An attempt to solve the stability problem in quadratic schemes by splitting the mesh

We are primarily interested in quadratic patches. From our comparison in section 2.1 among quadratic patches only Nagata triangles exactly reproduce the normals associated with the mesh vertices. Unfortunately, they suffer from the stability problem we described via our geometrie interpretation in section 2.1.3. As a consequence, the initial goal of the work described in this section was to find a way to improve the use of this method, that is to find a better solution than the use of a threshold to control the stability. We think that the problem could be better solved by splitting the triangle when needed. More precisely, since the stability problem is related to the construction of middle control points, our idea is to subdivide one or more edges by adding new points and new normals that split the triangle in two, or more, triangles, as shown in Figure 2.16. The notation in this section is slightly changed. The points POl, P12, P20 and their respective normals are the new points and normals constructed with the split. Then, Nagata's method can be applied to the new triangles. Two or more quadratic patches are thus constructed by using the vertices and normals from the triangle, and eventually the new points and normals introduced, avoiding instability.

A first problem appears in the case of Figure 2.16(b). In fact, when two edges are split, both P01P2 or P12Po can be chosen as new edges. One possible solution could be to take the one that provides the three new triangles as equilateral as possible (for example by taking the shortest edge).

In the following, we will focus only on the definition of the new point POl and the new normal no1, related to the edge e1, because the same procedure can be a pp lied to the other edges.

The stability problem is not only related to the angle between the two normals Due to the fact that the stability problem initially seemed to be connected only to the angle between the two normals no and n1, our first idea was to define the new normal as proposed in PN triangles to reproduce inflections (see appendix A). Thus, considering the quadratic curve constructed by NLSA triangle on the edge e 1 , we decided to construct the new point Pol as a point on that curve, and the new normal no 1 by taking the average of the two normals no and n1 reflected with respect to the plane orthogonal to e1. This attempt showed us that the problem in the use of quadratic patches is more complicated. In fact, although applying this split, the surfaces exhibit stability problems, i.e., even if the new normal Dol and no or n1 were not parallel, in certain split edges there was a stability problem. Further, another problem arose. The new normal introduced was expected to guarantee stability on the new edges PoPol and P01P1, but not on the new edge P01P2• We firstly better analysed from a geometrical point of view the stability problem. We studied the position of the intersection line L defined by the two tangent planes To and T1.

We found that the line L could be far away from the triangle plane even if no • n 1 =f-1.

Moreover, we arrived to characterise the stability problem for a quadratic patch as follows.

The edge e 1 needs to be split if

(no• êo)(nl • (-êo)) <O.
This formula has an easy geometrie interpretation. e 1 needs to be split if the angle between e1 and the tangent plane To is acute and the angle between e1 and TI is obtuse, or viceversa if the first is obtuse while the second is acute (i.e., if their eosines have different signs).

Practically, an edge needs to be split if the position of the two tangent planes To and T 1 are such that a curve to interpolate Po and Pl with no and n1 as normals, staying at short distance from the edge, is forced to have an inflection point somewhere. For this reason it is evident that this cannot be clone with a quadratic curve. In fact, since the intersection line between two non parallel planes always exists, a quadratic curve that interpolates the two points and normals can actually be constructed. But, unfortunately, this curve will suffer from what we called until now "stability problem". In Figure 2.17 a graphical example is shown.

Figure 2.17: The stability problem for quadratic curves. An edge needs to be split if the positions of the two tangent planes To and T1 are such that a curve to interpolate Po and Pl with no and n1 as normals, staying at short distance from the edge, is forced to have somewhere an inflection point (red curve). A quadratic curve can be constructed (blue curve), but it suffers from the stability problem.

This new geometrie interpretation of the stability problem allowed us to reformulate our goal from a different point of view. Find a point po 1 and a normal n 0 1 such that

(no1 • b)(n1 • ( -b)) > 0 ( 2 . 6 ) { (no• a)(no1 • (-a)) > o (no1 • c)(n2 • (-c)) > 0 (no1 • N) > o
where a= Pol-Po, b =Pl-POl, c = P2-POl and N is the normal to the triangle plane.

The last condition ensures that no1 has the right orientation with respect to the three normals no, nl and n2.

We analysed different solutions to (2.6). Firstly we simplified the problem by considering

POl on the edge e1, that is by imposing POl = (1 -À)Pl + Àpo. Thus, if we define no1 = ano + ~n1 + 'Yn2 + 8N, the system can be solved with respect to unknowns a, ~' ' Y and 8. Moreover, with this simplification, the system can be reduced to three equations and three unknowns as the first equation involves the second one. Another possible solution was to define no1 with respect to a coordinate system with Po as origin. Thus, we define no1 = aê1 +~N +')'v, with v= ê1 x N, and we solve the system with respect to the unknowns a,~ and ' Y•

All the solutions we found are interesting if we consider one triangle, but they are useless for the interpolation problem we are considering. In fact, we have to take into account that an edge in the mesh can be shared by two triangles, and the new point p 01 and the new normal no1 are the same for the neighbouring one, as shown in Figure 2.18. The solutions 

(no •a)(no1• (-a))> 0 (no1 • b)(n1 • ( -b)) > 0 (nol • c)(n2 • ( -c)) > 0 (no1 • c)(îi2 • ( -c)) > o (nol• N) > 0 (no1 • N) > o (2.7)
where c = îh -POl and N is the normal to the neighbour triangle plane.

In this system we cannot make simplifications as above on the point POl• In fact if we assume that point to be on the edge e1 there could exist configurations of n 2 and îh for which there is no possible solution for n01.

Firstly, we try to solve the problem from a different point of view. The idea was to take the plane defined by a point p 01 on e1 and the normal ÏÏ01 defined as in appendix A to reproduce inflections, that is by taking the average of no and n1 and reflecting it on the plane orthogonal to e1. If n01 is on that plane then the first two equations in (2.7) are satisfied. After projection of P2, n2, P2 and Îi2 on that plane, a quadratic curve that interpolates those two points and normals can be uniquely constructed. Our idea was to take as Pol a point on this quadratic curve and as no1 the corresponding orthogonal vector to the tangent of the curve in that point. Unfortunately, after sorne tests we found that it is true that the first two equations in (2.7) are always satisfied by these Pol and no1, but not the third and fourth ones.

Another attempt was to define POl and no1 by taking a point and its corresponding normal on a Bézier tensor-product patch constructed from Po, p 1 , P2, p 2 and their normals.

Unfortunately, it is difficult to set the interior control points of the patch such that the system (2. 7) is solvable, due to the non linearity of the equations. Furthermore, the definition of these control points is strictly related to the twists and it is a well-known issue in this domain. We tried with different bicubic patches, as for example [Peters 2008], without encouraging results.

A new reformulation and future work Currently we are working on a reformulation of the problem by a geometrical point of view to a void the solution of system ( 2. 7).

Let 7ro be the plane orthogonal to a = POl -Po in Po• If a = (ao, f3o, 'Yo)T and Po = (xo, yo, zof, the plane is defined by the following equation

aox + f3oy + "foZ + b"o = 0,
where b"o = -aoxo -f3oYo -"foZo. The angle between the normal no and the edge e1 can be characterized by the position of the point Po+ no= ((Po+ no)x, (po+ no)y, (Po+ no)zf with respect to the plane 7ro. In fact, if the angle between no and e 1 is respectively acute or obtuse, it holds

ao(Po + no)x + f3o(Po + no)y + 'Yo(Po + no)z + b"o > 0, or ao(Po + no)x + f3o(Po + no)y + 'Yo(Po + no)z + b"o <O.
The same conditions can be applied to the normal n 01 in POl or ao(po1 + n01)x + ,Bo(Pol + n01)y + 'Yo(POl + n01)z +Jo <O. Thus, defi.ning b =POl-Pl = (a~, ,B~, 'Yl)T, c = P2-POl = (a2, ,62, 'Y2f and b = P2-POl = ( a3, ,63, ')'3) T we can define the three planes 7rl : OE1X + ,61y + ')'1Z + 81 = Ü, 7r2 : OE2X + ,62y + ')'2Z + 82 = 0, '1r3 : OE3X + ,63y + ')'3Z + 83 = 0, and consequently we arrive at the following system of four inequalities in which the inequalities signs are defined by the angles of the normals no, n 1 , n2 and îi 2 with their respective edges:

If POl is known, (2.8) is a linear system of four inequalities in the unknowns no1x, no1y and nolz• How to geometrie characterise the solution of the four equations and how to define a point in that solution space to obtain the normal no 1 is currently work in progress. CHAPTER 3

G 1 continuous schemes

Not surprisingly, every method that tries to solve a data fitting problem encounters the same main difficulty: dealing with the smoothness of the surface. The schemes surveyed in the previous chapter are attractive solutions to improve surface visualisation, in particular on contours and silhouettes. However, to be useful for surface design, a data fitting scheme must produce a smooth surface. To this end, in practice, the concept of tangent plane continuity, also known as C 1 continuity, is used.

In this chapter, we firstly review in section 3.1 the definition of tangent plane continuity and we illustrate in detail, in section 3.2, the vertex consistency problem that arises when constructing tangent plane continuous surfaces by means of triangular Bézier patches. Then, in section 3.3 we briefly describe the interesting recently published solutions summarised in Figure 3.4. Finally, in section 3.4 we focus our attention on quadratic patches by analysing sorne particular C 1 -conditions and describing our first attempts to solve them.

G 1 continuity

When dealing with parametric surfaces, since C 1 continuity depends on the parameterisation of the surface, it is usually relaxed to C 1 continuity, also called geometrie continuity or tangent plane continuity. This concept, in fact, was born as an early attempt at describing, through geometry rather than algebra, the continuity of adjacent curves or surfaces.

Let us begin by recalling the definition of C 1 continuity.

Definition 3.1. Two patches are said to be C 1 continuous if they are C 0 continuous and the tangent vectors across the common boundary curve are equal.

The tangent vectors have a direction and a magnitude. According to this definition both should be equal.

C 1 continuity is a genuine generalisation of C 1 continuity. From an algebraic point of view, two patches meet with C 1 continuity if it is possible to reparameterise the patches such that they meet with C 1 continuity. Definition 3.2. Given two patches s 1 and s 2 : ~2 -7 ~3 , they meet with first arder geometrie continuity (C 1 ), if there exists a map (} : ~2 -7 ~2 such that s 1 meets s 2 o (} with parametric continuity C 1 , that is, more formally, that the first arder cross boundary derivatives of the two patches after reparameterisation with respect to (} coincide.

The most important aspect of G 1 continuity is, therefore, that it is independent of the parameterisation of the two involved patches. From a geometrie point of view, the following characterisation of G 1 continuity is used. Definition 3.3. ( [Peters 1991]) A regular parametric piecewise surface is smooth or G 1 , if its patches join with regular oriented tangent plane continuity; that is, if the surface normals of the abutting patches are uniquely defined and agree at every point of the boundary.

For G 1 continuity, therefore, the tangent vector requirement of definition 3.1 is relaxed so that the vectors must be in the same direction, but do not need to have the same magnitude.

The concept of G 1 continuity has been widely studied in the literature. We describe in the following the commonly used algebraic characterisation of the necessary and sufficient constraints for oriented tangent plane continuity. This characterisation applies in general to patches with an arbitrary number of sides, in particular to any combination of tensor product and total degree patches, but we specialise it to triangular patches. Let 8 1 and 8 2 be two adjacent triangular patches parameterised as in Figure 3.1, and let cfu8 1 (u,O) = cfu8 2 (u,O), cfv8 1 (u,O) and cfv8 2 (u,O) their partial derivatives along the common boundary. Then, according to definition 3.3, 8 1 and 8 2 join regularly G 1 if and only if the surface normal of 8 1 is well defined and coïncides with the normal of 8 2 at every point of the boundary:

_Q_8 1 (u 0) x _Q_8 1 (u 0) _Q_8 1 (u 0) x _Q_8 2 (u 0) ôv ' ôu ' ôu ' ôv ' I l cfv81(u, 0) x cfu8l(u, 0) I l Il cfu81(u, 0) x cfv82(u, ü)ll' ô 1 ô 1 ôv8 (u,O) x ôu8 (u,O) =1-O. (3.1)
The first condition assures the equality of the two normals, the second one that the normals are well defined avoiding the case of vanishing normals.

Another important characterisation is proposed in [Farin 1982]. Let c(u) be the common boundary curve of 8 1 and 8 2 , and let d~c(u) be its tangent vector. The proposed condition for continuity of tangent planes is

( a 1 a 2 d )
det ovs (u,0), 0 vs (u,O),duc(u) =0.

(3.2) (3.2) is also called a condition for visual C 1 continuity.

In, e.g., [Peters 1991, Liu and Hoschek 1989, Liu 1990[START_REF] Piper | [END_REF], Farin 1982] it is shown that (3.1) and (3.2) are equivalent to the following more convenient characterisation of the G 1 constraints for polynomial patches.

Lemma 3.1. ([Peters 1991]) Two smoothpatchess 1 (u,v) ands 2 (u,v) joinG 1 along a cammon boundary parameterised by u if and only if there exist scalar-valued functions cp, v and ft of u such that, at each point of the boundary, a a a

cp(u) ous 1 (u,O) = v(u) ovs 1 (u,O) + JL(u) ovs 2 (u,O), (3.3) a 1 a 1 ovs (u,O) x {)us (u,O) # 0, v(u)ft(u) >O. (3.4)
cp, 11 and v are called weight functions. If s 1 and s 2 are polynomial, then, up to a common factor, also the weight functions are polynomial and their degrees are bounded by the degrees of s 1 and s 2 . The formulation of (3.3) with three weight functions has the advantage of being symmetric. But, often the G 1 conditions for adjacent polynomial patches are also stated in the non symmetric form With the introduction of the concept of tangent plane continuity, many researchers began to study the problem related to the construction of two polynomial triangular Bézier patches that meet with G 1 continuity. Among the numerous publications we refer the reader to [Farin 1982, Farin 2002], [START_REF] Piper | [END_REF]], [START_REF] Chiyokura | [END_REF], [Liu and Hoschek 1989] for polynomial patches and [DeRose 1990], [Kiciak 1995] and [Liu 1990] for rational patches, where the G 1 continuity between two patches is obtained by imposing conditions on their interior control points.

The vertex consistency problem

Unfortunately, a complex problem called vertex consistency problem arises when constructing a network of more than two G 1 joined patches ( [Peters 1991, Watkins 1988]).

Let us fi.rst explain it graphically. Consider one triangle with its three neighbours as in Figure 3.2. When constructing the patches, in Figure 3.2 control points for cubic patches are shown. Continuity along one border of the central triangle may impose a constraint on the interior control point while continuity along another border may impose a different constraint on the same interior control point. The shaded parallelograms represent these constraints Figure 3.2: The vertex consistency problem in a triangle with its three neighbours. that involve the interior control points of the patches. The vertex consistency problem arises when all these constraints have to be satisfied simultaneously.

To formalise this problem we change the point of view and consider the one-ring neighbours of a vertex, as in Figure 3.3. Condition (3.3) states that the two adjacent patches si-I(ui-I,ui) and si(ui,Ui+I), with si-1 (0,ui) = si(ui,O) for 0 ~ Ui ~ 1, join along a cornmon boundary with G 1 continuity if and only if there exist three scalar functions </Ji, Vi and 1-lt such that where vi(ui)J-tt(ui) > 0 (preservation of orientation) and 8 8 us' (ui, 0) x 8 88 i (ui, 0) of= 0 (weil i u,+l defined normal vectors). This generic system of n equations related to a vertex cannot be simply solved because it can have singularities. The construction of the Bézier patches around such a vertex, in fact, involves the twists (the second order mixed partial derivatives at a patch corner) because they are linked to the interior control points of the patches. For polynomial Bézier patches both twists are identical: By differentiating (3.6) with respect to ut and then evaluating at Ui conditions are obtained where i is taken modulo n. 0, the following

(3.7)
This system of n equations cannot always be solved for the unknowns au~;~:+ 1 (0, 0) and ;; 2 si~1 . (0, 0). In the literature this problem is called twist compatibility problem 

[J2si ri= -d (0)- 8 (0, 0) + <!>t(0)- 8 2 (0, 0)+ Ut Ui Ui -dvi (0) fJsi (0, 0) -df..li (0) fJsi-1 (0, 0), i = 1, ... , n. dut 8ui+l dui fJui-1
Then, (3. 7) can be written as

where

L= Lt = r, 1/1(0) 0 J.l2(0) 1/2(0) 0 0 J.ln-1 (0) 0 0 t= ( &2 8 1 ) 8u18u2 , a2 8 n 8un8Ul and 0 J.l1 (0) 0 0 1/n-1(0) 0 J.ln(O) 1/n(O) (3.8)
It has been demonstrated (cf. [Watkins 1988, Peters 1991, Sarraga 1987, Liu 2008]) that L is a n x n circulant matrix, which is singular if n is even and greater than 2.

Every scheme aiming at constructing a tangent plane continuous surface has to cope with this problem. The G 1 methods proposed until now in the literature can be divided in two classes.

CLl:

The methods in the first class bypass the problem simply avoiding the computation of twists compatible to the system (3.8).

CL2:

The methods in the second class find a way to construct twists such that the system is always solvable.

Proposed solutions

In [Peters 1990b], Peters presented a rough classification of all the schemes for local smooth surface interpolation for n-sided patches.On this basis, in [START_REF] Mann | A survey of parametric scattered data jitting using triangular interpolants[END_REF]] and [Lounsbery et al. 1992] a detailed survey of the main solutions for triangular meshes and methods proposed up to the beginning of the nineties is provided. The authors classify several of the most famous methods, like Shirman-Séquin [Shirman and Séquin 1987], Nielson [Nielson 1987], and triangular Gregory Patches [Gregory 1974], and offer a detailed comparison between them. Sorne of these schemes belong to the first class (CL 1), others to the second class (CL2). Independently of the way to solve the vertex consistency problem, the authors observe that all the surfaces display similar shape defects. They identify the main cause of these shape defects to lie in the construction of the boundary curves. In the remainder of this chapter we describe all the interesting solutions proposed after the publication of [START_REF] Mann | A survey of parametric scattered data jitting using triangular interpolants[END_REF]] (summarised in Figure 3.4), except the methods that use rational blends belonging to the first class (CL1), which are treated in detail in chapter 4. Firstly, in the following section, we briefly describe three methods that construct C 2 consistent boundary curves. If the patches have boundary curves constructed in this way, (3.8) is demonstrated to be always solvable. For completeness, among these schemes we include a method that constructs a surface that is approxima te G 1 . These surfaces were born as an attempt to construct smooth surfaces by relaxing the constraints imposed by G 1 continuity and at the same time by bounding the discontinuity in the normals between adjacent patches. Although the constructed surface is only continuous, we describe this scheme here since, as shown in Figure 3.4, it uses the same technique as the G 1 schemes described in the following. Besicles, unlike the continuous schemes surveyed in chapter 2, the surfaces constructed with this scheme were intended more for surface modelling than for surface visualisation. Then, in sections 3.3.2 and 3.3.3, we briefl.y describe two other schemes that use different techniques to make the system solvable. Thus, all the schemes described in the remainder of this chapter are in the second class (CL2).

The problem of G 1 continuity has also extensively been treated for general n-sided patches. As an outlook into this interesting field, we would like to cite sorne of the numerous publications by Jorg Peters on local surface interpolation, e.g. [Peters 1990a, Peters 1991, Peters 1990c]. 

= tPi-1(0) = t/> 0 dt/>i (0) = dt/>i-1 (0) = 4>1 dui dui-1 tPi piecewise linear la eve 1ces .. ••. ••~ 4-split s(u, v, w) piecewise quintic ----------------------------~ , ' C 2 consistent boundary curves s 1 J.t;(u;) = v;(ui) = 2 t/>;(0) = tPi-1(0) = t/> 0 dt/>; (0) = dtf>i-1 (0) = 4>1 dui dui-1 t/>; quadratic ' / ----------------------------' 45 1
Figure 3.4: Surnmary of the schemes described in t his chapter wit h t heir main propert ies.

C 2 consistent boundary curves

The boundary curves play an important role in the solution of the linear system (3.8). In fact, the right hand side ri only con tains first and second order derivatives of the patch boundary curves evaluated in the vertex. Once the control points defining the boundary curves of the patches are defined the right-hand side r of (3. 7) can be completely computed.

The three methods described in the following are based on the construction of boundary curves such that r lies in the column space of the matrix L. This guarantees that a solution t for (3.8) always exists. More precisely:

Definition 3.4. Boundary curves are called C 2 -consistent, ifrank(Lir) = rank(L) in (3.8).
With this approach the vertex consistency problem is thus solved in two steps. First, C 2 - consistent boundary curves are constructed. G 1 continuity at the patch vertices is ensured by (3.7). Then, since C 2 -consistent boundary curves guarantee that (3.8) always has a solution cross-boundary tangents along each edge satisfying (3.6) and (3. 7) can be defined.

Two methods that use this approach have been proposed by Loop in [START_REF] Loop | A G 1 triangular spline surface of arbitrary topological type[END_REF]], and more recently by Hahmann and Bonneau in [START_REF] Hahmann | [END_REF]. We then describe also another method that uses the same technique to construct a surface with approximate-G 1 continuity.

Loop's sextic triangular G 1 surface Loop was the first to propose the construction of C 2 consistent boundary curves to solve the vertex consistency problem. His method constructs a piecewise G 1 surface composed of sextic triangular Bézier patches. The whole construction can be summarised in the following steps.

1. Quartic C 2 -consistent boundary curves are constructed.

2. Quintic cross-boundary tangent functions &u&s' (ui, 0) and 8 88 ,_ 1 (0, ui) are defined for •+1 u,-1 each boundary curve.

3. Boundary sextic control points can be computed by simply degree raising the quartic boundary curves.

4. The first row of interior control points of the sextic patch is defined by blending the cross-boundary tangents and boundary curve derivatives.

5. The remaining interior control point is defined as affine combination of the control points computed in steps 3 and 4 such that s(u,v,w) has quintic precision.

The following key-assumptions are decisive to setting up eq. (3. 7) such that the associated system (3.8) is always solvable:

1 Jti(ui) = vi(ui) = 2' c/Ji (0) = c/Ji-1 (0) = c/J 0 , de/Ji (0) = dc/Ji-1 (0) = c/J1' dui dui-1
(3.9)

where i = 1, ... , n, cp 0 and cjJ 1 are scalar constants that depend on n, and all subscripts and superscripts are taken modulo n. Under these assumptions, in fact, the G 1 condition (3.6) becomes:

âsi 1 âsi 1 âsi-1 c/Ji(ui)- 8 (ui,O) = - 2 - 8 -(ui,O) + - 2 -8 -(0,u~).
(3.10)

Ut Ui+1 Ut-1
Differentiating (3.10) with respect tout and evaluating at Ui = 0, combined with assumptions (3.9) leads to a simplification of the linear system (3.8)

(3.11)
where

1 0 0 1 2 2 1 1 0 0 -( ~~(0,0)) 2 2 L= t- : ' 0 1 1 0 â2sn (0 0) 2 2 âunÔUl ' 0 0 1 1 2 2 -( ~: (0,0) ) g~ ( ~(0,0)). f- : ' âsn (0 0) â2sn (0 0) ÔUn ' aua '
The first assumption in (3.9) leads to the simplified matrix L that has a circulant structure.

With the second and the third assumptions in (3.9) the rigth-hand side of (3.11) reduces to be the sum of scalar multiples off and g. If a boundary curve network is properly constructed in step 1, the column vectors f and g lie in the column space of L and (3.11) can be solved. Its solutions ti = âu~;~:+ 1 (0, 0), i = 1, ... , n, are twists compatible with this boundary curve network. In [START_REF] Loop | A G 1 triangular spline surface of arbitrary topological type[END_REF]] it is

accurately demonstrated how to construct in steps 1 and 2 a twist compatible boundary curve network. Then, in steps 3-5 the twists are used to define sextic polynomial surface patches that interpolate the boundary curve network.

Hahmann and Bonneau's quintic interpolant

In [START_REF] Hahmann | [END_REF] an improved version of Loop's scheme is proposed. An interpolating quintic G 1 triangular surface is constructed by means of 4-splits of the triangles.

Each triangular macro-patch s, which interpolates the 3 vertices of a surface mesh triangle, is a piecewise C1 quintic surface. As above the algorithm for the construction of the surface can be summarised in the following steps.

1. Boundary curves and cross -boundary tangents are constructed and used to define the interior control points.

2. The domain triangles are split into 4 sub-triangles by joining the edge midpoints together.

3. The remaining inner control points are set by imposing that the 4 sub-patches join C 1 -continuously.

4. Six control points per macro-patch remain free as local shape control.

In the construction of the patch with this technique the assumptions on the scalar valued functions c/Ji, vi and J.Lt are extremely important because they decide wh ether the conditions (3.6) and (3. 7) are satisfied. Besicles, their degree decides the degree of the final patch. Ideally a linear c/Ji and constant Vi and J.Lt do not raise the degree of the patch when satisfying eq.

(3.6).

In this method the choice for c/Ji is decisive. Firstly, vi and J.Li are set as in (3.9) for symmetry reasons and as simplification it is assumed that c/Ji(O) := cp 0 and cp~(O) := cp 1 for i = 1, ... , n. This assumption implies that the G 1 conditions can be expressed by the linear system of equations (3.11). Loop showed in [START_REF] Loop | A G 1 triangular spline surface of arbitrary topological type[END_REF]] that it is possible to determine cp 0 and cp 1 and that the use of linear functions for c/Ji would imply that cp 1 depends on the number of edges meeting at the opposite vertex. This constraint would make the algorithm global, destroying completely the aim of constructing a simple polynomial patch per input triangle. The 4-splitting of domain triangles allows to take the functions c/Ji piecewise linear and continuous, separating the vertex information:

{ cos 2 ; (1 -2ui) + ui,
for Ui E [0, !J;

cpt ( Ui) = ( ) ( 271") ( ) c [ 1 ] 1 -Ut + 1 -COS n, 2Ui -1 , 10f Ut E 2, 1 .
This choice for c/Ji would not have been possible without a 4-splitting of the domain triangles.

Instead of quartic boundary curves, the 4-split allows to use piecewise C 1 polynomial curves of degree 3. The two cubic pieces, one for each vertex, are constructed independently one from the other, preserving the locality of the method. The resulting boundary curve is C 1 -continuous because the points corresponding to the parameter ui = !, that is the midpoint of an edge of the mesh where the edge is split, are constructed by imposing C 1 joins between the two curve pieces. The other control points defining the curve are set as in Loop's scheme with the addition of three shape parameters. These piecewise cubic boundary curves of the macro-patches forma C 2 -consistent curve network (step 1).

Once C 2 -consistent boundary curves have been found, cross-boundary tangents a ôsi ( ui, 0) and 8 88 ,_ Figure 3.5: Control points for the piecewise quintic interpolant from [START_REF] Hahmann | [END_REF].

The border and first inner row of control points of the macro-patch (white dots) are constructed from the boundary curves and the crossboundary tangents. The square points corresponding to the parameter Ui = ~, that is the midpoint of an edge of the mesh where the 4-split is accomplished, and the inner control points in red are set by imposing that the 4 sub-patches join C 1 -continuously, the six interior triangle points are free shape parameter. control points for the four quintic triangular micro-patches can be constructed. The border and first inner row of control points of the macro-patch can be found from the boundary curves and the cross-boundary tangents (step 2). G 1 -continuity between neighbouring macropatches is thus ensured. The remaining inner control points are set by imposing C 1 -continuity between the four micro-patches. Six control points per macro-patch remain free as local shape control (step 4). In Figure 3.5 all these points are graphically shown.

It is clear that the introduction of 4-splits can be of benefit to solve the G 1 interpolation problem for arbitrary triangular meshes by using the technique explained in this section. On the other hand, several degrees of freedom have to be set. As suggested by the authors these degrees of freedom can be separated into two groups: those that act on the boundary curves and those inside the macro-patch. The four shape parameters of the first group control whether the mesh is interpolated or approximated, the length of the tangent vectors and the inner shape of the curve pieces incident to a vertex. The second group consists of the six interior control points. For these points a minimisation of an energy norm keeps the scheme local and gives satisfactory results ( [START_REF] Hahmann | [END_REF]).

Approximate G 1 scheme with C 2 consistent boundary curves Approximate continuity was born as solution to relax the continuity conditions. By using approximate continuity, small discontinuities in the surface normals are allowed across the patch boundaries. Thus, approximate continuity is a relaxation of C 1 /G 1 continuity where patches meet with C 0 continuity, but the discontinuity in the normals between adjacent patches is small. More precisely: Definition 3.5. ( [Mann 1992]). A piecewise, C 0 surface is defined to be é -G 1 if the maximum angle between two surface normals across the patch boundary is bounded by é.

Although surfaces with approximate continuity allow sorne natural discontinuity, it does not mean that any surfaces with discontinuities are é -G 1 surfaces. The value of é should be limited to such a small amount that the discontinuity is not observable on the resulting surfaces.

Two parametric triangular surface interpolation schemes with approximate continuity have been recently proposed in [Liu 2008, Liu and Mann 2007, Liu and Mann 2008]. The goal of designing these é -G 1 schemes was to use lower degree patches than the existing G 1 schemes to construct parametric surfaces with good shape quality. The first é-G 1 parametric scheme proposed performs a Clough-Tocher like 3-to-1 split using cubic patches. As the au thors themselves affirm it was a first attempt to test the benefits of the use of approximate continuity instead of G 1 continuity. The second method, instead, can be considered as an approximate G 1 quintic version of Loop's scheme. Approximate continuity thus attains its aim.

The method can be summarised in the following steps:

1. Quartic boundary curves are constructed for each data triangle as in Loop's scheme.

A slightly different setting for the middle control point is proposed to avoid a "wiggle" that could appear by using Loop's construction [Liu 2008].

2. After creating the quartic boundary curves, an intermediate quartic patch is built.

The three central control points are determined from twists as in Loop's scheme. For example the point b211 is set as where the twist term is calculated like in Loop.

3. This quartic patch construction generates a surface with large normal discontinuities along the common boundary between patches. Since there is not enough freedom left in the quartic patch to make further adjustments, the patch degree is raised to quintic.

4. The control points of the quintic patch are adjusted to reduce the normal discontinuity.

The boundary control points of the quintic patch are calculated by a degree elevation from the quartic patch boundary points. The interior control points b311, b131 and bn3 define the twist terms across neighbouring patches. These twist terms in the quintic patch are set to be equivalent to those in the quartic patch. The three still unset control points, indicated as white dots in Figure 3.6, are set by imposing é -G 1 continuity.

Figure 3.6: Control points for the approximate G 1 quintic patch.

Triangular G 1 quintic surfaces by 4-splitting domain triangles

In [Hahmann and Bonneau 2003] the authors present a new G 1 piecewise quintic surface based on the 4-split scheme presented in the previous section. The algorithm, in fact, can be summarised as above in four steps.

1. Boundary curves and cross -boundary tangents are constructed and used to define the interior control points.

2. The domain triangles are split into 4 sub-triangles by joining the edge midpoints together.

3. The remaining inner control points are set by imposing that the 4 sub-patches join C 1 -continuously.

4. Six control points per macro-patch remain free as local shape control.

Actually, this approach is completely different as the surface is constructed without the use of C 2 consistent boundary curves. Thus, the vertex consistency problem is solved in a new different way. The main difference can be summarised in the fact that this new interpolant allows free choice of all first derivatives at each input vertex, along each input edge.

A further look at the tangent plane condition (3.6) reveals that the values of the scalar functions around a vertex are related to the first derivatives of the boundary curves. We pointed out before that the degree of the scalar functions controls the degree of the final patches. Thus the degree of these functions has to be kept as low as possible. In [START_REF] Loop | A G 1 triangular spline surface of arbitrary topological type[END_REF] and [START_REF] Hahmann | [END_REF] /Li and vi constants yield derivative vectors with restricted positions around a vertex.

Here to avoid this problem, vi(O), tti(O), tPi(O) and the curve tangents tt = ~(0, 0) are re-defined as follows. By multiplying via cross product eq. (3.6) with the vectors ti-l, ti and ti+b respectively, we obtain three vector valued equations. Each of these equations can be successively multiplied via scalar product with the vector ni normal to ti, leading to a (3 x 3) linear system of equations of rank 2. Repeating the procedure for every index i, the following formulas are obtained:

(3.12)

The lengths and the directions of the boundary curve tangents are therefore arbitrary parameters that can be chosen, with the only constraint that obviously the tangents must belong to the same plane, namely the tangent plane. Once the tangents are chosen, (3.12) defines the scalar values vi(O) and J.Li(O) up to a scalar factor <f>i(O). As observed in [Hahmann and Bonneau 2003] this formulation has also the following geometrical meaning: for each triple of tangents {ti-l, tt, ti+l} the value of lli(O) is proportional to the area of the triangle ~(p,p + ti,P + ti+l), and J.Li(O) is proportional to the area of the triangle ~(p, p +ti-l, p +ti), where pis the mesh vertex. By calculating these values for each mesh vertex, scalar piecewise linear functions vi(ui) and J.Lt(ui) can be employed.

Therefore, at each vertex of valence n, there aren tangents that are free parameters. Their role is very important because, together with the second derivatives, they entirely define the boundary curves coming into that vertex. As tangent vector for the edge between the vertex Pi and Pi+l, [Hahmann and Bonneau 2003] proposes to take the unit vector defined by the intersection of the tangent plane Tt and the plane spanned by the edge and the normal ni.

This vector is then scaled by the factor ~ IIP-Pi Il, as proposed in [START_REF] Piper | [END_REF]] for a tangent of a cubic curve.

What was central in Loop's and previous Hahmann and Bonneau's schemes was the choice of the boundary curves for solving the twist compatibility problem. Here the problem of finding a solution for (3.8) is bypassed choosing all the twists and then simply evaluating the equations separately from each other in order to get values for the second order derivatives b 8 28 '. Therefore, here no linear system has to be solved. On the other hand, how to choose u, the twists is a serious problem. As expressively written in the article, the lack of an intuitive heuristic rule for these values leads the authors to use a linear squares minimisation. More precisely, they minimise a linearised version of the thin plate's bending energy J Suu+ 2suv +

Svvdudv.

The next step is to define the cross-boundary derivatives, which ensure the G 1 continuity between adjacent patches. In Loop's and previous Hahnmann and Bonneau's schemes constant vi and /Ji allowed to simply define them. Here !li and J.Li are linear functions, thus the patches si and si-l meet with G 1 continuity along the common boundary if there exists a vector valued function in ~8 , vt, such that the following two equations hold:

(3.13) This implies, however, that the cross-boundary derivatives aas' ( Ui, 0) and gs•.-l (0, ui) deu,+l u,_l fined by (3.13) would, in general, be rational.

The solution to this problem is to construct the derivatives z~: (ui, 0), that define the boundary curves, as a product of the linear scalar functions vi, Jt~ and a vector valued piecewise polynomial function hi, i.e., (3.14) This condition ensures to obtain a polynomial patch. Now, an explicit formula for the boundary curves can be given by merging the information about the tangents and the second order derivatives at each vertex, with the polynomial condition (3.14) between two neighbouring vertices. The interested reader finds the detailed procedure in [Hahmann and Bonneau 2003].

The third and fourth steps of the algorithm consist in the construction of the surface patches by determining the remaining interior control points. This is made as in the previous 4-split scheme.

In [Yvart et al. 2005] the interpolation scheme is proposed combined with a hierarchical data structure leading to surfaces that can be adaptively refined while preserving the overall tangent plane continuity.

Degenerate polynomial patches

The last scheme we describe was presented in [Neamtu and Pfiuger 1994] with the aim of finding and studying a method both completely local and polynomial. Such a method requires the use of special polynomial patches called degenerate polynomial patches with coalescent control points, in particular with three coalescent control points at the vertices of the triangles.

In a few words, associated to every patch they also consider a polynomial normal patch such that its evaluation in a point gives the nonzero normal vector of the patch in that point.

The G 1 continuity of a patch s( u, v, w) is equivalent to the existence of a continuous normal patch to s. In the following, we call boundary normal curves the boundary curves of the normal patch.

The proposed method for the construction of a degenerate patch of degree n consists of three stages:

1. Choice of boundary curves. Determine the boundary curves such that the resulting curves interpolate the vertices and the normals. Interpolation of the vertices is readily fulfilled by forcing in every boundary the first and the last control points to coïncide with the vertices. Interpolation of the normals is attained imposing that the tangent vectors at both ends of the boundary curve are orthogonal to the normals in the vertices. In general, there exist many boundary curves satisfying these conditions.

2. Choice of boundary normal curves. Consider, for instance, only the edge e 1 with the boundary curve constructed in the previous step. The aim is to determine the associated boundary normal curve such that the resulting curve interpolates the normal at the vertices and is compatible with the curve. Compatibility here means orthogonality between the unit tangent vector along the curve and the normal curve. The imposition of this condition leads to a system of equations for the control points of the patch and of the normal patch. As in the case of boundary curves, there are usually many possible solutions of this system.

Determination of interior control points.

The interior control points have to be chosen adding the condition that the directional derivatives of the patch are orthogonal to the normal patch. This leads a system of equations that in general has no solutions. Employing patches with three coalescent control points at vertices, the degenerate patches, gives necessary conditions for the existence of a solution.

The use of three coalescent control points at the vertices necessarily involves the use of at least quintic Bézier triangles. In fact, a degenerate cubic polynomial patch has not enough degrees of freedom to satisfy the interpolation conditions. A degenerate quartic patch is also proposed, but it requires the imposition of fairly restrictive conditions in the determination of linear boundary normal curves. Therefore, it cannot work for arbitrary data. With the quintic patch, instead, there are more degrees of freedom, which can be chosen without a need to seriously impose restrictions on the initial mesh.

Nonetheless, the construction of the control points is not simple. For the choice of quadratic boundary normal curves it is shown that the system of equations always has a solution. The determination of the interior control points is more complicated. It leads indeed to a system of 12 equations in 18 unknowns. It can be shown to always have a solution, actually infinitely many. However, as asserted in [Neamtu and Pfluger 1994], it is less clear whether there exists a solution which also preserves orientation of the normals and th us, which avoids cusps between adjacent patches. Although they do not have a rigourous proof of the existence of such a solution, they believe, based on their numerical experiments, that this is always possible by making use of the available freedom in the under-determined system. In their implementation, they find a solution which minimises a suitably chosen objective function and then the constrained optimisation is solved by the standard Lagrange multipliers technique. It is shown how this choice greatly influences the shape of the interpolant.

Analysis of G 1 continuity conditions and constraints for quadratic patches

As pointed out in section 2.2 in the first part of the thesis we focused our attention on quadratic patches. Contrary to higher order patches, by using quadratic Bézier triangles we avoid the vertex consistency problem, since we do not need the twists to construct the interior control points. On the other hand, as described in section 2.2, when dealing with quadratic patch on arbitrary meshes we may have the stability problem. Our goal was to investigate the existence of a G 1 continuous interpolant composed of quadratic parametric Bézier patches. After the bibliographie study we described in the previous sections, together with section 2.2 where we analysed the stability problem, our first attempts were based on the study of G 1 continuity conditions and constraints for quadratic patches.

For every triangle T of the mesh with vertices po, Pl and P2, we consider the tetrahedron formed by the plane of the triangle and the three tangent planes To, Tl and T2. The vertex v of this tetrahedron is obtained as intersection of the three planes To, T 1 and T2, thus it can be calculated as the solution of the following linear system

{ ~~: = :~~: ~ ~ ( :f) v= ( :f:~ ) . nf(v-P2) = 0 nf nfp2
Let us denote the edges of the tetrahedron by e01, e12 and e 2 o. Parametric representations of these three edges are given by for (i,j) E {(0, 1), (1, 2), (2, 0)}. The tetrahedra of two adjacent triangles in the mesh share the edge generated by the two tangent planes at the vertices of the common triangle edge.

The control points of a quadratic Bézier triangle that interpolates the three vertices of the triangle and the three normals must be positioned on the edges eo1, e12 and e2o, respectively: bno =v+ Àuo(no x n1), bon = v+ Àou (n1 x n2), b101 =v+ À101(n2 x no).

(3.15) Thus a quadratic patch is defined when the three free shape parameters Àijk E :IR are fixed. This construction guarantees common boundary curves as well as common tangent planes in the corner points of adjacent patches, but the continuity along the common boundary curves is not yet guaranteed. We investigated if it is possible to translate the conditions on G 1 continuity between two patches in conditions or constraints on the choice of these three parameters Àno, Àon and À101•

Liu's conditions

As mentioned in section 3.1, many conditions for G 1 continuity of polynomial and rational patches have been proposed in the literature. The following theorem is adapted from [Liu 1990] to quadratic polynomial patches. 

a+ +'Y

The two conditions in this formulation can be interpreted as follows. Let

,B O"o = a + ,B + 'Y' O"! = a + ,B + 'Y'
Since they sum to 1, it means that the barycentric coordinates of b 200 with respect to the triangle 6. b 110 bw1 bno have to be equal to the barycentric coordinat es of bw1 with respect to the triangle 6. bon boo2 bon (Figure 3. 7 (b)).

Therefore, the G 1 condition can be written in a different way. We can compute O"J, O"f, d, OEÔ, O"Î, O"~ barycentric coordinates respectively of b2oo with respect to the first triangle and of bw1 with respect to the second triangle, i.e.,

Analysis of G 1 continuity conditions for quadratic patches

The G 1 continuity condition of Theorem 3.2 becomes { ,.1-,.2 vo-vo, ,.1-,.2 vl -v2.
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(3.17)

Since a~= 1-aôaf and a~= 1-a5-ar, a~= a § is automatically satisfied by (3.17 The barycentric coordinates a ô, a5, a} and a § can be computed as ratio of these quantities

1 1 ml ao = -1, m 2 2 ml ao = -2, m (3.18)
By substituting (3.15) in (3.18), we can rewrite the two conditions (3.17) depending on Àijk as follows

~ ~ ~ b1À101Àno + b2Àuo + b3À101 + b4À101ÀuoÀuo + b5ÀuoÀuo + b6À101Àuo c1 + c2Àou + c3À101 + c4À101Àon - ~ ~ = 0, d1 + d2Àou + d3Àou + d4À101Àou (3.19) ~ ~ b1À101Àno + b2Àuo + b3À1o1 + b4À101ÀuoÀuo + b5ÀuoÀuo + b6À101Àno ~ ~ ~ _ fiÀou + f2À101 + f3À101Àou + f4>..o.:_1Àou + j5À1~1ÀouÀou + f6À101Àou = O, d1 + d2Àou + d3Àou + d4À101Àou
where al = det (b2oo, v, v)' a2 = det (b2oo, n2 x no, no x îi1), a3 = det (b2oo, v, no x îi1), a4 = det (b2oo, n2 x no, v)'

Cl = det (v, boo2, v), c2 = det (v, hoo2, n2 x îi1), C3 = det (n2 X no, boo2, v), c4 = det (n 2 x n 0 , b 002 , n2 x îi1), e1 = -a1, e2 = det (no x nl, b2oo, v)' e3 = -a3, e4 = det (no x n1, b2oo, no x îi1), Chapter 3. G 1 continuous schemes b1 = det (v, n2 x no, no x îi1), b2 = det (no x nl, v, v)' b3 = det (v,n2 x no, v)' b4 = det (no x n1, n2
x no, no x îi1), b5 = det (no x n1, v, no x îi1), b6 = det (no x nl,n2 x no, v)'

d1 = c1, d2 = det (nl x n2, boo2, v)' d3 = c2, d4 = det (n1 x n2, hoo2, n2 x îi1), fr = det (nl x n2, v, v)' h =b3, h=det(v,n2xno,îi1 xn2), !4 = det (n1 x n2, v, Îi1 x n2), !5 = det (nl x n2, n2 x no, îil x n2)' !6 = det (nl x n2, n2 x no, v).
These are two non linear equations in the five unknowns À101, Àuo, Àou, Àuo and Àou. How to define À101, Àuo, Àou, :Xuo and :Xou such that (3.19) is satisfied is a subject of ongoing research. We are now working on finding a way to define every À depending on two quantities a and b related to the known vertices and normals. Our aim is to reduce the degree of the two equations and the number of unknowns from five to two.

CHAPTER 4

Rational blending G 1 continuous schemes and a new cubic approach

As announced in the previous chapter, in this chapter we focus our attention on G 1 rational blend interpolatory schemes. This approach bypasses the vertex consistency problem avoiding the twist computation. The interior control points of the patch are defined by means of rational blends, namely, multiple triangular Bézier patches are created such that each patch is G 1 -continuous to its neighbour along only one triangle edge. To evaluate the rational blend interpolant at sorne parameter values ( u, v, w ), each of the constructed Bézier patches is evaluated at these parameter values, then an affine combination of these points is taken. The coefficients of the affine combination are rational functions of the parameters hence the name rational blend. Therefore a rational blend degree-n triangular Bézier patch is defined by

s(u,v,w) = L bijk(u,v,w)Bijk(u,v,w), i+j+k=n ( 4.1)
where the control points bijk(u, v, w) are affine combinations of the constructed points using rational blending functions. Each boundary of the resulting interpolant has the tangent plane field of one of the constructed patches. Therefore the final surface has G 1 joins along all the boundaries. The only points on the boundary that have contributions from more than one patch are the corners. The two patches that contribute to tangent plane continuity at the corner will in general have different mixed second order partial derivatives. Vertex consistency is thus bypassed by allowing inconsistent mixed partial second order derivatives at the corner points.

Gregory patches were born as modified tensor product and triangular polynomial patches [Gregory 1974, Longhi 1986]. After constructing boundary curves, a set of interior points is defined by imposing G 1 continuity with respect to each neighbouring triangle. Thus, the Gregory patch is defined by (4.1) where only the interior control points are obtained by rational blends. For this reason we consider Gregory patches as particular rational blend interpolants.

The work presented in this chapter has been published in [Boschiroli 2011]. An extended version [Boschiroli et al. 2012] has been submitted and is currently under revision. Firstly, in section 4.1 we describe three existing rational blend schemes and we compare them. Parametric hybrid patch and PNG1 triangles, the first two schemes, are purely rational blend interpolants, while Walton and Meek's patch, the third scheme, is a Gregory patch. As the methods presented in the previous chapter, these three schemes have been proposed after the publication of the survey [START_REF] Mann | A survey of parametric scattered data jitting using triangular interpolants[END_REF]]. The interested reader is referred to that survey for a detailed description and comparison of the previous schemes related to rational blends and Gregory patches as for example [Gregory 1974, Longhi 1986] and [Herron 1985].

The study of the quartic Gregory patch of Walton and Meek allowed us to develop a cu bic version of that scheme. It is described, respectively compared with its original version and the other schemes, in section 4.2, respectively 4.3.

Rational blending type schemes: presentation and comparison

In this section we firstly describe the parametric hybrid patch, PNG1 triangles, and Walton and Meek's patch. Their entire domain control net are schematically shown in Figure 4.1.

We can easily see that the first two schemes are purely rational blend interpolants, since all the control points bijk ( u, v, w) are affine combinations of the points constructed by imposing G 1 continuity along the borders, while in Walton and Meek's patch only the interior control points are obtained by rational blends.

Then, these three schemes are compared on several triangular meshes by means of the same tools used in chapter 2: computational costs, sphere and torus approximation and shape interrogation methods on arbitrary triangular meshes.

Parametric hybrid triangular Bézier patches

This first scheme was proposed in [Mann and[START_REF] Mann | A parametric hybrid triangular Bézier patch[END_REF]] and is based on a method introduced in [START_REF] Foley | [END_REF]] by Foley and Opitz for interpolation of scattered data above a plane using a functional hybrid cubic Bézier patch.

The idea of Davidchuck and Mann is to "parameterise" this method by choosing a plane for each triangle pair, project the vertices of the triangle and its neighbour onto that plane and then perform the functional Foley-Opitz C 1 construction on the projected points. In Figure 4.2 one example of the projection of a triangle pair is shown. Once a plane is chosen as a natural parameterisation, five points for each neighbour are constructed using only the triangle vertices and the associated normals. The control points for the cubic boundary curve are defined by Hermite interpolation and the Foley-Opitz cross boundary construction [START_REF] Foley | [END_REF] determines the first line of interior control points. In Figure 4.3, for example, the five points constructed from the edge e1 are shown. Thus, finally, three sets of points bijk, 1 , bijk, 2 and bijk, 3 , each set representing a C 1 construction along one triangle edge, are computed. These three sets of points share the same triangle vertices but in general differ in the rest of the boundary and in the interior. Figure 4.l(a) shows the entire domain control net for the parametric hybrid triangular Bézier patch.

These three sets of points are then blended together to define the control points bijk (u,v,w). As concerns the control points on the border, they are obtained by an asym- )

P2 = ho03 Po= h3oo • b210,1 • P1 = ho3o b120,1
_ (1-w)v 2 b210,1 + (1-v)w 2 b210,3 210 u,v,w - (1-w)v2 + (1-v)w2 ' b ( 
) (1-w)u 2 b120,1 + (1-u)w 2 b120,2 120 u,v,w = (1-w)u2 + (1-u)w2
and using Nielson's blending functions, first introduced in [Nielson 1987], the central control point is defined by bu1(u,v,w) = ao(u,v,w)bul,l + a1(u,v,w)bu1,2 + a2(u,v,w)bu1,3, where a• (to t t2) -

tjtk _j_ _j_ k _j_ k ~ ' 1, -titj + t~tk + tjtk' i -r-j, i -r-' j -r-.
We observe that this construction heavily depends on the plane chosen for the parameterisation and, as a consequence, this choice is crucial for controlling the control points' positions. In particular the orientation of the plane is extremely important. Two different choices of planes are proposed in [Davidchuk 1997]. One failsafe method is to take the plane that is perpendicular to the bisecting plane of the two neighbouring triangles and that also contains their common edge. Another possibility is to use the information provided by the normals at the triangle vertices to construct the plane, by taking, for example, the plane orthogonal to the average of the normals at the two triangle vertices on the common border. Although the second construction does not always guarantee a valid plane, in general it creates better shaped surfaces. In section 4.1.4 we show sorne examples of meshes exhibiting stability problems related to an inconvenient choice of this plane (more details can be found in [Davidchuk 1997]).

PNGl Triangles

PNG1 triangles [START_REF] Fünfzig | [END_REF] are similar only in spirit to the hybrid parametric patches since cubic triangular Bézier patches for each edge of a triangle are constructed. Actually, as P2 Figure 4.4: The eight points b2o1,o,b201,1,bo21,o,bo21,1,b21o,o,b120,1,bul,po,Ol and bul,pi,Ol constructed from Po and Pl with respect to the edge e 1 .

shawn in Figure 4.1, this scheme differs from the previously described one, as the points to be blended to define the Bézier control points are obtained starting from the vertices of the triangle. For example, the red points in Figure 4.1(b) are computed using p 0 and To.

For the sake of simplicity, let us explain how the points are constructed with respect to the edge e1, i.e., the eight points b2o1,o, b2o1,1, bo21,o, bo21,1, b21o,o, b120,1, bul,po,Ol and bu1,p 1 ,01, shawn in Toto Teol provides the points bu1,po,01, and a transfer of the blue triangle ,0,plb021,1b120,1 from Tl to Teob provides bu1,p 1 ,ü1• 

+ uv + uw + vw w + u -2uw + uv (u(1-v)bm ,po,Ol + v(1-u)bm,p1,0l) + ( 4 . 2 ) uv + uw + vw u + v -2uv + vw (v(1-w) bm ,p1 ,12 + w(1-v)bm,p2,12) . uv + uw + vw w + v -2vw

Walton and Meek's Gregory patch

In 1996 Walton and Meek proposed a new quartic Gregory patch in [Walton and Meek 1996].

Walton and Meek's definition of the patch heavily depends on the construction of the cubic boundary curves ci(t) , i = 1, 2, 3, described in two previous papers [Walton and[START_REF] Walton | [END_REF]Yeung 1993]. They create a specifie tangent ribbon along each boundary curve and then they generate a surface patch with cross-boundary directional derivatives that lie in that plane.

A reasonable candidate for this plane is the one spanned by the derivative of the curve, i.e., the tangent vector èi(t) = 3 I:~=O w~B~(t) , where the w~s are defined by the boundary A triangular quartic Gregory patch can now be constructed. The control points of the quartic boundary curves Ci (degree raised from cu bic) are used as control points of the patch boundaries. Let the interior control points adjacent to a boundary ( e.g. hn2 and h121 with respect to the boundary corresponding to e2) be gi,l and g~,2, i = 1, 2, 3. This implies that each interior control point is determined twice, once for each boundary it is associated with, as shown in Figure 4.1(c). These points gi,l and gi,2, i = 1, 2, 3, are obtained by requiring that the directional derivatives sf' ( t) = 2:::.:%= 0 a~B~ ( t), i = 1, 2, 3, respectively in the directions d 1 = (1, -1/2, -1/2), d2 = ( -1/2,-1/2, 1) and d3 = ( -1/2,1, -1/2), Figure 4.8: The plane spanned by the tangent vector ê1(t) and the vector h1(t). lie in the tangent ribbon constructed for the corresponding boundary. Namely, where ai(t) and f3i(t) are linear polynomials in t.

Once the points gi,1 and gi,2 are obtained, a simple symmetric blending is used to define the three central control points:

b _ vg1,1 + wg3,2 b _ ug1,2 + wg2,1 b _ vg2,2 + ug3,1 211 - v + w , 121 - u + w , 112 - u + v (4.5)
We remark an important property of Walton and Meek's Gregory patch. Differently from the other two methods, they do not directly use the triangle neighbours in the construction, since the interior control points are constructed by means of tangent ribbons that depend only on the boundary curves.

Comparisons

As in section 2.1.5, we implemented ail the schemes as an Autodesk Maya@ plug-in (MPxH-wShaderNode), based on the plug-in from [START_REF] Fünfzig | [END_REF]]. More about technical details on CPU and GPU implementations can be found in appendix B.

Computational costs

Before comparing the surface quality of the four schemes, we compare their computational costs. We decided to compute manually the number of scalar additionsjsubtractions, scalar multiplications and scalar divisions required for the evaluation of the control points bijk (u,v,w). In fact, once these control points are computed, the cost for the evaluation of a parametric hybrid patch and a PNG 1 triangle is the same as that of a cu bic Bézier triangle, and the evaluation of a Walton and Meek's patch costs as much as the evaluation of a quartic Bézier triangle. Then, for the difference in practice, we measured the time required for the tessellation on the CPU by using a 1000 triangles Bunny mesh, tessellating every triangle patch into 55 points (tessellation factor f = 10), and into 210 points (tessellation factor f = 20). In the vertex shader on the GPU, we tessellated the patch into 210 points (tessellation factor f = 20), which are handled as OpenGL vertex buffer objects. As the shading is completely vertex shader-bound, we measured the time for vertex shading and fragment shading together. These measurements were performed in Maya 2008 on a MS Windows 7 (64bit) system with Intel P8700 (2.5 GHz) processor and NVidia Geforce 9600GT (512 MB) mobile graphies with driver version 258.96.

Table 4.1 shows the number of operations required for the control points evaluation by rational blends for each method. The Gregory patches have the important advantage that only the interior control points are blended. Thus the operations required for the evaluation of the control points in Walton and Meek's Gregory patches are considerably reduced with respect to the other two schemes.

In general, the evaluation of a surface point and normal for the quartic patch is more expensive than for a cu bic patch, which makes a difference for the scalar CPU implementation (not using SIMD extensions). But surprisingly, our CPU tests in Table 4.2 show that this is not necessarily the case when considering rational blend schemes. In fact, we obtain that for both tessellation factors, Walton and Meek's quartic patch is considerably faster than the other two methods. This is due to the fact that here we evaluate the point and the real analytic normal of the patch and thus PNG1 triangles and hybrid parametric patch are heavily penalised by the fact that also the boundary control points are obtained by means of rational blends.

On the GPU, the difference between Walton and Meek's patch and the other two schemes is less accentuated and parametric hybrid patch is faster than PNG1 triangles. Here, the control point computation is performed once on the CPU and is included in the GPU timings. Point and normal evaluations are then performed on the GPU.

The parametric hybrid patch is slower than PNGl triangles on the CPU, probably because the construction of its control points is more complex, while it is faster on the GPU as its blending functions are simpler than those of PNG1 triangles.

Therefore, on the CPU hybrid parametric patch's blending functions are the most expensive, foliowed by those from PNG1 triangles and Walton and Meek's patch, while on the GPU Walton and Meek's patch performs best, foliowed by hybrid parametric patch and PNG1 triangles.

Sphere and torus approximation

As in section 2.1.5, we compare the behaviour of the three schemes with respect to a known surface. We compare the signed distance between the analytic surface (a sphere and a torus) and the piecewise parametric interpolants computed by the schemes on a sampling of points and normals from that surface. We are especialiy interested in the schemes behaviour when refining the base mesh of the piecewise parametric surface.

Again the base mesh for the sphere is an icosahedron sampled from a sphere of radius r = 1 centered in the origin. At any refinement step i, it is refined by means of a 4-split division of the triangles, which results in triangle meshes with 20 • 4i triangles, i.e., 20 for i = 0, 80 for i = 1, 320 for i = 2, 1280 for i = 3 and 5120 triangles for i = 4.

The base mesh for the torus of radii r1 = 1 and r 2 = 0.5 centered in the origin is generated by a subdivision of the bi varia te parameter domain [0, 27r) x [0, 27r) into j 2 quadrangular regions. After the refinement, the quadrangular mesh is triangulated adding the diagonals. This results in 2 • j 2 triangles at any refinement step j (j = 1, 2, 3, ... ). We measure the signed distance between the analytic surface and the piecewise parametric interpolant along the patch normal for the refinement steps i = 0, 1, 2, 3, 4, in the case of the sphere, and for j = 5,10,15,20,25,35, in the case of the torus. Iterations i = 4 and j = 35, respectively, yield mean distance values close to zero. Figures 4.9 and 4.10 show, respectively, the approximation behaviour of the mean signed distance to the sphere and to the torus.

Concerning the sphere, the plot in Figure 4.9 shows that for ali the three methods the mean distance tends to zero when refining the mesh. While PNG1 triangles and Walton and Meek's patches approximate the analytic surface remaining al ways in the interior, hybrid parametric patches have in ali refinement steps positive mean distances. This behaviour is confirmed by the statistical data coliected in Table 4.3 where the maximum signed distances for PNG1 and Walton and Meek's patches are zero, especialiy for steps i = 0 and i = 1, confirming that, not only the mean distance, but ali the distances coliected are always negative. Walton and Meek's patches have always the smaliest standard deviations; whereas, PNG1 triangles have always the biggest, except for i = O. Ali the mean distances for the three methods decrease with the same arder of magnitude except for i = 4, where PNG1 triangles have ---+---.. Step Methods Min,Max distance Mean distance± std. dev. Hybrid ( defined as J n~ 1 2::::~= 1 ( Xk -x) 2 , Xk being the distance values) and minimum and maximum distance.
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the worst mean distance (behaviour confirmed also by the minimum and maximum values). We compare their absolute values for all the steps in Figure 4.11. Parametric hybrid and Walton and Meek's patches have the best approximation behaviours (the first with positive, the second with negative mean distances). The plot in Figure 4.10 seems to show the same behaviour for the torus interpolation. But, the statistical data in Table 4.4 reveal sorne differences. Here, minimum and maximum values vary between negative and positive values for all the methods; PNGl triangles and Walton and Meek's have always negative mean distances, while parametric hybrid patches always positive. PNGl triangles have in all the steps the biggest mean distances in absolute value. Except in the first step j = 5, Walton and Meek's distances have the smallest values in absolute value. For the three methods minimum and maximum values show almost the same behaviour, and decrease with the same order of magnitude. Nevertheless parametric hybrid distances vary always in a smaller interval. In fact, parametric hybrid patches have, in general, the smallest standard deviations. In summary, Walton and Meek's patch performs best, followed by the hybrid parametric patch, whereas PNGl triangles exhibits the worst approximation behaviour.

Arbitrary meshes

As in section 2.1.5 we now compare the surfaces obtained by the four schemes on arbitrary triangle meshes with a low triangle count, because, in general, the real-world use of these methods concerns with this kind of meshes.

•-.

-+-Hybrid By using highlight lines and Gaussian curvature plots [Hahmann et al. 2008] we analysed the surfaces generated from the following seven meshes: Sphere, Torus, RoundedCube, Head , Pawn, Bunny and Dinousaur. See Table 4. 5 for statistical information about these meshes. We chose them because they represent arbitrary fine triangle meshes and also because for sorne of the schemes they exhibit certain specialities.
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We use the exact surface normals n( u , v) = • ( ' ) • ( ' ) for computing the Gaussian

au u ,v x ôv u ,v curvature.
As in chapter 2, for comparison purposes we are interested at showing in the examples in the following the real analytical shape of the constructed surfaces. How an independent normal patch can be proposed together with the surface to improve the surface visualisation is described in appendix A.

Table 4.6 contains the minimum, maximum and mean values of the Gaussian curvature computed on a dense sampling grid of 210 points per patch, with standard deviation defined as ..j n~l Lk=l (xk-x) 2 . As explained at the beginning of the chapter , the second order derivatives do not exist in the vertices of the patch. For this reason these data are not taken into account in the statistics and are plotted in black in the figures. A common scale is used to compare the curvature plots of the three methods and the maximum and minimum values of each of them are converted to that scale.

Comparing these statistics for all the meshes, we found that the mean Gaussian curvature is negative for the hybrid parametric patch, except for the Sphere and the Head mesh, while for the other two methods the mean curvature is positive, with the Torus as exception. The -18.138, 287.879] 0.0042961 ± 0.65595 WM [-1136.1, 195.25] 0.000524591 ± 2.06327 Table 4.6: Statistics on Gaussian curvature. The mean value for Gaussian curvature (mean ±standard deviation) and the minimum and maximum value measured from the surfaces.

parametric hybrid patch reveals extremely high standard deviations in the Torus and Head mesh. In the Head mesh also Walton and Meek's patch has high standard deviations values, as weil as in the Pawn and Bunny meshes. It is surprising that the stability problem of hybrid parametric patches, shown in the following, does not highly affect the curvature values in the other meshes.

To show the behaviours of the three schemes on weil known shapes, we first graphically analyse the sphere and the torus studied in the previous section with i = 0 and j = 5, respectively. Although according to Table 4.6 the three methods seem to be faithful to the analytic shape, their plots in Figure 4.12 and Figure 4.13 show several differences. In the first line, by comparing the shaded surfaces we find a more oscillating surface for the hybrid parametric method (in particular by loo king at the silhouettes) and this behaviour is confirmed by the highlight lines and the curvature plots. More precisely, curvature plots in the sphere reveal that Walton and Meek's surface better simulates the behaviour of a real sphere, while the other two methods exhibit higher curvature variations near the borders of the patches. On the other hand, for the curvature plots of the Torus ali the three methods present high curvature variations in the regions where zero curvature is expected, but highlight lines and curvature plots show that the hybrid parametric surface is the worst.

As the sphere and the torus, the RoundedCube mesh (Figure 4.14) and the Head mesh have a small triangle count and a quite high number of infiection edges. As expected we found the same behaviours observed in the sphere and the torus. The surface constructed by the parametric hybrid patches is very wavy, and the statistics confirm this behaviour. On the other hand, the curvature statistics and the highlight lines show that PNG1 triangles yield the surface with the best appearance since the maximum and minimum values are in a smaller range. Besides, although ali the surfaces are G 1 continuous, the PNG1 triangles RoundedCube gives the visual impression to be smoother than Walton and Meek's surface.

When we consider meshes with an higher number of faces, as for example the Pawn mesh, the stability problem of the parametric hybrid patch related to the choice of the plane on which the patch pairs are projected, becomes evident (Figure 4.15). In this mesh, in particular, the chosen projection plane is unstable because the normal given in a vertex is perpendicular to the normal defined by the triangle plane and this yields a zero denominator in the definition of the control points. For a more detailed discussion on the possible choices of the projection plane and their consequences we refer the reader to [Davidchuk 1997]. By comparing the resulting surfaces of the other two methods in Figure 4.16, we notice that they also present artifacts, even if minor when compared to the parametric hybrid surface.

Finally, when the three methods are applied to meshes with a higher triangle count, as, for example, Bunny and Dinosaur (respectively 1000 and 1850 faces), they behave differently. On the one hand, in Bunny (Figure 4.17) PNG1 triangles seem to visually produce the smoothest surface and this is confirmed by the statistics on the curvature and by the highlight line plots, where those of Walton and Meek's and parametric hybrid surfaces appear a bit more discontinuous and fragmented. Surprisingly, the statistics on the curvature of parametric hybrid patch are not heavily affected by the stability problem which can visually be remarked on the ear of the Bunny. Here, as for ali the methods, the mean curvature value is, in fact, lower in absolute value than the corresponding values of all the other tested meshes (besicles Dinosaur), although minimum and maximum values, except those of PNGl triangles, are high. In particular, for Walton and Meek's patches standard deviation is rather large. On the other hand, Dinosaur's curvature values are surprisingly much lower than those of all the other meshes and the standard deviation values are more acceptable, except for Walton and Meek's patch. A reasonable explanation in the case of the parametric hybrid patch could be that for this mesh less triangles are affected by stability problems than for the previous meshes, resulting in better curvature statistics. No more differences can be seen from the shaded surfaces, the highlight lines and the curvature plots, even with a close up on the details.

Concluding remarks

Our analysis and examples in the previous section lead to the following remarks.

The study on the computational costs of the schemes pointed out that, as expected, Walton and Meek's patch has the important advantage that only the interior control points are blended. Besicles, unlike the other two schemes they do not use the neighbouring triangles to construct the interior control points.

When analysing the surfaces constructed by the three schemes with respect to a sphere and a torus, the statistics show that Walton and Meek's patches have in general the best approximation behaviour, followed by parametric hybrid patches and PNGl triangles.

On the contrary, on arbitrary triangle meshes PNGl triangles give in general the surfaces with the best appearances. Their statistics in fact show that their curvature values vary more regularly. Besicles, when we increase the number of faces the stability problem of the parametric hybrid patch related to the choice of the plane on which the patch pairs are projected becomes evident. Unfortunately, this fact makes this method practically unusable on meshes with completely arbitrary normals. In most of the arbitrary triangle meshes analysed, Walton and Meek's surfaces seem to suffer in a certain sense from flatness of their boundary curves, as the high standard deviation values in the statistics on the curvature confirm.

A cubic version of Walton and Meek's patch

The comparison of the previous section inspired us to investigate if it is possible to create a cubic polynomial version of Walton and Meek's patch. In the following it will be called CubicWM patch to distinguish it from the original quartic version of Walton and Meek.

Let us consider the cubic patch s(u, v, w) with boundary curves expressed in cubic Bézier form by ci(t) = ~%=o btB2(t), i = 1, 2, 3, where obviously the control points hl: are the boundary control points of s. As a consequence, the derivatives of these curves are quadratic Bézier curves defined by

2 êi(t) = 3 L wtB~(t), (4.6) 
k=O where wb= bi-bb, wl = b~-bl and w~ = b~-b~.

If we want to construct a cubic patch, differently from the original quartic patch of Walton and Meek, the directional derivatives sfi(t) in the directions d 1 = (1, -1/2, -1/2), d2 = ( -1/2,-1/2, 1) and d3 = ( -1/2,1, -1/2) are quadratic Bézier curves 2 s~i(t) = 3L41B~(t), i = 1,2,3. The control vectors At are shawn in Figure 4.18. Explicitly, for the edge e1, we obtain

1 1 1 4o = -2b3oo-2 b210 + b2o1, 1 1 1 41 = -2b210-2b120 + bu1, 1 1 1 A2 = -2b120-2bo3o + bo21•
As explained in section 4.1.3, Walton and Meek's method generates a specifie tangent ribbon along each boundary curve. Then, they create a surface patch with cross-boundary directional derivatives that lie in that plane to ensure G 1 -continuity with the neighbouring triangles. We chose to define this plane exactly as they proposed, namely as the plane spanned by the tangent vector êi(t) and the vector hi(t) previously defined in eq. ( 4.3).

Therefore, the conditions on the final patch control points to ensure G 1 -continuity with the neighbouring triangles are as in Walton and Meek's construction In the following, for the sake of simplicity we consider only the condition on the border corresponding to i = 1. The same construction can be done on the borders corresponding to i = 2 and i = 3. The simplest choice for the polynomials a1 ( t) and /h ( t) are two constants a and (3. With this choice, in fact, we obtain three quadratic polynomials in ( 4.8). By substitution of their Bézier forms (4.7), (4.6) and ( 4.3) in (4.8), we compare their control points leading to the following conditions ~Ô = a 1 WÔ + f3 1 aô, ~i = alwi + (3lai, ~~ = a 1 w~ + (3 1 a~.

(4.8) boo3 boo3 boo3 b3oo bo3o b3oo b03o (a) (b) (c) 
Once a 1 and (3 1 are computed from the first and the third equation, from the second equation, the point bi 11 can be computed since ~i = -!b210-!b120 + bnl• The same procedure repeated on borders for i = 2 and i = 3 would produce the points bi 11 and b~1 1 to be blended to define the interior control point bnl• Solving for a 1 and (3 1 from the first and third equation means to solve (4.9) which is a system of 6 equations in 2 unknowns. Let (4.11)

But, unfortunately, as shown in the following example, this does not imply that rank(Piq) = 2, and th us that it is al ways possible to find a solution to ( 4.9).

Example. Let us consider

Even if rank A1 =rank A2 = 2, 0 1 0 1 0 1 rank ( 1: By comparing the control points of the cu bic polynomials in eq. ( 4.12) we obtain the following system of equations

) ~ mnk 3 0 3 =3 1 2 2 1 0 0 0 1
From the first and the last equation we can compute o:ô, o:i, f3Ô and (3} as = ---b210--b120 + bn1 +---b120--bo3o + bo21 .

2( 1 1 ) 1( 1 1 ) 3 2 2 3 2 2
Repeating this procedure for the three borders we obtain six points bH 11 bH 1 , bît 1 , brî 1 , bN 1 and brr 1 to be blended to define the interior control point b 111 , as shown in Figure 4.19.

G 1 continuity of the new scheme

In Walton and Meek's original quartic patch and in our cubic CubicWM patch G 1 continuity of the surface is ensured by the imposition that the three cross-boundary derivatives s~' (t) lie in a specifie tangent ribbon created along each boundary curve. This is equivalent to condition (3.3), where it is required that the partial derivatives lie in a common plane, i.e., the tangent plane. The partial derivatives correspond, in fact, to directional derivatives taken with respect to the canonical directions d1 = (1, 0, -1) and d2 = (0, 1, -1). In our case, the tangent plane of two adjacent patches is defined by èt(t) and hi(t), from (4.6) and hoo3 ho3o ( 4.3) respectively, thus G 1 continuity between the two adjacent patches is accomplished by imposing that their respective directional derivatives lie on this tangent plane.

This means that ( 4.8) is a specialised version of (3.5), where the polynomials a and f3 play the same role in both the equations. In [Peters 1991] it is proven that a and f3 must in general be rational because they are obtained by a division of polynomials, i.e. , a(u) = ~t~~ and f3 (u) = ~f~~• Stipulating that ai and f3i in the construction of the CubicWM patch are linear polynomials in t is equivalent to restricting both v and p, to be constant. As described in chapter 3 and in [Liu 1990, Peters 1991, Farin 1982], this restriction, together with neglecting the surface orientation condition (3.4), is widely accepted in the literature as a way to relax the conditions to be sufficient but not necessary for G 1 continuity.

Cubic boundary curves and blending functions

Once cubic boundary curves are constructed the six points bH 1 , bn 1 , bfi 1 , bfr 1 , bfi 1 and hri 1 can be obtained by the procedure described above. These points need to be blended to define the interior control point bn 1 (u, v, w).

In the next section we analyse and compare four different surfaces obtained by using different cubic interpolants for the boundary curves and different blending functions for the central control point. We tested the cubic patch by using the cubic boundary curves proposed in PN triangles in section 2.1. 1 and the cubic boundary curves proposed by Walton and Meek for their quartic patch in [Walton and[START_REF] Walton | [END_REF]Yeung 1993]. As blending functions, instead, we use the PNG1 triangles formula (4.2), and we define a simpler formula 

uvbH 1 + uwb~f 1 vwbfi 1 + uvbn 1 uwbN 1 + vwbff 1 --~~-----==+ +--~~-----==

v+w w+u u+v

In the test presented in the next section we will call these four different versions as follows:

CubicPN-Bl: Cubic boundary curves constructed as in PN triangles (2.1) and blending function defined by (4.15). 

CubicPN

Comparisons

Our preliminary tests were focused on testing the quality of the cubic patches with respect to the quartic patch of Walton and Meek and PNG1 triangles. Hybrid parametric patches are excluded from these tests due to their stability problem. Since Walton and Meek's quartic surfaces showed the best performance on the sphere and torus approximation in section 4.1.4, we first tested CubicWM patches approximation behaviours. Then we tested also the surface quality with sorne of the arbitrary meshes analysed before in section 4.1.4. Then, based on the results obtained from these tests, we compare in section 4.3.3 their computational costs, to practically verify if the use of a cubic patch is advantageous.

Sphere and Torus

Exactly as in sections 2.1.5 and 4.1.4, we compare the signed distance between a sphere and a torus and the piecewise parametric interpolants computed by the schemes on a sampling of points and normals from that surface. Again we are especially interested in the schemes behaviour when refining the base mesh of the piecewise parametric surface. The same meshes and refinement steps as in section 4.1.4 are used.

In Tables 4. 7 and 4.8 the approximation results on the sphere and on the torus are collected, respectively.

These statistical data allow us to make a preliminary important consideration. The four versions of the cubic patch give different surfaces, meaning that changing the boundary curves and the blending function for the interior control points highly 

Methods

Min,Max Curv Mean Curv ± std. dev.

CubicWM-B1 [-5.18955, 3.17923] -0.644308 ± 1.88614 WM [-5.19454, 3.18706] -0.644299 ± 1.8861 PNG1 [-4.81239 , 3.65301] -0.634339 ± 1.8745 Table 4.12: Torus j = 10: Gaussian curvatures for surfaces obtained from CubicWM-B1 scheme, Walton and Meek's quartic scheme and PNG1 triangles. 

Arbitrary meshes

When looking at arbitrary meshes the comparisons are not as clear as they are for the sphere and for the torus. Comparing the four cubic versions in Figure 4.26 on the bunny mesh, for example, apparently there are not important differences between the surfaces created by using different cubic boundary curves and blending functions. Also the highlight lines and Gaussian curvature plots do not reveal any visual difference. On the other hand, the four surfaces are different as curvature statistics reveal in Table 4.13. In fact, curvatures minimum, maximum and mean values are similar for those surfaces that use the same boundary curves (i.e. CubicPN-B1 and CubicPN-B2) but, differently from the sphere and the torus, the use of Walton and Meek's boundary curves gives higher curvature mean and standard deviation values, meaning that the curvature for those surfaces varies less regularly.

On the other hand, the comparison of CubicWM-B1 with the original quartic Walton and Meek's surface and PNG1 triangles confirms that even if the surfaces are different, the cubic surface is very similar to the quartic one (Figure 4.27 and Table 4.14).

Tests on RoundedCube mesh provide more or less the same results as those of the Bunny mesh, Figures ( 4.28,4.29 and Tables 4.15,4.16), except that here the differences in the curvature values of the surfaces where different boundary curves are used are not as accentuated as for the Bunny. On the other hand , in this mesh it is easier to see that the shape of the surface slightly changes depending on the boundary curves, as shown by the highlight lines plots in Figure 4.28. On this mesh we can affirm that PN triangles boundary curves give 

Methods

Min,Max Curv Mean Curv ± std. dev. CubicPN-B1 [-6.70621, 11.6297] 1.31213 ± 2.60026 CubicPN-B2 [-6.44566, 11.5355] 1.29628 ± 2.56053 CubicWM-B1 [-9.90188, 13.191] 1.49945 ± 3.27303 CubicWM-B2 [-9.72436, 13.1126] 1.46221 ± 3.2195 [-9.90188, 13.191] 1.49945 ± 3.27303 WM [-9.90188, 13.1909] 1.49746 ± 3.27045 PNG1 [-3.08765, 5.62103] 1.26259 ± 1. 76093 Table 4.16: RoundedCube: Gaussian curvatures for surfaces obtained from CubicWM-B1 scheme, Walton and Meek's quartic scheme and PNG1 triangles.

slightly flatter surfaces.

As in the tests on the sphere and the torus, the comparison of CubicWM-B1 with the original quartic Walton and Meek's surface and PNG1 triangles gives us the impression that the cubic version CubicWM-B1 constructs a surface that is almost identical to the one constructed with the original quartic patches. While when looking at the approximation behaviour of the schemes this was a desired result, on arbitrary meshes this means that our cubic version suffers with respect to PNG1 triangles from the same limitations as the original quartic Walton and Meek's patch analysed at the end of section 4.1.4.

Computational costs

The following tests on the time required for the tessellation on the CPU and on the GPU, performed exactly as in section 4.1.4, gave us confirmation to the assertions made above. In particular, although the blending function for the central control point bn1 does not seem to heavily influence the surface quality, it deeply affects the computational costs, as shawn in Table 4.17 and 4.18. On the other hand, there is also a difference in the choice of the boundary curves that affects the computational costs, but bath on the CPU and on the GPU this is almost negligible.

In opposition to our expectations, we obtain that on the CPU for bath tessellation factors, CubicWM-B1 is slightly slower than Walton and Meek's quartic patch. This is due to the fact that here we evaluate the point and the real analytic normal of the patch. Even if the use of a cubic patch, instead of a quartic, allows a faster evaluation of the point on the surface, 

Scheme

CPU GPU 

f = 10 f = 20 f = 20 CubicPN-B1 80ms 

Towards rational schemes

The tests on CubicWM-B1 in the previous chapter encouraged us to find a way to improve it. In particular, since our cubic version constructs surfaces fairly identical to those of the original Walton and Meek's quartic patch, we would like to improve the surface shape of our schemes on arbitrary meshes, preserving its good approximation behaviour and, possibly, keeping its computational cost as low as possible.

In many arbitrary triangle meshes analysed , Walton and Meek's and CubicWM-B1 surfaces seem to suffer in a certain sense from flatness of their boundary curves, as the high standard deviation values in the statistics on the curvature confirm. In particular , the boundary curves are close to the triangle edges when they have inflections . In This observation suggested us the use of rational cubic boundary curves, where the weights in fact can act as free shape parameters controlling the shape of the boundary curves. In the next sections we present our RationalCubicWM patch where three weights are free parameters to be chosen. Firstly, in section 5.1 we define the rational Gregory patch and we derive the G 1 continuity condition for our rational cubic Gregory patch. Then, in section 5. 2 we derive the constraints for the weights of the patch, and in section 5.3 we define our RationalCubicWM 105 patch. Finally, in 5.4 we show our first attempts to define the three weights that remain free to improve the surface shape on arbitrary triangle meshes depending on the shape of the mesh. We briefl.y describe the problems we found and our work in progress to solve them.

RationalCubicWM: a cubic rational Gregory patch

As polynomial schemes, rational schemes suffer from the vertex consistency problem described in section 3.2. The G 1 condition (3.6), in fact, involves the directional derivatives and leads to the same system of equations (3.8) whatever the form of these derivatives, polynomial or rational. Thus, the use of rational blends, or Gregory patch, is still a solution to bypass it also in the case of rational Bézier triangles.

In complete analogy to "polynomial" G 1 rational blend interpolatory schemes, the idea is to define the interior control points of the patch by means of rational blends as weil as the interior weights, namely, to create multiple triangular rational Bézier patches such that each patch is G 1 -continuous to its neighbour along only one triangle edge.

Let s(u,v,w) be a rational cubic triangular Bézier patch defined by

( ) _ L:i+Hk= 3 Wijkbijk(u,v,w)Bfjk(u,v,w) _ p(u,v,w) su, v, w - ~ ( 3 - ( ) 0 L....t+j+k= 3 Wtjk u,v,w)Bijk(u,v,w) w u,v,w (5.1) 
Its boundary curves in rational cubic Bézier form are

3 ° • 3 •( ) _ l:k=O wkbkBk(t) _ Pi(t) Ctt- 3 --- L:k=OwkB~(t)

Wi(t)'

where obviously the control points ht and the weights wt are, respectively, the boundary control points and boundary weights of s. Differently from the polynomial patches, the derivatives of these curves are not quadratic Bézier curves (see, e.g., [Farin 2002]), and they are given by where 2 Pt(t) = 3 :L:)wL+lb1+ 1 -wLb1)B~(t), k=O 2 wi(t) = 3 2)wk+l -wL)B~(t).

k=O

(5.2)

(5.3)

Analogously, the directional derivatives of sin the directions d1 = (1, -1/2, -1/2), d2 = ( -1/2,-1/2, 1) and d 3 = ( -1/2,1, -1/2) are defined by s1'(t) = 2 1 () [wi(t)pd•(t)-Pt(t)wd•(t)], wi t (5.4) Therefore, the conditions to be fulfilled by the final patch control points to ensure G 1 - continuity with the neighbouring triangles are again (5.7)

In the following, we consider only the first condition on the border for i = 1. The same construction can be done on borders for i = 2 and i = 3. Since in equation (5.7) the derivatives are more complicated than those of a polynomial patch, we use their homogeneous representations (see, e.g., [Farin 1995]). In projective coordinates the representation of s( u, v, w) is

S = {p(u,v,w),w(u,v,w)} = L XijkB~k(u,v,w), i+j+k=3
where the control net in homogeneous coordinates is given by Xijk = {Wijkbijk,W~jk}•

The conditions to ensure G 1 -continuity by using the homogeneous representation of the patch are derived in the following proposition. where pd(t), wd(t), j>(t) and w(t) are, respectively, defined in (5.5) and (5.3) and, for the sake of simplicity, the index i has been omitted.

Proof. In the affine coordinate system the G 1 condition ( 5. 7) is equivalent to

det(sd(t), ë( t), h( t)) = O.
We substitute (5.2) and (5.4) in the left hand side of (5.9); then det(sd, ë, h) =-;. o Therefore, by defining a(t) = -;cW and (3(t) = -;m, (5.7) is equivalent to (5.8).

D

Proposition 5.1 allows us to analyse the problem in homogeneous coordinates and thus to derive conditions on the control points and weights to have G 1 continuity with the neighbouring triangles. In fact, by substituting (5.3), (5.5) and (5.6) in (5.8) we obtain { I:%=o Al;B~(t) = a(t) (2:%= 0 (wl;+l bl;+ 1 -wl;bl;)B~(t)) + (3(t) (I:%=o akB~(t)), I:%=o Ol;B~(t) = a(t) (I:%= 0 (wl;+ 1 -wl;)B~(t)), and, in complete analogy to the polynomial construction we presented in section 4.2, by choosing a(t) = aô(l-t) + aft and (3(t) = f3Ô(1-t) +(3ft linear functions, this results in the following two systems of equations ..iô = aô(w210b210 -W3oob3oo) + f3Ôaô, -1 2 1 1 1 1 1 1 1 Al = 3(ao(w12ob120-w210b210) + f3oal) + 3(a1 (w210b210-W3oob3oo) + (31 ~),

-1 1 1 ) 1 1 2 1 1 1 ( 5 .10)

A 2 = 3(ao(wo3obo3o-w12ob120 + f3oa2) + 3(a1 (w12ob120-w21ob210) + (31 al), ..i~ = ai(w03obo3o-w12ob12o) + f3ia~, and -1 1

0 0 = a 0 (w210-W3oo), -1 2 1 ) 1 1 ) 01 = 3ao(W120 -W210 + 3a 1 (w210 -W300 , -1 1 1 ) 2 1( ) 0 2 = 3a 0 (W030 -W120 + 3a 1 W120 -W210 , (5.11) -1 1 0 3 = a 1 (wo3o-w12o),
where the control vectors .il; are again obtained by degree elevation from Al; (see (4.13)), and analogously the weights fil; are defined as Once aô, aL !36 and /3} are calculated, the two central equations of (5.10) and (5.11) can be used to compute the two interior points bi} 1 and bH 1 and the two interior weights wH 1 and w}i 1 , in complete analogy to 4.2. Repeating this procedure for the three borders we obtain six points bU 1 , bH 1 , bîi 1 , bii 1 , bN 1 and b~i 1 to be blended for the interior control points bn1, and six weights wHu w}i 1 , wîi 1 , wii 1 , wN 1 and w~i 1 to be blended for the interior weight wn1• The patch definition will be explained more in detail in section 5.3, after the definition of the weights in the next section.

G 1 continuity of the Rational Cu bic WM patches By the same line of reasoning as in chapter 4, section 4.2, page 86, the G 1 continuity of the surface constructed by RationalCubicWM patches is ensured by (5.7).

How to choose the weights

Once the two systems (5.10) and (5.11) are derived, the problem is how to define the weights of the boundary curves such that aô, aj, !36 and /3} can be computed from their first and last equations. In the following we describe our first attempts.

Standard rational Bézier triangles:

w 300 = Wo3o = Woo3 = 1
Firstly, we set W3oo = wo3o = woo3 = 1, because it is a natural choice to reduce the free parameters. From the first equation of (5.11), aô can be computed as

1 nô ao = -w-21-o"""'--1
By substitution of this expression for aô in the first equation of (5.10), we obtain

(5.12) where v=

-1 b3oo + 1- -w2o1 b210 + w2o1b201• ( W201 -1 ) ( W201 -1 ) w210 -1 w210 -1
!36 can be calculated from (5.12) if and only if v and aô are collinear. Since aô is orthogonal to b210 -b3oo and n3oo, equivalently !36 can be calculated if and only if v• (b210-b3oo) = 0 and v• n3oo =O.

(5.13)

By imposing the first condition of (5.13) we obtain the following equation in w201 and W210 ( _w

2 = 0 "'-1 -- 1 1 -1) (x-y)+ (1-w 201 - 1 1 -w2o1) (y-z) + w201(k-h) = 0, W210- W210-
where x= b3oo 0 b3oo, y= b210 ° b3oo, z = b210 ° b210, k = b2o1 ° b3oo and h = b2o1 ° b210o We solve it with respect to w2o1 and we obtain

W soll _ (2y-X-z)w210 201 -~--~~~~----~--~------ ( h -k + y -z )w210 + k -h -x + y [(b210 -b3oo) 0 (b210-b3oo)]w210 (5o14) 
[(b2o1-b21o) 0 (b210-b3oo)]w210-[(b210-b3oo) 0 (b2o1-b3oo)] 0

When we consider the problem from the point of view of the neighbouring triangle 6poP2P02 we obtain from (5o10) and ( 5011) the following conditions on the same control points, namely where In short, by repeating the same procedure as above and solving with respect to w 201 we obtain 

v• (b210-b3oo) = 0 (x-2y + z)w210W3oo ( k -h -y + z )w210 + ( h -k + x -y )w3oo '
and when looking at the neighbouring triangle .6poP2P02 we obtain

W sol2 _ ( h -k + X -Y )w2lOW300 201 -( h + k -t -y )w210 + ( t -2k + x )w3oo '
where x, y, z, h and k are the same as in (5.14) and t = b2o1 • b201• By solving w~gi 1 = w~gi 2 with respect to w210 we obtain that the only two possible solutions are w210 = w2o1 = 0 or w210 = w201 = W300• Since, obviously, we are not interested in the solution in which the weights are zero, in order to compute /36 we have only to verify that w210 = w201 = W3oo satisfies v • n3oo = O.

But with this solution v= w3oo(b210-b201) and since both b210 and b2o1 are on the tangent plane orthogonal to n 300 , also v is on that tangent plane and thus is orthogonal to n 300 .

By looking at the first equations of (5.10) and (5.11) this solution could be readily derived, but here we also proved that there are no other possible solutions as this is the unique interesting solution to the condition v• (b210 -b3oo) = O.

The RationalCubicWM patch

By imposing w210 = w2o1 = W3oo and w120 = wo21 = wo3o, (5.10) and (5.11) can be now solved and our RationalCubicWM patch can be constructed repeating the procedure described below on the borders corresponding to i = 2 and i = 3. Its control points and weights are shown, respectively, in Figure 5.2(a) and 5.2(b). aô, ai, /36 and /3} can be calculated from the first and the last equation in (5.10). In fact, the first equation of (5.10) becomes where À.{; 01 is .iô, the control vector of the polynomial cubic patch defined in (4.13). Thus, aô can be computed, as in the case of the polynomial patch, as and therefore it is equal to the polynomial one defined in equation ( 4 The first and the last equation in (5. 11 ) are identically satisfied. From the two central equations the weights wif 1 and wiî 1 can be computed as Finally, once aô, aL !36, f3i and wif 1 , w}î 1 are defined, the points b ~b and b n 1 can be calculated from the two central equations of (5.10).

Repeating this procedure for the three borders we obtain the six points hH 1 , b n 1 , hii 

Examples and work in progress

In the previous sections we described how to construct a RationalCubicWM patch in which there are three free weights that act as shape parameters. The next step was to investigate how these three weights influence the shape of the patch. The first important remark is that with this choice of the weights the RationalCubicWM patch looses the advantage of being completely local. In fact , as shawn in Figure 5.3, the fact that the border weights have to be equal to the closest neighbouring vertex weight involves the so called one-ring triangles that share a common vertex.

On the other hand, this means that actually the weights act as shape parameters in correspondence of each mesh vertex. Leaving them free allows the designer to decide how to modify the surface in correspondence to the interpolating points, increasing or decreasing the corresponding vertex weights. Nonetheless, we tried to find a way to define these vertex weights automatically, namely by using the information from the points and normals of the mesh. This is currently a work in progress. In the next subsection we describe our first heuristical approach.

A heuristic approach to define the three free weights from the mesh points and normals

As pointed out at the beginning of the chapter, the RationalCubicWM patch was born to improve the CubicWM-B1 patch on arbitrary meshes where its boundary curves needed to be more inflated. By analysing the problem over different meshes we notice that in particular there are two cases in which this is desired:

1. when the normals in the vertices impose that on the boundary curves there are one or more inflection points;

2. when the one-ring triangles surrounding a vertex are far away from being coplanar.

We firstly focused on the second case.

An example of the situation we are treating is in Figure 5.4. Let p be the central vertex with its corresponding normal n, Pi the n vertices of the one-ring triangles surrounding the vertex, with corresponding normals n~, and nr, the normals of the triangles ( i = 1, ... , n).

The idea of our heuristic approach is to set the vertex weight depending on the average of angles between two adjacent triangle normals, namely depending on (5.15) where We implemented the RationalCubicWM patch with this choice in our Autodesk Maya@ plug-in, based on the plug-in from [START_REF] Fünfzig | [END_REF]]. More precisely, for every triangle we compute K3oo, Ko3o and Ko03 for the three vertices, then we set the vertex weights with respect to these quantities, for example w3oo = W + (1 -W)K3oo, (5.16) where W is given in input in Maya by the user. In this way the vertex weights are assigned in dependence of K: the more K tends to zero, the more the corresponding weight is increased:

K E (0, 1] -+ W3oo E [1, W).
With this heuristic choice the weight is always greater than 1, thus the surface should be infl.ated according to our requirements. Obviously, a different transformation can be applied to (5.16) to have 0 < w3oo ~ 1, thus to defl.ate the surface.

Based on the tests we made in section 4.3 we choose to use Walton and Meek's boundary curves and B1 blending function (4.15) bath for the central control point bu1 and the central weight wu1 in arder to keep the patch formulation as simple as possible, while the surface quality the best possible at the lowest computational costs.

In Figure 5.5 an example of our RationalCubicWM patch for different values of W, with curvature statistics in Table 5. 1. W=50 [-4.54499, 11.8702] 2.50397 ± 2.32379 w = 100 [-3.2323 , 14.2253] 2.5891 ± 2.28489 

Stability problem

The test on the RoundedCube mesh above seems to be very promising and reveals that with our RationalCubicWM patch we attain the aim of controlling the shape of the Gregory patch by means of the vertex weights. Unfortunately, on other meshes as, for example, the Dragon in Figure 5.6 sorne stability problems occur. It can be easily seen that, depending on W , there 2 1 1 1 a2 = 3al + 3a2 = in (5.10), the two points bii 1 and biî 1 can be computed as where r1 and r2 are the right-end sides of the two central equations of (5.10) and the two weights w}h and w}i 1 are computed from the two central equations of (5.11). Here, if the weights wH 1 and w}i 1 defined by (5.11) are close to zero we have a stability problem since they are denominators. We solved this problem by realising that in the definition of the patch (5.1) the control points bijk are not needed directly. In fact, in the numerator p( u, v, w) ali the control points are always multiplied by their corresponding weights Wijk• But this is the case also in the two central equations of (5.10), where we can compute wH 1 bii 1 and w}i 1 bH 1 as where r1 and r2 are again the right hand sides of the two central equations of (5.10). Thus, when evaluating the rational cubic patch instead of using a rational blend of the six points In this way in the control point computation the weights are not in the denominator and the stability problem can be avoided. In Figure 5.7 the Dragon mesh for different values of W where the rational cubic patch is evaluated by using (5.17). 

Work in progress and future work

Besicles the RoundedCube and the Dragon mesh above, we are testing the RationalCubicWM patch on other arbitrary meshes, with different triangle counts, as for example the Bunny, the Head , the Pawn and the Dinosaur. Our first analysis points out that the use of the weights can really improve the surface. Nonetheless, on meshes like the Dragon, in which the number of triangles is higher than that of the RoundedCube, the influence of the vertex weights is less evident. In Figure 5.8, for example, the different shaded surfaces obtained from the Venus mesh are shawn depending on W. Although the shaded surface does not show important differences, the highlight line plots in Figure 5.9 and especially their close-ups in Figure 5.10 and the Gaussian curvature plots in Figure 5. 11 reveal that the surface changes depending on W. In particular, as shawn in Table 5.2, maximum, minimum and standard deviation values in the curvature statistics increase with respect to W. Standard deviations are very high, especially for W = 1000. On the other hand, the plots in Figure 5.11 show that the regions where the curvature attains these high maximum and minimum values decrease in inverse proportion to W, that is those regions decrease when the weights increase. For W = 1000, in fact, there are very small regions of green (negative) or red curvature. The tests on other similar meshes show more or less the same behaviour. This suggested us that by improving the definition of the vertex weights depending on the mesh properties, we could obtain better results on arbitrary meshes. We would like to change more the surface by controlling the weights. By analysing, in fact, the weight values obtained when changing W, we observed that this heuristic choice for the weights works well for meshes as the RoundedCube with high symmetry and where the values K obtained from (5.15) are very different for neighbouring vertices. On the other hand, it has several limitations when we W= 1 [-428.361 , 675.199] 1.03291 ± 15.6997 W=5 [-510.327, 1129.18] 1.26129 ± 17.6333

W= 10 [-539 .199, 1431.85] 1.40751 ± 19.1656 W=50 [-741.877, 1933.12] 1.73111 ± 22 .8072

W= 100 [-792.43, 2048.89] 1.82647 ± 24.0605 w = 1000 [-29114, 3204.62] 1.4 7979 ± 91.8028 consider meshes with more arbitrary values of K. Therefore, we are currently working on the definition of the vertex weights by using the discrete curvature of the mesh in the vertices. Furthermore, we want to improve our rational patch also by investigating if the use of different cu bic boundary curves can yield surfaces that do not suffer from flatness on arbitrary meshes. Besicles, we believe that also other choices of the function hi(t) used to define the plane for the tangent ribbons could be of interest for further investigation.

CHAPTER 6

Conclusions

During the last three years we have worked on the interpolation of triangular meshes by means of parametric Bézier triangles. The results of this study are collected in this thesis. As already pointed out, this study is motivated by the fact that triangular meshes are widely used in computer graphies to model arbitrary shapes. The arbitrary valence of the vertices of a triangular mesh is extremely attractive for several applications. On the other hand, this good property introduces the vertex consistency problem when constructing surfaces with tangent plane continuity.

In the first part of the work we made a bibliographie research on the different schemes that use Bézier triangles to interpolate vertex and normal positions of triangular meshes and we study in detail the vertex consistency problem. We decided to divide the schemes in two classes depending on the continuity of the constructed surface. This classification was also motivated by the fact that the continuous curved shape interpolants constituting the first class are not interested in the real analytic continuity of the constructed surfaces, as they are mostly employed in those applications where once the surface is constructed, its geometrie shape is successively enhanced by other techniques. On the contrary, the G 1 schemes constituting the second class aim at constructing tangent plane continuous surfaces that are as smooth as possible by solving or avoiding the vertex consistency problem.

In chapter 2, we compare the existing continuous interpolant curved shape surface schemes. They represent a valid example of the large body of work that is devoted to creating an increasing realism of rendered surfaces. Since usually in sorne applications stored neighbourhood information is not available, these schemes are interesting solutions to the specifie requirements of the resource-limited hardware environments and to provide smooth surfaces by visually enhancing the mesh by using as little information as possible. Our study allowed us to better understand the geometrie meaning of Bézier triangles, especially when analysing the quadratic patches. At the end of the chapter we describe, in fact, the ideas originated by this comparison to solve their stability problem.

The other chapters treat tangent plane continuous schemes. Firstly, in chapter 3 we review the definition of tangent plane continuity for triangular patches and we illustrate in detail the vertex consistency problem that plays a very important role in the construction of a G 1 continuous surface by means of triangular patches. In this chapter we also provide a short description of all interesting recently published solutions and our work on the specialisation of the G 1 continuity conditions to quadratic patches.

The core of the thesis are chapters 4 and 5. Among the solutions analysed in chapter 3, in chapter 4 we focus our attention on G 1 rational blend interpolatory schemes. Several schemes 125 use this approach to bypass the vertex consistency problem avoiding the twist computation. We describe three recently proposed existing rational blend schemes and we compare them. We also develop a cu bic version of the third scheme that we call CubicWM-Bl. It is presented and compared with the others at the end of the chapter.

The tests on CubicWM-Bl encouraged us to find a way to improve this cubic rational blend scheme. In particular, since our cubic version produces surfaces that are fairly identical to those of the original quartic patch, in chapter 5 there are our first attempts to improve the surface shape of this scheme on arbitrary meshes, preserving its good approximation behaviour and, possibly, keeping its computational cast as low as possible. We, therefore, created the RationalCubicWM patch, a cubic rational Gregory patch, where the weights can act as additional shape controllers. This chapter ends with our first attempts to define the weights to improve the surface shape on arbitrary triangles depending on the shape of the mesh, and the description of the problems we are currently trying to solve to further improve our new rational scheme. I will change different languages in the follows. I think it sincerely represents how this experience changed me and taught me a lot of things. It represents the different people I met. Having friends from different cultures enriches me every day. Every human being is unique in his/ her character, and these differences make my own life "different". I learnt that tasting the difference helps to appreciate your normality, your everyday life.

Il primo ringraziamento, espressamente in italiano, va a Gudrun e Lucia, chi mi ha offerto l'opportunità di vivere questa esperienza. Soprattutto, direi, di apprezzarla. In questi tre anni mi è spesso capitato che mi venisse chiesto come mi trovassi a Valenciennes, in particolare come mi trovassi a lavorare con le mie due direttrici di tesi. Ho sempre risposto sinceramente che, dal punta di vista di una dottoranda, a Valenciennes "ho trovato l'America". Da lora sia come persane che come "capi" ho imparato molto. Una cosa tra le più importanti che la ricerca è una passione, e che la qualità del proprio lavoro dipende anche da quanta lo si ama. Quando si amano le cose si fanno "fatte per bene", non ci si accontenta mai e non si è mai abbastanza precisi.

I switch to english to thank Christoph. As a colleague, for the huge patience he has with me. As a friend , because the same huge patience at work permitted us to be friends out of the office.

Les mots ne suffisent pas pour remercier les amis incontrés pendant ces trois années. Vous avez contribué à les rendre speciales. Je n 'oublierai jamais "la résidence". Merci à tous ... Le parole non bastano neanche a ringraziare gli amici che durante questi tre anni si sono rivelati veramente tali. Questa esperienza mi ha insegnato che ci sono amicizie che rimangono sempre e comunque, non importa quanta ci si vede o ci si sente. Quando ci si ritrova, basta poco per cancellare il tempo perso, basta la voglia di cercarsi e raccontarsi. Mi ha anche insegnato che ci sono amicizie che semplicemente si perdono, perché si cambia, perché cambiano i contorni. Queste ne lasciano spazio a nuove, particolari e intense.

Grazie a chi ci ha rallegrato i week end venendoci a trovare! Come detto qualche mese fa da mia sorella Anna, il motta della mia famiglia è: Vola solo chi osa farlo. Grazie per aver insegnato alla vostra Cipl a non desistere mai. A cercare di migliorarsi sempre in tutto. A non aver paura di osare. Grazie perché il nostro nido è un posta sicuro, accogliente, dove non mancano mai aiuto, consiglio e conforta da parte di tutti senza eccezione. Questo ringraziamento va senza dubbio esteso anche alla famiglia Granata, dove sono sempre viziata e coccolata. È bello sentirsi a casa anche ne! vostro nido.

Scrivere quest 'ultima parte dei ringraziamenti non è facile. The anni fa scrivevo:

Lau, che dire, questi 5 anni ci hanna reso una coppia imbattibile. Non riesco a immaginare come potrà essere quando sarema ognuna da sola sulla propria strada. Di sicuro, io sono arrivata fin qui perché la mia è stata saldamente intrecciata alla tua. Hai reso meno dure le salite e più divertenti le discese. Più di tutto grazie per l'amicizia profonda e sincera. Anche se le strade si dividono io spero tanta che tu rimanga ancora per molto. Sarà dura senza il mio cordoncino sempre di fianco ...

Valenciennes, Décembre 2010.

Ridacchio mentre lo rileggo, perchè a differenza dei nostri programmi poi alla fine le nostre strade non si sono per niente divise. Perô tutto il resto vale ancora ed è più attuale che mai. Posso solo cercare di ringraziarti per avermi sopportata e supportata, e per aver convissuto ma soprattutto condiviso con me tutte le gioie e i momenti diffi.cili. Casa ci attende adesso chi lo sa. Io spero solo che vi saranno ancora tanti viaggi di 11 ore in macchina in cui non ci sarà bisogno di accendere la radio! E, infine, la scommessa più grande di questi tre anni siamo stati io e te, Andre. Non nascondo che la paura più grande all'inizio di questa avventura era che il prezzo da pagare sarebbe potuto essere perderci lunga il cammino. Non credo che ti ringrazierô mai abbastanza per non aver ceduto nei momenti di diffi.coltà, per aver avuto fiducia in me sempre, e per aver condiviso con me alcuni indimenticabili momenti di felicità.

Ho sognato che camminavo in riva al mare e rivedevo tutti i giorni della mia vita passa ta. E per agni giorno trascorso apparivano sulla sabbia due orme: le mie e le tue. Ma in alcuni tratti ho vista una sola arma. Proprio nei giorni più duri e difficili. Al lora mi sono chiesta: "Perché mi hai lasciata sola proprio nei momenti difficili?" E tu mi hai risposto: "Sai che ti amo e non ti abbandono mai: i giorni nei quali c 'è soltanto un'orma nella sabbia sono quelli in cui ti ho portato in braccio." Spero, portandoci in braccio a vicenda se necessario, di lasciare ancora tante orme lunga il nostro lungomare ... , Agosto 2009. Chimay, Luglio 2011. 
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Figure 1 . 1 :

 11 Figure 1.1: Phong shading of an icosahedron. It is possible to obtain an acceptable sphere only by increasing the number of triangles.

Figure 1

 1 Figure 1.2: Close-up on the silhouette of the last sphere on the right in Figure 1.1. The contour of the surface is segmented due to the underlying polygon.

  Figure 1.3: Notation for the vertices and respective normals of the input flat triangles.

Figure 1 . 4 :

 14 Figure 1.4: Schema tic illustration of triangular control nets for (a) quadratic, (b) cu bic, ( c) quartic and ( d) quintic Bézier triangles.

•P1Figure 2

 2 Figure 2.1: Construction of b210 in PN triangle's scheme: projection of b210 = (2Po + PI)/3

Figure 2

 2 Figure 2.2: Surfaces constructed by Phong tessellation for different values of a.

FigureFigure 2 . 4 :

 24 Figure 2.4: Geometrie interpretation of the control point buo in Phong tessellation.

  Figure 2.5: The intersection line L between the two tangent planes ro and 'Tl (schematic view).

  Figure 2.7: Stability problem of Nagata's scheme.

  a1f31to = to. to to = to. to (nt -lno), al:Sltl = (el . tl) tl = (la-b-le+ d) (lnl-no), tl . tl tl . tl where a= Pl• n~, b =Pl• no, c =Po• n1, d =Po• no and l =no• n1. Therefore, a1!'1to-a1:S 1 t1 = an1-bno-cn1 + dno = 7ro(Pl) + 1r1 (po) -(po+ Pl), i!.:fl because to • to = t1 • t1 and t;to = 1, and thus
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Figure 209 :

 209 Figure 209: Average signed distance of sphere interpolation depending on the refinement st ep io Top : approximation behaviour for i = 0, 0 0 0, 30 Bottom : zoom on i = 2, 30
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 2 Figure 2.11: Bunny in columns from left to right: Nagata, Phong, NLSA, PN triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.

Figure 2 .

 2 Figure 2.12: Monsterfrog in columns from left to right: Nagata, Phong, NLSA, PN triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.

Figure 2 .

 2 Figure 2.13: Vase in columns from left to right: Nagata, Phong, NLSA, PN triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.

Figure 2 .

 2 Figure 2.14: Different behaviours in the vicinity of a diagonal curve depending on the normals configuration for PN triangles. Left: the diagonal has an inflection. Center and Right: two different configurations with a convex diagonal curve , but only the patches on the right are convex.

Figure 2

 2 Figure 2.15: RoundedCube in columns from left to right: Nagata, Phong, NLSA, PN triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.

Figure 2

 2 Figure 2.16: The triangle is split in two or more triangles adding new points and normals.

Figure 2 .

 2 Figure 2.18: Split configuration with neighbour.

v

  Figure 3.1: Parameterisation of the two adjacent patches 8 1 (u,v) and 8 2 (u,v).

  ,O)=a u Bus (u,O)+f3(u ovs (u,O. (3.5)

Figure 3

 3 Figure 3.3: Parametrization of the one-ring neighbours around a vertex.

  Theorem 3.2. A G 1 sufficient condition between adjacent C 0 continuous triangular quadratic Bézier patches s and s along a common boundary v = 0 is aao + ,Bdo + 'Yâ:o = 0 aa1 + ,8d1 + 'Ya1 = 0 (3.16) where a, f3 and 'Y are arbitrary constants, and ao = b200 -buo, ao = b200 -bno, do = b101 -b200, al = bwl -bon' al = bwl -bon' dl = boo2 -blOl• These vectors are also shawn in Figure 3. 7( a).

  Figure 3.7: (a) The notations of the directional derivatives between adjacent triangular Bézier patches along their comma~ boundary v = O. (bJ Interpretation of the conditions with respectto the triangles 6. bno b101 buo and 6. bon boo2 bon-By substituting the vectors ao, ao, a1, a1, do= bw1-b2oo, d1, (3.16) can be rewritten

  det ( buo b101 huo) , m~ = det ( b2oo b101 huo) , m~ = det ( buo b2oo huo) , m 2 = det (bou boo2 hou) , mî = det ( b101 boo2 h011) , m~ = det (bou b101 hou) .

Figure 4 . 3 :

 43 Figure 4.3: Five points are constructed from the edge e1.

Figure 4 . 4 .

 44 The other points are generated similarly. First, the points Pb P2, and POl are projected in the direction of no onto the tangent plane To, Figure4.5 left, and the points Po, Pol> and P2 in the direction of n1 onto the tangent plane T1, Figure4.5 right. The result of these projections are two adjacent triangles ,0,poï>I 0 P; 0 , ,0,poï>I 0 P~~ in the plane To and ,0,p~1 PlP; 1 , ,0,p~1 PlP~i in T1. Subdivision of the edges PoPI 0 , PoP;o and PoP~~ by factor 1/3 provides a pair of subtriangles (marked in red in Figure4.5 left) whose vertices on the edges Poï>I 0 and PoP;o define, respectively, the points b21o,o and b2o1,0• Analogously, on T1 subdivision of the triangle edges provides a pair of subtriangles (marked in blue in Figure4.5 right) that defines the points b120,1 and bo21,1• An affine transformation of the triangle ,0,pob2o1,ob210,0 from the tangent plane To into the tangent plane T1 provides the point bo21,0 (Figure4.6(a)) and an affine transformation of the triangle ,0,pl bo21,1 b120,1 from T1 into To provides the point b2o1,1(Figure 4.6(b)).For the two interior points, let T eOl be the plane defined by neol, where gl = bl20,1 -b210,0 g2 = (nr + nr01) x g1 nr is the normal of the triangle plane, and nr 01 denotes the normal of the neighbouring triangle plane. As illustrated in Figure4. 7, a transfer of the red triangle ,0,p 0 b 201 , 0 b 210 , 0 from

Figure 4 . 5 :

 45 Figure 4. 5: Construction of points h2o1 ,o, b21o,o, b120,1 and ho21 ,1•

Figure 4 Figure 4 . 7 :

 447 Figure 4.6: (a) Affine transformation of the triangle from tangent plane To into the tangent plane Tl• (b) Affine transformation of the triangle from tangent plane T 1 into the tangent plane To.
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 494 Figure 4.9: Mean signed distance of sphere interpolation depending on the refinement step i.

[

  

Figure 4 .

 4 Figure 4.11: Absolute values of the mean distance of sphere interpolation depending on the refinement step i.

Figure 4 .

 4 Figure 4.12: Sphere in columns from left to right: parametric hybrid patch, Walton and Meek's Gregory patch, PNGl triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature.

Figure 4 .

 4 Figure 4.13: Torus in columns from left to right: parametric hybrid patch, Walton and Meek's Gregory patch, PNGl triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature.

Figure 4 .

 4 Figure 4.14: RoundedCube in columns from left to right: parametric hybrid patch, Walton and Meek's Gregory patch, PNGl triangles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth row: Gaussian curvature.

Figure 4 .

 4 Figure 4.15: The parametric hybrid patch reveals stability problems when applied to the Pawn mesh.

Figure 4 .

 4 Figure 4.16: Pawn in columns from left to right: parametric hybrid patch, Walton and Meek's Gregory patch, PNG1 triangles. First row: shaded planar mesh; second row: shaded surfaces.

Figure 4 .

 4 Figure 4.17: Bunny in columns from left to right: parametric hybrid patch, Walton and Meek's Gregory patch, PNGl triangles. First row: shaded planar mesh; second row: close up of the shaded surfaces; third row: shaded surfaces; fourth row: highlight !ines; fifth row: Gaussian curvature.

Figure 4 .

 4 Figure 4.18: The control vectors ~k for the three directional derivatives s~i ( t), i = 1, 2, 3. (a) ~Ô, ~L ~~' (b) ~5, ~i, ~~and (c) ~5, ~~' ~~.

( 4 .

 4 9) has unique solutions if and only if rankP = rank(Piq) = 2. By construction, ~Ô, wô and aô are in the same plane. This means that rank ( wô aô ) = 2 and rank ( wô aô ~Ô ) = 2 (4.10) and equivalently rank ( w~ a~ ) = 2 and rank ( w~ ~ ~~ ) = 2.

  10) and( 4.11) hold, and by construction ( wô • aJ) = 0 ( see( 4. 4)). Once o:ô, o:i, f36 and (3} are calculated, the two central equations can be used to compute two interior

Figure 4 .

 4 Figure 4.19: The six interior points to be blended to compute bn 1 .

  similar to that used by Walton and Meek for the three interior quartic control points:

  -B2: Cubic boundary curves constructed as in PN triangles (2.1) and blending function from PNG1 triangles (4.2). CubicWM-Bl: Cubic boundary curves constructed as in Walton and Meek and blending function defined by (4.15). CubicWM-B2: Cubic boundary curves constructed as in Walton and Meek and blending function from PNG1 triangles (4.2).

Figure 4 .Figure 4 .

 44 Figure 4.20: Surfaces obtained for the sphere with i = 0 by using the four different combinations of boundary curves and blending functions. (a) CubicPN-Bl. (b) CubicPN-B2. (c) CubicWM-Bl. (d) CubicWM-B2.

Figure 4 .

 4 Figure 4.22: Mean signed distance of sphere interpolation depending on the refinement step i.

Figure 4 .Figure 4 .

 44 Figure 4.23: Sphere i = 0: surfaces obtained from (a) CubicWM-Bl scheme, (b) Walton and Meek 's quartic scheme and (c) PNGl triangles.

Figure 4 .Figure 4 .

 44 Figure 4.25: Torus j = 10: surfaces obtained from (a) CubicWM-Bl scheme, (b) Walton and Meek's quartic scheme and (c) PNGl triangles.

Figure 4 .

 4 Figure 4.27: Bunny: surfaces obtained from (a) CubicWM-B1 scheme, (b) Walton and Meek's quartic scheme and (c) PNG1 triangles.

Figure 4 .

 4 Figure 4.28: Surfaces obtained for the RoundedCube mesh by using the four different combinations of boundary curves and blending functions. (a) CubicPN-Bl. (b) CubicPN-B2. (c) CubicWM-Bl. (d) CubicWM-B2.

Figure 4 .

 4 Figure 4.29: RoundedCube: surfaces obtained from (a) CubicWM-B1 scheme, (b) Walton and Meek's quartic scheme and (c) PNG1 triangles.

  Figure 5. 1, for example, a portion of the RoundedCube mesh is shown where the CubicWM-B1 patches are compared with the PNG1 triangles.

Figure 5

 5 Figure 5.1: A portion of RoundedCube mesh: (a) CubicWM-B1 patch and (b) PNG1 triangles.

  -b201) 0 b2o1 -b3oo ]w210-[ b2o1 -b3oo 0 (b2o1-b3oo) Since, obviously, the weight w 201 must be the same for the two neighbouring triangles, w2üi 1 = w2üi 2 must holdo Unfortunately, this is verified only if w210 = 0 or w210 = 1, and consequently w201 = 0 or W201 = 1° Therefore we cannot consider a rational Bézier triangle in standard formo5.2.2 Vertex weights w 300 , w 030 and w 003 different from oneWe repeat the same reasoning of the previous subsection by !etting the vertex weights w3oo, wo3o and woo3 freeo From the first equation of (5011) we can compute and its substitution in the first equation of (5o10

Figure 5

 5 Figure 5.2: The control points and weights for our RationalCubicWM patch.

Figure 5

 5 Figure 5.3: The weight W3oo is shared by all the triangles of the one-ring neighbours of the triangle under consideration.

Figure 5 . 4 :

 54 Figure 5.4: An example of the situation in which the one-ring triangles surrounding a vertex are not coplanar.

  (a) W = 1. (b) w = 5. (c) W = 10. (d) W=50. (e) W = 100.

Figure 5 . 5 :

 55 Figure 5.5: The RationalCubicWM surfaces on the RoundedCube mesh for different values of W.

Figure 5 . 6 :

 56 Figure 5.6: The RationalCubicWM surfaces on the Dragon mesh for different values of W.

Figure 5 . 7 :

 57 Figure 5.7: The RationalCubicWM-B2 surfaces, where the patch is obtained by using a blend to define w1ubu1 , on the Dragon mesh for different values of W .

Figure 5 . 8 :

 58 Figure 5.8: Shaded surfaces from the Venus mesh for different values of W.

Figure 5 . 9 :

 59 Figure 5.9: Highlight lines plots from the Venus mesh for different values of W.

  (a) W = 1. (b) w = 5. (c) W = 10. (d) w =50.

Figure 5 .

 5 Figure 5.10: Highlight lines close-ups from the Venus mesh for different values of W.

Figure 5 .

 5 Figure 5.11 : Gaussian curvature plots from the Venus mesh for different values of W.

Figure

  Figure A.l: Comparison between the configurations obtained from a linear and a quadratic normal variation patch in two different cases. The dashed curve indicates the profile of the surfaces that should be simulated. Left: linearly varying normals. Right: quadratically varying normals.

  Table 2.2). Note that Phong

	Bêzier form	Per-patch: cp construction evaluation Per-point:	Total	CPU f = 20 f = 20 f = 60 GPU
		add		mult	add mult		add mult	ms	ms	ms
	PN triangles	93		81	27	57		120	138	0.112	0.0068	0.054
	Nagata triangles	72		87	15	27		87	114	0.071	0.0067	0.050
	NLSA triangles	123		153	15	27		138	180	0.071	0.0068	0.054
	Phong tessellation	57		45	15	27		72	72	0.070	0.0059	0.043
	Table 2.1: Scalar additions and multiplications required by all the schemes to evaluate the
	patch and time required for the tessellation on the CPU and on the GPU using the Bézier
	form.									
	Original form	Per-patch Per-point	Total	CPU f = 20 f = 20 f = 60 GPU
		add mult add mult add mult	ms	ms	ms
	PN triangles		93	81	27	57	120	138		0.112	0.0068	0.054
	Nagata triangles		54	69	21	21	75	90		0.054	0.0061	0.045
	NLSA triangles		123	153	15	27	138	180		0.071	0.0068	0.054
	Phong tessellation	-	-	30	36	30	36		0.094	0.0042	0.037

Table 2

 2 

		Mean Angle Normals ± std. dev.	Min,Max Angle Normals	#E convex/concave/inflection
	502/1500/1000	0.911775 ± 0.11007	(0.00118579, 0.999985)	556/71/873
	1308/3876/2584	0.867032 ± 0.131679	[-0.263223, 0.999968)	1602/233/2040
	241/690/460	0.91861 ± 0.0825731	0.428546, 0.999982)	122/115/452
	30/84/56	0.812907 ± 0.136409	(0.688079, 1)	44/0/40
	162/480/320	0.98479 ± 0.00113563	(0.982247, 0.985606)	320/0/160
	100/300/200	0.927627 ± 0.0169889	(0.901404, 0.951429)	135/25/140
	Table 2.4: Statistics of triangle meshes: number of vertices/edgesjtriangles, angle eosine
	between vertex and triangle normals (mean± standard deviation, minimum and maximum),
	number of convex, concave, infiection edges.		

.6: Statistics on the mean of angle eosines between normals of adjacent patches (mean ±standard deviation), and the minimum and the maximum angle eosines.

Table 4 .

 4 1: Number of operations required for the evaluation of bijk( u, v, w) for each scheme.

	Scheme	Boundary cp addjsub mult div add/sub mult div add/sub mult div Interior cp Total
	PNG1	36	36	6		19	27	4	55	63	10
	WM	-	-	-		6	6	3	6	6	3
	Hybrid	36	60	6		4	9	1	40	69	7
	Scheme	f = 10	CPU	f = 20		GPU f = 20	
	Hybrid	331ms	3fps		1080ms 0.91fps 38.74ms 25.81fps
	PNG1	202ms 4.9fps 730ms 1.37fps 47.14ms 21.21fps
	WM	76.9ms 13fps	266ms 3.77fps 22.40ms 44.63fps

Table 4

 4 

.2: Time required for the tessellation on the CPU and on the GPU.

Table 4 .

 4 

	28954•10-6 ± 9.54655•10-7

3: Statistics of signed distances to the sphere: mean distance with standard deviation

Methods Min,Max Curv Mean Curv ± std. dev.

  

	Methods	Min,Max Curv Mean Curv ± std. dev.
	CubicWM-B1 [-102.584, 2951.82]	0.0486907 ± 7.8803
	WM	[-102.571, 2954.82]	0.0485715 ± 7.87631
	PNG1	[-11.0328, 28.9473]	0.0112989 ± 0.296384
	CubicPN-B1 [-14,1022, 560.042]	0.022187 ± 1. 72372
	CubicPN-B2	[-1 8.4808, 483.678	0.0260686 ± 2.01487
	CubicWM-B1 [-102.584, 2951.82]	0.0486907 ± 7.8803
	CubicWM-B2 [-3507.06, 6521.1]	0.0621727 ± 19.156
	Table 4.13: Bunny: statistics on Gaussian curvature. The mean value for Gaussian curva-
	ture (mean ± standard deviation) and the minimum and maximum value measured from
	the surfaces obtained with the four different combinations of boundary curves and blending
	functions.		

Table 4 .

 4 14: Bunny: Gaussian curvatures for surfaces obtained from CubicWM-B1 scheme, Walton and Meek's quartic scheme and PNG1 triangles.

Table 4 .

 4 15: RoundedCube: statistics on Gaussian curvature. The mean value for Gaussian curvature (mean± standard deviation) and the minimum and maximum value measured from the surfaces obtained with the four different combinations of boundary curves and blending functions.

	Methods	Min,Max Curv Mean Curv ± std. dev.
	CubicWM-B1	

Table 4 .

 4 18: Time required for the tessellation on the CPU and on the GPU.

			12.5fps 278ms 3.5fps 18.46ms 54.17fps
	CubicPN-B2	285ms	3.5fps 960ms	lfps	42.18ms 23.70fps
	CubicWM-B1	83ms	12fps	286ms 3.5fps 19.40ms 51.54fps
	CubicWM-B2 286ms	3.5fps 980ms	lfps	43.46ms	23fps
	WM	76.9ms	13fps	266ms 3.77fps 22.40ms 44.63fps
	PNG1	202ms	4.9fps 730ms 1.37fps 47.14ms 21.21fps

Table 5

 5 

	.1: RoundedCube: Gaussian curvatures for surfaces obtained from RationalCubicWM
	for different values of W.

  , wf} 1 and w~i 1 to define w111, we canuse directly w111b111 obtained as rational blend of

	b 11 111 ,	b12 111 ,	b21 111 ,	b22 111 ,	b31 111 an	d b32 t d fi 111 o e ne 111 an b	d th . e stx wetg s w 111 , w 111 , w 111 , . ht 11 12 21
	wii 1 11 b11 W111 111, W111 111, W111 111, W111 111, W111 111 an W111 111, as 1 o ows 12 b12 21 b21 22 b22 31 b31 d 32 b32 c Il
	b w111 111 u, v, w = u ( ) +w	( (	11 b11 VW111 111 + WW111 111 32 b32 ) v+w 31 b31 + UW111 111 VW111 111 u+v 22 b22 )	+v .	(	21 b21 WW111 111 + UW111 111 12 b12 ) w+u	(5.17)

Table 5 .

 5 2: Venus: Gaussian curvatures for surfaces obtained from RationalCubicWM-B2 for different values of W.

(0, ui) for each boundary curve can be defined and consequently the u,+l u,_l

Acknowledgments

Step Hybrid [-5.30481•10-5 ' 5.91278•10-5 ] 2.66562•10-6 ± 1. 78022•10-5 j = 35 PNG1 [-8.57115•10-5 ' 7.31945•10-5 ] -5.37519•10-6 ± 2.57699•10-5 WM [-6.89626•10-5 ' 7.31945•10-5 ] -1.6294•10-6 ± 2.50909•10-5 [-5.80825, 3.34168] -0.624787 ± 1.87137 CubicPN-B2 [-5.82336, 3.22741] -0.624168 ± 1.85734 CubicWM-B1 [-5.18955, 3.17923] -0.644308 ± 1.88614 CubicWM-B2 [-5.20029, 3.09298] -0.644476 ± 1.87671 Table 4.10: Torus j = 10: statistics on Gaussian curvature. The mean value for Gaussian curvature (mean± standard deviation) and the minimum and maximum value measured from the surfaces obtained with the four different combinations of boundary curves and blending functions.

changes the obtained surface. As expected, the boundary curves deeply influence the shape of the final surface, while the blending function slightly changes the patches. This is evident in Figures 4.20 and 4.21, where the surfaces obtained by using the four combinations of boundary curves and blending functions on the sphere with i = 0 and the torus with j = 10 are compared. ln Table 4.9 and 4.10 their curvature values are compared.

In Figure 4.22 the mean distances of the sphere are plotted with respect to the refinement step i. The plot clearly shows that the surfaces that use PN boundary curves have the worst behaviour, in particular in the first three steps. The two cubic versions CubicWM-B1 and CubicWM-B2, instead, have the same behaviours of the original quartic Walton and Meek's surface. CubicWM-B1 has in general the best approximation values, even if the difference with respect to Walton and Meek's patch is very slight. In fact, when we compare in Figure 4.23 the surfaces of CubicWM-B1 with those of the original Walton and Meek's scheme and PNG1 triangles, CubicWM-B1 and original Walton and Meek's patches are almost identical. Table 4.11 reports their Gaussian curvature values. These considerations are confirmed by the mean distances of the torus plotted in Figure 4.24, the surfaces compared in Figure 4.25 and the curvature values in Table 4.12. the more complicated blending function for six points (4.15) yields more expensive derivative formulas than the simpler blending functions ( 4.5) for the quartic patch. Fortunately, this is not the case on the GPU, where we obtain that the point-normal evaluation of CubicWM-B1 patch is faster than Walton and Meek's patch and PNG1 triangles.

Therefore, the blending functions are very important when looking at computational costs, because they could be expensive. For this reason, PNG1 triangles, CubicPN-B2 and CubicWM-B2 perform worst than all the other schemes, bath on the CPU and on the GPU. This fact penalised also CubicWM-B1 patch on the CPU, while it performs best on the GPU.

Concluding remarks

The main results of our comparison between hybrid parametric patch, PNG1 triangles and Walton and Meek's patch in section 4.1, and of those schemes with the four different versions of CubicWM patch in section 4.3, can be summarised as follows:

Computational costs. The study on the number of operations required to evaluate the control points reveals that Walton and Meek's patch, and consequently the four cu-bicWM patches, have the important advantage that only the interior control points are blended. Furthermore, PNG1 triangles are also penalised by the more complicated blending function for the interior control point. In practice, we verified this assumption by measurements on the time required for the tessellation of the patches on the CPU and on the GPU. Bath on the CPU and on the GPU, the four cubicWM and Walton and Meek's patches perform best, where Walton and Meek's patch is faster on the CPU and the four cubicWM patches are faster on the GPU.

Sphere and torus approximation. When analysing the surfaces constructed by the four schemes with respect to a sphere and a torus, the statistics show that Walton and Meek's and cubicWM-B1 patches have the best approximation behaviour, followed by parametric hybrid patches and PNG1 triangles.

Arbitrary meshes. On the contrary, on arbitrary triangle meshes PNG1 triangles give in general the surfaces with the best appearance. Their statistics, indeed, show that their curvature values vary more regularly. Besicles, when we increase the number of faces the stability problem of the parametric hybrid patch related to the choice of the plane on which the patch pairs are projected becomes evident. Unfortunately, this fact makes this method practically unusable on meshes with completely arbitrary normals. In many arbitrary triangle meshes analysed, Walton and Meek's and cubicWM-B1 surfaces seem to suffer in a certain sense from flatness of their boundary curves, as the high standard deviation values in the statistics on the curvature confirm.

From all our tests we can assert that our cubicWM-B1 patch attains almost identical surfaces to the quartic original Walton and Meek's patch, with lower computational costs on the GPU. Furthermore, the behaviour of our cubic version is slightly better for the sphere and for the torus approximation.

We additionally remark the following important property of our cubicWM patch and Walton and Meek's Gregory patch. Differently from the other two methods, they do not directly use the triangle neighbour in their construction, since the interior control points are constructed by means of tangent ribbons that depend only on the boundary curves. This is important in sorne applications, as, for example, in computer games, where usually stored neighbourhood information is not available.

where The control vectors ~1 and the weights 01 are similar to those of the polynomial patch shown in Figure 4.18, except that in the first each control point is multiplied by its corresponding weight. For example, the control vectors related to the edge e1 are

and their corresponding weights are

G 1 conditions for rational triangular patches

To construct our G 1 -continuous rational cubic Gregory patch we use again Walton and Meek's technique. We construct the interior control points and weights such that the cross-boundary directional derivatives lie in the plane spanned by the tangent vector éi(t) and the vector hi(t) as defined in eq. ( 4.3), namely

where with n3 = no, wb =bi -bb and w~ = b~ -b~.

Separate normal interpolation patch

When dealing with surfaces it may happen that the analytical continuity constraints are not enough for providing the desired smooth appearance. In fact, the visual appearance of an abject is not only determined by its geometrical shape but also, for example, by the surface shading. Shading models for surfaces in computer graphies incorporate the local surface normal. Renee, the normal vectors can be used to enhance the visual appearance of geometrical abjects, as also demonstrated by normal mapping (see for instance [START_REF] Sander | [END_REF]).

The schemes described in this thesis use only the vertex positions and normals in the input. As a consequence, they do not control the patch normals. Dealing with this problem, in fact, would mean to impose more constraints on the control points defining the patch.

Thus, as solution, an independent normal patch (usually linear or quadratic) can be proposed together with the surface to improve the surface visualisation as a sort of normal smoothing. Using these normals in the shading process, the surface appearance gives us the impression that it is smoother because curvature discontinuities are alleviated. It has to be pointed out that in this way the surface is simply enhanced in its visualisation and not at all smoothed in its geometry.

When an independent linear normal variation patch is used in a shading process, the value of the normal at the parameter point ( u, v, w) is sim ply computed as the normalized average of the normal values at the vertices of the triangle:

Il" uno + vn1 + wn2 One problem with linearly varying normals, is that such a patch ignores inftections in the geometry, as illustrated for instance in Figure A.1 (bottom-left). More details can be found in [ Van Overveld and Wyvill1997b].

As a solution to this problem the option of a quadratic normal variation patch is proposed by the authors of PN triangles [Vlachos et al. 2001] who took the idea from [ Van Overveld and Wyvill 1997b]. A quadratic function n( u, v, w) is used to compute normals at the evaluation points (u,v,w):

The values of n( u, v, w) are then normalized and passed on to the shading process.

A quadratic function introduces the use of mid-edge coefficients and is thus, unlike a linear function, able to capture inftections, as shawn in Figure A.1 (bottom-right). This mid-edge coefficient is constructed in [Vlachos et al. 2001] by averaging the normals of the edge corners 127

CPU and GPU implementations

We implemented all the schemes as an Autodesk Maya@ plug-in (MPxHwShaderNode) , based on the plug-in from [START_REF] Fünfzig | [END_REF]. The Polygons part of Autodesk Maya@ is a classic polygonal modeller, and lots of low-level and high-level functions are available for surface creation. MPxHwShaderNode is a base class that allows the creation of user-defined hardware shaders, in which the plug-in writer can control the on-screen display of an object in Maya. The complete MPxHwShaderNode class reference documentation can be found at http : 11 download.autodesk . com/us/maya/2009help/API/class_m_px_hw_shader_node .html. Every method has a patchData object of a specifie class for the patch, storing all the control points of the patch. For example, for PN triangles, it contains the ten control points of the cubic Bézier patch: The function receives in input, together with patchData, points (pO, pl, p2) and normals (nO, nl, n2), a boolean allocate. If it is true, then calcControlPoints creates an object derived from PatchData and overwrites the pointer patchData. Otherwise, if allocate is false, patchData must be ! =NULL and control points are written to the patchData object passed into the function. The others inputs data, triangle_i, indexArray, vertexArray and normalArray, allow to retrieve the information on neighbouring triangles if needed for the construction of the control points.

An interface for triangular patches

Once the control points are computed and stored in the patchData object, the following functions are used to evaluate the point on the patch, the normal and the curvature of the patch for barycentric coordinates (u,v,w). //evaluate the patch at (u,v,w): evalPatchPointNormal (point,normal,patchData,u,v,w); store point at the correct place in pnVertexArray; store normal at the correct place in pnNormalArray;

Hybrid tessellation on the GPU

The tessellation of the patch on the GPU, nowadays called "Instanced Tessellation", is based on [START_REF] Boubekeur | [END_REF]. First, the shader program with vertex shader for the considered method is activated. patchData is set to NULL and the function calcControlPoints () is called by passing directly the point coordinates in vertexArray and the normal coordinates in normalArrays. The patchData object is therefore allocated and passed to the shader. Fi- nally, the tessellated triangle ((1,0,0), (0,1,0), (0,0,1)) , is rendered and reused as vertex buffer abject (VBO) for all the pat ches.